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The Second Homology Group
of the Mapping Class Group of an Orientable Surface

John Harer*

Department of Mathematics, Columbia University, New York, NY 10027, USA

Let F be an oriented surface of genus g with r boundary components and n
distinguished points. The mapping class group I'=I"(F) is ny(Diff* F) where
Diff* (F) is the topological group of orientation preserving diffeomorphisms of
F which fix the n points and restrict to the identity on dF. It is known [9] that
H,(I')=0 for g=3. In this paper we shall prove the

Theorem.
Zr+1 g25, r+n>0

HZ(F)g{z OZ/2g—2) g=5. r=n=0.

As an immediate corollary we have the proof of a conjecture of Mumford
[7]. To state this let M be the moduli space for curves of genus g with n
punctures (r=0). I' acts properly discontinuously on the Teichmuller space
F=C*2*" with quotient IM?. Furthermore, the stabilizer of any point is
finite, so

H/(I';Q)=H,M:; Q) forall i

The codimension of the subset of 7" on which I' fails to act freely (the curves
with automorphisms) increases with g, so in fact

H,(I';Z)=H,W;; Z), g>i.

In [7] Mumford shows that the Picard group Pic(.#) is isomorphic to
H?*(I'; Z) and conjectures the latter is rank one, g=3. We prove this below for
g25.

Another interpretation of this theorem may be obtained by identifying
H,(I') as bordism classes of fiber bundles F»>W* — T where T is a closed
oriented surface (Sect.0). When F is closed every such bundle is bordant to
F > W' - T', a bundle admitting a section s: T' — W'. The theorem then says
that

* This material is based upon work supported by the National Science Foundation under Grant
No. NSF MCS 80-02325
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F->W F - M?®
T Y3

if and only if W has signature 0 and the self-intersection number of s(T”) is
divisible by 2g—2.

The author would like to thank Karen Vogtmann for helpful discussions
and the referee for invaluable suggestions.

Section 0. Outline of the Proof

When g =3 there are n+1 homomorphisms
Sos - Syt Hy(IN) - Z,

the components of a map ¢ to Z"*' with image ¢ =4Z @®Z". To describe these
let A denote the topological group Diff* (F), BA its classifying space with
EA - BA its universal covering. When g=2 each component of A is con-
tractible [3] and H,(I')~H,(BA). The latter is isomorphic to the bordism
group Q,(BA). This means that every 2-cycle £ on I' may be represented by a
map T— BA, T some oriented closed surface, and [¢]=[¢] in H,(I') iff
¢ —¢& extends to M3 — BA, M? compact oriented with M =T —T".

The map ¢ yields, by pulling back from F - EA x .F - BA, a fiber bundle
F—> W* 5 ,T. Set

So(&)=signature (W*).

The monodromy group of ¢ lies in A, whose elements fix the n distinguished
points on F, so £ has n canonical sections s;: T — W. Set

S(&)=[s(T)1%,

the self-intersection of 5,(T) in W. These are well defined homomorphisms by
the above discussion. Meyer [6] proves that im(S,)=4Z. We will show sur-
jectivity of the other S;’s and independence of all n+1 S;’s in Sect. 4. We may
then state our theorem more explicitly by saying that ¢ is an isomorphism for
r+n>0 and has kernel Z/|X(F)| for r=n=0.

To compute H,(I") completely it will be necessary to construct a cellular
action of I' on a simply-connected 3-complex Y;. This complex has its origins
in [5].

A well known spectral sequence technique then allows us to find H,(I') in
terms of H,(Y,/I') and the lower homology groups of the stabilizers of the cells
of Yj.

In Sect. 1 we show H,(I')~0 for g=3 and H,(I"; H,F)=0, g=4. These facts
will be needed in Sects.3 and 4. In Sect.2 we describe the complex Y, and
prove it is simply connected. Section 3 computes H,(I') with r>1, g=5, n=0
directly from the action on Y;. In Sect. 4 we use various short exact sequences
to deal with the general cases and finish the proof.
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Section 1. H,(I') and H,(I'; H,(F))

During the course of our computation of H,(I') it will be necessary to know
the following:

Lemma 1.1. H,(I')=0 for g=3; r,n arbitrary.

