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INTRODUCTION

Most of this book is based on lectures to third-year undergraduate
and first-year postgraduate students. It aims to provide a thorough
grounding in the more elementary parts of algebraic topology, although
these are treated wherever possible in an up-to-date way. The reader
interested in pursuing the subject further will find sugge: ions for
further reading in the notes at the end of each chapter.

Chapter 1 is a survey of results in algebra and analytic topology that
will be assumed known in the rest of the book. The knowledgeable
reader is advised to read it, however, since in it a good deal of standard
notation is set up. Chapter 2 deals with the topology of simplicial
complexes, and Chapter 3 with the fundamental group. The subject
of Chapters 4 and 5 is homology and cohomology theory (particularly
of simplicial complexes), with applications including the Lefschetz
Fixed-Point Theorem and the Poincaré and Alexander duality theo-
rems for triangulable manifolds. Chapters 6 and 7 are concerned with
homotopy theory, homotopy groups and CW-complexes, and finally
in Chapter 8 we shall consider the homology and cohomology of
CW-complexes, giving a proof of the Hurewicz theorem and a
treatment of products in cohomology.

A feature of this book is that we have included in Chapter 2 a
proof of Zeeman’s version of the relative Simplicial Approximation
Theorem. We believe that the small extra effort needed to prove the
relative rather than the absolute version of this theorem is more than
repaid by the easy deduction of the equivalence of singular and
simplicial homology theory for polyhedra.

Each chapter except the first contains a numbeér of exercises, most
of which are concerned with further applications and extensions of the
theory. There are also notes at the end of each chapter, which are
partly historical and partly suggestions for further reading.

Each chapter is divided into numbered sections, and Definitions,
Propositions, Theorems, etc., are numbered consecutively within each
section: thus for example Definition 1.2.6 follows Theorem 1.2.5 in the
second section (Section 1.2) of Chapter 1. A reference to Exercise n
denotes Exercise # at the end of the chapter in which the reference is
made; if reference is made to an exercise in a different chapter, then
the number of that chapter will also be specified. The symbol | denotes
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vi INTRODUCTION

the end (or absence) of a proof, and is also used to indicate the end of
an example in the text. References are listed and numbered at the
end of the book, and are referred to in the text by numbers in brackets:
thus for example [73] denotes the book Homotopy Theory by S.-T. Hu.

Finally, it is a pleasure to acknowledge the help I have received in
writing this book. My indebtedness to the books of Seifert and
Threlfall [124] and Hu [73], and papers by Puppe [119], G. W.
Whitehead [155], J. H. C. Whitehead [160] and Zeeman [169] will be
obvious to anyone who has read them, but I should also like to thank
D. Barden, R. Brown, W. B. R. Lickorish, N. Martin, R. Sibson,
A. G. Tristram and the referee for many valuable conversations and
suggestions.
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CHAPTER 1
ALGEBRAIC AND TOPOLOGICAL PRELIMINARIES

1.1 Introduction

In this chapter we collect together some elementary results in set
theory, algebra and analytic topology that wil} be assumed known in the
rest of the book. Since the reader will probably be familiar with most
of these results, we shall usually omit proofs and give only definitions
and statements of theorems. Proofs of results in set thedry and analytic
topology will be found in Kelley [85], and in algebtra in Jacobson [77];
or indeed in almost any other standard textbook. It will be implicitly
assumed that the reader is familiar with the concepts of sets (and
subsets), integers, and rational, real and complex numbers.

1.2 Set theory

The notation a € 4 means that a is an element of theset 4; A < B
that A is a subset of B. {ae 4 |...} means the subset of 4 such that
... 1s true, and if A, B are subsets of some set C,then A U B, AN B
denote the union and intersection of A and B respectively: thus
AUB={ceC|ceAd or ceB} and ANB={ceC|ceAd and
c € B}. Unions and intersections of arbitrary collections of sets are
similarly defined.

Definition 1.2.1 Given sets 4 and B, the product set A x B is the
set of all ordered pairs (a, b), for all a e 4, b e B. A relation between
the sets 4 and B is a subset R of 4 x B; we usually write aRb for the
statement ‘(a, b) € R’.

Definition 1.2.2 A partial ordering on a set A is a relation <
between -4 and itself such that, whenever a < d and b < ¢, then
a < c. A total ordering on A is a partial ordering < such that

(a) if a < band b < a, then a = b;

(b) given @, b € A, eithera < bor b < a.

Proposition 1.2.3 Given a finite set A containing n distinct elements,
there exist n! distinct total orderings on A. |

1



2 ALGEBRAIC AND TOPOLOGICAL PRELIMINARIES CH1

Definition 1.2.4 A relation R between a set A4 and itself is called
an equsvalence relation on A if

(a) for all a€ A, aRa;
(b) if aRb, then bRa;
(c) if aRb and bRc, then aRc.

The equivalence class [a] of an element a € A4 is defined by [4a] =
{b€ A} aRb}.

Theorem 1.2.5 If R is an equivalence relation on A, then each
element of A is in one and only one equivalence class. |

Definition 1.2.6 Given sets A and B, a function f from Ato Bis a
relation between 4 and B such that, for each a € 4, there exists a
unique b € B such that afd. We write b = f(a), or f(a) = b, for the
statement ‘afd’, and f: 4 — B for ‘f is a function from 4 to B'.

Example 1.2.7 Given any set A4, the identity function‘ 1,4 4
is defined by 1,(a) = a for all a € A (we shall often abbreviate 1, to 1,
if no ambiguity arises). ||

Definition 1.2.8 If f: 4 — B is a function and C is a subset of 4,
the restriction (f|C): C — B is defined by (f|C)(c) = f(c) for all
¢ € C. Given two functions f: 4 — B, g: B — C, the composite function
gf: A~ C is defined by gf(a) = g(f(a)). The smage f(A) of f: A— B
is the subset of B of elements of the form f(a), for some a € 4; fis onto
if f(A) = B; f is one-to-one (written (1-1) if, whenever f(a,) = f(a,),
then a, = a,; f is a (1-1)-correspondence if it is both onto and (1-1).
Two sets 4 and B are said to be in (1-1)-correspondence if there exists a
(1-1)-correspondence f: 4 — B.

Proposition 1.2.9 Let f: A — B be a function.

(3) f: A — B is onto if and only if there exists a function g: B — A
such that fg = 15.

(b) f: A — B is (1-1) if and only if there exists a function g: B — A
such that gf = 1, (provided A is non-empty).

(c) f: A— B is a (1-1)-correspondence if and only if there exists a
function g: B— A such that fg = 15 and gf = 1,. In this case g is
unique and ss called the ‘inverse function’ to f. §

- Definition 1.2.10 A set 4 is countable (or enumerable) if it is in
(1-1)-correspondence with a subset of the set of positive integers.

Proposition 1.2.11  If the sets A and B are countable, sois A x B. |}
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Definition 1.2.12 A permutation of a set A is a (1-1)-corre-
spondence from A4 to itself; a transposition is a permutation that leaves
fixed all but two elements of 4, which are interchanged. If A4 is a finite
set, a permutation is even if it is a composite of an even number of
transpositions and odd if it is a composite of an odd number of
transpositions.

1.3 Algebra

Definition 1.3.1 A group G is a set, together with a function
m: G x G — G, called a multiplication, satisfying the following rules.

(a) m(m(g,, 82), £3) = m(g1, m(ga, &5)) for all g,, g2, 8, € G.
(b) There exists an element ¢ € G, called the unit element, such that

m(g,e) =g = m(e,g) forallgeG.

(c) For each g € G, there exists g’ € G such that m(g,g') = e =
m(g', g).

The element m(g,, g,) is regarded as the ‘product’ of g; and g;,and is
normally written g,g,, so that rule (a), for example, becomes
(£182)85 = £1(8285) (this is usually expressed by saying that the product
is associative; we may unambiguously write g, g,g5 for either (g,£,)g3
or g,(g2£3)).- We shall often write 1 instead of e in rule (b), and g~*
instead of g’ in rule (c) (g~ is the inverse of g).

The order of G is the number of elements in it, if this is finite; the
order of the element g € G is the smallest positive integer » such that
g" = e (where g" means the product of g with itself # times).

A group with just one element is called a trivial group, often written
0. v

A subset H of a group G is called a subgroup if m(H x H) < H and
H satisfies rules (a)—(c) with respect to m.

Proposition 1.3.2 A non-empty subset H of G is a subgroup z( and
only if gig;* € H for allg,,g,€ H. |} _

Theorem 1.3.3 If H is a subgroup of a finite group G, the order of
H dsvides the order of G. |}

Definition 1.3.4 Given groups G and H, a homomorphism
6:G— H is a function such that 6(g,g,) = 6(g,)0(gs) for all
81, 82 € G. 8 is an isomorphism (or is isomorphic) if it is also a (1-1)-
correspondence; in this case G and H are said to be isomorphic,.
written G & H. We write Im 0 for 8(G), and the kernel of 6, Ker 6, is
the subset {g € G | 8(g) = ¢}, where ¢ is the unit element of H.
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Example 1.3.5 The identity function 15: G — G is an isomorph-
ism, usually called the identsty tsomorphism. |

Proposition 1.3.6

(a) The composite of two homomorphisins is a homomorphism.

(b) If 0 is an isomorphism, the inverse function is also an isomorphism.

(c) If 0: G — G s a homomorphism, Im 8 is a subgroup of H and
Ker 0 is a subgroup of G. 0 is (1-1) if and only if Ker 0 contains only the
unit element of G. |}

Deiinition 1.3.7 Two elements g,, g; € G are conjugate if there
exists k€ G such that g, = h~'g,h. A subgroup H of G is normal
(self-conjugate) if g-*hge H for all he H and g € G.

Given a normal subgroup H of a group G, define an equivalence
relation R on G by the rule g, Rg, if and only if g, g5 ! € H; then Ris an
cquivalence relation and the equivalence class {g] is called the coset
of g.

Theorem 1.3.8 The set of distinct cosets can be made into a group
by setting [g:](g2] = [£122]- |

Definition 1.3.9 The group of Theorem 1.3.8 is called the
quotient group of G by H, and is written G/H.

Proposition 1.3.10 The function p: G — G/H, defined by p(g) =
[£], is a homomorphism, and is onto. Ker p = H. §

Theorem 1.3.11 Given groups G, G', normal subgroups H, H' of
G, Y respectively, and a homomorphism 8: G — G’ such that §(H) <

H', there exists a unique homomorphism 0: G/H — G'[H’ such that
0le] = [9(2))- B

Proposition 1.3.12 Given a homomorphism 0: G — H, Kerp is a
normal subgroup of G, and 8: G/Ker § — Im 0 is an isomorphism. |}

Definition 1.3.13 Given a collection of groups G,, one for each

element a of a set A (not necessarily finite), the direct sum @ G, is the
aeA

set of collections of elements (g,), one element g, in each G,, where all
but a finite number of the g,’s are unit elements. The multiplication in

@ G, is defined by (£.)(g.) = (g.£:), that is, corresponding elements

aeA
in each G, are multiplied together.
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We shall sometimes write @ G, instead of @ G,, if no ambiguity
aeAd

-4
can arise; and if 4 is the set of positive integers we write @ G,
ne=l

(similarly @ G, or even G, ® G, @ - - @ G, if A is the set of the
ra=l

first n positive integers). In the latter case, we prefer the notation
g1 @ g @ - - @ g, rather than (g,) for a typical element.

Proposition 1.3.14 Given homomorphisms 0,: G, -~ H, (a € A),
the function @ 0y: @ Go— @ Ho, defined by @ 0a(ga) = (Pa(ga)) is 4
homomorphism, which is isomorphic if each 0, is. |}

Once again, we prefer the notation 8, @ 6, @--- P 6, if 4 is the
set of the first n integers.

Definition 1.3.15 Given a set A4, the free group generated
by A4, Gp {4}, is defined as follows. A word w in 4 is a formal
expression

— € €
W =G, Ay,

-

where a,, . . ., a, are (not necessarily distinct) elementsof 4, ¢, = +1,
and n 2> 0 (if n = 0, w is the ‘empty word’, and is denoted by 1).
Define an equivalence relation R on the set of words in A4 by the rule:
w, Rw, if and only if w, can be obtained from w; by a finite sequence of
operations of the form ‘replace a*- - -af* by af*- - -&f'a*a~1a%}}- - -a?
or a...af*a~'a'ay’}}- - -ap* (0 < r < m), or vice versa’. The elements
~ of Gp {4} are the equivalence classes [w] of words in A4, and the
multiplication is defined by

[oft - -ai ey -af] = [af - -afrait- o).

- Normally the elements of Gp {4} are written without square brackets,
and by convention we write a for a*, a? for a'a?, a~2 for a~'a"}, and
so on. The omission of square brackets has the effect of introcfucing

equalities such as 4%¢~! = a4, aa~! = 1 (note that 1 is the unit
element of Gp {4}).

Example 1.3.16 The group of integers under addition (usually
denoted by Z) is .isomorphic to Gp {a}, where ‘@ denotes a set
consisting of just one element a. § '

Proposition 1.3.17 Given a set A, a group G and a function
8: A— G, there exists a unique homomorphism 9: Gp {4} — G such
that B(a) = 8(a) for eachac A. }
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- Definition 1.3.18 Given a set B of elements of Gp {4}, let B be
the intersection of all the normal subgroups of Gp {4} that contain B.
B is itself a normal subgroup (called the subgroup generated by B), and
the quotient group Gp {4}/B is called the group generated by A,
subject to the relations B, and is written Gp {4; B}. The elements of
Gp {4; B} are still written in the form of words in 4, and the effect of
the relations B is to introduce new equalities of the form b = 1, for
each element b € B.

A group G is finitely generated if G = Gp {4; B} for some finite set
A; in particular, if 4 has only one element, G is said to be cyclic.

Example 1.3.19 For each integer n > 2, the group Z, of integers
modulo s, under addition mod », is a cyclic group, since Z, &
Gp {a; a™}.

In fact every group G is isomorphic to a group of the form
Gp {4; B}, since we could take A4 to be the set of all the elements of G.
Of course, this representation is not in general unique: for example,

Gp {a; a®} ~ Gp {a, b; a3, b}.

Proposition 1.3.20 A function 6: A — G, such that 0(b) = e (the
unit element of G) for all be B, defines a unique homomorphism
8: Gp {4; B} — G, such that 6(a) = 6(a) for allac A. |

Definition 1.3.21 A group G is said to be abelian (commutative) if
8182 = gqg, for all g, g, G. In an abelian group, the notation
£1 + g2 is normally used instead of g,g; (and the unit element is
usually written 0). Similarly, one writes —g instead of g1,

Observe that every subgroup of an abelian group is normal, and that
every quotient group of an abelian group is abelian, as also is every
direct sum of a collection of abelian groups.

Definition 1.3.22 Given a group G (not necessarily abelian), the
commutator subgroup [G, G] is the set of all (finite) products of elements
of the form g, g.g7 g5 *.

Proposition 1.3.23 [G, G] is a normal subgroup of G, and G/[G, G]
is abelian. Given any homomorphism 0: G — H into an abelian group,
[G, G} < Ker 6. }§

Proposition 1.3.24 If G = H, then G/[G, G} = HJ{H, H). |

Definition 1.3.25 Given a set A4, the free abelian group generated
by A, Ab {4}, is the group Gp {4}/[Gp (A}, Gp {4)].
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Proposition 1.3.26 Ab {4} =~ Gp {4; B}, where B is the set of all
elements of Gp {A} of the form a aza; taz?. |

The elements of Ab {4} will normally be written in the form
€,a, +---+¢€,a, (¢ = +1), and the coset of 1 will be denoted by 0.

Definition 1.3.27 If B is a set of elements of Ab {4}, let B be the
intersection of all the subgroups of Ab {4} that contain B: thus Bis a
subgroup and consists of all finite sums of elements of B (or their
negatives), together with 0. The quotient group Ab {4}/B is c."ed the
abelian group generated by A, subject to the relations B, and is written
Ab{4; B}.

As in Definition 1.3.18, the elements of Ab {4; B} are still written
in the form of ‘additive’ words in A4.

. Proposition 1.3.28 If G = Gp{4; B}, and p: G — G/[G, G] is
the homomorphism of Proposition 1.3.10, then G/[G,G] =~ Ab{4;p(B)}. |

Examples 1.3.29 Particular examples of abelian groups include Z
and Z,: observe that Z > Ab {a} and Z, =~ Ab {a; na}. We shall also
make frequent use of the groups of rational, real and complex numbers,
under addition: these are denoted by R, O and C respectively. |

7 There is a very useful theorem giving a standard form for the
finitely generated abelian groups.

Theoren: 1.3.30 Let G be a finitely generated abelian group. There
exists an integer n > 0, primes p,,..., P, and integers ry, ..., 1,
(m > 0, r, > 1), such that

Gz nZ@Zp @D D Zym
(Here, nZ denotes the direct sum of n copies of Z.) Moreover, if
HxlZ®Zp D @2y
then G =~ H if and only if n = I, r» = k, and the numbers p3, . . ., pi»
and ¢y, . . ., q° are equal in pairs. §

Definition 1.3.31 A -seq'liénce of groups and homomorphisms

6 42
i G = Gy > Gy g > -

is called an exact sequence if, for each i, Ker 8, = Im ;. (if the
: . . )
sequence terminates in either direction, for example Go—> G, —- - -
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fn-2 [ .
or - +-—> G,_, ~> G,, then no restriction is placed on Ker 8, or

Im 6,_,).

Example 1.3.32 The sequence 0 — G3> H— 0 is exact if and
only if 6 is an isomorphism. (Here, O denotes the trivial group, and
0— G, H— 0 the only possible homomorphisms.) This follows
immediately from the definitions.

Similarly, if H is a normal subgroup of G and i: H — G is defined
by i(h) = h for all h e H, then

0>HL G GH—~0

is an exact sequence. ||

Propositior 1.3.33 Given exact sequences

6s ¢a
0—G,—~H,— K, —~0,
one for each element a of a set A, the sequence

0— @62 oH,2 oK, —0

aeA a€A acd
is also exact. |}

Definition 1.3.34 A square of groups and homomorphisms

G, -2 G,

o l 102

Hl-——-)Hz'

82
is said to be commutative if $,0, = 8,¢,. Commutative triangles, etc.,
are similarly defined, and in general any diagram of groups and
homomorphisms is commutative if each triangle, square, ... in it is
commutative.

Proposition 1.3.35 Given a commutative diagram of groups and
homomorphisms

[ ] 8 8
GI—E*GZ_‘E')G3’_3*G4"‘—"’>G5

ml Wzi wal w.l wal

— > > >
H, —-> Hy——> Hy > H, > H,

in which the rows are exact sequences, and y,, b, are isomorphisms, |,
is onto and g 1s (1-1), then yfi3 is an isomorphism.
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Proof. To show that ¢ is (1-1), consider an element x € G, such
that 4(x) = 1 (we shall write 1 indiscriminately for the unit element
of each group). Then ,05(x) = Pafs(x) = 1, so that 85(x). = 1 since
Y, is isomorphic. By exactness, therefore, x = 0,(y) for some y € G;;

and then ¢xfa(y) = $305(y) = 1. By exactness again, ¢(y) = $1(2)
for some z € H,; and 2 = y;(w) for some w € G, since ¢, is onto. Thus

$201(w) = $11(w) = Pa(y), so that 6,(w) = y; but then x = 6,(y) =
0201('0) = l

The proof that i, is onto is rather similar. This time, choose an
element x € Hy; then ¢,4(x) = ¢Y,(y) for some y e G,, since ¢, is

isomorphic. Thus $50,(y) = $uhu(y) = $ePa(x) = 1,30 that 6,(y) = 1
since 5 i3 (1-1). Hence by exactness y = 04(2) for some z € Gj.

Unfortunately there is no reason why ¢5(2) should be x, but it is at

least true that @q((¥5(2))7'x) = ($40(2)) " *($a(x)) = 1, so that
($a(2))~2x = $aby(w) for some w € G,, since g is isomorphic. Thus

P3(2.03(w)) = ($3(3))-Paba(w) = (¥3(2))¥a(2)) " 'x = x, and hence ¢,

is onto. J

Proposition 1.3.36 Given an exact sequence of abelian g'roup: and
homomorphisms
0—+G=3>H% K0,
and a homomorphism : K — H such that ¢ = 1y, then H = G D K.
Proof. Define a: G @ K— H by a(g @ k) = 6(g) + ¥(k): it is

easy to see that « is a homomorphism. Also « 1s (1- l), for if
(g @ k) = 0, we have :

0 = §(&g) + Hk)) = d(k) = k;
but then 8(g) = 0, so that g = 0 since & is (1-1).
Moreover « is onto, since given A € H we have

$(h — Pd(h)) = $(h) — () = 0.
Thus there exists g € G such that b — Jgh(k) = 6(g), that is,

h = 8(g) + 4d(h) = og @ $(h)). §
An exact sequence as in the statement of Proposition 1.3.36 is called
a split exact sequence.
Of course, it is not true that all exact sequences 0 -G — H —
K — 0 split. However, this is true if X is a free abelian group.

Proposition 1.3.37 Given abelian graups and homomorphisms
G4 H-2 K, where 0 is onto and K is free abelian, there exists a
homomorphism . K — G such that 0 = ¢.
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Proof. Suppose K = Ab {4}. For each a € 4, choose g, € G such
that 6(g,) = ¢(a). By Proposition 1.3.20, there is a unique homo-
morphism ¢: K — G such that §{a) = g,; and then clearly &) = ¢. |}

Corollary 1.3.38 Given an exact sequence of abelian groups
0->G2>H% K0,
if K is free abelian, the sequence splits and H =~ G ® K.

Proof. By Proposition 1.3.37 there exists a homomorphism
¥: K — H such that §¢ = 1. |

Definition 1.3.39 A ring R is an abelian group, together with a
function m: R x R-— R, such that the following rules are satisfied
for all r;, , and 5 in R.

(a) m(m(ry, r5), r3) = m(ry, m(ry, 75)).

- (b) m(ry, 1y +75) = m(ry, 1) '+ mry, r3).

(C) m(rl + LY 73) d m(rh '2) + "'(’s: '3)'

Since R, considered as a group, is abelian, we use the notation +
for the additiori, and refer to m as the multiplication; and following the
convention for groups we shall write r,7, for m(r,, r,).

A ring R is commutative if r,rq = ryr, for all r;, 7, € R, and R has
an identity element (or hasa 1) if there exists an element 1 € R such that
Ir=r =7rlforallreR.

Examples 1.3.40 Z and Z, are commutative rings with 1, as also
are O, R and C. If R is any ring with a 1, we can form a new ring
R[x], the polynomial ring, whose elements are formal polynomials

To + 71X + 7x% + - - - + 12" (ryy- .. 7, €Ryn 2 0),

with the obvious addition and multiplication. |

Definition 1.3.41 A subgroup S of a ring R is called a subring if
5152 € S for all s;, s, € S, and an ideal if rs, sr€ S for all se S, re R.

Given two rings R and S, a homomorphism §: R — S is a ring
homomorphism if O(riry) = &r,)8(r;) for all r,,r,eR. 6 is a ring
isomorphism if it is a ring homomorphism and a (1-1)-correspondence.
In any case, Im @ is a subring of S and Ker 8 is an ideal of R.

Given rings R and S, the direct sum R @ S can be made into a ring

by defining (r; @ 5;)(ra @ $3) = (7,5;) D (7253)-

Definition 1.3.42 A field F is a commutative ring with 1, in which
the non-zero elements form a group under multiplication.
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Examples 1.3.43 0, R and C are fields, as also is Z,, if p is a
prime. However, Z and Z, (n not prime) are not fields. |}

Definition 1.3.44 A vector space V over a field F is an abelian
group V, together with a function # x V — V, in which the image of
(A, v) is written Av. The following rules are also satisfied.

(a) lv = v, and A (A0) = (A A)v for all Ay, A, e F,ve V.

(b) Moy + v3) = Avy + Avg, (A + Ay = Ao + Mgz, for all A A,
MEF, v,v,,ve V.

A subgroup W of V is called a subspace if Aw e W for all A€ F,
w € W; the quotient group V/W is also a vector space over F, called

the quotient space. If V and W are vector spaces over F, the direct sum
V @ W is the direct sum of the groups, with A(v @ w) defined to be

(o) @ ().

Examples 1.3.45 Any field F is a vector space over itself, using
the multiplication in F. More generally, so is F*, the direct sum of =
copies of F. Rather perversely, it is more usual to revert to the
notation (A, ..., A,) instead of A, @---@ A,, for elements of F*
Often (A,,..., A,) is abbreviated to a single letter, x say, so that
Ax means (A, ..., AA).

Definition 1.3.46 If x, y are two points (elements) in a vector
space V over F, the straight-line segment joining x and y is the subset of
points of the form Ax + (1 — A)y (0 < A< 1). Asubset 4 of V is convex
if, for all x, y € A4, the straight-line segment joining x and y is contained
in A.

Definition 1.3.47 Given vector spaces V and W over F, 2 homo-
morphism 8: ¥V — W is called a linecar map if §(Ac) = A6(v), for all
AeF,veV. If 0 is also a (1-1)-correspondence, it is called a linear
(or vector space) ssomorphism.

Definition 1.3.48 A set of elements v,, . . ., v, in a vector space V
over a field F is linearly dependent if there exist elements Ay, ...,
A, €F, not all zero, such that A\jv; +.--+ Av, = 0; otherwise
Uy, - - -y Uy are linearly independent. A set of elements v,, . . ., v, forms
a base of V if it is linearly independent, and given any element v e V
there exist elements A,,..., A, € F such that v = A\, + - -+ A,
If ¥V possesses a (finite) base, V is finite-dimensional.

Proposition 1.3.49 ‘
(a) If V is a finite-dimensional vector space over F, any two bases have
the same number of elements.
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(b) If W is a subspace of a finite-dimensional vector space V, then W
is finite-dimensional and any base of W can be extended to a base of V. |}

The number of elements in a base is called the dimension of V. It is
easy to see that two finite-dimensional vector spaces over F are
isomorphic if and only if they have the same dimension; in particular,
if V has dimension n, then V =~ F*

Proposition 1.3.50 Given an exact sequence of vector spaces over
F and linear maps:

0—) V1_0_> Vzg Va—)'ol
in which V3 is finite-dimensional, the sequence splits and
Vazx Vi D Vs |

Definition 1.3.51 Finite-dimensional spaces V and W over F are
said to be dual spaces if there exists a function V' x W — F, the image
of (v, w) being written (v, w), with the following properties.

(a) <v; + v, w) = {v;, W) + {vg, W), (v, w; + wy)> = {v, w>+
{v, wy), {Av, wd> = Xy, w) = v, Aw), for all v,,v,,veV, w, w,,
W, € W and A e F.

(b) (v, w) = 0 for all we W implies v = 0; (v, w) = 0 for all
v € V implies w = 0.

Proposition 1.3.52 Given V, of dimension n, there exists W such
that V, W are dual spaces. Moreover, any such W has dimension n. |}

Proposition 1.3.53 Given pairs of dual spaces V,, W, and V, ,W,,
and a linear map 0:V,— V,, there exists a unique linear map
0': Wy~ W, such that

<0(vl): wy) = vy, ol(wz»:
forallv,eV,,w,e W, |}

' is called the dual linear map to 8.

Definition 1.3.54 Given a pair of dual spaces V, W, and a sub-
space U of V, the annihilator of U is the subspace &/ (U) of W of
elements w such that {u, w)> = 0 for all ue U.

Proposition 1.3.55 For any subspace U of V, A (4 (U)) = U. If
U, © U, are subspaces of V, then o(U,) < (U,), and U,/U,,
(U, A(U,) are dual spaces. §
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Definition 1.3.56 An (m x n) matrix A over a field F is a set
(A4y,) of elements of F (1 < ¢ < m, 1 <j < n). Given two (m x n)
matrices 4 and B, the sum A + B is the (m x n) matrix defined by
(4 + B)y; = A; + By, and given an (n x p) matrix C, the product

AC is the (m x p) matrix defined by (AC), = 5 A,C,. The
k=1
identity (n x n) matrix I is defined by
1, =g
)y = {0, otherwise,

and the (n x n) matrix 4 has an inverse A" if AA"* =1 = 4~'4
if A has an inverse it is said to be non-singular.

Proposition 1.3.57 Given finite-dimensional vector spaces V, W
over F, and bases vy, ..., v, of V, wy, ..., w, of W, there is a (1-1)-
correspondence between the linear maps 0: V — W and the (m x n)

matrices A over F, defined by 6(v,) = % A, w,. Moreover the product
i=1

of two matrices corresponds to the composite of the corresponding linear
maps. §
Definition 1.3.58 The trace of an (n x n) matrix 4 = (4,,),
written tr (4), is > 4,,, the sum of the diagonal elements.
4

Proposition 1.3.59 Let 6: V — V be a linear map of the n-dimen-
sional vector space V. Let A, B be the matrices representing 0 with
respect to two bases (vy, ..., v,) and (wy, ..., w,) of V. Then tr (4) =
tr (B).

Proof. By Proposition 1.3.57, there exists a non-singular matrix P
such that 4 = P-1BP, Let P = (P,) and P! = (Q,)); then

mm=2&,
= z QyBy Py
t.1.k
= /zk (Bﬂc ZP mQu)
' if b o=j

1,
= 2 Budu mew%mmmmr

= z By,
]
= tr (B). |}
Thus we can unambiguously srite tr (6) for this common value.
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Proposition 1.3.60 Let 0: V — V be a linear map, and let W be a
subspace of V such that O(W) = W. Let ¢: W — W be the restriction of
0to W, and let p: V/W - V|W be the linear map induced by 8. Then

tr () = tr (¢) + tr (¥).

Proof. Letw,,..., w, be a base of W; extend to a base w,, .. ., w,,
Ury1y-+ > Uy Of V. If 4 15 the matrix of 8 with respect to this base,

tr(6) = Z A, + Ay
i=1

n
r+1

=

But 2 Ay = tr (), and :\: A“ = tr (), since the cosets [v,,,], ...
(©.] obvxously form a base for Viw. §

Definition 1.3.61 The determinant det A of an (n x n) matrix 4
over F is the element of F defined by

det 4 = Z €&A1.00>° * * An,pen
Db

where p runs over all permutations of 1,..., %, and ¢,.is +1 or ~1
according as p is even or odd.

Proposition 1.3.62
(a) det (AB) = det (A) det (B).
(b) det 4 # 0 if and only if A is non-singular. |}
Corollary 1.3.63 A4 set of equations
ZA”.‘X"=0 (j=1,2,...,7l)
(=1
has a solution, other than x; = O for all i, if and only if det A = 0. }}

Definition 1.3.64 Let V be a vector space over R. An inner
product on Vis a function ¥ x V — R, where the image of (v,, v,)
is written [v;, ©,), satisfying the following rules.

(a) [v1,v5] = [vg, vy] forall v, v, €V,

(b} {v,v] 2 0; [v,09) = Oif and only if v = 0.

(C) [7.)1 + Uy, 03] = [vh 7-)2] + (7.)1, 03]’ for all Uy, Vg U3 € £
(d) [rv,, vg] = r[vy, vg), forallre R, v,, v, V.

The len;sth (or norm) of v, |[v]], is defined to be {v, v]*2.



Example 1.3.65 There is an inner ‘rod st an R", defined by
((7‘1, RS A N (TR )] = 7171 ¥ B gl

R", together with this inner product, is-senretimes-referred T 1s -
dimensional Euclidean space. |}

§1.4 ANALYTIC TOP?)LoiY s

1.4 Analytic topology

Definition 1.4.1 A topological space X (or just space when no
ambiguity arises) is a set, together with a set of subsets called open sets,
such that the following rules are satisfied.

(a) The empty set &, and X itself, are open sets.
(b) The intersection of two open sets is an open set.
(c) The union of any collection of open sets is an open set.

The set of open sets is called a topology for X, and the elements of
X are usually called ponts.

A subset of X is called closed if its complement is open. Both X
and ¢ are closed, as also are the union of two closed sets and the
intersection of any collection of closed sets. Given a subset U of X,
the closure U is the intersection of all closed sets that contain U; U
is itself closed, and U = U if and only if U is closed.

If x is a point of X, an (open) neighbourhood of x is an open set that ,
contains Xx. )

Example 1.4.2 Any set X can be made into a topological space, by
calling every subset an open set. This is called the discrete topology
on X, and X with this topology is called a discrete space. |}

Definition 1.4.3 The subspace topology for a subset Y of a space X
consists of all subsets of ¥ of the form ¥ N U, where U is an open set
of X. A subspace Y of X is a subset ¥ with the subspace topology.

Definition 1.44 A space X is Hausdorff if, given two distinct
points x,, x; € X, there exist neighbourhoods Uy, U, of «,, x, respec-
tively, such that Uy, N U, = @. X is regular if, given a point x € X
and a closed set F, not containing x, there exist open sets U;, U; such
that xe U}, F< U, and U; N U; = @. X is normal if a similar
property holds given two closed sets F;, F, whose intersection is

empty.
Definition 1.4.5 A space X is connected if, given any two non-

empty open sets U,, U, such that X = U, U U, we have U; n U,
# @. If X is not connected, it is said to be disconnected.
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Proposition 1.4.6 If U is a connected subspace of a space X, and
Uc V< U, then V is a connected subspace. |

Definition 1.4.7 A space X is compact if, given any open covering
{U,} (a € 4) (that is, a set of open sets, indexed by a set 4, whose
union is X) there exists a finite subset of A4, a,,..., a,, such that
X =U, U-.-U U,.A subset Y of X is compact if it is compact as a
subspace. X is locally compact if, given any point x € X, there exists a
ncighbourhood U and a compact subset C such that e U < C.

Proposition 1.4.8

(a) A compact space s locall;ylcompact.
(b) In a Hausdorff space, a compact subset is closed.
(c) A compact Hausdorff space is regular. §

Proposition 1.4.9 Let X be a locally compact Hausdorff space.
Given a point x € X and a neighbourhood U of x, there exists an open set
Vsuchthat xe€V < V < U, and V is compact. |}

Definition 1.4.10 Given a space X, a base of open sets of X is a set
of open sets U, (a € A) such that every open set of X is a union of
sets U,. A set of open sets U, (a € A) is called a sub-base if every open
set of X is a union of finite intersections of sets U,,.

Proposition 1.4.11 The set of U, (a € A) is a sub-base of open sets
of X if and only if, given x € X and a neighbourhood V of x, there exist
ay,...a,€Asuchthat xe U, Nn...n U, < V. }

Definition 1.4.12 Given spaces X and Y, a function f: X — Y is
said to be continuous (or a continuous map, or usually just a map) if,
for each open set U < Y, the set f~}U) = {xe X |f(x)e U} is
open in X. Alternatively, f is continuous if f~}(V') is closed for each
closed set V' < Y. f is a homeomorphism if it is also a (1-1)-correspon-
dence, and the inverse function is continuous; in this case, X and Y are
said to be homeomorphic.

Example 1.4.13 If Y is a subspace of a space X, the inclusion map
i: Y — X, defined by i(y) = y for all y € Y, is a continuous map. And
for any space X, the identity function Iy: X — X is a homeomorphi m
(usually called the identity map). |}

Proposition 1.4.14 The relation between spaces of being homeo-
morphic is an equivalence relation on any set of spaces. |
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Proposition 1.4.15

(a) The composite of continuous maps is again continuous.

(b) Given a function f: X — Y, [ is continuous if f ~*(U) is oven for
each member U of a base of open sets of Y, or even for each member of a
sub-base.

(¢) If f: X — Y is continuous, and C < X is compact, then f(C) 1s
compact.

(d) If A and B are closed subspaces of a space X, where X = A U B,
andif f: A — Y, g: B— Y are continuous maps such that f(x) = g(x)
for all xe AN B, then h: X-— Y, defined by

_ f(x), xeA
h(x) = {g(x), x€ B,

. L2
is also continuous. J

Proposition 1.4.16 The properties of being Hausdorff, regular,
normal, connected, compact or locally compact are preserved under
homeomorphism. |}

Definition 1.4.17 A pair of spaces (X, V) is a space X, together
with a subspace Y. Given pairs (X, Y) and (4, B), a map of pairs
f:(X,Y)—(A4,B)is amap f: X - A such that f(Y)< B. fis a
homeomorphism of pairs if f is a homeomorphism and the inverse map
to f is a map of pairs (4, B) - (X, Y) (thus f|Y: Y — B is also a
homeomorphism). Triples, etc., of spaces, and maps between them, are
similarly defined: a triple (X, Y, Z) for example consists of a space X,
a subspace Y and a subspace Z of Y.

Definition 1.4.18 Given a collection of (disjoint) spaces X,
(a € A), the disjoint union | ) X, is the union of the sets, with topology

acd

given by open sets of the form {J U,, where each U, is an open set in
aeA 3

X, As usual, we shall use the notation X U Y, for example, if the set
A is finite,

Proposition 1.4.19 Given a collection of spaces X, (a € A), and
maps f,: X, — Y, for all a € A, the function f: \ ) X, — Y defined by
) a€EA
f(x) = folx), x € X,, is continuous. }

Definition 1.4.20 Given a collection of spaces X, (a € 4), the

product X X, is the set of collections of elements (x,), one element
aeA
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x, in each X,. The topology is given by a base of open sets of the
form

Ua; ..... [ 1% = {(xa) l xal € L’ap MRS ] xa,, € Ua,,})

where a,, ..., a, is any finite set of elements of A, and each U, is
open in X, . Once again, we shall write X x Y, for example, if 4 is
finite: note that the open sets of X x Y are all unions of sets of the
form U x V, where U/ is open in X and Vis openin Y.

Proposition 1.4.21

(a) Given spaces X and Y, and points x€ X, _ € Y, the subspaces
X x y, 2 x Yof X x Y are homeomorphic to X, Y respectively.

(b) The product of a collection of Hausdorff spaces is Hausdor[f, and
the product of a collectton of compact spaces is compact.

(c) Each projection map p,: X X, — X, defined by po((x,)) = %q,

acA
is conbinuous, and a function f: Y - X X, is continuous if and only if
aeA

each p, f is continuous. In particular, given maps f,: X, — Y,, for each

a € A, the product map x fo: X X, — X Y, defined by x f,((%,)) =
aed acA
(f(x2)), is continuous. § ‘

Definition 1.4.22 Civen a space X and an equivalence relation R
on X, the identification space X|R consists, as a set, of the disjoint
equivalence classes [x] of elements of X, and the topology is defined
by specifying that aset U < X/Ris open if and only if p~!(U) is open,
where p: X — X/R is the function defined by p(x) = [x] (thus p is
certainly continuous). Alternatively, we can specify that V' < X/R is
closed if and only if p~(V) is closed.

In particular, given a subspace Y of X, the quotient space X/Y 1s
defined to be X/R, where R is the equivalence relation on X defined
by x,Rxy <> x, = x, or x,, x, € Y. Thus the points of X/Y are those
of X — Y, together with a single point (Y) representing the whole of
Y. If Y happens to be the empty set, it is usually convenient to
interpret X/Y as the disjoint union of X with another point.

More generally, a map p: X — Y is called an identification map if it
isonto, and U < Y is open if and only if p~*(U) is open. Clearly such
a map defines an equivalence relation R on X, by setting x;Rx, <
p(xy) = p(x3), and X/R is homeomorphic to Y. Conversely, if R is an
equivalence relation on X, then p: X — X/R, defined by p(x) = [x],
is an identification map.
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Proposition 1.4.23

(a) If p: X - Y is an identification map, a function f: Y —-Z is
continuous if and only if fp is continuous.
(b) The composite of two identsfication maps is an identification map. |

Example 1.4.24 Let (X, Y)and (4, B) be pairs of spaces, and let
f: Y — B be any function. Define an equivalence relation R :n :hé
disjoint union X" U .1, by setting pRg <> p = .q,or p€ Yand ¢ = f(p).
or geY and p = f(g), or p, g€ Y and f(p) = f(g). The space
(X U A4)/R is often referred to as the space obtained from A" and A by
‘identifying together corresponding paints of Y and B’. For example,
if 4 and B are closed subspaces of a space X, thenon 4 U B < X,
the topologies as a subspace.of X, and as the space obtained from the
disjoint union of disioint copies of 4 and B by identifying together
corresponding points of 4 N B (using the identity map), are tie
same. |J

Example 1.4.25 v particular, given (disjoint) spaces X and ¥
subspace A of X, anl @ map f: A — Y, the adjunction space Y U, ¥
is the space (X' U Y'}/R, where R is the equivalence relation defined
by pRg<>p = q. or pc A and q = f(p), or- g€ 4 and p = f(q), v«
2, g€ A and f(p) = f{g). This is sometimes thought of as the spave
obtained from Y by artaching the space X by the map f°. }

Proposition 1.4.26 Given spaces X and Y, identification mups
P X—>Z ¢ Y—>W, and amap f: X — Y, a function g: Z — ¥
such that gp = gf, is continuous.” In particular, a map of pair:
f: (X, Y)— (A, B) gives rise to a (unique) map f: X/Y — A/B in this
way, which is a homeomorphism if f is a homeomorphism of pairs. |

Definition 1.4.27 A metric space X is a set, together with a
function d: X x X — R (the real numbers), called a metric or distance,
satisfying the following rules.

(a) d(x, y) = d(y, %). ;
(b) d(x, y) = 0if and only if x = y.
(c) d(x,y) + d(y, 3) > d(x, 2). (For all x,y; 3€ X.)

Definition 1.4.28 A subset U of a metric space X is called
open if, given any point x € U, there exibts 8 > 0 such that the set
{y € X | d(x,y) < 8}is contained in U. The set {y € X | d(x, y) < 8}
is called the 8-neighbourhood of x.
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Proposition 1.4.29 This definition of open set makes X into a
topological space, which is Hausdgrff, regular and normal. Any subset
Y of X is a metric space, with the same metric; and the topologies of Y,
as a subspace and given by the metric, coincide. Moreover, a function
f: X > Y, between metric spaces with metrics d, d' respectively, is
continuous tf and only if, for each point x € X and each ¢ > 0, there
exists 8 > O such that d'(f(x), f(¥)) < € whenever d(x,y) < §. }

Definition 1.4.30 A topological space X is metrizable if there exists
a metric d on X, such that the topology on X defined by d coincides
with the original topology.

Example 1.4.31 The most important example of a metric space is
R*, in which a metric can easily be constructed from the inner product
of Example 1.3.65 by setting

dx,y) = |x — 3| =[x — y, x — y}2.

With this metric, R* is a connected locally compact space, and is
homeomorphic to the product of n copies of R. |J

Definition 1.4.32 Let X be a metric space, and let x be a point and
Y be a subset; The distance d(x, Y') is defined to be in!f d(x, y). The
ye
diameter of Y is sup d(y,, y,).

Ux.V3§Y

Proposition 1.4.33 If Y is closed, d(x, Y) = O if and only if
xeV. |}

Proposition 1.4.34 A4 subset X of R" is compact if and only if it is
closed, and has finite diameter. |

. Theorem 1.4.35 Let X be a compact metric space. Given an open

covering {U,} (a € A), there exists a real number 8 > 0 (called a Lebesgue
number of {U.}), such that any subset of diameter less than 8 is contained
in vne of the sets U,.

Proof. Since X is compact, we may as well assume that A4 is finite,
say A ={1,2,...,n}. For each x€ X and re 4, let f(x) =
d(x, X —~ U,); it is easy to see that f, is continuous, as also is f(x) =
max f,(x). Now by Proposition 1.4.15(c) f(X) is a compact subspace of
R}, and so by Proposition 1.4.33 there exists 8§ > 0 such that f(x) > §
for all x € X. It follows that any set containing x, of diameter less than
8. must be contained in one U'.. |
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We end this chapter with a description of a few particular spaces
and maps, that will be of importance in the rest of this book.

Definition 1.4.36 The unit interve: I is  .e subspace of R!
consisting ~f points x such that 0 < x < 1; Qmular'y the double unit
intervai J is tt¢ subspace of x such that -1 < 1. The n-cell E™
is the subspace fx e @* |l d(x, 0) < 1}, =nd tne (n -~ 1)-sphere Sn-1is
{xe R div,0) = 1} (E?is a single port, and S -1 is empty). When
necessary. R*® i+ regarded as the s.abspace R" x 0 of R"*™ =
R* x R™, and siniilarly with E™ and S"-1; thus $*~1, for example, is
the subspace of 3" of points (x;, ..., %,,,) such that x, ., = 0.

Proposition 1.4.37 I, J, E" and S*~* (n > 1) are compact con-
nected spaces. | :

We shall frequently need to use certain standard maps between these
spaces, for example /: I — J, defined by {(x) = 2x -~ 1,0 < x < 1,
and a map of pairs 8:(E", S*~ 1) —(S" (--1,0,...,0)) (n > 0),
defined by f(x,,..., x,) = (cos nr, (x,/r) sin =r, . . ., (x,/7) sin zr),
where r = (2} + ...+ x2)V/2, and (sin =r)'r is interpreted as = if
r = 0. {t is easy to see that ! and & are continuous; moreover by
Proposition 1.4.26 8 gives rise to amap §: £*/S*" 1. » S™(if n = 0 we
interpret E°/S 1 as the disjoint union of E? with another point, ‘this
point being mapped by 8 to —1 in §).

Proposition 1.4.38 4: E"/S* % — S™ is a homeomorphism
(n>0). }

Another useful map is the homeomorphism p: E* — J* (the product
of n copies of J), defined by magnifying straight lines through the
origin by suitable amounts: more precisely, for points x € E® other
than the origin, we define p(x) = Ax, where x = (x,..., x,;), and

= ||x/max [%]. Since 1 < A < n''2, Proposition 1.4.29 shows that
P and its inverse are continuous.

Lastly, the standard homeomorphism 4, ,: E™** — E™ x E™ is

defined to be the composite

Em+n L, qmin _ gm 5 jn 2X° pm oo En,

Definition 1.4.39 Real pra]ectwe space RP" (n > 0)is defined to be
(R**1 — 0)/S, where S is the equivalence relation defined by
xSy <> x = ry for some real number r. We write [x,, . .., x,,,] for the
equivalence class of (xy, ..., ¥,41).
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Proposition 1.4.40 RP" is homeomorphic to
(a) S*T, where xTy < x = +y;
(b) E*fU, where xUy <> x = y,or x,yec S* Y and x = -y,
Proof.
. {(a) Theinclusion map#: S™ - (R**! — O)inducesi: S“/T~+ RP",

by Proposition 1.4.26, and the map f:(R"*! — 0) - S* given by

f(3) = x/lx|| induces f: RP* — S™/T. Clearly § and f are inverses to
“cach other, and so are homeomorphisms.

(b) There is a hLomeomorphism ¢: (E® S* 1) -»(S%, S"4)
(where S7 is the subspace of S* defined by x,,, > 0), given by

$xyy . .-y Xp) = ((x,/r) sinwr[2, . . ., (x4/7) sin 772, cos n7(2).

This induces ¢: E"/U-—> S*/T, which can easily be seen to be a
homeomorphism. |}



CHAPTER 2
HOMOTOPY AND SIMPLICIAL COMPLEXES

2.1 Introduction

We have seen in Section 1.4 that the relation between spaces of
being homeomorphic is an equivalence relation, and so divides any
set of spaces into disjoint equivalence classes. The main problem of
topology is thus the classification of topological spaces: given two
spaces X and Y, are they homeomorphic? This is usually a very
difficult question to answer without employing some fairly sophisti-
cated machinery, and the idea of algebraic topology is that one should
transform such topological problems into algebraic problems, which
may have a better chance of solution. This transformation process will
be explained in a little more detail in Section 2.2. It turns out, however,
that the algebraic techniques are usually not delicate enough to
classify spaces up to homeomorphism, and 8o in Section 2.2 we shall
also introduce the notion of homotopy, in order to define a somewhat
coarser classification.

In the rest of this chapter we shall make a start on the general
classification problem. Instead of considering all topological spaces,
we shall show in Section 2.3-how a large class of spaces, called
polyhedra, may be built up from certain very simple spaces called
simplexes. This not only simplifies the geometry, but gives a reasonable
hope of constructing algebraic invariants, by examining how the
simplexes are fitted together. The general theory will be explained in
Section 2.3, and in Section 2.4 we shall establish some geometrical
properties of polyhedra that will be useful indater chapters. Finally,
Section 2.5 is concerned with the homotopy theory of polyhedra, the
vital result being the Simplicial Approximatiop Theorem. This
theorem is the most important tool in the study of polyhedra, and is the
fundamental result used in Chapters 3, 4 and 5.

2.2 The classification problem; homotopy

If we are presented with two spaces X and Y, the problem of
deciding whether or not they are homeomorphic is formidable: we

23
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have either to construct a homeomorphism f: X —» ¥ or, worse still,
to prove that no such homeomorphism exists. We therefore wish to
reflect the problem algebraically. Suppose there is some means of
associating a group with each topological space: say the group G(X)
is associated with the space X. Suppose also that, whenever we have a
continuous map (not necessarily a homeomorphism) f: X - Y, there
is associated with f a homomorphism f,: G(X) — G(Y), in such a
way that

(a) the identity isomorphism 1: G(X) — G(X) is associated with
the identity homeomorphism 1: X — X; and
(b) given another continuous map g: Y — Z, where Z is a third

space, then (gf)y = gafa-

Given this machinery, we can readily see that if f: X — Y happens to
be a homeomorphlsm, then f,: G(X) — G(Y)is an 1somorphlsm For
if g: Y — X is the inverse map to f, we have

g=1:1X->X and fr=1:Y->Y.
Hence, using properties (a) and (b), we obtain
gxfe = 1: G(X) —>G(X),  fogs = 1: G(Y) > G(Y),

whence it follows that f, is an isomorphism. Thus if X and Y are
homeomorphic, G(X) and G(Y') are isomorphic. The converse to this
result is not in general true, however, since there 1s nothing to
guarantee that G(X) and G(Y) will be non-isomorphic if X and ¥
are not homeomorphic. As a general principle, therctore, if we wish to
prove that X and Y are homeomorphic, we must construct an explicit
homeomorphism, but if we wish to prove that they are not homeo-
morphic, we design algebraic machinery of the sort outlined above,
and try to show that G(X) and G(Y) are not isomorphic. Most of this
book will be concerned with ways of constructing such algebraic
invariants.

In practice, however, the situation is a little more complicated.
Vnrtually all the algebraxc invariants known at present are ‘homotopy-
type’ invariants, that is, all ‘homotopy equivalences’ give rise to
isomorphisms. Since ‘homotopy equivalence’ is a weaker relation than
homeomorphism, this means that the algebraic invariants will never
distinguish between spaces that are homotopy equivalent but not
homeomorphic. Thus we may as well abandon—temporarily, at
least-—any attempt to make a homeomorphism classification, and
concentrate on homotopy instead.
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The first step is obviously to define homotopy precisely. Two
continuous maps f, g: X - Y are said to be homotopic if f can be
continuously Jdcrormed in'c ¢ . at is to say, if there exists a con-
tinuwous family of aps f;: .\ - 4 (0 € t < 1), such that fj = fand
fi =g:see Fig. 2 1

N

Fig. 2.1

This definition is still not quite precise, since we have not made clear
what is meant by a ‘continuous family’. However it will be seen that
instead of con&dcrmg a family of maps f,: X — ¥, we can equally
well consider a single map F: X x I-» Y (where as usual I is the
unit interval), defined by the rule

F(x, 1) = f(x) (xe X, tel).

When we say that the maps f, form a continuous family, we merely
mean that F is continruous with respect to ¢t as well as x, that is, F
1s continuous as a map of the-product X x [ to Y. To sum up, the
following is the official definition.

Definition 2.2.1 'Two continuous maps f, g: X -~ Y are homotopic
(or ‘fis homotapic to £} :f there exists a continuous map F: X x T — Y,
such that

Fix. 0) = f(x)
and
-;‘."xy 1) = g(x))

for all x » X. The :n; 1715 suid to be a homotopy, and we write f > g+
for ‘f is humotopie 40 ¢ (or F:f ~ g if we wish to specify the
homotopy).

" Proposition 2.2.2 Cus’ia vmap 1 X > Y, f~ f.



26 HOMOTOPY AND SIMPLICIAL COMPLEXES CH2

Proof. Define F: X x I—-1 by F(x,t) = f(x) (xeX,tel).
Then F is continuous (why?) and is clearly a homotopy between f and
itself. |

For a more interesting example of a homotopy, we prove the very
useful result that, given f, g: X — Y with the property that for all x,
f(x) and g(x) can be joined by a straight line in Y, then f and g are
homotopic. For this to make sense, of course, we must assume that ¥
is a subspace of some Euclidean space R™

Theorem 2.2.3 Let Y be a subspace of R*, and let f, g: X -» Y be
two maps. If, for each x € X, f(x) and g(x) can be joined by a straight -line
segment in Y, then f ~ g.

Proof. Define a homotopy (called a linear homotopy) F: X x 1 -
Y by the rule F(x, t) = (1 — 8).f(x) + t.g(x) (x € X, teI); in other
words ‘deform f to g along the straight-line segments’. Certainly
F(x,0) = f(x) and F(x, 1) = g(x), so it remains to prove that # is
continuous.

Now if x' € X and ¢’ € I, we have

F(x',t) = F(x, 1) = (¢ — 1).(&(x) - f(>x))
+ (1 - 9).0) - f())
+ £.(8(x") = g(x)),
so that'if d is the metric in R® we have
A(F(x', 1), F(x, 2)) < |t = ¢].d{g(x), f(«'))
+ (1 = 8).d(J(x"), f(x))
| + t.d(g(x), gl=)).
But given ¢ > 0, there exist open neighbourhoads Uy, U7, of x in X,
such that ' ‘
% € Uy = d(f(x), f=)) < «/3,
x' e U, = dig(x'), g(x)) < €/3. .
Thus if x" € U, N TJ, ther d{g(x'), f(x)) < K, whete K is the
constant d(g(x), f(x)) + 2¢/3; and if alsQ |t - 1] < «'3IK, then
d(F(x', t'), ¥(x, 1)) < e Since the set
(Lyn U) % (t — ¢3K. 2+ ¢f3K)
is open in X x 1, this proves that F is continuous. |
Thus for exanipic any twe maps f, ¢ X -» R® nuust be homotopi,
Indced, alinost any two maps inte $" ! are homotopic,
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Corollary 2.2.4 Let X be any space, and let f, g: X — S"~* be two
maps such that f(x) # —g(x) for allxe€ X. Thep f ~ g.

Proof. Considered as maps into R* — 0, f and g are homotopic by
Theorem 2.2.3, since the line segment joining f(x) and g(x) does not
pass through 0. Compose this homotopy with the map ¢: (R* — 0) —
S*-1 defined by ¢(x) = x/|x|| (this is the identity map on S*~?
itself).

Sometimes it is necessary to consider homotopies between maps of
pairs, triples, etc., of spaces. Definition 2.2.1 is easily extended.

Definition 2.2 5 Given pairs (X, 4) and (Y, B), two maps of panrs
fg: (X, A)—»(Y B) are homctopic if there exists a map of pairs
F: (X x 1,4 x IN— (Y, B), such that

F(x,0) = f(x)
and '

F(x,1) = g{x) forall xe X.

As before, we write f ~ g. Homotopies of triples, etc., are similarly
defined. Sometimes it is useful to consider a more restrictive kind of
homotopy of pairs: if f, g: (X, 4) — (¥, B} are maps of pairs such that _
fl4 = glA4, f and g are homotopic relative to A if there cxists a
homotopy F: (X x I, A x I}—(Y, B) such that F(a,t) = f(a) = g(a)
for all ae A, ¢ ¢ I (that is, F is ‘fixed’ on 4). In this case we write
frgre A

For example, in Theorem 2.2.3 or Corpllary 2.2.4, if A is the sub-
space of X of those points x such that f(x) = g(x), then f ~ g rel 4.

The notion of homotopy equivalemce of topological spaces (pairs,
triples, etc.) follows easily from Definitiops 2.2.1 and 2.2.5.

Definition 2.2.6 Two spaces X and ¥ sre homotopy-equivalent (or
of the same homotopy type) if there exist maps f: X — Yandg: Y — X,
such that gf ~ 1, and fg ~ 1,, where Iy and 1, are the identity maps
of Xand Y reSpectxvcly In this case fis a bomotopy equivalence and g is
a homotopy inverse to f. We write-X ~ ¥for‘Xis homotopy equivalent
to Y’ (notice that the symbol =~ has two distinct meanings, depending
on the context).

Similarly two pairs (X, 4) and (Y, B) are homotopy-equivalent
(wnitten (X, A) ~ (Y, B)) if there exist maps (of pairs) f: (X, 1) —
(Y, B), g:(Y,B)—> (X, A4) such that gf ~ 1y and fg ~ 1,, the
homotopies being homotopies of pairs.
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As the name suggests, homotopy equivalence is an equivalence
relation on any set of spaces. In order to prove this, we first prove that
homotopy is an equivalence relation on the set of all maps between two
given spaces.

Proposition 2.2.7 Given two spaces X and Y, the relation between
maps from X to Y of being homotopic is an equivalence relation. Similarly,
given two parrs (X, A) and (Y, B), the relation between maps of pairs
from (X, d) to (Y, B) of being homotopic as maps of pairs is an equival-
cace relation, and the relation between a set of maps coinciding on each
point of A, of being homotopic relative to A, is also an equivalence
relation.

Prosf. Consider maps f, g,... from X to Y. Certainly f ~ f for
each f, by Proposition 2.2.2. Moreover if F:f ~ g, then G: g ~ f,
where G: X x I — Y is defined by

Gix,t) = F(x,1 — 1),
Lastly, if F{f ~ gand G: g ~ h, then H: f ~ h, where

F(x, 2t) 0<t<d
Hix 1) = {G(x, 2t~-1) (@F<eg)

Here, H 1s continuovs by Proposition 1.4.15(d).
‘This proves that homotopy is an equivalence relation on the set of
maps from X to Y; the other two statements are proved similarly. J]

Corollary 2.2.8 Given spaces X, Y and Z, and maps f,, f,: X — Y,
g0, £1: Y > Z, such that f, ~ f, and g, ~ g,, then gofo ~ g, f1.

Proof. Let F be the homotopy between f, and f,, and G that
between g, and g,. Let Hy = g F: X x I -+ Z:itis clear that Hy is a
homotopy between g,of, and gof,. But H, = G(f; x 1;)is a homotopy
between g/, and g, f;; hence gof, ~ g, f; by Proposition 2.2.7. }

Of course, similar results hold for homotopies of pairs and for
homotopies relative to a subgpace, The details are left to the reader.

Proposition 2.2.9 * The relation between spaces (pairs, triples, etc.)
of being homotopy-equivalent is an equivalence relation.

Proof. Cieurly every space is hemotopy-equivalent to itself (the
identity map is a homotopy equivalence). Equally obviously, if
X =~ Y, then ¥ 22 X It remains only to show that if X ~ Y and
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Y ~ Z, then X ~ Z. But if the relevant homotopy equivalences and
homotopy inversesare f: X > Y, f': Y+ X, 0: Y > 2, ¢': Z > Y,
then

feef ~ff, by Corollary 2.2.8

~ 1y,

and similarly gff'g’ ~ 1,.

Again, the proof for pairs, triples, etc. is similar.

It is easy to see that two homeomorphic spaces are homotopy-
equivalent (just use Proposition 2.2.2 again). Thus the classification
of spaces up to homotopy equivalence is coarser than the homeo-
morphism classification, Indeed, it is strictly coarser, as the following
example shows.

Example 2.2.10 Let X be the unit circle S* in R?, and let Y be
S1, together with the closed line segment joining (1, 0) and (2, 0)
see Fig. 2.2

X Y

Fig. 2.2

Now X and Y are not homeomorphic, since the removal of the point
(1, 0) from Y disconnects Y, whereas the removal of any point from X
leaves X connected. On the other hand X and Y are homotopy-
equivalent. To prove thns, define f: X — Y by f(x) = «, forall x € X,
andg: Y > X by

(y) = if ye St
Y (1 0); if  lies between (1, 0) and (2, 0).
Clearly f and g are continuous, and gf = 1. Also fg ~ 1, by Theorem

2.2.3, since fg: ¥ — Y is given by the same formula as g. Hence fis a
homotopy equivalence.
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In fact the equivalence between X and Y in Example 2.2.10 is of a
special type, known as a (strong) deformation retraction.

Definition 2.2.11 A subspace 4 of a topological space X is a
retract of X if there exists a map r: X — A (called a retraction), such
that r(a) = a for all a€ A. If i: A — X denotes the inclusion map,
then 7 is a deformation yetraction (and A is a deformation retract of X)
if &r > 1. If also &7 ~ 1yrel 4, then r is a strong deformation
retraction, and 4 is a strong deformation retract of X.

For example, the map g in Example 2.2.10 is a strong deformation
retraction. “

Proposition 2.2.12 If A is a deformation retract of X, then
A~ X §

Example 2.2.13 If E? is the standard 2-cell in R?, and O is the
origin, then 0 is a strong deformation retract of E2. For r: E? — 0,
defined by r(x) = 0 for all x € E?, is clearly a retraction, and is a
strong deformation retraction by Theorem 2.2.3. |

Thus E? is homotopy-equivalent to the point 0. It is convenient to
have a special name for such spaces.

Definition 2.2.14 A space X, homotopy-equivalent to a point, is
called contractible.

Other examples of contractible spaces are E™, the letter Y, and an
empty bottle. The space S?! is an example of a space that is not
contractible (see Exercise 17).

We end this section with some remarks about the set of all con-
tinuous maps from a space X to a space Y. Now by Propositic.1 2.2.7
this set of maps splits up into disjoint equivalence classcs, « alled
homotopy classes. Let us write [X, Y] for the set of homotopy classes
of maps from X to Y'; by keeping X fixed and varying Y, this set is an
invariant of the homotopy type of Y, in the sense that there is a (1-1)
correspondernce between the sets corresponding to homotopy-equival-
ent spaces: see Exercise 5. Indeed, as we shall see in Chapter 6, the
set [X, Y] can often be endowed, in a natural way, with the structure
of a group, and we then obtain exactly the sort of algebraic invariant
described at the beginning of this section. Alternatively, we can keep
Y fixed and vary X: once again 2 homotopy invariant results, which is
in some ways easier to handle.

Of course, given two pairs (X, A) and (Y, B), we can similarly
consider the set of homotopy classes of maps of pairs from.(X, 4) to
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(Y, B), written [{X, 4), (Y, B)]. This arises most frequently in the
case where 4 and B are single points of X and Y respectively, called
base points: a map of pairs is then called a base-point-preserving (or
based) map, and a homotopy of maps of pairs is called a based homo-
topy. Notice that in this situation ‘homotopy of maps of pairs’ and
‘homotopy relatifre to A’ mean exactly the same.

2.3 Simplicial complexes

This section is concerned with building up spaces called polyhedra,
from certain elementary spaces called simplexes. A simplex is just a
generalization to n dimensions of a‘triangle or tetrahedron, and these
are fitted together in such a way that two simplexes meet (if at all) in a
common edge or face. In order to give the precise definition of a
simplex, we must first explain what is meant by ‘independent points’
in Euclidean space.

- Definition 2.3.1 A set of (n + 1) points a%a?,...,a" in R™ is
said to be independent if the vectors a® — a°, a® - a°, ce,a® — a®
are linearly independent. It is easy to see that this is equivalent to the
statement that the equations

.
, z Adt =0, Z A=
i=0 ) t=0

(where A, Ay, ..., A; are real numbers) imply that Ay = A; =« =
A, = 0; hence the definition of independence does not depend on the
order of the points 4%, a!,..., a"

For example, points a°, a1 a? in R? are independent if they are Aot
collinear. ‘

Definition 2.3.2 A geometric n-simplex c, is the set of points

ki)
- > Ad', where a®, al, .. ., a” are independent points in some Euclideau
t=0
space R™ and the A; are real numbers such that A, > 0 for all 7 an:}

420 A, = 1. This defines o, as a subset of R™; o, is given the subspace.
topology. ' .

The points 4% a@?, ..., a" are called the vertices of o,, and atre said
to span o,: we write (d° @, . . ., a") for o, if we wish to specify the
vertices. -

The subspace of o, of these points ¥ Aa! such that A, > 0 for all »
is called the smterscr of o, (note taar this 1s not the same as the ‘interior’
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as defined in analytic topology: for example a O-simplex coincides
with its interior). One particular point in the interior of o, is the
barycentre

By = (n -{ 1)(a° pal 4o+ oan),
If @, a', ..., a" is any subset of vertices of 5, the subspace of o,

of those points lincarly dependent on o'+, &', ..., a" is cailed a foos

of o,. Note that a face could quite well be empty or, at the othe

extreme, the whole of o,; a face is proper if it is neither of these.
Finally, the number # is called the dimension of o,.

Proposition 2.3.3 A geometric n-simplex o, is a closed convex
compact connected subspace of R™, and is the clusure of its interior. A face
is a closed subspace of ¢,, and 1s itself a simplex. Moreover, a simplex
determynes its vertices, so that two simplexes cuincide if and only if they
have the same set of vertices.

Proof. We prove only the assertion that a simplex o, determines
its vertices. And this is almost immediate, since a point of o, is a
vertex if and only if it is not a point of an open line segment lying
within o,. }

We write 7 < o (or o > 7) for the statement ‘the simplex r is a face
of the simplex o’.

Now suppose that o, = (a° d’, ..., @*) is a geometric n-simplex in
R™, and that 7, = (b° &%,...,b") is a geometric n-simplex in R?.
Then o, and 7, are homeomorphic, in a rather special way.

Proposition 2.3.4 o, and 1, are linearlv homeomorphic, that is,
there exists a homeomorphism f: o, — r,, such thut

- .
f(Saceh=Som
1 -
for all points of o,.

Proof. Define f: o, — 7, by the fornumla f(> Au') = 3 A It is
easy to see that f is continuous, and 1t is then obvious that fis a
homeomorphism. J

It follows that a geometric n-simplex is completely characterized,
up to homeomorphism, by its dimension.

We now wish to consider how «ir pleaes may be fitted together to
make more complicated spaces.
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Definition 2.3.5 A geometric simplicial complex K is a finite set of
simplexes, all contained in some Euclidean space R™. Furthermore

(a) if o, is a simplex of K|, and 7, is a face of a,, then 7, is in K
(b) if o, and 7, are simplexes of K, then o, N 7, either is empty, or
is a common face of o, and r,.

The dimension of K, dim K, is the maximum of the dimensions of its
simplexes.

A subcomplex L of K is a subset of simplexes of K, satisfying property
(a) (and hence also {b): see Proposition 2.3.6(c)). In particular, for
each r > 0 the r-skeleton of K, K', is the subset of simplexes of
dimension at most r. ,

A simplicial pasir (K, L) consists of a simplicial complex K and a
subcomplex L. Simplicial triples, etc., are similarly defined.

It is important to remember that a2 geometric simplicial complex K
is not a topological space; it is merely a set whose elements are geometric
simplexes. However, the set of points of R™ that lie in at least one of
the simplexes of K, topologized as a subspace of R™, is a topological
space, called the polyhedeon of K, written |K|; if L is 2 subcomplex of
K, then |L] is called a subpolyhedron of |K|. To illustrate this point,
consider a single n-simplex o, in R™. It is not itself a simplicial com-
plex, but we can form a simplicial complex K(o,) by taking as its
elements o,, together with all faces of o,. The reader is invited to
prove that X (o, is indeed a simplicial complex, and that |K(o,)| = o4;
also that the set of all faces of o, other than o, itself forms a sub-
complex of K(a,), called the boundary of ¢,, written ¢,.

Some elementary but important properties of simplicial complexes
and- polyhedra are collected together in the next proposition.

Proposition 2.3.6

(a) If K is a simplicial complex, IK | i a closed compact subspace of R™.

~ (b) Every point of | K| is in the interior of exactly one simplex of K.
-Conversely, if K is a set of simplexes in R™ satisfying Definition 2.3.5a),
and such that the interiors of distinct simplexes have empty intersection,
then K is a simplicial complex.

(c) 4 mbcomplex L of a simplicial complex K is itself a simplicial
complex, and |L| is a closed subspace of |K|.

(d) If L and M are subcomplexes of K, so are L U M and L " M.

Proof. Parts (a), (c) and (d) are easy, and are left as exercises for
the reader. As for part (b), if K is a simplicial complex, every point of
|K| is obviously in the interior of at least one simplex; and if the
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interiors of two simplexes ¢ and T meet, the common face g, in which
o and 7 intersect, meets the interiors of 0 and 7, so that o = & = 1.
Conversely, suppose that X is a set of simplexes in R™, satisfying (a) of
Definition 2.3.5, and such that the interiors of distinct simplexes are
disjoint. Let

o=(a%..,a,b*..,b) and 7= (a%...,a", ¢, ..., ¢

be two simplexes of K, with no 4' equal to any ¢/. Obviously the simplex
(a°% ..., @") is contained in ¢ N 7; and if x is any point of o N r we can
write

L4 ] t
s=Sads 3 p=Suds 3 e
{=0 t=r+1 t=r+1

where 3N = Sy = L. Thend gy = - = A =phyy = = =0,
for etherwise by Proposition 2.3.3 x would be in the interior of two
distinct simplexes. Hence also o N 7 is contained in (45,..., a"), so
that o N 7 is exactly the common face (4%, ..., a"). Thus K satisfies
(b) of Definition 2.3.5 and so is a simplicial complex. |

It is clear that if L is a subcomplex of K, K — L is not in general a
subcomplex, since a face of a simplex in K ~ L could quite well be
in L. However, we do at least have the following result.

Proposition 2.3.7 There exists a subcomplex M of K, such that

(M| = [K[ = [L| (M is called the closure of K — L, written
(K — L)\.

Proof. Let M be the set of simplexes of K, that are faces of sim-
plexes of K — L. Clearly M is a subcomplex, and since each point of
K is in the interior of a unique simplex, |K| — |L| < |M|, which is
closed. But if x is any point in | M|, x is in a simplex that is a face of a
simplex o of K — L. Hence x € 0, and every open neighbourhood of x
meets |[K| — |L|, at a point in the interior of ¢. Thus

M| < [RT=L|.§ -

|K| has of course already been sopologized, as a.subspace of R™.
However, it is often more convenient to have the following alternative
description of the topology.

Proposition 2.3.8 A subset X of {K| is closed if and only if X N o
ts closed in o, for each simplex o in K.

Proof. Since each simplex o is closed in R™, it is also closed in K.
Hence if X N o is closed in o, it is also closed in |K|. Thus X =
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U X N ois closed, since K is a finite set of simplexes. The conversc is
ek

trivial. JJ

Corollary 2.3.9 The topolngy of |K| as a subspace of K™ is the
same as the topology of |K|, considered as the space obtained from its
simplexes by identifying together the various intersections. |

So far we have been concerned exclusively with spaces, in the forin
of polyhedra and their associated simplicial complexes, and have said
nothing about continuous maps. At first sight there 18 nothing to be
said: given polyhedra |K'| and || there scems to be no reason why a
map from |{K| to |[L| should be anything more than continuous.
However, |{K| and |L| are mor: than just topological spaces: the
simplicial complexes K and 1. endow them with further structure, and
we ought to concentrate our attention on those maps f: |[K}-— |L}
that in some sense preserve the simplicial structure. (The reader roay
like to compare the notiot of a ring homomorphism: although cvery
ring is a group, there is little point in considering groyp homumor-
phisms between rings that do not also ‘preserve the multiplication’.)
To this end, we make the following definition.

Definition 2.3.10 Given simplicial complexes K and L, a
simplicial map f: |K| — |L| is a function from |K| to |L| with the
following properties.

(a) If a is a vertex of a simplex of K, then f(a) is' a vertex of a
simplex of L.

(b) If (a% a, ..., a®) is a simplex of K, then f(a®), f(a®), ..., f(a")
span a simplex of L (possibly with repeats).

(c) If =3 Aa' is in a simplex (a%al,...,a") of K, then
f(x) = 3 Af(a'); in other words, f is ‘linear’ on each simplex.

A simplicial map of simplicial pairs f. (|K|, |L]) — ((M|, |N]) is,
of course, just a simplicial map f: |K| — | M| such that f(|L]) < |N].

It is clear that the composite of two sxmphcxal maps is another
simplicial map.

We did not specify in Definition 2.3.10 that f was continuous, since
this follows automatically from properties (a){(c).

Proposition 2.3.11 A simplicial map f: |K| — |L| is continuous.

Proof. If X is a closed subset of |{L|, X N 7 is closed in = for each
simplex = of L. But the restriction of f to any simplex of K, being
linear, is continuous: thus f ~}(X) N o is closed in ¢ for each o in K.
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Hence f~}(X) is closed in |K|, by Proposition 2.3.8, and so f is
continuous. J

Simplicial maps, then, are the correct ‘structure-preserving’ con-
tinuous maps between polyhedra. Indeed, as we shall see in the
Simplicial Appruximation Theorem, every continuous map between
polyhedra can be approximated by a simplicial map, so that there is
hardly any loss of generality in confining attention to simplicial maps.

There is a slight difficulty in the use of polvhedra, in that not every
topological space that is homecomorphic to a polyhedron is itself a
polyhedron. This difficulty is evaded by making another definition.

Definition 2.3.12 Given a topological space X, a triangulation of X
consists of a simplicial corplex K and a homeomorphism k: | K| — X.
A space with a triangulation is called a triangulated space. Similarly,
if (X, A) is «. pair of spaces, a triangulation consists of a simplicial pair
(K, L) and a homeomorphism (of pairs) A:(|K|, |L]) > (X, 4);
(X, A) is a triangulated pair. Usually the particular homeomorphism A
involved does not matter, and so we shall often refer —loosely—to K
alone as a ‘triangulation of X.

It follows from Proposition 2.3.6 that a triangulated space is compact,
normal and metrizable.

Example 2.3.13 In R", let E™ be the set of points (x,, %, . . ., ¥,)
satisfying i |%| < 1, and let S™~* be the subset where i |%| = 1.
{=1 f=1

As in Section 1.4, the pair (E", §*~') is homeomorphic to the pair
(E™, S*~1), by a homeomorphism that magnifies lines through the
origin by suitable amounts: see Fig. 2.3 in the case n = 2.
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We claim that E* is a polyhedron, and S* ! is a subpolyhedron. To
prove this, take vertices a5 at 0, q,at x, = land g;at x; = ~1. Let K
be the simplicial complex whose simplexes are all those of the form
(by,» byyy ..., by ), where 45 < ) <---< 7, and b, denotes g, or a.
Certainly all such sets of vertices are independent, and K satisfies (a)
and (b) of Definition 2.3.5, so that K is indeed a simplicial complex.
Moreover if L denotes the subset of those simplexes not involving a,,
then L is a subcomplex of K, and (|K|, |L|) = (E", S*~*). Hence
(K, L) is a triangulation of (E®, S"~1).

Alternatively, another triangulation of (E®, S*-%) is (K(o), d),
where o is any n-simplex. For if ¢ is an n-simplex in R®, whose
barycentre & is at the origin, then since o is convex, suitable magni-
fication of lines through the origin provides a homeomorphism of the
pair (|K(o)|, |6]) with (E" S*-!). And by Proposition 2.3.4
(|K(a)|, |o]) is determined up to homeomorphism by the dimension n
of 0. |§ -

So far simplicial complexes have been sets of simplexes lying in one
particular Euclidean space R™, and we should now like to free ourselves
of this restriction, by establishing an analogue for simplicial complexes
of Proposition 2.3.4. In order to state this result precisely, it is
necessary to introduce the notion of an abstract simplicial comiplex.

Definition 2.3.14 An abstract simplicial complex X is a finite set
of elements a° at,..., called (abstract) vertices, together with a
collection of subsets (a%, a", ..., a%), ..., called (abstract) simplexes,
with the property that any subset of a simplex is itself a simplex. The
dimension of an abstract simplex is one less than the number of vertices
in it, and the dimension of X" is the maximum of the dimensions of its
simplexes.

Let K be a geometric simplicial complex, and let X" be an abstract
simplicial complex whose vertices are in (1-1) correspondenc¢ with
the vertices of K, a subset of vertices being a simplex of X" if and only
if they correspond to the vertices of some simplex of K. X" is called
an abstraction of K, and any geometric simplicial complex having X"
as an abstraction is called a realization of X.

The point of this definition is that we can now state the analogue of
Proposition 2.3.4 in the form: ‘if K, and K are any two realizations of
an abstract simplicial complex X/, then |K,| and |Kj| are simplicially
homeomorphic’.

Theorem 2.3.15 Let K, and K; be two realizations of an abstract
simplicial complex X'. Then there exists a simplicial map f: |K,| — |K,),
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such that f is a homeomorphism (that is, f is a ‘simplicial homeomor-
phism’).

Proof. Since K, and K are both realizations of ¥, there is a
(1-1) correspondence between their vertices. Denote the vertices
of K; by a°% al,..., and the vertices of K; by 8% b, ..., where ¥
corresponds to @'. Thus ¢, a's, ..., a' span a simplex of K| if and
only if b, b, . . ., b'= span a simplex of K,. We can therefore define a
simplicial map f: |K,| > |K,| by setting f(a')=# (all £), and
requiring that f is linear on each simplex. Since it # obvious that f has
a (simplicial) inverse, f is also a homeomorphism. §

This theorem allows us to forget about the particular Euclidean
space in which a geometric simplicial complex lies, and to specify
it by an abstraction. To justify this approach, however, we .ought
to establish that not only does every geometric simplicial complex
have an abstraction, but also every abstract simplicial complex has a
realization.

Theorem 2.3.16 An n-dimensional abstract simplicial complex X~
has a realization in R?"*1,

Proof. Let the vertices of X" be a°% 4!, ..., a™ We first choose
(m + 1) points in R?"*1, with the property that any (2 + 2) of them
are independen:t (such points are said to be in general position). This
can be done by defining

A = (r,r% ..., r™*) (0 €7 £ m);

if say A", A", ..., A'2n+2 are not independent, there exist real
numbers A, A,, ..., Az, 49, Dot all zero, such that

A+ dg 4+ Agya =0,
Mry + Agrg + o+ Agpiofanea = 0,

vt b Rt b4 Agearinti = 0.
But the determimant of this set of linear equations is 1_[ (ry — 1y).

This is non-zero, so that no such numbers A, can exist, and A° AL,
A™ are in general position.

Now let the point A" correspond to @" (0 < r € m), and ‘fll in’
simplexes in R3**! corresponding to the simplexes of X : since X" is
n-dimensional, the points corresponding to any simplex of X are
independent. It is also clear that property (a) of Definition 2.3.5 is
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satisfied, so that it remains to check property (b). To do so, let o, and
7, be two of the simplexes (of dimensions p and g respectively) that we
have ‘filled in’, and suppose that o, and 7, have r vertices in common.
The number of vertices in either o, or 7, is thus p + ¢ — 7 + 2 <
2n + 2, so that thede vertices are independent, and could be taken to
be the vertices of a (p + ¢ — r + 1)-simplex having ¢, and 7, as
faces. Thus o, N 7 is either empty or a common face. |}

The result of Theorem 2.3.16 is ‘best possible’, in the sense that for
each n > 0, there exists an n-dimensional abstract simplicial complex
that cannot be realized in R?": see Exercise 9. Of course, a particular
complex X~ may be realizable in Euclidean space of dimension less
than (2» + 1): the determination of this dimension in special cases is
one of the most interesting problems of algebraic topology.

We end Section 2.3 with another example of the use of abstract
simplicial complexes, in defining the join of two simplicial complexes.

Definition 2.3.17 Let K and L be two geometric simplicial
complexes, and let X" and £ be abstractions, with vertices 4% a’, . ..
and 5% b',... respectively. The join X % & is defined to be the
abstract simplicial complex whose vertices are a°% a?,..., 8% b,.. .,
and whose simplexes are all subsets (a'o, @', . . ., o, b1, .. .) such that
(@', @', ...) is a simplex of X and (b, b%1,...) is a simplex of &
(the special cases (g%, dh,...) and (b, bs,...) are allowed as
simplexes of X" * Z). Any realization of X" x .% is called the join of
K and L, written K » L; this is defined up to simplicial homeo-
morphism, by Theorem 2.3.15.

It is clear that the join construction is associative, in the sense that
(K«LysM = K*(L%M). Thus we can write K« L* M=x-..
unambiguously for the join of more than two simplicial complexes.

Example 2.3.18 The triangulation L of S*~!, constructed in
Example 2.3.13, can be regarded as L, * Ly - - -» L,, where L, is the
simplicial complex consisting only of the two 0-simplexes 2, and a.
Similarly the triangulation K of E™is ay * L. }}

If K is a simplicial complex in R™ and L is a simplicial complex in
R", we can construct a representative for K * L in R®**"*1 a4 follows.
Since R™*#+1 = R™ x R* x R!, a point of R®**"+! can be specified
by three co-ordinates (x, y, 3), where x € R™, y € R* and 2 € R?; also
K and L may be thought of as simplicial complexes in R™****1 by
regarding R™ as (R™, 0, 0) and R" as (0, R", 1). Now if (ab, ..., a¥)
and (b%, . .., b) are simplexes of K and L respectively, the points
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(a%,0,0),...,(a" 0,0), (0,b,1),...,(0,¥5s 1) are independent,
since the equations

Mo+ Xt po o+ py =0,

Ao(a'o, 0, 0) + - - - + ’\v(a"v 0,0) + po(0, b, 1) + - - - + g0, b, 1)
= (0, 0, 0)

clearly imply dg =---= A = gy =---= p, = 0. Thus all the sim-
plexes of K « L can be filled in; and to show that this has constructed
a realization of ¥ x 2, it is sufficient, by Proposition 2.3.6(b), to
show that the interiors of distinct simplexes are disjoint. This 1s
obvious for simplexes of K or L, and if x is in the interior of

(a'o, ..., a4 bo, ..., bh), it is easy to see that x has the form
(- )\)y, Az, Q), 'where y is in the interior of (a', .. ., a%), 2 is in the
interior of (b, ..., b%), and 0 < A < 1. But the co-ordinates of x fix

A, ¥ and 3, so that x cannot be in the interior of any other simplex.

It follows that |[K & L| may be regarded as the set of points
(1 = Xy, Az, A) in R™***4, for all y € |K, 2 € [L] and 0 € X < 1.
. Consequently, given two more simplicial complexes M and N, and

continuous (not necessarxly simplicial) maps .f: |K| — [M|,
g: |L| — {N|,'we obtain a continuous map f* g: |K s L| - |[M + N|
by sotting (/% £)(1 ~ A, Az, A) = (1 = Nf(3): X(z), ). In par-
- ticular, if f and’ g arec homeomorphisms, 8o is f * g, since it has an
obvious inverse. This means that we can unambiguously write
|K| * |L] for |K * L|: for example, since each L, in Example 2.3.18 is
a triangulation of S, it makes sense to say that S*~! is homeomorphic
to the join of z copies of S°. (Indeed, one can define the join of any
two topological spaces: see Chapter 6, Exercise 3.)

2.4 Homotopy and homeomorphism of polyhedra

This section is concerned with some general results about homo-
topy and homeomorphism of polyhedra that will be needed later.
The reader may care to miss this section at first reading, therefore, and
return to it when necessary for the proofs of these results.

The first theorem states that polyhedral pairs possess the absolute
homotopy extension property: that is, any homotopy of the subpoly-
hedron can be extended to a hamotopy of the large polyhedron, so as
to start with any given continuous map.

Theorem 2.4.1 Let (K, L) be a simplicial pair. Given a space X,
a homotopy F:|L| x I+ X, and a map g: |K|— X such that the
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restriction of g to |L| is the restriction of F to |L| x 0, there exists a
homotopy G: |K| x I-> X, such that the restriction of G to |K| x 0
is g and the restriction of G to |L| x Iis F.

Proof. Givenasimplexoof K,letp: o x I— (|6 x I) U (o x 0)
be the projection map from (&, 2), where & is the barycentre of o.
Clearly p is a retraction: see Fig. 2.4.

(5,2)
oxl
®
/ |
!
p/ | |
d }
|
|
I
——’—.i—-—“—_-
== ox0
Fig. 2.4

Now if we write M" for |K'| U |L|, these retractions can be fitted
together, by Proposition 1.4. lS(d), to yield a retraction

pr(M" x IU(|K| x 0)—> (M x I)U (|K| x 0)
and hence, by induction on 7, a retraction
p:(IK| x I)—(IL| x I) U (K| x 0).

But F and g fit together to give a map F, say, from (|L| x I) U
(IK| x 0)—> X; the composite Fp:|K| x I—- X is then the
homotopy G that we require |

For an example of a pair of spaces that does not possess the absolute
homotopy extension property, see Exercise 11.

The other important theorem in this section concerns the problem
of deciding- when two polyhedra are homeomorphic. The usual
practical method is that outlined at the beginning of Section 2.2, which
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will be developed further in Chapters 3 and 4. As has already been
.pointed out, however, the algebraic invariants constructed there suffer
from the disadvantage that they are homotopy-type invariants, and so
at first sight are useless for distinguishing between two polyhedra
that are homotopy-equivalent, but not homeomorphic.

There is however a trick that can sometimes be used to overcome
this disadvantage. The idea is that, given simplicial complexes K and
L, one should construct certain subcomplexes whose polyhedra are
homotopy-equivalent if |K| and |L| are homeomorphic, but not
necessarily if |K| and [L| are merely homotopy-equivalent. The
algebraic machinery can be applied in favourable circumstances to
show that the subpolyhedra are not homotopy-equivalent, so that | K|
and |L| are not homeomorphic, even though it may happen that

K| ~ |L|.
| In order to state and prove the theorem involved, a few preliminary
definitions and results are necessary.

Definition 2.4.2 Let K be a simplicial complex. For each point x
of |K|, the simplicial neighbourhood of x, N(x), is the set of simplexes
of K that contain x, together with all their faces. The lknk of x,
Lkg(x), is the subset of simplexes of Ng(x) that do not contain x.
Clearly Ny (x) and Lkg(x) are subcomplexes of K.

For each simplex o of K, the star of o, sty(o), is the union of the
interiors of the simplexes of K that have o as a face.

The suffix K will often be omitted, if it is clear to which complex
we refer.

For examples of N(x), Lk(x) and st(o), see Fig. 2.5.

Fig. 2.5

Now Proposition 2.3.6(b) shows that each x in |K| is in the interior
of a unique simplex ¢ of K, so that it is easy to relate N(x), Lk(x) and
st(o).
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Proposition 2.4.3 For each simplex o of K, st(o) is an open set.
If x is any point in the interior of o, then
st(a) = [NG=)| — JLK(3)].

Proof. Let K, be the set of simplexes of K that do not have o as a
face. Clearly K, is a subcomplex, so that | K,| is closed by Proposition
2.3.6(c). But Proposition 2.3.6(b) shows that st(c) = |K| — | Kol
which is therefore open. Similarly st(c) = |N(x)| — |Lk(x)] for any x
in the interior of o. ||

N(x) and Lk(x) also have convenient ‘convexity’ properties.

Proposition 2.4.4 If y € N(x)|, then all points on the straight-line
segment xy lie in |N(x)|. Moreover, each straight-line segment starting
from x meets Lk(x) in exactly one point.

Proof. 1f y € [N(x)|, then y is in a simplex 7 that contains x. By
Proposition 2.3.3, = is convex, so that all points of the segment xy lie
in 7, and hence are in |N(x)|.

Now consider a straight-line segment / starting from x, and let y be
the ‘last point’ in I N |N(x)|; more precisely, let y be the point on [
for which d(x, y) = sup {d(»,¥") | ' € I n |N(x)|}: see Fig. 2.6.

Fig. 2.6

Then_y # x, since |[N(x)| > st(a), which is open (o is the simplex that
contains ¥ in its interior). On the other hand |N(x)| is closed, and so
contains y. Thus y is in the interior of 7, say, where x ¢ 7, for otherwise
we could produce the segment xy further and still remain in |N(x)|.
That is, y € |Lk(x)|. .

It remains to prove that no other point of [ is in |Lk(x)|. Now
points of / further from x than y are not in |N(x)|, and so are certainly
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not in |Lk(x)| On the other hand, if ¢ is the simplex spanned by the
vertices of ¢ and r, then all points of xy other than x and y are in the
interior of ¢ (¢ exists since r must be @ face of a snmplex contammg x,
and so containing ¢). Thus all points of xy except y are in st(0),'and
so are not in |Lk(x)|. || ,

‘The main theorem states that, given simplicial complexes K and L,
and a homeomorphism f: |[K| — |L|, then |Lkg(x)] =~ |Lk.(f(x))] for
each x € |K|. It is convenient, however, to prave a'slightly more
general result.

Theorem 2.4.5 Let K and L be simplicial complexes, and let

f:|K|—|L| bea homeomorphism onto a subspace of [L|. Then for each
x € |K| such that f(x) is contained in an open set U of |L|, with U
cortained in f(|K|), we have |Lkg(x)] =~ |Lk(f(x))]-
. Proof. Suppose that f(x) is in the interior of a simplex o of L.
Then f(x) € U N st(e) S |N,(f(x))|, so that fT}(U N st(e)) is an open
set containing x, whose image under f is contained in |N(f(x))|. For
each real number A, with 0 < X < 1, let A|Nx(x)| be the set of points
of |[N(x)| of the form (I — A)x + Ay, where y € [N(x)|: thus A|N(x)]
is [N(x)| ‘magnified by a factor X’, and A|N(x)| is homeomorphic to
|N(x)}. Since f~}(U N st(o)) is open, and |N(x)| is bounded, there
exists such a A, so that

xe\|N(x)| = f-}U N st(a)),
f(x) € fAIN(x)]) = [N(f(=))]-

Similarly, there exist p g.ﬂd v, such that

fx) e fEIN(x)]) = pIN(f()] < f()\lN(x)I) < lN(f(x))|=
- see Fig. 27

and hence

Fig. 2.7 -
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k(f(x))]. By Prop-
|~ f(v|Lk(#))) by
pro;ectmg f 1( y) along the straight lme through xin A|N(x)! and then
appiying f. Similarly, we can define : f(»]Lk(x)|) — p|Lk(f(x))| by
radial projection from f(x) in p|N(f(x))|: see Fig. 2.7.

Now let F: p|Lk(f(x))] x I— |{N(f(x))] — f(x) be the hcmotopy
formed. by ‘sticking together’, as in the proof of Proposition 2.2.7, the
linear homotopy between f~! and f~14, composed “with f, "and the

' With an obv ious notation, let y

linear homotopy between ¢ and y¢. Thus F is a homotopy between -

and ¢¢. So if g: |[N(f(x))] — f(x) = p,'Lk(f(x))] is the radial projection

map from f(x), the composite

gF: p|Lk(f(=))] x 1 --*ulLk(f(%’))i

is a homotopy between 1 and . Slmllarly ¢y ~ 1, so that
R|LE(F()] = f(u|Lk(@)]). Since u[Lk(f(x))| is homeomorphic to
[Lk(f(x))| and f(u|{Lk(x)]) to |Lk(x})|, this proves that [Lk(f(x))] ~
|Lk()]. 8

The result of Theorem 2.4.5 need not be true if fi K| —|L] is
merely a homotopy equivalence. For example, let K = K (a) where
o is a 2-simplex, and let L be a single vertex. Certainly”|K| ~ |L|
as in Example 2.2.13; but if x is in the interior of o, then |Lkg(x)| is
homeomorphic to S*, and if a is the vertex of L, |Lk;(a)] is empty.

It follows, of course, that |K[ is not homeomorphic to [L|. Indeed,
the same method will show that no. two simplicial complexes of
different dimensions can have homeomorphic polyhedra, although
since the proof involves some homology theory, we must postpone it
to Chapter 4.

4

2.5 Subdivision and the Simplicial A‘pproximafidn Theorem

When simplicial maps were introduced in Section 2.3, it was
remarked that any continuous map between polyhedra may be
approximated by a simplicial map. The purpose of this section is to
make this statement precise, and to prove it.

A map g is regarded as an ‘approximation’ to a map f if f and g are
homotopic. Thus we seek to construct simplicial maps that are homo-
topic to a given continuous map, and these simplicial maps will
usually be simplicial approximations, in the sense of the following
definition.

Definition 2.5.1 Given simplicial complexes K and L, and a
continuous map f: |K| — |L|, a simplicial map g: |K| — |L] is called

«
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a simplicial approximation to f if, for each vertex a of K, f(stx{a)) <
st;(g(a)) (see Definition 2.4.2).

Notice that a simplicial map is always a simplicial approximation
to itself. For if f is a simplicial map, any simplex of K having a as a
vertex is mapped by f to a simplex of L having f(a) as a vertex; hence
f(stx(a)) < st,(f(a)) for each vertex a of K.

Before justifying the introduction of simplicial approximations, by
showing that they are always homotopic to the original maps, it is
useful to have a criterion for their existence.

Proposition 2.5.2 Let K and L be simplicial complexes, and let
f+|K| - |L| be a continuous map. If, for each vertex a of K, a vertex
b of L can be found, such that f(sty(a)) < st,(b), then there exists a
simplicial approximation g to f, such that g(a) = b for each vertex of K.

Proof. 1t is necessary only to check that g(a°), g(a'), ..., g(a")
span a simplex of L whenever 4% a',..., a" span a simplex of K,
since g can then be extended linearly to the interiors of the simplexes
of K.

Let x be a point in the interior of the simplex (a° a', .. ., a"). Then

x € st(a®) N st(a') N- - - N st(a™).
Thus

J(x) € f(st(a®)) N f(st(ah)) N~ - -0 f(sY(a"))
< st(g(a®) N st(g(a?)) N - - - st(g(a")).

So the unique simplex of L that contains f(x) in its interior must have
each g(a') as a vertex, and so has a face spanned by g(a°), g(a?), ...,
g(a). §

We show now that a simplicial approximation is homotopic to the
original map.

Theorem 2.5.3 Let K and L be simplcial complexes, and let
f: |K| = |L| be a continuous map. Then any simplia’al approximation g
to f is homotopic to f. Moreover, the homotopy s relative to the subspacc
of |K| of those points x such that f(x) = g(x).

Proof. Take a point x of | K|, and suppose that x is in the interior
of the simplex (a° 4',...,a"). By the proof of Proposition 2.5.2,
f(x) lies in the interior of a simplex of L that has each g(a') as a vertex,
and so also contains g(x). It follows that the straight-line segment
joining f(x) and g(x) is contained in |L|, and so f and g are homotopic
by Theorem 2.2.3. By construction, this homotopy is relative to the
subspace of | K| where f and g coincide. |}
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Corollary 2.5.4 Let (K, L) and (M, N) be-simplicial pairs, and let
L (K|, |L]) = (|1M], |N]) be a map of pairs. If g is any simplicial
approximation to f: |K| — |M |, then g(|L]) < |N|, and f ~ g as maps
of pairs.

Proof. Let x be any point of |L|. Then f(x), being in | V|, is in the
interior of a unique simplex of N, that also contains g(x): that is,
&(x) € |[N|. Moreover, the line segment joining f(x) and g(x) is also
contained in |[N|. |}

Not surprisingly, the composite of two simplicial approximations is
again a simplicial approximation.

Proposition 2.5.5 Given simplicial complexes k, L and M,
continuous maps fi: |K|—|L| and fy: |L| — |M|, and simplicial
approximations g, ga to f1, [o respectively, then g,g, is a simplicial
approximation to fof,.

Proof. For each vertex a of K,

Safi(ste(a)) < fao(st(g:2(a)))

< sty{g22:(a))- B

Example 2.5.6 Let K be the simplicial complex consisting of
1-simplexes (a°, a'), (2!, a?), (a2, a®) and all their vertices, and let L
be the simplicial complex consisting of 2-simplexes (3°, b%, b3),
(8°, B3, B3), (%, b2, b°), (BY, b3, b*) and all their faces. Let f: |K| — |L|
be the continuous map taking a'to ¢! (0 < # < 3), as shown in Fig. 2.8.

L

b

[ 4

Fig. 2.8

Now F(et(a®)) < st(8°) N st(62),
[(st(a")) < st(b%),

- f(st(a?) < sy(b?),

and f(st(a®) < st(b?) N st(b%).



48 . HOMOTOPY AND SIMPLICIAL COMPLEXES CH2

‘Thus one possible simplicial approximation to f is g, the simplicial
map sending «°, at, a2, a” to b°, b2, b, b® respectively. |
Two points should be noticed about Example 2.5.6.

(a) Another simplicial approximation to f is g’, the simplicial map
sending a°, @', a2, a® to b2, b, b', B! respectively. Thus if a simplicial
approximation exists, it may not be unique. However, Theorem 2.5.3
assures us that any two simplicial approximations to f are each hemo-
topic to f, and so are themselves homotopic.

