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In the present paper!, the generalized H. Hopf’s invariant
H: 744041(Sp+1) = Tarn+:(Soms1), due to G. Whitehead [10], is given a new
definition which has some similarity with the original H. Hopf’s definition
[6]. The invariant H(f) appears as depending in particular on the position
in S,...: of the inverse images M,, M, by f: Szin+1 = Sp+1 0f two regular
values ¢, ¢’ in S, ...

Arnold Shapiro has defined the linking coefficient of two spheres S,, S,
imbedded (without common point) in E,., for p + ¢ > m.> In§5, the
notion of linking coefficient is extended to (p + ¢ — m)-connected =-
manifolds M,, M in E,.,.. It is an element of the stable homotopy
group 7,.y(Sy), where r = p + ¢ — m (z-manifold = manifold which can
be imbedded in some euclidean space with a trivial normal bundle).

In the definition of H givenin § 3, M, and M are n-manifolds but need
not be (d — n)-connected. As a consequence, H will in general also de-
pend on the fields of normal vectors over M and M’. Therefore, it cannot
be considered strictly as a linking coefficient which should be uniquely
determined by the position in space of the two manifolds. It is an open
question whether the method can be used to define the linking coefficient
of (non-necessarily (p + ¢ — m)-connected) n-manifolds M,, M, in E,, .,
by going over to the quotient of 7,.,_m+x(Sy) by some suitable subgroup.

As an application of the new definition of H, it is proved that any
regular imbedding (without self-intersection) of the d-sphere into euclid-
ean (d + n)-space induces over S, the trivial normal bundle provided
that 2n > d + 1. A partial result in this direction was announced in [6].

1. Notations

E,,.. will denote euclidean (m + 1)-space (space of infinite sequence of
real numbers ¢, =0, 1, 2,- - -, such that ¢,=0 for M>m). E,,CE,..,. The

1 This research was supported in part by the United States Air Force under Contract No.
AF 18 (603)-91 monitored by the Office of Scientific Research and in part by the National
Science Foundation under Grant NSF G-3462.

2 Unpublished. The author has attended a talk by Arnold Shapiro at the Harvard-M.L.T.
Colloquium entitled On higher linking coefficients. Some of the results stated without proof
by Arnold Shapiro during his talk are used in the present paper. The proofs given here are
my own.
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m-sphere S,, is the subspace of E,, ., given by Zi(tl)z-—-l. Thus S,,C S, +1-
The normal to E,, in E,,.; will be the vector t,,=(01, ***, 6im, -=+). The
sphere S,, is oriented by the ordered set of vectors t, t,, ---, t,, tangent
at (1,0, ---). We have B,,,, =S,,, where B,,., is the ball in E,, ., charac-
terized by Ei(ti)2 < 1, with the orientation induced by B, +; C E, 1.

We set the mapping s: E,,.; = S,,.; to be the one given by the formula

NN —(1—-% 2 ,,,,?tm,->
WD) sttty ) = ([ TR e L)
where ¢* stands for Ei(tz)“. Notice that s is orientation preserving.

For the reader’s convenience and in order to fix orientation conventions,
we recall the following well-known construction due to L. Pontrjagin,
B. Eckmann and R. Thom [7], [3] and [8] :

V, being a closed p-dimensional submanifold of E, . y(C*imbedded) with
a field of normal N-frames® Fy = {vy, v,, ---, vy}, a point v € E,,y in a
tubular neighborhood U of V of radius p lies in the normal plane to V at
some well defined point « € V. Let u,, u,, ---, uy be the coordinates of
u relative to the vectors vy(x), vy(x), «- -, vy(x); f‘di(ui)2 < p* To(V,; Fy)
is associated a map 7 : S,.y — Sy defined by '

(1.2) {T(%) =1 -2 2y(1 — )7, -+, 2yy(1 ~ y»)"?) foru e U,
T(S_ SU) = (_1’ 07 ccy 0) ’
where Y = ui/p and y2 = Ei(yi)z-

REMARK 1.3. If the field F orthogonal to V, in E,,, is replaced by
F} obtained by letting a non-singular constant N by N matrix A act on
the vectors of Fy, then the maps y and 7’ attached to (V; F) and (V;F’)
respectively are related by 7’ = (¢iy) o 7, where o = sign det(A4).*

By an obvious generalization of the above argument one associates
with a submanifold V, of the manifold X,. , together with a field F of N-
frames orthogonal to V, in X, .,y a mapping X, ., y—>Sy(X, .y being assumed
to carry some Riemannian metric). Here V, is not necessarily closed.
However, one should require V; < X,,,. Itisalsoconvenient to require
orthogonality of the tangent plane T (V,) and T(X,.y)atx € V.

Recall that any homotopy class of mappings X, .y — Sy, where X, is
a C~-differentiable manifold can be represented by a map associated with
some submanifold V, c X,,, and field of N-frames orthogonal to V, in
X..+n. Indeed, any such class contains a map f: X,.y—Sy of class C"+¥

3 In this paper N-frame means ordered set of N linearly independent vectors.

* Recall that (kin)oy =ky + (1/2)k(k — 1) [in, ix]oHo(y), see P. J. Hilton, On the homo-
topy groups of the union of spheres, J. London Math. Soc., 30 (1955), 154-172. In particular,
if y = E2, Hy(y) =0 and (kin)oy = ky. This is the case if » < N — 1.
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and it is well known that (under these differentiability conditions) the
set of regular values of f is an everywhere dense open subset of Sy (see
[8, Théoréme 1.3]). Let ¢ € Sy be a regular value of f. The inverse
image f~Y(g) is an r-dimensional submanifold V,, C"*¥-imbedded in X,, .
Furthermore, f induces a linear mapping F.° of the tangent plane to X at
x into the tangent plane to Sy at f(x). The fact that ¢ is a regular value
of f means by definition that F', is onto for every = € V,. The tangent
plane to V, at z is (as a vector space) the kernel of F', and its orthogonal
complement Ly(x) (in the tangent plane to X at x) is mapped isomorphi-
cally onto the tangent plane to Sy at ¢. It follows that a fixed N-frame
u;, u, -+, uy tangent to Sy at ¢ and inducing the positive orientation of
Sy admits for every € V, a unique inverse image v,(x), v.(z),- -+, vy()
by F,in Ly(x). When & runs over V,, we obtain a field Fy={v,, v,,+ -+, vy}
of N-frames orthogonalto V. in X,,,. The mapping X,.y,—Sy associated
with V., and Fy is homotopic to the mapping f we started from.

Notice that if r: S,,y — Sy is the map associated with V, ¢ E,., and
Fy={vy, Vv, «++, vy}, thena =(1,0, ---) € Syisaregular value of 7 and
the derived map I', at x € V, sends v,(x) into t;, 2 =1,2, ---, N.

Since most of the maps occurring in this paper will be described in
terms of manifolds and fields with which they are associated by the above
procedure, we proceed to a description of the various needed homotopy
operations in these terms.