Lemma 1.2. H,(I"; H,(F))=0 for g=4; r,n arbitrary.
Lemma 1.1 was first proven by Powell [9] for r=n=0.

Proof of 1.1. Let CcF be a simple closed curve. The Dehn twist on C, 7, is
the mapping class obtained by splitting F open at C and reglueing by a 360°
twist to the right. Dehn [2] proved that mappings of this form generate I'.

Let F, be a sphere with four disks removed, I, its mapping class group
(recall 0F, must remain fixed). Label its boundary components C,, ..., C, and
write t; for the Dehn twist on a circle in F,—0dF, parallel to C;. Also write C;;
for the circle enclosing C; and C;, shown in Fig. 1, 7;; for the twist on C;;. The
following relation in I, is easily verified

ToT1T2T3=T12T13723- (*)

Since 0F, remains fixed throughout, any embedding of F, in F will induce a
relation in I'.

As a first application of (*) we wish to prove I' is generated by Dehn twists
on nonseparating curves in F. If CcF is parallel to a component of 0F and
g=2 choose two disjoint simple closed curves «;,a,cF with F—{o,,a,}
connected. It is easy to then find an embedding of F, in F with C,=ay,
C,=a, and C;=C. All curves will be nonseparating in F except C, so . is
isotopic to a product of twists on nonseparating curves.

For arbitrary separating C< F, g=3, split F open on C and use the side of
F — C which has genus =2.

Fig. 1
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Remark. For g=2, I' is still generated by twists on nonseparating curves; the
argument is only slightly more difficult.

We see immediately that H,(I') is cyclic because if C,, C, are any two
nonseparating curves, there exists he Diff* (F) with h(C,)=C,. It follows that

— -1
Te,=hteh

in I'. To see H,(I')=0 we notice that for g=3, there is an embedding of F, in
F with all seven curves nonseparating. This completes the Proof of 1.1. [

Proof of 1.2. Construct a free ZI" resolution L, —Z with L,=ZT, L, the free
ZI' module on symbols § for ycF a nonseparating curve, L, the free ZI'
module on symbols for relations, etc.; boundary maps are defined in the usual
way. For each curve CcF we choose an orientation to obtain h.eH (F). If y
is nonseparating, there is a basis {C;} of H,(F) with C,=y, yn C,=o0ne point,
and yn C;=0, i=3. Form F, by splitting F along C;, i+2; since genus (F) >3,
on F; there is by Lemma 1.1 a relation R of the form

Ty:l—l [ij’ Tt’j]’ Vjs 5J'C Fl

Since 7, , 7, and t, act trivially on h,
,(R®hc)=9®hc,, (i+2).

To see that §® h., bounds, choose orientations of C,, C, so that C,-C,=1;
then, setting 7,=1.,
ts(he,)=h¢, +he, =15 (he)).
Therefore
Ci®he, =11 (€, ®@711(he,)
=171 1(C, ®@he).

But C; @ h¢,=03,(R®hi¢,) by the above. [

Section 2. The Cut System Complex

Based on work of [5] we now construct the complex Y, mentioned in Sect. 0.
Throughout this section we shall assume n=0, r> 1.

A cut system on F is {(C,), the isotopy class of a collection of disjoint
simple closed curves Cy,...,C,<F such that F—(C,u...0C,) is connected
and therefore planar. (We will often confuse a curve and its isotopy class.)
There is no ordering of the circles and they are not oriented.

If C, C' are two isotopy classes set I(C, C’) equal to the minimum number
of intersections (no signs) between any two representatives meeting trans-
versely. When we replace {C;> by {C;> where I(C,, C}))=1 and C;=Cj, j=*i
we say {C;> and (C;> differ by a simple move. We assume from now on that
any circle omitted from the notation remains unchanged.



