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We give eight different descriptions of the Poincaré homology
sphere, and show that they do define the same 3-manifold. The
definitions are: (1) plumbing on the Eg graph, (2) surgery on
the By Link, (3). the Link of the singularity & + &5 + a5 = 0,
(4) S°/T* where I* is the binary icosahedral group, (5) the
dodecahedral space, (6) the Seifert bundle, (7) surgery on the
trefoil knot, (8) the p-fold cover of the (g,r)-torus knot, for

{psq,r} = {2,3,5}.

The dodecahedral space of Poincaré was established long ago
as a manifold of umisual interest, both because it was the first
example of a homology sphere which is not a sphere and also be-
cause it lies in a class of three manifolds closely related to the

Platonic solids. Interest in the manifold has increased in recent
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years because of its surprisingly diverse applications to problems
in topology (see e.g. [19, §21, [20], [161, [17], [21]). Part of
the explanation for its usefulness is the large number of ways,
discovered over the years, to describe the dodecahedral space. It
is our aim in this paper to collect the most useful of these and
verify at an elementary level that all do define the same 3-mani-
fold. This paper arose from seminar notes in 1973 (and we thank

L. Siebenmann for a substantial contribution to that seminar).

We apologize for the untimely delay in appearance of this exposi-
tion, and remind the reader that since 1973, two excellent works,

[12] and [14], have appeared which include parts of this paper.

I. EIGHT DESCRIPTIONS

Description 1 (Plumbing). Let p : 5 5% be the contangent
disk bundle over 52 = CPJ (this is just the tangent disk bundle
with the opposite orientation so that the Euler characteristic is
-2). Over any cell BZ in SZ the bundle is trivial so there is a

commutative diagram
p18%) —2 B% x B

p proj,

where ¢ is a diffeomorphism.

Two copies Tl and T2 of T can be "plumbed" together by iden-
tifying, for any (x,y) € B x BZ, the points ¢;1(x,y) and ¢51(y,xh
The fibers of the first bundle over BZ correspond to trivial sec-
tions of the second bundle over BZ.

Let P4 be the result of plumbing together 8 copies of T as

follows:
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After rounding corners, P becomes a smooth 4-manifold. The
first description of the dodecahedral manifold will be 3P4. In
some of the future descriptions, we will recover not only 3P4,

but P4 as well.

Description 2 (Surgery on a link). Consider the link A of 8 cir-
cles in SS, drawn in Figure 2. Each circle can be assumed planar
in RS = SS - =, so each has an obvious trivialization of its nor-
mal disk bundle (choose one normal vector field in the plane, one
orthogonal to the plane). The trivialization t which we choose,

however, is one obtained from the first by rotating the normal
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disk at each 8 ¢ 31 by an angle 29. Attach 32 b BZ to E4 by
r:xB o - 387,  Since we may regard 8% as the trivial
2-disk bundle over a 2-disk whose houndary is the attaching cir-
cle, the result is a 2-disk bundle over Sz. Since the framing
chosen differs from the standard framing by 2 full left handed
twists, the bundle has Euler characteristic -2, and so is the co-
tangent bundle of Sz = CPJ.

Adjoin 8 copies of BZ b B2

to B4, one to each circle in j
using the trivialization t. The boundary of the resulting mani-
fold is the second description of 3P4. In fact, since a pair of
linking circles in A bound 2-disks in B4 which intersect at just
one point, it may be seen by inspection that descriptions 1 and 2
are equivalent, indeed that the 4-manifold just described is Pg.

With this description it is easy to compute wl(aPﬂ) using
the calculus of Crowell and Fox [2]. The group nl(SS - A] is gen-
erated by loops around each circle a, b, ¢, d, e, f, g, h with
relations for each crossing, ab = ba, be = cb, ed = de, de = ed,
ef = fe, fg = gf, eh = he. The 8 copies of B X aBZ attached to

- & provide 8 more relations 1 = azb = abzc = bczd = cdze =
deth = efzg = fyz = ehz. By substitution e = a5 = 93 = h-z and
h_l = ag, so we have generators g and g with a5 = gg = (ag)z.

This group {x,y; x3 = y5 = (ym)z}, has an independent history,
and is known in the literature (for reasons which will become
clear) as the binary icosahedral group I*.‘fI* is the only finite
group which can occur as the fundamental group of a homology 3-

sphere [8].

Description 8 (Link of a singularity). Let f : ¢® » ¢ be the con-
plex polynomial f(zl,zz,zg) = z? + zg + zg. f’J(O) is a complex

variety which is non-singular except where af/azj = ¢ for all
J =1,2,3. Evidently the only singular point is the origin

By =2y = Bg = 0. The intersection of the unit 5-sphere about the
origin with this variety will also be shown to be 3P4.
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Description 4 (The quotient SS/I*I. The jicosahedron is a regular
solid with twenty faces, thirty edges and twelve vertices. It is
the dual complex to the dodecahedron. The group I of isometries
of the icosahedron (or dodecahedron) centered at the origin is
naturally a subgroup of S2(3), the group of orthogonal rotations
of RS.

Let SU(2), the unitary transformations of 02, act on 02 on
the right, that is, if u = (_%-g) , aa + bb = 1, then
ulz,w) = (z,w) (_%—5) . This action of SU(Z2) on CZ comnutes with
complex multiplication, taking lines to lines, so it defines an
action on ¢PL = % = ¢! | =. Ifu=(§b) € SU(2), then for
zeclum, ul(z) = (z,1) (%é)=Caz:b‘, bz+a)=g~z;§-.

