THR SIGNATURE THEOREM: REMINISCENCES AND RECREATION

F. Hirzebruch

In the years immediately following 1952, when I came to the United
States for the first time, I learned a lot of my mathematics in Princeton, at
the Institute and at Fine Hall.

It may be a proper occasion to remember these old days. I shall recall
(81, §2) how the general Riemann-Roch theorem for complex manifolds is
related to the signature theorem for differentiable manifolds. The signature
theorem could be proved by Thom’s cobordism theory:([25], [26]) and was
then the basic tool for proving the Riemann-Roch theorem for algebraic
manifolds [13]. This Riemann-Roch theorem (for complex manifolds) is
nowadays a special case of the Atiyah-Singer index theorem for elliptic
operators ([5], (6], (7], [8]): namely, the index theorem is applied to the
Cauchy-Riemann equation. Atiyah-Bott-Singer generalized the index theo-
rem to the equivariant case ([2], (3], [5], [7], [81). This is a fantastic
generalization of the Lefschetz fixed point theorem. The equivariant index
theorem can be specialized to the signature operator ({81, p. 582). This
gives a fixed point theorem involving the signature and generalizing the
old signature theorem.

The old signature theorem involves Bernoulli numbers, and has many
relations to number theory and applications in topology. Exotic spheres
were discovered using it [21]. (We shall mention this in §3). The equi-
variant signature theorem has many more number theoretical connections.
In the second half of this lecture we shall point out some rather elemen-
tary connections to number theory obtained by studying the equivariant
signature theorem for four-dimensional manifolds. Perhaps these connec-

tions still belong to recreational mathematics because no deeper explana-
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tion, for example of the occurrence of Dedekind sums both in the theory of
modular forms and in the study of 4-dimensional manifolds, is known.
As a theme (familiar to most topologists) under the general title

‘‘Prospects of mathematics’’ we propose ‘‘More and more number theory in

topology.”’

Remark

The paper follows the original lecture rather closely, except for §6, §7,

and §8, which were added later.

§1. Conjecturing the Riemann-Roch theorem
Let X be a compact complex manifold and W a holomorphic vector

bundle over X. Let (W) be the sheaf of germs of holomorphic sections

of W. The cohomology groups Hi(X,Q(W)) vanish for i > dimC X =n and
are all finite-dimensional complex vector spaces.

We define the ‘‘Euler number’’

n

(X, W) = _20 (D! dim Hi(X,QW)).
1

Serre conjectured in a letter to Kodaira and Spencer (Sept. 29, 1953) that
x(X,W) is (for algebraic manifolds X) expressible in terms of the Chern

classes of X and those of W.

How does one come from this general conjecture to an explicit one?
This will be answered here in a very fast way using modern terminology
(including the functor K which was introduced much later ([1], [4], [9]).

For holomorphic vector bundles W,,W, over the compact complex mani-
fold X we have

® L XKW, eW,) = (K W)) + x(X W),

For a holomorphic vector bundle W, over the compact complex mani-

fold X, and a holomorphic vector bundle W, over the compact complex

manifold X2, we have’
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2 (X x X, W@ Wy) = x(X,Wy) - X (X5, W,).

Serre’s conjecture implies that »(X,W) depends only on the topological
class of the bundle. Therefore we introduce the ring K(X), constructed
from the semi-ring of isomorphism classes of topological complex vector
‘ g .
bundles over X, and, because of (1), wish to construct an additive homo-
morphism
x : KX) - Q
such that

x(X,W) = x (W

where [W] is the element of K(X) represented by W.
Suppose

ch : K(X) > H*V(X,Q)

is an additive homomorphism from K(X) to the ring of even-dimensional

cohomology classes and that
td(X) ¢ H*V(X,Q)
is a fixed cohomology class. Then
€ £ > (ch(®-tdX)) [X], € e KX),

is a candidate for y. Here a[X] means the evaluation of the cohomology
class ¢ on the fundamental cycle of X. Condition (1) is satisfied; condi-
tion (2) will be satisfied if ch is a ring homomorphism defined for all X
and having the usual naturality properties, and if td(X) is defined for all

X and satisfies
@ td(X; x X,) = td(X,) @ td(X,).
How can one find such a td(X)? Assuming it depends only on the tangent

bundle of X, we try to define td(E) cH®V(B,Q) for any complex vector bun-

dle F with base B. satisfvine the usual naturality properties and such that
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(5) td(E; ® E,) = td(E,) - td(E,)

if E;, E2 are complex vector bundles over the same base space B. If td(X)
is defined as the value of td for the tangent bundle of X, then (4) is a con-
sequence of (5). We normalize by requiring

(6) td(E) = 1, if E is the trivial line bundle.

