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6. The orientation cover 163

Chapter 21. The index of manifolds; manifolds with boundary 165
1. The Euler characteristic of compact manifolds 165
2. The index of compact oriented manifolds 166
3. Manifolds with boundary 168
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Introduction

The first year graduate program in mathematics at the University of Chicago
consists of three three-quarter courses, in analysis, algebra, and topology. The first
two quarters of the topology sequence focus on manifold theory and differential
geometry, including differential forms and, usually, a glimpse of de Rham cohomol-
ogy. The third quarter focuses on algebraic topology. I have been teaching the
third quarter off and on since around 1970. Before that, the topologists, including
me, thought that it would be impossible to squeeze a serious introduction to al-
gebraic topology into a one quarter course, but we were overruled by the analysts
and algebraists, who felt that it was unacceptable for graduate students to obtain
their PhDs without having some contact with algebraic topology.

This raises a conundrum. A large number of students at Chicago go into topol-
ogy, algebraic and geometric. The introductory course should lay the foundations
for their later work, but it should also be viable as an introduction to the subject
suitable for those going into other branches of mathematics. These notes reflect
my efforts to organize the foundations of algebraic topology in a way that caters
to both pedagogical goals. There are evident defects from both points of view. A
treatment more closely attuned to the needs of algebraic geometers and analysts
would include Čech cohomology on the one hand and de Rham cohomology and
perhaps Morse homology on the other. A treatment more closely attuned to the
needs of algebraic topologists would include spectral sequences and an array of
calculations with them. In the end, the overriding pedagogical goal has been the
introduction of basic ideas and methods of thought.

Our understanding of the foundations of algebraic topology has undergone sub-
tle but serious changes since I began teaching this course. These changes reflect
in part an enormous internal development of algebraic topology over this period,
one which is largely unknown to most other mathematicians, even those working in
such closely related fields as geometric topology and algebraic geometry. Moreover,
this development is poorly reflected in the textbooks that have appeared over this
period.

Let me give a small but technically important example. The study of gen-
eralized homology and cohomology theories pervades modern algebraic topology.
These theories satisfy the excision axiom. One constructs most such theories ho-
motopically, by constructing representing objects called spectra, and one must then
prove that excision holds. There is a way to do this in general that is no more dif-
ficult than the standard verification for singular homology and cohomology. I find
this proof far more conceptual and illuminating than the standard one even when
specialized to singular homology and cohomology. (It is based on the approxima-
tion of excisive triads by weakly equivalent CW triads.) This should by now be a
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2 INTRODUCTION

standard approach. However, to the best of my knowledge, there exists no rigorous
exposition of this approach in the literature, at any level.

More centrally, there now exist axiomatic treatments of large swaths of homo-
topy theory based on Quillen’s theory of closed model categories. While I do not
think that a first course should introduce such abstractions, I do think that the ex-
position should give emphasis to those features that the axiomatic approach shows
to be fundamental. For example, this is one of the reasons, although by no means
the only one, that I have dealt with cofibrations, fibrations, and weak equivalences
much more thoroughly than is usual in an introductory course.

Some parts of the theory are dealt with quite classically. The theory of fun-
damental groups and covering spaces is one of the few parts of algebraic topology
that has probably reached definitive form, and it is well treated in many sources.
Nevertheless, this material is far too important to all branches of mathematics to
be omitted from a first course. For variety, I have made more use of the funda-
mental groupoid than in standard treatments,1 and my use of it has some novel
features. For conceptual interest, I have emphasized different categorical ways of
modeling the topological situation algebraically, and I have taken the opportunity
to introduce some ideas that are central to equivariant algebraic topology.

Poincaré duality is also too fundamental to omit. There are more elegant ways
to treat this topic than the classical one given here, but I have preferred to give the
theory in a quick and standard fashion that reaches the desired conclusions in an
economical way. Thus here I have not presented the truly modern approach that
applies to generalized homology and cohomology theories.2

The reader is warned that this book is not designed as a textbook, although
it could be used as one in exceptionally strong graduate programs. Even then, it
would be impossible to cover all of the material in detail in a quarter, or even in a
year. There are sections that should be omitted on a first reading and others that
are intended to whet the student’s appetite for further developments. In practice,
when teaching, my lectures are regularly interrupted by (purposeful) digressions,
most often directly prompted by the questions of students. These introduce more
advanced topics that are not part of the formal introductory course: cohomology
operations, characteristic classes, K-theory, cobordism, etc., are often first intro-
duced earlier in the lectures than a linear development of the subject would dictate.

These digressions have been expanded and written up here as sketches without
complete proofs, in a logically coherent order, in the last four chapters. These
are topics that I feel must be introduced in some fashion in any serious graduate
level introduction to algebraic topology. A defect of nearly all existing texts is
that they do not go far enough into the subject to give a feel for really substantial
applications: the reader sees spheres and projective spaces, maybe lens spaces, and
applications accessible with knowledge of the homology and cohomology of such
spaces. That is not enough to give a real feeling for the subject. I am aware that
this treatment suffers the same defect, at least before its sketchy last chapters.

Most chapters end with a set of problems. Most of these ask for computa-
tions and applications based on the material in the text, some extend the theory
and introduce further concepts, some ask the reader to furnish or complete proofs

1But see R. Brown’s book cited in §2 of the suggestions for further reading.
2That approach derives Poincaré duality as a consequence of Spanier-Whitehead and Atiyah

duality, via the Thom isomorphism for oriented vector bundles.



INTRODUCTION 3

omitted in the text, and some are essay questions which implicitly ask the reader
to seek answers in other sources. Problems marked ∗ are more difficult or more
peripheral to the main ideas. Most of these problems are included in the weekly
problem sets that are an integral part of the course at Chicago. In fact, doing the
problems is the heart of the course. (There are no exams and no grades; students
are strongly encouraged to work together, and more work is assigned than a student
can reasonably be expected to complete working alone.) The reader is urged to try
most of the problems: this is the way to learn the material. The lectures focus on
the ideas; their assimilation requires more calculational examples and applications
than are included in the text.

I have ended with a brief and idiosyncratic guide to the literature for the reader
interested in going further in algebraic topology.

These notes have evolved over many years, and I claim no originality for most
of the material. In particular, many of the problems, especially in the more classical
chapters, are the same as, or are variants of, problems that appear in other texts.
Perhaps this is unavoidable: interesting problems that are doable at an early stage
of the development are few and far between. I am especially aware of my debts to
earlier texts by Massey, Greenberg and Harper, Dold, and Gray.

I am very grateful to John Greenlees for his careful reading and suggestions,
especially of the last three chapters. I am also grateful to Igor Kriz for his sugges-
tions and for trying out the book at the University of Michigan. By far my greatest
debt, a cumulative one, is to several generations of students, far too numerous to
name. They have caught countless infelicities and outright blunders, and they have
contributed quite a few of the details. You know who you are. Thank you.





CHAPTER 1

The fundamental group and some of its
applications

We introduce algebraic topology with a quick treatment of standard mate-
rial about the fundamental groups of spaces, embedded in a geodesic proof of the
Brouwer fixed point theorem and the fundamental theorem of algebra.

1. What is algebraic topology?

A topological space X is a set in which there is a notion of nearness of points.
Precisely, there is given a collection of “open” subsets of X which is closed under
finite intersections and arbitrary unions. It suffices to think of metric spaces. In that
case, the open sets are the arbitrary unions of finite intersections of neighborhoods
Uε(x) = {y|d(x, y) < ε}.

A function p : X −→ Y is continuous if it takes nearby points to nearby points.
Precisely, p−1(U) is open if U is open. If X and Y are metric spaces, this means
that, for any x ∈ X and ε > 0, there exists δ > 0 such that p(Uδ(x)) ⊂ Uε(p(x)).

Algebraic topology assigns discrete algebraic invariants to topological spaces
and continuous maps. More narrowly, one wants the algebra to be invariant with
respect to continuous deformations of the topology. Typically, one associates a
group A(X) to a space X and a homomorphism A(p) : A(X) −→ A(Y ) to a map
p : X −→ Y ; one usually writes A(p) = p∗.

A “homotopy” h : p ' q between maps p, q : X −→ Y is a continuous map
h : X × I −→ Y such that h(x, 0) = p(x) and h(x, 1) = q(x), where I is the unit
interval [0, 1]. We usually want p∗ = q∗ if p ' q, or some invariance property close
to this.

In oversimplified outline, the way homotopy theory works is roughly this.

(1) One defines some algebraic construction A and proves that it is suitably
homotopy invariant.

(2) One computes A on suitable spaces and maps.
(3) One takes the problem to be solved and deforms it to the point that step

2 can be used to solve it.

The further one goes in the subject, the more elaborate become the construc-
tions A and the more horrendous become the relevant calculational techniques.
This chapter will give a totally self-contained paradigmatic illustration of the basic
philosophy. Our construction A will be the “fundamental group.” We will calcu-
late A on the circle S1 and on some maps from S1 to itself. We will then use the
computation to prove the “Brouwer fixed point theorem” and the “fundamental
theorem of algebra.”

5



6 THE FUNDAMENTAL GROUP AND SOME OF ITS APPLICATIONS

2. The fundamental group

Let X be a space. Two paths f, g : I −→ X from x to y are equivalent if they
are homotopic through paths from x to y. That is, there must exist a homotopy
h : I × I −→ X such that

h(s, 0) = f(s), h(s, 1) = g(s), h(0, t) = x, and h(1, t) = y

for all s, t ∈ I. Write [f ] for the equivalence class of f . We say that f is a loop if
f(0) = f(1). Define π1(X,x) to be the set of equivalence classes of loops that start
and end at x.

For paths f : x → y and g : y → z, define g · f to be the path obtained by
traversing first f and then g, going twice as fast on each:

(g · f)(s) =

{
f(2s) if 0 ≤ s ≤ 1/2
g(2s− 1) if 1/2 ≤ s ≤ 1.

Define f−1 to be f traversed the other way around: f−1(s) = f(1−s). Define cx to
be the constant loop at x: cx(s) = x. Composition of paths passes to equivalence
classes via [g][f ] = [g ·f ]. It is easy to check that this is well defined. Moreover, after
passage to equivalence classes, this composition becomes associative and unital. It is
easy enough to write down explicit formulas for the relevant homotopies. It is more
illuminating to draw a picture of the domain squares and to indicate schematically
how the homotopies are to behave on it. In the following, we assume given paths

f : x→ y, g : y → z, and h : z → w.

h · (g · f) ' (h · g) · f

f g h

cx

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

cw

f g h

f · cx ' f cy · f ' f

f

cx

//
//

//
//

//
//

/

cy

f

cx cy

��
��
��
��
��
��
�

cx f f cy



4. HOMOTOPY INVARIANCE 7

Moreover, [f−1 · f ] = [cx] and [f · f−1] = [cy]. For the first, we have the following
schematic picture and corresponding formula. In the schematic picture,

ft = f |[0, t] and f−1
t = f−1|[1− t, 1].

f f−1

cx

��
��
��
��
��
��
��
��
��
��
��
��
��

//
//

//
//

//
//

//
//

//
//

//
//

//

cx

ft cf(t) f−1
t

cx

h(s, t) =


f(2s) if 0 ≤ s ≤ t/2
f(t) if t/2 ≤ s ≤ 1− t/2
f(2− 2s) if 1− t/2 ≤ s ≤ 1.

We conclude that π1(X,x) is a group with identity element e = [cx] and inverse
elements [f ]−1 = [f−1]. It is called the fundamental group of X, or the first
homotopy group of X. There are higher homotopy groups πn(X,x) defined in
terms of maps Sn −→ X. We will get to them later.

3. Dependence on the basepoint

For a path a : x→ y, define γ[a] : π1(X,x) −→ π1(X, y) by γ[a][f ] = [a·f ·a−1].
It is easy to check that γ[a] depends only on the equivalence class of a and is a
homomorphism of groups. For a path b : y → z, we see that γ[b · a] = γ[b] ◦ γ[a]. It
follows that γ[a] is an isomorphism with inverse γ[a−1]. For a path b : y → x, we
have γ[b · a][f ] = [b · a][f ][(b · a)−1]. If the group π1(X,x) happens to be Abelian,
which may or may not be the case, then this is just [f ]. By taking b = (a′)−1 for
another path a′ : x→ y, we see that, when π1(X,x) is Abelian, γ[a] is independent
of the choice of the path class [a]. Thus, in this case, we have a canonical way to
identify π1(X,x) with π1(X, y).

4. Homotopy invariance

For a map p : X −→ Y , define p∗ : π1(X,x) −→ π1(Y, p(x)) by p∗[f ] =
[p ◦ f ], where p ◦ f is the composite of p with the loop f : I −→ X. Clearly
p∗ is a homomorphism. The identity map id : X −→ X induces the identity
homomorphism. For a map q : Y −→ Z, q∗ ◦ p∗ = (q ◦ p)∗.

Now suppose given two maps p, q : X −→ Y and a homotopy h : p ' q. We
would like to conclude that p∗ = q∗, but this doesn’t quite make sense because
homotopies needn’t respect basepoints. However, the homotopy h determines the
path a : p(x)→ q(x) specified by a(t) = h(x, t), and the next best thing happens.
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Proposition. The following diagram is commutative:

π1(X,x)
p∗

xxqqqqqqqqqq
q∗

&&NNNNNNNNNN

π1(Y, p(x))
γ[a]

// π1(Y, q(x)).

Proof. Let f : I −→ X be a loop at x. We must show that q ◦ f is equivalent
to a · (p ◦ f) · a−1. It is easy to check that this is equivalent to showing that cp(x) is
equivalent to a−1 · (q ◦f)−1 ·a · (p◦f). Define j : I× I −→ Y by j(s, t) = h(f(s), t).
Then

j(s, 0) = (p ◦ f)(s), j(s, 1) = (q ◦ f)(s), and j(0, t) = a(t) = j(1, t).

Note that j(0, 0) = p(x). Schematically, on the boundary of the square, j is

q◦f//

a OO

p◦f
//

aOO

Thus, going counterclockwise around the boundary starting at (0, 0), we traverse
a−1 · (q ◦ f)−1 · a · (p ◦ f). The map j induces a homotopy through loops between
this composite and cp(x). Explicitly, a homotopy k is given by k(s, t) = j(rt(s)),
where rt : I −→ I × I maps successive quarter intervals linearly onto the edges of
the bottom left subsquare of I × I with edges of length t, starting at (0, 0):

��

oo

//

OO

�

5. Calculations: π1(R) = 0 and π1(S1) = Z

Our first calculation is rather trivial. We take the origin 0 as a convenient
basepoint for the real line R.

Lemma. π1(R, 0) = 0.

Proof. Define k : R × I −→ R by k(s, t) = (1 − t)s. Then k is a homotopy
from the identity to the constant map at 0. For a loop f : I −→ R at 0, define
h(s, t) = k(f(s), t). The homotopy h shows that f is equivalent to c0. �

Consider the circle S1 to be the set of complex numbers x = y + iz of norm 1,
y2 + z2 = 1. Observe that S1 is a group under multiplication of complex numbers.
It is a topological group: multiplication is a continuous function. We take the
identity element 1 as a convenient basepoint for S1.

Theorem. π1(S1, 1) ∼= Z.
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Proof. For each integer n, define a loop fn in S1 by fn(s) = e2πins. This is
the composite of the map I −→ S1 that sends s to e2πis and the nth power map on
S1; if we identify the boundary points 0 and 1 of I, then the first map induces the
evident identification of I/∂I with S1. It is easy to check that [fm][fn] = [fm+n],
and we define a homomorphism i : Z −→ π1(S1, 1) by i(n) = [fn]. We claim that
i is an isomorphism. The idea of the proof is to use the fact that, locally, S1 looks
just like R.

Define p : R −→ S1 by p(s) = e2πis. Observe that p wraps each interval [n, n+1]
around the circle, starting at 1 and going counterclockwise. Since the exponential
function converts addition to multiplication, we easily check that fn = p◦ f̃n, where
f̃n is the path in R defined by f̃n(s) = sn.

This lifting of paths works generally. For any path f : I −→ S1 with f(0) = 1,
there is a unique path f̃ : I −→ R such that f̃(0) = 0 and p ◦ f̃ = f . To see
this, observe that the inverse image in R of any small connected neighborhood in
S1 is a disjoint union of a copy of that neighborhood contained in each interval
(r + n, r + n + 1) for some r ∈ [0, 1). Using the fact that I is compact, we see
that we can subdivide I into finitely many closed subintervals such that f carries
each subinterval into one of these small connected neighborhoods. Now, proceeding
subinterval by subinterval, we obtain the required unique lifting of f by observing
that the lifting on each subinterval is uniquely determined by the lifting of its initial
point.

Define a function j : π1(S1, 1) −→ Z by j[f ] = f̃(1), the endpoint of the lifted
path. This is an integer since p(f̃(1)) = 1. We must show that this integer is
independent of the choice of f in its path class [f ]. In fact, if we have a homotopy
h : f ' g through loops at 1, then the homotopy lifts uniquely to a homotopy
h̃ : I × I −→ R such that h̃(0, 0) = 0 and p ◦ h̃ = h. The argument is just the same
as for f̃ : we use the fact that I × I is compact to subdivide it into finitely many
subsquares such that h carries each into a small connected neighborhood in S1. We
then construct the unique lift h̃ by proceeding subsquare by subsquare, starting at
the lower left, say, and proceeding upward one row of squares at a time. By the
uniqueness of lifts of paths, which works just as well for paths with any starting
point, c(t) = h̃(0, t) and d(t) = h̃(1, t) specify constant paths since h(0, t) = 1 and
h(1, t) = 1 for all t. Clearly c is constant at 0, so, again by the uniqueness of lifts
of paths, we must have

f̃(s) = h̃(s, 0) and g̃(s) = h̃(s, 1).

But then our second constant path d starts at f̃(1) and ends at g̃(1).
Since j[fn] = n by our explicit formula for f̃n, the composite j ◦ i : Z −→ Z is

the identity. It suffices to check that the function j is one-to-one, since then both i
and j will be one-to-one and onto. Thus suppose that j[f ] = j[g]. This means that
f̃(1) = g̃(1). Therefore g̃−1 · f̃ is a loop at 0 in R. By the lemma, [g̃−1 · f̃ ] = [c0].
It follows upon application of p∗ that

[g−1][f ] = [g−1 · f ] = [c1].

Therefore [f ] = [g] and the proof is complete. �
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6. The Brouwer fixed point theorem

Let D2 be the unit disk {y + iz|y2 + z2 ≤ 1}. Its boundary is S1, and we let
i : S1 −→ D2 be the inclusion. Exactly as for R, we see that π1(D2) = 0 for any
choice of basepoint.

Proposition. There is no continuous map r : D2 −→ S1 such that r ◦ i = id.

Proof. If there were such a map r, then the composite homomorphism

π1(S1, 1)
i∗ // π1(D2, 1)

r∗ // π1(S1, 1)

would be the identity. Since the identity homomorphism of Z does not factor
through the zero group, this is impossible. �

Theorem (Brouwer fixed point theorem). Any continuous map

f : D2 −→ D2

has a fixed point.

Proof. Suppose that f(x) 6= x for all x. Define r(x) ∈ S1 to be the intersec-
tion with S1 of the ray that starts at f(x) and passes through x. Certainly r(x) = x
if x ∈ S1. By writing an equation for r in terms of f , we see that r is continuous.
This contradicts the proposition. �

7. The fundamental theorem of algebra

Let ι ∈ π1(S1, 1) be a generator. For a map f : S1 −→ S1, define an integer
deg(f) by letting the composite

π1(S1, 1)
f∗ // π1(S1, f(1))

γ[a] // π1(S1, 1)

send ι to deg(f)ι. Here a is any path f(1) → 1; γ[a] is independent of the choice
of [a] since π1(S1, 1) is Abelian. If f ' g, then deg(f) = deg(g) by our homotopy
invariance diagram and this independence of the choice of path. Conversely, our
calculation of π1(S1, 1) implies that if deg(f) = deg(g), then f ' g, but we will not
need that for the moment. It is clear that deg(f) = 0 if f is the constant map at
some point. It is also clear that if fn(x) = xn, then deg(fn) = n: we built that fact
into our proof that π1(S1, 1) = Z.

Theorem (Fundamental theorem of algebra). Let

f(x) = xn + c1x
n−1 + · · ·+ cn−1x+ cn

be a polynomial with complex coefficients ci, where n > 0. Then there is a complex
number x such that f(x) = 0. Therefore there are n such complex numbers (counted
with multiplicities).

Proof. Using f(x)/(x−c) for a root c, we see that the last statement will follow
by induction from the first. We may as well assume that f(x) 6= 0 for x ∈ S1. This
allows us to define f̂ : S1 −→ S1 by f̂(x) = f(x)/|f(x)|. We proceed to calculate
deg(f̂). Suppose first that f(x) 6= 0 for all x such that |x| ≤ 1. This allows us to
define h : S1× I −→ S1 by h(x, t) = f(tx)/|f(tx)|. Then h is a homotopy from the
constant map at f(0)/|f(0)| to f̂ , and we conclude that deg(f̂) = 0. Suppose next
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that f(x) 6= 0 for all x such that |x| ≥ 1. This allows us to define j : S1 × I −→ S1

by j(x, t) = k(x, t)/|k(x, t)|, where

k(x, t) = tnf(x/t) = xn + t(c1xn−1 + tc2x
n−2 + · · ·+ tn−1cn).

Then j is a homotopy from fn to f̂ , and we conclude that deg(f̂) = n. One of our
suppositions had better be false! �

It is to be emphasized how technically simple this is, requiring nothing remotely
as deep as complex analysis. Nevertheless, homotopical proofs like this are relatively
recent. Adequate language, elementary as it is, was not developed until the 1930s.

PROBLEMS
(1) Let p be a polynomial function on C which has no root on S1. Show that

the number of roots of p(z) = 0 with |z| < 1 is the degree of the map
p̂ : S1 −→ S1 specified by p̂(z) = p(z)/|p(z)|.

(2) Show that any map f : S1 −→ S1 such that deg(f) 6= 1 has a fixed point.
(3) Let G be a topological group and take its identity element e as its base-

point. Define the pointwise product of loops α and β by (αβ)(t) =
α(t)β(t). Prove that αβ is equivalent to the composition of paths β · α.
Deduce that π1(G, e) is Abelian.





CHAPTER 2

Categorical language and the van Kampen
theorem

We introduce categorical language and ideas and use them to prove the van
Kampen theorem. This method of computing fundamental groups illustrates the
general principle that calculations in algebraic topology usually work by piecing
together a few pivotal examples by means of general constructions or procedures.

1. Categories

Algebraic topology concerns mappings from topology to algebra. Category
theory gives us a language to express this. We just record the basic terminology,
without being overly pedantic about it.

A category C consists of a collection of objects, a set C (A,B) of morphisms
(also called maps) between any two objects, an identity morphism idA ∈ C (A,A)
for each object A (usually abbreviated id), and a composition law

◦ : C (B,C)× C (A,B) −→ C (A,C)

for each triple of objects A, B, C. Composition must be associative, and identity
morphisms must behave as their names dictate:

h ◦ (g ◦ f) = (h ◦ g) ◦ f, id ◦f = f, and f ◦ id = f

whenever the specified composites are defined. A category is “small” if it has a set
of objects.

We have the category S of sets and functions, the category U of topological
spaces and continuous functions, the category G of groups and homomorphisms,
the category A b of Abelian groups and homomorphisms, and so on.

2. Functors

A functor F : C −→ D is a map of categories. It assigns an object F (A) of
D to each object A of C and a morphism F (f) : F (A) −→ F (B) of D to each
morphism f : A −→ B of C in such a way that

F (idA) = idF (A) and F (g ◦ f) = F (g) ◦ F (f).

More precisely, this is a covariant functor. A contravariant functor F reverses the
direction of arrows, so that F sends f : A −→ B to F (f) : F (B) −→ F (A) and
satisfies F (g ◦ f) = F (f) ◦ F (g). A category C has an opposite category C op

with the same objects and with C op(A,B) = C (B,A). A contravariant functor
F : C −→ D is just a covariant functor C op −→ D .

For example, we have forgetful functors from spaces to sets and from Abelian
groups to sets, and we have the free Abelian group functor from sets to Abelian
groups.

13
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3. Natural transformations

A natural transformation α : F −→ G between functors C −→ D is a map of
functors. It consists of a morphism αA : F (A) −→ G(A) for each object A of C
such that the following diagram commutes for each morphism f : A −→ B of C :

F (A)
F (f) //

αA

��

F (B)

αB

��
G(A)

G(f)
// G(B).

Intuitively, the maps αA are defined in the same way for every A.
For example, if F : S −→ A b is the functor that sends a set to the free

Abelian group that it generates and U : A b −→ S is the forgetful functor that
sends an Abelian group to its underlying set, then we have a natural inclusion of
sets S −→ UF (S). The functors F and U are left adjoint and right adjoint to each
other, in the sense that we have a natural isomorphism

A b(F (S), A) ∼= S (S,U(A))

for a set S and an Abelian group A. This just expresses the “universal property”
of free objects: a map of sets S −→ U(A) extends uniquely to a homomorphism of
groups F (S) −→ A. Although we won’t bother with a formal definition, the notion
of an adjoint pair of functors will play an important role later on.

Two categories C and D are equivalent if there are functors F : C −→ D and
G : D −→ C and natural isomorphisms FG −→ Id and GF −→ Id, where the Id
are the respective identity functors.

4. Homotopy categories and homotopy equivalences

Let T be the category of spaces X with a chosen basepoint x ∈ X; its mor-
phisms are continuous mapsX −→ Y that carry the basepoint ofX to the basepoint
of Y . The fundamental group specifies a functor T −→ G , where G is the category
of groups and homomorphisms.

When we have a (suitable) relation of homotopy between maps in a category
C , we define the homotopy category hC to be the category with the same objects
as C but with morphisms the homotopy classes of maps. We have the homotopy
category hU of unbased spaces. On T , we require homotopies to map basepoint to
basepoint at all times t, and we obtain the homotopy category hT of based spaces.
The fundamental group is a homotopy invariant functor on T , in the sense that it
factors through a functor hT −→ G .

A homotopy equivalence in U is an isomorphism in hU . Less mysteriously, a
map f : X −→ Y is a homotopy equivalence if there is a map g : Y −→ X such that
both g ◦ f ' id and f ◦ g ' id. Working in T , we obtain the analogous notion of
a based homotopy equivalence. Functors carry isomorphisms to isomorphisms, so
we see that a based homotopy equivalence induces an isomorphism of fundamental
groups. The same is true, less obviously, for unbased homotopy equivalences.

Proposition. If f : X −→ Y is a homotopy equivalence, then

f∗ : π1(X,x) −→ π1(Y, f(x))

is an isomorphism for all x ∈ X.
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Proof. Let g : Y −→ X be a homotopy inverse of f . By our homotopy
invariance diagram, we see that the composites

π1(X,x)
f∗−→ π1(Y, f(x))

g∗−→ π1(X, (g ◦ f)(x))

and
π1(Y, y)

g∗−→ π1(X, g(y))
f∗−→ π1(Y, (f ◦ g)(y))

are isomorphisms determined by paths between basepoints given by chosen homo-
topies g ◦ f ' id and f ◦ g ' id. Therefore, in each displayed composite, the first
map is a monomorphism and the second is an epimorphism. Taking y = f(x)
in the second composite, we see that the second map in the first composite is an
isomorphism. Therefore so is the first map. �

A space X is said to be contractible if it is homotopy equivalent to a point.

Corollary. The fundamental group of a contractible space is zero.

5. The fundamental groupoid

While algebraic topologists often concentrate on connected spaces with chosen
basepoints, it is valuable to have a way of studying fundamental groups that does
not require such choices. For this purpose, we define the “fundamental groupoid”
Π(X) of a space X to be the category whose objects are the points of X and whose
morphisms x −→ y are the equivalence classes of paths from x to y. Thus the set
of endomorphisms of the object x is exactly the fundamental group π1(X,x).

The term “groupoid” is used for a category all morphisms of which are isomor-
phisms. The idea is that a group may be viewed as a groupoid with a single object.
Taking morphisms to be functors, we obtain the category G P of groupoids. Then
we may view Π as a functor U −→ G P.

There is a useful notion of a skeleton skC of a category C . This is a “full”
subcategory with one object from each isomorphism class of objects of C , “full”
meaning that the morphisms between two objects of skC are all of the morphisms
between these objects in C . The inclusion functor J : skC −→ C is an equivalence
of categories. An inverse functor F : C −→ skC is obtained by letting F (A)
be the unique object in skC that is isomorphic to A, choosing an isomorphism
αA : A −→ F (A), and defining F (f) = αB ◦ f ◦ α−1

A : F (A) −→ F (B) for a
morphism f : A −→ B in C . We choose α to be the identity morphism if A is in
skC , and then FJ = Id; the αA specify a natural isomorphism α : Id −→ JF .

A category C is said to be connected if any two of its objects can be connected
by a sequence of morphisms. For example, a sequence A ←− B −→ C connects
A to C, although there need be no morphism A −→ C. However, a groupoid C
is connected if and only if any two of its objects are isomorphic. The group of
endomorphisms of any object C is then a skeleton of C . Therefore the previous
paragraph specializes to give the following relationship between the fundamental
group and the fundamental groupoid of a path connected space X.

Proposition. Let X be a path connected space. For each point x ∈ X, the
inclusion π1(X,x) −→ Π(X) is an equivalence of categories.

Proof. We are regarding π1(X,x) as a category with a single object x, and it
is a skeleton of Π(X). �
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6. Limits and colimits

Let D be a small category and let C be any category. A D-shaped diagram
in C is a functor F : D −→ C . A morphism F −→ F ′ of D-shaped diagrams is a
natural transformation, and we have the category D [C ] of D-shaped diagrams in
C . Any object C of C determines the constant diagram C that sends each object
of D to C and sends each morphism of D to the identity morphism of C.

The colimit, colimF , of a D-shaped diagram F is an object of C together with
a morphism of diagrams ι : F −→ colimF that is initial among all such morphisms.
This means that if η : F −→ A is a morphism of diagrams, then there is a unique
map η̃ : colimF −→ A in C such that η̃ ◦ ι = η. Diagrammatically, this property
is expressed by the assertion that, for each map d : D −→ D′ in D , we have a
commutative diagram

F (D)
F (d) //

ι
$$JJJJJJJJJ

η

��8
88

88
88

88
88

88
88

8
F (D′)

ι
yyttttttttt

η

����
��

��
��

��
��

��
��

colimF

η̃

��
A.

The limit of F is defined by reversing arrows: it is an object limF of C together
with a morphism of diagrams π : limF −→ F that is terminal among all such
morphisms. This means that if ε : A −→ F is a morphism of diagrams, then there
is a unique map ε̃ : A −→ limF in C such that π ◦ ε̃ = ε. Diagrammatically, this
property is expressed by the assertion that, for each map d : D −→ D′ in D , we
have a commutative diagram

F (D)
F (d) // F (D′)

limF

π

ddHHHHHHHHH π

::uuuuuuuuu

A.

ε̃

OOε

ZZ6666666666666666

ε

CC����������������

If D is a set regarded as a discrete category (only identity morphisms), then
colimits and limits indexed on D are coproducts and products indexed on the set
D . Coproducts are disjoint unions in S or U , wedges (or one-point unions) in T ,
free products in G , and direct sums in A b. Products are Cartesian products in all
of these categories; more precisely, they are Cartesian products of underlying sets,
with additional structure. If D is the category displayed schematically as

e doo // f or d
//// d′,

where we have displayed all objects and all non-identity morphisms, then the co-
limits indexed on D are called pushouts or coequalizers, respectively. Similarly, if
D is displayed schematically as

e // d foo or d
//// d′,
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then the limits indexed on D are called pullbacks or equalizers, respectively.
A given category may or may not have all colimits, and it may have some but

not others. A category is said to be cocomplete if it has all colimits, complete if it
has all limits. The categories S , U , T , G , and A b are complete and cocomplete.
If a category has coproducts and coequalizers, then it is cocomplete, and similarly
for completeness. The proof is a worthwhile exercise.

7. The van Kampen theorem

The following is a modern dress treatment of the van Kampen theorem. I should
admit that, in lecture, it may make more sense not to introduce the fundamental
groupoid and to go directly to the fundamental group statement. The direct proof
is shorter, but not as conceptual. However, as far as I know, the deduction of
the fundamental group version of the van Kampen theorem from the fundamental
groupoid version does not appear in the literature in full generality. The proof well
illustrates how to manipulate colimits formally. We have used the van Kampen
theorem as an excuse to introduce some basic categorical language, and we shall
use that language heavily in our treatment of covering spaces in the next chapter.

Theorem (van Kampen). Let O = {U} be a cover of a space X by path
connected open subsets such that the intersection of finitely many subsets in O is
again in O. Regard O as a category whose morphisms are the inclusions of subsets
and observe that the functor Π, restricted to the spaces and maps in O, gives a
diagram

Π|O : O −→ G P

of groupoids. The groupoid Π(X) is the colimit of this diagram. In symbols,

Π(X) ∼= colimU∈O Π(U).

Proof. We must verify the universal property. For a groupoid C and a map
η : Π|O −→ C of O-shaped diagrams of groupoids, we must construct a map
η̃ : Π(X) −→ C of groupoids that restricts to ηU on Π(U) for each U ∈ O. On
objects, that is on points of X, we must define η̃(x) = ηU (x) for x ∈ U . This is
independent of the choice of U since O is closed under finite intersections. If a path
f : x→ y lies entirely in a particular U , then we must define η̃[f ] = η([f ]). Again,
since O is closed under finite intersections, this specification is independent of the
choice of U if f lies entirely in more than one U . Any path f is the composite of
finitely many paths fi, each of which does lie in a single U , and we must define η̃[f ]
to be the composite of the η̃[fi]. Clearly this specification will give the required
unique map η̃, provided that η̃ so specified is in fact well defined. Thus suppose
that f is equivalent to g. The equivalence is given by a homotopy h : f ' g through
paths x → y. We may subdivide the square I × I into subsquares, each of which
is mapped into one of the U . We may choose the subdivision so that the resulting
subdivision of I×{0} refines the subdivision used to decompose f as the composite
of paths fi, and similarly for g and the resulting subdivision of I × {1}. We see
that the relation [f ] = [g] in Π(X) is a consequence of a finite number of relations,
each of which holds in one of the Π(U). Therefore η̃([f ]) = η̃([g]). This verifies the
universal property and proves the theorem. �

The fundamental group version of the van Kampen theorem “follows formally.”
That is, it is an essentially categorical consequence of the version just proved.
Arguments like this are sometimes called proof by categorical nonsense.
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Theorem (van Kampen). Let X be path connected and choose a basepoint
x ∈ X. Let O be a cover of X by path connected open subsets such that the
intersection of finitely many subsets in O is again in O and x is in each U ∈ O.
Regard O as a category whose morphisms are the inclusions of subsets and observe
that the functor π1(−, x), restricted to the spaces and maps in O, gives a diagram

π1|O : O −→ G

of groups. The group π1(X,x) is the colimit of this diagram. In symbols,

π1(X,x) ∼= colimU∈O π1(U, x).

We proceed in two steps.

Lemma. The van Kampen theorem holds when the cover O is finite.

Proof. This step is based on the nonsense above about skeleta of categories.
We must verify the universal property, this time in the category of groups. For a
group G and a map η : π1|O −→ G of O-shaped diagrams of groups, we must show
that there is a unique homomorphism η̃ : π1(X,x) −→ G that restricts to ηU on
π1(U, x). Remember that we think of a group as a groupoid with a single object
and with the elements of the group as the morphisms. The inclusion of categories
J : π1(X,x) −→ Π(X) is an equivalence. An inverse equivalence F : Π(X) −→
π1(X,x) is determined by a choice of path classes x −→ y for y ∈ X; we choose
cx when y = x and so ensure that F ◦ J = Id. Because the cover O is finite and
closed under finite intersections, we can choose our paths inductively so that the
path x −→ y lies entirely in U whenever y is in U . This ensures that the chosen
paths determine compatible inverse equivalences FU : Π(U) −→ π1(U, x) to the
inclusions JU : π1(U, x) −→ Π(U). Thus the functors

Π(U)
FU // π1(U, x)

ηU // G

specify an O-shaped diagram of groupoids Π|O −→ G. By the fundamental
groupoid version of the van Kampen theorem, there is a unique map of groupoids

ξ : Π(X) −→ G

that restricts to ηU ◦ FU on Π(U) for each U . The composite

π1(X,x)
J // Π(X)

ξ // G

is the required homomorphism η̃. It restricts to ηU on π1(U, x) by a little “diagram
chase” and the fact that FU ◦ JU = Id. It is unique because ξ is unique. In fact,
if we are given η̃ : π1(X,x) −→ G that restricts to ηU on each π1(U, x), then
η̃ ◦F : Π(X) −→ G restricts to ηU ◦FU on each Π(U); therefore ξ = η̃ ◦F and thus
ξ ◦ J = η̃. �

Proof of the van Kampen theorem. We deduce the general case from the
case just proved. Let F be the set of those finite subsets of the cover O that are
closed under finite intersection. For S ∈ F , let US be the union of the U in S .
Then S is a cover of US to which the lemma applies. Thus

colimU∈S π1(U, x) ∼= π1(US , x).

Regard F as a category with a morphism S −→ T whenever US ⊂ UT . We claim
first that

colimS∈F π1(US , x) ∼= π1(X,x).
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In fact, by the usual subdivision argument, any loop I −→ X and any equivalence
h : I × I −→ X between loops has image in some US . This implies directly
that π1(X,x), together with the homomorphisms π1(US , x) −→ π1(X,x), has the
universal property that characterizes the claimed colimit. We claim next that

colimU∈O π1(U, x) ∼= colimS∈F π1(US , x),

and this will complete the proof. Substituting in the colimit on the right, we have

colimS∈F π1(US , x) ∼= colimS∈F colimU∈S π1(U, x).

By a comparison of universal properties, this iterated colimit is isomorphic to the
single colimit

colim(U,S )∈(O,F ) π1(U, x).

Here the indexing category (O,F ) has objects the pairs (U,S ) with U ∈ S ;
there is a morphism (U,S ) −→ (V,T ) whenever both U ⊂ V and US ⊂ UT .
A moment’s reflection on the relevant universal properties should convince the
reader of the claimed identification of colimits: the system on the right differs
from the system on the left only in that the homomorphisms π1(U, x) −→ π1(V, x)
occur many times in the system on the right, each appearance making the same
contribution to the colimit. If we assume known a priori that colimits of groups
exist, we can formalize this as follows. We have a functor O −→ F that sends U to
the singleton set {U} and thus a functor O −→ (O,F ) that sends U to (U, {U}).
The functor π1(−, x) : O −→ G factors through (O,F ), hence we have an induced
map of colimits

colimU∈O π1(U, x) −→ colim(U,S )∈(O,F ) π1(U, x).

Projection to the first coordinate gives a functor (O,F ) −→ O. Its composite with
π1(−, x) : O −→ G defines the colimit on the right, hence we have an induced map
of colimits

colim(U,S )∈(O,F ) π1(U, x) −→ colimU∈O π1(U, x).

These maps are inverse isomorphisms. �

8. Examples of the van Kampen theorem

So far, we have only computed the fundamental groups of the circle and of
contractible spaces. The van Kampen theorem lets us extend these calculations.
We now drop notation for the basepoint, writing π1(X) instead of π1(X,x).

Proposition. Let X be the wedge of a set of path connected based spaces Xi,
each of which contains a contractible neighborhood Vi of its basepoint. Then π1(X)
is the coproduct (= free product) of the groups π1(Xi).

Proof. Let Ui be the union of Xi and the Vj for j 6= i. We apply the van
Kampen theorem with O taken to be the Ui and their finite intersections. Since
any intersection of two or more of the Ui is contractible, the intersections make no
contribution to the colimit and the conclusion follows. �

Corollary. The fundamental group of a wedge of circles is a free group with
one generator for each circle.
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Any compact surface is homeomorphic to a sphere, or to a connected sum of
tori T 2 = S1×S1, or to a connected sum of projective planes RP 2 = S2/Z2 (where
we write Z2 = Z/2Z). We shall see shortly that π1(RP 2) = Z2. We also have the
following observation, which is immediate from the universal property of products.
Using this information, it is an exercise to compute the fundamental group of any
compact surface from the van Kampen theorem.

Lemma. For based spaces X and Y , π1(X × Y ) ∼= π1(X)× π1(Y ).

We shall later use the following application of the van Kampen theorem to prove
that any group is the fundamental group of some space. We need a definition.

Definition. A space X is said to be simply connected if it is path connected
and satisfies π1(X) = 0.

Proposition. Let X = U∪V , where U , V , and U∩V are path connected open
neighborhoods of the basepoint of X and V is simply connected. Then π1(U) −→
π1(X) is an epimorphism whose kernel is the smallest normal subgroup of π1(U)
that contains the image of π1(U ∩ V ).

Proof. Let N be the cited kernel and consider the diagram

π1(U)

%%LLLLLLLLLL

**UUUUUUUUUUUUUUUUUUU

π1(U ∩ V )

&&NNNNNNNNNNN

88ppppppppppp
π1(X)

ξ //___ π1(U)/N

π1(V ) = 0

99ssssssssss

44iiiiiiiiiiiiiiiii

The universal property gives rise to the map ξ, and ξ is an isomorphism since, by
an easy algebraic inspection, π1(U)/N is the pushout in the category of groups of
the homomorphisms π1(U ∩ V ) −→ π1(U) and π1(U ∩ V ) −→ 0. �

PROBLEMS
(1) Compute the fundamental group of the two-holed torus (the compact sur-

face of genus 2 obtained by sewing together two tori along the boundaries
of an open disk removed from each).

(2) The Klein bottle K is the quotient space of S1×I obtained by identifying
(z, 0) with (z−1, 1) for z ∈ S1. Compute π1(K).

(3) ∗ Let X = {(p, q)|p 6= −q} ⊂ Sn × Sn. Define a map f : Sn −→ X by
f(p) = (p, p). Prove that f is a homotopy equivalence.

(4) Let C be a category that has all coproducts and coequalizers. Prove that
C is cocomplete (has all colimits). Deduce formally, by use of opposite
categories, that a category that has all products and equalizers is com-
plete.



CHAPTER 3

Covering spaces

We run through the theory of covering spaces and their relationship to fun-
damental groups and fundamental groupoids. This is standard material, some of
the oldest in algebraic topology. However, I know of no published source for the
use that we shall make of the orbit category O(π1(B, b)) in the classification of
coverings of a space B. This point of view gives us the opportunity to introduce
some ideas that are central to equivariant algebraic topology, the study of spaces
with group actions. In any case, this material is far too important to all branches
of mathematics to omit.

1. The definition of covering spaces

While the reader is free to think about locally contractible spaces, weaker con-
ditions are appropriate for the full generality of the theory of covering spaces. A
space X is said to be locally path connected if for any x ∈ X and any neighbor-
hood U of x, there is a smaller neighborhood V of x each of whose points can be
connected to x by a path in U . This is equivalent to the seemingly more stringent
requirement that the topology of X have a basis consisting of path connected open
sets. In fact, if X is locally path connected and U is an open neighborhood of a
point x, then the set

V = {y | y can be connected to x by a path in U}

is a path connected open neighborhood of x that is contained in U . Observe that
if X is connected and locally path connected, then it is path connected. Through-
out this chapter, we assume that all given spaces are connected and locally path
connected.

Definition. A map p : E −→ B is a covering (or cover, or covering space) if
it is surjective and if each point b ∈ B has an open neighborhood V such that each
component of p−1(V ) is open in E and is mapped homeomorphically onto V by p.
We say that a path connected open subset V with this property is a fundamental
neighborhood of B. We call E the total space, B the base space, and Fb = p−1(b)
a fiber of the covering p.

Any homeomorphism is a cover. A product of covers is a cover. The projection
R −→ S1 is a cover. Each fn : S1 −→ S1 is a cover. The projection Sn −→ RPn
is a cover, where the real projective space RPn is obtained from Sn by identifying
antipodal points. If f : A −→ B is a map (where A is connected and locally path
connected) and D is a component of the pullback of f along p, then p : D −→ A is
a cover.

21
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2. The unique path lifting property

The following result is abstracted from what we saw in the case of the particular
cover R −→ S1. It describes the behavior of p with respect to path classes and
fundamental groups.

Theorem (Unique path lifting). Let p : E −→ B be a covering, let b ∈ B, and
let e, e′ ∈ Fb.

(i) A path f : I −→ B with f(0) = b lifts uniquely to a path g : I −→ E such
that g(0) = e and p ◦ g = f .

(ii) Equivalent paths f ' f ′ : I −→ B that start at b lift to equivalent paths
g ' g′ : I −→ E that start at e, hence g(1) = g′(1).

(iii) p∗ : π1(E, e) −→ π1(B, b) is a monomorphism.
(iv) p∗(π1(E, e′)) is conjugate to p∗(π1(E, e)).
(v) As e′ runs through Fb, the groups p∗(π1(E, e′)) run through all conjugates

of p∗(π1(E, e)) in π1(B, b).

Proof. For (i), subdivide I into subintervals each of which maps to a fun-
damental neighborhood under f , and lift f to g inductively by use of the pre-
scribed homeomorphism property of fundamental neighborhoods. For (ii), let
h : I×I −→ B be a homotopy f ' f ′ through paths b −→ b′. Subdivide the square
into subsquares each of which maps to a fundamental neighborhood under f . Pro-
ceeding inductively, we see that h lifts uniquely to a homotopy H : I×I −→ E such
that H(0, 0) = e and p ◦H = h. By uniqueness, H is a homotopy g ' g′ through
paths e −→ e′, where g(1) = e′ = g′(1). Parts (iii)–(v) are formal consequences of
(i) and (ii), as we shall see in the next section. �

Definition. A covering p : E −→ B is regular if p∗(π1(E, e)) is a normal
subgroup of π1(B, b). It is universal if E is simply connected.

As we shall explain in §4, for a universal cover p : E −→ B, the elements of
Fb are in bijective correspondence with the elements of π1(B, b). We illustrate the
force of this statement.

Example. For n ≥ 2, Sn is a universal cover of RPn. Therefore π1(RPn) has
only two elements. There is a unique group with two elements, and this proves our
earlier claim that π1(RPn) = Z2.

3. Coverings of groupoids

Much of the theory of covering spaces can be recast conceptually in terms of
fundamental groupoids. This point of view separates the essentials of the topol-
ogy from the formalities and gives a convenient language in which to describe the
algebraic classification of coverings.

Definition. (i) Let C be a category and x be an object of C . The category
x\C of objects under x has objects the maps f : x −→ y in C ; for objects f : x −→ y
and g : x −→ z, the morphisms γ : f −→ g in x\C are the morphisms γ : y −→ z
in C such that γ ◦ f = g : x −→ z. Composition and identity maps are given by
composition and identity maps in C . When C is a groupoid, γ = g ◦ f−1, and the
objects of x\C therefore determine the category.
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(ii) Let C be a small groupoid. Define the star of x, denoted St(x) or StC (x),
to be the set of objects of x\C , that is, the set of morphisms of C with source x.
Write C (x, x) = π(C , x) for the group of automorphisms of the object x.

(iii) Let E and B be small connected groupoids. A covering p : E −→ B is a
functor that is surjective on objects and restricts to a bijection

p : St(e) −→ St(p(e))

for each object e of E . For an object b of B, let Fb denote the set of objects of E
such that p(e) = b. Then p−1(St(b)) is the disjoint union over e ∈ Fb of St(e).

Parts (i) and (ii) of the unique path lifting theorem can be restated as follows.

Proposition. If p : E −→ B is a covering of spaces, then the induced functor
Π(p) : Π(E) −→ Π(B) is a covering of groupoids.

Parts (iii), (iv), and (v) of the unique path lifting theorem are categorical
consequences that apply to any covering of groupoids, where they read as follows.

Proposition. Let p : E −→ B be a covering of groupoids, let b be an object
of B, and let e and e′ be objects of Fb.

(i) p : π(E , e) −→ π(B, b) is a monomorphism.
(ii) p(π(E , e′)) is conjugate to p(π(E , e)).
(iii) As e′ runs through Fb, the groups p(π(E, e′)) run through all conjugates

of p(π(E , e)) in π(B, b).

Proof. For (i), if g, g′ ∈ π(E , e) and p(g) = p(g′), then g = g′ by the injectivity
of p on St(e). For (ii), there is a map g : e −→ e′ since E is connected. Conjugation
by g gives a homomorphism π(E , e) −→ π(E , e′) that maps under p to conjugation
of π(B, b) by its element p(g). For (iii), the surjectivity of p on St(e) gives that
any f ∈ π(B, b) is of the form p(g) for some g ∈ St(e). If e′ is the target of g, then
p(π(E , e′)) is the conjugate of p(π(E , e)) by f . �

The fibers Fb of a covering of groupoids are related by translation functions.

Definition. Let p : E −→ B be a covering of groupoids. Define the fiber
translation functor T = T (p) : B −→ S as follows. For an object b of B, T (b) = Fb.
For a morphism f : b −→ b′ of B, T (f) : Fb −→ Fb′ is specified by T (f)(e) = e′,
where e′ is the target of the unique g in St(e) such that p(g) = f .

It is an exercise from the definition of a covering of a groupoid to verify that T
is a well defined functor. For a covering space p : E −→ B and a path f : b −→ b′,
T (f) : Fb −→ Fb′ is given by T (f)(e) = g(1) where g is the path in E that starts
at e and covers f .

Proposition. Any two fibers Fb and Fb′ of a covering of groupoids have the
same cardinality. Therefore any two fibers of a covering of spaces have the same
cardinality.

Proof. For f : b −→ b′, T (f) : Fb −→ Fb′ is a bijection with inverse T (f−1).
�
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4. Group actions and orbit categories

The classification of coverings is best expressed in categorical language that
involves actions of groups and groupoids on sets.

A (left) action of a group G on a set S is a function G × S −→ S such that
es = s (where e is the identity element) and (g′g)s = g′(gs) for all s ∈ S. The
isotropy group Gs of a point s is the subgroup {g|gs = s} of G. An action is free if
gs = s implies g = e, that is, if Gs = e for every s ∈ S.

The orbit generated by a point s is {gs|g ∈ G}. An action is transitive if for
every pair s, s′ of elements of S, there is an element g of G such that gs = s′.
Equivalently, S consists of a single orbit. If H is a subgroup of G, the set G/H
of cosets gH is a transitive G-set. When G acts transitively on a set S, we obtain
an isomorphism of G-sets between S and the G-set G/Gs for any fixed s ∈ S by
sending gs to the coset gGs.

The following lemma describes the group of automorphisms of a transitive
G-set S. For a subgroupH of G, let NH denote the normalizer ofH in G and define
WH = NH/H. Such quotient groups WH are sometimes called Weyl groups.

Lemma. Let G act transitively on a set S, choose s ∈ S, and let H = Gs.
Then WH is isomorphic to the group AutG(S) of automorphisms of the G-set S.

Proof. For n ∈ NH with image n̄ ∈ WH, define an automorphism φ(n̄) of
S by φ(n̄)(gs) = gns. For an automorphism φ of S, we have φ(s) = ns for some
n ∈ G. For h ∈ H, hns = φ(hs) = φ(s) = ns, hence n−1hn ∈ Gs = H and
n ∈ NH. Clearly φ = φ(n̄), and it is easy to check that this bijection between WH
and AutG(S) is an isomorphism of groups. �

We shall also need to consider G-maps between different G-sets G/H.

Lemma. A G-map α : G/H −→ G/K has the form α(gH) = gγK, where the
element γ ∈ G satisfies γ−1hγ ∈ K for all h ∈ H.

Proof. If α(eH) = γK, then the relation

γK = α(eH) = α(hH) = hα(eH) = hγK

implies that γ−1hγ ∈ K for h ∈ H. �

Definition. The category O(G) of canonical orbits has objects the G-sets
G/H and morphisms the G-maps of G-sets.

The previous lemmas give some feeling for the structure of O(G) and lead to
the following alternative description.

Lemma. The category O(G) is isomorphic to the category G whose objects are
the subgroups of G and whose morphisms are the distinct subconjugacy relations
γ−1Hγ ⊂ K for γ ∈ G.

If we regard G as a category with a single object, then a (left) action of G on a
set S is the same thing as a covariant functor G −→ S . (A right action is the same
thing as a contravariant functor.) If B is a small groupoid, it is therefore natural
to think of a covariant functor T : B −→ S as a generalization of a group action.
For each object b of B, T restricts to an action of π(B, b) on T (b). We say that
the functor T is transitive if this group action is transitive for each object b. If B
is connected, this holds for all objects b if it holds for any one object b.
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For example, for a covering of groupoids p : E −→ B, the fiber translation
functor T restricts to give an action of π(B, b) on the set Fb. For e ∈ Fb, the
isotropy group of e is precisely p(π(E , e)). That is, T (f)(e) = e if and only if the
lift of f to an element of St(e) is an automorphism of e. Moreover, the action
is transitive since there is an isomorphism in E connecting any two points of Fb.
Therefore, as a π(B, b)-set,

Fb ∼= π(B, b)/p(π(E , e)).

Definition. A covering p : E −→ B of groupoids is regular if p(π(E , e)) is a
normal subgroup of π(B, b). It is universal if p(π(E , e)) = {e}. Clearly a covering
space is regular or universal if and only if its associated covering of fundamental
groupoids is regular or universal.

A covering of groupoids is universal if and only if π(B, b) acts freely on Fb, and
then Fb is isomorphic to π(B, b) as a π(B, b)-set. Specializing to covering spaces,
this sharpens our earlier claim that the elements of Fb and π1(B, b) are in bijective
correspondence.

5. The classification of coverings of groupoids

Fix a small connected groupoid B throughout this section and the next. We
explain the classification of coverings of B. This gives an algebraic prototype for
the classification of coverings of spaces. We begin with a result that should be
called the fundamental theorem of covering groupoid theory. We assume once and
for all that all given groupoids are small and connected.

Theorem. Let p : E −→ B be a covering of groupoids, let X be a groupoid,
and let f : X −→ B be a functor. Choose a base object x0 ∈ X , let b0 = f(x0),
and choose e0 ∈ Fb0 . Then there exists a functor g : X −→ E such that g(x0) = e0
and p ◦ g = f if and only if

f(π(X , x0)) ⊂ p(π(E , e0))

in π(B, b0). When this condition holds, there is a unique such functor g.

Proof. If g exists, its properties directly imply that im(f) ⊂ im(p). For an
object x of X and a map α : x0 −→ x in X , let α̃ be the unique element of
St(e0) such that p(α̃) = f(α). If g exists, g(α) must be α̃ and therefore g(x) must
be the target T (f(α))(e0) of α̃. The inclusion f(π(X , x0)) ⊂ p(π(E , e0)) ensures
that T (f(α))(e0) is independent of the choice of α, so that g so specified is a well
defined functor. In fact, given another map α′ : x0 −→ x, α−1 ◦α′ is an element of
π(X , x0). Therefore

f(α)−1 ◦ f(α′) = f(α−1 ◦ α′) = p(β)

for some β ∈ π(E , e0). Thus

p(α̃ ◦ β) = f(α) ◦ p(β) = f(α) ◦ f(α)−1 ◦ f(α′) = f(α′).

This means that α̃ ◦ β is the unique element α̃′ of St(e0) such that p(α̃′) = f(α′),
and its target is the target of α̃, as required. �
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Definition. A map g : E −→ E ′ of coverings of B is a functor g such that
the following diagram of functors is commutative:

E

p
  A

AA
AA

AA
A

g // E ′

p′}}||
||

||
||

B.

Let Cov(B) denote the category of coverings of B; when B is understood, we write
Cov(E ,E ′) for the set of maps E −→ E ′ of coverings of B.

Lemma. A map g : E −→ E ′ of coverings is itself a covering.

Proof. The functor g is surjective on objects since, if e′ ∈ E ′ and we choose
an object e ∈ E and a map f : g(e) −→ e′ in E ′, then e′ = g(T (p′(f))(e)). The
map g : StE (e) −→ StE ′(g(e)) is a bijection since its composite with the bijection
p′ : StE ′(g(e)) −→ StB(p′(g(e))) is the bijection p : StE (e) −→ StB(p(e)). �

The fundamental theorem immediately determines all maps of coverings of B
in terms of group level data.

Theorem. Let p : E −→ B and p′ : E ′ −→ B be coverings and choose base
objects b ∈ B, e ∈ E , and e′ ∈ E ′ such that p(e) = b = p′(e′). There exists a map
g : E −→ E ′ of coverings with g(e) = e′ if and only if

p(π(E , e)) ⊂ p′(π(E ′, e′)),

and there is then only one such g. In particular, two maps of covers g, g′ : E −→ E ′

coincide if g(e) = g′(e) for any one object e ∈ E . Moreover, g is an isomorphism if
and only if the displayed inclusion of subgroups of π(B, b) is an equality. Therefore
E and E ′ are isomorphic if and only if p(π(E , e)) and p′(π(E ′, e′)) are conjugate
whenever p(e) = p′(e′).

Corollary. If it exists, the universal cover of B is unique up to isomorphism
and covers any other cover.

That the universal cover does exist will be proved in the next section. It is
useful to recast the previous theorem in terms of actions on fibers.

Theorem. Let p : E −→ B and p′ : E ′ −→ B be coverings, choose a base
object b ∈ B, and let G = π(B, b). If g : E −→ E ′ is a map of coverings, then g
restricts to a map Fb −→ F ′b of G-sets, and restriction to fibers specifies a bijection
between Cov(E ,E ′) and the set of G-maps Fb −→ F ′b.

Proof. Let e ∈ Fb and f ∈ π(B, b). By definition, fe is the target of the map
f̃ ∈ StE (e) such that p(f̃) = f . Clearly g(fe) is the target of g(f̃) ∈ StE ′(g(e)) and
p′(g(f̃)) = p(f̃) = f . Again by definition, this gives g(fe) = fg(e). The previous
theorem shows that restriction to fibers is an injection on Cov(E ,E ′). To show
surjectivity, let α : Fb −→ F ′b be a G-map. Choose e ∈ Fb and let e′ = α(e).
Since α is a G-map, the isotropy group p(π(E , e)) of e is contained in the isotropy
group p′(π(E ′, e′)) of e′. Therefore the previous theorem ensures the existence of a
covering map g that restricts to α on fibers. �

Definition. Let Aut(E ) ⊂ Cov(E ,E ) denote the group of automorphisms of
a cover E . Note that, since it is possible to have conjugate subgroups H and H ′ of
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a group G such that H is a proper subgroup of H ′, it is possible to have a map of
covers g : E −→ E such that g is not an isomorphism.

Corollary. Let p : E −→ B be a covering and choose objects b ∈ B and
e ∈ Fb. Write G = π(B, b) and H = p(π(E , e)). Then Aut(E ) is isomorphic to
the group of automorphisms of the G-set Fb and therefore to the group WH. If p
is regular, then Aut(E ) ∼= G/H. If p is universal, then Aut(E ) ∼= G.

6. The construction of coverings of groupoids

We have given an algebraic classification of all possible covers of B: there is
at most one isomorphism class of covers corresponding to each conjugacy class of
subgroups of π(B, b). We show that all of these possibilities are actually realized.
Since this algebraic result is not needed in the proof of its topological analogue, we
shall not give complete details.

Theorem. Choose a base object b of B and let G = π(B, b). There is a functor

E (−) : O(G) −→ Cov(B)

that is an equivalence of categories. For each subgroup H of G, the covering p :
E (G/H) −→ B has a canonical base object e in its fiber over b such that

p(π(E (G/H), e)) = H.

Moreover, Fb = G/H as a G-set and, for a G-map α : G/H −→ G/K in O(G),
the restriction of E (α) : E (G/H) −→ E (G/K) to fibers over b coincides with α.

Proof. The idea is that, up to bijection, StE (G/H)(e) must be the same set for
each H, but the nature of its points can differ with H. At one extreme, E (G/G) =
B, p = id, e = b, and the set of morphisms from b to any other object b′ is a copy
of π(B, b). At the other extreme, E (G/e) is a universal cover of B and there is
just one morphism from e to any other object e′. In general, the set of objects of
E (G/H) is defined to be StB(b)/H, the coset of the identity morphism being e.
Here G and hence its subgroup H act from the right on StB(b) by composition in
B. We define p : E (G/H) −→ B on objects by letting p(fH) be the target of f ,
which is independent of the coset representative f . We define morphism sets by

E (G/H)(fH, f ′H) =
{
f ′ ◦ h ◦ f−1|h ∈ H

}
⊂ B(p(fH), p(f ′H)).

Again, this is independent of the choices of coset representatives f and f ′. Compo-
sition and identities are inherited from those of B, and p is given on morphisms by
the displayed inclusions. It is easy to check that p : E (G/H) −→ B is a covering,
and it is clear that p(π(E (G/H), e)) = H.

This defines the object function of the functor E : O(G) −→ Cov(B). To define
E on morphisms, consider α : G/H −→ G/K. If α(eH) = gK, then g−1Hg ⊂ K
and α(fH) = fgK. The functor E (α) : E (G/H) −→ E (G/K) sends the object
fH to the object α(fH) = fgK and sends the morphism f ′ ◦ h ◦ f−1 to the same
morphism of B regarded as f ′g ◦ g−1hg ◦ g−1f−1. It is easily checked that each
E (α) is a well defined functor, and that E is functorial in α.

To show that the functor E (−) is an equivalence of categories, it suffices to show
that it maps the morphism set O(G)(G/H,G/K) bijectively onto the morphism set
Cov(E (G/H),E (G/K)) and that every covering of B is isomorphic to one of the
coverings E (G/H). These statements are immediate from the results of the previous
section. �
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The following remarks place the orbit category O(π(B, b)) in perspective by
relating it to several other equivalent categories.

Remark. Consider the category S B of functors T : B −→ S and natural
transformations. Let G = π(B, b). Regarding G as a category with one object b,
it is a skeleton of B, hence the inclusion G ⊂ B is an equivalence of categories.
Therefore, restriction of functors T to G-sets T (b) gives an equivalence of categories
from S B to the category of G-sets. This restricts to an equivalence between the
respective subcategories of transitive objects. We have chosen to focus on transitive
objects since we prefer to insist that coverings be connected. The inclusion of
the orbit category O(G) in the category of transitive G-sets is an equivalence of
categories because O(G) is a full subcategory that contains a skeleton. We could
shrink O(G) to a skeleton by choosing one H in each conjugacy class of subgroups
of G, but the resulting equivalent subcategory is a less natural mathematical object.

7. The classification of coverings of spaces

In this section and the next, we shall classify covering spaces and their maps by
arguments precisely parallel to those for covering groupoids in the previous sections.
In fact, applied to the associated coverings of fundamental groupoids, some of the
algebraic results directly imply their topological analogues. We begin with the
following result, which deserves to be called the fundamental theorem of covering
space theory and has many other applications. It asserts that the fundamental
group gives the only “obstruction” to solving a certain lifting problem. Recall our
standing assumption that all given spaces are connected and locally path connected.

Theorem. Let p : E −→ B be a covering and let f : X −→ B be a continuous
map. Choose x ∈ X, let b = f(x), and choose e ∈ Fb. There exists a map
g : X −→ E such that g(x) = e and p ◦ g = f if and only if

f∗(π1(X,x)) ⊂ p∗(π1(E, e))

in π1(B, b). When this condition holds, there is a unique such map g.

Proof. If g exists, its properties directly imply that im(f∗) ⊂ im(p∗). Thus
assume that im(f∗) ⊂ im(p∗). Applied to the covering Π(p) : Π(E) −→ Π(B), the
analogue for groupoids gives a functor Π(X) −→ Π(E) that restricts on objects to
the unique map g : X −→ E of sets such that g(x) = e and p◦g = f . We need only
check that g is continuous, and this holds because p is a local homeomorphism. In
detail, if y ∈ X and g(y) ∈ U , where U is an open subset of E, then there is a
smaller open neighborhood U ′ of g(y) that p maps homeomorphically onto an open
subset V of B. If W is any path connected neighborhood of y such that f(W ) ⊂ V ,
then g(W ) ⊂ U ′ by inspection of the definition of g. �

Definition. A map g : E −→ E′ of coverings over B is a map g such that the
following diagram is commutative:

E

p
  A

AA
AA

AA
A

g // E′

p′~~||
||

||
||

B.

Let Cov(B) denote the category of coverings of the space B; when B is understood,
we write Cov(E,E′) for the set of maps E −→ E′ of coverings of B.
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Lemma. A map g : E −→ E′ of coverings is itself a covering.

Proof. The map g is surjective by the algebraic analogue. The fundamental
neighborhoods for g are the components of the inverse images in E′ of the neigh-
borhoods of B which are fundamental for both p and p′. �

The following remarkable theorem is an immediate consequence of the funda-
mental theorem of covering space theory.

Theorem. Let p : E −→ B and p′ : E′ −→ B be coverings and choose b ∈ B,
e ∈ E, and e′ ∈ E′ such that p(e) = b = p′(e′). There exists a map g : E −→ E′ of
coverings with g(e) = e′ if and only if

p∗(π1(E, e)) ⊂ p′∗(π1(E′, e′)),

and there is then only one such g. In particular, two maps of covers g, g′ : E −→ E′

coincide if g(e) = g′(e) for any one e ∈ E. Moreover, g is a homeomorphism if
and only if the displayed inclusion of subgroups of π1(B, b) is an equality. There-
fore E and E′ are homeomorphic if and only if p∗(π1(E, e)) and p′∗(π1(E′, e′)) are
conjugate whenever p(e) = p′(e′).

Corollary. If it exists, the universal cover of B is unique up to isomorphism
and covers any other cover.

Under a necessary additional hypothesis on B, we shall prove in the next section
that the universal cover does exist.

We hasten to add that the theorem above is atypical of algebraic topology. It
is not usually the case that algebraic invariants like the fundamental group totally
determine the existence and uniqueness of maps of topological spaces with pre-
scribed properties. The following immediate implication of the theorem gives one
explanation.

Corollary. The fundamental groupoid functor induces a bijection

Cov(E,E′) −→ Cov(Π(E),Π(E′)).

Just as for groupoids, we can recast the theorem in terms of fibers. In fact,
via the previous corollary, the following result is immediate from its analogue for
groupoids.

Theorem. Let p : E −→ B and p′ : E′ −→ B be coverings, choose a basepoint
b ∈ B, and let G = π1(B, b). If g : E −→ E′ is a map of coverings, then g restricts
to a map Fb −→ F ′b of G-sets, and restriction to fibers specifies a bijection between
Cov(E,E′) and the set of G-maps Fb −→ F ′b.

Definition. Let Aut(E) ⊂Cov(E,E) denote the group of automorphisms of
a cover E. Again, just as for groupoids, it is possible to have a map of covers
g : E −→ E such that g is not an isomorphism.

Corollary. Let p : E −→ B be a covering and choose b ∈ B and e ∈ Fb.
Write G = π1(B, b) and H = p∗(π1(E, e)). Then Aut(E) is isomorphic to the
group of automorphisms of the G-set Fb and therefore to the group WH. If p is
regular, then Aut(E) ∼= G/H. If p is universal, then Aut(E) ∼= G.
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8. The construction of coverings of spaces

We have now given an algebraic classification of all possible covers of B: there
is at most one isomorphism class of covers corresponding to each conjugacy class
of subgroups of π1(B, b). We show here that all of these possibilities are actually
realized. We shall first construct universal covers and then show that the existence
of universal covers implies the existence of all other possible covers. Again, while
it suffices to think in terms of locally contractible spaces, appropriate generality
demands a weaker hypothesis. We say that a space B is semi-locally simply con-
nected if every point b ∈ B has a neighborhood U such that π1(U, b) −→ π1(B, b)
is the trivial homomorphism.

Theorem. If B is connected, locally path connected, and semi-locally simply
connected, then B has a universal cover.

Proof. Fix a basepoint b ∈ B. We turn the properties of paths that must
hold in a universal cover into a construction. Define E to be the set of equivalence
classes of paths f in B that start at b and define p : E −→ B by p[f ] = f(1).
Of course, the equivalence relation is homotopy through paths from b to a given
endpoint, so that p is well defined. Thus, as a set, E is just StΠ(B)(b), exactly
as in the construction of the universal cover of Π(B). The topology of B has a
basis consisting of path connected open subsets U such that π1(U, u) −→ π1(B, u)
is trivial for all u ∈ U . Since every loop in U is equivalent in B to the trivial loop,
any two paths u −→ u′ in such a U are equivalent in B. We shall topologize E so
that p is a cover with these U as fundamental neighborhoods. For a path f in B
that starts at b and ends in U , define a subset U [f ] of E by

U [f ] = {[g] | [g] = [c · f ] for some c : I −→ U}.

The set of all such U [f ] is a basis for a topology on E since if U [f ] and U ′[f ′] are
two such sets and [g] is in their intersection, then

W [g] ⊂ U [f ] ∩ U ′[f ′]

for any open set W of B such that p[g] ∈W ⊂ U ∩U ′. For u ∈ U , there is a unique
[g] in each U [f ] such that p[g] = u. Thus p maps U [f ] homeomorphically onto U
and, if we choose a basepoint u in U , then p−1(U) is the disjoint union of those
U [f ] such that f ends at u. It only remains to show that E is connected, locally
path connected, and simply connected, and the second of these is clear. Give E
the basepoint e = [cb]. For [f ] ∈ E, define a path f̃ : I −→ E by f̃(s) = [fs], where
fs(t) = f(st); f̃ is continuous since each f̃−1(U [g]) is open by the definition of U [g]
and the continuity of f . Since f̃ starts at e and ends at [f ], E is path connected.
Since fs(1) = f(s), p ◦ f̃ = f . Thus, by definition,

T [f ](e) = [f̃(1)] = [f ].

Restricting attention to loops f , we see that T [f ](e) = e if and only if [f ] = e as
an element of π1(B, b). Thus the action of π1(B, b) on Fb is free and the isotropy
group p∗(π1(E, e)) is trivial. �

We shall construct general covers by passage to orbit spaces from the universal
cover, and we need some preliminaries.
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Definition. A G-space X is a space X that is a G-set with continuous action
map G×X −→ X. Define the orbit space X/G to be the set of orbits {Gx|x ∈ X}
with its topology as a quotient space of X.

The definition makes sense for general topological groups G. However, our
interest here is in discrete groups G, for which the continuity condition just means
that action by each element of G is a homeomorphism. The functoriality on O(G) of
our construction of general covers will be immediate from the following observation.

Lemma. Let X be a G-space. Then passage to orbit spaces defines a functor
X/(−) : O(G) −→ U .

Proof. The functor sends G/H to X/H and sends a map α : G/H −→ G/K
to the map X/H −→ X/K that sends the coset Hx to the coset Kγ−1x, where α
is given by the subconjugacy relation γ−1Hγ ⊂ K. �

The starting point of the construction of general covers is the following descrip-
tion of regular covers and in particular of the universal cover.

Proposition. Let p : E −→ B be a cover such that Aut(E) acts transitively
on Fb. Then the cover p is regular and E/Aut(E) is homeomorphic to B.

Proof. For any points e, e′ ∈ Fb, there exists g ∈ Aut(E) such that g(e) = e′

and thus p∗(π1(E, e)) = p∗(π1(E, e′)). Therefore all conjugates of p∗(π1(E, e))
are equal to p∗(π1(E, e)) and p∗(π1(E, e)) is a normal subgroup of π1(B, b). The
homeomorphism is clear since, locally, both p and passage to orbits identify the
different components of the inverse images of fundamental neighborhoods. �

Theorem. Choose a basepoint b ∈ B and let G = π1(B, b). There is a functor

E(−) : O(G) −→ Cov(B)

that is an equivalence of categories. For each subgroup H of G, the covering p :
E(G/H) −→ B has a canonical basepoint e in its fiber over b such that

p∗(π1(E(G/H), e)) = H.

Moreover, Fb ∼= G/H as a G-set and, for a G-map α : G/H −→ G/K in O(G),
the restriction of E(α) : E(G/H) −→ E(G/K) to fibers over b coincides with α.