(b) If the vertices a® and a? were removed from K, thus making K
into K (a°, «*), there would be no simplicial approximation to f, since
then f(st(a®)) would be f(]K{), which is not contained in the star of
any vertex of L. Thus not every map has a simplicial approximation.

At first sight the situation revealed in (b) means that our search for
simplicial approximations is bound to fail in general. However, the
reason for the lack of a simplicial approximation in (b) is that the
simplexes of K(a° a®) are too large: if (a°, @®) is subdivided by
reintroducing the vertices a! and a2, the simplexes are then small
enough to make the method of Proposition 2.5.2 work. This is the
situation we face in general: there may be no simplicial approximation
to a given continuous map f: | K| — |L|, but if the simplexes of K are
subdivided enough, a simplicial approximation can always be shown
to exist, by using Theorem 1.4.35.

We must obviously investigate more closely the idea of subdivisicn.
In general, a subdivision of a simplicial complex K is another simplicial
complex K’, obtained by ‘chopping up’ the simplexes of K. A system-
atic way of doing this is to introduce a new vertex at the barycentre of
each simpiex of K, and then to join up the vertices. For example, let
K be the complex K (a°, a', a?) formed from a single 2-simplex. The
new vertices are b° = }(a! + a?), b = }(a® + a°), b% = }(a°® + a?)
and ¢ = §(a® + a' + a®); these are joined up as in Fig. 2.9.
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In this way K is replaced by a new simplicial complex K’, that has
more, but smaller, simplexes than K. Obviously the process of
‘barycentric subdivision’ could be repeated as often as necessary to
make the simplexes as smail as we please.

In practice it may be necessary to subdivide only a2 part of a simplicial
complex K, so as to leave alone a given subcomplex. For example, in
Fig. 2.9 we might not wish to subdivide the subcomplex L = K(4°, az)
This can be done by omitting the vertex 4 and the simplex (¢, 4?) in
the subdivision, so as to retain (a° a? ¢) as a single simplex. Such a
subdivision is called a subdivision relative to L, and the subdivided
simplicial complex is called the derived complex of K, relative to L.
The precise definition proceeds by induction on ihe‘dimensions of the
skeletons of K. :

Definition 2.5.7 Let L be a subcomplex of a simplicial complex K.
The derived complex of K, relative to L, written (K, LY, is defined as
follows.

Let M" = K" U L, a subcomplex-of K that contains L. Define
(M9 L) = M9, and suppose, inductively, that (M7, L)’ has been
defined for all 0 < r < n, in such a way that '

(a) (M", L)' is a simplicial complex, containing L as a subcomplex;

(b |(M", Ly | = |M"];

(c) each snmplex of (M", L)' is containéd in a simplex of M";

(d) if N is a subcomplex. of M", there &xists a subcomplex ‘N’ of
(M, LY such that [N| = |[N’}:,

Certainly (a)—(d) are satisfied if r =*0. Now if o is an n-simplex of
K — L, the boundary ¢ is a subcomplex ¢f M™~1, so that by (d) there
exists a subcomplex (¢)" of (M"~ “1, L) such that lo| = |(sY]. If
T = (b° b, ..., b") is. a simplex of (o),*vmte 4t for the simplex
(3, 8°, b'), where @ i$ the barycenitre of o'(it follows from (c) that
the vertices of & &t are independent). Define

(M*, L) = (M"~%, LY U{a"") U{(U)},

where o runs through all a-simplexes of K:— L, and - through all’
simplexes in each (4)'.

To justify this definition, we must check that (3", L)’ also satisfies
conditions (a)~(d). ,

Proposition 2.5.8 (M", LY satzsﬁes (a)~(d).

Proof.

(a) We have to check (a) and (b) of Deﬁmtnon 2.3.5. I, (b), three
cases arise.
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(1) Let £e(M"-1, L), and 5 be of form ér: then éNy =¢éNn~
since o ¢ M"~1, which by induction either is empty or is a common
face.

(i1) If £, n are of form &7, 6 respectively, then £ N9 = 8(= N p);
again r N u is either empty or a common face.

(iii) Lastly, if £, # are of form &+, iu, where o # v, then § Ny =
rNpu.

To prove (a), it is sufficient to consider a simplex of the form &7,
where o is an n-simplex of K — L. Its faces are of the form (), £, or
8¢, where £ is a face of 7; clearly each of these is in (M™", LY.

(b) We have

(M, LY| = |(M™-1, Ly| U U (67)
= [M"-Y U (67).

un the other hand |M*| = |M"~*| U | (¢), where o runs over the
n—simplexes of K — L. For each such o, and 7€ (s), we have
ér < o since T < lal conversely o < | (67), for 7 € (), since the
union of such r is |(o) | = |6). Hence |J(67) =1J (o), and
(M7, Ly| =M.

(c) Obviously if 7 is contained in a simplex of ¢, then 67 < o.

(d) NN M*-1is a subcomplex of M2, by Proposition 2.3.6(d).

Thus there exists a subcomplex P’ of (M"~1, L), such that
|N A" M*-!| = |P'|. Define

N’ = P' v {ar} U {(8)},

for all n-simplexes o of (K —~ L) N N, and all = in each (d)’. As in the
proof of (a) and (b), N’ is a subcomplex of (M™, LY, and |N| = |N|.
(Really all we have done is to define N’ = (N, LN N)".) |

Finally, define (K, L)’ = (M™, L)', where K has dimension m.

Thus (K, L) is a simplicial complex such that |(K, LY| = |K]|,

every simplex of (K, L)' is contained in a simplex of X, and for any

subcomplex N of K, there exists a subcomplex N’ of (K|, L) such that

N = V.

_ If L happens to be empty, X is called just the derived complex of K,
and is usually written K’.

Example 2.5.9 Let X be the simplicial complex consicting of the
2-simplexes (a°, a?, a?), (¢, a2, a®) and (a3, 4%, a*), together with all
their faces, and iet L be the subcomplex consisting of (@°, a!, a%) and
its faces: see Fig. 2.10.
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Fig. 2.10

First, (M° L) = M° = L U (a®) U (a*). (M?, L)' is next obtained
by filling in the barycentre of each 1-simplex of K — L, thus chopping
each of these 1-simplexes in half. Finally (K, L)’ = (M%, L)' is con-
structed by filling in the barycentres of (a°, a3, a®) and (@3, @®, a*), and
joining them up to the (chopped-up) boundaries of (a° 42, a®) and
(a?, @®, a*). The resulting simplicial complex has twelve 2-simplexes,
as shown in Fig. 2.10. |}

The following alternative description of (K, L)' may help the reader
to familiarize himself with the idea of the derived complex.

Proposition 2.5.10 The vertices of (K, L)' are the barycentres of
the simplexes of K — L, together with the vertices of L. Distinct points
Ong:-» 00 a%...,a" (with dimo, > dimo,_;) span a simplex of
(K?L)’ if and only if a°, ..., a" span a simplex o of L, and o,y > - - -
> 09 > 0.

Proof. That the vertices of (K, L) are as stated, followd im-
mediately from the definition. If 0 = (a9,..., a*) is a simplex of L,
and o, >---> 0y > o, then (8p,...,85,4%...,a" is a simplex of
(K, LY, since we may assume inductiveiy that (8,_,,...,8,,4°%...,a"
€(K, L), and then use Definition 2.5.7. On the other hand if
(Bms - - -5 B0, @°, ..., a") is a simplex of (K, L)’ then s0 is (83, ...,
8y, @°, ..., a%),and we may assume inductively tffat this implies that
(@ ...,a") is a simplex of L,and 0,_; > -+ > 05 > 0. But

(Bm-1y--++00,0%...,8%) € 0p_y,

and we must have o,,_, € 6, so that oy > op_;. |}
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Corollary 2.5.11 If L is a subcomplex 6f K, then L is ‘full in
(K, LY, that is, each simplex of (K, L)’ — L meets |L| (if at ail) na
face. ' .

The process of subdivision can of course bc iterated. The rthderived
complex of K, relative to L, is defined inductively by the rule
(X, Ly® = ¥, (K LY = ((K, LY L) (r > 0). Similarly, we
write A‘°’ K K® = (K-, if L is empty.

Corollary 2.5.12_ L is full in (K, L), for all7 >0, J

The result of Corollary 2.5.12 is not in general true if r = 0 for
example, let K = K(o), where o is a 2-stmplcx andtet L = 6. It is
clear that o N [L[ |6|, which is more than just a face of o.

We have seen that |(K, L)'| = |K]|, although in neithier direction is
the l(antlt)’ map simplicial. How ever, by usmg Proposition 2.5.2 it is
easyito construct a sxmphcnaf approximation to 1: |(K, LY] — K]
Now each vertex of (K, L)’ is a barycentre of a simplex o of K (possibly
a 0-simplex of L); for each o, choose any vertexaof .- . g

Proposmon 2513 There exists a smphaal approxtmatwn h to
1: (K, L)} — |K], such that h(8) = a for each &. .

Proof. By Proposmon 2.5.2,itis sufficiens to’ show thatst(, NGO
sty(a), for each 8. If 7 is a simplex of (K LY having & “as -4 vertex,
there exists a sxmplex pu of K such that r © &, and the interior of
7 i3 contained in the interior of . Since & € #, o must be a face of p;
thus a is a vertex of p, so that the interior of = is contained in sti(a). |

Notice that for each n-simplex o of K, and for each n-simplex r of
(K; L) that ig contained in o, A(7) < o. It follows that A(7) = o for
just one such v. For suppose this is true for simplexes of dimension
less than 7 (it is certainly true for 0-simplexes). If o € 1., then A(c) = o;
if @ ¢ L, then each n-simplex of (K, L)’ contained in o is of the form
(6,6, ...,b%). If (&) = a, then A5, b',...,5") = o if and only if.
(Y, ..., b") is contained in the (n — 1)-face u of o obtained by omitting
a, and h(b%, ...,%%) = u; but by induction this is true for just one
such (b1, ..., o). '

'T'he purpose of introducing subdivisions was that their simplexes
should be in some sense ‘smaller’ than those of the original simplicial
cemplex. In order to make this precise, we make the following
definition.

Definition 2.5.14 The star covering of a simplicial complex K is
the sct of stars of vertices of K. By Proposition 2.4.3, the star covering
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is an open covering of |K|. The mesh of an open covering of a metric
space is defined to be the supremum of the diameters of the open
sets of the covering, and the mesh of a simplicial complex X, written
.mesh K, ie the mesh of jts star covering.
If we consider only the ‘non-relative’ derived complexes, the mesh
can be made as small as we please by subdividing enough times.
Propositiod 2.5.15 * Given a simplicial complex K, and a number
€ > 0, there exists an integer r such that mesh K < e.

Proof. Let X be the maximum of the lengths of the 1-simplexes of K.
It is easy to see that the diameter of each simplex of K cannot exceed
A. Thus if a is a vertex and x € st(a), then d(x, @) < A, so that the
diameter of‘st(a) is at mnost 2], and mesh K < 2.

Sx;mlarly, let A’ be the maximum of the lengths of the l-slmplexes
of K’: say X' is the length of 7. Now r is contained in some n-simplex
. oP‘K so that A’ < {n/(n + 1)]I, where [ is the length of some line

segmexmm o. Hence _
L N SN+ DR,
where N is t d:mensnon of K. Hence if A is the maximum of the
’ lengths of thé l-snmplcxes of K, we have ¥ ¢

ce o o medh K® < 2 < 2[N)(N + WA

Smet [N](N + 1)) - - 0 as 7 > o, the required result follows. §
One form. of the Simplicial Approxnmat\on Theorem can be

| Mmd ammukately : , S

" ‘Theorem 2.5.16- Let K and L be simplicial complexes, ahd let
S f)RE->1L] be a continuous map. Then there exists an integer r such
s that f- | K| *]Ll has a simplicial approximation.

Proaf. Cowder the sets f~X(st()), for each vertex b of L. These
sets form an open covering of {K |, and by Theorem 1.4.35 this open
* covering has a Lebesgue number §, say. Choose 7, so that mesh K
< &: then for each vertex a of K there exists a vertex b of L such that
st(a) < f~1(st(b)), or f(st(a)) = st(b). Hence by Proposmon 2.5.2 fhas

a simplicial approximation. |

Corollary 2.5.17 Given simplicial complexes K and L, the set
[1K], |L|] & countable.

Proof We need consider only simplicial maps f |K®| — |L],
for various 7, since each homotopy class of maps contains such a map.
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But for each r there exists only a finite number of simplicial maps
[ |IK®| —|L|, since K@ and L have only a finite number of
vertices. [

Theorem 2.5.16 is what is usually referred to as the Simplicial
Approximation Theorem. However, for many purposes it is useful to
have a somewhat more refined version. Suppose that M is a sub-
complex of K, and that f: |[K| — |L| is a continuous map such that
f| | M| is already simplicial. We should like to find a simplicial approxi-
mation to f that actually coincides with f on |M|; and this is clearly
not possible unless K is subdivided relative to M. A difficulty then
arises, since Proposition 2.5.15 is no longer true, because the simplexes
of M are unchanged under subdivision. Indeed, it is not even true that
all simplexes not in M get smaller, because those that meet M have a
face in M that is not subdivided. The ‘most that can be said is the
following.

Definition 2.5.18 Given a simplicial complex K and a sub-
complex M, the supplement of M in K, M, is the set of simplexes of
(K, M)’ that have no vertices in M. Clearly M is a subcomplex of
(K, MY, and is the same as the subcomplex of K’ of simplexes having
no vertices in M’.

Proposition 2.5.19 For each r > 0, let «, denote the star covering
of (K, M)", and let o] be the subset of stars of vertices in |M|. Given
"€ > 0, there exists r such that mesh o) < e.

Proof. Let (a° a*) be a 1-simplex of (K, M)®, and suppose that
a' € M. Then either a® € M, or a° = &, where o is a simplex of (K, M)’
that has a! as a vertex. Thus o ¢ M, and so & ¢ |M|. In other words,
no 1-simplex, and hence no #n-simplex, of (K, M)® can have vertices
in both M and |M|.

It follows that . ach simplex of (K, M)® that has a vertex in |M|

must be in M, tne supplement of M in (K, M)'. But for r > 2, the
subdivision (X, M )™ includes the ‘non-relative’ subdivision M- of

M, and hence o is contained in the star covering of M -2, Now use
Proposition 2.5. 15 ]

Suppose that f: |[K|— |L| is a continuous map such that fis
simplicial on |[M|. We would hope to use Proposition 2.5.19 in the
same way ‘as Proposition 2.5.15 to obtain a simplicial apprommatxon
to f that coincides with f on |M|. Unfortunately this is not quite
possible, because the simplexes that are in neither M nor M do not
get smaller under subdivision; on the other hand, f is not itself
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simplicial on them. These simplexes need special treatment, and the
price we must pay is that the simplicial map we finally obtain is not a
simplicial approximation to f, although it is homotopic to f.

Theorem 2.5.20 Let K and L be simplicial complexes, let M be a
subcomplex of K, and let f: |K| — |L| be a continuous map such that
f| | M| is simplicial. Then there exists an integer r and a simplicial map
g: (K, M)?| — |L| such that g = f on |M|, and g ~ frel |M|.

Proof. As we have just remarked, special treatment is necessary
for the simplexes of (K, M)’ that are in neither M nor M, and we
start by pushing all their barycentres into |M].

Let K* = (K, M), M U M)': this is obtained from (K, M)’ by
subdividing these exceptional simplexes, and so is a subdivision of
K ‘between’ (K, M) and (K, M)?: see Fig. 2.11, in which K =
K(a% a', a®) U K(a!, a?, a®) and M = K(a° a', a?).

Fig. 2.11

Now a vertex of K * is either a vertex of M U M, or the barycentre &
of a unique simplex o of (K, M)’ meeting both |M| and | M| (0 meets
| M| since it is not in M, and | M| since by Corollary 2.5.11 it cannot
have all its vertices in M). Hence by Proposition 2.5.13 there exists a
simplicial approximation A to 1: |K *| — |(K, M)'| such that

(a) if a is a vertex of M U M, then h(a) = a;
(b) otherwise, h(5) is a vertex of o lying in |M|.

Notice that h ~ 1rel |[M|, since  leaves fixed all vertices of M,
and that h(stg+(a)) < sty(a) for each vertex a in M, since a simplex
7 of K'* having aas a vertex can have no vertex in M: thus h maps
all vertices of  into M and so 4(7) € M by Corollary 2.5.11.
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It is now fairly eady.tn construct a. sirh;iﬁcial ipﬁrox{mation to fh.
Let 8 be (fA)? (star*covcrmg of %l), an open covering of | K|, let
@, be the star covering of (K, M)™, and let &; be the subset of «, of .
stars of vertices in |M|, where as in Proposition,2.5.19 M is the
supplement of M in (K, M)'. By Proposition 2.5.19 there exists r such
that mesh a; is less than a Lebesgue number of B. That is, for each
vertex a of (K, M) lying in |M |, there exists a vertex b in L such that
Jh(st(a)) < st(b). On the other hand, if a is a vertex of (XK, M)

(r > 2) that does not lie in |M], then by iteration of Proposition

2.5.13 there exists a vertex b of (K, M)®, not in |#1 and so a vertex
of M, such that

st m(a@) S st an@(b), = stg+(b).

Jh(st(a)) < fhistx+(b))
< f(stu(d)) ‘
< st (f(5)), ' "

since’f | [M| is simplicial. It follows from Proposition 2.5.2 that there
exists a simplicial approximation g: |(K, M )| — |L]| to fh. Moreovgr,

if a is a vertex of M, which is certainly not in |M |, we may as well take
b = a, so that g(a) =fh(a) Thus g = fh —foxrlM[,andg > fh ~
frel [M]. I

Although the map g is not a simplicial approxxmatlon to f itself,
the fact that g ~ frel |M| is sufficient for most practical purposes,
and makes Theorem 2.5.20 the main tool in Chapters 3 and 4. In
Chapter 4, however, we shall need a slight modification in which-
S| |M| is not itself simplicial, but we are given.a homotopy between
Sl |M| and a simpligial map from’|M| to |L]: in this case we wish to
extend the homotopy and the simplicial map to the whole of |K]|.
This result is an easy deduction from Theorem 2.5.20, provided that
the homotopy involved is ‘semi-constant’.

A4

Thus

Definition 2.5.21' A homotopy F: X x I — Y is semi-constant if
thereexists 5,0 < s < 1, suchthat F(x,t) = F(x, I)foralls <t < 1.

Corollary 2.5.22 Let (K, M) be a simplicial pair, let L be a simpli-
cial complex, and let f: |K| — |L| be a continuous map. Girven a simpli-
cial map g: |M|— |L| and a semi-constant homotopy G between
f| | M| and g, there exists an integer r and a simplicial map k: |(K, M)"|
—> |L|, such thath = g on |M|, and f ~ h by a homotopy that extends G.
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Proof.” By Theorem 2.4.1, there exists a homotopy F: ]K | x I
|L], whose restriction to |K | x 0-is f and whose restriction to
' |M | x I'is G. By Theorem 2.5.20, applied to the final map of F, there .
exists an. mﬁfu r and.a simplicial map k: |(K, M)®| L] such that

h=go and, there is a homotopy f1, rel | M, between the final
map of F and &, If G(x, ) = G(x,1) foralls <t € 1,-the required
homotopy J between 'fand h fgan be construct«,ed by setting . - LS ,
C (F(x, 1), 10 < L (S i
J(”’t)“{f‘xﬁzt"")t"<t (l‘l")/z e
B @ - 1= 01— o) (#a2&eal ..

That is, we compose .F' and H as in Proposition’ 2 2.7, bue. adjllét the
t-co-ordinate so that the restrictibn of J to IM | x I'i is G (J is
continuous, by groposxtxon 1.4.15(d).) | .

Observe that Jcin be made semi-constant if neeessaty, by com-
posing with a constant homotopy and re-admuﬁg ‘the t-co-o;dmate

Although Theorem 2.5.20 is useful mainly in later chiapgers, it can
also be used directly to obtain some mterestmg geometticabiresults.
For example, we can prove the following theot«em on ﬁmd—-pmnts of
maps of E™ to itself. ‘ 5 . ‘

Theorem 2.5. 23 Any continuous map f: E*:s E“‘ {r > 0)‘ has a
fixed point, that is, there exists a point x in E™ :uch that f(x) = x.

Proof. Suppose that, on the contrary, f(x) # x for each peint x
of E™* (this is immediately a contradiction if #n = 0,%0 we ay as well.
assume that # > 1 from now on). We can cofistruet a retractwn
p: E* - S~ ag follows.

For each point x € E*, join f(x) to x by a stralght line, and produce
the line beyond x until it meets S*~1 at a point +’, say: see Fig.'2.12."

Fig. 2.12
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Define p(x) = x': clearly p(x) = x if x € S*~1, so that p is indeed a
retraction (the proof that p is-continuous is left as an exercise for the
reader).

Now let k:(|K|, |L|)—> (E", S*~') be a triangulation, as in
Example 2.3.13. Then h~ph: |[K| — |L| is also a retraction, and is
simplicial (being the identity map) on |L|. By Theorem 2.5.20, there -
exists an integer 7, and a simplicial map g: |[(K, L)”| — |L|, such that

.8 | |L| = 1. That is, g is also a retraction.

Let x be the barycentre of an (n — 1)-simplex o of L. The idea is to
show that g=1(x) is a ‘broken line’ starting from x, and ending at
another point of |L}, thus contradicting the fact that g is a retraction.
‘To prove this, consider g~(x) N =, for each n-simplex r of (K, L)®.
We claim that g~(x) N 7, if non-empty, is a straight-line segment
joining two points in the interiors of (# — 1)-faces of r: see Fig. 2.13.

g~ (x)

Fig. 2.13

For suppose x €g(7). Then, since g(r) is a simplex meeting the
interior of o, we must have g(7) = 0. Let

r=(a...,a" and o=(b...,0""})

where g(a") = b" (r < n) and g(a™) = b"~ 1. Then

) n .
g3 re)=am S v

r=0 r=0
if and only if A, = 1/m (r <n — 1) and A,_; + A, = 1/n. Thus
£ Y(x) N 7 is as claimed.

It follows that g=2(x) is a ‘string’ of line segments, which starts at
x, each segment joining on to the next one at a point ia the interior of
some (n — 1)-simplex: this is because each (# — 1)-simplex is a
face of exactly two n-simplexes unless it is in L, in which case it is a
face of just one n-simplex (see Exercise 15). Since each g~(x) N 7
consists of at most one line segment, the ‘string’ can never cross
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itself, and so must continue until it meets |L| again, at y, say. Then
x # y, but g(y) = x, which contradicts the fact that g is a retraction.
Hence g cannot exist and so f must have a fixed point. J

EXERCISES

1.

~

.

Use Corollary 2.2.4 to show that two maps f, g: X — S"~1 that both
fail to be onto must be homotopic.

. Define maps f,g: RP*—»RP?* by f[xy]=(x0], g*y]=

[x, —y, 0]. Construct an explicit homotopy between f and g.

. Given two maps f, g: X — Y, show that f ~ g if Y is contractible.
. Let X be the subspace of R3 consisting of straight-line segments

joining (0, 1) to the points (1/4,0) (» = 1, 2, 3, ...), and the segment
joining (0, 1) to (0, 0). Show that X is contractible, but that the map
[:(X,(0,0)) > (X, (0, 0)), defined by f(x) = (0, 0) for all x€ X, is
not homotopic to the identity map as a map of pairs (that is, (X, (0, 0))
is not ‘pairwise contractible’).

. Consider the set (4, X], where A is a fixed space. Show that a con-

tinuous map f: X — Y gives rise to a function f,: [4, X]1— [4, Y],
with the following properties.
(a) If f = g, then f, = g,.
(b) If 1: X — X is the identity map, then 1, is the identity function.
(c) Ifg: Y — Zis another continuous map, then (gf)s = gofe-
Deduce that if X >~ Y there is a (1-1)-correspondence between the sets
[4, X] and [4, Y].

What are the corresponding results for the sets [X, 4], for a fixed
space A?

. Complete the proof of Proposition 2.3.6.

Construct a triangulation of RP3. (Hint: use Proposition 1.4.40(b).)

. The torus and the Klein bottle are defined as follows. Let ABCD be the

unit square in R?: see Fig. 2.14 overleaf.

The torus is the space obtained from ABCD by identifying the sides
AD and BC, and then AB and DC; more precisely, we identify (x,, 0)
with (¥, 1) (0 € 2, € 1) and also (0, x,) with (1, x5) (0 < x; < 1),
Similarly the Klein bottle is obtained by identifying (x,, 0) with (x,, 1)
and (0, x;) with (1, 1 — x;), that is, 4D with BC and AB with CD.
Construct triangulations of these two spaces.

Let X" be the abstract 1-dimensional simplicial complex with vertices
a°, a’, a, a8, a*, each pair of vertices being an abstract 1-simplex. Show
that X" has no realization in R2. (Hint: suppose the contrary, and
consider the vertices a°,..., a®. Prove that these must be placed in
such a way that three of them span a 2-simplex with the fourth in its
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interior, and deduce that the fifth vertex cannot he placed anywhere at
all.) This example can be generalized to provide an example of an
n-dimensionpal abstract simplicial complex that has no realization in R**,

Given simplicial complexes K, I, 3 and N, and simplicial maps
f K|~ |M]|, g:|L} - |N|, show that fxg: |K* L] > |AM % NJ is
also a simplicial map.

Show that the pair of spaces (S?!, S* — (1,0)) does not have the
absolute homotopy extension property. (Hint: use Theorem 2.5.23 to
show that S? is not contractible.)

Let o = (a° ..., a") be a simplex in a simplicial complex K. Prove that
St,((a) = stx(ao) N--.N stx(an)o

Let A be the maximum of the lengths of the 1-faces of a simplex .
Show that A is the diameter of .

Prove that the retraction p defined in the proof of Proposition 2.5.23
is continuous.

Let (K, L) be a simplicial pair, where dim K = n. The pair (K, L) is
said to have the property (M) if each (n — 1)-simplex of K — L is a
face of an even number of n-simplexes of K, and each (n — 1)-simplex
of L is a face of an odd number of n-simplexes of X. Prove that the pair
((X, LY, L) also has the property (M). (Hint: consider the various

«types of (rn — 1)-simplexes in (K, L).) Deduce that ((K, L)", L) has
the property (M) for each r > 0.

\
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16. Let (K, L) be a simplicial pair, where dim K = nanddim L = n — 1.
Suppose also that (K, L) has the property (M). Prove that {L| is not a
retract of |K|.

17. Use Theorem 2.5.23 to show that S" is not contractible, for each
n> 0.

NOTES ON CHAPTER 2

Categories and functors. The transformation process from geametry to
algebra, outlined at the beginning of Section 2.2, is a particular example of a
Junctor, in the sense of Eilenberg and MacLane [53] (see also Eilenberg and
Steenrod [56], Chapter 4) One first defines a category € to be a collection of

‘objects’ X, Y;... and ‘maps’ f, & - .. between objects, such that the
‘following rules are satisfied. . . ;

(a) Given maps f: X > Y, g:¥Y—> Z there exists a unique ‘compasite
map’ gf: X — Z.

(b) For each object X in €, tllbre eXists an ‘identity map’ 1,: X - X,
such that 15f = fand gly = g whenever these composites are defined.

(c) If gf and kg are defined, then h(gf). = (kglf.. :

For example, the class of all tdpological spaces and continuous maps, and
the class of all groups and hombmorpliisms, are categoria

Given two categories € and 2, a functor F:€ > P is a ftmctnory’that
assigns an object of 2 to each object of ¥, and a map of P to cach map of €,
in such a way that

(a) if f: X - Y in €, then F(f): .?'(X)—h?'(} )in 9‘
(b) #(lx) = 1y
(c) #{&f) = F()F (/).

Thus, for example, the process described at the begmmng of Section 2.2
1s a functor from the category of topological spaces.and continuous maps to
the category of groups and homomorphisms.

Homotopy. 'The concept of homotopy, at least for maps of the unit
interval 7, is due to Jordan [81]. The word ‘homotopy’ was first introduced
by Dehn and Heegaard [43].

Szmplzaal complexes. The study of 1- and 2 dlmensnonal simplicial
complexes is one of the oldest parts of topology, and dates back at least to
Euler. The earliest treatment of simplicial complexes of higher dimensions
seems to be that of Listing [92] (who was also the first to use the word
‘topology’, in 1847). _

Simplicial complexes can be generalized in various directions. For a
description of infinite simplicial complexes, which contain more than a finite
number of simplexes, see Lefschetz [89], Chapter 7. By relaxing all ‘lin-
earity’ conditions, one arrives at the notion of a CW-complex, for which
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see Chapter 7 of this book (the original reference is a paper of J. H. C,
Whitehead [160]). Lastly, a generalization of the idea of an abstract simplicial
complex, known as a semi-simplicial complex, has been very fruitful in recent
years (see for example Eilenberg and Zilber [57] and Kan [84])).

The join of two simplicial complexes was first defined by Poincaré
[117] (see also Newman [109]).

Section 2.4. Theorem 2.4.1 is due to Hurewicz [74] and Theorem 2.4.5
to Seifert and Threlfall [124], Chapter 5.

The Simplicial Approximation Theorem. Theorem 2.5.16 is the original
version of this theorem, and was first proved by Alexander {7, 9] and
Veblen {147]. The more refined version, Theorem 2.5.20, is due to Zeeman
[169].

Theorem 2.5.23. This is usually known as the Brouwer Fixed-Point
Theorem, for which the original reference is Brouwer [25]. The proof we
give is that of Hirsch [65].



CHAPTER 3
THE FUNDAMENTAL GROUP

3.1 Introduction

In this chapter we shall define and study a first example of an
algebraic invariant of a topological space X, namely the fundamental
group m,(X): this is defined to be the set of homotopy classes of maps
of the unit interval I to' X, that send 0 and 1 to some fixed point. We
shall prove that ,(X) can be given the structure of a group in a
natural way, and that it.is a homotopy-type invariant of X. If X is
triangulable, it is not too difficult to give a method of calculating
m(X): as might be expected, this method is based on the Simplicial
Approximation Theorem.

Th general theory will be presented in Section 3.2, and the
calculation theorem for triangulated spaces will be proved in Section
3.3. In S.ction 3.4 we shall show how the fundamental group can be
used to prove the classification theorem for tnangulated surfaces;
thus the fundamental group is quite a powerful algebraie invariant.

3.2 Definition and elementary properties of the fundamental
group

Let X be a topological space, and let x, be a fixed point of X, called
a base point.

Definition 3.2.1 If x and y are points of X, a path in X from
x to y is a continuous map u: I — X such that #(0) = x and u(1) = y.
If x = y = x,, such a path is called a loop in X, based at x,.

By Pidposition 2.2.7, the relation between paths and loops of being
homotopic relative to 0 and 1 is an equivalence relation. This justifies
the following definition.

Definition 3.2.2 The fundamental group of X, with base point x,,
written (X, x,), is the set of homotopy classes, relative to 0 and 1, of
loops in X based at x,.

We are a little premature, of course, in calling m;(X, x,) a group,
since we have not yet endowed it with any group structure. In order %0

63 .
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do so, we first define a ‘product’ and ‘inverse’ for paths in X, and then
check that this definition extends to homotopy classes.

Definition 3.2.3 Given paths u, v: I — X, such that 4(1) = ©(0),
the product path u.v: I — X is obtained by ‘sticking u and v together’.
More precisely, u.v is defined by the rule

_ fu(2) 0<t<i)
(u-2)0) ‘{vat 1) ¢ 1).

(.o is continuous, by Proposition 1.4.15(d).) Snmnlarly, given n paths
U3, Ugssi . oy 8y: I — X, such that (1) = u,,,(0) for 1 <7r < n -1,
theproduct path u, .u,. . .u,: I — X is defined by

(5855 0)t) =wnt —r+1) (r—1)n<t<rn1<7r<n).

The inverse path u=':I-— X is defined by u~(t) = u(1 — ¢)
‘0 <t S 1); obviously u~! is continuous, and (u;.uy...%,)"! =
“; ! un 1. “; !

The followmg proposition shows that this definition can be extended
to ‘homotopy classes of paths’.

»

//\ //\
//\ //\

Pmpoa'ition 3.24
(4) Ggven paths u,,...,u, and vy, ..., v, in X, such that u,(0) =
vi{0),  u(1) = u,1,(0) = v(l) = v,,,(0) (1 <Sr<n-1), and
,,(l) = v,(1), then if u, ~ v, 1el 0,1 (1 < r < n), we have u,. . .u, ~
..o, rel 0,1,
(b) Given paths u, ¢ in X, such that u(0) = v(0) and u(1) = +(1),
thenzfu"' ‘vrel 0, 1, we have u=! ~ v-2rel 0, 1.

Proof.

(a): Let the homotc;pits be F,: u, ~ v, (1 < r < n). A homotopy G
between ;. . .4, and v;. . .9, can be constructed by ‘sticking together’
Fy, ..., F, that is, by defiling

Gltuta) = Ffat, —r +1,6) (¢ - Din<t<rim1<r<n,tzel)

As usual, G is contmuous ‘and it is obviously a homotopy relative to
Oand1l. » *°
(6) 1f the hom’otopy is F:u ~ v, then the required homotopy
between u~* and 9! is F -1, where F~Y(t,, t,) = F(1 — t,, 8,). |
kt foltoys that the definition of product and inverse can be extended
lmambxguously 0 homotopy classes (relative to 0 and 1) of paths.
Momower, w‘hen we pass to homotopy classes, the product is associa-
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tive and the inverse behaves as an inverse should. These resuits
follow from the following trivial corollary of Theorem 2.2.3.

Proposition 3.2.5 Given paths u, v: I — I, such that u(0) = v(0)
and u(1) = o(1), then u ~ vrel 0, 1. }

Corollary 3.2.6

(a) If uy, ..., u, are paths in X as in Definition 3.2.3, then for each
1 <r<mn(u...u) (4, ... 0)~uy...u,rel0,1.

(b) If uis a path in X from x to y, and e, is the ‘constant path at x’,
defined by e, (t) = x for all t € I, then '

e .u~u>u.e,rel01,
(c) Ifuisasin(b), thenu.u"* ~ e, rel 0, 1 and = .u ~ ¢, rel 0, 1.
Prodf.

(@) [(#1...%) . (er-. . %))(2) = (21...%,)(f(2)), where f: T—1 13
' the map that sends 0, 4, 1 to 0, r/n, 1 respectively and is linear in
between. But f ~ 1, rel 0, 1 by Proposition 3.2.5.

(b) Again, (e,.u)t) = w(f(t)), where f: I — I is the map that sends
0, 4, 1 to 0, 0, 1 respectively.

(c) This time u.u~(t) = u(f(t)), where fsends 0, 4,1 t0 0, 1, 0.
But f~ egrel 0, 1, and uey = e, §

Corollary 3.2.6 applies in particular to loops in X based at x;, and
the product of such loops is always defined. It follows easily that
m,(X, x,) can be given the structure of a group.

Theorem 3.2.7 (X, x,) is a group.

Proof. If uis aloop in X based at x,, write [u] for the equivalence
class of 4 under the relation of homotopy relative to 0 and 1. By
Proposition 3.2.4(a) the product of two equivalence classes can be
unambiguously definec by the rule [¢]{¢] = [u.v], and by Corollary
3.2.6(a) this product s associative. There is an identity element
[ex,), since by Corollary 3.2.6(b) [e, )[1] = [u] = [u][e,,]. .Finally,
by using Proposition 3.2.4(b) and Corollary 3.2.6{(c), the element [u]
has an inverse [u~?}, since [u){u~?] = [u~1]ju] = [e.]. §

Notice also that if %, ..., 4, are loops in X based at x;, then by
Corollary 3.2.6(a) we have [u,[us]. . .[u.] = [1;...%).

At this stage, then, we have a method for associating a group
(X, x,) with each topological space X, and we shall see later that
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‘homotopy-equivalent spaces have isomorphic fundamental groups.
However, the discussion at the beginning of Section 2.2 shows that,
in order to make this sort of method work, it is necessary to deal with
continuous maps as well as topological spaces: we ought to show that
each continuous map f: X — Y gives rise to a homomorphism
o mi(X, x5) = 7,(Y, ¥o). This is indeed the case, at least if f is a
based map.

Theorem 3.2.8 Let X and Y be topological spaces with base points
Xy and y, respectively, and let f: X —> Y be a based map, that is, a map
such that f(xy) = yo. Then f gives rise to a homomorphism

Jo: m(X, x0) = m1(Y, yo)
with the following properties.

(@) If f': X— Y is another based map, and f~ f'rel x,, ther
Je = Je&

(b) If V: X — X is the identity map, then 1, is the identity
isomorphism.

(c) If g: Y — Z is another based map, then (gf )y = Z4fs-

Proof. Let u: I— X be a loop based at x,. Define f, by the rule
f«[4] = [fu]. It is clear that fu: I — Y is a loop based at y,, and that
if u~wvrel0, 1 then fu ~ forel 0, 1; thus the definition of f, is
unambiguous. To show that f, is a homomorphism, consider u.v,
where u, v: I — X are loops based at x,. Now

_ fu2e) O<t<i)
@O0 ={sa -1 i<

from which it is clear that f(u.v) = (fu).(fv), so that

fe([u]lo]) = fululfule]:

Properties (a)~(c) are now obvious from the definition of f,. |}

Corollary 3.2.9 Let X and Y be spaces with base points x, and y,
respectively, and suppose that X and Y are of the same ‘based homotcpy
type', that is, there exist based maps f: X — Y and g: Y — X such that
gf ~ lyrel xo and fg ~ 1y rel yo. Then (X, x5) = 71(Y, ¥0).

Proof. By Theorem 3.2.8, g, f, = (gf)x = (1x)« = 1, the identity
dsomorphism. Similarly, f, g, is the identity isomorphism, so that f,

and g, are isomorphisms. f§
The situation still leaves something to be desired, however, since

(X, x,) appears to depend on the particular choice of base point x,.
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We should like to prove a theorem to the effect that, if x; is another
choice of base point, then 7,(X, x,) = #,(X, x,), but unfortunately
this is not true without some restriction on the space X: see Exercise 1.
In fact X must be path-connected, in the sense of the next definition.

Definition 3.2.10 Define a relation on the points of a space X by
the rule. x and y are related if there exists a path in X from x to y.
By Definition 3.2.3 this is an equivalence relation, and the resulting
equivalence classes are called the path components of X. If in particular
X has only one path component, X is said to be path-connected.

The set of path components of a space X is often denoted by my(X).
There is of course no question of giving wo(X) the structure of a
group, in general.

Example 3.2.11 E" is path-connected for all # > 0, and S* is
path-connected if n > 1. For clearly each point of E™ can be connected
by a path to the origin, and each point of S™ can be connected to the
point (1,0,...,0), at leastif n > 0. §

Path-connectedness is a stronger notion than connectedness in the
sense of Definition 1.4.5, as the next proposition and example show.

Proposition 3.2.12 If X is path-connected, it is connected.

Proof. Suppose, if possible, that X is path-connected, but’dis-
connected in the sense of Definition 1.4.5. Then we may write
X = U, V U,, where U, and U, are disjoint open sets. Choose points
x€ U, y € U,, and let f: I — X be a path from x to y. Now the sets
S~Y(U,), f~1(U,) are open in I, since f is continuous; also f ~}(U,) v
fHU) =fYX)=1 and f~YU;)Nf~"YU,) = @. Thus I is
disconnected, which contradicts Proposition 1.4.37. |J

On the other hand, a space may well be connected, without being
path-connected.

Example 3.2.13 In R% let X be the set of points (0, x,) for

—~1 < % <1, and let Y be the set of points (x,, sin (n/x,)), for
0 < x; < 1:see Fig. 3.1 overleaf.
Now Y is path-connected, since (1, 0) can be connected to
(1 — a,sin(n/(1 — @))) by the path u:l— Y, where u(t) =
(1 — at,sin (7/(1 — at))), 0,< ¢t < 1. Hence Y is also connected; but
XU Y < 7, so that X U Y is connected, by Proposition 1.4.6.

On the other hand X U Y is not path-connected. For suppose, if
possible, that # is a path in X U Y from (0, 0) to (1, 0); write u(f) =
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{o0,-11 4 U U

Fig. 3.1

(1,0}

(u1(2), u5(t)). Now u~1(X) is a closed set in I t*at contains 0, and so
contains its least upper bound b, say, where 0 < b < 1. We shall show
that u, cannot be continuous at b.

Suppose that uy(d) € 0. Then for any 8 > 0, with b + 8 < 1, we
have u,(b + 8) > 0, so that there exists an integer s such that
0 = u,(5) < 2/(4n + 1) < u,(b + 8), and there exists. ¢ such that
b<t<b+ 8 and u(t) =2/(4n + 1). Thus u(t) = 1, and
ug(t) — uy(b) > 1, so that u, is discontinuous at b. A similar argument
applies if uz(d) > 0, so that u, cannot be continuous. Hence no such
path u can exist, and so X U Y is not path-connected. |

For very well-behaved spaces, however, the notions of connected-
ness and path-connectedness coincide: see Exercise 2.

The point of Definition 3.2.10 is that (X, x,) will yield information
only about the path component of X that contains x,.

Proposition 3.2.14 Let X, be the path component of X that contains
%o, and let i: Xy — X be the inclusion map. Then

$a 2 my(Xo, Xo) = my(X, xo)
is an isomorphism. .

Proof. Clearly any loop in X based at x, must in fact be a loop in
X, so that it is necessary only to check that two loops that are homo-
topic rel 0, 1 in X are homotopic rel 0, 1 in X,. But this is immediate,
since if F: I x I - X is a homotopy whose image contains x,, its

image must lie entirely in X, because I x I isitself path-connected. |
In fact the set 7#o(X) is a homotopy-type invariant of the space X.
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Proposition 3.2.15 If X ~ Y, there is a (1-1) correspondence
between the sets no(X) and wo(Y).

Proof. Letf: X -+ Y and g: Y — X be the homotopy equivalence
and homotopy inverse. Now f gives rise to a function f,: #o(X) —
mo(Y), by sending the path component of x in X to the path com-
ponent of f(x) in Y. Moreover homotopic maps give the same func-
tion, since I x I is path-connected. Thus an argument similar to that
of Corollary 3.2.9 shows that f, is a (1-1) correspondence.

We are now ready to prove the theorem on the behaviour of
(X, xo) under a change of base point.

Theorem 3.2.16 Let x, and x, be two base points-lying in the same
path component of X. A path u in X from x4 to x; gives rise to an
isomorphism uy: my (X, x,) - m (X, x,), with the following properties.

(d) If u~ vrel0, 1, then uy = v,

(b) (e )# is the identity isomorphism.

(c) If wis a path in X from x, to x,, then (4.w)y = wyuy,.

(d) If f: X — Y is a map such that f(xo) = yo and f(x,) = y,, then
Jetiy = (fu)fs: ‘”1(X xp) = m( Y, 3).

Proof. 1If visaloop in X based at x,, it is clear that u~'.v.u is a

loop based at x,, whose class in #,(X, x,) depends only on that of v.
Moreover if w is another loop based at x,,

vl (v.w).u~ (. v.u).(u . w.u)rel0, 1

by Corollary 3.2.6, so that the rule u,[v] = [#~'.0.u4] defines a
homomorphism uy: my(X, %) = m (X, x,).

Properties (a)-(d) are immediate from the definition of uy, so that in
particular uy(u~), = (v.u")y = (e, )y = 1. Similarly (2~ )2y = 1,
so that u, is indeed an isomorphism. §

In particular, if X is path-connected, m,(X, x,) is determined up to
1somorphlsm by X alone, and does not depend on the choice of base
point. It therefore makes sense to write ,(X) instead of m,(X, x,),
if we do not wish to distinguish between isomorphic groups.

An important special case of Theorem 3.2.16 is obtained by taking
xo = x,: each loop u based at x, gives rise to an isomorphism
uy: m(X, x5) — (X, %), and this isomorphism depends only on the
class of u in m,(X, x,). Indeed, it is clear from the definition that if [v]
is any element of my(X, x,) we have uy[v] = [u]~'[v][¥]; such an
isomorphism u is called the inner automorphism of m,(X, x,) deter-
mined by [«]. Notice that the set of all isomorphisms u, reduces to the
identity isomorphism alone if and only if 7,(X, x,) is abelian.
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Theorem 3.2.16 can be used to prove that two path-connected
spaces of the same homotopy type have isomorphic fundamental
groups. This result should be carefully distinguished from Corollary
3.2.9: two homotopy-equivalent spaces need not be of the same
‘based homotopy type’: see Exercise 3.

Theorem 3.2.17 Let f: X — Y be a homotopy equivalence, let x,
be a base point for X, and let y, = f(x,). Then

foi mi(X, %0} = my (Y, o)
is an isomorphism.

Proof. Letg: Y — X be a homotopy inverse to f, and let F be the
‘homotopy between gf and 1y. Let g(y,) = xy, f(x;) = y,, and define
a path u in X from x, to x; by the rule

u(t) = F(xo,1 - t) (tel).

If v is any loop in X based at x,, we have gfo ~ ¥~ .v.urel 0, 1, by
the homotopy G: I x I — X, defined by

u(l —- 3¢,) (0 <t < 1/3)
G(ty, t3) = {F {38 ~ 8)/(3 — 2t5)}, 1)) (taf3 < 1 < 1 — 1,/3)
u(3t; — 2) (1 -¢8/3<t; <1).

Since these formulae may appear rather unenlightening, we offer an
alternative description of G in Fig. 3.2, in which the square QRPL
i8] x L

X2
N} (3.0
L u M v N v P
/
/
/
Id
v/
/
,I
% v
Q gf7 R ol

Fig. 3.2
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The trapezium QRNM is stretched horizontally until it becomes
I x I, and is then mapped by F(z x 1). The triangle QML is dealt
with by mapping straight lines M.S by u, after suitable magnification,
where S is a general point of L(); similarly for the triangle RPN.
Clearly these definitions coincide on QA and RN, so that G is
continuous. Moreover, G is a homotopy between gfv and u~!.v.4,
and is relative to 0 and 1, since the lines QL and RP are both mapped
to X;.
It follows that g, f4[v] = u4[v], so that

g*f*: m(X, x0) = (X, x,)

is an isomorphism. A similar argument shows that f, g, is an isomor-
phism, so that finally both £, and g, are themselves isomorphisms. |

Definition 3.2.18 A space X is said to be simply-connected (or
1-connected) if it is path-connected, and =,(X) = 0, the trivial group
with just one element. (By Theorem 3.2.16, the choice of base point
is immaterial here.)

Clearly a path-connected space X is simply-connected if and only if
each loop in X (based anywhere) i1s homotopic rel 0, 1 to a ‘constant
loop’. As we shall see in Section 3.3, S! is an example of a space that
is path-connected but not simply-connected, whereas S™ is simply-
connected for all # > 1. By Theorem 3.2.17 a contractible space is
simply-connected (it 1s easy to see that such a space is path-connected),
though the converse is not true, as is demonstrated by S™® for n > 1
(see Chapter 2, Exercise 17).

3.3 Methods of calculation

So far we have defined the fundamental group and established some
of its properties; but it would be useless for proving topological
theorems if there were no means of calculating =,(X) for a given
space X. In general the problem of calculation is formidable, but if
X is a polyhedron the Simplicial Approximation Theorem can be
used to reduce the problem considerably. Indeed, it even allows one
to write down a finite set of generators and relations for =,(X).

In outline, the method is the following. First note that, by the
Simplicial Approximation Theorem, each homotopy class of loops
based at x, contains a simplicial map of some subdivision of I into X
(at least if x, is a vertex). Thus in defining =,(X, x,) it is sufficient to
consider only such ‘simplicial loops’, and divide them into equivalence
classes under homotopy rel 0, 1. But such a homotopy is a map of
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I x Iinto X, which is simplicial on the ‘boundary’: so we can use the
Simplicial Approximation Theorem again to show that the homotopy
itseif may as well be taken to be a simplicial map. It follows that we
can take for generators of ,(X, x,) all simplicial loops, and use
‘simplicial homotopies’ to give all the relations; and in fact this method
can be refined a little so as to produce only a finite number of generators
and relations.

In order to simplify the classification of simplicial homotopies
between simplicial loops, we start the detailed work by introducing
the idea of collapsing a simplicial complex onto a subcomplex.

Definition 3.3.1 Let K be a simplicial complex. An n-simplex o
of K is said to have a free face =, if 7 is an (n — 1)-face of o but is a
face of no other n-simplex of K. If o has a free face, it is easy to see that
o is not a proper face of any simplex of K, so that K — o — 7is a
subcomplex of K. The process of passing from K to K — o — 7 is
called an elementary collapse, and if L is a subcomplex of K, K is said
to collapse to L, written K \x L, if L can be obtained from K by a
sequence of elementary collapses.

Example 3.3.2 Let K be the simplicial complex shown in Fig. 3.3.
K \ % by the sequence of elementary collapses illustrated. §

g 020t = 020 0!
LN | |
}- \\ —.—% —— —
NN _
20 o3 oY a3 g° o3 g9 a’ od 03 a9

Fig. 3.3

An important property of collapsibility is that it is invariant under
subdivision. We shall not prove the general result here (though see
Exercise 5), since the following special case will be sufficient for our
purposes.

Proposition 3.3.3 Let K be a 1- or 2-dimensional simplicial complex,
that collapses onto a subcomplex L. Then if M is any subcomplex of K,
(K, M) \ L'

Proof. 1t is clearly sufficient to prove this result in the special
case where L is obtained from K by an elementary collapse, so that
L = K — o ~ 7, where 71s a free face of 0. Now the result is obvious
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if o is a 1-simplex, and if ¢ has dimension 2, it is easy to see that
[K(@)]) X [K(o) — ¢ — ]’: Fig. 3.4 illustrates a possible method of
collapse, in the case where K(g) N M is empty; the other cases are
dealt with similarly.

X "%ﬁ

Fig. 3.4

This is sufficient to prove that (X, M) \ L. |}

Corollary 3.3.4 (K, M)" X L™, for eackr > 0. |}

The first step in the programme outlined at the beginning of this
section is the construction of simplicial analogues of paths and loops.
For these, let X be a simplicial complex, and let L = K (o), where ¢
is the 1-simplex in R! whose vertices are 0 and 1: thus L is a triangula-
tion of I. If the vertices of L are 0 = P < b <... < b* =1, a
simplicial map u: |L®| — |K| is completely determined by the
sequence of vertices u(b°), u(b?), . . ., u(b*). This suggests the following
definition.

Definition 3.3.5 An edge-path in K, from a vertex a° to a vertex
a®, is a sequence a of vertices a%?'...a", such that for each r =
1,2,...,n, the vertices a’~}, a" span a simplex of K (we allow
a"! = a"). If a® = a", « is called an edge-loop, based at a°.

Given another edge-path 8 = a"a"*!, ., .a"*™, whose first vertex is
the same as the last vertex of «, the product edge-path is defined by
a.f = a%'.. . a%"*'...a"*™, and the mverse of « is «” ! =
a*a®~1, . .a% Clearly («.8}., = «.(B.y) (so that we may unambigu-
ously write «.B8.y), and («.B8)"! = B8~ !.a~1. (Compare Definition
3.23)

We need next a convenient definition of ‘equivalence’ between
edge-paths, analogous to the relation ‘homotopic rel 0, 1’ for ordinary
paths. The reader may not immediately perceive the correspondence
between the following definition and that for ordinary paths; however
he is assured there is one, which will become apparent in the proof of
Theorem 3.3.9 (it is based on the notion of collapsing).
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Definition 3.3.6 Two edge-paths o and B are eguivalent if one
can be obtained from the other by a finite sequence of operations of
the form

(a) if @71 = @', replace ...a""'a’... by ...a"..., or conversely
replace ...a"... by ...a'd"...;or

(b) if =1, a", a"*! span a simplex of A (not necessarily 2-dimen-
sional), replace ... a" " l@’a"*t. . by ...a"'a"*l. ., or conversely.

This clearly sets up an equivalence relation between edge-paths,
and we write @ ~ B for ‘e and f are equivalent’. Notice that if « is an
edge-path from a° to @*, and « ~ B, then g also is an edge-path from

0 k£
¢’ to @,

Proposition 3.3.7 Let «,, B, be edge-paths from a° to a", and let
ay, B, be edge-paths from a™ to a®*™, such that oy ~ B, and o«; ~ B;.
Then

(2) ooy ~ BoP;

(b) eg? ~ Bg;

(c) a®.ap = oy = 0.a";

(d) eg.05t ~ a® and agt.oy ~ a". |}

(Compare Proposition 3.2.4 and Corollary 3.2.6.)

It follows, just as in Theorem 3.2.7, that the set of equivalence
classes [a] of edge-loops o in K, based at a vertex a°, forms a group
(K, a°): the multiplication is defined by [«][8] = [«.B], the identity
clement is {a°], and the inverse of [«] is [ ™?].

Definition 3.3.8 7(K, a°) is called the edge-group of K, based at a°.
The resemblance between the definitions of m(K, @°) and (| K|, a°)
is of course no coincidence.

Theorem 3.3.9 =(K, a° =~ =,(|K|, a°.

Proof. The theorem is proved by constructing a homomorphism
0: m(K, a®) —> m,(]K|, a®), and then siiowing that 4 is onto ana (1-1).

Let & = a%’---a"a® be an edge-loop based at a°. For each pair of
vertices @', @’ that span a simplex of K, let u,:|L]— |K| be the
stmplicial map that sends 0 to a* and 1 to @’ (L = K(0, 1)). Then
u;; is a path in | K| from a' to @/, and we may define

Ola] = [uoy.u12. . . 450) € (| K|, a).

[t is first necessary to check that @ is well-defined, that 1is, that
0[c] = B[B] if « ~ B. We need only consider the case where B is
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obtaired from « by a single operation of type (a) or (b) in Definition
3.3.6, and by Corollary 3.2.6(b) operations of type (a) give no trouble,
since #,, is the ‘constant path’ at a’. As for operations of type (b), we
merely remark that if 4”1, a’, a"*! span a simplex of K, then
Uy Uy re1 =~ U1 r4q7el 0, 1 by an obvious homotopy.

It is easy to see that 8 is a homomorphism, For if 8 = q%"*!. .
a"*™a is another edge-loop based at a°, we have

0[«]0[B] = [uo1. . #nol[#o,n+1- - -%n+m,o0]

—

= [up;.. Upo-Ugna1. - -un+m.0]

= O[a.f].

Next, 8 is onto, since if [u] € m;(|K{, a°), we may assume by the
Simplicial Approximation Theorem that u: |L®| — | K| is a simplicial
map for some r > 0. If the vertices of |L™| are 0 = 8% < b < - .-
< b = 1, define a = u(b%).u(b?)...u(d”). Then 6[a] = [u], so that
6 is onto.

Lastly, 8 is (1-1). For if « = a%?. . .a"a° is any edge-loop, 8[«] is
represented by a simplicial map u: |M| — |K|, where M is a tri-
angulation of 7 with vertices 0 = ¢® < ¢? <.--< ¢"*! =1, and
u(c) = a" (0 < r < n), u(c**?!) = a% So if fa] = 1 in =,(|K|, a°),
there is a homotopy F: I x I — |K|, such that

F(t, 0) = u(t),
and
F(t,1) = F(0,t) = F(1,t) = a° (tel).

Now I x I can be triangulated as shown in Fig. 3.5 by a complex N,
the four sides of the square forming a subcomplex P.

o0 d'

cn+|

Fig. 3.5
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Since F | | P| is simplicial, by the Simplicial Approximation Theorem
we may assume that F is a simplicial map |(N, P)"| — |K]| for
somer > 0. We also know, by Corollary 3.3.4 and an argument similar
to that used in Example 3.3.2, that (N, P)™ ~ c°. It follows that in NV
the edge-loop B = ¢%*...c"*1d1d %" is equivalent to the edge-loop c°.
For if (d¢, d/, d*) is a 2-simplex with free face (d', d7), the edge-paths
...d'd’... and ...d'd*¥d’... are equivalent, and if (d*, d’) is a 1-
simplex with free vertex d*, the edge-paths .. .d’d'd’. . and ...d’...
are equivalent: hence the sequence of elementary collapses of
(N, P) defines a sequence of equivalent edge-loops starting with B
and ending with ¢°. Finally we have

¢ = a%'...a"°
~ a%a}. . .a"a%"c%a"
= F(c®)F(c')...F(c**)F(d')F(d°)F(c°)
~ F(c®), since F is simplicial,
= a9

so that [¢] = 1, and so 8 is (1-1). }§
An obvious corollary of Theorem 3.3.9 is

Corollary 3.3.10 =,(|K|, a°) depends only on |K?|. §

In particular, S* is simply-connected for n > 1. For by Example
2.3.13, S™ may be triangulated as ¢, where ¢ is an (n + 1)-simplex;
and if # > 1 this has the same 2-skeleton as K (o), whose pciyhedron
is contractible.

On the face of it Theorem 3.3.9 does not tell us very much more
about #,(]K|, a®) than the original definition. Surprisingly enough,
however, it is quite easy to give a finite set of generators and relations
for (K, a°), the trick being to ignore those parts of each edge-loop
that are contained in a subcomplex whose polyhedron is contractible.
If | K| is path-connected, there exists such a subcomplex that contains
all the * rtices of K.

Definiuon 3.3.11 A 1-dimensional subcomplex L of K is called a
tree if |L| is contractible. Clearly trees are partially ordered by
inclusion; a tree is maximal if it is not contained in a strictly larger

tree. (Since K has -.nly a finite number of simplexes, maximal trees
certainly exist.)

Proposition 3.3.12 If |K| é&s  th-connected, and L is a maximal
tree, then L contains all the vertices .f K.
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Proof. Suppose, if possible, that a is a vertex of X that is not in L.
Since |K| is path-connected, there is a path in |K| from a vertex b,
say, of L to a; hence, as in the proof of Theorem 3.3.9, there is an
edge-path ba°...a% in K. If a' is the last vertex of this edge-path
that is in L, {(a", a"*!) is a 1-simplex not in L (we may assume that
@ # a*'). ThusL = LU (a",a"*') U (a'*?) is a subcomplex strictly
larger than L; moreover |L| ~ |L|, since the simplex (a", a"*) can be
contracted to 4" without disturbing |L|. Hence |L| is contractible, and
L is not a maximal tree, contrary to hypothesns ]

If |[K| is path-connected, and |L| is a contractible subpolyhedron
that contains all the vertices of K, we can now construct a group G
with a finite number of generators and relations, which is isomorphic
to n(K, a°), and hence to m (| K|, a°). Totally order the vertices of K,
in the form a° < a! < ... < a®; thus each simplex of K can be
written in the form (a%, a%,...,a%), where §{, <f; <---<4,: a
simplex written in this way is called an ordered simplex. Let G be the
group generated by the symbols g, one for each ordered 1-simplex
(a', a’) of K ~ L, subject to the relations g,,g,.25, one for each
ordered 2-slmplex (@, @, @*) of K —~ L (if, say, a', @’ span a simplex
of L, g, is to be interpreted as 1).

Theorem 3.3.13 G x #(K, a°).

Proof. This time the theorem is proved by constructing homo-
morphisms 8: G — n(K, a°) and ¢: n(K, a°) - G, such that the
composites ¢8 and 6¢ are identity isomorphisms. s

To define §, choose an edge-path «, in L from a° to a', for each
vertex a’ (we take ay = a°), and set 6(g,,) = [o;.a'a’ .¢; ). Then for
each ordered 2-simplex (a', a’, a*) of K — L, we have

0(2)&nXH2u)) ™t = [o.a'd .af )[o;. " o ][y . a¥a" . a7 1)
= [a,.a'd’a’a*a*a' .o 1]
= [o,.a'd’a%a. o 1)
= [a;.a'a%a" . ']
= [oy.a7"]
=]

(if, say, @', o’ span a simplex of L, we still have gy) = [o.a'a’ .o Y],
since by Theorem 3.3.9 all edge-loops in L based at a° are equivalent).
Thus by Proposition 1.3.20 6 extends in a unique way to a homo-
morphism 8: G - (K, a°).
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The homomorphism ¢: n(K, a°) — G is defined as follows. Given
any pair of vertices &', @’ of K, that span a simplex , let

gnt, if (@, a')is an ordered 1-simplex of K — L,

gy, if (a!, @’) is an ordered 1-simplex of K — L,
h‘j =
1, otherwise.

Then if « = a%'a’. . .a%a° is an edge-loop in K, define
¢[a] = hOth' . ‘hkO € G.

It is easy to see that ¢ is an unambiguously defined homomorphism.
Now ¢6(g,,) = ¢[e.a'a’.a; '] = g, so that 40 is the identity
isomorphism of G. Morever if « = a%'a’. . .a*a° is an edge-loop in K,

O[] = Od([cco.a%" . a7 Y], . . [aa.a*¥a®. ag 1))
= O¢[ag.a’a' .o ']. . .0¢[a;.a*a’.a5].

But {e,.a'@*.a; 1] = 1 unless a’, @’ span a l-simplex of X — L, and in
any case 0¢[e,.a'a*.a; 1] = [«,.a'a*.a; !]. Hence 0¢[a] = [a], so that
04 is the identity isomorphism of 7#( K, @°). Thus 6 and ¢ are themselves
isomorphisms. [

Examples 3.3.14

(a) my(S?) > Z, the additive group of integers. To see this,
triangulate S! as the boundary ¢ of a 2-simplex 7 = (a°, @', a3), and
take for L the subcomplex ¢ — (a° a2). Certainly 'L| is contractible
and contains all the vertices, so that m,(S?) ~ Gp {gos} =~ Z.

(b) By Proposition 1.4.40(b) the real projective plane RP2 can be
obtained from a square ABCD by identifying the sides AB and CD,
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and BC and DA (compare Chapter 2, Exercise 8). A triangulation of
RP? is shown in Fig. 3.6, in which the shaded area represents a
contractible subpolyhedron that contains all the vertices, and the
vertices are totally ordered by their superfixes.

Thus 7,(RP?) is the group generated by 802» Los» £14» 6’15 and 8’25,

subject to the relations g0 814854 202824808 £02826808 > £128288 15

and g£,,£,58i5' Thus in = (RP?), g1, = £o4, oz = Loss Lo2as = 1,
825 = £15 and g4 = g,:. These relations imply that all five generators

are equal, and (go5)® = 1, that is, =,(RP", is isomorphic to Z,, the
group of integers mod 2. |

The reader will see from this last example that, although Theorem
3.3.13 guarantees a finite set of generators and relations for =,(|K|),
it may well produce far more generators and relations than are
necessary. Indeed, for more eomplicated spaces than spheres or the
real projective plane Theorem 3.3.13 may give. such an unwieldy
" description of the fundamental group that it is useless for practical

calculations. The trouble is that even comparatively simple spaces may
need a large number of simplexes to triangulate them: for example,
the torus (see Chapter 2, Exercise 8) cannot be triangulated with less
than 7 O-simplexes, 21 1-simplexes and 14 2-simplexes.
We therefore seek a method of improving Theorem 3.3.13 so as tc
_produce as few generators and relations as possible. The first step ir.
this direction is to establish a theorem that expresses the fundamental
group of the union of two polyhedra in terms of the fundamental
groups of the two polyhedra and of their intersection. However, the
result of this theorem is stated in terms of the free product of Awo
groups, and so we must first define this.

Definition 3.3.15 Given two groups G and H, the free product
G » H is the group generated by all the elements of G and all the
elements of H, subject to the relations g,g,25 %, for all g,, g,, g;€ G
such that g g, = gi, and hihshsl, for all hy, by hg € H such that
hihy = kg

Example 3.3.16 If G and H are each free groups generated by
single elements a, b respectively, then G+ H = Gp {q, }. |}

In fact the set of generators and relations for G » H given in
Definition 3.3.15 is in general unnecessarily large. G+ H can be
described in terms of any finite sets of generators and relations for G
and H, as follows.

. Proposition 3.3.17 IfG = Gp{ay,...,ap; ..., c.x,,} and H =
Gp{bs,..., 0,5 Byy- ..y Be)s then
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GeHxGplay,....,a8mby,....,050,...,0¢4 B ..., B4
Proof. Let G:H be the group

Gp{ay ....,8mbyy ... by504, ..y an Byye. oy Bob

and let §: G: H — G + H be the obvious homomorphism, that sends a
word in a@’s and b’s to itself; 6 is unambiguously defined since each «
or B is sent to 1. Similarly, let ¢: G+ H— G:H be the obvious
homomorphism: again ¢ is unambiguous, because each relation of the
form g,g,85!, for example, must be a word in conjugates of a's.
Moreover the composites 8¢ and 8 are both identity isomorphisms,
so that € and ¢ are isomorphisms. §

We can now state the theorem on the union of two polyhedra.
- Fog this, let L and M be subcomplexes of a simplicial complex X,
such that LUM = K, and let N = L " M. Write A, u for the
inclusion maps [N| < |L|, |[N| [ M| respectively.

Theorem 3.3.18 If |L|, |M| and |N| are path-connected, and a® is
a vertex of N, then mi(|K|, a°) is the group obtained from m,(|L|, a°) »
m(|M|, a°) by adding extra relations (A, c)(puy€) ™1, one for each element
¢ of m(|N|, a°). (As in Proposition 3.3.17, it suffices to add the relations
(A)(ra€) "1, one for each element c in a finite set of gemerators for
"l(lNl) ao)') ’

Proof. Let Ty be a maximal tree in N. As in Proposition 3.3.12,
Ty can be extended to trees T, in L, containing all the vertices of L,
and Ty in M, containing all the vertices of M, in such a way that
T,NAN=Ty=TynNNand Ty = T, U Ty is a tree containing all
the vertices of K.

Now order the vertices of K : in doing so, the vertices of L, M and N
are also ordered in an obvious way. By Theorem 3.3.13, #,(| K|, a°
is generated by the symbols g, one for each ordered 1-simplex of
K — T, subject to the relations g, g2, one for each ordered 2-
simplex of K — Tg. This is clearly the same as the group generated
by the symbols g, %, one for each ordered 1-simplex of L — T,
M — T, respectively, with relations of the form g, g git, Aukuhil,
together with g, k!, whenever g, = A, in K. But this is exactly
m(|L|, a°) « m,(|M |, a°), with extra relations (A, g,;}(x«£i;) "1, one for
each generator g, of my(|N|, a°). §

There are two important special cases of Theorem 3.3.18. First,
if |N| is simply-connected (in particular if |N| is contractible or just a
point), then m,(|K|, a®) = = (|L|, a°) « m,(|M|, a°). A more impor-
tant corollary, however, refers to the following situation. Let | K| be a



§3.3 METHODS OF CALCULATION 81

path-connected polyhedron, and let @ = a%!...a"%° (n > 2) be an
edge-loop in K, in which no two consecutive vertices are the same.
Let [L| be a regular polygon of (n + 1) sides in R?, triangulated as
shown in Fig. 3.7 (b is the centre of |L|).
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rd
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Fig. 3.7

Now (L, M) is a triangulation of (E2, S), where M is the ‘boundary’
of L. Moreover « determines a (simplicial) map f: S* — |K| by the
rule f(§") = a" (0 < r < n): let X be the adjunction space |K| U, E2,

Theorem 3.3.19 »,(X, a°) is obtained from = (|K|, a®) by adding
the relation 0[a), where 0: n(K, a®) — my(| K|, a®) is the isomorphism
of Theorem 3.3.9.

Proof. 1n order to apply Theorem 3.3.18, it is first necessary to
triangulate X. To do so, let 4~ be the abstract simplicial complex
formed from the abstractions of K and (L, M)’ by identifying the
vertices " and a', for 0 < r < n. If we identify 5" with a’, we auto-
matically also identify the abstract simplex (b, b"+!) with (a", a"*?)
for 0 < r < n, and (", 5°) with (a®, a®), but no further identification
of simplexes takes place. This is because

(a) since consecutive vertices of « are distinct, and each simplex
of (L, M) meets M in a face, no simplex is reduced in dimension by
the identification;

(b) two distinct 1-simplexes (&%, c'), (b's, c?) of (L, M) —
cannot be identified unless ¢! = ¢?; but then . and b% must be
consecutive vertices of M;

(c) given two distinct 2-simplexes of (L, M)', there must be a
vertex, not in M, that is in one simplex but not the other.
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(The reader may find Fig. 3.8 helpful in following the above argument.)

It foliows that if IV is a geometric realization of 4", then |N| is homeo-
morphic to X (it has the correct topology by Corollary 2.3.9).

Now choose a 2-simplex o = (8%, ¢, ¢2) in (L, M)’ that has §° as a
vertex (see Fig. 3.8), and writc ¥ = |N — ¢|. By Theorem 3.3.18,
m{X, a°) is obtained from m,(Y, a°) * =,(0, a°) by adding relations
(Axd)(ud) ™! for each generator d of 7,(]s], a°), where A and p are the
inclusion maps. But =,(o, @°) = 0, since o is contractible, and by
Example 3.3.14(a) my(]6], a°) is a free group generated by the single
element 0[8], where 8 = b%'c%°. It follows that 7,( X, a®) is obtained
from #,(Y, a%) by adding the relation 8{f].

To complete the proof, note that, since |L] is convex, radial pro-
jection from the barycentre of o is a (strong) deformation retraction of
(L, M) — o| onto |M], and so can be extended to a deformation
retraction p: Y — |[K|. So p,:m(Y, a®) — n,({K|, a%) is an iso-
morphism, and clearly p,6[8] = [c]. §§

A somewhat surprising corollary of Theorem 3.3.19 is that any
group with a finite set of generators and relations can be gealized as
the fundamental group of some polyhedron.

Theorem 3.3.20 Let G = Gp{by, ..., by; b1, . - ., Bu}. There exists
a polyhedron |K| and a vertex a° of K such that m,(|K|, a°) = G.
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- Proof. We first construct X, and then show that it has the right
properties.

Let Y be a ‘wedge’ of m circles S}, S3,..., Si. More precisely,
take m copies S}, S3,..., S} of S, where a pomt of S} is denoted by
(*1, 23),, and fet Y be the space obtained from the dlSjOlnt union by
identifying together all the points (1, 0)y, (1, 0),, .. «» (1, 0),: call this
point a°

X is now formed from Y by attaching 2-cells by maps obtained
from the relations 8,, . . ., 8,. Now each such 8, is a word in J’s: say
Br = bg:- - b, where each e is + 1. Corresponding to 8,, define a map
fi: St —> Yby the rule

(cos (p6—2(g—~ l)m), sin (p6—2(q—"1)m)),, if ;= 1,
(cos (2gm — pB), sin (2gm — pO)),, if ¢, = —1,

for 2(q - m/p < 6 < 2qnfp, 1 € ¢ € p. In other words, S?! is
divided into p equal parts, and the gth segment is wrapped round S},
forwards or backwards according as ¢, is 1 or —1. Now attach a
2-cell E2 to Y by each of the maps f, (1 < r < n), and call the
resulting identification space X.

The fact that X has the required properties is now an easy corollary
of Theorem 3.3.19. By radial projection from the origin, each Siin Y
mdy be triangulated as the boundary of an equilateral triangle
(@, at, a?), where a® = (1,0), a! = (—3% V3[2), and a2 =
(-4, —V3]2),; atriangulation of Y results if we identify a2, a3, ..., a2
to a single point a°. Similarly, each £2 may be triangulated as a regular
polygon of 3p sides, where p is the number of segments into which ths
boundary S! of E2 is divided in the definition of f,: see Fig. 3.9.

f:(cos 6, sin §) = {

§ 0’3
q, )
r b,z

apP

Fig. 3.9
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The point of doing this is that now each 2-cell E? is attached to Y as
in Theorem 3.3.19 by means of the edge-loop

ﬁr = (afgallga‘zgaa)‘l e (alo'a‘l,a?,a?,)"'

Thus X is triangulable, and we might as well assume that X is a
polyhedron |K|. Since m,(Y, a°) is the free group generated by
1 -+ .» by where b, = [a%ala2a?}, it foilows at once that m (X, a°) =
G. § .

This theorem is not only of interest in itself, but, used ‘in reverse’,
it provides a very practical method of calculating the fundamental
groups of certain spaces. By Corollary 3.3.10, if the 2-skeleton of a
simplicial complex K is a triangulation of a space X constructed as in
Theorem 3.3.20, then we can immediately write down a set of genera-
tors and relations for my(}K]); and this method will usually yield a
much smaller set of generators and relations than would be obtained
by using Theorem 3.3.13 directly.

Examples 3.3.21

(a) Consider the real projective plane RP? again. By Proposition
1.4.40(b) this is the space S* U, E2, where f: S — S is defined by
f(cos 0, sin 8) = (cos 26, sin 26): see Fig. 3.10, where « represents
the generator of =,(S?, a%.

Sl

Fig. 3.10

It follows immediately that = (RP3, a° = Gp {«;e?} = Z,. The
reader should compare the ease of this proof with the messy calculations
of Example 3.3.14(b).

(b) As in Chapter 2, Exercise 8, the torus T is the space obtained
from a square ABCD by identifying the sides AD and BC, and then
AB and DC. By making the identifications on the boundary of ABCD
first, we see that this is the same as starting with the wedge Y of two
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circles S? and S}, so that »,(Y) is the free group generated by b,, b3,
say, and then attaching a 2-cell as in Theorem 3.3.20 by a map
f: S'—» Y corresponding to the word b,b;b; 155 1: see Fig. 3.11.

Fig. 3.11

Hence the fundamental group of the torus is Gp {b,, by; bybgbs 1851);
in other words #,(T') is a free abelian group with two generators. ||

We end this section with an example of the calculation of the
fundamental group of a more complicated space. This example will also
be needed in Chapters 5 and 8.

Example 3.3.22 Let X be the space obtained from (the surface of)
a dodecahedron by identifying opposite faces after a twist through an
angle n/S. By stereographic projection from the mid-point of one face,
the dodecahedron can be drawn as in Fig. 3.12, in which the vertices
and faces are labelled according to the identifications.




86 THE FUNDAMENTAL GROUP CH3

It will be seen that the vertices and edges of the dodecahedren become,

after identification, the space Y obtained from the five points @°, @, a%,

a3, a* by joining each pair of points by a line: see Fig. 3.13.

Fig. 3.13

Now Y is plainly triangulable, and X is the space obtained from
Y by attaching six 2-cells A, B, (", D, E and F by the edge-loops
a®ala?a®a*a®, aa*alala?a®, o®acalaPala’, a®ata®alala®,. aaa*ata’a’
and a%?a'a*a%a® respectively. Thus 7,(.X, a°) can be calculated by
Theorem 3.3.19.

The first task is to calculate 7 (Y, @®). This is easily done by using
Theorem 3.3.13: a maximal tree consists of the 1-simplexes (a° a*),
(a° a?), (a° a®) and (d° a*), so that =, (Y, ") is the free group
generated by

a = [a%a'a?a%],

B = [2°a'a®a"],
y = {a%a’a*a%],
8 = [a%a%a®a’),
e = [a%2%ata’]
and { = [a%a%a%a’].

So by Theorem 3.3.19, 7 (X, a°) has these generators, subject to the
following six relations, given by the faces 4, B, C, D, E and F:

asc’ ,y"IBS'-l’ ec—lﬁ—l’ ‘E_la-lB, 8“16}’—1; a—l,yg‘l
(we write [a%a'a’a®a*a®], for instance, in the equivalent form
[a%ata%a®][a%a%a®a®][a’aBa%a®] = «8(). The first, third and fifth of
these relations give a = {~18"}, B =¢€("!, ¢ = 8 %; and the
remaining three relations then become

€ 18el"1871, € 18Lel™Y, 8L8 el
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From the first of these, { = 8 1¢~1d¢, so that =,(X, a®) now has two
generators 8 and ¢, and two relations

€ 28ed " 1ed, € 18ed~%€d.

The second of these can be replaced by the product of itself and the
inverse of the first (or rather by the conjugate of this element by e~2):

(e 18e57268)8 e 1871871 = €ded 11871,

and the first relation can then be replaced by this new relation mul-
tiplied by its inverse (with conjugation by €8 before and after the
multiplication):

3 le HeBed "2 18718202 = ed e 35163,

Now write § = ne™1, so that the generators are now € and 7, and the
relations are
.

-1 2

€

ene e~ = enen”

een)
and

cen~le " 2%ente? = €2 le g1l
These in turn are equivalent to

*(ene)™1,  e(nen)?,

7°(me)~% ()%
and this gives a concise expression for 7,(X, @°) in terms of generators
and relations. It is not immediately obvious that the group is non-triv-
ial, but in the group-of permutations of 1, 2, 3, 4, 5 the permutations
x:(1,2,3,45)>4213,5)

or to

and
. y:(,2,3,4,5)—+(2,3,45,1)

can easily be seen to satisfy x® = (xy)® = y* = 1, and so generate a
group isomorphic to a quotient group of m,(X, a%), which is therefore
non-trivial. J

3.4 Classification of triangulable 2-manifolds

As an example of the application of the fundamental group to
geometric problems, we shall show in this section that the theorems of
Section 3.3 allow easy calculation of the fundamental groups of certain
polyhedra known as 2-manifolds or surfaces. By using geometric
arguments as well, this leads to a complete classification of these
2-manifolds, up to homeomorphism. This is a good illustration of a
typical procedure of algebraic topology: one first uses a geometric
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argument to show that every 2-marifold is homeomorphic to one of a
standard set, and then shows that the ‘standard’ manifclds are all
topologically distinct, by showing that their fundamental groups are
all distinct.

For completeness, we shall first define manifolds in general, and
then specialize to 2-manifolds. Roughly speaking, an n-manifold is a
topological space that is locally ‘like’ Euclidean space R™.

Definition 3.4.1 A Hausdorff space M is called an n-manifold if
each point of M has a neighbourhood homeomorphic to an open set
in R®,

Notice that any space homeomorphic to an n-manifold is itself an
n-manifold, as also is any open subset of an #-manifold.

Example 3.4.2 R" itself is clearly an n-manifold, as also is S™.
To prove this, let e be the open unit disc in R*, of points x such that
fix]l < 1, and note that the standard map 8: E® — S™ restricts to a
homeomorphism 8: " — S* — (-1,0,...,0). Thus every point of
S™ other than (-1,0,...,0) is certainly contained in an open set
homeomorphic to e*, and we can deal with the exceptional point by
constructing a similar homeomorphism from e* to the complement
of (1,0,...,0)in S™.

Other examples of manifolds are the torus and the real projective
plane: both of these are 2-manifolds, as can readily be proved from
the definition.

Lastly, consider the space X obtained from two copies S}, S} of the
-ircle ! by identifying each point (x,, x,); with the corresponding
point (x,, x,),, except for the points (1, 0); and (1, 0),, which remain
distinct: see Fig. 3.14.

~
o

Fig. 3.14

X2

(1,01,

(1,0) !
AL
X

t
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‘Now (1, O)1 has an open neighbourhood consisting of (1, 0); U C,
where C is the complement in S* of (1, 0) and (—l 0); and this
neighbourhood is homeomorphic to an open interval in R!, Similarly
(1, 0); has a neighbourhocod homeomorphic to an open interval, and
this property is clearly true for all other points of X. However, X fails
to be a manifold, since open neighbourhoods of (1,0), and (1, 0),
always intersect, so that X is riot Hausdorff. l

“The last examplé shows the reason for insisting on the Hausdorﬁ
condition in Definition 3.4.1: we wish to exclude such freak spaces.

In order to apply the theorems of Section 3.3, we shall consider only
trtangulable n-manifolds in this chapter. Since we are partlcularly
interested in 2-manifolds, this is-only a mild restriction, for it can be
shown that every compact 2-manifold is triangulable, although the
proof of this is ‘beyond the scope of this book. However, before
attempting to prove the classification theorem for triangulable 2-
‘manifolds, we need a few results about simplicial complexes whose
polyhedra are manifolds: these are based on Theorem 2.4.5.

Proposition 3.4.3 Let K be a simplicial complex whose polyhedron
is an n-manifold. Then for each x € |K|, |Lk (x)] ~ S*-*.

Proof. By definition, there exists an open set U in R* and a
homeomorphism 4 of U onto a subset A(U) of | K| that contains x; let
.y = h~1(x). Since U is open, there exists ¢ such that the set B of
points z such that d(y, 2) < e is contained in U: then % is 2 homeo-
*morphism of B onto a subset of |K |, and x is in an open set contanned
in h(B

But)B can be tnangulated as.in Example 2.3.13, with y as the vertex
a,. Hence by Theorem 2.4.5 |Lk(x)| ~ |Lk (»)], which is homeo-
morphic to S*-1, | .

\

Corollary 3.4.4 If (K| is a Z-mamforld thcn

(3) dim K = 2; o
(b) eack 1 -szmplex of K is a face of just two 2-sitplexes.

Proof K cannot have a simplex o of dimension n > 2, for if x
were in the interior of such a simplex, then by Example.2.3.13
|Lk (x)] would be homeomorphic to S*-!, But m,(S*~1) = Oifn > 2,
whereas 7,(S!) ~ Z, so that S"~! is not homotppy-eqmvalcnt te S,
and hence o cannot exist.

Now let x be a point in the interior. of a l-snmplex 7, and suppose
that 7 is a face of # 2-s1mplexes Then Lk () is the subcomplex shown
in Fig. 3.15, with 7 ‘strings’ joining 4° and a* (we must have 7 >.0,
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since otherwise |Lk (x)| = a°® U a?, which is not homotopy-equivalent
to S).

ak

N

a0
Fig. 3.15

A maximal tree of Lk (x) is shown in thick lines in Fig. 3.15. Thus
by Theorem 3.3.13 =,(|Lk(x)|, a®) is a free group generated by
(r — 1) elements. This contradicts Proposition 3.4.3 unless 7 = 2. §

We now start werk on the classification theorem for triangulable
2-manifolds. As a first step, we prove the following result on path-
connected polyhedra (there is no loss of generality in supposing that
the polyhedra are path-connected, for otherwise, by Exercises 2 and
10, we merely consider the path-components separately).

Theorem 3.4.5 Let K be a simplicial complex whose polyhedron is a
path-connected 2-manifold. Then |K| is homeomorphic to the space
obtained from a regular polygon of 2n sides in R? by identifying the
edges in pairs. '

Proof. We can construct a space homeomorphic to | K| as follows.
Choose any 2-simplex o, of K: this is (linearly) homeomorphic to an
equilateral triangle in R2. Now choose any 1-face 7 of o, ; by Corollary
3.4.4(b) = is a face of just one other 2-simplex, o5, say. The subspace
o, Vg, of |K| is (simplicially) homeomorphic to the equilateral
triangle with another triangle attached along one edge, and this in turn
is simplicially homeomorphic to a square in R?: see Fig. 3.16.

(o)

T ’\ (T)

(o)

Fig. 3.16
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This process can be continued: at the general stage we have oy U - -
U o, simplicially homeomorphic to a regular.(m + 2)-sided polygon
in R3, although some pairs of edges in this polygon may have to be
identified: each edge corresponds to a 1-simplex of K that faces two
2-simplexes, and if both these simplexes are alrea ly represented in
the polygon, then the edge must be identified with another edge of the
polygon (it must be another edge, and not an ‘interior’ 1-simplex,
since otherwise there would be a 1-simplex of K facing more than
two 2-simplexes). If on the other hand only one of the two 2-simplexes
is already represented in the polygon, call the other one o,,,, and
construct a regular (m + 3)-sided polygon by attaching a triangle
corresponding to o,,; along the appropriate edge, and taking a
simplicial homeomorphism of the resulting space onto a regular
polygon in R2.

It is clear that we can continue attaching triangles and deforming
into regular polygons, until we finally reach a regular polygon P of 2n
sides in which each edge is identified with ore other edge (this is why
P must have an even number of edges). This is the result we want,
provided every 2-simplex of K is now represented in P.

To prove that no 2-simplex has been ieft oui, suppose on the
contrary that P, with its appropriate identifications, is homeomorphic
to |L|, where L is a subcomplex of K. Choose a vertex of L and a
vertex of K — L, and join them by an edge-path (since |K| is path-
connected); let a be the last vertex in L and b be the next vertex, so
that (g, b) is a 1-simplex of K — L. We can obtain a contradiction by
showing that |Lkg(a)| is not path-connected, and so certainly not
homotopy-equivalent to S'. For suppose, if possible, that some vertex

T

Lk(a)nL—’ D
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in Lk(a) N L can be joined to b by an edge-path in Lk (a). Once .
again, let ¢ be the last vertex in Lk (a) NL, and d be the next vertex:
.see Fig. 3.17.

Now (¢, d) € LkYa), %0 that (4,¢,d) is a 2-s|mplex of K~ L. But
it is clear from the-construction of L that. each.l-simplex of L, in
particular (4, ¢), faces two 2-simplexes of L. Hénce (g, ¢)- faces at.
least three 2- -simplexes of K, which contradicts Corollary 3.4.4(b).
Thus {Lk (a)| is not path-connécted, which is again a contradiction,
so that L must he the whole of K.} . ‘ '

Let the vertices of a regular 2n-sided polygon be BO, BY, ..., 6% 1, b0,
in order as we go round the boundary Now if the edges of P are
identified in pairs, an edge (¢, d) is xdentlﬁed with one other edge
(¢, d’), say, where ¢ is identified with ¢’ and d with d’. For each such
pair of edges, denote both by a symbol such as x, and denote the
‘reversed’ edges (d, ¢) and (d’, ¢ ) by x~%; of course, different symbols
are to be used for different pairs of edges. In this way P can be
specified, with its identifications, by ‘the sequence of symbols such as
x or x~ ! correspunding to the sequence of eflges (b° bY), (b, 3),...,
(b%"-1, b°). For example; the torus can be specified in this way by the
" sequence xyx~'y~!, and the real prOJectlve plane by xy"xy“‘
see Fig. 3.18.

be tx ' bl bto‘ X . b'
y y y 19%
b x b b . x b*

2

" Torus: xyxly ‘. RPxy  xy™! R

' Fig. 3.18

Theorem 3.4.5 shows, then, that a polyhedton |K| that is a path-
connected 2-manifold can bé described by a finite sequence of symbols
such as x or x~1, in which.each letter occurs twice and there are at
least two different letters: let us call such a sequence admissible.
Clearly any admissible sequence. specifies a regular polygon with
.identifications of edges in pairs, and hence determines a topological
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space Unfortumely this is not yeta classification theorem, since it is
quite possible ‘for two- different admissible sequences to specify.
homeomorphnc spaces. The next step is to resolve this difficulty, by
giving three rules for changing an admissible sequence, while alteting
* the corresponding space only by a homeomorphism. To state these
rules, denote (possibly empty) sequences of symbols by capital
letters, and if say A.= a,0,- - -«,, wherz each a, is of the form x or
x~1, write A~ for the sequence af'e;l;:--arl (by convention-
(@) = ).

‘Rule 1, Replace ABxCDxE by AyDB~'yC-1E, where y is a new
symbol.

Rule 2. Replace ABxCDx~'Eby-AyDCy~1BE.

Rule 3. Replace Ax2~1B or Ax~*xB by AB, provided AB contains
at least two letters (each occurring twice, of course).

_To justify these changes, we prove:

Theorem 3.4.6 The application of Rules 1-3 to an admissible
sequence gives a new admissible sequence whose corresponding space is
homeomorphic to the space corresponding to the original sequence.

Proof. 1Tt is clearly sufficient to prove this for a single apphcathn ,
of Rule 1, 2 or 3.

Rule 1. In the regular polygon corresponaing to ABxCDxE, join
the ‘end-point’ of 4 to the end-point of C by a straight line, denoted °
by y. Cut the polygon in two along y, and join the two pieces together
again by identifying the edges corresponding to x: see Fig. 3.19.

A &
¢ -7 < 0 ‘ﬁ\[
PPt ~ \ c.’
RN rd
\ » -
x y
y f - x y
- rd ~
< , , ~ v
B\\ /£ ’/’/D \é\s ¥
~ 4 ~

Fig. 3.19

The new space can be deforined into a regular polyhedron again, since
it can be triangulated by joining the boundary edges to the mid-point
of x. When corresponding cdges of the new polygon are identified,
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we obtain a space homeomorplnc to the original one; and the new
sequence of symbols is 4yDB-1yC-1E.

The reader should notice, however, that this proof is valid only
if BC and ADE are non-empty sequences, since otherwise the polygon
is not cut into two pieces. However, if BC is empty there is nothing
to prove, whereas if ADE is empty, the replacement of BxCx by
yB~'yC-! corresponds merely to going round the boundary of the
polygon in the opposite direction (and putting y = x~1). And BC
and ADE cannot both be empty, since an admissible sequence
contains at least two letters.

Rule 2. ‘This admits a similar proof.

Rule 3. Consider the regular polygon corresponding to Axx~1R.
By starting from a different vertex in the boundary, if necessary, we
may assume that each of 4 and B represents at least two edges. Make
a cut y from the end-point of B to the end-point of x, and deform
each of the two pieces into regular polygons in which the two edges
x and y are made into just one edge; finally join the two polygons
together by identifying the edges corresponding to xy~?, and deform
the result into a regular polygon again: see Yig. 3.20.

/ \ A
}
4 y i
\ 7 ’ .
4\ / Aé
\ /8 | i 4
\r’ ]
Fig. 3.20

As in Rule 1, when corresponding edges of this polygon are identified,
we obtain a space homeomorphic to the original one, and the new
sequence of symbols is 45. J

Rules 1-3 allow the -reduction of admissible sequences to certain
standard forms. Now each letter x in an admissible sequence occurs
twice; call these two occurrenc: a similar pair if the sequence i3 of
the form ---x---x---or ---x=...x~1... and call them a reversed
pair if the sequence is of the form .. .x.-.x~"1...0or .. .x"1. .. x|
The following four steps can be applied to an admissible sequence,
where each step is a combination of applications of Rules 1-3.

Step 1. Replace the sequence by AB, where 4 is of the form
%y %, X%y - - x,%, and B contains only reversed pairs (of course, 4 or B
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may be empty). This is justified by the following sequence of opera-
tions, using only Rule 1, where C is supposed to be already of the
form x,x,%3%;- - -
CDxExF — CyD-‘yE-F
~> CzzDE-'F.
(Each similar pzir may be assumed to be of the form -..x...%---,
by replacing x~! by a new symbol y if necessary.)

Step 2. Now replace AB by ACD, where C is of the form
Y13 y: 27 y2,¥7 12,71, and D contains only non-interlocking
reversed pairs (two reversed pairs are said to smterlock if they occur in
the form ---y-.-z.-.y~1...371...), This is justified by Rule 2,
where E is assumed to be already of the required form.

EFaGbHa~1b-'J — EcGbHc~'FI" -'J (here ais the ‘x’ of Rule 2)
~ EcGdFIHc 1w~} (with b as ‘x)
— EeFIHGde'd ~'J (with c as ‘x)
~ Eefe=f-1FIHGT (with d as ‘x’).

Step 3. If A is non-empty, replace ACD by ED, where E is of the
form x,x,x,x,- - -, that is, convert a!l interlocking reversed pairs to
similar pairs. This uses Rule 1, but in reverse:

Fxxaba='b~'G « Fyb~'a~lya~1b-1G

~ Fyay~laccG
«— FyyddecG.
Step 4. Finally, consider D, which consists only of non-inter-
locking reversed pairs. Let the closest pair in D be « - -x---x~2...;

then there can be no symbols between x and x-?, since if both
members of a pair lie between x and x~! they form a closer pair,
whereas if just one member of a pair is between x and x~! there is an
interlocking pair in D. Thus we can ‘cancel’ xx~! by Rule 3, and
similarly cancel the rest of D, provided what remains always contains
at least two letters.

The final result of Steps 1-4 is that the admissible sequence now
has one of the forms

XXyt Xy tyst (g2 1)
or

X1X1Xg%g " *  XpXy (h>2),
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with three remaining special cases xxyy~1, xx~lyy~! and xyy~1x~1:
these cannot be further reduced by Rule 3, although it will be noticed
that xyy~x~1 represents the same space as x~!xyy~!, and hence as
xx~lyy~1, since a cyclic permutation of symbols merely corresponds
to taking a different starting point for the boundary of the correspond-
ing square, -

Let M, (g > 1) be the space obtained from a regular 4g-sided
leygon by identifying the edges according to the sequence
X _yl:x'l sl xyexs tyst, and let N, (b > 2) be defined similarly
using x,x; - - - x,x,; also let N; and M, be the special cases defined by
xxyy~1 and xx~1yy ! respectively.r We have so far proved

Theorem 34.7 A path-c'ormected triangulable 2-manifold is
homeomorphic to one of the spaces M, (g 2 0)or Ny, (h 2 1). §

Examples 3.4.8

{a) M, is homeomorphic to S2. For S2 can be triangulated as the
boundary of a 3-simplex (4, B, C, D), and the process described in
the proof of Theorem 3.4.5 yields the square shown in Fig. 3.21, with
corresponding sequence xx~lyy 1.

c x e
x y
A
& y 0
Fig. 3.21

(b) N, is the real projective plane RP2. For Fig. 3.18 shows that
RP? is the space defined by the sequence xy~'xy~!, and a single
application of Rule 1 reduces this to zzyy~!. }§}

In fact Theorem 3.4.7 is exactly the classification theorem for
triangulable 2-manifolds, although it still remains to prove that each
of M, and N, are topologically distinct, and that each of these spaces
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_isa triarigulable 2-manifold. The first point is established by calculat-
ing the fundamental groups of M, and N,, by using Theorem 3.3.20
(compare Examples 3.3.21).

Theorem 3.4.9

(@) m(My) = Gp {xy, ¥y, - -, %o Vo3 TaYa¥7 J’l Xy YY)
(this is to be interpreted as 0 if g = 0). ~
(b) "I(Nh) = (’p {‘1’ <oy Npy ‘V? xﬁ}

Proof.

(a) For g > 1, M, is obtained by identifying edges in a regular
4g-sided polygon P. \ow all 4¢ vertices of P are identified together
in M, since .

initial point of ¥, = end point of y,
= end point of x,
= initial point of y,

- initial point of x,,

and so on. Thus the boundary of P becomes, after 1dent1ﬁcation, a
‘wedge’ of 2g circles, one for each letter &, or y,, and M, is the
space obtained bv attachmg a single 2-cell according to the word
Xy Y%7yt X,y vl Theorem 3.3.20 immediately yields (a),
at least if g 2 1. However, if g = 0, M, = S2, and m(S?) = 0 by
Corollary 3.3.10.

(b) Again, for A > 2, .\, is obtained by identifying edges in a regular
2h-sided polygon P. As in the proof of (a), all 2k vertices of P are
identified together in V', and the boundary of P becomes a wedge of |
k circles, one for each letter x,. So N, is the space obtained by attaching
a 2-cell according to the word xZ. . -x2, which proves (b) if £ > 2. But
for h=1 N, = RP? and = (RP? = Gp {x;x%} by Example
3.3.21(a). §

Corollary 3.4.10 The spaces M, and N, are all topologzraln
distinct.

Proof. Tt is sufficient to show that their fundamental groups are
not isomorphic. Now in gencral the problem of deciding whether twq
groups given by generators and relatior.s are isomorphic is difficult,
and may even be insoiuble. However, it is sufficient here to remark
that, by Proposition i.3.24, if two groups G and H are isomorphic,
then so are their ‘abcliznizations’ G/[G, G] and H/[H, H}.
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Now by Proposition 1.3.28, #,(M,)/[7(M,), m:(M,)] is

Ab {xlv Yy X yy}'
and my(Ny)/[my(Np), m1(Ny)] is

Ab{xy, ..., x5 2(%y + - + x)}
By setting y = x; + - - - + x,, the latter is the same as

Ab {x;, ..., %1, ¥ 29}

which is the direct sum of a free abelian group with (2 — 1) generators
and a group isomorphic to Z,. So by Theorem 1.3.30 the groups
m(M,) and my(N,) are all distinct, so that no two of M, or N, can be
homeomorphic. §

Tt follows also, of course, that no two of M, or N, are homotopy-
equivalent, so that for triangulable 2-mamfolde +he classification up to
homeomorphism is the same as the classifica. -0 up to homotopy
equivalence. In particular, any manifold homotopy-equivalent to S?
must actually be homeomorphic to S2; this resuit is of especial interest,
since it remains an unsolved problem whether ct not the correspond-
ing result for 3-manifolds and $3 is true: this is the famous ‘Poincaré
conjecture’.

To complete the classification of triangulable 2-manifolds, it now
remains only to prove

Theorem 3.4.11 Each of M, and N, ;'.s“a, trianéulable 2-manifold.

