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§ I. INTRODUCTION 

1.1. The subject of the paper. 

What pictures on the real projective plane ~QZ , up to homeo- 

morphism, can be realized by a real algebraic curve ? The answer is 

not dufficult, unless we put a restriction on the degree of the curve 

(or a restriction of some other kind on the complexity of its equation). 
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However, for a fixed degree the question is very difficult and far 

from being solved in the complete generality, see e.g.G.Wilson [24] 

and O.Viro [21] (as for the other restrictions, see A.G.~hovansky [I~ ) . 

The most complicated situation appears if the number of branches is 

great enough. Curves which have the maximal number of branches for a 

given degree (so called H-curves) are most remarkable from the to- 

pological point of view. It is the Gudkov-Rohlin congruence that makes 

one of the main features of the topology of H -curves of even degree. 

The notion of M -curve, the Gudkov-Rohlin congruence, as well as 

many other results on nonsingular plane curves, permit appropriate ex- 

tensions to the case of real algebraic manifolds of higher dimen- 

sions and to the case Of real algebraic varieties (i.e. manifolds with 

singular points). Generalization of the notion of M-curve and the 

Gudkov-Rohlin congruence to the case of nonsingular real algebraic ma- 

nifolds of arbitrary dimension were given by V.A.Rohlin [17~ , [18 ] . 

Some extensions of the Gudkov-Rohlin congruence to the singular case 

were outlined in our note [9] . The present paper is devoted to ex- 

tension of the Gudkov-Rohlin congruence and some related theorems to 

the singular case. Our results are fairly complete for plane curves, 

but higher dimensions appear only incidentally. 

1.2. The Gudkov-Rohlin congruence and related ones. 

Let A be a nonsingular plane projective real algebraic curve 

of degree ~ . It is said to be of type I or dividing if its real 

point set ~A bounds in its complex point set ~A (in this case 

A divides ~A into two parts, which are interchanged by the 

complex conjugation ~0~j ~ 6P ~ ~ ~pZ. (~0 "~t" Z~-'~'(~O:~I ~ ~Z ) 

Otherwise it is said to be of type ~ or non-dividing. Below in this 

section the degree ~ of A is even, ~= 2~ . Then ~ ~ di- 

vides ~Q~ into two parts having ~A as their common boundary. 

Only one of the parts is orientable; we denote it by ~ . The 
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non-orientable part is denoted by ~Pt 

By the well-known Harnack inequality [24] the number of components 

of ~A is not more than (~-I)(~T-Z)__2 + I . if it equals (~-~}(~-ZI +{ 

then A is called an H -curve; if it equals (N],-4)(~-~) 
. . . . .  Z 

then  A i s  c a l l e d  an 

(I.A) If A is an M -curve, then 

"~ ([RP~+J ~ ~,'~ JTt, O(~ ~ (1) 

That is the Gudkov-Rohlin congruence. It was conjectured by D.A. 

Gudkov. He proved it for ~ = 6 in [5] . The weakened congruence 

(~PZ+J ~-- ~Z~O~ 4 under a weaker hypethesis (see 1.D below) 

was proved by V.I.Arnold [I] . To the full extent it was proved by 

V.A.Rohlin [I 7 ] . 

There are several related congruences (also for a nonsingular A ). 

we formulate three of them as (I.B) - (I .D) . For the others, see 

Viro's survey [21] and the original papers by V.V.Nikulin [13] and 

T.Fiedler [4] . 

(I.B) If A is an (M-- Jl-curve, then 

(2) 

(I.C) If A is an (M--~]-curve of type ]I , then 

(3) 

(I.D) If A is a curve of type I, then 

(4) 

Proofs of (I.A)-(I.D) are reproduced below in 6.1. First, (I .B) was 

proved by D.A.Gudkov and A.D.Krahnov [6] and V.M.Kharlamov [8] in- 
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dependently, (I.C) by V.M.Kharlamov, see [19, 3.4] , and A.Marin [12] 

independently; (I.D) is due to V.I.Arnold [I] 

1.3. Two approaches. 

Three proofs of the Gudkov-Rohlin congruence have been published. 

They are due to V.A.Rohlin [16] , [17] and A.Marin [12] . The first 

[16] contains a mistake. The third [12] appears to be an improvement 

of the first. The example considered by Matin [12] seems to show that 

there is no correct proof of (I.A) which is closer to Rohlin's argu- 

ments [16] than Marin's proof. 

Marin's [12] and Rohlin's second [17] approacheS based on quite 

different techniques. Rohlin's proof works in any dimension while no 

generalization of Marin's proof to higher dimensions is known. 

Nevertheless the approaches seem to be closely related. Rohlin asked 

his students to find a relation and said that an understanding of it 

might lead to essential progress. 

Both approa~es admit extension to the case of singular curves. 

We did not seek identification of the results in their complete gene- 

rality obtained for singular curves by those two approaches,although 

for all concrete situations considered the results coincide. Marin's 

approach seems to be simpler for our purposes, so we adopt it as the 

basic one. Rohlin's approach also has some important advantages. 

First, it is applicable to real algebraic varieties of arbitrary di- 

mension; second, for some classes of singularities it gives results, 

which are more easy to formulate and use. In the last part of the 

paper we discuss these topics. 

1.4. Two levels of results. 

Our extensions of the Gudkov-Rohlin congruence, as many other 

statements on the topology of singular curves, involve some characte- 

istics of the curve singularities. For efficient formulation of these 
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results some additional investigation of the singularities is to be 

done. Due to a great diversity of singularities it is impossible to 

do this work once for all cases. Thus we distinguish two levels of 

~n=o~esults: first, general theorems (see § 3), which involve curves 

of vast classes and rather complicated characteristics of singulari- 

ties ( introduced in 2.3), and second, efficient theorems on curves 

of more special classes with singularities of some special types, 

formulations in this case involve only simplest characteristics of 

singularities (see § 4). The results of the first level are useful 

not only as initial steps to the results of the second level. In 

applications it is sometimes sufficient to know that some congruence 

is to be satisfied, for its efficient statement is obvious from known 

examples. See A.B.Korchagin [11] and sections 4.1 - 4.4 below. 

1.5. Acknowledgements. 

G.M.Polotovsky's work [14] on splitting curves of degree 6 suggest 

ed that there must be some congruences for singular curves, which are 

close to the Gudkov-Rohlin congruence but can not be straightforwardly 

reduced to it. Our first results in this direction were met by D.A. 

Gudkov, G.M.Polotovsky, E.I.Shustin and A.B.Korchagin with a stimu- 

lating interest. We are indebted to them for their encouragement. 

§ 2. PREREQUISITE FOR STATING OF RESULTS 

2. I . Preliminary arithmetics : Z~ -quadratic spaces. 

By Z/k-quadratic space we mean a triple IV ~o ~ ~I consisting 

of a finite-dimensional vector space V over Z/~ , a symmetric 

bilinear form V ~V --Z/~ " (~,~) ~ , ~o~ and a function 

~: V • Z 4 , which is quadratic with respect to that bilinear 

form, i .e. 
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or(~,+ ~ ) =  q,(~,~ + q,(~,) + 2. :~o~, (5) 

for ..~,, ~ { V , where 2," " Z/2. " .~',/'~ is the unique non-zero 

homomorphism. The bilinear form o is certainly determined by 

via (5). 

A Z~ -quadratic space Q~-(V~° , ~) is said to be nonsingu- 

lar if its bilinear form o is nonsingular, i.e. its radical 

a~.(Q) = [~( :  VI V ~,~ v j.,o~(~V} is the zero-subspace. We say that 

Z4 -quadratic space ~° ~I is ~ if ~ va- 

nishes on ~(~. In this case ° and ~ induce well-defined 

bilinear and quadratic forms on V/R(Q) . The Z~ -quadratic 

space appeared is nonsingular and it is called a nonsingular Z~ - 

quadratic space associated with Q . 

