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0. INTRODUCTION 

FOR (8m + 2)-dimensional closed Spin-manifolds, one can define on the one side the 
finite set of Brown-Kervaire invariants, and on the other side Ochanine’s invariant k. Both 
are Z/Zvalued invariants of Spin-bordism, where the first are defined cohomologically as 
the Arf-invariant of certain quadratic refinements of the intersection form on H4m+1(M; 

E/2), and the second can be defined as a KO-characteristic number which by the real family 
index theorem has an analytic interpretation as the mod 2 index of a twisted Dirac- 
operator. Ochanine showed that these invariants agree on the class of Spin-manifolds, for 
which all Stiefel-Whitney numbers containing an odd-dimensional Stiefel-Whitney class 
vanish. On the other hand, it is not difficult to construct two different Brown-Kervaire 
invariants in dimension 34. 

We show here (Theorem 7.1) that Ochanine’s invariant is in fact a Brown-Kervaire 
invariant; in particular, it vanishes if H4m+ ‘(M; Z/2) = 0, and is an invariant of the 
Spin-homotopy type (Corollary 7.3). This result is in analogy to the Hirzebruch signature 
theorem and can be considered as a Z/Zvalued cohomological index theorem for the above 

operator. The proof uses the integral elliptic homology of Kreck and Stolz (which in 
particular characterizes invariants with a multiplicativity property in WP2-bundles) and the 
theory of Kristensen about secondary cohomology operations (which gives a Cartan 
formula necessary for the computation of certain secondary operations in I-UP’-bundles). 

1. BROWN-KERVAIRE INVARIANTS 

In [3], Brown generalized the Kervaire invariant of framed manifolds to the bordism 
theory rZf; associated to a fibration r : B -+ BO: 

K : Q 5, x 05, + Z/8. 

Here Q$i denotes the set of parameters 

Qi,,:= {h~Homb~,Wt A KJ, U4)lWJ = 2) 

where K, := K(Z/2, n), and where the stable map A, : S2” + So A K, + M5 A K, is induced 
by the non-trivial map in 7~z~(K,) = E/2. The set Qg, has a transitive and effective action of 

H”B (cohomology always with Z/Zcoefficients) and is non-empty iff the Wu class u,+ i(5) 
vanishes. Brown defined K,,(M2”), which we call the Brown-Kervaire invariant of M2” with 
parameter h, as the Z/8-valued Arf-invariant of the Z/4-valued quadratic form 

q,,: H”M2” + (M2n, K,} 3 [S’“, Mv A K,] v, [S’“, Ml A K,] > z/4 
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where the first map is stabilization, the second is S-duality, and the third is given by the 
<-structure v : M2” + B on M ‘” The map qh is a quadratic refinement of the Z/Zintersection . 

pairing H”M2” x HnM2” + Z/2. If the Wu class v,(t) vanishes, the pairing is even and qh 
takes values in Z/2 c Z/4; in this case K,(M2”) is the ordinary Z/Zvalued Arf-invariant of 
the quadratic form qh. 

By definition, the map Kh is linear in the second variable, but not in the first variable 
where one has 

K,,+X(M2n) - K,,(M2”) = i:(q,(v*x)[M2”]) 

for x E H”B and ii: Z/4 G Z/8 the natural inclusion. This shows that for M, x, y with 

v*(xy)[M] # 0, at least one of the three Brown-Kervaire invariants Kh+x, Kh+y and 
K h +X+Y is different from Kh because of 

qh(v*(x + YN’W - dv*xWI - %dv*Y)[Ml = i$*(xyWI # 0. 

2. SPIN MANIFOLDS 

For Spin-bordism, t : BSpin + BO, the total Wu class has the form 

u(5) = 1 + u4 + us + u12 + ..' 

because of x(Sq 2k+1) = X(Sq2k)Sq1 and x(Sq 4k+2) = X(Sq4k)Sq2 + Sq’X(Sq4k)Sq1, showing 
that the condition u,+ l(r) = 0 is satisfied for n = 2m and n = 4m + 1. 

In the first case, the Pontragin square p gives a canonical h, E QF and then K, is 
equal to the signature mod8 by a theorem of Morita [13]. 

The second case is more complicated; here one also has v.(t) = 0 and gets thus 
Z/Zvalued invariants. The parameter set Q i”,i:, grows according to lQFm’;21 = 1 H4mn+1 

BSpin) and H*BSpin = Z’/2[wkjk # 1,2” + 11. This gives for the first values lQspinI = 
IQf$“I = IQsps’“l = 1, IQ;91 = 4 and IQvl = 16. On the other side, Ochanine proved in 

[14] that in dimensions 2, 10, 18 and 26, the Brown-Kervaire invariants agree with his 
invariant k (defined in the next section). Actually, he proved this for the larger class of 
invariants K: iI”,“,‘: 2 + Z/2 with the properties 

(1) K(M*” x s’ x f’) = sign(M*“) mod2 
(2) H4m+1M*m+2 = 0 j K(M8m+2) = 0 

where S’ denotes the circle with the non-trivial Spin-structure. Ochanine called these 
invariants generalized Kervaire invariants because for Brown-Kervaire invariants, (2) is 
obviously satisfied and (1) follows from the results in [4]. 