Proof. Let p : E −→ B be the universal cover of B and fix e ∈ E such
that p(e) = b. We have the isomorphism Aut(E) ∼= π1(B, b) given by mapping
g : E −→ E to the path class [f ] ∈ G such that g(e) = T (f)(e), where T (f)(e) is
the endpoint of the path f̃ that starts at e and lifts f . We identify subgroups of
G with subgroups of Aut(E) via this isomorphism. We define E(G/H) to be the
orbit space E/H and we let q : E −→ E/H be the quotient map. We may identify
B with E/Aut(E), and inclusion of orbits specifies a map p′ : E/H −→ B such
that p′ ◦ q = p : E −→ B. If U ⊂ B is a fundamental neighborhood for p and V is
a component of p−1(U) ⊂ E, then

p−1(U) =
∐
g∈Aut(E) gV.

Passage to orbits over H simply identifies some of these components, and we see
immediately that both p′ and q are covers. If e′ = q(e), then p′∗ maps π1(E/H, e′)
isomorphically onto H since, by construction, the isotropy group of e′ under the
action of π1(B, b) is precisely H. Rewriting p′ = p and e′ = e generically, this gives
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the stated properties of the coverings E(G/H). The functoriality on O(G) follows
directly from the previous lemma.

The functor E(−) is an equivalence of categories since the results of the previous
section imply that it maps the morphism set O(G)(G/H,G/K) bijectively onto the
morphism set Cov(E(G/H), E(G/K)) and that every covering of B is isomorphic
to one of the coverings E(G/H). �

The classification theorems for coverings of spaces and coverings of groupoids
are nicely related. In fact, the following diagram of functors commutes up to natural
isomorphism:

O(π1(B, b))
E(−)

xxqqqqqqqqqq
E (−)

''OOOOOOOOOOO

Cov(B)
Π

// Cov(Π(B)).

Corollary. Π : Cov(B) −→ Cov(Π(B)) is an equivalence of categories.

PROBLEMS
In the following two problems, let G be a connected and locally path connected

topological group with identity element e, let p : H −→ G be a covering, and fix
f ∈ H such that p(f) = e. Prove the following. (Hint: Make repeated use of the
fundamental theorem for covering spaces.)

(1) (a) H has a unique continuous product H × H −→ H with identity
element f such that p is a homomorphism.

(b) H is a topological group under this product, and H is Abelian if G
is.

(2) (a) The kernel K of p is a discrete normal subgroup of H.
(b) In general, any discrete normal subgroup K of a connected topolog-

ical group H is contained in the center of H.
(c) For k ∈ K, define t(k) : H −→ H by t(k)(h) = kh. Then k −→ t(k)

specifies an isomorphism between K and the group Aut(H).
Let X and Y be connected, locally path connected, and Hausdorff. A map

f : X −→ Y is said to be a local homeomorphism if every point of X has an open
neighborhood that maps homeomorphically onto an open set in Y .

3. Give an example of a surjective local homeomorphism that is not a cov-
ering.

4. * Let f : X −→ Y be a local homeomorphism, where X is compact. Prove
that f is a (surjective!) covering with finite fibers.

Let X be a G-space, where G is a (discrete) group. For a subgroup H of G,
define

XH = {x|hx = x for all h ∈ H} ⊂ X;

XH is the H-fixed point subspace of X. Topologize the set of functions G/H −→ X
as the product of copies of X indexed on the elements of G/H, and give the set of
G-maps G/H −→ X the subspace topology.

5. Show that the space of G-maps G/H −→ X is naturally homeomorphic
to XH . In particular, O(G/H,G/K) ∼= (G/K)H .
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6. Let X be a G-space. Show that passage to fixed point spaces, G/H 7−→
XH , is the object function of a contravariant functor X(−) : O(G) −→ U .





CHAPTER 4

Graphs

We define graphs, describe their homotopy types, and use them to show that
a subgroup of a free group is free and that any group is the fundamental group of
some space.

1. The definition of graphs

We give the definition in a form that will later make it clear that a graph is
exactly a one-dimensional CW complex. Note that the zero-sphere S0 is a discrete
space with two points. We think of S0 as the boundary of I and so label the points
0 and 1.

Definition. A graph X is a space that is obtained from a (discrete) set X0

of points, called vertices, and a (discrete) set J of functions j : S0 −→ X0 as the
quotient space of the disjoint union X0q(J×I) that is obtained by identifying (j, 0)
with j(0) and (j, 1) with j(1). The images of the intervals {j}× I are called edges.
A graph is finite if it has only finitely many vertices and edges or, equivalently, if
it is a compact space. A graph is locally finite if each vertex is a boundary point
of only finitely many edges or, equivalently, if it is a locally compact space. A
subgraph A of X is a graph A ⊂ X with A0 ⊂ X0. That is, A is the union of some
of the vertices and edges of X.

Observe that a graph is a locally contractible space: any neighborhood of any
point contains a contractible neighborhood of that point. Therefore a connected
graph has all possible covers.

2. Edge paths and trees

An oriented edge k : I −→ X in a graph X is the traversal of an edge in either
the forward or backward direction. An edge path is a finite composite of oriented
edges kn with kn+1(0) = kn(1). Such a path is reduced if it is never the case that
kn+1 is kn with the opposite orientation. An edge path is closed if it starts and
ends at the same vertex (and is thus a loop).

Definition. A tree is a connected graph with no closed reduced edge paths.

A subspace A of a space X is a deformation retract if there is a homotopy
h : X × I −→ X such that h(x, 0) = x, h(a, t) = a, and h(x, 1) ∈ A for all x ∈ X,
a ∈ A, and t ∈ I. Such a homotopy is called a deformation of X onto A.

Lemma. Any vertex v0 of a tree T is a deformation retract of T .

Proof. This is true by induction on the number of edges when T is finite since
we can prune the last branch. For the general case, observe that each vertex v lies
in some finite connected subtree T (v) that also contains v0. Choose an edge path
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a(v) : I −→ T (v) connecting v to v0. For an edge j from v to v′, T (v) ∪ T (v′) ∪ j
is a finite connected subtree of T . On the square j × I, we define

h : j × I −→ T (v) ∪ T (v′) ∪ j

by requiring h = a(v) on {v}×I, h = a(v′) on {v′}×I, h(x, 0) = x and h(x, 1) = v0
for all x ∈ j, and extending over the interior of the square by use of the simple
connectivity of T (v) ∪ T (v′) ∪ j. As j runs over the edges, these homotopies glue
together to specify a deformation h of T onto v0. �

A subtree of a graph X is maximal if it is contained in no strictly larger tree.

Lemma. If a tree T is a subgraph of a graph X, then T is contained in a
maximal tree. If X is connected, then a tree in X is maximal if and only if it
contains all vertices of X.

Proof. Since the union of an increasing family of trees in X is a tree, the
first statement holds by Zorn’s lemma. If X is connected, then a tree containing
all vertices is maximal since addition of an edge would result in a subgraph that
contains a closed reduced edge path and, conversely, a tree T that does not contain
all vertices is not maximal since a vertex not in T can be connected to a vertex in
T by a reduced edge path consisting of edges not in T . �

3. The homotopy types of graphs

Graph theory is a branch of combinatorics. The homotopy theory of graphs is
essentially trivial, by the following result.

Theorem. Let X be a connected graph with maximal tree T . Then the quotient
space X/T is the wedge of one circle for each edge of X not in T , and the quotient
map q : X −→ X/T is a homotopy equivalence.

Proof. The first clause is evident. The second is a direct consequence of a
later result (that will be left as an exercise): for a suitably nice inclusion, called a
“cofibration,” of a contractible space T in a space X, the quotient map X −→ X/T
is a homotopy equivalence. A direct proof in the present situation is longer and
uglier. With the notation in our proof that a vertex v0 is a deformation retract
of T via a deformation h, define a loop bj = a(v′) · j · a(v)−1 at v0 for each edge
j : v −→ v′ not in T . The bj together specify a map b from X/T ∼=

∨
j S

1 to
X. The composite q ◦ b : X/T −→ X/T is the wedge over j of copies of the loop
cv0 · id · c−1

v0 : S1 −→ S1 and is therefore homotopic to the identity. To prove that
b◦q is homotopic to the identity, observe that h is a homotopy id ' b◦q on T . This
homotopy extends to a homotopy H : id ' b ◦ q on all of X. To see this, we need
only construct H on j×I for an edge j : v −→ v′ not in T . The following schematic
description of the prescribed behavior on the boundary of the square makes it clear
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that H exists:
a(v)−1 j a(v′)

a(v) cv

��
��
��
��
��
��
��
��
��

cv′

**
**

**
**

**
**

**
**

**

a(v′)

j

4. Covers of graphs and Euler characteristics

Define the Euler characteristic χ(X) of a finite graph X to be V −E, where V
is the number of vertices of X and E is the number of edges. By induction on the
number of edges, χ(T ) = 1 for any finite tree. The determination of the homotopy
types of graphs has the following immediate implication.

Corollary. If X is a connected graph, then π1(X) is a free group with one
generator for each edge not in a given maximal tree. If X is finite, then π1(X) is
free on 1 − χ(X) generators; in particular, χ(X) ≤ 1, with equality if and only if
X is a tree.

Theorem. If B is a connected graph with vertex set B0 and p : E −→ B is a
covering, then E is a connected graph with vertex set E0 = p−1(B0) and with one
edge for each edge j of B and point e ∈ Fj(0). Therefore, if B is finite and p is a
finite cover whose fibers have cardinality n, then E is finite and χ(E) = nχ(B).

Proof. Regard an edge j of B as a path I −→ B and let k(e) : I −→ E be
the unique path such that p ◦ k = j and k(e)(0) = e, where e ∈ Fj(0). We claim
that E is a graph with E0 as vertex set and the k(e) as edges. An easy path lifting
argument shows that each point of E −E0 is an interior point of exactly one edge,
hence we have a continuous bijection from the graph E0q (K× I)/(∼) to E, where
K is the evident set of “attaching maps” S0 −→ E0 for the specified edges. This
map is a homeomorphism since it is a local homeomorphism over B. �

5. Applications to groups

The following purely algebraic result is most simply proved by topology.

Theorem. A subgroup H of a free group G is free. If G is free on k generators
and H has finite index n in G, then H is free on 1− n+ nk generators.

Proof. Realize G as π1(B), where B is the wedge of one circle for each gen-
erator of G in a given free basis. Construct a covering p : E −→ B such that
p∗(π1(E)) = H. Since E is a graph, H must be free. If G has k generators, then
χ(B) = 1 − k. If [G : H] = n, then Fb has cardinality n and χ(E) = nχ(B).
Therefore 1− χ(E) = 1− n+ nk. �

We can extend the idea to realize any group as the fundamental group of some
connected space.

Theorem. For any group G, there is a connected space X such that π1(X) is
isomorphic to G.
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Proof. We may write G = F/N for some free group F and normal subgroup
N . As above, we may realize the inclusion of N in F by passage to fundamental
groups from a cover p : E −→ B. Define the (unreduced) cone on E to be CE =
(E × I)/(E × {1}) and define

X = B ∪p CE/(∼),

where (e, 0) ∼ p(e). Let U and V be the images in X of B q (E × [0, 3/4)) and
E× (1/4, 1], respectively, and choose a basepoint in E×{1/2}. Since U and U ∩V
are homotopy equivalent to B and E via evident deformations and V is contractible,
a consequence of the van Kampen theorem gives the conclusion. �

The space X constructed in the proof is called the “homotopy cofiber” of the
map p. It is an important general construction to which we shall return shortly.

PROBLEMS
(1) Let F be a free group on two generators a and b. How many subgroups

of F have index 2? Specify generators for each of these subgroups.
(2) Prove that a non-trivial normal subgroup N with infinite index in a free

group F cannot be finitely generated.
(3) * Essay: Describe a necessary and sufficient condition for a graph to be

embeddable in the plane.



CHAPTER 5

Compactly generated spaces

We briefly describe the category of spaces in which algebraic topologists cus-
tomarily work. The ordinary category of spaces allows pathology that obstructs
a clean development of the foundations. The homotopy and homology groups of
spaces are supported on compact subspaces, and it turns out that if one assumes
a separation property that is a little weaker than the Hausdorff property, then one
can refine the point-set topology of spaces to eliminate such pathology without
changing these invariants. We shall leave the proofs to the reader, but the wise
reader will simply take our word for it, at least on a first reading: we do not want
to overemphasize this material, the importance of which can only become apparent
in retrospect.

1. The definition of compactly generated spaces

We shall understand compact spaces to be both compact and Hausdorff, fol-
lowing Bourbaki. A space X is said to be “weak Hausdorff” if g(K) is closed in X
for every map g : K −→ X from a compact space K into X. When this holds, the
image g(K) is Hausdorff and is therefore a compact subspace of X. This separa-
tion property lies between T1 (points are closed) and Hausdorff, but it is not much
weaker than the latter.

A subspace A of X is said to be “compactly closed” if g−1(A) is closed in K for
any map g : K −→ X from a compact space K into X. When X is weak Hausdorff,
this holds if and only if the intersection of A with each compact subset of X is
closed. A space X is a “k-space” if every compactly closed subspace is closed.

A space X is “compactly generated” if it is a weak Hausdorff k-space. For
example, any locally compact space and any weak Hausdorff space that satisfies
the first axiom of countability (every point has a countable neighborhood basis) is
compactly generated. We have expressed the definition in a form that should make
the following statement clear.

Lemma. If X is a compactly generated space and Y is any space, then a func-
tion f : X −→ Y is continuous if and only if its restriction to each compact subspace
K of X is continuous.

We can make a space X into a k-space by giving it a new topology in which a
space is closed if and only if it is compactly closed in the original topology. We call
the resulting space kX. Clearly the identity function kX −→ X is continuous. If
X is weak Hausdorff, then so is kX, hence kX is compactly generated. Moreover,
X and kX then have exactly the same compact subsets.

Write X ×c Y for the product of X and Y with its usual topology and write
X × Y = k(X ×c Y ). If X and Y are weak Hausdorff, then X × Y = kX × kY . If
X is locally compact and Y is compactly generated, then X × Y = X ×c Y .

39



40 COMPACTLY GENERATED SPACES

By definition, a space X is Hausdorff if the diagonal subspace ∆X = {(x, x)} is
closed in X ×c X. The weak Hausdorff property admits a similar characterization.

Lemma. If X is a k-space, then X is weak Hausdorff if and only if ∆X is
closed in X ×X.

2. The category of compactly generated spaces

One major source of point-set level pathology can be passage to quotient spaces.
Use of compactly generated topologies alleviates this.

Proposition. If X is compactly generated and π : X −→ Y is a quotient map,
then Y is compactly generated if and only if (π × π)−1(∆Y ) is closed in X ×X.

The interpretation is that a quotient space of a compactly generated space by a
“closed equivalence relation” is compactly generated. We are particularly interested
in the following consequence.

Proposition. If X and Y are compactly generated spaces, A is a closed sub-
space of X, and f : A −→ Y is any continuous map, then the pushout Y ∪f X is
compactly generated.

Another source of pathology is passage to colimits over sequences of maps
Xi −→ Xi+1. When the given maps are inclusions, the colimit is the union of the
sets Xi with the “topology of the union;” a set is closed if and only if its intersection
with each Xi is closed.

Proposition. If {Xi} is a sequence of compactly generated spaces and inclu-
sions Xi −→ Xi+1 with closed images, then colimXi is compactly generated.

We now adopt a more categorical point of view. We redefine U to be the
category of compactly generated spaces and continuous maps, and we redefine T
to be its subcategory of based spaces and based maps.

Let wU be the category of weak Hausdorff spaces. We have the functor k :
wU −→ U , and we have the forgetful functor j : U −→ wU , which embeds U as
a full subcategory of wU . Clearly

U (X, kY ) ∼= wU (jX, Y )

for X ∈ U and Y ∈ wU since the identity map kY −→ Y is continuous and
continuity of maps defined on compactly generated spaces is compactly determined.
Thus k is right adjoint to j.

We can construct colimits and limits of spaces by performing these construc-
tions on sets: they inherit topologies that give them the universal properties of
colimits and limits in the classical category of spaces. Limits of weak Hausdorff
spaces are weak Hausdorff, but limits of k-spaces need not be k-spaces. We con-
struct limits of compactly generated spaces by applying the functor k to their limits
as spaces. It is a categorical fact that functors which are right adjoints preserve
limits, so this does give categorical limits in U . This is how we defined X × Y , for
example.

Point-set level colimits of weak Hausdorff spaces need not be weak Hausdorff.
However, if a point-set level colimit of compactly generated spaces is weak Haus-
dorff, then it is a k-space and therefore compactly generated. We shall only be
interested in colimits in those cases where this holds. The propositions above give
examples. In such cases, these constructions give categorical colimits in U .
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From here on, we agree that all given spaces are to be compactly generated,
and we agree to redefine any construction on spaces by applying the functor k to
it. For example, for spaces X and Y in U , we understand the function space
Map(X,Y ) = Y X to mean the set of continuous maps from X to Y with the k-
ification of the standard compact-open topology; the latter topology has as basis
the finite intersections of the subsets of the form {f |f(K) ⊂ U} for some compact
subset K of X and open subset U of Y . This leads to the following adjointness
homeomorphism, which holds without restriction when we work in the category of
compactly generated spaces.

Proposition. For spaces X, Y , and Z in U , the canonical bijection

Z(X×Y ) ∼= (ZY )X

is a homeomorphism.

Observe in particular that a homotopy X× I −→ Y can equally well be viewed
as a map X −→ Y I . These adjoint, or “dual,” points of view will play an important
role in the next two chapters.

PROBLEMS
(1) (a) Any subspace of a weak Hausdorff space is weak Hausdorff.

(b) Any closed subspace of a k-space is a k-space.
(c) An open subset U of a compactly generated space X is compactly

generated if each point has an open neighborhood in X with closure
contained in U .

(2) * A Tychonoff (or completely regular) space X is a T1-space (points are
closed) such that for each point x ∈ X and each closed subset A such that
x /∈ A, there is a function f : X −→ I such that f(x) = 0 and f(a) = 1 if
a ∈ A. Prove the following (e.g., Kelley, General Topology).
(a) A space is Tychonoff if and only if it can be embedded in a cube (a

product of copies of I).
(b) There are Tychonoff spaces that are not k-spaces, but every cube is

a compact Hausdorff space.
(3) Brief essay: In view of Problems 1 and 2, what should we mean by a

“subspace” of a compactly generated space. (We do not want to restrict
the allowable set of subsets.)





CHAPTER 6

Cofibrations

Exact sequences that feature in the study of homotopy, homology, and coho-
mology groups all can be derived homotopically from the theory of cofiber and fiber
sequences that we present in this and the following two chapters. Abstractions of
these ideas are at the heart of modern axiomatic treatments of homotopical algebra
and of the foundations of algebraic K-theory.

The theories of cofiber and fiber sequences illustrate an important, but informal,
duality theory, known as Eckmann-Hilton duality. It is based on the adjunction
between Cartesian products and function spaces. Our standing hypothesis that all
spaces in sight are compactly generated allows the theory to be developed without
further restrictions on the given spaces. We discuss “cofibrations” here and the
“dual” notion of “fibrations” in the next chapter.

1. The definition of cofibrations

Definition. A map i : A −→ X is a cofibration if it satisfies the homotopy
extension property (HEP). This means that if h ◦ i0 = f ◦ i in the diagram

A
i0 //

i

��

A× I
h

{{xx
xx

xx
xx

x

i×id

��

Y

X
i0

//

f
??~~~~~~~~

X × I,

h̃

ccF
F

F
F

F

then there exists h̃ that makes the diagram commute.

Here i0(x) = (x, 0). We do not require h̃ to be unique, and it usually isn’t.
Using our alternative way of writing homotopies, we see that the “test diagram”
displayed in the definition can be rewritten in the equivalent form

A

i

��

h // Y I

p0

��
X

h̃

>>}
}

}
}

f
// Y,

where p0(ξ) = ξ(0).
Pushouts of cofibrations are cofibrations, in the sense of the following result.

We generally write B ∪g X for the pushout of a given cofibration i : A −→ X and
a map g : A −→ B.
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Lemma. If i : A −→ X is a cofibration and g : A −→ B is any map, then the
induced map B −→ B ∪g X is a cofibration.

Proof. Notice that (B∪gX)×I ∼= (B×I)∪g×id (X×I) and consider a typical
test diagram for the HEP. The proof is a formal chase of the following diagram:

A
i0 //

pushouti

��

g

##G
GG

GG
GG

GG
G A× I

i×idpushout

��

g×id

wwooooooooooo

B

��

// B × I
h

xxrrrrrrrrrrr

��

Y

B ∪g X

f

;;wwwwwwwww
// (B ∪g X)× I

h̃

eeK K K K K K

X

;;wwwwwwwww
i0

// X × I.

ggNNNNNNNNNNNh̄

V V V V V V V V V V V V V

OO�
�
�

We first use that A −→ X is a cofibration to obtain a homotopy h̄ : X×I −→ Y and
then use the right-hand pushout to see that h̄ and h induce the required homotopy
h̃. �

2. Mapping cylinders and cofibrations

Although the HEP is expressed in terms of general test diagrams, there is a
certain universal test diagram. Namely, we can let Y in our original test diagram
be the “mapping cylinder”

Mi ≡ X ∪i (A× I),
which is the pushout of i and i0. Indeed, suppose that we can construct a map r
that makes the following diagram commute:

A
i0 //

i

��

A× I

{{vvv
vv

vv
vv

i×id

��

Mi

X
i0

//

==||||||||
X × I.

r

ccH
H

H
H

H

By the universal property of pushouts, the given maps f and h in our original test
diagram induce a map Mi −→ Y , and its composite with r gives a homotopy h̃
that makes the test diagram commute.

A map r that makes the previous diagram commute satisfies r ◦ j = id, where
j : Mi −→ X × I is the map that restricts to i0 on X and to i× id on A× I. As a
matter of point-set topology, left as an exercise, it follows that a cofibration is an
inclusion with closed image.
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3. Replacing maps by cofibrations

We can use the mapping cylinder construction to decompose an arbitrary map
f : X −→ Y as the composite of a cofibration and a homotopy equivalence. That
is, up to homotopy, any map can be replaced by a cofibration. To see this, recall
that Mf = Y ∪f (X × I) and observe that f coincides with the composite

X
j−→Mf

r−→ Y,

where j(x) = (x, 1) and where r(y) = y on Y and r(x, s) = f(x) on X × I. If
i : Y −→Mf is the inclusion, then r ◦ i = id and id ' i ◦ r. In fact, we can define
a deformation h : Mf × I −→Mf of Mf onto i(Y ) by setting

h(y, t) = y and h((x, s), t) = (x, (1− t)s).

It is not hard to check directly that j : X −→ Mf satisfies the HEP, and this will
also follow from the general criterion for a map to be a cofibration to which we turn
next.

4. A criterion for a map to be a cofibration

We want a criterion that allows us to recognize cofibrations when we see them.
We shall often consider pairs (X,A) consisting of a space X and a subspace A.
Cofibration pairs will be those pairs that “behave homologically” just like the as-
sociated quotient spaces X/A.

Definition. A pair (X,A) is an NDR-pair (= neighborhood deformation re-
tract pair) if there is a map u : X −→ I such that u−1(0) = A and a homotopy
h : X × I −→ X such that h0 = id, h(a, t) = a for a ∈ A and t ∈ I, and h(x, 1) ∈ A
if u(x) < 1; (X,A) is a DR-pair if u(x) < 1 for all x ∈ X, in which case A is a
deformation retract of X.

Lemma. If (h, u) and (j, v) represent (X,A) and (Y,B) as NDR-pairs, then
(k,w) represents the “product pair” (X×Y,X×B∪A×Y ) as an NDR-pair, where
w(x, y) = min(u(x), v(y)) and

k(x, y, t) =

{
(h(x, t), j(y, tu(x)/v(y))) if v(y) ≥ u(x)
(h(x, tv(y)/u(x)), j(y, t)) if u(x) ≥ v(y).

If (X,A) or (Y,B) is a DR-pair, then so is (X × Y,X ×B ∪A× Y ).

Proof. If v(y) = 0 and v(y) ≥ u(x), then u(x) = 0 and both y ∈ B and
x ∈ A; therefore we can and must understand k(x, y, t) to be (x, y). It is easy to
check from this and the symmetric observation that k is a well defined continuous
homotopy as desired. �

Theorem. Let A be a closed subspace of X. Then the following are equivalent:
(i) (X,A) is an NDR-pair.
(ii) (X × I,X × {0} ∪A× I) is a DR-pair.
(iii) X × {0} ∪A× I is a retract of X × I.
(iv) The inclusion i : A −→ X is a cofibration.

Proof. The lemma gives that (i) implies (ii), (ii) trivially implies (iii), and
we have already seen that (iii) and (iv) are equivalent. Assume given a retraction
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r : X × I −→ X × {0} ∪A× I. Let π1 : X × I −→ X and π2 : X × I −→ I be the
projections and define u : X −→ I by

u(x) = sup{t− π2r(x, t)|t ∈ I}

and h : X × I −→ X by

h(x, t) = π1r(x, t).

Then (h, u) represents (X,A) as an NDR-pair. Here u−1(0) = A since u(x) = 0
implies that r(x, t) ∈ A × I for t > 0 and thus also for t = 0 since A × I is closed
in X × I. �

5. Cofiber homotopy equivalence

It is often important to work in the category of spaces under a given space
A, and we shall later need a basic result about homotopy equivalences in this
category. We shall also need a generalization concerning homotopy equivalences of
pairs. The reader is warned that the results of this section, although easy enough
to understand, have fairly lengthy and unilluminating proofs.

A space under A is a map i : A −→ X. A map of spaces under A is a
commutative diagram

A
i

~~~~
~~

~~
~

j

��@
@@

@@
@@

X
f

// Y

A homotopy between maps under A is a homotopy that at each time t is a map
under A. We then write h : f ' f ′ rel A and have h(i(a), t) = j(a) for all a ∈ A
and t ∈ I. There results a notion of a homotopy equivalence under A. Such an
equivalence is called a “cofiber homotopy equivalence.” The name is suggested by
the following result, whose proof illustrates a more substantial use of the HEP than
we have seen before.

Proposition. Let i : A −→ X and j : A −→ Y be cofibrations and let
f : X −→ Y be a map such that f ◦i = j. Suppose that f is a homotopy equivalence.
Then f is a cofiber homotopy equivalence.

Proof. It suffices to find a map g : Y −→ X under A and a homotopy
g ◦ f ' id rel A. Indeed, g will then be a homotopy equivalence, and we can repeat
the argument to obtain f ′ : X −→ Y such that f ′ ◦ g ' id rel A; it will follow
formally that f ′ ' f rel A. By hypothesis, there is a map g′′ : Y −→ X that is a
homotopy inverse to f . Since g′′ ◦ f ' id, g′′ ◦ j ' i. Since j satisfies the HEP, it
follows directly that g′′ is homotopic to a map g′ such that g′ ◦ j = i. It suffices
to prove that g′ ◦ f : X −→ X has a left homotopy inverse e : X −→ X under A,
since g = e◦g′ will then satisfy g ◦f ' id rel A. Replacing our original map f with
g′ ◦ f , we see that it suffices to obtain a left homotopy inverse under A to a map
f : X −→ X such that f ◦ i = i and f ' id. Choose a homotopy h : f ' id. Since
h0 ◦ i = f ◦ i = i and h1 = id, we can apply the HEP to h ◦ (i× id) : A× I −→ X
and the identity map of X to obtain a homotopy k : id ' k1 ≡ e such that
k ◦ (i× id) = h ◦ (i× id). Certainly e ◦ i = i. Now apply the HEP to the following
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diagram:

A× I
i0 //

i×id

��

A× I × I

i×id× id

��

K

yytttttttttt

X

X × I

J

;;xxxxxxxx

i0
// X × I × I.

L

eeJ
J

J
J

J

Here J is the homotopy e ◦ f ' id specified by

J(x, s) =

{
k(f(x), 1− 2s) if s ≤ 1/2
h(x, 2s− 1) if 1/2 ≤ s.

The homotopy between homotopies K is specified by

K(a, s, t) =

{
k(i(a), 1− 2s(1− t)) if s ≤ 1/2
h(i(a), 1− 2(1− s)(1− t)) if s ≥ 1/2.

Traversal of L around the three faces of I × I other than that specified by J gives
a homotopy

e ◦ f = J0 = L0,0 ' L0,1 ' L1,1 ' L1,0 = J1 = id rel A. �

The proposition applies to the following previously encountered situation.

Example. Let i : A −→ X be a cofibration. We then have the commutative
diagram

A
j

~~}}
}}

}}
}} i

  @
@@

@@
@@

Mi r
// X,

where j(a) = (a, 1). The obvious homotopy inverse ι : X −→ Mi has ι(x) = (x, 0)
and is thus very far from being a map under A. The proposition ensures that ι is
homotopic to a map under A that is homotopy inverse to r under A.

The following generalization asserts that, for inclusions that are cofibrations, a
pair of homotopy equivalences is a homotopy equivalence of pairs. It is often used
implicitly in setting up homology and cohomology theories on pairs of spaces.

Proposition. Assume given a commutative diagram

A
d //

i

��

B

j

��
X

f
// Y

in which i and j are cofibrations and d and f are homotopy equivalences. Then
(f, d) : (X,A) −→ (Y,B) is a homotopy equivalence of pairs.
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Proof. The statement means that there are homotopy inverses e of d and g of
f such that g ◦ j = i ◦ e together with homotopies H : g ◦ f ' id and K : f ◦ g ' id
that extend homotopies h : e ◦ d ' id and k : d ◦ e ' id. Choose any homotopy
inverse e to d, together with homotopies h : e ◦ d ' id and ` : d ◦ e ' id. By HEP
for j, there is a homotopy inverse g′ for f such that g′ ◦ j = i ◦ e. Then, by HEP
for i, there is a homotopy m of g′ ◦ f such that m ◦ (i × id) = i ◦ h. Let φ = m1.
Then φ ◦ i = i and φ is a cofiber homotopy equivalence by the previous result. Let
ψ : X −→ X be a homotopy inverse under i and let n : ψ ◦ φ ' id be a homotopy
under i. Define g = ψ ◦ g′. Clearly g ◦ j = i◦ e. Using that the pairs (I× I, I×{0})
and (I × I, I × {0} ∪ ∂I × I) are homeomorphic, we can construct a homotopy
between homotopies Λ by applying HEP to the diagram

(A× I × 0) ∪ (A× ∂I × I)

i×id

��

⊂ // A× I × I

i×id

��

Γ

zztttttttttt

X

(X × I × 0) ∪ (X × ∂I × I)

γ

66lllllllllllllll

⊂
// X × I × I.

Λ

ddJJJJJJJJJJ

Here

γ(x, s, 0) =
{
ψ(m(x, 2s)) if s ≤ 1/2
n(x, 2s− 1) if s ≥ 1/2,

γ(x, 0, t) = (g ◦ f)(x) = (ψ ◦ g′ ◦ f)(x),
and

γ(x, 1, t) = x,

while

Γ(a, s, t) =
{
i(h(a, 2s/(1 + t))) if 2s ≤ 1 + t
i(a) if 2s ≥ 1 + t

Define H(x, s) = Λ(x, s, 1). Then H : g◦f ' id and H ◦(i× id) = i◦h. Application
of this argument with d and f replaced by e and g gives a left homotopy inverse f ′ to
g and a homotopy L : f ′◦g ' id such that f ′◦i = j◦d and L◦(j×id) = j◦`. Adding
homotopies by concentrating them on successive fractions of the unit interval and
letting the negative of a homotopy be obtained by reversal of direction, define

k = (−`)(de× id) + dh(e× id) + `

and
K = (−L)(fg × id) + f ′H(g × id) + L.

Then K : f ◦ g ' id and K ◦ (j × id) = j ◦ k. �

PROBLEMS
(1) Show that a cofibration i : A −→ X is an inclusion with closed image.
(2) Let i : A −→ X be a cofibration, where A is a contractible space. Prove

that the quotient map X −→ X/A is a homotopy equivalence.



CHAPTER 7

Fibrations

We “dualize” the definitions and theory of the previous chapter to the study
of fibrations, which are “up to homotopy” generalizations of covering spaces.

1. The definition of fibrations

Definition. A surjective map p : E −→ B is a fibration if it satisfies the
covering homotopy property (CHP). This means that if h◦ i0 = p◦f in the diagram

Y
f //

i0

��

E

p

��
Y × I

h
//

h̃

<<x
x

x
x

x
B,

then there exists h̃ that makes the diagram commute.

This notion of a fibration is due to Hurewicz. There is a more general notion
of a Serre fibration, in which the test spaces Y are restricted to be cubes In. Serre
fibrations are more appropriate for many purposes, but we shall make no use of
them. The test diagram in the definition can be rewritten in the equivalent form

E

p

��

EI
p0oo

pI

��

Y

h̃
==|

|
|

|f

__????????

h !!B
BB

BB
BB

B

B BI .p0
oo

Here p0(β) = β(0) for β ∈ BI . With this formulation, we can “dualize” the proof
that pushouts of cofibrations are cofibrations to show that pullbacks of fibrations are
fibrations. We often write A×g E for the pullback of a given fibration p : E −→ B
and a map g : A −→ B.

Lemma. If p : E −→ B is a fibration and g : A −→ B is any map, then the
induced map A×g E −→ A is a fibration.

2. Path lifting functions and fibrations

Although the CHP is expressed in terms of general test diagrams, there is a
certain universal test diagram. Namely, we can let Y in our original test diagram
be the “mapping path space”

Np ≡ E ×p BI = {(e, β)|β(0) = p(e)} ⊂ E ×BI .

49
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That is, Np is the pullback of p and p0 in the second form of the test diagram
and, with Y = Np, f and h in that diagram are the evident projections. A map
s : Np −→ EI such that k ◦ s = id, where k : EI −→ Np has coordinates p0 and
pI , is called a path lifting function. Thus

s(e, β)(0) = e and p ◦ s(e, β) = β.

Given a general test diagram, there results a map g : Y −→ Np determined by f
and h, and we can take h̃ = s ◦ g.

In general, path lifting functions are not unique. In fact, we have already
studied the special kinds of fibrations for which they are unique.

Lemma. If p : E −→ B is a covering, then p is a fibration with a unique path
lifting function s.

Proof. The unique lifts of paths with a given initial point specify s. �

Fibrations and cofibrations are related by the following useful observation.

Lemma. If i : A −→ X is a cofibration and B is a space, then the induced map

p = Bi : BX −→ BA

is a fibration.

Proof. It is an easy matter to check that we have a homeomorphism

BMi = BX×{0}∪A×I ∼= BX ×p (BA)I = Np.

If r : X × I −→Mi is a retraction, then

Br : Np ∼= BMi −→ BX×I ∼= (BX)I

is a path lifting function. �

3. Replacing maps by fibrations

We can use the mapping path space construction to decompose an arbitrary
map f : X −→ Y as the composite of a homotopy equivalence and a fibration. That
is, up to homotopy, any map can be replaced by a fibration. To see this, recall that
Nf = X ×f Y I and observe that f coincides with the composite

X
ν−→ Nf

ρ−→ Y,

where ν(x) = (x, cf(x)) and ρ(x, χ) = χ(1). Let π : Nf −→ X be the projection.
Then π ◦ν = id and id ' ν ◦π since we can define a deformation h : Nf×I −→ Nf
of Nf onto ν(X) by setting

h(x, χ)(t) = (x, χt), where χt(s) = χ((1− t)s).

We check directly that ρ : Nf −→ Y satisfies the CHP. Consider a test diagram

A
g //

i0

��

Nf

ρ

��
A× I

h
//

h̃
;;x

x
x

x
Y.
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We are given g and h such that h ◦ i0 = ρ ◦ g and must construct h̃ that makes the
diagram commute. We write g(a) = (g1(a), g2(a)) and set

h̃(a, t) = (g1(a), j(a, t)),

where

j(a, t)(s) =

{
g2(a)(s+ st) if 0 ≤ s ≤ 1/(1 + t)
h(a, s+ ts− 1) if 1/(1 + t) ≤ s ≤ 1.

4. A criterion for a map to be a fibration

Again, we want a criterion that allows us to recognize fibrations when we see
them. Here the idea of duality fails, and we instead think of fibrations as general-
izations of coverings. When restricted to the spaces U in a well chosen open cover
O of the base space B, a covering is homeomorphic to the projection U ×F −→ U ,
where F is a fixed discrete set.

The obvious generalization of this is the notion of a bundle. A map p : E −→ B
is a bundle if, when restricted to the spaces U in a well chosen open cover O of B,
there are homeomorphisms φ : U × F −→ p−1(U) such that p ◦ φ = π1, where F
is a fixed topological space. We require of a “well chosen” open cover that it be
numerable. This means that there are continuous maps λU : B −→ I such that
λ−1
U (0, 1] = U and that the cover is locally finite, in the sense that each b ∈ B

has a neighborhood that intersects only finitely many U ∈ O. Any open cover of
a paracompact space has a numerable refinement. With this proviso on the open
covers allowed in the definition of a bundle, the following result shows in particular
that every bundle is a fibration.

Theorem. Let p : E −→ B be a map and let O be a numerable open cover of
B. Then p is a fibration if and only if p : p−1(U) −→ U is a fibration for every
U ∈ O.

Proof. Since pullbacks of fibrations are fibrations, necessity is obvious. Thus
assume that p|p−1(U) is a fibration for each U ∈ O. We shall construct a path lifting
function for B by patching together path lifting functions for the p|p−1(U), but we
first set up the scaffolding of the patching argument. Choose maps λU : B −→ I
such that λ−1

U (0, 1] = U . For a finite ordered subset T = {U1, . . ., Un} of sets in O,
define c(T ) = n and define λT : BI −→ I by

λT (β) = inf{(λUi
◦ β)(t)|(i− 1)/n ≤ t ≤ i/n, 1 ≤ i ≤ n}.

Let WT = λ−1
T (0, 1]. Equivalently,

WT = {β|β(t) ∈ Ui if t ∈ [(i− 1)/n, i/n]} ⊂ BI .

The set {WT } is an open cover of BI , but it need not be locally finite. However,
{WT |c(T ) < n} is locally finite for each fixed n. If c(T ) = n, define γT : BI −→ I
by

γT (β) = max{0, λT (β)− n
∑
c(S)<n λS(β)},

and define
VT = {β|γT (β) > 0} ⊂WT .

Then {VT } is a locally finite open cover of BI . We choose a total ordering of the
set of all finite ordered subsets T of O.
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With this scaffolding in place, choose path lifting functions

sU : p−1(U)×p U I −→ p−1(U)I

for U ∈ O, so that (p ◦ sU )(e, β) = β and sU (e, β)(0) = e. For a given T =
{U1, . . ., Un}, consider paths β ∈ VT . For 0 ≤ u < v ≤ 1, let β[u, v] be the
restriction of β to [u, v]. If u ∈ [(i − 1)/n, i/n] and v ∈ [(j − 1)/n, j/n], where
0 ≤ i ≤ j ≤ n, and if e ∈ p−1(β(u)), define sT (e, β[u, v]) : [u, v] −→ E to be the
path that starts at e and covers β[u, v] that is obtained by applying sUi

to lift over
[u, i/n] (or over [u, v] if i = j), using sUi+1 , starting at the point where the first
lifted path ends, to lift over [i/n, (i+1)/n] and so on inductively, ending with use of
sUj to lift over [(j− 1)/n, v]. (Technically, since we are lifting over partial intervals
and the sU lift paths defined on I to paths defined on I, this involves a rescaling: we
must shrink I linearly onto our subinterval, then apply the relevant part of β, next
lift the resulting path, and finally apply the result to the linear expansion of our
subinterval onto I.) For a point (e, β) in Np, define s(e, β) to be the concatenation
of the paths sTj (ej−1, β[uj−1, uj ]), 1 ≤ j ≤ q, where the Ti, in order, run through
the set of all T such that β ∈ VT , where u0 = 0 and uj =

∑j
i=1 γTi(β) for 1 ≤ j ≤ q,

and where e0 = e and ej is the endpoint of sTj
(ej−1, β[uj−1, uj ]) for 1 ≤ j < q.

Certainly s(e, β) = e and (p ◦ s)(e, β) = β. It is not hard to check that s is well
defined and continuous, hence it is a path lifting function for p. �

5. Fiber homotopy equivalence

It is often important to study fibrations over a given base space B, working in
the category of spaces over B. A space over B is a map p : E −→ B. A map of
spaces over B is a commutative diagram

D
f //

p
  @

@@
@@

@@
E

q
��~~

~~
~~

~

B

A homotopy between maps over B is a homotopy that at each time t is a map over
B. There results a notion of a homotopy equivalence over B. Such an equivalence
is called a “fiber homotopy equivalence.” The name is suggested by the following
result, whose proof is precisely dual to the corresponding result for cofibrations and
is left as an exercise.

Proposition. Let p : D −→ B and q : E −→ B be fibrations and let f : D −→
E be a map such that q ◦ f = p. Suppose that f is a homotopy equivalence. Then
f is a fiber homotopy equivalence.

Example. Let p : E −→ B be a fibration. We then have the commutative
diagram

E

p
��?

??
??

??
?

p
��?

??
??

??
?

ν // Np

ρ
~~||

||
||

||

B

where ν(e) = (e, cp(e)) and ρ(e, χ) = χ(1). The obvious homotopy inverse π :
Np −→ E is not a map over B, but the proposition ensures that it is homotopic to
a map over B that is homotopy inverse to ν over B.
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The result generalizes as follows, the proof again being dual to the proof of the
corresponding result for cofibrations.

Proposition. Assume given a commutative diagram

D
f //

p

��

E

q

��
A

d
// B

in which p and q are fibrations and d and f are homotopy equivalences. Then
(f, d) : p −→ q is a homotopy equivalence of fibrations.

The statement means that there are homotopy inverses e of d and g of f such
that p ◦ g = e ◦ q together with homotopies H : g ◦ f ' id and K : f ◦ g ' id that
cover homotopies h : e ◦ d ' id and k : d ◦ e ' id.

6. Change of fiber

Translation of fibers along paths in the base space played a fundamental role
in our study of covering spaces. Fibrations admit an up to homotopy version of
that theory that well illustrates the use of the CHP and will be used later.

Let p : E −→ B be a fibration with fiber Fb over b ∈ B and let ib : Fb −→ E
be the inclusion. For a path β : I −→ B from b to b′, the CHP gives a lift β̃ in the
diagram

Fb × {0}

��

ib // E

p

��
Fb × I

β̃

66mmmmmmmm

π2
// I

β
// B.

At time t, β̃ maps Fb to the fiber Fβ(t). In particular, at t = 1, this gives a map

τ [β] ≡ [β̃1] : Fb −→ Fb′ ,

which we call the translation of fibers along the path class [β].
We claim that, as indicated by our choice of notation, the homotopy class of

the map β̃1 is independent of the choice of β in its path class. Thus suppose that β
and β′ are equivalent paths from b to b′, let h : I × I −→ B be a homotopy β ' β′
through paths from b to b′, and let β̃′ : Fb × I −→ E cover β′π2. Observe that if

J2 = I × ∂I ∪ {0} × I ⊂ I2,

then the pairs (I2, J2) and (I×I, I×{0}) are homeomorphic. Define f : Fb×J2 −→
E to be β̃ on Fb × I × {0}, β̃′ on Fb × I × {1}, and ib ◦ π1 on Fb × {0} × I. Then
another application of the CHP gives a lift h̃ in the diagram

Fb × J2

��

f // E

p

��
Fb × I2

h̃

66mmmmmmmm

π2
// I2

h
// B.
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Thus h̃ : β̃ ' β̃′ through maps Fb × I −→ E, each of which starts at the inclusion
of Fb in E. At time t = 1, this gives a homotopy β̃1 ' β̃′1. Thus τ [β] = [β̃1] is a
well defined homotopy class of maps Fb −→ Fb′ .

We think of τ [β] as a map in the homotopy category hU . It is clear that, in
the homotopy category,

τ [cb] = [id] and τ [γ · β] = τ [γ] ◦ τ [β]

if γ(0) = β(1). It follows that τ [β] is an isomorphism with inverse τ [β−1]. This can
be stated formally as follows.

Theorem. Lifting of equivalence classes of paths in B to homotopy classes
of maps of fibers specifies a functor λ : Π(B) −→ hU . Therefore, if B is path
connected, then any two fibers of B are homotopy equivalent.

Just as the fundamental group π1(B, b) of the base space of a covering acts on
the fiber Fb, so the fundamental group π1(B, b) of the base space of a fibration acts
“up to homotopy” on the fiber, in a sense made precise by the following corollary.
For a space X, let π0(X) denote the set of path components of X. The set of
homotopy equivalences of X is denoted Aut(X) and is topologized as a subspace of
the function space of maps X −→ X. The composite of homotopy equivalences is a
homotopy equivalence, and composition defines a continuous product on Aut(X).
With this product, Aut(X) is a “topological monoid,” namely a space with a con-
tinuous and associative multiplication with a two-sided identity element, but it is
not a group. However, the path components of Aut(X) are the homotopy classes
of homotopy equivalences of X, and these do form a group under composition.

Corollary. Lifting of equivalence classes of loops specifies a homomorphism
π1(B, b) −→ π0(Aut(Fb)).

We have the following naturality statement with respect to maps of fibrations.

Theorem. Let p and q be fibrations in the commutative diagram

D
g //

q

��

E

p

��
A

f
// B.

For a path α : I −→ A from a to a′, the following diagram commutes in hU :

Fa
g //

τ [α]

��

Ff(a)

τ [f◦α]

��
Fa′ g

// Ff(a′).

If, further, h : f ' f ′ and H : g ' g′ in the commutative diagram

D × I H //

q×id

��

E

p

��
A× I

h
// B,
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then the following diagram in hU also commutes, where h(a)(t) = h(a, t):

Fa
g

||zz
zz

zz
zz g′

""F
FFFFFFF

Ff(a)
τ [h(a)]

// Ff ′(a).

Proof. Let α̃ : Fa × I −→ D lift α and β̃ : Ff(a) × I −→ E lift f ◦ α. Define
j : Fa × J2 −→ E to be g ◦ α̃ on Fa × I × {0}, β̃ ◦ (g × id) on Fa × I × {1}, and
g ◦ π1 on Fa × {0} × I. Define k : I2 −→ B to be the constant homotopy which at
each time t is f ◦ α. Another application of the CHP gives a lift k̃ in the diagram:

Fa × J2

��

j // E

p

��
Fa × I2

k̃

66mmmmmmmm

π2
// I2

k
// B.

Here k̃ is a homotopy g ◦ α̃ ' β̃ ◦ (g × id) through homotopies starting at g ◦ π1 :
Fa×I −→ E. This gives the diagram claimed in the first statement. For the second
statement, define α : I −→ A × I by α(t) = (a, t), so that h(a) = h ◦ α. Define
α̃ : Fa −→ Fa × I by α̃(f) = (f, t). Then α̃ lifts α and

τ [α] = [id] : Fa = Fa × {0} −→ Fa × {1} = Fa.

We conclude that the second statement is a special case of the first. �

PROBLEM
(1) Prove the proposition stated in §5.





CHAPTER 8

Based cofiber and fiber sequences

We use cofibrations and fibrations in the category T of based spaces to generate
two “exact sequences of spaces” from a given map of based spaces. We shall write
∗ generically for the basepoints of based spaces. Much that we do for cofibrations
can be done equally well in the unbased context of the previous chapter. However,
the dual theory of fibration sequences only makes sense in the based context.

1. Based homotopy classes of maps

For based spaces X and Y , we let [X,Y ] denote the set of based homotopy
classes of based maps X −→ Y . This set has a natural basepoint, namely the
homotopy class of the constant map from X to the basepoint of Y .

The appropriate analogue of the Cartesian product in the category of based
spaces is the “smash product” X ∧ Y defined by

X ∧ Y = X × Y/X ∨ Y.

Here X ∨Y is viewed as the subspace of X ×Y consisting of those pairs (x, y) such
that either x is the basepoint of X or y is the basepoint of Y .

The appropriate based analogue of the function space is the subspace F (X,Y )
of Y X consisting of the based maps, with the constant based map as basepoint.
With these definitions, we have a natural homeomorphism of based spaces

F (X ∧ Y, Z) ∼= F (X,F (Y,Z))

for based spaces X and Y .
Recall that π0(X) denotes the set of path components of X. When X is based,

so is this set, and we sometimes denote it by π0(X, ∗). Observe that [X,Y ] may be
identified with π0(F (X,Y )).

2. Cones, suspensions, paths, loops

Let X be a based space. We define the cone on X to be CX = X ∧ I, where I
is given the basepoint 1. That is,

CX = X × I/({∗} × I ∪X × {1}).

We view S1 as I/∂I, denote its basepoint by 1, and define the suspension of X to
be ΣX = X ∧ S1. That is,

ΣX = X × S1/({∗} × S1 ∪X × {1}).

These are sometimes called the reduced cone and suspension, to distinguish them
from the unreduced constructions, in which the line {∗} × I through the basepoint
of X is not identified to a point. We shall make use of both constructions in our
work, but we shall not distinguish them notationally.
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Dually, we define the path space of X to be PX = F (I,X), where I is given the
basepoint 0. Thus the points of PX are the paths in X that start at the basepoint.
We define the loop space of X to be ΩX = F (S1, X). Its points are the loops at
the basepoint.

We have the adjunction

F (ΣX,Y ) ∼= F (X,ΩY ).

Passing to π0, this gives that

[ΣX,Y ] ∼= [X,ΩY ].

Composition of loops defines a multiplication on this set. Explicitly, for f, g :
ΣX −→ Y , we write

(g + f)(x ∧ t) = (g(x) · f(x))(t) =

{
f(x ∧ 2t) if 0 ≤ t ≤ 1/2
g(x ∧ (2t− 1)) if 1/2 ≤ t ≤ 1.

Lemma. [ΣX,Y ] is a group and [Σ2X,Y ] is an Abelian group.

Proof. The first statement is proved just as for the fundamental group. For
the second, think of maps f, g : Σ2X −→ Y as maps S2 −→ F (X,Y ) and think
of S2 as the quotient I2/∂I2. Then a homotopy between g + f and f + g can be
pictured schematically as follows:

f
//

∗ f
//

g ∗
//

g

g g ∗ ∗ f f

�

3. Based cofibrations

The definition of a cofibration has an evident based variant, in which all given
and constructed maps in our test diagrams are required to be based. A based map
i : A −→ X that is a cofibration in the unbased sense is necessarily a cofibration in
the based sense since the basepoint of X must lie in A.

We say that X is “nondegenerately based,” or “well pointed,” if the inclusion of
its basepoint is a cofibration in the unbased sense. If A and X are nondegenerately
based and i : A −→ X is a based cofibration, then i is necessarily an unbased
cofibration.

We refer to based cofibrations simply as cofibrations in the rest of this chapter.
Write Y+ for the union of a space Y and a disjoint basepoint and observe that

we can identify X ∧ Y+ with X × Y/{∗} × Y .
The space X ∧ I+ is called the reduced cylinder on X, and a based homotopy

X× I −→ Y is the same thing as a based map X ∧ I+ −→ Y . We change notations
and write Mf for the based mapping cylinder Y ∪f (X ∧ I+) of a based map f .

As in the unbased case, we conclude that a based map i : A −→ X is a
cofibration if and only if Mi is a retract of X ∧ I+.
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4. Cofiber sequences

For a based map f : X −→ Y , define the “homotopy cofiber” Cf to be

Cf = Y ∪f CX = Mf/j(X),

where j : X −→ Mf sends x to (x, 1). As in the unbased case, our original map
f is the composite of the cofibration j and the evident retraction r : Mf −→ Y .
Thus Cf is constructed by first replacing f by the cofibration j and then taking
the associated quotient space.

Let i : Y −→ Cf be the inclusion. It is a cofibration since it is the pushout of
f and the cofibration X −→ CX that sends x to (x, 0). Let

π : Cf −→ Cf/Y ∼= ΣX

be the quotient map. The sequence

X
f−→ Y

i−→ Cf
π−→ ΣX

−Σf−−−→ ΣY −Σi−−−→ ΣCf −Σπ−−−→ Σ2X
Σ2f−−→ Σ2Y −→ · · ·

is called the cofiber sequence generated by the map f ; here

(−Σf)(x ∧ t) = f(x) ∧ (1− t).

These “long exact sequences of based spaces” give rise to long exact sequences
of pointed sets, where a sequence

S′
f−→ S

g−→ S′′

of pointed sets is said to be exact if g(s) = ∗ if and only if s = f(s′) for some s′.

Theorem. For any based space Z, the induced sequence

· · · −→ [ΣCf,Z] −→ [ΣY, Z] −→ [ΣX,Z] −→ [Cf,Z] −→ [Y,Z] −→ [X,Z]

is an exact sequence of pointed sets, or of groups to the left of [ΣX,Z], or of Abelian
groups to the left of [Σ2X,Z].

Exactness is clear at the first stage, where we are considering the composite of
f : X −→ Y and the inclusion i of Y in the cofiber Cf . To see this, consider the
diagram

X
f // Y

g

��

i // Cf = Y ∪f CX

g̃=g∪h
xxq q q q q q

Z.

Here h : g ◦ f ' c∗, and we view h as a map CX −→ Z. Thus we check exactness
by using any given homotopy to extend g over the cofiber. We emphasize that this
applies to any composite pair of maps of the form (f, i), where i is the inclusion of
the target of f in the cofiber of f .

We claim that, up to homotopy equivalence, each consecutive pair of maps in
our cofiber sequence is the composite of a map and the inclusion of its target in its
cofiber. This will imply the theorem. We observe that, for any map f , interchange
of the cone and suspension coordinate gives a homeomorphism

ΣCf ∼= C(Σf)
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such that the following diagram commutes:

ΣX
Σf // ΣY

Σi(f) // ΣCf
Σπ(f) //

∼=
��

Σ2X

τ

��
ΣX

Σf
// ΣY

i(Σf)
// C(Σf)

π(Σf)
// Σ2X.

Here τ : Σ2X −→ Σ2X is the homeomorphism obtained by interchanging the two
suspension coordinates; we shall see later, and leave as an exercise here, that τ is
homotopic to − id. We have written i(f), π(f), etc., to indicate the maps to which
the generic constructions i and π are applied. Using this inductively, we see that we
need only verify our claim for the two pairs of maps (i(f), π(f)) and (π(f),−Σf).
The following two lemmas will imply the claim in these two cases. More precisely,
they will imply the claim directly for the first pair and will imply that the second
pair is equivalent to a pair of the same form as the first pair.

Lemma. If i : A −→ X is a cofibration, then the quotient map

ψ : Ci −→ Ci/CA ∼= X/A

is a based homotopy equivalence.

Proof. Since i is a cofibration, there is a retraction

r : X ∧ I+ −→Mi = X ∪i (A ∧ I+).

We embed X as X×{1} in the source and collapse out A×{1} from the target. The
resulting composite X −→ Ci maps A to {∗} and so induces a map φ : X/A −→ Ci.
The map r restricts to the identity on A ∧ I+, and if we collapse out A ∧ I+ from
its source and target, then r becomes a homotopy id ' ψ ◦φ. The map r on X ∧ I+
glues together with the map h : CA ∧ I+ −→ CA specified by

h(a, s, t) = (a,max(s, t))

to give a homotopy Ci ∧ I+ −→ Ci from the identity to φ ◦ ψ. �

Lemma. The left triangle commutes and the right triangle commutes up to
homotopy in the diagram

X
f // Y

i(f) // Cf
π(f) //

i(i(f)) ""E
EE

EE
EE

E ΣX
−Σf // ΣY // · · ·

Ci(f)

ψ

OO

π(i(f))

<<xxxxxxxxx

Proof. Observe that Ci(f) is obtained by gluing the cones CX and CY along
their bases via the map f : X −→ Y . The left triangle commutes since collapsing
out CY from Ci(f) is the same as collapsing out Y from Cf . A homotopy h :
Ci(f) ∧ I+ −→ ΣY from π to (−Σf) ◦ ψ is given by

h(x, s, t) = (f(x), t− st) on CX

and
h(y, s, t) = (y, s+ t− st) on CY. �
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5. Based fibrations

Similarly, the definition of a fibration has an evident based variant, in which
all given and constructed maps in our test diagrams are required to be based.
A based fibration p : E −→ B is necessarily a fibration in the unbased sense,
as we see by restricting to spaces of the form Y+ in test diagrams and noting that
Y+∧I+ ∼= (Y ×I)+. Less obviously, if p is a based map that is an unbased fibration,
then it satisfies the based CHP for test diagrams in which Y is nondegenerately
based.

We refer to based fibrations simply as fibrations in the rest of this chapter.
Observe that a based homotopy X∧I+ −→ Y is the same thing as a based map

X −→ F (I+, Y ). Here F (I+, Y ) is the same space as Y I , but given a basepoint
determined by the basepoint of Y . Therefore the based version of the mapping path
space Nf of a based map f : X −→ Y is the same space as the unbased version,
but given a basepoint determined by the given basepoints of X and Y . However,
because path spaces are always defined with I having basepoint 0 rather than 1,
we find it convenient to redefine Nf correspondingly, setting

Nf = {(x, χ)|χ(1) = f(x)} ⊂ X × Y I .

As in the unbased case, we easily check that a based map p : E −→ B is a
fibration if and only if there is a based path lifting function

s : Np −→ F (I+, E).

6. Fiber sequences

For a based map f : X −→ Y , define the “homotopy fiber” Ff to be

Ff = X ×f PY = {(x, χ)|f(x) = χ(1)} ⊂ X × PY.

Equivalently, Ff is the pullback displayed in the diagram

Ff //

π

��

PY

p1

��
X

f
// Y,

where π(x, χ) = x. As a pullback of a fibration, π is a fibration.
If ρ : Nf −→ Y is defined by ρ(x, χ) = χ(0), then f = ρ ◦ ν, where ν(x) =

(x, cf(x)), and Ff is the fiber ρ−1(∗). Thus the homotopy fiber Ff is constructed
by first replacing f by the fibration ρ and then taking the actual fiber.

Let ι : ΩY −→ Ff be the inclusion specified by ι(χ) = (∗, χ). The sequence

· · · −→ Ω2X
Ω2f−−→ Ω2Y

−Ωι−−−→ ΩFf −Ωπ−−−→ ΩX
−Ωf−−−→ ΩY ι−→ Ff

π−→ X
f−→ Y

is called the fiber sequence generated by the map f ; here

(−Ωf)(ζ)(t) = (f ◦ ζ)(1− t) for ζ ∈ ΩX.

These “long exact sequences of based spaces” also give rise to long exact se-
quences of pointed sets, this time covariantly.
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Theorem. For any based space Z, the induced sequence

· · · −→ [Z,ΩFf ] −→ [Z,ΩX] −→ [Z,ΩY ] −→ [Z,Ff ] −→ [Z,X] −→ [Z, Y ]

is an exact sequence of pointed sets, or of groups to the left of [Z,ΩY ], or of Abelian
groups to the left of [Z,Ω2Y ].

Exactness is clear at the first stage. To see this, consider the diagram

Z
g̃=g×h

xxq q q q q q

g

��
Ff = X ×f PY π

// X
f
// Y

Here h : c∗ ' f ◦ g, and we view h as a map Z −→ PY . Thus we check exactness
by using any given homotopy to lift g to the fiber.

We claim that, up to homotopy equivalence, each consecutive pair of maps
in our fiber sequence is the composite of a map and the projection from its fiber
onto its source. This will imply the theorem. We observe that, for any map f ,
interchange of coordinates gives a homeomorphism

ΩFf ∼= F (Ωf)

such that the following diagram commutes:

Ω2Y
Ωι(f) //

τ

��

ΩFf

∼=
��

Ωπ(f) // ΩX
Ωf // ΩY

Ω2Y
ι(Ωf)

// F (Ωf)
π(Ωf)

// ΩX
Ωf
// ΩY.

Here τ is obtained by interchanging the loop coordinates and is homotopic to − id.
We have written ι(f), π(f), etc., to indicate the maps to which the generic con-
structions ι and π are applied. Using this inductively, we see that we need only
verify our claim for the two pairs of maps (ι(f), π(f)) and (−Ωf, ι(f)). The fol-
lowing two lemmas will imply the claim in these two cases. More precisely, they
will imply the claim directly for the first pair and will imply that the second pair
is equivalent to a pair of the same form as the first pair. The proofs of the lemmas
are left as exercises.

Lemma. If p : E −→ B is a fibration, then the inclusion

φ : p−1(∗) −→ Fp

specified by φ(e) = (e, c∗) is a based homotopy equivalence.

Lemma. The right triangle commutes and the left triangle commutes up to
homotopy in the diagram

· · · // ΩX
−Ωf //

ι(π(f)) ##G
GG

GG
GG

GG
ΩY

φ

��

ι(f) // Ff
π(f) // X

f // Y.

Fπ(f)
π(π(f))

;;xxxxxxxx
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7. Connections between cofiber and fiber sequences

It is often useful to know that cofiber sequences and fiber sequences can be
connected to one another. The adjunction between loops and suspension has “unit”
and “counit” maps

η : X −→ ΩΣX and ε : ΣΩX −→ X.

Explicitly, η(x)(t) = x ∧ t and ε(χ ∧ t) = χ(t) for x ∈ X, χ ∈ ΩX, and t ∈ S1. For
a map f : X −→ Y , we define

η : Ff −→ ΩCf and ε : ΣFf −→ Cf

by

η(x, γ)(t) = ε(x, γ, t) =

{
γ(2t) if t ≤ 1/2
(x, 2t− 1) if t ≥ 1/2

for x ∈ X and γ ∈ PY such that γ(1) = f(x). Thus ε is just the adjoint of η.

Lemma. Let f : X −→ Y be a map of based spaces. Then the following
diagram, in which the top row is the suspension of part of the fiber sequence of f
and the bottom row is the loops on part of the cofiber sequence of f , is homotopy
commutative:

ΣΩFf

ε

��

ΣΩp // ΣΩX

ε

��

ΣΩf // ΣΩY
Σι //

ε

��

ΣFf

ε

��

Σp // ΣX

ΩY
ι // Ff

p //

η

��

X
f //

η

��

Y
i //

η

��

Cf
π //

η

��

ΣX

ΩY
Ωi
// ΩCf

Ωπ
// ΩΣX

ΩΣf
// ΩΣY

ΩΣi
// ΩΣCf.

Proof. Four of the squares commute by naturality and the remaining four
squares consist of two pairs that are adjoint to each other. To see that the two
bottom left squares commute up to homotopy one need only write down the relevant
maps explicitly. �

Another easily verified result along the same lines relates the quotient map
(Mf,X) −→ (Cf, ∗) to η : Ff −→ ΩCf . Here in the based context we let Mf
be the reduced mapping cylinder, in which the line through the basepoint of X is
collapsed to a point.

Lemma. Let f : X −→ Y be a map of based spaces. Then the following diagram
is homotopy commutative, where j : X −→ Mf is the inclusion, r : Mf −→ Y is
the retraction, and π is induced by the quotient map Mf −→ Cf :

Fj = X ×j PMf
Fr=id×Pr //

π
''OOOOOOOOOOO

X ×f PY = Ff

η
wwppppppppppp

ΩCf.

PROBLEM
(1) Prove the two lemmas stated at the end of §6.





CHAPTER 9

Higher homotopy groups

The most basic invariants in algebraic topology are the homotopy groups. They
are very easy to define, but very hard to compute. We give the basic properties of
these groups here.

1. The definition of homotopy groups

For n ≥ 0 and a based space X, define

πn(X) = πn(X, ∗) = [Sn, X],

the set of homotopy classes of based maps Sn −→ X. This is a group if n ≥ 1 and
an Abelian group if n ≥ 2. When n = 0 and n = 1, this agrees with our previous
definitions. Observe that

πn(X) = πn−1(ΩX) = · · · = π0(ΩnX).

For ∗ ∈ A ⊂ X, the (homotopy) fiber of the inclusion A −→ X may be identified
with the space P (X; ∗, A) of paths in X that begin at the basepoint and end in A.
For n ≥ 1, define

πn(X,A) = πn(X,A, ∗) = πn−1P (X; ∗, A).

This is a group if n ≥ 2 and an Abelian group if n ≥ 3. Again,

πn(X,A) = π0(Ωn−1P (X; ∗, A)).

These are called relative homotopy groups.

2. Long exact sequences associated to pairs

With Fi = P (X; ∗, A), we have the fiber sequence

· · · −→ Ω2A −→ Ω2X −→ ΩFi −→ ΩA −→ ΩX ι−→ Fi
p1−→ A

i−→ X

associated to the inclusion i : A −→ X, where p1 is the endpoint projection and ι
is the inclusion. Applying the functor π0(−) = [S0,−] to this sequence, we obtain
the long exact sequence

· · · −→ πn(A) −→ πn(X) −→ πn(X,A) ∂−→ πn−1(A) −→ · · · −→ π0(A) −→ π0(X).

Define
Jn = ∂In−1 × I ∪ In−1 × {0} ⊂ In,

with J1 = {0} ⊂ I. We can write

πn(X,A, ∗) = [(In, ∂In, Jn), (X,A, ∗)],
where the notation indicates the homotopy classes of maps of triples: maps and
homotopies carry ∂In into A and Jn to the basepoint. Then

∂ : πn(X,A) −→ πn−1(A)

65



66 HIGHER HOMOTOPY GROUPS

is obtained by restricting maps

(In, ∂In, Jn) −→ (X,A, ∗)
to maps

(In−1 × {1}, ∂In−1 × {1}) −→ (A, ∗),
while πn(A) −→ πn(X) and πn(X) −→ πn(X,A) are induced by the inclusions

(A, ∗) ⊂ (X, ∗) and (X, ∗, ∗) ⊂ (X,A, ∗).

3. Long exact sequences associated to fibrations

Let p : E −→ B be a fibration, where B is path connected. Fix a basepoint ∗ ∈
B, let F = p−1(∗), and fix a basepoint ∗ ∈ F ⊂ E. The inclusion φ : F −→ Fp is a
homotopy equivalence, and, being pedantically careful to choose signs appropriately,
we obtain the following diagram, in which two out of each three consecutive squares
commute and the third commutes up to homotopy:

· · · // Ω2E
−Ωι //

id

��

ΩFi
−Ωp1 //

−Ωp

��

ΩF

Ωφ

��

−Ωi // ΩE

id

��

ι // Fi
p1 //

−p
��

F
i //

φ

��

E

id

��
· · · // Ω2E

Ω2p

// Ω2B −Ωι
// ΩFp

−Ωπ
// ΩE −Ωp

// ΩB ι
// Fp

π
// E.

Here Fi = P (E; ∗, F ), p(ξ) = p ◦ ξ ∈ ΩB for ξ ∈ Fi, and the next to last square
commutes up to the homotopy h : ι ◦ (−p) ' φ ◦ p1 specified by

h(ξ, t) = (ξ(t), p(ξ[1, t])),

where ξ[1, t](s) = ξ(1− s+ st).
Passing to long exact sequences of homotopy groups and using the five lemma,

together with a little extra argument in the case n = 1, we conclude that

p∗ : πn(E,F ) −→ πn(B)

is an isomorphism for n ≥ 1. This can also be derived directly from the covering
homotopy property.

Using φ∗ to identify π∗F with π∗(Fp), we may rewrite the long exact sequence
of the bottom row of the diagram as

· · · −→ πn(F ) −→ πn(E) −→ πn(B) ∂−→ πn−1(F ) −→ · · · −→ π0(E) −→ {∗}.
(At the end, a little path lifting argument shows that π0(F ) −→ π0(E) is a surjec-
tion.) This is one of the main tools for the computation of homotopy groups.

4. A few calculations

We observe some easily derived calculational facts about homotopy groups.

Lemma. If X is contractible, then πn(X) = 0 for all n ≥ 0.

Lemma. If X is discrete, then πn(X) = 0 for all n > 0.

Lemma. If p : E −→ B is a covering, then p∗ : πn(E) −→ πn(B) is an
isomorphism for all n ≥ 2.

Lemma. π1(S1) = Z and πn(S1) = 0 if n 6= 1.

Lemma. If i ≥ 2, then π1(RP i) = Z2 and πn(RP i) ∼= πn(Si) for n 6= 1.
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Lemma. For all spaces X and Y and all n,

πn(X × Y ) ∼= πn(X)× πn(Y ).

Lemma. If i < n, then πi(Sn) = 0.

Proof. For any based map f : Si −→ Sn, we can apply smooth (or simplicial)
approximation to obtain a based homotopy from f to a map that misses a point
p, and we can then deform f to the trivial map by contracting Sn − {p} to the
basepoint. �

There are three standard bundles, called the Hopf bundles, that can be used
to obtain a bit more information about the homotopy groups of spheres. Recall
that CP 1 is the space of complex lines in C2. That is, CP 1 = (C× C− {0})/(∼),
where (z1, z2) ∼ (λz1, λz2) for complex numbers λ, z1, and z2. Write [z1, z2] for
the equivalence class of (z1, z2). We obtain a homeomorphism CP 1 −→ S2 by
identifying S2 with the one-point compactification of C and mapping [z1, z2] to
z2/z1 if z1 6= 0 and to the point at ∞ if z1 = 0. The Hopf map η : S3 −→ S2

is specified by η(z1, z2) = [z1, z2], where S3 is identified with the unit sphere in
the complex plane C2. It is a worthwhile exercise to check that η is a bundle with
fiber S1. By use of the quaternions and Cayley numbers, we obtain analogous Hopf
maps ν : S7 −→ S4 and σ : S15 −→ S8. Then ν is a bundle with fiber S3 and σ
is a bundle with fiber S7. Since we have complete information on the homotopy
groups of S1, the long exact sequence of homotopy groups associated to η has the
following direct consequence.

Lemma. π2(S2) ∼= Z and πn(S3) ∼= πn(S2) for n ≥ 3.

We shall later prove the following more substantial result.

Theorem. For all n ≥ 1, πn(Sn) ∼= Z.

It is left as an exercise to show that the long exact sequence associated to ν
implies that π7(S4) contains an element of infinite order, and σ can be used similarly
to show the same for π15(S8).

In fact, the homotopy groups πq(Sn) for q > n > 1 are all finite except for
π4n−1(S2n), which is the direct sum of Z and a finite group.

The difficulty of computing homotopy groups is well illustrated by the fact that
there is no non-contractible simply connected compact manifold (or finite CW com-
plex) all of whose homotopy groups are known. We shall find many non-compact
spaces whose homotopy groups we can determine completely. Such computations
will rely on the following observation.

Lemma. If X is the colimit of a sequence of inclusions Xi −→ Xi+1 of based
spaces, then the natural map

colimi πn(Xi) −→ πn(X)

is an isomorphism for each n.

Proof. This follows directly from the point-set topological fact that if K is a
compact space, then a map K −→ X has image in one of the Xi. �
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5. Change of basepoint

We shall use our results on change of fibers to generalize our results on change of
basepoint from the fundamental group to the higher absolute and relative homotopy
groups. In the absolute case, we have the identification

πn(X,x) = [(Sn, ∗), (X,x)],
where we assume that n ≥ 1. Since the inclusion of the basepoint in Sn is a
cofibration, evaluation at the basepoint gives a fibration p : XSn −→ X. We
may identify πn(X,x) with π0(Fx) since a path in Fx is just a based homotopy
h : Sn × I −→ X with respect to the basepoint x. Another way to see this
is to observe that Fx is the nth loop space ΩnX, specified with respect to the
basepoint x. A path class [ξ] : I −→ X from x to x′ induces a homotopy equivalence
τ [ξ] : Fx −→ Fx′ , and we continue to write τ [ξ] for the induced bijection

τ [ξ] : πn(X,x) −→ πn(X,x′).

This bijection is an isomorphism of groups. One conceptual way to see this is
to observe that addition is induced from the “pinch map” Sn −→ Sn ∨ Sn that
is obtained by collapsing an equator to the basepoint. That is, the sum of maps
f, g : Sn −→ X is the composite

Sn −→ Sn ∨ Sn f∨g−−→ X ∨X O−→ X,

where O is the folding map, which restricts to the identity map X −→ X on
each wedge summand. Evaluation at the basepoint of Sn ∨ Sn gives a fibration
XSn∨Sn −→ X, and the pinch map induces a map of fibrations

XSn∨Sn

��

// XSn

��
X X.

The fiber over x in the left-hand fibration is the product Fx × Fx, where Fx is
the fiber over x in the right-hand fibration. In fact, the induced map of fibers
can be identified as the map ΩnX × ΩnX −→ ΩnX given by composition of loops
(using the first loop coordinate say). By the naturality of translations of fibers with
respect to maps of fibrations, we have a homotopy commutative diagram

Fx × Fx //

τ [ξ]×τ [ξ]
��

Fx

τ [ξ]

��
Fx′ × Fx′ // Fx′

in which the horizontal arrows induce addition on passage to π0.
We can argue similarly in the relative case. The triple (In, ∂In, Jn) is homo-

topy equivalent to the triple (CSn−1, Sn−1, ∗), as we see by quotienting out Jn.
Therefore, for a ∈ A, we have the identification

πn(X,A, a) ∼= [(CSn−1, Sn−1, ∗), (X,A, a)].
Using that the inclusions {∗} −→ Sn−1 and Sn−1 −→ CSn−1 are both cofibrations,
we can check that evaluation at ∗ specifies a fibration

p : (X,A)(CS
n−1,Sn−1) −→ A,
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where the domain is the subspace of XCSn−1
consisting of the indicated maps of

pairs. We may identify πn(X,A, a) with π0(Fa). A path class [α] : I −→ A from a
to a′ induces a homotopy equivalence τ [α] : Fa −→ Fa′ , and we continue to write
τ [α] for the induced isomorphism

τ [α] : πn(X,A, a) −→ πn(X,A, a′).

Our naturality results on change of fibers now directly imply the desired results on
change of basepoint.

Theorem. If f : (X,A) −→ (Y,B) is a map of pairs and α : I −→ A is a path
from a to a′, then the following diagram commutes:

πn(X,A, a)

τ [α]

��

f∗ // πn(Y,B, f(a))

τ [f◦α]

��
πn(X,A, a′)

f∗ // πn(Y,B, f(a′))

If h : f ' f ′ is a homotopy of maps of pairs and h(a)(t) = h(a, t), then the following
diagram commutes:

πn(X,A, a)
f∗

wwnnnnnnnnnnnn
f ′∗

((PPPPPPPPPPPP

πn(Y,B, f(a))
τ [h(a)]

// πn(Y,B, f ′(a)).

The analogous conclusions hold for the absolute homotopy groups.

Therefore, up to non-canonical isomorphism, the homotopy groups of (X,A)
are independent of the choice of basepoint in a given path component of A.

Corollary. A homotopy equivalence of spaces or of pairs of spaces induces
an isomorphism on all homotopy groups.

We shall soon show that the converse holds for a quite general class of spaces,
namely the class of CW complexes, but we first need a few preliminaries.

6. n-Equivalences, weak equivalences, and a technical lemma

Definition. A map e : Y −→ Z is an n-equivalence if, for all y ∈ Y , the map

e∗ : πq(Y, y) −→ πq(Z, e(y))

is an injection for q < n and a surjection for q ≤ n; e is said to be a weak equivalence
if it is an n-equivalence for all n.

Thus any homotopy equivalence is a weak equivalence. The following technical
lemma will be at the heart of our study of CW complexes, but it will take some
getting used to. It gives a useful criterion for determining when a given map is an
n-equivalence.

It is convenient to take CX to be the unreduced cone X × I/X × {1} here. If
f, f ′ : (X,A) −→ (Y,B) are maps of pairs such that f = f ′ on A, then we say that
f and f ′ are homotopic relative to A if there is a homotopy h : f ' f ′ such that
h is constant on A, in the sense that h(a, t) = f(a) for all a ∈ A and t ∈ I; we
write h : f ' f ′ rel A. Observe that πn+1(X,x) can be viewed as the set of relative
homotopy classes of maps (CSn, Sn) −→ (X,x).
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Lemma. The following conditions on a map e : Y −→ Z are equivalent.

(i) For any y ∈ Y , e∗ : πq(Y, y) −→ πq(Z, e(y)) is an injection for q = n and
a surjection for q = n+ 1.

(ii) Given maps f : CSn −→ Z, g : Sn −→ Y , and h : Sn× I −→ Z such that
f |Sn = h ◦ i0 and e ◦ g = h ◦ i1 in the following diagram, there are maps
g̃ and h̃ that make the entire diagram commute.

Sn

��

i0 // Sn × I
h

zzvvvvvvvvv

��

Sn
i1oo

g

}}zz
zz

zz
zz

��

Z Y
eoo

CSn
i0

//

f
==zzzzzzzz

CSn × I
h̃

ddH
H

H
H

H

CSn
g̃

aaD
D

D
D

i1
oo

(iii) The conclusion of (ii) holds when f |Sn = e ◦ g and h is the constant
homotopy at this map.

Proof. Trivially (ii) implies (iii). We first show that (iii) implies (i). If n = 0,
(iii) says (in part) that if e(y) and e(y′) can be connected by a path in Z, then y
and y′ can be connected by a path in Y . If n > 0, then (iii) says (in part) that if
e ◦ g is null homotopic, then g is null homotopic. Therefore πn(e) is injective. If we
specialize (iii) by letting g be the constant map at a point y ∈ Y , then f is a map
(CSn, Sn) −→ (Z, e(y)), g̃ is a map (CSn, Sn) −→ (Y, y), and h̃ : f ' e ◦ g̃ rel Sn.
Therefore πn+1(e) is surjective.

Thus assume (i). We must prove (ii), and we assume given f , g, and h making
the solid arrow part of the diagram commute. The idea is to use (i) to show that the
nth homotopy group of the fiber F (e) is zero, to use the given part of the diagram to
construct a map Sn −→ F (e), and to use a null homotopy of that map to construct
g̃ and h̃. However, since homotopy groups involve choices of basepoints and the
diagram makes no reference to basepoints, the details require careful tracking of
basepoints. Thus fix a basepoint ∗ ∈ Sn, let • be the cone point of CSn, and define

y1 = g(∗), z1 = e(y1), z0 = f(∗, 0), and z−1 = f(•).

For x ∈ Sn, let fx : I −→ Z and hx : I −→ Z be the paths fx(s) = f(x, s) from
f(x, 0) = h(x, 0) to z−1 and hx(t) = h(x, t) from h(x, 0) to h(x, 1) = (e ◦ g)(x).
Consider the homotopy fiber

F (e; y1) = {(y, ζ)|ζ(0) = z1 and e(y) = ζ(1)} ⊂ Y × ZI .

This has basepoint w1 = (y1, cz1). By (i) and the exact sequence

πn+1(Y, y1)
e∗−→ πn+1(Z, z1) −→ πn(F (e; y1), w1) −→ πn(Y, y1)

e∗−→ πn(Z, z1),

we see that πn(F (e; y1), w1) = 0. Define k0 : Sn −→ F (e; y1) by

k0(x) = (g(x), hx · f−1
x · f∗ · h−1

∗ ).

While k0 is not a based map, k0(∗) is connected to the basepoint since h∗·f−1
∗ ·f∗·h−1

∗
is equivalent to cz1 . By HEP for the cofibration {∗} −→ Sn, k0 is homotopic to a
based map. This based map is null homotopic in the based sense, hence k0 is null
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homotopic in the unbased sense. Let k : Sn × I −→ F (e; y1) be a homotopy from
k0 to the trivial map at w1. Write

k(x, t) = (g̃(x, t), ζ(x, t)).

Then g̃(x, 1) = y1 for all x ∈ Sn, so that g̃ factors through a map CSn −→ Y ,
and g̃ = g on Sn. We have a map j : Sn × I × I given by j(x, s, t) = ζ(x, t)(s)
that behaves as follows on the boundary of the square for each fixed x ∈ Sn, where
g̃x(t) = g̃(x, t):

cz1//

cz1 OO

hx·f−1
x ·f∗·h−1

∗

//

e◦g̃x
OO

The desired homotopy h̃, written h̃(x, s, t) where s is the cone coordinate and t is
the interval coordinate, should behave as follows on the boundary of the square:

e◦g̃x//

hx
OO

fx

//

h∗·f−1
∗

OO

Thus we can obtain h̃ by composing j with a suitable reparametrization I2 −→ I2

of the square. �

PROBLEMS
(1) Show that, if n ≥ 2, then πn(X ∨ Y ) is isomorphic to

πn(X)⊕ πn(Y )⊕ πn+1(X × Y,X ∨ Y ).

(2) Compute πn(RPn,RPn−1) for n ≥ 2. Deduce that the quotient map

(RPn,RPn−1)→ (RPn/RPn−1, ∗)
does not induce an isomorphism of homotopy groups.

(3) Compute the homotopy groups of complex projective space CPn in terms
of the homotopy groups of spheres.

(4) Verify that the “Hopf bundles” are in fact bundles.
(5) Show that π7(S4) contains an element of infinite order.
(6) Compute all of the homotopy groups of RP∞ and CP∞.





CHAPTER 10

CW complexes

We introduce a large class of spaces, called CW complexes, between which a
weak equivalence is necessarily a homotopy equivalence. Thus, for such spaces, the
homotopy groups are, in a sense, a complete set of invariants. Moreover, we shall
see that every space is weakly equivalent to a CW complex.

1. The definition and some examples of CW complexes

Let Dn+1 be the unit disk {x | |x| ≤ 1} ⊂ Rn+1 with boundary Sn.

Definition. (i) A CW complex X is a space X which is the union of an
expanding sequence of subspaces Xn such that, inductively, X0 is a discrete set of
points (called vertices) and Xn+1 is the pushout obtained from Xn by attaching
disksDn+1 along “attaching maps” j : Sn −→ Xn. ThusXn+1 is the quotient space
obtained from Xn∪ (Jn+1×Dn+1) by identifying (j, x) with j(x) for x ∈ Sn, where
Jn+1 is the discrete set of such attaching maps j. Each resulting map Dn+1 −→ X
is called a “cell.” The subspace Xn is called the n-skeleton of X.

(ii) More generally, given any space A, we define a relative CW complex (X,A)
in the same fashion, but with X0 replaced by the union of A and a (possibly empty)
discrete set of points; we write (X,A)n, or Xn when A is clear from the context,
for the relative n-skeleton, and we say that (X,A) has dimension ≤ n if X = Xn.

(iii) A subcomplex A of a CW complex X is a subspace and a CW complex
such that the composite of each cell Dn −→ A of A and the inclusion of A in X is
a cell of X. That is, A is the union of some of the cells of X. The pair (X,A) can
then be viewed as a relative CW complex.

(iv) A map of pairs f : (X,A) −→ (Y,B) between relative CW complexes is
said to be “cellular” if f(Xn) ⊂ Y n for all n.

Of course, pushouts and unions are understood in the topological sense, with
the compactly generated topologies. A subspace of X is closed if and only if its
intersection with each Xn is closed.

Examples. (i) A graph is a one-dimensional CW complex.
(ii) Via a homeomorphism I × I ∼= D2, the standard presentations of the torus

T = S1 × S1, the projective plane RP 2, and the Klein bottle K as quotients of a
square display these spaces as CW complexes with one or two vertices, two edges,
and one 2-cell:

73
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T

v
e1//

e2 OO

v

e2OO

v
e1
// v

RP 2

v1
e1//

e2 OO

v2

e2��

v2 e1
oo v1

K

v
e1//

e2 OO

v

e2��

v
e1
// v

(iii) For n ≥ 1, Sn is a CW complex with one vertex {∗} and one n-cell, the
attaching map Sn−1 −→ {∗} being the only possible map. Note that this entails
a choice of homeomorphism Dn/Sn−1 ∼= Sn. If m < n, then the only cellular map
Sm −→ Sn is the trivial map. If m ≥ n, then every based map Sm −→ Sn is
cellular.

(iv) RPn is a CW complex with m-skeleton RPm and with one m-cell for
each m ≤ n. The attaching map j : Sn−1 −→ RPn−1 is the standard double cover.
That is, RPn is homeomorphic to RPn−1∪jDn. Explicitly, write x̄ = [x1, . . ., xn+1],∑
x2
i = 1, for a typical point of RPn. Then x̄ is in RPn−1 if and only if xn+1 =

0. The required homeomorphism is obtained by identifying Dn and its boundary
sphere with the upper hemisphere

En+ = {(x1, . . ., xn+1) |
∑
x2
i = 1 and xn+1 ≥ 0}

and its boundary sphere.
(v) CPn is a CW complex whose 2m-skeleton and (2m+ 1)-skeleton are both

CPm and which has one 2m-cell for each m ≤ n. The attaching map S2n−1 −→
CPn−1 is the standard bundle with fiber S1, where S2n−1 is identified with the
unit sphere in Cn. We leave the specification of the required homeomorphism as
an exercise.

2. Some constructions on CW complexes

We need to know that various constructions on spaces preserve CW complexes.
We leave most of the proofs as exercises in the meaning of the definitions.

Lemma. If (X,A) is a relative CW complex, then the quotient space X/A is
a CW complex with a vertex corresponding to A and one n-cell for each relative
n-cell of (X,A).

Lemma. For CW complexes Xi with basepoints that are vertices, the wedge of
the Xi is a CW complex which contains each Xi as a subcomplex.

Lemma. If A is a subcomplex of a CW complex X, Y is a CW complex, and
f : A −→ Y is a cellular map, then the pushout Y ∪f X is a CW complex that
contains Y as a subcomplex and has one cell for each cell of X that is not in A.
The quotient complex (Y ∪f X)/Y is isomorphic to X/A.

Lemma. The colimit of a sequence of inclusions of subcomplexes Xn −→ Xn+1

in CW complexes is a CW complex that contains each of the Xi as a subcomplex.
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Lemma. The product X×Y of CW complexes X and Y is a CW complex with
an n-cell for each pair consisting of a p-cell of X and q-cell of Y , where p+ q = n.

Proof. For p+ q = n, there are canonical homeomorphisms

(Dn, Sn−1) ∼= (Dp ×Dq, Dp × Sq−1 ∪ Sp−1 ×Dq).

This allows us to define product cells. �

We shall look at the general case more closely later, but we point out one
important special case for immediate use. Of course, the unit interval is a graph
with two vertices and one edge.

Lemma. For a CW complex X, X × I is a CW complex that contains X × ∂I
as a subcomplex and, in addition, has one (n+ 1)-cell for each n-cell of X.

A “cellular homotopy” h : f ' f ′ between cellular maps X −→ Y of CW
complexes is a homotopy that is itself a cellular map X × I −→ Y .

3. HELP and the Whitehead theorem

The following “homotopy extension and lifting property” is a powerful organi-
zational principle for proofs of results about CW complexes. In the case

(X,A) = (Dn, Sn−1) ∼= (CSn−1, Sn−1),

it is the main point of the technical lemma proved at the end of the last chapter.

Theorem (HELP). Let (X,A) be a relative CW complex of dimension ≤ n and
let e : Y −→ Z be an n-equivalence. Then, given maps f : X −→ Z, g : A −→ Y ,
and h : A × I −→ Z such that f |A = h ◦ i0 and e ◦ g = h ◦ i1 in the following
diagram, there are maps g̃ and h̃ that make the entire diagram commute:

A

��

i0 // A× I
h

||xx
xx

xx
xx

x

��

A
i1oo

g