Proof. As in the proof of Theorem 3.4.9, Theorem 3.3.20 shows
that each of M, and N, is triangulable. Hence it is sufficient to prove
that they are 2-mamfolds

Consider the 4g-sided polygon P correspondmg to M,, forg > 1.
It is clear that a point of P not on the boundary has a neighbourhood
homeomorphic to an open set in R3. Also-a point 4 on the boundary
of P, other than a vertex, cccurs in just two-edges, say the edges
corresponding to the symbol x, :-see Fig. 3.22. )

Choose ¢ so that the two ‘e-neighbourhoods’ of 4 (the shaded areas
in Fig. 3.22) intersect the boundary of P only in the cdges ¥). After
identification, these e-neighbourhoods fit together to make aneighbour-
hood of 4 that is clearly homeomorphic to an open disc in R2.

Lastly, consider the point B of M, corresponding to the 4g vertices
of P. This too has a neighbourhood homedinorphic to an open set in
R?, obtained by piecing together e-neighbourhoods, althcugh this
time there are 4g pieces instead of only 2. In detail, choose e less than
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X\

Fig. 3.22

half the length of an edge of P, so that the e-neighbourhoods of the
vertices are disjoint segments of an open disc: see Fig. 3.23.

Fig. 3.23

After identification of edges, the numbered e-neighbourhoods fit
together as shown in Fig. 3.23 to make a segment of an open disc
bounded by the beginning of edge x, and the beginning of edge x,;
this fits onto the segment between x, 3nd x;, and so on. Thus the 4g
segments in P fi. together to make a neighbourhood of B that is
homeomorphic to an open disc in R2. Hence M, is a 2-manifold.

The reader should have no difficulty in adapting this proof to
deal with N,, for & > 2, and the special case N, = RP2. And of
course M, = S?, which we have already seen in Example 3.42 is a
2-manifold. |

EXERCISES

1. Give an example of a space X, with two base points x, and x, such that
(X, x,) and m,(X, x,) are not isomorphic.

2. Show that a connected open set in R" is path-connected, and that a
connected polyhedron is path-connected. (Hint: show that each path
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component is a subpolyhedron.) Show also that a contractxble space is
path-connected.

" 3. Show by the following example that two spaces may be homotopy-
equivalent without being of the same based homotopy type. Let X be
the set of all points in R? on straight-line segments Jommg (0, 1) to
(x1, 0), where x; runs through all points'1/n, for each posmve integer #,
together with 0, Then X is contractible, but if ¥, = (0, 0) is the base
point, X and x, are not of the same based homotopy type. (Suppose that
F: X x I - X is a homotopy starting with the identity map, such that

- F(x,1) = F(xo, t) = x, for all x€ X, teI; obtain a contradiction to’
the continuity of F.) .

4. Given spaces X and Y, with base points x, and y, respectively, show
that (X x ‘Y, (%o, ¥o)) is isomorphic to the direct sum ‘of ,(X, x,).
and (Y, y,). (This provides another proof that the fundamental
group of a torus is a free abelian group with two generators, since the
torus is homeomorphic to S? x §.)

5. Prove the following generalization of Proposition 3.3.3. Let K be a

* simplicial complex that collapses onto a subcomplex L; then for any

subcomplex M, (K, MY ™ L'. Prove also that |L] is a strong deforma-
tion retract of |K|.

6. Show that a. 1-dimensional complex whose polyhedron is simply-
connected is collapsible onto a vertex. Show also that a 2-dimensional
simplicial complex K'in R? is collapsible onto a 1-dimensional sub-
complex, and hence that K is collapsible to a vertex if |K| is simply-
connected. (However, not all contractible 2-dimensional simplicial
complexes are collapsible to vertlces see for example Chapter 8,
Excrcnse 5)

7. Show that real projective n-space RP™ can be triangulated by identify-
ing antipodal points in L', where L is the triangulation of S* in Example

- 2.3.13; more precisely, by forming a geometric rezlization of the
abstract complex formed from the abstraction of L’ by identifying each
vertex (x, ..., ¥p4,) With (—%, ..., —,,,). Let o be an n-simplex of
the resulting simplicial complex K that has (0,...,0,1) = (0,...,0,~1)

a- a vértex; prove that RP*~! is homeomorphic to a deformation retract

of 'K — g|, and deduce that = (RP") = =, (RP?) > Z,, for all n > 2.

8. Let | K| be a path-connected polyhedron. Show that 7, (JK| « S% = 0.

9. A topological group G is a group that is also a topological space, such that
the functions m: G x G -» G and #: G — G are continuous, where m
is the multiplication and u(g) = g~ for all g € G. Given loops v, w in
G. based at the identity element e, define v*w by (v*w)(t) =
m(v(t), w(t)) (t € I). Prove thatv.w ~ v« w ~ w.v rel 0, 1, and deduce-
that w,(G, e) 1s abelian. .
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10. Show that the bath-components of an #-mahifold are themselves n-
manifolds, and-that a connected n-manifold is path:-oohnected. .

11. Let X be the space obtained from an equilateral trikngle by identifying
edges as shown in Fig. 3.24. . .

xQ . V
AL

Fig. 3.24

a

" Show that X is not a 2-manifold.

12. Show that if K is a triangulation of a connected 2-manifold, it cannot
have a subcomplex (other than itself)- whose polyhedron is also a
2-manifold. . T

13, If K is a simplicial complex such that }Lk (a)| is connected for each
vertex a, and each 1-simplex of K is a face of just two 2-simplexes,
show that | K| is a 2-manifold.

14." Let X and Y be triangulable 2-manifolds,'and let f: E? — X, g: E2 > Y
be embeddings, that is, homeomorphisms onto subspaces. Let €2 be the
subspace of E? of points x such that x| < 1, and define the connected
sum of X and Y, X #'Y, to be the space bbtained from X — f(e?) and

Y — g(¢) by identifying f(s) with g(s) for each point 5 of S (with a
little more care, this definition can be made independent of the particular
embeddings f and g). Prove that '

(a) M, # M, is homeomorphic to M,,,; :

(b) N, # M,.and N, # N, are both homeomerphic to N, .o;

(c) N, # N, is homeomorphic to N, .. -

This shows, for example, that M, can be thaught of as the space
obtained by ‘sticking g toruses together’, as in Fig. 3.25.
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15. A 2-manifold with boundary is a Hausdorff space M in which each
point has a neighbourhood homeomorphic to an open set in the half-
plane x; > 0 in R?, and the boundary of M, M, is the subspace of M
of those points that have neighbourhoods homeomorphic to open sets
that meet the line x, = 0. If K is a simplicial complex whose poly-
hedron is a 2-manifold with boundary, show that for each point
x € |K|, |Lk(x)| is homotopy-equivalent either to S* or to a point,
and deduce that dim K = 2. Show also that each 1-simplex of K faces
either one or two 2-simplexes, and that if L is the subcomplex of K of
those 1-simplexes that face exactly one 2-simplex, together with their
vertices, then |L| = 9IK|. (Hint: show that 8|K| is closed in |K|.)
Prove also that |L| is a 1-manifold.

16. Let K be a simplicial complex whose polyhedron is a path-connected
2-manifold with boundary, and let |L| be a path component of 9|K|;
by subdividing, if necessary, assume that each 2-simplex of K meets L,
if at all, in a face. Show that the subpolyhedron of |K| consisting of
those 2-simplexes that meet |L| is homeomorphic to the space obtained
from a regular polygon in RZ by identifying edges according to a
sequence of symbols of the form aBa~'C, where B and C consist of
single letters (and C may be empty). By using the polygons correspond-
ing to the path components of 9{K|, together with the remaining 2-
simplexes of K, in the way that the 2-simplexes were used in the proof
of Theorem 3.4.5, and then applying Rules 1-3, deduce that, if 8| K| #
@, |K| is homeomorphic to the space corresponding to a sequence of
symbols of the form

a\Byai?---a,B,a; Y xyy oy tyr e xyypxslyst (820,72 01)
or
a,Biart---a,Ba;t.x,%;- - - Xp%p (h=1r>1),

where the B’s are sequences of single letters. Denote these spaces by
M}, Ny, respectively, so that M, for example, is M, with r discs
removed: see Fig. 3.26 in the case of M} (torus with one hole).

N\ & \\\\ ﬁ\\
\

4

\ iy
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Classify the triangulable 2-manifolds with boundary, up to homeo-
morphism, by establishing the following four propositions.

(a) Each of M}, N is a triangulable 2-manifold with boundary.

(b) Any two of Mj;, N, M, or N, that arc homeomorphic must both
have empty boundary, or both have the same r.

(c) By considering abelianizations of fundamental groups, the spaces
M} are all topologically distinct, as also are the spaces Nj.

(d) If M} and N}, were homeomorphic, so also would be M, and N,,.

NOTES ON CHAPTER 3

The fundamental group. The definition of the fundamental group is due
to Poincaré [116], who also gave many examples of its calculation and
applications, and introduced the term ‘simply-connected’. The notation
(X, %,) may seem unnecessarily complicated, but is intended to emphasize
that the fundamental group is just one example of the more general homo-
topy groups, m,(X, %), which will be studied in Chapters 6 and 7.

Collapsing. 'This idea is due to J. H. C. Whitchead [156], though see also
Newman [109]. Whitehead’s paper contains many more examples and
applications. Collapsing plays an important role in combinatorial topology: an
excellent survey will be found in Zeeman [167].

Calculation theorems. 'Theorem 3.3.9 was first proved by Tietze [144].
Theorem 3.3.18, usually known as van Kampen’s Theorem, was in fact
originally proved by Seifert, and only later (independently) by van Kampen
[83], whose paper, however, also contains a proof of Theorem 3.3.19. That
van Kampen’s Theorem is not true for arbitrary topological spaces is shown
by an example due to Griffiths [61]; but there are nevertheless generaliza-
tions, due to Olum [112] and R. Brown {35]. Example 3.3.22 is due to
Poincaré [118].

Triangulated 2-manifolds. For the proof that compact 2-manifolds are
triangulable, see Radé [120] or Ahlfors and Sario [6], Chapter 1. The
original proof of the classification theorem is that of Dehn and Heegaard
{43], but we follow more closely the proof of Brahana {24].

The Poincaré conjecture. Although this is an unsolved problem for 3-
(and 4-)manifolds, curiously enough the corresponding result in dimensions
greater than 4 is known to be true: see Smale [127], Stallings [132] and
Zeeman {165, 166).



CHAPTER 4
HOMOLOGY THEORY

4.1 Introduction

In the previous chapter we defined and investigated the funda-
mental group, and saw that it was quite a powerful topological
invariant; for example, it was strong enough to prove the classification
theorem for triengulable 2-manifolds. However, the fundamental
group yields no information at all in a large class of obvious problems:
this is hardly surprising when we recall that the fundamental group of
a.polyhedron depends only on the 2-skeleton, and even fails to dis-
tinguish between S and S®. This chapter'is concerned with setting up
mare algebraic invariants for a spacc X, called the (singular) homology
groups H (X). Like the fundamental group, these are homotopy-type
invariants of X; and if X is'triangulable the Simplicial Approximation
Theorem yields effective .calculation theorems: we shall see that the
homology groups f a polyhedron |K | can be calculated directly from
the simplicial stru-ture of K.

T'he homology rroups (and the closely related cohomology groups)

are uscful in a large number of topological problems, and are in
practice the standard tools of algebraic topology. In this chapter and
the next we shall give several examples of their use, in particular the
‘fixed-point’ thecorem of Lefschetz and the Alexander-Poincaré
duality theorem for triangulable manifolds.
_ 'I'he plan of this chapter is as follows. Section 4.2 contains the
definition and clementary propertics of the homology groups, includ-
ing the proof that they are homotopy-type invariants, and in Section
4.3 we shall sce haw to calculate the homology groups of a polyhedron;;
some applications to the topology of Euclidean spaces and spheres are
given. In Scction 4.4 we prove some more calculation theorems, and
finally homology roups with arbitrary coefficients are defined in Sec-
tion 4.5 this lead . to a proof of the Lefschetz Fixed-Point Theorem.

4.2 Homology groups

Like the fundamental group, the homology groups of a space X are
bascd on the set »f maps of certain fixed spaces into X. This time the

104
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fixed spaces are the standard n-simplexes 4,, and we start by giving
their definition.

Write a" for the point (0,...,0,1) in R* (n > 1): by means of the
standard identification of R" as the subspaceR* x § of R* x R™ = R"*™,
a"™ may be regarded as a pomt of R**™ for any m > 0. Write also a°
for the point (0,...,0) in any R". It is obvious that the points
a ...,a" are mdependent and so may be taken to be the vertices of
an n-simplex.

Definition 4.2.1 For n > 0, the standard n-simplex 4, is the
simplex (@°% ..., a") in R" (or in R**™, m > 0). When necessary, 4,
is regarded as the polyhedron of K(4,). '

Definition 4.2.2 Given a space X, a singular n-simplex Ain X is a .
map A: 4, — X.

Thus a singular 1-simplex in X is just a path in X, in the sense of
Definition 3.2.1, so that it would appear that we could generalize the
fundamental group by taking homotopy classes of singular n-simplexes
in X, and making an appropriate definition of the ‘product’ of two
singular simplexes. This can indeed be done, but the resulting groups
are the homotopy groups =,(X) (compare Propositions 7.2.1 and 7.2.2).
To define the komology groups, on the other hand, we construct groups
from the sets of singular simplexes in a rather different, and more
algebraic, fashion.

Definition 4.2.3 Given a space X, and an integer n, the nth
singular chain group of X, S,(X), is defined to be the free abelian
group with the singular n-simplexes in X as generators (we take

S(X)=0ifn < 0).

The groups S,(X) are of course not independent, since for example
the restriction of a singular #-simplex A: 4, — X to 4, _, is a singular
(n — 1)-simplex. The relationships that arise by restricting singular
simplexes in this way to faces of 4, can be formally described by the
boundary homomorphisms 8: S,(X)— S,_,(X), whose definition
depends in turn on the face maps F*: 4,_, — 4,. :

Now if K is a simplicial complex, a singular n-snmplex A:4,— | K}
that happens to be a simplicial map is completely determined by the
set of vertices (Aa°, ..., Aa"), which span a (geometric) simplex of K
(possibly with repeats). In this situation the singular simplex will often
be denoted by (Ad?, . . ., Aa™); we hope that the context will always make
clear whether the notation refers to the singular simplex A in | K| or
to the geometric simplex A(4,) of X.
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This notation allows us to specify certain elements of S,_,(4,),
by taking the various (n — 1)-dimensional faces of 4,,.

Definition 4.2.4 The rth face map F': 4, _, — 4, is the element
@%...,d,...,a" of S,_,(4,), where the notation 4" means that

the vertex a” has been omitted.

The boundary homomorphism ¢: Sy(X) — S, _1(X) is defined by
associating with cach singular n-simplex A the set of composites
AF":4,_,— X. Now 0 must of course be defined to be the zero
homomorphism if #n < 0, but otherwise, by Proposition 1.3.20, a
unique homomorphism & can be defined by specifying its value on
each generator of S,(X), that is, on each singular #-simplex.

Definition 4.2,5 Let A be a singular #-simplex in X (n > 1).
Define

o) = 3 (~1yAF.

Observe that if X is a polyhedron |K|, and A:4, — |K]| is a
simplicial map, then &(A) = 3 (—~1)(Ad°, ..., /\:1’, o .y AQ).
Example 4.2.6 If 4, = (a° a', a®) is regarded as an element of
Sy(4,), we have
&a®, a*, a%) = (a*, a?) — (a° a®) + (a@° a?),

so that d(a°, a', a?) is associated with the sum of the 1-simplexes in
the boundary of (&° a?, a®), at least if these simplexes are given
appropriate signs. Observe also that

04a° a', a?) = 8(a*, a®) — &(a° a®) + &(a°, a*)
= (a%) — (a*) — (@®) + (a°) + (a') — (a°)
= 0,

as one might expect, since &(a°, a', a®) represents a closeu loop,
which ought to have no ‘boundary’. }

The property that 82 = 0 holds quite generally for the singular
chain groups and boundary homomorphisms of a space X.

Proposition 4.2.7 Given a space X,
0% = 0: S(X) — S,_o(X),

for all integers n.
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Proof. 1Itis clearly sufficient to prove this for # > 2, and even then
we need check it only for one typical singular. n-simplex A. Now

%) = a[z (- 1)'AF']
= ZE-I)'“AF'F'.
But it is easy to see that F"F? = FoFr=1if s < 1, so that
8YA) = D (= 1y *AFFr=2 + 3 (1) **AF'F*

s<r S2T

=0,

since each expression AF'F/ occurs twice, once with sign (—1)*/*!
in Y , and once with sign (~1)!*/ in Z |

8<r

Thus a space X gives rise to a set of abehan groups Sp(X), one for
each 7, and homomorphisms 3: S,(X) — S, _;(X) such that &* = 0.
It is often convenient to consnder this algebraic situation in the
abstract.

Definition 4.2.8 A chain complex C is a direct sum @ C, of abelian

groups C,, one for each integer #, together with a homomorphism
9: C — C such that @2 = 0 and 3(C,) < C,_, for each n (each C, is
regarded as a subgroup of C).

In particular, the singular chain groups and boundary homomor-
phisms of a space X give rise to the singular chain somplex of X, S(X)
= @3S,(X). Sometimes, however, it is convenient as a technical device
to introduce a fictitious ‘singular (— 1)-simplex’, and hence define the
‘reduced’ singular chain complex of X, S(X).

Definition 4.2.9 The reduced singular chain complex of X, S(X),
is defined by setting S (X) = Sy(X) for n # —1, but by taking
§_1(X) to be the free abelian group with a single generator *. The
bour.dary homomorphism 2 is the same as that of S(X), except that
&») = 0 and 9(A) = » for each singular O-simplex A; clearly 8% = 0,
since if A is a singular 1-simplex,

9%(A) = OAF® — AF)) = & — » = 0,

Yet a third chain complex arises if we consider a pair of spaces

(X, Y).

Definition 4.2.10 If (X, Y) is a pair of spaces, the relative
singular chain complex S(X, Y) = @S,(X, Y) is defined by setting
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SAX, Y) = §,(X)/S,(Y), with the obvious identification of S,(Y) as
a subgroup of S,(X). (Thus S,(X, Y) may be thought of as the free
abelian group with generators those singular n-s1mplexes X4, - X
whose image.is not completely . contained in Y,) The boundary
homomorphism o: S,(X, Y) — S, - (X, Y) is the hoimomorphism
induced by 9: Sy(X) — S,, 1(X), in the sense of Theorem 1.3.11:
obviously 2 = 0 once again.

There is no question of defining a ‘reduced’ relative singular chain
complex, since the singular (— 1)-simplex * is supposed to be common -
to all spaces, and hence S,(X)/S,(Y) = SA(X)/S(Y).

"The reader Will notice that S(X; Y) = S(X) if Y happens to be
empty. Thus any theorem about relative chain complexes immediately
specializes to ‘non-relative’ chain complexes on putting ¥ = &.

Although they are in fact topological invariants, the various chain
complexes that we have constructed are too unwieldy for practical
purposes. However, the fact that 8 = 0 in a chain complex allows us
to construct other groups, namely the homology groups, that turn out
to be much easier to handle, and are actually homotopy-type invariants.
As before, it is convenient first to consider the abstract algebraic
situation :

Definition 4.2.11 Given a chain complex C = @C,, the group of
n-boundaries B,(C) is defined to be the image of 8: C,,, — C,, and
the group of n-cycles Z,(C) is the kernel of 3: C, — C,_,. Clearly
B,(C) = Z,(C),since 8 = 0; the nth homology group H,(C) is defined
to be the quotient group Z,(C)/B,(C). We write B(C) for ©B,(C) =
Ima, Z(C) for ®Z,(C) = Ker9, and H(C) for @®H,(C); by
Proposition 1.3.33, H(C) ~ Z(C)/B(C).

In particular, we write B, (X), Z,(X), H,(X) and H,(X) for B,(C),

Z,(C), H,(C) and H(C) respectively, if C = S(X): H,(X) is the nth
(smgular) homology group of X. Similarly if C = S(X ) we write

B(X), Z,(X), A,(X) (the nth reduced homology group of X) and
H(X),andif C = S(X, Y) we write B,(X, Y), Z,(X, Y), H(X,Y)
and H, (X, Y); H(X,Y) is the nth relative homology group of
(X, Y). Notice that all these homology groups are tnvnal if n <0,
except that H_ (@) =

Example 4.2.12 Let P be a single point. Clearly for each n > 0
we have S,(P) =~ Z, generated by A,, the only possible map from 4,
to P. Moreover 8: S,(P) — S,_,(P) is an isomorphism if # is even
and is zero if n is odd. Thus for n even, n > 2, we have Z,(P) = 0 so
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‘that H,.(P) = 0; forn odd, # > 1 we have B,(P) = Z,(P) = Sy(P),
so that H,(P) =0. On the other. hand Zo(P) Z and By(P) = 0,
80 that Hy(P) ~ Z. To sum up, "

n#0
HP) = {Z n=0.
A similar calculation shows thaf H,,(P) = 0 for all n. |

‘Example 4.2.13 If X is any path-t..nected space, Ho(X) = Z.

. For the génerators of So(X ) = Zy(X) may be taken to be thie points

of X, and since a singular 1-simplex is just a path, By(X) is the free

abelian group generated by all x — y, whefe x, y are pomts of X.

Thus Hy(X) = Z, ind a generafor is the coset [x], for any point x€ X.

- A similar argument shows that, if X is not path-connected, Hy(X) is

a free-abelian group with one generator for each path component. Also

By(X)is a free abelian group with one fewer eneratots than there are
path components: tht is, Hy(X) = Hy(X) D Z. |

Having defined the homology groups, the next step, as in Chapter 3,
is to show that a continuous map f: X — Y gives rise to homomor-
phisms f: H(X) <> H,(Y). As usual, we do this in §wo stages, first
considering the algebraic situation. .

Definition 4.2.14 "Given chain complexes C = @C, and D =
@®D,, a chain map 6: C — D is a homomorphism from C to D such
that 60 = 20 and 6(C,) < D, (we write @ indiscriminately for the
boundary homomorphism in either C or D). If 8 is Also an isemorphism
(of groups), 0 is called a chain isomorphism.

Notice that if ¢: D — E is also a chain map, then so is the composite
$0: C - E.

Proposttxon 4.2.15 ' A chain map 0: C — D gives rise to homo-
morphisms 04: H,(C)— H,(D), one for each n;, with the following
properties

(a) If I: C >Cis : the tdentity cham isomorphism, 1, is the identity
uomorphmn for each n. '

. (b) If 0 is a chain isomorphism, mh 04 is an isomorphism.

(c) If ¢: D — E is another chain map, then ($6)y = $40,.

Proof. Since 02 = 80, it is clear that &B,(C)) « B,(D) and
&(Z,(C)) = Zu(D). Thus by Theorem 1.3.11 ¢ induces homomor-
phisms 8,: H,(C) — H,(D). The proofs of propertles (a){c) are very
easy, and are left to the reader. |

-
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Thus, given a continuous map of pairs f: (X, Y) — (4, B), in order
to make f induce homology homomorphisms we must construct from

fachainmap f: S(X, Y)— S(4, B).

Proposition 4.2.16 Let f: (X, Y)— (4, B) be a map of pairs.
Then finduces a chainmap f : S(X, Y) — S(4, B), with the properties:

(a) if f is the identity map 1:(X,Y)—>(X,Y), then f is the
tdentity chain isomorphism;

(b) tf g: (4, B) — (C, D) is another map of patrs, then (gf). = g.f.

Also a map f: X — A induces a chain map f: S(X)—~ §(4), with

similar properties.

Proof. First define f:S(X)— S(4), by sending the singular
n-simplex A:4,-> X to the composite fA: 4, -+ A. This clearly
defines a chain map, and f.S(Y) < S(B), so that f induces a chain
map f:S(X,Y)->S(4, B) as well. Properties (a) and (b) are
trivial, and the modification to reduced chain complexes is made by
setting f () = *. |}

Corollary 4 2.17 f induces homomorphisms f,: HAX,Y) —
H, (A, B), fo: H,(X) — HB,(A), all n, with the properties:

(a) if f is the identity map, f, is the identity isomorphism;
(b) (&f)s = gufs- |

Thus homeomorphic spaces have isomorphic homology groups.
Indeed, more than this is true, since the homology groups are homo-
topy-type invariants. As in the case of the fundamental group, the
proof consists in showing that homotopic maps induce the same
homology homomorphisms, though in the spirit of the present
chapter we first consider the analogous algebraic situation.

Definition 4.2.18 Given chain complexes C and D, and chain
maps 8, ¢: C — D, a chain homotopy h between 6 and ¢ is a homo-
morphism h: C — D such that ¢(c) — 8(c) = oh(c) + ho(c) for each
ceC. In this case, the chain maps 6 and ¢ are said to be chain-
homotopic.

Proposition 4.2.19 If 6, ¢: C — D are chain-homotopic chain maps,
then 8, = ¢,: H(C) — H(D).
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Proof. A typical element of H(C) is a coset [2], where z € Z(C),
and 8,[z] = [0(=)]. But if % is the chain homotopy between 6 and ¢,

we have
$(z) — 0(z) = oh(z) + ho(2)
= Oh(z2),
since 9(z) = 0. Hence [¢(2)] — [0(2)] = [0h(2)] = 0. B

Thus it only remains to show that homotopic maps induce chain-
homotopic chain maps. Now a homotopy G between two maps
f,&: X — Y induces a chain map G : S(X x I)— S(Y), and so to
construct a chain homotopy between f and yg, it is sufficient to
consider (f;). and (#;), where £, ¢,: X - X x [ are the inclusions
as X x 0, X x 1respectively. The chain homotopy here is defined by
sending A4, — X to A x 1:4, x I - X x I, composed with a
certain element of S,,,(4, > I), which in turn is obtained from a
triangulation of 4, x I.

Now if K is any simplicial complex in R?, |K| x I < R? x R! =
RP*? can be regarded as a polyhedron by the following method, which

-is similar to the definition of the derived complex in Definition 2.5.7.
Suppose, as an inductive hypothesis, that for each» < n, |K"| x Iis
the polyhedron of a simplicial complex K* x I, such that’

(a) 4, 4 | K| = |K* x I| are simplicial maps;
(b) if L is a subcomplex of K, there is a subcomplex L x I of
K" x Isuch that {L x I| =-|L| x I.

(If n = 0 the hypothesis is vacuous.) Now if o is an n-simplex of K,
the ‘boundary’ ¢ x 0 U |6| x TU ¢ x 1 is already the polyhedron of
K(o) x 0Ueé x TV K(o) x 1. Thus we may define

K* x I = K*~! x Ivu {51}V {(3)},

where ¢ runs through all n-simplexes of K, = through all simplexes in
the ‘boundary’ of each ¢ x I, and & denotes the point (3, 3). This
definition is justified in exactly the same way as the definition of the
derived complex; we omit the details. Finally, K x [ is defined to be
K™ x I, where m = dim K.

Example 4.2.20 If K = K(4,), K x Iis the simplicial complex
in Fig. 4.1 overleaf. ||

In particular, 4, x I is the polyhedron of K(4,) x I. By using its
simplicial structure, we can pick an element of S,,,(4, x I) and

hence construct the required chain homotopy between the chain maps
induced by #,, £;: X - X x I.
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/A,Xi

\A| x0
’ Fig. 4.1
Proposition 4.2.21 Given any space X, there exists a chain homo-
topy h: S(X)— S(X x I) between (i,) and (i,).

Proof. Suppose that we have already defined h:S(X)—
Sy+1(X x I)s¥or all spaces X, and forallr < n(ifr < 0, take & = 0).
Let A be a singular z-simplex in X, and define

B = O x D@l ..o ") = (B0, ..., B7) ~ hO(a, .., @),

where a = (ﬁ,,, 3), ¢ =(a’, 1), ¥ = (a',0), and a[ ] is defined by
the rule a(d%,...,d") = (a,d%..., d"), extended linearly (by induc-
tion, hd(a°, ..., a") is a linear combination of simplicial maps, since
Fr x 1:4,_, x I -4, x I is simplicial for each r). Then .

oh(A) = (A x 1) ((% ..., ") — (8% ...,0") ~ ha®,...,a%)
| C Gl ..., ") = (8. ., B — hXa",. .., a)]).
But by the inductiv:e hypothesis we have ' '

ohd(a®, ..., a" = Aco, . .\., c®) - b°, ..., b") — ha¥(d, ..., a")

o= 3(60, cesy Cn) - 3(1,0’ sy b"))
so that

© R = (A x 1)((%...p ™) = (B%, ..., B%) — R(aO, ..., %))
= ().(0) — ().() — 2(), '

since obviously (A x 1) A(u) = AA ().
This completes the inductive step and hence the definition of 4. ||
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Notice that % can be extended to a chain homotopv from S(X) to
S(X x I) by putting h(s) = 0.

Corollary 4.2.22 Iff~ g: (X, Y)— (4, B), then
fo = ge: Hy(X, Y) > Hy(4, B).
Similarly, sff ~ g: X — A, then - o

fo = g2 Hi(X) - By(A).

Proof. The chain homotopy k clearly induces a chain homotopy
h:S(X,Y)>SX x LY x I). Thus if G: (X x I, ¥ x I)—
(4, B) is the homotopy between f and g, then for each x € S(X, Y)
we have

oG h(x) + G hx) = G (0h(x) + hd(x))

= G ((#).x — (%) .x)
= g(x) - f(%).

Hence f, = g,, by Proposition 4.2.19. The proof for reduced homol-
ogy is similar. [}

Corollary 4.2.23 If(X, Y) ~ (4, B), then H(X, ¥) = H (A, B)
for each n. Similarly B (X) = H,(A)if X ~ A.

Proof. Let f: (X, Y) — (4, B) be a homotopy equivalence, and
g: (4, B) — (X, Y) be a homotopy inverse to f. Then

\ &S = (&f)s = 1,

the identity isomorphism of H,(X, Y). Similarly f,g, s the identity
1somorph\1sm “of Hn(A B), so that f, and g, are isomorphisms. |

4.3 Methods of calculation: simplicial homology

As ir"Chapter 3, having defined the homology groups and proved
that they are homotopy-type invariants, we now face the problem of
calculation. Once again the Simplicial Approxnmatxon Theorem can be
used to reduce the problem considerably in the case of polyhedra (or
indeed spaces homotopy-equivalent to polyhedra), and we shall see
that it is sufficient to consider those singular simplexes that are
actually simplicial maps from the standard simplexes: thxs is. the
analogue for homology of Theorem 3.39. .

Suppose then that (K, L) is a simplicial pair. Write A,.(K;) for the
subgroup of S,(|K{) generated by the simplicial maps A: 4, — | K|,
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and let 4,(K, L) = 4,(K)/4,(L) (which may be regarded as a sub-
group of S,({K|, {L])). It is clear that &(d,(K)) < 4,_,(K), so that
4(K) = ®4,(K)and 4(K, L) = @4,(K, L) are sub-chain complexes
of S(KI), S(K]|,|L]) respectlvely Similarly, 4(K) < §(K) is
defined by setting 4_,(K) = S_4(|K|). Finally, write H,(K),
H,(K,L) and A (K) for H,(4(K)), H,(4(K, L)) and H,(4(K))
respectively. (Compare Definition 3.3.8.)

In fact H,(K) > H,(|K|), H(K, L) = H,(|K]|, |L|) and H,,(K)

H,(K|). Now 4(K) < S(|K|), and.the method of proof is to con-
struct a chain map that is an inverse, to within chain homoYopy, of
the inclusion chain map. The idea here is a very simple one: the
Simplicial Approximation Theorem is used to replace each singular
n-simplex in | K| by a simplicial map of some triangulation of 4, in a
coherent way.

Proposition 4.3.1 For each n, and for each singular n-simplex A
in |K|, there exists a simplicial complex M, such that |M,| = 4,, a
stmplicial map g,: |M,| — | K|, and a homotopy G, between X and g,.
Moreover

(@) if A is already simplicial, then M, = K(4,), g\, = A, and G, is
the constant homotopy;

(b) for each face map F: 4, _; — 4, F': |M,pr| — |M,| is simpli-
cial, g\F" = gypr, and G\(F" x 1) = G,

Proof. Suppose, as an inductive hypothesis, that we have already
constructed M, g, and G, for all singular m-simplexes x in [K|, for
m < n; suppose also that each G, is a semi-constant homotopy in the
sense of Definition 2.5.21. The induction starts, since the hypothesis
is vacuous for n = 0. .

Consider a singular z-simplex A. If X is simplicial, then so is each
AF7, and we may take M, = K(d4,), g, = A, and G, to be the constant
homotopy. If A is not simplicial, on the other hand, the inductive
hypothesis ensures that we already have the required maps and
homotopies on each face of 4,. Moreover these fit together where the
faces overlap, so that we have a simplicial complex N such that
IN| = |4,], together with a simplicial map h:|N|—|K| and a
semi-constant homotopy H between A | [N| and k. Now define

M = N U {ad} U (a),

where a = zf,, and o runs through all simplexes of N; the usual
argument shows that |M| = 4,. Corollary 2.5.22 now yields a
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simplicial map g,: |(M, N)®| — |K|, for some s, such that g, = % on
|N|, and A ~ g, by a homotopy G, that extends H (and, as remarked
after Corollary 2.5.22, G, may be taken.to be semi-constant). Thus if
we set M, = (M, N)®, the inductive step is complete. }

Observe that if (K, L) is a simplicial pair, and A(4,) < |L|, then
g, and G, may be taken to be maps into |L| as well.

The required chain map from S(]K|) to 4(K) is constructed by
sending the singular n-simplex A to (g,) x,, where x, is a suitable
élement of 4,(M,). If M, = K(4,) we take x, to be the identity map
of 4,; otherwise suppose that we already have x,, for each r, and
hence > (—~1)(F") x\;r€d,_(N). We cannot quite take x, to be
ay (= 1Y(F") x\pr, since M, is (M, N)®, not M; instead, we take its '

- image under a standard chain map ¢: 4(M) — A((M, N)©).

i

Definition 4.3.2 Given a simplicial pair (M, N), the subdivision
chain map ¢: 4(M) — A((M, N)') is defined inductively as follows.
Suppose that ¢:4,(M)—4,((M, N)) has been defined for all
m < n, such that ¢ is the identity for m = 0 and on all singular
simplexes in | N|. Take a simplicial map A: 4, — | M|, whose image is
not contained in |N|, and define ¢(A) = agd(A), where a is the bary-
centre of XN(4,). Certainly 9¢(2) = ¢9(A) if A € A(N); otherwise,

8$(A) = d[ado(X)]
= $9(X) — a[2da(A)]
= $a(A),

since 6po(A) = ¢8%A) = 0. Thus ¢ 1s indeed a chain map.
If A € S,(|K|[) is not simplicial, define

X, = ¢s[a Z (- 1)'(F').xxr'] € 4,(M,),
and hence define «: S(}K|) = 4(K) by setting
a(A) = (£)).%n

for each singular simplex A in |K|.

Proposition 4.3.3 « is a chain map.

Proof. We first show that ox, = 3 (—1)(F") x,,r, by induction.
For

ox) = ¢s[z (= 1)(F") xppr — a0 z (- 1)'(F').x/\r']'
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But 0> (—1Y(F)xppr = X (- D) (F7) e(xrp) = 0 as in Proposition
4.2.7, so that-

l!

$L5 (1 (F) )
= Z{—l)'(F').xMu,

since ¢.1s the identity on A’
1t follows that

éo(A) = (g4).0%)
= (&), 2, (= V() rp
= 2(— 1Y (gar) xap
= ag(A). §

Tt is clear that «f = 1, where B: 4(K)--» S(]K|) is the inclusion
chain map, and (from the remark after Proposition 4.3.1) that «
induces a chain map «: 4(K, L) - S(| K|, |L{), with a similar prop-
erty. To complete the proof that H (K) =~ H,(|K]), we construct a
"chain homotopy between Bo and the identity chain iromorphism of
S(]K}). This is very similar to Corollary 4.2.22, and the chain homo-
topy is defined by sending the singular n-simplex A to (G,)_y,, where
¥, is a suitable element of S,,;(4, x I) and G, is the hamotopy
obtained in Proposition 4.3.1.

To define y,, we heed a triangulation N, of 4, x I that has K(4,)
ut the ‘0 cnd’ and M, at the ‘1 end’, and such that F" x 1: | Nagr| —
| N\ is simaplicial for each face map F*: 4, _, — 4,. If we suppose that
this has already been done for all singular m-snmplexes with m < »,

then we have a suitable triangulation P of 4, x OU [ x I|u
4, x 1, so that we may take

N, = P U {ao} U (a),

where a = (A:;, 1) and o runs through all simplexes of P.
Now suppose that we have constructed y, € 4,.,(N,) (regarded as

a subgroup of Sp.,(4, x I)) for all singular m-s:mplexes p with
m < n, sat:sfymg ‘

= (i), "u - iy — Z(,"l)'(F' x 1)*)':4!" .

.....

where iy, ¢,: 4, -->A x I are the inchisions as A, x OandA x 1,
and y, is taken Yo be zero if m = 0 (compare the proof of Proposmon
4.2.21). Take a singular n-simplex A, and define

ya =)o ~ do = 2 (=1Y(F" x 1) 3]
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“Then . . . :
Eya = (100 — £, - 2 (=~ 1)(F* x 1)y,
as required, since
GL(n)x, = do — 2 (- IV(FT x 1w
= D2 (= DUE s ) [{E) % = do = Eyar)
= 2. (- D FT v )G F % 15.3»:7&
= 0 as in Proposition 4.2.7.
Finally, define h: S(|K|) — SCK ) by AA) = (G.)_v..
Proposition 4.3.4 & is a chain homutopy between 1 and pe.
Proof. ’
oh(A) = (G,). 4y,
= (GO x =iy = D (=1y(F > )y
= (g)).xn — & _'Z (- 1Y (Garr) yar
= Bafd) — X — ho(A). §
Corollary 43 5 B, H K L) -~ H(K |, 1L is an isomorpirism,
as also is B,: H(K) — H K1)
Proof. The chain homotopy h induces a similar chain homotopy
b SUK L)~ SOKL LD,

and we can extend k' to S(|K}) by setting h(x) = 0. §

Observe that if f: (|K|, |L|) — (|M!, |N7) is a simplicial map of
pairs, fo: H(|K|, |L|) = H (M|, |N|) may be-taken to be the
homomorphism from H, (K, L) to H,(M, N) induced by the restric-
tion of f to a chain map from 4(K, L) to 4(M, N). Indeed, even if f is
not simplicial, f, may be identified with the homomorphism
Joi H(K, L) — H,(M, N) induced by the composite chain map

AK, L) 2> S(K|, |L)) L S(iM|, lN|)—>A(M N);

for certainly the diagram

H(X, L) 25 H(M, N)

a.l lﬂo,

H,(|K|, |L]) == H,(|M|, |N|)
fe

is commutative, because f B and Buf B are chain-homotopic.

-
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Example 4.3.6 Let L and M be subcomplexes of a simplicial
complex K, where K =LuM, and let i:(|JM|,|L N A})—
- (1%, IL]) be the iaclusion map. Then #,: H,(|[M!, |L N M]|)—
H(K|,|L]) is an isomorphism. For, since i is simplicial, it is
sufficient to consider

i:4(M,L N M)-->4(K,L);

but this is an isomorphism since a simplex of K is in M —~ (L N M)
ifand only ifitisin KX — L. }}

This result is known as the Excision Thecrem, since it expresses
the fact that the ‘excision’ of the simplexes in K — M from both K
and L does not affect H (!K|, |L]). Indeed, an analogous result
holds for arbitrary topological spaces: see 'Theorem 8.2.1.

Corollary 4.3.5 is the analogue for homology of Theorem 3.3.9 for
the fundamental group, and like that theorem does not by itself
provide a practical method of calculation. Even though each 4,(X, L)
is a finitely generated group, there are many more generators than
necessary: for example, if P is a single point then 4,(P) @ Z for
each #n > 0. What we should like to dc now is to reduce the chain
complex still further until there is just one generator for each
(geometric) simplex of X' — L (compare Theorem 3.3.13).

This is achieved by taking the quotient of 4(K), for example, by
the sub-chain complex %K) generated by all expressions of the form
(B% ..., b") — €,(b°°, ..., b°"),

(together with all (5% ...,b") contairing a repeated vertex), where
(8%, . ..,bMisasingularz-simplex of 4(K), pisapermutation of 0,1, . . ., 7,

“ande, is +1or —1 according as p is cven or odd. It is hot quite obvious
that 64°(K) < 4°(K), but this is easy to prove.

Proposition 4.3.7 c4%K) < 49K).

Proof. 1t is sufficient 10 consider the action of ¢ on (4%, ..., b%)
+ (8% ..., 6", b, ..., b"), since every permutation is a composite
of transpositions of this form. But

B[(8% ..., b%) + (8% ..., 671, b, ..., )]

*

= > (=10@° ..., b ..., b7

s#Er.r+1

(B0 .. LB b, b)),

since the terms involving b" and &"*! occur with opposite sign, and
so cancel. || ‘
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Definition 4.3.8 If K is a simplicial complex, the simplicial chain
complex of K, C(K), is defined by setting C(K) = 4(K)/A%K).
There are similar definitions of C(K, L) and C(K) (where €_;(K) =
4_,(K)). ; :

We shall write {8°,..., 4"} for the coset of {(8°, ..., b"): observe
that this coset is zero if the set of vertices 8%, . . ., " contains a repeat,
so that C(K), for example, has one generator for each geometric
simplex of X.

Let «:d4(K,L)— C(K,L) (a: 4K)— C(K)) be the quotient
chain map. We prove that « induces isomorphisms between H, (X, L)
and the simplicial homology groups H,(C(K, L)). ‘

Theorem 4.3.9 «o,: H(K, L) — H,(C(K, L)) and a,: H,(K) —
H,(C(K)) are isomorphisms.

Proof. Asin Corollary 4.3.5, we construct a chain map 8: C(K) —
4(K) which is an inverse to «, to within chain homotopy. To define 8,
totally order the vertices of X, in the form 4% < d! < -.- < d™, write
each generator of C(K) in the form [d%, .. ., b'], where i, < .- - < 1,
and define

Blbte, . . ., bis] = (blo, ..., bls).

Clearly «ff is the identity chain isomorphism of C(K), so that it
remains to produce a chain homotopy A: 4(K) — 4(K) between B«
and the identity.

Suppose as an inductive hypothesis that we have constructed
h:4,(K)— 4,,.,(K) for all m < n, such that

Bep) — u = Oh(u) + hd(y) -
for all generators p of 4,(K); suppose further that A(u) actually lies
in 4, ,(K((4,)) (if m < 0 we may take b = 0). If now A is a
generator of 4,(K), n 2 1, then A has already been defined on (1),
and '

O[Bx(X) — A — hA(A)} = Bad(A) — &(A) — ohd(]A)
=0,
since 49%(2) = 0. Moreover all elements involved are in 4(K(A(4,)));
but A(4,) is a simplex, and so is contractible; so H,(A(4,)) = 0. Thus
there must exist an element k(X)) €4, ., ,(K(X(4,))) < 4, ,,(K), such
that dh(A) = Ba(A) — A — hd(A), as required.
. It follows that e,: H,(K)— H,(C(K)) is an isomorphism; for
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(K, L) we observe that 8 and % induce corresponding homomorphisms
for (K, L), and for reduced homology we set B(*) = *, h(x) = 0. ]I

Corollary 4.3.10 H, (K, L) depends only on the (n + 1)-skeleton,
and is zero if n > dim K. |

Observe that if f: (|K|, |L|) = (|M|, | N|) is a simplicial map, then
f4%K, L) = 4°M, N), so that f induces a chain map f.: C(K, L)—
C(M, N). The corresponding homology homomorphism may be
identified with f,, since the diagram

H (K, L)—— H (M, N)

«| e

H(C(K, L)) ~—> H(C(M, N))

is obv1ously commutative. Similarly ¢4%(K) = 4% K'), where ¢ is the
subdivision chain map of Definition 4.3.2, so that ¢ induces ¢: C(K)—
C(K'), whose induced homélogy homomorphism is the same as that
induced by the original ¢. Moreover an obvious induction argument
shows that ¢ sends each generator of C(K), considered as an n-simplex
o of K, to the sum of the #-simplexes in (K (o)) (with appropriate
signs). Thus if A: |K’| — |K] is a simplicial approximation to the
identity map, the remark after Proposition 2.5.13 shows that
h¢: C(K)—> C(K) sends each generator to plus or minus itself,
Hence, by an obvious adaptation of the argument in Theorem 4.3.9,
k ¢ is chain-homotopic to the identity, and so h.¢, is the identity-
isomorphism. But %, is an isomorphism because % is a homotopy
equivalence; thus ¢, is the inverse isomorphism to A,. Similar
remarks apply to relative homology.
We end this section with some calculations and examples.

Example 4.3.11 S! may be triangulated as the boundary ¢ of a
‘2-simplex o = (b% b%, b*). It follows immediately that H,(S?') = 0 if
n > 1 (and also if # < 0); moreover Hy(S) = Z by Example 4.2.13,
Thus it remains only to calculate H,(S?) = H,(C(5))-

Now C(6) has three generators, [5°, b*], [6°, b%] and [b?, 2], where
o[b°, 8] = [b'] — [b°], &[b°, b%] = [b%] — [b°] and &[b!, 2] = [b?]
— [6']. It is easy to see that Z;(C(¢)) is isomorphic to Z, with
generator [b°, b'] + [b!, b2} — [b°, b?], and since clearly B,(C(s)) = 0
we have H(S') @ H\(C(s)) =~ Z. |

Example 4.3.12 Let us now calculate H,(S*) for all # > 0, by
triangulating S™ as 6, where o is the (» + 1)-simplex (8°,..., b").
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Now it is possible, of course, to calculate H(C(6)) directly as™in
Example 4.3.11, but this method is tedious and complicated. Instead,
we use 2 trick, based on the fact that ¢ and K (o) differ by only one
simplex, and o is contractible. It is convenient also to do the wotk in
terms of feduced homology.

Consider C(6) and C(K(0)). Obviously C,(¢) =0 if m > # or
m < —1, and the inclusion (simplicial) map ¢: |6} — | K(o)| induces
isomorphisms i : Cp(d) - Cpn(K(0)) for all m < n. Moreover the
following diagram is commutative, sincc ¢_is a chain map.

0——>C(o) -—-> C.. 1(0)—-—) ———>C__1(o)——>0
| ! i‘ ‘ \L‘

AQ\
0— Cnu(h(c'))-* Cu(K(o))"")' Co-s(K(o)) > -> €. (K(e))—0.

Now |K(0)|, being homeomorphic to En+3_ s contractible, and
hence the reduced homology groups'of K (o) are the same as those of a
point, . which are all zero. It follows at once that H,(C (6)) '= 0 for
m < n Also H(C(#)) = Z,(C@) = ZJ(C(K (@) 2 B,(C(K(@) =
C‘,Hl(k(rr)), so that H(C(0)) > Z, and a gent.rator is the coset
{o[6°, . .., 5"]]. To sum up,

“~ (Z, fm=mn
n »\.
H"‘(S )3 {() otherw:se
(Notice that this resultis truc evenif 1 = —1, if we mtcrpret §1 as .

the empty set!)

Since K(o) — ¢ bas only the one simplex g, ,(K(u), é) hds, jost
one generator (5%, . ., b}, and so

: rZ, wt=n+1
( -1 n
Ha(B"7, S7) 10 otherwise. §

An imn Em comequence is that S and §™ are not ‘homatopy-
" equivalent if m # n, and scare certainly not homeomorphic.- This
result :s particularly useful since. it can be used with Theorem 2.4.5

to prove some important thearems on homeomorph:sms and possible
triangulations of certain spaces.

h Y

Theorem 4.3.13 If | K} und |L| are Qamomo?phu polyhedia, thet
dim K = dim [..

Proof. ‘Let ¢im K = m, dim I, = n, and suppose if possible that
a > m. Take a point x in the interior of an n~sunplex o of L, so that
Lk (x) = 6,and 1-7,, (Lk (x)) = Z. Butif y is dny point of;K[ Lk ()
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is a subcomplex of dimensjon at most (m — 1), so that &, _,(Lk(y)) =
0. Hence |Lk (x)| # |Lk (y)|; which contradicts Theorem 2.4.5. |}

Corollary 4.3.14 If K is a triangulation of S™ or E™, then
dim X = 2.

Proof. By Example 2.3.13, both S* and E™ have triangulations by
n-dimensional complexes. §
We can actually say rather more about possible triangulations of E™.

" Proposition 4.3.15 If K is a triangulation of E™, with homeo-
morphism h: | K| — E™, there exists an (n — 1)-dimensional subcomplex
L of K such that h|L| = S~

Proof. In any case E™ can be triangulated as K (o), where o is an
n-simplex, and then ¢ triangulates S™®~!. Moreover, by rotating E"
about the origin if necessary, we can arrange that any given point x of
S"~1is in the interior of an (n — 1)-simplex 7 of 4. It follows that
Lk (x) = 6 — 7, and it is easy to see that |¢ — 7| is contractible to the
vertex of o that is not in 7 (the homotopy involved is linear). On the
other hand if x€ E® — S"~1, then x is in the interior of ¢ and so
Lk (x) = 6. Hence S™~ ! is the set of points of E™such that |Lk (x)] is
contractible, and by Theorem 2.4.5 this is true however E™ 1s
triangulated.

Thus if A(x) € S*~! and x 1s in the interior of a simplex r, then
every point in the interior of 7, having the same link as x, will be
mapped into S*~ 1. Hence A(7) = S™~1, since S~ is closed. That is
to say, S*~! = h|L|, where L is the subcomplex of K of those
simplexes 7 such that A(7) € S"~. AnddimL = n — 1,since Lisa
triangulation of S*~1. ‘

Another important consequence of Example 4.3.12 is

Theorem 4.3.16 Let U, V be oper: sets in R™, R™ respectively. If
UardVare homeomorphic, then m = n.

Preof. Let h: U — V be the homeomorphism, and let x be any
point of U. Choose ¢ so that B, the e-neighbourhood of A(x), is con-
tained in V, and then choose 4 so that B’, the #-neighbourhood of x, is
contained in A~ }(B). Thus / is a homeomorphigm of B’ onto a subset
of B, and A(x) is contained in an open set in k(B’). But B and B’ are
homeomorphic to cells, and so are triangulable, so that by Theorem
2.4.5 we must have |Lk (x)] ~ |Lk (4(x))|. But |Lk (x)| is homeo-
morphic to $™~* and |Lk (4(x))| to S"~?, so that m = =.
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In particular, R™ and R" cannot be homeomorphic unless m = 2.~
Finally, let us calculate the homology groups of the real projective™
plane RPZ, '

Example 4.3.17 Consider the triangulation of RP2 by the
simplicial complex K shown in Fig. 4.2.

5° b

b'
Fig. 4.2

As in the case of S*", it would be possible, though very laborious, to
calculate H(C(K)) directly from the definition. We prefer instead to
compare K with two subcomplexes: L, consisting of K without the
2-simplex (b3, b%, b%), and M, consisting only of (6%:b*), (8, b?), (8°, b2)
and their vertices.

Write i: |[M| —|L|, j: |L] > |K]| for the inclusion (simplicial)
maps. Now M| is a strong deformation retract of 'L|, so that ¢ is a
homotopy equivalence and i,: H (C(M)) - H,(C(L)) is an iso-
morphism for each n. Also M is a triangulation of S'?, so that H (C(M))
is Z for » = 0, 1 and zero otherwise; hence the-same is true for L.
Moreover, a generator of H,(C(M)) = H,(C(L)) is [z], where
3 = [b° b) + [b%, b?) — [b°, b7).

N )w consider the commutative diagram

0 —> Cy(L) -2 CyL) —2> Co(L) —> 0

Lo

0 —> Cy(K) —> C(K) —> Co(K) — 0,

in which j is the identity on C,(L) and Co(L). Let ¢ be the element of
Cy(L) (or Cy(K)) defined by
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¢ = [B° bY, 5% + [b, b, B%) + [b%, b%, 5] + [°, B, b2] + (89, b%, b*]
+ [bY, b5, b%)-+ [bY, b, bS] + [B9, b5, b7) + [°, B°, b°);

direct calculation shows that é[b3, b, b°] = 2z ~ 9(c) in C(K) (cach
1-simplex in é(c + {2, b%, b°]) occurs twice, with opposite signs if it
does not occur in 2). So if 7[b8 b4, b°] + de Z,(C(K)), with
d € CxL), we have

O = 8(r[b3, b%, 8%} + d)
= 2rz + o(d — ¢)

in Cy(L). That is, [2r2] = 0 in H(C(L)) = Z, so that r = 0. But
H,(C(L)) = 0, so .that Z,(C(L)) = 0 and hence d = 0 as well. Tt
follows that Z,(C(K)) = 0, or H(C(K)) = 0.

Now C(K) = Cy(L) and Z,(C(K)) = Z,(C(L)); aiso B,(C(K )}
differs from B,(C(L)) only in that it contains extra elements 2nz for
cach integer n. Since H(C(L)) > Z, generated by [z} it follows that
H(C(K)) = Z,, also generated by [z]

Finally, H,(RP?%) ~ Z since RP? is path-connected. To sum up,
H{(RP?) x Z;, H(RP?) = Z, and all other homology groups aru
zero. J§

4.4 Methods of calculation: exact sequences

The examples at the end of Section 4.3 will no doubt have con-
vinced the reader that calculation directly from Theorem 4.3.9 would
be extremely laborious for general polyhedra. In the case of S™ and
RP? we were able to perform the calculation by various tricks, but
these had to be invented separately for e¢ach space, and gave nou
insight into any sort of general procedure. One object of this section is
to prove a theorem cnabling the homology groups of polyhedra to be
calculated from still further simplified chain complexes, in which the
generators, instead of corresponding to single simplexes, correspond
to certain subcomplexes called ‘blocks’. The situation in homology is
thus once again similar to Section 3.3: there, Theorem 3.3.13
theoretically gave a method of calculation of the fundamental group
of a polyhedron, but it was much quicker in practice to use the result
of Theorem 3.3.20.

In order to prove the calculation theorem, and also for its inde-
pendent interest, we shall first show that, if (X, V) is any pair of
spaces, the homology groups of ¥, X and (X, ¥) can be fitted into «n
exact sequence, called the exact homalugy sequence cf the patr (X, V')
In establishing this exact sequence, it is.convenient, in the spirit of

?
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Section 4.2, first to consider the abstract algebraic situation. This
approach has-the incidental advantage of yielding some other useful
exact sequences. In order to state the fundamental theorem, one
definition is necessary.

Definition 4.4.1 A sequence of chain complexes and chain maps
O->C—-D-> E->01s an exact sequence of chain complexes if it is
exact considered as a sequence of abelian groups and homomorphisms
(we write U for the chain complex C in which each C, = 0).

Theorem 4.4.2 Given an exact sequence of chain complexes

0-—>C—->D-25E—5>0

there exists a homomorphism &, H(E)— H,_.,(C) for each n, such
that the sequence

> Ho(C) "> Ho(D) 5> H(E) > Hy4(C) —>-

s an exact sequence of abelian groups and homomorphisms. Moreover,
given a commutative diagram of chain complexes and chain maps

0—C L D E—50
a‘f ﬂ! !7

0> C e 1) —> E' —>0
J

[

in which the rows are exact sequences, the corresponding diagram
cemex I (C) —% Hy(D) <> HE) 25 H,_ W(C) —>- -

«-L fie |y ie ‘ a.l

. —~—->HtC)~—-~>H(D)-——>I"I,(E')~-——>H.t {C)——> -

is a ccmmutative diagram of abelian groups und homomorphisms. .

- Progf.  We must first define é,. Now a typical element of H,(E)
15 4 coset [3], where x & Z,(E), and since g is onto, & == g(d) for some
d. D, Thus pi(d) = dg(d) = ¢(z) = 0, so that by exactnes$
ctd) = f(e) for a unique element ¢ = C, _,. Moreover fi(c) = &f{¢) =
¢dYy = vosothat ¢(¢) = 0 (since fis (1-1)) and e € Z,_ ;(C). Deting
021 - [Jell, (C); this appears to depend on the choice of 2 and
d, but if 27, d'. ¢’ is another choice of z, d, and ¢, then g(d — d"):
B,(E), so that g(d -- 4°) == ¢g(d") = g&{d") for some d" ¢ [}, since ¢
s onto. Hence g{d - d" — ¢(d”)) = 0, so that d — d' — ¢(d”) =
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f(c"), for some ¢" € C, and so-9(d) — &(d’) = of(c") = fo(c"), and
¢ ~ ¢ = 0(c"), so that [c] = [¢'] e H,_,(C).

It is easy to see that 0, is a homomorphism. For if {g(d,)] = [2;] and
((ds)] = [z] in H(E), then [g(d, + d)] = [z, + 7], so that
04([21] + [22]) is given by o(d, + d4;) = &(d,) + 9(d,), and hence

Ox([21] + [22]) = O4[z1] + Ou[22])-

The proof that the sequence of homology groups is exact proceeds
in three stages.

(a) Im f, = Ker g,. Certainly Im f, < Kerg,,sincegf = 0implies
&+f+ = 0. Conversely if [2] € Ker g, then g(2) = 9(e) for some e € E;
but e = g(d) for some de D, so that g(2) = dg(d) = go(d), and
g(z — 9(d)) = 0 so that 2 — 9(d) e Im f. Hence [2] = [z — 9(d)] €
Im f,, and Kerg, < Im f,.

(b) Im g, = Ker 9,. It is clear from the definition that 0, g, = 0,
for an element of Im g, is [g(d)], where 9(d) = 0. On the other hand
if {2] € Ker 9,, then z = g(d), where &(d) = fo(c) for some c € C,
so that z = g(d — f(c)), where o(d — f(c)) = 0. Hence [3] € Im g,,.

(c) Imo, = Kerf,. Again, it is clear that f,0, = 0, s~ that
Im o, < Kerf,. But if [2] e Kerf,, then f(2) = o(d) for some
de D, so that 0g(d) = gf(2) = 0, and [g(d)] € H(E) satisfies
cx[g(d)] = [2]. Hence Ker f, < Im 0,.

Finally, Proposition 4.2.15(c) shows that B, f, = fya, and y, g, =
8B+ And if [g(d)] € H(E), then 0,[g(d)] = [c], where d(d) = f(c):
thus «,9,[g(d)] = [a(c)]. But f'a(c) = Bf(c) = Be(d) = ¢B(d), so that
(e(c)] = 24[g'B(d)] = O4ulvg(d)] = duyxle(d)]. B

The exact homology sequence of a pair (X, Y) follows immediately.

Theorem 4.4.3 Given a pair of spaces (X, Y), leti: Y — X be the
inclusion map, and let j: S(X) — S(X, Y) be the quotient chain map.
There is an exact sequence

s Hy(Y) > Hy(X) 25 Hy(X, V)25 H, (V) —>- -+,
such that if f: (X, Y) — (A, B) is a map of pairs, the diagram
e H(Y) 5 H(X) L Hy(X, V) -2 H,_ (V) —> -

3 ) o l a

ro o> Hy(B) > Hy(A) —> H(4, By—> H,_(B)——---

is commutative. |}
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The groups H,(X) and H,(Y) in Theorem 4.4.3 can of course be
replaced by the corresponding reduced groups H,(X) and H,(¥):
the resulting exact sequence is called the reduced homology sequence
of the pair (X, Y).

Example 4.4.4 Let x be any point of the space X. In the reduced
homology sequence of the pair (X, x), the groups H,(x) are all zero;
hence H,(X) ~ H (X, x) for all n. |

It is sometimes useful to have a form of Theorem 4.4.3 that
involves only relative homology groups.

Theorem 4.4.5 Given a triple (X, Y, Z), let i: (Y, Z) - (X, Z)
and j: (X, Z)—> (X, Y) be the inclusion maps. There is an exact
sequence

s> H(Y, 2) % Hy(X, Z) SH(X, V)5 H, (Y, Z)>- -,
called the exact homology sequence of the triple (X, Y, Z).

Proof. 0— S(Y, Z):> S(X, Z)1> S(X, Y)— 0 is clearly an
exact sequence of chain complexes. }

Of course, a continuous map of triples gives rise to a commutative
diagram involving two exact sequences, just as in Theorem 4.4.3. It
should also be noticed that in fact Theorem 4.4.3 is just the special
case of Theorem 4.4.5 obtained by putting Z = &.

Consider now a simplicial pair (X, L). By applying Theorem 4.4.2
to the exact sequence of chain complexes

0 —> A(L) > HK) > A(K, L) —> 0,
we obtain an exact sequence
o> H(L) > H(K) 2> H(K, L) -2 H,_ (L) —>- - -,

which might at first sight be different from the exact sequence
obtained from Theorem 4.4.3. However, there is a commutative
diagram

0—> A(L) —2> AK)—L> AK, L) —>0
nl al la
0 —> S(IL)) — S(K]) —> S(K], [L)) —0,

which by Theorem 4.4.2 gives rise to a commutative diagram involving
the two exact sequences; since each chain map B induces isomorphisms
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in homology, the two exact sequences may therefore be identified.
Similar remarks apply to the reduced homology sequence of (K, L)
and to the exact sequence of a simplicial triple (K, L, M). Moreover a
similar proof shows that the exact sequence of (K, L), for exampie,
coincides also with that obtained by Theorem 4.4.2 from the exact
sequence of chain complexes

0 —> C(L) = C(K)—L> C(K, L) —> 0.

Another useful exact sequence arises if we have a simplicial c0mpler
K with two subcomplexes L and M such that K = L U M. Wnte
il LOMl - |Ll, i [Lo M —> M, i3 L] -> (& andi: [M] -~
| K| for the various inclusion maps.

Theorem 4.4.6 There is an exact sequence, colled the Maver—
Vietoris sequence of the triad (K; L, M):

o> H(L N M) 225 H(L) ® H(M) =2 H(K) 2>
H,_(LAaM)y——- -,

where (%) = (i1)ex @ (—(i2)ax) and £(x DY) = (Gax + (1)ay-
Moreover if (P; Q, R) is another triad, a continuous map f: | K| —> | P|
such that f|L| < |Q| and fIM| < |R| gives risc to a commutative
diagram involving the two Mayer~Vietoris sequences. :

Proof. A(L) @ A(M) = ®(4u(L) P 4,(2)) can be made into
a chain complex by taking as its boundary homomorphism 3, @& Oy,
where @, and @), are the boundary homomorphisms in 4(L) and (V)
respectively. Moreover, by Proposition 1.3.33,

H(AML) ® AM)) = Hy(L) ® Hy(M).

Now consider the sequence
0 — NL N M) 2> 4(L) @ (M) = JK)

where 1(x) = () x @ (— () .x) and £x @ y) = (fg) ¥.+ (i) y. It
iy easy to see that 5 and ¢ are chain mups, and that the sequence is
exact. Hence the Mayer—-Victoris sequeme is exact, by Theorem 4.4.2.

To prove the last part, recall that /,.: H {K) — H,(P), for example,
15 :he homomorphism induced by the compouite

AKY=> SGR D n‘;(iPE)-J‘-»./JfP),

. 1eover, by the remark after Prornciticn 4.3.1 the chain map « may
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be chosen so as to restrict correctly to the corresponding chain maps «
for ©, R and O N R. It follows that the diagram

0 —> (L A M) -5 A(L) @ AM) - H(K) —> 0

rz,’_ﬁl la,'_ﬂf*a/_ﬂ : laf.li

0—> 4(Q N R) —> 4(Q) ® 4(K) —> 4(P) —> 0

is commutative, which by Theorem 4.4.2 completes the proof. |}

By an argument similar to that used for the exact sequence of a
pair, the chain complexes C(K), etc., may be used instead of 4(K),
etc., in setting up the Mayer-Vietoris sequence. It should also be
noted that there is a corresponding theorem for arbitrary topological
spaces, whose proof, however, is more complicated than that of
Theorem 4.4.6 (see the notes at the end of the chapter).

An obvious modification of the proof of Theorem 4.4.6 shows that
. the homology groups could all be replaced by the cortespending
reduced homology groups, or alternatively by relative homology
graups: given a triad (K; L, M) and a subcomplex N of X, there is'an
exact sequence

-+H,,(LnM LnMnN)—»H,,(L LA N)@ H(M, MnN)
AK, N)—> H, (LOM,LOMAN)~>--

.called the relative Mayer—Vietoris sequence. Once again, a continuous
map gives rise to 2' commutative diagram of reduced or relative-
Mayer-Vietoris sequences.

Example 4.4.7 Let L be the triangulation of S" in Example 2.3.13
. (n > 0), with vertices @y, @3, . . ., @y 41, Qp 4. Let M be the subcomplex
. obtained by omitting 4;,; and N the subcomplex obtained by

omitting @, , ,, so that M N N is a triangulation of S*~1: see Fig. 4.3
overleaf. By Theorem 4.4.6, we have an exact sequence. .

see—> Hm(Sn-l) —> ,,,(JM) @ Hm(N) ‘_e:') H(Sn) —t)

Hm-l(Sn—l) —_>

Since |M| and |N| are obviously contractible, 8, is an isomorphism,
and so we recover the results of Example 4.3.12 by induction, starting
with the trivial observation that

,,,(S°)_.{Z m=0,

0, otherwise. §
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X2

9,

Fig. 4.3

The isomorphism 9, in Example 4.4.7 is a special case of a more
general isomorphism, between the homology groups of a polyhedron
and its ‘suspension’.

Definition 4.4.8 Given a simplicial complex K, the suspension SK
is K * L, where L consists only of two vertices a and . By the remarks
at the end of Section 2.3, homeomorphic polyhedra have homeo-
morphic suspensions, so that we can unambiguously write S|K| for
|[K| * S° and even SX for a triangulated space X. Moreover a con-
tinuous map f: |K| — | M| gives rise to a map Sf: S|K|— S|M|,
defined by Sf = f = 1, where 1 is the identity map of S°.

Exampie 4.4.9 If S*~!is as in Example 2.3.13, S(S*~*) may be
identified with S*, by taking @ and b in Definition 4.4.8 to be a,,,

and a,,, respectively. (This is often rather loosely expressed by
saying that S(S"~?) ‘is’ S*.) §

Theorem 4.4.10 For each n, there s an isomorphism

se: Hy(K) — H,44(SK),

called the suspension isomorphism. Moreover if f: |K| — |M}| is a’ny
continuous map, then s, fy, = (Sf)ySs-

Proof. Define s: J(K)— A(SK) by s(A) = Aa'— Ab, for each
generator A of 4(K) (this is interpreted as @ — b if A = *). Of course,
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s is not really a chain map, since S(Z,,(K NS A:“(K ), but it is

nevertheless true that ds = s9, so that s induces homomorphisms
Hu(K) - Hn+ I(SK)

To complete the proof, we compare s, with the homomorphism &,

in the reduced Mayer—Vietoris sequence of the triad (SK; K # a, K * ).

Now given [z]e H,(K), where ze Z(A(K)), we have s(2) =
za — 3b = {(za @ — zb), where

(0D o) za @ —3b) = (~1)"*Hz D(~-2)) = (—1)""In(2).

Hence 2,s5,[2] = (—1)**[2]. But since |K#*a| and |K#b| are
contractible, they have zero reduced homology, so that 9,, and hence
S4, 1s an isomorphism.

That s, f, = (Sf)45s follows now from Theorem 4.4.6. §

Observe that s4%K) < 4%SK), so that s induces a chain map

s: C(K) — C(SK), whose induced homology homomorphism may be
identified with s,.

Example 4.4.11 It is useful to define ‘standard generators’ o, of
H, (8" ~ Z (n > 0), by setting 0, = [(a;) — (a})] and 0, = 5,0, _,
(n > 1), using the identification of S(S"~!) with 8" in Example 4.4.9.
Thus, for example, o, = [(a,, a;) — (4, a3) — (a3, a3) + (a3, 43)], and
in general o, has a representative cycle z,, that contains (a,, . . ., a, . 1).
A corresponding generator of H,(E", S*~1) is G,, where o,_, = 8,5,,
and 9, is the homomorphism in the exact homology sequence of
(En, S*-1): thus a representative cycle for &, is @¢2,-;, which
contains (@y, @y, . . ., @y 41)-

Example 4.4.11 has interesting consequences concerned with fixed
points of maps of S* to itself (compare Theorem 2.5.23).

Proposition 4.4.12 Let f: S" — S™ be a continuous map without
fixed points. Then f,(o,) = (—1)"*10,.

Proof. By Corollary 2.2.4 f ~ g, where g(x) = —x for all xe S™.
But (regarding £ asamap of S* ") g is the simplicial map-that exchanges
a,and a; (1 < ¢ < n), and it is easy to see that therefore g,(o,) =

( 1)n+1 l

Corollary 4.4.13 If f: S™ — S™ is a map homotopic to the identity,
and n is even, then f has a fixed point. ||

This result, in the special case n = 2, is popularly known as the
‘Hairy Ball Theorem’: if one imagines a hair growing out of each point
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of the surface of a ball, it is impossible to brush them flat without a
parting, sirce otherwise there would be a map homotopic to the
identity (along the hairs), without a fixed point.

We turn our attention now to the calculation theorem for the
homology groups of polyhedra, mentioned at the beginning of this
section. Since H (K, ) = H(K) and A (K) = H, (K, a) for any
vertex a, it will be sufficient to consider only the case of relative
homology. Roughly speaking, the method 1s to construct a sequence of
subcomplexes of K that in some sensc generalize the skeletons of K.
Now if K" denotes the n-skeleton, for any subcomplex L the set
Kr"UL ~ K" ! U L consists of the n-simplexes in K — L, so that
H(K"UL, K" 1UL) = 0unless r = n, and

H(K*"U L K*1UL) ~ Cu(K, L).

This property of the skeletons is generalized by forming a sequence of
subcomplexes K = M? > M?~1 >...o> M? > L with the property
that H(M", M"~!) = 0 unless » = n: we then define a new chain
complex C by setting C, ~ H,(M", M™~1), and it turns out that
H(C) ~ H (K, L) for any such sequence of subcomplexes. '

It is particularly convenient to work with a sequence of sub-
complexes constructed by dividing K into certain generalizations of
simplexes called ‘blocks’. However, we must first prove the geaeral
result on the homology of chain complexes constructed as above.

Suppose, then, that K = M?> M?"!>...o M°> L is a
sequence of subcomplexes such that A (M", M"~?) = Qunlessr = n,
for all integers » and n. Let C be the chain complex ®C,, where
C, = H (M" M™") (M™" is to be interpreted as K if n > p and L if
n < 0), and the boundary homomorphism d: C, — C, _, is defined
to be the composite

HAM™ M*~Y) 25 B, (M=%, L) 25 H,_ (M=, M7-3),

where 8, and j, are homomorphisms in the exact sequences of the
triples (M® M"~1, L) and (M"-, M"~2, L) respectively (in fact
d = d,, the homomorphism in- the exact sequence of the triple
(M», M3, M*-2): see Exercise 6). Certainly C is a chain complex,
since d2 involves a composite of two successive homomorphisms
(J« and 2,) in the exact sequence of the same triple, so that 42 = 0.

Theorem 4.4.14 For each n, H,(C) = H (K, L).
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Proof. 'This is really just an exercise in handling exact sequences.
First consider the exact sequence of the triple (M™, M*-1, L):

o H (M7, MY 2 (M LY s H(M?, L)
AN HM M* 1) —s. .
Since H(M", M"~!) = Qunlessr = n, ,: H{(M"-, L) - H(M™" L)
is an isomorphism for » # # — 1, n. So for r > n, H(M", L) =
HM"Y 1)~ H(M~ L) = H(L,L) = 0, and in particular
it follows that j,.: H,(M™, L) — H,(M", M"~1)is (1-1)
Now consider part of the chain complex C. By definition the

following diagram is commutative (the superscripts to 9, and j, are
merely for identification purposes).

HrH- 1(‘7Mn+1» -}Wn) —~ Cn+1

all

H (M, L) ¢

1
j‘l . v

H,(M" M*-1) —— C

aﬁl

H,_(M*"}, L) ¢

"
Y

H,_ (M™%, M"-2) — Cooy

n

Now
Z,(C) = Ker 0%, sincejZis (1-1)
= Imj3

~ H,(M" L), sincej}is (1-1).
It follows that
Hy(C) = Z,(C)/B,(C)

~ H(M", L)/Im &l.
But Im o} = Ker [i,: H,(M", L) — H,(M"*!, L)], so that
H(C) = Im [i,: H(M", L)~ H (M"*, L)], by Proposition 1. 3JZ
= H,(M"*}, L), since H,(M"*, M) = 0,

But H,,(M""'l, L) ~ n(Mn+2, L) e n(Mn, L) = Hn(K, L)’
and hence H,(C) ~ H(K, L). §

Of course, if M™ = K*U L, then H,(M" M" ') = 0 unless
r =n, and H (M*" M%) x C(K, L). It is easy to see that the
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boundary in C(K, L) defined in Theorem 4.4.14 is the same as the
ordinary boundary homomorphism in this case, so that we recover the
chain complex C(K, L).

The next step is to define blocks: these are generalizations of
simplexes, and the corresponding ‘block skeletons’ form a particularly
convenient sequence of subcomplexes to which Theorem 4.4.14 can
be applied.

Definition 4.4.15 An n-block in a simplicial complex K is a pair
of subcomplexes (e, é), such that dim e = # and

H (e, €) ~ {

é is called the boundary of e, and the interior of e is the set of simplexes
ine—é. '

For example, if o is an n-simplex of K, then (K(o), ) is an n-block,
by Example 4.3.12. The interior of this block consists of the single
simplex o.

We next wish to divide K into blocks, in such a way as to generalize
the structure of X as a simplicial complex.

Z, r=n
0, r#mn

Definition 4.4.16 A block dissection of K is a set of blocks such
that

(a) each simplex is in the interior of just one block;
(b) the boundary of each n-block is in the union of the m-blocks,
form < n.

A subcomplex L of K is a block subcomplex if it is a union of blocks.
In particular, the block n-skeleton of K, K,, is the union of all the
m-blocks for m < n.

Example 4.4.17 Given any simplicial complex K, the set of pairs
(K (o), 6), for all simplexes of K, forms a block dissection of K. For
this block dissection, every subcomplex is a block subcomplex.
Similarly, the set of all pairs (K(o)’, (6)') forms a block dissection
of K'. §

Thus a block dissection of K is indeed a generalization of the
dissection of K as a simplicial complex.

Example 4.4.18 The torus T can be triangulated as shown in
Fig. 4.4.
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Y34 b Vo b3

Fig. 4.4

A block dissection consists of the blocks
€2, the whole simplicial complex,
el = (8% BY), (3%, %), (B3, bO), (5°), (BY), (8,
= (8%, 59), (8%, b%), (8%, B9), (b°), (5°), (89,
e = (),

whereé? = el Uel, é} = é} = €% andé® = . This certainly satisfies
(a) and (b) of Definition 4.4.16, though it remains to prove that these
really are blocks. We postpone the proof until after Proposition
4.4.19. |

Example 4.4.18 illustrates the practical difficulty that usually arises
in constructing a block dissection: it is easy enough to find sub-
complexes that fit together in the right way, but less easy to show that
they are genuine blocks. However, the following proposition will often
resolve this difficulty.

Proposition 4.4.19 If (M, N) is a triangulation of (E®, S*~!), and
f: | M| — |K| is a simplicial map that is (1-1) on |M| — |N|, then
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(f(M), f(M)) is an n-block, where f(M) is the subcomplex of K of all
sz'mplr\m f(o), o€ M. (]f n =20, (E° S~ is to be interpreted as
(0, ), where O is the origin.)

_ Proof. Since fis (1-1)on |M| — {N|, itis (1-1) on each simplex of
M - N, and hence f:4(M, N)— A(f(M),f(N)) is a chain iso-
mdarphism: thus f,: H(E", S*™ 1) — H(f(M), f(:N¥)) is an isomor-
phism. Since; by Corollary 4.3.14, dim f(M) is clearly n, the proof
15 complete. |

Thus, for example, €2, e}, e} and e in Example 4.4.18 are blocks.

The usefulness of a block dissection lies in the fact that if L is a
block subcomplex; the subcomplexes M™ = K, U L satisfy the
. hypotheses of Theorem 4.4.14, . This is the next theorem, in which
we shall also prove that-H,(M",M"~?) is a free abelian group with
generators in (1-1)- correspondenc&*wnth the n-blocks whose interiors
Vdrein K — L; thus the chain complex formed from the block dissection
1S a generahzatmn of C(KyL).

Theorem 4.4.20 Lef K be a simplicial complex with a block
dissection, and let L be a block subcomplex. If M™» = K, U L forn > 0
" (and M = L for n < 0), then H(M", M"1) = 0 unless r = n, and
(if w > 0) H(M™ M*~1) is a free abelian group with generators in
(1-1)-correspondence with the n-blocks whose interiors are in K — L.

. Proof. M"™ — M"~1!isthe union of the interiors of those n-blocks
e, whose interiors are contained in K ~ L. Since each snmp[cx is in the
‘interior of a unique block, it follows that 4, (M™, M"-1) = >4, (e, é),
for those ¢, whose interiors are in K — L. But &(}) has the same value
whether A is regarded as a generator of 4,(M™, M"- 1) or of some
,(e,, é;); hence J(M" M"-Y) @ @H (e, é), which is zero unless
r = n, and if r = # is a free abelian group with generators in (1-1)-
carrespondence with those e, whose interiors are in K — L. §

Tt follows ftom Theorem 4.4.14 that H,(K, L) = H,(C) for each n,
where C, = H (M", M"~1). The only practical problem that 1emains
before we can use C to compute H, (X, L) is the determination of the
boundary homomorphisms d, and these can be described as follows.

Since M" — M™1 has no simplex of dimension greater than n,

B, (C(M™ M"-1)) = 0, and we may identify I (M", M"~1) with
Z(C(M™, M"-1)), which is a subgroup of C,(M" M""1)=
C.(K, L). Let 6: C, — Cy(K, L) be the inclusion homomorphism so
defined; the boundary homomorphism d is thus completely deter-
mined by
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Proposition 4.4.21 0 is a chain map.
Proof. By definition, d is the composite
H(M*", M*~%) > Hy_y(M*~%, L) 2> Ho o (M"Y, M*79),

where, by the remarks after Theorem 4.4.5, we may use simplicial
chain complexes throughout. Now if

xe H(M* M*-1) = Z (C(M", M™-1)),

J+0x(%) 1s given by regarding x as an element of C(M™, L). taking its
boundary 8(x) in C(M™", L), and noting that in fact &(x) e Z(C(M*, L)):
then

jeu(%) = jA(x) € Z,_(C(M™-2, M™~%)) = H,_(M""}, M*-2).

However, d(x) has the same value whether x is regarded as an element
of C(M™", L) or of C(K, L), and j has no effect on 9(x), since it is a
linear combination of (n — 1)-simplexes that are not in L, and so not
in M™~2. Hence 0d(x) = 26(x). }

In particular 8 induces a homomorphism 6,: H(C) - H (K, L).

Proposition 4.4.22 0y is the isomorphism of Theorem 4.4.14.

Proof. The isomorphism of Theorem 4.4.14 is given by choosing a
representative cycle x in C, = H (M", M"-?), ‘lifting’ to H,(M™, L),
and mapping to H,(M"*1, L) ~ H, (X, L) by i,. But if j,0,(x) = 0,
then by Proposition 4.4.21 we have 96(x) = 0 in C(K, L), so that
0(x) e Z(C(M™, L)). That 1s, x becomes the coset [6(x)] = 0,(x) in
H,M"+, L)~ H(K, L). |

Example 4.4.23 Consider the triangulation and block dissection
of the torus T obtained in Example 4.4.18. If we identify the resulting
chain complex C with a sub-chain complex of the simplicial chain
complex, using the chain map 6, we may take the groups C, to be the
free abelian groups generated by the following elements.

Cp: 22 = [B9, b1, B°) + [bY, b5, %] + - - -

(that is, 22 is the sum of all the 2-simplexes of T, where each 2-simplex
is identified with a generator of the simplicial chain complex according
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to the arrows in Fig. 4.4: the arrow on (8% b1, %), for example,
indicates that we are to take [b°, b!, b3] rather than, say, [b°, b, b']).

Cy: =z} = [b°0'] + [bY, B3] + [b2, b°]
23 = [b° B3] + [b®, b%] + [b%, b°)

(these are also indicated on Fig. 4.4 by arrows on the corresponding
simplexes).

Co: 20 =[b°).
It is easy to see that these will do as generators: for example, 9(2%) = 0,
since &(z%) contains every 1-simplex twice, with opposite signs, and
hence 2% € Z,(C(e? el U el)); on the other hand, 22 cannot be a
multiple of any other cycle. Also &(z1) = &(z3) = 0 and 8(2°) = 0, so
that the homology groups of T are

Hy(T)~ Z, H(T)~ Z® Z, Hy(T) = Z, H,(T) = 0 otherwise.

As an example of the calculation of relative homology groups,
consider the (block) subcomplex el of T. To calculate H,(7, e}), we
use the blocks ¢? and e}: again §(2%) = 9(z}) = 0, so that H,(T, e}) =
Z, Hy(T, e}) ~ Z and H,(T, e}) = O otherwise. |

The same method can be used to calculate the homology groups of
the triangulable 2-manifolds of Chapter 3.

Theorem 4.4.24 The homology groups of M,, N, (g = 0,h > 1)
are given by :

(a) Ho(M,) ~ Hy(M,) ~ Z, H(M,) = 2¢Z, H,(M,) = 0 otherwise;
(b) Hy(Ny) = Z, H(N,) = (h — 1)Z ® Z,, Hy(N;) = 0 otherwse,
where rZ denotes the direct sum of r copies of Z.

Proof. As usual, we first dispose of the special cases M, and Nj.
Now M, = S? and N, = RP?, and the homology groups of these
have been calculated in Examples 4.3.12 and 4.3.17. Also the case of
M, (the torus) has just been done in Example 4.4.23; the general case
is done in a similar way, with a block dissection of M,, for example,
having one 2-block, 2g 1-blocks and one 0-block.

Consider the triangulation of M, (g > 1) obtained as in Theorem
3.4.11: take the 4g-sided polygon P corresponding to M,, divide each
side into three equal parts, join the resulting vertices to the centre,
and then subgivide the resulting triangulation of P relative to the
boundary. A block dissection of M, is then obtained as follows, where
the boundary edges of P correspond to the sequence of symbols

—1,,-1 , —-1.,-1
Xy 1Xy Yy T X YeXg Y e
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Let ¢’ = all simplexes in M,

- » .
e} = all simplexes in the edge x,,
¢! = all simplexes in the edge ¥,,

e® = a, the point to which all the original vertices of P are
identified.

If we also take €% = {J (el L é}), é! = é,i = a, Proposition 4.4.19
r
ensures that these are all blocks (see Fig. 4.5).

Fig. 4.5

The resulting chain complex C may be taken to be that generated by
22 = the sum of all the 2-simplexes,
z! = the sum of the three 1-simplexes in e,
Z! = the sum of the three 1-simplexes in &,
and 2° = {a], ‘

where these simplexes are identified with generators of the simplicial
chain complex according to the arrows in F ig 4.5. These will certainly
do as generators: for example &(2%) = 0 in C(e? ¢%) because 9(z)
contains each ‘interior’ 1-simplex twice, with opposite signs; and 22
cannot be a multiple of another cycle.

Finally,

o(z;) = o(7;) = 0;
and
Ha?) = (2} + 5 — 2l —F) 4+ -+ (23} + B — 3} — B
= 0. .

This proves (a), and the reader should have no difficulty in adapting
the proof to deal with (b). §
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As a final example, let us calculate the homol(ggy groups of RP™,
for each n.

Example 4.4.25 We may as well regard RP™ as the space obtained
from S™ by identifying antipodal points, where as in Example 2.3.13
S™ is the polyhedron of a simplicial complex L, in R**!. A triangula-
tion M, of RP" is then obtained by identifying antipodal points of L;.

By Proposition 1.4.40, M, is also the simplicial complex obtained
by identifying antipodal points of L, _, in (L;})’, where L} is the
subcomplex of I, of those simplexes lying in the region x,,, > 0.
Since L} is a triangulation of E", by Proposifion 4.4.19 there is a
block dissection of M, with _]USt one n-block ¢ = M,, the boundary
é" being M,, 1» which in turn is a single (n — 1)-block e"~* whose
boundary is M,_,, and so on, until ¢ = M,, the single point
a, = a;.

The corresponding chain complex C has C, = 0 for r > n or
r < 0, and otherwise C, has just one generator. It remains to choose
these generators and calculate the boundary homomorphisms. Write
2, for the ‘standard’ generating cycle of Z,(L,), as in Example 4.4.11;
then 2,_,a,,, i1s a generating cycle for Z (L}, L,_,). Write also
Zgy Zp-14, 4, for the images of these elements in the corresponding
simplicial chain complexes (they are also generating cvcles). By the
remarks after Corollary 4.3.10, ¢(2,_,a,.,,) is a generating cycle for
Z,(C((L}), L,-y)), and hence if p: |L}| — |M,] is the identification
map, the proof of Proposition 4.4.19 shows that p ¢(2,_1a,.,) 15 a
gencrating cycle for Z,(C(M,, M, _,)) = C,. Morcover in C(M,)

Op H(2n-18n+1) = P.$C(2n-1an41)
= (=1)"p.$(2n-1)
= (—1)"p $(2 280 — 2n-2a3)-

But if =, _, denotes 2, _, with a, and a] interchanged for each », we
have %,.5 = (= 1)"~12}_,, and p §(z-5aL) = p $#-24,). Hence
Op $(3n-1n41) = (—1)"p $(25-2as) + p.H(2n-2,)

= (1 + (= 1))p.$(3n-20s).
It follows that the homology groups of RP* are
Hy(RP") =~ Z
H(RP") =0 ifr < 0,7 > n, orriseven,
H(RPY >~ Z, ifrisoddand 0 < r < n,
H,(RP™ ~ Z ifnisodd. |
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4.5 Homology groups with arbitrary coefficients, and the
Lefschetz Fixed-Point Theorem

So far in this chapter we have been working with homology groups
of chain complexes in which the chain groups are free abelian groups.
Thus for example, if X is a topological space, an element of S(X) is a
formal linear combination } 7,A, where the A; are singular simplexes

{

and the 7, are integers. However, it is often useful to consider s
generalization in which the r;, instead of being integers, are elements of
an arbitrary abelian group G. The new chain complex that results is
written S(X; G), and the corresponding homology groups are
H,(X; G), the homology groups of X with coefficients in G; thus
H,(X) appears as the special case H (X; Z). In fact the groups
H,(X; G) are completely determined by the groups H,(X), so that
this generalization cannot be expected to yield new information about
X; the i1dea is rather that H,(X; G) may be simpler and easier to
handle than H,(X). For example, if K is a simplicial complex and
G is a field, we shall see that each H,(K; G) is a finite dimensional
vector space over (7, and so is determined up to isomorphism by its
dimension. Moreover the homology homomorphisms induced by
continuous maps are linear maps of vector spaces, and this fact can be
used to give algebraic conditions for a continuous map f: |K| — | K|
to have a fixed point.

Since the definition of H,(X; G) is purely algebraic, we shall
follow our usual procedure and consider first the abstract situation.
The idea of ‘taking coefficients in G instead of in ¥’ is formalized by
the notion of the tensor product of two abelian groups.

Definition 4.5.1 Given abelian groups 4 and B, the tensor product
A ® B is the abelian group generated by all symbols of the form
a @ b, for each element @ € 4 and each b € B, subject to the relations
a; @by + b)) —a; @b, —a; &byand () + a;) @b, — 2, ® by
~ ag ® by, for each @}, a € 4 and b,, b, € B.

Example 4.5.2 If R is any ring, then by Proposition 1.3.20 the

multiplication m: R x R — R may be regarded as a hormomorphism
m:RQR—R. |

Example 4.5.3 For any abelian group G, G ® Z ~ G. To prove
this, define a homomorphism 6: G & Z -» G (using Proposition
1.3.20) by the rule (g @ n) = ng (n€ Z, g € G), where ng means
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2+g+ -+ g (ntimes) if # >0 and ~(—ng) if n < 0 (and of
caurse Og = 0). Clearly & ts onto, and it is alsn (1-1), since

0[2 Mg ® "1):] =0 = z Ang =10
i

=S Ang)®1=0
=2 (\ng 1) =0
=S Mg @ m) = 0.
Hence 6 is an isomorphism (indeed, we shall often identify the groups

G ® Z and G, using the isomorphism 6). |

Example 4.5.4 If p and g are positive integers, Z, &) 2, = Zp.o
where (p, ¢) 1s the highest common factor of p and ¢. For we can
define a homomorphism 6:Z,&® Z,—> Z,, by Hr®s) =
rs (mod (p, q)) (r€'Z,, s€ Z,). Again 8 is clearly onto, and to prove
that it is also (1-1), note that 3 A(r, ® 5;) = 3 Ars(1 ® 1). Thus

O Mri®s)]=0=3 Ars, =0 mod(p,q)
= > Ars; = ap + by,
for some integers @ and b, so that !
C SAM @) =ap(l® 1) + bl ® 1)
=a(p®1) + 1 Qq)
—0. 18

Example 4.5.5 If p is any positive integer, then Z, ® Q = 0,
where O is the additive group of rationals. For if r € Z, and g€ Q,
thenr © ¢'= (p) ® (¢/p) = 0. 1

The process of forming the tensor product can ‘be applied to
homomorphisms as well as to groups.

"
2

Proposition 4.5.6 Homomorphisms f: A — A', g: B — B’ give rise
to a homomorphism f @ g: A Q B> A' & B’, such that given further
homomorphisms f': A' —> A", g’: B' — B", we have (f' @ ¢'Wf R g) =
(/1) ® (g8)-

Proof. Define f@g: A @ B—> A' @ B’ by the rule
. (f ®@g)a ® b) = fa) ® g(b):
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this defines a homomorphism by Proposition 1.3.20. The property
(f Q)R8 = (ff) ® (g'g) is immediate from the definition. [

Finally, before applying tensor products to chain complexes, it is
useful to have two general rules for manipulating tensor products of
abelian groups.

Proposition 4.5.7

(a) AQ Bx B® A.

(b)IfA =@ Ajand B = @ B, then A Q B = @ (4, @ B)).
1 ] 1.

Proof. (a) is trivial. As for (b), let p,, ¢;: 4,, B; > @4, B, be
the obvious inclusion iomomorphisms, and define homomorphisms

0:AQB—> @4 ®B), $®UAQB)>AQB
by 6{(a) ® (b))] = (a; ® b)), (%)) = 2 (£: ® ¢))xi; (xy € A, @ By).

(Note that the latter sum is only a finite sum, since by definition of the ¢
direct sum, all but a finite number of the x,; are zero.) Now

$0[(a) ® (5)] = (a4 ® ¥)))
= z (21 ® ¢))(a, @ by)
= zptal ® ¢,
= (a) ® (&),
so that ¢0 is the identity, and
6d((a, ® by)) = 9[2 pa ® g4 ]
0[(a)) ® (b))]

= (a; ® b)),

8o that 64 is also the identity (it is clearly sufficient to check 64 on an
element of the form (a;, ® &), since every element of (4, ® B;)is a
finite sum of such elements). Thus 8 and ¢ are inverse isomorphisms. |

We are partncularly interested, of course, in applying the tensor
product construction to chain complexes. Suppose that C is a chain
- complex with boundary homomorphisms 9: C — Cy_;, and that G
is any abelian group.

Proposition 458 C Q® G is a chain complex. Moreover if
" f:C— Disachainmap, thensois f1:CQG—>DQG.

Proof. By Proposition 4.5.7(b), C® G =~ @ (C, ® G), so we
mayset (C® G), = C, ® G.Since(@® 1)o@ 1) =(@*R@1) =0
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C ® G, with the boundary homomorphisms 8 ® 1, is certainly a
chain complex. Moreover if f is a chain map, then so is f ® 1, since

feNeEel)=(0el)
=(@fQ1)
=@ N,
and (f@ 1)(C, ®G) =D, R G. 1

Definition 4.5.9 Let (X, Y) be a pair of spaces. The homology
groups of (X, Y) with coefficients in G are defined by

H(X, Y; G) = H(S(X, Y) ® G).

We write Hy (X, Y; G) for @ Hy(X, Y;G), and H(X; G) if Y 1s
empty. Similarly the reduced homology groups of X with coefficients
in G are defined by

H,X; G) = H(5(X) ® O).

Given a continuous map f: (X, Y)— (4, B), we obtain a chain
mapf ® 1: S(X, Y) ® G— S(4, B) ® G, and the induced homol-
ogy homomorphisms f,: H(X, Y; G) > H,(A4, B; G) are defined
by fa« = (f. ® 1),. Just as in Section 4.2, we can prove that 1, = 1,
that (gf)s = £«f+ and that f, = g, if f ~ g. Indeed, these results
follow immediately from Proposition 4.2.16 and 4.2.21, in virtue of
Proposition 4.5.6. Similarly, we can deduce from the results of
Section 4.3 that, if (K, L) is a simplicial pair, then H,(|K|, |L|; G) is
also the homology of the chain complexes 4(K,L) ® G and
CK,L)y®G.

By Example 4.5.3, S(X, Y) ® Z may be identified with S(X, Y),
so that H (X, Y; Z) is what we have previously called H (X, Y):
we shall continue to omit the coefficient group if it happens to be Z.
Moreover, since S(X, Y) is a direct sum of copies of Z, one for each
singular simplex in X whose image is not contained in Y, it follows
using Proposition 4.5.7 as well that, for any abelian group G,
S(X, Y) ® G is the corresponding direct sum of copies of G; hence
in particular the sequence of chain complexes

0—> S(Y)Q G2 8(X)® 62> 8(X, Y)® G—> 0
is exact. Thus the results of Section 4.4 all hold in the corresponding
versions for homology with coefficients in G (though see Exercise 13
in the case of the ‘block dissection’ calculation theorem).
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The reader is warned, however, that although H, (X, Y; G) is
defined to be H,(S(X, Y) ® G), it does not follow that H,(X, Y; G)
(X, Y) ® G. For example, it was proved in Example 4.3.17
that Hy(RP?) ~ Z, H(RP?%) ~ Z,, and H,(RP?) = 0; but the same
method (or that of Theorem 4.4.24 or Example 4.4.25) will show that
Hy(RP?; Z,) ~ H\(RP%; Z,) ~ Hy(RP?, Z;) ~ Z,. Nevertheless it
is possible to calculate H, (X, Y; G) by a purely algebraic process
from H (X, Y). Since it is rather complicated, we shall not prove the
general theorem here (though see Exercise 16), but will confine our
attention to the most useful special cas:s G = Q or Z,. In this context,
it is worth noting that there are particular advantages in taking
coefficients in a field.

Proposition 4.5.10 Let C be a chain complex and let F be a field.
Then H(C @ F) is a vector space over F. Moreover if g: C — D is a
chain map, the induced homology homomorphism g,: H (C ® F)—
H(D @ F) is a linear map of vector spaces.

Proof. We show first that C @ F is a vector space over F. It is
necessary only to define an action of F on C (3 F, and this can be done
by setting f(c @ f') = ¢ @ (ff'). This obviously makes C ® F into a
vector space, and also

G ® Ve @ )] = f(2c & f)
=@ ff
Y =)

so that @ ® 1 is a linear map, and hence H(C ® F), being a quotient
of a subspace of C® F, is also a vector space over F. A similar
argument shows that ¢ ® 1 is a linear map, so that the same is true

of g |

Corollary 4.4.11 Given a pair (X, Y) and a field F, then each
H.(X, Y; F) is a vector spac: over F. Moreover if g: (X, Y)— (4, B)
is a continuous map, then g, . H (X, Y; F) —> H (A, B; F) is a linear
map. § .

We next establish the results on the relation between homology
with coefficients in. ) or Z, and ordinary homology, that is, homology
with coefficients in Z. As usual the abstract situation is cons:dcred
first. \

In order to deal with coefficients in J, an algebraic lemma is
necessary.
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Lemma 4.5.12 Let g be an element of an abelian group G. If
g®1 =0inG& Q, there exists an integer n # 0 such that ng = 0
in G.

Proof. In the free abelian group generated by the symbols g & ¢
(g€G,qe ), g ® 1is a finite sum of elements of the form

619 +q) 8190 — 810 ¢

- or

(81 +£8)Q9 — 81911 ®g2® ¢1-

Thus if G, is the subgroup of G generated by the elements g, and g,
that occur in this finite sum, G, is a finitely generated abelian group
that contains g, and g ® 1 = 0 in G, ® Q. But now Theorem 1.3.30
can be applied to G,, and then Examples 4.5.3 and 4.5.5 show that
there exists 7 such that ng = 0 in G, and hence in G. |}

Theorem 4.5.13 Let C be any chain complex. Then for each n,
H(C® Q) = H{C) ® 0.