~b a bz +a

Hence u gives a linear fractional transformation of ¢ |j », If we
identify 01 U = with 32 by stereographic projection, these trans-
formations map onto $0(3). This map q : SU(2) » S0(3) defines a
covering projection which is 2-fold since q'l(identityi =
<é g) U <_é _3) . (topologically this is the map S5 - RPS.)

The 1ift of I to SU(2) is denoted I'; we will later show that
I* is the group T (5P?) calculated above. Since Su(2) considered
as a map R4 > R4 preserves distance from {0}, SU(2) acts on S
(Later we Will show that in fact SU(2) is 33_) The quotient of
83 by I* is the fourth description of 3P4. Indeed, we will show
there is a homeomorphism c2/r* f-1(0) above which is hiholomor-

phic off of zero.

Description 5 (Poincare's). The dual of the icosahedron, the
dodecahedron, is a regular solid with twelve faces, thirty edges
and twenty vertices (see for example, [3, p. 11]). Identify oppo-
site faces of the dodecahedron by the map which pushes each face
through the dodecahedron and twists it 2n/10 = 36° about the axis
of the push in the direction of a right-hand screw. This identi-
fication is consistent along the edges (see [18]1) and the quotient
space is a 3-manifold (this requires some checking along the
cdges). This 3-manifold is 3P4.
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Deseription 6 (Seifert bundle]. P is a Seifert hundle over 5%
with three exceptional fibers of Seifert invariant (2,1), (3,1)
and (5,1) and cross-section obstruction -I. Equivalently 3P may
be obtained by surgery with appropriate framings on any three
Y"anti-Hopf" circles in

Here we outline what this means (see [13], Chapt. 1). Let
M be an oriented 3-manifold with a smooth circle action. Each
orbit o has a neighborhood diffeomorphic to SJ X 32 {a corres-
ponds to Sl X (), with slices g x BZ, 8 € Sl, heing taken to
slices. The orbit is principal if SJ X b is also an orhit for all
beBZ.
its neighborhood could be obtained from the principal orbit case

The orbit is exceptional with Seifert invariant (n,1) if

by cutting SJ X 32 at some slice s x BZ, rotating the slice 2x/n,
and then gluing back together (assume the orbit followed by the
slice gives the orientation of ¥). Thus an orbhit near an excep-
tional orbit goes »n times parallel to the exceptional orbit, and
once around it; Sl pushes a point on the exceptional orbit n times
around the orbit. If d_ : S’Z X aBZ > S’Z X 332 is a diffeomorphism
? _é) then d_ (s x b) is the typical
orbit near an exceptiohal orbit. The actlon of 6 € Sl near the
orbit is given by e(d (ssb)) = d (0+8,bl.

Denote the quotlent space MVSJ by ¥. If there are only prin-

represented by the matrix (

cipal and exceptional orbits, then ¥ is an oriented 2-manifold and
away from the exceptional orbits ¥ is an Sl fiber bundle over M.

A cross-section to the action on the boundary of a tubular neigh-
borhood of an (n,l) orbit is given by d {8 x 3B ) There is an
obstruction in 5 (M, Ty (SJ)) =1Z to extendlng these cross-sections
to a cross-section to the circle action over all of M-(exceptional
orbits). Choose a sigh for this obstruction as follows:

Let (j,k) denote a path going J times around 31 and k times
around aBZ. If, for some exceptional orbit, we choose as a cross-
section not dh(O,l) but dﬁ(c,l), we say the obstruction changes by
e. In particular, for some ¢, the obstruction to extending

- d_(-e,1) vanishes; we call e the cross-section obstruction.
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The cross-section obstruction may also be defined as follows.
Let o : S’Z X 32 <, M be a tubular neighborhood of a prineipal
orbit u(Sl x 0) so that the action at 0 € Sl is given by o(s,b) =
(6+8,b). A cross-section for the action is af0,1) then ¢ is the
integer such that a(-c,1) extends to a cross-section of all other
principal orbits, a cross-section which coincides with dﬁ(o,l)
near the exceptional orbits.

As an example, let M = 55 be the unit sphere around the ori-
gin in 02. One action of the circle on 53 is given by A(z,w) =
(Az,2w), A € Sl cC, (z,w) € S3 c 02. All the orbits are princi-
pal; indeed the quotient map is the "anti-Hopf" fibration
H: 53 -+ SZ, which is conventionally oriented so that the Euler
class is +1. (This convention is motivated by the theory of com-
plex manifolds, in which the natural action of Sl on D4, given by
AMaz,w) = (Mg, \w), (3,w) € D4 c CZ, may be lifted to an action on
the Hopf bundle by ''blowing up" the origin in D4 replacing the
origin by a 2-sphere whose normal bundle has Euler class -1).

In general for M a bundle over M with no exceptional orbits
and cross-section obstruction ¢, the Euler class is -e¢. Here, in
particular, is how to see that the cross-section obstruction for
the anti-Hopf circle action on Sg is -1. Regard 53 as the union
(S X B ) Uf(S x B ) of two solid tori by a homeomorphism
f: (S x BBZ) > (SJ X 3B ) whose matrix is (g é) Let
(SJ x B ) have zero-section Sl x {0} corresponding to the axis

=0 for . =1 and 3 = 0 for 7 = 2. Let 8 € Sl act on 51 x B
by 6(s,b) = (es,b). The anti-Hopf action of the circle on 33,

2

restricted to (Sl X B )1, is then aB a 1, where
Qo Sl B > (Sl X BZ) is the homeomorphism whose matrix is
( 2 . Then fa(1, 1) = (0,1) which extends to the cross-section
( xB )2 over (Sl X 32)2. Hence ¢ = -1.