In [14], there is also an example of two different generalized Kervaire invariants in 
dimension 34: Let M lo and M24 be closed Spi n manifolds - with the only (tangential) 
non-zero Stiefel-Whitney numbers 

(M” and M24 exist by [l, 121). Define M34:= M’Ox M24 and let K:R~~-+Z/2 be 
a generalized Kervaire invariant; then K + w12wgw: [ ] is also a generalized Kervaire 
invariant, with w~~w~w;[M~~] # 0. 

A modification of this example shows also the existence of two different 
Brown-Kervaire invariants in dimension 34: Let x:= w13w4 and y := wlow,; then we also 
have that v*(x~)[M~~] # 0, which implies that at least one of K,,+X, Kh+y and K,,,,, is 
different from Kh for every h E QSpqin. 
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We come now to the construction of certain Brown-Kervaire invariants by unstable 

secondary cohomology operations [3] 

4 : ker(a) + coker( /3) 

with range of definition and indeterminacy given by 

Lx := (Sq4m, Sq9q’) : fP+ ‘x -+ Pm+ ‘x @ Pm+ 2x, 

p:= sqz + Sq’:H8mX@H*m+1X+H6m+2X. 

These operations are associated to the decomposition 

Sq 4m+2 = Sq2Sq4” + Sq’Sq4”Sq’ 

and are quadratic refinements of the cup pairing modulo the indeterminacy [S]. We call 
them Brown-Peterson secondary cohomology operations. Two of them differ by a primary 
operation y : H4”’ ‘X + Hsrn” X which lies in the stable range and is thus given by an 
element y E A4m+ ’ in the Steenrod algebra. If X is a l-connected Spin-manifold M’“, we 
have ker(a) = H”M’“, coker(j?) = H2”M2” = Z/2, and get therefore a Brown-Kervaire 
invariant K, by qh:= 4, which we call a Brown-Peterson-Kervaire invariant. If 

VH4m+1M8m+2 denotes the generalized Wu class of y = 4 - I#J’, we have 

Kp(M *“‘+‘) - K,JMa”‘+2) = c&v,)[M*“+~]. 

3. OCHANINE’S INVARIANT 

In [14], Ochanine defined an invariant 

by k(M*“+‘):= sign(W *m+4)/8 mod 2, where a W am+4 = Ma’“+’ x S’. Such a Spin-mani- 
fold W 8m+4 exists by [l] and has signature divisible by 8, and k is well-defined because of 
Novikov additivity and Ochanine’s signature theorem. 

Ochanine gave in [15] another construction of k in terms of KO-characteristic numbers. 
We recall the coefficients of the KO-theory 

KO, = 
z C?, (j.4 L4 p- ‘1 

2q = $ = r/o = 0, uJ2 = 4p 

where q E KO1, o E K04 and p E KOs are given by the Hopf bundles (viewed as real vector 
bundles) over the real, quaternion, and Cayley projective lines RP’ = S’, W P’ = S4, and 
OP’ = S*. Now define for a real vector bundle E + X 

O,(E) := 0 (A +-I(E) 8 &n(E)) E KO’(X)[[q]] 
nbl 

where A,(E) = 1 uao ukAk(E) and S,(E) = 1 u50 ukSk(E) are the total exterior, respectively, 
symmetrical powers of E. For the trivial line bundle we have, in particular, 

zn-1 

WI) := @q(l) = n;l l I-;q2n 

which we also view as an element in Z[[x]]. Because of O,(E @ F) = O,(E)@,(F) we can 
extend 0, to 

0,: KO’(X) -+ KO’(X)[[q]]. 
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For a n-dimensional closed Spin-manifold M”, Ochanine defined 

where [M”lKO E KO,(M”) denotes the Atiyah-Bott-Shapiro orientation of M” and 
(,) : KOm(X) @ KO,(X) + KO,_, the Kronecker pairing. This gives a multiplicative Spin- 

bordism invariant, the Ochanine elliptic genus 

The coefficient of q” is obviously given by (1, [M”lKo) E KO,, which is the definition of the 
Atiyah a-invariant a : flipin + KO,. 

Ochanine proves in [15] that the Pontrjagin character of /I gives the q-expansion at the 
cusp cc of the universal elliptic genus C$ : Sly + Z[$][S, E] where 6 = 4(@P’), E = +(WP2). 
Thus, fi extends 4 for Spin-manifolds to the dimensions 8m + 1 and 8m + 2. Furthermore, 

/I takes values in the ring of modular forms over KO,, more precisely: 

THEOREM 3.1 (Ochanine [15]). The image of/l is the subring generated by q, do, pd, and 

p& of the ring MroC2)(KO*) = KO,[cSO, E]/v(~~ - 1) c KO,[[q]] of modular forms over 
KO,, where do E Z [ [q]] and E E Z [ [q]] are given by 

In particular, one has for a (8m + 2)-dimensional closed Spin-manifold Msmn+’ 

NM 8m+2) = (aO(M8”‘+‘) + al(M8”+2)E + ... + a,(M8”f2)Z”)~2pm 

with homomorphisms ai : Cl”,“,‘; 2 + Z/2, where 

E= 1 q(2k+l)2 = q + q9 + q2S + . . . E ~/mdl 
k>O 

is the reduction of E modulo two. Obviously the lowest coefficient a0 is again given by the 
Atiyah a-invariant. 