The isomorphism clas~es of nonsingular Z/~ -quadratic spaces 

form a commutative semigroup under the orthogonal sum operation. To 

obtain a group, one introduces the relation (V, ° ~ ~) for any 

Z A -quadratic space <V~ ° ~, ~ with V containing a vector sub- 

4 = 0 (and space H such that ~{Fr~ H = ~ &{~ V and ~I ~ 

consequently H ° H = 0 ) The resulting factor-group is called 

the Witt grou~p WQ ( ~  ,Z[~ ) . it is isomorphic to Z/~ (see 

e.g. [ 2 ] ) . The isomorphism is set up by the van der Blij-Brown in- 

variant tV ,  o , £ , ) .  TM B(q,) defined by the formula 

e~p( 4 ) -- 2 ~ 7- ~ p (  ) (6) 
~,V Z 

see e.g.L.GuilIou and A-Marin [7 ] . 

Nonsingular Z~ -quadratic spaces which determine the same 

element of WQ( Z/~ ~Z~are said to be cobordan~t. Informative 

Z4-quadratic spaces with cobordant associated nonsingular Z/4- 
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quadratic spaces are also said to be cobordant. If Q= (V, o ~ 

is an informative Z A -quadratic space, then the van der Blij-Brown 

invariant of its associated nonsingular Z/~ -quadratic space is 

denoted by 5(~) . It can be calculated by the formula 

e3cp(  /4 ) =-  2, :z 2. ) 
(7) 

2.2. Preliminary topology: the Rohlin-Guillou-Marin form. 

Let X be an oriented smooth compact four-dimensional manifold, 

let F be its smooth compact two-dimensional submanifold (not nece- 

ssarily orientable) with OF = F N O X  such that ~r~ H4 (F ~ 

Z/~) ~- {0} c H4( X ~ Z/~ ) (as usual ~ ---- inclusion), 

and let F realize in Hz(X,8~ ~ Z/z) the class which is the 

Poincar~ dual to the Stiefel-Whitney class I/f~(Xl ~ Hz( X ~ Z/2) 

Then there is a natural function ~l H4(F ~ Z/2) ~ Z/~ ,which 

is quadratic in the sense of 2.1 with respect to the intersection 

form H~(~ "~Z/~) × H4(~ ~ Z/Z) TM Z/2, see e.g. [7]. We call 

it the Rohlin-Guillou-Marin form of the pair (~, ~) . This ~ may 

be defined as follows. To define ~(~(j ~ for ~ e H4 IF ; Z/z ) 

realize 0C by an embedded closed smooth curve ~ ~ F , span i 

by a surface P ~ ~ , which is normal to F at ~-----~P and 

transversal at inner points. Consider on ~ a field of lines tangent 

to F and normal to ~ and denote by ~ the obstruction to ex- 

tending this field to a field of lines normal to P . Then 

where by Ib~ P ~ F we mean the N%0~ Z - i n t e r s e c t i o n  number. 

We like to consider here a slinghtly more general situation allow- 
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ing F to have a corner, which is a smooth curve transversal to 

JX . The definition of ~ is naturally generalized to this situ- 

ation. One may obtain ~ by smoothing F and checking that the 

result is independent on the choice of the smoothing. However there 

is a clear direct generalization of the definition of 01/ given above. 

For ~ represented by ~ , which does not meet the eorner~ ~I~ 

is defined exactly as above. 

2.3. Singular point data. 

Let ~" C Z ~ C be a holomorphic function, which is real 

(in the sence that ~(~I = I(~5~) for I~ ~ ~ C ~ ) . Let 

p be its real isolated singular point with ~ (p) = 0 

In this section to any such situation we assign Z/2 -vector 

spaces Lp and L~p , a homomorphism ~" L~ - L p , a Z/4- 

quadratic space (Vp ~ ° ~ ~) , a bilinear pairing 

L ' V --~ a subspace ~p of Vp a p Z / ~  ( ~ , ~ , ) ~  ~n~, , 
subspace X e of We and homomorphism ~e: Le ~ Vp I Wp and 

~p: Lp ~ Vp . These objects are involved in formulation of 

our main theorems. We shall call them singular point data of ..4., p 

We can reduce the number of them, but for this we'll be made to pay 

with more heavy calculation in applications. In the corresponding sim- 

plified versions of formulations (see (3.A) and (3.C)) only L p 

0 ~p) , i"i of the singular point data are involved. IVy, , 

Denote by ~ the curve defined by the equation I(~l ~-0 and 

let Q" ~ ~ ~ be a normalization. Set 

Lp=H~(IRCP,RaP\p ; Z / z ) ,  

L~ = H~IIR q)~, IR cP'\ 9-~(p); Z & ) ,  
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Let ~ be a ball in ~z centered at p and so small that the 

pair (~ t ~ ~ n ~ } is homemorphic to the cone over ~ ~ ~ 

C ~ N ~ ) . Let 6 > 0 be such that for any ~ ~ (0 ~6] the 

curve defined by the equation ~I$~ ~) = -- t is nonsingular 

and transversal to ~ . Denote this curve by ~% . Set 

see fig. I 

Fig. 1 . 

NOW let us factorize by the complex conjugation 00~i : ~--~ ( [ ,2  

The ball ~ gives a ball ~*~--~/60~j . The surface R is not 

changed: it is contained in ~(60b~i) = R z and so the natu- 

ral projection ~ ~ R/~0~ i is a homeomorphism. We shall use 

the notation ~ for both ~ and ~/C0~ i . The surface 

6 ~% ~ ~ gives a compact surface ~ = (C ~ ~ ~)/C0~ i with 

a boundary [ (~ ~% ~ ~)U (~ ~£ N ~ ~I] /0011, i . The surfaces R 

and ~ intersect in a curve ~ = (~ ~£ ~ ~/C0~ i , which 

is the common part of their boundaries. The union ~-=~ ~ ~. is a 

compact surface with a corner C. 

The promised ~ -quadratic space (Vp o ~p) is formed 

of Vp = H4t ~- ~ Z/~ , the intersection form ° of ~ and 

the Rohlin-Guillou-~h%rin form ~p of {~, E) • As to the sub- 
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spaces W p and X p they are nothing but in ~- H4t ~ ; Z/~ ) 

and in ~w H{[~\~ ; Z/~) . 

~ Vp ~ ~/~ is defined by The promised pairing r~ Lp 

the intersection pairing 

FI~(Z, ?3-; Z/e)*  H,(>- ;Z/e ) 

combined with a natural homomorphism 

~ 2  . H4(R(p n,O,RCp n LP =H~(Rq) 'Rq )xP ;Z /a  ) ce~¢~o.,~ 

Since ~ and ~ are connected, the factor-space Vp /Wp = 

= H4( E ~ Z/~)/~[b~ H~(~ "~Z/~) is isomorphic to ~4( ~! ; )and 

by excision, to H4(E ~£ ;Z/~ ) . To define 03~ we com- 

bine these isomorphisms with the composition of the following iso- 

morphisms 

Lp=H~(R9 ~,q~\e ;Z& / H4 (R (pn ~ ,  R q:)n ~ \  p ; Z/e)---'- 

7{A1, , 

Z/z)---- 

~omomorp~ism ~,:~oCaC ;Z/2  " ~0 (C, Z/e  ~ and isomorphis= 

a -'!" ~0(c ; Z / 2 )  -= H,I(~.~C , Z / ~  .) . This definition is present- 

ed visually at fig. 2: given two components of ~ ~\p they 

determine an element of H{(~n ~,~\p~Z/), 00p add to every 
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component it adjycent arc of {Z~a~)  {~,,~" I 0 ~- ~g (/.) >~ -E)  

the element of H~ (R,C; Z/z ) 
to give 

Fig. 2. 