1.4. The suspension homomorphism E: m,,(S,) = 7p+e+1(Ss+1) can be
defined as follows (see [3], page 22):

Using E,., C E,,. and adjoining to the vectors of F, = {v,, - -, v }
at each @ € V, the vector t,., orthogonal to E,,, in E,.,.; (eventually
multiplied by a positive continuous real-valued function of x), we obtain
V, as a submanifold of E,,,,, with a normal field of (¢+1)-frames F,,,=
{vy, =+, Vo tyuo}. The attached map S,.,.; — S;4; is the suspension of
the map S,., — S, attached to (V,; F,). There is agreement in sign with
the usual E defined by suspension on the last coordinate (or alternately
by E(f) = f *1, as in [10], § 3 V, page 206).

1.5. The Hopf construction associates with a mapping ¢: S, x S,—S,
a mapping G¢: S,, .1 = S,+1(see [6] and [10], § 3, VI, page 208). We
shall make use of the following definition : Replace ¢ by a C**¢-differenti-
able approximation which we denote again by ¢. Let b € S,, be a regular
value of ¢ ; denote by V.(r = p + ¢ — m) the inverse image ¢~'(b) and by
F, = {vy, +++, v,} the field of m-frames orthogonal to V, in S, x S,
induced by ¢ and a fixed frame u,,- - -, u,, at b giving the positive orienta-

5 F, w-ill be callgd the derivative of f at x.
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tion of S,,. In order to obtain V, as a submanifold of E,.,.;, we imbed
S, xS, into E,. .., by the mapping i: S, x S,>E,.,+: given by the formula

(1.6) U@, ¥) = (@(eyy + 1), «««, xleyy + 1), €Yy, +++, €Yo ,

where « and y stand for (x, «;, -+, ,) € S, and (y,, ¥1, *++, ¥,) € S, re-
spectively (¢ < 1). Notice that (S, x S,) is the boundary of a region in
E,...: homeomorphic to S, x B,,;. Denote by w(x, y), for every
(x, y) € S, x S,, the unit vector orthogonal to S, xS, and pointing out-
wards this region.

Let G’'¢ be the homotopy class of the map S,,,.,—S,,.; associated with
V., (as a submanifold of E,, ., by the injection ¢) with the field consisting
of the vectors of F followed by the vector w.

CLAmM. Go¢ = (—1)*G'¢, where G is defined as in [10, § 3, VI, p. 208].

ProOF. Denote by Wy, the cube in E,, defined by —1=¢, < +1, 4=
0,1, ---, N. We have S,,.s1 = 7W,.q+. Where r denotes radial pro-
jection r: Wy,, — By., as given by the formula

A7) rt)=at (@=[tI/lItl [t]=max sl Itl=(Ts") .
Notice that r is orientation preserving.
We have Wi, = Wi x Wey + (= 1) W,,, x W, and

Ge| Wy x Wea=¢|rW,, xrW,,,. The following diagram (in which
T=si(S, x B,,)) is homotopy commutative relative to (W, x W.,,,S,.)

Wi X Wau
lrxr NGe
h E-
Sp X ‘Bq“_1 / m+1
lsi G'e
T

Indeed, G¢|T" ~¢p=¢|rW,,  x Wiy =Ge| W, x W.,.. Now
any two extensions &, &, ; (X, A) > (K., S,) of homotopic maps
®y 911 A— S, are homotopic relative (A4, S,).® Any extension P:
Wisars = Spiqes of 8i(r x r): Wi x Wooy = T C Spuqer, such  that
P(W .1 X Wi)SS,40:1 — T has degree (—1)? (because ¢ has ““local ”’
degree (—1)* and s, » x r are orientation preserving). We thus have
the following homotopy commutative diagram

ie., if ¢, A > Sy exists, then &,: (X, 4) > (Em+1, Sm) with $;|A = ¢; exists for any
choice of &g, 1 extending ¢y, ¢1 respectively.
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W;+q+2

(4

. s
I

p+q+l
from which G¢ = (—1)*G’¢ follows.

1.8. The Hopf homomorphism J : 7 (SO + 1)) = Tasns(Sps1).  Let
S, E;.; C E;uns and regard the set of vectors x, tg4, <-¢, tern as an
orthonormal basis in the (n+1)-plane orthogonal to S, in E,,,., at ze S,
Let M: S,—SO(n + 1) be a mapping representing some element
pe 7(SO(n + 1)) and let vy(@), vi(x), -« -, Va(x) be the row vectors of M(x)
relative to the basis X, toy, *+*, tasn; i-€., Vi(@) = Bu(@)x+2 7 @5 (2)tass,
where a;,(x),i =0, -+, n,5=0,1, -+, n are the entries in the matrix
M(x). By construction (1.2), there is a map f’ : Sqsns1 = S,+1 associated
with S, and v, vy, + -+, v,. Define J’z = homotopy class of f’ (it is clear
that the homotopy class of f’ depends only on the homotopy class of M ).

CLAIM. (—1)%'pt = ((—1)"p4y1) © Jp2, where Jp is as in [10, § 5, p.214].

ProoF. We compare the homotopy class of f’ with G'¢ = (—1)'Ge =
(—1)%Jp, where ¢ : S, x S, — S, is the map defined by ¢(x, y) = M(x)y.
Notice that G'¢(T) c E;,, where T = si(S; x B,.;). Denote by
@ : S, X By~ B, the obvious extension of ¢, defined again by ¢(x, Y) =
M(x)y. The following diagram, where « is given by a(y, +-+, ¥a) =
(W, * * *» Yny —(1 — 9*)'"*) is homotopy commutative relative to the bounda-
ries.

el
T L B
NG
st a
N
Sq X By — B,y

The maps f’ o st and @ are equal. G'¢ o si~a o ¢ rel. (S, x S,, S,) because
their restrictions to S, x S, are homotopic. It follows that the upper
triangle of the diagram is homotopy commutative (relative boundaries)
and since « has degree (—1)", we have G'¢ ~ ((—1)"in+1) oS-

1.9. The join. Let a:8S,—S,, #:S,— S, be mappings. Identifying
Sy, By+ With Wiy ,., Wy, respectively under radial projection r (see(1.7)),
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define 1: W, 1o > W, nss by the formula

1.10) A=, y) :{(Oé(x), Wy 1l B/l 1)) if (x,y) € WX Wen
(Il Il a(@/ll 1), ) if (@,9) € WyuxWan,

(Whirgss = Wohit X Wy U Wosy x Wi,i). The mapping 2 is known to
be homotopic to the join « * f# (see [2, Lemma 2.2]).

We construct a map #(«, 8): S,+q = Sns+n as follows: Let (W,_,.; F,.),
(We-n; F,) be manifolds and fields with which « and 2 respectively are
associated (up to homotopy; W ,_,,Cc E,, W,_,CE,). Consider W,_,,x W,_,
as a submanifold of £, x E, = E,,, with the obvious field F,, x F,,. This
induces the map =(«, B).

LemMMA 1.11. En(a, f) = (—1)"™a * f3.