THEOREM 3.2 (Ochanine [15]). The highest coeficient a,,, is equal to the Ochanine 

invariant k. 

This gives an expression of k in terms of KO-characteristic numbers: Let q(E) E Z [ [E]] be 
any formal power series whose Z/2-reduction is the inverse power series of E E Z/2 [ [q]], 
then a,,, is the coefficient of Z” in the polynomial /IqCEj E KOem + 2 [E] which is obtained from 
the formal power series fi E KOs,+ 2 [[q]] by inserting q(E) for q. We get (suppressing q2pm) 

1 
am=2Ki de/j =-!- dq f -“fiqmod2 ~m+t 4(e) 2ni q"+l q 

i 0 

because qds/dq = E mod 2. Thus, k = a,,, is the coefficient of q” in f(q)-‘” * /I E KOs,+ 2 [[q]] 
where 

f(q):= 1 q(‘2) = 1 + q + q3 + q6 + ... 
?I>1 
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since e/q = f(q8) mod 2 = f(q)8 mod 2. Together with the real family index theorem in 

dimension 8m + 2, this shows that k has an analytical interpretation as the mod 2 index of 

a twisted Dirac operator: 

THEOREM 3.3 (Atiyah and Singer [2]). Let M be an (8m + 2)-dimensional closed Spin- 

man$old and E EKO’(X). Define eE Z/2 by (E, [MIKo) = en2pmEKOs,+2, then 

e = dim, ker(D,) mod 2, 

where DE is the Dirac operator of M twisted by the virtual bundle E. 

COROLLARY 3.4, The Ochanine invariant ofan (8m + 2)-dimensional closed Spin-manifold 

M is equal to the mod 2 index of the Dirac operator twisted by the virtual bundle E,, which is 

the coefJicient ofq” in f(q)-8m0(q)-8m-20q(TM) E KO’(M)[[q]], 

k(M) = dime ker(D& mod 2. 

4. INTEGRAL ELLIPTIC HOMOLOGY 

This theory of Kreck and Stolz [7] is a refinement at the prime two of the elliptic 

homology theory of Landweber, Ravenel and Stong and has a very geometric definition in 
terms of WP2-bundles. Here we need only the coefficients of this theory. We consider 
W P2-bundles p : Nk+’ + Mk where the structure group is PSp(3) acting in the canonical 
way on HP2 = PSp(3)/P(Sp(2) x Sp(1)) and N ‘+‘, Mk are closed Spin-manifolds. Such 
bundles are the pullback of the universal HP’-bundle E := BP(Sp(2) x Sp(1)) -+ BPSp(3) by 
a classifying map f : Mk -+ BPSp(3). On the level of bordism one has homomorphisms 

Y: SZy(BPSp(3)) + flzn,, [M, f] H [N =f*E] 

II : RSPi”(BPSp(3)) + a?, [M, f] H [M] 

and we set 

T* := im Y = {total spaces of WP2-bundles} c Qy 
T, := Y(ker rt) = {total spaces of WP2-bundles with zero-bordant base} c a?. 

There are the following results, where a and b are the invariants of Atiyah and Ochanine. 

THEOREM 4.1 (Stolz [16]). T, = kera. 

THEOREM 4.2 (Kreck and Stolz [7]). TT, = kerb. 

If we set ell, := QT”‘/T.+, then we have: 

THEOREM 4.3 (Kreck and Stolz [7]). Let s := [Sl], k := [K”], b := [B’] and h := [I-U P2] 

be the Spin-bordism classes of the non-trivial circle, the Kummer-surface, the Bott-man$old 

and the quaternion plane. Then 

ell, = 
z Cs, k, b, hl 

2s = s3 = sk = 0, k2 = 4b + 256h’ 

Remarks. Theorem 4.1 was the key step in Stolz’ proof [16] of the Gromov-Lawson 
conjecture. By ell, z im /?, we get from Theorem 4.3, just Ochanine’s Theorem 3.1 about 
im fi. 
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COROLLARY 4.4. Let K : n”,“,i: 1o + Z/2 and K’ : @“,i: 2 + Z/2 be homomorphisms with 

(0 K(N 
*m+lO) = Kf(M*m+Z 

) for any O-UP’-bundle p: NE”‘+” --) M*““‘, 
(ii) K(N*“+* x s’ x sl) = sign(N*“+*)mod2. 

Then K is equal to the Ochanine invariant, K = k. 