Second Homology Group 225

There are three main cycles of such moves

<C <G
/ (Ry)
<CH
(C, C) (C,, Cy
| (R,)
(Ci.Cp (CLC
(C,, C (C;. Cp
<G, C» <Cj, C). (R3)
(C;, C c, ¢

Each edge corresponds to a simple move. An illustration is shown in Fig.2
although there is no restriction on I(C’, C}), I(C’, C}), or I(C;, C)). Note that R,
is different from [5] but part 2 of Lemma 1.7 of that paper shows that use of
R; is equivalent.

Let X, be the O-complex with one vertex for each cut system on F; X, the
l-complex obtained by attaching a 1-cell for each simple move; X,=X, with
2-cells attached for the cycles R, R, and R;.

Theorem 2.1 [5]. X, is connected and simply connected.

From this they outline a presentation of I'.

Fig.2



226 J.Harer

Let ¢ -<{C;>=<¢@(C)). Because all cells are determined by configurations of
circles, extending linearly gives a natural action of I" on X ,.

Our first task will be to describe a subcomplex Y, X, with Y, =X, n,(Y,)
=1 and I'(Y,)cY,.

Consider type R, 2-cells in X. Among such are those g(y) corresponding to
an R, cycle with {C, C;, C{'} ={a,, By, y} and {C;,jFi}={a;,j+1}, where g
and f, are the standard curves in Fig.3. Under the action of I' on X,, every
type R, 2-cell of X, is identified with some a(y), with y ranging over a rather
large but finite set of curves. For Y,, include those 2-cells of X, in the I' orbit

of all o(y) with y among the N=2r+2+ (r; 1) curves of Fig. 4 (the parts of y

not drawn are straight arcs which do not link any handles).

Y, contains all 2-cells of X, of type R,. For R;, Y, contains all 2-cells in
the I'-orbit of a single 2-cell, the one corresponding to the R; cycle involving
the standard cut system {«;» and the cycle of curves

(Cia C/’ Cja C;I: C’ C;‘)=(a1’ w, &, ﬁZa CO, Bl)
shown in Fig. 3.
Clearly I'(Y,)c Y,.
Theorem 2.2. Y, is simply connected.
Proof. Form X, by adding to X, the 3-cells of types 2,2, and X, from Fig. 5.

() Consider first two 2-cells of type R; and the choice of the circle C;.
I(C, O)=I(C, C)=1, I(C}, C)=0, k*j.

Fig. 3
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Fig. 4

Form F, by splitting F along all C,, k+j. Fix C and C; and consider

A ={isotopy classes of simple closed curves
y<=F, with I(y, C)=1(y, C)=1}.

We may build a 1-complex Z by taking a vertex for each element of 4 and
attaching an edge between any two elements y, y for which I(y,y")=1.

Lemma 2.3. Z is connected.

Proof. Fix a base point y, in Z. F, is a torus with s holes. If s were 0 every
element of A4 would be determined by its homology class. Furthermore, C=C;
and each y is y,+nC, neZ. Since I(y,+nC, yo+mC)=|n—m| we see that Z
may be identified with the real line, 4 the integer points.
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=)
@4
7.‘ /3
No restrictions on [ (a4 ,a),
/31 L(By,B) or Lz, 7')
o
(629
C\,C,

ci,cy

Fig.5

()

For the general case proceed by induction on s. Attach a disk to one
component of 0F, to form F,; f: F, — F, the inclusion. Denote the set 4 for F;
by A;; f induces a surjective map f,:A4,— A,. Suppose now that y,€A4,. By
hypothesis there is a sequence w, ..., w, of elements of 4, such that I(w;, w,, ,)
=I(f*('})o), W1)=I(Wr’f*(3)1))= 1. We may choose w?’ wileAO with f*(W{)=Wi,
IWw?, wl_)=1,i>1, and I(yy, w))=I(y,,w})=1.



Second Homology Group 229

Finally, an isotopy of f(w?) to f(w!) in F, gives rise to a sequence of
curves w2, ..., w! in F, each differing in F, by a single move across the disk F,
—F,. Choose n,€A, with I(n;, wj)=1(n;, wi*')=1 (for example by Dehn twist-
ing a copy of w! along C). These fill in the connection from y, to y, in Z. [

Lemma 2.3 also holds for C; and C’; therefore via type X, 3-cells we see
that we only need one 2-cell in Y, for each choice of (C,> and C.

