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Preface

Only in the simplest cases do physicists use exact solutions, u(x), of
problems involving temporally evolving'systems. Usually they use asymp-
totic solutions of the type

u(v, x) = a(v, x)evel), )
where

« the phase ¢ is a real-valued function of x € X = RY;
« the amplitude o is a formal series in 1/v,
CX(V,X) = Z _rar(x)a
r=0 v
whose coefficients «, are complex-valued functions of x;
« the frequency v is purely imaginary.

The differential equation governing the evolution,

a(v,x,1i> u(v,x) = 0, )
vox

is satisfied in the sense that the left-hand side reduces to the product of
¢'? and a formal series in 1/v whose first terms or all of whose terms vanish.
The construction of these asymptotic solutions is well known and called
the WKB method:

« The phase ¢ has to satisfy a first-order differential equation that is non-
linear if the operator a is not of first order.

« The amplitude « is computed by integrations along the characteristics
of the first-order equation that defines ¢.

In quantum mechanics, for example, computations are first made as if

i 2m
V==

3 = where h is Planck’s constant,

were a parameter tending to ioo; afterwards v receives its numerical value
Vg-

Physicists use asymptotic solutions to deal with problems involving
equilibrium and periodicity conditions, for example, to replace problems
of wave optics with problems of geometrical optics. But ¢ has a jump and
a has singularities on the envelope of characteristics that define @: for
example, in geometrical optics, a has singularities on the caustics, which
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are the images of the sources of light; nevertheless geometrical optics
holds beyond the caustics.

V. P. Maslov introduced an index (whose definition was clarified by
I. V. Arnold) that described these phase jumps, and he showed by a con-
venient use of the Fourier transform that these amplitude singularities are
only apparent singularities. But he had to impose some “quantum con-
ditions.” These assume that v has some purely imaginary numerical value
vg, in contradiction with the previous assumption about v, namely, that
v is a parameter tending to ico. The assumption that v tends to ico is
necessary for the Fourier transform to be pointwise, which is essential for
Maslov’s treatment. A procedure, avoiding that contradiction and guided
by purely mathematical motivations, that makes use of the Fourier trans-
form, expressions of the type (1), Maslov’s quantum conditions, and the
datum of a number v, does exist, but no longer tends to define a function
or a class of functions by its asymptotic expansion. It leads to a new
mathematical structure, lagrangian analysis, which requires the datum of a
constant v, and is based on symplectic geometry. Its interest can appear
only a posteriori and could be quantum mechanics. Indeed this structure
allows a new interpretation of the Schridinger, Klein-Gordon, and Dirac
equations provided
Vo = % = %, where h is Planck’s constant.
Therefore the real number 27i/v, whose choice defines this new mathe-
matical structure can be called Planck’s constant.

The introductions, summaries, and conclusions of the chapters and
parts constitute an abstract of the exposition.

Historical note. In Moscow in 1967 I. V. Arnold asked me my thoughts
on Maslov's work [ 10, 11]. The present book is an answer to that question.

It has benefited greatly from the invaluable knowledge of J. Lascoux.

It introduces v, for defining lagrangian functions on V (chapter II, §2,
section 3) in the same manner as Planck introduced # for describing the
spectrum of the blackbody. Thus the book could be entitled

The Introduction of Planck’s Constant into Mathematics.

January 1978
College de France
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I The Fourier Transform and Symplectic Group

Introduction

Chapter I explains the connection between two very classical notions: the
Fourier transform and the symplectic group.

It will make possible the study of asymptotic solutions of partial differen-
tial equations in chapter IL.

§1. Differential Operators, the Metaplectic and Symplectic Groups

0. Introduction

Historical account. The metaplectic group was defined by I. Segal [14];
his study was taken up by D. Shale [15]. V. C. Buslaev [3, 11] showed
that it made Maslov’s theory independent of the choice of coordinates.
A. Weil [18] studied it on an arbitrary field in order to extenid C. Siegel’s
work in number theory.

Summary. We take up the study of the metaplectic groupfin order to
specify its action on & RY, #(R"), and F'(RY) (see theorem 2) and its
action on differential operators (see theorem 3.1). *

1. The Metaplectic Group Mp(/)

Let X be the vector space R’ (I > 1) provided with Lebesgue measure d'x.
Let X * be its dual, and let { p, x> be the value obtained by actingpe X*
onx € X. -

Spaces of functions and distributions on X. The Hilbert space # (X ) con-
sists of functions f: X — C satisfying

If] = (J ]f(x)]zd’x)”2 < .

The Schwartz space ¥(X) [13] consists of infinitely differentiable,
-rapidly decreasing functions f: X — C. That is, for all pairs of l-indices

@n
|[fla.r = Sup IX"<§;>rf(x)| < .

The topology of #(X) is defined by a countable fundamental system of
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neighborhoods of 0, each depending on a pair of l-indices (g, r) and a
rational number ¢ > 0 as follows:

(g, r.8) = {f]|flor < &}

The bounded sets B of & (X) are thus all subsets of bounded sets of #(X)
of the following form:

B({bq,r}) = {fl |f|q,r < bq,rvqa r}’ q’ re Nl’ bq-,re R-+'

The Schwartz space ' (X) is the dual of #(X) [13]; its elements are
the tempered distributions: such an element f is a continuous linear
functional

The value of f’ on f will be denoted by [y f(x) f(x) d'x, although the
value of f’ at x is not in general defined. The bound of " on a bounded
set B in #(X) is denoted by

|f'ls = Sup]| Jf’(x)f(x) d'x|.
feB X

The continuity of f* is equivalent to the condition that f is bounded:
|f'|s < oo VB. The topology of &"(X ) is defined by a fundamental system
of neighborhoods of 0, each depending on a bounded set B of (X} and
a number ¢ > 0, as follows:

N'(B,e) = {f]|f]s < &}.

Unlike the above, this topology cannot be given by a countable fundamen-
tal system of neighborhoods of zero.

Let us recall the following theorems. #(X) can be identified with a sub-
space of ¥'(X):

PX) < H(X) = F(X).

The Fourier transform is a continuous automorphism of ¥’(X) whose
restrictions to ## (X ) and & (X)) are, respectively, a unitary automorphism
and a continuous automorphism.

#(X) is dense in #'(X).

191! | 3

For the proof of the last theorem, see L. Schwartz [13]: chapter VII, §4,
the commentary on theorem 1V, and chapter 11, §3, theorem XV alter-
natively, see chapter VI, §4, theorem IV, theorem X1 and its commentary.

Differential operators associated with elements of Z(I) = X ® X*. Let
v be an imaginary number with argument n/2:v/i > 0.

Let a° be a linear function, a®:Z(!) » R. Let a®(z) = a°(x, p) be its
valueatz = x + p[ze Z(), xe X, pe X*]. The operator

10
— 4° ol
a=4a <x,vax>

is a self-adjoint endomorphism of ¥'(X): the adjoint of a, which is an
endomorphism of (X)), is the restriction of a to (X ). The operators a
and the functions a° are, respectively, elements of two vector spaces o axlld
o°. These spaces are both of dimension 2] and are naturally isomorphic:

W92a%+>ae A

We say that a is the differential operator associated to a® € #°. By (1.2),
/°, which is the dual of Z(l), will be identified with Z().

The commutator of a and b € o/ is
{a, b] = ab — baeC;
¢ e C denotes the endomorphism of F(X):
cfod  VeF(X)

In order to study this commutator, we give Z (1) the symplectic structure
[-,-] defined by

[z, 2] = <p, x> — <P’ %),

wherez = x + p,z = x + p’,xandx’eX,andpandp’eX*.
Each function a° € .«¢° is defined by a unique element a* in Z(I) such that

a®(z) = [a’, z}. 1.1

This gives a natural isomorphism

-

Z()sa' —a® e O (1.2)

The commutator of a and b € & is clearly
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la, bl = [a*, 5], | (1.3)

where the right-hand side is defined by the symplectic structure.
An automorphism § of &'(X) transforms each a € & into an operator
b = SaS™!, defined by the condition

bSf = Saf Vf e #'(X).
b # 0ifa # 0. In general, b ¢ .

Definition 1.1.  G(l) is the group of continuous automorphisms S of #'(X)
that transform .o/ into itself in the sense that

SaS™'e o Vae . (1.4)
G(1) is clearly a semigroup. If S € G(I),

a+~— SaS™? (1.5)
is clearly an automorphism of .«7. Therefore S™* € G(!), and G(!)is a group.

Under the natural isomorphism Z(I) —» &, the automorphism (1.5) of
«/ becomes an automorphism of the vector space Z([):

s:a' > sal. (1.6)

Since S commutes with the automorphisms of &'(X) given by c € C, and
since [a, b] € C, we have

[SaS™!, SbS™Y = [a, b},
or, considering (1.3) and the equivalence of (1.5) and (1.6),
[sat, sb'] = [a*, b'].

Therefore s is an automorphism of the symplectic space Z(/).
The group of automorphisms of the symplectic space Z(l) is called the
symplectic group and is denoted Sp(/):

s e Sp(i).
By (1.1),
[sa', z] = [a', s7'z] = (a® o s7)(2).

In summary:

1§t.1 : 5

tgMMa 1.1. Under the natural isomorphisms of &, Z(l), and & 0 the
automorphism

ar> SaS™!
of o/, which is defined for all S € G(I), becomes

. an automorphism s of Z(l), s :a' + sa', s € Sp(l),

; : 0 4 -1
. an automorphism of «/° given by a® > a® o s™".

The function S — s is a natural morphism
G(l) = SpU). (1.7)

LEMMA 1.2. The kernel of the morphism (1.7) is a subgroup of G(I) con-
sisting of automorphisms of & '(X ) of the form

f — cf, where f e (X yand c € C (complex plane minus the or'fgin).
Remark. This subgroup will be written as C. ;"

Proof. Allce ¢ commute with all a € &/ and thus belong to the kernel.

Conversely, let S be an element of the kernel. Therefore $ is an auto-
morphism of &'(X) commuting with allae /. Let pe X*. We have

<_1_.Q_ + p>e—v<l7yx> - 0.

Therefore, since S and (1/v)(a/a)2)' + p commute,
)&”%”=0

By integration of this system of differential equations,
Se= VP> = ¢(p)e” P, where c: X* - C.

Taking the derivative with respect to p, we see that the gradient of ¢, ¢,
exists and satisfies

—vS[xe VP = —yxSeTrP® 4 ¢ e,
equivalently, since S and multiplication by x commute,

¢, = 0.
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c{p) is independent of p and will be denoted c. Let F be the Fourier trans-
form and let g = F~!fe &(X). By the definition of F,

769 = (RY* [ emrmogprat a9
2mi X gipep. )

Since Se ™ "P* = ¢ce ¥ we obtain
Sf=cf Vf e P(X).
Now & (X)is dense in &'(X). Therefore S = c € C. This proves the lemma.

Some other subgroups of G(I) will be needed in proving that the map
G(l) — Sp(l) is an epimorphism. They are

i. the finite group generated by the Fourier transforms in one of the
coordinates (some base of the vector space X having been fixed);
ii. the group consisting of automorphisms of &'(X) of the form

[ e,

where Q is a real quadratic form mapping X — R;
iii. the group consisting of automorphisms of &’(X) of the form

f'+> f,where f(x) = \/det T f'(Tx), T an automorphism of X.

Each of these groups has a restriction to ¥ (X) that gives a group of
automorphisms of &(X) and a restriction to #(X) that gives a group of
unitary (that is, isometric and invertible) transformations of #(X). The
following definition uses these properties.

Definition 1.2. Let A be the collection of elements A each consisting of
1°) a quadratic form- X @ X — R, whose value at (x,x) e X @ X is
Alx, X'} = 3(Px, x> — {Lx,x"y + 30x', x>, (1.9)
where, if 'P denotes the transpose of P,

P='"P:X - X% L:X - X*, Q0="0:X->X*

det L # 0;

2°) a choice of arg det L = nm(A), m(A) € Z, which allows us to define

A(A) = JdetL by argA(4) = (n/2)m(A).

Remark. detL is calculated using coordinates in X* dual to the co-
ordinates in X and is independent of coordinates chosen such that

ax! A oA dxt =d'x
Remark. m(A) will be identified with the Maslov index by 2,(2.15) and
§2.8,(8.6).

To each A we associate S,, an endomorphism of &(X) defined by

s 0 = | L Ay [ e piaix
(Safx i X ’
where f' € #(X), arg[i]"? = nl/4. (1.10)

Clearly S, is a product of elements belonging to the groups (i), (ii), and
{ii). Therefore S, is an automorphism of &(X) that extends by continuity
to a unitary automorphism of #(X) and to an automorphism-of &'(X).
These three automorphisms will be denoted S4; S, € G(I).

The image s, of S, in Sp(!) is characterized as follows (wher?;Ax is the
gradient of A with respect to x):

(x, p) = s4(x', p') is equivalent to

p= Ax(xa x,)’ p, = —Ax’(x’ x’)'

Proof of (1.11). Let f' € £(X). 8(S.f")/0x and S 4(0f'/dx) are calculated
by differentiation of (1.10) and integration by parts; the result of these
calculations gives the following relations among differential operators of
A

10 10

S 7 Px S,('Lx)S;%, SA(V@x

(L1

+ Qx)S;‘ = Lx;

writing

(x, p) = s4(x', P),

these relations mean

p — Px = —'Lx/, P+ 0Ox' = Lx Vx'eX, peX*
This is proposition (1.11).

Definition 1.3. We shall write Zg, for the set of s € Sp(/) such that x and
x' are not independent on the 2I-dimensional plane in Z(l) ® Z() de-
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termined by the equation
(x, p) = s(x, p).

Let us recall the well-known theorem that the set of s 4 characterized by
(L.11) is Sp(I)\Zgp-

Proof. Clearly s, ¢ Zs,. Conversely, let s € Sp(!). On the 2I-dimensional
plane in Z(l) ® Z(l) determined by the equation

(x, p) = s(x', p)

we have, since s is symplectic,

{p,dx> — <dp, x> = {p/,dx") — Ldp, x').
Therefore

3d[<p, x> — <p’, x>] = {p,dx> — {p’,dx).

We assume séZsp. Then x and x' are independent on the above 2I-
dimensional plane. On this plane we define

Al x) = 2¢p, x> = 5P, XD, (1.12)
We therefore have
dA = {p,dx) — {p', dx"), that is,

p= Ax’ pl = _Ax"

x and A, have to be independent. Hence det; (A4« # 0. Therefore
s = s,, which completes the proof.

The s, clearly generate Sp(l). Thus:
LEMMA 1.3. The natural morphism G(l) — Sp(!) is an epimorphism.
By lemma 1.2, G(!) is a Lie group and
G(1)/€ = Sp(l). (1.13)

[C is the center of G(I) because the center of Sp(l) is just the identity
element.]

Definition 1.4.  The metaplectic group Mp(l) is the subgroup of G(I)

L§},1"I,§1,2 9

consisting of those elements whose restriction to # (X ) is a unitary auto-
morphism of # (X).

We have S, € Mp(l) YA. Now the s, generate Sp(l), so the natural
morphism

Mp(l) - Sp(l)

is an epimorphism. By (1.13), all elements of G(I) can be written uniquely
in the form

¢S, where S € Mp(l), ¢ > 0.
Writing R, for the multiplicative group of real numbers > 0, we obtain
Gi)=R, x Mp(!). (1.14)

The study of G(I) therefore reduces to that of Mp(!), which has the follow-
ing properties:

THEOREM 1. Mp(l) is a group of automorphisms of '(X) whése restric-
tions to # (X)) are unitary automorphisms.

1°) Let S* be the multiplicative group of complex numbers of modulus 1.
Then

Mp(l)/S* = Sp(l). (1.15)

2°) Let Ty, be the hypersurface of Mp({l) that projects onto Zgp- Every
element of Mp(I\Zuy can be written as ¢Sy, where c € S' and S, is given

\ by an expression of the form (1.10).

3°) The restriction of every S € Mp(l) to #(X) is an automorphism of

ZL(X).

Proof of 1°): (1.13) and (1.14); S* is identified with a subgroup of Mp(/).

Proof of 2°). Let Se Mp(l)\ZMp. Then the image of S in Sp(l) is some
element s,, A € A; SS;' €S* by (1.15).

Proof of 3°). By 2°), § = ¢Sy, - Sy, - Now the restrictions of c,
Sa5-- 8410 #(X) are automorphisms of &(X).

2. The Subgroup Sp,(!/) of Mp(/)

Definition 2.1. We denote by Sp,(l) the subgroup of Mp(l) that is
generated by the S,.
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The purpose of this section is to prove that Sp, (/) is a covering group
of Sp(i) of order 2.

In order to prove this, we calculate inverses and compositions of the
elements S.

Definition 2.2.  Given A € A, we define A* € A as follows:
A*(x, x) = —A(,x),  AA*) = i'A4),

m(A*) = | — m(A).
LEMMA 2.1. S;' = Sy thus sy’ = sy

Proof. This amounts to proving the equivalence of the following two
conditions for any f and f' € £ (X):

f(x) = (M)UZA(A) j‘ evA(x,x')f!(xl)dlx/
2mi X ’

|vli

{
f&x) = (g) /ZZ@ J e IS (x)d'x.
X

Using the expression for A given by (1.9), this is the same as the equivalence
of the following two conditions:

flx) = f e XX £ (Y d'x,
X

i) = (%)Ildetu J e LXXD () dx.

The equivalence is deduced from the Fourier inversion formula; the
lemma follows.

To compute compositions of the S, we will find an explicit expression
for S,(€"), where ¢’ is a second-degree polynomial. This is made possible
by the following definition.

Definition 2.3. Choose linear coordinates in X such that dx =

dx! A--- A dx' and choose the dual coordinates in X*. The following

notions are independent of this choice. '
Let ¢ be a real function, twice differentiable:

¢:X - R

11

iess, (@) denotes the hessian of ¢, the determinant of its second derivatives.
~ Alternatively this is the determinant of the quadratic form

X 5 dx — {do,,dx> e R

Inert,(p) denotes the index of inertia of this form. It is defined® when
Hess(@) # 0. Clearly

Inert(— @) = | — Inert(o),

k arg Hess(p) = nInert(o) mod 27

This formula makes possible the definition

- arg Hess(p) = 7 Inert(¢). 1)
_Thus, for example,

[Hess(@)]"? = |Hess(g)| M2itnert(®), N' (2.2)
If ¢ is a real quadratic form,

@:X 3 x> $(Rx,x), whereR = ‘R:X — X*,

then Hess(¢) and Inert(¢) will be denoted Hess(R) and Inert(R). Hess(R) is
the determinant of the symmetric matrix R. Inert(R) is the number of

negative eigenvalues of R. Clearly
Inert(R) = Inert(R™Y), [Hess(R)]Y2[Hess(—R™H)]'? = i'. 2.3)

LEMMA 2.2. Let ¢’ be a real second-degree polynomial. Let A € A be such

that Hess_.(¢'(X') + A(x, x)) # 0. Denote by ¢(x) the critical value of the
polynomial

Xsx = Alx, xX) + ¢'(x);
@ is a second-degree polynomial. We have
S.(e”?) = A(A)[Hess,.(¢' + A)] e (24)

Remark 2.1. This lemma assumes v/i > 0. Up to this point, it was
sufficient to assume v/i real and nonzero.

Proof. We know that

11t is the number of negative eigenvalues of the linear symmetric operator dx — do,.
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o B x2
J exp -——z—]dx = /2n

L
Therefore if ¢ € C and |arg u| < 7/2,

J:Cexp L—%(x + c)z]dx = \/—\/?,

We then have, for any p € C,

J | exp[——vpx — %(x + c)z]dx

= eij exp{——zlﬁ[vp + plx + c)]z}dx = T/:e \

— o0

n
larg 1| < P

where ¢ is the critical value of the function
x> @'(x) — px, where ¢" = —%(x + )%

The Fourier transform F is the automorphism of & defined by

2
(Ff’)(p)=<%li> f eI Y e SX), 25)
X

We then have, for I = 1,

argp| < m/2,

N ‘
Fe'? = evtp; \/; — em/4.
Vet
Since F is a continuous automorphism of &’(X), the preceding formula
remains valid for g = —ev, ¢ € R; then

NN {\/E ife >0

ViVl i0e] ife <O.

In other words, when | = 1, the following result holds: Let ¢": X — Rbe
a real second-degree polynomial such that Hess @' # 0; let @(p) be the
critical value of the polynomial

x> @'(x) — <p, X3

we have

13

Fe'¥ = [Hess @] 7e"®. (2.6)

1.et us show that, since relation (2.6) holds for I = 1, it holds for alll > 1.
1t suffices to choose the coordinates x’ in X such that

, 1
@) = ), o).
j=1
Now using the definitions (1.9) of A4, (1.10) of S4, and (2.5) of F, we have
inthecase P = Q = 0,
(54 (x) = AMA(Ff)(Lx).

Then (2.6) establishes (2.4} in this case. From the definitions of 4 and §,,,
the general case is clearly equivalent to this one.

Before taking compositions of the S,,we consider compesitions of
the s4:

1EMMA 2.3. 1°) Let 4 and A’ € A. The condition #

sS4 ¢ Zsp . 2.7
is equivalent to the condition

Hess,.[4(x, x) + A'(x’, x”)] # O (the Hessian is constant). (2.8)

2°) This condition is equivalent by lemma 2.1 to the existence of A” € A
such that

-

$454-54- = e [identity element of Sp(l}]. 29)
A’ is defined by the condition that the critical value of the polynomial
x— A(x, X)) + A'(xX, x") + A"(x", x)

be zero.

3°) Just as (1.9) defines A by P, Q, L, let A’ and A” be defined by P',Q’, L’
and P”, Q”, L”. The condition (2.8) for the existence of A” is expressed as

P’ + Q isinvertible.

A" can be defined by the formulas

PP+Q=LF+0 "L,
L

P+ Q" ='L(P + Q)'L,
(2.10)

—UL(P + Q)L
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Remark 2.2. Writing A + A" + A" for Alx, X'y + A' (X, x") + A", x),
we have

Inert (A + A" + A") = Inert (4 + 4 + A")

— Inert,.(4 + A" + A", @.11)
, ” A (A)A%(A)

Proof of 1°). By (1.11), the relations
(. p) = 540, p) X5 ) = s P)

may be written

p=Afox), P = —AgleX) = AL, X,

pr = — A, x).

It results from the elimination of p’ and x’ in these relations that
(x, p) = 5454 (X", P").

The condition (2.7) that s,s, ¢ Zsp is then equivalent to each of the
following conditions:

« The elimination of p’ and x' in the preceding step leaves x and x”
independent.
« The relation

A (x, X)) + AL (X, x") = 0

leaves x and x” independent.
« For any x and x”, there exists an x' satisfying this relation.
Now in (1.9), det L # 0. Therefore (2.7) is equivalent to (2.8).

Proof of 2°). Assumption (2.9) means that any two of the following
three relations implies the third:

(-x, p) = SA(x,’ p')’ (x,9 p’) = SA’(x”’ p”)’ (X”, p” = SA"(x7 P)

Then by (1.11), each of the next three relations implies the other two:

A+ A4 +A4), =0, A+A+4)=0 @A+4+4) =0

(2.13)

15

where
A+ A+ A=A, X) + A, X))+ A" (X, x).
_ Now by Euler’s formula, these three relations imply
A4+ A +A4A =0
Therefore
4+ A4 + A", =0,thatis, (4 + 4),. = 0,implies4 + 4" + A" = 0.
Proof of 3°). We have

Hess, (4 + A" + A”) = Hess(P' + Q),

which gives the first statement. For the other, the three pairwise equivalent
relations (2.13) can be written

(P+Q)x —'Lx — L'x" =0,

—Lx + (P + Q)x —'L'x” =0,

~'L'x — L'x + (P + Q)x" = 0.

(2.10) clearly expresses the equivalence of these three relatioﬁs.‘
Proof of Remark 2.2. By (2.10), the symmetric matrices
PP+, P+

can be transformed one into the other. They therefore have the same
inertia. This is (2.11).

By (2.10),

P+ Q"

Hess(P' + Q) = (det L)(det L')/(— 1) det L".
By definition 2.2, this is (2.12).

_Definition 2.4. Given

S4> 5405 S4 € Sp(I\Zg, such that s, 5,4 54+ = e,
we define

Inert(s,, s, 54) = Inert (4 + 4" + 4”) [see 2.11)]. (2.14)
We define
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Inert(S,, Sa» Sa-) = Inert(s,, sa, S4)-

Moreover, we define the Maslov index of S4, m(S,) € Z4, by

m(S,) = m(4) mod4. (2.15)

§2,8 will connect this with the index that V. L. Maslov actually introduced.
Lemma 2.1 and (2.15) have these obvious consequences:

Inert(s; !, sz, s3t) = | — Inert(sy, 45 Sa), (2.16)

mS;Y =1 — m(S,), m(—S,) = m(S,) + 2 mod4.

We can at last study compositions of the .

LEMMA 2.4. Consider a triple A, 4', A” of elements of A such that

S S4S4r = €. 2.17)
Then

S,S4S, = +E [Eis the identity element of Mp()]. (2.18)
We have

S,8S48, =E (2.19)

if and only if
Inert(S,, S, Sq) = m(S,) — m(Sz}) + m(S ) mod4. (2.20)

Remark. Condition (2.17), which is equivalent to (2.18), implies (2.20)
mod 2.

Proof. Let ye X. Formula (1.10) holds if f' is replaced by the Dirac
measure with support y, given by

3'(x) = olx — ).

We obtain

v\ oy
(S,:8)x) = <%> AA)e ),

from which follows, by lemmas 2.2 and 2.3,2°),

17

12
- (84540)x) = <%]z> A{A)A(A'){Hess, [A(x, x')
+ A, y)] } —1/2,=vA"(y.x)
Multiplying this by f "(y)d'y, where f' e #(X), and integrating, we get

_ AA)AA)

SASA'f, - A(A//*) [HCSSX»(A + A/ + A”)]_I/ZSA”*fIa

which gives, by lemma 2.1 and formula (2.12),
$484S4 = tE.

__Now specify the sign. By definition 2.4,

arg[Hess, (4 + A" + A)]"? = glnert(SA, S4,S4.) mod 2.

By definition 1.2, (2.16), and lemma 2.1,

arg A(4) = =m(S ),

5 arg A(4) = Sm(Sy) = J[1 = m(sz")].

arg AA™F) = Sm(S3h) = g[z — m(S,)] mod 2.

2

' Therefore

arg(£1) = Z[Inert(Sy, Sa. Sye) —n(S,) + m(S') — m(S,)] mod 2m,

which proves the lemma.
Recall that Sp, (I) denotes the group generated by the S ,.
~ 1EMMa 2.5.  Every element of Sp,(J) is a product of two of the S ,.

. Proof. By lemma 2.1, every element of Sp,(l) is a product of the S,.
It then suffices to prove that given U, V, W € A, there exist B and C in A
such that

SySySw = SpSc. 2.21)

Now, by lemmas 2.3,1°) and 2.4, for every W € A and every T a generic

.~ clement of A, S Sy belongs to {S,} and is generic. Therefore, for T
generic,
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SySre {Sal, SuSvSt € {84}, S7'Sw € {Sa}s
which gives (2.21) with
Sz = SySySre {84} Sc = S7'Sy € {S4}-

The restriction to Sp,(I) of the natural morphism Mp(l) — Sp(l) is
clearly a natural morphism:

Sp.(!) — Sp().

LEMMA 2.6. The kernel of this morphism is the subgroup
§° = {E, —E}.

Therefore

Sp,(1)/S° = Sp(l).

Proof. By the preceding lemma, the kernel of this morphism is the
collection of the S,S,(4, A’ € A)such that s 45, = e. From this, by lemma
2.1,

Sg = Sy
Therefore, by (1.11),

A'(x, x') = A*(x, x') Vx, x € X.
Consequently by definition 1.2.

A(4') = +A(47),

and

Sy = +8,+; therefore S,S, = L E.
LEMMA 2.7. The group Sp,(l) is connected.

Proof. Given k € Z, (additive group of integers mod 4), let D, be the
collection of S, such that

m(A4) = k, or equivalently, i *A(4) > 0.

The collection of quadratic forms A satisfying A2(4) > 0 [or A*(4) < 0]
is connected. Each D, is thus a connected set in Sp, (/).
Given ke Z,, let S, and S be such that

19

m(Ss) — m(Sz') = —k mod4;

P+ Q has one eigenvalue equal to zero and | — 1 eigenvalues > 0.
1et B and B’ be elements of A near A and 4’ and such that

Hess.(B + B) # 0.

Inert(B + B') takes the values O and 1. Since m is locally constant,

m(Sg) = mS,).  m(Sy') = m(Si)

We define B” € A by SpSp Sg- = E. By (2.20), m(Sp-) takes the values k and
k + 1 in any neighborhood of the clement (5484)7" of Sp,(/). This
element thus belongs to D, N Dyyy:

Dy N Dy # O,

-

which gives the lemma.

The above lemmas prove the following theorem. Part 1of th?ttheorem
reduces the study of Mp(l) to that of Sp, (/). Its equivalent can be found in
the work of D. Shale and A. Weil, but the proof we have given has es-
tablished various other results that will be indispensible to us. One of
these is part 3 of the theorem. This will be used in §2,8.

THEOREM 2. 1°) The elements S, of Mp(l) that are defined by (1.10) generate
a subgroup Sp,(I) of Mp(l). Sp,(!) is a covering group {see Steenrod [17],
1.6, 14.1) of the group Sp(l) of .order 2. It is a group of automorphisms of
F(X) that extend to unitary automorphisms of #(X) and to automorphisms
of #'(X).

2°) The formulas (2.11) and (2.14) define the inertia of every triple s, s, 5"
of elements of Sp(I)\Zs, such that

ss's” = e [identity element of Sp(})].

The inertia is a locally constant function (discontinuous on Xsp) with values
in {0, 1, ..., I} satisfying

Inert(s”, s, s') = "~

— 1 — Inmert(s""%, 574, s7h).

1

Inert(s, s, s”)

Let Zg, be the hypersurface of Sp,(l) that is mapped onto Lg, in Sp(l)
under the natural projection. The elements S, defined by (1.10) are the
elements of Sp,(I\Zsp, . Let S, S, S” be a triple of such elements satisfying
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SS'S” = E [identity element of Sp.(D]

Let s, s, s” be the images of these elements under the natural projection onto
Sp(l). We define

Inert(S, S’, 8") = Inert(s, &', 8”).

3°) Formula (2.15) and definition 1.2 define the Maslov index m on
Spy(D\Zs,,- It is a locally constant function (discontinuous on Tgp,) With
values in Z,. It satisfies
m(S~1) =1 — m(S), m(—S) = m(S) + 2 mod4,
Inert(S, §', $”) = m(S) — m(s’"") + m(S”) mod4.

Remark 2.3.  We shall see later that m is characterized by the last formula
and the property of being jocally constant.

Remark 2.4.  Sp,(l) contains the three subgroups of G(!) defined in section
1 by (i) Fourier transformation, (i) quadratic forms, and (iii) automor-
phisms of X.

Proof. Let S be an element of one of the three subgroups. It is easy to
find A € A such that

SS, = S,, where A €A
Remark 2.5. It can be shown that every S € Spa(l) is of the form
S = ;5,535

where S, € (i), that is, S, is a Fourier transformation in at most
| coordinates; S; and S, €(il), that is, they are of the form £ e?f,
where Q is a real quadratic form; and S, € (iii), that is, S, has the form
frJdet T ffoT, where T is an automorphism of X.

3. Differential Operators with Polynomial Coefficients

By definition 1.1, the elements of Sp,(!) transform differential operators
with polynomial coefficients into operators of the same type. Section 3
describes this transformation more explicitly.

Let a™ and a” be two polynomials in 1/v, x, and p:

atxp) = Yarxps e px) = Y p*a (v, X)

21
(x a multi-index). We consider the two differential operators
NN TAY 1o
a (V’xa vﬁx)fH;a;(v’)(;a>f()’ (31)
(.10 _\. 10V _
a (V, vox X) f = ;(;5;) [aa (v )f()] (3.2

LEMMA 3.1. These two operators are identical, that is,

+ 1o\ _ _( 10
a <V, X, Vax) =4da (v, ;a,x), (3.3)

if and only if there exists a polynomial a° in 1/v, x, and p such that

+ _ 1 /0 0o R
a’(v, x, p) = [exp5<5;,5;>]a (v, x, p).

_ _ 1/0 @
a (v,p,x)= [eXP ~ 3, <5;, $>:| a®(v, x, p). .
#

The notation is the following:

(3.4)

0 oN_ b @ »
ox’ dp/ AZ ax7 dp, (x’ and p; dual coordinates in X and X*);

Jj=1

0 @ © 1 o o\k
expl<—,_> — Sl 9
0x” dp ,Eok! ax’ op/

Proof. Relati st -
e ){ " ion (3.3) defines a bijection a~ +> a* such that, for all

a* (v, x,p) = PVat v, x,li &P
vOx

— e—V(p,x>a— (v,li,x>e"<"‘x>
vox
13\
5o LY o < [exol (2 2N o
;(p v ax> Ay (V’ x) [exp; <a—£a ’a’l;>}a (V’ D, x)a

since, by Taylor’s formula, for ever ;
’ y polynomial P: X*
function f: X — C, polynomial P:X* — C and every

10 v lfay o \#
e - Y o1



” . 1§13

_ [exp% <-a% %>][P(p)f(x)]-

The bijection a~ +> a™ can then be defined by the relation

at(v,x,p) = [expl <:a—, _6_>] a (v, p, x).
v \éx 0Op

This is what the lemma asserts.

Definition 3.1. Letabe a differential operator that can be expressed as
in (3.1) and (3.2). It is defined by the polynomial a° in (1/v, x, p) that
satisfies (3.4). We say that a is the differential operator associated to the
polynomial a°.

Theorem 3.1 will describe the transform SaS™! of a by S Sp;();
Lemma 1.1 has already dealt with the case in which a° is linear in (x, p)-
The proof of this theorem will use the following properties.

LEMMA 3.2. If g and b are the operators associated to the polynomials
a° and b°, then the operator

c=ab

is associated to the polynomial c°, where

oo g - Map(L(2,2)_L{2 2
5P P\2y\ay’ ép 2v \dx" dq
[a®, x, YLV, v D] - (3.5
q=p
Proof. Ifb°(v, x, p) only depends on p, then the polynomial ¢° associated
toc = abis

1/6 o N
(v, x,p) = [CXP "Z<§§’ a—pﬂ[a (v, x, pb°(p)]

_ {\:exp _ —21—v<%-6% + a%>] [ (v %, p)b"(q)]}q:p
= {[CXP - '2% <6_a);’ }%>] [aO(v’ X, p)bo(q)}q:p'

Similarly, if b°(v, x, p) only depends on x, then the polynomial associated
toc =abis ‘

[

[{

LEMMA 3.3.

0 9
dy’ dp

LEMMA 3.4.
Hab + ba).

[a°(, x, p)b’(y)]} b ()] 4=p

al

a0, x, p)b'(y)b"(q)]} -

This is (3.5) since, by (3.4),

exp _L/e
2v \ox’

¢ = 3(ab + ba)

. [ao(\’, X, P)bo(", Vs q)]}}’:"'

)~

exp —

0

2y

0 0

from which follows

y=x

3 q>] [B'b"(@)] = b°(y, q).

This implies lemma 3.2, which has the following obvious consequence:

The operator

is associated to the polynomial

v, x, p) = {Cosh [i

(2.2)-1(L.2
dy’ dp 2v \éx’ dq

q=r

If b is linear in (y, g), then

2
a’ %>:| [aO(v’ X, p)bo(va Vs q)] = 0’

cosh[ - ]a’° = a%°;

therefore we have the following lemma.

0% p) = {[expﬂ% %ﬂ [0, x, p)b"(y)]} -

Thusif b* (x, p) = b'(x)b"(p), then the polynomial associated to ¢ = ab is

wmnm=[

1/0 ¢ 1/0 @
e —_—— —_ — —_— —
P <6x’ 6q>:| {[CXP 2v <6y’ 6p>:|

P

23

If b is linear in (x, p), then the operator associated to a®b° is
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This lemma enables us to prove the following theorem.

+HEOREM 3.1.  The transform SaS ~Yof aby S isthe differential f)perator
associated to the polynomial a® o s71[S € Sp,(l); sisthe image of SinSp(D].

Proof. Let b bea differential operator associated to a polynomial ll()io
that is linear or affine in {(x, p); lemma 1.1 shows that theorem03..1 holds
for b. To prove the theorem by induction on thg degreg of ¢ 1n (xé bpg,
it suffices to prove that, if the theorem holds for a”, then it hol.ds fora’b”.

Since the theorem holds for a® and b?, the operators associated to the

polynomials
a%b° and (@%®) o st = (@® o sTH(Bos™h)
are, respectively, by lemma 3.4,

L(ab + ba); ,
1(SaS™1SbS™! + ShS~'SaS™!) = 3S(ab + ba)S™".

The theorem thus holds for a®?, which completes the proof.
We supplement this by a theorem about adjoint operators.

Definition 3.2. Recall that #(X) has a scalar product:

(flg) = jf(x)ax‘)d'x vf, g € #(X),
X

where g(x) is the complex conjugate of g(x). Two differential operators a
and b are said to be adjoint if

(af |g) = (f|bg)  ¥f.geAX) - (3.6)

THEOREM 3.2. Two differential operators a and b associated to two poly-

nomials a® and b° are adjoint if and only if
By, x, p) = a°(¥, x, p) yveiR, xeX, peX* 3.7

Proof. Itis clear that (3.6) is equivalent to

b~ (v, p.x) = a (v, x, p)

that is to say, since v is pure imaginary, to
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o -3, <ax’ap>}b s ) = fexp <6x’5p>:‘a %P,
and hence to (3.7).

Theorems 3.1 and 3.2 obviously have the following corollary.

COROLLARY 3.1. If a* is the adjoint of a, then VS € Sp,(l), Sa*S ™" is the
adjoint of SaS™'.

Theorem 3.2 clearly has the following corollary, which will be important
later.

COROLLARY 3.2. The operator a associated to a polynomial a® is self-
adjoint if and only if the polynomial a° isreal valued Vv € iR, x € X,p € X*.

§2. Maslov Indices; Indices of Inertia; Lagrangian Manifolds and
Their Orientations

0. Introduction

Historical account. Following V. C. Buslaev [3], [11], §1 has defined a
Maslov index mod 4 on Sp,(I) by (2.15) and has connected it by (2.20) to
an index of inertia that is a function of a pair of elements of Sp()).

On the other hand, V. I. Arnold [ 1], [11] defined another Maslov index
on the covering space of the lagrangian grassmannian A(l) of Z(l); this
index is connected to the preceding ‘one and to a second index of inertia
_ that is a function of a triple of points of A{l). J. M. Souriau [16] has given

a variant of the definition of the Maslov index that is considered in this
section.

Summary. Chapter I, §3, and chapter IT use these two Maslov indices and
a third index of inertia, which is a function of an element of Sp(/) and a
point of A(l).

We review and modify the various definitions of these indices (Arnold’s,
_section 5; Maslov’s, section 6; Buslaev’s, section 7) so as to clarify their
properties (sections 4-8). In §3 those properties that will be used in
chapter II are set forth.

First of all we must recall and supplement the topological properties
of Sp(!) and A(!) (theorem 3). To study these properties we follow Arnold
in employing a hermitian structure on Z(I) {sections 1 and 2).
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1. Choice of Hermitian Structures on Z(!)

Let ('|-) be the scalar product defining a hermitian structure on Z(l);
clearly

Im(z | z) = —Im(z' | 2)

is a symplectic structure on Z(). Now in §1,1, a symplectic structure
[, -] was defined on Z(l).

reMMa 1.1.  Restriction to X defines a homeomorphism between the set
of hermitian structures (-|-) on Z() such that

Im(z}z) = [z, 2],

and the set of euclidean structures on X.

iX o= X* (1.1)

Proof. (i) The restriction to X of a hermitian structure on Z(l) satisfying
(1.1) is euclidean since

[x,x]=0 Vx,x'eX.

Observe that, by (1.1),

(z|2) = [iz, 2] + ilz 7'} (1.2)
and in particular

(x| x) = [ix, x'] vx, x' € X. (1.3)
Hence

ix = %a—lax—xlieX*. 14)

(ii) A given (- | -) on X defines
» by (1.4), the restriction ofito X,
it X - X*;
- the restriction of i to X*,
i X* - X,
because i, = —i; ! since i’ = —1;

« hence the automorphism i of Z(I),
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i(x, p) = (i2p, i1X); (1.5)
« finally, by (1.2), the hermitian structure on Z(1).

The restriction to X of hermitian structures on Z(I) satisfying (1.1) is
thus an injective mapping of the set of such structures into the set of
eticlidean structures on X.

(iii) It is bijective. Indeed, the automorphism i of Z(/) defined by the
given (- | -) on X, that is, by (1.5), satisfies

it = -1, [z z] = [iz, 2],

since %, = i, 'i, = i,; the function (- | -), which (1.2) defines on Z(}),
is clearly linear in z € C', and

« satisfies (z, z) = (2, 2),

« hence is sesquilinear,

o satisfies |x + iy|*> = |x|* + |¥|%

« and indeed defines a hermitian structure.

Lemma 1.1 has as the following corollary.

LEMMA 1.2. The set of hermitian structures on Z(l) satisfying (1:1) is an
open convex cone. It is therefore connected.

Remark 1. We choose arbitrarily one of these hermitian structures on
Z(1), which we shall use to define topological notions (the Maslov indices).
By the preceding lemma, these notiorf§ will not depend on this choice.

2. The Lagrangian Grassmannian A(!) of Z(!)

Definition 2.1 A subspace of Z(l) is called isotropic when the restriction of
[-, ] to this subspace is identically zero, that is, by (1.1), when the res-

triction of the hermitian structure on Z(l) is a euclidean structure on this
subspace.

Every orthonormal frame of an isotropic subspace of dimension k is thus
composed of vectors orthogonal in Z(I); hence k < L

Definition 2.2. The isotropic subspaces of maximal dimension [ are
called lagrangian subspaces; the collection of lagrangian subspaces A(l) is
called the lagrangian grassmannian:

X and X* € A(]).
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Let 2 € A(l) and let r be an orthonormal frame of . It is a frame of Z(1):
the elements of Z(l) (respectively A) are linear combinations with complex
(respectively real) coefficients of the vectors that make up r.

Let U(l) denote the group of unitary automorphisms u of Z(l) (that is,
wu* = e, where u* = 'ii, and e is the identity). By (1.1),

U(l) = Sp{l).
Further let /' € A(l) and let ¥’ be an orthonormal frame of A" There is a

unique element  in U(l) such that

q

r o= ur
from which follows
A= ul.

The group U(l) thus acts transitively on A(l). The same holds a fortiori
for Sp(l); whence 1°) of the lemma below, where St(l) [respectively, o]
denotes the stabilizer of X* in Sp(}) [respectively, U(l)], that is, the
subgroup of s such that sX * o= X*,

Now O(l) is clearly the orthogonal group. Lemma 2.3 characterizes
St(l); part 2 shows why the stabilizer of X * interests us more than that of
X.

LEMMA 2.1. 1° We have
A(l) = Sp()/st() = UD/OD). (2.1)

2°) Let W(l) be the set of symmetric elements w in U(1), that is, the set
of elements w such that 'w = w;thusw e W()meansw = ‘w = w1, The
diagram

U)suru'u =we W)

uyo(l) = Al 37 = ix* 22
defines a natural homeomorphism

A() 3 2> w(i) € W) 2.3)
Then

z € A is equivalent to z + wz = 0. (2.4)

29

Let
2 =x + iy, wherexand ye X.

Assume
1 ¢sp(w(d),
where sp(w) is the spectrum of w, a O-chain of the unit circle S'. Then

z € Ais equivalent t = e+ wi)
q oy le wu)x, 2.5)

where i(e + w(4)]/[e — w(4)] is a real symmetric matrix (that is, equal to
its transpose).

3°) dim(4 n &) is the multiplicity of 1 in spw(Lw 1 ().

Remark 2.1. Part 3 is preparation for the topological definition of the
Maslov index (section 5).

The proof of lemma 2.1 is based on the following lemma. W;iting

u € U(l)in terms of its eigenvectors and eigenvalues, the proof oflemma 2.2
is clear.

LEMMA 22 1°) Let ue U(l). A necessary and sufficient condition for
u € W{(l) is that all of its eigenvectors can be chosen to be real.
2°) Every surjective mapping

F:S! - S!' (8! is the unit circle in €)
defines a surjective mapping
W) s wi— F(w) € W().

Proof of lemma 2.1,2°). The diagram (2.2) defines a mapping (2.3) since, if

uand uv € U(l) have the same image in A(l) = U(1)/O(!),thenv € O(l), and
s0

w'(uv) = uwv'v'u = u'u.

By lemma 2.2,2°), given w € W(l), there exists some u € W(l) such that
w = u?. Then w = u'u, and so the map (2.3) is surjective.

Since 4 = uX *, where u € U(]), the condition z € A means ulze X* or
Re(u™'z) =0, or u™'z+ @ 'Z2=0, or z+ wz =0. The map (2.3) is
therefore injective.
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Proof of lemma 2.1,3°). Letw = w(l), w' = w(4"). Then A N A’ is given
by the equations

z+ wz =0, z + wi=0;

that is,

And: wilz=w"lz z = —Wi.
>

Let T be the analytic subspace of Z(I) given by the equation

T:wlz =wlz

Thendim, T = k, where kis the multiplicity of 1 in sp(ww'™*). The equation
of inAinTis

z +wz =0.

By lemma 2.2,2°), there exists a u € W(l) such that

—w =i =uti

Thus the equation of 4 » ' in T may be written

uz = uz.

The isomorphism

Tszr—uzeCF

therefore maps A n A’ onto the real part R* of C*, and so
dim, A " 2 = k. '

LEMMA 2.3. The stabilizer St(I) of X * in Sp(!) has the following properties:
1°) The elements s of St(l) are characterized as follows:

s(x', p') = (x, p)
is equivalent to
X = slx” p = ‘SII(pI + Szx'), (26)
where s, is an arbitrary automorphism of X and s, = 's, is an arbitrary
symmetric morphism X — X*.

2°) An element s of St(l) is the projection of two elements S of Sp,(!)
defined by
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(1)) = Vdets; [P f(x) Lo pix - 2.7

Remark 2.2. 'We denote by St,(/) the subgroup of Sp, () whose projection
onto Sp(!) is St(!). By Remark 2.5 in §1, St,(!) is the set of S € Sp,(l) that
act pointwise on #(X): the value of Sf at a point x of X depends only on
the behavior of f at a point x’ of X (in fact on the value of f at x').

Proof of 1°). The elements of the stabilizer of X* in the group of auto-
morphisms of the vector space Z(l) are the mappings (x', p') - (x, p)
defined by

x = 5%, p = s, + s,X),

where s, and s, are automorphisms of X and X* and s, is a morphism
X —» X *. These elements belong to Sp(/) when

_ to—1 .t
5. = 'S1, s, ='s,.

Proof of 2°). Formula (2.7) defines an automorphism S of &'(X) that
belongs to Sp, (/) by Remark 2.4 in §1. Clearly

ws = SUsrl e = s[s (e |

vox'

Hence, for any a in & (§1,1),

10 L. f1 0 ,
@ (x,;—g)(sf) — Sa%s.x, 57! (,; 2 SzX)>f,

that is, by (2.6),

S 1a$ is associated to a° o s,
. and so s is the natural image in Sp(!) of + S € Sp,(I).
3. The Covering Groups of Sp(/) and the Covering Spaces of A(/)

The properties of these covering groups and spaces'? follow from prop-
erties of 7, [Sp(!)] and 7, [A(!)], which are obtained by studying 7, fuih]
Here 7, denotes the kth homotopy group, (see Steenrod [17]; we note that
N. Steenrod uses the expression symplectic groups in a different sense than
we do.)

2See Steenrod [17], 1.6, 14.1.
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LEMMA 3.1. 1°) The inclusion O(l) = St(!) induces an isomorphism
o] = m [St{)] Vk e N.

2°) The inclusion U(l) = Sp(!) induces an isomorphism

m[U(] =~ = [Sp)] vk e N.
3°) The morphism
7, [UD] SVHQ%;J%%GZ 3.1)

is a natural isomorphism: |
U] ~ Z.

Proof of 1°). The elements s of St(l) are characterized by (2.6); those for
which s, = 0 form a subgroup GL(I) of St(l). The inclusions

o(l) = GL() < St(l)

induce natural morphisms

m o] > n[GL()] - [ St()].

The second morphism is an isomorphism, since
St(l) = GL(l) x R", wheren = I+ 12

It has to be shown that i is an isomorphism. Now GL(I) acts transitively
on the set Q. of positive definite quadratic forms on X, and O(l) is the
stabilizer of one of them. Hence

GL()o(l) = Q,, where Q. is convex.

The exactness of the homotopy sequence of this fibration (see Steenrod
[17}, 17.3, 17.4) proves that i is indeed an isomorphism.