The group H, (~9  ~, ~ ~ k  9- '~ ) ;~ /z )  is generated by fundamen- 

tal classes [4] of components ~ of ~~ ~ ~'{ (~D ~IFor a 
4 

component ~ of ~- ~ 9-~ { ~ ~ ~) both end points lie on 

one boundary circle of C~ ~~ 9"' (~ ~ ~ ) . The image of the 

circle under 9 is a boundary circle of ~ ~ ~ and under 

the deformation C ~ t ~ ~ D , 0 ~t ~ ~ it remains to be the corres- 

ponding boundary circle ~ of the moving surface ~ ~ ~ • 

The image of C~ in ~ ~ ~ is an arc C t with end points lying 

in { ~ ~ ~ N ~ } 0 ~ ~(Z) ~ -~} . Hence, 0; represents the element 

of H~ (;,0 ~ ~/~ ) , which has the same boundary as ~0p (Qe [~] ) 

HI ( ~, ~, Z/z ) • By exactness of the sequence 

these elements determine an element of 

to be ~p ([ ~ ] )  . 

2.4. Singular point diagram and its 

H, ( ~  ; Z / 2 ) .  We set it 

~/~ -quadratic spaces. 

Let A be a reduced (i.e. without multiple components) plane 

projective real algebraic curve of degree ~ = I ~ . Then its real 

point set ~A divided ~ P z into two parts having ~A as 

their common boundary. Let us fix one of the parts and denote it by 
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~ . The choice of the part is equivalent to choice, up to po- 

sitive constant factor, of an equation ~ = 0 of the curve (here 

is a real homogeneous polynomial of degree ~ ) . Since the 

sign is fixed, singular point data is well defined for each real sin- 

gular point of ~he curve A . 

The scheme of joining of real singular points by real branches 

is nothing but a one-dimensional graph. It will be denoted by ~A 

It can be thought of as ~ A with all the non-singular components 

deleted. We supply it by additional structures. The first one is the 

homomorphism ~" H4( % ~/2~ ~ H4(~%~/~)induced by the natural 

inclusions FA c ~ ~A c ~ ~p~ , the second one-singular point data 

for each vertex of F A and the third one-homomorphisms ~p " 

HI(F A ~Z/~I ~ Lp induced by the composition of the inclusion 

FA c_~ A and localization. The graph F A supplied with these 

structures will be called the singula.~.r point diagram of the curve 

and will be denoted by ~. 

At the rest part of the section we assign to A two Z~- 

qudratic spaces ~A=(V~ o ~& ~ and Q~=(V&~o ~ ~ and a 

subspace 5& of V& Q& is involved in the simplified versions 

of the main formulations and does not involve Lp ~ ~p~ ~ and ~p. 

It is well defined by the following 

P 

(ii) the restriction of o to the summand ~V~ is equal to 
P 

the orthogonal sum of bilinear forms from singular point data, the 

restriction of 0 to H4[~ ; Z/~) is induced from the inter- 

section form of ~P~ via ~ : 

and f o r  
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(9) 

rT% ~ 
(iii) the restriction of V ~& to ~/ V~ r is equal to the 

P 
orthogonal sum ~ ~p of quadratic forms from the singular point 

f 
data and the restriction of ~ to H4IF A ; Z /~)  is expressed 
via ~ : 

f (-I~ ~ , if ~(~=~0 

{ 0 , if {(~= 0 
(10) 

The Z~ -quadratic space Q B is a shortened substitute for 

q~ . It and 5~ are not involved in the simplified versions of 

the main formulations and involve ~ ~ 9p~ ~ 

simplified reading, one may omit them. 

To define Q& let us take the subspace of 

lying space V& = V& ~ 

and 0Qp . When 

Q A with the under- 

p e 

-- Vp tTI,'O~ ~//p for each p ] ,  

and factor it by the following part of its radical " 

I 

Ivy=0 

Thus VA = 

TO define ~& let us take 

for each ~ ] .  

%= 
*eVp 

F 

] 
for each p there exists I 

~5 p ~ L~p such that ~p(~p} 
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and set S~ = B A / B~ ~ ~ . 

2.5. Extension of notions: ~-curve, (~-{) -curve, types 1 

and Z . 

Here we extend these notions (see 1.2) from nonsingular Plane 

curves to general (not necessarily nonsingular and plane) curves. 

A nonsingular real algebraic curve A is called an H-curve 

if the number of components of £A is equal to the genus of A en- 

larged by I. For the given genus the number of components can not be 

more than in that case. The curve A is called an (~-{~-curve if 

the deficiency is equal to t . An irreducible singular curve is 

called an M-curve ~espectively (M-0-curve) if its nonsingular 

model (the result of normalization) is an H-curve (respectively 

(~-{)-curve). A reduced curve is called an M-curve if nonsingu- 

lar models of all irreducible components are ~-curves and is called 

an (M-0-curve if the sum (over all irreducible components) of the 

deficiencies is equal to 

A reduced real algebraic curve is said to be of type I if nonsin- 

gular models of all irreducible components are of type I. Otherwise 

it is said to be of type ~ . 

§ 3. STATEMENT OF GENERAL RESULTS 

3.1. Projective curves. 

Let A be a reduced real plane projective curve of degree 

=I~ without non-real singular points and let AR e be one of 

two parts of ~P z bounded by ~ A . Let ~ be a singular point 

diagram of A related with ~P~. 

(3.A). Suppose the Z/# -quadratic space ~a is informati- 

ve. Let ~ be zero, if lilt ~P~ is orientable , and ~ ~ (-~)& 
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otherwise. If A is an M -curvethen 

~CRP ~ 1= ~.~ ~ w, od. S (11) 

i~ A is an (M-- ~] -curve then 
9 

If A is an ( M- Z) -curve of type If, then 

where 

rood, 

~ocL 

(12) 

t 6 [ 0., 2, .,- 2, "~ (13) 

i f  A iS of type I,then 

m, od, 4 (14) 

We present another variant of this theorem. In all application it 

leads to the same results but usually through easier calculations. 

(3.B) . Suppose ~a 

is contractible in ~QZ 

vanishes on BA . Let ~ be zero if 

and ~ (-~)~ = otherwise. If A is 

an M -curve then 

C 

If A is an (M- 11-curve, then 

(15) 

(16) 

If m is an (M-- Z] -curve of type I[ then 
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if A 

where ~ ~ {O,Z,-ZI 

is of type I,then 

(17) 

(18) 

3.2. Smoothings of a plane curve singularity. 

As above in 2.3, let ~ : ~Z • ~ be a real holomorphic func- 

tion and p its real isolated singular point with {(p)=0 . De- 

note by ~ the curve defined by the equation ~(~)=0 . Let 

be a ball in ~ centered at p and so small that the pair 

(2~ ~ ~ ~) is homeomorphic to the cone over I ~ ¢  ~ ~) 

Let ~% : ~Z ~ ~ ~ ~ ~ ~ be a continuous family of real 

holomorphic functions with ~0 = I . Denote by ~ the curve de- 

fined by the equation ~(~] = 0 . Suppose that ~% has no 

singular points in ~ and is transversal to ~ for t% (0~] 

Set 

In this section we state results on topology of ~+ similar to 

(3.A- and (3.B). The main idea of the transfering is to glue pairs 

( ~ £  ~ ~) and I~£~n ~) by an equivariant diffeomor- 

phism of their boundaries arisen from the deformation ~% ~ ~ , 

t 6 [0,~ ] . The gluing gives a 4-dimensional sphere with an invo- 

lution and a subset which is a smooth submanifold at each point except 

one and is invariant under the involution. This situation is similar 

to that of the projective plane and a singular real curve in it. Mo- 

reover, we observe two simplifications: first, S ~ is simpler than 

~p~ , second, here we have only one singular point. 
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Before stating the results we ought to describe modification of 

auxiliary notions (such as ~ -quadratic space of the singular 

point diagram) involved in (3.A) and (3.B) . 