Proof The condition (i) is equivalent to K 0 Y = K’ 0 R, thus K factors over ell*,,,+ i. 
which is a Z/Zvector space with basis (s2hibj)i+j=,+t. By (ii) we have K(s’h’bj) = , 

sign(h’bj)mod 2 = k(s’h’bj). n 

5. SECONDARY OPERATIONS AND I-IF-BUNDLES 

In order to apply the results of the previous section, we want to compute 
Brown-Peterson-Kervaire invariants of I-I P2-bundles. Let p : Nsm+10 + MBm+’ be a I-I P2- 
bundle of Spin-manifolds classified by f : M 8m + ’ + BPSp(3). Since BPSp(3) is l-connected, 
we can by surgery assume that MBm+’ is l-connected without changing the bordism class 

CM 8m+2, f] E @P,‘:,(BPSp(3)). Then N*“‘+” . IS also l-connected. By the Leray-Hirsch 
theorem we have 

where x E H4N 8m+ lo is the pullback of the universal Leray-Hirsch generator in 
H4BP(Sp(2) x Sp(1)) belonging to the universal WP2-bundle BP(Sp(2) x Sp(1)) + BPSp(3). 

Now assume that &~:(kera)~“~~ -+ (coker j?)“““” is a Brown-Peterson operation giv- 
ing a Brown-Peterson-Kervaire invariant in dimension 8m + 10. For Nam+io we have 
kera = H4m+SN8mf10 and coker /3 = H8m+10N8m+10 = Z/2, and for a = ~*~‘EP*H~““~ 

Man+’ we get 

4(a) = p*4(a’) E p*H8mn+10M*mn+2 = 0. 

On the two other summands x~*H~~+~M*~+~ and x~~*H~“-~M*“‘+~ the operation 
4 does not vanish in general, but the following algebraic lemma tells us that we can apply 
Corollary 4.4 if we would have 4(xp*a’) = x’p*r$‘(a’) on the middle summand, with 

#:(kera)4m+1 + (coker /I)8m+2, another appropriate Brown-Peterson operation. 

LEMMA 5.1. Let V be a finite-dimensional Z/2-vector space and q: V + Z/2 be a non- 

degenerate quadratic form which vanishes on a sub-Lagrangian I/_. Dejine V. := V h/V__ and 

q. : V. + Z/2 by qo(v + V_) := q(v). Then q. is a non-degenerate quadratic form on V. and 

Arf(q) = Arf(q,). 

Proof We use the definition of the Arf-invariant as the “democratic invariant”: 

Arf(q) = sgn c ( - 1)4’“‘. 
VeV 

It is easy to see that q. is well-defined and non-degenerate. We set V, := V/V 5, then the 
pairing V_ x V, + Z/2 is also well-defined and non-degenerate. If we choose Z/Zlinear 
splittings V. 4 V 5 and V, 4 V we have V = V_ 0 V, @ V+ and 

Arf(q) = sgn c 
(_ 1)4(u-+v,+v+) 

U.EV_,UoEVo,U+EV+ 

= sgn c (- 1)4(“J 
% E vo ( 

” Fv ( _ 1)4(u+)+w+ 
+ + ( 

“mzvm ( - I)“-“+ 
>) 
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because of q(u- + u. + u+) = q(uo) + q(u+) + u-u+ + uou+. But C,_ EV_ ( - I)“-“+ is 0 for 

u+#Oand~V_~foru+=O,whichgives 

Arf(q) = sgn C ( - l)q(@) (( - l)q(O)+o, 1 v_ 1) 
UOE vo 

= sgn 1 ( - l)q(“o) = Arf(q,). 
UOE v0 

Remark. This lemma can also be proved by constructing a “good” symplectic basis, but 
the proof here generalizes also to the Z/8-valued A&invariant. 

6. A PRODUCT FORMULA OF KRISTENSEN 

The previous section shows that we need a product formula for the unstable secondary 
cohomology operation 4 applied to x. y with XE H4N*m+10 and y := 

p*a, aE H4m+1M8m+2. Sum and product formulas for secondary cohomology operations of 
this type were obtained by Kristensen in a series of papers [8-lo]; see in particular [l l] for 
a short survey on his product formula. 

Kristensen worked in the category of simplicial sets which is no restriction because its 
homotopy theory is equivalent to the homotopy theory of topological spaces, and used 
cochain operations to represent secondary cohomology operations. A cochain operation 
a = (a,JksN of degree n E N is a series of natural transformations ak : Ck( ) + Ck+“( ) of the 
normalized cochain functor for simplicial sets (coefficients are always Z/2). The ak need 
neither to be linear nor to commute with the coboundary 6 : Ck( ) -+ Ck+ ’ ( ). Kristensen 
defined a differential A in the graded Z/2-vector space Lo* of these operations by (Aa)k := 
6ak + ak+ 1 6 (here, a(O) = 0 follows by naturality from the vanishing of the normalized 
cochains of the simplicial point) and showed that: 

THEOREM 6.1 (Kristensen [S]). Let a E 0” with Aa = 0 and dejine a cohomology operation 

[a] ofdegree n in each dimension k by [a]( [xl):= [a&)] for all x E CkX with 6x = 0, then 

[a] is well-de$ned and stable. This gives an isomorphism 

H(O*, A) = A*. 