To construct 3P4, remove three orbits from S3 (1abeled
a “3’“5) and sew them back in using dg’dg and d5. More precisely,
construct
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(S"—(ot ala ll U SZxB2U Sl-xBZU st 2
ZUS 51 g2 9'3 g5 x B
where

gi:Szx(BZ—al-»SZxCBZ—O.Z

is di x id(o 1] (we consider 32 - 0 to he BBZ x (0,11) and the do-
3
main of 9; is identified with a neighborhood of O i=2,3,5 by

taking S x b to an anti-Hopf circle for each b € B2 - ¢.  See

Figure 3.
+1
x
Vv
2
/ \|A
\ ¢
~> Y
+2 +4
Fig. 3.

Clearly this describes the above Seifert bundle, and, simul-
taneously, a surgery on a link in 55. Once again it is possible
to calculate the fundamental group knot-theoretically. Let L be
the link of 3 Hopf circles (Figure 3); then
Lo (SZ - L) = {z,y,a|x =y z—lzczy, y=23 lx ly:nz, 2 —x y zyx}
Each surgery kills the element corresponding to d (s,aB ), which
is a curve going once along o, and winding around a, n times com-
pared to an anti-Hopf circle. Thus in Figure 2, the curves wind-

ing around n-1 times are killed and we add the relations
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1= x_lzy = y-?xz = z-4yz. Then x = 3y and x? = ys = 5°, so the
*

fundamental group is again I .

Description 7 (surgery on the trefoil knot). Surgery on the left
handed trefoil knot L (Figure 4) with framing ~I gives 8P4 (this
trefoil knot is called left handed because the crossings corres-
pond to,a left handed screw). A knot bounds a smooth orientable
surface in S3, which determines a normal vector field to the knot
(tangent to the surface) and hence a framing (or trivialization)
for the normal bundle. This is the zero framing, and framing »n
comes from twisting the O-framing » times in a right handed di-
rection. If we push the trefoil knot off itself using the
framing, we get a curve homotopic to the dotted curve ¢ in

Figure 4. A presentation for wl(SB - L) is {a,b,c | ab = be = ca}.
Surgery kills the class represented by ¢, so we add the relation
baca® = 1. Since ¢ = b lab = aba_l, we have (ab)° =
(ab)(Be)(cal = (abel? = (%517 = a2(ba®Ba™>1a° = a2 GBaca 21 = o
so the group is I* = {a,b |a5~= @bl® = (h2512}‘

Fig. 4.
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Description 8 (A branched cover). sP? is the 5-fold branched cov-
ering over the right handed trefoil knot (= (2,3) torus knot).
Similarly it is the 2-fold branched covering of the (3,5) torus
knot and the 3-fold branched covering of the (2,5) torus knot.

Here is a brief description of the n-fold branched cover of
a knot X in 33 K has a trivial normal bundle. We will show that
for some trivialization of the normal bundle, T : 6'2 X B2 > 53,
T(’Sl x 0) = K, there exists a map f : 35 - K > SZ_, unique up to
homotopy, such that fTISZ X aB2 =py ¢ .5'1 X aBZ + 332. Let E
denote the total space of the normal circle bundle of X.

Recall that for any space X, there is a natural isomorphism
[X_,SI] = [X,K(Z,1)] = H‘ZCX,Z)_. Since, for F a fiber of the normal
circle bundle to X, inclusion induces an isomorphism
HJ(S3 - K;7) eHlfF;ZI, it also induces an isomorphism
[S3 - K 51] +~ [IF, 31]. Thus a generator f of [SS - K, Sl]
carries F to SZ by a degree one map. But varying the framing
T : Sl X 32 > .5‘3 changes the degree of the composite
(Sl x B) —Z’-> E —f—> .5’1, b e 332, by multiples of (degree f|F) =
hence we may choose .T so that (6'1 xb) Log iR s is zero. But
the map pz SJ x aB - aB = SZ is also of degree one on

= (s X aB ) and degree zero on (Sl x b). Since the two maps
are homotopic on the 1l-skeleton of E, they are homotoplc on E.
Thus we may take I so that fT[SZ x 382 = Py

To define the n-fold branched covering space L, of X, let V
be the bundle over 33 K induced by f and the n—fold covering of

5%

n

g —
dd

The end of ¥V is homeomorphic to Sl X st x R, so we can sew X back
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in to ohtain the manifold . The projection v defines a map
z, 2, 5% which is a homeomorphlsm on v (Kl and an n-fold covering

elsewhere.
II. EQUIVALENCE OF THE DESCRIPTIONS

We will prove the following equivalences:

(5] <> (4) <> (3] <= (6) <= (1)

I 1 1

(8] <= (7) <> (2]

While several arguments are long, they are designed to be self-
contained. No deep theorems are required.

A few words are necessary about orientations. A complex
manifold has a unique orientation (SU({n) is connected) and we use
this fact to determine a preferred orientation for aP4. The
variety zf + zg + zg = 0 is the cone on 3P4 and if we require
(traditionally) that the first vector of its unique orientation
be an outward pointing normal to aP4, then we have oriented afﬁ.
If the singularity is resolved, we get the complex manifold
int P4 which corresponds to plumbing disk bundles with Euler
characteristic -2.

If two complex linear subspaces in " intersect at a point,
then together they must give the unique orientation of Cn, S0
algebraically their intersection must be #I1. Thus the Hopf cir—
cles in 83 (which are the intersectiong of complex 11nes in c?
with Ss), must have linking number +1 > ; ; also R has the usual
right handed orientation. The variety z? + zg =2 (or zf = 32)
in 02 meets 53 in the right handed trefoil knot (2,3 torus knot).

