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Preface 

This book has expanded from our attempt to construct a general theory of hyper- 

geometric functions and can be regarded as a first step towards its systematic 

exposition. However, this step turned out to be so interesting and important, and 

the whole program so overwhelming, that we decided to present it as a separate 

work. Moreover, in the process of writing we discovered a beautiful area which 

had been nearly forgotten so that our work can be regarded as a natural continuation 

of the classical developments in algebra during the 19th century. 
We found that Cayley and other mathematicians of the period understood 

many of the concepts which today are commonly thought of as modern and quite 

recent. Thus, in an 1848 note on the resultant, Cayley in fact laid out the foundations 

of modem homological algebra. We were happy to enter into spiritual contact with 

this great mathematician. 

The place of discriminants in the general theory of hypergeometric functions 

is similar to the place of quasi-classical approximation in quantum mechanics. 

More precisely, in [GGZ] [GKZ2] [GZK1 ] a general class of special functions was 
introduced and studied, the so-called A-hypergeometric functions. These func- 

tions satisfy a certain holonomic system of linear partial differential equations (the 

A-hypergeometric equations). The A-discriminant, which is one of our main ob- 

jects of study, describes singularities of A-hypergeometric functions. According 
to the general principles of the theory of linear differential equations, these singu- 

larities are governed by the vanishing of the highest symbols of A-hypergeometric 
equations. The relation between differential operators and their highest symbols 

is the mathematical counterpart of the relation between quantum and classical me- 
chanics; so we can say that hypergeometric functions provide a "quantization" of 

discriminants. 

In our work on hypergeometric functions we found connections with many 

questions in algebra and combinatorics. We hope that this book brings to light 

some of these connections. One of the algebraic concepts which seems to us 
particularly important is that of hyperdeterminants (analogs of determinants for 

multi-dimensional "matrices.") After rediscovering hyperdeterminants in connec- 

tion with hypergeometric functions, we found that they too, had been introduced by 

Cayley in the 1840s. Unfortunately, later on, the study of hyperdeterminants was 

largely abandoned in favor of another, more straightforward definition (cf. [P]). 

The only other work on hyperdeterminants of which we are aware is an important 
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paper by Schl~ifli [Schl]. In this volume we give a detailed treatment of hyperde- 
terminants with the hope of attracting the attention of other mathematicians to this 

subject. 

We would like to thank S.I. Gelfand, M.I. Graev and V.A. Vassiliev, who, 

through discussions and collaboration, have much influenced our understanding 

of the vast and beautiful field of hypergeometric functions. 



Introduction 

In this book we study discriminants and resultants of polynomials in several vari- 

ables. The most familiar example is the discriminant of a quadratic polynomial 

f (x) -- ax 2 + bx + c. This is 

A ( f )  = b 2 - 4ac, (1) 

which vanishes when f ( x )  has a double root. 

More generally, we can consider a polynomial f (xl . . . . .  xk) of degree < d 

in k variables. An analog of a multiple root for f is a point where f vanishes 

together with all its first partial derivatives Of/Oxi. The discriminant A ( f )  is a 

polynomial function in the coefficients of f which vanishes whenever f has such 

a "multiple root." The existence of A is not quite trivial; however, it can be shown 

that A ( f )  exists and is unique up to sign if we require it to be irreducible and to 

have relatively prime integer coefficients. For instance, the discriminant of a cubic 

polynomial in one variable (k = 1, d - 3) is given by 

A(ao + a l x  +a2x 2 +a3x  3) _ al2a22- 4a~a3 _4aoa3 _ 27a~a~ -t- 18aoala2a3. (2) 

There is a subtle point in the definition of A ( f ) :  that is, A ( f )  depends not 

only on f but also on the choice of a degree bound d. For instance, the formula 
(2) applied to a quadratic polynomial gives a different expression from (1). With 

this in mind, we introduce the following more general version of a discriminant. 

Let A be a finite set of monomials in k variables, and let C A denote the space of all 

polynomials with complex coefficients all of whose monomials belong to A. The 

A-discriminant AA ( f )  is an irreducible polynomial in the coefficients of f 6 C A 

which vanishes whenever f has a multiple root (xl . . . . .  xk) with all xi ~ 0 (the 

last condition is added to be able to ignore trivial multiple roots which can appear 

if all monomials from A have high degree). The A-discriminant will be one of our 

main objects of study. 

The notion of the A-discriminant includes as special cases several fundamental 

algebraic concepts. If we take A = { 1, x . . . . .  x m, y, yx  . . . . .  yx  n }, for example, 

then a typical polynomial from C A has the form f ( x )  + yg(x) .  Its A-discriminant 

is the resultant of f and g: it vanishes whenever f and g have a common root. 

More generally, the resultant of k + 1 polynomials f0 . . . . .  fk in k variables 

is defined as an irreducible polynomial in the coefficients of f0 . . . . .  fk, which 
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vanishes whenever these polynomials have a common root. The resultant can be 

treated as a special case of the A-discriminant of an auxiliary polynomial f0 (x) + 

Y']~ki=l Yi f i  (x),  x -- (Xl . . . . .  Xk). 
Another important example occurs when A consists of n 2 monomials x iy j ,  

i, j -- 1 . . . . .  n. A typical polynomial from C A is now a bilinear form f (x, y) = 

Z aijxi yj whose A-discriminant is the determinant of the matrix Ilaij II. 
The last example has a natural generalization: we can take A as the set of all 

multilinear monomials in three or more groups of variables. An element f ~ C A 

(i.e., a multilinear form) is represented by a higher-dimensional "matrix" Ilai~...ir II. 
Thus the A-discriminant A a in this case is a polynomial function of a "matrix" 

which extends the notion of a determinant. Following Cayley [Ca l ], we call this 

m A the hyperdeterminant  of Ilai~...ir II. For example, the hyperdeterminant of a 

2 x 2 x 2 matrix Ilaijk II, i, j ,  k = 0, 1, is given by 

2 2 2 2 
(aoooalll + a21a210 + aoloalol + aElla200) 

--2(aoooaool al lOal l l + aoooaoloalol al l l q- aoooaol l alooal l l -4;- aool aoloalol al lO 

@aoolaollalloaloo @ aoloaollalOlalOO) @ 4(aoooaollalOlallO @ aoolaoloalooalll). 

The study of hyperdeterminants was initiated by Cayley [Cal] and Schl~ifli [Schl] 

but then was largely abandoned for 150 years. We present a treatment of hyperde- 
terminants in Chapter 14. 

II 

Let  V A  = { f  ~ c A  " A A ( f )  = 0} be the hypersurface in the space of 
polynomials consisting of polynomials with vanishing A-discriminant. We shall 
be mainly concerned with the following two closely related problems: 

(a) the study of the geometric properties of the hypersurface V A, 

(b) finding an explicit algebraic expression of the discriminant AA. 

To illustrate the importance of problem (a), consider the special case when 

A consists of all monomials in Xl . . . . .  xk of a given degree d. Every f e C A 

(i.e., a homogeneous form of degree d) defines a hypersurface {f  = 0} in the 

projective space pk-1 .  It is easy to see that V A consists exactly of those f for 

which the hypersurface {f = 0} is singular. Therefore the complement C A - VA 

parametrizes all smooth hypersurfaces of a given degree in the projective space. 

To understand the geometric structure of C A - V A is  an important instance of the 

general moduli problem in algebraic geometry. 

Equally important is the situation over the real numbers. Hilbert's 16th prob- 

lem (classifying isotopy types of smooth real hypersurfaces of given degree d) 
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amounts to the study of connected components of R A - -  V A ,  the space of real 

polynomials with a non-vanishing discriminant. 

Problem (b) has a long and glorious history. Explicit formulas for discrim- 

inants and resultants were the focus of several remarkable mathematicians in the 

last century. Many ingenious formulas were found by Cayley, Sylvester and their 

followers. However, we are still very far from a complete understanding of dis- 

criminants. For instance, an explicit polynomial expression for AA is known only 

in a very limited number of special cases. Such formulas would be of great im- 

portance for the problem of finding explicit solutions of systems of polynomial 

equations. Problems of this kind are of interest not only for theoretical reasons, 

but are encountered more and more on a practical level because of the progress in 

computer technology. 

III  

We will use three main approaches in our study of discriminants and resultants: 

�9 a geometric approach via projective duality and associated hypersurfaces; 

�9 an algebraic approach via homological algebra and determinants of complexes 

(Whitehead torsion); 

�9 a combinatorial approach via Newton polytopes and triangulations. 

The geometric approach to discriminants is based on the observation that the 

discriminantal variety V a is projectively dual to a certain variety X A defined by 
a simple parametric representation. For example, if A consists of all monomials 

of degree d in k variables then XA is the projective space pk-1 in its Veronese 

embedding. In the general case, XA is the projective toric variety associated with 
A. The notion of the projectively dual variety X v makes sense for an arbitrary 
projective variety X C pn-  1: it is the closure of the set of all hyperplanes in P" - I  

which are tangent to X at some smooth point. Thus the problem of finding the 

discriminant is a particular case of a more general geometric problem: find the 

equation(s) of X v. We call this equation (in the case where X v is a hypersurface) 

the X-discriminant. 
Although the resultants can be formally treated as discriminants of a special 

kind (see above), they have their own interesting geometric meaning. As for dis- 

criminants, we can associate the resultant to any projective variety X C pn-1. 
Instead of X v, we now consider the associated hypersurface Z(X) of X. If 

dim X = k - 1 then Z(X)  is the locus of all codimension k projective subspaces 

in p,,-1 which meet X. The equation of Z(X)  in the appropriate Grassmannian 

is the classical Chow form of X. This can be represented as a polynomial in the 



4 Introduction 

coefficients of k linear forms defining a subspace from Z(X) .  We call this poly- 

nomial the X-resultant (the classical resultant of polynomials in several variables 

is a special case of this construction). 

In Part I of this book we examine X-discriminants and X-resultants (or, in 

other words, projective duality and associated hypersurfaces) in the general context 

of projective geometry. 

IV 

The algebraic approach to discriminants and resultants which we use here goes 

back to Cayley. In his breathtaking 1848 note [Ca4] * he outlined a general method 

of writing down the resultant of several polynomials in several variables. We were 

very surprised to find that Cayley introduced in this note several fundamental 

concepts of homological algebra: complexes, exactness, Koszul complexes, and 

even the invariant now sometimes called the Whitehead torsion or Reidemeister- 

Franz torsion of an exact complex. The latter invariant is a natural generalization 

of the determinant of a square matrix (which itself was a rather recent discovery 

back in 1848!), so we prefer to call it the determinant of a complex. Using this 

terminology, Cayley's main result is that the resultant is the determinant of the 

Koszul complex. 

Cayley's method is very general: without much effort it can be adapted to 

the study of X-discriminants and X-resultants associated as above to an arbitrary 
projective variety X. To get more detailed information, we complement Cay- 

ley's method with more recent tools such as coherent sheaves, perverse sheaves, 

microlocal geometry and D-modules. 

V 

Under a combinatorial approach we treat polynomials in the most naive way: 

as sums of monomials. To the best of our knowledge, there were no attempts in 

the classical literature to understand discriminants and resultants from this point 

of view, i.e., to describe which monomials can appear in them and with which 

coefficients. This is probably because the number of occurring monomials is 

usually very large. For example, the discriminant of a cubic form in three variables 

contains 2040 monomials (we are obliged to S. Duzhin who first showed it to us 

some years ago). At first glance, there seems to be no structure at all in these 

monomials and their coefficients. However, such a structure exists! The "magic 

crystal" that brings it to light is the concept of a Newton polytope. 
Every monomial x~ ~ . . .  x~ 'n in n variables can be visualized as a lattice point 

(o91 . . . . .  ogn) in R". The Newton polytope N (F)  of a polynomial F (x 1 . . . . .  x,,) is 

* This note is reproduced as an appendix in this book 
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the convex hull in R n of all lattice points representing monomials occurring in F. 

The structure of this polytope is deeply related to the geometry of the hypersurface 

{F = 0}. In fact, the asymptotic behavior of this hypersurface "at infinity" is 

controlled by the extreme monomials  of F which correspond to the vertices of 

N ( F ) .  

The notion of a Newton polytope goes back to Newton, and made some iso- 

lated appearances in the 19th century, cf. [Br 2]. More recently, some spectacular 

applications of Newton polytopes to classical algebraic problems (the number of 

solutions of systems of polynomial equations) have been found by A. Kouch- 

nirenko, D. Bernstein, A. Khovansky [Ber], [Kou], [Kh]. We make use of these 
results in Part II. 

It was a very surprising discovery for us when we realized that the Newton 

polytopes of A-discriminants admit a very nice combinatorial description. We 

recall that A is a finite set of monomials in k variables. As before, we represent 

the monomials from A as lattice points in R k. Hence we can consider the convex 
hull Q ~ R k of the set A. Our main result (which is the central point of Part II) 

is a description of the Newton polytope N(AA) in terms of Q and A. Roughly 

speaking, it turns out that vertices of N (A A) (i.e., extreme monomials in the A- 

discriminant) correspond to some triangulations of Q into simplices all of whose 

vertices lie in A. 

The extreme monomial in A a corresponding to a triangulation T of Q is 

determined explicitly once we know all the simplices in T and their volumes. The 

coefficient of this monomial is the product of numbers of the form V iv' where the Vi 

are the volumes of the simplices of T under suitable normalization. This provides 
an explanation of such coefficients as 4 -- 22 or 27 -- 33 in the formulas (1) and 

(2) above. The expression 1I Vi Vi (or, rather, its logarithm ~ Vilog (Vi)) brings 
to mind the entropy of a probability distribution. It would be interesting to find a 

"probabilistic" reason for its appearance in discriminants. Even more intriguing 

is the fact that this appearance is not isolated---entropy-like expressions enter the 
formula for the rational uniformization of the variety V a (see Chapter 9). 

To illustrate the above description, consider the simplest A-discriminant of a 

quadratic polynomial ax 2 -b bx -k- c given by (1). Here A consists of 0, 1, 2 6 Z, 

the polytope Q is the segment [0, 2], with its two "triangulations". The first one 

consists of just one 1-dimensional "simplex" [0, 2] of length 2, corresponding to 
the term - 4 a c  in (1). The second "triangulation" consists of two "simplices"" 

[0, 1] and [1, 2], corresponding to the term b 2. Similarly, for the case of a cubic 

polynomial in one variable, we have A = {0, 1, 2, 3} and Q = [0, 3]. There 

are now 4 triangulations of Q which correspond to the first four terms in the 

discriminant (2). Our final example is the determinant of a 2 x 2 matrix given by 
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a familiar formula A = ad - bc. We have already seen that this is also a special 

case of an A-discriminant. The set A now consists of the vertices of a square Q; 

the terms ad and - b c  correspond to two triangulations of Q by means of one of 

its diagonals. 

The description of the Newton polytope of A a leads to a purely geometric 

notion of the secondary polytope E(A) of a point configuration A. This is a 

polytope whose vertices correspond to the so-called coherent triangulations of the 

convex hull Q of A. Secondary polytopes and their generalizations (fiberpolytopes 
introduced and studied by Billera and Sturmfels [BS 1 ], [BS2]) are quite interesting 

by themselves. A triangulation of a polytope Q can be viewed as a discrete analog 

of a Riemannian metric on Q. So E(A) can be seen as a kind of combinatorial 

Teichmtiller space parametrizing such metrics. This reminds us of the work of 

Penner [Pen] who constructed a combinatorial model for the Teichmtiller space of 

a Riemann surface in terms of its curvilinear triangulations. 

VI 

As mentioned in the Preface, our interest in the subject arose from the theory 

of hypergeometric functions [Ge] [GGZ] [GKZ2] [GZK1]. Although this theory 

is not formally present in the book, its influence is felt in several places. In a 

sense, one can say that hypergeometric functions provide a "quantization" of the 

discriminants. More precisely, to a finite set of monomials A, we associate a certain 
holonomic system of differential equations on the space C A whose solutions are 

the so-called A-hypergeometric functions. The highest symbols of the equations 
of this system define, in the cotangent bundle of C A , the characteristic variety of 

the system. One of the components of this variety, when projected back to C A is 

the discriminantal hypersurface V A and the projections of other components are 

similar hypersurfaces associated to subsets of A. 

The notion of a coherent triangulation, which plays such an essential part in 

our combinatorial approach to discriminants, was first brought to our attention by 

the analysis of A-hypergeometric functions. In fact, every coherent triangulation of 

the convex hull Q of A produces an explicit basis in the space of A-hypergeometric 

functions. This basis consists of a finite number of power series whose coefficients 

are products of the values of the Euler F-function. 

Vl l  

The book is subdivided into three parts. The first part is devoted to discrim- 

inants and resultants associated with arbitrary projective subvarieties. Most of 

the results here are classical but, to the best of our knowledge, have been never 

systematically treated in a book. Chapter 1 discusses projective duality. Chapter 
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2 introduces the Cayley method of expressing the discriminant as the determinant 
of a complex. Chapter 3 presents a parallel treatment of the resultants. Finally, 

Chapter 4 gives an exposition of the theory of Chow varieties (parameter spaces 
for projective subvarieties of given dimension and degree). 

In Part II we consider A-discriminants and A-resultants. Geometrically, this 

corresponds to the specialization of the setting of Part I to projective toric va- 

rieties. We review toric varieties in Chapter 5 and the work of Bernstein and 

Kouchnirenko on Newton polytopes in Chapter 6. In Chapter 7 we present our 
main combinatorial-geometric construction" the secondary polytopes. In Chapters 

8 - 11 this construction is related to Newton polytopes of A-discriminants and A- 

resultants. The main link between discriminants and triangulations is the so-called 

principal A-determinant. This is a certain product of discriminants whose Newton 

polytope is precisely the secondary polytope E (A). For discriminants themselves, 
the correspondence between triangulations and the vertices of the Newton polytope 

is, in general, many-to-one. 

Finally, Part III is devoted to the most classical examples of discriminants 

and resultants. The case of polynomials in one variable is treated in Chapter 12. 

Surprisingly, the point of view of Newton polytopes leads to new results even 

in this case. We treat the case of forms in several variables in Chapter 13, and 

hyperdeterminants in Chapter 14. 
Geometrically, all of these examples correspond to varieties which are prod- 

ucts of projective spaces pt~ x . . .  x ptr in a suitable projective embedding. 

Vl l l  

We did not attempt in this volume to collect all that is known about discrim- 

inants and resultants. The choice of material reflects both personal interests and 
the expertise of the authors. 

Let us give a brief overview of some of the developments not included here 
but closely related to our subject. The following list is by no means complete. 

First of all, an old tradition going back to Cayley and Sylvester, includes 

discriminants and resultants in the general context of the invariant theory of the 

group G L(n). This approach involves expressing discriminants and resultants 

using the symbolic method (see e.g., [Go]). Our combinatorial approach focuses 

on the monomials, and thus is based on the action of the algebraic torus (C*) n, not 

on the action of the whole group G L (n). 

Second, the study of discriminants and resultants constitutes only a part of 

Elimination Theory. There are other aspects of this theory which we do not dis- 

cuss. Among those, we can mention the study of certain resultant ideals using 
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commutative algebra, which goes back to Macaulay [Macaul2]. A more modern 
treatment of these questions was undertaken by Jouanolou [Jo]. 

Macaulay made another intriguing contribution to the theory by giving an 

ingenious refinement of the Cayley method [Macaul 1 ]. It would be interesting to 

put his approach in the general framework of this book. 

We did not discuss at all computational applications of explicit formulas for 
discriminants and resultants. An interesting work in this direction was recently 

done by J. Canny [Can]. 

The material we present gives rise to many natural questions. Some of them 
are currently under active investigation. We did not try to give the most up-to-date 

account of these developments. Let us just mention some directions of current 

research. 

In the geometric direction, the structures related to Chow forms and X- 

resultants have led to the notion of the so-called Chow quotient for an action of 

an algebraic group [KSZ]. These quotients, which are different from the quotients 
provided by the geometric invariant theory, already have some promising applica- 
tions. For example, in [Ka2], [Ka3] they were related to Grothendieck-Knudsen 
moduli spaces of stable curves. 

In the algebraic direction, there is the work concerning explicit polynomial 
expressions for discriminants and resultants. In some cases it is possible to classify 
all such expressions which can be obtained by the Cayley method [SZ], [WZ]. 

There are other kinds of formulas for discriminants and resultants, in terms 
of products of some irrational factors (such as the values of one polynomial at the 
roots of another one). A rather general version of such a formula was given in 

[PS]. 

As for the combinatorial direction, we should mention further studies of the 

properties and applications of secondary and fiber polytopes [BFS], [BGS], [BS 1 ], 

[BS2]. The Newton polytopes of classical resultants made an unexpected ap- 

pearance in the axiomatics of monoidal 2-categories [KV]. The study of the Chow 

forms associated to determinantal varieties and related combinatorial structures has 

been initiated in [SZ2], [BZ]. Finally, a different approach to the combinatorics of 

A-resultants was developed in [Stul ]. 
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Conventions 

We always work over the field C of complex numbers, unless otherwise 

specified. In many cases it is straightforward to extend the definitions and results 

to an arbitrary ground field, but we usually leave this to the reader. 

Topological terminology (the closure, open and closed sets, etc.) usually 
refers to Zariski topology. 

A few words about the organization of the material. The book is divided 

into 14 chapters. Each chapter consists of several sections, and each section is 

divided into subsections numbered by the letters A, B, C, etc. The numeration 
of sections starts anew in every chapter, and the numeration of all statements 

(theorems, definitions, examples etc.) starts anew in every section. Thus, the 

reference to Theorem 4.2 without specifying a chapter, means the second statement 

in Section 4 of the current chapter. 



PART I 

General Discriminants and Resultants 



CHAPTER 1 

Projective Dual Varieties and General Discriminants 

1. Definitions and basic examples 

A. Projective duality 

We denote by pn the standard complex projective space of dimension n. Thus a 

point of P" is given by (n + 1) homogeneous coordinates (xo : . . .  : xn), xi ~ C, 

which are not all equal to 0 and are regarded modulo simultaneous multiplication 

by a non-zero number. More generally, if V is a finite-dimensional complex 

vector space, then we denote by P(V)  the projectivization of V, i.e., the set of 

1-dimensional vector subspaces in V. Thus P" = P(C"+I). 

If W c V is a vector subspace, then P ( W )  is naturally a subset in P(V) .  

Subsets of this form are called projective subspaces. As usual, projective subspaces 

of dimension 1,2 or of codimension 1 are called lines, planes, and hyperplanes. 

Consider the projective space P = P(V) ,  where V is as before. Hyperplanes 

in P form another projective space P* which is the projectivization of the dual 

vector space V*. Conversely, to every point p in P, we can associate a hyperplane 

pV in P*, namely the set of all hyperplanes in P containing p, see Figure 1. Thus 

(P*)* is naturally identified with P. If L C P is a projective subspace then we 
can consider the projective subspace LV C P*, the intersection of all hyperplanes 
pV, p 6 L. Clearly, codim LV = dim L + 1, and (LV)V = L. We say that LV is 

projectively dual to L. If L is the projectivization of a linear subspace K C V 

then LV is the projectivization of the orthogonal complement K • C V*. 

Figure la.  A point in (p2),  Figure 1 b. A line in (P 2). 

Remarkably, projective duality can be extended to an involutive correspon- 

dence between non-linear algebraic subvarieties in P and P*. More precisely, let 
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X C P be a closed irreducible algebraic subvariety. A hyperplane H C P is said 

to be tangent to X if there exists a smooth point x e X such that x e H and the 

tangent space to H at x contains the tangent space to X at x. Denote by X v C P* 

the closure of the set of all hyperplanes tangent to X. The variety X v is called 

projectively dual to X. 

In the case when X is smooth and does not lie in any hyperplane, the projec- 

tively dual variety X v has the following geometric interpretation: a hyperplane H 

belongs to X v if and only if the intersection H O X is singular. Here H N X is 

regarded as a scheme, and "singular" means "not a smooth algebraic variety." 

It is often helpful to consider a projective variety X C P(V)  together with the 

associated conic variety (or simply the cone) Y C V formed by 0 and all vectors 

whose projectivization lies in X. The cone yv ~ V* associated to X v will be 

called projectively dual to Y. In particular, each linear subspace K C V is a cone, 

and its projectively dual cone is K -L C V*. 

The name "dual variety" is justified by the following fundamental fact. 

Theo rem 1.1. (Biduality Theorem). For any projective variety X C P, we have 

(XV) v = X. Moreover, if z is a smooth point of  X and H is a smooth point of  

X v, then H is tangent to X at z if and only if z, regarded as a hyperplane in P*, 

is tangent to X v at H. 

We postpone the proof of Theorem 1.1 until Section 3. 

Let us mention a corollary here which shows that "typically" the projective 

dual variety is a hypersurface. We shall say that an algebraic variety X C P is 

ruled in projective spaces of dimension r, if there is a Zariski open subset U C X 

which is the union of r-dimensional projective subspaces lying on U (in this case 

it is easy to show, by a closedness argument, that one can in fact take U -- X; but 

we do not need this). For example, a quadratic cone in the projective 3-space is 

ruled in projective lines. 

Coro l la ry  1.2. I f  X v is not a hypersurface, say, codim X v = r -I- 1, then X is a 

variety ruled in projective spaces of  dimension r. 

Proof. By the biduality theorem, the statement is equivalent to the following: if 

codim X -- r + 1, then X v is ruled in projective spaces of dimension r. But this is 

obvious. Indeed, the condition for a hyperplane H to be tangent to X at a smooth 

point x is that Tx H contains the tangent space Tx X. For a given x, all H with this 

property form a projective space of dimension r. 

B. General discriminants 

As before, let X be a closed algebraic subvariety in a projective space P,  and let 
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X v C P* be the projectively dual variety. 

Proposi t ion 1.3. I f  X is irreducible then X v is irreducible. 

Proof. Let Xsm C X be the smooth locus of X. Consider the set W0 C P x P* 

of pairs (x, H) such that x ~ Xsm, and H is the hyperplane tangent to X at x. Let 

W be the Zariski closure of W0. By definition, X v = pr  2 (W),  the projection of 

W on P*. On the other hand, the first projection pr  1 �9 Wo ~ X~m makes W0 

into a bundle over X sm whose fibers are projective spaces. If X is irreducible we 

conclude that each of the varieties Xsm, Wo, W, and X v is also irreducible, thus 

proving the proposition. 

Now we suppose that X is an irreducible variety. It will be convenient to 

think of P as P(V*) ,  the projectivization of the vector space V* dual to a finite 

dimensional vector space V. Then X v is an irreducible subvariety in P (V). 

Suppose that X v is a hypersurface in P (V). We shall call the X-discriminant 

and denote by A x the defining polynomial of X v. This is an irreducible homo- 

geneous polynomial function on V such that X v is given by the equation Ax -- 0. 

Note that Ax is defined only up to a non-zero constant multiple. When codim X v > 

1, we set Ax -- 1. 

The definition of Ax can be reformulated as follows. Let Y C V* be a 

cone over X, and suppose x l . . . . .  xk are local coordinates on Y. Every f ~ V 

is a linear form on V*. After restricting f to Y it becomes an algebraic function 

in x l . . . . .  xk, which will also be denoted by f .  The X-discriminant Ax can be 

defined as an irreducible polynomial, which vanishes at f ~ V whenever the 

function f ( x l  . . . . .  xk) has a "multiple root", i.e., it vanishes at some y ~ Y - {0} 

together with all of its first derivatives Of/Oxi. 

Example  1.4. Consider the d-dimensional projective space pd = p ( V . )  with 

homogeneous coordinates zo . . . . .  Zd, and let X C pd be the curve formed by 

points 

(X d . x d - l y  . x d - 2 y 2  . . . . .  x y d - 1  . yd ) ,  X, y ~ C, (x, y) :/: (0, O) 

(the Veronese curve). The space V consists of linear forms in z0 . . . . .  Zd. Every 

linear form l(z) = ~ aizi is uniquely recovered from its restriction to (the cone 

over) X which is a binary form f ( x ,  y) --  Y ~ d = o a i x d - i y i .  We can also write f 

in a non-homogeneous form: f ( x )  -- ~-~f=oaiX d-i. The condition that I e X v 

means that the corresponding polynomial f (x) has a multiple root. Hence Ax is 

an irreducible polynomial in the coefficients ao, a l . . . . .  ad, vanishing whenever 

f ( x )  -- ~ ai xd- i  has a multiple root. We see that Ax is the classical discriminant 

of a polynomial in one variable. 
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Returning to the general case, suppose that X C P(V*) does not lie in a 
hyperplane, and is smooth, and X v is a hypersurface. Then a vector f ~ V 

satisfies A x ( f )  = 0 if and only if the hyperplane section {f  = 0} of X is singular. 

Our next result shows that the information about Ax allows us to find the singular 

point of this section. 

Theorem 1.5. Suppose, X C pn-1 is smooth, and X v C (pn-1) .  is a hypersur- 

face. Let zl . . . . .  Zn be homogeneous coordinates on pn-1, andal . . . . .  an the dual 

homogeneous coordinates on (p~- l ) , .  Suppose f = (al : . . .  : an) is a smooth 

point o f  X v. Then the hyperplane section {f  = 0} of X has a unique singular 
Oax . OAx ( f ) ) .  point z, and the coordinates of  z are given by ( ~  ( f )  �9 . . .  Oa. 

Proof Let H C p , - I  be the hyperplane corresponding to f .  By the Biduality 
Theorem 1.1, H is tangent to X at z if and only if the hyperplane in (pn-1) ,  

corresponding to z is tangent to X v at f .  Since, by our assumption, f is a smooth 

point of X v such a point z is unique and is given by zi - ~ ( f ) .  
' Oai 

2. Duality for plane curves 

To become more intuitive about projectively dual varieties, we look at the case of 

plane curves. 

A. Parametric representation of  the dual 

For any irreducible curve X C p2 which is not a line, the dual variety X v C 
(p2) ,  is also an irreducible curve, according to Proposition 1.3. Let x, y, z be 
homogeneous coordinates on p2, and p, q, r the dual homogeneous coordinates 

on (p2) , .  The duality associates to every irreducible homogeneous polynomial 

f (x, y, z) of degree >_ 2 (the equation of a curve X) an irreducible homogeneous 

polynomial F(p,  q, r) = Ax (the equation of XV). The polynomial F is defined 

by f uniquely up to scalar multiple. 

It is not so easy to find F from f .  However, it is quite easy to write down 

a parametric representation of X v given a parametric representation of X. We 

shall do it using appropriate affine coordinates in p2 and (p2) , .  We choose 

an affine chart C 2 - {z # 0} C p2 with affine coordinates x, y (so the third 

homogeneous coordinate z is set to be 1). The dual chart C 2. C (p2) .  with 

coordinates p, q is obtained by setting the third homogeneous coordinate r in 

(p2) .  to be - 1 .  Geometrically, C 2. consists of lines in p2 not passing through 

the point (0, 0) e C 2 C p2. Every such line that meets C 2 is given by the affine 

equation px -t- qy -- 1, and the coordinates p, q of the line are the coefficients in 

this equation. Note that the line in (p2) .  with coordinates p -- q -- 0 does not 

meet C 2, i.e., it is the line "at infinity." 
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A local parametric equation of X has the formx = x(t) ,  y = y(t),  where t is a 

local coordinate on X, and x ( t ) ,  y ( t )  are analytic functions. By definition, the dual 

curve X v has the parametrization p = p( t ) ,  q = q (t), where p ( t ) x  + q  (t) y +  1 = 0 

is the affine equation of the tangent line to X at (x ( t ) ,  y ( t ) ) .  Hence, the parametric 

representation of X v has the form 

- y ' ( t )  x ' ( t )  
p ( t )  = x ' ( t ) y ( t )  - x ( t ) y ' ( t ) '  q ( t )  -- . (2.1) x ' ( t ) y ( t )  - x ( t ) y ' ( t )  

This formula readily implies biduality theorem 1.1 for plane curves. Indeed, 

applying (2.1) once again, we find that the parametric representation of X vv is 

x -- u( t ) ,  y = v( t ) ,  where 

- q ' ( t )  p ' ( t )  
u( t )  = , v ( t ) =  

p ' ( t ) q ( t )  - p ( t ) q ' ( t )  p ' ( t ) q ( t )  - p ( t ) q ' ( t )  

Substituting here the values of p ( t )  and q( t )  from (2.1), we find that u( t )  = 

x ( t ) ,  v ( t )  -- y ( t ) ,  hence X vv = X. 

B. Bidual i ty  and caustics 

To give an intuitive sense of the biduality theorem in p2, we express the notion of 

tangency in the dual projective plane (p2) ,  in terms of the original plane p2. By 

definition, a tangent line to a curve at some point is the line which contains this 

point and which is infinitesimally close to the curve near this point. 
In our situation, a point of (p2) ,  is a line I C p2. A curve C in (p2) ,  is a 

I-parameter family of lines in p2; see Figure 2. A line in (p2) ,  is a pencil x v of 

all lines in p2 passing through a given point x ~ p2; see Figure lb. The condition 
that x v is tangent to C at I means that the line 1 ~ (p2) ,  is a member of the family 

C, a point x lies on l, and other lines from C near I are infinitesimally close to 

the pencil x v. This is usually expressed by saying that x is a caustic poin t  for the 

family of lines C. 

One can imagine (by making a negative photograph of Figure 2) that a light 

ray of some fixed intensity is coming along each line of C. Then the total brightness 

of the ongoing light in an arbitrary small neighborhood of a caustic point x will be 

infinite, though there may be only one ray (line from C) meeting the point x itself. 

The set of all caustic points of the family of lines C is usually called the caustic 

of C. This is nothing more than the projectively dual curve C v C p2. Now the 

biduality theorem means that every curve coincides with the caustic for the family 

of its tangent lines. This is intuitively obvious. The "dual" form of this theorem is 

less obvious: it means that every 1-parameter family C of lines in p2 consists of 



18 Chapter 1. Projective Dual Varieties 

tangent lines to some curve in p2, and this curve is the caustic for C. An example 

of a 1-parameter family of lines which does not a priori come as tangent lines to 

some curve is given by reflecting a parallel beam of light in a curved mirror. 

Figure 2. A family of lines and its caustic point 

C. First examples 

Example 2.1. Let X C p2 be a smooth conic. In homogeneous coordinates, 

which we now prefer to denote by x l, x2, x3, the curve X is given by 

(Ax, x) = ~ a i j x i x j  - -  0, 
i ,j=l 

where A = Ilaij II is a non-degenerate symmetric 3 x 3 matrix. We claim that 
X v C (p2) .  is also a conic curve defined by the inverse matrix A -1. It is clear 

that the tangent line to X at a point x (~ ~ X is given by (Ax (~ x) -- 0. Hence the 
point ~ ~ (p2) .  corresponding to this tangent line has homogeneous coordinates 
Ax (0), which implies (A- 1 ~, ~) = 0. 

We see that the duality operation f ~ F on homogeneous polynomials can 

be regarded as a generalization of the matrix inversion. The analog of the set of 

non-degenerate matrices (where the matrix inversion behaves continuously) is the 

set of polynomials defining non-singular curves. The condition of non-singularity 

is again a certain discriminantal condition, as we shall see later (Example 4.15). 

Example 2.2. Let X C p2 be the cubic parabola, whose equation in affine 

coordinates (x, y) (in A 2 C p2) is y = x 3. At (0, 0), the curve X has an inflection 
point (or a flex): the tangent line I to X at this point actually has the second order 

of tangency. Let us look at the behavior of the dual curve X v in the neighborhood 

of/ .  

The line I is not covered by the affine coordinate system described in subsec- 

tion A since it contains the origin. So we introduce a new affine chart in (p2) .  
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consisting of lines with affine equations y = ~x - 0. We can treat the equation 

of X as parametric" x = t, y --- t 3. By calculating the tangent line we find the 

parametric representation of X v in our coordinates to be ~(t) -- 3t 2, O(t) -- 2t 3. 

Hence X v is given by 4~ 3 = 27772. Thus X v is a semi-cubic parabola (see Figure 

3). 

We see that the singular point (cusp) of X v corresponds to the inflection point 

(0, 0) of X. Considered in the entire projective plane, X itself has a cusp at infinity, 

as can be seen by choosing the appropriate coordinates. The dual curve X v has a 

cusp at (0,0) and an inflection point at infinity. 

Similarly we can consider the curve y = x k which has an inflection point at 

(0, 0) of order (k - 1). Its dual curve has the equation (k - 1)k-l~ k = kkrl k-1 and 

has a complicated cusp. 

Figure 3. A flex and a cusp 

r/ X v 

X 

Now consider arbitrary curves. Apart from flexes, there is another source of 

singularities for the dual curve XV: the double tangents to X (see Figure 4). Such 

a tangent will be a point of self-intersection of X v, typically of the type called a 

node (see Figure 4b). 

The notion of cusps and nodes for arbitrary plane curves is defined as follows. 

Suppose that a curve is given by an affine equation f (x, y) -- 0 and the point in 

question is (0, 0) so f ( 0 ,  0) = 0. Let fx, fy, fxx and so on denote the partial 

derivatives of f .  The point (0, 0) is said to be a node if fx (0, O) = fy (0, O) = O, 
and the quadratic form, given by second derivatives 

ap(p, q) --- fxx(O, 0)p 2 q- 2 fxy(O, O)pq + fyy(O, 0)q 2, 

has two distinct non-zero linear factors. So a node is a point of intersection of two 

smooth branches with distinct tangents. The point (0, 0) is said to be a (simple) 

cusp if fx(O, O) = fy(O, 0) = 0, the form ~p(p, q) is non-zero and is a square of a 

linear form. 
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X v 

Figure 4. A double tangent and a node 

In general, for a smooth curve X, cusps of X v correspond to the simple 

inflection points of X, i.e., such points where the tangent line has tangency to X of 

exactly the second order and is not tangent to X anywhere else. Similarly, nodes 

of X v correspond to simple bitangents of X (i.e., such that both tangencies are of 

first order and there are no other points of tangency). Both these statements can 

be easily seen in local coordinates. 

Example 2.3. Consider the curve X0 in C 2 given by 

x a - J i - y a =  1, a > 2. (2.2) 

We regard C 2 as an affine chart of the projective plane p2 with homogeneous 

coordinates x, y, z. The closure of X0 in p2 (denoted by X) has the homogeneous 

equation x a -t- ya __ z a. This curve is called the F e r m a t  c u r v e  of order a. We are 

going to find the projective dual curve. 

The equation (2.2) can be written in parametric form: 

x - -  t, y = ~/1 - t a. 

Using (2.1) we get the parametric representation of the dual curve in coordinates 

p, q as follows" 
a - - |  

p ( t )  = t a - l ,  q ( t )  = (1 - ta)  T .  (2.3) 

The relation between p ( t )  and q ( t )  has the form 

a a 

p a----7 -~-qrCr-~ = 1. (2.4) 

Hence X v is given by an equation similar to (2.2) but with the new exponent 

1 1 _ 1 This fact is the algebraic b - -  a / ( a  - 1) which satisfies the relation a + ~ �9 
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version of the duality between Banach spaces Lp, which is well-known in analysis; 

see, e.g., [Ru], Theorem 6.16. 

If a > 3, the equation (2.4) involves multivalued fractional power functions. 

We can put this equation into polynomial form by constructing an equation of 

degree a(a - 1) for X v as follows. Consider the quantities u = p,"--Sr-~, v -- q aa--~-~. 

Then on X v we have u + v = 1. We have the obvious equalities 

ua-1 + 1)a-1 __ pa "-l- qa , 
u2(a -1) ._~ l)2(a- 1) __ pZa + qZa, 
~ ~ 

u a-l)2 "k- V (a-l)2 1)a q(a-1)a __ p ( a -  -Jr- 

(2.5) 

The left hand side of each of these equalities is a symmetric polynomial in u and 

v, so it can be expressed as a polynomial in u + v and u v. More precisely, for any 

d, we have 

u d + v d = ( _ I ) d d  ~ (_1)i+ j ( i + j - 1 ) !  

i+2j=d i !j ! 
(U q- 1)) i (UP) j .  (2.6) 

This is the classical Girard formula (see e.g., [MS]). We shall have more occasions 

later to use this formula and its generalizations. 

Note that u + v = 1 on X v and (uv) a-1 -- paqa is a monomial in p and 

q. Hence any monomial in (u + v) and uv has the form ~o(p, q)(uv)J where ~o is 

a monomial in p and q and 0 < j < a - 2. Thus, after substituting the Girard 
formula on the left hand side of the i-th equality in (2.5), we can write it in the 

form 

qgio(P, q) + qgil (p, q) .  uv + ~i2(P, q)" ( U P )  2 "~" " " " "1" q)i,a-2(P, q)" ( U P )  a - 2  = 0 ,  

(2.7) 

w h e r e  ~ij are polynomials in p, q. (For example, pia +qia on the fight hand side of 

the i-th equation will contribute to qgi0.) Thus the vector (1, uv, (uv) 2 . . . . .  (uv) a-z) 

is a solution of the system of a - 1 linear equations (2.7) on a - 1 unknowns. The 

condition of compatibility of this system, i.e., the condition 

detlltpij(p, q)lli=l ..... a - l , j = 0  ..... a - 2  - -  0 

is a polynomial equation of degree a (a - 1) equivalent to p ~ + q ~ - 1. 

For example, let us transform equation 

3 3 
p ~ + q ~  = 1 ,  (2.8) 
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3 3 
defining the curve dual to x 3 + y3 = 1. We have, by setting u -- p ~, v -- q ~, the 

following: 
u 2 + v 2 = (u + v) 2 - 2uo = 1 - 2uv ,  

U4--~-1)4= ( u + v ) 4 - - 4 ( u + v ) 2 u o + 2 ( u v )  2 = 1 - - 4 u v + 2 ( u v )  2 = ( l + 2 p 3 q 3 ) - - 4 u v .  

So, from (2.5), we get a linear system in (1, u v)" 

(1 - p 3  _ q 3 )  _ 2 u v  = O, 

(1 -F 2p3q 3 - p6 _ q6) _ 4uv  = 0 ' 

and the equation of the dual curve can be written 

1 1 - p 3  _ q3  - 2  

F ( p ,  q) -- - ~  1 + 2p3q 3 - p6 _ q6 - 4  

._ p6 -F q6 _ 2p3q3 _ 2p3 _ 2q3 -F 1 = 0. (2.9) 

The same answer can be obtained by squaring (2.8), expressing 2 p ~ q  = - 

p3 _ q3 and then squaring again. 

D. PlOcker formulas 

Typically, the dual of a smooth plane curve will be singular. The nature and number 

of typical singularities are given by the Pliicker formulas. 

Proposi t ion 2.4. Let X C p2 be a smooth curve o f  degree d. Then X v has degree 

d (d - 1). For a generic smooth curve o f  degree d, the curve X v contains 3d (d - 2) 

cusps and ( 1 / 2 ) d ( d  - 2)(d 2 - 9) nodes. In other words, a generic smooth p lane  

curve o f  degree d has 3d (d  - 2) inflection points  and ( 1 / 2 ) d ( d  - 2)(d 2 - 9) double 

tangents. 

The proof can be found in [GH], Chapter 2, Section 4. 

Note that although the degree of X v (denoted by d v) equals d ( d  - 1) we 

cannot conclude by biduality that d = (dV)(d v - 1) because X v is singular and 

Proposition 2.4 is not applicable. Also let us note that if we take an arbitrary 

smooth plane curve then X v can have more complicated singularities than just 

cusps and nodes. 

For example, if X is a smooth cubic, then X v is a curve of degree 6 with 

exactly 9 simple cusps (corresponding to 9 inflection points of X) and no other 

singularities. Here the assumption of genericity is not essential. Indeed, any 

inflectional tangent I to X cannot have an order of tangency more than 2 (since 

then the multiplicity of intersection I t3 X would be at least 4). So all cusps of X v 

are simple. Similarly, any double tangent to X would have intersection multiplicity 
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> 4 which is impossible. So X v is a very special curve of degree 6. The dual of a 

genetic curve of degree 6 will have degree 30. 

There is a more general and symmetric version of the Pliicker formulas in 

which both X and X v are allowed to have singularities. 

Proposi t ion 2.5. Let X C p2 be an irreducible curve o f  degree d having, as its 

only singularities, r, cusps and v nodes and such that X v also has only cusps and 

nodes as its only singularities. Denote by d v, r v, v v the degree, the numbers o f  

cusps and o f  nodes o f  X v. Then 

d v = d(d  - 1) - 3x - 2v, 

K v -- 3d(d  - 2) - 8to - 6 v .  

The number v v can be found from the equation d = d v (d v - 1) - 2x v - 3v v 

obtained by applying Proposition 2.5 to X v. 

For the proof of this proposition, we again refer to [GH], Chapter 2, Section 

4. 

E. Schl~fli's formula for the dual o f  a smooth plane cubic. 

Let X C p2 be a smooth cubic curve with homogeneous equation f (x0, xl,  X2) - -  

0. Denote by Po, Pl,  P2 the dual coordinates in p2.  and by F (Po, Pl,  P2) = 0 the 

homogeneous equation of the dual curve X v. From the PlUcker formula we find 

that deg(F)  -- 6. There is an explicit formula for F in terms of f (L. Schl/ifli 

[Schl]). 

Denote by fi ,  f i j  e tc .  the partial derivatives Of/~)xi, 02f /OxiOxj  etc. Con- 

sider the polynomial 

0 

V ( p , x ) - -  Po 
pl 

P2 
Schl~ifli's formula is as follows. 

Po Pl P2 
foo(x) fol (x) fo2 (x) 
flo(x) f l l  (x) f lz(x)  
f20(x) f21 (x) f22 (x) 

Theorem 2.6. The equation F(po,  Pl, P2) of  X v is equal, up to a non-zero 

constant factor, to the polynomial 

G(po, Pl,  P2) -- 

0 Po Pl a 2p2v 
~)2 V O 2 V 

p0 -~x~(P) 0xo0x, (P) ~xo0x~ (P) 
I J  

~ (p) 7 r (  ) ~  ~ (p) 
Pl 0x,~xo ox~ -P-  ax,0x~ 

~ (p) ~ (p) ~ 
~x2~xo ~x2~x, =-v( ) ox; .p .  P2 

(2.10) 
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Example 2.7. Consider the case of the Fermat cubic, defined by 

: ( x o ,  = - x  3 + + = o.  

In affine coordinates x = xl/xo, y = x2/xo, the equation will be x 3 + y3 _._ 1, the 

kind considered in Example 2.3. Then 

- V ( p ,  x) = 36(-p2x ,x2  - p2xox2 + p~xoxl) 

and the equation of the dual curve is (after dividing by a constant) 

F(po, p, ,  P2) = p6 + p6 + p6 3 3 _ 2P0P 1 2p~p3 3 3 _ _ 2P0P2 

which is the homogeneous version of (2.9). 

The proof of Theorem 2.6, which will occupy the rest of this section, uses 

some classical concepts of projective geometry. Consider the total polarization of 

the cubic form f ,  i.e., the symmetric trilinear form A (x, y, z), x, y, z 6 C 3, given 

by 
1 2 

A(x, y, z) -- -6 y ~  fijkxiYjZk, (2.11) 
i,j,k=O 

where fijk are the third partial derivatives of f (they are constant since deg f = 3). 
Then f (x) = A (x, x, x). For any x = (x0 : xl : x2) 6 p2, we consider the conic 

{ 2 X  t" Y~. ._. O} Kx = {x' ~ p2 . a(x ,  x', x') = O} = __~J(X)X;Xj 
i,j=0 

(2.12) 

known as the first polar of X at x. (We shall have another occasion to use polars 

later in Chapter 4, Section 2.) 

For p -- (P0 " pl " P2) E p2,, we denote by lp the corresponding line in p2, 
i.e., the line ~ pixi -- 0. Let us give a geometric interpretation of the expressions 

in Theorem 2.6. 

Lemma 2.8. We have V (p, x) = 0 if and only if the line lp is tangent to the conic 

Kx. 

Proof The polynomial V (p, x) is a quadratic form in Pi whose coefficients are the 

cofactors of the Hessian matrix II jSj (x)II. So this quadratic form is, for any given 

x, a scalar multiple of the form given by the inverse matrix II fij (x)II -1. Hence, by 

Example 2.1, the vanishing of this form is equivalent to the tangency of lp and the 

conic Kx given by (2.12). The lemma is proved. 
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For a given p ~ p2., let Cp C p2 be the locus of x such that V (p, x) = 0, 

i.e., Kx is tangent to lp. Since V (p, x) has degree 2 in xi, we find that Cp is also a 
conic. 

Lemma 2.9. We have G(p) = 0 (where G is defined by (2.10)) if and only if the 
line lp is tangent to Cp. 

The proof is similar to that of Lemma 2.8. 

Let us now note that G is homogeneous of degree 6. Thus to prove Theorem 

2.6, we need to show that G is not identically zero and G vanishes on X v. The 

second of these assertions is implied by the following lemma. 

Lemma  2.10. Let p ~ p2. be such that the line lp is tangent to X at a point x 
which is not an inflection point. Then the conic Cp contains x and is tangent to X 
at x. 

Proof We first prove that x ~ Cp, i.e., Kx contains x and is tangent to X at x. 

We use the trilinear form A given by (2.11). If x 6 X then A(x, x, x) = 0, so 

x ~ Kx. Moreover, the tangent line to both X and Kx at x consists of y such that 

A (x, x, y) = 0. So Kx is tangent to X at x, i.e., x ~ Cp. 

Let us now show that Cp is tangent to X at x. Let us choose some parametric 

representation of the curve Cp near x, say, t ~-+ z(t) = (x + tx' + ...) where t is 

the local parameter. Since the coefficients Pi of the equation of the tangent line lp 
are proportional to the partial derivatives fi, we obtain the value of V(p, z(t)) to 

be 

0 fo(x) fl(x) fz(x) 
fo(x) foo(x + tx' + ...) f01(X + tx' + ...) fo2(x + tx' + ...) 
f l (x )  flo(x + tx' + ...) fll(X + tx' + ...) fl2(X + tx' + ...) 
f2(x) f20(x + t x ' + . . . )  fZl(X + t x ' + . . . )  f22(x + tx' +. . . )  

Let us multiply the second, third and fourth columns of the above matrix with 

x0, x l, x2 respectively, and subtract half their sum from the first column. Now 

perform the same operation with respect to rows. Then, by virtue of the Euler 

identity for the homogeneous functions fi and the linearity of fij, we get the 

matrix (denoted by W(t)) of the following form: 

/ t (y~. x~3'}) + O(t 2) O(t) O(t) 
O(t) foo(x + tx' + ...) f01(x + tx' + ...) 
O(t) fl0(X + tx' + ...) fll(X + tx' + ...) 
O(t) f2o(x + tx' + ...) fZl(X + tx' + ...) 

O(t) I f~  
fl2(X + tx' + 
fz2(x + tx' + ...) 

where, by O(t),  we have denoted the functions having at least the first order of 
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vanishing at t -- 0. It follows that 

V ( P ' Z ( t ) ) - - d e t W ( t ) - - t ' ( ~ x ~ 3 ~ + O ( t 2 ) )  " H f ( z ( t ) ) ' / - O  

where Hf = detllfij II is the Hessian determinant of f .  We have assumed that our 

chosen point x is not an inflection point of X so Hf(x) ~ O. Therefore, since 

V(p, z(t)) -- 0 identically in t, we obtain that ~ x~3~(x) -- O. This precisely 

means that Cp is tangent to X. Lemma 2. l0 is proved. 

To establish Theorem 2.6, it remains to show that the polynomial G(p) is not 

identically zero. By Lemma 2.9 this means that, for a generic p ~ p2., the line 

lp C p2 intersects Cp at two distinct points. By definition of Cp, this means that 

there are two distinct points z, z' ~ Ip such that the conics Kz and Kz, are tangent 

to Ip. 
Note that the conics Kx, x ~ p2, form a linear system of curves (i.e., the 

coefficients of the equation of Kx are linear functions of x). Note also that there 

are no points common to all Kx. (Indeed, if z is such a point, then A (x, z, z) = 0 

for any x, so z should be a singular point of X.) This implies that, for generic 

x, y ~ p2, the intersection Kx N Ky consists of four distinct points. We take such 

points x, y and take lp to be the line < x, y > joining x and y. We can and will 

assume, moreover, that Kx and Ky are nonsingular and lp is not tangent to X. We 

claim that lp satisfies the conditions of the previous paragraph (and so G(p) :/: 0). 
Let Kx t3 Ky = {ql . . . . .  q4}. Since Kx, Ky are conics, no three of the qi are 

collinear. All the conics through ql . . . . .  q4 form a 1-dimensional linear system 

(pencil)/~ ~ P 1. The conics Kz, z ~ lp, contain q l . . . . .  q4 and also form a pencil. 

Hence Kz, z ~ Ip are all the conics through ql . . . . .  q4. Note that lp does not 

contain any of the qi. Indeed, otherwise we would have 

A (x, qi, qi) = A (y, qi, qi) = A (qi, qi, qi) = 0 

for some i. This means that qi E X and the line < x, y > -- lp is tangent to X at 

qi, contrary to our assumption. Now the nonvanishing of G is a consequence of 

the next lemma. 

L e m m a  2.11. Let ql . . . . .  q4 be four points in p2 of which no three are collinear 
and let I C p2 be a line that does not meet any of the qi. Then there are two 
distinct conics through ql . . . . .  q4 tangent to I. 

Proof By choosing the appropriate homogeneous coordinates x0, X1, X2 in p2, we 

can assume that ql = (1 : 0 : 0), q2 = ( 0 : 1 : 0 ) ,  q3 -- ( 0 : 0 :  1), q4 -- (1 : 1 : 1). 

Consider the transformation (Cremona inversion) 

( 1 , 1 )  
qj . p2 ; p2 (X0 . X1 .X2) i ; . . . . .  . 

X0 X1 X2 
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This transformation takes the system of conics through ql . . . . .  q4 into the system 

of straight lines through q4 = (1 : 1 : 1). The line l is taken into a conic qJ (l) not 

containing q4. Clearly there are two tangent lines to q~ (1) through q4. Applying the 

inverse transformation q~-i _. qj, we get two conics through ql . . . . .  q4 tangent to 

l. This concludes the proof of Lemma 2.11 and Theorem 2.6. 

3. The incidence variety and the proof of the biduality theorem 

A. The incidence variety and the conormal bundle 

We shall use the following standard terminology and notation. If M is a smooth 

algebraic variety, then T M denotes the tangent bundle of M. If Z C M is a smooth 

(not necessarily closed) algebraic subvariety, then T Z  is a subbundle in TM[z,  

the restriction of T M to Z. The quotient by this subbundle is called the normal 

bundle of Z in M and denoted by Tz M. By taking the duals to T M and Tz M, we 

get the cotangent bundle T*M of M and the conormal bundle T} M of Z in M. 

Note that T;~ M can be naturally regarded as a subvariety in T* M. 

Let X C P" be a projective variety and let X v C P"* be its projective dual. 

We denote the set of smooth points of X by X~m. Let W ~ C pn x pn, be the set 

of pairs (x, H) where x ~ X~m and H is a hyperplane in pn tangent to X at x. 

Denote the Zariski closure of W ~ by Wx. We shall call Wx the incidence variety 

corresponding to X. 

Let us denote by pr 1 , pr 2 the projections of pn x P"* to the first and second 

factors. We have the following. 

(1) The variety X v coincides with pr2(Wx). 

(2) The projection pr 1 �9 W ~ --+ Xsm is a projective bundle. 

More precisely, consider the conormal bundle T* P" Then pr 1 identifies W ~ with 
X s  m �9 

the projectivization P (T~, m P") of this bundle. Indeed, the choice of a hyperplane 

H C P" tangent to X at x is equivalent to the choice of a hyperplane Tx H in the 

tangent space Tx pn which contains Tx X. The equation of such a hyperplane is a 

covector in the conormal space to X at x. 

The biduality theorem can be reformulated by saying that 

Wx = Wx v. (3.1) 

It will be convenient for us to prove (3.1) by working in vector spaces instead 

of projective ones. 

We assume that our P" is P(V) and P"* is P(V*). Let Y C V be the affine 

cone over X, i.e., Y consists of 0 and all vectors v ~ V whose projectivization is 

in X. Let yv C V* be the similar cone over X v so that, in the terminology of 
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Section 1A, Y and yv are dual cones. Let Ysm be the smooth part of Y. Denote by 

Con(Y) the closure in the cotangent bundle T*V of the conormal bundle T~s,, V. 

The space T* V is canonically identified with V x V*. Denote by pri, i -- 1, 2, 

the projections of this product to the first and second factors. Then yv coincides 

with Pr2(Con(Y)). An equivalent reformulation of (3.1) is 

Con(Y) - Con(Y v) (3.2) 

in the natural identification of T*V and T* V* with V x V*. We shall prove (3.2). 

For this we need some background. 

B. Lagrangian varieties 

Let M be any smooth algebraic variety, m = dim M. Recall [Ar] that the cotangent 

bundle T*M carries a canonical symplectic structure, i.e., a differential 2-form co 

with the following two properties. 

(1) dco = 0, i.e., co is closed. 

(2) If (x, ~) is any point of T*M then co defines a non-degenerate skew product 

on the tangent space T(x,~) (T* M). 

The form co admits the following description in terms of a local coordinate system 

(Xl . . . . .  Xm) in M. Let ~i be the fiberwise linear function on T*M given by the 

pairing with the vector field O/Oxi. Then (Xl . . . . .  Xm, ~1 . . . . .  ~m) forms a local 
coordinate system in T* M. The form co is defined by 

m 

co -- ~ dxi /x d~i. (3.3) 
i=1  

Although (3.3) uses a choice of coordinates in M, the form 09 does not depend on 

this choice. 

An irreducible closed subvariety A C T* M is called Lagrangian if dim A -- 

dim M -- m and the restriction of co to the smooth part A sm of A vanishes as a 

2-form on Asm. 
An important example of a Lagrangian variety is obtained as follows. Let 

Z C M be any irreducible subvariety, Zsm the smooth part of Z and let 

Con(Z) = T}s,, (M) (3.4) 

be the closure of the conormal bundle of Zsm. We shall call Con(Z) the conor- 

mal variety of Z (since it is in general not a bundle). We claim that Con(Z) is 

Lagrangian. Indeed, the statement about the dimension is obvious. To see that 

colCon(Z) -- 0, it suffices to work over the smooth part of Z. Let xl . . . . .  Xm be a 
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local coordinate system on M such that x l . . . .  - -  Xr = 0 is the local system 

of equations of Z. Then the fibers of the conormal bundle over points of Z are 

generated by 1-forms dXr+l . . . . .  dxm. Hence ~ r + l  = " ' "  "--" ~ m  "--  0 on T ~ , M  
and by (3.3) we find that o9 = 0 on T}~M. So Con(Z) is Lagrangian. 

Note that the variety Con(Z) C T*M is conic, i.e., it is invariant under 

dilations of fibers of T* M. 

The converse statement is crucial for us. 

Proposi t ion 3.1. Any conic Lagrangian subvariety A C T*M has the form 

Con(Z) for some irreducible subvariety Z C M. 

Proof Let pr �9 T*M --+ M be the projection. Define Z = pr(A). This is an 

irreducible subvariety in M. Let z be any smooth point of Z. We claim that the 

fiber pr -1 (z) N A is contained in the conormal space (T~M)z. Indeed, let ~ be 

any covector in pr -1 (z) fq A. Since T z M is a vector space, we can regard ~ as a 

tangent vector to T* M at a point z 6 M C T* M (here we identify M with the zero 

section of the projection pr : T*M --+ M). Since A is Lagrangian, ~ is orthogonal 

with respect to o9 to any tangent vector v C TzZ. But the scalar product with 

respect to o9 of any such vertical vector (coming from an element ~ of T z M) and 

any horizontal tangent vector (coming from a vector v ~ Tz M) is equal to ~ (v), the 

standard pairing of a vector and a covector. This can be seen at once from (3.3). 

Hence pr -1 (z) f3 A C (T~M)z. 
We have proved that A C Con(Z).  Since A and Con(Z) are irreducible 

varieties of the same dimension, we conclude that A -- Con(Z).  Proposition 3.1 

is proved. 

C. Proof of the biduality theorem 

We shall prove the equality (3.2). We specialize the considerations of subsection B 

to the case of the smooth variety M = V and the subvariety Y C V. The conormal 

space Con(Y) is a Lagrangian subvariety in T* V. 

The identification T*V = V x V * =  T'V* takes the canonical symplectic 

form on T*V to minus the canonical symplectic form on T* V*. Indeed, choosing 

a linear system of coordinates xl . . . . .  Xm in V and the dual coordinates ~1 . . . . .  ~m 

in V*, the form on T*V can be written as ~ dxi A d~i, and the form on T* V* 

as ~ d~i A dxi. Hence Con(Y) regarded as a subvariety in T* V* will still be 

Lagrangian. Moreover, Y C V being the cone over X, is invariant under dilations 

of V. Hence Con(Y) C V x V* is invariant under dilations of V as well as under 

dilations of V*. This means that Con(Y) regarded as a subvariety in T* V* will 

be conic (i.e., invariant under dilations of the fibers of T* V* --~ V*). Thus, by 

Proposition 3.1, Con(Y) = Con(Z) where Z C V* is the projection of Con(Y). 
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But this projection coincides with y r .  Hence Con(Y) = Con(yV). This concludes 

the proof of the biduality theorem. 

D. The incidence variety as the desingularization of  the dual 

We return to the situation of subsection A in which we have the projective variety 

X c pn and the dual variety X v C Pn*. Consider once again the diagram of 

projections 

X gr, W x ~ X V  (3.5) 

where Wx is the incidence variety. We have proved that Wx coincides with Wxv. 
Hence, over the smooth locus of X v, the map pr 2 is a projective bundle. A similar 

statement holds, of course, for pr 1. 

Proposition 3.2. 
(a) I f  X is smooth then Wx is smooth. 
(b) If  X v is a hypersurface then pr 2 : Wx ~ X v is a birational isomorphism. 

Proof (a) This follows from the fact that Wx is a projective bundle o v e r  X s m  - -  X. 

(b) If X v is a hypersurface then dimX v = dim Wx = n - 1. Since pr 2 

is generically a projective bundle, its generic fiber is a 0-dimensional projective 

space, i.e., a point. In other words, pr z is birational. 

Thus, in the most interesting case when X is smooth and X v is a hypersurface, 

the variety W gives a resolution of singularities of X v. 

4. Further examples and properties of projective duality 

A. Duality and projections 

We start with the study of the behavior of projective duality under projection. 

Let P be an n-dimensional projective space and L C P a projective subspace 

of some dimension k > 0. The quotient projective space P / L  has, as points, 

(k + 1)-dimensional projective subspaces in P containing L. 

The projection with center L (or from L) is the map zrL �9 P - L --~ P / L  

which takes any point x ~ P - L to the (k + 1)-dimensional subspace spanned 

by x and L. The space P / L  and the projection zrL can be visualized inside the 

initial projective space P. To do this, we choose another, (n - k)-dimensional 

projective subspace H C P not intersecting L. Then any (k + 1)-plane containing 

L intersects H at exactly one point, so P / L  becomes identified with H (see Figure 

5). 
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I~\ 
I~ \ 

/ 
Figure 5. A space curve and its projection from a point 

By definition, the dual projective space (P /L)*  is embedded into P* as a 

projective subspace. Namely, (P /L)*  is identified with the space of hyperplanes 

in P containing L. 

Proposition 4.1. Let X C P be an algebraic subvariety not intersecting the 

projective subspace L and such that dim(X) < d im(P/L) .  Then 

(7rL (X)) v C L v Iq X v. (4.1) 

I f  moreover, rrL �9 X -+ zrL (X) is an isomorphism of  algebraic varieties, then the 

inclusion in (4.1) is an equality, i.e., 

(rrL (x))V = LV f3 X v. (4.2) 

Before proving Proposition 4.1, let us reformulate it in terms of general dis- 

criminants, i.e., equations of dual varieties. To do this, we represent all of the 

projective spaces above as projectivizations of vector spaces. Let 

O - + K  ~ > V  > W - + O  

be an exact sequence of vector spaces. Consider the projective spaces P = 

P(V*) ,  L -- P(W*).  Then P / L  = P(K*) .  The map Jr/, is induced by ct* �9 

V* --+ K*. 

If X C P(V*) is a subvariety then the X-discriminant A x is a polynomial 

function on V. The discriminant A.L(x) is a polynomial function on K. 

Corol lary  4.2. In the situation described above, let X C P - P(V*)  be a projec- 

tive subvariety not intersecting L -- P(W*) and such that dimX < dimP(K*).  
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Then ArrL(x) is a factor of  the restriction to K of Ax. If, in addition, rrL : X --, 
]rL (X) is an isomorphism then 

A,~,(x) = A x l r .  (4.3) 

Proof of  Proposition 4.1. A hyperplane in P / L  is just a hyperplane in P containing 

L. It follows from our assumption that, if H regarded as a hyperplane in P / L ,  is 

tangent to zrr. (X) at some smooth point y = 7ft. (x) (where x ~ X is smooth), then 

H, regarded as a hyperplane in P, is tangent to X at x. This proves the inclusion 

(4.1). 

Suppose now that rrL �9 X --+ zrr. (x) is an isomorphism. Let us denote by X~ / 

the open part of X v consisting of hyperplanes that are tangent to X at a smooth 

point. So X v is a closure of X~'. Similarly, introduce the open part rrL (X)~ / of 

rrL (X) v. Since rrL induces an isomorphism of smooth loci Xsm --+ 7rr. (X)sm, we 

have 

= L nx '. 

Now zrL (X) v is the closure of zrL (X)~. Thus, to prove (4.2) it suffices to show that 
L v n X v coincides with the closure of LV n X~/. Since X v -- X~/, the assertion 

we need can be stated as follows. 

Lemma 4.3. Let H(t),  t ~ C, Itl < 1, be a 1-parameterfamily ofhyperplanes in 
P (depending analytically on t) such that for t Vk 0 the hyperplane H (t) is tangent 
to X at some smooth point x(t) and the hyperplane H (0) contains L. Then there 
is another 1-parameter family of hyperplanes H'(t) such that: 
(a) n '  (o) = n (0), 

(b) For t ~ 0 the hyperplane H' (t) is tangent to X at x (t) and in addition contains 
L. 

Proof of the lemma. Consider the point x(0) = limt_~ox(t) ~ X. This limit exists 

since P is a compact manifold. However, x (0) may be a singular point of X. Let 

Tx(o)X be the Zariski tangent space to X at x(0). By a slight abuse of notation 

we regard it as a projective subspace in P containing x(0). The isomorphism 

rrL �9 X --+ rrL (X) induces an isomorphism of Zariski tangent spaces at any point. 

This implies that Tx(o)X, regarded as a projective subspace in P, does not intersect 

L. 

For any t -r 0, consider Tx(t)X as a projective subspace in P. We denote this 

subspace by T(t). Let T(0) be the limit position of these subspaces as t --+ 0. 

Then T (0) is contained in Tx(o)X. Hence T (0) does not intersect L either. We get 

a 1-parameter family T (t) of projective subspaces in P of the same dimension, 

none of which intersects L. The hyperplane H(t) for t r 0 contains T(t) by 
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definition of tangency. Hence H(0) contains T (0). Denote by < L, T (t) > the 

projective subspace spanned by L and T (t). This space has the same dimension 

for all t, namely dim L + dim X + 1. For t = 0 we have that H(0)  contains 

< L, T (0) >.  Hence we can construct a 1-parameter family of hyperplanes H ' ( t )  

such that H ' (0)  = H(0)  and H'(t) contains < L, T(t) >. This is the required 

family. 

Lemma 4.3 and Proposition 4.1 are proved. 

Note that the condition that 7/" L " X --~ 7/" L ( X )  be an isomorphism cannot 

be dropped. Indeed, critical points of rrL : X --+ 7rL(X) will produce extra 

components of LV N X v, as can be seen in Figure 5" any 2-plane containing the 

line < L, y > belongs to X v. Therefore L v N X v is the union of the curve 

(rrL (X)) v and the line ZrL (y)V. 

Now consider the situation when X is a projective variety embedded into 

a projective space P and P is embedded, as a projective subspace, into another 

projective space M. Then we can regard X as a subvariety in either P or M. 

Correspondingly, X has two dual varieties, (XV)p C P* and (XV)M C M*. To 

relate them, note that P* is the quotient projective space M*/(pv )M and therefore 

we have the projection 

Jr : M* - (PV)M > P* 

with the center (pv)M. In particular, if Z C P* is any subvariety then we can 

form the cone over Z with apex (pv)M. This is a subvariety in M* defined as the 

union of (pv)M and all the fibers Jr -1 (z), z 6 Z. 

Proposi t ion 4.4. In the above notation the variety (XV)M is the cone over (XV)p 

with apex (PV)M. 

The proof is obvious. 

Let us reformulate this proposition in terms of general discriminants. Con- 

sider a surjection zr : E ~ V of vector spaces and put P = P (V*), M = P (E*). 

Then we have an embedding j �9 P ~-+ M. If X is a subvariety in P then Ax is 

a polynomial function on V. If we regard X as a subvariety in M, i.e., consider 

j (X) C M, then Aj(x) is a polynomial function on E. 

Corol la ry  4.5. In the described situation we have, for any f ~ E, 

A j (x ) ( f )  = Ax(z r ( f ) ) .  

In other words, t j  (X) does not depend on some of the arguments and forgetting 

these arguments yields Ax. 
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B. Linear normality and invertible sheaves 

Definition 4.6. A projective variety X C pn is called non-degenerate if it does not 

lie in a hyperplane. A variety X is called linearly normal if it is non-degenerate 

and cannot be represented as an isomorphic projection of a non-degenerate variety 

from a projective space of higher dimension. 

The embedding of a linearly normal variety can be described intrinsically, 

in terms of the variety itself and a certain invertible sheaf on it. Let us recall 

this correspondence between invertible sheaves and projective embeddings [GH] 

[Hart]. 

By an invertible sheaf on an algebraic variety, we mean the sheaf of sections 

of some algebraic line bundle. We shall not distinguish notationally a line bundle 

from the corresponding invertible sheaf. 

Let X be a projective variety and let s be an invertible sheaf on X. Let V = 

H ~ (X, s  be the space of global sections of s It is well-known that dimV < oo. 

To any point x ~ X we associate a linear subspace F(x) C V consisting of all 

sections vanishing at x. Clearly, the codimension of l"(x) can be only 0 or 1. If 

codim (F(x)) = 0, the point x is called a base point for s If there are no base 

points we obtain a regular map 

F -  FL " X ~ P(V*). (4.4) 

The sheaf/ :  is called very ample if Fz: is an embedding and it is called ample if 

some tensor power/:| m >__ 1, is very ample. 

Before going further, let us recall the construction of invertible sheaves on 

projective spaces. For any d ~ Z, we denote by O(d) or Op(v,)(d) the sheaf of 

degree d homogeneous functions on P(V*). More precisely, let Jr �9 V* - {0} 

P (V*) be the canonical projection. If U C P (V*) is a Zariski open set then the 

sections of O(d) over U are, by definition, regular functions f on rr -1 (U) C V* 

which are homogeneous of degree d, i.e., such that f (Xx)  = )~df(x), ~ ~ C*. It is 

well known [Hart] that O(d) corresponds to a line bundle on P (V*), also denoted 

by O(d). For example, the fiber of O ( - 1 ) ,  as a line bundle, over a point of P(V*) 
represented by a 1-dimensional subspace I C V* is I itself. 

Now let X be a smooth irreducible variety embedded into P (V*) as a closed 

subvariety. By Ox(d) we shall denote the restriction of the line bundle Oe(v,)(d) to 

X, as well as the corresponding sheaf of sections. Such sections can be described 

in a similar way to the above description for the whole P(V*) by considering 

regular homogeneous functions on :r -1 (U) where U C X is Zariski open. 

Proposition 4.7. A projective variety X C P(V*) is linearly normal if and only 
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if it is projectively isomorphic to the image of F z: for some very ample invertible 
sheaf s on X. 

The proof of Proposition 4.7 is well-known, so we shall only sketch it. Con- 

sider the projective space P = P (V*). If d > 0 then any homogeneous polynomial 

f ~ sd(v)  on V* defines a global section of Op(d). It is well-known [GH] [Hart] 

that the resulting map sd(v)  --+ H~ O(d)) is an isomorphism. 

Restricting our sheaf on X and taking d -- 1, we obtain the restriction mor- 

phism 

res" V - 4  H~ O(1)). (4.5) 

Proposition 4.7 is a consequence of the following. 

Proposition 4.8. A variety X is linearly normal if and only if the map res is an 
isomorphism. 

Proof The fact that res is not injective means that there are non-zero linear 

forms vanishing on X, i.e., X, lies in a hyperplane. If res is not surjective 

then the map 1-'o(1) gives a non-degenerate embedding of X to a projective space 

P(H~ O(1))*) of higher dimension. The initial embedding is obtained from 

this one by the projection with center P(Im(res)• Conversely, if X can be ob- 

tained as an isomorphic projection of a non-degenerate subvariety X in a larger 

projective space P(W*) then we have a proper embedding V "-+ W. The map 

W --+ H~ O(1)), given by restricting linear functions from P(W*) to ,~', is an 

injection, since any non-zero vector from its kernel defines a hyperplane in P (W*) 

containing ,~, which contradicts the assumption that ,~ is non-degenerate. Thus 
the map res, which is the composition of the two described maps, is not surjective. 

Note that every projective variety X is an isomorphic projection of a linearly 

normal variety" namely of the image of X in the embedding given by O(1). Thus 

Corollaries 4.2 and 4.5 imply that, in finding general discriminants, we can restrict 

our attention to the class of linearly normal varieties. 

C. More examples of dual varieties 

Example 4.9. Quadrics. 
(a) Let X C P(V) be a smooth quadric hypersurface, defined by (Ax, x) = 0, 

where A : V --+ V* is a non-degenerate symmetric bilinear form. Then X v 

P(V*) is a quadric hypersurface defined by the condition (A-I~, ~) = 0 where 

A -1 �9 V* -+ V is the bilinear form on V* inverse to A. 

The proof is entirely similar to that of Example 2.1, so we omit it. 

(b) Let X C P(V) be a singular quadric hypersurface defined by the equation 
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(Ax, x) -- 0 where the bilinear form A is degenerate. Let K C V be the kernel 

of A. Then A induces a non-degenerate bilinear form ,4 on V/K.  The dual 

vector space to V/K is K • C V*. Hence we obtain the inverse form ,~-1 on 

K • The subvariety projectively dual to X will be the quadric hypersurface in 

P(K • C P(V*), defined by the non-degenerate form ,,~-1. 

To show this we note X is a cone with apex P(K) so the result follows from 

the dual form of Proposition 4.4. 

Example  4.10. Determinanta l  varieties. We fix natural numbers m < n and let 

V be the vector space of m by n matrices A = Ilaij II with complex entries. Let 

r < m. Consider the variety Yr C V consisting of matrices A such that rkA < r. 

Let Xr C P (V) be the projectivization of Yr. We identify the dual space V* with 

V using the bilinear form 

(A, B) = ~ aijbij. (4.6) 
i,j 

After this identification we can regard the dual variety Xr v C P (V*) as an embed- 

ding into P(V). 

Proposi t ion 4.11. The variety XVr coincides with X m _  r. 

Proof. We shall explicitly calculate tangent spaces to Yr at smooth points. Note 

that every matrix of rank exactly r is a smooth point of Yr. Indeed, they form an 

open subset and the group GL(m) acts on them transitively (in fact, all the other 

points of Yr are singular, see [ACGH] [Harr]; we do not need this). So we shall 

restrict ourselves to considering only these points. 

We shall proceed in two steps. First we consider the particular case m -- n 

and r -- n - 1, i.e., the subvariety of square matrices with determinant zero. 