PROOF. En(a, f3) is associated with ¢«(W,_,, x W,_,) and the field con-
sisting of the images by ¢ of the vectors of F,, x F, x (—1)**w. In the
definition of 2, S, x B,,; and S,, x B,,; are mapped with degree +1 into
Spiqr1y Smen+1 respectively. Since i: S, x By, = E, ..+ has local degree
(—1)? and s is orientation preserving, we have (—1)"**Ex(a, f) =
(—1)([(— 1), 4 +1] (@ * B)), from which 1.11 follows.

2. Generalized Hopf’s construction

Letf: M,— E,., and f': M;— E,., be regular C*imbeddings of the
closed manifolds M,, M| into euclidean spaces and assume the existence
of fields F,, F, of u- and v-frames orthogonal to M, and M, in E,,, and
E,., respectively.

LEmMMA 2.1. With any homotopy class of mappings ¢ : M, x Mj;— S,
there is associated a homotopy class G(¢, f, F, ', F') € mpwqruro(Smiuso)-

The class G is obtained as follows : Take ¢ to be differentiable of class
C**? and let U, be a spherical’” open subset of S,, in which ¢ takes on only
regular values. Choosing be U, and F,,(b) to be a fixed m-frame tangent
to S,, at b and inducing the positive orientation of S,,, we obtain a sub-
manifold V, = ¢7%(b) € M, x M}(r = p + q¢ — m) together with a field
of m-frames F,, orthogonal to V, in M, x M| (with the metric induced by
the imbedding f x f': M, x M}, — E,sy+.+,). The vectors of F,, atxze V,
are the inverse images of the vectors of F,,(b) by the derivative @, of ¢
at x. Regarding V, as a submanifold of E,,,.,+, (using f x f'| V,) car-
rying an orthogonal field of (m + u + v)-frames consisting of the vectors
of F, followed in order by the vectors of F/ and those of F,,, we obtain a

7 U, consists of the points whose spherical distance to some point of S,, is smaller than
some ¢ > 0.
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mapping 7¢ : Spigruts —> Smiuso Oy Construetion 1.2.

CLAIM. The homotopy class of r¢ depends only on the homotopy class of
¢ (and on f, f', F,, F).

PROOF. Obviously the homotopy class of y¢ does not depend on the
choice of b € U, and by Remark 1.3, it does not depend on the choice of
F..(b). Let ¢, ¢, : M, x M)—S,, be C**-maps taking on regular values in a
given spherical open subset UC S,,. Assume ¢,~ ¢,. Let ¢: M, x M x I>S,,
be a homotopy. By Lemma IV. 5 of [8], ¢ may be chosen to be differenti-
able of class C?+1, There exists then by Théoréme 1.3 of [8] an open
spherical subset U, of U consisting of regular values of the three maps
¢, @0, 9. Choose b € U, and let W,,; = ¢7'(b). It is easily seen that the
boundary of W consists of the manifolds V° = ¢;'(b) and V' = ¢7'(b),
ie. W' = £(V'— V9. Assuming, without loss of generality,® that the
derivatives of ¢ with respect to ¢ are zero for ¢ = 0, 1, the fields induced
by ¢, and ¢, over V°and V" coincide with the restriction over W" of the
field given by ¢ over W (the fields induced by ¢, ¢,, ¢; are supposed to be
the inverse images of the same m-frame F,,(b)). Regarding W as a sub-
manifold of E,,, x E,., x I in the obvious way, we obtain (by straight-
forward generalization of construction 1.2 to manifolds with boundaries)
a mapping S, gru+y X L —= Sp4u+, Which is a homotopy of 7¢, to 7.

From this follows :

(1) The homotopy class of y¢ does not depend on the choice of U,. If
7(¢, U,) and 7(¢, U}) are the mappings S,.qsu+o = Sn+us+» Obtained from
two different choices, then set ¢, = 7 o ¢, ;=1 o ¢, where r, ' : S,,—S,,
are diffeomorphisms of degree +1, such that »(U,) = U, »'(U,)=U. We
have ¢, ~ ¢, and 1(¢, U,) = 7¢, ~ r¢, = 7(¢, U,).

(2) If ¢, ¢' are any two homotopic C?**-maps M, x M; — S,, there is
a spherical open subset U’ of U in which ¢ and ¢’ both admit only regular
values. The above claim follows by replacing ¢, ¢’ by ¢, = 1o ¢ and
¢, =1ro¢, where r: S, — S, is again a diffeomorphism of degree +1,
such that »(U’) = U.

The question : How far does G(¢, f, F,, f’, F.) depend on f: M,—E,,,,
f':M,— E,., and on the fields F,, F,? will be only partly answered by
the following two lemmas.

LEMMA 2.2. If M, and M, are (p-+q—m)-connected, then G(¢, f, F., f'F;)
does not depend on the choice of the fields F,, F., at least up to left composi-
t90M WIth + Gpryrey WHETE T, vuss: Smiuss —> Smeuss 18 the tdentity mapping.

It would be easy to set up orientation conventions to avoid the possible

8 If Vitiwere> ﬁot é—o, replace ¢: M, x M; x I - S, by ¢* which takes at point (z, 2/, t) the
value ¢(z, =/, (1-cos ©t)/2).



352 MICHEL A. KERVAIRE

factor +%,.,+,- However, in the sequel, it is cumbersome to prevent the
appearance of manifolds and fields with the ¢ wrong ’’ orientation (what-
ever convention is chosen).

PrROOF OF LEMMA 2.2. Let F,, F, be an alternate choice of fields of u-
resp. v-frames orthogonal to M, and M) in E,.,, E,.,. They define
together with F,, F, mappings w: M, — O(u), o' : M;— O(v) given by
o(@) = (vi(x)-v,(x)), 4, j=1, ---, u, where v,(x), v{(x) are the vectors of
F,, F, at # (we assume as we obviously may that the v,(x) as well as the
v,(x) are mutually orthogonal unit vectors ; O(V) denotes the orthogonal
group in N variables). Define w x o' : M, x M}y — O(uw + v) by

o X o'(x, ) :<w(go) f(;/)).

Since M, x M} is (p + ¢—m)-connected, the inclusion V.-, € M, x M|
is homotopic to zero. Therefore, w x '] V, is homotopic to zero. Hence,
there exists a continuous family F,.,(t), 0 < ¢ < 1, of fields over V, of
(v + v)-frames orthogonal to M, x M} in E,.,+u+, such that F,.,(0) =
F, x F,| V, and F,.,(1) = A.F, x F,|V,, where A is some constant
(# + v) by (v + v) matrix. The family 7, of mappings S,:gsu+o = Sn+u+o
associated with V, and the field F,.,(¢t) x F,, provide a homotopy of
1@, 1, Fu, 7, F1) 10 [08psusal © 17(¢, f, Fu, f', F2), where o = sign det A(F,
is the field over V,, tangent to M, x M| which is induced by ¢ from some
‘‘ positive > m-frame at the point ¢(V,) € S,.).