Let F be a bouquet of circles which are in I - I correspondence 

with components of ~£ n ~ homeomorphic to I. It can be throught 

of as the union of these components of ~£ ~ ~ glued to 

~ N  ~by the natural bijection of the boundaries. The nunlber of 

the circles is denoted by ~ , it is equal to the number of real 

branches of ~ passing through p 

Let ~ H4(F ~ Z/a~ " Lp be the composition 

The graph F supplied with the singular point data of p and 

the homomorphism ~ will be denoted by ~ . Now we assign to it 

Z~ -quadratic spaces ~& =~V& o ~A] and Q&=[V&,° 7 ~I 

and a subspace 5& of V& , cf. 2.4. The space ~& is involv- 

ed in the simplified version of formulation and does not require L~ , 

Xp~p ~ ~ and 00~ for its definition. It is well defined by 

the following 

(ii) the restriction of ° to the summand 

form from the singular point data. 

Vp is the bilinear 

0 ~ for 

Z°L~ = ~'p (~)rl ~ for H,(F, Z,51, (19) 

(iii) the restriction of ~A to V~ is the quadratic form ~p 
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from the singular point data, the restriction of ~A to ~, (F ; 
Z/Z ) is equal to zero. 

The ~A -quadratic space ~ is a shortened substitute for 

(~& . Together with 5~ it is not involved in the simplified 

statement. When simplified reading one may omit them. 

To define Q a let us take the subspace of ~a with the 

underlying space V~ ~ V& 

| 

and factor it by the following part of its radical . 

| 

= VA I 

Thus Va----V,/V& . To define B a let us take 

I 
and set ~a= B'a / B& ~ ~ 

Now transfer the notions of 

the case of smoothings. A smoothing 

M~ (M- ~) -curve and type to 

~£ of a singular point 

of ~ is called an M -smoothing, if the number of components 

of (~£ n 2~U (~ ~ ~) is equal to the genus (number of 

handles) of ~£ enlarged by I. This number can not be more than 

in that case. The smoothing is called an (M-{~ -smoothing if the 

deficiency is equal to { . The smoothing is said to be of type I 

if £~£ N ~ is divided by ~& n ~ into two path components. 

Otherwise it is said to be of type Z . 

(3.C). Suppose the Z~-quadratic space ~ is informative. 

If ~ is an M -smoothing, then 
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is an (M-I]-smoothing, then 

If ]4/% is an 

~(~+)=- B(~r~)+ i m,o,i 

If T£ is of type I, then 

(M-[]-smoothing of type I I ,  then 

where &~ [-~,~-~} 

(20) 

(21)  

(22) 

(23) 

it 

ations. Remind that 

of ~ passing through 

We present another variant of this theorem. For all applications 

leads to the same result but usually through easier calcul- 

involved below is the number of real branches 

p 

(3.D) Suppose ~a vanishes of B ~, . If ~ is an M-smooth- 

ing, then 

is an (M- ~)-smoothing, then 

~(~,~=-5(~)+~-4 +_4 ~o4, g 

is an (M-~ysmoothing of type ]I, then 

~[~0& g where &~ [ -~ ~ 

zf 

(24) 

(25) 

- ~] (2Gj 
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i f  is Of type I, then 

(27) 

§ 4. APPLICATIONS 

4.1. Sufficient conditions for applicability. 

As in Theorem (3.B), let A be a reduced real plane projective 

curve of even degree without non-real singular points and let ~ be 

a singular point diagram of A . Let us consider the following con- 

dition 

A 

not contain a singular point of A . 

Sometimes (4.A) makes Theorem (3.B) to work: 

(4.B) Under (4.A), if each singular point of A has no non- 

real branch then ~ vanishes on 5 & • 

(4.B) is generalized below. The generalization is not applied in 

(4.A) For each irreducible component of the non-singular model of 

the images of all real path components except at most one do 

this paper. We present it for the sake of completeness only. 

(4.C) Under (4.A), if at each singular point of A each non-real 

branch ~ has an even intersection number with the union of all 

branches different from ~ and 60~i ? then % vanishes 

on 

NOW as in Theorem (3.D), let ~£ be a smoothing of ~ . Let 

us consider the condition 

(4.A') The (~£ n ~) united witch all components of 

R ~  h~omeomorphic to I i ss connected. It is a substitute for (4.A) : 

(4.C') Unde~r (4.A') , if each non-real branch ~ off ~ n 

has even intersection number with the union of all branches different 
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from ~ and COn,~ ]~ , then ~a vanishes on 5A " 

The following criteria (4.E) and (4.F) require the condition 

(4.D) instead of (4.A') [(4.E) is slightly less general than (4.F)] 

Let ~ = 2/00~ ~ ~g = C ~6 /c0~ ~ ZE=~U~+(cf-3.2) . 

(4.D) EaCh boundary component of E£ has even ~ number 

with the union of the others boundary components of Z E " 

(4.E) Under (4.D), if each component of ~ contains ~ one 

non-closed component of ~ y£ then %~ vanishes on 5A 

(4.F) Unde~r (4.D) , i ! the subgroup t~ H, (~ ~ ~ Z/~ ) of 

then__ ~ ~ vanishes, on~ B 

Proofs are given in 6.6. 

4.2. Korchagin's curves. 

Let A be a real plane projective curve of degree 7 with only 

one singular point and let there be 4 branches at the singular point, 

all branches be real, and one of them be transversal to the others, 

which are ordinarily tangent to each other (such a singular point is 

denoted by Z~9 in Arnold's notations). In some (perhaps non-linear) 

coordinates ~, ~ in some neighbourhood of the point the curve is 

defined by an equation 

z o 

Real schemes of such curves were treated by Korchagin E113 . He con- 

jectured some congruences. They constitute a part of the following 

propositions which does not involve type of the curve (purely real 

point of view). 

(4.G) Let A has a real scheme outlined in the fig. 3 ( <O~> 

desiqnates a set of C~ ovals each lying outside others) 
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Fig. 3. 

If ~ q-/~ ---- G then oC --~ --~- 4 ~0~ ~ , if 06 + ~ = 5 the~v~n 

~6 -j~ ~- 4 +- 4 ~0~ ~ , if ~. +~ ~ ~ and A is of type IT 

then 06 --~ ~ 0 ~%0~ ~ , if A is of type I then 

(4.H) Let A has a real scheme represented on the fig. 4 

Fig. 4. 

If ~ 4. j~ = 6 then ~ -- ~ ~ --~ ~0d ~ , if o6 + ~ ---- 5 then 

~6 /~ ~- -2 4- ~ ~0~ ~ , if ~$ q-]~ =- ~ and A is of type ]I then 

The condition o6 + f = 6 -- i means that A is an (M-~)- 

curve. 

TO prove (4.G) and (4.H) it is enough to add the straight line 

tangent at the singular point to three (pairwise tangent) branches of 

A and to apply the theorem (3.B) to the reducible curve A u 
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of degree 8. The theorem is applicable due to (4.A) . We have a possi- 

bility not to do a straightforward calculation of the invariant 5{~a). 

Really, the theorem implies that for each scheme from fig. 3 and 4 

there are a congruence of the form ~6 --~ ~ ~ [[~0~ ~ in 

-case, a congruence of the form ~ --~ ~ IA, ~ ~ ~0~ ~ in 

(M-~l-case etc; the true values of ~ can be taken from exam- 

ples constructed by Korchagin [11] . 