Let A e Yn-1 be an n by n matrix of rank n - 1. Denote by A the matrix of 

cofactors of A, i.e., 

(/t)ij = ( -  1)i+J det]lapq ]lp#i,q#j. 

In other words, if A is the matrix of an operator A �9 C n ~ C" then ,4 is the matrix 

of the exterior p o w e r / ~ - 1  (A). 

L e m m a  4.12. The tangent hyperplane TA Y~-I consists of matrices B ~ V such 
that (A, B) -- O, where (A, B) is defined by (4. 6). 

Proof of the lemma. A matrix B belongs to TA Y~-1 if and only if 

d I 
I d e t ( A + t B )  O. 

dt It=o 



4. Further examples and properties of duality 37 

An explicit expansion of the determinant gives 

d 
det(A + tB) -- (A, B), 

dt t=0 

from which the statement follows. 

By the lemma,  the dual cone YV_ 1 is the closure of the set of mat r ices /~  

corresponding to all A of rank n - 1. Note that A has rank 1 if rk A -- n - 1, and 

/i = 0 if rk A < n - 1. Hence YV_ 1 = Y1. This proves Proposition 4.11 in the 

particular case when m = n, r -- n - 1. 

Now let us consider the general case. The variety Yr is defined by the 

vanishing of all the minors of order r + 1. For any (r + 1)-element subsets 

I C { 1 . . . . .  m }, J C { 1 . . . . .  n } and any (m x n) - matrix S, we denote by SI j the 

submatrix of S with rows from I and columns from J. Let A ~ Yr. It follows from 

L e m m a  4.12 above that the matrix B lies in TA Yr if and only if (BI j,  A i J) -- 0 

for any r -I- 1-element subsets I, J of rows and columns. Denote by [AIj]  the m 

by n matrix given by 

{+detllaijlli~l-lpl j~J-Iql i f p  ~ I, q ~ J ;  
[t~j]pq= 0 otherwise. 

Then the orthogonal complement  to TA Yr is spanned, as a vector space, by matrices 

[A~j]. 
We shall show that for one special matrix A of rank r, the space (TA Yr)l 

consists of matrices of rank < m - r and contains some matrices of exactly rank 

m - r. Since all the matrices of a given rank are equivalent under the action of 

GL(n), Proposition 4.11 will follow. 

We take A such that A i j  - -  1 if i -- j < r and A i j  - -  0 otherwise. For 

any i 6 {1 . . . . .  m}, j 6 {1 . . . . .  n} denote by E(i, j )  the corresponding matrix 

unit: E(i, j)p,q -- 1 if p = i, q -- j and E(i, j)p,q -- 0 otherwise. An explicit 

computation shows that [ A t  j ]  - -  0 unless both I and J contain [r] -- { 1, 2 . . . . .  r}; 

furthermore, if I -- [r]U{i},  J -- [ r ]U{j}  then [a~ j ]  -- -FE(i, j) .  Clearly, each 

linear combination of such matrices has rank < m - r and some of them have rank 

m - r. Proposition 4.11 is proved. 

E x a m p l e  4.13. Consider the particular case of matrices of rank 1 in Example 4.10. 

Each such matrix can be seen as a product of a vector and a covector. Therefore 

the variety X1 is the product pm-1 • pn-1 of tWO projective spaces. The resulting 

embedding of this product is known as the Segre embedding [Harr] [Sh]. We 

can write the space V of m by n matrices as the tensor product E | F where 

dim E -- m, dim F -- n. In this notation the Segre embedding has the form 

P(E)  x P(F)  ~ P(E | F), (e, f )  ~-~ e | f .  
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The dual variety to pk-1 x pro-1 consists, therefore, of matrices that are not of full 

rank. For k -- m, this is the determinantal variety. In this case the X-discriminant 

is the determinant of a square matrix. 

Another instructive case from Example 4.10 is m = 2, n > 2 and r = 1. The 

projectivization X1 of Y1 is the product p1 x pn-1 and hence is smooth. The dual 

variety is again isomorphic to X1. So both of these varieties are smooth and have 

codimension n in their ambient projective spaces. In particular, this provides an 

example of a smooth subvafiety whose dual is not a hypersurface. 

Example 4.14. Let X be the product of three projective spaces in its Segre em- 
bedding: 

X -- P ( E )  x P ( F )  x P(G)  ~ P ( E  | F | G), (e, f ,  g) ~ e | f | g. 

By choosing bases in E, F, G, we can identify the space E | F | G as well 

as its dual, with the space of 3-dimensional matrices (arrays) A = Ilaijk II where 

i -- 1 . . . . .  dim E, j = 1 . . . . . .  dim F, k -- 1 . . . . .  dim G. The X-discriminant 

is a polynomial in variables aijk. In view of the previous example it is natural to 

call Ax the hyperdeterminant of the 3-dimensional matrix Ilaijk II. In a similar way, 

we define the hyperdeterminant of an r-dimensional matrix Ilai~ . . . . .  i r  II. A detailed 

study of hyperdeterminants will be undertaken in Chapter 14. 

Example 4.15. Let X be the projective space pk-1 in its Veronese embedding of 

degree d. In other words (see [Harr] [Sh]), X = P ( E )  where E is a k-dimensional 
vector space and the embedding has the form 

X - -  P ( E )  "-+ p ( S d E ) ,  e ~ e d. 

The space (S d E)* = S d E* is identified with the space of homogeneous polyno- 

mials (forms) of degree d in k variables. The dual variety X v C P (S d E*) consists 

of polynomials f for which the hypersurface {f  = 0} C P ( E )  is singular. The 

X-discriminant in this case is the classical discriminant of a form of degree d 

in k variables. It was introduced in this generality in 1842 by G. Boole (see 

[Ca l ]), who found that the degree of the discriminant is kd k-1 . Beyond this, little 

is known about the discriminant A x (in this example). Except in the case of a 

binary or quadratic form, it is never written in an expanded form, in part because 

it is so cumbersome. For example, the discriminant of the ternary cubic form 

Y~i+j+k=3 aijk Xi YJ Zk has degree 12 as a polynomial in (aijk) (and it is well-known 

in the theory of modular forms). The expanded form of this polynomial contains 

2040 terms (we would like to thank S. V. Duzhin for making available to us a 

computer-generated formula for A ({aijk })). 
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Example 4.16. Let a > 2 be a natural number. Consider the hypersurface X C pm 

with the affine equation 

a a 1 X 1 " ~ - ' ' ' ' ~ - X  m - -  

a a = X~)). Introduce an affine chart in (or the homogeneous equation x 1 + . . .  + X m 

pm,  consisting of hyperplanes with affine equations of the form )-"~4%1 pixi - -  1. 

So Pl . . . . .  Pm are coordinates in this chart. An explicit calculation similar to that 

of Example 2.3 shows that the hypersurface dual to X can be defined, in coordinates 

Pl . . . . .  Pn, by 
a m  a._q_ 

p~'-~ 4 - . . .  4- pm -~ = 1. (4.7) 

Like the procedure described in Example 2.3, the irrational equation (4.7) can be 

replaced by a polynomial equation of degree a (a - 1)m-1. 

Example 4.17. Our last example is a "mixture" of Segre and Veronese embeddings 

giving a common generalization of Examples 4.14 and 4.15. Let X be the product 

of several projective spaces P(E1)  x P(E2) x . . .  x P ( E r ) t a k e n  in the embedding 

into p ( s d I ( E 1 )  ~ SdE(E2) ~ . . . ~ sd ' (Er) ) ,  where dl . . . . .  dr are some positive 

integers. Let V -- sdI(E1) t~ sd2(E2) t~ . . .  t~ Sdr(Er), then the dual vector 

space V* is identified with the space of multihomogeneous forms f (Xl . . . . .  Xr) 

(xi E Ei) having degree di in each vector variable xi. We call the X-discriminant 

the multigraded discriminant. The hyperdeterminant in Example 4.14 is a special 

case of the multigraded discriminant when all degrees di are equal to 1. We shall 

give a criterion for the non-triviality of the multigraded discriminant (i.e., determine 

for which dimensions and degrees the dual variety X v is a hypersurface) in the next 

section. Additional properties of multigraded discriminants will be considered in 

Chapter 13. 

5. The Katz dimension formula and its applications 

A. Katz dimension formula 

Let X C P" be a k-dimensional projective variety, and X v C (pn)v be the 

projectively dual variety of X. The following result due to N. Katz [Kat] expresses 

the codimension of X v in terms of the rank of certain Hessian matrix. 

We write the ambient projective space pn containing X as P (V), where V is 

a vector space of dimension n + 1. Then X v C P(V*) .  The elements of V* are 

homogeneous functions of degree 1 on the cone Y C V over X. For x 6 P (V) let 

x -L 6 V* denote the orthogonal complement to x, i.e., the codimension 1 subspace 

of functions vanishing at x. Now let x0 be a smooth point of X. Then one can 

choose linear functionals To 6 V* - x0 L and 7'1 . . . . .  Tk 6 x~- so that the functions 
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tl = T1/TO, t 2  - -  T2/TO . . . . .  tk = Tk/TO are local coordinates on X near x0. For 

every U 6 x -L the function u = U~ To on a neighborhood of x0 in X is an analytic 

function of tl . . . . .  tk such that u (0, 0 . . . . .  0) -- 0. Consider the Hessian matrix 

02u 
Hes (u) = Hes (U; To, 7'1 . . . . .  Tk; x0) = (0, 0 . . . . .  0) . (5.1) 

OtiOtj l<i,j<k 

T h e o r e m  5.1. We have  

codim X v = 1 + min corank Hes (u), (5.2) 

the m i n i m u m  over  all  poss ib le  choices  o f  xo and  U. 

Proof.  We start with the following obvious remark. If Jr �9 Z -+ S is any regular 

map of algebraic varieties then the dimension of the closure of 7r(Z) is equal to 

the max imum value of the rank of the Jacobian matrix of Jr at smooth points of Z. 

To apply this in our situation, let W0 C P ( V )  x P ( V * )  be the smooth part 

of  the incidence variety consisting of pairs (x, H)  such that x is a smooth point 

of X, and H is a hyperplane in P ( V )  tangent to X at x (cf. Section 3). Let 

7r �9 Wo ---> P ( V * )  be the second projection. Then X v is the closure of  rr(W0). 

To prove our theorem, we compute the Jacobian matrix of Jr in appropriate local 

coordinates and relate it to the Hessian matrices appearing in the theorem. 

Let (x0, H0) ~ W. Choose To ~ V * - x 0  a- and T1 . . . . .  Tk ~ x0 x as above so that 

the functions tl = T1/ To, t2 --  T2/  To . . . . .  tk = Tk /  To are local coordinates on X 

near xo. Extend 7"1 . . . . .  Tk to a basis {7'1 . . . . .  Tk, U1, U2 . . . . .  U,-k} of x6 L. Then 

each of the functions u i = Ui / To (i --  1 . . . . .  n - k)  on X is an analytic function 

of (tl . . . . .  tk) in a neighborhood of (0, 0 . . . . .  0), and we have ui(O, 0 . . . . .  O) = O. 

Let x 6 X be a point close to xo with local coordinates (tl . . . . .  tk) (so in 

homogeneous  coordinates x = (1 : tl : . . .  : tk : Ul : . . .  : U , -k ) ) .  Let H be the 

hyperplane in P ( V ) ,  defined by a linear form (~-~=0 Tj Tj @ Z T =  k r]iUi) ~_ V*. 

Then H is tangent to X at x if and only if the function 

k n-k 

j = l  i = l  

vanishes at x together with all its first derivatives. We see that for a given x, the 

hyperplanes tangent to X at x form a projective space of dimension n - k - 1 with 

homogeneous  coordinates (r/1 : 112 : . . .  : 0n-k), and the remaining coordinates rj 

of  H are given by 

n-k 
-- -- ~ Oit)Ui/Otj ( j  = 1 . . . . .  k ) ,  (5.3) rj 

i=1 
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k n - k  n - k  k n - k  

750 - -  - - ( Z  75jtj -Jr" Z l~iUi) = -- Z r]iUi -~- Z ~ oitjOui/OtJ" 
j---1 i=1  i=1  j = l  i=1  

(5.4) 

Without loss of  generality, we can assume that the hyperplane H0 has coordi- 

nates (01 : 02 : . . .  : r/n-k) = (0 : 0 : . . .  : 1). It follows that we can set 17,,_1, = 1 

in the above formulas, and use (tl . . . . .  tk, O1 . . . . .  On-k-l) as local coordinates on 

W near (x0, H0) (so that (x0, H0) has all the coordinates equal to 0). 

In these coordinates the projection rr �9 W0 --+ P (V*) takes the form 

(tl . . . . .  tk ,  01 . . . . .  On-k-l) i--+ (750,751 . . . . .  75k, /71 . . . . .  l~n-k-1), 

where 750,751 . . . . .  75k are given by (5.3) and (5.4) (with r/n-k = 1). An obvious 

calculation shows that the Jacobian matrix of zr at the origin is the following 

n x ( n -  1)matr ix:  

0(750, 751 . . . . .  75k, l~l . . . . .  l~n-k-1) 

O(tl . . . . .  tk, /~l . . . . .  l~n-k-1) 
(o . . . . .  o) 

( 0 0 ) 
- -  - H e s  (Ul/l_k) __(O(Ulo(..~l:7..~.~k)Un-k-l) (0 . . . . .  , 0 ) ) '  

0 In-k-1 

(5.5) 

Here horizontal sizes of  the blocks are 1, k, n - k - 1, and vertical sizes are 

k, n - k - 1; the k x k matrix Hes (Un-k) is defined by (5.1), and In-k-1 is the 

identity matrix of order n - k - 1. 

Clearly, the Jacobian matrix (5.5) has rank 

n - k - 1 + rk Hes (un-k). 

It follows that 

dim X v = n - k - 1 + max rk Hes (u), (5.6) 

the max imum over the same choices as in Theorem 5.1. The equality (5.6) is 

equivalent to (5.2), and the theorem is proved. 

Theorem 5.1 implies the following criterion for the non-triviality of the X- 

discriminant. 

Co ro l l a ry  5.2. The dual variety X v is a hypersurface if and only if  there exist a 

smooth point Xo ~ X and linear forms U, To, T1 . . . . .  Tk as in Theorem 5.1 such 

that the Hessian matrix Hes (u) is invertible. 

Using this criterion, Knop and Menzel [Knop-Me] classified all irreducible 

representations of simple Lie algebras such that the dual of  the highest vector orbit 

is a hypersurface. 
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B. The dimension of  the dual to a hypersurface: Segre's theorem 

Although the projective duality is an involutive operation, the most typical situation, 

from the intuitive point of view, is when the projective dual X v is a hypersurface. 

Indeed, if X v is not a hypersurface, say, codimX v = r + 1 then, by Corollary 1.2, 

X is covered by the projective spaces of dimension r lying on X, which is certainly 

atypical behavior. For example, if X is a curve other than a straight line then X v 

is always a hypersurface. 

Therefore by taking projective duals to hypersurfaces, we can get a consider- 

able amount of subvarieties which are not hypersurfaces. This is of interest since 

it is very easy to define a hypersurface by an equation, whereas the description by 

equations of subvarieties of higher codimension is much more difficult. 

This line of thought was formulated explicitly by B. Segre [Se]. The first step 

in this approach is to find the codimension of the dual to a hypersurface X. The 

answer, due to Segre, is as follows. 

Theorem 5.3. Let f (x0 . . . . .  Xn) be an irreducible homogeneous polynomial of 

degree d and let X C pn be the hypersurface with the equation f = O. Let m be 

the largest number with the following property: any m by m minor of  the Hessian 

matrix JJoE f /OxiOxj II (which is a polynomial in xi of degree m(d - 2)) is divisible 
by f .  Then dim X v = m - 2. 

Proof This is very similar to the proof of Theorem 5.1. Let W0 and Jr �9 W0 --+ X v 

have the same meaning as in that proof. Since X is a hypersurface, the other 

projection p �9 W0 --~ X is birational, so dim W0 = dim X. The rational map 

rr o p-1 . X -+ X v has dense image so dim X v is equal to the genetic rank of the 

Jacobian matrix of Jr o p - l .  Let this rank be r. Note that for a smooth point x ~ X 

we have 

(Tr o o - 1 ) ( x )  = F x o  ( X )  " . . .  �9 Ox---~(x) . 

Taking partial derivatives, we find that r equals the genetic rank of the Hessian 

matrix of f on X minus one. This is precisely what is claimed in the theorem. 

The first non-trivial case is the case of space curves. In this case Theorem 5.3 

gives the following. 

Corol la ry  5.4. An irreducible surface in p3 with equation f (xo . . . . .  x3) -- 0 is 

projectively dual to a space curve if and only if the Hessian detll 0 2 f /Oxi Oxj IIi,j=0 ..... 3 

is divisible by f . 

C. Dimension of  the dual of  the product 

Let X 1 C pn, and X 2 C Pn: be two irreducible projective varieties. The product 
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X 1 x X 2 is naturally embedded in p,,,,,2+,,~+n2 via the Segre embedding pn~ x 

p,,2 __+ p",',2+",+,2. Let (X1 x X2) v C (p,,,,2+,,~+,,2)v be the projectively dual 

variety. Using Theorem 5.1, we shall calculate dim (X1 x X2) v in terms of the 

dimensions of X1, X2 and their duals. To present the answer in the most symmetric 

form, we introduce the following notation. Let X C P" be an irreducible projective 

variety, and let X v C (p, ,)v be the projectively dual variety. We set 

/x(X) -- dim X + codim X v - 1. (5.7) 

Theorem 5.5. (Product Theorem) We have  

# ( X  1 x X2) - -  m a x  (dim X1 + d i m  X2, # ( X 1 ) , / z ( X 2 ) ) .  (5.8) 

P r o o f  Let dim X1 = kl, dim X 2 - -  k2. Let x0 = (x01, X02) be a smooth point 

of X1 • X2. We choose local coordinates tll,  tzl . . . . .  tk,,l on X1 near x01 and 

t12,/22 . . . . .  tk2,2 on X2 near x02 as in subsection A. So for v = 1, 2, a point 

xv 6 Xv close to x0v has homogeneous coordinates 

x~ -- (1 "tl~ " . . . "  tk,,~ "ul~ " . . . "  u.v-k.,~), 

where each U i v  is an analytic function of tlv, t2v . . . . .  tkv,v vanishing at the origin. 

By definition of the Segre embedding, a point (Xl, x2) 6 X1 x X2 has as 

homogeneous coordinates all pairwise products of homogeneous coordinates of 

x l and x2. Therefore, the set of homogeneous coordinates consists of 1 and the 

following eight sets of variables: 

t l  - -  { t j l } ,  t 2 -  {tj2}, Ul "-" {U/l}, u2 = {ui2}, 

t t -  {tj,,ltj2,2 }, tu  - -  {tjlUi2}, ut  = {Uiltj2}, UU - -  { U i , , l U i 2 , 2  } (5.9) 

(here t t ,  tu ,  u t ,  and uu are simply symbols not to be confused with products). 

Among these coordinates we choose those in t~ and t2 as local coordinates on 

X1 x X2 near x0. The coordinates from the remaining six sets are analytic functions 

of these local coordinates vanishing at the origin. 

To apply Theorem 5.1, we have to consider the Hessian matrix Hes (u), where 

u is a linear combination of all the coordinates in (5.9) regarded as a function of 

local coordinates from tl and t2. By some abuse of notation we write u as 

u -- tl + t2 -k- U l "~- U2 "~- t t  + tu + ut  + uu ,  
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where each of the summands stands for a linear combination of the variables of 

the corresponding group. We write Hes (u) as 

Hes (u) = ( A l l  A12) 
A21 A22 ' 

where 

II ~ II Aa# = Oti~Otj? (0, 0 . . . . .  O) l<i<k.,l<j<k~ 

An easy computation shows that All = Hes (ul), A22 -- Hes (U2), SO that 

Hes (u 1) 
Hes (u) -- t A 

a ) 
Hes (u2) ' (5.10) 

where A can be an arbitrary kl x k2 matrix. 

We need to find the minimal possible value of the corank of Hes (u). Clearly, 

such a value is attained for genetic Ul, u2, and A. By Theorem 5.1, we have 

corankHes (Ul) = codim X~ / - 1, corankHes (U2) - -  codim X~ - 1. (5.11) 

To complete the proof of Theorem 5.5 we use the following result from linear 

algebra. 

Proposi t ion 5.6. Let E be a finite dimensional vector space decomposed into the 

direct sum E "- E1 ~ E2 of  two subspaces having dimensions kl and k2. For any 

two integers Cl E [0, kl], c2 E [0, k2], let Bil (cl, c2) denote the set of  all symmetric 

bilinear forms ~o on E such that, for  v = l, 2, the restriction of ~o on Vv has corank 

cv. Then a generic form ~o ~ Bil (Cl, c2) has corank 

corank (q)) = max (0, cl - k2, C2 --  kl). (5.12) 

Combining Proposition 5.6 with Theorem 5.1 and (5.11), we see that 

c o d i m  ( X  1 • X2)  V -  1 

= max (0, codim X~' - 1 - dim X2, codim X~' - 1 - dim X1). (5.13) 

Adding dim X1 + dim X 2 to both sides of (5.13), we obtain (5.8). 

Proof of  Proposition 5.6. We think of ~0 as a linear map tp �9 E1 @ E2 ~ E~ @ E~. 

For ct,/~ -- 1, 2, let q),~ be the component of q) acting from E~ to E*. The condition 
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that ~o is symmetr ic  means that ~o~1 -- q911 , q9~2 - -  ~22,  ~ *  21 = q 912" By definition, 
corank (tp) = dim Ker ~o, where 

Ker~o -- { ( - x l  X2) E E 1 ~) E 2  " q g l l ( X l )  ---- qg* (x2 )  q921(x1) "-- q922(x2)} (5  14) ' 21 , �9 �9 

Without loss of generality we can assume that k l _< k2. For a genetic q9 

Bil (Cl, c2) the map q921 " E1 ~ E~. is injective. Hence for a given x2 6 E2 there 

is at most  one xl such that ( - x l ,  x2) ~ Ker qg, namely 

-1  
Xl - -  q921 q922(x2). (5.15) 

Let U = q 9-122 (Im ~21)  C E2, and let ~p �9 U --+ E~ be given by 

-1  
lp - -  qg~l - -  qgll q921 q922. ( 5 . 1  6) 

Using (5.14) and (5.15), we see that Ker tp is isomorphic to Ker ap. 

We have 

dim (Im tP22) = k2 - c2, dim (Im tP21) = kl. 

For ~0 genetic, these two subspaces are in general position in E~. Now consider 

two cases. 

Case 1. c2 > kl. Then Im q922 N Im ~o21 = (0). Therefore, U = Ker tP22, and 7t 

coincides with the restriction of ~0" to U It follows that 21 

corank q9 = dim (Ker q922 I") Ker q921 ).  

But Ker q922 N Ker q9~1 is the orthogonal complement  of Im q922 --I- Im ~21, and hence 

corank ~o = k2 - (k2 - c2 + k l )  --- c2 - k l .  

Case 2. c2 < k l. Then dim (Im tP22 N Im ~021) = k l - c2, hence dim U = k l. 

Therefore, for genetic qg, we have Ker tp*21 N W = (0), i.e., tp~ 1 is an isomorphism 

between U and E* Now replace ~021 by ~.q921 for a non-zero scalar ~.. Then 7r 1" 

given by (5.16) is replaced by 

�9 - 1  
~'~21 - -  ~ ' - 1 ~ 1 1 ~ 2 1  ~22 = /~.(qg~l - -  ~.-2q911(/92]1~22). 

The latter map is invertible for sufficiently large I~.l, so corank ~o = dim (Ker ~p) = 

0. 

Clearly, (5.12) holds in both cases. Proposition 5.6 and Theorem 5.5 are 

proved. 



46 Chapter 1. Projective Dual Varieties 

D. Some corollaries o f  the Product Theorem 

First, Theorem 5.5 immediately generalizes to the product of more than two factors. 

Theorem 5.7. Let X1, X2 . . . . .  X r  be embedded irreducible projective varieties, 

and let X1 x . . .  x Xr be their product in the Segre embedding. Then 

# ( X  1 x . . .  x X r )  - -  m a x  (dim X l  -'~- " " �9 -~- d i m  X r , / Z ( X l )  . . . . .  # ( X r ) ) .  (5.17) 

Theorem 5.7 immediately implies the following criterion. 

Corollary 5.8. The dual variety (X1 x . . .  x Xr)V is a hypersurface if  and only if 

lz (Xj)  < dim X1 "~- " " " " l -  dim X r for j = 1 . . . . .  r. (5.18) 

If X - -  pk is taken in the tautological embedding into itself then X v -- 0, 

and we use the convention that dim (pk)v __ _ 1, hence codim (pk)v __ k d- 1, 

hence lz(P k) -- 2k. 

Corollary 5.9. Let X be an embedded irreducible projective variety. Then the 

dual variety (X x pl )v  is a hypersurface if and only if 

codimX v - 1  < l < d i m X .  (5.19) 

Proof. In view of (5.18), (X x e l )v  is a hypersurface if and only i f /z (X)  < 

dim X + l and 21 < dim X + l, which is equivalent to (5.19). 

Corollary 5.9 shows that even if the X-discriminant is constant, we can asso- 

ciate a family of discriminants with X corresponding to the products X x pl for l 

running over the string {codim X v - 1, codim X v . . . . .  dim X}. We shall see later 

that the discriminant in this family corresponding to the maximal value I -- dim X 

has a nice geometric meaning, namely it can be identified with the Chow form 

of X (see Chapter 3, Section2D below). The geometric interpretations for other 

values of I can be found in [WZ 2]. 

The following result is a special case of Corollary 5.8. 

Corollary 5.10. The dual variety ( Pk~ x . . .  x pkr)v is a hypersurface if  and only 

if 
2 k j  <__ k 1 --~- . . . -~- kr  ( 5 . 2 0 )  

for  j ---- 1 . . . . .  r. 
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Without loss of generality we can assume that k l  = max (kl, k2 . . . . .  kr). 
Then (5.20) is equivalent to the condition kl < k2 + . .  "d-kr. According to Example 

4.14, this is the criterion for the existence of the hyperdeterminant for the matrix 

format (kl + 1) x . . .  x (kr -I- 1). In particular, for r = 2 we recover an obvious fact 

that a usual (2-dimensional) matrix possessing the non-trivial determinant must 

be square. From this perspective, (5.20) can be regarded as the multidimensional 

analog of the notion of a square matrix. These questions will be treated in more 

detail in Chapter 14. 

The criterion of Corollary 5.10 can be extended to the case when Xj for j = 

1 . . . . .  r is the projective space pkj in the Veronese embedding into p(sdj  (Ckj+l)), 

where dl . . . . .  dr are any positive integers (in Corollary 5.10, all dj are equal to 1). 

Corol lary  5.11. Suppose Xj for  j = 1 . . . . .  r is the projective space pkj in the 

Veronese embedding into P (S dj (C kj + 1)). Then the dual variety (X 1 x . . .  x Xr) v 

is a hypersurface if and only if(5.20) holds for  all j such that dj -- 1 (in particular 

this is always the case if  all dj > 1). 

Proof. We have seen already that lz(Xj)  = 2kj if dj = 1. It is known that if 

dj > 1 then X) / is a hypersurface (cf. Example 4.15), hence # ( X  j) -- kj. Now 

our statement follows from Corollary 5.10. 

Corollary 5.11 gives the criterion of existence of the multigraded discriminant, 

i.e., the discriminant of a multihomogeneous form on pk~ X. �9 �9 X pkr of multidegree 

(dl . . . . .  dr) (cf. Example 4.17). 



CHAPTER 2 

The Cayley Method for Studying Discriminants 

In Chapter 1 we introduced, for any projective variety X C P",  the X-discriminant 

Ax which is the equation of the projective dual variety X v (so Ax is a constant 

if X v is not a hypersurface). We now explain the method that allows us, for a 

smooth X, to write down at least in principle, the polynomial A x. The method 

goes back to the remarkable paper by Cayley [Ca4] on elimination theory, in which 

the foundations were laid for what is now called homological algebra. The Cayley 

method can also be applied to other similar problems, such as finding resultants 

(see Chapter 3). For discriminants, the Cayley method can be described in modem 

terminology as consisting of three steps: 

Step 1. Interpret the vanishing of A x ( f )  (i.e., tangency of X with the hyperplane 
f -- 0) as a violation of the exactness of a certain complex of coherent sheaves on 

X. Usually the violation of exactness occurs at the points of tangency. 

Step 2. Interpret the non-exactness of a complex of sheaves as the non-exactness 
of a certain complex of vector spaces whose terms are fixed and whose differential 

varies with f .  
This is usually done by considering the complex of global sections of our 

complex of sheaves (possibly after tensor multiplication by a sufficiently ample 
invertible sheaf to ensure good behavior of the functor H~ Instead of a complex 

of vector spaces, we can also construct a spectral sequence taking into account the 

higher cohomology of the sheaves from the complex. 

Step 3. The X-discriminant is the determinant of the complex (spectral sequence) 

from step 2. 

The notion of the determinant of a complex (or spectral sequence) is described 

in detail in Appendix A. Throughout the present chapter we shall assume familiarity 

with this notion. 

The Cayley method gives an expression of A x ( f )  as an alternating product 

of determinants of certain matrices whose entries depend linearly on f .  In some 

simple instances, the alternating product will reduce to just one determinant. 
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1. Jet bundles and Koszul complexes 

We now will carry out the first step of the Cayley method: interpret the vanishing 

of A x ( f )  as the violation of exactness of a complex of sheaves. The complex 

in question will be the Koszul complex, obtained from a jet bundle. We start by 

reviewing some background material on jets. For more details the reader is referred 

to [Sau]. 

A. Jets 

Let X be a smooth irreducible algebraic variety. By Ox we denote the sheaf of 

regular functions on X. For any algebraic vector bundle E on X, we shall denote 

by the same letter E the sheaf of regular sections of this bundle, which is a locally 

free sheaf of Ox-modules. The sheaves corresponding to line bundles (vector 

bundles of rank 1) are known as invertible sheaves. 

Let s be an algebraic line bundle on X. We consider the bundle J (s of 

first jets of sections of 12. By definition, the fiber of J (s at a point x 6 X is the 

quotient of the space of all sections of s near x by the subspace of sections which 

vanish at x together with their first derivatives. In other words, 

J ( s  = s163  (1.1) 

where I~ C Ox is the ideal of functions vanishing at x. Thus J (s is a vector 

bundle on X of rank dim X + 1. 

To any section f of s we associate a section j ( f )  of J (s called the first jet 
of f .  Namely, the value of j ( f )  at any x ~ X is the class of f modulo 12s (this 

is a vector in the fiber J (s The correspondence f v-~ j ( f )  is C-linear: 

j (fl  + f2) = j (f l)  + j (f2), j (Xf) = Xj ( f ) ,  X E C, (1.2) 

(but this correspondence, being in fact a differential operator, is not Ox-linear). 

Note that every vector in every fiber of J (s can be represented as the value of 

some j ( f ) ,  but not every section of J (s has the form j ( f ) .  

The relevance of jets to discriminants is as follows. Consider the projective 

space P (V*) where V is a vector space. Suppose X C P (V*) is a smooth closed 

irreducible subvariety and take s = C0x(1) (see Section 4B, Chapter 1). Any 

vector f 6 V gives a linear function on V* and hence can be regarded as a section 

of s The following proposition is an immediate consequence of definitions. 

Proposition 1.1. A vector f E V represents apoint in the dual variety X v C P(V)  

if and only if the section j ( f )  of the bundle J (17,) vanishes at some point x E X. 



50 Chapter 2. The Cayley Method 

Let us point out several properties of jet bundles. The first is the isomorphism 

J (E.) ~_ J (Ox) | 12. (1.3) 

This isomorphism is only between sheaves of sections of the two bundles in 

(1.3) and does not come from a fiberwise isomorphism of the bundles themselves. 

Its construction is as follows. A section of J (Ox) over U C X is an assignment, to 

any x 6 U, of a function 7z (x, y) defined for y close to x and considered modulo 

I 2. Therefore a section of J (Ox) | IZ is an assignment of a similar function 

7z (x, y) but taking, for each x, values in the fiber s We can think of ~ as being 

defined on a small neighborhood of the diagonal in U • U, so for x 6 U we have 

a section y ~ ~ (y, x) of/2 defined near x. Taking, for each x, the first jet of this 

section, we get a section of J (/2). This defines the required isomorphism. 

Similarly to (1.3), we get an isomorphism of sheaves of sections: 

J (/Z | .A4) "-- J (/Z) | .A// (1.4) 

for any two line bundles/2, .M on X. 

For any i > 0 let f2% be the sheaf of regular differential/-forms on X. The 

second property of jets we want to mention is the exact sequence of vector bundles 

0 ---> f21 | 12 '~ > J (s t~ > 12 ~ 0. (1.5) 

Here fl is the map which takes any vector j ( f ) ( x )  ~ J (12)x into f ( x )  ~ s 
Consider now the simplest case when X is a projective space. 

Proposi t ion 1.2. The jet bundle J (Op(v,)(1)) is a trivial bundle naturally identi- 
tied with fOp(v,) | V. 

Proof. The space V is identified with the space of global sections of (_9(1) on 

P(V*). For any x ~ P(V*), we get a linear map of vector spaces 

V --~ J(Op(v,)(1))x, f ~ j ( f ) ( x ) .  

This map is an isomorphism, which may be verified, for instance, using local 

coordinates. 

Proposition 1.2 admits a certain generalization to an arbitrary variety X and a 

line bundle E on X. Let us denote by Y the total space of the bundle 12" from which 

the zero section is deleted. In the important special case when X lies in a projective 

space P(V*) and 12 = O(1), the manifold Y C V* - {0} is the punctured cone 

over X, i.e., the set of all non-zero points in V* whose projectivization lies in X. 

Any local section f of s defines a function )z on Y homogeneous of degree 1. 
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Denote by Jr : Y ---+ X the standard projection. Denote by ~ the Euler vector 

field on Y (i.e., the generator of the group of homotheties). The vector field 

defines the Lie derivation Lie~ on tensor fields on Y, in particular, on the sheaves 

f2~, of differential k-forms. For any l ~ Z, let us define a subsheaf f2 lt,Y C f2~ 
whose sections are 1-forms ?' on Y such that Lie~ (y) = l. ?', i.e., ?' is homogeneous 

of degree l under homotheties. Note that f21 is not a sheaf of C0y-modules, in l,Y 

particular, not a coherent sheaf on Y. Let zr. denote the direct image of sheaves 

under zr. 

Proposition 1.3. We have a natural isomorphism of sheaves on X 

~v �9 J (z:) --+ Jr,(~m~,y). 

In other words, sections of J (~,) over a domain U are naturally identified with 
differential 1-forms y over z r - l ( u )  such that Lie~(y) -- y. Moreover, let f be 
any local section of s and let f be the corresponding homogeneous (of degree 
1) function on Y. Then under the isomorphism ~, the section j ( f )  goes to the 

1-form d f on Y. 

Proof The isomorphism ~p will be constructed fiberwise in order to satisfy the 

second assertion of the proposition. The fiber of J (s at a point x is E/I2F_., see 

(1.1). Consider the correspondence 

f mod 12 ~ > d(f)l,~-l(x) 

where on the right stands the restriction of d ( f ) ,  as a section of f21, to the fiber 

zr -1 (x). It is straightforward to see that this correspondence is well-defined, gives 

a required isomorphism of fibers and that these isomorphisms for various x glue 

together into an isomorphism of vector bundles. 

B. Koszul complexes 

Let X be an irreducible algebraic variety. Let E be an algebraic vector bundle on 

X of rank r and let s be a global section of E. Consider the complex of sheaves 

o n X  

2 

1C+ (E, s) - O --+ Ox -~ E As> A E As A } > . . .  --+ E --+ 0 , (1.6) 

whose differential is given by exterior multiplication with s. We ca l l /C+(E,  s) 

the (positive) Koszul complex associated to E and s. We fix the grading in this 

complex by assigning the degree j to A j E. 
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It is also convenient to consider the complex dual to (1.6), i.e., the complex 

{A A /C_(E, s) - 0 - - ->  E*--+ --~ E* i s  �9 " "  > E *  > O x - - + O } .  (1.7) 

Here the differential is given by contraction with s, i.e., by the map is " A j E* 

A j-1 E* dual to the map A j - 1 E  --~ A j E given by exterior multiplication by s. 

We normalize the grading of /C_(E,  s) by assigning the degree ( - j )  to A j E* . 

Note that we have an isomorphism of complexes 

/C_(E, s) ~ /C+(E, s) |  E* [r], (1.8) 

where r in brackets means the shift in the grading of the complex by r. 

The reason for the introduction of both of these complexes is that it is often 

more straightforward to work with /C+, whereas KS_ has simpler cohomology 

sheaves, as we shall see from the following proposition. 

Proposition 1.4. 
(a) The exactness of  any of  1C+ (E, s), ]C_(E, s) is equivalent to the fact that s 

does not vanish anywhere on X. 

(b) Suppose that X is smooth and that s vanishes along a smooth subvariety Z C 
X ofcodimension exactly r = rk E and is transverse to the zero section. Then 
~_  (E, s) has only one non-trivial cohomology sheaf, namely Oz (regarded 

as a sheaf on X) in (highest) degree O. In this situation ~§  (E, s) has the 
only non-trivial cohomology sheaf in the highest degree r, and this sheaf is 

the restriction A r (E)lz regarded as a sheaf on X. 

(c) More generally, suppose that X is not necessarily smooth but possesses a 

smooth morphism rr : X -~ S to some (possibly singular) variety S. Suppose 

also that the zero locus Z of  s is such that rr : Z -~ S is a smooth mor- 

phism, codim Z - rk E and, after restricting s to each fiber of  Jr (which is 

smooth by assumption), s intersects the zero section transversally. Then all 

the conclusions of  part (b) hold. 

For the definition of a smooth morphism in part (c) we refer the reader to 

[Hart], Chapter 3, Section 10. Informally, the notion of a smooth morphism is a 

relative version of the notion of a smooth variety over a field. Thus, if Jr �9 X --~ S 

is a smooth morphism, then both X and S may be singular, but every fiber of Jr is 

smooth. An example of a smooth morphism is given by a projection Z x S -~ S 

where S is any variety (possibly singular) and Z is smooth. In fact, we will not 

need any other examples in this book. 
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Proof of  Proposition 1.4 (a) If W is a vector space and w e W is a non-zero 

vector then the differential in the exterior algebra A ~ (w) ,  given by the exterior 

multiplication with w, is exact. This can easily be seen by choosing a basis of W 

containing w. The dual differential iw in A ~ w* is therefore also exact. Applying 

this to our situation, we see that if the section s does not vanish anywhere on X then 

the complexes/C• s) will be fiberwise exact, and hence exact as complexes of 

sheaves. If, however, s vanishes at some x e X, then the cokernel of the last 

differential in/C+(E, s) is non-trivial. Indeed, trivializing E near x, we represent 

s as a collection of functions ( f  1 , . . . ,  fr), and represent the last differential in 

both complexes as 

(~r ~ ( ~  
(Ul  . . . .  , Ur) ~ ~- Z ui f i .  

If s vanishes at x, then all ]~ also vanish and the above map is not surjective. 

(b), (c) Trivializing E near any given point, we identify E locally with O r 

and s with a collection of functions (f l ,  �9 �9 �9 fr), as above. Our conditions imply 

that fl . . . . .  fr form a regular sequence, i.e., every ]~ is not a zero divisor in 

O x / ( f l  . . . . .  3]-1). This yields, in a standard way (see, e.g., [GH] Chapter 5, 

Section 3) that both complexes K~+(E, s) are exact everywhere except in the last 

term. Now the last cohomology o f /C_(E ,  s) is Oz.  The statement about/C+ 

follows from (1.8). 

C. Interpretation o f  X v in terms of  Koszul complexes 

Let X C P(V*)  be a smooth projective variety. We apply the machinery of 

subsection B to the jet vector bundle E -- J (12) where E = Ox(1).  Propositions 

1.1 and 1.4 (a) give the following corollary. 

Corol lary 1.5. Let s = Ox(1). A vector f e V represents a point in X v if and 

only if any of  the following complexes of  sheaves on X is not exact: 

(j j { o --, o.  
2 ] 

j(f~ J (s Aj(~) A J (Z2) Aj(~) . . .  (1.9) 

{ A  j )U_(J(s j ( f ) )  . . . .  ~ J(s ~ J(s ~ Ox  --+ 0 . (1.10) 

This concludes the first step of the Cayley method. 
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2. Discriminantal complexes 

Here we perform the second and third steps of the Cayley method: interpret the 

non-exactness of a complex of coherent sheaves as non-exactness of a certain 

complex of finite dimensional vector spaces and then consider the determinant of 
this complex. 

A. The general discriminant as the determinant of  a complex 

Let X C P (V*) be a smooth projective variety. We denote L = Ox (1), so that any 

f e V can be regarded as a section of L. Let .M be another invertible sheaf (line 

bundle) on X. We define the discriminantal complexes C~_ (X, .M) and C'__ (X, .M) 
as complexes of global sections of Koszul complexes (1.9) and (1.10) tensored with 
.M. More precisely, 

( A )  c i+ ( X , .At) -- H ~ X, J (s | .h4 , 

( i ) 
C / (X, .h4) = H ~ X, A J (/2)* | .At . (2.1) 

Thus the terms of these complexes are fixed and the differential, induced by exterior 
multiplication (or contraction) with j ( f )  depends on f ~ V. 

We denote the differentials in both complexes by Of. The following statement 
is an immediate consequence of (1.2) and properties of the exterior product. 

Proposition 2.1. In each of  the C~:(X, A4), the differentials Of, f ~ V, satisfy 

axf+.g = ~.af + tZag, afag = -agaf  , f ,  g ~ v ,  ~, ~z ~ c .  

In other words, the Of, f ~ V, make each C~: (X, .A4) into a graded module over 
the exterior algebra A ~ (v) .  

It is known that the (non-) exactness of a complex of sheaves does not neces- 

sarily imply the (non-) exactness of the corresponding complex of global sections, 

and the obstructions to this are given by the higher cohomology of the sheaves of 

the complex. So we shall first consider the case when these obstructions vanish. 

We shall say that the discriminantal complex C~ (X, .M) is stably twisted if 
all of the terms A i J (s | .M of the corresponding complex of sheaves have no 

higher cohomology. Similarly, we shall say that C'_ (X, .M) is stably twisted if all 

of the terms A i J(/~)* t~) M have no higher cohomology. 
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Let us recall the following theorem due to Serre ([Hart], Chapter 3, Theorem 
5.2). Let A4 be an ample line bundle (see Chapter 1, Section 4B) and let .T" be 
any coherent sheaf on X. Then for I >> 0 the sheaves .T" | .A4 | have no higher 
cohomology. The next proposition is a simple consequence of this theorem. 

Proposition 2.2. Suppose that the line bundle .A4 on X is ample. Then for I >> 0 

the discriminantal complexes C~ (X, .A4 | are stably twisted. 

For a stably twisted discriminantal complex we can perform the second step 

of the Cayley method. 

Proposition 2.3. Suppose that C~ (X, A4) (resp. C'__ (X, .A4)) is stably twisted. Let 
f ~ V be such that itsprojectivization does not lie in the dual variety X v C P(V). 
Then the complex (C~_ (X, .All), Of) (resp. (C'__ (X, A/l), Of)) is exact. 

Proof If f r X v, then the Koszul complexes (1.9) and (1.10) are exact complexes 

of sheaves. So it suffices to note that exactness is preserved under tensoring with 

.Ad and to apply the following general fact. 

L e m m a  2.4. If  ~" is a finite exact complex of sheaves on a topological space X 
and H p (X, .7 :i) = O for any i and any p > O, then the complex of global sections 
o f f  ~ is exact. 

Proof. This is a particular case of the "abstract de Rham theorem" for sheaves, 

see [GH] Chapter 3, Section 5, or, for an elementary proof, [Hir] no. 2.12. This 

theorem says that if a complex of sheaves f "  is a fight resolution of a sheaf 

and the .T "i do not have higher cohomology, then the complex of global sections of 

.T "~ calculates the cohomology of G. Our statement corresponds to the case where 
G - 0 .  

Suppose now that C'__ (X, A4) is stably twisted. Let us choose a basis in each 

vector space C / (X, .A4). Denote the system of bases thus obtained by e. Then, 

for genetic f ~ V, we can consider the determinant of the based exact complex 

(C'__ (X, .A/l), Of, e) (see Appendix A, Definition 7). The correspondence 

f w-~ det (C'__ (X, A4), Of, e) 

is a rational function on the space V as follows from an explicit formula for 

the determinant of a complex (Appendix A, Theorem 13). Let us abbreviate 

this function by Ax, ~ .  A different choice of bases in c i ( x ,  M )  results in the 

multiplication of A x , ~  by a non-zero constant. We regard A x,M as being defined 

up to a non-zero constant multiple. With this understanding, the choice of bases 
does not matter. 

Similarly, if C~ (X, .A4) is stably twisted, we introduce the rational function 

A + x,M on V defined up to a non-zero constant multiple. 
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Theorem 2.5. If  the discriminantal complex C'__ (X, .A4) is stably misted then, up 
to a non-zero constant factor, we have 

A x,M ( f )  = Ax ( f )  (2.2) 

where A x is the X-discriminanr If  C~_ (X, A4) is stably twisted then 

( A + ( -  1 )dim(x)+ I 
x,M) ( f )  = A x ( f ) .  (2.3) 

In particular, the left hand sides of(2.2) and (2.3) are polynomials. These polyno- 
mials are non-constant precisely when X v is a hypersurface. 

B. Proof of  Theorem 2.5 

This proof is slightly more technical than the previous material and makes use 

of the formalism of derived categories. The reader who is unfamiliar with this 

formalism may wish to skip this subsection. For a general background on derived 

categories, see [KS]. 

First of all, if codim X v > 2, then the determinant of C~ (X, A4) is a rational 

function on V which is regular and takes non-zero values outside a subvariety of 

codimension > 2. Such a function is necessarily constant. So we can and will 
assume in the rest of the proof that X v is a hypersurface. 

Instead of considering complexes (C~(X, A/l), Of) with varying differentials 

0f, f ~ V, we consider the universal complex over the symmetric algebra S ~ (V*) 

for which all of the above individual complexes are fibers. More precisely, we 

introduce the complex 

c~(x,M)|  

[ o s" * ) ~ c l ( x M ) |  ( ) ...1. - C + ( X , M ) |  (V , S ' V *  
/ J 

The differential 0 equals ~ 0~ ~)~i, where f0 . . . . .  f,, and qg0 . . . . .  ~o,, are dual bases 

of V and V*, and ~0 i also stands for the multiplication operator. Proposition 2.1 

implies that 02 -- 0. In a similar way we define the complex C'__ (X, .A4) | S~ 

Let C(V) be the field of rational functions on V, i.e., the field of fractions of 

S~ The complexes (C~(X, A4) |  O) will become, after the extension 

of scalars from S~ *) to C(V), exact complexes of finite-dimensional vector 

spaces over C(V). Clearly, A+x,M ~ C(V) are just the determinants of these 

complexes with respect to the chosen bases. Hence the prime factorization of 

A + is given by Theorem 30 from Appendix A. Namely, let zr e S~ *) be an X,.A4 
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irreducible polynomial and let Z,~ C V be the corresponding hypersurface. Then 
the rr-adic order of A + is equal to the alternating sum of multiplicities at Z~ of X,.M 
the cohomology modules of C~ (X, .A4) | S(V*). Let, as before, yv C V denote 
the cone over the projective subvariety X v. Our assertion is a consequence of the 

following fact. 

Proposition 2.6. Let .A4 be such that C'__(X, A/l) (resp. C~(X, A4)) is stably 
twisted. Suppose that codim X v = 1. Then all of the cohomology modules of 
C'__ (X, .All) | S(V*) (resp. C~(X, .A4) | S(V*)) except for the one on the far 
right have support on subvarieties of codimension > 2. The cohomology module 
on the far right has only one irreducible component in its support which is a 
hypersurface. This component is yv and its multiplicity is 1. 

We shall concentrate on the proof of Proposition 2.6. Recall that, by a theorem 

of Serre's [Ser], the category of coherent sheaves on P(V) is equivalent to the 

category of graded finitely generated S~ considered modulo finite- 
dimensional modules. We consider the complexes of sheaves on P (V) associated 

to the complexes C~=(X, A4) @ S~ *) of graded S~ We denote 

these complexes by O(C~= (X, .A4)). Thus O(C~_ (X, .M)) has the form 

C ~ (X, M )  | OPiV) --+ Cl+ (X, .M) | OPiV)(1) -+ . . .  (2.4) 

and O(C'_ (X, .M)) has the form 

�9 . .  --4 C - 1  ( X ,  . / ~ )  @ Oe(v)(--1) ~ C 0_ (X, .A/I) ~ Op(v). (2.5) 

By Serre's theorem it is enough to prove that all of the cohomology sheaves of 

(2.4) or (2.5) except for the one on the far fight are supported on subvarieties of 

codimension > 2, the cohomology sheaf on the far fight is supported on X v C 

P (V) and the multiplicity equals 1. 

We shall interpret complexes (2.4) and (2.5) as direct images in the derived 

category. Let W C X x P (V) be the incidence variety, i.e., the set of pairs (x, H) 

where H is a hyperplane tangent to X at x (see Chapter 1, Section 3). Let pl ,  p2 

be the projections of W to X and P(V), and let px, pv be the projections of the 

whole X x P(V). Since/2 is the restriction to X of Op~v.)(1), we have the maps 

V res 0 J > n (X,L) > H~ J(s 

Therefore we have a map of V | V* = End(V) into the space of sections of the 

vector bundle p*x(J(s | p~(O(1))  on X x P(V). Let 

o ~ H ~ (X • P(V), p*x(J(L))@p~,(O(1))) 
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be the image of the identity element in End(V). It can be seen as the "universal 
section" since the restriction of cr to any fiber X x {C f} is just the section j ( f )  
of J (/2). To simplify further formulas, denote k = dim(X) + 1. 

Proposition 2.7. The subvariety W C X x P (V) is smooth and has codimension k. 
The section tr vanishes exactly along W and meets the zero section transversally. 

The proof follows from the representation of W as a projective bundle over 
X (Chapter 1, Section 3). 

Now the general properties of Koszul complexes (Proposition 1.4) imply the 
following: 

Corollary 2.8. The complex of sheaves on X x P(V): 

"" --~ P*x ( A  J(s | P* O( -2 )  Px* (J (s174 Pv* O( -1 )  -+ Ox• 

(2.6) 
is a left resolution of the structure sheaf Ow, regarded as a sheaf on X x P(V). 
The dual complex 

) ,(A ) "'"--+ P*x J(s | p ~ O ( k -  1) --+ Px J(s | PvO(k) (2.7) 

has the only non-trivial cohomology sheaf in the far right term. This cohomology 
sheaf equals the restriction on W of the line bundle p~(~2kx -~ | s174162 | p~,O(k), 
(this restriction is regarded as a sheaf on X x P(V)). 

Denote by C the line bundle on W in Corollary 2.8 (the one defined as the 
restriction). 

Proposition 2.9. If the discriminantal complex C'__ (X, A4) is stably twisted, then 
the corresponding complex O(C'__ (X, A4)) of sheaves on P(V) is isomorphic in 
the derived category to the direct image Rp2,(p~(A4)). Similarly, if C~(X, .Ad) 
is stably twisted, then O(C~(X, .A4)) is isomorphic to Rp2,(p~(C | A4)). 

Proof Let px, pv be the projections of X x P(V) to X and P(V), respectively. 
Recalling that Pl and P2 are the projections of W C X x P(V) to X and P(V), 
we have the isomorphisms in the derived category 

~ * ~ * M )  Rp2,(p~A4) - Rpv,(Ow | p x A 4 ) =  Rpv,  Px 

where/C is the complex (2.6). The second of the above isomorphisms follows from 

Corollary 2.8. Note now that (.9 (C'__ (X, .A4)) coincides with pv,(1C | p*xA/l), the 
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complex obtained by applying to every term of/C| p~.A4 the ordinary (not derived) 
direct image functor pv, .  Thus the question is to compare the termwise ordinary 
direct image with the full derived direct image. If C'__ (X, .A4) is stably twisted then 
for every term KJ of the complex K~, the higher direct images R i pv,(]C~ j ~ p~. /~)  

vanish for i > 0. So the statement of Proposition 2.9 about O (C'__ (X, .A4)) follows 
from the next general lemma (the statement about O(C~_) is similar). 

Lemma 2.10. Let p : Y --+ S be a continuous map of  topological spaces and let 

J:~ be a finite complex of  sheaves on Y such that R i p,.T "j -- 0 for  any i > 0 and 
any j. Then the complex Rp , .~  ~ is isomorphic in the derived category to p,J~~ 
the termwise direct image. 

Proof of  the lemma. For any complex of sheaves .Y TM, there is a canonical mor- 
phism p ,U~ --+ R p , U  ~ of complexes of sheaves on S. Let us show that it is 
a quasi-isomorphism, i.e., it induces isomorphisms of sheaves of cohomology 
H i (p,ffS'~ ~ H i (Rp,J~~ for all i. We h a v e  H i (Rp,  U ~ -- R i p,.T "~ the hyper- 

direct images of .T "~ As for any derived functor, there is a spectral sequence of 
sheaves El j --- R j p , . T  "i ~ R i+j p , . ~ ~  S o  o u r  assumptions imply that this se- 
quence is reduced to one complex p,.T "~ Lemma 2.10 and Proposition 2.9 are 
proved. 

Let us now complete the proof of Proposition 2.6. Since we assume that 
X v is a hypersurface, the map P2 " Wx -+ P(V)  is a birational isomorphism 
of Wx and X v C P(V)  (Proposition 3.2 of Chapter 1). Hence the complex 
Rpz,(p'~.A4) of sheaves on P(V)  can have only one cohomology sheaf supported 
on a hypersurface, namely R~ and its multiplicity along X v is equal to 
1. Hence for any hypersurface Z C P (V), we have 

y~(--1)imultz Hi (O(C'__(X, .A4))) = ~ ( - 1 ) i m u l t z  Ri pz,(p~.A4) 
i i 

__--{0' i f Z r  v, 
1, if Z - - X  v. 

Here the __H i mean, as before, the cohomology sheaves of a complex of sheaves. 
This, together with Theorem 30 from Appendix A, completes the proof of Propo- 
sition 2.6 for C"__ (X, .M). For C~_ (X, .M), the reasoning is similar. Proposition 
2.6 and Theorem 2.5 are proved. 

C. Examples 

Example 2.11. The Sylvester formula. Let X be the projective line p1 = 
P(C 2) embedded into pd _ p ( s d c  2) by the Veronese embedding (Example 1.3, 

Chapter 1). The space V -- (sdc2) * is the space of binary forms 

:(xo, x,) - aoxo + a,xo"-'x, + . . .  + a.x  
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of degree d, and Ax ( f )  is the classical discriminant of f .  
The line bundle s which is the restriction to X = p l of Oed (1) is, in terms 

of the projective line p l  itself, Oe~ (d). According to Proposition 1.2, the vector 

bundle J ( s  is isomorphic to Op~(d - l) 6) O e t ( d  - 1). We take the twisting 

bundle .M to be Oel (2d - 3). 

Recall the standard facts about the cohomology of sheaves O(l)  on projective 
spaces [Hart]. 

Theorem 2.12. Let V be a vector space o f  dimension k. I f  l > 0 then 

H ~  O(l))  = S I v  

and all the other cohomology o f  O(l)  vanish. I f  l < - k ,  then 
k 

H k - I ( p ( v * ) ,  O(l) )  = S - k - t V  * r A V 

and all the other cohomology of  O(l)  vanish. I f  1 - k <_ l <_ - 1  then all the 

cohomology o f  O(l)  vanish. 

Applying this theorem to our situation, we find that the discriminantal complex 

C'__ (X, .M) is 

0 ---> n ~  - 2) ~ O(d  - 2)) az n O ( o ( 2  d _ 3)) (2.8) 

(the left term will vanish since the sheaf O ( - 1 )  on p1 has no sections). We also 

see that (2.8) is stably twisted. Hence A x equals, up to a constant factor, to the 
determinant of this complex, i.e., to the determinant of the square matrix Of. Since 
H ~  1 , O(m))  is the space s m c  2 of binary forms of degree m, we can write Of in 
(2.8) as an operator 

s d - 2 c  2 ~D s d - 2 c  2 of> s2d_3c2 .  

An easy calculation shows that Of is given by 

a:(u,o)= u +  o 

Thus Theorem 2.5 amounts in our case to the classical Sylvesterformula 

A(a0x d +----t-  adx~) 

al 
0 

(--1) d-I 0 

d d-2 dao 
0 

0 

2a2 . . .  (d - 1)ad_l d a d  . . .  0 

al . . .  (d - 2)ad-2 (d - 1)ad_l . . .  0 

�9 . �9 . , �9 

�9 �9 

�9 �9 , �9 �9 �9 

0 . . .  a l  2 a  2 . . .  d a d  

( d -  1)al . . .  2ad_2 ad-1 . . .  0 
dao . . .  3ad-3 2ad-2 . . .  0 

�9 �9 . �9 �9 . 

0 . . .  dao ( d -  1)al . . .  a d - I  

(2.9) 
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The numerical constant ( -1 )  d- I /d  d - 2  here is, strictly speaking, irrelevant since 

we consider the discriminant up to a non-zero scalar factor. It becomes relevant if 

we use the standard normalization of the classical discriminant, see Chapter 12. 

Example 2.13. The dual of an algebraic curve. Let X C P(V*)  be a smooth 

algebraic curve of degree d and genus g. Thus the degree (or the first Chern class) 

of the line bundle s = Ox(1)  on X is equal to d. The bundle J (E) has rank 2 

and, by the exact sequence (1.5), the line bundle A2 j (E) = f2~ | E | has degree 

2d + 2g - 2 (we have taken into account that deg f2~c = 2g - 2). Let us take the 

twisting bundle M to be a genetic line bundle on X of degree 2d + g - 3. Then 

C'__ (X, .A4) has the form 

H ~ X, A J(s  | A4 --+ H~  J(/:)* | .A/l) 0z> HO(x  ' .All). (2.10) 

Recall the classical Riemann-Roch theorem for curves together with a couple of 

easy consequences of this theorem ([GH], Chapter 2, Section 3). 

Theorem 2.14. Let X be a smooth irreducible projective curve o f  genus g. Then 

(a) f o r  any line bundle .Af on X, we have 

dim H ~ (X, A/') - dim H 1 (X, .A/') = deg./V" + 1 - g; 

(b) a generic line bundle on X o f  degree g - 1 has H ~ -- H 1 -- O; 

(c) any line bundle A f  on X with deg A/" > 2g - 2 has H i ( X ,  A/') = O. 

By statement (b) above, the far left term of (2.10) is equal to zero since 

]~2 j (/~), @ .A/[ is a genetic line bundle of degree g - 1. Moreover, it follows 

from (c) that C'_ (X, A4) is in this case stably twisted. Hence the X-discriminant 

A x ( f ) ,  f ~ V, is the determinant of the square matrix Of. The size of the 

matrix Of, i.e., the dimension of H~ All) equals, by the Riemann-Roch theorem, 

2d - 2 + g. Thus X v is a hypersurface of degree m = 2d - 2 + g. Note that the 

equation of this hypersurface is the determinant of an m • m matrix of linear forms 

on V given by Of. This implies the following geometric property of X v. Let C m • 

be the space of all m • m matrices and Vm C P(C  re• be the projectivization 

of the space of matrices with determinant zero. Then X v is isomorphic to a plane 

section of Vm. 

3. The degree and the dimension of the dual 

Let X C pn be a smooth subvariety. In this section we address the question of 

how to find the codimension and the degree of the dual variety X v in terms of the 

invariants of X. 
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A. The degree of the X-discriminant 

We introduce d v to be equal to deg X v in case codim X v = 1 and to 0 in case 

codim X v > 1. Obviously, d v is just the degree of the X-discriminant Ax (recall 

that we have set Ax = 1 in case codim X v > 1). 
Theorem 2.5 identifies Ax with the determinant of any of the discriminantal 

complexes C~(X, .h4), provided the complex is stably twisted. This implies a 

formula for d v = deg Ax. 

Theorem 3.1. (a) l f  a line bundle .M on X is such that C'__ (X, .h4) is stably twisted, 
then 

0 

dV = E ( -  1)i. i �9 dim C i_ (X, .M). 
i = - d i m ( X ) -  1 

(b) l f  .M is such that C~_(X, A4) is stably twisted, then 

dim(X)+ 1 
dV = ( - - 1 ) d i m ( X ) + l  E 

i=0 

( - - 1 )  i "  i �9 dimC~(X, M ) .  

Proof This follows from Theorem 2.5 and the homogeneity property of the deter- 

minant of any based exact complex (C ~ 0, e): 

det(C ~ ~.0, e) = ~.rdet(C ~ 0, e), r - -~--~(--1)  i . i .  dim C i, (3.1) 
i 

(see Appendix A, Corollary 15). 
Thus d v is expressed through the dimensions of vector spaces 

( ' ) C i ( X  .A4) -- H ~ X, A J ( O x ( 1 ) ) * |  

(xM, Ho( / ) C+ = X, A J(Ox(1)) |  . 

These dimensions (and hence d v) can be expressed through simpler quantities 

associated with X. We shall do this assuming A4 = Ox (1), where I >> 0. 

For any coherent sheaf ~" on X, we write 

~(l)  -- Jr |  hi(., r - -d im Hi(X,~-),  X(.T') - E(-1) ih i ( . ,~ ) .  

(3.2) 

The number X (-~) is called the Euler characteristic of ~ .  
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It follows from the Riemann-Roch-Hirzebruch theorem [Hir] that X(U(1)) 
is a polynomial in I. This polynomial is called the Hilbert polynomial of .T" and 
denoted by hy(l) .  For I >> 0, the higher cohomology of .T'(I) vanishes, so we 
have 

h y:(l) -- X(.T'(I)) -- h~ (3.3) 

This is the more familiar definition of Hilbert polynomials, see [Hart], Chapter 1, 
Theorem 7.5, and also [Ser]. 

The bundle A i J(Ox(1))  is included in the exact sequence 

i 

0 --~ f2~(i) --~ A J(Ox(1))  -~ ~ - ' ( i )  --~ O, (3.4) 

which is obtained from (1.5) (with/~ = Ox (1)) by taking the exterior power. This 

implies that, for I >> 0, we have 

dim ci+(x, Ox(l)) - h~ + l)) + h~ f2~-I (i + l)). (3.5) 

Let Tx be the tangent bundle of X. By considering the sequence dual to (3.4) and 
tensoring with Ox(1) we get 

) dim C i_(X, O(l)) = h ~ Tx(i + l) + h ~ Tx(i + l) . (3.6) 

We arrive at the following. 

Theorem 3.2. The number d v = deg A x is expressed through Hilbertpolynomials 
of ~i x or A i Tx as follows: for any I ~ Z we have 

d v = (--1) dim(X)+l 
d im(X)  + 1 

(-1)i  " i " (hf2~x(i + l) + h~x-~(i + l ) )  
i = 0  

= ~ ( - 1 ) i .  i �9 (hA- i  r x ( i + l ) +  hA-i-I r x ( i +  l ) ) .  (3.7) 
i = - d i m ( X )  - 1 

Proof. For 1 >> 0 ,  this follows from Theorem 3.1 and from the equalities (3.5), 
(3.6) and (3.3). The extension to arbitrary I ~ Z is obtained if we note that any of 
the sums in (3.7) is a polynomial in I which takes the value d v for any I >> 0, and 
hence this polynomial is identically equal to d v. 
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B. General formula for codim X v and deg X v in terms of Hilbert polynomials 

For 0 < i < dim X, we introduce the polynomial  

Pi (l) -- h Ai Tx (l). (3.8) 

For any I 6 Z, we introduce the polynomial  ]~(q) in a formal variable q by 

d im(X)+l  

ft(q) = Z ( - 1 ) i (  pi(i  -k- l) -t- p i - l ( i  h-l))q i, (3.9) 
i=0  

where P-1 and Pdim(X)+l are understood to be 0. Clearly ])(q) is also a polynomial 

in I. 

Note that the representation of d v as the second sum in (3.7) implies that 

d v = - f t ' ( 1 ) ,  minus the derivative of f i (q)  at q = 1. Note also that fi(1) = 0 

since this is a polynomial in I which for l >> 0 is equal to the Euler characteristic 

of the generically exact discriminantal complex. Thus, near q -- 1, we have 

)~(q) = d r (1  - q) + O((1 - q)2). In fact, the following more general result is 

true. 

T h e o r e m  3.3. Let l ~ Z+ be any non-negative integer The codimension of  

X v equals the order of  the zero of  f,,(q) at q = 1. Let this order be/Z and let 
f t(q) -- au(l)(1 - q)U + O((1 - q)~+l)  Then au(l) = deg (X v) �9 tu+t-1). 

�9 \ # - 1  

Note that for a fixed /Z both a~,(l) -- (-1)~'f /(u)(1)//z? and the binomial 

coefficient (u+t-1) depend on l polynomially. So we can extrapolate the equality ~, /~-1 
in Theorem 3.3 for some negative l as well. Namely, if/z = codim X v is as above, 

then for any l ~ { -1 ,  - 2  . . . . .  - / z  + 1}, we have 

d e g X  v = ( - 1 ) u  ft(u)(1) (3.10) 
/z.  (l + 1)(1 + 2 ) . . . ( / + / z  - 1) 

and for I 6 { - 1 , - 2  . . . . .  - /z - t -  1}, we have a~,(l) - 0 s o  )~(q) - O((1 - q ) u + l ) .  

C. Formula for codim X v and deg X v in terms of  Chern classes (Katz-Kleiman- 

Holme) 

Before giving the proof of Theorem 3.3, we present another formula for the degree 

of X v due to N. Katz and S. Kleiman [Kat][K1] in the case where c o d i m X  v = 1 

and to A. Holme [Hol 1-2] in the general case. We assume that X C pn is a 

smooth irreducible projective variety of dimension m. 
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Let ci(~'21x) E H 2i (X, Z) be the i-th Chern class of the vector bundle f21. 

Consider the Chern polynomial of X with respect to the given projective embed- 

ding: 

m /x cx(q) = Z qi+l Cm_i(~.21X). (3.11) 
i=0 n p n -i 

Here pn-i  is any projective subspace in pn of dimension n - i. The "integral" 

(i.e., the value of the cohomology class on a cycle) does not depend on the choice 
of pn-i. Note that 

fx  Cm-i(~'~lx) -- fx  Cm-i(~'21x)Cl(OX(1))i" 
f ' lpn- i  

(3.12) 

Theorem 3.4. Let X C P~ be a smooth projective variety. Then the codimension 

of  X v equals the order of  the zero at q = 1 of  the polynomial cx(q) - cx(1). I f  

this order is lz then deg (X v) - c(xU)(1)//z!. 

Example 3.5. Let X be the product of projective spaces p1 x p3 embedded into 

p7 __ p (C 2 @ ca)  by the Segre embedding. In other words, X is the projectiviza- 

tion of the space of 2 x 4 matrices of rank 1. 

The dual variety X v is again p1 x p3 (see Example 4.13 of Chapter 1) and 

hence has codimension 3. The cohomology ring of any projective space pl is 

Z[t] / t  t+l, the element t being the class of a hyperplane. The total Chern class 

Y~ ci(f21p,) equals, as is well-known (see, e.g., [MS], Section 14) 

l + 1) t  2 . . . .  + ( _ 1 ) / (  / + 1)tl Z Ci(~'21Pt) = (1 - / ) / + l  _ 1 - (l + 1)t + 2 

(the term t l+l is dropped since it equals 0 in the cohomology ring). For our variety 

X, we obtain by the Ktinneth formula, H ~ (X) -- Z[s, t]/(s 2, t4). The fundamental 
class of X is st 3, and the total Chem class of ~2~ is (1 - 2s)(1 - 4t + 6t 2 - 4t3). 

The first Chern class of the restriction of O p7(1) to X is s q- t. The number 

m -- dim(X) is equal to 4. Thus f x  Cm-i(~"21)C1 (Ox))i is equal to the coefficient 

of st 3 in (1 - 2s)(1 - 4t + 6t 2 - 4t3)(s -!- t) i. So, by using (3.12), we find the 

Chern polynomial (3.11) to be 

cx(q) - 8q - 16q 2 + 20q 3 - 14q 4 + 4q 5. 

We have 
/! 

cx(1) = 4, c~(1) = Cx(1) = 0, 

This gives codim (X v) -- 3, deg (X v) - 24/3! - 4. 

ill ," 

c x t l )  = 24. 
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D. Proof of  Theorem 3.3 

We shall prove this theorem by calculations in the Grothendieck ring K (P(V))  of 

coherent sheaves on P". We recall the main properties of these tings referring to 

[BGI] [Man] for a detailed exposition. 

By definition, for any smooth projective variety Z, the Abelian group K (Z) 

is generated by the symbols [.Y'] for coherent sheaves .Y" on Z; whenever we have 

a short exact sequence 

0--~ .T" --, G ---> 7-/---> 0, (3.13) 

we impose the relation [G] = [.T] + [7-/]. The element [.T'] 6 K (Z) is called the 

class of .T'. For any finite complex of coherent sheaves .~'~ we define its class 

[ . ~ ]  "-- E ( - - 1 ) i [ . ~  "i] E K ( Z ) .  (3.14) 

It follows that the class of an exact complex equals 0, and hence quasi-isomorphic 

complexes have the same class. By the Hilbert syzygy theorem ([GH], Chapter 5, 
Section 4), each coherent sheaf .T" on Z has a finite resolution P~ by locally free 

sheaves. This permits us to extend to K (Z) several available (and well-behaved) 

constructions for locally free sheaves. For instance, the ring structure on K (Z) 

is first defined on classes of locally free sheaves using tensor multiplication. By 

Hilbert's theorem these classes generate K(Z),  so multiplication is extended to 
the whole K(Z).  The function taking a vector bundle to its rank extends to a 
homomorphism rk �9 K (Z) ~ Z called the genetic rank. The Euler characteristic 

X defines another homomorphism from K (Z) to Z. 

The group K (Z) is equipped with the so-called codimensionfiltration K (Z) = 
F ~ D F 1 D . . .  where F i is generated by classes of sheaves with support on a 
subvariety of codimension > i. The quotient F i / F  i+l is the Chow group of codi- 

mension i cycles on Z modulo rational equivalence. More precisely, if.T" is a sheaf 

with support of codimension i, we associate to it the cycle 

E multc(.T) C, 
codim C =i 

where C runs over all irreducible subvarieties of codimension i and mult denotes 

the multiplicity of .T" along C (see Appendix A). 

Let us recall the structure of the Grothendieck ring of a projective space. 

Proposition 3.6. Denote by q ~ K(P") the class of the invertible sheaf O( -1) .  
This class generates the ring K (P (V)) which is isomorphic to Z[q]/(1 _q)n. The 

filtration on K (pn) by the codimension of the support coincides with the filtration 

by powers of the ideal (1 - q). 
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Proposition 3.7. Let M C pn be an irreducible algebraic variety of codimension 
lZ and degree d. Let J: be a coherent sheaf on M of generic rank r. Then the class 
of ~ in K(P(V) )  has the form d . r . (1 - q)U + O((1 - q)U+l). 

Proof. The quotients of the filtration by codimension of the support are the Chow 

groups of Pn. The correspondence Z ~-+ deg (Z) establishes an isomorphism 

between the Chow group of codimension/z cycles in P~ and Z. The class of a 

sheaf .T" in K (P")  lies in Fl ' ;  its multiplicity along M is r and along any other 

subvariety is 0. Therefore the image of .T" in F~'/F u+l is r times the image of 

OM. To find the image of OM, note that the class of M in the Chow group equals 

d times the class of a projective subspace p~-u in this group. Such a subspace is 

given by the vanishing of # linear functionals fl  . . . . .  fu. These functions can be 

regarded as sections of O e, (1) and together form a section s = (fl  . . . . .  fi,) of 

the sheaf Op,(1) ~u. Thus the structure sheaf Op,-,, (regarded as a sheaf on the 

whole P")  has the Koszul resolution 

E._ 

The class of this resolution in K(P") is (1 - q)U. Proposition 3.7 is proved. 

Now we finish the proof of Theorem 3.3. We assume that the ambient space pn 
containing X is P(V*), and therefore X v lies in P(V). For I 6 Z, we consider the 

complex O(C'_ (X, Ox(l)) of sheaves on P(V) defined by (2.5). Suppose I >> 0. 

According to Proposition 3.7, the class in K (P(V))  of this complex equals the 

image in Z[q]/(1 - q)n of the polynomial ~l(q) : Y~(-  1) idim C -i (X, O(l))q i. 
By (3.6), this polynomial equals j~(q). 

We consider the incidence variety W C X x P (V) and its projections Pl, P2 
to X and P(V),  as in the proof of Theorem 2.5. Then, by Proposition 2.9, the 

complex O(C'_ (X, Ox(l)) is quasi-isomorphic to the direct image in the derived 

category of the line bundle p~O(l) on W. The projection P2 " W --+ X v is 

genetically a bundle whose fibers are projective spaces of dimension/x - 1, where 

/1. = codim X v. Thus the genetic rank of Rpe.(p~O(1)) for l >> 0 equals 

d i m H ~  u - 1 0 ( l ) ) - d i m S l ( C U ) - ( I ' z + l - 1 )  
' l z - 1  " 

Now Theorem 3.3 follows from Propositions 3.6 and 3.7. 

E. Proof of Theorem 3.4 

Along with Chern classes we consider the exterior power operations A i " K (X) -+ 

K (X). Their definition, due to Grothendieck, is similar to that of the ci. Namely, 
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for classes of vector bundles, A i is the usual exterior power and for an exact 

sequence of vector bundles of type (3.13), we have 

(3.15) 

which follows by considering a suitable filtration in A p ~. Introduce, for a vector 

bundle .T', the formal series 

i 

ky(t) -- E A ('T-)ti E K(X)[[t]]. 
i 

(3.16) 

Then we define, for any ct = ~ mi[~i] ~ K(X), the element A i (ct) as the i-th 

coefficient of I-I ~.~, (t) mi. 
As we mentioned earlier, the r-th quotient grrFK(X) of the codimension 

filtration F on K (X) is the Chow group of codimension r algebraic cycles on X 
modulo rational equivalence. Denote this group by CH r (X). There is a natural 

homomorphism cl : CHr(X) ~ n2(dim(X)-r)(X, Z) which takes an algebraic 

cycle into its homology class. Note that the Poincar6 duality on X identifies 

n2(dim(X)-r) (X, Z) ~ H 2r (X, Z). Grothendieck has defined Chern classes 

cGroth K ( X )  ~ CHr(X) grrFK(X) 

which lift the ordinary Chern classes with values in H 2r (X, Z). By definition 

(cf. [BGI] [Man]), if ct ~ K (X) is an element of generic rank p, then 

r 
_Groth (~) _.. A (~ -- p + r - 1) 

C r mod F r+l K(X). (3.17) 

Here integers are embedded into K (X) as multiples of [Ox] which is the unit with 

respect to the ring structure on K(X). The exterior power in (3.17) belongs to 

FrK (X). In fact, definitions in [BGI], [Man] give a seemingly different formula 

for _Groth involving the so-called y-operations. However, this formula is equivalent U r 

to (3.17), as can be seen from elementary algebraic manipulations. 

