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years (private communication), that the solutions given in Table 2 are the only
possible solutions in positive integer values of n and w (n > w) of equation (8). Dr.
W. Ljunggren (private communication) has independently confirmed Dr. Skolem's
statement. The three lower pairs of values given in Table 2 satisfy equation (8) and
are given in parentheses for completeness, but are not in agreement with Gaunt's
condition n > 2. When n > 2, Table 2 represents supplementary selection rules
to those found by Gaunt for integral (7).

I am indebted to Drs. Th. Skolem and W. Ljunggren, of the Institutes of Mathe-
matics of the Universities of Oslo and Bergen, respectively, for solving the number-
theory problems in this discussion and to Mr. Oddmund Kolberg for suggesting the
transformation of equation (8) into equation (9) that made it possible to use stand-
ard methods for solving equation (8).

1 J. A. Gaunt, Phil. Trans. Roy. Soc. London, A228, 151, 1929.
2 L. Infeld and T. E. Hull, Rev. Modern Phys., 23, 21, 1951. Refer, in particular, to sec. 9, p.

51.
3 J. Bird, Master's thesis, University of Toronto, 1949.
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The concept of the fiber space can be introduced either in terms of local proper-
ties or in terms of properties in the large. The purpose of this note is to clarify the
relations between these two concepts.
Throughout this paper the word "space" means Hausdorff space. The word

"map" means continuous map. The symbol I will denote the unit interval of real
members. Given a space X, X' is the space of parametrized paths in X with the
usual c.o. topology.

1. FIBER SPACES AND LIFTING FUNCTIONS

Let p be a map of a space E into a space B. Let O., be a subset of the Cartesian

product E X B' consisting of all pairs (e, ct) with

e e E, w E BI, w(0) = p(e).

Let p be the map of E' into Q. which assigns to each r e E' the pair (r(O), p-r).
Definition: The triple (E, B, p) is called a fiber space if the map p has a cross-

section, i.e., if there exists a map X: Qp -* E' such that pX is the identity map
Qp --> QP.
A map X satisfying the condition above will be called a lifting function (belonging

to p). Explicitly, X assigns to each point e e E, and each path X e B' starting at
p(e), a path X(e, w) in E which starts at e and corresponds to X under p.

While, generally speaking, the lifting function X is not uniquely determined by
the map p, it can easily be shown that all lifting functions (if any) form a single
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homotopy class, i.e., any two distinct lifting functions can be connected by a homot-
opy within the family of lifting functions (for each number s, 0 < s < 1, one con-
structs a lifting function X, by decomposing each path X e B' into two arcs accord-
ing to the partition of the parameter interval I into two subintervals of lengths
1 - s and s, respectively, and using X0 to lift the first arc and then X, to lift the
second arc).
A classical example of a fiber space is the triple (BI, B, p), where B is an arbi-

trary space and p assigns to each path w e B' its origin w(O).

2. COVERING HOMOTOPY CONDITION

THEOREM. In order that the triple (E, B, p) be a fiber space, it is necessary and
sufficient that the "covering homotopy condition" be satisfied. This means that, given
any spaceX, anymap F:XX I BYandamapf: X X 0- Esuch that pf coin-
cides with F on X X 0, f can always be extended to a map F: X X I - E, with pF =
F.I

Proof: Necessity: For each x E X, denote by cox the path determined by F(x, t),
0 < t < 1, and define F by mapping x X I onto the path X(f(x), w,), where X is a
lifting function belonging to p. Sufficiency: Setting X = p F(x, t) = F(e,
W, t) = (t), f(x) = f(e, w) = e, we take for X(x) the path F(x, t), 0 < t < 1.2

