The signature of ramified coverings

By F. HIRZEBRUCH

1.

Let X be a compact oriented differentiable manifold of
dimension m without boundary on which the cyclic group G, of
order n acts by orientation preserving diffeomorphisms. Theset Y
of fixed points of this action is a differentiable submanifold of X
not necessarily connected. The various connectedness components
of Y can have different dimensions, they are not necessarily orien-

table,

We assume that all components of Y have codimension 2 and
G, operates freely on X — Y, Then X/G, is an oriented manifold.
The natural projection

7. X — X/G,

maps Y bijectively onto a submanifold Y’ of X/G,. For any point
€Y we can introduce local coordinates (&, z) of X centered at x
with :

teR™* 2ze(C, Y given locally by z = 0,
and local coordinates (&', 2') of X/G, centered at w(x) with

geR™2% 2ecC, Y’ given locally by 2z’ = 0
such that 7: X — X/@G, has the local description

g — 2", g ==£.

Under these circumstances we call X an n-fold ramified covering
of X/G, with branching locus Y.

From now on suppose X has dimension 4k. The signature of
X is defined as follows. Consider over H*(X, R) the quadratic

form
(1) Qa, B) = (@ U BIX] for «, Be H*(X, R) .
@ is a bilinear symmetric form over a real vector space and by

Lecture given at the Summer Institute on Global Analysis, AMS, Berkeley,
July 1968.
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definition

sign(X) = p* — p~,
where p* is the number of positive entries, p— the number of
negative entries in a diagonalisation of Q. If, as before, G, operates

on X, then H*(X,R) is a G,-module. The action of G, on
H*(X, R) preserves Q. We can decompose H*(X, R) as follows

(2) H*X,R)=H @ H._,

where H. and H_ are Q-orthogonal, and where Q is positive-definite
on H, and negative-definite on H_ and

TH)Y=H,, TH. = H_ for TeG@G, .
For any T € G, we define
(3) sign (X, T) =tr (T | H,) — tr (T | H.)

where tr denotes the trace. It is easy to show that sign (X, T)
does not depend on the choice of H. and H_ (compare [4, p. 578]).
For T = 1 we have

sign (X, T') = sign (X) .

We wish to relate sign (X) and sign (X/G,). For this we need
information on sign (X, T'). This is furnished by the fixed point
theorem of Atiyah-Bott-Singer [2], [3], [4], or rather by a special
case of it. There is an elliptic operator on X of order 1 whose
index is sign (X) (see [4, §6]). The Atiyah-Singer index theorem
applied to this operator gives sign (X) in terms of Pontrjagin
numbers [7, Th. 8.2.2], the Atiyah-Bott-Singer fixed point theorem
gives a formula for sign (X, T') involving the Pontrjagin classes of
X and the normal bundle of Y as a vector bundle on which G, acts.
We shall give the precise formula for sign (X, T') later.

2.
The map 7: X — X/G, induces a ring homomorphism
n*: H*(X/G,,R)— H*(X,R) .

LEMMA. 7* maps H*(X/G,, R) bijectively on H*(X, R)¢», the
ring of elements of H*(X, R) wnvariant under the operations of G,.

This is a well-known fact true under much more general circum-
stances. (Compare A. Grothendieck, Tohoku Math. J. 9 (1957),
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119-221; Chap. V.)
We have for a, 8 € H*(X/G3,, R)

(m*a | 7*B)[ X ] = nla U B X/G,] .

Therefore sign (X/G,) equals the signature of the form @ of X (see
(1)) when restricted to

H*(X, R)°» = Hf» P HC» (see (2)) .
Thus
(4) sign (X/G,) = dim HS — dim H%» .

Using a well-known formula for the dimension of the invariant
part of a representation of a finite group, we obtain from formulas
(3) and (4)

(5) sign (X/G,) = % >ree, sign (X, T)

3.

Let us first consider the case » = 2. Then G, = {1, T} where
T is an orientation preserving involution of X. We have

(6) sigh(X, T) =sign(Y-Y)

where Y o Y is the oriented self-intersection cobordism class (see
[8], 9], [4, Prop. 6.15]). Thus (5) becomes

(7) 2 sign (X/G,) = sign (X) + 8ign(Y - Y).