Consider C next. F—{C,, C} has two components. If either is a sphere with
three holes, there is an element of I' identifying {C,} with {«,} and C with C,
(Fig. 3). When both have more than 3 holes replace C by C, a curve disjoint
from C which cobounds with C; and C; a sphere with three holes (connect C;
to C; by an arc disjoint from C and surger C;1LC; to C). It is not hard to find
the extra curves C;, Cj, C" and A necessary to construct a 3-cell of type 2.
Therefore any two choices of C are equivalent and Y, has enough 2-cells of

type R;.

(II) No reduction is needed for type R,. For R,, we must reduce the col-
lection of y’s needed for the 2-cells a(y) to those of Fig. 4. Orient o, f§,, and y
so that o, -f, =a,-y=1. By switching «, and f, if necessary we may assume
that f,-y=—1. Picture F as the boundary of a handlebody (with r 2-disks
removed), label the attaching disks for the handles D,,...,D,, and write
44, ...,4, for the curves of dF (Fig.3). If necessary, isotope y until the three
points of intersection between a,, f, and y are distinct. Then F—{a;, f,, y}
has three components. If we orient , once and for all, each y is oriented by
requiring o, -y=1; write F, for the region to the right of y after it crosses a;,
F, for the region to the left of y before it crosses a, and F, for the remaining
region. Let /; be the number of dD; (j=3) and 4; lying in F,. The y curves for Y,
occur when (assuming y is oriented to the right as it crosses o, in Fig. 4) /, =0,
¢, <2 and F, contains:

¢/,=0 nothing,
6o=1 Dy A, ..,4,_,0r 4,_,,
£,=2 D3,D,;;D3,Ds; Dy, 4;, 1Sisr—1 or 4,4, 1Si<jsr—L

The index (/,/,) is not an invariant of a(y): If we rotate the first handle
and switch orientations of «; and y we obtain an equivalence between curves
of type (4,,¢,) and type (¢,, £;). Furthermore, types (0,4,) and 2g—2+r—4¢,,0)
are equivalent by an isotopy of y with F,, F, and F, permuted cyclically
((012)).

For the reduction, first suppose #;, >2. Build an octahedron (type 2,) with
vertices a,, o, B, B, y, ¥ where a,, f§,, y are as above, « links /; —2 holes in F,
while f and y’ link these and one more (Fig. 6). Each face is translated by I
to a o(y); if (£], £;) is the index of any of the seven new faces of the octahedron,
it is straightforward to verify that /] +/;</ +7/,. Using symmetry we are
therefore reduced to the cases where ¢}, £, <2.

For (2, 2) and (2, 1) use the curves of Fig. 7, y’ links both holes of F, while «
and f each link a different one. If y is type (2, 4;) with £/,=1 or 2, the other
triangles have types (1,¢,), (1, 1), (2,0), (0,7,), (0,0) or (1, 0).
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A
Fig.8

With type (1, 1) use the curves of Fig. 8, where y, o, f and y’ each link the
hole of F,. The other types are (0,1), (0,0). (1,0) or (0,2). Again by using
symmetry we have reduced to types (0, 0), (0, 1) and (0, 2).

Finally, notice that in all three reductions any D; or 4; lying in F, remains
there. If 4, lies in F, for any of the y of type (0,4,), £,=1,2 we use the
equivalence (0,¢,)=(2g—2+r—¢,,0) to put 4, in F,. Then the reduction
process is repeated to reach types (0,7,), /=0, 1,2 with 4,cF,. It is now easily
verified that the action of I' identifies the resulting o(y) with those of Y,. This
finishes Theorem 2.2. []
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Section 3. Computation of H,I" for g25, r21, n=0

Let Y, be the 2-complex of Sect.2. We must add two types of 3-cells to form
Y,. For the first type notice that the curve y, of Fig. 4 is disjoint from f,.
Therefore we may construct a 3-cell X, from the fact that the cycle of simple
moves o, —ff; —y,; —a,; commutes with the moves o, —f§, —a,. It is a triangular
prism and is pictured in Fig.9. Y, has a 3-cell of type X, for each con-
figuration identified by I' to this cell.