3. REGULAR FIBER SPACES

Treating B and E as subspaces of B' and EI, respectively, we call a lifting func-
tion X regular if for every e e E, X(e, pe) = e (in other words, "degenerated" paths in
B consisting of a single point are lifted into degenerated paths in E). A triple
(E, B, p) is called a regular fiber space if it admits a regular lifting function. This
is equivalent to the condition that the covering homotopy theorem should be valid,
with the additional requirement that those points of X (see notations in sec. 2)
which are stable under the homotopy F (this means that F(x, t) is constant as a
function of t) should be stable under the homotopy F as well. A covering homotopy
condition fulfilling this requirement will be referred to as a "strong covering
homotopy condition."
Not every fiber space is regular. For example, the fiber space of paths over B

defined at the end of section 1 is not always regular. Specifically, it can be shown
that the fiber space just mentioned fails to be regular if B is the joint of two enumer-
able (infinite), connected Hausdorff spaces. However, the condition of regularity
is no restriction, if B is a metric space.
THEOREM. Every fiber space (E, B, p), where B is a metric space, is regular.
Proof: We may assume that the diameter of B is < 1. Given w e B,' we denote

by d< the diameter of the set w(I) and define a "modified" path w' by the relations

@'t)=o (d) if t < dco,

w'(t) = w(1) if t > do.

Given a lifting function X, a regular lifting function X' can be obtained, as follows:

X'(e, w) (t) = X(e, w') (dot), (e, w) E Up, 0 < t < 1.
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4. LOCAL FIBER SPACES

Let p be a map: E -* B. We shall call the triple (E, p, B) a local fiber space if
for every point b e B there exists a neighborhood U of b such that the triple (p (U),
U, p) (with p restricted to p- (U)) is a fiber space.
In a similar way we localize the concept of the regular fiber space.
Every fiber space is obviously a local fiber space. Remarkably, the converse

statement holds under very general conditions. The main result of this paper is the
following:

UNIFORMIZATION THEOREM. A (regular) local fiber space (E, B, p) is a (regular)
fiber space in the large, provided that B is paracompact (e.g., ifB is metric).

The theorem asserts that local lifting functions can be "matched" into a uniform
global lifting function.

5. PROOF OF THE UNIFORMIZATION THEOREM

An open covering I Ur I of a space X will be called normal if for every set U, there
exists a real-valued, continuous function defined on X, which has positive values on
Ur and vanishes outside Ur. If X is a normal space, every (open) loc. finite cover-
ing of X has a refinement which is both loc. finite and normal. Using the fact that
paracompact spaces are normal, it follows that every covering of a paracompact
space has a normal loc. finite refinement. Hence the uniformization theorem is
contained in the following statement, which does not depend on the assumption
that B is paracompact.

5.1. Let p be a map: E B. Suppose that B admits a loc. finite, normal cover-
ing { Ur } such that for every Ur the triple (p-(Ur), Ur, p) is a (regular) fiber space.
Then the triple (E, B, p) is a (regular) fiber space.
Given a subset W of B1, let W be the set of all triples (e, A, s) with e e E, co e W.

o < s < 1, c(s) = p(e). By an extended lifting function over W is meant a map A:
W -> El, satisfying the condition

pA(e, A, s) = co, A(e, co, s) (s) = e

for every triple in W. The set W will be called liftable if an extended lifting func-
tion can be defined over W. It is quite easy to show that the whole path space
B' is liftable if and only if (E, B, p) is a fiber space. (In other words, the existence
of a lifting function over B' implies the existence of an extended lifting function.)2a

According to the assumptions of 5.1, each set UrT (regarded as a subset of B') is
liftable. For each finite sequence of indices (r1, r,, ... , rk) we denote by Wrr2- *k*
the subset of B' consisting of paths co satisfying

- ~~i-l i
@(t) 6 Ur7 for < t < i = 1,2,..., k.

k -

5.2. The sets Wr.ir ..1rk (with varying k) form a normal covering of B'. This
covering has a loc. finite normal refinement.
The easy proof is based on the fact that for a fixed k the sets of 5.2 form a

loc. finite system.
Now we show
5.3. Each of the sets W,,,,. . -rk is liftable.
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Proof: Let Ai be an extended lifting function over Ur/,I i = 1, 2, ... , k. Con-
sider a fixed triple (e, w, s) e Wrlr2 . . .rk. Suppose that (n - 1)/k < s < n/k (n an
integer). For i = 1, 2, .. . , k, let wi e B' denote the function which coincides with
w for (i - 1)/k < t < i/k and is constant elsewhere. Now we define the path T e
E' in the following way. First, we define T for the interval (n - 1)/k < t <
n/k by setting