To get a precise conjecture for the Riemann-Roch theorem in the form

Q) xX,W) = (ch [W] - td(X)) [X],

we must specify ch and td. We choose for X the complex projective space
P (C) and put W:Fk, where F is the line bundle associated to the hyper-
plane of X which has characteristic class er2(Pn(C),Z). Here x is the
so-called positive generator of HZ(Pn(C),Z); see [13], p. 138.

We have

®) x(PL(©),F¥) = (k).

In view of the desired properties of ch and td considered above, the
special example (8) determines ch and td completely. We recall this for

td. The tangent bundle of P (C) plus the trivial line bundle equals

Fe... ®F = (n+1)F. Therefore by (5) and (6),
td(P,(C)) = (td(F)**!
with
td(F) =1 +b;x + b2x2 + ... = f(x), b;€Q,

where f is an infinite formal power series determined uniquely (by natu-
rality) for n - . This is the characteristic power series for td. Since the

arithmetic genus of P (C) equals 1, (this is the case k =0 in (8), where

FO is the trivial line bundle), we must have, by (7),
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©) (P L(C)) [PLO)] = 1.
For the characteristic power series f, the formula (9) means
10) the coefficient of x" in (f(x))n+1 equals 1 for all n.

The only gower series with constant term 1 satisfying (10) is

oo 2k
X _ X 1 k+lB X
= =177, OV B Gy

1—e

f(x) =

Here Bernoulli numbers show up in topology.

The final result for ch (Chern character) and td (Todd class) is the
following: Let E be a complex vector bundle (fibre C™ with base space

B, and c(E) its total Chern class,
C(E) = 1+¢,(E) + cy(E) + ... + S(E) € H®V(B,Q).

, ¥ s zo:
Suppose there is a space B’ and a map = : B » B such that 7~ is injec-

tive for rational cohomology and #*E is a direct sum of line bundles

E1<iZg n) where E; has the characteristic class x; 5H2(B',Z). Such a

2 /7
B’ always exists (splitting principle). We regard x; as element of H*(B’,Q).

Then
a*c(E) = (1+x;) .. (1+xp),
X X
1n 7*ch(E) = e Ly .+e®,
1 b
AdE) = T ——
i=1 —Xj
1—e

After ch and td have thus been found, (7) is the explicit form of the

Riemann-Roch conjecture.
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§2. The signature theorem

Let X be a compact oriented manifold of dimension 4k without bound-

ary. Then sz(X,R) is a finite dimensional real vector space over which

we have a bilinear symmetric non-degenerate form B defined by
(12) B(x,y) = (xuy) [X], for xy HZKX,R).

The signature of this form B, i.e., the number of positive entries minus

the number of negative entries in a diagonalized version, is called sign (X).

It was first introduced by H. Weyl [27]. The signature theorem ({13}, p. 86)
claims that (for a differentiable manifold X) the signature of X is a uni-
versal linear combination of Pontrjagin numbers. For example, we have

for a 12-dimensional manifold

(13) sign(X'?) - 3315 (62 2,13 pyp; + 20, ") [X]

(p; 5H4i(X,Z) are the Pontrjagin classes).

Formula (13) implies, for example, that for a 12-dimensional compact
oriented differentiable manifold X without boundary the signature is di-
visible by 62 if the fourth Betti number of X is zero.

How can one arrive at a conjecture for the signature theorem? I shall
now give an answer to this question. But I do not claim that this is the
way that I arrived at the conjecture.

Let X be a projective algebraic manifold with dirnCX =2k. Let T*

be its dual tangent bundle. Then a theorem of Hodge (compare [13], p. 125)

can be written in the form
(14) Y(X,A*T*) = sign X.

Here A*T* is the exterior algebra bundle of T. We write for the total
Chern class of X

2k
cX) = _II1 (1+x;), where Xi(HZ( Q).
1=
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(We do not specify the space over which the tangent bundle of X splits and
forget to write #*; compare (11).) Using known formulas for ch(A*T™) we

get from (7) and (14)

2k —x; 2k %
signX =| I (l+e O 1 (__X% (XJ.
. 1—1 i=1 l—e_ 1
Thus
2k X. 2k X.
. _ 1 X1 = 11 ! X1
(15) sign X igl X (x] i=1 tanh x;
tanh —
2
Since
o k 2k
k+1,. 225 x
tanh x k=1 k@K

is in fact a power series in x2, and the 1th elementary symmetric function

of the xj2 is the Pontrjagin class p; of X, formula (15) makes sense for

differentiable manifolds and is the signature theorem to be conjectured.
How to prove it? After conjecturing it [ went to the library of the Insti-
tute for Advanced Study (June 2, 1953). Thom’s Comptes Rendus note [25]
had just arrived. This finished the proof. The signature theorem (for alge-
braic manifolds a special case of the Riemann-Roch theorem) was. the start-

ing point for the proof of the Riemann-Roch theorem in the case of algebraic

manifolds [13].

