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NOVIKOV'S HIGHER SIGNATURE AND FAMILIES
OF ELLIPTIC OPERATORS

GHEORGHE LUSZTIG

Introduction

Let X be a 2λ>dimensional connected manifold1, and suppose that xl9 , xn

is a basis for H\X; Z) let ξ 1? , ξn be the dual basis for Horn (H\X\ Z),Z).
For any set of indices {1 <i\ < < ir < n} with r = 2k (mod 4) consider a
submanifold Mίχ..,ir C X with trivial normal bundle dual to the product xix-
xir. Define the Novikov higher signature of X by the expression

Σ Σ 2r/2 sign (Affl...<r)f4l Λ Λ ξίr
( * Λ r = 2&(4) 0<i 1< <i r<ri

Here sign (M t l... i r) denotes the usual Hirzebruch signature. (Note that our defi-
nition differs slightly from the one of W. C. Hsiang [6] by the presence of the
factors 2r/2.)

It is easy to see that (*) is independent of the choice of basis. Novikov con-
jectured that the expression (*) is a homotopy invariant of the manifold X and
provided evidence [11] in favor of this conjecture. Rohlin [14] has obtained
further partial results. The proof in general has been obtained by W. C. Hsiang-
Farrell [6] and Kasparov [7] using nonsimply connected surgery.

One of the results of this paper is a new proof of Novikov's conjecture based
on a completely different approach.

For any Kahler manifold X there is an associated complex torus Pic (X)
whose points are the isomorphism classes of holomorphic line bundles o n !
which are topologically trivial. Let Lp denote the holomorphic line bundle
corresponding to p e Pic (X). Then there is a holomorphic line bundle L over
X x Pic (X) such that for a given p € Pic (X), the restriction L\X x {p} is
isomorphic to Lp. (See [8].)

Let APT*X be the p-th exterior power of the holomorphic cotangent bundle
of X, and let O(A*T*X®L) be the sheaf of holomorphic sections of ΛpT*X(g)L

Received July 23, 1971. Supported in part by NSF Grant GP-7952X1. This is
essentially the author's Ph.D. Thesis at Princeton University (May, 1971).

1 Throughout this paper the word "manifold" means "closed oriented smooth mani-
fold".
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over X x Pic (X). In analogy with the Hodge signature theorem we form the
element

(**) Σ (-ϊ)qRqπ*(<!)(Λ*T*X (x) L))
P,Q

belonging to the X-theory of coherent analytic sheaves on Pic(Z). (Here
π: X X Pic (X) -> Pic (X) is the projection, and Rqπ* denote the higher direct
image functors.) A calculation based on the Riemann-Roch theorem for the
map π shows that the Chern character of (**) is equal to (*), provided we
identify A Horn (X\ Z), Z) with #*(Pic (X) Z ) .

Actually, we show that (*) has an analytic interpretation even if X has not
a complex structure. For arbitrary X define a real torus Pic (X) as the identity
component of the group of homomorphisms of πλ(X\ x0) into the unit circle 51.
(x0 is a base point of X.) One sees easily that for X Kahler, there is a natural
isomorphism from this real torus to the one constructed from the complex
structure. Every point p e Pic (X) defines an induced complex flat line bundle
Lp on X with a flat positive definite hermitian metric, and there is a complex
line bundle L over X x Pic (X) such that for any p e Pic (X), L\X x {p} is
given a flat structure and a flat hermitian metric which vary continuously with
p, and L\X x {p} « Lp the isomorphism being compatible with the flat struc-
tures and hermitian metrics (see §4.1, §4.2). Consider a riemannian metric
on X. Associated to it there is an elliptic operator D on X whose index equals
sign (X), see [2, § 6]. For any p e Pic (X), we can "twist" D by tensoring it
with the flat hermitian bundle L\X{p] and obtain a new elliptic operator Dp.
The collection {Dp}p€FiciX) is then a family of elliptic operators [3] parametrized
by Pic (X) whose analytical index Nov (X) e K(Pϊc (X)) has the property that
its Chern character equals (*). This is shown by applying the Atiyah-Singer
index theorem for families of elliptic operators [3] which in our case is a sub-
stitute for the Riemann-Roch theorem when no complex structures are avail-
able.

We have hence a ^-theory equivalent, Nov (X) of (*) which turns out to be
much easier to handle than (*). The advantages of the ^-theory or analytic
interpretation of Novikov's higher signature are:

(i) it leads to a direct proof of its homotopy invariance,
(ii) it can be defined apriori for any Poincare complex,

(iii) it can be generalized for fibre-bundles with fibre X.
The paper is divided in 5 sections. In § 1 we study "hermitian complexes"

over a compact parameter space K(Y). These are complexes of vector bundles
which satisfy Poincare duality in a homotopy sense. A signature invariant in
K(Y) is introduced, which is shown to be a homotopy invariant of the hermitian
complex (see Prop. 1.6). The hermitian complexes occur when dealing with
families of signature operators they are a more refined object than the analytic
index of such families and play an essential role in our proofs. In § 2 we
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consider a generalization of Hirzebruch's signature theorem for the case when
the coefficients are taken in a flat hermitian bundle. This cannot be proved by
cobordism methods as in the classical case, but the general index theorem has
to be used. An interesting consequence is derived in § 5 where we prove that
if Γ is a discrete, torsion free subgroup of the real symplectic group Sp (2/2, R)
with compact quotient, then for a manifold which is a K(Γ, 1) the ^-classes
are homotopy invariants in degrees 4k > n(n + 1) — (n + 2)/4. This example
is completely different from the case of a torus, when the ^-classes are also
known to be homotopy invariants. Actually Novikov conjectured in [12] that
the Pontrjagin classes of any manifold which is a K(π, 1) are homotopy in-
variants. Our result shows that this is the case in certain range for π = Γ. § 3
is devoted to the proof of fibre-homotopy invariance of the analytic index of a
family of signature operators with coefficients in a variable flat hermitian bundle
(Theorem 3.3). This proof is carried out in more generality than needed for
the particular case of the Novikov signature (§ 4.2) so that it can be extended
to fibre bundles (§ 4.5, § 4.6). In § 4.3 we show that the invariant Nov (X) e
K(Pic (X)) admits an a priori definition for any Poincare complex, whose
Chern character, in case X is smooth, is equal to (*). This answers a question
of Novikov [12], [13]. Note that Miscenko [10] has independently constructed
an a priori invariant M(X) belonging to a surgery obstruction group L2k(Zn) with
coefficients in Z [ | ] but did not show its relation to Novikov's higher signature.
The actual relation is as follows: from the group L2Jc(Zn) one should pass to
K (character group of Zn) using the homomorphism of Gelfand-Miscenko [5]
this element in K-theory has to be interpreted as the analytic index of a family
of elliptic operators, and then its Chern character can be calculated from the
index theorem for families and gives (*).

In § 4.6 and § 4.7 we prove a multiplicativity formula for Novikov's higher
signature: If X —> Z —• Y is a smooth fibre bundle with X, Y, Z manifolds of
even dimension such that Y is 2-connected, then

Nov (Z) = Nov (X) -sign (Y) e K(Pic (X)) = K(Pic (Z)).

It seems that this cannot be deduced by the method of [4].
I want to thank William Browder for accepting to be my thesis advisor and

for his friendly interest in this work. I am indebted to Johan Dupont for several
useful conversations and for his reading of the manuscript. Finally, I want to ex-
press my deep gratitude to Michael Atiyah for his constant support and encour-
agement. I have had the privilege of numerous conversations with him, which
have strongly influenced this work.

1. Hermitian complexes

1.1. In this section Y will denote some compact space; all vector bundles
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over Y are supposed to be complex, and unless otherwise specified, finite
dimensional. If V is a vector bundle over Y, then V denotes the antidual
bundle. If /: K—> W is a morphism of vector bundles over Y, then f: Wf -^ V
denotes the antidual morphism.