For the second type we add to Y; any X, 3-cell equivalent under I to the
one with (C, C;, C}, C, C")=(a,, %y, B3, By, Co, @), with 1 identified with any
fixed curve 4, which meets the other curves properly (for example, 1,=1g"(8,),
again 7, is the right-handed Dehn twist on C,; compare Figs.3 and 5), and C
the curve which encircles D, and D, and lies in front of D, and D,, disjoint
from o (3 a map t: F—F fixing o', a3, ..., , which interchanges a; with a,, §,
with f, and C with C,). I' acts on Y.

Suppose next that BI' is a CW complex and a K(I,1), EI - BI' its
universal covering. From the fiber product 4=EI x Y, there is a natural
projection f: A — BI, a fibration with fiber Y;. This means =,(4)=I so a
K(I', 1) may be constructed by attaching cells to 4 of dimension = 3. There is
therefore a well defined surjection ¢: H,(4) - H,(I).

Theorem 3.1. Image (¢p)=Z.

Corollary 3.2. H,(I''~Z for g=5,r2=1, n=0.

Proof of 3.1. Write (C,, d%) for the cellular chain complex of Y, (K,, 0¥) for
that of EI'. If R=ZT,

M, = @kCi®RKj

i+j=

and
M =[DO @1 )]+ [D (L, ®r(— 1) 5],

then (M, 0) is the chain complex of 4. Define a filtration of M . Dy setting

F,M)= @ . C,®rK;.

iy
isp
ay,0; @y, 8,
/
/
//
ney 11—~ 7P
AN
\
AN
By, By,8;

Fig.9
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. F(H,, (4
The corresponding spectral sequence has Ej = pH g where

q~Fp—1(Hp+q(A))
F(H,, (A)=1m(H,,(4,) > H, (1), 4,=El x .Y, p<3. Also

E, ,=C,®xK
and
) ,=1®05.
Let o, be the O-cell of Y, corresponding to <{«;», o, the l-cell for {a;)

—<{B>, (23, ..., o, understood), a5, 1 i< N, the type R, 2-cells for <a,»—<{B,>

=y =<y, o3*! the type R, 2-cell for (o, 0,0 —<oy, By —<By, By
— (B, 05> =<, a,), a5 *2 the special type R, 2-cell from the curves of Fig. 3,
o3 the X, 3-cell of Fig.9 and o3 the X 3-cell described at the beginning of this

section. _
The action of I on C,, splits:

C,=Cl®..®CY

w1th F(C )< C‘ and every generator of C‘ identified by I' with a (no=n,=1,
=N +2 and ny=2). If I'; denotes the stabilizer of a,

Ci=R®qgryZ
via the correspondence ¢ - g(o}) > g®t. Hence
CP®RKq§®(<0;> ®ziry Ky
Since K, — Z is a free Z[I}}] resolution

E; =@ H,(T}: ()

Where <o,)=ZcC,. I, I;, 1Si<N, I;'*? and I act trivially on their

respective <a > Iy, I, PN+ and I'J however contain orientation reversing maps.
We begin the computations thh

Lemma 3.3.
Z p=0
Ej 0=40 p=13.

ZN®ZNRL p=2

Proof. When I, i acts tr1v1ally on a , Ho(T, i <a' >)=Z. On the other hand for I,
Y+ and I} thls group is Z/2Z. It is stralght forward to then verify that

Y Ho (I3 {o3) = Ho(l3<0,))
is surjective, that

Y H (35 <03) = Ho(IY 15 <o Y )@ Ho (I 5 {03))

is injective and that
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9:(f)

o -4
A6 -RE

ay
AR /770N
——— -~

T
— - —_— -
D242 -
D2

Fig. 10

d':Ho(I3; (o3)) > Ho(I7' "2 (o) " ) @....