Proof. We first show that if F-5> G 2> H is an exact sequence of
abelian groups, then so is

FoQ25GR0LHH® Q.

To prove this, note first that (8 @ 1)(ea ® 1) = 0,sothatIm (« @ 1) <
Ker (8 ®.1). Conversely let > (g, @ ¢)eKer(B® 1), so that
> Pe,® ¢, = 0. Since this is a finite sum, there exists an integer
m # 0 such that each myq, is an integer, so that > B(mg,g,) & 1/m = 0,
or 3 B(mgg)® 1 =0. Hence by Lemma 4.5.12 there exists an
integer n such that (3 nmq,g,) = 0 in H, so that X nn: 7 = aff)
for some f € F. But then

th & q = Z”m‘bé’t & 1/nm
o(f) © 1/nm
’ € Im(e® 1).

"Thus Ker (B & 1) © Im (a & 1), and the sequence is exact.
To return to the chain complex C, the exact sequence

il

0—> Z, — C, <> C,_;

yields the exact sequence

o®1

0 2, 80— C® 025 €, ® 0,
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so that Z,(CR Q) =Ker(6® 1) = Z, ® Q. Hence the exact

sequence
0-——>Zn——>Cn—a—->Bn_1-———>0
yields
0—Z(CRQ) —>C,®Q—>B, , ® Q—>0,
so that B, ;(C® Q) ~ B,_; ® Q. Finally, a similar argument
applied to the exact sequence

0— B,— Z, - H,(C)—0

shows that H,(C ® Q) ~ H,(C)® 0. §

In particular H (X, Y; Q) >~ H (X, Y)® QO for.a pair (X, Y).
Thus if (K, L) is a simplicial pair, and H,(K, L) is a direct sum of m
copies of Z and a finite group, H,(X, L; Q) is a direct sum of m copies
of Q. That is, H (K, L; Q) measures the ‘free part’ of H,(K, L).

The case of coefficients Z, is dealt with by a rather different method.
Once again, an algebraic lemma is necessary first.

Lemma 4.5.14 Let G be an abelian group, and let «: G — G be the
homomorphism defined by «(g) = pg. There is an exact sequence

0—> Kera—> G >G> G Q® Z,—>0,

where B(g) = g ® 1. .~

Proof. Clearly B is onto, so it is necessary only to show that
Ima = KerB. Now Ba(g) =pg @1 =gQp =0, so that Ima <
Ker B. On the other hand we can define a homomorphism
y:GQ® Z,— G/Ima by y(g @ n) = the coset [ng], where ne Z,;
this is unambiguous, since [pg] = 0. Moreover y8 is just the ‘quotient
homomorphism’ G — G/Im a, so that if g€ KerB, yB(g) = 0 in
G/Im «, and hence g € Im «. Thus Ker 8 © Im «, and the sequence
is exact. J

It is usual to write Tor (G, Z,) for Ker [¢: G — G]. The reader
should have no difficulty in showing that Tor (Z, Z;) = 0, that
Tor(Z,, Z,)) =~ Z,, and that Tor (G‘—) Gy, Z,) = 6;) Tor (G, Z,);

this suffices to calculate Tor (G, Z,) for any finitely generated abelian
group G.

If C is a chain complex in which each C, is a free abelian group
(as it is, of course, if C = S(X, Y)), there is an exact sequence of
chain complexes

0—CcHcbH o z,—0.
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By Theorem 4.4.2 this leads to an exact sequence
o Hy(C) 25> H(C) 25> H(C ® Z,) 2> H, _\(C) —>- -,

where again «,(x) = px for each x € I (C). This sequence is called
the exact coefficient sequence associated with Z,, and 9, is known as a
Bockstein boundary homomorphism. The exact coefficient sequence can
be broken up into short exact sequences, one for each »:

0 — H,(C)/Ker B, — H\(C ® Z,)— Im 8, — 0,

where the homomorphisms are induced by B8, and 0,. Now Ker 8, =
Ime,, so that H (C)/Ker8, ~ H(C)® Z,, by Lemma 4.5.14;

also Imo, = Kere, = Tor (H,_,(C), Z,). So we have (almost)
proved .

Theorem 4.5.15 Let C be a chain complex in which each C, is a
[finitely-generated free abelian group, and let p be any positive integer.
1 nen )

H(CQ® Z,) > H(C)® Z,® Tor (H,.,(C), Z,).

Proof. Let r be any divisor of p, so that p = rs, say. There is a
commutative diagram '

0—cCc-HcHez,—0

| ool |

0—C-—>C-—>CQRZ —0
a B

in which A(¢) = sc, &(c) = r¢, and 1 may be regarded as the ‘quotient
homomorphism’ C/Im ¢ — C/Im @. This gives rise to a commutative
diagram

ce o> H(C) 2> H(C) 2> H(C ® Z,) 2> H,_y(C) —>- -+
> Hy(C) o> Hy(C) 5> H(C® Z) — H,y(C) —> -,

and hence, by the above discussion, to a commutative diagram (of
exact sequences) ¥

0—> H(C) ® Z, -2 H(C ® Z,) 2> Tor (H,_,(C), Z,) —> 0

vl lu.

0—> Hn(C) @ Zr ?" Hn(C & Zr)’5_> TOI‘ (Hn—l(c)» Zr) —_— 0!
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where again » may be regarded as the quotient homomorphism
H (C)/Im a, — H,(C)/Im&,. Now it is clear from Lemma 4.5.14
that the order of every element of Tor (H,_,(C), Z,) and C,, @ Z,
(and hence H,(C ® Z,)) is a divisor of p. In particular, by Theorem
1.3.30, Tor (H,_,(C), Z,) is a direct sum of groups Z,, for various
divisors 7 of p; and if x is a generator of one of these, say Z,, we can
write x = 0,(y) for some y€ H (C ® Z,). Then 0,(ry) = rx = 0,
so that ry = B,(2) for some 2 € H(C) @ Z,. So By(2) = p,Be(2) =
714(y) = 0, and hence W(z) = 0 and 2 = r¢ for somet € H,(C) ® Z,.
To sum up, we have x = 3,,(}: Ba(t)), where r(y — B.(2)) = 0
Hence by defining -y(x) — B4(?), and making this construction
for each generator of Tor (H,, W{C), Z,), there results a homomor-
phism y: Tor (H, .,(C), Z,) - H,(C ® Z ) such that 9,y = 1. Con-
sequently, by Proposition 1.3.36, .

H(C® Z,) = Hy(C) ® Z, § Tor (H,_+(C). Z,), }

Note. The restriction in Theorem 4.5.15, that each C, should be
finitely generated, is not really necessary, but is included in order to
simplify the proof. In fact the result of Theorem 4.5.15 is 4rue in
much greater generality: see Exercise 16. ‘

It follows from Theorem 4.5.15 that, for any snmphcml palr (K, L)
and any integer p > 2, we have 3

H(K, L; Z,) = H{K, L) ® Z, ® Tor (Hy_o(K, L} Z,).

As an example of the use of homology with coefficients other than
the integers, we end this section with a proof of the Lefschetz Fixed-
Point Theorem. Suppose given a simplicial complex K, and a con-
tinuous map f: |K| — |K|; then by Corollary 4.5.11 each

fa: H(K; Q) —~ HAK; Q) |
is a linear map of finite-dimensional vector spaces (the supérfix #» on
f+ indicates the n-dimensional component).
Definition 4.5.16 The Lefschetz number L(f) of the map
F K| = [K]| is defined by L(f) = 5 (—1)"tr (f2). (Recall Prop-
n=0

osition 1.3.59. This is only a finite sum, since f§ = Ofor » > dim K.)
The main result about the Lefschetz number is that, if L(f) # 0,
then f has a fixed point. A lemma 1s necessary here.

Lemma 4517 If f.:C(K)Y® Q— C(K) ® O are the com-
ponents of a chain map that induces f,, then L(f) = 2 (~1)* tr (f,).
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Proof. Write C, for C,(K) ® 0, and Z,, B, for the corresponding
groups of cycles and boundaries. Now f,: C, — C, restricts to
fi:Z,— Z,, fi:B,—B,, and induces f,: C,/Z,— C,/Z,, f}:
Z,/B, — Z,/B,. By Proposition 1.3.60, we have

tr(fy) = tr (i) + tr (7,)
= tr (f2) + tr (f2) + e (f).

But 8 ® 1 induces an isomorphism 3: C,/Z, — B,_y, and f,_,0 =
9f,. Hence tr (f,) = tr (f7_,), so that

L) = 2 (=) u(fp)=2 (-1 ()}

In particular, Lemma 4.5.17 can be applied to the identity map
1: |K|—|K|, to show that I(1} = 3 (—1)«,, where o, is the
number of n-simplexes of K. Thus 3 (~ 1), depends only on the
homotopy type of |K|; it is usually called the Euler-Poincaré
characteristic of K, and written y(| K).

Theorem 4.5.18 Given a map f: |K| — | K| without fixed points,
then L(f) = 0.

Proof. Suppose that X is in some Euclidean space R™, and let d be
the metric in R™. Since |K| is compact and f has no fixed point,
d(x, f(x)) attains a greatest lower bound > 0, say, as x runs over all
points of |K|. Take an integer # such that mesh K™ < 48, and let
g:|K®*9 —~ |K™| be a simplicial approximation to f:|K™| —
|[K™|. Now if k: |[K®*9| — |K™| is a simplicial approximation to
the identity, g ~ f ~ fh, so that g, = f,h,. But it was remarked after
Corollary 4.3.10 that A, is the inverse isomorphism to ¢, where ¢ is
the subdivision chain map; hence f, = g, so that g ¢': C(X™)
C(K ™) is a chain map that induces f,.

By Lemma 4.5.17, it is sufficient now to prove that, for each simplex
o of K™, g ¢%(0) is a linear combination of simplexes other than o,
for then each tr (f.) is zero. Suppose, if possible, that o is a simplex
such that g ¢!(o) does contain o. Then since ¢¥(c) is a linear combina-
tion of simplexes that are all contained in o, it follows that at least one
of these must be mapped by g back to o, and so there is a point x € ¢
such that g(x) € o also, that is, d(x, g(x)) < mesh K™ < 1§. But the
proof of Theorem 2.5.3 shows that f(x) and g(x) are both in some
simplex of K™, so that d(f(x),g(x)) < 46. Hence d(x, f(x)) <
d(x, g(x)) + d(f(x), g(x)) < 8, which contradicts the definition of 8. |
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Corollary 4.5.19 If L(f) # 0, f has a fixed point. |}

We conclude with some examples of the use of Theorem 4.5.18.

Proposition 4.5.20 Let K be a simplicial complex such that |K| is
path-connected, and H,(K) is a finste group for each n > 0, and let
J: |K| — |K| be a continuous map. Then f has a fixed point.

Proof. By Theorem 4.5.13 and Example 4.5.5,
, n=10
H(K: Q) = H(K)8 0= {§

otherwise.

And since any vertex of K will do as a representative for a generator
of Hy(K), fo: H(K; Q) > Hy(K; Q) is the identity isomorphism.
Hence L(f) = 1. -

Proposition 4.5.20 provides another proof of Theorem 2.5.23; but
a rather more interesting example is that any map f: RP" — RP" has a
fixed point if z is even: for by Example 4.4.25 H (RP") is either 0 or Z,
(r > 0) if n is even. That this result need not be true if # is odd is
shown, for example, by identifying RP! with S!, and taking the map
of S that just rotates it through an angle =.

Finally, Theorem 4.5.18 provides an alternative proof of Proposition
4.4.12: if f: S* — 8™ (n > 0) satisfies f,(0,) — do,, then

ft: Hn(S”; Q)—>Hn(S"; Q)

is multiplication by d, whereas f,: Hy(S"; Q) —» Hy(S™; Q) is the
identity isomorphism. Hence L(f) = 1 + (—1)"d, which is zero if
and only if d = (= 1)**2. :

EXERCISES

1. Show that the relation of being chain-homotopic is an equivalence
relation on the set of chain maps from a chain complex C to a chain
complex D. C and D are said to be chain-equivalent, and f: C— D is a
chain equivalence, if there exists a chain map g: D — C such that gf
and fg are chain-homotopic to the respective identity chain isomorph-
isms; prove that this sets up an equwalence relation on any set of chain
complexes.

2. Given chain complexes C and D, write [C, D] for the set of chain
homotopy classes of chain maps from C to D. Show that {C, D] can be
made into an abelian group by defining (f + g)(¢) = f(c) + gl¢) for
chain maps f and g, and extending this definition to equivalence classes.
Prove also
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(a) [C, D] depends, up to isomorphism, only on the chain equivalence
classes of C and D;

(b) if X and Y are spaces then [S(X), S(Y)] depends only on the
homotopy types of X and Y;

(c) if C is a chain complex in which C, is a free abelian group with one
generator, and C, = 0 if r 5 =, then [C, D} > H,(D).

3. Let X be a path-connected space, with base point x,. Show that a
homomorphism k: m,(X, x,j — H,(X) can be defined by sendmg a
loop u to the correspondmg singular 1-simplex u, Prove that % is onto,
and that its kernel is the commutator subgroup [n, 7] of m (X, x,): thus
H,(X) is isomorphic to m (X, x,) ‘made abelian’. (Hint: first prove that
h is onto, and [m, 7] < Ker h, so that k induces a homomorphism
h: wl(X xo)/[m, m] = H,(X); now show that & is (1-1), by showing that,
if u is a loop corresponding to ¢(c) € B,(.Y), the singular 2-simplexes
in ¢ can be used to construct a loop z such that [v] = 1in = (X, %,) and
[#] = [v] in 7 (X, xo)/[m, 7].)

4. Show that an m-manifold cannot be homeomorphic to an p-manifold
unless m = n.

5. Given a simplicial pair (K, L), let K U CL be the simplicial complex
obtained by ‘adding a cone’ to L, that is, by forming the union of K and
CL = L % a, where a is a single vertex. Show that there is an isomorph-

ism a: Hy(K, L)—> B¥K U CL), such that, if f:(|K],|L])—~

(IM|, |N]) is 2 map of pairs and f: |K U CL} — |M U CNJ] is the
obvious map formed from f and f* 1, then the diagram

Ho(K, L) 25 11,031, N)

« |

B (K U CLy—> I (MUCN)
Te
is commutative,

6. Given 2 ‘quadruple’ of spaces (X, Y, Z, 1), show that the following
diagram is commutative, where the homomorphisms are those in the
exact homology sequences of (X, Y, Z), (X, Y, i) and (¥, Z, B).

Hy(X, W)
L N
H(Y,Z) —> H(X, 2) = (X, Y) > H,_\(Y,2)
N S N g
Ho (Z, W) Ho (Y, W)

7. Let (K, L) be a simplicial pair. Show that there is a suspension iso-
morphism s,: H (K, L) — H,, (SK, SL), such that if f: (|K{, |L]) >
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(|M|, |N1) is a map of pairs, then s,fy = (Sf)et4. Prove also that the
diagram

(L) 2> H(K) = H(K, L) 2> H,_(L)~>- -

T | | [

— Ho(SL) > H, 4 ((SK)-> H,,1(SK, SL)> H(SL) -,

where the rows are the exact homology sequences of the pairs (K, L)
and (SK, SL), is commutative.
8. Let (K, L, M) be a simplicial triple, in which K. has a block dissection

and L and M are block subcomplexes. Show that in the exact homology
sequence of the triple

> Hy(L, M) H(K, M)*> H(K, )" H _,(L M) .

the homomorphisms t, j, and 8, may be calculated by usmg the blocks
and the ‘block chain complexes y in exactly the.same way that these
homomorphisms are defined using the simplicial chain complexes.

9. Let p and ¢ be coprime integers, with p > 2. The Lens space L(p, q)
is the space obtained from E3 by making identifications on the bound-
ary S2, as follows. Divide the equator S! into p equal parts by vertices
a% a',...,a*"1, and by joining to the ‘poles’ a = (0,0,1), b =
(0, 0, —1), divide S? into 2p ‘triangles’: see Fig. 4.6.

a

b
Fig. 4.6

L(p,q)is the space obtained by identifying each triangle aa’a’** with
ba"*%’*9*! 5o that a and b are identified, as also are 4’ and a"'9,
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10.

11.

12.

13.

14,
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a’*!and a"*?* 1 (the superfixesr,r + g, etc., are interpreted as elements
of Z,).

Show that L(p, ¢) is triangulable, and that L(p, q) is homeomorphic
to L(p, ¢') if g = —¢' or if ¢ — ¢’ is divisible by p; also that L(2, 1) is
homeomorphic to RP3, Show also that L(p, ¢) is homeomorphic to
L(p, ¢') if g¢ =1 (mod p). (Hint: cut E® into ‘tetrahedra’ aa’a"*1b,
and reassemble by identifying the trigngles on S? as above: this
produces E?® again, but with the line formed by identifying together
all edges a’a’*! taking the place of ab. L(p, g) is still the space obtained
by maki- g certain identifications on the boundary of the new E3.)

By using a suitable block dissection, show that

HyAp Q) = Zy HoL(p,9)) =0 and Hy(L(p,g)) = Z

Show that (A ®B)®Cx A®(B® C) for any three abelian
groups A4, B and C.

Show that a homomorphism §: G —» H between abelian groups gives
rise to homomorphisms 8,: H,(X, Y; G) > H(X, Y; H),. for any
pair (X, Y), such.that if f: (X, Y)— (4, B) is a map of puirs,
Oufe = fubs.

Given an exact sequence of abelian groups

0—> F=> G5 H->0,
and a pair (X, Y), show that there is an exact sequence

o> H(X, Y; F)™ H(X, Y; G) ¥ H(X, Y; H)®>
H, (X, Y;F)—>--.

(this 48 the exact coefficient sequence, and 9, is the Bockstein boundary

homomorphism, associated with the exact sequence 0— F 5 G 2>
H - 0).

Let K be a simplicial complex with a block dissection, and let L be a
block subcomplex, Let C be the chain complex @ C,, where C, =
H,(M" M"-!'), and M* = K, U L; and for any abelian group G, let
C(G) = @ C,(G) be the chain complex similarly defined by C,(G) =
H,(M*", M*~!; G). Show that C(G) and C' ® G are chain-isomorphic,
so that although there appear to be two generalizations to arbitrary
coefficients of the method of calculating homology from block dissec-
tions; in fact these generalizations coincide. (Hint: define a homo-
morphisma: Hy(X, ¥) @ G - H, (X, Y; G), which is an isomorphism
if (X, Y) == (E*, S*"1).)

Given an exact sequence 0 — 4 %> B % C — 0 of abelian groups, and
another abelian group G, show that the sequence

ARG BRGEBSCcRG—0



15.

EXERCISES 155
is exact, but (for example, by taking 4 = B = Z, C = G = Z,) the
homomorphism a« @ | need not be (1-1). Show, however, that if the

« 8 . . .
sequence 0 —> 4—> B— C— (Qis a split exact sequence, in the sense of
Proposition 1.3.36, then

0— ARG BRGES Cc®G—0

is also a split exact sequence. (Hint: to show that Ker(8 ® 1) <
Im(a ® 1), construct a homomorphism y: C ® G—B ® G/Im(« ® 1),
such that y8 = 1, where B:BQ G/Im(e®1)—>C Q® G is the
homomorphism induced by 8 ® 1; hence B is (1-1) and hence an
isomorphism.)

Given abclian groups 4 and B, write 4 in the form F/R, where Fis a
free abelian group, so that there is an exact sequence

0>R5F2 450

Define Tor (4, B) = Ker (« ® 1), so that by Exercise 14 there is an
exact sequence

0—> Tor(4, B)— R®B25>F®B25 4@ B—s0.
Establish the following properties of Tor (4, B).
(a) Given another abelian group 4’ = F'/R’, and a homomorphism

f: A— A4', there cxists a unique homomorphism f: Tor (4, B) >
Tor (A’, B) such that the diagram

0—>Tor(4,B) —RQB=25F®B 25 409B—0

Tl lfz@l lf;@x lf@l

0-—-——>Tor(A',B)—-—~>R’®BmF’®BmA'®B~—>O

is commutative, where f, and f, are any homomorphisms that make the
diagram
0—R-"">F 254 -0
le f,\l lf

0—sR —>F —>4'—>0

commutative (such homomorphisms exist by Proposition 1.3.37).
(b} Tor (A4, B) depends only, up to isomorphism, on the groups 4 and
B, and not on the particular representation 4 = F/R.

(9) Tor@ 4, @ B)) = @ Tor (4, B)).

(For the proof that this definition of Tor (4, B) coincides with that of
Section 4.5 if B = Z,, see Exercise 17.)
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16. Let C be a chain complex in which each C, is a free abelian group, and
let G be any abelian group. Prove that

H(C ® G) =~ F,(C) ® G@ Tor (H,_,(C), G).

(Hint: use the theorem that any subgroup of a free abelian group is a
free abelian group to deduce from Exercise 14 that

0—>Z(C) ® G5 C, ® G-"25 B, 4(C) ® G —>0
is a split exact sequence, and deduce that H,(C ® G)x
Z,(C) @ G/Im (8, ® 1)@ Ker (8,-, ® 1), where B,: B,(C) ~ Z,(C)

is the inclusion homomorphism. Then use the exact sequence
0 —> B,_4(C) 22 Z, _((C) —> H,_4(C) —> 0

to define Tor (H,_,(C), G).)

17. Deduce from Exercise 16 and the exact sequence just before Theorem
4.5.15 that Tor (Z,, H(C)) & Tor (H,(C), Z,), for any p, and any
chain complex C in which each C, is a free abelian group. By con-
structing a suitable chain complex, hence prove that Tor (4, Z,) =
Tor (Z,, A) for any abelian group A. (Tor (Z,, 4), in the sense of
Exercise 15, is clearly what was called Tor (4, Z,) in Section 4.5.)

18. Given a simplicial complex K and a field F, let k, be the dimension of
H,(K; F), as a vector space over F. The Euler-Poincaré characteristic

of K, with coefficients in F, x(|K|; F), is defined to be 3 (—1)*k,;
: n=0
show that x(|K|; F) = x(|K]).

NOTES ON CHAPTER 4

Homology groups. The homology groups of a polyhedron were first
introduced by Poincaré [116}], and the generalization to the singular homo-
logy groups of an arbitrary topological space was made by Lefschetz [90]
and Eilenberg [50] (although the basic idea is contained in Veblen [147]).
Relative homology groups were introduced by Lefschetz [88]. The proof
of the homotopy-type invariance of homology was first given by Alexander
[7, 9] and Veblen [147], although of course their work was done in terms of
the simplicial homology groups of a polyhedron.

There is another way of defining the homology groups of a space, which in
general yields different groups from the singular homology groups (although
the two theories coincide on polyhedra): these groups are the Cech homology
groups of Cech [37] (following ideas of Alexandroff [13]). Apparently
different definitions were given by Vietoris [148] and Alexander [11], but
Dowker [47] proved that these definitions are equivalent to Cech’s. A good
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exposition of Cech homology theory will be found in Eilenberg and
Steenrod [56], Chapter 9. ‘

A different approach to homology theory, by means of an axiomatic
definition, has much to recommend it: see Eilenberg and Steenrod [55],

or [56], Chapter 1.

Exact sequences. 'The exact homology sequence of a pair was formalized
by Eilenberg and Steenrod [55], although the idea seems to be due to
Hurewicz: see [75]. The Mayer—Vietoris sequence has a rather longer
history: a formula for the homology groups of the union of two polyhedra
was given by Mayer [103] and Vietoris [149], but the form of the result
given in Theorem 4.4.6 is due to Eilenberg and Steenrod [56], Chapter 1.
In fact Eilenberg and Steenrod prove the more general version involving
arbitrary topological spaces.

Fixed points of maps of S™. Proposition 4.4.12 was first proved by
Brouwer [25].

Homology with arbitrary coefficients. Homology with coefficients Z, was
first used by Tietze [144] and Alexander and Veblen {12], the generalization
to coefficients Z,, for various integers p, being made by Alexander [9].
Cech [39] defined homology with coefficients in an arbitrary abelian group,
and established the result of Exercise 16 (although our formulation is
closer to that of Eilenberg and MacLane [51]).

The Lefschetz Fixed-Point Theorem and Euler—Potncaré characteristic.
Lefschetz’s original proof of Theorem 4.5.18 can be found in [86, 87],
though see also Hopf [67, 68]. These papers, and [89], Chapter 6, also
contain a generalization in the form of an equality between L(f) and the
sum of the ‘indices’ of the fixed points of f: this is the Lefschetz Fixed-
Point Formula.

In essence the Euler-Poincaré characteristic is due to Euler, whose
definition was extended by Cauchy [36], and then by Poincaré [116).

Lens spaces. 'Tietze [144] first defined Lens spaces, and established many
of their properties, including the fact that they are 3-manifolds, Reide-
meister [122] proved that L(p, ¢) and L(p, ¢) are homeomorphic if and
only if ¢' = + ¢*! (mod p), and J. H. C. Whitehead [158] showed that a
necessary and sufficient condition for L(p, ¢) and L(p, ¢") to be homotopy-
equivalent is that ¢¢’ or —¢q’ should be a quadratic residue mod p; thus
L(7,1) and L(7,2) are homotopy-equivalent 3-manifolds that are not
homeomorphic.



CHAPTER 5

COHOMOLOGY AND DUALITY THEOREMS

5.1 Introduction

We have seen in Section 4.5 how the idea of the homology groups
of a pair can be generalized by taking coefficients in an arbitrary
abelian group G. This process of generalization was purely algebraic,
and bore no relation to the topology: a chain complex C gave rise to a
new chain complex C ® G, whose homology, in the case where
C = S(X, Y), was defined to be H, (X, Y; G).

There is, however, another way of using a chain complex C and an
abelian group G to yield a new chain complex. This process is in a
sense dual to that of passing from C to C ® G, and will be the concern
of this chapter. The idea is that, given abelian groups A and B, the
set of homomorphisms from A4 to B can be given the structure of an
abelian group, for which the notation 4 4 B is used (the reader should
notice the resemblance to the notion of a dual space in vector space
theory). Just as in the case of the tensor product, this construction
can be applied to the chain complex C to yield another chain complex
C A G; and if in particular C = S(X, Y), the homology groups of
S(X, Y)A& G are called the cohomology groups. of (X, Y), with
coefficients in G: these are usually written H™X, Y; G). The
behaviour of cohomology groups resembles that of homology groups,
but with one important difference: this time, given a continuous map
fi (X, Y)— (A, B), we obtain corresponding cohomology homo-
morphisms f*: H* A4, B; G) - HYX, Y; G), that is, cohomology
‘reverses the direction of raps’.

At first sight this definition seems rather pointless, particularly
since the groups HY(X, Y; G), like H,(X, Y; G), are completely
determined by the groups H,(X, Y), and indeed if (K, L) is -a
simplicial pair and F is a field, H,(K, L; F) and H¥K, L; F) are
dual vector spaces over F. However, the language of cohomology
allows a neat statement of the duality theorems of Sections 5.3 and 5.4,
and in any case cohomology has a great advantage over homology,
in that it is possible to define a product between elements of H*(X, Y),
and thus make H*(X, Y) into a ring. This increases the power of

158
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cohomology: it may be that two spaces X and Y have isomorphic
homology groups (and hence isomorphic cohomology groups),
although H*(X) and H*(Y) are not isomorphic as rings, and so X
and Y are not of the same homotopy type. However, the cohomology
product will not be defined in this chapter, since it is easier to set up
_in the context of Chapter 8; but the reader should be aware of its
existence, as a powerful reason for the study of cohomology.

The definitions will be given in Section 5.2, which also contains
some calculation theorems for cohomology groups. The rest of this
chapter is concerned with some duality theorems for triangulable
manifolds: in Section 5.3 we shall prove the duality theorems of
Poincaré and Alexander, which relate the homology and cohomology
groups of triangulable manifolds, and in Section 5.4 we shall define
manifolds with boundary, and prove the corresponding duality
theorem, due to Lefschetz. .

5.2 Definitions and calculation theorems

We start by considering.the algebraic situation, which should be

compared with Section 4.5. Given abelian groups 4 and'B, write

A & B for the set of homomorphisms from 4 to B (many authors use
the notation Hom (4, B) instead of 4 4 B). ~ .

" Proposition 5.2.1 4 & B can be given the :tructm ofm abel&
group. .
Proof. leen homomorphxsms f,8: 4 — B, define f + g by the .

rule
(f + &Na) = fa) + gla)  (ac A). ‘
~ It is a trivial exercise to prove that f + g is another homomorphnsm,
and that f+ g =g + f Moreover (f+2)+h=f+ (g + k) if
h: A — B is another homomorphism. Finally, define 0: 4 - B by
O(a) = O for all @, and —f: 4 — B by (—f)a) = —f(a); clearly.

'0+f=f=af+0

fH(=N=(=N+f=0
for all fe A A B, so that 4 A B is an abelian group. §

-

and

Examples 5.2.2

(a) For any abelian group G, ZA G x G. For we can define a
homomorphism 8: Zh G~ G by 6(f) = f(1) for all f: Z— G,
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which is (1-1) since f(1) = 0 implies f(r) = 0 for all n € Z, and onto,
since given any g € G we can define f: Z — G by f(n) = ng, so that
o) =

(b) If p and q are positive integers, Z, h Z, x Z,, ,. For just as in
(a), there is an isomorphism between Z, A Z, and the subgroup of Z,
consisting of possible values 7 of f(1) for the homomorphisms f from
Z,to Z, But such¢’s are characterized by the property pr = 0(meod g)
or pr = gs for some s. If p = a(p, ¢) and ¢ = b(p, ¢), then ar = bs
and (a, b) = 1, so that the possible values of r are just the (p, q)
multiples of b, and these form a subgroup of Z, isomorphic to Z,, ,,.

(c) If p is a positive integer, then Z, A Z = Z,4 Q = 0. For in
. either case, ngen a homomorphism f, let faQ) =r. T hen

0 = pf(1) = pr,
which is impossible unless r = 0. § -

As in the case of the tensor product, the process of forming A A B
can be applied to homomorphisms as well as to groups (compare also
the idea of a dual linear map between dual vector spaces).

Proposmon 5.2.3 Homomorphisms f: A' — A, g: B— B’ give rise
toa homomorphzsm fhog: AANB—> A & B, such that if f': A" — A’
and g':B — B" are further homomorphzsms, (f'dhg)fhg) =

(ff) #{g%). (The reader should take careful note of - the behaviour
of composites here. )

Proof. If «is an element of 4 A B, define (f A g)(@) = gof; this
LS certamly a homomorphlsm from 4’ to B’, and clearly

S (fhga + B) = (FALE) + (f A )(B)-

(f AENFAE)N@) = (f Ag)eof)
= g'goff’
= (ff A g'8)o). §

Finally, before applying this construction to chain complexes, we
need a result analogous to Proposition 4.5.7(b) (there is, of course, no
analogue of Proposition 4.5.7(a), since for example Z h Z, ~ Z,,
but Z; 4 Z = 0). Unfortunately it is not true that 4 is distributive
for arbitrary direct sums: for example, let 4; = Z for each integer i,
and let 4 = @ A4,; then the homomorphism that sends 1 in each 4,

{

Moreover

to 1 in Z is a perfectly good element of 4 A Z, but is not an element
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of @ (4, 4 Z), since if it were it would have to be zero for all but a
{

finite set of values of i. However, as long as we stick to finite direct
sums, there is no difficulty.

Proposition 5.24 If A= @ A,and B= @ B,, then AhB =
@(Atd‘Bf)- - !
Proof. It is clearly sufficient to prove the two propositions
@) (A@B)AC = (AAC)D(BAC);
b)Y AA(BOC)z (AAB)YD(AAC).
To prove (a), define 6: (4 @ B)h C— (A4 C) @ (B C) by
f) = (fia) @ (fin),
where fe(A@ B)A C and 1,,73: A, B—> A @ B are the obvious
inclusion homomorphisms. Now 6 is a homomorphism, since
f+8) =+ @ +8)s
= (fiy + gia) @ (fis + gip)
= (fia @ fis) + (gis @ gis)
= 8(f) + &e).

Also 0 is (1-1), since f = 0 if fi, = fiy; = 0, and onto, since given
fiA—Candg: B— Cwecandefineh: A@ B—~ Cby

ka @ b) = f(a) + g(b);
then 8() = f @ ¢. I

In extendmg the construction ‘b G’ to chain complexes, some care
is necessary in view of the behaviour of direct sums: the groub Ch G
need not be isomorphic to the group &(C, 4 G).

Definition 5.2.5 Given a chain complex C, with boundary homo-
morphnsm &A-—-r »-1> and an abelian group G, the chain compléx

C 4 G is defifed to be @(C&G)m where (ChG), = C_,AG.

The boundary homomorphxsm imn CAG is 8 =0a1; clearly
3 =0@h1)}oA1) =041 =0, by Proposition 5.2.3. ((Ch G),
18 defined to be C_, 4 G, and not C, A G, so that § sends (CA G),
to (C 4 G),-;.)

Notice that CA G = @ (C A G), is not the same as the group
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C & G, unless only a finite number of the C, are non-zero, as is the
case, for example, if C = C(K, L) for a simplicial pair (K, L). How-
ever, if C is a chain complex we shall always take C 4 G to mean

@ (C A G),.

Proposition 5.2.6 A4 chain map f: C — D gives rise to a chain map
fAl:DAG— CAG, such that

(a) if 1: C—>C is the tdentity chain isomorphism, then 1 A 1 is also
the identity chain isomorphism;
(b) fg: D — E1s another chain map, then (f 4 1)(g A 1) = (gf) A 1.

Proof. Letfa1: D4 G— Ch G be what was previously called
fA 1, on each (D & G),: this certainly defines a homomorphism from
D4 G to Ca G. Properties (a) and (b) follow immediately from
Propaosition 5.2.3, and finally fA 1 is a chain map, since

S(fhl) = @a1)fal)
= (f) 41
= (f) i 1
= (fa1)@ A1)

= (fal1)d. §

If C is the singular chain complex of a pair (X, Y), the homology
groups of C & G are called the cohomology groups of (X, V).

Definition 5.2.7 Given a pair (X, Y), the nth cohomology group
of (X, Y), with coefficients in the abelian group G, is defined by
HYX,Y;G) = H_,(S(X, Y)A G). Of course, if ¥ = &g we write
H™X; G); and also H*(X, Y; G), H¥X; G) for @ HYX, Y; G),
@ HYX; G) respectively.

Similarly, the reduced cohomology groups of X are defined by

AYX;G) = H_(S(X)4G), H*X;G)=@ A"X;G).

The word ‘cohomology’ is used, of course, to prevent confusion with
the homology groups. We have defined H*X, Y; G) to be
H_,(S(X, Y)& G), rather than H,(S(X, Y)AG), so that
HYX, Y; G) is zero for » < 0 (and also, as we shall see, so that
HYK, L; F) and H,(K, L; F) are dual'spaces over F, if (K, L) is a
simplicial pair and F is a field). By analogy with hemology, we shall
usually write H*(X, V) instead of H*( X, Y; Z).
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Just as in Section 4.5, a continuous map f: (X, Y)— (4, B) gives
rise to a chain map f 4 1: S(4, B)h G — S(X, Y) A G, whose*
induced homology homomorphisms are called the cohomology homo-~
morphisms f*: HY(A, B; G) > HYX, Y; G). Once again, Proposi-
tions 4.2.16 and 4.2.21, together with Proposition 5.2.3, show that

=1, (gf)* = f*g* and f* =g* if f~ g Also, if (K,L) is a
simplicial pair, then H*(|K|, |L|; G) may be identified with the
homology of the chain complexes 4(K, L) hG and C(K, L)AG.
In particular ¢*: H¥*(K') —->H*(K) and h*: H¥(K)— H*(K') are
inverse 1somorphisms, where h is a simplicial approximation to the
identity map.

We can also take over the exact sequence theorems of Section 4.4,
in virtue of the following Proposition.

Proposition 5.2.8 Given an exact sequence of abelian groups

0—>A-2+B-">C-—>0,

where C is a free abelian group, and another abelian group G, then

81 aml

0—>ChG"5>BAGC544G—0
s an exact sequence.

Proof. By Corollary 1.3.38, the exact sequence 0 -~ A4 — B —
C — 0 is a split exact sequence, and so B~ 4 @ C. Hence by
Proposition 524 BAG 2 (CAG)D(AAG), and it is easy to
conclude that the sequence

aml

0—>CAG 2L BAG S 446G —0

is therefore also a split exact sequence. |

In particular, if 0 — CL- D% E—0is an exact sequence of chain
complexes, and each E, is a free abelian group, then

gml Il

0—EAG—>DAG—>CAG—0

is an exact sequence of chain complexes. We immediately obtain,
for example, the exact cohomology sequence of the triple (X, Y, Z):

..—> HX, Y; G) 1> HY(X, Z; G) > H(Y, Z; G) 2>
H*Y(X,Y; G)—>
Similarly, there is a cohomology Mayer—Vietoris sequence of a

simplicial triad (K; L, M), and a relative Mayer—Vietoris sequence
given another subcomplex N. As in homology, continuous maps give
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rise to commutative diagrams involving these cxact sequences. In
particular the homomorphism s: 4(K) — A(SK ) induces the cohomo-
logy suspension isomorphism s*: A**1(SK)— %K), where if
f1|1K| —|L} is a continuous map f*s* = s*(Sf)*. And as a conse-
quence of the exact sequence theorems, cohomology can be calculated
directly from a block dissection (though as in Section 4.5 there is an
apparent ambiguity about how to do this: see Exercise 1 which
resolves this ambiguity).

As before, the next step is to establish results that connect cohomol-
ogy groups with various coefficients, and also cohomology with
homology. The latter is done by constructing. a pairing between
elements of H(C 4 G) and H(C ® G), given a chain complex C and a
ring (not merely an abelian group) G.

Proposition 5.2.9 Given a chain complex C and a ring G, there is a
homomorphism

H_(ChG)® H,(C® G)—G,

called the K -onecker product, where the image of x @ y is written
(%, ¥>. Moreover if f: C — D is a chain map, and x€ H_,(D A G),
y € Hy(C @ G), then {(f 1)u(%), y> = {x, (f @ 1ul¥)-

Proof. Givenaec(CAG)_,and 3 ¢, ® g€ C, ® G, define

<°‘» z a6 gt> = Z of(c,)gy

(using the multiplication in G). It is easy to see that this defines a
homomorphism (CAG)., Q@ (C® G), - G. Now given x¢€
H_,(CaG) and y € H(C ® G), take representative cycles «, ¢ for
x, y respectively, ar.d define (x, y) = (e, ¢). This does not depend on
the choice of « and ¢, since, for example, if 8&€(Ch G)_,,;, then

C8(B), > = (B, (0 h 1)(c)> = 0.

Finally, represent xe H_,(D 4 G), y € H,(C ® G) by cycles «, ¢
respectively. Then

{(fh Du(x), 35 = Lf h 1)), >
= & (f ® D(e)
=< (fQ 1)L 1

It follows that if f: (X, Y)— (4, B) is a continuous map, and
xe HY(A4, B; G), y e H(X, Y; G), then

¥ x), ) = <, Fuly)-
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If X is path-connected, G = Hy(X; G), so that the Kronecker
product HYX; G) ® H,(X; G) — G may be regarded as a homo-
morphism into Hy(X; G). Itis thercfore possible to make the foliowing
slight generalization, at least for a pclyhedron |K|.

Proposition 5:2.10 If G is a ring, there exists a homomorphism
H'(K; G) ® H\(K; G) -~ H,_(K; G),
called the cap product, where the image of x @ y is written x N y.

Proof. Totally order the vertices of K. Given a generator o =
[6°%...,0"] of C(K), with its vertices in the correct order, let.

= [b°...,6" "Jando” = [b"77", ..., b"].Given also c € C(K) A G,
define ‘

N (Z o & gt\, = S‘ oy ® (eo7)gy)-
It is easy to see that
R Naenec)y=an (@& 1)) + (— 1)""§(a) N ¢

so that if xe H'(K; G), y € H(K; G) are represented by cycles «, ¢
respectively, we can unambiguously define x Ny = [x N ¢]. And this
certamly defines a homomorphism from H'(K G)® H(K; G) to

H, (K;G). |

In fact the cap product can be defined for arbztrary spaces: see
Exercise 2.

If in particular G = F, a ﬁeld Proposition 5.2.9 leads to the
following analogue of Proposition 4.5.10.

Proposition 5.2.11 Let C be a chain complex in which each C, is
a finitely-generated abelian group, and let F be a field. Then the
Kronecker product makes H_ ,(C & F) and H,(C ® F) into dual vector
spaces over F. Moreover if g: C — D is a chain map, (g A1), and
(g @ 1)y are dual linear maps. '

Proof. Ifae(Ca F)_,and feF, define fa by
(fe)(c) = felc)  (c€Cy).

This makes (C & F)_, into a vector space over F. If the Kronecker
product is regarded as a function

(CAF)_, x (C® F),—F,

it is certainly linear in each variable. Moreover if oty 6, Qf> =0
for all ¢; € C,, f; € F, then in particular «(¢) = 0 for all ¢ € C,, so that
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« = 0, On the other hand, if o, 5 ¢; ® f;> = Ofor all e € (C A F)_,,
but 3 ¢, ® f, # 0, there exists a linear map 8: C, ® F — F such that
BC ¢, ®f) # 0. Thus if o is defined by a(c) = f(c ® 1) (ce C,),

we have
<°‘, z s ®ft> = Z e(e)f;
= > Ble; ® 1,

=B(2a®f)
# 0,

contrary to hypothesis: thus ¢ ® f; =0 and so (CAF)_,,

(C ® F), are dual vector spaces under the Kronecker product.
Now .

a) =0« (¥a),c) =0 forall ccCry, @ F
T e, (8 Q 1)) = 0;
hence Z_,(CA F) = &(B,(C ® F)). Similarly Z,(C & F)
A (B_(CAF)), so that, by Proposition 1.3.55, B_,(CAF) =
A(Z,(C ® F)), and H_ (CA F) and H,(C @ F) are dual vector
spaces (under the Kronecker praduct, of course).

" That (g4 1), and (g ® 1), are dual linear maps is immediate
from Proposition 5.2.9. :

Corollary 5.2.12 Given a simplicial pair (K, L) and a field F,
HYK, L; F)and H(K, L; F) are dual vector spuces over F. Moreover
if g: (|K|, |L]) = (|M|, {N|) és-a continuous map, g* and g, are dual
itnear maps. §}

There is a similar result to ‘that of Proposition 5.2.11, relating
H_(CaZ)) and H,(C & Z,), even though » may not be a prime
and so Z, may not be a field.

Proposition 5.2.13 Let C be a chain complex in which each C,, is a
finitely-generated abelian group, and let p be any positive integer. Then
H_(CAZ)= H(CR Z,)h Z,

Proof. Each (C ® Z,), is a finitely-generated abelian group, in
which each element has finite order dividing p; let us call such a group
a p-group. Now given a p-group G, a subgroup H, and a homomorph~
ism a: H —> Z,, there exists 2 homomorphism 8: G — Z, such that'
B|H = a. For suppose g is in G but not H; then the set S =
{se Z,|sg e H} is clearly a (cyclic) subgroup of Z,, and f: S — Z,,,



§5.2 DEFINITIONS AND CALCULATION THEOREMS 167

defined by f(s) = «(sg), is a homomorphism. So f must be multiplica-
tion by some ¢ € Z,, that is, a(sg) = ¢s for all s.€ S. It follows that we
may extend « to the multiples of g by setting o(g) = ¢; and by con-
tinuing in this way, after a finitc number of steps we shall have
extended o to the whole of G.

Now consider an exact sequence of p-groups 4 1 B C: we show
that the sequence

ChZ,—>BAZ,—AAZ,

is also exact. For certainly (fh1l)(gh1l) =gfh1l =0, so that
Im(gAh 1)< Ker (fh1). But if «: B— Z, is in Ker (fa 1), then
of = 0, so that «(Ker g) = ¢(Imf) = 0. Thus e induces@: Img — Z,,
such thai @ = «; but @ can be extended as above to the whole of C,
so that « € Im (g 4 1) and hence Im (g A4 1) = Ker (f 4 1).

Now define 0:C,h Z, > (C, Q@ Z,)h Z, by (o) (c) = (e, c),
aeCyhZ, ceC, ® Z, Asin the proof of Proposition 5.2.11, 8 is
(1-1) and onto, and so is a chain isomorphism; our result now follows
by a proof similar to that of Theorem 4.5.13. §

ghl Ml

Corollary 5.2.14 Given a simplicial pair (K, L), HYK, L; Z,) =
H(K,L;Z,)A Z,. |

Theorems relating cohomology groups with various coefficients can
be established by the methods of Section 4.5. Indeed, they can

actually be deduced from'the theorems of Section 4.5, in virtue of the
following proposition.

Proposition 5.2.15 Let C be a chain complex in which each C, is a

ﬁmtely-generated abelian group, and let G be any abelzan group. Then
there is a chain isomorphism

0:(CAZ)YR G—>CAG.
Proof. Define §: (C, A Z) @ G — C, 4 G by the rule
[8(= ® 2))e) = «(c)e, :

forae C, A Z,g € G,and c € C,. This certainly defines a homomorph-
ism 6, and in fact 0 is an isomorphism. For if the generators of C,
areo,, ..., g, C, & Zisafree abelian group with generatorss,, . . ., s,,
where s(0;) = 1 if # = j and 0 otherwise. Thus a homomorphism
$:Co,h G— (C,h Z) @ G can be defined by the rule

$(B) = >: $®Bl) (BeCuhG)
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And then

i

= B(a.i)’
$0(s; & g) = Z s; @ [0(s; ® 8))(a)
= Z $i % sfo))g

=$;®g;

so that 6¢ = 1, 40 = 1, and € and ¢ are inverse isomorphisms.
Lastly, to show that 6 is a chain isomorphism, observe that for
ceC,,,,aeC,h Z, and g € G, we have

[86(a © £))(c) = [0(e ® g))(o¢)
' = a(dc).g
= (8a)(c).£
= [0(3e & £)](c)
= [0(8 Q@ 1)(e & g)){c),

[08(8))(w,) = 2, si(o;)-Bler)

and

so that 86 = 6(8 & 1). }
Corollary 5.2.16 Let (K, L) be a simplicial pair. Then

(a) H(K, L; Q) = HYK, L) ® 0;

(b) HNK,L; Z,) ~ HYK, LYy & Z,® Tor (H"*Y(K, L), Z,), for
any positive integer p. |}

Rather surprisingly, Corollary 5.2.16 leads to a formula expressing
the cohomology groups H"(K, L) in terms of the homology groups
H, (K, L). To state this formula, given a finitely generated abelian
group «, use Theorem 1.3.30 to write 4 in the form FA @ TA,
where Frl is a free abelian group and T4 is a finite group.

Proposition 5.2.17 H™K,L) ~ FH (K, L)® TH,_ (K, L).
Proof. By Theorem 4.5.13, Corollary 5.2.12 and Corollary
5.2.16(a),
YK, L)® Q = E(K, L) ® 0,
being dual (finite-dimensional) vector spaces-over Q. Thus
FHYK, L) ~ FH (K, L).



§5.2 DEFINITIONS AND CALCULATION THEOREMS 169

But we also know, by Theorem 4.5.15, Corollary 5.2.14 and Corollary
5.2.16(b), that for any positive integer p,

HYK, L) ® Z, ® Tor (H**Y(X, L), Z,)
~ [Hy(K, L) ® Z, @ Tot (H,-(K, L), Z)] & Z,

By taking p to be the l.c.m. of the orders of the elements of TH(X, L),
TH"*Y(K, L), TH,(K, L) and TH,_,(K, L), and using the fact that
FH™(K, L) ~ FH,(K, L), it follows that

THYK, L) ® TH** YK, L) ~ TH(K,L)® TH,_,(KX, L).

But HYK, L) = Zy(4(K, LY 4 Z), since (4(K,LyA Z), = 0, and
so THYK,L) =0 and THYK, L) @~ THy(K, L). Proceeding by
induction on #n, we obtain TH™K, L) ~ TH, _,(X, L), so that

H™K, L) ~ FHYK, L)® TH"(K, L)
= FH(K,L)® TH,_ (K, L). |

Example 5.2.18 We have already calculated H,(RP"), in Example
4.4.25:
Hy(RP™ ~ Z,

H(RPY) =0 if r < 0,7 > norriseven,
H(RPY > Z, if risoddand 0 < r < n,
H(RPY~ Z if n is odd.
It follows that H*(RP™) is given by:

HO(RP™) ~ Z,

H'(RP™) =0 if »r < 0,r > norrisodd (unless r = n),

H'(RPY) ~ Z, if risevenand 0 < r < n, '

HYRP") > Z  if =is odd.

Similarly, the homology and cohomology of RP*, with Z, coefficients,
are given by:

H(RP*; Z,) = H'(RP™ Z;) =0 ifr<OQorr >n,
H(RP*; Z,)~ H(RP*; Z,)~ Z, if0<r<n

Example 5.2.19 Consider the triangulable 2-manifolds M, and
N,. By Theorem 4.4.24, we have

Hy(M,)) ~ H(M,) ~ Z, H,(M,) ~2gZ, H(M, =0 otherwise,
Hy(N) >~ 2, H(N)=z(h-1VZD Z,;, H(N,) =0 otherwise.
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Hence '

HO(M,).= H¥M,) ~ Z, H\(M,) ~ 2gZ, H'(M,) = 0 otherwise.
HUN) = Z, H'N,) = (h— 1)Z, HYN,) = Z,

H'(N,) =0 otherwnse

Also -

Hy(M,; Z,) = Hy(M; Z,) =~ Z,, H\(M,; Z,) =~ 282,
Ho(Ny; Z5) = HyNy; 25) = Z;, H(Ny; Z5) = hZ,,

cohomology with coefficients in Z; being the same groups. |

The reader should notice the following facts about Examples 5.2.18
and 5.2.19.

(a) If H,(RP™) ~ Z, then H,(RP") ~ H*""(RP"), for all 7.
(b) In any case, H(RP"; Z,) ~ H"~ '(RP" Z,) for all r,
(c) Similarly, Hy(M,) ~ Z and H{M,) ~ H"""(M,).

(d) H(Nu; Z3) = H* "(N,; Z,).

These are all special cases of the Poincaré Duality Theorem, which we
shall prove in Section 5.3. Certain triangulable spaces X (generaliza-
tions of n-manifolds) will be called homology n-manifolds; the state-
ment of Poincaré Duality is that, for such an X, H(X) ¥ H" "(X) if
H,(X) =z Z, and in any case H(X; Z,) @ H"""(X; Z,).

5.3 The Alexander-Poincaré Duality Theorem

In this section we shall prove a rather more general theorem than
the Poincaré Duality Theorem that has just been outlined, 2o the effect
that, if K is a triangulation of a homology n-mamfold and (L, M)isa
pair of subcomplexes of K, then

H(L, M) = H*='(|K]| - [M], K| — |L}).

If we put M = o and L = K, we recover the original Poincaré
Duality Theorem; on the other hand if-K is a-triangulation of S* we
obtain the Alexander Duality Theorem, which is a very useful one in
dealing with subspaces of S”: in particular it gives a proof of a general-
ization of the (piecewise-linear) Jordan Curve Theorem.

Recall from Proposition 3.4.3 that if K is a triangulation of an
n-manifold, then for each x e |K|, ILk(x)| > S"~%. Now we could"
prove the theprerus of this section for tnangulable mantifolds only, but
since the only property we shall use is that, for some triangulation K
andeach x € |K l, Ho(Lk(x)) & Ho(S™ 1), we may gs well consider all
spaces having this property: these are the homology n-manifolds.
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Definition 5.3.1 A path-connected space X is a homology n-
manifold if there exists a triangulation K of X, such that for cach point
x € |K|, and for each r, H (1.k(x)) =~ H(S"1).

In other words, for each x we have

Z’ r=n — 1
H,(Lk(x)) = {0, otherwise.

By Theorem 2.4.5, if this property holds for onec triangulation of X,
then it holds for every triangulation. Also, as we have just remarked,
any triangulable path-connected #-manifold is a homology n#-manifold.
See Exercise 9, however, for an example of a homology n-manifold
that 1s not an n-manifold.

Examples 5.3.2 The triangulable 2-manifolds M, and N,, are of
course homology 2-manifolds. Also S* and RP" are homology n-
manifolds: for by Example 3.4.2 S™ is an #-manifold; and as for RP",
we know at least that it is triangulable, by Example 4.4.25. But since
RP* is formed from S” byddentifying antipodal points, it is very easy
to see that RP™ is an n-manifold: given a pair x, x” of antipodal points
of S™ choose ¢ so that the e-neighbourhoods of x and x’ do not
intersect; then after identification these e-neighbourhonds become a
single open set in RP*, containing the point corresponding to x and x”,
and clearly homeomorphic to an open set in R*. |}

A triangulation of a homology n-manifold has several convenient
properties, which ¢an be obtained by using Theorem 2.4.5. The most
important of these are collected together in the next theorem.

Theorem 5.3.3 Let K be a triangulation of a homology n-manifold.
Then K has the following properties.

(a) dim K = n.

(b) Each point of |K| is contained in at least one n-simplex.

(c) Each (n — 1)-simplex of K faces two n-simplexes.

(d) Given n-simplexes o and t in K, there exists a sequence of n-
simplexes o = 0,,05,...,0, = 1, such that each o;,No;,, 1s an
(n ~ 1)-simplex.

Proof. We may assume that » > 1, since a homology 0-manifold
is obviously just a point,

(a) Certainly dim K > n, for otherwise dim Lk(x) would be less
than (n — 1) for all x € | K|, and so H,, _,(Lk(x)) would be zero. On the
other hand, if K had an m-simplex o, for m > n, then for points x in
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the interior of o, |Lk(x)| would be homeomorphic to S™~!, contra-
dicting Definition 5.3.1.

(b) This is immediate: if ¥ were in no n-simplex, dim Lk(x) would
be less than (n — 1).

(c) Let x be a point in the interior of an (n — 1)-simplex o, and
suppose that o is a face of r n-simplexes (r > 0). Corresponding to
each n-simplex 7 that has o as a face, there is a subcomplex 7+ — o of
Lk(x); the union of these is Lk(x), and any two intersect in ¢: see
Fig. 5.1.

Fig. 5.1

An easy calculation by induction on 7, using the reduced Mayer-
Vietoris sequence, shows that H, _;(Lk(x)) is a free abelian group with
(r — 1) generators, so that r must be 2. '

(d) Choose a particular n-simplex o, and let L be the set of n-
simplexes of K that can be ‘connected to o' in this way (with their
faces), and A be the sct of n-simplexes that cannot be connected to ¢
(with their faces). Then L and M are subcomplexes, and L UM = K.
Moreover, if we assume that M is non-empty, then L N M is non-
empty, since |K| is path-connected, and dim (LN M) < n - 2,
since an (n — 1)-simplex of L N M would have to be a face of an
n-simplex of L and an n-simplex of M. This already contradicts the
assumption that M # @ if n = 1, so we may assume from now on
that n > 2. . '

Let a be a vertex of L N M, and considet Lk(a). @ must be a vertex
of an n-simplex of L and an n-simplex of M, so that both Lk(a) N L
and Lk(a) N M contain (n —_ 1)-simplexes. Also dim(Lk(a) "L N M)
< n — 3, and by (c) every (n — 2)-simplex of Lk(a) is a face of two
(n — 1)-simplexes; thus if ¢, = 3 7, for all (m — 1)-simplexes 7 of
Lk(a) N L, and ¢y = 3 7, for all (n — 1)-simplexes 7 of L.k(a) N M,
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then ¢; and ¢,, are linearly independent cycles of C(Lk(a)) ® Z, (in
8(cL) for example, each (n — 2)-simplex occurs twice). It follows that

H, _,(Lk(a); Z,) has dimension at least 2, as a vector space over Z,, so
that by Theorem 4.5.15 Lk(a) cannot have the same homology as
S%-1 This contradiction shows that M must be empty, and so
L= K. |

It follows from this theorem, and Chapter 3, Exercise 13, that every
homology 2-manifold is actually a 2-manifold. A similar result holds
for homology 3-manifolds, but not for manifolds of higher dimension:
see Exercises 8 and 9.

It is clear from the remarks at the end of Section 5.2 that the
Poincaré Duality Theorem is not true for all homology #-manifolds,
unless coefficients Z, are used. Those homology manifolds for which
the theorem is true for Z coefficients are exactly those that are
ortentable, in the sense of the next definition.

Definition 5.3.4 A homology #-manifold X is orientable if there
exists a triangulation K of X, for which the n-simplexes can be
identified with elements of C,(K) in such a way that, if o is any
(n — 1)-simplex, and 7,, 7, are the two n-simplexes that have o as a
face, then o occurs with opposite signs in &(7,) and &(,).

Notice that a homology 0-manifold (a point) is certainly orientable.

Example 5.3.5 S! is orientable, since it can be triangulated as
shown in Fig. 5.2, and the 1-simplexes identified with generators of
the simplicial chain group according to the arrows in Fig. 5.2.

a!

Fig. 5.2

&

As it stands Definition 5.3.4 is not much use, since it is not clear
that the definition is independent of the particular triangulation. In
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ordcr to clear up this point, and indeed to provide a practical test for
orientability, we prove

Proposition 5.3.6 Let X be a homology n-manifold. Then H (X)) ;
Zif Xisorientable, and H (X)) = 0 otherwise. In any case, H (X ; Z,)
Z,.

Proof. l.ct K be a triangulation of X, and suppose that the
n-simplexes are identified with elements of C,(K) as in Definition
5.3.4. Then z, the sum of the n-simplexes of K, is an element of

ZAC(K )) and hence so also is any integer multlple of 2. On the other
hand if 3"'is an element of Z (C(K)) that contains 7o for some n-
simplex o, then 2" must contain 77 for every n-simplex r that meets o
inan (# — 1)-simplex. And so 2’ contains r7 for every n-simplex 7 that
can be connected to o as in ‘Theorem 5.3.3(d), that is, for every 7in &;
hence 3" = rz, and I (K) = Z.

Coniersely, the same argument shows that, however the n-simplexes
of K arc identified with elements of C,(K), any element 2’ € Z,(C(K))
must be of the form rz, where 2 = Y 10, and o runs through the
n-simplexes of K. If H (K) > Z, we must have ¢(2) = 0, so that it is
possibie to change the identification of n-simplexes so as to satisfy
Definition 5.3.4.

Finally, the argument used to prove that H (K) x Zif X' is orient-
able shows that in anv case H (K ; Z,) ~ Z,. But by Theorem 4.5.15,
H,(K), being a finitely generated free abelian group, must be iso-
morphic either to Z or 0; hence H,(K) = 0if X is not orientable. |

e e

Corollary 5.3.7 Two homotopy-equivalent homology n-manifolds
are cither both vrientable or both non-orientable. ]

Example 5.3.8 By Theorem 4.4.24, each 1, is orientable, and
cach N, 1s non- orientable. S* is orientable, and by Example 4.4 25
RP" is orientable if and only if n is odd. ]

We turn now to the duality theorem, which stares that, if [K| is an
orientable homology n-manifold, and (L, M) is a pair of subcomplexes
of K, then I (L, M)~ H*(JK| - JML, 1K' — |L]) for each r.
Qur proot will be given in terms of simplicial homology and cohomo-
logv, and since |K; -- |L] and |K| - {31} are not polyhedra the first
step is to replace them by the supplements L and A, in the sense of
Definition 2.5.18.

Proposition 5.3.9 Let K be « simplicial complex, and let (L, M)
te a pair of subcomplexes. There is a commutative diagram
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> H(D)—* > H(W) — > (ML) — > H_ () —> -

| | | |

o —> H (K|~ L)) > H(K|~-{M]) 5> H(K|~|M|K| - [L]) 57> H, -, (K| = |L]) — - -

in which each f, is induced by an inclusion map, and is an isomorphism.
A similar result holds for cohomology.

Proof. Certainly the diagram is commutative, by Theorem 4.4.3.
The proof is completed by showing that f:|L| - |K| — |L| and
f:|M|— |K| — |M] are homotopy equivalences: thus the induced
homomorphisms f, are isomorphisms, and then f,: H (M, L) -
H (K| - |~ |K] = |L])is an isomorphism as well, by Proposition
1.3.35.

To show that f: |M| — |K| — |M|, for exampie, is a homotopy
equivalence, we prove that |M| is a strong deformation retract of
|K| — |M]|. Now if o is a simplex of K’ — (M’ U M), then each
vertex of o is in either M’ or M; moreover ¢ has a vertex in M’
because it is not in M, and a vertex in M because if ¢ had all its
vertices in M’ it would be a simplex of M’, by Corollary 2.5.11. It

follows that ¢ is of the form (a°%...,a"), where a° ..., a" € M,
a*l,...,a"eM’, and 0 < r < n; thus the face (a° ..., a") is in M
since it cannot meet M’, and (a'*},...,a") is in M’ since all its

vertices are in M': see Fig. 5.3, in whichn = 2andr = 1.

It is now easy to define a (strong) deformation retraction
pi K| — M| — |M]|: if xelM|, set p(x} = =x, and if xco —

n r
(e n|M]), then x = S Ad', where 5 A, > 0 and i A = 1; put
i=0 1=10 i=0
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p(x) = ( i Aat)( rz A;) (this represents radial projection from 42 in
=0 =0

Fig. 5.3). Then p is continuous on each simplex, and the definitions of
p coincide on the intersection of two simplexes, so that p is continuous
by Proposition 1.4.15. And p is a strong deformation retraction, since
pf = 1 and fp ~ 1 by a linear homotopy. |}

The main tool in the proof of the duality theorem is the existence
of a block dissection of a triangulation of a homology n-manifold, that
is ‘dual’ to the ordinary simplicial dissection, in the sense that there is
a (1-1)-correspondence between the r-blocks and the (m — r)-
simplexes. We shall build up as much of this theory as possible for
simplicial complexes in general, and specialize to homology manifolds
only when necessary.

Suppose then that K is any simplicial complex. For each simplex
o of K, define subcomplexes

. ¢(a) = all simplexes of K’ of form (4, ..., &), where
Gy > +°"> 0g > O,
éo) = all simplexes of ¢(c) not having & as a vertex.

Clearly these are subcomplexes. As an example, see Fig. 5.4, in which
o is the simplex (a!, 4?).

é(cr)\ ela)

<

02

Fig. 5.4

In general the pair (¢(o), é(c)) need not be a block: see, for example,
Fig. 5.5, in which ¢ = (a°), so that H,(e(c), é(0)) = Z @ Z.



§5.3 THE ALEXANDER-POINCARE DUALITY THEOREM 177

a

Fig. 5.5

However, these subcomplexes do have some convenient properties
which we list in the next proposition (we shall refer to the set of
simplexes in e(o) — é(o) as the interior of e(c), just as if (o) were
block). '

Proposition 5.3.10

(a) Each simplex of K’ is in the interior of just one (o).
(b) é(0) is the union of all the e(7) for which o is a (proper) face of .
(c) For each o € K, Lkg(8) = é(0) * (6)".

Proof. Consider the simplex (8,,...,5,) of K’, where o, > ---
> 0,. This simplex is in the interior of e(o,), and cannot be in the:
interior of any other e(g), which proves (a). As for (b), notice that

By .- -, 69) Eo) <> 0y > o,
but o, # o. Finally

(@ns . - ., 8y) € Lk(8) = 6,, .. ., 8, & arc the vertices of a simplex of X’
<0, > 0 > 0,_y for some r
<8y ...,6,)€é0) and (6,43, ..., 8)€(6),

which proves (c). §

It follows from (a) and (b) that the set of all pairs (e(0), é(¢)) will
form a block dissection of K’, provided each is a block. It is at this
point that we need to know that |K| is a homology manifold.
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Corollary 5.3.11 Let K be a triangulation of a homology n-manifold.
Then for each r-simplex o of K, (e(o), é(c)) is an (n — r)-block, and the
set of all (e(c), é(c)) forms a block dissection of K'.

Proof. For each o€ K,
H(Lke(o) = {2

But by Example 2.3.13 (¢)’ is a triangulation of S"~1, so that

A(Lk(3)) ~ Hy(|&(0) » S*77)
~ H,_,(é(c)), by Example 2.3.18 and Theorem 4.4.10,

cn—r -1
A o)) = {(i’ s=n-—r1

otherwise.

s=n-—1
otherwise.

so that

On the other hand ¢(o) = é(o) * &, and so is contractible. Hence
He(c)) = 0 for all s, and H(e(0), é(0)) ~ H,_,(é(c)) by the exact
reduced homology sequence of the pair (e(o) é(o)). It follows that

Hido) do) = {

so that (e(c), é(0)) is an (n — r)-block. Thus the set of all (¢(0), é(c))
forms a block dissection of K’, by Proposition 5.3.10(a) and (b). §

In order to calculate homology from the blocks e(c), we must
identify the corresponding ‘block chain complex’ with a sub-chain
complex of C(K), as in Proposition 4.4.21: this is done by choosing
generators of each Z,_,(C(e(o), é(0))) < C,_,(K). Suppose now that
| K| is an orientable homology #-manifoid, and that the #-simplexes
of K are identified with elements of C(K) as in Definition 5.3.4: thus
z € C(K), the sum of the n-simplexes of K, is a representative cycle
for a generator of H,(K). Totally order the vertices of K’ so that
¢ < 7 if dimo > dim 7; let ¢: C(K) — C(K’) be the subdivision
chain map, and let 4: |K’| — | K| be a simplicial approximation to the
identity. Finally, for each r-simplex o of K (considered as an element
of C(K)), let s C(K) A& Z be the homomorphism that sends ¢ to 1
and all other 7-simplexes to 0. Define 2(c) = (h & 1)(s) N §(2)

C.-(K").
Proposition 5.3.12 (o) is a generator of Z,_,(C(e(0), é(0))) = Z

-7
othe'wxse

Proof. By the remarks after Corollary 4.3.10, each generator
[64, . - -, 6] of Cy(K') occurs in ¢(2), with coefficient + 1. Now

(A Al)s)N[G,, ..., 6] = [Cns..., 65k [6,, ..., 8)
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and this is zero except for just one simplex (&, . . ., &), contained in o,
when itis +[6,,..., &,). Hence z(c) € C, . (¢&(0)).
Moreover, by the proof of Proposition 5.2.10

92(0) = (=1)*""8(h, A 1)(s) N ¢(2) (since 3p(2) = $&(3) = 0)
= (= 1)""(h, & 1)3(s) N (2) "
€ C, -,-1(é(c)), by Proposition 5.3.10(b).
Thus 2(0) € Z,_(C(e(0), €0))).
Lastly, (o) is a generating cycle since, § we saw above, each
simplex in 2(o) has coefficient +1. |}
We are now, at last, in a position to prove the Alexander-Poincaré

Duality Theorem.

Theorem 5.3.13 Let K be a triangulation of an orientable homology
n-manifold, and let (L, M) be a pair of subcomplexes. Then for each r
there exists an isomorphism D: H'(L, M) — H,_(M, L).

Proof. Note first that L is the union of the blocks ¢(), for all
o ¢ L, so that L is a block subcomplex. For a simplex of L does not
meet | L], and so all its vertices are barycentres of simplexes not in L:
so this simplex is in the interior of some ¢(c), where o ¢ L. Conversely,
if o ¢ L, thén no simplex having o as a face can be in L, so no simplex
in e(c) can have a vertex in |L|, and hence (o) < L.

Similarly M is the union of the e(0), for all o ¢ M. Moreover, since
for example e(0) is contained in M if and only if its interior is contained
in M, a simplex o is in L — M if and only if the interior of ¢(g) is in
M-L '

Now consider the isomorphism D: C(L, M) 4 Z — C,_(M, L),
defined by D(s) = 2(0), where C is the chain complex obtained from
the block dissection into e(c)’s, and s is the homomorphism that sends
o to 1 and all other r-simplexes to 0. If d is the boundary homomerph-
ism in C, dD(s) can be calculated by Proposition 4.4.21:

8dD(s) = 20D(s)
= (=1)*="(h, & 1)8(s) N ¢(2)

by the proof of Proposition 5.3.12, where § is regarded as the boundary
homomorphism in C(L) A Z, and we omit simplexes in L. Thus

dD(s) = 2 (= 1)*~"(v),
where the sum is taken over those (r + 1)-simplexes 7 such that
o(7) = o +--- and the interior of ¢(7) is not in L. But as we saw
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above, the interior of e(7) is in M — L if and only if risin L — M,
and so

L dD(s) = (- 1)"-"D8(s),
where now 8 is the boundary homomorphism in C(L, M) 4 Z.
Hence D induces an isomorphism

D:H (L, M)y—H, (ML)}
Note that, by Proposition 4.4.22, D is the isomorphism induced Ly

thc homomorphism from C(L, M) 4 Z to C(M, L) given by sending
s to 2(0), for each o in L —~ M.

Corollary 5.3.14 With the notation of Proposition 5.2.17,

FH'(L, M) ~ FH,_ (M, L)
and |
TH(L, M) = TH,_, (M, L). |

It follows, of course, that we may interchange homology and
cohomology in Theorem 5.3.13: H (L, M) = H*~"(M, L) for all r.
Moreover, these isomorphisms remain valid if we replace integer
coefficients by Q or Z,, for any positive integer p.

We emphasize, however, that Theorem 5.3.13 has been proved only
for orientable homology manifolds. Indeed, the theorem would be
false if |K| were non-orientable: for if (L, M) = (K, @), then
(M, L) = (K’, @), so that if Theorem 5.3.13 were true, we would
have

H (K') =~ HYK) = Z,
since |K| is path-connected. But this contradicts Proposition 5.3.6.

However, there is still a duality theorem for non-orientable homo-
logy manifolds, provided Z, coefficients are used throughout. On
using 2 ® 1€ Cp(K) ® Z, instead of 3z, the method of proof of
Theorem 5.3.13 will prove

Theorem 5.3.15 Let K be a triangulation of a homology n-mani-
fold, not necessarily orientable, and let (L, M) be a pair of subcomplexes.
Then for each r, the isomorphism D: C(L, MY Z, - C(M, L) ® Z,,
given by D(s) = (b, A 1)(s) N (¢ @ 1)(=2 ® 1), induces an isomorphism
D:H(L,M; Z,)—~H,_(M,L; Z,). Also

H(L,M; Z,) ~ H"(M, L; Z,). }

Before discussing corollaries and applications of the duality
theorems, it is worth noting that Theorem 5.3.13 has the following
converse.
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Theorem 5.3.16 Given a path-connected polyhedron |K|, end a
positive integer n, such that for each pair of subcomplexes (L, M) of K
. and for each r, we have H'(L,M) = H,_[(M, L), then |K| is an
orientable homology n-manifold.

Proof. Choose an r-simplex o of K, and let (L, M) = (K (o), 4),
so that (L, M) is a triangulation of (E7, §7°!), and by Propssition
5.2.17
Z, s=7r
0, otherwise.

HSL, M) ~ {

* On the other hand, as in the proof of Theorem 5.3.13, L = J &(7)
for all 7 ¢ K(0), and M = | ¢(7), for all 7 ¢ 6; hence M = L U (o),
and also I N e(o) = é(), by the definition of L. It follows that
H{e(o), é(0)) =~ H(M, L), by Example 4.3.6
~ H""%L, M)

_[Z, s=n-7r
= 10, otherwise,

so that (e{o), é(0)) is an (n — r)-block.
To finish the proof, we just reverse the proof of Corollary 5.3.11:

Hs( Lkg. (3)) = Hs - r(é(o))

= H,_,.1(e(0), {0))
~ {Z, s=n-1

0, otherwise.

But by Theorem 2.4.5 we can replace Lki. by Lkg; and clearly
Lk(6) = Lk(x) for all x in the interior of o. That is, Lk(x) has the
correct reduced homology groups for each point x € | K|, so that |K|
is 2 homology n-manifold. And it is orientable, since

H(K)HK)= Z. )

The ‘standard’ Poincaré and Alexander duality theorems can easily
be deduced from Theorems 5.3.13 and 5.3.15.

Theorem 5.3.17 (Poincaré duality.) Let K be a triangulation of
a homology n-manifold. If |K| is orientable, there is an isomorphism
D: H'(K)— H,_(K') for all r; in any case there is an isomorphism
D:H'(K; Z,)— H,_(K'; Z,) for all r.
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Proof. Apply Theorems 5.3.13 and 5.3.15, with (L, M) =
(X, z). §

Notice that if xe H'(K), then D(x) = h*(x) N ¢,[2], where
h:|K’| - |K| is a simplicial approximation to the identity map.
Since A* is an isomorphism, the Poincaré duality isomorphism may
conveniently be regarded as the isomorphism D: H(K') - H, _(K"),
given by D(») = x N ¢,[z].

Theorem 5.3.17 gives a useful sufficient condition for the orient-
ability of |K|.

kd

Corollary 5.3.18 Let K be a triangulation of a homology n-manifold.
If H(K; Z;) = 0, then |K| is orientable.

Proof. Wehave H(K; Z,) = HYK;Z;)~ Zyand H, (K, Z;) =
HY(K; Z,) x H\(K; Z,;) ~ 0. But by Theorem 4.5.15
H(K; Z,) = H(K) ® Z; @ Tor (H,_,(K), Z,)

and

Hy (K5 Z5) x H,_((K) ® Z; @ Tor (H,_4(K), Z,)-

Now H,_,(K) is a finitely generated abelian group, and so is a direct
sum of groups isomorphic to Z or Z,, for various integers p; but since
H,_ (K)® Z, = 0 there are no Z’s, and all p’s are udd. It follows
that Tor (H,_,(K), Z,) = 0, and so

H((KY® Z,~ H(K,; Z,) > Z,.
Hence H,(K) ~ Z by Theorem 5.3.6, and | K| is orientable. |}

Theorem 5.3.19 (Alexander duality.) Let K be a triangulation of
S™, and let L be a subcomplex of K. Then A'(L) =~ H,_,_(S™ — |L|),
Jor all r.

Proof. Let a be a vertex of L. Since .S™ is an orientable homology
n-manifold, we have '

AWy H(L, a)~ H,_(4,L) ~ H,_(S" — a, S* — |L|),

using also Proposition 5.3.9. But it is easy to see that S™ — a is
homeomorphic to £* — S~ (use the standard map of Section 1.4),
and so is contractible. Hence H,(S™ — a) = 0, and the exact reduced
homology sequence of (S* — a, S — [L|) shows that

Hy (S"—a,S"—|L)) = H,_,_«(S" — |L]). §

Naturally, Theorems 5.3.17 and 5.3.19 remain true if we interchange
homology and cohomology.
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The duality theorems have ‘many interesting corollaries. Some of
these depend on the ring structure of cohomology, and so will have
to be postponed to Chapter 8, but we shall conclude this section with
a few results on the Euler-Poincaré characteristic and inclusions of
homology manifolds in each other.

Proposition 5.3.20 Let X be a homology n-manifold, where n is odd.
Then x(X) = 0.

Proof. Whether or not X is orientable, we have
H(X;Z,))~ H""(X; Z,) > H,.(X; Z,), .

by Theorem 5.3.17 and Corollary 5.2.12. Thus if «, is the dimension
of H(X; Z,), as a vector space over Z,,

> (—1)ye, = 0, since n is odd.
On the other hand, Theorem 4.5.15 gives
H(X; Z;) = H(X) ® Zo @ Tor (H,_(X), Z,)
& [FH(X)® TH{(X) D TH, (X)] ® Z5.~ -,

Thus > (—1)e, = 3 (—1)'8,, where B, is the dimension of FH (X) ®
Z,, as a vector space over Z,. But this is the same as the dimension of
FH(X) ® O ~ H(X; Q) as a vector space over 0, so that

2. (—1yB, = x(X). §

Proposition 5.3.21 Let (K, L) be a simplicial pair, where both
|K | and |L| are homology n-manifolds. Then K = L.

Proof. By Theorem 5.3.15,

Hy(K', L; Z;) = HYL; Z,) x Ho(L; Z5) = Z,.
Thus in the exact homology sequence of the pair (K, L):
o> Hy(L; Z5) = Hy(K'; Z,) 2> H(K', L; Z,) —> 0,

since Hy(K'; Z,) =~ Hy(K', L; Z,) & Z,, i, must be the zero homo-
morphism. But this is impossible unless L = @, thatis, K = L. |
In other words, a homology n-manifold cannot be properly con-
tained in another, as a subpolyhedron. Of course, it is essential for this
result that the dimensions of the two homology manifolds should be
the same; for we cannot have one contained in another of lower
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dimension, and on the other hand it is certainly possible to have one
contained in another of higher dimension: for example, S*~1 in S™.

The duality theorems allow us to say quite a lot about homology
n-manifolds contained in S™*1,

Proposition 5.3.22 Let |L| be a non-orientable komology n-manifold.
Then L cannot.be a subcomplex of a triangulation of S™**.

Proof. Suppose, if possible, that K is a triangulation of S"*1,
having L as a subcomplex. Then Hy(L) ~ A"(L) = 0, by Theorem
53.19.But H(L; Z,) @ A™L; Z,) ~ HYL; Z,) = Hy(L: Z,) ~ Z;
(n > 0, since otherwise L must be a point, and so orientable), which
contradicts Theorem 4.5.15. §

That is, a homology n-manifold that is a subpolyhedron of S*+!
must be orientable. In particular, pone of the 2-manifolds N, can be a
subpo]yhedron of S3.

Proposition 5.3. 23 Let |L| be an orientable homology n-manifold
(n > 1), and let L be a subcomplex of some triangulation of S***. Then
Sn+1 — |L| has two path components.

Proof. . By Theorem 5.3.19,
Ay(S* - |L)) = A%L)
"~ H™L), sincen > 1
~ Z, since |L| is orientable.

Thus Hy(S* —|L|) ¥ Z@ Z, so that by Example 4.2.13 S™ — |L|
has two path components. }

In particular the complement in S**! of any subpolyhedron
homeomorphic to S* must have two path components, and indeed,
by Chapter 3, Exercise 2, these path components are connected sets.
This result is a generalization of the Jordan Curve Theorem: the
complement in S? of any subpolyhedron homeomorphicto S* has two
connected components. '

5.4 Manifolds with boundary and the Lefschetz Duality
Theorem

In this section we shall generalize the duality theorems of Section
5.3 to manifolds ‘with boundary’ (compare Chapter 3, Exercises 15
and 16). These are spaces which are locally like either Euclidean space
R*" or the half-plane x, > 0.
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Definition 5.4.1 A Hausdorff space M is called an n-manifold
with boundary (n > 1) if each point of M has a neighbourhood homeo-
morphic to an open set in the subspace x;, > 0 of R".

Examples 5.4.2 E" is an n-manifold with boundary. For each
point of E® — S"~! has a neighbourhood that is already an open set in
R*; moreover (E®, S"~1) is homeomorphic to (o, |{4]) for an n-simplex
o, so that a point x of S*~! has a neighbourhood in E™® that is homeo-
morphic to the intersection of an open set in R™ with o, and this (if
small enough) is of the required form (we can ensure that the given
point x is mapped under the homeomorphism to an interior point of
an (n — 1)-face of o). See Fig. 5.6.

<2

.~ s’
SN Openset in 77

Fig. 5.6

Other examples are the 2-manifolds with boundary M?! and N} of
Chapter 3, Exercise 16, and M x I for any manifold M (without
boundary): for a point of M x I has a neighbourhood of the form
A x B, where¢ A © M is homeomorphic to an open set in some
Euclidean space, and B is an open set in I (and is not the whole of I).

We are particularly interested, of course, in those manifolds with
boundary that are triangulable. Information about possible triangula-
tions can be obtained from the following proposition, which generalizes
Proposition 3.4.33.

Proposition 54.3 Let K be a hiang:;lation of an n-manifold with
boundary. Then for each x € |K |, |Lk(x)| is homotopy-equivalent either
to S*~* or to a point.
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Proof. If x has a neighbourhood homeomorphic to an open set in
x, > 0 that does not meet x, = 0, the argument of Proposition 3.4.3
applies, to show that |Lk(x)] ~ S™~1. Otherwise, there exists a point
y in x;, = 0, an € > 0, and a homeomorphism % of BN (x; > 0)
onto a subset of | K| such that 4(y) = x, where B is the e-neighbour-
hood of y in R* 'But B N (x; > 0) can be triangulated as K (o), where
o is an n-simplex with y in the interior of an (n — 1)-face. Hence, by
Theorem 2.4.5 |Lk(x)| ~ |Lk(y)|, which is clearly contractible. |

It follows that if M is a triangulable manifold with boundary, the
set of points of M having all neighbourhoods homeomorphicto open sets
that meet x, = 0 is exactly the set of points x such that |Lk(x)| is
contractible. This subset of M is called the boundary of M, oM,
notice that any homeomorphism of M onto another manifold with
boundary, N, must map éM onto oN.

Proposition 5.4.4 If K is a triangulation of an n-manifold with
boundary, there exists a subcomplex L of K such that |L| = 8|K|.
Moreover, |L| is an (n — 1)-manifold.

Proof. We show first that 9| K| is a closed subspace of |[K|. Now
each point x of |[K| — 8|K| has a neighbourhood homeomorphic to
an open set in R"; the same is therefore true for each point in this
neighbourhood, and so | K| — 9|K| is open, and hence 8|K | is closed.

If o 1s a simplex of K that meets 8| K| at a point x in its interior,
then |Lk(x)| is contractible. But Lk(x) = Lk(y) for all points y in the

Fig. 5.7
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interior of o, so that the interior of o is contained in 8|K|. Hence
o < 9|K| since 9| K| is closed, and so if L is the subcomplex of K of
those simplexes that are contained in 8|K|, |L| = ¢|K|.

Lastly, consider a point x € |[L|. Then there exists a point ¥ in
%, = 0, an € > 0, and a homeomorphism / as in Proposition 5.4.3:
see Fig. 5.7.

Now it is clear that points 2 in x; > 0 such that d(y, 2) < € are
mapped by k& to |K| — |L| if they do not lie in x; = 0, and to |L|
otherwise (a point in x; > 0, for example, has a neighbourhood that is
an open set in R*, and is contained in B N (x, > 0)). Hence x = A(y)
has a neighbourhood in |L| that is homeomorphic to the set of points
z in x; = 0 such that d(y, 2) < ¢, and this in turn is homeomorphic
to an open set in R*~1. |}

So far in this section, we have considered triangulable manifolds
with boundary, and it is perfectly possible to prove the Lefschetz
Duality Theorem for these spaces only. However, in the spirit of
Section 5.3, we prefer to work with rather more general spaces, the
homology manifolds with boundary.

Definition 5.4.5 A path-connected space X is a homology n-
manifold with boundary (n > 1) if there exists a triangulation K of X,
such that for each point x€ |K|, H (Lk(x)) is isomorphic either to
H,(S" 1) or to 0. The boundary of X, 8X, is the set of pomts x such
that H*(Lk(x)) 0; observe that X — 09X # &, since a point in the
interior of a sunplex of maximum dimension cannot be in 8.X.

By Theorem 2.4.5, this property holds for all triangulations of X
if it holds for one, and the definition of 9X is independent of the
particular triangulation; also, by Proposition 5.4.3, every path-
connected triangulable nz-manifold with boundary is a homology
n-manifold with boundary. So, of course, is every homology n-manifold
in the sense of Definition 5.3.1; we shall sometimes call such homology
manifolds closed, if we wish to stress that their boundaries are

empty.

Examples 5.4.6 E*, M) and Nj are all homology manifolds with
boundary. }

We should like to be able to say also that X x I is a homology
n-manifold with boundary if X is a (closed) homology (n — 1)-
manifold. This is true, but is a little more difficult to prove than the
corresponding result in Examples 5.4.2. The following lemma is
necessary.
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Lemma 5.4.7 Let x be a vertex of a simplicsal complex K, and let
L = Lkg(x). Let y be any point of |L|, and let = be the mid-point of xy
(see Fig. 5.8). Then for each r, B (Lky(z)) x~ H,_ (Lk,(y)).

) 4

~¢
Fig. 5.8

Proof. Suppose first that y is a vertex of L, so that (x,y) is a
1-simplex. Then

o € Lkx(3) <> x, ¥ and o are faces of a simplex of K, but ¢
does not contain both x and y

<0 €Lk (y) U Lk(y) s x U Lky(y) ¢y
= Lky(y)«(xvy)

(if for example o contains neither x nor y, then o € L and o € Lkg(y)).
Hence H(Lkg(2)) ~ A,_,(Lk,(y)) by Theorem 4.4.10.

On the other hand if y is not a vertex of L, we may as well assume
that y is a barycentre of some simplex of L. Thus y is a vertex of
(L') # x, and by Theorem 2.4.5 this subdivision has not altered the
homotopy types of either |Lky(3)| or |Lk,(y)]. |

Proposition 5.4.8 If X is a closed homology (n — 1)-manifold, then
X x Iis a homology n-manifold with boundary, and 8X = X x QU
X x 1.

Proof. Let K be a triangulation of X, and consider the ‘cone’
CK = K x a, where a is a single vertex. If x€ |CK| - (|K| U a), »
is an interior point of a straight-line segment ay, where y is a point of

|K |: thusif 2 is the mid-point of @y, Lk(x) = Lk(3), so that by Lemma
5.4.7

A(Lk(x)) = A(Lk(z)) = B,_.(Lkg(»)) = {g, r=n-1

otherwise.



§5.4 THE LEFSCHETZ DUALITY THEOREM 189

On the other hand, if x € |K|, it is easy to see that Lkgg(x) =
Lky(x) * @, so that Lkcg(x) is contractible, and H,(Lk(x)) = O for all
7. That is to say, | CK | is almost a homology n-manifold with boundary:
each point except a satisfies the conditions of Definition 5.4.5 (a does
not in general, since Lk(e) = K).

Now |K| x I can be triangulated as K x I, as in Section 4.2, and
K x I has subcomplexes K x 0and K x 1 that triangulate |K| x 0
and | K| x 1 respectively. Thus a simplicial complex M can be formed
from the union of K x Iand CK by identifying pointsof K x 1 = K
with corresponding points of the subcomplex K of CK; and it is easy
to see that M is another triangulation of |CK | (see Fig. 5.9).

c
CK
Kxl
ﬂ
Kx} ——
e > T
Fig. 5.9 )

It follows from Theorem 2.4.5 that, if x € [K| x [0, 1), [Lkg, (*)] =
[Lkp(x)| ~ |Lkcg(x)|, so that '

ifr=n-1and xe|K| x (0,1)
otherwise.

A Lkeos) 2 {g,

Similarly H,(Lkg.(x)) = 0 for all r if xe |K| x 1, and certainly
|K| x I is path-connected if |K| is. Thus |K| x [ is a homology
n-manifold with boundary,and &(|K| x I) = |K| x OU |K]| x 1. |

The reader will have noticed that if X is a homology n-manifold
with boundary, and X is a manifold with boundary or X is of the form
Y x I for some (closed) homology (2 — 1)-manifold, then 80X is a
subpolyhedron of X and each path component 1s a closed homology
(7 — 1)-manifold. This result is in fact true for all homology manifolds
with boundary, though it is by no means an obvious consequence of
Definition 5.4.5; indeed, to prove it we must first establish the
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Lefschetz Duality Theorem. Let us call a homelogy #-manifold with -
boundary X special if, for each triangulation, 9.X is a subpolyhedron,
and each ‘path-component of 90X is a closed homology (n — 1)-
manifold. Our plan of action is first to prove the Lefschetz Duality
Theorem for special homology manifolds with boundary, and then
to deduce by induction on n that every homology n-manifold with
boundary is special.

As in the case of the duality theorems of Section 5.3, the Lefschetz
Dality Theorem takes two forms according as the manifold is
orientable or not. Now the proof of Theorem 5.3.3 shows that if | K|
is a homology n-manifold with boundary, then dim K = n and every
(n — 1)-simplex is a face of one or two n-simplexes. Definition 5.3.4
can therefore be extended as follows.

Definition 5.4.9 A homology n-manifold with boundary is said
to be orientable if there exists a triangulation K, for which the n-
simplexes can be identified with elements of C,(K) in such a way
that, if o is an (# — 1)-simplex that faces two #n-simplexes 7, and 7,
then o occurs with opposite sign in &(r,) and &(r).

Of course, this definition suffers from the same disadvantages as
Definition 5.3.4. To resolve this_difficulty (and indeed as the main
tool in proving the Lefschetz Duality Theorem) we define the double .
of a special homology n-manifold with boundary.

Definition 5.4.10 Let X be a special homology n-manifold with
(non-empty) boundary, and let X,-and X, be two copies of X. The
double of X, 2X, is defined tda-be the space obtained from X, U

8X x IV X, by identifying points of 4.X, with corresponding points
of 0X x i = 0X, fori = 0, 1.

Pyoposition 5.4.11 2X is a closed homology n-manifold, and is
ortentable if and only if X is.

Proof. Let (K, L) be a triangulation of (X, 8X). 2X is certainly
path-connected and triangulable, as 2K, defined tobe Ko U L x TV
K, with appropriate identifications, where K, and K, are two copies
of K. It is also clear from Proposition 5.4.8 that A(Lk(x)) ~ A(S""?)
for all points x € |2K | that do not lie in |L x 0] or |[L x 1]. On the
other hand, if say x € |L x 0|, then Lkgg(x) = Lk, [(¥) U Lkg(x),
and Lk; . ;(x) N Lkg(x) = Lk;(x). But B (Lk; (%)) = H,(Lkg(x)) =
0, so that, by the reduced Mayer-Vie:oris sequence,

B (Lkae(x)) = B, _y(Lky(x)) = H,_,(S""?%) = A(S*"7).
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"Fhe same argument works for points of |L x 1], so that |2K| = 2X
is a closed homology n-manifold.

If 2X is orientable, identify the n-simplexes of 2K with elements of
C,(2K), as in Definition 5.3.4. In particular this identifies the n-
simplexes of K with elements of C,,(K), and shows that X is orientable.
To prove the converse, suppose that the n-simplexes of X are identified
with elements of C,(K) as in Definition 5.4.9. Now an (n — 1)-
simplex of K faces just one n-simplex of K if and only if it lies in L;
so if z is the sum of the n-simplexes of K, 3%(z) = 0 and 4(3) is the
sum of all the (n — 1)-simplexes of L, with appropriate signs. Since
the path components of |L| are obviously subpolyhedra and are homo-
logy (# — 1)-manifolds, this means that each path component of |L|
is orientable: they can be oriented by identifying each (n — 1)-
simplex of L with the corresponding element in 9(z) (with its sign).
To deduce that {2K| is orientable, orient K, in the same way as X, K,
in the opposite way (that is, ¢ in K; corresponds to —o in K), and
L x I asfollows. Let b: S(|L|) — S(]L| x I)be the homomorphism
of Proposition 4.2.21, which clearly restricts to h: A(L) — A(L x I)
and induces &: C(L) - C(L x I). Itis easy to see that each n-simplex
7 of L x I occurs in just one expression h(c), where o is an (n ~ 1)-
simplex of L (already identified with an element of C(L)): identify »
with the corresponding element in 4(o) (with its sign). Now Definition
5.3.4 is certainly satisfied for (n — 1)-simplexesof K, — Lor K, — L;
on the other hand the formula

0h(0) + hd(o) = (11).0 — (%).0

shows that Definition 5.3.4 is also satisfied for (n — 1)-faces of n-
simplexes r of L x I: for if the face occurs in dA(c) the fact that L is
oriented correctly will give us our result, and if the face is (i;) o or
(75).0 the result follows because of the chosen orientation of K, and
Kl (other faces of r must cancel in the expression for dk(o)). Hence 2X
is'orientable. |}

It follows that Definition 5.4.9 is independent of the triangulation
of X, at least if X is special. It is also worth noting explicitly the
following result, obtained in proving Proposition 5.4.11.

Corollary 5.4.12 If X is orientable (and special), then each path
component of 0X ts orientable. §

The converse is not true: for example, each of the manifolds N}
is non-orientable (if N] were orientable, it is easy to see that N,
would also be orientable); however dV}, is a disjoint union of S'’s,
each of which is eertainly orientable.
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We are now in a position to prove the Lefschetz Duality Theorem.

Theorem 5.4.13 Let X be a special /omology n-manifold with
boundary, and let (K, L) be a triangulation of (X, 8X). Then if X is
ortentable,

H'(K, L)y = H,_(K)  (all 7),
and in any case

H'(K,L; Z;) ~ H,_(K; Z,).

Proof. We may assume that L is not empty, for otherwise this is
just Theorem 5.3.17. Suppose first that X is orientable, so that by
Proposition 5.4.11 2.X is also orientable. Thus 2K is a triangulation of
an orientable homology n-manifold, and Theorem 5.3.13 may be
applied to the pair of subcomplexes (2K, Kj), to obtain

H'(2K, K;) ~ H,_/(K,).
But b}l Example 4.3.6 (applied to cohomology) we have
H'(2K,K;) =z H(K, WL x I, L x 1).

However, in the exact cohomology sequence of the pair (L x I, L x 1),
the inclusion of |L x 1| in |L x I|is clearly a homotopy equivalence,
so that H(L x I, L x 1) = 0 for all s. Thus in the exact cohomology
sequence of the triple (Ko W L x I, L x I, L x 1), we have

H (KL x I,L x 1) H(KquUL x I,L x I).
Finally, using Example 4.3.6 again, we have
H(KoUL x I,L x I)  H'(K;, L x 0) @ H'(K, L).
On the other hand,
|K,| ~ |2K| — |K,|, by Proposition 5.3.9
= |Ko| WV |L]| x [0,1)

~ |K,|, by an obvious deformation retraction.

Hence
Hn—r(Kl) = Hn—r(Ko) = Hu-r(K)°

A similar proof works, using Z, coefficients, if X is not orientable. [

Of course, we can interchange homology and cohomology, and also
use coefficients Q or Z,, for any positive integer p, if X is orientable.
Theorem 5.4.13 allows us now to justify our original definition of
homology manifolds with boundary, by showing that they are all
special.
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Theorem 5.4.14 Let X be a homology n-manifold with boundary.
Then X 1s special.

Proof. We shall prove this theorem by induction on %, suppnsing it
to be true for all homology manifolds with boundary, of dimension
(n — 1). The induction starts, with # = 1, since in any triangulation
of a homology 1-manifold X it is easy to see that 9.X is the set of .
vertices that are faces of j Just one 1-stmplex. '

Suppose then that X is a homology n-manifold with boundary
(n > 1), and that K is a triangulation of X. Let x be a vertex of K,
and write L = Lk(x). Now H,(L) ~ B/{(S™"?) or 0 according as x is in
X — 80X or 2X; hence |L| is path-connected, and by Lemma 5.4.7
|L] is a homology (n — 1)—mamfold with boundary. Thus by the
inductive hypothesis L contains a subcomplex M such that [M| =
9|L|, and each path component of M| is a closed homology (n — 2)-
manifold.

If xe€ X — 0X, Theorem 5.4.13 gives

Hy(L,M; Z)) x H*YL; Z,) = Z,.

If M were non-empty, the exact reduced homology sequence of the
pair (L, M) shows this to be a contradiction, since Hy(L) = 0.
Hence M is empty and so |L| is a closed homology manifold. By
Lemma 5.4.7 again, this means that for each point y € |L}, the mid-
point of the segment xy is in X — 8X. But Lk(z) is the same for all
interior points z of xy, so that all points of these segments, except their
end-points in |L], lie in X — 8X, and so x has a neighbourhood
contained in X — 8X. Now the same is true for any point x of
X - 90X, for we could take x to be a barycentre, and make it a vertex
by subdxvxdmg It follows that X — 90X is open; hence 0.X is closed;
hence there is a subcomplex 3K of K such that [9K| = 9| K|, as in the
proof of Proposition 5.4.4.

Now suppose that x is a vertex of K. Again, Theorem 5.4.13 gives

Zg, r‘——n"‘l

r-1
HA{L, M; Z5) = H"""Y(L; Zy) = otherwise.

Thus the exact reduced homology sequence of the pair (L, M), and
the fact that A,(L) = 0, yields

r=mn-—2
otherwise.

A(M; Z,) = {gz’

Since A, . (M) must be a free abelian group, and H, _4(M; Z;} = 0,
Theorem 4.5.15 shows that therefore H,,_ o(M) = Z. Since B (L) = 0,
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it follows by the reduced Mayer—Vletons sequence that A, _,(2L) ~
Z; hence 2|L| is orientable, |L| is orientable, and we may use Theorem
5.4.13 again to give A (M) > H,(S""2), all 7.