Remark
The actual process of conjecturing the Riemann-Roch theorem and the

signature theorem was not so straightforward as the process described in
§1 and §2. In the Princeton days of 1952-54, much of my work arose from
discussions with Kodaira and Spencer and was motivated by the old papers
of J. A. Todd. Kodaira and Spencer explained their work to me. For exam-
ple, I learned from them that for a line bundle F over a given X, the num-

ber y(X,F) depends only on the cohomology class of F.
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Studying y(X,F), especially the arithmetic genus (Todd genus), led to
the power series

f(X) = X X

1—e™

in a way very close to the story told in §1. When dealing with Pontrjagin

classes, we need a power series in x2. Fortunately, f(x) — X is such a
2

power series. We have

f2x) = x + —% .
tanh x

Already this simple observation motivated the study of the multiplicative

sequence with characteristic power series

and gave rise tc the
tanh x

signature theorem and its relation to the Riemann-Roch theorem (see for
example [13], §13.6). Serre’s letter of September 1953 helped to clarify
the situation. The Riemann-Roch theorem was proved shortly afterwards
(December 10, 1953 approximately).

Much of the machinery of characteristic classes I learned from discus-
sions with A. Borel. Perhaps I might use this occasion to express my

thanks to Princeton and the mathematicians who were there in 1952-54,

§3. An exotic sphere

Milnor’s original idea [21] for constructing an exotic sphere and the
latetr work by Ketvaire and Milnor [19] are recognizable in the following
example arising from the work of Brieskorn [10]. This example is a typi-
cal application of the signature theorem.

Consider (for small & £ 0) the subset of C7 defined by
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This is a 12-dimensional manifold M12 with boundary. According to Bries-
korn, oM1?2 = 311 js a topological sphere and M12 / 311 (ie., we collapse
the boundary to a point) is a 12-dimensional manifold N!2 without boundary.
N12 is 5-connected and has signature —8. If N'2 could be made into a dif-
ferentiablc: manifold, then sign N'2 = —8 would be divisible by 62 (see (13)).

Therefore N2 does not carry any differentiable structure. (A manifold

without any differentiable structure was first constructed by Kervaire [18].)
It follows that 3!1 is not diffeomorphic to the standard sphere, i.e., the
differentiable manifold 3!! is an exotic sphere. Compare also Kuiper [20].
§4. The equivariant signature theorem in the 4-dimensional case

In the preceding sections we have told the oid story ‘‘How to reach the
signature theorem,’’ and have given a typical application.- As explained
in the introduction, the Atiyah-Bott-Singer index and fixed point theorems
contain as a special case the equivariant signature theorem. This theorem
has many relations to number theory; its full impact can be seen only by

studying it for manifolds of arbitrary even dimension. We restrict ourselves

to 4-dimensional compact oriented differentiable manifolds without boundary.

For such a manifold M# the ordinary signature theorem simply says

(16) sign M4 = %—pl (M4].

where p, ¢H* (M%,Z) is the Pontrjagin class. Let us formulate the equi-

variant signature theorem in the 4-dimensional case.
Let M be a compact oriented differentiable manifold without boundary

and G a finite group acting on M by orientation preserving diffeomorphisms.
As in §2, consider over H2(M,R) the bilinear symmetric non-degenerate
form B. Then H2(M,R) is a G-module, and the action of G on HZ(M,R)

preserves B. We can decompose H%(M,R) as follows:
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H2M,R) = H, o H_,

where H + and H_ are B-orthogonal, B is positive-definite on H + and

negative-definite on H_, and

gH,) = H,,g(H_) = H_, for all g¢G.
For any geG we define

sign (g,M) = tr (gH ) — tr (g|H_),

where tr denotes the trace. It is easy to show that sign (g,M) does not

depend on the choice of H,_ and H_ ([8], p. 578). If g acts on M as the
identity, then

sign (g,M) = sign M.

The number sign (g,M) depends only on the action of the individual ele-
ment g on M and not on the action of the whole group G. (The definition
for sign (g,M) given here works, of course, for all 4k-dimensional mani-
folds, not only for 4-dimensional manifolds.)

We assume from now on that M is connected and G acts effectively.