4.3. The case of non-degenerate double points. 

Let A be a real plane projective curve of degree ~3,= Z~ and 

let real non-degenerate double points with real tangents be the only 

singularities of A . Let ~+Z be a half of ~pZ bounded by 

~A . As in 2.4, denote by ~A the union of components F, ~...~ 

F ~ of ~ A containing singular points. Denote by C~ ~..., 

Cz( Q (4 ~ { ~ ~) components of ~\(<U 0)which lie on 

the other side of F ~ ~Z than ~ + and by L some simple 

loop in F A non-contractible in ~pZ (if such a loop exists). 

(V ° We present a straightforward independent description of a ~ 

~ I and ~A constructed in 2.4. 

i 
(4.I) Let 8] 

boundary of C~ and let 

realize~d ~ L . Then V A 

nerated by ~ 8i:' (~ ~ ~ 

and t h e  q u a d r a t i c  f u n c t i o n  

be an element of H 4 , realize~d ~ the 

be~ ~an element~ of.~_ X4(< ; Z/~) 

i~s a subspace of H l ( F A ~ Z/~ ) ge- 

I~ i ~ ~(~))" The bilinear form o 

are determined by the following: 

(i) ~a(0i ~ ) . . . . . . . . .  is equal modulo 4 to a number of singular 

points through which the boundary of C; passes only on~ce; N 

* ~~pl-u- nJumbe~of si~gular poin~ts A is equal modulo 4 to (- s the 

through which L passes as in fig. 5 (not as in fig. 6); 
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L 

Fig. 5. 

Fig. 6. 

(ii) ~j o (({~ ~= ~[~]] ~ equal modul~o 2 too thee numbe~r 

~ Ca of s~ngular points~ common~ to~ the~ boundaries of £J and~ 

(iii) ~ o ~ is~ equal~ modulo__~ 2 to the number of,~ singular 

point,s through which the boundary o~passes only once and L passes 

a~s inn fi~. 5. 

Thee space 5 & ~ ~ b~y element,s realized ~ smoothly 

i m m e r s e d  c i r c l e s .  

We have described all ingradients of Theorem (3.B) . As a result, 

we obtain that in the situation considered in this section the theorem 

works iff the following condition is satisfied. 

(4.J) Each real branch of A ( A'~" ~ immersed circl~e) 

contractiblee in ~p~ passes ~ ~ ~ 0 nlJ0~ 4 singular 

points and each real branch of A non-contractible in ~pZ pa~ss- 

es through ~ =--- (-- singular points. 

To prove the equivalence of (4.I) and the definitions from 2.3, 

2.4 it is sufficient to observe the following: for each non-degenerate 
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double point p with real tangents the surfaces ~ ~p are 

homeomorphic to a disk, ~- p to a M~bius band and further, Vp = 

= Z//~ 7 Wp ~- 0 and ~pI~) = -- I for I~ Vp ~ ~= 0 . 

Let us apply the criterion (4.J) to curves of degree 6 represent- 

ed by figures 7-11 (the first four curves are supposed to be reducible) 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Fig. I 0. 
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Fi 9. 1 1. 

Accordin 9 to (4.J) Theorem (3.B) is aplicable to all these situ- 

ations. As in 4.2, the Theorem immediately implies that the appropriate 

congruences for o6- ~ are to be satisfied. The concrete Eorm of 

oongruences may be obtained by oomputation o~ 5(%,I) or by known 

examples (cf. 4.2) 

fig.7 

fig.8 

fig. 9 

Assumption Assertion 

A - o,' -L~,e I 

o< - #  - ' i  ozg r~o,./ 8 

~.. - ,~ ---t ~ o , ~  

o c - ~  = 0 ,~Z r~oJ, 8 
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fig. lO 

fig.1 1 

Assumption 

~+~ = I 

A ~s o{ t~pe I 

Assertion 

~-~--3 mo~8 (~.,. ~-3,/~--o) 
c~ -~ -:Zo~ mo~ (Le.~==Z,J ~=0) 

o~+~ ~8 

OO+J=7 

A ~.s 0~ t~p~ I 

Table I. 

-/s -= 3 o~ 5" moa.$ 

Purely real part of first four blocks (results not refering to 

the type of the curve)was originally obtained by G.M.Polotovskij [Id 

(via a different approach). In [14] he considered curves of degree 6 

decomposed into curves being non-singular and transversal each other. 

One can find there a big stock of situations in which (3.B) works. 

The first row of the last block was conjectures by I.V.Itenberg 

when classifying curves of degree 6 with one non-degenerated double 

point. 

Numerous examples prove necessity of (4.J) see e.g. [14 ] . In par- 

ticular, there exist reducible curves of degree 6 shown in fig. 12 

/ k/ 

any ~6, ~ with 

° 

Fig. 1 2. 
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4.4. Smoothings of some plane curve singularities. 

Here we consider cases when in some (perhaps nonlinear) coordi- 

nates • ~ ~ in some neighbourhood of the singular point the curve is 

defined by a real equation. 

( B = 0 

( ~ ~ , ~ are distinct numbers not necessarily real) 

( ~40 in Arnold's notations; three nonsingular branches ordinarily 

tangent to each other) or by a real equation 

( 0~ )C~ ~ are distinct numbers not necessarily real) 

( X14 ; four nonsingular branches ordinarily tangent to each 

other). We have chose namely these singularities because of their 

applications in constructing curves with presecribed topological pro- 

perties, see [21] . For N{ 6 (five nonsingular branches transver- 

sal to each other), which is the other singularity involved there, our 

congruences could be applied too. We have omitted these applications 

since, as it was shown by E.J. Shustin ~20] , smoothings of ~46 

are essentially affine nonsingular plane curves of degree 5 with 5 

different asymptotes . Such curves are considered above in section 4.3. 

~40 as for N~6 ~ the classification is completed (see [20, For 

[20] ), for ~4 it is closed to completion (see [23] , [20] ). 

In these classification achievements, congruences of the sort consi- 

dered in our paper play important role. 

Let us apply criteria (4.C') and (4.E) to smoothings outlined 

in the figures 13 - 17 
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<~ 

Fig. 1 3. 

<9> 

Fig. 1 4. 

Fig. 1 5. 

Fig. 1 6. 

<97 

Fig. 1 7. 

According tO (4.C') theorem (3.D) is applicable to situations of figu- 
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res 13, 15-17 and according to (4.E) it is applicable to one of fig. 

14. As usually, the concrete form of congruences may be obtained by a 

computation of ~( ~A~ or by known examples (see the latters in 

fig. 13 

and 

fig.1 5 

fig.14 

fig. 16 

£ig.17 

Assumption Assertion 

c ~ + p  =/-I 

oc+~3  = 3  

cx, ÷ J3 = 2. 

t~,e s~oot~c.~ ~s o~ ty~ I 

c¢. =0 o~3 

o ~ = 3  

c~, = 2, 

0 ( - - -  t 

OC - ) 3  - -1  ~oO- zl 
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In [20 ] one can find some more isotopy types of smoothing 

of XZ4 and appropriate congruences which can be derived from our 

theorems• They can be supplemented by congruences refering to the 

type of smoothing. 

§ 5. PREREQUISITE FOR PROOFS 

5.1 . Rohlin-Guillou-Marin congruence . (see ~7 ] ) . 

Let X be an oriented smooth closed four-dimensional manifold 

and let F be its smooth closed two-dimensional submanifold realiz- 

ing in ~ Z(~ "~ Z/~] the class which is the Poincar& dual to 

the Stiefel-Whitney class 7/~ ( X] . Then 

ZS( ] - - F o F   od, {6 (28) 

where ~ is the Rohlin-Guillou-Marin form of the pair (~,~). ~(~ 

is the signature of ~ and F ° F is the natural Euler number of 

F in X (self-intersection number). 