1.2. Hermitian complexes. A hermitίan complex (over Y) is a bounded
complex of vector bundles over Y:

together with a homotopy-equivalence of complexes Φ: # -* # ' . (Here # ' de-

notes the antidual complex defined by (<£")* = (#"*) ' with the antidual differ-

entials. There will be no signs involved.) All morphisms of complexes are

supposed to have degree zero. In particular, Φ: &1 —> (Ή"1)'. We assume that

Φ is symmetric, i.e., Φ' = Φ. The hermitian complex # will sometimes be de-

noted by ( # , Φ). Φ can also be considered as a pairing P x Γ — -̂> 1, (1 is

the trivial bundle over Y) which is linear in the first variable and antilinear in

the second, and satisfies ζx19 x2y = <JC2, X^. For this reason, Φ is called the

cup-product. The condition that Φ: ̂ —> #" is a homotopy equivalence is

equivalent to the following condition: for any y eY and any i the pairing of the

i-th and (—O-th cohomology space of the complex { —• ̂ ~ι —> ̂ \ -^ ̂ \-^ }

into C, induced by Φ, is nonsingular.
This follows from the following
Lemma. Let # , <& be two bounded complexes of vector bundles over Y,

and f:tf-+@a morphism. Then f is a homotopy equivalence if and only if,
for any y 6 Y, the restriction fy: ^y —• Q)y induces isomorphism in the coho-
mology.

Proof. Using a mapping cylinder we can reduce to the case # = 0. Hence
we have to prove that if Q)v is acyclic for any y εY, then Q)y is homotopically
trivial. Let d be the differential of Of. Choose positive definite hermitian metrics
on the bundles of Q), and let d* denote the adjoint of d with respect to these
metrics. From the assumption it follows that dd* + d*d is invertible on any
fibre. It follows that dd* + d*d is globally invertible. The operator k =
d*(dd* + d*dyι satisfies then kd + dk = 1, and hence the lemma is proved.

Two hermitian complexes ( # , Φ) and {β, Ψ) over Y are said to be homotopy
equivalent if there is a homotopy equivalence of ordinary complexes g'.^-^Q)
such that Φ is homotopic to g'Ψg. A hermitian complex is said to be regular if
Φ is an isomorphism.

1.3. Proposition. For any hermitian complex (%?, Φ) over Y there are a
regular hermitίan complex (Φ, Φ) and a homotopy equivalence h: <£ —• <% ad-
mitting a left inverse and such that Φ = h!Φh.

Proof. First suppose that Φ: #* —• (#-*) ' is an isomorphism for all |/| > 2.
Consider the diagram
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6?0 C£>\ C/?2

p\ φ|t« φ\

ψ d, Ψi ψ

Using the fact that Φ: ^ 2 —* O^"2)' is an isomorphism one can easily find
morphisms a: (&-1)' -+V1, β: C^"1)' -> (#°)' such that Φα + d'β = l^-ty.

Consider the diagram:

}: M ( i ;
\d®0 \d'®0

Ύ ~ Y

V — V

ί>?0 /φv (C/? — \\t (Ύ\ ί<&Ί\/ ® ^ ((/?§\t (Ύ\ C/? — ]- (Ύ\ C^X

^ * ^ Id © 1 © 0 Id' © 0 © 1

Id®0

V
where Φ_1? Φo, Φλ are defined by the matrices:

φ , = ( φ 1 ) , φo=(Φβ' 0 -J\ , Φ^(Φ d'P\ .

The first vertical line in (*) is a complex ^ such that the canonical im-

bedding /: ^ —> ^ and the canonical projection p: ^ —• ^ are homotopy equiv-

alences and p / = 1. The horizontal maps define a morphism Φ: <?—• (f7)'

clearly satisfying (Φ/ = Φ and Φ = f Φ /. It follows that Φ is a homotopy

equivalence. Hence (^, Φ) is a hermitian complex. Moreover, Φ: ^ —> ί^" 1) 7

is an isomorphism with inverse given by the matrix:

a 1 - aΦ\

1 - Φ /
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Hence Φ: <€~x^ffly is also an isomorphism. Suppose now that we only know
that Φ: V1 ~> (#-*) ' is an isomorphism for all | i | > N + 1, N > 2. Then by
a similar argument we can find a hermitian complex ( # , Φ) such that Φ: #* ->
(ίί" 1 ) ' is an isomorphism for |/| > Λf and a homotopy equivalence j : ^ —> #
admitting a left inverse, and such that Φ = j'Φj. Hence we can apply induc-
tion on N. The start of the induction is insured by the fact that c€i = 0 for \i\
large, and the end of the induction is insured by the following remark: If the
homotopy equivalence Φ: Φ —> {$)' has the property that Φ\^1-^ (^~ιy is an
isomorphism for all | ί | > 1, then Φ: $> —* (Φ0)' is automatically an isomorphism.
This fact is easily checked by diagram chasing. Hence the proposition is prov-
ed.

1.4. Splitting. Suppose that V is a vector bundle over Y with a nonde-
generate hermitian metric (possibly indefinite). A splitting of V is a decompo-
sition of V in an orthogonal sum of two sub-bundles V = V+ © V~ such that
the metric is positive definite on V+ and negative definite on V~. Giving a
splitting of V is equivalent to a reduction of the structure group of the princi-
pal U(p, #)-bundle of V restricted to a connected component of Y to the sub-
group U(p) X U(q). (Here U(p, q) denotes the indefinite unitary group of the
hermitian form l^l2 + + \zv\

2 — |z p + 1 | 2 — — \zp+q\
2\ U(p) X U(q) is

a maximal compact subgroup.) Since U(p,q)/U(p) X U(q) is homeomorphic
to a euclidean space, it follows that a splitting always exists and moreover, any
two splittings are homotopic.

1.5. The signature. Suppose that ( # , Φ) is a regular hermitian complex
over Y. Then there is an associated invariant σ(^, Φ) e K(Y) called signature.
(K(Y) is the complex K-theory of Y.) This is constructed as follows: Φ defines
a nondegenerte hermitian form on #°, hence one can split ^°
as in § 1.4. We put

Since any two splittings of ^° are homotopic, this is independent of the choice
of splitting, as an element of K(Y).

1.6. Proposition. // (^, Φ) and (β, Ψ) are two regular hermitian com-
plexes over Y, which are homotopy equivalent, then σ(^, Φ) = a(β, ¥).

Proof. Let h: <€ —> Θ be a homotopy equivalence such that Φ is homotopic
to h'Ψh.

Case 1. <€ = 0. In this case ^ is an acyclic regular hermitian complex. It
follows easily that diβ'1) C ^° is a sub-bundle of half dimension on which the
hermitian form defined by Ψ is identically zero. If & = (^°)+ 0 (^°)" is a
splitting for ^°, then {β*Y and (S°)~ are both complements for the sub-bundle

Hence (^°)+ « (0°)- and <y(^,?Γ) = 0.
2. /z is injective and Φ = /z^/z. Consider the orthogonal complement

of h{^) in ^ with respect to Ψ. Then ^ is an acyclic regular hermitian sub-
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complex of 9 and clearly a{β, Ψ) = σ(#, Φ) + σ(£, Ψ\g). But a{β, Ψ\S) = 0
by Case 1.

Case 3. There is a homotopy equivalence g: & —> %> such that gh — 1.
Then ?Γ and g'Φg are (chain-) homo topic. Hence

ψt = t.ψ + ( 1 - t)&Φg, 0<t<\

is a continuous family of homotopy-equivalences Qί —> <%' denning a (possibly
nonregular) hermitian complex over Y x [0,1]. Applying Proposition 1.3 for
the base space Y x [0, 1] we can find a continuous family of regular hermitian
complexes Φt, Ψt over Y, 0 < ί < 1 and injective homotopy equivalences
/ t: 2) -+ &t depending continuously on t and such that Ψt — ftWtit> Then
σφQ, t0) = σφ^Ψ^ by continuity. On the other hand, /0/z: # -> ^ 0 is
injective, and

(Wto(foh) = h'Ψoh = AYΦgλ - Φ ,

hence σC^7, Φ) = σ(^ 0 ? ^Ό) by Case 2. Similarly, / t: Of -• ̂  is injective, and
βjΓώ = Ψ1=:Ψ, hence σ(^, ?Γ) = σ(^ 1 ? ^ ) by Case 2. It follows that * ( # , Φ)

= a{β, Ψ) .