Let M2 be the set of fixed point of g, which for g # 1 consists of iso-

lated points X; and connected 2-manifolds Yy. Following [8], Proposi-

tion 6.18, we formulate the equivariant G-signature theorem. For each j,

let the action of g on the tangent space at X; be given by the matrix

(17) < cos a; —sin aj> GB(cos Bj —sin Bj>
sin a;  cosa; sin ,Bj cos Bj
relative to an oriented basis of the tangent space. For each k, let the

diffeomorphism g induce a rotation in the normal bundle of Y| by an
angle * 0. Let Y, - Y denote the self-intersection number of Y

(which is also defined when Y| is not orientable; see for example [14],
p. 152).
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We have (for g £ 1)

(18) sign (g,M) = X (—cot(—;j- - cot %j-) + 2 (Y- Y
J

1
k sin? ﬁ{
2

Formula (1%) is the equivariant G-signature theorem in the 4-dimensional

a: . ) )
case. Observe that cot—% - cot % does not change if the pair (aj, Bj)

is permuted or replaced by (_aj' _Bj),

Let M and G be as before, with G acting effectively by orientation
preserving diffeomorphisms. The orbit space M/G is a rational homology
manifold with oriented fundamental cycle and the signature of M/G can be

defined as usual though M/G is not a manifold. If v : M - M/G is the
canonical map, then 7* maps H2(M/G,R) bijectively on HZ(M,R)G, the

subspace of the vector space H2(M,R) consisting of the elements invariant
under all g¢G. An elementary formula of representation theory together

with the fact that 7™ preserves the cup-product yields

(19) sign M/G = l_é_l g%G sign (g,M)

or equivalently,
(20) sign M = |G| - sign M/G — il sign (g,M).
g
If g acts freely, then by (18) the number sign (g,M) vanishes for g £ 1,
and
21) sign M = |G| - sign M/G,

a fact which also follows immediately from the ordinary signature Theo-

rem (16). In view of (20) and (21) we call g§1 sign (g,M) the (total)

signature-defect of the given effective G-action on M.
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For any point x¢M, we consider the subset G(x) of G consisting of
those elements g¢G which have x as an isolated fixed point. For only
finitely many x is the set G(x) non-empty. For any geG(x) we have the
angles @y x and Bg,x (see (17)).

We define the signature-defect at x by the formula

2) def, = > ) —cot (ag,x/Z) - cot (Bg,X/Z).

ge G(x

For any 2-dimensional connected submanifold Y of M (not necessarily
orientable) we consider the subset G(Y) of G consisting of those elements
geG for which Y is a connectedness component of MB. There are only
finitely many Y for which the set G(Y) is not empty. For any geG(Y) we
have the angle eg,Y (see (18)). We define the signature-defect at Y by

the formula

(23) defy = S ——1  (y.v).
Y geGQY) sin? (6, y/2) (

We obtain for the signature defect of the whole G-action the formula

(24) |G| - sign M/G — sign M = é sign (g,M) = = def, + %defy.
1 X

We wish to study the signature defects at Y and x in some particular

cases. For a connected 2-dimensional manifold Y the elements geG with

Y C ME constitute a subgroup GY of G and we have G(Y) =Gy, - {1l
The group GY is always cyclic, say of order n. Then

n-1 1
def = 3 ———- (Y Y).
Y k=1 sin? %

It is easy to verify

(25) s L n®-1
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Therefore

2
_n°=1 oy, -
(26) defY =3 (Y-Y) where n = lGYl.

It is much more complicated to calculate the defect at points x. We

shall study® def, in the case where the isotropy group Gy is cyclic, of
order p say, and where G, operates freely on the tangent space at x (with
the origin removed). Let p be a generator of Gy . The action of p on the
tangent space at x is given, relative to an oriented basis, by a matrix of
the form (17) with (a]-, Bj) replaced by (27;%, 277%), where q,r are relatively

prime to p. When p is chosen, the residue classes of q and r modulo p
are determined up to their order and up to replacing q,r by —q, —r modulo p.

For a natural number p > 1 and integers q,r prime to p we define

27 def = — 21 cot e LS cot X
yq,T - .
By (22) this is the signature defect at x if the iSOtl‘Opy g‘roup GX acts on

the tangent space at x as described above. We have

i) def(p;q,r) = def(p;r,q)

ii) def(p;q,r) = def(p;q’r") if g=q" mod p and r=t" mod p
iii) def(p;sq,sr) = def(p;q,r) if s is prime to p.
iv) def(p;—q,r) = —def(p;q,r).

The equation iii) corresponds to different choices of the generator p of G,.
If, according to ii), we regard q,r as residue classes mod p we may write

in view of iii) and i)
v) def(p;q,r) = def(p; 1,1) = def(p; %.1).

Therefore, we only have to calculate the signature defects def(p;q,1). For

q = 1 we have by (25),
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(28) def(p;1,1) = —<p=1 . =2) .