5.2. Informative subspaces. 

Let IV o ~) be a nonsingular Z 4 -quadratic space. Its 

subspaces are defined to be quadratic spaces (~, °l ~ ~I ) , 

where ~ is a vector subspace of V~ ~I ~ ~14 and °I = °I~ 

We say that a subspace is informative if ~ contains its own ortho- 

gonal (with respect to o ) complement ~ and 01/ vanishes 

on ~ j • This is conformed to the definition in 2.1: every informa- 

tive subspace is an informative space (but not vice versa!) 

5. A• .AA nonsingular Z4-quadratic space is cobordant to any 
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its informative subspace. 

In various equivalent forms this fact is well known. For the 

proof it is enough to check that the graph H c ~ ~) V os the in- 

clusion ~ ~-~ V provides (according to the definition of the Witt 

group see 2.1) vanishing of (~ °I o -- , ~ ~II ~ (V~ ~ ~] in the 

Witt group. 

[ The definition of an informative subspace may be transformed 

with evident alterations from nonsingular to informative ambient spaces. 

An informative space accurs to be cobordant to any its informative 

subspace . ] 

5.3. Additivity for 5 

Let F be a closed subspace and let [V~ ~ ~ ~] be a Z 4-quad- 

ratic space with V = H4(F ~ Z/~ ) and 0 :- the intersection 

form. GiVen a decomposition of F into two compact subsurfaces ~4 

and F Z (perhaps non-connected) with common boundary ~ =~F4 ----- ~FZ 

there naturally arises subspaces ~ = ~#~[F{ '~ Z/~] 

~ = ~ H4 (F Z • ~) ~ ~=~14_~ of V " It is evident 

that ~-~ ~ H4(~; I/~] 
SO, according to 5.2, if ~ vanishes on {~ HI(~ ; 

~/~ ) then (~ ,~I ~I ) is an informative subspace of (V o ~], 

[~4 °I, ~I) and (~ ~q ,~I) are informative spaces and 5(~I----- 

= ~(~I~ 4] ~- 5{ ~ I~ I . In fact, ~ vanishes on ~H~( ~ "~ Z/~] 

iff (~ °I ~I) is an informative subspace iff (~4 oI ~ ~I) 

and [~, °l  ~ ~I) are informative spaces. 

The Z~ -quadratic space (H 4IF ~ Z/~)~ ° ~] induces 

(by ~ ) ~ -quadratic spaces (H4(F~ ; Z/~)~e ~ ~j) , 

where " = the intersection form and ~ = qto ~ . These 

spaces are informative if (and only if) [~4, o[ ~ ~I] and 

(~Z o [ )~I) are informative spaces and then they have the same 

associated nonsingular sPaces. Thus if ~ vanishers o~n i~ H 4 (~ 
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Z/~) then 

B(q,)-= B[I:j,,,)-,,- (29) 

5.4. Low-dimensional ~4-quadratic spaces. (see, e.g. [2 ] ) . 

Any Z4 -quadratic space can be decomposed in an orthogonal sum 

of one and two-dimensional quadratic spaces. Besides if Z4-quadra- 

tic space ~V o ~) is odd (i.e. there exists ~& V with 

o~ 4= 0 ) then it can be decomposed in an orthogonal sum of 

one-dimensional spaces only. There are only two different (up to iso- 

morphism) one dimensional spaces: 

with 0~ ° ~ = 4 ) ~+ (~] = 

with ~o ~= 4 , ~_ (~]= -- 

for ~ ~ 0 

for • ~ 0, 

B ( ) A 
Both spaces are odd. It is clear that 01/+ ----- and Dk~-'=--[. 

Two-dimensional spaces are even iff they are indecomposable, we have 

no need of their precise form and remark only that in this case values 

of B are 0 and 4 . Since a two-dimensional odd space (~ o 

) is a sum of two one-dimensional spaces, it has B(~) = 0 or 

§ 6. PROOF OF THE MAIN THEOREMS 

6.1. Prototype. Marin's proof for nonsingular curves. 

The factor-space ~P%/601t,] carries a natural smooth struc- 

tur~ (as always when the fixed point set of a smooth involution has 

(real) codimension 2). It is well known that this manifold is diffeo- 

morphic to S 4 . The complex point set ~A of the (real) curve 
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A is invariant under the complex conjugation. Its image ~A /CO~] 

is a compact two-dimensional submanifold of ~P%/~o~j = S~ with 

boundary ~A it is clear that ~A /60~j is orientable iff the 

curve is of type I. 

Apply the congruence (28) to F = ~A/co~j u ~P~ . straightfor- 

ward calculations show that 

F oF=  Zl ÷ 

(see, e.g. [16 ] ) and so (28) turns into 

It remains to calculate B (~]. 

Now apply 5.3 to ~ = ~ ,  F~ = {A/60~] and ~=~ . Some 

straightforward calculations more show that ~ vanishes on {~H4(~ 

Z~ ) and thus on {~H4(~ Z/~ ) (see [12 ] ). so we get 

5(~I = 5(~' see ( 2 9 )  . 

If A is an H -curve then the genus of F~ is zero. Conse- 

quently, ~z = 0 and ~( ~Z]= 0 So we get (I.A) . If A is an 

[M_1)-curve then F~ is homeomorphic to the projective plane with 

several holes. So in this case the associated nonsingular space has 

dimension one and we get ~( ~Z]= ~ ~ (see 5.4) and (I.B) . If A 

is an (M-~]-curve of type ~ then F~ is homeomorphic to the 

Klein bottle with several holes. In this case the associated nonsingu- 

lar space has dimension 2 and it is odd, so that we get 5(~=0 or 2 

(see 5.4 and (I.C)) . If A is of type I,then ~ is even and 

~(~]~0 ~ 0 ~  ~ " This gives ( I , D )  . 

6.2. An auxiliary surface and its decomposition. 

For every singular point p of the curve ~ let us fix a suffi- 
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ciently small ball ~p ~ ~P2 with center in p Introduce an 

auxiliary curve A£ defined by an equation ~=-6(~< ~ +  ~] 

where ~ is the polynomial chosen as in 2.4 up to a positive con- 

stant factor and 6 is a positive number such that for any t £[0,~] 

the curve defined by the equation ~=-~ (~i+ ~q-~ ] has 

no singular point and is transversal to $~p for each p , cf. 

2.3. 

Let us factorize ~pZ by 6011, i 
face F = ~A$ tc0 j ultl   where 

inequality ~ - - ~  { ~ q -  %~" ~t ~) 

and take in 5 ~= ~P~/OO~j sur- 

~PI C ~pZ is defined by the 
• This auxiliary surface has 

a corner ~A% . The intersection of F with 

n o t h i n g  b u t  t h e  s u r f a c e  7-1> c o n s t r u c t e d  i n  2.4. =e t  us se t  7--=U7-f> 
and ~ =U ~p 

We decompose F into three pieces H ,  ~' 

coincides with ~p~ , ~ is a union of 

RAg\ u in GAg ,/00~j \ U l~t ~p and 

k(~Iu fl)) Each piece is a compact surface. Boundaries 

of N I and N II form together the boundary ~ of N 

of H '1 is homeomorphic to ( ~ \  ~A]/oO~j • 

The surface ~ plays first fiddle and we need to know some its 

details. Each oval of ~A£ begotten by an oval of EA gives rise 

to a component of N homeomorphic to an annulus. Let us remove these 

components and denote the remainder by ~ . A boundary of R~ 

consists of real (contained in h i ) and imaginary (contained in ) 

circles. There exist natural isomorphisms 

and where 

with a small color C of 

N 'i= C~ (F\ 
0' 0' a n d  

. An i n t e r i o r  

(3o) 
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H,(a"nn,,;z 4 )  . . B~, 

H,( FI,,, Z4')t,;~,,,H, (,~' nFl,, ',Z/,~] 
H,l%,, Z/;~)/~., H,I an~, 2:4) " V~ /B , ,  

(31) 

t ~,, ,V;, ,V,, , P,,, ,B'~ ,B~ 
diagram 

are as in 2.4) such that the 

H~(8 nFI~ 

H,(a' n n~; Z,,~) 

%(1%u ~-~ Z 4] 

~x a ~-' V a " -~ V ~  

is commutative. 