LEMMA 2.8. Ifp+q+1<u-+v-+2mand M,, Myare (p + q¢ — m)-
connected, then G(¢, f, F,, f’, F.) does not depend either on the imbeddings
5 F! (again up to left composition with =+t,.u+s)-

This follows from the fact that under condition p + ¢ + 1 < u+v+2m
(in other words p + ¢ + u + v = 2r + 2) two imbeddings f x f’ and
Fxf of V, into E,.,eus. are regularly isotopic [14, Theorem 6]. By
the covering homotopy theorem one can carry along the fields during
the deformation and then Lemma 2.2 yields the result.

3. A homotopy invariant

Let f: Spsns1—S,+1 be a C**n+differentiable mapping and let U, U’ be
disjoint spherical open subsets of S, ., consisting of regular values of f.
Take points ¢, ¢’ in U, U’ respectively. Denote by M,, M, the inverse
images by f of ¢, ¢’ and let F,,,.,= {u,, uy, -+, u,}, F,., = {uj, uf, -+, uy}
be the fields of (n + 1)-frames orthogonal to M,, M} in S;.,., obtained by
taking the inverse images by the derivatives of f of fixed (n + 1)-frames
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tangent to S,.; at ¢, ¢’ and inducing the positive orientation of S,.,. As-
sume that ¢, ¢’ have been chosen such that a*=(—1,0, -++)e S,4,+ does
not belong to M, U M/ and identify S,,,.,—a* with E,,,., under stereo-
graphic projection s. Consider the map ¢ : M, x M} — S,., given by

(3.1) o@,y)=W —o)lly —xll (sze M, sy € My),
where points in E,,,.; are treated as (radius) vectors. The mapping ¢ is
well defined since M, N M, = 0. Let A(f) be obtained from ¢ by
the generalized Hopf’s construction : A(f) = G(¢, My, Fpu, M}, Frpp). 1t
will be proved in the next section that 4(f) does not depend on the arbi-
trary choices of ¢, ¢’, ete.- -+, but depends actually only upon the homo-
topy class of the map f: Sgins1 = Sus1. The invariant z will be seen to
provide a homomorphism of 744,+1(Sp+1) INEO Tygisnss (Sassmss) (Or alter-
nately into the stable group 7,_,.~(Sy)) Which coincides up to sign and
stable suspension with the generalization by G. Whitehead of H. Hopf’s
invariant (whenever this last is defined, i.e. for d<2n—1). I do not
know whether for d = 2n — 1 % coincides with the suspension of some
of Hilton’s generalizations of Hopf’s invariant.

4. Proof of the homotopy invariance

U, U’ being connected sets of regular values of f:Sgine1 = Spss
different choices of ¢, ¢’ within the fixed U, U’ amount to changing
¢: M, x M, — S,,, within its homotopy class. By Lemma 2.1, this does
not change A(f). Thus 4(f) has now been proved to be well defined if a
C**m+imap f: Spins1—> Sps1 together with U, U'e S,.; consisting of
regular values of f are given. We prove below that A(f) does not depend
on U, U’ either and depend only on the homotopy class of f. The proof
is based on the following :

LEMMA 4.1 Let U, U’ be given disjoint open spherical subsets of S, ., and
let f,, /1 be differentiable mappings Syipi1 —> Spe1 Sor which U, U’ consist
of regular values. If f, >~ f, then h(f,) = (f). (We assume n > 0.)

By an argument similar to the one used in the proof of Lemma 2.1,
this lemma implies that #(f) does not depend on U, U’. (If U, Uj is
another pair of disjoint spherical open subsets of S,,; consider a diffeo-
morphism 7:S,:;,— S,.; of degree -+1, such that »(U,)= U and
r(U!) = U'. Then set f, =f and f; = rof and apply above lemma.)
Similarly, Lemma 4.1 implies the homotopy invariance of i(f).

ProoF OF LEMMA 4.1. Let f be a differentiable homotopy of f, to
fi, i.e. a C***+2differentiable mapping S;.p+1 X I—S,+; (I = unit interval
0=¢ <1), such that f(w, 0) = fy(@), f(z, 1) = fi(x). We may again assume
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that the partial derivatives of f with respect to ¢ are zero for =0, 1 (see
footnote 8). The set of regular values of f being an open everywhere dense
subset of S,.;, there exist spherical neighborhoods I/ ¢ U and U’ c U’
consisting of regular values of f,f,, fi. Assume ¢ e U, ¢ € U’ and
¢, ¢ ¢ f(a* x I); recall we assumed n > 0. The sets X =f"(¢) and
X' = f"¢') are (d + 1)-dimensional disjoint manifolds with boundary,
imbedded in Eu.ne: X I by 87 x ident. : (Sgsner — @*) X I — Egppey % 1
(see (1.1)). Let M, = fi'(q), Mi=fi(¢'). Since f|Syins1 X {1} =fi, we
have M; = X N (Sssn+: X {4}) and similarly M} = X’ N (Syins1x {3}). It
is easily seen that X = + (M, — M), X' = +(M; — M}). Denote by ¢,
the mapping ¢, : M, x M} — S,., defined by formula (3.1) and, regarding
Eiinsi X I as subset of E,.,., under (&, ---, tsun) X t = (o, =+, tasn, t)
and treating points of E,,,., x I as vectors in E,,,.,, define the map
¢: X x X" —> S, by the formula

(4.2) ¢(@, o) = (@ —2)flla" — || .

We have ¢, = ¢ | M, x M{(S;:n C Sainsr)-

Let U,CS,;.,+1 be an open set consisting of regular values of ¢, having
non-void intersection U, = U, N S,,, with S,., and such that U, consists
of regular values of both ¢, and ¢,. Take b € U and denote by W the
(d — n + 1)-dimensional manifold ¢~'(b) € X x X’. Let the (d + n -+ 1)-
frame wy, ++-, Wy, t consist of the vectors of a fixed (d -+ n)-frame
Wy, *e, Wau, tangent to S,., at b, inducing the positive orientation of
Sgen, together with t = tsipe; = (0, -++,0,1) € Eyypy,. Let @, be the
derivative of ¢ at p € ¢~'(b) (®, maps linearly the space T, tangent to
XxX'" at p e ¢7'(b) onto the tangent plane to S,.,.;atd). Denote by
VD), **, Vaun(D), Vasrns(P) the uniquely determined vectors of N, (the
orthogonal complement in 7', of the space tangent to W,_,., at p),
such that

(4.3) D (v,p)=w,; forj=1, .-, d+n+1(Waspe: = t).
Thereby, X x X’ carries the metric induced by the imbedding
XXX CEXIXE xI' (E=E =E;,.).