is multiplication by 2 in the first factor.
The lemma follows. [

Next we must analyze the stabilizer of each cell. Write

Iy={ferl,: f fixes the curves which determine the cell 0, pointwise}
with a similar definition of I}, [} and I}

Lemma 3.4. fonggH_l X ZE*" ' where P, is the pure braid group on n strands.
As generators we have A; ;, 1Si<j<2g+r—1and T,, 1Sk<g+r—1 with A;
the diffeomorphisms of F obtained by sliding D, around D; (where D,, =4,
Figs. 3, 10) and T, the Dehn twist on oy, 1<k=<gor 4,_,, g+1<k<g+r—1.
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The proof from [5] for closed surfaces is easily adapted. [J

Let F, be obtained by splitting F along a,uUf,; F, has genus g—1 with
r+1 boundary components. One sees immediately that

I =T, (F,)

with [ (F)={fel(F,): fI{x,,...,a,}=1}. We may likewise form F; and F}
with

14

F)

Lo
I, (F3).

wa o

1

There are short exact sequences
l—>f;—>F;—>Gi,—>l (%)

where Gi, is the (finite) group of symmetries of ai,. Gy~ £2,, the group of
signed permutations on g elements (the curves {«a;,...,«,} may beApermuted
and have their orientations changed). I, is therefore generated by I}, x; and
1,, 1S/ <g—1, where x, reverses a, (fixing o,, ...,0,) and t, interchanges o,
and o, (Fig.10; in I, x, =g}, g, is the map ¢ from [5]). G, =Z/4Z x +ZX,_,
so I, is generated by I}, g,, x, and 1,, 2</<g—1. It will not be necessary
(although it is not difficult) to compute G, or GY.

g, lies in the center of I so d‘:Hq(F1;<al>)—>Hq(Fo) is zero for all q.
Combining this with Lemma 3.3 we see that the E? term of our spectral
sequence is H,T,

H,I, Ef,
z 0 Z®Z)Z o

To complete the argument we shall show
Lemma 3.5. H,(I)=Z"~'@Z/2Z and E; (=1.
Lemma 3.6. If F,(H,(I')=¢(F,(H,(4))) (¢ the map of (3.1)),

Fo(H,(I')=F, (H,(I')=0.

Since H,(4)=F,(H,(4)) and Ej (=E%,=F,(H,(4))/F,(H,(4)) these lemmas
complete the Proof of 3.1.

Proof of 3.5. P, has the following presentation ([1], see the errata, the pre-
sentation in the book in incorrect):
Generators are A;;, 1 <i<jZ<n.

ij>
Relations are [A,;, B 1, 12i<j<n, 1 £r<s<n where

i,j,r,s

A, r<s<i<j or i<r<s<j,
B _ A,SA,I. s=i,
ijsrs ™ . .

A, A A i=r<s<j

A A, A r<i<s<j.
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Clearly then
H,(P,xZm=Z )+
generated by the classes of 4;; and T,. In particular H ((F}) is torsion free for

all p,i. If we analyze the spectral sequence associated with (%) we find (since
H,(G,) is torsion)

0 H,([)/G, — H,(I}) —~H,(G}) 0.
For p=0, G, identifies

T, with T, 1=k<Zg,
A, with A,,  12i<j<2g, (i,j)+(2s—1,2s),
Wlth A12 ( ) ( —1’23)3 Ség,

or
with 4,; 1=5is2g, j>2g.

Thus  H,(F,)/Go~Z ", generators Ty, T, 1, ..., Tyyp 1o A12: 433 A1 Aijs
2g<i<j<2g+r—1.
H,(Go)=Z2ZDL2L

with ¥(x,) and y(z,) as generators. The t; of Fig. 10 satisfies
11=A53 AT A3 A AT Asy,

so 2(t;+2A4,,) represents 0 in H,(I;). x, on the other hand satisfies x?
=A,,T?. Putting this all together shows H,(I[))~Z""'®Z/2Z.
H,(4)=0 means that

d>:ZN@INRZ IV ' ®Z2Z

must be surjective. Since a5, ..., o, are fixed in type R, 2-cells d*|Z" misses the
Z/2Z generated by t,+2A4,,. Therefore Ker(d*’)=~Z and the lemma is
proven. []