Proof of 2°). The inclusions
Ul) < Spl), Sthn U = o < St()

define a mapping (see Steenrod [17],17.5) of the fibration
uy/o) = A() into  Sp@)/Stl) = A);

its restriction to A(l) is the identity. This mapping induces a morphism of
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the homotopy sequences of these two fibrations (see Steenrod [17], 17.3,
17.11, 17.5):

1 [AD]S m[0M] 5 m[UD] & m[AD] - me[00)]
Lio li A li Lio lio
e [AD] 4 m[St(H] > [ Sp()] Lo [AD] - 7 [st].

This diagram, in which the lines are exact, is thus commutative. Since the
mappings i, are isomorphisms, it follows that the mappings i, are neces-
sarily isomorphisms.

Proofof 3°). (Steenrod [17],25.2, proves part of this by other means.) We
denote by det (that is, determinant) the epimorphism

Ul)sur>detueS' < C (3.2)
and by SU(l) its kernel. Since u € SU(!) when detu = 1, we have
uQysuy = St;

. - - ;
(3.2) is the natural projection of U(/) onto S!. The homotopy sequence of

this fibration contains the following, which is thus exact:
m [SUD] & 7, [UD)] 5 m,[S'] & mo[SUD)]; T 33

here p is induced by the morphism (3.2). Since SU(!) is connected,
o [SU(D)] is trivial. Let us compute 7, [SU())].
SU(I) acts transitively on the sphere

S¥1:z| = 1.
The stabilizer of the vector (1,0, ..., 0)in Clis SU(l — 1); thus
SU@ySsU(l — 1) = S 71

The homotopy sequence of this fibration contains the following, which is
thus exact:

1,[S?1] 5 n, [SU( — 1] 5 =, [SUW)] 2 7, [S¥71]

where 7,[S?"!] and 7,[S? '] are trivial for | > 2 (see Steenrod [17],
21.2). Thus i’ is an isomorphism. Now 7, [SU(1)] is trivial, since SU(1) is
trivial, and so

7, [SU()] is trivial. (34)
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Since n,[SU(I)] and o [SU( )] are trivial in the exact sequence (3.3),pis
an isomorphism. Now

1 (d
0[5 T s J Cez

A

is an isomorphism. . o -
The composition of p, which is induced by (3.2), with this isomorphism
is an isomorphism 7, [U()] — Z, which clearly is defined by (3.1).

LEMMA 3.2. 1°) The composition of the natural isomorphism 7, [AD)] ~
m, [W(D)] [cf. (2.3)] and the morphism

1 [ d(det
n [W]2 75 j —(Ei‘w@e z (3.5)

is a natural isomorphism (Arnold [1]):
o, [AD] = Z.
2°) The fibration Sply/std) = Ad) defines a monomorphism
p:Z ~ m,[Sp()] » m(AD)] = Z, (3.6)
which is multiplication by 2 on Z.

Proof of 1°). 'The homeomorphism (2.3) allows us to define

detl = detweS'; 3.7
the mapping
A(l) 2 Ar>detieS! (3.8)

is clearly an epimorphism. By (2.2) we have

det i = det?u,if A = uX™.

Hence for all u € U(])

det(ut) = det®u-deti. : (3.9

The mapping (3.8) thus defines a fibration on which U(l) permutes the
fibers. The fibration is

AQYSA() = S,
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where SA(!) denotes the variety in A(l) defined by the equation
SA():detw = 1.

The exactness of the homotopy sequence of this fibration proves the
exactness of the sequence

m [SA(D] & =, [AD)] & n [S']. (3.10)

Since

p:m [A()] - =, [S']
is induced by
det:w(l) - S,

p is an epimorphism. Let us compute 7, [SA()]-
SU(l) acts transitively on SA(/) and X* e SA(!). The stabilizer of X* in

SU(l) is SO(1), the connected component of the identity element of 0(l),
and so we have the fibration ¥

sU@/so() = SA{).
The exactness of its homotopy sequence implies the exactness of”
m[SUWD] B n, [SAQ)] % mo[SOM)],

where 7, [SU(I)] and m,[SO(I)] are trivial, by (3.4) and the fact that SO(l)
is connected. Thus 7; [SA(/)] is triviak;and so pin (3.10) is an isomorphism

Now p is induced by the mapping (3.8). Taking its composition with the
isomorphism

i, [S'] BFHL_J‘ g,

2ni rZ
we obtain an isomorphism m;[A()] — Z, defined by (3.5).
Proof of 2°). In(3.6) the isomorphismZ =~ n [Sp())] is the composition
of the isomorphisms defined by parts 2 and 3 of lemma 3.1. The isomor-
phism 7,[A(l)] ~ Z is the composition of the isomorphism (3.5) and the

one that induces the homeomorphism of A(l) and W(l). Proving part 2 of
lemma 3.2 is thus the same as proving the following:

The fibration U(1)/0(I) = W(I) induces a morphism
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p:Z~n,[UD] ~ W] =~ Z (3.11)

that is multiplication by 2 on Z.
This fibration is defined by the mapping
U(l)> u — w = u'u, which satisfies detw = (det u)?.

Since the isomorphisms entering into (3.11) are defined by (3.1) and (3.5),
we have -

1 [ d(detw) = 1 Jd(det u)z2 cZ
 (detw)

p: 2ni , detu 2ni

This morphism p: Z — Z is evidently multiplication by 2.

The two preceding lemmas have the following theorem as an immediate
consequence. It is clearly independent of the hermitian structure on Z(l)
used above.

Definition 3. «and f are the generators of m, [Sp()] and =, [A(l)] whose
natural images in Z are 1.

THEOREM 3. 1°) Sp(l) has a unique covering group, Sp,(), of order q
(g=1,2, ..., c0)[namely:the number of points having the same projection
onto Sp(l) is q]; o acts on Sp,(l); o does not act as the identity on Sp,(l)
unless r = 0 mod g.

2°) A(l) has a unique covering space, A1), of order q; B acts on Al);
" does not act as the identity on A (I) unless r = 0 mod g.

3°) Sp,(1) acts transitively on A, (l):

(@S Az = S(B*22g) = B2(S A2, where 2y, € Np(D), Sq€ Sp,(l). (3.12)
Example 3.1.  A,(l) is the set of oriented (in the euclidean sense) lagran-
gian subspaces of Z(l); Sp(/) acts on A, ().

Example 3.2. Sp,(l) acts on A,(l). This result is essential for the theory of
asymptotic expansions (chapter II).

Notation 3. Denote by s the projection of S € Sp,(I) onto Sp(l); by 4 the
projection of 2, € A,(l) onto A(l); by 4, the projection of 4,,€ Ay (D)
onto A,(l); by e the identity element of Sp(!); and by E the identity element
of Sp,(1).

1§2,3-1,52,4 37

Let us choose an element X * of A_(I) projecting onto X* in A(l); X J
denotes its projection onto A (0).

4. Indices of Inertia

Definition of the index of inertia Inert(4, A, A7) of a triple (4, 4, 1") of
elements of A(l) pairwise transverse. We have

LN =A@V =& 4i=Z(0.
The conditions
z€ 4, ek, el z+z +z/=0 4.1

therefore define three isomorphisms

z€A
A " (4.2)
Mozl —zZelk .
whose product is the identity. By (4.1) g

[z.2] = [£.27] = [/, z]; o (43)

this number is the value of a quadratic formatze A(atz € A" or atz’ e A").
The isomorphisms (4.2) transform each one of these forms into the others.
Thus they all have the same index of inertia, which will be denoted

Inert(4, A', ). "

LEMMA. The quadratic form

Aazw[z,2]eR

is nondegenerate (that is, has no zero eigenvalues).
Proof. Take a second triple

(el ek, {"eA’suchthat{ + '+ {" = 0.

Since A, X', and 1” are lagrangian, the bilinear form
GOl =[z]1=[.0=[z]1=[0]=[2]
is symmetric and, hence, is the polar form of the quadratic form

ze— [z, 2]
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If this were degenerate, then there would exist z # 0 such that
zeld, [z{0]=0 V(ei,
that is,
zeAn A,
contrary to hypothesis.
Thus Inert(:,-, ) has the following properties:
Inert(4, A, A”) = Inert(¥, 27, 1) = | — Inert(4, 4", X). 4.4)

Inert(-,-,"), which is defined when its arguments ar¢ pairwise transverse,
is locally constant on its domain of definition.

Inert(sd, sA’, sA”) = Inert(4, 4, 4) Vs € Sp(!). 4.5)
Formulas (2.11) and (2.14) of L§! defined Inert(s, s', s”) for

s, 8", 5" € Sp(I\Zsps ss's” =e. (4.6)

The following relation exists between these two indices of inertia:

THEOREM 4. Under assumption (4.6),

Inert(s, s, s”) = Inert(sX*, X*, 5"~ 1 X*). 4.7

Remark 4.1. The condition s ¢ Zg, is equivalent to the following: sX*
and X* are transverse.

Proof. We return to the notation of 1§1,2 (specifically that of lemma
2.3), setting

’ 7"

s = 8y, s = 8,4, s

Il

Savs
s4:(x', ') (x, p) means p = Px — ‘Lx, p = Lx — Qx';
s4-1(x, p) — (x”, p”) means p” = P'x” — 'L"x, p=Lx"—Q'x
The equations of the subspaces

sTTLXE

A= sX* A= X* AT =

are then

XZP = Px, Aix = 0, )h”:p” — __Q//x//.
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Condition (4.1),

5 = (x, p) = l, Z” — (x//, p/r) = i”, 7+ Z” = ll,

may be written
z = (x, Px), 2/ = (—x, Q"x),

from which follows

[z, 2] = <(P + Q")x, x.

Hence, by definition (2.14) in §1,

Inert(A, A, A"y = Inert(P + Q") = Inert (4 + A+ AY)
= Inert(s, s, s”).

The two lemmas below express the index of inertia Inert in terms of the
Kronecker index KI. After we have defined the Maslov index m in térms
of the Kronecker index in section 5, lemma 6.1 will deduce the rela;ﬁon
between the indices of inertia and the Maslov index from these lemmas.

LEMMA 4.1. Sp(/)acts transitively on the set of pairs of transverse elements
of A(l). T

Remark 4.2. Therefore every triple of pairwise transverse elements of
A(l) has the form

(s, sX, sX*). -
We recall that
Inert(s2, sX, sX*) = Inert(4, X, X*).

Proof. Since Sp(l) acts transitively on A(l), it suffices to show that the
stabilizer St(!) of X * acts transitively on the set of elements of A(l) trans-
verse to X *. The element s of St(/) defined by (2.6) transforms

X:p = OintosX:p = ‘s; s,s7'x,

where s,: X — X* is symmetric. Now the condition that the equation

p = s;x define an element of A(/) is clearly that s, :X — X* be symmetric.

Notation 4. Recall that the spectrum of u € U(l), sp(u), is a 0-chain in
S Let
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sp(4) = sp(w), (4.8

where w is the image of A under the natural homeomorphism (2.3).

Denote by (expif) the point in S! with the coordinate expif (0 € R)
and by l(expif) the O-chain consisting of this point with multiplicity
I(l e Z). We have, for example,

sp(X*) = sple), sp(X) = sp(—e),
sple) = (1), sp(—e) = I(—1).

Let o denote a 1-chain in S, |a| its support, Jo its boundary, and KI
the Kronecker index (see Lefschetz [9] or any theory of chain intersection).
Recall that the integer K1{o,, 6o]

(4.9)

« is defined when ¢, and o, are a 1-chain and a O-chain in S* such that

o] M |00, = &,
« is zero if |o| N |0y | = s
« is linear in ¢, and o,

e« isequalto lifo, isa positively oriented arc and oo is an interior point
of this arc,

« satisfies KI[c,, d0}] = —KlI[o}, d0,]

LEMMA 4.2. Let ¢ and ¢* be two 1-chains in S such that

do = sp(i) — sp(X™), do* = sp(d) — sp(X), (4.10)
o — o* belongs to the half-circle in S!, where Im(z) = 0. 4.11)
Then

Inert(4, X, X*) = KI[o,(~ )] — KI[o* (D]. @.12)

Remark 4.3. Lemma 5.1 will use this decomposition of Inert.
Proof. Let

z=Xx+ iy€4i zeX, e X*

be such that

s+ 2 + 2z =0, wherex,ye X.

Clearly
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—X, " = —iy,
[z,27] = Im(z'| ) = — (x|
Let w be the natural image of 4 under (2.3). By (2.5)

e+ w

y=1i x (e is the identity).

e — w

Since w is unitary and symmetric, i(e + w)/(e — w) is real and symmetric.
Hence Inert(Z, X, X *) is the index of inertia of the quadratic form

Xaxr—»—(x[ie+ wx)eR,
e—w

that is, the number of positive eigenvalues of the real symmetric matrix
ile + w)le — w).

Now the positive real axis is the image of the half-circle in S!, where
Im z < 0, under the homographic transformation

¥
1+ expif
ST XPY R 4.13)

S's (expif) i
(exp i) ll—expi@ '

We orient it positively: it forms a chain y in S!. Since (4.13) transforms the
eigenvalues of w into those of i(e + w)/e — w),

Inert(4, X, X*) = KI[y, sp(w}].

Let t be a chain in S! with boundary-

ot = sp(w) — splie).

Then

Inert(4, X, X*) = KI[y, ot] = —KI[z, dx]

= KI[t, (-] — KI[7, ()]

Let ¢ and o* be i-chains in S! such that ¢ — t and ¢* — 7 are defined as
. follows:

d(c — 1) = splie) — sple),
¢ — 1 belongs to the arc 0 € [0, 7/2] in S = {(expif)};

d(c* — 1) = splie) — sp(—e),
o* — 1 belongs to the arc € [n/2, n] in S*.
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Since
Klfe — 1, (-1] = KIfe* — 1, ] =0,

the preceding expression for Inert(4, X, X*) is equivalent to (4.12). Now
& and o* satisfy conditions (4.10) and {4.11) and are determined by them
up to the addition of 1-cycles y and y* in St such that y — y* belongs to
the half-circle in S!, where Im z > 0. Since y and y* are then homologous,

KI[y, (-] = KI[7* (D]
Thus (4.12) holds for any pair (o, o*) satisfying (4.10) and (4.11).
5. The Maslov Index m on AZ ()

We are going to supplement Arnold’s definition [1], but first we shall use
the following preliminary definition.

Definition 5.1 of the index M on A% (D). Let (v, V) be an element of
AL x A (D) = A2 (), that is, a pair of elements of A, (). Let v and
w(v) be the natural images of v, in A(l) and W() [cf. (2.3)], and let V'
and w' = w(v') be the images of v,.. By lemma 2.1, 3°), the condition that
v and v be transverse can be expressed as

(1) ¢ splww'™1);

sp(ww' 1), which we denote sp(v, V), is a O-chain in S* (see Lefschetz 9.
The mapping

T 5 (v, V) — sp(v, V)

maps the arc I onto a 1-chain in St denoted sp(I'). If

O = (> A) = (Hoos o)

then

osp(T) = sp(4, ) — sp(i, 1).

Suppose

2 and A are transverse, u and y' are transverse, (5.1)

then by lemma 2.1, 3°),
(1) ¢[0sp(D)-
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~ Thus KI[sp('), (1)] is defined. It is an integer depending only on the
homotopy class of I, that is, on 0. We denote it

M A, X s 1] = KI[sp(T), (D] € Z. (5.2)

Remark. By Remark 1, M is independent of the choice of the hermitian
structure on Z(I) used in its definition.

Properties of M. M is defined under hypothesis (5.1). M is locally con-
stant on its domain of definition. M has the obvious additive property

Mgy s s ] + M, s v Ve ] = M4, Asve v ] (5.3)
which implies

M, Ai Ags A ] = 0. (5.4
M has the invariance property

M[SA,, SAs b, ] = M[A, s i, ], VS €Spy(l) (5.5
If B is the generator of 7, [A(/)] (cf. definition 3), then |

M[B A, B W sty o] = M2, At ] + 7 — 1 Vr, v e Z.

(5.6)

Proof of (5.5). Assuming hypothesis (5.1), s4 and sA’ are transverse, and
the mapping

Spo(l)3 S M[Sh,, SH, iy, 1] €Z

s defined and locally constant. Therefore it is constant since Sp,(l) is
connected.

Proof of (5.6). Choose the arc T to be differentiable and such that
O = (B2, B A Ays Ao

Clearly one can define [ continuous functions
szl"a(vm,v'w)f—»ﬂj(vm,v’go)eR, j=1...,1

such that

L sp(v, V) = Z(expiej); 0,(B A, Briey) = 04, X) mod2m.
J
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Definition (5.2) of M gives

s ’ 1 1
M{Bhr B Jees K] = L5 J o, = 5. J d@‘))
r r

J
_ b ddet(ww' 1)
27 . det(ww' ™ 1)

1 jd(detw)_ 1 J d(det w') ,
r

= =r —r
2ni |- detw 2mi det w'

by (3.5) and definition 3. Hence (5.6) follows by the additive property
(5.3) of M.

In order to recover assumption (4.11) of lemma 4.2, we need the following
definitions.

Definition 5.2 X, is the point of A(!) that projects onto X in A(l) and
that may be joined to X% by an arc y of A, () whose spectrum sp(y)
belongs to the half-circle in St where Im(z) = O.

Definition 5.3. The Maslov index is the function m given by
My, M) = M(Ay, Xps X 50 Xop).
This allows us to formulate lemma 4.2 as follows.
LEMMA 5.1. For any triple A, 4,,, Ay, of elements of A (),
Inert(A, A, A7) = m(d,, A) — m(do, A2) 4+ m(A,, A%) 5.7

Proof. By (5.6), the right-hand side of (5.7) depends only on (4, 4, 4"). By
Remark 4.2 and the invariance property (5.5) it suffices to establish the
following special case of (5.7):

Inert(%, X, X*) = m(4,, X,,) — m{d,, X*)+ m(X,, X%) (5.8)
Definition 5.3 of m and the additive property (5.3) of M give

My, Xo) = M[Ay, X3 X%, X1
m(i,, X¥) — m(X,,, X%) = M4, X*: X, X:]

Definition 5.1 of these two values of M makes use of two arcs T’ and
* of AZ(l) such that

o = (4, X,) — (X%, X,), 0T = (A, X%) — (X5, X%).
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_ We choose these arcs as cartesian products,
T* =% x X%,
where y and y* are then arcs of A (/) such that

Oy = Ao — X%, OV = A — Xo.

My )= X, - X%

_ Definition 5.2 of X, allows us to choose y and y* such that sp(y — y*)
belongs to the half-circle in S', where Im(z) > 0.
Denote

o =sp().  o* = sp(y¥).

Since the homeomorphism w(-) defined by (2.3) has the values
w(X) = —e, w(X*) = e,
definition 5.1 of M gives
M[A., X5 X2, X,,] = KI[o, (=1D],
M, X% X, X3] = K[, (1)]

The formula (5.8) to be proved is thus identical to formula (4.12), which
holds because ¢ — o* = sp(y — y*) satisfies condition (4.11).

LEMMA 5.2. We have

mAy,, Ay) + m(A,, A,) =L (5.9)
Proof. Substitute the expression (5.7) for Inert into (4.4).

The following lemma supplements lemma 5.1.

LEMMa 5.3. Every function

n:(Ag, Ag) > n(ly, 4y

defined for 4, 4 € A, (D), A and X’ transverse,
_» with values in an abelian group,
« locally constant on its domain of definition,

_+ such that, for pairwise transverse 4, 4/, 4",
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n(Ags Ag) — 1Ay, Ag) + nlhq, 43) = 0, (5.10)
is identically zero.

Proof. By (5.10), n is constant in a neighborhood of any pair (4,, 4g),
transverse or not. Therefore n is constant on AZ(D), which is connected.
By (5.10), its value is 0.

We have proved the following theorem.
THEOREM 5. 1°) The Maslov index (definitions 5.1-5.3) is the only function
mi{dy, M) > mlde, A)EZ

defined on pairs of transverse elements of A () that is locally constant on its
domain and makes the following decomposition of the index of inertia
possible:

Tnert(A, 2, A7) = m(A, X)) — Mk, A%) + mle, A2). (5.7)

2°) Tuking into account definition 5.2, this function has the following
properties:

MRy M) + My, 2) = 1 (5.9)
m(Si,, S,) = m(lo, Xp)  ¥S€Spy(); (5.11)

Mg, B A,) = Mg, X)) +r—1  VrrelZ; (5.12)

m(X*,, X,) =0 mX,, X¥)=1 (5.13)

Proof of 1°). Lemmas 5.1 and 5.3.

Proof of (59). Lemma 5.2.

Proof of (5.11) and (5.12). Definition 5.3 of m, (5.5), and (5.6).
Proof of (5.13). Definition 5.3 of m and (5.4); (5.9).

Remark 5.1. Formula (5.7) clearly implies the following: If A AL AT AT
are four pairwise transverse elements of A(l), then

Inert(4, A, A”) — Inert(4, &', A"} + Inert(4, 2", A"y — Inmert(d, 7, 1) = 0.
Remark 5.2. We call any transverse pair (f,,, {) € AZ (I) such that

M[imaj"’oc;.u'oo’ u’w] = m(}"ao’)"lao) Viao’;"wEAoo(l)
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a basis. For example, (X* , X,,) is a basis. By the additive property (5.3) of
M, the condition that (x,, i,) be a basis can be expressed as

m(e > ) = 0.

6. The Jump of the Maslov Index m(4,, , A;,) at a Point (4, A), Where
dimAin i =1

Maslov[11] defined his index, up to an additive constant, by the expression
of its jump across the hypersurface Z: in AZ (D), which is the set of pairs
(Ae» Aw) Of nontransverse elements of A(/). Theorem 6 will make the
expression for this jump explicit.

First of all let us establish some properties of U(l). By y we denote a
differentiable arc of U(l):

_du

ug = =~ # 0.

[-14,11s0 e U, =
yil—1, 10— u@) e U o

LEMMA 6.1. Let exp(if(0)) be a simple eigenvalue of u(0) and let z(f) be a
corresponding eigenvector. Then

120)>ve = Gu-l(e)uez(anz(e)). .6

Remark 6.1. Recall that if U is a Lie group with generic element u,
mfinitesimal transformations X,, and Maurer-Cartan forms c,, then
u~! du (hence, in particular, u~'u,) may be written

utdu = wu, du)X,;
k

see E. Cartan [4].

Remark 6.2. Since U(l) is the unitary group, (1/i)u™*(8)ug is an arbitrary

I x I self-adjoint matrix characterizing the vector u, tangent to U(l) at
u(6).

~ Proof. Since exp(iy/(9)) is a simple eigenvalue, Y(0) is a differentiable
function of 0, and the vector z(8), which is defined up to a scalar factor, may
_be chosen to be a differentiable function of 6. Then differentiating the
elation

- u9)z(6) = =(0) exp(iy(9))
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and multiplying on the left by (1/i)u"*(0), we obtain
1 ., 1 1 .
U UgZ + 7%= T zgexp(iy) + z(O),-

Taking the scalar product with z eliminates z, and gives (6.1) because
(™ zgexplity) | 2) = (z¢| exp(—ip)uz) = (z0]2)
since u is unitary.

Denote by Zy the set of u€ U(l) such that (1) € sp(u); recall that (1)
denotes the point of ' = C with coordinate 1.

The following lemma has the sole purpose of interpreting the assumption
of lemma 6.3 geometrically.

LEMMA 6.2. If u(o)e Ty, (1) is a simple value of spu(o), and z(0) is a
corresponding eigenvector, then the condition that u, define a direction
tangent to Ty at u(o) takes the form

Gu—*(o)ue(o)z(onz(a)) = 0. 62)

Proof. ulo) is a regular point of Zy. By lemma 6.1, every direction
tangent to Ty at u(o) satisfies (6.2). The hyperplane of directions satisfying
(6.2) thus contains the tangent plane to Xy at u(o); but > is a hypersurface
in U().

LEMMA 6.3. If the arc y in U(l) intersects ¥, only at the point u(o), if the
eigenvalue 1 of u(o) is simple, and if the corresponding eigenvector z{(0)
satisfies

i

(lu_l(o)uez(o)lz(o)> #0

(i.e., if y is not tangent to ., then

Ki[spy, (D] = sign(%u"(o)u,,z(o)[z(o)). 6.3)

Proof. Let exp(iy(6)) be the eigenvalue of u(f) near 1. Evidently
KI[spy,(1)] = signyglo) if ¥sl0) # O,

so (6.3) follows from (6.1).
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Notation. X a: denotes the set of nontransverse (4, A):
3 A,

I denotes a differentiable arc in A*(I):

[~L1]s 6 — (L(0), X (0) e A*(D).

w(0) and w'(0) denote the natural images of A(6) and A'(0) € A(l) in W(I):
see (2.3). ‘

EMMa 6.4. If the arc T in AZ%(l) intersects X,: only at the point (i(0)
X(0)) and if ,

- dimAo)n V(o) =1, z(0) € A(0) N 2'(0),
wow™(0)2(0)| z(o)) " Gw;w'-l(o)z(o) | z(o)),
_ then

KI[spT, (1)] = sign {(%wgw‘l(o)z(o) | z(o))

— (% wyw' 1 (0)z(0) z(0)>}.

Proof. The image of the arc I' e A%(l) in U(l) is the arc

(6.4)

[-1,1]38—u(f) = w(H)w"l(O).
By definition,
KI[spT, (1)] = KI[spy, ()]

. By lemma 2.1,3°), y intersects Xy only at the point 6 = o, and 1is a
simple value of sp u(o). By lemma 2.1,2°),

2(0) + w(0)z(0) = 0,  z(0) + W(0)z(0) = o,
SO

2(0) = u(o)z(o).
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thus, because u is unitary,
(@™ (0)p2(0)| 2(0)) = (wew " (0)2(0)| 2(0)) — (wyw' ™ (0)z(0) | 2(0)).

Hence, by lemma 6.3,

KI[spy, (D] = sign{(liwgw"(o)z(o)lz(o)) — (lw},w’"%o)z(o)lz(o)),

i
and (6.4) follows.

LEMMA 6.5. Let

0+ AD), 0+ z(0)

be differentiable mappings of [— 1, 1] into A(l) and Z(I) such that
z(0) € A(0).

Then

(L_wew_lz|2> = [zq- 2(8)] (6.5)
2i

Proof. By lemma 2.1,2°),

z + wzZ = 0,

so

Zg + WeZ + WZg = 0.

Hence

(z4]2) — (wow™'z]|2) + (wZe|2) = o,

where

(WEy|2) = (Go|wi2) = —(%|2) = — (20| 2)-
From (1.1), (6.5) follows.

The left-hand side of (6.4) can be expressed in terms of the Maslov index
by (5.2) and definition 5.3; the right-hand side of (6.4) can be expressed
in terms of the symplectic form [ -, -] by lemma 6.5. Hence the following
theorem, which will allow us to establish theorem 3.2 of §3.

I§2.6-1827 s

THEOREM 6. Let

[—1L 130 (4, 4,)€ AZ(D),
[L1]200(z5 20 e Z2(

be two differentiable mappings such that
7€l el for each 0;
=7z # 0 for 0 = 0; A and X' are transverse for 0 # 0;
' I;he function

-1 1]26—[z,z]€eR

vanishes only at 0 = 0 and vanishes only to first order. Then there exists a
_ constant ¢ € Z such that

c orlz,z] < 0

m(/lw,l;o)={ for (5,71

. 1 +cfor{z,z} >0 d
_ 7. The Maslov Index on Sp_,(!); the Mixed Inertia

S, 8.8 € Spco(l)\ZSpgo be such that
$S'S” = E (the identity element); (7.1)

let s, 5, s” be their projections onto SS(I). Formula (4.7) of theorem 4.1,
which relates the definitions of the inertia on A(f) and Sp(!), and formula
(5.7) of theorem 5, which relates the inertia on A(l) to the Maslov index,
yield, by the invariance property of the Maslov index (5.11),

Tnert(s, 5, s") = m(SX*%, X*) — m(S'' X%, X*) + m(S"X%, X7)

We rewrite this formula as (7.3), by virtue of the following definition:
Definition 7.1 of the Maslov index on Sp,,(I). If S € Sp, ()\Zs, we define
m(S) = m(SX¥, X%) (7.2)

This definition makes sense by Remark 4.1: S ¢ Zg, _ is equivalent to
the condition that SX* and X * be transverse.
Let us supplement this formula with a lemma analogous to lemma 5.3:
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LemMa 7. Every function

n:S > n(S)

« defined for S € Spq(l)\Zqu,

. with values in an abelian group,

« locally constant on its domain of definition,
« such that

n(S) — n(S'™Y) + n(s”) = 0 when S§S'S” = E,
is identically zero.

This lemma, combined with theorem 5 and (3.12) gives the following
theorem.

THEOREM 7.1. 1°) The Maslov index defined by (7.2) is the only function
m:Sp . (N\Esp,, VA

that is locally constant on its domain and that makes the following decom-
position of the index of inertia possible: under hypothesis (7.1),

Inert(s, s, s") = m(S) — m(S' ™) + m(S"). (7.3)
2°) This function has the following properties:

m(S) + m(S™") =1, (7.4)

m(’S) = m(S) + 2r, (7.5)

where o is the generator of 7, [Sp(l)] (definition 3).

Definition 7.2 of the mixed inertia. Let

s € SpUNZsps 4 4 € A(l), transverse to X* and such that A = sA'.  (7.6)

The mixed inertia is defined by the formula

Inert(s, 4, ') = Inert(sX™, X* 1) = Inert(X™, s~ tx* A, 1.7

the last two terms being equal because of the invariance (4.5) of the inertia.
The following theorem is evident.

THEOREM 7.2. Under assumption (7.6),
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Inert(s™%, A, 1) = | — Inert(s, 4, ), (7.8)
Inert(s, 4, ) = m(S) — m(A,, X%) + m(A,, X%) (7.9)

if A = SX,, and if s is the projection of S € SpL (D)

Now we express the mixed inertia in terms of the inertia of a quadratic

form, as we did for Inmert(s, s, s”) (§1.definition 2.4) and Inert(4, 4, 1)
(§2,4). This result will be used in section 10.

THEOREM 7.3. Under assumption (7.6), we have s = s4(§1,1) and, by (2.5),
the equation of X' is p' = @l(x'), where ¢’ is a quadratic form on X. Then

Inert(s, A, 4) = Inert(A(o,") + @'(*)) (7.10)
Proof. By (7.7) and the definition of Inert(4, 2, A”) (section 4),
Inert(s, 4, ") = Inert(X*, s7'X*, 1)

is the inertia of the quadratic form

v
x [z 7]

forz = (x,p), 2 = (x', p),

(x, p) € X*, s(x', p') e X*, x+x,p+prel. (7.11)

Relations (7.11) may be rewritten
p=—A.(0,x), pFp=0c+x)
X =0, p = A0, xX) + @(xX)

- This implies

z,2] = {p, x> = 24(0, X} + 2¢'(x'),
and therefore (7.10).

8. Maslov Indices on A (!) and Sp,(!)

- Let 4, A,eA(l)and S € Sp, (/) be the projections of Ay, A € A () and
S, €Sp,(I). By (5.12) and (7.5) (where « and j are the generators of
7, [Sp())] and 7, [A())]), the relations

m(d,, ) = m(h, X,,) modq,  m(S) = m(S) mod2q, 8.1)
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define functions m. They are again called Maslov indices. From theorems
5,7.1, and 7.2 and lemmas 5.3 and 7, they evidently have the following
properties.

TEOREM 8.  1°) The Maslov index defined by (8.1), is the only function
m:(hy, Aq) m(Ay, 4y) € Zg

defined on transverse pairs of elements of A1} that is locally constant on
its domain and that makes the following decomposition of the index of
inertia possible:

Inert(d,, g, 4g) = midg, Ag) — mAg, Ag) + m(l,, A;) modq. (8.2
2°) The Maslov index defined by (8.1); is the only function
m: Spq(l)\):qu = Ly,

that is locally constant on its domain and that makes the following decom-
position of the index of inertia possible:

Inert(s, 5, s7) = m(S) — m(S' ™) + m(S") mod 2q. (8.3)
3°) These functions have the following properties:

’

Mg, 74) + mliy, 2) = | modg, — m(S) + m(s™") = | mod2q, (84)
Inert(s, 4, ) = m(S) — m(4zq> X3%,) + m(dzg, X%,) mod2q (8.5)
if SESP,, A2g = Sih,. We recall that Sp,(l) acts on Ayl (D

By §!,theorem 2,3°), assuming ¢ = 2, theorem 8,2°) identifies:
« the Maslov index that formula (2.15) of §1 defines on Sp,(/) mod4,
« the Maslov index that (7.2) and (8.1) define on Sp,(/) mod 2q.

Definition 8. Let A€ A (§1,definition 1.2). Let us give a definition of
5S4 € Spy(D\Zsp, that coincides with that of §1 for ¢ = 2.

Recall that m(s ) is defined mod 2. By formula (2.15) of §1, m(s ) = m(4)
mod 2. Then by (7.5), there exists a unique element of Spa\Esp,» denoted

S 4, such that

its projection onto Sp(l)is 543 m(S 1) = m(A) mod 2q. (8.6)
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The mapping
A3A—S, € Spq\ZSpq
is clearly surjective and, if ¢ = oo, bijective. If ¢ # o, the condition
S.=S4
is equivalent to the following:

A(x, x") = A'(x, x")

Vx,x' € X, m(A) = m(A") mod 2gq.

9. Lagrangian Manifolds

An isotropic manifold in Z(l) is a manifold on which

d{p,dx)> = 0;ie, Y.dp; A dx’ = O;ie,d[z,dz] = 0. ©.1
4 .

Its tangent plane is isotropic, and hence it has dimension < L
A lagrangian manifold V is an isotropic manifold such that

dimV =L
L',et ¥ be the universal covering space of V (see Steenrod [17]; 14.7).
Evidently (9.1) means that there exist functions k

o: VR, y:V >R,

defined up to additive constants, such that

do = (p,dx),

-

Y(x, p) = @(x,p) — p, x>,  d¥ = [z dz];

; 9.2)
@ is the phase of V and ¥ its lagrangian phase.

The I-plane A(z) tangent to V at z = (x, p) € V is obviously lagrangian

The apparent contour X, of V is the set of z e ¥V such that A(z) is not.
ransverse to X*. On V\Z, and on its tangent /-planes, x may serve as a

;)lcal coordinate. By (9.2), the equations of V and its tangent [-planes are
_then

Vip= 00 Adp = Y guedst

4 j k; P i dX. ©-3)
Each element of Sp(!),

Z()2 2 sz = ze Z(l),
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maps every lagrangian manifold ¥’ in Z(l) into a lagrangian manifold V
in Z(l), with lagrangian phase

Y(z) = '(z) + const. forz = sz'.

If z = (x,p) and z = (x, p), the phases ¢ and ¢’ of V and V' are then
related by

p(x) — 2(p, x) = ¢'(x) — ¥Kp',x") + const. (9.4
Ifs = s, ¢ Zgpq). then p = Ay, p = —A.by §1,(1.11), and so
o(x) = ¢'(x) + Alx, x') + const,

9.5)

pz(px=Ax’ PVZ(P;': —Ax"

LEMMA 9. Let 54 € Sp(I\Zgp; let 27 = (), p') € V'\Zy. be such that
s,z =z = (x,p)€ V\Zy, where V =s,V.

Evidently these relations define a diffeomorphism x’' — x of the local
coordinates of ¥ and V. Its jacobian takes the form

d'x  Hess, [A(x, x) + o' (x)]

ax " A(A) 08

(In the calculation of Hess,., x and x' are viewed as independent.)
Proof. By (9.5), the diffeomorphism x’ > x satisfies
@OL(x) + Ap(x, x) = 0.
Then (9.6) follows, because, from §1,1,
AZ(A) = d?t('—Axfx.k).
Jk
10. g-Orientation g=123,..., o)

The notions defined in this section enable us to supply a complement to
formula (9.6). This is theorem 10, which will be crucial in the sequel.
/' By a g-orientation of 4 € A(l) we mean a choice of a 4,, € A, (1) with

natural projection A.
A g-oriented lagrangian manifold, denoted V,, is a lagrangian manifold

V together with a continuous mapping

V 3z Aylz) € Agyll)
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_that, when composed with the natural mapping

Ag() = A,

gives the mapping

: V5 z+— A(z) € A(), where A(z) is the tangent [-plane to V at z.

- Each element of Sp,(!) maps a g-oriented lagrangian manifold V, into
another.

A g-orientation of V is characterized by the values taken by the locally

_ constant function

V\Zy2z>m(X%, A€ Z,,.

__ By (5.12), a change in this g-orientation is equivalent to the addition of
a constant € Z,, to the function m. »
The statement of theorem 10 will be simplified by the following

definition.
¢

Definition 10. The argument of d'x at a point of V,, where the tangent
Eplane is 7,, € A, (0), is defined by the formula

argd'x = nm(X%,, A,,) mod 2qn. L (10.1)
For example, by (5.13),
argd'x = 0 on X,,. (10.2)

5, €Sp,(\Zs,, (definition 8),
?ﬂd let ¥, be a g-oriented lagrangian manifold in Z(l); denote
= SaVy-

Lot 45 and A, be the tangent planes to V; and V, at 2’ and z = s,z". In
formula (8.5), taking S = S, and s = s,, we have, by (8.6) and §l,
{ efinition 1.2,

a(S) = m(4) = 2 arg(A(4))

! Y tl%eorem 7.3 and equation (9.3) for ' we obtain that Inert(s, 4, XN)is the
inertia of the symmetric matrix
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(Goramstate )+ )

By §1,definition 2.3 of arg Hess, this is

711 arg Hess, [A(x, x) + o'(x)].

Thus, by (8.4), formula (8.5) may be written

m(X3%,, Ay — m(X3g, A2g) = %arg Hess,.[4 + ¢']
— %arg A?%(A4) mod2q,

whence, by definition 10, we have the following theorem.

THEOREM 10. If V, and Vg are two g-oriented lagrangian manifolds such
that

V, = SiVy where S, € Spq(l)\Zqu,

then not only are the two terms of (9.6) equal, but so are their arguments

mod 2gr.

It is the special case g = 2 of this theorem that will be used (see §3,
corollary 3).

§3. Symplectic Spaces

0. Introduction

Symplectic geometry makes it possible to state the preceding results in
the following form, which will be used in chapter IL.

Z (1) has been provided with a symplectic structure, and moreover with
a particular frame consisting of a pair (X, X*) of transverse lagrangian
I-planes. It is important to state conclusions that are independent of this
choice of a particular frame.

1. Symplectic Space Z

A symplectic space Z consists of R2 together with a symplectic form, that
is, a form
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[ ] R x R>3(z,2)~ [z Z]eR

that is bilinear, alternating, real valued, and nondegenerate. We then have
(2] = ~[z.2);

[z,2] = Oforagivenzand all z' € R*onlyifz = 0.

Z(l) is provided with the symplectic structure defined in §1,1; the

isomorphism of the symplectic structures of Z and Z(l) is obvious and
has the following consequences.

The subspaces of Z on which [, ] vanishes identically are called
isotropic ; their dimension is <l

The isotropic subspaces of dimension [ are called lagrangian subspaces.
The collection of lagrangian subspaces A(Z) is called the lagrangian
grassmannian of Z; A(Z) is homeomorphic to A(l) and therefore has a
unique covering space A (Z) of order g € {1,2,..., 0}

The projection of 4, € A (Z) onto A(Z) is denoted 1. The following
definition (see §2,4) makes sense on Z.

7

Definition 1.1.  Let A, ', A” € A(Z) be pairwise transverse.
- Inert(4, X', 1) is the index of inertia of the nondegenerate quadratic form

20 [z, 2] =[2,2"] = [2, 2], (1.1)
where

z€l, el z"el”, z+ zZ 4z =0.

Clearly its values belong to {0, 1, ..., [}, and

 Imert(4, ', A7) = Inert(4, 47, 1) = | — Inert(4, 1", A). (1.2)

\ Let Z,: denote the set in A2(Z) consisting of pairs of nontransverse
elements of A (Z). By theorem 8 and (8.1), we have the following theorem.

. THEOREM 1. For eachqe {1,2, ..., o0}, there is a unique function
DNy ~ Z,,

called the Maslov index, that is locally constant on its domain and that
satisfies

Inert(4, 2, 1) = m(4,, ) — m(l,, A7) + m(4y, A7) modq. (1.3)

It-has the following properties:
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m(dg, A7) + m(Zy, A) = | modg, (14)
Mgy ) = M(A, ;) mod. (1.5)

Theorem 6 of §2 applies to the jump of this Maslov index across Z:.

Definition 1.2. A lagrangian manifold Vin Z is a manifold of dimension
! on which

d[z,dz] = 0; (1.6)

its tangent I-plane is lagrangian. In other words, on the universal covering
space V there exists a function

¥:V - Rsuch that dy = 1[z, dz}, a.mn
called the lagrangian phase, which is defined up to an additive constant.
2. The Frames of Z

A frame'® of Z is an isomorphism

R:Z - Z() 2.1

respecting [ -, - ]. If R and R’ are two such frames, then RR' ! is called the
change of frame:

RR'~* & Sp(l). 2.2)
Clearly, if 4, 4, 2” € A(Z), then R4, R%, RZ" € A(l) and
Inert(4, A, 1”) = Inert(R4, RA', RA"). 2.3)

If V is a lagrangian manifold in Z, then RV is a lagrangian manifold in
Z(l) with phase @y given by

orl(z) = ¥(2) + 1{p, x>, where Rz = (x,p)eX @ X* = Z(). 2.4)

The apparent contour of V relative to the frame R is the set Zg of points
in V at which the tangent I-plane is not transverse to R7'X*

On V\Zg, x may serve as a local coordinate.

By lemma 9 of §2 we have the following theorem.

3The use of the letter R to denote a frame comes from the initial of the French word repere.
[Translator’s note]
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THEOREM 2. Let x and x' be the local coordinates defined on V\(Xg U Zg-)
by two frames R and R’ such that RR'"! e Sp(I\Xs,. Then there exists
A (81,2) such that s, = RR'™'; let ¢'(X') = @gz) be the phase of R'V.
Then the local diffeomorphism X 3 x' + x € X has the Jjacobian

d'x _ Hess [A(x,x) + 0'(x)]
d'x’ A%(4)

(2.5)

(In the calculation of Hess,., x and x’ are viewed as independent.)

Remark 2. The frames we have just defined do not allow us to fix the
g-orientations if ¢ > 1.

3. The g-Frames of Z

The g-frames of Z do allow this: each g-frame (g € {1, 2, ..., o0 }) consists
of .

i. an isomorphism jg: Z — Z () respecting [, " ];
ii. a homeomorphism hg:A,(Z) = A, (1) whose natural image is the
homeomorphism A(Z) — A(l) induced by jg- -

If R and R’ are two such frames, then the change of frame RR'™!
consists of

i.s = jujr’ €Sp(D),
ii. H = hghg!, a homeomorphism of A, (l) whose natural image is the
homeomorphism of A, (/) induced by s (cf. §2, example 3.1).

To define H knowing s it suffices to give HX%, € A,,(l) with the projection
sX% e Ay().

There are g elements of Sp, (/) with image s € Sp(l). By §2,(3.12), they
map X%, into the g elements of A, (1) with image sX% € A,(I).

The unique element S € Sp,(I) with image s € Sp(/)and such that SX%, =

HX?%, thus induces the homeomorphism H of A, (). It characterizes
RR’~!, which we denote S:

RR’ "' e Sp, () 3.1
R denotes either jp or hg ; we write

R:Zsz—Rz=(x,p)eX & X* = Z(]),

R:A,(Z)3 Ayy—> RAyg € Ay
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Evidently
Moy, A2g) = m(RA,,, RAy,) mod2q VA A2 € A, (Z). (3.2)

R maps a g-oriented lagrangian manifold V in Z into another in Z(l).
If 1,5, € A,,(Z) is the tangent plane to V at z, we define

mg(z) = m(R™' X%, Ay) € Ly, (3.3)

If x is the local coordinate of V\Zy (g-oriented) defined by the g-frame
R, we define

argd'x = mmpg(z) mod 2. (3.4)
Example 3. On R™'X,,, argd'x = 0 mod 2qrn by §2,(10.2).

Theorem 10 of §2 evidently allows us to supplement theorem 2 as
follows.

THEOREM 3.1. In the statement of theorem 2, suppose that V =V, is
g-oriented and that R and R’ are g-frames. Then

RR' ™' = S§,€eSp,) (3.5)
and the arguments of the two sides of (2.5) are equal mod 2gm.

Let us recall that §1 gave the definitions 1.2 and 2.3 of arg A(4) and
arg Hess. By §2,(8.6),

m(4) = m(S,) mod2g.

The following special case of this theorem will be used in part (iii) of
the proof of theorems 4.1-4.3 of IL§1.

COROLLARY 3. If q = 2, the half-measure [d'x]"Y? on the lagrangian
2-oriented manifold V is defined by

arg[d'x]"? = %mk(z) mod 27. (3.6)
We have
[ax]¥* = K(lz){Hessx,[A(x, x) + @' (x)]}Vdx ] (3.7

In a neighborhood of a point of Zg, where dimAl N R7IX* = 1, mg(2)
has the following expression, which follows from §2, theorem 6.
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THEOREM 3.2. Let A(z) be the tangent l-plane to the lagrangian manifold
V at z; z € X means

dim(2 n R7'X*) > 0.
We stay in a neighborhood of a point of Ly at which
dim(A n R71X*) = 1;
then for z € Zg, the projection of RA(z) onto X parallel to X* is a
hyperplane:

l .

Y c;dx) = 0. (3.8)
j=1
1°) There exists a regular measure @ on V such that for ze Zg, for all
jand all k
dx' A - A dxdTE A dpg A dxITE A s A dx! = ¢ e (3.9)
2°) If V =V, is g-oriented, there exists a constant ¢ € Z,, such’that
mg(z) = ¢ mod2q for d'x/m < 0,
(3.10)
mp(z) = 1 + ¢ mod2q for d'x/m > 0,

provided that d'x/m vanishes to the first order where it vanishes (namely
on Xg).

Remark. A regular measure @ on V is a differential form of maximal
degree | on V with everywhere nonvanishing coefficient.

Proof of 1°). The c; entering into (3.8) are not all zero. Say ¢, # 0;
then, on V at z,

dx? A -+ A dx! # 0;3k such thatdp, A dx® A -~ A dx'# 0. (3.11)
Since Z;dp; A dx’ = 0 on V, we have, for all k,

N
dp, A dx' Adx® A -odx, o A dX!

+dp A dx* A dx? A dxk A dxt =0, (3.12)

where the cap suppresses the term it covers. By (3.8)

dx' = —%dx" mod (dx?, ..., dx", ..., dx").
1
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Denoting
tnzcl—zdp1 Adx? A A dx

1

we may write (3.12) as
c @ = dp, A dx? A A dX, (3.13)

which is (3.9) forj = 1.
By (3.11), (3.13) implies

w# 0on Vatz

Using the expression

dxi = —S1dx! mod(dx?, ..., dx, ..., dx")

J
in the right-hand side of (3.13), we obtain (3.9) for j > 1 and c¢; # 0. If
j > land ¢; = 0, then the two sides of (3.9) are obviously zero.

Proof of 2°). Suppose ¢, # 0 at a point of Z. By (3.9), for z € V near
this point, we can choose the coordinates (py, x% ..., x") of Rz in Z(1)
as coordinates on V. Then on V, x! and p are functions of (p;, x?, ...,
x'). The equation of Xy is

axUpy, x2 ..., xY
5 XX X) g
K op, 0

Let {'(z) be the vector in A(z) having the coordinates
(dp, = 1,dx* =+ =dx' = 0).
Then in Z(l), R{'(z) has the coordinates

1 2 !
1

dp — apj(plaxzs -~-axl)>_

! opy

Let {(z) be the vector on R™' X * such that

2 1
RU(E) = <dx —odp = X ));
i
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{(z) is a function of z € V. Then

{(2) = ['(2) for z € Zg;
1d'x (3.14)

tw

[{(2), {(@)] = [RU(2). RUG)] = % _

because, in view of (3.9), the obvious relation

1 !
dxl A A dxl — ax (Pug;’ "'sx)dpl A de A A XmOIlV
1
means
xl_ dx
op, cio
Now by §2, theorem 6, for z € V\Zg, -
- ¢ for [{{2), {'(2)] < O
mR(Z) = m(R 1X;5Aoc(z)) = {1 + Cfor %C(Z) (‘:,(Z)% > 0 ¥

¢ a constant e Z. Considering (3.14), (3.10) follows.
4. g-Symplectic Geometries

If R is a g-frame, clearly the group

R 'Sp, (DR = Sp,(Z)

acts on Z and its lagrangian manifolds while preserving their g-orienta-
tions; this group is independent of R by (3.1).

F. Klein defined a geometry by specifying a manifold and a Lie group
acting on that manifold.

Each of the groups Sp,(Z), where g€ {1,2, ..., o}, thus defines a
~ geometry on Z which it is convenient to call the q-symplectic geometry.