Remarks. (1) The formula (6) is a consequence of the Atiyah-
Bott-Singer fixed point theorem. Formula (6) holds for any orien-
tation preserving differentiable involution, the fixed point set Y
need not have codimension 2. The fixed theorem gives sign (X, T)
in terms of characteristic numbers. Applying the signature theorem
to Yo Y eliminates the characteristic numbers to give a theorem
whieh is trivial for T = Identity and therefore is weaker than the
version coming from the Atiyah-Bott-Singer fixed point theorem.
Janich and Ossa [10] have proved (6), for arbitrary codimension of
Y, by elementary methods. It is not true for manifolds with
boundary, even if one assumes Y N oX = @. The mistake gives
rise to an interesting invariant for free involutions on (4% — 1)-
manifolds as studied in {4, § 7], [8], [9]. Also (7).is not true for
manifolds with boundary.
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(ii) In (6) and (7) the fixed point set ¥ need not be orientable.

Example. If X is the complex projective plane canonically
oriented and T complex conjugation with respect to homogeneous
coordinates (z,, 2,, 2;), then Y is the real projective plane and

sign(Y oY) = —1.

X/G, is a rational homology 4-sphere which checks with (7).

(iii) If dim X = 4 and Y is orientable, thensign (Y o Y) is the
self-intersection number Yo Y in X which equals (Y« Y")/2 where
Y’ oY’ is the self-intersection number of Y’ in X/G, (compare (13)),
Thus (7) can be written in this case as

(8) . sign(X) = 2sign (X/G,) — -%(Y’o Y.

Formula (8) is true also if Y is non-orientable, Then Y'Y’ has
to be considered as oriented self-intersection cobordism class in
X/G,.

4.

We make the assumptions of §1 and wish to give a formula
for sign (X, T) with T e@G,, but T different from the identity.
Observe that Y is orientable if » = 3. For n» = 2 we assume Y
orientable, the non-orientable case having been settled in § 3. We
orient Y and the normal bundle v of Y such that these orientations
span the given orientation of X. Then v has SO(2) as structural
group and may therefore be regarded as a complex line bundle with
U(l) as structural group. This can be done equivariantly with
respect to G,. Then the operation of 7T in v determines a complex
eigenvalue ¢ with ¢* = 1 and ¢ = 1.

THEOREM. Under the assumptions of §1 (with dim X = 4k)
we have

(t—i—l)—l—(t—l)YY
(t—1D+ @+ DY

This formula is to be interpreted as follows: Develop

(t+ 1)+ (t — )y

(t—1)4+ (¢ + Ly
where t e C ({ # 1) and y an indeterminate, as a forr_nal power series
in y.

(9) sign (X, T) = sign

Y,
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¢+ +=-1y, _t+1, 4

t-D+@E+1y  ¢t-1 t— 1y
We construct a sequence of oriented submanifolds of X
.Y, cY,cY,=YcX.

If Y, is already constructed, then we make the embedding i: ¥,—X
transversal to Y, Let j be a transversal map approximating 4, then
Y,...=7%Y). Theorientations of Y,.,and j*v span the orientation
of Y.. The oriented cobordism classes of the Y, are independent of
all other choices involved. The cobordism class of Y, is denoted by

Y"=Yo eer oY € Q¥

¥+

(10)

If we replace in (10) the power y” by Y, then we get an element
of the cobordism algebra Q* ® C, whereof course Y™ =Y o:ec.0Y
does not represent a power with respect to the multiplication in
0*. Recall that the signature is a ring homomorphism Q* — Z
which vanishes by definition on Q™ for m % 0 (mod 4). The right
side of (9) is the signature of the element of Q* ® C obtained by
replacing " by Y. Thus (9) means (for dim X = 4k)

sign (X, T) = ——2 _gign (Yo¥) + «-- .

If Y is not connected, then the eigenvalue ¢ has to be taken sepa-
rately for each connectedness component of Y, and the right side
of (9) represents a sum over the connectedness components.
Changing the orientation of Y and simultaneously of the normal
bundle v has the effect that Y” ¢ Q%% is replaced by (—1)"Y " and
t by ¢~'. Since

t+D+&—-1y,
(t—1)+ (¢ + 1y

remains unchanged under the substitution ¢ — ¢!, ¥y — —y it does
not matter which orientations we take as long as the orientations
of Y and v span the given orientation of X. Actually we have even
more freedom with the orientations, since in (9) we have sign(Y") #
0 only for r even. Formula (9) is a consequence of the Atiyah-
Bott-Singer fixed point theorem, more precisely of the G-signature
theorem [4, p. 582]. When applying it the invariance under the
substitution { — ¢!, ¥y — --y has to observed because in [4] loc cit.
the eigenvalue ¢ is supposed to have a positive imaginary part.
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When deducing (9) from the G-signature theorem we may
assume { = —1, If ¢t = —1, then T is an involution (which can
happen only if % is even). But (9) reduces to (6) fort = —1., With-
out further explanation we write down the G-signature theorem
of [4, p. 582] for our case and ¢ = —1. We use precisely the nota-
tion of [4]. This gives for ¢t = ¢ (0 < 6 < 7)

sign (X, T) = 2*—(£(Y) 916 —=|(¥]

tanh

where x ¢ H¥X, Z) is the Poincaré dual of Y. Substitute in the
expression in { } each (2r)-dimensional class & by 27«, then we get