Intuitively, (3.17) is very transparent. Namely, the element ct - p + r has 

genetic rank r. Suppose for a moment that it is represented as the class of a vector 

bundle E on X of rank r which has enough global sections. The r-th Chern class 

of the rank r bundle E is therefore represented by a cycle which is the zero locus 

of a generic section s of E. Denoting this locus by Z, we form the Koszul complex 

1C+(E, s) (see Section 1B) which is a left resolution of the line bundle A r EIz, 
regarded as a sheaf on the whole X. The class in K(X) of 1C+(E, s) is 

I~  1 r r ~-~(--1) i E = ( - 1 )  r A ( [ E ] -  1)] = ( - 1 )  r A ( c ~ - p + r -  1). 
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But this class is the same as ( - 1 )  r times the class of a line bundle on Z (the 

sign comes from the fact that the cohomology of K:+(E, s) is of degree r), so 

A r (Of - -  p + r - 1) lies in FrK (X) and represents Z in gffF K (X). 

Note that, for r = m = dim(X), the homomorphism cl : gWFK(X) 

Ho(X, Z) = Z is obtained by taking the Euler characteristic. So we get the 

following lemma. 

L e m m a  3.8. Let dim (X) = m and ~ ~ K (X) be an element of generic rank p. 
Then 

f x C m ( ~  �9 

This lemma is all that we need to deduce Theorem 3.4 from Theorem 3.3. 

Let us write L: = Ox(1) ,  ~" -- Cl(/:) e H2(X, Z). Denote also f2 = f21, and let 

c(~2) = ~ ci (f2) ~ H ~ (X, Z) = ~ HJ (X, Z) be the total Chern class of ~2. We 

can write 

ki = (1 __ ~ ) k + l  ' (3.18) 
�9 2m 

where the fraction is supposed to be expanded as a power series in ~ and the 

subscript 2m means the homogeneous part of degree 2m of a non-homogeneous 

element of H ~ (X, Z). More precisely, to see (3.18), we express both sides as linear 

combinations of the numbers f x  Cm-i  (~'2)~ i and find that the coefficients in these 

combinations are the same. 

Note that (1 - ~ ) k + l  is the total Chern class of the bundle (k + 1)Z:*, the direct 

sum of k + 1 copies of L:*. By the Whitney sum formula for the total Chern class 

(which is applicable to differences as well as sums of elements of K (X)), we have 

c(~2) 
(1 _ ~)k+l 

-- c ( [ ~ ] -  (k -t- 1)[C*]). 

Applying Lemma 3.8, we write 

kW (1 _ ~)k+l 
�9 2m 

(3.19) 

We can transform the fight hand side of (3.19) in the following way. First, we 

dualize all three summands under the sign of exterior power. The passage from 

a vector bundle to its dual extends to a homomorphism �9 : K(X)  ~ K(X).  
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For not necessarily locally free sheaves this homomorphism is given by [.T'] 

Y~i ( -  1)i [Ex@ x (.Tr, Ox)] .  It also commutes with exterior powers. Now, the 

exterior power in (3.19) lies in the lowest term of the codimension filtration, i.e., 

it can be represented as a linear combination of classes [7:] for sheaves ~- with 

0-dimensional support (or, even, structure sheaves of individual points in X). For 

such a sheaf ~-, we have Ext i (.T', O x )  = 0 for i ~ m and Extm has the same class 
as .T', so ,([.T']) = (-1)m [.~"]. Thus 

(3.20) 

Note that we can tensor every summand in the fight hand side of (3.20) with 
/~* without changing the answer. Indeed, denoting by G the virtual bundle under 
the s ign/~" ,  we have/~"  (G | -- A m (G) | (s | so our procedure amounts 

to tensoring the whole exterior power with a line bundle. However, for any sheaf 

with 0-dimensional support and any line bundle .A4, we have X (U | A4) -- X (U), 
and our exterior power is a linear combination of classes of such sheaves. Thus 
we can write 

k[ : ( -1 )mx [Tx t~/~'1 "+- k[/~*] - (k -+- 1)) . (3.21) 

We now expand (3.2 l) using the analog of (3.15) for three summands. Note that, 
for any c > O, we have A c ( - (k  + 1)) = ( - 1 )  c (k+c~. One way of seeing this 

is to remark that the formal series ~j-~c(--1)c(k+c]t c = 1/(1 + t) TM is inverse to 
X C / 

Y~.c A t ( + (  k + 1)) tc = ~--~c (k+l)tc = (1 + t) TM. Therefore we can finally write 
X C ] 

c~)(1) 

k! 
__ (_l)m ~ (_l)C(kb)(k+c)X(T a~ff_.-a-b), 

a+b+c=m C 
a,b,c>O 

(3.22) 

where we have denoted T p : A p Tx. We have thus expressed c~ ) (1)/k! through 

the quantities X ( Tr | s  = pr(S) used in the definition of the polynomials 3~ (q), 

see (3.9). 

Lemma 3.9. We have 

(k) 
c X (1) 

k! 
( )( = ~ (_1)i+ j k - 1  k + m - i - j  ~-i (1______)) 

O<_i,j<_k i m - i J! . (3.23) 
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To prove the lemma, we express both sides of (3.23) as linear combinations 

of the numbers x ( T  r ~ if s) and compare the coefficients. It turns out that the 

corresponding coefficients are the same. This comparison is straightforward and 

amounts to applying the identity 

_ (_1)  r p + r - - j  
j=o q + r  

holding for any p, q, r > 0. We leave the details to the reader. 

Now Theorem 3.4 follows from Theorem 3.3 and Lemma 3.9 by purely formal 

reasoning. Indeed, let At = codim X v. Then, by Theorem 3.3, for any l 6 Z, 

we have ft (j)(1) -- 0 for j < At - 1 and all l as well as for j = At and l = 

- 1 , - 2  . . . . .  - A t +  1. Therefore c~) (1) = 0 f o r  1 < k < A t -  1, since all 

the summands in the fight hand side of (3.23) vanish in this case. Similarly, for 

k = At, all summands vanish except for the one with i = 0, j - At which equals 

( -  1)uf0~u)(1)/At!. By Theorem 3.3, this number equals deg X v and we are done. 

4. Discriminantal complexes in terms of differential forms 

In Section 2 we introduced, for every smooth projective variety X C P (V*) and 

every invertible sheaf .A4 on X, two complexes of vector spaces C~ (X, .A4). In 

this section we study one of these complexes, C+, in the special case when A4 

has the form Ox(l),  l > 1. We abbreviate throughout this section C~. (X, O(l)) to 

c ' (x ,o .  

A. Forms on the cone and discriminantal complexes 

Let X C P (V*) be a smooth projective variety. Let Y C V* be the cone over X 

from which the singular point 0 is deleted. Also, let rr �9 Y ~ X be the standard 

projection and ~ the Euler vector field on Y, defining the Lie derivation Lier on 

the sheaves f2 k. For any 1 6 Z, let us define a subsheaf f2 k I,Y C ~'2 k whose sections 

are k-forms o9 on Y such that Lie~ (co) = l �9 o), i.e., o9 is homogeneous of degree l 

under homotheties. 

Proposition 4.1. There is an isomorphism of sheaves on X 

k 

In other words, sections of A k J (O(1 ) )  over any open set U C X are naturally 

identified with differential k-forms on Jr -1 (U) C Y homogeneous of  degree k. 
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Proof This follows from Proposition 1.3 by taking the exterior power. 

Corol lary  4.2. For any k > O, the term Ck(X, l) of  the discriminantal complex 
is identified with the space of k-forms o9 on Y such that Lieto9 = (k + l)og. For 
any f ~ V, the differential Of : Ck(X, l) --+ Ck+I(X, l) corresponds, in this 
identification, to the exterior multiplication by d f ~ f21 (Y). 

We shall also need an interpretation of forms on X in terms of forms on Y. 

Let ~k(1) denote the sheaf flk x | Ox(l)  on X. Let i t �9 ~2 k --+ f2 k-1 denote the 

contraction with the Euler vector field ~. We have the well-known Cartanformula 

d o i~ + i~  o d  = Lie~, (4.1) 

see, e.g., [Ar]. Let T~k,l be the subsheaf of f2kr consisting of forms 09 such that 

L i e ~ w = l . w ,  i~w = O. (4.2) 

Proposition 4.3. For any k, l, the sheaf f2kX (l) is naturally identified with 7~,Z~k, 1. 
These isomorphisms take the exterior multiplication 

f2kx (1) | s (I') --+ f2 k+k' (l + l') (4.3) 

into the usual exterior multiplication of forms on Y. 

Proof. The statement obviously reduces to the case where I = 0. To establish this 

case, introduce the local coordinates (x0 . . . . .  x,,) on Y such that (Xl . . . . .  x,,) are 

coordinates on X, the projection n" forgets x0 and ~" = O/Oxo. The assertion means 

that a k-form w on Y does not contain dxo and has coefficients independent of x0 

if and only if it is annihilated by ia/axo and Lie0/ax0 which is obvious. 

B. The second multiplication in the algebra of  forms 

We introduce on X the bigraded sheaf of algebras B - -  ~k,l>_O ~'2kx (1). The multi- 

plication is induced by the usual exterior multiplication of differential forms; hence 

it is associative and supercommutative with respect to the grading by the degree 

of differential forms (the supercommutativity means that w A co' = ( -  1)1'i"o)'/x o9 

for w e f2kx(1), w' ~ f2~(l')). We want to introduce another multiplication �9 in 

B. Namely, let co, o)' be two local sections of f2kx (l) and let ~ (1') be defined over 

some domain U. Following Proposition 4.3, let us view co and o9' as differential 

forms on Y. Define 

l 
o9 �9 o9' -- y477 w A d w ' - ( -1)k  Y4Fr do9 A o9', 

O, 
if l, l' :/: 0 (4.4) 
i f / =  0 o r / '  = 0 .  
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Proposition 4.4. 
(a) The form y -- co.co' satisfies the conditions Liet (?') -- (1 +1')?', it(),') -- 0; 

therefore �9 defines a multiplication 

fl~r (l) |  ~2~ (l') ---> fl~+k'+l (l + l'). (4.5) 

(b) The multiplication �9 is associative and supercommutative with respect to the 

shifted grading: 

COt r . .  z l \  k '  c o ,  = " "t--l)~k+~)~k'+~)~o ' �9 ~o, ~o e ~ 2 x t l ) ,  oY e U x t t ' ) .  (4.6) 

Proof  (a) The Lie derivative is a (super) derivation of the algebra of forms which 
commutes with the exterior derivative d. Therefore Lie~ (w �9 w') = (l + l ')w �9 w'. 

By (4.1), for l, l' ~ 0 we have 

1 l 
it (co * co') -- l + l - - - -S i tco  A do)' + ( - 1 ) k  l + l' co A i tdco ' -  

_ ( _ l ) k  l' 1 + I 'itdco A co'-- (--1)2k+l Iq-l'l--l-~dco A itco'. 

Using (4.1) again and taking into account that co and co' are annihilated by i t, we 
find the fight hand side equal to 

1'1 11' 
- ( -  1)k co, O. i + l'co A d- (--1)k l -t- I'co A co' -- 

(b) This is verified by straightforward checking similar to that in part (a). 

Note that in (4.4) it is essential to divide by l + l' to get associativity. The 
multiplication �9 reminds us of the multiplication in Deligne-Beilinson cohomology 
(cf. [RSS], p. 62). 

C. The decomposition o f  the discriminantal complex 

We shall identify the discriminantal complex C~ l) with the cone of a chain 
map between two smaller complexes. In fact, this identification can be established 
for the complex of sheaves for which the C i (X, l) are the spaces of global sections. 

Let f be any element of the vector space V (recall that X is embedded in 
P(V*)) .  We denote the image of f in H ~  (.9(1)) by the same letter f .  Since 
(..9(1) is a part of the algebra B, we obtain two operators of multiplication by f :  

O(f )  " f2kx(l) -+ ~kx+l (l + 1), O ( f ) w  - (l + 1)f  �9 c o -  f dco - l d f  A co, 
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r ( f ) "  f2kx (l) ----> f2kx (1 + 1), r ( f ) w  = f .  o). 

It is clear from the supercommutativity of the two multiplications that, for 

any f, g ~ V, we have 

O( f )O(g )  = - O ( g ) O ( f ) ,  r ( f ) r ( g )  = r ( g ) r ( f ) .  

The commutation law between a ( f )  and r(g)  is given by the following propo- 

sition. 

Proposition 4.5. For f ,  g ~ V, we have 

O ( f ) r ( g )  -- r ( g ) O ( f ) ( 1  + Lie~ -1) - r ( f )O(g)L ie -~  1 (4.7) 

where the operator Liet acts on f2kx (1) -- Bkt by multiplication by 1. In particular, 

we have 

O ( f ) r ( f )  -- r ( f ) O ( f ) .  (4.8) 

Proof  Consider a local section of f2~ (1). We view it as a form o) on Y satisfying 

the equations Lieto) = lo), i t . )  = 0. We have 

O ( f ) r ( g ) o )  = O( f ) (go) )  = f dg  A o) + f g d o )  - (l + 1 ) d f  A go); 

r ( g ) O ( f ) o )  -- g ( f  dw  - ld f /x w) = f gdo) - Id f m go); 

Therefore 

r ( f ) O ( g ) o )  = f gdo) - ldg  A f o). 

l O ( f ) r ( g ) w  = (l + 1)r (g)O(g)o)-  r(f)O(g)o),  

which is equivalent to our assertion. 

Consider, for a given f ~ V, the following diagram of sheaves on X: 

r(f) 

r(f) 

r(f) 

O x  

l 
0(1)  

1 
0(2)  

1 

0 ~,'~1 O(f) ~,'~2 > (1) > (2) 

r(f) l  r ( f ) l  
O(f) ~.21 O(f) ~,-~2 

> (2) > (3) 

r(f) I r(:) i 
Off) ~,.21 Off) ~,~2 

> (3) > (4) 

r(f)i r(f)l 
�9 . �9 

off) > 

0(f) 
r 

a(f) > 

(4.9) 
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Let us number the rows of (4.9) starting from 0. Denote the sequence of 
sheaves and maps in the l-th row by B ~ (X, l). 

Theorem 4.6. The sequence 13~ 1) is a complex of sheaves on X. Vertical 

arrows define morphisms of complexes 

rl : B ' ( X ,  1) --+ B ' (X ,  1 + 1). 

The twisted Koszul complex 

O(l) > J(O(1))  | O(l) J(O(1)) | 0(1) --+ . . .  (4.10) 

is isomorphic, as a complex of sheaves, to the cone of the morphism ft. 

Proof The first two assertions follow from Propositions 4.4 and 4.5. Let us prove 
the assertion about the cone. By definition of the chain cone (see Appendix A), 
this assertion means that there are isomorphisms 

( / ~  J (O(1 ) ) )  | 0(1) ~ f2kx(k + 1)@ f2k-l(k + 1) (4.11) 

which take, for each local section f of O(1), the operator of exterior multiplication 
with j ( f )  into the operator 

0 ( f )  0 ) 
( _ l ) k r ( f )  0 ( f )  . (4.12) 

By Proposition 4.1 we can identify sections of (A k J(O(1)))  | O(l) with differ- 
ential k-forms on Y homogeneous of degree k + 1. The sheaf of such forms was 

k Similarly, we identify sections of f2kx(l) with k-forms on Y denoted by f2k+t, r. 
belonging to Rk,l, as in Proposition 4.3. 

Lemma 4.7. We have a direct sum decomposition of sheaves on Y: 

~'2k, k+l = 7"~k,k+l ~ dT~k-l,k+l (4.13) 

where d is the exterior derivative on Y. 

k Proof. We need to show that each local section w of ~Y,k+l can be uniquely written 
in the form 

09 : qgl -k- dq92, qgl E T~k,k+l, q92 ~- T~k-l,k+l. 
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To show this, we define 

tpl = i t (do9) / (k + I), q9 2 - "  i~ (o9) / (k + 1). 

Then by (4.6) 

dgo2 = Lie t (o2) / (k + l) - i t ( dw ) / ( k  + I) = o9 - ~ol. 

Let us prove uniqueness. Suppose that for some ~o~ ~ T~,k,k+l, tl) 2 E T~k_l,k+ l, we 

have tr + dtp2 = 0. Then 

0 = i t (qgl + d~2) -- i t (dq92) = Lietg02 - dit~02 = 

= Lietq92 -- (k + 1)q92, 

SO q92 = 0. Therefore 991 = 0 as well. Lemma 4.7 is proved. 

The required isomorphism (4.11) now follows from the decomposition in 

Lemma 4.7. We only have to show that exterior multiplication by j ( f )  goes under 

this isomorphism to the matrix form (4.12). But this follows from Proposition 1.3. 

Theorem 4.6 is proved. 

Note that the isomorphism constructed in Theorem 4.6 is only an isomorphism 

of complexes of sheaves and is not Ox-linear. However, such an isomorphism still 

allows us to deduce the decomposition for the complex of global sections. 

Let Bk, l -- H ~ ~k x (1)). For any f ~ V we get, by taking global sections 

of rows in (4.9), a complex of vector spaces 

O(f) O(f) 
O~ {Bo,I Ol , l+ l  > B2,1+2 --->" "'" } (4.14) 

and a morphism of complexes 

rl ( f )  " B ~ (1) > B ~ (l + 1). (4.15) 

Theorem 4.6 has the following corollary. 

Corollary 4.8. There are isomorphisms o f  vector spaces 

ck ( x , I )  ~ Bk,k+l ~ Bk-l,k+l 

such that f o r  every f ~ V the discriminantal complex (C~ l), Of) is identified 

with the cone o f  rl ( f ). 
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As another application of Theorem 4.6, let us give a criterion for C ~ (X, l) to 

be stably twisted. 

Corollary 4.9. The discriminantal complex C~ l) is stably twisted if and only 
if the following sheaves on X have no higher cohomology: 

f2kx (k + l), [2%-1(k -I- I), k = 0 . . . . .  dim X + 1. 

D. Interpretation of  the complexes B ~ (1) 

For I >> 0 the discriminantal complex C ~ (X, l) = C~_ (X, O(l)) is stably twisted 

by Proposition 2.2. Hence, for a genetic f ~ V, the differential 8f in this complex 

is exact. This means that the chain morphism r l ( f )  " B ~ (l) --+ B ~ (l + 1), whose 

cone is (C~ L), Of), gives an isomorphism on cohomology spaces. So these 

spaces for I >> 0 are independent on I. We are going to find these spaces. Again, 

we start with the study of the complex of sheaves B ~ (X, l) and only later do we 

take the global sections. 

Let Z C X be any irreducible hypersurface. By ~ ( l .  Z), we denote the 

sheaf of meromorphic k-forms on X which are regular outside Z and have poles of 

order < l along Z. In other words, if q) - 0 is a local equation of Z, then a section 

of ~ k  (l �9 Z) is a meromorphic k-form w such that tp t �9 ~o is regular. The exterior 

derivative of forms raises the order of poles by one, so we have the complexes 

d 
O x ( l .  Z) ~ f2~x((l + 1)Z) ~ f22((l + 2)Z) -+ . . .  (4.16) 

Now let f 6 V be a non-zero vector and take Z to be the hypersurface 

Zf  C X given by f = 0. Denote by U -- Uf -- X -  Zf  the complement to Zf  
and let j �9 Uf --+ X stand for the embedding of UT into X. The complex (4.16) 

is a subcomplex in the direct image j ,  f2b of the de Rham complex of U. More 

precisely, the consideration of orders of poles along Z defines in j ,  f2~ a natural 

increasing filtration F by subcomplexes such that (4.16) is its l-th part, Fl ( j ,  f2,~). 

Proposition 4.10. For any l > 0 and any non-zero f ~ V, the complex of 
sheaves 13~ 1) given by the l-th row of (4.9), is isomorphic to the complex 
Fl(j,~2"x) given by (4.16). This system of isomorphisms takes the morphism 
rt " /3~ l) --+ /3~ 1 + 1) of Theorem 4.6 into the canonical embedding 

Fl(j,  f2 b) r Fl+l (j,~2~). 

Proof We have an isomorphism of sheaves 

a ~  (l) --+ ~2~ (1. Z), ~o ~ o) / f  I. (4.17) 
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Under these isomorphisms the differential O(f)  is taken to the usual de Rham 
differential d, since 

f l+ ld ( to / f l )  = f l+l ( (d to) / f l  -- (lto A d f ) / f  TM) -- O(f)to. 

The assertion about rl is equally straightforward. 

Proposition 4.10 implies, by taking global sections, an interpretation of B ~ (X, l) 

as part of the algebraic de Rham complex of the affine variety Uf = X - Zf .  This 
leads to the following. 

Proposition 4.11. Let I be such that C ~ (X, l) is stably twisted for  any l' > I. For 
any f q~ X v, we have an isomorphism 

H i (B~ 1), O(f))  ~- H i (Uf, C) 

where the right hand side is the ordinary complex cohomology of  the open set 

Uf C X defined by the condition f ~ O. 

The proof of Proposition 4.11 is based on two facts. The first is Grothendieck's 
algebraic de Rham theorem (see [GH] Chapter 3, Section 5) which implies that 
H ~ (Uf, C) can be calculated using the de Rham complex consisting of all regular 
forms o n  Uf, i.e., of forms with poles of arbitrary order along Zf. The other 
is a local statement saying that, for any 1 > 1, the embedding Fl ( j .~u f )  
Fl+l (j.~2~vf) is a quasi-isomorphism of complexes of sheaves (provided Zf  is 
smooth). This can be easily established in local coordinates (see [De 1 ], 3.1.10). 

Proposition 4.11 is obtained from these two facts by purely formal reasoning 
involving the hypercohomology of complexes of sheaves. Since Proposition 4.11 
will not be used in the sequel, more details are not required here. The formalism 
of hypercohomology, however, will be discussed below in Section 5. 

E. Example: the second multiplication for the canonical curve 

Let us illustrate the constructions of subsection B by the example of a canonical 

curve. By definition, this is a smooth algebraic curve X projectively embedded 
using the line bundle ~1 x of 1-forms on X. We shall denote this bundle simply by 
f2. It is known [GH] that, for any curve of genus > 3 which is not hyperelliptic, 

indeed defines an embedding 

X ~ P (H~  f2)*). 

The coordinate ring of X in this embedding coincides with ~)  H~ ~'~| This 

canonical ring of X, as it is called, will be denoted by Can (X). 
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So, applying our constructions to Ox (1) = ~,  we see that the sheaf of graded 

algebras B will only have parts 

B o , / - -  ~'2 | BI,/ - -('2 | , �9 

Sections of ~,'~| a r e  classically called/-differentials on the curve X. 

The only non-trivial part of the multiplication �9 is the map 

Bo, i @c  Bo, j --~ BI , i+j  or ~'2 | ~ c  ~~| ---> ~'2| (4.19) 

If x is a local coordinate on X then we can write an/-differential as f (x)dx i. In 

coordinate form the multiplication is 

i d f  
( f  (x)dxi)  * (g(x)dxJ) = i + j dx ~g(x)  dg ) dxi+J+ 1 (4.20) 

- i +-----j f (x)-d-xx 

To understand this multiplication, note that the manifold Y in our case is the 

tangent bundle TX of X without the zero section. It has rank one so there is an 

isomorphism of (non-linear) bundles with deleted zero section X: 

-1 T*X - X --~ T X -  X, p ~-~ p 

where, for a covector p at x ~ X, the vector p-1 at the same point is defined by 
(p ,  p - l )  __ 1. 

Thus every/-differential can be regarded as a function on T*X - X homo- 

geneous of degree ( - i ) .  Recall that T*X is a symplectic manifold and therefore, 

for any two functions f,  g on T* X, we have their Poisson bracket {f, g}, see [Ar]. 

This defines the structure of the Poisson algebra on Can (X), i.e., {f, g} satisfies 

the Jacobi identity and is a derivation in both f and g. 

Proposition 4.13. The multiplication (4.20) coincides with the Poisson bracket of 

i-differentials considered as functions on T* X. 

The proof is straightforward. 

Note that we cannot speak of the Jacobi identity while remaining in the 

framework of the algebra B: we need the identification BI , i+ j  '~ B0, i+ j+I .  In fact, 

the .-product of any three elements of B is zero. 

Let us remark that the Poisson algebra Can (X) has an important "quanti- 

zation," i.e., a non-commutative filtered algebra E(X)  whose associated graded 

algebra is Can (X). This is the algebra of global pseudo-differential (also called 

micro-differential) operators on X of order < 0, see [Kas]. 
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5. The discriminant as the determinant of a spectral sequence 

In Section 2 we expressed the X-discriminant Ax as the determinant of discrim- 
* X inantal complexes C+( , .hi) We imposed the condition that the complex be 

stably twisted, i.e., the terms of the corresponding complex of sheaves do not have 

higher cohomology. In this section we develop an approach that takes into account 
the higher cohomology as well, and is applicable to any twisting bundle .h4. 

A. Discriminantal spectral sequences 

Recall [Bry] [GH] that with every finite complex of sheaves .T TM on a topological 
space X, there are associated the hypercohomology groups H i (X, 3r~ To define 
them, one takes the complexes of Abelian groups C~ calculating the cohomology 

of every individual .T'J (for example, the Cech complexes with respect to an ap- 
propriate open coveting of X). The differentials .~"J ~ . ~ j + l  make this collection 
of complexes into a double complex C ~176 and the H i (X,  .~"~ are the cohomology 
groups of its total complex. By construction we have the spectral sequence (which 

is just the spectral sequence of the double complex C~176 

Efq __ H q ( X ,  tic'p) =r~ HP+q(x,  .T'~ ( 5 . 1 )  

The first differential in (5.1) is induced by the differential in .T "~ In particular 
the complex of global sections 

. . .  ~ H0(X, .T-i) ~ H0(X, .~"i+1) ~ . . .  

is just the bottom row of the term El. 
The hypercohomology can also be calculated using another spectral sequence 

'E~ q -- H q (X, [-I p (.T")) ~ H p+q (X, .~" ) (5.2) 

where H p (U')  is the p-th cohomology sheaf of .T", i.e., 

K e r  {.7 "p _>a ~ p + l  } 
H e ( : - ' ) )  = . (5 .3 )  

I m  { ~ ? -  1 _~d .)~-.p } 

In particular, if .T'" is exact then H j (X, .T") - 0 for all j .  

Now let X C P(V*) be a smooth projective variety, and let M be a line 
bundle on X. Denote the sheaf Ox(1) by s Let f ~ V. We apply the above 
formalism to the Koszul complexes (1.9) and (1.10) tensored by .M. We define 
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the discriminantal spectral sequences C pq (X, . /~ ,  f )  and Cr pq (X, . ,~ ,  f )  to be r,+ 
the spectral sequences (5.1) for these complexes. More precisely, 

( ) C pq (X, ./~ f )  -- H q X, A(J(F_.)) | M 1,+ ' 

( ) CPql,-(X, ./~, f )  = H q X, A ( J ( s  | .h4 . (5.4) 

We denote by Or, f the differential in the r-th term of any of these spectral sequences. 

Thus 01,f is just the map induced by the differential in the Koszul complex (i.e., by 
exterior multiplication or contraction with j (f)) .  Higher differentials are found 

through the standard rules, by chasing the differentials in the double complex C "~ 

above. 

So the first terms of the discriminantal spectral sequences (5.4) do not depend 

on the choice of f ~ V, but the differential 01 does (and hence do all the subsequent 

terms). 

Proposition 5.1. Suppose that the projectivization of  f ~ V does not belong to 

the dual variety X v. Then the discriminantal spectral sequences Cr; ~ (X, .A4, f )  

are exact, i.e., they converge to zero. 

Proof Indeed, the Koszul complexes of sheaves (1.9) and (1.10) are exact if 

f ~ X v. The exactness will be preserved after tensoring by .M. Hence the 

hypercohomology of the tensored complex is zero. This hypercohomology is the 
limit term of the spectral sequences in question. 

Let us choose some system of bases e in the components of C pq (X, .m/'[ f ) .  1,+ 
Then, for f 6 X v, we have a based exact spectral sequence and hence its deter- 

minant is defined (see Appendix A). So we get a rational function 

f ~ A + ( f ) -  det(CrPq(x .M f) e) X,M ' ' ' 

on V A different choice of bases changes A + by a non-zero constant factor. �9 X,.M 
In a similar way, we define a rational function A x,m by taking the determinant 

of C pq (X, . /~  f )  r ~  ~ �9 

T h e o r e m  5.2. For any line bundle .M on X, we have 

AX = AX,.A 4 = (A+,.AA)(-1)dim(x)+l, 

up to a non-zero constant multiple. 
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Proof We shall treat A -  and the spectral sequence C_, the other case being similar. 
Consider the "universal" spectral sequence of sheaves on P (V) incorporating all 

of the particular spectral sequences C pq (X, A4 f )  of vector spaces. To construct r ~  

this, we start from the complex (2.6) of sheaves on X x P (V).  Denote this complex 

by .T "~ and conserve the other notation of Section 2. In particular, we denote Px, Pv 
the projections of X • P(V) to X and P(V).  Our universal spectral sequence has 

the form 

El j = e i pv , ( J  :'j | p~c.M) :=~ R i+j pv,(.Y TM | p*x.A4) (5.5) 

where R i+j Pv, are the hyperdirect images. As in the proof of Theorem 2.5, we 

calculate the rr-adic order of det (C~{_ (x, l, f ) ,  e). By Theorem 36 from Appendix 

A, this order coincides with the alternating sum of orders along X~ of the sheaves 

of the limit of (5.5), i.e., of the R i p v , ( ~  ~ | p~cA4). However, the complex 

.Y TM | p~c.A/l is a resolution of an invertible sheaf p~.A/[ on the incidence variety W 

(Corollary 2.8). Here Pl, P2 are projections of W to X and P(V).  Thus 

R i p v , ( . T  "~ | p*x.M) - R i p v , ( O w  | p*x.M). (5.6) 

In the case where codim X v -- 1, the projection P2 " W ~ X v is a birational 

isomorphism and the only hypersurface along which these hyperdirect images can 
be genetically non-zero is X v. In the case codim (X v) > 1 the fight hand side of 

(5.6) does not have support on any hypersurface. Theorem 5.2 is proved. 

Theorem 5.2 generalizes Theorem 2.5 which is valid only in the case of stably 

twisted complexes. In this case the whole spectral sequence is reduced to a complex 

of vector spaces given by the bottom row of El. 

Let us study a little more about the dependence of the discriminantal spectral 

sequences on f ~ V. 

Proposition 5.3. For any ~. ~ C*, we have a natural system of identifications 

Pq " Pq (X .All )~f) "" CPrq~(X,.A4 f )  r > 1  q)r, riz C r , +  , , , . . . .  

with the following properties: 
(a) Under the r-th identification the differential Or, f is homogeneous of degree r 

in f :  

Or,;~f = ~ r Or, f " (5.7) 

(b) The identification ~Or itself is induced by the homogeneity (5.7) of the previous 

differential Or- 1. f . 
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Let us explain the statement (b). Since Or_l, f is homogeneous of degree r - 1, 

we have Ker Or-- 1,Xf - -  Ker O r_ 1,f  and Im O r_ 1,Xf - -  Im Or--l , f  for any X ~ C*. So 
the cohomology of the differentials Or-l,Xf and Or-l,f are canonically identified 

with each other. 

Proof of Proposition 5.3. We treat the C_ spectral sequence; the other case is 

similar. Denote by .T "~ the Koszul complex (1.10) tensored by .A4, so that 

- j  

.7 .9 - A ( J ( s  | M .  

Let Of denote the differential in this complex corresponding to f .  Then Of is linear 

in f ,  in particular, 0xf -- ~.Of. The spectral sequence Cr pq _ (X, All, f )  is just the 

sequence (5.1) corresponding to (9 r~ Of). To explicitly construct this sequence, 

we take an affine coveting { U,~ } of X and consider the (~ech complex of each 7 "  

ciO ..._> C il .__> . . . ,  

C ip - -  ~ H~ N . . .  N U~p, fie'i). 

Ot 0 , . . . ,  Otp 

The vector spaces C ip form a double complex where the vertical (t~ech) differential 

is independent of f e; V and the horizontal (Koszul) differential is linear in f .  

The discriminantal spectral sequence is just the standard spectral sequence of the 

double complex C ~176 So our statement follows from the homogeneity in f of both 

differentials and from the standard procedure which defines the spectral sequence 

of a double complex (see, e.g., [GH], Chapter 3, Section 5). 

B. Example: the Bezout formula 

We consider the case of Example 2.11. Let X ~" p 1  be the Veronese curve of 

degree d in pd = P(V*) where dim V -- 2. S o / :  = Op,(1)lx is, in intrinsic 

terms, Opt(d). The space V is the space of binary forms f(xo, xl) of degree d. 
We have J ( s  -- O ( d -  1 ) @ O ( d -  1). Letus take the twisting line bundle .A4 

to be O(d - 2) and f 6 V. The discriminantal spectral sequence C pq ( X ,  . / ~  f )  r~-- 

is the spectral sequence (5.1) of the following complex of sheaves on p1. 

O ( - d )  ~ O( -1 )  @ O( -1 )  o~ O(d - 2). (5.8) 

As explained in Example 2.11, (5.8) is the twisted Koszul complex corresponding 

to the partial derivatives 

of  of  
g(XO, X1) - -  OX 0 , h(x0, X1) - -  OX 1 
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which are forms of degree d - 1. In other words, the Of are given by formulas 

Of(w) = (hw, - g w )  for w a local section of O ( - d )  and Of(u, v) = gu + hv for 

u, v local sections of O ( - 1 ) .  

Since (.9(-1) has neither H ~ nor H 1 on p1 (Theorem 2.12), the only non- 

trivial differential in the spectral sequence will be 

02, f  " HI(P  1, O ( - d ) )  > H~ 1, O ( d -  2)). (5.9) 

By Theorem 5.2, the X-discriminant (i.e., the classical discriminant of the form 

f )  equals the determinant of 02,f. 
Denote by S" the space of binary forms of degree m, so V = S d. Standard 

information about cohomology of O(i)  (see Theorem 2.12) provides that the vector 

spaces in (5.9) are naturally identified with (sd-2) * and S d-2, respectively. So we 

can write (5.9) as 
0 2 , f "  ( s d - 2 )  * ~ S d -2 .  (5.10) 

Thus we have a (d - 1) x (d - 1) matrix 02, f whose entries are, by Proposition 

5.3, quadratic forms in coefficients of f and whose determinant is A x ( f ) .  

We are going to find the matrix 02, f explicitly. By (5.10), this matrix can be 

regarded as an element of S d-2 | S d-2. We regard this as the space of bihomoge- 

neous forms 
d - 2  

F(xo, Xl Yo, Y l )  - -  Y ~  d-2-i i .  d - 2 - j  " , cijxo Xl Yo Y~ (5.11) 
i,j=O 

of bidegree (d - 2, d - 2). 

Proposition 5.4. The form F corresponding to O2,f equals 

g(xo, xl)h(yo, Yl) - h(xo, xl)g(yo, Yl) 
F(xo, xl, Yo, Yl) -- (5.12) 

xoyl - xlYO 

where g and h are partial derivatives of f . Therefore A x ( f )  coincides, up to a 
constant multiple, with the determinant of the matrix Ilcij II of the coefficients of  
F. 

This is the classical Bezoutformula for the discriminant. 

Note that the ratio in (5.12) is in fact a polynomial since the numerator vanishes 

whenever (x0, x l) is proportional to (Y0, Yl). An explicit form for the coefficients 

Cij of F is as follows. Suppose that 

d - 1  
Of __ y ~  ai xg -1-ix i 

1 ) g(x0, xl) = 0x0 i=0 
(5.13) 
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Then 

Of = ~d-1 bi xd-l-ixl 
h(xo, X l )  - -  OX 1 i=0  

(5.14) 

min (i, j ) -  1 

Cij -- Z (akbi+j-k -- ai+j-kbk),  (5.15) 
k=0 

as can be seen directly by division. In (5.15) we assume that a~ = b~ -- 0 for 

v > d - 1 .  

Proof  o f  Proposition 5.4. We regard x0, X l as homogeneous coordinates on P 1. 

Consider the affine coveting of p1 consisting of two charts U~ = {x,~ -7/= 0}, ct - 

0, 1. Clearly, for m ~ Z, the space of sections 1-'(U0 N U1, O ( m ) )  consists of all 

Laurent polynomials 
i j  

qijXoXl, qij E C, 
i+j=m 

homogeneous of degree m. Such a polynomial is regular in U0 (resp. U1) if qij - 0 
v 

for j < 0 (resp. for i < 0). The Cech cocycles given by the monomials 

ei Xod+i+l "1 = x 1 ' -  6 1 " ( U 0 t 3 U l , O ( - d ) ) ,  i - O ,  1 . . . . .  d - 2  (5.16) 

form a basis in H I ( P  1, O ( - d ) ) .  Proposition 5.4 can be reformulated by saying 

that 
d - 2  

d-2- j  j 
02,f(ei) : Z CijXo X 1 E H~ 10(d - 2)) (5.17) 

j = 0  

where the cij are given by (5.15). 
We shall prove (5.17). The discriminantal spectral sequence, i.e., the spectral 

sequence (5.1) of the complex of sheaves (5.8) can be found from the double 

complex 

l-'(Uo A U1, O ( - d ) )  0z> F(Uo N U1, 2 0 ( - 1 ) )  0z> F(U0 fq U1, O(d  - 2)) 

'T 'T 'T 
F(Uo,O(-d)) (D Of F(Uo,20(-I))(9 Of F(Uo O(d-2))(3 > > , 

F(U~, O(-d)) F(U~ , 2 0 ( -  1 )) r(Ul,  O (d -  2)) 

The columns of this double complex are (~ech complexes of individual sheaves in 

(5.8). The middle differential 8 is an isomorphism since its kernel and cokernel 

are H ~ and H 1 of the sheaf 2 0 ( - 1 )  on P 1, which vanish. According to general 

formulas for differentials in the spectral sequence of a double complex, we have 

02,f(z) -- Of(8 -1 (Of(z)))  for Z E H I ( P  1, O ( - d ) ) -  
V(Uo n u~, O(-d)) 

Im 
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Substituting here for z a basis element ei from (5.16), we first find 

d-1 

af (ei) -- (hei , -gei )  -- (j~=o ajXoJ+ixJ-i-ll 
d-1 .-j+i j - i - l )  

- E bJ'% "~1 
j=o 

E 1-'(U0 fq U1, (.9(-1)) ~ l"(U0 N U1, (.9(-1)). 

For any s = E i + j = - I  qijx~x~ we shall write 

(0) �9 j 

: E qi jx~x( ,  s (1) : E qi jxox l '  
j>O i>O 

so the map 

8 -1 " 1-'(Uo f) U1, O ( - 1 ) )  --> l"(Uo, O ( - 1 ) )  ~ 1-'(U1, (.9(-1)) 

takes s ~ (s (~ --S(1)). 
In this notation we find that Of(8 -1 (Of(ei))) is the global section of O ( d  - 2) 

represented by the Laurent polynomial 

g " (hei ) (o) -- h . (gei) (~ = g . (hei) (1) - h . (gei) (1) 

This polynomial is immediately found to have the form (5.17). Proposition 5.4 is 

proved. 

C. Weyman 's  bigraded complexes 

The calculation of the determinant of a spectral sequence with many non-trivial 

terms may be very involved. In this subsection we describe a procedure, due to J. 
Weyman [We 2], which permits us to replace the discriminantal spectral sequence 
by a complex which incorporates, in a sense, "all the higher differentials at once." 

By a bigraded complex we shall mean a complex (C ~ a) of vector spaces in 

which each term C i is equipped with additional grading: C i = ~])p+q---i cPq. We 

shall sometimes refer to (C ~ 0) as the total complex of the bigraded complex C ~176 

The differential a in C ~ is decomposed into the sum a = )--~r Or where Or is 

bihomogeneous ofbidegree (r, 1 - r ) .  Thus ~0 has degree (0, 1), i.e., it is "vertical", 

in a standard visualization of the bigrading; the component 01 (of bidegree (1, 0)) 

is "horizontal" (like the differential in the El-term of a spectral sequence), 02 has 

bidegree (2, - 1 )  (as the differential in E2) etc. 

We consider only bigraded complexes having Or = 0 for r < 0. 

Let now X C P ( V )  be a smooth projective variety,/: -- Ox(1) and let .A4 be 

an arbitrary line bundle on X. We shall describe Weyman's construction only for 

the case of the C_-spectral sequence from subsection A; the other one is similar. 
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Theorem 5.5. There exists a bigraded complex (C ~176 ~f ) in which 

( ) C pq --  n q X, A J ( s  | .A4 , (5.18) 

and the differential Of depends polynomially on f ~ V. This complex has the 

following properties: 

(a) The differential Of has the form Of "-- ~-~r>l Or, f ,  where Or, f has bidegree 
(r, 1 - r) with respect to the bigrading in C ~176 and its matrix elements are 

homogeneous polynomials of degree r in coefficients of f . Moreover, Ol,f is 

induced by the differential in the Koszul complex (1.10). 

(b) The determinant of  the total complex (C ~ Of) of C ~176 equals, up to a non-zero 

constant factor, the X-discriminant A x ( f ) .  

Note that the terms of the complex in Theorem 5.5 are completely determined 

by X and .At" they coincide with the components of the first term of the discrim- 

inantal spectral sequence C_. The definition of the differentials Or, f for r > 2 

involves some arbitrary choices, as will be seen from the proof. 

Proof of  the theorem. As in the proof of Theorem 2.5, we consider the incidence 

variety W = Wx C X x P(V)  and the left resolution (2.6) of the structure sheaf 

Ow. Let px,  pv be projections of X x P (V) to the first and second factor. Denote 

by .T "~ the tensor product of the complex (2.6) and p~.A4, so 

~-i = P~(A J(~')* |174 i = 0, - 1  ..... - d i m ( X )  - 1. (5.19) 

Then the direct image R p v , J  :~ is quasi-isomorphic to Rpv,(P*x.A4 | Ow). We 
first find the direct images of the individual .T "i. 

Lemma 5.6. For any i < O, the complex Rpv ,J  ~'i is quasi-isomorphic to the 

complex 

( ) ( ) H ~ X, A J (if-')* ~ .All ~ O(i) o 1 �9 > H X, A J(ff") ~ 'A/[ |  

with zero differential. 

0 
~ ~ �9 

(5.20) 

Proofofthe lemma. To calculate the direct image with respect to pv " X x P(V)  

P(V) ,  we should take an affine coveting {U,~ } of X and then take the relative t~ech 

complex of jL-'i with respect to this coveting. Since .~-'i is a tensor product of 
v 

factors pulled back from X and P(V),  this relative Cech complex will have the 
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forlll C ' ( f f  2"i) (~ O(i) where C~ 2"i) is the usual Cech complex of vector spaces 

calculating the cohomology of A -i J(/2)* | .A4. But any complex of vector 

spaces is quasi-isomorphic to the direct sum of its cohomology spaces with zero 

differential. Lemma 5.6 is proved. 

Let us denote by .~-'>i the subcomplex in ~~  obtained by deleting the terms .Y'J 

with j < i. For any i, we have an obvious exact triangle in the derived category 

of coherent sheaves on X x P (V): 

. . .  ____> .~">i+1 ...+ ffs i .___> ff:'i [_  i ] _...>..., (5.21) 

where ~ i  [_i]  is the complex consisting of one sheaf .j~'i situated in the degree i. 

Since the functor Rpv, is exact, we get an exact triangle in the derived category 

of sheaves on P (V)" 

...--+ Rpv,(.T ">-i+l) --4 Rpv,(.T ">--i) --+ Rpv,(.T'i)[-i] --+ . . . .  (5.22) 

Note that we can replace Rpv,(.T "i) by the complex with the zero differential 

given by (5.20). We use this to construct inductively a nice complex representing 

the whole direct image Rpv,(U~ 

More precisely, we shall construct, for any i -- 0, - 1  . . . . .  - d i m ( X )  - 1 a 

complex K/" of sheaves on P (V) such that: 
(a) 

( / ) x/  - 0 l-iq x, A J | M | o(p . 
p+q=j 

p>i 

(b) The natural embedding of graded sheaves Ki+ 1 C Ki is compatible with the 

differentials and the quotient Ki/Ki+I is isomorphic to the complex (5.20). 

(c) K/" is quasi-isomorphic to Rpv,(.T'>-i). 

We start by defining K~ to be the complex (5.20) with i - 0, i.e., K~ = 

H'(X,  .All) | Op~v). 
Suppose we have constructed Ki+l and want to construct Ki. We have a 

morphism in the derived category 

( i ) 
Rpv,(.T "i) - H ~ X, A J(s | M | O(i) ~ Ki+l 

and Rpv,(.T ">--i) is the third term of the exact triangle containing ct. 
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Note that each term of Ki + 1 is a sum of some summands of the form (..9 ( j) ,  j > 

i + 1. Hence the higher Ext-groups between any term of Rp2,(.T "i) and any term 

of Ki+ 1 are zero. We use the following general lemma. 

Lemma  5.7. Let ~~ 7-/~ be two finite complexes of coherent sheaves on X. Suppose 
that Ext,9 x (~a, 7_[b) = 0 for any a, b and any q > O. Then Hom (F  ~ ~~ in the 
derived category of coherent sheaves on X coincides with the space of homotopy 

classes of genuine morphisms of complexes ~~ ~ ~~ 

For the sake of continuity of the exposition, we give the proof of the lemma 

later. Applying Lemma 5.7, we realize c~ as a genuine morphism of complexes 

(note that there is an arbitrary choice of a morphism in a homotopy class) and 

define K/" as the cone of this morphism. This concludes the inductive construction 

of K/'. 

Taking i = - d i m ( X )  - 1 , we get a model K-dim(X)-1 for R p v , ( ~  ~ sat- 

isfying the conditions (a) to (c) above. Note that a complex of sheaves on P(V) 
of such a form is the same as a family of bigraded complexes (C ~176 Of) with Of 

polynomially depending on f e V and satisfying condition (a) of Theorem 5.5. 

So (C ~176 Of) is constructed. 
It remains to show that the determinant of this complex equals the X-discriminant. 

But this is deduced from the quasi-isomorphisms 

K-dim(X)-I ~ Rpv,(-T TM) "" Rpv,(P*x.A'4 | Ow), 

exactly as in the proof of Theorem 2.5. Theorem 5.5 is proved. 

Let us note once again that the construction of the differentials in the bigraded 

complex C ~176 involves arbitrary choices (coming from the choice of a morphism 

of complexes in a given homotopy class). 

Proof of Lemma 5. 7. There is a spectral sequence 

E~ q -- ~ Ext,9 x (G a, 7-/b) => Homoer(G', 7-/'[p + q]), 
b-a=p 

(5.23) 

where HOmDer stands for the morphisms in the derived category. To obtain this 

sequence, we take a resolution of each ~a by a complex I a of injective sheaves of 

Ox-modules, so that these complexes for different a fit together into a double com- 

plex I ~176 Similarly we get a double complex J~176 composed of resolutions of the 7-/b. 

Denote by I ~ and J~ the corresponding total complexes. Then Homoer(G ~ 7~~ 

is the r-th cohomology of the Hom-complex Hom(l  ~ J~ Our spectral sequence 

is obtained by taking a natural filtration in this complex. 
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Now if Ext~)x(G a, 7-[ b) = 0 for any q > 0 and any a, b, then e (5.23) 
degenerates in the term E1 which has only the bottom row non-trivial. The cycles 
with respect to dl in this bottom row are elements of (~)b-a=p H~ Ga, 7-/b) which 

are morphisms of complexes (of degree p), and the boundaries are morphisms 

homotopic to zero. Lemma 5.7 is proved. 



CHAPTER 3 

Associated Varieties and General Resultants 

1. Grassmannians. Preliminary material 

The Grassmann variety (or Grassmannian) G(k, n) is the set of all k-dimensional 

vector subspaces in C ~. For k = 1, this is the projective space p~- l .  Since vector 

subspaces in C n correspond to projective subspaces in pn- l ,  we see that G(k, n) 
parametrizes (k - 1)-dimensional projective subspaces in P~- 1. In a more invariant 

fashion, we can start from any finite-dimensional vector space V and construct the 

Grassmannian G(k, V) of k-dimensional vector subspaces in V. 

The first example of a Grassmannian other than a projective space is G (2, 4), 

the variety of all straight lines in the projective space p3. We shall use this example 

hereafter. A line in 3-space is easily seen to be dependent on 4 parameters. For 

example, we may choose some fixed 2-plane (screen) and associate to a genetic 

line the point of intersection with the screen (2 parameters) and the direction at the 

point of intersection (another two parameters). Thus G(2, 4) is a 4-dimensional 

manifold. 

We are going to give an overview of the various types of coordinates used to 

represent the points of a Grassmannian. For points in the projective space p,,-1, 

there are two kinds of coordinates" 

(a) Affine coordinates (Xl . . . . .  x,,_ 1) in an affine chart C n-1 c pn-  1 ; 
(b) homogeneous coordinates (xl �9 . . .  " x,,) defined up to a common constant 

multiple. 

In Grassmannians these two types of coordinates generalize to three types: 

the affine coordinates, Stiefel coordinates and Plticker coordinates. The Stiefel 

and Plticker coordinates are two different analogs of homogeneous coordinates in 

a projective space. We shall describe all three types of coordinates. 

A. Affine coordinates 

Choose a decomposition of C n into the direct sum C k @ C n-k of coordinate sub- 

spaces. Let A �9 C k ~ C "-k be any linear operator. Then its graph is a k-dimen- 

sional subspace in C n. The set U of subspaces which can be obtained in this way is 

an open subset of the Grassmannian isomorphic to the affine space Hom(C k, C"-k). 

Thus any point of U can be determined by a k x (n - k) matrix [laij II. By choos- 

ing various coordinate decompositions of C ~ we can cover G(k, n) with affine 
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spaces. It is easy to see that the transition functions between the affine charts thus 

constructed will have rational functions as components. Thus we have defined a 

structure of an algebraic variety on G(k, n). The dimension of G(k, n) coincides 

with the dimension of the space of k • (n - k)-matrices, i.e., it is equal to k(n - k). 

For a projective space this gives the usual affine coordinates in C "-1 c p , -1 .  

Example 1.1. Consider the Grassmannian G(2, 4) as the variety of lines in p3 

and let (x, y, z) be the affine coordinates in C 3 C p3. Using affine coordinates in 

G(2, 4) amounts to describing an affine line in C 3 by two equations, y = al lx  +a12 

and z = a21x -t- a22. 

B. Stiefel coordinates 

Let Vl . . . . .  Ok be a basis of a k-dimensional vector subspace L C C". Consider 

the matrix (k • n) formed by coordinates of vectors vi" 

1111 . . . . . .  V ln  ) 
M _ _ .  . , ,  . , ,  ~  , . ,  , 

Vk l . . . . . .  1)kn 

(1.1) 

This is a matrix of full rank k. Given any k x n matrix M of full rank, we can 

associate to it the k-dimensional subspace L(M)  generated by the rows of M. The 

matrix entries vii will be called the Stiefel coordinates of L. 
For the case k = 1, we get the representation of points of pn-1 using ho- 

mogenous coordinates. As with homogeneous coordinates, Stiefel coordinates are 

not unique. Indeed, we can change M to gM where g is a non-degenerate k x k 

matrix (the analog of a constant factor for usual homogeneous coordinates). This 

will lead to another choice of basis in L. Let S(k, n) be the Stiefel variety of 

all complex k x n matrices of full rank. Then the Grassmannian G(k, n) is the 

quotient 

G(k, n) -- S(k, n ) / G L ( k ) ,  (1.2) 

thus generalizing the representation of the projective space p , -1  as the quotient 

(C" - {0})/C*. Here C" - {0} is S(n, 1) and C* is GL(1). 

The relation between Stiefel coordinates and affine coordinates is as follows. 

Let M C S(k, n) and let g be the k x k-matrix formed by first k columns of M. If 

g is non-degenerate then we can transform M by the action of G L (k) to the form 

t l 0 ... 0 all . . . . . .  al,n-k \ 
0 1 ... 0 a21 . . . . . .  a2,n-k 

. , .  , , ,  . , .  . . . . . . . . . . . . .  . .  

0 0 ... 1 akl . . . . . .  ak,,,-k 

(1.3) 
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where [[aij II is a k x (n - k) matrix. This latter matrix will be the matrix of affine 

coordinates of the subspace L (M). 

C. PlUcker coordinates 

The Pliicker coordinates on G (k, n) give another analog of homogeneous coordi- 

nates on a projective space. They are defined up to a common scalar factor. To 

construct them, we consider the classical Pliicker embedding 

G(k,n),--+ P ( ] ~ C  n)  (1.4) 

which takes a k-dimensional subspace L C C n to the one-dimensional subspace 

A k L C / ~ k  C". This gives an explicit projective embedding of G(k, n) which, up 

to now, we had constructed only as an "abstract" algebraic variety. 

The coordinates xl . . . . .  x,  in C" induce the coordinates in /~k  C" denoted 

as pi~ ..... ik, i l < . . .  < ik and called the Pliicker coordinates. Thus, every k- 

dimensional subspace L C C" has a collection of Pliicker coordinates Pi~ . . . . .  ik ( L )  

defined uniquely up to a common non-zero multiple. The number of Plticker 

coordinates is (k) which is greater than the dimension of the Grassmannian. This 

means that, in contrast to the case of homogeneous coordinates in the projective 

space, the Pliicker coordinates on G (k, n) are not independent, i.e., they are subject 

to certain relations. These relations will be discussed in subsection D below. 

The relation between Pliicker and Stiefel coordinates is as follows. Let L be 

a k-dimensional vector subspace in C n given by its k x n matrix II1)ij II of Stiefel 

coordinates. By definition, the Plticker coordinate Pi~ . . . . .  i k  (L) is the maximal minor 

of II 13ij II formed by columns il, i2 . . . . .  ik. If we replace II 1)ij II by II ll)ij II = g II 1)ij II 
with g ~ GL(k)  then each maximal minor for Ilwijll will be obtained from the 

corresponding minor in II vii II by multiplication with the scalar det (g). 

Suppose that M has the form (1.3). Then the minor Pi~ . . . . .  i k  (M) equals (up 

to sign) a suitable minor of the "short" matrix A = Ilaij II. More precisely, let 

I = {il . . . . .  ik} be the set of columns of our minor of M. This set is decomposed 

into a disjoint union I = J U K where J = {il . . . . .  il } is the set of columns from 

I which lie inside the unit matrix in (1.3) (i.e., J = I N { 1 . . . . .  k}) and K is the 

set of all the other columns. We set s(J)  = (il - 1) + (i2 - 2) + . . .  + (it - l). 

In this notation we have the following immediate fact. 

Proposi t ion 1.2. The minor Pil . . . . .  ik (M) of  a matrix M of  the form (1.3) equals 
( - 1 )  s(J) times the minor of  the matrix A = [[aijl[ given by the set of  rows 

{1 . . . . .  k} - J and the set of  columns K (the empty minor is defined to be equal 

to 1). 
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In other words, the collection of all the Plticker coordinates gives, when 

written in terms of the affine coordinates, the collection of all the minors (of all 

sizes, including the empty minor) of an indeterminate k x (n - k) matrix. 

Let V and V* be dual vector spaces of dimension n. Then G(k ,  V)  is naturally 

identified with G(n  - k, V*). The identification takes a vector subspace L 

G(k ,  n) to its orthogonal complement L • ~ G(n  - k, V*),  and is, therefore, a 

particular case of the projective duality described in Chapter 1. Thus we can 

also view G(k ,  n) as the variety of vector subspaces of codimension k in C". 

Correspondingly, we have another way of associating the Pliicker coordinates to 

points of G(k ,  n). We denote these new coordinates by qjt ..... j.-k. If a subspace L 

is given by (n - k) linear equations f l  = 0 . . . . .  f , - k  = 0 and 3] (x] . . . . .  x,,) = 

Y]j f i j x j  then qj, ..... j,-k is the maximal minor of the matrix 

. . . . . . . . . . . . .  (1.5) 

A-k,1 . . . . . .  A-k,~ 

corresponding to columns with numbers j] . . . . .  jn-k .  By elementary calculations 

with determinants, we see that 

qjt ..... j~_~ -- ( -  1)s(it . . . . .  i k ) p i t  ..... ik, (1 .6)  

where i l . . . . .  ik are all the elements of the complement of {jl . . . . .  jn-k}  taken 
in increasing order and s( i l  . . . . .  ik) is the sign of the permutation (il . . . . .  ik, 

j l  . . . . .  j , - k ) .  Thus the two sets of PlUcker coordinates on G(k ,  n) are essentially 

equivalent. Accordingly, we shall use either one of them. 

D. Pliicker relations 

As we mentioned above, the number of Plticker coordinates Pil . . . . .  ik is greater than 

the dimension of G(k ,  n), and hence the Pit . . . . .  ik are subject to certain relations. 

These relations are called Pliicker relations. To write them down, it is convenient 

to assume that the Pit . . . . .  i k  are defined for any sequence (il . . . . .  ik) of distinct 

integers between 1 and n so that the transposition of any two indices changes the 

sign of Pit . . . . .  ik (thus effectively we have the same number of coordinates). In this 

notation the relations are as follows. 

Theorem 1.3. 

(a) For any two sequences 1 < i] < . . .  < ik-I  < n and 1 < j] < . . .  < jk+l < 

n, the Pliicker coordinates on G (k, n) satisfy the relation 

k+l 
' I F " " " " " q L  

) " (-- 1)a P i t , i 2  . . . . .  i k - t , j ~  P j t , j 2  . . . . .  ;a . . . . .  j k+ t  - -  0 ( 1 .7) 
a = l  
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^ 

(here the symbol ja means that the index ja is omitted). Any vector (Pi~ ..... ik ) E 

A k C n satisfying all such relations is a vector of the Pliicker coordinates of 

some vector subspace L ~ G (k, n). 

(b) Moreover, the graded ideal of  all polynomials in Pil ..... ik vanishing on the 

image of G(k, n) is generated by the left hand sides of the Pliicker relations 
(1.7). 

We shall not prove this theorem here. The proof of assertion (a) (stated in a 

more invariant form recalled below) can be found in [GH]. In addition, in Section 

1 of Chapter 4 we shall prove a more general Chow-van der Waerden theorem 

which describes (at least theoretically) the equations of Chow varieties of which 

the Grassmannian is a particular case. For the particular case of the Grassmannian, 

the Chow-van der Waerden theorem gives exactly the Plticker relations, as we shall 

have the opportunity to see. A still more comprehensive treatment of the subject, 

including the proof of part (b) of Theorem 1.3, can be found in [HP], Chapter 6, 

Sections 6-7. 

Example 1.4. The Grassmannian G(2, 4), which parametrizes lines in p3, has 

dimension 4, and is embedded by the PRicker embedding into pS. There are six 

Plticker coordinates pij, 1 < i < j < 4 which are subject to one relation 

P l2P34-  P13P24 q- Pl4P23 --O. (1.8) 

Thus G(2, 4) is a quadric in pS. In terms of the matrix of affine coordinates 

A = Ilaij II, i, j -- 1, 2, the Plticker coordinates are the following polynomials in 

the aij (Proposition 1.2)" 

PI2 = 1, P34 = det(A), PI3--a21,  P24 = - a l 2 ,  P14 =a22,  P23 m - a l l .  

The Plficker relation now becomes the identity det (A) = a l i a 2 2  - a 1 2 a 2 1 .  

Note that in the general case Theorem 1.3 (a) can be seen, after passing to 

the affine coordinates, as providing the necessary and sufficient conditions for 

the collection of the A Ij  defined for all pairs of subsets I C { 1 . . . . .  k}, J C 

{1 . . . . .  n - k}, #(1) = #(J )  to be represented by minors of a k x (n - k)- 

matrix. The entries of this matrix should be given by 1 x 1-minors A i j  in our 

collection. Thus an obvious solution would be to require that each A i J equals the 

determinant of the matrix of m i j  , i ~ I, j ~ J. These equations are not quadratic. 

The possibility of replacing them by a system of quadratic equations comes from 

considering not just 1 x 1 and k x k minors, but those of all sizes. 

We finish the discussion of the Plticker relations by describing them in a more 

invariant form. Denote V -- C" and let el . . . . .  e,, be the standard basis of V. A 
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collection (Pil ..... ik) represents a point L of G(k, n) if and only if the k-vector 

k 
A 

- -  ~ Pi, ..... i, ei, A . . .  A el, �9 A R V 
il <'"<ik 

is decomposable, i.e., it has the form R = vl A . . .  A Vk, 1)i ~- V (in which case 

the vi form a basis of L). So the problem of finding the relations among the pi~ . . . . .  ik 

is equivalent to finding conditions for a k-vector R to be decomposable. 

We consider, for any linear form I 6 V*, the contraction operator 

j j - 1  

il " A V > A V (1.9) 

(cf. Chapter 2, Section 1B). Clearly, il~il2 : --il2ill for any 11,12 e; V*. For any 
f2 e~ A p v*, we define the operator ia �9 A j v > A j -p  v of contraction with 

f2, setting 

ill A...Alp = ill o . . .  o ilp (1.10) 

for a decomposable ~2 - l l A . . .  Alp, and extending this by linearity to all ~2. In 

particular, if p -- j then, for R 6 A j v ,  the element i~R is a number denoted 

by < f2, R >. This is the canonical pairing between A j v* and A j v .  Now a 

coordinate-free version of the Pliicker relations is as follows. 

Theorem 1.5. A k-vector R E A k v is decomposable if  and only if  for  any 

~2 E A k-1 v*, we have 

k+l  

(iaR) A R - - 0  in A V "  (1.11) 

It is immediate to see the equivalence of Theorems 1.3 (a) and 1.5. Indeed, the 

choice of il .. ik-1 in Theorem 1.3 (a) amounts to a choice of ~2 in the form e: m 
�9 ~ I i  

�9 . . A e  t. where the ' V* zk-l ei ~ are elements of the basis dual to {el . . . . .  e,,}. A choice 

of jl . . . . .  jk+l gives a choice of a coordinate function on A k+l v corresponding 

to the basis vector ejl m . . .  A e j ,  ! . Evaluating this coordinate of (i~ R) A R for 

R = (Pjl ..... j~) ~ A k v ,  we obtain the left hand side of (1.7). 

E. The coordinate ring o f  the Grassmannian 

Let B - ~Dd Bd be the homogeneous coordinate ring of G(k, n) in the Pliicker 

embedding. In other words, B is the quotient of the polynomial ring C[pil . . . . .  i k ]  

by the ideal generated by the relations (1.7), and Bd is the homogeneous part 

of B of degree d. The generators Pil . . . . .  ik of B are often denoted by [il . . . . .  ik] 



1. Grassmannians: preliminaries 97 

and are called brackets. Thus any element of B can be represented as a bracket 
polynomial, i.e., a polynomial in [il . . . . .  ik]. Such a representation is, of course, 
not unique because of the Pliicker relations. Let t~(k, n) C /~k C" be the cone 

over the Grassmannian in the Pliicker embedding consisting of k-vectors which 
are decomposable; that is, they have the form v~ A . . .  A Vk. Any element of B can 

be regarded as a function on G (k, n). 

We have defined the ring B and its homogeneous components Bd using the 

Plticker embedding (and hence the Pliicker coordinates). The two other types of 

coordinates give two different descriptions of B and Bd. 
The following characterization of Bd in terms of  the Stiefel and affine co- 

ordinates follows from (1.2) and Proposition 1.2. It is sometimes called the first 
fundamental theorem of invariant theory. 

Proposition 1.6. 
(a) The space Bd is naturally identified with the space of polynomials f in the 

entries of an indeterminate (k x n)-matrix M = [ll)ij 11 of Stiefel coordinates 
satisfying the condition 

f (gM) -- det (g)d f (M) (1.12) 

for any matrix g ~ G L(k). The multiplication in the ring 13 corresponds to 
the usual multiplication of polynomials. 

(b) The space Ba is naturally identified with the space of polynomials in the entries 
of an indeterminate k • (n - k)-matrix (of affine coordinates) A -- Ilaijll 
generated by d-tuple products of minors of A of all sizes (including the empty 
minor 1). 

The group GL(n) acts on the Grassmannian G(k, n) and hence on its coor- 

dinate ring/3. It is known [FH] that the representation of G L(n) in each Ba is 

irreducible. Under the usual parametrization of irreducible polynomial representa- 

tions of G L (n) by Young diagrams, this representation corresponds to the diagram 

with k rows of length d. 

2. Associated hypersurfaces 

The Grassmannian G(k,n) can be seen as the variety parametrizing (k - 1)- 

dimensional projective subspaces in p,,-1, i.e., (k - 1)-dimensional subvarieties 

of degree 1. We shall discuss in this section (and later in Chapter 4) the problem 

of constructing varieties of a higher degree that parametrize (k - 1)-dimensional 

subvarieties in pn-1. The approach to this problem, initiated by Cayley [Ca5] and 

carried out in the general case by Chow and van der Waerden [C-vdW], starts from 
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the remark that for subvarieties of codimension 1, the problem is easily solved; if 
X C pn-1 is a hypersurface of degree d, then we can consider its equation which is 

a homogeneous polynomial of degree d, defined uniquely up to a constant factor. 

In other words, the space of hypersurfaces of degree d can be identified with 

the projective space which is the projectivization of the space of homogeneous 

polynomials of degree d. 

The one-to-one correspondence between hypersurfaces and their equations 

holds not only for projective spaces, but essentially for any variety with a proper 

understanding of what is an "equation." The idea now is to associate to any ir- 
reducible subvariety X in pn-1 a hypersurface Z(X)  in a certain Grassmannian 

from which X can be recovered. 
We start with a discussion of hypersurfaces in Grassmannians and their equa- 

tions. 

A. Hypersurfaces in Grassmannians 

Given a hypersurface in a projective space, its degree can be defined as the number 

of points where it intersects a generic line. The analog of lines in G (k, n) is given 

by the following family of embedded p l. Let N C M C p~-I be a flag formed 
by (k - 2)-dimensional and k-dimensional projective subspaces. All (k - 1)- 
dimensional projective subspaces containing N and contained in M form a one- 
dimensional family (pencil) PNM ~ p1. We define the degree of a hypersurface 
Z C G(k, n) to be the intersection number of Z with a generic pencil of the form 
PNM. 

In general, it is not true that a hypersurface in a projective variety can be given 
by the vanishing of an element of its coordinate ring (take the variety in question 

to be a plane curve and the hypersurface to be a point). However, this is the case 

for Grassmannians. 

Let B = ~])Bd be the coordinate ring of G(k, n) in the Pliicker embedding 

(see Section 1E above). 

Proposition 2.1. 
(a) The ring 13 is factorial, i.e., each f E 13 has a decomposition into irreducible 

factors which is unique up to constant multiples and permutations of these 

factors. 
(b) Let Z be an irreducible hypersurface in G(k, n) of degree d. Then there is an 

element f ~ Bd defined uniquely up to a constant factor such that Z is given 
by the equation f = O. 

Proof The factoriality of B follows from Proposition 1.6 and the factoriality of 

the polynomial ring C[vij ]. Indeed, any factor of a polynomial from B should lie 
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in 13. Similarly, if Z is a hypersurface in G(k, n), we lift it to a hypersurface Z in 

the space of matrices and take the irreducible polynomial f (vij) defining Z. 

As before, denote by M the matrix of the variables 1)ij. Since Z is GL(k)- 
invariant, the polynomial f (gM) for any g ~ G L (k) is a non-zero scalar multiple of 

f (M), i.e., f (gM) = g (g) f (M). The function X (g) is multiplicative: X (gl g2) = 

x (g l )x  (g2), i.e., it is a character of GL(k). Any such function is a power of the 

determinant: X (g) = det (g)d' for some d'. By Proposition 1.6 (a), f defines an 

irreducible element of Bd,. 
It remains to prove that d' coincides with d, the degree of Z defined above. 

To do this, note that the equality f ( g M )  = det (g)d' f ( M )  means that f is a 

section of the invertible sheaf Oc(k,n)(d') (restricted from the projective space of 

the Pliicker embedding). We claim that the restriction of any OG(k,n)(1) to any 

pencil PNM ~ p1 C G(k, n) is isomorphic to Opt(l). This will imply that 

d' = d = deg Z since the section f of Oc(k,~(d') will have exactly d' zeros 

on PNM. To justify our claim, it is enough to consider the case l = 1, since 

Op,(l + l') ~- Op,(l) | Op,(l'), and similarly for Oc(k,~(l + l'). To treat the 

case l = 1, it suffices to take a non-zero section ~o ~ H~ n), O(1)) and 

show that it has exactly one zero on a genetic pencil PNM. We take ~0 to be a 

single bracket in/3, say [1 . . . . .  k]. The corresponding hypersurface consists of 

(k - 1)-dimensional projective subspaces which intersect the projective span of 

basis vectors ek+l . . . . .  e,,. A genetic pencil PNM contains precisely one (k - 1)- 

dimensional projective subspace belonging to this hypersurface. This completes 

the proof. 

B. Associated hypersurfaces and Chow forms 

Let X C pn-1 be an irreducible subvariety of dimension k - 1 and degree d. 

Consider the set Z(X)  of all (n - k - 1)-dimensional projective subspaces L 

in pn-1 that intersect X. This is a subvariety in the Grassmannian G(n - k, n) 
parametrizing all the (n - k - 1)-dimensional projective subspaces in pn. 

Proposition 2.2. The subvariety Z (X)  is an irreducible hypersurface of degree 
d in G(n - k, n). 

Proof The variety Z(X)  is included in the diagram (double fibration) 

Z(X) <q B(X) Pr X, (2.1) 

where B(X) is the variety of pairs (x, L) such that x ~ X, L ~ G(n - k, n) and 

x 6 L. The projections q and p are given by forgetting x or L. For dimension 

reasons, a genetic (n - k -  1)-dimensional projective subspace intersecting X meets 
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X at only one point. Therefore q is a birational isomorphism. The projection p is a 

Grassmannian fibration: the fiber of p at x ~ X is isomorphic to the Grassmannian 

G(n  - k - 1, n - 1). Thus if X is irreducible then so is B ( X )  and hence Z ( X ) .  

Furthermore, we have 

d i m Z ( X )  = d i m B ( X )  - (n - k - 1)k 4- ( k -  1) = k(n  - k)  - 1 

= dim G (n - k, n) - 1. 

To find the degree of Z ( X )  C G(n  - k, n), we should, according to the 

definition in subsection A, choose a genetic flag N C M C p , - 1  of projective 

subspaces such that dim N -- n - k - 2, dim M -- n - k, and count the number 

of n - k - 1-dimensional subspaces L ~ Z ( X )  satisfying N C L C M. But 

since deg X -- d, the intersection M A X will typically consist of d points, say, 

x l . . . . .  Xd. The  subspaces L ~ Z ( X )  containing N and contained in M will be 

the projective spans of N and xi. So their number is equal to d, as required. This 

proves Proposition 2.2. 

We shall call Z ( X )  the associated hypersurface of X. The construction of 

Z (X) can be regarded as an analog of the construction of the projective dual variety 

in Chapter 1. 

Let B = ~ Bm be the coordinate ring of the Grassmannian G(n  - k, n).  By 

Proposition 2.1, Z (X) is defined by the vanishing of some element R x  ~ Bd which 

is unique up to a constant factor. This element will be called the Chow f o r m  of X. 

Choosing some basis in Bd, we associate to X the collection of coordinates of R x  

in this basis, defined up to a common constant factor. These coordinates will be 

called the Chow coordinates of X. We shall see in subsection C below that X can 

be recovered from its Chow coordinates, i.e., from the vector R x .  

The three kinds of coordinates on Grassmannians give three different ways 

of writing elements of the coordinate ring and, in particular, the Chow form of a 

subvariety. 

The approach with the Plticker coordinates leads to writing R x  as a bracket 

polynomial. The Plticker coordinates in G(n  - k, n) are labeled by (n - k)- 

element subsets of { 1 . . . . .  n} and denoted by brackets [il . . . .  , i ,-k].  Sometimes 

it is convenient to use the dual Pliicker coordinates [jl . . . . .  jk] (see subsection 

1 C) where {jl . . . . .  jk } is the complement of {i 1 . . . . .  i , - k  } in { 1 . . . . .  n }. 

The Stiefel coordinates represent an (n - k)-dimensional subspace in C" as 

the zero set of k linear functionals l l(x) . . . . .  lk(x) ,  where l i ( x )  - -  ~-~j'-I CijXj" 

The space of such k-tuples of functionals can be viewed as the space Mat (k, n) 

of matrices Ilcij II. The open subset S(k ,  n) C Mat(k, n), consisting of matrices of 

full rank k, is fibered over the Grassmannian G (n - k, n), see formula (1.2) above. 
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Consider the lifting of the associated hypersurface Z(X)  to S(k, n) and its closure 

Z,(X) in the affine space Mat (k, n). Thus Z(X)  is the subvariety of (fl  . . . . .  fk) 

such that 

x n { k  = - . .  = A - o }  4 : o .  (2.2) 

Since Z(X)  is a hypersurface, it follows that Z(X)  is also a hypersurface. The 

defining polynomial of Z,(X) is a homogeneous polynomial Rx( f l  . . . . .  fk). We 

call Rx the X-resultant since its vanishing expresses the compatibility of the 

system (2.2). It is clear that Rx is just another way of writing the Chow form Rx. 
More precisely, Rx is the polynomial in cij corresponding to Rx ~_ Bd under the 

isomorphism of Proposition 1.6 (a). Thus to obtain Rx, we need to replace each 

bracket [jl . . . . .  jk] in the (dual) bracket representation of Rx by a polynomial 

det Ilci,jvll, i, v - 1 . . . . .  k. The X-resultant/~x has the advantage of being an 

explicit polynomial in variables cij, not just an element of some "abstract" vector 

space. 
To write the Chow form (or X-resultant) in terms of affine coordinates, we 

assume that the coefficient matrix Ilcij II of a system of linear forms fl  . . . . .  fk 

defining a subspace, has the form (1.3). In other words, we set cij - -  ~ij for 

1 _< i, j _< k. In this way we associate to a subvariety X a non-homogeneous 

polynomial in the entries of an indeterminate k x (n-k)-matr ix.  Such an expression 

will be useful in Chapter 4 when we shall try to determine which elements of Bd 
can arise as Chow forms. 

We now give some examples of associated hypersurfaces and Chow forms. 

Examples 2.3. (a) Let X be a curve in p3. Its associated hypersurface is the 

variety of all lines which intersect X. 

(b) When X itself is a hypersurface in pn-1, the Grassmannian G(n - k, n) 
coincides with pn-1 and the associated hypersurface Z(X)  coincides with X. 

(c) When X is a point p, then G (n - k, n) is the dual projective space (Pn-  1 ). 

and Z(X)  is the hyperplane dual to p. 

(d) When X is a projective subspace, the variety Z(X)  is known as the Schu- 
bert divisor in G(n - k, n). We can suppose (after a linear change of coordinates) 

that the linear equations of X are x l -- 0 . . . . .  x,,-k -- 0 where x l . . . . .  x,, are 

coordinate functions. Then the associated variety is given by the vanishing of the 

bracket (PlUcker coordinate) [1 . . . . .  n - k] E/31. 

Example 2.4. Let X be the projective subspace pk-1 _ p (ck ) ,  embedded into 
[k+d-1  p (sdc  k) _ pn-1 by the Veronese embedding. Here n -- ~ d ) is the number of 

all monomials in k variables of degree d. A linear form o n  pn-1 when restricted 

o n  pk-1 gives a homogeneous polynomial of degree d. Thus, the X-resultant/~x 
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is a function of coefficients of k indeterminate polynomials fl  (t) . . . . .  fk(t) of 

degree d, where t = (tl . . . . .  tk). The vanishing of Rx means that the polynomials 

fi have a non-trivial common zero. Therefore Rx coincides with the classical 

resultant of k homogeneous polynomials of degree d in k variables. This explains 

our terminology. 

C. R eco very of X from Z (X) 

Proposition 2.5. A ( k -  1)-dimensional irreducible subvariety X C p~-I is 
uniquely determined by its associated hypersurface Z (X). More precisely, a point 
p ~ pn-I lies in X if and only if any (n - k - 1)-dimensional plane containing p 
belongs to Z (X). 