Notice that W is contained in the subset A € E x I x E’ x I’ consist-
ing of those points (u, ¢, W/, ¢') for which ¢ = #’. Indeed, if ¢(x, 2') = b,
ze X, o' e X', we see from ¢(x, «')=[u'—u-+(t'—t)t]/(|| 0’ — u||>+|¢’ —t[>)">
and b -t =0, that ¢ = ¢/(x = (u, ¢), 2’ = (v, ¢’)). The boundary W' of W
consists of two manifolds V,, 4 = 0, 1, satisfying V, C A,, where A, is the
set of those (u, ¢, w’, ¢') for which t=¢'=4. Therefore V,=W N(M;xM})=
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¢71(b). It is convenient to introduce the injection ¥': £ x I x E' x I'—
E,qsmss % J given by W(u, t, W, #) = (u, ', (¢’ — )V 2) x (¢t + )V 2,
where J = [0, V' 2]. Then ¥W is a submanifold of E,;..... X J and the
boundary of ¥ W consists of ¥ V;,7=0, 1, suchthat W V,C E,.0n.. X {11V 2 }.
Now, W carried in E x I x E' x I’ a field of normal (d-+3n-+3)-frames
consisting of the vectors of F, ., followed in order by those of F;,, and
by Vi, ***, Vasns Vaens1. Since t' — t is orthogonal to W and, as a simple
computation shows, @ (t'—t)=2t/|| u'—u || for every p=(u, ¢, 0, t) e W,
it follows that v,.,.,(p) has for every pe€ W the constant direction t' — t.
In other words, the images by ¥ of F,,, Fi.., vi, -+, V4, provide a
field of (d + 3n + 2)-frames orthogonal to YW in FE,;,p,+, x J. There
is associated with W and the just mentioned field a mapping
2: Sigeomss X J = Spesmes.  ldentifying E x {i} x E' x {1} with E,s4mm4s
under (u, 7, W, 7) <> (u, '), the mapping ¥ |E x {¢} x E’' x {1} is the
inclusion E,yisnss © Fagesnss. Therefore, 2, = 2| Siuuonss X {11/ 2} is as-
sociated with V, (as a submanifold of FE.,,,.,.,), together with the field
F,.,, Fivi, v, + o+, Vasn. However, 7o, is associated with the same mani-
fold and field. Therefore, 1; >~ r¢;, and since 1, > 1,, it follows A(f;) =
h(f1), which proves Lemma 4.1.

5. Higher linking coefficients

Letf:S,— E,. and f': S,—E,., be regular C*imbeddings of the p-
and g-dimensional spheres into euclidean (m + 1)-space, such that =, =
f(S,) and == f'(S,) have no common point. Assume m>max (p, ¢)+1,
then the spaces X =S, —s2, and X' =S, — 82, (s: Ev1 = Spns
is the stereographic projection of Section 1) are simply connected. By
Alexander duality, their homology groups are isomorphic to the homology
groups of the spheres S,,_, and S,,-, respectively (in every dimension and
with any coefficients). We set the isomorphisms as follows : Let «* be a
point of =, and let v, v, +++, v,—, be an orthonormal basis in the
(m — p + 1)-plane orthogonal to =, at «*, such that v, v, <=+, <+, v,,_,
followed in order by the vectors of a ‘‘positive’’ p-frame tangent to =,
at x* determine the positive orientation of F,,.;. Define j: S,,-, > X by

j(yO’ ctty ym—p) = S(‘,l")|< + & E:’:_opytv'l) ’

and similarly j': S,.-, = X’ by interchanging p and ¢ in the definition of
7 (>0, smaller than the radii of tubular neighborhoods of 3, ;). We
assume for later convenience, that a* = (—1,0, ---) € S,,.; does not be-
long to j (S,-,) U 7'(Sp-o)- With these conventions, we have

L(G(Sn-p) [(Sy) = + 1, (7 (Su-a), [(S)) = + 1,
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where L denotes the linking coefficient (in the usual sense of [1, Kap. XI,
§ 1, 6]). The mappings 7, 5’ induce isomorphisms 7, : H(S,-,) > H(X)
and % : Hy(S,-o)—>H(X'’) for every k. By a theorem of J.H.C. Whitehead
" [12, Theorem 3, p. 216], j and 5/ also induce isomorphisms of the homotopy
groups Jjy : 7x(Sn-,) = m(X) and g% : 7(Sn-o) = 7(X’) and there exist
mappings k: X— S,,-, and ¥’ : X’ — S,,_, which are both right and left
homotopy inverses for 5 and 5’ respectively.

Let a € 7,(S,-o) and «’ € z,(S,-,) be represented by the mappings
k' osof and ko sof’ respectively. Following Arnold Shapiro, « and o’
can be regarded as the linking coefficients L( S, f’S,) and L( f’S,, fS,) res-
pectively. In general however, for p=¢q, @ and « differ from each other
not only in sign.

Let ¢: S, x S,— S,, be defined by the formula

oz, y) = (f'y — f2)ll.f'y — fzll,
and let G¢ € 7,.,41(Sn+1) be the homotopy class of the mapping obtained
from ¢ by Hopf’s construction.
LEMMA 5.1 G¢ = (— 1" B q = (—1)ra+r+afr+ig!,
PrRoOF. Consider the diagram
S,—q X S,

K {J’ N\

(5.2) X' xS, Sy
/
F /
S, x S,

where F =sf x 1, J" = j x4, K'=kK x1i,(i,= identity mapping S,—S,
and ¢z, y) =[f"y— s 'x]/l| /'y —s"Yx||. The diagram is homotopy
commutative, i.e. @oK'oF~¢. This is seen by introducing
¢ (X —a*) x S, 8, defined by &(«’, y) = [f"y — s7 @]/ || f'y — s’ |.
Indeed, @(J'(z, y)) = ¢(j'%, y) = [f'y—s79=]/ Il f'y—s77z ||=¢(», y) and
o(F(x, y) = &Sz, y) = [ 'y — fe]| | f'y — fe |l =¢ (¢, y). Therefore,
poK' oF=%0J'oK'o F~%oF = ¢.

The homotopy $o J' o K’ o F ~% o F follows from the fact that j/ok’of
and f which map S, into X’— a* are not only homotopic in X’ but moreover
in X' — a*, since p < m.

By [1, Kap. XII, Anhang, p. 496], we have

degree ¢ = (—1)" "' L(5'(Sp-o), ['(Sy)) = (—1)"o*" .
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Now, K'o F = (K x i))o (sf x i) = (kK osf) x i, represents « X 4.
Introducing the map fi: W;iqes = Wi, defined by

fla, y) = {(k’sfx, Y) forz e Winm,y € Wea
- Nl Ksf@llzl), y) forze W, ye Win,

we have the homotopy commutative diagram

Sm+l
Go
N\
ftx Sm+1
/
|
Sp+q+l

where W3., and Sy have been identified under radial projection
(see Section 1). It is well known and easily verified that Ju =
+E'sf e E**'a. On the other hand, if g: S, x S,—S,.,has degreed, then
G&: Susps1—>Sasves has degree (—1)’d. Thus in our case, G has degree
(=11 (=1t =(—1)"*. It follows G¢ = (—1)""'E*"'a.