Remark

As an invariant for a free G-manifold of odd dimension a complex-valued
function ¢ on G— {1} can be defined using the equivariant signature theo-
rem. (See [8], p. 590; the function ¢ introduced in [8] equals —q. The
function ¢ was used for example in [16]. Compare the lecture of C.T.C.
Wall in this conference.) The free action given by q,r of the cyclic group

tp of order p on the 3-sphere has a lens space as orbit space. The func-
tion & - a(£,8%), feup, £ £ 1, can be used for the classification of lens

spaces [3]. We have, for the free action of Hp on S% given by q,r,

def(p;q,1) = a(€,S%).

- 5
feup—{l}

The summands in this sum are exactly the summands in (27).
By summing over £ we lose information, like passing from a character
to its degree. Nevertheless, the ‘‘degrees’’ def(p;q,r) are quite interest-

ing — as we shall see.,

§5. The equivariant signature theorem and some number theory.

It is amusing that the signature defects,
Pl wk mqk
(29) def(p;q,1) = — 5 cotZX. cot TIX,
k=1 p P

occur in the classical literature.

PROPOSITION. Let p > 1 be a natural number and q an integer prime

to p. Then

(30) def(piq,1) = — (a.p),

where (q,p) is the Dedekind symbol (also called Dedekind sum) introduced
in [11], formulas (11) and (12). The Dedekind symbol is always an integer.
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The proof of (30) is in Rademacher [23], and uses the function
() : R » R defined by
(®) = x - [x] - %—, if x is not an integer,

, if x is an integer.

« =N =0

Rademacher proves ([23], pp. 276-277)

p-1 p-1
S cotTE . ot~ 4p 3 (&) - (@y).
€29) 2, ot oot P2 ((p)) (« p))
[Dedekind also uses a function (()). It is the above function (())

used by Rademacher with a shift of L in the independent variable. We use

2
the (()) of Rademacher.] We have by [11], formula (32),

Pl K
- kyy . (k).
32) (a,p) = 6p kéo ((p)) (€ p))

Formulas (31) and (32) imply (30). Dedekind proves that (q,p) is an integer.
Let us recall how Dedekind [11] defined his symbol and why he was

interested in it. Consider in the upper half plane H the function
F(Z) - e27TiZ H (1_e2ﬂiﬂ2)24
n=1
It is a modular function of weight 12 (compare e.g. [24], p. 154).

Since H is simply connected we can define a holomorphic function

f(z) in H with

ef(z) = F(2)
and lim (f(x+iy) — 27i(x+y)) = 0.
¥> 0

We have

f(z+b) = £(2) + 2wib, for beZ.
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Dedekind investigates the behaviour of f(z) under the modular group. His

result is the following.

For (2 3) ¢ SL(2,Z) there is a number (d,c) depending only on d and ¢

such that

33) c- f(izzﬁj’) = c-f(2) + 6¢ - log {—(cz+d)?} + 27 (a+d — 2(d,0)),

where the function c log {-—(cz+d)2§ is defined in the upper half plane with-
out ambiguity by requiring that the absolute value of its imaginary part is

< mel.

Of course, for ¢ £ 0 the number c~ 1. (a+d — 2(d,c)) is an integer. Dede-
kind uses (33) as definition of his symbol (d,c) for any pair of coprime in-

tegers. First consequences of (33) are

i) (1,0) = 1
ii) (-d,—c) = —(d,c).

Replacing in (33) the variable z by —z leads to

(d,c) = (d,-c),
so by ii) we have
iit) (=d,c) = —(d,c),
which implies
(0,1) = 0.

Replacing in (33) the variable z by z+1 or by —% respectively, leads
to the equations

iv) (d,c) = (d",c) for d=d” mod ¢

v) 2d(d,c) + 2¢c(c,d) = 1+c?+d?-3]cd|.

Formula v) is the reciprocity law for Dedekind symbols.

Clearly, i) — v) allow calculating (d,c) for any coprime pair. There is
exactly one and only one real valued symbol defined for pairs of coprime

integers satisfving i) — v).
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The reciprocity law v) and the other properties of the Dedekind symbol
imply for ¢ > 0.

(34) (,c) = QC_—iLZ(E—_Z)_ 2,0) = c=1): (c-5).

for the firstyformula compare (28). In the second formula c has to be odd.
Formula (30) shows that our signature defect def(p;q,1) equals the
Dedekind symbol (up to a factor). This followed from formulas (31) and (32)
of Rademacher and Dedekind. We might try to prove (30) alternatively by
establishing properties i) — v) for the signature defect. We only defined
def(p;q,1) for p>1 and q relatively prime to p. Therefore we do not have

i) and ii), but we have

(35) def(1;0,1) = 0
def(p;q,1) = def(p;q’,1) if q=q" mod p.