-

. Conclusion

This chapter in §1 defined a unitary representation of the group Sp,(I)
in the Hilbert space # (X), where diim X = I As a result of §2, in 83 the
study of this group was subsituted by that of the isomorphic group Sp,(Z)
that defines the 2-symplectic geometry of Z, where dimZ = 21. Earlier §2
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and §3 detailed the properties of the index of inertia and the Maslov index,
already introduced in §1. The interest of these various properties is to make
possible the definition and study of a new structure, lagrangian analysis,
which is the subject of the next chapter.

II Lagrangian Functions; Lagrangian Differential Operators

Introduction

Summary. In Chapter 1 we studied only differential operators with
polynomial coefficients and functions defined on all of R!' = X.

The aim of chapter II is to extend those results. In §2, we consider a
symplectic space Z of dimension 2I provided with a 2-symplectic geometry.
We define

« lagrangian functions and lagrangian distributions, on which Sp,(Z) acts
locally;

« lagrangian operators, more general than differential operators, which
are transformed by Sp,(Z) like differential operators with polynomial
coefficients (see L§1,theorem 3.1).

Each lagrangian function U is defined on a lagrangian manifold V in
Z; in each 2-frame R, U has an expression Uy, a function with formal
values defined on V\Z. In each frame R, a lagrangian operator has an
expression i

" 190
ag = ag | v, X, - =~

that is a formal differential operator of order <o, acting locally on the
Ug.
A change of frame

§ = RR' € Sp, (1) (see 1,§3,3) -
is.a local operator that transforms

Ug into Ug = SUg.,  ag into ag = SagS7},
and hence transforms

ap.Ug into agUg = S(ag Ug).

1t follows that lagrangian operators act on lagrangian functions and on
lagrangian distributions.
All the expressions ag of a single lagrangian operator a are readily
obtained from a single formal function a° defined on Z.
In geometry, a change of frame leaves invariant (or changes linearly)
the value of a scalar (or vector) function at a point; but an essential
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characteristic of lagrangian analysis is the following: at each point z
of V, the group Sp,(l) of changes of frame acts on the germs of expres-
sions Uy of a lagrangian function U and not on the values at z of these
expressions. Ug = SUg may have singularities on g, but has none on
T \Zg N Zg, whereas the singularities of Ug are on Zg.. Thus the singu-
larities of the expressions Ug of U are not singularities of U; they may be
described as apparent singularities. Their nature can be made explicit by
making use of the Maslov index.

Historical account. V. P. Maslov [10] elucidated this essential charac-
teristic of lagrangian analysis, even though he only studied the projections
of lagrangian functions onto X without defining either lagrangian oper-
ators or lagrangian functions explicitly. He only used a subgroup of
Sp, (1), depending on a choice of coordinates of X : the subgroup generated
by Fourier transforms in a single coordinate.

§1. Formal Analysis

0. Summary

In section 1 we define and study asymptotic equivalence classes of functions.

In section 2 we define formal functions; formal functions defined on X
with compact support are asymptotic equivalence classes. Then we may
integrate them (section 3) and transform them by Sp,(!) and by differential
operators, whose definition can be generalized (sections 4 and 6). We
deduce (sections 4 and 6) that Sp,(/) and formal differential operators act
locally on formal functions defined on lagrangian manifolds V or their
covering spaces V; these functions may be compactly supported or not.
In section 5 we study their scalar product.

Formal functions on V, which are no longer asymptotic equivalence
classes, enable us to define lagrangian functions in §2.

1. The Algebra % (X) of Asymptotic Equivalence Classes
The algebra B(X) Let1be the purely imaginary half-line
I =i, o[eC.

2(X) denotes the algebra of mappings

fiIx Xa(, x)i—= fv,x)eC
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all of whose x-derivatives are continuous in (v, x) and satisfy

x? (% %)rf(v, x)

Sp,(l) and the differential operators with polynomial coefficients in

(1/v, %),

a=a" v,x,l—a— =a” vli x
v 0x vox' T )

act on #(X).
If] = dim X = 0, B(X)is denoted % thus £ is the algebra of bounded
continuous mappings I — C.

Sup
el x X

< @ Vg, r e NY; (1.1)

The algebra ¥(X) Let N e R, . Let #y(X) be the set of f € #(X) such
that the mapping
v, x) — V[ (v, x)

.
still belongs to B(X). Clearly #y(X) is an ideal in #(X) that shrinks as
N grows; hence #.(X) = {ner. Bn(X) is an ideal in Z(X). We define
the algebra ¥(X) as follows: -

C(X) = B(X)/B(X). (1.2)

%(X) is an algebra over C; its elements are called asymptotic equivalence
classes. The condition that the elements f and f' of #(X) belong to the
same class is

f — feBnX) VNeR,.
Clearly,
En(X) = Br(X)/B,(X) (1.3)

is an ideal in ¥(X) that shrinks as N grows:

() éx(X) = {0}. (1.4)

NeR,

Let f and f' € #(X ) with classes fand f” € €(X). To express the equiva-
lent relations

f - feBuX), [ — [ ebyX) where N < oo, (1.5)
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we shall write one of the following:
, 1 ~  x 1 . F 1
f=f1f modv—N, f=f mod;ﬁ, flef modﬁ. (1.6)

If | = dim X = 0, 4(X) is denoted €. Clearly ¢(X) is a subalgebra of
the algebra of functions X — €.

Thus an element f of #(X) has a restriction to any subset of X and a
support

Supp(f) = X. (L7)
Remark 1. Let F be an entire holomorphic function

F:C/ > C such that F(0) = 0;

for every f;ef; the F(f;,...,f;) are in the same class, denoted
F(fi,..., ) Thus¥f; € 4(X)(j = L,.. ., ) F(fy, ..., ;) e €(X).
Let F be a Holder function

F:C’ - C such that F(0) = 0.
We similarly define
F(fi,....f)e€ Yfie®, j=1,...,J

For example, if €%, then |f], Re f; and Im f are defined. [ €% is
real if Im f = 0; then f, (the positive part) and f_ are defined. /= =0
is written 0 < f and defines a partial ordering on Re®, the set of real
elements of ¢: let fand jeRe%; f> 0and § > Oimply f + g =0
and -G = 0; f2 = 0; f < 0 (that is, —f > 0) excludes f > 0 (that is,
0 < f # 0). However, f may satisfy neither f < O nor f > 0.

Let F be a Holder (and increasing) function
F:R > R such that F(0) = 0;

VfeRe% we have F(f)eRe% (the order relation on Re% being
preserved).

In particular we have the Schwarz inequality

<[z |zer|” e

Lfid;

J
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The differential operators with polynomial coefficients in (1/v, x) given
by

a=2a Vv, X, — o =4a V-5, X
v 0x v 0x

are clearly endomorphisms of Z(X ), Bn(X), €(X), and €y(X). They act
locally: the restriction of af to an open set Q in X only depends on the
restriction of £ to this open set:

Supp(af) = Supp(/).

As in §1,3, the differential operator

(ol D) — (w12
a=da *yoex] Ty ox’ .

is associated to the polynomial a® in (1/v, x, p) given by

1/ 0 #
0 _ PO A +
a®W, x,p) = [eXp v <ax, 6p>]a v, x, p)

= ex—l—i—a— a (v, p, x)
= | Py, ox’ dp > P

Integration is defined on €(X): if f € (X ), the function

(1.8)

Vi J f(v, x)d'x -

belongs to 4. Its asymptotic equivalence class, which depends only on
the class [ of f, is denoted

j fv, x)d'x e €;
X

fis called the asymptotic integral.
The scalar product (-|-) is a sesquilinear form on (X)) x %(X) with
values in % defined by

(L9 = J S, x)g(v, x)d'x,
X
where f e fe6(X), gege¥b(X); (1.9)
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g, x) is the complex conjugate of g(v, x); ¥ = —v. Thus

@ f) = (79)

The seminorm |- | is the function ¢(X) — € with values >0 defined by
| 712 = (L 1)

clearly

\F gl <171+ lgl IRl < If-ghine
LtemMMa 1.1, Sp,(/) forms a group of automorphisms of ¥(X) that are

unitary, that is, preserve seminorms and scalar products.

Proof. Let S;€ Spa(\Zsp, - Its definition in L§1 by the integral (1.10)
shows that S, transforms the asymptotic equivalence class f7 into the
class S, f' defined by the asymptotic integral

£ — lvl 2 [ VAE XV (™Y Al !
SafVx) = {5 A(A) | e (x)d X
X

This formula makes sense because multiplication by e*4, where vA is
purely imaginary, clearly preserves asymptotic equivalence. The S, act
on (X ), composition being the same as when they act on &(X). Now
they generate the group Sp,(1); thus this group acts on E(X).

Since Sp,(!) is unitary on & (X), it is unitary on €(X ).

Theorems 3.1 and 3.2 of L§1 and their corollaries give the following.

LEMMA 1.2. The transform SaS -1 of the differential operator a by
S € Sp,(l) is the differential operator associated to a® o s7; s denotes the
image of S in Sp(l); s acts on the space Z(l) of vectors (x, p).

LEmMa 1.3. A necessary and sufficient condition for the differential
operators a and b to be adjoint is that

b°(v, x, p) = a°(v, X, p)-
In particular, a is self-adjoint when a®(v, x, p) has real values for
vel, (x, pye Z(l).

S transforms adjoint operators into adjoint operators.
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2. Formal Numbers; Formal Functions

Theorem 2.2 connects the following definitions with the previous ones.
A formal number is a formal series

o
u= u(v) — le"q’j’
Ly @1
where J is a ﬁr}ite set, ;, € C, p;e R, and ¢; # @, ifj # k.

The expressmnl(ll) for a formal number is unique, by definition.

The set of formal numbers is a commutative algebra % for which the
addition and multiplication rules are obvious.

We give # the topology defined by the following neighborhood system
N (N, g) of the origin:

NeN, ceR,, ue /(N,¢e)means Y |o;,| <e Vr < N. -

jeJ
A formal function on X is a mapping u: X — % that can be put into
the form

o
u = u(v) = 2 ove;

,; r;z " . (2.2)
where J is a finite set, o;,: X - C, ¢;: X — R,and a;, and ¢; are infinitely
differentiable.

The mapping of u may be put in the form (2.2) in many ways at a point
where two of the ¢; are equal in a neighborhood of that point. The value
. of u(v) at x is denoted

o (x)
u(v, x) = it v x).
fg.l rg\l v ¢ (23)

Moreover, u(v) has a support
Suppu(v) = | JSuppa;,. (2.9
Ir

. The set Z(X) of formal functions on X is an algebra over %, which
fs commutative. The set of formal functions on X with compact support
is a subalgebra #,(X) of #(X).

The ¢; are called phases, the o; = Z,en(/V") amplitudes.
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L

The set #© [respectively, #°(X)] of elements of #
F (X )] with vanishing phase forms a subalgebra of # [respectively, # (X ]
Let Z denote a symplectic space with a 2-symplectic geometry, V a
lagrangian manifold in Z (1,§3,1 and 4), and V the universal covering of V.
A formal function Ug on V consists of

[respectively,

i.a2-frame Rof Z
ii. a mapping

U = Upl) = ¥ eonV = 7, 25)

where

@p is the phase of RV (1,83,2),
«,: V — Cis infinitely differentiable.

Clearly,

Supp Ug = {JSuppa, = V. 2.6)
Given R and V, the set of these formal functions Uy is a vector space
over Z°, denoted Z( ¥V, R); the set of those of its functions with compact
support is a subspace Fo(V; R).
We give (V, R) the topology defined by the following neighborhood
system A"(K, p, r, €) of the origin:

K is a compact setin V;p,reN, &€ R,;
Ug € (K, p, 1, &) means that the derivatives of the og (s < r)

of orders <p have modulus <é¢ on K.

>, denotes the apparent contour of V for the frame R (1§3,2). )M
denotes the apparent contour of V, that is, the set of points of V that
project onto Z. We shall deduce the properties of #(V\Zg, R) from
those of Zo(V\Eg, R). The latter will be deduced from the properties of
F,(X) using the morphism resulting from the composition of the two
morphisms that will be defined in theorems 2.1 and 2.2, respectively.

Notation. If ze Z and Rz = (x, p), then we write x = Ryz. The com-
position of the natural projection V — V and the restriction of Ry to V

is denoted Ry:V — X.
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THEOREM 2.1. There exists a natural morphism

Tg:Zo(V\Eg, R) = Fo(X) @2.7)
called thef projection. It is defined as follows. Let Ug € Z,(V\Er, R);
u = Uy is given by ,

u@,x) = Y. Ug( 2. (2.8)

zeRy'x
Remark 2. Tlg is a monomorphism if any period of @ is nonvanishing.

Proof . Formulfl (2.8) makes sense because Rx'x N Supp Uy is a finite
set, since Supp Uy is compact in V\E and Ry is a local homeomorphism
Vg — X.

THEOREM 2.2. There exists a natural monomorphism of the algebra ,(X)
into the algebra €(X ) that allows the convention '

Fo(X) = €(X). F(29)

It is defined as follows. Let

oA «
u= ;J rgfe”wfefo(X); ’ (2.10)
put
g = 3 S U] x X -C, @.11)
jed r=0 "V )

1°) There exist functions f € B(X)suchthat f — uy = 0 mod 1/v" VN.
_ 2°) All these functions belong to the same asymptotic equivalence class
fe%(X); the mapping u v f defines a natural morphism Zo(X) — €(X).
3°) This morphism is a monomorphism.

Proof of 1°). It suffices to consider the case in which (2.10) reduces to

u(v,x) =y %) ) (2.12)

reN vV r

For all g € #(X) vanishing outside a compact set of X we use the norm

, wherevel, xeX, |s|<r (2.13)

lgl. = Sup
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We choose an increasing sequence of numbers

0< po Sy S

81,2

such that

2|0, < g, limp, = 0, (2.14)
and we choose a sequence of continuous functions &g, €15 - - -- I1-R"
such that

0<es

g(v) =0 for vl < wys (2.15)
g(v) =1 for2p, < [v].

Now we define

S x) = 3 s 2o, 216

r=0

This series converges since, from (2.14), and (2.15),, the number of non-
zero terms is flnite on any bounded interval in the domain of definition

of v. In accordance with (2.11), we define
N-1

uN(v, x) = Z g"‘f_rx)e"(l‘(x)_
r=0

By (2.15)3, for 2,u.~ < ‘v‘,

110) = i Ol < 5 T‘f‘v,)loc,e““’{,.

r=N+1
Now (2.14),, (2.15),, and (2.15), imply
62 |e'?], <
Hence, for 2y < [v],

1 1 1 1

0 =~ il € % 3T = 2 2= D b

because 1 < |v|; thus

1
|f — uyly = 0 mod 5.

.17

(2.18)
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Let us prove a more general statement:
1
— =0 il
|f — unln mova VYM,NeN. (2.19)

If M < N, (2.19) follows from (2.18) and the fact tha i
, ' t || increases with
M.IfN < M, (2.19) follows from the relations " "

|f - uNIM < |f - uMlM + IuM - uNIM,
|f — upfy = O mod —lﬁ,and hence mod —
v vV

1 M-1
lupe — unlpe = 0 modv—N because up — Uy = 9, a—:e”“’.
r=N Y

Since the supports of f and of the uy b 1 Sapp o
ol v belong to Suppu = | jSa
which is compact, (2.19) implies krj PP %

lxq(f - uN)IM =0 mod—l VM, N, g€ N; a
VN > ’ q E)
‘ hence

feBX), f—uy=0 mod%.

Proof of 2°). If fand '€ ,@(X)gnd satisfy
f—uN=f’—uN=0mod;1ﬁ VN,
then

f—f'=0m0dLN VN.
- v

Proof of 3°). Assume

ay(v, x) =0 mod% VYNeN, VxelX.
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It has to be proved that
u(v,x) =0 Vxe X.

It suffices to consider the fdllowing case: u is a formal number. Assume
that in expression (2.1)

a, =0forr <N Viel;
then we have
AN vo. 1

Uy () = Y e =0 mod —+7 >

jeJ v
whence
lim Y, aje’® =0,
Vi jed
which implies
ay =0 vj.
Theorem 2.2 follows.

COROLLARY 2. Asymptotic integration, elements of Sp,(l), and differential
operators with polynomial coefficients are morphisms

FoX) > 6,  FoX) = CX),  FoX) FolX).

The end of this section describes the properties of these morphisms. We
use the following theoremin §2,3 to study the norm of lagrangian functions.

THEOREM 2.3. 1°) Let
u=y, LYY
reN ¥V
be a formal number with vanishing phase. The condition that it be real,

uecRe F9is

o, . e s

—Lis real, that is, i "o, is real Vr.
v

The condition u > 01is
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g .-
0 < el that is, i %o, > 0,

. where s is the first r such that o, # 0. Thus every u€ Re & 0 satisfies
either u > 0 or u < 0. Hence > defines an order relation on Re #°.
2°) The condition u'* € Re F° is equivalent to the following:

0. . . .
ne #°; u>0; the integer s (defined above) is even.
_ Notation. "2 may be chosen in two ways; we take u"/* > 0.

Proof. .Let u = X, no/v)e FO; let s be the first r such that «, # 0.
. Ifo,v™" is real valued for every r, the proof of theorem 2.2 constructs a
real-valued function f € u, so that u € Re # 0 Tt follows that

Reu = Y ReX, Imu= Y Im>.
v = Vv
Thus u € Re #° if and only if «,v™" is real for every r.

Let us study u*2. Since

a? d 1
2s mo y2s+L?

_ the assumption u'? € Re #° implies:
siseven, o/i® > 0, ue ReZ° (seeremark 1).

For the converse, it evidently suffices to prove the following:

is equivalent to the condition 3 = «, and to certain conditions giving
B, (for each r = 1, 2, ....) as a real linear function of o, and BB,
D<t<r).

Now 42 € Re #° implies u > O (see remark 1). Hence, if u € Re & 0
_then o,v* > 0 implies u > 0. Thus ue Re & 0 satisfies either u > 0 or



80 1141,3

3. Integration of Elements of &, X)

The essential properties of formal functions will be deduced from the
following theorem, which supplements some classical results (the method
of stationary phase). Its proof requires the use of lemmas 3.4 and 3.5in
place of the lemma of Marston Morse [12], by which a function with a
nondegenerate critical point is transformed locally into a quadratic form
by a change of coordinates. We briefly recall the other lemmas needed
for the proof of this theorem.
By corollary 2, gsymptotic integration is a morphism

J L Fo(X) > &.
X

Clearly,

j ulv, x)d'xe F
X

when the phases of u are all constant. Theorem 3 shows that

vi2 J‘ ulv, x)d'xe F
X

in the important case considered in corollary 3.

THEOREM 3. Let u € Fo(X).

1°) The value of Txu(v, x)d'x depends only on the restriction of utoan
arbitrarily small neighborhood of the set of critical points of the phases
of u; this value is O if this set is empty.

2°) Let
u) = ¥, Ze? e Fo(X), (3.1)
reN v

where ¢ has a single nondegenerate critical point xc on Suppu. Let ¢oc =
o(xc) be the critical value of @; argi¥? = nl/4 and /Hessc ¢ be the value
of JHess g at x¢ (1§1,definition 2.3). Then

1 2mi \* -12 1 . )p?Pc
u(v, x)d'x = (Hessc @) 2 ), 71,((p ; a)e’®s, (32
X

vl reN

where

ns1,3 81

Io(03 2) = ool 63
roo2e2s) 1 —y j
Moo= £ 8 e (e}
“(33),

®, ®*, and © have the following definitions.

Notation. The second-order Taylor expansion of ¢ at x¢ is written

o(x) = ¢c + Ox — xc) + Ox), (3.4)

_where © vanishes to third order at x¢ and @ is a quadratic form X — R;
@* is its “dual” form, that is,

;(D*( p) is the critical value of the function x — O(x) + <p, x). (3.5)

_fn other words, if M is the value of the matrix (@) at x¢, theni
O(x) = KMx,x),  ®*(p) = —5(p.M7'p), ;

. (3.6)

COROLLARY 3. Let u e Fo(X). If all the critical points of all the phases
f u are nondegenerate on Supp u, then

2J ulv, x)d'x e F; -
X

fe phases of v'/* ix ud'x are the critical values of the phases of u on Supp u.

1t clearly suffices to prove theorem 3 when u is replaced by a function
_given by

v, x) = ofx)e"®™), 3.7

here o € 2(X) (that is, « is infinitely differentiable and has compact
gupport). The theorem then results from the following lemmas, the first
which proves part 1 of the theorem.

L MMA 3.1. We denote by xc the critical points of ¢ belonging to Supp f.
. they are all nondegenerate, then

x(x)e**Wdlx mod LN
1%
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is a linear function of the values of the derivatives of a of order <2N at

the points xc.

Proof. This amounts to proving the following:
If o vanishes to order 2N at the points xc, then J- f dx =0 mod;lw.
X
(3.8)x

Now (3.8), is obvious. Suppose (3.8)y holds. If o vanishes to order
2(N + 1) at the points x¢, then there exist f; € 2 such that

B; vanishes to order 2N + 1at the points xc.

o= Zﬂj(»oxj7
J
Hence by (3.8)y,

J
xvj(?x

1 ; 1
j we’?d'x = —J —Z%ev“’d’x =0 mOdW’
X

which proves (3.8)y +1-
The next lemma is proved similarly.

LEMMA 3.2. Let a € #(X) (Schwartz space; see 1§1,1). Let @ be a non-
degenerate quadratic form X - R. Then

j a(x)e’®d'x modLN
X v

is a linear function of the values of the derivatives of & of order <2N at 0.

More explicit is the following.

LEMMA 3.3. Let o e #(X). Let @ be a nondegenerate quadratic form
X — R. Then

j a(x)e®=d'x

X

27i \¥? _ 1 0 1

P stadd H (I) 1/2 - krf d_
(M) [Hess @] reZN"!V'[(D (ax>a(x)]x=0 mod -5
Proof. We know (see 1,81, proof of lemma 2.2) that

j PR gy = 27[”—1/2 for ‘argyl < m/2.

83

Hence, by differentiating with respect to ,

p= V2 (2n)!

®
J‘ ere—yxl/de — o _
— o0 (2#) r!

_ 1 d?
— bl 1/2 % 2r
|| ongie )

o0

_ 2
sz'“e w2y =0 VreN
-0

Moreover,

Thus for any [ x [ diagonal complex matrix M with nonzero eigenvalues
- whose arguments € | —n/2, 7/2|, and for any polynomial P: X — C,

, J P(x)e~®Wdlx = 2n)?[Hess ®.] 2 [ P(x)], o, (3.9)
X

where R
O, (x) = $(M.x, x>, Wop) = 3p, M 'P>;

arg Hess @, is the sum of the arguments of the eigenvalues of ®.. More
xplicitly, we write

where vei[l, o] and ®, and @ are two quadratic forms X — R, in-
ependent of v; @, is positive definite; we assume @ is nondegenerate.
The assumption that the matrix M, is diagonal is superfluous because
change of coordinates reduces two such forms to
D, (x) =Y x3  ®(x)=Ycxj, wherec; # 0.
i i

: Let ¢ € 9(X) be such that g(x) = 1 for x near 0. Lemma 3.2 and (3.9)

sy \ 2
n) JS(X)P(X)EVQ(")_@*(X)d‘x

1 —1/2 1
Hess{® — ;(I)+>:l [e¥@)P(x)],_, mod— ;
2 VOO >

irg Hess(® — (1/v)®, ) is the sum of the arguments of the eigenvalues

(3.10)
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of ® — (1/»)®, , which belong to 10, n]. The argument of —v=|v|/i
is —m/2. The right-hand side is a function of 1/v, which is holomorphic
for 1/v = 0. Hence, mod 1/v®, it is an element of % whose limit, when @,

vanishes, is
[Hess @]~ 12 [e/M®"@29) P(x)],_o mod %
v

from the Taylor series of this function; arg Hess ® is given by L§1, defini-
tion 2.3. Thus, mod 1/v®, the left-hand side of (3.10) is an element of &
by lemma 3.2, its limit, when @, vanishes, is

(M)Uz J e(x)P(x)e"®¥d'x.

2ni
Thus

J e(x)P(x)e"®¥d'x
X

2mi\"? « i
= (—) [Hess @]~ 12 [eMP@PP(x)], _o modF; (3.11)

Iv]
lemma 3.3 follows by approximating « at the origin by its partial Taylor
series P and applying lemma 3.2.

Lemma 3.3 proves part 2 of theorem 3 in the particular case where
the phase @ is a quadratic form ®. The general case is deduced from this
special case by applying the following lemma to the remainder of a partial
Taylor series. The proof of the lemma is analogous to that of lemma 3.1.

LEMMA 3.4. Let
010, 1], xe X.
Let

a:(0, x) > aff, x) e C

be infinitely differentiable with compact support, vanishing to order 2N
when x vanishes. Let

@8, x)— o0, x)eR

be infinitely differentiable and such that on Suppa, for every 0,
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@:x — (0, x) has only one critical point, which occurs at the origin and
is nondegenerate. Then

i
Vi X, 1
J:) do Loc(@, x)e" @9 qlx = 0 mod;ﬁ. (3.12)

From this lemma we deduce the following.

LEMMA 3.5. Letg@:X — Rbeinfinitely differentiable with only one critical
point, which occurs at the origin and is nondegenerate, and critical value
Zero:

90) =0,
Let

@, (0) =0, Hess @(0) # 0.

o(x) = O(x) + Ox)

_be its second-order Taylor expansion at the origin: @ is a quadratic form;
® vanishes to third order at the origin.

Let : X — C be infinitely differentiable, with support that is compact.
Then

© J .
j a(x)e'?@dlx = Y l' J Ol (x)a(x)e"®™ d'x mod - . (3.13)
X j=0J: Jx ve
This series converges in Z since, by lemma 3.3,
v’f Oi(x)a(x)e*®? d'x = 0 mod v~ 2~ 1U+1/2]
x
where [ - - -] denotes the integer part of - - -, that is, the greatest integer
< oo .
'Proof . By (3.12) and Taylor’s formula,
2N-1 j@j 1 1 — 021‘1—1
P — v h evd) + VZN ( ) ®2N (P +00)
2 il i N ~ DT e do. (3.14)
Lemma 3.4 gives
1
N j d'x J (1 — 0P 1O (x)a(x)e'® 99 dg = 0 modiN (3.15)
X (1] v

since ®2" vanishes to order 6N at the origin. When N tends to infinity,
(3.14) and (3.15) imply (3.13).
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Proof of theorem 3,2°). We may replace u by a function f given by
(3.7); @ has a single critical point that is nondegenerate. We may assume
that this critical point is the origin and the critical value is zero. Then by

(3.13) and lemma 3.3,

a(x)e"?™ d'x

X
AN B 1 L0 . 1
= (ﬁ) (Hess @) 1/2§W{@* (5;> [®J(x)cx(x)]}x=o modF,
(3.16)

where r, j € N. Denote the exponent of v by g = r — j. Since Ox)=10
mod |x|3, the condition {- - Y=o # 0 implies 3j < 2r, that isj < 2q. Let

o 24 __i__ warif O J ;
I(p;a) = ,;o PRI {CD <ax> [® (x)oc(x)]}xzo,

in particular,
Iole; o) = a(0).

Now (3.16) can be written

A2
J 2(x)e"? dix = <2—”5> (Hess @) T o1,(9: ),
X geN

i
whence part 2 of the theorem follows.
4. Transformation of Formal Functions by Elements of Sp, (/)
Each S € Sp,(!) induces an automorphism
S €(X) - ¥(X)
(see section 1) whose restriction to
Fo(X) = €(X) (theorem 2.2)
is a monomorphism:
S: Fo(X) —» €(X).

Theorems 4.1, 4.2, and 4.3 develop the properties of this monomorphism.

@.1)

THEOREM 4.1. Let Z be a 2-symplectic space, V a lagrangian manifold in
Z. R’ a 2-frame of Z, and

1,4
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S eSp,M);

R = SR’ is then a 2-frame of Z (1,§3,3).

1°) There exists an isomorphism, induced by S and denoted S,
$:F(V\Eg U Zg, R) - Fo(V\Eg U Zg, R), (4.2)
characterized by the two following properties:

1. It is local. That is, if

Up € Zo(W\Eg U Eg, R),  Ug = SUg € F(V\Eg U Eg., R),

thetz Ur(v, %), the value of Ug at e V is a linear function of the values
of Ug. and its derivatives at the same point Z.
1. The following diagram is commutative:

Fo(V\Eg U Zg, R) S Fo(V\Eg U Zg, R) 4.2)

Fo(X) ————%(X) @.1)

It thus defines a morphism

Sollg = Mzo0S: Z(V\Eg U i, R) > FH(X). ) (4.3)

7 2°) The composition law of the morphisms (4.1) and (4.2} is that of Sp,(0).
Remark 4. The restriction of (4.1),

$: g Zy(V\Eg U Sp, R) > M Z(V\Eg U g, R) © Fo(X), 4.4)

15 thus an isomorphism. While (4.2) is local, (4.4) is not local, but only

pointwise: If
¥ e g Fy(V\Eg U Zp., R), u=Su,

then. the value u(v, x) at x € X is a linear function of the values of u’
and its derivatives at the points of the finite set RyRx'x n Suppu/’.

The local character of the morphism (4.2) is made explicit as follows.

THEOREM 4.2. Let

1 . . = .
Up = Y, e e F(P\Eg  Ex, R). 4.5)
reN
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Ug = SUg € Fo(MEg v e R, where R = SR/,

is given at £ by

_ dlxr 3r+1/2 1 . ¢

Ug(v, 2) = ,;Q(W) > T (F; 2)e*er®, 4.6)
where

x = RyZ, x' = R%Z, @&.7)

[d'x]"? is defined in 1§3,corollary 3.

Jr,, is a linear function of the derivatives of the a (s < r)of order <2(r — )
on V. Its coefficients are infinitely differentiable functions of Z¢€ 1720
these functions depend on V,R',and S.

Jr.olZ, ) = 29(2) (4.8)

Formula (4.6) retains a meaning for all Up e & (V\Zg,R) and Z €
\Eg U Eg ; therefore the following theorem results from the preceding
one.

THEOREM 4.3. Formula (4.6) defines an isomorphism induced by S and
denoted S:

S: F(NEg U Se, R) = F(V\Eg U Zg, R). 4.9)
The composition law of these isomorphisms is that of the group Sp (D).

Proof of the preceding theorems. Let Ug € Fy(V\ER U 3x, R) be such
that the restriction

R, :Supp Up —» X of Ry:V — X

is a diffeomorphism, with inverse denoted Ry .
The case S ¢ Zsp, Then S = S, (L§1,1). Let Uy be expressed by (4.5);

ll’ = HR'L\er

is given at x' by

W, x) =Y, ~1—roc’,(x’)e”“"("'), (4.10)
reN vV

where
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(x) = o (Ry'x),  ¢'(x) = @p(Ry 'x') for x’ € Suppu/,
«(x') = 0 for x' ¢ Suppu’ = Ry Supp Ug..

Since u' € Fo(X) = ¥(X), we have u = Su' € ¥(X). By 1,§1,(1.10), we
have the following expression for u at x:

2
u(v, x) = (%) A(4) j T L y)etasnowghy (@.11)
X

reN

We apply theorem 3 to this asymptotic integral.
i. For each x € X let us find the critical points of the phase

X3 x> Alx, x) + ¢'(x)eR (4.12)
: m Supp u’; that is, the x" € Supp v’ such that

A, + ¢, =0. ~ (4.13)
Let us write

5= Ry, RZ=(,p);thatis,p = @x € X* (4.14)
_ Relation (4.13) becomes i

p+ A, =0

By 1,§1,(1.11), this means that there exists p € X* such that

(x, p) = s4(x", P). -

Thus (4.13) is equivalent to

x = RyR™x, p) = RyR' ~(x, p).

By (4.14) this says that (4.13) is equivalent to

x = RyZ.

Therefore, on Supp ' the critical points of the phase (4.12) are the points
x"'= Rz, where z € Ry'x n Supp Ug.. 4.15)

This set is finite since Supp Uy. is a compact set in ¥\Z and Ry is a local
diffeomorphism in a neighborhood of this compact set.

ii. Let us find the critical values of the phase (4.12). At a critical point
X' defined by (4.15), let
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R =(x,p), Ri=(,p)
from the preceding formulas,
p = Ay, p = —Ax-

Hence, since A is a quadratic form in (x, x"),
Alx, x') = 5p, x> — 3P’ XD,

that is, in view of 1,§3,(2.4),

A(x, X') = @g(2) — Pr(2), Where @p(Z) = ¢'(x).

Therefore at the critical point X' defined by (4.15), the value of the phase

(4.12) is @g(2).
iii. The square root of the Hessian of this phase (4.12) is given by L83,

3.7

1/2

{Hess,.[4(x, X} + @' (X} = A4) [j—:x)i'] . 4.16)

While calculating Hess,., x and x’ are viewed as independent. Afterwards
we give x and x’ the values x = RyZ and x' = RZ so that x and x are
local coordinates of the same point Z € V\Eg U Zg.. Taking these values
for x and x' in the right-hand side, it follows from (4.16) that

Hess,.[A(x, x) + ¢'(x)] # 0.

Consequently theorem 3 can be applied to the calculation of (4.11).
iv. Completion of the proof. This application of theorem 3 to (4.11) gives

ulv,x) = Y, Ug(y, 3, @4.17)

seRy'x
where:

« Uy has the same support as Ug:;
« defining x = RyZ and x' = RYZ, the value of Ug at Zis

Ugly, 2) = MA)[Hess (4 + )] Y, vl— (A + @) ed. (4.18)
reN

Now on one hand, (4.17) means
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but on the other hand, by (4.16), (4.18) is equivalent to (4.6). Indeed, by
(3.3),, (4 + ¢'; &) is the value of a linear function of the derivatives of
the oi(s < r) of order <2(r — s); the coefficients of this function are
rational functions of the derivatives of ¢’; the common denominator of
these rational functions is [Hess,.(4 + ¢')]*, whose value is given by
(4.16).

Thus theorems 4.1 and 4.2 hold for S, € Sp,(I\Zgp,-

The case where S € g, . By 1§1,Jlemma 2.5, given SelXg, there exist
S, and S 4. € Sp,(I\Zsp, such that

S =S,S,

Since the morphisms (4.1) and (4.2) are composed like the elements of
& Sp,(!) that induce them, the compositions of the morphisms induced by

S,and S, degend only on § = S,.S; these are then morphisms induced
by S. Given Upg. such that Supp Uy = V\Eg U Egg., we can choose S,
sufficiently close to the identity so that £g z ~ Supp Ug = &, whence
follow theorems 4.1 and 4.2, which imply theorem 4.3.

5. Norm and Scalar Product of Formal Functions with Compact Support

 Let V and V' be two lagrangian manifolds in Z, V and V' tile{r universal
covering spaces, R a 2-frame of Z, ¢y and ¢} the phases of RV and RV,
_rand ' the lagrangian phases of V and V. Let

o 1 o
Ug = 3, —ag,e"% e Fo(V\EZ, R),
reN V :

(5.1)

1, o
R = 2 ¥Rs€"ke Fo(V\ZR, R),
seN V ’

u = MiUk.

Under assumption (5.1) the scalar product of Uy and
U, is the asymptotic class

(Ur|Up) = wlu) e, (5.2)
where (u|u’) is defined by the asymptotic integral (1.9). Thus

(_ﬁR | Uy)and (Uy | U,) are complex conjugates and the Schwarz inequality
applies:
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(U] U] < (Un] Un) (U] UR) (53)
The seminorm of Ug is (URT Up)¥? = |u| = 0; this seminorm satisfies

the triangle inequality.

THEOREM 5.1. 1°) The value of (ljR| U%) depends only on the behavior
of Uy and Uy, at the pairs of points of V and V' projecting onto the same
point of V .~ V'. This value is 0 ifvanVv =d.

2°)If V = V', which implies pr = @R, then

(Ur| UR)

-y J St (e DOV dIx € F, (54)
rs ¥ ey BE

where:

e x = Ryz,d'x > 0; 5
e % and ¥ are the points of Supp Uy and Supp Uy projecting onto z.
In (5.4), y(2) — Y() is one of the periods of Y:

c, = % j [z, dz], where y is a cycle in V.
Y
Thus the phases of (U] Uy) are these periods c, of Y.
3°) If V and V' are transverse, then
V(U | U e #. (5.5)

If V and V' are transverse and intersect at a single point z that is the pro-
jection of a single point Z of Supp Uy and a single point ' of Supp Ug, then

A
(%) (Ur| UR)
_ Z %[Hess((p _ (p')”""—”ZP,(OCR, ak)ev[lﬁ(é)—ll/(i’)]’ (5.6)

reN
where
« @ and @' are defined near Rxz by 5
o(x) = PrRx'x 0 V), 9'(x) = @r(Rx'x 0 V');
« Hess(g — ¢) = {Hess,[o(x) — @'(X)]}x=r,:;
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« P, is a sesquilinear function of the values of the derivatives of o  and
o (s < r)oforder <2r — s)at Z and 7'
« the coefficients of this function depend on the behavior of V and V' at z;
¢ Pylog, 0r) = og,o(Z)og, ofZ)- (5.7
4°) [Invariance under Sp 2(0]. Let S € Sp,(l). Under the assumption
ﬁn € -970(‘7\21{ U Zsx» R), ﬁk € &—O(V'\i}e e ilsxa R),
_ which is stronger than (5.1), we have

(Ux] Uz) = (SUR|STR) (58)
Proof of 1°),2°), and 3°). u and u’ can be written in the form

1
u(v, x) = ¥ 0, x)e'®™, where vj(v, x) = Y, —v;(x);
jeJ reN V

, 1,
d'(v,x) = Y (v, x)e" ™, where vi(v, x) = Y = v (x);
kek reN

J and K are finite sets. By part 1 of theorem 3,

ww) = J u(v, x)u' (v, x)d'x
X

depends only on the behavior of the pairs v;e"®, vi.e"% at the critical
points of @; — ¢y, that is, at the points
x € X such that @; , = @ -
In other words, (l)’RI Uy) depends only on the behavior of Ug and U
at pairs of points (2, #) e V x V' such that
Ri = R = (x, 9;5) = (x, Ph..)
These pairs are the pairs of points of ¥ x V' projecting onto a single
_point z of ¥V~ V'. 1°) and 2°) follow, as does 3°), by (3.2) and (3.3).

Proof of 4°). Lemma 1.1 and part 1 of theorem 4.1.

The invariance of (Ug|Ug) under Sp,(!) stated in part 4 of theorem
5.1 raises the following problem: to give invariant expressions of the
_ right-hand sides of (5.4) and (5.6). Theorems 5.2 and 5.3 will give such
expressions mod(1/v).
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Notation. Let n and ' be regular positive measures on Vand V'; we
define

argn = argy’ = 0.

We assume V and V' are both given 2-orientations: If Ze V, x = Ry?,
then

g s 1
ﬂl;_xz_) = d—rlxisa function V —» R

vanishing on £, whose argument is given by L, §3, corollary 3:

i > -
arg‘-i%—x—z) = nmg(Z) mod 4.

We define f,:V — C by

up = 1/2 .
Bold) = [i%’ﬂ] dg o(2), where Ze V. 59)

Definition 5.2. From formulas (4.6) and (4.8) of theorem 42, By 1s
invariant when we replace R by SR without changing V; B, is called
the lagrangian amplitude of Ug. This amplitude depends on the choice
of the measure 7 and the 2-orientation of V.

Substituting the expression (5.9) for ag o and oy o into (5.4), we obtain
the following.

THEOREM 5.2. Suppose V = V', whichimplies § = V'; let By and B denote
the lagrangian amplitudes of Uy and Ug. Then

AR I mod (5.10)
eV LY

where # and #' are the points of Supp Uy and Supp Uy, projecting onto z.

Notation. (Continued) Let ¢ and y’ be the lagrangian phases of V
and V' [1,§3,(1.7)]. We make the same assumptions as in part 3 of theorem
5.1. Let A, and A, € A (Z) be tangent to the 2-oriented manifolds V
and V' at # and #, respectively; let 2 and 1’ be their natural images in
A(Z). Let 1, (and 7,) be the measure on 4 (and 1') that is translation
invariant and equal to n (and ) at Z (and ). V and V' are assumed trans-
verse (as in part 3 of theorem 5.1); thus
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Z=L@41; Mo A 1o is a measure on Z. (5.11)
By (5.1) and part 1 of theorem 5.1, the two sides of (5.6) are zero unless

we assume

seV\Eg, 2 eV\Eg, (5.12)

R4 and RA are transverse to X *.

Substituting the expression (5.9) for ag o and o o into (5.6) we obtain,
under assumption (5.12),

vz .
(L oo

= [Hess(p — ¢)] ™' i BT TP g ve-ven
¢ ¢ dt(Rva) d’(RX.%') Bo(D)fu(2)e

1 s
mod . (5.13)

{ emma 5 transforms this formula into the following.

THEOREM 5.3. If V and V' are each given a 2-orientation, are transverse,
_and intersect only at a point z that is the projection of a single point Z of
Supp Ug and of a single point ' of Supp Uy, then

v\ -
(%) (Ux| Ur)

s 1172
’1 A Ay 5 — ' ()] —(mi ] 1
o~ | ™ ) Ee v~V N - mod
v

-

(5.14)

where m is the Maslov index, defined mod 4 (1§3,3) and no A 1o and d*'z
are the measures on Z defined, respectively, by (5.11) and (5.15).

LEMMA 5. 1°) The symplectic structure of Z defines a measure on Z that
is invariant under translations and under Sp(Z):

1
z = ~l—!(dx A dp) = (=124l A d'p, (5.15)
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1
Rz = (x,p), dxndp= Y, dax) A dp;;
i=1

1

{x} and {p;} are dual coordinates on X and X*.
2°) Under assumption (5.12), with the notation (5.9),

d'(Ry2) d'(RyZ) d¥z
Hess(g — ) 22X S22 = | ——= 1, (5.16)
¢ @ n ] Ho N Mo
up NAUR. Y
arg[Hess(q) — (p’)éﬁfllz—) d—g;%‘ﬁ] = mm(X,, A4) mod4r. (5.17)

Proof of 1°). The value of dp A dx on a pair of vectors z, z'is [z, 2"}

Proof of (5.16). Since R’ and R are lagrangian and transverse to X*

by (5.12), their equations have the form
Ri:p = @ (x), RX:p = Dix), (5.18)

where ® and @' are two quadratic forms X — R.Since A and A’ are trans-
verse,

Hess(® — @) # 0.

By (5.11), each ze Z decomposes uniquely as the sum of a vector in
) and a vector in A":

Rz = (x + x, @.(x) + ®,.(x)) e Z(),
where x and x’ € X are unique. It follows by (5.15) that
d¥z = (=124 x + x'] A d[@x) + @.(x")]
= (— 12 x + x] A d[0Lx) — Dx)]
= (—1)¢*V2 Hess(® — @)d'x A d'x’
d'(Rx{)d'(Rx{)

B ’10 A ,1’0’
fo 0

= (=112 Hess(@ — @)
where { € A, {’ € A; hence (5.16) follows.
Proof of (5.17). By definition [L§3,corollary 3,(3.2) and 3.3)]

D v
argd_(l_;ﬁ_) — mmg() = nm(X %, RA,) mod4m;

1,5-
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thus
uUp s I
m(Ay, Ag) — afg%ﬂ) + arg&Rf‘z—)
4

= mm(%y, Ay) — nm(X %, RA,) + m(X%, R4y)
= sInert(X*, R4, RA) moddn

by I,§2,(8.2). Then, by the definition of argHess [L§1,(2.1)], to prove
(5.17) it suffices to show that

Inert(® — @) = Inert(X*, RA, RA). (5.19)
Proof of (5.19). Let us write down the equations of RA, R4, and X*:
Ri:p = @ (x), RA:p = @.(x'), X*:x" =0

The definition of Inert (,§2,4) makes use of i
ze R4, zZ € RA, z”e X*suchthatz + z/ + z7 = 0.

Define

z=(x,p, Z=(.p) =",

hence

x+x1=0, x//=0, p+pr+p//___0’

[2”7 Z] = <p”’ x> = _<P, X> —"< P', x>

= —(@,(x), x) + {Di(x), x> = 20'(x) — 2®(x).
Consequently,

Inert(RA, RA', X*) = Inert(® — @).

;(5.19) follows by 1,§2,(4.4) and L§1,definition 2.3, of the inertia of a form.
6. Formal Differential Operators

. Definition 6.1. Let Q be an open set in Z. Let # %(Q) denote the set of
ormal functions with vanishing phase

1
= Z L (6.1)
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such that the
o,: Q- C

are infinitely differentiable. We give the vector space F °(Q) the topology
defined by the following system of neighborhoods (K, p, 7, &) of the
origin:

K iscompactinQ; pre N, ceR,;

a® e & (K, p, r, €) means that on K the derivatives of a (s < r) of order
< p have modulus <e.
Let us say that a° is a polynomial if

(v, 2) — a°(v, 2)

is a polynomial in 1/v and in the 2] coordinates of z. By the Weierstrass
theorem the set of polynomials in # °(Z) is dense in & %(Q).

F°(Q(1)) is defined similarly by replacing Q by a domain Qof Z(I) =
X®X*

Every 1-frame R of Z (hence, a fortiori, every 2-frame R) induces an
isomorphism

FOQ) 5 ar al e FQ(), where Q) = RQ,

defined by the formula

a®(v, z) = ag(v, Rz) Yy, z. 6.2)
The formulas (3.4) L§1,

1/0 0
a; (V, X, p) = [exp'i_v <&$ 5;>] a%(va.x, P),

_ 1 /0 0
ag{v, p, x) = [exp -5 <§’ %>:| a%(v, x, p)

define two automorphisms of & %(Z()) that are inverse to each other:

6.3)

ay—ag,  ax— g

Definition 6.2 of formal differential operators rests on the following
lemma.
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LEMMA 6.1. Let

u=o0e%ecF(X),wherea = Y, L,oc,. (6.4)
reN

At a critical point x of the phase ¢ we have

1oV 1
(; a‘x) u(v,x) =0 mOdW'

Proof. Tt suffices to consider the case o = a,. Then at a critical point
of o,

1ey 1P % (i ..
S % u = W we'? (h is a multi-index),

where P, is a polynomial in the derivatives of a of order € [0; |h|] and
in the derivatives of ve of order ¢ [2, K] (since ¢, = 0). Each monomial
in P, is a product of derivatives whose orders sum to |h|. Hence the power
of v in such a monomial is <|h|/2. The lemma follows. '

Definition 6.2. Let

Oy, x) = p(x) — o(y) — <P, (¥, x — ¥ T (65)

denote the remainder of the first-order Taylor series of the phase ¢ of
(6.4) at the point y. To an element a® of #°(Q) and to a frame R, let us
associate the local endomorphism ag of # (X) and %,(X), called a formal
differential operator, defined by the two equivalent formulas

Aagu)(v, )
_— 1 alh’a+ 1 6 h v X, i
= ;m {—"f(v’ x, p) (ﬁ;) [o(v, x)e Oy, )]} 2"ow

0 x=v
p=o,(»)

1 1 0\ oMag ®
— — vO(y,x) vo(y)
;h!{<vax> [ oy 5 P X x)e ]}m eV, (66)

p=0,0)

By lemma 6.1, each of these two formulas makes sense when
y, 9,) € Q(l): we say that ag is defined on Q) = RQ.

Proof of the equivalence of these two formulas. Leibniz’s formula gives
(compare L§1,proof of lemma 3.1)
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1 /1 8\ o™Maz (v, p, x)
([t

[2j+kl ,— k
_y L e px) (103, 4
Sk

jlk! (@pY*THvoxy \vox
w1 Magv, x,p)(1 0 k
e T S
because

t &gz (v, p, 1t/ @ -
;']_“F;%((v%i—);;_) = [CXP;<5, 'a_p>]aR (V, D, x) = a; (V, X, p)

Justification of definition 6.2. Let us show that it is equivalent to the defi-
nition in section 1 when a° is a polynomial, that is, when ag is a classical
differential operator with polynomial coefficients in (1/v, x). In this case
(6.6) means

(aRU)(V, x) = {a; (V, X, p -+ l—a—) [u(v, x)e—"@,x—y)]} .
v 0x p=x
P=@x

Now

1
ag (", x,p+ %%) [u(v, x)e VpxTY] = e VXM (v, X, ;6%) u(v, x).