Now by Lemma 5.4.7, interior points z of segments xy (y € [L|)
lie in X if and only if y € |M]; indeed, since 8.X is.closed, whole
segments xy lie in 8.X if and only ifye [M [. It follows that Lka,{(x)
M, so that H,(Lkax(x)) ~ H(M) ~ B(S*3). The same is true if x
i8 a general point of 2X by the usual trick: assume x is a barycentre
and make it a vertex by subdividing. Thus the inductive step, and
hence the proof of the theorem, is complete. |

We conclude this section with a short discussion of cobordism. As
we have seen, the boundary of a homology n-manifold with boundary
is 2 union of closed homology (# — 1)-manifolds; cobordism is the
study of the reverse problem: given a closed homology manifold (or a
union of them), is it the boundary of a homology manifold with '
boundary? In particular, two closed (# — 1)-manifolds X and Y are
said to be cobordant if there exists an n-manifold Z such that 9Z is the
disjoint union of X and Y; and the problem can alternatively be
stated: given X and Y, how do we tell whether or not they are co-
bordant? The problem remains unsolved in general for homology
manifolds (though it has been done for differentiable manifolds: see
the notes at the end of this chapter). However, it is sometimes possible
to prove that X and Y are not cobordant by using the following result
about the Euler-Poincaré characteristic.

Proposition 5.4.15 Let X be a homology #-manifold with boundary.
Then x(0.X) is even.

Proof. Consider the Mayer-Vietoris sequence associated with the
subpolyhedra” X, W (X x I) and (29X x I YU X, of 2X (with
coefficients Z3): .

H(0X x I; Z;)—~
,(XOUEX x I; 22)@H,(a,x x lUX, Z;)—
HQ2X; Z,) > H,_(0> x I, Z)—--

Now@X x I~dX,and XoudX x I~ X ~ X x IUX,,allby
obvious deformation retractions. Thus the, Mayer-Vietoris sequence
can be amended so as to read

coom> H(0X; 25) — H(X; Z,) © H(X; Z,;) —
H(2XyZy) —> H, _(0X; Z3) —>- - -.

But an exact sequence of vector spaces over Z,

00— V,-»Vg»---—-_nl’,,,-;()' :
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may be regarded as a chain complex, so that, as in Lemma 4.5.17,
we have 3 (—1) dim V, = 0. Applying this to the Mayer-Vietoris
sequence, we obtain

x'(6X) - 2¢'(X) + x'(2X) = 0,

where x'(X) = 3 (—1) dim H(X; Z;). But it was proved in
Proposition 5.3.20 that x'(X) = x(X), so that

x(8X) — 2x(X) + x(2X) = 0.

If n is‘even, each path component of 9X is an odd-dimensianal closed
homology manifold, so that by Proposition 5.3.20 ¥(6X) = 0. On the
other hand if 7 is odd, then x(2X) = 0, so that x(6X) = 2y(X), which
is even. |}

Corollary 5.4.16 RP™ and S™ cannot be cobordant if n is even;
neither can N, and M, be if h is odd (for any g), nor N, and N,., if
k — k' is odd.

Proof. 1If nis even, y(RP™) = 1 and x(S") = 2. Hence
x(RP™® U S*) = y(RP*) + x(S%) = 3,

and so RP® U S*® cannot be a boundary. The results about N, and
M, follow similarly, since y(M,) = 2 — 2g and y(N,) = 2 — h. }

In fact every M, is a boundary, as also is N, if 4 is even; on the other
hand N, is cobordant to N, if k is odd (see Exercise 17). Thus two
2-manifolds X and Y are cobordant (counting the empty set as a
2-manifold) if and only if x(X) + x(Y) is even.

EXERCISES

1. Let K be a simplicial complex with a block dissection, and let £ be a
block subcomplex. Let C be the chain complex @ C,, where C, =
H, (M" M*-1), and M® = K, U L; and {c any abelian group G, let
C(G) = @C,(G) be the chain complex defined by C_,(G) =
H~M*, M*-1; G). Show that C & G and C(G) are chain-isomorphic,
so that the two ways of generalizing to cohomology the method of
calculating homology by a block dissection in fact coincide.

2. Show that a cap product H'(X; G) @ Hy(X; G) - H,_/(X; G) can be
defined for an arbitrary space X, as follows. Given a generator A of
S(X), let X = AF, and A" = AF,, where F;:4, ,—>4, and
F;: 4, - A, are defined by F, = (a°,...,a"""), F3 = (a*"', ..., a").
Given also a € S(X) A G, define e N (2 A @ g) = 2 A @ (a(A)gy)s
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show that this induces the required cap product between cohomology
and homology. Prove also that this coincides with the cap product of
Proposition 5.2.10 if X is a polyhedron, and that f(f*(x) Ny) =
x N f () if f is a continuous map.

3. Given an exact sequence 0 —> A -2 B C — 0 of abelian groups, and
another abelian group G, show that the sequence

0—>CAGLBAG2, 446

is exact, but that « A4 1 need not be onto.

4. Given abelian groups 4 and B, write 4 in the form F/R, where F is a
free abelian group, so that there is an exact sequence

0—>R-:>F-‘->-A—~>O.

Define Ext (4, B) = R & G/Im (a 4 1), so that by Exercise 2 there is
an exact sequence

0—> Ah G2 FA G2 RAG— Ext (4, B)—> 0.

Fstablish the following properties of Ext (4, B).

(a) Ext (4, B) depends only on 4 and B, and not on the particular
representation 4 = F/R.
(b) Ext ((-‘B A, 6’9 B) >~ @ Ext (4, B,), provided both direct sums

are finite.

(c) Ext (A4, B) = 0 if 4 is a free abelian group; Ext(Z,, Z) ~ Z,,

Ext(Z,, Z,)) = Zy.q, Ext(Z,, Q) = 0, for positive integers p and g¢.
5. Let C be a chain complex in which each C, is a free abelian group, and

let G be any abelian group. Prove that

H_(C 4 G) = H(C) b G @ Ext (H,_,(C), ).

6. If in Exercise 5 each C, is also finitely generated, show that
H (CAG) 2 H (CAZ)RGO Tor(H_,_,(Ch Z), G).
(Hint: use Proposition 5.2.15.)

7. Let M be a closed orientable homology #n-manifold. Show that H,,_,(M)
is a free abelian group.

§. Show that a homology n-manifold (with or without boundary) is an
n-manifold in the sense of Definitions 3.4.1 and 5.4.1, if n < 3. (Hint:
prove this by induction on 5, using Lemma 5.4.7 and the classification
theorems for triangulable: 2-manifolds.)

9. The result of Exercise 8 does not hold if » > 4. For cxamp!e,ﬁet X be
the space obtained from the (solid) dodecahedron by making identifica-

tions on the boundary, as in Example 3.3.22. Show that X is 2 triangul-
able 3-manifold, and that = {X) > Gp {a, b; a®(ad)~3, 5°(ab) °}.
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Show also that Hy(X) = Z, and deduce from Chapter 4, Exercise 3,
and Theorem 5.3.17 that H,(X) = Hy(X) = 0, so that X has the same
homology groups s S3.

Deduce that the suspermon of X, SX, is a simply-connected homol-
ogy 4-manifold that is not 4 $-manifold.

Let |K| be an orientable homology s-manifold, and let (L, M, N) be a
triple of subcomplexes of K. Consider the diagram

e o= HY(L,M) L H'(L,N) s H'M,N)-Z> H YL, M) ...

ol J o] l°

c o> H,,_,(M,Z)? H»-r(N)Z)';') Hn—r(ﬁvﬁ)? Hu-f-l(ﬁrz)“‘" e

where the rows are exact sequences of triples, and D is the isomorphism
of Theorem 5.3.13. Show that the diagram is commutative up to sign;
more precisely, that

ieD = Dj*, j,D = Di*, and 3,D = (—1)*~'Ds*

(use Chapter 4, Exercise 8).
Establish a similar result for homology and cohomology with
coefficients Z,, if | K| is not necessarily orientable.

Let X be a homology n-manifold with boundary, and suppose
H(X; Z;) = 0. Show that X is orientable.

Let |K| be an orientable homology n-manifold with boundary, and let
(L, M) be a pair of subcomplexes of K, such that |[L| N 3|K| =
Prove that H'(L, M) 2 H,_/(M, L), for eachr.

Let |K| be a closed homology r-manifold, and let (L, M) be a pair of
subcomplexes such that |L| is a homology #-manifold with boundary,
and 9|L| = |L N M|, |K| = |LU M|. Show that |M| is also a
homelogy n-manifold with boundary, and 9|M| = 3|L|. (Hint: prove
this by induction on #, using the Mayer—Vietoris sequence on the links
of points in 9|L|, and the fact that H,(X) == 0 for coefficients Zor Z,,,
if X is an orientable homology n-manifold with non-empty boundary.)

Let (K, L) be a triangulation of an orientable homology n-manifold
with boundary, where |L| = 2|K|. If i: |L] - |K] is the inclusion
map, show that i,: H{L) — H{K) is an isomorphism for all r.

Given two closed homology n-manifolds |K| and |L|, the connected
sum {K| # |L| is defined as follows {cornpare Chapter 3, Exercise 14).

Choose n-simplexes o, r in K and L respectively, and in |K — of U

|[L — 7|, identify points of |¢| with corresponding points of ||, under
some simplicial homeomorphism of [¢] onto [+]. (This definition can be
made independent of everything except the homeomorphism classes of
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|K| and |L|.) Show that |K| #|L| is a closed homology n-manifold,
and that if |K| and |L| are orientable, then

H(K|#IL) = Z
H(K|#|L) x H(K)® H(L) (0 <1 <n).

Prove also that [K| # |L| cannot be orientable unless both |K| and
|L| are. - )

16. Let |K| be a closed orientable homology n-manifold (n > 2). Let o and
r be disjoint n-simplexes of K, and let L be the simplicial complex
obtained from K — (¢ U 7} and ¢ x I by identifying ¢ x 0 with ¢
and ¢ x 1 with + (using a simplicial homeomorphism). Show that this
can be done in such a way that | L] is an orientable homology #-manifold,

and
H(L) = H(K), r¥n-~-11

Ho_o(L) = Ho j(K)® Z
H) = Koz | *>?

H)x BEK)OZOZ (=2

(The construction of L from K is a special case of a construction known

* as surgery: in general this consists in replacing a subspace homeo-
morphic to S§" x E*»~" by E'*! x §S"~"-!, which has the same
boundary S* x S*~7~1, In the above example r = 0.)

17. Show that in Exercise 16 the homology manifolds |K| and |L| are
cobordant. Deduce that each of the orientable triangulable 2-manifolds
M, is the boundary of a 3-manifold.

Use a similar method to prove that N, is the boundary of a 3-manifold
if h is even, and that N, and N, are cobordant if h is odd. (Hint. use
Chapter 3, Exercise 14 to show that V, is the space obtained from two
copies of N, by performing the construction of Exercise 16.)

NOTES ON CHAPTER 5§

Cohomology. Cohomology theory originated with the ‘pseudocycles’ of
Lefschetz [89], Chapter 6, and was developed further by Alexander [10],
Whitney [163] and Lefschetz [91], Chapter 3, It was Whitney who invented
the word ‘cohomology’.

Corresponding to the Cech homology groups, one can define Cech
cohomology groups: see for example Eilenberg and Steenrod [56],
Chapter 9. .

The Alexander—Poincaré Duality Theorem. The original references are
Poincaré {116, 117] and Alexander and Veblen [12] for Theorem 5.3.17,
and Alexander [8] for Theorem 5.3.19. The idea of combining these two
theorems as in Theorem 5.3.13 is due to Lefschetz [89], Chapter 3.
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In fact the assumption of triangulabihty in Theorem 5.3.13 is not
really necessary, and was made only in order to simplify the proof. The
more general theorem states that, if M is any (orientable) n-manifold, and
(4, B) is a pair of clased subspaces of M, then

H(A, B)x Hy (M — B, M ~ 4),

where H denotes Cech cohomology ‘with compact supports’. A proof will
be found in Spanier [131}, Chapter 6 (see also Greenberg {60], Section 27).

In the case of non-orientable manifolds, Theorem 5.3.13 can be improved
to give an isomorphism between cohomology with Z coefficients and homo-
logy with ‘twisted integer’ coefficients. See, for example, Swan [141),
Chapter 11.

For more results along the lines of Proposition 5.3.22, see Chapter 8,
Exercise 17,

The Jordan Curve Thearem. ‘The result that the complement in S2 of a
subspace homeomorphic to S* has two connected components was first
stated by Jordan [82], although his proof contained some gaps. The first
rigorous proof was given by Veblen [146]).

The Lefschetz Dualkity Theorem. Theorem’ 5.4.13 is due to Lefschetz
[87, 88, 89]. In fact it holds for arbitrary manifolds with boundary: see
Greenberg [60}, Section 28, or Spanier [131], Chapter 6.

Cobordism. 'The concept of cobordism is due to Thom [143], who gave
necessary and sufficient conditions for two differentiable manifolds to be
cobordant. This work was extended to onentanon-preservmg cobordism
of differentiable manifoids by Milnor [105] and Wall [150]). The position
with regard to cobordism of non-differentiable manifolds is, however, less
satisfactory. A certain amount is known about manifolds of low dimensions
(see Wall [151]), and for combinatorial manifolds the problem has been
reduced to an (as yet unsolved) problem in homotopy theory (Williamson
[164], Armstrong and Zeeman [15], Rourke and Sanderson [123]; see also
Browder, Liulevicius and Peterson [28]).

Surgery and differentiable manifolds. The technique of surgery is due to
Milnor {106]. Both cobordism and surgery have proved extremely useful
tools in the study of manifolds. The interested reader should consult the
excellent survey article of Smale [128].



CHAPTER 6
GENERAL HOMOTOPY THEORY

6.1 Introduction

In the last two chapters we have investigated algebraic invariants
defined for various spaces. Although the techniques were powerful
enough to prove some quite important theorems, the situation is
somewhat unsatisfactory, because the definition of homology and
cohomology appeared to be almost entirely algebraic. Aesthetically,
at'least, it would be more satisfying to perform as many of the ma-
nipulations as possible with the spaces themselves, rather than with
groups, and also to ensure as far a8 possible that any constructions
involved are homotopy-invariant.

The first aim in this chapter, then, will be the definition of con-
structions for topological spaces analogous to the direct sum, tensor
product and A4 constructions for groups. We shall see that these
constructions have many of the properties of their algebraic counter-
parts, and that there is a form of duality between the analogues of @
and A.

We shall then go on to consider in some detail the set [X, Y] of
homotopy classes of maps from a space X to a space Y. In many cases
this set can be given the st:ucture of a group, and it is of course a
homotopy-type invariant of both X and Y. In the following two
chapters it will become apparent that the set [X, Y] generalizes both
the fundamental group of Chapter 3 and the cohomology groups of
Chapter 5, and so is an appropriate concept for unifying previous
techniques. The present chapter, however, is concerned with the basic
properties of [X, Y], and with general methods for calculation: in
particular we shall establish results similar to the very useful exact
sequence theorems of Chapters 4 and 5.

The geometric analogues of algebraic constructions will be dis-
cussed in Section 6.2, and the set [X, Y] in Scction 6.3. Section
6.4 is concerned with exact sequence theorems involving [X, Y],
and Section 6.5 with certain important special cases of these exact
sequences.

200
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6.2 Some geometric constructions

Throughout this section, and indeed throughout the rest of this
chapter, we shall assume unless otherwise stated that all spaces have
base points, and that all continuous maps and homotopies are base-
point-preserving, that is, homotopies will always be relative to base
points. This assumption will usually not be made explicit: thus for
example a map f: X —» Y will always be taken to mean a based
continuous map between spaces with base point.

Examples 6.2.1

(a) The spaces considered in Section 1.4 are given ‘standard’ base
points as follows. The base point of I, the unit interval [0, 1], is 1, and
the base point of J, the double unit interval [—1, 1], is —1; E® and
S"~1 each have base point (—1,0,...,0). Thus the .identity map
from J to E!, and the standard map 8: E® — S*, are based maps
(but I: I — J is not).

(b) Given 2 collection of based spaces X, (a € A4), where x, is the
base point of X, the product )‘( X, is always given the base point (x,).

Thus’ for example J* has base point (—1, —1,..., —1), and so
p: E®— J" is not a based map (if n > 2).

Note that, if f,: X, — Y, are based maps (a € A), then so is
xfo: X X, = XY,. Moreover, if each X, is a copy of a single space
X, the diagonal map 4z: X — X X,, defined by dx(x) = (x,), where
%, = x for each a, is 2 based map (it is continuous by Proposition
1.4.21(c)). § ‘

It was mentioned in Section 6.1 that one of the aims of this chapter
is to ensure as far as possible that all geometric constructions are
homotopy-invariant. Having already introduced the product, we start
by checking its homotopy properties; and inevitably this involves
first investigating maps between spaces, and then spaces themselves.

Theorem 6.2.2 Given collections of (based) spaces X,, Y, (a € 4),
and maps fo =~ go: X, — Y, then xf, ~ xg,.

Proof. Let F,: X, x I+ Y, be the homotopy between f, and g,.
Then F: (X X,) x I -+ x Y,, defined by

F «xa)) ‘) = (F a(xm t)) (tel)

is clearly continuous, and is a (based) homotopy between xf, and
xgs I
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Corollary 6.2.3 If each f, is a homotopy equivalence, then so is x f,.

Proof. Let g,: Y, — X, be a homotopy inverse to f,, for each
ae A. Then

(xga)(xfa) = x(gafa) = x(1g,) = lxx,..

Similarly (xf,)(xg2) = 1.y,- §

That is to say, the homotopy type of X X, depends only on that of
each X (clearly a similar proof will show that x f, is a homeomorphism
if each f, is).

The first two new constructions in this chapter, the geometric
analogues of the direct sum and tensor product, both make use of
identification maps in their definitions. Since we shall be particularly
interested in the homotopy properties of these, constructions, it is
convenient first to investigate the homotopy propetties of identification
spaces. These depend on the result that if p:: X' — Y is an identifica-
tion map, then p x 1: X x I—+ %" x I is also an identification map.
This in turn is a special case of the more general result in which I is
replaced by an arbitrary space Z; but a difficulty arises here, since this
result would not be true without some restriction on the spaces
involved (see Exercise 1). The following theorem covers all the cases

that we shall need.

Theorem 6.2.4

(a) If p: X — Y is an identification map, and Z is a locally compact
Hausdorff space, thenp x 1: X x Z — Y x Zis anidentification map.

(b) If A is a compact subspace of a space X, and p: X — X[A is the
identification map, then for any space Z, p x 1: X x Z — (X/A) x Z
is an identification map.

(Note. In this theorem, maps are not assumed to be base-point-
preserving.)

Proof.

(a) Certainly p x 1 is onto, and it is continuous by Proposition
1.4.21. It remains, then, to show that # U/ < Y x Z'is a set such that
(p x 1)~*(U) is open, then U is itself open.

Let (y, 2) be a point of U, and choose a point x € X such that
pHx) =y. Thus (p x 1)(x,3) = (¥, 2), and (%, 2)e(p x 1)"}(U).
Since this set is open, and Z is locally compact and Hausdorff,
Proposition 1.4.9 shows that there is an open set V in Z, containing
2, such that (x, 2') € (p x 1)~"Y(U) for all 2’ ¢ P, and ¥V is compact:
see Fig. 6.1.
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’ (p2) 'U

bl

Z
Fig. 6.1

Now each point (x, 2°) € x x ¥ has an open neighbourhood of the form
A x B contained in (p x 1)~}(U), where 4 is openin X and B is open
in Z. Since V is compact, a finite number of such B’s will suffice to
cover 7, and so if W is the intersection of the corresponding 4’s, W is
open, x € W, and W x V is still contained in (p'x 1)~}(U). Notice
also that p~1p(W) x V < (p x 1)~} U), since p(W) x V < U.

Now consider all open sets W containing x, such that W x V <
(p x 1)~(U). By taking their union, we might as well assume that W
is the largest such set, in the sense that every such set is contained
in W. In this case, p~'p(W) = W: for certainly W < p~1p(W), and
if 2" 13 any point of p~1p(W), thenx’ x ¥V < (p x 1)~}(U); the same
argument as before shows that there must be an open set W’ containing
x', such that W’ x V < (p x 1)~}(U), and so x’ must be in W, for
otherwise WU W’ would be strictly larger than W, although
(WUW')x Ve (px1)"}(U); thus p-ip(W)< W, and so
pip(W) = W.

Since p is an identification map, it follows that p(W) is open in Y.
But (y, 3) e (W) x V < U, so that U must be open.

(b) Again it is sufficient to show that if U < (X/4) x Z is a set
such that (p x 1)~3(U) is open, then U is open. As in case (a), let
(3, 2) be a point of U, and choose x € X such that p(x) =
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If xeAd, then A x z< {p x 1)"U). Since 4 is compact, a
similar argument to that used in case (a) shows that there exist open
sets Vo X, Wc Zsuchthat A x 2cV x We (p x 1)"}(U).
But then (y, 2)ep(V) x W < U; p(V) is open since p~p(V) = V
(because 4 < V), and so p(¥) x W is open.

If on the other hand x ¢ A4, there certainly exist open sets V < X,
W< Zsuchthat(x,2)eV x Wec (p x 1) (U);andif VN A =
o, then p(V) x W is open. However, if VN4 #£ @, then
(¢(A4), 3) € U, and we have already seen that we can then write

(2(4), ) ep(V') x W < U.
But then (x,2)ep(VU V') x (WnW’') < U; p(V U V') is open,

since A = V', and so once again (x, 2) is contained in an open subset
of U. It follows that U is open, and so p x 1 is an identification
map. |

Theorem 6.2.4 has particularly useful corollaries on the homotopy
properties of quotient spaces.

Proposition 6.2.5 Given maps of parrs f, g: (X, 4) — (Y, B), such
that f ~ g as maps of pairs, then the induced maps f,5: X/|A — Y|B

are homotopic.

(Note. The maps f and g need not be in any sense base-peint-
preserving; but if we take as base points of X/4, Y/B the points to

which 4, B respectively are identified, then, f, 7 and the homotopy
between them are all based.)

Proof. LetF:(X x I, A x I) — (Y, B) be the homotopy between
f and g. Certainly F induces a function F: (X/4) x I — Y/B such
that the diagram

XxI-—1L5y

px1 e

(X/4) x I—> Y[B

is commutative, where p and ¢ are the identification maps. But
F(p x 1) = gF is continuous, and hence F is continuous, since p x 1
is an identification map ([ is locally compact and Hausdorff). Thus F
is a (based) homotopy between fand 7.

Note that Proposition 6.2.5 remains true if 4 = B = o, provided
that X/ &, for example, is interpreted as the disjoint unior of X with
another point x,, which is taken to be the base point of X/ 2.
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Corollary 6.2.6 If f: (X, 4)~ (Y, B) is a homotopy equivalence
of pairs, then f: X|A — Y|B is a (based) homotopy equivalence. |

Corollary 6.2.7 If (X, A) has the absolute homotopy extension
property (see Theorem 2.4.1), and A is contractible, then the identification
map p: X — X[A is a homotopy equwalence

Proof. Let f: (X, x0) — (X, 4) be the inclusion map, where xo is
the base point of X, assumed to be in 4. Since A4 is contractible,
there exists a homotopy F: 4 x I+ A such that F | (4 x 0) is the
identity map and F(4 x 1) = x,. This homotopy can be extended to
a homotopy F: X x I— X, such that F| (X x 0) is the identity
map; let g: (X, A) = (X, x5) be F| (X x 1). Then fg is homotopic
to the identity map (as 2 map of pairs) by the homotopy F, and the
same is true of gf. Hence fis a homofopy eqmvalmpoe and therefore
soisf=p.}

In particular, therefore, X & X/A if (X, A) is a triangulable pair
and A is contractible. See Exercise 2, however, for an example of a
pair of spaces where this result does not hold.

Having mvestlgated the homotopy propemes of identification maps,
we are now in a position to define the geometric analogue of the direct
sum. It might be thought that the disjoint union would be suitable,
but since in this chapter we assume that all spaces have base points,
this is inappropriate, since there is no canonically defined base point
in the disjoint union. This difficulty is easily overcome by identifying
together the base points of each space.

Definition 6.2.8 Let X, (ae 4) be a collection of (disjoint)
spaces, with base points x, € X,. The one-potnt union (or wedge)
Y X, is defined to be the quotient space X/X;, where X is the

disjoint union of the spaces X, and X, is the subspace consisting of
all the base points x,; the base point of Y X, is the point correspond-

ing to X,. In other words, \4/ X, is the space obtained from X by

identifying together the base points x,.

As in the case of other constructions, if 4 is a finite set we shall
often use the notation X; v X, v - .- instead of VX,.

There is an analogue for the one-point union of the diagonal map.
If each X, is a copy of a single space X, the folding map Vy: \V X, — X
is induced by the map of the disjoint union to X that sends the point
x in X, to the point x in X, for each ae 4. Vy is continuous by
Proposition 1.4.23(a).
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To show that the one-point union has desirable homotopy prop-
erties, we prove a result similar to Theorem 6.2.2.

Theorem 6.2.9 Given collections of spaces X,, Y, (a€ A), and
based maps f,: X, — Y,, there exists a map \/ f,: \/ X, =~V Y, with
the following properties.

(@) If go: Y, — Z, (ac A) are further maps, then (\V g, XV f.) =
V (&01a)-

b)) Iffo~ g, Xo—> Y,(ac A), then \/ f, ~ ¥ g..

(c) If each f,: X, -> Y, is a copy of a single map f: X — Y, then
V% = YV fo)- .

Proof. 'V f, is the map induced by the obvious map of the dis-
joint unions. Properties (a) and (c) are clear from this definition, and
property (b) follows from Proposition 6.2.5. |

Corollary 6.2.10 If each f, is a homotopy equivalence, so is \/ f,. §

Of course, a similar argument shows that \/ £, is a homeomorphism
if each f, is.

If A4 is a finite set, it is possible to regard V/ X, as a subspace of
X X, by means of the following resulit.

Propositiaon 6.2.11 If A4 is a finite set, there is a homeomorph.ism
of \V X, onto the subspace X of X X, consisting of all points with at most
one co-ordinate different from the base point.

Proof. There is an obvious map f of the disjoint union of the X, o
X, that sends the point x in X, to the point of X whose ‘a’ co-ordinate
is x and whose other co-ordinates are all base points. In fact, f is an
identification map: it is certainly onto, and if U is a subset of X such
that f~}(U) is open, then U is open. For f~}(U) = LA}(Uﬂ X,)

(where we identify X, with its image under f); so if f~(U) is open,
each UN X, is open in X,, and so U is open in X, since

Xn U ((U NX)x X X,,) if U does not contain the
= bta base point,
X X (Un X,), if U contains the base point.
A

Since f identifies together the base points of all the X, it follows that
f induces a homeomorphism from V X, to X. §

The reader should notice where this proof breaks down if 4 is not a
finite set: an arbitrary product of open sets is not necessarily open in a
topological product.
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The next construction is the geometric analogue of the tensor
product. As in the algebraic situation, the definition is given only for
a pair of spaces, and in fact the construction is not in general
associative (though compare Theorem 6.2.23).

Definition 6.2.12 Given (based) spaces X and Y, the reduced
product (or smash product) X A Y is defined to be the quotient space
(X x Y)[(X v Y),where X v Yisregarded asasubspaceof X x Y
as in Proposition 6.2.11. The base point of X A Y is of tourse the
point corresponding to X v Y. Points of X A Y will be written in
the form x A y: this denotes the equivalence class of (x, ¥)in X x Y.

The reduced product has mapping and homotopy properties that
resemble those of the ordinary product and one-point union.

Theorem 6.2.13 Given spaces X, Y, A, B, and based maps
f[: X— A, g:Y— B, there exists a map f Ag: X A Y- A A B,
with the following properties.

(a) If h: A — C, k: B — D are further maps, then (h A R)(f A g) =
(#f) A (kg).
bYIffrf"X>Aandg~g':Y > B, thenf Ag=f Ag.
Proof. The map f x g: X x Y — A x B has the property that
fxgXvY)cAdv B;

hence f x g induces a map f A g: X A Y —> A4 A B, and property
(a) is obvious. As for (b), we note that the homotopy F between f x g
and f' x g’, constructed in the proof of Theorem 6.2.2, is in fact a
homotopy of maps of pairs from (X x Y, Xv Y)to(4d x B, 4 v B),
and so by Proposition 6.2.5 induces a homotopy between f A g and
JFag.

Corollary 6.2.14 If f and g are homotopy equivalences, so is
frg

Once again, of course, a similar proof shows that f A g is a homeo-
morphism if both f and g are.

The point in working with the reduced product, rather than the
ordinary product, is that its properties are often more convenient
when dealing with based spaces. For example, it is useful that each
pair of points (x, y), in which either is a base point, becomes the base
point of X A Y. Moreover, the reduced product is particularly
appropriate in, sny discussion of spheres, as the following proposition
demonstrates.
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Proposition 6.2.15 For each m,n > 0, S™*" is homeomorphic to
S™ A S™

Proof. Consider the composite .
Emx Er 223, (Em/Sm 1) (En/Sn 1) ,(Em/Sm I)A(En/Sn 1)

where p, ¢ and 7 are the obvious identification maps. Since p x ¢ =
(p x 1)(1 x g¢), and the composite of identification maps is again an
identification map, Theorem 6.2.4 shows that this composite is an
identification map. Morever its effect is to identify together points of
E™ x S*-1y Sm-1 »x E™. Hence the standard homeomorphism

hy ot Em*8, Smn=1 5, E™ x E* E™ x S*~1y §™-1 x E*
induces a homeomorphism, for which the same notation is used:
fn.u: 1S3 s (ERS™1) A (EYYS™Y)
(notice that thisis a based map). But E™/S™~?, for example, is known

to be homeomorphic to S™, so that there is a (based) homeomorphism
h: S™+m - S™ A S*™ that makes the following diagram commutative:

Em+njSmen-i _":;:_,(Emlsm—l) A (EMS™-1)

al lua

Sm+r - >»S™ A S |

Although the homeomorphism % of Proposition 6.2.15 is easy to
define, there are other more-or-less ‘obvious’ maps from S™*" to
S™ A S*, and for some purposes it is necessary to relate these. For
example, one may regard S™** as a subspace of E™***1, and consider
the composite map

Sm+n Bnrin om Er vy En+l x Sn-1 > S™ A (EMS™-Y)
2%, 8™ A ST
where p is the identification map that identifies together points of

Em*! x S*-land (—1,0,...,0) x E™ In fact this differs from the
‘standard’ homeomorphism of Proposition 6.2.15 only by a homotopy.

Proposition 6.2.16 This map is homotopic to h.

Proof. Consider the effect on a point (x,,..., Xp4pns1) of S**" of
applying the composite map
Sm+n _mila Rm+1n Sm x Ery Em+t x §n-1 LA\ A (En/Sn—l)

_ 0 L Sm A S Xl (EmSm-1 A (EMSt-Y)

¢ Am.n Em+n/Sm+n—1 8 ,Sm+n.
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Either (x;,..., Xn4n+1) is sent to the base point (for example,
if Bpyaa(®1r--es Xmaney) € E®* x S*1), or we can trace
(%35 .+ «5 X4 n+1) through the various maps as follows:

(xn cees Xmene1) > ((/a:xn <y axm+1): (bxm+2’ ceey bxm+n+1))
undel’ hm+1,”

> (aXyy ooy @y 1) A (DXpagy o - oy DX ynyy) underp

- '\azxzy sy am+1xm+1) A (bxm+2, v ey bxt.n+n+1)
under (0 A 0)"Y(1 A 6) =6"2 A 1
=+ (BgXg o vy Bms 1Xma1r e - or Omane1¥mansr)
: under A, 1

e (xo» €2%Xgy - - < cm+n+1xm+n+l) under 0,

where a,b,ag,..., 80102, ..., bpins1r €2+ s Emenss are non-
negative numbers. Thus if some ¢,x, # 0, (x;,..., ¥x4a4+1) is DOt sent
(=%, ..., ~Xn4ps1);andifcyxy == Cnina1¥msnsr = 0, then
(X35 .« os Xmansy)issent to (+1,0,...,0). But both (1,0,...,0) and
(—1,0,...,0) are sent to themselves, so that in no case is (x,,...,
Xmins1) S€Nt t0 (—2;,..., —Xpins1)- It follows from Corollary
2.2.4 that the composite map is homotopic to the identity map, so
that (1 A O)phy, 10~ (0 A O, 072 =h. |}

Another ‘obvious’ map from S™*" to S™ A S™is (0 A 1)¢hp n+1»
where ¢: S™"1 x E*** U E™ x S*— (E™/S™~1) A S* is the ob-
vious identification map. An argument similar to that of Proposition
6.2.16 shows that this map is homotopic to ¢k, where

¢(x,, LS} m+a+1) = (xm+1’ xls ooy ”a"xn-t-as 12} meH-l)

(so that, by Example 4.4.11, ¢,: Hp, o(S™*") — H,,,,,,,(S""“‘) is
multiplication by (—1)™).

Apart from its applications to spheres, however, the reduced
product is also useful in constructing an analogue for arbitrary based
spaces of the suspension construction of Definition 4.4.8.

Definition 6.2.17 The reduced suspension of a space X, sX, is
defined to be X A S

Thus for example the reduced suspension of S* is homeomorphic
to S"*1; and it is immediate from Corollary 6.2.14 that sX =~ sY if
X ~ Y. The notation sX is used to prevent confusion with the
suspension SX of a triangulated space X: if X is triangulable the two
suspensions closely resemble each other, but are not quite identical, as
the next proposition shows.
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Proposition 6.2.18 Let x, be the base point of a (not necessarily
triangulable) space X. Then sX is homeomorphic to the quotient space
(X xDI(X x0uxy x TUX x 1)
" (See Fig. 6.2, in which the thick line is supposed to be identified
to a point.)
!

0]
Fig. 6.2

Proof. This is rather similar to Proposition 6.2.15. Now the
composite of standard maps

127 =E15% 85t

is an identification map, and identifies together the points 0 and 1
(in fact 6)(t) = (cos (2t — 1)m, sin (2t — 1)n)). Thusif p: X x S! —
X A 81 is the identification map, Theorem 6.2.4(b) shows that the
composite map

XxI12L xx 12, x A S

is also an identification map, and its effect is to identify together
pointsof X x 0 U xy x JU X x 1. It follows that p(1 x 6/) induces
a homeomorphism

(XxDIX x0uxgx ITOUX x 1)>X A St =sX. §

Corollary 6.2.19 If X is a polyhedron, and x, is a vertex, there is a
homotopy equivalence p: SX — sX, such thatif f: X — Y is a continuous
map of polyhedra, the diagram
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sx 2,8y

g l»

sX —> sY
Al

is commutative,

Proof. 1t is easy to see that SX is homeomorphic to the space
obtained from X x I by identifying X x 1 and X x 0 to points
(these points correspond to a and b respectively in Definition 4.4.8).
Thus there is an identification map p: SX — sX, that identifies
x5 x I to a point. Now x, x [ is contractible, and by Theorem 2.4.1
the pair (X x I, xy x 1) has the absolute homotopy extension
property, since X x I is a polyhedron and x, x [Iis a subpolyhedron.
«Hence p is a homotopy eqmvalence, by Corollary 6.2.7.

That p(Sf) = (f A 1)p is an easy consequence of the definition of
p and the fact that Sfis induce} by f x 1: X x I-> Y x I |

Observe that if X = S*, p: S(S") — sS™ gives yet another homo-
topy equxvalence from S**1 to S A S}, if S(S") is identified with
Sn+*1 38 in Example 4.4.9. However, if ¢: S* x E1 U Er*l x §0-»
S(S*) is the map that identifies the two components of E"+! x S°to
points and sends E? to I by I, it is easy to see that the diagram

Sre1 2L, Gn o FLy ER* x SO

N 7

5(S")

is homotopy-commutative, in the sense that ¢k, ,, , is homotopic to
the identity map S**! — S(S"). It follows that p: S**1 — §(S*) is
homotopic to the map considered in Proposition 6.2.16, and so is
homotopic to the ‘standard’ homeomorphism h of Proposition 6.2.15.

It will be seen that the reduced suspension is in keeping with the
spirit of this chapter, in which the usual policy is to identify to the
base point anything that involves the base points of the original spaces.
In the sume spirit, the cone construction of Chapter 4, Exercise 5,
can be adapted to arbitrary spaces as follows.

Definition 6.2.20 The reduced cone on a space X, cX, is defined
to be X A I (recall that the base point of I is always taken to be 1).

The reduced cone bears the same relation to the join of a polyhedron
and a point that the reduced suspension bears to the suspension of a
polyhedron in the sense of Definition 4.4.8. We shall not give the
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X

details here, but merely note that the property of being contractible
holds for any reduced cone.

Proposition 6 2.21 For any space X, cX is contractible.

Proof. Since I is contractible (to the point 1), Corollary 6.2.14
yields
' v e X=X NI XA,

which is clearly a single point.

This discussion of the reduced product is concluded with results
on the composition of the reduced product and one-point union
constructions, and on the associativity of reduced products.

Theorem 6.2.22 Given three spaces X, Yand Z, (X v Y) A Z
ts homeomorphic to (X A Z) v (Y® Z). (Compare Proposition
4.5.7(b).)

Proof. Themapf: X x Y x Z—~ X x Z x Y x Z, defined by
J(%, 3, 2) = (», 3, ¥, 3), is clearly continuous, sinceif 4 x B x C x D
is an open set in X x Zx Yx Z, ffAAx B x C x D) =
A x C x (B n D). This composes with the product of identification
maps to give a map

XXxYXZ>(XA2Z2Yx(YAZ),

and if X v Y, for example, is regarded as a subspace of X x Y by
Proposition 6.2.11, this map sends (X v Y) x Z to (X A Z) v
(Y A Z). Moreaver, (X v Y) v Z s sent to the base point, so that
finduces a map

g:(Xv Y)AZ—»(XA ZYv (Y A 2),

whereg((x,yo) A 2) = xAzinX A Zand g((x0, V) A B) =y A 3
inY A Z
Conversely, deﬁne

h(XAZYVI(YANZ)y->(XVv Y)AZ

by k= [(ix A 13) Vv Gy A 1)]V, where iz: X > X v Y is defined
by #x(x) = (x,y), and &y is similarly dcfined. Then A(x A 2) =
(%, %) A = and Ky A 3) = (%, ) A %, so that both gh and hg are
identity maps, and hence g is a homeomorphism. }

In particular, by taking Z = S?, this proves that s(X v'Y) is
homeomorphic to sX v sY.
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Theorem 6.2.23 If X and Y are compact, and X is Hausdorff, then
(X A Y) A Zis homeomorphicto X A (Y A Z).

Proof. Write p for the various identification maps of the form
X x Y— X A Y, and consider the diagram

XxVYxZ2sXxYx 2
pxll flx--

(XAY)x2Z Xx(¥Y»r 2

(XAY)AZ XA(I\P//\Z).

Now p x 1 is an identification map by Thecorem 6.2.4(b), since
X v Yiscompactif X and Y are compact. Also, 1 x p is an identifica-
tion map by Theorem 6.2.4(a), since X is locally compact and Haus-
dorff. Since both p(p x 1) and p(1 x p) identify to points those
points of X x Y x Z that have at least one co-ordinate equal to a
base point, 1: X x Y x Z—+> X x 1 x Zinduces maps

fXAYYAZ> IA(YA2Z)
and
S XAN(YANZDY>(XAYYANZ

that are clearly homeomorphisms. |}

A stmilar proof works if Y and Z are compact and Z is Hausdorff,
so that in particular s(sX) is homeomorpkic to X A S2 for any space
X. See also Exercise 4, for another set of conditions on X, Y and Z
that makes (X A Y) A Z homeomorphicto X A (Y A 2Z).

The next and last construction in this section is the geometric
analogue of A. Given spaces X and 7, it is reasonably obvious that
we should consider a space whose points are the continuous maps
from X to Y, but it is not immediately clear how to topologize this
space. We shall use what is known as the ‘compact-open’ topology,
for reasons that will become clear in the proof of Theorem 6.2.25
below.

Definition 6.2.24 Given spaces X and Y, with base points x, and
¥o respectively, the mapping space Y* consists of all (based) maps
from X to Y. The base point of YX is the ‘constant map’, that sends
all of X to y,, and YX is topologized by taking as a sub-base of open
sets all subsets of Y% of the form

Wy = {f: X Y|f(K) < U),
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where K is a compact subspace of X and U is an open subspace of Y.
This topology on YX is called the compact-open topology.

%3 with the other constructions in this section, the next step is to
prove a theorem on m2ps and homotopies.

Theorem 6.2.25 Given spaces X, Y, A and B, and based maps
f1A—- X, g: Y > B, there exists a map g': YX — B4, with the
Sollowing properties.

@) If k. C — A and k: B -~ D are further maps. then
(#)E) = (k)™ Y% — D",
bW IffxfA->Xandg ~g:Y—> B theng’ ~ (g'}".
Proof. Given a point A of Y%, that is, a tnap A: X -» ¥, define
&) = g¥.

This is certainly a map from 4 to B, and if A is the constant map from
X to Y, then g/(}) is the constant map from 4 to B. However, it is
not obvious that g/ is continuous, and this must be proved next.

Take a sub-basic open set Wy ; in B4, where K = 4 is compact
and U < B is open. Then

(&) {(Wi,u) = {X: X — Y | gM(K) < U}
= {A: X — Y| M(K) = g~}(U)).

But f(K') is a compact subspace of X, and g ~!}(U) is an open subspace
of Y, sothat (g")~Y(W, ) = Wy, .-y & sub-basic open set of Y'*.
Hence g’ is continuous. ('The reader will see now why the compact-
open topology is used: continuous images of compact sets are compact,
and inverse images of open sets are open.)

Property (a) follows immediately from the definition of g’. As for
property (b), this is rather more complicated. Let F: 4 x I -> X and
G: Y x I — B be the homotopies between f, f and g, g’ respectively,
and let fi: A— X, g: Y- B (0 <t < 1) be the maps defined by
fa) = F(a, t), g(y) = G(3,t). Then certainly the set of aps
(g.)+: Y* — B4 starts with g/ and ends with (g')", but we have to
prove that this process defines a continuous map Y* x I-» B4

To do so, define functions (which will afterwards be proved to be
continuous) §: Y* x I — (Y x 1) and ¢: B4*! x I — B* by the
rules

[6(A, B)])(x) = (A(x), ?) (xeX, A X—>Y,tel)
[, ))(2) = p(a, 1) (acd,p: 4 x1->B)
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Now consider the composite map
YEx IS yX  Ix T 5 (Y x IX x T
&2, paxt x 12, B4,

where 4: I — I x I is the diagonal map. Under this composite, the
pair (A, 2) (A: X — Y, tel) is sent to the map that sends e 4 to
g2Af(a) € B; that is, for a given ? the composite 1s exactly (g,)'+. So the
composite is the homotopy we want, and is continuous provided #
and ¢ are continuous.

To deal with 8, consider the set Wy y < (¥ x I)X, where K « X is
compact and U < Y x I is open, and suppose that*f(A, t) € Wy .
Then X(K) x t < U. Now for each point (y, ) € A(K) x ¢, there are
opensets V, < Y, T, < I, such that .

(y,t)eV, x T, < U.

The open sets V,, cover A(K), which is compact, so that a finite sub-
collection of them, say V', , ..., ¥, , will suffice to cover A(K). Thus

if V= Ql V,and T = é: T,,, V and T are open sets, and

XK)yxteV x Tec U

Now consider Wy y x T < YZ* x I. Certainly (A, £) is in this subset,
and if (X', £') is any other point in it, X(K) x ' <« V' x T < U, so
that 6(X', t') € Wy y,and (X', t') € 8} (Wy_y). It follows that 8~ (Wy ;)
is open, so that 8 is continuous.

The proof that ¢ is continuous is similar. This time consider
Wi v < B', where K < 4 is compact and U < B is open, and
suppose that ¢(u, £)€ Wy . Then p(K x t) < U,or K x t < =} U),
which is an open set in 4 x 1. The same argument as before shows
that there exists an open set T < I such that-

KxtcKxTecpYU),

and since I is locally compact and Hausdorff there is an open set
V<lIsuchthatteV < V< Tand Vis compact. Now consider
Wgiv.o x V< B4 x [. Again (u,t) is in this subset, and if
(w', t') is another point in it, (K x t') < p/(K x V) < U, so that
Hp', t') e Wy y. Hence ¢~1(Wk ;) is open and ¢ is continuous.

As has already been remarked, the continuity of 8 and ¢ is sufficient
to prove that g/ ~ (g'Y". |

Corollary 6.2.26 If f and g are homotopy equivalences, so is g'. |}
_ Naturally, also, g/ is a homeomorphism if f and g are.
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For the next result, suppose that Z is a subspace of Y, so that a
set U < Z is open if and only if it is of the form V' N Z, where V is
open in Z. Certainly Z¥ is a subset of Y%, and in fact the compact-
open topology on Z¥ coincides with the topology as a subspace of ¥ *.

Proposition 6.2.27 If Z is a subspace of Y, then ZX is a subspace
of Y%,

Proof. We have to show that a set is open in Z¥ if and only if it is
the intersection with Z¥ of a set thatis openin Y*. Now ifi: Z — Y
is the inclusion map, i*: Z¥ — Y ¥ is continuous, so that if / < Y ¥
is open, UN Z* = (1)~} U) is open in Z*. To prove the converse,
it is sufficient to consider an open set in Z* of the form W ,,, where
K < Xis compactand U < Zisopen. But {' = V N Z, where I7is
open in Y; and

WeyNZX={f: X>Y|f(K)c Vand f(X) < Z}
={ff X>Z|f(K)e ¥V NZ=1U}
= ;VK,U°

That is, an open set in ZX is the intersection with Z¥ of an open
setin Y*, |

As examples of mapping spaces, we can define spaces that ave 1t a
sense dual to *he reduced suspension and reduced conc constiructicons.

Definition 6.2.28 Given a space X, the path space LX is defised
to be X/, and the loop space QX is X5'.

Thus the points of LX are the paths in X that end at the base point
Xg, and it is easy to see that the points of £2.X may be regarded as
loops in X based at x,: more precisely, 2X may be identified with the
subspace (1)°/(2X) of LX. The relationship of 2X and LX to sX and
c¢X will become clearer later, but it is worth noticing the following
analogue of Proposition 6.2.21 here.

Proposition 6.2.29 For any space X, LX is contractible.

Proof. By Corollary 6.2.26, LX = X' ~ X*. But X! is a single
point. §

We end this section with some results on the composition of the
mapping space construction with products, reduced products and
one-point unions. Most of these amount to proving that certain maps
are continuous, and the first of these is the ‘evaluation map’.
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Definition 6.2.30 Given spaces X and Y, define a function
[ YEx XY

by the rule f(A, x) = XMx) (A: X — Y, xe X). If A is the constant
map, or x is the base point x,, then f(A, x) = y,, the base point of Y.
Thatis, f(YX v X) = y,, sothat finduces a functione: YX* A X— Y,

called the evaluation map.
We do not claim that e is always continuous (see Exercise 6).

However, it is if X is a reasonably well-behaved space.

Theorem 6.2.31 If X is locally compact and Hausdorff, then
e: YX A X — Y is continuous.

Proof. It is sufficient to show that f: YX x X — Y is continuous,
and the proof of this follows the pattern familiar from Theorem
6.2.25. Suppose then that U < Y is open, and that f(A, x) € U. Then
A(x) e U and x € A~}(U), which is open in X. Since X is locally
compact and Hausdorff, there exists an open set V in X, such that
xeVe&PVca Y(U), and V is compact. Consider Wy, u X Ve
YX x X: this contains (A, x), and if (X', x") is another point in it, then

S, %) = X&) = X(P) < U.

Thus f~3(U) is open, and f is continuous. |
The next few results show that mapping spaces obey rules similar
to the index laws for real numbers, at least if the spaces involved are

sufficiently well-behaved.

Theorem 6.2.32 Given spaces X, Y and Z, where X and Y are
Hausdorff, Z*"Y is homeomorphic to Z* x Z¥.

Proof. Let x, and y, be the base points of X and Y respectively,
and define maps

ixv: X->XvY, iy:Y->XvVvY
by ix(x) = (x, yo), iy(¥) = (%0, ¥) (using Proposition 6.2.11 to identify
X v Y with the subspace X x y,U x5 x Yof X x Y). Now define
a function 6: ZX x Z¥—(Z v ZY*'¥ by 6(A, p) = A v u, where
A: X-> Zand p: Y — Z, and consider the composite functions
g:zxvr L, gavv y gavy _Maly | gx g

and
1
¢: Zxx ZY...._)O (ZV Z)XVY.._V__)vaY’
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where 4 is the diagonal map, and V: Z v Z — Z is the folding map.
Given v: X v Y — Z, ¢(v) = (vig, viy), and given A: X — Z and
p: Y — Z, (A, p) = V(A v p). Thus ¢y and ¢ are identity functions,
and the only point that remains in showing that ¢ is a homeomorphism
is to show that 8 is continuous (it is certainly base-point-preserving).

To do so, consider the set Wy y, where K < X v Y is compact
and U < Z v -Z is open. Now

8= (Wg,u) = {(Aw){ (A v u)fK) = U}

={AmW I NKNX)= UN(Z x =)
and w(K N Y) < Un(z, x 2)},

where 2, is the base point of Z, and X and Y are identified with their
images in X v Y. Centainly U, = UN(Z x 3) and U; = UN
(3o x Z) are open, since U is the intersection with Z v Z of an open
set in Z x Z. But since X and Y are Hausdorff, so is X x Y and
hence X v Y:thus K, Xand Yareclosedin X v Y,sothat KN X
and K N'Y are closed and hence compact. That is, 8- 1(Wg ) =
Wxnx,u, X Wgear,u, 80 that @ is continuous. Hence ¢ is a homeo-
morpbism. [

There is a similar result involving (Y x Z)* and Y* x Z¥%,
though it is a little more difficult this time to prove that the maps
involved are continuous. We need the following lemma.

Lemma 6.2.33 Let X be a Hausdorff space, and let & be a sub-
base of open sets for a space Y. Then the sets of the form Wy , for
K < X compact and U € &, form a sub-base of open sets for Y*.

Proof. Let K < X be compact, V < Y be open, and let Ae Wy y.
Now it is certainly true that V = (J V,, where each ¥, is a finite
intersection of sets in &. Then K < | A~*(V,); hence, since K is
compact, a finite collection of the sets A~(V,), say A~Y(¥)),...,
A=YV ,), suffice to cover K. Since K is a compact Hausdorff space, it is
rggular, and so given a point x € K, whick must be in some A~*(V,),
there exists an open set 4, in K such that

xed,c A, c KnA-YV,).
Again, a finite collection of the sets 4, will cover K, and their closures
are each contained in just one set of the form A~*(V,). Thus by taking

suitable unions of A, ’s, we can write K = o K,, where K, < A~Y(V,)
re1

and K, is closed and so compact. It follows that A € ﬁ We,v, < W
rel
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since if u(K,) < V, for each r, then u(K) = Ln) V. < V. But if, say,
V, = ﬂ U,, for U,€ &, then Wy , = ﬂ Wy, u,- Hence /\ is con-

tamed m a finite intersection of sets of the form Wy, y, for Ue ¥,
and this intersection is contained in Wy . |}

Theorem 6.2.34 Given spaces X, Y and Z, where X is Hausdorff,
(Y x Z)* is homeomorphic to YX x ZX,

Proof. This is now very similar to Theorem 6.2.32. Let
Pv: Y x Z—->Y and p;: Y x Z—> Z be the maps defined by
2¥(, 2) = y and p4(y, 2) = %, and define a function §: Y* x ZX —
(Y x ZY**X by 8\, ) = A x p, where A: X — Y and pu: X — Z.
Consider the composites

$: (Y x Z)F —2 (¥ x Z)X x (Y x Z)F2%, 97 27,
d: VX x ZX 25 (Y x Z)**x 25 (¥ x Z)%,

where each 4 is a diagonal map. If v: X —» Y x Z, then ¢() =
(pyv, pzv), and if A: X - VY, u: X — Z, then l}l(A ) = (A x p)d.
Thus ¢y and ¢ are identity functions, and it remains only to prove
that 6 is continuous.

Since X is Hausdorff, by Lemma 6.2.33 it is sufficient to consider
sets of the form Wy v, where K © X x Xis compactand U < Y,
V < Z are open. Then

0= (Wi,uxv) = {(A ) [ (A x u)(K) <= U x V}
={Ad | K< A"Y(U) x p~}(V)}

But if py, po: X x X — X are the maps defined like p, and p,, then
p:i(K) and py(K) are compact, and K < XA~YU) x p~}(V) if and
only if p,(K) x py(K) < A=Y U) x u~}(V). Hence

‘9 Y Wruxy) = m(m v X W,,,m v

and so 0 is contmuous. |

At this point we possess rules for manipulating mapping spaces,
analogous to the index laws a”*¢ = a®.a° and (@.5)° = a°.b° for real
numbers, and it remains to investigate what rule, if any, corresponds
to the index law a*¢ = (a®)°. To this end, we start by defining the
‘association map’.
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Definition 6.2.35 Given spaces X, Y and Z, the association map
is the function «: ZX*Y — (Z¥)X defined by

@A) =ANxAy) (xeX,yeY, X: X A Y 2Z)

To justify this definition, we have to show that () really is an
element of (ZY)%, that is, is a continuous based map from X to Z7.
Now for a fixed x, the function a.\(x): Y — Z is certainly a continuous
based map, so that at least «(2) is a function from X to Z7¥; and it is
obviously base-pomt-preservmg

Proposition 6.2.36 a(X): X — Z™ is contimuous.

Proof. Consider Wy y, where K & Y is compact and U < Z is
open. If x € X is a point such that aX(x) € Wx y, then Ap(x x K) < U,
orx x K< (Ap)~}(U), where p: X x Y — X A Y is the identifica-
tion map. As in the proof of Theorem 6.2.25, there exists an open set
V< Xsuchthat x x K V x K < (Ap)~}(U). But for any point
x' eV, M x K)< AV x K) < U, so that aA(x') € Wy . That
is,

xeV < (@) Wy.o)

so that (@A)~ (W, ) is open, and hence of2) is continuous. }

Thus at least a(A) is an element of (ZY)X, for each Ae ZX*Y
Moreover, the function « is obviously base-point-preserving; but
'unfortunately « is not always continuous unless X is a Hausdorff
space.

Proposition 62.37 If X is Hausdorff, the association map
a: ZXN — (ZY)X is continuous.

Proof. By Lemma 6.2.33, it suffices to consider «~Y(W; ), where
K < X is compact and U < Z7¥ is of the form Wy, for L< ¥
compact and V < Z open. Now

e Y Wg,p) = A | (cA)K) © W, 4}
={A| MK x L)< V} . ‘
= Wp(xxz.).v-

But p(K x L)isacompactsubset of X A Y, so thataiscontinuous. |

Of course, we should like to be able to say that « is a homeomorph-
ism, but this is not true without imposing more conditions on the
spaces involved.
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Theorem 6.2.38

(a) For all spaces X, Y and Z, the function o: ZXY — (ZV)X is
(1-1).

(b) If Y is locally compact and Hausdorff, then o is also onto.

(c) If both X and Y are compact and Hausdorff, then « is a homeo-
morphism. -

Proof.

(a) Let A, u: X A Y —> Z be two maps such that «(A) = afu).
Then for all x€ X, y € Y, we have

Mx A y) = [eX®))(¥)
' = [a{x))(y)
= wx A ),

so that A = p.
(b) Given amap A: X — Z7,let u: X A Y > Z be the composite

XAY2L,zyay—s2

where ¢ is the evaluation map. By Theorem 6.2.31 ¢, and hence g, are
" continuous. But if x& X and y € Y, we have .

fou(x))(y) = m(x A )
=e&A A I)x"A )
= [Mx))(»):

so that e(u) = A, and hence « is onto.

(c) Certainly « is continuous, (1-1) and onto, so we have only to
show that the inverse function to « i3 continuous.

Consider the map 0:(2Y)* x X x ¥ — Z given by composing
the ‘evaluation maps’ f: (Z¥)* x Y — Z7 (or rather f x 1y) and
[: Z¥ x Y — Z; by Theorem 6.2.31 this is continuous. Now since
X and Y are compact, if p: X x Y -+ X A Y is the identification
map, then by Theorem 6.2.4(b)

1% p: (2P x X x Y—>(ZY)F x (X A Y)

is also an identification map. And since & maps (Z¥)* x Y x x, and
(ZY)* x yo x X to 2, it follows that 8 induces a map

$: (2N x (X AY)> 2.
This in turn induces .
P (ZY A (X AY)>2Z;
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but then a(y) is a map (Z")X - ZX*Y, and it is easy to see that this
map is the inverse of a. Hence « 1s a homeomorphism. |}

6.3 Homotopy classes of maps

It has alrsady been noted in Chapter 2 that, given (based) spaces
X and Y, the relation between (based) maps X — Y of being home-
topic (by a based homotopy) is an equivalence relation. It therefore
makes sense io write [X, Y] for the set of equivalence classes, under
this equivalence relation.

Example 6.3.1 The set [S?, Y] is in (1-1)-correspondence with
m.(Y, y). For (Y, y,) 18, as a set, the set of (pairwise) homotopy
classes of maps of pairs (7, 0 U 1) — (Y, y,), and this, by Proposition
6.2.5, i1s in (1-1)-correspondence with the set [I/(0uU 1), Y]. But
I/(0 U 1) is homeomorphic to S*. |}

So [X, Y1 is a generalization of at least the fundamental group. In
fact, as we shall see later, by a suitable choice of either X or ¥ most
of the standard algebraic invariants of topology, for example, homo-
topy and cohomology groups, can be obtained. However, the immed-
iate task is to investigate two problems suggested by Example 6.3.1:
in what way do maps of spaces give rise to functions on [X, Y]}, and
in what circumstances can [X, Y] be given a group structure?

The first of these problems is quite simple, and the situation is
entirely analogous to that of Theorem 3.2.8.

Theorem 6.3.2 A (based) map f: Yo — Y, gives rise to a function
Je: (X, Y] — [X, Y4],
with the following properties.
(@) If f': Y, — Y, is another map, and [ ~ f', then f, = f,.
(b) If 1: Y — Y is the identsty map, then 1, is the identity function.
(c) If g: Yy — Y, is another map, then (gf)y = Eufe-
Proaof. Write [A] for the equivalence class of amap A: X — Y, in
the set [X, Y,l. Define f, by the rule £,[A] = [fA]: this clearly depends

only on the class of A, and property (a) is obvious. Moreover properties
(b) and (c) follow immediately from this definition. §

Corollary 6.3.3 Iff: Y, — Y, is a homotopy equivalence, then f,
ts a (1-1)-correspondence. |

Of course, similar results hold about maps of X rather than Y.
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Since the proofs are almost identical, we shall merely state these
results.

Theorem 6.3.4 A map f: X, — X, gives rise to a function
f‘: [Xl’ Y] - [XO’ YL
with the following properties.

(a) If f': Xy — X, is another map, and [ ~ f', then f* = (f')*.
(b) If 1: X — X is the identity map, then 1* is the identity function.
(c) If g: X; — X, s another map, then (gf)* = f*g*. |}

Corollary 6.3.5 If f: X, — X, is a homotopy equivalence, then f*
ts a (1-1)-correspondence. }§

Thus the set [X, Y] depends only, up to (1-1)-correspondence, on.
the homotopy types of X and Y. Indeed, there is a sort of converse
to Corollaries 6.3.3 and 6.3.5.

Theorem 6.3.6

@) If f: Yo— Y, is a map such that f,:[X, Y,] > (X, ¥,] s a
(1-1)-correspondence for all spaces X, then f is a homotopy equivalence.

(b) Similarly, if g: X, X, gives rise to a (1- 1)—correspandence
g% [ X1, Y]+ [X,o, Y] for all spaces Y, then g &s a homotopy
equwalence

Proof.

(a) Inparticular, f,:[Y,, Yo] — [Y;, Y,]isa(1-1)-correspondence,
so that there exists a map g: Y, — Y, such that f,[g] = (1, ], or
Jfg = 1;,. Thus for any X, f,g, is the identity function on [X, Y],
and so g, i8 the inverse (1-1)-correspondence to f,. In particular,
&s[f] = [1;,], so that we also have gf ~ 1, . Hence f is a homotopy
equivalence.

(b) is proved similarly. }

Of course, Theorem 6.3.6 is much too general to be of practical
use in showing that a given map is a homotppy equivalence. However,
for a large class of spaces (including all polyhedra), it is sufficient in
(a) to consider only X = S*, for all #: this is J. H. C. Whitehead’s
theoren, which will be proved in Chapter 7.

We turn now to the second problem: when is [X, Y] a group? The
answer is that it is ¥ Y is ‘group-like’ in the sense of the next definition,
or if X has corresponding ‘dual’ properties.
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Definition 6.3.7 A space Y is called an H-space if there exists a
map
m:Y xY—->Y,

such that mi;, ~ mi, ~ 1,, where £,,7;: Y —> ¥ x Y are the maps
defined by #,(y) = (¥, ¥o)s 12(¥) = (¥o» ¥) (¥, is the base point of ¥).
An H-space Y is said to be assoctative if m(m x 1) ~ m(1 x m):
Y x Y x Y— Y, and an inverse is a map #: Y — Y such that

m(u x 1)y >~ m(1 x u)dy ~ ey,

where ey is the constant map that sends all of Y to y,, and 4y is the
diagonal map.

For convenience, we shall say that Y is an AHI if it is an associative
H-space with an inverse,

It will be seen that an AHI Y is ‘group-like’, in the sense that if
we write y;.yy for m(y,, y,) and y~! for u(y), we almost have the
properties

Yo =Y¥.Yo =5

(71-52)-y3 = ¥1.(¥3-¥3)
Yy r=y"ly =y,

except that all equalities are, as it were, replaced by homotopies.
However, since the set [X, Y] involves only homotopy classes of maps,
it will be no surprise that [X, Y] is a genuine group whenever Y is
an AHIL

Theorem 6.3.8 If X is any space and Y is an AHI, then [X, Y] can
be given the structure of a group.

Proof. Given two maps f, g: X — Y, let f.g be m(f x g)dx: this
is certainly another continuous map from X to Y. Moreover, given
further maps f,2: X > Y, such that f~ ' and g ~ g, then
f.g ~j'.g by Theorem 6.2.2, and so a2 multiplication in [X, Y] can
be unambiguously defined by (f].{g] = [f.g)-

It remains to show that this multiplication satisfies the axioms for a
group. First, given a third map h: X -> Y, we have

Jeg)h=m{fgx hd
= m[m(f x g)4 x k]4
= m(m x 1){f x g x h)d.

Sirclarly f.(g.a) : nil v m)(f x g x h)4, so that (f.g).h=x
F(g 0y and ([f].{gii ik = [f].(Lg]. 1))
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Secondly, if ¢: X —» Y is the constant map,
f.e=m(f x e)4
= mi, f
=/,

and similarly e.f ~ f, so that [e] is a unit element for [ X, Y].
I.astly, we may define [f]~! = [uf], since

(4f).-f = m(uf x f)4
= m(u x 1)4f
~ e,
and similarly f.(uf) ~ e. |}

Naturally also, maps of X give rise to homomorphisms, not just
functions.

Proposition 6.3.9 Ifg: X, — X, is amap, and Y is an AHI, then
gr: [ Xy, Y] [Xo, Y] ts a homomorphism. In particular, g* is an
isomorphism if g is a homotopy equivalence.

Proof. Given maps f;, f3: X; — Y, we have

(f1.f2)g = m(f x f5)dg
= m(f; x fa)(g x g)4
= m(f,g x f:8)4
= (f18)-(/28)-
Thus g*([f.].[fa]) = g*N]-2*1/d- |

Before giving examples of AHI spaces, let us examine the ‘dual’
situation, in which [X, Y] becomes a group because of properties
possessed by X rather than Y.

Definition 6.3.10 A space X is called an H’-space if there exists a
map

pX—-+Xv X,

such that pypu > pou ~ 1y, where p, and p, are the restrictions to
X v X of the ‘projection maps’ p,, pa: X x X — X defined by
Di(xy, x3) = %), pa%y, X3) = x, (as usual, we regard X v X as a
. subspace of X x X, by Proposition 6.2.11). An H’-gspace X is said to
be associative if (u v Jp>~(1 v puu:X—>Xv Xv X, and an
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tnverseisa map v: X - X such that Vy(v v 1)e =~ V(1 v 2)p ~ ey,
where Vy is the folding map. Again, we shall say that X is an AH'[ if
it is an associative H'-space with an inverse.

Notice that the definition of an H'-space closcly resembles that of
an H-space: we merely turn all the maps round and use the one-point
union instead of the product. For this reason, we shall not always
prove in full both ‘dual’ versions of theorcms involving H- and H'-
spaces. The reader should have no difficulty, for examplc, in filling in
the details in such theorems as the following.

Theorem 6.3.11 If Xisan AH'I and Y is any space, [X, Y] can be
given the structure of a group. Moreover, if g: Y,— Y, is a map,
g«: (X, Yol — [X, Y] is ¢ homomorphism, and so is an isomorphism if
g is a homotopy equivalence.

Proof. Given maps f), fo: X — Y, define f,.f; = V(f v g)u, and
proceed as in the proofs of Theorem 6.3.8 and Proposition 6.3.9. J

As a first example, we shall show that S?! is an AH'L. In fact this
example is really as general as we shall need, since it will be proved
afterwards that, as a consequence, s.X is an AH'I, and 2X an AHI, for
any space X whatsoever.

Proposition 6.3.12 S!'isan AH'I

Proof. This is very similar to Corollary 3.2.6; not unexpectedly,
perhaps, in virtue of Example 6.3.1. Let 8/: I — S be the composite
of standard maps, and use it to denote points of S* by real numbers ¢
such that 0 < £ < 1; that is, denote the point 8i(f) merely by ¢
Define a map

vil—> St v St

_[2,0) O0<t<d)
Ht) = {(0, 2%-1) G<t<l)

This 1s certainly continuous, and since »(0) = »(1), v induces a
(based) map p: S? — S v SL

To show that this map makes S’ into an H'-space, consider the
composite

by

ISty 8.2, 61
Now
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so that p,v is just the product loop of 6/ and the ‘constant path’, and
hence p,v ~ 6, rel 0, 1, by Corollary 3.2.6(b). Hence by Proposition
6.2.5 p;p ~ 1; similarly, pp ~ 1.

S! is associative by a similar argument using Corollary 3.2.6(a),
and the map v: S — S! given by v(t) = 1 — tis an inverse, by using
Corollary 3.2.6(c). |

Corollary 6.3.13 [S!, Y] and n,(Y, y,) are isomorphic groups.

Proof. The (1-1)-correspondence n;(Y, y;) — [S?, Y] in Example
6.3.1 1s clearly a homomorphism. |

We show next that, because S! is an AH'], sX is an AH'I and QX
is an AHI, for any space X. In fact, a slightly more general result is
true.

Theorem 6.3.14 Given spaces X and Y,

(a) X A Yisan AH'I if either X or Y is;

(b) if moreover X is Hausdorff, Y* is an AHI if either X is an AH'I
or Yisan AHI.

Proof.

(a) Let X be an AH’I, with map p: X - X v X, and inverse
v: X—X. Define i: X A Y>> (XA Y)v (XA Y) to be the
composite

Al

XAY"SXvXX)AY IS (XAY)V(XAY),

where g is the homeomorphism of Theorem 6.2.22. Now there is an
obvious commutative diagram

(XVX)AY 2> (XAY)V (X AY)
p,/kA A/’x
XAY

where p, and p, are the ‘projection maps’; thus

P =1 ADpAD)=puAlx]

by Theorem 6.2.13. Similarly .z ~ 1.

Similar arguments show that X A Y is associative, and that the
map?=9A1:XAY—>XA Yisaninverse for X A Y. And of
course the same proof works if Y rather than X is an AH'IL.

(b) Suppose that X is Hausdorff and an AH'I. Let

m:YEx Y¥>YX
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be the composite

1s
Yrx yr L, yxx 2, yx

where ¢ is the homeomorphism of Theorem 6.2.32. Now proceed as in
(2), with the inverse # = 1*: Y* —» Y%,

Similarly, if X is Hausdorff and Y is an AHI, with map
m:Y x Y Y and inverse u: Y — Y, then Y* becomes an AHI
under M, the composite

YY x YEX(Y x V)X VX,

where this time i} is the homeomorphism of Theorem 6.2.34. Of course,
the inverseis# = u': YX¥—» Y X, |
In particular, then, sX is an AH'Fand 2V is an AHI for any spaces
X and Y, and so {sX, Y] and [X, 2Y] are groups for any X and Y.
Specializing further, since by Propesition 6.2.15 S* is homeo-
morphic to sS™~1 forall # > 1, it is easy to see that S™ is an AH'], and
hence {S", Y] is a group for all spaces Y.

Definition 6.3.15 For any (based) space Y, and n > 1, the group
[S? Y] is called the nth homotopy group of Y, and is usually written
m(Y).

Notice that this definition can even be extended to the case n = 0:
for based maps S° — Y are in (1-1)-correspondence with points of Y,
and their homotopies correspond to paths in ¥; thus the set [S?, Y]
is what we have previously referred to as mo(Y).

Example 6.3.16 =,(S*) = 0 if » < n. For by Corollary 2.2.4 a
map f: X — S™ is homotopic to the constant map if it is not onto; but
by the Simplicial Approximation Theorem a map f: §*— S™ is
homotopic to a simplicial map with some triangulations, and this
cannot be onto if 7 < n. ]

Definition 6.3.15 is somewhat unsatisfactory as it stands, since it
appears to depend on the choice of a map u: S* — S* v S” that
makes S” into an AH'I. However, this ambiguity is more apparent
than real if # > 1, for we shall prove in Chapter 7 that all such maps
are homotopic; and if n = 1 there are only two homotopy classes of
such maps, which give rise to isomorphic group structures in y: see
Exercise 9.

Ambiguities in the definition of the group structure also appear to
arise in more general situations. For example, consider the set
[Xy A X3, Y]: if both X, and X, are AH'I’s, then by Theorem
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6.3.14 X; A X,;isan AH'l in two ways, and so there appear to be two
different group structures in [X; A X,, Y]. Fortunately, however,
these two group structures always coincide.

Theorem 6.3.17 Let X, and X, be AH'I’s, with corresponding
maps p 2 X, - X, v X, and py: Xg— X, v X, and let
BBt Xy A Xg—> (X, A X)) v (X A X))
be the two maps, as in Theorem 6. 3 14(a), that make X, A X, into an
AH'I. Then ji, ~ fi,.

Proof. Let p),p,: X, vV X; - X, and ¢, ¢3: X3 v X;— X, be
the ‘projection maps’. Now

(%, A x3) = (Pap1(%1) A x5, base point) if u,(x,) € X; x base point
%1 B %27 7 \(base point, pouy(#,) A x5) if iy (x,) € base point x X,.

Let a=[(1 A qpa) V(1A qaua)lin: Xy A Xz~ (X, A Xp) v
(X, A X,); then certainly « ~ {,, and

( plpl(x}) A q1pa(%3), base point) if p,y(x,) € X; x base
point

(base P‘?}i‘{‘t» Papa(%1) A gapo(%s)) if pa(x,) € base point
x 1'

(%, A x3) =

But ¢ uo(x;) = base point unless py(x,;) € X; x base point, and
gapio(x2) = base point unless po(x,) € base point x X,. So the effect of
« is given more precisely by the formulae

(Pra(%1) A gapa(®g), base point) (py(x;) € X; x base
point, ua(x;) € X, x base point)
«fxy A x;) = {(base point, pop,(x;) A gapa(*s)) (p1(x,) € base point
x X, ma(%) € base point x X,)
base point (otherwise).

Similarly, by symmetry, « = f,, so that @, ~ . ||

Corollary 6.3.18 For any Y, the group structuresin [ X, A X,, Y],
defined by fi, and p,, are the same. §

In fact the proof of Theorem 6.3.17 has a rather surprising conse-
quence. Let us call an H'-gspace X (with map u: X —> X v X)
commutative if u ~ ru, where 7: X v X - X v X is the restriction
of the map X x X — X x X that sends (x,, x,) to (x5, ,).

Proposition 6.3.19 With the same data as in Theorem 6.3.17,
X, A X, is a commutative AH'I.
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Proof. Let -

B = [(1Agaps) V(1 A qupo)liia: Xy A Xy = (X5 A X)) V (X A Xy);

again B ~ f,, and

(Paisa(®;) A opo(s), base point) (uy(x,) € X, x base
point, uq(x,) € base point x X))
p(x: A x3) = {(base point, pouy(x1) A Gipa(%2)) (11(>,) € base point
X Xl’ ’J-z(xz) € X2 X base‘ point)
base point (otherwise).

¢

Simnilarly, by symmetry, 8 ~ 77, Hence g, ~ 7, >~ 71,. §
The point of Proposition 6.3.19 is that commutative AH'I’s give
rise to abelian groups.

Proposition 6.3.20 If X is a commutative AH'I, and Y is any
space, then [X, Y] is an abelian group.
Proof. Given maps f,g: X — Y, we have
f8=V(Vgm
2 V(f v g)ru
= V(g v fu
=g.f
Thus [].[g] = [£]-1f)- B

Corollary 6.3.21 For any spaces Xand Y, [s(sX), Y]isan abelian
group. In particular, =, (Y) is abelian for n > 2. ||

As usual, there are ‘dual’ results to 6.3.17-6.3.21, involving AHI’s
instead of AH'I’s.

Theorem 6.3.22 Let X be a Hausdorff space, and an AH'I, with
map u: X > X v X; let Y be an AHI, with map m:' Y x Y — Y.
Then if m,, #y: YX x Y* - YX are the maps arising from p and m
respectively, in Theorem 6.3.14(b), we have m, ~ #,.

Proof. By definition, #; is the composite
1 u
VX x yX 2oy v ypvx L, yox I, yx,

where 6 is the map defined in the proof of Theorem 6.2.32. Let
o = 1“Vi(mi, v mi'0: Y* x Y¥— YX wherei;,i,: Y~ Y x Y



§6.3 HOMOTOPY CLASSES OF MAPS 231

are the usual inclusions; then « ~ #,. But if f,g: X — Y are two
maps, we have

o(f, g) = V(miy v mi)(f v g)p.
That 1s, if x € X,

_ () 0)  (u(x) € X x o)
60060 = {2 el (e e x )

where p,, po: X v X — X are the ‘projection maps’. But this is the
same as the map that sends x to m(fp,u(x), gp.u(x)), so that

o(f, 8) = m(f x g) (P x pap)4.

It follows that we can also write
a = mi1a1PuxPg

where now 6: Y*¥ x YX¥— (Y x Y)**X is the map defined in
Theorem 6.2.34. Hence & ~ m*1%8 = m,. |}

Corollary 6.3.23 For any Z, the two group structures in (Z, Y *],
defined by m, and iy, are the same. |

Let us call an H-space Y (withmapm: Y x Y — Y) commutative
if m>~ mr, where 7: Y x Y- Y x Y is defined by 7(y,, v,) =

(¥2s ¥1)-

Proposition 6.3.24 With the same data as in Theorem 6.3.22, Y*
ts a commutative AHI. |}

Proposition 6.3.25 If Y is a commutative AHI, and X is aﬁy
space, then (X, Y] is an abelian group. }

Corollary 6.3.26 For any spaces X and Y, [X, $2(2Y)] is an
abelian group. |}

In fact there is hardly any need to prove Corollary 6.3.26 as a
separate resuit, since it is true that for any spaces X and Y, {sX, Y]
and {X, QY] are isomorphic groups: thus Corollary 6.3.26 foilows
from Corollary 6.3.21. The theorem that {s.X, V'] = [X,. 2Y] is a
special case of a more general result: recall from Theorem 6.2.38
that, if Y is locally compact and Hausdorfl, the association map gives a
(1-1)-correspondence between maps X A Y~ 2Z and X ->ZY.
Indeed, homotopies correspond as well, so that we have i

Theorem 6.3.27 If Y is localiy compact and Hausdorff, « induces a
(1-1)-correspondence a: [X A Y, Z]1—[X, Z¥).
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Proof. Let F:(X A Y) x I+ Z be a homotopy between maps
L& XANY—SZ Ifp: X x Y— X A Y is the identification map,
F(p x1): X x Y x I—->Z is a map that sends X x y, x I and
xo x Y x I to 2, and so induces a map F': (X x I) A Y > Z.
Then a(F): X x I — ZY sends x, x I to the base point, and is
clearly a homotopy between «(f) and «of g).

Conversely, if «(f) ~ «(g), then since « is a {(1-1)-correspondence
we may assume that the homotopy between them is of the form «(F),
where F: (X x I) A Y — Z 13 a map such that F{(x, £) A y,] = 2,
for all. (x,)e X x I. So if : X x I x Y— (X x I) A Y is the
identification map, Fg may be regarded as amap X x Y x I > 2
that sends X x yo x fand x5, x ¥ x I to 2,. Since, by Theorem
6.2.4, (p x 1) is an identification map, it follows that Fg induces a
map F': (X A Y) x I— Z, which is clearly a homotopy between
fandg. }

‘In particular, there is a (1-1)-correspondence between [sX, Y] and
[X, Y], for all X and Y. The next step is to prove that this (1-1)-
correspondence preserves the multiplication, and so is an isomorphism.
In fact a more general result is true: the (1-1)-correspondence of
Theorem 6.3,27 is an isomorphism whenever the sets concerned are
groups.

Theorem 6.3.28 & is an isomorphism in any of the following cases.

(a) X an AH’I; group structures defined by the AH'I spaces
X A Y, X respectively.

(b) Z an AHI; groups defined by the AHI’s Z and Z¥.

(c) Y an AH'1: groups defined by the AH'l X A Y and the AHI
VA4S

Proof.

(a) Let u: X - X v X be the map that makes X an AH'l, and
consider two maps f,g: X A Y —> Z. Now for xe X and ye Y, we
have

_ [fon(®) A y) (ux) € X x x)
(e)x 1 3) = {T0R 2 T e

where py, p,: X v X — X are the ‘projection maps’. But

() DNy) = f(= A )

_ [ pwle) (wx) e X x x5)
(of )lx) = {(agxpw» (k) € % x X),

and
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so that clearly af.ag = o(f.g), and @ is a homomorphlsm and hence
an isomorphism.
(b) Let m: Z x Z— Z be the map that makes Z an AHI. This

time
[«(f-8)*)](y) = (F-8)(x A ¥)
= m(f(x A y)8(x A ¥))
m([(f ))}(¥), (o£)=))(x))
[(ef . ag}(*))(5),

so that of .ag = a(f.2).
(c) Again, let u: Y — Y v Y make Y into an AH’L. Then

_[f& A p(y)) (w(y)e Y x yo)
Gk n = {40 ) b)) () eyo x ¥).
But (of . cg)(x) = #i(af(x), ag(x)), where #i: Z¥ x Z¥ — ZVis induced
by p. Thus
[(ef - og)=))(y) = [lef(x), ag(=)(¥)
= [Vief(*) v eg(=)}u](y)

_ {f(x A () (e Y x yo)
glx A pan(3) (u(3) €30 x V),

so that once again of .ag = o(f.g). |}

Corollary 6.3.29 For any spaces X and Y, a: [sX Y]—[X, QY]
is an isomorphism. |}

Corollary 6.3.30 For any space Y,andn > 1,7,(Y) = m,_,(RY).

Proof. By definition, m,(Y) = [sS"~?, Y]. By Corollary 6.3.18 we
_ may assume that the group structure is defined by the AH'I structure
of S*=1; thus by Theorem 6.3.28(a), =, (Y) 2~ [S""?, QY] =
7y -1(R7). |

Notice that, by Corollary 6.3.23, the group structure in =, _,(2Y)
may equally well be taken to be that defined by the AHI QY. Thus
even my(2Y) is a group, which by Corollary 6.3.29 is isomorphic to

m(Y).
6.4 Exact sequences

From the discussion of the sets [X, V], it is clear that the problem-
of classifying spaces up to homotopy equivalence is intimately bound
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up with the calculation of [X, Y]. It is particularly important to be
able to identify these sets in the cases where they are groups; and the
clue to how to proceed is provided by Chapters 4 and 5, where the
most useful tools were the exact homology and cohomology sequences

of pairs and triples.

We wish, then, to establish results analogous to these exact
sequences, for the sets [X, Y]. Now in general the set [X, Y] is not
a group, although 1t has'a ‘distinguished element’, namely the class of
the constant map from X to Y (this, of course, is the unit element of
[X, Y] if it happens to be a group). Let us call a set with a distin-
guished element a based set: we must first define the notion of an exact
sequence of based sets.

Definition 6.4.1 Given a function f: 4 — B between based sets
(with distinguished elements a, and 3,), write Im f = {f(a) | a € 4}
and Ker f = {a | f(a) = b,}. A sequence of based sets and functions

I fre1
>—A‘ >A‘+1 —_—> .

is called an exact sequence if, for each 7, Im f; = Ker f,,,. (Note that
this coincides with the usual definition if the sets are groups, the
functions are homomorphisms, and the distinguished element of each
group is its unit element.)

The aim in this section is to show that a map f: A — B gives rise
to an exact sequence involving the sets [4, Y] and [B, Y], for any
space Y; there is also a ‘dual’ result involving the sets [X, A] and
[X, B). If A is a subspace of B, and f is the inclusion map, this
sequence ought to resemble the exact cchomology sequence. It is to
be expected, therefore, that the sequence will also involve some-
thing like the relative cohomology of a pair. Now we have seen, in
Chapter 4, Exercise 5, that if (K, L) is a simplicial pair, H(K, L) =
A (K U CL), where K U CL denotes K with a ‘cone’ attached to L.
This result suggests how to define the ‘relative set’ that appears as the
third object in the exact sequence involving [4, Y] and [B, Y'1.

Definition 6.4.2 Given a map f: A — B, the mapping cone C; is
defined to be the space obtained from B and ¢4 (the reduced cone),
by identifying, for each a € 4, the points a A 0 € c4 and f(a) in B.
The base point of C; is, of course, the point to which a, A ¢ and b, are
identified, for all ¢ € I, where g, and b, are the base points of A and B
respectively. See Fig. 6.3, in which the thick line is supposed to be
identified to a point.
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Fig. 6.3

Write f” for the ‘inclusion map of B in C,; more preciscly, f’ is the
inclusion of B in the disjoint union of B and cA, composed with the
identification map onto C,.

Theorem 6.4.3 For any spdce Y the sequence of based sets and
functions

(6 Y125 (B, 7] 24 v)

is exact.

Proof. 'The map f'f: A — C, is the same as the composite
A cA—>C, -

where ¢ is defined by {((a) = a A 0, and the second map is the ‘inclusion
map’, defined similarly to f'. Now by Proposition 6.2.21 ¢4 is contract-
ible, so that f'f ~ e, the constant map from 4 to C,. Thus f*f'* = e*,
and Im f'* < Ker f*.

Conversely, let g: B— Y be a map such that.f*[g]is the distin-
guished element of [4, Y], so that gf ~ e, the constant map from A
to Y. Let F: 4 x I-> Y be the homotopy; since

F(ay, t) = F(a, 1) = y,, all ae A, tel,

Finduces a map F: ¢4 — Y. And since F(a A 0) = F(a, 0) = gf(a),
the maps g and F together induce a map G: C; — Y, where clearly
J'G = g. That is, [g) € Im f'*, so that Ker f* < Im f'*, and hence
Kerf* = Im f'*. }

Of course, the exact sequence is an exact sequence of groups and
homomorphisms, if ¥ happens to be an 'AHI.
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The construction of C, can be iterated, and we then .obtain a long
sequence of spaces and maps

! ’ ’” j@
A—éB-“_)C[ x(j'/" ;C[u >,

Corollary 6.4.4 For any space Y, the sequence of based. sets

——[C,, Y15 (c, Y125 B, Y] L[4, 1)

is exact (and if Y is an AHI, it is an exact sequence of groups and
homomorphisms). §

Thus we have a long exact sequence, but the resemblance to the
exact cohomology sequence is no longer clear. However, let us examine
C;- more closely. C,- is the space obtained from C, by ‘attaching’ ¢B,
and since ¢B already includes a copy of B, it is easy to see that C,. is
the space obtained from c4 and ¢B by identifying, for each a€ 4,
the points @ A 0 and f(a) A 0: see Fig. 6.4.

_ Fig. 6.4

It will be noticed that ¢B contains a copy of ¢{f4), and Fig. 6.4
suggests that it might be possible to ‘shrink away’ ¢B — ¢(f4), so as to
leave something like s4. This is indeed the case, as the next theorem
shows.

Theorem 6.4.5. C, =~ s4.

Proof. As usual, denote points of S! by numbers ¢, with0 < ¢ < 1,
where 0 and 1 both represent the base point. Define 8: s4 — C,. by

_[f@) A (1 -—2t)incB (0 <t <
O(a/\z)._{ A2t —1)incA F<tg)



§6.4 EXACT SEQUENCES 237

(Or rather, 6 is this map into the disjoint union of ¢B and ¢4, followed
by the identification map onto C,.) This is well-defined, since
f(@) A 1 and a A 1 both represerit the base point of C,., and (for
t = 4)f’a) A 0and a A O represent the same point of C,.. Moreover
6 is continuous by Proposition 1.4.15(d).

Also define ¢: C;. — s4, by

#a A t)=a A tesA, for points of c4
{¢(b A t) = basg point, for points of ¢B.

(Strictly speaking, ¢ is the map induced by this map from the disjoint
union of ¢4 and ¢B. This map-does induce ¢, since ¢(a A 0) =
a A 0€sA = base point = ¢(f(a)y A 0).}

It remains to prove that ¢ and 6¢ are homotopic to the respective
identity maps. Now ¢6: s4 — s4 is given by the formulae

_ [base point 0<t<gd
¢0(“A‘)‘{a/\(2z—1) 4 <tg 1)

- But this is the same as the composite .

sA—'?—->sA v sA-f—’-)sA

where fi is defined as in Theorem 6.3.14(a), using the map.u: St —
S1 v S* of Proposition 6.3.12. Hence ¢6 ~ 1.
On the other hand 6¢ is given by

_[fl@y A (1 ~-2t) (0<t<d)
{oﬂa"')‘{a/\(h—l) 3 <tgl)
6d(a A t) = base point. ‘

To construct a homotopy F: C,. x I — C,., between 0¢ and 1, define

F,:¢cA x I - C,. by
C(f@Aa(=2t—s1-1) ©O<t<(l=9))2-5)
Fyants) = {a ARE—1+s1—18))  (Y=9/2-s)<tgl)
and Fp: ¢B x I — C,. by
Febnt,s)=bA(l-s1-1) (0<s<gl)

Now F, is continuous, because it is induced by a continuous map of
(A x I) x I-> Cy. (using Proposition 1.4.15: the definitions of F,
coincide when ¢ = (1 - s$)/(2—5)), and p x 1: (A x I) x I —
¢A x Iisanidentification map, where p: 4 x I — ¢4 is the standard
identification. Similarly Fg is continuous; and since

Fya A 0,5) = f(a) A (1~ 5) = Fa(f(a) A 0,5),
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F, and Fj together induce a homotopy F: C,. x [-» C,.,, which is
continuous by an argument similar to that used for F, and Fj.
Moreover for t =1, F (a A 1,s) = Fg(b A 1,5) = base point, so
that F'is a based homotopy, and clearly F is a homotopy between 6¢
and 1. Hence 4 and ¢ are homotopy equivalences. [

It follows, of course, that C,. ~ sB, Cy@ ~ s(C,), and so on; in
~ fact each space in the sequence

! I I
AL i, e —s. .

can be identified, up to homotopy equivalence, with an iterated
suspension of A, Bor C,.

In particular f® is more-or-less a map from sA4 to sB, and it would
be very convenient if this map were f A 1. This is not quite true,
since instead of the identity map of S't, we must use the inverse map
z: St — St of Proposition 6.3.12.

Proposition 6.4.6 The diagram

,(3)
c, e, .

eT lo

sA —— sB
fAv

i homotopy—commutatwe where 0 and ¢ are homotopy equivalences
defined as in Theorem 6.4.5 (that is, ¢f ¥0 ~ f A ).

Proof. ¢f® maps points of C, to the base point, and points of ¢cB
to sB by the rule (b A t) — (b A t)in sB. Thus

~ <
yovann {90077 82128
and so ¢f®6 = f A T, where T: St -— S!is defined by
- £t <
- {1 * 82128

But v ~ 7 by an obvious homotopy, sothat f A v > f A o. |}

To sum up, we have (almost) proved

Theorem 6.4.7 A map f: A — B gives rise to a sequence of spaces
and maps

ALl lsc, 24 B SLNPYoS >,

such that, for. any space Y, the sequence

e [B, Y15 154, V-2 10, Y15 1B, Y]S5 (4, 1)




§6.4 EXACT SEQUENCES 239

is an exact sequence of sets. If Y is an AHI, this is an exact sequence of
groups, in any case it is an exact sequence of groups as far as [s4, Y],
and an exact sequence of abelian groups as far as [s(sA4), Y].

Proof. Letf, = f': B— C,,and f; = ¢f": C, — sA. Consider the
diagram

— [sB, Y] L2 [s4,Y] 5 [c, Y] ¥ [8,7] L (4,Y]

‘] b

- [C'/"’.Y] EIX [c,, Y]

By Proposition 6.4.6 this diagram is commutative; and each ¢* is
a (1-1)-correspondence, which sends distinguished elements to
distinguished elements. Thus the upper row is an exact sequence. But
fAv=(fA1)1Av):sAd—sBand(l A v)*:[s4, Y] > [s4, Y]
is the function that sends each element into its inverse ([s4, Y] is a
group, since s4 is an AH'I). Since the image of (f A 1)*:[sB, Y] —
[s4, Y] is a subgroup, this means that Im (f A 1)* = Im (f A v)*;
also, of course, Ker (f A 1)* = Ker (f A v)*. Thus (f A v)* can be
replaced by (f A 1)* without sacrificing exactness.

That the sets are (abelian) groups (and the functions homomorph-
isms) in the stated circumstances is an immediate corollary of Theorem
6.3.8, Theorem 6.3.11 and Corollary 6.3.21. |

As has already been pointed out, the exact sequence of Theorem
6.4.7 resembles the exact cohomology sequence of a pair. In Chapters
. 4 and 5 a useful property of such sequences was that a map of pairs
gave rise to a commutative diagram of exact sequences; and this
property holds also for the exact sequences of Theorem 6.4.7.

Proposition 6.4.8 A commutative diagram of spaces and maps
4 LB
y »
A - B’
gives rise to a commutative dz'agram
4 LB -1 - Cy L34 —s.

y | I [t

A'—l—)B'—l—,»C,.—,?sA'——-r--
1
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Proof. I.et v be the map induced by the map from the disjoint
union of 3 and ¢4 to C,. given by combining x and A A 1 (certainly
uf(@) = (A A 1)@ A 0) in C,). Then obviously vf, = fix and
(A A1, = fov. |

For any space Y, we thercfore obtain a commutative diagram
involving the two exact sequences of sets of homotopy classes of maps
into }. In fact a similar result holds if we merely have uf ~ f'A
instead of uf = f’A, but this is a little more difficult to prove: see
Exercise 11.

As usual, there is a ‘dual’ result to Theorem 6.4.7, which gives an
exact sequence of sets of homotopy classes of maps from a space X,
rather than to a space Y. The method of proof is very similar to that of
Theorem 6.4.7, so that we shall not give all the details in full.

The ‘dual’ to the mapping cone is the mapping path-space.

Definition 6.4.9 Given a map f: 4 — B, the mapping path-space
L, is the subspace of 4 x LB of pairs (a, A) such that f(a) = A(0).
The base point of L, is (ao, €), where a, is the base point of A and

e: I — B is the constant map.
Let f': L, — A be the map defined by f'(a, A) = a.

Proposition 6.4.10 For any space X, the sequence
X, L] -5 [x, 412 (X, B]
35 an exact sequence of based sets.

Proof. Since ff’(a, ) = f(a) = X0), the map ff’ is the same as the
composite

L,— LB B,

where the first map is defined similarly to f’, and p is defined by
p(A) = X0). It is easy to see that p is continuous; and LB is con-
tractible by Proposition 6.2.29: hence ff’ is homotopic to the constant
map, and Im f, = Ker f,.

Conversely, given a map g: X — A such that fg is homotopic to
the constant map from X to B, let F: X x I — B be this homotopy.
F induces a map F’: cX — B, and hence «(F’): X — LB, where « is
the zssociation map. Then G = (g x aF')4: X - A x LB is a map
into L, and f'G = g. Hence Ker f, < Im (. |

By iterating the definition of L,, we obtain the sequence of spaces
maps

oL 250, 0,458
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Corollary 6.4.11 For any space X, the sequence
o [X, L) 251X, L) 55 1x, 4] -5 (X, B)

is an exact sequence of based sets (an exact sequence of groups if X is an

AH'I). §
Theorem 6.4.12 L, ~ QB.

Proof. L, is the subspace of 4 x LB x LA consisting of points
(a, A, ) such that f(@) = A(0) and a = f'(a, A) = u(0): seé Fig. 6.5.

Fig. 6.5

Now fu is a path in B from b, to f(a), so that we can define a map
8: L, -> 2B by ‘sticking together’ the two paths A and fu in B. More
precisely, represent points of S! as usual by numbers ¢, 0 < ¢ < 1,
and define

1-2) 0<t<
[6(a, A, w))(B) = {{Iét - 1)) & <tg %;

Certainly @ is continuous, since it corresponds under the association
map to an obviously continuous map L, A I — B. Also define
é: 2B — L,. by ¢{\) = (a,, A, €), where A: St — B, e: I — 4 is the
constant map, and on the right-hand side A is regarded as amap I — B.
Then ¢ is continuous as a map into 4 x LB x LA, and its image is
contained in L, since f(a,) = A0) and a, = ¢(0).

Now 6¢: QB — QB is given by

1)
1).

NN

(b 0 <t
(BN = 2 - 1) (3 <t
So 64 =~ 1, since it 1s the compesite

QB -2, OB x QB -2 QB



242 . GENERAL HOMOTOPY THEORY CH6

where # is induced by p: S* —» St v S
On the other hand, ¢8(a, A, p) = (a,, v, €), where

fi(t = 2¢) (O < 4)
|t = {/\(Zt ~ 1) < 1).

o

To construct a homotopy between ¢8 and 1, define Fg: L. x I — LB
by

ful-2—o1-1) (O<t<(l- 2= 9)
(Fa(a, &, 1, U0) = {A(2t~ L+s1-10) ((1—s)f2—s)<t<1),

and F,: L, x I—- LA by
(Fa, A ) = w1 = s(1 = 1) (0 <5< 1),

Now Fj is continuous, since it corresponds under the association map
to a continuous map (L, x I) A I -> B(which in turn is irrduced by a
continuous map L, x I x I— B). Similarly F, is continuous; and
since [F5(a, A, p, )(0) = fu(1 — s) and [F(a, &, , 9)0) = p(1 — ),
Fy; and F, combine to give a homotopy F: L, x I — L, (the
‘A-co-ordinate’ of F(a, A, pu, s) is w1 - s)) And clearly F is a homo-
topy between ¢6 and 1. |}

Proposition 6.4.13 The diagram

i
L-i5 L,

oT ' lo

Q4—> 0B

is homotopy-commutative, where v: S* — S is the inverse map, and
¢ and 0 are as in Theorem 6.4.12,

Proof. L, isasubspaceof L, x LA x L(L,);and if A € 24, then
$(A) = (L, A, €), where [; is the base point of L, 4nd e: I — L, is the
constant map. Thus f®¢(A) = (L, A). But if L,. is regarded as a sub-
space of A x LB x LA, (i, A) becomes (ao, e, A), wheree: I — B is
the constant map. It follows that

g = {0 72 D =rsd

Hence 6f®¢ = f;, where T is as in Proposition 6.4.6. Since 7 ~ v,
this means that 6f/9¢ ~ fv. |}
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Theorem 6.4.14 A map f: A ~ B gives vise to a sequence of spaces
and maps

— QL L .QA——».QB 2540, B,
such that, for any space X, the sequence ‘

-—->[X, .QL,] (h e [X 'QAl (e [X .QB] (!‘z)o
‘ {x L)L X, 4] -2 (X, B]

s an exact sequence of based sets. If X is an AH ‘1, this is an exact

sequence of groups; in any case st &s an exact sequence.of groups as far as
[X, QB], and an exact sequence of abelian groups as far as [X, SA2B)).

Proof. Letf, =f':L,— A, and f, -f"¢ 2B — L,. The proof
now proceeds as in Theorem 6.4.7, since f* = 1°f}, and (1%),:
[X, 2B] — [X, 2B] sends each element to its ifiverse. |

.