Therefore, we only have to prove the reciprocity law for def(p;q,1) corre-
sponding to v) because, clearly, (35) and the reciprocity law establish al-
ready an inductive process for the calculation of def(p;q,1), and this will

prove again what we want:

def(p;q,1) = —3(@p)-

PROPOSITION (Reciprocity law). Let p,q,r be pairwise coprime natural
numbers > 1. Then

(36)  qr def(p;q,r) + pr def(q;p,r) + pq def(r;p,q) = par —éfg—fﬁ-

This uses the notation of (27). For r=1, formula (36) is the reciprocity

law corresponding to v). Formula (36) is essentially a formula due to Rade-
macher ({231, p. 272). In the next paragraph we shall prove (36) by using
the equivariant signature theorem for suitable 4-dimensional manifolds and
group actions. It is pretty clear that (36) must be related to a situation

where we have
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qr points with isotropy group cyclic of order p and induced
37 representation in the tangent space given by q,r, and corres-

pondingly for p,q,r cyclic permuted.

Before constructing an example for (37) we make some number theoreti-

cal remarks. The right side of (36) vanishes if and only if
(38) p2+q%+r? = 3 par.

A triple (p,q,r) satisfying (38), for example (194,13,5), is called a Markoff
triple; compare [23] and [12]. For a Markoff triple the signature defects of
the qr + pr + pq points in a situation (37) do not give a contribution to the
total signature defect (20), since their sum is zero. Indeed, each one is

zero: If (p,q,r) is a Markoff triple, then

def(p;q,r) = def(q;p,t) = def(r;p,q) = 0.

Proof. q2+1% =0 mod p implies % = —% mod p. The result follows
from iv) and v) in §4.

We close this section by pointing out the connection between the Dede-
kind symbol and the quadratic reciprocity law.

For coprime integers p,q with p odd, p > 1,

(39) 3def(p;q,1) = 2(%)—;)_1 (mod 8),
i.e., (%) +(q,p) = p_;l_ mod 4, where (%) is the Jacobi-Legendre symbol.

From this fact and the Dedekind reciprocity v) the quadratic reciprocity
theorem follows easily. Presumably, the congruence (39) exists in the

classical literature. Don Zagier told me a very nice proof for (39).

§6. Proof of the Rademacher reciprocity theorem by the equivariant
G-signature theorem.

Consider the non-singular algebraic surface V, in P (C),
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Let p, be the group of n—th roots of unity. It acts on V_ by
(2g121125:23) ~ (é’_lzo,zl,zz,zs), Cepy
The orbit space is P,(C) which has signature 1; therefore by (24),

|
n — sign V = defY

where Y is the curve in V given by z, = 0.

Since Y Y = n, we obtain by (26),

i n(n?-1 n(4—n?
(40) sxgnVnzn_(s):(g)

Of course, (40) is well-known and could be used conversely to prove the
trigonometrical formula (25).

Let p,q,r be pairwise coprime natural numbers > 1. Consider

- ., Pqr pqr par par _
\"/ —qur.zo + 2y +2z, + 24 =0,

and on it the action of H = Hpgr X Hp X Bq X Ky given by

(ZO’ZI"ZQ'Z3) - (é’_lZO,aZI, BZZ, st)
for ({,a,B,y) ¢ H. We put Koqr = G, and Mp X g X My = G,. We have

V/H = (V/G)/G, = (V/G,)/G;.

Since V/G, is the complex projective plane whose cohomology remains

invariant under the action of G2, we have
41) sign V/H = sign (V/G,)/G; = 1.

We now calculate sign V/G, by applying (24) to the case M=V and G=G,.
There are three connected 2-dimensional manifolds (curves) Y,,Y,,Y, in

V given by z; = 0 (i=1,2,3). The sets G(Y;) are up—{li, uq—u}, ur—{l}
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Therefore by (26)

3
] defY

1)_

2 2 2
(42) = par @51 + 2=l

i 3

1=

1

There are three sets of pqr points each. The first set is given by z,=z,=0,
the second by z,=z,=0, the third by z,=z,=0. The isotropy group (Gz)x
for any point x in the first set is #q X Hp

The action of (G,), in the tangent space at x is the direct sum of the

standard one-dimensional complex representation of iq with that of 4.