Proof of 3.6. Consider agam the sequence (x). Combining a presentation of
G,= +2Z, with one for I, o gives us one for I,. From this we may construct the
2-skeleton K, of a K(I},1). I, and g, generate I' and g, commutes with I7.
Form K, from K, by adding a 1-cell for g, and 2-cells for the relations g?=x,
and [g,,n] with {} a generating set for I',. K, may be completed to K, a
K (I, 1), by adding 2-cells (for d%), 3-cells, etc.

Part 1. Fo(H,(I))=Im(H,(I;)) > H,(I")), for this we look at K, K. The
spectral sequence associated to (x) includes the terms EJ ,=H,(F)/+ +2,
E! ~H (+Z o Hy (l,)) and E} o=H,(+Z,). There is an exact sequence

1 > (Z2ZF - +2, -2, 1

with Z_ generated by t,,...,7,_; and (Z/2Z)* generated by x,, ..., x, (Where x;

reverses o, fixing ay, ..., 4, ..., o).

Zo={t s T T LT = T 1 TiTi 11=1,
[z, l=1 if |i—j|>1}.
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Also, X, acts on (Z/2Z)¢ by permutations of the x;. All together EZ , contri-
butes

[r1, T3,
[xia xz]
and
[xy, 751
to K,.
Ej , contributes
[T, T}],
[7—;(’ AU]
and
[Aij’ Bijrs]’

for various choices of i, j, k, r, and s.
Finally, after allowing for the identification of certain generators of I}, by
+Z, it is straightforward to check that E7 , contributes

[z, T,1 k=1, k>g

[x, T,] k=1, k>g

(A3 7 /134]

(x5, 451 @GH=(12),(L,3),(L,59),(s58), 2g<s<t
[x3, 4;;] same (i, )).

What we finally see is that H,(I,) is generated by commutators [w,, w,] where
either

a) w,, w, are words in the generators which as elements of I" are supported
on disjoint subsurfaces one of which (say the one carrying w,) is genus =3,

b) (Wi, wy)=(A4,3,7,434) Or

) (wy, wy)=(xy, Ty).

For (a), I is perfect for g=1 so

= e 2o
W2 ,'I..:Il [yl’ 1] (**)
with [w,,y,]=[w,,z]=1 for all i with y,, z; words in the generators of I'. In
building a K(I',1) from K, we will therefore have a 3-cell of the form P xI
where P is a (2r+1)-gon giving the relation (%) and the I factor is attached
for w,. Of course o(P x I=[w,, w,].

For (b) we again claim that w,=1,4,, has a commutator expansion (x*)
with  [A4,;,y]1=[4,5.2z]=1. Equivalently we may work with
[T, T,A,3,t,4,,] since [T, T,,7,] and [T, T, 4,,] are known. Then T, T,4,,
is the twist T;, on the curve C, which links D,, D, in back of D,. Furthermore
1,45, fixes C,. We may therefore find the y, and z, in F—C,, fixing C,
guarantees [Ty, y;]=[T,, z;]=1 back in I'.

Finally, for (c) the situation is slightly different since x, reverses the
orientation of «,. Consider the trefoil knot K <S>,

n,(S*—K)={a,b: aba=bab}.
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The meridian » of K is a and the longitude ¢ is aba’ba. Set a=T,,
b=T;'g,T;y'. Then aba=bab is satisfied in I' so we find f:§°
—N(K)— K(I', 1), N(K) a tubular neighborhood of K, with f(»)=T, and f(/)
=aba’ba=x,. Im(f) provides the nullhomology for [T, x,].