General case. First we can find a homotopy-commutative diagram

where $ is some (bounded) complex over Y and the vertical maps are homotopy
equivalences admitting left-inverses. This fact is well known, or can be proved
by a slightly simpler method than the proof in Proposition 1.3. On $ we can
define a natural (up to homotopy) structure θ of (possibly nonregular) hermi-
tian complex. Using Proposition 1.3 we can find a regular hermitian complex
{i, θ) and a homotopy equivalence δ —> & admitting a left inverse and commut-
ing with the cup-products. Applying Case 3 to the compositions Ή —> i and
2 -• i we find that <j(#, Φ) = σ(£, θ) = σ(^, ?Γ). This concludes the proof.

1.7. Remark. As a consequence of Proposition 1.3 and Proposition 1.6,
the invariant a defined in § 1.5 only for regular hermitian complexes extends
uniquely to an invariant defined for any (not necessarily regular) hermitian
complex, which is a homotopy invariant of the hermitian complex.

1.8. r-complexes. A τ-complex is a regular hermitian complex ( # , Φ)

over Y together with isomorphisms τ : ^ ι — -̂> #~* defined for all i such that

(i) r o r = l ,
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(ϋ) <gi JL+ <g-i

(#-*) ' —^+ {cgiy i s commutative,

(iii) for any JC e #* we have (Φτ(x))(x) > 0.
It is clear that the form (x, y) —> (Φτ(y))(x) defined on <&* X #* is a positive
definite hermitian form on &* for any /. Also the decomposition ^° =
(#°)+ Θ #°)~ given by C^0)* = {χζtf°\τx = ±x} is a splitting of (^°, Φ) in
the sense of §1.4. Conversely, given a regular hermitian complex (^, Φ)
together with positive definite hermitian forms on Ή1, i < 0 and a splitting of
(y°, Φ), there is a natural involution τ which makes (^, Φ) a τ-complex.

1.9. Gluing together r-complexes. We will need the following
n

Proposition. Suppose given α finite covering Y = (J Yα where Yα are

closed sets. For each a, 1 < a < n, there is given a τ-complex %\ over Ya. For
each a, β, 1 < a, β < n such that Ya Π Yβ φ φ there is given an injective
homotopy equivalence over Ya Π Yβ either from %\ to ^β or from ^β to <£„,
commuting with τ and the cup-products, which is the identity for a — β and
such that we have compatibility on sets of the form Ya Π Yβ Π Yr. Then there
are a τ-complex <€ over Y and infective homotopy equivalences Ήa —> ̂  over
Ya, commuting with τ and the cup-products for each a, such that we have
compatibility on sets of the form Ya Π Yβ.

Proof. We can clearly suppose that n = 2. The general case follows then
by induction on n. Suppose that over Yλ Π Y2 the given homotopy equivalence
is # ! —> # 2 We apply then a descending induction on N where N is such that
^ ί —> ̂ 2 is isomorphism for |z'| > N + 1 using the following obvious

Lemma. Given two vector bundles V19 V2 over Y19 Y2 respectively and an
inclusion Vx C V2 over Yx Π Y2, there exist vector bundles W19 W2 over

Y19 Y2 respectively and an isomorphism Vx Θ Wγ —^-> V2 0 W2 defined over
Yx Π Y2 such that the diagram

ι 1 2

w2

defined over Yx (Ί Y2 is commutative.

2. Signature with local coefficients

2.1. Flat hermitian vector bundles. Let I b e a manifold of dimension
2k, and E —>X be a vector bundle with a nondegenerate hermitian metric (pos-
sibly indefinite). We suppose that a flat structure is given on E, i.e., a maximal
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system of trivializations of E over various open sets of X, with locally constant
transition functions. Then the notion of locally constant sections of E over an
open set of X is defined, and we require that the metric is flat in the sense that
the inner product of two locally constant sections of E is again a locally con-
stant functions.

Over any connected component of X, giving a vector bundle E with the
structures described above, is equivalent, to a representation of the fundamental
group into some U(p, q) once we have chosen a base point (see § 1.4).

The flat structure defines a natural smooth structure on E, and an exterior
differential d: ΩP(X, E) -> ΩP+1(X, E). (ΩP(X, E) denotes the space of smooth
p-forms on X with values in E.) The metric on E defines an exterior product

{,}: ΩP(X,E) X Ω2k~p(X,E)^C

which is linear in the first factor and antilinear in the second. Here we have
used the evaluation on the fundamental class: Ω2k(X, C) —* C

Define: < , > = {,} on even forms, and V —1{ , } on odd forms d = d on
odd forms, and V — Id on even forms.
Note the following formulas:

2-2 = 0,

ζω, ω'y = (o)\ ω} , deg ω + deg α/ = 2k ,

(dω, α/> = <ω, dω'} , deg ω + deg ω' + 1 = 2k .

(The absence of signs is explained by the presence of V — 1 in the definition
of < , > and 2.)

Denote by H*(X9 E) the cohomology of the complex (Ω*(X, E), d). It is well
known that H*(X, E) is finite dimensional. <( , > induces a nondegenerate
hermitian form on Hk(X, E) whose signature will be denoted by sign (X, E)
€ Z. Suppose that X' is another manifold of dimension 2k, and let / : X' —> X
be a smooth map. Then the pull back bundle f E over Xf has an induced metric
and flat structure, and we have a natural map /*: Ω*(X, E) —> Ω*(X', f E) com-
muting with d. Let ft, t e [0, 1] be a smooth homotopy ft: Xf —* X. Define h:
X' X [0, 1] —>X by h{x, i) = ft(x). Since the pull back bundle hιE has a canon-
ical flat structure, we get a canonical isomorphism hιE = πιflE, where π: X' X
[0,1] —>Z7 is the projection onto the first factor. This also gives a canonical
isomorphism j\E « f[E which will be used to identify these two bundles together
with their metrics and flat structures. We shall show that /0*, ff: Ω*(X, E) —>
β*(Z', /JE) are chain-homotopic in a natural way. In fact, if ω e β p ( Z , £ ) , the
form A*(ω) 6 fl^AΓ7 X [0, 1], WE) can be written uniquely as A*(ω) = /(ω) +
ik(ω)Λ, where /(ω) e C°°([0, 1], ΩP(X\ f\E)) and ik(ω) e C°°([0,1], β ^ " 1 ^ , /JE)).
(We have identified here hιE to πxf[E.) Define
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k(ω) = εp -

0

where εp = 1 for odd p, and V — 1 for even p. One checks easily that

0k - kd)(ω) = V=ΐ(-l) ' + I (/i*<» - ffαO ,

which proves our assertion.
It follows that/* and /* induce the same map # * ( * , £ ) — H*(X',fiE).

If f: X' -+ X is a smooth homotopy equivalence, we conclude that
/*: H*(X, E) —> H*(X', f E) is an isomorphism. If, moreover, / is orientation
preserving, then it is compatible with the cup-product on Hk. Hence

sign(Z,E) = sign (* ' ,/ '£) .

2.2. The basic elliptic operator. We preserve the notations of § 2.1. We
shall construct an elliptic differential operator on X whose index is equal to
sign (X, E). This will be similar to the operator constructed in [2, § 6], except
for the fact that in [2] the authors assume E to be the trivial line bundle with
the standard metric and flat structure.

Choose a smooth splitting E = E+ 0 E~ (for the definition, see § 1.4). If we
change the sign of the metric on E~ and leave it unchanged on E+, we get a posi-
tive definite hermitian metric on E which is of course not necessarily flat, be-
cause the splitting has no relation to the flat structure. Fix a riemannian metric
on X. We have then induced pre-hilbert structures ( , ) on ΩP(X,E). Define
r: Ωp(X, E) -> Ω2k~P(X, E) by the formula

ζω, α/> = (ω, τωO , deg ω + deg ω' = 2k .

Then τ satisfies r2 = 1, <rω, α/> = <α>, τα/>, <τω, ω> > 0. r defines a C°°(X)-
linear involution of J] ΩP(X,E), and we define β + (Z,£;) (resp. Ω~(X,E)) as

the eigenspaces corresponding to + 1 (resp. —1). These are the spaces of
smooth sections of well-defined vector bundles over X. The adjoint of
d: ΩP(X,E) -> Ωp+ι(X,E) with respect to the pre-hilbert structures is clearly
τdτ: ΩP+\X,E) -^ΩP(X,E). Then d - τdτ defines an elliptic operator
D: Ω+(X, E) —• Ω~(X, E), and one sees easily, using harmonic forms as in [2],
that

index D = sign (X, E) .