~~~~
~~

~~
~~

��

Z Y
eoo

X
i0

//

f
??~~~~~~~

X × I
h̃

bbF
F

F
F

F

X

g̃

``@
@

@
@

i1
oo

Proof. Proceed by induction over skeleta, applying the case (Dn, Sn−1) one
cell at a time to the n-cells of X not in A. �

In particular, if we take e to be the identity map of Y , we see that the inclusion
A −→ X is a cofibration. Observe that, by passage to colimits, we are free to take
n =∞ in the theorem.

We write [X,Y ] for homotopy classes of unbased maps in this chapter, and we
have the following direct and important application of HELP.

Theorem (Whitehead). If X is a CW complex and e : Y −→ Z is an n-
equivalence, then e∗ : [X,Y ] −→ [X,Z] is a bijection if dimX < n and a surjection
if dimX = n.
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Proof. Apply HELP to the pair (X, ∅) to see the surjectivity. Apply HELP to
the pair (X×I,X×∂I), taking h to be a constant homotopy, to see the injectivity.

�

Theorem (Whitehead). An n-equivalence between CW complexes of dimension
less than n is a homotopy equivalence. A weak equivalence between CW complexes
is a homotopy equivalence.

Proof. Let e : Y −→ Z satisfy either hypothesis. Since e∗ : [Z, Y ] −→ [Z,Z]
is a bijection, there is a map f : Z −→ Y such that e ◦ f ' id. Then e ◦ f ◦ e ' e,
and, since e∗ : [Y, Y ] −→ [Y,Z] is also a bijection, this implies that f ◦ e ' id. �

If X is a finite CW complex, in the sense that it has finitely many cells, and if
dimX > 1 and X is not contractible, then it is known that X has infinitely many
non-zero homotopy groups. The Whitehead theorem is thus surprisingly strong: in
its first statement, if low dimensional homotopy groups are mapped isomorphically,
then so are all higher homotopy groups.

4. The cellular approximation theorem

Cellular maps are under much better algebraic control than general maps, as
will become both clear and important later. Fortunately, any map between CW
complexes is homotopic to a cellular map. We need a lemma.

Definition. A space X is said to be n-connected if πq(X,x) = 0 for 0 ≤ q ≤ n
and all x. A pair (X,A) is said to be n-connected if π0(A) −→ π0(X) is surjective
and πq(X,A, a) = 0 for 1 ≤ q ≤ n and all a. It is equivalent that the inclusion
A −→ X be an n-equivalence.

Lemma. A relative CW complex (X,A) with no m-cells for m ≤ n is n-
connected. In particular, (X,Xn) is n-connected for any CW complex X.

Proof. Consider f : (Iq, ∂Iq, Jq) −→ (X,A, a), where q ≤ n. Since the image
of f is compact, we may assume that (X,A) has finitely many cells. By induction
on the number of cells, we may assume that X = A∪jDr, where r > n. By smooth
(or simplicial) approximation, there is a map f ′ : Iq −→ X such that f ′ = f on
∂Iq, f ′ ' f rel ∂Iq and f ′ misses a point p in the interior of Dr. Clearly we can
deform X − {p} onto A and so deform f ′ to a map into A. �

Theorem (Cellular approximation). Any map f : (X,A) −→ (Y,B) between
relative CW complexes is homotopic relative to A to a cellular map.

Proof. We proceed by induction over skeleta. To start the induction, note
that any point of Y is connected by a path to a point in Y 0 and apply this to the
images of points of X0−A to obtain a homotopy of f |X0 to a map into Y 0. Assume
given gn : Xn −→ Y n and hn : Xn × I −→ Y such that hn : f |Xn ' ιn ◦ gn, where
ιn : Y n −→ Y is the inclusion. For an attaching map j : Sn −→ Xn of a cell
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j̃ : Dn+1 −→ X, we apply HELP to the following diagram:

Sn

��

i0 // Sn × I
hn◦(j×id)

zzuuuuuuuuuu

��

Sn
i1oo

��

gn◦j

zzvvvvvvvvv

Y Y n+1
ιn+1oo

Dn+1

f◦j̃
<<zzzzzzzzz

i0
// Dn+1 × I

hn+1

ddH
H

H
H

H

Dn+1
i1

oo

gn+1

ddH
H

H
H

H

where gn ◦ j : Sn −→ Y n is composed with the inclusion Y n −→ Y n+1; HELP
applies since ιn+1 is an (n+ 1)-equivalence. �

Corollary. For CW complexes X and Y , any map X −→ Y is homotopic to
a cellular map, and any two homotopic cellular maps are cellularly homotopic.

5. Approximation of spaces by CW complexes

The following result says that there is a functor Γ : hU −→ hU and a natural
transformation γ : Γ −→ Id that assign a CW complex ΓX and a weak equivalence
γ : ΓX −→ X to a space X.

Theorem (Approximation by CW complexes). For any space X, there is a CW
complex ΓX and a weak equivalence γ : ΓX −→ X. For a map f : X −→ Y and
another such CW approximation γ : ΓY −→ Y , there is a map Γf : ΓX −→ ΓY ,
unique up to homotopy, such that the following diagram is homotopy commutative:

ΓX
Γf //

γ

��

ΓY

γ

��
X

f
// Y.

If X is n-connected, n ≥ 1, then ΓX can be chosen to have a unique vertex and no
q-cells for 1 ≤ q ≤ n.

Proof. The existence and uniqueness up to homotopy of Γf will be immediate
since the Whitehead theorem will give a bijection

γ∗ : [ΓX,ΓY ] −→ [ΓX,Y ].

Proceeding one path component at a time, we may as well assume that X is path
connected, and we may then work with based spaces and based maps. We construct
ΓX as the colimit of a sequence of cellular inclusions

X1
i1 //

γ1

""E
EEEEEEEEEEEEEEEEE X2

i2 //

γ2

��3
33

33
33

33
33

33
· · · // Xn

in //

γn

����
��

��
��

��
��

�
// Xn+1

γn+1

{{wwwwwwwwwwwwwwwwwww
// · · ·

X.

Let X1 be a wedge of spheres Sq, q ≥ 1, one for each pair (q, j), where j : Sq −→ X
represents a generator of the group πq(X). On the (q, j)th wedge summand, the



78 CW COMPLEXES

map γ1 is the given map j. Clearly γ1 : X1 −→ X induces an epimorphism on
all homotopy groups. We give X1 the CW structure induced by the standard
CW structures on the spheres Sq. Inductively, suppose that we have constructed
CW complexes Xm, cellular inclusions im−1, and maps γm for m ≤ n such that
γm ◦ im−1 = γm−1 and (γm)∗ : πq(Xm) −→ πq(X) is a surjection for all q and a
bijection for q < m. We construct

Xn+1 = Xn ∪ (
∨

(f,g)

(Sn ∧ I+)),

where the wedge is taken over cellular representatives f, g : Sn −→ Xn in each pair
of homotopy classes [f ], [g] ∈ πn(Xn) such that [f ] 6= [g] but [γn ◦ f ] = [γn ◦ g].
We attach the (f, g)th reduced cylinder Sn ∧ I+ to Xn by identifying (s, 0) with
f(s) and (s, 1) with g(s) for s ∈ Sn. Let in : Xn −→ Xn+1 be the inclusion
and observe that (in)∗[f ] = (in)∗[g]. Define γn+1 : Xn+1 −→ X by means of
γn on Xn and a chosen homotopy h : Sn ∧ I+ −→ X from γn ◦ f to γn ◦ g on
the (f, g)th cylinder. Then (γn+1)∗ : πq(Xn+1) −→ πq(X) is a surjection for all
q, because (γn)∗ is so, and a bijection for q ≤ n by construction. We have not
changed the homotopy groups in dimensions less than n since we have not changed
the n-skeleton. Since f and g are cellular and since, as is easily verified, Sn ∧ I+
admits a CW structure with Sn ∧ (∂I)+ as a subcomplex, we conclude from the
pushout property of CW complexes that Xn+1 is a CW complex that contains Xn

as a subcomplex. Then the colimit ΓX of the Xn is a CW complex that contains
all of the Xi as subcomplexes, and the induced map γ : ΓX −→ X induces an
isomorphism on all homotopy groups since the homotopy groups of ΓX are the
colimits of the homotopy groups of the Xn. If X is n-connected, then we have used
no q-cells for q ≤ n in the construction. �

6. Approximation of pairs by CW pairs

We will need a relative generalization of the previous result, but the reader
should not dwell on the details: there are no new ideas.

Theorem. For any pair of spaces (X,A) and any CW approximation γ :
ΓA −→ A, there is a CW approximation γ : ΓX −→ X such that ΓA is a subcom-
plex of ΓX and γ restricts to the given γ on ΓA. If f : (X,A) −→ (Y,B) is a map
of pairs and γ : (ΓY,ΓB) −→ (Y,B) is another such CW approximation of pairs,
there is a map Γf : (ΓX,ΓA) −→ (ΓY,ΓB), unique up to homotopy, such that the
following diagram of pairs is homotopy commutative:

(ΓX,ΓA)
Γf //

γ

��

(ΓY,ΓB)

γ

��
(X,A)

f
// (Y,B).

If (X,A) is n-connected, then (ΓX,ΓA) can be chosen to have no relative q-cells
for q ≤ n.
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Proof. We proceed as above. We may assume that X has a basepoint in A
and that X, but not necessarily A, is path connected. We start with

X0 = ΓA ∨ (
∨
(q,j)

Sq),

where {(q, j)} runs over q ≥ 1 and based maps j : Sq −→ X that represent
generators of πq(X). Here the chosen basepoint is in ΓA. Construct γ0 : X0 −→ X
using the maps j and the given map γ : ΓA −→ A. Construct X1 from X0 by
attaching 1-cells connecting the vertices in the non-basepoint components of ΓA to
the base vertex. Paths in X that connect the images under γ of the non-basepoint
vertices to the basepoint of X give γ1 : X1 −→ X extending γ0. From here, the
construction continues as in §5. If (X,A) is n-connected, then πq(A) −→ πq(X) is
bijective for q < n and surjective for q = n, hence we need only use spheres Sq with
q > n to arrange the surjectivity of π∗(X0) −→ π∗(X). To construct Γf , we first
construct it on ΓA and then use HELP to extend to ΓX:

ΓA //

��

γ

!!C
CC

CC
CC

C ΓA× I

��

h

{{wwwwwwwww
ΓAoo

��

Γf

||zz
zz

zz
zz

A
f //

��

B

��

ΓB

��

γoo

��
X

f
// Y ΓYγ
oo

ΓX

γ
=={{{{{{{{

// ΓX × I

h̃

ccG
G

G
G

G

ΓXoo

Γf
bbD

D
D

D

The uniqueness up to homotopy of Γf is proved similarly. �

7. Approximation of excisive triads by CW triads

We will need another, and considerably more subtle, relative approximation
theorem. A triad (X;A,B) is a space X together with subspaces A and B. This
must not be confused with a triple (X,A,B), which would require B ⊂ A ⊂ X. A
triad (X;A,B) is said to be excisive if X is the union of the interiors of A and B.
Such triads play a fundamental role in homology and cohomology theory, and some
version of the arguments to follow must play a role in any treatment. We prefer
to use these arguments to prove a strong homotopical result, rather than its pale
homological reflection that is seen in standard treatments of the subject.

A CW triad (X;A,B) is a CW complex X with subcomplexes A and B such
that X = A ∪B.

Theorem. Let (X;A,B) be an excisive triad and let C = A ∩ B. Then there
is a CW triad (ΓX; ΓA,ΓB) and a map of triads

γ : (ΓX; ΓA,ΓB) −→ (X;A,B)

such that, with ΓC = ΓA ∩ ΓB, the maps

γ : ΓC −→ C, γ : ΓA −→ A, γ : ΓB −→ B, and γ : ΓX −→ X

are all weak equivalences. If (A,C) is n-connected, then (ΓA,ΓC) can be chosen
to have no q-cells for q ≤ n, and similarly for (B,C). Up to homotopy, CW
approximation of excisive triads is functorial in such a way that γ is natural.
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Proof. Choose a CW approximation γ : ΓC −→ C and use the previous result
to extend it to CW approximations

γ : (ΓA,ΓC) −→ (A,C) and γ : (ΓB,ΓC) −→ (B,C).

We then define ΓX to be the pushout ΓA ∪ΓC ΓB and let γ : ΓX −→ X be
given by the universal property of pushouts. Certainly ΓC = ΓA ∩ ΓB. All of
the conclusions except for the assertion that γ : ΓX −→ X is a weak equivalence
follow immediately from the result for pairs, and the lemma and theorem below
will complete the proof. �

A CW triad (X;A,B) is not excisive, since A and B are closed in X, but it
is equivalent to an excisive triad. To see this, we describe a simple but important
general construction. Suppose that maps i : C −→ A and j : C −→ B are given.
Define the double mapping cylinder

M(i, j) = A ∪ (C × I) ∪B
to be the space obtained from C × I by gluing A to C × {0} along i and gluing B
to C ×{1} along j. Let A∪C B denote the pushout of i and j and observe that we
obtain a natural quotient map q : M(i, j) −→ A ∪C B by collapsing the cylinder,
sending (c, t) to the image of c in the pushout.

Lemma. For a cofibration i : C −→ A and any map j : C −→ B, the quotient
map q : M(i, j) −→ A ∪C B is a homotopy equivalence.

Proof. Because i is a cofibration, the retraction r : Mi −→ A is a cofiber
homotopy equivalence. That is, there is a homotopy inverse map and a pair of
homotopies under C. These maps and homotopies induce maps of the pushouts
that are obtained by gluing B to Mi and to C, and q is induced by r. �

When i is a cofibration and j is an inclusion, with X = A∪B and C = A∩B,
we can think of q as giving a map of triads

q : (M(i, j);A ∪ (C × [0, 2/3)), (C × (1/3, 1]) ∪B) −→ (A ∪C B;A,B).

The domain triad is excisive, and q restricts to homotopy equivalences from the
domain subspaces and their intersection to the target subspaces A, B, and C. This
applies when (X;A,B) is a CW triad with C = A ∩ B. Now our theorem on the
approximation of excisive triads is a consequence of the following result.

Theorem. If e : (X;A,B) −→ (X ′;A′, B′) is a map of excisive triads such
that the maps

e : C −→ C ′, e : A −→ A′, and e : B −→ B′

are weak equivalences, where C = A ∩B and C ′ = A′ ∩B′, then e : X −→ X ′ is a
weak equivalence.

Proof. By our technical lemma giving equivalent conditions for a map e to be
a weak equivalence, it suffices to show that if f |Sn = e◦g in the following diagram,
then there exists a map g̃ such that g̃|Sn = g and f ' e ◦ g̃ rel Sn:

X
e // X ′

Sn

g

OO

// Dn+1.

g̃

ccG
G

G
G

G
f

OO
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We may assume without loss of generality that Sn ⊂ U ⊂ Dn+1, where U is open
in Dn+1 and g is the restriction of a map ĝ : U −→ X such that f |U = e ◦ ĝ. To
see this, define a deformation d : Dn+1 × I −→ Dn+1 by

d(x, t) =

{
2x/(2− t) if |x| ≤ (2− t)/2
x/|x| if |x| ≥ (2− t)/2.

Then d(x, 0) = x, d(x, t) = x if x ∈ Sn, and d1 maps the boundary collar
{x | |x| ≥ 1/2} onto Sn. Let U be the open boundary collar {x | |x| > 1/2}. De-
fine ĝ = g ◦ d1 : U −→ X and define f ′ = f ◦ d1 : Dn+1 −→ X ′. Then ĝ|Sn = g,
e ◦ ĝ = f ′|U , and f ′ ' f rel Sn. Thus the conclusion will hold for f if it holds with
f replaced by f ′.

With this assumption on g and f , we claim first that the closed sets

CA = g−1(X − intA) ∪ f−1(X ′ −A′)
and

CB = g−1(X − intB) ∪ f−1(X ′ −B′),

have empty intersection. Indeed, these sets are contained in the sets ĈA and ĈB
that are obtained by replacing g by ĝ in the definitions of CA and CB , and we claim
that ĈA ∩ ĈB = ∅. Certainly

ĝ−1(X − intA) ∩ ĝ−1(X − intB) = ∅
since (X − intA) ∩ (X − intB) = ∅. Similarly,

f−1(X ′ − intA′) ∩ f−1(X ′ − intB′) = ∅.

Since f−1(X ′ −A′) ⊂ f−1(X ′ − intA′) and similarly for B, this implies that

f−1(X ′ −A′) ∩ f−1(X ′ −B′) = ∅.

Now suppose that v ∈ ĈA ∩ ĈB . In view of the possibilities that we have ruled out,
we may assume that

v ∈ ĝ−1(X − intA) ∩ f−1(X ′ −B′) ⊂ ĝ−1(intB) ∩ f−1(X ′ −B′).

Since ĝ−1(intB) is an open subset of Dn, there must be a point

u ∈ ĝ−1(intB) ∩ f−1(X ′ −B′).

Then ĝ(u) ∈ intB ⊂ B but f(u) 6∈ B′. This contradicts f |U = e ◦ ĝ.
We can subdivide Dn+1 sufficiently finely (as a simplicial or CW complex) that

no cell intersects both CA and CB . Let KA be the union of those cells σ such that

g(σ ∩ Sn) ⊂ intA and f(σ) ⊂ intA′

and define KB similarly. If σ does not intersect CA, then σ ⊂ KA, and if σ does
not intersect CB , then σ ⊂ KB . Therefore Dn+1 = KA ∪KB . By HELP, we can
obtain a map ḡ such that the lower triangle in the diagram

A ∩B e // A′ ∩B′

Sn ∩ (KA ∩KB)

g

OO

// KA ∩KB

f

OO
ḡ

hhQ Q Q Q Q Q Q

commutes, together with a homotopy h̄ : (KA ∩KB)× I −→ A′ ∩B′ such that

h̄ : f ' e ◦ ḡ relSn ∩ (KA ∩KB).



82 CW COMPLEXES

Define ḡA : KA ∩ (Sn ∪KB) −→ A to be g on KA ∩ Sn and ḡ on KA ∩KB . Since
f = e ◦ g on KA ∩ Sn and h̄ : f ' e ◦ ḡ on KA ∩KB , h̄ induces a homotopy

h̄A : f |KA ∩ (Sn ∪B) ' e ◦ gA relSn ∩KA.

Applying HELP again, we can obtain maps g̃A and h̃A such that the following
diagram commutes:

KA ∩ (Sn ∪KB)

��

i0 // KA ∩ (Sn ∪KB)× I

h̄A

wwooooooooooooo

��

KA ∩ (Sn ∪KB)
i1oo

ḡA

xxqqqqqqqqqqq

��

A′ A
eoo

KA
i0

//

f

88pppppppppppp
KA × I

h̃A

ggP P P P P P P
KA

g̃A

ffM M M M M M

i1

oo

We have a symmetric diagram with the roles of KA and KB reversed. The maps
g̃A and g̃B agree on KA∩KB and together define the desired map g̃ : Dn+1 −→ X.
The homotopies h̃A and h̃B agree on (KA∩KB)×I and together define the desired
homotopy h̃A : f ' e ◦ g̃ relSn. �

PROBLEMS
(1) Show that complex projective space CPn is a CW complex with one 2q-cell

for each q, 0 ≤ q ≤ n.
(2) Let X = {x|x = 0 or x = 1/n for a positive integer n} ⊂ R. Show that

X does not have the homotopy type of a CW complex.
(3) Assume given maps f : X −→ Y and g : Y −→ X such that g ◦ f is

homotopic to the identity. (We say that Y “dominates” X.) Suppose
that Y is a CW complex. Prove that X has the homotopy type of a CW
complex.

Define the Euler characteristic χ(X) of a finite CW complex X to be the
alternating sum

∑
(−1)nγn(X), where γn(X) is the number of n-cells of X. Let A

be a subcomplex of a CW complex X, let Y be a CW complex, let f : A −→ Y be
a cellular map, and let Y ∪f X be the pushout of f and the inclusion A −→ X.

4. Show that Y ∪f X is a CW complex with Y as a subcomplex and X/A
as a quotient complex. Formulate and prove a formula relating the Euler
characteristics χ(A), χ(X), χ(Y ), and χ(Y ∪fX) whenX and Y are finite.

5. * Think about proving from what we have done so far that χ(X) depends
only on the homotopy type of X, not on its decomposition as a finite CW
complex.



CHAPTER 11

The homotopy excision and suspension theorems

The fundamental obstruction to the calculation of homotopy groups is the
failure of excision: for an excisive triad (X;A,B), the inclusion (A,A ∩ B) −→
(X,B) fails to induce an isomorphism of homotopy groups in general. It is this that
distinguishes homotopy groups from the far more computable homology groups.
However, we do have such an isomorphism in a range of dimensions. This implies
the Freudenthal suspension theorem, which gives that πn+q(ΣnX) is independent
of n if q is small relative to n. We shall rely on the consequence πn(Sn) ∼= Z in our
construction of homology groups.

1. Statement of the homotopy excision theorem

We shall prove the following theorem later in this chapter, but we first explain
its consequences.

Definition. A map f : (A,C) −→ (X,B) of pairs is an n-equivalence, n ≥ 1,
if

(f∗)−1(im(π0(B) −→ π0(X))) = im(π0(C) −→ π0(A))
(which holds automatically when A and X are path connected) and, for all choices
of basepoint in C,

f∗ : πq(A,C) −→ πq(X,B)
is a bijection for q < n and a surjection for q = n.

Recall that a pair (A,C) is n-connected, n ≥ 0, if π0(C) −→ π0(A) is surjective
and πq(A,C) = 0 for q ≤ n.

Theorem (Homotopy excision). Let (X;A,B) be an excisive triad such that
C = A ∩ B is non-empty. Assume that (A,C) is (m − 1)-connected and (B,C) is
(n− 1)-connected, where m ≥ 2 and n ≥ 1. Then the inclusion (A,C) −→ (X,B)
is an (m+ n− 2)-equivalence.

This specializes to give a relationship between the homotopy groups of pairs
(X,A) and of quotients X/A and to prove the Freudenthal suspension theorem.

Theorem. Let f : X −→ Y be an (n−1)-equivalence between (n−2)-connected
spaces, where n ≥ 2; thus πn−1(f) is an epimorphism. Then the quotient map
π : (Mf,X) −→ (Cf, ∗) is a (2n − 2)-equivalence. In particular, Cf is (n − 1)-
connected. If X and Y are (n − 1)-connected, then π : (Mf,X) −→ (Cf, ∗) is a
(2n− 1)-equivalence.

Proof. We are writing Cf for the unreduced cofiber Mf/X. We have the
excisive triad (Cf ;A,B), where

A = Y ∪ (X × [0, 2/3]) and B = (X × [1/3, 1])/(X × {1}).

83
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Thus C ≡ A ∩ B = X × [1/3, 2/3]. It is easy to check that π is homotopic to a
composite

(Mf,X) '−→ (A,C) −→ (Cf,B) '−→ (Cf, ∗),
the first and last arrows of which are homotopy equivalences of pairs. The hypoth-
esis on f and the long exact sequence of the pair (Mf,X) imply that (Mf,X)
and therefore also (A,C) are (n− 1)-connected. In view of the connecting isomor-
phism ∂ : πq+1(CX,X) −→ πq(X) and the evident homotopy equivalence of pairs
(B,C) ' (CX,X), (B,C) is also (n − 1)-connected, and it is n-connected if X is
(n− 1)-connected. The homotopy excision theorem gives the conclusions. �

We shall later use the following bit of the result to prove the Hurewicz theorem
relating homotopy groups to homology groups.

Corollary. Let f : X −→ Y be a based map between (n − 1)-connected
nondegenerately based spaces, where n ≥ 2. Then Cf is (n− 1)-connected and

πn(Mf,X) −→ πn(Cf, ∗)

is an isomorphism. Moreover, the canonical map η : Ff −→ ΩCf induces an
isomorphism

πn−1(Ff) −→ πn(Cf).

Proof. Here in the based context, we are thinking of the reduced mapping
cylinder and cofiber, but the maps to them from the unreduced constructions are
homotopy equivalences since our basepoints are nondegenerate. Thus the first state-
ment is immediate from the theorem. For the second, if j : X −→ Mf is the
inclusion, then we have a map

Fr : Fj = P (Mf ; ∗, X) −→ Ff

induced by the retraction r : Mf −→ Y . By a comparison of long exact sequences,
(Fr)∗ : πq(Mf,X) −→ πq−1(Ff) is an isomorphism for all q. Moreover, η factors
through a map Fj −→ ΩCf , as we noted at the end of Chapter 8 §7. Thus the
second statement follows from the first. �

Specializing f to be a cofibration and changing notation, we obtain the following
version of the previous theorem.

Theorem. Let i : A −→ X be a cofibration and an (n−1)-equivalence between
(n−2)-connected spaces, where n ≥ 2. Then the quotient map (X,A) −→ (X/A, ∗)
is a (2n− 2)-equivalence, and it is a (2n− 1)-equivalence if A and X are (n− 1)-
connected.

Proof. The vertical arrows are homotopy equivalences of pairs in the commu-
tative diagram

(Mi,A)

r

��

π // (Ci, ∗)

ψ

��
(X,A) // (X/A, ∗).

�
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2. The Freudenthal suspension theorem

A specialization of the last result gives the Freudenthal suspension theorem.
For a based space X, define the suspension homomorphism

Σ : πq(X) −→ πq+1(ΣX)

by letting
Σf = f ∧ id : Sq+1 ∼= Sq ∧ S1 −→ X ∧ S1 = ΣX.

Theorem (Freudenthal suspension). Assume that X is nondegenerately based
and (n − 1)-connected, where n ≥ 1. Then Σ is a bijection if q < 2n − 1 and a
surjection if q = 2n− 1.

Proof. We give a different description of Σ. Consider the “reversed” cone
C ′X = X ∧ I, where I is given the basepoint 0 rather than 1. Thus

C ′X = X × I/X × {0} ∪ {∗} × I.
For a map f : (Iq, ∂Iq) −→ (X, ∗), the product f × id : Iq+1 −→ X × I passes to
quotients to give a map of triples

(Iq+1, ∂Iq+1, Jq) −→ (C ′X,X, ∗)
whose restriction to Iq × {1} is f and which induces Σf when we quotient out
X × {1}. That is, the following diagram commutes, where ρ : C ′X −→ ΣX is the
quotient map:

πq+1(C ′X,X, ∗)
∂

wwppppppppppp
ρ∗

((PPPPPPPPPPPP

πq(X)
Σ

// πq+1(ΣX).

Since C ′X is contractible, ∂ is an isomorphism. Since the inclusion X −→ C ′X
is a cofibration and an n-equivalence between (n− 1)-connected spaces, ρ is a 2n-
equivalence by the last theorem of the previous section. The conclusion follows. �

This implies the promised calculation of πn(Sn).

Theorem. For all n ≥ 1, πn(Sn) = Z and Σ : πn(Sn) −→ πn+1(Sn+1) is an
isomorphism.

Proof. We saw by use of the Hopf bundle S3 −→ S2 that π2(S2) = Z, and
the suspension theorem applies to give the conclusion for n ≥ 2. A little extra
argument is needed to check that Σ is an isomorphism for n = 1; one can inspect
the connecting homomorphism of the Hopf bundle or refer ahead to the observation
that the Hurewicz homomorphism commutes with the corresponding suspension
isomorphism in homology. �

The dimensional range of the suspension theorem is sharp. We saw before that
π3(S2) = π3(S3), which is Z. The suspension theorem applies to show that

Σ : π3(S2) −→ π4(S3)

is an epimorphism, and it is known that π4(S3) = Z2.
Applying suspension repeatedly, we can form a colimit

πsq(X) = colim πq+n(ΣnX).
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This group is called the qth stable homotopy group of X. For q < n− 1, the maps
of the colimit system are isomorphisms and therefore

πsq(X) = πq+n(ΣnX) if q < n− 1.

The calculation of the stable homotopy groups of spheres, πsq(S
0), is one of the

deepest and most studied problems in algebraic topology. Important problems of
geometric topology, such as the enumeration of the distinct differential structures
on Sq for q ≥ 5, have been reduced to the determination of these groups.

3. Proof of the homotopy excision theorem

This is a deep result, and it is remarkable that a direct homotopical proof, in
principle an elementary one, is possible. Most standard texts, if they treat this
topic at all, give a far more sophisticated proof of a significantly weaker result.
However, the reader may prefer to skip this argument on a first reading. The idea
is clear enough. We are trying to show that a certain map of pairs induces an
isomorphism in a range of dimensions. We capture the relevant map as part of a
long exact sequence, and we prove that the third term in the long exact sequence
vanishes in the required range.

However, we start with an auxiliary long exact sequence that we shall also
need. Recall that a triple (X,A,B) consists of spaces B ⊂ A ⊂ X and must not be
confused with a triad.

Proposition. For a triple (X,A,B) and any basepoint in B, the following
sequence is exact:

· · · −→ πq(A,B) i∗−→ πq(X,B)
j∗−→ πq(X,A) k∗◦∂−−−→ πq−1(A,B) −→ · · · .

Here i : (A,B) −→ (X,B), j : (X,B) −→ (X,A), and k : (A, ∗) −→ (A,B) are the
inclusions.

Proof. The proof is a purely algebraic deduction from the long exact se-
quences of the various pairs in sight and is left as an exercise for the reader. �

We now define the “triad homotopy groups” that are needed to implement the
idea of the proof sketched above.

Definition. For a triad (X;A,B) with basepoint ∗ ∈ C = A ∩B, define

πq(X;A,B) = πq−1(P (X; ∗, B), P (A; ∗, C)),

where q ≥ 2. More explicitly, πq(X;A,B) is the set of homotopy classes of maps of
tetrads

(Iq; Iq−2 × {1} × I, Iq−1 × {1}, Jq−2 × I ∪ Iq−1 × {0})

��
(X;A,B, ∗),

where Jq−2 = ∂Iq−2 × I ∪ Iq−2 × {0} ⊂ Iq−1. The long exact sequence of the pair
in the first form of the definition is

· · · −→ πq+1(X;A,B) −→ πq(A,C) −→ πq(X,B) −→ πq(X;A,B) −→ · · · .
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Now we return to the homotopy excision theorem. Its conditions m ≥ 1 and
n ≥ 1 merely give that π0(C) −→ π0(A) and π0(C) −→ π0(B) are surjective,
and any extraneous components of A or B would not affect the relevant homotopy
groups. The condition m ≥ 2 implies that (X,B) is 1-connected. By the long exact
sequence just given, the theorem is equivalent to the following one.

Theorem. Under the hypotheses of the homotopy excision theorem,

πq(X;A,B) = 0 for 2 ≤ q ≤ m+ n− 2

and all choices of basepoint ∗ ∈ C.

In this form, the conclusion is symmetric in A and B and vacuous if m+n ≤ 3.
Thus our hypotheses m ≥ 2 and n ≥ 1 are the minimal ones under which our
strategy can apply.

In order to have some hope of tackling the problem in direct terms, we first
reduce it to the case when A and B are each obtained from C by attaching a single
cell. We may approximate our given excisive triad by a weakly equivalent CW
triad. This does not change the triad homotopy groups. More precisely, by our
connectivity hypotheses, we may assume that X is a CW complex that is the union
of subcomplexes A and B with intersection C, where (A,C) has no relative q-cells
for q < m and (B,C) has no relative q-cells for q < n. Since any map Iq −→ X has
image contained in a finite subcomplex, we may assume that X has finitely many
cells. We may also assume that (A,C) and (B,C) each have at least one cell since
otherwise the result holds trivially.

We claim first that, inductively, it suffices to prove the result when (A,C) has
exactly one cell. Indeed, suppose that C ⊂ A′ ⊂ A, where A is obtained from A′ by
attaching a single cell and (A′, C) has one less cell than (A,C). Let X ′ = A′ ∪C B.
If the result holds for the triads (X ′;A′, B) and (X;A,X ′), then the result holds
for the triad (X;A,B) by application of the five lemma to the following diagram:

πq+1(A,A′) //

��

πq(A′, C) //

��

πq(A,C) //

��

πq(A,A′) //

��

πq−1(A′, C)

��
πq+1(X,X ′) // πq(X ′, B) // πq(X,B) // πq(X,X ′) // πq−1(X ′, B).

The rows are the exact sequences of the triples (A,A′, C) and (X,X ′, B). Note for
the case q = 1 that all pairs in the diagram are 1-connected.

We claim next that, inductively, it suffices to prove the result when (B,C)
also has exactly one cell. Indeed, suppose that C ⊂ B′ ⊂ B, where B is obtained
from B′ by attaching a single cell and (B′, C) has one less cell than (B,C) and let
X ′ = A∪CB′. If the result holds for the triads (X ′;A,B′) and (X;X ′, B), then the
result holds for the triad (X;A,B) since the inclusion (A,C) −→ (X,B) factors as
the composite

(A,C) −→ (X ′, B′) −→ (X,B).
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Thus we may assume that A = C ∪ Dm and B = C ∪ Dn, where m ≥ 2 and
n ≥ 1, and we fix a basepoint ∗ ∈ C. Assume given a map of tetrads

(Iq; Iq−2 × {1} × I, Iq−1 × {1}, Jq−2 × I ∪ Iq−1 × {0})

f

��
(X;A,B, ∗),

where 2 ≤ q ≤ m + n − 2. We must prove that f is null homotopic as a map of
tetrads. For interior points x ∈ Dm and y ∈ Dn, we have inclusions of based triads

(A;A,A− x) ⊂ (X − {y};A,X − {x, y}) ⊂ (X;A,X − {x}) ⊃ (X;A,B).

The first and third of these induce isomorphisms on triad homotopy groups in view
of the radial deformation away from y of X−{y} onto A and the radial deformation
away from x of X −{x} onto B. It is trivial to check that π∗(A;A,A′) = 0 for any
A′ ⊂ A. We shall show that, for well chosen points x and y, f regarded as a map
of based triads into (X;A,X − {x}) is homotopic to a map f ′ that has image in
(X − {y};A,X − {x, y}). This will imply that f is null homotopic.

Let Dm
1/2 ⊂ D

m and Dn
1/2 ⊂ D

n be the subdisks of radius 1/2. We can cubically
subdivide Iq into subcubes Iqα such that f(Iqα) is contained in the interior of Dm if
it intersects Dm

1/2 and f(Iqα) is contained in the interior of Dn if it intersects Dn
1/2.

By simplicial approximation, f is homotopic as a map of tetrads to a map g whose
restriction to the (n− 1)-skeleton of Iq with its subdivided cell structure does not
cover Dn

1/2 and whose restriction to the (m− 1)-skeleton of Iq does not cover Dm
1/2.

Moreover, we can arrange that the dimension of g−1(y) is at most q−n for a point
y ∈ Dn

1/2 that is not in the image under g of the (n− 1)-skeleton of Iq. This is the
main point of the proof, and to be completely rigorous about it we would have to
digress to introduce a bit of dimension theory. Alternatively, we could use smooth
approximation to arrive at g and y with appropriate properties. Since the intuition
should be clear, we shall content ourselves with showing how the conclusion of the
theorem follows.

Let π : Iq −→ Iq−1 be the projection on the first q − 1 coordinates and let K
be the prism π−1(π(g−1(y))). Then K can have dimension at most one more than
the dimension of g−1(y), so that

dimK ≤ q − n+ 1 ≤ m− 1.

Therefore g(K) cannot cover Dm
1/2. Choose a point x ∈ Dm

1/2 such that x 6∈ g(K).
Since g(∂Iq−1 × I) ⊂ A, we see that π(g−1(x)) ∪ ∂Iq−1 and π(g−1(y)) are disjoint
closed subsets of Iq−1. By Uryssohn’s lemma, we may choose a map v : Iq−1 −→ I
such that

v(π(g−1(x)) ∪ ∂Iq−1) = 0 and v(π(g−1(y))) = 1.

Define h : Iq+1 −→ Iq by

h(r, s, t) = (r, s− stv(r)) for r ∈ Iq−1 and s, t ∈ I.

Then let f ′ = g ◦ h1, where h1(r, s) = h(r, s, 1). We claim that f ′ is as desired.
Observe that

h(r, s, 0) = (r, s), h(r, 0, t) = (r, 0), and h(r, s, t) = (r, s) if r ∈ ∂Iq−1.
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Moreover,
h(r, s, t) = (r, s) if h(r, s, t) ∈ g−1(x)

since r ∈ π(g−1(x)) implies v(r) = 0 and

h(r, s, t) = (r, s− st) if h(r, s, t) ∈ g−1(y)

since r ∈ π(g−1(y)) implies v(r) = 1. Then g ◦ h is a homotopy of maps of tetrads

(Iq; Iq−2 × {1} × I, Iq−1 × {1}, Jq−2 × I ∪ Iq−1 × {0})

��
(X;A,X − {x}, ∗)

from g to f ′, and f ′ has image in (X − {y};A,X − {x, y}), as required.





CHAPTER 12

A little homological algebra

Let R be a commutative ring. The main example will be R = Z. We develop
some rudimentary homological algebra in the category of R-modules. We shall say
more later. For now, we give the minimum that will be needed to develop cellular
and singular homology theory.

1. Chain complexes

A chain complex over R is a sequence of maps of R-modules

· · · −→ Xi+1
di+1−−−→ Xi

di−→ Xi−1 −→ · · ·

such that di ◦di+1 = 0 for all i. We generally abbreviate d = di. A cochain complex
over R is an analogous sequence

· · · −→ Y i−1 di−1

−−−→ Y i
di

−→ Y i+1 −→ · · ·

with di ◦ di−1 = 0. In practice, we usually require chain complexes to satisfy
Xi = 0 for i < 0 and cochain complexes to satisfy Y i = 0 for i < 0. Without
these restrictions, the notions are equivalent since a chain complex {Xi, di} can be
rewritten as a cochain complex

{
X−i, d−i

}
, and vice versa.

An element of the kernel of di is called a cycle and an element of the image
of di+1 is called a boundary. We say that two cycles are “homologous” if their
difference is a boundary. We write Bi(X) ⊂ Zi(X) ⊂ Xi for the submodules of
boundaries and cycles, respectively, and we define the ith homology group Hi(X)
to be the quotient module Zi(X)/Bi(X). We write H∗(X) for the sequence of R-
modules Hi(X). We understand “graded R-modules” to be sequences of R-modules
such as this (and we never take the sum of elements in different gradings).

2. Maps and homotopies of maps of chain complexes

A map f : X −→ X ′ of chain complexes is a sequence of maps of R-modules
fi : Xi −→ X ′

i such that d′i ◦ fi = fi−1 ◦ di for all i. That is, the following diagram
commutes for each i:

Xi
fi //

di

��

X ′
i

d′i
��

Xi−1
fi−1

// X ′
i−1.

It follows that fi(Bi(X)) ⊂ Bi(X ′) and fi(Zi(X)) ⊂ Zi(X ′). Therefore f induces
a map of R-modules f∗ = Hi(f) : Hi(X) −→ Hi(X ′).
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A chain homotopy s : f ' g between chain maps f, g : X −→ X ′ is a sequence
of homomorphisms si : Xi −→ X ′

i+1 such that

d′i+1 ◦ si + si−1 ◦ di = fi − gi

for all i. Chain homotopy is an equivalence relation since if t : g ' h, then s+ t =
{si + ti} is a chain homotopy f ' h.

Lemma. Chain homotopic maps induce the same homomorphism of homology
groups.

Proof. Let s : f ' g, f, g : X −→ X ′. If x ∈ Zi(X), then

fi(x)− gi(x) = d′i+1si(x),

so that fi(x) and gi(x) are homologous. �

3. Tensor products of chain complexes

The tensor product (over R) of chain complexes X and Y is specified by letting

(X ⊗ Y )n =
∑
i+j=n

Xi ⊗ Yj .

When Xi and Yi are zero for i < 0, the sum is finite, but we don’t need to assume
this. The differential is specified by

d(x⊗ y) = d(x)⊗ y + (−1)ix⊗ d(y)

for x ∈ Xi and y ∈ Yj . The sign ensures that d ◦ d = 0. We may write this as

d = d⊗ id+ id⊗ d.

The sign is dictated by the general rule that whenever two entities to which degrees
m and n can be assigned are permuted, the sign (−1)mn should be inserted. In the
present instance, when calculating (id⊗ d)(x ⊗ y), we must permute the map d of
degree −1 with the element x of degree i.

We regard R-modules M as chain complexes concentrated in degree zero, and
thus with zero differential. For a chain complex X, there results a chain complex
X ⊗M ; H∗(X ⊗M) is called the homology of X with coefficients in M .

Define a chain complex I by letting I0 be the free Abelian group with two
generators [0] and [1], letting I1 be the free Abelian group with one generator [I]
such that d([I]) = [0]− [1], and letting Ii = 0 for all other i.

Lemma. A chain homotopy s : f ' g between chain maps f, g : X −→ X ′

determines and is determined by a chain map h : X⊗I −→ X ′ such that h(x, [0]) =
f(x) and h(x, [1]) = g(x).

Proof. Let s correspond to h via (−1)is(x) = h(x ⊗ [I]) for x ∈ Xi. The
relation

d′i+1(si(x)) = fi(x)− gi(x)− si−1(di(x))

corresponds to the relation d′h = hd by the definition of our differential on I . The
sign in the correspondence would disappear if we replaced by X⊗I by I ⊗X. �
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4. Short and long exact sequences

A sequence M ′ f−→M
g−→M ′′ of modules is exact if im f = ker g. If M ′ = 0, this

means that g is a monomorphism; if M ′′ = 0, it means that f is an epimorphism.
A longer sequence is exact if it is exact at each position. A short exact sequence of
chain complexes is a sequence

0 −→ X ′ f−→ X
g−→ X ′′ −→ 0

that is exact in each degree. Here 0 denotes the chain complex that is the zero
module in each degree.

Proposition. A short exact sequence of chain complexes naturally gives rise
to a long exact sequence of R-modules

· · · −→ Hq(X ′)
f∗−→ Hq(X)

g∗−→ Hq(X ′′) ∂−→ Hq−1(X ′) −→ · · · .

Proof. Write [x] for the homology class of a cycle x. We define the “connecting
homomorphism” ∂ : Hq(X ′′) −→ Hq−1(X ′) by ∂[x′′] = [x′], where f(x′) = d(x) for
some x such that g(x) = x′′. There is such an x since g is an epimorphism, and
there is such an x′ since gd(x) = dg(x) = 0. It is a standard exercise in “diagram
chasing” to verify that ∂ is well defined and the sequence is exact. Naturality
means that a commutative diagram of short exact sequences of chain complexes
gives rise to a commutative diagram of long exact sequences of R-modules. The
essential point is the naturality of the connecting homomorphism, which is easily
checked. �

PROBLEMS
For a graded vector space V = {Vn} with Vn = 0 for all but finitely many

n and with all Vn finite dimensional, define the Euler characteristic χ(V ) to be∑
(−1)ndimVn.

(1) Let V ′, V , and V ′′ be such graded vector spaces and suppose there is a
long exact sequence

· · · −→ V ′
n −→ Vn −→ V ′′

n −→ V ′
n−1 −→ · · · .

Prove that χ(V ) = χ(V ′) + χ(V ′′).
(2) If {Vn, dn} is a chain complex, show that χ(V ) = χ(H∗(V )).

(3) Let 0 −→ π
f−→ ρ

g−→ σ −→ 0 be an exact sequence of Abelian groups and
let C be a chain complex of flat (= torsion free) Abelian groups. Write
H∗(C;π) = H∗(C ⊗ π). Construct a natural long exact sequence

· · · −→ Hq(C;π)
f∗−→ Hq(C; ρ)

g∗−→ Hq(C;σ)
β−→ Hq−1(C;π) −→ · · · .

The connecting homomorphism β is called a Bockstein operation.





CHAPTER 13

Axiomatic and cellular homology theory

Homology groups are the basic computable invariants of spaces. Unlike homo-
topy groups, these are stable invariants, the same for a space and its suspension,
and it is this that makes them computable. In this and the following two chapters,
we first give both an axiomatic and a cellular description of homology, next revert
to an axiomatic development of the properties of homology, and then prove the
Hurewicz theorem and use it to prove the uniqueness of homology.

1. Axioms for homology

Fix an Abelian group π and consider pairs of spaces (X,A). We shall see that
π determines a “homology theory on pairs (X,A).” We say that a map (X,A) −→
(Y,B) of pairs is a weak equivalence if its maps A −→ B and X −→ Y are weak
equivalences.

Theorem. For integers q, there exist functors Hq(X,A;π) from the homotopy
category of pairs of spaces to the category of Abelian groups together with natural
transformations ∂ : Hq(X,A;π) −→ Hq−1(A;π), where Hq(X;π) is defined to be
Hq(X, ∅;π). These functors and natural transformations satisfy and are character-
ized by the following axioms.

• DIMENSION If X is a point, then H0(X;π) = π and Hq(X;π) = 0 for
all other integers.
• EXACTNESS The following sequence is exact, where the unlabeled arrows

are induced by the inclusions A −→ X and (X, ∅) −→ (X,A):

· · · −→ Hq(A;π) −→ Hq(X;π) −→ Hq(X,A;π) ∂−→ Hq−1(A;π) −→ · · · .

• EXCISION If (X;A,B) is an excisive triad, so that X is the union of the
interiors of A and B, then the inclusion (A,A ∩ B) −→ (X,B) induces
an isomorphism

H∗(A,A ∩B;π) −→ H∗(X,B;π).

• ADDITIVITY If (X,A) is the disjoint union of a set of pairs (Xi, Ai),
then the inclusions (Xi, Ai) −→ (X,A) induce an isomorphism∑

iH∗(Xi, Ai;π) −→ H∗(X,A;π).

• WEAK EQUIVALENCE If f : (X,A) −→ (Y,B) is a weak equivalence,
then

f∗ : H∗(X,A;π) −→ H∗(Y,B;π)

is an isomorphism.
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Here, by a standard abuse, we write f∗ instead of H∗(f) or Hq(f). Our approxi-
mation theorems for spaces, pairs, maps, homotopies, and excisive triads imply that
such a theory determines and is determined by an appropriate theory defined on
CW pairs, as spelled out in the following CW version of the theorem.

Theorem. For integers q, there exist functors Hq(X,A;π) from the homotopy
category of pairs of CW complexes to the category of Abelian groups together with
natural transformations ∂ : Hq(X,A) −→ Hq−1(A;π), where Hq(X;π) is defined to
be Hq(X, ∅;π). These functors and natural transformations satisfy and are charac-
terized by the following axioms.

• DIMENSION If X is a point, then H0(X;π) = π and Hq(X;π) = 0 for
all other integers.
• EXACTNESS The following sequence is exact, where the unlabeled arrows

are induced by the inclusions A −→ X and (X, ∅) −→ (X,A):

· · · −→ Hq(A;π) −→ Hq(X;π) −→ Hq(X,A;π) ∂−→ Hq−1(A;π) −→ · · · .

• EXCISION If X is the union of subcomplexes A and B, then the inclusion
(A,A ∩B) −→ (X,B) induces an isomorphism

H∗(A,A ∩B;π) −→ H∗(X,B;π).

• ADDITIVITY If (X,A) is the disjoint union of a set of pairs (Xi, Ai),
then the inclusions (Xi, Ai) −→ (X,A) induce an isomorphism∑

iH∗(Xi, Ai;π) −→ H∗(X,A;π).

Such a theory determines and is determined by a theory as in the previous theorem.

Proof. We prove the last statement and return to the rest later. Since a CW
triad (which, we recall, was required to be the union of its given subcomplexes)
is homotopy equivalent to an excisive triad, it is immediate that the restriction to
CW pairs of a theory on pairs of spaces gives a theory on pairs of CW complexes.
Conversely, given a theory on CW pairs, we may define a theory on pairs of spaces
by turning the weak equivalence axiom into a definition. That is, we fix a CW
approximation functor Γ from the homotopy category of pairs of spaces to the
homotopy category of CW pairs and we define

H∗(X,A;π) = H∗(ΓX,ΓA;π).

Similarly, we define ∂ for (X,A) to be ∂ for (ΓX,ΓA). For a map f : (X,A) −→
(Y,B) of pairs, we define f∗ = (Γf)∗. It is clear from our earlier results that this
does give a well defined homology theory on pairs of spaces. �

Clearly, up to canonical isomorphism, this construction of a homology theory
on pairs of spaces is independent of the choice of our CW approximation functor Γ.
The reader may have seen singular homology before. As we shall explain later, the
classical construction of singular homology amounts to a choice of a particularly
nice CW approximation functor, one that is actually functorial on the point-set
level, before passage to homotopy categories.
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2. Cellular homology

We must still construct H∗(X,A;π) on CW pairs. We shall give a seemingly
ad hoc construction, but we shall later see that precisely this construction is in
fact forced upon us by the axioms. We concentrate on the case π = Z, and we
abbreviate notation by setting H∗(X,A) = H∗(X,A; Z).

Let X be a CW complex. We shall define the cellular chain complex C∗(X).
We let Cn(X) be the free Abelian group with one generator [j] for each n-cell j.
We must define a differential dn : Cn(X) −→ Cn−1(X). We shall first give a direct
definition in terms of the cell structure and then give a more conceptual descrip-
tion in terms of cofiber sequences. It will be convenient to work with unreduced
cones, cofibers, and suspensions in this section; that is, we do not choose basepoints
and so we do not collapse out lines through basepoints. (We shall discuss this dif-
ference more formally in the next chapter.) We still have the basic result that if
i : A −→ X is a cofibration, then collapsing the cone on A to a point gives a ho-
motopy equivalence ψ : Ci −→ X/A. We shall use the notation ψ−1 for any chosen
homotopy inverse to such a homotopy equivalence. We again obtain π : Ci −→ ΣA
by collapsing the base X of the cofiber to a point.

Our first definition of dn involves the calculation of the degrees of maps between
spheres. A map f : Sn −→ Sn induces a homomorphism f∗ : πn(Sn) −→ πn(Sn),
which is given by multiplication by an integer called the degree of f . As in our
discussion earlier for π1, f∗ is defined using a change of basepoint isomorphism, but
deg (f) is independent of the choice of the path connecting ∗ to f(∗). Of course,
this only makes sense for n ≥ 1.

To define and calculate degrees, the domain and target of f must both be
Sn. However, there are three models of Sn that are needed in our discussion:
the standard sphere Sn ⊂ Dn+1, the quotient Dn/Sn−1, and the (unreduced)
suspension ΣSn−1. We must fix suitably compatible homeomorphisms relating
these “n-spheres.” We define a homeomorphism

νn : Dn/Sn−1 −→ Sn

by
νn(tx1, . . ., txn) = (ux1, . . ., uxn, 2t− 1)

for 0 ≤ t ≤ 1 and (x1, . . ., xn) ∈ Sn−1, where u = (1 − (2t − 1)2)1/2. Thus νn
sends the ray from 0 to (x1, . . ., xn) to the longitude that runs from the south
pole (0, . . ., 0,−1) through the equatorial point (x1, . . ., xn, 0) to the north pole
(0, . . ., 0, 1). We define a homeomorphism

ιn : Sn −→ ΣSn−1

by
ιn(x1, . . ., xn+1) = (vx1, . . ., vxn) ∧ (xn+1 + 1)/2,

where v = 1/(
∑n
i=1 x

2
i )

1/2. This makes sense since if xi = 0 for 1 ≤ i ≤ n, then
xn+1 = ±1, so that (xn+1 + 1)/2 = 0 or 1 and ιn(x1, . . ., xn+1) is a cone point.
In effect, ιn makes the last coordinate the suspension coordinate. We define a
homeomorphism of pairs

ξn : (Dn, Sn−1) −→ (CSn−1, Sn−1)

by
ξn(tx1, . . ., txn) = (x1, . . ., xn) ∧ (1− t),
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and we continue to write ξn for the induced homeomorphism

Dn/Sn−1 ∼= CSn−1/Sn−1 = ΣSn−1.

Observe that
ιn ◦ νn = −ξn : Dn/Sn−1 −→ ΣSn−1,

where the minus is interpreted as the sign map y ∧ t −→ y ∧ (1− t) on ΣSn−1. We
saw in our treatment of cofiber sequences that, up to homotopy, the maps

CSn−1 ∪Sn−1 CSn−1 −→ ΣSn−1

obtained by collapsing out the first and second cone also differ by this sign map.
By an easy diagram chase, these observations imply the following compatibility
statement. It will be used to show that the two definitions of dn that we shall give
are in fact the same.

Lemma. The following diagram is homotopy commutative:

Dn ∪Sn−1 CSn−1 π //

ψ

��

ΣSn−1

Dn/Sn−1
νn

// Sn.

ιn

OO

Returning to our CW complex X, we think of an n-cell j as a map of pairs

j : (Dn, Sn−1) −→ (Xn, Xn−1).

There results a homeomorphism

α :
∨
j D

n/Sn−1 −→ Xn/Xn−1

whose restriction to the jth wedge summand is induced by j. Define

πj : Xn/Xn−1 −→ Sn

to be the composite of α−1 with the map given by νn on the jth wedge summand
and the constant map at the basepoint on all other wedge summands. If n = 0,
we interpret D0 to be a point and interpret S−1 and X−1 to be empty. With our
convention that X/∅ = X+, we see that X0/X−1 can be identified with the wedge
of one copy of S0 for each vertex j, and πj is still defined. Here we take S0 = {±1},
with basepoint 1.

For an n-cell j and an (n− 1)-cell i, where n ≥ 1, we have a composite

Sn−1 j−→ Xn−1 ρ−→ Xn−1/Xn−2 πi−→ Sn−1.

When n = 1, we interpret ρ to be the inclusion X0 −→ X0
+. When n ≥ 2, let ai,j

be the degree of this composite and define

dn[j] =
∑
iai,j [i].

When n = 1, specify coefficents ai,j implicitly by defining

d1[j] = [j(1)]− [j(−1)].

We claim that dn−1 ◦ dn = 0, and we define

H∗(X) = H∗(C∗(X)).
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To see that dn−1 ◦ dn = 0, we use the theory of cofiber sequences to obtain a
more conceptual description of dn. We define the “topological boundary map”

∂n : Xn/Xn−1 −→ Σ(Xn−1/Xn−2)

to be the composite

Xn/Xn−1 ψ−1

−−−→ Ci
π−→ ΣXn−1 Σρ−−→ Σ(Xn−1/Xn−2),

where i : Xn−1 −→ Xn is the inclusion.
We claim that ∂n induces dn upon application of a suitable functor, and we

need some preliminaries to show this. For certain based spaces X, we adopt the
following provisional definition of the “reduced nth homology group” of X.

Definition. Let X be a based (n − 1)-connected space. Define H̃ ′
n(X) as

follows.
n = 0: The free Abelian group generated by the set π0(X)−{∗} of non-basepoint

components of X.
n = 1: The Abelianization π1(X)/[π1(X), π1(X)] of the fundamental group of X.
n ≥ 2: The nth homotopy group of X.

Up to canonical isomorphism, H̃ ′
n(X) is independent of the choice of basepoint

in its path component. In fact, we can define H̃ ′
n(X) in terms of unbased homotopy

classes of maps Sn −→ X. We also need a suspension homomorphism, and we adopt
another provisional definition.

Definition. Let X be a based (n− 1)-connected space. Define

Σ : H̃ ′
n(X) −→ H̃ ′

n+1(ΣX)

by letting Σ[f ] = [Σf ◦ ιn+1] for f : Sn −→ X; that is, Σ[f ] is represented by

Sn+1 ιn+1−−−→ ΣSn
Σf−−→ ΣX.

This only makes sense for n ≥ 1. For n = 0, and a point x ∈ X that is not in
the component of the basepoint, we define Σ[x] = [f−1

∗ · fx], where ∗ ∈ X is the
basepoint and fx is the path t −→ x ∧ t from one cone point to the other in the
unreduced suspension ΣX.

Lemma. If X is a wedge of n-spheres, then

Σ : H̃ ′
n(X) −→ H̃ ′

n+1(ΣX)

is an isomorphism.

Proof. We claim first that H̃ ′
n(X) is the free Abelian group with generators

given by the inclusions of the wedge summands. Since maps and homotopies of
maps Sn −→ X have images in compact subspaces, it suffices to check this on
finite wedges, and, when n ≥ 2, we can give the pair (×iSn,∨iSn) the structure
of a CW pair with no relative q-cells for q < 2n− 1. The claim follows by cellular
approximation of maps and homotopies. Now the conclusion of the lemma follows
from the case of a single sphere in view of the canonical direct sum decompositions.

�

Returning to our CW complex X, we take the homotopy classes [j ◦ν−1
n ] of the

composites

Sn
ν−1

n−−→ Dn/Sn−1 j−→ Xn/Xn−1
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as canonical basis elements of H̃ ′
n(X

n/Xn−1).

Lemma. The differential dn : Cn(X) −→ Cn−1(X) can be identified with the
composite

d′n : H̃ ′
n(X

n/Xn−1)
(∂n)∗−−−→ H̃ ′

n(Σ(Xn−1/Xn−2)) Σ−1

−−−→ H̃ ′
n−1(X

n−1/Xn−2).

Proof. The identification of the groups is clear: we let the basis element [j]
of Cn(X) correspond to the basis element [j ◦ ν−1

n ] of H̃ ′
n(X

n/Xn−1). For an n-
cell j and an (n − 1)-cell i, the following diagram is homotopy commutative by
the naturality of ψ and π, the definition of ai,j , and our lemma relating different
models of the n-sphere:

Sn
ai,j //

ιn

++WWWWWWWWWWWWWWWWWWWWWWWWWWW

ν−1
n

��

Sn

ιn

��
Dn/Sn−1

ψ−1
//

j

��

Dn ∪ CSn−1

j∪Cj
��

π
// ΣSn−1

ai,j //

Σj

��

ΣSn−1

Xn/Xn−1
ψ−1
// Xn ∪ CXn−1 π // ΣXn−1

Σρ // Σ(Xn−1/Xn−2).