Then, taking a* (v, x, 0v/0x) = a” (v, dv/éx, x) in the sense of section 1,
we have

@), = ai (v 35 L Va2 = ax (v 22, x Jutw, ).
v Ox v 0x

Notation. Denote

(o L Vo) — a0 10
(agu)(v, x) = ag (v, X, oo Julnx) = ar V. U5 X u(v, x).
Definition 63. Let V < Q, a® € #°(Q). Let ag denote the unique local
endomorphism of Fo(V\Eg, R) such that
agllx = Myag. (6.7)

ag, being local, extends to an endomorphism of & (V\Zg, R), which has
the following properties.
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THEOREM 6. 1°} The formal differential operator ag is local (in the sense
of part 1 of theorem 4.1); hence

Supp(agUg) = Supp Ug » Supp(a®).
2°) The mapping
FoUQ) x F(V\Eg, R) 3 (ag., Ug) — agUg € F(V\Zr, R) (6.8)

is continuous.
3°) Each S € Sp,(l) transforms ay into an operator

asg = SaRS_ 1
defined as follows:
asz(SUR) = S(agUy) for all Uge F (NEg U Zsg, R).

ag and its transform asg are associated to the same function a®, which
satisfies 5

%W, z) = a%(v, Rz) = ax(v, SR2) Vv, x.

(6.9)

4°) The formal differential operators ag and by are adjoint, that is,(

(@rUg, Up) = (Ug, bgU%) ~ VUg, Uk,
if and only if
v, 2) = a®(v, z) Vv, z -

5°) If ag and by are two differential operators associated to elements a®
and b° of FO(Z), then their composition cg = ag © by is associated to the
element c° of #°(Z) defined by the formula

1/0
= {[exp - E<a—z“, %>:I [ao(vv Z)bo(v’ Z’)]}z=z';

ol_/jo aN_[o ¢
! ox’ op' ox’ ép/’

vhere Rz = (x, p), Rz’ = (X', p), is clearly independent of R.

(6.10)

(6.11)

emark 6. ¢® = a’ob® + (1/2v)(@° b°) mod(1/v?), (-,-) being the
oisson bracket; see 11,§3,(3.14).
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Proof of 1°). The definition of ag.

Proof of 2°). Usethe definition of ag and the definitions of the topologies
of #°(Q) (section 6) and of # (V\Eg, R) (section 2).

Proof of 3°),4°), and 5°). Apply L§l (theorem 3.1, theorem 3.2, and
lemma 3.2) to the special case in which a° is a polynomial. This special
case implies the general case, since (6.8) is continuous and the polynomials
are everywhere dense in & Q).

Corollaries 3.1 (adjoint of an operator) and 3.2 (self-adjoint operator)
of 1.§1 clearly apply to formal differential operators.

7. Formal Distributions

In sections 1 and 2, it is not possible to replace & (X) by &'(X): the proof
of theorem 2.2 breaks down because &'(X), unlike & (X), does not have
a countable fundamental system of neighborhoods of 0.

Definition 7.1. The algebra D (V\Eg, R) is the set of functions
fiV\Eg - C

that are infinitely differentiable and compactly supported. x = RyZ is
used as a local coordinate on V\Ep.

Given a compact set K of V\E; and a positive number b, for every

l-index r, we let
a r
— b Y.

The subsets of these B(K, {b,}) are by definition the bounded sets of
2(V\Eg, R).

Supp f < K,

B(K, {b,}) = {fe@(V\iR, R)

Definition 7.2.  The vector space 2'(V\Eg, R) is the set of linear mappings
f:2(V\Eg, R) > C
that are bounded on each bounded set of 2.

These f are distributions; they have supports and derivatives of all
orders with respect to x = Ry#; these derivatives are distributions. We
make the convention 2 « @'; @' is a vector space over the algebra 2.
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The value of ' € 2’ at f € 9@ is denoted

f'(2)f()d'x, where x = RyZ.

_ js defined on &’ by the requirement that it be self-adjoint:

7 1 5 , v_ ool 1> 1 a v
L [;iTx f (z)_ fGd'x = J f (z)[;g;cf (Z)]d'x.

V
Given a bounded set B in 2(V\Zg, R), we let

< 0.

[@fedx
N ;;
The topology of 2'(V\Zg, R) is defined by the following fundamental
system of neighborhoods of 0, each depending on a bounded set B of
% and on a number ¢ > 0:

A'(B,e) = {f'||f']s < &).

The f’ with compact support form a subspace &, of &' that clearly is
dense in 2. It can be proved (as in L. Schwartz [13], chapter VI, §4,
theorem IV, theorem X1 and its comment) that & is dense in 2, and thus

fIIB = Sup
feB

G(V\Eg, R)is dense in Z'(V\Zg, R).
Definition 7.3. A formal distribution U’ on V consists of
a2-frame R of Z,
ii. aformal series
a/
- 3 Be
reN VY

where @y is the phase of RV and «;, € 9'(V\Eg, R).

upp Uz = | Suppo, = V.



104 11,§1,7-11,§2,0

The set of formal distributions Uz on V forms a vector space
F'(V\Eg, R). Its topology is defined by the following fundamental
system of neighborhoods of 0, each depending on a bounded set B of
2(V\Eg, R) and on two numbers ¢ > O, N > 0:

N'(B, e, N) = {Ug|los|s < eforr < N}.
Clearly
Fo(V\Eg, R) is dense in F'(V\Eg, R).

By (4.6), the isomorphism (4.9) defined by S = RR’™! e Sp,(I) extends to
an isomorphism

S:F' (NEg U Ep, R) > F'(V\Eg U Zg, R)

that is continuous and local. Similarly, by (6.6), the formal differential
operator ay extends to an endomorphism

ag: F'(V\Eg, R) = F'(V\Eg, R)

that is continuous and local and satisfies theorem 6.

The scalar product of Uy and Uy, a formal function and distribution
on the same V\Eg, is defined by formula (5.4) of theorem 5.1 when
Supp Ug M Supp U}, is compact; it is invariant under Sp,(I) (part 4 of
theorem 5.1) and satisfies theorem 5.2.

§2. Lagrangian Analysis

0. Summary

Synthesizing the properties of formal functions and formal differential
operators from §1, we define and study lagrangian operators, lagrangian
functions and distributions, and their scalar products in §2. These three
notions make up the structure called lagrangian analysis.

In section 1, we define lagrangian operators and study their inverses.

In section 2, we define lagrangian functions on the covering space 4
of a lagrangian manifold V; their scalar product (- | -) is defined when
their supports are compact.

This makes it possible to define lagrangian functions on V in section 3;
their scalar product is defined when the intersection of their support is
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compact; section 3 requires the datum of a number vy €10, 0[; it uses
the “restriction” of v to the value v, in the expressions Uy of a formal
function U.

This process of defining lagrangian functions on V has a theoretical
 justification, which is the possibility of defining their scalar product (- [),
and a pragmatic justification, namely, the process of many “approximate
calculations.” An example is quantum physics, where 2ni/h plays the role
of our variable v € i[1, |, h being Planck’s constant; here h is taken to
be infinitely small without comparing the orders of magnitude of the
gumerical values taken by the terms coming into play when h is given its
physical value; h is given this physical value after completing the calcula-
tions in which A is assumed to be infinitely small. Another historical
example is celestial mechanics; H. Poincaré has elucidated how such a
process is an approximate calculation capable of predicting celestial
phenomena with extreme precision using divergent series in which
ultimately only the first terms have to be retained. V. P. Maslov wants to
_ obtain “asymptotics” by the same process, that is, by making approximate
calculations. In chapter 111, we shall apply this process to cases in which it
is.certainly not an approximate calculation, and we shall recover numerical
results that are in agreement with experimental results. Therefore, to make
_this process coherent is “a problem that poses itself and not a problem that
_ one poses” in the sense that H. Poincaré meant it.

1. Lagrangian Operators

o

Let Z be a symplectic space and © an open set in Z.

Definition 1.1. Let a® € # °(Q) (1L§1,definition 6.1). Let

4 10 _ 10
aR—_—aR V,x,;a = dg V,;a,x

e the formal differential operator associated to a° and to the 1-frame
R (IL§1,definition 6.2). The lagrangian operator associated to a® is the
collection a = {ag} of these formal differential operators ag (a° given;
arbitrary); ag is called the expression of a in the frame R.

Theorem 2.3 will justify this terminology.
We say that a is defined on Q. We define

Supp(a) = Supp(a®).
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If
av,z) = ceC Vv, z,
then a is denoted
a=c
Formula (2.9) will justify the following definition.

Definition 1.2. Two lagrangian operators a and b associated to a° and
b° € Z °(Q) are adjoint when

Bo(v, z) = a®(v,z) W, z}

equivalently, by [1,§1,theorem 6,4°), a and b are adjoint when ap and
by are adjoint for every R.

Notation. The adjoint of a is denoted a*.

_ Formula (1.2) and the resulting formula (2.2) will justify the following
definition.

Definition 1.3. The composition a® 0 b° of a® and b° € F°(Q) is given by

(@ 0 by, 2) = {(exp —%[aiz %D / (v, 2)- b0, 2)}amer

where [Q, —‘l,] is defined by TL§1,(6.11). (i.1)
0z 0z

The composition a o b of the lagrangian operators a and b is the lagrangian
operator associated to a® o b°.

By part 5 of IL§1,theorem 6,
(aOb)R = aRObR. (12)

Since composition of the ag is associative, composition of the a® and
composition of the a are associative. It is easy to verify this directly by
observing that (1.1) implies

(a® o b° 0 (v, 2)

e —L[2 2] _ L8 2 _1le 9
= \\XP ~5l 557 | T 2v| a6z | 2v| 827 o

-a®(v, 2) b°(v, 2) - °(v, 2} o=z = (1.3)
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This formula easily extends to the composition of any number of elements
of F°(Q).
Clearly

Supp(a o b) = Suppla) N Supp(b), (1.4)

(@® 0 b°)(v, 2) = a°(v, 2) b°(v, 2) modl, (1.5)
v ’

the right-hand side being the product in # ° of the values of a® and b°:

1|é¢ @
%6 4° _ he |2 % 14, 2)-a® ,
(@® o0 a’)(v, 2) {cos > [Bz’ az,]a (v,2z) a (v,z)}zzzv. (1.6}
The set of lagrangian operators defined on Q is thus a noncommutative

algebra F°(Q) over the algebra #° of formal numbers with vanishing
phase; Z °(Q) has an identity element. B

tueoreM 1.1. (Inverse of a lagrangian operator) The operator a has an
inverse in the algebra of lagrangian operators defined on Q if and orily if

0,2 # 0 mod% VzeQ. 1)
Recall that, by definition, a®(v, z) is a formal series:

a0, 2) = ) éa,(z). (1.8)

reN "

Yz e Q. (1.7a)

;,Proof. The equivalent conditions (1.7) and (1.74) are necessary by (1.5).
Conversely, if these conditions hold, a right inverse a’ of a is an operator

reN

f 7 °(Q) satisfying

1 6 a r !
5[6—’ az’Dao(V’ 2)ad (v, 2)} ez = 1, (1.9)
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ao(2)do(?) = 1, (1.10),

ao(2)a(z) = ¢2), (1.10),

where ¢,{(z) is a linear combination of the

(&) <]

such that 0 < |s| = |s| = r —t — 1, ¢ <r.These conditions determine
& Therefore a has a right inverse and, similarly, a left inverse; these are
identical since the composition of elements of Z °(Q) is associative. The
theorem follows.

The definition of scalar products (sections 2 and 3) will use the following.

Definition 1.4. A partition of unity is a collection {a;} of lagrangian
operators defined on Z such that | J;Suppa; = 7 is a locally finite covering
of Z and
Y a; = 1 (identity operator). (1.11)
i

This partition is said to be finer than an open covering U =X
of X when every Supp a; belongs to at least one of the €.

THEOREM 1.2. (Partition of unity) 1°) There exist partitions of unity
finer than a given open covering of X.

2°) These can be chosen so that the operators a; are self-adjoint.

3°) More precisely, these partitions of unity can be chosen such that each
a; has the form
a; = b¥ o b;, Suppb; = Suppa;,
where b; is a lagrangian operator and b is its adjoint.

Proof of 1°yand 2°). 1t suffices to prove the theorem when the operators
a; are replaced by C®-functions aJ:Z — R that are independent of v.
It is thus a classical result.

Proof of 3°). Given a covering [ J, @ = X, we choose C®-functions
b?: Z — R such that

Y [p()]* = 1,

i

Suppb? < Q, for some k.
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1t follows by (1.6) that

, 1
YhPob! = Y =B, where f,:Z - R, By = 1.
7 reNv

1et us try to find

1
> Wyr,where 7,:Z = R, o = 1,

1
Zrﬂl"

__This condition defines y, as a function of f, and of the 4

[(%) y,(z)} [(%) y,.(z)]

uch that

6t v

110 ¢ 1
: {COShg [5’ 67] 2, v—zmv,(z)y,f(z')} =Y

O<s| —|s]=20r~t~1), O<t<mr
0 e .
thus ¢° exists, is unique, and has an inverse by theorem 1.1. Now

bj=bF, c=c* Ybob =coc;
J

therefore the

;= (bjoc H*o(bjoc™

constitute a partition of unity finer than the given covering ( ), Q, = X
S = X

:2 Lagrangian Functions on

ii;e}: Zbea syrfxplectic space provided with a 2-symplectic geometry. Let
. e a lagrangian x.namfold in Z and let V be its universal covering space.
Theorem 4.1 of §1 justifies the following definition.

efinition 2.1. A lagrangian function U on V is defined by the datum of
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a formal function Uy on V\Eg for each 2-frame R, these formal functions
satisfying
Ug = RR™'Ug on V\Eg ULz VR, R.

Uy is called the expression of U in the frame R.
The support of U, Supp U, is the subset of ¥ defined by the condition

Supp Ug = ("\Eg) n SuppU VR
This definition makes sense since S = RR’~! is local.

The set of lagrangian functions on V and the subset of those with
compact support are vector spaces over & ; they are denoted # (V) and
F,(V). Their dimension is infinite, as is proven by the following theorem.

THEOREM 2.1. (Existence) Every Uy € Fo(V\ Zg, R) is the expression
in R’ of a lagrangian function U on V with compact support.

Proof. Let R be any 2-frame. Let

S =RR teSp,(I), Ug=S5Ug;

Uy is a formal function defined on V\Eg U Zg. which is identically zero
in a neighborhood of £.. We extend its definition by making the following
convention:

Ug = Oon T\ER N Zgke

Then Uy becomes a formal function defined on NWEg; U = {Ug} is
clearly a lagrangian function and

Supp U = Supp Ug-.

IL§1,theorem 4.2 proves the following.

THEOREM 2.2. (Structure) Let  be the lagrangian phase of V,n a positive
regular measure on V, and x = RXZ e X, where Z € V. We make the con-
vention []*? > 0. We give V a 2-orientation; recall that [d'x]"? is defined
by 1§3,corollary 3 using the Maslov index.

We have

. 3r+1/2 .
Up(,2) = X, < i > < BB @1

1
reN d'x
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on V\Sx, where the fg, are infinitely differentiable functions V — C.

Bro is independent of R, is denoted B, and is called the lagrangian
amplitude.

Remark 2.1. In (2.1), the exponent 3r + % cannot be decreased: see
111,§3,theorem 4.2, where the polynomial f, has degree 3r and the rational
function g, poles of order 3r.

. 11,§1,theorem 6 justifies the following definition.

Definition 2.2. Let Q be an open neighborhood of V. Let a be a lagrangian
perator on Q and U a lagrangian function on V.Let R and R’ be 2-frames
and § = RR ! e Sp,(!). Then

‘ﬂR(jR = S(aR,UR,); ) -

thus the formal functions ag Uy form a lagrangian function, which we
hall denote aU.

other words

HEOREM 2.3. The algebra of lagrangian operators a, b defined.on Q > V
acts on the vector space F(V) [and Fo(V)] of lagrangian functions U
with compact support | defined on V;

(bU) = (ao b)U; (2.2)
Supp(al) = Supp U ~ 117! Suppa, (2.3)
being the projection of V onto V < Z.

efinition 2.3 of the scalar product ('Vl'). Let U € #,(V) and U’ € Fo(V').
t us first assume that the following condition holds:

_There exists a 2-frame R such that
uppU n 2. =@, SuppU niz =g

This condition means

24
~R € yO(V\iR, R),

Up e Zo(V\ER, R).

ff;[ U) = (URT U;) € € for each R satisfying (2.4). 2.5)



112 11,§2,2

The right-hand side is an asymptotic class by I1,§1,definition 5.1. It is
independent of R by part 4 of 11,§1,theorem 5.1.

Let U and U’ no longer satisfy (2.4). Let
Ya =1, Yap =1 (2.6)
o

be two partitions of unity (definition 1.4) sufficiently fine (theorem 1.2)
so that for every choice of (j, ') there correspond 2-frames R; satisfying
the condition

Suppa; N Xg,, = &z, Suppdj N Xg,, = & 2.7
thus

(a)U]a;U) is defined ¥, '

O] = ¥ (@U]a0)e%. 2.8)
The right-hand side is independent of the choice of partitions of unity
(2.6); indeed, if

Yho=1 Xbi=t
k L4

is a second choice satisfying (2.7), then

L) = Z K (aj oby UR;'.J' ‘ a}' o b lle”)

since R; ; can be replaced by R j-

THEOREM 2.4. (Scalar product) 1°) The scalar product (W -)is a function
of pairs U and U’ of lagrangian functions on V and V' with compact
support. It is sesquilinear over F° and takes values in € (asymptotic
equivalence classes).

U |U’) and (U’IU) are complex conjugate and depend only on the
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behavior of U and U’ at the pairs of points of V and V' projecting onto the
same pointof V.n V.

If VAV =0, then(U[U) = 0.
(aU|U) = (Ula*U’) if the lagrangian operators a and a* are adjoint.

(2.9)
2°YIf V = V', which implies y = /', then

U] e 7, (2.10)

the phases of (Ul U’) being the periods of Y (that is, the values of }{,[z, dz]
on the cycles y of V); '

U0 = f T Bo(AFa@)e ¥y mod-, 2.11)

zeV %% -

wherg fhe notationvis that of theorem 2.2 and % and %' are the points of
~ Supp U and Supp U’ projecting onto z in V. We have \

0 < (U|U)e #.

’?A,
212

The seminorm of U,

0< U[U)2es,

satisfies the triangle and Schwarz inequalities:
U0 < @Oy (U [U)>in 6.

3°)If V and V' are transverse (where V and V' are given 2-orientations)
then ,

VU [ U e 7, 2.13)

s 1172 -
10|y Bo(3Bs @) ¢ T =¥ ) i Dm0 mod%, (2.14)

here

o A 1o and d*'z are the measures on Z defined at the point ze V o V'
iy I1,81,(5.11) and 1L§1,(5.15) respectively,

3and # are the points of Supp U and Supp U’ projecting onto z,
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« m is the Maslov index defined mod 4 (1,§3,theorem 1),
« Ay and A, are the 2-oriented lagrangian planes tangent to Vand V' at
% and %', respectively.

Proof of 1°). Use definition 2.3, part 1 of IL§1 theorem 5.1, part 4 of
§1,theorem 6, and definition 1.2 of the adjoint of a lagrangian operator.

Proof of (2.10). Use §1,definition 2.3 and §1,(5.4).

Proof of (2.11). Use §l,theorem 5.2 and the fact that aU mod(1/v) is
multiplication of U by the function ag.

Proof of (2.12). Weuse a partition of unity [part 3 of theorem 1.2]
Yb¥ob; =1
j
sufficiently fine so that for every j there exists a frame R; satisfying
Suppb; N Zg, = <.
We have
(U]0) = Y.(b;Ur, [b;Ur,) > 0 (§1.definition 5.1).
j

Proof of the Schwarz inequality. By §1.definition 5.1, we have the tri-
angle and Schwarz inequalities in R [§1,(5.3)] and in € (§1,remark 1);

hence,

uo) = \Z(bjlj&]bjgk;)
J

< 31,0, 5,0k,
J

< Y.(b;Ux, [b,Ur)" (b;Uk, |b;Uk, )"
j

. 1/2 Loe . 12
< [}: (b,Ur, [b,Us, )] -[Z (b,Uk, b, Uz'z,.)]
J J

= @O O
The triangle inequality follows from the Schwarz inequality.

Proof of 3°). Use §l,theorem 5.3.
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Remark22. XV =1V, (UTU’) is defined by the right-hand side of §1,

(5.4) under the assumption.
SuppUnZe =0, SuppU nZp =

If this assumption is not satisfied, the right-hand side is a divergent
_ integral in view of theorem 2.2 (structure).
Thus definition 2.3 of (-|-) gives a meaning to this divergent integral.

3. Lagrangian Functions on V'

We are interested in functions on V rather than functions on V, that is
maultiforms on V. The definition of lagrangian functions on V requires’
t?\e da‘tum of a number v, ; it will be convenient (see, for instance, Maslov’s
quantization, 1L§3,6) to choose v, € i]0, col.

The first homotopy group =,[ V'] acts on V:V is the quotient of V by
x,[V]. Clearly

.[V] leaves X invariant VR; a

Y@ =¥ +c,,  or(yZ) = @r(d) + ¢,

wherec, = %j [z,dz] Vyen V]
¥

that is,

=y,

efinition 3.1 of the group n,[ V'] of automorphisms of # (V). Let

PrOY .. = Qr — Cy

o= Y MRrpone F(V\Eg, R),
reN v

yen [V] (3.1)

efine the transform of Uy by y not as

—_ —‘1 - o
g0yt = ey ReZl_pveng F(7\E, R)

reN
H as
—vo)e, . - —v —t v, >
= et 0yt = e Y MRe ] e F(V\Eg, R (32)
reN

arly
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¥ (yUg) = 1) U,

so m,[ V] is a group of automorphisms of F(V\Zg, R.)..
It clearly follows from definition (3.2) and the definition of the operator
S e Sp,() in IL§1 (lemma 1.1, part 1 of theorem 4.1, and theorem 4.3)

that S and y commute: If

Ugp € F(V\Eg L Zg, R)and R = SR,
then

7(SUg) = SGUg).

If Uy are the expressions of a lagrangian function U onV, then yUr
are the expressions of a lagrangian function on V; denote 1tvby yU. Then
g = yUg and =, [V] is a group of automorphisms of F (V).

(3.3)

Clearly ¥y e n,[ V], YU e #(V), Ya a lagrangian operator,

Supp (yU) = ySuppU; (3.4

y and a commute, that is,

y@U) = ai). (3.5)

Definition 3.2. A lagrangian function on V is a lagrangian functi‘on ‘U
on V having the following three properties, which are clearly pairwise
equivalent and thus independent of the choice of the 2-frame R:

i. U is invariant under =, V], that is,
yU =U Vy € 7, [ V] (see definition 3.1);

ii. e "0 , 0 7! is independent of y € 7; [V]vreN;
iii. the function

R — Vo— V)@,
Ug = z ——;—"e"o(PR = URe( 0— V) R,
reN

(3.6)

called the restriction of Ug to vo, takes the same value at all points of
V having the same projection onto V. Therefore we may write:

UY:V\Zg = F°.

The set of lagrangian functions on V[with compact support in V]isa
Hence it is the set of points in V projecting onto a closed subset of V,
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which will be called the support of U in V and denoted Supp U. Then
Supp U§ = Supp U\Z; n Supp U, VR.

The set of lagrangian functions on ¥ [with compact support in ¥ ]is a
vector space over the algebra Z°. It is denoted Z (V) [Fo(V)].

Clearly, by (3.5) the following theorem holds.

THEOREM 3.1. The algebra of lagrangian operators a, b defined on Q > V
acts on the space % (V) of lagrangian functions on V;

{@aob)U = a(bU), Supp(aU) < Suppa n Supp U.

The scalar product of lagrangian functions on V will be defined using
the following lemma and definitions.

_ 1EMMA 3.1. There exists a natural epimorphism

Fo(V)a2U U= Y yUeFV)

yem, [V]

(3.7)

Proof. Definition (3.7) makes sense: it defines U by a finite sum, since for
every Z € V, there are only finitely many y such that yZ e Suﬁp U.

Clearly U is invariant under =, [ V] and has compact support.

Since y commutes with partitions of unity (definition 1.4, theorem 1.2),
to prove (3.7) is an epimorphism it suffices to prove the following: Every
U e F,(V) with support in a simply connected subset w of V' is the image
under (3.7) of an element U of %#,(V). This is proved as follows.

_The connected components of the subset of V projecting onto w are the
ransforms of any one of these components ¢ by the elements y of n, [V ].
_Let U be the lagrangian function on V that vanishes outside ¢ and equals
in ¢; then yU vanishes outside yé and equals U = yU in yd; hence
yU.

vemy[V]

Let us express the notion of restriction to v, more explicitly.

Definition 3.3. Let .# be the ideal of # generated by the elements

o eVo‘P, Qe R.

Bach element of .# may be written uniquely:
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Y afe’® — e®),  Jfinite, o;€ F° ¢;eR
jeJ

# is the direct sum of # and & 0 Y et us call the projection of & onto F°

the restriction of F 10 vq:
Fou = Zaje"”fs—»uo =Y 0% ceF® =F|5.
i j

In particular,if U € F(V), then the restriction of Ug(v, £) € F tovg is the
value US(v, 2) of the restriction U2 of Ug to v, at the point z, the projection

of Zonto V.

Definition 3.4. Any additive subgroup # of € having the properties

F e Mc=b M= _# (complex conjugate)
is called a submodule of €. Multiplication in the algebra ¢ makes M a
module over the algebra #.
In particular,
ue M and ¢ € Rimply ue’” € M.

Let " be the submodule of # whose elements are

Y ujere — €%, J finite, u;e.#, @;€R.
jeJ
Let us call the quotient

W AN = MO
_#° is a module over the algebra & 0, Since

the restriction of M 1o Vo;
N = , conjugation in . ¢ is induced by complex conjugation in 4.

Example 3.1. I # = &, then MO = F°.

Example 3.2. Let (pys, .- denote the images of #, ... under the
multiplication
%afa‘-vl‘—sfe‘g, seR,.

1.4 = (1), then 4° = (/[ F°.

Definition 3.5 of the scalar product (- |-). Let V and V' be two lagrangian
manifolds in Z. Let .4 be a submodule of € (definition 3.4) such that
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(U0 e M, VU e Fo(V), U € Fo(V). 38)

For any U € #o(V), U’ € Fo(V"), there exist U € Fo(V), U’ € Zo(V') such

yen V] yem [V

according to lemma 3.1. By definition, the scalar product of U and U’ is
ulu) = (UT U")°, the restriction of(UT U)e 4 tovg. (3.9)
Thus the scalar product has values in #°.

This definition makes sense by the following lemma.

{EMMa 3.2. (U]U")° depends only on U and U

Proof. Let

be a partition of unity (definition 1.4); we have

(UU) = ¥.6,0]6,07;
" B

then suffices to prove that (bjlﬂbj U’)° depends only on
Y yb,U=bUand Y yblU =bU"

(V] yem,[V7]

y theorem 1.2, it suffices to prove the lemma when the following two
nditions hold:

There exists a 2-frame R such that
Uyge Fy(N\Eg, R), Uy € Fo(V\ER, R).

Ther§ exist ‘tv'vo simply connected open sets, @ in ¥ and o’ in V', that
&rﬁdprmected injectively into X under Ry and contain the supports of U
nd U':

uppU cwo < V, SuppU' c o' = V"

he conn?c?ed components of the subset of V projecting onto w are the
pen sets yd in V, where y € ;[ V] (see the proof of lemma 3.1). Given
e R, Supp U, let
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z be the unique point of @ such that Ryz = X,

# be the unique point of & projecting onto z in V.

By definition 2.3, §1,(1.9), and definition 5.1,

ulo) = j (T, U0, %) (T TR, Dd'x.

X

(3.10)

By definition (§1,theorem 2.1, if xe Supp(HRﬁR) = RySupp U, then

(g UR)(V, x) = 2 ljR(V, Yﬂi%

yem,[V]
that is, by (3.2)
MU, x) = ¥ et yUg(v, 2).

yer, [ V]
We substitute this expression for Ilg Uy and the analogous expression for
[z Uy into (3.10). Using definition 3.4 of A~ and (3.7), we obtain the

formula

o) = j

Ug(v, £)- Ugly, £)d'x mod A (3.11)

X
under the assumptions (i) and (ii).

This formula (3.11) proves lemma 3.2 and is of use in proving the
following theorem, part 1 of which is clear.

THEOREM 3.2. (Scalar product) 1°) Let V and V' be two lagrangian
manifolds in Z. The scalar product (-|*) is a function of pairs U and U’
of lagrangian functions on V and V' that is sesquilinear over & 0

« (U|U’) is defined when Supp U n Supp U’ is compact.

« (U|U") e M°, a module over F° depending on V and V'.

« (U|U’) depends only on the behavior of U and U’ in a neighborhood of
Supp U n Supp U".

« (U|U") = 0 when Supp U N SuppU’' = .

« (U|U") and (U'| U) are conjugate.

« (aU|U) = (U|a*U") whena and a* are adjoint lagrangian operators.

2°) Suppose V = V'. Then (U|U") e #° (algebra of formal numbers with

vanishing phase):

0 < (U|U), equality implying U = 0. (3.12)

121

The norm of U,
0< U =Wy eso, (3.13)
satisfies the triangle and Schwarz inequalities:

U+ U] <|u|+|u] in #%

. lwju < u]-jv]

if the equality holds, then U and U’ are proportional: either U = 0 or there
exists o€ F° such that U' = «U. Let

1

UR(, 2) = tgo(H)e™™ mod — (3.14)
n 1/2 b .
= (ﬂ) ﬂo(z)e 0@ r(Z) mod%, (315)

where # denotes any one of the points of V projecting onto z in V; (3.15)
assumes V is given a 2-orientation that defines the Maslov index mg(Z) and
argd'x (1,§3,corollary 3); the lagrangian amplitude B, is independent of
the choice of R, but depends on the choice of 4, a regular measure on V such
at argn = 0. Then, using analogous notation for U’ and denoting Ryz by
X, )

g 0(E)oR 0(D)d'x = Bo(DBo(H)n (3.16)
s a regular differential form on V, which is independent of R, and
=j og,0(E)og o) d'x = Jﬁo(f)ﬁ'o(i')n mod . (3.17)
v v
3°) Suppose V and V' are transverse. Then
,) € 9707
ulu)
2 [Hess(p — )] Pty oD o@D =N mod L 3.18)
zeVnV’ v
Ho A 2 NTTER 5) if o
odz,z'?o Bol(2)Bo(Z)e ol¥d) —¥ (@0~ (mi2im(s. 20 modl; (3.19)
v
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« @ and ¢’ are defined near Rz by

o(x) = prBx'x " V), o) = Pr(Bx'x N V),

. Hess(p — ¢) = {Hess,[0(x) — ¢'()]}x = ryz
in (3.19),

«  is the lagrangian phase of ¥, .

o s Ny(2)isthe 2-oriented lagrangian plane tangent to Vatz

« m is the Maslov index defined mod 4 (1,§3,theorem 1),

o o A 1o and d*'z are the measures on Z defined by (5.11) and (5.15) §1).

Proof of (3.16). Use §1,(5.9).

Proof of 3.17). Usinga sufficiently fine partition of unity Z‘, ;b¥ob = 1,
it suffices to prove (3.17) under the assumptions (i) and (i) used in the
proof of lemma 3.2, which imply (3.11). Since V' = V', formula (3.11) can
be written

U|U) = j ULy, HURW, 2)d'x, (3.20)

X
and hence proves (3.17).
Proof of (3.12). Using the same partition of unity, it suffices to prove

(3.12) when (3.20) holds. Then (3.12) is evident, as well as the following
more precise statement: If U # 0, then

U|U) = 3 %,whereseN, oy, > 0.

r=2s

Proof of (3.13). Usethe preceding formula and part 2 of §1,theorem 2.3.

Proof of the Schwarz inequality. Suppose U and U’ are not proportional.
Then there exists « € # ° and s € N such that

U=al + éUf’,

where the lagrangian amplitudes S, and p; of U’ and U” are not propot-
tional. A classical calculation gives

oz jul? - wjul® = o S o e G LR

‘V‘ZS
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It then suffices to prove that the right-hand side is > 0 in #°. In other
words, it suffices to prove that U and U’ satisfy the strict Schwarz in-
equality when their lagrangian amplitudes B, and f§; are not proportional.
Thus, from (3.17), we have

U o) - (W] = f 1Bo(@)|2n- J B2

2
mod 1
v

j Bo(DBaEn

Hence, from the classical Schwarz inequality,
o v > = [Wiu? = po mod%, where 0 < po € R.

Thus, by IL§1,theorem 2.3,
oy < jul-|uv

Proof of the triangle inequality. Use the Schwarz inequality.

_ Proof of 3°).  Using a partition of unity, we may assume that (U |U") is
xpressed by (3.11). Then (3.18) follows from part 3 of theorem 5.1 (§1)
_and (3.19) of theorem 5.3 (§1).

 Remark 3. Without assumption (i) (made in the proof of lemma 3.2),
the integral in the right-hand side.of (3.20) diverges (see theorem 2.2 on
he structure of lagrangian functions). Thus definition 3.5 of (|-) gives a
meaning to this divergent integral.

4. The Group Sp,(Z)

The group Sp,(Z) of automorphisms of the 2-symplectic geometry of Z
see 1,§3,4) clearly transforms lagrangian operators into lagrangian opera-
ors. The images of lagrangian functions under this group are lagrangian
functions. The group leaves the scalar product invariant.

5. Lagrangian Distributions

I agrangian distributions are defined by replacing functions by distribu-
1@i{ms (81,7) in definitions 2.1, 3.1, and 3.2. Theorems 2.1, 2.2 (the g, being
distributions), 2.3, and 3.1 apply to distributions just as to functions.

Definition 2.3 and theorem 2.4,2°) apply to the scalar product (U | U’)
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of U and U, a lagrangian function and a distribution both defined on a
lagrangian manifold V, when Supp U ~ Supp U’ is compact.

Definition 3.5 and theorem 3.2,2°) apply to the scalar product (U|U")
of U and U’, a lagrangian function and a distribution both defined on a
lagrangian manifold ¥, when Supp U n Supp U’ is compact.

§3. Homogeneous Lagrangian Systems in One Unknown
0. Summary

The existence of an inverse a~! of a lagrangian operator a under the
assumption of theorem 1.1 of §2 shows that it is the homogeneous lagran-
gian systems in one (§3) or several (§4) unknowns whose study is non-
trivial. §3 and §4 begin this study, which will be concluded in chapters III

and IV with the special cases of the Schrédinger equation and the Dirac
equation, the latter of which is a system in four unknowns.

1. Lagrangian Manifolds on Which Lagrangian Solutions of aU = 0
Are Defined

Let a be the lagrangian operator associated to a formal function
a®:Q — F°(Qan open set in Z)
whose value at z is

av,z) = Y, —Vl;a?(z).

reN

THEOREM 1. The support of a solution U of the equation aU = 0isa
lagrangian manifold V on which ag = 0.

Proof. Consider a point in v at which a3 # 0. Replace Q by a neighbor-
hood of this point on which ad # 0. Then a~ ' exists on Q and aU = 0
implies U = O on Q.

We shall assume that a$ is real valued and that the subset of Q where
ad = 0 is a regular hypersurface W given by the equation

W:H(z) = 0, H, #0.
V is therefore a submanifold of W such that

dimV =1; d[zdz]=0onV.
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V is studied by applying E. Cartan’s theory of differential forms to the
pfaffian form [z, dz].

2. Review of E. Cartan’s Theory of Pfaffian Forms'V

We first recall some well-known results that are set forth, in particular, in
the treatise of Y. Choquet-Bruhat [6].

Let o be a differential form defined on Z that in section 2 will be any
infinitely differentiable manifold of finite dimension. E. Cartan expresses
o locally using a minimal number of functions

S1r - JaiZ >R

The number n of these functions is called the rank of w. These functions
are the first integrals (independent and maximal in number) of a com-
pletely integrable system of pfaffian equations called the characteristic
system of w. E. Cartan explicitly describes this system.

In other words, this characteristic system is equivalent to

&y == d=0;
there exists a differential form @ such that
w(z, dz) = o(f(2), df(2)), where f = (f1, ..., fa)

Let w be a pfaffian form defined on Z (that is, a differential form of
degree 1 in the differentials). Let i, denote the interior product [6] with
a tangent vector & of Z; the chiracteristic system of dw may be written

igdw(z,dz) = 0 VE. 2.1)
The rank of dw is even; denote it by 2n. Let
f= (f1s coes Son)

be 2n independent first integrals of (2.1) locally. Then there exists a dif-
ferential form @’ such that

dwl(z, dz) = @' (f(2), df (2)):
evidently do’ = 0. Then @' = dw locally. In other words, locally there

exist a pfaffian form @ of 2n variables and a function f, such that

'See Cartan [5].



126 1L,§3,2

w(z, dz) = dfo(2) + w(f(2), df (2)), where [ = (fy, ..., fau) 22

The rank of w is evidently 2n or 2n + 1 depending on whether f; is a
composition with f = (f;, ..., f2,) or not. In the first case it is possible
to choose @ such that f, = 0.

Let us state some less familiar facts with which E. Cartan [5] (chapter
XII, “Les équations qui admettent un invariant intégral relatif”) has sup-
plemented this result; we recall their proofs.

LEMMA 2. Let o be a pfaffian form; let 2n be the rank of dw. Locally there
exist 2n + 1 numerical functions f;, ..., f,, such that

0z, d2) = dfy@) + ¥ foy 1@, (3)

fi» - -+, f2n are 2n independent first integrals of the characteristic system
of dw.

Remark 2.1.  f,, ..., f,, is not an arbitrary sequence of first integrals of
this characteristic system: see remark 2.2.

Proof. Let f, be a first integral of the characteristic system of dw. The
restriction of dw to the hypersurfaces f, = const. has even rank <2n, so
its rank is <2(n — 1). Let f, be a first integral of the characteristic system
of this restricted form. Continuing in this fashion, the restriction of dw to
the manifolds

f, = const., cey f2; = const.

has rank <2(n — j)and therefore vanishes for some value J of j such that
J < n. In other words,

dw = 0 on the manifolds f, = const,, ..., f,; = const.
Then there exists a function f, such that

w = dfy mod(df,, ..., df>);
that is,

J
w = dfy + Z ij-ldej'
=1

But do has rank 2n,s0 J = nand fj, ..., f,, are 2n independent first
integrals of the characteristic system of dw.
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E. Cartan has supplemented this lemma by using the notion of the Poisson
bracket as follows.

Definition 2. Let o be a pfaffian form that has been put in the form (2.3).
Let g and ¢’ be two first integrals of the characteristic system of dw. Each
is then a composition:

Z+> g(Z) = G[fl(z)’ LR ] on(Z)]s ZH g’(Z) = G,[fl(z)s R ] fln(z)]‘

Then there exists a composition of the same type, called the Poisson
bracket of g and g’ and denoted (g, g'), such that

n(do)"™* A dg A dg' = (g, g)dw)" (2.4)
This bracket

9.9)= —g-9)

which is bilinear and independent of the choice of f = {f, ..., San}, may
be expressed as follows, using one such choice:
~ [ oG oG’ 0G" oG
,g)(2) = — — . (2.5)
6.9 = 2, [afz,-_l o o aij],z,(z)

Hence every triple g, g’,g" of such first integrals satisfied the Jacobi
identity:

9., 9" + g.l¢g"9) + ¢".(9.9) = 0.

g and ¢’ are said to be in involution when (g, g) = 0.

Remark 2.2. By (2.4), the pairs f;,f, (1 < j < k) in the expression (2.3)
for  are in involution with the exception of the pairs f,;_;, fp;; these
satisfy

(ij—l’ fzj) =1

Remark 2.3. Letg,, ..., g, be independent first integrals of the charac-
teristic system of dew. The restriction of w to a manifold

g, = const., Cey g, = const.

reduces the rank of dw by an even number that E. Cartan [3], chapter
XI1, section 124, has made explicit: itis 2 (q — r)ifall the Poisson brackets
9590 U kefl, ..., q}) are compositions with g;, ..., g, and if the
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exterior form
Z(gj’ gk)éj A&
ik

in the variables £, .. ., &, has rank 2r on this manifold.

In particular (g = n,r = 0), we obtain the following theorem, which
will enable us to establish theorem 3.1. These theorems shed some light
on the beginning of the study of the Schrodinger equation.

THEOREM 2. Let @ be a pfaffian form; let 2n be the rank of dw.

1°) Locally, the characteristic system of dw has n-tuples {for fas oo s
fan} of independent first integrals that are pairwise in involution.

2°) Given one of these n-tuples, a quadrature locally gives n + 1 functions

for f1s far s fanoy such that o is expressed by (2.3); f1s f2s f3s + o -5 fan
are independent first integrals of the characteristic system of dw.

Proof of 1°). Lemma 2 and remark 2.2.
Proof of 2°). By assumption,
dfy, A dfy Ao A dfy, #0,

In other words, there exist differential forms ©; such that

oy~ A dfy; A dfy=0 Yk

n ~
do) ™ =Y O, ndfy A rdfy; o A dfs,
i=1

(~ suppresses the term that it covers). This relation expresses the existence
of pfaffian forms 8, such that ’

do = ). 6; A dfy;,

j=1
or equivalently, the condition
dw = 0 mod(dfs, - - -, dfz,),
that is, the existence of a function f; such that
w = df, for f, = const,, ceey

fon = const,,

or the existence of n + 1 functions fy, f1, f3. f2.—1 satisfying (2.3).
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3. Lagrangian Manifolds in the Symplectic Space Z and in Its
Hypersurfaces

Let

wlz, dz) = 3|z, dz], (3.1
that is, in a frame R

olz, dz) = $<p, dx) — 5dp, x) = {p,dx) — 3d<{p, x),

where Rz = (x, p); (3.2)

dow evidently has rank 2[; its characteristic system is dz = 0.
Lagrangian manifolds V in Z are manifolds of dimension [ on which
deo = 0. These are manifolds given by local equations

P = PrX) S 63

outside the apparent contour X of V, where ¢ is the phase of Vin R; g
is an arbitrary function when V is arbitrary.

Given x € V, it is possible to choose R such that x ¢ X, and use the local
equations (3.3) in a neighborhood of x.

But if we want to use a single frame, we must supplement theé preceding
result as follows (x/ and p; will denote dual coordinates of x and p).

LEMMA 3.1. The lagrangian manifolds in Z that project under Ry :z— x

to a manifold in X of dimension k < I given by equations
= Fx', ..,x9, k+1<j<] (3.4

are the manifolds in V given by local equations (3.4) and

dpp(xt, ..., x5 L OF; .

= GRS, s X —p., 1<i<k, 35
p: o j;ﬂ g i (3-5)
~ where @ is the phase of V in R and x', ..., x* py.y, ..., p, are local

coordinates on V; g is an arbitrary function of x', ..., x* when V is
arbitrary.

If k = I, the equations of ¥ reduce to (3.3).

Ifk = 0, Vis a plane:

x = const,, p arbitrary, (g = const.
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Proof
1 k L OF; .
o+ 2d{p,x) = <pdx>= Y \p+ X Z—pdx"
2 i=1 j=k+1 ox

Then dow = 0 on V if and only if there exists, on V, a function ¢p of

(x!, ..., x¥) satisfying (3.5). The condition dim V = I is that

(x%, ... x* Pxs1» - - -» p)) be independent on V. Obviously @y is the phase
of V.

Notation. Given a function f:Z — R and a frame R, fz denotes the
function Z(l) —» R such that fi(x,p) = f(z) for Rz = (x, p); that is,
fro R = f. Put

fR,x" = 57’ fR,x = (fR,x‘s B "fR,x')'

Wis a hypersurface in Z given by the equation
W:.H(z) = 0, H, # 0. 3.6)
wy and fy are the restrictions of  and f to W.

LEMMa 3.2. (E. Cartan) dowy hasrank 2l — 2: its characteristic system is
Hamilton’s system

dx» _ dp
HR,p,v(x7 p) HR,x"(xa p)

where the vector (Hg ,, — Hg ) 1s evidently tangent to W.

on W Vi ke{l, ..., 1}, 3.7

Proof. The condition
(dow)™ A dfy =0on W (3.8)
may be written

(doY™* A df A dH

) =Qon W.

Then by (2.4) and (2.5), where we choose f5;-; = p; and f,; = ¥/ in order to
identify (2.3) and (3.2), condition (3.8) may be written

i
> (frop,Hr ' — Hgp, frx) =0 for Hy = 0. 3.9
i=1

P R

11§3,3 . 131

It does not hold identically; thus (dwy) ' # 0. But (dwyw) = 0; thus the
rank of dwy is 2(I — 1). Hence the equivalent relations (3.8) and (3.9)
mean that f, is a first integral of the characteristic system of dwy,. Hence
this system is Hamilton’s system (3.7).

Remark 3. As local coordinates on W we shall use 2/ — 2 independent
first integrals of Hamilton’s system (3.7) and a function t such that (3.7)
may be written

dx = Hpg ,(x, p)dt, dp = —Hpg . (x, p)dt. (3.10)
Definition 3.1. Given a functiong:Z — R, define g. € Z at the point z by
dg = [dz,g.1; (3.11)
in other words,

Rg. = (9r.p» —9r.x) (3.12)
Hamilton’s system (3.10) may then be written

dz = H_dt. (3.13)

By (2.5), where we choose f5;-; = p; andf,; = x/ in order to identify (2.3)
and (3.2), the Poisson bracket of g and g’ is

0, 9) = {Grox-dr.p> — $Irox»9rp> = [9:0 9] (3.14)

The tangent vector k = H, of W_is called the characteristic vector. The
curves in W tangent to this vector at each point of W, that is, the solutions
of Hamilton’s system (3.7), are called characteristic curves.

The following classical theorem explicitly describes the lagrangian
manifolds in W, that is, the resolution of the nonlinear first-order equation

HR(x7 q’x) = Oa
in which the unknown is a function ¢.

THEOREM 3.1. 1°) Hamilton’s system (3.7) has (I — 1)-tuples

of independent first integrals that are pairwise in involution, that is,

dw)™2 A dhy A dhg=0onW Vi ke{l,....l— 1} (3.15)
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Given one of these (I — 1)-tuples, a quadrature locally defines | functions

Jos 91> -+ -> 911

such that
-1
j=1
G1s - Gi-1s B1» - - -, By constitute 2(1 — 1) independent first integrals of
Hamilton’s system (3.7). If t is defined by (3.10), then
thy, s l_1,815 - > G1-1 (3.17)

form local coordinates on W g, is a function of these coordinates.
2°) Lagrangian manifolds V in W are manifolds in Z that locally

i. are fibered by the characteristic curves

t arbitrary,
h, = const,, . h,_, = const,,

g, = const, e g,-1 = const.,

ii. have the lagrangian manifolds in the space Z(I — 1) with the coordinates

x'=(hy, - oy, P=>0G- - gi-1) (3.18)
as a base for this fibration.

3°) If the local coordinates (3.17) are used on W, we have the following
local equations of a lagrangian manifold V in W, after suitably permuting the
indices (1, ...,1 — 1), choosing ke {0, ...,1— 1} and choosing 1 — k
real numerical functions of k variables Fo, Fyvys - - - Fioy:

hy=Fhy, ooh), k+1<j<I-1

V: OFq(hy, -, hy 121 oF; 3.19
gi:,o(_lah__*)_ > By i<isk (3.19)
i j=k+1 Ol
tohyy ooy By Guats - -+ Gi—1 are local coordinates on V. The lagrangian
phase Y of V is given by
Yt hy, o s Gierns -5 Gi-1)

= golt, hys - s s Grars -+ -5 Gi-1) + Folh, -5 ). (3.20)
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Ifk = 1 — 1, the system (3.19) means

BFy(hys - - - by
gi=_oix_ah__u),1<i<1—1. (3.21)

If k = 0, it means
h = const,, g arbitrary, F, = const. (3.22)
Proof of 1°). Use theorem 2 and lemma 3.2.

Proof of 2°). By (3.16), the condition that dw = 0 on V is equivalent to
the following: the mapping

Vazes(hy, s hiog3gys oo gi-) €20 = 1) (3.23)

sends V onto a manifold B in Z(I — 1) satisfying Z;dh; A dg; = 0. Then
B has dimension <! — 1. A necessary and sufficient condition for
dim V = lis that

i.dim B = | — 1, that is, B be lagrangian;
ii. (3.23) map a characteristic curve of V onto each point of B.

Proof of 3°). Lemma 3.1, where
Z, x, p, v, dog = {p,dx)onV,

are replaced by

-

1~1
Z( — 1), x', p' [see (3.18)], B, dF, = Y. g,dh;on B,
i=1
so that (3.16) gives
® = dg, + dFyon V. Now v = dy.
Section 4 will use the following definition.