For any 2/:-dimensional real vector bundle V consider the characteristic class

<?(V) = Π >
t h / 2
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k

where p(V) = \\(l + jφ is the total Pontrjagin class of V. Then the index
i = l

theorem of [2] specializes to

sign (X, E) = J?(Z) ch (E+ - E~)[X] .

(Here J^CY) is $ of the tangent bundle of X, and [Z] is the fundamental
homology class of X.) Applying § 2.1 we get the following result:

Proposition. Let X, E be as above and Xf > X a smooth orientation
preserving homotopy equivalence. Then

& ch (E+ - E~)[X] = J?(X')/* ch (E+ -

2.3. Remark. Suppose that Xx —> X2 —» X is a smooth fibre bundle with
Xl9 X2, X even dimensional manifolds. The middle cohomology of the fibres
with complex coefficients then form a flat vector bundle H over X with a flat
hermitian metric coming from the cup-product on Xλ. The proofs in [1], [4]
show actually that one has sign (Z2) = sign (X, H) although the notion of
signature with local coefficients is not explicity considered in these papers. Also,
in [1], it is shown by an example that ch (H+ — H~) may have nonzero com-
ponents in positive dimensions. Such examples are easier to find (see § 5) if we
do not require that H comes from a geometric situation as above, but that it is
an arbitrary flat hermitian bundle over X.

3. Families of flat hermitian vector bundles

In this section we shall extend the results of § 2 to families.
3.1. Let Y be a compact space, and Z —> Y a locally trivial fibre bundle

over Y with fibre X, a 2λ;-dimensional manifold. We shall suppose that the
structure group of this fibre bundle is the group Difϊ+(X) of orientation preserv-
ing diffeomorphisms of X. Z is a manifold over Y in the sense of [3, § 1],

Suppose that E —•> Z is a vector bundle with the following two structures:
(i) a nondegenerate hermitian form (possibly indefinite),

(ii) a flat structure in the fibre direction. (This means a maximal family of
trivializations of E over various open sets of Z such that the transition func-
tions are locally constant on the intersection with any fibre Xy9 y e Y.)

These two structures are assumed to be compatible in the following sense:
given two sections of E over some open set U in Z, which are "locally constant"
on any intersection U Π Xy, yzY, their inner product must be locally constant
on any U Π Xy, y e Y.

Then for any y e Y, the restriction bundle Ey — E\ Xy is of the type describ-
ed in § 2.1 in particular it has a natural smooth structure.

Let y° 6 Y, and Y° be an open neighbourhood of y° such that Z | Y° « X X Y°
and E \ (Z | Y°) « Ey0 X Y°. Let X° be a connected component of X, Z° the sub-
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set of ZI y° corresponding to X° x Y°, and J C ° S P . Then the bundle E\Z° and
its two structures can also be described up to isomorphism by a continuous
family of representations pv, y e Y° of the fundamental group π^X0, x°) into
U(p,q). (This means by definition that for any gζ π^X0, x°), the map Y —>
U(p, q) defined by y -^ py(g) is continuous.) The system (X —> Y —> Z, E) will
be called a family of flat hermitian vector bundles.

Define fr = (J Ωi where Ωi = Ωi+k(Xy,Ey).2 We can make Ωι into a
y€Y

bundle of Frechet spaces over Y in the following way: Any trivialization
E\ (ZI Yo) « Ẑ o X Y° over some open neighbourhood Y° of yQ (which is smooth
and linear in the fibre direction but in general not compatible with the flat
structures and metrics) defines a bijection Ωι \ Yo « Ω\* X Yo which is linear
on fibres and induces a topology on Ωί\YQ. The topologies obtained on subsets
of Ωι for various trivializations of E are compatible, and define a topology on
Ω\

The bundle maps d: Ωι —• Ωί+1 define then a complex Ω over Y. The pairing
<( , ) considered in § 2.1 can be considered for each fibre Xy, and defines a
separately continuous pairing ( , ) : ^ X fl'^l where 1 denotes the trivial
line bundle over Y. Choose a splitting E = E+ 0 E~, which is smooth in the
fibre-direction, and a riemannian metric on the tangent space along the fibres
T(Z/Y) smooth in the fibre-direction. Then, as in § 2.1 we find induced pre-
hilbert structures on the bundles Ωι and bundle involutions τ : i2*—•$'* satisfy-
ing the relations of § 2.1. We define Ω± as the ± 1-eigenspaces of τ acting in
2 Ωι, and we have a family of elliptic differential operators D = d — τdτ\
i

Ω+ -» Ω~ in the sense of [3, § 1].
Let sign (Z/Y E) € K(Y) denote the analytical index of D. We shall show

in § 3.2 that sign (Z/Y E) is in fact the signature of some hermitian complex
constructed out of the eigenspaces of the Laplace operator.

We recall the definition of the analytical index, see [3, § 2], [15], in a form
convenient to us. Suppose we have found two finite dimensional vector bundles
V and W over Y and morphisms

V > W

such that ψδ — Dφ and such that φ: ker δ -—• ker D, ψ: coker δ — -̂> coker D.
Then, by definition,

sign (Z/Y; E) = V- WeK(Y) .

2 The shift in dimension is motivated by the notation of § 1.
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One can show that this definition is independent of the choices made. It is also
clear that sign (Z/Y; E) is independent of the chosen splitting and riemannian
metric.

3.2. Our next task will be to exhibit a particular choice for V and W
mentioned at the end of § 3.1. Observe that Ω together with the pairing < , >
and the involution is very much like a τ-complex (see § 1.8) except for the fact
that it has infinite-dimensional bundles. We will construct now a genuine τ-
complex associated to Ω. Let Δy be the Laplace operator in Ωy defined by

Δ y = d τ d τ + τ d τ d , y z Y .

Let ay > 0 such that ay is not an eigenvalue for Δy for any i. By continuity of
the eigenvalues, ay is not an eigenvalue for Δ\* for any ί and y' eNy, a closed
neighbourhood of y in Y. Choose a finite number of points y19 , yn ς. Y such
that the interiors of Ya = NVa cover Y, and put aa = aVa.

Consider the following path λa in C:

(λa is a rectangle which crosses the real axis at aa and at some negative point.)
The operators

\tV = JV. -
are well defined in i3^ for y e Ya and depend continuously on y. From the
Cauchy integral formula and the spectral decomposition of Δy, it follows that

^ = Image A\v = ker £*αj1/

= subspace of β^ spanned by the eigenvectors of Δy

corresponding to eigenvalues less than aa.

Then dim ^\y is finite and both upper and lower semi-continuous in y, so that

it is locally constant with respect to y. Hence #* = (J ^«« is a (finite dimen-

sional) subvector bundle of Ωι\Ya. Clearly, the Laplacian commutes with d

and τ, hence also A%y, B*y do. It foUows that 2(^*a) C ^a

+1 and r ί ^ ) = ^ * .

The complex of vector bundles tfa = j . -> ^ α > #£ + 1 -> . | together
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with the involution τ and the cup-product < , > is then a τ-complex over Yα.
Denoted by pa: Ω -> ^a and qa:

 C€a-^Ω the canonical orthogonal projection

and inclusion, respectively. Then pa and qa are homotopy equivalences com-

muting with τ. Moreover qa commutes also with the cup-product, and paqa = 1.

Suppose now that YaΓ\YβΦ φ.Ψe have aa < aβ or aa>aβ. Suppose the first

inequality is satisfied. Then clearly over Ya Π Yβ we have a canonical imbedd-

ing Ήa —
a-> <$ β which is a homotopy equivalence commuting with τ and the cup-

products. (In fact, the orthogonal complement of ^a in ^β is acyclic because

it is a direct sum of eigenspaces of the Laplacian corresponding to nonzero

eigenvalues.)

We can apply § 1.9 to this situation: we find a τ-complex ^ over Y and

injective homotopy equivalences Ήa — % Ή over Yα, commuting with τ and
the cup-products and such that over Ya Π Yβ we have ha = hβhaβ or hβ = hahβa

(depending on which of the inequalities aa < aβ or aβ < aa hold). Let ra be the
orthogonal projection of ^ onto Ήa. Consider a partition of unity {φa}ι<a<n such
that supp φa C Interior (Yα).