Σπi

OO

An inspection of circles shows that this diagram homotopy commutes even when
n = 1. The bottom composite is the topological boundary map. Write d′n in matrix
form,

d′n[j ◦ ν−1
n ] = Σ−1(∂n)∗[j ◦ ν−1

n ] =
∑
ia
′
i,j [i ◦ ν

−1
n−1].

Then, since the composite

πi ◦ (i ◦ ν−1
n−1) : Sn−1 −→ Sn−1

is the identity map for each i, a′i,j is the degree of the map Sn −→ Sn that we obtain
by traversing the diagram counterclockwise from the top left to the top right. The
diagram implies that a′i,j = ai,j . �

Lemma. dn−1 ◦ dn = 0.

Proof. The composite Σ∂n−1 ◦ ∂n is homotopic to the trivial map since the
following diagram is homotopy commutative and the composite Σπ◦Σi is the trivial
map:

Xn ∪ CXn−1

ψ

��

π // ΣXn−1

Σρ

��

Σi // Σ(Xn−1 ∪ CXn−2)

Σψ

��

Σπ // Σ2Xn−2

Σ2ρ

��
Xn/Xn−1

∂n

// Σ(Xn−1/Xn−2) Σ(Xn−1/Xn−2)
Σ∂n−1

// Σ2Xn−2/Xn−3.

The conclusion follows from our identification of dn and the naturality of Σ. �

3. Verification of the axioms

For a CW complex X with base vertex ∗, define C̃∗(X) = C∗(X)/C∗(∗) and
define H̃∗(X) = H∗(C̃∗(X)). This is the reduced homology of X. For a subcomplex
A of X, define

C∗(X,A) = C∗(X)/C∗(A) ∼= C̃∗(X/A)
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and define
H∗(X,A) = H∗(C∗(X,A)) ∼= H̃∗(X/A).

The long exact homology sequence of the exact sequence of chain complexes

0 −→ C∗(A) −→ C∗(X) −→ C∗(X,A) −→ 0

gives the connecting homorphisms ∂ : Hq(X,A) −→ Hq−1(A) and the long exact
sequence called for in the exactness axiom.

If f : X −→ Y is a cellular map, it induces maps Xn/Xn−1 −→ Y n/Y n−1

that commute up to homotopy with the topological boundary maps and so induce
homomorphisms fn : Cn(X) −→ Cn(Y ) that commute with the differentials. That
is, f∗ is a chain map, and it induces a homomorphism H∗(X) −→ H∗(Y ).

For any CW complex X, X × I is a CW complex whose cellular chains are
isomorphic to C∗(X)⊗ C∗(I), as we shall verify in the next section. Here C∗(I) ∼=
I has basis elements [0] and [1] of degree zero and [I] of degree one such that
d([I]) = [0] − [1]. We have observed that, for chain complexes C and D, a chain
map C⊗I −→ D can be identified with a chain homotopy between its restrictions
to C ⊗ Z[0] and C ⊗ Z[1]. A cellular homotopy h : X × I −→ Y induces just such
a chain map, hence cellularly homotopic maps induce the same homomorphism on
homology. The analogous conclusion for pairs follows by consideration of quotient
complexes.

The dimension and additivity axioms are obvious. IfX is a point, then C∗(X) =
Z, concentrated in degree zero. The cellular chain complex of qXi is the direct sum
of the chain complexes C∗(Xi), and similarly for pairs. Excision is also obvious.
If X = A ∪ B, then the inclusion A/A ∩ B −→ X/B is an isomorphism of CW
complexes.

We have dealt so far with the case of integral homology. For more general
coefficient groups π, we define

C∗(X,A;π) = C∗(X,A)⊗ π
and proceed in exactly the same fashion to define homology groups and verify
the axioms. Observe that a homomorphism of groups π −→ ρ induces a natural
transformation

Hq(X,A;π) −→ Hq(X,A; ρ)
that commutes with the connecting homomorphisms.

4. The cellular chains of products

A nice fact about cellular homology is that the definition leads directly to an
algebraic procedure for the calculation of the homology of Cartesian products. We
explain the topological point here and return to the algebra later, where we discuss
the Künneth theorem for the computation of the homology of tensor products of
chain complexes.

Theorem. If X and Y are CW complexes, then X ×Y is a CW complex such
that

C∗(X × Y ) ∼= C∗(X)⊗ C∗(Y ).

Proof. We have already seen that X × Y is a CW complex. Its n-skeleton is

(X × Y )n =
⋃

p+q=n

Xp × Y q,
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and it has one n-cell, denoted i × j, for each p-cell i and q-cell j. We define an
isomorphism of graded Abelian groups

κ : C∗(X)⊗ C∗(Y ) −→ C∗(X × Y )

by setting

κ([i]⊗ [j]) = (−1)pq[i× j].

It is clear from the definition of the product cell structure that κ commutes up
to sign with the differentials, and the insertion of the coefficient (−1)pq ensures
that the signs work out. As we shall see, the coefficient appears because we write
suspension coordinates on the right rather than on the left. To be precise about
this verification, we fix homeomorphisms

(Dn, Sn−1) ∼= (In, ∂In)

by radial contraction to the unit cube centered at 0 followed by translation to the
unit cube centered at 1/2. This fixes homeomorphisms

ιp,q : (Dn, Sn−1) ∼= (In, ∂In) = (Ip × Iq, Ip × ∂Iq ∪ ∂Ip × Iq)
∼= (Dp ×Dq, Dp × Sq−1 ∪ Sp−1 ×Dq)

and thus fixes the product cells i× j. For each p and q, the following diagrams are
homotopy commutative, where n = p+ q and where

t : (ΣSp−1) ∧ Sq = Sp−1 ∧ S1 ∧ Sq −→ Sp−1 ∧ Sq ∧ S1 = Σ(Sp−1 ∧ Sq)

is the transposition map. Note that, by a quick check when q = 1 and induction, t
has degree (−1)q.

Sn
ιn //

ν−1
n

��

ΣSn−1

Σν−1
n−1

��
Dn/Sn−1

ιp,q

��

Σ(Dn−1/Sn−2)

Σιp,q−1

��
(Dp/Sp−1) ∧ (Dq/Sq−1)

νp∧νq

��

Σ((Dp/Sp−1) ∧ (Dq−1/Sq−2))

Σ(νp∧νq−1)

��
Sp ∧ Sq

id∧ιq
// Sp ∧ (ΣSq−1) Σ(Sp ∧ Sq−1)
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and

Sn
ιn //

ν−1
n

��

ΣSn−1

Σν−1
n−1

��
Dn/Sn−1

ιp,q

��

Σ(Dn−1/Sn−2)

Σιp−1,q

��
(Dp/Sp−1) ∧ (Dq/Sq−1)

νp∧νq

��

Σ((Dp−1/Sp−2) ∧ (Dq/Sq−1))

Σ(νp−1∧νq)

��
Sp ∧ Sq

ιp∧id
// (ΣSp−1) ∧ Sq

(−1)qt
// Σ(Sp−1 ∧ Sq).

The homotopy commutativity would be clear if we worked only with cubes and
replaced the maps ιn and ιp,q with the evident identifications. The only point at
issue then would be which copy of I/∂I is to be interpreted as the suspension coor-
dinate. The homotopy commutativity of the diagrams as written follows directly.
Now comparison of our description of the cellular differential in terms of the topo-
logical boundary map and the algebraic description of the differential on tensor
products shows that κ is an isomorphism of chain complexes. �

5. Some examples: T , K, and RPn

Cellular chains make some computations quite trivial. For example, since Sn

is a CW complex with one vertex and one n-cell, we see immediately that

H̃n(Sn;π) ∼= π and H̃q(Sn;π) = 0 for q 6= n.

A little less obviously, if we look back at the CW decompositions of the torus
T , the projective plane RP 2, and the Klein bottle K and if we let j denote the
unique 2-cell in each case, then we find the following descriptions of the cellular
chains and integral homologies by quick direct inspections. We agree to write Zn
for the cyclic group Z/nZ.

Examples. (i) The cell complex C∗(T ) has one basis element [v] in degree
zero, two basis elements [e1] and [e2] in degree one, and one basis element [j] in
degree two. All basis elements are cycles, hence H∗(T ;Z) = C∗(T ).

(ii) The cell complex C∗(RP 2) has two basis elements [v1] and [v2] in degree
zero, two basis elements [e1] and [e2] in degree one, and one basis element [j] in
degree two. The differentials are given by

d([e1]) = [v1]− [v2], d([e2]) = [v2]− [v1], and d([j]) = 2[e1] + 2[e2].

Therefore H0(RP 2; Z) = Z with basis element the homology class of [v1] (or
[v2]), H1(RP 2; Z) = Z2 with non-zero element the homology class of e1 + e2, and
Hq(RP 2; Z) = 0 for q ≥ 2.

(iii) The cell complex C∗(K) has one basis element [v] in degree zero, two basis
elements [e1] and [e2] in degree one, and one basis element [j] in degree two. The
only non-zero differential is d([j]) = 2[e2]. Therefore H0(K; Z) = Z with basis
element the homology class of [v], H1(K; Z) = Z⊕Z2 with Z generated by the class
of [e1] and Z2 generated by the class of [e2], and Hq(K; Z) = 0 for q ≥ 2.
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However, these examples are misleading. While homology groups are far eas-
ier to compute than homotopy groups, direct chain level calculation is seldom the
method of choice. Rather, one uses chains as a tool for developing more sophisti-
cated algebraic techniques, notably spectral sequences. We give an illustration that
both shows that chain level calculations are sometimes practicable even when there
are many non-zero differentials to determine and indicates why one might not wish
to attempt such calculations for really complicated spaces.

We shall use cellular chains to compute the homology of RPn. We think of
RPn as the quotient of Sn obtained by identifying antipodal points, and we need
to know the degree of the antipodal map.

Lemma. The degree of the antipodal map an : Sn −→ Sn is (−1)n+1.

Proof. Since a1 ' id via an obvious rotation, the result is clear for n = 1.
The homeomorphism ιn : Sn −→ ΣSn−1 satisfies

ιn(−x1, . . .,−xn+1) = (−vx1, . . .,−vxn) ∧ (1− xn+1)/2,

where v = 1/(
∑
x2
i )

1/2. That is, ιn ◦ an = −(Σan−1) ◦ ιn. The conclusion follows
by induction on n. �

We shall give RPn a CW structure with one q-cell for 0 ≤ q ≤ n by passage
to quotients from a CW structure on Sn with two q-cells for 0 ≤ q ≤ n. (Note
that this cell structure on RP 2 will be more economical than the one used in the
calculation above.) The q-skeleton of Sn will be Sq, which we identify with the
subspace of Sn whose points have last n − q coordinates zero. We denote the two
q-cells of Sn by jq±. The two vertices are the points ±1 of S0. Let Eq± be the upper
and lower hemispheres in Sq, so that

Sq = Eq+ ∪ E
q
− and Sq−1 = Eq+ ∩ E

q
−.

We shall write
π± : Sq −→ Eq±/S

q−1

for the quotient maps that identify the lower or upper hemispheres to the basepoint.
Of course, these are homotopy equivalences. We define homeomorphisms

jq± : Dq −→ Eq± ⊂ Sq

by
jq±(x1, . . ., xq) = (±x1, . . .,±xq,±(1−

∑
x2
i )

1/2).
This decomposes Sq as the the union of the images of two q-cells. The intersection
of these images is Sq−1 since

(x1, . . ., xq, (1−
∑
x2
i )

1/2) = (−y1, . . .,−yq,−(1−
∑
y2
i )

1/2)

if and only if xi = −yi for each i and
∑
x2
i = 1. Clearly

jq+ |Sq−1 = id and jq− |Sq−1 = aq−1.

Inspection of definitions shows that the following diagram commutes:

Sq−1
π+ //

aq−1

��

Eq−1
+ /Sq−2

aq−1

��

Dq−1/Sq−2
jq−1
+oo

Sq−1
π−
// Eq−1

− /Sq−2 Dq−1/Sq−2.
jq−1
−

oo
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Since a2
q−1 = id, it follows that we also obtain a commutative diagram if we inter-

change + and −. If we invert the homeomorphisms jq−1
± and compose on the right

with the homeomorphism iq−1 : Dq−1/Sq−2 −→ Sq−1, then the degrees of the four
resulting composite homotopy equivalences give the coefficients of the differential
dq. By composing iq−1 with a homeomorphism of degree −1 if necessary, we can
arrange that the degree of iq−1◦(jq−1

+ )−1◦π+ is 1. We then deduce from the lemma
and the definition of the differential on the cellular chains that

dq[j
q
+] = (−1)qdq[j

q
−] = [jq−1

+ ] + (−1)q[jq−1
− ]

for all q ≥ 1.
Now, identifying antipodal points, we obtain the promised CW decomposition

of RPn. If p : Sn −→ RPn is the quotient map, then

p ◦ jq+ = p ◦ jq− : (Dq, Sq−1) −→ (RP q,RP q−1).

We call this map jq and see that these maps give RPn a CW structure. Therefore
Cq(RPn) = Z with basis element [jq] for q ≥ 0. Moreover, it is immediate from the
calculation just given that

d[jq] = (1 + (−1)q)[jq−1]

for all q ≥ 1. This is zero if q is odd and multiplication by 2 if q is even, and we
read off that

Hq(RPn; Z) =


Z if q = 0
Z2 if 0 < q < n and q is odd
Z if q = n is odd
0 otherwise.

If we work mod 2, taking Z2 as coefficient group, then the answer takes a nicer
form, namely

Hq(RPn; Z2) =

{
Z2 if 0 ≤ q ≤ n
0 if q > n.

This calculation well illustrates general facts about the homology of compact
connected closed n-manifolds M that we shall prove later. The nth integral ho-
mology group of such a manifold M is Z if M is orientable and zero if M is not
orientable. The nth mod 2 homology group of M is Z2 whether or not M is ori-
entable.

PROBLEMS
(1) If X is a finite CW complex, show that χ(X) = χ(H∗(X; k)) for any field

k.
(2) Let A be a subcomplex of a CW complex X, let Y be a CW complex,

and let f : A −→ Y be a cellular map. What is the relationship between
H∗(X,A) and H∗(Y ∪f X,Y )? Is there a similar relationship between
π∗(X,A) and π∗(Y ∪f X,Y )? If not, give a counterexample.

(3) Fill in the details of the computation of the differentials on the cellular
chains in the examples in §5.

(4) Compute H∗(Sm × Sn) for m ≥ 1 and n ≥ 1. Convince yourself that you
can do this by use of CW structures, by direct deduction from the axioms,
and by the Künneth theorem (for which see Chapter 17).
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(5) Let p be an odd prime number. Regard the cyclic group π of order p as
the group of pth roots of unity contained in S1. Regard S2n−1 as the unit
sphere in Cn, n ≥ 2. Then π ⊂ S1 acts freely on S2n−1 via

ζ(z1, . . ., zn) = (ζz1, . . ., ζzn).

Let Ln = S2n−1/π be the orbit space; it is called a lens space and is an
odd primary analogue of RPn. The obvious quotient map S2n−1 −→ Ln

is a universal covering.
(a) Compute the integral homology of Ln, n ≥ 2, by mimicking the

calculation of H∗(RPn).
(b) Compute H∗(Ln; Zp), where Zp = Z/pZ.



CHAPTER 14

Derivations of properties from the axioms

Returning to the axiomatic approach to homology, we assume given a theory
on pairs of spaces and make some deductions from the axioms. We abbreviate no-
tations by setting Eq(X,A) = Hq(X,A;π). However, the arguments in this chapter
make no use whatever of the dimension axiom. A “generalized homology theory”
E∗ is defined to be a system of functors Eq(X,A) and natural transformations
∂ : Eq(X,A) −→ Eq−1(A) that satisfy all of our axioms except for the dimension
axiom. Similarly, we have the notion of a generalized homology theory on CW
pairs, and the results of the first section of the previous chapter generalize directly
to give the following result.

Theorem. A homology theory E∗ on pairs of spaces determines and is deter-
mined by its restriction to a homology theory E∗ on pairs of CW complexes.

The study of such generalized homology theories pervades modern algebraic
topology, and we shall describe some examples later on. The brave reader may be
willing to think of E∗ in such generality in this chapter. The timorous reader may
well prefer to think of E∗(X,A) concretely, following our proposal that E∗(X,A)
be taken as an alternative notation for H∗(X,A;π).

1. Reduced homology; based versus unbased spaces

One of the themes of this chapter is the relationship between homology theories
on pairs of spaces and reduced homology theories on based spaces. The latter are
more convenient in most advanced work in algebraic topology. For a based space
X, we define the reduced homology of X to be

Ẽq(X) = Eq(X, ∗).

Since the basepoint is a retract of X, there results a direct sum decomposition

E∗(X) ∼= Ẽ∗(X)⊕ E∗(∗)

that is natural with respect to based maps. For ∗ ∈ A ⊂ X, the summand E∗(∗)
maps isomorphically under the map E∗(A) −→ E∗(X), and the exactness axiom
implies that there is a reduced long exact sequence

· · · −→ Ẽq(A) −→ Ẽq(X) −→ Eq(X,A) ∂−→ Ẽq−1(A) −→ · · · .

We can obtain the unreduced homology groups as special cases of the reduced
ones. For an unbased space X, we define a based space X+ by adjoining a disjoint
basepoint to X. By the additivity axiom, we see immediately that

E∗(X) = Ẽ∗(X+).

107
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Similarly, a map f : X −→ Y of unbased spaces induces a map f+ : X+ −→ Y+

of based spaces, and the map f∗ on unreduced homology coincides with the map
(f+)∗ on reduced homology.

We shall make considerable use of cofiber sequences in this chapter. To be
consistent about this, we should always work with reduced cones and cofibers.
However, it is more convenient to make the convention that we work with unreduced
cones and cofibers when we apply unreduced homology theories, and we work with
reduced cones and cofibers when we apply reduced homology theories. In fact,
the unreduced cone on a space Y coincides with the reduced cone on Y+: the line
through the disjoint basepoint is identified to the cone point when constructing
the reduced cone on Y+. Therefore the unreduced cofiber of an unbased map f
coincides with the reduced cofiber of the based map f+. Our convention really
means that we are always working with reduced cofibers, but when we are studying
unreduced homology theories we are implicitly applying the functor (−)+ to put
ourselves in the based context before constructing cones and cofibers.

The observant reader will have noticed that the unreduced suspension of X is
not the reduced suspension on X+. Rather, under either interpretation of suspen-
sion, Σ(X+) is homotopy equivalent to the wedge of Σ(X) and a circle.

2. Cofibrations and the homology of pairs

We use cofibrations to show that the homology of pairs of spaces is in principle
a special case of the reduced homology of spaces.

Theorem. For any cofibration i : A −→ X, the quotient map q : (X,A) −→
(X/A, ∗) induces an isomorphism

E∗(X,A) −→ E∗(X/A, ∗) = Ẽ∗(X/A).

Proof. Consider the (unreduced) cofiber

Ci = X ∪i CA = X ∪i A× I/A× {1}.

We have an excisive triad

(Ci;X ∪i A× [0, 2/3], A× [1/3, 1]/A× {1}).

The excision axiom gives that the top inclusion in the following commutative dia-
gram induces an isomorphism on passage to homology:

(X ∪i A× [0, 2/3], A× [1/3, 2/3]) //

r

��

(Ci,A× [1/3, 1]/A× {1})

ψ

��
(X,A)

q
// (X/A, ∗)

The map r is obtained by restriction of the retraction Mi −→ X and is a homotopy
equivalence of pairs. The map ψ collapses CA to a point and is also a homotopy
equivalence of pairs. The conclusion follows. �

As in our construction of cellular homology, we choose a homotopy inverse
ψ−1 : X/A −→ Ci and consider the composite

X/A
ψ−1

−−−→ Ci
π−→ ΣA
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to be a topological boundary map

∂ : X/A −→ ΣA.

Observe that we may replace any inclusion i : A −→ X by the canonical cofibration
A −→Mi and then apply the result just given to obtain

E∗(X,A) ∼= Ẽ∗(Ci).

3. Suspension and the long exact sequence of pairs

We have a fundamentally important consequence of the results of the previous
section, which should be contrasted with what happened with homotopy groups.
Recall that a basepoint ∗ ∈ X is nondegenerate if the inclusion {∗} −→ X is a
cofibration. This ensures that the inclusion of the line through the basepoint in the
unreduced suspension of X is a cofibration, so that the map from the unreduced
suspension to the suspension that collapses out the line through the basepoint is a
homotopy equivalence. We apply reduced homology here, so we use reduced cones
and suspensions.

Theorem. For a nondegenerately based space X, there is a natural isomor-
phism

Σ : Ẽq(X) ∼= Ẽq+1(ΣX).

Proof. Since CX is contractible, its reduced homology is identically zero. By
the reduced long exact sequence, there results an isomorphism

Ẽq+1(ΣX) ∼= Ẽq+1(CX/X) ∂−→ Ẽq(X). �

An easy diagram chase gives the following consequence, which describes the
axiomatically given connecting homomorphism of the pair (X,A) in terms of the
topological boundary map ∂ : X/A −→ ΣA and the suspension isomorphism.

Corollary. Let ∗ ∈ A ⊂ X, where i : A −→ X is a cofibration between
nondegenerately based spaces. In the long exact sequence

· · · −→ Ẽq(A) −→ Ẽq(X) −→ Ẽq(X/A) ∂−→ Ẽq−1(A) −→ · · ·

of the pair (X,A), the connecting homomorphism ∂ is the composite

Ẽq(X/A) ∂∗−→ Ẽq(ΣA) Σ−1

−−−→ Ẽq−1(A).

Since S0 consists of two points, Ẽ∗(S0) = E∗(∗). Since Sn is the suspension of
Sn−1, we have the following special case of the suspension isomorphism.

Corollary. For any n and q,

Ẽq(Sn) ∼= Eq−n(∗).

Of course, for the theory H∗(X;π), this was immediate from our construction
in terms of cellular chains.
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4. Axioms for reduced homology

In the study of generalized homology theories, it is most convenient to restrict
attention to reduced homology theories defined on nondegenerately based spaces.
The results of the previous sections imply that we can do so without loss of gen-
erality. Again the reader has the choice of bravery or timorousness in interpreting
E∗, but we opt for bravery:

Definition. A reduced homology theory Ẽ∗ consists of functors Ẽq from the
homotopy category of nondegenerately based spaces to the category of Abelian
groups that satisfy the following axioms.

• EXACTNESS If i : A −→ X is a cofibration, then the sequence

Ẽq(A) −→ Ẽq(X) −→ Ẽq(X/A)

is exact.
• SUSPENSION For each integer q, there is a natural isomorphism

Σ : Ẽq(X) ∼= Ẽq+1(ΣX).

• ADDITIVITY If X is the wedge of a set of nondegenerately based spaces
Xi, then the inclusions Xi −→ X induce an isomorphism∑

iẼ∗(Xi) −→ Ẽ∗(X).

• WEAK EQUIVALENCE If f : X −→ Y is a weak equivalence, then

f∗ : Ẽ∗(X) −→ Ẽ∗(Y )

is an isomorphism.

The reduced form of the dimension axiom would read

H̃0(S0) = π and H̃q(S0) = 0 for q 6= 0.

Theorem. A homology theory E∗ on pairs of spaces determines and is deter-
mined by a reduced homology theory Ẽ∗ on nondegenerately based spaces.

Proof. Given a theory on pairs, we define Ẽ∗(X) = E∗(X, ∗) and deduce the
new axioms. For additivity, the specified wedge is the quotient (qXi)/(q{∗i}),
where ∗i is the basepoint of Xi, and our result on quotients of cofibrations applies
to compute its homology. Conversely, assume given a reduced homology theory Ẽ∗,
and define

E∗(X) = Ẽ∗(X+) and E∗(X,A) = Ẽ∗(C(i+)),
where C(i+) is the cofiber of the based inclusion i+ : A+ −→ X+. Equivalently,
C(i+) is the unreduced cofiber of i : A −→ X with its cone point as basepoint.
We must show that the suspension axiom and our restricted exactness axiom imply
the original, seemingly much stronger, exactness and excision axioms. We have
the long exact cofiber sequence associated to the based inclusion i+ : A+ −→
X+, in which each consecutive pair of maps is equivalent to a cofibration and the
associated quotient map. Noting that X+/A+ = X/A, we define the connecting
homomorphism ∂q : Eq(X,A) −→ Eq−1(A) to be the composite

Ẽq(X+/A+) ∂∗−→ Ẽq(ΣA+) Σ−1

−−−→ Ẽq−1(A+)

and find that the exactness and suspension axioms for Ẽ∗ imply the exactness axiom
for E∗. For excision, we could carry out a similarly direct homotopical argument,
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but it is simpler to observe that this follows from the equivalence of theories on
pairs of spaces with theories on pairs of CW complexes together with the next two
theorems. For the additivity axiom, we note that the cofiber of a disjoint union of
maps is the wedge of the cofibers of the given maps. �

Corollary. For nondegenerately based spaces X, E∗(X) is naturally isomor-
phic to Ẽ∗(X)⊕ E∗(∗).

Proof. The long exact sequence in E∗ of the pair (X, ∗) is naturally split
in each degree by means of the homomorphism induced by the projection X −→
{∗}. �

We require of based CW complexes that the basepoint be a vertex. It is cer-
tainly a nondegenerate basepoint. We give the circle its standard CW structure
and so deduce a CW structure on the suspension of a based CW complex.

Definition. A reduced homology theory Ẽ∗ on based CW complexes consists
of functors Ẽq from the homotopy category of based CW complexes to the category
of Abelian groups that satisfy the following axioms.

• EXACTNESS If A is a subcomplex of X, then the sequence

Ẽq(A) −→ Ẽq(X) −→ Ẽq(X/A)

is exact.
• SUSPENSION For each integer q, there is a natural isomorphism

Σ : Ẽq(X) ∼= Ẽq+1(ΣX).

• ADDITIVITY If X is the wedge of a set of based CW complexes Xi,
then the inclusions Xi −→ X induce an isomorphism∑

iẼ∗(Xi) −→ Ẽ∗(X).

Theorem. A reduced homology theory Ẽ∗ on nondegenerately based spaces de-
termines and is determined by its restriction to a reduced homology theory on based
CW complexes.

Proof. This is immediate by CW approximation of based spaces. �

Theorem. A homology theory E∗ on CW pairs determines and is determined
by a reduced homology theory Ẽ∗ on based CW complexes.

Proof. Given a theory on pairs, we define Ẽ∗(X) = E∗(X, ∗) and deduce the
new axioms directly. Conversely, given a reduced theory on based CW complexes,
we define

E∗(X) = Ẽ∗(X+) and E∗(X,A) = Ẽ∗(X/A).

Of course X/A is homotopy equivalent to C(i+), where i+ : A+ −→ X+ is the
inclusion. The arguments for exactness and additivity are the same as those given in
the analogous result for nondegenerately based spaces, but now excision is obvious
since if (X;A,B) is a CW triad, then the inclusion A/A ∩ B −→ X/B is an
isomorphism of based CW complexes. �
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5. Mayer-Vietoris sequences

The Mayer-Vietoris sequences are long exact sequences associated to excisive
triads that will play a fundamental role in our later proof of the Poincaré duality
theorem. We need two preliminaries, both of independent interest. The first is the
long exact sequence of a triple (X,A,B) of spaces B ⊂ A ⊂ X, which is just like
its analogue for homotopy groups.

Proposition. For a triple (X,A,B), the following sequence is exact:

· · · −→ Eq(A,B) i∗−→ Eq(X,B)
j∗−→ Eq(X,A) ∂−→ Eq−1(A,B) −→ · · · .

Here i : (A,B) −→ (X,B) and j : (X,B) −→ (X,A) are inclusions and ∂ is the
composite

Eq(X,A) ∂−→ Eq−1(A) −→ Eq−1(A,B).

Proof. There are two easy arguments. One can either use diagram chasing
from the various long exact sequences of pairs or one can apply CW approximation
to replace (X,A,B) by a triple of CW complexes. After the replacement, we have
that X/A ∼= (X/B)/(A/B) as a CW complex, and the desired sequence is the
reduced exact sequence of the pair (X/B,A/B). �

Lemma. Let (X;A,B) be an excisive triad and set C = A ∩B. The map

E∗(A,C)⊕ E∗(B,C) −→ E∗(X,C)

induced by the inclusions of (A,C) and (B,C) in (X,C) is an isomorphism.

Proof. Again, there are two easy proofs. One can either pass to homology
from the diagram

(B,C)

excision

��

$$I
IIIIIIII

(A,C)

zzuuuuuuuuu

excision

��

(X,C)

$$I
IIIIIIII

zzuuuuuuuuu

(X,A) (X,B)

and use algebra or one can approximate (X;A,B) by a CW triad, for which

X/C ∼= A/C ∨B/C
as a CW complex. �

Theorem (Mayer-Vietoris sequence). Let (X;A,B) be an excisive triad and
set C = A ∩B. The following sequence is exact:

· · · −→ Eq(C)
ψ−→ Eq(A)⊕ Eq(B)

φ−→ Eq(X) ∆−→ Eq−1(C) −→ · · · .
Here, if i : C −→ A, j : C −→ B, k : A −→ X, and ` : B −→ X are the inclusions,
then

ψ(c) = (i∗(c), j∗(c)), φ(a, b) = k∗(a)− `∗(b),
and ∆ is the composite

Eq(X) −→ Eq(X,B) ∼= Eq(A,C) ∂−→ Eq−1(C).
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Proof. Note that the definition of φ requires a sign in order to make φ◦ψ = 0.
The proof of exactness is algebraic diagram chasing and is left as an exercise. The
following diagram may help:

Eq(C)

xxqqqqqqqqqq

i∗

��

&&MMMMMMMMMM

Eq(B)

&&MMMMMMMMMM
Eq(A)

xxqqqqqqqqqq

Eq(X)

xxqqqqqqqqqq

j∗

��

&&MMMMMMMMMM

∆

oo

−∆

//

Eq(X,A) Eq(X,B)

Eq(X,C)

ffMMMMMMMMMM

∂

��

88qqqqqqqqqq

Eq(B,C)

∂ &&MMMMMMMMMM

88qqqqqqqqqq

∼=

OO

Eq(A,C)

∂xxqqqqqqqqqq

ffMMMMMMMMMM

∼=

OO

Eq−1(C)

Here the arrow labeled “−∆” is in fact −∆ by an algebraic argument from the direct
sum decomposition of Eq(X,C). Alternatively, one can use CW approximation. For
a CW triad, there is a short exact sequence

0 −→ C∗(C) −→ C∗(A)⊕ C∗(B) −→ C∗(X) −→ 0

whose associated long exact sequence is the Mayer-Vietoris sequence. �

We shall also need a relative analogue, but the reader may wish to ignore this
for now. It will become important when we study manifolds with boundary.

Theorem (Relative Mayer-Vietoris sequence). Let (X;A,B) be an excisive
triad and set C = A ∩ B. Assume that X is contained in some ambient space Y .
The following sequence is exact:

· · · −→ Eq(Y,C)
ψ−→ Eq(Y,A)⊕ Eq(Y,B)

φ−→ Eq(Y,X) ∆−→ Eq−1(Y,C) −→ · · · .

Here, if i : (Y,C) −→ (Y,A), j : (Y,C) −→ (Y,B), k : (Y,A) −→ (Y,X), and
` : (Y,B) −→ (Y,X) are the inclusions, then

ψ(c) = (i∗(c), j∗(c)), φ(a, b) = k∗(a)− `∗(b),

and ∆ is the composite

Eq(Y,X) ∂−→ Eq−1(X,B) ∼= Eq−1(A,C) −→ Eq−1(Y,C).
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Proof. This too is left as an exercise, but it is formally the same exercise.
The relevant diagram is the following one:

Eq(Y,C)

wwooooooooooo

��

''OOOOOOOOOOO

Eq(Y,B)

''OOOOOOOOOOO
Eq(Y,A)

wwooooooooooo

Eq(Y,X)
∂

wwooooooooooo

∂

��

∂

''OOOOOOOOOOO

∆

oo

−∆

//

Eq−1(X,A) Eq−1(X,B)

Eq−1(X,C)

ggOOOOOOOOOOO

��

77ooooooooooo

Eq−1(B,C)

''OOOOOOOOOOO

77ooooooooooo

∼=

OO

Eq−1(A,C)

wwooooooooooo

ggOOOOOOOOOOO

∼=

OO

Eq−1(Y,C)

Alternatively, one can use CW approximation. For a CW triad (X;A,B), with X
a subcomplex of a CW complex Y , there is a short exact sequence

0 −→ C∗(Y/C) −→ C∗(Y/A)⊕ C∗(Y/B) −→ C∗(Y/X) −→ 0

whose associated long exact sequence is the relative Mayer-Vietoris sequence. �

A comparison of definitions gives a relationship between these sequences.

Corollary. The absolute and relative Mayer-Vietoris sequences are related
by the following commutative diagram:

Eq(Y,C)
ψ //

∂

��

Eq(Y,A)⊕ Eq(Y,B)
φ //

∂+∂

��

Eq(Y,X) ∆ //

∂

��

Eq−1(Y,C)

∂

��
Eq−1(C)

ψ
// Eq−1(A)⊕ Eq−1(B)

φ
// Eq−1(X)

∆
// Eq−2(C).

6. The homology of colimits

In this section, we let X be the union of an expanding sequence of subspaces
Xi, i ≥ 0. We have seen that the compactness of spheres Sn and cylinders Sn × I
implies that, for any choice of basepoint in X0, the natural map

colim π∗(Xi) −→ π∗(X)

is an isomorphism. We shall use the additivity and weak equivalence axioms and
the Mayer-Vietoris sequence to prove the analogue for homology.
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Theorem. The natural map

colimE∗(Xi) −→ E∗(X)

is an isomorphism.

We record an algebraic description of the colimit of a sequence for use in the
proof.

Lemma. Let fi : Ai −→ Ai+1 be a sequence of homomorphisms of Abelian
groups. Then there is a short exact sequence

0 −→
∑
iAi

α−→
∑
iAi

β−→ colim Ai −→ 0,

where α(ai) = ai− fi(ai) for ai ∈ Ai and the restriction of β to Ai is the canonical
map given by the definition of a colimit.

By the additivity axiom, we may as well assume that X and the Xi are path
connected. The proof makes use of a useful general construction called the “tele-
scope” of the Xi, denoted tel Xi. Let ji : Xi −→ Xi+1 be the given inclusions and
consider the mapping cylinders

Mi+1 = (Xi × [i, i+ 1]) ∪Xi+1

that are obtained by identifying (x, i + 1) with ji(x) for x ∈ Xi. Inductively, let
Y0 = X0×{0} and suppose that we have constructed Yi ⊃ Xi×{i}. Define Yi+1 to
be the double mapping cylinder Yi ∪Mi+1 obtained by identifying (x, i) ∈ Yi with
(x, i) ∈ Mi+1 for x ∈ Xi. Define tel Xi to be the union of the Yi, with the colimit
topology. Thus

tel Xi =
⋃
i

Xi × [i, i+ 1],

with the evident identifications at the ends of the cylinders.
Using the retractions of the mapping cylinders, we obtain composite retractions

ri : Yi −→ Xi such that the following diagrams commute

Yi
⊂ //

ri

��

Yi+1

ri+1

��
Xi ji

// Xi+1

Since the ri are homotopy equivalences and since homotopy groups commute with
colimits, it follows that we obtain a weak equivalence

r : telXi −→ X

on passage to colimits. By the weak equivalence axiom, r induces an isomorphism
on homology. It therefore suffices to prove that the natural map

colim E∗(Xi) ∼= colim E∗(Yi) −→ E∗(tel Xi)

is an isomorphism. We define subspaces A and B of tel Xi by choosing ε < 1 and
letting

A = X0 × [0, 1]
∐ ∐

i≥1X2i−1 × [2i− ε, 2i] ∪X2i × [2i, 2i+ 1]

and
B =

∐
i≥0X2i × [2i+ 1− ε, 2i+ 1] ∪X2i+1 × [2i+ 1, 2i+ 2].
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We let C = A ∩B and find that

C =
∐
i≥0Xi × [i+ 1− ε, i+ 1].

This gives an excisive triad, and a quick inspection shows that we have canonical
homotopy equivalences

A '
∐
i≥0X2i, B '

∐
i≥0X2i+1, and C '

∐
i≥0Xi.

Moreover, under these equivalences the inclusion C −→ A has restrictions

id : X2i −→ X2i and j2i+1 : X2i+1 −→ X2i+2,

while the inclusion C −→ B has restrictions

j2i : X2i −→ X2i+1 and id : X2i+1 −→ X2i+1.

By the additivity axiom,

E∗(A) =
∑
iE∗(X2i), E∗(B) =

∑
iE∗(X2i+1), and E∗(C) =

∑
iE∗(Xi).

We construct the following commutative diagram, whose top row is the Mayer-
Vietoris sequence of the triad (telXi;A,B) and whose bottom row is a short exact
sequence as displayed in our algebraic description of colimits:

· · · // Eq(C) //

∼=
��

Eq(A)⊕ Eq(B) //

∼=
��

Eq(telXi) //

∼=
��

· · ·

· · · //∑
iEq(Xi)

α′ //

P
(−1)i

��

∑
iEq(Xi)

β′ //

P
i(−1)i

��

Eq(X) //

ξ

���
�
�

· · ·

0 //∑
iEq(Xi)

α //∑
iEq(Xi)

β // colimEq(Xi) // 0.

By the definition of the maps in the Mayer-Vietoris sequence, α′(xi) = xi+(ji)∗(xi)
and β′i(xi) = (−1)i(ki)∗(xi) for xi ∈ Eq(Xi), where ki : Xi −→ X is the inclusion.
The commutativity of the lower left square is just the relation

(
∑
i(−1)i)α′(xi) = (−1)i(xi − (ji)∗(xi)).

The diagram implies the required isomorphism ξ.

Remark. There is a general theory of “homotopy colimits,” which are up to
homotopy versions of colimits. The telescope is the homotopy colimit of a sequence.
The double mapping cylinder that we used in approximating excisive triads by
CW triads is the homotopy pushout of a diagram of the shape • ←− • −→ •.
We implicitly used homotopy coequalizers in constructing CW approximations of
spaces.

PROBLEM
(1) Complete the proof that the Mayer-Vietoris sequence is exact.



CHAPTER 15

The Hurewicz and uniqueness theorems

We now return to the context of “ordinary homology theories,” namely those
that satisfy the dimension axiom. We prove a fundamental relationship, called the
Hurewicz theorem, between homotopy groups and homology groups. We then use
it to prove the uniqueness of ordinary homology with coefficients in π.

1. The Hurewicz theorem

Although the reader may prefer to think in terms of the cellular homology
theory already constructed, the proof of the Hurewicz theorem depends only on the
axioms. It is this fact that will allow us to use the result to prove the uniqueness
of homology theories in the next section. We take π = Z and delete it from the
notation. The dimension axiom implicitly fixes a generator i0 of H̃0(S0), and we
choose generators in of H̃n(Sn) inductively by setting Σin = in+1.

Definition. For based spaces X, define the Hurewicz homomorphism

h : πn(X) −→ H̃n(X)

by
h([f ]) = f∗(in).

Lemma. If n ≥ 1, then h is a homomorphism for all X.

Proof. For maps f, g : Sn −→ X, [f + g] is represented by the composite

Sn
p−→ Sn ∨ Sn f∨g−−→ X ∨X O−→ X,

where p is the pinch map and O is the codiagonal map; that is, O restricts to the
identity on each wedge summand. Since p∗(in) = in + in and O induces addition
on H̃∗(X), the conclusion follows. �

Lemma. The Hurewicz homomorphism is natural and the following diagram
commutes for n ≥ 0:

πn(X)

Σ

��

// H̃n(X)

Σ

��
πn+1(ΣX)

h
// H̃n+1(ΣX).

Proof. The naturality of h is clear, and the naturality of Σ on homology
implies the commutativity of the diagram:

(h ◦ Σ)([f ]) = (Σf)∗(Σin) = Σ(f∗(in)) = Σ(h([f ])). �

117
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Lemma. Let X be a wedge of n-spheres. Then

h : πn(X) −→ H̃n(X)

is the Abelianization homomorphism if n = 1 and is an isomorphism if n > 1.

Proof. When X is a single sphere, h[id] = in and the conclusion is obvious.
In general, πn(X) is the free group if n = 1 or the free Abelian group if n ≥ 2
with generators given by the inclusions of the wedge summands. Since h maps
these generators to the canonical generators of the free Abelian group H̃n(X), the
conclusion follows. �

That is all that we shall need in the next section, but we can generalize the
lemma to arbitrary (n− 1)-connected based spaces X.

Theorem (Hurewicz). Let X be any (n− 1)-connected based space. Then

h : πn(X) −→ H̃n(X)

is the Abelianization homomorphism if n = 1 and is an isomorphism if n > 1.

Proof. We can assume without loss of generality that X is a CW complex
with a single vertex, based attaching maps, and no q-cells for 1 ≤ q < n. The
inclusion of the (n + 1)-skeleton in X induces an isomorphism on πn by the cel-
lular approximation theorem and induces an isomorphism on H̃n by our cellular
construction of homology or by a deduction from the axioms that will be given in
the next section. Thus we may assume without loss of generality that X = Xn+1.
Then X is the cofiber of a map f : K −→ L, where K and L are both wedges of
n-spheres. We have the following commutative diagram:

πn(K) //

��

πn(L) //

��

πn(X) //

��

0

H̃n(K) // H̃n(L) // H̃n(X) // 0.

The lemma gives the conclusion for the two left vertical arrows. Since X/L is a
wedge of (n + 1)-spheres, the bottom row is exact by our long exact homology
sequences and the known homology of wedges of spheres. When n = 1, a corollary
of the van Kampen theorem gives that π1(X) is the quotient of π1(L) by the normal
subgroup generated by the image of π1(K). An easy algebraic exercise shows that
the sequence obtained from the top row by passage to Abelianizations is therefore
exact. If n > 1, the homotopy excision theorem implies that the top row is exact. To
see this, factor f as the composite of the inclusion K −→Mf and the deformation
retraction r : Mf −→ L. Since X = Cf , we have the following commutative
diagram, in which the top row is exact:

πn(K) // πn(Mf) //

r∗

��

πn(Mf,K) //

��

0

πn(K) // πn(L) // πn(X) // 0.

Since K and L are (n − 1)-connected and n > 1, a corollary of the homotopy
excision theorem gives that X is (n − 1)-connected and πn(Mf,K) −→ πn(X) is
an isomorphism. �
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2. The uniqueness of the homology of CW complexes

We assume given an ordinary homology theory on CW pairs and describe how
it must be computed. We focus on integral homology, taking π = Z and deleting it
from the notation. With a moment’s reflection on the case n = 0, we see that the
Hurewicz theorem gives a natural isomorphism

H̃ ′
n(X) −→ H̃n(X)

for (n − 1)-connected based spaces X. Here the groups on the left are defined in
terms of homotopy groups and were used in our construction of cellular chains,
while the groups on the right are those of our given homology theory. We use the
groups on the right to construct cellular chains in our given theory, and we find that
the isomorphism is compatible with differentials. From here, to prove uniqueness,
we only need to check from the axioms that our given theory is computable from
the homology groups of these cellular chain complexes.

Thus let X be a CW complex. For each integer n, define

Cn(X) = Hn(Xn, Xn−1) ∼= H̃n(Xn/Xn−1).

Define
d : Cn(X) −→ Cn−1(X)

to be the composite

Hn(Xn, Xn−1) ∂−→ Hn−1(Xn−1) −→ Hn−1(Xn−1, Xn−2).

It is not hard to check that d ◦ d = 0.

Theorem. C∗(X) is isomorphic to the cellular chain complex of X.

Proof. Since Xn/Xn−1 is the wedge of an n-sphere for each n-cell of X, we
see by the additivity axiom that Cn(X) is the free Abelian group with one generator
[j] for each n-cell j. We must compare the differential with the one that we defined
earlier. Let i : Xn−1 −→ Xn be the inclusion. We see from our proof of the
suspension isomorphism that d coincides with the composite

H̃n(Xn/Xn−1) ∼= H̃n(Ci)→ H̃n(ΣXn−1) Σ−1

−−−→ H̃n−1(Xn−1)→ H̃n−1(Xn−1/Xn−2).

By the naturality of the Hurewicz homomorphism and its commutation with sus-
pension, this coincides with the differential that we defined originally. �

Similarly, if we start with a homology theory H∗(−;π), we can use the axioms
to construct a chain complex C∗(X;π), and a comparison of definitions then gives
an isomorphism of chain complexes

C∗(X;π) ∼= C∗(X)⊗ π.
We have identified our axiomatically derived chain complex of X with the cellular
chain complex of X, and we again adopt the notation C∗(X,A) = C̃∗(X/A).

Theorem. There is a natural isomorphism

H∗(X,A) ∼= H∗(C∗(X,A))

under which the natural transformation ∂ agrees with the natural transformation
induced by the connecting homomorphisms associated to the short exact sequences

0 −→ C∗(A) −→ C∗(X) −→ C∗(X,A) −→ 0.
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Proof. In view of our comparison of theories on pairs of spaces and theories
on pairs of CW complexes and our comparison of theories on pairs with reduced
theories, it suffices to obtain a natural isomorphism of reduced theories on based
CW complexes X. By the additivity axiom, we may as well assume that X is
connected. More precisely, we must obtain a system of natural isomorphisms

H̃n(X) ∼= H∗(C̃n(X))

that commute with the suspension isomorphisms.
By the dimension and additivity axioms, we know the homology of wedges of

spheres. Since Xn/Xn−1 is a wedge of n-spheres, the long exact homology sequence
associated to the cofiber sequence

Xn−1 −→ Xn −→ Xn/Xn−1

and an induction on n imply that

H̃q(Xn−1) −→ H̃q(Xn)

is an isomorphism for q < n− 1 and

H̃q(Xn) = 0

for q > n. Of course, the analogues for cellular homology are obvious. Note in
particular that H̃n(Xn+1) ∼= H̃n(Xn+i) for all i > 1. Since homology commutes
with colimits on sequences of inclusions, this implies that the inclusion Xn+1 −→ X
induces an isomorphism

H̃n(Xn+1) −→ H̃n(X).
Using these facts, we easily check from the exactness axiom that the rows and
columns are exact in the following commutative diagram:

H̃n+1(Xn+1/Xn)
dn+1

))SSSSSSSSSSSSSS

∂

��

0

��
0 // H̃n(Xn) ρ∗

//

i∗

��

H̃n(Xn/Xn−1)
∂ //

dn ))SSSSSSSSSSSSSS
H̃n−1(Xn−1)

��
H̃n(X) ∼= H̃n(Xn+1)

��

H̃n−1(Xn−1/Xn−2).

0

Define α : H̃n(X) −→ Hn(C̃∗(X)) by letting α(x) be the homology class of ρ∗(y)
for any y such that i∗(y) = x. It is an exercise in diagram chasing and the definition
of the homology of a chain complex to check that α is a well defined isomorphism.

The reduced chain complex of ΣX can be identified with the suspension of the
reduced chain complex of X. That is,

C̃n+1(ΣX) ∼= C̃n(X),

compatibly with the differential. All maps in the diagram commute with sus-
pension, and this implies that the isomorphisms α commute with the suspension
isomorphisms. �
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PROBLEMS
(1) Let π be any group. Construct a connected CW complex K(π, 1) such

that π1(K(π, 1)) = π and πq(K(π, 1)) = 0 for q 6= 1.
(2) * In Problem 1, it is rarely the case that K(π, 1) can be constructed as a

compact manifold. What is a necessary condition on π for this to happen?
(3) Let n ≥ 1 and let π be an Abelian group. Construct a connected CW

complex M(π, n) such that H̃n(X; Z) = π and H̃q(X; Z) = 0 for q 6=
n. (Hint: construct M(π, n) as the cofiber of a map between wedges of
spheres.) The spaces M(π, n) are called Moore spaces.

(4) Let n ≥ 1 and let π be an Abelian group. Construct a connected CW com-
plex K(π, n) such that πn(X) = π and πq(X) = 0 for q 6= n. (Hint: start
with M(π, n), using the Hurewicz theorem, and kill its higher homotopy
groups.) The spaces K(π, n) are called Eilenberg-Mac Lane spaces.

(5) There are familiar spaces that give K(Z, 1), K(Z2, 1), and K(Z, 2). Name
them.

(6) Let X be any connected CW complex whose only non-vanishing homotopy
group is πn(X) ∼= π. Construct a homotopy equivalence K(π, n) −→ X,
where K(π, n) is the Eilenberg-Mac Lane space that you have constructed.

(7) * For groups π and ρ, compute [K(π, n),K(ρ, n)]; here [−,−] means based
homotopy classes of based maps.





CHAPTER 16

Singular homology theory

We explain, without giving full details, how the standard approach to singular
homology theory fits into our framework. We also introduce simplicial sets and
spaces and their geometric realization. These notions play a fundamental role in
modern algebraic topology.

1. The singular chain complex

The standard topological n-simplex is the subspace

∆n = {(t0, . . ., tn)|0 ≤ ti ≤ 1,
∑
ti = 1}

of Rn+1. There are “face maps”

δi : ∆n−1 −→ ∆n, 0 ≤ i ≤ n,
specified by

δi(t0, . . ., tn−1) = (t0, . . ., ti−1, 0, ti, . . ., tn−1)
and “degeneracy maps”

σi : ∆n+1 −→ ∆n, 0 ≤ i ≤ n,
specified by

σi(t0, . . ., tn+1) = (t0, . . ., ti−1, ti + ti+1, . . ., tn+1).
For a space X, define SnX to be the set of continuous maps f : ∆n −→ X. In

particular, regarding a point of X as the map that sends 1 to x, we may identify
the underlying set of X with S0X. Define the ith face operator

di : SnX −→ Sn−1X, 0 ≤ i ≤ n,
by

di(f)(u) = f(δi(u)),
where u ∈ ∆n−1, and define the ith degeneracy operator

si : SnX −→ Sn+1X, 0 ≤ i ≤ n,
by

si(f)(v) = f(σi(v)),
where v ∈ ∆n+1. The following identities are easily checked:

di ◦ dj = dj−1 ◦ di if i < j

di ◦ sj =


sj−1 ◦ di if i < j

id if i = j or i = j + 1
sj ◦ di−1 if i > j + 1.

si ◦ sj = sj+1 ◦ si if i ≤ j.
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A map f : ∆n −→ X is called a singular n-simplex. It is said to be nondegenerate
if it is not of the form si(g) for any i and g. Let Cn(X) be the free Abelian group
generated by the nondegenerate n-simplexes, and think of Cn(X) as the quotient
of the free Abelian group generated by all singular n-simplexes by the subgroup
generated by the degenerate n-simplexes. Define

d =
n∑
i=0

(−1)idi : Cn(X) −→ Cn−1(X).

The identities ensure that C∗(X) is then a well defined chain complex. In fact,

d ◦ d =
n−1∑
i=0

n∑
j=0

(−1)i+jdi ◦ dj ,

and, for i < j, the (i, j)th and (j − 1, i)th summands add to zero. This gives
that d ◦ d = 0 before quotienting out the degenerate simplexes, and the degenerate
simplexes span a subcomplex.

The singular homology of X is usually defined in terms of this chain complex:

H∗(X;π) = H∗(C∗(X)⊗ π).

2. Geometric realization

One can prove the compatibility of this definition with our definition by check-
ing the axioms and quoting the uniqueness of homology. We instead describe how
the new definition fits into our original definition in terms of CW approximation and
cellular chain complexes. We define a space ΓX, called the “geometric realization
of the total singular complex of X,” as follows. As a set

ΓX =
∐
n≥0(SnX ×∆n)/(∼),

where the equivalence relation ∼ is generated by

(f, δiu) ∼ (di(f), u) for f : ∆n −→ X and u ∈ ∆n−1

and
(f, σiv) ∼ (si(f), v) for f : ∆n −→ X and v ∈ ∆n+1.

Topologize ΓX by giving ∐
0≤n≤q(SnX ×∆n)/(∼)

the quotient topology and then giving ΓX the topology of the union. Define γ :
ΓX −→ X by

γ|f, u| = f(u) for f : ∆n −→ X and u ∈ ∆n,

where |f, u| denotes the equivalence class of (f, u). Now the following two theorems
imply that that this construction provides a canonical way of realizing our original
construction of homology.

Theorem. For any space X, ΓX is a CW complex with one n-cell for each
nondegenerate singular n-simplex, and the cellular chain complex C∗(ΓX) is natu-
rally isomorphic to the singular chain complex C∗(X).

Theorem. For any space X, the map γ : ΓX −→ X is a weak equivalence.
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Thus the singular chain complex of X is the cellular chain complex of a func-
torial CW approximation of X, and this shows that our original construction of
homology coincides with the classical construction in terms of singular chains. Each
approach has its mathematical and pedagogical advantages.

3. Proofs of the theorems

We give a detailed outline of how the required CW decomposition of ΓX is
obtained and sketch the proof that γ is a weak equivalence.

Let X̄ =
∐
n≥0 SnX ×∆n. Define functions

λ : X̄ −→ X̄ and ρ : X̄ −→ X̄

by
λ(f, u) = (g, σj1 · · ·σjpu)

if f = sjp · · · sj1g where g is nondegenerate and 0 ≤ j1 < · · · < jp and

ρ(f, u) = (di1 · · · diqf, v)

if u = δiq · · · δi1v where v is an interior point and 0 ≤ i1 < · · · < iq. Note that
the unique point of ∆0 is interior. Say that a point (f, u) is nondegenerate if f
is nondegenerate and u is interior. A combinatorial argument from the definitions
gives the following observation.

Lemma. The composite λ ◦ ρ carries each point of X̄ to the unique nondegen-
erate point to which it is equivalent.

Let (ΓX)n be the image in ΓX of
∐
m≤n SmX ×∆m. Then

(ΓX)n − (ΓX)n−1 = {nondegenerate n-simplexes} × {∆n − ∂∆n}.

This implies that ΓX is a CW complex whose n-cells are the maps

f̃ : (∆n, ∂∆n) −→ ((ΓX)n, (ΓX)n−1)

specified by f̃(u) = |f, u| for a nondegenerate n-simplex f . Here we think of
(∆n, ∂∆n) as the domains of cells via oriented homeomorphisms with (Dn, Sn−1).

To compute d on the cellular chains C∗(ΓX), we must compute the degrees of
the composites

Sn−1 ∼= ∂∆n
f̃−→ (ΓX)n−1/(ΓX)n−2 πg̃−→ ∆n−1/∂∆n−1

∼= Sn−1

for nondegenerate n-simplexes f and (n− 1)-simplexes g. The only relevant g are
the dif since f traverses these g on the various faces of ∂∆n. Let δ̄i : ∂∆n −→
∆n−1/∂∆n−1 be the map that collapses all faces of ∂∆n other than δi∆n−1 to the
basepoint and is δ−1

i on δi∆n−1. Then, with g = dif , the composite above reduces
to the map

Sn−1 ∼= ∂∆n
δ̄i−→ ∆n−1/∂∆n−1

∼= Sn−1.

It is not hard to check that the degree of this map is (−1)i (provided that we choose
our homeomorphisms sensibly). If n = 2, the three maps δi are given by

δ0(1− t, t) = (0, 1− t, t)

δ1(1− t, t) = (1− t, 0, t)
δ2(1− t, t) = (1− t, t, 0)
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and we can visualize the maps δ̄i as follows:

δ0 ����
��
��
�

��
��
��
�

OO

//

����
��

��
��

��
��

��
��

δ2__????

????

δ1

wwooooooo

ooooooo

δ̄i //

OO

//

__????

????

The alternation of orientations and thus of signs should be clear. This shows that
C∗(ΓX) = C∗(X), as claimed.

We must still explain why γ : ΓX −→ X is a weak equivalence. In fact, it is
tautologically obvious that γ induces an epimorphism on all homotopy groups: a
map of pairs

f : (∆n, ∂∆n) −→ (X,x)

determines the map of pairs

f̃ : (∆n, ∂∆n) −→ (ΓX, |x, 1|)

specified by f̃(u) = |f, u|, and γ ◦ f̃ = f . Injectivity is more delicate, and we shall
only give a sketch. Given a map g : (∆n, ∂∆n) −→ (ΓX, |x, 1|), we may first apply
cellular approximation to obtain a homotopy of g with a cellular map and we may
then subdivide the domain and apply a further homotopy so as to obtain a map
g′ ' g such that g′ is simplicial, in the sense that g′ ◦ e is a cell of ΓX for every cell
e of the subdivision of ∆n. Suppose that γ ◦ g and thus γ ◦ g′ is homotopic to the
constant map cx at the point x. We may view a homotopy h : γ ◦ g′ ' cx as a map

h : (∆n × I, ∂∆n × I ∪∆n × {1}) −→ (X,x).

We can simplicially subdivide ∆n× I so finely that our subdivided ∆n = ∆n×{0}
is a subcomplex. We can then lift h simplex by simplex to a simplicial map

h̃ : (∆n × I, ∂∆n × I ∪∆n × {1}) −→ (ΓX, |x, 1|)

such that h̃ restricts to g̃′ on ∆n × {0} and γ ◦ h̃ = h.

4. Simplicial objects in algebraic topology

A simplicial set K∗ is a sequence of sets Kn, n ≥ 0, connected by face and
degeneracy operators di : Kn −→ Kn−1 and si : Kn −→ Kn+1, 0 ≤ i ≤ n, that
satisfy the commutation relations that we displayed for the total singular complex
S∗X = {SnX} of a space X. Thus S∗ is a functor from spaces to simplicial sets.

We may define the geometric realization |K∗| of general simplicial sets exactly
as we defined the geometric realization ΓX = |S∗X| of the total singular complex
of a topological space. In fact, the total singular complex and geometric realization
functors are adjoint. If S S is the category of simplicial sets and U the category
of spaces, then

U (|K∗|, X) ∼= S S (K∗, S∗X).
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The identity map of S∗X on the right corresponds to γ : |S∗X| −→ X on the left.
In general, for a map f∗ : K∗ −→ S∗X of simplicial sets, the corresponding map of
spaces is the composite

|K∗|
|f∗|−−→ |S∗X|

γ−→ X.

In fact, one can develop homotopy theory and homology in the category of
simplicial sets in a fashion parallel to and, in a suitable sense, equivalent to the
development that we have here given for topological spaces. For example, we have
the chain complex C∗(K∗) defined exactly as we defined the singular chain complex,
using the alternating sum of the face maps, and there result homology groups

H∗(K∗;π) = H∗(C∗(K∗)⊗ π).

Exactly as in the case of S∗X, |K∗| is a CW complex and C∗(K∗) is naturally iso-
morphic to the cellular chain complex C∗(|K∗|). Singular homology is the special
case obtained by taking K∗ = S∗X for spaces X. The passage back and forth
between simplicial sets and topological spaces plays a major role in many applica-
tions.

The ideas generalize. One can define a simplicial object in any category C
as a sequence of objects Kn of C connected by face and degeneracy maps in C
that satisfy the commutation relations that we have displayed. Thus we have
simplicial groups, simplicial Abelian groups, simplicial spaces, and so forth. We
can think of simplicial sets as discrete simplicial spaces, and we then see that
geometric realization generalizes directly to a functor | − | from the category S U
of simplicial spaces to the category U of spaces. This provides a very useful way
of constructing spaces with desirable properties.

We note one of the principal features of geometric realization. Define the
product X∗ × Y∗ of simplicial spaces X∗ and Y∗ to be the simplicial space whose
space of n-simplexes is Xn × Yn, with faces and degeneracies di × di and si × si.
The projections induce maps of simplicial spaces from X∗ × Y∗ to X∗ and Y∗. On
passage to geometric realization, these give the coordinates of a map

|X∗ × Y∗| −→ |X∗| × |Y∗|.

It turns out that this map is always a homeomorphism.
Now restrict attention to simplicial sets K∗ and L∗. Then the homeomorphism

just specified is a map between CW complexes. However, it is not a cellular map;
rather, it takes the n-skeleton of |K∗ × L∗| to the 2n-skeleton of |K∗| × |L∗|. It
is homotopic to a cellular map, no longer a homeomorphism, and there results a
chain homotopy equivalence

C∗(|K∗ × L∗|) −→ C∗(|K∗|)⊗ C∗(|L∗|).

In particular, for spaces X and Y , there is a natural chain homotopy equivalence
from the singular chain complex C∗(X ×Y ) to the tensor product C∗(X)⊗C∗(Y ).
One can be explicit about this but, pedagogically, one technical advantage of ap-
proaching homology via CW complexes is that it leaves us free to work directly
with the natural cell structures on Cartesian products of CW complexes and to
postpone the introduction of chain homotopy equivalences such as these to a later
stage of the development.
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5. Classifying spaces and K(π, n)s

We illustrate these ideas by defining the “classifying spaces” and “universal
bundles” associated to topological groups G and describing how this leads to a
beautiful conceptual construction of the Eilenberg-Mac Lane spaces K(π, n) asso-
ciated to discrete Abelian groups π. Recall that these are spaces such that

πq(K(π, n)) =

{
π if q = n

0 if q 6= n.

We define a map p∗ : E∗(G) −→ B∗(G) of simplicial topological spaces. Let
En(G) = Gn+1 and Bn(G) = Gn, and let pn : Gn+1 −→ Gn be the projection on
the first n coordinates. The faces and degeneracies are defined on En(G) by

di(g1, . . ., gn+1) =

{
(g2, . . ., gn+1) if i = 0
(g1, . . ., gi−1, gigi+1, gi+2, . . ., gn+1) if 1 ≤ i ≤ n

and
si(g1, . . ., gn+1) = (g1, . . ., gi−1, e, gi, . . ., gn+1) if 0 ≤ i ≤ n.

The faces and degeneracies on Bn(G) are defined in the same way, except that the
last coordinate gn+1 is omitted and the last face operation dn takes the form

dn(g1, . . ., gn) = (g1, . . ., gn−1).

Certainly p∗ is a map of simplicial spaces. If we let G act from the right on En(G)
by multiplication on the last coordinate,

(g1, . . ., gn, gn+1)g = (g1, . . ., gn, gn+1g),

then E∗(G) is a simplicial G-space. That is, the action of G commutes with the
face and degeneracy maps. We may view Bn(G) as the orbit space En(G)/G. We
define

E(G) = |E∗(G)|, B(G) = |B∗(G)|, and p = |p∗(G)| : E(G) −→ B(G).

Then E(G) inherits a free right action by G, and B(G) is the orbit space E(G)/G.
The space BG is called the classifying space of G.

The space E(G) is the union of the images E(G)n of the spaces
∐
m≤nG

m+1×
∆m, and

E(G)n − E(G)n−1 = (Gn −W )×G× (∆n − ∂∆n),
where W ⊂ Gn is the “fat wedge” consisting of those points at least one of whose
coordinates is the identity element e. Similarly, we have subspaces B(G)n such that

B(G)n −B(G)n−1 = (Gn −W )× (∆n − ∂∆n).

The map p restricts to the projection between these subspaces. Intuitively, it looks
as if p should be a bundle with fiber G, and this is indeed the case if the identity
element of G is a nondegenerate basepoint. This condition is enough to ensure local
triviality as we glue together over the filtration {B(G)n}. It is less intuitive, but
true, that the space E(G) is contractible. By the long exact homotopy sequence,
these facts imply that

πq+1(BG) ∼= πq(G)
for all q ≥ 0.

For topological groups G and H, the obvious shuffle homeomorphisms

(G×H)n ∼= Gn ×Hn
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specify isomorphisms of simplicial spaces

E∗(G×H) ∼= E∗(G)× E∗(H) and B∗(G×H) ∼= B∗(G)×B∗(H)

that are compatible with the projections. Since geometric realization commutes
with products, we conclude that B(G × H) is homeomorphic to B(G) × B(H).
Thus B is a product-preserving functor on the category of topological groups.

Now suppose that G is a commutative topological group. Then its multiplica-
tion G×G −→ G and inverse map G −→ G are homomorphisms. We conclude that
B(G) and E(G) are again commutative topological groups. The multiplication on
B(G) is determined by the multiplication on G as the composite

B(G)×B(G) ∼= B(G×G) −→ B(G).

Moreover, the map p : E(G) −→ B(G) and the inclusion of G in E(G) as the fiber
over the basepoint (the unique point in B0(G)) are homomorphisms. This allows
us to iterate the construction, setting B0(G) = G and Bn(G) = B(Bn−1(G)) for
n ≥ 1. Specializing to a discrete Abelian group π, we define

K(π, n) = Bn(π).

As promised, we have

πq(K(π, n)) = πq−1(K(π, n− 1)) = · · · = πq−n(K(π, 0)) =

{
π if q = n

0 if q 6= n.

PROBLEMS
(1) LetX be a space that satisfies the hypotheses used to construct a universal

cover X̃. Let π = π1(X) and consider the action of the group π on the
space X̃ given by the isomorphism of π with Aut(X̃). Let A be an Abelian
group and let Z[π] act trivially on A, a · σ = a for σ ∈ π and a ∈ A. Do
one or both of the following, and convince yourself that the other choice
also works.
(a) [Cellular chains] Assume that X is a CW complex. Show that X̃ is

a CW complex such that the action of π on X̃ induces an action of
the group ring Z[π] on the cellular chain complex C∗(X̃) such that
each Cq(X̃) is a free Z[π]-module and

C∗(X;A) ∼= A⊗Z[π] C∗(X̃).

(b) [Singular chains] Show that the action of π on X̃ induces an action
of Z[π] on the singular chain complex C∗(X̃) such that each Cq(X̃)
is a free Z[π]-module and

C∗(X;A) ∼= A⊗Z[π] C∗(X̃).

(2) Let π be a group and let K(π, 1) be a connected CW complex such that
π1(K(π, 1)) = π and πq(K(π, 1)) = 0 for q 6= 1. Use Problem 1 to show
that there is an isomorphism

H∗(K(π, 1);A) ∼= TorZ[π]
∗ (A,Z).

(3) Let p : Y −→ X be a covering space with finite fibers, say of cardinality
n. Using singular chains, construct a homomorphism t : H∗(X;A) −→
H∗(Y ;A) such that the composite p∗ ◦ t : H∗(X;A) −→ H∗(X;A) is
multiplication by n; t is called a “transfer homomorphism.”





CHAPTER 17

Some more homological algebra

The reader will by now appreciate that the calculation of homology groups,
although far simpler than the calculation of homotopy groups, can still be a difficult
task. In practice, one seldom uses chains explicitly; rather, one uses them to prove
algebraic theorems that simplify topological calculations. Indeed, if one focuses on
singular chains, then one eschews chain level computations in principle as well as
in practice.

We here recall some classical results in homological algebra that explain how
to calculate H∗(X;π) from H∗(X) ≡ H∗(X; Z) and how to calculate H∗(X × Y )
from H∗(X)⊗H∗(Y ). We then say a little about cochain complexes in preparation
for the definition of cohomology groups.

We again work over a general commutative ring R, although the main example
will be R = Z. Tensor products are understood to be taken over R.

1. Universal coefficients in homology

Let X and Y be chain complexes over R. We think of H∗(X) ⊗ H∗(Y ) as a
graded R-module which, in degree n, is

∑
p+q=nHp(X)⊗Hq(Y ). We define

α : H∗(X)⊗H∗(Y ) −→ H∗(X ⊗ Y )

by α([x]⊗ [y]) = [x⊗ y] for cycles x and y that represent homology classes [x] and
[y]. As a special case, for an R-module M we have

α : H∗(X)⊗M −→ H∗(X ⊗M).

We omit the proof of the following standard result, but we shall shortly give
the quite similar proof of a cohomological analogue. Recall that an R-module M is
said to be flat if the functor M ⊗N is exact (that is, preserves exact sequences in
the variable N). We say that a graded R-module is flat if each of its terms is flat.

We assume that the reader has seen torsion products, which measure the failure
of tensor products to be exact functors. For a principal ideal domain (PID) R, the
only torsion product is the first one, denoted TorR1 (M,N). It can be computed by
constructing a short exact sequence

0 −→ F1 −→ F0 −→M −→ 0

and tensoring with N to obtain an exact seqence

0 −→ TorR1 (M,N) −→ F1 ⊗N −→ F0 ⊗N −→M ⊗N −→ 0,

where F1 and F0 are free R-modules. That is, we choose an epimorphism F0 −→M
and note that, since R is a PID, its kernel F1 is also free.
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Theorem (Universal coefficient). Let R be a PID and let X be a flat chain
complex over R. Then, for each n, there is a natural short exact sequence

0 −→ Hn(X)⊗M α−→ Hn(X ⊗M)
β−→ TorR1 (Hn−1(X),M) −→ 0.

The sequence splits, so that

Hn(X ⊗M) ∼= (Hn(X)⊗M)⊕ TorR1 (Hn−1(X),M),

but the splitting is not natural.

In Chapter 20 §3, we shall see an important class of examples in which the
splitting is very far from being natural.

Corollary. If R is a field, then

α : H∗(X)⊗M −→ H∗(X;M)

is a natural isomorphism.

2. The Künneth theorem

The universal coefficient theorem in homology is a special case of the Künneth
theorem.

Theorem (Künneth). Let R be a PID and let X be a flat chain complex and
Y be any chain complex. Then, for each n, there is a natural short exact sequence

0 −→
∑

p+q=n

Hp(X)⊗Hq(Y ) α−→ Hn(X⊗Y )
β−→

∑
p+q=n−1

TorR1 (Hp(X),Hq(Y )) −→ 0.

The sequence splits, so that

Hn(X ⊗ Y ) ∼= (
∑

p+q=n

Hp(X)⊗Hq(Y ))⊕ (
∑

p+q=n−1

TorR1 (Hp(X),Hq(Y ))),

but the splitting is not natural.

Returning to topology for a moment, observe that this applies directly to the
computation of the homology of the Cartesian product of CW complexes X and Y
in view of the isomorphism

C∗(X × Y ) ∼= C∗(X)⊗ C∗(Y ).

Corollary. If R is a field, then

α : H∗(X)⊗H∗(Y ) −→ H∗(X ⊗ Y )

is a natural isomorphism.

We prove the corollary to give the idea. The general case is proved by an
elaboration of the argument. In fact, in practice, algebraic topologists carry out
the vast majority of their calculations using a field of coefficients, and it is then
the corollary that is relevant to the study of the homology of Cartesian products.
There is a simple but important technical point to make about this. Let us for the
moment remember to indicate the ring over which we are taking tensor products.
For chain complexes X and Y over Z, we have

(X ⊗Z R)⊗R (Y ⊗Z R) ∼= (X ⊗Z Y )⊗Z R.

We can therefore use the corollary to compute H∗(X ⊗Z Y ;R) from H∗(X;R) and
H∗(Y ;R).
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Proof of the corollary. Assume first that Xi = 0 for i 6= p, so that
X = Xp is just an R-module with no differential. The square commutes and the
row and column are exact in the diagram

0

��
0 // Bq(Y ) // Zq(Y )

��

// Hq(Y ) // 0.

Yq+1
dq+1

//

dq+1

OO

Yq

dq

��
Yq−1

Since all modules over a field are free and thus flat, this remains true when we
tensor the diagram with Xp. This proves that if n = p+ q, then

Zn(Xp ⊗ Y ) = Xp ⊗ Zq(Y ), Bn(Xp ⊗ Y ) = Xp ⊗Bq(Y ),

and therefore
Hn(X ⊗ Y ) = Xp ⊗Hq(Y ).

In the general case, regard the graded modules Z(X) and B(X) as chain complexes
with zero differential. The exact sequences

0 −→ Zp(X) −→ Xp
dp−→ Bp−1(X) −→ 0

of R-modules define a short exact seqence of chain complexes since dp−1 ◦ dp = 0.
Define the suspension of a graded R-module N by (ΣN)n+1 = Nn. Tensoring with
Y , we obtain a short exact sequence of chain complexes

0 −→ Z(X)⊗ Y −→ X ⊗ Y −→ ΣB(X)⊗ Y −→ 0.

It follows from the first part and additivity that

H∗(Z(X)⊗ Y ) = Z(X)⊗H∗(Y ) and H∗(ΣB(X)⊗ Y ) = ΣB(X)⊗H∗(Y ).