Proposition 6.4.15 A commutqfive dqggram
a-~.p

RN IS

4B
gives rise to a commutative diagram

ceem> QB DL, 254 LoB

AR

_>QB -—I—>L, —>A'—!->B'

Proof. "Let v be the restnctnon to L, of pox At: A X LB
A x LB'. §

Thus for any space X, we obtain a commutatxve diagram mvolvmg
the two exact sequences of ‘homotopy classes ofmaps from X.

6.5 " Fibre and cofibre maps
This section is concerned with a further investigation of the spaces
C; and L,. If the map f: 4 — B satisfies certain conditions, it is
possible to identify C, and L,, up to homotopy equivalence, as a
quotient space of Band a subspace of 4, respectively for example,
f (B A) is a polyhedral pair, and é: 4 — B is the inclusion map, then
~ BfA. s -
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As usual, there are two sets of ‘dual’ results, involving C, and L,
respectively. We start with the results on C,.

Definition 6.5.1 A map f: 4 — B is called a cofibre map if,
whenever we are given a space X, a map g: B — X and a homotopy
H: A x I— X, starting with gf, there exists a homotopy G: B x I —
X that starts with g, and satisfies H = G(f x 1).

Thus if A is a subspace of B, the inclusion map : 4 — B is a
cofibre map if the pair (B, 4) has the absolute homotopy extension
property (see Section 2.4) (the converse is not true in general, since
the definition of cofibre maps refers to based maps and homotopies,
but the absolute homotopy extension property refers to maps and
homotopies that are not necessarily based). In particular, by Theorem
2.4.1, the inclusion of a subpolyhedron in a polyhedron is always a
cofibre map.

Theorem 6.5.2 If f: A— B is a cofibre map, then C, ~ B|f(A).

Proof. Let A: C; — B/f(A) be the map induced by the identifica-
tion map B — B/f(A) and the constant map ¢4 — Bff(A). We show
that A is a homotopy equivalence by constructing a homotopy inverse,
and this is where we need to know that f is a cofibre map.

Now f,f: A — C, is homotopic to the constant map, by the homo-
topy H: A x I — C, given by H(a,t) = a A t (€cA). Since f is a
cofibre map, there exists a homotopy G: B x I — C, that starts with
f1 and satisfies H = G(f x 1). Let g;: B — C, be the final map of G;
then g,f(A4) = base point, 8o that g, induces a map u: Bff(4) - C,.

To show that ud ~ 1: C, — C,, note that we already have a
homotopy G: B x I — C,. Define also J: c4A x I— C, by

Jant,)=an(s+l—s) (acd, stel).
J is continuous by Theorem 6.2.4; and since
" J(a A0, s) = a A s = G(f(a), 5),

J and &G combine to induce a homotopy C; x I— C;, between the
identity map and pA.

Finally, to show that Apx ~ 1: B/f(A)—>B/f(A), we have only to
remark that AG: B x I — B/f(A) sends f(A4) x I to the base point,
and so induces a homotopy B/ f(A) x I — B/f(A) between the
identity and Au. |
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Corollary 6.5.3 If (B A) has the absolute homotopy extension
property, and i: A — B is the inclusion map, then C, ~ BJA. Thus for
any space Y, the sequence

—[sB, Y125 54, V1255 (B/4, Y15 [B, Y] [4, Y]

is exact, where p: B— B|A is the identsfication map. Moreover, if
(B', A’) also has the absolute homotopy extension property, and
f:(B, 4)— (B, A') is a map of pat’rs, there is a commutative diagram

- [s4, Y1225 [B/4, Y] 2> [B, Y] = [4, Y]

Tnae 17 1 1

o s, Y] [B]A, Y] —5> [B, Y ][4, Y.

Proof. By Theorems 6.4.7 and 6.5.2, the sequence would certainly
be exact if we wrote A, instead of p; but clearly Ai; = p. And by
Proposition 6.4.8 a map g gives rise to a commutative diagram of
exact sequences, since p* = A*~! and A commutes with maps
induced by f. §

Theorem 6.5.2 also provides another more-or-less standard map
from E"/S™"~1 to S™. For the pair (E", $§*~!), being triangulable, has
the absolute homotopy extension property, and so there is a homotopy
equivalence p: E*/S"" ! — C,, where 1: S*~ ! — E™ is the inclusion
map. This may be composed with 7;: C; — sS™~!, and the inverse of
h: S* — S"=1 A 8! (the homeomorphism of Proposition 6.2.15) to
yield

h=Yipp: Er(S-1 > S,

Proposition 6.5.4 h~Yiju ~ $0, where 6: E*/S"~1 — S™ is the
standard homeomorphism, and $(xy, ..., Xpiy) = (= Xpyqs Xy, o0y Ap).

Proof. In defining p: E"S"~! — C;, we have to construct a
homotopy G: E™ x I - C; = E* U ¢S""!, and take the final map
g1: E® — C,, which induces p. Now it is easy to see that a suitable
map g, is given by

( ) = (2x,,...,2x,)€ E™ (r <
Ex¥n o %) = Ay fr, . xofr) A (2r = 1) €S (r 2

where r = |lx}i. Hence fou: E7/S™" 1 — S""1 A S!is given by

iop(Xy, .« ..y Ap)- = {

3)
b

base point (r <)
(xl/'7" ,.,,/7’) A (2r - 1) (' 2 é)
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But ¢8(x,, ..., x;) = ((x1/r) sin 7z, ..., (x,/r) sin 7r, — cos =), and it
is easy to see that 7;u is homotopic to the composite of ¢ with the
map p: S*— 8" 1 A ST discussed after Corollary 6.2.19. Since
P =~ h, it follows that A~ iu ~ 6. |}

So far Theorem 6.5.2 will seem rather special, since the only maps
known to be cofibre maps are the inclusions of subpolyhedra in
polyhedra. However, cofibre maps are much more common than this
state of affairs suggests; indeed, every map is, to within homotopy
equivalence, a cofibre map. '

Theorem 6.5.5 Any map f: A — B is the composite of a cofibre map
and a homotopy equivalence.

Proof. Let the mapping cylinder of f, M;, be the space obtained
from B and (4 x I)/(a, x I) by identifying, for each a€ 4, the
points (a, 1) and f(a): see Fig. 6.6, in which the thick line is supposed
to be identified to a point (the base point of ).

Fig. 6.6

Letg: A — M, be theinclusionof 4in 4 x I'(as 4 x 0), followed by
the identification map, and let 2: M, — B be the map induced by the
identity map of B and the map from A x I to B that sends each
(4, t) to f(a) (so that h, as it were, shrinks 4 x I down the ‘strings’
joining a and f(a)).

Clearly f = hg, so that it remains to prove that g is a cofibre map
and that % is a homotopy equivalence. We deal with g first. . ‘

Suppose, then, that we have k: M, —!X, and a homotopy
H: A x I - X starting with kg. To construct the corresponding
"homotopy G: M; x I X, define Ggz: B x I+ X by

Gelb,s) = k(b)) (0 <s< 1),
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and G,;: (A x I) x I - X by .

(k@ (2t = 2 - 5)) (0 < s < 20)
Cula, t, j‘) = {H(a, s — 2t) (2t < s < 1)

Now G, is continuous, since if s = 2¢, k(a, 0) = kg(a) = H(a, 0).
Moreover G (a, 1,'s) = ka, 1) = kf(a) = Gg(f(a), s), so that G, and
Gy together induce (using Theorem 6.2.4) a homotopy G: M, x I >
X. Clearly G starts with &, and

G(g x '1)(‘1’ ") _ G(a’ 0, S) H(a' s

so that G(g x 1) = H. Hence g is a cofibre map.

To show that 4 is a’homotopy equivalence, define j: B — M, to be
(the restriction of) the identification map onto M,. Then h = 1,,
and jh: M, — M, is given by

(o=
ja, t) = f(a). .
A homotopy H: M, x I+ M, between 1 and ji can be defined by
‘sliding down the strings from a to f(a)’; more precisely, H is defined
by
) Hb,s)=1b

H(a,t,s) = (a,t + (1 ~ 2)).

As usual, Theorem 6.2.4 shows that this is continuous. §

The ‘dual’ results involve the space L,, and certain maps known as
fibre maps: this is hnstoncally the older concept, and explains the pse
of the term ‘cofibre map’ in Definition 6. 5.1,

Definition 6.5.6 A map f: A — B is a fibre map if, whenever we
are given a space X, amap g: X — 4 and a homotopy H: X ¥ I - B
that starts with fg, there ex1sts a homotopy G: X x I — A4 that starts
with g and satisfies /G ="H.

If fis a fibre mgp, the fibre of £, F, is defined by F = f~1(b,), where
b, is the base point of B. It is a subspace of A4.

Theorem 6.5.7 If f: A— B is a fibre map, then L; ~ F.

Proof. Recall that L, is the subspace of 4 x LB of pairs (a, »)
such that f(a) = ¥(0). Thus we can define A: F — L, by XNa) = (a, ¢),
where e: I — B is the constant map: certainly (a, ¢) € L, if f(e) = b,.

Now consider ff;: L, ~ B. This is homotopic to the constant map,
by a homotopy H: L, x I —> B, where H(a,v,t) = vt} (0 <t < 1).
Since f is a fibre map, there exists a homotopy G: L, x I-— A that

!
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starts with £, and satisfies fG = H. In particular, if g,: L, — 4 is the
final map of G, fg,(L;) = by, so that g,{L,) < F; denote g,, regarded
as a map into ¥, by pu.

Now G(A x 1): F x I — 4 is 2 map into F, since fG(a, e, t) =
H(a, e, t) = et} = by; thus G(A x 1) provides a homotopy between
1; and pA. On the other hand, a homotopy between the identity map
of L, and Ay can be constructed by combining G: L, x I — A with
J: L, x I LB, where J is defined by

[J(a, v, )]() = »(s + K1 — 3))

(this is continuous, since it corresponds under the association map to a
continuous map from (L, x ) A I to B). G and J combine to give a
. homotopy L, x I — L,, between 1 and Ay, since

fG(a, v, s) = H(a,v,s) = v(s) = [J(a,v, s)}(0). }

Corollary 6.5.8 If f: A— B is a fibre map, with fibre F, then for
any space X, the sequence

— [X, 2B 42 X, F] -2 [X, 4] 2> [X, B
is exact, where i: F — A is the inclusion map. Moreover, if f': A’ — B’
is a fibre map, with fibre F', and
A-LsB
5| ln
A - B
s a commutative diagram of spaces and maps, then g(F) < F', and there
1s a commutative diagram
— [X, 2B] ¥ [X, F] 2 [X, 4] -2 [X, B]
(n‘).l lg. lp. lh.
— [X, 2B’} e [X, F1 m >[X, A'] — [X, B].

& Proof. Since fiA = 1: F —> 4, Theorems 6.4.14 and 6 5./ show
that the sequence is exact. And the commutative diagram foliows from
Proposition 6.4.14. |

Corollary 6.5.9 If f: A > Bis a fibre map, with fibre F, there is an
exact sequence

o> 1y (F) = 7 (A) L 1(B) = 7 ((F) —>- -
—> mo(F) ~> mo(A) 2> 7o(B)
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called the ‘exact homotopy sequence’ of the fibre map f. It is an exact
sequence of groups and homomorphisms as far as w,(B).

Proof. The diagram
[X, 4] L2, (X, B)

7 ts

[sX, A] — [sX, B]

is clearly commutative, where @ is the isomorphism of Corollary
6.3.29. Now apply Corollary 6.5.8 with X = S and identify the
groups and homomorphisms up to [S°, 2B]. |}

Lastly, the ‘dual’ of Theorem 6.5.5 is true.

Theorem 6.5.10 Anymapf: A — B is the composite of a homotopy-
equivalence and a fibre map.

Proof. Let I* be the disjoint union of I and a point p, where p i$
taken to be the base point of I*. Thus for any (based) space B, B'*
may be regarded as the set of maps from I to B that are not necessarily
base-point-preserving. This allows us to define the ‘dual’ of the
mapping cylinder: we let P, be the subspace of 4 x B consxstmg
of pairs (@, A) such that f(a) = (1), and we take (a,, ) to be the base
point of P, where e is the constant map.

Now define g: P,— B by g(a, )t) = A(O), and h: A—>P, by
h(a) = (a, e5s)), where ¢yqy: I* — B is the map that seads all of I to
f(a). Then g is continuous, since it is easy to see that the map B'* — B
that sends A to A(0) is; also 4 is continuous, since the map B — B!"
that sends b to e, corresponds under the association map to the map
B A I*— Bthatsends b A ¢ to b for all teT (notice that B A I'*
may be identified with (B x I )/(bo x I)). Moreover gh(a) = £;o(Q) =.
f(a), so that f = gh, and 1t remains only to prove that g is a fibre map
and & is a homotopy equivalence. As in Theorem 6.5.5; wedeal wnth~
& first.

Suppose, then, that we have k: X P,, and a homotopy
H: X x I—> B that starts with gk. Now k: X'— P, < 4 x B'* has
two components: a map ky: X — 4 and a map ky: X — B'*, which
under the association map corresponds to a map X A I+ — B. Since
X A I* = (X x I)/(xg x I), the latter map can be composed with
the identification map to yield X': X x 7— B, where k'(x,1) =
[ea(9)](2). Now

H(x, 0) = gk(x) = [ky(x))(0) = K'(x, 0),
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so that we can define G;: (X x I) x I - B by

, K, (2t — /(2 -5) (0<s< )
Gy, 5, 1) = {H(x, s — 28) (2t < s < 1),

This is the base point if x = x,, so that G induces a map (X xI)Al*
—> B, and hence a homotopy Gy: X x I — B!*, Thus we can define
a homotopy G: X x I - A4 x B"" by

G, 5) = (y(®), Galx, 5)).
In fact this is a map into P, since

Thi(x) = [Ro(0))(1) = K'(x, 1)= Gi(x, s, 1) = [G(, 5))(1).
Moreover G(x, 0) = (k,(x), ko(x)) = k(x), so that G starts with k;
and gG(x, s) = [Gy(x, 5)](0) = Gg(x, s, 0) = H(x, s), so that gG = H.
Hence g is a fibre map.

To,show that & is a homotopy equivalence, define j: P, — 4 by
j(@a,A) = a. Then jh = 1,, and hkj(a, A) = (a, ¢;,). A homotopy
H: P; x I £, between 1 and Aj is given by ‘contracting the paths
X'; more Précisc!y, by defining

H(a, A, 5) = (a, A),

where A, is the map from I* to B defined by A,(2) = A(t + s(1 — ¢¥)).
'Now H is continuous, since the map B'* x I — B'* that sends
(X, s) to A, is just the homotopy induced as in Theorem 6.2.25(b) by
the homotopy I+ x I — I* that sends (¢, s) to (¢ + s(1 — £)). And
since H is-obviously a map into P, H is a homotopy between 1 and

K. §

EXERCISES

1. Show that the results of Theorem 6.2.4 are not true without some
restriction on the spaces involved, by means of the following example.
For each integer n 2> 1, let I, be a copy of the unit interval 1. Let X be
the disjoint union of the I, let Y = \/I,, and let p: X ~ Y be the
identification map. Then if O denotes the rationals, topologized as a
subset of the realline, p x 1: X x QO — Y x Qis not an identification
map. (Hint: for each n > 1, enumerate the rationals in [ 1/n, 1/n] as

91192, Gay---, and let U, , = (g, — 1/(n.27), g, + 1/(n.2)) N Q. Let
V. be the subset of I, x O of the form

I x{(—, —1/n) A QU ,CJ, (1 = 1/27,1] x Uo, U I, x {(1/n, 0) A O}.
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Finally, let 1" be the subset of ¥ x O of the form (p x 1) U Vo).

~
ne=1

Then (p x 1)7(¥) = {J V', and 8o is open; but ¥ is not open, since
no open neighbourhood of (y,, 0) can be contained in V)

Let X = S8', and 4 = S? — p, where p is any point of S! other than
the base point. Show that 4’is contractible, but X 2 X/4.

. Given spaces X and Y, the join XY is defined to be the space

obtained from X x Y x I by identifying (x, y, 0) with (x, ¥,, 0) and
(x, », 1) with (x,, y, 1) for each x € X, y € Y. Show that if X and ¥ are
polvhedra, this definition coincides, up to homeomorphism, with that
of Definition 2.3.17.

Now define the reduced join X Y to be the space obtained from
X+ Y by identifying to a point the subspace (x; X ¥ x I)u
(X x yo x I). Prove that X * Y and s{X A Y) are homeomorphic,
and deduce that X * ¥ & (X A Y)if X and Y are polyhedra.
Show that (X A Y) A Z and X A (Y A Z) are homeomorphic if
both X and Z are locally compact and Hausdorft.

Define functions
0: Y* x Z~(Y x Z2)%, $:YX*2 x Z>YX
by the rules
[6(A, 2)}(x) = (X(x), 2) (xeX,zeZ,: X Y),
[P, 2)Yx) = p(x,2) (xeX,2€eZ,p: X x Z->Y).

Show that 8 is always continuous, and that ¢ i§ continuous if Z is
locally compact and Hausdorff.

Show that the evaluation map e: Y* A X — Y is not always con-
tinuous, by taking X = QO and Y = R!, both with base point 0.
(Hunt: no compact subset of Q can contain all the rationals in an interval.)

Deduce from Exercise 6 that the association map «: ZX"Y 5 (ZY)X is
not always onto.

. Given spaces X and Y, such that' X ~ Y, show that Y is an AHI if

and only if X is. Similarly, show that Y is an AH'I if and only if X is.

. Let u: §S*—> S v S be a map that makes S? into an AH’I. Show

that there are only two homotopy classes of such maps, and that if
m(Y); and m(Y), denote the corresponding group structures in

" [SY, Y], thenm(Y), & m(Y),. (Hint: use Theorem 3.3.18 to calculate

m(S! v §?%), and show that there are only two elements that give an
associative H'-structure in S1.,)

Show that (Y ') is abelian if Y is an H-space (not necessanly associative
or with inverse).
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Given a homotopy-commutative diagram
!
4 ~—B

al lu

A5 B,
show that there exists a map v: C; — C,., such that the diagram

41850 B4 —s-..

Al lu lv 11/\1
A——>B —Cp—~—>s4d'—>- -
Iz 11 fa
is also homotopy-commutative. Prove also that v is a homotopy
equivalence if both A and p are. (Hint: let F be the homotopy between

pf and f'A, and define v by ‘

{ Wb) = p(b) (b< B)

_ [F(a2¢) 0<t<d

MEAD= V@ a@—1) Getgl)

In order to prove that » is 2 homotopy equivalence if A and p are, write
v = (A, p, F), and let 5 = »(A, &, F), where A and i are homotopy
inverses to A and p, and F is 2 homotopy between fif’ and fA. Show that
w =~ vl 1p, F'), where F’ is some homotopy between f and itself,
and deduce that i is a homotopy equivalence. A similar argument
shows that »7 is a homotopy equivalence, and it is easy to conclude that
therefore v is a homotopy equivalence (although # is ot necessarily a
homotopy inverse!).)

Establish the ‘dual’ results to those of Exercise 11.

Given a map f: S® — X, let Y be the adjunction space X U, E**!,
Show that Y ~ C}, and deduce that S™ x S™ ~ C,, where §: S™*n-1
~— S™ v S"is a certain map. (Hint: regard S™**~1 as the subspace
Em™ x S*~1u Sm-! x E" of E™ x E".)

Given a space X, and elements a € w,(X), B € m,(X), the Whitehead
product [, B] € my 1. 1(X) is defined as follows. Represent o and g8 by
maps f: S™ — X, g: S® — X respectively, and let [a, B] be the element
represented by the composite

Smen-1 f o gmy ool vy x Ly x

where @ is the map considered in Exercise 13. Show that if X is an
H-space, [«, B} = O for all « and B. Conversely, prove that S* is an
H-space if [¢,, ¢,] = 0, where ¢, € n,(S*) is the element represented by
the identity map.
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Given two spaces X and Y, leti: X v ¥ — X x Y be the inclusion
map. By considering the map f: (X x Y)~—>sX v sY defined by

(x A 2i, base point) 0t
A=) A1) = {(base point, y A (2t — 1)) G <t < 1),

show that i;: C,—s{X v Y) is homotopic to the constant map.
Deduce the following results.

(a) If s: my(X) -+ my (sX) is the homomorphism that sends the
element represented by f: S"— X to the element represented by
FAL1L:S*A S'—> X A S, then s{e, 8] = 0 for all «, B.

(b) If i is a cofibre map, then (X x Y) = sX vsY v s(X A Y).

Given any map f: 4 — B, prove that f,: B — C, is a cofibre map and
that f,: L, — A is a fibre map.

Show that, if (X, 4) has the absolute homotopy extension property,
and f ~ g: A> Y, then the adjunction spaces YU, X and Y U, X
are homotopy-equivalent. (Hint: let Z, be the space obtained from
X x0uU (4 x I)[(xo x I)U Y by identifying (a, 1) with f(a), for
each a€ A; prove that Y U, X ~ Z, and that Z, ~ Z,.)
A map f: A —> Bis called a Serre fibre map if it satisfies Definition 6.5.6
for all polyhedra X (rather than for all spaces X); and the fibre F is
once again f~Y(b,). Show that there is a map g: F— L, with the
property that, if X is any polyhedron, g,: [X, F] — [X, L/} is a (1-1)-
correspondence. Deduce that, if i: F — A is the inclusion map, there
is an exact sequence

oo (F) 2> () 2> mo(B) —> mp_y(F) —>--e.
A map f: A — B is called a local product, with fibre F, if for each point
b € B there exists an open neighbourhood U of b and a (not necessarily -
based) homeomorphism &y: U x F— f~}(U), such that fhy(d’ x F)
= b’ for all ¥ € U. Prove that a local product is a Serre fibre map.
(Hint: let K be a simplicial complex, and suppose given a map
g:|K|— A4 and a homotopy H:|K| x I— B, such that H starts
with fg. Triangulate I by a simplicial complex L with vertices 0 =
tg <t <---< t, =1, and choose # > 0, such that for each simplex o
of K@ and each ¢, 0 X [¢,, ¢, ,] is mapped by H into one of the open
neighbourhoods U. Now construct a homotopy G: |[K®| x I - A4
that starts with g and satisfies fG = H, by induction on the skeletons
of K®,)

. Prove that the map f: R* — S, defined by f(x) = (cos 2=¥, sin 2nx),

is a local product. Deduce that 7,(S!) = 0 forn > 1.

Let f: S® — RP* be the identification map provided by Proposition
1.4.40. Show that f is a local product, and deduce that »(RP"*)
w,(S™) for r > 1. (Hint: consider the open sets U, in RP*, where U,
is the set of points [xy, ..., ¥,,,] such that x, % 0.)
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22. A map f: 4 — B is called a covering map if it is a local product, with a
discrete space as fibre. Show that fy : 7, (1) - =,(B) is isomorphic for
n > 1and (1-1) for n = 1. Prove also that if g: I — B is a (based) path
in B, there exists a unique (based) path i: I — 4 such that fh = g.

23. Let f: A — B be a covering map, and let X be a path-connected and
locally path-connected space (X is said to be locally path-connected if,
for each point x € X and open set U containing x, there exists an open
set V, such that x € ¥V < U and any two points of V' can be connected
by a path in U). Prove that, if g: X — B is a map such that g,m(X) <
fam(A), there exists a unique map &: X — A such that fh = g.
(Hint: use Exercise 22 to define the function h, for each point of X, and
then show that % is continuous and unique.)

24. let f: A—> B and f': A" —> B be two covering maps such that
fami(A) = fom(A'), and suppose that both 4 and A’ are path-con-
nected and locally path-connected. Prove that 4 and 4’ are homeo-
morphic.

25. Let B be a path-connected, locally path-connected space, that is also
‘weakly locally simply-connected’ (that is, for each point x € B, and
open set U containing x, there exists an open set V, such that
xe€V < U, and every loop in ¥ based at x is contractible in B). Let
G be any subgroup of = (B). Prove that there exists a space 4 and a
covering map f: A — B, such that fom(A4) = G. (Hint: define an
equivalence relation R in B!, by uRv < [u"1.v]€ G, and let 4 =
B’/R.) Show also that 4 is determined up to homeomorphism by B and
G': thus in particular there is essentially only one such space 4 if G
= 0; in this case 7,(4) = 0 and 4 is called the universal cover of B.

NOTES ON CHAPTER 6

Identification maps. Theorem 6.2.4(a) is due'to Cohen [41] and (b) to
Puppe [119]. It is possible to remove the restrictions on the spaces by
retopologizing the product: see R. Brown [32].

Associativity of the reduced product. It can be shownthat(X A Y) A Z
and X A (Y A Z) are always homotopy-equivalent (though not necessarily
by a based homotopy equivalence): see Puppe [119].

Mapping spaces. The compact-open topology (due to Fox [58]) is not
the only possible topology for Y *; for example, we could take as a sub-base
all sets of the form W, ;, where  is a point of X and U is an open subset of
Y: this is the topology of pointwise convergence. For a discussion of these
and other topologies, see Fox [58] or Kelley [85], Chapter 7.

Some attempts have been made to circumvent the difficulties caused by
the fact that in general the evaluation map is not continuous, and the
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¢
association map is not a homeomorphism. Spanier’s method [130] is to
weaken the definition of continuity, but perhaps the more satisfactory
smethod is that of R. Brown [33], who shows that if one of the ‘extraordinary
products’ of [32] is used instead of the ordinary topological product, the
evaluation map is continuous and the association map is a homeomorphism.

H-spaces. These were first introduced by HOpf [71]. 1t should be noted
that Definition 6.3.7 is not absolutely standard, since some authors require -
this€ mé, ynd mi, should both coincide with the identity map, instead of
merely behm homotopic to it; similar remarks apply to the definitions of
associativity and commutativity.

In certain circumstances an associative H-space Y will automat:cally
have an inverse: for example, if ¥ is path-connected, and a CW-complek
in the sense of Chapter 7. See James [79] or Sibson [126] P

It is possible for Y * to be an H-space, even though Y is not an H-space
and X is not an H'-space: see R. Brown [34] for an example.

H-spaces have been popular objects of study by topologists for some tiime:
For a variety of results, see Browder [26, 27], Browder and Thomas [29],
James [80], Stasheff [133, 134] and Dold and Lashof [45], in addition to the
papers already mentioned.

The ‘dual’ notion of an H’-space is due to Eckmann and Hilton [49].

Homotopy groups are due ongmally to Cech [38], but we follow the notation
of Hurewicz [74], which has since become standard, , .

Duality. For more details of the ‘duality’ exhibited in Chapter 6 see
Hilton [63].

Exact sequences. Theorem 6.4.7 is essentially due to Barratt‘[l9], but
we follow the exposition of Puppe [119]). The ‘dual’ Theorem 6.4.14 was
first proved (in a less general form) by Peterson [115].

Cofibre maps. The result that a polyhedral pair has the absolute homo-
topy extension property can be generalized, and in Chapter 7 we shall prove
that the same result holds with ‘polyhedral’ replaced by ‘CW’. For another
set of conditions under which a pair of spaces has the absolute homotopy
extension property, see Hu [72], or [73], p. 31, Ex. O.

The mapping cylinder was first defined by J. H. C. Whitehead [159].

. Fibre maps. Definition 6.5.6 is but one of many definitions of ‘fibre
map’ or ‘fibre space’. Our definition is that of Hurewicz [76), and the weaker
version given in Exercise 18 is due to Serre [125]. That a Serre fibre map
need not be a Hurewicz fibre map is shown by an example of R. Brown [34].
A rather different method of weakening Definition 6.5.6 will be found in
Dold [44], and possibly the weakest definition of all, in which a2 map
f: A~ B is called a quasifibratior: if the result of Corollary 6.5.9 holds, is
due to Dold and Thom [46).

A quite different approach is exemplified by the Jocal product of Exercise
19, which with a little extra structure becomes the fibre bundle of Whitney
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[162] (see also Steenrod [137]). The theory of fibre bundles, particularly
those with a vector space as fibre, has been greatly developed in recent
years, and has led to the construction of powerful new topological invariants.
For an outline of this theory, see Atiyah and Hirzebruch [18] or Atiyah
7).
Finally, fibre bundles have been generalized by Milnor [107] and Rourke
and Sanderson [123]. .

The Whitekead product. Whitehead's original definition will be found
in [157], and generalizations in Hilton [63]. Adams {2] has proved that
[tns ta] = O only if # = 1, 3 or 7, so that S* is an H-space only for these
values of .

Exercise 15(a) is capable of corisiderable generalization, at least if X is a
sphere: the ‘suspension homomorphism’ s and a homomorphism defined
by a certain Whitehead product can be fitted into an exact sequence, the
EHP-sequence of G. W. Whitehead [154] (see also James [78]).

Covering spaces. For details of Exercises 22-25, see Hu [73], Chapter 3,
or Hilton and Wylie [64], Chapter 6. In Exercise 25, if B is a2 polyhedron,
then 4 may be taken to be a polyhedron as well: for a proof see, for example,
Seifert and Threlfall [124], Chapter 8.

>



CHAPTER 7
HOMOTOPY GROUPS AND CW-COMPLEXES

7.1 Introduction

We have already, in Chapter 6, defined the homotopy groups of a
(based) space Y, and established some of their properties: those, at
least, that are shared by the more general sets and groups of the
form [X, Y]. The first object of this chapter is to continue this
investigation, but with special reference now to the groups m,(Y).
Most of these results will be true only for the homotopy groups, and
not for the more general situation: for example, we shall calculate
the groups m,(S")(n > 1), and prove an important theorem concerning
the homotopy groups of CW-complexes. On the other hand we shall
also investigate the effect on m,(Y') of changing the base point (compare
Theorem 3.2,16), and establish calculation theorems for 7, (X x Y),
7,(X v Y); and although these results will be given only in terms of
homotopy groups, they are capable of generalization to sets of the
form [X, Y]: see Exercises 1, 6 and 7.

The rest of the chapter will be concerned with CW-complexes.
These are at once generalizations and simplifications of the notion
of a simplicial complex. A simplicial complex—or rather its polyhedron
—may be thought of as a space built up by successively attaching
simplexes along their boundaries. Now a simplex and its boundary
form a triangulation of (E*, S"~1) for some 7, so that in fact a poly-
hedron is formed by successively attaching cells by maps of their
boundaries. However, the cells have to be triangulated, and the
‘artaching maps’ involved have to be simplicial homeomorphisms onto
their images. A CW-complex, on the other hand, is built up by success-
ively attaching cells by any continuous maps of their boundaries
(not necessarily homeomorphisms onto their images), and the number
of cells is not restricted to be finite. This has many advantages: for
example, a polyhedron can often be regarded as a CW-complex with
far fewer cells than there were simplexes originally (for instance, S*®
is a CW-complex with only two cells), and the product of two poly-
hedra is 8 CW-complex in a natural way, since the product of two
simplexes is a cell, but not a simplex in general. CW-complexes are

257
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also the natural setting for the theorem of J. H. C. Whitehead: given
a map f: X - Y of path-connected CW-complexes, such that
sut T X) — m(Y) is isomorphic for all n, then f is a homotopy
equivalence.

Section 7.2 contains the standard results on homotopy groups, and
Section 7.3 the definition and elementary properties of CW-complexes.
Theorems on the calculation of homotopy groups of CW-complexes
(in particular m,(S")) are proved in Section 7.4, and the theorem of
J. H. C. Whitehead in Section 7.5.

7.2 Homotopy groups

In Chapters 3 and 6 we have already defined =,(Y') for any based
space Y, seen that a based map f: X — Y gives rise to homomor-
phisms f, : 7,(X) — 7,(Y) forn > 1, and proved that 7,( V) is abelian
for n > 2. Moreover, a fibre map f: 4 — B gives rise to an exact
sequence of homotopy groups. Our first task in this section is to extend
to m,(Y') the result that the definitions of =,(Y), given in Chapter 3
and as {S?, Y] in Chapter 6, give isomorphic groups. The point is
that the definition analogous to that of Chapter 3 is often easier to
work with than the definition as [S*, Y'].

Let I be the product of n copies of the unit interval I, and 217
its ‘boundary’; thus I™ is the subset of R" of points (xy, ..., x,) such
that 0 < x, < 1 for 1 < r < n, and 2I™ is the subset of points with
at least one co-ordinate equal to 0 or 1. Now the composite of standard
maps

" o™ 6
In__,]n___,_En_____,Sn

sends 9™ to the base point (—1,0,...,0), and so induces a (based)
homeomorphism I"/9I" — S™. Thus by composing with this homeo-
morphism, a based map S" - Y may be regarded as a map
I*/oI* — Y, or alternatively as a map of pairs (I, dI™) — (Y, y,),
where y, is the base point. Moreover, by Proposition 6.2.5, a based
homotopy between maps S® — Y corresponds to a homotopy of maps
of pairs between the corresponding maps (I, 9I*) — (Y, 3,). Hence
we have proved

Proposition 7.2.1 The elements of m,(Y) are in (1-1)-correspon-
dence with homotopy classes, rel oI", of maps (I*, 0I™) — (Y, y,). More-
over, if f: Y — Z is a based map, the image under f, of the element of
wo(Y) represented by a map g: (I", 0I™) — (Y, y,) is just the homotopy
class of the composite fg: (I*, 2I™) — (Z, 2,). |}
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Indeed, it is easy to complete this interpretation of ,, by spccxfymg
the group structure in terms of maps of (I*, 2I").

Proposition 7.2.2 Given two maps f, g: (I, éI™) — (Y, y,), define
fog:(I", 8I") — (Y, yo) by

_ S(eas o ooy Xn g, 2%,) 0<x <3
f"g("""""")‘{g(xl,.. an 2t —1) (<5< 1)

Then the definition of f o g extends to homotopy classes rel ¢I™ of such
maps, and gives a definition of multiplication in m,(Y) that coincides
with the origir:al one. Moreover, the same definition results if f and g are
‘composed’ using any other co-ordinate insiead of x,.

Proof. It may be assumed that f and g are composites
(I, 81" > (8™, 56) = (¥, yo),
(I, o) > (8™, 50) = (¥, yo),

where ¢ is the above composite of standard maps and s, is the base
point (—1,0,...,0) of S* Now f'.g'= V(f' v g')i, where
p:S*—>S* v S " is a map defined by the standard homeomorphism
S" = 8*"1 A S! and the map pu: S'—> S! v S! of Proposition
6.3.12. But the proof of Proposition 6.3.12 shows that the diagram

Irforr 25 §n = §n-1 A S1
gl lz
(IyeI™) v (IfoI") 225 87 v S = (S™-1 A S v (S*1 A SY)
is commutative, where v is defined by
s, %,) = ((#y, - . s Fn =1y 2x,), base point) 0 < x,'< )
(base point, (xy,..., %, -1, 2%, — 1)) 3 < x, < 1)

Hence (f'.g')¢ = fo g, so that, since the definition of f - g obviously
extends to homotopy classes, the two definitions of multiplication in
m.(Y) coincide.

Moreover, Corollary 6.3.18 shows that, if we write

Sa___ (Sp—l A Sl) A (Sn-v—l A Sl)

and use the H’'-structure of S* determined by that of S~ A S? to
define a multiplication in ,(Y), this multiplication is the same as the
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previous one. But this multiplication corresponds as above to that
given by defining

. 1 {COTY > SN N | O<x <)
AL CTREE ) {g(xl,...,?.x,, -1,..,%) 3<x<1)

so that it is immaterial which co-ordinate we use to ‘compose’ fandg. ||

The next point to consider is the effect on =,(Y) of changing the
base point y,. We already know what happens if n = 1 (see Theorem
3.2.16), and the result for , is the obvious generalization. In order to
state the theorem, write m,(Y,y,) instead of =,(Y) for the nth
homotopy group of Y, with the base point y,.

Theorem 7.2.3 Let y, and y, be two base points lying in the same
path-component of a space Y. A pathuin Y from y, to y, gives rise to an
isomorphism uy: w,(Y, yo) > mo(Y, 1) (n 2 1), with the following
Dproperties.

(a) If u ~ vrel 0, 1, then uy = vy

(b) (ey )4 ts the identity isomorphism.

(c) If w is a path from y, to y,, then (u.w)y = wyuy.

(d) If A: Y — Z is a map such that A(y,) = 3, and XN(y,) = 2, then
A*u# = (Au)#’\*: '”u( Y) yO) - ‘”n(za 3’1).

Proof. We use the interpretation of =, given by Propositions 7.2.1
and 7.2.2. Suppose given, then, an element of 7,(Y, y,), represented
by a map f: (I, oI*) — (Y, y,). To define u,{f], let f': (I*, oI™) —
(Y, y,) be any map that is homotopic to f by a homotopy F: I* x I - Y
such that F(x, ) = «(t) for all x€dI®, tel; put wff] =[f]e
(Y, ¥1). To justify this definition, we have to show that such maps
f’ always exist, and that u,[f] does not depend on the particular
choice of f'.

To show that such maps f’ exist, note that, since the pair (I*, 9I™)
is clearly triangulable, it has the absolute homotopy extension prop-
erty. The path ¥ may be regarded as a homotopy of 9I*, which
extends to a homotopy F of I" that starts with f, and whose final map
is a suitable f'.

We can show that #,[f] does not depend on the choice of f’, and at
the same time prove (a), as follows. Let v be another path from y, to
y1, and let G:I" x I - Y be a homotopy that starts with f, and
satisfies G(x, t) = o(t) for all x € 8I", t € I'; write g for the final map
of G. Of course, f' ~ g by the homotopy H formed by composing the
reverse of F with G; but unfortunately H is not in general a homotopy
relative to 27", This difficulty can be overcome by using the absolute
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homotopy extension property again: H(x,t) = u~l.9(¢) -if x € dI",
and since u =~ vrel 0, 1 we have u~'.v =~ ¢, rel 0, 1. By combining
this homotopy with the constant homotopy of f’ and g, we obtain a
homotopy starting with the restriction of H to I* x Qu aI® x IV
I* x 1, and since this subspace can be triangulated as a subpoly-
hedron of I™ x I, this homotopy can be extended to a homotopy of
I* x I that starts with H. The final map of this homotopy is again a
homotopy between f’ and g, but by construction it is a homotopy
relative to oI™, It follows that [f'] = [g] € m,(Y, ¥,), so that (by taking
u = v) uy[f] is independent of the choice of f', and u,[f] = v,[f] if
u~orel0, 1.

Properties (b)—(d) are clear from the definition of 4 and in par-
ticular (a)—(c) show that u; is a (1-1)-correspondence. It remains, then,
to show that u, is a homomorphism. Let f, g: (I*, 2I") — (Y, y,) be
two maps, let F,G:I" x I — Y be homotopies starting with f, g
respectively, such that F(x, t) = G(x, t) = u(t) for all xeoI™, tel,
and let f’, g’ be the final maps of F, G respectively. Define
FoG:I* x I+ Y by

° — F(xl)-°') Xn-1» zxm t) (0 < Xa < %)
FoG(xy,...,%,1) = Gxyy -y Xp1y 2%, — 1,8) (4 < x, < 1);
then F o G is a homotopy between fo g and f’ o g’, and F o G(x, t) =
u(t) for all x e aI", te I. Hence

ulf1ig]) = ulfogl = [f 2 £'] = [f')lg] = wlf]-ulgl,

so that u; is a homomorphism, and therefore an isomorphism. ||

Corollary 7.2.4 Let f: X — Y be a homotopy equivalence. Then if
xq 15 any base point of X, and y, = f(x,),

f*: ‘"n(X’ xo) g 7711( Y: J’o)
is an isomorphism for alln > 1.

Proof. Let g be a homotopy inverse to f, and let F be the homotopy
between gf and 14; let x, = g(y,). Now if a: I — X represents an
element of 7,(X, x,), F(a« x 1)is a homotopy between « and gfe. This
homotopy is not in general relative to oI", but its restriction to
oI™ x I defines a path u, say, from x, to x,. Thus

Exfe = uy: my(X, x0) = m(X, xy),

so that g, f, is an isomorphism. Similarly, f, g, is an isomorphism,
so that f, and g, are themselves isomorphic. |}
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It follows from Theorem 7.2.3 that each loop u based at y, gives rise
to an isomorphism 4y 7Y, y0) > m(Y,y,) (n 2 1) that depends
only on the class of u in m,(Y, y,). Thus m,(Y, ¥,) acts as a ‘group of
automorphxsms of m(Y,y,), which, as we saw in Chapter 3, are
actually inner automorphisms if # = 1. In certain circumstances
these automorphisms all reduce to the identity automorphism.

Definition %2.5 A space Y is n-simple if, for each point y,€ Y,
~and each loop u based at y,, uy: (Y, y,) —» m( Y, ¥,) is the identity
isomorphism.

It is easy to see, using Theorem 7.2.3, that if ¥ is n-simple, the
isomorphism u, determined by a path u from v, to v, depends only
on y, and y,, and not on the particular path «.

Theorem 7.2.6 Let Y be a path-connected space. Then

. (@) Y is n-simple if and only if the condition of Definition 6.2.5 holds
for just one choice of base potnt v,
(b) ¢f Y is simply-connected, Y is n-simple for all n;
(c) ¢if Y is an H-space (not necessarily associative or with inverse),
Y is n-simple for all n;
(d) if Y is n-simple and X ~ Y, then X is n-simple.

Proaof.

(a) Suppose the condition of .Definition 7.2.5 holds for y,; let u be
a path from y, to another point y,. Now if v is a loop based at y,,
u.v.u"!is a loop based at y,, and (#.v.u"?), is the identity isomor-
phism. But (v.v.u"1); = .(u,) " 'vu, so that v, = ugu,)~?, which is
the identity isomorphism. '

(b) This is obvious.

(c) Let y, be the base point, and let m: Y x Y — Y be the
‘H-space map’. Define m: Y — Y by m'(y) = m(y, y,), and let
f:I*— Y be a map representing an element of =, (Y, y,). Then
[f] = [m'f]}, since m’ ~ 1, rel y,; and the composite

Yx IS vyxvY-",v

{where u is a loop based at yo) is a homotopy between m’ and itself,
whose restriction to ¥, x I is a loop v which is homotopic, rel 0, 1,
to u. Hence, by composing this homotopy with f x 1,

wlf] = vlf] = vm’f] = [mf] = [f],

so that u, is the identity isomorphism.
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(d) Let f: X — Y be the homotopy equivalence; let x, be a base
point for X, and let y, = f(x,). For each [u] € m;(X, xo), x € (X, xy),

fx(®) = (fup)fulx) = fyusx),

by Theorem 7.2.3(d). Since f; is an isomorphism by Corollary 7.2 .4,
it follows that ux) = x. §

Thus if Y is an n-simple space, any consideration of base points is
irrelevant when working with #,(Y). This is true not only in the sense
of Definition 7.2.5, but also in that the elements of =,(Y) may be
regarded as homotopy classes of maps S* — Y, that are not necessarily
base-point-preserving.

Proposition 7.2,7 If Y is a path-connected n-simple space, the

elements of =, (Y) are in (1-1)-correspondence with the homotopy classes
of maps S" — Y.

Proof. Let f: S®*— Y be a map, and suppose that f(sy) = v,
where s, is the base point (~1,0, ..., 0) of S*. Then [f], the based
homotopy class of f, is an element of =,(¥, ¥,), and if « is any path
from Y1 to Yo, u#U] € '”n( Y’ yo)

Now let g: S*-> Y be another map, with g(sp) = y,. If v is a path
from y, to y,, then v,{g] € 7, (Y, y,); and if f ~ g by a homotopy F,
where F | (s, x I) defines a path w from y, to y,, then wy{f] = [¢] in
m.(Y, y2). Hence

i8] = (w.o)lf] = wlf},

since Y is n-<imple. Thus the homotopy class of f defines a unique
element of 7,( Y, ¥,); but conversely an element of 7,( Y, y,) is a based
homotopy class of based maps, which is contained in a unique
(unbased) homotopy class. §

Corollary 7.2.8 I} X and Y are path-connected n-simple spaces, and
fi X—>Yisamap, f,: 7.(X) > 7\ Y) is given by f,[g] = [[fg), where
g:S*— X, and | ] now denotes unbased homotopy classes.

The next topic in this section is relative homotopy groups. These
bear much the same relat.on te crdinary homotopy grouns as relative
homology and cohomology groups do to those of a single space, and
once again are most ofren used, via an exact sequence, for calculation
purposes.

For the definition, let X be a space with base point x,, and let Y be
a subspace containing x,. Let i: ¥ — X be the inclusion map, and
let L; be the mapping path-space of <. -
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Definition 7.2.9 For n > 2, the nth relative homotopy group of
(X, Y), n(X, Y), 1s defined by #,(X, Y) = m,_;(L,). We can also
define m,(X, Y) = my(L,), though in general this is just a set, not a
group.

Somc¢times we write 7, (X, Y, x,), instead of w,(X, Y), if we wish
to draw attention to the particular base point. Notice that = (X, Y) is
abelian for n > 3.

The definition of 7,(X, Y) may seem a little obscure, but with the
aid of Theorem 6.3.27 we can give an alternative definition on the
lines of Propositions 7.2.1 and 7.2.2.

Proposition 7.2.10 The elements of (X, Y, x,) are in (1-1)-cor-
respondence with homotopy classes of maps (of triples) (I*, ¢I", D* ") —
(X, Y, x,), where D"~ is the closure of 0I™ — I"~! x 0. Given two
such maps, f and g, define f o g by

— f(le’x2a°-~)xn) (Osxls‘i’)
A {g(le L m) (< m <D

this definition extends to homotopy classes and gives a definition of multi-
plication in = (X, Y) (n 2 2) that coincides with that of Definition
7.2.9. Moreover the same definition results if we ‘compose’ f and g using
any other co-ordinate except x,.

Proof. By definition, L, is the subspace of ¥ x X! consisting of
pairs (¥, A) such that A(0) = y. This is homeomorphic to the subspace
L of X' consisting of (based) maps A such that A(0) € Y: we merely let
(¥, A) correspond to A, and note that the map sending A to (A(0), A)
is continuous by Theorem 6.2.31. Now by an obvious modification of
Theorem 6.3.27, the elements of 7,(X, Y), which may be taken to be
homotopy classes of maps (I™*~*, 8"~ 1) — (L, L), where I, is the base
point of L, are in (1-1)-correspondence with homotopy classes of maps
(It AL oI*1t A I)-> (X, x,) that send I""1 A 0 to Y. By
Proposition 6.2.5, these in turn may be regarded as homotepy classes
of maps

("t x LIt x Quoalt-ixIuIt-1 x 1, I x TuoI*=?t x I)
— (X, Y, x);
that is, as classes of maps
(I oI", D* ) - (X, Y, x,).

(If n = 1, I° is to be interpreted as the pair of points 0 and 1, with
base point 1, and 8I° and D° as the point 1.)
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Finally, it is clear from Proposition 7.2.2 that if we define f o g by
‘composing’ along any co-ordinate of I™ except the last, the resulting
multiplication in 7, _;(L), and hence in (X, Y), is the correct one. |}

Notice that a map (I*, oI*, D*~!) — (X, Y, x,) represents the
identity element of 7,(X, Y) if and only if it is homotopic, as a map
of triples, to a map that sends I" to Y. For such a map corresponds
to a map (I*-%eI""1)— (L, lo) whose image is contained in Y/;
but Y'is contractxble

An obvious corollary of Proposition 7.2.10 is that if the subspace
Y happens to be just x,, then 7, (X, Y, x;) = m,(X, x,) (at least if
n > 2). Thus there is no ambiguity in the notation m,(X, x,): it may
equally well be interpreted as the nth homotopy group of X, with base
point x,, or as the nth relative homotopy group of the pair (X, x,).

Proposition 7211 A based map of pairs A: (X, Y)— (4, B)
gives rise to a homomorphism A,: w(X, Y) — m,(4, B) (n > 2), with
the following properties.

() If XA ~ p (as based maps of pairs), then A, = p,.

(b) The identity map gives rise to the identity isomorphism.
(c) If u: (4, B) — (C, D) is another based map of pairs, then

(BA)e = pedy.
Proof. By Proposition 6.4.15, the commutative square

Yis X

y |2

(where s and ¢’ are the inclusion maps) gives rise to a commutative
diagram

s L — Y -2 X

kb

> L. —> B —> A,
Define A, : my(X, Y) — m,(A4, B)to be A, : 7y _(L,) — 7, .1(L;); then
if an element of 7,(X, Y) is represented by a map f: (I", oI", D*~1) —
(X, Y, x,), it is easy to see that A,[f] = [Af], so that properties
(a)(c) are clear. [

It is also possible to extend Theorem 7.2.3 to relative homotopy
groups.
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Theorem 7.2.12 Let (X, Y) be a pair of spaces, and let xy, x, be
two base points in the same path-component of Y. A path u in Y from
xo 10 x, gives rise to an isomorphism uy: m (X, Y, x5) & mo(X, ¥, x;)
(n > 2), with the following properties.

(38) If u~ vrcl 0,1 (as paths in Y), then uy = v,

(b) (ex,)s ts the identity isomorphism.

(c) Ifwisapathin Y from x, to x,, then (u.w)y; = wyuy,.

D If :(X,Y)—>(A4,B) 1s a map such that A(x,) = a, and
Mx,) = ay, then Au, = (Au) A (X, Y, x;) > m,(4, B, a,).

Proof. Given a map f: (Inol*, D) > (X,Y, x), let
f: (%0l D" 1) — (X, Y, x,) be any map that is homotopic to f by
a homotopy F:I"™ x I — X that sends 21" x I to Y and satisfies
F(d,t) = u(t)forallde D"~ 1, te I; define w,[f] = [f'lem (X, Y, x,).
As in the proof of Theorem 7.2.3, this defines an isomorphism u that
depends only on the homotopy class of f, and satisfies properties
(@)(d). 1

We shall say that the pair (X, Y) is (relatively) n-simple, if, for each
point x, in Y and each loop u in Y based at x,, uy: 7 (X, Y, %) —
m.(X, Y, x,) is the identity isomorphism. In this case, if # is a path in
Y frem x, to x,, the isomorphism %, depends only on x; and x;, and
not on the path u itself.

Theorem 7.2.13 Let Y be a path-connected space. Then

(a) (X, Y)is n-simple if the definstion holds for just one point x, of Y

(b) if Y is simply-connected, (X, Y') is n-simple for alln > 2;

(c) if (X,Y) is n-simple and (A, B) ~ (X, Y) (as pairs), then
(A, B) is n-simple.

Proof. This is an obvious modification of Theorem 7.2.6, and the
proof is left to the reader. § -

Example 7.2.14 The pair (E*, S"~1) is (telatively) n-simple, for
all n > 2. This is obvious fror Theorem 7.2.13(b) unless n = 2. To
deal with the case » = 2, consider a representative map f: (I%, 812, D*)
— (E?, S1, 55), and a loop z in S based at s,. A representative map for
u[f] is f': (1%, 812, DY) — (E%, S, 54), where f'| I is the product
loop u=1./f| I').u; but since m,(S?) is abelian, this product loop is
homotopic, rel 0, 1, to the loop f|I*. In other words, by extending
this homotopy, first to the constant homotopy on D!, and then to I3,
we may assume that f'|01% = f|a]2 But since E? is convex, it follows

that f* = f rel 2, by a linear homotopy; hence #,{f] = [f] = [f]. §
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If (X, Y) is relatively n-simple, the elements of m,(X, ¥') may be
defined witnout reference to base points.

Proposition 7.2.15 Let Y be path-connected and (X, Y') be n-simple.
The elements of n,(X, Y) are in (1-1)-correspondence with the homotopy
classes of maps (I, 81"y — (X, Y). Moreover, given two such maps f and
8, such that f(1,x,, ..., %) = g(0, x, .. ., x,), the product [f)[g] is
the homotopy class of the map f o g, where

Y

f(2x3, x5, . . ., x,) 0<% <)
fog(xy ... ’x") {g(Zx1 — 1L xg..0%) < <1

Stmilar remarks apply if any other co-ordinate is used instead of x,
(even if x, is used).

Proof. Let f:(I", 0I™) — (X, Y) be a map. Now D"~! is clearly
contractible, so that f{D"~! is homotopic (as a map into Y) to a map
to a single point x,, say. This homotopy may be extended to /™ and
then to I*, to give a final map f': (I, 8I", D*~!) — (X, Y, x,), such
that f' ~ f as maps of the pair (I", 9I"). We now have [f'] €
(X, Y,x,), and if uis any path in Y from x, to xo, u,[f'] €7, (X, Y, x,).

Now letg: (I*, aI") — (X, Y) be another map, homotopic as a map
of pairs to g': (I*, oI™, D"~ 1) — (X, Y, x,), and let v be a path in Y
from x; to xo. If f ~ g as maps of pairs, then f' ~ g’ as maps of pairs,
by a homotopy F, say. But F | (D"~! x I)is homotopic, rel D*~* x 0
U D! x 1, to a map that sends each D"~! x ¢ to a single pomt
(because D"~ x I may be contracted to I by a deformation retraction
that sends each D*~! x ¢t to t). By extending this homotopy to
(I* x I) x I, we may assume that the homotopy F between f’ and g’
sends each D"~ x t to a point, and so defines a path w from x, to x,.
It follows that w,[f'] = [£'] € 7,(X, Y, x,), so that

vle’) = (w.olf] = udf)..

since (X, Y) is n-simple. That is to say, the element of m,(X, Y, x,)
determined by f depends only on the homotopy class of f as a map of
pairs, and not on the choice of f’ or u.

Now suppose that f and g are maps such that f(1, x,, ..., x,) =
&0, x,, . .., x,). Choose f' ~ f as above, the homotopy being F, and
let G: D*~! x I — Y be the homotopy defined by G(x,, .. ., x,, 1) ==
F(1 - xy,..., x,, t); extend G to the whole of I*, to give a final map
g =~ g. The effect of this is to ensure that

F(l, 25 ...,%,,8) = GO, x5, ..., x, 7,
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so that f' o g’, as defined in Proposition 7.2.10, is homotopic to f o g,
as defined in the present proposition. It follows that f o g represents
the element [f'][g'] of 7,(X, Y); and a similar argument applies if
we usc any other co-ordinate instead of x,, except x,.

To prove that even x, may be used, suppose that f and g are maps.
(I*, 8I") — (X, Y) such that f(x,,...,x,_1, 1) = g(xy, ..., 53, 0).
Define f by f(xy, ..., %p) = f(%1, ..., Xp_2, 1 — X, X,_;). By extend-
g the standard homeomorphism between (72, 212) and (E2?, S') to a
jumeomorphism between (I*, @I™) and (I"~2 x E%, I*"2 x StuU
&#f7-2 x E?), and rotating E2 through an angle #/2, we can see that
¢~ fas maps of pairs: see Fig. 7.1.

%y

o

Fig. 7.1

Hence f and f represent the same element of 7,(X, Y). But if fo 8 is
defined by

. (% ey Xy, 2) 0<x,<%)
h fo#(xn .o x) = {g(xl,...,x,,_l, 2%, — 1) (3 < x, < 1),
then

s _ f(xl,...,l - Xn 'an_l) (0 € X, '~<~‘})
(f g)(xho..,xn) - {g(x“ e 1 - P 2xn—-1 _ l) (i_ < Xn -1 < l)’
which is the map obtained by ‘composing’ f and g along the x, _,-~

co-ordinate. Hence fog represents the clement [f]{g] = [fl[g] in
(X, ¥). §
A corollary of the proof of Pruposition 7.2.15 is the following.

Corollary 7.2.16 If (X, Y) is 2-simple, ny(X, Y') s abelian.

Proof. Choose a base point ..+ %, and let f,g be two maps
(13, eI2, DY) — (X, Y, x;). Ther / > ¢ 15 defined by

(f(2x,, %, (0<x <49

fogley, %) = 1e(@x, ~ 4 ay) (3 < % < 1)
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e g1 — 2x,,1 — %) (0 <x <)
(o )1, %a) = {f(z — 2,1 —x) (<<l

so that (fog) = 7 o f, and hence [f][g] = [g)lf] € 7 X, Y). B

Example 7.2.17 Let (X, Y) be 2-simple, and suppose given a
mzp f: (12, 0I%) — (X, Y). Now we can divide I? into four small
squares, by cutting each unit interval in half at the point 4; and then
four maps f .,: (I? 2I%) > (X, Y) (¢, € = 0 or 1) can be defined
by restricting f to each of the four squares: more precisely, define

fq,cg(xb xz) =f(2x1 - €, 2% — ‘2):

see Fig. 7.2
X2
{o,n (t,n
for n
oo fo
(0,0 (1,07 #
Fig. 7.2.

Then if each map f,, ., sends 812 to Y, we have

[f]1 = ool + [for] + [fro] + [f1a]

in my(X, Y). For, by Proposition 7.2.15, the -right-hand side is
represented by the map (fo0 © fo1)- (f10 © f11), Which coincides with fif
composition inside the brackets refers to the x,;-co-ordinate, and
composition between the brackets refers to the x,-co-ordinate.

This result can clearly be extended to m,(X, Y), if (X, Y) is
n-simple: if f: (I*, 8I*) — (X, Y) is.a map, then by halving each unit
interval I* is subdivided into 2" hypercubes, and so we obtain 2"
-maps of I" to X; if each of these sends oI™ to Y, then we obtain 2*
elements of 7,(X, Y) whose sum is [f]. ] .

The most important property of the relative homotopy groups,
however, is that they can be fitted into an exact sequence, and hence
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used for calculation purposes. As in the cuse of homology groups,
there are exact sequences of a pair and of a triple.

Theorem 7.2.18 Let (X, Y) be a pair of spaces, with base point
xo€ Y. There is an exact sequence

~——> my(Y) —> 7"n(‘)() —> (X, Y) 2, Tn - 1( Y)—>-
—sm(X, Y) LN mo(Y) LI nO(X),

called the ‘exact homotopy sequence of the pair (X, Y). Moreover, a
(based) map of pairs f: (X, Y)— (A, B) gives rise to a commutative
diagram involving the exact homotopy sequences of (X, Y) and (A4, B).

Stmilarly, if Z is a subspace of Y containing x,, there is an exact
sequence

s (Y, Z) 2> (X, Z) L (X, Y)——>7r,, (Y, Z)—--
—> (Y, Z) 25 (X, Z) L5 my(X, Y),

called the ‘exact homotopy sequence of the triple (X, Y, Z). Again, a
(based) map of triples f: (X, Y, Z) — (A4, B, C) gives rise to a com-
mutative diagram of exact homotopy sequences.

In the exact sequence of a triple, i, and j, are induced by the inclusion
maps i:(Y,Z2)—> (X, Z), j:(X,Z)—> (X, Y), and &, is given by
restricting amap (I*, oI, D" ') > (X, Y, x,) toamap (I"~1, 01"~ 1) —
(Y, x,) = (Y, Z). The homomorphisms in the exact sequence of a pasr
may be similarly interpreted.

Proof. Since (apart from the last few terms) the exact sequence of
the pair (X, Y) is obtained from the exact sequence of the triple
(X, Y, Z) by putting Z = x,, we shall prove the theorem only for the
exact sequence of the triple, and leave to the reader the modifications
necessary to deal with the end of the exact sequence ot the pair.

Let a be the inclustion map of Z in Y, and let L,, as usual, be the
mapping path-space of a. As in Proposition 7.2.19, L, may be identified
with the subspace L of Y/ consisting of maps A such that X0) ¢ Z;
and then the standard map «;: L — Z is interpreted as a map L. — Z
given by «,(A) = A(0). Let M and N be the spaces similarly obtained
from the inclusions Z © X, Y <= X respectively, and let ¢: M -> Z,
6: N — Y be the obvious maps (defined by taking the initial points of
paths). Now M and N are both subspaces of .Y/, and in fact M is a
subspace of N: let B: M — N be the inclusion map. Finally, let L’ be
the space obtained from B, so that L’ is the subspace of N' of paths
starting in M; let B,: L' — M be the obvious map, and ¢: L’ — L the
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restriction of 8*: N! — Y, so that we have the following commutative
diagram, in which the rows are sequences of spaces and maps as in
Theorem 6.4.14.

e QN2 P B M AN

A

——>.QY————->L ——->Z--—-> Y.
as @y

We claim that ¢ is a homotopy equivalence. For, by Proposition
6.2.27 and Theorem 6.2.38(c), we may identify L’ with the subspace of
X consisting of (based) maps A: I A 7 — XsuchthatA(J A 0) = Y
and X0 A 0)e Z; and ¢, B, are given by restricting such a map to
I A 0,0 A I respectively. But consider the map f: I A I — I given
by f(x; A xp) = min [x; + x,, 1]: this induces 2 map y: L — L’, and
clearly iy = 1;. Morever if g:I— I A I is the inclusion map as
I A0, we have gf ~ 1rell A 0, so that y3y ~ 1;, by Theorem
6.2.25. In other words, ¢ is a homotopy equivalence. Notice also that
Bix is just the inclusion map L — M given by the inclusion of Y/
in X'

Hence, as in Corollary 6.5.9, we obtain an exact sequence

e (L) T (M) S mo(N) ——> o (L) —> -,

where y is the composite
To(N) 2> 7 1 (ON) Lo 7y _(QY) 25 0, (L),

Certainly the homotopy groups of L, M and N are the relative homo-
topy groups of the pairs (Y, 2), (X, Z) and (X, Y) respectively, so
that it remains only to interpret the maps. Since B,y and 8 are the
obvious inclusion maps, it is easy to see from the proof of Proposition
7.2.11 that (8;x), and 8, may be identified with

le ' Maet(Y, Z2) > 7 3s(X, Z), jauinet(X, Z2) > m (X, Y)
respectively. Moreover, since there is 2 commutative diagram
Sﬂ_ > Sﬂ-’l A S1
T T
InjoIm L (Iv=1jaIn-1) A (IJ2I),

where the maps are standard homeomorphisms (x is'induced by the
obvious map I" — I"~1 x [), the isomorphism m,(N) — m,_,(2N)
is given by sending a ‘map g: I"/oI* — N to the map I"~!/a[*"1
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N that corresponds to guu~! under the association map (of course,
1/o1 is identified with S!). Since §: N — Y is given by evaluation at 0,
it follows as in the proof of Proposition 7.2.10 that y corresponds to
the map 0,:7,, (X, Y)—> =, (Y, Z) given by restricting a map
(Im*1, 9I™*t, D) — (X, Y, x;) to a map from (I™ x 0,.0I" x 0).

Finally, a map of triples f: (X, Y, Z) — (4, B, C) gives rise as in
Proposition 6.4.15 to commutative diagrams involving the spaces L,
L', M, N and the corresponding spaces formed from A4, B, C, and
hence gives rise to a commutative diagram involving the exact homo-
topy sequences of the triples (X, Y, Z) and (4, B, C). |

As an example of the use of the exact homotopy sequence, we shall
establish a useful formula for the groups 7,(X v Y) (n > 2). How-
ever, this depends also on a knowledge of (X x Y'), so that we first
need

. Theorem 7.2.19 Let X and Y be based spaces. Then
(X x ¥) 2 m(X) D ml(Y)  (n> 1),

Proof. By Theorem 6.2.34, the spaces (X x Y)and X" x Y*5"
are homeomorphic, so that there is a (1-1)-correspondence between
based maps S™ — X x Y and pairs of maps S* — X, S" — Y, where
a map f: S®*— X x Y corresponds to the pair (pxf, pvf) (Px, Py
are the projection maps of X x Y onto X and Y). Since the same
result is true with S* replaced by S™ x I, this (1-1)-correspondence
extends to homotocpy classes of maps, that is, to a (1-1)-correspondence

0: m (X x Y)—>my(X) @ ma( ¥).

It remains to show that 8 is a homomorphism; but this is trivial, since

6(x) = (Px)ex @ (Pr)ax- 1

Notice that if &y, iy:- X%, Y — X x Y are the inclusions as X x y,,
x, x Y respectively, then the homomorphism ¢: 7, (X) @ my(Y) —
(X x ¥) defined by $(x @) = (ix)ax + (ir)ey is the inverse
isomorphism to 8. For

0d(x D y) = [(Pxix)ex + (Pxiv)ay] @ [(Pyix)ax + (Pyiv)sy]
=x@DYy

since pyix = ly, pyiy = ly, and pyiy, pyix are constant maps.

Theorem 7.2.20 Let X and Y be based spaces. Then, for n > 2,
(X VYY) 2n(X)Dr(Y)Dm (X x YV, X Vv Y)
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Proof. Since n > 2, there is an exact sequence of abelian groups

i (X X V) D (X x Y, X Vv V)2
(X VvV Y) s m(A x V).

On the other hand, a homomorphism ¢: m (X x Y) —»m (X v Y)
can be defined by ¢ = (ixpx)e + (fypy)e- Then i, = (Hxpx)y +
(fiyPy)e, which is the identity isomorphism of 7, (X x Y), by the
remark after Theorem 7.2.19. Hence ¢, is onto, j, i$ the zero map, and
the exact sequence splits, so that by Proposition 1.3.26 we have

XV Y)2m(X x V)@ (X x YV, XV Y) -
& (X)) DoY) @D maens(X x ¥V, X v V). |

At first sight this theorem is not very helpful, since we are unlikely
to know 7, (X x Y, X v Y) if we do not know the homotopy
groups of X v Y. However, in many cases it is possible to prove, by
some other method, that =, (X x ¥V, X v Y) =0, so that
(X v Y) is just the direct sum of =,(X) and =,(Y); we shall
examine this point in detail in Section 7.4. In fact the general problem
of calculating homotopy groups is very difficult, but is reasonably
manageable provided that we confine our attention to fairly ‘well-
behaved’ spaces such as CW-complexes. The next section contains the
definition and elementary properties of CW-complexes, and in

Section 7.4 we shall return to the problem of calculating their
homotopy groups.

7.3 CW-complexes

As has already been suggested, we wish to generalize and simplify
the notion of simplicial complexes, by building up spaces by succes-
sively attaching cells to, say, a discrete set of points. This will general-
ize the idea of a polyhedron, because the cells are attached by arbitrary
<ontinuous maps, and at the same time greater generality will be
%btained by alléwing more than a finite number of cells.

It would be possible to give the definition of 2 CW-complex directly
in terms of attaching cells. However, it is usually more convenient in
practice to have a somewhat different definition, which will afterwards
be proved to be equivalent to this intuitive idea: see Theorem 7.3.12.

Definition 7.3.1 A CW-complex is a Hausdorff space K, together
with an indexing set 4, for each integer n > 0, and maps

¢ E*—>K (alln > 0,ae 4,),
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such that the following properties are satisfied, where
e"={xeR"id(x,0) <1} (n2z21)

(a) K = | ¢n(e"), forall# > U and « € 4, (we interpret ¢® and F°
as a singie point).

(b) ¢2(e™) N $7(e™) is empty unless # = m and « = B; and ¢p|e"
is (1-1) for all n > 0 and x € 4,

(c) Let K™ = { ¢7(e™), for all 0 < m < n and all a € 4,. Then
¢ (S""1) = K*-1 foreachn > 1 and e € 4,.

(d) A subset X of K is closed if and only if (¢2)~}(X) is closed in
E™ for eachn > 0 and x € A4,.

(e) For eachn > 0 and « € 4,, ¢7(E™) is contained in the union of
a finite number of sets of the form ¢J(e™).

The maps ¢7 are called the characteristic maps for K, and the sub-
spaces ¢2(E") are the n-cells of K. K™ is called the n-skeleton of K,
and if K™ = K for some n, the smallest such # is called the dimension
of K (if no such n exists, K is said to be infinite-dimensional). Notice
that, unlike a simplicial complex, which is merely a set of simplexes,
a CW-complex is itself a topological space: there is thus no need for
the notation |K|.

Property (d) is sometimes cxpressed by saying that K has the weak
topology, and property (e) by saying that K is closure-finite. Hence the
initials ‘CW’, which stand for ‘closure-finite with the weak topology’.

As a first example, we show that every polyhedron is a CW-complex.

Proposition 7.3.2 Let K be a simpiiciai complex. Then (K| 15 a
CW-complex.

Proof. Certainly | K| is Hausdorff, since it is a sut:space of some
Euclidean space. For each n-simplex o of K, let ¢%: (E*, S* 1) —»
(o, |]) be a homeomorphism: for example, that given in Example
2.3.13. Then if A4, denotes the set of all n-simplexes of K, the charac-
teristic maps ¢? make |K| into a CW-complex, since properties
(a)—(e) are satisfied: (a) and (b) follow from Proposition 2.3.6, (d)
follows from Proposition 2.3.8, and (c).and (e) are obvious. |

Examples 7.3.3 It follows, for example, that S*, the torus 7T, and
real projective n-space RP™ are all CW-complexes, since obviously
any space homeomorphic to a CW-complex is itself a CW-complex
(for the proof that RP" is triangulable, see Chapter 3, Exercise 7).
However, one of the advantages of CW-complexes is that, because of
their greater generality, it is usually possible to express a given
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polyhedron as a CW-complex with fewer cells than the original
number of simplexes.

(a) Consider the standard map 8: (E*, S*~1) — (S", s,), where s,
is the point (—1,0, ..., 0); 6]e" is a homeomorphism onto its image.
Since there is also an obvious map ¢: E® — s, it follows that S™is a
CW-complex with one 0-cell and one n-cell, and characteristic maps
¢, 0.

(b) Consider the torus 7', formed from the square ABCD by
identifying the edges 4B, DC, and AD, BC: see Fig. 7.3.

A : 8

Fig. 7.3

Define maps ¢°: E° — T, ¢1, ¢L: E* — T, and ¢?: E? — T by sending
E? to the point to which the four vertices 4, B, C and D are identified,
Elto AB, AD, respectively (so that +1 go to A, B and A, D respec-
tively), and by mapping E2 homeomorphically onto the square ABCD,
and composing this map with the identification map onto 7. It is easy
to see that these characteristic maps make T into a CW-complex with
one 0-cell, two 1-cells, and one 2-cell.

(c) By Proposition 1.4.40, RP* may be regarded as the JSpace
obtained from E™ by identifying antxpodal points of S™~1, Since this
identification turns S™~1 into RP"*~, RP" is the adjunction space
RP*-1 U, E" where f: S*~! — RP"’1 is the identification map. In
turn, RP*~1is RP"~2 U, E*"!, and so on; in other words, RP" is
obtained from RP° (a single point) by successively attaching one cell
of each dimension 1,2,...,n. Let ¢": E" — RP" (0 < r < n) be the
composite of the identification map onto RP’ and the inclusion of
RP" in RP*: it is now easy to see that these characteristic maps make
RP* into a CW-complex with one cell of each dimension 0,1,...,n
(properties (a)~(c) and (e) are obvious, and (d) is fairly easy; in any
case it follows from Theorem 7.3.12 below). |}
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On the other hand, not every space is a CW-complex, since non-
Hausdorff spaces exist (see also Example 7.3.10).

We next establish the standard elemertary properties of CW-
complexes.

Proposition 7.3.4 Let K be a CW-complex, and let X be any space.
A function f: K -> X is continuous if and only if each f¢? is continuous,
Joreachn > 0 and a € A,,.

Proof. Certainly each f¢? is continupus if f is. Conversely, let 4
be a closed subset of .X. Then each (¢7)~!(f ~1A4) is closed in E®, so
that f~14 is closed in X by properiy (d). Hence f is continuous. |

Definition 7.3.5 Given a CW-complex K, a subspace L is called a
subcomplex if, for each n > 0, there exists a subset B, of A, such
that

(a) L = {J¢2(e”), forall n > 0 and « € B,;
(b) ¢%(E™) < L foralln > 0 and ¢ € B,.

L is called a finite subcomplex if it has only a finite number of cells.
Notice that arbitrary unions and intersections of subcomplexes are
again subcomplexes.

Proposition 7.3.6 Let K be a CW-complex. For each n > 0 and
a€ A, $¥(E™) is contained in a finite subcomplex of K.

Proof. By property-(e), ¢2(E™) is contained in the union L of a
finite number of sets of the form ¢7(e™). However, L may not be a
subcomplex, since it may not satisfy (b) of Definition 7.3.5. But if
$7(e™) is a set of L such that ¢F(E™) is not contained in L, then by
properties (¢) and (e¢) we can always add a finite number of sets
#2(e?) (with p < m), so as to include ¢7(S™~!). Thus, by working
down in dimensions, we can add a finite number of sets ¢5(e?) to L
until L becomes a (finite) subcomplex. §

Proposition 7.3.7 If L is a subcomplex of a CW-complex K, then L
is a CW-complex and is a closed subspace of K.

Proof. Certainly L 1s Hausdorff, and satisfies properties (a)-(c)
and (e) of Definition 7.3.1; with A4, replaced by B,. Moreover the
maps ¢2: E* — L (« € B,) are continuous, so that certainly (¢?)~1X
is closed in E™ whenever X is closed in L.

We can complete the proof of (d), and at the same time show that
L is a closed subspace of K, by showing that, if X is a subspace of L
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such that (¢*)~*X is closed in E" for all # > 0 and « € B,, then X is
closed in K: for then X is closed in L since X = XN L, and L is
closed in K since we may take X = L.

Suppose then that X < L and (¢2)~1X is closed in E* for all #n and
a € B,. Then each (¢2) !X is compact, since E" is, and so each
X N ¢2(E™) is compact, since the maps ¢2 are continuous. Since the
union of a finite number of compact sets is again compact, this implies
that X N M is compact for any finite subcomplex M contained in L;
and hence X N M is compact for any finite subcomplex M whatever
(because M N L is a subcomplex, and X < L). Thus XM is
closed in M, since K (and hence M) is Hausdorff. It follows from
Proposition 7.3.6 that X N ¢#2(E™) is closed in ¢X(E™) for all » and
a € A, thatis, (¢2)"?X is closed in E" for all n and « € 4,. Hence, by
property (d), X is closed in K. §

Proposition 7.3.8 If K is a CW-complex, the path components of
K are subcomplexes. And if K is connected, it is path-connected.

Proof. Since each ¢7%(e”) and ¢2(E") is path-connected, the path-
components are certainly subcomplexes, for if X is a path component,
X = {J ¢¥e"), for all n and « such that X N ¢%(e*) # &. To prove
the second remark, suppose that K is connected but not path-con-
nected. Then the path components form a family of disjoint sub-
complexes, whose union is K. By selecting one and taking the union of
the others, K can be expressed as the union of two disjoint subcom-
plexes, each of which is a closed subspace of K by Proposition 7.3.7.
Hence K is disconnected, contrary to hypothesis. i

Proposition 7.3.9 If X is a compact subspace of a CW-complex
K, it is contained in a finite subcomplex.

Proof. Choose a point x, in each non-empty set X N ¢j(e"), and
let P be the set of all these points. If O is any subset of P, each set
O N ¢ E™) is finite, by property (e), and hence closed, since K is
Hausdorff. Hence each (¢2)~*Q is closed, and so Q is closed in K.
Thus P is a discrete subspace of K, and hence of X, Since X is
compact, it follows that P must be finite: hence X meets only a finite
number of sets of the form ¢7(e™), and their union is contained in a
finite subcomplex as in the proof of Proposition 7.3.6. §

Example 7.3.10 Let X be the subspace of R! consisting of the
points 0 and 1/n, for all integers # > 1. Now the path components of
X are just the single points (since each point 1/n is both open and
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closed); so if X were homotopy-equivalent to a CW-complex K, K
would have to have an infinite number of path components. But if
f: X— K were a homotopy equivalence, f(X) would be compact,
since X is, and so would have to be contained in a finite subcomplex of
K. Thus f(X) would be contained in the union of a finite number of
path components, and this contradicts the assumption that f is a
homotopy equivalence. Hence X is not homotopy-equivalent to a
CW-complex. §

In some contexts theorems valid for CW-complexes are also valid
for any space having the homotopy type of a CW-complex. The
above example shows that not every space is of this type.

We wish now to reconcile the intuitive idea of a space built up by
attaching cells with the formal definition of a CW-complex. For this
purpose, we must first be quite precise about what is meant by a
‘space built up by attaching cells’.

Definition 7.3.11 A cellular space is a topological space K, with a
sequence of subspaces

Kc K'cK2c...c K,
such that K = O K™, and the following properties hold.
n=0

(a) K is a discrete space.

(b) For eachn > 0, there exists an indexing set ,, and continuous
maps ¢?: S*~! — K"~ for each « € 4,. Moreover, K" is the space
obtained from K"-! and (disjoint) copics E* of E™ (one for each
a € A,) by identifying the points x and ¢2(x) for each xe S7~! and
each x € 4,.

(c) A subset X of K is closed if and only if X n K" is closed in
K", for each n > 0.

Note that property (c) is automatically satisfied if K is ‘finite-
dimensional’, that is, all sets A4, are empty for sufficiently large .

Theorem 7.3.12 Every CW-complex is a cellular space, and every
cellular space is a CW-complex.

Proof. Suppose first that K is a CW-complex. Then the n-
skeletons form a sequence of subspaces K° < K1 < K2 <...c K,
. K is discrete, since it is a CW-complex and each point is a sub-
complex: thus each subset is a subcomplex and hence closed in K°.
Moreover the characteristic maps ¢5: E® — K (n > 0, @ € 4,) restrict
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to maps of $™ ! to K"~ for each n > 0. Now a subset X of K" is
closed in K" if and only if (¢7)~1X is closed in E™, for each m < n
and « € A,,; that is, if and only if X " K™~ is closed in K*~! and
each (¢%)~'.X is closed in E™. In other words, the topology of K™ is
exactly the identification topology produced from the disjoint union
of K" ! and copies E" of E™, by identifying x with ¢2(x) for each
xSt ! and a € 4,. Hence property (b) of Definition 7.3.11 is
satisfied. Finally, X < K is closed if and only if (¢2)~1X is closed for
all # = 0 and e € 4,; that is, if and only if X N K™ is closed in K™
for cach n > 0. So K is a cellular space.

Conversely, suppose given a cellular space K, as in Definition 7.3.11.
In order tc show that K is a CW-complex, it is first necessary to show
that X is Hausdorff, and in fact this is the most difficult part of the
proct.

Suppose then that we have two distinct points x and y in K. Choose
the smallest 7 such that x and y are both in X*, and suppose that x,
say, is in e? for some a € 4, (points of K*~! or E? are identified with
their images in K™). Now, even if y is also in €}, there exists a number
€ > Osuch that x| <1 - 2¢and y¢{zee* ||z — x| < 2¢}. Let

U, = {zee| |z — 2] <4,
Vi= K"~ {zeer|lz - x| < o

then U, and I/, are open sets in K", containing x and y respectively,
suchv st U, "V, = 2.

What we now have to do is to ‘thicken’ U, and ¥V, to disjoint open
sets inn K. So suppose, as an inductive hypothesis, that U, V,, are
disjoint open sets in K™ (m > n), such that U, " K™ = U, and
VanN K™ = V,. The sets X, = (¢2**)"'U, and Y, = (¢2*1)" 'V,
are then disjoint open sets in S™, for each o € 4,,,,. Define

~ {zeer*i| |zl > % and af|=] € X.}
= (zeepi|a] > and ffz € V.3;

see Fig. 7.4 overleaf.
Now let U,,, = U, U(UX) and Vy,, =V, U(U Y,.); then

Upyyand Vg, are dlSJOlnt open sets in K™*!1, and U,,l+1 NK™ =
Up Vmii N K™ =V, so that the inductive step is complete.
Finally, let U = {J U, and V = {J V,: then U and V are dis-

man m>n

joint open sets in K (by property (c) of Definition 7.3.11), x € U and
y € V. Hence K is Hausdorff.
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Fig. 7.4

To complete the proof, extend the maps ¢2: S2~! — K"~ to maps
d3: Ef — K" < K (n > 1) by using the inclusion maps of each e,
and suppose as an inductive hypothesis that with these characteristic
maps K" is a CW-complex (certainly K° is a CW-complex). Then
K"*1 automatically satisfies properties (a)-{(c) of Definition 7.3.1;
also (d) is true, since

X < K**! closed < X N K* closed in K™ and (¢2+!) !X closed
in E3** foralla€ 4,,,

< (¢7) ' X closed for all 0 < m < 7 + 1 and
ae A,

by the inductive hypothesis. And (e) is satisfied since, by Proposition
7.3.9, #2+3(S?) is contained in a finite subcomplex of K™; hence
$2+Y(En*Y) is contained in the union of this subcomplex and
¢zt ezt ).

Hence each K™ is a CW-complex. It follows that K is also a CW-
complex, for the only non-trivial thing to check is property (d), and
this follows from property (c) of Definition 7.3.11. |

We next investigate to what extent the constructions of Section 6.2
can be applied to CW-complexes. In order to deal with the onz-point
union and reduced product, we must first consider quotient spaces.

Theorem 7.3.13 Let (K, L) be a CW-pair; that is, K is a CW-
complex and L is a subcomplex. Then K[L is a CW-complex.

Proof. 1t is first necessary to show that K/L is Hausdorff. This
will follow from the fact that K is Hausdorff, provided that, given a
point x € K — L, there exist disjoint open sets U, V in K, with xe U
and L < V. But this can obviously be established by the argument in
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the proof of Theorem 7.3.12: if x € ¢2(e"), enclose x and L*" in disjoint
open sets in K™ (¢%(e*) N L* is empty), and then ‘thicken’ these open
sets to make open sets in K.

If now 4, and B, are the indexing sets for the cells of K, L respec-
tively, let C, = A, — B, if n > 0, and let Cy = (4, — By U {a},
where a € B, indexes one particular O-cell of L. Let p: K — K/L be
the identification map; we shall show that pé? (e & C,, n > 0) are

characteristic maps for K/L. To do so, we have to check properties-
(aj—(e) of Definition 7.3.1.

(a) Each ¢%(e*)isin L or K — L. Since the points of X/L are those
of K — L, together with one extra, representing L, (a) follows.

(b) This is true for the same reason.

(c) For each a € C,, p¢(S™~1) « p(K*~1) = (K/L)*~1,

(d) X « K/L is closed if and only if p~'X is closed, that is,
(p#3) "X is closed in E™ for each o € 4,. But if « € B,, (pd2)~ 1Xis
either E” or empty (accordmg as X meets L or not), and so is closed
in any case.

(e) For each « € C,, ¢3(E") is contained in a finite union of sets of
the form ¢2(e™) (8 € Ay,). Hence pp3(E™) is contained in the union of
the corresponding sets péR(e™); and pdf(e™) is the point representing
Lifpg¢C, §

Since the disjoint union of a collection of CW-compléxes is
obviously another CW-complex, we also have

Corollary 7.3.14. If K, (a € A) are a collection of CW-conplexes,
then \/ K, is a CW-complex (assuming that the base points aﬁ all
A

0-cells).
Proof. Cleatly K, the union of the base points, is a subcomplex of

the disjoint union K of the complexes K,. Hence \/ K, = K/K, is a
CW-complex. §

Example 7.3.15 Let K be a CW-complex. 4y Theorem 7§ 13,
K"/K"~1is a CW-complex, for all # > O (if # = K"~ is"empty,
and we interpret KX*/K™~1 as (K")*, the disjoint union of K™ with an
extra point). Moreover, even if n = 0, the characteristic maps

¢ (Eo Sa™)—> (K™ K™Y (eed,)
induce a map

$: \/ (E*S™~1), ~ K™K 1,
Ay
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Now ¢ is continuous, (1-1) and onto, and, by Proposition 7.3.4, ¢! is
continuous. Hence ¢ is a homeomorphism; and since E*/S*~! is
homeomorphic to S™ we have thus proved that K*/K"~! is homeo-
-morphic to a one-point union of a collection of S™s, one for each
n-cell of XK. |

The situation with regard to products is rather more complicated,
because in general the product of two CW-complexes is not a CW-
complex: the product topology may fail to be that defined by Definition
7.3.1(d) (see the notes at the end of the chapter). However, in two
important special cases this difficulty does not arise.

Theorem 7.3.16 If K and L are CW-complexes, so is K x L,
provided that

(a) one of K, L is locally compact; or
(b) both K and L have a countable number of cells.

Proof. Certainly K x L is Hausdorff. If K has indexing sets 4,
and characteristic maps ¢%, and L has indexing sets B, and character-
istic maps 3, we wish to show that K x L is a CW-complex with
characteristic maps ¢% x Y7, for all « € 4,, B € B, (E"*™ is identified
with E* x E™ by the standard homeomorphism 4, ,,). It is easy to
see that properties (a)—«(c) and (e) of Definition 7.3.1 are satisfied; but
as we have already said, there is no guarantee that (d) will be true in
general.

Let us write K X L for the space K x L, retopologized so as to be
a CW-complex; that is, retopologized so that X < K X L is closed
if and only if (¢2 x ¢F)~1X is closed in E* x E™, for all n, m, o, B.
Now the (pointwise) identity function i: K X L — K x L is con-
tinuous, (1-1) and onto. Thus, in order to complete the proof of the
theorem, it is sufficient to show that the identity function j: X x L —
K % L isalso continuous; for then K x L and KX X L will be homeo-
morphic and K x L will have the correct topology as a CW-complex.
The proof that j is continuous differs in the two cases.

(a) Suppose that K is locally compact. Now for each n, m, «, 8, the
map j($% x YF): E* x E™— K X L is continuous. As usual, let X *
denote the disjoint union of X with an extra point, which is taken to be
the base point of X*; thus X* A Y+ = (X x ¥)*. Moreover
j($2 x Y3) may be regarded as a dased map (E*)* A (E™)* —
K % L, and so we may apply the association map to obtain a map
(E™)* — (K % L)E™", one for each « and B. Since this is continuous
for each «, and (E™)* is locally compact and Hausdorff, Proposition
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7.3.4 and Theorem 6.2.38 show that the map K* A (E™* - K < L
that corresponds to j(1 x ¢F): K x E™ — K % L is also continuous.
And then a similar argument with K * (which is also locally compact
and Hausdorff) shows that j: K x L — K X L is continuous.

(b) Let X« K X Lbeanopenset,andlet ¥ = j~?X < K x L.
Let (%, I) be a point of Y, and enumerate the celis of K and L so that
k, I are in the first cells of K, L respectively. Let K, L, denote the
unions of the first r cells of K, L respectively. Now, by definition of
the topology of K X L, if CX denotes the complement of X, then each
(P8 x 7)Y 1CX = (42 x ¢7)7CY is closed in E* x E™ and so
compact; hence CY N [$3(E™) x JF(E™)] is compact and so closed.
Since K, and L, are finite unions of cells, it follows that CY N
(K, x L,) is closed, and so Y N (K, x L,) is open in K, x L,, for
eachr.

Now suppose, as an inductive hypothesis, that we have sets U,, v,
open in K, L, respectively, such that ke U, c...< U, and
leV,<...c V,; suppose also that U, x V, < Yr'\ (K, x L,).
This is certainly true if r = 1, since K, and L, are compact Hausdorff.
Since K,,; and L,,, are also compact Hausdorff, there exist sets
Urs1, Visry openin K, .y, L, respectively, such that U, x V7, <
Ui x Viic U x Py < YN (K41 x Ly4y), and this is
sufficient to complete the inductive step

Fmally,letUc U U,and V = U Visthen(k, )eU x V < Y.

r =]
Moreover each U, is ppenin K|, and hence U, N K, is open in K, for

all s < r; hence Un K, = U (U, N K,) is open ln K,, for each s. It
ra>s

follows that each U N $2(E™) is open in ¢%(E"), so that (¢ ) 1U is
open in E™ and hence U is open in K. Similarly V is open in L, so
that U x V, and hence Y, is open in K x L. Thus; is continuous. ||

Corollary 7.3.17 If K and L are CW-complaxe:, sois K AL, sf
either

(a) one of K, L is locally compact; or
(b) both K and L have a countable number of cells. l

“Thus, in particular, ¢K and sK are CW-complexes if K is (so also
is SK, the ‘unreduced’ suspension of K).

Theorem 7.3.16 is often used in constructing homotopies of CW-
complexes. For I is a CW-complex in an obvious way (it has one
0-cell at each end and a single 1-cell); also I is locally compact, so that ~
K x Iis a CW-complex whenever K is.
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Example 7.3.18 Let K be a CW-complex of dimension #, and
for each a€ 4, let V, be the subspace ¢i{xec E"| |x|| < 1}; let
V = {J V¥, Then K"~! is a strong deformation retract of K — V.

[ 4

To prove this, it is sufficient to construct a homotopy F: K x I - K,
starting with the identity map, suchthet F((K — V) x I) <« K - V,
F(K - V) x 1) =K""1and F is constant on K", This can be
done by taking F to be the identity homotopy on K"~1, and to be
radial projection from'the origins in the n-cells; more precisely,

Fx,) =x if xeK*}

" _ (U + 0)y),y BN |y] < 1/(1 + 9)
F(¢a(.y)’ 0= {‘ﬁz(}’/"y")’yEE”’ "y" 2z 1/(1 + 1), e € 4,

Now this is certainly continuous on each cell of K x I, and the
definitions coincide for points of ¢2(S*~1) x I. Hence F is continuous,
by Proposition 7.3.4. And clearly F has the required properties. |}

The same idea is used to prove what is perhaps the most important
result about CW-complexes, namely that a CW-pair always has the
absolute homotopy extension property.

Theorem 7.3.19 Let (K, L) be a CW-pair. Then (K, L) has the
absolute homotopy extension property.

Proof. What we must show is that, given a map f: (K x O) v
(L x I) > Y, f can be extended to a map K x I — Y. This is done
by extending f inductively to M™ x I, where M* = K* U L.

First, then, extend f to M° x I by defining f(«, ) = f(x), for any
0-cell x of K — L. This is continuous, since it is continuous on each
cell of the CW-complex (K x 0) U (M° x I).

Next suppose that f has been extended to a map f: (K x Q) U
(M*-t x I)—> Y. For each n-cell ¢3(E™) of K — L. consider the
composite map

(E" x 0) U (S™ ! x I) 225 (K x 0)u (Mt x I) > .
Now a retraction p: E* x I —(E™ x 0) U (S~ x I) (regarded as
subspaces of R* x R!) can be defined by radial projection from the
point (0, ..., 0, 2): see Fig. 7.5.

This combines with the above composite map to extend it to a map of
E™ x I'to Y, and since each ¢! is (1-1) on ¢*, these maps combine to
give an extension of f to a function f: (K x O) U (M" x [)--> Y.
Moreover this extension is continuous: for (K x 0) U (M" x I)is a
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CW-complex, and the composite of each of its characteristic maps with
f is continuous; hence f is continuous by Proposition 7.3.4.

The inductive step is now complete, so that f can be extended to
each (K x 0) U (M™ x I). Hence f can be extended to a function
f: K x I—- Y, which once again is continuous by Proposition 7.3.4,
since K x Iis a CW-complex. |

Corollary 7.3.20 If (K,L) és a CW-pair, the inclusion map
i: L — K is a cofibre map. §

In particular, the sequence of Corollary 6.5.3 is exact for any
CW-complex and subcomplex.

We end this section with a further consideration of the situation
revealed by Theorem 7.3.16. The method of proof was to show that
K % L was always a CW-complex, and then to show that K x L
coincided with K x L in certain circumstances. It follows, then, that
when dealing with CW-complexes it is usually nsore convenient to
topologize the product of K and L as K X L, rather than to use the
standard product topology. There is also a corresponding version of
the reduced product, defined by K A L = (K X L)(K v L), where
K v L is regarded as the subspace K X [y Uk, X L of K X L: note
that K % [, for example, is homeomorphic to K x /;, and hence to
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K, since [; is certainly locally compact Again, K A L is alwa)s a
CW-complex, and coincides with K A L if either K or L is locally
compact, or if K and L each have a countable number of cells.

A further advantage of using the products % and A is that they
are both strictly associative, and behave well with respect to identifica-
tion maps.

Proposition 7.3.21 The products X and R are associative, for
CW-complexes. Moreover, if (K,L) and (M, N) are CW-pairs,
(K/L) R (M|N) ts homeomorphic to (K x M)(L x MU K X N).

Proof. Clearly K % (L X M)and (K %X L) X M have exactly the
same cells and characteristic maps, so that a homeomorphism between
them can easily be constructed by using Proposition 7.3.4. A similar
argument works for K A (L A M) and (K X L) A M, and also
shows that (K/L) A (M/N) and (K % L)/(L X MUK X N) are
homeomorphic. |

Because of Proposition 7.3.21 brackets can be omitted from such
expressions as K A L A M, without causing ambiguity.

We next show that the topology of K %X L does not in fact depend
on the structure of K and L as CW-complexes; indeed, X can be
defined for arbitrary topological spaces. :

Proposition 7.3.22 Given a space X, let k(X) be X, retopologized
so that a subset A of X is closed in k(X) if and only if A N C is closed
in X, for all closed compact subsets C of X. Then if K and L are CW-
complexes, we have

(3) KK) = K;
(b) k(K x L) = K % L.

Proof. First note that the above description of k(X) does define a
topology, since (AU BYNC = (ANC)U(BNC) and if {4} is
any collection of subsets, then (N 4 )N C = N (4, N C).

To prove (a), notice that if 4 is a subset.of K such that A < C'is
closed for all closed compact sets C, then in particular 4 N M E™)
is closed for all » and a. Hence each (¢2) 14 is closed, and so 4 is it-
self closed. Conversely, it is obvious that each 4 < C is closed if
A is closed.

The proof of (b) is similar: certainly every set that is closed in
k(K x L) is closed in K x L. Conversely, if A is closed in K % L,
then each (¢7 x ¢7) 14 is closed in E® x E™, and hence is compact.
Thus each 4 N (¢} x YZNE* x E™)is compact, and hence closed in
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K x L. It follows that the intersection of 4 with each compact subset
of K x L is closed, since any such compact subset is contained in the
product of its projections onto K and L, and hence is contained in a
finite union of products of cells. Hence A4 is closed in k(K x L). |}
Moreover, continuous maps of CW-complexes induce continuous

maps of their X product.

Proposntion 7323 Iff: X — Y is a continuous map of spaces, and
Y is Hausdorff, then the corresponding map f: k(X) — k( Y) is also

continuous.

Proof. Suppose that 4 is a closed subset of k(Y). For any closed '
compact set C in X, we have

fTHA) N C = f~HANF(C) N C;

since f(C) is compact and hence closed, 4 N f(C) is closed in Y, and
so f"YANf(C)NC is closed in X. Hence f~(4) is closed in
k(X), and so f: k(X) — k(Y) is continuous. §

Corollary 7.3.24 Let K, L, M and N be CW-complexes. Continuous
maps - K-> M, g: L — N induce continuous maps f X g: K X L —
MxN and f R g: K XK L—>M R N, with properties similar to
those of f x g and f A g. Moreover the diagonal maps 4: K — K % K,
4: K — K R K, defined by d(x) = (x, x), are continuous. |

7.4 Hoinotopy groups of CW-complexes

Section 7.2 was concerned with general results on homqtopy groups,
including the exact sequences of pairs and triples, and theorems on
the homotopy groups of products and one-point unions. In this
section we shall pursue these ideas further, so as to obtain more
precise results when the spaces involved are CW-complexes.

It is not possible to get very far without knowing the groups
7{S™), at least for r £ n. We have already seen in Example 6.3.16
that 7,(S") = 0 for r < n, so that our first task is to calculate ,(S™).
Now we already know that 7,(S?!) @ Z; what we shall do is to prove
inductively that 7,(S*) > Z foralin > 1.

The method of proof is to construct a homomorphism d: 7, (S") - Z,
and to show by induction that d is onto and (1-1). The homomorphism
is defined by attaching to each map f: S® — S™" an integer, called its"
degree. .
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Definition 7.4.1 Yoreachn » 0,leto, bea generator of A(S™ =
Z. Guen a map f: S"-» Sh, the degree of f, d(f), is defined by
Salon) = d(f)on.

Clearly d{f) does not depend on the choice of the generator a,;
and given two maps f,g: S*— S", we have d(fg) = d(f)d(g).
Moreover, homotopic maps have the same degree, so that d may be
regarded as a function from =,(S™) to Z.

Proposition 7.4.2 For n > 1, d: n(S")- > Z is a homomorphism.

Proof. let f,g: S® -» S™ be twn based waps, and consider
f-8=V{fV gp, wherep: S*— S" v S"isthe 'I{ -space map‘. Now
it is clear from a triangulation that B,(S" »» $™ ~ H,(S™) & H(S"),
and that (f v g2)u(x D) = fu(*) @ gx(¥), Vair y) = x + y. Also
pa(x) = x P x, since pp ~ pop =~ 1, where p., pp: S* v S*-> 5"
are the projection maps.

Hence

(J-8)s(0n) = Vu(f V £)apa{0)
= Vuf V Oxton " )
= V*(f*(fn (j.: g*qn)
= fu(0s) + Zeiera)s

so that d([f1[g]) = d[f] + dlg]. |

Corollary 7.4.3 For n = 1, d is onto.

Proof. 'The identity map of S*" has degree t. §
It remains to prove that d is also (1-1), anud for this two lemmas are
necessary.