This isomorphism is also compatible with composition, but in contrast to the Steenrod 
algebra A*, the cochain operations 0* do not built an algebra because in general its 
elements consist of non-linear mappings and the composition is thus not right distributive. 

For example, by using a system of cup-i products one defines cochain operations sq’ E 0’ as 

(sqi)k(x):= xuk_ix + xuk_i+ 16x7 XECkX 

which give the Steenrod squares Sq’ = [sq’]. While the Sq’ are linear they are induced from 
quadratic maps sq’. 

Kristensen proved also a r-variable version of the above theorem 

H(O*“‘, An) = @ A* 

where a cochain operation a of degree n in r variables is a series of natural transformations 
ak: Ck( )x ... x C”( ) + Ck+“( ) and the differential A(‘) is defined by (Atr)a)(xl, . . . ,x~):= 
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&l(Xl, . . . ,x,) + a(dx1, . . . ,6x,). As an application, for each a E 8” with Au = 0 there exists 
a r-variable cochain operation d, E cI!I”-~(‘) with 

(A”‘d,)(x,, . . . 

because the left-hand side measures the deviation of a from linearity which vanishes in 
$,A” since [a] E A” is linear. 

We come now to the representation of secondary cohomology operations by cochain 
operations, see [S]. We start with a relation If= 1 aifli = y of degree II in the Steenrod 
algebra, where ai E A”‘, fli E A”’ with ni + mi = n for i = 1, . . . , S, and y E A”. If we write Cli, pi 
and y as sums of admissible monomials in the Sqk, then the corresponding expressions with 
Sqk replaced by sqk are representing cochain operations ai, bi and c. The cochain operation 
r := Cl= 1 Uibi + c E 0” has the property Ar = 0 and [r] = 0, thus there exists a cochain 
operation R E On-’ with AR = r. Now, let [x] E HkX be in the kernel of all the pi, and 
k < excess(y). Since [hi(x)] = 0 there are wi E Ck+“‘i-l X with 6Wi = hi(x), and furthermore 
c(x) = 0 by the definition of the excess and of the sq’. Consider 

4(x):= R(X) + i ai 
i=l 

then 4(x) E Ck+“-’ X and a short computation gives 64(x) = 0. Kristensen shows that 
choosing other wj with 6~: = b,(x) or another x’ E [x] changes the cohomology class 
[4(x)] E Hk+“-l X by elements in IyE1 im(ai: Hk+mi-lX + Hk+“-‘X). Thus, for k < ex- 

cess(y) we have defined a secondary cohomology operation 

& Hk+mi-1 @‘+ “’ +OL”) X A Hk+“-‘X , 

i=l 

which is stable if y vanishes. Furthermore, a different choice of R’ with AR’ = r is given by 
e:=R’-REP with Ae = 0, and then one has 4’ - 4 = [e] E A”- ’ for the corresponding 
secondary cohomology operations. In the following we say that 4 is associated with the 
“relation” 

p:= ~ aiOBiEA*OA* 
i=l 

and is defined in dimensions k < excess(&)), where p: A* Q A* + A* denotes the product 
in the Steenrod algebra. These operations are equivalent to those constructed in the 
topological category from xi= 1 Uifli = y. We remark that in the case of 1x1 < excess(/?J for 
all i = 1, . . . , s we have b,(x) = 0 and can thus make the canonical choice Wi = 0. But also 
r vanishes then in this dimension and R can be chosen with R(x) = 0 (one can easily see this 
in the topological category by choosing the zero map between the appropriate Eilen- 
berg-MacLane spaces as a representative of pi). In particular, one has then &[x]) = 0. 

Now we want to compute a product formula for the operation 4. The product formula 
for a stable primary cohomology operation is given by the coproduct Ic/ : A* + A* 0 A* in 
the Steenrod algebra, and for relations we have the coproduct 

tj’“‘:=(l@t@l)(1C/@$):A*@A*+A*@A*@A*@A* 

with the Hopf algebra property (p @ ,u)I++“’ = +,u. Suppose now that we have 
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with pk, pi, EL, EL E A* 8 A*, where we regard the P;, p& as relations. This decomposition 

is designed for the case that 0 = fii( [x] [y]) = CjeB, fiij( [x]) flf’( [y]) holds true because in 
each summand at least one factor is zero, which Kristensen calls the complementary case; his 
method works only under this condition (see [9, lo]). 

A first conjecture would be that (on the common domain of definition and modulo the 
total indeterminacy) one has then 4([x] [y]) = CnslV 4k([x]) Si([y]) + EmeM 
6;( [x1)4:( [y]) with secondary cohomology operations 4b, 4: associated with p:, p:, and 
Si:= ~(a:), Sk:= &,,). But the situation is a little more complicated because a relation 
gives in general more than one secondary operation (which differ by stable primary 
operations), so this equation can be only true if one adds at the left-hand side E( [x] @ [y]) 
with a certain primary cohomology operation E E A* @ A*, whose computation was the 

main problem in Kristensen’s product formula for 4. 
For the computation of 4([x] [y]) = [R(xy) + If= 1 bi(wi)] we need two parts: Firstly, 

an expansion of R(xy) (with xy meaning the cup product of cochains), and secondly, 
cochains wi with 6wi = bi(xy) which are given in terms of the complementarity condition. 
The second problem leads to cochain operations 9* of the second kind; these are series 
G = (Gi,j)i,j, N of natural transformations Gi,j: C’( ) x Cj( ) -+ Ci+j+“( ), and one has a dif- 

ferential V: d* + 5!*+l by (VG)(x, y) := 6G(x, y) + G(6x, y) + G(x, 6~). Kristensen proves 
in [9] that 

f&L?*, V) = A* 0 A*. 