By interchanging p,q, we obtain G¢' = (— )" E**'d, where
¢': S, x S, — 8, is defined by ¢'(y, 2) = [fe — f'yl/lfz—f"yll. The
diagram

S, x S;——> S,

C
S, x 8,-5 8,

where 1(x, y) = (y, x), #(2) = — 2, is commutative. It induces a diagram

Go
Spiqer— S+

b
Gy’
Sp+q+1 — Sns
where 2 has degree (—1)@*D@*D  Since / = — Ep has degree (—1)", it
follows G = (— 1)+ D@ LGY = (— 1)PPHaEr+ial’,

The definition of higher linking coefficients can be generalized as fol-
lows : Let M, and M, be (p + ¢ — m)-connected closed m-manifolds. Let
f:M,— E,., and f': M;— E,., be continuous mappings of M,, M,
into euclidean (m + 1)-space, such that f(M,) N f'(Mg) = 0. Define
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¢: M, x M,— S, by ¢(z, 2') = [ '« — fa]/l|f' — fxll. Since M,, M,
(as 7-manifolds) can be imbedded in some euclidean spaces with fields of
orthogonal frames, they can be imbedded in E, ,,,+, and E.,.,., respectively
with fields F,,.,, Fl,.. of orthogonal (m + 1)-frames (m = max (p, q) is
assumed). Let f,: M,—E, .pns, f1: M= E . denote these imbeddings.
The generalized Hopf’s construction G(¢, f;, F, f1, F') provides an element
in 7,4qems2(Smsz), in other words in the stable group =,.y(Sy) r=
p+g—m, which can be regarded as the linking coefficient L(f(4,),
(M) of f(M,) and f"(M}) in E,,,,. The (p + ¢—m)-connectedness of M
and M’ guarantees (by Lemma 2.3) that G(¢, f3, F, f{, F') be independent
of the arbitrary choices of f,, f{, F and F’.
Obviously L(X, X’), whenever defined, is a bilinear function.

6. The value of %(f) for some special mappings f.

Let p: S, — E,., be a regular C*imbedding of the d-sphere into eu-
clidean (d + n)-space. Since E,., C E;.,+1, We can interpret p as being
an imbedding into E,.,... Assume that there exists over X, = p(S,) in
E,in., a field F,,, of (n + 1)-frames orthogonal to X,. Choose the vec-
tors vy, vi, *++, v, of F,,, such that if v, (x), -+« v,.(2) is a tangent
frame at some point = € =, inducing the positive orientation of X, then
Vo(@), +*+, Va(®), Vpss(®), * =+, Varn(x) in this order induce the positive
orientation of E,,,.;. The pair (£,;; F,.;) induces by construction (1.2)
a mapping f: Syens: — Sy+: for which we want to calculate A(f).

Let v be the homotopy class of the map N: S, — S, defined as follows:
Denote by t(= t.., in the notations of Section 1) the constant vector
normal to E,., in E ... Then, N(x)=(t-vy(x), t-vy(z),- -, t-v,(x)), where
t-v,(x) denotes the scalar product.

LEMMA 6.1. For the above mapping f, one has
k(f) — (_1)(n+1)d+1Ed+2(n+1)y .
Let X = Sy in+1 — 8 2, and let the map p’' : S; = X be given by
p'(x) = s[p(x) + evy(@)],

where ¢ > 0 is smaller than the radius of a tubular neighborhood of =,
in E,,,+:.. Let & be the homotopy class (in 7,X)) of p':S,— X. We
first prove the

LEMMA 6.2. j.o = — ', where j: S, — X is defined by

i(y) = s[p(a) + €227 yevu(@)]
a being some fixed point of S,.
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Notice that j is the same as in §5. It induces an isomorphism
I+ mal(Sp) = mo X).

Proor. Let ¢: S, x S, = X be defined by the formula

D, y) = s[p(x) + €2 h_, YuVil(@)] -

The mapping ¢ induces a homomorphism ¢, : 7S, x S,) = 7(X). We
shall identify 7S, x S,) With 7,(S,) @D 74(S,) under o, @ z,. induced by
o(z) = (x, b) and =(y) = (a, y). Since ¢,(1, 0)is represented by p': S;—X,
onehas ¢,(1,0)=«’. Similarly, because ¢ |a x S,=7, we have ¢,(0, 2)=7,4.
The homomorphism ¢, is therefore given by the formula

(6.3) g (m, ) =ma’ + j 4.

Consider the mapping p”:S,— X given by »"(x) = s[p(x) + &t].
Obviously, »"~0 in X (because p" (S,) C ${®wn = ¢} € X and
{24+n = ¢} has vanishing homotopy groups). On the other hand, we can
express p"’ by

p"(x) = s[p(@) + €20, (t-vi(2))vi(@)]

as well. Therefore, p"(x) = ¢(x, N(x)). By (6.3), the mapping p" (homo-
topic to zero) represents ¢, (1, v) = @’ + j,v. In other words, j.»v = —a’.

PROOF OF LEMMA 6.1. Let ¢ : S, x S;— S,., be the mapping defined by

oy, 1,) = [p(,) + ev(@,) — p(x)] [ |l p(a.) + evi(@,) — p(@) |l .

By Lemma 5.1, G¢ = (—1)2E**j;'’. Therefore, by the above lemma,
Go = (—1)**1E**1y, It remains to prove that 2(f) = (—=1)*E**'Gy. We
shall prove X(f) = (—1)*@+DE*»+G'¢p, from which the assertion follows
by 1.5.

1(f) is represented by 7¢, obtained from ¢ by generalized Hopf’s con-
struction. 7¢ is associated with the image by f x f’ in Eiysmse of the
manifold V,_,=¢-(b), where b is some regular value of ¢ in Sy.,. E**'G'¢
is associated with i(V,_,) € Eyus1 X Eups1 = Eygesns,. By Lemma 2.3 in
whichp=2=d,u=v=n+1m=d+n(d+d+1<2(n + 1)+ 2(d+n)
and S, is (d — n)-connected), we have r¢ ~ + E**'G'¢.

To obtain the sign, choose an orientation of V,, for instance the one
induced by a tangent »-frame u,,- - -, u, at some z € V,, such that u,-- -, u,
followed in order by the vectors of the (d 4 n)-frame wy, - -+, W,., induced
by ¢ at « induce the positive orientation of S; xS, (Wi, +*+, W,4, is assumed
to be induced by ¢ from a tangent frame to S,., at b inducing the posi-
tive orientation of S,.,). Denote by vi, ---, v, the vectors of the field
F.,,, over p'(S,) obtained by carrying along F,., (by the homotopy cover-
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ing theorem). 7¢ is associated with
vOy ctcy vny V(’), °cy V;U wlr ey wd+n .

The image under p x p’ of the vectors u,, - - -, u, followed by these vectors
induce the orientation (—1)®*Y?of F,;,.,+.. The map E**'G'¢ is associat-
ed with

Wy, o0y Waun, W, t2d+1y °t t2d+2n+1 ’

where w is the exterior normal to «(S; x B,.,) in E,;.;. The images by 4
of u,---, u, followed by the above vectors induce the positive orientation
of Eygsonse. Thus, 7o =~ [(—1)®*D%, 4 0.] o E**'G'¢. Therefore, i(f) =
(__ 1)(n+1)dEm+1G’SD.