The proof is obvious. 

This proposition is an analog of the Biduality Theorem of Chapter 1. As 

in the case of projective dual varieties, the variety X is recovered as a sort of 

"caustic variety" of Z(X) .  The above proposition makes it clear that X can be 

recovered from its Chow form or, equivalently, from the coefficients of the X- 

resultant/~'x (fl  . . . . .  fk). This can be done explicitly as follows. Let x ~ P " -  1 be 

a point and let x e C n be some vector whose projectivization is x. Let us represent 

hyperplanes through x as projectivizations of orthogonal complements 

x~- = {y" S(x,  y) -- O} 

where S(x, y) is a skew-symmetric form on C". We shall denote the linear form 

y ~ S(x, y) by ixS. 

Corol lary 2.6. Let X k-1 C pn-1 be an irreducible subvariety and R x ( f  l . . . . .  fk) 
be the X-resultant. Let us now consider k indeterminate skew-symmetric forms 

s~ (x, y) . . . . .  Sk (x, y) defined by Si (x, Y) = ~-~q,r s(~) xJ Yr, where [ISjr" (s) II for each i 
is a skew-symmetric matrix of(otherwise) independent variables. For any x ~ C ~, 
consider the following polynomial in coefficients " (i) ~Sjr ) of all forms Si" 

P(x, (s(~))) -- Rx(ix(S1) . . . . .  ix(Sk)). 

Then the coefficients of P (with respect to the variables s(~ )) are polynomials in x 
which form a system of equations for the variety X. In other words, the vanishing 

of these polynomials defines X set-theoretically. 

This corollary (due to Chow and van der Waerden) gives a canonical system 

of equations for each irreducible variety X of degree d. All these equations have 
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degree d, with a number usually much greater than the codimension of X. It was 
recently shown by E Catanese [Cat] that, for smooth X, this canonical system of 

equations defines X not just set-theoretically, but scheme-theoretically as well. In 
other words, the subscheme in pn-1, defined by these equations, coincides with X 

(regarded as a subscheme in a standard way). Algebraically, this means that the 

homogeneous ideal in C[xl . . . . .  x,,], formed by the homogeneous polynomials 

vanishing on X, coincides with the homogeneous ideal generated by the canonical 

equations in all but a finite number of graded components. 

D. The Cayley trick 

Let us now describe an important relationship between associated hypersurfaces 

and projective duality. It turns out that any associated hypersurface can be es- 

sentially identified with some dual variety. More precisely, let X be an irre- 

ducible closed subvariety of dimension k - 1 in p , -1 .  Consider the product 
f( -- X • pk-1 as a subvariety of P((Cn• *) "-- P(C" | (ck) *) via the Segre 

embedding. Identify C" | (Ck) * with the space Mat (k, n) of k • n-matrices and 

consider the projection 

Mat (k, n) D S(k, n) ~ P> G(n - k, n). 

Theorem 2.7. Let X be an irreducible closed subvariety of  dimension k -  1 in pn-1 

and ,Z(X) C G(n - k, C n) its associated hypersurface. Then the projectively 

dual variety f ly  o f f (  equals the closure p - I ( Z ( X ) ) .  

Proof. By definition, ,~v is the closure of the locus of all f ~ P(C nxk) such 
that the hyperplane {f  = 0} C P((CnXk) *) is tangent to ~" = X x pk-1 at 

some smooth point (x, y). This can be reformulated as follows. Let x e C", y 

(ck) *, f ~ C nxt be vectors with projectivizations x, y and f ,  and let Ux C C ~ be 

the tangent space at x to the cone over X. The tangent space at (x, y) to the cone 
over ,(" equals (Ux | y) + (x | (Ck) *) C (Cn• *. Therefore f lies in ,~v if and 

only if f, considered as a linear form on (C"Xk) *, is orthogonal to a subspace of 

the form (Ux | y) + (x | (Ck) *) for some smooth x ~ X and some y ~ pk-1. 
On the other hand, the definitions imply that f lies in p-1 (Z (X) )  if and only 

if f is orthogonal to x | (Ck) * for some x ~ X. Those f ,  for which this x is 

smooth, form an open dense subset in p-1 (Z(X)). Therefore it remains to prove 

that, if f is orthogonal to x | (Ck) *, then there exists a non-zero y ~ (Ck) * such 

that f is orthogonal to Ux | y. 

Now think of f as a family (fl . . . . .  fk) of linear forms on C n. Since f 

is orthogonal to x | (Ck) *, then f l ( x )  = . . . .  fk(x) -- O. It follows that 
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{(fl (u) . . . . .  f k (u) )  " u ~ Ux} is a proper subspace of C k since Ux is a k-dimen- 

sional vector space containing x, and so there is a non-zero y ~ (Ck) * orthogonal to 

this subspace. But this exactly means that f is orthogonal to Ux | y, and Theorem 

2.7 is proved. 

Corol lary  2.8. For every irreducible closed subvariety X o f  dimension k - 1 in 

pn - l ,  we have Rx = Aye, i.e., the X-resultant equals the X-discriminant. 

Example  2.9. We have already seen that the classical resultant of k-homogeneous 

forms f l  . . . . .  fk of the same degree d in k variables x l . . . . .  xk is the X-resultant 

for the Veronese subvariety X = pk-1 C p ( s d ( c k ) ) .  In this case Corollary 

2.8 shows that the resultant R x ( f l  . . . . .  fk)  is equal to the discriminant of the 

polynomial 

f ( x l  . . . . .  Xk, Yl . . . . .  Yk) : Y l f l  (Xl . . . . .  Xk) + " "  4- Ykfk(xl  . . . . .  Xk), 

where yl . . . . .  yk are new variables. This observation was used by Cayley. Fol- 

lowing [GZK3], we call the general result of Corollary 2.8 the Cayley trick. 

E. Higher associated hypersurfaces 

The construction associating to a (k - 1)-dimensional variety X C pn-1 its asso- 

ciated hypersurface in G (n - k, n) can be generalized as follows. Let X C pn-1 

be an irreducible subvariety of dimension m - 1 >_ k - 1. First we suppose that X 

is smooth. Define its (m - k)-th associated subvariety Z m - k ( X )  C G(n - k, n) to 

be the set of (n - k - 1)-dimensional subspaces L C pn-1 such that L A X ~ 

and dim (L N ETx X)  >_ m - k for some x e L N X. Here ETx X is the embed- 

ded tangent space to X at x, i.e., the projective subspace in p~- i  of dimension 

m - 1 -- dim X which contains x and has the same tangent space at x as X. 

When X is singular, we first consider the subspaces L for which there exists 

a smooth point x with the above property, and then take the Zariski closure of the 

set of these subspaces in G(n - k, n ) .  It is clear that the 0-th associated variety 

of a (k - 1)-dimensional subvariety is the one previously considered. 

Example  2.10. Let S C p3 be a surface. Then the first associated variety Z1 (S) C 

G(2, 4) is the set of all lines in p3 tangent to S. 

Proposition 2.11. Let X be an irreducible (m - 1)-dimensional subvariety in 

p n -  1 and k < m. Then Zm_ k (X) is a hypersurface in G (n - k, n). 

The proof is similar to that of Proposition 2.2 and we leave it to the reader. 

The "higher associated hypersurfaces" just defined are not necessary for the 

problem of coordinatizing subvarieties; the usual construction suffices. But we 
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shall see in Chapter 4, Section 3 that they share the key differential-geometric 

property of ordinary associated hypersurfaces. 

3. Mixed resultants 

The resultants under study so far were generalizations of the classical resultant of k 

homogeneous polynomials in k variables of  the same degree d. This is obviously not 

the most general setting since we can consider polynomials of different degrees. 

Of course, such a resultant cannot be interpreted in terms of the one Veronese 

embedding, since different degrees require different embeddings. In this section 

we shall abandon the Chow form point of view of resultants and study "mixed" 

resultants in their own context. 

A. The (/~1 . . . . .  s and its first properties 

Let X be a compact algebraic variety of dimension k - 1. We assume that X is 

irreducible. Instead of polynomials, for general X we must consider sections of 

invertible sheaves. Let s . . . . .  s be k invertible sheaves on X. We suppose that 

each ~ i  is very ample, i.e., it defines a projective embedding q9 i " X ~ P(Vi*) 

where Vi -- H~ s A section of ~ i  c a n  be seen as the restriction of a 

linear form from P (Vi) to X. For such a section fi, denote by X (fi) C X the 

hypersurface defined by fi = 0. A collection ( f l  . . . . .  fk) ~- I-Ii Vi is  called 

degenerate if X ( f l )  N . . . f3 X (fk) ~ 0. We denote by 

k 

Vz:~ ..... zzk C 1-Ivi  
i=1 

the locus of all degenerate tuples of sections. We call this locus the resultant 

variety (associated to s . . . . .  s 

Proposition 3.1. The variety 71:, ..... lzk is an irreducible hypersurface in I-Ii vi 
invariant under dilations of  each Vi. 

Proof As in the proof of Proposition 2.2, we consider the diagram 

P2 
X <P' Be, ..... ck > I-I  Vi, (3.1) 

where Be, ..... z:k C X • 1-I vi is the set of (x, fl . . . . .  fk) such that fl  (x) = . . .  -- 

fk(x)  = 0. The maps pl,  P2 in (3.1) are the projections to X and I-I vi, respectively. 

Clearly, 

V s  ..... s = P2 (Bz:, ..... z:k). 
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So the variety Vs ..... s being the cone over the image of a projective variety under 

a regular map, is Zariski closed. Let ni -- dim Vi. For any x ~ X the fiber p~-i (x) 

is the product of hyperplanes 

= H~ Z:i)" f,.(x) = 0},  

and hence dim p~-I (x) = (~--~ ni) - k. Moreover, since p2 is the projection of a 

vector bundle, the variety Bs ..... s is irreducible. Hence Vz:, ..... z:k is irreducible. 

Let us now look at the fibers of P2. Clearly, p21 (f l  . . . . .  fk) is the set of the 

common zeros of f l  . . . . .  fk. Since each / : i  is very ample, we conclude that, for 

genetic ( f l  . . . . .  fk) ~ Vs ..... z:k, this set of common zeros has just one point so 

that the map 

p2:Bs ..... s ---> Vs ..... s (3.2) 

is a birational isomorphism. Hence 

dimVz:, ..... s = dimBz:, ..... s = dim X - t - ( ~ - ~ n i ) - k =  ( ~ n i ) -  1. 

Thus Vz:, ..... s is a hypersurface. Proposition 3.1 is proved. 

We call the irreducible equation of Vs ..... z:k the (/:1 . . . . .  s and 

denote it by Rs ..... s ( f l  . . . . .  fk). This is a polynomial function in k sections fi 

n 0 ( X , / : i )  and is defined up to a constant factor. When X is given in a particular 

embedding into a projective space P" = P(V*) and Z~l = . . .  = / : k  -- Ox(1) ,  any 

linear form f ~ V gives a section of Ox(1)  and Rz:, ..... z:k ( f l  . . . . .  fk) coincides 

with the X-resultant R x ( f l  . . . . .  fk) from Section 2. 

E x a m p l e  3.2. Let X be the projective space pk-1.  Let the invertible sheaves be 

ff-,i : O ( d i ) ,  i = 1 . . . . .  k. The space Vi of sections of O(di) is the space of 

homogeneous polynomials in k variables of degree di. The degeneracy of a tuple 

of polynomials ( f l  . . . . .  fk), deg (iS) = di means that the j5 have a common 

non-trivial root. Therefore the (/:1 . . . . .  /:k)-resultant coincides in this case with 

the classical resultant of k forms in k variables. 

Proposition 3.3. The (~1 . . . . .  s Re., ..... z:k ( f l  . . . . .  fk) is homoge- 
neous with respect to each f i. The degree with respect to f i equals the intersection 
index 

(c, . . . . .  /~i-1, /~i+l . . . . .  C,):lllc,<C ) 
J X y # 7 "  . 

of art j i. 
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Proof If we multiply each component fi of a tuple (fl . . . . .  fk) by its own constant 
factor, the degeneracy or non-degeneracy of this tuple will be unchanged. Hence 
R z:~ ..... z:k is homogeneous with respect to each fi. To calculate the degree of this 
homogeneity for a given i, we fix the forms fj ,  j ~ i and f,:, f / '  and consider the 

resultant of 3~(J # i) and fi' + ~.f,"' as a polynomial in a scalar variable ~.. This 
polynomial vanishes at some X0 if and only if f/'(x0) + Xof"(xo) = 0 for some 
X 0 E r ) j# i  X ( f j ) .  Since the cardinality of [-)j:fii X ( f j )  is the intersection index 
D = (/21 . . . . .  s  s . . . . .  /:k), we conclude that the resultant as a polynomial 
in ~. has D roots and hence is of degree D. This proves our proposition. 

B. The Cayley trick for mixed resultants 

The Cayley trick (the expression of a resultant as a discriminant), described in 
Section 2D for the X-resultant, can be extended to our mixed case as well. Denote 

~0 i " X c_..> P(Vi*), Vi = H~ s (3.3) 

to be the projective embedding defined by /~i. In the space P (I-I Vi*) the pro- 
jectivizations of individual factors Vi* are non-intersecting projective subspaces. 
For x e X, let Fl(x) C P (I-I vi*) be the (k - 1)-dimensional projective subspace 
spanned by ~01 (x) . . . . .  ~ok(x) (see Figure 6). 

Figure 6. 

We define ,~ C P (1-I vi*) to be the union of the spaces FI (x) for all x ~ X. 

As an algebraic variety, X is the projectivization of the vector bundle ~ / 2 *  on X. 

Proposi t ion 3.4. The projectivization 
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is projectively dual to f( C P (1-I Vi*). 

Proof. This is similar to the proof of Theorem 2.7. We stress only the main points. 

Let H C P (I-I vi*) be a hyperplane corresponding to a non-zero vector (tuple of 

sections) (f l  . . . . .  fk) e I-I v/. If H is tangent to ,Y at some point y, and x e X is 

such that y e H (x), then fl  (x) = . . .  - fk(x) = 0. Conversely, if x e X is such 

that f l (x )  = . . .  = fk(x) = 0, then we can find y e Fl(x) = P (~)ff-'i*,x) s u c h  

that H is tangent to ,Y at y. To do this, we consider the differentials 

dx 3~ e Hom (Tx X, s ) 

(they make sense since fi (x) -- 0). Each dx 3~ lies in (its own) (k - 1)-dimensional 

space Hom (Tx X, s and there are k of them. Hence there is a non-trivial linear 

dependence of the form 

)~i (dx J~) "-" 0 ,  )~i ~- ff-'i*,x' 

where the equality is understood in Hom (TxX, C). The vector (~.1 . . . . .  ~Lk) E 

(~) s represents a point y e H (x) where H is tangent to X We leave to the I,X 
reader to check details. 

Corol lary  3.5. The (El . . . . .  s is equal to the X-discriminant. 

Example  3.6. Let X = p1 be the projective line and/~i - -  (Q(di), i = l, 2, where 

di >_ 1. The variety ,~ C pd~+d2+l is a surface known as the rational normal 
scroll of type (dl, dE), see [GH] [Harr]. The (El, fE)-resultant is the classical 

resultant R (f l ,  f2) of two binary forms of degrees dl, dE (or, equivalently, of two 

polynomials of degrees dl, d2 in one variable). By Proposition 3.4, the zero locus 

of the classical resultant, when regarded in a projective space, is projectively dual 

to the rational normal scroll. 

Another application of Proposition 3.4 is the formula which "finds" the 

common root of (fl  . . . . .  fk) by taking partial derivatives of the resultant at 

(f l  . . . . .  fk). We shall say that a point x e X is a simple common root of f l  . . . . .  fk 
if the sequence 

Go; ':' ..... :'> > Ox-+Cx-+O 

is exact. Here Cx is the structure sheaf of the point x ("skyscraper sheaf"), i.e., 

Cx = Ox ~Ix where I~ is the sheaf of functions vanishing at x. 

To put it simply, the condition for x to be a simple common root means that, 

first of all, there are no common roots other than x, and, second, the intersection of 

the hypersurfaces {fi = 0} at x is "as genetic as possible" (so that the picture near 
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x cannot be obtained as the limit of pictures with several common roots merging 
together). 

Corollary 3.7. Let X and ff-.i be as before. Suppose that f l . . . . .  fk have a simple 
common root x ~ X. For each i = 1 . . . . .  k, consider the differential of  Re., ..... lzk 
at ( f  l . . . . .  fk) with respect to the i-th argument (this is a vector in Vi*). This vector 
is non-zero and the corresponding point in the projective space P(Vi*) coincides 
with tpi(x), where ~i is the projective embedding corresponding to s 

Proof This follows from Corollary 3.5 and Theorem 1.5 of Chapter 1 which find 

the point of tangency in terms of the discriminants. 

Example 3.8. Suppose we are in the situation of Example 3.6, that is, we are 

dealing with the resultant R( f l ,  f2) of two polynomials f l ,  f2 in one variable of 

degrees deg fi < di. We write 

fi (x) --- aio -1- ailx + . . .  -1- aidiX di . 

The resultant R( f l ,  f2) is a polynomial in the coefficients aij of f l ,  f2 whose 

vanishing for particular f l ,  f2 implies that these polynomials have at least one 

common root ct (or else deg fl < dl and deg f2 < de which means that the 

common root is at infinity). 

In this situation Corollary 3.7 has the following meaning. Suppose we know 

the coefficients aij of fl and f2 and know that fl  and f2 have exactly only one 
simple common root ct. Then ct can be found explicitly by the formulas: 

OR OR 
(1 "0~" ~ 2 . . . . .  ad,) = O--~lo(fl, f2)" 0-~11 (fl ,  /2)" " Oald, (fl ,  f2) , 

(~a2o OR OR ) ( l " u "  u 2 " . . .  �9 u d~) - a R ( f l ,  f2)" ~--~2 ( f l ,  f2)" " 0 a ~  ( f l  f 2 )  �9 

(3.4) 
Each of these formulas is an equality of two points in the projective space repre- 

sented by their homogeneous coordinates. We can find u by using just two first 

components of the vector on the fight: 

(OR/Oa11)(f, g) (OR/Oa2))(f, g) 
a - = . ( 3 . 5 )  

(OR/Oalo)(f, g) (OR/Oaao)(f, g) 

It may seem strange that we are actually able to find the common root from the 

coefficients of the polynomials by using only polynomial operations (in particular, 

the root belongs to Q if the coefficients aij belong to Q). But a little reflection 

shows that this does not contradict Galois theory: if we assume that u is the 
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only common root then it should be fixed under the Galois group and hence it is 

rationally known. 

C. Resultants associated to vector bundles 

The constructions of both the X-discriminant in Chapter 1 and the (El . . . . .  Ek)- 
resultant are particular cases of the following more general construction. 

Let X be a (k - 1)-dimensional irreducible projective variety and let E be a 

vector bundle on X of rank k. Set V = H~ E). We shall assume that E is very 
ample. This means that the two following conditions hold: 

(1) For any x 6 X, the subspace 

y ( x ) =  {s ~ H ~  : s ( x )=O}  c H ~  V 

has exactly codimension k. 

(2) The correspondence x ~ y(x)  defines a regular embedding of X into the 

Grassmannian of codimension k subspaces of V. 

We define the E-resultant variety Ve C V as the set of sections which vanish 

at some point x e X. As in Proposition 3.1, we show that Ve is an irreducible 

hypersurface in V. We define the E-resultant Re to be the irreducible equation 

of V e. This is a polynomial function on V = H ~ E) defined up to a constant 

factor. 

Example  3.9. When E = E1 @'" "@Ek is a sum of line bundles then the E-resultant 

coincides with the (El . . . . .  Ek)-resultant defined above. 

We shall not seriously study E-resultants in their full generality, but merely 

formulate their simple properties. 

Theorem 3.10. Re is a homogeneous polynomial function on V = H~ E) of 

degree equal to f x ck-1 (E). 

Sketch of the proof. Homogeneity is obvious. To find the degree, we should take 

two genetic sections s l, s2 ~ V and find the number of values ,k e C such that 

sl + Xs2 has a zero. The classical geometric definition of the Chern class ck-1 (E) 

of a rank k bundle E (see [MS]) is as follows. This class (lying in H2k-2(X, Z)) is 

Poincar6 dual to the cycle Z of complex codimension k - 1 consisting of all x e X 

such that sl (x) and s2(x) are linearly dependent, i.e., proportional. Note that in our 

situation dim Z = 0. For any x e Z, we can choose ~. such that (Sl + ~.s2)(x) = 0. 

Conversely, for the existence of such X, Sl (x) and s2(x) must be proportional. So 

the number of values X as above is equal to the number of x such that Sl (x) and 

s2(x) are proportional, i.e., to fx  ck-1 (E), as claimed. 
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Next, we describe the Cayley trick for E-resultants. We consider the variety 

X = P(E*),  the projectivization of the bundle E*. There is a projection p �9 

X --+ X whose fibers are projectivizations of fibers of E, and a natural projection 

Jr �9 E* - X ~ X, where X is embedded into the total space of E* as the zero 

section. For any I 6 Z, we denote by O(l)rel the invertible sheaf on ~" defined as 

follows. For open U C ,~, a section of O(l)rel over U is a regular function on 

Jr -1 (U) which is homogeneous of degree I with respect to dilations of E*. We 

call O(l)rel the relative sheaf O(1) on X = P(E*). Its restriction to every fiber 

p-l(x) --- P(E~) is the standard sheaf 0(1) of the projective space P(E~,) (see 

Section 4B, Chapter 1). 

Note that the direct image p.O(1)rel is identified with E. This follows from 

the natural identification H~ O(1)) ~- W holding for any vector space W 

(Theorem 2.12, Chapter 2). We conclude that 

H~ O ( 1 ) r e l  ) " -  H~ E) = V. 

Now the Cayley trick goes as follows. 

Theorem 3.11. The image of X in P (V*) in the embedding given by O(1)rel, and 
the projectivization P (VE) C P (V) are projectively dual to each other. 

The proof is similar to that of Proposition 3.4. 

Example 3.12. Suppose that X is a smooth variety and take E = J ( s  to be 

the first jet bundle of a very ample line bundle s Let V0 = H~ 12) and 

V -- H ~ E). The correspondence f ~ j ( f )  (the jet of a section) defines an 

embedding V0 C V. The variety X is embedded into P (V0*). 

If the projective dual variety X v C P(Vo) is a hypersurface then the bundle 

E = J(12) is very ample, and for any f ~ V0 , we have A x ( f )  = RE(j( f))  
where Ax is the X-discriminant (i.e., the equation of XV). Indeed, f 6 X v if and 

only if j ( f )  6 VE. Thus the restriction of RE to V0 C V has the same zero locus 

as Ax. This implies that this restriction is a power of A x. However, the degree of 

Ax is given by Theorem 3.4 of Chapter 2 by 

k - 1  

deg Ax = ~-']~(i + 1) fx  Ck-l-i(~'21x)Cl(ff-')i" 
i=0  

We claim that 

k - 1  

y~(i  + 1) fxCk_l_i(~'21)Cl(ff-,)i-- fxCk-l(E). 
i=0  

(3.6) 
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To see this, consider the exact sequence 

0--~ ~21x | s --+ E ----~ E --~ O (3.7) 

(this is the sequence (1.5) of Chapter 2). For any vector bundle F and any line 

bundle/2, we have (cf. [OSS], Chapter 1) 

' ( ;- i i)  cp(F ~ if,) -- ~.= ci(F)Cl(ff_,) k - l - i  r = rkF .  

Applying this formula to F = f2~r and also applying the Whitney sum formula to 

(3.7), we deduce the equality (3.6). 

4. The Cayley method for the study of resultants 

In Chapter 2 we discussed a method for finding discriminants as determinants of 

certain complexes. This method applies equally well to other elimination problems, 

in particular to the problem of finding the resultant. In fact, the problem ofresultants 

was the original context in which Cayley introduced his method [Ca4]. 

A. Koszul complexes and resultant complexes 

Let X be an irreducible projective variety of dimension k - 1 and let/21 . . . . .  /2k 
be invertible sheaves (line bundles) on X. We assume that each ~i is very ample. 
Consider the vector bundle E = ~D Ei. Suppose we have fixed sections fi 
H~ s Then the collection (fl . . . . .  fk) defines a section s of E. Hence we 

can form two Koszul complexes/C+(E, s) of sheaves on X (the complexes (1.6) 

and (1.7) of Section 1B, Chapter 2). 
Let .M be another line bundle on X. We consider the twisted Koszul com- 

plexes/C+ (E, s) | .M. The complexes of global sections of these complexes of 

sheaves will be denoted by C~ (El . . . . .  Ek [.A/l) and called the resultant complexes 

(associated with E1 . . . . .  s and .M). Note that 

p 

A(L,.....c,)- | 
15il <...<ip<k 

Therefore the resultant complexes have the form 

={ 
C+(s . . . . .  s [ .~) 

u~ M~ ~ 6 )  "~ x, c, | M ) ~  6 )  "~ x, L, | L~ | M ) ~  ... }, 
i i<j 

(4.1) 
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c '_ ( s  . . . . .  z;j, I.A4) 

= {" " --~ ~ H~ s | s | ~ H~ E~ | H~ } i 

(4.2) 

The differential in any of these complexes will be denoted by Of 1 ..... A" It is not 

strictly necessary to consider both types of complexes since obviously 

C+(/~I . . . . .  / ~ k l M ) -  C~ (/~1 . . . . .  /~kl.A4 @ ( ( ~ / ~ i ) ) [ k ] ,  (4.3) 
i 

where the number k in brackets means the shift of grading of the complex. However, 

it will be convenient for us to keep the distinction between C~_ and C'__. 

We shall say that each of the complexes C~: (/:1 . . . . .  Ek IA4) is stably twisted 
if all the terms of the above complex )U~(E, s) | .A/l, (of which it is the complex 

of global sections) have no higher cohomology. 

Proposition 4.1. If the resultant complex C~. (El . . . . .  EkIA4) (resp. C'_ (/~1 . . . . .  
s is stably twisted, then the differential Of~ ..... A in this complex is exact for 
any (fl  . . . . .  fk), such that Rz:l ..... z:k (fl  . . . . .  fk) :/: 0. 

Proof. Similar to Proposition 2.3 of Chapter 2. 

As in Section 2A of Chapter 2, we define the determinants of the resultant 

complexes 

g • z:, ..... Z:klM(fl . . . . .  fk) = det (C~(E1 . . . . .  EkIA4), 0f, ..... A, e) ,  (4.4) 

where e is some system of bases in the terms of the complex. These are rational 

functions on the space I-I vi where Vi - H ~ ( X, ff-'i ). 

Theorem 4.2. 

(a) If  the resultant complex C~_ (s . . . . .  Ek I.A4) is stably twisted then 

R + - -  R ( - l ) k  
E l  . . . . .  s  - -  E l  . . . . .  Z2k' 

where Rz:, ..... zzk is the (El . . . . .  Ek)-resultant. 
(b) /fC'__(E1 . . . . .  EkI.A4) is stably twisted then 

Rc.I ..... Z:kl.X'l = Rs ..... s 
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Proof Since this is very similar to the proof of Theorem 2.5 of Chapter 2, we give 
only an outline here. 

We consider the incidence variety W C X x P(I-I vi) ofall tuples (x, f l  . . . . .  fk) 
such that f l  (x) - . . .  - fk(x) = 0 (so W is the projectivization of the variety 
Bz:~ ..... z:k in (3.1)). Let 

X <P' W p2> P ( H  Vi) (4.5) 

be the natural projections. Let us abbreviate the resultant variety Vz:, ..... z:k by V. 
Then P(V)  C P(I-I vi) coincides with p2(W) and P2 : W --+ P(V)  is a birational 
isomorphism. Also let 

(H (H 
be the projections of the product to the factors. 

We consider the vector bundle p ]  (~) s | P~, O(1) on X • P (I-I vi). The 
space of sections of this bundle is naturally identified with End (I-I vi). The section 
cr corresponding to the identity endomorphism vanishes exactly along W. More- 
over, since Pl : W --+ X is a projective bundle, we can apply Proposition 1.4 (c) 
of Chapter 2 and get the Koszul resolution of Ow: 

--i<j 

Ox• I (4.6) 

Denote this complex by E ~ As in the proof of Theorem 2.5 of Chapter 2, we 

combine the complexes (C'_ (/~1 . . . . .  s Of~ ..... A) for various (fl  . . . . .  fk) 
l-I v/ into a complex of sheaves 

0(C '__ ( s  . . . . .  s 

= { . . .  --+ C-__I(F-.1 . . . . .  EkI.A4) | 0 ( - -1 )  ~ C ~163 /:kl.A4) | O} (4.7) 

on the projective space P (I-I vi). This complex is nothing more than the direct 
image pv,(1C ~ | p~.A4). To complete the proof of Theorem 4.2 (b), we proceed 
as in the proof of Theorem 2.5 of Chapter 2; we use the fact that/C ~ is a resolution 
of Ow and that p2 : W - ,  P (V) is birational. Similarly for the proof of part (a). 
We leave the remaining details to the reader. 
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B. Examples  

Example 4.3. The Sylvester formula. Let X -- p1 and/~i - - O ( d i ) ,  i = 1, 2. 

For any d, we denote by S d the space of homogeneous polynomials of degree d in 

two variables x0, x l. Thus V / =  H ~ (X,/~i) is identified with S d' . 

As we have seen in Example 3.2, the (El, s of fl  6 S dl , f2 ~ S d2 

is the classical resultant R ( f l ,  f2) of two polynomials. To show the meaning 

of Theorem 4.2 in this example, let us choose the twisting line bundle .A4 to be 

O ( d l  + dE -- 1). The resultant complex C'__(E1, E21.M) is stably twisted: this 

follows from general information about the cohomology of sheaves O ( l )  on p1 

(Theorem 2.12, Chapter 2). This complex has the form 

sd2_1(~) s d , _  10f, ,~ sd,+d2_l , (4.8) 

where Of~.f 2 (u, v) = f l u  + f2v .  Our theorem implies that R(f l ,  f2) is, up to 
a constant factor, the determinant of the matrix Of,,f 2 with respect to some fixed 
bases in S a~-l, S a2-1 and S a~+a2-1. We suppose that 

d~ d~ -1  x dl 
f l (x )  --  aox o + a l x  o 1 + ' ' ' W a d ,  x1 , 

dE-- dE fz(x) = box d2 + b l x  o lx l  + " "  + bd2Xl 

m - i x  i T h e n  and choose in each of the spaces S m in (4.8) the basis of monomials x 0 1. 

Theorem 4.2 gives the classical Sylvester formula 

R(f~, f 2 )  = 

ao al a2 . . .  ad~-1 adl 0 0 . . .  0 

0 ao al . . .  ad~-2 ad~-l  ad~ 0 . . .  0 
�9 ~ ~ ~ ~ ~ ~ , ~ ~ 

�9 , ~ ~ 

0 0 0 . . .  ao al a2 a3 . . .  adi 

bo bl . . .  bd2 0 0 . . . . . . . . .  0 

0 bo bl . . .  ba2 0 0 . . . . . .  0 
�9 ~ ~ ~ ~ ~ ~ ~ , ~ 

~ , ~ ~ ~ ~ ~ 

, , �9 ~ , ~ ~ . ~ ~ 

�9 ~ ~ . ~ ~ . . , ~ 

, ~ ~ ~ , ~ , 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

0 0 0 . . . . . .  0 bo bl . . .  bd2 

(4.9) 

Example 4.4. Chow forms. Note that Theorem 4.2 gives a way to write down, at 

least in principle, the Chow form R x  of any irreducible (k - 1)-dimensional sub- 

variety X C p~- l .  Recall that R x can be represented as a polynomial function in 

the coefficients of k indeterminate linear forms fl . . . . .  fk  on C ~. This polynomial 

function is the same as the (/21 . . . . .  /2k)-resultant where all/~i a r e  Ox(1).  Thus 
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choosing the twisting sheaf .A4 to be ample enough (say .A4 = Ox(l ) ,  l >> 0) we 

can represent Rx as the determinant of the complex C'__ (O(1) . . . . .  O(1)I.A4). We 

can now write R x ( f l  . . . . .  fk) as an alternating product of determinants of some 

matrices whose entries linearly depend on the coefficients of the fi. 

C. Resultant spectral sequences 

Let X, 121 . . . . .  s be as before and let .A4 be any line bundle on X. As in Section 

5A of Chapter 2, we define the resultant spectral sequences C pq r,d= (~1 . . . . .  /2k ].M) 
to be the spectral sequences of the twisted Koszul complexes 

e . . .  �9 Ok, . . . . .  fk)) M. 

Thus the first terms of these sequences do not depend on (fl  . . . . .  fk) ~ l-I vi and 

are respectively 

CPql,+ -- ~ H q (X, ft-,i, ~ " "  ~ if, i t, (~) -/~), P _ > 0, (4.10) 
l<il <...<ip <_k 

c - P ' q  H q ( X ,  L *  ft.* = il ~ ' ' "  ~ i t, | .Ad), p _> 0. (4.11) 1,- 
1<il <...<ip<k 

The differentials in the r-th term of any of these spectral sequences will be denoted 
by Or, f~ ..... A" The higher terms of the spectral sequences depend on fl  . . . . .  fk so 
that in case we wish to emphasize this dependence we will use the notation 

C pq r,-l- ( /~  1 . . . . .  /:k ]M, fl  . . . . .  fk). 

The differentials Ofm ..... A have homogeneity properties similar to those of 

differentials in the discriminantal spectral sequences (cf. Proposition 5.3, Chapter 

2). 

Proposition 4.5. For any 3~1 . . . . .  Xk ~_ C*, we have a natural system of  identifi- 

cations 

~ r ~  " c p q  (~" ~-.kl - ~  ~ . , f l  ~ . k f k )  - +  C pq (~1, ~k[. )~t, f l  f k )  r,:t: 1, �9 �9 �9  , , �9 �9 �9  r,+ �9 �9 �9  , �9 �9 �9  

with the following properties: 

(a) Under the r-th identification the differential Or, f~ ..... A is multi-homogeneous 

of  multi-degree (r . . . . .  r) in (fl . . . . .  fk): 

. . . . .  - . . . . .  : , .  (4.12) 
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(b) The identification Cr itself is induced by the homogeneity (4.12) o f  the previous 

differential Or- l, f, ..... A" 

The meaning of part (b) is similar to that in Proposition 5.3 of Chapter 2. So 

is the proof, which we leave to the reader. 

Proposit ion 4.6. I f  a collection ( f l  . . . . .  fk) ~ l-I Vi (Vi = H~  s is such 

that Rs ..... r.k (fl  . . . . .  fk)  ~ 0 then both spectral sequences 

CPq ( / ~ 1  s f l  fk)  r,=t= , - ' ' ,  , , ' ' ' ,  

are exact, that is, they converge to O. 

Proof  Similar to that of Proposition 5.1, Chapter 2. 

By Proposition 4.6 we can define the determinant of any of the spectral se- 

quences CPq~(s . . . . .  s In each case the determinant is a rational function 

on I-I vi defined up to a constant factor (see Section 5A of Chapter 2 for details). 

Theorem 4.7. The determinant o f  the spectral sequence  CrPq(ff., 1 . . . . .  s  

coincides, up to a constant factor, with the (~1 . . . . .  ~k)-resultant RI:~ ..... lzk. The 
,.,(-1) k 

determinant o f  C pqr,+ (~-,1 . . . . . .  /~k].A4) coincides with ~xl: ' ..... z:~ 

The proof is similar to that of Theorem 5.2, Chapter 2 and we do not go into 

details. 

Example  4.8. Bezout formula for the classical resultant. Let X = p1 and 

s = s = O(d) .  The space V = H~ 1, O(d))  is identified with S d, the space 
ofbinary forms ofdegree d. Let g, h be two such forms. Then Rz:,,z:2 is the classical 
resultant of g and h. We calculate it by using the resultant spectral sequence and 
to this end we take the twisting sheaf .A4 to be O(d - 1). The resultant spectral 

sequence C pq (/~1 /~21- A~) is the spectral sequence of the complex of sheaves r , - -  

O ( - d  + 1) 08.h> O(--1) ~ (.9(--1) 08'~ O(d  - 1). (4.13) 

The only non-trivial differential in the spectral sequence is 

02,g,h " H I ( p  1, O ( - d  + 1)) -- (sa-1) * > s d - l =  H ~  1, O ( d -  1)). 

By Theorem 4.7, we have R (g, h) = det (02,g,h). The method of Section 5, Chapter 

2 can be used for the explicit evaluation of 02,g,h. That is, 02,g,h c a n  be regarded as 

an element of S d-1 | S d-1 , i.e., as a bihomogeneous polynomial F(xo, xl ,  Yo, Yl) 

in two groups of variables xi, Yi having the bidegree (d - 1, d - 1). We have 

F (xo, X 1 ,  Yo, Yl) = 
g(xo, xl)h(yo,  Yl) - h(xo, xl)g(yo,  yl)  

xo yl - yox l 
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which is the classical Bezout formula for the resultant of two forms of the same 
degree. The formula for the discriminant (Section 5B Chapter 2) is a particular 

case corresponding to the case when g and h are partial derivatives of some form 

f (xo,  xl). 

D. An example: the Sylvester formula for the resultant of three ternary forms 

Let X = p 2  121 = 122 =/~3 = O(d). The space V = H~  2, O(d)) is equal 

to s d c  3, the space of forms of degree d in three variables x l, x2, x3. There is a 

remarkable formula for the resultant Rz:t,z:2,z:3 due to Sylvester (see e.g., [Sal] or 
[Net], Bd.2, Section 451.) We first describe the formula and then indicate how it 
can be deduced from Theorem 4.7. 

Let k be an integer equal to d - 2 or d - 1. (The whole procedure below 
will be valid for any of these two choices of k). Let f l ,  f2, f3 ~ s d c  3 be three 
polynomials. Following Sylvester, we first consider the operator 

Tfl,f2,f3 " s2d-3-kc  3 (D s 2 d - 3 - k c  3 (~ s 2 d - 3 - k c  3 "--+ s3d-3-kc3,  (4.14) 

which takes (ul, u2, u3) ~ ul f l  + u2f2 + u3f3. This is just a homogeneous part 
of the last differential in the Koszul complex associated with f l ,  f2, f3. 

For any three non-negative integers o~,/~, y such that a 4-/3 4- ?, -- k, let us 
write 

I f 1  = x~ +1 p(1) x2~+1 r~(1) +l t~(1) 
a+l p(2) X~+I r)(2) x~,+l ~,(2) (4.15) f2 = X1 " a/3y 4- ~a~y  4- *'a/~y 

~+1 p(3) x2a+l c)(3) x~+lp(3) f3 = Xl �9 a/~• 4- ~ a # r  4- �9  

~,(i) A(i) n(i) where r'j~• (2~• ~x~r are some homogeneous polynomials of degrees respec- 

tively d - t~ - 1, d - ~ - 1, d - y - 1. Such a representation of the fi is clearly 
possible although not unique (since ct + ~ + F = k < d, every monomial of 

,~+~ x~+ ~ x ;  +~ degree d is divisible by at least one of X l , or ). Having chosen such 

representations, we define the polynomial 
( ~ ) 
~y 

D~t~r = det p(2) �9 a~y 
(3) 

Q( 1) i,,(I) 
t~#y t~a#y 
(2) D(2) 
afly "'a/3y 
(3) /;?(3) 
a#y "*a#y 

(4.16) 

of degree 3 d - 3 - k .  Define the linear map D : (SkC3) * ~ s3d-3-kc  3 by sending 

8,#~ r ~-~ Dat~ r, (4.17) 

where {3,#~r} is the basis dual to the monomial basis in skc  3. This map depends 

not only on the ~ but on the choices of representations of the fi in the form (4.15). 

This dependence, however, is easy to control. 
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L e m m a  4.9. A different system of representations (4.15) changes any D~• by 
adding a polynomial from the image of Tf~, f2,f3. 

Proof Suppose that we choose a different representation for, say, f l ,  i.e., we 

replace 

pa(1) p(1) ~(1) n(1) ~(1) ~(1) 
t~• ~ " ate• + P ~ + Q ~ + R, ' ~'~a[3y ~--.ot#y ' "'ot[3y "*ct#y 

where x~+'P + x~2 +' Q + x~+'R = 0. Then the difference between the new and 

the old value of Dat~ • will be equal to 

det 

P Q R 
(2) t.)(2) /p(2) 

(3) t,-}(3) ~(3) 
(4.18) 

x 1 ,x  2 , is exact, the space of Since the Koszul complex associatedto -u+l t~+l x~,+l 

triples (P, Q, R) such that x~ +1P + x2 ~ Q + x~ '+1R - 0 is linearly generated by 

triples of three types: 

(Ux~2 +', -Ux~ +', 0), (Vx~ +', O, -Vx~ +'), (0, Wx~ +1, -Wx~2 +') (4.19) 

where U, V, W are some homogeneous polynomials. In the following formulas 
let us write for simplicity p(i) instead of p(i) and the same for Q(i) R(i) �9 u f l •  , " 

If we take (P, Q, R) in, say, the first form in (4.19), we get the determinant 

(4.18) tobe Ux~2 +1 -Ux~ +1 0 
det p(2) Q(2) R (2) . (4.20) 

p(3) Q(3) R(3) 

Expanding this determinant in the first row and using (4.15) we obtain that it is 

equal to U(R(3)f2 - R(2)f3 ) and hence belongs to the image of Tf,,f2,f3. The other 
types of (P, Q, R) given in (4.19) are considered similarly. Lemma 4.9 is proved. 

Consider now the linear operator 

Tf~,f2,f3 + D" s2d-3-kc 3 ~)s2d-3-kc  3 ~ s2d-3-kc 3 i~)(skc3) * 

s3d-3-kc3. (4.21) 

An elementary check shows that, for k = d - 2 or d - 1, the dimensions of 

the source and the target spaces of this operator coincide. By Lemma 4.9, the 

determinant of TfI,f2,f3 + D (with respect to some fixed bases) is independent of 

the arbitrary choices made in the definitions of D. Now the result of Sylvester is 

as follows. 
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Theorem 4.10. The resultant R ( f l ,  f2, f3) is equal to the determinant o f  the 

matrix o f  Tf~,f~,f3 + D. 

In the book of Netto [Net] it is said of the Sylvester formula that it, "...an 

Strenge der Beweisfiihrung zu wiinschen 1/isst."* No wonder since this formula 

(published in 1852) involves in fact the determinant of a spectral sequence! 

More precisely, let us consider the resultant spectral sequence 

Cr pq ((...~(d), O(d), O(d), O ( 3 d  - 3 - k ) ) ,  

i.e., the spectral sequence of the twisted Koszul complex 

O ( - k  - 3) ~ O(d  - 3 - k) ~3 ~ O(2d - 3 - k) ~3 ~ O(3d - 3 - k) (4.22) 

of sheaves on p2. Note that we have assumed k --- d - 2  or k = d -  1. Therefore the 

sheaf O(d  - 3 - k) is either O ( -  1) or 0 ( - 2 )  and does not have any cohomology. 

The whole spectral sequence reduces to the form depicted in Figure 7. 

n~(v ~, o(-k-3)) 
=(s.c,)" ~ 

(S2d-3-kC3) ( l )3~s3d-3-kC3 

Figure 7. 

The differential Ol,fl,f2,f3 is just the operator Tf~,f2,f3 from (4.14). The trans- 

gression 03,f,,f2,f3 (whose values are defined only modulo the image of 01) is 

nothing other than the map D from (4.17). 

To see that D indeed coincides with 03 (and thus to give a rigorous proof of 

Theorem 4.10), we have to perform an explicit calculation by using (~ech resolu- 

tions similar to one used in the proof of Proposition 5.4, Chapter 2. We leave this 

as an exercise for the reader. 

* lacks rigor, as far as the proof is concerned. 
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E. Weyman's complexes 

Let X,/~1 . . . . .  /~k, .A4 and the resultant spectral sequences Pq Cr, rk(ff~l . . . . .  /~k 1./~) 

have the same meaning as in subsection C above. Similar to the procedure described 

in Section 5C of Chapter 2, each of these spectral sequences can be replaced (non- 

canonically) by a bigraded complex whose (p, q)-term is the same as C pq the 1,+, 
corresponding Cl-term. We refer the reader to Section 5C of Chapter 2 for the 

terminology related to bigraded complexes. 

We shall deal with the C_-spectral sequence, the case of the C+-sequence 

being analogous. 

Theorem 4.11. There is a bigraded complex (C ~176 Of~ ..... A) in which 

' il ~ ' ' "  ~ ip ~ " /~  
l<il <...<ip<k 

and the differential Of~ ..... A depends polynomially on f l . . . . .  fk. This complex has 

the following properties: 

(a) The differential Of 1 ..... fk has the form Ofl ..... fk - -  Y~r>l  Or, f l  ..... fk where Or, f i  ..... fk 

has bidegree (r, 1 - r) with respect to the bigrading in C ~176 and its matrix 

elements are polynomials homogeneous of  degree r in the coefficients of  each 

3~. Moreover, Ol,f~ ..... fr is induced by the differential in the Koszul complex 

(b) The determinant of  the total complex (C ~ Of~ ..... A) of  C ~176 equals, up to a 
non-zero constant factor, the (17.1 . . . . .  l:k)-resultant Rr_.~ ..... z:~ ( f  l . . . . .  fk). 

The proof is similar to that of Theorem 5.5 of Chapter 2 and we omit it. 

As for the discriminantal case, the resultant spectral sequence has the ad- 

vantage of being canonical (i.e., it is determined by fl . . . . .  fk uniquely), but the 
calculation of its determinant may be rather involved. On the other hand, Theorem 

4.11 realizes Rz:, ..... z:k in a more convenient form (as the determinant of a bigraded 

complex) but the differentials in this complex are not canonically defined. We 

refer the reader to Section 5 of Chapter 2 for a more detailed discussion of the 
discriminantal case. 



CHAPTER 4 

Chow Varieties 

1. Definitions and main properties 

The Grassmann variety G(k, n) parametrizes (k - 1)-dimensional projective sub- 
spaces in pn-1. Projective subspaces are just algebraic subvarieties of degree 1. 

It is natural to look for parameter spaces parametrizing subvarieties of a given 

degree d >_ 1. Here, however, we encounter some new phenomena. Namely, an 

irreducible variety can degenerate into a reducible one (e.g., a curve can degenerate 

into a collection of straight lines). Moreover, consider a reducible variety, say, a 

union of two distinct lines. Such a variety can degenerate into one line, which 

apparently has a smaller degree. Of course, in this case it is natural to count the 

limiting line with multiplicity 2. To take into account all of these possibilities, we 

need the notion of an algebraic cycle. 

A. Algebraic cycles 

By a (k - 1)-dimensional algebraic cycle in p~- l ,  we mean a formal finite linear 

combination X -- ~ miXi with non-negative integer coeffcients, where the Xi 
are (k - 1)-dimensional irreducible closed subvarieties in p, , - l .  The degree of 

such a cycle X is defined as deg (X) = ~ mi deg (Xi). 
Let G(k, d, n) be the set of all (k - 1)-dimensional algebraic cycles in pn-1 

of degree d. The notation is chosen to suggest an analogy with the Grassmannians. 

Indeed, G(k, 1, n) coincides with the Grassmannian G(k, n) because any algebraic 

cycle of degree 1 is always given by a projective subspace with multiplicity one. We 

want to introduce the structure of an algebraic variety on G (k, n, d) generalizing 

the case of the Grassmannians. Of the three types of coordinates existing for 

Grassmannians (see Section l, Chapter 3), only one extends to general G (k, d, n), 

namely the Plticker coordinates. This is done as follows. 

Recall that, for an irreducible (k - 1)-dimensional subvariety X C p~- l ,  

we defined (Section 2B Chapter 3) its Chow form (or X-resultant) Rx. This is a 

polynomial Rx( f l  . . . . .  fk) in coefficients of k indeterminate linear forms on C n 

which vanishes whenever the projective subspace {fl . . . .  = fk = 0} of p~-I  

intersects X. The polynomial Rx has an obvious homogeneity property: for any 

matrix g = [Igijl[ ~ GL(k),  we have 

R x ( g l l f l  -k- . . .  "k- glkfk . . . . .  gklf l  + ' ' "  + gkkfk) = det(g)dRx(f l  . . . . .  fk), 
(1.1) 
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where d -- deg X. The space of polynomials with this property was denoted by 

Bd (Section 1 Chapter 3). 

Let now X = y~ mi Xi be a (k - 1)-dimensional algebraic cycle in pn-1 of 

degree d. We define the Chow form of X as 

(1.2) 

The coordinates of the vector R x are called Chow coordinates of X. Their impor- 

tance is seen from the following theorem of Chow and van der Waerden. 

Theorem 1.1. The map X ~ Rx defines an embedding of G(k, d, n) into the 

projective space P (13d) as a closed algebraic variety. 

The variety G (k, d, n) with the algebraic structure defined by the above em- 

bedding is called the Chow variety and its embedding into P(13d) is called the 

Chow embedding. Note, in particular, that Theorem 1.1 implies that the Chow 

variety is compact so that any (analytic) one-parameter family X (t), t ~ 0 of irre- 

ducible (k - 1)-dimensional subvarieties in pn-1 has the limit X (0) which is an 

algebraic cycle. We shall prove Theorem 1.1 later in this section. But first let us 

discuss some examples. 

B. Examples 

Example 1.2. (a) The Chow variety G (k, 1, n) is the Grassmannian G (k, n) and its 

Chow embedding coincides with the PRicker embedding, as follows from Example 

2.3 (c) of Chapter 3. 

(b) Consider the Chow variety G (n - 1, d, n), parametrizing cycles of degree d 
and codimension 1 in P " -  l, that is, hypersurfaces. We have seen in Example 2.3 (a) 

Chapter 3 that the Chow form of an irreducible hypersurface is just its equation 

which is an irreducible homogeneous polynomial of degree d in n variables. Al- 

gebraic cycles of codimension 1 correspond to all nonzero homogeneous polyno- 

mials, irreducible or not, of degree d. Thus the Chow variety G (n - 1, d, n) is the 
projective space of such polynomials" 

G(n - 1, d, n) -- p ( sdcn) .  

Example 1.3. Consider the Chow variety G(2, 2, 4) parametrizing 1-dimensional 

algebraic cycles of degree 2 in p3. Such a cycle is given by either a curve of degree 

2 or by two lines. A curve of degree 2 is just a planar quadric*. Therefore G (2, 2, 4) 

* Indeed, taking three non-collinear points x, y, z on an irreducible curve X of 

degree 2, we find that the plane FI spanned by x, y, z intersects X in at least 3 

points. Since 3 > 2 -  deg(X), it follows that X C FI. 
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has two irreducible components C and D corresponding to planar quadrics and 
pairs of lines. These components intersect since a quadric can degenerate into a 

pair of lines. However, the two lines representing the limit of a family of planar 

quadrics are coplanar, whereas D is formed by all pairs of lines. Conversely, any 

pair of coplanar lines can be obtained as the limit of a family of planar quadrics. 

Therefore C and D intersect along the locus of pairs of coplanar lines. 
The variety D has dimension 8 since one line in p3 depends on 4 parameters. 

It is interesting that the dimension of C is also 8. Indeed, to define a quadric curve 
X in p3, we must first define a 2-plane in which lies X. This gives 3 parameters. If 

a plane FI C p3 is fixed then all quadrics inside FI -~ p2 depend on 5 parameters. 
Thus the number of parameters adds up to 8. 

Example 1.4. Consider the variety G(2, 3, 4) parametrizing 1-dimensional cycles 

in p3 of degree 3. There are several possibilities for such a cycle. It may have: 

(1) an irreducible curve of degree 3; 
(2) a line and a planar quadric curve; 

(3) or three lines. 
Let C, D, E be subvarieties in G(2, 3, 4) parametrizing cycles of types (1), 

(2), (3). A cubic curve in p3 can be of two types (see [Hart], Chapter IV, Section 
6)" either a planar cubic curve or a so-called twisted cubic (rational normal curve). 

By definition, a twisted cubic is a curve which can be brought by a projective 
transformation of p3 to the standard Veronese curve 

{(xo x x,. xox,: �9 (xo. x,) P'] .  (1.3) 

Thus C is the union of two components C1 I,.J C2 where C1 parametrizes planar 
cubics and C2 parametrizes twisted cubics. So 

G(2, 3, 4) - C1 tO C2 [,-) D L) E. 

The dimension of E (the component parametrizing triples of lines) is 12 (since one 

line depends on 4 parameters). The dimension of D (the component parametrizing 

cycles consisting of a line and a planar quadric curve) is also 12, in view of the pre- 

vious example. It turns out that the dimension of C2 (the component parametrizing 

twisted cubics) is also 12. Indeed, all twisted cubics are images of one particular 

twisted cubic (1.3) under projective transformations. The stabilizer of the curve 

(1.3) is the group PGL(2) of projective transformations of p1 embedded into 

PGL(4) (the group of projective transformations of p3) via the map 

GL(2) - GL(C 2) ~-+ GL(4) = GL(S3C2), g w-~ S3g. 

Hence C2 - -  PGL(4)/PGL(2), and its dimension is equal to 15 - 3 -- 12. 
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Let us now look at the remaining component C1 (the space of planar cubics). 

Its dimension is equal to 3 (the number of parameters defining a plane) plus 9 (the 

dimension of the space of cubics in a given plane), once again 12. 

At this point it becomes tempting to make a naive conjecture that all the 
components of the variety G(2, d, 4) of all 1-dimensional cycles in p3 of degree 

d have the same dimension 4d (there is certainly a component of dimension 4d 

parametrizing cycles split into d lines). However, the next example shows that this 

is not true. 

Example 1.5. Consider the Chow variety G(2, 4, 4) of 1-dimensional cycles in 

p3 of degree 4. This variety has many components corresponding to the various 

possibilities that occur for a cycle of degree 4, such as: 

(1) an irreducible curve of degree 4; 
(2) a cubic curve and a line; 

(3) two quadric curves; 

(4) a quadric curve ant two lines; 

(5) or four lines. 

It is clear from the previous examples that all of the components in the cases 

(2)-(5) have dimension 16. So we concentrate on the subvariety C C G(2, 4, 4) 

parametrizing irreducible curves of degree 4. This variety is also reducible since 

irreducible curves of degree 4 can be of three different types (again see [Hart], 

Chapter IV, Section 6), namely, 

(1.1) a planar quartic; 
(1.2) a rational curve of degree 4; 
(1.3) a spatial elliptic curve of degree 4 (intersection of two quadric surfaces). 

Let C1, C2, C3 denote the components corresponding to (1.1), (1.2) and (1.3). 

It is not hard to check that both C2 and C3 have dimension 16 (we leave this to the 

reader). However, the dimension of C1 is 3 (the number of parameters defining 
a plane) plus 14 (the dimension of the space of quartics in a given plane), i.e., 
dim C1 -- 17. Thus the above naive conjecture is not true. 

The phenomenon that so many components of G(2, d, 4) have dimension 4d 

can be explained as follows. Let X be a curve in p3 and for simplicity assume it 

to be smooth. Let d be the degree of X and let Cx be the component of G(2, d, 4) 

containing X. To find the dimension of Cx, it is practical to find TxCx, the (Zariski) 

tangent space to Cx at X. Vectors from TxCx are what is traditionally called 

infinitesimal deformations of X inside p3, i.e., germs of 1-parameter families 

of curves X (t) C p3, X (0) -- X, considered "up to terms of second order of 

vanishing in t," see, e.g., [Hart], Chapter III, Exercise 9.8 for a precise definition. 

The Kodaira-Spencer deformation theory provides (see loc. cit.) that the space of 
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such infinitesimal deformations, i.e., TxCx, is naturally identified with H~ A/') 

where A/" = Tx p3 is the normal bundle of X. Informally, a deformation, i.e., a 

way of moving X inside p3, produces a vector of velocity at every x ~ X. Since 

we are interested in the movement of X as a whole and not as individual points, 

the vectors of velocity which are tangent to X should be eliminated. This gives us 

a section of Af. Now we have the following. 

Theorem 1.6. Let X C p3 be a smooth curve of degree d (possibly reducible, 
with arbitrary genus of each component). Then 

X (X,  ./V') = d im H ~ (X,  .h/') - d im H 1 (X,  ./V') 

equals 4d. It follows that dim Cx > 4d, with the equality if and only if Hi (X,  ./V') 

vanishes. 

Proof of Theorem 1.6. We can assume X to be irreducible. Let g be the genus of 

X. By the Riemann-Roch theorem for vector bundles on a curve [Hir], we have 

X (X, .Af) --  c1 (.Af) @ (rank .Af)(1 - g) = Cl (.A/') + 2(1 - g), 

where Cl stands fot the first Chem class (in our case Cl is just an integer since it 

lies in H2(X, Z) = Z). We have the exact sequence 

0 --+ TX -+ T p3[x ~ .Af ~ O, 

where TX and T p3 are tangent bundles of X and e3. It is known ([Hart], Chapter 

II Section 8) that, for any n, the line bundle A " T  pn on P" is isomorphic to 

Op, (n + 1). So in our case 

c~(Tp3lx ) -- cl ( A  Tp3lx) = Cl(Oe3(4)lx) = 4d. 

Taking into account the equality cl (T X) = 2 - 2g, we find X (X, .A/') - 4d. 

The cancellation that occurred in the above proof is a specific property of 

curves in p3. for, say, curves in p4, the situation will be quite different. 

C. Proof of the Chow-van der Waerden theorem 

In this subsection we prove Theorem 1.1, following the original argument of Chow 

and van der Waerden. We need the following general remarks. 

Theorem 1.7 (Abstract theorem on elimination). Let f : Y --+ Z be a regular 
morphism of quasi-projective algebraic varieties. Suppose that f is projective, 
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i pn ~r 
i.e., it can be factored in the form X "---> Z x > Z, where i is a closed 

embedding and 7r is the projection to the second factor. Then, for  every Zariski 
closed subset R C Y, its image f (R) is Zariski closed in Z. 

For example, if Y itself is a projective variety then every morphism f �9 Y --+ Z 
is projective and the theorem is applicable. 

For the proof of Theorem 1.7, we refer the reader to [Sh]. This proof in 

principle produces a system of equations for f (R), but this system is impractical. 
As a typical application, let us mention the following fact. 

Proposition 1.8. The set of  polynomials of  degree d in n variables which can be 

decomposed into a product of  linear factors is a closed algebraic subvariety in 

SaC"" 

Proof This follows by considering the map 

h : (pn-1) d --~ p ( s d c  n) (1.4) 

which takes (the projectivizations of) linear forms fl  . . . . .  fa into the polynomial 

f l " "  fd. 

Let us now start to prove Theorem 1.1. First, we note that the map X ~ R x 

is a set-theoretic embedding of G(k, d, n) into P(Bd). In other words, a cycle is 
uniquely determined by its Chow form. By decomposing the form into irreducible 

factors, we reduce the question to the case when a cycle is in fact an irreducible 

variety. In this case our statement follows from Corollary 2.6 Chapter 3. 

It remains only to prove that the image of the Chow embedding is a closed 

algebraic variety in P (Bd). Any element F ~ Ba is a polynomial in indeterminate 

linear forms fl  . . . . .  fk or, more precisely, in the coefficients cij of fi = ~ cijxj. 
What we need to show is that the condition for F to be the Chow form of an 
algebraic cycle can be expressed by polynomial equations on the coefficients of 
F. 

Proposition 1.9. A polynomial F ( f l  . . . . .  fk) of  degree d . k is the Chow form of 

some cycle from G(k, d, n) if  and only if it satisfies the following conditions (a) to 
(d): 
(a) F lies in Bd, i.e., a linear transformation f i w-~ Y]4 gij f j by a non-degenerate 

matrix g - Ilgij II multiplies F by det(g) a. 

(b) Foranyfired f l  . . . . .  fk-1 ~ (Cn) *, thepolynomial F ( f l  . . . . .  fk-1, - ) ,  tak- 

ing fk ~ F ( f l  . . . . .  fk), decomposesintod linearfactors(fk, xl) . . .  (fk, xcl); 
here the x v are somepoints in C n. Furthermore, if  F ( f l  . . . . .  fk-1, - )  is not 

identically equal to O, then the points x v = xv(fl . . . . .  fk-1) (in this case 
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defined uniquely up to rescaling x v ~ Xvx v, Xv ~ C*, I-I xv = 1), satisfy 

the following two conditions: 

(c) The x ~ ( f l  . . . . .  fk-1) are annihilated by f l  . . . . .  fk-1. 

(d) Let $1 (x, y) . . . . .  Sk(x, y) be k indeterminate skew-symmetric forms on C ~ 

(see the context of  Corollary 2.6, Chapter 3). Then F(ixvS1 . . . . .  ixvSk) = O for  

all v. 

Proof. First we show that the Chow form of a cycle X ~ G(k, d, n) indeed 

satisfies the above conditions. The condition (a) is clear. To check the rest, it 

is enough to assume that X is an irreducible variety. Let f l  . . . . .  f / -1  be linear 

forms on C" and let H C p,,-1 be the projective subspace defined by {fl = "'" = 

fk-1 = 0}. Suppose that FI intersects X in finitely many points x I . . . . .  x / (in 

particular, its codimension is exactly k - 1). Then, for any non-zero fk, we have 

that F ( f l  . . . . .  fk) = 0 if and only if the hyperplane { f / =  0} contains at least one 

of the x v. Thus, taking some vector x ~ ~ C" with the projectivization x v, we find 

that for some e ~ C* and any fk, we have 

F(fl . . . . .  A )  "- E.  H ( A ,  xV) my, 
v 

my ~ Z + , ~ m v = d .  

So rescaling one of the x ", we get (b). Moreover, the statements (c) and (d) follow 

in our case by the construction of x v. 

Next, if H intersects X along a subvariety of positive dimension, then the 

hyperplane {fk = 0} will always meet FI fq X so that the polynomial 

F ( f l  . . . . .  f k - 1 , - )  will be identically zero. This polynomial satisfies (a) and 

(b) and the conditions (c) and (d) are in this case meaningless. 

Now let us prove the converse statement: any F ( f l  . . . . .  fk),  satisfying (a) 

to (d), is the Chow form of some cycle. First of all note that the validity of these 

conditions for F is equivalent to that for each irreducible factor of F.  Thus we can 

assume that F is irreducible. Notice that the condition (d) is equivalent to: 

(d') I f f~  . . .  f /  C n . . . . .  , , , are linear forms on vanishing at some x v (f l  fk-1) then 

F ( f ;  . . . . .  f ; )  = O. 
We can reformulate the conditions (a) to (d') in terms of the irreducible hypersurface 

Z = { F = 0} C G(n - k, n). These geometric conditions are: 

(1) Let M be an (n - k)-dimensional projective subspace in pn-1. Then the 

intersection of Z with the projective space M* of (n - k - 1)-dimensional 

subspaces contained in M is either the whole M* or a union of hyperplanes 

in M* orthogonal to some points x v (M) ~ M. 

(2) If Z fq M* # M*, then any (n - k - 1)-dimensional projective subspace in 

pn-1, passing through any point x v (M) for some M in (1), belongs to Z. 
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Indeed, (1) incorporates the conditions (a), (b) and (c): geometrically, (a) just 
means that we have a hypersurface in the G (n - k, n); the condition (b) means that 

Z f3 M* is either M* or a union of hyperplanes and (c) means that x v (M) 6 M. 
Finally, (2) is a geometric translation of (d'). 

Suppose now that Z satisfies (1) and (2). Let X0 C p,,-1 be the set of all 

points x" (M) for all (n - k)-dimensional projective subspaces M C p , -1  such 

that Z N M* 7(= M*. Let X be the Zariski closure of X0. Any (n - k - 1)- 

dimensional projective subspace in p,,-1 intersecting X0 belongs to Z. Thus the 

locus of all p,,-k-1 's meeting X (denote this locus Z(X)) ,  is contained in Z. Note 

that, for genetic M as above, we have Z f) M* -~ M*, and therefore Z ( X )  has 

the same dimension as Z. Thus Z ( X )  = Z; in particular, Z ( X )  is an irreducible 

hypersurface. This implies that dim (X) = k - 1 and Z = Z ( X )  is the associated 

hypersurface of X. Proposition 1.9 is proved. 

To prove Theorem 1.1, it remains to show that the conditions (a) to (d) in 

Proposition 1.9 can be expressed by algebraic equations on the coefficients of F. 

For (a) this is obvious, and for (b) this follows from Proposition 1.8. To treat the 

rest of the conditions, we need an auxiliary lemma. In this lemma, for any non-zero 

vector x 6 C", we denote its projectivization by P(x) 6 p , -1 .  

Lemma 1.10. Let Y C SaC" be the variety of  polynomials which can be decom- 
posed into a product of  linear factors. Let T be any quasi-projective variety and 
let F C pn-1 • T be any Zariski closed subset. Consider the set Wr C Y • T 

which is the union of {0} • T and the subset 

{ (x  1 . . . x  a, t) e ( Y - { O } ) x  T " (P(x~) ,  t) 6; r ,  Y v = l  . . . . .  d } .  (1.5) 

Then Wr is Zariski closed. 

Proof Let P(Wr)  C P(SaC ") x T be the projectivization of Wr, i.e., the quotient 
of (1.5) by dilations in the first factor. It is enough to show that P (W r) is Zariski 
closed. Let 

F a --  { (x  I . . . . .  x d, t ) ~ ( p n - 1 ) d x T "  (xV, t) EF, Vv} 

be the d-fold fiber product of 1-' with itself over T. It is obviously Zariski closed 

in (P " -  1)a • T. Now P (Wr) is the image of the composite morphism 

Far ~_+ (pn-1)a • T h• ; P(SaC ~) • T, 

where h is the same as in (1.4). This morphism is projective and the lemma follows 
from Theorem 1.7. 
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Now let us prove that the condition (c) of Proposition 1.9, taken together 
with (a) and (b), is expressed by algebraic equations on the coefficients of the 

polynomial F ( f l  . . . . .  fk). Let ~ be the variety of polynomials satisfying (a) and 

(b), and let T be the vector space of all (k - 1)-tuples ( f l  . . . . .  fk-1) of linear 
forms on C n. Also, let Y C S dC n be as in Lemma 1.10. Thus, for any F ~ �9 and 

( f l  . . . . .  fk-1) ~ T, we have a polynomial F ( f l  . . . . .  fk-1, --) ~ Y. Consider the 
Zariski closed subset 

F C pn-1 x T, r -- {(x, ( f l  . . . . .  fk-1))"  f l  (X) = . ' '  -- f k - l (X)  -- 0}. 

By Lemma 1.10, the subset Wr C Y x T is Zariski closed. Now, a polynomial 

F ~ �9 satisfies the condition (c) if and only if, for any (fl . . . . .  f•-l) ~ T, the 
point 

(F ( f l  . . . . .  f k -1 , - - ) ,  (fl . . . . .  fk-l))  ~ Y x T 

belongs to Wr. In other words, the subset in ~,  defined by the condition (c), is the 
intersection 

N p;l .... 
f l  ..... f k - l  

where pf~ ..... A-~ " ~ -~ Y x T is the regular morphism taking 

F : > ( r ( f l , . . . ,  f k -1 , - - ) ,  (fl . . . . .  fk-1)). 

So the combined conditions (a), (b) and (c) of Proposition 1.9 can be expressed by 
algebraic equations. 

Similarly, let us show that the combined conditions (a), (b) and (d) are given 
by algebraic equations. Let ~, T and Y have the same meaning as before, and let 
E be the space of k-tuples (S1 . . . . .  Sk) of skew-symmetric bilinear forms on C n. 

Lemma 1.11. The subset Q in �9 x Y x E which is the union of  �9 x {0} x E and 
the set 

{(F,  x l . . . x d  S1 Sk) E dOx(Y-{O})x~2  " F(ixvS1, ixvSk) O, Vv} ) ),.,) ..,) ~ 

(1.6) 

is Zariski closed. 

Proof. As in the proof of Lemma 1.10, it is enough to prove that the projectivization 
of (1.6), which is a subset in �9 x p ( s d c  n) • ]~, is Zariski closed there. This 

projectivization is the image of the closed subvariety R C �9 x (pn-1)d • ~ given 

by 

R = { ( F , x  1 xd S1, Sk)" F(ixvS1 ix, S k ) = O , u  ~.,,) ) ...) ~,,.) ?j 
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(here the x v e C" are non-zero vectors representing the x ~ e p , - l )  under the 

projective morphism 

Id x h x Id" ~ • (pn-1)d • r, > dp • p ( s d c  n) • ]E, 

where h is as in (1.4). The lemma is proved. 

Now, a polynomial F e �9 satisfies the condition (d) if and only if for any 

($1 . . . . .  Sk) e E and (]'1 . . . . .  fk-1) e T, the point 

(F, F ( f l  . . . . .  f k - 1 , - ) ,  ($1 . . . . .  Sk)) e �9 x Y x ~, 

belongs to the subset Q, defined in Lemma 1.11. Thus the set of F e �9 satisfying 

(d) is the intersection 

N qA',... ,A-, , s, ,...,sk (Q), 
fl  . . . . .  fk-1 

$1 . . . . .  Sk 

where qf, ..... A_,,s, ..... sk " ~ -~ ~ x Y x E is the regular map taking 

F : > (F, F ( f l  . . . . .  f k -1 , - - ) ,  (S1 . . . . .  Sk)). 

So the combination of conditions (a), (b) and (d) is also algebraic. This concludes 

the proof of the Chow-van der Waerden theorem. 

In the case when d = l, the Chow variety G(k, 1, n) is the Grassmann 

variety G(k, n) and its Chow embedding into P(131) coincides with the Pliacker 

into P (/~k C")  (Example 1.2 (a)). In this case the conditions embedding (a)-(d) 
\ / 

of Proposition 1.9 are equivalent to the Pliicker relations. More precisely, there is 

a natural identification of B1 with A k C", so (a) just means that the ambient spaces 

for the Chow and PlUcker embeddings are the same. Conditions (b) and (c) are 

fulfilled automatically, while (d) (or the equivalent condition (d'), see above) can 

be seen to be equivalent to the Pliicker relations. We leave this as an exercise to 

the reader. 

For d > 1, the proof of the Chow-van der Waerden theorem does not give 

a manageable system of explicit equations for G(k, d, n). We shall discuss this 

subject in the rest of this chapter. 

2. 0-cycles, factorizable forms and symmetric products 

In this section we shall study in more detail the Chow variety G(1, d, n) of 0-cycles 

of degree d in p , -1 .  
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A. Relation to symmetric products 

A 0-cycle of degree d is just an unordered collection {xl . . . . .  Xd} of d points 
(not necessarily distinct) in pn-1. Thus, as a set G(I,  d, n) is identified with 
Sym g (p, ,- l) ,  the d-fold symmetric product of pn-1. So we start with a comparison 
of the definitions of G(1, d, n) and Symd(p~-l).  

Suppose that our projective space p,,-1 is P (V) where V is an n-dimensional 
vector space. The Chow form of a point x ~ P (V) is the linear function Ix on V* 
given by the scalar product with x: 

lx(~) = (x, ~). 

If X = ~ mixi  is a 0-cycle in P(V) then, by our convention, the Chow form Rx 
is the polynomial ~ ~ l"I l~, i (~). We arrive at the following. 

Proposition 2.1. The Chow variety G(1, d, n) of O-cycles in p~-I of degree d 
is the projectivization of the space of homogeneous polynomials of degree d in n 
variables which are products of linear forms. 

The set Y of decomposable (into linear factors) polynomials of degree d was 
already used several times in the course of proving the Chow-van der Waerden 
theorem. Note that this set has, as its "odd" analog, the set of polyvectors from 

A d C ~ which are decomposable into wedge products of d vectors. The projec- 
tivization of the set of decomposable polyvectors is, as we have seen in Section 1, 
Chapter 3, nothing more than the Grassmannian G (d, n) in its Pliicker embedding. 
So the variety of 0-cycles is the "even" analog of the Grassmannian. 

Recall now the definition of symmetric products. Let X be a quasi-projective 
algebraic variety. The symmetric product Sym d (X) is the quotient of the Cartesian 
product X d by the action of the symmetric group Sd permuting the factors. A more 
precise definition is as follows. 

Suppose first that X is an affine variety and R is its coordinate ring. So 
R | = R |  | R is the coordinate ring of X d. The coordinate ring of Sym d (X) 

is, by definition, the subring of Sd-invariants in Red. In other words, this is the ring 

of regular functions f (x l  . . . . .  xd) of d variables xi ~ X which are symmetric, 

i.e., unchanged under any permutation of the xi. 

If X is an arbitrary, not necessarily affine, quasi-projective variety then the 
symmetric product Symd(X) is defined by gluing affine varieties Symd(U) for 

various affine open subsets U C X. 
It follows from these definitions that we have a regular morphism of algebraic 

varieties 

y �9 Symd(p n-l) > G(1, d, n), {X 1 . . . . .  Xd} I'---> E Xi, (2.1) 
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which is set-theoretically a bijection. Note that this does not automatically imply 

that y is an isomorphism of algebraic varieties: the morphism from the affine line 

A 1 to the semicubic parabola y2 = x 3, given by x(t) = t 2, y(t) = t 3, is bijective 

but not an isomorphism. So the following fact requires a proof. 

Theorem 2.2. The morphism y : Sym d (p~- l )  > G(1, d, n) is an isomorphism 

of algebraic varieties (over the field of complex numbers). 

Let us note that over a field of finite characteristic the statement is no longer 

true [Nee]. 

B. Symmetric polynomials in vector variables and the proof of  Theorem 2.2 

Let x l . . . . .  Xn be homogeneous coordinates in pn-1. We consider the affine space 

C n-1 inside pn-1, given by the condition xn ~ 0. We can assume that xn = 1 in 

C n-1 and regard the remaining coordinates x l . . . . .  Xn-1 as affine coordinates in 

C n-1 . We are going to compare the symmetric product Sym d (C n-l)  and its image 

in G(1, d, n) under the morphism y in (2.1). 

By definition, the coordinate ring of Symd(C n-l) is the ring of symmetric 

polynomials f (x l  . . . . .  Xd) in d vector variables xi ~ C ~-1. We shall denote this 

ring by S(d, n - 1). In our coordinates each xi is a vector (xil . . . . .  xi,~-l). 

For d scalar variables xi ~ C, the structure of symmetric polynomials is well- 

known: every symmetric polynomial can be uniquely written as a polynomial in 

elementary symmetric polynomials 

ek(xl . . . . .  Xd) - -  ~ Xi! " " " Xik" (2.2) 
l_<il <'"<ik <_d 

The structure of symmetric polynomials in d vector variables is less trivial. Still, 

we can define the analogs of elementary symmetric polynomials. To arrive at this 

definition, note that for the scalar case 

1 + ~ ek(xl . . . . .  Xd)t k : I-I(1 + xit). 
k > l  i 

Consider now d vectors xi - -  (Xi l  . . . . .  Xi,n-l) ~ C ~-1, i -- 1 , . . . ,  d and consider 

the following polynomial in n - 1 variables tl . . . . .  tn-l" 

I - i ( 1  + X i l t l  J r - ' ' ' - ~ -  X i , n - l t n - 1 ) .  (2.3) 
i 

k~ ,k~_~ in this polynomial is obviously a The coefficient of every monomial t 1 " ' "n -1  

symmetric polynomial in x l . . . . .  xd. We call it an elementary symmetric polyno- 

mial and denote it by ek~ ..... k~_~ (Xl . . . . .  Xd). 
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Thus we have 

d 

l - I (1  + Xil t l  -~ ' ' "  -b X i ,n - l t n -1 )  
i = 1  

= 1 +  E 
kl  . . . . .  k , , - I  

ek, ..... k._, (X, ., Xa)t~' k._, , . .  ' ' ' t n _  1 , (2.4) 

the sum over all multi-indices (kl . . . . .  kn-1 )  with 1 <_ Y]j kj < d. Note that, for 

any d vectors Xl . . . . .  xa ~ C n-1 C p n - l ,  the values et, ..... k._~ ( X l , . . . ,  xa) are the 

Chow coordinates of the cycle X = Y~. xi ~ G(1, d, n), i.e., the coefficients of the 

Chow form Rx. Indeed, the homogeneous coordinates ofxi are (Xil . . . . .  Xi,n-l, 1) 

so Rx is the homogeneous polynomial in n variables tl . . . . .  t. given by 

d 

Rx(q  . . . . .  tn) --" I - I ( x i l t l  -1-... "~- Xi ,n- l tn-1  -[- 1 �9 tn). 
i = 1  

The coefficients of this homogeneous polynomial are obviously the same as the 

coefficients of the non-homogeneous polynomial (2.3). 