- [v1,
tanh ('v + @%)}

where &(Y) = E;‘;D L;(Y) is the total L-class of Y introduced in
[7]. Since for ¢ = e
1 _ (t+ 1)+ (¢ — 1) tanhz
tanh(x—l—'i—a—) (t—1)+ (t + 1) tanhx
2
we get (9) by using the virtual indices or signatures of [7, § 9].

sign (X, T) = |&(Y)

o.

Still making the assumptions of §1 we calculate sign (X/G,)
using (5) and (9). Observe that (9) remains correct if T is the
identity and ¢ = 1, because then the right side of (9) reduces to
sign (Y°)and Y° = X. There is the following identity between
rational functions.

ay Ly, G+br@-ly _ -+ +d-u"
C-1D4+¢+)y A+y)"—0—y)

The sum is over all »™ roots of unity. By virtue of (11), the
formulas (5) and (9) imply

THEOREM. Let X be a compact oriented differentiable mans-
fold of dimension 4k without boundary on which the cyclic group
G, of order n acts by orientation preserving diffeomorphisms. If
all components of the fixed point set Y of this action have
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codimension 2 and if G, acts freely on X — Y, then X/G, is a
compact oriented differentiable manifold with
A+¥)+A-Y)y
@+¥)r-a-y)

n — 1

sign (X/G,) = sign

(12)
sign(Y oY) + -+,

=1 Gign (x) +
n

Suppose Y is orientable, consider the submanifold Y’ of X/G,
(Y = Y’ under the projection 7: X — X/G,). Orient ¥ and Y’ in
the same way and regard their normal bundles v in X and v’ in
X/G, as complex line bundles. Then it follows easily that

(13) V=1 =9Q¢c*** QcV -

As we shall see later ' and v (as bundles over Y”’) can be extended
to complex line bundles E’ and K over X/G, with

K = K" (n-fold tensor product)
and such that the first Chern class

e E") = o' ¢ HY(X/G,, Z)

is the Poincaré dual of Y’ in X/G,. Therefore z' = nec,(E). Rep-
resent ¢,(E) by an oriented submanifold U of X/G,. Then we can
deduce from (12) and (13) a formula for sign (X) in terms of the
signatures of the oriented self-interseetion cobordism classes U™ =
Uo «++ oU where the “self-intersection” takes place in X/G,.
Leaving the details to the reader we obtain

sign X = sign a+royr-@a-Uyr 1
1+0)+@-U U

= nsign (X/G,) — _”’i(_”‘"z_é:_.llsign(UoU) 4oene

(14)

If dim X = 4, then (14) can be written as

(15) sign X = n sign (X/G,) — ""‘23; Loyr.yy

where Y’ oY is the self-intersection number of the branching locus
in X/@G,.

Remarks. (i) If Y is empty, then we have an unramified
covering and (12) gives the well-known formula

sign (X) = nsign (X/G,) .
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This is not known in the topological case. Though formula (5)
remains correct, the preceding formula cannot be deduced from it.
Namely, for topological manifolds it is not known whether
sign (X, T) vanishes for T without fixed points.

(ii) In the formulas (12), (14), and (15) the orientations of Y,
U, and Y’ respectively, do not play any role. Observe that in (12)
and (14) the rational functions on the right side of the equations
arc even. Therefore only self-intersections Y " ete. with # even
occur, The orientation of Y does not change if one changes the

orientation of Y.

6.

PROPOSITION. Let M be a compact oriented differentiiable
manifold without boundary. Let Y' be an oriented differentiable
submantfold of codimension 2, and x'€ HYM,Z) the Poincaré
dual of Y’'. Suppose that x’ s divisible by n in H¥M,Z). Then
there exists a G,-manifold X with X/G, = M and with branching
locus Y' such that all the assumptions of § 1 are satisfied.