Moreover, by inspection of definitions, the connecting homomorphism of the long
exact sequence of homology modules associated to our short exact sequence of chain
complexes is just the inclusion B ⊗H∗(Y ) −→ Z ⊗H∗(Y ). In particular, the long
exact sequence breaks up into short exact sequences

0 −→ B(X)⊗H∗(Y ) −→ Z(X)⊗H∗(Y ) −→ H∗(X ⊗ Y ) −→ 0.

However, since tensoring with H∗(Y ) is an exact functor, the cokernel of the inclu-
sion B ⊗H∗(Y ) −→ Z ⊗H∗(Y ) is H∗(X)⊗H∗(Y ). The conclusion follows. �

3. Hom functors and universal coefficients in cohomology

For a chain complex X = X∗, we define the dual cochain complex X∗ by setting

Xq = Hom(Xq, R) and dq = (−1)q Hom(dq+1, id).

As with tensor products, we understand Hom to mean HomR when R is clear from
the context. On elements, for an R-map f : Xq −→ R and an element x ∈ Xq+1,

(dqf)(x) = (−1)qf(dq(x)).
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More generally, for an R-module M , we define a cochain complex Hom(X,M) in
the same way. The sign is conventional and is designed to facilitate the definition
of Hom(X,Y ) for a chain complex X and cochain complex Y ; however, we shall
not have occasion to use the latter definition.

In analogy with the notation H∗(X;M) = H∗(X ⊗M), we write

H∗(X;M) = H∗(Hom(X,M)).

We have a cohomological version of the universal coefficient theorem. We assume
that the reader has seen Ext modules, which measure the failure of Hom to be
an exact functor. For a PID R, the only Ext module is the first one, denoted
Ext1R(M,N). It can be computed by constructing a short exact sequence

0 −→ F1 −→ F0 −→M −→ 0

and applying Hom to obtain an exact seqence

0 −→ Hom(M,N) −→ Hom(F0, N) −→ Hom(F1, N) −→ Ext1R(M,N) −→ 0,

where F1 and F0 are free R-modules.
For each n, define

α : Hn(Hom(X,M)) −→ Hom(Hn(X),M)

by letting α[f ]([x]) = f(x) for a cohomology class [f ] represented by a “cocycle”
f : Xn −→ M and a homology class [x] represented by a cycle x. It is easy to
check that f(x) is independent of the choices of f and x since x is a cycle and f is
a cocycle.

Theorem (Universal coefficient). Let R be a PID and let X be a free chain
complex over R. Then, for each n, there is a natural short exact sequence

0 −→ Ext1R(Hn−1(X),M)
β−→ Hn(X;M) α−→ Hom(Hn(X),M) −→ 0.

The sequence splits, so that

Hn(X;M) ∼= Hom(Hn(X),M)⊕ Ext1R(Hn−1(X),M),

but the splitting is not natural.

Corollary. If R is a field, then

α : H∗(X;M) −→ Hom(H∗(X),M)

is a natural isomorphism.

Again, there is a technical point to be made here. If X is a complex of free
Abelian groups and M is an R-module, such as R itself, then

HomZ(X,M) ∼= HomR(X ⊗Z R,M).

One way to see this is to observe that, if B is a basis for a free Abelian group F , then
HomZ(F,M) and HomR(F ⊗ZR,M) are both in canonical bijective correspondence
with maps of sets B −→M . More algebraically, a homomorphism f : F −→M of
Abelian groups determines the corresponding map of R-modules as the composite
of f ⊗ id and the action of R on M :

F ⊗Z R −→M ⊗Z R −→M.
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4. Proof of the universal coefficient theorem

We need two properties of Ext in the proof. First, Ext1R(F,M) = 0 for a free
R-module F . Second, when R is a PID, a short exact sequence

0 −→ L′ −→ L −→ L′′ −→ 0

of R-modules gives rise to a six-term exact sequence

0 −→ Hom(L′′,M) −→ Hom(L,M) −→ Hom(L′,M)
δ−→ Ext1R(L′′,M) −→ Ext1R(L,M) −→ Ext1R(L′,M) −→ 0.

Proof of the universal coefficient theorem. We write Bn = Bn(X),
Zn = Zn(X), and Hn = Hn(X) to abbreviate notation. Since each Xn is a free
R-module and R is a PID, each Bn and Zn is also free. We have short exact
sequences

0 // Bn
in // Zn

πn // Hn
// 0

and

0 // Zn
jn // Xn

dn // Bn−1
σn

oo_ _ _ // 0;

we choose a splitting σn of the second. Writing f∗ = Hom(f,M) consistently, we
obtain a commutative diagram with exact rows and columns

0 0

��
0 // Hom(Hn,M)

π∗n // Hom(Zn,M)
i∗n //

OO

Hom(Bn,M)

d∗n+1

��
· · · // Hom(Xn−1,M)

d∗n //

j∗n−1

��

Hom(Xn,M)

j∗n

OO

d∗n+1 //

σ∗n
���
�
�

Hom(Xn+1,M) // · · ·

Hom(Zn−1,M)
i∗n−1

//

��

Hom(Bn−1,M) δ //

d∗n

OO

0

66lllllll
Ext1R(Hn−1,M) // 0

0 0

OO

By inspection of the diagram, we see that the canonical map α coincides with the
composite

Hn(X;M) = ker d∗n+1/ im d∗n = ker i∗nj
∗
n/ im d∗ni

∗
n−1

j∗n−→ imπ∗n
(π∗n)−1

−−−−→ Hom(Hn,M).

Since j∗n is an epimorphism, so is α. The kernel of α is im d∗n/ im d∗ni
∗
n−1, and

δ(d∗n)
−1 maps this group isomorphically onto Ext1R(Hn−1,M). The composite δσ∗n

induces the required splitting. �
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5. Relations between ⊗ and Hom

We shall need some observations about cochain complexes and tensor products,
and we first recall some general facts about the category of R-modules. For R-
modules L, M , and N , we have an adjunction

Hom(L⊗M,N) ∼= Hom(L,Hom(M,N)).

We also have a natural homomorphism

Hom(L,M)⊗N −→ Hom(L,M ⊗N),

and this is an isomorphism if either L or N is a finitely generated projective R-
module. Again, we have a natural map

Hom(L,M)⊗Hom(L′,M ′) −→ Hom(L⊗ L′,M ⊗M ′),

which is an isomorphism if L and L′ are finitely generated and projective or if L is
finitely generated and projective and M = R.

We can replace L and L′ by chain complexes and obtain similar maps, inserting
signs where needed. For example, a chain homotopy X ⊗I −→ X ′ between chain
maps f, g : X −→ X ′ induces a chain map

Hom(X ′,M) −→ Hom(X ⊗I ,M) ∼= Hom(I ,Hom(X,M)) ∼= Hom(X,M)⊗I ∗,

where I ∗ = Hom(I , R). It should be clear that this implies that our original
chain homotopy induces a homotopy of cochain maps

f∗ ' g∗ : Hom(X ′,M) −→ Hom(X,M).

If Y and Y ′ are cochain complexes, then we have the natural homomorphism

α : H∗(Y )⊗H∗(Y ′) −→ H∗(Y ⊗ Y ′)
given by α([y]⊗[y′]) = [y⊗y′], exactly as for chain complexes. (In fact, by regrading,
we may view this as a special case of the map for chain complexes.) The Künneth
theorem applies to this map. For its flatness hypothesis, it is useful to remember
that, for any Noetherian ring R, the dual Hom(F,R) of a free R-module is a flat
R-module.

As indicated above, if Y = Hom(X,M) and Y ′ = Hom(X ′,M ′) for chain
complexes X and X ′ and R-modules M and M ′, then we also have the map of
cochain complexes

ω : Hom(X,M)⊗Hom(X ′,M ′) −→ Hom(X ⊗X ′,M ⊗M ′)

specified by the formula

ω(f ⊗ f ′)(x⊗ x′) = (−1)(deg f ′)(deg x)f(x)⊗ f ′(x′).
We continue to write ω for the map it induces on cohomology, and we then have
the composite

ω ◦ α : H∗(X;M)⊗H∗(X ′;M ′) −→ H∗(X ⊗X ′;M ⊗M ′).

When M = M ′ = A is a commutative R-algebra, we may compose with the map

H∗(X ⊗X ′;A⊗A) −→ H∗(X ⊗X ′;A)

induced by the multiplication of A to obtain a map

H∗(X;A)⊗H∗(X ′;A) −→ H∗(X ⊗X ′;A).

We are especially interested in the case when R = Z and A is either Z or a field.



CHAPTER 18

Axiomatic and cellular cohomology theory

We give a treatment of cohomology that is precisely parallel to our treatment
of homology. The essential new feature is the cup product structure that makes
the cohomology of X with coefficients in a commutative ring R a commutative
graded R-algebra. This additional structure ties together the cohomology groups
in different degrees and is fundamentally important to most of the applications.

1. Axioms for cohomology

Fix an Abelian group π and consider pairs of spaces (X,A). We shall see that
π determines a “cohomology theory on pairs (X,A).”

Theorem. For integers q, there exist contravariant functors Hq(X,A;π) from
the homotopy category of pairs of spaces to the category of Abelian groups together
with natural transformations δ : Hq(A;π) −→ Hq+1(X,A;π), where Hq(X;π) is
defined to be Hq(X, ∅;π). These functors and natural transformations satisfy and
are characterized by the following axioms.

• DIMENSION If X is a point, then H0(X;π) = π and Hq(X;π) = 0 for
all other integers.
• EXACTNESS The following sequence is exact, where the unlabeled arrows

are induced by the inclusions A −→ X and (X, ∅) −→ (X,A):

· · · −→ Hq(X,A;π) −→ Hq(X;π) −→ Hq(A;π) δ−→ Hq+1(X,A;π) −→ · · · .

• EXCISION If (X;A,B) is an excisive triad, so that X is the union of the
interiors of A and B, then the inclusion (A,A ∩ B) −→ (X,B) induces
an isomorphism

H∗(X,B;π) −→ H∗(A,A ∩B;π).

• ADDITIVITY If (X,A) is the disjoint union of a set of pairs (Xi, Ai),
then the inclusions (Xi, Ai) −→ (X,A) induce an isomorphism

H∗(X,A;π) −→
∏
iH

∗(Xi, Ai;π).

• WEAK EQUIVALENCE If f : (X,A) −→ (Y,B) is a weak equivalence,
then

f∗ : H∗(Y,B;π) −→ H∗(X,A;π)

is an isomorphism.

We write f∗ instead of H∗(f) or Hq(f). As in homology, our approximation
theorems for spaces, pairs, maps, homotopies, and excisive triads directly imply
that such a theory determines and is determined by an appropriate theory defined
on CW pairs, as spelled out in the following CW version of the theorem.

137
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Theorem. For integers q, there exist functors Hq(X,A;π) from the homo-
topy category of pairs of CW complexes to the category of Abelian groups together
with natural transformations δ : Hq(A) −→ Hq+1(X,A;π), where Hq(X;π) is de-
fined to be Hq(X, ∅;π). These functors and natural transformations satisfy and are
characterized by the following axioms.

• DIMENSION If X is a point, then H0(X;π) = π and Hq(X;π) = 0 for
all other integers.
• EXACTNESS The following sequence is exact, where the unlabeled arrows

are induced by the inclusions A −→ X and (X, ∅) −→ (X,A):

· · · −→ Hq(X,A;π) −→ Hq(X;π) −→ Hq(A;π) δ−→ Hq+1(X,A;π) −→ · · · .
• EXCISION If X is the union of subcomplexes A and B, then the inclusion

(A,A ∩B) −→ (X,B) induces an isomorphism

H∗(X,B;π) −→ H∗(A,A ∩B;π).

• ADDITIVITY If (X,A) is the disjoint union of a set of pairs (Xi, Ai),
then the inclusions (Xi, Ai) −→ (X,A) induce an isomorphism

H∗(X,A;π) −→
∏
iH

∗(Xi, Ai;π).

Such a theory determines and is determined by a theory as in the previous theorem.

2. Cellular and singular cohomology

We define the cellular cochains of a CW pair (X,A) with coefficients in an
Abelian group π to be

C∗(X,A;π) = Hom(C∗(X,A), π).

We then define the cellular cohomology groups to be

H∗(X,A;π) = H∗(C∗(X,A;π)).

If M is a module over a commutative ring R, we have a natural identification

C∗(X,A;M) ∼= HomR(C∗(X,A)⊗R,M)

which allows us to do homological algebra over R rather than over Z when conve-
nient. In particular, if R is a field, then

H∗(X,A;M) ∼= HomR(H∗(X,A;R),M).

In general, with R = Z, we have a natural and splittable short exact sequence

0 −→ Ext1Z(Hn−1(X,A), π) −→ Hn(X,A;π) −→ Hom(Hn(X,A), π) −→ 0.

The verification of the axioms listed in the previous section is immediate, as
in homology. The fact that cellularly homotopic maps induce the same map on
cohomology uses our observations relating homotopies of chain complexes with
homotopies of cochain complexes. For exactness, the fact that our chain complexes
are free over Z implies that we have a short exact sequence of cochain complexes

0 −→ C∗(X,A;π) −→ C∗(X;π) −→ C∗(A;π) −→ 0.

The required natural long exact sequence follows. The rest is the same as in ho-
mology.

For general spaces X, we can use ΓX = |S∗X| as a canonical CW approxi-
mation functor. We define the singular cochains of X to be the cellular cochains
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of ΓX. Then our passage from the cohomology of CW complexes to the cohomol-
ogy of general spaces can be realized by taking the cohomology of singular cochain
complexes.

3. Cup products in cohomology

If X and Y are CW complexes, we have an isomorphism

C∗(X × Y ) ∼= C∗(X)⊗ C∗(Y )

of chain complexes and therefore, for any Abelian groups π and π′, an isomorphism
of cochain complexes

C∗(X × Y ;π ⊗ π′) ∼= Hom(C∗(X)⊗ C∗(Y ), π ⊗ π′).

By our observations about cochain complexes, there results a natural homomor-
phism

H∗(X;π)⊗H∗(Y ;π′) −→ H∗(X × Y ;π ⊗ π′).
If X = Y and if π = π′ = R is a commutative ring, we can use the diagonal map
∆ : X −→ X ×X and the product R⊗R −→ R to obtain a “cup product”

∪ : H∗(X;R)⊗R H∗(X;R) −→ H∗(X;R).

More precisely, for p ≥ 0 and q ≥ 0, we have a product

∪ : Hp(X;R)⊗R Hq(X;R) −→ Hp+q(X;R).

We have noted that we can use C∗(X;R) instead of C∗(X) and so justify tensoring
over R rather than Z. This product makes H∗(X;R) into a graded unital, asso-
ciative, and “commutative” R-algebra. Here commutativity is understood in the
appropriate graded sense, namely

xy = (−1)pqyx if degx = p and deg y = q.

The image of 1 ∈ R = H0(∗;R) under the map π∗ : H0(∗;R) −→ H0(X;R)
induced by the unique map π : X −→ {∗} is the unit (= identity element) for
the product. In fact, the diagrams that say that H∗(X;R) is unital, associative,
and commutative result by passing to cohomology from the evident commutative
diagrams

X

∆

�� KKKKKKKKKK

KKKKKKKKKK

tttttttttt

tttttttttt

X × ∗ X ×X
id×π
oo

π×id
// ∗ ×X,

X
∆ //

∆

��

X ×X

∆×id

��
X ×X

id×∆
// X ×X ×X,

and
X

∆

{{ww
ww

ww
ww

w
∆

##H
HH

HH
HH

HH

X ×X
t

// X ×X.
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Here t : X × Y −→ Y × X is the transposition, t(x, y) = (y, x). The following
diagrams commute in homology and cohomology with cofficients in R:

H∗(X)⊗R H∗(Y )

τ

��

α // H∗(X × Y )

t∗

��
H∗(Y )⊗R H∗(X) α // H∗(Y ×X)

and
H∗(X)⊗R H∗(Y )

τ

��

α // H∗(X × Y )

t∗

��
H∗(Y )⊗R H∗(X) α // H∗(Y ×X).

In both diagrams,

τ(x⊗ y) = (−1)pqy ⊗ x if degx = p and deg y = q.

The reason is that, on the topological level, t permutes p-cells past q-cells and, on
the level of cellular chains, this involves the transposition

Sp+q = Sp ∧ Sq −→ Sq ∧ Sp = Sp+q.

We leave it as an exercise that this map has degree (−1)pq. It is this fact that forces
the cup product to be commutative in the graded sense.

In principle, the way to compute cup products is to pass to cellular chains from
a cellular approximation to the diagonal map ∆. The point is that ∆ fails to be
cellular since it carries the n-skeleton of X to the 2n-skeleton of X×X. In practice,
this does not work very well and more indirect means of computation must be used.

4. An example: RPn and the Borsuk-Ulam theorem

Remember that RPn is a CW complex with one q-cell for each q ≤ n. The
differential on Cq(RPn) ∼= Z is zero if q is odd and multiplication by 2 if q is
even. When we dualize to C∗(RPn), we find that the differential on Cq(RPn) is
multiplication by 2 if q is odd and zero if q is even. We read off that

Hq(RPn; Z) =


Z if q = 0
Z2 if 0 < q ≤ n and q is even
Z if q = n is odd
0 otherwise.

If we work mod 2, taking Z2 as coefficient group, then the answer takes a nicer
form, namely

Hq(RPn; Z2) =

{
Z2 if 0 ≤ q ≤ n
0 if q > n.

The reader may find it instructive to compare with the calculations in homology,
checking the correctness of the calculation by comparison with the universal coef-
ficient theorem.

We shall later use Poincaré duality to give a quick proof that the cohomol-
ogy algebra H∗(RPn; Z2) is a truncated polynomial algebra Z2[x]/(xn+1), where
deg x = 1. That is, for 1 ≤ q ≤ n, the unique non-zero element of Hq(RPn; Z2)
is the qth power of x. This means that the elements are so tightly bound together
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that knowledge of the cohomological behavior of a map f : RPm −→ RPn on coho-
mology in degree one determines its behavior on cohomology in all higher degrees.
We assume that m ≥ 1 and n ≥ 1 to avoid triviality.

Proposition. Let f : RPm −→ RPn be a map such that f∗ : π1(RPm) −→
π1(RPn) is non-zero. Then m ≤ n.

Proof. Since π1(RP 1) = Z and π1(RPm) = Z2 ifm ≥ 2, the result is certainly
true if n = 1. Thus assume that n > 1 and assume for a contradiction that
m > n. By the naturality of the Hurewicz isomorphism, f∗ : H1(RPm; Z) −→
H1(RPn; Z) is non-zero. By our universal coefficient theorems, the same is true
for mod 2 homology and for mod 2 cohomology. That is, if x is the non-zero
element of H1(RPn; Z2), then f∗(x) is the non-zero element of H1(RPm; Z2). By
the naturality of cup products

(f∗(x))m = f∗(xm).

However, the left side is non-zero in Hm(RPm; Z2) and the right side is zero since
xm = 0 by our assumption that m > n. The contradiction establishes the conclu-
sion. �

We use this fact together with covering space theory to prove a celebrated result
known as the Borsuk-Ulam theorem. A map g : Sm −→ Sn is said to be antipodal
if it takes pairs of antipodal points to pairs of antipodal points. It then induces a
map f : RPm −→ RPn such that the following diagram commutes:

Sm
g //

pm

��

Sn

pn

��
RPm

f
// RPn,

where pm and pn are the canonical coverings.

Theorem. If m > n ≥ 1, then there exist no antipodal maps Sm −→ Sn.

Proof. Suppose given an antipodal map g : Sm −→ Sn. According to the
proposition, f∗ : π1(RPm) −→ π1(RPn) is zero. According to the fundamental
theorem of covering space theory, there is a map f̃ : RPm −→ Sn such that
pn ◦ f̃ = f . Let s ∈ Sm. Then f̃(pm(s)) = f̃(pm(−s)) must be either g(s) or g(−s),
since these are the only two points in p−1

n (f(pm(s))). Thus either t = s or t = −s
satisfies f̃(pm(t)) = g(t). Therefore, by the fundamental theorem of covering space
theory, the maps f̃ ◦ pm and g must be equal since they agree on a point. This is
absurd: f̃ ◦ pm takes antipodal points to the same point, while g was assumed to
be antipodal. �

Theorem (Borsuk-Ulam). For any continuous map f : Sn −→ Rn, there exists
x ∈ Sn such that f(x) = f(−x).

Proof. Suppose for a contradiction that f(x) 6= f(−x) for all x. We could
then define a continuous antipodal map g : Sn −→ Sn−1 by letting g(x) be the
point at which the vector from 0 through f(x)− f(−x) intersects Sn−1. �
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5. Obstruction theory

We give an outline of one of the most striking features of cohomology: the
cohomology groups of a space X with coefficients in the homotopy groups of a
space Y control the construction of homotopy classes of maps X −→ Y . As a
matter of motivation, this helps explain why one is interested in general coefficient
groups. It also explains why the letter π is so often used to denote coefficient
groups.

Definition. Fix n ≥ 1. A connected space X is said to be n-simple if π1(X)
is Abelian and acts trivially on the homotopy groups πq(X) for q ≤ n; X is said to
be simple if it is n-simple for all n.

Let (X,A) be a relative CW complex with relative skeleta Xn and let Y be an
n-simple space. The assumption on Y has the effect that we need not worry about
basepoints. Let f : Xn −→ Y be a map. We ask when f can be extended to a map
Xn+1 −→ Y that restricts to the given map on A.

If we compose the attaching maps Sn → X of cells of X \A with f , we obtain
elements of πn(Y ). These elements specify a well defined “obstruction cocycle”

cf ∈ Cn+1(X,A;πn(Y )).

Clearly, by considering extensions cell by cell, f extends to Xn+1 if and only if
cf = 0. This is not a computable criterion. However, if we allow ourselves to
modify f a little, then we can refine the criterion to a cohomological one that often
is computable. If f and f ′ are maps Xn → Y and h is a homotopy rel A of the
restrictions of f and f ′ to Xn−1, then f , f ′, and h together define a map

h(f, f ′) : (X × I)n −→ Y.

Applying ch(f,f ′) to cells j × I, we obtain a “deformation cochain”

df,f ′,h ∈ Cn(X,A;πn(Y ))

such that δdf,f ′,h = cf − cf ′ . Moreover, given f and d, there exists f ′ that coin-
cides with f on Xn−1 and satisfies df,f ′ = d, where the constant homotopy h is
understood. This gives the following result.

Theorem. For f : Xn −→ Y , the restriction of f to Xn−1 extends to a map
Xn+1 → Y if and only if [cf ] = 0 in Hn+1(X,A;πn(Y )).

It is natural to ask further when such extensions are unique up to homotopy,
and a similar argument gives the answer.

Theorem. Given maps f, f ′ : Xn → Y and a homotopy rel A of their restric-
tions to Xn−1, there is an obstruction class in Hn(X,A;πn(Y )) that vanishes if
and only if the restriction of the given homotopy to Xn−2 extends to a homotopy
f ' f ′ rel A.

PROBLEMS
The first few problems here are parallel to those at the end of Chapter 16.
(1) LetX be a space that satisfies the hypotheses used to construct a universal

cover X̃ and let A be an Abelian group. Using cellular or singular chains,
show that

C∗(X;A) ∼= HomZ[π](C∗(X̃), A).
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(2) Show that there is an isomorphism

H∗(K(π, 1);A) ∼= Ext∗Z[π](Z, A).

When A is a commutative ring, the Ext groups have algebraically defined
products, constructed as follows. The evident isomorphism Z ∼= Z⊗ Z is
covered by a map of free Z[π]-resolutions P −→ P ⊗ P , where Z[π] acts
diagonally on tensor products, α(x ⊗ y) = αx ⊗ αy. This chain map is
unique up to chain homotopy. It induces a map of chain complexes

HomZ[π](P,A)⊗HomZ[π](P,A) −→ HomZ[π](P,A)

and therefore an induced product on Ext∗Z[π](Z, A). Convince yourself
that the isomorphism above preserves products and explain the intuition
(don’t worry about technical exactitude).

(3) * Now use homological algebra to determine H∗(RP∞; Z2) as a ring.
(4) Use the previous problem to deduce the ring structure on H∗(RPn; Z2)

for each n ≥ 1.
(5) Let p : Y −→ X be a covering space with finite fibers, say of cardinality n.

Construct a “transfer homomorphism” t : H∗(Y ;A) −→ H∗(X;A) and
show that t ◦ p∗ : H∗(X;A) −→ H∗(X;A) is multiplication by n.

(6) Let X and Y be CW complexes. Show that the interchange map

t : X × Y −→ Y ×X

satisfies t∗([i] ⊗ [j]) = (−1)pq[j] ⊗ [i] for a p-cell of X and a q-cell of Y .
Deduce that the cohomology ring H∗(X) is commutative in the graded
sense:

x ∪ y = (−1)pqy ∪ x if degx = p and deg y = q.

An “H-space” is a space X with a basepoint e and a product φ : X ×X −→
X such that the maps λ : X −→ X and ρ : X −→ X given by left and right
multiplication by e are each homotopic to the identity map. Note that λ and ρ
specify a map X ∨ X −→ X that is homotopic to the codiagonal or folding map
5, which restricts to the identity on each wedge summand. The following two
problems are optional review exercises.

7. If e is a nondegenerate basepoint for X, then φ is homotopic to a product
φ′ such that left and right multiplication by e under the product φ′ are
both identity maps.

8. Show that the product on π1(X, e) induced by the based map φ′ : X ×
X −→ X agrees with the multiplication given by composition of paths
and that both products are commutative.

9. For an H-space X, the following diagram is commutative:

X ×X

φ

��

∆×∆ // X ×X ×X ×X
id×t×id // X ×X ×X ×X

φ×φ
��

X
∆

// X ×X

(Check it: it is too trivial to write down.) Let X be (n − 1)-connected,
n ≥ 2, and let x ∈ Hn(X).
(a) Show that φ∗(x) = x⊗ 1 + 1⊗ x.
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(b) Show that

(∆×∆)∗(id× t× id)∗(φ× φ)∗(x⊗ x) = x2 ⊗ 1 + (1 + (−1)n)(x⊗ x) + 1⊗ x2.

(c) Prove that, if n is even, then either 2(x ⊗ x) = 0 in H∗(X ×X) or
x2 6= 0. Deduce that Sn cannot be an H-space if n is even.



CHAPTER 19

Derivations of properties from the axioms

Returning to the axiomatic approach to cohomology, we assume given a theory
on pairs of spaces and give some deductions from the axioms. This may be viewed
as a dualized review of what we did in homology, and we generally omit the proofs.
The only significant difference that we will encounter is in the computation of the
cohomology of colimits. In a final section, we show the uniqueness of (ordinary)
cohomology with coefficients in π.

Prior to that section, we make no use of the dimension axiom in this chapter. A
“generalized cohomology theory” E∗ is defined to be a system of functors Eq(X,A)
and natural transformations δ : Eq(A) −→ Eq+1(X,A) that satisfy all of our axioms
except for the dimension axiom. Similarly, we have the notion of a generalized
cohomology theory on CW pairs, and the following result holds.

Theorem. A cohomology theory E∗ on pairs of spaces determines and is de-
termined by its restriction to a cohomology theory E∗ on pairs of CW complexes.

1. Reduced cohomology groups and their properties

For a based space X, we define the reduced cohomology of X to be

Ẽq(X) = Eq(X, ∗).
There results a direct sum decomposition

E∗(X) ∼= Ẽ∗(X)⊕ E∗(∗)
that is natural with respect to based maps. For ∗ ∈ A ⊂ X, the summand E∗(∗)
maps isomorphically under the map E∗(X) −→ E∗(A), and the exactness axiom
implies that there is a reduced long exact sequence

· · · −→ Ẽq−1(A) δ−→ Eq(X,A) −→ Ẽq(X) −→ Ẽq(A) −→ · · · .
The unreduced cohomology groups are recovered as the special cases

E∗(X) = Ẽ∗(X+)

of reduced ones, and similarly for maps. Relative cohomology groups are also special
cases of reduced ones.

Theorem. For any cofibration i : A −→ X, the quotient map q : (X,A) −→
(X/A, ∗) induces an isomorphism

Ẽ∗(X/A) = E∗(X/A, ∗) ∼= E∗(X,A).

We may replace any inclusion i : A −→ X by the canonical cofibration A −→
Mi and then apply the result just given to obtain an isomorphism

E∗(X,A) ∼= Ẽ∗(Ci).
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Theorem. For a nondegenerately based space X, there is a natural isomor-
phism

Σ : Ẽq(X) ∼= Ẽq+1(ΣX).

Corollary. Let ∗ ∈ A ⊂ X, where i : A −→ X is a cofibration between
nondegenerately based spaces. In the long exact sequence

· · · −→ Ẽq−1(A) δ−→ Ẽq(X/A) −→ Ẽq(X) −→ Ẽq(A) −→ · · ·
of the pair (X,A), the connecting homomorphism δ is the composite

Ẽq−1(A) Σ−→ Ẽq(ΣA) ∂∗−→ Ẽq(X/A).

Corollary. For any n and q,

Ẽq(Sn) ∼= Ẽq−n(∗).

2. Axioms for reduced cohomology

Definition. A reduced cohomology theory Ẽ∗ consists of functors Ẽq from
the homotopy category of nondegenerately based spaces to the category of Abelian
groups that satisfy the following axioms.

• EXACTNESS If i : A −→ X is a cofibration, then the sequence

Ẽq(X/A) −→ Ẽq(X) −→ Ẽq(A)

is exact.
• SUSPENSION For each integer q, there is a natural isomorphism

Σ : Ẽq(X) ∼= Ẽq+1(ΣX).

• ADDITIVITY If X is the wedge of a set of nondegenerately based spaces
Xi, then the inclusions Xi −→ X induce an isomorphism

Ẽ∗(X) −→
∏
i Ẽ

∗(Xi).

• WEAK EQUIVALENCE If f : X −→ Y is a weak equivalence, then

f∗ : Ẽ∗(Y ) −→ Ẽ∗(X)

is an isomorphism.

The reduced form of the dimension axiom would read

H̃0(S0) = π and H̃q(S0) = 0 for q 6= 0.

Theorem. A cohomology theory E∗ on pairs of spaces determines and is de-
termined by a reduced cohomology theory Ẽ∗ on nondegenerately based spaces.

Definition. A reduced cohomology theory Ẽ∗ on based CW complexes con-
sists of functors Ẽq from the homotopy category of based CW complexes to the
category of Abelian groups that satisfy the following axioms.

• EXACTNESS If A is a subcomplex of X, then the sequence

Ẽq(X/A) −→ Ẽq(X) −→ Ẽq(A)

is exact.
• SUSPENSION For each integer q, there is a natural isomorphism

Σ : Ẽq(X) ∼= Ẽq+1(ΣX).
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• ADDITIVITY If X is the wedge of a set of based CW complexes Xi,
then the inclusions Xi −→ X induce an isomorphism

Ẽ∗(X) −→
∏
i Ẽ

∗(Xi).

Theorem. A reduced cohomology theory Ẽ∗ on nondegenerately based spaces
determines and is determined by its restriction to a reduced cohomology theory on
based CW complexes.

Theorem. A cohomology theory E∗ on CW pairs determines and is determined
by a reduced cohomology theory Ẽ∗ on based CW complexes.

3. Mayer-Vietoris sequences in cohomology

We have Mayer-Vietoris sequences in cohomology just like those in homology.
The proofs are the same. Poincaré duality between the homology and cohomology of
manifolds will be proved by an inductive comparison of homology and cohomology
Mayer-Vietoris sequences. We record two preliminaries.

Proposition. For a triple (X,A,B), the following sequence is exact:

· · ·Eq−1(A,B) δ−→ Eq(X,A)
j∗−→ Eq(X,B) i∗−→ Eq(A,B) −→ · · · .

Here i : (A,B) −→ (X,B) and j : (X,B) −→ (X,A) are inclusions and δ is the
composite

Eq−1(A,B) −→ Eq−1(A) δ−→ Eq(X,A).

Now let (X;A,B) be an excisive triad and set C = A ∩B.

Lemma. The map

E∗(X,C) −→ E∗(A,C)⊕ E∗(B,C)

induced by the inclusions of (A,C) and (B,C) in (X,C) is an isomorphism.

Theorem (Mayer-Vietoris sequence). Let (X;A,B) be an excisive triad and
set C = A ∩B. The following sequence is exact:

· · · −→ Eq−1(C) ∆∗

−−→ Eq(X)
φ∗−→ Eq(A)⊕ Eq(B)

ψ∗−−→ Eq(C) −→ · · · .
Here, if i : C −→ A, j : C −→ B, k : A −→ X, and ` : B −→ X are the inclusions,
then

φ∗(χ) = (k∗(χ), `∗(χ)) and ψ∗(α, β) = i∗(α)− j∗(β)
and ∆∗ is the composite

Eq−1(C) δ−→ Eq(A,C) ∼= Eq(X,B) −→ Eq(X).

For the relative version, let X be contained in some ambient space Y .

Theorem (Relative Mayer-Vietoris sequence). The following sequence is exact:

· · · −→ Eq−1(Y,C) ∆∗

−−→ Eq(Y,X)
φ∗−→ Eq(Y,A)⊕ Eq(Y,B)

ψ∗−−→ Eq(Y,C) −→ · · · .
Here, if i : (Y,C) −→ (Y,A), j : (Y,C) −→ (Y,B), k : (Y,A) −→ (Y,X), and
` : (Y,B) −→ (Y,X) are the inclusions, then

φ∗(χ) = (k∗(χ), `∗(χ)) and ψ∗(α, β) = i∗(α)− j∗(β)

and ∆∗ is the composite

Eq−1(Y,C) −→ Eq−1(A,C) ∼= Eq−1(X,B) δ−→ Eq(Y,X).
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Corollary. The absolute and relative Mayer-Vietoris sequences are related
by the following commutative diagram:

Eq−1(C) ∆∗
//

δ

��

Eq(X)
φ∗ //

δ

��

Eq(A)⊕ Eq(B)
ψ∗ //

δ+δ

��

Eq(C)

δ

��
Eq(Y,C)

∆∗
// Eq+1(Y,X)

φ∗
// Eq+1(Y,A)⊕ Eq+1(Y,B)

ψ∗
// Eq+1(Y,C).

4. Lim1 and the cohomology of colimits

In this section, we let X be the union of an expanding sequence of subspaces
Xi, i ≥ 0. We shall use the additivity and weak equivalence axioms and the Mayer-
Vietoris sequence to explain how to compute E∗(X). The answer is more subtle
than in homology because, algebraically, limits are less well behaved than colimits:
they are not exact functors from diagrams of Abelian groups to Abelian groups.
Rather than go into the general theory, we simply display how the “first right
derived functor” lim1 of an inverse sequence of Abelian groups can be computed.

Lemma. Let fi : Ai+1 −→ Ai, i ≥ 1, be a sequence of homomorphisms of
Abelian groups. Then there is an exact sequence

0 −→ lim Ai
β−→

∏
iAi

α−→
∏
iAi −→ lim1Ai −→ 0,

where α is the difference of the identity map and the map with coordinates fi and
β is the map whose projection to Ai is the canonical map given by the definition of
a limit.

That is, we may as well define lim1Ai to be the displayed cokernel. We then
have the following result.

Theorem. For each q, there is a natural short exact sequence

0 −→ lim1Eq−1(Xi) −→ Eq(X) π−→ lim Eq(Xi) −→ 0,

where π is induced by the inclusions Xi −→ X.

Proof. We use the notations and constructions in the proof that homology
commutes with colimits and consider the excisive triad (tel Xi;A,B) with C =
A ∩B constructed there. By the additivity axiom,

E∗(A) =
∏
iE

∗(X2i), E∗(B) =
∏
iE

∗(X2i+1), and E∗(C) =
∏
iE

∗(Xi).
We construct the following commutative diagram, whose top row is the cohomology
Mayer-Vietoris sequence of the triad (tel Xi;A,B) and whose bottom row is an
exact sequence of the sort displayed in the previous lemma.
· · · // Eq(tel Xi) //

∼=

��

Eq(A) ⊕ Eq(B) //

∼=

��

Eq(C) //

∼=
��

Eq+1(tel Xi)

∼=
��

// · · ·

· · · // Eq(X)
β′ //

π′

��

Q
Eq(Xi)

α′ //

Q
(−1)i

��

Q
i Eq(Xi)

Q
i(−1)i

��

// Eq+1(X) // · · ·

0 // lim Eq(Xi)
β // Q

i Eq(Xi)
α // Q

i Eq(Xi) // lim1 Eq(Xi) // 0.

The commutativity of the bottom middle square is a comparison based on the sign
used in the Mayer-Vietoris sequence. Here the map π′ differs by alternating signs



5. THE UNIQUENESS OF THE COHOMOLOGY OF CW COMPLEXES 149

from the canonical map π, but this does not affect the conclusion. A chase of the
diagram implies the result. �

The lim1 “error terms” are a nuisance, and it is important to know when they
vanish. We say that an inverse sequence fi : Ai+1 −→ Ai satisfies the Mittag-Leffler
condition if, for each fixed i, there exists j ≥ i such that, for every k > j, the image
of the composite Ak −→ Ai is equal to the image of the composite Aj −→ Ai. For
example, this holds if all but finitely many of the fi are epimorphisms or if the Ai
are all finite. As a matter of algebra, we have the following vanishing result.

Lemma. If the inverse sequence fi : Ai+1 −→ Ai satisfies the Mittag-Leffler
condition, then lim1 Ai = 0.

For example, for q < n, the inclusion Xn −→ Xn+1 of skeleta in a CW complex
induces an isomorphism Hq(Xn+1;π) −→ Hq(Xn;π) and we conclude that the
canonical map

Hq(X;π) −→ Hq(Xn;π)
is an isomorphism for q < n. This is needed in the proof of the uniqueness of
ordinary cohomology.

5. The uniqueness of the cohomology of CW complexes

As with homology, one reason for defining ordinary cohomology with coeffi-
cients in an Abelian group π in terms of cellular cochains is the inevitability of the
definition. If we assume given a theory that satisfies the axioms, we see that the
cochains with coefficients in π of a CW complex X can be redefined by

Cn(X;π) = Hn(Xn, Xn−1;π),

with differential
d : Cn(X;π) −→ Cn+1(X;π)

the composite

Hn(Xn, Xn−1;π) −→ Hn(Xn) δ−→ Hn+1(Xn+1, Xn).

That is, the following result holds.

Theorem. C∗(X;π) as just defined is isomorphic to Hom(C∗(X), π).

We define the reduced cochains C̃∗(X;π) of a based space X to be the kernel
of the map C∗(X;π) −→ C∗(∗;π) induced by the inclusion {∗} −→ X. For a CW
pair (X,A), we define C∗(X,A;π) to be the kernel of the epimorphism

C∗(X;π) −→ C∗(A;π)

induced by the inclusion A −→ X. The analogue of the previous result for re-
duced and relative cochains follows directly. This leads to a uniqueness theorem
for cohomology just like that for homology.

Theorem. There is a natural isomorphism

H∗(X,A;π) ∼= H∗(C∗(X,A;π))

under which the natural transformation δ agrees with the natural transformation
induced by the connecting homomorphisms associated to the short exact sequences

0 −→ C∗(X,A;π) −→ C∗(X;π) −→ C∗(A;π) −→ 0.
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Proof. It suffices to obtain a natural isomorphism of reduced theories on
based CW complexes X. We have seen that H̃q(X;π) ∼= H̃q(Xn;π) for q < n, and
we obtain a diagram dual to that used in the proof of the analogue in homology by
arrow reversal. We leave further details as an exercise for the reader. �

PROBLEMS
(1) Complete the proof of the uniqueness theorem for cohomology.

In the following sequence of problems, we take cohomology with coefficients in
a commutative ring R and we write ⊗ for ⊗R.

2. Let A and B be subspaces of a space X. Construct a relative cup product

Hp(X,A)⊗Hq(X,B) −→ Hp+q(X,A ∪B)

and show that the following diagram is commutative:

Hp(X,A)⊗Hq(X,B) //

��

Hp+q(X,A ∪B)

��
Hp(X)⊗Hq(X) // Hp+q(X).

The horizontal arrows are cup products; the vertical arrows are induced
from X −→ (X,A), and so forth.

3. Let X have a basepoint ∗ ∈ A ∩B. Deduce a commutative diagram

Hp(X,A)⊗Hq(X,B) //

��

Hp+q(X,A ∪B)

��
H̃p(X)⊗ H̃q(X) // H̃p+q(X).

4. Let X = A ∪B, where A and B are contractible and A ∩B 6= ∅. Deduce
that the cup product

H̃p(X)⊗ H̃q(X) −→ H̃p+q(X)

is the zero homomorphism.
5. Let X = ΣY = Y ∧ S1. Deduce that the cup product

H̃p(X)⊗ H̃q(X) −→ H̃p+q(X)

is the zero homomorphism.
Commentary: Additively, cohomology groups are “stable,” in the sense that

H̃p(Y ) ∼= H̃p+1(ΣY ).

Cup products are “unstable,” in the sense that they vanish on suspensions. This
is an indication of how much more information they carry than the mere additive
groups. The proof given by this sequence of exercises actually applies to any “mul-
tiplicative” cohomology theory, that is, any theory that has suitable cup products.
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The Poincaré duality theorem

The crucial starting point for applications of algebraic topology to geometric
topology is the Poincaré duality theorem. It gives a tight algebraic constraint on
the homology and cohomology groups of compact manifolds.

1. Statement of the theorem

It is apparent that there is a kind of duality relating the construction of ho-
mology and cohomology. In its simplest form, this is reflected by the fact that
evaluation of cochains on chains gives a natural homomorphism

Cp(X;π)⊗ Cp(X; ρ) −→ π ⊗ ρ.
This passes to homology and cohomology to give an evaluation pairing

Hp(X;π)⊗Hp(X; ρ) −→ π ⊗ ρ.
Taking π = ρ to be a commutative ring R and using its product, there results a
pairing

Hp(X;R)⊗R Hp(X;R) −→ R.

It is usually written 〈α, x〉 for α ∈ Hp(X;R) and x ∈ Hp(X;R). When R is a field
and the Hp(X;R) are finite dimensional vector spaces, the adjoint of this pairing
is an isomorphism

Hp(X;R) ∼= HomR(Hp(X;R), R).
That is, the cohomology groups of X are the vector space duals of the homology
groups of X.

Now let M be a compact manifold of dimension n. We shall study manifolds
without boundary in this chapter, turning to manifolds with boundary in the next.
We do not assume that M is differentiable. It is known that M can be given the
structure of a finite CW complex, and its homology and cohomology groups are
therefore finitely generated. When M is differentiable, it is not hard to prove this
using Morse theory, but it is a deep theorem in the general topological case. We
shall not go into the proof but shall take the result as known.

We have the cup product

Hp(M ;R)⊗Hn−p(M ;R) −→ Hn(M ;R).

If R is a field and M is “R-orientable,” then there is an “R-fundamental class”
z ∈ Hn(M ;R). The composite of the cup product and evaluation on z gives a cup
product pairing

Hp(M ;R)⊗Hn−p(M ;R) −→ R.

One version of the Poincaré duality theorem asserts that this pairing is nonsingular,
so that its adjoint is an isomorphism

Hp(M ;R) ∼= HomR(Hn−p(M ;R), R) ∼= Hn−p(M ;R).
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In fact, Poincaré duality does not require the commutative ring R to be a field, and
it is useful to allow R-modules π as coefficients in our homology and cohomology
groups. We shall gradually make sense of and prove the following theorem.

Theorem (Poincaré duality). Let M be a compact R-oriented n-manifold.
Then, for an R-module π, there is an isomorphism

D : Hp(M ;π) −→ Hn−p(M ;π).

We shall define the notion of an R-orientation and an R-fundamental class of
a manifold in §3, and we shall later prove the following result.

Proposition. If M is a compact n-manifold, then an R-orientation of M
determines and is determined by an R-fundamental class z ∈ Hn(M ;R).

The isomorphism D is given by the adjoint of the cup product pairing deter-
mined by z, but it is more convenient to describe it in terms of the “cap product.”
For any space X and R-module π, there is a cap product

∩ : Hp(X;π)⊗R Hn(X;R) −→ Hn−p(X;π).

We shall define it in the next section. The isomorphism D is specified by

D(α) = α ∩ z.
When π = R, we shall prove that the cap product, cup product, and evaluation
pairing are related by the fundamental identity

〈α ∪ β, x〉 = 〈β, α ∩ x〉.
Taking x = z, this shows that in this case D is adjoint to the cup product pairing
determined by z.

We explain a few consequences before beginning to fill in the details and proofs.
Let M be a connected compact oriented (= Z-oriented) n-manifold. Taking inte-
ger coefficients, we have D : Hp(M) ∼= Hn−p(M). With p = 0, this shows that
Hn(M) ∼= Z with generator the fundamental class z. With p = n, it shows that
Hn(M) ∼= Z with generator ζ dual to z, 〈ζ, z〉 = 1. The relation between ∪ and ∩
has the following consequence.

Corollary. Let Tp ⊂ Hp(M) be the torsion subgroup. The cup product pair-
ing α⊗ β −→ 〈αβ, z〉 induces a nonsingular pairing

Hp(M)/Tp ⊗Hn−p(M)/Tn−p −→ Z.

Proof. If α ∈ Tp, say rα = 0, and β ∈ Hn−p(M), then r(α∪β) = 0 and there-
fore α ∪ β = 0 since Hn(M) = Z. Thus the pairing vanishes on torsion elements.
Since Ext1Z(Zr,Z) = Zr and each Hp(M) is finitely generated, Ext1Z(H∗(M),Z) is
a torsion group. By the universal coefficient theorem, this implies that

Hp(M)/Tp = Hom(Hp(M),Z).

Thus, if α ∈ Hp(M) projects to a generator of the free Abelian group Hp(M)/Tp,
then there exists a ∈ Hp(M) such that 〈α, a〉 = 1. By Poincaré duality, there exists
β ∈ Hn−p(M) such that β ∩ z = a. Then

〈β ∪ α, z〉 = 〈α, β ∩ z〉 = 1. �

We shall see that any simply connected manifold, such as CPn, is orientable.
The previous result allows us to compute the cup products of CPn.
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Corollary. As a graded ring, H∗(CPn) is the truncated polynomial algebra
Z[α]/(αn+1), where degα = 2. That is, H2q(CPn) is the free Abelian group with
generator αq for 1 ≤ q ≤ n.

Proof. We know that CPn is a CW complex with one 2q-cell for each q,
0 ≤ q ≤ n. Therefore the conclusion is correct additively: H2q(CPn) is a free
Abelian group on one generator for 0 ≤ q ≤ n. Moreover CPn−1 is the (2n − 1)-
skeleton of CPn, and the inclusion CPn−1 −→ CPn therefore induces an isomor-
phism H2q(CPn) −→ H2q(CPn−1) for q < n. We proceed by induction on n, the
conclusion being obvious for CP 1 ∼= S2. The induction hypothesis implies that if
α generates H2(CPn), then αq generates H2q(CPn) for q < n. By the previous
result, there exists β ∈ H2n−2(CPn) such that 〈α ∪ β, z〉 = 1. Clearly β must be a
generator, so that β = ±αn−1, and therefore αn must generate H2n(CPn). �

In the presence of torsion in the cohomology of M , it is convenient to work
with coefficients in a field. We shall see that an oriented manifold is R-oriented for
any commutative ring R. The same argument as for integer coefficients gives the
following more convenient nonsingular pairing result.

Corollary. Let M be a connected compact R-oriented n-manifold, where R
is a field. Then α⊗ β −→ 〈α ∪ β, z〉 defines a nonsingular pairing

Hp(M ;R)⊗R Hn−p(M ;R) −→ R.

We shall see that every manifold is Z2-oriented, and an argument exactly like
that for CPn allows us to compute the cup products in H∗(RPn; Z2). We used this
information in our proof of the Borsuk-Ulam theorem.

Corollary. As a graded ring, H∗(RPn; Z2) is the truncated polynomial al-
gebra Z2[α]/(αn+1), where degα = 1. That is, αq is the non-zero element of
Hq(RPn; Z2) for 1 ≤ q ≤ n.

2. The definition of the cap product

To define the cap product, we may as well assume that X is a CW complex,
by CW approximation. The diagonal map ∆ : X −→ X ×X is not cellular, but it
is homotopic to a cellular map ∆′. Thus we have a chain map

∆′
∗ : C∗(X) −→ C∗(X ×X) ∼= C∗(X)⊗ C∗(X).

It carries Cn(X) to
∑
Cp(X) ⊗ Cn−p(X). Tensoring over a commutative ring R

and using that R ∼= R⊗R R, we obtain

∆′
∗ : C∗(X;R) −→ C∗(X ×X;R) ∼= C∗(X;R)⊗R C∗(X;R).

For an R-module π, we define

∩ : C∗(X;π)⊗R C∗(X;R) −→ C∗(X;π)
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to be the composite

C∗(X;π)⊗R C∗(X;R)

id⊗∆′
∗

��
C∗(X;π)⊗R C∗(X;R)⊗R C∗(X;R)

ε⊗id

��
π ⊗R C∗(X;R) ∼= C∗(X;π).

Here ε evaluates cochains on chains. Precisely, it must be interpreted as zero on
Cp(X;π)⊗R Cq(X;R) if p 6= q and the evident evaluation map

HomR(Cp(X;R), π)⊗R Cp(X;R) −→ π

if p = q. Therefore the cap product is given degreewise by maps

∩ : Cp(X;π)⊗R Cn(X;R) −→ Cn−p(X;π).

To understand this, it makes sense to think in terms of C∗(X;π) regraded by neg-
ative degrees and so thought of as a chain complex rather than a cochain complex.
Our convention on cochains that (dα)(x) = (−1)p+1α(dx) for α ∈ Cp(X;π) and
x ∈ Cp+1(X;R) means that ε ◦ d = 0, where d is the tensor product differential on
the chain complex C∗(X;π)⊗R C∗(X;R). That is, ε is a map of chain complexes,
where π is thought of as a chain complex concentrated in degree zero, with zero
differential. It follows that ∩ is a chain map. That is,

d(α ∩ x) = (dα) ∩ x+ (−1)degαα ∩ dx.

Using the evident natural map from the tensor product of homologies to the ho-
mology of a tensor product, we see that ∩ passes to homology to induce a pairing

∩ : H∗(X;π)⊗R H∗(X;R) −→ H∗(X;π).

To relate the cap and cup products, recall that the latter is induced by

∆′∗ : C∗(X;R)⊗R C∗(X;R) ∼= C∗(X ×X;R) −→ C∗(X;R).

It is trivial that the following diagram commutes:

C∗(X ×X;R)⊗R C∗(X;R)
id⊗∆′

∗//

∆′∗⊗id

��

C∗(X ×X;R)⊗R C∗(X ×X;R)

ε

��
C∗(X;R)⊗R C∗(X;R)

ε
// R.

We may identify the chains and cochains of X × X on the top row with tensor
products of chains and cochains of X. After this identification, the right-hand map
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ε becomes the composite

C∗(X;R)⊗R C∗(X;R)⊗R C∗(X;R)⊗R C∗(X;R)

id⊗t⊗id

��
C∗(X;R)⊗R C∗(X;R)⊗R C∗(X;R)⊗R C∗(X;R)

ε⊗ε
��

R⊗R R ∼= R.

Noting the agreement of signs introduced by the two maps t, we see that this
composite is the same as the composite

C∗(X;R)⊗R C∗(X;R)⊗R C∗(X;R)⊗R C∗(X;R)

t⊗id⊗ id

��
C∗(X;R)⊗R C∗(X;R)⊗R C∗(X;R)⊗R C∗(X;R)

id⊗ε⊗id

��
C∗(X;R)⊗R C∗(X;R)

ε

��
R.

Inspecting definitions, we see that, on elements, these observations prove the fun-
damental identity

〈α ∪ β, x〉 = 〈β, α ∩ x〉.
For use in the proof of the Poincaré duality theorem, we observe that the cap

product generalizes to relative cap products

∩ : Hp(X,A;π)⊗R Hn(X,A;R) −→ Hn−p(X;π)

and
∩ : Hp(X;π)⊗R Hn(X,A;R) −→ Hn−p(X,A;π)

for pairs (X,A). Indeed, we may assume that (X,A) is a CW pair and that ∆′

restricts to a map A −→ A × A that is homotopic to the diagonal of A. Via the
quotient map X −→ X/A, ∆′ induces relative diagonal approximations

∆′
∗ : C∗(X,A;R) −→ C∗(X,A;R)⊗ C∗(X;R)

and
∆′
∗ : C∗(X,A;R) −→ C∗(X;R)⊗ C∗(X,A;R).

These combine with the evident evaluation maps to give the required relative cap
products.

3. Orientations and fundamental classes

Let M be an n-manifold, not necessarily compact; the extra generality will be
crucial to our proof of the Poincaré duality theorem. For x ∈ M , we can choose
a coordinate chart U ∼= Rn with x ∈ U . By excision, exactness, and homotopy
invariance, we have isomorphisms

Hi(M,M − x) ∼= Hi(U,U − x) ∼= H̃i−1(U − x) ∼= H̃i−1(Sn−1).
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This holds with any coefficient group, but we agree to take coefficients in a given
commutative ring R. Thus Hi(M,M − x) = 0 if i 6= n and Hn(M,M − x) ∼=
R. We think of Hn(M,M − x) as a free R-module on one generator, but the
generator (which corresponds to a unit of the ring R) is unspecified. Intuitively, an
R-orientation of M is a consistent choice of generators.

Definition. An R-fundamental class of M at a subspace X is an element
z ∈ Hn(M,M −X) such that, for each x ∈ X, the image of z under the map

Hn(M,M −X) −→ Hn(M,M − x)

induced by the inclusion (M,M −X) −→ (M,M − x) is a generator. If X = M ,
we refer to z ∈ Hn(M) as a fundamental class of M . An R-orientation of M is an
open cover {Ui} and R-fundamental classes zi of M at Ui such that if Ui ∩ Uj is
non-empty, then ui and uj map to the same element of Hn(M,M − Ui ∩ Uj).

We say that M is R-orientable if it admits an R-orientation. When R = Z,
we refer to orientations and orientability. There are various equivalent ways of
formulating these notions. We leave it as an exercise for the reader to reconcile
the present definition of orientability with any other definition he or she may have
seen.

Clearly an R-fundamental class z determines an R-orientation: given any open
cover {Ui}, we take zi to be the image of z in Hn(M,M −Ui). The converse holds
when M is compact. To show this, we need the following vanishing theorem, which
we shall prove in the next section.

Theorem (Vanishing). Let M be an n-manifold. For any coefficient group π,
Hi(M ;π) = 0 if i > n, and H̃n(M ;π) = 0 if M is connected and is not compact.

We can use this together with Mayer-Vietoris sequences to construct R-fun-
damental classes at compact subspaces from R-orientations. To avoid trivialities,
we tacitly assume that n > 0. (The trivial case n = 0 forced the use of reduced
homology in the statement; where arguments use reduced homology below, it is
only to ensure that what we write is correct in dimension zero.)

Theorem. Let K be a compact subset of M . Then, for any coefficient group
π, Hi(M,M − K;π) = 0 if i > n, and an R-orientation of M determines an R-
fundamental class of M at K. In particular, if M is compact, then an R-orientation
of M determines an R-fundamental class of M .

Proof. First assume that K is contained in a coordinate chart U ∼= Rn. By
excision and exactness, we then have

Hi(M,M −K;π) ∼= Hi(U,U −K;π) ∼= H̃i−1(U −K;π).

Since U −K is open in U , the vanishing theorem implies that H̃i−1(U −K;π) = 0
for i > n. In fact, a lemma used in the proof of the vanishing theorem will prove
this directly. In this case, an R-fundamental class in Hn(M,M − U) maps to an
R-fundamental class in Hn(M,M −K). A general compact subset K of M can be
written as the union of finitely many compact subsets, each of which is contained
in a coordinate chart. By induction, it suffices to prove the result for K ∪ L under
the assumption that it holds for K, L, and K ∩ L. With any coefficients, we have
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the Mayer-Vietoris sequence

· · · −→ Hi+1(M,M −K ∩ L) ∆−→ Hi(M,M −K ∪ L)
ψ−→ Hi(M,M −K)⊕Hi(M,M − L)

φ−→ Hi(M,M −K ∩ L) −→ · · · .

The vanishing of Hi(M,M −K ∪ L;π) for i > n follows directly. Now take i = n
and take coefficients in R. Then ψ is a monomorphism. The R-fundamental classes
zK ∈ Hn(M,M −K) and zL ∈ Hn(M,M −L) determined by a given R-orientation
both map to the R-fundamental class zK∩L ∈ Hn(M,M −K ∩ L) determined by
the given R-orientation. Therefore

φ(zK , zL) = zK∩L − zK∩L = 0

and there exists a unique zK∪L ∈ Hn(M,M −K ∪ L) such that

ψ(zK∪L) = (zK , zL).

Clearly zK∪L is an R-fundamental class of M at K ∪ L. �

The vanishing theorem also implies the following dichotomy, which we have
already noticed in our examples of explicit calculations.

Corollary. Let M be a connected compact n-manifold, n > 0. Then either
M is not orientable and Hn(M ; Z) = 0 or M is orientable and the map

Hn(M ; Z) −→ Hn(M,M − x; Z) ∼= Z

is an isomorphism for every x ∈M .

Proof. Since M − x is connected and not compact, Hn(M − x;π) = 0 and
thus

Hn(M ;π) −→ Hn(M,M − x;π) ∼= π

is a monomorphism for all coefficient groups π. In particular, by the universal
coefficient theorem,

Hn(M ; Z)⊗ Zq −→ Hn(M,M − x; Z)⊗ Zq ∼= Zq
is a monomorphism for all positive integers q. If Hn(M ; Z) 6= 0, then Hn(M ; Z) ∼= Z
with generator mapped to some multiple of a generator of Hn(M,M − x; Z). By
the mod q monomorphism, the coefficient must be ±1. �

As an aside, the corollary leads to a striking example of the failure of the nat-
urality of the splitting in the universal coefficient theorem. Consider a connected,
compact, non-orientable n-manifold M . Let x ∈ M and write Mx for the pair
(M,M − x). Since M is Z2-orientable, the middle vertical arrow in the following
diagram is an isomorphism between copies of Z2:

0 // Hn(M)⊗ Z2
//

0

��

Hn(M ; Z2) //

∼=
��

TorZ
1 (Hn−1(M),Z2) //

0

��

0

0 // Hn(Mx)⊗ Z2
// Hn(Mx; Z2) // TorZ

1 (Hn−1(Mx),Z2) // 0.

Clearly Hn−1(M,M − x) = 0, and the corollary gives that Hn(M) = 0. Thus the
left and right vertical arrows are zero. If the splittings of the rows were natural,
this would imply that the middle vertical arrow is also zero.



158 THE POINCARÉ DUALITY THEOREM

4. The proof of the vanishing theorem

Let M be an n-manifold, n > 0. Take all homology groups with coefficients
in a given Abelian group π in this section. We must prove the intuitively obvious
statement that Hi(M) = 0 for i > n and the much more subtle statement that
Hn(M) = 0 if M is connected and is not compact. The last statement is perhaps
the technical heart of our proof of the Poincaré duality theorem.

We begin with the general observation that homology is “compactly supported”
in the sense of the following result.

Lemma. For any space X and element x ∈ Hq(X), there is a compact subspace
K of X and an element k ∈ Hq(K) that maps to x.

Proof. Let γ : Y −→ X be a CW approximation of X and let x = γ∗(y). If y
is represented by a cycle z ∈ Cq(Y ), then z, as a finite linear combination of q-cells,
is an element of Cq(L) for some finite subcomplex L of Y . Let K = γ(L) and let
k be the image of the homology class represented by z. Then K is compact and k
maps to x. �

We need two lemmas about open subsets of Rn to prove the vanishing theorem,
the first of which is just a special case.

Lemma. If U is open in Rn, then Hi(U) = 0 for i ≥ n.

Proof. Let s ∈ Hi(U), i ≥ n. There is a compact subspace K of U and an
element k ∈ Hi(K) that maps to s. We may decompose Rn as a CW complex
whose n-cells are small n-cubes in such a way that there is a finite subcomplex L of
Rn with K ⊂ L ⊂ U . (To be precise, use a cubical grid with small enough mesh.)
For i > 0, the connecting homomorphisms ∂ are isomorphisms in the commutative
diagram

Hi+1(Rn, L) //

∂

��

Hi+1(Rn, U)

∂

��
Hi(L) // Hi(U).

Since (Rn, L) has no relative q-cells for q > n, the groups on the left are zero for
i ≥ n. Since s is in the image of Hi(L), s = 0. �

Lemma. Let U be open in Rn. Suppose that t ∈ Hn(Rn, U) maps to zero in
Hn(Rn,Rn − x) for all x ∈ Rn − U . Then t = 0.

Proof. We prove the equivalent statement that if s ∈ H̃n−1(U) maps to zero
in H̃n−1(Rn − x) for all x ∈ Rn − U , then s = 0. Choose a compact subspace K
of U such that s is in the image of H̃n−1(K). Then K is contained in an open
subset V whose closure V̄ is compact and contained in U , hence s is the image of
an element r ∈ H̃n−1(V ). We claim that r maps to zero in H̃n−1(U), so that s = 0.
Of course, r maps to zero in H̃n−1(Rn−x) if x 6∈U . Let T be an open contractible
subset of Rn such that V̄ ⊂ T and T̄ is compact. For example, T could be a large
enough open cube. Let L = T − (T ∩ U). For each x ∈ L̄, choose a closed cube
D that contains x and is disjoint from V . A finite set {D1, . . ., Dq} of these cubes
covers L̄. Let Ci = Di ∩ T and observe that (Rn −Di) ∩ T = T − Ci. We see by



4. THE PROOF OF THE VANISHING THEOREM 159

induction on p that r maps to zero in H̃n−1(T − (C1 ∪ · · · ∪ Cp)) for 0 ≤ p ≤ q.
This is clear if p = 0. For the inductive step, observe that

T − (C1 ∪ · · · ∪ Cp) = (T − (C1 ∪ · · · ∪ Cp−1)) ∩ (Rn −Dp)

and that Hn((T − (C1 ∪ · · · ∪ Cp−1)) ∪ (Rn − Dp)) = 0 by the previous lemma.
Therefore the map

H̃n−1(T − (C1 ∪ · · · ∪ Cp)) −→ H̃n−1(T − (C1 ∪ · · · ∪ Cp−1))⊕ H̃n−1(Rn −Dp)

in the Mayer-Vietoris sequence is a monomorphism. Since r ∈ H̃n−1(V ) maps to
zero in the two right-hand terms, by the induction hypothesis and the contractibility
of Dp to a point x 6∈U , it maps to zero in the left-hand term. Since

V ⊂ T − (C1 ∪ · · · ∪ Cq) ⊂ T ∩ U ⊂ U,

this implies our claim that r maps to zero in H̃n−1(U). �

Proof of the vanishing theorem. Let s ∈ Hi(M). We must prove that
s = 0 if i > n and if i = n when M is connected and not compact. Choose
a compact subspace K of M such that s is in the image of Hi(K). Then K is
contained in some finite union U1 ∪ · · · ∪ Uq of coordinate charts, and it suffices to
prove that Hi(U1∪· · ·∪Uq) = 0 for the specified values of i. Inductively, using that
Hi(U) = 0 for i ≥ n when U is an open subset of a coordinate chart, it suffices to
prove that Hi(U ∪V ) = 0 for the specified values of i when U is a coordinate chart
and V is an open subspace of M such that Hi(V ) = 0 for the specified values of i.
We have the Mayer-Vietoris sequence

Hi(U)⊕Hi(V ) −→ Hi(U ∪ V ) −→ H̃i−1(U ∩ V ) −→ H̃i−1(U)⊕ H̃i−1(V ).

If i > n, the vanishing of Hi(U ∪ V ) follows immediately. Thus assume that M
is connected and not compact and consider the case i = n. We have Hn(U) = 0,
Hn(V ) = 0, and H̃n−1(U) = 0. It follows that Hn(U ∪ V ) = 0 if and only if
i∗ : H̃n−1(U ∩ V ) −→ H̃n−1(V ) is a monomorphism, where i : U ∩ V −→ V is the
inclusion.

We claim first that Hn(M) −→ Hn(M,M − y) is the zero homomorphism for
any y ∈M . If x ∈M and L is a path in M connecting x to y, then the diagram

Hn(M,M − x)

Hn(M) // Hn(M,M − L)

∼=
66lllllllllllll

∼= ((RRRRRRRRRRRRR

Hn(M,M − y)

shows that if s ∈ Hn(M) maps to zero in Hn(M,M − x), then it maps to zero in
Hn(M,M − y). If s is in the image of Hn(K) where K is compact, we may choose
a point x ∈ M − K. Then the map K −→ M −→ (M,M − x) factors through
(M − x,M − x) and therefore s maps to zero in Hn(M,M − x). This proves our
claim.
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Now consider the following diagram, where y ∈ U − U ∩ V :

Hn(U ∪ V ) //

vvmmmmmmmmmmmmm
Hn(M)

0

��
Hn(V,U ∩ V )

∂

��

// Hn(U ∪ V,U ∩ V )

∂vvlllllllllllll
// Hn(M,M − y)

H̃n−1(U ∩ V )

i∗

��

Hn(U,U ∩ V )
∂

oo //

OO

Hn(U,U − y)

∼=

OO

H̃n−1(V ).

Let r ∈ ker i∗. Since H̃n−1(U) = 0, the bottom map ∂ is an epimorphism and
there exists s ∈ Hn(U,U ∩ V ) such that ∂(s) = r. We claim that s maps to zero in
Hn(U,U − y) for every y ∈ U − (U ∩ V ). By the previous lemma, this will imply
that s = 0 and thus r = 0, so that i∗ is indeed a monomorphism. Since i∗(r) = 0,
there exists t ∈ Hn(V,U ∩ V ) such that ∂(t) = r. Let s′ and t′ be the images of s
and t in Hn(U ∪ V,U ∩ V ). Then ∂(s′ − t′) = 0, hence there exists w ∈ Hn(U ∪ V )
that maps to s′ − t′. Since w maps to zero in Hn(M,M − y), so does s′ − t′. Since
the map (V,U ∩ V ) −→ (M,M − y) factors through (M − y,M − y), t and thus
also t′ maps to zero in Hn(M,M − y). Therefore s′ maps to zero in Hn(M,M − y)
and thus s maps to zero in Hn(U,U − y), as claimed. �

5. The proof of the Poincaré duality theorem

Let M be an R-oriented n-manifold, not necessarily compact. Unless otherwise
specified, we take homology and cohomology with coefficients in a given R-module
π in this section. Remember that homology is a covariant functor with compact
supports. Cohomology is a contravariant functor, and it does not have compact
supports. We would like to prove the Poincaré duality theorem by inductive com-
parisons of Mayer-Vietoris sequences, and the opposite variance of homology and
cohomology makes it unclear how to proceed. To get around this, we introduce a
variant of cohomology that does have compact supports and has enough covariant
functoriality to allow us to proceed by comparisons of Mayer-Vietoris sequences.

Consider the set K of compact subspaces K of M . This set is directed under
inclusion; to conform with our earlier discussion of colimits, we may view K as
a category whose objects are the compact subspaces K and whose maps are the
inclusions between them. We define

Hq
c (M) = colimHq(M,M −K),

where the colimit is taken with respect to the homomorphisms

Hq(M,M −K) −→ Hq(M,M − L)

induced by the inclusions (M,M − L) ⊂ (M,M − K) for K ⊂ L. This is the
cohomology of M with compact supports. Intuitively, thinking in terms of singular
cohomology, its elements are represented by cocycles that vanish off some compact
subspace.
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A map f : M −→ N is said to be proper if f−1(L) is compact in M when L is
compact in N . This holds, for example, if f is the inclusion of a closed subspace.
For such f , we obtain an induced homomorphism f∗ : H∗

c (N) −→ H∗
c (M) in an

evident way. However, we shall make no use of this contravariant functoriality.
What we shall use is a kind of covariant functoriality that will allow us to

compare long exact sequences in homology and cohomology. Explicitly, for an open
subspace U of M , we obtain a homomorphism Hq

c (U) −→ Hq
c (M) by passage to

colimits from the excision isomorphisms

Hq(U,U −K) −→ Hq(M,M −K)

for compact subspaces K of U .
For each compact subspace K of M , the R-orientation of M determines a

fundamental class zK ∈ Hn(M,M −K;R). Taking the relative cap product with
zK , we obtain a duality homomorphism

DK : Hp(M,M −K) −→ Hn−p(M).

If K ⊂ L, the following diagram commutes:

Hp(M,M −K) //

DK ((PPPPPPPPPPPP
Hp(M,M − L)

DLwwnnnnnnnnnnnn

Hn−p(M).

We may therefore pass to colimits to obtain a duality homomorphism

D : Hp
c (M) −→ Hn−p(M).

If U is open in M and is given the induced R-orientation, then the following natu-
rality diagram commutes:

Hp
c (U)

��

D // Hn−p(U)

��
Hp
c (M)

D
// Hn−p(M).

If M itself is compact, then M is cofinal among the compact subspaces of M .
Therefore Hp

c (M) = Hp(M), and the present duality map D coincides with that of
the Poincaré duality theorem as originally stated. We shall prove a generalization
to not necessarily compact manifolds.

Theorem (Poincaré duality). Let M be an R-oriented n-manifold. Then
D : Hp

c (M) −→ Hn−p(M) is an isomorphism.

Proof. We shall prove that D : Hp
c (U) −→ Hn−p(U) is an isomorphism for

every open subspace U of M . The proof proceeds in five steps.

Step 1. The result holds for any coordinate chart U .
We may take U = M = Rn. The compact cubes K are cofinal among the compact
subspaces of Rn. For such K and for x ∈ K,

Hp(Rn,Rn −K) ∼= Hp(Rn,Rn − x) ∼= H̃p−1(Sn−1) ∼= H̃p(Sn).

The maps of the colimit system defining Hp
c (Rn) are clearly isomorphisms. By the

definition of the cap product, we see that D : Hn(Rn,Rn − x) −→ H0(Rn) is an
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isomorphism. Therefore DK is an isomorphism for every compact cube K and so
D : Hn

c (Rn) −→ H0(Rn) is an isomorphism. �

Step 2. If the result holds for open subspaces U and V and their intersection,
then it holds for their union.
Let W = U ∩ V and Z = U ∪ V . The compact subspaces of Z that are unions
of a compact subspace K of U and a compact subspace L of V are cofinal among
all of the compact subspaces of Z. For such K and L, we have the following
commutative diagram with exact rows. We let J = K ∩L and N = K ∪L, and we
write UK = (U,U −K), and so on, to abbreviate notation.

// Hp(ZJ) //

∼=

��

Hp(ZK)⊕Hp(ZL) //

∼=

��

Hp(ZN ) // Hp+1(ZJ) //

∼=
��

// Hp(WJ) //

D

��

Hp(UK)⊕Hp(VL) //

D⊕D

��

Hp(ZN ) //

D

��

Hp+1(WJ) //

D

��
// Hn−p(W ) // Hn−p(U)⊕Hn−p(V ) // Hn−p(Z) // Hn−p−1(W ) //

The top row is the relative Mayer-Vietoris sequence of the triad (Z;Z−K,Z−L).
The middle row results from the top row by excision isomorphisms. The bottom
row is the absolute Mayer-Vietoris sequence of the triad (Z;U, V ). The left two
squares commute by naturality. The right square commutes by a diagram chase
from the definition of the cap product. The entire diagram is natural with respect
to pairs (K,L). We obtain a commutative diagram with exact rows on passage to
colimits, and the conclusion follows by the five lemma. �

Step 3. If the result holds for each Ui in a totally ordered set of open subspaces
{Ui}, then it holds for the union U of the Ui.
Any compact subspace K of U is contained in a finite union of the Ui and there-
fore in one of the Ui. Since homology is compactly supported, it follows that
colimHn−p(Ui) ∼= Hn−p(U). On the cohomology side, we have

colimi H
p
c (Ui) = colimi colim{K|K ⊂ Ui}H

p(Ui, Ui −K)
∼= colim{K ⊂ U} colim{i|K ⊂ Ui}H

p(Ui, Ui −K)
∼= colim{K ⊂ U}H

p(U,U −K) = Hp
c (U).