T(t) = Aj(e, wn, s) (t), n- < t <1
k -

and then set:

(I n1\ n -1\22< if
n -i

T(t) = Ank-lT k ))k (t), k -
< k 2

T(t) = A,+1(r(k), n+jY k(t), < t <n+1

We have pT = w and T(s) = e. Consequently, the function which assigns r to the
triple (e, co, s) is an extended lifting function. According to 5.2 and 5.3, the proof
of 5.1 is completed if we prove the following lemma:

5.4. Suppose that B' admits a loc. finite, normal covering { W., I such that each set
W.,, is liftable. Then the triple (E, B, p) is a fiber space.
Proof of 5.4: For each set W., we select (a) a continuous, real-valued function

f,,(w) (co e BI) which has positive values on W,, and vanishes outside W,,, and (b) an
extended lifting function A,, over W,. We may assume that the set of indices ,u
is linearly ordered. For a given Xe B', let

AJw < IA2 < . . . < Ak

be all those indices for which c e W.,. We set

r

q =i- ,r= 1,2,...,k.
Z fyi~(@)

Letting e e E be a point with p(e) = w(O), define a path T EE' (depending on W and
e) in the following way:

T(t) = AAl (e, co, 0) (t) for 0 < t < qj,
r(t) = Ad, 1(T(qi), A, qi) (t) for qi < t < qj+,, i = 1, 2 . . . k-1.

The path T depends continuously on (e, A) and satisfies r(O) = e, PT = co. Hence
we have defined a lifting function over BI.
Remark: If local regularity is assumed in 5.1, an obvious modification of the

preceding proof (regularity condition imposed on all lifting functions used in the
proof) would yield a regular lifting function as an end result.
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6. GENERALIZATIONS

Consider two triples a = (E, B, p) and a' = (E', B, p'), where p and p' are maps
of E and E', respectively, into B. Let E" < E X E' consist of all pairs (e, e') with
p(e) = p'(e'), and let p" be the projection E' -- E'. We shall say that a is a
(regular) fiber space relative to a' if the triple (E", E', p") is a (regular) fiber space.

It is quite easy to see that an absolute (regular) fiber space is a relative (regular)
fiber space with respect to every triple a' = (E', B, p'). Furthermore, the triple
a = (E, B, p) is an absolute (regular) fiber space if and only if a is a relative (regu-
lar) fiber space with respect to the triple (B, B, i), where i is the identity map.
The Uniformization Theorem implies
6.1. A local (regular) fiber space (E, B, p) is a global fiber space relative to every

triple (E', B, p') in which E' is paracompact.
COROLLARY. Any local fiber space (E, B, p) satisfies the covering homotopy condi-

tion for maps of paracompact spaces.3
In fact, letXbeparacompactand let F:X X I - B, f:X-E, pf = F X X 0.

Since, as well known, X X I is paracompact, (E, B, p) is a fiber space relative to
the triple (X X I, B, F). Letf': X -- E" < X X I X E be defined byf'(x) =

(x, 0, f(x)). We now apply the covering homotopy condition to the fiber space
(E", X X I, p"), substituting f' for f and the identity map X X I -* X X I for F.
This gives a map of X X I into E", which, followed by the projection E" -* E, yields
the desired covering homotopy F.

Let us observe that in case (E, B, p) is locally a regular fiber space, F can be
chosen so that the strong covering homotopy condition (see sec. 3) is fulfilled.

7. SLICING FUNCTIONS

Let p be again a map E -* B. Let V be a subset of E X B. By a slicing function
over V (belonging to the triple (E, B, p)) is meant a map or: V -* E such that (1)
pa(e, b) = b for every (e, b) e V and (2) (e, p(e)) e V implies o-(e, p(e)) = e.