Lemma7.44 Letf, g: X -> S™ be two maps, snd suppose that there
exists a non-empty open set U < S™, such that the sets f~*(s) and g=Xs)
coincide for all sc¢ U. Then f ~ g.

Proof. Let V be a non-empty open set such that I < U, and let
W=f"YV)=g"YV). Since S™-- I« §* - point, which is
homeomorphic to e, it follows that f[(X -- W) ~ g|{(X — W), by a
homotopy that corresponds under the homeomorphism to a linear
homotopy. In particular the homotopy is constant on (X — W) N
fY(U), and so can be fitted together with the constant homotopy on
W < f-3(U) to yield the required homotopy. |}

For the second lemma, let x and y be two points in R*, and let L be
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the straight-line segment joining them. Choose ¢ > U, and write
M={zeR"|d(z,L) < e, N={zeR"|d(z, L) = <} -ee log. 7.€.

Fig. 7.6

Lemma 745 There rasts a homeomorphisn h: M - M such
that h(x) = y and h(2) = z for all 5 € V.

Proof. Consider a line segment [ starting at x. 1t :s clear that [
meets NV at a unique point. z say, and that all points of | hetween &
and z lie in M. Thus points of M cats be expressed untguely in the
form Ax + (1 — A)s. where 0 € A < | and ¢ ¢ N, Sinalarly, points
can be uniquely expressed in the form Ay 4 (1 - A)z; define h by

h(Ax + (1 — A)z) = Ay ~ (1 A)z.

Then 4 is (1-1) and onto, and maps x to v, lcaving fixed points of N;
the proof that & and its inverse are continuous is left as an exercise
to the reader. |

Theorem 746 Forn > 1,dis(1-1).

Proof. This is proved by induction on n. The induction starts,
since d: my(S')— Z is an isomorphism: this is because ,(S?) is
known to be isomorphic to Z, and d 1s onto. Suppose, then, that the
theorem is true for n — 1, and consider a based map f: S* — S* of
degree 0. Since n > 2, S™ is n-simple, so that it is sufficient, by
Proposition 7.2.7, to show that f is homotopic to the constant map as an
unbased map. This is done by constructing a homotopy between f and
a map of the form Sg, whereg: $*~! - S»"1 is another map of degree
0 (we identify S(S™~!) with S™ as in Example 4.4.9).

Let N=(0,...,0,1) and S = (0,...,0, —1) bc the ‘north and
south poles’ of S*, respectively, and let S" and S" be the (open)
‘north and south.hemispheres’, defined by x,,, > 0 and x,,, < 0
respectively. Triangulate S” so that N and S are in the interiors of
n-simplexes. By the Simplicial Approximation Theorem, we may
assume that f is a simplicial map from some subdivision to this
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triangulation, in which case f~1(N) and f~1(S) are just finite sets of

points, say
f_l(N) = Pl, .. ',Pj,

S =q1-- 4

The first step is to alter f by a homotopy so that all the p’s are in
S% and all the ¢’s are in S™.. Now the standard map 8: (E*, S*~?) -»
(8% (—1,0,...,0)) can be modified in an obvious way to give a
homeomorphism ¢: S — S — " In e" each point ¢(p,) not in
#(S7) (and with p; # S) can be joined by a straight-line segment to a
point 7; in ¢(S%), and similarly the points ¢(g,) not in ¢(S™) may be
joined to points s; in ¢(S™). Moreover we may choose the points
7., 5, so that the line segments are all disjoint: for since only a finite
number of points is involved, there is a point x in ¢(S%) such that
each straight line through x meets at most one of the points ¢(p,),
¢(q); and the line segments may then be chosen to be segments of
lines through x: see Fig. 7.7.

Fig. 7.7

Since the line segments are compact, there exists € > 0 such that the
‘closed e-neighbourhoods’ of the line segments (in the sense of
Lemma 7.4.5) are also disjoint, and are still in . Hence, by Lemma
7.4.5, there exists a homeomorphism of e*, fixed outside these e-
neighbourhoods, sending each ¢(p,) to r, and each ¢(q,) to s,. This
homeomorphism may be transferred back to S* to give a homeomor-
phism k: §* — S™ that pushes each p; into S7. and each ¢, into .S™ (at
least if no p, is S: but otherwise the same technique can be used first
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to push p, away from S). Moreover, Lemma 7.4.4 shows that 2 ~ 1,
so that by replacing f by fh~* if necessary, we may assume that each
Py is in S% and each g, in ST.

The next step is to ‘straighten out’ f on S%. More precisely, define
fl Sll - Sﬂ by

. fl (ST st ‘)=f|(S"US" ),
AN + (1 = Qx) = AN + (1 — D)f(x) (xeS*"L,0<gAr<g )

(For the second line of the definition, we identify points of S* — S
with their images under ¢ in ¢?; certainly f(S*»~1) < S* — §.) Since
S% U S*! is compact, its image under f is a closed set that does not
contain S; hence there is an open set U containing S with f~}(U) <
St. It follows that f~}(x) = fr}(x) for all x € U, so that by Lemma
7.4.4 we have f ~ f,.

Next we straighten out f on S? as well, by defining f,: S" — S* by

fal(S3US™Y =f](Stusy,
Fo(AS + (1 = Ax) = AS + (1 — A)fy(x) (xeS*"L0< A1)

As before, fy~f; >~ f, and fy(N) = N, foS) =8, fo(S*"?) <=

— (N U 8). f5 is not quite a suspended map, but we can make it so
by moving the image of f3(S™~1) up or down meridians of S* until it
lies in S*~1. This gives a new map f;: S* — S*, which is homotopic
to f; by Corollary 2.2.4, and which is a suspension of a map
g: Sn-1 _*Su-l.

Since d(f) = 0, it follows from Theorem 4.4.10 that d(g) = O as
well. By the inductive hypothesis, this means that g is homotopic to
the constant map, and hence, by Corollary 6.2.19, f is homotopic to
the suspension of the constant map, which in turn is homotopic to the
constant map since it is not onto. J

To sum up, d: m,(S ") ~» Z is an isomorphism for all # > 1. This
result, apart from being important for calculation purposes, has Jnany
useful applications to the homotopy theory of spheres. Most of these
depend on the following result, which gives the degrees of some
standard homeomorphisms.

Proposmon 7417 Given a permutation p of 1,2,...,n, let
f: 8" — S"~1 be the homeomorphu\\deﬁnéd b Flxy, ... %) =
(%pc1ys « « s Xoqmy)- Then d(f) is +1 or ~cording as p s even or odd
Similarly, if g: S*=1 — S™"~1 is defined by

B(%y, X)) = (B i ey — Xy Xypypqgs ooy Xy

then d(g) = —
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Proof. 1Tt is clearly sufficient to consider S"~? instead of S"~!
when the result is immediate from Example 4.4.11. }

Corollary 7.4.8 Every homotopy equivalence of S™ is homotopic to
a homeomorphism. §

Example 749 Let 7: S™ A §"— S™ A S™ be the map that
exchanges the two factors. Then, if S™ A S™ and S* A S™ are
identified with S™** as in Proposition 6.2.15, r has degree (—1)™"
For clearly  corresponds to the homeomorphisimn of S™*" that sends

(xl» LS | xm+n+1) to (xh x»wa’ ve s Xmant 1 Xap oo oy xm+1)' '

Example 7.4.10 If f: S™ — S™is a based map,and fA1l: S*AS"
—> 8™ A S" is regarded as a map of S™**to itself, thend(f A 1) =
d(f). Because of the associativity of the reduced products of spheres, it
is sufficient to prove this in the case n = 1; but by Corcllary 6.2.19
and the following remark, there is a homotopy-commutative diagram

Sm+1 ..._s_{._y Sm+l

A : pi lp h
SmA St -}—ﬁ-’ S"A St
Thus d(f A 1), by which we really mean d(A~2(f A 1)h), is the same
as d(Sf) = d(f).
This technique also allows us to give a useful alternative description
of the homomorphism 8, in the >xact homotopy sequence of a pair.

Proposition 7.4.11 Let (X, Y) be a pair of spaces, with base point
x,€ Y. Define a function 8: n (X, Y)—> m,_(Y) by representing an
element of n (X, Y) by amap f: (I*, oI™, D*~*) - (X, Y, x,), restrict-
ing f to 81", and regarding this, via standard homeomorphisms, as a map
S*~1 . Y. Then 8 = (~1)"2,.

Proof. Via the standard homeomorphism [/ n s v 2y En we may
regard f as a based map (E", $""?)— (X, Y); and then 3[f] =
[/]Y]. On the other hand, 3,[f] is obtained by using k,_, ,: S*~* —
Sn-2 x E* U E* ! x 89 to restrict f further to E*~! x (—1), and
then taking the induced map E*~!;S"-2 — ¥, composed with 6-*:
S"-1 — En-1/8"-32 That is to say, 9[f] is 8,[f], composed with the
homotopy class of

Swli_'_.;':..i. Sn-2 x Fly En-? ,(lso ? > En-1/8n-2 e, Sn-1
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where p is the map that identifes S"~2 x E'U E""! x (+1) to a
point. Now it was noted after Proposition 6.2.16 that this composite
would have degree (—~1)*~1i p had identified E*~! x (—1)instead of
E*=1 x (+1) to a point: so this composite has degree (—1)" since
multiplication by —1 ¢t the last co-ordinate in S*~! is a map of
degree —1. Hence df] is 9,[f], composed with a map of S*~* of
degree (—~1)", and 50 & = (—1)"9,. |}

It is useful also to have a relative version of the results on degrees
of maps of S™.

Definition 7.4.12 Fors > 0, let &, be a generator bf H(E*, S*~?)
x Z. Given a map f:(E" S*~ ‘)-—->(E" St-1), the degree of f,
d(f), 1s defined by Jfu(5y) = d(f).6,

If (E®, S*-%) is identified with (I %, 2I") via standard homeomor-
phisms, the degree defines a function d: m,(E®, S* ) — 2.

Proposition 7.4.13 For n > 2, d is an isomorphism. Moreover, the
diagram

mo(E", S*1) 20 m,_(S"Y)
N e
z
ucommutatwe

Proof. Since E™ is contractible, = (E®) = wu_l(E ) = 0, i° that
3 is an isomorphism by Theorem 7.2,18. And since @ is defined by
restricting a map of (I™, &I*, D*~!) to a map of 2I", it follows from
Theorem 4.4.3 that the diagram is commutative; hence d: m (E*®, S*~1)
— Z is also an isomorphism. |

An obvious argument with the exact homotopy sequence shows that
in fact = (E* S*"!) o n,_,(S*"?) for all 7, so that we know
n(E", S*~1) for all r < n. The reader is warned, however, that
#{(E™, S"~1)and »(S*) are not necessarily zero forr > a: for example
73(S3) = Z (see Exercise 19). Indeed, the calculation of n,(S*") is one
of the most difficult problems of homotapy theory, and remains
_unsolved for general r and n (see the notes at the end of the chapter).

Example 7.4.14 The result on 7, (S*) can be combined with
Theorems 7.2.19 and 7.2.20 to give
m(S*" x SN~ ZP Z,
TSPV SN 2 ZD Z@min(S” x S S*V ST (n32) |
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The latter result is still somewhat unsatisfactory, since we do not
know =, ,,(S" x 8" S* v S*) (in fact it is zero). As was suggested
at the end of Section 7.2, we need a general theorem to the effect that
m(X, Y) = 0 in certain circumstances, at least if X and Y are CW-
complexes. This is the next theorem; and the method of proof will also
yield information on a certain non-vanishing relative homotopy group
as well.

Theorem 7.4.15 Let K be an n-dimensional CW-complex (n > 2),
and let L be a subcomplex that contains K»~*. Then

(@) n(K,L)=0,1<r <mn

(b) Let the indexing sets for K and L be A,, B, respectively, and let
&% be the characteristic maps. Then if (K, L) is relatively n-simple, the
homomorphism

$3: @ m(Ep, S37Y) —> m(K, L),

defined to be (¢2)q on each n,(E®, ST-1), is onto.

Note. Since (E™, S"~1) is relatively n-simple (by Example 7.2.14),
(¢™)s is defined even though 42 need not be a based map. In fact we
shall prove in Chapter 8 that ¢} is an isomorphism, so that m,(K, L)
is a free abelian group with one generator for each « € 4, — B,

Proof. For each e A, — B,, let U, be the open subspace
¢ix€ E™ | |x|l < 4} of K, and let V be the closed subspace
AL_JB ¢a{x € E™ | || < 4}: thus K — V is open. Also, write W, for

(K = V)N U,: see Fig. 7.8.

Fig. 7.8
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We shall show that any map f: (1", 8I") - (K, L) (r € ») can be
‘pushed off’ ¥, and hence pushed into L. This will prove (a), and an
extension of this method will prove (b).

Now I" can be regarded as the product of r copies of I. Since I is a
CW-complex with one 1-cell and two O-cells, Theorem 7.3.16 yi¢lds a
CW decomposition of I7, in which there is just one r-cell. Indeed, if
I is ‘subdivided’ by introducing a new 0-cell at 4, this has the effect of
subdividing I" into 2" hypercubes each of side 4, and the corresponding
CW decomposition has 27 r-cells: see Fig. 7.9 for the case r = 2.

X |

X)

Fig. 7.9

This process can be iterated: at the next stage we obtain a CW-
decomposition with 2% r-cells consisting of hypercubes of side 4, and
so on. Now we use an argument similar to that in the proof of-the
Simplicial Approximation Theorem: given a map f: (I", 9I") - (K, L)
(r < n), the sets f~3(K ~ V), f~(U,) form an open covering of I,
so that by Theorem 1.4.35 we can iterate the subdivision process until
I" is subdivided into a CW-complex M, say, in which each r-cell
(hypercube) is mapped by f into K — V or into one of the sets U,.
Notice also that 2I" is a subcomplex of M.
The next step is to construct a map g: M — K such that

(a) for each m-cell yF(E™) of M (m < n), fff(E™) <= K ~ V =
gIWA(E™) = fl(E™); otherwise fYR(E™) < Uy = gy3(E™) < Wo;

(b} f ~ grel 8I", and points of M that are mapped by f into U,
remain in U, throughout the homotopy.

This is done by induction on the skeletons of M, in the manner of
Theorem 7.3.19. Suppose then that g has been defined on M™~!?
(m < n), so as to satisfy (a) and (b) (it is easy to define g on M?, since
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each O-cell that is mapped by f into U, can be joined by a straight
line to a point of W,). Now consider an m-cell /2 E™) i M such that
MRE™ < U,; then fiff(S™ 1) < U, and gy (5™ ') - I ,. Since each
characteristic map of M is actually a homeomorphicm, gif(S™" 1)
represents an element of 7, _,(W,) = 0,since IV, ~ 8" ‘andm < n.
Thus g|¢7(S™ ) is homotopic to a constant map, aund hence can be
extended to a map g: YF(E™) — W. Morcover the onginal homotopy
between f and g on ¢F(S™"?) can be extended to i homotopy of

™(E™) in U, that starts with f and whose final mp s ¢ on $F(S™1);
and this final map is homotopic to g, rel $F(S™ ') by a linear homo-
topy. It follows that we can extend g to M™ so as still 1o satisfy (a) and
(b), by using this construction on m-cells mapped 010 sume U, and
by defining g = f(with the constant homotopy) on m-cclls mapped into
K — V, the resulting g (and homotopy) being contirucus bv Prop-
osition 7.3.4. By induction, therefore, g can be extendel to M* 7, the
extension to M™ (if r = n) being possible since (V1. " ‘1) has the
absolute homotopy extension property.

Since f ~ g rel oI", if f maps D' ~! to the base point. then [f] = [g]
in m(K, L). If r < n, [g] is the image under the inclhision map of an
element of m(K — V, L); but, as in Example 7 1 18, L 1s a strong
deformation retract of K — V, so that #(K ~ }, L) = 0 and hence
[f] = [g] = O. 1t follows that m(K, L) = 0 for r - n, so that at this
point the proof of (a) i1s complete.

To prove (b), note that we have proved tlu' cach element of
mo(K, L) can be represented by a map g: (I, ¢I*) (K, [), that maps
Mm-1to K — V and each n-cell of Mto K —~ V ur :o one U,, where
M is the CW-decomposition of 1™ obtained above. Now (K, K - V) ~
(K, L), so that, by Theorem 7.2.13(c), (K, K — V) is n-simple as
well as (K, L). Hence, by iteration of the comstruction i Example
7.2.17, [g] € m(K, K = V) is a sum of elements, each of which hes in
the image of the homomorphism induced by an inclusion map
(Ug, Wo) — (K, K — V). Since the deformation of K — " onto L
sends W, onto ¢%(S™~*), this proves that {g] € »,(K, L) ¢ 2 sum of
elements, each of which lies in the image of some (¢%),: m,(ED, St 1)
— m,(K, L). Hence [g] is in the image of ¢}, and ¢" is onto. |

Example 7.4.16 By Example 7.4.14, for n > 2 we have
7 (S"V SN2 Z@Z@m,,(S" x S",S" v SY).

Now S" is a CW-complex with one 0-cell and one n-cell, so that
S™ x S™ has one 0O-cell, two n-cells and one 2n-cell, moreover the
n-skeleton'(and indeed the (27 — 1)-ckeleton) s $* v S™. It follows
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from Theorem 7.4.15 that #,,,(S* x S8, S*v S") =0, and
m(S* v S") = Z @) Z. A similar argument shows that

T(S?V SN 2w (SP) Dma(SY) Rsn<p+qg-1).1

It follows that, for n > 2, there is only one homotopy class of
maps u: S"-»S" v S* that make S™ into an AH’I. For since
P~ pau~1, [n] must be 1Dl in ZAZxn,(S* Vv S*). It
follows that there is only one possible way of defining a group struc-
ture in =,(X), at least if m > 2 (for the case # = 1, see Chapter 6,
Exercise 9).

Various general results on homotopy groups of CW-complexes can
be deduced from Theorem 7.4.15.

Theorem 7.4.17 Let (K, L) be a CW-pair, and leti: K" U L - K
be the inclusion map (n > 0). Then

(a) iy: m(K" U L) > m(K) is onto Jor 0 <7 < nand (1-1) for
0 € r < n; similarly for i,: 7 (K* U L, L)—->1r,(K L);
(b) n(K,K*"UL) =0forl1 <r <m;

Proof. Consider the exact homotopy sequence of the pair
(Km+l Km) (m > O).

s (K™Y, K™ > m(K™) <> (K™ ¥1) —>

A K™+, K™) —>. -

where i: K™ — K™*! once again denotes the inclusion map. Now by
Theorem 7.4.15 n(K™*!, K™) = Ofor 1 < r < m, so that ¢,: »,(K™)
— m(K™*1) is onto for 1 < r < m and (1-1) for 1 < r < m. More-
over, since attaching cells clearly cannot increase the number of path-
components, i,: m(K™) — mo(K™*1) is always onto, and is (l-l) if
m> 0.

Hence i,: n(K") = 7 (K™) is isomorphic for » < n and onto for
r = n, for all m > n. But elements of #,(X) are represented by maps
of 87 to K, and since S” is compact the images must be contained in
finite skeletons. A similar argument applies to homotapies of ST in
K, so that ¢,: m(K") — #,(K) is isomorphic for r < 7 and onto for
r = n. To deduce the first part of (a), observe that » (K" U L)«
m (K" U L"**1)is an isomorphism for all 7 < n, and #,(K™ U L**1) —»
m(K"*1) is isomorphic if r < n, onto if r = n, by another application
of Theorem 7.4.15.

The exact sequence of the pair (K, K" U L) now gives (b), and then
the second part of (a) follows from the exact sequence of the triple
(K, K*VU L, L) |



298 HOMOTOPY GROUPS AND CW-COMPLEXES CH7

Theorem 7.4.17 may be expressed by the statement that m,(K, L)
depends only on the (# + 1)-skeleton of K, and so this result extends
Corollary 3.3.10, which was the case # = 1, K a polyhedron, and
L=g.

7.5 The theorem of J. H. C. Whitehead and the Cellular
Approximation Theorem

The maln theorem in this section is the theorem of J. H. C. White-
head, that states that if f: K — L is a map of CW-complexes that
induces isomorphisms f,: m(K) — m(L) for all r > 0, then f is a
homotopy equivalence. It is convenient to have a special name for
maps that induce isomorphisms of homotopy groups.

Definition 7.5.1 If X and Y are any spaces, amap f: X — Y is
called a weak homotopy equivalence if fy: wo(X) — mo(Y) is a (1-1)-
correspondence, and f,: m(X, x,) = m(Y, f(x,)) is an isomorphism
for all » > 1 and all points x, € X.

Of course, if X and Y are path-connected, it is sufficient that
fo: 7 X, x0) = m,(Y, f(x,)) should be an isomorphism for all 7 > 1
and just one point x, € X.

Clearly every homotopy equivalence is a weak homotopy equivalence,
and Whitehead’s theorem states that the converse is true, provided X
and Y are CW-complexes. The method of proof is to investigate
first the special case in which f is an inclusion map, and then to deduce
the general result by using the mapping cylinder. We start by proving
a general result about inclusion maps that are weak homotopy
equivalences. '

Theorem 7.5.2 Let (X, Y) be a pair of spaces, such that the
inclusion map i: Y — X is a weak homotopy equivalence. Let K be a
CW-complex, with a O-cell as base point. Then for any choice of base
pointin Y, i,: [K, Y] — [K, X] is a (1-1)-correspondence.

Proof. We show first that 7, is onto. Suppose, then, that we have a
baseggmap f: K — X; we shall show by induction on the skeletons of
K that f can be deformed into Y. The argument is similar to that of
Theorem 7.3.19 (indeed, it is a generalization of that argument): f is
regarded asamap of K x Oto X, andis extendedtoamapf: K x I —
X, such that f(K x 1) © Y, and if L is any subcomplex of K that is
mapped by f into Y, then f(L x I) € Y: thus in particular the
homotopy is a based homotopy.
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Given such a subcomplex L, write M® = K* U L, and extend f as
the constant homotopy to (K x 0) U (L x I). If x is any O-cell of
K — L, there is a path u: I — X such that ¥(0) = f(x) and #(1) e Y;
thus we can extend f to M° x I by setting f(x,¢) = u(2), 0 < t € 1.
This serves to start the induction; so we may now assume that f has
been extended to a map f: (K x 0) U (M*~! x I)—» X, such that
f(M™-t x 1) = Y. For each n-cell $3(E™) of K — L, consider the
composite

(B x 0) U (S™! x T) 2L (K x 0)u (M=~ x I) -1 X,

which sends $*-! x 1 to Y. Define a homeomorphism & of E* x I
to itself by -

h(x, 0) = (x/2, 0) (xeE™),

h(x, t) = (K1 + 9, 0) (xeS"-1,0 € ¢ < 1),
h(x, 1) = («/}=l, 2 — 2]=]) (x€ E™ =] > 4),
h(x, 1) = (2%, 1) (xe E®, |«| <. 4)

extending the definition inside E® x I by regarding the-inside as the
join of (E®* x 0) U (S*"! x I) U (E™ x 1) to (0, }) (we are, as it
were, pulling §*~! x I down into E* x 0: s¢e Fig. 7.10).

- H ’ h
S$'x7 GE—
_—T - \ T

VaR . —
E™0 N TN »

Fig. 7.10

The point of this definition is that f(¢2 x 1)k~!is a map of (E*, S*~1)
to (X, Y), which therefore represents an element of »,(X, Y), with
some base point. But by the exact homotopy sequence m,(X, Y} = 0;
thus f(¢2 x 1)A~? can be extended to a map of E® x [ that sends
E™ x 1 and S*-* x I to Y. Hence, by applying h again, f(¢2 x 1)
can be extended to a map of E® x I that sends E® x 1to Y. As in
Theorem 7.3.19, this process defines a continuous extension
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f1 (K x 0)U(M*® x I) - X such that f(M" x 1) < Y; and hence
a continuous extension f: K x I—» X such that f(K x 1) < Y. It
follows that 7, : [K, Y] — [K, X ] is onto.

It is easy to deduce that ¢, is also (1-1). For suppose f,g: K— Y
are based maps such that if ~ ig by a based hometopy F: K x I — X.
Since K x I is a CW-complex and (K x 0) U (k, x I) U (K x I)
is a subcomplex, F can be deformed to a map G: K x I — Y such
that G coincides with F on (K x 0) U (k x /) U (K x 1). That is,
G is a based homotopy between f and g. |

The above #s a generalization of Theorem 7.3.19, for we could
apply it to the inclysion map #: (K x O)U(L x I) > K x I to
obtain a retraction K x I — (K x 0V U (L x I).

It is easy to extend Theorem 7.5.2 to an arbitrary weak homotopy
equivalence, by using the mapping cylinder.

Corollary 7.5.3 Given a weak homotopy equivalence f: Y — X, and
a CW-complex K, fo:[K, Y]— [K, X] is a (1-1)-correspondence
(where K has a Q-cell as base point, and Y, X have any base points that
correspond under f).

Proof. By Theorem 6.5.5, f is the composite
Y2 M, s X,

where M, is the mapping cylinder, g is an inclusion map, and 4 is a
homotopy equivalence. Since both f and 4 are weak homotopy
equivalences, so is g; hence g,: [K, Y] — [K, M,] is a (1-1)-corre-
spondence. But £, is obviously a (1-1)-correspondence, and hence so
is fo = hygy. |

Whitehead’s theorem follows immediately.

Theorem 7.5.4 If f: K— L is a weak homotopy equivalence of
CW-complexes, f is a homotopy equivalence.

Proof. By Corollary 7.5.3, f,: [L, K] —[L, L] is a (1-1)-corre-
spondence, so that there exists a map g: L — K such that fg ~ 1,.
Then g is also a2 weak homotopy equivalence, so by a similar argument
there exists f': K — L such that gf’ ~ 1;. But then

F=0f =&~/
so that gf > 14 as well, and so g is a homotopy inverse to f. }
The reader should not be tempted to think that erery weak homo-
topy equivalence is a homotopy equivalence: the assumption that K
and L are CW-complexes is essential in ‘Theoren: 7.5.4.
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Example 7.5.5 Let X be the subspace of R? consisting of straight
line segments joining (0, 1) to the points (0, 0) and (1/n, 0), for all
positive integers n, and (0, — 1) to all the points (0, 0) and (—1/x, 0):
see Fig. 7.11.

(o,

Fig. 7.11

We shall see that #,(X) = 0 for all # > 0, but that X is not
contractible. Thus the map that sends all of X to (0, 0) is a weak
homotopy equivalence that is not a homotopy equivalence. To prove
the first assertion, take an open covering of X by three open sets
A, B, C, defined by x3 > 4, 4 > x3 > — %, —4 > x; respectively.
Then if f: S® — X is any map, the sets f ~1(4), f~YB), f~}(C) form
an open covering of 8", with Lebesgue number 8, say. If S* is
triangulated so that the mesh is less than §, only a finite number of
simplexes are mapped into B, and since the image of each is path-
connected, it follows that f(S*) N B is contained in a finite number
of ‘rays’ from (0, 1) or (0, —1). That is, f(.S™) is contained in Y, the
union of 4 and C with a finite number of rays. Since it is easy to see
that Y is contractible, this means that f is homotopic to the constant
map in Y, so certainly in X. Hence m(X) = 0.

On the other hand X is not contractible For if it were, there would
be a map f: X x I — X starting with the identity map and ending
with the constant map to some point x, € X. Since I is compact, the
continuity of f implies that, given x € X and € > 0, there exists &
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such that d(x,y) < 8 = d(f(x, 1), f(¥, 1)) <-e for all tel But for
each integer n > 0, the homotopy f defines paths 4* and «~ from
(1/n,0), (—1/n, 0) to %, respectively. Subdivide I (considered as a
1-simplex) so that each simplex of the subdivision is mapped by each
of #* and u~ into just one of the sets 4, B or C. Since (1/n, 0) and
(—1/n, 0) are in different path components of B, there is.a first vertex
t such that either u*(¢t) € 4 or u~(t) € C; if say, u*(t) € 4, then u~(2)
lies in the region x; < 0. Hence d(u*(¢), u~(2)) > 4, which contradicts
the continuity of f, since if we take x = (0,0) and e = }, there is
always an n such that 2/n < §, for any 3. || !

The last important theorem in this chapter is the Cellular Approxi-
mation Theorem, which in a sense is the analogue for CW-complexes
of the Simplicial Approximation Theorem for simplicial complexes.
The theorem states that, if f: K — L is a map between CW-com-
plexes, then f is homotopic to a map that sends the n-skeleton of X
into the n-skeleton of E, for each #.

Definition 7.5.6 If K and L are CW-complexes, a map f: K — L
such that f(K") < L" for each n > 0 is called a cellular map.

, Theorem 7.5.7 If K and L are CW-complexes, and fiK—>Lisa

map such that f|M is cellular for some subcomplex M of K (possibly
empty), then there exists a cellular map g: K — L .mch that g|M = fIM
and g ~ frel M.

Proof. 'This is very similar to Theorem 7.5.2: by induction on the
skeletons of K, we define a homotopy F: K x I— L that starts with
f, ends with a cellular map, and is the constant homotopy on M x I.
Since, for each 0-cell x of K — M, there is a path in L from f(x) to a
point of L®, we can certainly define F on K° x I U M x I. Suppose,
then, that F has been extended to K*~! x I,and that F(K*~! x 1) <
L*-1, Just as in Theorem 7.5.2, F can be extended to each n-cell of
K — M, since #,(L, L*) = 0 by Theorem 7.4.17; and the result is a
continuous extension such that F(K* x 1) € L® This completes the
inductive step, and so gives the required homotopy F: K x I — L. |}

The Cellular Approximation Theorem is particularly useful in view
of the fact that the space obtained by attaching cells by cellular maps
to a CW-complex is another CW-complex (this follows easily from
Theorem 7.3.12). It is thus possible to make alterations in the homo-
topy groups of CW-complexes: an element of 7,(K') can be represented
by a cellular map f: S® — K, and this map can be used to attach an
(n + 1)-cell to K, to form a new CW-complex K’ in which [f] is
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‘killed off’. This idea is formalized in the last two theorems of this
chapter.

-

Theorem 7.5.8 Given a CW-complex K and an integer n > 0, there
exists a CW-complex L, having K as a subcomplex, such that, if
i: K — L is the inclusion map,

(3) iy: 7(K) — n(L) ts isomorphic for r < n;
(b) ma(L) = 0.

Proof. Let A be a set of generators for the group m(K) (for
example, the set of all elements of m,(K)). For each « € A4, take a
representative (based) map ¢%: S* — K, which by Theorem 7.5.7 may
be assumed to be cellular. Let L be the space obtained from K by
attaching cells E2*! by the maps ¢2, one for each a € 4.

Then L is a CW-complex: for by Theorem 7.3.12 K is a ceilular
space, and hence so is L, since the maps ¢? send S* into K*®. Also
K is obviously a subcomplex of L. Moreover by Theorem 7.4.17(a)
ig: W(K) = w(L* U K) —>7,(L) is 1somorphlc for r < n, and onto
for r = n. But for egch « € 4, iy(x) € 7,(L) is represented by the map
ign: S*— L; and this is clearly homotopic to the constant map, since
L has an (s + 1)-cell attached by ¢2. Hence m,(L) = 0. |

This process can be iterated, so as to ‘kill off’ n(K) for allr > n.

Theorem 7.5.9 Given a CW-complex K and an integer n > 0,
there exists a CW-complex L, having K as a subcomplex, such that, if
i: K — L is the inclusion map,

(@) 4y #(K) — (L) is ssomorphic for r < n;
(b) (L) = 0 for r > n.

Proof. By repeated applications of Theorem 7.5.8, there is a
sequence of CW-complexes K = L, = L, < . .., each a subcomplex
of the next, such that for each m > 1, if 5: K — L, is the inclusion
map, . '

(a) 44* m(K) — n(L,,) is isomorphic for r < n, and
(b) n(Ly) = Oformn <r < n+ m.

Let L = U L, (as a point set), topologized by the rule: X < L is

closed if and only if XN L, is closed in L, for each m > 1.”This
certainly is a topology, and L is a CW-complex by Theorem 7.3.12.
Moreover each L, and K, is a subcomplex of L.

To prove (a) and (b), note that, given any r, i,: m(L'*?) -—>-n',(L)
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is an isomorphism. But L'*! is the (r + 1)-skeleton of each L, for
whichn + m > r,sothats,: m(L"*!) — =(L,)is also an isomorphism
for such m. Hence i,: m(L,) -> n,(L) is an isomorphism, and (a) and
(b) are now immediate.

Example 7.5.10 We have already proved that

mao O T<n
”’(b)={2, r=n

It follows from Theorem 7.5.9 that there exists a CW-complex K such
that 7n(K) = 0 for r # n, and #,(K} = Z. Such a CW-complex is
called an Ejslenberg- MacLane space K(Z, n): we shall see in Chapter 8
that these spaces are important in the cohomology theory of CW-
complexes. [

EXERCISES

1. Let X and ¥ be path-connected spaces with base points x,, y,, and
suppose that (X, x,) has the absolute homotopy extension property.
Show thata path #in Y from y, 1o y, gives rise to a (1-1)-correspondence
ug: [X, Y]o—[X, Y], (where [X, Y], denotes [X, Y] with base,
points x,, y, respectively), with the following properties.

(a) Ifu=~ vrel 0, 1, then y = vy
(b) (ey,)¢ is the identity function.
(c) If wis a path from y; to y,, then (¥.w)y = wyuy.
(@) If £; Y — Z is a map such that f(y,) = 2, and f(y,) = 2, then
Sorp = (fu)efo: [X, Y], — [X, Z],.
(e) If X is an AH'I, uy is an isomorphism.
Deduice that, if f in (d) is a homotopy equivalence (as an unbased
map), then f: [X, Y], — [X, Z], is a (1-1)-correspondence.

2, Let 2,(X) be the subgroup of %,(X) genereted by all elements of the
form x — upx, where [¢] € m,(X) (if # = 1, this is to be interpreted as
x.(uyx)~'). Show that £,(X) is a normal subgroup of 7,(X). If X is
path-connected, and 7%(X) denotes w, (X)/R2,(X), show that a homo-
topy class of (unbased) maps f: S* — X defines a unique element of
n5(X), and that a map g: X — Y between path-connected spaces gives
rise to a homomorphism g, : 7¥(X) - n¥(Y).

3. Given elements x, y € 7,(X, Y), prove that [A,x]yy = x~'yx. (Hint
represent x and y by based maps f, 2: (E2, S') — (X, Y) such that fi
the constant map on x; > 0 and g is the constant map on x; < G
consider the effect of rotating E? through an angie #.) Deduce that
(X, Y) is relatively 2-simple if ny(X, Y) is abelian and é,=,(Y) = 0.



EXERCISES 305

4. Let 2,(X, Y) be the subgroup of #,(X, Y) gencrated by eclements of
the form x — uyx, where [u] € »,(Y). Show that Q,(X, Y) is a normal
subgroup of m,(X, Y¥). If Y is path-connected, and #%(X, Y) denotes
mo(X, Y)/2,(X, Y), show that a homotopy class of maps f: (I*, o1 Y~
(X, Y) defines a unique element of #%(X, Y), and that the product of
two such elements may be obtained as in Proposition 7.2.15.

Show that a map g: (X, Y) — (Z, W) gives rise to a homomorphism
Bu' 74X, Y) > n%(Z, W) (n > 2), and that there are homomorphmms
Ju: 7 (X) > w‘(X Y) (if n((X,Y)=0), 3. w‘(X Y)— n2 (Y),
such that £,5, = 0, 94y = 0 and 1,0, =

5. Let (X, Y) be a pair of spaces. Deduce the followmg results from the
exact homotopy sequence of (X, Y).

(a) If Y is a retract of X, ther 7 (X) & my(Y) @ my(X, Y) (n > 2).
(b) If 15 is homotopic to a map of X into Y, then

(YY) = 7y (X) @ me4s(X, V) (=>2
(c) If i: Y — X is homotopic to the constant map, then
WX, Y) 2 m(X)®m-oY) (=23)
(All maps and homotopies are assumed to be based.)
6. Let X be an AH'I and Y, Z be any spaces. Prove that

X, Y x Z] 2 [X,Y]D[X, Z].
7. Let X be a commutative AH’I. Prove that
[X, Y v Z] ‘; [Xv Y]@[X, Z]@[Xv L(]:

where L, is the mapping path-space of the inclusion map Y v Z —
Y x Z. Show also that [X, L] is in (1-1)~correspondence with homo-
topy classes of based maps (X A L, X A 0)>(Y x Z,Y v 2).

8. If F denotes the real numbers R, the complex numbers C or the
quaternions H, F-projective space of dimension #, FP*, is defined to be
the space (F**! — 0)/S, where S is the equivalence relation given by
xSy <> x = fy, for some f e F. FP*is gwen the identification topology,
and the equivalence class of (fy, . . - fa+1) is Written [fy, .. ., fus1]:

By writing points of E#in the form (%1,. ., %y 7), where0 < r < 1
and #,,..., 3, are complex numbers such that |%,|2 +-- - + |2,|® =
1 — 7, prove that CP* is homeomorphic to the space obtained from
E?* by identifying points of $3*-! that are mapped to the same point
under p: S¥-! . CP*-!, where p is defined by p(3y,...,8,) =
[31) .. -, %3], Deduce that CP* is 2 CW-complex with one cell in each
dxmensxon 0,2...,2n

Similarly, show that HP*® is a CW-complex thh one cell in each
dimension 0, 4, .. ., 4n.

9. Prove that 2 CW-complex is normal.
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10. Let K be a CW-complex with a finite number of cells. Use Theorem
7.3.12 and the Simplicial Approximation Theorem to show that K has
the homotopy type of a polyhedron. Deduce that = (K v L) =
my(K) * my(L) for any CW-complexes K and L.

11, A Hausdorff space K is said to be (infinitely) triangulated if, for each
n > 0, there exists an indexing set 4, and an n-simplex o,, and maps
#3: 0, — K for each « € 4,, with the following properties.

(a) K = {J ¢i(oy,), for all # > 0 and « € 4,.

(b) Each ¢3 is (1-1).

(c) Given a face 7, of o,, there exists a simplicial homeomorphism
¥y: 0, = 7y such that, given « € 4,, there exists 8 € 4, with ¢ = ¢3,.
(d) ¢3(0,) N $3(op) is either empty, or is ¢2(a;,) for some p and y € 4,
In the latter case, there exist faces r of o,, u of on, such that ¢ =
$a: = 5.

(e) A subset X of K is closed if and only if (43)~ X is closed in a,, for
each n and ¢ € 4,,.

Prove that any space homeomorphic to a polyhedron is a triangulated
space, and that any triangulated space is a CW-complex.

12, Prove the analogue of the Simplicial Approximation Theorem for
maps of a (compact) polyhedron into a triangulated space. Deduce that
any CW-complex is homotopy-equivalent to a triangulated space.
Show also that a CW-complex with a countable number of cells has
countable homotopy groups.

13. Let U be an open set in R". Show that U is a triangulated space, and
hence is a CW-complex. (Hint: divide R* into hypercubes of unit side,
and triangulate each. For each m > 0, pick the simplexes of the mth
derived complex that are contained in U, and observe that, since the
mesh tends to zero as m — 00, each point of U is contained in at least
one simplex. The resulting collection of simplexes is not a triangulation,
but may be made so by subdivision.)

14. By using an argument similar to that in Theorem 7.3.12, show that a
CW-complex is locally contractible, that is, given a point x and an open
set U containing x, there exists a contractible open set ¥ such that
xe V < U. Deduce that a CW-complex is locally path-connected and
weakly locally simply-connected, in the sense of Chapter 6, Exercises
23 and 25.

15. Let K be a CW-complex, and let K be its universa! cover, with covering

map f: K — K (see Chapter 6, Exercise 25). Prove that K is also a
CW-complex. (Hint: given a characteristic map ¢2: E® — K, a point
x € $2(e™) and a point % such that f(¥) = x, there is a unique map
$u: E® — K such that # € §(e") and &2 = 42. Show that the set of all

such 7 is a set of characteristic maps for a CW-decomposition of K.)
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Let K be an n-dimensional CW-complex, and let L be a subcomplex
that contains K*~! (n > 2). Let the indexing sets for X and L be
A, B, respectxvely, and let ¢} be the characteristic maps. Prove that
¢, n,(E §$3-1) > n¥(K, L) is onto.

Let f.X—-> Y be a map such that f,: mo(X) > 7o(Y) is a (1-1)-
correspondence, and f,: m (X, x) = 7Y, f(¥,)) is an isomorphism
for r < n «nd is onto for r = n, for all points x, € X. Show that, for
any CW-complex K, f,: [K, X]—[K, Y] is a (1-1)-correspondence
if dim K < n, and is onto if dim K = n.

Let K be a CW-complex, and let # be any positive integer. Show that
there exists a space X and a map f: X — K such that

(a) 7(X) =0forr < n;

(b) fe: m(X) — w(K) is isomorphic for r > n

Define f: S® — RP" by f(%y, . . ., Xpn+1) = [*1, . . ., ¥p41]; show that fis
a local product, with fibre S°. Deduce that RP™ has the same homo-
topy groups as S*, except for m (RP™) > Z, (n > 1).

Similarly, show that there are local products §3**! — CP*, with
fibre S, and S *3 » HP* with fibre S3. Deduce that =,(CP*) -
w,(S2"*1) (except that my(CP") =~ Z), and that n,(HP®) & #(S***3) ®
- 1(S?).

Hence prove that #(S?%) zz n(S?), r > 3 and that =(S*%) ~
"r(S ) @D =, - I(Ss) ‘
Let G be a topological group (see Chapter 3, Exercise 10), and consider
the map p: G x G x I—> G x I defined by p(g, h, t) = (gh, t). Show”
that p induces a local product ¢: G * G —» SG with fibre G, provided G
is locally compact and Hausdorff. (Hint: consider the open sets in SG -
corresponding to G x [0, 1) and G x (0, 1].) By considering S* and
S32 as complex numbers and quaternions of unit modulus, respectively,
show that S! and S? are topological groups. Hence, once again, deduce
the existence of local products S3 — S?, with fibre S?, and S7 — S,
with fibre S3.

Let G be a topological group, except that the associative law is weakened
to: (gh)h~! = g, for all g, he G. Show that, provided G is locally
compact and Hausdorff, ¢: G * G — SG is still a local product, with
fibre G.

The Cayley numbers are, as an additive group, the directsum H@® H
of two copies of the quaternions, and multiplication is defined by
(hy, h3). (ky, ky) = (hyky — Ryhy, Rahy + hgk,). The conjugate of (h,, h3)
is (hy, hy) = (hy, —hg): show that (hy, h3).(Ry, b)) = (|Ay|2 + |As)3, 0)
and is (0, 0) if and only if (k,, A3) = (0, 0). Hence define the modulus
|(Ryy B3)] = (|h1|® + |h2|?)*2, and prove that the Cayley numbers of
unit modulus form a group under multiplication, except that, the
associative law is weakened as above.
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By identifying S7 with this ‘group’, show that there is a local prodauct

S5 .» S8 with fibre S7, Deduge that
m{S%) = m(S**) @ m,_:(S7).

22. Let G be 1 topological.group, and let K = H be closed subgroups (that
is, subgroups that are closed subspaces). Write G/H for the set of left
cosets gH, topologized so that the quotient function p: G — G/H is an
identification map.

'The map p is said to have a local cross-section if there exists an open
neighbourhoud U of the point (H) in G/H and a map f: U — G such
that gf = 1,. Prove that, if p has a local cross-section, then the identi-
fication map ¢: G/K — G/H is a local product, with fibre H/K. (Hint:
consider the open covering of G/H by open sets gU, for all g € G, and
define ¢: gl/ x H/K — ¢~} gU) by ¢(x, ) = g.f(g 'x).5.)

22. The orthogcnal group O(n) is the group of real (r » n) matrices A such
that 44" = I, topolegized as a subspace of R*. Show that O(n) is
a topological group, and that if O(n — 1) is regarded as the subgroup
of matrices (a;) such that a,, = 1, &4, = a,; = 0 otherwise, then
O(n — 1) is a closed subgroup.

By identifying left cosets of O(n — 1) with the last column of a
representative matrix in O(n), show that O(s)/O(n — 1) is homeo-
morphic to S"~1, Show also that the identification map p: O(n) —
S"-! has a local cross-section, by the following method. Given
(%3000, %) € S 1, with x, # 1, regard (*1, . - ., %,) 28 2 column vector
x; let e, be the column vector with 1 in the rth place and 0’s elsewhere,
and define

j',-e—(x,/l+x,‘)(x+e,‘) l<sr<n-1
Ja =%
now prove that f(x} = (f}, ..., j") defines a local cross-section.

Deduce that the following identification maps are local products.
{a) p: O(n) — S*~*, with fibre O(n — 1).

(b) p: SO(n) - S*~ ‘ with fibre SO(n — 1), where SO(n) is the sub-
group of O(n) of matnces with determinant 1.

(€) p: Vys—> S*1, with fibre V,,_; ., where V,, . = O(n)/O(n —~ k)
(this space is called a Stiefel manifold).

Finally, show that #n(O(n)) ~ »(O(n + l)) for r <n -1, with
similar isomorphisms involving SO(r) and V.

24. Consider S? as the topological group of quaternions of unit modulus,
and regard S? as the subspace consisting of quaternions of the form
(0, b, ¢, d). Show that, for each x € $3, the map .

y—>x.y.x7!
is a linear map that sends S?2 into itself. Deduce that there is a map
h: S3 — SO(3), that induces a homeomorphism between RP® and
SO(3). Hence prove that m(SO(n)) = Z;, my(SO(n)) = 0, n > 3.
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25. The unitary group U(n) is' the group of complex (n x n) matrices A
such that A4’ = 1, and the symplectic group Sp(n) is similarly defined,
but using the quaternions. Show that U(n) and Sp(n) are topological
groups, and that there are lecal products U(n) — S2*- :, with fibre -
U(n —~ 1), and Sp(n) — S*~1, witk fibre Sp(n — 1). If SU(n) is the
subgroup of U'(n) of matrices with determinant 1, show also that there
is a local product SU(n) — S2"~1, with fibre SU(n — 1).

Deduce that #,(U(n)) = ».(U(n + 1)) and #(SU(n)) = n{SU(n + 1))
for r < 2n, and that #.(Sp(n)) = = (Sp(n + 1)) for r < 4n + 2. Show
also that m(U(n)) = Z, ny(U(n)) = 0 and nx{U(n)) = Z, for n 2 2,
and that 7,(Sp(n)) = my(Sp(n)) = 0 and my(Sp(n)) ¢ Z, forn > 1.

26. Given elements « € 7, ,(S*), B €, .(S?), show that the Whitehead
product [«, B} is zero if either a or B is in the image of p,: 7, (SO + 1))
— m(S™), where p is as in Exercise 23 (in this question, (0,...,0, 1)
is taken as the base point of S"). Deduce that if the inclusion map
1: SO(n) — SO(n + 1) induces a monomorphism z,: m,,,_1(SO(n)) —
Tnsr-1(SO(m + 1)), then [e, B} = [B, «] = O for all « € m,,,(S™) and

- all B whatever.

Establish similar results usmg SU(n) and Sp(n) in place of SO(n),
and also deduce that [«, B] = O for all &, B € 7,(S?), except when « and
B are both in 7,(S2). ‘

NOTES ON CHAPTER 7

CW-complexes. The original definition, and most of the theorems of
Section 7.3 (also Exercises 9 and 15) are the work of J. H. C. Whitehead
[160]. In particular, Whitehead first proved Theorem 7.3.16(a), although
(b) is due to Milnor [104]; for an example of two CW-complexes whose
product is not a CW-complex, see Dowker [48]. The product K X L was
first considered by Spanier [129], though see also Kelley [85], Chapter 7,
and R. Brown [32].

Various other constructions can be performed with CW-complexes to
yield spaces that have at least the homotopy type of CW-complexes. For
example, Milnor {104] proves that K x L and K¢ have the homotop§' type
of CW-complexes for all CW-complexes K, L ard all cempact Hausdorff
spaces C, and Stasheff [133] proves that, if f: E — B is a fibre map and B is
a CW-complex, then E is homotopy-equivalent to a CW-camplex if and
only if the same is true of the fibre. The special case of this result in which
f is a covering map was established earlier by Whitehead [160]: indeed, in
this case E actually is a CW-complex (¢f. Exercise 15).

Although clearly not every space is a CW-complex, it is sufficient for
many purposes to consider only CW-complexes rather than arbitrary
topological spaces. For, by a theorem of J. H. C. Whitehead [161}, given
any space X, there exists a CW-complex K and a weak homotopy equivalence
[ K-> X
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Calculation theorems, The result that m,(S*) @ Z is due to Brouwer
[25] and Hopf [66], 1nd Theorem 7.4.15 to J. H. C. Whitehead [156].

Section 7.5. Like much of the rest of this chapter, this is largely the work
of J. H. C. Whitehead: Theotem 7.5.4 and 7.5.7 first appeared in [160], and
Theorem 7.5.8 in [156].

The Hopf fibrings. The local products §* — S3, with fibre S, §7 — S,
with fibre S3, and S'% -» §%, with fibre $7, discussed in Exercises 20 and 21,
were first discovered by Hopt {69, 70]. It might be supposed that these
were but the first of a series of Incal products S#**'~! — $2* with fibre
S§2" -1, but the result of Adaws [2), mentioned in the notes o1 Chapter 6,
shows that such local products exist only in the cases n = 1, 2 and 3.

Topological groups, local cress-sections, and homotopy groups. (Exerciscs
22-25.) For more details of these topics, see Steenrod {137]. The map
p: G — G/H, considered in Exercise 22, nearly always has a local cross-
section: this is proved by Chevaliey {40)], Chapter 4, in the case where Gis a
Lie group, and in a more general situation by Mostert [108].

Many of the homotopy groups of the topological groups considered in
Exercises 23-25 are known. For the groups 7 (O(n)) (r < n — 1), m(U(n))
{r < 2n) and #(Sp(n)) (r < 4n + 2), see Bott {22]; many of the grcups
outside these ranges of dimensions have been calculated by Barratt and
Mahowald [20]. The closcly related homotopy groups of Stiefel aanifolds
have been investigated by Paechter [113].

Whitehead products. Exercise 26 is due to S, Thomeier.

Suggestions for further reading. One of the most important (and as yet
unsolved) problems of homotopy theory is the calculation of the groups
7{S™). There are two main lines of anack: the first is based on the EHP
sequence of G. W. Whitehead [154] and has been exploited most fully by
Toda [145]; the second attempts to calculatz #,(S™) only for r < 2z — 1
(when, by a theorem of Freudenthal [59], the groups depend only onr — #),
and uses an algebraic machine known as the Adams spectral sequence
(see Adams [1, 5]). Much work has been done on the latter method: see
for example May [101, 102}, Maunder [97, 98], Mahowald [93], and Maho-
wald and Tangora [95]. An attempt has been made to extend the Adams
spectral sequence outside the range of dimensions r < 2n—1(see [23, 121]);
this method also generalizes the EHP sequence.

A related problem is the determination of the image of the J-homo-
morphism J: n(SO(n)) — =, , (S™) (for the definition, see G. W. White-
head [152]). This problem has been almost completely solved by Adams
[4] (see also Mahowald [94]).



CHAPTER 8

HOMOLOGY AND COHOMOLOGY OF
CW-COMPLEXES

8.1 Introduction

This final chapter is concerned with various topics in the homology
and cohomology theory of CW-complexes. We start by showing, in
Section 8.2, that the homology and cohomology groups can be cal-
culated directly from the cellular structure, using the cells in the same
way that the simplexes are used in the simplicial homology groups of a
polyhedron. This is the important basic result of this chapter, and in
particular we shall see in Section 8.3 that it leads to a straightforward
proof (for CW-complexes) of the theorem of Hurewicz that relates
homotopy and homology groups.

In Section 8.4 we shall see how cohomology theory fits into the
general scheme of Chapter 6. This will be done by showing that the
cohomology groups of a CW-complex can be identified with the groups
of homotopy classes of maps into Eilenberg~MacLane spaces; thus
cohomology groups are ‘dual’ to homotopy groups, at least tor CW-
complexes. We shall also investigate more general ‘cohomolongy
theories’, obtained by replacing the Eilenberg-Macil.ane spaces by
other spaces. :

Finally, in Section 8.5 cohomology theory will be sharpened by
introducing a ring structure. As in the case of the Hurewicz theorem,
it 1s possible to carry out the work for arbitrary spaces, but we shall
confine our attention to CW-complexes, since the results of Section
8.2 will then greatly simplify the proofs.

8.2 The Excision Theorem and cellular homology

The chief aim of this section is to generalize to CW-complexes the
result of Chapter 4 that H {|K|) >~ H(C(K)) for « simplicial cumplex
K. It would be tempting to try to do so by the method of Section 4.3,
that is, by showing first that the homology of a CW-complex K can be
calculated from a subchain complex 4(K) of S(K), generated by the
cellular maps from 4, to K, and secondly by taking a quotient of 4(K)
whose generators are in (1-1)-correspondence with the cells of K.

21—AT. 311



312 HOMOLOGY AND COHOMOLOGY OF CW-COMPLEXES CH 8

Now it is fairly easy to carry out the first of these steps, by using the
Cellular Approximation Theorem in place of the Simplicial Approxi-
mation Theorem in the arguments of Section 4.3; but the secend step
would be much more difficult, because there is no coherent way of
identifying the characteristic maps ¢2: E™ — K with cellular maps
of 4,.

Because of these difficulties, we shall not pursue this line of attack.
However, it is possible to establish the result we want by a different
approach, based on the proof of Theorem 4.4.14: 1t will be proved that
the homology groups of a CW-complex K can be calculated from a
chain complex C in which C, = H, (K", K*~1), and that C,, is a free
abelian group whose generators are in (1-1)-correspondence with the
n-cells of K. To make this argument work, it will be necessary to
know H (K™ Km"~1), and to this end we shall prove that H (K, L) =
H,(K/L) for any CW-pair (K, L): since by Example 7.3.15 K"/K"~1
is a one-point union of S™s, this will suffice to calculate H (K™, K"~ 1).
In turn, the result that I1,(K, L) > H(K/L) is a corollary of the
Excision Theorem, which is the analogue for arbitrary spaces of
Example 4.3.6 for polyhedra.

Theorem 8.2.1 (The Excision Theorem.) Let A and B be sub-
spaces of a space X, and supposc that there exist open sets U. V, in X,
such that U< A, V< B, and X = U U V. Then

ty: H(B, AN B)-» H(X, )
is an isomorphism for all n, where i is the inclusion map.

Proof. We show first that every element of (X, A) can be
represented by a linear combination of singular simplexes that are
maps into either I/ or V. This is done bv using a modification of the
subdivision chain map ¢ of Definition 4.3.2.

Given any space X, define a homomorphism ¢: S (X) — S (X)
(for each n) by the formula (A) = A $(1,), where 1, denotes the
identity map of 4,, and ¢:4,(K(4,)) - 4,((K(4,))) is the sub-
division chain map. Now ¢ is a chain map, because

GH(Y) = Age(L,)
2 (=1)ASFI(1, )
2, (=17 (F).$(1,-1)
= $&(A).
(It is easy to see that ¢F7(1,_,) = F'¢(1,_,), since F’ is (1-1) and
simplicial.)
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Moreover ¢ is chain-homotopic to the identity chain iSomorphism.
The proof of this is exactly like that of Proposition 4.3.4: we construct
suitable elements y,,, €4,,,(M,), where M, is a triangulation of
4, x Ithat has K(d4,) at the ‘0 end’ and (K (4,))’ at the ‘1 end’. The
details are lcft to the reader.

Clearly ¢ can be extended to a chain map ¢: S,(X, 4) — S.(X, A),
which is chain-homotopic to the identity; also, ¢ can be iterated. Now
if A is a singular #-simplex in X, the sets A~} U), A=}(V) form an
open covering of 4,,; hence by Theorem 1.4.35 and Proposition 2.5.15
there exists an integer 7 such that (1) ts a linear combination of
singular n-simplexes that map into either U or V. Clearly also the
integer r can be chosen to have this property for a finite number of A’s
simultaneously.

Now consider x € H,(X, A), represented by z € Z,(X, A) Since ¢
is chain-homotopic to the identity, = and ¢"(2) differ by ﬁboundary
for each r, and so ¢'(2) also represents x. By choosing 7 large enough
we can ensure that ¢'(2) is a linear combination of singular simplexes
that each map into cither U or V, and hence into either 4 or B; but
then ¢'(2)e Z,(B, AN B). This proves that i,: H(B, A " B) -
H, (X, A) is onto.

To show that 7, is also (1-1), consider z € Z,(B, A N B) such that
i (2) € B, (X, A). Then z, regarded as a linear combination of singular
simplexes in X is of form dx + ¥, where x € S, ,,(X) and y € §,(A4).
Choose r such that every singular simplex in ¢’(x) maps into U or V;
thus zﬁ'(x) =a + b, where a€ S, ,(4) and be S, (B). Hence
J'(2) = Y'0x + 'y and '(2) — b = da + Y'(y). But ¥'(2) — b€

S,(B) and 2a + Y'(y) € S.(A4), so that in fact both are in S,(4 N B).
It follows that ¢'(z) = @b + [¢a + ¢'(¥)] € B(B, A n B), so that
J’(2), and hence z, represents the zero element of H,,(B AN R).
Thus 7, is (1-1). |

An obvious modification of the above argument shows that, for any
coefficient group G, #,: H (B,AN B;G)—> H,(X, A4;G) is an
isomorphism. However, the carresponding result in cohomology doe.s
not follow quite so easily, since a representative cycle for an element of,
say, H*(X, A; G) may be non-zero on an infinite number of singular
n-simplexes, and so the argument involving ¢" may not work. On the
other hand the cohomology version can be deduced directly from the
homology version by means of the following proposition.

Proposition 8.2.2 Let D be a chain complex in which each D,
is a'free abelian group, and is zero for n < 0. Let C be a .mbcham
complex such that each D,/C, is also free abelian, and the inclusion
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chain map f: C — D induces an isomorphism f,: H(C) — H(D). Then
for any abelian group G, (fh 1)y: H(D & G) - H(C A G) #s also an
isomorphism.

Proof. Write E = (PE,, where E, = D,/C,. By Theorem 4.4.2
we have H(E) = 0, and since E is free abelian, Proposition 5.2.8 and
Theorem 4.4.2 again will show that (fA 1), is an isomorphism,
provided that we can deduce that H(EA G) = 0.

This is done by constructing a chain homotopy 4: E, — E,,,,
between the identity and the zero chain map, rather as in the proof
of Theorem 4.3.9. Suppose as an inductive hypothesis that we have
constructed k&: E, — E, ., for all r < n (take 4 to be the zero homo-
morphism if r < 0). Then if xe E,, &(x — hdx) = dx — ohox = 0,
so that, since Z(E) = B(E), there exists hx € E,,; such that x =
Ohx + hox: thus the inductive step is complete. But now kA 1:
(EAG)_y.q—(E h G)_, is a chain homotopy between the identity
and zero; so we immediately have H(EAG) = 0. |

Corollary 8.2.3 With the data of Theorem 8.2.1,
*: HYX, A; G)—> H"(B, An B; G)
ts an isomorphism for all n, where G is any abelian group.

Proof. Put D = §(X, 4) and C = S(B, A N B) in Propesition
8.2.2. §

Before deducing results about CW-complexes, we give a generalization
of the suspension isomorphism of Theorem 4.4.10. For an arbitrary space
X, this involves the ‘unreduced suspension’ SX, defined as in Corollary
6.2.19 to be the space obtained from X x I by identifying X x 1 and X x 0
to points(and given amap f: X - Y, the corresponding map Sf: SX > SY
isinduced by fx 1: X x I> ¥ x I).

Theorem 8.2.4 For each n, there is an isomorphism s,: H (X)—>
A, . (SX), such that,if f: X > Y is any map, 54 fo = (Sf)xSa-

Proof. 1f K is a simplicial complex, it is easy to see, as in the proof of
Thoerem 4.4.10, that s, is ( — 1)**? times the composite

A.(K) <—‘?!~H,,+1(K* a, K) -—ii»H,H,l(SK, Kxb) I A, (SK),

where 7, is an excision isomorphism. For an arbitrary space X, therefore,
let s be (— 1)**! times the composite
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A(X)< H,o(CX, X) %> H,i(SX, CX) < B,.,,(SX),

where CoX, C,X are the subspaces of SX corresponding to X x [0, 4],
X x [}, 1] respectively, and X is identified with X x $.

To show that 5, is an isomorphism, observe that 2, andj, are certainly
isomorphic since C;X and CpX are clearly contractible, so that it is
sufficient to prove that 7, is an isomorphism. Unfortunately this is not
quite an immediate corollary of Theorem 8.2.1, since the open sets U, V'
do not exist. However, if we write CX for the subspace of SX corres-
ponding to X x [}, 1], there is a commutative diagram

Hy o(CX, X x [}, 3]) —> Hy (o SX, Co X)

i, "\ / ie

H, (G, X, X).

The top 7, is an isomorphism by Theorem 8.2.1, and the left-hand 7, is
isomorphic since it is induced by an obvious homotopy equivalence;
hence the right-hand i, is 1somorphic as well.

Thats, fu = (Sf)« 54 1sanimmediate consequence of Theorem 4.4.3. |}

Of course, any coefficient group may be used in Theorem 8.2.4, and
there is a corresponding isomorphism s*: A"+{SX; G)» A*(X; G).

If K is a (based) CW-complex, the proof of Corollary 6.2.19 shows that
the identification map p: SK—>sK is a homotopy equivalence, so that,
by composing with p,, we may if we wish regard s, as an isomorphism
so: B (K)—-H,, (sK)(and if f : K-> L is a (based) map of CW -complexes,
Sufe = (f A1)y ss)- This version of s, may be interpreted directly in terms
of reduced cones and suspensions of CW-complexes.

Proposition 8.2.5 Let K be a CW-complex. Then s,: H (K)—>
H, (sK)is (— 1)+ times the composite

A (K) <2 Hp (K, K)~Z> H, (5K, point) <“—H,,,(sK),

where q: cK - sK is the obvivus identification map.
Proof. Consider the map ¢ : SK->sK defined by

_ | base point, 0<t<}
$(%1) ‘xA(Zt-—l), P<tg,

Clearly ¢ is homotopic to p, and maps C,K onto cK and CoK to the base
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point; our result therefore follows immediately from the commutative
diagram
O HCK, K) > H,o(SK, CoK) < B,a(SK)
A(K) [» |+ J>
S T HypaleK, K)—> Hy afsK, point) <— Bpa(6K).

We show next that if {K, L) is a (based) CW-pair, the sequence of

spaces and maps : .
LK 402 sK—s. ..
of Theorem 6.4.7 induces an exact sequence of homology groups, which

can be identified with the exact homology sequence of (X, L).

Theorem 8.2.6 Thereis an isomorphism «: H (K, L)~ I},.(Ci), such
that, in the diqgram

A(K)y-L> H(K, L) 2> A, (L)

0

B(K) 5> H(C) 5> Pa(sL),

we have o, = (1;)x and sy 0, = (— 1"+ ()4 a.
Proof. Let a be the composite

Hy(K, L) H(C,, cL)<"—A,(C)).

Certainly j, is an isomorphism, and so also is (7,): this would be true as
in the proof of Theorem 8.2.4 if the subspace cL of C; were replaced by
the ‘unreduced cone’ (L x I)/{L x1); but the identification of (base
point) x I to a point makes no difference, by Corollary 6.2.7. That
ojs = (1)) foliows immediately from Theorem 4.4.3.

To prove thats, 9, = (— 1)"*Y(iy), @, consider an element x€ H,(K, L),
represented by a cycle z. Regarded as an element of S, (K), 8z = y, where
ye& S, _1(L). Since cL is contractible, y = dw for some we S, (cL); and
then z—we S,(C;) will do as a representative cycle for a(x). Now 4,
shrinks K to the base point, and is g: ¢L - sL on ¢L, so that (i;), a(x) =
[—g(w)], at least if we 1dent1fyH (sK) with H,(sK, point).

"On the other hand 8,(x) is represented by ¥, and hence by Proposmon
8.2.5 5, 84(x) = (— )" [g ()] = (= 1))y x(#).

Naturally there are corresponding results involving homology or co-
homology groups with any coefficients.
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Corollary 8.2.7 Let (K, L) be a CW-pair, and let p: KL — C, be
the homotopy equivalence of Theorem 6.5.2. Then if p: K — K|L is the
tdentification map, p,: H (K, L) — H (K[L) is an isomorphism, and in
the diagram '

A(K)Ls H(K, L) 2> A,_ (L)

-l e l"

Hn(K) Ds n(K/L) (izu (’L)

we have p,,,],., = pu and Su0y = ( 1)"“(’2.“)*?*

Proof. 1tis sufficient to show that p,p, = a: H,(K, L)— H,(C),
or equivalently that p, = Aya, where A: C, - K/L is the homotopy
inverse to p in Theorem 6.5.2. But this follows from the commutat:ve
diagram

Hu(Kv L) ’J._’ Hn(ch CL) ‘-i.— Hvll(cb pOint)

S b
H(K/L, point), 1

Observe that p,: H (K, L)~ H,(K/L) is an isomorphism even if
L = @, provided K/ & is interpreted as K *, the disjoint union of X
with another point.

Example 8.2.8 As remarked after Corollary 6.5.3,
0 = (= 1) (iaw)s: HL(E"]S™ 1) — H(S")

where 6 is the standard homeomorphism. It follows from Corollary
8.2.7 that 0, = s5,2,: H,(E", S*~1) — H,(S"), and in partlcular that
0,(5,) = o,, where o, and &, are the ‘standard generators’ of Example
44.11. § :

Now that we have Corollary 8.2.7, we are in a position to prove the
main theorem on the homology groups of a CW-complex K. The first
step is to calculate H (K™, K*~1).

Proposition 8.2.9 Let (X, L) be a CVV-pair, with mdexmg sets A,
and B,, and charactersistic maps ¢3. Write M*» = K™ O L. Then the
homomorphism $%: 6—) H(E3, S2~1) - H (M", M*~1), defined to

- B

be (¢1), om each H,(Eg, S2-1), is an dsomorphism. That is,
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H(M"™, M"~1) = 0 unless r = n, when it s a free abelian group with
generators in (1-1)-correspondence with the n-cells of K — L.
Proof. Let X be the disjoint union |J E?%, and let Y be the
An=Ba
corresponding union of the S7~. It is easy to see that

@B H*(E:!" Sz-l) = H*(X) Y)r

where the isomorphism is induced by the inclusion maps of each Ej.
On the other hand the obvious map ¢": (X, Y) — (M", M~ !} induces
¢": X/Y — M"/M"-1, which by Example 7.3.15 is a homeomor-
phism. Hence by Corollary 8.2.7 ¢2: H (X, Y) — H (M", M""1) is
an isomorphism. J

Thus we may define a chain complex C(K, L) = @C, (X, L) by
setting C,(K, L) = H,(M", M"-') (where M™ is interpreted as L if
n < 0), and by taking as boundary homomorphism @: C,(K, L) —
C,.,(XK, L) the composite

H(M", M%) = H,_((M"~, L) 2> H,_y(M*~1, M~

(which is the same as @,: H,(M", M*~Y) > H,_,(M"~!, M™~2), or
alternatively the composite

H(M?, M*3) 2, B, (MP7) e, Hy_o(M27, M=),

Theorem 8.2.10 For each n, Hy(K, L) ~ H,(C(K, L)).

Proof. 'This is almost identical with Theorem 4.4.14. Indeed, we
can repeat the proof word-for-word, as far as the statement that

H(M?®, L) = H,(C(K, L)),

where p is any integer greater than n, and it remains only to show that
H(K,L) >~ H(M?, L) (there was no difficulty in Theorem 4.4.14,
since we were dealing only with finite-dimensional complexes).

Now an element of H,(K, L) is represented by a cycle 2, which is a
(finite) linear combination of singular n-simplexes in K. Each of these
singular simplexes is 2 map from 4, to K, whose image ia compact and
so contained in a finite subcomplex. Thus z is in fact a cycle of
Sa(M?, L) for some p. Since g,: H (M"*1, L)~ H,(M?, L)is an
isomorphism for ali p > #, this means that H (M"*?, L) — H (K, L)
is onto. But a similar argument shows that if x € H,(M"*?, L) is sent
to zero in H (K, L), then it must be sent to zero in some H,(M?, L),
and so x = 0; thus H (M"*!, L)y — H (X, L)is (1-1) as well. }
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Corollary 8.2.11 If f: (K, L) — (P, Q) is a cellular map of CW-
pairs, fo: H(K, L) — H(P, Q) is the homomorphism induced by the
chain map f,: H(M", M"-!) — H, (R", R*~!), where R* = P" VL Q.
In particular, if A and B are subcomplexes of K, such that AV B = K,
then i,: H,(B, A N B) - H (K, A) is an isomorphism for all n.

Proof. Since all the homomorphisms in the proof of Theorem
8.2.10 are homomorphisms in the exact sequences of triples, this
follows immediately from the remark after Theorem 4.4.5 (which also
shows that f is a chain map). |}

For many purposes, it is convenient to have a more geometrical
interpretation of the boundary homomorphism @: Cy (X, L) —
Cp-1(K, L) and the chain map f,: C(K, L) — C(P, Q). Now if 5, is
the standard generator of H,(E™, S"~1), Proposition 8.2.9 shows that
C.(K, L) may be identified with the free abelian group with generators
. the elements of 4, — B,, by letting «€ A, — B, correspond to
($2)0, € H,(M™, M*-1), Given ac A, — B, and Be 4,.., — B,_,,
let d,; be the composite map

Sn-1 g, Mnr-1 _E_,Mn-lan—z <&
V (En—l/Sn-2) LN En-l/Sn-Q _0__) Sn-l,

‘where ¢" is the homeomorphism of Example 7.3.15 and g¢; is the
projection map corresponding to B.

Proposition8.2.12 3(c) = 5 8,,.B, where 3,4 is the degree

R~ 1 n-1

Of da3° * y

Proof. The commutative diagram

H”(M“, Mﬂ-l)_?l.; n_l(Mn-l).".Z_,Hn_l(Mn—l’ Ma-z)

(o:).T T(o:).

H(E®, S»-1 — n-1(S™-1)

shows that (¢72)e5, = fe($2)e0, 1. But by Corollary 8.2.7 j, may be"
identified with p,: H,_,(M*-1)—> H,_(M"*-}/M"-%), and by
Proposition 8.2.9, if x € H,_,(M"~1/M"-2), then

£ = 3 (85 )a(g0)e($37 ) ().
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Hence
24(Da0n-1 = Z (657 2)a 05 104(95)2(P5™ 1) " 1Pu(P2)4On -1
= 2 (#57)a05 0090, -

= Z Ous($5 ™ 1)a0n 15

using Example 8.2.8. That is, (a) = > 9,,.8. |}

Similarly, let f: (K, L) — (P, Q) be a cellular map, let the indexing
sets for P, Q be C,, D,, and the characteristic maps for P be 3. Given
a€ A, — B, and Be C, — D, let f,, be the composite

Sn <_iEn/Sn—1 LN MM M-t __’,__,Rn/Rn—l Pl
V(E"/S""l)iﬁ_,,E"/S""l"_,S",
where R* = P* U Q.

Proposition 8.2.13 f, is induced by f, where f(a) = 3 d(f,5)B,
d(f,s) being the degree of f,;.

Proof. This is proved in a similar way to Proposition 8.2.12, using
Corollary 8.2.11. We omit the details. [J

In this discussion of CW-complexes, we have not so far mentioned
homology with other coefficient groups, or cohomology. What we
should like to know, of course, is that if. G is any coefficient group, then

Hy(K,L;G)~ HIC(K,L)® G)
and i
H*K,L;G)~ H(C(K, L) 4 G).

The next twp theorems establish these isomorphisms.

Theorem 8.2.14 Let (K, L) be a CW-pair, and G be an abelian
group. Then for eachn, H (K, L; G) ¥ H(C(K, L) ® G).

Proof. Write C for C(K, L) and C(G) for the chain complex
similarly defined by C(G), = H (M", M*~1; G). Now the proof of
Theorem 8.2.10 clearly adapts to show that H,(X, L; G) @ H,(C(G)),
so that it remains only to produce a chain isomorphism «: C @ G —
'C(G) (compare Chapter 4, Exercise 13). X

Inleed, for any chain complex D whatever, we can define a homo-
morphism «: HD)Q G—>H(D R G) by «[2]® g —[2®¢g]
where 3 € Z(D) and g € G. Moreover if f: D — E is a chain magp, then
(f ® 1)y = a(f, ® 1), and there is a corresponding result for the
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homomorphism 9, in the exact sequence of Theorem 4.4.2. Thus by
taking D = S(M", M"~1) for various n, this gives rise to a chain
map a: C ® G — C(G), and we have only to show that

a: H(M* M*~)® G — H (M", M*~1; G)

is an isomorphism. By Proposition 8.2.9 it is enough to consider
(M", M™-1) = (E", S"~1); and by Theorem 4.3.9 we may use the
simplicial chain complex of (K (o), ¢) instead of.S(E™", S™~?), where o °
is an n-simplex. But the result is now trivial, because this simplicial
chain complex has only one generator. Hence a: C @ G — C(G) is a
chain isomorphism. ||

Theorem 8.2.15 For eachn, HNK,L; G) ~ H_,(C(K, L) A G).

Proof. For any chain. complex D, define o: H(D A G) —
H(D)4& G by (x(x))y = {x,y), where x€ H(DA.G), ye H(D),
and { , ) is the Kronecker product. By an argument similar to that in
Theorem 8.2.14, « is an isomorphism if D = S(X, V), where X is a
disjoint union of E™s and Y is the corresponding union of S"~’s,
and hence as in Proposition 8.2.9 « is an isomorphism if D =
S(M", M"-1). That is, «: C(G) - C A G is a chain isomorphism,
where C(G)_, = HY(M™, M1, G). .

It remains to prove that H*K, L; G) ~ H_,(C(G)). Now the
argument of Theorem 8.2.10 will show that H™M? L;G) 2
H_,(C(G)) for any integer p > n, but we cannot use the rest of that
argument, since a representative cycle for an element of H*(K, L; G)
may well be non-zero on an infinite number of singular n-simplexes.
However, since H,(M"*!,L) x H (K, L), we can immediately
conclude that H%K, L;G)  HM"*!,L; G), by Proposition
8.2.2. §

We end this section by calculating the homology and cohomology
groups of some CW-complexes.

Examples 8.2.16

(a) The homology and cohomology of real projective spaces has
already been calculated, in Examples 4.4.25 and 5.2.18. It is even easier
to deal with complex and quaternionic projective spaces. :

By Chapter 7, Exercise 8, CP" is’'a CW-complex with one cell in
each dimension 0, 2,...,2n Since C,(CP") is zero in alternate
dimensions, @ = 0, and Theorem 8.2.10 immediately yields

Z, r=02,...,2n

H{CP") = {0, otherwise.
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Similarly

Z, r=0v4'""’4n
H,(HP") = {0, otherwise;

and homology and cohomology with coefficients G are given by
replacing all 2’s by G’s.

(b) Consider S? x S% Now S® and S? are CW-complexes with
one O-cell each, and one cell of dimension p, ¢ respectively; hence

Co(S? x S = C,(S? x S & C(S* x S = C,,{S® x §9 = 2,

the other groups C, being zero (if p = ¢, Ci(S® x S?) = Z P 2).
Proposition 8.2.12 shows easily that all boundary homomorphisms are
zero(if say ¢ = p + 1, we need Chapter 6, Exercise 15 as well to show

that 9: C,,, — C, is zero). It follows that H,(S® x 8% =z C(S® x S9)
for all r, and also

H{S® x 8% G) = C(S*® x §9Q® G,
H'(S” x 8% G) = C(S® x S9AG. |

It will be noticed that S2 x S* and CP® have the same homology
and cohomology groups, so that it is possible that they are homotopy-
equivalent. In fact they are not, but the cohomology ring structure is
necessary to prove this: see Example 8.5.12.

8.3 The Hurewicz Theorem

The Hurewicz Theorem states that, if X is a path-connected space
and 7,(X) %= Oforr < n, then m(X) & Hn(X) (s > 2); thereisalsoa
corresponding version for relative homotopy and homology groups.
Apart from the analogous theorem relating #,(X) and H,(X), we shall
give a proof ounly for CW-complexes, since the proof for arbitrary
spaces is more complicated (see the notes at the end of the chapter).

The method of proof is somewhat similar to that used in Section 7.4
to calculate my(S*): we first define homomorphisms h,: my(X) ~
H (X), hy:m{X, Y)— H (X, Y) (that generalize the notion of
degree), and then show that they are isomorphisms in favourable
circumstanges.

Definition8.3.1 The Hurewicz homomorphism h,,: m,(X) - Hy(X)
(n > 1) is defined as follows. Let o, € Hy(S") be the standard genera-
tor; then if [f] € my(X) is represented by a map f: S*— X, define

h,[f] = fo(o,). Clearly this is independent of the representative map
f chosen.
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Similarly, an element of =,(X, Y) is represented by a map
f:(I" aI"y— (X, Y), and by using the standard homeomorphism
this may be regarded as a map f: (E*, $*"1) — (X, V). Thus we may
define hn: "u(X’ Y) - Hn(X’ Y) by hn[f] = f*(an)‘

Observe that if Y is the base point x, of X, and the relative homo-
topy group m,(X, %,) is identified with =,(X’) via the standard homeo-
morphism §: E"/S*~! — S™, then the two definitions of h, coincide,
since by Example 8.2.8 we have 0,(5,) = o,.

Proposition 8.3.2 &, is a homomorphism if n 2 1 (n > 2 in the
relative case).

Proof. The proof of Proposition 7.4.2 easily extends to show
that &,: 7,(X) — H,(X) is 2 homomorphism for n > 1, since if
fg:S*">X and x @ ye H(S™) P H(S") =~ H,(S* v S"), we
have [V(f v 2)lu(* @ ¥) = ful®) + gu(3). As for hy: m(X, ¥)—
H (X, Y), the diagram

mo(X, V) 2> my(C,, € Y) «L m(C))

o

H(X.Y) P Hy(C,, cY) - H\(C)

is easily seen te be commutative, where C; is the mapping cone of
1: Y X. Since ¢Y is contractible and n > 2, both j,’s are isomor-
phisms; but the lower row is just the isomorphism a of Theorem
8.2.6. Hence A,: 7,(X, Y) - H,(X, Y) is a composite of homomor-
phisms, and thus is itself a homomorphism. §

Theorem 8.3.3 If X is a path-connected space, h,:m(X)—
H,(X) ts onto, with kernel the commutator subgroup {n, n} of = (X).

Proof. It is easy to see that the standard map 61: I — SY is a
singular 1-simplex that represents the generator o, of H,(S?*). Hence
h; may be regarded as the homomorphism induced by sending the
loop u in X (based at x;) to the singular 1-simplex u in X,

Now let 3 n A, be an element of Z,(X), where the n are integers
and the A, are singular 1-simplexes. For each point x € X, choose a
path v(x) from x, to x, and let y; be the product path

2(A(0)). A o(A(1)) "L
Since &(3 m) = 0, we have 314, = 3 mfo(M(0) + A — v(A()),

and as in the proof of Theorem 8.2.1 this represents the same element
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of H(X) as does } nwu,. But the coset [> nu] = > nfu] is plainly in
the image of &,, so that 4, is onto.

Since H,(X) is abelian, &, induces a homomorphism A: 7,(X)/[m, 7]
— H,(X), and to show that Ker &, = [, #] it is sufficient to prove
that & is (1-1). Suppose then that u is a loop based at x,, and u =
(2 nA) in S(X), where the A, are singular 2-simplexes: thus
u = F7), for some r, 1, and all other terms in 9(3 n,A)) cancel. Now
write

a; = v(A(0)). F2A ¢(A(1)) 71,
by = v(A(1)). FOA. 9(A(2)) 1,
¢ = v(A(2)).(F1A)~ 1. o(A0) 77,

and let u; = a;.b;.c, w = ()" - -(4p)". It is easy to see that u, ~
ex, rel 0, 1 (since 4, is contractible), and hence that w represents the
identity element of #,(X). On the other hand, by ‘abelianizing’ u, and
w, we have [#] = [#] in 7 (X)/[m, 7]: hence [¥] = 0 and Ak is (1-1). §

In proving the general Hurewicz theorem for CW-complexes, we
shall make extensive use of the fact that the homomorphisms %, con-
nect the homotopy and homology exact sequences of pairs and triples
in diagrams that commute up to sign.

Proposition 8.3.4 Let (X, Y, Z) be a triple of .'cpaces. Then in the
diagram

i (Y, Z) 2 m( X, Z) L w (X, YY) 2 (Y, Z)

M| m) ) [pe-s

oo H(Y, Z) o> HyX, Z) —> H\(X, Y) = H,_\(¥, Z) >+,

the first two squares are commutative and the third commutes up to a sign
(=1)*. There is a similar result involving the exact sequences of a pair
(X, Y).

Proof. The first two squares are ‘easily seen to be commutative.
As for the third, it is sufficient to prove that the square

mo(X, ¥) 2> my o (V)

| -

Hn(X’ Y) T.') Hn—l( Y)
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is commutative up to a sign (—1)*. Buu if f: (E*, S""Y) - (X, Y)
represents an element of #.,(X, Y), Proposition 7.4.11 shows that
94[f] is (—~ 1)" times the homotopy class of f|S™~*; hence

Ouha[f] = 04fu(33)
= f*a*(En)
= ft(an-l)
= (= 1)"h,_,0:{f]. 1

We shall prove the Hurewicz theorem by examining diagrams such
as that in Proposition 8.3.4, based on exact sequences of pairs such as
(K", K*-1); and in order tn make this approach work, two lemmas
are necessary. '

Lemma 8.3.5 Let (K, L} be a CW-pair, where L is connected. If
m{K,L) =0 for 1 <r <n, K*'U L can be deformed in K™ U L,
rel L, into L; more prea'seb:, there exists a homotopy F: (K"~* U L) x I
~» K" U L, such that F is constant on L, F starts mth the inclusion
map, and F ends with a map into L.

Proof. Write M® = K™ U L, and consider the eiact sequence
o>y o (K, M) > 7M™, L) > (K, L) >

Now for 1 <r <n, #»(K,L) =0, and also n,,,(K, M") = 0 by
Theorem 7. 4 17; hence o, (M", L) = 0 for 1 < r < n. The argument
used in the proof of Theorem 7.5.2 now shows that we can construct
F by induction on the skeletons of XK. |

Lemma 8.3.6 If L is connected, and contains all the cells of K
except for some of dimension n, then h,: (K, L) — H, (K, L) is onto
(n > 2). If moreover (K, L) is relatwely n-szmple then h, is an
tsomorphism.

Proof. Let the indexing sets for the n-cells of K, L be 4,, B,
respectively. Now, as in Proposition 8,2.9, H,(K, L) is a free abelian
group with generators in (1-1)-correspondence with the elements of
A, — B,. If e A, — B,, ¢2: (E*, S*~!) — (K, L) may be regarded
as a map of (I, 8I™) to (K, L), and if I, is the base point of L, this is
homotopic to a map ¢3: (I", 8I") — (K, L) that sends D"~ ~1to Io this
is proved as in Proposition 7.2.15. But then

Vha[PE] = (¥2)a(Ta)
= (¢2)*(Eu)’
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which is the generator of H, (K, L) corresponding to «. Hence 4, is

onto.
If (K, L) is n-simple, consider the composite

@ m(En, St1) 2 (K, L) 2> H(K, L),
Ap - Bn .

where ¢} is as in Theorem 7.4.15. Now the homology homomorphism
corresponding to ¢3 is an isomorphism; and A,: 7 (E" S" ') —
H. {E® S*=1) is an isomorphism by Proposition 7.4.13. Hence
h,#% is an isomorphism; but by Theorem 7.4.15 ¢} is onto {i,:
m(K®, L") — m,(K, L) is onto, as in Theorem 7.4.17). Hence ¢} and

therefore h, are also isomorphic. |
Observe that we may now amend the statement of Theorem 7.4.15(b)

to read: ¢3 is an isomorphism.
We are now in a position to prove the Hurewicz theorem.

Theorem 8.3.7 Let K be a connected CW-complex, and let L be a
connected subcomplex.

(a) If m(K) =0 for 1 £ r < n(n 2 2), then h,: n(K) — H,(K)
1s an tsomorphism.

by If m(K)=m(L)y=0, and «(K,L)=0 for. 1 <r<n
(n = 2), then h,: n, (K, L) — H,(K, L) is an isomorphism.

Proof. Write M™ = K™ U L. We first remark that it is sufficient
to prove the theorem with K replaced by K**!, M"*1 in (a), (b),
respectively, since for example if i:(M™*, L) — (K, L) is the
inclusion map, the diagram

m (M1, L) 2> m (K, L)

nni 1».
H(M"*!, L) —» H(K, L)
is commutative, and both maps ¢, are isomorphic: the lower one by

Theorem 8.2.10, and the upper one by Theorem 7.4.17.
Now consider the diagram

cevmr g (ML, M) — m (MP, L) > m (M2, L) —> m (M™*2, M")
""”l . h,..|& h,.l n,.l
o> Hy (MP+Y, M) = Hy(M®, LY — H (M®+, L) — H (M"*+1, M),

which is commutative, except for a sign (—1)**? in the first square,
by Proposition 8.3.4. Here, my(M"*1, M*) = H (M"*!, M") = 0,
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using Theorem 7.4.17, and 4, ,, is onto by Lemma 8.3.6, so that the
second 4, will be isomorphic if the first is, by Proposition 1.3.35. That
is to say, we may even replace M"*! by M™ in (b). A similar argument
shows that we may replace K**! by K* in (a).

To complete the proof of (a), note first that, by Lemma 8.3.5 (with
the base point as L), K"~! can be deformed in K™, relative to the
base point, to the base point. By Theorem 7.3.19 this homotopy can be
extended to a (based) homotopy between the identity map of K™ and
a map f: K" — K™ that sends K*~! to the base point. The map f
induces g: K*/K®*~! —» K", such that if p: K®"— K"/K"~! is the
identification map, gp ~ 1. This means that there is a commutative
diagram

mo(K™) LN m(K*K* 1) 2s (K™

S

H. (K™) - H (K" K"-1) — H,(K™),

where g.pe = 1, so that p, is (1-1) and g, is onto. But by Lemma
8.3.6 (with L = base point), h,: w (K"/K*~1)—> H (K"/K""1!) is
isomorphic: hence k,: m,(K") — H,(K™) i8 both (1-1) and onto.

It remains to prove (b). In the diagram

i gry(L) > my(M?) L (M2, L) ——> 0

o oW

L e H2(L) -'—) HQ(A/12) —’—-)' 112(11’12, L) —— O,

the first two maps are isomorphic by case (a}, since 7,(M2) = 7 (K) =
0 by Theorem 7.4.17 (and H,;(L) == 4 by Theorem 8.3.3). Hence
hy: my(M?2, L) - Hy(M?, L) is isoraorphic by Proposition 1.3.35,
and this proves (b) in the case n = 2. More genecrally, consider the
following diagram, which is commutative up to a sign *— 1) in the
third square.

(M L)Lﬂ"(Mn’ L) =>mp(M", M*72) > 7, (M, L) —
n..l nul n,.i g .
o> n(M’l—l’ L)? Hn(M"’ L)-—> n(—Mn, —"’In‘l)")FIn_J(ﬂI"“l) L)—)--

If n > 3, then hy: m(M*®, M™~1) - H (M™, M™"!) is isomorphic by
Lemma 8.3.6, sifice w (M""') = m{K) = 0, and so (M", M"~1) is
relatively n-simple (we cannot use this argument for #» = 2, since
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m,(M?) may not vanish). But 7, = 0 by Lemma 8.3.5, so that at least
hy: m(M*®, L) - H,(M", L) is (1-1). Similarly, A, _, 1s (1-1), and then
Proposition 1.3.35 shows that therefore A,: 7w (M", L) — H,(M", L)
is isomorphic. And we have already seen that this. is sufficient to

prove (b). §

Example 8.3.8 Ifp, ¢ > 1,thenn(S? x S% = m(S? v §% = 0.
Also, 7 (8% x 8% S? v 8% = 0 forr < p + ¢, by Theorem 7.4.15.
Hence

o SP X S8 87 v SY) & H,, (SP x 8%, 8% v )& Z
and so we can add to Example 7.4.16 the result
Tprg-1(S? V S 2 740 1(SP) D 741 (S D Z.

The Hurewicz theorem itseif can be used to establish the following
alternative form of the hypotheses.

Corollary 8.3.9 Let (K, L) be as in Theorem 8.3.7. Then

(a) If my(K) = Oand H(K) = Oforr < n (n > 2), thenh,: n,(K)
— H,(K) is an isomorphism.

(b) If m(K) = my(L) =0, and H(K,L) = 0 for r < n (n > 2),
then h,: n (K, L) — H, (K, L) is an isomorphism.

Proof. In (a), since m;(K) = 0, we have ny(K) = HyK) = 0.
Hence 73(K) = HyK) = 0, and so on: in fact #(K) = 0 forr <

Similarly, in (b) #5(K, L) = Hy(K, L)and soon: hence n (K, L) = 0
for 1 <r<n (m(K,L)=90 anyway, by the exact homotopy
sequence). f|

One of the most useful corollaries of the Hurewicz theorem is a
version of the Whitehead theorem involving homology rather than
homotopy. Theorem 7.5.4 is all very well, but as a means of proving
that two given CW-complexes are homotopy-equivalent, it is only of
theoretical interest, since we would at least need to know aill the
homotopy groups of the two complexes. However, the following
version is of much more practical use, since it is often quite possible to
calculate all the homology groups of a CW-complex.

Theore:n 8.3.10 If K and L are connected CW-complexes, such
that m(K) = n(L) = 0, and f: K— L is a based map such that
fo: Hy(K) — H, (L) is isomorphic for all n, then f is a (based) homotopy
equsvalence. .
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Proof. By Thaorem 6.5.5, f is the composite

K> M251,

where M is the mapping cylinder of f, g is an inclusion, and A is a
homotopy equivalence. Now by Theorem 7.5.7 we may as well assume
that f is a cellular map, 1n which case it is easy to see that M is a CW-
complex. For if we write M for the space obtained from L and K x I
by identifying (k, 1) with f(k) for all k € K, then M is a CW-complex,
whose cells are those of K x I — K x 1 and L: properties (a)(d) of'
Definition 7.3.1 are clear, and (e) follows since a (closed) ceil of K x I
is contained in a subcomplex with a finite number of cellsin X' x Jand
L, the latter since the part of the boundary of the cell lying in L is the
image under f of the part lying in K x 0, and is hence compact.
Hence (provided the base points of K and L are 0-cells) M is also a
CW-complex, by Theorem 7.3.13.

Since 4 is a homotopy equivalence it induces isomorphisms in
homology, and so g4: H,(K)— H,(M) is isomorphic for all . By
the exact homology sequence, H,(M, K) = 0 for all n, and s0 by
Corollary 8.3.9 m (M, K) = O for all n, since m,(M) = =,(L) = 0. So
by the exact homotopy sequence, g,.: 7 (K) — =, (M) is isomorphic
for all », and hence by Theorem 7.5.4 g is a homotopy equivalence.
Hence so also is f = hg. §

Of course, if f induces homology isomorphisms in each dimension,
but is not a based map, it is easy to construct a homotopic based map
by using Theorem 7.3.19, since L is path-connected. Thus the word
‘based’ can be removed from the hypotheses of Theorem 8.3. 10
provided it is also removed from the conclusion.

A particular case of Theorem 8.3.10 is

Corollary 8.3.11 If Kis a connected CW-complex, and wy(K) = 0,
R(K) = 0 for ail u, then K is contractible.

Proof. By Theorem 8.3.10, the map that sends X to a single poing
is a homotopy equivalence. |

Example 8.3.12 The reader is warned, however, that H,(K) may
be zero for all », without K being contractible. For example, consider
the space X constructed in Example 3.3.22; this is certainly a connected
CW-complex, since it is triangulable. To calculate A,(X), let T be
the maximal tree consisting of the 1-simplexes (a°, a'), (a°, a?), (a° a®)
and (a° a*); since T is contractible, A,(X) & H,(X/T) by Corollary
6.2.7. Now X/T has a CW-decomposition with one 0-cell 4%, six
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l-cells @, ..., {, and six 2-cells 4, ..., F; and since m,(X) becomes
zero on abelianizing, H,(X) = H,(X/T) = 0. Thus B,(C(X/T)) =
Z,(C(X/T)) = C(X/T), since ¢: C, — C, is clearly zero; and this
implies that &: C; — C; must be an isomorphism, since @ is onto and
both C; and C, are free abelian with six generators. Hence H3(X) =
Hy(X/T) = 0, and of course H,(X) = 0 for n > 2.

On the other hand, X cannot be contractible since 7y(X) is

non-trivial, [

Example 8.3.13 As an example of the use of Theorem 8.3.10 to
show that two non-contractible CW-complexes are homotopy-
equivalent, we shall prove that a simply-connected homology 3-
manifold X is homotopy-equivalent to S3.

Now since 7,(X) = 0, H;(X) =0 and so H,(X; Z;) =0 by
Theorem 4.4.15. Thus by Corollary 5.3.18 X is orientable. Moreover
HY(X) = 0 by Proposition 5.2.17, so that by Theorem 5.3.17
Hy(X) = 0. Finally Hy(X) > Z since X is orientable.

It follows that 7,(X) = 0 and #g(X) >~ Z. Let f: S?— X be a
map representing a generator of 73(X), so that £, : m3(S3) - 73(X) isan
isomorphism. Hence, since hyf, = f,hs and h; is an isomorphism for
both S? and X, f,: Hy(S®) — Hy(X) is also isomorphic. All other
reduced hommogy groups of S® and X are zero, so that f induces
isomorphisms in homology in all dimensions. Hence, by Theorem
8.3.10, f is a homotopy equivalence, since m,(S3%) = 7,(X) = 0. |

The Poincaré conjecture can thus be restated for 3-manifolds in the
form: a simply-connected 3-manifold is homeomorphic to S3.

8.4 Cohomology and Eilenberg-MacLane spaces

In this section we shall see how, for CW-complexes at least,
cohomology theory can be fitted into the general scheme of Chapter 6.
This will be done by showing that, for any CW-complex K and
abelian group G, the group H"(K; G) can be identified with the group
of homotopy classes [K, K(G, n)], where K(G, n) is a CW-complex
with the property that

G, r=n
m(K(G, n)) = {0, otherwise.

Indeed, if (K, L) is a CW-pair the exact (reduced) cohomology
sequence of (X, L) can be identified with the corresponding exact
sequence of groups of homotopy classes, obtained from the pair
(X, L) as in Corollary 6.5.3.
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It will be seen that this approach is capable of generalization. For
we could replace the spaces K(G,n) by a different set of spaces
indexed by the integers, and thus obtain a ‘cohomology theory’,
defined for CW-complexes, with the same formal properties as
ordinary cohomology; indeed, the only virtue of the spaces K(G, n)
is that they are the particular set of spaces that happens to give
cohomology groups that coincide with the ordinary (singular) cohomol-
ogy groups. Since these more general cohomology theories have been
much used in recent yéars, and are no more difficult to describe, we
shall start by considering them, and will specialize to ordinary
cohomology afterwards.

In fact if we wish to retain the exact sequence property’ for these
general cohomology theories, the spaces K (G, n) must be replaced,
not by any set of spaces, but by what is called an £2-spectrum.

Definition 8.4.1 An Q-spectrum E is a sequence of based spaces
E,, one for each integer n, together with based weak homotopy
equivalences ¢,: QE,~> £, ,,.

Given an £-spectrum, it is very easy to define the associated
cohomology theory. What we should like to do is to define the co-
homology groups of K associated with the £2-spectrum E by the rule
HYK;E) = [K, E,}; but since E, may not be an AHI this may not
be a group. However, if K is a CW-complex, then by Corollary 7.5.3
¢, induces a (1-1)-correspondence (¢,),: [K, E.] — [K QE, ;] The
latter set is 2 group, and hence the former set can be made into a group
by requiring that (e,), should be an isomorphism, not merely a (1-1)-
correspondence; we shall call this the multiplication in [K, E,]
induced by ¢,.

Definition 8.4.2 Given an Q2-spectrum E and a CW-pair (X, L),
the cohomology groups of (K, L) associated with E are defined by
H"(K, L; E) = [K/L, E,], with multiplication induced bv ¢, We
write H¥K, L; E) = ®H'(K, L; E).