On the other hand, —aP4 bounds a complex manifold, the handle
body obtained by attaching a 2-handle to B4 along the right handed
trefoil knot with framing +7. This complex manifold union P4 is
ce? 4 2(- cp?).
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The most useful reference is [13] which contains proofs
(buried in more general theorems) of the equivalences
(1)<=>(3)<=>(4)<=>(6); our proof of (3[<=>(8) is taken from [12],
which also contains a somewhat different proof of (3)/<=>(4J. A
proof of (§)<=>(4)<=>(3)<=(1) for a more general class of mani~
folds can be found in [4]. [14] contains equivalences
(2)<=>(7)<=>(8). ’

Equivalence of descriptions (4) and (6): First we describe how to
picture SS/I*, then provide a proof that indeed SB/Iﬁ is the
dodecahedron with opposite sides identified. Imagine the follow-
ing circular chain of dodecahedra: place one dodecahedron on one
face on the table, and then place nine more on it to form a tower
with each dodecahedron rotated n/5 around the vertical axis com-
pared to the one just below it; then identify top and bhottom.

Take another copy of this circular chain and place it adjacent to
the first, at a slant of 36°, and winding once around the first,
like a pair of Hopf circles. In this way wind five circular chains
about the first one. 1In R’ these do not fit perfectly together,
but in §° they do. Note that it makes no difference which way
they wind. Take two copies of this and sew them together the way

one sews together solid tori to get S3.

Thus S’3 is decomposed into 120 dodecahedra whose centers can be
taken to be the elements of Iﬁ. These elements permute the dode-
cahedra; in particular there is an element of Iﬁ which pushes our
original dodecahedron up one in the tower, identifying hottom and
top of the dodecahedron. Similar "towers' through the other ten
faces lead us to identify all opposite pairs of faces.

In order to prove that the fundamental domain of I* is indeed
the dodecahedron requires an analysis of how SU(2) acts on SZ. We

assume that SU(2) acts on 02 on the right, that is, if
a b a b
u = _ ], aa + bb =1, then u(z,w) = (z,w) | _ _ J. Identify

-b a -b a
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a b
SU(2) with the unit 3-sphere in c? by taking < _ __> to (a,bl.
-b a

Thus S3 acts on itself; we want a simple geometric picture of this
action.

The complex lines in 02 intersect only at the origin, so the
complex lines intersected with 33 give a decomposition (foliation)
of SS into circles. (These circles are also the orbits under the
circle action A(z,w) = (A3, \w), A € Sl c C.) By sterographic
projection identify 35 with R3 U @, with coordinates (r,s,¢) on
R3. Assume the complex line w = 0 (the z-axis) intersects Ss in
(r-axis | «) = Sl and the line z = 0 intersects SS in the unit
circle S3 in the (s,t) plane; in particular (1,0,0,0} in 55 goes
to (0,0,0) in RS. The other complex lines intersect S3 in the
following kinds of circles; the complement of Sl U S2 in S3 is a
union of '"concentric'" tori (since S3 is the join of 51 and SZ)'
Each torus is the union of disjoint circles obtained from the -45°
lines in the square by identifying opposite sides of the square in
the orientation preserving way. In particular, we orient these
circles continuously so that S2 is oriented consistently with the
usual orientation of the (st)-plane and Sl has the same orienta-
tion as the z-axis. (If we think of S2 as the unit disk in the
(st)-plane with S, collapsed to a point, then cach circle inter-
sects SZ exactly once; this defines the Hopf map H : 55 > SZ.)

Armed with this picture, the action of \2 g.) € su(a).

A€ Sl c C, is easy to see. It twists the circle Sﬁ by an angle
A, and the circle 52 by the angle A; the orbits of the induced
action on the tori are perpendicular to those of A.

There is, for each circle S in 53 and point p in S, a copy of
R3 in R4 perpendicular to S at p. The intersection with s% of
this perpendicular RS will be called the perpendicular sphere at
p in 8. Clearly (2 %) carries the perpendicular sphere at p in
Sl to the perpendicular sphere at Ap.

In general, n = <_%. g) can be described similarly. It is

the product of rotations through & in the real plane Lu spanned by



126 R. C. Kirby and M. G. Scharlemann

(1,0) and (a,b) and its orthogonal complement L' This can be
seen as follows. Ifa=oa + iB and b = y + %5 then the embedding
1 : SU(2) » S0(4) gives

o B Y ¢
itw) =| 8 @ -8y
-y 4 a -8B
-6 -y B o
2

with a2+8 +Y + 8 =1,
With respect to the basis

(1, 0, 0, 0J, (o0, 5,0,'3),
X s, jﬁi)
(o’ TR ) ( u uv / °?
where u = /5 - uzand.v = y2 + 62 »
o /1- 2 0 0
-/1—(12 o 0 0
i(u)
0 0 o —/1-0L2
0 0 v/l-otz o

and cos 6 = a = Re(a). Thus u (or any other element of Lu n 53)
defines a Hopf-like decomposition of Ss into circles.
Let S be that circle in SZ which in F?3 is the line

f:-(E X i)_,f:e}?. Here(-ﬁ-,l, 5) is the image of

TR TER Tt u

(1,0,0) under the change of basis, so Su is the image of Sl' Ac~
cordingly, u carries spheres perpendicular to Su to other such

spheres.
*
We now embed I in SU(2) as described above. Place the

dodecahedron with center at 0 € R3 so that the barycenter of a
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face is tangent to 32 = C |y = at the point (1,0,0) in R3, which
corresponds to the point 0 in C under stereographic projection.
Twist the dodecahedron by 2w/5; this element g, corresponds in C

/5

to multiplication by AZ, where A = e , or, equivalently, to the

linear fractional transformation whose matrix is (2 %) . Thus
g, is covered by (g g) in SU(2). We have examined the action of
such an element on S°; it maps the sphere perpendicular to

g~ TE/10 "2/10  Thus the Z,, sub-
group of SU(2) covering the rotations of the dodecahedron about

€ Sl to that perpendicular to e

(1,0,0) has a fundamental domain the region lying between these
two perpendicular spheres--a lens shaped region (which gives its
name to the Lens space S3/Z10).