The maps

P = Σ φahapa Ω -> <€ , q = Σ φahara: V -> β

are homotopy equivalences defined over Y, homotopy inverses to each other,
commuting with τ for any fixed y € Y, the induced maps in the cohomology
over y commute with the cup-products.

Denote by c€± the ±-eigenspaces of τ acting in J] ^ \ and by d^ the differ-
ential of <€. Consider the commutative diagram:

•I
Then q induces isomorphisms between the kernels of the two horizontal lines
and also between their cokernels. It follows (see the end of § 3.1) that

sign (Z\Y\ E) = V+ - V- e K(Y) .

It is easy to see that ^ + - <g- = (^°)+ - (#0)-. (^° Π ̂ + and ^° Π ̂ " define
a splitting of ^°.) Hence sign {ZjY\ E) — σ(tf), where σ(^) is the signature
(see § 1.5) of the τ-complex r^, and we have proved the following

Proposition. Let X-^Z^Y, E, Ω be as in §3.1. Then there exist a (finite
dimensional) regular hermitian complex <€ over Y and homotopy equivalences
p: &—*%?, q: %? —> Ω homotopy inverses to each other, commuting on
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cohomology level with the cup-products for any fixed y eY and such that

sign(Z/Y; E) = σ(&) .

Remark. This proposition should be compared with a result of G. Segal
[15] asserting that a family of elliptic complexes over a compact space Y has
the homotopy type of a finite dimensional complex over Y. Actually, this result
follows also from our methods.

3.3. Theorem. Let Y, Yf be two compact spaces and X —> Z > Y,

Xf -> Z' - ^ > Y' 2k-manifolds over Y, Y' as defined in § 2.1. Let E -> Z be
a family of fiat hermitian bundles as in § 3.1. Suppose that g: Yf —> Y is a
homeomorphism and that f: Z' - » Z is a smooth* orientation preserving fibre-
homotopy equivalence lying over g. Consider the induced family of flat
hermitian bundles fE over Zr. Then

sign (Z'\Y'\ fE) = £!(sign (Z/Y; E))zK{Y') .

Proof. We can suppose that Y = Yf and g is the identity. Let Ω, fΩ be the

complexes of differential forms along the fibres associated to Z, Z', and ^ ~κ

 > Ω
p

fcβ i—> Ώ be4 as in Proposition 3.2. / induces a homotopy equivalence
rP

/*: Ω —> 7 β . This is proved by the explicit homotopy constructed in §2 .1 .
Then fpf*q \ Ή ->/(£ is a homotopy equivalence which commutes up to
homotopy with the cup-products. By Proposition 1.6 we have σ(^) = σ(f(&)
and now the theorem follows from § 3.2.

The following is a generalization of § 2.2 (which corresponds to the case
Y = point):

Corollary. Under the hypothesis of Theorem 3.3 one has

ch (E+ - E-)) - g*π*(&(Z/Y) ch (E+ - E~))

(TΓ* denotes the integration along fibres: # * ( Z ; Q) —> H*(Y; Q) which de-

creases degrees by 2k similarly for π*. We use Cech cohomology. By defini-

tion, j£(Z/Y) - J?(Γ(Z/Y); similarly for ^(Z '/yO.)

This follows by applying the Chern character to the equality of the Theorem

and using the Atiyah-Singer index theorem for families of elliptic operators [3,

Theorem 5.1].

3 "smooth" means: smooth in the fibre direction.
4 Caution: '<$ should not be confused with #', the antidual of
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4. Novikov's higher signature

In this section we specialize the results of § 3 to more concrete geometric
situations. In particular we show how Novikov's higher signature comes from
a family of flat hermitian bundles over some torus.

4.1. Duality of tori. By definition, a torus is a compact connected abelian
Lie group. If T is a torus, the Pontrjagin dual t — Hom^CΓ, S1) is a finitely
generated free abelian group with discrete topology. Here Sι = R/Z. The
Pontrjagin dual of Homz (f, Z) is then again a torus T* which will be called
the torus dual to T. Let Γ — (Γ*)Λ and V = Γ (x) R. Then T is canonically

z
isomorphic to V/Γ.

Similarly, if we put Γ* = Homz(Γ, Z) and F* = Γ* (x) R = HomΛ(F, R),
z

then Γ* is canonically isomorphic to F*/JΓ*. Let < , ) be the duality pairing
V X V* -> R. Consider the action of Γ X Γ* on V X F* X C defined by

(v, v*9 X), (r, γ*) -^(v + γ,v* + r *, exp (2ττ/<r, v*»-r) .

Here γεΓ,γ*ζΓ*,ve V, v* eV*,γe C. The orbit space (V X F* X O/(Γ
X Γ*) is then a smooth complex line bundle L over the torus

(F x V*)/(Γ x Γ*) - T x Γ* ,

the projection being given by O, v*9 X) —> (v, v*).
We want to determine the Chern class

Cι(L)eH\Tχ T*;Z) .

Observe that there are canonical isomorphisms H\T; Z) = Γ*9 H
ι(T* Z) = Γ

and that there is a canonical element

aeΓ*®Γ = H\T; Z)®H\T*; Z) C #2(Γ X Γ*; Z)
z

corresponding to the identity homomorphism Γ —> Γ by the isomorphism
Γ* (x) Γ = Homz (Γ, Γ). (The inclusion c is given by the cup-product.)

z
Proposition. c^L) — a.
Proof. Let /: F X F* -> C be a smooth function and (w, w*) € V X F*.

Define a new smooth function F\WtW*)f on F X F* by

3L J L , v*) - 2πi<v, w*}f(v, v*) .{v, v) +
dw dw*

One checks easily that F(w,,™*) leaves invariant the subspace

+ r*) = eχP(2τri<r, v*»f(v, v*),

*, r, r*) € K x F * χ r χ P J C C I F X K*; O ,
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which can be identified with the space of smooth sections of L. Hence L has a
natural connection F. (Remark: (w, w*) can be considered as a tangent vector
at an arbitrary point of Γ X T*, the latter being parallelizable in a natural
way.)

The curvature K of the connection V is given by the formula:

-**-(w,w*),(w,w*)J ~" * (u,u*y (iυ,w*)T * (w,w*y (u,u*)J

= 2πK-<u,w*> + <w,u*})f ,

where u,W€V, u*, w* e F*.
It is well known that as a real differential form, cγ{L) is represented by

iK/(2π). From the above explicit formula for K, the proposition follows easily.
Remark. The line bundle L restricted to any fibre of the projection

T X Γ* —> Γ* has a natural flat structure and a flat, positive definite, hermitian
metric. In fact, if we fix v* e V*, then the restriction of L to T X {v* + .Γ*}
C T X T* is obtained from the unitary representation of the fundamental group
Γ into S\ given by γ —> exp (2πi(j, v*)). Clearly, this flat structure varies con-
tinuously (see § 3.1) as v* varies.

4.2. Homotopy invariance of Novikov's higher signature. Consider a

smooth map X > T, where X is a 2&-manifold and T is a torus. Let Γ*
be the dual torus. Then, as explained in § 4.1, we have a natural line bundle
L over T X Γ* which has a flat structure and a flat hermitian metric when
restricted to any fibre of T x Γ* -* Γ*.

Let (|0 X 1)!L be the line bundle over X X Γ* induced by the map

Z X Γ * ^ U T X Γ*. Then the system ( Z - > Z χ f - > Γ*, (<o X 1)!L) is a
family of flat hermitian bundles (see § 3.1). Put (see § 3.1)

sign, (X) = sign (X x Γ*/Γ*, (p x 1)!L) e

Theorem. Le* X, X' be 2k-manifolds, T, T two tori and Xf —

p'

a homotopy-commutative diagram of smooth maps such that f is an orientation
preserving homotopy equivalence and g an ismorphism of Lie groups. Let
g* denote the dual isomorphism of the dual tori: Γ* —• (Γ0* Then

Proof. Consider the fibre-homotopy commutative diagram:

x' x en*7 > x xT*
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We have a line bundle (p X 1)!L on I x Γ* and similarly a line bundle
(p' X 1) !L' on X' X (TO*. Since L and 1/ were constructed in a functorial way,
we have V = (g x (g*)" 1)^- Since L is flat in the fibre-directions, a fibre-
homotopy between (g X (g*)" 1 )^ ' X 1) and (p X 1)(/ X (g*)"1) defines an
idetification of (p' X l) !(g X (g*)" 1 )^ and (/ X (g*)" 1 ) 1 ^ X 1) !L. Hence
(/ X 1) !L' and (/ X (g*)" 1 ) '^ X 1)!L can be identified (together with their flat
structures along fibres and metrics). The theorem follows directly from Theo-
rem 3.3.