For the proof we consider the complex line bundle E’ with
¢,(E'y = 2'. It has a differentiable section s: M— E’ which
vanishes on Y’, is different from zero on M — Y’, and is trans-
versal to s, (M) where s, is the zero section of E’. Since z' is
divisible by » we can find a complex line bundle E with

E*=ERQR---QE=EFE".
If p: E— FE' denotes the map
P: 00— 1R - RV,

then X = p~'s(M) satisfies all the assumptions of § 1.
Of course, X in the above proposition is in general not uniquely
determined. Its signature is given by (14) where U is a sub-

manifold representing ¢,(F).
If the assumptions of § 1 are satisfied for a given G,-manifold

X, then X is obtainable by the method of the preceding proposi-
tion. This can be seen as follows. Over X/G, — Y’ we have a
principal G,-bundle, and over a tubular neighborhood V0 of Y’ a
principal C*-bundle coming from the normal bundle v of Y in X,
If we extend the structural group of the principal G,-bundle to C*
we get a principal C*-bundle over X/G,— Y’ which can be identificd
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on 0 — Y’ with the principal C*-bundle of v. Thus we get a
principal C*-bundle over X/G,. We denote its associated complex
line bundle by E. Then E* is a complex line bundle E’ with
¢.(E") = a’, the Poincaré dual of Y'. As can be checked, X is
obtained from E and E’ as in the above proposition.

7.

The construction of 6 can be done in the complex analytic case.
We need a minor modification. Let M be a compact complex mani-
fold, and D a divisor on M given by meromorphic functions f;
defined in open sets U; with |J U; = M such that, on U, N U;, the
function fi/f; has neither zeros nor poles (see [7, § 15.2]). We say,
D has simple zeros and poles if and only if for a suitable open
covering each f; is a coordinate funetion z, in a local coordinate
system (2, 2., -+ -, #,) defined in U, or is the inverse z' of such a
coordinate function or is constant and different from zero and oo.
A divisor D has simple zero and poles if and only if D = D, — D,
where D,, D, are non-singular divisors [7, § 15.2, p. 115] with no
common zeros, i.e., the complex submanifolds Y, and Y, of complex
codimension 1 determined by D, and D, do not intersect.

We assume that

(16) D)=ER--QFE=E".

Here {D} is the holomorphic complex line bundle defined by D and

E is a holomorphic complex line bundle whose #™ power as a holo-

morphic line bundle is {D}. Any holomorphic line bundle L has an

associated holomorphic bundle L with the complex projective line

as fibre obtained by adding a point at infinity to each fibre of L.
The line bundle {D} has transition functions

Jiy = Flfi U;NU; — C*

and a meromorphic section given by the functions f;. This mero-
morphic section defines a holomorphie section

2N
ssM—{D}.
Because of (16) we have the “n'™ power maps”
~ A /\
0:E——{D}, p:E—{D}.

Then X = 9~'s(M) is a compact complex manifold which is an n-
fold holomorphic ramified covering of M with Y’ = Y/ U Y!. Here
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Y’ is determined by the zeros and poles of the divisor [). Since we
are interested in the signature of X, the orientations given to the
components of Y’ do not matter (§ 5, Remark (ii)).

Formula (16) implies that the Chern class ¢,{D} is divisible by
n. This divisibility is also sufficient for the existence of a holo-
morphic line bundle ¥ with £* = {D}. For the proof we use the
exact sequence

H(M, Q) 225 HY(M, C2) - HYM, Z) —2> H¥M, £)
where Q is the sheaf of germs of holomorphic functions and
H'(M, C?) the group of holomorphic line bundles under the tensor
product [7, §15.9]. If ¢{D} = nx, then z is in the kernel of j,
therefore in the image of ¢,. Thus ¢ {D} — ¢,(&"), where K, is a
holomorphic line bundle, and {D}E * is in the image of exp. In
H«(M, Q) every element is divisible by n. Therefore {D}F,"" = L"
where L is in the image of exp. g.e.d.

If M is an algebraic surface, then the ramified covering X is
again algebraic. We have the following theorem.

TurorREM. Let M be a non-singular algebraic swrface and
D =D, — D, a divisor on M where D,, D, are non-singular curves
which do not intersect. Suppose that the inteyral homology class
of D 1s divistble by n. Then there exists an algebraic surface X
which 18 & ramified covering of M along D (we have M — X/G,
where the eyclic group G, acts on X by holomorphic maps and
Jreely outside the set of fized points). For any such X we have

(17)  sign(X) = nsign (M) — ﬁ%__lpo D,  (see(15).
n

Here Do D 1s the self~intersection number of the homology class
of the divisor D.