Now let 2 = u + Zv be the barycenter of another face of the

2

=Cy = Letp=/1 125 = /1 + (Ul +v9

and note that the linear fractional transformation carrying 0 to

dodecahedron tangent to S

z is given by the matrix

1 -2

A= e e .
2 1.
) )

The 2n/5 twist about this barycenter, denoted 9y then corres-
z g»A-l in SU(2). let A = e + if, and de-
note, as above, the entries in the matrix image of A(z g)A_l in
S0(4) by o,B,7v,8. An easy calculation shows that o = e,
B=f/p2(2—p2), Y=2%, 6=§%-

e a circlg in 33 such that S% N RS =

ponds to a matrix 4 (

As before, let Sz g
t(B/us Y/u, 8/u). Then g, carries spheres perpendicular to Sz to

other such spheres. In this case y = /ﬁ - 62 =f

(&, 1 g)_<_e_2-2 w _21>

3 3 - 9 ° PR F] d

H u u 0 0 0

But the coordinates of z in Rg under stereographic projection are

2-p2 2u 2v
2 * 2° 2 :
P p P
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Comparing the two vectors in R3 we deduce (after the orthogonal
rotation which switches the last two coordinates) that rotation of
the dodecahedron about the barycenter at z 1lifts in SU(2) to the
same action as rotation about the barycenter at 0, except the axis
in R® of the translation of 5° now points through z instead of
through (1,0,0). Thus the axis of the (lens-shaped) fundamental
domain of g, passes through 2. The intersection of all the funda-
mental domains of all rotations about barycenters of faces is then
the intersection of those lenses whose axes point in the direction
of the barycenters. But this intersection is precisely the funda-
mental domain of I*, since it is easy to see that all elements of
I are compositions of rotations about barycenters of faces. But
the intersection of these lenses is clearly the dodecahedron.
Furthermore, we have seen that the action of I* on 53 identifies
opposite sides of the lenses (hence of the dodecahedron) with a
/5 twist. This completes the proof.

Incidentally, it is possible to explicitly calculate genera-
tors and relations for I* by using description 5) for 3P, as in -
[18]. This is then a roundabout proof that I* = {Lr,y)]xg = y5 =

\(zy) 2},

Equivalence of desceriptions (3) and (¢4). The proof is a medley
of [12] and [10]. Our aim is to find a homeomorphism
P: CZ/I* > f’l(o) where f : 05 + C is f(zl,zz,z ) =21
We will find three homogeneous polynomlals Pys Pgs Pg

and define P = (pl,pz,ps) : 02 > C We must show that

5
2z

+
A,

2:

+L\acu

2
1

(1) P 1s invariant under action by I so that P deflnes
P: 1 o+ o
‘s 2 3 ) . ~1
(ii) p; * Py * Pz = 0 so that image (P) c f “(0).
*
(iii) dP has rank 2 on C° - 0 and thus P (C%/I )-0 is a cov-
ering map.
(iv) ?i-l(point) = 120 points, so P is one-to-one and a

homeomorphism.
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€ 0
10 elements t
0 eZu
0 _€2u
10 elements t
6311 0
-ss(u-l-w)( 4 g5 (u-n) (e2-e%)
1 e-g )
50 elements: + —
/5 S 2 8 -Blut) 4,

3
e (u-w) (EZ_ES) e—3(u+m) (5-54)

I+

50 elements: L
/5 _Swr) 4y Blw-u) 23,

This yields the polynomials

—(1728)1/5 3 .zlo

_ 10 5.5
Pz = 132(31 + 113132 - 3, )

1/ 30 25 § 5 25 30 10 20
p; = (zl + 3, )+ 522(31 By - 3; 2, ) - 10005(31 +2; 3, J

20, 20 5 5 5 15
p2—-(zl +32)+228(zl 2z, - 3 32)—4943

10 10
2 1 )

1 %2

The reader may verify directly that p12 + pg + pg = 0, but the fol-

lowing argument is both more elegant and requires no calculation.
Consider the complex vector space V of homogeneous polynomials

of degree 60; V has dimension 61, with basis 271: zgo'i,

2 =0y...,60., There is a 2-dimensional subspace

W= {Apg + upf}, for A,u € C. Given a barycenter (a,b)

of a face of the icosahedron, the annihilator 4 of the 1-dimension-

al subspace az,-bz, = 0 has dimension 60. Thus dim(W N 4) > I,
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so for some fixed A and u, not both zero, (Apg + upf)(zl,zz) =0
if az, - bz = 0.

The orblts of points in CPJ under the action of I are of four
types:

(1) the 12 vertices of the icosahedron

(2) the 30 barycenters of edges

(3) the 20 barycenters of faces

(4) orbits containing 60 points.