We shall apply this theorem in the case T = HX(X\ S1), considered as a Lie
group. The dual torus Γ* can be naturally identified with H\X; Sι)°. (The
superscript ° denotes the component of the identity.) We shall denote T —
Alb (X),T* = Pic (X) and call them, in analogy with algebraic geometry, the
Albanese, resp. Picard torus of X. Suppose X to be connected5, and choose a
base point xQ e X and a Riemann metric on X. These data define a smooth map

X - ί U Alb (X) by the formula

Γ

which should be interpreted in the following way: given xεX, choose a smooth
path γ from x0 to x. Any ω e H\X R) can be represented by a unique harmonic

1-form on X whose integral along γ is denoted by ω. Thus we get a linear

XQ

form on H\X\ R), i.e., an element in HX(X; R). If we change the path γ in
some other path y' from x0 to x, our element is modified with the element of
Hλ(X, Z) determined by the closed path (f)'1 o γ. We hence have a well defined
element p(x) e Hγ(X R)/ image HX(X\ Z) = Alb (X). Clearly, the homotopy
class of p is independent of the choice of the base point and riemannian metric.
(Actually, the functors Alb (X) and Pic (X) are defined for any polyhedron X
with finite 1-skeleton, and there is always a canonical map up to homotopy
p: X —• Alb (X) p is characterized by the property that if H^Alb (X) Z) is
identified with Hλ(X, Z)/Tors, then Hλ(p): ^ ( X ; Z) -> H^X; Z)/Tors is the
natural projection.)

For any 2fc-manifold X we define the "Novikov higher signature" by the
formula

Nov (X) = sign, (X) e K(Pic (X)) ,

where p:X—> Alb (X) is the canonical map. From the above theorem we deduce
the following

Corollary. Let X' > X be a smooth orientation preserving homotopy

5 This assumption can easily be removed.
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equivalence of 2k-manίfolds. Identify £(Pic (X)) = K(Pic (X')) via f. Then

Nov (X) = Nov (X') e K(Pic (X)) .

Actually, the theorem can be deduced from the corollary, using the following
P Pi

property of the map X > Alb (X): Given any map X > T into some

torus there exists a unique homomorphism of tori Alb (X) > T such that
px = hop.

4.3. Poincare complexes. The homotopy invariance theorem proved in
§ 4.2 suggests that Nov (X) might be defined purely in terms of the Poincare
duality on X. We will show that this is, indeed, the case.

Suppose that X is a finite polyhedron. Assume that X satisfies Poincare dual-
ity in the following form: A fundamental class [X] e H2k(X; Z) is given, and
for any local coefficient system S of complex vector spaces of dimension 1 over

X, the map Hl(X\ S) > H2k_t(X; S) is assumed to be an isomorphism for
any /. Such an X will be called a Poincare complex of formal dimension 2k.
Let p: X —> T be a continuous map of X into some torus. Then we have a
natural line bundle L over T X T* as explained in § 4.1. For any ί* e Γ* let
y I* be the space of simplicial z-cochains of X with values in the flat bundle (or
local coefficient system) (p x 1)!L | X X {**}, where pχl: X XT*->T xT*.
Then Sf1 = (j έ?\* is in a natural way a (finite dimentional) vector bundle

over Γ*. The set of usual coboundary operators £f\* —• £f\iι for all ί* define
morphisms d: of1 —• ^ ΐ + 1 such that dod = 0. Using the hermitian metric in
the bundle (p X 1)!L | X X {**} we get a pairing < ĵ* x ^ j r * -> C (0 < i < 2A),
given by the usual explicit formula for cup-products, followed by evaluation on
a chain-representative of [X] fixed once for all. The set of these pairings for
all ί* defines a pairing { , }: ϊf1 x .S^2*-* —> 1 (1 is the trivial line bundle ovdr
T*) which is linear in the first variable and antilinear in the second. Put

yί+k , for - o o < / < k ,

ker (^2k > ̂ 2 * + 1 ) , for / = k ,

0 , for i > k .

Note that ker (y2k > y2k+1) is a vector bundle since the complex (£f, d) is

acyclic in degrees >2k + 1. Define d: S?1 —•> y ί + 1 by d = d ίor odd /, and

V ^ ί ί for even /, and define < , >0: &* X ^~* -> 1 by < , >0 = {,} for even /,

and V —1{ ,} for odd i (compare § 2.1). The pairing < , >0 is in general not

symmetric since the cupproduct is not symmetric on cochain level. We remedy

this by defining

< γ γ \ I Γ / y V \ I / Ύ Ύ \ 1
«^1J / V2/ — 2L\*ΛΊ? Λ2/Q \ \*/V2? "^l/OJ
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for xx € &\ x2 6 &-\ It follows from Poincare duality and § 1.2 that (y, 3, < »
is a (possibly nonregular) hermitian complex over Γ*. Elementary simplicial
cohomology theory shows that the homotopy type of this hermitian complex
(cf. §1.2) depends only on the homotopy type of X together with the homology
class [Z] and a homotopy class of maps X-*T. Hence the signature σ(y) e K(T*)
is a homotopy invariant of the situation (cf. Remark 1.7).

Let us compare σ(&) with the invariant defined in § 4.2. Suppose that X is

a 2&-manifold together with a smooth map X —?-> T. Consider some triangu-
lation of X. Let Ω be the complex of differential forms along the fibres of
X X Γ* —> T* with values in (p x 1)!L. (43 is an infinite-dimensional vector
bundle over Γ*; see § 3.1.) The process of integration of an /-form on an ί-
simplex defines a morphism h: Ω —> 5^ of complexes over Γ*, and it follows,
from de Rham's theorem with local coefficients, that for any ί* e Γ* the mor-
phism Ωt* —> ĉ £* induces an isomorphism in cohomology compatible with the

cup-products. Let ^ ^ * Ω be as in § 3.2. Then /zg: ^ —> <? is an isomor-
p

phism in cohomology for any fixed ί*. It follows that hq is a homotopy equiv-
alence of hermitian complexes (see Lemma 1.2). By Remark 1.7, σ(^) = σ ( ^ ) .
But from § 3.2 we have σ(^) = sign, (X). Hence σ(^) = sign, (Z). We shall
summarize the above discussion specializing to the case where T = Alb (Z),
T* = Pic (Z), and p: Z —> T is the canonical map.

Theorem. L^ί Z 6^ any Poincare complex of formal dimension 2k. Then
there is an invariant Nov (Z) € £(Pic (Z)) w/ί/z */*£ following properties:

(i) If f: X' -+ X is a homotopy equivalence of Poincare complexes such
that f*[X'] = [Z], ίΛ^n Nov (Z) and Nov (ZO correspond to each other by the
identification £(Pic (Z)) = £(Pic (ZO) mdwcβd fcj /.

(ii) // X is a 2k-manifold, then Nov (Z) w the same as the invariant defined
in § 4.2.

4.4. Cohomological expression of Nov (Z). Let Z be again a 2/:-mani-
fold, and Nov (Z) 6 £(Pic (Z)) its Novikov higher signature (cf. § 4.2). Since
Nov (Z) is the index of a family of elliptic operators, its Chern character can
be calculated as in the corollary in § 3.3. We have

ch Nov (Z) = S(X) ch (p x 1) !L[Z] e Hev(Pic (Z) Z) ,

where p: Z—• Alb (Z) is the canonical map, and L—>Alb (Z) X Pic (Z) is the
canonical line bundle defined in § 4.1. Let x19 , xn be a basis of R\X\Z)
= H\Alb(X); Z), and f1? ••-,£„ the dual basis of # X ( Z ; Z)/Tors =

TO

ff(Pic (Z); Z ) . By the proposition in § 4.1, cλ(L) = 2 •**?*> from which we
t = l

deduce

c[(L) = (-l)^-i)/2r ! Σ χ . . Λ f . , ς
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ch (L) = exp (Cl(L)) = Σ ( - D r < r" 1 ) / 2 Σ *i, •*<,?*• •&,
^O l ^ ί < < i <

Identifying *« = p*xt and noting that Jr(r — 1) = £(mod 2), if r = 2£(mod 4)
we have:

chNov(Z)

(*) =(-iy Σ Σ ^ 2 f c-^κ ^ m ^ ^
0<.r£n O£iι< - <ir<n
r=2fc(4)

If M — Miχ ίr denotes an oriented submanifold of X with trivial normal
bundle dual to xi± xir (this is of course empty if r > 2k), then the Hirzebruch
signature theorem applied to M gives

ί . • xlr[X] .