Part 2. EY | =F,(H,(4))/Fy(H,(4)), E{ =H(I';;{6,)). Since d"|E} | is 0 for
every r=1, we have Ej | - EY — H,(4)/Fy(H,(4)) » H,(I'); call the com-
position . Image (y)=F,(H,(I)) is represented in K by the commutator 2-
cells of K,—K,. The argument of Part1 then applies to show F,(H,(I')
=0. O

Section 4. Final Computations

Consider now the groups I, consisting of mapping classes of diffeomorphisms
of F which fix 4,,...,4,, the boundary curves of F, as well as distinguished
points p,, ..., p,. We will delete the indices r and/or n when equal to 0. Let =,
denote 7, of the closed surface of genus g. We need two exact sequences:

S2

1oz~ (A)
IR ELEN Kty g ) (B)

Here f, is the map induced by adding a disk to 4, whose center becomes p, . ,,
f1 is the Dehn twist on a curve parallel to 4,, f, is obtained by forgetting p
and f, comes by sliding p along a loop in F.

Analyzing the Hochschild-Serre-Lyndon spectral sequence for the central
extension (A) gives E* term

0 0 0

Z H(I;;!) * *

Z Hl([;’,:-—ll) Hz(r;,-:—ll) *,
Inductively ~we may assume H,(I7)=Z"*' and since g>2
H, (I )= H,(I')=0. Therefore d*: H,(I;"",)=H(I"") is surjective

and H,(I"!)=Z"*? via S, ...,S,, , as required.
For (B) the E? term is

Z 0 *
H (F)/T, H(I;:HF) *
Z 0 H,(T).

It is easy to check H,(F)/I'=0. Also Lemma 1.2 says H,(I'; H, F)=0 so there
is an exact sequence

0——>E8“:2AL+HZ(F;)—1~>H2(F§)—>0.
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Recall

SO 1 ~

(—4—,S,>: H,(I )~ Z®LZ.
Identifying H,(I}}) with Q,(B Diff*(F};")), image ¢ is generated by the class [#]
of the bundle over F induced by f;: 7, - I} Since S, factors through H,(I),
So[n]1=0. On the other hand f,of;=0 implies the total space of # is diffeo-
morphic to F,x F, with s,(F,) the diagonal. Hence S,0¢=2—2g and the
theorem follows. [

Section 5. Remarks

(1) Let fi, f, be orientation preserving diffeomorphisms of F,. Write M}i for
the mapping torus of f,, i=1,2. Because the 3-dimensional bordism group is
zero, M, =0dW,* where W;* is a compact oriented 4-manifold. By glueing W,
and W, together along copies of F x I in M, and M,, we obtain W* with oW*
=M, . Define

A(fy, f,)=index (W) —index (W,) —index (W,).

It is not difficult to check that A4 depends only on the isotopy classes of f, and
f,. Furthermore, Neumann [8] observes that 4 satisfies the cocycle condition

A(f2, [3)=Afy o )+ A1, 2 f3) =41, f2) =0

for any fi, f,, f;€l,. Hence A4 represents an element of HZ(Fg; Z). That 4
generates H?(I',) may be seen directly from the isomorphism

%{9: H,(M,)/torsion — Z.

(2) I' is generated by Dehn twists 7(y;) on nonseparating circles y; (defined
up to isotopy) in F. There is an easy relation among such Dehn twists, namely

T(Vi)‘f()’j) =T(Vj)7(7;?’) (*)

where y}’ is the image of the curve y; under 7(y;). Let G be the group with
generators 7(p;) taken over all nonseparating circles in F and relations of type
(*) (for example when g=1, G=I ,). There is a natural surjection G—*> T In
[4] the kernel of ¢ is computed to be

H,(INS®Z.

Because I' is perfect G'=[G,G] is also perfect and maps onto I' H,(G)=Z
so we have an exact sequence

0-H,IN->G->TI->1.

G’ is the universal central extension of I'. G’ may also be obtained from G by
adjoining the relation (*) from Sect. 1 for an embedding of F, in F with all
curves nonseparating.
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(3) Clearly Theorem 2.2 gives a simplification of Hatcher and Thurston’s
presentation of I'. Wajnryb [10] has used this to give an incredibly simple
presentation of I', and I, ;.
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Note Added in Proof

The author has been informed by Mumford that the computation of H,I" gives a proof of the
rational version of the Francetta conjecture.
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