As an application of this theorem, let c1 E A” and the terms in the coproduct $a = 1 a; @ ai 

be represented by cochain operations a, a; and a:. Then there exists a cochain transforma- 
tion T, E 2Pp1 of the second kind measuring the deviation of the Cartan formula on the 
cochain level, 

VT,&, y) = a(w) + c 4(x)4(y) + 4&y, x~Y)+ bl4Wy, ~6~1. 

For the proof, one computes that V of the right-hand side is zero (in order to get this, one 
has to include the linearity defects d,) and that it represents a([x] [y]) + 

1 a;( [x])ai( [y]) = 0. NOW we can construct our Wi with 6Wi = bi(Xy) as 

Wi:= C WjjbiJ(Y) + C bij(X)W:i + Tbi(~,y) 
jeB; jcB: 

where 6Wij = b:,(X) for j E Bi, SW:) = b:;(y) for j E By, and Bi = Bi u By. Attacking the first 
problem, Kristensen defines the following cochain operation A E P’- ’ of the second kind: 

A(x, y):= R(xy) + C Rb(x)d;(y) + 1 &(x)C,(y) + TAX, Y) + Wx, Y). 
tlEN mC?M 

Here AR = r, AR: = rk and AR: = rz are representing cochain operations in O* for the 
relations p, pk, pa E A* @ A* and di, d; represent Sr, Sk E A*. The cochain operation 
T, E L!?“- ’ is constructed as T, above by the property 

Tax, Y) = r(v) + c G+C,(y) + c 4&W,(y) + d,Wv, X~Y) + IxMWy, X~Y) 
IIGN meM 

and similar DR E 22”- ’ is constructed by 

V&(x, y) = R(Gxy + xSy) + R(Gxy) + R(x6y) + d,(bxy, xSy) + Ixld,(xdy, xSy). 
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While the operation T, measures the Cartan defect of the relation I on the cochain level, the 
operation DR is included to give VA = 0 (DR can be chosen to vanish on cocycles and is 

therefore neglected in [ 111). Thus, we get a primary operation 

E:= [A]eA*@A* 

and Kristensen proved: 

THEOREM 6.2 (Kristensen [9]). Under the complementarity assumptions on the cohomol- 

ogy classes [xl, [y] and tiC2’p = CnsN pi @I E: + C,,,nPM EL 60 ~1, we have (on the common 

domain of dejinition and module the total indeterminacy) 

4(cxlcYI) = c dMxl)~~(cY1) + ,;- xI(cxlM1(cY1) + -axI @ CYI) 
PIEN 

with secondary cohomology operations 4,4b, 4: associated with the relations p, pb, pz; with 

6: := p(ei), Sk:= p(ek), and with E E A* @ A* constructed as above. 

In the application of this formula, one has the problem that the term E is not effectively 
computed by the other data. This problem was later solved by Kristensen, see [lo, 111. In 
particular, he gave an explicit formula for the following triple series of relations, which are 
linear combinations of the Adem relations: 

Pea:= j~z ((~;~_~_zj) + (jb;b’_-,‘))Sqk-‘~ Sq’, k, a, b E Z. 

Here we use the conventions Sqk = 0 for k < 0 and (E) = n(n - 1) ... (n - k + 1)/k! for 
k 2 0, (E) = 0 for k < 0. One has a decomposition 

1c1’2’p~b = C p~I~~,~_i 0 (Sq’o Sq’) + C (Sq’~ Sq’) 0 pi_j,bji* 
i,j l Z i,je h 

THEOREM 6.3 (Kristensen [lo]). There exists an essentially unique choice of cochain 

operations Rtt, for the relations ptb such that the primary term E in the product formula for the 

associated secondary cohomology operations is given by 

& = (Sq’ 0 (Sq2Sq’ + Sq3)) 

I) jsz ((:;,‘:j-2j) + (;;b’:j))(sqk-j-3Sqj-2 + Sqk-j-2Sq’-3) 
( ) 

. 

We only mention that the proof uses: 

The Eilenberg-MacLane complex K(Z/2, l), which is a simplicial Z/2-vector space with 
zero differential in its normalized cochain complex, and has thus the only non-zero 
cochain u” E C”K(Z/2,1) in each dimension where u is the fundamental cocycle. Then one 
can relate the action of Aat, E Sk- ’ on (u”, urn) to the action of Rib and T!$,. 