Here the first isomorphism is an (algebraic) interchange of colimits isomorphism:
both composite colimits are isomorphic to colimHp

c (Ui, Ui −K), where the colimit
runs over the pairs (K, i) such that K ⊂ Ui. The second isomorphism holds since
colim{i|K ⊂ Ui}H

p(Ui, Ui−K) ∼= Hp(U,U −K) because the colimit is taken over a
system of inverses of excision isomorphisms. The conclusion follows since a colimit
of isomorphisms is an isomorphism. �

Step 4. The result holds if U is an open subset of a coordinate neighborhood.
We may take M = Rn. If U is a convex subset of Rn, then U is homeomorphic
to Rn and Step 1 applies. Since the intersection of two convex sets is convex, it
follows by induction from Step 2 that the conclusion holds for any finite union of
convex open subsets of Rn. Any open subset U of Rn is the union of countably
many convex open subsets. By ordering them and letting Ui be the union of the
first i, we see that the conclusion for U follows from Step 3. �
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Step 5. The result holds for any open subset U of M .
We may as well take M = U . By Step 3, we may apply Zorn’s lemma to conclude
that there is a maximal open subset V of M for which the conclusion holds. If V is
not all of M , say x 6∈ V , we may choose a coordinate chart U such that x ∈ U . By
Steps 2 and 4, the result holds for U ∪ V , contradicting the maximality of V . �

This completes the proof of the Poincaré duality theorem. �

6. The orientation cover

There is an orientation cover of a manifold that helps illuminate the notion of
orientability. For the moment, we relax the requirement that the total space of a
cover be connected. Here we take homology with integer coefficients.

Proposition. Let M be a connected n-manifold. Then there is a 2-fold cover
p : M̃ −→M such that M̃ is connected if and only if M is not orientable.

Proof. Define M̃ to be the set of pairs (x, α), where x ∈ M and where α ∈
Hn(M,M − x) ∼= Z is a generator. Define p(x, α) = x. If U ⊂ M is open and
β ∈ Hn(M,M − U) is a fundamental class of M at U , define

〈U, β〉 = {(x, α)|x ∈ U and β maps to α}.

The sets 〈U, β〉 form a base for a topology on M̃ . In fact, if (x, α) ∈ 〈U, β〉 ∩ 〈V, γ〉,
we can choose a coordinate neighborhood W ⊂ U ∩ V such that x ∈ W . There is
a unique class α′ ∈ Hn(M,M −W ) that maps to α, and both β and γ map to α′.
Therefore

〈W,α′〉 ⊂ 〈U, β〉 ∩ 〈V, γ〉.
Clearly p maps 〈U, β〉 homeomorphically onto U and

p−1(U) = 〈U, β〉 ∪ 〈U,−β〉.

Therefore M̃ is an n-manifold and p is a 2-fold cover. Moreover, M̃ is oriented.
Indeed, if U is a coordinate chart and (x, α) ∈ 〈U, β〉, then the following maps all
induce isomorphisms on passage to homology:

(M̃, M̃ − 〈U, β〉)

��

(M,M − U)

��
(M̃, M̃ − (x, α)) (M,M − x)

(〈U, β〉, 〈U, β〉 − (x, α))

OO

p

∼=
// (U,U − x).

OO

Via the diagram, β ∈ Hn(M,M −U) specifies an element β̃ ∈ Hn(M̃, M̃ − 〈U, β〉),
and β̃ is independent of the choice of (x, α). These classes are easily seen to specify
an orientation of M̃ . Essentially by definition, an orientation of M is a cross
section s : M −→ M̃ : if s(U) = 〈U, β〉, then these β specify an orientation. Given
one section s, changing the signs of the β gives a second section −s such that
M̃ = im(s)q im(−s), showing that M̃ is not connected if M is oriented. �

The theory of covering spaces gives the following consequence.
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Corollary. If M is simply connected, or if π1(M) contains no subgroup of
index 2, then M is orientable. If M is orientable, then M admits exactly two
orientations.

Proof. If M is not orientable, then p∗(π1(M̃)) is a subgroup of π1(M) of
index 2. This implies the first statement, and the second statement is clear. �

We can use homology with coefficients in a commutative ring R to construct
an analogous R-orientation cover. It depends on the units of R. For example,
if R = Z2, then the R-orientation cover is the identity map of M since there
is a unique unit in R. This reproves the obvious fact that any manifold is Z2-
oriented. The evident ring homomorphism Z −→ R induces a natural homomor-
phism H∗(X; Z) −→ H∗(X;R), and we see immediately that an orientation of M
induces an R-orientation of M for any R.

PROBLEMS
(1) Prove: there is no homotopy equivalence f : CP 2n −→ CP 2n that reverses

orientation (induces multiplication by −1 on H4n(CP 2n)).
In the problems below, M is assumed to be a compact connected n-manifold

(without boundary), where n ≥ 2.
2. Prove that if M is a Lie group, then M is orientable.
3. Prove that if M is orientable, then Hn−1(M ; Z) is a free Abelian group.
4. Prove that ifM is not orientable, then the torsion subgroup ofHn−1(M ; Z)

is cyclic of order 2 and Hn(M ; Zq) is zero if q is odd and is cyclic of
order 2 if q is even. (Hint: use universal coefficients and the transfer
homomorphism of the orientation cover.)

5. Let M be oriented with fundamental class z. Let f : Sn −→M be a map
such that f∗(in) = qz, where in ∈ Hn(Sn; Z) is the fundamental class and
q 6= 0.
(a) Show that f∗ : H∗(Sn; Zp) −→ H∗(M ; Zp) is an isomorphism if p is

a prime that does not divide q.
(b) Show that multiplication by q annihilates Hi(M ; Z) if 1 ≤ i ≤ n− 1.

6. (a) Let M be a compact n-manifold. Suppose that M is homotopy equiv-
alent to ΣY for some connected based space Y . Deduce that M has
the same integral homology groups as Sn. (Hint: use the vanishing
of cup products on H̃∗(ΣY ) and Poincaré duality, treating the cases
M orientable and M non-orientable separately.)

(b) Deduce that M is homotopy equivalent to Sn. Does it follow that Y
is homotopy equivalent to Sn−1?

7. * Essay: The singular cohomologyH∗(M ; R) is isomorphic to the de Rham
cohomology of M . Why is this plausible? Sketch proof?



CHAPTER 21

The index of manifolds; manifolds with boundary

The Poincaré duality theorem imposes strong constraints on the Euler char-
acteristic of a manifold. It also leads to new invariants, most notably the index.
Moreover, there is a relative version of Poincaré duality in the context of manifolds
with boundary, and this leads to necessary algebraic conditions on the cohomology
of a manifold that must be satisfied if it is to be a boundary. In particular, the index
of a compact oriented 4n-manifold M is zero if M is a boundary. We shall later
outline the theory of cobordism, which leads to necessary and sufficient algebraic
conditions for a manifold to be a boundary.

1. The Euler characteristic of compact manifolds

The Euler characteristic χ(X) of a space with finitely generated homology is
defined by

χ(X) =
∑
i(−1)i rank Hi(X; Z).

The universal coefficient theorem implies that

χ(X) =
∑
i(−1)i dimHi(X;F )

for any field of coefficients F . Examination of the relevant short exact sequences
shows that

χ(X) =
∑
i(−1)i rank Ci(X; Z)

for any decomposition of X as a finite CW complex. The verifications of these
statements are immediate from earlier exercises.

Now consider a compact oriented n-manifold. Recall that we take it for granted
thatM can be decomposed as a finite CW complex, so that eachHi(M ; Z) is finitely
generated. By the universal coefficient theorem and Poincaré duality, we have

Hi(M ;F ) ∼= Hi(M ;F ) ∼= Hn−i(M ;F )

for any field F . We may take F = Z2, and so dispense with the requirement that
M be oriented. If n is odd, the summands of χ(M) cancel in pairs, and we obtain
the following conclusion.

Proposition. If M is a compact manifold of odd dimension, then χ(M) = 0.

If n = 2m and M is oriented, then

χ(M) =
∑m−1
i=0 (−1)i2 dimHi(M) + (−1)m dimHm(M)

for any field F of coefficients. Let us take F = Q. Of course, we can replace
homology by cohomology in the definition and formulas for χ(M). The middle
dimensional cohomology group Hm(M) plays a particularly important role. Recall
that we have the cup product pairing

φ : Hm(M)⊗Hm(M) −→ Q

165



166 THE INDEX OF MANIFOLDS; MANIFOLDS WITH BOUNDARY

specified by φ(α, β) = 〈α ∪ β, z〉. This pairing is nonsingular. Since α ∪ β =
(−1)mβ ∪α, it is skew symmetric if m is odd and is symmetric if m is even. When
m is odd, we obtain the following conclusion.

Proposition. If M is a compact oriented n-manifold, where n ≡ 2 mod 4,
then χ(M) is even.

Proof. It suffices to prove that dimHm(M) is even, where n = 2m, and this
is immediate from the following algebraic observation. �

Lemma. Let F be a field of characteristic 6= 2, V be a finite dimensional vector
space over F , and φ : V ×V −→ F be a nonsingular skew symmetric bilinear form.
Then V has a basis {x1, . . ., xr, y1, . . ., yr} such that φ(xi, yi) = 1 for 1 ≤ i ≤ r and
φ(z, w) = 0 for all other pairs of basis elements (z, w). Therefore the dimension of
V is even.

Proof. We proceed by induction on dimV , and we may assume that V 6= 0.
Since φ(x, y) = −φ(y, x), φ(x, x) = 0 for all x ∈ V . Choose x1 6= 0. Certainly there
exists y1 such that φ(x1, y1) = 1, and x1 and y1 are then linearly independent.
Define

W = {x|φ(x, x1) = 0 and φ(x, y1) = 0} ⊂ V.
That is, W is the kernel of the homomorphism ψ : V −→ F ×F specified by ψ(x) =
(φ(x, x1), φ(x, y1)). Since ψ(x1) = (0, 1) and ψ(y1) = (−1, 0), ψ is an epimorphism.
Thus dimW = dimV −2. Since φ restricts to a nonsingular skew symmetric bilinear
form on W , the conclusion follows from the induction hypothesis. �

2. The index of compact oriented manifolds

To study manifolds of dimension 4k, we consider an analogue for symmetric
bilinear forms of the previous algebraic lemma. Since we will need to take square
roots, we will work over R.

Lemma. Let V be a finite dimensional real vector space and φ : V × V −→ R
be a nonsingular symmetric bilinear form. Define q(x) = φ(x, x). Then V has
a basis {x1, . . ., xr, y1, . . ., ys} such that φ(z, w) = 0 for all pairs (z, w) of distinct
basis elements, q(xi) = 1 for 1 ≤ i ≤ r and q(yj) = −1 for 1 ≤ j ≤ s. The number
r − s is an invariant of φ, called the signature of φ.

Proof. We proceed by induction on dimV , and we may assume that V 6= 0.
Clearly q(rx) = r2q(x). Since we can take square roots in R, we can choose x1 ∈ V
such that q(x1) = ±1. Define ψ : V −→ R by ψ(x) = φ(x, x1) and let W = kerψ.
Since ψ(x1) = ±1, ψ is an epimorphism and dimW = dimV − 1. Since φ restricts
to a nonsingular symmetric bilinear form on W , the existence of a basis as specified
follows directly from the induction hypothesis. Invariance means that the integer
r− s is independent of the choice of basis on which q takes values ±1, and we leave
the verification to the reader. �

Definition. Let M be a compact oriented n-manifold. If n = 4k, define the
index ofM , denoted I(M), to be the signature of the cup product formH2k(M ; R)⊗
H2k(M ; R) −→ R. If n 6≡ 0 mod 4, define I(M) = 0.

The Euler characteristic and index are related by the following congruence.

Proposition. For any compact oriented n-manifold, χ(M) ≡ I(M) mod 2.



2. THE INDEX OF COMPACT ORIENTED MANIFOLDS 167

Proof. If n is odd, then χ(M) = 0 and I(M) = 0. If n ≡ 2 mod 4, then
χ(M) is even and I(M) = 0. If n = 4k, then I(M) = r − s, where r + s =
dimH2k(M ; R) ≡ χ(M) mod 2. �

Observe that the index of M changes sign if the orientation of M is reversed.
We write −M for M with the reversed orientation, and then I(−M) = −I(M).
We also have the following algebraic identities. Write H∗(M) = H∗(M ; R).

Lemma. If M and M ′ are compact oriented n-manifolds, then

I(M qM ′) = I(M) + I(M ′),

where M qM ′ is given the evident orientation induced from those of M and M ′.

Proof. There is nothing to prove unless n = 4k, in which case

H2k(M qM ′) = H2k(M)×H2k(M ′).

Clearly the cup product of an element of H∗(M) with an element of H∗(M ′) is
zero, and the cup product form on H2k(M qM ′) is given by

φ((x, x′), (y, y′)) = φ(x, y) + φ(x′, y′)

for x, y ∈ H2k(M) and x′, y′ ∈ H2k(M ′). The conclusion follows since the signature
of a sum of forms is the sum of the signatures. �

Lemma. Let M be a compact oriented m-manifold and N be a compact oriented
n-manifold. Then

I(M ×N) = I(M) · I(N),
where M ×N is given the orientation induced from those of M and N .

Proof. We must first make sense of the induced orientation on M ×N . For
CW pairs (X,A) and (Y,B), we have an identification of CW complexes

(X × Y )/(X ×B ∪A× Y ) ∼= (X/A) ∧ (Y/B)

and therefore an isomorphism

C∗(X × Y, X ×B ∪A× Y ) ∼= C∗(X,A)⊗ C∗(Y,B).

This implies a relative Künneth theorem for arbitrary pairs (X,A) and (Y,B). For
subspaces K ⊂M and L ⊂ N ,

(M ×N,M ×N −K × L) = (M ×N,M × (N − L) ∪ (M −K)×N).

In particular, for points x ∈M and y ∈ Y ,

(M ×N,M ×N − (x, y)) = (M ×N,M × (N − y) ∪ (M − x)×N).

Therefore fundamental classes zK of M at K and zL of N at L determine a
fundamental class zK×L of M × N at K × L. In particular, the image under
Hm(M)⊗Hn(N) −→ Hm+n(M ×N) of the tensor product of fundamental classes
of M and N is a fundamental class of M ×N .

Turning to the claimed product formula, we see that there is nothing to prove
unless m+ n = 4k, in which case

H2k(M ×N) =
∑

i+j=2k

Hi(M)⊗Hj(N).

The cup product form is given by

φ(x⊗ y, x′ ⊗ y′) = (−1)(deg y)(deg x′)+mn〈x ∪ x′, zM 〉〈y ∪ y′, zN 〉
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for x, x′ ∈ H∗(M) and y, y′ ∈ H∗(N). If m and n are odd, then the signature of
this form is zero. If m and n are even, then this form is the sum of the tensor
product of the cup product forms on the middle dimensional cohomology groups of
M and N and a form whose signature is zero. Here, if m and n are congruent to 2
mod 4, the signature is zero since the lemma of the previous section implies that the
signature of the tensor product of two skew symmetric forms is zero. When m and
n are congruent to 0 mod 4, the conclusion holds since the signature of the tensor
product of two symmetric forms is the product of their signatures. We leave the
detailed verifications of these algebraic statements as exercises for the reader. �

3. Manifolds with boundary

Let Hn = {(x1, . . ., xn)|xn ≥ 0} be the upper half-plane in Rn. Recall that an
n-manifold with boundary is a Hausdorff space M having a countable basis of open
sets such that every point of M has a neighborhood homeomorphic to an open
subset of Hn. A point x is an interior point if it has a neighborhood homeomorphic
to an open subset of Hn − ∂Hn ∼= Rn; otherwise it is a boundary point. It is a fact
called “invariance of domain” that if U and V are homeomorphic subspaces of Rn
and U is open, then V is open. Therefore, a homeomorphism of an open subspace
of Hn onto an open subspace of Hn carries boundary points to boundary points.

We denote the boundary of an n-manifold M by ∂M . Thus M is a manifold
without boundary if ∂M is empty; M is said to be closed if, in addition, it is
compact. The space ∂M is an (n− 1)-manifold without boundary.

It is a fundamental question in topology to determine which closed manifolds
are boundaries. The question makes sense with varying kinds of extra structure. For
example, we can ask whether or not a smooth (= differentiable) closed manifold is
the boundary of a smooth manifold (with the induced smooth structure). Numerical
invariants in algebraic topology give criteria. One such criterion is given by the
following consequence of the Poincaré duality theorem. Remember that χ(M) = 0
if M is a closed manifold of odd dimension.

Proposition. If M = ∂W , where W is a compact (2m + 1)-manifold, then
χ(M) = 2χ(W ).

Proof. The product W × I is a (2m+ 2)-manifold with

∂(W × I) = (W × {0}) ∪ (M × I) ∪ (W × {1}).

Let U = ∂(W × I) − (W × {1}) and V = ∂(W × I) − (W × {0}). Then U and V
are open subsets of ∂(W × I). Clearly U and V are both homotopy equivalent to
W and U ∩ V is homotopy equivalent to M . We have the Mayer-Vietoris sequence

Hi+1(U ∪ V ) // Hi(U ∩ V ) //

∼=
��

Hi(U)⊕Hi(V ) //

∼=
��

Hi(U ∪ V )

Hi+1(∂(W × I)) // Hi(M) // Hi(W )⊕Hi(W ) // Hi(∂(W × I)).

Therefore 2χ(W ) = χ(M)+χ(∂(W×I)). However, χ(∂(W×I)) = 0 since ∂(W×I)
is a closed manifold of odd dimension. �

Corollary. If M = ∂W for a compact manifold W , then χ(M) is even.
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For example, since χ(RP 2m) = 1 and χ(CPn) = n+1, this criterion shows that
RP 2m and CP 2m cannot be boundaries. Notice that we have proved that these are
not boundaries of topological manifolds, let alone of smooth ones.

4. Poincaré duality for manifolds with boundary

The index gives a more striking criterion: if a closed oriented 4k-manifold M is
the boundary of a (topological) manifold, then I(M) = 0. To prove this, we must
first obtain a relative form of the Poincaré duality theorem applicable to manifolds
with boundary.

We let M be an n-manifold with boundary, n > 0, throughout this section, and
we let R be a given commutative ring. We say that M is R-orientable (or orientable
if R = Z) if its interior M̊ = M − ∂M is R-orientable; similarly, an R-orientation
of M is an R-orientation of its interior. To study these notions, we shall need the
following result, which is intuitively clear but is somewhat technical to prove. In the
case of smooth manifolds, it can be seen in terms of inward-pointing unit vectors
of the normal line bundle of the embedding ∂M −→M .

Theorem (Topological collaring). There is an open neighborhood V of ∂M
in M such that the identification ∂M = ∂M × {0} extends to a homeomorphism
V ∼= ∂M × [0, 1).

It follows that the inclusion M̊ −→ M is a homotopy equivalence and the
inclusion ∂M −→ M is a cofibration. We take homology with coefficients in R in
the next two results.

Proposition. An R-orientation of M determines an R-orientation of ∂M .

Proof. Consider a coordinate chart U of a point x ∈ ∂M . If dimM = n, then
U is homeomorphic to an open half-disk in Hn. Let V = ∂U = U ∩ ∂M and let
y ∈ Ů = U − V . We have the following chain of isomorphisms:

Hn(M̊, M̊ − Ů) ∼= Hn(M̊, M̊ − y)
∼= Hn(M,M − y)
∼= Hn(M,M − Ů)
∂−→ Hn−1(M − Ů ,M − U)
∼= Hn−1(M − Ů , (M − Ů)− x)
∼= Hn−1(∂M, ∂M − x)
∼= Hn−1(∂M, ∂M − V ).

The first and last isomorphisms are restrictions of the sort that enter into the
definition of an R-orientation, and the third isomorphism is similar. We see by
use of a small boundary collar that the inclusion (M̊, M̊ − y) −→ (M,M − y) is
a homotopy equivalence, and that gives the second isomorphism. The connecting
homomorphism is that of the triple (M,M−Ů ,M−U) and is an isomorphism since
H∗(M,M − U) ∼= H∗(M,M) = 0. The isomorphism that follows comes from the
observation that the inclusion (M − Ů)− x −→M −U is a homotopy equivalence,
and the next to last isomorphism is given by excision of M̊ − Ů . The conclusion is
an easy consequence of these isomorphisms. �
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Proposition. If M is compact and R-oriented and z∂M ∈ Hn−1(∂M) is the
fundamental class determined by the induced R-orientation on ∂M , then there is a
unique element z ∈ Hn(M,∂M) such that ∂z = z∂M ; z is called the R-fundamental
class determined by the R-orientation of M .

Proof. Since M̊ is a non-compact manifold without boundary and M̊ −→M
is a homotopy equivalence, Hn(M) ∼= Hn(M̊) = 0 by the vanishing theorem. There-
fore ∂ : Hn(M,∂M) −→ Hn−1(∂M) is a monomorphism. Let V be a boundary
collar and let N = M − V . Then N is a closed subspace and a deformation retract
of the R-oriented open manifold M̊ , and we have

Hn(M̊, M̊ −N) ∼= Hn(M,M − M̊) = Hn(M,∂M).

Since M is compact, N is a compact subspace of M̊ . Therefore the R-orientation
of M̊ determines a fundamental class in Hn(M̊, M̊ − N). Let z be its image in
Hn(M,∂M). Then z restricts to a generator of Hn(M,M − y) ∼= Hn(M̊, M̊ − y)
for every y ∈ M̊ . Via naturality diagrams and the chain of isomorphisms in the
previous proof, we see that ∂z restricts to a generator of Hn−1(∂M, ∂M −x) for all
x ∈ ∂M and is the fundamental class determined by the R-orientation of ∂M . �

Theorem (Relative Poincaré duality). Let M be a compact R-oriented n-
manifold with R-fundamental class z ∈ Hn(M,∂M ;R). Then, with coefficients
taken in any R-module π, capping with z specifies duality isomorphisms

D : Hp(M,∂M) −→ Hn−p(M) and D : Hp(M) −→ Hn−p(M,∂M).

Proof. The following diagram commutes by inspection of definitions:

Hp−1(∂M) //

D

��

Hp(M,∂M) //

D

��

Hp(M) //

D

��

Hp(∂M)

D

��
Hn−p(∂M) // Hn−p(M) // Hn−p(M,∂M) // Hn−p−1(∂M).

Here D for ∂M is obtained by capping with ∂z and is an isomorphism. By the five
lemma, it suffices to prove that D : Hp(M) −→ Hn−p(M,∂M) is an isomorphism.
To this end, let N = M ∪∂M M be the “double” of M and let M1 and M2 be the
two copies of M in N . Clearly N is a compact manifold without boundary, and it
is easy to see that N inherits an R-orientation from the orientation on M1 and the
negative of the orientation on M2. Of course, ∂M = M1 ∩M2. If U is the union of
M1 and a boundary collar in M2 and V is the union of M2 and a boundary collar
in M1, then we have a Mayer-Vietoris sequence for the triad (N ;U, V ). Using the
evident equivalences of U with M1, V with M2, and U ∩V with ∂M , this gives the
exact sequence in the top row of the following commutative diagram. The bottom
row is the exact sequence of the pair (N, ∂M), and the isomorphism results from the
homeomorphism N/∂M ∼= (M1/∂M) ∨ (M2/∂M); we abbreviate N1 = (M1, ∂M)
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and N2 = (M2, ∂M):

Hp(N) //

D

��

Hp(M1)⊕Hp(M2)
ψ //

D⊕D
��

Hp(∂M)

D

��

∆ // Hp+1(N)

D

��
Hn−p(N) // Hn−p(N1)⊕Hn−p(N2) //

∼=
��

Hn−p−1(∂M) // Hn−p−1(N)

Hn−p(N) // Hn−p(N, ∂M) // Hn−p−1(∂M) // Hn−p−1(N).

The top left square commutes by naturality. In the top middle square, we have
ψ(x, y) = i∗1(x) − i∗2(y), where i1 : ∂M −→ M1 and i2 : ∂M −→ M2 are the
inclusions. Since D for M2 is the negative of D for M1 under the identifications
with M , the commutativity of this square follows from the relation D ◦ i∗ = ∂ ◦D :
Hp(M) −→ Hn−p−1(∂M), i : ∂M −→M , which holds by inspection of definitions.
For the top right square, ∆ is the the top composite in the diagram

Hp(∂M) δ //

D

��

Hp+1(M1, ∂M) ∼= Hp+1(N,M2)

D

��

// Hp+1(N)

D

��
Hn−p−1(∂M)

i1∗

// Hn−p−1(M1) // Hn−p−1(N).

The right square commutes by naturality, and D ◦ δ = i1∗ ◦ D by inspection of
definitions. By the five lemma, since the duality maps D for N and ∂M are iso-
morphisms, both maps D between direct summands must be isomorphisms. The
conclusion follows. �

5. The index of manifolds that are boundaries

We shall prove the following theorem.

Theorem. If M is the boundary of a compact oriented (4k+1)-manifold, then
I(M) = 0.

We first give an algebraic criterion for the vanishing of the signature of a form
and then show that the cup product form on the middle dimensional cohomology
of M satisfies the criterion.

Lemma. Let W be a n-dimensional subspace of a 2n-dimensional real vector
space V . Let φ : V × V −→ R be a nonsingular symmetric bilinear form such that
φ : W ×W −→ R is identically zero. Then the signature of φ is zero.

Proof. Let r and s be as in the definition of the signature. Then r + s = 2n
and we must show that r = s. We prove that r ≥ n. Applied to the form −φ, this
will also give that s ≥ n, implying the conclusion. We proceed by induction on n.
Let {x1, . . ., xn, z1, . . ., zn} be a basis for V , where {x1, . . ., xn} is a basis for W .
Define θ : V −→ Rn and ψ : V −→ Rn by

θ(x) = (φ(x, x1), . . ., φ(x, xn)) and ψ(x) = (φ(x, z1), . . ., φ(x, zn)).

Since φ is nonsingular, ker θ∩ kerψ = 0. Since ker θ and kerψ each have dimension
at least n, neither can have dimension more than n and θ and ψ must both be
epimorphisms. Choose y1 such that θ(y1) = (1, 0, . . ., 0). Let q(x) = φ(x, x) and
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note that q(x) = 0 if x ∈ W . Since q(x1) = 0 and φ(x1, y1) = 1, q(ax1 + y1) =
2a + q(y1) for a ∈ R. Taking a = (1 − q(y1))/2, we find q(ax1 + y1) = 1. If
n = 1, this gives r ≥ 1 and completes the proof. If n > 1, define ω : V −→ R2

by ω(x) = (φ(x, x1), φ(x, y1)). Since ω(x1) = (0, 1) and ω(y1) = (1, q(y1)), ω is
an epimorphism. Let V ′ = kerω and let W ′ ⊂ V ′ be the span of {x2, . . ., xn}.
The restriction of φ to V ′ satisfies the hypothesis of the lemma, and the induction
hypothesis together with the construction just given imply that r ≥ n. �

Take homology and cohomology with coefficients in R.

Lemma. Let M = ∂W , where W is a compact oriented (4k+ 1)-manifold, and
let i : M −→ W be the inclusion. Let φ : H2k(M) ⊗ H2k(M) −→ R be the cup
product form. Then the image of i∗ : H2k(W ) −→ H2k(M) is a subspace of half
the dimension of H2k(M) on which φ is identically zero.

Proof. Let z ∈ H4k+1(W,M) be the fundamental class. For α, β ∈ H2k(W ),

φ(i∗(α), i∗(β)) = 〈i∗(α ∪ β), ∂z〉 = 〈α ∪ β, i∗∂z〉 = 0

since i∗∂ = 0 by the long exact sequence of the pair (W,M). Thus φ is identically
zero on im i∗. The commutative diagram with exact rows

H2k(W ) i∗ //

D

��

H2k(M) δ //

D

��

H2k+1(W,M)

D

��
H2k+1(W,M)

∂
// H2k(M)

i∗
// H2k(W )

implies that H2k(M) ∼= im i∗ ⊕ im δ ∼= im i∗ ⊕ im i∗. Since i∗ and i∗ are dual
homomorphisms, im i∗ and im i∗ are dual vector spaces and thus have the same
dimension. �

PROBLEMS
Let M be a compact connected n-manifold with boundary ∂M , where n ≥ 2.
(1) Prove: ∂M is not a retract of M .
(2) Prove: if M is contractible, then ∂M has the homology of a sphere.
(3) Assume that M is orientable. Let n = 2m+ 1 and let K be the kernel of

the homomorphismHm(∂M) −→ Hm(M) induced by the inclusion, where
homology is taken with coefficients in a field. Prove: dim Hm(∂M) =
2 dim K.

Let n = 3 in the rest of the problems.
4. Prove: if M is orientable, ∂M is empty, and H1(M ; Z) = 0, then M has

the same homology groups as a 3-sphere.
5. Prove: if M is nonorientable and ∂M is empty, then H1(M ; Z) is infinite.

(Hint for the last three problems: use the standard classification of closed 2-
manifolds and think about first homology groups.)

6. Prove: if M is orientable and H1(M ; Z) = 0, then ∂M is a disjoint union
of 2-spheres.

7. Prove: if M is orientable, ∂M 6= φ, and ∂M contains no 2-spheres, then
H1(M ; Z) is infinite.
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8. Prove: if M is nonorientable and ∂M contains no 2-spheres and no pro-
jective planes, then H1(M ; Z) is infinite.





CHAPTER 22

Homology, cohomology, and K(π, n)s

We have given an axiomatic definition of ordinary homology and cohomology,
and we have shown how to realize the axioms by means of either cellular or singu-
lar chain and cochain complexes. We here give a homotopical way of constructing
ordinary theories that makes no use of chains, whether cellular or singular. We also
show how to construct cup and cap products homotopically. This representation
of homology and cohomology in terms of Eilenberg-Mac Lane spaces is the starting
point of the modern approach to homology and cohomology theory, and we shall
indicate how theories that do not satisfy the dimension axiom can be represented.
We shall also describe Postnikov systems, which give a way to approximate general
(simple) spaces by weakly equivalent spaces built up out of Eilenberg-Mac Lane
spaces. This is conceptually dual to the way that CW complexes allow the ap-
proximation of spaces by weakly equivalent spaces built up out of spheres. Finally,
we present the important notion of cohomology operations and relate them to the
cohomology of Eilenberg-Mac Lane spaces.

1. K(π, n)s and homology

Recall that a reduced homology theory on based CW complexes is a sequence
of functors Ẽq from the homotopy category of based CW complexes to the category
of Abelian groups. Each Ẽq must satisfy the exactness and additivity axioms, and
there must be a natural suspension isomorphism. Up to isomorphism, ordinary
reduced homology with coefficients in π is characterized as the unique such theory
that satisfies the dimension axiom: Ẽ0(S0) = π and Ẽq(S0) = 0 if q 6= 0. We
proceed to construct such a theory homotopically.

For based spaces X and Y , we let [X,Y ] denote the set of based homotopy
classes of based maps X −→ Y . Recall that we require Eilenberg-Mac Lane spaces
K(π, n) to have the homotopy types of CW complexes and that, up to homotopy
equivalence, there is a unique such space for each n and π. By a result of Milnor, if
X has the homotopy type of a CW complex, then so does ΩX. By the Whitehead
theorem, we therefore have a homotopy equivalence

σ̃ : K(π, n) −→ ΩK(π, n+ 1).

This map is the adjoint of a map

σ : ΣK(π, n) −→ K(π, n+ 1).

We may take the smash product of the map σ with a based CW complex X and
use the suspension homomorphism on homotopy groups to obtain maps

πq+n(X ∧K(π, n)) Σ−→ πq+n+1(Σ(X ∧K(π, n)))

= πq+n+1(X ∧ ΣK(π, n))
(id∧σ)∗−−−−−→ πq+n+1(X ∧K(π, n+ 1)).

175
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Theorem. For CW complexes X, Abelian groups π and integers n ≥ 0, there
are natural isomorphisms

H̃q(X;π) ∼= colimn πq+n(X ∧K(π, n)).

It suffices to verify the axioms, and the dimension axiom is clear. If X = S0,
then X ∧ K(π, n) = K(π, n). Here the homotopy groups in the colimit system
are zero if q 6= 0, and, if q = 0, the colimit runs over a sequence of isomorphisms
between copies of π.

The verifications of the rest of the axioms are exercises in the use of the homo-
topy excision and Freudenthal suspension theorems, and it is worthwhile to carry
out these exercises in greater generality.

Definition. A prespectrum is a sequence of based spaces Tn, n ≥ 0, and based
maps σ : ΣTn −→ Tn+1.

The example at hand is the Eilenberg-Mac Lane prespectrum {K(π, n)}. An-
other example is the “suspension prespectrum” {ΣnX} of a based space X; the
required maps Σ(ΣnX) −→ Σn+1X are the evident identifications. When X = S0,
this is called the sphere prespectrum.

Theorem. Let {Tn} be a prespectrum such that Tn is (n − 1)-connected and
of the homotopy type of a CW complex for each n. Define

Ẽq(X) = colimn πq+n(X ∧ Tn),

where the colimit is taken over the maps

πq+n(X∧Tn)
Σ−→ πq+n+1(Σ(X∧Tn)) ∼= πq+n+1(X∧ΣTn)

id∧σ−−−→ πq+n+1(X∧Tn+1).

Then the functors Ẽq define a reduced homology theory on based CW complexes.

Proof. Certainly the Ẽ are well defined functors from the homotopy category
of based CW complexes to the category of Abelian groups. We must verify the
exactness, additivity, and suspension axioms. Without loss of generality, we may
take the Tn to be CW complexes with one vertex and no other cells of dimension
less than n. Then X∧Tn is a quotient complex of X×Tn, and it too has one vertex
and no other cells of dimension less than n. In particular, it is (n− 1)-connected.

If A is a subcomplex of X, then the homotopy excision theorem implies that
the quotient map

(X ∧ Tn, A ∧ Tn) −→ ((X ∧ Tn)/(A ∧ Tn), ∗) ∼= ((X/A) ∧ Tn, ∗)

is a (2n − 1)-equivalence. We may restrict to terms with n > q − 1 in calculating
Ẽq(X), and, for such q, the long exact sequence of homotopy groups of the pair
(X ∧ Tn, A ∧ Tn) gives that the sequence

πq+n(A ∧ Tn) −→ πq+n(X ∧ Tn) −→ πq+n((X/A) ∧ Tn)

is exact. Since passage to colimits preserves exact sequences, this proves the exact-
ness axiom.

We need some preliminaries to prove the additivity axiom.

Definition. Define the weak product
∏w

i
Yi of a set of based spaces Yi to

be the subspace of
∏
i Yi consisting of those points all but finitely many of whose

coordinates are basepoints.
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Lemma. For a set of based spaces {Yi}, the canonical map∑
iπq(Yi) −→ πq(

∏w
i Yi)

is an isomorphism.

Proof. The homotopy groups of
∏w

i Yi are the colimits of the homotopy
groups of the finite subproducts of the Yi, and the conclusion follows. �

Lemma. If {Yi} is a set of based CW complexes, then
∏w

i Yi is a CW complex
whose cells are the cells of the finite subproducts of the Yi. If each Yi has a single
vertex and no q-cells for q < n, then the (2n − 1)-skeleton of

∏w
i Yi coincides

with the (2n − 1)-skeleton of
∨
i Yi. Therefore the inclusion

∨
i Yi −→

∏w
i Yi is a

(2n− 1)-equivalence.

Returning to the proof of the additivity axiom, suppose given based CW com-
plexes Xi and consider the natural map

(
∨
iXi) ∧ Tn ∼=

∨
i(Xi ∧ Tn) −→

∏w
i (Xi ∧ Tn).

It induces isomorphisms on πq+n for q < n− 1, and the additivity axiom follows.
Finally, we must prove the suspension axiom. We have the suspension map

πq+n(X ∧ Tn)
Σ−→ πq+n+1(Σ(X ∧ Tn)) ∼= πq+n+1((ΣX) ∧ Tn).

By the Freudenthal suspension theorem, it is an isomorphism for q < n−1. Keeping
track of suspension coordinates and their permutation, we easily check that these
maps commute with the maps defining the colimit systems for X and for ΣX.
Therefore they induce a natural suspension isomorphism

Ẽq(X) ∼= Ẽq+1(ΣX).

This completes the proof of the theorem. �

Example. Applying the theorem to the sphere prespectrum, we find that the
stable homotopy groups πsq(X) give the values of a reduced homology theory; it is
called “stable homotopy theory.”

2. K(π, n)s and cohomology

The homotopical description of ordinary cohomology theories is both simpler
and more important to the applications than the homotopical description of ordi-
nary homology theories.

Theorem. For CW complexes X, Abelian groups π, and integers n ≥ 0, there
are natural isomorphisms

H̃n(X;π) ∼= [X,K(π, n)].

The dimension axiom is built into the definition of K(π, n), as we see by taking
X = S0. As in homology, it is worthwhile to carry out the verification of the
remaining axioms in greater generality. We first state some properties of the functor
[−, Z] on based CW complexes that is “represented” by a based space Z.

Lemma. For any based space Z, the functor [X,Z] from based CW complexes
X to pointed sets satisfies the following properties.

• HOMOTOPY If f ' g : X −→ Y , then f∗ = g∗ : [Y, Z] −→ [X,Z].
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• EXACTNESS If A is a subcomplex of X, then the sequence

[X/A,Z] −→ [X,Z] −→ [A,Z]

is exact.
• ADDITIVITY If X is the wedge of a set of based CW complexes Xi,

then the inclusions Xi −→ X induce an isomorphism

[X,Z] −→
∏

[Xi, Z].

If Z has a multiplication φ : Z × Z −→ Z such that the basepoint ∗ of Z is
a two-sided unit up to homotopy, so that Z is an “H-space,” then φ induces an
“addition”

[X,Z]× [X,Z] −→ [X,Z].
The trivial map X −→ Z acts as zero. If Z is homotopy associative, in the sense
that there is a homotopy between the maps given on elements by (xy)z and by
x(yz), then the addition is associative. If, further, Z is homotopy commutative, in
the sense that there is a homotopy between the maps given on elements by xy and
by yx, then this addition is commutative. We say that Z is “grouplike” if there is a
map χ : Z −→ Z such that φ(id×χ)∆ : Z −→ Z is homotopic to the trivial map,
and then χ∗ : [X,Z] −→ [X,Z] sends an element x ∈ [X,Z] to x−1.

Lemma. If Z is a grouplike homotopy associative and commutative H-space,
then the functor [X,Z] takes values in Abelian groups.

Actually, the existence of inverses can be deduced if Z is only “grouplike” in
the weaker sense that π0(X) is a group, but we shall not need the extra generality.
Now consider the multiplication on a loop space ΩY given by composition of loops.
Our proof that π1(Y ) is a group and π2(Y ) is an Abelian group amounts to a proof
of the following result.

Lemma. For any based space Y , ΩY is a grouplike homotopy associative H-
space and Ω2Y is a grouplike homotopy associative and commutative H-space.

Recall too that we have

[ΣX,Y ] ∼= [X,ΩY ]

for any based spaces X and Y .

Definition. An Ω-prespectrum is a sequence of based spaces Tn and weak
homotopy equivalences σ̃ : Tn −→ ΩTn+1.

It is usual, but unnecessary, to require the Tn to have the homotopy types of
CW complexes, in which case the σ̃ are homotopy equivalences. Specialization of
the observations above leads to the following fundamental fact.

Theorem. Let {Tn} be an Ω-prespectrum. Define

Ẽq(X) =
{

[X,Tq] if q ≥ 0
[X,Ω−qT0] if q < 0.

Then the functors Ẽq define a reduced cohomology theory on based CW complexes.

Proof. We have already verified the exactness and additivity axioms, and the
weak equivalences σ̃ induce the suspension isomorphisms:

Ẽq(X) = [X,Tq] −→ [X,ΩTq+1] ∼= [ΣX,Tq+1] = Ẽq+1(ΣX). �
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It is a consequence of a general result called the Brown representability the-
orem that every reduced cohomology theory is represented in this fashion by an
Ω-prespectrum.

3. Cup and cap products

Changing notations, let A and B be Abelian groups and X and Y be based
spaces. We have an external product

H̃p(X;A)⊗ H̃q(Y ;B) −→ H̃p+q(X ∧ Y ;A⊗B).

Indeed, if X and Y are based CW complexes, then we have an isomorphism of
cellular chain complexes

C̃∗(X)⊗ C̃∗(Y ) ∼= C̃∗(X ∧ Y ).

On passage to cochains with coefficients in A, B, and A⊗B, this induces a homo-
morphism of cochain complexes

C̃∗(X;A)⊗ C̃∗(Y ;B) −→ C̃∗(X ∧ Y ;A⊗B).

In turn, this induces the cited product on passage to cohomology. With X = Y ,
we can apply the diagonal ∆ : X −→ X ∧X and any homomorphism A⊗B −→ C
to obtain a cup product

H̃p(X;A)⊗ H̃q(X;B) −→ H̃p+q(X;C).

When X = X ′
+ for an unbased space X ′, this gives the cup product on the unre-

duced cohomology of X ′.
We can obtain these external products and therefore their induced cup products

homotopically. The smash product of maps gives a pairing

[X,K(A, p)]⊗ [Y,K(B, q)] −→ [X ∧ Y,K(A, p) ∧K(B, q)].

Therefore, to obtain an external product, we need only obtain a suitable map

φp,q : K(A, p) ∧K(B, q) −→ K(A⊗B, p+ q).

Such a map may be interpreted as an element of H̃p+q(K(A, p) ∧K(B, q);A⊗B).
Since the space K(A, p)∧K(B, q) is (p+ q−1)-connected, the universal coefficient,
Künneth, and Hurewicz theorems give isomorphisms

H̃p+q(K(A, p) ∧K(B, q);A⊗B) ∼= Hom(H̃p+q(K(A, p) ∧K(B, q)), A⊗B)
∼= Hom(H̃p(K(A, p))⊗ H̃q(K(B, q)), A⊗B)
∼= Hom(πp(K(A, p))⊗ πq(K(B, q)), A⊗B)
= Hom(A⊗B,A⊗B).

Therefore the identity homomorphism on the group A⊗B gives rise to the required
map φp,q. Arguing similarly, it is easy to check that the system of maps {φp,q} is
associative, commutative, and unital in the sense that the following diagrams are
homotopy commutative. Indeed, translating back along isomorphisms of the form
just displayed, each of the diagrams translates to an elementary algebraic identity.

K(A, p) ∧K(B, q) ∧K(C, r)

id∧φ
��

φ∧id // K(A⊗B, p+ q) ∧K(C, r)

φ

��
K(A, p) ∧K(B ⊗ C, q + r)

φ
// K(A⊗B ⊗ C, p+ q + r),
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K(A, p) ∧K(B, q)

t

��

φ // K(A⊗B, p+ q)

K(t,p+q)

��
K(B, q) ∧K(A, p)

φ
// K(B ⊗A, p+ q),

and
S0 ∧K(A, p)

i∧id

��

K(A, p)

K(Z, 0) ∧K(A, p)
φ

// K(Z⊗A, p),

where i : S0 −→ Z = K(Z, 0) takes 0 to 0 and 1 to 1. The associativity, graded
commutativity, and unital properties of the cup product follow.

The cup products on cohomology defined in terms of cellular cochains and in
terms of the homotopical representation of cohomology agree. To see this, observe
that the identity homomorphism of A specifies a fundamental class

ιp ∈ H̃p(K(A, p), A)

via the isomorphisms

Hom(A,A) ∼= Hom(πp(K(A, p)), A) ∼= Hom(H̃p(K(A, p)), A) ∼= H̃p(K(A, p);A).

A moment’s thought shows that the two cup products will agree on arbitrary pairs
of cohomology classes if they agree when applied to ιp ⊗ ιq for all p and q. We
may take our Eilenberg-Mac Lane spaces to be CW complexes and give their smash
product the induced CW structure. Considering representative cycles for generators
of our groups as images under the Hurewicz homomorphism of representative maps
Sp −→ K(A, p), we find that the required agreement follows from the canonical
identifications Sp ∧ Sq ∼= Sp+q.

We can also construct cap products homotopically. To do so, it is convenient
to bring function spaces into play, using the obvious isomorphisms

[X,Y ] ∼= π0F (X,Y )

and evaluation maps
ε : F (X,Y ) ∧X −→ Y.

We wish to construct the cap product

H̃p(X;A)⊗ H̃n(X;B) −→ H̃n−p(X;A⊗B),

and it is equivalent to construct

π0(F (X,K(A, p)))⊗colimq πn+q(X∧K(B, q)) −→ colimr πn−p+r(X∧K(A⊗B, r)).

Changing the variable of the second colimit by setting r = p+ q and recalling the
algebraic fact that tensor products commute with colimits, we can rewrite this as

colimq(π0(F (X, K(A, p)))⊗ πn+q(X ∧K(B, q))) −→ colimq πn+q(X ∧K(A⊗B, p + q)).

Thus it suffices to define maps

π0(F (X,K(A, p)))⊗ πn+q(X ∧K(B, q)) −→ πn+q(X ∧K(A⊗B, p+ q)).
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These are given by the following composites:

π0(F (X,K(A, p)))⊗ πn+q(X ∧K(B, q))

∧
��

πn+q(F (X,K(A, p)) ∧X ∧K(B, q))

(id∧∆∧id)∗

��
πn+q(F (X,K(A, p)) ∧X ∧X ∧K(B, q))

(ε∧id)∗

��
πn+q(K(A, p) ∧X ∧K(B, q))

(id∧φp,q)∗(id∧t)∗
��

πn+q(X ∧K(A⊗B, p+ q)).

Similarly, we can construct the evaluation pairing

H̃n(X;A)⊗ H̃n(X;B) −→ A⊗B

homotopically. It is obtained by passage to colimits over q from the composites

π0(F (X,K(A,n)))⊗ πn+q(X ∧K(B, q))

∧
��

πn+q(F (X,K(A,n)) ∧X ∧K(B, q))

(ε∧id)∗

��
πn+q(K(A,n) ∧K(B, q))

(φn,q)∗

��
πn+q(K(A⊗B,n+ q)) = A⊗B.

The following formula relating the cup and cap products to the evaluation
pairing was central to our discussion of Poincaré duality:

〈α ∪ β, x〉 = 〈β, α ∩ x〉 ∈ R,

where α ∈ H̃p(X;R), β ∈ H̃q(X;R), and x ∈ H̃p+q(X;R) for a commutative ring
R. It is illuminating to rederive this from our homotopical descriptions of these
products. In fact, a straightforward diagram chase shows that this formula is a
direct consequence of the following elementary facts, where X, Y , and Z are based
spaces. First, the following diagram commutes:
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F (X,Y ) ∧ F (X,Z) ∧X

(∧)∧id

��

id∧ id∧∆ // F (X,Y ) ∧ F (X,Z) ∧X ∧X

(∧)∧id∧ id

��
F (X ∧X,Y ∧ Z) ∧X

F (∆,id)∧id

��

id∧∆ // F (X ∧X,Y ∧ Z) ∧X ∧X

ε

��
F (X,Y ∧ Z) ∧X

ε
// Y ∧ Z.

Second, the right vertical composite in the diagram coincides with the common
composite in the commutative diagram

F (X,Y ) ∧ F (X,Z) ∧X ∧X

id∧t∧id

��

t∧id // F (X,Z) ∧ F (X,Y ) ∧X ∧X

id∧ε∧id

��
F (X,Y ) ∧X ∧ F (X,Z) ∧X

ε∧ε
��

F (X,Z) ∧ Y ∧X

id∧t
��

Y ∧ Z Z ∧ Y
t

oo F (X,Z) ∧X ∧ Y.
ε∧id

oo

The observant reader will see a punch line here: everything in this section
applies equally well to the homology and cohomology theories represented by Ω-
prespectra. A little more precisely, thinking of the case when A = B = C is a
commutative ring in the discussion above, we see by use of the product on A that
we have a well behaved system of product maps

φp,q : K(A, p) ∧K(A, q) −→ K(A, p+ q).

We have analogous cup and cap products and an evaluation pairing for the theories
represented by any Ω-prespectrum {Tn} with such a system of product maps

φp,q : Tp ∧ Tq −→ Tp+q.

4. Postnikov systems

We have implicitly studied the represented functors k(X) = [X,Y ] by decom-
posing X into cells. This led in particular to the calculation of ordinary represented
cohomology [X,K(π, n)] by means of cellular chains. There is an Eckmann-Hilton
dual way of studying [X,Y ] by decomposing Y into “cocells.” We briefly describe
this decomposition of spaces into their “Postnikov systems” here.

This decomposition answers a natural question: how close are the homotopy
groups of a CW complex X to being a complete set of invariants for its homotopy
type? Since

∏
nK(πn(X), n) has the same homotopy groups as X but is generally

not weakly homotopy equivalent to it, some added information is needed. If X is
simple, it turns out that the homotopy groups together with an inductively defined
sequence of cohomology classes give a complete set of invariants.

Recall that a connected space X is said to be simple if π1(X) is Abelian and
acts trivially on πn(X) for n ≥ 2. A Postnikov system for a simple based space X
consists of based spaces Xn together with based maps

αn : X −→ Xn and pn+1 : Xn+1 −→ Xn,
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n ≥ 1, such that pn+1◦αn+1 = αn, X1 is an Eilenberg-Mac Lane space K(π1(X), 1),
pn+1 is the fibration induced from the path space fibration over an Eilenberg-
Mac Lane space K(πn+1(X), n+ 2) by a map

kn+2 : Xn −→ K(πn+1(X), n+ 2),

and αn induces an isomorphism πq(X) → πq(Xn) for q ≤ n. It follows that
πq(Xn) = 0 for q > n. The system can be displayed diagrammatically as follows:

...

��
Xn+1

pn+1

��

kn+3
// K(πn+2(X), n+ 3)

X

αn+1

=={{{{{{{{{

α1

��0
00

00
00

00
00

00
00

00
αn // Xn

kn+2
//

��

K(πn+1(X), n+ 2)

...

��
X1

k3
// K(π2(X), 3).

Our requirement that Eilenberg-Mac Lane spaces have the homotopy types of CW
complexes implies (by a result of Milnor) that each Xn has the homotopy type of
a CW complex. The maps αn induce a weak equivalence X → limXn, but the
inverse limit generally will not have the homotopy type of a CW complex. The
“k-invariants”

{
kn+2

}
that specify the system are to be regarded as cohomology

classes
kn+2 ∈ Hn+2(Xn;πn+1(X)).

These classes together with the homotopy groups πn(X) specify the weak homotopy
type of X. We outline the proof of the following theorem.

Theorem. A simple space X of the homotopy type of a CW complex has a
Postnikov system.

Proof. Assume inductively that αn : X → Xn has been constructed. A
consequence of the homotopy excision theorem shows that the cofiber C(αn) is
(n+ 1)-connected and satisfies

πn+2(C(αn)) = πn+1(X).

More precisely, the canonical map η : F (αn) → ΩC(αn) induces an isomorphism
on πq for q ≤ n+ 1. We construct

j : C(αn)→ K(πn+1(X), n+ 2)

by inductively attaching cells to C(αn) to kill its higher homotopy groups. We take
the composite of j and the inclusion Xn ⊂ C(αn) to be the k-invariant

kn+2 : Xn −→ K(πn+1(X), n+ 2).
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By our definition of a Postnikov system, we must define Xn+1 to be the homo-
topy fiber of kn+2. Thus its points are pairs (ω, x) consisting of a path ω : I →
K(πn+1(X), n+2) and a point x ∈ Xn such that ω(0) = ∗ and ω(1) = kn+2(x). The
map pn+1 : Xn+1 → Xn is given by pn+1(ω, x) = x, and the map αn+1 : X → Xn+1

is given by αn+1(x) = (ω(x), αn(x)), where ω(x)(t) = j(x, 1− t), (x, 1− t) being a
point on the cone CX ⊂ C(αn). Clearly pn+1 ◦αn+1 = αn. It is evident that αn+1

induces an isomorphism on πq for q ≤ n, and a diagram chase shows that this also
holds for q = n+ 1. �

5. Cohomology operations

Consider a “represented functor” k(X) = [X,Z] and another contravariant
functor k′ from the homotopy category of based CW complexes to the category
of sets. The following simple observation actually applies to represented functors
on arbitrary categories. We shall use it to describe cohomology operations, but it
also applies to describe many other invariants in algebraic topology, such as the
characteristic classes of vector bundles.

Lemma (Yoneda). There is a canonical bijection between natural transforma-
tions Φ : k −→ k′ and elements φ ∈ k′(Z).

Proof. Given Φ, we define φ to be Φ(id), where id ∈ k(Z) = [Z,Z] is the
identity map. Given φ, we define Φ : k(X) −→ k′(X) by the formula Φ(f) = f∗(φ).
Here f is a map X −→ Z, and it induces f∗ = k′(f) : k′(Z) −→ k′(X). It is simple
to check that these are inverse bijections. �

We are interested in the case when k′ is also represented, say k′(X) = [X,Z ′].

Corollary. There is a canonical bijection between natural transformations
Φ : [−, Z] −→ [−, Z ′] and elements φ ∈ [Z,Z ′].

Definition. Suppose given cohomology theories Ẽ∗ and F̃ ∗. A cohomology
operation of type q and degree n is a natural transformation Ẽq −→ F̃ q+n. A stable
cohomology operation of degree n is a sequence {Φq} of cohomology operations of
type q and degree n such that the following diagram commutes for each q and each
based space X:

Ẽq(X)
Φq

//

Σ

��

Ẽq+n(X)

Σ

��
Ẽq+1(ΣX)

Φq+1
// Ẽq+1+n(ΣX).

We generally abbreviate notation by setting Φq = Φ.

In general, cohomology operations are only natural transformations of set-
valued functors. However, stable operations are necessarily homomorphisms of
cohomology groups, as the reader is encouraged to check.

Theorem. Cohomology operations H̃q(−;π) −→ H̃q+n(−; ρ) are in canonical
bijective correspondence with elements of H̃q+n(K(π, q); ρ).

Proof. Translate to the represented level, apply the previous corollary, and
translate back. �
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This seems very abstract, but it has very concrete consequences. To determine
all cohomology operations, we need only compute the cohomology of all Eilenberg-
Mac Lane spaces. We have described an explicit construction of these spaces as
topological Abelian groups in Chapter 16 §5, and this construction leads to an
inductive method of computation. We briefly indicate a key example of how this
works, without proofs.

Theorem. For n ≥ 0, there are stable cohomology operations

Sqn : Hq(X; Z2) −→ Hq+n(X; Z2),

called the Steenrod operations. They satisfy the following properties.
(i) Sq0 is the identity operation.
(ii) Sqn(x) = x2 if n = degx and Sqn(x) = 0 if n > degx.
(iii) The Cartan formula holds:

Sqn(xy) =
∑
i+j=n

Sqi(x)Sqj(y).

In fact, the Steenrod operations are uniquely characterized by the stated prop-
erties. There are also formulas, called the Adem relations, describing SqiSqj , as a
linear combination of operations Sqi+j−kSqk, 2k ≤ i, when 0 < i < 2j; explicitly,

SqiSqj =
∑

0≤k≤[i/2]

(
j − k − 1
i− 2k

)
Sqi+j−kSqk.

It turns out that the Steenrod operations generate all mod 2 cohomology oper-
ations. In fact, the identity map of K(Z2, q) specifies a fundamental class ιq ∈
Hq(K(Z2, q); Z2), and the following theorem holds.

Theorem. H∗(K(Z2, q); Z2) is a polynomial algebra whose generators are cer-
tain iterates of Steenrod operations applied to the fundamental class ιq. Explicitly,
writing SqI = Sqi1 · · ·Sqij for a sequence of positive integers I = {i1, . . ., ij}, the
generators are the SqIιq for those sequences I such that ir ≥ 2ir+1 for 1 ≤ r < j
and i1 < i2 + · · ·+ ij + q.

PROBLEMS
(1) For Abelian groups π and ρ, show that [K(π, n),K(ρ, n)] ∼= Hom(π, ρ).

(Hint: use the natural isomorphism [X,K(ρ, n)] ∼= H̃n(X; ρ) and universal
coefficients.)

(2) (a) Let f : π −→ ρ be a homomorphism of Abelian groups. Construct
cohomology operations f∗ : Hq(X;π) −→ Hq(X; ρ) for all q.

(b) Let 0 −→ π
f−→ ρ

g−→ σ −→ 0 be an exact sequence of Abelian groups.
Construct cohomology operations β : Hq(X;σ) −→ Hq+1(X;π) for
all q such that the following is a long exact sequence:

· · · −→ Hq(X;π)
f∗−→ Hq(X; ρ)

g∗−→ Hq(X;σ)
β−→ Hq+1(X;π) −→ · · · .

The β are called Bockstein operations.
(3) Using the calculation of H∗(K(Z, 2); Z2) stated in the text, prove that

Sq1 : Hq(X; Z2) −→ Hq+1(X; Z2) coincides with the Bockstein operation
associated to the short exact sequence 0 −→ Z2 −→ Z4 −→ Z2 −→ 0.
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(4) Prove that each Φq of a stable cohomology operation {Φq} is a natural
homomorphism.

(5) Write H∗(RP∞; Z2) = Z2[α], degα = 1. Compute Sqi(αj) for all i and j.



CHAPTER 23

Characteristic classes of vector bundles

Some of the most remarkable applications of algebraic topology result from the
translation of problems in geometric topology into problems in homotopy theory.
The essential intermediary in many of these translations is the theory of vector
bundles. We here explain the classification theorem for vector bundles and its rela-
tionship to the theory of characteristic classes. The reader is assumed to be familiar
with the tangent and normal bundles of smooth manifolds and to be reasonably
well acquainted with the definitions and elementary properties of vector bundles in
general.

1. The classification of vector bundles

Let E be a (real) vector bundle over a base space B. Thus we are given a
projection p : E −→ B such that, for each b ∈ B, the fiber p−1(b) is a copy of
Rn for some n. In the case of non-connected base spaces, the fibers over points in
different components may have different dimension. We say that p is an n-plane
bundle if all fibers have dimension n. For each U in some open cover of B, there
is a homeomorphism (a “coordinate chart”) φU : U × Rn −→ p−1(U) over U that
restricts to a linear isomorphism on each fiber. We shall require our open covers
to be numerable, as can always be arranged when B is paracompact. For a second
vector bundle q : D −→ A, a map (g, f) : D −→ E of vector bundles is a pair of
maps f : A −→ B and g : D −→ E such that p ◦ g = f ◦ q and g : q−1(a) −→
p−1(f(a)) is linear for all a ∈ A. This gives the category of vector bundles. A map
(g, f) of vector bundles is an isomorphism if and only if f is a homeomorphism
and g restricts to an isomorphism on each fiber. We are mainly interested in the
subcategories of n-plane bundles and maps that are linear isomorphisms on fibers.
We say that two vector bundles over B are equivalent if they are isomorphic over B,
so that there is an isomorphism (g, id) between them. We let En(B) denote the set
of equivalence classes of n-plane bundles over B. (That this really is a well defined
set will emerge shortly.) If f : A −→ B is a continuous map, then the pullback of
f and a vector bundle p : E −→ B is a vector bundle f∗E over A. Moreover, a
bundle D over A is equivalent to f∗E if and only if there is a map (g, f) : D −→ E
that is an isomorphism on fibers.

Thus we have a contravariant set-valued functor En(−) on spaces. Vector bun-
dles should be thought of as rather rigid geometric objects, and the equivalence
relation between them preserves that rigidity. Nevertheless, equivalence classes of
n-plane bundles can be classified homotopically. This is a crucial starting point
for the translation of geometric problems to homotopical ones. In turn, the start-
ing point of the classification theorem is the observation that the functor En(−),
like homology and cohomology, is homotopy invariant in the sense that it factors
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through the homotopy category hU . In less fancy language, this amounts to the
following result.

Proposition. The pullbacks of an n-plane bundle p : E −→ B along homo-
topic maps f0, f1 : A −→ B are equivalent.

Sketch proof. Let h : A × I −→ B be a homotopy f0 ' f1. Then the
restrictions of h∗E over A × {0} and A × {1} can be identified with f∗0E and
f∗1E. Thus we change our point of view and consider a general n-plane bundle
p : E −→ B × I. It suffices to show that the restrictions E0 and E1 of E over
B × {0} and B × {1} are equivalent. Define r : B × I −→ B × I by r(b, t) = (b, 1).
We claim that there is a map g : E −→ E such that (g, r) is a map of vector
bundles. It follows that E is equivalent to r∗E, and it is easy to see that r∗E is
isomorphic to the bundle E1 × I. The restriction of g to E0 will be an equivalence
to E1. To construct g, one first proves, using the compactness of I, that there is a
numerable open cover O of B such that the restriction of E to U × I is trivial for
all U ∈ O. One then uses trivializations φU : U × I × Rn −→ p−1(U × I) together
with functions λU : B −→ I such that λ−1

U (0, 1] = U to construct g by gradually
pushing the bundle to the right along neighborhoods where it is trivial. �

It can be verified on general abstract nonsense grounds, using Brown’s repre-
sentability theorem, that the functor En(−) is representable in the form [−, BO(n)]
for some space BO(n). It is far more useful to have an explicit concrete construction
of the relevant “classifying space” BO(n). More precisely, we think of “BO(n)” as
specifying a homotopy type of spaces, and we want an explicit representative of the
homotopy type. Here [X,Y ] denotes unbased homotopy classes of maps. We con-
struct a particular n-plane bundle γn : En −→ BO(n), called the “universal n-plane
bundle.” By pulling back γn along (homotopy classes of) maps f : B −→ BO(n),
we obtain a natural transformation of functors [−, BO(n)] −→ En(−). We show
that this natural transformation is a natural isomorphism of functors by showing
how to construct a map (g, f), unique up to homotopy, from any given n-plane
bundle E over any space B to the universal n-plane bundle En; it is in this sense
that En is “universal.”

Let Vn(Rq) be the Stiefel variety of orthonormal n-frames in Rq. Its points are
n-tuples of orthonormal vectors in Rq, and it is topologized as a subspace of (Rq)n
or, equivalently, as a subspace of (Sq−1)n. It is a compact manifold. Let Gn(Rq) be
the Grassmann variety of n-planes in Rq. Its points are the n-dimensional subspaces
of Rq. Sending an n-tuple of orthonormal vectors to the n-plane they span gives
a surjective function Vn(Rq) −→ Gn(Rq), and we topologize Gn(Rq) as a quotient
space of Vn(Rq). It too is a compact manifold. For example, V1(Rq) = Sq−1

and G1(Rq) = RP q−1. The standard inclusion of Rq in Rq+1 induces inclusions
Vn(Rq) ⊂ Vn(Rq+1) and Gn(Rq) ⊂ Gn(Rq+1). We define Vn(R∞) and Gn(R∞) to
be the unions of the Vn(Rq) and Gn(Rq), with the topology of the union. We define
the classifying space BO(n) to be Gn(R∞).

Let Eqn be the subbundle of the trivial bundle Gn(Rq) × Rq whose points are
the pairs (x, v) such that v is a vector in the plane x; denote the projection of Eqn
by γqn, so that γqn(x, v) = x. When n = 1, γq1 is called the “canonical line bundle”
over RP q−1. We may let q go to infinity. We let En = E∞n and let γn = γ∞n :
En −→ BO(n). This is our universal bundle, and it is not hard to verify that it is
indeed an n-plane bundle. We must explain why it is universal. (Technically, it is
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usual to assume that base spaces are paracompact, but the restriction to numerable
systems of coordinate charts in our definition of vector bundles allows the use of
general base spaces.)

Theorem. The natural transformation Φ : [−, BO(n)] −→ En(−) obtained by
sending the homotopy class of a map f : B −→ BO(n) to the equivalence class of
the n-plane bundle f∗En is a natural isomorphism of functors.

Sketch proof. To illustrate ideas, let M be a smooth compact n-manifold
smoothly embedded in Rq and let τ(M) be its tangent bundle. The tangent plane
τx at a point x ∈ M ⊂ Rq is then embedded as an affine plane through x in
Rq. Translating to a plane through the origin by subtracting x from each vector,
we obtain a point f(x) ∈ Gn(Rq) and an isomorphism gx : τx −→ (γqn)

−1(f(x)).
The gx glue together to give a map (g, f) of bundles from E(τ(M)) to Eqn; it is
called the Gauss map of the tangent bundle of M . Similarly, using the orthogonal
complements of tangent planes, we obtain the Gauss map E(ν) −→ Eqq−n of the
normal bundle ν of the embedding of M in Rq.

For a general n-plane bundle p : E −→ B, we must construct a map (g, f) :
E −→ En of vector bundles that is an isomorphism on fibers; it will follow that E is
equivalent to f∗En, thus showing that Φ is surjective. It suffices to construct a map
ĝ : E −→ R∞ that is a linear monomorphism on fibers, since we can then define f(e)
to be the image under ĝ of the fiber through e and can define g(e) = (f(e), ĝ(e)).
One first shows that one can construct a countable numerable cover of coordinate
charts from a general numerable cover of coordinate charts. Using trivializations
φU : U × Rn −→ p−1(U) and functions λU : B −→ I such that U = λ−1

U (0, 1], we
define ĝU : E −→ Rn by

ĝU (e) = λU (p(e)) · p2(φ−1
U (e))

for e ∈ p−1(U), where p2 : U × Rn −→ Rn is the projection, and ĝU (e) = 0 for
e 6 ∈ p−1(U). Taking R∞ to be the sum of countably many copies of Rn, we then
define ĝ =

∑
gU .

To show that Φ is injective, we must show further that the resulting classifying
map f is unique up to homotopy, and for this it suffices to show that any two
maps (g0, f0) and (g1, f1) of vector bundles from E to En that are isomorphisms on
fibers are bundle homotopic. These bundle maps are determined by their second
coordinates ĝ0 and ĝ1, which are maps E −→ R∞. Provided that ĝ0(e) is not a
negative multiple of ĝ1(e) for any e, we obtain a homotopy ĥ : ĝ0 ' ĝ1 by setting

ĥ(e, t) = (1− t)ĝ0(e) + tĝ1(e).

The proviso ensures that ĥ is a monomorphism on fibers, and ĥ determines the
required bundle homotopy E × I −→ En. For the general case, let i0 and i1 be
the linear isomorphisms from R∞ to itself that send the qth standard basis element
eq to e2q and e2q−1, respectively. The composites i0 ◦ ĝ0 and i1 ◦ ĝ1 determine
bundle maps k0 and k1 from E to En, and the construction just given applies to
give bundle homotopies from g0 to k0, from k0 to k1, and from k1 to g1. �

2. Characteristic classes for vector bundles

Definition. Let k∗ be a cohomology theory, such as H∗(−;π) for an Abelian
group π. A characteristic class c of degree q for n-plane bundles is a natural
assignment of a cohomology class c(ξ) ∈ kq(B) to bundles ξ with base space B.
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Thus, if (g, f) is a map from a bundle ζ over A to a bundle ξ over B, so that ζ is
equivalent to f∗ξ, then f∗c(ξ) = c(ζ). Clearly c(ξ) = c(ξ′) if ξ is equivalent to ξ′.

Since the functor En is represented by BO(n), the Yoneda lemma specializes
to give the following result.

Lemma. Evaluation on γn specifies a canonical bijection between characteristic
classes of n-plane bundles and elements of k∗(BO(n)).

The formal similarity to the definition of cohomology operations is obvious, and
we shall illustrate how to exploit this similarity in the following sections. Clearly cal-
culation of k∗(BO(n)) determines all characteristic classes. Moreover, the behavior
of characteristic classes with respect to operations on bundles can be determined by
calculating the maps on cohomology induced by maps between classifying spaces.
We are particularly interested in Whitney sums of bundles. We have the evident
Cartesian product, or external sum, of an m-plane bundle over A and an n-plane
bundle over B; it is an (m + n)-plane bundle over A × B. The internal sum, or
Whitney sum, of two bundles over the same base space B is obtained by pulling
back their external sum along the diagonal map of B.

For example, let ε denote the trivial line bundle over any space. We have the
operation that sends an n-plane bundle ξ over B to the (n+ 1)-plane bundle ξ ⊕ ε
over B. There is a classifying map

in : BO(n) −→ BO(n+ 1)

that is characterized up to homotopy by i∗n(γn+1) = γn ⊕ ε. If we have a charac-
teristic class c on (n+ 1)-plane bundles, then

i∗nc(γn+1) = c(γn ⊕ ε),

and this leads by naturality to a description of c(ξ⊕ε) for general n-plane bundles ξ.
To give an explicit description of in, we may think of BO(n+1) as Gn+1(R∞⊕R);
precisely, we use an isomorphism between R∞ ⊕R and R∞ to define a homeomor-
phism Gn+1(R∞ ⊕ R) ∼= Gn+1(R∞), and we check that the homotopy class of this
homeomorphism is independent of the choice of isomorphism. We then define in
on Gn(R∞) by sending an n-plane x in R∞ to the (n+ 1)-plane x⊕ R.

Similarly, we have a classifying map

pm,n : BO(m)×BO(n) −→ BO(m+ n)

that is characterized up to homotopy by p∗m,n(γm+n) = γm × γn. If we have a
characteristic class c on (m+ n)-plane bundles, then

p∗m,nc(γm+n) = c(γm × γn),

and this leads by naturality to a description of c(ζ× ξ) for general m-plane bundles
ζ and n-plane bundles ξ. To give an explicit description of pm,n, we may think
of BO(m + n) as Gm+n(R∞ ⊕ R∞); precisely, we use an isomorphism between
R∞ ⊕ R∞ and R∞ to define a homeomorphism Gm+n(R∞ ⊕ R∞) ∼= Gm+n(R∞),
and we check that the homotopy class of this homeomorphism is independent of
the choice of isomorphism. We then define pm,n on Gm(R∞)×Gn(R∞) by sending
(x, y) to x⊕ y, where x is an m-plane in R∞ and y is an n-plane in R∞.

We bring this down to earth by describing all characteristic classes in mod 2 co-
homology. In fact, we have the following equivalent pair of theorems. The first uses
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the language of characteristic classes, while the second describes H∗(BO(n); Z2)
together with the induced maps i∗n and p∗m,n.

Theorem. For n-plane bundles ξ over base spaces B, n ≥ 0, there are charac-
teristic classes wi(ξ) ∈ Hi(B; Z2), i ≥ 0, called the Stiefel-Whitney classes. They
satisfy and are uniquely characterized by the following axioms.

(1) w0(ξ) = 1 and wi(ξ) = 0 if i > dim ξ.
(2) w1(γ1) 6= 0, where γ1 is the universal line bundle over RP∞.
(3) wi(ξ ⊕ ε) = wi(ξ).
(4) wi(ζ ⊕ ξ) =

∑i
j=0 wj(ζ) ∪ wi−j(ξ).

Every mod 2 characteristic class for n-plane bundles can be written uniquely as a
polynomial in the Stiefel-Whitney classes {w1, . . ., wn}.

Theorem. For n ≥ 1, there are elements wi ∈ Hi(BO(n); Z2), i ≥ 0, called
the Stiefel-Whitney classes. They satisfy and are uniquely characterized by the
following axioms.

(1) w0 = 1 and wi = 0 if i > n.
(2) w1 6= 0 when n = 1.
(3) i∗n(wi) = wi.
(4) p∗m,n(wi) =

∑i
j=0 wj ⊗ wi−j.

The mod 2 cohomology H∗(BO(n); Z2) is the polynomial algebra Z2[w1, . . ., wn].

For the uniqueness, suppose given another collection of classes w′i for all n ≥ 1
that satisfy the stated properties. Since BO(1) = RP∞, w1 = w′1 is the unique
non-zero element of H1(RP∞; Z2). Therefore wi = w′i for all i when n = 1, and we
assume that this is true for all m < n. Visibly i∗n−1 is an isomorphism in degrees
less than n, and this implies that wi = w′i in Hi(BO(n); Z2) for i < n. It is less
visible but easily checked that the p∗m,n are all monomorphisms in all degrees. Since
p∗1,n−1(wn) = p∗1,n−1(w

′
n), this implies that wn = w′n.