*
Since Dys Pys and py are invariant under I , it follows that

the zeroes of Apg + upi must consist of complex lines through en-
tire orbits. Suppose there are w, orbits of type 7, 7 = 1,2,3,4,
in the zeroes of Apg + upl, multiplicities included. Then degree
2.
(Apg + upl) 60 = 12w1 + 30w2 + 20w + 60w4 Since Aps + up; is
zero on the complex line through a barycenter of a face, it follows

that 6 # 0, but then wy = 3 and W, =Wy =W, = 0. Thus

Apg + up? has the same zeroes as pg, so Apg + upf = vpg. We re-~
define p3 to be the old Pz divided by A ® and so on, so that
P, + p2 + pS 0. We have now satisfied properties (i) and (ii).
- - * _
To show that P : 02 > f 1(0) or P : 02/I > f 1(0) is locally

bihilomorphic off zero, it suffices to prove that the matrix

3p, 3Py Pz

331 le le
dp =

;. ¥y

822 832 332

has rank 2 everywhere. Note that
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point, which we call §(x). @ is clearly smooth and one-to-one; it

is onto since P is.

Equivalence of descriptions (3) and (8). We will define a circle
action on the link L of the singularity zf + zg + zg = 0, an action

which gives L the required Seifert manifold structure. For
Y € st c C, let y(z - ) (y 15 1,71022,76 z ) Clearly this
circle action on 03 leaves L invariant.

The orbits of 57 are principal if all 2, # 0, for if
) 10 _ 15

y(zl,zzgzg) = (zl,zz,zs) then y = v =1, so y = 1. The
exceptional orbits are the three orbits 2, = 0, 32 =0, g, =0.
Sl acts on the orbit 3, = 0 by Y(zl’ 2,0) 5,y1 ,0) so

Z5 c S;attstrivially on the orbit. Furthermore if w ¢ Sl satis-
fies w = 1, then w acts on a disk perpendicular to the orbit via
complex multiplication by (w)6 = w, Thus the orbit is exceptional
of type (5,1). Similarly 8, = 0, a
type (3,1) and (2,1).

Next we show that any Seifert manifold M whose only excep-

1 = 0 are exceptional orbits of

tional orbits are of type (2,1), (3,1) and (5,1) and which is an
integral homology sphere is a Seifert manifold with quotient space
g2
for we know from the equivalence of 3 and 5 that
L (L) = {x,y: 2% =_y5 = (yx)z} so Hi(L) =

First note that if the quotient space M of M by the circle

and cross-section obstruction -1. This will complete the proof,

action is of genus g, then the first homology of the (trivial)
circle bundle obtained by deleting the exceptional orbits has
rank 2g + 3. Sewing back the 3 exceptional orbits can at most
decrease the rank to 2g, because sewing in a copy of Sl X 32
adds only the relation corresponding to s x aBZ. Thus g =
and ¥ = 32.

To calculate the cross-section obstruction b, construct a
presentation for wl(M7 as follows. A cross-section for the circle
bundle away from the exceptional orbits is a 3-punctured sphere

with fundamental group {ql,qz,qs; 9,993 = 1}, where each q; is a
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path around an exceptional orbit. Let L ¢ wl(M) be represented by
a principal orbit.
Let (f,k) denote the path in 51 X BBZ which goes J times

around Sl and k times around BBz.

Attach the exceptional orbits
by di’ i =2,3,5. We may assume that d2(—c,1) =4 d3(0,1) = qq
d5(0,1) = q,. But di(l,i) = (0,1) which is null-homotopic in

s1 x Bz. Thus adding the exceptional orbits introduces the rela-

tions d,(1,2) = 0. Thus q12 = dy(-2¢,8) = dy(-2c-1,0) = pied
45 = dy00,8) = dy(-1,0) = W1, ¢5 = d.(0,8) = d(-1,0) = h"l

Thus =, M) = {ql,qz,qs,h qf h20+1

9,995 = 1}. Eliminate q, by q; = (qzqs) and 4 by h = qZ
and abelianize to obtain

HZOM) = {q2,q3;2q3 + (6c + 5)q2 = 5q3 - qu = 0}.
Thus HJCM) is of order

e + & 2
det = 30c + 25 + 6.
-3 5

-1.

Since HJ(M) =0, e

Equivalence of descriptions (6) and (1). Examine the structure of
the plumbing construction P4, 8 copies of the cotangent disk bun-

dle T plumbed together as shown:

This may be viewed as plumbing 3 "arms'" of length 4, 2, and

1, to the central T That part of 3P4 lying in each arm has a

0"
very simple description. In particular, Tl n BPA is an Sl fiber
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bundle over SZ with neighborhoods of two fibers removed. But re-
moving two fibers leaves a tr1v1a1 bundle, so T n ap a‘S‘Z S‘ZxI
for 7 = 1,2,3,5, andTJnBP Sle forg—46‘7 Thus each
arm, consisting, for example of T U T U T U T4, intersects

in a copy of .5"Z x B Hence aP 1s obtalned from BT by removing
three tubular nelghborhoods (6'1 x B ) of fibers in BTo and, to
each (SJ X BBZ) boundary component, attachmg a copy of .5‘1 x B% by
some (linear) attaching map g; * (Sl x 3B ). - Sl x BBz.

There is a natural c1rc1e action on BTo, in which the circle
acts on each fiber by rotation Remove (Sl X B ) Fr 1=1,2,8 and
attach three copies of SZ b 28° by {g }. The actlon on (Sl x B )
extends linearly over each attached Sl x BZ, so the circle action
extends over BP4. We will verify that this circle action gives

the required Seifert manifold structure by calculating g;-

LEMMA 1. The attaching map g; ¢ (.s"Z X BBz)i -+ S‘Z x 832 for an arm
of length m > 0 is given by the matrix

2 7\" m+1 m

-1 0 ~m 1-m

Proof. This is certainly the case for m = 0, that is, for BTo it-
self. The proof is by induction. Suppose it is true for an arm

of 'length m> 0.