Therefore
q-1 S |
def, = — (2 cotTh . (X cot T — 0
X (j=1 7139 (k=1 T
(each factor in the preceding line is 0, because
cot T - _ cot ﬁg:_j))_
q q

The same holds for the second and third set. Thus Zx def, = 0. If we
apply (24) to our case, then by (40), (42), and (24),

(43) sign V/G, = %(P2+q2+r2—p2q2r2+1),

V/G, is non-singular. This follows immediately by looking at the action

in the neighborhood of the curves Y; and the points x. We may therefore

apply (24) to the action of G; on V/G,. There is one curve Y, namely

the curve in V/G2 given by z,=0. We have Y-Y =1 and

2,2,2
(44) def, = P_q_g’_:l, (see (26)).

V/G2 — Y can be identified under t1=zlp,t2=22q,t3=z3r with the non-singular

affine surface
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.+ qr r
Wty Py Pl
on which G, = Mpgr acts by
(tptyty) » (Pt {3y, T ty), for LeGy.
]
On W we have exactly the situation (37).
Therefore
(45) Zw def, = qr def(p;q,r) + pr def(q;p,r) + pq def(r;p,q).
Xe

Applying (24) to the G,-action on V/G, gives, in view of (43), (41), (44),
(45),

par — + (o2 g2’ —pq’ P 41) =
2 21'2-—1
M3—— + qr def(p;q,r) + pr def(q;p,r) + pq def(r;p,q)

which is exactly Rademacher’s reciprocity formula (36).

§7. An identity due to Mordell
Mordell {22} has proved a relation between Dedekind sums and the

number N3(p,q,r) of lattice points in the tetrahedron
0<x<p, 0<y<q, 0<z<r, 0< §+ qy—+ Z?< 1,

where p,q,r are pairwise coprime. Let N:,,(p,q,r) be the number of lattice

points satisfying
0<x<p, 0<y<q, 0<z<r, 0< §+ 21'—+ Z;< 1.

Then
N,(0.a,0) = Nj(@,0.0 + 2ar+pripa-3).

The signature t(p,q,r) of the affine surface
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(46 r _
) t1P+t2q+t3 = -1

is given by the equation [10]
t(Pr(LY) = -'(P_l) (q_l) (l'—l) +4 Né(qu,f)-

Motdell’s identity ([22], formula (6)) can be rewritten as
@ par (t(p,a,0+1) = F(1-p2a’rra’Pp’PipPa?)

+ qr def(p;qr,1) + pr def(q;pr,1) + pq def(r;pq,1).

For the proof of (47) we consider the algebraic surface V=qur
of §6. The group

G = ugr X tpr X Hpq
acts on V by
(Zoyzlyzzyzs) d (Zo,a21,322,yz3), for (a,B’Y) e G.

The orbit space V/G is the union of the affine surface (46) with the image
of the hyperplane section z,=0 under the map V » V/G. It is easy to see
that {17]

(48) sign V/G = t(p,q,t) + 1.

We claim that Mordell’s formula (47) can be proved by using (40), (48)
and applying the equivariant signature theorem (or rather its consequences
(22), (23), (24)) to the G-manifold V. The method is not so direct as in

§6, because we meet pqr points x¢V for which G, is isomorphic to

Hpgr whereas the representation of G, in the tangent space at x is given

by integers aqr and 1 where aqr=1 mod p. For a point x for which
Gy= pqr and the representation of G, in the tangent space at x is given

by the integers aqr and 1, one can prove
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def, = qr def(p;a,l).
In our case aqr=l mod p. Therefore,
def, = qr def(p;qr,1).

The rest off the proof is quite similar to the proof in §6.

There are two amusing consequences of (47). If
49) q2r2+p2r2+p2q2+1 = 0 (pqr)

then the signature t(p,q,r) of the affine surface (46) is given by
- 1 1-p2q%r24q%e2%+ 2,2,p2q2) 1,
P91 = 3oar (1-p“q7ri+q7r7+p
and the Mordell number N3(p,q,r) of lattice points in the tetrahedron
0<x<p, 0<y<q, 0<z<r, 0< §-+ §-+ ZT< 1

is given by

1
(50) N, (p,0,0) = %pqr + }T(qr+pr+pq) + 7 (P+arr) -2

1 22,22 5242.1).

+ ——_Iqut(q re+p“re+p<q-+1)
Proof. If q?r2+1 is divisible by p, then
def(p;qr,1) = 0,

as follows from iv) and v) in §4. Thus (49) implies that all the defects in
(47) vanish.

The other consequence of (47) is the following. Let p,q,r be pairwise
coprime natural numbers 1. If p divides q*-1 or t2-1 and q divides

p2-1 or t2_1 and r divides p2—1 or q?~1, then

(51) t(p,q,1) = —-351&;@2—1) @2-1) (-1).
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This also gives a formula for N3(p,q,r)‘

Proof. Our assumptions imply
def(p;qr,1) = def(p;1,1) = def(p;q,r)

and correspondingly for p,q,r cyclically permuted. Then (51) follows from
(47) and (36).