The cobar resolution A@‘” of the Steenrod algebra, which has homology A(Qo, Q1, . ..) 
where in particular Q,, = Sq’ and Q1 = Sq’Sq’ + Sq3. Then Ait, gives an element in A@ 2 
whose boundary in ?fe3 can again be expressed in terms of Aft,. 
Special systems of cochain operations for the T, with good combinatorial properties, 
whose existence was proved in [lo]. See also the appendix of [ll]. 
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7. THE MAIN THEOREM 

We prove now the main result. 

THEOREM 7.1. In each dimension 8m + 2, there exists a Brown-Peterson-Kervaire invari- 
ant K, which is equal to Ochanine’s invariant k. 

Proof: By the corollary in Section 4, we have to show that for each m E N, there exists 
a Brown-Peterson-Kervaire invariant K,,+, in dimension 8m + 10 and an invariant K’ in 

dimension 8m + 2 which satisfy property (ii) (actually we will show that K’ is also 
a Brown-Peterson-Kervaire invariant K6m). By the lemma in Section 5, we have for each 
W P2-bundle p: Namnr+ro + Mamf2 that K,_+, (N8m+‘o) = Arf(q,) where q. : H4mn+1Mam+2 --f 
Z/2 denotes qo(y’):= &,+l(~*p*y’)[N 8m+10]. We compute now the product formula for 

&+ 1 (xy), y := p*y’, by Kristensen’s theory (Section 6), where rp,,,+ 1 is associated with 

pm+1 := sq2 @ sq4m+4 + sq’ Q sq4”+?sq? 

We first have to check the complementarity conditions for xy. The summands in 

sq 4m+4(Xy) = 1 sqiX. sq4m+4-iy 

i=0..4m+4 

and 

sq4”+%q’(xy) = c sq’sqlx+q4”+4-‘y + c Sqix.Sq4m+4-iSqly 
i=O..4m+4 i=0..4m+4 

are all zero, in detail: 

For i = 0, 1,2 in the first and the second sums, and i = 0,l in the third sum, because 
then the dimension (yl = 4m + 1 is smaller than the excess of the operation acting on y. 
For i = 5, . . . ,4m + 4 in the first and the third sums, and i = 6, . . . ,4m + 4 in the 
second sum, because then the dimension 1x1 = 4 is smaller than the excess of the 
operation acting on x. 
For i = 3,4 in the first sum because then Sq4”+ ‘y = p*Sq’(Sq4’“y’) = 0 since M8m+2 

is Spin, respectively Sq4”‘y = p*Sq4”y’ = 0 since M8m+2 is l-connected. 
For i = 3,4,5 in the second sum because then Sq’Sq’x = 0; here we use that x is the 
pullback of the universal Leray-Hirsch generator xuniv which satisfies SqlxUniV = 0 (see 

CW. 
For i = 2,3,4 in the third sum because then Sq4m+2Sq’y E p*H8mnf4M8m+2 = 0 and 

Sq 
4m+1~q1yEp*pn+3M8m+2 

= 0, respectively, Sq4Tq’y = p*Sq4mSq’y’ = 0 since 
Mam+2 is Spin. 

According to these facts we choose our splitting of 

lpp = c oii+ 1 ofi+ 1 OTi 
i=O, . . ..4m+4 i=o, . . ..4m+4 r=O, . . ..4m+4 

j=O,1,2 j=O.l j=O,l 

with 

a?..= (sqj Q sqi) Q (sq2-j Q Sq4m+4-i 
JI * ) 

ofi:= (Sq’@ Sq’Sq’) @I (sq’-‘8 Sq4m+4-i) 

o?.:=(Sqj~Sqi)~(Sql-j~Sq4m+4-i 
Jl &l’) 
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in the following way: 

where we denote the first bracket by X1 and the second by X2. Now the summands of X1, 
which we consider as p’ 0 E” or E’ 8 p” according to that x or y gives the “reason” for being 
zero, contribute all with &(x)8”(y) = 0 or &(x)&‘(y) = 0 to the sum formula for &xy). This 
holds because the kernel condition for c$‘, 4” is satisfied by the fact that the excess is larger 
than the dimension (giving w; = 0 and R’ = 0 as natural choices for 4’; and analogously for 
4”). We say that X1 consists of trivial terms. In contrast to this, the 18 summands in C2 do 
not vanish by this reason; we call them critical terms. We show now that in our situation 16 
of these terms vanish, with the remaining two terms giving exactly x2. 

that in case the secondary operation of side term is 
defined and the primary operation of other side of term vanishes, the whole term 

(including its undeterminacy) vanishes. This applies the terms ai3, (T&, aid, ei4, aT3, 
view as E’ @ to e2 ef3, a$, which we view E”. 

Furthermore, term E’ 0 p” property that the the relation satisfies 
lp”l > 4m + 2, gets This 
applies ai,, Then remain the terms cf5, ah4 and oz4. Weconsider 

a:5=(Sq’@Lsq5Sq’)@(Sqo@Sq4”-‘)=:p’~&”. 