Remark. If in the preceding theorem sign (M) = 0 and
DoD < 0with n > 2, we get examples of algebraic surfaces with
sign (X) = 2. In fact, Atiyah |1| and Kodaira [11] have in this
way constructed algebraie surfaces with arbitrary large signatures,
as we shall recall in § 8. The existence of algebraic surfaces with
sign (X) = 2 contradicts an earlier conjecture in algebraic geome-
try. Borel |5] has proved the existence of discontinuous groups
operating freely on bounded homogeneous symmetric domains and
which have a compact orbit space. Also his result led to examples
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of algebrai¢c surfaces with arbitrary large signatures (compare
{7, §22.3)).

8.

The formula for the signature of ramified coverings was
motivated by papers of Atiyah [1] and Kodaira {11] who studied
the signature of ramified coverings in some special cases which are
of particular interest because they show that the signature of the
total space of a differentiable fibre bundle need not be equal to the
product of the signatures of base and fibre. This multiplicative
property holds however if the fundamental group of the base
operates trivially on the cohomology of the fibre [6]. The construc-
tionin §§ 6 and 7 occurs essentially in [1] except that Atiyah studies
only double coverings. We report briefly on the family of algebraic
surfaces studied by Kodaira [11]. The calculation of Pontrjagin
classes occuring in [1]| and [11] can be replaced by formula (17).

Let C, be a Riemann surface (algebraic curve) of genus g, = 1.
Since H(C,, Z,) -+ 0 there exists a Riemann surface C, which is an
unramified double covering of C,. Let 7: C,— C, be the covering
translation; 7 is a free involution. The genus g, of C, is given by

22 — 2¢9,) = 2 — 2g, , g, = 29, — 1,

The group H,(C,, Z,) is a homomorphic image of 7,(C;). Let C, be
the Riemann surface (algebraic curve) which is associated to the
universal unramified covering of C, with H,(C,, Z,) as fibre. The
degree of this covering map f: C, — C, is n*2, The genus g, of C, is

s = (g, — 1) + 1.
In the cartesian product C, x C, we consider the graph I', of f.
The self-intersection number of I', in C; x C, equals
(18) I'yoT'y = deg (f)-(2 — 2¢.) = 4n* (1 — g)) .

The class of T, in H(C, x C,, Z,) is determined by /*: H*(C,, Z,)—
H*(C,, Z,). By the very construction f* is 0 in dimensions 1 and
2. The same holds for (zf)* = f*r*. In dimension 0, both f* and
(zf)* are the identity. Therefore I', and I'.; have the same homol-
ogy class in H(C, x C,, Z,). We can now apply the theorem of § 7
with M =C, x C,and D =T, — T'.;. Since

gign (M) -= sign (C,) sign (C,) = 0

and
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DoD = 2o T, = —8n¥t g, — 1),
we have

THEOREM. For any g, = 1 and n = 2 there exists an algebraic
surface X(g,, n) with

sign X(n, g) = 8 = LY \

‘'The Kodaira algebraic surface X(g, n) is fibered differentiably
over C, with algebraic curves Cj(x) as fibres which are n-fold
ramified coverings of C, with the two branching points f(x) and
7f(x) for x € C,. The fibres therefore have genus ng, = #(2¢g, — 1).
Thus X(g,, n) is a 4-dimensional manifold fibered differentiable
over a 2-dimensional manifold C; of genus n*r?*2¢g, — 2) + 1 with
a 2-dimensional manifold C, of genus n(2¢g, —1) as fibre. For g, =2
we have sign X(g,, n) - 0 whereas sign (C)) sign (C;) = 0-0 = 0.
Thus the signature does not behave multiplicatively in this differ-
entiable fibre bundle. Observe that the signature is defined to be
0 for manifolds of a dimension not divisible by 4. A differentiable
bundle with total space, base, and fibre of dimensions divisible by
4 is given by the cartesian product of X(g,, ») = X with itself,
Then

sign X? = (sign X)* =+ 0,

whereas the base C? and the fibre (C;)* have vanishing sighatures.

X(g,, n) gives for g, = 2 a family of Riemann surfaces C)(x)
(x € C;) which is locally not trivial. The complex structure of C;(x)
varies with « (see [1] and [11]). As Atiyah [1] shows, this phenom-
enon is closely related to the non-multiplicativity of the signature.
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