3. Stiefel-Whitney classes of manifolds

It is convenient to consider H∗∗(X) =
∏
iH

i(X) and to write its elements
as formal sums

∑
xi, deg xi = i. In practice, we usually impose conditions that

guarantee that the sum is finite. We define the total Stiefel-Whitney class w(ξ) of
a vector bundle ξ to be

∑
wi(ξ); here the sum is clearly finite. Note in particular

that w(εq) = 1, where εq is the trivial q-plane bundle. With this notation, we have
the formula

w(ζ ⊕ ξ) = w(ζ) ∪ w(ξ).

It is usual to write wi(M) = wi(τ(M)) and w(M) = w(τ(M)) for a smooth
compact manifold M . Suppose that M immerses in Rq with normal bundle ν. Then
τ(M)⊕ ν ∼= εq and we have the “Whitney duality formula”

w(M) ∪ w(ν) = 1,

which shows how to calculate tangential Stiefel-Whitney classes in terms of nor-
mal Stiefel-Whitney classes, and conversely. This formula can be used to prove
non-immersion results when we know w(M). If M has dimension n, then ν has
dimension q− n and must satisfy wi(ν) = 0 if i > q− n. Calculation of wi(ν) from
the Whitney duality formula can lead to a contradiction if q is too small.
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One calculation is immediate. Since the normal bundle of the standard embed-
ding Sq −→ Rq+1 is trivial, w(Sq) = 1. A manifold is said to be parallelizable if
its tangent bundle is trivial. For some manifolds M , we can show that M is not
parallelizable by showing that one of its Stiefel-Whitney classes is non-zero, but
this strategy fails for M = Sq.

We describe some standard computations in the cohomology of projective
spaces that give less trivial examples. Write ζq for the canonical line bundle over
RP q in this section. (We called it γq+1

1 before.) The total space of ζq consists of
pairs (x, v), where x is a line in Rq+1 and v is a point on that line. This is a subbun-
dle of the trivial (q+1)-plane bundle εq+1, and we write ζ⊥q for the complementary
bundle whose points are pairs (x,w) such that w is orthogonal to the line x. Thus

ζq ⊕ ζ⊥q ∼= εq+1.

Write H∗(RP q; Z2) = Z2[α]/(αq+1), degα = 1. Thus α = w1(ζq). Since ζq is a
line bundle, wi(ζq) = 0 for i > 1. The formula w(ζq) ∪ w(ζ⊥q ) = 1 implies that

w(ζ⊥q ) = 1 + α+ · · ·+ αq.

We can describe τ(RP q) in terms of ζq. Consider a point x ∈ Sq and write
(x, v) for a typical vector in the tangent plane of Sq at x. Then x is orthogonal to
v in Rq+1 and (x, v) and (−x,−v) have the same image in τ(RP q). If Lx is the
line through x, then this image point determines and is determined by the linear
map f : Lx −→ L⊥x that sends x to v. Starting from this, it is easy to check that
τ(RP q) is isomorphic to the bundle Hom(ζq, ζ⊥q ). As for any line bundle, we have
Hom(ζq, ζq) ∼= ε since the identity homomorphisms of the fibers specify a cross-
section. Again, as for any bundle over a smooth manifold, a choice of Euclidean
metric determines an isomorphism Hom(ζq, ε) ∼= ζq. These facts give the following
calculation of τ(RP q)⊕ ε:

τ(RP q)⊕ ε ∼= Hom(ζq, ζ⊥q )⊕Hom(ζq, ζq)
∼= Hom(ζq, ζ⊥q ⊕ ζq) ∼= Hom(ζq, εq+1)
∼= (q + 1)Hom(ζq, ε) ∼= (q + 1)ζq.

Therefore

w(RP q) = w((q + 1)ζq) = w(ζq)q+1 = (1 + α)q+1 =
∑

0≤i≤q

(
q + 1
i

)
αi.

Explicit computations are obtained by computing mod 2 binomial coefficients.
For example, w(RP q) = 1 if and only if q = 2k − 1 for some k (as the reader

should check) and therefore RP q can be parallelizable only if q is of this form. If
Rq+1 admits a bilinear product without zero divisors, then it is not hard to prove
that τ(RP q) ∼= Hom(ζq, ζ⊥q ) admits q linearly independent cross-sections and is
therefore trivial. We conclude that Rq+1 can admit such a product only if q+1 = 2k

for some k. The real numbers, complex numbers, quaternions, and Cayley numbers
show that there is such a product for q + 1 = 1, 2, 4, and 8. As we shall explain in
the next chapter, these are in fact the only q for which Rq+1 admits such a product.

While the calculation of w(RP q) just given is quite special, there is a remarkable
general recipe, called the “Wu formula,” for the computation of w(M) in terms of
Poincaré duality and the Steenrod operations inH∗(M ; Z2). In analogy with w(M),
we define the total Steenrod square of an element x by Sq(x) =

∑
i Sq

i(x).
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Theorem (Wu formula). Let M be a smooth closed n-manifold with funda-
mental class z ∈ Hn(M ; Z2). Then the total Stiefel-Whitney class w(M) is equal
to Sq(v), where v =

∑
vi ∈ H∗∗(M ; Z2) is the unique cohomology class such that

〈v ∪ x, z〉 = 〈Sq(x), z〉
for all x ∈ H∗(M ; Z2). Thus, for k ≥ 0, vk ∪ x = Sqk(x) for all x ∈ Hn−k(M ; Z2),
and

wk(M) =
∑
i+j=k

Sqi(vj).

Here the existence and uniqueness of v is an easy exercise from the Poincaré
duality theorem. The basic reason that such a formula holds is that the Stiefel-
Whitney classes can be defined in terms of the Steenrod operations, as we shall
see shortly. The Wu formula implies that the Stiefel-Whitney classes are homotopy
invariant: if f : M −→ M ′ is a homotopy equivalence between smooth closed n-
manifolds, then f∗ : H∗(M ′; Z2) −→ H∗(M ; Z2) satisfies f∗(w(M ′)) = w(M). In
fact, the conclusion holds for any map f , not necessarily a homotopy equivalence,
that induces an isomorphism in mod 2 cohomology. Since the tangent bundle of M
depends on its smooth structure, this is rather surprising.

4. Characteristic numbers of manifolds

Characteristic classes determine important numerical invariants of manifolds,
called their characteristic numbers.

Definition. Let M be a smooth closed R-oriented n-manifold with funda-
mental class z ∈ Hn(M ;R). For a characteristic class c of degree n, define the
tangential characteristic number c[M ] ∈ R by c[M ] = 〈c(τ(M)), z〉. Similarly, de-
fine the normal characteristic number c[ν(M)] by c[ν(M)] = 〈c(ν(M)), z〉, where
ν(M) is the normal bundle associated to an embedding of M in Rq for q sufficiently
large. (These numbers are well defined because any two embeddings of M in Rq
for large q are isotopic and have equivalent normal bundles.)

In particular, if ri are integers such that
∑
iri = n, then the monomial

wr11 · · ·wrn
n is a characteristic class of degree n, and all mod 2 characteristic classes

of degree n are linear combinations of these. Different manifolds can have the same
Stiefel-Whitney numbers. In fact, we have the following observation.

Lemma. If M is the boundary of a smooth compact (n+ 1)-manifold W , then
all tangential Stiefel-Whitney numbers of M are zero.

Proof. Using a smooth tubular neighborhood, we see that there is an inward-
pointing normal vector field along M that spans a trivial bundle ε such that

τ(W )|M ∼= τ(M)⊕ ε.
Therefore, if i : M −→ W is the inclusion, then i∗(wj(W )) = wj(M). Let f be a
polynomial in the wj of degree n. Recall that the fundamental class of M is ∂z,
where z ∈ Hn+1(W,M) is the fundamental class of the pair (W,M). We have

〈f(M), ∂z〉 = 〈i∗f(W ), ∂z〉 = 〈f(W ), i∗∂z〉 = 0

since i∗∂ = 0 by the long exact homology sequence of the pair. �

Lemma. All tangential Stiefel-Whitney numbers of a smooth closed manifold
M are zero if and only if all normal Stiefel-Whitney numbers of M are zero.
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Proof. The Whitney duality formula implies that every wi(M) is a polynomial
in the wi(ν(M)) and every wi(ν(M)) is a polynomial in the wi(M). �

We shall explain the following amazing result of Thom in the last chapter.

Theorem (Thom). If M is a smooth closed n-manifold all of whose normal
Stiefel-Whitney numbers are zero, then M is the boundary of a smooth (n + 1)-
manifold.

Thus we need only compute the Stiefel-Whitney numbers of M to determine
whether or not it is a boundary. By Wu’s formula, the computation only requires
knowledge of the mod 2 cohomology ofM , with its Steenrod operations. In practice,
it might be fiendishly difficult to actually construct a manifold with boundary M
geometrically.

5. Thom spaces and the Thom isomorphism theorem

There are several ways to construct the Stiefel-Whitney classes. The most
illuminating one depends on a simple, but fundamentally important, construction
on vector bundles, namely their “Thom spaces.” This construction will also be at
the heart of the proof of Thom’s theorem in the last chapter.

Definition. Let ξ : E −→ B be an n-plane bundle. Apply one-point com-
pactification to each fiber of ξ to obtain a new bundle Sph(E) over B whose fibers
are spheres Sn with given basepoints, namely the points at ∞. These basepoints
specify a cross-section B −→ Sph(E). Define the Thom space Tξ to be the quotient
space T (ξ) = Sph(E)/B. That is, T (ξ) is obtained from E by applying fiberwise
one-point compactification and then identifying all of the points at ∞ to a single
basepoint (denoted ∞). Observe that this construction is functorial with respect
to maps of vector bundles.

Remark. If we give the bundle ξ a Euclidean metric and let D(E) and S(E)
denote its unit disk bundle and unit sphere bundle, then there is an evident homeo-
morphism between Tξ and the quotient space D(E)/S(E). In turn, D(E)/S(E) is
homotopy equivalent to the cofiber of the inclusion S(E) −→ D(E) and therefore
to the cofiber of the projection S(E) −→ B.

If the bundle ξ is trivial, so that E = B × Rn, then Sph(E) = B × Sn.
Quotienting out B amounts to the same thing as giving B a disjoint basepoint and
then forming the smash product B+ ∧ Sn. That is, in this case the Thom complex
is ΣnB+. Therefore, for any cohomology theory k∗,

kq(B) = k̃q(B+) ∼= k̃n+q(Tξ).

There is a conceptual way of realizing this isomorphism. For any n-plane bundle
ξ : E −→ B, we have a projection ξ : Sph(E) −→ B and a quotient map π :
Sph(E) −→ Tξ. We can compose their product with the diagonal map of Sph(E)
to obtain a composite map

Sph(E) −→ Sph(E)× Sph(E) −→ B × Tξ.

This sends all points at ∞ to points of B × {∞}. Therefore it factors through a
map

∆ : Tξ −→ B+ ∧ Tξ,
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which is called the “Thom diagonal.” For a commutative ring R, we can use ∆ to
define a cup product

Hp(B;R)⊗ H̃q(Tξ;R) −→ H̃p+q(Tξ;R).

When the bundle ξ is trivial, we let µ ∈ H̃n(B+ ∧ Sn;R) be the suspension of the
identity element 1 ∈ H0(B;R), and we find that x −→ x∪µ specifies the suspension
isomorphism Hq(B;R) ∼= H̃n+q(B+ ∧ Sn;R) = H̃n+q(Tξ;R).

Now consider a general bundle ξ. On neighborhoods U of B over which ξ is
trivial, we have Hq(U ;R) ∼= H̃n+q(T (ξ|U );R). The isomorphism depends on the
trivialization φU : U × Rn −→ ξ−1(U). It is natural to ask if these isomorphisms
patch together to give a global isomorphism Hq(B+) −→ H̃n+q(Tξ). This should
look very similar to the problem of patching local fundamental classes to obtain a
global one; that is, it looks like a question of orientation. This leads to the following
definition and theorem. For a point b ∈ B, let Snb be the one-point compactification
of the fiber ξ−1(b); since Snb is the Thom space of ξ|b, we have a canonical map
ib : Snb −→ Tξ.

Definition. Let ξ : E −→ B be an n-plane bundle. An R-orientation, or
Thom class, of ξ is an element µ ∈ H̃n(Tξ;R) such that, for every point b ∈ B,
i∗b(µ) is a generator of the free R-module H̃n(Snb ).

We leave it as an instructive exercise to verify that an R-orientation of a closed
n-manifold M determines and is determined by an R-orientation of its tangent
bundle τ(M).

Theorem (Thom isomorphism theorem). Let µ ∈ H̃n(Tξ;R) be a Thom class
for an n-plane bundle ξ : E −→ B. Define

Φ : Hq(B;R) −→ H̃n+q(Tξ;R)

by Φ(x) = x ∪ µ. Then Φ is an isomorphism.

Sketch Proof. When R is a field, this can be proved by an inductive Mayer-
Vietoris sequence argument. To exploit inverse images of open subsets of B, it is
convenient to observe that, by easy homotopy and excision arguments,

H̃∗(Tξ) ∼= H∗(Sph(E), B) ∼= H∗(Sph(E), Sph(E)0) ∼= H∗(E,E0),

where E0 and Sph(E)0 are the subspaces of E and Sph(E) obtained by deleting {0}
from each fiber. Use of a field ensures that the cohomology of the relevant direct
limits is the inverse limit of the cohomologies. An alternative argument that works
for general R can be obtained by first showing that one can assume that B is a CW
complex, by replacing ξ by its pullback along a CW approximation of B, and then
proceeding by induction over the restrictions of ξ to the skeleta of B; one point is
that the restriction of ξ to any cell is trivial and another is that the cohomology of
B is the inverse limit of the cohomologies of its skeleta. However, much the best
proof from the point of view of anyone seriously interested in algebraic topology
is to apply the Serre spectral sequence of the bundle Sph(E). The Serre spectral
sequence is a device for computing the cohomology of the total space E of a fibration
from the cohomologies of its base B and fiber F . It measures the cohomological
deviation ofH∗(E) fromH∗(B)⊗H∗(F ). In the present situation, the existence of a
Thom class ensures that there is no deviation for the sphere bundle Sph(E) −→ B,
so that

H∗(Sph(E);R) ∼= H∗(B;R)⊗H∗(Sn;R).
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The section given by the points at ∞ induces an isomorphism of H∗(B;R) ⊗
H0(Sn;R) with H∗(B;R), and the quotient map Sph(E) −→ Tξ induces an iso-
morphism of H̃∗(Tξ;R) with H∗(B;R)⊗Hn(Sn;R). �

Just as in orientation theory for manifolds, the question of orientability depends
on the structure of the units of the ring R, and this leads to the following conclusion.

Proposition. Every vector bundle admits a unique Z2-orientation.

This can be proved along with the Thom isomorphism theorem by a Mayer-
Vietoris argument.

6. The construction of the Stiefel-Whitney classes

We indicate two constructions of the Stiefel-Whitney classes. Each has distinct
advantages over the other. First, taking the characteristic class point of view, we
define the Stiefel-Whitney classes in terms of the Steenrod operations by setting

wi(ξ) = Φ−1SqiΦ(1) = Φ−1Sqiµ.

Naturality is obvious. Axiom 1 is immediate from the relations Sq0 = id and
Sqi(x) = 0 if i > deg x. For axiom 2, we use the following observation.

Lemma. There is a homotopy equivalence j : RP∞ −→ Tγ1.

Proof. Tγ1 is homeomorphic toD(γ1)/S(γ1). Here S(γ1) is the infinite sphere
S∞, which is the universal cover of RP∞ and is therefore contractible. The zero
section RP∞ −→ D(γ1) and the quotient map D(γ1) −→ Tγ1 are homotopy equiv-
alences, and their composite is the required homotopy equivalence j. �

Since Sq1(x) = x2 if deg x = 1, the lemma implies that Sq1 is non-zero on the
Thom class of γ1, verifying axiom 2. For axiom 3, we easily check that T (ξ ⊕ ε) ∼=
ΣT (ξ) for any vector bundle ξ and that the Thom class of ξ ⊕ ε is the suspension
of the Thom class of ξ. Thus axiom 3 follows from the stability of the Steenrod
operations. For axiom 4, we easily check that, for any vector bundles ζ and ξ,
T (ζ × ξ) ∼= Tζ ∧ Tξ and the Thom class of ζ × ξ is the tensor product of the Thom
classes of ζ and ξ. Interpreting the Cartan formula for the Steenrod operations
externally in the cohomology of products and therefore of smash products, we
see that it implies axiom 4. That is, the properties that axiomatize the Steenrod
operations directly imply the properties that axiomatize the Stiefel-Whitney classes.

We next take the classifying space point of view. As we shall explain in §8,
passage from topological groups to their classifying spaces is a product-preserving
functor, at least up to homotopy. We may embed (Z2)n = O(1)n in O(n) as the
subgroup of diagonal matrices. The classifying space BO(1) is RP∞, and we obtain
a map

ω : (RP∞)n ' B(O(1)n) −→ BO(n)
upon passage to classifying spaces. The symmetric group Σn is contained in O(n)
as the subgroup of permutation matrices, and the diagonal subgroup O(1)n is closed
under conjugation by symmetric matrices. Application of the classifying space func-
tor to conjugation by permutation matrices induces the corresponding permutation
of the factors of BO(1)n, and it induces the identity map on BO(n). Indeed, up to
homotopy, inner conjugation by an element of G induces the identity map on BG
for any topological group G.
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By the Künneth theorem, we see that

H∗((RP∞)n; Z2) = ⊗ni=1H
∗(RP∞; Z2) = Z2[α1, . . ., αn],

where the generators αi are of degree one. The symmetric group Σn acts on this
cohomology ring by permuting the variables αi. The subring H∗((RP∞)n; Z2)Σn

of elements invariant under the action is the polynomial algebra on the elementary
symmetric functions σi, 1 ≤ i ≤ n, in the variables αi. Here

σi =
∑
αj1 · · ·αji , 1 ≤ j1 < · · · < jn,

has degree i. The induced map ω∗ : H∗(BO(n); Z2) −→ H∗((RP∞)n; Z2) takes
values in H∗((RP∞)n; Z2)Σn . We shall give a general reason why this is so in §8.
The resulting map

ω∗ : H∗(BO(n); Z2) −→ H∗((RP∞)n; Z2)Σn

is a ring homomorphism between polynomial algebras on generators of the same
degrees. It turns out to be a monomorphism and therefore an isomorphism. We
redefine the Stiefel-Whitney classes by letting wi be the unique element such that
ω∗(wi) = σi for 1 ≤ i ≤ n and defining w0 = 1 and wi = 0 for i > n. Then axioms
1 and 2 for the Stiefel-Whitney classes are obvious, and we derive axioms 3 and 4
from algebraic properties of elementary symmetric functions.

One advantage of this approach is that, since we know the Steenrod opera-
tions on H∗(RP∞; Z2) and can read them off on H∗((RP∞)n; Z2) by the Cartan
formula, it leads to a purely algebraic calculation of the Steenrod operations in
H∗(BO(n); Z2). Explicitly, the following “Wu formula” holds:

Sqi(wj) =
i∑
t=0

(
j + t− i− 1

t

)
wi−twj+t.

7. Chern, Pontryagin, and Euler classes

The theory of the previous sections extends appropriately to complex vector
bundles and to oriented real vector bundles. The proof of the classification theorem
for complex n-plane bundles works in exactly the same way as for real n-plane
bundles, using complex Grassmann varieties. For oriented real n-plane bundles, we
use the Grassmann varieties of oriented n-planes, the points of which are planes
x together with a chosen orientation. In fact, the fundamental groups of the real
Grassmann varieties are Z2, and their universal covers are their orientation covers.
These covers are the oriented Grassmann varieties G̃n(Rq). We write BU(n) =
Gn(C∞) and BSO(n) = G̃n(R∞), and we construct universal complex n-plane
bundles γn : EUn −→ BU(n) and oriented n-plane bundles γ̃n : Ẽn −→ BSO(n) as
in the first section. Let EUn(B) denote the set of equivalence classes of complex n-
plane bundles over B and let Ẽn(B) denote the set of equivalence classes of oriented
real n-plane bundles over B; it is required that bundle maps (g, f) be orientation
preserving, in the sense that the induced map of Thom spaces carries the orientation
of the target bundle to the orientation of the source bundle. The universal bundle
γ̃n has a canonical orientation which determines an orientation on f∗Ẽn for any
map f : B −→ BSO(n).

Theorem. The natural transformation Φ : [−, BU(n)] −→ EUn(−) obtained
by sending the homotopy class of a map f : B −→ BU(n) to the equivalence class
of the n-plane bundle f∗EUn is a natural isomorphism of functors.
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Theorem. The natural transformation Φ : [−, BSO(n)] −→ Ẽn(−) obtained
by sending the homotopy class of a map f : B −→ BSO(n) to the equivalence class
of the oriented n-plane bundle f∗Ẽn is a natural isomorphism of functors.

The definition of characteristic classes for complex n-plane bundles and for
oriented real n-plane bundles in a cohomology theory k∗ is the same as for real
n-plane bundles, and the Yoneda lemma applies.

Lemma. Evaluation on γn specifies a canonical bijection between characteristic
classes of complex n-plane bundles and elements of k∗(BU(n)).

Lemma. Evaluation on γ̃n specifies a canonical bijection between characteristic
classes of oriented n-plane bundles and elements of k∗(BSO(n)).

Clearly we have a 2-fold cover πn : BSO(n) −→ BO(n). The mod 2 char-
acteristic classes for oriented n-plane bundles are as one might expect from this.
Continue to write wi for π∗(wi) ∈ Hi(BSO(n); Z2); here w1 = 0 since BSO(n) is
simply connected.

Theorem. H∗(BSO(n); Z2) ∼= Z2[w2, . . ., wn].

If we regard a complex n-plane bundle as a real 2n-plane bundle, then the
complex structure induces a canonical orientation. By the Yoneda lemma, the
resulting natural transformation r : EUn(−) −→ Ẽn(−) is represented by a map r :
BU(n) −→ BSO(2n). Explicitly, ignoring its complex structure, we may identify
C∞ with R∞ ⊕ R∞ ∼= R∞ and so regard a complex n-plane in C∞ as an oriented
2n-plane in R∞. Similarly, we may complexify real bundles fiberwise and so obtain
a natural transformation c : En(−) −→ EUn(−). It is represented by a map c :
BO(n) −→ BU(n). Explicitly, identifying C∞ with R∞ ⊗R C, we may complexify
an n-plane in R∞ to obtain an n-plane in C∞.

The Thom space of a complex or oriented real vector bundle is the Thom space
of its underlying real vector bundle. We obtain characteristic classes in cohomology
with any coefficients by applying cohomology operations to Thom classes, but it is
rarely the case that the resulting characteristic classes generate all characteristic
classes: the cases H∗(BO(n); Z2) and H∗(BSO(n); Z2) are exceptional. Charac-
teristic classes constructed in this fashion satisfy homotopy invariance properties
that fail for general characteristic classes.

In the complex case, with integral coefficients, we have a parallel to our second
approach to Stiefel-Whitney classes that leads to a description of H∗(BU(n); Z) in
terms of Chern classes. We may embed (S1)n = U(1)n in U(n) as the subgroup of
diagonal matrices. The classifying space BU(1) is CP∞, and we obtain a map

ω : (CP∞)n ' B(U(1)n) −→ BU(n)

upon passage to classifying spaces. The symmetric group Σn is contained in U(n)
as the subgroup of permutation matrices, and the diagonal subgroup U(1)n is closed
under conjugation by symmetric matrices. Application of the classifying space func-
tor to conjugation by permutation matrices induces the corresponding permutation
of the factors of BU(1)n, and it induces the identity map on BU(n).

By the Künneth theorem, we see that

H∗((CP∞)n; Z) = ⊗ni=1H
∗(CP∞; Z) = Z[β1, . . ., βn],

where the generators βi are of degree two. The symmetric group Σn acts on this
cohomology ring by permuting the variables βi. The subring H∗((CP∞)n; Z)Σn of
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elements invariant under the action is the polynomial algebra on the elementary
symmetric functions σi, 1 ≤ i ≤ n, in the variables βi. Here

σi =
∑
βj1 · · ·βji , 1 ≤ j1 < · · · < jn,

has degree 2i. The induced map ω∗ : H∗(BU(n); Z) −→ H∗((CP∞)n; Z) takes
values in H∗((CP∞)n; Z)Σn . The resulting map

ω∗ : H∗(BU(n); Z) −→ H∗((CP∞)n; Z)Σn

is a ring homomorphism between polynomial algebras on generators of the same de-
grees. It turns out to be a monomorphism and thus an isomorphism when tensored
with any field, and it is therefore an isomorphism. We define the Chern classes by
letting ci, 1 ≤ i ≤ n, be the unique element such that ω∗(ci) = σi.

Theorem. For n ≥ 1, there are elements ci ∈ H2i(BU(n); Z), i ≥ 0, called the
Chern classes. They satisfy and are uniquely characterized by the following axioms.

(1) c0 = 1 and ci = 0 if i > n.
(2) c1 is the canonical generator of H2(BU(1); Z) when n = 1.
(3) i∗n(ci) = ci.
(4) p∗m,n(ci) =

∑i
j=0 cj ⊗ ci−j.

The integral cohomology H∗(BU(n); Z) is the polynomial algebra Z[c1, . . ., cn].

Here we take axiom 1 as a definition and we interpret axiom 2 as meaning that
c1 corresponds to the identity map of CP∞ under the canonical identification of
[CP∞,CP∞] with H2(CP∞; Z). Axioms 3 and 4 can be read off from algebraic
properties of elementary symmetric functions. The theorem admits an immediate
interpretation in terms of characteristic classes. Observe that, since H∗(BU(n); Z)
is a free Abelian group, the theorem remains true precisely as stated with Z replaced
by any other commutative ring of coefficients R. We continue to write ci for the
image of ci inH∗(BU(n);R) under the homomorphism induced by the unit Z −→ R
of the ring R.

The reader deserves to be warned about a basic inconsistency in the literature.

Remark. With the discussion above, c1(γn+1
1 ) is the canonical generator of

H2(CPn; Z), where γn+1
1 is the canonical line bundle of lines in Cn+1 and points

on the line. This is the standard convention in algebraic topology. In algebraic
geometry, it is more usual to define Chern classes so that the first Chern class of
the dual of γn+1

1 is the canonical generator of H2(CPn; Z). With this convention,
the nth Chern class would be (−1)ncn. It is often unclear in the literature which
convention is being followed.

Turning to oriented real vector bundles, we define the Pontryagin and Euler
classes as follows, taking cohomology with coefficients in any commutative ring R.

Definition. Define the Pontryagin classes pi ∈ H4i(BO(n);R) by

pi = (−1)ic∗(c2i),

c∗ : H4i(BU(n);R) −→ H4i(BO(n);R); also write pi for π∗n(pi) ∈ H4i(BSO(n);R).

Definition. Define the Euler class e(ξ) ∈ Hn(B;R) of an R-oriented n-plane
bundle ξ over the base space B by e(ξ) = Φ−1µ2, where µ ∈ Hn(Tξ;R) is the Thom
class. Giving the universal oriented n-plane bundle over BSO(n) the R-orientation
induced by its integral orientation, this defines the Euler class e ∈ Hn(BSO(n);R).
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If n is odd, then 2µ2 = 0 and thus 2e = 0. If R = Z2, then Sqn(µ) = µ2

and thus e = wn. The name “Euler class” is justified by the following classical
result, which well illustrates the kind of information that characteristic numbers
can encode.1

Theorem. If M is a smooth closed oriented manifold, then the characteristic
number e[M ] = 〈e(τ(M)), z〉 ∈ Z is the Euler characteristic of M .

The evident inclusion Tn ∼= SO(2)n −→ SO(2n) is a maximal torus, and it
induces a map BTn −→ BSO(2n). A calculation shows that e restricts to the nth
elementary symmetric polynomial β1 · · ·βn. The cited inclusion factors through
the homomorphism U(n) −→ SO(2n), hence BTn −→ BSO(2n) factors through
r : BU(n) −→ BSO(2n). This implies another basic fact about the Euler class.

Proposition. r∗ : H∗(BSO(2n); Z) −→ H∗(BU(n); Z) sends e to cn.

The presence of 2-torsion makes the description of the integral cohomology rings
of BO(n) and BSO(n) quite complicated, and these rings are almost never used
in applications. Rather, one uses the mod 2 cohomology rings and the following
description of the cohomology rings that result by elimination of 2-torsion.

Theorem. Take coefficients in a ring R in which 2 is a unit. Then

H∗(BO(2n)) ∼= H∗(BO(2n+ 1)) ∼= H∗(BSO(2n+ 1)) ∼= R[p1, . . ., pn]

and
H∗(BSO(2n)) ∼= R[p1, . . ., pn−1, e], with e2 = pn.

8. A glimpse at the general theory

We should place the theory of vector bundles in a more general context. We
have written BO(n), BU(n), and BSO(n) for certain “classifying spaces” in this
chapter, but we defined a classifying space BG for any topological group G in
Chapter 16 §5. In fact, the spaces here are homotopy equivalent to the spaces of
the same name that we defined there, and we here explain why.

Consider bundles ξ : Y −→ B with fiber G. For spaces U in a numerable open
cover O of B, there are homeomorphisms φ : U×G −→ p−1(U) such that p◦φ = π1.
We say that Y is a principal G-bundle if Y has a free right action by G, B is the
orbit space Y/G, ξ is the quotient map, and the φ are maps of right G-spaces. We
say that ξ : Y −→ B is a universal principalG-bundle if Y is a contractible space. In
particular, for any topological group G whose identity element is a nondegenerate
basepoint, such as any Lie group G, the map p : EG −→ BG constructed in
Chapter 16 §5 is a universal principal G-bundle. The classification theorem below
implies that the base spaces of any two universal principal G-bundles are homotopy
equivalent, and it is usual to write BG for any space in this homotopy type. Observe
that the long exact sequence of homotopy groups of a universal principal G-bundle
gives isomorphisms πq(BG) ∼= πq−1(G) for q ≥ 1.

We have implicitly constructed other examples of universal principal G-bundles
when G is O(n), U(n), or SO(n). To see this, consider Vn(Rq). Write Rq = Rn ×
Rq−n and note that this fixes embeddings of O(n) and O(q − n) in the orthogonal
group O(q). Of course, O(q) acts on vectors in Rq and thus on n-frames. Consider
the fixed n-frame x0 = {e1, . . ., en}. Any other n-frame can be obtained from

1See Corollary 11.12 of Milnor and Stasheff Characteristic Classes for a proof.
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this one by the action of an element of O(q), and the isotropy group of x0 is
O(q − n). Thus the action of O(q) is transitive, and evaluation on x0 induces a
homeomorphism O(q)/O(q − n) −→ Vn(Rq) of O(q)-spaces. The action of O(n) ⊂
O(q) is free, and passage to orbits gives a homeomorphism O(q)/O(n)×O(q−n) −→
Gn(Rq). It is intuitively clear and not hard to prove that the colimit over q of the
inclusions O(q − n) −→ O(q) is a homotopy equivalence and that this implies the
contractibility of Vn(R∞). We deduce that Vn(R∞) is a universal principal O(n)-
bundle. We have analogous universal principal U(n)-bundles and SO(n)-bundles.

There is a classification theorem for principal G-bundles. Let PG(B) denote
the set of equivalence classes of principal G-bundles over B, where two principal
G-bundles over B are equivalent if there is a G-homeomorphism over B between
them. Via pullback of bundles, this is a contravariant set-valued functor on the
homotopy category of spaces.

Theorem. Let γ : Y −→ Y/G be any universal principal G-bundle. The
natural transformation Φ : [−, Y/G] −→PG(−) obtained by sending the homotopy
class of a map f : B −→ Y/G to the equivalence class of the principal G-bundle
f∗Y is a natural isomorphism of functors.

Now let F be any space on which G acts effectively from the left. Here an
action is effective if gf = f for every f ∈ F implies g = e. For a principal G-
bundle Y , let G act on Y × F by g(y, f) = (yg−1, gf) and let Y ×G F be the orbit
space (Y × F )/G. With the correct formal definition of a fiber bundle with group
G and fiber F , every such fiber bundle p : E −→ B is equivalent to one of the
form Y ×G F −→ Y/G ∼= B for some principal G-bundle Y over B; moreover Y is
uniquely determined up to equivalence.

In fact, the “associated principal G-bundle” Y can be constructed as the func-
tion space of all maps ψ : F −→ E such that ψ is an admissible homeomor-
phism onto some fiber Fb = p−1(b). Here admissibility means that the compos-
ite of ψ with the homeomorphism Fb −→ F determined by a coordinate chart
φ : U × F

∼=−→ p−1(U), b ∈ U , coincides with action by some element of G. The
left action of G on F induces a right action of G on Y ; this action is free because
the given action on F is effective. The projection Y −→ B sends ψ to b when
ψ : F

∼=−→ Fb, and it factors through a homeomorphism Y/G −→ B. Y inherits
local triviality from p, and the evaluation map Y ×F −→ E induces an equivalence
of bundles Y ×G F −→ E.

We conclude that, for any F , PG(B) is naturally isomorphic to the set of
equivalence classes of bundles with group G and fiber F over B. Fiber bundles with
group O(n) and fiber Rn are real n-plane bundles, fiber bundles with group U(n)
and fiber Cn are complex n-plane bundles, and fiber bundles with group SO(n) and
fiber Rn are oriented real n-plane bundles. Thus the classification theorems of the
previous sections could all be rederived as special cases of the general classification
theorem for principal G-bundles stated in this section.

In our discussion of Stiefel-Whitney and Chern classes, we used that passage
to classifying spaces is a product-preserving functor, at least up to homotopy. For
the functoriality, if f : G −→ H is a homomorphism of topological groups, then
consideration of the way bundles are constructed by gluing together coordinate
charts shows that a principal G-bundle ξ : Y −→ B naturally gives rise to a
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principal H-bundle f∗Y −→ B. This construction is represented on the classifying
space level by a map Bf : BG −→ BH.

In fact, if EG −→ BG and EH −→ BH are universal principal bundles,
then any map f̃ : EG −→ EH such that f̃(xg) = f̃(x)f(g) for all x ∈ EG
and g ∈ G induces a map in the homotopy class Bf on passage to orbits. For
example, if f : G −→ G is given by conjugation by γ ∈ G, f(g) = γ−1gγ, then
f̃(x) = xγ satisfies this equivariance property and therefore Bf is homotopic to the
identity. This explains why inner conjugations induce the identity map on passage
to classifying spaces, as we used in our discussion of Stiefel-Whitney and Chern
classes.

If EG −→ BG and EG′ −→ BG′ are universal principal G and G′ bundles,
then EG × EG′ is a contractible space with a free action by G × G′. The orbit
space is BG × BG′, and this shows that BG × BG′ is a choice for the classifying
space B(G×G′) and is therefore homotopy equivalent to any other choice.

The explicit construction of BG given in Chapter 16 §5 is functorial in G on
the point-set level and not just up to homotopy, and it is product preserving in the
strong sense that the projections induce a homeomorphism B(H×G) ∼= BH×BG.

PROBLEMS
(1) Verify that w(RP q) = 1 if and only if q = 2k − 1 for some k.
(2) Prove that RP 2k

cannot immerse in R2k+1−2. (By the Whitney embedding
theorem, any smooth closed n-manifold immerses in R2n−1, so this is a
best possible non-immersion result.)

(3) Prove that all tangential Stiefel-Whitney numbers of RP q are zero if and
only if q is odd.

(4) * Try to construct a smooth compact manifold whose boundary is RP 3.
(5) Prove that a smooth closed n-manifold M is R-orientable if and only its

tangent bundle is R-orientable.



CHAPTER 24

An introduction to K-theory

The first generalized cohomology theory to be discovered was K-theory, and it
plays a vital role in the connection of algebraic topology to analysis and algebraic
geometry. The fact that it is a generalized cohomology theory is a consequence of
the Bott periodicity theorem, which is one of the most important and influential
theorems in all of topology. We give some basic information about K-theory and,
following Adams and Atiyah, we explain how the Adams operations in K-theory
allow a quick solution to the “Hopf invariant one problem.” One implication is the
purely algebraic theorem that the only possible dimensions of a real (not necessarily
associative) division algebra are 1, 2, 4, and 8. We shall only discuss complex K-
theory, although there is a precisely analogous construction of real K-theory KO.
From the point of view of algebraic topology, real K-theory is a substantially more
powerful invariant, but complex K-theory is usually more relevant to applications
in other fields.

1. The definition of K-theory

Except where otherwise noted, we work with complex vector bundles through-
out this chapter. Dimension will mean complex dimension and line bundles will
mean complex line bundles. We consider the set V ect(X) of equivalence classes
of vector bundles over a space X. We assume unless otherwise specified that X
is compact. We remind the reader that vector bundles can have different dimen-
sion over different components of X. The set V ect(X) forms an Abelian monoid
(= semi-group) under Whitney sum, and it forms a semi-ring with multiplication
given by the (internal) tensor product of vector bundles over X.

There is a standard construction, called the Grothendieck construction, of an
Abelian group G(M) associated to an Abelian monoid M : one takes the quotient of
the free Abelian group generated by the elements of M by the subgroup generated
by the set of elements of the form m + n − m ⊕ n, where ⊕ is the sum in M .
The evident morphism of Abelian monoids i : M −→ G(M) is universal: for any
homomorphism of monoids f : M −→ G, where G is an Abelian group, there is a
unique homomorphism of groups f̃ : G(M) −→ G such that f̃ ◦ i = f . If M is a
semi-ring, then its multiplication induces a multiplication on G(M) such that G(M)
is a ring, called the Grothendieck ring of M . If the semi-ring M is commutative,
then the ring G(M) is commutative.

Definition. The K-theory of X, denoted K(X), is the Grothendieck ring of
the semi-ring V ect(X). An element of K(X) is called a virtual bundle over X. We
write [ξ] for the element of K(X) determined by a vector bundle ξ.

Since ε is the identity element for the product in K(X), it is standard to write
q = [εq], where εq is the q-dimensional trivial bundle. For vector bundles over a
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based space X, we have the function d : V ect(X) −→ Z that sends a vector bundle
to the dimension of its restriction to the component of the basepoint ∗. Since d is
a homomorphism of semi-rings, it induces a dimension function d : K(X) −→ Z,
which is a homomorphism of rings. Since d is an isomorphism when X is a point,
d can be identified with the induced map K(X) −→ K(∗).

Definition. The reduced K-theory K̃(X) of a based space X is the kernel of
d : K(X) −→ Z. It is an ideal of K(X) and thus a ring without identity. Clearly
K(X) ∼= K̃(X)× Z.

We have a homotopical interpretation of these definitions, and it is for this that
we need X to be compact. By the classification theorem, we know that EUn(X) is
naturally isomorphic to [X+, BU(n)]; we have adjoined a disjoint basepoint because
we are thinking cohomologically and want the brackets to denote based homotopy
classes of maps. We have maps in : BU(n) −→ BU(n+ 1). With our construction
of classifying spaces via Grassmannians, these maps are inclusions, and we define
BU to be the colimit of the BU(n), with the topology of the union.

We say that bundles ζ and ξ are stably equivalent if, for a sufficiently large q,
the bundles ζ ⊕ εq−m and ξ ⊕ εq−n are equivalent, where m = d(ζ) and n = d(ξ).
Let EU(X) be the set of stable equivalence classes of vector bundles over X. If X
is connected, or if we restrict attention to vector bundles that are n-plane bundles
for some n, then EU is isomorphic to colim EUn(X), where the colimit is taken
over the maps EUn(X) −→ EUn+1(X) obtained by sending a bundle ξ to ξ ⊕ ε.
Since a map from a compact space X into BU has image in one of the BU(n), and
similarly for homotopies, we see that in this case [X+, BU ] ∼= colim[X+, BU(n)]
and therefore

EU(X) ∼= [X+, BU ].
A deeper use of compactness gives the following basic fact.

Proposition. If ξ : E −→ X is a vector bundle over X, then there is a bundle
η over X such that ξ ⊕ η is equivalent to εq for some q.

Sketch proof. The space ΓE of sections of E is a vector space under fiberwise
addition and scalar multiplication. Using a partition of unity argument, one can
show that there is a finite dimensional vector subspace V of Γ(E) such that the
map g : X ×V −→ E specified by g(x, s) = s(x) is an epimorphism of bundles over
X. The resulting short exact sequence of vector bundles, like any other short exact
sequence of vector bundles, splits as a direct sum, and the conclusion follows. �

Corollary. Every virtual bundle over X can be written in the form [ξ] − q
for some bundle ξ and non-negative integer q.

Proof. Given a virtual bundle [ω]− [ζ], where ω and ζ are bundles, choose η
such that ζ ⊕ η ∼= εq and let ξ = ω ⊕ η. Then [ω]− [ζ] = [ξ]− q in K(X). �

Corollary. There is a natural isomorphism EU(X) −→ K̃(X).

Proof. Writing {ξ} for the stable equivalence class of a bundle ξ, the required
isomorphism is given by the correspondence {ξ} ↔ [ξ]− d(ξ). �

Corollary. Give Z the discrete topology. For compact spaces X, there is a
natural isomorphism

K(X) ∼= [X+, BU × Z].
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For nondegenerately based compact spaces X, there is a natural isomorphism

K̃(X) ∼= [X,BU × Z].

Proof. When X is connected, the first isomorphism sends [ξ]−q to (f, n−q),
where ξ is an n-plane bundle with classifying map f : X −→ BU(n) ⊂ BU . The
isomorphism for non-connected spaces follows since both functors send disjoint
unions to Cartesian products. The second isomorphism follows from the first since
d : K(X) −→ Z can be identified with the map [X+, BU × Z] −→ [S0, BU × Z]
induced by the cofibration S0 −→ X+, and the latter has kernel [X,BU × Z] since
X+/S

0 = X. �

For general, non-compact, spaces X, it is best to define K-theory to mean
represented K-theory. Here we implicitly apply CW approximation, or else use the
definition in the following form.

Definition. For a space X of the homotopy type of a CW complex, define

K(X) = [X+, BU × Z].

For a nondegenerately based space of the homotopy type of a CW complex, define

K̃(X) = [X,BU × Z].

When X is compact, we know that K(X) is a ring. It is natural to expect this
to remain true for general X. That this is the case is a direct consequence of the
following result, which the reader should regard as an aside.

Proposition. The space BU × Z is a ring space up to homotopy. That is,
there are additive and multiplicative H-space structures on BU × Z such that the
associativity, commutativity, and distributivity diagrams required of a ring commute
up to homotopy.

Indications of proof. By passage to colimits over m and n, the maps pm,n :
BU(m)×BU(n) −→ BU(m+ n) induce an “addition” ⊕ : BU ×BU −→ BU . In
fact, we can define BU in terms of planes in any copy of C∞, and the explicit maps
pm,n of Chapter 23 §2 pass to colimits to give

G∞(C∞)×G∞(C∞) −→ G∞(C∞ ⊕ C∞);

use of an isomorphism C∞ ⊕ C∞ ∼= C∞ gives the required map ⊕, which is well
defined, associative, and commutative up to homotopy; the zero-dimensional plane
provides a convenient basepoint 0 with which to check that we have a zero element
up to homotopy. Using ordinary addition on Z, we obtain the additive H-space
structure on BU × Z. Tensor products of universal bundles give rise to classifying
maps qm,n : BU(m) × BU(n) −→ BU(mn). These do not pass to colimits so
readily, since one must take into account the bilinearity of the tensor product, for
example the relation (γm⊕ ε)⊗γn ∼= (γm⊗γn)⊕γn, and we merely affirm that, by
fairly elaborate arguments, one can pass to colimits to obtain a product on BU×Z.
It actually factors through the smash product with respect to the basepoint 0, since
that acts as zero for the tensor product, and it restricts to an H-space structure on
BO × {1} with basepoint (0, 1). �

The study of ring spaces such as this is a relatively new, and quite deep, part
of algebraic topology. However, the reader should feel reasonably comfortable with
the additive H-space structure on BU .
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2. The Bott periodicity theorem

There are various ways to state, and various ways to prove, this basic result.
We describe several versions and implications. One starting point is the following
calculation. We have a canonical line bundle γ2

1 over S2 ∼= CP 1; its points are pairs
(L, x), where L is a line in C2 and x is a point on that line. We let H = Hom(γ2

1 , ε)
denote its dual.

Theorem. K(S2) is generated as a ring by [H] subject to the single relation
([H] − 1)2 = 0. Therefore, as Abelian groups, K(S2) is free on the basis {1, [H]}
and K̃(S2) is free on the basis {1− [H]}.

Indication of proof. We think of S2 as the one-point compactification of C
decomposed as the union of the unit disk D and the complement D′ of the interior
of D, so that D ∩ D′ = S1. Any n-plane bundle over S2 restricts to a trivial
bundle over D and D′, and these trivial bundles restrict to the same bundle over
S1. Conversely, an isomorphism f from the trivial bundle over S1 to itself gives a
way to glue together the trivial bundles over D and D′ to reconstruct a bundle over
S2. Say that two such “clutching functions” f are equivalent if the bundles they
give rise to are equivalent. A careful analysis of the form of the possible clutching
functions f leads to a canonical example in each equivalence class and thus to the
required calculation. �

For any pair of spaces X and Y , we have a Künneth-type ring homomorphism

α : K(X)⊗K(Y ) −→ K(X × Y )

specified by α(x⊗ y) = π∗1(x)π∗2(y).

Theorem (Bott periodicity). For compact spaces X,

α : K(X)⊗K(S2) −→ K(X × S2)

is an isomorphism.

Indication of proof. The restrictions to X×D and X×D′ of a bundle over
X×S2 are equivalent to pullbacks of bundles overX, and their further restrictions to
S1 are equivalent. Conversely, bundles ζ and ξ over X together with an equivalence
f between the restrictions to X × S1 of the pullbacks of ζ and ξ to X × D and
X ×D′ determine a bundle over X ×S2. Again, a careful analysis, which is similar
to that in the special case when X = pt, of the equivalence classes of the possible
clutching data (ζ, f, ξ) leads to the conclusion. �

The following useful observation applies to any representable functor, not just
K-theory.

Lemma. For nondegenerately based spaces X and Y , the projections of X × Y
on X and on Y and the quotient map X×Y −→ X∧Y induce a natural isomorphism

K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y ) ∼= K̃(X × Y ),

and K̃(X ∧ Y ) is the kernel of the map K̃(X × Y ) −→ K̃(X) ⊕ K̃(Y ) induced by
the inclusions of X and Y in X × Y .

Proof. The inclusion X ∨ Y −→ X × Y is a cofibration with quotient X ∧ Y ,
and X and Y are retracts of X × Y via the inclusions and projections. �
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It follows easily that the Künneth map α : K(X)⊗K(Y ) −→ K(X×Y ) induces
a reduced Künneth map β : K̃(X)⊗ K̃(Y ) −→ K̃(X ∧ Y ). We have a splitting

K̃(X)⊗ K̃(Y )⊕ K̃(X)⊕ K̃(Y )⊕ Z ∼= K(X)⊗K(Y )

that is compatible with the splitting of the lemma. Therefore the following reduced
form of the Bott periodicity theorem is equivalent to the unreduced form that we
have already stated.

Theorem (Bott periodicity). For nondegenerately based compact spaces X,

β : K̃(X)⊗ K̃(S2) −→ K̃(X ∧ S2) = K̃(Σ2X)

is an isomorphism.

Write b = 1 − [H] ∈ K̃(S2). Since K̃(S2) ∼= Z with generator b, the theorem
implies that multiplication by the “Bott element” b specifies an isomorphism

[X,BU × Z] ∼= K̃(X) −→ K̃(Σ2X) ∼= [X,Ω2(BU × Z)]

for nondegenerately based compact spaces X. Here the addition in the source and
target is derived from the natural additive H-space structure on BU ×Z on the left
and the displayed double loop space on the right. If we had this isomorphism for
general non-compact spaces X, we could apply it with X = BU × Z and see that
it is induced by a homotopy equivalence of H-spaces

β : BU × Z −→ Ω2(BU × Z).

In fact, one can deduce such a homotopy equivalence from the Bott periodicity
theorem as just stated, but there are more direct proofs. On the right, the double
loop space obviously depends only on the basepoint component BU = BU × {0}.
Since π2(BU) = Z, a little argument with H-spaces shows that Ω2(BU × Z) is
equivalent as an H-space to (Ω2

0BU)× Z, where Ω2
0BU denotes the component of

the basepoint in Ω2BU . Using the identity function on the factor Z, we see that
what is needed is an equivalence of H-spaces β : BU −→ Ω2

0BU . In fact, it is easily
deduced from the form of Bott periodicity that, up to homotopy, β must be the
adjoint of the composite

Σ2BU = BU ∧ S2 id∧b // BU ∧BU
⊗ // BU.

The infinite unitary group U is defined to be the union of the unitary groups
U(n), where U(n) is embedded in U(n + 1) as matrices with last row and column
zero except for 1 on the diagonal. Then ΩBU is homotopy equivalent as an H-
space to U . Since π1(U) = Z and the universal cover of U is the infinite special
unitary group SU , ΩU is equivalent as an H-space to (ΩSU)×Z. Therefore β may
be viewed as a map BU −→ ΩSU . Bott’s original proof of the Bott periodicity
theorem used the Grassmannian model for BU to write down an explicit map β
in the required homotopy class and then used Morse theory to prove that β is a
homotopy equivalence.

Bott’s map β can also be proved to be a homotopy equivalence using only
basic algebraic topology. Since BU and ΩSU are simply connected spaces of the
homotopy types of CW complexes, a relative version of the Hurewicz theorem called
the Whitehead theorem shows that β will be a weak equivalence and therefore a
homotopy equivalence if it induces an isomorphism on integral homology. Since
H∗(BU(n)) = Z[c1, . . ., cn], H∗(BU) ∼= Z[ci|i ≥ 1]. The H-space structure on
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BU is induced by the maps pm,n, and we find that the map ψ : H∗(BU) −→
H∗(BU ×BU) ∼= H∗(BU)⊗H∗(BU) induced by the product is given by ψ(ck) =∑
i+j=k ci ⊗ cj . A purely algebraic dualization argument proves that, as a ring,

H∗(BU) ∼= Z[γi|i ≥ 1],

where γi is the image of a generator of H2i(CP∞) under the map induced by the
inclusion of CP∞ = BU(1) in BU . One can calculate H∗(ΩSU) and see that it too
is a polynomial algebra with an explicitly given generator in each even degree. A
direct inspection of the map β shows that it carries generators to generators.

In any case, it should now be clear that we have a periodic Ω-prespectrum and
therefore a generalized cohomology theory represented by it.

Definition. TheK-theory Ω-prespectrumKU has spacesKU2i = BU×Z and
KU2i+1 = U for all i ≥ 0. The structure maps are given by the canonical homotopy
equivalence U ' ΩBU = Ω(BU × Z) and the Bott equivalence BU × Z ' ΩU .

We have a resulting reduced cohomology theory on based spaces such that
K̃2i(X) = K̃(X) and K̃2i+1(X) = K̃(ΣX) for all integers i. This theory has
products that are induced by tensor products of bundles over compact spaces and
that are induced by suitable maps φ : KUi ∧ KUj −→ KUi+j in general, just as
for the cup product in ordinary cohomology. It is standard to view this simply as
a Z2-graded theory with groups K̃0(X) and K̃1(X).

3. The splitting principle and the Thom isomorphism

Returning to our bundle theoretic construction of K-theory, with X compact,
we describe briefly some important generalizations of the Bott periodicity theorem.
The reader should recall the Thom isomorphism theorem in ordinary cohomology
from Chapter 23 §5. We let ξ : E −→ X be an n-plane bundle over X, fixed
throughout this section. (We shall use the letters E and ξ more or less inter-
changeably.) Results for general vector bundles over non-connected spaces X can
be deduced by applying the results to follow to one component of X at a time.

Definition. Let E0 be the zero section of E. Define the projective bundle
π : P (E) −→ X by letting the non-zero complex numbers act on E − E0 by scalar
multiplication on fibers and taking the orbit space under this action. Equivalently,
the fiber π−1(x) ⊂ P (E) is the complex projective space of lines through the origin
in the fiber ξ−1(x) ⊂ E. Define the canonical line bundle L(E) over P (E) to be the
subbundle of the pullback π∗E of ξ along π whose points are the pairs consisting
of a line in a fiber of E and a point on that line. Let Q(E) be the quotient bundle
π∗E/L(E) and let H(E) denote the dual of L(E).

Observe that P (ε2) = X×CP 1 is the trivial bundle overX with fiber CP 1 ∼= S2.
The first version of Bott periodicity generalizes, with essentially the same proof by
analysis of clutching data, to the following version. Regard K(P (E)) as a K(X)-
algebra via π∗ : K(X) −→ K(P (E)).

Theorem (Bott periodicity). Let L be a line bundle over X and let H =
H(L⊕ ε). Then the K(X)-algebra K(P (L⊕ ε)) is generated by the single element
[H] subject to the single relation ([H]− 1)([L][H]− 1) = 0.

There is a further generalization to arbitrary bundles E. To place it in context,
we shall first explain a cohomological analogue that expresses a different approach
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to the Chern classes than the one that we sketched before. It will be based on a
generalization to projective bundles of the calculation of H∗(CPn). The proofs of
both results are intertwined with the proof of the following “splitting principle,”
which allows the deduction of explicit formulas about general bundles from formulas
about sums of line bundles.

Theorem (Splitting principle). There is a compact space F (E) and a map
p : F (E) −→ X such that p∗E is a sum of line bundles over F (E) and both
p∗ : H∗(X; Z) −→ H∗(F (E); Z) and p∗ : K(X) −→ K(F (E)) are monomorphisms.

This is an easy inductive consequence of the following result, which we shall
refer to as the “splitting lemma.”

Lemma (Splitting lemma). Both π∗ : H∗(X; Z) −→ H∗(P (E); Z) and π∗ :
K(X) −→ K(P (E)) are monomorphisms.

Proof of the splitting principle. The pullback π∗E splits as the sum
L(E)⊕Q(E). (The splitting is canonically determined by a choice of a Hermitian
metric on E.) Applying this construction to the bundle Q(E) over P (E), we ob-
tain a map π : P (Q(E)) −→ P (E) with similar properties. We obtain the desired
map p : F (E) −→ X by so reapplying the projective bundle construction n times.
Explicitly, using a Hermitian metric on E, we find that the fiber F (E)x is the
space of splittings of the fiber Ex as a sum of n lines, and the points of the bundle
p∗E are n-tuples of vectors in given lines. The splitting lemma implies the desired
monomorphisms on cohomology and K-theory. �

Theorem. Let x = c1(L(E)) ∈ H2(P (E); Z). Then H∗(P (E); Z) is the free
H∗(X; Z)-module on the basis

{
1, x, . . ., xn−1

}
, and the Chern classes of ξ are char-

acterized by c0(ξ) = 1 and the formula
n∑
k=0

(−1)kck(E)xn−k = 0.

Sketch proof. This is another case where the Serre spectral sequence shows
that the bundle behaves cohomologically as if it were trivial and the Künneth
theorem applied. This gives the structure of H∗(P (E)) as an H∗(X)-module. In
particular, it implies the splitting lemma and thus the splitting principle in ordinary
cohomology. It also implies that there must be some description of xn as a linear
combination of the xk for k < n, and the splitting principle may now be used to
help determine that description. Write

xn =
n∑
k=1

(−1)k+1c′k(E)xn−k.

This defines characteristic classes c′k(E). One deduces that c′k(E) = ck(E) by
verifying that the c′k satisfy the axioms that characterize the Chern classes. For
a line bundle E, L(E) = E and c1(E) = c′1(E) by the definition of x. One first
verifies by direct calculation that if E = L1⊕· · ·⊕Ln is a sum of line bundles, then∏

1≤k≤n(x− c1(Lk)) = 0. This implies that c′k(E) is the kth elementary symmetric
polynomial in the c1(Lk). By the Whitney sum formula for the Chern classes, this
implies that c′k(E) = ck(E) in this case. The general case follows from the splitting
principle. Indeed, we have a map P (p∗E) −→ P (E) of projective bundles whose
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induced map on base spaces is p : F (E) −→ X. Writing p∗E ∼= L1 ⊕ · · · ⊕ Ln and
using the naturality of the classes c′k, we have

p∗(c′k(E)) = c′k(L1 ⊕ · · · ⊕ Ln) = σk(c1(L1), . . ., ck(Ln)).

It follows easily that the c′k satisfy the Whitney sum axiom for the Chern classes.
Since the remaining axioms are clear, this implies that c′k = ck. �

The following analogue in K-theory of the previous theorem holds. Observe
that, since they are continuous operations on complex vector spaces, the exterior
powers λk can be applied fiberwise to give natural operations on vector bundles.

Theorem. Let H = H(E). Then K(P (E)) is the free K(X)-module on the
basis

{
1, [H], . . ., [H]n−1

}
, and the following formula holds:

n∑
k=0

(−1)k[H]k[λkE] = 0.

Sketch proof. Suppose first that E is the sum of n line bundles. Using the
fact that if E is an n-plane bundle and L is a line bundle, then P (E) is canonically
isomorphic to P (E ⊗ L), one can reduce to the case when the last line bundle
is trivial. One can then argue by induction from the previous form of the Bott
periodicity theorem. For a general bundle E, one then deduces the structure of
K(P (E)) as a K(X)-module by a patching argument from coordinate charts and
the case of trivial bundles. This implies the splitting lemma and thus the splitting
principle in K-theory. It also implies that there must be some formula describing
[H]n as a polynomial in the [H]k for k < n. One reason that the given formula
holds will be indicated shortly. �

Projective bundles are closely related to Thom spaces. The inclusion of vector
bundles ξ ⊂ ξ ⊕ ε induces an inclusion of projective bundles P (E) ⊂ P (E ⊕ ε).
We give E a Hermitian metric and regard the Thom space Tξ as the quotient
D(E)/S(E) of the unit disk bundle by the unit sphere bundle. The total space of ε
is X×C and we write 1x = (x, 1). Define a map η : D(E) −→ P (E⊕ ε) by sending
a point ex in the fiber over x to the line generated by ex − (1 − |ex|2)1x. Then η
maps D(E)−S(E) homeomorphically onto P (E ⊕ ε)−P (E) and maps S(E) onto
P (E) by the evident Hopf map. Therefore η induces a homeomorphism

T (ξ) ∼= D(E)/S(E) ∼= P (E ⊕ ε)/P (E).

Just as in ordinary cohomology, the Thom diagonal gives rise to a product

K(X)⊗ K̃(Tξ) −→ K̃(Tξ).

The description of K(P (E)) and the exact sequence in K-theory induced by the
cofibering

P (E) −→ P (E ⊕ ε) −→ T (ξ)
lead to the Thom isomorphism in K-theory. There is a natural way to associate
elements of K(X) to complexes of vector bundles over X, and the exterior algebra
of the bundle E gives rise to an element λE ∈ K̃(Tξ). This element restricts to a
generator of K̃(Snx ) for each x ∈ X, and these Thom classes are compatible with
Whitney sum, in the sense that λE⊕E′ = λE · λE′ . Moreover, the image of λE
in K(P (E ⊕ ε)) is

∑n
k=0(−1)k[H]k[λkE]. Therefore this element maps to zero in

K(P (E)), and this gives the formula in the previous theorem.
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Theorem (Thom isomorphism theorem). Define Φ : K(X) −→ K̃(T (ξ)) by

Φ(x) = x · λE .
Then Φ is an isomorphism.

4. The Chern character; almost complex structures on spheres

We have seen above that ordinary cohomology and K-theory enjoy similar
properties. The splitting theorem implies a direct connection between them. Let R
be any commutative ring and consider a formal power series f(t) =

∑
ait

i ∈ R[[t]].
Given an element x ∈ Hn(X;R), we let f(x) =

∑
aix

i ∈ H∗∗(X;R). The sums
will be finite in our applications of this formula. Via the splitting principle, we can
use f to construct a natural homomorphism of Abelian monoids f̂ : V ect(X) −→
H∗∗(X;R), where X is any compact space. For a line bundle over X, we set

f̂(L) = f(c1(L)).

For a sum E = L1 ⊕ · · · ⊕ Ln of line bundles over X, we set

f̂(E) =
n∑
i=1

f(c1(Li)).

For a general n-plane bundle E over X, we let f̂(E) be the unique element of
H∗∗(X;R) such that p∗(f̂(E)) = f̂(p∗(E)) ∈ H∗∗(F (E)). More explicitly, writing
p∗E = L1 ⊕ · · · ⊕ Ln, we see that f̂(p∗(E)) is a symmetric polynomial in the
c1(Li) and can therefore be written as a polynomial in the elementary symmetric
polynomials p∗(ck(E)). Application of this polynomial to the ck(E) gives f̂(E).
(For vector bundles E over non-connected spaces X, we add the elements obtained
by restricting E to the components of X.) By the universal property of K(X), f̂
extends to a homomorphism f̂ : K(X) −→ H∗∗(X;R).

There is an analogous multiplicative extension f̄ of f that starts from the
definition

f̄(E) =
n∏
i=1

f(c1(Li))

on a sum E = L1 ⊕ · · · ⊕ Ln of line bundles Li.

Example. For any R, if f(t) = 1 + t, then f̄(E) = c(E) is the total Chern
class of E.

The example we are interested in is the “Chern character,” which gives rise to
an isomorphism between rationalized K-theory and rational cohomology.

Example. Taking R = Q, define the Chern character ch(E) ∈ H∗∗(X; Q) by
ch(E) = f̂(E), where f(t) = et =

∑
ti/i!.

For line bundles L and L′, we have c1(L ⊗ L′) = c1(L) + c1(L′). One way to
see this is to recall that BU(1) ' K(Z, 2) and that line bundles are classified by
their Chern classes regarded as elements of

[X+, BU(1)] ∼= H2(X; Z).

The tensor product is represented by a product φ : BU(1)×BU(1) −→ BU(1) that
gives BU(1) an H-space structure. We may think of φ as an element of

H2(BU ×BU ; Z) ∼= H2(BU ; Z)⊕H2(BU ; Z).
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and this element is the sum of the Chern classes in the two copies of H2(BU ; Z)
(since a basepoint of BU is a homotopy identity element for φ). This has the
following implication.

Lemma. The Chern character specifies a ring homomorphism

ch : K(X) −→ H∗∗(X;Q).

Proof. We must check that ch(E⊗E) = ch(E) · ch(E′) for bundles E and E′

over X. It suffices to check this when E and E′ are sums of line bundles, in which
case the result follows directly from the bilinearity of the tensor product and the
relation et+t

′
= etet

′
. �

This leads to the following calculation.

Lemma. For n ≥ 1, the Chern character maps K̃(S2n) isomorphically onto the
image of H2n(S2n; Z) in H2n(S2n; Q). Therefore cn : K̃(S2n) −→ H2n(S2n; Z) is
a monomorphism with cokernel Z(n−1)!.

Proof. The first statement is clear for n = 1, when ch = c1, and follows by
compatibility with external products for n > 1. The definition of ch implies that
the component chn of ch in degree 2n is cn/(n − 1)! plus terms decomposable in
terms of the ci for i < n, and the second statement follows. �

Together with some of the facts given in Chapter 23 §7, this has a remarkable
application to the study of almost complex structures on spheres. Recall that
a smooth manifold of even dimension admits an almost complex structure if its
tangent bundle is the underlying real vector bundle of a complex bundle.

Theorem. S2 and S6 are the only spheres that admit an almost complex struc-
ture.

Proof. It is classical that S2 and S6 admit almost complex structures and
that S4 does not. Assume that S2n admits an almost complex structure. We shall
show that n ≤ 3. We are given that the tangent bundle τ is the realification of
a complex bundle. Its nth Chern class is its Euler class: cn(τ) = χ(τ). Since
the Euler characteristic of S2n is 2, χ(τ) = 2ι2n, where ι2n ∈ H2n(S2n,Z) is the
canonical generator. However, cn(τ) must be divisible by (n − 1)!. This can only
happen if n ≤ 3. �

Obviously the image of ch lies in the sum of the even degree elements in
H∗∗(X; Q), which we denote by Heven(X; Q). We define Hodd(X; Q) similarly,
and we extend ch to Z2-graded reduced cohomology by defining ch on K̃1(X) to
be the composite

K̃1(X) ∼= K̃(ΣX) ch−→ H̃even(ΣX; Q) ∼= H̃odd(X; Q).

We then have the following basic result, which actually holds for general compact
spaces X provided that we replace singular cohomology by Čech cohomology.

Theorem. For any finite based CW complex X, ch induces an isomorphism

K̃∗(X)⊗Q −→ H̃∗∗(X; Q).
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Sketch proof. We think of both the source and target as Z2-graded. The
lemma above implies the conclusion when X = Sn for any n. One can check that
the displayed maps for varying X give a map of Z2-graded cohomology theories.
The conclusion then follows from the five lemma and induction on the number of
cells of X. �

5. The Adams operations

There are natural operations in K-theory, called the Adams operations, that
are somewhat analogous to the Steenrod operations in mod 2 cohomology. In fact,
the analogy can be given content by establishing a precise relationship between the
Adams and Steenrod operations, but we will not go into that here.

Theorem. For each non-zero integer k, there is a natural homomorphism of
rings ψk : K(X) −→ K(X). These operations satisfy the following properties.

(1) ψ1 = id and ψ−1 is induced by complex conjugation of bundles.
(2) ψkψ` = ψk` = ψ`ψk.
(3) ψp(x) ≡ xp mod p for any prime p.
(4) ψk(ξ) = ξk if ξ is a line bundle.
(5) ψk(x) = knx if x ∈ K̃(S2n).

We explain the construction. By property 2, ψ−k = ψkψ−1, hence by property
1 we can concentrate on the case k > 1. The exterior powers of bundles satisfy the
relation

λk(ξ ⊕ η) = ⊕i+j=kλi(ξ)⊗ λj(η).
It follows formally that the λk extend to operations K(X) −→ K(X). Indeed,
form the group G of power series with constant coefficient 1 in the ring K(X)[[t]]
of formal power series in the variable t. We define a function from (equivalence
classes of) vector bundles to this Abelian group by setting

Λ(ξ) = 1 + λ1(ξ)t+ · · ·+ λk(ξ)tk + · · · .

Visibly, this is a morphism of monoids,

Λ(ξ ⊕ η) = Λ(ξ)Λ(η).

It therefore extend to a homomorphism of groups Λ : K(X) −→ G, and we let
λk(x) be the coefficient of tk in Λ(x).

We define the ψk as suitable polynomials in the λk. Recall that the subring of
symmetric polynomials in the polynomial algebra Z[x1, . . ., xn] is the polynomial
algebra Z[σ1, . . ., σn], where σi = x1x2 · · ·xi + · · · is the ith elementary symmetric
function. We may write the power sum πk = xk1 + · · ·+ xkn as a polynomial

πk = Qk(σ1, . . ., σk)

in the first k elementary symmetric functions. Provided n ≥ k, Qk does not depend
on n. We define

ψk(x) = Qk(λ1(x), . . ., λk(x)).

For example, π2 = σ2
1 − 2σ2, hence ψ2(x) = x2 − 2λ2(x). The naturality of the ψk

is clear from the naturality of the λk.
If ξ is a line bundle, then λ1(ξ) = ξ and λk(ξ) = 0 for k ≥ 2. Clearly σk1 =

πk + other terms and πk does not occur as a summand of any other monomial in
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the σi. Therefore Qk ≡ σk1 modulo terms in the ideal generated by the σi for i > 1.
This immediately implies property 4. Moreover, if ξ1, . . ., ξn are line bundles, then

Λ(ξ1 ⊕ · · · ⊕ ξn) = (1 + ξ1t) · · · (1 + ξnt)
= 1 + σ1(ξ1, . . ., ξn)t+ σ2(ξ1, . . ., ξn)t2 + · · · .

This implies the generalization of property 4 to sums of line bundles:
4′ ψk(ξ1 ⊕ · · · ⊕ ξn) = πk(ξ1, . . ., ξn) for line bundles ξi.

Now, if x and y are sums of line bundles, the following formulas are immediate:

ψk(x+ y) = ψk(x) + ψk(y), ψk(xy) = ψk(x)ψk(y), ψkψ`(x) = ψk`(x)

and ψp(x) ≡ xp mod p for a prime p.
For arbitrary bundles, these formulas follow directly from the splitting principle
and naturality, and they then follow formally for arbitrary virtual bundles. This
completes the proof of all properties except 5. We have that K̃(S2) is generated
by 1 − [H], where (1 − [H])2 = 0. Clearly ψk(1 − [H]) = 1 − [H]k. By induction
on k, 1 − [H]k = k(1 − [H]). Since S2n = S2 ∧ · · · ∧ S2 and K̃(S2n) is generated
by the k-fold external tensor power (1− [H])⊗ · · · ⊗ (1− [H]), property 5 follows
from the fact that ψk preserves products.

Remark. By the splitting principle, it is clear that the ψk are the unique
natural and additive operations with the specified behavior on line bundles.

Two further properties of the ψk should be mentioned. The first is a direct
consequence of the multiplicativity of the ψk and their behavior on spheres.

Proposition. The following diagram does not commute for based spaces X,
where β is the periodicity isomorphism:

K̃(X)

ψk

��

β // K̃(Σ2X)

ψk

��
K̃(X)

β
// K̃(Σ2X).

Rather, ψkβ = kβψk.

Therefore the ψk do not give stable operations on the Z-graded theory K∗.

Proposition. Define ψkH on Heven(X; Z) by letting ψkH(x) = krx for x ∈
H2r(X; Z). Then the following diagram commutes:

K(X)

ψk

��

ch // Heven(X; Q)

ψk
H

��
K(X)

ch
// Heven(X; Q).

Proof. It suffices to prove this on vector bundles E. By the splitting principle
in K-theory and cohomology, we may assume that E is a sum of line bundles. By
additivity, we may then assume that E is a line bundle. Here ψk(E) = Ek and
c1(Ek) = kc1(E). The conclusion follows readily from the definition of ch in terms
of et. �
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Remark. The observant reader will have noticed that, by analogy with the
definition of the Stiefel-Whitney classes, we can define characteristic classes in K-
theory by use of the Adams operations and the Thom isomorphism, setting ρk(E) =
Φ−1ψkΦ(1) for n-plane bundles E.

6. The Hopf invariant one problem and its applications

We give one of the most beautiful and impressive illustrations of the philosophy
described in the first chapter. We define a numerical invariant, called the “Hopf
invariant,” of maps f : S2n−1 −→ Sn and show that it can only rarely take the
value one. We then indicate several problems whose solution can be reduced to
the question of when such maps f take the value one. Adams’ original solution to
the Hopf invariant one problem used secondary cohomology operations in ordinary
cohomology and was a critical starting point of modern algebraic topology. The
later realization that a problem that required secondary operations in ordinary
cohomology could be solved much more simply using primary operations in K-
theory had a profound impact on the further development of the subject.

Take cohomology with integer coefficients unless otherwise specified.

Definition. Let X be the cofiber of a based map f : S2n−1 −→ Sn, where
n ≥ 2. Then X is a CW complex with a single vertex, a single n-cell i, and a single
2n-cell j. The differential in the cellular chain complex of X is zero for obvious
dimensional reasons, hence H̃∗(X) is free Abelian on generators x = [i] and y = [j].
Define an integer h(f), the Hopf invariant of f , by x2 = h(f)y. We usually regard
h(f) as defined only up to sign (thus ignoring problems of orientations of cells).
Note that h(f) depends only on the homotopy class of f .

If n is odd, then 2x2 = 0 and thus x2 = 0. We assume from now on that n
is even. Although not essential to the main point of this section, we record the
following basic properties of the Hopf invariant.

Proposition. The Hopf invariant enjoys the following properties.

(1) If g : S2n−1 −→ S2n−1 has degree d, then h(f ◦ g) = dh(f).
(2) If e : Sn −→ Sn has degree d, then h(e ◦ f) = d2h(f).
(3) The Hopf invariant defines a homomorphism π2n−1(Sn) −→ Z.
(4) There is a map f : S2n−1 −→ Sn such that h(f) = 2.