The has property ‘4’ = 0, thus get z E 4’(x) 
that z.Sq4”-‘y that term @(&Y’(y) 
(including its undeterminacy) vanishes. The sum of last two terms can 

oh4 + c;4 = (SqO 0 Sq4) 6 (Sq2 0 sq4m + sq’ 0 SqTsq’) = (18 Sq4) 0 pm. 

With the product formula 6.3 of Kristensen, we have proved 

4nl+1(xY) = s~4w#h(Y) + 4X 0 Y) = x’~P*dh(Y’) + 4X 0 y). 

Now, we have to compute the primary term E, which comes from the cochain operation A of 
Section 6, where r and R are given by r,,,+l:= sq4mn+6 + sq2sq4m+4 + sq1sq4m+4sq1 and 

AR,+1 = r,+l. We note that the Kristensen relations pti,“, of Section 6 are nothing but the 
Adem relations written as 

p;;,,“, = Sq”@ Sqb + c (:I:,~‘)Sq”+b-jO sq’ 
jcZ 

and the corresponding primary terms E;:,: are (Qo:= Sq’, Q1 := Sq2Sq’ + Sq3) 

E a2;bb = (Qo 8 

.$ 

pi;,;; = @ Sq2” sqz”+’ @ 

i ‘CC 2n+l = 
4n, 2n 
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pm:= pg’,; = sq2 @ sq4m + sq4m+2 @ 1 + sq4”+’ @ 

Em.- E 
4m+2 
8m,4m = Ci=0..4m-3QOSqi @ Q1Sq4”-3-i 

and decompose r,+t as ?,,,+r + i2m+2sq1, which shows that we can choose R,,, as the 
linear combination #,+ 1 + R2,,,+ 2sq’ with the special system of Kristensen’s cochain 
operations. Furthermore, the cochain operations measuring the Cartan defect of I,+ 1 sat- 

isfy Tf_+, +i2.+1Sql = T,.+, + Ti,,+,sql and for cocycles x, Y, CTi,.+,sqk Y)I = CiZmn2TTsq~(~, Y) 
+ Ti2_+I(sq1x, y) + Tilni2(x) sqly)] (see [ll]). Looking now at the definition of A one gets 
for cocycles x, y that E( [x] @ [y]) = [d,, r(x, y) + k 2m+2t+, Y) + k2,+2@, &Y)l 
which shows that for the cohomology classes x and y 

e(x@y) = Zm+l(x@y) = 1 Q0Sqix.Q1Sq4”+‘-‘y. 
i=0..4m+l 

Applied to our case, the only term which can give a contribution has to contain the factor 
Sq4x since we are in the top dimension, but this term does not show up in the sum because 
of QJq’ = 0 for i odd. Summarizing our computation we have shown that 

2 * &nn+l(XY) =x P 4ndY’) 

where the secondary operations 4 ,,,+ 1 and &,, are constructed by using Kristensen’s special 
system of cochain operations. Now the proof is finished since 

Km+l(N”m+lo) = Arf(&,,+,) = Arf(y’ H q&,+r(~p*y’)[N*~+~~]) 

= Arf(y’ H &,(y’)[M8m+2]) = K,,,(M8”+2). n 

COROLLARY 7.12. O&nine’s invariant k vanishes for H4m+1M8m+2 = 0. 

Ochanine showed in [ 151 that an orientation-preserving homotopy equivalence be- 
tween two closed oriented manifolds with w2 = 0 gives a natural bijection between 
the both sets of Spin-structures on the two manifolds. In particular, one defines a Spin- 
homotopy equivalence between two Spin-manifolds as an orientation-preserving homotopy 

equivalence which maps the Spin-structure of the one to that of the other. Furthermore, 
Ochanine showed that generalized Kervaire invariants are invariants of the Spin-homotopy 

type. 

COROLLARY 7.3. Ochanine’s invariant k is an invariant of the Spin-homotopy type. 

In [15], Ochanine defined K: SAY + KO, @I Z/2 by 

’ sign(M”)pm @l for n=8m 

k(M” x S’)qp” 01 for n=8m+l 

K(M”):= k(M”)q2pm 01 for n=8m+2 

&sign(M”)opm 01 for n = 8m + 4 

\O otherwise 

and showed that rc is a ring homomorphism; this summarizes the multiplicative properties 
of k. Now, the signature is an invariant of the oriented homotopy type, and the definition of 
Spin-homotopy equivalence is compatible with products. 
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COROLLARY 7.4. IC is an invariant of the Spin-homotopy type. 

In contrast to this, the Atiyah a-invariant (and thus also the Ochanine p-invariant) is not an 
invariant of the Spin-homotopy type, because it detects some exotic spheres in dimension 
9 which have clearly the Spin-homotopy type of the standard sphere. With the result of 
Kahn [6] for oriented manifolds in mind, saying that the rational multiples of the signature 
are the only rational characteristic numbers which are invariants of the oriented homotopy 

type, we end with an open problem. 

PROBLEM. Besides the multiples of the signature and the Ochanine k-invariant, 

c. sign(M4”), k(M 8m+1 x0, and 8m+2 
k(M )> 

are there other KO-characteristic numbers of Spin-manifolds which are invariants of the Spin- 

homotopy type? 
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