Thus we get the following. 

Proposi t ion 2.3. Let Z d (C n-l)  be the open subset in the Chow variety G(1, d, n) 

consisting of  O-cycles X = Y~. xi with xi ~ C n-l C p , - l .  The ring of  regular 
functions on Z d (C "-1) is the subring in the ring S(d, n - 1) of symmetric polyno- 

mials in d vector variables generated by elementary symmetric polynomials. The 
map y : Symd(C " - l )  ~ z d ( c  n- l )  is induced by the embedding of  the above 

subring into S(d, n - 1). 

So Theorem 2.2 is a consequence of the following. 

Theorem 2.4. Any symmetric polynomial in d vector variables xl . . . . .  Xd, xi 

C n-I can be expressed (not necessarily uniquely) as a polynomial in elementary 

symmetric polynomials ek~ ..... k,_~ (Xl . . . . .  Xd). 

C. "Fundamental theorem" for symmetric polynomials in vector variables 

In this subsection we shall prove Theorem 2.4 and hence Theorem 2.2. Recall 

that S(d, n - 1) denotes the ring of symmetric polynomials in d vector variables 

xi ~ C n- 1. A convenient way to represent d vector variables x -- (xl . . . . .  Xd) is tO 
9 , d  x ( n -  1) denote the write x as a d  x (n - 1) matrix (xij) with rows xl . . . . .  Xd. Let ._,+ 

7 d x ( n - 1 )  
set of all d x (n - 1) non-negative integer matrices ~o -- (~oij). Each co ~ ..,+ 

determines a monomial x '~ - 1-[i,j ~ij'o'J. We can also write the monomial x ~' in the 

form 
X w w (l) w(d) 

- -  X 1 �9 . . .  �9 X d , 
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where t o ( l )  . . . . .  to<d) e Z~_ 1"- are the rows of to. 

It is clear that S(d, n - 1) as a vector space has a basis consisting of sym- 

metrizations of all possible monomials  x ~ More precisely, for each X e Z d•  + 

we denote 

mx = x to (2.5) 
/ 

oJ~ Sd X 

to be the sum over the orbit of  X under the symmetric group Sa (acting by permu- 

tations of rows of ~.). Then the functions m x, for ~. running over some system of 

d • (~- 1) / Sa, form a vector space basis of  S (d, n - 1). representatives of the orbit set Z+ 

In the scalar case (n -- 2) when ~. = (~(1) . . . . .  s with all ~ ( i )  just  non-negative 

integers, a natural choice of representatives for Sa-orbits are vectors ~. satisfying 

~(1) > . . .  > x(d). For n > 2, there is no such obvious choice. 

Notice that each elementary symmetric polynomial  ek, ..... k._, (X~ . . . . .  Xd) is 

of  the form rex, where each row of the matrix ~. is one of the standard basis vectors 

el e2, en-1 of Z ("-~) More precisely, )~ has kl rows equal to E 1 k2 rows equal �9 �9 �9 ~ . - ~  ~ 

to e2 . . . . .  kn-1 rows equal to en-1, and d - k l . . . . .  k ,-1 zero rows. To prove 

Theorem 2.4, we introduce another special family of functions m x which, in the 

scalar case n -- 2, reduces to the power sums x~ + x~ + . . .  + x~. This family 

corresponds to X having only one non-zero row. For each p e Z ~  -1), we denote 

by Po the function m4, where ~. has one row equal to p and all other rows equal to 

0. Thus by definition 

pp(xl  . . . . .  Xa) -- xf  + x~ + . . .  + x,~. (2.6) 

Theorem 2.4 is an immediate consequence of the following two statements. 

Proposition 2.5. Polynomials pp(X! . . . . .  Xd) generate the ring S(d, n - 1), i.e., 

each m z can be expressed as a polynomial in the pp 's. 

Proposition 2.6. Every pp can be expressed as a polynomial in the elementary 

symmetric polynomials ek~ ..... k,_~. 

d x ( n - 1 )  
We start with Proposition 2.5. For each matrix ~. ~ Z+ with rows 

~(1 )  . . . . .  ~(d) we set 

Px = Px~>Px~2) . ' .  px~a>. (2.7) 

We shall prove the following more precise version of Proposition 2.5. 

Proposition 2.5'. The functions px, for  X running over some system of  represen- 

7d• form a vector space basis in tatives of  the orbits of  the Sd-action on -~+ , 

S ( d , n -  1). 
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7.dx(n-1) ,  
For each X 6 ...+ we define the length l (X) to be the number of non-zero 

rows in X. Expanding the product Px(,)px(2) . . .  Px(~) in (2.7), and collecting similar 
terms, we see that px has the form 

px - cxmx + (linear combination of m u with l(/z) < I(X)), (2.8) 

where cx is some positive integer. It follows that under a suitable ordering of the 
7.dx (n-  index set - .+  1), the transition matrix from the basis (mx) to the family (px) 

becomes triangular with non-zero diagonal entries. This immediately implies 

Proposition 2.5' and hence Proposition 2.5. 

Proof of Proposition 2.6. For p -- (Pl . . . . .  Pn-1) 6 Z~_ -1, let us write t p for 

t~ ~ "" "',,-I'P"-~ and Ipl for ~ pi. Taking the logarithm of the left hand side of (2.4), 

we obtain 

d d 

log I-I(1 + Xilq + " "  + Xi ,n - l t n -1 )  - -  ~ log(1 + Xiltl 41-... -Ji- X i , n - l t n - 1 )  
i=1 i=1 

( - 1 )  IpI-1 Ipl! 
Pn_l ! p p ( X  1 . . . . .  Xd)t  p. (2.9) Ipl P l ! " "  o#~z+' 

Hence the pp are obtained, up to rational factors, as coefficients in the Taylor 
expansion of 

lo (1 + 
kl ..... k,,-I 

ek, ..... k._, (Xl ., Xd)tkl , k._, ) ~ . .  " ' ' t n _  1 

i.e., as some polynomials in the ek~ ..... k,_~. Proposition 2.6 is proved. 
The expression of power sums in terms of elementary symmetric polynomials 

will be also used later in the classical case of symmetric polynomials in scalar 

variables. 

D. Symmetric products are rational 

Recall that by S(d, n - 1) we have denoted the ring of symmetric polynomials in 

d vector variables Xl . . . . .  Xd, xi 6 C "-1. By the classical theorem on symmetric 

polynomials, S (d, 1) is the polynomial ring in elementary symmetric polynomials 

el . . . . .  ed. In other words, Sym d (C) is just the affine space C d. A slightly different 

form of this result is as follows. 

Proposition 2.7. The symmetric product Symd(p 1) -- G(1, d, 2) is isomorphic 
to pd .  
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Proof. For any n, the Chow embedding realizes G(1, d, n) = Sym d (p,,-1) as the 
subvariety in p ( s d c  ~) whose elements are (projectivizations of) homogeneous 

polynomials of degree d in n variables that split into linear factors. But every 

homogeneous polynomial in two variables splits in just such a way. So we get 

G(1, d, 2) = p ( s d c  2) --- pd. 

It is remarkable that the above result admits a "rational" version for symmetric 

functions in vector variables. 

Theorem 2.8. For any d and n, the variety Syma(p  n-l) = G(1, d, n) is rational 

i.e., it is birationally isomorphic to the projective space pal(n-l). 

This can be reformulated in terms of fields of functions. Namely, denote by 

R S (d, n - 1 ) the field of fractions of S (d, n - 1), i.e., the field of symmetric rational 

functions in d vector variables xi e C "-1. Since in Theorem 2.8 we can replace 

the variety P"-~ with its Zariski open subset C "-~, the theorem is a consequence 

of the following more precise statement. 

Theorem 2.8'. The field R S (d, n - 1) is isomorphic to the field of  rational func- 

tions in d(n - 1) variables. An explicit system of  (algebraically independent) 

rational generators of  this field is provided by the following elementary symmetric 

polynomials: 

(a) d polynomials ek,o ..... 0(xl . . . . .  Xd), k -- 1 . . . . .  d. 

(b) d(n - 2) polynomials of  the form ek,O ..... 0,1,0 ..... 0 where k = O, 1 . . . . .  d - 1 

and 1 may be in any position from the second to the (n - 1). 

This theorem was known at the turn of the century (see [Net], Bd.2, w 

but then forgotten and rediscovered again by A. Mattuck [Mat]. 

Note that elementary symmetric polynomials are just coordinate functions in 
the Chow embedding of Sym d (pn-1). Hence Theorem 2.8' means that a birational 

isomorphism Symd(p n-l)  "~ pd(~-l) can be obtained by a linear projection of 

Symd(p ~-1) C p ( s d c  ~) from a certain coordinate subspace. This subspace 

is spanned by basis vectors corresponding to elementary symmetric polynomials 

which are not listed in Theorem 2.8'. 

Proof of  Theorem 2.8'. Let xl . . . . .  x~-i be standard coordinates in C "-1. To an 

unordered tuple ofpoints {xl . . . . .  Xd}, xi ~ C ~-1, we first associate the unordered 

tuple of their first coordinates {x1,1 . . . . .  xd,1 }. Note that the elementary symmet- 

ric polynomial ek,0 ..... 0(xl . . . . .  xd) is the usual elementary symmetric polynomial 

ek (xl, 1 . . . . .  Xd, l) in the first coordinates of the xi. Hence the tuple {xl, 1 . . . . .  Xd, 1 } 

is completely determined by the values of ek,0 ..... 0(xl . . . . .  xa). 
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Now let Xl . . . . .  xd be given. For any j ~ {2 . . . . .  n - 1 }, consider the 

polynomial 
d 

f j ( t )  -- ~ Xi, j H ( t  - xv, l). (2.10) 
i=1 v:~i 

The coefficients of this polynomial at various powers of t are, up to sign, the 

elementary symmetric polynomials 

ek,0 ..... 0,1,0 ..... 0(xl . . . . .  Xd), k = 0  . . . . .  d - 1  

where 1 in the subscript is in the j - th  position. The polynomial 3~ (t) satisfies the 

property: 

f j ( x i , 1 )  = Xi,j H ( X i ,  1 -- Xv, 1). (2.11) 
v~i 

If we assume that the numbers x1,1 . . . . .  Xd,1 are distinct (which is generically 

the case), then (2.11) gives us the components xl,j . . . . .  Xd,j once we know the 

polynomial 3~ and the collection {xl,1 . . . . .  Xd,1 }. Therefore, under our genericity 

assumption, an unordered tuple {xl . . . . .  Xd} is uniquely determined by the values 

of all the functions ek,0 ..... 0(xl . . . . .  Xd) and ek,0 ..... 0,1,0 ..... 0(Xl . . . . .  Xd). To finish 

the proof, one may use this uniqueness to argue, by Galois theory, that an arbitrary 

symmetric rational function of x l . . . . .  Xd is uniquely rationally expressible through 

the functions listed above. We prefer to do essentially the same, but using a more 

transparent geometric language. 

Let U 1 C Sym d(C n - l )  be the open set consisting of unordered d-tuples 

of points in C n-1 with pairwise distinct first coordinates. Let U2 C ( o n - l )  d "- 

C d • (on-E)) d be the open set of pairs (a, b), a = (al . . . . .  ad) ~ C a, b ~ ( o n - E )  d 

such that all the roots of the polynomial 1 + a l x  + . . .  +ad xd are distinct. Consider 

the correspondence 

x =  (xl . . . . .  Xd) ~ ((el,0 ..... 0(x) . . . . .  ed,O ..... 0(X)); (ek,0 ..... 0,1,0 ..... 0(x))) 

where, in the last component, k varies between 0 and d - 1 and 1 can be on any 

place from 2 to n - 1. This correspondence gives a regular map ~o : U1 ~ U2. The 

above reasoning implies that ~o is a bijection. Hence it is an isomorphism since 

both U1 and U2 are  smooth. Thus Sym d(C ~-l) and (cn-1) d have isomorphic 

open subsets so they are birationally isomorphic. Since the symmetric functions 

in Theorem 2.8' provide a system of coordinates in (C n-1)d, they form a system 

of rational generators for R S (d, n - 1). Theorem 2.8' is proved. 

Before going further, let us make two remarks on symmetric products. 
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(a) If Y is a smooth manifold of dimension greater than 1, the symmetric 
products Sym d(Y) are singular. The singular points of Sym d(Y) correspond to 

tuples of points of Y some of which coincide. For example, let d -- 2 and consider 
Sym2(C"). This is the quotient of C" x C" by the involution (x, y) ~ (y, x). 

Introduce new vector variables u = (x + y ) /2 ,  v = (x - y ) /2 .  The involution 

in these variables is (u, v) ~ ( u , - v ) .  In other words, Sym2(C ") is the product 
of C" and the quotient C n / +  of C n by the sign involution v ~ ( -v ) .  To find out 

what C"/-t- is, note that regular functions on c n / +  are precisely the even regular 

functions on C". Every even polynomial in n variables can be represented as a 

polynomial in monomials of degree 2, and it means that C ~ / +  is the affine cone 
over p,,-1 in its Veronese embedding defined by monomials of degree 2. This 
is a singular variety. In the particular case when n = 2, this variety C 2 / - +  - is 

the quadratic cone in C 3. Indeed, let s, t be coordinates in C 2. There are three 

monomials of degree 2: p = s 2, q = t 2, r = st. They are subject to one relation 

r E -- pq which defines a quadratic cone. 
Since the coincidence of only two points is the most genetic pattern of de- 

generation of a tuple, any Sym d(C n) will behave near such tuples as a product 

of an affine space and a variety of type C ~/+.  When more points coincide, the 

singularity becomes more complicated. 

(b) When Y is a smooth surface, the singular variety Symd(y) admits a 

canonical resolution of singularities: the so-called Hilbert scheme parametrizing 

sheaves of ideals in Or  of codimension d, see [I]. When dim (Y) > 2, no good 
resolution of singularities of Sym d (Y) is known. 

The rest of this section will be devoted to explicit equations for the Chow 
variety Sym d (Pn-  1) = G (1, d, n). In view of the nature of the Chow embedding 

(see subsection A), the question can be reformulated as follows. 

Given a homogeneous polynomial f (y) -- f (Yl . . . .  , Yn) -- ~-~.to a~oy ~ o f  

degree d, determine from the coefficients o f  f whether it is a product o f  linear 

factors. 

Before proceeding to the general case, we consider an example. 

Example 2.9. Let f ( Y l  . . . . .  y~) = Y~ aijYiYj be a quadratic form defined by 
a symmetric matrix A = Ilaij II. The form f splits into a product of two linear 

forms if and only if rk A < 2. This is equivalent to the fact that all 3 x 3 minors 

of A vanish. We see that Sym2(p "-1) is defined in p(S2(C")) by a system of 

cubic equations. Quadratic equations obviously do not suffice. This is in contrast 

with the PlUcker relations (which determine when a polynomial in anticommuting 

variables ~1 . . . . .  ~,, splits into linear factors). 
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The conditions for factorization of a general homogeneous polynomial of 

degree d into linear factors were first derived by Brill [Brl ]. It turns out that the 

equations have degree d -I- 1 (in accord with the previous example, where, for d=2, 

the equations have degree 3). 

Brill's answer was given in terms of the symbolic method of invariant theory. 

We shall translate it into representation-theoretic language. We first explain three 

main ingredients of Brill's approach: polars, vertical Young multiplication and 

Newton's power sum symmetric polynomials. 

E. Polars 

Let f (x l  . . . . .  x,)  be a form (homogeneous polynomial) of degree d. Then for 

every two vectors x and y, the function t ~ f (tx + y) is a polynomial of degree 

d in t, which can be written as 

f (tx + y) = ~ fxk (x, y) t  k. 
k=0 

(2.12) 

The coefficient fxk (x, y) is called the k-th polar of f ;  it is a bihomogeneous form 
of degree k in x and d - k in y. Explicitly, we have 

fxk (x, y) = (d - k) ! 0 d! xi f ( y ) .  (2.13) 

To see this it is enough to differentiate (2.12) k times at t -- 0. 

Using (2.12) or (2.13), we see that if f = lh is the product of a linear form l 
and a form h of degree d - 1, then 

fxk(X, y) = 1 - l(y)hxk(X, y) + -dl(x)hxk-l(X, y). (2.14) 

In particular, if f = l d is the d-th power of a linear form l, then 

lx d (x, y) = I k (x)l d-k (y). (2.15) 

E Power sums 

Let ek(Xl . . . . .  Xd) be the k-th elementary symmetric polynomial in d scalar vari- 

ables (see (2.2)). For k >_ 1 we have the power sum symmetric polynomial 
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which can be expressed as a universal polynomial with rational coefficients in sym- 
metric polynomials el . . . . .  ed. The explicit form of this polynomial is obtained, 
as in subsection C, from the equality 

X d )  ( 
-1 )k - lpk (x l  tk = log 1 + el(x1 . . . . .  Xd)t i , 

k=l k i=1 
(2.16) 

a particular case of (2.9). By taking the logarithm explicitly, we get the Girard 

formula 

Pk (Xl . . . . .  Xd) 

= ( - - 1 )  I'k 
ii q-2i2 +"'+did =k 

( 1)i ,+ .+id (il + ' " - t -  id  - -  1)! i, id 
_ .. e 1 � 9  e d . 

i l !  . .  " i d !  
(2.17) 

The following two features of this formula will be most important for us: 

(1) In the grading such that deg (ei) -- i, the polynomial pt is homogeneous of 
degree k. 

(2) The monomial el k occurs in Pk with non-zero coefficient. 

G. The vertical Young multiplication 

Let V be an n-dimensional vector space. It is well-known that the decomposition 

of the tensor product s d ( v )  | sd (v )  as a GL(V)-module has the form 

S d (V) | S d (V) = sr @ S <d+l'd-~) (V) @. . .  @ S 2d (V), 

where S (d+k'd-k) (V) is the Schur functor corresponding to a partition (d + k, d - k )  
(see e.g., [FH] [Macd]). We shall identify sd (v )  | sd ( v )  with the space of 

bihomogeneous forms F(x, y) ofbidegree (d, d) via the map f | g w-> f ( x )g (y ) .  

For f ,  g ~ sd (v ) ,  we denote by f E) g the component of f ( x ) g ( y )  lying in 

S (d'd) (V). The form f E) g is called the vertical (Young) product of f and g. It is 

also known as the apolar covariant of f and g. When f G g = 0, the forms f 

and g are called apolar to each other. 

An explicit formula for f E) g is given by the following proposition. 

Proposition 2.10. For f ,  g ~ S d (V), we have 

( f  63 g)(x, y) - d + 1 ff](--1)k fy,(y,X)gx,(X, y). (2.18) 
k=0 

The proof of Proposition 2.1 0 will be given a little later. In fact, it would be 

enough for our purposes to define f 63 g using (2.1 8). 
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The following property of the vertical product is crucial for Brill's method. 

Proposition 2.11. If f ~ Scl (V) and I is a non-zero linear form on V*, then f is 
divisible by I if and only if f 63 1 a = O. 

Proof Substituting g(y) = la(y) into (2.18) and using (2.15), we obtain 

1 
( f  Qla)(x'  Y) = d + 1 E ( - 1 ) k  fY'(Y'X)Ik(x)la-k(Y)" (2.19) 

k=0 

We see that all the terms with k r 0 in the fight hand side of (2.19) are divisible 

by l(x). Therefore, if ( f  63 ld)(x, y) = 0, then f ( x )  must be divisible by l(x). 
Conversely, let f ( x )  = l(x)h(x) for some form h(x) of degree d - 1. Then 

the polars of f are given by (2.14). Substituting them into (2.19) and regrouping 

terms, we see that ( f  63 ld)(x, y) = O. 

Proof of Proposition 2.10. In our realization, the GL(V)-module S d (V) | S d (V) 
is a submodule of the module S 2a(V @ V) of homogeneous forms F(x, y) of 
total degree 2d, where x, y 6 V*. Identifying V ~ V with V | C 2, we see 
that S2a(V @ V) is a representation of the group GL(V) x GL(2). Consider 

the subgroup SL(2) C GL(2) and its Lie algebra sl(2) with standard generators 

E+, E_, H. These generators act on the forms F(x, y) by the formulas 

a 0 a 0 
E+= E x i - ~ y i ,  E - =  E Yi-~x i 

i=1 i=1 
, H = i ~  xi-~x i - yi-~iy i . 

These formulas imply that Sa(V) | sa(v)  is a zero weight subspace of the sl(2)- 
module S 2a (V | C 2): 

Sd(V) |  = {F ~ S2d(V |  �9 H F  = 0 } .  

We claim that the submodule S(a'a)(V) C Sa(V) | Sa(V) consists of all sl(2)- 

invariant elements; in more concrete terms, 

S(a'a)(V) = {F E S2a(V |  �9 E+F = E_F = HF = 0}. 

This follows at once from the well-known decomposition of S2a(V | C 2) as a 

module over G L (V) x G L a: 

d 

S 2a (V | C 2) = ~[~ S <a+k'a-k) (V) | S <a+k'a-k) (C2), 
k=0 
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see [FH] [Macd]. 
Let Jr �9 s d ( v )  | sd ( v )  --+ s ( d ' d ) ( v )  b e  the GL(V)-equivariant projection. 

It is given by the formula 

d (_l)k 

zr(F) = E k!(k + 1); 
k=0 

Ek Ek+ ( F). (2.20) 

To justify (2.20), denote by zr' the operator in its fight hand side. It is enough to 

show that: 
(a) Jr' is GL(V)-equivariant; 
(b) (Tt't) 2 = 7t "t and Im(rr') is annihilated by sl(2); 

(c) zr' :/: 0 on s d ( v )  | sd(v ) .  

Statement (a) is obvious by construction. Statement (b) is verified by explicit 

calculations, using the commutation relations in s/(2). Statement (c) follows by 
computing Jr' (Xl d y2 d) and showing that it is non-zero. Since we are going to perform 

more general computations of that kind below, we omit the details. 

By definition, f E) g -- 7r(f(x)g(y)).  We apply (2.20) for F -- f ( x )g (y ) :  

d (_l)m 
( f  63 g)(x, y) = E 

m=0 m!(m -t- 1)! 
E m ( f ( x )E+g(y ) )  

=E 
m=O 

( - - 1 ) m  ~ 0  ( k ) ( E  k - 
m!(m + 1)! = 

f ( x ) ) (Em-k  m _ E+g(y)). 

_ d ~  By(2.13), g k f (x) = (d-k)!  fyk(y, x). Usingthecommutationrelation [E+, E_] -- 
H, we obtain after straightforward computations that 

m!(d - k)! Ek+g(y ) = m!d! 
Em-kE+g(Y) - k!(d - m)! k!(d - m)! gxk(x' y)" 

It follows that 

( f  (S) g)(x, y) -- E ( - 1 )  k bk,dfyk(y,X)gxk(X, y), 
k=0 

(2.21) 

where 
d ( _ l ) m - k ( d _ k ) !  

bk,d -- E (m -t- 1)(m -- k);(d - m); m=k " " 

It remains to calculate the coefficients bk,d. To do this we represent bk,d as  an 

integral 

jo 1 bk,d -- tk(1 -- t)d-kdt (2.22) 
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(to prove (2.22) it suffices to expand the integrand in powers of t and integrate it 

term by term). But this integral is Euler's Beta-function B(k + 1, d - k + 1), so 

we get 
k ! ( d - k ) !  

bk,d -- 
(d + 1)! 

Substituting this expression into (2.21) yields (2.18). 

H. Brill's equations 

Now we have all the tools for constructing Brill's equations. Let f ~ S d (V) and 

x, z ~ V*. Consider the function 

E(t) = Ef, x,z(t)= 

Using (2.12), we can write E(t) as 

f ( t f  (z)x + z) 

f ( z )  

d 

E (t) -" Z ektk' 
k=0 

where 

ek = ( d )  fxk(X, z ) f  (z) k-1. (2.23) 

Clearly, each ek is a homogeneous form in x, z and f which has degree k in x, 

k (d - 1) in z, and k in coefficients of f .  Consider the d-th power sum Pd (E); we 

will regard it as a function of x depending on f and z as parameters, and denote 

it by pd(E) = Pf, z(X). By the property (1) of power sums, Pf, z(X) is a form of 

degree d in x whose coefficients are homogeneous polynomials of degree d in f 

and degree d (d - 1) in z. Let 

By (x, y, z) - ( f  63 Pf, z) (x, y); (2.24) 

this is a homogeneous form in (x, y, z) of multidegree (d, d, d(d - 1)) whose 

coefficients are forms of degree d + 1 in the coefficients of f .  Here is the main 

result of Brill. 

Theorem 2.12. A form f (x) is a product of linear forms if and only if the polyno- 
mial By (x, y, z) is identically equal to O. 

Proof. Let f ( x )  = l l (x) . . . ld(x)  be a factorizable form. Then E(t) can be 

written as 

d ( t i f ( z ) ) ( Z )  E(t) = I-I 1 + t,~ 1 i (X) 
i=1 
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Therefore, 

It follows that 

d f(Z)dli(x)d" 
ef, z(X)-- y~ li(z)d 

i=1  

d f ( z )d  
f E) Pf, z = i~1.= li (z) d f 63 ldi �9 

Since f is divisible by each li, we have By(x, y, z) = f E) Pf, z = 0 according to 
Proposition 2.11. 

Conversely, let f be such that f 63 Pf, z = 0 for all z. Using properties (1) 
and (2) of power sums (see subsection F above), we see that Pf, z(x) has the form 

const �9 fx (x, z) d + terms divisible by f (z). 

Let z be a smooth point of the hypersurface {f = 0}. For such a point we have 
Pf, z (x) = const . fx (x, z) d, so f 63 fx (x, z) d -- O. By Proposition 2.11, f (x) is 
divisible by the linear form fx (x, z). But fx (x, z) = ~ ~ .~, is the equation 
of the tangent hyperplane to {f = 0} at z. It follows that the hypersurface {f  = 0} 
coincides with its tangent hyperplane in the neighborhood of z. Hence {f = 0} is 
a union of hyperplanes, implying that f is factorizable. This completes the proof. 

Example 2.13. Let d - 2, i.e., f is a quadratic form. Let ~o(x, y) -- fx (x, y) 
be the symmetric bilinear form such that f ( x )  -- ~0(x, x). A straightforward 
computation shows that up to a non-zero multiple 

( ~o(x, x) 
By(x, y, z) = det ~o(y, x) 

~o(z, x) 

~o(x, y) ~o(x, z) \ 
tp(y, y) ~(y, z) ) .  
qg(z, y) tp(z, z) 

(2.25) 

The coefficients of By(x, y, z) are cubic forms in the coefficients of f ;  by Theorem 
2.12, f is a product of two linear forms if and only if all these cubic forms vanish 
at f .  In more invariant terms, the vanishing of (2.25) means that the restriction of 
~0 on every 3-dimensional subspace of V* is degenerate, i.e., that rk(~o) < 2. Thus 

we have recovered the result in Example 2.9. 

Theorem 2.12 gives a system of equations which define the symmetric product 
Sym a (p,,-1) in P(SaC n) set- theoretically. J. Weyman has recently shown that in 

general these equations do not define Sym a (p,,-1) scheme-theoretically, i.e., the 
subscheme in p ( s d c  ") defined by these equations is not reduced. In other words, 
the homogeneous ideal in the polynomial ring of coefficients of indeterminate 
f ~ s a c  ~ differs from the ideal generated by the Brill equations in infinitely 
many graded components. 
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3. Cayley-Green-Morrison equations of Chow varieties 

As we have already remarked, the proof of the Chow-van der Waerden theorem, 

given in Section 1 C, does not provide a manageable system of equations defining 

the Chow variety G(k, d, n). In Section 2, we presented an explicit system of 

equations for G(1, d, n), the Chow variety of 0-cycles. In this section we shall 

consider cycles of positive dimension. The problem is to recognize associated 

hypersurfaces (and Chow forms) among all the hypersurfaces in the Grassmannians 

and their equations. A method to accomplish this was proposed by Cayley [Ca5] 

and further developed by M. Green and I. Morrison [GrM]. We shall examine the 

basic ideas of this method. 

A. Differential-geometric structure in the Grassmannians 

Projective spaces are homogeneous and isotropic, i.e., by a projective transfor- 

mation, we can not only transform every point to every other point but also any 

tangent vector at the first point to any tangent vector at the second point. This is 

no longer the case for general Grassmannians. We shall see that Grassmannians 

possess a peculiar differential-geometric structure given by a natural stratification 

of their tangent spaces. 

Consider the Grassmannian G = G(n - k, n) of (n - k)-dimensional vector 

subspaces in C n. Let S be the (n - k)-dimensional vector bundle over G (n - k, n) 

whose fiber over a point represented by a subspace L C C n is L. This bundle 

is called tautological. Clearly we have the embedding S C ~n, where by C'~, 

we denote the trivial bundle over G (n - k, n) with fiber C ". Also let T G be the 

tangent bundle of G (n - k, n). 

Proposition 3.1. There is an isomorphism of vector bundles 

TG = H o m  (S, C.~/S) (3.1) 

on G (n - k, n) which is equivariant with respect to the action of G L (n). 

Proof The fact is well known, see, e.g., [Harr], Lect. 16 for a detailed discussion. 

So we give only an intuitive explanation (cf. Section 1B above) here. 

Let L be a vector subspace in C n of dimension n - k. A tangent vector to 

G(n - k, n) at L is an infinitesimal movement of L. Such a movement is defined 

by specifying the velocities of individual points. These velocities should form 

a linear vector field x ~-~ v(x) defined on L. If v(x) ~ L for all x 6 L, then 

our movement preserves L, that is, it represents a zero vector of Tr. G (n - k, n). 

Therefore TI.G(n - k, n) = Hom (L, C~/L) as claimed. 

If a vector space V is represented as Hom (B, C) where B, C are two other 

vector spaces, then we can speak about the rank of a vector from V, i.e., the 
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dimension of the image of the corresponding operator B --+ C. If we choose 

bases in B and C, then V will be identified with the space of matrices of size 

dim (B) x dim (C) and the rank of a vector is just the rank of the corresponding 

matrix. 

Consider again the Grassmannian G(n - k, n). Let m -- min(k, n - k) 

and r < m. By Proposition 3.1, each tangent space TL G contains a cone T/~ (G) 

formed by vectors ofrank < r. The family of cones Tt~ (G) for a given r is invariant 

under the action of G L ( n )  on G(n - k, n). In fact, this family for each r can be 

recovered from either the smallest T~ (G) or the largest cones T~ "-1 (G), because 

of the following well-known proposition (see [Harr], Examples 20.5 and 9.2). 

Proposition 3.2. For any r < min(k, n - k), denote by Yr the cone o f  k x (n - k) 

matrices o f  rank < r. Then 

(a) f o r  each r, the variety Yr-1 coincides with the set o f  s ingularpoints  o f  Yr; 

(b) a matrix A lies in Yr i f  and only i f  there are r matrices A1 . . . . .  Ar ~ Y1 such 

that A = A1 + . ' .  + A r. 

We shall consider the family of largest cones T[ -1G(n  - k, n) in the tangent 

spaces as the cornerstone of our differential-geometric structure. These cones will 

be denoted simply by KL. 

Example 3.3. Consider the Grassmannian G (2, 4) which is a quadric in p5 in the 

Pliicker embedding. Each cone K~. is isomorphic to the cone in the space of 2 x 2 

matrices formed by the matrices with zero determinant. Since, for 2 x 2 matrices, 

the determinant has degree 2, here the cone is quadratic. In other words, G(2, 4) 

acquires the conformal structure, i.e., in each tangent space we have a quadratic 

form defined up to a constant factor. For other Grassmannians, the cones K~. are 

no longer quadratic. 

A quadratic cone in C 4 contains two families of 2-dimensional vector sub- 

spaces (corresponding to the two families of lines on a quadric in e3). It turns out 

that, in general, each K L contains two distinguished families of vector subspaces, 

which are defined as follows. 

Definition 3.4. Let V - Hom(B, C) be the space of linear operators. We call 

a-subspaces in V vector subspaces of the form 

E,~(x) = {A" B --+ C I A(x) = 0}, (3.2) 

where x 6 B is a non-zero vector. We call ~-subspaces the subspaces of the form 

E ~ ( M )  = {A " B ~ C [ Im(A)  C M}, (3.3) 
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Z 
Figure 8. A conformal structure. 

where M C C is a hyperplane (passing through the origin). 

Since the tangent space Tt. G (n - k ,  n) of G (n - k ,  n) at any point L is identified 

with Hom (L, C" / L), we can speak of ct and # subspaces in TL G (n - k, n). Clearly 

every such subspace is contained in the cone K L. We shall also need certain sub- 

Grassmannians in G (n - k, n), all of whose tangent spaces are ct- or/9-subspaces. 

Let x ~ p~- I  be any point. We define the corresponding u-variety G~(x) C 

G (n - k, n) to be the locus of all (n - k - 1)-subspaces in P"-1 which contain x. 

Similarly, for any hyperplane rr C pn-1, we define the #-variety G/j(rr) C G(n - 

k, n) to be the locus of all (n - k - 1)-subspaces contained in rr. As an algebraic 

variety, each Ga(x) is isomorphic to the Grassmannian G(n - k - 1, n - 1) and 

G# (rr) is isomorphic to G ( n - k ,  n -  1). By definition, the associated hypersurface 

2 ( X )  for a subvariety X C pn-1 is the union of or-varieties G~(x) for all x ~ X. 

Proposi t ion 3.5. Let G be an u-variety in G (n - k, n) and let L ~ G be any point. 

Then the tangent subspace 

TLG C TLG(n - k, n) --- Hom (L, Cn/L)  

is an ot-subspace. Conversely, given L ~ G(n - k, n) and an ot-subspace E C 

TLG(n - k, n), there is a unique t~-variety G in G(n - k, n) containing L and 

such that TI. G = E. Similar assertions hold for  #-varieties and #-subspaces. 

Proof Suppose G = G~(x) for some x ~ pn-1.  If x ~ C" is a vector whose 

projectivization is x, then x 6 L since L 6 G. The definitions readily imply that 

Tr. G -- E~(x); (this is intuitively obvious since an infinitesimal movement of L 

in G can be chosen so that x will remain fixed). Our proposition is proved in the 

ct case. The/9 case is similar. 
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B. Coisotropic h ypersurfaces 

Definition 3.6. Let B, C be finite-dimensional vector spaces, V = Hom (B, C) 

be the space of operators, and K C V the cone of operators that are not of full 

rank. A hyperplane H C V is called coisotropic if it is tangent to K, i.e., lies in 

the projectively dual conic variety K v C V* (see Section 1A Chapter 1). 

In the case of the above definition we identify the space V* with Hom (C, B) 

using the form tr(u �9 v). Then every hyperplane has a linear equation which can 

be thought of as an operator from C to B. According to Example 4.10 of Chapter 

1, the projective dual of the variety of matrices of non-maximal rank is the variety 

of matrices of rank < 1. Therefore H is coisotropic if and only if its equation has 

rank 1. 

Example 3.7. Let B and C have dimension 2, so the space V consists of 2 x 2 

matrices. The cone K is defined by one equation det (A) = 0. The determinant 

in this case is a quadratic form. Denote by <, > the corresponding scalar product 

on V and by H • the orthogonal complement to H. A hyperplane H is coisotropic 

in our sense if and only if H • C H. This is the usual coisotropy condition for 

subspaces in a vector space with a quadratic form. 

Proposition 3.8. Let H C Hom (B, C) be a coisotropic hyperplane. Then H 

contains a unique u- and a unique fl-subspace. Conversely, given an u-subspace 

and a fl-subspace, their linear span is a coisotropic hyperplane. 

Proof Let u : C -+ B be a linear operator of rank 1 which generates the 

orthogonal complement to H with respect to the pairing tr(u �9 v). Its kernel is a 

hyperplane M C C, and its image is a 1-dimensional subspace generated by some 

x 6 B. A straightforward check shows that the only ct-subspace contained in H is 
E,~ (x), and the only/3-subspace contained in H is E~(M). 

For the last statement, it remains to prove that every u-subspace E and every/3- 

subspace E'  linearly span a hyperplane. This can be shown by an easy dimension 

count: if dim (B) = b, dim (C) = c, then dim (E) = (b - 1)c, dim (E')  = 

b(c - 1), d im(E  A E')  = (b - 1)(c - 1), hence d im(E  + E') = bc - 1, as 

required. 

Definition 3.9. A hypersurface Z in the Grassmannian G(n - k, n) is called 

coisotropic if, for each smooth point L ~ Z, the tangent hyperplane TL Z is 

coisotropic in TL G (n - k, n ). 
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Z 

Figure 9. A coisotropic hypersurface. 

Proposition 3.10. Let X C pn-1 be a (k - 1)-dimensional irreducible subvariety. 

Then its associated hypersurface Z ( X )  is coisotropic. 

Proof. Let L e Z ( X )  be an (n - k)-dimensional vector subspace with projec- 

tivization L. By the definition of associated hypersurface, L intersects X at some 

point p. We can assume that p is a smooth point of X. Let p be a non-zero vector 

in C ~ with projectivization p, and let Y C C ~ be the cone over X. Choosing L 

generically, we can assume that L N Tp Y -- C .  p. Let M C C n /L be the image of 

Tp Y under the projection C" ~ C" /L .  Clearly, M is a hyperplane in C" /L .  Iden- 

tifying, as before, TL G (n - k, n) = Hom (L, C n/L),  we see that TL Z (X) consists 

of operators A : L ~ C " / L  such that A(p) e M. We see that TLZ(X)  is the 

sum of the ct-subspace E~(p) and the ]~-subspace E~(M); hence it is coisotropic, 

according to Proposition 3.8. 

Example  3.11. Consider the Grassmannian G(2, 4) of lines in p3. As we have 

seen, its differential structure consists of a family of quadratic cones in tangent 

spaces which gives rise to a conformal structure. An associated hypersurface 

in G(2, 4) is the set Z ( X )  of all lines meeting a given space curve X. From 

Proposition 3.10, we see that tangent spaces to any such Z ( X )  are coisotropic in 

the usual sense of quadratic forms. 

Let us write the coisotropy condition in the coordinates. We consider the 

affine coordinates A = Ilaij II, i = 1 . . . . .  n - k, j = 1 . . . . .  k, in an affine 

chart C Cn-k)• C G(n - k, n). Recall (Section 1A, Chapter 3) that this chart 

consists of vector subspaces in C n-k @ C k which are graphs of linear operators 

A = Ilaij II �9 C n -k  ~ C k. A hypersurface in the Grassmannian after intersection 
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with the chart C (n-k)xk is determined by its equation which is a (non-homogeneous) 

polynomial f in (n - k)k variables aij, defined uniquely up to a constant factor. 

This polynomial may be reducible (if the hypersurface itself contains several ir- 

reducible components) but is not allowed to be divisible by squares of irreducible 

polynomials. 

Proposition 3.12. Let Z C G(n - k, n) be a hypersurface. Consider its in- 

tersection Z'  with the affine chart C (n-k)• with matrix coordinates [[aij II, i = 

1 . . . . .  n - k, j = 1 . . . . .  k. Let f (aij) be the equation of  Z'. Then Z is coisotropic 

if  and only if  the matrix [[Of /Oaij[[ has rank 1 everywhere on Z', i.e., each minor 

Of /Oaij Of /Oail 
Of/Oarj Of/Oarl 

is divisible by f . 

Proof  In coordinates [[aij II the cones KL in all the tangent spaces TL G(n - k, n) 

are parallel translations of the cone of matrices Ilaij II that are not of full rank. The 

cone of matrices of rank < 1 is projectively dual to the latter cone, which implies 

out statement. 

A natural guess would be that associated hypersurfaces can be characterized 

by the coisotropy condition alone. However, this is not the case as shown by the 

following example. 

Example 3.13. Let S be a surface in p3 and let Z C G(2, 4) be the variety of all 

lines in p3 tangent to S at some point (more precisely, Z is the Zariski closure of 

the set of lines tangent to S at its smooth points). We claim that Z is coisotropic. 

This is shown by exactly the same argument as in the proof of Proposition 3.10 

(we leave the details to the reader). 

Generalizing this example, we shall show that the coisotropy property char- 

acterizes the higher associated hypersurfaces, see Section 2E, Chapter 3. Recall 

that E T means the embedded tangent space. 

Theorem 3.14. 

(a) Let k < m < n and let X C pn-1 be an irreducible (m - 1)-dimensional 

variety. Then its (m - k)-th associated hypersurface 

Z m - k ( X )  -- {L  ~ G ( n -  k , n )  �9 

dim (L f) ETx X)  > m - k for some x 6 L N X } (3.4) 
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is coisotropic. 
(b) Any irreducible coisotropic hypersurface Z C G(n - k, n) is the higher 

associated hypersurface Zm-k (X) for some (uniquely defined) m > k and an 

(m - 1)-dimensional irreducible subvariety X C pn-l .  

C. Lagrangian interpretation of higher associated hypersurfaces and the proof of  

Theorem 3.14 

We have seen in Section 3B, Chapter 1 that the cotangent bundle T*M of any 

smooth variety M has a natural symplectic structure. To any irreducible subvariety 

Z c M, we associated its conormal variety (the closure of the conormal bundle to 
the smooth locus of Z) 

Con(Z) = T* (M) C T * M .  Zsm (3.5) 

This is a Lagrangian subvariety in T* M. In particular, dim Con (Z) = dim (M) 
regardless of the dimension of Z. 

The point of the "Lagrangian philosophy" is to work whenever possible with 

Lagrangian subvarieties Con(Z) C T*M instead of subvarieties Z C M. One 

instance of the usefulness of this approach was seen in Section 3, Chapter 1 in the 
discussion of projective duality. It turns out that the construction of higher associ- 

ated hypersurfaces becomes much more transparent in the Lagrangian approach. 
More precisely, let P = p,,-1 be our projective space, X C P be an ir- 

reducible subvariety of dimension m - 1 > k - 1 and G -- G(n - k, n) be the 

Grassmannian. The (m - k)-th associated hypersurface Zm-k (X) is a hypersurface 
in G. We replace X and Zm-k(X) by their conormal varieties Con (X) C T*P 

and Con (Zm-k(X)) C T*G. We shall show that Con (Zm-k(X)) can be obtained 
from Con (X) by a very simple construction. 

Let F C P x G be the flag variety (or incidence variety), i.e., 

F - { ( X , L ) ~ P x G ' X ~ L } .  (3.6) 

In accordance with our general approach, we consider the conormal bundle of F 

in P x G which we denote by 

= T; (P  x G) C T*(P x G) -- T*P x T*G. (3.7) 

We have a natural diagram of projections (the Lagrangian correspondence) 

q/' / X~  qa , (3.8) 
T*P T*G 
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where, by qe and qa, we denote the projections of ~ to the first and second factors 

in (3.7). The map qe is a locally trivial fibration. Therefore if A C T*P is any 

irreducible Lagrangian variety, then qc(q-~l(A)) C T*G is also an irreducible 

variety. It is this simple construction that is relevant to our problem. 

Proposition 3.15. In the above notation, we have 

Con (Zm-k(X)) = qc(q-~ 1(con (X))). (3.9) 

The proof is based on a lemma which describes E = T~ (P x G) in intrinsic 
terms. Let (~., ~) e T* P. In other words, ~. 6 P = p,,-1 is a 1-dimensional 

subspace in C n and ~ e Tx* P is a covector at ~. Let also (L, rl) e T*G. We 

think of L as an (n - k)-dimensional vector subspace in C", and denote by L the 

corresponding projective subspace in P. A covector 7/ e T~G can be regarded 

as an element of Hom (C"/L,  L). Now the question which we want to answer is: 

when does the tuple (~., ~, L, 7/) belong to 2? 

Lemma  3.16. Let (~, ~, L, O) e T* P x T* G be a point with non-zero ~, q. I f  this 

point belongs to ~ then the following conditions hold: 

(1) ~ e L (i.e., ()~, L) e F). 
(2) The projectivization L of L lies in the hyperplane Jr C P, which is tangent 

to the vector subspace {~ = 0} C Tx P. 

(3) The hyperplane {1/= 0} C TLG is the sum 

TLGa()~) + TLG#(rr), 

where G~, G/j are u- and r-varieties (see subsection A). Conversely, if these 

conditions hold then there is c ~ C* such that (~, ~, L, co) e 2. 

Proof of the lemma. Let us define the following vector bundle E on P • G. 
By definition, the fiber of E at a point (~., L) is set to be Hom (~., C"/L) .  Let 

s e H ~  x G, E) be the section whose value at (~., L) is the natural composite 

map ~ ,--+ C" --+ C"/L.  This section vanishes whenever ~. C L, i.e., it vanishes 

on F. The differential ds gives an identification 

T~(P • G) ~- E'IF. (3.1o) 

So any conormal space T~ (P x G)(X,L) is identified with ~. | L • where L • C C n* 

is the orthogonal complement to L. The projections 

T~(P • G)(~,L) -- X | L • .~ T~ P -- k | X • 
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T: (P  x G)fX,L) = ~. | L • > T~G = L | L • 

are induced respectively by the inclusions L • C ~.x, ~ C L valid for (~., L) 6 F.  

The condition (~., ~, L, 17) ~ ~ means simply that ~ ~ ~. | ~.• and 17 ~ L | L • 

both come from the same vector ( e ~. | L • 

Now let us suppose that (~., ~, L, 1/) e ~ and show that the conditions (1)-  

(3) are satisfied. The fact that ~ comes from ~. | L • means that the hyperplane 

Jr = Ker ~ contains L. This is the condition (2) of the lemma. Let us write 

= ( = x | g where x e ~., g ~ L • (note that ~. is 1-dimensional!). Let us 

remark that the hyperplane zr is given by the vanishing of the linear form g. Since 

17 e L | L -L also comes from ( = x | g, it is implied that Ker 17 C L* | (L-L) * 

has the form 

Ker 17 = (x • | (L-L) *) + (L* | g_L). 

But x • | (L• * = TLG,~(~.) and L* | g• = TLG#(zr), so we get the condition 

(3). This proves the lemma in one direction. 

Conversely, suppose that the conditions (1)-(3) hold. As above, (2) implies 

that ~ ~ ~. | L • say ~ = x | g where x ~ ~., g 6 L • and that Jr is given by the 

vanishing of g. The condition (3) gives that 17 and x | g have the same kernel and 

thus are proportional. The lemma is proved. 

Proof of Proposition 3.15. As in Section 2E Chapter 3, we use the notation E Tx X 
for the embedded tangent space to X at a smooth point ~. 6 X. Note that both 

sides of the proposed equality (3.9) are irreducible subvarieties in G. Hence it is 

enough to prove that for some Zariski open subset V C qel  (Con(X)) of "generic 

points" the set qG(V) is a Zariski dense subset in Con (Zm-k(X)). We define V 

as the set of all 

(~. ,~,L, I/) ~ qpl (Con(X))  C T*P x T*G 

such that 

(a) ~. is a smooth point of X. 

(b) The projectivization L of L (which contains the point ~.) together with the 

embedded tangent space ETxX span the hyperplane Jr C P tangent to {~ = 0} 

at ~.. 

Note that, under the assumption (b), the covector ~ is determined, up to a 

scalar factor, by ~. and L. Moreover, since both L and E Tx X are contained in the 

same hyperplane, we have dim (L f3 E Tx X) > m - k, i.e., L ~ Zm-k (X). 

We consider the open subset V1 C V consisting of (~., ~, L, 17) for which, in 

addition, L is a smooth point of Zm-k(X). We claim that qc(V1) is a Zariski dense 

subset in Con (Zm-k(X)). Indeed, it remains only to show that if (~., ~, L, 17) e V1 
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then 17 ~ (T~m_k(X) G)L and, moreover, any conormal vector to Zm-k(X) at L is thus 

obtained. By the condition (3) of Lemma 3.16, this is equivalent to the statement 

that 

TLG,,(*) + TLG~( r r ) -  TLZm-k(X). (3.11) 

However, since X is smooth at ~. and Zm-k(X) is smooth at L, we can replace 

X C P by its first order approximation at Z, i.e., by the embedded tangent space 

ETxX C P so that 

TLZm-k(X) = TLZm-k(ETxX). (3.12) 

The equality 

TLGu(~,) + TLG~(n') = TLZm-k(ETxX) (3.13) 

is easy to establish. Indeed, both sides of it are hyperplanes in ire G. The summand 

TLG~O0 corresponds to infinitesimal displacements of L containing ~.. Such 

displacements lie on the fight hand side of (3.13) by definition. The summand 

TLG~(Jr) corresponds to infinitesimal displacements of L (the projectivization 

of L) inside rr. Any such displacement intersects E TxX along a subspace of 

dimension > m - k. So the second summand is also contained on the right hand 

side. The equality (3.13) follows for dimension reasons. Proposition 3.15 is 

proved. 

Having Proposition 3.15 at our disposal, it is very easy to explain why higher 

associated hypersurfaces are coisotropic. Let Y C T*G be the space of isotropic 
covectors, i.e., covectors defining coisotropic hyperplanes. More precisely, we call 
a covector r /~  TI~ G -- Hom(C"/L,  L) coisotropic if the corresponding operator 
C " / L  --+ L has rank < 1. Clearly a hypersurface Z C G is coisotropic if and only 

if its conormal variety Con (Z) C T*G lies in Y. Now part (a) of Theorem 3.14 

(higher associated varieties are coisotropic) follows from Proposition 3.15 and the 

next simple fact. 

Proposition 3.17. In the notation from (3.8) the variety Y C T*G coincides with 
qa(E).  

Proof Our statement is an immediate consequence of the condition (3) in Lemma 

3.16 and the fact that coisotropic hyperplanes are precisely sums of an c~-subspace 

and a fl-subspace (Proposition 3.8). 

Let us now turn to part (b) of Theorem 3.14 (any coisotropic hypersurface 

is higher associated). Let Z C G be an irreducible coisotropic hypersurface. 

Consider the variety 

A -- qp(qG l(Con(Z))) C T ' P ,  (3.14) 



156 Chapter 4. Chow Varieties 

where qp,  q6 are defined in (3.8). 

Lemma 3.18. A is an irreducible conic Lagrangian variety. 

Proof A is conic (i.e., invariant under dilations) since both C o n ( Z )  C T*G 
and ~ C T*P • T*G are. The statement that A is Lagrangian means  that, first, 

dim A -- dim P = n - 1 and, second, the restriction to (the smooth locus of) A 

of the symplectic form w on T*P vanishes identically. 

To see that dim A = n - 1, note that dim Y = k (n - k) + n - 1, since Y is a 

fibration over G with the fiber being the cone over the Segre variety pk-1 x pn-k-1.  
So the dimension of  fibers of  qa over non-zero covectors from Y is equal to 

dim E - dim Y - dim P + dim G - dim Y 

= (n - 1) + k(n - k) - (k(n - k) + n - 1) = 0. 

In other words, any non-zero covector i / 6  Y lifts uniquely to 2.  (This can be also 

seen from the reasoning in the proof  of  L e m m a  3.16.) Since Z is coisotropic,  we 

have that C o n ( Z )  C Y and so dim q ~ l C o n ( Z )  = k(n - k). Now the fibers of  qe 
have dimension 

d i m E - d i m T * P  = k ( n - k ) - ( n - 1 ) .  

Therefore  

d i m A  = dimqp(q~l (Con(Z)) )  >_ n -  1. 

This inequality will suffice if we show that the symplectic form o9 vanishes on A. 

To see this, we introduce local coordinates xi on P and let ~i = dxi so that the 

xi and ~i combined are local coordinates on T* P.  Similarly, let (yj, Oj), Oj = dyj 
be local coordinates on T* G. Since ~, C T*P • T*G is Lagrangian,  we have 

( ~ d x i A d ~ i W Z d y j A d r l j )  - -0 .  (3.15) 
i j F~ 

Since C o n ( Z ) C  T*GisLagrangian,  w e g e t ( Y ~ 4 d y j A d o j )  

regard this as an equality on T*P x T* G" 

( ~ d y j  A d o j ) [  = 0  
j ~1 (Con(Z)) 

= 0 .  We 
Con(Z) 

(3.16) 

where  qc  " T* P x T* G --+ T*G is the projection. The equations (3.15) and 

(3.16) imply that, on T*P • T* G, we have 

(~dxi Ad~i) - - !  - - 0  
i q~ (Con(Z))N ~, 
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fromwhich, onT*P,  w e g e t ( Y ~ i d x i / x d ~ i ) [  = 0. Lemma 3.18 is proved. 
A 

Now let us apply Proposition 3.1 of Chapter 1 which says that any irreducible 

conic Lagrangian variety A C T* P has the form A = Con(X) for some subvariety 

X C P. By our construction (3.14) of A we have 

Con(Z) - qa(qp 1 (A)) -- qa(qe 1 (Con(X)). 

It is easy to see from the fact that Z is a hypersurface that dim X = m - 1 > k - 1. 

Proposition 3.15 implies that Z = Zm-k(X). 
This completes the proof of Theorem 3.14. 

D. a-distributions and the characterization of associated hypersurfaces 

We have established (Theorem 3.14) that coisotropic hypersurfaces in G (n - k, n) 

are precisely higher associated hypersurfaces of subvarieties X C pn-1 with 

dim X >_ k - 1. The question now is how to characterize genuine associated 

hypersurfaces among all coisotropic ones. 

Recall (Proposition 3.8) that any coisotropic hyperplane in Horn (B, C) con- 

tains a unique ct-subspace and a unique fl-subspace. Therefore, if Z C G(n - k ,  n) 
is a coisotropic hypersurface then for any smooth point L e Z we have, in the 

tangent space TL Z, a uniquely defined ct-subspace E(L)  and a uniquely defined 

fl-subspace E ' (L) .  Clearly these subspaces vary holomorphically with L ~ Z. 

So we obtain two distributions (or Pfaff systems) on Z. We call them the ct- and 

fl-distributions of Z and denote them by s and s They are defined on the 

smooth locus of Z. 

It is the ct-distribution E,~,z which will be of special importance for us. Note 

that if Z is the (genuine) associated hypersurface of some X C p,,-1, dim X -- 

k - 1 then Z is fibered (genetically) over X since a genetic (n - k - 1)-plane 

intersecting X does so in only one point. Fibers of the arising projection 7r �9 Z --+ 

X are u-varieties G~ (x), x ~ X. So in this case the ct-distribution ,f~,z consists of 

planes tangent to fibers of Jr. 

In general, a distribution of p-dimensional subspaces in tangent spaces of a 

manifold Y is called integrable if it possesses a p-dimensional integral submanifold 

through each point of Y. 

T h e o r e m  3.19. A hypersurface Z C G(n - k, n) is the associated hypersurface 
of some (k - 1)-dimensional X C pn-1 if and only if the next two condition hold: 
(a) Z is coisotropic; 
(b) The or-distribution E~,z of Z is integrable. 

In this case integral manifolds of Ea,z are a-varieties Ga(x), and the variety 
X can be recovered as the set ofpoints x parametrizing these integral manifolds. 
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Proof If Z is associated to some X then, as we have just seen, C,~,z consists of 

tangent planes to fibers of the (generically defined) projection Z ~ X, so it is 

integrable. The converse statement is based on the following. 

Lemma 3.20. Let 1" C G (n, k, n) be an irreducible variety whose tangent space 

at every smooth point L ~ F is an a-subspace in Tt.G(n - k, n). Then I" is an 

R-variety G~(x) for some x ~ pn-1. 

Proof At any smooth point L ~ 1", we have, by our assumption, 

T L F -  TLGa(x(L)) (3.17) 

where x (L) ~ pn-  1 is some point contained in L; clearly, x (L) depends on L e 1-' 

in an analytic way. In other words, (3.17) means that any infinitesimal displacement 

of L in 17 fixes x(L).  Let M C p~-i  be the closure of the set of all points x(L)  

for smooth L ~ F. We claim that M is a point. Indeed, we have a map 

~O" rsm -----> M, L ~ x(L)  

where I"sm is the smooth locus of F. By definition Im tO is dense in M. On the 

other hand, the differential of q) at any point 

d~.q)" TLF ~ Tx(L)M 

is the zero map. To see this, let v e TL 1-" be an infinitesimal movement of L in 1-'. 

By our assumption this infinitesimal movement preserves x(L).  This means that 

the infinitesimal movement o fx (L)  corresponding to v, is zero, i.e., (d~.q))(v) = O. 

So M is indeed a point and the lemma is proved. 

Having Lemma 3.20, it is easy to finish the proof of Theorem 3.19. Indeed, 

let Z C G (n - k, n) be a coisotropic hypersurface such that the distribution C,~,z 

is integrable. By Lemma 3.20, each integral variety of E~,z is an R-variety G~ (x) 

for some x ~ pn-1. Let X C p,,-1 be the closure of the set of x obtained in this 

way. Then Z consists precisely of (n - k - 1)-dimensional projective subspaces 

intersecting X. Since Z is a hypersurface, it follows that dim X - k - 1, and we 

are done. 

E. a-integrability in coordinates 

We first recall the Frobenius theorem on the integrability of distributions (Pfaff 

systems). Let Z be a complex analytic manifold of dimension m and a l . . . . .  a r be 

holomorphic 1-forms on Z linearly independent at every point. For any x e Z, the 

vanishing of linear forms a l (x )  . . . . .  ar(X) : TxZ ~ C defines a vector subspace 
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E(x)  C Tx Z of codimension r. We denote by E the distribution (Pfaff system) 
formed by these subspaces. The Frobenius theorem is as follows [BCG3]. 

Theorem 3.21. The distribution E is integrable i f  and only i f  f o r  each i we have 

doti A Otl A . . .  A Ol r - -  O. (3.18) 

We are going now to implement this theorem for the particular situation when 

Z is an irreducible coisotropic hypersurface in the Grassmannian G (n - k, n) and 

E is the u-distribution ,~,z of Z. Of course Z may be singular so ~'~,z is defined 

only at smooth points of Z. 

We abbreviate G = G(n - k, n). We shall work with the affine coordinates 

on G, see Section 1, Chapter 3. Thus we consider the affine chart C ('-k)• C G 

consisting of subspaces which are graphs of linear operators A = Ilaij II " C ~  
C k. The entries ai j ,  i -- 1 , . . . ,  n - k, j = 1 , . . . ,  k are coordinates in this chart. 

Let f (aij) E C[aij ] be the equation of the hypersurface Z. This is a polyno- 

mial which may be reducible (in case Z is reducible) but not divisible by squares 

of irreducible polynomials. As we have seen in Proposition 3.12, the coisotropy 

of Z is equivalent to the fact that the matrix IlOf/Oaij II has rank 1 everywhere 

on Z. In other words, for any z ~ Z, all rows of the matrix [[Of/Oaijll(z) are 
vectors of length k proportional to each other. Let us assume that, say, the first 

row, i.e., the vector (Of/Oall . . . . .  Of/Oalk)(z) is non-zero in the neighborhood 

of a given point of Z. Then this vector generates the 1-dimensional subspace 

Im II Of/Oaij II (z) .  By Proposition 3.8, the ct-subspace E,~ (z) C Tz Z consists of 
those matrices B = [[bijl[ ~ TzG - - C  (n-k)xk for which 

(Of/Oall . . . . .  Of /Oalk)(z ) .  B = 0. (3.19) 

Thus the distribution C~,z is given (on the part of Z where the first row of II ~f/Oaij II 
is not zero) by the vanishing of the following 1-forms: 

or1 = .a-~dall + . . .  + ~ dalk oa~ Oalk 

i i . (3.20) 

Otn-k = ~ d a n - k , l  + ' ' "  + afif_dan_k k 
O a l l  O a l k  ' 

If, by any chance, the r o w  ( O f / O a l l  . . . . .  O f / O a l k ) ( Z )  vanishes at some point z 6 Z, 

any other non-vanishing row (Of/Oail . . . . .  Of/Oaik)(Z) would do the job. More 

precisely, we introduce the forms 

ot~ = O f d a j l + . . . + ~ f d a j k ,  i, j = l . . . . .  n - k (3.21) 
oai l  Oaik 



160 Chapter 4. Chow Varieties 

Then, for any smooth point z ~ Z, there is at least one i such that the 1-forms 

ffl'i . . . ,  Oln_ k i  define the ct-subspace E,, (z). 
i i for any i are Note that the forms (3.20), as well as the forms ct 1 . . . . .  a,_  k 

linearly dependent on Z. Indeed, on Z we have 

0 = d f  = ~ a f  
~j.. Oaij 

n - k  
dai j  --  ot] -~- ... -~- Otn_ k . (3.22) 

If, for a given i, the i - th row of the matrix II Of/Oaij II is zero then all the forms 

ct~, j = 1 . . . . .  n - k are certainly zero. If this row is a non-zero vector then all 

the other rows are its multiples, so there are coefficients ~ ' l  such that ctJ = ,ktctj 

for any j ,  so (3.22) impliesY]/~.lCt~ - -  0. In other words, to define the distribution 

,Y,~, z, we need to take an appropriate subset of the forms ct~, . . .  , Oln_ k i  of cardinality 

n -- k - 1. This leads to the following conclusion. 

Theorem 3.22. Let f ~ C[aij] be a square-free polynomial in entries of  an 

(n - k) x k-matrix Ilaij II such that the hypersurface Z -- { f  -- 0} in C 0'-k)xk C 

G(n - k, n) is coisotropic. The or-distribution C~,z is integrable if  and only if  for  

each iv, jv ~ 1 . . . . .  n - k, v - 1 . . . . .  n - k the (n - k + 2)-form 

(3.23) 

vanishes at every point o f  Z. In other words, it is required that any component of  

any form (3.23) (which is a polynomial in aij ) be divisible by the polynomial f . 

Proof. This follows from the above analysis and from the Frobenius theorem 

3.21 once we observe the following obvious fact. For any differential r-form f2 

on C ('-k)xk, the restriction of f2 on Z vanishes (as an r-form on Z) if and only if 

d f / x  f2 vanishes at every point of Z. 

R e m a r k  3.23. (a) The conditions for a hypersurface {f  = 0} to be an associated 

hypersurface, given in Proposition 3.12 and Theorem 3.22, have the form Di ( f )  :-- 

0 (mod f )  where the Di are some non-linear differential operators. It is possible 

in principle to interpret these conditions as algebraic equations on coefficients of 

f :  we need to "eliminate" the indeterminate factor g in Di ( f )  = f g  which can 

be done by some linear algebra*. However, the resulting equations will have a 

degree much higher that the degree of homogeneity of Di ( f )  in f .  For example, 

* The existence of g such that Di ( f )  = f g  means that D i ( f ) ,  regarded as a 

vector in an appropriate space of polynomials, lies in the image of the operator 

given by multiplication with f .  So we have the condition that some linear system 

is compatible. This can be reformulated as the vanishing of certain minors. 
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the conditions of coisotropy (Proposition 3.12) look like quadratic equations in 

coefficients of f ,  but in fact they are not. 

(b) The approach of [Ca5] and [GrM] used not affine but Pliicker coordinates 

in the Grassmannian. Let us illustrate this for the case of G(2, 4). We represent a 

hypersurface Z by a homogeneous polynomial F in Plticker coordinates Pij, 1 < 
i < j < 4. The polynomial F in now defined not uniquely but modulo the Pliicker 

relation R = P12P34 - P13P24 -4- Pln P23. The coisotropy condition in Pliicker 

coordinates has the form 

OF OF OF OF OF OF 
�9 - �9 -4- �9 -- 0 (mod F, R). (3.24) 

Opl2 0P34 OP13 0P24 OP14 0P23 

It was first proved by Cayley [Ca5] that any hypersurface in G(2, 4) whose equation 

in Plticker coordinates satisfies (3.24) consists either of all lines meeting some curve 

or of all lines tangent to some surface. 



PART II 

A-Discriminants and A-Resultants 



CHAPTER 5 

Toric Varieties 

In Part I we studied discriminants and resultants in the general context of projective 

geometry: our setup was that of an arbitrary projective variety X C pn-1. We now 

want to move into a more combinatorial setting, which is closer to the classical 

concept of discriminants and resultants for polynomials. This setting corresponds 

to the situation when X C pn-~ is a toric variety. In the present chapter, we have 

adapted the theory of toric varieties for our purposes. Since there are several refer- 

ences available on the subject [D] [Fu 2] [O], we did not attempt to be exhaustive 

or self-contained. Our exposition is organized "from the special to the general" so 

that the general description of toric varieties in terms of fans appears at the very 

end of the chapter. 

1. Projectively embedded toric varieties 

A. Monomials and the A-philosophy 

A monomial in k - 1 variables X 1 . . . . .  X k - 1  is a function 

X w ~ X 1 1  _ r  �9 " " X k _  1 , (1.1) 

where co = (o31 . . . . .  oak_ 1) 6 Zk+ -1 is the exponent vector. It will be convenient to 

allow the 0.) i t o  be arbitrary integers, possibly negative. In this case we get Laurent 
monomials. A Laurent monomial is a well-defined function 

x w-~ x ~~ (C*) k-1 --+ C*. (1.2) 

A variety of the form (C*) k-1 is known as an (algebraic) torus. It is a group 

under component-wise multiplication. A Laurent monomial is nothing more than 

a character of the torus. By a Laurent polynomial, we mean a finite linear com- 

bination of Laurent monomials. Any usual polynomial can be considered as a 

Laurent polynomial. 

Let A C Z k-1 be a finite set of integer vectors which can be identified with 

corresponding monomials. By C A, we denote the space of Laurent polynomials 

with monomials from A, i.e., of polynomials of the form 

f ( x )  -- f ( x l  . . . . .  xk-1) = Z a~176 (1.3) 
w 6 A  



166 Chapter  5. Toric Varieties 

The study of many problems involving polynomials becomes more transparent 

if we consider not individual polynomials but polynomials with indeterminate 

coefficients. For this, it is useful to fix A C Z k-1 and consider all polynomials 

from C A at once. In the subsequent chapters we shall apply this "A-philosophy" 

to the problem of the discriminant (find whether a given polynomial defines a 

singular hypersurface) and the resultant (find whether k given polynomials in k - 1 

variables have a common root). As an example outside the scope of the present 

book, let us mention the general theory of hypergeometric functions [GKZ2]. The 

study of integrals such as 

l ( f )  = f f (x l ,  �9 �9 . ,Xk-1)~~ ' �9 �9 �9 xk_ 1-ak-'dxl...dxk-1 

for particular Laurent polynomials f is usually quite difficult. On the other hand, 

considering I ( f )  as a function of an inde terminate  f ~ C A leads to a meaningful 

theory. In particular, it is possible to express I ( f )  in terms of power series of a 

simple form (the so-called hypergeometric series). 

B. The  varieties X A and YA 

To set the study of Laurent polynomials in the geometric context of Part I, we asso- 

ciate a projective variety to a finite set A C Z k-1 . Suppose, A -- {o9 (1) . . . . .  w(")}. 
Define the variety XA C pn-1  to be the closure of the set 

x ~ = { ( x  ~ �9 �9 x '~ �9 x = ( x l ,  x k - 1 )  ~ ( C * )  k - l }  �9 . . . . .  ) �9 (1.4) 

Varieties of the form XA will now be the main objects of study and we shall 

now apply the formalism of Part I to XA. 
Along with XA C p n - 1 ,  we consider the affine variety YA C C", namely the 

cone over XA. This can be defined as the closure in C n of the set 

, �9 . X r176 r o  {(Xk "X  '~ . , X k  " ) " X = (Xl  . . . . .  X k - 1 )  ~ (C*) k-l, Xk ~ C*}. 
(~.5) 

In a more invariant setting, we can identify the ambient vector space C" for 

YA as (cA) *, the dual of the space of Laurent polynomials associated with A. 

Thus, a linear form y~ ai zi on C n will be written, when convenient, as the Laurent 

polynomial 
w (i) C A 

f (x)  = y ~  a ix  E . 

Geometrically, this corresponds to the restriction of linear forms to X ~ In other 

words, the hyperplane sections of XA are certain compactifications of zero loci of 

polynomials from C A . 
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Let us give some important examples of sets A and varieties XA. 

Examples  1.1. (a) Let A consist of all monomials in Xl . . . . .  Xk-1 of degree < d 

that do not contain negative powers of any xi. Let ,4 consist of all monomials in 

k variables x l . . . . .  xk, homogeneous of degree exactly d (not containing negative 

powers). The sets A and ,~ obviously lead to the same variety XA - -  X,~. This is 

the projective space pk-1 in its Veronese embedding 

pk -1  __ p ( c  k) ~ p ( s d c k ) ,  v I---> 13d. 

In particular, for k = 2, we get the Veronese curve Cd C e d ,  i.e., the rational 

normal curve in pd of degree d. 

(b) Let A consist of bilinear monomials xi �9 yj, where the xi and yj (i = 

1 . . . . .  m; j = 1 . . . . .  n) are two sets of variables. The variety XA is the product 

of two projective spaces pm-1 • pn-1 in its Segre embedding 

pm-1  • pn -1  : p ( C  m) X P(C  n) ~ P ( C  m ~ c n ) ,  (13, 1/)) k---> 13 (~) w.  

(c) Let A consist of the monomials of the form X i �9 y j  �9 Z k ,  where the X i (i = 

1 . . . . .  ml),  yj ( j  -- 1 . . . . .  m2), andzk (k = 1 . . . . .  m3) arethree setsofvariables. 
Then XA is the triple product pro1-1 • pm2-1 • pm3-1 in its Segre embedding 

similar to above. 

(d) Let A consist of the following monomials in two variables: 

1, x,  x 2 x p y, yx  yx  2, , yx  q 

The variety XA is the rational normal scroll which we have already encountered 

in Example 3.6 Chapter 3. 

Proposi t ion 1.2. The varieties X A, Y A  depend only on the affine geometry o f  the 
set A C Z k-1. In other words, let A C Z k- l ,  B C Z m-1 and T : Z k-1 --> Z m-1 

be an integer affine transformation which is injective and such that T (A) -- B. 

Then X A is naturally identified with X B, and YA with YB. 

Proof  Let A = {w (1) . . . . .  o9 (")} and B = {I? (1) . . . . .  O (')} SO /~(i) = T(og(i)). 

Write T in an explicit form: 

k-1 k-s  ) 

. . . . .  ak-1)  --  Clk q- ~.__. c l ja j  . . . . .  Cm-l,k q- Cm-l , ja j  , T ( a l  
j= l  j= l  

where cij E Z. Consider the map T* �9 ( C * )  m - 1  --~ ( C * )  k - l ,  defined by 

. C m _ l ,  j 
T * ( s  1 . . . . .  S m - 1 )  - -  ( t l  . . . . .  t k - 1 )  where tj -- S I, " ' 'S in-1  . 
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Then, for any s = (sl . . . . .  Sm-1), the points 

(s ~ ~  "s ~ ~ C P " - I  and (t ~~ "t ~  ~ C pn-1 

will be the same since the corresponding vectors in C n will be proportional. Since 

T is injective, T* is surjective from which X ~ -- X ~ and X A = X B. Similarly, 

YA = YB . 

A particular instance of Proposition 1.2 was already mentioned in Example 

1.1 (a) (the sets A and A give the same variety). 

Proposition 1.2 implies that in the construction of XA, for A C Z k- 1, we can, 

if we wish, shrink Z k-1 to the smallest affine sublattice in Z k-1 containing A. We 

introduce special notation for it for later use. 

Definition 1.3. If A C Z k-1 is a finite subset, then we denote by 

Affz(A) = {~~a no' " co" n o , ~ Z , ~ ~ n , o = l } ,  (1.6) 

the affine sublattice in Z k-1 generated by A. 

C. A general notion o f  a toric variety 

The varieties XA and YA introduced above belong to the following general class 
of algebraic varieties. 

Definition 1.4. A toric variety is an irreducible complex algebraic variety X 
equipped with an action of the algebraic toms (C*) n having an open dense orbit. 

This definition is slightly more general than the one usually given in the 

literature: we do not require normality of X (see Section 2 below for a discussion 

of this issue). 

There is an obvious way of constructing toric varieties. Suppose that we have 

an action of a torus H -- (C*) m on some algebraic variety Z. Let z ~ Z be any 

point. Consider the orbit closure Hz.  By definition, this is a toric variety. 

In particular, the variety XA is obtained by considering the action of the toms 
(C*) k-1 on the projective space pn-1 given by the formula 

x " z . )  (x  �9 " . . .  - -  Z l  " . . .  " X Z n ) .  

The variety XA is the closure of the orbit of the point (1 �9 . . .  �9 1) under this action, 

so it is a toric variety. Similarly, the variety YA is the closure of the orbit of the 
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point (1 . . . . .  1) e C" under the obvious action of the torus (C*) k = (C*) k-1 x C*, 

see (1.5). 

Note that the toric variety XA C pn-1 is equivariantly embedded: the action 

of the toms on XA extends to the whole pn-1.  The following converse statement 

is almost obvious. 

Propos i t ion  1.5. Let X C pm-1 be a projective toric variety (with (C*) k-1 acting 

on X)  in an equivariant embedding. Let < X > be the minimalprojective subspace 

in pm-1 containing X. I f  dim < X > -- n -  1, then there exists a subset A C Z k-1 

containing n elements and an isomorphism X A "---> X,  equivariant under the torus 

and extending to an equivariant projective isomorphism pn-1 ~ < X > of  the 

ambient projective spaces. 

Proof. An action of (C*) k-1 on pm-1 by projective transformations can always 

be lifted to a linear action on C m. Any such action is diagonalizable, so in suitable 

coordinates it is given by a collection of characters 

x ~ (C*)k-1 ~ -.- diag(x ~~ , x  ~~ ~ �9 . -  

for some integer vectors O) (i) E Z k - 1 .  Let z : (zl " . . .  �9 Z m )  ~- X be a point lying 

on the open orbit of the torus. Some of the zi may equal 0. Let A C Z k-I be the 

collection of those O) (i) for which zi ~ O. Then we have an isomorphism XA "-> S 

as required. The rest of the proof is obvious. 

R emark  1.6. There are projective toric varieties in the sense of Definition 1.4 that 

do not have an equivariant projective embedding. For example, consider a nodal 

cubic curve X in p2 with homogeneous equation 

zoz 2 = z ~ -  zoz 2. 

In the affine coordinates x = z l /zo ,  y = z2/zo, the equation is y2 = x 2 ( x  _ 1) .  

The point p = {x = y = 0} is the only singular point of X and X - {p} = C*. So 

there is a C*-action on X with the open orbit X - {p} and thus X is a toric variety. 

Suppose that X admits an equivariant projective embedding ~0 �9 X ~ p,,-1. Then 

the line bundle/Z -- ~o* (.9(1) is equivariant with respect to the torus action. Denote 

by d the degree of 12, i.e., the degree of X in our embedding, and let PiCd (X) be the 

moduli space of all line bundles of degree d on X. The torus action on X induces a 

natural action on Pica(X) under which the point/2 is, by our assumption, invariant. 

But it is easy to see that PiCd (X) is isomorphic to C* and that the torus action on it 

is transitive. This contradiction shows that X does not have equivariant projective 

embeddings. 
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D. Weight polytopes and torus orbits 

We want to recall some statements from the proof of Proposition 1.5 using more 

invariant terminology. 