Definition 3.2. Given a lagrangian manifold V in W, let us call a regular
measure 4 on V that is invariant under the characteristic vector x of W an
invariant measure on V; in other words, an invariant measure on V is any
differential form # defined on V that is homogeneous of degree ! in the
differentials and is annihilated by the Lie derivative %, in the direction
of k:

Zn = 0. (3.24)
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Since, by definition,

Ly = i.dn + diion)and dy = 0,

(3.24) means

di.n) = 0. ' (3.25)

THEOREM 3.2. 1°) Using the local coordinates x = Ryz on V\Zg, the con-
dition that

n(z, dz) = yr(x)d'x, where yg:V\Zg = R, (3.26)

be an invariant measure on V may be written

< a » xR(x)HR,p(x7 (pR,x)> = 0 (327)
Ox
By (3.10), this means that along the characteristics generating V
dxr OHg (X, g ) »

AT T =0 3.28
dt + z axl AR ’ ( )

i

more explicitly,

d [
;R + [Z HR,xjpi(x’ p)
t =

1 = 0. (3.29)

= Pr.x

i 1
+ Y Y Hppp(x p)«pR,xixk]
14

j=1k=1
2°) Using the local coordinates (3.17) on V, the condition that
n = t(t, h, g)dt A d"*h A dlg, wheret:V = R, (3.30)
be an invariant measure on V may be expressed in these words:
the function T is independent of t. (3.31)
Proof of 1°). In the specified coordinates, the components of k are
dx = Hg ,(x, @g,x);
(3.27) reexpresses (3.25).

Proof of 2°). In the specified coordinates, the components of k are
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(dt, dh, dg) = (1,0,0);
(3.31) reexpresses (3.25).
4. Calculation of aU

The definition of a lagrangian operator, that is, formula (6.6) of §1, can be
expressed more explicitly as follows.

Notation 4. Let a be a lagrangian operator associated to a formal
function

0, ) = ¥ —al()

reN V
defined on Q@ < Z. Let W be a hypersurface of Q given by the equation
W:H(z) = 0, H, # 0.

Let V be a lagrangian manifold in W. Let @ be its phase in a frame R.
Let
a:V\Zg - C

be an infinitely differentiable function; x = Ryz will serve as a local
coordinate on V\Zp.

Let us exclude the following case: the operator a vanishes on W;namely,
by (6.6): a°(, x, p) and all its derivatives vanish on W.

Let § = ygd'x be a positive invariant measure on V (section 3).

THEOREM 4.

+ .1..2 voR(x)] — i v R(x) _a_
an (v, X~ 6x> [o(x)e’ 9] = ;'v e"PROL | x, F a(x), 4.1)

1°) We have

vr
where L, is a differential operator of order <r depending on a, V, and R;
LO(X) = ag(x’ (pR‘x)' (4'2)

2°)If a® = H, then
Lo=0, L(x2)e=x% @z @.3)
(4] > 1% ax o AR dt (aXR ), -

where d/dt is the derivative along the characteristic curves of W [see (3.10)],
that is, the Lie derivative & .
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3°) More generally, suppose that a3 vanishes to nth order on W:
1<n< .
Then there exists m € N such that
1<m<n,

Ly=L; ==L, = 0, 4.4)
Lol 2 Vo) = 242 M (2 )z ifm # oo,
ox dt

The differential operator M depends on a and W but is independent of
V and R. It is not identically zero on W. Its order is <m, with equality
holding only if m = n.

In general, m = 1. Hence, if n > 1, then L, is generally multiplication
by a nonzero function.

4°) If a® = H and if Hg is polynomial in p of degree s with principal
part HY, then

L,=0forr >s,

@4.5)
Lyx,p) = [exp% <% a%ﬂ HO(x, p).

Thus if s = 2, formulas (4.3) and (4.5) explicitly describe a.

Proof of 1°). Formula (6.6) of §1 is made explicit as follows. By formula
(6.3) of 81,

ay (v, X, % %) [oc(x)e"“"‘(")] =Y —\}Te"“"‘(")l, (v, X, %) ofx), 4.6)

reN

where I,, a formal function of v, is the differential operator of order r:

ro 2-lI| 0 Jo
= Z 1 Z _——a?{x’ Frdptotd (V, X, Qg x)(pR x5 PR X AT s
P [T AT A PR PR G

@7

the sum I, , extends over the collection of (k + 2)-tuples

(I, Jo, - .., J) of -indices satisfying the condition
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)+ ol + .o + I —k=r  2<|i], ..., 2<|4f; @8)

this condition clearly implies
|+ Jo| + ksr  2<|J]<r+ lfork>1

Formulas (4.6) and (4.7) clearly imply (4.2) and (4.1), where L, is in-
dependent of v, while [, depends on v.

Proof of 2°). (4.2)gives L, = 0. We have L, = [,. Forr = 1, condition
{4.8) means

either k =0, 1] =0, [Jo| = 1;

or k=0, 1| =1, o] = 0;

or k=1, [l=0 |Jo|=0 [J|=2
Thus

0 ol 1
L, (x, 6—x>a = <5;, Hp,,(x, (pR,x)> ) [j; Hg i, (%, P)

1 !
+ Z Z HR,pjpk (X, p)(pR,xjx"] o
P=®g.x

ji=1k=1
this relation is equivalent to (4.3), by (3.10) and (3.29).
Proof of 3°). Let k € N; there exists a function 95%:Q - C such that
ad = %O H™, -
where
+ ny = nand °b° is not identically zero on Wifn # o,

*ny=k+ land °%° = Oon Wifn = oo.
Since

I

&0 b° = a®-b° mod%[see §2, (1.5)],

. there exists a lagrangian operator ¢ such that

+ 10N _ops 10 . 1o\
aR("',x’vax) bR V,x,;a o HR V,x,;a)]
Y 190

= ch <v, X, . —ax>_
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If ¢ does not vanish on W, let 1h0 = 0, n, = 0. If ¢ vanishes on w,
we apply the same reasoning to ¢ as has been applied to a. .
Proceeding by recursion, we obtain a decomposition of the De Paris

type [7]:

1o\ _ v L IAWIFYSNR AN
a;<v’x’;5>—1-§:ovf br (w330 TR\ P vex

1
mod F_'_—l,

where

°h<k, anO

en;=k+ { when '/b° = Oon W.

By part 1 of the theorem,

Hi{v x,li j[a(x)e"’"‘(’"] = 0 mod -17 4.9)
>y 0x v

Let

m(k) = je{g}_{ k}U + n);

if m(k) > k, we then have

10 yolx 1
ax (v, X, ;5;) [a(x)e"**M] = 0 mod —7-

But we assumed that a does not vanish identically on W. Therefore we can
choose k such that

m(k) < k.
We define m = m(k); let J be the collection of j such that

j+ n;=m

By 1°), 'bg (v, x, (1/¥)9/0x) is mod(1/v) multiplication by the function /b°.

Then, by (4.9), the De Paris decomposition gives
10 voulx
ap <v, X —6;) [a(x)e ?xX)]
1

m—Jj
- 5, Livw| Hi (» x%ﬂ [2()e ] mod
v .

jet
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where

el <ms<n,

« J is finite and nonempty,
e 0eJifand only if m = n,
e 3p® does not vanish on W.

Therefore, by (4.3), the relations (4.4) hold with
- 10 1/2 i " —1/2y.
Lo =Y 'b°@)x¥ (oxr )
i dt

L,, is not zero; its order is <m its order is m if and only if m = n.

In general, ¢® does not vanish on W, and therefore n, = 0, m(k) = 1,
m = 1.

Proof of 4°). a® = H,sol, = L,.By(4.7), where a® = H,we can supple-
ment condition (4.8) by the relation || + [Jo| + - + |7 < s; that is,
k+r<s

If r > s, it cannot be satisfied; thus L, = 0.
If r = s, it requires k = 0; (4.8) becomes

1] + [Jo| =s
and (4.7) becomes

21
- Ls(x’ p) = Z _i'_ Hg,)x’p’ (xs p)7 -
7 .

the sum éxtending over the collection of l-indices I such that
7} < s

In other words,

L = % %7 <% 6%> HY(x, p),

where it is possible to replace £5_, by Z%,, which gives 4.5).
& Resolution of the Lagrangian Equation aU = 0

:'By theorem 1, solutions of this equation are defined on lagrangian sub-
anifolds V of the manifold given by the equation ag = 0.
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Notation 5. Assume that the equation
ad="0

defines a hypersurface in Z. Let W be one of the parts of this hypersurface
where it is regular. Let

be the expression in a frame R of a solution defined on a lagrangian
manifold V in W. Notation 4 is kept.
By theorem 4, the condition that aU = 0 on V\Z may be written
d -1/2 —1/2 C a
M Z,.57 [XR (x)aR r(x)] + Ar 2 Lm+s X, 27 O(R,r—s(x) = 0
dt ’ = Ox
VreN; 5.1,

the first of these equations may be written
d -
M<Z’ Zﬁ) Bolz) = 0, where Bo(2) = £z (9)etr.o(x) (5.1)

is the lagrangian amplitude of U, which is independent of R.

Theorem 2.2 of §2 supplements equations (5.1) as follows:
13 Yoy, is infinitely differentiable on v, (5.2)
even at the points of £; recall that xz' = 0 on Zg.

Remark 5.1. If a vanishes to nth order on W, where n > 1, then, in
general, the operator M is multiplication by a nonzero function
M: W — C. Thus the equations (5.1) imply that the support of Uisa
lagrangian submanifold of the manifold in Z determined by the equations

H(z) = M(z) = 0.

The study of this case requires a generalization of sections 3 and 4: it
is necessary to construct lagrangian submanifolds ¥ of a given manifold
W in Z when the codimension of W is >1; it is necessary to describe
explicitly aU when U is defined on such a lagrangian manifold V. We
shall not study this case and exclude it.
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Let us show how conditions (5.1) and (5.2) enable us to solve the equation
aU = 0 using a single frame R.

LEMMA 5. Let K be an arc of a characteristic generating V. Assume that
the principal coefficient of M does not vanish on K.

1°) Let z’ € K. Let U’ be a solution of the lagrangian equation aU’ = 0
' defined in a neighborhood of z’ in V. Then there exists a neighborhood of

K in V on which the equation aU = 0 has a unique solution U such that
U = U’ in a neighborhood of z".

2°) Let R be a frame such that X is transverse to K and xz* does not
vanish to infinite order on K n Zg. Then Uy is the expression in R of 2
fagrangian solution U of the equation aU = 0 in a neighborhood of K
if and only if Uy, satisfies (5.1) and (5.2).

Notation used by the proof. Vy is a neighborhood of K in V of the form
Vi = B x I,

where

s Bistheball [b] < 1inR'™",

» I is the segment || < const. in R;

» the segments b x [ are the characteristics;

« 0 x [ is the given characteristic K, z' = (0, 0);

. U,- I; = Iis a finite covering of I, V; = B x I, j an integer.

Proof of 1°). We make a choice of Vg and V; having the following
properties:

o U’ is defined on V;;

« to each V; there is associated a frame R; such that V; 0 Xg, = J;
-Ijisthesegmentj—1<t<j+1. I

If U has been defined on Vou V; U -+ U V., (j > 0), then using
(5.1) in the frame R; makes it possible to extend successively the definitions
of AR, 05« r FRprr 0 UR,-’ U to Vj; these extensions are unique.

_Proof of 2°). The expression Uy of a lagrangian function U, defined in

a neighborhood of K, satisfies (5.1) and (5.2). It remains to prove the
converse.

Let R be a frame, V; a neighborhood of K, and



142 11,§3,5

Ug = 2. ‘%"‘RwewR )

reN
a formal function defined on Vg\Zg N Vj satisfying (5.1) and (5.2).

It has to be proved that, in a neighborhood of K, Ug is the expression
of a lagrangian function.

Let 7 € K. By 1°), there exists a unique lagrangian function U defined
in a neighborhood of K whose expressionin Ris Ug in some neighborhood
of z. It has to be proved that in some neighborhood of K, its expression
in R is still Ug.

Since this expression, like Ug, satisfies (5.1) and (5.2), it suffices to
prove the following uniqueness theorem: If the formal function (5.3)
vanishes in a neighborhood of a point of K, then it vanishes in a neigh-
borhood of K.

We choose Vg and V; having the following properties:

e Up = 0on Vg,
« I,is the segment j — 1<t <j;
e VgnXg= Uij,where B;=V,nVy=Bx]J

J

Assume we have proved that
UR=00nV0uV1u---u(Vj\Bj), j>0.

By (5.2), x& "*og,, has an infinite number of derivatives on B; that all
vanish; then (5.1) gives successively

dRo = 0, g1 = 0, s R, T 0, S UR = 0on Vj+1\Bj+1'

This lemma shows that the differential operators M and L, have very
special properties. The following is a consequence of part 2 of this lemma.

THEOREM 5. Let W be a hypersurface in Z on which a = 0; assume that
the operator a is not zero and that the principal coefficient of M does not
vanish. Let V be a lagrangian manifold in W. Let R be a frame. Let 1 =
ygrd'x be an invariant positive measure on V; assume that yr® does not
vanish to infinite order on Xg and that T g is transverse to the characteristics
of W generating V. Then

T 1 VPR

UR = z ——raR‘,.e
reN
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is the.expressiorz in R of a lagrangian solution U defined on the universal
covering space V of V if and only if Uy satisfies (5.1) and (5.2).

Remark 5.2. Lemma 5 and theorem 5 evidently apply to solutions U
of the equation

defined mod(1/v*) on V.

6. So!utions of the Lagrangian Equation aU = 0 mod(1/v®) with "
Positive Lagrangian Amplitude: Maslov’s Quantization

Definition 6.1.  We call an infinitely differentiable function

H:Q — R (Q an open subset of Z)

such that H, # 0 on the hypersurface W given by the equation

W:H(z) = 0 :

a hamiltonian.

In classical mechanics, Hamilton’s system (3.7) governs the hmovement
of particles and, more generally, that of holonomic mechanics.

Let a be the lagrangian operator associated to a hamiltonian H; then it is
self-adjoint (§1,6). Solving the equation ’

amounts to finding lagrangian manifolds in W having an invariant measure
_that we assume is chosen >0.

Indeed, by (4.3), equation (5.1), is written

B _
dt

and means that the lagrangian amplitude of U is constant on each of
the characteristics generating V. In other words, 4 is invariant.

We? require it to be =>0. In other words, we require that the lagrangian
mplitude f, of U satisfy the condition

B = 0. (6.1)
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(Recall that this is the case in physics, where the amplitude should change
more slowly than ¢*?* and not oscillate around the value 0.)

Definition 3.2 (§2) of lagrangian functions on V requires the datum
of a purely imaginary number v, that will be denoted by

Vo=, h>0, (6.2)

in chapter III because in quantum physics 2z is chosen to be Planck’s
constant.
Since

7] 1/2
ag.o = Po (ﬂ) , where 8, = 0,

the condition that U be lagrangian on ¥ mod(1/v) amounts to

1/2
i VoPr
(&) e

being defined (that is, uniform) on V. From the definitions of (d'x)¥* and
"2 (L,§3,corollary 3 and IL§2,theorem 2.2), this condition is the following.

Definition 6.2. A lagrangian manifold V satisfies Maslov’s quantum
condition when the function

v .

fﬁ(Li(PR — lmg, wherevy = i/h,

is defined mod 1 on V; this condition is independent of the choice of the
frame R.

Remark 6. If V is oriented, in the euclidean sense, my is defined mod 2
on V. Then Maslov’s quantum condition assigns to each period 14$,{z, dz]
of , that is, to each period §y< p, dx) of @g, one of the two values 0 or
nh mod 2rh.

If V has a 2-orientation, mg will be defined on V mod4 and this
condition requires that @z and ¥ be defined on V mod 2rh. This will
not be the case in the applications that are given in chapter Il

We have just proved the following theorem.

THEOREM 6. 1°) Let a be the operator associated to a hamiltonian H. A
lagrangian solution U of the equation
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1
= 0 mod—
aU mod _ (6.3)
with lagrangian amplitude >0 can be defined mod(1/v) on a manifold V
if and only if V simultaneously has the following three properties:

i. V is a lagrangian manifold in the hypersurface W: H(z) = 0;

ii. V has an invariant positive measure (invariant under the characteristic
vector of H);

iii. V satisfies Maslov’s quantum condition.

2°) The datum of V having these three properties defines U up to a constant
factor if and only if the invariant measure on V is unique, that is, if every
function that is infinitely differentiable on V and constant on each of the
characteristics generating V is constant on V.

This theorem will be applied in IIL§2.
7. Solution of Some Lagrangian Systems in One Unknown

Theorems 7.1 and 7.2 supplement theorem 6. They are applied in I11§1 and
IIL§3, respectively.

THEOREM 7.1. Let a9’ (j = 1, - -, I) be lagrangian operators associated to
[ hamiltonians

HY: Q — R (Q an open subset ofﬂZ)'

that are independent and pairwise in involution; that is,

dHD A -+ A dHY # 0, (dw)™2 A dHY A dH® =0 Vi, k, (1.1)
where @ = [z, dz].

1°) The system

aV’U=---=a%U =0 mod;li (7.2)
has a lagrangian solution U defined mod(1/v) on the connected manffold
V if and only if V simultaneously satisfies the following two properties:

i. V is a connected component of the manifold in Z given by the equations
ViHY(z) = - = H9(z) =0, (7.3)

which imply that V is lagrangian.
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ii. V satisfies Maslov’s quantum condition (definition 6.2).
Then the lagrangian amplitude of U is constant when
d?z

n= m (see remark ) (7.4)

is chosen as the measure on V.
Thus, when V has been chosen, then U is defined mod(1/v) up to a constant

numerical factor.

2°) The Lie derivatives &L,.; in the direction of the characteristic vectors
i of the HY commute. If V is compact, then V is a torus whose translation
group is generated by the infinitesimal transformations Lri-

Remark 7. Recall that 42!z is defined by §1,(5.15); (7.4) means that 7
is the restriction to V of any formnz on Z such that

dHWD A - A dHY Ay = d?'z;
1 is clearly independent of the choice of 11z; 1 is invariant under each /.

Proof of 1°). From theorem 1, the support of U belongs to one on the
connected components V of the manifold given by the equations (7.3).

Conversely, let V be one on these components. The rank of dw is 21
because its characteristic system is dz = 0. By theorem 2 (E. Cartan),
locally there exist functions go - - -» 91 such that

I
o =dgy + Y. g;dHY;
ji=1

then the restriction @, of @ to V satisfies
dwy, = 0.
Now dim V = I; thus V is a lagrangian manifold.

Moreover this result could be deduced from (3.22) of theorem 3.1, 3°).
Let R be a frame of Z; let (x, p) = Rz; the condition that HY and H%
be in involution is expressed

aH(j) aH(k) aH(k) aH(j) 0
<ax’ap “Nox e/

that is,
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R —
ZLoH® =0, @5)

where Z.; is the Lie derivative in the characteristic direction of H/:

i — OHW _6H(j)
ap s ax .

From (7.5) follows
y,cj dH(k) = 0;

moreover the definition of the Lie derivative gives
Lid*z=0;

 hence, by the definition (7.4) of 7,

Z.in=20 ;.

3 Then in viev&i of theorem 4,2°), the condition that a lagrangian function
U defined on V satisfy f

a0 = = a®U =0 modi
o2

is that its lagrangian amplitude f, satisfy
Lo =0 vi;

since the HY are independent, that i$; since they satisfy (7.1),, this condi-
tion can be expressed as

B, is constant on V.

. The'n, by-section 6, the condition that U be lagrangian on V mod(1/v)
is equivalent to Maslov’s quantum condition.

Proof of 2°). By §2,(1.1), the commutator of a*’ and a®,
[d9, a®] = a¥ 0 a® — g% o gt
is the operator associated to the formal function

.. 110 @ .
-2 {Slnhﬁ [&’ 5?] H(J)(Z)H(k)(zr)}z: | :

; ) (k) i ; ; ;
since HY and H® are in involution, this formal function vanishes
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mod(1/v?). It is an odd function of v, so it vanishes mod(1 /v3), from which
follows

[, a¥] = Olnodé%. (7.6)
From theorem 4,2°),

P (0e%) = %ewkz}{/z Leilaxz ) modvl—2 Yo

so that

; , 1, _ 1
[0, a} (ee'r) = &P 11 L, Lo Vo ) mod 55

thus, by (7.6),
(%, L] =0
Then, if V is compact, the infinitesimal transformations Z:, ", L

generate an abelian group of homeomorphisms of ¥, whence 2°).

We supplement theorem 7.1 as follows.

THEOREM 7.2. Leta¥(j = 1, -, 1) be lagrangian operators that commute
with each other and are equal mod(1/v?) to operators associated to | inde-
pendent hamiltonians H ) [that is, satisfying (7.1),]; these hamilionians are
then in involution [that is, satisfy (7.1),]- Let us study the problem of defining
mod(1/v"*1), on a connected manifold V, a lagrangian solution U of the

system

1. .7,

A\

1
Oy =+ = gy = —
abU = =a U—Omodvr”, r

Assume that conditions i) and ii) of theorem 1.1 are satisfied; indeed they
are necessary. Then this problem has a solution U if and only if, in addition,
the following two conditions are satisfied:

iii. A solution of (1.7),_, has to exist on V (we assume it is explicitly known).
iv. A function V — C that is defined by integration of a closed pfaffian form
on V\Eg, and by the condition that it have polar singularities on L g, has to
be a function V — C. (Knowledge of this function explicitly solves the
problem.)
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When (i), (ii), (iii), and (iv) are satisfied, then the solution U of (1.7), is
defined on V up to a factor that is a formal number with vanishing phase.

Preliminary to the proof. Let R be a frame of Z; let V satisfy (i). We
restate theorem4,1°),2°) as follows. Let 8: V\Xz — C; then

. 19 .
i (v, % g> () e

= X}lzlz(x)ewk(x) z ;1; M; (x, %) B(x), (7.8)

reN

T

where M/ is a differential operator of order <r, depending on a'/ and V:
Mi=0 M| =%..

The assumption that the operators a'”’ commute obviously may be stated
as follows:

SZ:O[M£+1a M,:—s+ll =0 vJ, k,r. . (19

e

Proof. Let U be a lagrangian function defined on V with lagrangian
amplitude 8, = 1. Let

o) T 1
Ur(y, x) = y ¥y = B,(x) (7.10)
reN V

be its expression in the frame R, where o = 1, 5,: V\Z g — C. Suppose
that U is given mod(1/v") and satisfies (7.7),—,: o, - .., B, are given
and by (7.8) satisfy ’

;Mmﬁ=omm=L“qL5=L””n (7.11)

1t

The condition that U satisfy (7.7), is

r#1 )

ZlMiﬁm‘s =0V (7.12)
o

this condition is a system of [ equations that defines

Mip, Vj; ie,Zup, Vi ie,dB,

by means of f,, ..., f,_,. Since the M| = Z,, commute, the condition

of local integrability of this system, that is, the condition that the ex-
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pression for df, given by this system be a closed pfaffian form, is expressed
by

3 r+1 r+1 A .
MJIO ZM,scﬂr+1—s—Mlio ZM;BH-I—SZO Vjak’
s=2 s=2

or, replacing s by s + 1, by

r

Z [M{’Mls‘+1]ﬁr—s + z [M£+1’Ml;]ﬂr-vs
s=1

s=1

+ Y (MY, 0 M) — Ml o MY)B,_, = 0. (1.13)
s=1

Now, with ¢ and s replaced by t + landr — s + 1, (7.11) implies
Y MY, o MiB,_ + Y ME oM, o =0,

s=1

where X , signifies Trol 30085 that is, X, extends over the set of integer
pairs (s, t) such that

1 <s, 1 <, s+t<r

In other words, (7.11) implies

r X r s—1 .
z M’s(+1 OMjlﬂrfs + Z z Mlsc—H‘l OM{+1ﬁr—s = 09

s=1 s=21t=1
and similarly

r ) r s—1 R
Z M;+1 o M,iﬁr—-s + Z Z M{+1 o M’s‘—t+lﬁr-s = Oa
s=1 s=21=1
so that the condition (7.13) of local integrability may be written
Z Z [Mii-!—ls Msk—t-*-llﬁr—s = 0
s=11=0
Thus it is satisfied by the assumption of commutivity (7.9).
Then the system (7.12) defines a function
B.:V\Eg = C

up to the addition of a function that is locally constant on V\Zg. By
this choice of B, in (7.10), Ug locally becomes the expression in R of a
lagrangian solution of (7.7), on Mg,

11,83,7-11,§3,Conclusion 151

Then, by lemma 5,1°), which holds for systems mod(1/v"*?), there
exists a lagrangian solution of (7.7), on V, whose expression in R is Uy,
up to the addition to B, of some function that is constant on each com-
ponent of V\Eg. By theorem 5, the addition of this function to B, makes
¥z " B, infinitely differentiable on V; B, is then defined up to the addition
of a function that is constant on ¥, that is, a muitiple of f,.

By assumption (ii), Maslov’s condition is satisfied; by section 6, U
is lagrangian on ¥ mod(1/v"*!) if and only if B, is a function: V — C. The
. theorem follows.

8. Lagrangian Distributions That Are Solutions of a Homogeneous
Lagrangian System :

Theorem 1 and lemma 5,1°) apply to solutions that are lagrangian dis-
tributions; condition (5.2) should then be stated as follows:

Xz Pag , is a distribution on V.

Without trying to extend either lemma 5,2°) or theorem 5 to dis-
tributions, we merely remark that theorems 7.1 and 7.2 apply to solutions
that are lagrangian distributions. Hence the following theorem holds.

THEOREM 8. (Regularity) Under the assumption of theorem 7.2, every
lagrangian distribution U that is a solution of the system(1.7), is a lagrangian
function mod(1/v"*1).

Conclusion

V. P. Maslov [10] called the “solutions defined mod 1/v” studied in sections
6 and 7 “asymptotics”. But there is no reason for them to be equal mod(1/v) to
a lagrangian solution U of the equation aU = 0 (see theorem 7.2 and 111, §3),
and there is no reason for the expression U g of one such solution U to be the
asymptotic expansion of a solution of the differential operator or pseudodif-
ferential operator that ag can formally define. This is shown by the examples
considered in chapter 111

The most evident feature of this lagrangian analysis, which was motivated
by the study of V. P. Maslov’s treatise [ 10], is that it is a new structure.

It is formal. Therefore, in physics, this analysis could be reasonably
applied only to the nonobservable quantities of quantum theory.
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§4. Homogeneous Lagrangian Systems in Several Unknowns

Let us generalize the simplest results of §3: theorems 4,5,6,and 7.1.
1. Calculation of £%,_, a;U,

We shall extend a result of [8], section 8, and elucidate its proof; by doing
this we shall generalize theorem 4 of §3.

Notation 1. Let abea y x yu matrix whose elements a; (m,n = 1, ...,
1) are lagrangian operators associated to formal functions with vanishing
phase; they are elements of a matrix

1 . 2
a® = Y —a?, wherea): Q - C¥.
i
reN

Let W be a hypersurface in Q given by the equation
W: H(z) = 0, where H, # Oon W.

Let V be a lagrangian manifold in W; let g be its phase in a frame R.
Let

b(x, p) = a5(2),
Let a« = {a,, ..., %,} be a vector whose components are infinitely dif-
ferentiable functions

¢(x, p) = ab(z) for (x, p) = Rz. (1.1)

o V\Zg = C;

x will serve as a local coordinate on V\Zg.
Let 5 = xgd'x be a positive invariant measure on V (§3,3).

THEOREM 1. 1°) We have

10 v 1, 5]
ag (v, X, = $> [a(x)e*x] = ,;u € (2L o (x, $> o(x), (1.2)
where L, is a gt x y matrix whose elements are differential operators of
order <r;they depend on V, a, and R;
Lo(x) = b(x, @g,x)- (1.3)

2°) Suppose detb = H. There exist two nonzero ji-vectors f and g that
are functions of z € Z such that on W
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“ I
bf =0, ‘'bg=0; ie:) bifn=0, Y g"by = 0; (1.4)
m=1 n=1
choose these (which is possible) so that on W,
fmg" is the minor of b in the matrix b;
that is,
dH =Y fng"db} mod H. 1.5

Let

i
{g,u) = Y, g"u, for any vector u = (u, ..., u,).

n=1

Evidently, by (1.3) and (1.4),

<g(x, (pR.x)’ LO(x)a(x)> = 0. (16)

This formula is supplemented by the following, where vy is an arbitrary
function V\Eg — C, and where d/dt is the derivative along the characteristic
curves of W, that is, the Lie derivative £, :

<g(x, (pR,x)7 Ll (X, é%) [y(x)f(x, (pR,x)]>

d, _
=&’ L 12y 4 J(x, @g.)7(x). (L7

_ Here J(x, p) is defined on W by the formula

1
J=3 > g™ b f + b2 fr) + "0, fu)] + Y, 9"¢h S m (1.8)
in which (-, -) denotes the Poisson bracket, defined by §3, (3.14).

J has the following properties, all obvious except for the first:

Remark 1.1. J only depends on b and c and the restrictions fy and gy
of f and g to W.

Remark 1.2. Multiplying f by h: Z — C\{0} multiplies gy by h~' and
adds d(log h)/dt to J.

Remark 1.3. 1If the matrix b is symmetric and the matrix ¢ is antisymmetric,
then J = 0, since it is possible to choose f = g.
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Remark 1.4. Suppose the matrices b and ic are self-adjoint. In particular,
this is the case when the matrix a is self-adjoint, that is, when

ay = (ap)* Ym, n.

Then the values of J are purely imaginary, since it is possible to choose
g=1

Proof of the theorem. Part 1 follows from §3, theorem 4. To prove part 2,
let

a = ag, @ = og(x),

by = bt @), bpo= RSP
0x  |p=o,
g = dg"(x, p)
’ P lo=o.
so that
Oby _ ym A SR
axi = b it Z bnp Pixis R 6xi = gy + jgl Ip; Pxixis
(1.9)
where x' and p; are the components of x and p (i, j = 1, ..., I). By the

definition of a” in §l1, (6.3)-(6.6),
+m 1 a Vol — v(pbm Z b
ay v, X, v o [OC e ] € (x (Px)a + np; a J

- <§Zb"m‘/’“’ +3 Zb"xp + C"'n>a,,,:|

1

mod;;;

hence, by (1.9) and the definition (1.2) of L,

o2

njpm <x"l n 1 a m m
— Z g bnp] 6—‘7 + Z g (5 : 'a;c—jbnpj + Cn>OCm.

jm,n m,n

Thus, by choosing «,, = yf,, it follows from (1.5) that
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(0. Li6)> = LH 9y [1 s gy, In

Pi axd 2,45, nP; Ay d
2}%9 a by frm) + Zg"cmfn}

hence by (1.5) and the definition of d/dt on W,

dy 1 d
g, L,(f))> = d—i —<26 -H,, )v + Jy, (1.10)
where
npm Um 1 nm
Z b axs ~ 2 L a b S+ 2 9" (L11)

Now, by §3, (3.28),

O g - _1d.
T oxI P xr dt’

hence (1.10) is equivalent to (1.7). Moreover, by (1.4),

0 npgm) _ O me ) —

hence (1.11) can be written
fm - b::l gn -

Y fw Oby 09"
S| oxi oxI oxd

+ Y 9"

m n
fmpl bnp, gp,-

By (1.9), this is
S —by g"
1
T=3 DI I T 2 9"Cn s (1.12)
Jym.n m,n

m n
fmp] bnpl gpl

because
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fm _b;nn gn

Z mej b"'"Pj gl;li Pxixd = 0,

i,j,m,n

mei b"lnpi gl';-

since the above determinant is an antisymmetric function of (i, j). Clearly,
(1.12) is equivalent to (1.8).

Proof of remark 1.1. (1.8) can be written

1 n m n m n,m
J = —2— Z [(g ’bnfm) + g (bn’fm)] + Z g cnfm'
Now, by (1.4) there exist regular functions F, such that
Y byf, = HF,.

Hence, on W, where H = 0,

1 dg" .
J = E[ZF,,% + Y g"(b'n",f,,.)] + Y. g"cn fms

thus J only depends on b, ¢, f; and the restriction ofgto W.

2. Resolution of the Lagrangian System aU = 0 in Which the Zeros of
det a Are Simple Zeros

Section 5 of §3 is easily extended in this case.

Notation 2. Notation 1 is kept. By theorem 1,1°), solutions of the system
13

Y ayU, =0 (PAY)

m=1

are defined on lagrangian manifolds V' in the hypersurface W given by
the equation

W:H = 0, where H = det b (by assumption, H, # O on w). (2.2)
Let
1 v
Ug = 3, —0g,e""
reN Y
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be the expression, in a frame R, of a solution
U=U,...,U)

of the system (2.1), which will be written

aU = 0;

the U,, are lagrangian functions definedon V = W; the ag , are functions
7\&x — C* In view of theorem 1, the condition aU = 0 on V\Zp may
be written

Lo()og,(x) + 3 Ls(x, a%)rx&,_s(x) -0 VreN 2.3),
s=1

By (1.6), it implies

(a0 000 3,1 2 )onsmtr) =0 04,
s=1 X ,

Let M, be one of the matrices ¥ — C*** such that the relation

Lo(0u(x) = o/ (x), where {g(x, 9,). ¢ (x)> = 0 and alx), &/(x) e C*
is equivalent to the existence of y: V\Zg — C such that

a(x) + p(X)f (X, Pr,x) = Molx)o'(x).
Then, under condition (2.4),, equation (2.3), may be written

- 0
aR,r(x) + YR,r(x)f(xa (pR,x) + Z Mo(x)Ls (x, a)aR,r—s(x) = Oa (25)r
s=1
and, by (1.7), equation (2.4),,, may be written
L s AL
dt R,rAR R,rAR

c 0 -
+ <g(x, (pR‘x)> Z Ns+1 <xa —(3_)() aR,r—s(x)> xR 1z = 0, (26)r
s=1

where

Ny (x, %) oa(x) = L, (x, %) [Mo(x)Ls (x, 6%) oz(x)]
— Loy (x, %) o(x).
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Theorem 2.2 in §2 supplements equations (2.5), and (2.6), as follows (r € N):

g, x> "Y? and thus yg .z > ~"* are infinitely differentiable on v, (2.7),

even at the points of Z; recall that xz' = 0 on Zg.

Lemma 5 of §3 is easily extended. It shows that the conditions (2.5),,
(2.6),, and (2.7), make it possible to solve the system aU = 0 using a single
frame R. More precisely (compare §3, theorems 5 and 6), the following
theorem holds.

THEOREM 2.1. Let V be a lagrangian manifold in the hypersurface W
defined by (2.2); let V be its universal covering space. Let R be a frame.
Let 5 = ygpd'x be a positive invariant measure on V; assume that yg ! does
not vanish to infinite order on Lg; assume that g is transverse to the
characteristics of W that generate V. Then

1
o v
Ug = Y —og,e"%
reN VY

is the expression in R of a lagrangian solution U = (U, ..., U,), defined
on V [or on V], of the system aU = 0 if and only if, for every r €N,
the vectors og ,: V\Eg — C* and the functions yg,: V\Ep — C satisfy
the conditions:

2.5),, (26),, .7, [and yg e V\Eg - C].

Remark 2. This theorem applies to solutions of the system
1
al =90 modﬁ.

They are defined mod(1/v**!) up to the addition of (a/v°) fe*?x, where
ae*?=:V - C*[or V - C*].
Evidently we have the following theorem.

THEOREM 2.2. [Reduction mod(1/v?) of a system to an equation] We
keep the assumption of theorem 1,2°), which defines H and J. The existence
of a solutionon V. W [or on V] of the lagrangian system

alU =0 modv—lz, that is, Y apU,, = 0 modvl—z, .1,
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is equivalent to the existence of a solution on V [or V] of the lagrangian
equation

al =0 modv—lz, (2.8)

where a is the lagrangian operator associated to the formal function

H+ 1.
v

To each solution U of the system (2.1), there corresponds a solution U’
of the equation (2.8) such that

U=UYf mod%.

In chapter IV, a reduction theorem analogous to the preceding one
will be used in the special case of Dirac’s equation. :

3. A Special Lagrangian System aU = 0 in Which the Zeros of det ad
Are Multiple Zeros

The following extension of theorem 7.1 of §3 is used in chapter IV. (Theo-
rem 7.2 of §3 admits an analogous extension.)

THEOREM 3. Let a® (k = 1, ...,1) be u x p matrices whose elements
are lagrangian operators. Assume-a® is associated mod(1 /v?) to the matrix

HOE + lJ(k)’

v
where E is the u x u identity matrix, H® :Q - C, and J® :Q - C*isa
p x wmatrix. Let V be the manifold given by the equations
V:HD() = - = HO() = 0. 3.1)
Assume that the a® commute mod(1/v?) and that
dH® A --- A dHY # 0 in a neighborhood of V.

Then the following hold.
1°) The hamiltonians H® are pairwise in involution: V is a lagrangian
manifold; the measure on V
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d*z
N=JHO A

A dH® |,

is invariant Yk under the characteristic vector k™ of H®, which is tangent
to V.If V is compact, then V is a torus whose translation group is generated
by the infinitesimal transformations £,w.

2°) Let U =(Uy, ..., U,) be a vector whose components U, are
lagrangian functions; U satisfies the lagrangian system

a®U =0 mod% Vk (3.2)
if and only if U is defined on V and the lagrangian amplitudes B =
(B - - -, B,) of its components satisfy the system of first-order partial dif-
ferential equations

(H®, B) + J®B = 0, where (H®, B) = L B (3.3)

and (-, -} is the Poisson bracket (3.14) of §3. This system is equivalent to a
completely integrable system

dp = wp, thatis, dB, =) @} Bm (3.4)

where the elements o™ of the u x p matrix  are pfaffian forms defined
on V. In addition to (3.3), B has to satisfy the “quantum condition”
d'x

n \2
( > Bere?r: V\Zg —» CH. (3.5

Remark 3. The condition that (3.3) be completely integrable may be
stated as follows:

do = o A o, (3.6)
where @ A wisthe matrix whose elements are the i ol A wff. Henceitis
satisfied; it is equivalent to i

(HO, J0y — (H®, JO) + JOJO — JOJO =0 Vi, k, 3.7

where by assumption (H®, H®) = 0, and by definition

(H(i), J(k)) — IZ H;,”J('?

j=1

!

_ (@) J&)
Z Hx"]pj
i=1
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in an arbitrary frame R; (3.6) or (3.7) is equivalent to the condition that
the a¥ commute mod{1/v?).

Proof of 1°. LetU,(m =1, ...,u)be lagrangian functions defined on

V with lagrangian amplitudes B,; let U = (U, ..., U) and B =
(B> - - - » B,). By theorem 4 of §3,
10 1 0 1
+(k) + v _ Loz v g k) v A
ag (v, x, 6x>U VXR e ’* L <x, ax)ﬂ modvz, (3.8)

where L® is a ¢ x p matrix whose elements are first order differential
operators; the principal part of L®is LwE, where L is the Lie derivative
in the direction of the characteristic vector ® of H® and E is the pu x pt
identity matrix. By assumption, the a% commute mod(1/v3). Thus the
L™®(x, 8/6x) commute. Thus their principal parts £» commute. Therefore
the k® are tangent to the manifold V given by equation (3.1). [See the proof
of theorem 7.1, 1°) of §3).]

Proof of 2°). By (3.8), the system (3.2) is equivalent to the system'
L® (x, i)ﬁ -0 VK (3.9)
Ox :

since the L. commute, it is possible to find local coordinates ty, ...,
on V such that

"Zc"“ = g' . (310)
k
By theorem 4 of section 3,
L® (x, %) = E‘i_ + J®, (3.11)
k

Thus system (3.9), in which the unknown function B:V — C* has to
satisfy (3.5), is equivalent to the system

dp = of,

on V, where

]
o= -y J¥dy (3.12)

k=1
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isa u x p matrix whose elements are pfaffian forms. Since the a® com-

mute, the L® defined by (3.8) commute, which by (3.11) is expressed
ALY AL ; i

A L e A AT 1) 3.13
ot; ot (3.13)
or, by (3.12), dw = w A w. This is the condition of complete integrability
of the system (3.4). By (3.10), this condition is also expressed by (3.7).

III Schrodinger and Klein-Gordon Equations for
One-Electron Atoms in a Magnetic Field

Introduction

Summary. The most interesting problems in the theory of linear and
homogeneous partial differential equations are the eigenvalue problems.
Their essential feature is that they have solutions only exceptionally.
Examples of lagrangian problems having the same feature are given in
this chapter. These problems assume

1=3  Z3)=X& X% X = X* = E? (euclidean space).

They concern the lagrangian operator a associated to some convenient
hamiltonian: this hamiltonian gives rise to a Hamilton system admitting
two first integrals defined on Z(3), namely, the length L and'" one of the
components M of the vector x A pin E*.

H may be the hamiltonian® of the nonrelativistic or relativistic electron
under the simultaneous influence of the electric field of a stationary atomic
nucleus and a constant magnetic field (Zeeman effect). Then H depends
on a parameter: the energy level E of the electron. The operator ais the
Schrodinger or (in the relativistic case) the Klein-Gordon operator. The
energy levels for which our lagrangian problems have a solution coincide
with those defined by the problems that are classically studied regarding
these operators.

The advantage of the lagrangian point of view is its simplicity. By applying
theorem 7.1 of 11, §3, these energy levels are obtained in §1 by a quadrature.
The latter is easily calculated in the.Schrodinger and Klein-Gordon cases
using the method of residues.

In §1, we determine solutions defined mod(1/v) on a compact lagrangian
manifold of the lagrangian system:

aU = (a;. — const)U = (ay — const)U =0 mod;li, (1)

where a;: and a, are the lagrangian operators associated to the first
_ integrals I? and M. Here theorem 7.1 is applied. Three integers introduced
by the Maslov quantization,

I, m, nsuch that |m| < I < n,

1The author uses - A - to denote the vector product in E*. [Translator’s note}
20r the hamiltonian of the harmonic operator: see §3, remark 4.3.
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characterize the equations having solutions (thus the energy ievels) and
also the solutions. These are Schrodinger’s three quantum numbers. The
lagrangian manifolds on which these solutions are defined are 3-dimen-
sional tori T(l, m, n) [see theorem 7.1, 2°)], given by the equations

T, m, n): H(x, p) = L*(x, p) — const. = M — const. = 0.

These constants have the same values as in (1) and depend on (I, m, n).
In §2, we determine solutions of the lagrangian equation

alU =0 mod;li (2)

that are defined mod(1/v) on a compact lagrangian manifold V and that have
lagrangian amplitude > 0. This amounts to a formal problem analogous to
the boundary-value problem whose study constitutes the classical study of
the Schrodinger equation; the condition concerning behavior at infinity in
the classical problem is now replaced by the condition that V is compact.
Always, the condition of existence is the same: it is characterized by a triple
of quantum integers; but the solution corresponding to such a tripel is not
necessarily unique.

In §3, we determine solutions defined on a compact lagrangian manifold
of the lagrangian system

aU = (a;: — const)U = (ay — const)U = 0, 3)

where the constants are formal numbers that are real mod(1/v2) and H
is the hamiltonian of the relativistic or nonrelativistic electron; then a, a;»,
and a,; commute. Here theorem 7.2 is applied. Solutions again are charac-
terized by a triple of quantum integers (I, m, n). Solutions of problem (1) are,
mod(1/v), those of problem (3).

In §4, we recall the problem classically posed regarding the Schrodinger
and Klein-Gordon equations: to find a function

wE3? > C,

that is square integrable—as is its gradient—and that satisfies the partial
differential equation

au = 0. )

In §4, we recall the resolution of this problem in order to show how it
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differs essentially from that of the preceding problems. We observe that all
these problems define the same energy levels, but we do not explain why this
happens.

The difficulties encountered in §2 and the length of the calculations
used in §3 and §4 contrast with the simplicity of §1; §1 justifies the following
conclusion.

CONCLUSION  Applying the Maslov quantization (I11.§3,6 and 7) to an
atom with one electron placed in a constant magnetic field gives the ob-
servable quantities the same values as does wave mechanics. However, the
Maslov quantization is directly related to corpuscular mechanics, hence to
the old quantum theory. Nevertheless it does not have the shortcomings of
the old theory. It has a logical justification (chapters 1 and 11); it does not
require the determination of the nonquantized trajectories of the electron,
but only the knowledge of the classical first integrals L and M of H amilton’s
system, which defines these trajectories.

The probabilistic interpretation of this quantization is the following:
In the state defined by a choice of a triple of quantum integers (I, m, n),
the point (x, p), representing both the position x and the momentum p of the
electron, belongs to a 3-dimensional torus T(l, m, n) in the 6-dimensional -
space Z(3) = E3 @ E?; the probability that (x, p) belongs to a subset of
T{, m, n) is defined by the invariant measure 1 on this torus T, m, n)
[see §1,(3.16)].

-

Remark. Let
(,m,n) #(I',m,n)

be two distinct triples of quantum integers. They define (§1) tori whose
intersection is empty:

T m,n) T, m, n) = .

Let U and U’ be two lagrangian functions defined on T(l, m, n) and
_T(I', m', ), respectively. Then their scalar product is [IL§2,theorem
3.2,3%]

Ulu) =o.

Historical note. V. P. Maslov did not give this application of his quanti-
zation. He only studied the case of quantum numbers tending toward
infinity, that is, the “correspondence principle” in quantum mechanics.
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§1. A Hamiltonian H to Which Theorem 7.1 (Chapter 11, §3)
Applies Easily; the Energy Levels of a One-Electron Atom, with
the Zeeman Effect

Theorem 7.1 of I1§3 assumes that ! functions on Q < Z(l) are given
that are pairwise in involution. In chapter III, we choose ! = 3 and choose
a classical triple of such functions.

1. Four Functions Whose Pairs Are All in Involution on E* @ E3
Except for One

Let X = X* = E? denote 3-dimensional euclidean space. Let us apply
chapter II to

=3, Z(3)=E*®E?

thus making a choice of a frame R, of Z: theorem 5 of 11, §3 spares us
the use of another frame.
But in E3 we use both a fixed orthonormal frame (I,,I,,I;) and a

moving orthonormal frame. Let
xeX = E?3, pe X* = E3;

let(x,, x,, x3)and (p;, p,, P3) be the coordinates ofxandpin(l,, I,, I3):
3
x = 3 xl;
j=1

Let us define five functions of (x, p):

R = x|l P =lpl Qxp =<px>, Lxp)=I|x~pl
M(x, p) = x,p, — X,p; (third component of x A p);

(1.D

they are connected by the obvious relations
L? + Q? = P?R?, M| <L, 0<P, O<R (1.2)

Then the vector I, has a priviledged role: it will be, for example, the
direction of the magnetic field producing the Zeeman effect.
In E3 @ E3, the characteristic system of d{p, dx is

dx = dp = 0.

Every function E* @ E3 — Riis a first integral of this system. Thus the
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Poisson bracket (-,-)(definition 2 of IL§3) of two such functions is defined.

By formula (3.14), of IL§3,
(L,M)=(LQ)=(L,R) =(MQ)=MR)=0, (R)=R (13

From theorem 2 (E. Cartan) of IL§3, a quadrature locally defines four
real numerical functions fo, f;, f3, f5s on E* @ E® such that

{p,dx> = dfy + f1dL + f3dM + fsdR. (1.4)

Let us now define the functions f; explicitly. Let (Jy, J;, J3) be the
orthonormal moving frame, defined for L # 0, such that

x = RJ,, x Ap=0LJ;, (1.5)
which implies
p=QR'J, +LR'J,, P#0, R#0. (1.6)

Let w,, w,, and w; be the infinitesimal components of the displacement
of that frame relative to itself (G. Darboux-E. Cartan); these are the
pfaffian forms

wy = {J3,dJ,> = —<{J3,dJ3),
w3 = {Jp,dJ >

Wy = <J13 dJ3>’

such that
A, = w3l — wyds,  dJy = @yJ5 — w3dy,

(1.7
dl; = w,J, — wyJ,.
Recall that exterior differentiation of these relations gives the equations

do, = 03 A @, dw, = 0, A 03, dw; = 0w, A (1.8)

(which are the structural equations of the orthogonal group).
By (1.7), differentiating (1.5), gives

dx = (dR)J, + Rw3J, — Rw,J3, 1.9)
from which follows
{p,dx> = QR 'dR + Lw, (1.10)

by (1.6).
In order to transform this formula into a formula of the form (1.4),
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let us introduce the Euler angles ®, 'V, and ®; these are the parameters
of the frame (J,, J,, J3) that are defined as follows for J; # +I;, that
is, |[M| < L:

+ @ is the angle between Iy and J5;0 < ©® < x;
« a rotation by ® around I transforms (I, I, I;) into (I';, I, I 3) such
that

I58sin® = Iy A J3;

« a rotation by © around I, transforms (I';, I, I;) into (I7, I, J3);
« a rotation by ¥ around J; transforms (I, I, J;) into (J4, J,, J3).

It is obvious that
M = L cos O, (1.11)
® and ¥ are defined mod 2. We have the classical formulas:

J; = (cos®cosWcos @ — sin®sin'¥)I,
+ (sin®cos ¥ cos ® + cosPsin¥)I, — cos¥sin®I;,

J, = (—cos®sin¥cos® — sin®cos¥)I,; (1.12)
+ (—sin®sin W cos® + cos@cos ¥}, + sin¥sin®I;,

J; = cos®@sin®I, + sin®sin®@I, + cosOI;;

w; = —cos¥sin@dP + sin¥dO,

sin ¥sin @ d® + cos'¥doO, (1.13)
w5 = cos@dd + d¥.