Consider the following properties of the triple (E, B, p):
1. There exists a neighborhood U of the diagonal D in B X B such that a slicing

function can be defined over the set V consisting of pairs (e, b) with (p(e), b) e U.
2. Each point b of B has a neighborhood Wb such that a slicing function can be

defined overpl1(Wb) X Wb.
3. The triple (E, B, p) is a regular fiber space.
Property 1 essentially defines fiber spaces in the sense of Steenrod-Hurewicz.4

Property 2 defines fiber spaces in the sense of Hu.5 It is clear that property 1 im-
plies property 2. It is equally clear that a triple satisfying property 2 is a local,
regular fiber space. Therefore, according to the Uniformization Theorem, prop-
erty 2 implies property 3, provided that B is paracompact. This means

7.1. A triple with property 2 satisfies the strong covering homotopy condition for
maps of arbitrary spaces. Without the assumption that B is paracompact, it still follows
from 6.1 that the covering homotopy condition is satisfied for maps of paracompact
spaces.6

7.2. If B is a metric absolute neighborhood retract, properties 1, 2, and 3 are equiva-
lent.

It suffices to show that property 3 implies property 1. As is well known, for a
suitably chosen neighborhood U of the diagonal in B X B a map so: U -s B' can be
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defined such that, for (b1, b2) e U, so (b1, b2) is a path joining bi to b2 which degenerates
into a single point in case bi = b2. For (p(e), b) e U, let o-(e, b) denote the end point
of the path X(e, ,(p(e), b)), where X is a regular lifting function. a is clearly a slicing
function. Incidentally, this shows that the set U in property 1 can be chosen inde-
pendently of E and p.

* The results of this paper were presented to a seminar at the Institute for Advanced Study in
January, 1954.

l This shows that fiber spaces in our sense are less general than fiber spaces in Serre's sense (see
J. P. Serre, Ann. Math., 54, 425-505, 1951), who requires the covering homotopy condition only
for maps of polyhedra. It is easy to give examples of fiber spaces in the sense of Serre which are
not fiber spaces in the sense used in this paper.

2 If E and B are metric spaces, then %p is metric too, and it follows from the proof given above
that in this case the covering homotopy property for maps of metric spaces implies the covering
homotopy property for maps of arbitrary spaces.

' For co e B', 8 e I, let co,, c be paths defined by w8(t) = w(s- t) for o Z t Z s, cos(t) = co(o)
for s / t / 1, co'(t) = co(s + t) for o / t / 1- , co'(t) = co(l) forI - s / t / 1. Then, given
a lifting function X(e, co), an extended lifting function A(e, c, s) can be defined by setting A(e, c, s)
(t) = X(e, )(8 - t) for o / t / s and A(e, c, s)(t) = X(e, co)(t - s) for s / t / 1.

3 If B is paracompact, then, according to the Uniformization Theorem, the covering homotopy
condition is satisfied for maps of arbitrary spaces.
4W. Hurewicz and N. E. Steenrod, these PROCEEDINGS, 27, 60-64, 1941.
5 S. T. Hu, Proc. Am. Math. Soc., 1, 756-762, 1950.
6This result has been established independently by W. Huebsch in a recent paper (Ann. Math.,

61,555-563,1955).
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1. Introduction.-Let (X, B, ir) denote a regular fiber space in the sense of the
preceding note,1 let B be arcwise connected, and let F = 7r-' (b) be the fiber over a
fixed element b e B. Also, let E1, E2, ... denote the spectral sequence associated
with (X, B, 7r) and di, d2, . . . the corresponding differential operators, with di:
Ei-* E,, d12 = 0.2 It is well known that E1 is determined by B and F. Moreover,
in case wri(B) = 0 (or, more generally, in case ri(B) operates trivially on H(F)), E2
is completely determined by B and F, and, in fact, E2P, g = H,(B, Hq(F)). In the
present note we outline a proof of the following theorem which generalizes this re-
sult. The details will appear elsewhere.
THEOREM. If B is reconnected, i.e., ri(B) = 0 i < r, then the first r + 1 terms of

the spectral sequence E1, E2, . . . and the first r of the corresponding differential oper-
ators d1, d2, ... are determined entirely by B and F. Hence E4 = E2 for 2 < i <
r + 1 and di = Ofor 2 < i < r (since, as is well known, Ei = E2 and di = Ofor i > 2
in case X = B X F).

2. The Basic Map.-Let u denote a singular cube in X of dimension n. A co-
ordinate index i, 1 < i < n, is called "db" (degenerate base) if
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