The corresponding non-relative groups are defined by

HK;E) = HYK, 2;E), AYK;E) = H'(K, k,; E),

where k, is the base point (assumed to be a 0-cell). Observe that
H"(K; E) = [K*, E,), the set of unbased homotopy classes of maps of
K into E,, and H "K;E) = [K, E,]. )

Proposition 8.4.3 The groups H™K,L; E) (and  hence also
H™K; E), AYK; E)) are all abelian.
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Proof.
H™K,L;E) > [K/L, QF,.,),
% ((K/L), Eny1], by Coroltary 6.3.29,
~ [{(K/L), QE, ,,], by Corollary 7.5.3,

>~ [K/L, SXQE,..)],

i

which by Corollary 6.3.26 is an abelian group. ||
It is easy ro check that the cohomology groups associated with E
have all the expected formal properties.

Theorem 84.4 [/ (M. \)is another CW-pair, a map f: (K, L) —
(M, N) induces hom onorphums  f*: HYM, N; E) - HYKX, L; E),
with the followin2 pr.; itgs.

(a) If fis the idcnt-tx noup. f* is the identity isomorphism.
(b) If g: (M, N} <2 1) is another map, (gf)* = f*g*.
() Iff' ~ fr (K, ) ~ 3 N)(as a map of pairs), then (f')* = f*.

Moreover, there exist homomorphisms 8%: H*~Y(L; E)—~ HY(K, L; E),
§*: A*-Y(L; E)— H"(K, L; E) such that the sequence

co—> H*Y(L; E) 2 HY(K, L; E) "> H™K; E) *> HY(L; E)—>- - -

and the émwresponding sequence of reduced cohomology groups, are exact:
a map f: (K, L) — (M, N) gives rise to commutative diagrams of exact
sequences. Finally, if L and M are subcomplexes of K, such that
LU M =K, then the ‘excision homomorphism’ i*: HYK, L; E) —
HY(M, L N M; E) is an isomorphism for all n.

Proof. Let f* be the function f*:[M|N, E,] - (K/L, E,}], as
defined in Theorem 6.3.4. Since the group structures are defined by
replacing E, by QE,,.,, f* is a homomorphism; and properties
(a)~(c) follow immediately from Theorem 6.3.4.

Let 8*: A"-(L; E)— HYK, L;E}be(—1)*" 1 times the composlte

[L, E,_i] =¥ [L, QF,) «2— [sL, E,] =2~ [K/L, E,},

where @ is the isomorphism of Corollary 6.3.29, and é,x is-as in
Corollary 6.5.3 (the sign (—1)*~! is introduced to make the analogue
of Corollary 8.2.7 hold). This is a homomorphism, since by Corollary
6.3.26 the two possible group structures in [L, X(R2E, ,,)] coincide.
Since (e, _1)4 is therefore an isomorphism, Corollary 6.5.3 shows that,
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in the reduced cohomology sequence, Im 8* = Ker j*, and, of course,
Im j* = Ker ¢*; moreover Im ¢* = Ker 8*, since the diagram

(K, E,.,] “= [K, QF,) <« [sK, E,]

ul l,. l,.

[L, Byoi) g [L QE,) «—— L, )

is clearly commutative. That a map f: (K, L) — (M, N) gives rise to
commutative diagrams of exact sequences follows at once from
Corollary 6.5.3.

The definition of 8* and the exactness of the cohomology sequence,
in the case of unreduced cohomology, follow immediately on replacing
(K, L) by (K *, L*) (the ‘extra point’ being the same for both K and
L), since K */L+ = K/L. Observe that a similar trick yields the exact
cohomology sequence of a triple (X, L, M), since (K/M)/(X/L) =
LIM.

Finally, the excision homomorphism is isomorphic because K/L
and M/(L N M).are clearly homeomorphic. }

Notice also that, if we define the suspension isomorphism
s*: A*(sK; E) ~ A"~ }(K; E) to be the composite

[sK, E,) ——> [K, QF,) <=2 [K, E,_,],

then

(a) if f: K — L is a based map, f*s* = s*(f A ,1)*;
(b) if-(K, L) is a CW-pair, (igu)* = (~1)"~*8%*: R™(sL; E)—>
H%K, L; E).

The exact cohomology sequence allows us to prove the féllowing
generalization of a result in Example 4.2.12.

Corollary 8.4.5 H*K;E) =~ BYK;E) @ A*S°; E).

Proof. Le k, be the base point of K, and consider the exact
cohomology .equence of the pair (X, %,):

e om—> HYK, ko; E) L HYK; E) = H"(ko; E) —»- - -.

If p: X — ky is the constant map, pi = 1: k, — kq, so that %p* = 1.
Thus by Proposition 1.3.36,

HYK;E) ~ HYK, ko; E) @ Hky; E);
but H¥(X, ko; E) = AY(K; E) and H"k,; E) = AY(S°;E). }
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For a general 2-spectrum E, there is no reason why the groups
A7(S°; E) should vanish if n # 0. In fact it is easy to see that a
necessary and sufficient condition for this to happen is precisely that
the homotopy groups of E, should vanish in dimensions other than
n. This brings us back to the particular case in which we are most
interested, where each E, is an Eilenberg-MacLane space. We now
give the precise definition and existence theorem.

Pefinition 8.4.6 Given an integer n > 0 and an abelian group G,
a CW-complex K is called an Ezlenberg—;MacLane space K(G, ») if

G, r=n
"'(K)_"' {0, otherwise.

If. n = 0, we require only that #¢(X) should be in (l-l)-correspondénce
with G, and we may take K(G, 0) = G, with the discrete topology.

Theorem 8.4.7 For any n > 1 and any abelian group G, K(G, n)
exists.

Proof. We first construct a CW-complex B such that
Wr(B) = {G, r=n

0, r<mn,
and then use Theorem 7.5.9 to ‘kill’ the higher homotopy groups.
Write G = F/[R, where F is a free group and R is a subgroup (for
example, F may be the free group with thé elements of G as genera-
tors). Let A = \/S%, one for:each generator @ of F, and define
6s F — m,(A) by 6(a) = [4,), whete 7.8 — A is the inclusion map
_onto S%. For each element x. af B; let . S® — A be a map represent-
ing 6(x) € m,(A4); let B be the.space obtzined from A4 by attaching
(n + 1)-cel]s E™*1 by the maps #,, one for each element x € R. Then
certainly Bis a CW-complex, and’it is easy to see that -n,(B) = 0 for
~r < n. Moreover, there i is a commutative diagram

) mi(A) 2> my(B) —> 0

M) [

. H, (B, 4) —> H,(A) —> H(B)—> 0,

"where h,, is the Hurewicz homomorphism. Now if n = 1, n,(4) @ F
and A, is the quotient homomorphism onto F/[F, F]}; otherwise, if
n>1, h,:m,(A)— H,(A) is isomorphic and m(4) =~ F/[F, F].
Further, H,, (B, A) ~ H,,,(B/A) is the free abelian group on the
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elements of R as generators, and J, sends each generator to its coset in
F|[F, F}, sothat H(B) x F/[R = G.If n > 1, h,: n,(B) —> H,(B) is
an isomorphism; so that m,(B) ~ G as well; if n = 1, we at least know
that hyi, = i h,: m)(A)— H,(B) is the quotient homomorphism
F — F|(R, so that Ker [t,: 7;(A) — »y(B)] is containéd in R: however,
1o 0(x) = i,[¢.] = O for all x € R, since ¢,: S — B extends to a map
of E2. Thus in all cases m,(B) ~ G.

The proof is now completed by using Theorem 7.5.9 to ‘kill’ the
homotopy groups of B in dimensions greater than n. ||

Corollary 8.4.8 Given an abelian group G, there exists an
S2-spectrum E with
K(G,n), n>0
E, = { . .
nt, otherwise.

. Proof. Define E, to be a point or K(G, n) as the case may be; we
have only to construct the weak homotopy equivalenc s ¢,: E, —
QE, ,,. Since (point) = 2K (G, 0) = point, the only possible map
«: E, — QE, ,, is obviously 2 weak homotopy equivalence if # < 0,
so that in fact it is sufficient to consider only the case n > 0.

If n = 0, note that

0, r>0
7(R2K(G, 1)) {G, r = 0.
Thus the map ¢, that sends each element of G = K (G, 0) into the
corresponding path component of 2K(G, 1) is a weak homotopy
equivalence. .

If 2 3 1, construct 'K(G,n) as in Theorem 8.4.7, and define
f: A— QK (G, n + 1) by mapping each S2 by a representative map
for the coset of a in F/R x my(RK (G, n + 1)); thus f,: m,(4)—
m(2K(G, n + 1)) is just the quotient map F— F/R (F/([F, F]—
F[Rif n > 1). Each (n + 1)-cell E*** of B is attached by a map ¢,
that represents an element x of R; thus each map f$, is homotopic to a
constant map and we can extend f to a map g: B —» QK (G, n + 1).
Since f* = guiy: m(4) & m(2K(G, 5 + 1)), go: m(B) -
m($2K(G, n + 1)) is an isomorphism. Finally, K(G, n) is obtained
from B by attaching cells of dimension at least (n + 2), so that, since.
n{QK(G,n + 1)) = 0 forr > n, g can be extended to a map ¢, of
the whole of K(G, 1), that still induces isomorphisms in =,, and so
is a weak homotopy equivalence. ||

It remains now to prove that, if (K, L) is a CW-pair, then the
groups H™K, L. E) are isomorphic to H*K, L; G), where E is the
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Q-spectrum of Corollary 8.4.8. In fac' rather more than this is true:
the definitions of induced homornorphisms and the exact sequence of a
pair, given in Theorem 8.4.4, coincide with those of Chapter 5.

The proof of these results is similar to that of Theorem 8.2.15, and
depends on the following proposition.

Proposition 8.4.9 Let (K, L) be a CW-pair, G be an abelian group,
and E be the Q-spectrum of Corollary 8.4.8. There is a homomorphism
B: HYK, L; E) - H (K, L) & G, with the following properties.

(a) Given a map f: (K, L) — (P, Q), the diagram

H™P, 0;E) - > HYK, L;E)
al la
HyP, Q)G —— H(K,L)AG
s commutative.
(b) The diagram
A"K;E) —=— A"-Y(K;E)
s l la

H"(SK) AG ;.le Hn—l(K) AG
is commutative.

Proof. Represent an element x € HY(K, L; E) by a map ¢: K/L —

K(G,n),and let £: s(K/L) — K(G, n + 1) be the map that corresponds
under the association map to e,¢: K/L —~ QK(G,n + 1). Now
define

B(x) = Eysy: H(K|L)— G,
where H,,.(K(G, n + 1)) is identified with G via the Hurewicz
isomorphism
hn+1: G = '”n+l(K(G’ n + 1))_>Hn+1(K(G’ n + 1»'

The proof that 8 is a homomorphism is like that of Proposition 7.4.1:
if ye HY(K, L;E) is represented by 7:s(K/L)-->» K(G,n + 1)
x + y is represented by the composite

r.m

S(K[L) ——> (K/L) v s(KIL) <> K (G, m + 1),
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so that

Bx + 3) = (VE Vv 1)etats
= G + Tudse
= B(x) + B(y)-
Property (a) 1s easy, since f* corresponds to
(O A )*: [s(P/Q), K(G, n + 1)] > [{(K/L), K(G, » + 1)];
hence
(fo A DB(x) = Eusif
= Eu(f A Dose
= [ A Dlase
= B(f*x).

To prove property (b), we first ulserve that, if x € I*(sK; E) is
represented by £:sK — K(G, n), then B(x) = £,: H,(sK) -
A(K(G,n)) =~ G (n = 1). For £: 5(sK)-» K(G, n + 1) is the same
as the composite

(sK) 2225 sK(G, n) —=> K(G, n + 1),
where &, corresponds to €, under the asscciation map. Hence
B(x) = (&)u(£ A 1)ase
= (&)aSufe-

But if 0: 7 (K (G, n)) — m, . (K(G,n + 1)) is the homomorphism
defined by sending the homotopy class of g: S" > K(G,n) to
[€x(g A 1)), there i3 a commutative diagram

7,(K(G, %)) —— . (K(G, n + 1))

| [pess

H(K(G, n)) > I1ny I(K(Gv n + 1)).

(;u).!

However, 8 is the same as the homomorphism that sends [¢] to the
class of the map corresponding under the association map to ¢,g, and
this is the identity isomorphism of G. Hence (€,)45s = 1and B(x) = {,.
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Now if s*xe A"~ K; E) is represented by #: K— K(G,n— 1), we have
7 = §, so that
Bs*x = TuSs
= £45s

= (ss A 1)B(x). 1

Theorem 8.4.10 With the notation of Proposition 8.4.9, there is
an ssomorphism y: HYK, L; E) - H¥K, L; G), with the following
properties:

(a) Given f: (K, L) — (P, Q), the diagram

’ H™(P, Q; E) L> HYX, L;E)

‘Yl 17
H™P, 0; G) - HYK,L;G)
is commutative,

(b) The diagram
.~ A*YL;E) S HYK, L; E) 3> ANK; E) S A™L; E) —- -

| '} b I

~ B*Y(L; G) o HY(K, L; G) > BY(K; G) 1> HY(L; G) -
£s commutative.

Proof. We show first that H*(K, L; E) can be calculated from the
chain complex D(K, L), defined by D_ (K, L) = HYM", M*-*; E)
(and M*® = K" U L), and then show that the homomorphlsm B of
Proposmon 8.4.9 ylelds a chain isomorphism

D(K, L) - C(iG L) A G.

Now the argument of Theorem .8.2.10 will certainly show that,
H™M?>, L,E) = H_ (DK, E))Torallp > n, but once again a special
argument is needed to show that H M+ 1 ,L; E) ~ HYKX, L;E).
This time, however, it is sufficient to remark that, for any CW.-
complex K, a map f: K"*! —» K(G, n) can be extended over th¢
remaining cells of K, since =,(K(G, n)) = 0 for r > n, and similarl~
the homotopy class of such an extension depends only on that of f.

By properties (a) and (b) of Proposition 8.4.9, and Corollary 8.2.7,

B: D(K, L)~ C(K, L)A G
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is certainly a chain map. But in fact 8 is a chain isomorphism, since
HYM*» M*-; E) = [{(M*M"-1), K(G, n + 1)]

X mus (MM ) A G

) = By (MMM ) 4G
> B (MYM*~1) 4 G.

Hence B induces an isomorphism y: HY(K, L; E) - HYK, L; G).

Propefty (a) follows from Proposition 8.4.9(a) and the argument
used to prove Corollary 8.2.11, at least if f: (K, L)— (P, Q) is a
. cellular map. But since by Theorem 7.5.7 any continuous map is
homotopic to a cellular map, property (a) immediately extends to any
continuous map. As for property (b), we need only consider 8*, and
by the cohomology analogue of Corollary 8.2.7 it is sufficient to show
that the diagram

ANsK; E) 2> A*- YK E)
AYK; G) —> A*K; G)

is commutative. But this follows from Proposition 8.4.9(b) in the same
way that (a) follows from Proposition 8.4.9(a). |

8.5 Products

It has already been hmted at the beginning of Chapter 5 and
elsewhere, that cohomology theory has a real advantage over homology
theory, in that it is possible to introduce products, so as to make
the direct sum of the cohomology groups into a ring. This makes
cohomology a more delicate algebraic invariant, which will often
distmgu:sh between spaces that have isomarphic homology groups.

It is possible to set up the general theory for the (singular) cohomo-
logy of arbitrary topologxcal spaces (see the notes at the end of the
chapter). However, it appears more illuminating—and it is certainly a
good deal easier—to confine attention to CW-complexes and make use
of the ‘cellular chain groups’ of Section 8.2. The product will be
defined by a set of axioms; and since these axioms are just as easy to
state for a general cohomology theory, we shall give the definition in
terms of the cohomology theory associated with an arbitrary Q-
spectrum E,

Since the axioms involve the cohomology groups of a product of two
CW-complexes, it is convenient to use thé products X and X, in
order to ensure that all products are again CW-complexes.
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Definition 8.5.1 Let E be an Q-spectrum. In tb- _ohomology
theory associated with E, a product is a set of horp~~ ~ orphisms

A:B(K;E)® B(L;E)— A"* a % L; E),

for all integers r, s and all (based) CW-¢ mplexes K, L (we shall write
x Ay for A(x ® y)). These homom .phisms are required to satisfy
the following four axioms.

Axiom 1. Given based maps *. K — M, g: L — N, the following
diagram is commutative:

A'(M;E) ® A¥N;E) >~ A+*{(M & N;E)
!-ea-l ) l(f'Ko)‘
B'(K;E) @ AY(L; E)— A"*YK X L;E).
Axiom 2. 'The product is associative, that is,

AMA @1 = A(1® A): A(K;E) @ AYL; E) @ A{(M;E)
— A™*{(K K L R M;E).

Axiom 3. The product is anti-commutative, that is, if x € H"(K; E)
andy e H(L;E),thenx A y = (—~1)?r*(y A x), where+: K A L—
L % K is the map that exchanges the two factors.

Axiom 4. There exists an element z € A1(S?; E) such that, for
eachx e H'( K; E), s*x A 2) = x.

Of course, by replacing K, L by K+, L*, we obtain a product in
unreduced cohomology, of the form x:H"(K;E)® HYL;E)—
H'*%K R L;E); again we write x x y for x (¢ ® y). This product
satisfies axioms similar to Axioms 1-4 above; in particular, the
analogue of Axiom 1 holds for unbased maps f and g.

Moreover, py taking K = L and using the diagonal map 4: K —
K % K, A*(K;E) can be made into a ring. As has already been
suggested, this is the real object in introducing products.

Theorem 8.5.2 If K is a CW-complex, a product A induces a
product between elements x, y € H*(K; E), writien x U y, in such a way
as to make H*(K;E) into a ring. Moreover, the following properties
hold:

(a) Ifxc A"(K;E)andy € H(K; E), then x Uy € H'*¥K; E) and
xVUy =(-1yux

(b) If f: K — L is a based map, then f* is a ring hcmomorphism.

(c) All products ave zero in H*(sK; E).
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Proof. If xe A'(K;E) and y € H¥(K; E), define
2Uy = A%x A y) e H"*(K; E).

By definition of A this is distributive and associative, and remains
so when the product A is extended in the obvious viay to more
general elements of B *(X; E): hence A*(K; E) is a ring. Properties
(a) and (b) are immediate from Axioms 1 and 3, since 74 = 4 and
(f A4 = 4f. '

To prove (c), we have only to remark that 4: sK — sK K sK is the
same (up to rearrangement of the factors) as 4 A 4: K A S?'—
(K X K) A (S* A §?); but this is homotopic to the constant map,
since w(S* A S1) =m(S?) =0. |

Naturally we can replace K by K *, so as to obtain 4 similar product
in H*%K; E), and then any unbased map f: K — L induces a ring
homomorphism.

Theorem 8.5.2 shows why it is cohomology, rather than homology,
that can be made into a ring. The point is that the diagonal map
induces a homomorphism 4*: A* K % K;E)— A*K;E) in co-
homology, but goes in the opposite direction in homology, and so
cannot be used to form a product.

The next step is to justify Definition 8.5.1 by showing that there
exists a product in ordinary cohomology. We use the results of
Section 8.2 (in. particular Theorem 8.2.15), and the first step is to
construct a homomorphism (K) @ C(L)— C(K % L) for any two
CW-complexes X and L. Let the indexing sets and characteristic maps
for K, L be .*,, B,, ¢ 47 respectively. By Theorem 7.3.16, the
indexing sets fot K x Lare C, = |J A4, x B, and the character-

r+s=n-
istic maps are (¢5 x ¥4k, ,, where A ,: E"**— E" x E* is the
standard homeomorphism. A homomorphism x : C(K) ® C{L) -
C,:{K % 1) may therefore be defined by setting x(a ® ) =
e % B, where the generators of, for example, C(K) are identified with
the elements of A4, as in Proposition 8.2,12. ‘

Proposition 8.5.” &« x ) = da x B + (—1)a x 2B.

Proof. For each y x 8 in C,,,_;, considet the composite map
dyx g,y s 38 in Proposition 8.2.12:

Sr+s-1 B L Q71 % EaUEr x S-1
PLXVp K-l x L*UK" % L*-?!

"KTIRLDUKTRDTUK R L3

A V(E”""l/S”""’) Byxs _, Qres-i
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This is clearly the constant map unless y x §e€ 4,_, x B,uU
4, x B,_,, and is homotopic to the constant map (since it is not onto)
unless y x & is of form y x B or « x 8. On the other hand, by Prop-
osition 7.3.21, d, . 5 , « 5 18 the composite

Sr+e-1 > ST-1 A (E¥fSe-1) 222, “"‘"
M—V(E"'I/S’"z) A (E%S*-Y)

Dot \/ (Er+s-1/8r+e-3) Bavxs , gres-1

(KY—I/KY—2) A (Ll/Lt-l)

(¢h: S7-1 — K*"3/K"~2 may be assumed to be a based map if r > 1,
by choosing a suitable base point in (¢7)"!K"~2 If ¢(S""1) N
K2 = g, bothd, ;. ,xsand d, , are homotopic to the constant map,
since they are not onto. The case r = 1 is discussed below.)

Now this composite is the same as

Sr+e-1 Br.s P, §r-1 A (EfS§sm1) et Garhl gr-1 (Es[S*-1)
(___(Er-I/Sr—2) A (Es/Ss-l)

¢ Ar-1 Er+a-1/Sr+s—2 e > Sr+s—i.
But by Proposition 6.2.16 this is homotopic to

derr

Sr+s -1 > Sr 1 A (E:/Ss 1)
ST=1 A (E*S*-1) Bra Sres-1

where k, , is a homotopy inverse to h,,; thus, as in Example 7.4.10,
aaxa rxg = aav

If r = 1, the above argument daes not work, since it is not possible
to make ¢1: S® - K°/K - = (K% into a based map. However, the
reader should have no difficulty in making the necessary modifications
to deal with this case: the space S° A (E¢/S?- 1) should be replaced by
(S° x E*)[(S° x S*-1).

A similar argument shows that 9,.5.4xs = (—1) 0y so that in
C(K % L) we have Ha x ) = de x 8 + (—1)a x 8. §

Notice that, since the obvious homomorphism

B CGK)® C(L)~CK % L)

is clearly an isomorphism, Proposition 8.5.3 can be used to give a
formula for the homology groups of X X L in terms of those of K and
L: see Exercise 9.
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Proposition 8.5.4 Given cellular maps f: K — M, g: L — N,
(f % &)« x B) = (fo) x (2.B).

Proof. By similar methods to those in the proof of Proposition
8.5.3, it is easy to see that (f X g),x5.yxs may be identified with
far A 8ps: S™A S*—> 8" A S% But

d(fay A 80) = d(fuy A 1)d(1 A g4,)

= d(fu)d(250)»
by Example 7.4.10. Hence

(f % g« x B) = z‘d((f R BaxsyxaXy X 8)
= rz;d(far)d(gﬂd)(y x )

= (g d(fa,)y)_ x (; dgn)3)

= (fB) x (2.8 1

By composing with the identification map p: K X L - K X L, the
homomorphism X can be turned into a homomorphism into

C(g( A L) (at least if the base points are O-cells); more precisely,
define '

AMCOK)Q® CL)—-CK K L)
by @« A 8 = p(a x B). Naturally, the analogues of Propositions
8.5.3 and 8.5.4 remain true, since p_is a chain map.

Theorem 8.5.5 If G is a commutative ring with a 1, there exists a
product in the cohomology with coefficients in G of CW-complexes.

Proof. By interpreting C(K) as C(K, ko), where k, is the base
point, the homomorphism A may be regarded as an isomorphism

A: @ CUK) ® CL)— C(K & L),

r+s=n

where o A B) = (@) A B+ (—1)a A (3B) if ae C(K). If Gisa
commutative ring with a 1, this gives rise to a homomorphism

A(CAR) A G) ® (CL) A G) > C., (K R L)AG
as follows. Let 4,, B, be the indexing sets for the r-cells of K and the



344 HOMOLOGY AND COHOMOLOGY OF CW-COMPLEXES CH 8

s-cells of L, respectively. If x: C,(K) - G and y: C,(L) — G, define
x A y on the generators of , (K A L) by the rule

(x Ay« A B) = {x(a).y(ﬁ), ac 4, Be B,

0, otherwise.

Let ae Cy(K), Be C(L), where p + ¢ = 7 + s + 1. If we write §
for @ A 1, then

[8(x A Y))(@ A B) = (x A y)[(e A B)]
= (x A y)[(62) A B + (—1)Pa A (3B)]

Hoe)yB),  p=r+lg=s
= (= 1yx(e)y(@B), p=rg=s5+1
0, otherwise,

so that 8(x A y) = 8x A y + (—1)x A dy. It follows that if éx =
"8y=10, then §(x A y) =0; if x =8x", 8y =0, then x A y =
Mx' Ay); and if dx =0, y = &', then x A y = (= 1)8(x A ).
1 1.+ if [x] denotes the homology class of the cycle x, we can define

A BX; 6) @ AYL; G)— A™*(K & L; G)

unambiguously by [x] A [¥] = [x A y].
It remains to check Axioms 1-4.

Axiom 1. Without loss of generality we may assume that f and g are
cellular, In this case (f & g) (e A B) = (f.2) A (g.B) by Proposition

8.5.4, so that Axiom 1 follows since f?, g* and (f A g)* are induced
byf Al,g Aland (f A g) A1 respectively.

Axiom 2. This is trivial, since (e Af) Ay =a A (BAY) in
Cr+:+!(K A L A M)

Axiom 3. By Example 7.4.9, the map »: S* A 87— S" A §*
that exchanges the two factors has degree (— 1) Thus if we write =
also for the ‘exchange map’ »: L A K— K A L, it is easy to see that

7.0 Crpf(L R K)”’CH-J(K A L)

is given by 7.(8 A o) = (—=1)%(« A B), if € C(K) and Be C(L).
Hence in cohomology 7*(y A x) = (—1)"%(x A y), since G is com-
mutative,

Azxiom 4. It is easy to see that s*: H"*(sK; G) — A" (K; G) is
induced by s,: C(K) = BM"IM'-Y) - B, (s(M'/M’'?)) =
C,.,(sK), where M7 = K" U ky. Now for a CW-complex X, ¢4;: H X))~
A,,,(sX) is (- 1)”*! times the composite H(X) &, H, ,(cX, X} P+,
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H,,,(sX), and if X is a one-point union of S"s (for example if X =
M7{M7-1), then the r-skeleton of cX is X, so that this composite may be

identified with
CAX) = CfcX) <= C,o1(cX) 2> €, \(sX).

Now if I denotes the obvious 1-cell of 7, then (I) = 1 — 0 in C(J);
hence if « € C(X) we have &« A I) = (—=1)*1ain C(cX). That is,
se: H(X) > H,,,{sX) is given by sending a to « A s,, where
5, = g.(I) € Cy(S?). It follows that, if z € AY(S; G) is the class of
the homomorghism €,(S')— G that sends s, to 1 in G, then for
x € A"(K; G) we have s*(x A 2) = x. |

Of course, the corresponding product in unreduced cohomology is
induced by the homomorphism

x: C(K) ® C(L) — C(K % L).

It can be shown that Axioms 1-4 characterize the product uniquely,
if G is one of the groups Z or Z,: see Exercise 12.

We have now set up the theory of products in cohomology, and
certainly two homotopy-equivalent CW-complexes will have ring-
isomorphic cohomology rings. In order to apply this theory in practice,
however, we clearly need an effective method of calculation. This
reduces to a calculation of the cohomology homomorphism induced by
the diagonal map 4: K —+ K x K (in the case of unreduced cohomol-
ogy). It is not very easy to do this for arbitrary CW-complexes, but
if K is a polyhedron there is a simple formula for a chain map

d: CO(K) -» C(K x K)

that induces the same homology and cohomology homomorphisins as
4 (we may now write x rather than X, since obviously a polyhedron is
a countable CW-complex).

Let K be a simplicial complex, which by Proposition 7.3.2 is also
a CW-complex. Moreover Proposition 4.4.21 shows that we may
identify the simplicial chain complex ({K) with the cellular chain

complex C(|K|). Suppose that the vertices of K are totally ordered, as
@ <a <a® <., say.

Theorem 8.5.6 Foreachn > 0, defined: C,(K) — C,(|K] x |K))
by
dlab,...,a%] = > [ah,...,a%] x [ah, ..., a%],

b 4

where iy < --- < i,. Then d is a chain map, and induces the same
homology and cohomology homomorphisms as 4.
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Proof. 'To show that d is a chain map, observe that

od[a® ..., a"] = io(a[a",...,a'] x [d...,a"] + (--1)[a° ..., a"]
” x da', ..., a")
=r=°(z (-1)[a%...,d,...,a] x [a,...,a"]

+ (-1y[a°...,a"Y] x [a, ..., a"]

n

+ > (=1p¥a ..., e x[d,..., &, ..., 4"

s=r+1
= do[a’, . . ., a").

The rest of the proof consists in constructing a chain homotopy A

between d and 4, where 4 is a cellular approximation to 4. This will
show that d, = 4,, and dually 4 A 1 will be a chain homotopy between

dA1and Z A 1, so that d* = 4*. To construct 4, note first that we
may assume that, for each simplex ¢ of K, 4(¢) < o x o. This follows

by induction on the dimension of o: in constructing 4 by the method
of Theorem 7.5.7, assume that 4 has been constructed on |K™~!|

with the homotopy F between 4 and 4 sending o x [ into o x o for
each o € K™~ (this is certainly possible if # = 1). Then F can be
extended to |K™| x J, with the same property, since

(0 X 0, (0 X o)*) = 0.

We can now construct k on C,(K) by induction on n. Suppose that
h: C,_(K)— C,(}K]| x |K|) has been defined, such that

ok(a) + hd(o) = A (o) ~ d(o),

and k(o) € Cy(o x o), for all (» — 1)-simplexes o. This can certainly

be done for n = 1, since 4 = d on Cy(K) and we may define
k= 0: Co(K) — Cy(|K| x |K]|). Now if ¢ is an m-simplex, & is
already defincd on &(o), and

o[- k(o) + A (o) — d(a)] = —(dh){do) + 4 8(c) — dO(o)
(ho)(00) — 4 8(0) + d¥o)
+ 4.9(o) — dd(o)

= 0.
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But —hd(o) + 4 (o) — d(o)is an element of C,(c x ¢), and ¢ x ois
contractible, so that H,(c x o) = 0 (r > 1).. Hence there exists an
element k(o) € C, (o X o), such that

oh(o) + ko) = 2 (o) ~ d(o),
as required. |

Corollary 8.5.7 The ring structure in H*(K; G) is induced by a
product

U: (CAK) 4 G) @ (CK) b G) — C,,(K) & G,

where if xe C(K)A G, ye C(K)h G, and (a° ...,a"*%) is an
(r + s)-simplex with its vertices in the correct order, we have

xuna,...,a*%] =x[d...,aya,...,a*] |

Corollary 8.58 If |K| is connected, 1 € HYK; G) = G acts as
an identity element for H*(K; G). |}

Theoretically, Corollary 8.5.7 gives all the information necessary to
calculate the product in H*(K; G). However, as we saw in Chapters
4 and 5, it is much too laborious in practice to use the individual
simplexes in making calculations with homology or cohomology.
Since it appears difficult to give an analogue of Theorem 8.5.6
involving a block dissection or CW-decomposition of K, we cannot
hope to improve on Corollary 8.5.7 in general; but if | K | is a homology
manifold, the ring structure in H*(K) can easily be computed by
relating it to the Poincaré duality isomorphism.,

Theorem 8.5.9 Let K be a triangulation of an orientable homology
n-manifold, and let D: H'(K') - H,_(K') be the Poincaré duality
sisomorphism. Then if x € H'(K'), y e H*"~"(K'), we have

D(x v y) = <x, Dy)hy,
where hq is the homology class of any vertex of K'.

Proof. As remarked after Theorem 5.3.17, D is given at chain level
by D(x) = x N ¢(3), where x € C(K') & Z and z € C,(K) is the sum
of all the n-simplexes of K. Here, the definition of x N ¢(z) involves
an ordering of the vertices of K’, which we assume done in such a
way that & < #if dim o > dim 7. Using the same ordering to give the

ring structure in H*(K), if xe C(K')A Z, ye C,_(K')h Z, and
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(a%...,a") is an m-simplex of K’ with its vertices in the correct
order, we have

(xuy)nid...,a" = [a].(x U y)[a° ..., a"]
= [a%).x[a’, ..., a").y[a", ..., a"]
=<{x,yN[as ..., a" D%
It follows that (x U y) N ¢(2) = (&, ¥y N #(2)>[@°], so that, passing to
homology classes, we have D(x U y) = (x, D(y))h,. |
The same argument shows that a similar formula holds using Z,, or

Q coefficients instead of Z, and (with Z; coefficients only) if K is
non-orientable.

Examples 8.5.10

(a) We know that RP" is a homology n-manifold, and that

H/(RP*; Z,) ¥ H'(RP"; Zz) ~ Z, if 0 < r < n. Moreover the CW-
decomposition of RP" given in Examples 7.3.3(c) shows that, if
{: RP*-1 — RP" is the inclusion map, i,: H(RP"*"%; Z;) —»
H/(RP*; Z,) is isomorphic for 0 < r < n — 1, similar remarks apply
to cohomology.

Let x be the generator of H(RP"; Z;) corresponding under the
inclusion map to a choice of generator of H'(RP!; Z,); we shall show
that 27, the r-fold product of x with itself, is a generator of H'(RP"; Z,),
0 < r < n. For suppose this is true in RP*~? (it is certainly true in
RP'). Then by Axiom 1 of Definition 8.5.1 x* is a generator of
H'(RP*; Z,) for 0 < r < n — 1. Moreover by Theorem 8.5.9

D(x") = D(x U x*-Y)
= {x, D(x*~1)>h,.
But (x, D(x*-1))> = 1 by Proposition 5.2.11, since D is an isomor-
phism, so that x* # 0 and therefore x* is a generator of HYRP*; Z,).
In other words, H*(RP"; Z,) is isomorphic to the polynomial
algebra Z,[x], subject to the relation ™+ = €.
(b) To deduce the ring structure of H*(CP"; Z;) and H *(HP*; Z,),
we make use of a cellular map ¢: RP?" — CP", defined by
cfxy, ...y ¥gpeq] = [y + txg, ..., X001 + £, xznn]

(this is easily seen to be well-defined and continuous). If i: RP#*~2 —
RP3* and io: CP*~! — CP* are the inciusion maps, then ol = i.c;
and if ¢’: RP?~1 — CP*~1 ig defined by

C'[xl, ooy xzn] = [x1 + ixg, ceuyXgn-y + ixa,‘],
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then there is a commutative diagram

kpmq LN RP2

b
CP*=* —— CP*

where pg and p. are the locat product maps as in Chapter 7, Exercise
19. It follows easily that ¢ : C,,(RP?*) — C,,(CP") is an isomor-
phism, and hence that ¢ : C,(RP?") — C,(CP") is isomorphic for
(UE JE X

Thus c*: H¥*(CP*; Z,) - H¥(RP*; Z,) is isomorphic for 0 £
r € n; and if y € H¥CP"; Z,) is the generator such that c*(y) = &2
then ¢*(y") = a*. Hence )" generates H?(CP"; Z,;), and so
H*(CP"; Z;) is isomorphic to Z,[y], subject to the relation y**! = 0.

A similar argument shows that H*(HP*"; Z,) is isomorphic to
Z,[z), subject to 2**! = 0, where € HYHP*; Z,). |

Note. 1t is possible to prove (b) directly from Theorem 8.5.9, by
showing that CP* and HP* are homology manifolds. Since they are in
fact orientable, similar results will hold with Z rather than Z5
coeﬂ'lcnents

As a corollary of (b), we can easily prove that CP® and §% v S*
are not homotopy-equivalent. For if p, ¢: §% v, St S3, S are
the projection maps, then H*(S? v S%; Z,) » Z, for r = 2,4, the
generators being p*(s,) and ¢*(s,), where s, and s, are the generators of
H3S%; Z,), HY(S*; Z,) respectively. Now

P¥(s2) Y p*(sa) = p*(sa U s3) = 0,

so that although H ‘(S’ v S*%; Z,) and H*(CP3; Z,) are isomorphic
as groups, there is no ring nsomorphxsm between them. Thus S3y S¢
and CP2 cannot be homotopy-equivalent.

In order to calculate the cohomology ring of a product of two
CW-complexes, the following proposition is useful.

Proposition 8.5.11 Given CW-complexes K and L, let p, q: K X L
— K, L be the projection maps (which are comtinuous by Proposition
7.3.23). Then if G is any commutative ring with 1, the following diagram
is commutative:
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H*K; G)® H*(L; G) y
roc| H*K % L;G)
HYK X L;G)® HYK % L; G)” "~
Proof. By Axiom 1 of Definition 8.5.1, the diagram
HYK;G)® H¥L; G) —— H¥K % L; G)
, p'm‘l * l(p';q)'
HYK x L;G)@ H¥K %X L;G) —>HYK = L < K % L;G)
is commutative. But clearly (p X ¢)d = : K x L>K x L. ||

Example 8.5.12 It follows that H*(S"™ x S™) has generators
s, € H" s, € H™ and z € H"*™, where 2 = 5, U s,,. All other products
of s,, s, and 2 are zero, since s, and s, are in the images of p* and ¢*
respectively, and H'(S" x S™) = 0 for » > n + m. A similar result
holds using Z, coefhicients.

We can now, at last, prove that S2 x S* and CP? are not homo-
topy-equivalent. For if y is the generator of H?(CP3; Z,), then
y® # 0; but (s;)® = 0in H4(S? x S%; Z,). |}

We end this chapter with an important geometrical application of
the theory of products, on the non-existence of antipodal maps of
Stto S™ m < n.

Definition 8.5.13 A map f:S*"— S™ (n,m > 0) is called
antipodal if, for all points x € S*, f(—x) = —f(x).

Theorem 8.5.14 There is no antipodal map f. S"™— S™, if
n>m20.

Proof. Suppose that there were such a map f. Then f would
induce a map g: RP* — RP™, such that the diagram

S» I > §m
e
RP* - Rpm™

is commutative, where p, and p,, are the local product maps of Chapter
7, Exercise 19. Now by Chapter 6, Exercise 19, p, and p,, are Serre
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fibre maps; and if we choose base points in all four spaces 8o as to
make all the maps based, f induces a homeomorphism on the fibres
F, and F,, which are both homeomorphic to S° So by Chapter 6,
Exercxse 18, thereis a commutatxve dnagram of exact sequences

0 ——> my(S™) L2 7, (RP™) —> mo(F,) ——> 0

!ol la. 1!. l

0 ——> my(S™) > my(RP™) — mo(F) —> mo( ™) —> 0.

Here, f,: my(F,) — mo(Fy) is a (1-1)-correspondence. This is an
immediate contradiction if m = 0 (the third square cannot be com-
mutative), and if m = 1 (the second square cannot be commutative,
gsince m;(RP™) — mo(F,) must be a (1-1)-correspondence and g, = 0
because m;(RP") & Z, and m(RP™) & Z). On the other hand, if
n>m>2 then m(S") = m(S™) =0, and so g,:m(RP*)—
my(RP™) is an isomorphism. Thus by Theorem 8.3.7 g,.: H;(RP™) —
H;(RP™) is also an isomorphism, both groups being isomorphic to
Z,. Using the exact coefficient sequence associated with Zj, this shows
that g,: H,(RP*; Z,) - H,(RP™; Z,) is an isomorphism, and so
g*: HY(RP™; Z;) -~ H(RP*; Z,) is isomorphic by Proposition
5.2.11. Thus if x is the generator of H!(RP™; Z,), g*(x) generates
HY(RP*®; Z,), and hence g*(x") = [g*(x)]® # 0. But this is a
contradiction, since 1™ = 0 because m < n. ||

An interesting corollary of Theorem 8.5.14 is the Fixed-Point
Theorem of Borsuk.

Tﬁeorem 8.5.15 Given any continuous map f: S %> RN, there
exists a point x € S" such that f(x) = f(—x).

Proof. Suppose no such point x exists. Then a continuous map
g: 8™ — S™-1 can be defined by setting

8(x) = [f(®) — f(=2)/f(x) = f(—=)].
But g is clearly antipodal. |

Corollary 8.5.16 Let X,,..., X, be bounded measurable subsets of
R". Then there exists an (n — 1)-dimensional hyperplane Y in R* that
bisects each of Xy, . .., X,.

Proof. Given a point x€ S® < R**!, let Z, be the n-dimensional
hyperplane of R"*! through (0, . .., 0, 1), perpendicular to the vector
x. For 1 € r < n, let f,(x) be the measure of that part of X, that lies
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on the same side of Z, as x + (0, ..., 0, 1). It is easy to see that f, is a
continuous function from S™ to R!, and hence that

f(x) = (fl(x)‘ v 'rfn(x))

is a continuous function from S™ to R*. By Theorem 8.5.15 there is a
point x € S" such that f,(x) = f,(—x) for all r; but since Z, = Z_,,
andx + (0,...,0,1)and —x + (0,..., 0, 1) are on opposite sides of
Z,, this means that Z, bisects each X,. Hence Y = R" N Z, 1s an
(» — 1)-dimensional hyperplane in R" that bisects each X,. |}

If » = 3, Corollary 8.5.16 says that three bounded measurable sets
in R?® can be simultaneously bisected with one plane. This result is
popularly known as the Ham Sandwich Theorem: no matter how the
slices of bread and the slice of ham are arranged, it is always possible
to cut the sandwich in half with a single knife cut.

EXERCISES

1. Let Q,(X) and 2,(X, Y) be as in Chapter 7, Exercises 2 and 4. Show
that, for any pair (X, Y), 5,Q.(X) = 02X, Y) = 0, so that the
Hurewicz homomorphisms may be regarded as homomorphisms

By: n2(X) > Hy(X),  hy:n¥(X, Y)—> Hy(X, Y).

Prove alsc that, if K is a connected CW-complex and n > 2,
hy: wi(K*, K*~1) > H (K" K"~%) is always an isomorphism. (Hiat:
use Chapter 7, Exercise 16.)

2. The dunce hat D is the space obtained from an equilateral triangle by
iaentifying edges as shown in Fig. 8.1.

£i8

Fig. 8.1
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Show that D is triangulable, and use Theorem 8.3.10 to show that D is
contractible, However, D is not collapsible.

. Show that a simply connected homology n-manifold X is homotopy-

equivalent to S* if ﬁ,(X) = 0 for r < [n/2], where [#/2] is the integer
part of n/2. Deduce that if X is the 3-manifold of Chapter 5, Exercise
9, then SX is a homology 4-manifold that is homotopy-equivalent to .
S+, but not homeomorphic to S* (thus the Poincaré conjecture is false
for homology manifolds).

Let f: K — L be a based map between connected CW-complexm, and

let f: K — L be the corresponding map of their universal covers, so
that there is 2 commutative diagram

g1
,l 1,.
K_I_>L,

where g and A are the covering maps (see ChapEcr 6, Exercises 23 and
25). Show that, if

Sa:m(K) ~ m(L)
and ‘

fo: HAR)~. L)
are isomorphic for all r, then fis a (based) homotopy equivalence,

. Let L, M be subcomplexes of a CW-complex K, where K = L LU M,

and suppose that a O-cell k, of L N M is taken as the base pomt. By
considering the inclusion map of L v M in
(LNM)yxI

ko x I
show that for any Q-spectrum E there is an exact Mayer—Vietoris
sequence

—s HYK; E)*> AYL;E)® H"(M;E) >

ANL A M;E) 2 H** YK, E)—> --,

where {* is induced by the inclusion maps of L, M in K, and »*(x @ y)
= {f(x) — i3(y), where §,,#,: L " M — L, M are the inclusion maps.

Let i: L — K be the inclusion of a subcomplex in a CW-complex, and
let M be another CW-complex. Show that (C\) A M and C3,, are
homeomorphic, wheres X 1: L A M—> K A M.

Given any integer r > 1, let L, be the space S! U, E?, where
Jf: S* — S!is a map of degree r. For any 2-spectrum E, define

HYK;E; Z,) = H**3K A L,;E).

K' = (L x0)uU

UM x 1),
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Prove that there is an exact sequence
. 0-> HYK;E) ® Z,— HY(K; E; Z,) -» Tor (H**(K; E), Z,)— 0,

¢ - and that if E, = K(Z, n) then HYK; E; Z,) = HYK; Z,).
< 4. Show that, if G is a finitely generated abelian group, then K(G, n)
can be constructed as a countable CW-complex. (Hint: use Chapter 7,
~ Exercise 12.) Deduce from Corollary 7.5.3 that K(G, ») is an AHL.
.8, Let K be a CW-complex, and let Y be a path-connected (n — 1)-
- simple space. Given a map f: K*~'— Y, define o(f)e C(K)A

7 (Y) by :
(fhe) = [fée),

where the characteristic map ¢2 is regarded as a map of S"~! to K"~1,
Similarly, given two maps f, g: K*~* — Y, such that f ~ g on K*~2
by a homotopy F:K""2 x I— Y, define d(f,g)eC,_y(K)h
wa-1(Y) by regarding £, g, F as a map F: (K x I)*~! — Y, and setting

d(f,g) = (8 & 1)(F),

where : C(K)— C(K x I) is defined by §(«) = ¢ x I. Prove the
following results (2 > 2).

(a) ¢(f) depends only on the homotopy class of f, and is zero if and only
if f has an extension to a map f: K* — Y.

(b) 8¢«(f) = 0. (Hint: use Exercise 1, and show that ¢(f) may alter-
natively be defined to be the composite

H (K" K*-1) 2% p¥(K®, Kn-1) 2oy g% (K*- 1)——>1r,-1(Y):)

(c) 8d(f, ) = (= 1)"(c(f) — «g))- :
(d) Given de C,_y(K) A m,_4(Y), and f: K*~! — Y, there exists
g: K"~1— Y, such that g = fon K*~3, and d(f, g) = d.

(€) If ¥{f) denotes the homology class of ¢(f) in H*K; m,_i(Y)),
then ¥{f) = 0 if and only if there exists a map g: K® — Y such that
f=gonK""3

9. Let K and L be CW-complexes. Show that there is an exact sequence

0 — Z(C(K)) ® C{L) —> C(K) @ C(L)*®*>
B, (C(K)) ® C(L)—> 0,

and deduce from Theorem 4.4.2 and Proposition 8.5.3 that there is an
exact sequence

0> @ H(K)Q®H(L)y-~>H(K R Ly~ .
Tor (H{K), H{(L)) - 0.

re+gmn—~1
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By constructing a suitable homomorphism
0:H(K % L)y> @ H(K)Q H(L),
: r+c-,
prove that this sequence splits, so that
H(K % L) = S-.B H(K) ® H(L)® . @ , Tor (H{(K), H{L)).
r -n rHemn—
Show similarly that

KRNz @ AKOMD® @ Tor(i(K) H.(L»'

r4smn

Let (K, L) be a CW-pair, such that L is a retract of K. Show tlut, ifG
is a commutative ring with a 1,

H*K; G) > Imr* P Keri*

as a direct sum of groups, and that Im r* is a subring and Ker #* is an
ideal (f: L - K and r: K— L are the inclusion and retraction mape
respectively).

By taking K = CP?, L = CP! and G = Z,, show that CP‘ la not R
retract of CP3,

Given an element x € my,_,(S*) (n > 1), the Hopj ingariant pf xis
deﬁned as follows. Represent x by a map f: S~ —» S*, and let
Y = C;. Then HVY) = Z, H™Y) Z the generators being y,, .
Yanr Where f1(3,) = $a) Yau = fd(824), and 5y, 33y Are the generators of

. H*(S®), H*(S) respectively. The Hopf i mvanant of , &(x), is then

deﬁned by.
’ (y n)2 o(x) y b L0

Provh the followmg results,

(a) (%) depends only on x, and not on the chmoe of £ (use Chw 6,

-Exercise 11),

(b) 0: mga.s(SY) > Z is a homomorphmm. (Hmt‘ consider C’vm,g. ‘
where V(f v g): S-1 y §3-1_; §») :
(c)O:Oxfmsodd -
(d) If n is even, O, ¢] = +2, where v, is the generator of wy(S™)

H

. represented by the identity map. Deduce that, if n is even, my,_1(S*)

has an element of infinite order, and that S® cannot be an H-space.

-Show that

H*(K(Z,r) X K(Z,8)) = 2
and . . L
g’*’(K(Z., f) K K(zm ‘)) a) = m
for any integer # > 1. Deduce that Axioms 1-4 of Definition 8.5.1 .

determine the product A" umqucly for cohomology with coefficients
Z or Z " ) ) R
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13.

14.

Given CW-complexes K, L and a commutative ring with a 1, G, define
homomorphisms \: (C(L) X G) Q(CA(K X L)RG)—~C,_ (K)Q G
by the rule

*\[(« x B) @ g] = a @ (#(B).8), aeC,_(K),BeC/L)

0,, otherwise.

Show that (2 ® 1)(x\y) = 2\[(2 ® 1)y] + (—1)*""3x\y, and deduce
that | induces ‘products’

\: H(L; G) ® Hy(K R L; G)— H\_(K; G).
Establish the following properties of \.
() Givenmaps f: K—+ M, g: L — N, then f (g*x\y) = s\[(f X g)«¥]-
(b) Given xe H'(L; G), ye H{M; G) and ze H (K X L X M;G),
then

(x x y)\s = =\(y\a).

(c) Given xe H{K; G) and ye H(K; G), then x\y = (x,¥) in
H(P; G) = G, where P is a single point, and y is regarded as an
element of H,(P x K; G).
(d) If K is a polyhedron, xe H'(K; G) and y e H(K; G), then
x Ny = x\4,(y), where 4: |K| - |K| x |K| is the diagonal map.

Establish similar results for reduced cohomology, involving &
instead of X.
Let K be a triangulation of an orientable homology n-manifold, and
let L be a subcomplex of K. Let L be the supplement of L in K, so
that a typical simplex of K’ (with the usual ordering) is (2° ..., a")
where (a°,...,a" ") eL and (4, ..., a") e L'. Let N(L) be the set of
points in such simplexes of the form 3 A\a', where Ay + -+ + A,_; 3 %,
and let N(L) be the set of points where A, +-- -+ A, 3 4; show that
|Z], |L| are strong deformation retracts of N(L), N(L) respectively.

Now let M be a subcomplex of L, so that N(M) < N(L), N(L) <
N(M), and |K|= N(L)yu N(M)uU (N(M)n N(L)). Show that
there are homotopy equivalences p:(N(M), N(L)) - (%], |L]),
g: (N(L), N(M)) - (|L], |M|). Hence define a map

4: |K[—(IR|/|L]) A (IL{/\M])
by the rule
(x) A glx), xe N(M)n N(L)

A=) = base point, otherwise.

Also define 2 homomorphism d: C(K*) — C((|®}/IL}) A (IL']/|M'])
by the rule d[a° ...,a"] = 3 [a° ..., &l A e a)s the sum
being taken over those values of 7 for which (a°, ..., ') is a simplex
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of M — L and (4, ..., a") is a simplex of L’ — M’. Show that d is a
chain map, and induces the same homology and cohomology homo-
morphisms as 4. (Hint: given a simplex o = (a°,. .., a*) € K', where
2 ....,a ‘el a,...,a*"*eMNL and a',...,a"€ M’, use the
method of Theorem 8.5.6, with ¢ x o replaced by (a°...,a*"1) A
(@, ..., a") in the definition of A.)

Let D: H'(L', M'y—> H,_/(M, L) be the duality isomorphism of
Theorem 5.3.13, composed with (h*)~%, where &:(|L'|, |M'|)—>
(IL|, |M|)is a simplicial approximation to the identity. Deduce that

D(x) = x\44(2),

where z € H(K) = H,(K) is the standard generator, and hence show
that, if y € H*-"(M, L), then

DA‘(_‘}’ A x) = <y9 D(x)>h09

where D also denotes the Poincaré duality isomorphism H™K’) &
H(K"), and A, is the homology class of any vertex of K.

Establish similar results for non-orientable homology manifolds,
using Z, coeflicients.

Let K be a simplicial complex. Show that, for each integer r > 0,
there exists a homomorphism

d,:C(K)® 2,—~> C(|K| x |K|) ® Z,,
such that the following properties hold.
(a) d§ = 4*, where 4 is the diagonal map.
(b) dr[Cn(K) ® Zn] < Cu+r(|K| x |K|) ® Zﬁ'
(c) od, + d,0 = (1 + 7)d,_;, where +:C(|K| x |K|)® Z,—~
C(|K| x |K|) ® Z, is the chain map exchanging the two factors.
(d) For each simplex o, d{oc ® 1)e C(o x o) ® Z,.
(e) 1f dy, di, d;, . . . are another set of such homomorphisms, then there
exist homomorphisms h,: C(K) ® Z; - C(|K| x |K|) ® Z;(r = 0),
such that d, + d; = oh, + h,d + (1 + 7)k,_,

Now suppose that x € Cy(K) ch Z5, y € Co(K) b Z,, and define
xVUy=([d Al)}x x y)€Cpon-(K) A Z,.

Show that 3(x U, y) = d(x) U,y + x U, &(y) +'xU,1y + y Vs &,
and hence define S¢": HNK; Z3) — H**"(K; Z,) by the rule

Sq¢'[x] = [* Uy, x}.

Show that Sg’ is well defined (that is, is independent of the choice of
d,_, and x), and has the following properties.

(a) Sg¢' is a homomorphism.
(b) If f: |[K| — |L| is a continuous map, then f*Sq" = S¢'f*. (Hint:
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16.

use the Simplicial Approximation Theorem and a suitable modification
of (e) above.)

(c) S¢° is the identity 1somorphxsm ~

(d) S¢'(x) = s*if xe H'(K; Z;). -

(e) S¢'(x) = 0if xe HYK; Z,),n < .

(f) ifxeH "(K Zg) and y e H™(L; Z,), then

Sg'(xix y) = 2;(S¢-'x)x<8¢y) in Hrome((K| x |L]; Z).

(Hint: show that S¢" may be calculated in (the polyhedron) K| x |L|
by using the homomorphisms

D,: C(IK} x |L|) ® Zy— CUK] x |K| x |L| x |L) ® 25

defined by D{(c x p) ® 1) = 5.4 o ®1) x 7du @ 1))
Extend the definition of S¢' to A%(K; Z,) and HY(K, L; Z,), and
prove:

(g) If 3* is the homomorphism in the exact cohomology sequence of
(K, L), then 3*Sq” = Sg'5*.

(b) If s*: H**Y(SK; Z,) > H™(K; Z,) is the suspension isomorphism,
then §*Sg" = S¢'s*.

Sh:.w that S¢’ can be calculated in H*(RP*; Z,) by the rule

Sg() = )=+

- where ¥ generates HY(RP; Z,), (}) is the binomial coefficient reduced
~mod 2, and (}), #* are interpreted as zero if 7 > 5, 5 > n respectively.

Deduce that RPY/RP? is not a retract of RP5/RP? (both spaces have
«the homotopy type of polyhedra).

17, Let L be a subcomplex of some triangulation of S*, and let L be the

suppleinent of L; let -’
D: ﬂ'(L, Zy) > Hp-v-l(i‘_)
be the Alexander duality isomorphism, as in Theorem 5.3.19. Define a
homomorphism ¢/(S¢): A"~(L; Zy) -+ ﬂ'(L Z,) by the rule
s De(S¢PO = (S¢'y, D=,

where x € H*-4(L; Z,) and yeﬂ""’ "?i(L Z,’) Use Exercise 14 and
Exercise 15(f) to show that .

2 c,(Sq"")Sq' =l B A (t > 0),

and deduce that ¢{S¢") depends only on S¢': we therefore drop the
suffix r and write o(S¢f). -
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Now suppose, if possible, that some triangulation of RP3" can be
regarded as a subcomplex of some triangulation of S%**'-1, Use
Exercise 15(¢) to show that i

. ¢(Sg®-1) = 0: HYRP™; Z,) ~ H(RP*"; Z,).

On the other hand, show by using Exercise 16 that S¢?, S¢?, S¢3,.. .,
Sq* -1 are all zero on x¥, and deduce that ¢(S¢g*" ) = x%°. This
contradiction shows that RP3" cannot be embedded as a subcomplex of
a triangulation of S3"** -2,

NOTES ON CHAPTER 8

The Hurewicz theorem. Hurewicz first stated Theorem 8.3.7(a), and
gave a sketch of the proof, in [74]. Theorem 8.3.7(b) can be refined slightly
to read: 1f1r,(KL) =0 for 1 €7 <n {(n>2), then h,: 'a“‘(K Ly~

H (K, L) is an isomorphism.

For an ‘elementary’ proof of the Hurewicz theorem for arbitrary spaces,
see Spanier [131}, Chapter 7; however, a much easier proof can be given,
based on the work of Serre [125] on the homelogy of fibre spaces: see for
example Hu {73}, Chapter 10. :

General cohomology theories. The cohomology theory associated with
an Q-spectrum E was first defined by G. W. Whitehead [155]. It is interest-
ing to observe that, under mild restrictions, any ‘cohomology theory’
h*(K, L), having the properties in the statement of Theorem 8.4.4, is the
cohomology theory associated with some 2-spectrum: this is a theorem of
E. H. Brown [30, 31]. It is possible to_give a definition of the homology
groups associated with an £Q-spectrum, although this is mere complicated
than the corresponding coboniology theory: for detmla, see G. W. White-
head [155].

For the original definition of Eilenberg-MacLasie spaces, see Eilenberg
and MacLane {52, 54].

Important cohomology theories associated with other 2-spectra include
the groups K*(.X) of Atiyah and Hirzebruch (see for example Atiyah and
Hirzebruch [18], Adams [3]), and the groups MU*(X) of Conner and Floyd
(42] and Atiyah [16] (see also Novikov {110]).

G. W. Whitehead has proved that the duality theorems of Section 5.3
extend to the homology and cohomology theories associated with an arbi-
trary -spectrum E, provided that the manifolds involved are ‘orientable
with respect to Hy( ; E)’. The method is that of Exercise 14.

Products. Instead of defining products axiomatically, it is possible to
work directly with the Q-spectra this is the approach of G. W, Whitehead
{155]. The explanation why it is cohomology rather than homology that
admits a ring structure is due originally to Lefschetz [91]
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For the theory of products in the homology and cohomology of arbitrary
spaces, see for example Spanier [131], Chapter 5.

The Borsuk—Ulam Theorem.” Theorem 8.5.15 was conjectured by Ulam,
and first proved by Borsuk [21].

The Dunce Hat. For more details, see Zeeman [168].

Exercise 6. ‘This proof of the Universal Coeflicient Theorem for general
cohomology theories is based on a result of Puppe [119]. For details of the
proof, see Araki and Toda [14] or Maunder [99].

Obstruction theory (Exercise 8). Most of this is due to Steenrod [137],
Part I1I, who also deals with the problem of obstructions to cross-sections
of fibre bundles. The theory can be extended to arbitrary topological
spaces: see Olum [111].

The Hopf smvariant. The definition in Exercise 11 is that of Steenrod
[136], and is somewhat different from Hopf's original definition [70]. The
Hopf invariant has been generalized by G. W. Whitehead [153] to a homo-
morphism H: 7,(S%) —.my(S3" ") (m < 4n — 4), and by Hilton [62] to a
homomorphxsm H*: 7,(8%) = 7, 1(S*) (m > 0). Itis the homomorphism
H that occurs in the EHP sequence.

Adams has proved in [2] that there exist elements of HOpi invariant one
in mg,y(S") only if n = 2, 4 or 8.

Cohomology operations (Exercise 15). The operations Sq" were first
defined by Steenrod [135], who also constructed similar operations in
cohomology with coefficients Z,, for odd primes p [138]; for an clegant
account of the theory, s€ Steenrod [139]. The operations can be extended
to the cohomology of arbitrary spaces: see for example Spanier [131],
Chapter 5.

There are many other applications of cohomology operations besides
Exercise 17. For applications to obstruction theory, see Steenrod [135, 139};
and for applications to the calculation of the homotopy groups of spheres,
via the Adams spectral sequence, see Adams [1, 5]. A general account of the
operations and their uses will be found in Steenrod and Epstein [140].

More complicated cohomology operations, known as higher-crder
operations, have been studied by Adams {2] and Maunder [96].

-

Exercise 17. 'This proof that RP? cannot be embedded in $2°*'-! is
due to Peterson [114], although the formula for ¢(Sq¢") was first established
by Thom [142] (see also Maunder [100]).



REFERENCES

[1} Auame, J. F. ‘On the structure and applications of the Steenrod
alpchia’ Comment. math. helvet. 32, 180-214 (1958).

[21 Apawms, J. F. ‘On the non-existence of clements of Hopf invariant
ane’ inn. Math. 72, 20-104 {1960).

[3) Apare, J. F.'Vector fields on spheres’ Ann. Math. 75, 603632 (1962).

(4] Ananz, Jo F.‘On the groups J{X) Topology 2, 181-195 (1963); 3
137 171; 193-222 (1965); 5, 21-71 (1966).

(5] Apsms, 1. F. Stable Homotopy Theory, Springer Verlag, Berlin
(1904).

[6] Anvrrors, L. and SaArt0, L. Riemann Surfaces, Princeton (1960).

[7] Ari<aANDER, J. W. ‘A proof of the invariance of certain constants of
analysis situs’ Trans. Am. math. Soe. 16, 148 -154 (1915).

[8] Auexanbrr, J. W. ‘A proof and extension of the Jordan-Brouwer

. scparation theorem’ Trans. Am. math. Soc. 23, 333-349 (1922).

{91 ALEXANDER, J. W, ‘Combinatorial analysis situs’ Trans. Am. math,
Soc. 28, 301-329 (1926).

[10] Arexanper, J. W. ‘On the chains of a complex and their duals’
Proc. natn. Acad. Sei. U.S.4. 21, 509--511 (1935).

[11] ALEXANDER, J. W. ‘On the connectivity -ing of an abstract space’
Ann. Math. 37, 698-708 (1936).

[12] AiEXANDER, J. W. and VEBLEN, O. ‘Manifolds of n dimensions’ Ann.
Math. 14, 163-178 (1913).

{13] ArLkxanproFF, P. ‘Untersuchungen iiber Gestalt und Lage abge-
schlossener Mengen beliebiger Dimension’ 4nn. Math. 30, 101~
187 (1928).

[14] Araxi, S. and Topa, H. ‘Multiplicative structures in mod g cohomol-
ogy theories’ Osaka J. Math. 2, 71-115 (1965).

[15] ArmsTRONG, M. A. and ZeemaN, E. C. ‘Transversality for piecewise-
linear manifolds’ Topology 8, 433-466 (1967).

[16) ATivay, M. F. ‘Bordism and cobordism’ Proc. Camb. phil. Soc. 57,
200-208 (1961).

171 Arrvan, M. F. K-Theory, Benjamin, New York (1967).

[18] Ativad, M. F. and HirzesrucH, F. ‘Vector bundles and homo-
gencoas spaces’ Proc. Symposia pure Math. 3, 7-38 (American
Mathematical Society, Providence, R.1., 1961).

{19] Barrart, M. G. ‘Track groups: I' Proc. Lond. math. Soc. (3) 5,
71-106 (1955).

[20] BarrarT, M. G. and MAHOWALD, M. E. ‘The metastaigie homotopy of
O(nYy Bull. Am, math. Soc. 70, 758--760 (1964).

361



362 REFER.:NCES

[21] Borsuk, K. ‘Drei Sitze iiber die n-dimensionale euklidische Sphare’
Fundam. Math, 20, 177-190 (1933).

[22] BorT, R. “The stable homotopy of the classical groups’ Ann. Math.
70, 313-337 (1959).

[23] BousrFiELp, A., CurTis, E. B,, Kan, D. M., QuiLLEN, D. G., RECTOR,
D. L. and SCHLESINGER, J. W. ‘The mod p lower central series and the
Adams spectral sequence’ Topology 5, 331-342 (1966).

[24] Branana, H. R. ‘Systems of circuits on two-dimensional manifolds’
Ann. Math. 23, 144-168 (1921).

[25] Brouwer, L. E. J. ‘Uber Abbildungen von Mannigfaltigkeiten’
Math, Annin 71, 97-115 (1912).

{26] BrowDER, W. ‘Torsion in H-spaces’ Ann. Math. 74, 24-51 (1961).

|27} Browbper, W.. ‘Homotopy-commutative H-spaces’ Ann. Math. 75
283-311 (1962).

[28] BrowDER, W,, LivLevictus, A. L. and Pererson, F. P. ‘Cobordism
theories’ Ann. Math. 84, 91-101 (1966).

[29]1 BrowDER, W, and THoMas, E. ‘On the projective plane of an H-
space’ Illinois J. Math. 7, 492-502 (1963).

[30] BrowN, E. H. ‘Cohomology theories’ Ann. Math. 75, 467-484
(1962). ,

[31] Brown, E. H. ‘Abstract homotopy theory’ Trans, Am. math. Soc.
119, 79-85 (1965).

[32] Brown, R. ‘Ten topologies for X x Y’ Q. JI Math. Oxford (2) 14,
303-319 (1963).

[33] Brown, R. ‘Function spaces and product topologies’ Q. JI Math.
Oxford (2) 15, 238-250 (1964).

[34] Brown, R. ‘Two examples in homotopy theory’ Proc. Camb. phil.
Soc. 62, 575-576 (1966).

[35] BrowN, R. ‘Groupoids and van Kampen’s theorem’ Proc. Lond.
math. Soc. (3) 17, 385401 (1967).

[36] CaucHy, A.-L. ‘Récherches sur les polyédres: 1I' J. Ec. polytech 9,

: 76-86 (1813).

[37] Czcn, E. ‘Théorie générale de I'homologie dans un espace quel-
conque’ Fundam. Math. 19, 149-183 (1932).

[38] Cecn, E. ‘Héherdimensionale Homotopiegruppen’ Proc. Int.
Congr. Mathematicians 3, 203 (Ziirich, 1932).

[39] CecH, E. ‘Les groupes de Betti d’un complexe infini’ Fundam. Math.
25, 33-44 (1935).-

[40] CHevaLLEY, C. Theory of Lie Groups: 1, Princeton (1946).

[41] Couen, D. E. ‘Products and carrier theory’ Proc. Lond. math. Soc.
(3) 7, 219-248 (1957).

[42] CoNNER, P. E. and Froyp, E. E. ‘Differentiable periodic maps’ Bull.
Am. math. Soc.-68, 76-86 (1962). ,

[43] DeuN, M. and HeecAaArD, P. ‘Analysis situs’ Enucyklopddie der
mathematischen Wissenschaften, 111, AB 3, pp. 153-220, Leipzig
(1907).



REFERENCES 363

[44] DoLp, A. ‘Partitions of unity in the theory of fibrations’ Ann. Math.
78, 223-255 (1963). -

[45]) Dorp, A. and Lasnor, R. ‘Principal quasifibrations and fibre
homotopy equivalence of bundles’ Iliinois J. Math. 3, 285-305
(1959).

[46] Doup, A. and THom, R. ‘Quasifaseruhgen und unendliche sym-

. metrische Produkte’ 4nn. Math. 67, 239-281 (1958).

[47] Dowrksr, C. H. ‘Homology groups of relations’ dnn. Math. 56,
84-95 (1952).

[48] Dowxer, C. H. ‘Topology of metric complexes’ Am. J. Math. 74,
555-577 (1952).

[49] EckmanN, B. and HiLTON, P. J. ‘Groupes d’homotopie et dualité’
C. 1. Aoad. Sci. Paris Sér. A.-B. 246, 2444-2447 (1958).

[50] EiLeneErG, S. ‘Bingular homology theory’ Amn. Math. 45, 407-447
(1944). . .

[51] Enenserc, S. and MacLaNg, S. ‘Group extensions and homology’
Ann. Math. 43, 757-831 (1942), -

[52) Emuvazre, S. and MacLANg, S. ‘Relations between homology and

., homotopy groups’ Proc. natn. Acad. Sci. U.S.A. 29, 155-158 (1943).

[53] EiLenBERG, S. and MacLANE, 8. ‘General theory of natural equiva-
lences’ Trans. Am. math. Soc. 58, 231-294 (1945).

[54] EneneErc, S. and MacLane, 8. ‘On the groups H(w, n)' Ann.
Math. 58, 55-106 (1953); 60, 49-139; 513-557 (1954).

[55] En.energ, S. and Steenrop, N. E. ‘Axiomatic approach to homology
theory’ Proc. natn. Acad. Sci. U.S.A. 31, 117-120 (1945).

{56} ErnLenserG, S. and StEENROD, N. E. Foundations of Algebraic
Topology, Princeton (1952).

[57] Enensenc, S. and ZILBER, J. A. ‘Semi-simplicial complexes and
singular homology’ 4Ann. Math. 51, 499~513 (1950).

[58] Fox, R. H. ‘On topologies for function spaces’ Bull. Am. math. Soc.
51, 429-432 (1945). :

[59] FreupeNTHAL, H. ‘Uber die Klassen von Sphirenabbildungen’
Compositio math. 5, 299-314 (1937).

[60] GreenBErG, M. ). Lectures on Algebraic Topology, Benjamin, New
York (1967).

[61) GrrrrrTas, H. B. ‘The fundamental group of two spaces with a
common point’ Q. JI Math. Oxford (2) 8, 175-190 (1954); correction,
(2) 6, 154-155 (1955).

[62] HiLToN, P. J. ‘Suspension theorems and the generalized Hopf
invariant’ Proc. Lond. math. Soc. (3) 1, 462-492(1951).

[63] HiLToN, P. J. Homotopy Theory and Duality, Nelson, London, (1965),

[64] HiLTon, P. J. and WYLIE, S. Homology Theory, Cambridge (1960).

[65] HirscH, M. W. ‘A proof of the nonretractability of ‘a cell onto its
boundary’ Proc. Am. math. Soc. 14, 364-365 (1963).

[66] Horr, H. ‘Abbildungsklassen n-dimensionaler Mannigfaltigkeiten’
Math. Annin 92, 209-224 (1926).



364 REFERENCES

[67] HopF, H. ‘A new proof of the Lefschetz formula on invariant
points’ Proc. natn. Acad. Sci. U.S.A. 14, 149-153 (1928).

[68) Hopr, H. ‘UOber die algebraische Anzahl von Fixpunkten’ Math. Z.
29, 493-524 (1929).

[69] Horr, H. ‘Uber die Abbildungen der 3-Sphire auf die Kugelflache’
Math. Annln 104, 637 665 (1931).

[70] HopF, H. ‘Uher die Abbildungen von Sphiren auf Sphirdn nie-
drigerer Dimension’ Fundum. Math. 28, 427 440 (1935).

[71) Horr, H. 'TUher die Topologie der Gruppen-Mannigfaltigkeiten
und ihre Verallgemeinerungen’ Ann. Math. 42, 22-52 (1941).

[72] Hu, S.-T. ‘A theorem on homotopy extension’ Dokl. Akad. Nauk .
SSSR 57, 231-234 (1947). .

{731 Hu, S.-T. Homotopy Theary, Academic Press, New York (1959).

[74] Hurewicz, W. ‘Beit-ige der Topologie der Deformationen’ Proc. K.
Akad. Wet., Ser. 4 38, 112-119; 521-528 (1935).

[75] Hurewicz, W. ‘On duality theorems’ Bull. Am. math. Soc. 47, 562~
563 (1941). .

[76) Hurewicz, W. ‘On the concept of fiber space’ Proc. natn, Acad. Sei. -
U.S.:1. 41, 956-961 (195%). '

{77] JacomsoN, N. Lectures in .ibstract Algebra, Vol. I, Van Nostrand,
Princeton, N.J. (1951}

[78) James, 1. M. ‘The suspension triad of a sphere’ Ann. Math. 63,
407-429 (1956).

[79] James, I. M. ‘On H-sp..  and their homotopy groups’ Q. I Math.
Osxford (2) 11, 161-179  o0). .

[80] James, I. M. ‘On homotopy-commutativity’ Popolegy 6, 405410
(1967).

{81] JorpaN, C. ‘Des contours tracés sur les surfaces’ J. Afath. pures
appl. (2) 11, 110-130 (1866).

(82] JorpaN, C. Cowrs d’analyse, Paris (1893).

{83] Kampen, E. H. vAN. ‘On the connection between the fundamental
groups of some related spaces’ Am. J. Math. 55, 261-267 (1933).

[84] Kan, D. M. ‘Abstract homotopy’ Proc. natn. Acad. Sci. U.S.A. 41,
1092-1096 (1955); 42, 255-258; 419-421; 542-544 (1956).

[85] KeLiey, J. L. General Topology, Van Nostrand, Princeton, N.J.
(1955):

[86] LerscHerz, S. ‘Intersections and transformations of complexes and
manifolds’ Trans. Am. math. Soc. 28, 1-49 (1926).

[87}] LerscHetz, S. ‘Manifolds with a boundary and their transformations’
Trans. Am. math. Soc. 29, 429-462 (1927).

[88] LerscHETZ, S. ‘The residual set of a complex or a manifold and
related questions’ Proc. natn. Acad. Sci. U.S.A. 13, 614-622 (1927).

[89] Lerscmerz, S. Topology (American Mathematical Society Colloquium
Publications No. 12), New York (1930).

{90} ErscHETZ, S. ‘On singular chains and cycles’ Bull. Am. math. Soc.

Y, 194129 (1933).



REFEREN(E S 365

[91] Lerscrerz, S. Algebraic Topology (A mearic.: Mathemstical Society
Colloquium Publications No. 27;. N vork (1942

[92] Li1sTING, J. B. Der Census raumiichs -~ wrxe. Gortingen {(184,2).

[93] ManowALD, M. E. On the Metastadi. iic.vtopy of 5™ (lemaars of
the American Mathematical Sociery -0 72y roecaencs, RUL
(1967).

[94] ManowaLp, M. E. ‘On the oider i 1o umage of 7 sgology 6,
371--378 (1967).

[95] Manowaip, M. E. and 'TaNcora v oo dittercanals in the
Adams spectral sequence’ fopology 6 ‘4’2 3¢200:967).

[96] MaunpEr, C. R, F. ‘Cohomalogy oper -ong of the At kind' Proc.
Lond. math. Soc. (3) 13, 125-154 (15¢:

[97] Maunper, C. R. F. ‘On the Jditfereir. o5 10 the Adams spectral
sequence’ Proc. Camb. phi!. Soc. 60, 219 170 (1954).

[98] MaunpEr, C. R. F. ‘On the differentais in e Adams spectral
sequence for the stable hunotopy groags of - ;heres’ Proc. Camb,
phil. Soc. 61, 53-60); 855- 468 (19¢ -

[991 MacnpEr, C. R, F. ‘Mod p coher rwlogy iheories and the Bockstein
spectral sequenc. Pyoc. Cumb, ph./ Soc. 63, 23-43 (1917).

[100] MaAuNDER, C. R. 1. ‘Coho: -logy «j.eratiung and duality' Proc. Camb.
phil. Soc. 64, 15-30 (1968)

[101] May, J. P. “The cohomolnyy of restricted Lie aigebras and of Hopt
algebras’ J. Algebra 3, 123 46 (1956).

[102] May, J. P. ‘The cohomolugy of th: Steenrod algebra; stable home-
topy groups of spheres’ Bull -Am. wmath. Suc. 71, 377-380 (1565,

[103] Maver, W. ‘Uber abstrakte "Uopologie’ MA. Maik. 36, 1-42 {1123).

[104) MILNOR, J. W. ‘Spaces havirg the homowopv type uf a CWerempler’
Trans. Am. math. Soc. 90, 2 2 281 {195}

[105] MiLNoOR, J. W. ‘On the coboruism ring &, ana . coplex aneogue’
Am. J. Math. 82, 505-521 (1960).

[106] MiLNOR, J. W. ‘A procedure for killing homotopy groups of diticren-
t' ole manifolds’ Proc. Symposia pure Mati. 3, 39-55 (Aw- -ican
.fathematical Society, Providence, R.L., 194i}.

[107]) MiLNOR, J. W. ‘Microbundles: 1’ Topology 3, Supplement, :.-80
(1964).

[108] MosTerT, P. S. ‘Local cross-sections in lacally compact zroups’
Pioc. Am. math. Soc. 4, 645-649 (1953).

[109] NewmaN, M. H. A. ‘On the foundations ot combinatory analysis
situs’ Proc. K. ned. Akad. Wet. Ser. A 29, 611-626 (1926).

[110] Novikov, S. P. ‘The methods of algebraic topcicgy from the view-
point of cobordism theories’ Izv. dkad. Nauk S3¥SR Ser. mat. 31,
855-951 {1967). ‘

{111] OLuM, P. ‘Obstructions to extensions and hawnotopies’ Ann. Math.
28, 1-50 (1950).

[112] Orum, P. ‘Non-abelian cohomology and van Kumpen's theorem’
Ann. Math. 68, 658-668 (1958).



366 ‘REFERENCES

[113} PaecuTER, G. F. ‘On the groups w(V, »)’ Q. JI Math. Oxford (2) 7,
249-268 (1956); 9, 8-27 (1958); 10, 17-37; 241-260 (1959); 11, 1-16
(1960).

[114] PerERSON, F. P. ‘Some non-embedding problems’ Boln Sec. mat.
mex. (2) 2, 9-15 (1957).

[115] PeTERsoN, F. P. ‘Functional cohomology operations’ Trans. Am. math.
Soc. 86, 197-211 (1957).

{116] Porncarg, H. ‘Analysis situs’ J. Ecole polytech. (2) 1, 1-121 (1895).

[117] Poincarg, H. ‘Second complément 3 I'analysxs situs’ Proc. Lond.
math. Soc. 32, 277-308 (1900). -

[118] Poincarg, H. ‘Cinquiéme compiément a I'analysis situs’ Re. Circ.
mat. Palermo 18, 45-110 (1904).

[119] PureE, D. ‘Homotopiemengen und ihre induzierten Abbildungen: I’
Math. Z. 69, 299-344:(1958), .

[120] Rap6, T T. “Ober den Begriff. der Riemannschen Flache’ Acta Sei.
Math. (Szeged)z 101-121 (1925).

[121] ‘RecTor, D. L. ‘An unstable Adams spectral sequence’ Topology 5
343-346 (1966). ‘

[122] REIDEMEISTER, K, H.omotopzennge und Linsenrdume’ Abk. math.
Semin. Univ. Hamburg 11, 102-109 (1935).

[123) Rourkk, C. P. and SANDERSON, B. J. ‘Block bundles’ Ann. Math. 87
1-28; 256-278; 431-483 (1968).

[124] SerFert, H. and THRELFALL, W. Lehrbuch der Topologie, Teubner,
Leipzig (1934).

[125] Serre, J.-P. ‘Homologie singulitre des espaces fibrés’ Ans. Math. 54,
425-505 (1951).

{126] SimsoNn, R. ‘Existence theorems for H-space inverses’ Proc. Camb,
phil. Soc. 65, 19-21 (1969). "

[127] SmaLE; S. ‘Generalized Paipcaré’s conjecture in dimensions greater
than 4’ Ann. Math. 74, 391-406 (1961). -

[128] SMALE, S. ‘A survey of some recent developments in differential
topology’ Bull. Am. math. Soc, 69, 131-145 (1963).

[129] Spanier, E. H. ‘Infinite symmetric products, funcnon spaces and
duality’ Ann. Math, 69, 142-198 (1959).

[130] Spanier, E. H. ‘Quasi-topologies’ Duke math. J. 30, l-l4 (1964).

[131] Seanier, E. H. Algebraic Topology, McGraw-Hill, New York (1966).

[132] Starrines, J. R. ‘Polyhedral homotopy spheres’ BulL Am. math.,
Soc. 66, 485488 (1960). :

[133] StasHEFF, ]. D. A classification theorem for fibre spaces' T opologyz
239-246 (1963).

[134} StasuEerr, J. D. ‘Homotopy associativity of H-spaces’ Tmm Am.
math. Soc. 108, 275-292; 293-312 (1963).

f135] Steenrop, N. E. ‘Products of cocycles and extensions of mappings’
Ann. Math. 48, 290-320 (1947).

[136) Steenrop, N. E. ‘Cohomology invariants of mappings’ Ann. Math.
50, 954-988 (1949).



. REFERENCES 367

[137] STeENROD, N. E. The Topoloy of Fibre Bundles, Princeton (1951).

{138} SteenroDp, N. E. ‘Homology groups of symmetric groups and
reduced power operations’ Proc. natn. Acad Sci. U.S.A. 39, 213-223
(1953).

{139] SteenroD, N.E. ‘Cohomology operations and obstructions to extend-
ing continuous functions’ (mimeographed notes), Princeton (1957).

{140] Steenrop, N. E. and EpsteiN, D. B. A. Cohomology Operations
(Annals of Mathematics Studies No, 50), Princeton (1962).

{141]) Swan, R. Theory of Sheaves, Chigago (1964).

[142] THom, R. ‘Espaces fibrés en-sphéres et carrés de Steenrod’ Annls
scient, Ec. norm. sup., Paris (3) 69, 109-182 (1952).

[143] Trowm, R. ‘Quelques propriétés globales des variétés differentiables’
Comment. math. heloet. 28, 1786 (1954).

{144] Tierze, H. ‘Uber die topblogiochen Invarianten mehrdimensionaler
Mannigfaltigkeiten’ Mh. Math. Phys 19, 1-118 (1908).

(145] Topa, H. Composition Methods in gmtopj Groups of Spheres
(Annals of Mathematics Studies No, 49), Princeton (1963). 4

[146] VesLEN, O. ‘Theory of plane qmvec in n‘on-memoal analysis situs’
Trans. Am. math. Soc. 6, 83-98 (1905)...

[147]) VeBLen, O. Analysis situs (Americatt: Mat.hcmatlcal Society Collo-
quium Publications No. 5, Part II), New York (1922).

[148] Vieroms, L L. ‘Uber die hoheten Zusammenhang kompakter Raume
und eine Klasse von zusamménhsngstreuen Abbildungen’ Math.
‘Annln 97, 454472 (1927).

[149] Vierorss, L. ‘Uber die Homologiegruppen der Vereinigung zweier
Komplexe’ Mh Math. 37, 159-162 (1930).

[150] WaLr, C. T. C. ‘Detemunatnon of the cobordism ring’ Ann. Math.
72, 292-311 (1960). '

[151] WaLL, C. T. C. ‘Cobordnsm nf combinatorial n-manifolds for
n < 8 Proc. Camb. phil. Soc. 60, 807-811 (1964).

[152] WHITEHEAD, G. W. ‘On the homotopy groups of spheres and rotation
groups’ Ann. Math. 43, 634-640 (1942). -

[153] WriTeHEAD, G. W. ‘A generalization of the Hopf invariant’ Ann.
Math. 51, 192-237 (1950).

[154] WHiTeHEAD, G. W. ‘On the Freudenthal theorem’ Ann. Math. 57,
209-228 (1953).

[155] WHiTeneaD, G. W. ‘Generalized homology theories’ [runs. Am.
math. Soc. 102, 227-283 (1962). :

[156] WhiTenEAD, J. H. C. ‘Simplicial spaces, nuclei and 7 -groups’ I'rac,
Lond. math. Soc. (2) 45, 243-327 (1939).

{157] WHITRHEAD, ]. H. C. ‘On adding relations to homotopy grovp.’ Ann,
Math. 42, 409-428 (1941).

[158] WaxrTenEAD, J. H. C. ‘On incidence matrices, nuclei 2ad honotopy

pes’ Ann. Mgth, 42, 11971239 (1941).

[159] WarrenEap, J. H. C. ‘On the homotopy type of ANR's’ Bxdl Am.

math. Soc. 54, 1133-1145 (1948).



368 REFERENCES

{160} Wuiteneap, J. H. C. ‘Combinatorial homotopy: I’ Bull. Am. math.
Soc. 58, 213-245 (1949).

{t61] Warteneap, J. H. C. ‘A certain exact sequence’ Amn. Math, 52,
51-110 (1950).

[162] WHiTNEY, H. ‘Sphere spaces’ Proc. natn. Acad. Sci. U.S.A. 21,
462-468 (1935).

[163] WHitNEY, H. ‘On products in a complex’ Arm Moti. 59, 397-432
(1933).

ito4) WiLriamson, R. E. ‘Cobordism of combinatorial manifolds’ Ann.
Math. 83, 1-33 (1966).

1165] Zreman, E. C. 'The generalized Poincaré conjecture’ Rull. Am. math.
Soc. 67, 270 (1961).

1ot} Zizman, E. C. “The Poincaré conjecture for n > & Topology of
3-Manifolds and Related Topics, pp. 198-204, Prentizc-1lall, Engle-
wood Cliffs, N.J. (1961).

165} Zewman, E, €, Seminer on Combinatorial Topology, Institut des
Hautes Etudes Scientifiques, Paris (1963).

;1687 Zeeyan, E. C, ‘On the dunce hat’ Topology 2, 341-355% (1963).

i~ Zreman, E. C. ‘Relative simplicial approximation’ Proc. Camb. phl.
Sor. 60, 39-43 (1964).



INDEX

abelian group 6
absolute homotopy extension property
40, 245, 255, 284
abstract
simplex 37
simplicial complex 37
abstraction 37
Adams spectral sequence 310, 360
adjunction space 19
Alexander Duality Theorem 182
Alexander-Poincaré Duality Theorem
179
annihilator 12
antipodal map 350
approximation, simplicial 45, 46
association map 220, 251

Barratt-Puppe sequence 238
, barycentre 32
. barycentric subdivision 49
base

of open sets 16

of vector space 11

‘based
homotopy 31, 210
map 31, 210
set 234

sets, exact sequence of 234
block 134

boundary of 134

dissection 134

interior of 134

skeleton 134

subcomplex 134
Bockstein boundary 148, 154
Borsuk Fixed-Point Theorem 351
boundaries, gfoup of 108
boundary

of a block 134

homomorphism 105, 106

of a manifold 102, 187

of a simplex 33
Brouwer Fixed-Point Theorem 57

cap product
categorv 51
Cayley nurabers 307

165, 195, 356

Cech

cohomology 198
homology 156
n-cell 21

cell (in 2 CW-complex) 274

ceitular

Approximaton Theorem 302

map 302

space 278

chain

complex 107
simplicial 119
singular 107

equivalence 151

group, singular 105

homotopy 110

isomorphism 109

map 109
subdivision 115

characteristic map 274

closed

(homology) manifold

set 15

closure 15

closure-finite 274

cobordism 194, 198, 199

cofibre map 244, 285

cohomology

associated with an $J-spectzum
331, 359

Cech 198

group, 15%, 162
reduced 162

homomorphismm 163

operation 357, 360

suspension isomorphism

collapse 72

elementary 72

commutative

diagram 8

ring 10 .

187

164, 340

369



370

commutator subgroup 6
compact-open topology 214
compact space 16 -
complex

abstract simplicial 37
chain 107

CW. 61, 257, 273
derived 49 ;
geometric simplicial 33
projective space 305

cohomology ring of 349

homology and cohomology gropps

of 321

homotopy groups of 301’
semi-simplicial 62 -~ 7
composite (of functions) 2 .
cone
mapping 234

(on a simplicial complex) 152
reduced 211
conjugate elements 4 -
connected .
space 13 :
sum 101, 197
constant homotopy 35
continuous map 16
contractible 30

locally 306
convex 11
correspondence, (1-1) 2
coset 4 .
countable set 2
covering

map 254

space 256

universal 254, 306
cross-section, local 308
cup product 340 -
CW-complex 61, 257, 273
cycles, group of 108
cyclic group 6

B

deformation retract(lon) 30 :
strong 30 .
degree 288, 293 . o oE
derived complex 49 + .

determinant 14 . .
diagonal map 201, 34§

diameter 20 . :

-

INDEX

ditnension
of a CW-complex 274
of a simplex 32
of a simplicial complex 33
of a vector space 12

direct sum
of groups 4
of rings 10

of vector spaces 11
disconnected space 15
discrete

space 15

topology 15
disjoint union 17
double

of a homology manifold with boun-

dary 190

unit interval 21
dual .
linear map 12

space 12
Duality Theorem

Alexander 182

Alexander-Poincare 179

Lefschetz 192

Poincaré 181
dunce hat 352

edge-group 74
edge-loop 73
edge-path 73
EHP sequence 256, 310
Eilenberg—MacLane space 304, 334
enumerable set 2
gquivalence -
class 2
relation 2

" Euclidean space 13

_ Euler-Poincaré characteristic 150,

156, 183, 194

f_\-c.v;luatmn map 217,251
" even permutation 3
- exact

coefficient sequence 148, 154
cohomology sequence 163
homology sequence
.. of pair 124, 126
" of triple 127
homotopy sequence
of fibre map 248



INDEX

of pair 270
of triple 270
sequence 7

of based sets 234

of chain complexes 12§

split 9
Excision Theorem 118, 312
extension product (Ext) 196
extraordinary product 255

face
map 106
of simplex 32
proper 32
fibre 247
bundle 255
map 247
exact homotopy sequence of 248
Hurewicz 255
Serre 253
field 10
finitely-generated group 6
Fixed-Point Theorem
Borsuk 351
Brouwer 57
Lefschetz 150
folding map 205
free

abelian group 6

group §

product 79

full subcomplex 52
function 2

identity 2
functor. 61
fundamental group 63
change of base point in 69

geometric
simplex 31
simplicial complex 33
group 3
abelian 6
cyclic 6
finitely-generated 6
free 5
free abelian 6
of homomorphisms 159
orderofa 3

371

quotient - 4
topological 100, 307
trivial 3

Hairy Ball Theorem 131
Ham Sandwich Theorem 352
Hausdorft space 15
homeomorphism 16
of pairs 17
homology 0
associated with an £2-spectrum 359
Cech 156
group 108
reduced 108
relative 108
simplicial 119
singular 108
homomorphism 110
manifold 171
orientable 173, 182, 190
with boundary 187
special 190, 193
with coefficients 144
homomorphism 3
group 159
ring 10
homotopy 25
based 31, 201
classes of maps 30, 222
constant 25
equivalence 27
of pairs 27
weak 298
extension property sbsolute 40,
245, 255, 284
group 228, 258 .
change of base pointin 260, 265
of a one-point union 272
of a product 272
of a retract 305
relative 264 -
inverse 27
linear 26
of pairs 27
relative 27
semi-constant 56
27
Hopf
fibrings. 307, 310
invariant 355, 360



272

i-space 224, 251, 252,'255, 262, 355

associative 224
commutative 231
with inverse 224
H'-space 225
associative 225
commutative 229
v-ith inverse 226
Hasowicr
here tnap 253
Homomorphisry 322
necrem 20 359

30
Vo athoatia

- « Y.
AR Yoo 1007

[ ¥
N S T N
<A e dent ponnas f 1% 31
i

AL TAPS At S

A
t Bingd 134

PRI TR SRR |
oot g setsy

TR

Toba Z
'.W.',-L e
> phas 2
30 )

s v sromerphism 310
|‘:"]!
~f mplicial complexes 39
of + paces 251
reduced 251
fotdan Curve Theorem 184, 199

-an Kampen’s Theorem 80
ju rrel (of a homomorphism) 3
Kivn bottle 59

Kionecker product 164, 356
Kinneth formula 355

Lebesgue number 20
Lefschetz

Duality Thecrem 192

INDEY

Fixed-Point Theorem 150
number 149
length (of & vector) 14
I~ns space 153, 157
Lie group 310
linear
homontopy 26
map 11
dual 12
linearly dependent (vecto:s) 11
linearly independent (vecte <% 11
hnk 42
local
cross-section 308
product 253, 307, 308
locally
compact 16
contractible 306
path-connected 254
simply-connected, weakly 254
loop 63
space 216

manifold 88
homclogy 171

orientable (homology) 173, 182,

190
tnangulable 89
with boundary 102, 185

bomology 187
map 16
antipodal 350
based, 31, 201
cellular 302
cofibre 244
continuous 16
covering 254
fibre 247
Hurewicz tibre 255
identification 18
linear 11
of pairs 17
simplicial 35
Serre fibre 253
mapping
cone 234
cylinder 246
path-space 240
space 213



INDEX
matrix 13 permutation 3 )
non-singular 13 even 3
trace of 13 odd 3
Mayer—Vietoris sequence 128, 353 Poincaré

relative 129
mesh 53
metric 19

space 19
metrizable 20

neighbourhood 15
simplicial 42
norm (of vector) 14

normal
space 15
subgroup 4

obstruction theory 354
odd permutation 3
one-point union 205
homotopy groups of 272
of CW-complexes 281
open set 15
order 3
ordering

partial 1

total 1

orientable (homology) manifold 7.,
182

with boundary 190
orthogonal group 308

pair 17

CW 280

of spaces 17
simplicial 33
pairs

homeomorphism of 17
map of 17
partial ordering 1
path 63

component 67, 277
inverse 64

product 64

-gpace 216

mapping 240
path-connected space 67

conjecture 98, i03, 130
duality isomorphism 347
Duality Theorem 181

pointwise convergence, topology of

254
polyhedron 33

. polynomial 1ing 0

product

cap 165, 195, 356
cup 340
extraordinary 235
in cohomology 340

Kronecker 151, 5%
of CW.complexer 240
of sets 1

of spaces 17

path 64

reduced )7

slant 356

smash 207
Whitehead 253, %
projective

space 21, 30%
complex 33
quaterniontc  {:’
real 21

pseudocycles 149
Puppe sequence 3%

quasifibration 25°
quaternionic projeciive srace 305
cohomology ring of 343
homology and cohamol 1y 342
homotopy groups of 37
Luotiert
group 4
of CW-complexes i
spuce
{topological spacesy R
{vecior spaces) 11

real projoctive space 21
cohonuology ring of 348
lomealogy groups of 140
t:omotopy groups of 307

373



374

reslization (of an abstract simplicial
complex) 37, 38
reduced
cohomology group 162
cone 211
homology group 108
join 251
product 207
of CW-complexes 283
suspension 209
regular space 15
relation
between sets 1
equivalence 2
inagroup 6,7
relative
nomology group 108
homotopy group 264
Simplicial Approximation Theorem
S5

relatively n-simple 266
restriction (of a function) 2
retract(ion) 30
deformation 30
homotopy groups of a 305
strong deformation 30
ring 10
commutative 10
homomorphism 10
isomorphism 10
polynomial 10
with an identity element (thh al)
10-

semi-constant homotopy 56
semi-simplicial complex 62
Serre fibre map 253
n-simple 262
relatively 266
simplex
abstract 37
geometric 31
interior of 31
singular 105
standard 105
simplicial
spproximation 45, 46
Theorem 53 °
relative 55
chain complex 119

INDEX

complex

abstract 37
geometric 33
homology groups 119
map 35
nclghbourhood 42
pair 33

- simply-connected 7

weskly locally 254

chain complex 107
reduced 107
relative 107

chain group 105

homology group 108

simplex 105

skeleton

block 134

CW 274

simplicial 33

slant product 356
smssh product 207
adjunction 19
compact 16 -
connected 15
disconnected 15
discrete 15 |
Euclidean 15
Hausdorff 15
identification. . 18
locally compact 16
loop 216
mapping 213
metric 19
normal 15
path 216
quotient 18
regular 15

spaces, pair of 17

special homology manifold with
boundary 190, 193

spectral sequence, Adams 310, 360

f-spectrum 331

cohomology associated with 331,
359

homology associated with 359

n-sphere 21



INDEX 375

split exact sequence 9 subspace 15
standard simplex 105" weak 274
star 42 . torsion product (For) 147, 155
covering 52 torus 59
Steenrod square. 357 total opdering 1
Stiefel manifold 308 trace (of a matrix) 13
sub-base 16, 218 : transposition 3
subcomplex tree 76
block 134 maximal 76
CW 276 triangulated space 36, 306
finite 276 triangulation 36
- full 52 triple of spaces 17
simplicial 33 . trivial group 3
subdivision .
barycentric 49 | .
chain map ,115 union
subgroup 3 disjoint 17
commutator 6 of sets 1
northal 4 one-point 205
subpolyhedron 33 unit interval 21
subring 10 °. double 21
subspace ' unitary group 309
topology 15 . universal
(vector spaces) 11 Coefficient Theorems, 156, 196,
supplement 54, 174 354
surgery. 198 . ) ' cover 254
suspension Y of a CW-complex 306

momorplmm 130, 314 315
cohomology, 164, 333, 340

of simplicial complex 130 vector space 11

reduced 209 finite-dimensional 11
symplectic group 309 vertices (of a simplex) 31, 37
tensor product 141 v weak
topological homotopy equivalence 298

group 100, 307 topology 274

space 15 weakly locally sxmply-eonnected 254
topology 15 ) wedge 205

compact-open 214 Whitehead

discrete 15 .product 252, 309

of pointwise convergence 254 . 'Theorem 300