Let Tm denote the copy of T at the end of the arm to which we
plumb Tm+1. Since Tm+1 has Euler class -2, it is made from two
: 2 .21 2 .22 o 2. 22,0 .

charts, (B x B°) and (B° x B°) , and we identify (B“x 3B“) with

2 1 2

(32 x 332) by extending the map (BBZ X BBZ) -> (BBZ x BBZ) given
' {12y .. 2 2,1 .

by the matrix (0 _1) linearly across (B® x 3B°) . Plumb Tm+1 in

2 22,2 s x 827 s s
along (B° x B”) . Then a copy (S x B°) in 9T is identified.
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1
with (32 xSBBZ) by switc}11ing factors, so the attaching map
(Sl x 38%)° » (332 x aBZ) is given by the matrix (g z) . But by

induction hypothesis, the map (Sl X BBz)i > (51 x 332)3 is given
m 2
by 2 1 . Thus the attaching map (Sl X aBZ)i > (st x 38°%)
-1 0
is given by

(1 2) (o 1> <2 1>’” <2 1>’”+1

= >
0 -1 1 0 -1 0 -1 0
proving the lemma.

LEMMA 2. Each arm of length m attached to 7, adds an exceptional

orbit of type (m+l, 1) and decreases the crosg-section obstruction

by one.

Proof. The proof is based on the matrix identity
<m+1 m (1 ¢ m+1 -1) (1 1
-m 1-m -1 1 1 0 0 1
Thus from Lemma 1 g; is the composition of three automorphisms
(s! x 38%)45 .  The first, represented by ('}) ;) has no effect
on the circle action, but changes the cross-section (0,1) to (1,1).
The second automorphism is just dm+1. The original cross-section
obstruction ¢ is the obstruction to extending the cross-section

dm+1 (1,1). Then the obstruction of extending dm+1 (0,1) is e -~ 1.

Thus the composition

m+1 -1 1 1

represents the addition of an exceptional orbit of type (m+i1, 1),

and a decrease by I in the cross-section obstruction. The third
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automorphism, represented by ( g g

) extends to an automorphism
57 x B%> and thus has no effect on the homeomorphism type. This

proves the lemma.

Since BPA is ohtained from T,, which has cross-section ob-

a’
struction 2 (Euler class -2), by attaching amms of length 1, 2,
and 4, it follows that the cross-section obstruction is -7, and

BPA has exceptional orbits of type (2,1), (3,1) and (5,1).

Equivalence of descriptions (1) and (2). The equivalence of des-
criptions (1) and (2) follows from the definitions; see definition
of (2) above.

Equivalence of descriptions (3) and (8). We sketch the proof of

Milnor [12]. The torus knot of type (2,3) is the knot which wraps

around the standard torus in RS, twice in one direction and three

times in the other. In other words it is the image in 33 c c? of

the circle ' < C under the map t > (ts,tzl. This is the inter-

2| z? = zS}.
3

Let L be the link of the singularity'zf + Zg + 35 = 0, and M

be the 5-fold branched cover of the trefoil knot.

section of S5 and the variety {(31,22) €C

Evidently V = {(zl 33 ) € o - Glz + zg + 25 @} is the
cz - cz -
5-fold branched cover of - 0 along B = {(zl,z Je —-0|z +3,=

0}. Indeed the projection (z 389935 l - Czl,z ) is a 5- fold cover
away from zf + zg Y correspondlng to the & roots of z # 0,
3 5

but is a homeomorphism when z? + 2y = 0= Zge

02 - 0 by t(z 22,332 = (tl/zz tl/sz tl/szs) and t(zl,zz) =

1° 2
(t1/2 3,5 1/32 ) The action commutes with projection. Since

each orbit of R intersect L precisely once, V/R > L., Similarly
c? - O/R S and the induced map L - S5 is a branched 5-fold

cover Over B/R+ > trefoil knot.

R acts on V and
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Equivalence of deseriptions (2) and (7). We need to show that do-
ing surgery on the framed link A of (2) gives the same 3-manifold
as doing surgery on the left handed trefoil knot using the -1 fram-
ing.

The first author shows that two framed links A and A’ yield
the same 3-manifold if and only if they are related by a series of
link operations of two kinds fo1:

C% : Add to or subtract from a link an unknotted circle with
framing £1, which is separated from the other circles by an embed-
ding $% in §°.

CE‘: Given two components Y and Y; of an oriented, framed
link, push g off itself, using its given framing, to obtain Y;-
Join D) and ) by a strip b : I x IC>S'3 such that b(IxI) N Y, =
b(i x I), ¢ = 0,1. Then substitute for ) and vy, the circles y;
and Yy #bYl =v,U vy U b(I x 3I) - b(3I-x I).

The framing for Y; is the same as that for y,; that for
Yo #bYl is the sum of the framings of Y and L plus or minus
twice the linking number of 0] with Y- The sign is plus if and
only if b(I x I) can be oriented consistently with g and \’E

The full strength of this theorem is unnecessary. Here we
use only the "easy' part, that if two links are related by G& and
Ca

Oj corresponds to taking connected sum with or splitting off a

copy of the complex projective plane # CPZ, with one of its orien-

then the corresponding 3-manifold are homeomorphic. Indeed,

tations, from the trace of the surgery. This follows immediately
from the fact that * CP° - (4-disk) is the Hopf disk bundle over
5% with Euler class £1.