Let H = (C*) k-1 be an algebraic toms acting algebraically on a vector space 

V. Consider the associated action on the projectivization P(V) .  Take any non- 

zero v ~ V, and consider P ( H  �9 v), the closure in P(V)  of the H-orbit of the point 

corresponding to v. This is a projective toric variety and Proposition 1.5 says that 

it has the form XA, where A = A(v) C Z k-I is defined as follows. 

According to the standard theorem of the theory of algebraic groups, V can 

be decomposed into the weight subspaces corresponding to characters of H. A 

character X " H --+ C* is just a Laurent monomial X ( t l  tk-1) = t~ ~ t~k-~ 
' ' ' ' '  " " " ' k - 1  " 

Thus the lattice of characters of H is identified with Z k-1. The weight subspace 

corresponding to a character X is defined as 

V x -- {v ~ V ' t .  v = X(t)v for any t e H}, (1.7) 

and we have the weight decomposition 

V = ~ ) V x .  

X ~ Z  k - I  

Correspondingly, for any vector v ~ V, we shall denote by v x its component of 

weight X, i.e., the projection of v to V x along all the other weight spaces. 

Set A(o) = {X ~ Zk-1 " vx ~- 0}. Then P ( H .  v) -~ XA(O. 

Definition 1.7. Let H = (C*) k-I be an algebraic torus acting linearly on a vector 

space V. Let v ~ V be any vector. The weight polytope Wt(v) of v is the convex 
hull in R k-l of the set A(v) = {X ~ zk-1 " 1)x ~ 0}. 

This is the first appearance of convex polytopes in this book. Convex geometry 

will play a very important role in the chapters to follow. Right now we shall describe 

the correspondence between torus orbits on P ( H .  v) and faces of the polytope 

wt(v). 

Let X be a toric variety (whose torus we denote by H). Let x, x' ~ X be two 

points. We shall say that x' is a toric specialization of x if 

x' ~ H . x .  

Clearly being a toric specialization is a partial order relation. 
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Proposition 1.8. Let H and V be as before. Let v ~ V be a non-zero vector and 

X = P ( H .  v). Then H-orbits on X are in bijection with faces of  the polytope 

Wt(v). More precisely, for  any v' ~ V representing a point of  X, the polytope 

Wt(v') is a face of  Wt(v). l f  v', v" ~ V are two vectors representing points x', x" 

of  X then x" is a toric specialization of  x' i f  and only if  Wt(v") C Wt(v'). 

We reformulate and prove Proposition 1.8 in the particular case of the toric 

variety XA C p~-I  where A C Z k-1 is a finite set. By Proposition 1.5, this will 

suffice to establish Proposition 1.8 in general. 

We consider XA C p n - 1 .  AS in subsection B above, we think of the ambient 

projective space as P ((cA) *) and denote its homogeneous coordinates by z,o, to 

A. Consider the polytope Q c R k-l, the convex hull of A. This is precisely 

the weight polytope of the vector v = (1 . . . . .  1) whose orbit closure is X A. 

Proposition 1.8 can be reformulated in our situation as follows. 

Proposition 1.9. The torus orbits in X A are in bijection with non-empty faces 

of  the polytope Q: the orbit X~ corresponding to a face F C Q, is specified 

inside X A by conditions 

zo, = 0 for w ~ F, zo, -7 6 0 for w ~ 1". 

Denote by X (1-') the closure of  the orbit X ~ (1"). Then X (1-') is isomorphic to X anr. 

I f  r" and A are two faces of  Q then x ( r ' )  c X(A) i f  and only if  r" c A. 

Proof. Let F C Q be a face. Denote by er the point in p,,-1 with homogeneous 

coordinates (zo,) where zo, = 1 for w ~ F and zo, = 0 for w ~ 1". By definition, 

the points of XA are limits lim~ ~0 ct ( r ) .  e Q for all analytic maps c~ of a punctured 

disk {r e C : Irl < e} to (C*) k-1. Suppose that 

f f ( ' t ' ) - - ( C l ' t ' a l  -~ - . . .  , . . . .  Ck_l zak-I -~-' '  "), C i ~. C * ,  ai E Z 

where the dots mean terms of higher order in r. Let a = (al . . . . .  ak-1). Consider 

the linear functional ~0a on R k-1 given by tpa(bl . . . . .  bk-1) -- ~ aibi. Let 1-'(a) C 

Q be the supporting face of tpa, i.e., the set of all points of Q where tpa achieves 

its maximum. Then it is immediate to see that 

l i m ~ 0  ct(r)ea = (cl . . . . .  ck-1) " er. 

Hence every point of XA is equivalent under the action of the torus to some er. 

Since the closure of the orbit of er is Xanr,  all the assertions of the proposition 

now follow. 

We conclude the discussion of weight polytopes with a modification of Propo- 

sition 1.8. Let V be a vector space with a linear action of the torus H -- (c*)k-1; 
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let v e V be a non-zero vector and Wt(v) C R k-1 its weight polytope. Consider 

a 1-parameter subgroup in H of the form 

.~ ~ ~ .~a : (~.ai . . . . .  .~ak-! ) .  

For any covector w e V*, we consider the Laurent polynomial in r given by the 

scalar product 

"t" I---'> ( ' t  "a 13, W ) .  ( 1 . 8 )  

For any Laurent polynomial q ( r )  = ~ ci r i , we call the term ci "r i with i the largest 

such that ci :/: O, the leading term of q. 

Let Wt(v) a C Wt(v) be the face where the linear form tpa(bl . . . . .  bt-1) = 

aibi achieves its maximum. Suppose the weight decomposition of v has the 

form 

13 - -  ~ 1) X . 

We define 

I) a --- ~ 13 X " 

xEWt(v)  a 

Then we have the following statement. 

Proposition 1.10. The leading term of  the Laurent polynomial (1.8) is equal to 

(1)a, W ) "  l: tp ' (wt (v)a) .  

(1.9) 

The proof is straightforward and left to the reader. 

We shall use Proposition 1.10 as a way to recover the weight polytope Wt (o) 

from the asymptotics of "rao for various 1-parameter subgroups r I > ra. 

2. Affine toric varieties and semigroups 

A. Classification o f  affine toric varieties 

Let S be a commutative semigroup with 0; its semigroup algebra C[S] consists of 

finite formal sums ~-]• a• t• where the a• ~ C are zero for almost all ~, and t • 

is a symbol associated to y. Multiplication in C[S] is given by the rule 

t • . t • = t•215 

If S is embedded into a free Abelian group Z k then we can view the symbol 

t • Y = (?'1 . . . . .  ~'k) ~ S as a Laurent monomial in k variables 

t • -- t~" . . . t~  'k. 
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In particular, C[Z k] is the algebra C[q,  t l  1 . . . . .  tk, t[  l ] of all Laurent polynomials. 

Proposition 2.1. Let S C Z k be a finitely generated semigroup (with 0). Then 

Spec C[S] is an (affine) toric variety. 

Proof We can assume that S generates Z k as an Abelian group. Then Spec C[S] 

has dimension k. Consider the action of the toms (C*) k on C[S] given by 

x . t ~" = x ~'t  •  x - -  ( x l  . . . . .  Xk) ~- (C*) k y E S c Z  k (2.1) 

The embedding of semigroups S C Z k gives an embedding 

(C*) k - Spec C[Z k] ~ Spec C[S] 

of the toms into our variety. The image of this embedding is an open orbit of the 

action (2.1). 

Example 2.2. The semi-cubic parabola Y in C 2 with the equation y2 : x 3 is an 

affine toric variety. The torus C* acts on Y via t (x, y) = (t2x, t3y). The variety 

Y can be obtained as Spec C[S] where S C Z+ is the semigroup consisting of 0, 

2, 3, 4 . . . .  (all non-negative integers except 1). 

As another example, consider a finite subset A C Z k-1 of size n, and let 

X A C pn-1, YA C C" be toric varieties introduced in Section lB. Being the 

cone over XA, the variety YA is affine and can be represented as Spec C[S], where 

S = SA is the semigroup defined as follows. 

Let us embed Z k- ~ into Z k - Z k-~ @ Z as the lattice of vectors with the last 
coordinate 1. For w 6 Z k-l,  let & = (w, 1) be the corresponding vector in Z k. Let 

SA C Z k be the semigroup generated by ff~, w ~ A. 

Proposition 2.3. The variety YA coincides with Spec C[SA].  

Proof If a = (al . . . . .  ak-1) ~ Z k-1 then the Laurent monomial t '~ in k variables 

t = ( t l , . . . ,  tk) equals tk �9 t~' "" "'k-1 "ak-' So YA is the closure in C" of the set 

yO _ {(t ~ ' ' ) , . . . ,  t~")), t 6 (C*) k}, 

where the O) (i) a re  all elements of A, see (1.5). 

The coordinate ring C[YA] is generated by restrictions to YA of coordinate 

functions on C n. These functions, after being restricted to yO, become Laurent 

monomials t ~'~i~. Hence C[YA] equals the semigroup algebra C[SA]. 

Proposition 2.4. Any affine toric variety Y has the form Spec C[S]for some finitely 
generated semigroup S C Z k, k >_ O. 
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Proof Let C[Y] be the coordinate ring of Y. Let H be the open orbit of a 
torus, say T, acting on Y. Then H can be identified with the quotient of T by 

the stabilizer of some chosen point of H. So we can regard H itself as a torus 

acting on Y. Let H ~ (C*) k. Since H C Y is open and Y is irreducible, we 
have the embedding C[Y] C C[H] = C[Zk]. The H-action on itself gives rise 

to the action on its coordinate ring, see (2.1). Since the H-action extends to Y, 
the subring C[Y] C C[H] is H-invariant. As any linear representation of the 

algebraic torus, the space C[Y] decomposes into weight subspaces. But all weight 

subspaces of C[H] are 1-dimensional and generated by monomials. Hence C[Y] 
itself is generated, as a vector space, by monomials, i.e., it is a semigroup algebra. 

Now let S C Z k be a finitely generated semigroup. Let K (S) C R k be the 

polyhedral cone defined as the convex hull of S. Let Y = Spec C[S] be the toric 
variety associated to S. 

Proposition 2.5. Torus orbits on Y are in bijection with faces of  the cone K (S). 

More precisely, the orbit Y~ corresponding to a face I" C K is specified inside 

Y by the conditions t • = 0 for  y ~ S fq F and t y ~: 0 for  y ~ S fq I'. Denote by 

Y(1-') the closure of  the orbit Y~ Then Y(I-') is isomorphic to Spec C[S M F']. 

I f  r', A are two faces of  K then Y (l") C Y (A) i f  and only if I ~ C A. 

Proof. Choose a system of generators B C S. Consider the affine space C 8 with 
coordinates zoo, o9 ~ B. The variety Y is embedded into C B by the map Z,o = tc~ 
The rest of the proof is similar to that of Proposition 1.9 and is therefore omitted. 

B. Normality and normalization 

Usually the definition of a toric variety includes normality. Let us recall the 
definition of a normal variety. 

Definition 2.6. Let Y be an irreducible affine algebraic variety, C[Y] be the ring of 

regular functions on Y and let C(Y) be the field of rational functions on Y, i.e., the 

quotient field of C[Y]. The variety Y is called normal if C[Y] is integrally closed 

in C(Y), i.e., any rational function f e C(Y), satisfying an equation of the form 

fm -t- g l f  m-1 "+-''" -I- gm --" O, gi E C[Y], 

lies in C[Y]. A quasi-projective variety is called normal if it can be covered by 
normal affine varieties. 

For a general (not necessarily normal) affine variety Y, the functions f 

C(Y) ,  satisfying the equations of the form given in Definition 2.6, form a ring 

C[Y] called the integral closure of C[Y] in C(Y). The spectrum I? of this ring is 
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called the normalization of Y. The inclusion C[Y] c C[Y] induces a surjective 

morphism Jr �9 I ~ --+ Y called the normalization morphism of Y. 

If X is a general quasi-projective variety then the normalization morphism 
of X is defined using an affine coveting X -- [._J ui. More precisely, denote by 

7ri " Ui --+ Ui the normalization morphism of Ui. Then it can be shown (see [Sh] 

for details) that the zri are compatible with intersections, i.e., the normalization of 

Ui f) Uj is the fiber product of Ui and Uj over X. Then we define the normalization 

of X to be glued from the Ui. 

Examples 2.7. (a) Consider the semi-cubic parabola Y in C 2, given by the equation 

y2 __ x 3. This is a toric variety 'see Example 2.2), however, it is not normal. Indeed, 

the coordinate ring C[Y] can be identified with the subring in the polynomial ring 

C[t] generated by monomials x - t 2 and y -- t 3. The quotient field C(Y) of 

this ring is the full field of rational functions C(t). The element f -- t 6 C(t) 
lies in the integral closure of C[Y] since it satisfies the equation f4 _ (t2) 2 __ 0. 

It is easy to see that the integral closure of C[Y] coincides with C[t]. Thus the 

normalization of Y is the affine line C, and the normalization morphism C ~ Y 
acts by t w-~ (t 2, t3). Geometrically, Y has a cusp at (0, 0). The normalization 

morphism straightens this cusp. Note that set-theoretically this morphism is a 

bijection. 

(b) If near some point y 6 Y the variety Y is the union of several branches 

then the normalization morphism separates these branches (see Figure 10). 

X 

I 
I 
I 
I 
I 

. ,, 

X 

Figure 10. Normalization 

X 

The following proposition, due to M. Hochster [Hoch], gives a feeling of what 

non-normality means for affine toric varieties. 
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Proposition 2.8. 
(a) Let S C Z k be a finitely generated semigroup with O. Denote by K (S) C R k, 

the convex cone which is the convex hull of S and by Linz (S) C Z k the abelian 

group generated by S. The integral closure of  C[S] is the semigroup algebra of  

the semigroup K (S) n Linz(S). In particular, C[S] is integrally closed (and 

the corresponding toric variety is normal) if and only if S = K (S) n Linz (S). 

(b) Any normal affine toric variety has the form Spec C[K n Zk] for some convex 

polyhedral cone K C R k given by inequalities with rational coefficients. 

We shall not give a proof here. Let us only remark that in one direction part 

(a) of the proposition is quite obvious. That is, if an integral vector b C Z k lies in 

K(S)  n Linz(S) then the corresponding monomial t b lies in the integral closure 

of C[S]. Indeed, in this case we have a representation b = Y~aeS ma �9 a where the 

coefficients ma E Q are nonnegative and almost all equal to zero. Multiplying b 

with a suitable positive integer r, we find that rb ~ S. Hence the monomial f -- t b 

satisfies the equation f r  _ g = O, g ~ C[S] and is therefore integral over C[S]. 

Re ma rk  2.9. Our basic examples of toric varieties are the varieties XA, YA asso- 

ciated to a finite set A C Z k-1. The variety YA is the spectrum of the semigroup 

SA C Z ~ generated by A, see Proposition 2.3. The condition of normality of YA 

given by Proposition 2.8 is quite restrictive. For example, the choice of A, as in 

Figure 11, gives a non-normal YA (and also XA, as we shall see later). 

Figure 11. 

For the applications we have in mind, it is natural to be able to consider an 

arbitrary set A; so we do not exclude non-normal toric varieties. 
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C. Smoothness and quasi-smoothness for affine toric varieties 

Proposition 2.10. The only smooth affine toric varieties are products (C*) p )< C q. 

In other words, if  S C Z m is a finitely generated semigroup, then Spec C[S] is 

smooth if and only if  S is isomorphic to Z p x zq+ for some k, I. 

Proof This is easy (see e.g., [D], subsection 3.3). 

Along with the notion of smoothness for affine toric varieties, we consider a 

weaker notion, the so-called quasi-smoothness. Namely, let S C Z m be a finitely 

generated semigroup and let Y be the corresponding affine toric variety. We say 

that Y is quasi-smooth if two conditions are satisfied: 

(1) The cone K (S) C R m (the convex hull of S) is linearly isomorphic to a cone 

of the form R p x R q. 

(2) The normalization morphism I ~ --> Y is bijective. 

By Proposition 2.10, any smooth variety is quasi-smooth. Here are some 

examples of quasi-smooth but not smooth varieties. 

Examples 2.11. (a) The semi-cubic parabola y2 = x 3 is a quasi-smooth toric 

variety. Indeed, the corresponding semigroup S C Z consists of 0, 2, 3, 4 . . . . .  

The convex hull K (S) is R+. The normalization morphism of this parabola is 

bijective according to Example 2.7 (a). 

(b) The quadratic cone Y C C 3 with equation y2 = x z is the spectrum 

of the semigroup algebra C[S] where S C Z 2 is the semigroup generated by 

p = (1 ,2 ) ,q  = ( 1 , 1 ) , r  = (1,0). Clearly, K(S)  C R 2 is the plane angle 
{(a,b) 6 R 2 �9 0 < b < 2a} (see Figure 12); hence it is isomorphic t o R  z ~ . . ] _ o  

Furthermore, S -- K (S) tq Z 2. So Y is a normal quasi-smooth variety. 

We shall see later that quasi-smooth toric varieties share some of the nice 

features of smooth ones. 

3. Local structure of toric varieties 

A. Local structure of  X A near an orbit 

Let A C Z k-1 be a finite set of lattice points assumed to generate Z k-I as an affine 

lattice. Consider the toric variety XA introduced in Section 1B. By Proposition 1.9, 

the structure of torus orbits on XA is governed by the convex polytope Q c R k-l,  

the convex hull of A. Namely, p-dimensional orbits are in bijection with p- 

dimensional faces F C Q. Denote by X ~ (1-') the orbit associated to a face IF'. We 

are going to study the structure of XA near a point on X ~ (1-'). 
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E 

/q 
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/ 

Figure 12. 

As in Section 2A, let us embed the affine lattice Z k-1 into the Abelian group 

U, = Z k as the subset {(al . . . . .  ak) ~ Z k " a,  = 1}. Let S be the subsemigroup 

in U, generated by A and 0. As before, let K C ~ t  = R k be the convex hull of S, 

i.e., the cone with apex 0 and base Q. 

For any face F C Q, let LinR(F) C ~R be the vector subspace over R 

spanned by F, so that dim LinR(F) = dim(F) + 1. Consider the quotient lattice 

~ / r  := ~ / ( ~  n L i n R ( r ) ) .  

Denote the image of the semigroup S in U,/V by S~ F. Clearly S~ F is a subsemi- 

group in the free Abelian group ~ / F .  Also (U,/F)R = ~R/LinR(V). 

We introduce the number i (F, A) as follows. The linear space LinR(F) has 

two lattices inside it, both of maximal rank. The first is F~ f3 LinR (F). The second, 

contained in the first, is Linz(A f3 F), the Abelian subgroup generated by A f3 F. 

We define i (F, A) as the index 

i(F, A) = [2 f3 LinR(V) �9 Linz(A f3 F)]. (3.1) 

This number can also be defined as the index of the affine lattices 

[Z k-1 fq AffR(F) �9 Affz(A N F)], 

see Definition 1.3 for the meaning of Affz. For example, if A C Z 2 is the set given 

in Figure 11, then Q is a square and for any side F C Q the number i (F, A) equals 

3. 
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Theorem 3.1. Let A C Z k-1 be as before, let Q be the convex hull of A, 17 a 

non-empty face of  Q, and let X~ be the torus orbit in the toric variety X A 

corresponding to F. Let x ~ X ~ (17) be any point. Then in a neighborhood of x the 

variety XA is a union of  i(17, A) branches, each of which is (locally) isomorphic 

to Spec C[S/17] x X~ These branches are glued together along the common 

subvariety {0} x X~ where 0 ~ Spec C[S/17] is the unique O-dimensional torus 

orbit. 

Proof Consider the affine variety YA -- Spec C[S] which is the cone over XA. 

Let y0 (17) C YA be the cone over the orbit X ~ (17). The local structure of YA along 
y0(17) is the same as that of XA along X~ so we shall study YA. 

Let Y (17) C YA be the closure of y0 (17). Consider the open subvariety 

z = r'A-- U r(~:). 

We have Z n Y(F) = Yo(F). Let S(F) C S be the intersection S O R+17, i.e., the 

subsemigroup generated by A O 17. 

Consider the semigroup 

Linz(A n 17) + S - -  {a + b  �9 a 6 Linz(A n 17), b 6 S}. 

Then 

Z = Spec C[Linz(A n 17) + S]. 

We have a morphism p �9 Z --+ Y0(1-'), corresponding to the embedding of semi- 
groups 

Linz(A n 17) '--+ Linz(A N 17) + S. 

Let Yo 6 Y0(17) be the point at which all of the monomials t '~ co 6 Linz(A N 17) 
are equal to 1. (Recall that YA is embedded into the affine space with coordinates 

zo,, co ~ A; the point Y0 in this embedding has the following coordinates: z,o -- 
0, co ~ 17 and zo, -- 1, co ~ 17.) Then we have 

p-1 (Yo) = Spec C[Linz(A n 17) + S)/Linz(A N 17)]. (3.2) 

Indeed, taking p-1 (Y0) amounts to taking the quotient of C[Linz(A n 17) + S], the 

coordinate ring of Z, by the relations t '~ = 1, co ~ Linz (A n 1-'), defining y0. This 

quotient is just the semigroup ring of the quotient semigroup on the fight hand side 

of (3.2). 

Denote the above quotient semigroup in (3.2) by E. This contains a finite 

Abelian group G = (E n LinR(17))/Linz(A n 17) of order i(17, A). The spectrum 
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of the group ring C[G] is the disjoint union of i (F, A) points, which will be the 

set labeling the branches. The quotient E / G  equals 

(Linz(A N r) + s)/(u n Lina(r)) = S~ r. 

Clearly G acts on Spec C[Z] = p-l(yo)  and the quotient is Spec C [ Z / G ]  = 
Spec C[S/F].  From this we deduce that there are i (1-', A) branches, each isomor- 

phic to Spec C[S / r ] .  Theorem 3.1 is proved. 

The theorem just proved implies that whenever i ( r ,  A) > 1 for some 1", the 

normalization morphism of X A will not be bijective since it must separate the 

branches. This, for example, will be the case for the set A in Figure 11. 

B. Smoothness conditions 

Proposition 2.10 together with Theorem 3.1 imply the following. 

Corollary 3.2. Let A C Z k-1 be a finite set generating Z k-1 as an affine lattice. 

Let Q c R k-1 be the convex hull of A. The projective toric variety XA is smooth 

if and only if for every non-empty face F C Q the following conditions hold: 

(a) The semigroup S~ F (see subsection A) is free, i.e., isomorphic to Z~, m = 

dim(Q) - dim(F) + 1. 

(b) The lattices Z k -10  AffR(I") and Affz(A N F) coincide so that i(F, A) = 1. 

Proposition 3.3. If  the set A is such that i (F, A) = 1 for any face F C Q then the 

normalization morphisms of X A and YA are bijective. 

Proof. It is enough to consider YA. Let S C Z k be the semigroup generated by A, 
and let K C R k be the convex hull of S. Our assumptions imply that Z k n K differs 

from S only in a finite number of lattice points. A point of the normalization of 

YA can be regarded as a ring homomorphism ~o �9 C[Z k n K] --+ C. Suppose there 

are two points of the normalization mapped into the same point of YA, that is, two 

homomorphisms ~o, tp' as above which coincide on C[SA]. For any y ~ Z k n K, 

thereism0 e Z+ suchthat, foranym > m0,wehavemy ~ SA (s ince(ZknK) - S 
is finite). So tp(t mr) = qg'(tmr), i.e., tp(tr) m = ~o'(tr) m for m > m0. This implies 

that ~o(t r) = ~o'(tr). Since this holds for any y ~ Z k n K, we have ~o = ~o', as 

required. 

C. Admissible semigroups 

By Theorem 3.1, the study of arbitrary singularities of toric varieties is reduced 
to that of singular points given by 0-dimensional torus orbits. To study the latter 

case, it suffices to consider affine toric varieties of the form Y = Spec C[S] where 

S is a semigroup. We first specify which semigroups are to be examined. 
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Let S be a commutative semigroup with 0. There is a universal Abelian group 

~,(S) associated with S called the group completion of S. By definition, E (S) is 

generated by symbols a - b where a, b 6 S; these symbols are subject to the 

relations 

(a - b) + ( c -  d) - (a + c) - (b + d ) .  

There is a canonical semigroup homomorphism S --+ ~, (S) taking a r-+ a - 0. 

Definition 3.4. Let S be a finitely generated commutative semigroup with 0. We 

say that S is admissible if the following conditions hold: 

(a) The group completion F~(S) is a free Abelian group. 

(b) The canonical morphism S --+ E (S) is an embedding. 

(c) There exists a group homomorphism h �9 ,E(S) --+ Z such that h(a) > 0 for 

a n y a ~ S - { 0 } .  

Let S be an admissible semigroup. We abbreviate U, - E (S) and ER -- U,| 

So E is a lattice in the real vector space ER. Denote the convex hull of S by 

K(S) C ER. Since 0 ~ S, the set K(S) is a polyhedral cone with apex 0. By 

condition (c) of admissibility, the cone K (S) is strictly convex, i.e., it does not 

contain straight lines. 

Proposition 3.5. Let S be an admissible semigroup and let Y = Spec C[S] be 

the corresponding toric variety. Then Y contains exactly one O-dimensional torus 

orbit. 

Proof This follows from Proposition 2.5: torus orbits on Y of any given dimension 

i correspond to faces of K (S) of dimension i. The unique 0-dimensional orbit 
corresponds to the apex of K (S). 

If A C Z k-1 is a finite set then the semigroup SA C Z k generated by A • { 1 } is 

admissible. The considerations of subsections A and B regarding the toric variety 

YA = Spec C[SA] can be generalized without difficulty to the case of the toric 

variety Spec C[S] for an arbitrary admissible semigroup S. Let us describe briefly 

these generalizations which will be needed in Chapter 11. 

Let S be an admissible semigroup, Y - Spec C[S], and let K (S), ~, have the 

same meaning as before. For any face F C K (S), we denote by S~ 1-' the image 

of S in ER/LinR(F). We also write 

i(1-', S) -- [E f3 LinR(Y') �9 Linz(S f3 F')]. 

Thus in the case when S - -  S A the number i(F, S) is the same as i (F, A), defined 

by (3.1). 

Let y0(F) C Y be the orbit corresponding to F. 
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Theorem 3.6. 

(a) In a neighborhood of any point y ~ Y~ the variety Y is the union of 

i (1-', S) branches locally isomorphic to Spec C[S/l"] x Y~ 

(b) The variety Y = Spec C[S] is quasi-smooth if and only if the following two 

conditions hold: 

(1) The cone K ( S) is simplicial; 
(2) For any face I ~ C K(S), we have i(l", S) = 1, i.e., Linz(S M 1-') -- ~ M 

LinR( l") .  

Proof Part (a) is proved in exactly the same way as in Theorem 3.1. To prove 

(b) recall (see Section 2C) that, by definition, Y is quasi-smooth if and only if 
K (S) is simplicial and the normalization morphism of Y is bijective. It suffices to 

show therefore that the condition (2) of the theorem is equivalent to the bijectivity 

of the normalization morphism. If i (1", S) > 1 for some 1", then this morphism 

cannot be bijective since it would separate the branches near y0(F).  Conversely, 

if i (F, S) = 1 for all F, then the same reasoning, as in the proof of Proposition 

3.3, shows that the normalization morphism of Y is bijective. 

We shall be interested in some numerical invariants of admissible semigroups 

defined in terms of volumes. We start by describing the normalization of volume 

forms. 

D. The volume form induced by a lattice 

Let W be a real affine space of dimension m and let V be the corresponding vector 

space of translations (this means that W is a principal homogeneous space over 

V). A translation-invariant volume form on W is defined up to a scalar multiple. 

To normalize a volume form, it suffices to exhibit a body of volume 1. 

By an affine lattice in W, we mean a subset ~ C W which is a principal 

homogeneous space over a discrete Abelian subgroup E C V of rank equal to 

m = dim W = dim V. 

A choice of an affine lattice ~ C W defines a volume form Volz on W as 

follows. Consider all the m-dimensional simplices in W with vertices in E. Among 

them there are the so-called elementary simplices, i.e., those whose volume is the 

minimal possible (note that we can compare the volumes of any two bodies in W 

because of the affine structure). We specify the volume form Volz by assigning 

the volume 1 to elementary simplices. In this normalization the volume of any 

convex polytope with vertices in ~, is an integer. 

As an example, let us take W = R m and ~, -- Z m. The unit cube 

I m = { (x l  . . . . .  Xm) E R m " 0 _< x i _~< 1} 



3. Local structure o f  toric varieties 183 

has Vol~(l m) = m!, as can be seen, e.g., by explicitly triangulating I m into m! 

elementary simplices. 

Although the volume Volz of any lattice polytope is always an integer, it 

may be impossible to decompose such a polytope P into elementary simplices. 

For example, take W -- R 3, ~ = Z 3 and take P to be the tetrahedron A B C D  

inscribed into the unit cube as shown in Figure 13. Then VolzP = 2, but P 

contains no other lattice points except its vertices, so it cannot be decomposed into 

elementary simplices. 

A 
C 

B 

Figure 13. 

An obvious asymptotic relation between the volume and the number of lattice 

points, recalled below, will be used on several occasions in the sequel. 

Proposition 3.7. Let ~ be an affine lattice in a real aJfine space W of  dimension 

m. Let P C W be a bounded domain with a piecewise smooth boundary. Take 

some point 0 E W and consider the homothetic domains 

d P  -- { 0  + d(x  - O ) , x  ~ P} 

for  d > O. Then, as d ~ oo, the number o f  lattice points in d P has the asymptotics 

# ( d P  f) ~) = 
Volz (P) 

m! 
~ d  m + O(dm-1).  

Proof. We can assume that W = R m and ~ = Z m . So we can speak about lattice 

cubes as translations by elements of E of the standard cube I m = {0 _<_ xi <_ 1 }. 

The volume of any such cube is m! and the diameter (in the sense of the standard 

Euclidean distance on R m) is ~/r~. Let n(d) be the number of lattice cubes lying 
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in d P. Associating to any lattice cube a + I m, a ~ ~ its vertex a, we find that 

#(dP M ~) - n(d) does not exceed the number a(d) of lattice points in d P  on 

the distance < ~ from the boundary. Similarly, Vol z (P) /m!  - n(d) does not 

exceed b(d), the volume of the set of points in d P on the distance < ~ /~  from the 

boundary. Clearly, a(d) and b(d) both grow for d ~ oo as const �9 d m-l, from 

which we obtain the statement. 

E. The subdiagram volume of  an admissible semigroup 

Let S be an admissible semigroup, F~ = ~,(S) its group completion, and K(S)  C 

ER the convex hull of S. Denote by K+ (S) C K (S) the convex hull of the set 

S - {0} and by K_(S)  the closure of the complement K(S)  - K+(S). The set 

K_ (S) is a bounded (but usually not convex) lattice polyhedron. We call it the 

subdiagram part of S. 

Definition 3.8. The subdiagram volume of an admissible semigroup S is the 

number 

u(S) = Volz(s)(K_(S)),  

i.e., the volume of the subdiagram part with respect to the volume form induced 

by ~,(S), see above. For the trivial semigroup S -- {0} we set u(S) -- 1. 

Let us emphasize that u (S) depends only on the semigroup S. 

Example  3.9. For a free semigroup S = Z~_, k > 0 we have u(S) = 1. 

Proposit ion 3.10. For any admissible semigroup S, the subdiagram volume u (S) is 

greater than or equal to 1. Moreover, u(S) -- 1 if  and only if  S is a free semigroup. 

Proof. The fact that u (S) > 1 is obvious. Suppose u (S) = 1. Then the region 

K_ (S), being a lattice polyhedron of volume 1, should consist of just one ele- 

mentary lattice simplex. So the vertices of K_ (S) other than 0 form a Z-basis of 

U, (S) -- Z k. This implies that S consists of non-negative integer combinations of 

elements of this basis, i.e., S -~ Zk+. 

Thus u(S) can be seen as the measure of non-freeness of a semigroup S, i.e,. 

of the singular nature of the toric variety Spec C[S] (see Corollary 3.2). 

E The multiplicity o f  a singular point on a (toric) variety 

Let Y be an algebraicvariety and y e Y a (possibly singular) point. There is 

an important numerical invariant multy Y, called the multiplicity (or local degree) 

of Y at y, which measures "how singular" a point y is. The most geometrically 

transparent definition of multy Y can be given in terms of an embedding of Y into 

a projective space em. 
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Let Y C pm, dim Y = k. Choose a generic projective subspace L C pm of 

codimension k passing through y. Then y is an isolated point of the intersection 

Y n L. Now move L away from y, i.e., choose a genetic 1-parameter family of 

projective subspaces L(t), t ~ C, Itl < e such that L(0) = L. Then, for small 

t ~: 0, the isolated point of intersection y 6 L O Y will split into several intersection 

points from L(t) n Y (see Figure 14). 

L(t) 

L 

Figure 14. 

Definition 3.11. The number of intersection points from L(t) n Y arising from the 

isolated intersection point y 6 L n Y after a genetic deformation L(t) of a genetic 

projective subspace L (y 6 L, codim L -- k) is called the multiplicity of Y at y 
and denoted by multy Y. 

There are other, more algebraic definitions of multiplicity. First of all, instead 

of moving L away from y and then counting the intersection points, we can intro- 

duce the multiplicity of intersection i (y; L O Y) of L and Y at y. There are several 

approaches to doing this [Mum], [Fu 1 ], and we shall not go into detail here. Let 

us only mention that this leads to the definition of multy Y as 

multyY = minL i(y; L n Y), (3.3) 

where L runs over projective subspaces of codimension k = dim (Y) containing 

y and such that y is an isolated point of L n Y (see [Mum], Definition 5.9). 

A completely intrinsic algebraic definition of multiplicity is obtained as fol- 

lows. Suppose for simplicity that Y is an affine variety (since we are interested 

in the local situation near y, this is legitimate). Let C[Y] be the ring of regular 

functions on Y and My C C[Y] be the ideal of functions vanishing at y. Let M d 
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be the d-th power of My. For d >> 0, the dimension of May/Mdy +1 is known to be 

given by a polynomial py,y (d) in d called the local Hilbert polynomial of Y at y. 

The degree of py, r(t) is equal to k - 1 where k = dim (Y). 

Definition 3.11'. The multiplicity multyY is the number/z such that 

py,y(t) : 
( k -  1)! 
~ t  k -1  + (terms of lower order.) 

The equivalence of Definitions 3.11, 3.11' and formula (3.3) can be seen by 

comparing the two definitions of the tangent cone to Y at y: one in terms of a 

projective embedding and the other in terms of the coordinate ring. We refer the 

reader to [Mum] and [Harr] for details. 

Let us now discuss the main properties of the notion of multiplicity and give 

some examples. 

Proposition 3.12. The multiplicity multy Y is always greater than or equal to 1. 

Moreover, multy Y = 1 if and only if y is a non-singular point of  Y. 

Proof. See Corollary 5.15 in [Mum]. 

Examples 3.13. (a) Let Y C C m be a hypersurface given by f ( x l  . . . . .  Xm) = 0 

(here f ( x l  . . . . .  Xm) may be reducible, but is square-free). Suppose that f ( 0 )  = 0, 

i.e., 0 ~ Y. Then mult0 Y equals the minimal degree of a non-zero monomial from 
3 3 f .  For example, the plane curve with equation Xl 5 + x 1 x 2 + x27 has multiplicity 5 

at 0. 

(b) If Y1, Y2 are two k-dimensional subvarieties in pm which both contain a 

point y and do not have irreducible components in common, then 

multy(Y1 O Y2) = multy(Y1) + multy(Y2). 

(c) If Y C C" is the cone over a projective variety X C p,,-1 then mult0Y = 

deg (X) is the degree of X. 

The last example shows that the notion of multiplicity can be seen as the 

generalization of the notion of the degree of a projective variety. For toric varieties, 

multiplicity is calculated as follows. 

Theorem 3.14. Let S be an admissible semigroup, Y = Spec C[S] the corre- 

sponding toric variety, and 0 E Y the unique O-dimensional torus orbit. Then 

multo(Y) = u(S) 

is the subdiagram volume of S. 
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Proof Let ~,, ER, K(S), K+(S) and let K_(S)  have the same meaning as in sub- 

section E. Let k = rank E = dim Y. For d > 0 let dK+(S)  = {da, a ~ K+(S)} 

be the d times dilated polyhedron K+ (S). 

For d >> 0, the ideal M~ C C[S] is generated as a vector space by monomials 

t • for Y ~ dK+(S)  f3 2. Hence for d >> 0, we have 

dim ( M d / M  d+l) = # ((dK+(S)  - (d + 1)K+(S)) r3 S) 

-- # (((d -t- 1) K _ ( S )  - d K _ ( S ) )  N "~) . 

Applying Proposition 3.7 to P = K_(S) ,  we conclude that d i m ( M a / M  a+l) has 

the asymptotics 

Volz(K_(S))  dk_ 1 -[- (terms of lower order). 
(/r 1)~ 

So by Definition 3.11', we have mult0Y -- Volz (K_(S ) )  -- u(S) as claimed. 

Definition 3.15. Let Z be an irreducible subvariety of an algebraic variety Y. The 

multiplicity multz Y for a genetic point z ~ Z is called the multiplicity of  Y along 

Z and denoted by multz Y. 

Theorem 3.16. Let A C Z k-1 be a finite set generating Z k - 1  a s  an affine lattice, 

and let X A be the projective toric variety associated to A, see Section lB. Let 

Q c R k-1 be the convex hull of  A. For a face I ~ C Q, let X(l") be the closure in 

X A of the torus orbit corresponding to r.  Then 

multx(r) XA - -  i (1-', A) �9 u ( S / F )  

where we have the semigroup S~ I" and the index i (F, A) as introduced in subsec- 

tion A. 

Proof. This follows from Theorem 3.14 and Theorem 3.1 describing the local 

structure of XA near X (F). 

4. Abstract toric varieties and fans 

Here we review the language of fans, traditionally used in the description of toric 

varieties. 

A. Classification o f  abstract toric varieties 

Definition 4.1. A fan in R k is a finite collection ,T" of convex polyhedral cones 

such that 
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(a) Every face of every cone from ~ belongs to ~ .  

(b) The intersection of any two cones from ~" is a face of both of them. 

Note that we do not require that the cones from .T" cover the whole space. If 

this is the case, the fan .T" is called complete. In general the union of all cones from 

a fan .T" is called the support of .T" and denoted by I~'1. A fan .T" is called rational 
if all the cones constituting it are given by inequalities with rational coefficients. 

We shall give examples of fans later in subsection B. Right now let us describe 

the construction of toric varieties from fans. Let .T" be a rational fan in R k and let 

Z k C R k be the lattice of vectors with integer coordinates. Let E C (Rk) * be the 

dual lattice to Z k, i.e., the set of linear functionals taking integral values on Z k. 

For any cone K e .Y', let 

/~ -- { f ~ (R k)* " f (x) >_ 0 for any x ~ K } 

be the dual cone to K. We associate to K the semigroup/ (  n ~, and the corre- 

sponding semigroup algebra C[/~ n E]. If K C L are two cones from .T', then 

/~ C / (  and hence Spec C[/(  n E] is a Zariski open subset in Spec C[/~ n E]. 

Definition 4.2. The toric variety X (.T') associated with a rational fan .,~ in R k is 

the result of gluing affine toric varieties XK = Spec C[/(  n ~,] by identifying X L 
with the corresponding Zariski open subset in X r  whenever K C L. 

By construction, X (9 L') is a normal variety, since it is glued out of normal 

affine varieties X r .  

We shall say that a convex cone K C R k is simplicial if it has a simplex as its 

base. In other words, K is generated, as a convex cone by a part of some basis of 

R k. If, moreover, K is generated by a part of some Z-basis of Z k, then we shall say 

that K is strictly simplicial. In this case K n Z k a n d / (  n E are free semigroups. 

The classification theorem for normal toric varieties is as follows. 

Theorem 4.3. 

(a) Any normal toric variety is equivariantly isomorphic to a variety of the form 
X (.7 r) for some rational fan ~ in R k, where k is the dimension of the torus 

acting on X. This fan is determined uniquely up to a transformation from 

GLk(Z). 
(b) The variety X (.T') is compact if and only if the fan ~ is complete. The variety 

X (.7) is smooth if and only if every cone from 3 r is strictly simplicial. 

(c) The variety X (.T') has finitely many orbits of the torus (C*) k. These orbits 
are in bijection with cones from J:. The orbit Or, corresponding to a cone 

K ~ .T', has dimension equal to codim (K). If  K, L are two cones from 
then Or lies in the closure of OL if and only if L C K. 
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Proof. See [O], Theorems 1.5, 1.1 l, 1.10 and Proposition 1.6. 

Let X be a (not necessarily normal) toric variety. We shall call the fan of the 

normalization of X simply the fan of X and denote it by .~'(X). The following is 

a description of .T'(X). 

Proposi t ion 4.4. Let X be a toric variety, (C*) k C X the open torus orbit (identified 

as above with the torus acting on X), e -- (1 . . . . .  1) E (C*) k C X, and ~ ( X )  the 

fan in R k corresponding to X. Two integral vectors (al . . . . .  ak), (bl . . . . .  bk) E 

Z k belong to the interior of  the same cone of.,~(X) if and only if 

limt_~0(t a~ . . . . .  t ak )e -- limt_~o(t b~ . . . . .  t bk ) e .  

Proof. For normal toric varieties this is Proposition 1.6 (v) in [O]. The non-normal 

case follows using normalization, since the fan .T'(X) is defined in terms of the 

normalization. 

B. Polytopes and their normal fans 

By a (convex) polytope we mean a subset in Euclidean space R k which is the convex 

hull of a finite number of points. Polytopes are to be distinguished from convex 

polyhedra by which we mean subsets in R k which are the intersections of a finite 

number of affine half-spaces. Thus polytopes are exactly bounded polyhedra. 

Let P be a polytope in R k and ~ a linear functional on R k. We call the 

supporting face for tp and denote by p~0 the (maximal) face of P on which 

achieves its maximum. This construction was encountered previously in the proof 

of Proposition 1.9. Note that tp is constant on p~0. 

Definition 4.5. Let P be a polytope in R k and 1 ~ a face of P. The normal cone Nr P 

is the subset in the dual space (Rk) * consisting of linear functionals ~ �9 R k --> R 
such that p~0 __ 1-'. 

Clearly Nr P is a closed convex cone in (Rk) *. Moreover, it is immediate to 

see that the collection of cones Nr P for various faces 1-' C P forms a complete 

fan. This fan is called the normal fan of P and denoted by N(P).  

In a similar way we define the normal fan N (P)  for a (possibly unbounded) 

convex polyhedron P. In this case N ( P )  may not be complete. Its support is the 

set of linear functionals which achieve a maximum on P. 

The concept of the normal fan provides a way of classifying polytopes. 

Definition 4.6. Two polytopes P, P '  C R / are called normally equivalent if their 

normal fans become equal after a linear isomorphism of R k. 
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For example, a square and a rectangle are normally equivalent polygons. 

If ~'1, .T'2 are two fans in R", we say that f'2 is a refinement of .T'I, if each 

cone from .Y'l is a union of cones from .T'2. In other words, .T'2 is obtained from .T'I 

by further subdivision. 

If P is a polytope and N(P) is its normal fan, a refinement of N(P)  can 

be obtained by cutting out (as with a knife) some vertex, or edge, or any face of 

codimension at least 2 of P, see Figure 15. 

N(P') N(P) 

pI 

Figure 15. 

This notion of "refinement of polytopes" (or, rather, their normal fans) has an 

interesting interpretation going back to Minkowski. 

Definition 4.7. Let P, Q be two polytopes in R k. Their Minkowski sum P + Q is 

the set of all vector sums p + q, p 6 P, q 6 Q. 

It is clear that P + Q is again a convex polytope. Indeed, consider the 

direct product P x Q c R k x R k and the linear map R k x R k --+ R k given by 

(u, v) ~ u -i- v. The Minkowski sum P + Q is the image of the convex polytope 

P x Q under this linear map. 

Theorem 4.8. 

(a) Let P, Q be polytopes in R k. Then the normal fan N (P + Q) of P + Q is the 

smallest common refinement of N(P) and N(Q), i.e., the collection of cones 
of the form K f)L, K ~ N(P),  L ~ N(Q). 

(b) If P, R are polytopes in R k and N (R) is a refinement of N (P) then there is 

~ R and a polytope Q such that R is affinely isomorphic to the Minkowski 
sum~.P + Q. 
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Proof See [Sm]. 

C. Fans corresponding to projectively embedded and affine toric varieties 

First we consider the situation of Section 1D. Let H -- (C*) k-1 be a torus acting 

linearly on a vector space V. Consider the associated action of H on the projective 
space P(V). For any v 6 V, let P(Hv) bethe closurein P(V) ofthe H-orbit ofthe 

point corresponding to v. This is a projective (not necessarily normal) toric variety. 

Recall that we have associated to v 6 V its weight polytope Wt (v) C R k-1. 

Proposition 4.9. The fan of the toric variety P(Hv) equals the normal fan of 
Wt (v). In particular, dim (P(Hv)) -- dim (Wt (v)). 

Proof We have P(Hv) ~- XA(v) (see Section 1D). By taking into account the 

description of .T'(X) given in Proposition 4.4, we note that, for Xa(v), the required 

statement was already proved in the proof of Proposition 1.9. 

Now let Y be an affine toric variety so Y = Spec C[S] where S is a semigroup 

embedded into some Z k. We can assume that S generates Z k as an Abelian group. 

Let K C R k be the convex hull of S. The normalization of Y is Spec C[K t3 zk]. 

Therefore the fan of Y consists of the dual cone/~ C R"* together with all its faces. 

In particular, if K contains a non-trivial vector subspace then/~" has dimension 

strictly less than k. 

D. Quasi-smoothness 

Definition 4.10. A (not necessarily normal) toric variety X is called quasi-smooth 
if every cone of the fan .T'(X) is simplicial and the normalization morphism ~" -+ X 

is bijective. 

Clearly smooth varieties are quasi-smooth. For affine toric varieties this 

notion of quasi-smoothness coincides with the one given in Section 2C. Indeed, if 

X = Spec C[S] and K is the convex hull of S, then the fan corresponding to X 

consists of faces of the dual cone/~.  The fact that K has the form R p x R q is 
v 

equivalent to the fact that K is simplicial (it will have smaller dimension, if p > 0). 

Let us give a reformulation of the notion of quasi-smoothness for varieties of 

the form X A. This involves geometric and arithmetic conditions. The geometric 

condition is as follows. 

Definition 4.11. A convex polytope P C R k-1 is called simple if, for any face 

F C P, the normal cone Nr P is simplicial. 

This definition is equivalent to the following more transparent geometric one: 

P is simple if every vertex of P has exactly dim P edges passing through it. 
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Proposition 4.12. Let A C Z k-1 be a finite set, and Q c R k-1 the convex hull of 
A. The variety X A is quasi-smooth if and only if Q is a simple polytope and, for 
any face F C Q, the index i(F, A) (see Section 3A) equals 1. 

Proof This is an easy consequence of Theorem 3.1. 

Since the dual of a simplicial cone is also simplicial, a local model for a quasi- 

smooth toric variety is Spec C[K NZ k] where K ~ R k is a rational simplicial cone. 



CHAPTER 6 

Newton Polytopes and Chow Polytopes 

1. Polynomials and their Newton polytopes 

A. Newton polytopes 

Suppose we have a complicated (Laurent) polynomial f (xl . . . . .  xk) in k variables. 

Let A be the set of monomials in f with non-zero coefficients. As we have 

seen in Chapter 5, to understand the structure of f ,  it is natural to consider it 

as a member of the space C A of all polynomials whose monomials belong to A. 

Geometrically, each Laurent monomial x ~ = x~ ~ . . .  x~ ~ is represented by a lattice 

point co = (col . . . . .  cok ) ~ Z k. The most important characteristic of f is its Newton 

polytope, defined as follows. 

Definition 1.1. Let f (xl . . . . .  Xk) = Y ~ e Z  k a ~ x  ~ be a Laurent polynomial in k 
variables. Its Newtonpolytope N ( f )  is the convex hull in R k of the set {o9 �9 ao~ =~ 0}. 

The Newton polytope is a particular case of the weight polytope introduced 

in Definition 1.7, Chapter 5. This case corresponds to the situation when V is the 

space of all polynomials in xl . . . . .  xk with the action of H = (C*) k given by the 

scaling of variables: (tl . . . . .  tk) �9 (xl . . . . .  xk) = (tlxl . . . . .  tkxk). 

The following proposition is obvious. 

Proposition 1.2. 
(a) The Newton polytope o f  f (xl . . . . .  xk) lies in the hyperplane {o9 E R k : 

(w, ~o) -- a} for  some q9 -- (qgl . . . . .  ~ok) ~ Z k, a ~ Z if  and only if  the 

polynomial f is quasi-homogeneous o f  weight tp, i.e., f (t~~ . . . . .  t~~ -- 

t a f ( x l  . . . . .  Xk). 

(b) The Newton polytope o f  the product o f  two polynomials equals the Minkowski 

sum of  the Newton polytopes o f  factors, see Definition 4. 7, Chapter 5. 

If f (xl . . . . .  Xk) = ~o~eZ k ao~x ~ is a Laurent polynomial and F is a face of 

its Newton polytope, then we shall call the coefficient restriction of f to F and 

denote by f lit the polynomial Y~o~er ao~ x~ One use of this notion is given in the 

next proposition which is a particular case of Proposition 1.10, Chapter 5. 

We recall that the leading term of a Laurent polynomial in one variable q (r)  = 

Y~ ai r i is the monomial ai'c i where i is the largest such that ai 5~ O, see Section 

1D, Chapter 5. 
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Proposition 1.3. Let f (xl . . . . .  xk) be a Laurent polynomial and Q C R k be 

its Newton polytope. Let tp(w) = ~ qgiO) i be a linear functional on R k with all 

tpi integral. Let Q~ c Q be the supporting face of  ~o, see Section 4B Chapter 

5. Then, for  any X l . . . . .  xk ~ C*, the leading term of  the Laurent polynomial 

q(t) = f ( t~x l  . . . . .  t~kXk) equals t~Q~) fIIQ~(Xl . . . . .  xk). 

B. Logarithmic maps and amoebas 

The notion of the Newton polytope of a polynomial might seem artificial from a 
geometric point of view. However, this is not so. In this subsection we relate N ( f )  
to the structure of the hypersurface defined by the equation f -- 0. 

Denote by log : (C*) k --+ R k the map 

(xl . . . . .  Xk) -+ (loglxll . . . . .  1oglxkl). (1.1) 

For a Laurent polynomial f (xl . . . . .  xk), denote by Zf  the hypersurface in (C*) k, 
defined by the equation f (xl . . . . .  Xk) = O. 

Definition 1.4. The amoeba of a Laurent polynomial f is the subset log(Zf) C R k. 

This name is motivated by the following typical shape of log(Zf) in two 
dimensions (see Figure 16). 

Figure 16. Amoeba 

This shape is peculiar because of the thin "tentacles" going off to infinity. A 
bit later we shall give rigorous statements showing that the behavior of log(Zf) is 
indeed typical. But first we relate the amoeba to the problem of finding Laurent 
series expansions for the rational function 1/f(x) .  Recall the general properties 
of Laurent series in several variables and their regions of convergence, see e.g., 

[Kr]. 
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Proposition 1.5. 
(a) Let F(x) = ~-~o~ez k c~x ~ be a (formal) Laurent series in xl . . . . .  Xk with 

complex coefficients co) (which may be non-zero for all o2). Then the domain 
of convergence of F(x) in (C*) k has the form log-l(B),  where B C R k is a 
convex subset. 

(b) If  ~o(x) is a holomorphic function in a domain of the form log-l(B),  where 
B C R k is a convex open subset, then there is a unique Laurent series 

converging to ~o(x) in this domain. 

Applying this proposition to the rational function 1 / f ,  we deduce the follow- 

ing. 

Corollary 1.6. Let f (x) be a Laurent polynomial. All the components of the 
complement R k - log(Zf) to the amoeba o f f  are convex subsets in R k. They are 
in bijective correspondence with Laurent series expansions of the rational function 

1 / f  (x). 

Let Q c R k be the Newton polytope of a Laurent polynomial f (xl . . . . .  xk) = 

y~ a,ox ~ and let y 6 Q be any vertex. Then we can write 

f (x) -- a• ( l  + ~ a~176215 a•215 (l + g(x)) 

and construct the Laurent expansion 

R• -- f (x) = a~lx-• (1 - g(x) + g ( x )  2 . . . .  ) (1.2) 

by using the geometric series. This is a well-defined Laurent series whose expo- 

nents lie in the affine cone - V  + R+ �9 (Q - V) in Rk; this cone is obtained by 

drawing half-lines from y through all points of Q and then translating the result 

by ( - 2 y )  (see Figure 17). 

Let us describe the domain of convergence of R• Let N• (Q) denote the 

normal cone of Q at the vertex y, see Definition 4.5, Chapter 5. 

Proposition 1.7. There is a vector b ~ N• such that the Laurent series R• 

converges absolutely for any x -- (Xl . . . . .  xk) ~ (C*) k for which the vector 
log(x) = (loglxl] . . . . .  loglxkl) lies in the affine cone b + N• In particular, 
for such x, we have f (x) ~ O. 

Proof For any x = (xl . . . . .  xk) ~ (C*) k such that Ig(x)l < 1, we have by 

construction (1.2) that R• converges absolutely. Choose b ~ N• so that 



196 Chapter 6. Newton polytopes and Chow polytopes 

Figure 17. Laurent expansion of 1 / f  

(b, o9-  y) << 0 for all integral points ~o e Q different from y. An easy calculation 

which is left to the reader shows that Ig(x)l < 1 whenever log(x) ~ b + Ny(Q). 

This proves our proposition. 

Corollary 1.8. Vertices of  the Newton polytope Q = N ( f  ) are in bijection with 

those connected components of the complement R k - log(Z f)  which contain an 

affine convex cone with non-empty interior. 

Proof Let C• be the component containing N~, (Q) + b, where b is as in Proposition 

1.7. Since the normal cones N• Q cover the whole logarithmic space R k, only the 

components of the type C• can contain an affine convex cone with a non-empty 

interior. It remains to show that the components C• are all distinct. Suppose 

C~, = Ca for two distinct vertices y, 8 6 Q. Let K be the cone which is the convex 

hull of the normal cones N• Na(Q). Since any component o f R  k - log(Zf) 

is a convex set, the component Cy -- C8 contains some translation of the cone K, 

say, c + K. However, suppose there is a 6 K not lying in N• (Q). Then there is a 

vertex 13 6 Q which is joined to y by an edge and such that (a, y) < (a, 13). This 

implies that, for t >> 0 and x 6 (C*) k such that log(x) = c + ta, the series R• (x) 

will not absolutely converge. Indeed, for such x the subseries of (1.2) consisting 

of terms whose exponents lie on the half-line y + R+.  (/3 - y) will have terms not 

tending to zero. Thus x ~ C• a contradiction. We see that N• (Q) - K = N8 (Q), 

hence y -- 6. The proposition is proved. 

Since the normal cones N• Q cover the logarithmic space R k, we see that the 

amoeba is situated in thin spaces between walls of the translated normal cones 

(see Figure 18). It follows that the combinatorial structure of the Newton polytope 
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/ 

Figure 18. The amoeba between walls 

N ( f )  can be read from the geometry of the hypersurface Zf -- {f  = 0}. 

For a real number M >_ 0, let S k-1 (M) C R k be the sphere with center 0 and 

radius M. Consider the intersection Sk-l(M) fq log(Zf). 

Proposition 1.9. Suppose that the Newton polytope N ( f ) has full dimension k. 
Then the limit subset 

1 
l i m M ~  ~ .  (S k-1 (M) n log(Zf)) 

in the unit sphere exists, and it is the (k - 2)-skeleton of the cell decomposition 
of the sphere which is dual to the decomposition of the boundary of the polytope 
U ( f )  by its faces. 

The limit here can be understood, for example, in the sense of the Hausdorff 

distance between closed subsets of the sphere, see [Hau]. 

Proof By Corollary 1.8, the open set R k - log(Z f) is the union of some non- 

intersecting neighborhoods C• of translated normal cones N• (Q) + by and, pos- 

sibly, some other open subsets that neither intersect the C• nor contain a convex 

affine cone with non-empty interior. Thus log(Z/) C R ~ - U  C• and the boundary 

of each C• is a part of the boundary of Zf. It follows that 

1 .(Sk_ 1 

1 
+ 

and for the last limit the assertion is obvious. 
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Remark  1.10. To find, for a given polynomial f (x) ,  all the components of the 
complement to its amoeba (and hence all the Laurent series for 1 / f )  is a difficult and 
interesting problem. For a polynomial in one variable this requires the separation 

of roots of f (which are not rationally known). For higher dimensions the amoeba 

can have "holes" (i.e., components in the complement that do not correspond to 

vertices of the Newton polytope, e.g., bounded components). The presence of such 
components is probably governed by the relative sizes of the coefficients, which 

are ignored in the definition of N (f) .  

C. Amoebas and the moment map 

In subsection B we considered hypersurfaces in a toms. One can consider hyper- 

surfaces in toric varieties as well. 

Let A C Z k be a finite subset generating Z k as an affine lattice, and let XA be 

the corresponding projective toric variety, see Section 1 B, Chapter 5. This variety 
contains the toms (C*) k as an open subset. Denote, as usual, by C A the space of 
Laurent polynomials with monomials in A, i.e., of polynomials of the form 

f (xl . . . . .  xk) -- ~ a,ox '~ 
toEA 

Let YA be the cone over XA. Any polynomial from C A defines a homogeneous 

function on YA and hence defines a hypersurface in XA, to be denoted by Zf. It is 
obviously the closure (in the Zariski topology as well as in the ordinary topology) 

of the previously considered affine hypersurface Zf C (C*) k C XA. 

Let Q c R k be the convex hull of A. Then Q is the Newton polytope of a 
generic f ~ C A. The analog of the logarithmic map (1.1) in the present "compact" 

situation is given by the moment map ([At 1-2], see also [O], p. 94): 

I Z - - ' I Z A "  X A ~ Q, /Z(X) -- ~'~toEA Ix'~ "~o. (1.3) 
)-~to~A Ix~ 

Here each x '~ is regarded as a homogeneous function on the cone YA over XA, 

because of the denominator the expression in (1.3) is homogeneous of degree 0, 

i.e., it is a well-defined function on XA. The notation x '~ can be understood in the 

usual sense, as a Laurent monomial, on the open set (C*) k c XA 

The properties of the moment map are summarized in the following theorem 

([At 2], Th. 2). We omit the proof. 

Theorem 1.11. 
(a) The map lz is surjective. For any face F C Q the inverse image iz -1 (F) 

coincides with X (F), the closure of the orbit corresponding to E. The orbit 

itself is the inverse image of the interior of F. 
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(b) Let ($1) k be the subgroup in (C*) k consisting of(x1 . . . . .  xk) such that Ixi l : 1 
for all i. Each f iber /z - l (q) ,  q ~ Q, is an orbit of ($1) k. If  q lies inside a 
j-dimensional face of Q, then # - l ( q )  is isomorphic to ($1) j. In particular, 

lz -1 (q) consists of one point if and only if q is a vertex of Q. 

Let f 6 C A. The compactified amoeba of f is the image/z(Zf) C Q. This 
notion is really useful only when all coefficients of f are non-zero. We shall denote 
the space of such polynomials by (C*) A and suppose, in the rest of this section, 

that f ~ (C*) A. 
A typical pattern of behavior of a compactified amoeba is depicted in Figure 

19 and formalized in the following theorem. 

Figure 19. Compactified amoeba 

Theorem 1.12. Let f ~ (C*) A and let Q be the convex hull of  A. Then 

(a) for any vertex ), ~ Q, there is a neighborhood of F which does not intersect 

the compactified amoeba lz ( Z f ) ; 
(b) denote by K (y) the component of the complement Q - lz(Zf ) containing (the 

neighborhood of) a vertex y ~ Q. All of these components K (F) are distinct. 

Proof The moment map/x maps the torus (C*) k C X A onto the interior of Q. 

Moreover, we have the commutative diagram 

(C,) k log > Rk 

Int(Q) 

where ct is the map whose value at X - (X1 . . . . .  ~.k) e Rk is given by 

o r ( x )  = 
Eto~A e(t~ " o) 

~to~A e(r~ 

(1.4) 

(1.5) 
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and (o9, ~.) stands for the standard scalar product ~ ogi ~.i. 

Taking into account Corollary 1.8, it remains to show that, for any vertex 

y ~ Q, the map ct takes a translated normal cone b + N• (Q) onto a neighborhood 

of y in Int(Q). 

If ~. ~ N• then (~., y)  > (~., o9) for to ~ A - {y}. Hence when ~. goes 

to infinity in the cone b + N• (Q), in the linear combinat ion Y~toEA e(t~ " o9 the 
summand corresponding to Y will outweigh all the others. This means that after 

dividing by Y~to~A e(t~ we shall approach the point )1. Conversely, ifct (~.) is close 

to y, then the summand corresponding to y in the numerator of (1.5) dominates 

all the other summands (this can be seen by applying to the vector sum in (1.5) 

a linear functional on R k achieving maximum exactly at y; we leave the routine 

calculation to the reader). So L lies deep inside N• (Q). 

Let us mention another property of compactified amoebas which makes them 

in some instances easier to handle than those considered in subsection B. 

Proposition 1.13. Let f (x) ~ (C*) A be as before; let F C Q be a face and let f l i t  
be the coefficient restriction of f to r', see subsection A. Then the compactified 

amoeba of f IIr coincides with the intersection with F of the compactified amoeba 

off. 

Proof. Let (zo,, o9 e A) be the standard homogeneous coordinates in the ambient 

projective space p,,-1 of the projective variety XA (here n is the cardinality of 

A). The orbit closure X(F)  is given inside X A by equations zo~ = 0 for to 
1-' (Proposition 2.5, Chapter 5). Since the restriction of zo, to (the cone over) 

X A becomes the Laurent monomial x ~', our statement follows directly by the 

comparison of moment maps for A and A N F. 

2. Theorems of Kouchnirenko and Bernstein on the number of solutions of a 

system of equations 

Historically, one of the first applications of Newton polytopes was to the problem 

of finding the number of solutions of a system of polynomial equations in several 

variables. In this section we examine these developments. 

A. The setting of  the problem 

Suppose we have k - 1 Laurent polynomials in k - 1 variables: 

f l (x l  . . . . .  xk-1) . . . . .  fk-1 (Xl . . . . .  xk-1). (2.1) 

These polynomials define functions on the algebraic toms (C*) k-1 . We would like 

to find the number of their common roots in this torus. Of course, we must count 

isolated common roots with appropriate multiplicities. 
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Example 2.1. Consider a Laurent polynomial in one variable f ( x )  = ar Xr + 
xr+l ar+l + . . .  + asX s. The number of its non-zero roots is equal to s - r provided 

that at, as 7 ~ 0. Note that the Newton polytope of f is the line segment [r, s] so 
s - r is the length of this segment. 

In the general case the number of common roots of fl  . . . . .  fk-1 in the torus 

can vary with the 35 since some roots can go off to the infinity of the toms. Here 

is one of the possible ways to set the problem about the number of roots precisely. 

Let A C Z k-1 be a finite set of exponents and C a be the vector space of 

Laurent polynomials 

f ( x )  -- Ea~ox~~ 
toEA 

with all monomials from A. We assume that A generates R k-1 as an affine space. 

We shall consider polynomials f l  . . . . .  fk-1 from C A. It is clear that for a generic 

choice of the 3'} (i.e., for (f l  . . . . .  fk-1) belonging to some dense open subset in 

(Ca)k-I) ,  the number of common roots of the fi in the torus is constant. So this 

number depends only on A and we are interested in finding it. 

B. Kouchnirenko theorem 

The answer to the problem raised in subsection A was given by Kouchnirenko 

[Kou] in terms of the polytope Q c R k-l,  the convex hull of A. Clearly Q is the 

Newton polytope of a generic f e C A. Recall (Section 3D, Chapter 5) that the 
integral lattice Z k- 1 C R k- 1 induces a volume form Volzk-, on R k-1 such that the 

volume of an elementary lattice simplex is 1. In this normalization, the volume of 
any polytope with vertices on the lattice is an integer. Kouchnirenko's theorem is 

as follows. 

Theorem 2.2. In the above assumptions the number of  common roots of  generic 

polynomials f l  . . . . .  fk-1 E C A is equal to the volume VOlzk-I Q. 

Before proving the theorem, let us consider an example. Let A consist of all 
monomials in two variables i J X lX 2 withi ,  j > 0 ,  i + j  < d .  T h e p o l y t o p e Q i s  

the plane triangle with vertices (0, 0), (d, 0), (0, d). Its area with respect to the 

volume form induced by Z 2 is d 2 (as can be seen, for example, by decomposing 

it into d 2 elementary lattice triangles). In this case Theorem 2.2 follows from the 

classical Bezout theorem: the number of common roots of two polynomials of 

degree < d in two variables is d 2. More precisely, the Bezout theorem says that 

two curves C1, C2 in the projective plane p2 of degree d intersect in d 2 points 

(if counted with appropriate multiplicities). If Ci is the projective closure of the 

curve in C 2 given by 3~ (xl, x2) -- 0 and f l ,  f2 are generic, then all d 2 points of 

intersection lie in the torus (C*) 2 C C 2 C p2. 
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If, for A, we take some subset of the set of monomials of degree < d then the 

Bezout theorem will be still formally applicable to the curves Ci C p2. However, 

among the d 2 points of the intersection Cl f3 C2 some may lie outside the toms 

(C*) 2 regardless of the choice of the 3'} ~ C A. So the number of common roots in 

the toms can be less than d 2. 

To prove the Kouchnirenko theorem, let us reformulate it in more geometric 

terms. First of all, note that we can reduce the question to the situation when the 

set A generates Z k-l as an affine lattice, i.e., Z k - I  = Affz(A) (see Definition 1.3, 

Chapter 5). Indeed, let {0 (1) . . . . .  0 (k) } be an affine Z-basis of the lattice Affz(A), 

i.e., a subset in this lattice (not necessarily in A) such that Affz(A) consists of 

affine linear combinations of 0 (1) . . . . .  0 (k). In particular, any vector to ~ A can be 

written in the form to - ~ mi 17 (i) with mi (7_ Z, ~ mi -- 1. In other words, 

k - 1  

t o - -  r](k) + ~ mi(YI (i) -- O(k)). 
/ 

i=l 

It follows that every polynomial f ~ C A can be written in the form 

17(k) 
f (xl . . . . .  Xk-1) = X g(Yl . . . . .  Yk-1) 

_(i) rl(k) 
where yi -- x ~ - . The transformation (Xl . . . . .  Xk-1) ~ (Yl . . . . .  Yk-1) is a 

finite covering of degree m = [Z k-1 �9 Affz(A)]. So the number of x-roots is m 

times the number of y-roots. At the same time 

Volz~-, (Q) = m.VO1Affz(A)(Q). 

Thus everything reduces to the lattice Affz(A) and polynomials in Yl . . . . .  Yk-1. 

So we assume that Z k-1 = Affz (A). We arrange the elements of A in some 

order: A = {to (1) . . . . .  to(n)}. Let XA C pn-1 be the toric variety introduced in 

Section 1B Chapter 5. 

A generic point (Yl " . . .  " Yn) of XA has a parametric representation Yi -- xto(i) 

fo r somex  -- (Xl, .. �9 xk-1) ~ (C*) k-1. Therefore a l i n e a r f o r m l ( y ) -  Y~i=ln aiYi 

on pn-1 becomes, after restricting to XA, a Laurent polynomial 

m to(i) 
f ( x )  ~ a i x  . 

i = 1  

If ll (y) . . . . .  lk-1 (y) are k - 1 genetic linear forms defining a projective subspace 

L C pn-1,  then the number of points of XA I") L equals the number of solutions 

of the system of equations 

k (x) = 0 . . . . .  fk-1 (x) = O, (2.2) 
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where J)(x) is the polynomial corresponding to lj (y). Note that it is essential here 

to assume the lj generic" otherwise the intersection points may not lie in the image 
~(i) 

of the parametrization y i  = x , x ~ (C*) k-1. 
We conclude that the number of common roots of a genetic system (2.2) 

equals the degree of the toric variety XA. In other words, Kouchnirenko theorem 

2.2 is equivalent to the following statement. 

Theorem 2.3. Let A C Z k-1 be a finite set of  lattice points generating Z k-1 as 

an affine lattice and let Q c R k-1 be the convex hull of  A. Then the degree of  the 

toric variety XA C en-1 equals Volzk-~ Q. 

This statement is in fact a particular case of Theorem 3.14 from Chapter 5 

which describes the multiplicity (or local degree) of any singular point on a toric 

variety. To specialize to the present situation, we consider the variety YA, the affine 

cone over XA. The apex of this cone is a singular point of YA and the corresponding 

multiplicity equals deg XA. The semigroup SA corresponding to YA is generated in 
Z k = Z k-1 6) Z by vectors (o9, 1), o9 ~ A. The subdiagram volume U(SA) which, 

by the cited theorem, is equal to deg (XA), is just the k-dimensional volume of the 

pyramid P in R k with apex 0 and base Q x { 1 }. Obviously Volzk (P)  = Volzk-~ (Q) 

and Theorem 2.3 follows. 

By analyzing the above arguments it is possible to extract the exact conditions 

for a system (fl  . . . . .  fk) to be "genetic" in the sense of Theorem 2.2. We leave 

this to an interested reader. 

C. Kouchnirenko theorem for underdetermined systems 

In the paper [Kou] Kouchnirenko has proven a more general theorem which will 

also be important for us. Namely, consider a system of p _< k - 1 equations 

j~(Xl . . . . .  Xk-1) = O, i -- 1 . . . . .  p where the j~ belong to the space C A as 

before. Let 

Zf, ..... f. = {x ~ (C*) k- l "  f l ( x ) = ' " =  fp(x)  = 0] 

be the set of solutions of this system in the toms. This is typically a variety of 

dimension k -  1 - p so we cannot speak about the "number" of solutions. However, 

there is an important numerical invariant of any variety Z replacing the number of 

points of a finite set, namely the topological Euler characteristic 

x ( Z )  - E ( - 1 ) i d i m H g ( Z ,  C). (2.3) 
i 

When Z has dimension 0, the Euler characteristic X (Z) is just the cardinality of 

Z. Now the general theorem of Kouchnirenko is as follows. 



204 Chapter 6. Newton polytopes and Chow polytopes 

Theorem 2.4. Let A ~ Z k-1 be a finite subset affinely spanning R k-1 and let 

1 <_ p <_ k -  1. Let also Q c R k-I be the convex hull of  A. There is a dense Zariski 

open subset U in the space (C A)P of p-tuples of  polynomials (f l  . . . . .  f p), fi E C A 

such that, for any ( f l  . . . . .  fp) E U, we have 

X(Zf~ ..... fp) = ( -1 )k- l -PVolzk- , (Q) .  

For the proof of this theorem we refer the reader to the original paper of 

Kouchnirenko [Kou]. 

Example 2.5. Let A = { 1, xl . . . . .  Xk-1 } SO C A consists of affine-linear polyno- 
k - I  

mials f ( x )  -- ao + ~i=1 aixi" Ifai ~ 0 for all i, then the hypersurface in (C*) k-1 

given by the equation f (x) - 0 is isomorphic to  C k -2  minus the union of (k - 1) 

affine hyperplanes in the general position, i.e., to the variety Zk_ 2 where we denote 

Zm -- { (tl . . . . .  tm) E C m" ti # O, ~-~ ti ~ l } . 

The fact that X (Zm) --- (--1)m for any m can be easily seen by induction. Indeed, 

Z1 -- C - {0, 1 } has X = - 1 .  Let Jr �9 Zm ~ Zm-1 be the projection with center 

(0 . . . . .  0, 1) (see Figure 20). This projection makes Zm into a fibration over Zm-1 

with fibers isomorphic to Z1 so X (Zm) = X (Z1)x (Zm-1) = --X (Zm-1). 

Figure 20. 
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D. Mixed volumes and the Bernstein theorem 

The Bernstein theorem [Ber] extends the Kouchnirenko theorem to the case of sys- 

tems of equations where each equation has its own set of monomials. Consider k -  1 
sets of monomials A~ . . . . .  Ak-1 C Z k-1. We assume that their union generates 

Z k-1 as an affine lattice. Let C Ai be the space of all Laurent polynomials with mono- 

mials from Ai, i.e., polynomials of the form )-~-o, ea, ao, x~ x = (xl . . . . .  xk-1). We 

are interested in the number of solutions of the system of equations 

f l  (x) = . . . .  f~-I (x) = 0, x e (C*) k-1 

for generic polynomials fi ~ Cai. For the case A1 = . . .  = Ak-1 = A, this 

number is, by Kouchnirenko's theorem, equal to the volume of the polytope Q, 

the convex hull of A. In the general case D. Bernstein expressed this number in 

terms of mixed volumes. Let us recall the concept of mixed volumes introduced 

by Minkowski (see [El [Liu] [O]). 

Let V be a real vector space of dimension m. For any two convex polytopes 

P, Q c V, we denote by P + Q their Minkowski sum (Definition 4.7, Chapter 5) 

and by ~.P for )~ ~ R the scaled polytope P, i.e., )~P = {~.p �9 p a P}. Let Vol 

be a translation invariant volume form on V. It is known (see the cited literature) 

that, for any m convex polytopes P1 . . . . .  Pm C V, the expression 

Vol(~.l el + . . .  + ~.m Pm) (2.4) 

is a homogeneous polynomial in )~1 . . . . .  ~-m of degree m. 

Definition 2.6. The mixed volume Vol (P1 . . . . .  Pm) is the coefficient at the mono- 

mial Z l " "  ~.m in the polynomial (2.4). 

More explicitly, we have 

Vol(P1 . . . . .  pm) = __1 ~ (  m) --1)m-k 
�9 k = l  l<il <...<ik<m 

Vol(Pi, + . . .  + Pik). 

The following proposition summarizes the basic properties of mixed volumes. 

Proposition 2.7. 
(a) Vol(P . . . . .  P) -- Vol(P) is the usual volume of P. 

(b) The mixed volume Vol(P1 . . . . .  Pm) is invariant under translations of each 

of the Pi and under simultaneous linear transformations of all of the Pi with 
determinant 1. 

Proof. This follows from the homogeneity of the volume under the dilations and 

from its invariance under translations and linear transformations with determinant 

1. 
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Part (b) above permits us to speak about mixed volumes in an affine space 
W equipped with a translation invariant volume form Vol. In particular, when W 

is equipped with an affine lattice E, we have the volume form Vol~ (see Section 

3D Chapter 5). We shall write Volz(P1 . . . . .  Pro) for the corresponding mixed 
volume. 

Now the Bernstein theorem is as follows. 

Theorem 2.8. Let A1 . . . . .  Ak-1 C Z k-1 be finite sets such that A1 U . . .  t.J Ak-1 

generates Z k-1 as an affine lattice. Let Qi c R k-1 be the convex hull o f  Ai, and 

let C A  ̀be the space of  Laurent polynomials in xl . . . . .  xk-1 with monomials from 

Ai. Then there exists a dense Zariski open subset U C I-I CA` with the following 

property: for  any ( f l  . . . . .  f•-l) E U, the number of  solutions of  the system 

of  equations f l  (x) -- . . .  -- fk-1 (x) = 0 in (C*) k-1 equals the mixed volume 

VOlzk-I (Q1 . . . . .  Qk-1). 

For the proof see [Ber]. 

Rem a r k  2.9. For the case of two polynomials in two variables, the statement, 

equivalent to Theorem 2.8, was proved by Minding [Min] in 1841 long before 

Minkowski introduced mixed volumes. 