W,

By (1.11) and (1.13);, the explicit expression we sought for formula
(1.10) is

{p,dx) = Q% + Ld¥Y + Md®. (1.14)
This fundamental formula is of the form (1.4), in agreement with E. Cartan’s
theorem, which is our guide.

Complementary formulas. By (1.7), differentiating (1.6) gives

dp = [d(QR™") — LR 'w3}J, + [dLR™") + QR 'w3]J,
+ [LR 0, — QR '»,]J5. (1.15)
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By (1.9), d*x = dx; A dx, A dxis given by
d3x = R*(dR) A wy A w3} (1.16)
hence, by (1.15),

d3x/\d3p=L;iz—R/\dQAdL/\a)1/\szw3,

or, replacing the w; by their expressions (1.13) and eliminating ® by means
of (1.11),

d3x A d3p =dL A dM A dQ Ad?R/\dCD A dV¥. (1.17)

Let Q° be an open subset of Z(3) = E* @ E* on which
M| < L;
we can use the coordinates
L,M,Q,R,OY
on Qf, where ® and W are defined mod 2.
Remark 1. L # 0on Q%; thus by (1.2);, P # O, R # 0.

LEMMA 1. Let V be a lagrangian manifold in Q° (dim V = 3). Let us
replace each of the preceding functions and differential forms by its
restriction to V.

1°) The apparent contour g of V is the surface in V where

Tg,dR A @y A w3 =0on V. (1.18)

2°) In a neighborhood of a point of Zg, there exists a differential form
@ on V of degree 3, that is nowhere zero, such that on Zg,

dQ A w, A wafm 2 0, dL. A dR A o,/m = 0,
dR A w3 A @ /T = 0, (1.19)
where the three left-hand-side functions do not vanish simultaneously.

There exists a constant ¢ such that, in a neighborhood of this point of ¥,
the Maslov index mp_has the value

¢ when dR A w, A w3/@ <0

mg, = { (1.20)

° 1 + cwhendR A w, A wy/m > 0.
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Proof of 1°). Use expression (1.16) for d>x.

Proof of 2°). Let us calculate the jump of mg across Zp by applying
theorem 3.2 of L§3. By (1.9), (1.15), and (1.18), the components d;x and
d;p of dx and dp in the frame (J,, J,, J5) satisfy on ¥, at the points of
IRy

dyp A dyx A dyx = RP[A(QR™'Y — LR™'w3] A @y A

RdQ A w, A w3,

dyx A dyp A dsx = —RdAR A [d(LR™') + QR 'w;] A o,
=dL A dR A w5,

dyx A dyx A dsp=(dR) A w3 A [Low, — Qu,]
= LdR A w3 A 0.

The existence of w satisfying (1.19) and (1.20) follows by this theorem
(theorem 3.2, of 1.§3).

2. Choice of a Hamiltonian H
Let
H:Q° 5> R

be an infinitely differentiable function in involution with L and M, that is,
by (1.14), a composition with the functions L, M, Q, and R:

H(x, p) = H[L(x, p), M(x, p), Q(x, p), R(x)]. 2.1

H[ -] is an infinitely differentiable function defined on an open subset Q4
of the space R* with the coordinates L, M, Q, R. Assume that, on Q*

0 < R,

H  denotes the function dH[L, M, Q, R]/0Q.

By (1.3), the three functions H, L, and M of (x, p) are pairwise in involu-
tion, so that the results of IL§3 can be applied explicitly to the lagrangian
operator a associated to H.

From theorem 2 (E. Cartan) of IL§3, a quadrature locally defines four
real numerical functions on Q°,

M| < L, (Hg, Hg) # (0,0) when H = 0. (2.2)

Jo>91592-93>
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such that
{p,dx) = dgo + g1dL + g,dM + gszdH. 2.3)

We shall use this formula when H = 0; it is made explicit by lemma 2,
assuming

H=0

According to (1.14), the quadrature is the definition of the function Q by
(2.8).

Notation. Let W be the hypersurface in Q° given by the equation
W:H(x,p) =0

(Compare I1§3). Let (Lo, M,) be a pair of real numbers such that IMOI
< Ly ; let V[Lo, M,] denote any connected component of the subset of

W given by the equations
V[Lo,» Mo): H(x, p) = 0, M(x, p) = M,. (2.4)

W is the union of the V[L,, M,]. By theorem 7.1, of IL§3, V[Lo, Mo] is
a lagrangian manifold. It is the topological product of

L(x’ p) = LO’

« the 2-dimensional torus with the coordinates @ and ¥ mod 27,

« aconnected curve I'[ Lo, M, ] in the open half-plane with the coordinates
Q,R >0 o

The equation of this curve is
T[Lo, Mo]:H[Lo, My, Q, R] = 0. (2.5

By (2.2);, this curve does not have any singular points.
Let us define a real numerical function t of [L, M, Q, R] on W up to the
addition of a function of (L, M) by the condition

_ dR _ dQ
" RH,[L, M, Q,R] RHg[L, M, Q,R]

when the curve I'[L, M] is a closed curve, then ¢ is defined mod ¢[L, M,
where

dt onI'[L, M]; (2.6)

dR g .
c[L,M] = §r[L,M]‘R—HQ = "§F[L,M] RH’ @7
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¢ is monotone on I'; (L, M, t, ®, ¥) forms a system of local coordinates on
w.

Let us define another real numerical function Q on W up to the addition of
a function of (L, M) by

i = QiiRion r[L, M]; (2.8)

when the curve T'[L,M] is a closed curve, then Q is defined
mod 2aN{L, M] where

1 dR
Q is not monotone on I'. Let its differential be denoted by
dQ[L, M, ] = QR 4 AL, M, 1L + u[L, M, (M. (2.10)

The properties of the functions 4 and x thus defined will be specified in §2.
Now we can give the explicit expression of the restriction of (2.3) to W.

LEMMA 2. 1°) The restriction of the pfaffian form

w = {p,dx)
to Wis
wy =dQ + LY + M®) — (4 + ¥)dL — (4 + ®)dM. (2.11)

2°) The characteristic system of dwy, is Hamilton’s system:

dx _ _ _ dp
H,(x, p) H,(x, p)’

Its first integrals are compositions with the functions

Hx,p) = 0. (2.12)

LM, i+ ¥ u+®; (2.13)

I and M are in involution; A + ¥ and u + ® are also in involution.
3°) On the solution curves of this system, that is, the characteristic curves
of W, we have

dx dp dR av ao

U= g Hop RELMERQ] HI[1 Hul]
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_ 49 _ -
——.RHR[.],dL =dM = 0. (2.14)
4°)On W
d3x A d3p
TW=dL/\dMAdt/\d(D/\d‘I’. (2.15)

Proof of 1°). Use the expression (1.14) for {p,dx) in Z and the ex-
pression (2.10) for Q dR/R on W.

Proof of 2°). Lemma 3.2 of IL§3 (E. Cartan) proves that (2.12) is the
characteristic system of dwy, and that dwy, has rank 4. Now, by (2.11),

dow = dL A d(A + ¥) + dM A d(p + ©);

thus the four functions (2.13) are first integrals of this system (see E.
Cartan’s definition of a characteristic system, 11,§3,2). The pair (L, M)
and (A + ¥, u + @) are in involution by remark 2.2 of IL§3.

\ Proof of 3°). The same lemma (E. Cartan) and the expression (1.14) for
{p, dx) prove that the characteristic system of dw,, is

dR d¥ d® dQ _dL _aM

RHG[L, M,0.R] _ H[-] Hu['] RH[] 0 ~ 0’
H = 0;

thus this system is equivalent t6r(2.12). Obviously

dx {x,dx> RdR

Hop) G H6PY <6 LyH, + (6 My Hy + <x, Q) Hy

- Since x A (p + sx)is independent of the real variable s,
d(x A p) =0fordx =0, dp parallel to x;
therefore,

{x, L, =<{x,M,> =0.

Moreover,

<x’ Qp> = R%

The preceding five relations imply
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dx dR Ay 4o dQ

H,(x, p) RH,[L, M, Q, Rl H, Hy RHp

and thus (2.14), by (2.6) and (2.12).
Proof of 4°). Formula (1.17) can be written

d3x/\d3p=dL/\dM/\dH/\Ri§—/\dCD/\d‘P,

Q
where, for H = 0,

dR

AR 4

RH, t mod(dL, dM)

by (2.14); hence (2.15) holds, the following meaning being given to its
left member:

d3x A dp
dH

w

denotes the restriction @y to W of any form @ of degree 5 such that
dH A @ = d3x A d3p;wy is clearly independent of the choice of @.

3. The Quantized Tori T(/, m, n) Characterizing Solutions, Defined
mod(1/v) on Compact Manifolds, of the Lagrangian System

aU = (g — LU = (ay — Mg)U = 0 mod%; G.1)

a, a;z, and ay; denote the lagrangian operators associated, respectively, to
the hamiltonians

H,12, M,

which are in involution; L, and M, are two real constants such that
|Mo| < Lo-

From theorem 7.1 of IL§3, solutions of this system are lagrangian func-
tions U with constant lagrangian amplitude, defined mod(1/v) on those
manifolds V[Lo, M,] defined by (2.4), whether compact or not, that
satisfy Maslov’s quantum condition (IL§3, definition 6.2). V[Lg, My] is
chosen to be connected. The measure n, on ¥, which is invariant under
the characteristic vectors of H, L> — L%,and M — M,, and which serves
to define the lagrangian amplitude, is
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y = dt A d® A dV¥ 32
from (2.15) and formula (7.4) of I1§3.

Recall the statement of Maslov’s quantum condition: The function

1 1 i .
ﬁq}& - ZmR0 (where h = viols real> (3.3)

has to be uniform on ¥V mod L.
By (2.11), where L = Lo and M = M, the phase g, of V[Lo, Mo]
(defined in 1,§2,9 and 1,§3,1) is

PR, = Q + Lo¥ + M,®. (3.4
Let us calculate the Maslov index of V[Lg, Mo).

LEMMA 3. 1°) The apparent contour Zg, of V[Lo, M,] is the union
T, U Z, of two surfaces in V[Lo, M o] given by the equations

T,o¥ = Omodm;  ,:Ho[L,M,Q,R] =0.
2°) The Maslov index m  of V[Lq, Mo] is

1 H, . “
mg, = [_l{’] - [Earctanfg]on V[Lo, Mo] (3.5)

R

up to the addition of an integer constant; [ - - -] denotes the integer part.
Proof. Apply lemma 1. By (1.11yand (1.13),

w, = —cos ¥sin@d'Y, w, = sin'¥Ysin®do,
Low; = Lod¥ + Mod®

on V[Lg, My]; hence, by (2.6),

dR A @, A 03 = —RHQsin‘I’sinGdt A dY A dOD, (3.6)
dQ A wy A w3 = RHgsinWsin®dt A d¥ A d®, 3.7
dR A w3 A 0y = —RHQcos‘I’sinth A dY¥ A dD, (3.8)

where Rsin® # 0 by (2.2), and (2.2),.
By lemma 1,1°), Zg is given by the equation

Hysin¥ = 0,

from which follows part 1 of lemma 3.
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In a neighborhood of a point of Z,\X, U X, Hgycos'¥ # 0;in lemma
1,2°), we can choose

o =dR A w3 N ©; dR A w, A w3/m = tan'¥,

whence by this lemma

mg, = [%‘P] 4+ const. (3.9)

By (2.2);, in a neighborhood of a point of Z\Z, U Z,, Hgsin¥ # 0;
in lemma 1,2°), we can choose

w=dQ A @, N ©3; dR A w, A wsfo = —Hp/Hpg,

where

mg_ = const. — [larctany—g]. (3.10)
The global expression for mg follows from the two local expressions (3.9)
and (3.10).

By (3.4) and (3.5), Maslov’s quantum condition may be formulated as
follows: The function
1Q 1 HQJr(L0 1)? M, ©

iom T Ay % T2 T h

is defined mod 1 on V[L,, M,].
If V[Lg, Mo] is compact, that is, if the curve T'[Lo, M) is a closed
curve, by (2.9) this condition is that

1 1 1 1
y aeTz wth

%N[LOB MO] +
be three integers. Denote them by
n—1 I, m

in order to recover the classical notation of quantum physics. Since N > 0
and |M,| < Lo, we have

|m| <l <n

If V[Lo, M,] is not compact, Maslov's quantum condition is that
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1 1 1
plom3=b M=

be two integers such that [m| < L
Thus the conclusion of this section is the following theorem.

THEOREM 3. The connected manifolds on which the solutions of the lagran-
gian system (3.1) are defined are

1°) The compact manifolds V[Lqy, M) defined by (2.4) such that there
exist three integers

satisfying the conditions

[ml <1 <n, (3.11)
Lo = h(l + %), M, = hm, Lo + N[Lo, M) = hn; (3.12)
thus V[Ly, M,] is a torus, which will be denoted by T(l, m, n): the co-
ordinates at a point of this torus are

¥ mod 2x, ¢ mod 27.

(3.13)

¢t modc[Lo, M,] defined by (2.6)-(2.7),

2°) The noncompact manifolds V[Lo, M,] defined by (2.4) such that
there exist two integers

Py
.

L, m
. satisfying the conditions

Im| <1, (3.14)
Lo = h(l + %), M, = hm; (3.15)
thus V[ Ly, Mo] is a product of

o a 2-dimensional torus with the coordinates ¥ mod 2n, ® mod 2r,
« a line, half-line, or segment with coordinate t.

We provide V[ Lo, M,), whether compact or noncompact, with the follow-
ing measure, which is invariant under the characteristic vectors of H,
P —Ly,and M — My:

ny =dt A dD A dY, (3.16)
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then the solutions of (3.1) defined on V[Ly, M,] are lagrangian functions
with constant lagrangian amplitude.

Remark 3.1. From now on, we shall limit ourselves to the study of com-
pact lagrangian manifolds (for example, that of the electron belonging to
an atom).

Remark 3.2. The characteristic vectors of L2 — Liand M — M, are

Kpa_pi:idl = dM =dt =0, d¥ = 2L,, d® =0, (3.17)
Ky —m,dL = dM = dt = 0, d¥ =0, de =1, (3.18)
respectively. It is immediately verified that these vectors leave 7, invariant.

Proof of (3.17). 1t follows from (1.2),, then (1.5), and (1.6), and finally
(1.5), and (1.12) that x,2_ z is the vector tangent to V[Lo, My] such that

ox(L, M, t,'Y, @)

dx = 2LL, = 2(R*p — Qx) = 2LRJ, = 2L 5

This proves (3.17).

Proof of (3.18). Itfollows from (1.1), then (1.5); and (1.12), that Ky is
the vector tangent to VL, M,] such that

ox(L, M, t,'Y, D)

dx = (=x3,%,,0) = T2

Remark 3.3. In agreement with theorem 7.1,2°) of IL§3, when the mani-
fold V[L,, M,] is compact, hence a torus, the characteristic vector of H
[see (2.14)],

k:dL =dM =0, dt =1, a¥ = H,, d® = Hy,, (3.19)

and those of L? — L2 and M — M, generate a group of translations of
V[Lo, M), namely, the translations in the following coordinates [see
(2.7) and T1L§2,(1.5) and TL§2(2.3)]:

t mode[Ly, Mo],

NL[LO’ MO]

¥ + A[Lo, Mo, t] — c[Lo, Mo]
(1R 0

t mod 2,

D+ p - %t mod 2m.
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4. Examples: The Schridinger Anid Klein-Gordon Operators

Let us choose

H(x, p) = %[PZ _ KIR M] [I;’ZM ]], 4.1)

where K:R, @ R — Riis a given function. In other words,
1

Theorem 3 can be applied immediately.
The condition that (2.4) define at least one compact hypersurface
V[Lo, M,], which is a torus, is that the function

R,>R— K[R,M,] — LR .

be positive between two consecutive zeros R, and R, © < R, < R)).
Then (2.9) defines 2

1 R, ) .
N[Lo, My] = ;J VKR Mo] — LgL;f > 0. L @3)
R, A

Remark 4.1.  if K is an affine function of M, then, by (4.1),

a d
<~a;, é;> Hxp =0 @)

and consequently [I1,§1,definition 6.2 and IL§1,(6.3)], the expression in
R, of the operator associated to H is

1 1 1 0 I%
- 1A - e @, %
@=5z 2R? [R’ v <x16x2 X2 6x1>]’ (4.5)

where
e A= Zleaz/axf,

* the multiplication by any function of R commutes with the operator

10 0
v\ tox, 2ox, )

Example 4. We call the operator associated to the hamiltonian
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(4.6)

H(x,p) = l:PZ + AM) — 2B(M) + Q(A/I—)],

R R?

where A, B, and C:R — R are some given functions, the Schrodinger—
K lein-Gordon operator. Let

Ag = A(Mo), By = B(Mo,), Cy = C(My).

The condition that there exist at least one compact manifold V[Lo, M o]
defined by (2.4) may be expressed as follows:

4,50, L3+Co>0, Bo>+JdogLE+ Co. @7
When it is satisfied, V[L,, Mo] is unique, and by (4.3),

1 dR
N[Lo, Mo] = 5-4v/—AoR? + 2BoR — L§ = Co

where the integral is calculated along a cycle of C enclosing the cut
[R;, R,]; taking residues at R = o0 and R = 0 gives

B
N[Lo, Mo] = \/;1"_0 ~ JLZF Gy > 0. (4.8)

The statement of theorem 3 becomes the following.

THEOREM 4.1. Let a be the Schrédinger—Klein-Gordon operator, that is,
the operator associated to the hamiltonian (4.6). Let a;. and ay be the
operators associated to the hamiltonians L? and M. Then the lagrangian
system

—(ags — LU = (ay — Mo)U = 0 mod;lE 49)
has solutions defined on a compact manifold if and only if there exists a
triple of integers (I, m, n) such that
Lo=h(l+1%, My=hm, (4.10)

lm| <l<n (+9 +Coh™*>0,
_Bzhz[n_l—‘“ ‘\/(l+2)2+C0 ]2

If this condition is satisfied, this compact manifold is unique: it is the
torus T(l, m, n) given by the equations

@.11)
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T(, m, n): H(x, p) = L(x, p) — Lo = M(x,p) — My = 0. 4.12)

We provide this torus with the invariant measure (3.16); then the solutions of
(4.9) defined mod(1/v) on T(l, m, n) are the lagrangian functions with constant
lagrangian amplitude.

Notation. (Related to physics and used only at the end of this section)
In E?, we choose an electric potential #/,:E*> — R and a magnetic
potential vector (&, o ;, &3): E? — E3 satisfying the physical law

ot
T Ox;

= 0; 4.13)

they are time independent.

The trajectories in E* of the relativistic or nonrelativistic electron of
mass g and electric charge —& < 0 are the solutions of Hamilton’s
system, defined by the hamiltonian given by

H(x, p) =

|| M“‘

= + 0| = = et ? 4
o ij . jx_ e p(x) 4.14)

in the nonrelativistic case, and by

1 3 2 1
Heop) =5, 2 p,-+§ﬂ,-<x) ~ g E +edo]” + fuct @15)

in the relativistic case. Here

« c is the speed of light,

« E is a constant, which is the energy of the electron whose position x and
momentum p satisfies H(x, p) = 0 (energy including the rest mass pc? in
the relativistic case).

By (4.13)

<66 66>H(x p) = 0.

Then by 11,§1,(6.3) and IL§l.definition 6.2, in the nonrelativistic case the
operator associated to H is the Schrédinger operator

2= —21—#[‘1 o 72&42()0] E - o, (416)
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and in the relativistic case it is the Klein-Gordon operator

171, 28 1 uc?
= o,k 2y K
a [ Z vax 02 z ] -ucz [E + esto]” + 2

2u| v
(4.17)

Let us choose these hamiltonians and operators as follows: =/, is the
electric potential of a nucleus with atomic number Z, placed at the origin;
the magnetic field is constant, parallel to the third coordinate axis, and
of intensity #. In other words,

o) =L, ) = s, ) =dHx, =0

4.18)

Let us neglect the #°2 terms, as is done in physics; the hamiltonians
(4.14) and (4.15) of the electron become hamiltonians of the form (4.6)

2
Hix, p) = - [Pl + EM — 2uE — 2“; Z] 4.19)

in the nonrelativistic case, and

2 2 472
H(x,p) = lﬂ[PZ +EM + 2 - % _ZZE 82§2] (4.20)

in the relativistic case.
The Schrédinger operator becomes

t{1 e 0 8 ZuszZ_\
S S N4 VIR [P M o i 421
“ Zu[vz o (xléx2 2 é’x1> # R 4.21)

the Klein-Gordon operator becomes

a__l_i_‘_s.}f d xi+2c2——E—2——2SZZE—£4ZZ
2ul v? 1ox, 2 ox, # c? ¢’R c2R%Y

(4.22)

Relation (4.11); defines E as a function of (I, m, n); in the course of this
calculation, two constants, which are classical in physics, appear.
82

1
o= = 137 the dimensionless fine-structure constant,
c
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p = jh—, the Bohr magneton (B has the dimensions of energy),
He

as well as the function given by

Fin, k) = ! ‘ (423)

1+ oz ’
n—k+ Jk¥ - a?Z?

The statement of theorem 4.1 becomes the following.

THEOREM 4.2. Let a be the Schrédinger operator (4.21) or the Klein-Gordon
operator (4.22), H being (4.19) or (4.20). Let a,: and ay be the operators
associated to L* and M. For certain values of the constants E, Lo, and Mp,
the lagrangian system

— (apr — LAU = (ay — MU =0 modvi2 4.9)
has solutions defined mod(1/v) on compact manifolds. These values of E,
Lo, and M, are expressed as functions of a triple of integers (I, m, n) such that
|m| <1 < nand, in the Klein-Gordon case, l+1i>az;

these expressions for E, Ly, and M, are

a?Z?

E o

—-uc + BAm in the Schrédinger case, 4.24)

E? = pc?(uc® + 2p#m)F*(n, 1 + 3) in the Klein-Gordon case, (4.25)
Ly=h1+1%, M,=hn (4.26)

These solutions of (4.9) are defined on the tori (4.12). Let us provide these
tori with the invariant measure (3.16); then these solutions are lagrangian
functions, defined on these tori, with constant lagrangian amplitude.

Remark 42. Physicists, neglecting 2 and fo?, simplify (4.25) as follows:
+E ~ pc’F(n, 1 + %) + pHm.
The minus sign concerns antimatter (¢ < 0).

Remark 4.3. The energy levels (4.24) and (4.25) are those given by the
study of the partial differential equation
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au = 0,

whose unknown u:E3\{0} — C and its gradient have to be square in-
tegrable (IIL§4).

§2. The Lagrangian Equation aU = 0 mod(1/v%)
(a Associated to H, U Having Lagrangian Amplitude > 0
Defined on a Compact V)

0. Introduction

Summary. In §1, we studied problem (1) (introduction to chapter III),
that is, a system of three lagrangian equations. In §2, we study the first of
these three equations and, more precisely, problem (2) (introduction to
chapter III).

Each solution of problem (1) is a solution of problem (2), by theorem 3
of §1. In the exceptional case of a hamiltonian H independent of M (for
example, Schrédinger and Klein-Gordon without a magnetic field), a
rotation in E? acting simultaneously on x and p obviously transforms
solutions of problem (1) into solutions of problem (2) that are no longer
solutions of problem (1). Without considering this exceptional case,
theorem 1 of §2 constructs solutions of problem (2) that are not solutions
of problem (1): a solution of problem (2) defined on a torus T(l, m, n)(theorem
3 of §1) is not necessarily unique up to a constant multiplicative factor.

On the other hand, theorem 2 shows that even if H depends on some
parameters, these tori T(l, m, n) are, in general, the only compact lagrangian
manifolds V on which solutions of problem (2) are defined. Moreover,
theorem 3.1 specifies that in the Schrodinger and Klein-Gordon cases
problems (1) and (2) define the same energy levels: the classical levels.

Remark. Theorem 1 of §2 does not have any physical significance: it takes
into account the condition that some numbers, which in the Schrédinger
and Klein-Gordon cases are measurements of physical quantities, take
rational values.

CONCLUSION. Let us call a problem that when posed for the Schrodinger—
Klein-Gordon equation has the essential features of the classical problem
(4) (introduction to chapter IiI) a well-posed problem. Problem (1) is well-
posed by theorem 4.2 of §1. From the preceding remark, the main result of
§2 is that problem (2) is not well-posed.
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1. Solutions of the Equation U = 0 mod(1/v?) with Lagrangian
Amplitude > 0 Defined on the Tori V[L,, M,]

In section 2 of §1 we chose H and defined the manifolds
W:H =0, V[Ly,Mg):H=L —Ly=M — My =0.

Any compact lagrangian manifold V in W is a union of characteristics K
of H (whose paramter ¢ varies from —co to +00); V' is thus a union of
compact closures K of such characteristics.

Properties of a characteristic K of H with compact closure K. By (213)
of §1, such a characteristic K stays on a torus V[Lg, M,] and is given by
the equations

K:¥ — ¥, + A[Lo, Mg, t] = & — @y + u[Lo, My, t] =0 (@
(®,, ¥, constants)

on this torus. Recall that the coordinates of a point of V[L,, My},

(P, D, 1),

are defined

(mod 2%, mod 27, mod ¢,), where ¢ = ¢[Lo, M,].

More explicitly, let R? be given the coordinates (¥, ®, 1) and let 7> be
the additive group of triples of integers (¢, 7, {) acting on R3 as follows:

Z33 (67 f, C)(\P’ CD, t)H(lP + 27{59(1) + 27‘57],): + COC);

the quotient of R? by this group Z* is V[ Lo, Mo]: there exists a natural
mapping

R3 > R¥YZ? = V[L,, Mp]. (1.2)
Given a function

Fi(L,M,t) > F[L,M, t] R,

let

AF[L,M, ¢} = F[L,M,t + ¢[L,M]] — F[L, M, t]

Obviously

AR =AQ = 0. (1.3)
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By the definitions (2.8) of Q and (2.9) of N in §1,

AQ[L, M, t] = 2rN[L,M]; (1.4)
then, by (1.3) and §1,definition (2.10) of 4 and y,

2ndN[L, M] = AA[L, M, t]dL + Ap[L, M, t]dM;

that is,

A4 = 2nNy, Ay = 21Ny (1.5)
Let

NL0 = NL[LO’MO]’ NMD - NM[L07M0]'

We can now describe K.

LEMMA 1.1. 1°) Assume N; and Ny, are rational:

L M
N, = —ZL Ny = —=1
Lo N1 5 M, 1\[1 s
where (L,, M,N,) € Z*, G.CD{Ly, M;, N}) = 1 (1.6)

(thatis, L,, M,,and N, are integers with greatest common divisor 1). Then
K = K is a closed curve given by the equations (1.1).

More precisely, the equations (1.1) define an open curve R (that is, a
curve homeomorphic to R) in R By (1.5) and (1.6), the subgroup Zof Z°
generated by (L,, M,, N,) leaves R invariant; we have

K=K =R/Z (1.7)
2°) Assume that N, and Ny, are connected by a unique affine relation

LyNp, + M;Ny, = N, (1.8)

where (L, M,, N)e Z*, G.CD.(L,, M, Ny) = 1.

Then K is the 2-dimensional torus T* defined in V[L,, M, ] by the equation

Ll{‘“l" - ‘PO + }.[Lo, Mo, t]} + Mx{q) - (DO + #[LO’MO’ t]} = 0
(1.9)

More precisely, equation (1.9) defines a surface R? in R* homeomorphic
to R2. By (1.5) and (1.8), the subgroup Z? of Z* given by the equation

Z>: L, ¢+ Mpn+ N(=0 (1.10)

11,§2,1 187

acts on R2. We have
T? = R¥Y/Z2. (1.11)
In order to describe the generators of Z2, let

L, = GCD.(M,,N,), M, =GCD.L,,N,),
N, = G.CD.(L,, M,). (1.12)

M, and N, divide L,; G.C.D.(M,, N,) = 1 by (1.8);; then there exists an
integer L; and similarly integers M5 and N, such that

L, = LyM,N,, M, = L,M,N,, N, = L,M,N;. (1.13)
77 is generated by its three elements

(07 M2N3’ ——M3N2)’ (_L2N3907 L3N2)’ (L2M39 —L3M2,O),

(1.14)
which evidently are connected by the relation
L3(0, MyN3, —M;N,) + Ms(—L,N3, 0, L3N,)
+ N3(LM;, —L3M,,0) = 0. (1.15)

3°) Suppose there is no affine relation with integer coefficients connecting
Ny, and Ny . Then K is the torus V[Lo, M,].

Proof. The subset of R*® whose natural image in V[L,, My] is K is
defined by the condition

(\p — Wo + Lo, Mo, t] ® — Dy + u[LO’M05t]>eG

2n 2n
where G is the image of Z? in the additive group R? under the morphism
223 n 0 (& + N Ln + Ny, ) e R

Then K is the natural image in V[L,, M,] of the closed subset of R*
defined by the condition

(‘P — W + A[Lo, Mo, t] © — @y + #[LOvMO’t])EG'

. = (1.16)

where G is the closure of G; G is a closed subgroup of R
Three cases occur: (1°) G is discrete, (2°)dim G = 1, (3°) G = R%



188 111,§2,1

1°) G is discrete, that is, G = G. This is the case if and only if N and
Ny, are rational (use the rapidity of convergence to an irrational number
of its rational approximations given by its continued fraction develop-
ment), that is, if and only if (1.6) holds. Then K = K the elements of the
subgroup Z of Z? leaving invariant the curve R = R® given by the
equations (1.1) are the (&, 1, {) in Z* such that

N ¢ = L,{, Ny = M,L

By (1.6),, N, divides {. Thus Z is generated by (L,, M,, N,) € Z3.
2°)dim G = 1. Then G is the set of (6, 7) € R? satisfying a condition
of the form

L6+ M;teZ, whereL,,M eR; (1.17)

by the definition of G, G is the subgroup (1.17) of R? if and only if (1.8) is
satisfied and G is not discrete, that is, by (1°), if and only if N, and Ny,
are connected by a unique affine relation with integer coefficients, which
is (1.8).

Assuming this hypothesis, by definition (1.16) of K and definition (1.17)
of G, K is the image under (1.2) of the manifold R? in R given by equation
(1.9); obviously (1.10) defines the subgroup Z? of Z> that leaves R?
invariant; and (1.10) implies by (1.8); and (1.12) that

L,, M,, and N, divide &, 1, and , respectively. (1.18)

By (1.13), the three elements (1.14) are contained in Z2. On one hand,
(1.14), generates the subgroup of Z? given by the equation

&=0,

because G.C.D.(M,N;, M3N,) = 1 by (1.12),, (1.13),, and (1.13);. Thus
G.C.D.(N;, M;) = 1, which implies that the values taken by ¢ in the
subgroup of Z? generated by the elements (1.14), and (1.14); are all the
multiples of L,. Thus, by (1.18), the three elements (1.14) of Z? generate
72,

3°)G = R2. By (1°) and (2°), G = R? if and only if N and Ny, are
not connected by any affine relation with integer coefficients. If G = R?,
then K is the image of R? under (1.2); thus K = V[Lg, M,].

Invariant measures on V[Lo, My]. Recall that V[ Lo, M,] has a measure
>0 that is invariant under the characteristic vector x of H [(3.2) of §1]:
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Ny = dt A d® A d¥.

Every measure on V[L,, M,] that is invariant under is the product of
nv and a function V[Ly, Mo] — R that is invariant under k, that is,
constant on the closures K of the characteristics K of H staying on
V[Lo, M,).

Then the following lemma is an obvious consequence of lemma 1.1.

LEMMA 1.2. 1°) Suppose that Ny and Ny, are the rational numbers (1.6).

Then the characteristics of H staying on V[Lg, M,] are the closed curves
given by the equations
K(c,, ;) ¥ + A[Lg, Mo, t] = ¢, @ + p[Lo, Mo, t] = ¢35
e, and ¢, are constants defined mod

oMy 2m Ly om
NI L2N3’ Nl MZNS’

respectively, where

L, = G.C.D.(M;, N}),
N, = N,/L,M, e Z.

M, = GCD.(L;, Ny),

The measures on V[Lo, My] that are invariant under the characteristic
vector k of H are given by

F(¥ + A[Lo, My, t], @ + plLo, Mo, thny, (1.19)

where F(-,) is an arbitrary function with periods 2n(M,/N ) and 2n(L,/N )
in the first and second arguments, respectively.

2°) Suppose that N;_and Ny, are connected by the unique affine relation
(1.8). Then the closures R of the characteristics K of H staying on
V[Lo, M,] are the tori given by the equations

T2(co): Ly {¥ + A[Lo, Mo, t] + M {® + u[Lo, My, 11} = ¢o,  (1.20)

where ¢, is a constant defined mod 2. The measures on V[Lo, Mq] that
are invariant under the characteristic vector « of H are given by

F[L,(¥ + 1) + M, (® + g1y, (1.21)

where F[ -] is an arbitrary function with period 27.
3°) Suppose that there is no affine reiation with integer coefficients con-
necting Np_ and Ny,. Then the closure K of each characteristic K of H
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staying on V[ Ly, My]is V[Lo, M,]. Every measure on V[L,, My] that is
invariant under the characteristic vector x of H is given by

const. 7y . (1.22)

The following theorem is an easy consequence.

THEOREM 1. 1°) The tori V[Lq, My on which a lagrangian solution U of
the equation

1
aU = 0 mod—; (a is the operator associated to H)
v

with lagrangian amplitude >0 may be defined are defined by the condition
(3.11), (3.12) of §1: there exist three integers

Lmn

such that

jm| <1 <n,

Ly = h(l + %), M, = hm, Ly + N[Ly, My] = hn.

2°} A necessary and sufficient condition for the solution U defined on such
a torus to be unique up to a constant factor is that the derivatives of N,

N, [Lo. Mo}, Ny [Lo, Mo].
are not connected by any dffine relation with integer coefficients.

Proof. By theorem 6 of IL§3, the condition that there exist such a solu-
tion on V[Lgy, M,] is Maslov’s quantum condition. The condition that it
be unique is the condition that the invariant measure #,, on V[Ly, M]
be unique (up to a constant factor). In section 3 of §1, Maslov’s quantum
condition is formulated as (3.11)~(3.12). The condition that the invariant
measure be unique is given in lemma 1.2.

2. Compact Lagrangian Manifolds V, Other Than the Tori V[L,, M,],
on Which Solutions of the Equation aU = 0 mod(1/v?) with Lagrangian
Amplitude >0 Exist

We shall show that such manifolds V exist only exceptionally.
The calculation of their Maslov index (lemmas 2.3 and 2.4) uses the
following properties.
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Other properties of the characteristics K of H with compact closures.
Differentiating the definition (2.10) (§1) of A and p gives

%dQAdR+dAAdL+dﬂAdM=0,

where L, M, Q, R are functions of (L, M, t) satisfying H [L,M,Q,R] = 0;
then .
H,dL + HydM + H,dQ + HgrdR =0,

whence, by elimination of dQ:

He gp v ai|ndl + | B3 ar + du| A am = 0;
RH, RH,
thus there exist three real numerical functions p, ¢, and t of (L, M, 1),
defined when H, # 0, such that

di = —-HL gR 4 pdL + cdM,
RH, :
2.1)
H
=~ Huyp  gar + cam.
du RH, +0 T

By the expression (1.5) for A4 and A, p and definition (2.6) of ¢ in §1, these
relations imply

Ap = 2nNp:, Ao =2nNpy, At = 27Ny, 2.2
)'t[Li M, t] = _HL[La M, Q, R]a e = —Hy. (2.3)

Let us describe explicitly the singular part of p, o, 1, and pt — ¢ when
H, = 0; by (2.1),

H R, H R Hy
LiiL ML —
p="E2Ly . o= + Ay = + B
RH, RH, RH, 24
_ RyHy )
v RH, + Ha

thus
pr — 0 = ot (R Hyftog — Ryt = Ry + RugHcht]
Q

+ Appy — Ambr
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Since H[L, M, Q, R] = 0,
HyR; + Hp + HpQp = HxRy + Hy + HpQy = 0.

When Hy # 0, these relations make it possible to eliminate R; and R,
from the preceding expressions for p, o, 7, and pt — ¢*; by assumption
(2.2) of §1,

Hg # 0when H, = 0;
hence:
LEMMA 2.1. The functions

H} H,H, HZ

+ s R R
P ¥ RHHy  ° T RHGHy T RHGH,
2.5)
I ,
pt — o + [Hf o — HiHy(py + Ayg) + Hiygdy ]

RH,Hg
are bounded in a neighborhood of the points where Hy = 0.

Properties of compact lagrangian manifolds V in W. V is generated by
characteristics of H with compact closure, which thus stay on tori
V[Ly, M,]; then the functions

L, M,N = N[L,M], ¢ =c[L, M]

are defined on V.

Let V, be the open subset of V where dL. A dM # 0 if it is not empty.
WhendL A dM = Oon V, let V| be the open subset of ¥ where (dL, dM)
# 0 if it is not empty.*® Then V¥, and V, are lagrangian manifolds, not
necessarily compact, that are generated by characteristics K of H with
compact closures K; they contain these closures.

When V, and V, do not exist, then V is one of the tori V[L,, My]. By
the following lemma, ¥, and V, only exist if the graph

N:(L, M)~ N[L, M]

contains a rectilinear segment with rational direction.

Thus the consequence of theorem 2 stated in the introduction (§2,0)
follows from this lemma.

3 This notation means that dL and dM are not simultaneously zero. {Translator’s note]
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LEMMA 2.2. 1°)On V,, N is an affine function of (L, M). More precisely,
LydL + M;dM + N,dN =0, 2.6)
where (L,, M,, N) e Z®, G.CD.(L;, M, Ny) = 1.

V, is defined in W by the datum of a function F of two variables and by the
equations

W 4+ A[L M, (] + FL[L,M] = @+ u[L,M, ] + Fy[L,M] = 0. 27)

More precisely, in the space R’ with the coo~rdinates (L, M, ¥, D,r),
equations (2.7) define a 3-dimensional manifold V,. By (1.5), where

N, = —L,/Ny, Ny = —M,/N,,

the elements (&, 7, {) of the subgroup Z of Z* generated by (L, 1\;11 ,N)eZ3
act on V, as follows:

En L, M, P, @, 1) ¥ (L, M, Y4 2né, ®+2mn, t+c[L, M]C). (2.8)
We have .
v, = V,/Z. . Q9

V, has a measure that is invariant under the characteristic vector of H,
given by

ny = dL A dM A dt

-

2°) On V,, L, M, and N are affine functions of a single variable s. More
precisely,

dL _aM _ dN
Ll Ml Nl
where (L, M;) # 0, (L, M, N;)€Z>, G.CD.L;, M;,Ny) = L

=ds (2.10)

V, is defined in W by the datum of three functions of s—the affine functions
L and M satisfying (2.10) and F—and by the equations

= M = M(s),
L = L(s), (s) @1
L {¥ + A[L, M, {]} + M {® + p[L, M, t]} + F(s) = 0. -

More precisely, equations (2.11) define a 3-dimensional manifold ¥, in R®
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on which the subgroup Z? of Z3 given by equation (1.10) acts according to

(2.8). Recall that this subgroup is generated by its three elements (1.14).
We have

v, = /22 (2.12)

V, has a measure that is invariant under the characteristic vector of H,
given by

Ny = (M d¥Y — L, d®) A ds A dt.

3°) The phases of V; and V, in the frame R, (section 1 of §1) are given by
pr, =Q + LY + MO + F. (2.13)
Remark 2.1.  (2.8) and (2.10) in §1 define

« Q up to the addition of a function F of (L, M)
» 4 and u up to the addition of its derivatives F and Fy,.

Given V, or V,, it is possible to choose € such that
F=0

in (2.7), (2.11), and (2.13).

In order to quantize V, we shall use only the following consequence of
(2.13) and the definitions (2.7) of ¢[L, M ] and (2.9) of N in §1: choosing
F to be zero, the function

PR, — 2 — LY — M® (2.14)

t
AN
c[L, M]
is defined on V; and on V,.

Preliminary to the proof. Formula (2.11) of §1 shows that theorem 3.1 of
I1,§3 applies with

=3 h, =1L, h, = M,
go = Q + LY + MO, g, = ¥ — 4 g, = -0 —p

the phase @g_ replacing the lagrangian phase.
Hence any lagrangian manifold V in W is given locally by equations of
one of the four following types:
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W4 i+ F[LM]=@+p+ Fy=0; (2.15),
M=fL), ¥+2i+fL)®+up+FL)=0; (2.15),
the result of the permutation of (L, ¥), (M, ®) in (2.15),; (2.15),
L = const,, M = const.; (2.15),

F and f are functions of one or two variables. The phase @g, of V is
expressed by (2.13), where F = 0in the fourth case.

Proof of 1°). Locally, V, is given by equations of the form (2.15), . Hence
V, is generated by characteristics K staying on disjoint tori V{Lgy, M,].
Their closures K are disjoint and are contained in V,;dim V, = 3,so that

dimK = L

Then by lemma 1.1 the values of N, and Ny, on V are rational numbers.
Thus the functions N, and N,, are constant on Vand satisfy (1.6), which
expresses (2.6), whence 1°) and (2.13).

Proof of 2°). Locally, V, is given by equations of the form (2.15), or
(2.15)5, that is, equations of the form
L = L(S), M = M(S)a

(2.16)
L(s)(¥ + ) + M(sH® + p) + Fds) = 0,

where (L, M) # 0. For each value of s, let T(s) be the manifold in W
given by equations (2.16): dim T'(s) = 2.
Since V, is generated by characteristics given by the equations

L = const,, M = const,, ¥ + A = const, ¢® + p = const.

and contains their closures, V', contains the closures T(s) of the T(s).

Let us determine the T(s).

By expression (1.5) for A,A and A.u and since LN, + M,Ny = N,,
T(s) is the image in W of the set of (¥, @, 1) € R? such that

LY+ AL M.t g, e tpLMi] 1, Le ege),
2n 2 2n

where G(s) is the image of Z* in the additive group R under the morphism

2330, ) L&+ Mgy + N
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Then T(s) is the image in W of the set of (¥, ®, ) € R3 such that

¥ + A[L, M, 1] +M<I>+/1[L,M,t]

L
§ 2n 2n

+ —I—Fs € G(s),
2n

WXEG(S) is the closure of G(s) and thus a closed subgroup of R.
G(s) = R, and thus T(s) is the 3-dimensional torus V[L(s), M(s)] unless
G(s) is discrete, that is, unless there exists (L, M, N,) e Z? such that

L M, N,
==t = G.CD.L;,M,,N,) = L
YA Ly M1, N)

Since dim ¥, = 3, this must be the case for every s. The functions
M,/L,and N,/L, have rational values; thus they are constants. The integers

L,,M,,and N are independent of s; and s can be chosen so as to arrive at
(2.10); thus 2°) and (2.13) hold.

Quantization of V. Let us impose Maslov’s quantum condition on V. In
order to express this condition, let us calculate the Maslov index mg, of
V, and of V| using lemma 1 of §1.

We make F = 0 in lemma 2.2 (see remark 2.1).

LEMMA 2.3. 1°) The functions p, o, T are defined on V. Let R be the
one-point compactification of R. Then the function F: V, — R given by

pl? + 26LM + tM?

F(L,M,t) = 2.17
( ) L(L? — M?)(pt — ¢?) 217
is defined on V,\Z”, " being the subset of V,, where
v P 4 T
)T UG 1
M? LM L? (2.18)
2°) If V,\X" is connected, then
Mg, = {%‘P + %arctan F(L, M, t)]( [ -] the integer part of) 2.19)
on its universal covering space.
3°) The function
e, — & ! (2.20)

_ Xt
R c[L, M]

is defined (that is, uniform) on V,.
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Remark 2.2.  Assume a function

N:(L, M)~ N[L, M] satisfying (2.6)

is given. Choose H satisfying (2.9) of §1. If this choice is generic, then
dim¥” =1, V,\Z” is connected.

Proof of 1°). Recall that (L, M, t) are local coordinates on V,. By (2.2)
and (2.6),

Ap=Ao=Ar=0;
1°) follows.

Proof of 2°). The apparent contour of V,. Formulas (1.11) and (1.13)
in §1 give the relation

sin@)w2 n @
i cosW__rar — LdM) A (Ld¥ + M d®)
= Lsin ¥ do® Ad‘P-}-iz—‘——A‘/l‘—z( - )/\
2.21)

on W. Differentiating (2.7), where F = 0, gives
d¥ + pdL + 6dM = d® + odL + tdM = 0 moddR
on V,, from definition (2.1) of p, o, and 7. By (2.6) of §1,
dR = RHydt mod(dL, dM),
hence

LR A w, A wy=G(L M1, ¥)dL A dM A di (2.22)
Rsin®

where G denotes the function

2 M M2
=—HQ[L(pt—az)sin‘P+pL + 26LM + 1 cos‘-I’],

L? — M?

which is regular on ¥, by lemma 2.1. Then by lemma 1 of §1, t_he apparent
contour Zg of ¥, is

Tp=T U,
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where %" is defined by (2.18) and X' is the surface in V,\X” given by the
equation

Y:tan¥ + F(L, M,t) =0, (2.23)
where F is defined by (2.17).

Calculation of mg,. Formulas (1.11) and (1.13) in §1 give

2wy A w
sin®@ !

%(MdL—— LdM) A (Ld¥ + Md®)

= LcosWd® A d¥ — —
L

(2.24)

on W, from which, by the same calculations used to deduce (2.22) from
(2.21),

Rsin@dR Awy Ao = Ge(lL,M, t, ¥)dL r dM A dt (2.25)

Relations (2.22), (2.25) and lemma 1 of §1 give
myg = const. for G/G¢ < 0,
mg = 1 + const. for G/G¢ > 0

in a neighborhood of a point of X'. This resuit obviously holds for any
function G vanishing to first order on X, for example, the function

G = %‘P + %arctan F(L, M, t) mod 1.

Thus, on V;\X", mg  is expressed locally by (2.19), up to an additive
constant; 2°) follows.

Proof of 3°). First suppose that H and Q are generic (remark 2.2). Then
V,\Z” is connected and

LH;, + MH,; # 0 for Hy = 0,
which implies by lemma 2.1 that the function

f =pL* + 26LM + tM2:V,\2” > R
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is defined. By (2.19), the function

mg, — %‘P - ;lr— arctan F is defined on V,\X7; (2.26)

by the definition of F, where |M | < Lfrom assumption (2.2) of §1, we have
F/f <0

in a neighborhood of the points where F = 0; F = 0 is equivalent to
f = 0, so that

arctan F + arctan f is defined on V,\X"; 2.27)

we see that

arctan f + arctan;lr— = const.; ® (2.28)

by lemma 2.1, 1/f = 0 is equivalent to Hy = 0 and

o

H,
Hg
in a neighborhood of the points where Hy = 0; thus
1 Hp . .
arctanT + arctanF is defined on V,\X"; (2.29)

R

now, from the orientation of T[(2.9) of §1],

t
arctan% + ZnC[ LM is defined on I'[L, M]. (2.30)
The formulas (2.26)—(2.30) prove 3°) for H generic; 3°) follows.

LEMMA 2.4. 1°) Define a constant N, and a function r on V| by the
relations

LM — ML = N,, (2.31)
Y4+ i+Mr=®+u—Lir=0 (2.32)

The functions {r, s, t) are coordinates of the points of V;. A function
F:V, - Ris defined by the formula
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N3

2.33
(L7 — M?)(pL? + 20L; M, + tM3) 239

F(r,s, t) =

when V] is generic.
2°) If ¥, is generic (N, # 0; Hp2LT + 2H LM, + M,,:M? # 0 for
H, = 0), then

mg,

= [1‘1-’ + arctan F(r, s, t):\([~] is the integer part). (2.34)
s

3°) The function (2.20) is defined on V.

Proof of 1°). Formula (2.11),, where F = 0 (remark 2.1), justifies the
definition (2.32) of r. By (2.2) and (2.10),

AfpL? + 26L;M; + t™3) = 2a[LiNyz + 2L M Ny + M2ZNy-2]

d’N _

Proof of 2°). The apparent contour of V,. Differentiating (2.32) gives
d¥ + (pL, + oM)ds + M dr = d® + (oL, + t™M,)ds — Ldr

= 0 moddR
by (2.10) and definition (2.1) of p, o, . Whence by 2.21)

L

~ __dR A w, A @3 = G(s, t, ¥)ds A dr A dt, (2.35)
Rsin®

where
. N3
G(S, t, “P) = HQ[L(pL% + 20'L1M1 + TM%) sin ¥ + L—zjoﬁz-cos ‘{I],

since dR = RHydt mod(dL, dM), that is, mod ds. By 1°) and lemma 2.1,
the function G: ¥, — R is defined and regular on V. Thus, by lemma 1 of
§1, the apparent contour L of V; is given by the equation

Tgtan'¥ + F(r, s, t)=0.

Calculation of mg . The same calculation used to deduce (2.35) from
(2.21) enables us to deduce the formula

L
Rsin®

dR A w5 A @) = Gyls, t, P)ds A dr A dt
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from (2.24). Applying lemma 1 of §1 as is done in lemma 2.4, it follows that
mpg, can be expressed by (2.34).