02 corresponds to sliding the 2-handle attached along g (in

the trace of the surgery) across the 2-handle along Y-

LEMMA 3. If we change a portion of a framed link as in Figure 5
below, then the 3-manifold resulting from surgery is not changed.
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—|— & left or
Q —y right-handed
Yy full twist
Fig. 5.

If vy has framing n in the left case, then it will have framing
nt (2(70,7122 in the right case.

The proof, given in [9], is a straightforward application of
(e and Cy» and can be worked out easily by the reader for one or

two strands through Y-
By a series of applications of Lemma 3 we change the framed

1link A to the -1 trefoil knot. First we introduce three unknots
with +I framing (c&) and then slide the end circles of A over them

(cb) to get

-1 -2 -2 =2 -2 -2 -1 41

QOO

~—

-1

8

Fig. 6.
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Then we remove the -1 circles, using the lemma until we get

+5
K .

Fig. 7.

Removing the +1 circle, we get

v

Fig. 8.

Blowing down the +1 circle gives

+3

+1 or +1

@A)

@)

Fig. 9.
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And one last application of the lemma finishes the proof.

Fig. 10.

Equivalence of descriptions (7) and (8): We will find a handle
body or surgery description of the 5-fold branched cover of the
right handed trefoil knot X. First we perform a surgery on an
unknot ¢ with framing 7, so that 33 is the result. But if the
unknot is chosen appropriately, X is unknotted in the new S; (see
Figure 11). It is easy to see that the 5-fold branched cover is
still SS, but the curve J 1lifts to 5 copies, Jl;...,Js, whose

framings can be calculated from the formula

5. 5 5
gl YJI., YI) = 1 wd.d) =5 (J,d) =65
<7;=1 Y=t "> i,4=1 Y

which implies by symmetry that
5

Y &(d.,,d.) = 1.
=
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.

5 - fold

cover I3
. J 1

We see by inspection that 2(J J ) = k(J J ) =1 and
2(J Jg ) = 2(J ey l = 0 so that 2(J J ) = -1 and hence
2(Ji’Ji) = -]. The point now is that 1f surgery on J in SB gives
K in Ss, then surgery on J ,...,J5 gives the 5-fold branched cover

1
of XK. To see this surgery, we apply Lemma 3 several times, first

©

ey

[\U)

Fig. 11.

to say, Jl and J4, obhtaining
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5 l//-_)
0 3
w
)
Fig. 12.
then to J5,
Fig. 13

and finally to, say, J3'
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e

N

Fig. 14.

Equivalence of deseriptions (6) and (2) or (7). We have seen in
description (6) that the Seifert surface is equivalent to surgery
on 3 anti-Hopf circles (Figure 3) with framings 1, 2, and 4. But
exactly this framed link turns up while showing that descriptions
(2) and (7) are equivalent.

IITI. OTHER POSSIBILITIES

The equivalences proven here are not necessarily the most
direct paths between two points. The interested reader would find
it quite rewarding to construct shortcuts. Here are some which
exist in the literature.

The equivalence of (1) and (3) can be seen by resolving the

singularity zf + zg + zg = (0. In fact, the minimal resolution of
zf + zg + zg = 0 is a complex manifold homeomorphic to P4. The

resolution of the singularity is explicitly done in [11, p. 23-27].
Perhaps a more piquant approach, through, is to use the more gen-
eral theorems on resolution of singularities found, for example in
[6}, [7], [1], [15], to discover the connection between the reso-
lution of those singularities corresponding to the platonic solids
(e.g., the dodecahedron) and the Dynkin diagrams used to classify
semi-simple Lie groups.

In J16] the second author sketches a proof of (6)<=>(7)
by studying the circle action on s8 given hy 7(31,32) = (yszl,yzzzL

The trefoil knot zf + 33 = (¢ is an orbit of this action.

2
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A Heegard splitting for 3P4 is drawn on page 19 of [5] and on page
245 of [14]. The latter shows that his Heegard splitting coin-
cides with our description (7). The reader can construct his own
Heegard splitting via, say, the 2-fold branched cover of the
(3,5)-torus knot XK. Note that we can decompose 33 into two
32 x I's such that for each one, we have (B2 x IJ n (SE,K) =~
(8% x I, ((-%,00 x DU ((0,0) x I) U ((%,0) x 1)); the 2-fold
branched cover of B2 x I over 3 unknotted strands is the solid
2-holed torus, i.e. BS U (two 1-handles). What remains is to
"see'" the homeomorphism by which the two are glued together.
Description (8) for 3P4 can he extended to give a definition
of P4 as a p-fold cover of B4 branched over a certain Seifert sur-
face of the (g,r)-torus knot, {p,q,r} = {2,3,5}. The surface is
obtained by pushing into B4 the fiber of the map 33 - K > SJ given
by (z,w) -+ (zq+wr)/|zl+wr|, (z,w) € ¢®. A Seifert surface for
the (3,5)-torus knot is drawn in Figure 15. Its douhle branched

cover is exactly Figure 2.

C - /I/C:r/v— N LD (=

If we take the usual Seifert surface for the right trefoil

Fig, 18.

knot, Figure 16, push it into B and take the 5-fold hranched
cover, we get Figure 17. S. Akbulut and J. Harer pointed out this
description; it occurs naturally as a complex submanifold of the

Kunmer surface. It is not hard to slide 2-handles over 2-handles



Eight Faces of the Poincaré Homology 3-Sphere 145

to get from Figure 17 to Figure 2. We leave a description of the

3-fold cover to the reader.

S

Fig. 186.

Fig. 17. The -1 means one full left-handed twist. Fach
eircle has framing -2.
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