Here i is the inclusion MC.X and r = 2k (mod 4). Substituting in (*) we obtain

chNov(X) = ( - l ) * Σ Σ 2'
O 0 i i

Applying the Corollary in § 4.2 we deduce that the numbers sign (MH...ir)
are homotopy invariants of X for smooth X. This result has been first proved
in some special cases by Novikov [11] and Rohlin [14] and in general by W.
C. Hsiang-Farrell [6] and Kasparov [7] using nonsimply connected surgery.

Remarks. ( 1 ) . The above calculation does not apply, of course, to
Poincare complexes. However, for a Poincare complex X of formal dimension
2k, the element Nov (X) € £(Pic (X)) is defined (see § 4.3) and we have

ch Nov (X) = Σ ^,..*A fir € iϊ"(Pic (X) Z) .

(ah,..ir are integers since for any torus T the Chern character is an isomorphism
ch: K(T) -> Hev(T; Z).) One can show that ah...ir = 0 unless r = 2k(4). (In
fact, consider the involution j : Pic (X) -> Pic (X) defined by j(x) = x~ι,
x <= Pic (X). Then the construction in § 4.3 can be done respecting /. It follows
that

Nov (Z) € Image {KR(Pic (X), /) -> £(Pic (Z))} for k even ,

and Nov (X) is of the form y — fy*9 y e £(Pic (Z)) for A: odd. Our assertion
follows then easily.)
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It is an interesting problem to decide whether the numbers aiχ...ίr for r =
2k(A) are divisible by 2r/2 (as in the smooth case) at least in the case when X
satisfies Poincare duality over the integers.

( 2). Until now, we have only considered even dimensional manifolds. The
odd dimensional case can be reduced to the even dimensional case in the follow-
ing way: If X is a (2k — l)-manifold, define

Nov (X) = Nov (X X Sι) e K(Pic (X x S1)) = K((Pic (X)) X Sι) .

The restriction of this element to K(Pic (X)) is zero, so it can actually be con-
sidered as an element in ^(Pic (X)). It follows from § 4.2 that Nov (X) is a
homotopy invariant of X. A similar remark applies to Poincare complexes of
formal dimension (2k — 1).

4.5. Novikov's higher signature for a family of manifolds. We shall con-
sider a compact connected space Y and a manifold Z over Y with fibre X, a
(2fc)-dimensional manifold (see §3.1). Define two torus-bundles Alb (Z/Y),
Pic (Z/Y) over Y fibrewise. For example, the fibre of Alb (Z/Y) at y e Y is
Alb (Xy) where Xy is the fibre of Z —> Y at y β Y. The structure group of these
torus-bundles is the group of automorphisms of Hλ(X\ Z)/Tors; in particular
it is a discrete group. The construction in § 4.1 can be done fibrewise and gives
a canonical line bundle L over Alb (Z/Y) x Pic (Z/Y). (The line bundle L is

Y

actually induced from a universal situation: The standard action of GL(n, Z)
on Rn/Zn gives a torus bundle 3Γ over B = BGL(n,Z). If <J~* is the dual
torus bundle, there is a universal line bundle Lu over J x J * . One can show

that

H\3Γ χ,r*;Q)-+ H\(Rn/Zn) X (Rn/Zn)*; Q)
B

given by restriction to a fibre is injective with 1-dimensional image. Hence c^Lj
is determined by its restriction to a fibre, where it is known by § 4.1. However
Cχ(Lj is not decomposable in sum of products of 1-dimensional elements, since
R\«r x j r * ; β ) = 0.)

B

Suppose for simplicity that X is connected and that a section Y —»Z is given
so that each fibre Xy will have a specific base-point. Choose Riemann metrics
on Xv depending continuously on y<z Y. By the construction in §4.2 these
metrics and the base points determine a fibre-preserving map p: Z -^ Alb (Z/ Y),
whose fibre-homotopy type is independent of the choice of metrics. We have
then a family of flat hermitian bundles

(X-+ZX Pic (Z/Y) -> Pic (Z/Y), (p x l)ιL) .
Y r

The analytic index of the associated family of elliptic operators (see § 3.1) can
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be called the Novikov higher signature of Z —» Y. This is an element
Nov (Z/Y) g K(Pic (Z/Y)), and again it follows from Theorem 3.3 that it is an
invariant under fibre-homotopy equivalences respecting the given section.

4.6. We shall consider now a variant of a situation considered in §4.5
which will be used in § 4.7 for proving a multiplicativity formula for Novikov's
higher signature in fibre bundles. Instead of supposing that Z—» Y has a section
we shall suppose that Z —• Y is associated to a principal G-bundle over Y,
where G is a simply connected topological group, together with a given homo-
morphism h: G -> Diίϊ0 (X). (Difϊ0 (X) is the identity component of Diff (X).)
Then there are a finite open covering {Ya} of Y and maps /βjS: Ya \J Yβ-> G
defined for Y . Π Y ^ ^ such that faa = 1, / ^ / ^ = 1, and

where (y, t) — (y, h(faβ(y))x) toτ y <zYa Π Yβ, xeX. Let X -> X be a covering
of X such that Z n acts freely on X and X/Zn = X. Let ^ be the identity
component of the group of diffeomorphisms of X which are Zw-equivariant.
Then there is a natural homomorphism u: <$ —> Diff0 (X) which is surjective and
has discrete kernel, hence it is a covering. Since G is simply connected there is
a unique (continuous) homomorphism h: G —» ̂  such that h — uoh. Define

z= ί

where G ĵc) - (y, A(/αiS(y))x) for yεYa Π Yβ, xzX. Then Zw acts freely on
Zn and Z/Z w = Z. Let Γ* be the torus HomίZ7*,^1). For any t* ε T* we
have a line bundle Lf* = Z x C over Z (where Zn acts on C via **). Making

ί* vary in Γ* we obtain a family of flat hermitian bundles

( i ) (x-+zχτ*-+y χτ*,g .

Similarly, if we start with X x Y -*Y instead of Z and X X Y instead of Z,
we obtain a family of flat hermitian bundles

(ii) ( X - > X χ Y χ : Γ * - * Y χ Γ*,L(2)) .

Let (7u σ2 be the elements in K(Y X Γ*) associated to (i) and (ii) (see § 3.1).

We shall prove that σ1 = σ2. Let 319 Ω2 be the complexes of Frechet bundles

over Y X Γ* associated to (i) and (ii). By definition (see § 3.1) we have

iLa)\Xv)) , (Ω2)^} = Ω(X,L(2)\X x {y}) .

The local trivializations for Z and Z described above define specific isomor-

phisms
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Φa: Ωx\Ya X Γ* » β 2 |^« X Γ*

such that

ΦβoΦ? . Ω2\(γa n γβ) x r* -*&i(Ya n γβ) x T*

is chain-homotopic to identity for any fixed (y, **) € (Yβ Π Yβ) X T* (since G
is connected). Let {φa} be a partition of unity on Y with supp ^α C Ya. Define
Φ: Ωι -> 422 by Φ = 2 0«Φβ. Then Φ is a morphism of complexes over Y X Γ*,

α

which is a chain-homotopy equivalence for any fixed (y, t*) e Y X Γ*. (This
follows from the fact that Φα is chain-homotopic to Φβ over (y, ί * ) j ζ 7 f l Π ^ ,
ί* € ϊ1*.) Also it is clear that for any fixed (y, ί*), the map induced by Φ in

cohomology is compatible with the cup-products. Let ^ <—> Ω19 ^2 < > Ω2

Pi P2

be as in Proposition 3.2. Then p2Φqλ:
 c€ι —> ^ 2 is a homotopy equivalence of

regular hermitian complexes over 7 χ Γ * (see § 1.2). By Proposition 1.6 <7(#i)
= σ(^2). But by definition (see § 3.2) we have σλ = σ(&0, σ2 = σ(tf2). It
follows that σx = σ2 which proves our assertion. (Note the similarity of this
proof with the one of Theorem 3.3.)