REMARK 6.4. If the field F,,, orthogonal to =, in E,,,.; (and satisfy-
ing the orientation convention) is replaced by F,., obtained by letting the
constant (n 4+ 1) by (» + 1) matrix act on the vectors of F,,,, then v is
obviously changed into ov, where o = sign det A. It is easily seen that
M f) does not change (although f is replaced by (o%,4,) of). Therefore,
Formula 6.1 reads in general z( f) = o(—1)®@+Da+1Ea+2(n+hy

This situation ocecurs in the following

LeEMMA 6.5. If fe Jp, where pe n,(SO(n + 1)), then h(f) =
(=1 E2 DG p, (by : (SO + 1)) = 74(S,) is induced by ¢ which
maps A = (), 4,5 =0, ««+, 000 (g p, Ay, m, ***) Wp.n) € Sp)-

Proor. By 1.7, it is sufficient to prove A(f’) = (—1)**E**+*"+Dg_pu,
where f' representing J'y is a map of the sort considered in Lemma 6.1
above. The corresponding v is the class of the mapping N: S,—8S,, where
N@)=(t-v(w),- + -, t-v,(x)). Here, v(@)=aw(@)x+3_"_ a;(@)t,.;. Hence,
t-vi(r) = a;, i.e. N= ¢ o M(t=t,.,). Thus v= ¢, and by 6.1, together
with the above remark 6.4, A(f') = (— 1)*"(—1)®+Da+1 fas2n+D)y, —
(_ 1)d+1E¢l+2(n+1)¢*#'

Next, we want to calculate A(f) for a mapping f obtained by Hopf’s
construction. We need a preliminary lemma.

Let ¢: S, xS,—S,, be a C**%-map of type («, 7). Denote by (V,; F,,), r=
p+q—m, a manifold and field with which ¢ is associated up to homotopy
(V.c S, xS,). Letn,: V.- S, and =, : V., — S, be the restrictions over
V., of the projections S, xS,— S, and S, x S,— S, respectively (projection
mappings : (x, y) = 2, (x, ¥) > y). The mappings =, 7, are associated up
to homotopy with some submanifolds W,_,,, W,_,, of V, and fields F,, F,
respectively. Using i: S, x S, = E, .+ of Section 1 (Formula (1.6)), we
obtain W,_,, W,_, as submanifolds of FE,,,., carrying the fields of
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(p+m—+1)-resp. (¢ + m + 1)-frames F,, x F, xw, F,, x F,xw. Denote
by A : Spiqe1r=>Spem+ and &' 1 S, 1S +m+: the corresponding mappings.
We have the

LEMMA 6.6. o ~(—1)*E*'« and f' >~ (—1)r*atrafr+ig |

(We use the same letter for a map and its homotopy class whenever no
confusion can arise.) It follows, in particular, that the homotopy classes
of «, B’ are uniquely determined by those of «, 8.

PROOF. Let us prove o’ = (—1)**Ev*«, Let c€ S,, be a regular value
of both ¢ and ¢ | S, x b = a. Take V, = ¢7%(¢). It can be assumed that
the derivatives (0¢,/0y;).. ») are all zero (y,, -+ -, y, being local coordinates
on  x S, around (x, b) and ¢; giving ¢ in terms of local coordinates on S,,
around ¢(zx, b)). If it is not so, we replace ¢ by ¢* which takes at
(@; Yy, +++, y,) the value ¢(x; y. f(¥), -+, ¥, f(¥?), where y* = > _(y,)* and
f(¢), defined for 0 < ¢t < oo, is a real valued monotone increasing C™-dif-
ferentiable function such that f(0) = 0 and f(¢) = 1 for ¢ = p*>0.° Here
p is chosen so small that (x, y) is a regular point of ¢ for every x € V, N
(S, x b) and y€ U,(b). These conditions guarantee that cis also a regular
value of both ¢* and ¢* | S, x b. We write again ¢ instead of ¢*.

The condition (8¢,/0y,),.,» = 0 guarantees that the tangent plane to
x x S, at («, b) is a subspace of the tangent plane to V, at this point
(r=q). Therefore, the orthogonal complement of T, ,»(V,)in T, (S, xS,)
is equal to the orthogonal complement of 7', ,, (W ,-,.) in T, (S, x b).
It follows that the restriction over W,_,, of the field of m-frames (orthog-
onal to V, in S, x S,) induced by ¢ is equal to the field of m-frames
(orthogonal to W,_,, in S, x b) induced by a« = ¢ | S, x b. Let us denote
by vi(x), -« -, v.(x) the vectors of this field at « € W,_,,. The inclusion
2:8, x S;— E,.4+; yields the manifold ¢«(W,-,) C E,.,+ with which
is associated. An obvious modification of 1.4 shows that + E**'« is as-
sociated with «(W,_,) and v, ---, v,, followed in order by the constant
vectors t,iq, =-*, tye, (—1)?*%w, where w is the exterior normal to
(S, X Bps1) in E, ... Now, the field over «(W,_,) in E,.,+; with which
«' is associated consists of v, +--, v, uy, - -+, u,, w, where u,, ---, u, are
vectors tangent to V, and orthogonal to W,_,, and mapped onto a fixed
g-frame by =,: V, — S, (or rather u,,- - -, u, are the I-images of such vee-
tors, where I is the derivative of 7). In other words, u,, ---, u,is a fixed
frame (independent of (z, b)) tangent to i(x x S,) at #(«, b) and inducing
the positive orientation of #(x x S,). We may as well take u,=t;, i=1,--, q.

9 Take for instance f(t)=1 — (¢t — p22¥/p4¥ for 0<t<p?and =1 for p* <t, where
2N > m.
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Thus the fields with which «’ and E**' are associated differ only in the
sign of the last vector. It follows a’=(—1)**1Ee+q,

By interchanging p and g, it is clear that B'=+E**'f. The determina-
tion of the sign §’ = (—1)?*e+*2¢Er+13 ig left to the reader.

LEMMA 6.7. Let f: Sp+qe1—>Sns1 be obtained by Hopf’s construction from
amap ¢:8S, x Sq— S, of type («, B). Then
R(f) = (— Ly B x ) .
PROOF. Let V, = ¢~'(c), where c is a regular value of ¢ (assumed to
be of class C7*9). Define 7' : S, x S, = E,.qs1 by
(6.8) (2, y) = iz, y) + 7w, y) ,

where 0 < 7 < 1 — ¢ (thus ¢ is an imbedding). The set si'(S, x S,) dis-
connects S,.q41 = sE,..+; U @* and we denote by X the closure of the
region which does not contain sT' = si(S, x By.;). It is easily seen
that X~B,., xS, and j=s04|a x S,: axS,— X induces an iso-
morphism j, : 7,(S,) = 7,(X) in every dimension (j, coincides up to sign
(—1)* with the j, of §5). Let k: X — S, be the map induced by the pro-
jection B,., x S,—S, (ksi'=p,, where p,(z, y)=y). Consider the diagram

S, x S,

N\
1
A

V., x V,
where I(u, w') = (i(u), si'(w), J(z, y) = (i(=, 0), j(¥)), K(i(z, y), 2) = (=, kz)
and ¢ is defined by ¢(x, y) = ['(y) — i(x)]/ || ¥'(y) — (=) || .
The diagram is homotopy commutative (i.e. g o K o I ~ ¢) and
degree ¢ = (—1)**'L(i(S,), '(S,)) = (—1)* .