3. Chow polytopes 

In the previous section we defined the Newton polytope of a polynomial. Geo- 
metrically, considering a polynomial is equivalent to considering the hypersurface 
defined by the vanishing of this polynomial. Thus the Newton polytope is a com- 
binatorial invariant of a hypersurface in (C*)". It is natural to try to extend the 
notion of the Newton polytope from hypersurfaces to algebraic subvarieties of 

arbitrary dimension. In this section (based on [KSZ2]) we shall discuss such a 
generalization. 

For technical reasons we shall study algebraic subvarieties not in the torus 

but in the projective space pn-1. This does not seriously restrict generality. For 

example, a hypersurface in pn-1 is given by a homogeneous polynomial in n vari- 

ables X l . . . . .  xn which does not contain negative powers of the xi. The collection 

of such polynomials is, of course, less general than the collection of all Laurent 

polynomials in Xl . . . . .  xn. However, any Laurent polynomial in n - 1 variables 

Yl . . . . .  Yn-1 can be transformed, by a suitable monomial change of variables, to a 

homogeneous polynomial in n variables (not containing negative powers). 

A. Definition of Chow polytopes 

In Section 1, Chapter 4 we considered the Chow variety G(k, n, d) of algebraic 

cycles in pn-1 of degree d and dimension k - 1. This is a projective variety and 
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we recall its projective embedding. 

Let  13 = B(n  - k, n) = ~])d Ba be the homogeneous coordinate ring of the 
Grassmannian G(n  - k, n) (see Section 1E Chapter 3). This ring is generated 

by the so-called brackets [il . . . . .  ik], 1 < il < " "  < ik < n. By definition, 

[il . . . . .  ik] is the polynomial which takes an (n -k)-dimensional subspace L with 

a chosen basis to the PlUcker coordinate pj, ..... j,_~ (L) ,  where {jl < ""  < j~-k} 

is the complement to {il . . . . .  ik }. The brackets are subject to Plticker quadratic 

relations, see (1.7) of Chapter 3. The Chow variety G(k ,  n, d)  is realized as a 
Zariski closed subset in the projective space P (Bd). 

This realization associates to a cycle X = ~ miXi its Chow form R x  = 

1--I Rxl, where Rx, is the equation for the locus of ( n -  k -  1)-dimensional projective 

subspaces intersecting Xi.  In the case of a hypersurface, the Chow form coincides 

with the equation of this hypersurface. Thus the notion of the equation is extended 
to the subvarieties of higher codimension. Informally, the Chow polytope which 

we are going to define, will be the "Newton polytope of the Chow form." 

We fix a system of homogeneous coordinates Xl . . . . .  x,, in pn-1. The alge- 

braic torus H -- (C*) n acts on p,,-1 by independent dilations of the homogeneous 

coordinates. Therefore, H acts on the space Bd of (possible) Chow forms of 

(k - 1)-dimensional cycles of degree d. 

Definition 3.1. Let X ~ G(k ,  n, d)  be an algebraic cycle in p~-I of dimension 

(k - 1) and degree d. The  Chow polytope of X is the weight polytope of the Chow 

form R x  in the space Bd (see Definition 1.7 Chapter 5), and is denoted by Ch(X). 

By definition, Ch(X) lies in the vector space R" -- Z" | R, where Z" is 
identified with the group of characters of the torus H. For any character X ~ zn  

of H, as in (1.7) of Chapter 5, we denote by Bd,x the weight subspace of Bd 

corresponding to X. We are going to describe the set of possible weights. 
Denote by A (k, n) the convex polytope in R" which is the convex hull of the 

(k) points eil + ' "  + eik , 1 < i l < . . .  < ik < n, where the ei are the standard basis 
vectors. This polytope was introduced in [GM] and called the (k, n)-hypers implex .  

Clearly, A (k, n) can be seen as the convex hull of the barycenters of the (k - 1)- 

dimensional faces of the (n - 1)-dimensional simplex. In particular, A (1, n) and 

A (n - l, n) are (n - 1)-dimensional simplices. The first non-trivial example is 

provided by the hypersimplex A (2, 4) which is the 3-dimensional octohedron (see 

Figure 21). 

For any d > 0, we denote by d A(k, n) the scaled hypersimplex, i.e., the 

convex hull of the points d(ei~ + . . .  + eik). 

Proposition 3.2. The weight  subspace Bd,x is non-zero i f  and only i f  X 

d A ( k , n ) .  
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Figure 21. The octohedron as the hypersimplex A(2, 4) 

Proof. Clearly every element of Bd is a polynomial of degree d in brackets 

[il . . . . .  ik], and [il . . . . .  ik] has the weight ei~ + . . .  + eik. It follows that 

every X such that Bd,x ~ O, belongs to d A(k, n). Also, the reverse inclusion 

is not hard to prove by elementary methods. Moreover, we can prove it by observ- 

ing that the space Bd is an irreducible representation of the group G L (n, C) with 

highest weight d(el + . . .  + ek). Our statement is a special case of the general 

fact about weight diagrams of irreducible representations of reductive groups: the 
weights of such a representation with highest weight ~ are exactly all weights/3 
such that ~. - / 3  lies in the root lattice, and/~ lies in the convex hull of the orbit 
of ~. under the action of the Weyl group (see, e.g., [Boul], Ch. VIII, Section 7, 

Proposition 5). 

The weight subspaces in Bd can have dimension more than 1. However, the 

weight subspaces corresponding to the vertices of dA (k, n) are 1-dimensional and 

generated by the d-th powers [il . . . . .  ik] d. 

Now let us discuss some examples of Chow polytopes. 

Example 3.3. Let k = n - 1, i.e., suppose that X is a hypersurface in pn-1 

defined by a homogeneous equation f ( x l ,  x: . . . . .  x~) = 0. The ring B(n - 1, n) 
coincides with the polynomial ring C[xl . . . . .  xn]: the variable xj is identified 
with the bracket ( -1 ) J - l [1 ,  2 . . . . .  ] . . . . .  n]. This is a particular case of the 

correspondence between Pliicker coordinates in G(k, n) and G(n - k ,  n), see (1.6) 

of Chapter 3. The Chow form of X is just its equation f (xl . . . . .  x,,). Therefore 

the Chow polytope of X is the same as the Newton polytope of f .  

Example 3.4. Let L be a (k - 1)-dimensional projective subspace in p,,-1 and let 
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( Pi~ ..... ik) be its PlUcker coordinates. Then 

R L  = ~ Pi~ ..... ik[il . . . . .  ik] E ]31 
l<il <...<ik<n 

is a linear combination of the generators of the algebra B. We say that {il . . . . .  ik} 

is a base for L if Pi~ ..... ik ~ O. By definition, the Chow polytope of L is the convex 

hull of the points ei~ + . . .  + eik for all bases {il . . . . .  ik} for L. 

The definition of bases can be given in several equivalent forms. For example, 

let L C C n be the vector subspace corresponding to L. Then {il . . . . .  ik } is a base 

for L if and only if the restrictions of the coordinate linear forms xi~ . . . . .  xik to L 

form a basis of L*. 
The polytope Ch(L) was introduced in [GGMS] and called the matroidpoly-  

tope of L. Note, in particular, that if L is a coordinate subspace spanned by 

ei~ . . . . .  eik then RL = [il . . . . .  ik] and the Chow polytope Ch(L) is just a point. 

Examples 3.5. (a) If X consists of a single point x = (xl " . . .  �9 x,,) then its 

associated hypersurface Z (X)  is the hyperplane polar to x, and its Chow polytope 

is the face Ch(x) with vertices {ei " xi ~ 0} of the standard (n - 1)-simplex A "-1 

in R ~. 

(b) The Chow form of a cycle X - ~-~-P=I mi Xi (with all Xi irreducible) is 

the product Rx  = Rx~ R x ~ . . .  Rx~. Thus its Chow polytope is the Minkowski 

sum of polytopes Ch(X) -- m lCh(X1) + m2Ch(X2) + . . .  + mpCh(Xp) .  

(c) If X = {x (1), x (2) . . . . .  x (p)} is a zero-dimensional variety then its as- 

sociated hypersurface Z ( X )  is the hyperplane arrangement polar to X, and, by 
(a) and (b), its Chow polytope is the Minkowski sum of simplices Ch(X) = 
~-~P=I Ch(x(i)). It can be quite non-trivial. Consider, for instance, X to be the 

system of positive roots of type A,,-1, i.e., the (projectivization of) the system of 

vectors ei - ej, 1 < i < j < n. Then the Chow polytope of X is the so-called 

permutohedron (or general hypersimplex, see [Milg] [GS]). By definition, this 
is the convex hull of points (s(1) . . . . .  s(n))  e R n where s runs over all the n! 

permutations of numbers 1 . . . . .  n. We shall encounter this polytope in the next 

chapter. 

Definition 3.6. Let X, Y be two cycles in G(k,  n, d).  We say that Y is a toric 

specialization of X if Y lies in the closure of the torus orbit H X in G (k, n, d). 

For points of a toric variety, the notion of toric specialization was already 

considered in Section 1D, Chapter 5. As in that case, the relation "Y is a toric 

specialization of X" is a partial order relation on cycles. In particular, the set of 

all toric specializations of a given cycle X is a partially ordered set (or poset).  

Corollary 3.7. Let X be a cycle in pn-1 o f  dimension k - 1 and degree d. Then the 
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face poset of  its Chow polytope Ch(X) (with the order relation given by inclusion) 

is isomorphic to the poset of  toric specializations of  X in G(k, d, n). 

This follows from Proposition 1.8, Chapter 5, since the closure of H X is a 

toric subvariety in G (k, d, n). 

B. Vertices o f  Chow polytopes 

For any subset (r C { 1, 2 . . . . .  n}, let Lo denote the coordinate subspace of 

C" spanned by { ei " i E o'} and Lo the projectivization of Lo. The torus 

H = (C*)" leaves Lo invariant, and so we have a linear representation po : 

H ~ GL (Lo) for each (r. For any subvariety X C p n - l ,  we abbreviate Hx = 

{ t  E H : tX  = X} .  

Proposi t ion 3.8. Let X be an irreducible subvariety in pn-1, and let cr = cr(X) 

denote the minimal subset of  { 1, 2 . . . . .  n } such that X C Lo. 

(a) For a generic point x = (xl : . . .  : xn) in X, all the coordinates xi, i ~ or, 

are non-zero. 

(b) The dimension of  the Chow polytope Ch(X) equals #(or) - dim po(Hx).  I f  

x ~ X is a generic point, then dim Ch(X) = codimLo (Hx x). 

Proof (a) Suppose on the contrary that every point x = (xl : . . .  : x,,) ~ X 

lies in a proper subspace L~ of Lo. Then X = I..J~ (X N L , )  is a union of a 

finite number of its proper closed subvarieties. But this is impossible, since X is 

assumed to be irreducible. 

(b) We have 

dim Ch(X) = dim Wt(Rx)  = dim H �9 Rx = dim H - dim Hx. 

It remains to note that the subgroup 11o = Ker(po) C H lies in Hx and is 

equal to the stabilizer in Hx of a vector in C" whose projectivization is a genetic 

point x ~ X. Therefore, 

dim H - dim Hx = dim Po (H) - dim po (Hx) 

= #(or) - dim Po (Hx) = codimi.o (Hx x) 

as claimed. 

Coro l la ry  3.9. The coordinate projective subspaces are the only irreducible sub- 

varieties X C p , - I  with dim Ch(X) = 0. 

The next theorem follows at once from Corollaries 3.7, 3.9 and Example 3.5. 
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Theorem 3.10. For any cycle X ~ G(k, d, n), the vertices of  the Chow polytope 
Ch(X) are in a bijective correspondence with toric specializations of X of the form 
~-'~.#(,,)=k ma La. The vertex of  Ch(X) corresponding to such a cycle equals 

og-- ~ma ~-~ei E d A ( k , n ) .  
tr i Etr 

The corresponding weight component of the Chow form Rx is the bracket monomial 

Rx,~o -- const . l - I  [ tr ]m,. 
#(tr)=k 

C. Possible edges of  Chow polytopes 

We have already remarked (Example 3.4) that, for a projective subspace L C pn-1, 

(i.e., for a cycle of degree 1) the Chow polytope is the matroid polytope of L, and 

the vertices are some of the vertices of the hypersimplex A (k, n). The following 

was proved in [GGMS]. 

Theorem 3.11. If  L C pn is a (k - 1)-dimensional projective subspace, then 

every edge of  its matroid polytope is an edge of the hypersimplex A (k, n). Every 

edge of A (k, n) is parallel to some vector of the form ei - ej where el . . . . .  en is 

the standard basis of  R n. 

In fact, it was proved in [GGMS] that subpolytopes in A (k, n) whose vertices 

and edges are among those of A(k, n) correspond to matroids (combinatorial 

structures axiomatizing properties of linear dependence of a collection of vectors 

in a vector space). An example of such a polytope is given by a square pyramid 

forming a half of the octohedron A (2, 4). 

We are now going to generalize Theorem 3.11 to arbitrary Chow polytopes. 

A non-zero vector a = (al . . . . .  an) ~ Z n is called admissible if 

g.c.d.(al . . . .  ,a,,) = 1 and al + a 2 + . . . + a n  = 0. For such a vector, put 

c r + ( a )  - -  { i  : a i  > 0} and cr_(a) = {i : a i  < 0}. We say that a has level 

lev(a) := #(cr+(a)) + #(a_(a))  - 2 and degree deg(a) " - -  ff-~iea+(a)ai ( :  
- -  ~-~iEtr_(a)  ai). 

The promised generalization of Theorem 3.11 is as follows. 

Theorem 3.12. Each edge of the Chow polytope of any cycle X ~ G (k, d, n) is 

parallel to some admissible vector a ~ Z n with lev (a) < k - 1 and deg (a) < d. 

We denote by A (k, d, n) the set of admissible a ~ Z n with lev (a) < k - 1 

and deg (a) < d. Before proving the theorem let us give some examples of these 

sets. 
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Examples 3.13. (a) The set A(k, 1, n) consists of vectors ei - ej (1 < i, j < 

n, i :/: j ) ,  i.e., it is the root system of type A,-1.  

(b) For k > 2, the set A (k, 2, n) consists of the following vectors" the roots 

ei - e j  (1 < i, j < n, i ~ j )  and the vectors • - e j  - e p )  for distinct 

l < i , j , p < n .  

D. Proof o f  Theorem 3.12 

With an admissible vector a, we associate the (n - 1)-dimensional subtorus 

ai = 1}. Clearly, H[a] is n[a] :=  {(x 1 . . . . .  Xn) ~ H = ( c * ) n  " I-Iin=lxi 

irreducible and contains the one-parameter subgroup C* = {(t . . . . .  t)} C H. 

Conversely, each irreducible algebraic subtorus of codimension 1 in H containing 

C* is of this form. 

Proposition 3.14. Let X be a (k - 1)-dimensional irreducible subvariety in pn-1 

of  degree d such that Ch(X) is an interval. Then X is a toric variety H[a] x of  

codimension 1 in some coordinate k-subspace, where a E Z n is an admissible 

vector with lev(a) _< k -  1 and deg(a) - - d .  The Chow polytope Ch(X) equals 

the interval [b, b -t- a] for  some b E Z n. 

Proof. Let tr = or(X) be as in Proposition 3.8, and let x be a generic point of X, 

so xi ~ 0 for i e t r  by Proposition 3.8 (a). By Proposition 3.8 (b), the subgroup 

Hx is of codimension 1 in H. Consider the irreducible component of the identity 

H ~ C Hx. Then H ~ = H[a] for some admissible a ~ Z n. Since X C L,,, it 

follows that tr+ (a) t.) or_ (a) C tr, and 

d i m H [ a ] x  = d imLa - 1 = #(tr) - 2. 

Since X is a proper irreducible subvariety of L,, containing H[a] x, it follows 

that X = H[a]x.  Therefore, # ( t r ) =  k + 1, say cr = {il < i2 < ".. < ik+l}, 

and we see that X is a hypersurface in L,,. This hypersurface X is defined by the 

equation 
l"-I 

ai r [  - a i  
~ -  0 (3.1) I I  xi  - c .  I I  xi 

i~_tr+(a) i~_a_(a) 

for some c ~ C*. These considerations imply lev(a) < k -  1 and deg(a) = d. 

By Example 3.3, the Chow form Rx is obtained from (3.1) by the substitution 

xij ~ ( - 1 ) J - l [ i l ,  i2 . . . . .  ij . . . . .  ik+l]. Thus Rx is the sum of two bracket 

monomials with weights 

b+ = d(eil -1- ' ' "  -I" eik+l) -- ~ a ie i ,  
iEa+(a) 
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b_ = d(eil  - t - . "  Jr eik+l) -!- ai ei, 
iea_(a) 

and the Chow polytope of X is the interval [b+, b_]. We see that b_ = b+ -t- a, 
thereby concluding the proof of Proposition 3.14. 

Corollary 3.15. Let X = ~ mi Xi be a cycle in G(k, d, n) such that Ch(X) is 

an interval Then this interval has the form [b, b + a]for some admissible a ~ Z n 

with lev(a) = k -  1 and deg(a) < d. Moreover, each irreducible component Xi 

of  X is either a coordinate (k - 1)-subspace or a toric hypersurface as in (3.1). 

Corollary 3.15 is a direct consequence of Proposition 3.14 and Example 3.5 
(b). This corollary immediately implies Theorem 3.12. We also have obtained the 
following additional information about edges of any Chow polytope Ch(X). 

Corollary 3.16. The toric specialization of  a cycle X ~ G(k, d, n) corresponding 

to any edge of  Ch(X) is a linear combination of  coordinate (k - 1)-subspaces 

(possibly none) and toric hypersurfaces as in (3.1) (at least one). 



CHAPTER 7 

Triangulations and Secondary Polytopes 

In this chapter we discuss a combinatorial framework for discriminants and resul- 

tants related to toric varieties. The main construction introduces a certain class 

of polytopes, called secondary polytopes, whose vertices correspond to certain 

triangulations of a given convex polytope. These polytopes will play a crucial role 

later in the study of the Newton polytopes of discriminants and resultants. The 

constructions in this chapter are quite elementary. 

1. Triangulations and secondary polytopes 

A. Triangulations 

A triangulation of a convex polytope Q c I k - l  is a decomposition of Q into a 

finite number of simplices such that the intersection of any two of these simplices 

is a common face of them both (maybe empty). 

In Figure 22 we give examples of a triangulation and a pattern which we do 

not allow in our notion of triangulation. Notationally, we regard a triangulation 

as a collection of its simplices of maximal dimension. All the lower-dimensional 

simplices are just faces of the maximal ones. 

Figure 22. 

Throughout this chapter we shall use the notation Conv(A) for the convex 

hull of a set A in an affine space. 

We are interested in triangulations whose vertices belong to a fixed finite set. 

Let A be a finite subset of a polytope Q containing all the vertices (i.e., such that 

Q = Conv(A)). By a triangulation of (Q, A), we mean simply a triangulation of 
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Q into simplices with vertices in A. Note that we do not require every element of 

A to appear as a vertex of a simplex. 

Example 1.1. Here is a simple way to construct a triangulation of (Q, A). Let us 

suppose that Q c R k-1 has full dimension k - 1. Take any function ~p �9 A --+ R 
and consider, in the space R k = R k- 1 x R, the union of vertical half-lines 

{(co, y) �9 y _< ~r(w), o9 ~ A, y ~ R}. 

Let G ,  be the convex hull of all these half-lines (Figure 23). This is an unbounded 

polyhedron projecting onto Q. The faces of G ,  which do not contain vertical 

half-lines (i.e., are bounded) form the bounded part of the boundary of G , ,  which 

we call the upper boundary of G~o. Clearly, the upper boundary projects bijectively 

onto Q. 

Figure 23. 

We claim that if the function 7t is chosen to be genetic enough, then all the 

bounded faces of G~, are simplices and therefore their projections to Q form a 

triangulation of (Q, A). 

Indeed, suppose that IF" C G ,  is a bounded face which is not a simplex, i.e., 

1" contains at least k + 1 vertices, say 

(w (1), lp (w(1))) . . . . .  (w <k+l), ~r (w(k+l))) (1.1) 

w h e r e  o) (i) - -  (0)~ i ) , . . . ,  O)k(i)l) ~ R k- '  

hyperplane in R k, the determinant 

1 o)~ 1) ... 

. . ~ 

. ~ 

1 o91 ~+1) ... 

. Since the points (1.1) lie on an affine 

w(1) k-1 1//(0)(1)) 
. . 

CO(;+l k - I  ~ t (O)(k+l)) 

(1.2) 
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vanishes. This determinant is a non-zero linear function in ~p (co(i)). The vanishing 
of this function defines a hyperplane in the space R A of all functions A --+ R. Thus, 

if we delete the hyperplanes corresponding to all (k + 1)-element subsets of full 

rank in A from R A, then any ~ from the complement will define a triangulation. 

This construction will play an important role in the sequel. Note in particular, 

that we get a simple proof of the following fact: any polytope Q can be triangu- 

lated into simplices whose vertices are among the vertices of Q. This fact is not 

immediately obvious for polytopes of high dimension. 

B. Example: triangulations of a circuit 

A collection Z of points in an affine space R k-I is said to form a circuit if any 

proper subset Z' C Z is affinely independent (i.e., is the set of vertices of a simplex 

of some dimension) but Z itself is affinely dependent. (This terminology comes 

from matroid theory [GGMS] [GS]). Thus, a circuit is obtained by adding just one 

point to the set of vertices of a simplex (Figure 24). 

Figure 24. Circuits 

The notion of a circuit uses only affine dependence and hence can be defined 
in an affine space over any field. Over the field of real numbers, which is the case 

we consider, a circuit has, besides its cardinality, another invariant called signature 
defined as follows. 

Note that up to a real multiple, there is only one real affine relation between 

elements of Z: 

Zc - 0. 
toEZ 

The numbers co, are non-zero since any proper subset of Z is affinely independent. 

Let Z+ and Z_ be subsets of Z consisting of co such that co~ is positive (resp. 

negative). Clearly, the decomposition of Z into two parts Z+ U Z_ is defined 

by Z uniquely, up to interchanging of Z+ and Z_ (which corresponds to the 

change of signs of all Co~ in (1.3)). The signature of Z is the pair (p, q) where 

p = #(Z+), q = #(Z_); it is defined up to interchanging of p and q. We have 

p + q = #(Z). This notion is analogous to that of the signature of a real quadratic 

form. 
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Proposi t ion 1.2. Let Z C R k-1 be any circuit and Q = Conv(Z). Then Q 
has exactly two triangulations with vertices in Z: the triangulation T+ with 
simplices Conv(Z - {to}), to ~ Z+, and the triangulation T_ with simplices 
Conv(Z - {co}), co ~ Z_. 

Proof First we show that the T+ are indeed triangulations. A point x 6 Q can be 

written as a convex combination 

x = ~ l r ' Y ,  l r - > O ,  ~ ~ •  = 1. 
yeZ yeZ 

By using (1.3) we can write, for any fixed to ~ Z 

1 
x = ~ ~ (~.rc,o - ~.,oc• y. 

Cw y:~co 

It follows that if to ~ Z+ then the condition that x ~ Conv(Z - {to}) takes 

the form x~ > & for all y ~ Z+. So each x belongs to at least one simplex 
Cy ~ Cto 

Conv(Z - {to}), to ~ Z+ and the intersection of any two of these simplices is 

a common face. In other words, T+ is a triangulation. For T_ the reasoning is 

similar. 

To see that there are no other triangulations of (Q, A) except T+, we observe 

that every maximal simplex from T+ and every maximal simplex from T_ have a 

common point which is interior for both simplices. The proposition is proved. 

The triangulations T+ for the case of circuits with < 4 vertices are shown in 

Figure 25. 

! 
i i i 

i Ill '" i 

Figure 25. Pairs of triangulations coming from circuits 

Proposition 1.2 can be easily extended to the case of a spanning subset A C 

R k-1 of cardinality k + 1. Such a subset has the form A -- Z U B where Z C A 

is a unique circuit and B is such that any point b ~ B does not lie in the affine 
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subspace spanned by Z and the remaining points b' ~ B, b' ~ b (see Figure 26). 

Indeed, up to a scalar multiple, there is exactly one affine relation between the 

elements of A, and Z consists of the points to e A with a non-zero coefficient in 

this relation. 

~ v  v v 1. 1. ,. 

Figure 26. A spanning (k + 1)-element subset A C R k-1 
and two triangulations of Conv(A) 

The same argument, as in the proof of Proposition 1.2, shows that there are exactly 

two triangulations of (Conv(A), A): T+ with simplices Conv(A - {to}), to ~ Z+, 

and T_ with simplices Conv(A - {to}), to ~ Z_. They are obtained from the 

corresponding two triangulations of Conv(Z) by taking iterated cones over their 
simplices. 

C. Coherent triangulations 

Let A and Q be as above and let T be a triangulation of (Q, A). A continuous 

function g �9 Q --+ R will be called T-piecewise-linear if it is affine-linear on every 

simplex of T. Clearly, T-piecewise-linear functions form a vector space. 

We call a continuous function g �9 Q --+ R concave, if for any x, y ~ Q, we 

have g(tx +(1  - t ) y )  > tg(x)+(1 - t )g(y) ,  0 < t < 1. By adomainoflinearity 
of a concave function g �9 Q --+ R, we mean a subset U in Q such that g Iv is given 

by some affine-linear function, and which is maximal with this property. 

Definition 1.3. A triangulation T of (Q, A) is called coherent if there exists 

a concave T-piecewise-linear function whose domains of linearity are precisely 

(maximal) simplices of T. 

We shall mostly be interested in coherent triangulations*. An example of two 

non-coherent triangulations is given in Figure 27. 

* In [GZK3] they were called regular. 
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Figure 27. Non-coherent triangulations 

The fact that these triangulations are indeed non-coherent can be checked by 

a straightforward calculation. A proof avoiding calculations may be obtained by 

using the theory of secondary polytopes developed below (see the remark following 

Theorem 1.7). 

Let T be an arbitrary triangulation of (Q, A), and let lp : A --+ R be any 

function. Then there is a unique T-piecewise-linear function g~,r : Q --+ R 
such that, for each o9 ~ A, which is a vertex of some simplex of T, we have 

gv,,r (o9) = lp (to). The function g~o,r is obtained by affinely interpolating ~ inside 

each simplex. Note that the values of ~ at elements of A which are not vertices of 

any simplex of T do not affect the function g v,,r. 
Denote by R a the space of all functions A --+ R. The correspondence 

ap ~ gv,,r defines a surjective linear map from R a to the space of T-piecewise- 

linear functions on Q. 

Definition 1.4. Let T be a triangulation of (Q, A). We shall denote by C(T) the 
cone in R a consisting of functions ~p : A ~ R with the following two properties: 

(a) The function g~,r : Q --+ R is concave. 
(b) For any o9 ~ A which is not a vertex of any simplex from T, we have 

g~,,r (~o) > ~ (~o). 

Clearly, a triangulation T is coherent if and only if the interior of C(T) is 

non-empty. Moreover, ~r lies in the interior of C(T) if and only if T can be 

obtained from ~ by the construction of Example 1.1. Thus coherent triangulations 

are precisely those which can be obtained by this construction. 

Proposition 1.5. Let A and Q = Conv(A) befixed. The cones C(T) for  all the 
coherent triangulations of (Q, A) together with all faces of these cones form a 
complete fan (see Section 4A Chapter 5) in R a. 

This fan will be called the secondary fan of A. This is an example of a fan 

that does not a priori come as the normal fan of some polytope. However, in the 

next subsection, we shall represent the secondary fan in this form. 
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Proof of Proposition 1.5. Clearly, the C(T) cover the whole space. So it suffices 

to show that, for any two coherent triangulations T, T' of (Q, A), the intersection 

C(T) n C(T') is a face of both C(T) and C(T'). To see this, note that if 7t e R a 

belongs to this intersection then the functions g~,r and g~,r, are both concave. 

Hence if tr e T, tr' e T' are two maximal simplices whose interiors intersect, 

then g~,,r and gv,,r' should be given over tr tO tr' by the same affine function. 

This property is expressed by a set of linear conditions on lp. This means that 

C(T) n C(T') is the intersection of C(T) with a vector subspace in R a as well 

as the intersection of C(T') with the same vector subspace. Hence it is a face of 

C(T) and C(T'). 

The structure of the faces of cones C (T) will be studied in Section 2. 

D. Secondary polytopes 

As above, let A C R k-1 be a finite subset, and Q = Conv(A). We assume that 

dim(Q) = k - 1. Fix a translation invariant volume form Vol on R k-l.  Let T be 

a triangulation of (Q, A). By the characteristic function of T we shall mean the 

function ~or �9 A --+ R defined as follows: 

~ r  (o~) = Vol(tr), (1.4) 
tr: to~Vert(tr) 

where the summation is over all (maximal) simplices of T for which co is a vertex. 

In particular, ~or (to) = 0 if to is not a vertex of any simplex of T. 

Now we define the main object of study in this chapter. 

Definition 1.6. The secondary polytope E(A) is the convex hull in the space R a 

of the vectors ~or for all the triangulations T of (Q, A). 

Our first task will be to find the dimension of E (A) and to describe which of 

the functions ~or will actually be the vertices of E (A). 

To do this, we describe the normal cone to this polytope at every tpr. Recall 

that the normal cone N~0r E (A) consists of all linear forms ~ on R a such that 

r  = max~oz~:(A)~(~o). 

The point ~or is a vertex of E (A) if and only if the interior of this cone is non-empty. 

We shall identify R a with its dual space by the scalar product 

( r  ~0) - ~ r 
toEA 

Thus the normal cones lie in R A . 
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Theorem 1.7. 
(a) The secondary polytope E(A) has dimension n - k where n = #(A). 
(b) Vertices of E(A) are precisely the characteristic functions got for all coherent 

triangulations T of (Q, A). If  T is a coherent triangulation of (Q, A) then 

got ~ got' for any other triangulation T' of (Q, A). 
(c) For any triangulation T (coherent or not) the normal cone N~or ~ (A ) coincides 

with the cone C(T) C R A introduced in Definition 1.4. 

Note that, for non-coherent triangulations T, the correspondence T ~-~ got 

may not be injective. For example, it is easy to see that got -- got, where T, T' are 
two triangulations in Figure 27. Thus, the fact that they are non-coherent follows 

from Theorem 1.7 (b). 

The proof of Theorem 1.7 will be based on the following two lemmas. 

Lemma 1.8. For every triangulation T of (Q, A) and every ap ~ R A, we have 

(ap, got) - k fO g~,,r(x)dx. (1.5) 

Proof This follows at once from the definitions of got and g~,r, and the following 

obvious fact: the integral of an affine-linear function g over a simplex cr is equal 

to the arithmetic mean of values of g at the vertices of cr times the volume of tr. 

Fix ap 6 R A. We shall evaluate explicitly the maximum max~oe~(A)(~r, go). 

Namely, as in Example 1.1, let Gxo C R k = R k-1 • R be the convex hull of all 

the vertical half-lines {(co, y) : y < 7t(o9), o9 ~ A, y 6 R}. The upper boundary 

of G~ can be regarded as the graph of a piecewise-linear function gv, : Q --~ R. 

Explicitly, 

g~,(x) = max{y : (x, y) ~ G~,}. (1.6) 

Lemma 1.9. 

(a) The function go, is concave. 
(b) Forany triangulation T of(Q, A) we have g~(x) > g~o,r(x), Yx ~ Q where 

g~,r was defined in subsection C. 
(c) We have 

1 .  

max~o~z~a)(~, go) -- k / g~ (x)dx. (1.7) 
JQ 

Proof Part (a) follows by construction. To verify the inequality in (b), it suffices to 

consider x varying in some fixed simplex cr of T. By definition, gv,,r is affine-linear 

over cr and go, (w) > ~p(w) = gc,,r(w) for any vertex o9 6 cr. So the inequality is 

valid over or. 
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Let us prove (c). The maximum in (1.7) can be taken over the set of the tpr 
for all triangulations T of ( Q, A), since E (A) is defined as the convex hull of these 

tpr. Hence part (b) together with Lemma 1.8 imply that the left hand side of (1.7) 

is greater than or equal to the fight hand side. To show the equality, it suffices to 

exhibit a triangulation T for which gv, = g~,,r. 
To do this, we consider the projections of the bounded faces of the polyhedron 

G~ into Q. These are polytopes with vertices in A. Take a generic ~ '  close to ~r. 

Then the bounded faces of the polyhedron G~,, (see the construction of Example 

1.1) give a triangulation T of (Q, A) which induces a triangulation of each of the 

above polytopes. Hence g~ is T-piecewise-linear and coincides with gv,.r. This 
proves Lemma 1.9. 

Now we can prove Theorem 1.7. Part (c) of this theorem follows at once from 

Lemmas 1.8 and 1.9. Part (b) follows from part (c) and the fact that the C(T) for 

coherent T are all distinct and cover the whole R a (see Proposition 1.5). To prove 

part (a), notice that all the cones C(T) C R a contain the same k-dimensional 

vector subspace. This subspace consists of functions lp �9 A ~ R, which are 

restrictions to A of global affine-linear functions g �9 R k-1 ~ R. Clearly, this is 

the maximal vector subspace in R a common to all C(T). This implies that the 

codimension of E(A) in R a is equal to k. Theorem 1.7 is completely proved. 

Corol lary 1.10. Let A C R k-1 be a finite subset affinely spanning R k-1. Then 
I2(A) has dimension 1, i.e., it is an interval if and only if #(A) = k -t- 1. 

In the situation of Corollary 1.10, the vertices of an interval E (A) correspond 

to the triangulations T+ constructed in Section B. This shows, in particular, that 

these two triangulations are always coherent. 

Proposition 1.11. Suppose that A affinely spans R k-1. The affine span of the 
polytope r, ( A ) is equal to 

I" E'A " ~'(~176 ~'(~176 ogEA (1.8) 

Proof. We know that dim (I2 (A)) = #(A) - k .  The equalities (1.8) define an affine 

subspace of the same dimension. Hence it is enough to prove that these equalities 

are satisfied on E (A). In the proof we can assume that 99 = tpr for a triangulation 

T of (Q, A). 

Now, the first equality is obvious: the volume of each simplex tr of T will 

be counted in ~--~toEA 9 9T (O)) exactly k times, one for each vertex of tr. The second 

equality follows from Lemma 1.8 applied to each component of the vector-valued 
linear function x ~ x, Q --~ R k-1. 
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E. The secondary polytope as the Minkowski integral 

Now we shall discuss an "integral representation" of the secondary polytope E (A) 

(due to Billera and Sturmfels [BS]). 

Let us number the elements of A, say A = {co tl) . . . . .  ogt")}. Consider the 

standard ( n -  1)-dimensional simplex A = A "-1 C R A, i.e., the convex hull of the 

basis vectors el . . . . .  e,.  Vertices of this simplex correspond, via our numeration, 

to elements of A. Let Jr �9 A ~ Q denote the affine projection sending each vertex 

ei of A to the corresponding element O) (i) E A. 

If a polytope Q is given, then a set A such that Q = Conv(A) can be regarded 

as a "set of generators" of Q. The simplex A, whose vertices are in bijection 

with elements of A, can be regarded as the "free polytope" on A. From this point 

of view it is natural to regard the fibers of Jr as "polytopes of relations" between 

elements of A which measure the difference between Q and A. 

For any x ~ Q, consider the fiber zr -1 (x) of the projection Jr. If x is an 

interior point of Q then 7r -1 (x) is a convex polytope of dimension n - k, i.e., of 

the same dimension as E (A). For different points x the structure of zr -1 (x) can 

be quite different so it is not clear which particular fiber to choose as the "polytope 

of relations." 

It turns out that E(A)  can be defined as a certain average of all of these fibers. 

More precisely, we call a section of zr a map y �9 Q --+ A such that y (x) ~ zr- 1 (x) 

for x 6 Q. Consider the set fQ re- 1 (x)dx C R" of all vector integrals fa  ~, (x)dx, 
where ), runs over all Borel measurable sections of 7r. This set can be called the 

Minkowski integral of the family of polytopes zr-1 (x), x E Q in complete analogy 

with the notion of the Minkowski sum of a finite number of polytopes. It follows 

from the general results of [Au] that fa  7r -1 (x)dx is a compact convex subset in 
R n" 

Theorem 1.12. Let us identify R A with R" by the chosen numeration of A. Then 
Z,(A) = k . fQ zr-l (x)dx, i.e., the secondary polytope is equal to k times dilated 

the Minkowski integral of all the fibers of re �9 A --+ Q. 

Before proving Theorem 1.12, let us exhibit some particular points of 

fa  Jr -1 (x)dx, i.e., integrals of some particular sections. Let T be any triangu- 

lation of (Q, A). For any simplex cr of T consider the corresponding sub-simplex 

t~ C A whose vertices are the points ei such that the corresponding O) (i) E A are 

vertices of tr. Clearly, Jr �9 ~ --+ cr is a bijection. Let T C A be the simplicial 

subcomplex in A defined as the union of ~, cr E T. This subcomplex bijectively 

projects onto Q, i.e., it is the graph of some continuous section ~'r : Q --+ A. 
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Lemma 1.13. For any T as before, we have the equality of vectors in R A = R n 

where 9r is defined by (1.4). 

~or = k . fQ Yr (x)dx, 

Proof. This is a reformulation of Lemma 1.8. More precisely, we apply an arbitrary 

linear functional $ to both parts of the required equality and then use Lemma 1.8. 

Proof of Theorem 1.12. The set f t2 zr-1 (x)dx, being a compact convex subset of 

R n, is uniquely determined by its support function 

SOP) - max,~ f ~_,~x)dx~P(~o). 

Taking into account (1.7), we have only to show that 

S(~) = fo. gq,(x)dx (1.9) 

(we recall that g~, is defined by (1.6)). 

Let Gq,' be the convex hull in R k ---- R k-1 • R of the set {(o9, lp(og)), o9 ~ A} 

This is a convex polytope and its upper boundary coincides with the upper boundary 

ofthe polyhedron G~, used to define g~,. In other words, g~,(x) = max{y �9 (x, y) 
! G~}. 

In the next lemma we regard ~ ~ R n as a linear functional on R n using the 

standard scalar product. 

Lemma 1.14. Let x e Q and ~: ~ R n. A real number y belongs to ~(Tr -1 (x)) if 
! 

and only if (x, y) e G V,. 
Proof ofLemma 1.14. By definition, the fiber rr-~(x) is a convex subpolytope of 

A whose points (Xl . . . . .  ~.n) correspond to various convex representations x -- 

~ i  ~'iog(i)' where ~.i >--- 0, ~"~i ~-i -- 1. Therefore, if y = ~()~) = Y~i 1/ti~'i then 

(X, y) -- ff-~i ~.i (O9(i), l~ti) is the corresponding convex combina t ion  of  the points 
(co (i), ~p~). This implies our statement. 

Theorem 1.12 is an immediate consequence of Lemmas 1.13 and 1.14. 

Note that the Minkowski integral of fibers makes sense in a more general 

situation, for an arbitrary projection zr �9 P ~ Q of two convex polytopes (in the 

above construction P was a simplex). This leads to a concept of fiber polytopes 
introduced and studied by Billera and Sturmfels in [BS]. This will not be discussed 

here because the secondary polytopes provide all the combinatorial framework for 

this book. 
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F.. Secondary polytopes and the Gale transform 

Following [BFS], we shall describe the coherent triangulations of (Q, A) and hence 

vertices of E (A) in terms of the so-called Gale transform of A. Consider the space 

LA C R A of affine relations between elements of A, i.e., 

LA --{(~.oo)E R A" ~~.oo 'co--O,  E~.oo : 0 1 .  (1.10) 
wEA wEA 

By Proposition 1.11, E(A) lies in an affine subspacc parallel to L a. Let the 

boo ~ L~ be the coordinate linear forms on LA. The family of vectors B -- {boo �9 

co ~ A } in L~ is called the Gale transform of A. The following property of the 

Gale transform is crucial. 

L e m m a  1.15. A linear combination Zw~a ~% " boo is equal to 0 if and only if  there 

is an affine-linear function g on R k-1 such that apoo = g(co) for  all co ~ A. 

Proof Let the eoo be standard basis vectors in R a. Let :rr �9 R a --+ R k -- R k-1 • R 

be the linear map sending eoo to (co, 1). By definition, Eoo~a 1/too �9 boo = 0 if and 

only if the linear form 7t on R a is orthogonal to Kerzr. Since zr is onto, this 

is equivalent to the fact that r = ~ o zr for some linear form ~ on R k. Setting 

g(co) = ~(co, 1) we obtain our statement. 

Lemma 1.15 implies the following lemma whose proof we leave to the reader. 

L e m m a  1.16. 

(a) Let I be a subset of  A. The forms boo for  co ~ I form a basis in L* a if and 

only if the set A - I is affinely independent, i.e., it consists of  vertices of  some 
(k - 1)-dimensional simplex in Q. 

(b) The convex hull of  B contains the origin 0 ~ L* a in its interior. 

Now let cr C Q be any ( k -  1)-dimensional simplex with vertices in A. Denote 

by Co the convex cone (octant) in L,~ spanned by the boo for all co 6 A which are 

not among the vertices of ~r. We say that v 6 L~ is generic if v does not belong 

to the boundary of any of the cones Co. We call the connected components of the 

set of all genetic vectors v ~ L* a dual chambers. Clearly, every dual chamber 1-' is 

an open cone in L* A" 
Denote by p �9 R a ~ L~t the projection dual to the embedding L A C R a 

with respect to the standard scalar product on R a. 

Theorem 1.17. There is a bijective correspondence between dual chambers and 

coherent triangulations of  (Q, A) defined as follows. For any coherent triangu- 

lation T the corresponding dual chamber has the form ( - 1 ) .  p(C~ where 

C~ is the interior of  C(T)  C R z introduced in Definition 1.4. This chamber 

coincides with the intersection ~o~r  Co. 
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Proof Let a be a (k - 1)- simplex with vertices in A. Let us describe the 

inverse image p-1 Ca C R a. For ~p ~ R a we consider the affine-linear function 

g~,a " R k-1 -+ R defined by the condition that g~,,a (o9) = lp(og) for any vertex o9 

o f a .  

L e m m a  1.18. A vector ap ~ R a belongs to p - I  Ca if and only if we have gg,,a (09) < 

r (09)for any 09 E A which is not a vertex of  a. 

Proof. Every o9 ~ A which is not a vertex of cr is uniquely represented as an affine 

combination 

y e a  

This means that the vector Z e R A with components ~.~o -- 1, ~'r - - / zy  for 

), e a ,  and all other components equal to 0 belongs to LA. Tracing the definitions, 

we see that the condition that p ( r  e Ca is equivalent to 0P, ~.) > 0 for all ~ as 

above. But the inequality (r  ~.) > 0 can be rewritten as 

(co) >_ ~ tz r ~ (y) = g,,~ (~o), 
y e a  

and we are done. 

Now the proof of Theorem 1.17 is completed as follows. By Definition 

1.4, r ~ C(T)  if and only if the piecewise-linear function g~,r is concave and 

gxv,r(og) >- r for all o9 ~ A which are not vertices of simplices from T. But 

g~,r restricted to any simplex a ~ T coincides with the globally affine function 

g~,,a so our statement follows from the definition of concavity and Lemma 1.18. 

(The minus sign in Theorem 1.17 appears because we have to reverse the inequality 

in Lemma 1.18). 

R e m a r k  1.19. Suppose that A lies in Z k-1. The representation of coherent tri- 

angulations T and the corresponding cones C(T)  by the dual cones Ca was used 

in [GZK1] to construct a complete system of solutions of the A-hypergeometric 

system. This is a certain system of linear differential equations on the space C A. 

For any simplex a with vertices in A, there are associated as many as Vol(a) solu- 

tions of the system given by explicit power series in variables ao,, o9 ~ A (here the 

volume is normalized as in Section 3C Chapter 5). These series converge as long 

as the vector (loglao,[) ~ R A belongs to a certain translation of the cone p - l C a ,  

where p �9 R A --~ L~t is as before. It was shown in [GZK1] that when a runs over 

simplices of some coherent triangulation of (Q, A), all the corresponding series 

have a common domain of convergence. 
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2. Faces of the secondary polytope 

In Section 1 we introduced, for any finite subset A C R ~-1, the secondary polytope 

E (A). Vertices of E (A) correspond to the so-called coherent triangulations of the 

polytope Q = Cony(A). In this section we describe the faces of E(A) of arbitrary 

dimension. They correspond to certain subdivisions of Q into convex polytopes. 

A. Polyhedral subdivisions 

For technical reasons it is convenient to introduce the notion of a marked polytope. 

By definition, a marked polytope is a pair (Q, A) where Q c R k-1 is a convex 

polytope and A C Q is a finite subset containing all the vertices, so Q -- Conv(A). 

Although Q is determined by A, it is convenient to keep it as a piece of notation. 

Definition 2.1. Let (Q, A) be a marked polytope, Q c R k-1 , dim(Q) = k -  1. A 

(polyhedral) subdivision of (Q, A) is a family S = {(Qi, Ai) : i ~ I} of marked 

polytopes such that 

(a) each Ai is a subset of A and dim(Q/) = k - 1; 

(b) any intersection Qi n Qj is a face (possibly empty) of both ai and Qj, and 

Ai n (Qi n Qj) -- Aj n (Qi n Qj); 

(c) the union of all Qi coincides with Q. 

For example, a triangulation of (Q, A) is a particular case of a subdivision: 

we take the ai to be the simplices of the triangulation and Ai to be the set of 
vertices of Qi. 

We shall reserve the name triangulation only for subdivisions of the form 

described above. So, if in a subdivision S = (ai, Ai) each Qi is a simplex but, 

for some i, the set Ai contains other elements besides vertices of Qi then S is not 

referred to as a triangulation. 

! 
LetS, S' be two subdivisions of ( Q, A), say S = {(Qi, Ai)}, S' = {(Q~, Aj)}. 

We shall say that S refines S' if, for each j ,  the collection of (ai, Ai) such that 
! ! Oi c Q~ forms a subdivision of (Qj, Aj). This makes the set of all subdivisions of 

(Q, A) into a poset. Triangulations are precisely minimal elements of this poset. 

The maximal element is the subdivision consisting of (Q, A) itself. 

Example  2.2. Here is a simple way to construct subdivisions of (Q, A) gen- 

eralizing the construction of triangulations in Example 1.1. Take any function 

~p : A ---> R and let 

Gr -- Conv{(co, y)"  y < ~p(w), w E A C R k-l, y ~ R} 
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be the polyhedron in R k = R k-1 x R introduced in the cited example. Consider the 

upper boundary of G~, as the graph of a piecewise-linear function g~, �9 Q ---> R, 

SO 
gv,(x) = max{y" (x, y) e G~,}. 

Let the Q i c Q, i ~ I be the projections of the bounded faces of G~, of 

codimension 1, i.e., the domains of linearity of gv,. Let Ai consist of all 09 ~ AN Qi 
such that g~(og) = ~(o9) (i.e., the point (o9, lp(og)) lies on the boundary of G~). 

Then {(Qi, Ai)}, i ~ I forms a subdivision of (Q, A). Denote this subdivision by 

S (lp). If lp is generic, as in Example 1.1, then S(lp) is a triangulation. 

Definition 2.3. A subdivision S of (Q, A) is called coherent if it has the form 
S (~)  for some lp e RA. 

Note that this definition agrees with Definition 1.3 of coherent triangulations 

(see the remark following Definition 1.4). 

Now we have all the ingredients to describe the faces of E(A). For any 

coherent subdivision S of (Q, A), denote by F(S) the convex hull in R a of the 
characteristic functions ~Pr (see (1.4)) for all triangulations T refining S. Denote 

also by C (S) the convex cone in R a consisting of ~ such that S is a refinement of 

S(~p) (again, this agrees with Definition 1.4 when S is a triangulation). 

Theorem 2.4. The faces of  }2(A) are precisely the subpolytopes F(S) for all 
coherent subdivisions S of (Q, A). In addition, F(S) C F(S') if and only if S 
refines S'. The normal cone to F ( S) coincides with C (S). 

Proof. Let ~ E R A. As usual, we regard ~ as a linear form on R A by the scalar 

product ~'~to~A 1]t (O9)~(O9). Let E(A) ~' be the supporting face of E(A) (see Section 

4B, Chapter 5) consisting of all points where ~ attains its maximal value. Clearly 
all faces of E(A) have the form E(A) ~ for some ~.  By Lemma 1.9 and by 

definition of S(~) ,  we have 

E(A) r -- F(S(ap)). (2.1) 

This implies that the correspondence S ~ F(S) is a bijection between coherent 

subdivisions and the faces of E (A). 

Let us prove the statement about the normal cone. Fix some coherent subdi- 

vision S. Let C(S) ~ = {~ : S = S(lp)}. By (2.1), the normal cone NF(S)E(A) 
coincides with the closure of C(S) ~ It remains to show that C(S) ~ = C(S). It 

is easy to see that C(S) is a closed set. Indeed, for lp to lie in C(S), it is neces- 

sary and sufficient that the following conditions hold. First, the restriction of the 

function g~, to any Q i is affine linear. Second, for any i and any o9 6 A i, we have 
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g~(og) = lp(og). Third, the function g~, is concave. Fourth, for o9 q~ (_J Ai we 

have go, (o9) > ~p(og). Each of these conditions obviously specifies a closed set, 

hence C(S) is closed. Thus C(S) ~ C C(S). To prove the reverse inclusion it is 

enough to show that for generic lp 6 C(S) we have S(~)  = S. This follows by 

the definition of coherence. 

It remains to show that F(S) C F(S') if and only if S refines S'. But this 

follows from the description of the normal cones in (2.1). Theorem 2.4 is proved. 

We illustrate Theorem 2.4 by the following example. 

Example 2.5. Let Q be a square in the plane, and A be the set of five points 

consisting of four vertices and the center of Q. The secondary polytope E (A) is 

the triangle depicted in Figure 28. The coherent subdivisions of (Q, A) are shown 

near the corresponding faces of E(A), the bold points are the points belonging to 

the subsets A i of a subdivision. 

v - 

Figure 28. Secondary polytope of a 5 point configuration 

Let us find the dimensions of the faces of E (A). This is tantamount to finding 

the dimensions of the normal cones C(S) to the faces. Let S -- {(Qi, Ai)} be 

a subdivision of (Q, A). Let A(S) be the linear subspace in R a consisting of 

functions ap : A ~ R with the following property: 

There exists a continuous function g �9 Q --+ R which is affine-linear on each 

Qi, and g(o9) = ~(w) for any o9 in any Ai. 

For any S, the space A (S) contains the k-dimensional subspace A C R a given by 

the restrictions to A of globally affine-linear functions. This and the definition of 

the C (S) readily implies the following. 

Corollary 2.6. The affine span of C (S) coincides with A (S). Hence the codimen- 
sion of the face F(S) equals dim(A(S)) - k. 

This statement can be put into the dual form. Consider again the space LA of 

affine relations among elements of A, introduced in (1.10). Let S = {(Qi, Ai)} be 
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a subdivision of (Q, A). For any i, let 

LAi -- {~. -- (~w) E LA " ~.w - - 0  for co q~ Ai} 

be the space of affine relations among elements of Ai. Let Ls be the sum Y]i LA,. 
The description of normal cones in Theorem 2.4 implies the following refinement 

of Proposition 1.11. 

Corol lary 2.7. For any coherent subdivision S of (Q, A), the affine span of the 
corresponding face F(S) C E(A) is a parallel translation of Ls, and hence 
dim(F(S))  -- dim(Ls). 

B. Facets of  E ( A ) 

According to Theorem 2.4, the facets (=  faces of codimension 1) of E(A) cor- 

respond to maximal nontrivial coherent subdivisions of (Q, A). We call these 

subdivisions coarse. It seems that they do not have a good general description. 

We shall describe two special classes of coarse subdivisions. 

(1) Suppose o9 6 A is not a vertex of Q. Then the collection S consisting 

of one marked polytope (Q, A - {w}) is a coarse subdivision of (Q, A). The 

corresponding facet F (S) of E (A) is the intersection of E (A) with the hyperplane 

in R a 

{~0 : A ~ R : ~o(o9) = 0}. (2.2) 

(2) Choose an affine-linear function g on Q. Let 

Q+ = {x ~_ Q " g(x) > O}, Q _ - - { x 6  Q " g(x) <0}.  

Suppose that Q+ and Q_ are polytopes of full dimension k - 1 having all vertices 

in A. Then taking S to consist of two marked polytopes (Q+, A M Q• we get 

a coarse subdivision of (Q, A). The corresponding facet F(S) of E(A) is the 

intersection of E(A) with the hyperplane in R a consisting of all q9 �9 A --+ R such 

that 

g(w)qg(o9) = k f o  g(x)dx.  (2.3) 
weQ+ + 

In general, these two types of facets do not exhaust all possible facets of the 

secondary polytope. In Section 3 we shall give an example of a coarse subdivision 

of the product of two simplices A m-1 x A m-1 which does not belong to either of 

the above two categories. 
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C. Edges of Z, (A) 

The vertices of E(A) correspond to (coherent) triangulations of (Q, A). It is 

natural to ask when two vertices qgT, qgr, corresponding to triangulations T, T' are 
joined by an edge. Intuitively, one would expect T and T' to differ "as little as 

possible." A complete description of such "neighboring pairs" of triangulations 

will be given a bit later. We start with a discussion of the most typical situation. 

As above, we assume that Q = Conv(A) c R k-1 is a polytope of full 

dimension k -  1. Let T be a triangulation of (Q, A). Suppose that there is a circuit 

Z C A (see Section 1B) of cardinality k + 1 such that its convex hull Conv(Z) 

is a union of simplices of T with vertices in Z. We have seen that Conv(Z) has 

exactly two triangulations with vertices in Z, say, T+ and T_. The triangulation 

induced by T must be one of these two, say, T+. Let us define a new triangulation 

T' of (Q, A) by replacing T+ with T_ and leaving the rest of the simplices of T 

intact (see Figure 29). This new triangulation T' will be called the modification of 

T along Z and denoted by sz(T).  

~ i I ~ i I 

I I ! ! I 
I ! ! 

Figure 29. Modification of a triangulation 

There is a natural analogy between modifications of triangulations and mod- 
ifications of smooth manifolds, i.e., gluing handles or surgery [Milnl]. A modi- 

fication of an n-dimensional manifold consists in taking away an embedded sub- 

manifold (with boundary) of the form S p • B q (where S is the sphere, B is the ball, 

and p + q = n) and in its place gluing the manifold B p+I • S q-1. A numerical 

characteristic of such a modification is the partition of n into the sum of p and 

q. Similarly, one characteristic of a modification of a triangulation is the partition 

#(Z) -- #(Z+) + #(Z_).  In Section 4, Chapter 11 we shall establish a direct 

relation between these two types of modifications. 

In general, even when T is coherent, the modified triangulation sz(T)  may 

be non-coherent. However, we have the following. 
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Proposition 2.8. Let a triangulation T and a circuit Z be as above and let 

T' = sz(T).  I f  both T and T' are coherent then the corresponding vertices 

qgr, qgr, of  E(A) are joined by an edge. 

Proof. Let S be the polyhedral subdivision of (Q, A) consisting of the marked 

polytope (Conv(Z), Z) and all the simplices common to T and T'. By our as- 

sumption, S is coherent. Let F(S) be the face of E(A) corresponding to S. By 

Corollary 2.7, 

dim F (S) = dim Lz = 1, 

since there is a unique affine relation among elements of Z. 

Now we can proceed to describe all edges of the secondary polytope. In 

addition to the modifications described above, there are some "degenerate" ones 

in which the circuit Z has smaller cardinality. 

Definition 2.9. Let T be a triangulation of (Q, A), and let Z C A be a circuit. We 
say that T is supported on Z if the following conditions hold: 

(a) There are no vertices of T inside Conv(Z) except for the elements of Z itself. 

(b) The polytope Conv(Z) is a union of the faces of the simplices of T. 
(c) Let Conv(l) and Conv(l') be two simplices (of maximal dimension) of one 

of the two possible triangulations of Conv(Z). Then, for every subset F C 
A - Z, the simplex Conv(I U F) appears in T if and only if Conv(l' U F) 

appears. 

In the case when #(Z) = k + 1, condition (c) follows from (b). An example 
of a triangulation supported on a circuit of smaller cardinality is given ,in Figure 

30. 

- t 

Figure 30. Modification along a circuit of small cardinality 

Let T be a triangulation supported on a circuit Z. Then T induces one of two 

possible triangulations on Conv(Z), say T+. As in the special case above, we let 

sz (T)  denote the new triangulation of (Q, A) that is obtained from T by taking 

away all the simplices of the form Conv(l U F) with Conv(1) e T+ and adding the 

simplices of the form Conv(l' U F) with Conv(l') ~ T_ and the same F. We say 

that sz (T)  is obtained from T by the modification along Z. It is clear that sz(T)  

is also supported on Z, and sz(sz(T))  = T. 
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The description of the edges of E (A) is as follows. 

Theorem 2.10. Let T and T' be two coherent triangulations of  (Q, A). The 
vertices ~Or, ~Or, ~ E(A) are joined by an edge if and only if there is a circuit 
Z C A such that T and T' are both supported on Z and obtained from each other 

by the modification along Z. 

Theorem 2.10 is proved in the same manner as its special case, namely Propo- 

sition 2.8. We have to describe the polyhedral subdivision S = S(T, T') corre- 

sponding to the edge joining tpr and ~or,. To characterize this subdivision, we 

introduce the following notion. 

Definition 2.11. Suppose that the coherent triangulations T and T' of (Q, A) are 

obtained from each other by the modification along a circuit Z C A. We say 

that a subset J C A - Z is separating for T and T' if, for some o9 ~ Z, the set 

(Z - {to}) U J is the set of vertices of a simplex (of maximal dimension) of T. 

If #(Z) = k + 1, then t3 is the only separating subset. 

Proposition 2.12. In the situation of Theorem 2.10, the polyhedral subdivision 

S(T, T') corresponding to the edge [~OT, tpT,] consists of the simplices (Conv(I), I) 

which T and T' have in common and the polyhedra (Conv(Z D J), Z U J) for all 

separating subsets J C A -  Z. 

Proposition 2.12 and hence Theorem 2.10 follow readily from Corollary 2.7 

which allows us to describe all the subdivisions of (Q, A) corresponding to the 

edges of E (A) (i.e., to the faces of dimension 1), in terms of the affine relations. 

We leave the details to the reader. 

3. Examples of secondary polytopes 

We now present some examples of the general constructions in Sections 1 and 2. 

We adopt the notation of Section 1, so throughout this section A -- {co (1) . . . . .  w (n) } 

will be the set of points in a real affine space whose convex hull Q has dimension 

k - 1. Then the secondary polytope E(A) is a convex polytope of dimension 

n - k in R a = R n. The vertices of E(A) correspond to coherent triangulations 

of (Q, A) via (1.4). The affine span of E(A) is given by Proposition 1.11; it is 

parallel to the subspace LA C R a of affine relations between the elements of A. 

A. The case dim (Q) = 1: skew cubes 

We start with the simplest case when A C R consists of points on a line. We can 

assume that elements of A are increasing real numbers w (1) < . . .  < w (n) and the 

"volume form" on R is the usual length. 
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The polytope Q is the interval [to(l), to(,)] (see Figure 31). A "triangulation" 

of (Q, A) is just a subdivision of this interval into smaller intervals of the form 

[to(i), to(j)], i < j .  There are exactly 2 "-2 such triangulations and they are labeled 

by subsets of {2, 3 . . . . .  n - 1}. More precisely, if I is any such subset, say, 

I = {il < ... < is} then we define the triangulation T(I )  as consisting of intervals 

[to(l), to(il)], [to(il), to(i2)] . . . . .  [to(is), to(n)]. 

Clearly all triangulations of (Q, A) are coherent. Therefore E(A) has 2 n-2 vertices. 

There is one well-known polytope with this number of vertices: the cube [0, 1]"-2. 

It turns out that E(A) is not exactly a cube nor can it be taken into a cube by an 

affine transformation. However, it is combinatorially equivalent to a cube which 

means that there is an order-preserving bijection of the poset of the faces of E (A) 

onto the poset of the faces of the cube. 

03(1) 03(2) 03(n) 
I "  I I I 

Figure 31. 

Indeed, the subdivisions of (Q, A) (in the sense of Definition 2.1) are naturally 

labeled by pairs of subsets (I, J )  of {2, 3 . . . . .  n - 1 } such that I fq J = 0. If 

I = {il < .- .  < is} then the corresponding subdivision S(I, J) consists ofmarked 

polytopes 
([to(l), to(il)], {to(l), 0)(2) . . . . .  to(il)} __ j ) ,  

([to(il), to(i2)], {to(i2), to(il+l) . . . . .  to(i2)} __ j ) ,  

. . . 0 0 0  . 0 0  

([(/)(is), to(n)], {to(i,), to(i,+l) . . . . .  to(n)} _ j ) .  

Clearly, all subdivisions of (Q, A) are coherent, and S(I, J) refines S(I ' ,  J') 
if and only if I '  _c l , J '  c_ J.  We denote by F ( I , J )  = F ( S ( I , J ) )  the 

face corresponding to a subdivision S(I, J) via Theorem 2.4. In particular, 

F(I,  {2 . . . . .  n - 1} - I)  = ~or(1) is the vertex of E(A) corresponding to I. 

Applying Theorem 2.4, we obtain the following. 

Proposi t ion 3.1. The secondary polytope I2(A) is combinatorially equivalent to 
an (n - 2)-dimensional cube [0, 1]n-2 = {(x2 . . . . .  Xn-1) " 0 <_ Xi < 1 }, the face 
F(I ,  J) corresponding to the face of[0,  1] n-2 given by the equations xi -- 1 for 

i ~ I, a n d x i - O f o r i  ~ J. 
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Let us find the precise positions of vertices of E (A). For i = 1 . . . . .  n - 1, 

let li -- to(i+l) _ to(i) be the length of [to(i), to(i+1)]. For a subset I -- {il < " "  < 

is} C {2 . . . . .  n - 1 }, let ~p(1) = ~Or(1) be the vertex of E ( A )  corresponding to 

I.  This is a vector in R a which is identified with R n by our numbering of A. In 

accordance with this identification, we write any vector ~0 of R a as (qgl . . . . .  ~n) 

where ~0i is the value of ~0 �9 A ~ R at to(i). 

According to (1.4), the coordinates of  ~o(I) are given as follows: 

~'~ir+l  -- 1 
Z--'j=ir-I lj 

~ ( [ ) i  --" 
0 

i f i  = i r  E l 

i f / e  {2 . . . . .  n - 1 } -  I 

(3.1) 

(with the convention that i0 = 1, is+l  = n).  

Proposition 1.11 which describes the affine span of E ( A )  translates into the 

following. 

P r o p o s i t i o n  3.2. The affine span of }?, (A ) is an affine subspace of  codimension 2 
in R n given by two equations 

tpl + . . .  + ~o,, = 2(11 + . . .  + In-l) ,  (3.2) 

11~02 + (ll + 12)~3 + ' ' "  + (11 + ' ' "  + ln-1)~On = (ll + " "  +/n - l )  2. (3.3) 

By (3.2) and (3.3), we can express say ~ol and tp,, in terms of other coordinates, 

and so use tp2 . . . . .  tpn-1 as independent coordinates for E (A). 

By Proposition 3.1, the facets of  E ( A )  are o f the  form F(~ ,  {i}) and F({i}, 0) 

for i = 2 . . . . .  n - 1. There are exactly the two types of coarse subdivisions 

described in Section 2C (see (2.2) and (2.3)). So F (0 ,  {i}) corresponds to the 

linear constraint q9 i >__ 0, and F ({i }, 0) corresponds to the linear constraint 

(to(j) __ to(i))~j >__ 2 (x - -  t o ( i ) ) d x .  
j = i + l  ti) 

(3.4) 

We can also rewrite (3.4) as 

• (li + li+l + ' ' "  + lj-1)qgj >__ (li -Jr- li+l + ' ' "  "q- /n- l )  2.  
j = i + l  

(3.5) 

The edges of E ( A )  are given by Theorem 2.10. In particular, the vertex ~o(0) 

has the neighboring vertices ~p({i}) for i ~ [2, n - 1], and 

~o({i}) - ~o(0) -- - ( l i  + li+l + " "  + ln-1)el + (11 + 12 + " "  + In-1)ei 
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--(/1 +12 + " "  +l i -1)en ,  (3.6) 

where the ei are the standard basis vectors in R n. The opposite vertex tp([2, n - 1 ]) 

has the neighboring vertices tp([2, n - 1 ] - {i }) for i ~ [2, n - 1 ], and 

tp([2, n -  1 ] ) -  ~o([2, n -  1 ] -  { i } ) = - l i e i - 1  -t-(li-1 d - l i ) e i -  l i- lei+l (3.7) 

(here [2, n - 1] stands for {2, . . . ,  n - 1 }). 

Now we consider a special case when l l = 12 : . . .  -- l~-I = 1. This case 

will be of particular interest later, in relation to the Newton polytope of the classical 

discriminant (Chapter 12). Looking at (3.7) we recognize on the fight hand side 

the Cartan matrix 
2 - 1  0 0 . . .  0 

- 1  2 - 1  0 . . .  0 
0 - 1  2 - 1  . . -  0 

�9 �9 . �9 � 9  ~ 

~ ~ �9 ~ 

0 0 0 0 .-- 2 

of the root system of type An-2. This suggests the following interpretation of 

E(A).  Let R be a root system of type A,,-2 in a real vector space V with the 

standard choice of simple roots ctl . . . . .  ctn_2 and the corresponding fundamental 

weights 0)1 . . . . .  O)n-2 .  Let p = ~Ol +o>2 + . - .  -~-O)n-2 be the half-sum ofall positive 
roots. Consider the convex polytope P (2,0) in V which is the intersection of two 

c o n e s  Y~i R +  . t o  i and 2p - Y~i R+ .ui .  

Proposition 3.3. I f  ll = 12 -- . . .  -- ln-1 = 1 then the mapping 

(~1 . . . . .  ~ n - 1 )  ~ ~20-)1 -~- (/930)2 -~- " " " + q)n-lO)n-2 

is an affine isomorphism between E(A) and P(2p).  

Proof  This follows at once from Proposition 3.1 and formulas (3.1), (3.6), and 

(3.7). 

The polytope P(2p)  plays an important role in the representation theory of 

the Lie algebra sln-1. Let ~ be a non-negative integral linear combination of 

fundamental weights o91 . . . . .  to,,_2. It was conjectured by Kostant and proved in 

[BZ] that ~. ~ P (2p) if and only if the irreducible sly_ l-module with highest weight 

~. appears in the decomposition of the exterior algebra of the adjoint representation. 

As a concrete example, let us take A = {0, 1, 2, 3}. By using ~01 and ~o2 as 

independent coordinates for E(A) (see the remark after Proposition 3.2), we find 

E(A)  to be the quadrangle in the plane depicted in Figure 32. 
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Figure 32. 

B. The case dim(Q) = 2: the associahedron (Stasheff polytope) 

Let A = {w O) . . . . .  o9 ('0 } C R 2 be the set of vertices of a convex n-gon Q in the 

plane, numbered consecutively around the perimeter (see Figure 33). 

0 . ) ( 1 )  _ 0 3 ( n )  

(n--l) 
w( 

! 
i 

I 

Figure 33. 

The corresponding secondary polytope E (A) is of special interest; we shall 

see that its vertices are in a natural bijection with various "associativity patterns", 

i.e., the different ways to insert parentheses in the formal product X lX2.. .xn-1 of 

several non-associative variables. For example, two triangulations of a quadrangle 
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correspond to two ways of forming a product of three variables: (X1X2)X3 and 

xl (x2x3). Before describing this correspondence, we want to first see what the 

general results of Sections 1 and 2 give in this case. 

Clearly, every subdivision of (Q, A) is determined by a set of mutually non- 

crossing diagonals of Q (two diagonals are said to cross if they intersect at an 

interior point of Q). Let So denote the subdivision corresponding to a set D of 

non-crossing diagonals. Clearly, So refines So, if and only if D' C D. 

Proposition 3.4. Every subdivision of (Q, A) is coherent. 

Proof. It is intuitively obvious that one can "fold" Q in a convex way along every 

set D of non-crossing diagonals. Let us give a formal argument whose idea will 

also be used in subsection C in a less obvious situation. 

Consider the subdivision So corresponding to a set of non-crossing diagonals 

D = {dl . . . . .  dk } of Q. Using induction on k, we can choose an ordering of D so 

that, for each j = 1 . . . . .  k, the diagonals dl . . . . .  dj-1 lie on one side of dj, and 

dj+l . . . . .  dk lie on the other side of dj. Let f f l  . . . . .  f f k  be affine-linear functions 

on Q defining diagonals dl . . . . .  dk, i.e., each dj is given by the equation ctj = O. 

The functions ctj are defined up to scalar multiples. Clearly, we can choose them 

so that each ctj is non-positive o n  d l  . . . . .  dj-1 and non-negative o n  dj+ 1 . . . . .  d k. 

The subdivision SD consists o f k +  1 polygons Cony(it0), Cony(it1) . . . . .  Conv(crk), 

where each trj is the set of vertices of Q satisfying the inequalities ctl, ct2 . . . . .  aj >_ 
O, ctj+l . . . . .  Ctk _< O. 

Now consider the piecewise-linear function g on Q given by 

g(x) = ctl(x) + ct2(x) + . . .  + t~j(x) for x e Conv(trj), 

and define lp = (lPl, lP2 . . . . .  lp,,) by aPi = g(og(i)). Recalling the definitions of 

g~ in Section 1C and of the coherent subdivision SOP) given in Example 2.2, we 

conclude that g = g~o, and So = S(lp). The proposition is proved. 

The face lattice of E(A) is given by Theorem 2.4: 

Proposition 3.5. The face lattice of E (A) is anti-isomorphic to the lattice of sets 
of non-crossing diagonals in Q. 

In particular, dim (E (A)) = n - 3, and, for each k = 0, 1 . . . . .  n - 3, the k- 

dimensional faces of E (A) correspond to sets of ( n -  3 -  k) non-crossing diagonals, 

or equivalently, to subdivisions of (Q, A) into (n - 2 - k) convex subpolygons. 

Taking k = 0, we again recover the fact that the vertices of E (A) correspond to 

triangulations of (Q, A), each of which subdivides Q into n - 2 triangles. 

Example 3.6. For n = 4, the polytope E(A) is an interval; for n = 5, it is a plane 

pentagon and for n = 6, it is the 3-dimensional polytope with 14 vertices. These 
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polytopes together with triangulations corresponding to their vertices are depicted 
in Figure 34. 

!:;71 

N:I 

@ @ 

0 
Figure 34. Stasheff polytopes 

The problem of describing triangulations and more general subdivisions of a 

convex polygon is very classical, having attracted the attention of Euler in the 18th 

century, and Catalan and Cayley in the 19th century. The old work was mainly 

concentrated around enumeration problems. It was apparently first shown by Euler 

that the number of triangulations of (Q, A) is the (n - 1)-st Catalan number Cn-1, 
where 

l( n Cn = - ; (3.8) 
n 

thus 6 '2  - -  1, C 3  - "  2, c4 = 5, c5 = 14, C 6 - - "  42, etc. The Catalan numbers appear 

in mathematics under many different disguises. Catalan himself defined cn as the 
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number of parenthesizings of the formal product x l x 2 . . .  Xn. Here to parenthesize 

the product means to insert a well-formed string of n - 1 left and n - 1 fight 

parentheses so that the product can be evaluated in any non-associative algebra. 

The correspondence between parenthesizings of x l x 2 . . . x , - i  and triangula- 

tions of the convex n-gon Q is established as follows. Let T be any triangulation 

of (Q, A). The triangles from T have 2n - 3 edges in total: n edges of Q and 

n - 3 diagonals. We write every such edge in the form [ai, aj ] with i < j ,  and we 

wish to assign to it some parenthesizing of the product xixi+ 1 " ' ' X  j - 1 .  

We proceed by induction on j - i. For j = i + 1 there is nothing to do: 

we simply attach the symbol xi to the edge [ai, ai+l ] for i = 1 . . . . .  n - 1. Now 

suppose [ai, ak] is an edge of T with k - i > 1. Clearly, there is exactly one 

triangle of T of the form {ai, aj, ak} with i < j < k. By induction, we can 

assume that [ai, aj] is already assigned a parenthesizing U of xixi-t-1 " ' ' X  j - l ,  and 

[aj, ak] is already assigned a parenthesizing V of xjxj+l . . .  xk-1. Then we assign 

to [ai, ak] the parenthesizing ( U V )  of x i x i + l ' ' ' X k - 1 .  Finally, we associate to 
T the parenthesizing assigned to the last edge [al, an] of Q. This procedure is 

illustrated by Figure 35. 

371 
27 5 

X3 

Figure 35. Parenthesizing corresponding to a triangulation 

Given the above interpretation, the name associahedron is natural for the 

secondary polytope of the set of vertices of a convex polygon. The faces of the 

associahedron also can be described in terms of certain parenthesizings. 

By a partial parenthesizing of x l . ' . x n - 1  we mean a string of parentheses 

obtained by taking away some pairs of corresponding parentheses from a paren- 

thesizing. If Jr, zr' are two partial parenthesizings then we say that rr refines rr' if rr 

can be obtained from rr' by adding new pairs of parentheses. The same construc- 

tion as above shows that subdivisions of (Q, A) (and hence, the faces of E(A))  are 

in bijection with partial parenthesizings of x l . . . x n - 1 .  Clearly, one subdivision 

refines another if and only if the same is true for corresponding parenthesizings. 
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The simplicial complex of partial parenthesizings was introduced and studied 

by Stasheff [St] in relation to the theory of loop spaces (because of that the as- 

sociahedra are sometimes called Stasheff polytopes). He constructed a geometric 

realization of the simplicial complex as a convex body but not as a polytope. The 

question of the existence of a polytopal model of this complex circulated around 

for some years (see [Lee]). We see that a positive answer to this question is a very 

special case of the theory of secondary polytopes. Another construction was given 

by Lee [Lee]. 

We conclude the discussion of the associahedron by the formula for the 

number of its faces of any given dimension which generalizes (3.8). For each 

k = 0, 1 . . . . .  n - 3, let f (k, n) denote the number of sets of k non-crossing diag- 

onals in the n-gon Q, i.e., the number of faces of E(A) of dimension (n - 3 - k). 

Proposition 3.7. For k = O, 1 . . . . .  n - 3, we have 

1 ( n - 3 ) ( n W k - 1 )  
f (k, n) = . (3.9) 

n - 1  k k + l  

As indicated in [Lee], the formula (3.9) was discovered by Kirkman in 1857, 

with the first complete proof given by Cayley in 1891. The proof below follows 

the original Cayley one [Ca6]. 

Proof We adopt the convention that f (k, n) is defined for all integers k and n but 

is equal to 0 unless 0 < k < n - 3. 

Lemma 3.8. If k > 1 then f (k, n) satisfies the recursion 

n 
f (k ,  n) -- ~ E E f( i ,  l ) f ( j ,  m). (3.10) 

l + m = n + 2  i + j = k - 1  

Proof of Lemma 3.8. Let f (k ,  n) be the number of sequences dl . . . . .  dk of non- 

crossing diagonals in the n-gon Q. Clearly, f (k ,  n) = k!f(k,  n). Now the 

first diagonal dl cuts Q into two pieces, say an l-gon Q' and an m-gon Q" with 
n+2 l + m = n + 2, l < m. For fixed l < -T- there are n different choices of dl, 

and for I = ,,+2 there are n such choices. Once we have chosen dl the remaining - T  ~ 
k - 1 diagonals fall into two groups" say, i of them belong to Q', and j - k - 1 - i 

belong to Q". We arrive at the recursion 

( ) jg(k, n) -- n E E k - 1 f ( i ,  l)jr m) (3 11) 
l + m = n + 2 , 1 < m  i + j = k - 1  i ' " 
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n+2 where Y]' denotes the convention that the terms with I = m = --g-- are taken with 
1 1 coefficient ~. Clearly, we can replace Y~i+m=n+2, l<m by ~ El+re=n+2' and (3.10) 

becomes a direct consequence of (3.11). The lemma is proved. 
Clearly, the f (k, n) are uniquely determined by (3.10) together with the initial 

conditions 

f ( O , n ) - -  1 for n > 3. (3.12) 

Following Cayley, we introduce two sequences of generating functions: 

Uk = ~ f (k, n)x n, Vk = 2(k + l) 2 f (k + l' n - 2) 
n - 2  n n 

They are connected by 

x" ( k = O ,  1 . . . .  ). 