The interest of this equality lies in the fact that σ2 is clearly in the image of
the homomorphism K(T*) -> K(Y x T*) induced by the projection 7 χ P ^
Γ*. Hence the same is true for σλ.

We shall express this fact in terms of ch σx. The covering X—>X is induced

by a map X - ^ > T = /?W/ZW. Let z15 ,z m be a basis of ff(Γ; Z), and
d, , CTO the dual basis of fl1 (Γ* Z). Then

Xi = ft*(Zi) € J ϊ 1 ^ ; Z) - ff(Z; Z) .

We have the following formula (compare § 3.3 and § 4.4):

chσλ - (-1)* Σ Σ π*(&(Z/Y)Xiί. .χjζiχ. - -ζίr
0<r<m 0 < i < i ^

Y X Γ * ; β ) .

Here π: Z—> Y is the projection, and π* denotes integration along fibres. Since
any set {xl9 , Λ:TO} of elements in H\X\ Z) is induced from the generators of
Hι of some torus by a suitable map Z - ^ Γ w e get

Theorem. Suppose that the structure group of X —• Z —> Y is simply con-
nected, and let xί9 -. , xn e H\X\ Z) = H\Z; Z). Then π^(Z/Y)xr - xn)
e H*(Y; Q) is zero in all positive degrees; in other words it is equal to
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4.7. Multiplicativity in fibre-bundles.
Theorem. Suppose that X —> Z —» Y is a smooth fibre bundle with X, Y, Z

manifolds of even dimension. If Y is 2-connected, then one can identify
Pic (X) and Pic (Z), and the formula

( * ) Nov (Z) = Nov (X) sign (Y)

holds in K(Pic(X)).
Proof. Let x19 ., xn be a basis of ff(X; (?) = R\Z\ Q), and £, , ξn

the dual basis of H\Pic (X) Q) = tf^Pic (Z) β). We have

ch Nov (Z)

fίr (by 4.4)

^ Σ Σ π*{£(y).£{ZIY)xiχ- . J C J Z ] ^ . ftr

(we omit summation indices)

^ 2 Σ Σ π*(&(ZIY)Xiι .Λ^dOtΠft,- -ξir

w Σ Σ &(X)*iι \ f f l ^ ( 1 0 [ ^ 1 fίr (by 4.6)
r>/i c h N o v (jf). s i g n (y) β

Since for dim Y = odd, both sides in (*) are zero, the Theorem follows.
This proof is modeled on Atiyah's proof of multiplicativity of the Hirzebruch

signature [1, § 4] in case the base is 1-connected.

5. Non-abelian fundamental groups

In this section we will show how the results of § 2 combined with a result
of Matsushima lead to homotopy invariance properties of the Pontrjagin classes
of certain K(π, l)-manifolds, with highly non-abelian fundamental group π.

5.1. Let G = Sp (2n, R) be the real symplectic group in In variables, i.e.,
n

the group of automorphisms of R2n preserving the alternate form Σ U*yΛ+i —

Denote by 3t the Grothendieck group generated by all isomorphism classes
of finite dimensional complex (continuous) representations of G with a fixed
nondegenerate hermitian form, invariant under the action of G. For any such
representations E, F we have the relation [Eφ F] = [E] + [F] in 3ί, where
[E] is the class of E in 3t9 and E 0 F is the orthogonal direct sum of E and F.
01 can be made into a Λ-ring in the usual way.

G acts naturally in C2w, considered with the hermitian form
n

Σ teVn+ί — Xn+iPi), of type («, ή). We shall denote this particular representa-

tion of G by Eo. Let E b e a representation space of G with a nondegenerate

invariant hermitian form.
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Restricting this representation to the maximal compact subgroup U(ri) c G,
E splits into orthogonal direct sum E = E+ 0 E~ such that E+, E~ are invari-
ant under U(ή) and the herimitian form is positive (resp. negative) definite on
E+ (resp. E'). Hence the associated hermitian bundle φ(E) over the classifying
space BG has a corresponding splitting

(Note that BG is homotopy equivalent to BU(ή).)
By taking Chern character we get an element ch (φ(E)+ — φ(E)~) e H*(BG).

Here, and in the remainder of this section, cohomology is taken with rational
coefficients and H* = f] Hk.

k

The correspondence E —> ch (φ(E)+ — φ{E)~) defines a ring homomorphism
•ψ : St ->H*(BG), respecting 1. Consider, in particular, the representation EQ.
Let x19 , xn denote the roots of φ(EQ)+. Then it is easy to see that

ψ(E0) = Σ (exί ~ e~Xί) e H*(BG) .
ί = l

It is well known that H*(BG) can be identified with the algebra of symmetric
formal series over Q, in the variables x19 , xn, and as such it has a natural
topology.

Let σt (ί = 1, , ή) be the f-th elementary symmetric function in the vari-
ables exi — e~xi, , eXn — e~Xn. In particular ψ(E0) = σγ. One checks easily
that for any i, 1 < i < n, one has

ψ(Λ*EQ) = Oi + ait2σt_2 + aitAσt_4 + ,

where aiι2, aiti, are integers. It follows by induction that σ15 , σn belong
to the image of ψ. Since ψ is a ring homomorphism, the image of ψ will con-
tain any symmetric polynomial in eXχ — e~Xl, , eXn — e~Xn. Note that

ex __ e-x _ 2χ + higher terms, hence x = Σ at{ex — e~xY, ateQ. From this
i = l

it follows that the symmetric polynomials with rational coefficients in exi — e~xi,
. . . 9 eχn _ e-χn a r e dense in H*(BG). Hence we have proved the

Proposition. The image of the ring homomorphism ψ ( x ) l Q : ^ ( x ) ( J — •
H*(BG) is dense in H*(BG).

5.2. Proposition. Let X, X' be two connected Ik-manifolds, and ]\X'^>
X an orientation preserving smooth homotopy equivalence. Fix a base point
xQzX, and consider a homomorphism p\ πλ(X,x0) —> G. Let h denote the
composition X^>Bπx(X, xo)^>BG defined up to homotopy. Then for any class
u 6 H*(BG) one has

&(X)h*(u)[X] = &{X')f*h*(u)[X'} .
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Proof. By § 5.1, for any u <= H*(BG) there exist an integer n > 0 and two
representations E and F of G with invariant nondegenerate hermitian forms
such that

nu - ch (φ(E)+ - φ(E)~) + ch

is zero in degrees <dimX. In particular,

( * ) h*(nύ) = /** ch (φ(E)+ - φ(EY) - h* ch (φ(F)+ - φ(F)~) € H*(X) .

E and F give rise, via p to flat hermitian bundles on X. Applying § 2.2 to these
flat bundles and using (*) we get the proposition.

5.3. The following result has been brought to the author's attention by A.
Borel.

Theorem (Matsushima [9]). Let Γ be a discrete, torsion free subgroup of
G such that G/Γ is compact. Then the homomorphism HP(BG) -+ HP(BΓ)
induced by the inclusion Γ C G is surjective for p < (n + 2)/4.

Remark. A. Borel has recently proved an extension of this result in the
case where Γ is any arithmetic subgroup in G.

5.4. Let Γ be as in § 5.3. Then the double coset space X = Γ\G/U(ή),
where U(ή) is a maximal compact subgroup of G, is a manifold of dimension
n(n + 1), which is a K(Γ, 1).

Theorem. Let Xr be a manifold, and f: X' -^ X an orientation preserving
homotopy equivalence (X is the K(Γ, 1) described above). Then ί£\k{X') =
f*J?Ak(X) for 4k > n(n + 1) - (n + 2)/4.

Proof. In fact, for any class v e Hn{n+1)~ik(X), Ak as above, we have

using Proposition 5.2 and § 5.3. Since [X] = f*[X']9 the theorem follows from
Poincare duality.
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