The formula (51) is true, for example, if p is odd and g=p+1 and r=p+2

§8. The Dedekind-Rademacher reciprocity and a formula of Bott

The observations of this section are due to Don Zagier or arose from
discussions with him.

Applying the equivariant signature theorem to 2n-dimensional manifolds
leads to a generalization of the definition (27). If p is a natural number

> 1 and if q,...,q, are integers prime to p we define

p_1 . .

(52) def(p;q,,..-,q,) = i" ¥ cot e I ... cot 7n J
j=1 P Y

If n is odd, then the number defined in (52) vanishes. For n=2k we have

the following formula which generalizes Rademacher’s reciprocity formula (36)

Let bO’bl""’b2k be pairwise coprime natural numbers > 1. Then

2k
(53) 3 L. def(bi;b,....b: _ 1
j=0 -FJ ( j o’ be:...ybzk) = 1 —mLk(pl,,_,pk)

Here p, is the r-th elementary symmetric function of the numbers b2 Szk
or-+ob5

and Ly is the L-polynomial occuring in the signature theorem (§2. See [13]

1.5). For example,
L1(91)=1-P,L(p p) = -L(7 2
3*1 2\F1°¥)g 45 Py — Py ).

For the proof we consider the meromorphic differential form

b b
t%+1 . tl41 tPi1 dt
- - - g

+ 0 « 1 - P 1 -

w =
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on the complex projective line and use the fact that the sum of the residues
of w is zero. This generalizes Rademacher’s residue proof (1231, p. 277)
of Dedekind’s reciprocity formula (see v) in §5).

How does (53) relate to the signature theorem? We shall connect it
with a result which Bott presented in this conference.

Let p, Ye the group of a-th roots of unity and G = ubo XeooX Mp, - Let
G act on the complex projective space P (C) (homogeneous coordinates

zo,...,zn) by

a(zo,...,zn) = (aozo,...,anzn), acG, aj‘“bj'

Bott calculates the rational Pontrjagin classes in the sense of Thom for

the rational homology manifold P (C)/G (compare [17)). He does this for
arbitrary natural numbers bj > 1. If the bj are pairwise prime, then his

formula reduces to the following result.

Let bo’bl""'bn be pairwise coprime natural numbers > 1 and
G = pp XX py act on P (C) as explained above. Let peH*(Pn(C)/G,Q)
0 n
be the total Pontrjagin class of P (C)/G. If 7:PL(C)~ P (C)/G is the

natural projection and X gHz(Pn(C),Z) the standard generator, then
(54) m*p = (1+b 2x%) (1+b,2x%) .. (1+b,?x?) mod x™.

If n is odd, then (54) determines p completely. If n =2k, the Pontrjagin
class in dimension 4k is determined by the lower dimensional Pontrjagin
classes (given by (54)) and by the requirement that the signature of
sz(C)/G, which equals 1, be given by the 4k-dimensional L-polynomial.
In fact, Bott’s formula for the total L-class of sz(C)/G is a compli-

cated expression in cotangents from which — when the bj are mutually

relatively prime — formula (54) is clear, but it is not clear that the highest
dimensional L-polynomial gives 1 on sz(C)/G. This fact turns out to
be equivalent to the identity (53).
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Moreover, (54) holds for n=2k without the restriction (mod xzk) if and

only if the two sides of (53) are 0. This gives the following result.

Let bo’bl""’bzk be pairwise coprime natural numbers > 1 and

G = Mbo XouoX ﬂbzk‘ Then the total Pontrjagin class p of P, (C)/G is

given by the equation
m*p = (1+bo?x?) (1+b %) .. (1+by 2x?),
if and only if the bj satisfy the Diophantine equation

(55) boby - by = Ly, -spp)-

Here p, is the 1-th elementary symmetric function of the numbers

2 2
by%ees byp

For k=1, the Diophantine equation (55) is satisfied if and only if
(bo’bl’bz) is a Markoff triple (§5). For k>2, we do not know any solu-

tions (for bj pairwise prime and positive) except (1,1,...,1) and (1,1,...,1,2)

and permutations. Are there other solutions? For k=2, we have the Dio-

phantine equation
_ 212 2\2
45 b0b1b2b3b4 = 7( i%j b; bj ) — (Eil b;“)*.

Find all solutions!

Added in Proof: Using the IBM 7090 computer at Bonn, Don Zagier found

the solution

(2,7,19, 47, 59).
It is the only (non-trivial) relatively prime solution in integers < 100.
Mathematisches Institut der Universitat Bonn

(Sonderforschungsbereich Theoretische Mathematik)

Bonn, West Germany
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