Proof of 3°).  Suppose that V, is generic. By (2.34),

1 1 . !
mg, — ;‘P - ;arctan F(r, s, t)is defined on V. (2.36)

From (2.33), where |M| < Lbyassumption (2.2)of§1,and from lemma 2.1,
F = 0is equivalent to Hy, = 0, and

FE&<O
Hy

in a neighborhood of the points of V; where Hy = 0; thus

H,
arctan F + arctanFQ is defined on V. (2.37)
R
Formulas (2.30), (2.36), and (2.37) prove that the function (2.20) is defined
on generic ¥;, hence on every V.

LEMMA 2.5. 1°) V, satisfies Maslov’s quantum condition if and only if, on
V,, the functions L, M, and N are connected by a relation

h h

L1<L - 5) + MM + N, (N + 5) = hN,, (2.38)

where
L ,M,N{,NyeZ, N; # 0, G.CD.(L;, M, N;) = L. (2.39)

2°) V, satisfies Maslov’s quantum condition if and only if, on V;, the
functions L, M, and N are connected by the three relations

h
(Lls Ml’Nl) A <L - 57 M, N + g) = h(LO, MO’ NO)? (240)

where A denotes the vector product in E* and

L,,M;,N,, Ly, My, NyeZ, L? + M} # 0,

(2.41)
GCD.(L;, M, Ny) =1, LoL; + MM, + NyN, = 0.

Thus only two of the three relations (2.40) are independent.
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Preliminary to the proof. A manifold V satisfies Maslov’s quantum con-
dition (I1,§2, definition 6.2) if and only if the function

1

1 .
%qJR — ZmR is defined mod 1 on V.

Then by (2.14) and (2.20), V; or V, satisfies this condition if and only if
the function

L N\Y Mo (N_ 1\ ¢
L ny Mo (N 1) 242
(h +2>2n+ nom (h +2>c[L,M] (242

is defined mod 1 on V; or V,.

Proof of 1°). By lemma 2.2,1°) the function (2.42) is defined on v,
V, = V,/Z, where Z is generated by

(L 1 M 1> N 1)
and acts on ¥, according to (2.8). Thus Maslov’s quantum condition is

L 1 M N 1
L,2 M EARILA Y Y, .
<h+2>Ll+ hM1+(h+2) 1€Z;

whence 1°).
Proof of 2°). By lemma 2.22°) the function (2.42) is defined on V,,
vV, = V,/Z?, where Z? is generated by

(0, M,N5, —=M3N,),  (=LyN3,0,L3Ny), (LM, —L3M,, 0),

L,, ..., N;being defined by (1.12) and (1.13), and Z? acts on V; according
to (2.8). Thus Maslov’s quantum condition is

M N 1
FMzN:; - <Z + §>M3N2 EZ,

- (1;1- + %>L2N3 + (% + %>L3N2 cZ,

L 1
(z + §> L,M;
By (1.13), this quantum condition is equivalent to the condition (2.40)-

(2.41) supplemented by the following one: Lo, Mo, and N, are multiples of
L,, M,,and N,, respectively. Now

- %L:,M2 eZ.
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L,=GCDM,N,),...;
thus this last condition is a result of (2.41); 2°) follows.

THEOREM 2. Assume that the lagrangian equation
1 .
alU =0 modﬁ (a the operator associated to H)

has a solution U that has a lagrangian amplitude =0 and is defined mod (1/v)
on some compact lagrangian manifold V other than the tori V[Lg, M]
studied in theorem 1; then the graph of the function

N:(L,M)— N[L, M] [seeII1§1,2.9)]
contains a rectilinear segment given by a pliickerian equation

h h
(L, My, N)) ~ (L — E’M’ N + 5) = h(Lqy, My, No) (2.40)

such that

L,,M;,N,,Ly, Mg, NyeZ, L} + M} #0,

(2.41)

GCD(L,,M,N,) =1, LoL, + MyM; + NoN, = 0.

COROLLARY. The condition
Noge Z

is necessary and sufficient for there to exist such a segment in a planar
. domain belonging to the graph of N and satisfying an equation

, h , ,
L1<L — 5) + MM + Nl(N + g) = AN}, (2.43)
where

L, M{,N/ eZ, L+ M? #0,

GCDJ(L,,M,,N}) =1, NyeR

(2.44)
Remark 2.3. This corollary makes it easier to apply the theorem (see
section 3).

Proof of the theorem. By 1L§3,theorem 6, ¥ must satisfy Maslov’s quan-
tum condition. Since V is not one of the tori V[L,, M,], ¥ must contain
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a lagrangian manifold V; or V; satisfying this quantum condition. Then
by lemma 2.5 the graph of the function N contains

. either a rectilinear segment with the equations (2.40)-(2.41) or
+a planar domain with the equation (2.38)-(2.39) and hence such a
segment.

Proof of the corollary. The condition N € Z evidently emplies that such
a segment exists. Conversely, assume that in the space R? with coordinates
(L, M, N), the plane with the equations (2.43)~(2.44) contains a line with
the equations (2.40)-(2.41). This assumption is expressed by the four
relations

L,L, + M{M; + NN =0,

_ MiNo = NiMo _ NiLo = LiNo _ LiMo = MiLo

No L, M; Ny

(two of the last three result from the other two). These relations imply
N e Z since G.C.D.(Ly, M,, N, =L
3. Example: The Schrodinger—Klein—Gordon Operator
Let us choose a to be the operator associated to the hamiltonian H defined
by (4.6) of §1, where A4 is assumed to be an affine function of M, B and C are
assumed to be constant, and B > 0.

In §1, we studied the system
aU = (ap: — LYU = (ay2 — M)U = 0 modv—l2
and recovered the classical energy levels. In studying the single equation

alU =0 mod%

we shall find again the same condition for existence, thus the same classical
energy levels.

THEOREM 3.1. The lagrangian equation

aU =0 mod;li G
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has a solution U with lagrangian amplitude >0 defined mod(1/v) on a
compact manifold V if and only if there exists a triple of integers (I, m, n)
satisfying condition (4.11) of §1,theorem 4.1.

Remark 3. Under this condition, neither the unicity of ¥V nor the unicity
of U up to a constant factor is assured.

Proof. Under condition (4.11) of §1, the existence of such a solution of
(3.1) is assured by theorem 1 and also by theorem 4.1 of §1.

By theorem 1, there exists such a solution of (3.1) defined on a torus
V[L,, M,] only if this condition is assumed.

By theorem 2 and formula (4.8) of §1, which gives the value of the func-
tion N as
N[LM]=—2— - JI*+C ,

JA0n , (3.2)

the existence of such a solution on a manifold V other than.a torus
V[Lo, M,] requires that the graph of N contains a line segment.z Thus it
requires that one of the three following cases occur.

First case: A(M) = A, is independent of M; C = 0.
Then by (3.2) the graph of N is the plane with the equation

B

vV AO

L+N-=

Theorem 2 and its corollary require the existence of an integer n such that

B
VAo

Then condition (4.11) of §1,theorem 4.1 is satisfied since it is independent
of I for C = 0 and independent of m for A(M) independent of M.
Second case: C = 0; A depends on M.

By (3.2), the only lines contained in the graph of N are given by the
equations

= hn.

M=M, N+ L= , where M, = const., Ag = A(My).  (3.3)

B
VAo

Their pliickerian equations are then
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h h B
_n LMo (M, — 2=, M, ).
(1,0, =1) A (L 2,M,N 2> < 0 JAq 0)

Theorem 2 requires the existence of integers m and n such that

Mo = . _n. (34

B
VAo
From (3.3) and (3.4) it follows that
n > |m| because N > O and L > |M| by assumption [see (2.2) of §11.

Thus condition (4.11) of §1 is satisfied.

Third case: A = A, is independent of M; C # 0.
By (3.2), the only lines contained in the graph of N are given by the
equations

B
VAo

where L, = const,,

L=L,, N= —JL2 + C,

L%+ C>0.

Their pliickerian equations are

h B —~—— h  h
(O,I,O)A(L—ﬁ,M,N+—>=< —JLE+C+ O,E—L()).

2 2 [Ao 2’
Theorem 2 requires the existence of integers ! and n such that

B Ly~ VL3 + C=hnLo=hl+3%;
JA

1]

0 < I because 0 < Lo; [ < nbecause N > 0 by assumption.
Thus condition (4.11) of §1 is satisfied.

THEOREM 3.2. Choose a to be the Klein-Gordon operator (4.22) of §1. Sup-
pose the magnetic field # + 0. Then the tori T(l, m, n) defined by (4‘12)' of
§1 are the only compact manifolds on which there exists a lagrangian solution
U of the equation

aU =0 mod%

with lagrangian amplitude =0.
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Proof. The proof of theorem 3.1 shows that the necessary condition
stated in theorem 2 can not be satisfied when a is the Klein-Gordon
operator (C # 0) and # # 0(A4 depends on M).

Conclusion

We do not pursue this difficult study of the equation aU = 0 mod(1/v?).
In particular, we do not describe the lagrangian manifolds other than the
tori T(l, m, n) on which there exist solutions of the Klein-Gordon equation
when # = 0 or solutions of the Schrédinger equation.

§3. The Lagrangian System
aU = (a) — const)U = (a;. — const.)U =0
When a Is the Schrédinger—Klein-Gordon Operator

0. Introduction

In §3, we study the lagrangian system that was solved mod(1 /vz)gin §1.

In section 1, we determine the condition under which theorem 7.2 of II,
§3 applies.

In sections 2, 3, and 4, we apply this theorem under assu;np'tions that
become more and more strict. These assumptions finally amount to the

assumption that g is the Schrodinger—Klein-Gordon operator. Existence
theorem 4.1 is finally obtained.

" Remark 0. A Voros orally pointed out that these properties of the
Schrédinger and Klein-Gordon equations extend to the case where the
_electric potential is any positive-valued function of the variable R, if the
energy level E is not constrained to be a real number, and if it can be taken
to be any formal number with vanishing phase.

1. Commutivity of the Operators a, a,2, and a,, Associated to the
_ Hamiltonians H (§1, Section 2), L?, and M (§1, Section 1)

We want to determine when theorem 7.2 of 11,§3 applies to these operators,
_ that is, when they commute.

_ 1EMMA 1. 1°)a,, and a (thus, in particular, ay, and a2 ) commute.
2°) a2 and a commute if and only if

Hy:g = Hyog =0 YL, M,Q,R. (1.1)
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Proof. Letaanda’ bethe lagrangian operators associated to two hamil-
tonians H and H’. By formula (1.1) of IL§2, their commutator

aod —doa
is associated to the formal function given by

1 i
2L @ Diey

d 0 o o\t ot
x> =7) — (73530 H(x,p)H' (X, ') |,y - (1.2)
ox’ Op ox"’ Op .

Suppose H and H' are in involution, which is the case for H (81,2), L?, and
M(§1,1) by (1.3) of §1. Then the first term of (1.2) is zero. If H' is a poly-
nomial of degree 2 in (x', p'), then all of the other terms evidently are zero;
thus a and @’ commute and part 1 of the lemma follows. Suppose that
H' is a polynomial that is homogeneous of degree 4 in (x', p’). Then by
(1.2),aod — a oa is associated to H “/v3 where H” is the hamiltonian

given by
1 o 0 a a\|? gt
~ 2 [<a, 6—p'> - <6—x”5;>] H(x, p)H'(x', p)

Two applications of Taylor’s formula show that the term of H'(x" + ),
p' + g) that is homogeneous of degree 1 in (x', p’) and degree 3 in (y,9)1s

1 8 AN E AN
3[<q’ ?3?> - <y’ Fx—>] Hep) = [<p’ 5q> " <x’5y>] H(y. 9

thus, if H' is homogeneous of degree 2 in each of its two variables, then

o AT (22N (2,2
=3[ (0{5 ) - (o )] e

In particular, if H' = L?, that is, H'(x', p) = |x A p'|?, then

1 0 d 0 G,
g =z = —,— A — YH(x,p). 13
H"(x, p) 2<p " ap tx A ax> (x, p) (1.3)

H”(x, p) =

x'=x -
p'=p

In this formula, for each j the pair of operators

(p A g + x A i) and (i A —6—> commutes
op 0x/; op  0Ox);
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The operator

0 0
PANZT +XA
op éxj

is an infinitesimal rotation acting on x and p; thus it annihilates L, Q, and
R. Obviously,

0 J
A — —_ = —
<p ot XA ax> M(x, p) = x3p = psx.

Suppose H is a composition with L, M, Q, and R [§1,(2.1)]. Then (1.3)
becomes

” 1/¢ 0
H"(x, p) = *2‘<$ A o Hyxsp — HMP3X>-

>
X

Let
X, X3 X3 Xy Xz X3
XF ={p, p, D3l PF =|p, p2 D3
F, F, K Eyp, Fp, By

for any function F of (x, p). The preceding expression for H” may be
written

o

69’HM 170

1
H'(x,p) = =— - .
b, p) 20x; 26p33[HM

Now, the linear differential operators Z and £ evidently annihilate P2, Q,
and R2, hence L?, by (1.2) of §1; moreover,

2
am = 1L gy _LOLT
2 0x, 2 dp,

Thus, letting 2 F denote the functional determinant

2 2
o _ L2 OF _ 8L OF

the expression for H” becomes

H"(x, p) = 2 Hy:.
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Now, the linear differential operator 9 evidently annihilates L and M;
Mmoreover,

19Q = P*x3 — R*p} and %@R = 0x2 — Rpaxs:
thus the preceding expression for H” becomes

” 1 2 0 2 R 1p2 2
H"(x,p) = 3| P*Hyzg + KHMZR x3 — '2'HM2RP3X3 — 3R“Hpy2gps.

(1.4)

By §1.1, p4/x; is independent of (L, M, Q, R). Thus the condition
H'(x,p) =0 Vx, p
is equivalent to (1.1), which proves part 2 of the lemma.

2. Case of an Operator ¢ Commuting with g, . and a,,

Suppose (1.1) holds. Lemma 1 proves that theorem 7.2 of 11,§3 applies to
the lagrangian system

1
aU = (a: — ¢)U = (ay — c)U =0 mod;}r—”-, rz 1, 2.1,
where ¢, and ¢, are two formal numbers with vanishing phase such that
cp —Li=cy — My =0 mod;}l—z. 2.2)

The lagrangian operators a;> and ay have the following expressions aj:
and aj; in R, by 1,§1,3 and the formuia

L2 0NV [1s 1(2 2N, L[ 2V
[GXPZ<5’:3—I) ]L b, p) = [1 + 2v<6x’ 6p> + 8v2 \dx’ dp
(P?R* — Q%)

2
—_ 2p2 2 __ £ o -
- P R Q VQ 2\’2,

namely

10 1 3
(122(\’, x,;$> = ?<A0 - 5), (23)

11L,§3,2 211

where®

A2 -

A, = R?A — ._0._2 ,‘-L
° ,-,zkx’x"ax,.axk 2% 5%, (2.4)

j
is the spherical laplacian (2.24), which acts on the restrictions of functions
to spheres R = const.;

ol 1o o
MA ™™ v ox v 1ox, 2ox, )

which is an infinitesimal rotation.

Let us require that the unknown U be defined mod(1/v"*") on a compact
lagrangian manifold V. By theorem 3 of §1,
i. V is necessarily one of the tori

V = V[Lo, My] = T, m,n):H = L> — L3 =M — M, =0,

which part 1) of this theorem defines.
ii. The lagrangian amplitude §, of U is necessarily constant.
If B, = 0, (2.1), reduces to (2.1),_, : hence we impose the condition

Bo = const. # 0. (2.5)

The problem defined by the system (2.1),, condition (2.5), and the
condition that ¥ be compact will be called problem (2.1),.

Notation. The invariant medsure #y is given by (3.16) of theorem 3 of §1;
d3x by (1.16) and (3.6) of §1; arg d°x = 7mmy_ by definition [(3.4) of 1§3];
my, is given by (3.5) of §1; arg ny = 0 by definition; hence the value of the
function y, defined and used in I1,§3, and the value of its argument are,
respectively,

1= ;1% = [R*Hy[Ly, My, Q, R]sin ¥sin ©]7!, where ® = const.;

argy = —argH, — argsin'p, (2.6)
where arg Hy = —n[(1/n) arctan(Hy/Hg)], argsin¥ = n[¥/n].

(Recall that [ -] is the integer part.)
The apparent contour of V is

*Asusual: A = Z(0/0x)%
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Sa, Hosin® = 0; thus :V\Zg,— R. @7 then
Let U be a lagrangian function on ¥ with lagrangian amplitude ey = M, modL-

3
vr+2

= t. # 0. .
- o = const. = B depends, mod(1/v"*"), only on the coordinates (R, '¥).
1 ion in R, will be denoted .
{8 expression 1 Fo Proof of 1°). Let us calculate D), by using theorem 4 of I1§3: in this

theorem, the hamiltonian M — M, is substituted for H. By (3.18) of §1, the
characteristics of this hamiltonian are given by the equations

Ug, (v) = JxB)e' =, where f(v) = 2}; % (2.8)

By the structure theorem 2.2 and definition 3.2 of lagrangian functions in
11,§2, the function

dt = d¥ = 0;thatis,dR = d¥ = 0.

The parameter of these characteristics is ®, which is substituted for ¢ in this

L ¥BeV - C theorem. We obtain (2.10).

is regular even on Zg .
Let Dy, D, , and D, be operators such that

Proof of 2°). Forr = 0, 2°) is obvious. Proceeding by induction on r, we
can assume 2°) is true when r is replaced by r — 1. Then

AL+1

2
vr+1

M, eC

[aUlg, = # "’ Dyf, ey =M, +
By (2.9) and (2.10), (2.11) is equivalent to

98,
61; = M, ., B, where f, = const. # 0.

[(ap — LYUlg, = ﬁe““"‘o D, B, (2.9)

v

X v
[lan = MO)U]R., = ‘\{)‘: e*?r Dy .
Now, B, is a function of ® having period 2r; thus
Dy, D, and D, commute since a, a;2, and ay commute.

9B,
Let us use the local coordinates (R, ¥, ®) on V\Zg,. M,., =0, “£r -9

oo ’
LEMMA 2.1. 1°) With this choice of coordinates, from which 2°) follows.

]

p. = 9 (2.10) Notation. From now on, we assume that f§ depends only on the variables
M o0 (R, ¥). By (2.10), D and Dg, commute with 8/0® and thus act on functions
2°) If U is a solution of the equation of (R, V).
1 LEMMA 2.2. 1°) In the local coordinates (R, ¥, @),
(ay — U = Omodv—rﬁ, (2.11)

D = 2Lo;_;[§ - lF]ﬁ - 43/3, (2.12)
where ¢, is a formal number with vanishing phase such that T v v
1 where 7 is the variable
¢y = My mod—,
v T=cot¥
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and F is the operator with polynomial coefficients given by

Fﬁ=F1ﬁ+%[F2%§],

F, and F, being the polynomials in 7 given by

5M2t* + L3 + M¢

(Mg? + LY(> + 1)
8Lo(L3 — M3) ~ ’

2Lo(L5 — Mg)

Fi() = () =

2°) Let U bea lagrangian function that is defined on the torus V[ Lo, Mo ],
has a lagrangian amplitude §, # O,and is a solution of the system

(g — e)U = (ay — Mg)U = 0 mod%, (2.13)

where ¢, is a formal number, with vanishing phase, such that

Let T be the set of points on the curve I'[Ly, My] [(2.5) of §1], where

Z:HQ = 0.
Then
, 5 1
Cp = LO _ m mod;r——;i (214)
and
B, R,¥) = glv. R (v, ) mod—i, (2.15)

g being some formal function with vanishing phase defined on
F{LO’ M 0]\2
and f being defined as follows.

3°) There exists a unique formal function f defined on R, of the form

fr)=1Y vl £(1), where TeR, (2.16)

seN

such that
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df 1
7= va, (2.17)
fo = 1, f,is a real polynomial in 7, of degree 3s, having the parity of s,
(2.18)
and
~ 1 ~df df
=1+ -F,(fL -y
Forein(rd - sg) @19

[ f is the complex conjugate of f;(2.19) expresses fy using fi, ..., f5,-,].
Any solution of (2.17) mod(1/v") is, mod(1/v"), the product of f and a
formal number with vanishing phase.

Remark 2. Let U’ be the formal function of x that is homogeneous of
degree 0, is defined for .

MoR < Lov/xi + x3, .

and is given by

U’(V, x) — f(V, \P) ev(Lo‘I’+M0®); (220)
Jsin¥

U’ satisfies

1 3 0 o Af T 1o, 1, 1 '

;(XlaTZ—XZZ‘}Tl)U = MOU, \!ZAU = RZ <L0 +4v2>U

(2.21)

Proof of 1°). Letuscalculate D, using theorem 4 of I1,§3: in this theorem
the hamiltonian L? — L2 is substituted for H. By (3.17) of §1, the charac-
teristics of this hamiltonian are given by the equations

dt = d® = 0; thatis,dR = d® = 0.

The parameter of these characteristics is ¥/2L, which is substituted for ¢
in this theorem. The right-hand side of formula (4.5), in this theorem has to
be replaced by

1/6 0 1/0 0 1/0 o\?
AN Ay AL L2 s = A\AT» A o\ A > A
[GXP2<6x 6p>:| (x, p) [1 + 2 <6x 6p> * 8<6x’ 5p> ]

(PZRZ _ QZ) — PZRZ _ QZ _ 2Q_ _;_
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This theorem gives

D.j = 2y + |1 BB - 2| )

where A, is defined by (2.4) in terms of the coordinates (X, X5, X3)-
By (1.5) and (1.12) of §1, we have

3 2 62
Ri =Y xja—i—;thus Rz—a— =Y X%
=1 j

- 2.23
oR oR* o 0x; 0%, 2.23)

using the coordinates (R, ¥, @) in the left-hand sides and the coordinates
(x4, x5, x5)in the right-hand sides. Then definition (2.4) of A, is formulated
as

A, = R%2A — Rzi _ RS2 (2.24)
0 OR? R’

Now, formulas (1.5) and (1.12) of §1 give

X3 _ _sin®cos¥, where cos® = Mo vy s1, (1.11);
R L,

hence, on V,

20
_ 2 _ 4 o0
<R.x> "Px> 0, R <‘Px, ‘Px> + oy

2
RZAY = cot‘l—’(l _ cot 9).

sin? ¥

The expression for R? A acting on functions of (R, P) follows. Substituted
into (2.24), it gives

cot’ @\ 9* cot’@) 0
_ _ ot’®) 9 225
Ao (1 " Sin? ‘P) 3w " CO“P<1 sinz‘P) FXT 229

on these functions; hence, from (2.6),
) = T oo )
dt 1
- _ 4t 1 2.26
2ot FB + 4 (226)

by a trivial calculation. Thus (2.12) follows from (2.22).
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Proof of 2°). By lemma 2.1, § locally depends only on the variables
(R, ). By this lemma and (2.12), B, depends only on R; by (2.5), f, is not
identically zero.

For r = 0,2°) is evident. Proceeding by induction on r, we can assume
that B, ..., B,-, are polynomials in T whose coefficients are functions of
R and that 2°) is true when r is replaced by r — 1. Then

5 2LoL,i;y

¢ = L — = + =27~ mod

1
e o wEz2 where L,,, € C;

thus equation (2.13), may be written

L
%DLB + (i - gL+—1)/f =0 modvrl—”. 227)

4V2 vr+ 1

By the induction hypothesis, this equation holds mod(1/#*'); thus, by
(2.12), it may be written

dp, = (FB,_)dt + L, fod"¥ for R = const. ¢

Then, since F is an operator with polynomial coefficients, f, is the sum of
a polynomial in T = cot ¥ and the function L, ; 8,'¥, where f, # 0. But
B, is a function of ¥ with period 2r. Hence

L., =0 B, is a polynomial in 7;

thus (2.27) may be written
1 1
df = ;(Fﬂ)dr modﬁforR = const.

If 3°) is true, (2.15) follows.

Proof of 3°). The condition that (2.16) satisfy (2.17) mod(1/v") may be
written

o = const,, (fi—frs:Ffs_lfors:l,...,r—l.

Thus f, is a polynomial of degree 3s in T containing an arbitrary constant
of integration. Then f is well defined up to multiplication by a formal
number with vanishing phase.

Let us choose the constants of integration to be real. Then the f, are real.
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There exists a unique choice of the constants of integration ofthe f,,_,
such that the f, have the parity of r.

Proof of (2.19). Let f be the complex conjugate of f. Since v is purely
imaginary and F is real, (2.17) implies

af _ 1.7
5 = —

d, - 1 - =
< () = UES ~ JFT)

that is, by the definition of F,

_ df.df\ _ ,d(.df af df
(ff) —[fdr(Fd> fdr<F2dr>] [th (fdt i )]

thus

ff——Fz(fdf ff> Y vs,whereco—l

dt seN
that is, since the f, are real, for all se N

Cos+1 = 01

25—

Z ("'1)sfsdf25 1-s' +ch

s’=0

2s

z (_1)S'f25—s’fs’ = 21:2
s'=0
If s > 0, this formula expresses f5; using f;, ..., fos—1 and ¢, which is
cancelled by an appropriate choice of the constant of integration of f.
Proof of (2.21),. By {(2.12) and (2.17),

5
D, f = _‘4_vf’

that is, by the definition (2.9) of D,
+ 10 _j2, 3. vox, ) —
[aLz<v, X, 7 Ly + e (ﬁfe ) =0,
or, by the expression (2.3) for aj-and the expression (2.6) for x, since Ay acts

on the restrictions of functions to spheres R = const. and since @ can be
expressed by (3.4) of §1, where Q only depends on R,

1 1 ,
(?AO - Lé -—Zv—2>U(v,x) =0
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where U’ is defined by (2.20); U’ is homogeneous of degree 0 in x; (2.21),
follows from this by the definition (2.24) of A,.

Proof of (2.21);. From the definition (2.16) of f and the expression (2.10)
for D, it follows that

Dyf =0,
or, by the definition (2.8)—(2.9) of Dy,,
(afy — Mo)(/x fe'?=) = 0.

In the beginning of section 2, we obtained

gt =L & 9
M\ Mox, *ox, )
Thus a;; annihilates functions of the single variable R:Then by the

expression (2.6) for x and the expression (3.4) of §1 for goRo,?the preceding
relation is equivalent to (2.21);. :

LeMMA 2.3. There exists an operator D, acting on formal functions g
defined on I'[ Ly, M, \Z, such that

Dy f(v, ¥)g(v, R)] = f(v, ¥)Dg(v, R). (2.28)
Locally,

1 (o d -
D= %FD{R’ dR), (2.29)

where D (R, d/dR) is a differential operator defined on I'[Ly, Mo \Z and

D, = RHQEdE. (2.30)

Proof. Since Dy commutes with Dy, which is expressed by (2.12),

d
(52 = 3 ) a0 00RO

dr (0 1
=D _ = — =
o] i (= 3 )0 0t R
Thus by lemma 2.2,3°), Dg[ fg] is multiplication of f by a formal function,
which is defined on [[L,, M, \Z and denoted Dg.
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Theorem 4 of I1§3 proves that Dy has the form

1 6 0
Dy=Y Dy |RY =, o=
f s;:vs "( ’6R’6‘I’)’

where Dy, , is a differential operator. It follows that D has the form (2.29).
Since the characteristics of H satisfy (2.14) of §1, the same theorem proves
that

D, (fg)dt = d(fg) mod% for dR = RHydt, d¥ = Hydr.

But

This relation is equivalent to (2.30).

THEOREM 2. 1°) Problem (2.1),, defined at the beginning of section 2, is
solvable if and only if

5

_ 2
CL = LO - 4v2’

ey = M,.
2°) Problem (2.1), is equivalent to problem (2.31),, which is stated as
follows: To define a formal function mod(1/v"*Y) on T[Lo, Mg\,

1
gv) = 3, 9 where go = 1, g T[Los Mo\ = C,

seN
such that

Dg = 0 mod(1/v"*1),
g (Y @31),
(Hp)*"g is regular, mod(1/v" 1), on T'[Lq, Mo].

Any formal function satisfying condition (2.31), is, mod(1/v"*1), the product
of g and a formal number with vanishing phase.

The condition that g be a solution to (2.31), evidently is equivalent to the
following :
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g is a solution of problem (2.31),_,,
RHydg,/dR + Z_, Dg,_, = 0 on T[Lo, Mo]\Z, 2.32),
(Hp)*g, is regular on T[Lo, Mo].

OnT[Ly, M \Z, define the formal function

where Q is defined by (2.8) of §1. Define U’ by remark 2 and lemma 2.2. Then
U'(WU"(v) is the expression Ug_ of a solution U of problem (2.1),. Every
solution of the system (2.1), defined on V[Lo, My] is, mod(1/v"*1), the
product of that solution and a formal number.

~ 3°) Suppose that g is a solution of problem (2.31),_,. Then there exists a
function g,:T[Lo, M\E — C satisfying (2.32),, where T is réplaced by
its universal covering space T'. The function g, is defined up to n additive
constant; moreover, g, is defined on T [ Ly, Mo ]\E if and only if the equivalent
problems (2.1), and (2.31), are solvable.

Proof of 1°). Use lemmas 2.1,2°) and 2.2,2°).

Proof of 2°). Use (2.6), (2.8), lemmas 2.1,2°), 2.2,2°), and 2.3, and theo-
rems 5 and 7.2 of IL§3.

Proof of 3°). Use the above theorems.
3. A Special Case

In order to supplement theorem 2, choose
H[L M.Q.R] = %{P - arKIR M1}
1
= QF{LZ + 0* - K[R, M]} (3.1)

as in §1,4, and choose K to be an affine function of M. Then condition (1.1)
is satisfied. By (4.5) of §1, the expression in R, of the operator associated to
His

1 1 1 d d
=-—A-—K|R, - — - . 3.2
=30 2R? [ ’ v<x16x2 x26x1>] 62
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Moreover,
L2 + Q* — K[R, M,] = 0 on the curve I'[Lo, My]. (3.3)

¥ is the set of points on this curve where @ = 0.

LEMMA 3. We have

_9ld 1
D=+ |:dR v G’] (34)

where G acts on functions
g:T[Ly, MoNE = C

and is given by

d dg (3.5)
Gg = Gig + 1 [Gz dR]
G, and G, being functions defined on I'[Lo, Mo]\Z given by

G4(R) 1R
-_ = ——— 3.

Gi(R7 Q) Q5 H GZ(R7 Q) 2 Q » ( 6)
where
GA(R) = —iR(KR)2 + 1(1( — L2)(Kg + RKgs).

Proof. The operator D may be described as follows with the aid of IL§3,
theorem 4: in formula (4.5) of this theorem, s = 2 and

d 0 @ J 0 1.,
[e < pmle >} H®(x, p) = 3% p P 3 (3.7
the equations (2.14) of §1 giving the characteristics imply that
Q LO . 3
== === .8
dR R dt, d¥ R? dt; (3.8)

then, by the definition (2.9) of Dy, when f§ only depends on the coordinates
(R, ) of V, this theorem gives

Dubdt = df + =7 A(B )
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for dt, dR, and d¥ satisfying (3.8); in other words,

B Q B Ly -
D = = /2 1/2
uf = KR ¥ R2 *to 2 ABL). (39)

By (2.6)
x = [QRsin¥sin®] 7, ©® = const.;

therefore, by the definition (2.24) of A,, which acts on the restrictions
of functions to spheres R = const,

412 A(By M) = %\/sin‘PAo (’—ﬁ'“)

Jsin¥
8* 290 B
R — ==
+OR <6R2 R 0R)(\/_Qf) :
Replacing A, by its expression (2.26) and substituting the result into
(3.9) yields ¢
/ 2
DHB — Q gl_;_ + Q a =53 + 3 i __B_
R 0R 2v \0OR R 0R J\ /JOR
Loydi (o 1 1B
R? ¥ <ar VP are

Choose
B, R, ¥) = f(v, ¥)g(v, R),

where f is the formal function of ‘¥ defined by lemma 2.2 and g is a formal
function defined on T'[Ly, Mo]\E. In accordance with lemma 2.3, we
obtain

Dy(fg) = fDg

with

_Qld 1 1 2 d* d g 1 g
o=k (e i 2% ) () * v |

By a trivial calculation, we deduce the expression (3.4) for D, with G
expressed by (3.5) and G, and G, given by

_1d[Rd0 a0 _ IR
61 =7 R[QZdRJ+8Q< > =390
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Now by the equation (3.3) for I'[ L, M,],
Q* = K[R, Mo] — L§;
hence the expression (3.6) for G, follows.

The preceding lemma permits a statement of the properties of problem
(2.3),, to which problem (2.1), has been reduced by theorem 2.

Definition 3. A function g:I'[Lo, M,]\E — C is said to be even or odd
when

THEOREM 3.1. (Complement to theorem 2) Assume 3.1).
1°) If problem (2.31), has a solution g such that g, = 1, then it has a
unique solution such that

V(+Q, R)e I'[Ly, Mo]\Z.

go = 1, g, is real and has the parity of s(s <),

and
- 1 R(_dg dg 1
=1 =—"Ag=2 —-g-=%
99 20 (g R Y dR) mod . (3.10)
Formula (3.10) means that, for 2 < 2s £ r,
2s 251
‘ R . d
—1) e = —— 1V g, % .
szo( ) J2s-59s Q SZ‘O ( 1) ds 4R Gos—1-s> (311)
thus it expresses g, using g, - - > Jas—1-

2°) If problem (231),,_, has a solution, then problem (2.31),; has a
solution.

Remark 3. The formal function U” defined on I'[Ly, Mo]\Z by theorem
2,2°) is evidently given by

Ur) = I g0 (3.12)

JOR

It satisfies

1

VZ

” 1

L }U”(v, R), (3.13)

where A is the laplacian, specifically (d 2/dR?) + (2/R)(d/dR).
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Proof of 1°). Assume that 1°) has been proved whenr — 1 is substituted
for r and that problem (2.3), is solvable. Then, by theorem 2,2°) and
lemma 3, g, is defined up to a constant of integration by the conditions

dg, _ Gg,., on T'[Lo, MoJ\Z.

R 0%¥g, is regular on T'[Lo, Mo].

(3.14),

Now, G changes parity. If r is odd, then a convenient choice of the constant
of integration makes g, real and odd. If r = 2sis even, then g, is even and
can be chosen to be real.

We have

dg 1 1
Eﬁ = ";Gg mOdv—rﬁ,

d dg
= —1G,—= -
Gg =G + dR[ zdR:‘
By a trivial calculation analogous to the proof of (2.19), we deduce {3.10),
up to the addition of a formal number Z(cy/v*), which is cancel}gid by
conveniently choosing the constants of integration of the g;.

3

Proof of 2°). Assume that r = 2s is even and that problem (2.31)2,-1
is solvable. By theorem 2,3°), problem (3.14),, has a solution g, when I
is replaced by its universal covering space ['. The proof of (3.11) remains
valid; (3.11) proves that g, is defined on T'[Lo, Mo]\E; thus g, is 2
solution of problem (3.14),,.

Proof of remark 3. By the expregéion (3.2) for a and theorem 2,2°),

1 1 1 0 0 . " _
{'V—ZA - —k—Z—K[R,;(XI—ax—Z — XZK)]}[U (V, X)U (V, X)] = 0,

where U’ is homogeneous in x of degree 0 and U” only depends on R.
This implies

AU U = U-AU" + U”-AU’;
hence (3.13) follows by (2.12),.

Notation. Let [R,R;] c Rc Cbe the set of values taken by R on
I'[Lo, Mo]\Z. Let @ be a simply connected neighborhood of the real
closed segment [R;, R,]in the complex plane C; R e C.

THEOREM 3.2. Assume that K is holomorphic in «. Then Q, defined by
(3.3), is holomorphic in o\[R;, Ryl
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1°) If problem (2.31), has a solution g, then, for allr < 2s,
0%7g.(Q,R) = (-2)9.(—Q, R)

is the value of a function of R that is holomorphic in w. In particular, g,
is a function of R that is meromorphic in w, with poles Ry and R,.

2°) Problem (2.31),,.; is solvable [and thus problem (2.31),,, also]
if and only if the primitive of (Gg,,)dR is defined (that is, uniform) in
o\[Ry, R,].

Proof. Suppose 1°) is true. [1°) is evident for s = 0]. Then, by (3.14),
the function g,,,: I'[Lg, Mo]\E — C is obviously the restriction of the
primitive of (Gg,,)dR to the edges of the cut [R,, R,] in C, which is
defined on the universal covering space of w\[R,, R,]. Obviously, g5+,
is defined on I'[Ly, M]\Z if and only if this primitive is defined on
o\[Ry, R,].

Assume that this condition is satisfied.

With a convenient choice of the constant of integration, this primitive
G2s+1 is an odd meromorphic function of Q in a neighborhood of R,
and R,. Like Q, it takes opposite values on the edges of the cut [R;, R,].

For R near R, or R,, Q is near 0 and g,, is an even function of Q having
a pole of order 6s at @ = 0. From (3.3), (3.5), (3.6), and (3.14),

dg,s+; _ dR _ zig L _ 1_‘!_ RKgdg,
Kg Q%  4dQ| Q* dQ

o = E gas =
Thus g,,., is locally an odd function of Q having a pole of order 3(2s + 1)
at Q@ = 0.

:|, where Kg # 0.

Consequently Q3" !)g, ., is holomorphic in .

G254+ is defined by (3.11). Then Q3*@*%yg, ., is holomorphic in w.
Consequently 1°) holds when s is replaced by s + 1.

4. The Schriodinger—Klein-Gordon Case

In order to establish, for any r, the solvability of problem (2.1),, which
we have reduced to problem (2.31),, an appropriate assumption is clearly

necessary.
Assume that K is a second-degree polynomial:

K[R,M] = —R2A(M) + 2RB(M) — C(M).
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In other words, the expression of a in Ry, is the Schrédinger—Klein-Gordon
operator (§1,4) and A, B, and C are affine functions of M.

Then in theorem 3.2, w = C. In the definition (3.5) of the operator G,
G3 is a polynomial in R of degree 3 and G, and G, are functions of R
holomorphic in C\[R, R,] and at infinity, where G, vanishes to second
order. If g is holomorphic in C\[R,, R,] and at infinity, then so is the
primitive of (Gg)dR. Then all the g, exist and are holomorphic in
C\IR,, R,] and at infinity. Since g, is holomorphic at infinity and since
Q°rg, is holomorphic in C, 0¥, is a polynomial in R of degree 3r. Thus we
have proven the following two theorems.

THEOREM 4.1. (Existence and uniqueness) Assume that the expression

of ain Rq is the Schridinger—Klein-Gordon operator (example 4 of §1).
1°) The condition that the lagrangian system -

aU = (a2 — c)U = (ay — cp)U = 0, L@

where ¢; and c,, are two formal numbers such that !

1 o
CL—ngcM—MO =0m0d?, . (42)

have a solution defined on a compact lagrangian manifold V is the following :
iep = L3 + (1/4v?), cpp = My ;

i. V is one of the lagrangian tori V[Ly, My] = T(l, m, n) defined by
theorem 4.1 of §1.

2°) There exists a lagrangian solution U of (4.1) defined on such a torus
V having lagrangian amplitude

Bo = 1.

Any lagrangian solution of (4.1) defined on V is the product of U and a
Sformal number with vanishing phase.

Remark 4.1. The projection of V on X is
MOIx] < Lov/x3 + x32,

where R, and R, are the two roots of the equation

VxR, < |x| < R,,

AgR*> — 2BR + Co + L2 =0



228 I11,§3,4

(Ao, By, and C, are the values of 4, B, and C at M,.)

THEOREM 4.2. (Structure} There exists a unique solution U of (4.1)
defined on such a torus V having the following structure: Its expression
Uy, in the frame R, (§1,1) has the form

Ug,(v) = U(MU" ). 4.3)

Using the local coordinates x € Vy on V, U'(v) is a formal function of x
that is homogeneous of degree 0 and satisfies

1(xl—a— - xzai> UG, x) = MoU'(y, x),
v X,

o2 (4.4)
—AU (v,x) = 1 <L0 + ZL) U'(v, x).
U”(v) is a formal function of R satisfying
LAU”(v x) = ! {K[R M,] — L% - 412} U”(v, x). 4.5)
U’ and U” are defined by the formulas
U'v, x) = S, 1) eV(Lo¥ +Mo®),
( \/m (4.6)

U”(V x) g(V g;{R) vQ,

where © = cotW¥ and Q is the function of R defined by (2.8) of §1; argsin ¥
and arg Q have jumps of +m at the points ¥ = Omodnon Rand g =0
on T[Ly, My], which are oriented in the directions d'¥ > 0 and QdR > 0.
Moreover,

flv) = Z f and g(V)=r§q%gr

are formal functions with vanishing phase defined on R and on
F[LO, Mo \Z, respectively, by the following set of properties:

af _
dt

49 _1s, @.7)

f’ dR v 7
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the differential operators F and G being given by

- dlp df L dg
Ff_F1f+drl:F2dr:|’ Gg = Gg + [GZdR] 4.8)
where F| and F, are the even polynomials in t of degree 2 and 4 defined by
lemma 2.2,1°); Q°G, and QG, are the polynomials in R of degree 3 and 1

defined by (3.6); fo, = 1, g, = 1, the functions f, and g, are real and have
the parity of r;

- L (df L df dg  dj
ﬁ_1+§F2(fdr 4 > =1+y GZ(dR ng)

(4.9)

These formulas (4.9) give the even functions f,, and g, in terms of f,,
s Sfascrand gy, ..., ga_y. The odd functions f,, ., and g, ., are defined

by the quadratures :

¢

df2.s+l = (Ffls)d‘l'-’ ng.H-l = (GQZS)dR

J.is a polynomial in T of degree 3r. Q*'g, is a polynomial in R of degree 3r.

Remark 4.2. Thus g,,,., — G,dg,/dR is the odd function on
I'[Lo, Mo]\T that is the primitive of the differential form G,g,.dR,
namely, of a form IT'(R)Q~%"*dR, where IT' is a polynomial of degree
6s + 3. By the preceding theorem, this primitive shall be IT(R)Q %3,

where IT is a polynomial of degree 6s + 3. Let us give a more direct proof
of this essential fact.

LEMMA 4. For each s € N, the differentiation

d IIR) _II'(R)
dR Q25+1 = Q25+3

(4.10)

(Q? a polynomial in R of degree 2, discriminant Q # 0) defines an auto-
morphism IT + IT' of the vector space of polynomials of degree 25 + 1.

Proof. Let II be a polynomial of degree 2s + 1; II(R)Q~*"! is holo-
morphic at infinity; thus its derivative has a double zero at infinity.
Consequently (4.10) defines a polynomial T1' of degree 2s + 1. Hence the
mapping

I IT



230 11L,§3,4-11L,§4,0

is an endomorphism of a finite-dimensional vector space. Now it is
evidently a monomorphism; thus it is an isomorphism.

Conclusion

This §3 is concerned with finding, for dim X = 3, a lagrangian system, with
one lagrangian unknown, having a solution defined on a compact lagrangian
manifold unique up to a multiplicative factor. In this §3, we have found a
system of this type: the system used in wave mechanics Jor studying atoms
(or ions) with a unique and spinless electron.

Remark 4.3. Replacing the Schrédinger—Klein-Gordon hamiltonian by
the harmonic oscillator hamiltonian for E,

H(x,p) = 2—1#[P2 + AR? — 2B],

that is, choosing
K[R, M] = —AR* + 2BR?

where 4 and B are affine functions of M, one obtains another lagrangian
system (2.1) belonging to the same type.

This can be shown by computations similar to those performed above,
where R? plays the role that R played above.

The energy levels are still those of wave mechanics.

Remark 44. Of course, the study of the harmonic oscillator in R is
simpler; in E3, for A and B independent of M, it gives new lagrangian
solutions for the operator associated to the harmonic oscillator, but
again the same energy levels.

§4. The Schrodinger—Klein-Gordon Equation

0. Introduction

The following classical boundary-value problem will be called problem
(0.1): To find nonzero square-integrable functions

u:E¥ - C

that have square-integrable gradients and that are solutions of the
differential equation
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au = 0, 0.1)

where a is the differential operator associated to the hamiltonian
H[L, M, Q,R] = %{Pl - EIEK[R, M]}, 02)

K being an affine function of M [compare (3.1) and (3.2) of §3]. This
operator is defined by substituting v, = i/h for v in the lagrangian opera-
tor associated to H [(4.5) of §1]. Hence it is

1 1 1 d 0
a—mA—zﬁiK[R,;;(xla—xz—XZaXl)]. (03)

In section 2, we assume (compare §3,4)
K[R,M] = —R?A(M) + 2RB(M) — C(M), “’ 0.4)

where 4, B, and C are affine functions of M. Then a is the Schrodinger—
Klein-Gordon operator. !

In §4, we briefly recall the solution of the classical problem (0.1) in order
to observe two facts:

i. There are formal analogies between its solution and that of the lag-
rangian problem (2.1) of §3, which is to solve

aU = (ag: — ¢;)U = (ay — ¢y)U = 0 on compact V.

ii. The condition for the existence of a solution to this lagrangian problem
[or to this problem mod(1/v*), namely, to (3.1) of §1] is the same as that
for the classical boundary-value problem (0.1) in the Schrédinger—Klein-
Gordon case, that is, under assumption (0.4).

This assumption is essential.

Remark 0. For a suitable choice of 4, B, and C, the Schrédinger—
Klein-Gordon equation is the Schrodinger or Klein-Gordon equation
{4.21) or (4.22)in §1, where the #* terms have been omitted. It is customary
to treat the terms of these equations that are linear in # by “perturbation”
theory. We do not do this, but we rigorously solve problem (0.1) in order
to show that assertion (ii) is rigorous.

1. Study of Problem (0.1) without Assumption (0.4)

Review of the properties of spherical harmonics u; ,,. The set of poly-
nomials in x € E* that are harmonic and homogeneous of degree [ is a
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vector space over C of dimension 2/ + 1. A basis consists of the poly-
nomials

R'},, landm integers, |m| <1,

defined by the following system, where u; , is homogeneous of degree 0
and thus satisfies RZ Au' = Aqu’ [see (2.4) and (2.24) of §31:

0 0

: 1 .
Au,‘,,, + —R—Zl(l + l)u,,,,, = 0, (XIEX‘*Z‘ - ngl

>u;,m = imuy ,,. (1.1)

Let S? be the unit sphere in E3 and let o be the usual measure on sz
Then

é
2] 0%

a‘u;,m
and for all (I, my) # (I, my)

a ’ a ’ _ ’ = . O
s aull,ml’aulz’mz o= szul,,m,ulz,mza_ ’

where ¢ -, - ) is the (sesquilinear) scalar product.

The restrictions of the u;,, to S? form a complete system of functions
on S? : every square-integrable function u : E* — C with square-integrable
gradient has a unique expansion

2
=11+ I)J |u).m| 0
SZ

! 4
u = Zul,mul,m’
i,m

where the u} ,, are functions only of the variable R > 0, such that

+ o0
J lu?d3x = Zj |u;'m|aj R%u],|*dR < ©
E? s? 0

ILm
and
a I o 1P
—u| d*x = —U .l O uj |*dR
gl o2 L] 7|, v
Y e 21 d ZdR
+§.._Lz‘u"ml o j;) R 2R Vim < o0.

Resolution of problem (0.1). By (0.3) and (1.1), the condition that u be a
solution of problem (0.1) is formulated as "
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42 2 dNe gy LIL KR im] = 10+ Dbug,(R) = 0
dR2 R dR Im R2 h2 ’ ul,m( ) -
(1.2)

for all I, m. By writing Ruj,, = v, we may evidently state that result as
follows.

THEOREM 1.1. Problem (0.1) is equivalent to problem (1.3), which is to
find integers |, m and nonzero functions v:]0, + o[ — R such that

|m| < 1,

a , 1 {1
dR? + F{FK[R, hm] — il + 1)}0 =0 (1.3)

and

" 1+—1— v2dR < o o d—vzdR<oo 14
. R? ), 4R -y 08

Remark 1.1. Thus problem (0.1) is solvable if and only if the. following
problem is solvable: To find two integers I, m and a nonzero‘square-
integrable function u:E* - C with square-integrable gradient such that

Im| <1

and

au = 0, Agu + I(1 + 1)u = 0, x1i - xz—a— u = imu. (1.5)
0x, 0x4
Recall that system (1.5) plays an essential role in physics.

Remark 1.2. Equations (1.1) and (1.2} and the system (1.5) are obtained
formally by replacing

v, U, U”, U
by
ih, U Uims U

in equations (2.21) and (3.13) and in the system (2.1) of §3, where account
is taken of theorem 3 of §1 and theorem 2 of §3, which require
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1 5
Lo=h<l+5), My = hm, CL‘—'L(z)‘“W, ey = Mo,
that is, by (2.3) of §3,

5, =LA g2 1_ i 1.1
A R e R I 1 | R v

= —h2[Ag + Il + D] forv = i/h,

N 1 0 0
aM—cM=; xlg;—xza—l — hm.
2
Assume that K is a holomorphic function of R at the origin. Let

Co= —K[0,im], y=+JU+%*+ Coh2. (1.6)

Apply Fuchs’s theorem, that is, the theory of regular points of analytic
ordinary differential equations: see, for instance, [19], section 10.3.