Notice that Ko I is the map =, x x,, where z,: V, > Sy, 7 V,— S, are
the restrictions to V, of the projections p,, p.(py(=, Y) = x, px, y) = y).
Indeed,

Ko I(u, w') = K(i(w), si(w')) = (pi(u), ksi'(w)) = (p(u), p(w,)) .

We can re-write the diagram (6.9) as follows

(6.9)
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S, x S,

(6.10) \

V,x V,

h(f) is the class of the map 7 : Syprqs1) = Speqracm+n Obtained by general-
ized Hopf’s construction 7(¢, 4| V,, F,. x w,4' | V,, F,, x w’). Since the
homotopy class of y depends on the homotopy class of ¢ (and not on ¢ itself),
h(f) is represented as well by y(m; X w09, | V,, Foxw, ¢ |V, Fl.xw).
Denote by o' : S,.qe1 = Spimer and 1 S,uq41 = Spem+: the mappings as-
sociated with (¢| W,_n; F. x F, x w)and (¢’ | W_,.; F, x F, x w') re-
spectively, where (W,_,C V,; F,), (W,_.C V,; F,) are manifolds and fields
with which =,: V,—S,and =,: V,— S, are associated. Since =(3’, ') de-
fined in 1.9 is associated with (¢| W _,, X 7| Wp_p; FuxF,xwxF, xF,xw’),
we have y >~ (—1)**?z(f3' «'). By Lemma 1.11, it follows: Ey =~
(_1)pm+q+p+p+q+1+p+m+1ﬂl ra = (_1)mp+m+pﬂr x o, Now by Lemma 6.6,
o = (—1)yr+gitia, ff = (—1)r+e+regr+ 3, Therefore, Ey ~ (—1)mr+m*r+r
E"+'8 x E**'a. By known formulae about the join (see [2, Formula (2.3)
and Corollary 2.6]) it follows Ey ~ (—1)»*™E?*%**a x # which implies
W f) = (—1)+mE?*e* (a * f3) since k() lies in the stable range.

7. ldentification of 2(f)

THEOREM (7.1). Let f be an element of wgsns:1(Sp+1). Assume d < 2n—1,
then H(f), the generalized Hopf’s invariant is defined ([10], Section 5).
CLAIM : A(f) = (=1)"E**"*'H(f).

PRroOOF. Since d < 2n — 1, by Corollary 6.4 in [11] the element f of
Taens:(Ses) can be obtained by Hopf’s construction from a map
¢:8,x8,— S, of type («,,). By Lemma 6.7, h(f) = E*“*""H(a * 1,).
In [10], G. Whitehead has proved that H(f)=(—1)"(« * %,) (Theorem 5.1
with sign corrected as in [13, Formula (6.1)]). Hence the assertion.

8. Application to the normal bundle of a sphere
in euclidean space

We first prove a lemma which is seemingly nowhere stated in the
literature.
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LEMMA 8.1. Let f: Syins1 = Spi1 be a differentiable map such that for
some regular value c € S,.,, the manifold f~'(c) is diffeomorphic to the
sphere S,. Assume d<2n, then the homotopy class of f belongs to the image
of J 1 7(SO(n + 1)) = 7gsns1(Spsr)-

PRrRoOOF. We prove the lemma for E*f by decreasing induction on k =
-+, 1,0. For large values of k, E*f € mz4n+x+1(Spsr+1) is in the image of
J because for 2d + 1<d + n + k+1, the imbedding of S, into euclidean
(d + n 4 k + 1)-space as inverse image of ¢ by E*f is isotopic to the
standard imbedding (see [14], Theorem 6, § 12). By the covering homotopy
theorem, we can carry along the normal field during the deformation.
This provides a homotopy between E* fand some Jp, ¢, € 7(SO(n+k+1)).
Let E*f = Jp, k > 0. We proceed to prove that E*-f = Jp,_, for some
Mi—1 € m(SO(n + k)). Consider the diagram

K

7Ta+n+k(Sn+k) — 7Ta+n+lc+1(Sn+k+1)
» /
/ J J N
7Ta+1(Sn+lc) /”d(snw)
i} bx
7(SO(n + k) —> 7(SO(n + & + 1))

(Notations of [4, §4]). Since H'E*f =0 (k > 0), we have ¢, ¢, = 0 by
H'Jp,=¢, 1, (see [4], Formula (4.3)). Thus by exactness of the homotopy
sequence of SO(n + k + 1)/SO(n + k) = S,+,, we have p, = i, , for
some y;_; € 7 (SO(n + k). Since Ej = — Ji, ([18, Formula (2.1)]),

H'

E(E*'f + Jpi) = E°f — Jigpf = 0.

By exactness of the G. Whitehead’s sequence (upper sequence of the dia-
gram), there exists an element « € 7,,,(S,+,) such that Pa=E*"'f+Jy}_,.
Since P = Jo ([9, Theorem (3.2)]), it follows E*~! = J(0a — t_)=J ty-1.
setting p,., = 6t — pf,_, .

The above argument is valid as long as the G. Whitehead’s sequence
exists and H'J = ¢,. This is guaranteed (for every k>0) by the re-
striction d < 2n.

THEOREM 8.2. Let p: S, — Eq.., be a regular imbedding (without self-
tntersection) of the d-dimensional sphere into euclidean (d-n)-space.
Assume d < 2n — 1, then the normal SO(n)-bundle over S, induced by p
18 trivial.
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PrROOF. We proceed by decreasing induction on n. For large n (n>d+1)
the theorem is a trivial consequence of the fact that p is isotopic in E,,,
to the standard imbedding (the theorem was also known for » = d and
n =d + 1, see [6]).

Let p: S; > E;ip,n < d < 2n — 2 be a regular imbedding and regard
E,., as subspace of E,,,... Assume by induction hypothesis, that the
normal bundle over S, induced by the imbedding into E,,,., is trivial and
let F,uy = {vy, V4, +++, v} be some field of (» + 1)-frames orthogonal to
»(S;) in Eip+. Let t be the normal to E,., in E,,,., and let v be the
homotopy class of the map N: S;—S, given by N(x) = (t-v(x), t-vy(x),
«++,t-vy(x)). Denoting by f:Ssins1 — Sp+: the map associated with
»(S,); F,..), we have by Lemma 6.1 and Theorem 7.1: H(f) =
(—1)m+v@+D i+, - Since by Lemma 8.1, f=Jy for some ¢ € 7,(SO(n+1)),
we have E"*Y = + E"'H'Jp = + E"¢, . Now for d < 2n —1,
E : 74S,) = 744:(S,+.) is an isomorphism and therefore v = ¢, /(¢ = =+ p).
Geometrically, this means that p(S,) admits a field of normal n-frames
in E,,,.
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