6.3. Computation of the Z4-quadratic form. 

In this section we compute a form ~w: H4(~AU ~ " ZA) ---Z~ 

induced by inclusion ~ A U ~ c , F from the Rohlin-Guiilou-Ma- 

rin form ~ of {S 4 , F) . More precisely we prove that the~ isomor- 

phism~ ~ (see (30)) identifies ~ with~ ~ 

Recall that ~ = HI[~ ~ ~Z/~] ~ H4( ~--- ~' Z/~) and re- 

mark that ~-4 coincides with a sum of composite homomorphism 

(here F A is as in 2 . 4  and W is a regular neighbourhood of ~& U 

U ~ containing FA ) and ~: m~[~ ;Z/~) ~m4[~uE ~Z~). 



394 

New it is clear that to prove the coincidence of the quadratic forms 

sufficient to check that ~o ~-~ satisfies condition (iii) it is 
I 

from 2.4, which determines ~A . Moreover only formula (10) 

requires to be verified since the others are immediate consequences 

of the definition of the Rohlin-Guillou-Marin form. 

In fact (10) is nothing but a special case of the general rule: if 

then 

{ C_4) ~ P 

0 , i f  m~(~)= 0 

(here {~F is the inclusion ~pZ£ c ' F and {[~P is 

the inclusion ~ p ~  e- ,, Rp2") . 

In the case where ~ " (~)=- 0 the equality turns into 
^I I¢-\\ n .  F 
~ , l l , , I , % J /  = U and was proved by Marin ~L12 "1 (cf. 6.1). It remains 

to show that ~ [~(%)) = (-~I ~ if ~ ( ~  ~& 0 . It may be done 

as in the previous case using a special membrane. We like to do it 

in another way. 

Let Us suppose that ~[~ H 4 (~P~ ,Z~) =~0 and denote by 

~ and~Rthe forms induced by {~" H4 (~A6/60~] '~ Z/~) 
z . 

- ~ H~(F; Z~)and ~ { :  H~(RL ,Z/~) ~ H~(F; Z } from (IF 

As it follows from Marin's result there exists ~ #/Z{-~ ,4} - such 

that 

for any ~ with ~P~ (~) ~= 0 

0 for any ~ with ~ (~) = 0 

~ence firstly by ~3 invariants ~(~,BI~ are well defined and 
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and, secondly, 

Furthermore, as in 6.1 applying of (28) we get 

(34) 

F' NOW let us introduce :CA£ /C0~ i U R~£ where R >6 =C~ (~\ 

\ R~6 ~ ~ . Repeating previous notations and arguments obviously modi- 

fied we obtain 

I Both forms ~, ~ are defined on H 4 (C~£ /~0~i ~Z/2 ,) 

H (fA /00 j ; Z/zl the difference ~[~--~[~) 

es with the linking number of ~ with RP z 

~(:Z/~ --~ Z4)- This linking number is 0 iff 
I 

~ = -- ~ and thus 

(36) 

(37) 

• For 

coincid- 

multiplied by 

= 0 so 

(38) 

Let us sum (33) , (34) , (35) , (36) , (37) and (38) . Then taking into 

account that %(Rp~£ ~n u %(RP~£)-~ ~ we get ~ = ~ _~Z ~0~ ~. 

Since Z ~[~ -~} this implies Z = (-4) ~ 

6.4. Proof of the theorem (3.A) . 

Let F~ ~ ~ N 11~ ~ R~ ~ ~ ~ and ~ be as in 6.2 and 

6.3. According to 6.3 the ~ -quadratic space (H~(~AUZ ~Z~), 

o , is isomorphic to (V~ 7 ° ~ ~I and consequently by the 

hypothesis of the theorem it is informative. So we can apply 5.3 to 
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decomposition F = F 4 U F;5 
t20|IU (RPt \ ~ t  Z) We get 

w i t h  F~=Fiu 7- a~d F~ = 

Bt$) = B{~,~ + Bt~ . )  

where ~=~°{m,,-H, tE;Z/;) -H,~iF;Z/z)).Tae ~ i s  zero 

on ~, H~tO\Oa, ZI~) '- H~(F~ ; Z/z)  since O\OA consists 

of components of N which are homeomorphic to an annulus and each 

contains an oval in its boundary. It follows 

I$ ({t,~)= BI~ ' /  

The r e s t r i c t i o n  of ~ to 

by (32). Thus 

where 

are defined 

is as in ( 3 . A ) a n d  ~'1= ~o{~[~, . H, In" ;z~ )-,--H, IF, Za  )} 
To finish the proof we repeat Marin's arguments reproduced at the end 

of 6.1. Here we use that the interior of 01 

(~A\RA]/CO~] and that the number Fo F 
formulae 

F o F = Z~ ~ - 2  7~(RP~) 

is homeomorphic to 

is determined by the 

6.5. Proof of the theorem (3.B) . 

It is similar to that of (3.A). They differ in the choice of de- 

composition F -- F1 uF % only. Here we take FI=R and F%=NIuO I 

By (32) thc ~ is zero on ~ H4(? l'~Z/d) and by the hypothesis 

of the theorem it is zero on ~ HI( ~'I • Z/~)~ . so applying 5.3 

we g e t  
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where %~=%0{G~:fl4(F~,Z/~)-~H~CF;Z i ) .Isomer- 

phisms given in 6.3 show that the ~4 factorized from H4[F{~ Z~) 

to 14~CF~ ~ J V ~ , H . t ( 6 ~ F 4 ,  is isomorphic to ~& . At 

last B( ~ = ~ + 5(~ |) where ~ is as in (3.B) and ~ is as an 6.4. 

So we get 

and the end of the proof is fairly the same as in 6.4. 

6.6. Proof of (4.B), (4.C) and (4.F). 

First we are going to check that under assumptions of (4.B) or 

(4.C) the ~A vanishes on ~ . Since there is an isomorphism (31) 

between BIA and HiIaI1~~Zz) transfering ~A to ~ " ~ 

where ~ is the Rohlin-Guillou-Marin form of ($4 ~ F) , it is 

sufficient to check the vanishing of ~ on i~wH41~II~H~ ;Z/~) 

Under assumptions of (4.B) each component of R u contains no 

more than one component of ~ii ~ ~& . Consequently the homology 

class realized in H4[F, Z/~) by that component of #i, ~ ~ & is 

equal to the sum of the others boundary components of and so 

this class lies in ~ H4(#' , Z/~ I ~ where ~ vanishes. 

Now let assumptions of (4 .C) be fulfilled. Then for each component 

any homology class realized in H4[F ~ y boundary compo- 

nents of that component of ~U reduces to the sum of an element of 

~wH 4 (0I ~ Z/~) and elements realized by circle components of ~ 

~(~p ) (ones begotten by imaginary branches of the curve A 

at its singular points). Consider one such component r of ~ 

#~Z , the class [~] ~ H 4 IF ~ i/~) realized by ~ and 

the boundary ~ of F ~ ~ ~ . Then 

where ~ i s  l ink ing  = u ~ e r  in ~ , 0 ;  = 5 3 and hence 
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~ is the natural projection and ~ is any where p~ : ~ 

component of p~-{(~] . The latter linking number is equal to the 

intersection number of the non-real branch /6 of A at p which 

begots ~ ~ with the union of all branches different from ~ and 

~i A . Thus ~(r) = 0 and we have finished the proof. 

To prove that under assumptions of (4.F) the ~A vanishes on B a 

it is sufficient to note that: boundary components of y£ give gene- 

rators of ~ ; for elements of i~H4(?~-~, Z~)the values of 

the Rohlin-Guillou-Marin form coincide with the linking numbers involv- 

ed in (4.D) ; the Rohlin-Guillou-Marin form vanishes on {~H4{~ + ]~4) 

cf. 6.1. 