Fuchs’s theorem constructs two independent solutions of equation (1.3).
If 2y is not an integer, the respective quotients of these solutions with
R*7+1/2 are holomorphic at the origin. If y is purely imaginary, then
every nonzero solution of (1.3) makes the integrals (1.4) diverge at the
origin. The same is true if y = 0 (see Fuchs). Assume y > 0. The solution
v of (1.3) that is a product of R***? and a holomorphic function at the
origin makes the integrals (1.4) converge at the origin, while the other
solutions of (1.3) make them diverge (see Fuchs). Thus, since problem
(1.3) is equivalent to problem (0.1), the following theorem holds.

THEOREM 1.2. If K is holomorphic at the origin, then problem (0.1) is
solvable if and only if the following problem is solvable: To find two integers
I and m such that

Iml <L y>0,

and such that the nonzero solution v of (1.3), whose quotient with R"*Y? is
holomorphic at the origin, satisfies

+ w0 0 dU 2
ﬁ v2dR < w0, L <EE> dR < . 1.7

2. The Schriodinger—Klein-Gordon Case

In this case, that is, under assumption (0.4), the preceding theorem can
be supplemented. Let
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M, = hm, Ay = A(M,), B, = B(My), Co = C(M,),

o= JAgh™}, B = Byh™ 2. (2.1)
Equation (1.3) becomes the confluent hypergeometric equation:

d?v 2 2B v —-1/40

W'{" I:—‘CX +K R2 v =0, (2.2)

where o?, f,and y e R,y > 0. If «® > 0, then choose o > 0.
Let v be the nonzero solution of (2.2) such that vR~7"Y2 is an entire
function of R; it is defined up to a multiplicative constant (Fuchs).

'LEMMA 2. The convergence of the integrals (1.7) is equivalent to the

following condition:

b + % — yis a positive integer. o (2.3)
o ‘

R
Proof. Express v by
v(R) = R"™12e™R Y ¢ R®, ¢, eC. ' (24)

seN

Substituting into (2.2), we obtain (Fuchs) the recurrence formula defining
the ¢, in terms of ¢, :

sts + 2y)e; = 2[a(s +y — 3) — Ble-y- (25)
Condition (2.3) holds if and only if

Y ¢,R® is a polynomial.
seN

It implies «*> > 0; thus o > 0 and thus the integrals (1.7) converge.
Now let us prove that (1.7) does not hold when (2.3) is not satisfied.
Case when a > 0: If X.c,R® is not a polynomial, then, for an ap-
propriate choice of the sign of ¢,

¢, > 0O for s near + oo.

Let £ €]0, «f. From (2.5) we have

scy > 2ec,_y for s near + o0

thus Z,c,R* > c'e®*R for R near + o, where ¢’ = const. > 0,

and the integral (1.7), diverges.



236 IIL§4,2

Case when a®> < 0: The classical integral expression for v gives an
asymptotic expression for v which is also classical: for R near +co,

o(R) = ce*®R™#* + ce *RRFI* + -,

where ¢ and ¢ are constants and o is purely imaginary. Hence the integral
(1.7), diverges. (See Whittaker and Watson, [19], chapter XVI, “The Con-
fluent Hypergeometric Function: Asymptotic Expansion.”)
Case when o = 0, § < 0: By (2.5),
v(R) = R?"*V2 Y ¢R°, wherec, > 0 Vs
seN

thus the integral (1.7), diverges.
Case when o = 0, B > 0: R77""?yp satisfies a differential equation
with linear coefficients. Laplace’s expression for its solution gives

v(R) = \/ij =2~ 1 VIR gy,

T

where T is the boundary of a half-strip in C containing the cut ] — o0, 0.
By replacing T by a path on which Re(t — t7 1)< 0(=0onlyfort = i)
and assuming that R is near + oo, we obtain the asymptotic value

o(R) = RV [ce?VPR G~ 2VIR] -,

Thus integral (1.7), diverges.
Theorem 1.2 and lemma 2, where o and § are defined by (2.1) and y
by (1.6), prove the following.

THEOREM 2. When a is the Schrédinger—Klein-Gordon operator, then, for
each of the following problems, namely,

1°) the classical problem (0.1) that we have just reviewed,
2°) the lagrangian problem (2.1) in §3,

aU = (a;» — ¢ )U = (ayy — cp)U = 0 on compact V,
3°) the same problem mod(1/v?), that is, problem (3.1) in §1,

the condition that there exist a solution is the same: the existence of a
triple of integers (I, m, n) satisfying condition (4.11) of §1, theorem 4.

Remark 2. A comparison of theorem 1.2 and theorem 3.1, 1°) of §1
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proves that the preceding theorem does not hold for every operator a
associated to a hamiltonian H of the form (0.2).

Conclusion

Although the classical boundary-value problems and the lagrangian prob-
lems are completely independent, they define the same energy levels for the
Schrédinger and Klein-Gordon equations.

As a matter of fact the experimental values of the energy levels agree
with those of the Dirac equation, which is studied in the following chapter.



I ~ Dirac Equation with the Zeeman Effect

Introduction

In §1, we solve, mod(1/v?), a homogeneous lagrangian problem in several
unknowns. That is one of the simplest problems to which theorem 3 of
I1,§4 can be applied. The resolution of this problem introduces the qua-
druple of quantum numbers that arises in the study of the Dirac equation.

In §2, we use lagrangian analysis to reduce the Dirac equation mod(1/v?)
to the simpler system solved in §1. This reduction is analogous to the
reduction theorem 2.2 of I1,§4. Thus we prove that the lagrangian solutions
of the Dirac equation (one-electron atoms in a magnetic field) defined
mod(1/v?) on compact manifolds have energy levels that are exactly those
for which the classical solution of this equation exists {taking into account
the Zeeman effect and even the Paschen-Back effect).

§1. A Lagrangian Problem in Two Unknowns

In this §1, we give an application of IL§4,theorem 3.
1. Choice of Operators Commuting mod(1/v*)

As in TIL§1,1, we let

X = X* = B3, x,pe E3,

(1.1)
R(x) =1x|, P(p)=|p|, Qx,p)=<p.x), L(x,p)=|xAp|
so that
I? + Q? = P*R?, (1.2)

Let (M,, M,, M5 = M) be the components of x A p.
By I11,§1,(1.3), the following formulas define three functions H'"), H®),
and H® that are pairwise in involution (see I11,§1,2):

HY(x, p) = H[L(x, p), M(x, p), Q(x, p), R(x)],

1.
H®(x,p) = L*(x,p), HY(x,p) = M(x, p). (13

To-use theorem 3 of I1,§4, we must choose three g x g matrices JV, J@,
and J® that are functions of (x, p)e E> @ E*. These must be such that
the matrices of lagrangian operators associated to the three matrices

H®E + %J”‘) (E the u x yu identity matrix) (1.4)
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commute mod(1/v3).
Since the H® are in involution, it follows by remark 3 of I11.§4 that this
commutivity condition is equivalent to the condition that for all i, k,

(H(i), J(k)) — (H(k), J(i)) + J(i)J(k) - J(k)J(i) — 0’ (1.5)“{

where (-, ) is the Poisson bracket.

We choose g = 2. Then the values of the J® are matrices acting on
vectors in the space C2, which we provide with a hermitian structure.
We choose the iJ® to be self-adjoint. (The vectors in C? are called spinors.)

Notation. Let 65 =1 be the 2 x 2 identity matrix. Every 2 x 2 self-
adjoint matrix has the form x,0, + o, where x, is a real number and o
is a self-adjoint matrix with zero trace:

<x3 Xy — ix,
x; + ix, —X3

g = Cr[xl’ X2 x3]

= X0, + X,0, + X303, (L)
where
(xy, X5, x3) e E?
and
o =13 o) o, = oh oy =5 -9

are the Pauli matrices, which satist:y the relations

oi =1, 00 = — 00, 0,0,05 = I (1.7)
It follows that

o?[x] = |x|* (1.8)

Remark 1.1. Recall the consequences of (1.8): Let u, be a measure-
preserving automorphism of C?, that is, u, € SU(2); u,o[x]u; ! is self-
adjoint and has zero trace; thus it is of the form o[ y]. Let y = ux. Then

olux] = uyo[xus .

By (1.8), u preserves |x|*>. More precisely, u is a rotation in E3, that is,
u € SO(3), whence we obtain a morphism

SUQ2) 3 u, > ue SO3),
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which proves that SU(2) is the covering group of SO(3) of order 2. It is
the universal covering group of SO(3) (see Steenrod [17], p. 115).

LEMMA 1. Assume

JUY = ifey + igo[x A pl, (1.9)
is a datum, where

fGe, p) = f[L(x, p), M(x, p), Q(x, p), R}, g = g[L, M, Q, R].

Then (1.5) is satisfied by choosing
J® =0, J®= 503. (1.10)

Remark 1.2. Relations (1.5) evidently remain valid when arbitrary com-
plex numbers (that is, their products with the identity matrix denoted
by ¢, = 1) are added to the H® and J®.

Proof of (1.5); 5. (H®, JV) = 0 because, by IIL§1,1, L is in involution
with Q, R, and M = M,, and similarly with M, and M,.

Proof of (1.5); 5. Since M is in involution with L, Q, and R,

(H®, JY) = ig(M, o[x ~ p]) = igo[ —M,, M, 0] (1.11)
because an immediate and classical calculation gives

(M,M)) = —M,, (M, M,) = M,.

Moreover, (1.7) implies

630[x A p] — o[x A ploy = 2ic[—M,, M, 0];

whence, by the definitions (1.9) and (1.10) of J®? and J©,

JOM _ gy = _jag[—M,, M,,0]; (1.12)
(1.5), 5 results from (1.11) and (1.12).

The proof of (1.5), 5 is evident.

2. Resolution of a Lagrangian Problem in Two Unknowns

Notation. Let

Args dp2, Ay
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be the 2 x 2 matrices of lagrangian operators associated to the 2 x 2
matrices

H[L,M,Q,R] + éf [L,M,Q, R]o, + ég[L, M, 0, RJo[x A pl,
L% M. 2.1

Let us study the solutions U = (U,, U,) of the system

5
a;,U = (aLz — L2 - T’LJ)U

= <aM - M, - %m’ + §03>U =0 modviz, 2.2)
where U, and U, are two lagrangian functions defined on a compact
lagrangian manifold V, I' and m’ are real numbers near 0 whose sqﬁares
are negligible, and L, and M,, are two real numbers. (The interest ofithis
system is shown by lemma 1 and remark 1.2.) £

Asin IIL§1, let V{L,, M, ] denote the lagrangian manifold in E* @ E3
given by the equations

V[Lo, Mo1:H[Ly, My, Q,R] = L(x,p) — Ly = M(x, p) — My = 0.
(2.3)

When this manifold is compact, it is a torus whose points have the co-
ordinates

t mode[L,, My, ¥ mod 2n, @ mod 2x.

I'[Ly, My], t, and ¢[Ly. Mg] are defined in 111§l by (2.5), (2.6), and
(2.7), respectively. Assume that on V[L,, M,]

(f — 3Hy)c[L, M] and Lgc[L, M]

are near zero and have negligible squares. For V[L,, M,], and hence
I'[Lo, M, ], compact, let

fo=nNy[Ly, My] + J flLo, My, Q, R]dt,
T{Lo.Mo]
Jo = LOJ g[Lo, My, Q, R]dt, (2.4)
I{Lo,Mo]

M
2mello, Mol = [13+ 21 fogy + g3 > 0
0
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where |[M,| < L,. We shall see that f,, g,, and ¢ have negligible squares.

THEOREM 2. The compact manifolds V in E® @ E? on which solutions U
of the system (2.2) are defined are the tori V{Ly, M] such that

Lo=a(l+%-1) My =hm—m)

2.5
Al + %) + N[h(l + 1), im] = #n + he[h(l + 3), hm], @3)
where |, m — 4, and n are three integers satisfying the inequalities
|m| <144 I < n; (2.6)

I' and m' are numbers near 0 that are arbitrary unless m = | + 5. Then
they must be chosen so that

|M,| < L. 2.7)

Remark 2.1. U will be denoted by U, or U_ depending on whether
(2.5), holds with the choice + or —. The lagrangian amplitude f =
(B:, B,)of U = Uy will be denoted by f. . It satisfies the relations

ﬂi (t + C[LO’ MO]? ¥, 0) = Cilﬁi(t’ ¥, (D)’
.Bi'(ts ¥+ 27'[, (I)) = C+2 ﬂ:t(t’ ‘P’ (D)a (28)
Bult, ¥, ® + 27) = ca3felt, ¥, D).

The ¢, are complex numbers with modulus 1 given by

Cr1 = € 2ni(I’N,_[L0,M0]+m'NM[L0,M0]¥£[L0,MO]),

(2.9)

2mil’ 2zim’
) .

Cy2 = ¢€ C+3 = —e€

Proof. By lemma 1 and remark 1.2, theorem 3 of 11§44 can be applied.
Then the V on which a solution U of the system (2.2} is defined are the
covering spaces of the manifolds V given by the equations (2.3). The
compact V are the tori V{L,, M, ]. Let us determine when U is defined
on V[L,, M,], that is, when

1/2
(d—'l);) e"?%B: VLo, Mo] - C?, , (2.10)

where R, is the frame we are using,
argn =0,  argd’x = mg,,

and my_and @g_ are the Maslov index and the phase of V[Lo, Mg]inR,.
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By (3.5) and (3.4) of L §1,
1 1 H
mg, = [v‘le - [—arctan —QJ, where [ -] = integer part,
= 7 Hy [ gerp 2.11)

o, = Q + LY + M,Q,

where Q is defined in IIL§1 by (2.8).
We now finish applying theorem 3 of IL§4. By the remarks 3.2 and

3.3 of 111,81, the characteristic vectors , k; :, and Ky of the hamiltonians
H,L? and M are

Kidt = 1, d¥Y = H,, d® = H,,;
Kp2:dt = 0, d¥ = 2L,, dd = 0;

Kyidt = 0, d¥ =0, do = 1. =

Then by this theorem the system (2.2) is equivalent to the condition
=Y ?A

0 H ) i, . . :

a—l— L5y + HM% B + ifosff + igo[x A p]B =0,
B o ., i
FrT i'g =0, 6T‘;—lmﬁ—f-icgﬁ:&
In other words, it is equivalent to the pfaffian system
dp + i{ fo,dt + go[x A pldt — I'(d¥ — H_dr)

— (m' — $03)d® — Hydr)} = 0, (2.12)

which is guaranteed to be completely integrable by this theorem. By (1.5)
of II1§1,

X A p = Lot
thus by (1.12); and (1.11) of IIL§1,

o[x A p] = Lo[o,cos®sin® + o,sin®sin® + o;cos O],

L C0s® = 2. ) (2.13)

Then, by (1.7),
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o[x A p] = Loo(cos® + ig;sin®)sin® + Lyo;c0s 0
= Ly6,e®5in® + L,o;c080
= Loe 2, sin@® + o,cos @)e®+2,

Moreover, the functions of [L, M, t], 4, and p, which are defined by
(2.10) of 111,81, satisfy

/= —Hyp, U, = —Hy, (2.14)
by (2.3) of TIL§2. Let

B = e i P2HIE+DHim @ +u)., (2.15)
Then the system (2.12) may be written

dy + i[{f — $Huy)os + Log(o,sin® + g;cosO)]ydt = 0. (2.16)

It has now become evident that this system is completely integrable:
here y is independent of ® and W and is only a function of ¢.

Condition (2.10), which is that U be defined on ¥[L,, My}, is then
formulated as

n vz PRt VoLo® + ¥ Mo®— ioy @2+l (¥ + D) +im( @41 . |, C2,
d3x

Now Q, 4, and u only depend on r and, by (1.4) and (1.5) of 111,§2, increase
by

AQ = 2aN[Ly, My], A = 21N, [Lg, M,],

(2.17)
A = 21N y[Lo, M, ]

when ¢ increases by ¢[Ly, My ]; N is defined by (2.9) of 1I1§1.
Let vy, = i/h (h > 0); then, by (2.11), condition (2.10) that U be la-

grangian on ¥ may be formulated as follows, since e ™% = —1: There
exists ¢ € R such that
e + c[Lo, Mo]) = 2™(1), | (2.18)

= ’
%N[LO,MO] + INp + m'Ny +%+g:ELO +r -1
h

=1M0+m’—%:0modl,

i
(2.19)
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The search for solutions y of (2.16) satisfying (2.18)is a classical problem:
(f = 3Hpg)o3 + Log(o,sin® + o,c0s ©)

is a self-adjoint matrix with zero trace; it is a periodic function of t; the
period is c[ Ly, M,]; then the 2 x 2 matrix u(t) defined by

du + i[(f — $Hy)63 + Log(o,sin® + g;5c0s ®)]udt = 0,

W0 = 1, (2.20)
is a unitary matrix with determinant 1, thatis,u € S U(2); it satisfies

ut + c[Lgy, My]) = u(t)ulc[Ly, My]);

the general solution of (2.16) is

y(t) = u(t)d, where 5 € C?;

y satisfies (2.18) if and only if § is one of the eigenvectors of the rfiatrix
u(c[Ly, My ) e SU(2). Let

ex2miello.Mo) (0 < g[Ly, My] < b) (221)
be the eigenvalues of u(c[L,, M,]). Then, in (2.18),
&= Fe[Ly, My].

Thus, there exists a lagrangian solution U of (2.2) defined on the torus
V[Lo, My] if and only if there exist three integers |, m — 1, and n such that

%Lo + '+ %N[LO,MOJ + UNp + m'Ny =n £ ¢[Ly, My],
%Lo +I—%=1 %MO + m' = m, where [M,| < L. (2.22)

This assertion does not assume that I, m', (f — $Hy)c[L, M], and
Lgc[L, M | have negligible squares on V[L,, M,].

U and B will be denoted by Uy and B+ depending on whether (2.22)
holds with +e[Ly, My]. By (2.15), (2.17), and (2.18), where ¢ =
Fe[Lo, Mp), B+ satisfies (2.8), where the ¢ have the values (2.9).

Assume that the squares of I’ and m’ and the squares of the derivatives
of he are negligible. Then (2.22) reduces to (2.5). The integers I, m — 4,
and n must satisfy condition (2.5);, which is independent of I' and m'.
Since [ and n are integers, since ¢ is near 0, and since N > 0, (2.5), implies
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I < n.Since I and m’ are near 0, (2.5), and (2.5), imply |m| < I + 3, which
completes the proof of (2.6).

It remains to prove that (24) is an approximate expression for
e[ Ly, My]. Since we have assumed that, on V[Ly, My],

(f = 3Huy)e[L, M] and Lgc[L, M]
are near zero and have negligible squares, the solution of (2.20), modulo

these squares, is

t t
u=1- z[J (f + iu)dtos + Loj gdt(c,;sin® + o5cos O)
0

0

by (2.14),. In other words, choosing the right-hand side to be in SU(2),
like u,

u= eﬁi[ﬂ,(f+p,/2)dm;+Lo fogdi(o,sin®+0;c05O)

Thus, by (2.17), definition (2.21) of ¢[Lqy, M,], and definition (2.4) of
fo and g,, the eigenvalues +2me{L,, M, ] are approximately the eigen-
values of the self-adjoint matrix with zero trace given by

fo03 + golo;sin® + g5cosO).

Now, by (1.7) and (2.13), its square is
2 2in2 2 MO 2.
(fo + gocos ©®) + gosin*@®@ = fg + 2——L Jodo + 90
0

hence the approximate expression (2.4), for e[L, M, | follows.
Remark 2.2. The'quantum numbers
L m n =1

become those used in the classical solutions of the Dirac equation by
imposing a condition '

« stricter than (2.6)
« less strict than the condition that, on account of (2.7), would result from
the choice I’ = m’ = 0, namely,

ml<i—4, l<n (2.6)*

This condition is as follows.
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Definition 2. In II1§1, we solved a system in one unknown, analogous
to the system (2.2) when I' and m' are chosen to be zero. In IIL§1, the
lagrangian amplitude of the unknown is necessarily constant. It is in
conformity with the nature of the amplitude o and of the phase vypg
in physics: o must vary more slowly than e*o?~. Let us make the present
situation as similar as possible: consider a quadruple

I, m, n, +1

satisfying the condition (2.5); for the existence of a solution of (2.2) that is
lagrangian on V[ Lo, M,]; this condition is independent of (', m'); require
that at (I', m’) the function

(I, my ey — 12 + Jeyy — 12 + Jees + 1]2€R

takes on values close to its minimum; in other words, by (2.9) and §ince
I’> and m'? are negligible in comparison with I' and m’, at (I, m').the
function '

(I, M)y 1% + m?* + [IN, + m'Ny F ¢]?

takes on values close to its minimum; if such a choice, namely,

: 2 (NL~ NM):

I'm)near + ———
( ) 1+ N} + N

satisfies the condition (2.7), then afid only then will we say that the
quadruple (I, m, n, +1) is admissible.
In §2 (Dirac equation), the following case arises.

Example 2. (Np, Ny) is near (—1,0); thus (I',m') is near (F¢/2,0).
By (2.7), the admissible quadruples (I, m, n, +1) are those that satisfy
condition (2.5), and the condition

0<li<n |ml<l+1 (2.23)

(the signs correspond).
It is customary in quantum mechanics to let

j=1x%
and to use quadruples of quantum numbers

(mnj=1+35.
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They are admissible if they satisfy (2.5); and
0<l<n |ml <) (2.24)

Then for each admissible choice of (I, m') there correspond solutions
U of (2.2) that are equal up to a proportionality factor. This factor is a
constant € C.

§2. The Dirac Equation

0. Summary

The Dirac equation is a system in 4 unknowns. Theorems 2.1 and 2.2
of IL§4 do not apply in this case because the zeros of det ad are double
Zeros.

Theorem 1, whose statement resembles that of theorem 2.2 of 11,84,
reduces, mod(1/v?), this system in 4 unknowns to a self-adjoint system
in 2 unknowns.

By suppressing terms that are negligible in view of the order of magni-
tude of the magnetic field, this system is transformed in section 2 into
the reduced Dirac equation, which is a system of the form solved in §1.

In section 3, we observe that the energy levels defined by this reduced
Dirac equation in lagrangian analysis are those defined by the classical
resolution of the Dirac equation, even when the magnetic field is strong
enough to produce the Paschen-Back effect.

But the probability of the presence of an electron obtained in section 4
differs from that obtained in wave mechanics; it is connected with the first
gquantum theory.

1. Reduction of the Dirac Equation in Lagrangian Analysis

Suppose we are given two infinitely differentiable mappings and a con-
stant: ’

A:EX{0} > R, ; B:E3 —» E?; CeR,.
Let ¢’ and a” be the two 2 x 2 matriceé of lagrangian operators whose

expressions in Z(3) = E* @ E? are

a = A(x) + 0[1 9 + B(x)], a’ = A(x) — a’[l 2 + B(x)], ;

v ox v ox
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where g is the2 x 2 matrix defined by (1.6) of §1; a’ and a” are self-adjoint.
They are associated to the self-adjoint matrices

A(x) + o[p + B{x)] and A(x) — 6[p + B(x)].
The Dirac equation is the system
aU = CU”, a'U” =CU, (1.1)

in which the unknowns U’ and U” are vectors. Let us require that the two

components of each of these vectors be lagrangian functions, the four of

them defined on a single compact lagrangian manifold V in Z(3) = E® @ E3.
The Dirac equation (1.1) is evidently equivalent to

1. the system

[C?P—a"0d]U =0 «  (12)
in the unknown U’, .

ii. the system

[C*~doa’]U =0 (1.3)

in the unknown U”.

The calculation of C2 — a” o a’and C? — a’ o a” is easy and standard.
In order to state the result, let

1 c? -1
H(x,p) = =|p + B(x)|* + = — =42
(x, p) 2]1) ()| + 5~ 54,
Jeup) =il 2 A B)| + Lofa,]
2 6x 2 x> (14)
4 i a 1
J =1l L _1
2"[ax " B] 20 LA
where
2 A B = curl B;
0x

3[C? — a” o a'] is the matrix associated to the 2 x 2 matrix

H + 1J’;
v
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1[C? — a o a”] is the matrix associated to the 2 x 2 matrix

H + lJ”.
v

Remark 1.1. These matrices are not self-adjoint; but one is the adjoint
of the other.

Notation. Let W be the hypersurface in E* @ E? given by the equation
W:H(x, p) = 0. \ (1.5)
Let §’ and B” be the lagrangian amplitudes of U’ and U”:

gV - C? BV - C.

By theorem 4 of IL§3, equation (1.2) is equivalent, mod(1/v?), to the
conditions:

Ve Ww

ap’

e+ Jp =0, 1.6
B (16)
where d/dt is the Lie derivative %, in the direction of the characteristic
vector k of V. Similarly, (1.3) is equivalent, mod(1/v?), to the conditions:
VoW

dp’
"B = 0. 1.7
i + JB 0 a.n

By (1.1), §’ and B satisfy the two equivalent relations
{Ax) + o[p + B()1}p = CB’, {A —o[p+ B]}p=CB (L8)

on V. The equivalence of (1.2) and (1.3) proves the equivalence of the
equations (1.6) and (1.7). Relation (1.8) evidently transforms the solutions
of one of these equations into the solutions of the other.

The definition (1.5) of W means that there exists a function

p:W >R,
such that

A = Ccosh2p, |p+ B| = Csinh2p. (1.9)
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Let
‘c=—C,1*0'[p+B], so that 72 = | (1.10
sinh 2p -10)
by (1.8) of §1. It follows that
Ce*¥"= 4 + o[p + B].
Relation (1.8) connecting ' and B” is then written
" = g2,
It means that there exists a function
BV - C?
such that
B=erB  p=e"p
The equivalent relations (1.6) and (1.7) may then be written
%4— Jp =90, (1.11)
where the 2 x 2 matrix J is given by
J = e’”(%(e“‘") + e e = e“"’“d—(e”‘) + e S e (1.12)
dt

Let us show how this definition of J is equivalent to (1.14), which makes
the following theorem evident.

THEOREM |. Solving the systems (1.2) and (1.3) (which are equivalent ro
the Dirac equation) mod(1/v?) on V is equivalent to solving the system

1
alU =0 modF (1.13)
in two unknowns, where a is the matrix of lagrangian operators associated
to the 2 x 2 matrix

H+1y
v
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H is defined by (1.4), and J by

J(x, p) = _“[aax A B] + ;A Jlr zolp +B) n 4] (1.14)

Remark 1.2. %J , and thus a, are self-adjoint, which shows by remark 1.1
the advantage of substituting (1.13) for (1.2)—(1.3).

Proof of (1.14). By the definitions (1.4) and (1.12) of J', J”, and J, it
suffices to prove the following formulas, where {-,-) is the scalar product
in E3 and curl B = 8/0x A B:

C

d, _ d i
> Jopt 2 ,—pt -t & Loyl . _t _
3 {e a () +e 7 (e )} 2(A C)o[curl B]

_i
24 +
<

colp + B) A 4]

+ B,curl B)ttanhp (L.15)
%{e”’a[curl Ble ™ + e *"g[curl Ble**}

= %Aa[curl B} — %(p + B, curl B)ttanhp, (1.16)

%{e’"a[Ax]e“‘" ~ eoAJe} = Sol(p + B) A 4] (117)

Remark 1.3.  The Pauli relations [ (1.7) of §1] may be written

olx]o[y] = <x, > + ia[x A y] Vx, ye E3. (1.18)
It follows, in particular, that

o[xJoly] + o[ ylo[x] = 2¢x, y), (1.19)
o[x]oly] — a[ylo[x] = 2io[x A y]. (1.20)

Proof of (1.15). Since t2 = 1 and p is a number,
e*P" = coshp + tsinhp.

Hence
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cred o o .
e’ E(eip) = e*‘"[%smhp + rdJ—)coshp + ﬂsinhpjl

dt de
dp 50 AT
= +¢2£ Forll
+t . +e 7 sinh p,
therefore
1 pfil_ —pt —prd Ty — dr . 2
ZI:e dt(e )+ e E(e )= —rEsmh p. (1.21)

In order to calculate t(dt/dt), differentiate the definition (1.10) of =:

dt . dp d
C—sinh2 2Ct—~ =] &
dtsm 0+ rdtcosh2p a[dt(p-i—B)}.

It follows by (1.9) and (1.10) that

dt . 1dA? d
C?*t—sinh?2p = —- =2 —
e 0 5 d +a[p+B]a[dt(p+B)}
whence by (1.18) and considering that A2 = C? + |p + B|?> on W,
dt . ] d
CersthZp = la[(p + B) A 6?;(p + B)j'. (1.22)
By the definition of d/dt [(3.10) of 11,§3],
dx d )
E= Hp(xsp)3 E—f= _Hx(x9p);

hence, by some easy calculations,
d
;1;(1) + B) = —(p + B) A curl B + AA,_,
d 2
(p + B) A ;E(p + B) = |p + Bl*curl B — {p + B, curl BY(p + B)
+ A(p+ B) A A,.
Therefore, since

2Ccosh?p = Cfcosh2p + 1] = 4 + C, |p + B|? = 42 — C?,

(1.22) may be written
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2Ct%5inh2p = i{A — C)o[curl B] — i{p + B, curl Byttanhp
t

A
| ——— + B) A A,
+ip—olp + B) ]
by (1.10); (1.15) follows by (1.21).
Proof of (1.16) and (1.17). Let y e E3;

et?ig[yle*’* = o[ y]cosh?p
+ ${zo[y] — o[y]r}sinh 2p — to[y]rsinh?p.  (1.23)

Now by the definition (1.10) of T and the commutation formula (1.20),
g—{w[y] — o[y]t}sinh2p = ic[(p + B) A y]. (1.24)
By (1.10) and (1.19),
2
=== <P+ By) -yl
o[ y] Csinh2p<p > Ly]

whence

2
to[y]t = m(P + B, y>t — oly] (1.25)

By (1.24) and (1.25), (1.23) may be written
Cet*'g[y]e*** = Ao[y] — {p + B,y>ttanhp + ia[(p + B) A y],

whence the two formulas

%{e”‘a[y]e“" + e ?g{y]e’} = Ao[y] — {p + B, y>rtanhp,

%{e’”o[y]e_"’ — e "g[yle”} = ic[(p + B) A y],

which prove (1.16) and (1.17), respectively.

2. The Reduced Dirac Equation for a One-Electron Atom in a Constant
Magnetic Field

Let us choose 4, B, and C such that the function H defined by (1.4),
is the hamiltonian of such an electron: H has to be the function defined
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by the formulas (4.15) and (4.18) of ITIL§1, up to the factor u. Thus,
A is a function of R, the function R —» RA(R) is affine,
B = {(—bx,, bx,, 0), where b € R.

In the expression (1.4); for H, neglect B2, as is done in (4.20) of TIL§I.
In the expression (1.14) for J, similarly neglect the term

%ﬁU[B A A,]in comparison with % l:% A le,

because, on ¥, xA4,/(4 + C)will be negligible in comparison with 1. Then
the expressions (1.4) and (1.14) for H and J reduce to

H(x, p) = {[P? + bM + C?* — A%(R)], 2.1
where b and C € R and R — RA(R) is affine,

Jix, p) = %ba3 — %ﬁa[x A pl 2.2)

The matrix of lagrangian operators associated to the matrix

H+ly
v

where H and J are defined by (2.1) and (2.2), will be denoted by a, and
called the reduced Dirac operator.

Remark 2. Thus H, defined by (2.1), becomes the function defined by
formula (4.20) of I1L§1, up to the factor u. It follows that

1 ez eH
A=—(E + -1}, b =2 C = uc,
C( + R) c 1224

where

* ¢ is the speed of light,

* pand ¢ are the mass and charge of the electron,

* Z is the atomic number of the nucleus,

* E is the energy level of the atom, which is close to uc?,
* # is the intensity of the magnetic field.

We replace the study of the Dirac equation by the study of the system



256 IV.§2,2

2i i i
= 2 — 2 _ =2 ! = —_ —m e =
aU = <aL L{ . LOI>U (aM M, m + 2v63)U 0,
2.3)

where the vector U has two components, which are lagrangian functions
defined on a compact lagrangian manifold V in E> ® E3, and where I’
and m’ are real and have negligible squares.

Theorem 2 of §1, can be applied to system (2.3); its statement becomes
more precise by means of the following two lemmas.

LEMMA 2.1. An approximate value for the function £ defined by (2.4); of
81 is

e[Lo, M,] = %Ju + N + 2%(1 + N)N,, + NZ, 2.4)

where
N, = NL[L09 Mo]’ Ny = NM[LO! Mo]-

Proof. Let us explicitly give the values of f; and g,, defined by (2.4),
and (2.4), in §1. By (2.1),

L+ Q* b

H[L,M,Q,R] = =R + EM +4C? — 14%(R), 2.5)
whence
L b
HL = R—Z, HM = E,
now by (2.3) of 111 §2,
4 = —Hp, H, = —Hy,

by (1.5) of I11,§2, we have, writing I for I'[ Ly, M, ],

J Adt = AL = 27N, J‘ wedt = A = 2Ny, ;
r r

hence,

J%m = —2nN,, J%dt = —27Ny; (2.6)
r r
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the last formula and formula (24); of §1, where f = b2 by the choice
(2.2) of J, give

fo = —wN,,. 2.7
By the choice (2.2) of J and the definition §1,(2.4), of g,,
N 73 Ag .
do 3 LR(A " C)dt’ . (2.8)
now by (2.14) of IIL§1 and (2.5), we have, on I s
_ dR RdR
dt—m>0, HQ=%; thusdt = —— > 0; (2.9)

hence relations (2.8) and (2.6), may be written

IJﬂ AgdR

o="3) 0a+c 3

r¢ R

Let us calculate an approximate value for go, namely, its value for b = 0.
By (2.5), in that case the equation of T is

I:02 = 4(R)A"(R) — L2,

2nN; = — (2.10)

where
A'(R) = RA(R) + CR, A”(R) = RA(R) — CR; 2.11)

A" and A” are affine functions; by remark 2, 4’ is increasing and A'(R) > 0
for R > 0; it follows by an easy calculation using residues that
Lo 4k
r@ 4
now by (2.11),,

dR = 2r; (2.12)

A 1 Ag

A4 RT4A4xcC
then the relations (2.10) and (2.12) prove that
go = —n(l + N;). (2.13)

Formulas (2.7) and (2.13) and formuia (2.4); of §1 prove the lemma.
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The assumptions made in §1,2, including those of §1, example 2, are
satisfied, as it is proved by the following lemma.

LEMMa 2.2. The values of the physical quantities defining A, B, and C
(remark 2) are such that for the energy levels E used in section 3,

fo= —nNy, go= —m(l + N.), Npz;, Npy, Ny:
are small in comparison with 1.

Proof. NJ[-,-] is expressed by (4.8) of IIL§1, where 4,, By, and C,
are defined by identifying formulas (4.6) and (4.20) in IIL§1:

2 2 —1/2
‘lf;N[Lo’Mo] _ az[uc (uc +Efiﬂ9fMo/h) B 1]

)T

where Z, ¢, i, &, E, and # are the physical quantities defined by remark 2,

2
=2 L is the dimensionless fine-structure constant (2.15)

he 137
(=~ means of the order of magnitude of), and

g = ;’—h is the Bohr magneton. ' (2.16)
uc

In section 3, we choose

¢ 0 < (uc¥/E) — 1 =~ «*Z?/(2n*), where n is an integer,

» the magnetic energy B to be very small in comparison with uc?, and
» 2M,/h to have integer values which are not large,

e Lo/h > 1.

The lemma follows.

3. The Energy Levels
Notation. Formulas (4.23) and (4.25) of IIL,§1 have already defined and
used the function F given by

Fin, k) = 1 . 3.1)

aZ 2
1+
\/ <n—k+\/k2—oc222>
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Note the sign of its derivatives:

F,>0, F, > 0.

Using F, it is possible to give the relation

hk + N[hk, bm] = hn, 3.2)
where N is expressed by (2.14), the form

E? = puc*[puc® + 2BAm]F 2(n, k).

In other words, to the degree of approximation used here, and assuming
E > 0,

E = uc’F(n, k) + pA#m. (33)

In these formulas, « is the fine-structure constant (2.15) and B is the Bohr
magneton (2.16).

THEOREM 3.  The energy levels E for which system (2.3) (where I' and m'
are real and have negligible squares) has admissible lagrangian solutions

(definition 2 of §1) on a compact lagrangian manifold are defined by the
quadruples of quantum numbers

i=l+tL m =n (3.4)
such that

L, m — 3, and n are integers (3.5)
and

ml<j, O<i<n (3.6)

Up to some negligible quantities, E is expressed as a function of these

quantum numbers as follows :

E = ,uc2F<n,l + %)

ue? [, 4m EAN
+ 3 \/Fk+2l+1FkE+u27+ﬂfm‘ 3.7)

The + sign is the same in (3.4) and 3.7).
Remark 3.1. For # = 0, since F, > 0,(3.7) reduces to
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E = uc’F(n, k), (3.8)
where

k=j+1eZ 3.9

Proof. By theorem 2 of §1, the energy levels E such that the system
(2.3) has solutions defined on compact lagrangian manifolds are those
that satisfy condition (2.5) of §1. From the approximate value of e[ L,, M,]
given by lemma 2.1, these values of E are approximately those satisfying
the condition

(il + %) + N[h( + 1), hm]

=hn-f_-g\/(l+NL)2+

4m
21 +1

(1 + NNy + NZ, (3.10)

Im| <1+ 4,1<n; I,m— %, nintegers; ! + N, and N,, small.

Then by the equivalence of the relations (3.2) and (3.3), a crude ap-
proximation for E is

272
E =~ ucF(n, I + ) ~ ,ucz[l _ °‘222 } 3.11)
n
which is sufficient to justify the use of lemma 2.2.
From example 2 of §1, admissible solutions of the system (2.3) cor-
respond to a choice of I, m, n, and E satisfying (3.10) if and only if

|m| <1+ 4,
which amounts to (3.6) and (3.4), where the 4 sign is the same in (3.4) and
(3.10).

Let us now express E as a function of (I, m, n).

Since (3.2) is equivalent to (3.3), on the one hand (3.10) may be written

E = ,uCZF<n + %J(l + N + 214:1 1(1 + Np)Ny + N&, L+ %)

+pHm; (3.12)

on the other hand, the following two relations are equivalent (for all
dk, dm, dn):

(1 + Ny)dk + Nydm = dn,  pc*(F,dn + F.dk) + B# dm = O.
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This equivalence means that

2F - _ uc*F - _ﬁ_f
1+ N, N,,

whence since F, > 0,

4m
F,,\/(l + N + T 1(1 + NN, + N&

dm _ pH  pA?
— 2 Lkdd
= \/Fk it .

pc? e

Thus (3.12) is equivalent to (3.7).

Remark 3.2. The energy levels obtained by theorem 3 are exactly those
obtained by the classical theory of the Dirac atom: see, for example,
Bethe and Salpter [2]. For s = 0, their formula (14.29), p. 68, can be
identified with our formula (3.8) and, for # # 0, their formulas (46.12),
(46.13), and (46.15), p. 211, can be identified with our formula (3.7): see
table for the correspondence between their notation and ours.

Table
Bethe-Salpeter [2] Leray (Remark 2 and Section 3)
Ey, = mc? uc?
E, ucFm, 1 + 1)
E_ ucxFin, 1)
HE, + E.) ue*Fln, 1 + %)
AE=E, — E_ uctF,
o B
¢ = #Huo/AE BA/(pc®Fy)
2
E'=AE[¢m ﬂyfmi‘%z\/ﬁ +21i:L"—1Fk% /izz‘ﬁ
£5 1+5214T1+52}

Remark 3.3. When fs# is small in comparison with uc?F,, formula
(3.7) evidently may be written
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E = pc*F(n, k) + p#gm, whereg = (j + H( + 1);
g is Landé’s factor [see Bethe-Salpeter [2], (46.4) and (46.6) p. 209].
4. Crude Interpretation of the Spin in Lagrangian Analysis

The crude approximation consists of neglecting $#/(uc?) in comparison
with o?; o? itself, and hence F,, in comparison with 1.

Remark 4.1.  Wave mechanics suceeds in evaluating the energy levels of
the helium atom at the cost of this crude approximation: see a summary
of these very laborious calculations in Bethe-Salpeter [2], chapter II.

In the equation H = 0, this approximation identifies the hamiltonian
H of the relativistic electron [(4.20) of IIL§1] with the nonrelativistic
hamiltonian [(4.19) of I1L§1], where 5# = 0. In this second hamiltonian,
E denotes the nonrelativistic energy.

The crude statement of theorem 3 is the following.

THEOREM 4.1. Let (j = | + 3, I, m, n) be a quadruple of quantum numbers
defining a system(2.3) that has admissible lagrangian solutions on a compact
lagrangian manifold V; it is a quadruple satisfying (3.5)~(3.6). The crude
expressions for the nonrelativistic energy E and for L, and M, as functions
of this quadruple are

272

E= ‘“62%122_’ Lo=hl+1%), M, =hm @.1)

The crude equations for V are

2 2
V:H=0,whereH=P——E—g, L =h(l + 3, M = hm.
. 2u R

4.2)

Remark 4.2. 1In the case
|m|=j=1+1,
we have, by (4.2) and the definition of L and M (IIL§1,1), that, on ¥,
[M| = L;thus x3 = p; = 0;

whence

dim V = 2, contrary to the definition that dim ¥V = 3.
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In order to give a meaning to this result, other than by reintroducing
nonzero /" and m’, one perhaps has to use the notion of a lagrangian dis-
tribution and to refer to some of the papers of Voros [25], [26].

Notation. Let SO(3) be the group of rotations p:E* — E? leaving the
origin invariant. Let it act on E* @ E3 as follows:

p(x, p) = (px, pp), where (x, p) e E* @ E>.

Let SO(2) be the subgroup of rotations leaving 15 (IIL,§1,1) that is, the
direction of the magnetic field, invariant. SO(2) evidently leaves V in-
variant. More precisely, by sections 1 and 2 of L§1,

V = 8S0(2) x T2,

where T2 is a 2-dimensional torus, every point of which is left invariant
by SO(2). Recall (remark 1.1 of §1) that the universal covering group of
SO(3) is SU(2), which is a covering group of order 2. Let SU(1) be the
covering group of SO(2) of order 2. Then we have the commutative
diagram

SU(1) < SUQ2)

! i
S0(2) & S0(3)

where the vertical arrows represent natural projections of covering groups;
the horizontal arrows are inclusions. Let

v, = SU(I) x T2

V, is a covering space of V of order 2; SU(1) acts on V,, leaving each
point of T? invariant.

Definition 4. Let V be a lagrangian manifold, @g, its phase in a 2-frame
Ry, and f a function V — C. By theorem 2.2 of 11,§2,

. 1\ e
Ur, = (ﬂ) Be™

is the expression in R, of a lagrangian function U defined mod(1/v) on
V. The definition of a lagrangian function on V (definition 3.2 of IL§2)
may be generalized as follows: Let ¥ be any one of the covering spaces
of V; U is said to be lagrangian on V when the restriction of URO to vg.
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50 n_\" @
U ={-— e o=,
R, <d1x> B

is a mapping I7\§Ro - C.
The calculations that establish the conditions (3.11) in IIL§! prove the
following theorem.

THEOREM 4.2.  The conditions (3.4)-(3.6), which are satisfied by the quad-
ruples of quantum numbers defining solutions of (2.3), express the existence
of a function with constant lagrangian amplitude defined mod(1/v) on
V, but not on V.

Conclusion. Let V be the lagrangian manifold given by equation 4.2).
Let U be a function with constant lagrangian amplitude defined mod(1/v)
on V. The following is a crude interpretation of the spin:

« U is lagrangian on V in the spin O case (Schrédinger);
« U is lagrangian on V> (and not on V) in the spin % case (Dirac).
5. The Probability of the Presence of the Electron
Recall that x is the position and p the momentum of an electron; thus
(x,p)eE*®E* =X @ X*
With the conventions of remark 2, let

hZ
Ry = —5,
1 /.l82
which is the length called the radius of the Bohr atom in the first quantum
theory. Let

Zx ZR
[ ==, RI _ ,
¥ TR, R,

where Z is the atomic number of the nucleus.

THEOREM 5. The position x of the electron with quantum numbers (=
I £ 3.1, m, n) stays in the projection Vy of V[L,, Myl onto X; Vyisa
subset of X lying between two spheres and outside of a cone of revolution
around the magnetic field; the center of these spheres and the vertex of
this cone coincide with the nucleus of the atom.

Assume that on V[Lo, My] = E* @ E? the probability of the presence

of the electron is proportional to the invariant measure 1, [see the con-
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clusion of the introduction to chapter 1I1]. Then on Vy the probability of
the presence of the electron is crudely

ENES i
2 n* JR? £ 20°R — (I + P U+ 22 + x¥) — m*R'%
(5.1)

A crude definition of Vy is that Vy is the subset of X where the above
radicals are all real.

Remark 5.1. If|m| = | + 4, then Vy is the disk where
x3=0, R?-2%R + (I +¥*n? <.

The probability of the presence of the electron on this disk is
E ax

20 n® J_R'Z 4 2°R — (I + 2

Proof. On V[L,, M,] the probability of the presence of the electron
is, by definition,

-1
z%':f dt] dt A d¥ A d®,sincenyy, = dt A d¥ A dO.
r

By (1.5), (1.11), and (1.12), of IIL§1, the projection Vy of V[Ly, My]
onto X is the set of points x in X for which
M,

< sin®, where cos® = —9 (5.2)
L,

and the second-degree equation in Q,
H[LO’MO’ Q, R] = 09 (53)

has real roots.

Thus Vy is indeed a subset of X lying between two spheres and outside
a cone of revolution whose centers and vertex are at 0.

Formulas (1.5), (1.6), and (1.12) of ITL§!1 show that every point x inside
Vx is the projection of 4 points (¢, ¥, ®) in V[L,, M,]. By (1.16) and (3.6)
of IIL§1 and by (2.9),

d’x = —QRsin¥sin®dr A d¥ A db, dr = RIR .

Y
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where |Q| is defined by giving x. Then on Vy the probability of the presence
of the electron is

1 RdAR|! d3x
?[.[r Q :I |Q|R|sin ¥|sin®" (5.9)

By (1.12), of IIL§1,

x; = Rcos¥sin®;

therefore, from (5.2),,

Rlsin'¥|sin® = 1 [L3(x? + x2) — M3R?]", where Mo — ™
Ly L, I+ 3

(5.5)

The definition of Q by equations (5.3) and (4.2), where E has the value
(4.1)and P? = (Q? + LZ)/R?, crudely gives

0=~ g[_ R? + 2R — (I + Hn? ], (5.6)

It follows that

RdR RZ p?
~ L 5.7
~ 2n—; (5.7)

Formulas (5.5), (5.6), and (5.7) give the probability (5.4) its crude ex-
pression (5.1).

Now, Vy, being the subset of X where (5.5) and Q are real, is crudely
defined by the condition that the radicals entering into (5.1) be real.

Remark 5.2.  The probability of the presence of the electron defined by
theorem 5 is extremely different from that defined by wave mechanics,
but closely connected to the first quantum mechanics: the electron stays
in a compact subset ¥y of X that is the union of the trajectories used by
the first quantum mechanics; the probability of its presence results as
simply as possible from the equations characterizing V.

Conclusion

This survey has elucidated Maslov’s quantization. On the one hand,
theorem 3 of IV.§2 proves that it is related to classical wave mechanics
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and preserves its essential results; on the other hand, remark 5.2 of 1v,
§2 proves that it is related to the first quantum theory and preserves the
simplicity of its calculations. Chapters I and I have shown how Maslov’s
quantification replaces the Bohr-Sommerfeld quantization by a quantiza-
tion that mathematical motivations justify.

We considered only one-electron atoms (or ions). Let us review very
briefly how quantum mechanics has studied several-electrons atoms. It
has been by using the Schrédinger equation,

i. There are rich theoretical results (by T. Kato, B. Simon, and many other
mathematicians); but they do not lead to numerical results.

ii. There are some numerical results (by E. A. Hylleraas, C. L. Pekeris,
and many other physicists) that strikingly agree with experimental results;
but their mathematical accuracy is not completely established:

[In its present state Maslov’s quantification can reobtain neither @
nor (ii).] '

ili. There is also a very crude method that foresees the behavior of the
plasmas; it pays attention to only one of the electrons, to which is applied
the theory of one-electron atoms. V. P. Maslov asserts that such a proce-
dure becomes more efficient when his quantification is used.

That last fact and the fact that (i), (ii), and (iii) together do not at all
constitute a complete theory show how also physics called for a coherent
elucidation of Maslov’s quantification and for the required tools.
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