Proof. We leave the first three statements to the reader. For property 4, let
π : Dn −→ Dn/Sn−1 ∼= Sn be the quotient map and define

f : S2n−1 ∼= (Dn × Sn−1) ∪ (Sn−1 ×Dn) −→ Sn

by f(x, y) = π(x) and f(y, x) = π(x) for x ∈ Dn and y ∈ Sn−1. We leave it to the
reader to verify that h(f) = 2. �

We have adopted the standard definition of h(f), but we could just as well have
defined it in terms of K-theory. To see this, consider the cofiber sequence

S2n−1 f−→ Sn
i−→ X

π−→ S2n Σf−−→ Sn+1.
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Obviously i∗ : Hn(X) −→ Hn(Sn) and π∗ : H2n(S2n) −→ H2n(X) are isomor-
phisms. We have the commutative diagram with exact rows

0 // K̃(S2n)

ch

��

π∗ // K̃(X)

ch

��

i∗ // K̃(Sn)

ch

��

// 0

0 // H̃∗∗(S2n; Q)
π∗
// H̃∗∗(X; Q)

i∗
// H̃∗∗(Sn; Q) // 0.

Here the top row is exact since K̃1(Sn) = 0 and K̃1(S2n) = 0. The vertical
arrows are monomorphisms since they are rational isomorphisms. By a lemma in
the previous section, generators in of K̃(Sn) and i2n of K̃(S2n) map under ch to
generators of Hn(Sn) and H2n(S2n). Choose a ∈ K̃(X) such that i∗(a) = in and
let b = π∗(i2n). Then K̃(X) is the free Abelian group on the basis {a, b}. Since
i2n = 0, we have a2 = h′(f)b for some integer h′(f). The diagram implies that, up
to sign, ch(b) = y and ch(a) = x + qy for some rational number q. Since ch is a
ring homomorphism and since y2 = 0 and xy = 0, we conclude that h′(f) = h(f).

Theorem. If h(f) = ±1, then n = 2, 4, or 8.

Proof. Write n = 2m. Since ψk(i2n) = k2mi2n and ψk(in) = kmin, we have

ψk(b) = k2mb and ψk(a) = kma+ µkb

for some integer µk. Since ψ2(a) ≡ a2 mod 2, h(f) = ±1 implies that µ2 is odd.
Now, for any odd k,

ψkψ2(a) = ψk(2ma+ µ2b)
= km2ma+ (2mµk + k2mµ2)b

while

ψ2ψk(a) = ψ2(kma+ µkb)
= 2mkma+ (kmµ2 + 22mµk)b.

Since these must be equal, we find upon equating the coefficients of b that

2m(2m − 1)µk = km(km − 1)µ2.

If µ2 is odd, this implies that 2m divides km−1. Already with k = 3, an elementary
number theoretic argument shows that this implies m = 1, 2, or 4. �

This allows us to determine which spheres can admit an H-space structure.
Recall from a problem in Chapter 18 that S2m cannot be an H-space. Clearly Sn

is an H-space for n = 0, 1, 3, and 7: view Sn as the unit sphere in the space of real
numbers, complex numbers, quaternions, or Cayley numbers.

Theorem. If Sn−1 is an H-space, then n = 1, 2, 4, or 8.

The strategy of proof is clear: given anH-space structure on Sn−1, we construct
from it a map f : S2n−1 −→ Sn of Hopf invariant one. The following construction
and lemma do this and more.

Construction (Hopf construction). Let φ : Sn−1×Sn−1 −→ Sn−1 be a map.
Let CX = (X×I)/(X×{1}) be the unreduced cone functor and note that we have
canonical homeomorphisms of pairs

(Dn, Sn−1) ∼= (CSn−1, Sn−1)



6. THE HOPF INVARIANT ONE PROBLEM AND ITS APPLICATIONS 217

and

(D2n, S2n−1) ∼= (Dn ×Dn, (Dn × Sn−1) ∪ (Sn−1 ×Dn))
∼= (CSn−1 × CSn−1, (CSn−1 × Sn−1) ∪ (Sn−1 × CSn−1)).

Take Sn to be the unreduced suspension of Sn−1, with the upper and lower hemi-
spheres Dn

+ and Dn
− corresponding to the points with suspension coordinate 1/2 ≤

t ≤ 1 and 0 ≤ t ≤ 1/2, respectively. Define

f : S2n−1 ∼= (CSn−1 × Sn−1) ∪ (Sn−1 × CSn−1) −→ Sn

as follows. Let x, y ∈ Sn−1 and t ∈ I. On CSn−1 × Sn−1, f is the composite

CSn−1 × Sn−1 α−→ C(Sn−1 × Sn−1)
Cφ−−→ CSn−1 β−→ Dn

−,

where α([x, t], y) = [(x, y), t] and β([x, t]) = [x, (1− t)/2]. On Sn−1 × CSn−1, f is
the composite

Sn−1 × CSn−1 α′−→ C(Sn−1 × Sn−1)
Cφ−−→ CSn−1 β′−→ Dn

+,

where α′(x, [y, t]) = [(x, y), t] and β′([x, t]) = [x, (1 + t)/2]. The map f , or rather
the resulting 2-cell complex X = Sn ∪f D2n, is called the Hopf construction on φ.

Giving Sn−1 a basepoint, we obtain inclusions of Sn−1 onto the first and second
copies of Sn−1 in Sn−1 × Sn−1. The bidegree of a map φ : Sn−1 × Sn−1 −→ Sn−1

is the pair of integers given by the two resulting composite maps Sn−1 −→ Sn−1.
Thus φ gives Sn−1 an H-space structure if its bidegree is (1, 1).

Lemma. If the bidegree of φ : Sn−1×Sn−1 −→ Sn−1 is (d1, d2), then the Hopf
invariant of the Hopf construction on φ is ±d1d2.

Proof. Making free use of the homeomorphisms of pairs specified in the con-
struction, we see that the diagonal map of X, its top cell j, evident quotient maps,
and projections πi onto first and second coordinates give rise to a commutative di-
agram in which the maps marked ' are homotopy equivalences and those marked
∼= are homeomorphisms:

X
∆ //

��

X ∧X

'
��

X/Sn
∆ // X/Dn

+ ∧X/Dn
−

S2n ∼= D2n/S2n−1

∼= ++XXXXXXXXXXXXXXXXXXXXXXX
∆ //

j∼=

OO

(Dn ×Dn)/(Sn−1 ×Dn) ∧ (Dn ×Dn)/(Dn × Sn−1)

j∧j

OO

' π1∧π2

��
Dn/Sn−1 ∧Dn/Sn−1 ∼= Sn ∧ Sn.

The cup square of x ∈ Hn(X) is the image under ∆∗ of the external product of x
with itself. The maps on the left induce isomorphisms on H2n. The inclusions of
Dn in the ith factor of Dn ×Dn induce homotopy inverses

ι1 : Dn/Sn−1 −→ (Dn ×Dn)/(Sn−1 ×Dn)
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and
ι2 : Dn/Sn−1 −→ (Dn ×Dn)/(Dn × Sn−1)

to the projections πi in the diagram, and it suffices to prove that, up to sign, the
composites

j ◦ ι1 : Dn/Sn−1 −→ X/Dn
+ and j ◦ ι2 : Dn/Sn−1 −→ X/Dn

−

induce multiplication by d1 and by d2 on Hn. However, by construction, these
maps factor as composites

Dn/Sn−1 γ1−→ Sn/Dn
+ −→ X/Dn

+ and Dn/Sn−1 γ2−→ Sn/Dn
− −→ X/Dn

−,

where, up to signs and identifications of spheres, γ1 and γ2 are the suspensions of
the restrictions of φ to the two copies of Sn−1 in Sn−1 × Sn−1. �

The determination of which spheres areH-spaces has the following implications.

Theorem. Let ω : Rn×Rn −→ Rn be a map with a two-sided identity element
e 6= 0 and no zero divisors. Then n = 1, 2, 4, or 8.

Proof. The product restricts to give Rn − {0} an H-space structure. Since
Sn−1 is homotopy equivalent to Rn−{0}, it inherits an H-space structure. Explic-
itly, we may assume that e ∈ Sn−1, by rescaling the metric, and we give Sn−1 the
product φ : Sn−1 × Sn−1 −→ Sn−1 specified by φ(x, y) = ω(x, y)/|ω(x, y)|. �

Note that ω need not be bilinear, just continuous. Also, it need not have a
strict unit; all that is required is that e be a two-sided unit up to homotopy for the
restriction of ω to Rn − {0}.

Theorem. If Sn is parallelizable, then n = 0, 1, 3, or 7.

Proof. Exclude the trivial case n = 0 and suppose that Sn is parallelizable,
so that its tangent bundle τ is trivial. We will show that Sn is an H-space. Define
a map µ : τ −→ Sn as follows. Think of the tangent plane τx as affinely embedded
in Rn+1 with origin at x. We have a parallel translate of this plane to an affine
plane with origin at −x. Define µ by sending a tangent vector y ∈ τx to the
intersection with Sn of the line from x to the translate of y. Composing with a
trivialization Sn × Rn ∼= τ , this gives a map µ : Sn × Rn −→ Sn. Let Sn∞ be the
one-point compactification of Rn. Extend µ to a map φ : Sn × Sn∞ −→ Sn by
letting φ(x,∞) = x; φ is continuous since µ(x, y) approaches x as y approaches ∞.
By construction, ∞ is a right unit for this product. For a fixed x, y −→ φ(x, y) is
a degree one homeomorphism Sn∞ −→ Sn∞. The conclusion follows. �



CHAPTER 25

An introduction to cobordism

Cobordism theories were introduced shortly after K-theory, and their use per-
vades modern algebraic topology. We shall describe the cobordism of smooth closed
manifolds, but this is in fact a particularly elementary example. Other examples
include smooth closed manifolds with extra structure on their stable normal bun-
dles: orientation, complex structure, Spin structure, or symplectic structure for
example. All of these except the symplectic case have been computed completely.
The complex case is particularly important since complex cobordism and theories
constructed from it have been of central importance in algebraic topology for the
last few decades, quite apart from their geometric origins in the classification of
manifolds. The area is pervaded by insights from algebraic topology that are quite
mysterious geometrically. For example, the complex cobordism groups turn out to
be concentrated in even degrees: every smooth closed manifold of odd dimension
with a complex structure on its stable normal bundle is the boundary of a compact
manifold (with compatible bundle information). However, there is no geometric un-
derstanding of why this should be the case. The analogue with “complex” replaced
by “symplectic” is false.

1. The cobordism groups of smooth closed manifolds

We consider the problem of classifying smooth closed n-manifolds M . One’s
first thought is to try to classify them up to diffeomorphism, but that problem
is in principle unsolvable. Thom’s discovery that one can classify such manifolds
up to the weaker equivalence relation of “cobordism” is one of the most beautiful
advances of twentieth century mathematics. We say that two smooth closed n-
manifolds M and N are cobordant if there is a smooth compact manifold W whose
boundary is the disjoint union of M and N , ∂W = M qN . We write Nn for the
set of cobordism classes of smooth closed n-manifolds. It is convenient to allow the
empty set ∅ as an n-manifold for every n. Disjoint union gives an addition on the
set Nn. This operation is clearly associative and commutative and it has ∅ as a
zero element. Since

∂(M × I) = M qM,

M q M is cobordant to ∅. Thus M = −M and Nn is a vector space over Z2.
Cartesian product of manifolds defines a multiplication Nm×Nn −→ Nm+n. This
operation is bilinear, associative, and commutative, and the zero dimensional man-
ifold with a single point provides an identity element. We conclude that N∗ is a
graded Z2-algebra.

Theorem (Thom). N∗ is a polynomial algebra over Z2 on generators ui of
dimension i for i > 1 and not of the form 2r − 1.

219
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As already stated in our discussion of Stiefel-Whitney numbers, it follows from
the proof of the theorem that a manifold is a boundary if and only if its normal
Stiefel-Whitney numbers are zero. We can restate this as follows.

Theorem. Two smooth closed n-manifolds are cobordant if and only if their
normal Stiefel-Whitney numbers, or equivalently their tangential Stiefel-Whitney
numbers, are equal.

Explicit generators ui are known. Write [M ] for the cobordism class of a
manifoldM . Then we can take u2i = [RP 2i]. We have seen that the Stiefel-Whitney
numbers of RP 2i−1 are zero, so we need different generators in odd dimensions. For
m < n, define Hn,m to be the hypersurface in RPn×RPm consisting of those pairs
([x0, . . ., xn], [y0, . . ., ym]) such that x0y0 + · · · + xmym = 0; here (x0, . . ., xn) ∈ Sn
and [x0, . . ., xn] denotes its image in RPn. We may write an odd number i not of
the form 2r − 1 in the form i = 2p(2q + 1)− 1 = 2p+1q + 2p − 1, where p ≥ 1 and
q ≥ 1. Then we can take ui = [H2p+1q,2p ].

The strategy for the proof of Thom’s theorem is to describe Nn as a homotopy
group of a certain Thom space. The homotopy group is a stable one, and it turns
out to be computable by the methods of generalized homology theory.

Consider the universal q-plane bundle γq : Eq −→ Gq(R∞) = BO(q). Let
TO(q) be its Thom space. Recall that we have maps iq : BO(q) −→ BO(q+1) such
that i∗q(γq+1) = γq ⊕ ε. The Thom space T (γq ⊕ ε) is canonically homeomorphic
to the suspension ΣTO(q), and the bundle map γq ⊕ ε −→ γq+1 induces a map
σq : ΣTO(q) −→ TO(q + 1). Thus the spaces TO(q) and maps σq constitute a
prespectrum TO. By definition, the homotopy groups of a prespectrum T = {Tq}
are

πn(T ) = colim πn+q(Tq),

where the colimit is taken over the maps

πn+q(Tq)
Σ−→ πn+q+1(ΣTq)

σq∗−−→ πn+q+1(Tq+1).

In the case of TO, it turns out that these maps are isomorphisms if q is sufficiently
large, and we have the following translation of our problem in manifold theory to a
problem in homotopy theory. We shall sketch the proof in the next section, where
we shall also explain the ring structure on π∗(TO) that makes it a Z2-algebra.

Theorem (Thom). For sufficiently large q, Nn is isomorphic to πn+q(TO(q)).
Therefore

Nn
∼= πn(TO).

Moreover, N∗ and π∗(TO) are isomorphic as Z2-algebras.

2. Sketch proof that N∗ is isomorphic to π∗(TO)

Given a smooth closed n-manifoldM , we may embed it in Rn+q for q sufficiently
large, and we let ν be the normal bundle of the embedding. (By the Whitney
embedding theorem, q = n suffices, but the precise estimate is not important to
us.) Embed M as the zero section of the total space E(ν). Then a standard result
in differential topology known as the tubular neighborhood theorem implies that
the identity map of M extends to an embedding of E(ν) onto an open neighborhood
U of M in Rn+q.
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Think of Sn+q as the one-point compactification of Rn+q. The “Pontryagin-
Thom construction” associates a map t : Sn+q −→ T (ν) to our tubular neigh-
borhood U . Observing that Tν − {∞} = E(ν), we let t restrict on U to the
identification U ∼= E(ν) and let t send all points of Rn+q − U to the point at in-
finity. The Thom space was tailor made to allow this construction. For q large
enough, any two embeddings of M in Rn+q are isotopic, and the homotopy class
of t is independent of the choice of the embedding of M in Rn+q. Now choose a
classifying map f : M −→ BO(q) for ν. The composite Tf ◦ t : Sn+q −→ TO(q)
represents an element of πn+q(TO(q)).

As the reader should think through, it is intuitively plausible that cobordant
manifolds induce homotopic maps Sn+q −→ TO(q), so that this construction gives
a well defined function α : Nn −→ πn+q(TO(q)). However, technically, one can
arrange the argument so that this fact drops out without explicit verification. Given
two n-manifolds, we can embed them and their tubular neighborhoods disjointly in
Rn+q, and it follows easily that α is a homomorphism.

We construct an inverse β to α. Any map g : Sn+q −→ TO(q) has image
contained in T (γrq ) for a sufficiently large r > q, where γrq is the restriction of the
universal bundle γq to the compact manifold Gq(Rr). By an implication of Sard’s
theorem known as the transversality theorem, we can deform the restriction of g
to g−1(Tγrq −{∞}) = g−1(E(γrq )) so as to obtain a homotopic map that is smooth
and transverse to the zero section. This use of transversality is the crux of the
proof of the theorem. It follows that the inverse image g−1(Gq(Rr)) is a smooth
closed n-manifold embedded in Rn+q = Sn+q−{∞}. It is intuitively plausible that
homotopic maps gi : Sn+q −→ TO(q), i = 0, 1, give rise to cobordant n-manifolds
by this construction. Indeed, with the gi smooth and transverse to the zero section,
we can approximate a homotopy between them by a homotopy h which is smooth
on h−1(T (γrq ) − {∞}) and transverse to the zero section. Then h−1(Gq(Rr)) is a
manifold whose boundary is g−1

0 (Gq(Rr)) q g−1
1 (Gq(Rr)). It is easy to verify that

the resulting function β : πn+q(TO(q)) −→ Nn is a homomorphism.
If we start with a manifold M embedded in Rn+q and construct the classifying

map f for its normal bundle to be the Gauss map described in our sketch proof of
the classification theorem in Chapter 23 §1, then the composite Tf ◦t is smooth and
transverse to the zero section, and the inverse image of the zero section is exactly
M . This proves that β is an epimorphism. To complete the proof, it suffices to
show that β is a monomorphism. It will follow formally that α is well defined and
inverse to β.

Thus suppose given g : Sn+q −→ Tγrq such that g−1(E(γrq )) is smooth and
transverse to the zero section and suppose thatM = g−1(Gq(Rr)) is a boundary, say
M = ∂W . The inclusion of M in Sn+q extends to a embedding of W in Dn+q+1, by
the Whitney embedding theorem for manifolds with boundary (assuming as always
that q is sufficiently large). We may assume that U = g−1(Tγrq −{∞}) is a tubular
neighborhood and that g : U −→ E(γrq ) is a map of vector bundles. A relative
version of the tubular neighborhood theorem then shows that U can be extended
to a tubular neighborhood V of W in Dn+q+1 and that g extends to a map of vector
bundles h : V −→ E(γrq ). We can then extend h to a map Dn+q+1 −→ T (γrq ) by
mapping Dn+q+1 − V to ∞. This extension of g to the disk implies that g is null
homotopic.
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We must still define the ring structure on π∗(TO) and prove that we have an
isomorphism of rings and therefore of Z2-algebras. Recall that we have maps pm,n :
BO(m)×BO(n) −→ BO(m+n) such that p∗m,n(γm+n) = γm×γn. The Thom space
T (γm × γn) is canonically homeomorphic to the smash product TO(m) ∧ TO(n),
and the bundle map γm × γn −→ γm+n induces a map φm,n : TO(m)∧ TO(n) −→
TO(m+ n). If we have maps f : Sm+q −→ TO(m) and g : Sn+q −→ TO(n), then
we can compose their smash product with φm,n to obtain a composite map

Sm+n+q+r ∼= Sm+q ∧ Sn+r f∧g−−→ TO(m) ∧ TO(n)
φm,n−−−→ TO(m+ n).

We can relate the maps φm,n to the maps σn. In fact, TO is a commutative and
associative ring prespectrum in the sense of the following definition.

Definition. Let T be a prespectrum. Then T is a ring prespectrum if there
are maps η : S0 −→ T0 and φm,n : Tm ∧ Tn −→ Tm+n such that the following
diagrams are homotopy commutative:

Tm ∧ ΣTn
id∧σn // Tm ∧ Tn+1

φm,n+1

&&MMMMMMMMMM

Σ(Tm ∧ Tn)

(−1)n

��

Σφm,n // ΣTm+n
σm+n // Tm+n+1

(ΣTm) ∧ Tn
σm∧id

// Tm+1 ∧ Tn
φm+1,n

88qqqqqqqqqqq

S0 ∧ Tn
η∧id //

∼=
%%KKKKKKKKKK T0 ∧ Tn

φ0,n

��
Tn

and

Tn ∧ T0

φn,0

��

Tn ∧ S0;
id∧ηoo

∼=
yyrrrrrrrrrr

Tn

T is associative if the following diagrams are homotopy commutative:

Tm ∧ Tn ∧ Tp

id∧φn,p

��

φm,n∧id// Tm+n ∧ Tp

φm+n,p

��
Tm ∧ Tn+p

φm,n+p

// Tm+n+p;

T is commutative if there are equivalences (−1)mn : Tm+n −→ Tm+n that suspend
to (−1)mn on ΣTm+n and if the following diagrams are homotopy commutative:

Tm ∧ Tn
φm,n

��

t // Tn ∧ Tm
φn,m

��
Tm+n

(−1)mn
// Tm+n.

When T is an Ω-prespectrum, we can restate this as φm,n ' (−1)mnφn,mt.

For example, the Eilenberg-Mac Lane Ω-prespectrum of a commutative ring R
is an associative and commutative ring prespectrum by the arguments in Chapter
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22 §3. It is denoted HR or sometimes, by abuse, K(R, 0). Similarly, the K-theory
Ω-prespectrum is an associative and commutative ring prespectrum. The sphere
prespectrum, whose nth space is Sn, is another example. For TO, the required
maps (−1)mn : TO(m + n) −→ TO(m + n) are obtained by passage to Thom
complexes from a map γm+n −→ γm+n of universal bundles given on the domains
of coordinate charts by the evident interchange isomorphism Rm+n −→ Rm+n. The
following lemma is immediate by passage to colimits.

Lemma. If T is an associative ring prespectrum, then π∗(T ) is a graded ring.
If T is commutative, then π∗(T ) is commutative in the graded sense.

Returning to the case at hand, we show that the maps α for varying n transport
products of manifolds to products in π∗(TO). Thus let M be an m-manifold em-
bedded in Rm+q with tubular neighborhood U ∼= E(νM ) and N be an n-manifold
embedded in Rn+r with tubular neighborhood V ∼= E(νN ). Then M × N is em-
bedded in Rm+q+n+r with tubular neighborhood U × V ∼= E(νM×N ). Identifying
Sm+q+n+r with Sm+q ∧ Sn+r, we find that the Pontryagin-Thom construction for
M × N is the smash product of the Pontryagin-Thom constructions for M and
N . That is, the left square in the following diagram commutes. The right square
commutes up to homotopy by the definition of φq,r.

Sm+q ∧ Sn+r t∧t // Tνm ∧ TνN
∼=
��

// TO(q) ∧ TO(r)

φq,r

��
Sm+q+n+r

t
// T (νM×N ) // TO(q + r).

This implies the claimed multiplicativity of the maps α.

3. Prespectra and the algebra H∗(TO; Z2)

Calculation of the homotopy groups π∗(TO) proceeds by first computing the
homology groups H∗(TO; Z2) and then showing that the stable Hurewicz homo-
morphism maps π∗(TO) monomorphically onto an identifiable part of H∗(TO; Z2).
We explain the calculation of homology groups in this section and the next, connect
the calculation with Stiefel-Whitney numbers in §5, and describe how to complete
the desired calculation of homotopy groups in §6.

We must first define the homology groups of prespectra and the stable Hurewicz
homomorphism. Just as we defined the homotopy groups of a prespectrum T by
the formula

πn(T ) = colimπn+q(Tq),

we define the homology and cohomology groups of T with respect to a homology
theory k∗ and cohomology theory k∗ on spaces by the formulas

kn(T ) = colim k̃n+q(Tq),

where the colimit is taken over the maps

k̃n+q(Tq)
Σ∗−−→ k̃n+q+1(ΣTq)

σq∗−−→ k̃n+q+1(Tq+1),

and
kn(T ) = lim k̃n+q(Tq),
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where the limit is taken over the maps

k̃n+q+1(Tq+1)
σ∗q−→ k̃n+q+1(ΣTq)

Σ−1

−−−→ k̃n+q(Tq).

In fact, this definition of cohomology is inappropriate in general, differing from the
appropriate definition by a lim1 error term. However, the definition is correct when
k∗ is ordinary cohomology with coefficients in a field R and each H̃n+q(Tq;R) is a
finite dimensional vector space over R. This is the only case that we will need in
the work of this chapter. In this case, it is clear that Hn(T ;R) is the vector space
dual of Hn(T ;R), a fact that we shall use repeatedly.

Observe that there is no cup product in H∗(T ;R): the maps in the limit system
factor through the reduced cohomologies of suspensions, in which cup products are
identically zero (see Problem 5 at the end of Chapter 19). However, if T is an
associative and commutative ring prespectrum, then the homology groups H∗(T ;R)
form a graded commutative R-algebra.

The Hurewicz homomorphisms πn+q(Tq) −→ H̃n+q(Tq;Z) pass to colimits to
give the stable Hurewicz homomorphism

h : πn(T ) −→ Hn(T ; Z).

We may compose this with the map Hn(T ; Z) −→ Hn(T ;R) induced by the unit of
a ring R, and we continue to denote the composite by h. If T is an associative and
commutative ring prespectrum, then h : π∗(T ) −→ H∗(T ;R) is a map of graded
commutative rings.

We shall write H∗ and H∗ for homology and cohomology with coefficients in
Z2 throughout §§3–6, and we tacitly assume that all homology and cohomology
groups in sight are finite dimensional Z2-vector spaces. Recall that we have Thom
isomorphisms

Φq : Hn(BO(q)) −→ H̃n+q(TO(q))

obtained by cupping with the Thom class µq ∈ H̃q(TO(q)). Naturality of the Thom
diagonal applied to the map of bundles γq ⊕ ε −→ γq+1 gives the commutative
diagram

ΣTO(q) ∆ //

σq

��

BO(q)+ ∧ ΣTO(q)

iq∧σq

��
TO(q + 1)

∆
// BO(q + 1)+ ∧ TO(q + 1).

This implies that the following diagram is commutative:

Hn(BO(q + 1))
i∗q //

Φq+1

��

Hn(BO(q))

Φq

��
H̃n+q+1(TO(q + 1))

σ∗q

// H̃n+q+1(ΣTO(q))
Σ−1

// H̃n+q(TO(q)).

We therefore obtain a “stable Thom isomorphism”

Φ : Hn(BO) −→ Hn(TO)

on passage to limits. We have dual homology Thom isomorphisms

Φn : H̃n+q(TO(q)) −→ Hn(BO(q))
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that pass to colimits to give a stable Thom isomorphism

Φ : Hn(T ) −→ Hn(BO).

Naturality of the Thom diagonal applied to the map of bundles γq⊕γr −→ γq+r
gives the commutative diagram

TO(q) ∧ TO(r)

φq,r

��

∆∧∆ // BO(q)+ ∧ TO(q) ∧BO(r)+ ∧ TO(r)

id∧t∧id

��
(BO(q)×BO(r))+ ∧ TO(q) ∧ TO(r)

(pq,r)+∧φq,r

��
TO(q + r)

∆
// BO(q + r)+ ∧ TO(q + r).

As we observed for BU in the previous chapter, the maps pq,r pass to colimits to
give BO an H-space structure, and it follows that H∗(BO) is a Z2-algebra. On
passage to homology and colimits, these diagrams imply the following conclusion.

Proposition. The Thom isomorphism Φ : H∗(TO) −→ H∗(BO) is an iso-
morphism of Z2-algebras.

The description of the H∗(BO(n)) and the maps i∗q in Chapter 23 §2 implies
that

H∗(BO) = Z2[wi|i ≥ 1]

as an algebra. However, we are more interested in its “coalgebra” structure, which
is given by the vector space dual

ψ : H∗(BO) −→ H∗(BO)⊗H∗(BO)

of its product in homology. It is clear from the description of the p∗q,r that

ψ(wk) =
∑
i+j=k

wi ⊗ wj .

From here, determination of H∗(BO) and therefore H∗(TO) as an algebra is a
purely algebraic, but non-trivial, problem in dualization. Let i : RP∞ = BO(1) −→
BO be the inclusion. Let xi ∈ Hi(RP∞) be the unique non-zero element and let
bi = i∗(xi). Then the solution of our dualization problem takes the following form.

Theorem. H∗(BO) is the polynomial algebra Z2[bi|i ≥ 1].

Let ai ∈ Hi(TO) be the element characterized by Φ(ai) = bi.

Corollary. H∗(TO) is the polynomial algebra Z2[ai|i ≥ 1].

Using the compatibility of the Thom isomorphisms for BO(1) and BO, we
see that the ai come from H∗(TO(1)). Remember that elements of Hi+1(TO(1))
map to elements of Hi(TO) in the colimit; in particular, the non-zero element of
H1(TO(1)) maps to the identity element 1 ∈ H0(TO). Recall from Chapter 23 §6
that we have a homotopy equivalence j : RP∞ −→ TO(1).

Corollary. For i ≥ 0, j∗(xi+1) maps to ai in H∗(TO), where a0 = 1.
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4. The Steenrod algebra and its coaction on H∗(TO)

Since the Steenrod operations are stable and natural, they pass to limits to
define natural operations Sqi : Hn(T ) −→ Hn+i(T ) for i ≥ 0 and prespectra T .
Here Sq0 = id, but it is not true that Sqi(x) = 0 for i > deg x. For example, we
have the “stable Thom class” Φ(1) = µ ∈ H0(TO), and it is immediate from the
definition of the Stiefel-Whitney classes that Φ(wi) = Sqi(µ). Of course, Sqi(1) = 0
for i > 0, so that Φ does not commute with Steenrod operations. The homology
and cohomology of TO are built up from π∗(TO) and Steenrod operations. We
need to make this statement algebraically precise to determine π∗(TO), and we
need to assemble the Steenrod operations into an algebra to do this.

Definition. The mod 2 Steenrod algebra A is the quotient of the free asso-
ciative Z2-algebra generated by elements Sqi, i ≥ 1, by the ideal generated by the
Adem relations (which are stated in Chapter 22 §5).

The following lemmas should be clear.

Lemma. For spaces X, H∗(X) has a natural A-module structure.

Lemma. For prespectra T , H∗(T ) has a natural A-module structure.

The elements of A are stable mod 2 cohomology operations, and our description
of the cohomology of K(Z2, q)s in Chapter 22 §5 implies that A is in fact the
algebra of all stable mod 2 cohomology operations, with multiplication given by
composition. Passage to limits over q leads to the following lemma. Alternatively,
with the more formal general definitions of the next section, it will become yet
another application of the Yoneda lemma. Recall that HZ2 denotes the Eilenberg-
Mac Lane Ω-prespectrum {K(Z2, q)}.

Lemma. As a vector space, A is isomorphic to H∗(HZ2).

We shall see how to describe the composition in A homotopically in the next
section. What is more important at the moment is that the lemma allows us to
read off a basis for A.

Theorem. A has a basis consisting of the operations SqI = Sqi1 · · ·Sqij , where
I runs over the sequences {i1, . . ., ij} of positive integers such that ir ≥ 2ir+1 for
1 ≤ r < j.

What is still more important to us is that A not only has the composition
product A ⊗ A −→ A, it also has a coproduct ψ : A −→ A ⊗ A. Giving A ⊗ A
its natural structure as an algebra, ψ is the unique map of algebras specified on
generators by ψ(Sqk) =

∑
i+j=k Sq

i ⊗ Sqj . The fact that ψ is a well defined map
of algebras is a formal consequence of the Cartan formula. Algebraic structures like
this, with compatible products and coproducts, are called “Hopf algebras.”

We write A∗ for the vector space dual of A, and we give it the dual basis to the
basis just specified on A. While A∗ is again a Hopf algebra, we are only interested
in its algebra structure at the moment. In contrast with A, the algebra A∗ is
commutative, as is apparent from the form of the coproduct on the generators of
A. Recall that HZ2 is an associative and commutative ring prespectrum, so that
H∗(HZ2) is a commutative Z2-algebra. The definition of the product on HZ2 (in
Chapter 22 §3) and the Cartan formula directly imply the following observation.

Lemma. A∗ is isomorphic as an algebra to H∗(HZ2).
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We need an explicit description of this algebra. In principle, this is a matter of
pure algebra from the results already stated, but the algebraic work is non-trivial.

Theorem. For r ≥ 1, define Ir = (2r−1, 2r−2, . . ., 2, 1) and define ξr to be the
basis element of A∗ dual to SqIr . Then A∗ is the polynomial algebra Z2[ξr|r ≥ 1].

We need a bit of space level motivation for the particular relevance of the
elements ξr. We left the computation of the Steenrod operations in H∗(RP∞) as
an exercise, and the reader should follow up by proving the following result.

Lemma. In H∗(RP∞) = Z2[α], SqIr (α) = α2r

for r ≥ 1 and SqI(α) = 0 for
all other basis elements sqI of A.

The A-module structure maps

A⊗H∗(X) −→ H∗(X) and A⊗H∗(T ) −→ H∗(T )

for spaces X and prespectra T dualize to give “A∗-comodule” structure maps

γ : H∗(X) −→ A∗ ⊗H∗(X) and γ : H∗(T ) −→ A∗ ⊗H∗(T ).

We remind the reader that we are implicitly assuming that all homology and co-
homology groups in sight are finitely generated Z2-vector spaces, although these
“coactions” can in fact be defined without this assumption.

Formally, the notion of a comodule N over a coalgebra C is defined by reversing
the direction of arrows in a diagrammatic definition of a module over an algebra.
For example, for any vector space V , C ⊗ V is a comodule with action

ψ ⊗ id : C ⊗ V −→ C ⊗ C ⊗ V.
Note that, dualizing the unit of an algebra, a Z2-coalgebra is required to have a
counit ε : C −→ Z2. We understand all of these algebraic structures to be graded,
and we say that a coalgebra is connected if Ci = 0 for i < 0 and ε : C0 −→ Z2 is an
isomorphism. When considering the Hurewicz homomorphism of π∗(TO), we shall
need the following observation.

Lemma. Let C be a connected coalgebra and V be a vector space. An element
y ∈ C ⊗ V satisfies (ψ ⊗ id)(y) = 1⊗ y if and only if y ∈ C0 ⊗ V ∼= V .

If V is a C-comodule with coaction ν : V −→ C ⊗ V , then ν is a morphism of
C-comodules. Therefore the coaction maps γ above are maps of A∗-comodules for
any space X or prespectrum T . We also need the following observation, which is
implied by the Cartan formula.

Lemma. If T is an associative ring prespectrum, then γ : H∗(T ) −→ A∗ ⊗
H∗(T ) is a homomorphism of algebras.

The lemma above on Steenrod operations in H∗(RP∞) dualizes as follows.

Lemma. Write the coaction γ : H∗(RP∞) −→ A∗ ⊗ H∗(RP∞) in the form
γ(xi) =

∑
j ai,j ⊗ xj. Then

ai,1 =
{
ξr if i = 2r for some r ≥ 1
0 otherwise.

Note that ai,i = 1, dualizing Sq0(αi) = αi.
Armed with this information, we return to the study of the algebra H∗(TO).

We know that it is isomorphic toH∗(BO), but the crux of the matter is to redescribe
it in terms of A∗.
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Theorem. Let N∗ be the algebra defined abstractly by

N∗ = Z2[ui|i > 1 and i 6= 2r − 1],

where deg ui = i. Define a homomorphism of algebras f : H∗(TO) −→ N∗ by

f(ai) =
{
ui if i is not of the form 2r − 1
0 if i = 2r − 1.

Then the composite

g : H∗(TO)
γ−→ A∗ ⊗H∗(TO)

id⊗f−−−→ A∗ ⊗N∗
is an isomorphism of both A-comodules and Z2-algebras.

Proof. It is clear from things already stated that g is a map of both A-
comodules and Z2-algebras. We must prove that it is an isomorphism. Its source
and target are both polynomial algebras with one generator of degree i for each
i ≥ 1, hence it suffices to show that g takes generators to generators. Recall
that ai = j∗(xi+1). This allows us to compute γ(ai). Modulo terms that are
decomposable in the algebra A∗ ⊗H∗(TO), we find

γ(ai) ≡
{

1⊗ ai if i is not of the form 2r − 1
ξr ⊗ 1 + 1⊗ a2r−1 if i = 2r − 1.

Applying id⊗f to these elements, we obtain 1 ⊗ ui in the first case and ξr ⊗ 1 in
the second case. �

Now consider the Hurewicz homomorphism h : π∗(T ) −→ H∗(T ) of a prespec-
trum T . We have the following observation, which is a direct consequence of the
definition of the Hurewicz homomorphism and the fact that Sqi = 0 for i > 0 in
the cohomology of spheres.

Lemma. For x ∈ π∗(T ), γ(h(x)) = 1⊗ h(x).
Therefore, identifying N∗ as the subalgebra Z2 ⊗ N∗ of A∗ ⊗ N∗, we see that

g ◦h maps π∗(TO) to N∗. We shall prove the following result in §6 and so complete
the proof of Thom’s theorem.

Theorem. h : π∗(TO) −→ H∗(TO) is a monomorphism and g◦h maps π∗(TO)
isomorphically onto N∗.

5. The relationship to Stiefel-Whitney numbers

We shall prove that a smooth closed n-manifold M is a boundary if and only
if all of its normal Stiefel-Whitney numbers are zero. Polynomials in the Stiefel-
Whitney classes are elements of H∗(BO). We have seen that the normal Stiefel-
Whitney numbers of a boundary are zero, and it follows that cobordant manifolds
have the same normal Stiefel-Whitney numbers. The assignment of Stiefel-Whitney
numbers to corbordism classes of n-manifolds specifies a homomorphism

# : Hn(BO)⊗Nn −→ Z2.

We claim that the following diagram is commutative:

Hn(BO)⊗Nn
id⊗α //

#

��

Hn(BO)⊗ πn(TO)
id⊗h // Hn(BO)⊗Hn(TO)

id⊗Φ

��
Z2 Hn(BO)⊗Hn(BO).

〈 , 〉oo
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To say that all normal Stiefel-Whitney numbers of M are zero is to say that
w#[M ] = 0 for all w ∈ Hn(BO). Granted the commutativity of the diagram, this is
the same as to say that 〈w, (Φ◦h◦α)([M ])〉 = 0 for all w ∈ Hn(BO). Since 〈 , 〉 is the
evaluation pairing of dual vector spaces, this implies that (Φ◦h◦α)([M ]) = 0. Since
Φ and α are isomorphisms and h is a monomorphism, this implies that [M ] = 0
and thus that M is a boundary.

Thus we need only prove that the diagram is commutative. Embed M in
Rn+q with normal bundle ν and let f : M −→ BO(q) classify ν. Then α([M ]) is

represented by the composite Sn+q t−→ Tν
Tf−−→ TO(q). In homology, we have the

commutative diagram

H̃n+q(Sn+q)
t∗ // H̃n+q(Tν)

(Tf)∗//

Φ

��

H̃n+q(TO(q))

Φ

��
Hn(M)

f∗

// Hn(BO(q)).

Let in+q ∈ H̃n+q(Sn+q) be the fundamental class. By the diagram and the defini-
tions of α and the Hurewicz homomorphism,

(f∗ ◦ Φ ◦ t∗)(in+q) = (Φ ◦ (Tf)∗ ◦ t∗)(in+q) = (Φ ◦ h ◦ α)([M ]) ∈ Hn(BO(q)).

Let z = (Φ◦t∗)(in+q) ∈ Hn(M). We claim that z is the fundamental class. Granting
the claim, it follows immediately that, for w ∈ Hn(BO(q)),

w#[M ] = 〈w(ν), z〉 = 〈(f∗w(γq)), (Φ ◦ t∗)(in+q)〉
= 〈w(γq), (f∗ ◦ Φ ◦ t∗)(in+q)〉
= 〈w(γq), (Φ ◦ h ◦ α)([M ])〉.

Thus we are reduced to proving the claim. It suffices to show that z maps to
a generator of Hn(M,M − x) for each x ∈M . Since we must deal with pairs, it is
convenient to use the homeomorphism between Tν and the quotient D(ν)/S(ν) of
the unit disk bundle by the unit sphere bundle. Recall that we have a relative cap
product

∩ : Hq(D(ν), S(ν))⊗Hi+q(D(ν), S(ν)) −→ Hi(D(ν)).
Letting p : D(ν) −→ M be the projection, which of course is a homotopy equiva-
lence, we find that the homology Thom isomorphism

Φ : Hi+q(D(ν), S(ν)) −→ Hi(M)

is given by the explicit formula

Φ(a) = p∗(µ ∩ a).
Let x ∈ U ⊂ M , where U ∼= Rn. Let D(U) and S(U) be the inverse images in U
of the unit disk and unit sphere in Rn and let V = D(U) − S(U). Since D(U) is
contractible, ν|D(U) is trivial and thus isomorphic to D(U)×Dq. Write

∂(D(U)×Dq) = (D(U)× Sq−1) ∪ (S(U)×Dq)

and observe that we obtain a homotopy equivalence

t : Sn+q −→ (D(U)×Dq)/∂(D(U)×Dq) ∼= Sn+q

by letting t be the quotient map on the restriction of the tubular neighborhood of ν
to D(ν|D(U)) and letting t send the complement of this restriction to the basepoint.
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Interpreting t : Sn+q −→ D(ν)/S(ν) similarly, we obtain the following commutative
diagram:

H̃n+q(S
n+q)

t∗
∼=

//

t∗

��

Hn+q(D(U)×Dq, ∂(D(U)×Dq))
Φ

∼=
//

��

Hn(D(U), S(U))

∼=

��
Hn+q(D(ν), S(ν) ∪D(ν|M−V ))

Φ // Hn(M, M − V )

∼=
��

Hn+q(D(ν), S(ν))

44hhhhhhhhhhhhhhhhhh

Φ
// Hn(M)

44hhhhhhhhhhhhhhhhhhh // Hn(M, M − x).

The unlabeled arrows are induced by inclusions, and the right vertical arrows are
excision isomorphisms. The maps Φ are of the general form Φ(a) = p∗(µ ∩ a). For
the top map Φ, µ ∈ Hn+q(D(ν|D(U)), S(ν|D(U))) ∼= Hn+q(Sn+q), and, up to evident
isomorphisms, Φ is just the inverse of the suspension isomorphism H̃n(Sn) −→
H̃n+q(Sn+q). The diagram shows that z maps to a generator of Hn(M,M − x), as
claimed.

6. Spectra and the computation of π∗(TO) = π∗(MO)

We must still prove that h : π∗(TO) −→ H∗(TO) is a monomorphism and that
g◦h maps π∗(TO) isomorphically onto N∗. Write N for the dual vector space of N∗.
(Of course, N is a coalgebra, but that is not important for this part of our work.)
Remember that the Steenrod algebra A is dual to A∗ and that A ∼= H∗(HZ2).
The dual of g : H∗(TO) −→ A∗ ⊗ N∗ is an isomorphism of A-modules (and of
coalgebras) g∗ : A⊗N −→ H∗(TO). Thus, if we choose a basis {yi} for N , where
deg yi = ni say, then H∗(TO) is the free graded A-module on the basis {yi}.

At this point, we engage in a conceptual thought exercise. We think of prespec-
tra as “stable objects” that have associated homotopy, homology, and cohomology
groups. Imagine that we have a good category of stable objects, analogous to
the category of based spaces, that is equipped with all of the constructions that
we have on based spaces: wedges (= coproducts), colimits, products, limits, sus-
pensions, loops, homotopies, cofiber sequences, fiber sequences, smash products,
function objects, and so forth. Let us call the stable objects in our imagined cat-
egory “spectra” and call the category of such objects S . We have in mind an
analogy with the notions of presheaf and sheaf.

Whatever spectra are, there must be a way of constructing a spectrum from
a prespectrum without changing its homotopy, homology, and cohomology groups.
In turn, a based space X determines the prespectrum Σ∞X = {ΣnX}. The homol-
ogy and cohomology groups of Σ∞X are the (reduced) homology and cohomology
groups of X; the homotopy groups of Σ∞X are the stable homotopy groups of X.

Because homotopy groups, homology groups, and cohomology groups on based
spaces satisfy the weak equivalence axiom, the real domain of definition of these
invariants is the category h̄T that is obtained from the homotopy category hT
of based spaces by adjoining inverses to the weak equivalences. This category is
equivalent to the homotopy category hC of based CW complexes. Explicitly, the
morphisms from X to Y in h̄T can be defined to be the based homotopy classes
of maps ΓX −→ ΓY , where ΓX and ΓY are CW approximations of X and Y .
Composition is defined in the evident way.
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Continuing our thought exercise, we can form the homotopy category hS of
spectra and can define homotopy groups in terms of homotopy classes of maps from
sphere spectra to spectra. Reflection on the periodic nature of K-theory suggests
that we should define sphere spectra of negative dimension and define homotopy
groups πq(X) for all integers q. We say that a map of spectra is a weak equivalence if
it induces an isomorphism on homotopy groups. We can form the “stable category”
h̄S from hS exactly as we formed the category h̄T from hT . That is, we develop
a theory of CW spectra using sphere spectra as the domains of attaching maps.
The Whitehead and cellular approximation theorems hold, and every spectrum X
admits a CW approximation ΓX −→ X. We define the set [X,Y ] of morphisms
X −→ Y in h̄S to be the set of homotopy classes of maps ΓX −→ ΓY . This is
a stable category in the sense that the functor Σ : h̄S −→ h̄S is an equivalence
of categories. More explicitly, the natural maps X −→ ΩΣX and ΣΩX −→ X are
isomorphisms in h̄S .

In particular, up to isomorphism, every object in the category h̄S is a sus-
pension, hence a double suspension. This implies that each [X,Y ] is an Abelian
group and composition is bilinear. Moreover, for any map f : X −→ Y , the canon-
ical map Ff −→ ΩCf and its adjoint ΣFf −→ Cf (see Chapter 8 §7) are also
isomorphisms in h̄S , so that cofiber sequences and fiber sequences are equivalent.
Therefore cofiber sequences give rise to long exact sequences of homotopy groups.

The homotopy groups of wedges and products of spectra are given by

π∗(
∨
iXi) =

∑
i π∗(Xi) and π∗(

∏
iXi) =

∏
i π∗(Xi).

Therefore, if only finitely many πq(Xi) are non-zero for each q, then the natural
map

∨
i Xi −→

∏
i Xi is an isomorphism.

We have homology groups and cohomology groups defined on h̄S . A spectrum
E represents a homology theory E∗ and a cohomology theory E∗ specified in terms
of smash products and function spectra by

Eq(X) = πq(X ∧ E) and Eq(X) = π−qF (X,E) ∼= [X,ΣqE].

Verifications of the exactness, suspension, additivity, and weak equivalence axioms
are immediate from the properties of the category h̄S . Moreover, every homology
or cohomology theory on h̄S is so represented by some spectrum E.

As will become clear later, Ω-prespectra are more like spectra than general
prespectra, and we continue to write Hπ for the “Eilenberg-Mac Lane spectrum”
that represents ordinary cohomology with coefficients in π. Its only non-zero ho-
motopy group is π0(Hπ) = π, and the Hurewicz homomorphism maps this group
isomorphically onto H0(Hπ; Z). When π = Z2, the natural map H0(HZ2; Z) −→
H0(HZ2; Z2) is also an isomorphism.

Returning to our motivating example, we write MO for the “Thom spectrum”
that arises from the Thom prespectrum TO. The reader may sympathize with a
student who claimed that MO stands for “Mythical Object.”

We may choose a map ȳi : MO −→ ΣniHZ2 that represents the element yi.
Define K(N∗) to be the wedge of a copy of ΣniHZ2 for each basis element yi and
note thatK(N∗) is isomorphic in h̄S to the product of a copy of ΣniHZ2 for each yi.
We think of K(N∗) as a “generalized Eilenberg-Mac Lane spectrum.” It satisfies
π∗(K(N∗)) ∼= N∗ (as Abelian groups and so as Z2-vector spaces), and the mod
2 Hurewicz homomorphism h : π∗(K(N∗)) −→ H∗(K(N∗)) is a monomorphism.
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Using the ȳi as coordinates, we obtain a map

ω : MO −→
∏
i Σ

niHZ2 ' K(N∗).

The induced map ω∗ on mod 2 cohomology is an isomorphism of A-modules:
H∗(MO) and H∗(K(N∗)) are free A-modules, and we have defined ω so that ω∗

sends basis elements to basis elements. Therefore the induced map on homology
groups is an isomorphism. Here we are using mod 2 homology, but it can be
deduced from the fact that both π∗(MO) and π∗(K(N∗)) are Z2-vector spaces that
ω induces an isomorphism on integral homology groups. Therefore the integral
homology groups of Cω are zero. By the Hurewicz theorem in h̄S , the homotopy
groups of Cω are also zero. Therefore ω induces an isomorphism of homotopy
groups. That is, ω is an isomorphism in h̄S . Therefore π∗(MO) ∼= N∗ and the
Hurewicz homomorphism h : π∗(MO) −→ H∗(MO) is a monomorphism. It follows
that g ◦h : π∗(MO) −→ N∗ is an isomorphism since it is a monomorphism between
vector spaces of the same finite dimension in each degree.

7. An introduction to the stable category

To give content to the argument just sketched, we should construct a good cat-
egory of spectra. In fact, no such category was available when Thom first proved his
theorem in 1960. With motivation from the introduction of K-theory and cobor-
dism, a good stable category was constructed by Boardman (unpublished) around
1964 and an exposition of his category was given by Adams soon after. However,
these early constructions were far more primitive than our outline suggests. While
they gave a satisfactory stable category, the underlying category of spectra did not
have products, limits, and function objects, and its smash product was not asso-
ciative, commutative, or unital. In fact, a fully satisfactory category of spectra was
not constructed until 1995.

We give a few definitions to indicate what is involved.

Definition. A spectrum E is a prespectrum such that the adjoints σ̃ : En −→
ΩEn+1 of the structure maps σ : ΣEn −→ En+1 are homeomorphisms. A map
f : T −→ T ′ of prespectra is a sequence of maps fn : Tn −→ T ′n such that
σ′n ◦Σfn = fn+1 ◦ σn for all n. A map f : E −→ E′ of spectra is a map between E
and E′ regarded as prespectra.

We have a forgetful functor from the category S of spectra to the category P
of prespectra. It has a left adjoint L : P −→ S . In P, we define wedges, colimits,
products, and limits spacewise. For example, (T ∨T ′)n = Tn∨T ′n, with the evident
structure maps. We define wedges and colimits of spectra by first performing the
construction on the prespectrum level and then applying the functor L. If we start
with spectra and construct products or limits spacewise, then the result is again
a spectrum; that is, limits of spectra are the limits of their underlying prespectra.
Thus the category S is complete and cocomplete.

Similarly, we define the smash product T∧X and function prespectrum F (X,T )
of a based space X and a prespectrum T spacewise. For a spectrum E, we de-
fine E ∧X by applying L to the prespectrum level construction; the prespectrum
F (X,E) is already a spectrum. We now have cylinders E ∧ I+ and thus can define
homotopies between maps of spectra. Similarly we have cones CE = E ∧ I (where
I has basepoint 1), suspensions ΣE = E ∧ S1, path spectra F (I, E) (where I has
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basepoint 0), and loop spectra ΩE = F (S1, E). The development of cofiber and
fiber sequences proceeds exactly as for based spaces.

The left adjoint L can easily be described explicitly on those prespectra T
whose adjoint structure maps σ̃n : Tn −→ ΩTn+1 are inclusions: we define (LT )n
to be the union of the expanding sequence

Tn
σ̃n−−→ ΩTn+1

Ωσ̃n+1−−−−→ Ω2Tn+2 −→ · · · .
We then have

Ω(LT )n+1 = Ω(
⋃

ΩqTn+1+q) ∼=
⋃

Ωq+1Tn+q+1
∼= (LT )n.

We have an evident map of prespectra λ : T −→ LT , and a comparison of
colimits shows (by a cofinality argument) that λ induces isomorphisms on homo-
topy and homology groups. The essential point is that homotopy and homology
commute with colimits. It is not true that cohomology converts colimits to limits
in general, because of lim1 error terms, and this is one reason that our definition of
the cohomology of prespectra via limits is inappropriate except under restrictions
that guarantee the vanishing of lim1 terms. Observe that there is no problem in
the case of Ω-prespectra, for which λ is a spacewise weak equivalence.

For a based space X, we define the suspension spectrum Σ∞X by applying L
to the suspension prespectrum Σ∞X = {ΣnX}. The inclusion condition is satisfied
in this case. We define QX = ∪ΩqΣqX, and we find that the nth space of Σ∞X is
QΣnX. It should be apparent that the homotopy groups of the space QX are the
stable homotopy groups of X.

The adjoint structure maps of the Thom prespectrum TO are also inclusions,
and our mythical object is MO = LTO.

In general, for a prespectrum T , we can apply an iterated mapping cylinder con-
struction to define a spacewise equivalent prespectrum KT whose adjoint structure
maps are inclusions. The prespectrum level homotopy, homology, and cohomology
groups of KT are isomorphic to those of T . Thus, if we have a prespectrum T whose
invariants we are interested in, such as an Eilenberg-Mac Lane Ω-prespectrum or
the K-theory Ω-prespectrum, then we can construct a spectrum LKT that has the
same invariants.

For a based space X and q ≥ 0, we construct a prespectrum Σ∞q X whose nth
space is a point for n < q and is Σn−qX for n ≥ q; its structure maps for n ≥ q are
identity maps. We continue to write Σ∞q X for the spectrum obtained by applying
L to this prespectrum. We then define sphere spectra Sq for all integers q by letting
Sq = Σ∞Sq for q ≥ 0 and S−q = Σ∞q S

0 for q > 0. The definition is appropriate
since ΣSq ∼= Sq+1 for all integers q. We can now define homotopy groups in the
obvious way. For example, the homotopy groups of the K-theory spectrum are Z
for every even integer and zero for every odd integer.

From here, we can go on to define CW spectra in very much the same way
that we defined CW complexes, and we can fill in the rest of the outline in the
previous section. The real work involves the smash product of spectra, but this
does not belong in our rapid course. While there is a good deal of foundational
work involved, there is also considerable payoff in explicit concrete calculations, as
the computation of π∗(MO) well illustrates.

With the hope that this glimpse into the world of stable homotopy theory has
whetted the reader’s appetite for more, we will end at this starting point.





Suggestions for further reading

Rather than attempt a complete bibliography, I will give a number of basic
references. I will begin with historical references and textbooks. I will then give
references for specific topics, more or less in the order in which topics appear in
the text. Where material has been collected in one or another book, I have often
referred to such books rather than to original articles. However, the importance
and quality of exposition of some of the original sources often make them still to be
preferred today. The subject in its earlier days was blessed with some of the finest
expositors of mathematics, for example Steenrod, Serre, Milnor, and Adams. Some
of the references are intended to give historical perspective, some are classical papers
in the subject, some are follow-ups to material in the text, and some give an idea
of the current state of the subject. In fact, many major parts of algebraic topology
are nowhere mentioned in any of the existing textbooks, although several were well
established by the mid-1970s. I will indicate particularly accessible references for
some of them; the reader can find more of the original references in the sources
given.

1. A classic book and historical references

The axioms for homology and cohomology theories were set out in the classic:
S. Eilenberg and N. Steenrod. Foundations of algebraic topology. Princeton Uni-
versity Press. 1952.

I believe the only historical monograph on the subject is:
J. Dieudonné. A history of algebraic and differential topology, 1900–1960. Birk-
häuser. 1989.

A large collection of historical essays will appear soon:
I.M. James, editor. The history of topology. Elsevier Science. To appear.

Among the contributions, I will advertise one of my own, available on the web:
J.P. May. Stable algebraic topology, 1945–1966. http://hopf.math.purdue.edu

2. Textbooks in algebraic topology and homotopy theory

These are ordered roughly chronologically (although this is obscured by the fact
that the most recent editions or versions are cited). I have included only those texts
that I have looked at myself, that are at least at the level of the more elementary
chapters here, and that offer significant individuality of treatment. There are many
other textbooks in algebraic topology.

Two classic early textbooks:

P.J. Hilton and S. Wylie. Homology theory. Cambridge University Press. 1960.

235
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E. Spanier. Algebraic topology. McGraw-Hill. 1966.

An idiosyncratic pre-homology level book giving much material about groupoids:
R. Brown. Topology. A geometric account of general topology, homotopy types, and
the fundamental groupoid. Second edition. Ellis Horwood. 1988.

A homotopical introduction close to the spirit of this book:
B. Gray. Homotopy theory, an introduction to algebraic topology. Academic Press.
1975.

The standard current textbooks in basic algebraic topology:
M.J. Greenberg and J. R. Harper. Algebraic topology, a first course. Benjamin/
Cummings. 1981.
W.S. Massey. A basic course in algebraic topology. Springer-Verlag. 1991.
A. Dold. Lectures on algebraic topology. Reprint of the 1972 edition. Springer-
Verlag. 1995.
J.W. Vick. Homology theory; an introduction to algebraic topology. Second edition.
Springer-Verlag. 1994.
J.R. Munkres. Elements of algebraic topology. Addison Wesley. 1984.
J.J. Rotman. An introduction to algebraic topology. Springer-Verlag. 1986.
G.E. Bredon. Topology and geometry. Springer-Verlag. 1993.

Sadly, the following are still the only more advanced textbooks in the subject:
R.M. Switzer. Algebraic topology. Homotopy and homology. Springer-Verlag. 1975.
G.W. Whitehead. Elements of homotopy theory. Springer-Verlag. 1978.

3. Books on CW complexes

Two books giving more detailed studies of CW complexes than are found in
textbooks (the second giving a little of the theory of compactly generated spaces):
A.T. Lundell and S. Weingram The topology of CW complexes. Van Nostrand
Reinhold. 1969.
R. Fritsch and R.A. Piccinini. Cellular structures in topology. Cambridge Univer-
sity Press. 1990.

4. Differential forms and Morse theory

Two introductions to algebraic topology starting from de Rham cohomology:
R. Bott and L.W. Tu. Differential forms in algebraic topology. Springer-Verlag.
1982.
I. Madsen and J. Tornehave. From calculus to cohomology. de Rham cohomology
and characteristic classes. Cambridge University Press. 1997.

The classic reference on Morse theory, with an exposition of the Bott periodicity
theorem:
J. Milnor. Morse theory. Annals of Math. Studies No. 51. Princeton University
Press. 1963.

A modern use of Morse theory for the analytic construction of homology:
M. Schwarz. Morse homology. Progress in Math. Vol. 111. Birkhäuser. 1993.
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5. Equivariant algebraic topology

Two good basic references on equivariant algebraic topology, classically called
the theory of transformation groups (see also §§16, 21 below):
G. Bredon. Introduction to compact transformation groups. Academic Press. 1972.
T. tom Dieck. Transformation groups. Walter de Gruyter. 1987.

A more advanced book, a precursor to much recent work in the area:
T. tom Dieck. Transformation groups and representation theory. Lecture Notes in
Mathematics Vol. 766. Springer-Verlag. 1979.

6. Category theory and homological algebra

A revision of the following classic on basic category theory is in preparation:
S. MacLane. Categories for the working mathematician. Springer-Verlag. 1971.

Two classical treatments and a good modern treatment of homological algebra:
H. Cartan and S. Eilenberg. Homological algebra. Princeton University Press. 1956.
S. MacLane. Homology. Springer-Verlag. 1963.
C.A. Weibel. An introduction to homological algebra. Cambridge University Press.
1994.

7. Simplicial sets in algebraic topology

Two older treatments and a comprehensive modern treatment:
P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Springer-
Verlag. 1967.
J.P. May. Simplicial objects in algebraic topology. D. Van Nostrand 1967; reprinted
by the University of Chicago Press 1982 and 1992.
P.G. Goerss and J.F. Jardine. Simplicial homotopy theory. Birkhäuser. To appear.

8. The Serre spectral sequence and Serre class theory

Two classic papers of Serre:
J.-P. Serre. Homologie singuliére des espaces fibrés. Applications. Annals of Math.
(2)54(1951), 425–505.
J.-P. Serre. Groupes d’homotopie et classes de groupes abéliens. Annals of Math.
(2)58(1953), 198–232.

A nice exposition of some basic homotopy theory and of Serre’s work:
S.-T. Hu. Homotopy theory. Academic Press. 1959.

Many of the textbooks cited in §2 also treat the Serre spectral sequence.

9. The Eilenberg-Moore spectral sequence

There are other important spectral sequences in the context of fibrations,
mainly due to Eilenberg and Moore. Three references:
S. Eilenberg and J.C. Moore. Homology and fibrations, I. Comm. Math. Helv.
40(1966), 199–236.
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L. Smith. Homological algebra and the Eilenberg-Moore spectral sequences. Trans.
Amer. Math. Soc. 129(1967), 58–93.
V.K.A.M. Gugenheim and J.P. May. On the theory and applications of differential
torsion products. Memoirs Amer. Math. Soc. No. 142. 1974.

There is a useful guidebook to spectral sequences:
J. McCleary. User’s guide to spectral sequences. Publish or Perish. 1985.

10. Cohomology operations

A compendium of the work of Steenrod and others on the construction and
analysis of the Steenrod operations:
N.E. Steenrod and D.B.A. Epstein. Cohomology operations. Annals of Math. Stud-
ies No. 50. Princeton University Press. 1962.

A classic paper that first formalized cohomology operations, among other things:
J.-P. Serre. Cohomologie modulo 2 des complexes d’Eilenberg-MacLane. Comm.
Math. Helv. 27(1953), 198–232.

A general treatment of Steenrod-like operations:
J.P. May. A general algebraic approach to Steenrod operations. In Lecture Notes
in Mathematics Vol. 168, 153–231. Springer-Verlag. 1970.

A nice book on mod 2 Steenrod operations and the Adams spectral sequence:
R. Mosher and M. Tangora. Cohomology operations and applications in homotopy
theory. Harper and Row. 1968.

11. Vector bundles

A classic and a more recent standard treatment that includes K-theory:
N.E. Steenrod. Topology of fibre bundles. Princeton University Press. 1951. Fifth
printing, 1965.
D. Husemoller. Fibre bundles. Springer-Verlag. 1966. Third edition, 1994.

A general treatment of classification theorems for bundles and fibrations:
J.P. May. Classifying spaces and fibrations. Memoirs Amer. Math. Soc. No. 155.
1975.

12. Characteristic classes

The classic introduction to characteristic classes:
J. Milnor and J.D. Stasheff. Characteristic classes. Annals of Math. Studies No.
76. Princeton University Press. 1974.

A good reference for the basic calculations of characteristic classes:
A. Borel. Topology of Lie groups and characteristic classes. Bull. Amer. Math.
Soc. 61(1955), 297–432.

Two proofs of the Bott periodicity theorem that only use standard techniques
of algebraic topology, starting from characteristic class calculations:
H. Cartan et al. Périodicité des groupes d’homotopie stables des groupes classiques,
d’après Bott. Séminaire Henri Cartan, 1959/60. Ecole Normale Supérieure. Paris.
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E. Dyer and R.K. Lashof. A topological proof of the Bott periodicity theorems. Ann.
Mat. Pure Appl. (4)54(1961), 231–254.

13. K-theory

Two classical lecture notes on K-theory:
R. Bott. Lectures on K(X). W.A. Benjamin. 1969.

This includes a reprint of perhaps the most accessible proof of the complex case
of the Bott periodicity theorem, namely:
M.F. Atiyah and R. Bott. On the periodicity theorem for complex vector bundles.
Acta Math. 112(1994), 229–247.

M.F. Atiyah. K-theory. Notes by D.W. Anderson. Second Edition. Addison-
Wesley. 1967.

This includes reprints of two classic papers of Atiyah, one that relates Adams
operations in K-theory to Steenrod operations in cohomology and another that
sheds insight on the relationship between real and complex K-theory:
M.F. Atiyah. Power operations in K-theory. Quart. J. Math. (Oxford) (2)17(1966),
165–193.
M.F. Atiyah. K-theory and reality. Quart. J. Math. (Oxford) (2)17(1966), 367–
386.

Another classic paper that greatly illuminates real K-theory:
M.F. Atiyah, R. Bott, and A. Shapiro. Clifford algebras. Topology 3(1964), suppl.
1, 3–38.

A more recent book on K-theory:
M. Karoubi. K-theory. Springer-Verlag. 1978.

Some basic papers of Adams and Adams and Atiyah giving applications of
K-theory:
J.F. Adams. Vector fields on spheres. Annals of Math. 75(1962), 603–632.
J.F. Adams. On the groups J(X) I, II, III, and IV. Topology 2(1963), 181–195;
3(1965), 137-171 and 193–222; 5(1966), 21–71.
J.F. Adams and M.F. Atiyah. K-theory and the Hopf invariant. Quart. J. Math.
(Oxford) (2)17(1966), 31–38.

14. Hopf algebras; the Steenrod algebra, Adams spectral sequence

The basic source for the structure theory of (connected) Hopf algebras:
J. Milnor and J.C. Moore. On the structure of Hopf algebras. Annals of Math.
81(1965), 211–264.

The classic analysis of the structure of the Steenrod algebra as a Hopf algebra:
J. Milnor. The Steenrod algebra and its dual. Annals of Math. 67(1958), 150–171.

Two classic papers of Adams; the first constructs the Adams spectral sequence
relating the Steenrod algebra to stable homotopy groups and the second uses sec-
ondary cohomology operations to solve the Hopf invariant one problem:
J.F. Adams. On the structure and applications of the Steenrod algebra. Comm.
Math. Helv. 32(1958), 180–214.
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J.F. Adams. On the non-existence of elements of Hopf invariant one. Annals of
Math. 72(1960), 20–104.

15. Cobordism

The beautiful classic paper of Thom is still highly recommended:
R. Thom. Quelques propriétés globals des variétés différentiables. Comm. Math.
Helv. 28(1954), 17–86.

Thom computed unoriented cobordism. Oriented and complex cobordism came
later. In simplest form, the calculations use the Adams spectral sequence:
J. Milnor. On the cobordism ring Ω∗ and a complex analogue. Amer. J. Math.
82(1960), 505–521.
C.T.C. Wall. A characterization of simple modules over the Steenrod algebra mod
2. Topology 1(1962), 249–254.
A. Liulevicius. A proof of Thom’s theorem. Comm. Math. Helv. 37(1962), 121–
131.
A. Liulevicius. Notes on homotopy of Thom spectra. Amer. J. Math. 86(1964),
1–16.

A very useful compendium of calculations of cobordism groups:
R. Stong. Notes on cobordism theory. Princeton University Press. 1968.

16. Generalized homology theory and stable homotopy theory

Two classical references, the second of which also gives detailed information
about complex cobordism that is of fundamental importance to the subject.
G.W. Whitehead. Generalized homology theories. Trans. Amer. Math. Soc.
102(1962), 227–283.
J.F. Adams. Stable homotopy and generalised homology. Chicago Lectures in Math-
ematics. University of Chicago Press. 1974. Reprinted in 1995.

An often overlooked but interesting book on the subject:
H.R. Margolis. Spectra and the Steenrod algebra. Modules over the Steenrod algebra
and the stable homotopy category. North-Holland. 1983.

Foundations for equivariant stable homotopy theory are established in:
L.G. Lewis, Jr., J.P. May, and M.Steinberger (with contributions by J.E. McClure).
Equivariant stable homotopy theory. Lecture Notes in Mathematics Vol. 1213.
Springer-Verlag. 1986.

17. Quillen model categories

In the introduction, I alluded to axiomatic treatments of “homotopy theory.”
Here are the original and two more recent references:
D.G. Quillen. Homotopical algebra. Lecture Notes in Mathematics Vol. 43.
Springer-Verlag. 1967.
W.G. Dwyer and J. Spalinski. Homotopy theories and model categories. In A
handbook of algebraic topology, edited by I.M. James. North-Holland. 1995.
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The cited “Handbook” (over 1300 pages) contains an uneven but very interesting
collection of expository articles on a wide variety of topics in algebraic topology.

M. Hovey. Model categories. Amer. Math. Soc. Surveys and Monographs No. 63.
1998.

18. Localization and completion; rational homotopy theory

Since the early 1970s, it has been standard practice in algebraic topology to
localize and complete topological spaces, and not just their algebraic invariants, at
sets of primes and then to study the subject one prime at a time, or rationally.
Two of the basic original references are:
D. Sullivan. The genetics of homotopy theory and the Adams conjecture. Annals
of Math. 100(1974), 1–79.
A.K. Bousfield and D.M. Kan. Homotopy limits, completions, and localizations.
Lecture Notes in Mathematics Vol. 304. Springer-Verlag. 1972.

A more accessible introduction to localization and a readable recent paper on
completion are:
P. Hilton, G. Mislin, and J. Roitberg. Localization of nilpotent groups and spaces.
North-Holland. 1975.
F. Morel. Quelques remarques sur la cohomologie modulo p continue des pro-p-
espaces et les resultats de J. Lannes concernent les espaces fonctionnel Hom(BV,X).
Ann. Sci. Ecole Norm. Sup. (4)26(1993), 309–360.

When spaces are rationalized, there is a completely algebraic description of the
result. The main original reference and a more accessible source are:
D. Sullivan. Infinitesimal computations in topology. Publ. Math. IHES 47(1978),
269–332.
A.K. Bousfield and V.K.A.M. Gugenheim. On PL de Rham theory and rational
homotopy type. Memoirs Amer. Math. Soc. No. 179. 1976.

19. Infinite loop space theory

Another area well established by the mid-1970s. The following book is a de-
lightful read, with capsule introductions of many topics other than infinite loop
space theory, a very pleasant starting place for learning modern algebraic topology:
J.F. Adams. Infinite loop spaces. Annals of Math. Studies No. 90. Princeton
University Press. 1978.

The following survey article is less easy going, but gives an indication of the
applications to high dimensional geometric topology and to algebraic K-theory:
J.P. May. Infinite loop space theory. Bull. Amer. Math. Soc. 83(1977), 456–494.

Five monographs, each containing a good deal of expository material, that give
a variety of theoretical and calculational developments and applications in this area:
J.P. May. The geometry of iterated loop spaces. Lecture Notes in Mathematics
Vol. 271. Springer-Verlag. 1972.
J.M. Boardman and R.M. Vogt. Homotopy invariant algebraic structures on topo-
logical spaces. Lecture Notes in Mathematics Vol. 347. Springer-Verlag. 1973.
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F.R. Cohen, T.J. Lada, and J.P. May. The homology of iterated loop spaces.
Lecture Notes in Mathematics Vol. 533. Springer-Verlag. 1976.
J.P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). E∞ ring
spaces and E∞ ring spectra. Lecture Notes in Mathematics Vol. 577. Springer-
Verlag. 1977.
R. Bruner, J.P. May, J.E. McClure, and M. Steinberger. H∞ ring spectra and their
applications. Lecture Notes in Mathematics Vol. 1176. Springer-Verlag. 1986.

20. Complex cobordism and stable homotopy theory

Adams’ book cited in §16 gives a spectral sequence for the computation of
stable homotopy groups in terms of generalized cohomology theories. Starting
from complex cobordism and related theories, its use has been central to two waves
of major developments in stable homotopy theory. A good exposition for the first
wave:
D.C. Ravenel. Complex cobordism and stable homotopy groups of spheres. Aca-
demic Press. 1986.

The essential original paper and a very nice survey article on the second wave:
E. Devinatz, M.J. Hopkins, and J.H. Smith. Nilpotence and stable homotopy theory.
Annals of Math. 128(1988), 207–242.
M.J. Hopkins. Global methods in homotopy theory. In Proceedings of the 1985
LMS Symposium on homotopy theory, edited by J.D.S. Jones and E. Rees. London
Mathematical Society. 1987.

The cited Proceedings contain good introductory survey articles on several other
topics in algebraic topology. A larger scale exposition of the second wave is:
D.C. Ravenel. Nilpotence and periodicity in stable homotopy theory. Annals of
Math. Studies No. 128. Princeton University Press. 1992.

21. Follow-ups to this book

There is a leap from the level of this introductory book to that of the most
recent work in the subject. One recent book that helps fill the gap is:

P. Selick. Introduction to homotopy theory. Fields Institute Monographs No.
9. American Mathematical Society. 1997.

There is a recent expository book for the reader who would like to jump right in
and see the current state of algebraic topology; although it focuses on equivariant
theory, it contains introductions and discussions of many non-equivariant topics:
J.P. May et al. Equivariant homotopy and cohomology theory. NSF-CBMS Re-
gional Conference Monograph. 1996.

For the reader of the last section of this book whose appetite has been whetted
for more stable homotopy theory, there is an expository article that motivates and
explains the properties that a satisfactory category of spectra should have:
J.P. May. Stable algebraic topology and stable topological algebra. Bulletin London
Math. Soc. 30(1998), 225–234.

The following monograph gives such a category, with many applications; more
readable accounts appear in the Handbook cited in §17 and in the book just cited:



21. FOLLOW-UPS TO THIS BOOK 243

A. Elmendorf, I. Kriz, M.A. Mandell, and J.P. May, with an appendix by M. Cole.
Rings, modules, and algebras in stable homotopy theory. Amer. Math. Soc. Surveys
and Monographs No. 47. 1997.