§ 7. ANOTHER APPROACH 

7.1. Prototype: Rohlin's proof. 

Let 

manifold 

6 be an antiholomorphic involution of a closed quasicomplex 

V of complex dimension £ ~ . Suppose that 

where Y is the fixed point set of C • 

By the Atiyah-Singer-Hirzebruch formula, it is hold (and this 

result does not use (39)) the relation 

(39) 

(40) 
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where ~( ~ =I 0% --Jl is the signature of the bilinear form 

~ obtained by restriction of the intersection form of ~ to 

H ~ ---- Ke~ { t + ~ C~: H~[~ /  ~ H2~[~J/~ . By the Smith theo- 

ry arguments the assumption (39) implies that forms 6L are unimo- 

dular. The form ~(_|~+4 is even and, since the signature of any 

even unimodular form is divisible by 8, from (40) it follows 

Turning to a real nonsingular plane projective Curve ~ of even 

degree, one should associate with it the 2-sheeted branched covering 

space ~ of ~p~ with branch locus ~ and the involution 

which covers ~0~ i and has 7 lying over ~ _ . Such ~ , 6 

exist and are unique. The condition (39) holds iff A is an H-cu- 

rve. The congruence (41) applied to these ~ ~ ~ reduces to the 

Gudkov-Rohlin congruence [ ~{y)=~_Z~i~+~ ~(~)=~ _ ~). 

7.2. The Atiyah-Singer-Hirzebruch formula for manifolds with 

boundary. 

Let C be an antiholomorphic involution of a compact quasicom- 

lea manifold ~ of complex dimension ~ with a boundary ~ 

Let y denote, as before, the fixed point set of 0 . The normal 

bundle of ~ in ~ is just the oriented one-dimensional bundle. 

Thus the complex structure in the tangent bundle T~ induces the 

complex structure in the direct sum of T(~) with the trivialized 

one-dimensional bundle. Let us denote the complex structure introduced 

b~ e 

(7.A) The number ~ satisfying the formula 

IY) = ~ (~) - Z ~t ~ + ~ (42) 
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is an i nvariant of the triple ~#~, C I ~9 , ~) . 

We have to check that the difference ~= ~[Y)--~(y)d-2~i_~%m+ 4 

depends only on (~ ~I~ 70) . Given another pair with the 

boundary triple isomorphic to (~, Cl~, ~) , let us glue it to 

(~ O) along the boundary. By additivity of ~ and ~ , (40) 

applied to the closed manifold obtained by the gluing shows that the 

numbers ~ given by the halves coincide. 

7.3. ~/2Z -quadratic spaces. 

By ~/2Z-quadratic space it is called a triple (V~o 7 ~I con- 

sisting of a finite group V , a symmetric bilinear form Vx V - 

~/Z" (~7~)' ~ ~o~ and a function ~: V TM ~/2Z which 

is quadratic with respect to that bilinear form, i.e. 

for ~, [~ (: V , where ~[ ( ~ / Z  "- { ~ . , / ~ Z  is the canonical 

isomorphism. The canonical embedding "~/,,~ : Z / Z j  Z " ~.,/2 Z allows 

to consider Z/~ -quadratic spaces as ~/21-quadratic spaces. 

A ~/~Z-quadratic space 5 = IY~ 0 ~) is said to be non- 

singular if its bilinear form o is nonsingular, i.e. its radical 

~(5) = ~ ~ V IV~ V ~o~ 0~ is the zero-subspace. 

Any ~/~Z-quadratic space can be obtained in the following way. 

Let L be a finitely generated free abelian group endowed with a 

non-degenerate even symmetric bilinear form h x L " Z " (~,~I i " 

• ~ ~ < ~£,9> . This form has a unique extension to L ® ~ . By 

the correlation isomorphism ~ : L~ ~--~C=H0~(L,~I defined by 

the group 

group: 

L Ho (L, Z1 can be considered as an intermediate 

L L = Le¢  
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Then we obtain a ~12Z-quadratic space {V, o , OV) taking 

V = L " / L  , j  

c~(~,) = < ~ , x >  ~0ct 2 Z  for a ~  ~ V 

It is easily checked that o and ~ are well defined. 

If V has no element of order 2 then evident relations 

q,{tr)~0£ 7 / =  U'oV', z ~ o~(~r)=0 ~f z is orde~ of tr (43~ 

allow to determine ~ by o 

The van der Blij formula [3] states that 

v'~V 
(44) 

where ~ is the signature of the form < , > 

7.4. The case where 2,torsion in homology of boundary vanishes. 

Let 

plex manifold 

fixed point set of 

with the form < 

be an antiholomorphic involution of a compact quasicom- 

of complex dimension Z • . Let y denote the 

. Endow the group L= H~ru(~)/To~ t {~H~(~Y) 

> , induced by the intersection form of 

Consider the 

(L, 
a n d  

~/2 Z-q uadratic space (V 0 ~ ~) associated with 

< 7 >) • Then V is nothing but To~5 H£~_I(~)~ ~H~(~7 ~) 

o is the linking form. Thus we obtain (see 7.3) 

H (~) has no element of order 2 the space (7.B) ~If £~_1 . . . . . .  

~I is determined by ~ , namely, 
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V = To~ H~._~ {SY)n a tqz,[9, ~tJ) 

o is linking form , 

is defined via o by (43) 

Suppose now that 

by the Smith theory 

(L+~ < , >) and 

~{~1" ~IY ; Z/g) = ~[f~ ~,[~ "~ Z/~) . Then 

(L, < , >] is an orthogonal sum of subspaces 

(h_ , ( ~ >) , where 

This immediately implies 

[7 .C) I Z H~_ i (ay) has no element of order 2 and 

then the 

(L ~_~, < 

Q/~Z-qu~Jadratic space ( V~ i)~ ," , ~ ] associated with 

, >) ~N ...~.~ ~ . ~ i s  determined by (~y , 0 ~) , namely, 

Q is the linking form 

-~is defined~ via~ o ~ (43) 

By (7.C) ~the Atiyah-Singer-Hirzebruch and the van der Blij formu- 

lae imply 

(7.D) If H Ztl,_t (~Y)  has no element of order 2 and 



403 

then 

where 

%[Y)=- -Z6 

~[~01 ~ is defined by 

e v ; -  = (¢o.zd, V_ 

with V_, ~ from (7.c). 

7.5. Application. 

Ir£ V_ 

Let A be a real plane projective curve of degree 111, = Z~ 

without non-real singular points and let for every singular point in 

some (perhaps nonlinear) coordinated ~, ~ in some neighbourhood 

of the point the curve is defined by an equation 

E$ in Arnold's notations) or by an equation 

( ~- 0~)(~-~)(~--C~) = 0 ( 6~ ~ ~ C are distinct real 

numbers) 

(~i0) • Let R p +  ~ be the half of Rp ~ which is not contrac- 

tible to a point in ~PZ (and, of course, is bounded by ~A ). 

(7.E) If A is an M-curve then 

where ~ is the number of points of ty~pe E 

number of points of type 
. - , . ~ . . , . . . , ~ ~ . ~ - . . , . . - . ~  440" 

and j is~ the 

To prove (7.E) it is sufficient to apply (7.D) to the case where 

is obtained by removal of neighbourhoods of singular points from 

the two-sheeted cover of ~p~ with branch locus 6 A " The 
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should be choosen to cover 60~ i 

over R~+ . Then ~_~C ~ ~) 

and to have Y = F6z c 

has no torsion and 

lying 

The last equality is a special case of the general rule: any quasiho- 

mogeneous singular point makes a contribution - ~ to ~ . This 

rule is a straightforward consequence of the definition of 
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