(3.13) 

Uk+I = x ~xx 2(k + 1)x 2 " 
(3.14) 

Using these functions, (3.10) can be rewritten as 

Uky k = ~ VkY k, 
k 

(3.15) 

and (3.12) as 
X 3 

U 0 - "  
1--X 

(3.16) 

Let X = x2 
l--x" We claim that the functions Uk and Vk are given by 

X dkX k+l 2(k + 1)x 2 dkX k+2 

Uk = (k + l ) l dx k ' Vk = (k + 2) l dx k 
(3.17) 

Indeed, it is enough to prove that the functions defined by (3.17) satisfy (3.14), 

(3.15), and (3.16). The formulas (3.14) and (3.16) are obvious. As for (3.15), 

Cayley proved that it is satisfied by the functions which are defined by (3.17) not 
x 2 only for our X = 1-x but for an arbitrary power series X in x. We leave the proof 

of this statement as an exercise for the reader (hint: see [Ca6]). 

To complete the proof of Proposition 3.7, it remains to expand Uk given by 

(3.17) into a power series in x using the binomial expansion of (1 - x) -(k+l) and 

differentiating it k times term by term. This gives (3.9). 
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C. The case of  a triangular prism: the permutohedron 

Let A be the set of vertices of the triangular prism Q = A1 )< Am-l. Here A1 is 

the interval [el, e2] in R E, and A m-1 is the standard simplex in R m with vertices 

f l ,  f2 . . . . .  fro, where the ei and the fj stand for the standard basis vectors. So A 

consists of 2m points O ) i j  - -  ei + j~ (i = 1, 2, j -- 1 . . . . .  m) in R m+2. Using our 

standard notation we see that n = #(A) = 2m, and k = dim (Q) + 1 = m + 1, 

hence dim (X;(A)) = n - k = m - 1. We will think of E(A)  as a convex polytope 

living in the space R 2xm of real 2 x m matrices. 

We shall show that the secondary polytope E(A) is naturally identified with 

the permutohedron Pm. By definition, Pm is the convex polytope in R m with 

vertices (s(1) . . . . .  s(m)),  where s runs over all permutations of { l, 2 . . . . .  m}. 

Note that the affine span of Pm is the hyperplane { (xl . . . . .  Xm) E R m " ~ X i  - -  

m(m + 1)/2}, so dim (Pm) = m - 1. 

Example  3.9. The permutohedron P2 is an interval, P3 is a hexagon and P4 

is a 3-dimensional polytope with 24 vertices. These polytopes are depicted in 

Figure 36. There we use the notation [jl . . . . .  jn] for the point with coordinates 

(s(1) . . . . .  s(n)) where s is the permutation such that j ,  = s - l (v ) .  Under this 

notation, two vertices [jl . . . . .  j,,] and [kl . . . . .  k,,] are joined by an edge if and 

only if (kl . . . . .  kn) is obtained from (jl . . . . .  j,,) by permuting two numbers in 

consecutive positions. A proof of this and other facts about the permutohedron 

can be found in [Milg] [GS]. 

Our analysis of E(A)  will be analogous to the case of the associahedron. 

We start by evaluating ranks of all subsets of A. We write an arbitrary subset 

tr C A as or(J1, J 2 ) - -  {(Olj ( j  ~ J1), o)2j (j  ~ .I2)} for some subsets J1, J2 C 

{ 1, 2 . . . . .  m }. By counting the dimension of the space of affine relations Lo, we 

readily conclude that the convex hull Conv(tr) has dimension 

#(J1 U J2) if J1 N J2 ~ ~, 
dim (Conv(tr(J1, J2))) = #(J1 t3 ./2) - 1 if J1 fq J2 = 13. (3.18) 

Now we formulate and prove the analogs of Propositions 3.4 and 3.5. We call 

a diagonal section or simply diagonal of Q any hyperplane section d of Q which 

is an affine span of some vertices of Q but not a facet. It follows from (3.18) that 

diagonals of Q are in bijection with proper subsets J C { 1, 2 . . . . .  m } via 

J ~ dj  - -Conv(cr(J ,  {1, 2 . . . . .  m } -  J)) .  (3.19) 

We see that every diagonal of Q is an (m - 1)-dimensional simplex with vertices 

in A. As before, two diagonals are said to cross if they have a common interior 

point of Q. 
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[12] 

[21] 

[213] [132] 

[231] [312] 

[321] 

[1',~34] 

[ 2 3 1 ~  [ ] ~ 2 ~ i ~ (  ~ ~  3] ~ 4 2 3 ]  

[321411 [ 3 1 2 4  _ _  [1432..~ [4123] 

[3241] [4132] 

[4321] 

Figure 36. Permutohedra 

Clearly, if two diagonals do not cross then their intersection is their common 
face, which is some simplex of smaller dimension with vertices in A lying in some 
proper face of Q. It follows that every set of non-crossing diagonals D gives rise 
to a subdivision SD of (Q, A). As before, So refines SD, if and only if D' C D. 

Proposition 3.10. 
(a) The correspondence D ~ So is a bijection between all sets of non-crossing 

diagonals in Q and all subdivisions of (Q, A). 
(b) Every subdivision of (Q, A) is coherent; hence the face lattice of E(A) is 

anti-isomorphic to the lattice of sets of non-crossing diagonals in Q. 

Proof. (a) We have only to show that every subdivision S of (Q, A) has the form 
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So for some set of non-crossing diagonals D. Since A consists of vertices of 

Q, a subdivision S = {(Qi, Ai)} is uniquely determined by the decomposition 

Q = ui Qi. Now every interior facet of each Qi (not lying on the boundary of Q) 
belongs to some diagonal of Q. But then it must coincide with this diagonal since 

any diagonal is a simplex with vertices in A so it cannot be further subdivided. 

This implies our statement. 

(b) Let S = {(Qi, Ai)} be a subdivision of (Q, A). It is enough to construct 

a convex piecewise linear function on Q whose domains of linearity are exactly 

the polytopes ai .  This can be done in exactly the same way as in Proposition 3.4., 

thus proving our proposition. 

To describe the face lattice of E(A)  more explicitly, we use the following 

criterion for the non-crossing of two diagonals. 

Proposi t ion 3.11. Two diagonals dj  and dj, o f  Q do not cross if  and only if  one 

of  the sets J, J'  contains the other. 

Proof It is easy to see that Q can be described as 

Q - {(ct, 13) 6 R 2 x R m �9 ~ i ,  ~ j  >__ 0 ,  o~ 1 ~ -  o~ 2 - -  /~1 -+- " ' "  -~- /~m - -  1 }, (3.20) 

so a point (ct, [3) ~ Q lies on the boundary if and only if at least one of the 

coordinates oti, flj is equal to 0. We readily verify that the diagonal dj  is given by 

d j = [ ( ot, fl ) G Q " Ot l = E [3j l . (3.21) 
[ J j E J  

It follows that if, say J C J ' ,  then every point (u,/~) 6 dj (] dj, has/~j = 0 for 

j 6 J '  - J ,  and hence lies on the boundary of Q. Conversely, suppose that both 

J - J '  and J '  - J are non-empty. Then it follows easily from (3.20) and (3.21) 

that dj and d j, cross ,  i.e., they have a common interior point of Q. 

Combining Propositions 3.10 and 3.11, we arrive at the following description 

of the face lattice of E(A).  By aflag in { 1, 2 . . . . .  m} we mean a strictly increasing 

sequence F = (Jl Q J2 C . . .  Q Jr) of proper subsets of { 1, 2 . . . . .  m}. A flag F 

refines another flag F '  if it contains all subsets from F' .  

Corol la ry  3.12. The sets of  non-crossing diagonals in Q and hence the faces of  

E (A) are in refinement-preserving bUection with flags in { 1, 2 . . . . .  m }, via 

F = (J1 C Jz C ""  C Jr) w-~ D = {dj, . . . . .  d z }. 

The subdivision S ( F) corresponding to a flag F consists o f  r + 1 marked polytopes 

(Qp, ap),  p = 1 . . . . .  r + 1, where a e = tr(Jp, {1, 2 . . . . .  m} - Jp-1) (with the 
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convention Jo -- ~, Jr+l -- {1, 2 . . . . .  m}), and 

Q p - -  Conv(Ap)=  {(ct,/3)~ Q" E /]j < ct~ < E ~  j }. 
jEJp-l jEJp 

(3.22) 

In particular, we obtain the following description of the vertices of E(A). 

Corollary 3.13. The vertices o f  E(A)  (i.e., coherent triangulations o f ( Q ,  A)) are 

in bijection with complete flags F = (J1 C J2 C . . .  C Jm-1) in { 1, 2 . . . . .  m } 

(so #(Jp) = p for  p = 1 . . . . .  m - 1). The triangulation S(F)  corresponding 

to a flag F consists o f  m simplices with vertices tr (Jp, { 1, 2 . . . . .  m } - Jp_ 1) for  

p = 1 . . . . .  m. 

The symmetric group Sm acts o n  A m - 1  by permutations of vertices. We 

extend this action to the action on (Q, A) by affine automorphisms. Then Sm 

acts on subdivisions and triangulations of (Q, A), and on E(A). Since Sm acts 

transitively on the set of complete flags in { 1, 2 . . . . .  m }, Corollary 3.13 shows that 

it also acts transitively on triangulations of (Q, A), or equivalently, on the vertices 

of X(A). We can choose for example the flag 

F = ({1} C {1, 2) C . . .  C {1, 2 . . . . .  m - 1}); 

then the triangulation To = S(F)  consists of m simplices 

Crp ---- Conv{cOll,  0912 . . . . .  O)lp, 092p, (zl2,p+l . . . . .  (-O2m}, p = 1 . . . . .  m .  

Graphically, these simplices correspond to various "staircases" leading from the 

north-west to the south-east comer of a 2 x m matrix (Figure 38, p.247 below). 
It is easy to see that all simplices trp have the same volume. We normalize 

the volume form on Q so that each Crp has volume 1. This means that each matrix 

e n t r y  qgij o f  qgT0 is  equal to the number of simplices trp having O)ij as  a vertex. It 

follows that 
( m  m - 1  . . .  1 )  (3.23) 

tpr0 = 1 2 . . .  m " 

All the other vertices of E (A) are obtained from ~or0 by permutations of columns. 
We conclude that the projection R 2xm --+ g R m sending each 2 x m matrix to its 

first row is an affine isomorphism of E(A) with the permutohedron Pro. 

D. The product o f  two simplices 

It would be very interesting to generalize the results in the previous example to 

the case when A is the set of vertices of Q = A p-1 x A q-l,  the product of two 



3. Examples o f  secondary polytopes 247 

standard simplices (the triangular prism appears for p=2). Unfortunately, not much 
is known about the secondary polytope in this case. We do not even know if there 
exist non-coherent triangulations of (Q, A). Below we give a brief review of some 
partial results. 

First, A consists of pq points O)ij = ei -1- j~ E R p • R q, where el . . . . .  ep 

and f l  . . . . .  fq are the standard basis vectors and Q is 

Q = {(ct, fl) ~ R p x R  q "Cti ,  ~ j  >> 0 ,  Ctl-'~-" �9 "-~-Ct p - -  ~1-~-"" "-'~-~q : 1}. (3.24) 

Hence dim (E(A)) = pq - (p d- q - 1) = (p - 1)(q - 1). 

Graphically, it is convenient to represent a subset B C A as a bipartite graph 

G with the set of vertices {el . . . . .  ep, f l  . . . . .  fq } and the edges corresponding to 

pairs (ei, f j )  for all o)ij ~. n (see Figure 37). 
o o o  

fl f2 "'" fq 
Figure 37. A bipartite graph 

The formula (3.18) is generalized as follows: 

dim ( C o n y ( B ) ) -  E ( v ( F ) -  1 ) -  1, (3.25) 
r 

where the sum is over all connected components F of the graph G corresponding 
to B, and v(F) is the number of vertices of F. In particular, if #(B) : p -t- q - 1 

then Conv(B) is a simplex of full dimension p + q - 2 if and only if the graph G 
is connected (and in this case G is a tree with p + q vertices). 

Among these simplices we find all "staircases" (or lattice paths) leading from 
the point (1, 1) e Z 2 to the point (p, q) (see Figure 38). 

(1,q) (p,q) 

(1,1) (2,1) (p, 1) 

Figure 38. A lattice path 
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The language of lattice paths is very useful not only for the present example 

but in many other instances (see e.g. Chapter 12). A lattice path from (1, 1) to 

(p, q) is a collection L of integral points (il, j l) ,  (i2, j2) . . . . .  (ip+q-1, jp+q-1) 
such that (il, j l )  = (1, 1), (ip+q-1, jp+q-1) = (P, q), and (ik+l, jk+l) is either 
(ik + 1, jk) or (ik, jk + 1) for k = 1 . . . . .  p + q - 2. Graphically, we represent 
a lattice path by a polygonal line joining successively all the points of L. By a 

slight abuse of notation, we denote this line as a subset of the plane by the same 

letter L. It has end-points (1, 1) and (p, q) and consists of several horizontal and 

vertical intervals. We can also think of L as an actual path from (1, 1) to (p, q) 

consisting of (p + q - 2) moves by a interval of unit length, each move going 

either horizontally from left to fight, or vertically upwards. 

It is convenient to encode such a path by a word w - w(L) -- w lw2 . . .  
Wp+q-2 which records our moves in the following way" we write wk -- Ai if 

the k-th move on our path is the i-th successive horizontal one, and we write 

Wk = Bj if the k-th move is the j- th successive vertical move. The word w(L) 
is obtained by a shuffle of two words A1A2. . .  Ap-1 and Bl B2. . .  Bq-1, i.e., by a 

'S 'S permutation of these symbols, leaving the Ai and the Bj in the same relative 

order. We call w(L) the shuffle of L. Clearly, the correspondence L v-~ w(L) is a 

bijection between lattice paths and shuffles of A1A2. . .  A p_l and B1B2.. .  Bq-1. 
In particular, the number of different lattice paths is equal to the number of shuffles, 
i.e., to (p+q-2x ~ ,p - l ] "  

Returning to our simplices, consider a lattice path L, and let 

a = Conv{toij '(i ,  j )  E L}. 

It is easy to see that a is defined in Q - A p-1 

sequences 

• A q - 1  by shuffling two increasing 

0~1 -~< 0~l "[-Ct2 ---< " ' "  -~< 0~l "-[-""" "-~- ~ p - 1  and fll < fll "+ f12 5 " ' "  _~< f l l -~-"""  + f lq-1 

according to the shuffle w(L). More precisely, a C Q is defined by the inequali- 

ties: Ctl + . . .  + 0~i __< ]31 "[-""" "~" ]~j whenever Ai precedes Bj in the word w, and 

ctl + . . .  + cti > fll + " "  + flj whenever Bj precedes Ai. 
This description of a implies that the simplices corresponding to all possible 

lattice paths from (1, 1) to (p, q) form a triangulation To of (Q, A). This trian- 

gulation was known and used in algebraic topology for a long time. It is called 

standard or canonical. It is easy to show that To is coherent, i.e., defines a vertex 

tPr0 of E(A) (a linear form lp ~ R a which attains its maximum on E(A) exactly 

at ~or0 can be chosen as ap (~oij) = i j). Acting on this vertex by the group Sp x Sq 
of all permutations of the index set, we obtain many other vertices. 
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Thus far, everything follows the same pattern as in the case of a triangular 

prism. But here is the major difference: if p, q > 3 then not every coherent 

triangulation of (Q, A) can be obtained from the standard one by permutations 

of indices. The case p -- q = 3 (the product of two triangles) was investigated 

in detail by A. E. Postnikov. Postnikov proved that all the triangulations in this 

case are coherent, and up to S3 x S3-symmetry, there are 5 different triangulations. 

They are presented in Figure 39. Here dotted squares represent simplices of a 

triangulation, with the dots marking the vertices of a simplex. Two such squares 

are connected by an edge in Fig. 39. when the corresponding simplices have a 

common facet. We see in particular that E(A) is a 4-dimensional polytope having 

18 + 36 + 6 + 12 + 36 = 108 vertices. 

The vertices of the third type depicted in Figure 39 are especially symmetric. 

The stabilizer in $3 x $3 of such a vertex v has cardinality 6. It can be seen that 

this stabilizer acts simply transitively on the edges of E(A) containing v. Thus v 

is a vertex of a 4-dimensional polytope which has 6 edges passing through it. This 

means that E (A) is not a simple polytope (in all the previous examples I2 (A) was 

easily seen to be simple). 

Starting with the case p - 3, q - 4, the situation becomes even more 

complicated: not every simplex cr can be transformed into a "staircase" simplex 

from To by the action of Sp x Sq. An example in the case p = 3, q = 4 is provided 

by 

(9" = Conv{0)ll ,  0)14, 0)22, 0)'24, 0)33, 0)34 }, 

This simplex can be defined in Q by Ctl >/~1, ct2 >/~2, ct3 > 1~3. 

Example 3.14. Consider the case p -- q when Q - A p-1 x Ap-1 is the product of 

two simplices of the same dimension. Recall from Section 2B that faces of E (A) 

of codimension 1 (= facets) correspond to so-called coarse (= maximal non-trivial) 

polyhedral subdivisions of (Q, A). We have described in Section 2B two special 

classes of coarse subdivisions. Now we are going to exhibit a coarse subdivision 

of (Q, A) which does not belong to any of these classes. 

Let A0 C A be the set of vertices ei + fj  with i < j ,  and Q0 = Conv(A0). 

Denote by ( the cyclic permutation of indices 1 . . . . .  p taking each i -r p to i + 1 

and p to 1. Let ~.m be the m-fold iteration of (.  For each m - 0, 1 . . . . .  p - 1, 

we consider the marked polytope (Qm, Am), where Am -- {ei + f j  " (m( i )  < 

( re( j )} ,  and Qm - Conv(Am) (so (Qm, Am) is the image of (Q0, A0) under the 

automorphism ((m, (m) ~ Sp x Sp of Ap-1 x Ap-1). 

Proposition 3.15. The (Qm, Am), m - 0 . . . . .  p - 1 form a coarse coherent 
subdivision of  A P- 1 x A P-1. 
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Figure 39. Triangulations of A 2 x A 2 (Postnikov). 
Only one triangulation in each $3 x $3 orbit is depicted; 

the number of triangulations in each orbit is indicated. 
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For example, for p = 2 we get a subdivision of a square zX 1 

triangles. 

x A 1 into two 

Proof. A straightforward check shows that, for any m = 0 . . . . .  p - 1, we have 

Q m = {(o~,/5)E Q " ol i "~- Ol i + l "~- " " " ~ -  O1 m <__ ~ i -~- ~ i + l -~- . . . -47 ~ m (1 < i  < m ) ,  

| 
Olm+l-{-Olm+2"~-'''-+-Olj >---~m+l-'~-~m+2"]"'''-'l-~j ( m + l  < j < p - 1 ) J .  (3.26) 

Now the conditions in Definition 2.1 are verified directly, so { (Qm, Am)} is indeed 

a polyhedral subdivision of (Q, A) (e.g., to check the condition (b) observe that, 

for any I < m, the intersection Qt f3 Qm is a common facet of Qt and Qm defined 

by c~t+l + " .  + Ogm --  ]~/+1 -~-"""-]- ~m). 

To show that this subdivision is coherent, it is enough to construct a concave 

piecewise-linear (continuous) function g : Q --~ R whose linearity domains are 

exactly the polytopes Qm, cf. Definition 2.3. We define such a g by 

glQm "- (0gl "~-""" + O~m) -- (]~1 "~-""" "q'- ]~m) (3.27) 

(SO g IQo = 0). The fact that g is well-defined and satisfies all the desired prop- 

erties follows directly from the above description of the Qm and their pairwise 

intersections. 

To show that our subdivision is coarse, we use Corollary 2.6. We have only to 

show that every continuous function g' �9 Q ~ R whose restriction to each Qm is 

affine-linear, has the form g' -- ~.g + go, where ~. 6 R and go is a globally affine- 

linear function on Q. Subtracting, if necessary, from g' a globally affine-linear 

function, we can assume that g'lao -- 0. Now for each m -- 1 . . . . .  p -  1 the affine- 

linear function g'lam vanishes on the facet Qm N Qo of Qm, and hence is divisible 

by the equation (~1 -~" " " " "+" Ogm) -- (]~1 -]- " " " -~- ~m) of this facet. We conclude that 

each g'lQm is proportional to gIQ. Since all these restrictions must agree on the 

intersections Ql f3 Qm, we conclude that all the coefficients of proportionality are 

the same, i.e., g' is proportional to g. This completes the proof of our proposition. 

Finally let us remark that the volume of AP-1 x Ap-1 in our usual normal- 

ization is equal to the number of simplices in the standard triangulation To, i.e., 

to \p-ll'[2p-2~ Since the above subdivision has cyclic symmetry, every Qm has the 

volume 

p \ p - 1 ]  =Cp 

which is the p-th Catalan number (see (3.8)). 



CHAPTER 8 

A-Resultants and Chow Polytopes of Toric Varieties 

We begin, starting with resultants, to apply the general formalism of Part I to 

discriminants and resultants associated with toric varieties. The treatment of dis- 

criminants is left for the next chapter. 

1. Mixed (A 1 . . . . .  Ak)-resultants 

A. The definitions 

Consider k - 1 variables X l . . . . .  xk-1. As usual, we associate to any integral vector 

o~ ~ Z k-1 a Laurent monomial x ~' in Xl . . . . .  Xk-1. For any finite subset A C Z k-l,  

we denote by C A the space of Laurent polynomials of the f o r m  ~-~to~_A atoxt~ 

Let A1 . . . . .  Ak be k finite subsets in Z k-1. We shall consider the product 

I-I CA` of the spaces of polynomials corresponding to the Ai. A polynomial from 

C A  ̀ will be written as f i(x)  = ~~o~eA, ai, toxt~ Therefore the collection of coef- 

ficients (ai,to) forms a system of coordinates in I-I cA'. We are going to study 

conditions under which k polynomials fi e C A~ have a common root. We assume 
that the following conditions are satisfied: 

(1) Each Ai generates R k-1 as an affine space. 

(2) All Ai together generate Z k-{ as an affine lattice. 

Consider the subvariety V ~ ..... Ak C I-I CA` consisting of k-tuples of polyno- 

mials (fl  . . . . .  fk) for which there is x ~ (C*) k-1 such that all f i (x)  = 0. Let 

V A I  . . . . .  Ak be the closure of V ~ . . . . .  Ak (in this case the closure in the Zariski topology 

coincides with the closure in the usual topology). 

Proposition- Definition 1.1. The variety VA, . . . . .  Ak is an irreducible hypersurface 

in 1-I CA~ defined over the rational numbers. Therefore there is a polynomial 

(unique up to sign) RAt ..... Ak (fl  . . . . .  fk) in coefficients ai,oj of  the fi  with the 
following properties: 

(a) RA, . . . . .  Ak has integral coefficients, i.e., it lies in the ring Z[(ai,~o)]; 
(b) RA, ..... Ak is an irreducible element of  Z[(ai,o~)] (in particular, the g.c.d, of  its 

coefficients equals 1); 
(c) I f  the fi E C A  ̀are some polynomials which have a common root in ( C * )  k - 1  

then gA! ..... Ak ( f l  . . . . .  f k )  - -  0. 

The polynomial RA, ..... Ak is called the (A1 . . . . .  Ak)-resultant. 
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The proof is similar to that of Proposition 3.1 of Chapter 3 and we omit it (a 

bit later we will show that the (A1 . . . . .  Ak)-resultant is in fact a special case of 

the (/21,. �9 in Section 3 of Chapter 3). The only new phenomenon 

here, as compared to Chapter 3, is the possibility of normalizing the resultant not 

only up to a non-zero constant factor, but up to sign as well. This is because all 

the varieties involved are defined over the rational numbers. 

Examples  1.2. (a) Let  k - 2, and let A a consist of monomials 1, x . . . . .  x p, and 

A2 consist of monomials 1, x . . . . .  xq.  Then the (A 1, A2)-resultant is the classical 

resultant of two polynomials in one variable. 

(b) Let  k be arbitrary; let A 1 -- . . . .  Ak consist of monomials 1, Xl . . . .  , xk-1 

of degree _< 1. Let us write each polynomial ~ ,  i - 1 , . . . ,  k as j"} ( x ) -  aio-4- 

z ) - 1  . . . . . .  aijX j.  Then RA1 ..... A, ( f l  fk)  -- det[[aij l[ 

(c) More generally, let A1 . . . .  = Ak -- A C Z k-1 be any affinely inde- 

pendent k-element set, i.e., the set of vertices of a (k - 1)-dimensional simplex 

in R k-1. Then for a collection {~(x)  - -  Z w E A  ai, wx~176 " i -- 1 . . . . .  k}, the 

(A . . . . .  A)-resultant RA ..... a ( f l  . . . . .  fk)  equals detllai,oo]]. 

Now let us relate the (A1 . . . . .  Ak)-resultant with the mixed resultant of sec- 

tions of k invertible sheaves/21 . . . . .  /21, on a projective variety X of dimension 

(k - 1) (see Section 3 Chapter 3). To this end we construct a projective va- 

riety X -- XA1 ..... ak (which will be a toric variety) and k invertible sheaves 

/2i, i = 1 . . . . .  k, in such a way that C A` will be embedded into the space of 

global sections H ~ (X ,  s  

First we recall the construction of the toric variety XA associated to a set 

A C Z k-1 (see Section 1B Chapter 5). We consider the space (cA) *, dual to the 

space of polynomials. By (z~o)ooca, we denote the standard coordinates in this space 

(dual to the coordinates a~, in C A). The zo, serve also as homogeneous coordinates 

in the projective space P((cA)*) .  We define XA as the closure of the image of the 

map 

Y a "  (C*)  k-1 ---+ P ( ( c A ) * ) ,  x ~ ( z w -  XW)eoEa �9 (1 .1)  

Now we generalize this construction. 

Definition 1.3. Let A 1 , . . . ,  Ak C Z k-1 be as above. Define X A 1  ..... Ak to be the 

closure of the image of the map 

~A1 X . . .  X YAk " (C*)  k-1 ~ XA1  X . . .  X X A k  C P((cA') *) •  • P((cAk)*). 
(1.2) 
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Proposition 1.4. The variety X Al . . . . .  Ak is a toric variety. More precisely, denote 
by A1 + . . .  + Ak the set of all pointwise sums w (1) + . . .  + w (k), (1) (i) ~. Ai. 
Then XA~ ..... Ak is isomorphic t o  X A I + . . . + A  k. In particular, the convex polytope 
corresponding to this variety is the Minkowski sum of convex polytopes ai -" 
Conv(Ai). 

Proof. Consider the Segre embedding of P((cA~) *) • . . .  • e ( ( c a k )  *) into the 
projective space e ( (ca~)  * @ . . .  @ (cak)*), the projectivization of the tensor 
product. Then the weights of the torus (C*) k- 1 on this tensor product are precisely 
the pointwise sums w(1) + . . .  + og(k), w(i) ~ Ai, from which we get the assertion. 

Denote by/2i the invertible sheaf on Xal ..... ak which is the inverse image of 
the sheaf O(1) from the factor P (C A  ̀). There is a canonical injective map 

resi " C Ai "-  H~ (.9(1)) --+ HO(XA~ ..... ak ,  ft-'i)" (1.3) 

The map resi may be not surjective if the variety XA, C P ((C A')*) is not linearly 
normal (see Section 4B Chapter 1). 

Proposition 1.5. Under the maps resi the (A1 . . . . .  Ak)-resultant of polynomials 
corresponds (up to a non-zero constant factor) to the (L1 . . . . .  ~_,k)-resultant of 
sections. 

Proof We use the Cayley trick for mixed resultants (Section 3B Chapter 3). As 
in the cited section, we consider the auxiliary variety ,~ = P (ED z:~) and its 
embedding into P (I-I v/*) where V/ = H ~ ..... ak , / : i ) .  Then Rz:~ ..... z:k is the 
same as the X-discriminant A2. Let p be the natural projection 

e ( I - I  Vi*) ---> I - I  (CAi)* 

induced by res = resl x . . .  x resk" a hyperplane H in I-I vi goes to res(H). Our 
construction of Xal ..... ak implies that p maps the variety X isomorphically to its 

image. By the same argument, as in the proof of Proposition 3.4 Chapter 3, the 
p(,Y)-discriminant Ap(2) coincides with ga~ ..... ak" But since p �9 ,Y ~ p(,Y) is 
an isomorphism, Corollary 4.5 Chapter 1 implies that Ap(2) coincides with the 

restriction of A 2 to I-I (CA'). This completes the proof. 

B. Basic properties 

According to Proposition 3.3, Chapter 3, the degree of homogeneity of the 

(/21 . . . . .  /:k ) -resultant Rz:~ ..... z:k with respect to sections of / : i  equals the inter- 
section index 

f x  l-  I ) (1.4) (s C1 
j#i 
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of all the invertible sheaves/:j  for j :/: i. In our case this intersection index has 

a transparent interpretation. Namely, this is the number of solutions (in the toms 

(C*) k-1 ) of a genetic system of equations {j~ (x) -- 0" fj ~ C A/, j r i }. Indeed, 

(1.4) is just the number of points of intersection of the zero loci of genetic sections 

f j ~  H ~ (XA~ ..... ak, /:j), J r i. If the ]) are genetic enough then all the intersection 

points lie in the open toms orbit (C*) k-1 C XA, ..... ak. Since every 3~ restricts to 

this orbit as a Laurent polynomial from C aj, the statement becomes obvious. 

By the Bernstein theorem (Theorem 2.8, Chapter 6) the above number of 

solutions is equal to the mixed volume of the polytopes Q1 . . . . .  Qi . . . . .  Qk (Oi 

omitted), where Qj : Conv(Aj). Therefore we obtain the following statement. 

Proposition 1.6. The (A1 . . . . .  Ak)-resultant RA~ ..... A k ( f l  . . . . .  f k )  is homoge- 

neous with respect to each ft.  The degree of  homogeneity with respect to ~. is 

equal to the mixed volume o f  all the polytopes Q j, j ~ i (with respect to the 

volume form induced by Z k- 1). 

The following statement is a direct consequence of Corollary 3.7, Chapter 3 

and Proposition 1.5 above. 

Proposition 1.7. Let (fl  . . . . .  fk)  E I-I CAi be a collection o f  polynomials such 

that Ral ..... Ak ( f  l . . . . .  fk)  -- 0 but the differential o f  e z l  ..... Ak at ( f  l . . . . .  fk)  is not 

zero. Then f l  . . . . .  fk  have at most one common root xo ~ (C*) k-1. I f  such a root 

exists then for  each i the vector in (cai)  * with coordinates 

ORA, ..... Ak (fl . . . . .  fk)) 
Zo~ "-- Oai,o~ ogEAi 

is a non-zero constant multiple o f  the vector with coordinates (z',o = X~)o)EAi. 

Thus, by knowing the resultant, we can find the common root of a system of 

polynomials, provided it is unique. 

In Chapter 3 we represented the (121 . . . . .  Z:k)-resultant as the determinant 

of a certain complex (the resultant complex). Proposition 1.5 implies that the 

(A1 . . . . .  Ak)-resultant can be represented in such a form. However, we shall use 

the explicit form of the resultant complex only for the case when A1 -- . . .  -- Ak. 

This particular case will be the subject of the next section. 

2. The A-resultant 

We are particularly interested in the (A1 . . . . .  Ak)-resultant in the case when all 

the sets Ai coincide with each other, i.e., A1 = . . .  = Ak = A. We shall call it 

simply the A-resultant and denote it by R A. We assume that A C Z k-1 is a finite 

set which affinely generates Z k-1 over Z. 
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A. The A-resultant as the Chow form 

Recall that, to a set A C Z k- 1 of size n, we associate a toric subvariety XA C pn-1 

(see Section 1B Chapter 5). The homogeneous coordinates in p,,-1 correspond 

naturally to elements of A. We can choose a numbering of these elements" A = 

{o9 (1) . . . . .  w(n)}; then the coordinates will also be numbered. 

The dimension of XA equals the dimension of the affine span of A in R k-1. 

Our assumptions imply that this dimension equals k - 1. 

Let Yl . . . . .  Yn be homogeneous coordinates in pn-1. As noted in Section 1 
n Chapter 5, any linear form l(y)  = Y~4=l aJ yJ, after restriction to the subvariety 

X w(j) X ~ becomes a Laurent polynomial j6 (x) = Y]4 aj , 

x ~ (C*) k-1 . Thus we have an identification I F-~ j~ of the space of linear forms 
with C A . 

Proposition 2.1. Let ll . . . . .  lk be linear forms on C n. Then the A-resultant 

ea  (fll . . . . .  flk ) coincides with the resultant RXA (11 . . . . .  ln) corresponding to the 

toric subvariety X A. 

The proof is obvious from the definition of the X-resultant, (see Section 2B 

Chapter 3). 

Recall that the X-resultant is very closely related to the Chow form of a pro- 

jective subvariety X. The Chow form R x of any (k - 1)-dimensional subvariety 
X C pn-1 ofdegree d lies in the projective space P (13(n-k,  n)d) where 13(n-k ,  n) 

is the graded coordinate ring of the Grassmannian G(n - k ,  n). The space 

13(n - k, n)d consists of polynomials in entries of an indeterminate k x n ma- 

trix satisfying the homogeneity condition (Proposition 1.6, Chapter 3). In our case 

these entries are just the coefficients of the Laurent polynomials fi. By the Kouch- 

nirenko theorem (Theorem 2.3, Chapter 6), degree d of XA equals Vol(Q), where 

the volume is induced by the lattice Z k-I . So we obtain the following corollary. 

Corol lary 2.2. Let g = [[gij II be an invertible k x k matrix. Then, for  any 

f l ,  - . . ,  fk E C A, denoting fi t -- ff-~q gij f j, we have 

RA ( f ;  . . . . .  f~) = det(g) v~ RA ( f l  . . . . .  fk).  

Writing each fi as j5 (x) - ~ j = l  aij XwC)) " , we identify the space (Ca) k of 

k-tuples of polynomials with the space of k x n matrices 

all a12 �9 �9 �9 aln ) 
. . . .  ~ 

. ~ 

a k l  a k 2  . . . a k n  

(2.1) 
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The A-resultant is a polynomial in the matrix entries aij. Denote by [il . . . . .  ik] 

the polynomial in aij which is the k x k minor of the matrix (2.1) on columns with 

numbers il . . . . .  ik. The  following is another corollary of Proposition 2.1. 

Corollary 2.3. R A (fl  . . . . .  fn )  can be expressed as a po lynomia l  in the brackets  

[ i l  . . . . .  ik]. 

Example 2.4. Let k - 1 -- 1 and A consist of monomials 1, x . . . . .  x d. Then 

the A-resultant is the classical resultant of two polynomials in one variable of the 

same degree d. Let us denote these polynomials as 

g ( x )  = aox d + . . .  q- ad, h ( x )  = box d + . . .  4;- bd. 

The brackets [i j]  have the form [i j]  = aibj - ajbi .  

We have already mentioned (Example 4.8, Chapter 3) the Bezout formula for 

the resultant R (g, h). In our present context of non-homogeneous polynomials in 

one variable (rather than homogeneous polynomials in two variables) this formula 

is as follows: define the polynomial 

d - 1  
F ( x ,  y)  -- g ( x ) h ( y )  - h ( x ) g ( y )  _ Z ci jxi  y j" 

x - y i,j=o 

Then R ( g ,  h) = detllcij II. Finding the cij by explicit division (cf. (5.15), Chapter 

2) we get the following expression of R (g, h) as a polynomial in the brackets: 

R ( g , h )  = 

[01] [02] [03] . . .  [0d] 
[02] [03] + [12] [04] + [13] . . .  [ld] 
[03] [04] + [13] [05] + [14] + [23] . . .  [2d] 

: : : : : 

[0d] [ld] [2d] . . .  [ d -  1, d] 

(2.2) 

where the (p, q)-th entry equals Z?io (P 'q ) - l [ i ,  p + q - i]. 

B. The  determinantal  expression 

In Section 4 Chapter 3 we represented any ( E l  . . . . .  Ek)-resultant, in particular, 

the Chow form of any projective subvariety as the determinant of the so-called 

resultant complex. For the case of the toric variety XA, this construction can be 

reformulated in an explicit way. 

To describe the graded coordinate ring of X A, w e  embed the affine lattice 

Z k- 1 D A into Z k - Z k- 1 x Z as the set of integral vectors with the last coordinate 

1. By h : Z k --+ Z, we denote the projection given by this last coordinate. 
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Let S = S(A)  denote the semigroup in Z k generated by A. It is graded using 

the group homomorphism h, and we set 

S/ := {o9 6 S(A)  : h(w) = i}. 

The coordinate ring of XA equals the graded semigroup algebra C[S(A)]. Elements 

of this semigroup algebra will be written as Laurent polynomials in k variables 

Y~o,~S(A) co, t~ where t stands for (tl . . . . .  tk) and all but finitely many coefficients 
co, are equal to 0. The component C[S(A)]i  C C[S(A)] ofdegree i has, as a vector 

space, the basis { t ~ : 09 ~ Si }. 

There is a canonical homomorphism 

res : C[S(A)]i  --+ H~  O(i ) )  (2.3) 

which is an isomorphism for i >> 0 (this is a general fact valid for the coordinate ring 

of any projective variety). Note that C A is identified with C[S(A)]I: a polynomial 

in ( k -  1) variables f (xl . . . . .  xk-1) ~ C A corresponds to t k f  (tl . . . . .  tk-1) 

C[S(A)]I .  

We consider the resultant complex C~_(O(1) . . . . .  O(1) lO( l ) )  associated to 

X A (see Section 4A Chapter 3) and denote this complex by C ~ (1). For I >> 0, we 

have 

C i ( l )  = C . t  u |  Ck" (2.4) 
u ~,% +t 

By a degree 1 form we mean an element in C a = C[S(A)]I (see above). 

For any k-tuple ( f l  . . . . .  fk)  of degree 1 forms, the differential ~) --- 3(f~ ..... A) : 
C i (1) --+ C i +l (I) is defined by 

k 

O(tU | (ej, A . .  . A ej ,))  := ~ (tu . f j )  | (ej A ej, A " "  A ej,), 
j = l  

(2.5) 

where the ej are the standard basis vectors in C k. For the space C i (l) we choose 

the basis {t u | (ej, A . . .  A ej,)}. Denote this system of bases for C ~ (l) by e. 

Theorem 2.5. For 1 >> O, the A-resultant equals 

RA (fl  . . . . .  fk) = +det  (C ~ Of~ ..... A, e) (-1)~" (2.6) 

Proof  The equality up to a constant factor (instead of up to a sign) follows 

from Theorem 4.2, Chapter 3. To get the equality up to a sign, note that the 
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right hand side of (2.6) is a polynomial in coefficients ai.to of the fi with rational 
coefficients. Consider its factorization into prime elements of the ring Z[ai,to] of 
integral polynomials in ai,to. Among the prime elements of this ring there are the 

prime numbers p ~ Z. To show that the equality in (2.6) holds up to sign, we have 

only to show that no prime numbers are present in the prime factorization of the 

fight hand side. 

Indeed, let p 6 Z be a prime number. We consider the modulo p version 

of the complex C ~ (l). Namely, let C~ be the graded Abelian subgroup in C ~ (l), 

integrally spanned by the chosen bases (see above). Let F be the algebraic closure 
of the field Z / p Z .  We define 

C~ (1) - C~ (l) | F. 

Let also F A be the space of polynomials ~'~weA ao~ x~ with coefficients ao~ 6 F. 

For any 3"1 . . . . .  fk E F A, we have the complex of F-vector spaces C'F(1) with the 

differential O -- Of~ ..... A defined similarly to (2.5). 
To show that p does not enter into the prime factorization of the fight hand side 

of (2.6) it suffices, by general properties of determinants of complexes (compati- 
bility with base change, see Appendix A, Proposition 24), to show the following. 

Lemma 2.6. For generic polynomials f l . . . . .  fk E F A and l >> O, the complex 

of F-vector spaces (C'F(I), Of~ ..... A) is exact. 

Proof We consider the algebraic variety XA (~ F over the field F and the sheaf 

O(1) on this variety. Let f l  . . . . .  fk ~- FA andlet/C =/C+(O(1) ~k, (fi . . . . .  fk)) 
be the Koszul complex of sheaves on XA (~) F associated with the fi (see Section 

1B Chapter 2). For the genetic fi their zero loci in XA (~ F do not intersect and 

hence/C is an exact complex of sheaves. On the other hand, (C'F(I), Of~ ..... A) is the 
complex of global sections of/C | O(l). So the same argument as in the complex 
case (see Section 2A Chapter 2) proves the exactness of C~ (1) for I >> 0. 

Since Lemma 2.6 is proved, the proof of Theorem 2.5 is complete. 

3. The Chow polytope of a toric variety and the secondary polytope 

A. Some notation and conventions 

Let A C Z k-1 be a finite subset generating Z k-1 as an affine lattice, and let XA 

be the corresponding toric variety. In this section we compute the Chow polytope 

Ch(XA) of XA. As in Section 1B, Chapter 5, we realize the ambient projective 

space for XA as P((cA)*), with the homogeneous coordinates (Zo~)o~ea. The 

torus acting on this space by dilations of homogeneous coordinates is (C*) a. Its 
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character lattice is Z A and thus Ch(XA) is a convex polytope in R A (see Section 

3, Chapter 6). We denote the standard basis in Z a and R a by e,o, o9 ~ A. 

In Section 1D, Chapter 7 we introduced, for any affinely spanning set A C 
R k-1 and any translation invariant volume form Vol on R k-l, the secondary poly- 

tope E(A) C R A. For now we choose the volume form to be Volzk-i, the form 

induced by Z k-1 (so that the volume of an elementary lattice simplex is 1 (see 

Section 3D Chapter 5). 

Note that both E(A) and Ch(XA) lie in R A and have vertices on Z A. 

B. Description of Ch(XA)" the statement of results 

Theorem 3.1 [KSZ2]. The Chow polytope Ch(XA) coincides with the secondary 
polytope E (A). 

The proof of this theorem will occupy the rest of the section. We start with a 

discussion of the result. 

The vertices of E(A) correspond to coherent triangulations of Q = Conv(A) 

with vertices in A (see Theorem 1.7, Chapter 7). The vertices of Ch(XA) corre- 

spond to extreme toric degenerations of XA C P((cA)*), i.e., toric degenerations 

into algebraic cycles consisting entirely of coordinate projective subspaces (see 
Theorem 3.10, Chapter 6). Let us explain how these two classes of objects are 
connected. 

Let o" C Q be a (k - 1)-dimensional simplex with vertices in A and let 

Vert(~r) C A be the set of vertices of or. We denote by L~ the coordinate projective 
subspace in P((cA) *) with the coordinates z~, for o9 ~ Vert(~r). We denote by [~r] 

the bracket [Vert(~r)] corresponding to the k-element set Vert(cr) (see Section 3 

Chapter 6). Thus, [o'] is an element of degree 1 of the coordinate ring B(n - k, n) 
of the Grassmannian G(n - k, n). It is defined uniquely up to a sign; to normalize 

the sign, one needs an ordering of vertices of o'. 

Theorem 3.1 is a consequence of the following more refined statement. 

Theorem 3.2. The coherent triangulations of (Q, A) correspond bijectively to the 

extreme toric degenerations of X A via 

w-~ E Vol(o') La. T 
aET 

The corresponding weight component of the Chow form RA equals 

Ra,~or - -  --l-- l ' - I  [ o" ]Vol(a). 
o-~T 
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Theorem 3.2 shows, in particular, that the Chow form of X A carries the 

information about all coherent triangulations of (Q, A): all the simplices of a 

coherent triangulation T together with their volumes can be directly read off the 
corresponding extreme term of R A. 

Now let us discuss the general idea of the proof of Theorems 3.1 and 3.2. To 

prove that two polytopes Ch(XA) and E(A) in R a coincide, it suffices to show 

that, for any genetic linear function ~. �9 R a ---+ R, the vertices 

Ch(XA) x E Ch(XA), E(A) x 6 E(A) 

where ,k achieves its maximum, coincide with each other. 

If T is a coherent triangulation of (Q, A) and tpr 6 E (A) is the corresponding 

vertex then the normal cone N~or E (A) (i.e., the cone of linear functions achieving 

their maximum at ~0T) was described in Theorem 1.7, Chapter 7. Namely, under 

the standard identification (RA) * -- R A, the cone N~orE(A) coincides with the 

cone C(T) C R a of "concave T-piecewise-linear functions," (see Definition 1.4, 

Chapter 7 for details). 

On the other hand, by Proposition 1.10, Chapter 5, the information about 

the normal cones of Ch(XA) can be extracted from asymptotics of translations of 

RA under the action of various 1-parameter subgroups in the torus (C*) a. More 

specifically, choose an integral vector Z -- (Z,o),o~a 6 Z A, and define a 1-parameter 

subgroup 
T i_~ T,k X A - -  (T ~ A E ( C * )  . (3.3) 

We are interested in the action of this subgroup on the space 13(n - k, n)a that 

contains RA. This action is induced from the action on C A, written as 

f - - ~ a o ~ x "  ~ r x f - - Z r X ~ a o ~ x ~ .  
toEA togA 

(3.4) 

After these preparations, we see that Theorem 3.2 is equivalent to the following. 

Theorem 3.3. Let T be a coherent triangulation of (Q, A), and let ~. - -  (~,to)toEA E 

Z a fq Int(C(T)) (here Int stands for the interior). Then, for any f l  . . . . .  fk ~ C A, 

the leading term of the Laurentpolynomial r w-~ Ra(rx f l  . . . . .  "r~fk) equals 

4- I - I [  tr ]Vol(o~. r(x,~0r~ 
crET 

Recall that by the leading term of a Laurent polynomial Z i  Ci Ti' we mean 

the term ci r i with the largest i such that ci ~ O. 
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The proof of Theorem 3.3 will be given in subsection D below. It will use the 

representation of R A as the determinant of a complex (Theorem 2.5) and a certain 

filtration in this complex induced by ~.. To carry this out, we need some technique 

which we shall also use on several occasions later. 

C. Kouchnirenko resolutions 

Let S C Z k be a finitely generated semigroup, and let K C R k be the convex hull 

of S. We assume that dim (K) -- k. Let g : K -~ R be a concave, continuous 

piecewise-linear function, homogeneous of degree 1. We assume that the linear 

functions constituting g have rational coefficients and that g takes integral values 

on S. 

We have an increasing filtration on the semigroup algebra C[S]: 

(see Figure 40). 

m ~ Z, (3.5) 

=g-~(m) 

FmC[S] = { E a~176 } ' 
wES, g(w)<m 

Figure 40. The Kouchnirenko filtration on C[S] 

The concavity of g implies that F is a ring filtration: Fm �9 Fro' C Fm+m'. We 

are interested in the associated graded ring 

FmC[S] (3.6) 
grFC[s] = ~ g r F C [ s ] '  grFC[s] -- Fm-lC[S]" 

m 

As a vector space 

grrC[Sl  -- C . t ~~ 

w6S 

g(w)=m 

(3.7) 
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We are going to describe a resolution of the vector space (3.7) constructed by 

Kouchnirenko [Kou]. Let A = Am C K be the level set g-l(m).  This is a 

polyhedral hypersurface in K. As such, it is the union of its faces of dimension 

k - 1. For any face P C A (not necessarily of dimension k - 1), we consider the 

vector space 

C [ S O I " ] =  ( ~  C . t  ~ . (3.8) 
O,~SNP 

( ~  C[S fl F] -~ grFCIS]. (3.9) 

PCA 

Thus we have a surjection 

dim(F)=k- 1 

Kouchnirenko's idea is to extend this surjection to a left resolution of grFC[S] by 

taking into account the faces of A of all dimensions. 

Let P C A be a face of dimension k - 1 - r. We denote by OR(P) the ori- 
entation space of P. This is a 1-dimensional vector space which can be described, 

e.g., as the cohomology space H k - l - r  ( r ,  o r ,  c )  where 3P is the boundary of P. 

A choice of orientation of P gives an identification OR(P) = C. Suppose we 

fix some orientation of R k. Then, for any (k - 1)-dimensional face P C A, the 

function g defines an orientation of P and hence an identification OR(P) = C. 

If 1-' and tO are two faces of A such that 1-' C t0 and dim t0 = dim 1-' + 1 then 

there is a canonical map 

E(r, o) .OR(r) --, OR(O) (3.10) 

which is just the coboundary homomorphism 

Hdim<r)(l ' ,  01") ---+ ndim(O)(O, 0 0 ) .  

Whenever F C �9 are two faces of A such that dim ~ = dim F + 2, we have 

y ~  e( |  ~)  o e ( r ,  | = 0 (3.11) 
o . r c o c ~  

(the sum has in fact two summands). We shall use the e(F, | as sign factors to 

define a complex. 

We call a face P C A interior if it does not lie on the boundary OA. Define 

vector spaces 

U-J  = ( ~  c [ s  n r] | OR(r). (3.12) 
FCA -interior 

dim(r)=k-l- j  
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These spaces fit together into a complex 

u ' = { u  -k+l ' ' -1 A -+ . . . ~  U U ~ (3.13) 

with the differential 8 defined as follows. For dim 1" = k - 1 - j ,  to 6 S tq 1" and 

6 OR(I"), we set 

8(t a' | ~) = ~ t ~~ | e(F, O)(~). (3.14) 

ODF- interior 
dim(O)=k-j 

By (3.11), we have t~ 2 --" 0. 

Theorem 3.4. The complex U ~ is a left resolution of grFC[S]. 

We call U ~ the Kouchnirenko resolution of grFC[S]. 

Proof The complex U ~ is acted on by the torus (C*) k. The weight component U~ 

of weight to 6 Z k is simply the complex formed by the multiplicity spaces of the 

monomial t ~~ in various terms of U ~ This component is zero unless to 6 A and in 

the latter case it is described as follows. Let 17 C A be the smallest interior face 

containing to. Let r = dim 17. Then U~, is the augmented cochain complex of the 

polyhedral (k - 1 - r)-sphere whose p-cells correspond to (r + p)-dimensional 

faces of A containing 1". So this complex is exact everywhere except at the end. 

The theorem is proved. 

We also need a slightly different version of the Kouchnirenko resolutions. 

Consider the field C( ( r -1) )  of the Laurent series of the form )-~f=-oo aj r j. This 

field has an increasing filtration 

F m C ( ( z - - I ) ) - - I Z o j ' ~ J l ,  m r Z .  (3.15) 
[ } j<m 

The associated graded ring 

grVC((r-1))  = C[r,  r -1] (3.16) 

is the ring of Laurent polynomials. 

Let the semigroup S, the cone K and the function g be as before. Consider 

the ring C[S]( ( r -1) )  with the increasing filtration 

FmC[S](('c-1)) -- { E a~176176 j < g(to) W m]. (3.17) 
w~S, j eZ 
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The resolution of the associated graded ring grffC[S]((r-1)) can be constructed 

as in Theorem 3.4. More precisely, let P be the polyhedral subdivision of K 

into cones which are domains of linearity of g (so the faces of the polyhedral 

hypersurface A = g-1 (m) considered above are just the intersections of A with 

cones from P). 

A cone tc e P (of any dimension) will be called interior if it is not contained 

in the boundary 0 K. For any r e P, we define the orientation space of tc as 

OR(r) = H dim(r) (g,  OK U g ~176 C )  

where tc ~ is a neighborhood of infinity in r .  For example, we can take 

K ~ {z ~ r "  Ilzll >__ 1}, 

where Ilzll is the standard Euclidean norm on R k. For the x of maximal dimension, 

we have a canonical identification OR(x) = C induced by the chosen orientation 
of R k. 

If K C p are two cones of P of adjacent dimensions then we have, as before, 

the map 

e(tr p) : O R ( r )  ~ OR(p) 

satisfying the analog of (3.11). For any j = 0, 1 . . . . .  k, we consider the space 

W -j  = ~ )  C[r, r - 1 ] | 1 7 4  (3.18) 

r ~ P -interior 

dim(r)=k-j  

These spaces are arranged into a complex of graded C[r, r-1]-modules 

W o { W _  k 8 ~ 1 ~ W o - ~ . . . ~ W -  } (3.19) 

whose differential 3 is given by a formula similar to (3.14)" 

6(t ~ | ~) = ~ t ~ | e(K, p)(~). (3.20) 

p D r -  interior 

d i m ( p ) = k - j  + 1 

Theorem 3.5. The complex W ~ is a left resolution of grff C[S]((r-1)). 

The proof is similar to that of Theorem 3.4 and we omit it. 
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D. Proof  o f  Theorem 3.3 

Now we are in position to prove Theorem 3.3. By Theorem 2.5, we have the 

determinantal representation for the A-resultant: 

R A ( f l  . . . . .  fk) = + d e t ( C ' ( / ) ,  Of~ ..... fk, e) (3.21) 

where C~ is the resultant complex. Choosing of ~. = (~.,o)o, eA 6 zA, we 

get a complex C ' ( I )  of vector spaces over C( ( r -1 ) )  which is obtained from 

(C ~ (1), 0~ ft ..... ,~A) by extension of scalars. The determinant of this complex with 

respect to the system of bases e introduced above equals the Laurent polynomial 

RA (r x f l  . . . . .  ~.X fk).  
We now introduce an increasing filtration on C ~ (l). Let gr,x " Q --+ R be 

the T-piecewise-linear function such that gr,x(og) = ~.,o for any 09 ~ A which 

is a vertex of a simplex of T (see Section 1C, Chapter 7). The fact that ~. lies 

in C ( T )  means that gr.x is concave. Recall that the space R k-1 containing Q 

is embedded into R k - R k-I x R as the set of vectors with the last coordinate 

1. Let K = R+ Q c R k be the cone generated by Q. We extend the function 

gr.x " Q --+ R to a homogeneous function g �9 K --+ R of degree 1. Clearly g is 

also concave. 

We use the notation of Section 2B. In particular, h �9 Z t --+ Z is the last 

coordinate, S = S(A)  C Z k is the semigroup generated by A and Si -- {09 

S (A)  " h(og) = i}. 

Now we introduce a filtration on C ~ (l) by 

i 

Fm ~i(l) :=  ~ ( Fm+g ̀ u , c ( ( r - l ) )  " tu ) | A Ck' (3.22) 
uESi+l 

where the filtration of C( ( r -1 ) )  is defined by (3.15). 

Proposi t ion 3.6. The differential 0 o f  C~ (l) is compatible with the filtration F, 
i.e., O(FmCi (l)) C FmCi+l (l). 

Proof. By the concavity of g, we have 

g(u + co) >_ g(u) + g(o~) = g(u) + x,,, 

for all u ~ Si+t and to e $1. A typical element in Fm ~i (1) is a C-linear combination 

of elements rst" | (ejl A . .. /x ej,) where s < m + g(u) .  The image of such an 

element under the differential 0 is a C-linear combination of elements 

rs+X~t u+'~ | (ej A ejl A . . . A ej,) where o9 E S 1. 
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This element lies in Fm 1~i+1 (l) because 

s + ~.~o <_ m + g ( u )  + ~.o~ < m + g (u  + w).  

This proves our proposition. 

We now pass to associated graded objects. For the field C((r-1))  the associ- 

ated graded ring is the Laurent polynomial ring C[r, r - l ] .  For each i, the space 

grFC i (l) is a free C[r, r-1]-module having the same basis {t u | (ej~ A . . . /~ eji) } 

as above. 
By Proposition 3.6, we obtain an associated graded complex gr F C" (l), which 

is a complex of finitely-generated free C[r, r-1]-modules. The matrix of its dif- 
ferential gr F 0 is the leading term in the expansion of the matrix of 0 as a Laurent 
series in r with matrix coefficients. Therefore (by Theorem 27 from Appendix 

A) the determinant of the complex gr FC. (l) equals the leading term of the de- 
terminant of C" (l). For integers I >> 0, the determinant of gr F 6"" (1) equals the 

leading term of the Laurent polynomial r ~ RA ('r ~ f l  . . . . .  "rx f k ) .  For the proof 
of Theorem 3.3, it now suffices to show that 

det (gr FC.(1), e) -- 4- 
trET 

(3.23) 

where Xo = Y~o,~Vert(o) ~o. To prove (3.23) we use the Kouchnirenko resolution. 

Let cr be any simplex (of arbitrary dimension) of the triangulation T. We say 
that cr is interior if it does not lie on 0 Q. The simplicial cone in R k generated by cr 

will be denoted by R+cr. We abbreviate S~, "= S(A) N R+o" and Si,o := Si N So. 

We define a complex 

Wa( l  ) { wO(/) aa 1 0a ao k �9 : > W a ( l )  ~ . . . .  ~ W a ( l ) }  

of free C[r, r-1]-modules as follows. Set 

( ) i 
w i ( 1 )  "= ~ C[r, r - l ]  �9 t u |  k (3.24) 

lg E ai +l,a 

and 

k 

3(  t u | (ej, A . . . A ej,)) "-- E (  tu " ( r x J ~ ) l ~ ) |  h A . . . A e j i  ), (3.25) 
j=l  
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where (Eto~A CtoXt~ )[tr : :  Ew~Vert(tr) CwXt~ For v = 0, 1 . . . .  , k - 1, we intro- 
duce the direct sum of complexes 

W~ .= @ 
a~T 

codim(o-)=v 

W~(I) | OR(a) ,  

where OR(a)  = OR(R+tr) is the orientation space defined in subsection C above. 

Previously, Kouchnirenko's construction provided us with resolutions of some 

vector spaces. We now want to construct resolutions for not just vector spaces, but 

complexes. Let C ~ be a complex of vector spaces. By a left resolution of C ~ we 

mean a double complex of the form 

0 ~ D ' ' -m  ~ D ' ' - m + l  ----> . . .  ~ D ~176 ~ C ~ ---> 0 (3.26) 

with exact rows. More precisely, we think of C ~ and each D ~ as columns of 

our double complex. These columns are, therefore, complexes and maps in (3.26) 

are morphisms of complexes. With this understanding, we state our next result. 

Proposition 3.7. The complex grFt~~ of  free C[r, r-1]-modules has a left 
resolution 

0 --~ W " - k + l ( l )  --~ W~ - ~  . . . - - ~  W " ~  --~ g r F C ' ( / ) - ~  0. 

(3.27) 

Proof Let us fix j and define a complex of vector spaces 

0 ~ wJ'-k+l(1) -+ . . . - -~  wJ'~ ---> grFC.J(1) --+ O. (3.28) 

All the vector spaces in (3.28) are already defined and we have only to define the 

differential. To do this we note that the graded vector space which is the direct 

of all the terms in (3.28)is naturally identified with the direct sum of (kj) s u m  

copies of the part of Kouchnirenko's complex W ~ spanned by monomials from 

So we define the differential in (3.28)to be the direct sum of (~) copies of Sl+j. 

Kouchnirenko's differential (3.20). The commutativity of these new differentials 

with the differentials (3.25) (i.e., the fact that we indeed get a double complex) 

is verified immediately. The exactness of rows follows from Theorem 3.5. The 

proposition is proved. 

Note that each orientation space OR(a)  has a distinguished basis vector de- 

fined up to a sign. Tensoring this vector with the bases {t u | (ej~/x . . .  A ej,)} as 

above, we get a system of bases in W~ (l) and hence in W ~ (l) which are defined 
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up to signs and permutations of basis vectors. For an abbreviation of notation we 
denote all these bases by e. 

P r o p o s i t i o n  3.8. We have 

k-1 

det (gr Ft~ ~ (l), e ) = 4- I-I  det ( W ~ (l), e ) `- l )v 

v=0 

_ 4- I-[ det (WT,(I), e) (-1)c~176 
aET 

Proof. Our strategy is to replace gr F t~ ~ (l) by its resolution given in Proposition 

3.7. So we consider the following part of the double complex (3.27)" 

W~176 ) -- {WO,-k+l(1) --+ ...--+ W~176 

Let W ~ (1) be the associated simple complex. Consider the increasing filtration G 
in W~ such that Gv W~ is the subcomplex formed by W j'-l(1) with l < v. 

Quotients of this filtration are shifted complexes W ~ (l)[v]. Thus, by the mul- 
tiplicativity of determinants of complexes with respect to filtrations (Proposition 

17, Appendix A), 

k-1 

det(W~ (1), e) = 4-I--Idet(W~ e) (-1)v 
v=0 

Now note that every complex (3.28) has determinant + 1. Indeed, let W~ '-v (l) C 
wJ'-v(l) be the (free) Z[r, r-1]-submodule generated by the basis vectors de- 

" o  "" scribed above. Let Cz(l) be a similar submodule in C~ Note that (3.28) comes 
from a complex of free Z[r, r -1 ]-modules 

0--~ WJz'-k+'(l)--~...--+ WJz'~ grFC~(/)--~ 0 

which is exact as well. This is because Kouchnirenko's complexes, being direct 

sums of augmented cochain complexes of polyhedral spheres, are defined and 

exact over Z. Thus the determinant of (3.28) is an invertible element in Z[r, r - l ] ,  

i.e., it has the form --f-'r l, l ~ Z. However, the matrix elements of differentials in 

(3.28) do not depend on r. Thus the determinant is equal to 4-1, as claimed. 

Now consider another filtration in W ~ (l) whose quotients are shifted rows of 

W ~176 (l). We find, similar to the above, that 

det(gr F C'" (1), e) -- det(W ~ (l), e), 
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from which we obtain the assertion of the proposition. 

In view of Proposition 3.8, formula (3.23) and hence Theorem 3.3 are implied 

by the following result. 

Proposi t ion 3.9. For any simplex tr ~ T and I >> 0 we have 

det( W~ (I), e ) = 4-[ cr ]Vol(~) rXoVol(o). 

In particular, this determinant is 4-1 if  tr does not have the ful l  dimension k - 1. 

Proof  We proceed by analyzing three cases. 

Case 1" dim(a)  = k - 1, Vol(tr) = 1. The set tr is a basis of Z k. All 

complexes in question are invariant under change of basis in Z k, so we may assume 

cr = {el . . . . .  ek }. In this case W~ (l) is the usual Koszul resolution of the k linear 

forms (rxfi) lo.  The determinant of this complex is the resultant of these linear 

forms, which equals [ tr ] �9 r xo . 

Case 2: dim(a)  = k -  1, Vol(tr) > 1. Let Ztr be the subgroup of Z k = Z A  

generated by or. By our choice of the volume form, the index of Zcr in Z k equals 

d := Vol(tr). Choose representatives Ul, u2 . . . . .  Ud in Z k modulo Zcr. For 

j = 1 2 . . . .  d define a subspace W i i , , , o,j (l) of Wo (l) by taking all the summands 

in (3.24) indexed by u ~ Si+l,o N (uj + Ztr). The differential in (3.25) maps 
W i wi+ 1 �9 ,~,j (l) into o,j (1). Hence we get subcomplexes W~,j (1) for j = 1, 2 . . . . .  d 

such that W~ (l) is the direct sum of these subcomplexes. Hence 

d 

det( W,~ (1), e ) = H det( W~,j (1), e ). 
j = l  

For l >> 0 each complex W~,j (1) is isomorphic to the standard Koszul resolution 

in Case 1, which implies the assertion. 

Case 3: dim(a)  < k - 1. As in the cases 1 and 2, the complex W~(l) is 

isomorphic to a direct sum of Koszul resolutions of k generic linear forms in 

d im(a)  + 1 variables. This complex fails to be exact under a specialization of the 

coefficients if and only if the forms have a non-zero common root. This imposes 

a condition of codimension k - dim(a)  > 2, and hence det (W~(l) ,  e )  is a 

non-zero constant. A similar argument as in the proof of Theorem 2.5 (reduction 

modulo p) shows that det( W~ (l),  e ) = 4-1. 

Theorems 3.1, 3.2 and 3.3 are completely proved. 



CHAPTER 9 

A-Discriminants 

We now introduce the second main object of study: the A-discriminant A A. 

1. Basic definitions and examples 

A. Definitions and first examples 

Our setup now will be the same as in Section 1, Chapter 5. Namely, we choose a 

finite subset A in the integral lattice Z k-1 whose elements w correspond to Laurent 

monomials x ~ x~ ~ _ ~ok_~ in k - 1 variables. We consider the space C A of 
- "  " " " " ~ k - 1  

Laurent polynomials of the form f (x) = Ew~_A atoXt~ 

We let V0 C C A denote the set of all f for which there exists x ~~ ~ (C*) k-1 

such that 

f (x ~~ - - (Of /Oxi ) (x  C~ = 0 f o r  all i. (1.1) 

Let VA be the closure of V0. It is not hard to see that VA is an irreducible variety 

defined over Q. Indeed, let XA be the toric variety associated to A (Section 1B 

Chapter 5). Then we have the following fact, which is obvious from the definitions. 

Proposition 1.1. The variety VA is conical i.e., it is invariant under the multi- 

plication by scalars. Its projectivization P(VA) is the variety projectively dual to 

XA. 

Now we can give the definition of the A-discriminant. 

Definition 1.2. If the set A C Z k-1 has the property that VA C C A is a subvariety 

of codimension 1, then by the A-discriminant we mean an irreducible integral 

polynomial A A ( f )  in the coefficients ao~, to 6 A of f 6 C A which vanishes on 

VA. Such a polynomial is uniquely determined up to sign. If codim V a > 1, we 

set A a - -  1. 

Thus A A is a particular case of the general discriminants defined in Chapter 

1: under the notation of that chapter, we have AA = AXA. We start with some 

simple properties and then give basic examples. 

Proposition 1.3. The polynomial A A is homogeneous. In addition, it satisfies 

(k - l) quasi-homogeneity conditions: for  all monomials I-I am(~ in A A, the 

vector y~ m (o9) �9 a~ E Z k-1 is the same. 
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Proof If f 6 V A and ,~0, ~.1 . . . . .  ~.k-1 are nonzero numbers, then the polynomial 

g(xl . . . . .  Xk-1)  = ~-0 f (~ . lX l  . . . . .  ~,k- lXk-1)  

is obviously in V A as well. This implies our proposition. 

In fact, the variety V A, and hence also the polynomial AA, depend only on 

the affine geometry of A C Z k-l. 

Proposition 1.4. Let A C Z k-l,  B C Z m - I  be two finite subsets and T �9 Z k- 1 __> 

Z m-1 be an integral affine transformation which is injective and such that T (A) = 

B. Then under the corresponding identification of  C A and C n, the variety VA is 

identified with V B and the polynomial A A is identified with A B. 

Proof In this case XA and XB are naturally identified (Proposition 1.2, Chapter 
5). Hence the projectively dual varieties are also identified. 

R e m a r k  1.5. The above proposition means, in particular, that we can shrink, 

if necessary, the affine lattice Z k-1 containing A to the lattice Affz(A), affinely 

generated over Z by A (see Definition 1.3, Chapter 5). 

Examples 1.6. We consider the same choices of sets A which were discussed in 

Examples 1. l, Chapter 5. 

(a) Let A consist of all monomials of degree _< d in k -  1 variables xl . . . . .  xk- 1. 
The space C A consists of all polynomials f ( x l  . . . . .  xk-1) of degree _< d. Equiv- 
alently, let A consist of all homogeneous monomials in k variables x l . . . . .  xk of 
degree exactly d. Then C/i is the space s d c  k of forms of degree d in k variables. 

There is an obvious identification 

C ~ ~ C A f ( x l  xk) ~ f ( x l  Xk-1 1) ~ ~  ~ ~  ~ 

which takes A,i to A A. The polynomial A,i is the classical discriminant of a 

form of degree d in k variables, discussed in Example 4.15 Chapter 1. Recall, in 

particular, Boole's formula deg A = k (d - 1)k- 1. 

(b) Let A consist of bilinear monomials xi �9 yj, where the xi and yj (i - 

1 . . . . .  m; j = 1 , . . . ,  n) are two sets of variables. Then C A consists of bilinear 

forms f ( x ,  y) - ~ aijxiyj and is identified with the space of m x n matrices 

Ila~jll. The A-discriminant A a ( f )  = Aa(llaijll) is identically equal to 1 unless 

m = n, and in this case it is the determinant of the square matrix Ilaij II. The 

monomials in A a ( f )  have an obvious combinatorial significance: they correspond 

to the permutations of the set of m elements, and the coefficients are the signs of 

the permutations. This explains our interest in the monomials appearing in the 

A-discriminant in other cases. 
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(b') Let A consist of trilinear monomials 

x i ' Y j ' Z l ,  i = 1 . . . . .  ml, j = 1 . . . . .  m2, l = 1 . . . . .  m3. 

The previous example makes it natural to refer to the A-discriminant of a polyno- 

mial 
ml m2 m3 

~ ~ ~ O i j k X i Y j Z l  ~- C a 
i=1 j = l  /=1 

as the hyperdeterminant of the three-dimensional "matrix" Ilaijt II. This concept 

(and its obvious generalization to higher-dimensional "matrices") was introduced 

by Cayley [Ca l] at almost the same time as that of the determinant of a square 

matrix. Hyperdeterminants were later studied by Schl~ifli [Schl] and, after the break 

of almost 150 years, by the authors [GKZ3]. In view of the previous example, the 

monomials in the hyperdeterminant form a "higher analog" of the symmetric group. 

We shall present our treatment of the hyperdeterminants in Chapter 14. (We note 

that there is another notion of the "determinant" of a multidimensional matrix which 

is different from ours ( see, e.g., [P] [So]). It is based on a direct generalization 

of the determinant formula for a square matrix and includes a summation over the 

product of several symmetric groups.) 

(c) Let A consists of monomials 

1, x, x 2, X p y yx,  yx 2, yx q �9 ~ ~ ~ ~ ~ �9 ~ o ,  �9 

Then C A consists of polynomials ~(x ,  y) = f ( x ) +  yg(x)  where f, g are polyno- 

mials in one variable x of degrees not greater than p or q, respectively. In this case 

A a (d~) -- e ( f ,  g) is the classical resultant of f and g (see Example 3.6 Chapter 

3). This relation holds in a more general context. 

Let A 1 . . . . .  Ak C Z k-~ be finite subsets satisfying the assumptions of Section 

1A, Chapter 8. Let RA~ ..... Ak be the (A1 . . . . .  Ak)-resultant; it is a function of k 
polynomials fi 6 CAi. Let A C Z 2k-2  - -  Z k-1 X Z k-1  be the following set: 

A - (A1 x {el}) 13... U (Ak-1 x {ek-1}) U (Ak x {0}), (1.2) 

where the ei are the standard basis vectors of Z k - 1 .  Then C A is the space of 

polynomials of the form 
k-1  

fk (X) d- ~ Yi fi (X), 
i= l  

where ~ ~ C A  ̀. We have the following statement ("Cayley trick"). 



274 Chapter 9. A-Discriminants 

Proposition 1.7. We have 

( ) RA, ..... ak(fl . . . . .  fk) = AA fk(X) + y i~(X)  �9 
i=1 

Proof. This follows from Corollary 3.5, Chapter 3 about the relation between 

projectively dual and associated varieties. The proof is so simple that we repeat 

it here for our particular case. If x (~ is a common root of (f l  . . . . .  fk), then we 

can find y~0) . . . . .  y~O__) 1 such that the polynomial fk + Y] Yi fi vanishes at the point 

y~0), . . . ,  y~0__) 1 , x~0) , �9 �9 �9 xk (0) along with its first derivatives. We do this by solving 

a linear system. Conversely, if (y(0), x(0)) is such a point, then 

f i ( x ( 0 ) )  __ O( fk  -}- Y~ik=~ Yifi) 
Oyi (x(O) ,y(O)) 

= 0  

for 1 < i < k - 1, and so fk(x (~ = 0 as well. 

B. The case o f  a circuit 

Let A C Z k-1 be a circuit. This means (see Section 1B, Chapter 7) that A is 

affinely dependent, but any proper subset of A is affinely independent. In this 

case the A-discriminant AA can be calculated explicitly. We present this formula, 

following Kouchnirenko [Kou]. 

We can assume that A generates Z k-1 as an affine lattice. So #(A) = k + 1. 

There is, up to scaling, just one affine relation between elements of A" 

~ moo . w = O, ~ mo~ -- O. (1.3) 
wEA wEA 

We normalize such a relation uniquely up to sign by requiting that all mo~ be integers 

with the greatest common divisor equal to 1. Note that 

Im~,l = Volz~-, (Conv(A - {w])). 

Let A+, A_ C A be the sets of o9 such that mo~ is positive (resp. negative). 

Proposi t ion 1.8. Suppose that A C Z k-1 is a circuit which generates Z k-1 as 

an affine lattice. Let f = Y~toEA atoxt~ be an indeterminate polynomial from C A. 

Then the A-discriminant of  f is a non-zero scalar multiple of  the polynomial 

(to~EA+ m~) H --m~o (to~EA -m~o) I-l m~ mo~ a~o - m~o a~o , (1.4) toEA_ _ toEA+ 
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where the mo) are defined as above. 

Proof First, we show that the polynomial (1.4) vanishes for f 6 V0, i.e., when 
the system (1.1) has a solution x (~ ~ (C*) k-1. Indeed, (1.1) can be written as 

E a~176176 = O, E a~176176 o9 = O. 
wEA w~A 

(~.5) 

Comparing (1.5) with (1.3) we conclude that the vectors (ao~(x(O))~~ and 

(mo,),o~a are proportional to each other. To eliminate x (~ we apply to both vectors 

the function (Yo,),oea ~ I-Iw~a ym,,, (since Y~o~ea m~o = 0, this function takes the 
same value at proportional vectors). We obtain the equality 

l-I ( a~-~ ) m~ 
o)~A 

= 1; (1.6) 

its polynomial form is exactly the vanishing of (1.4). 

Conversely, suppose (1.4) vanishes at some f ~ C A. We can assume that f 

is genetic, so that all ao) are non-zero. This implies (1.6), i.e., that the vector with 

components (y,o = a,,, ) r a t a  satisfies the relation m,,, 

H ym~ __ 1. (1.7) 
w~A 

Using the fact that A affinely spans Z k-l,  it is easy to see that every solution 

of (1.7) has the form (y,, = c(x(~ -~ for some non-zero constant c and some 
x (~ ~ (C*) k-1. This, in turn, implies f ~ V0. 

The above arguments show that (1.4) defines V A set-theoretically. So, up to 

a scalar multiple, it must be a power of A A. But, since it is a sum of only two 

monomials, we conclude that it can be only the first power of Aa, which completes 
the proof. 

2. The discriminantal complex 

The problem of finding the A-discriminant A A, raised in Section 1, is a special 

case of a more general problem addressed in Chapter l: finding the equation of 

X v, the projectively dual variety to a given projective variety X C p,,-1. In our 

present case X is the toric variety XA. 

Suppose that a projective variety X is smooth. In Theorem 2.5 of Chapter 

2 we have represented the equation of X v as the determinant of the so-called 

discriminantal complex. The terms of this complex consist of some differential 

forms on the affine variety Y C C" which is the cone over X (see Section 4, 



276 Chapter  9. A-Discr iminants  

Chapter 2). In our present situation we can make the complexes more explicit 

using a description of differential forms on tori and toric varieties going back 

to Danilov [D], see also [O]. For the convenience of the reader we recall this 

description from scratch, starting with the case of a toms. 

A. Differential  forms  on a torus 

Let H = (C*) k be a toms and let ,~ = Hom(H,  C*) = Z k be its character lattice. 

The ring C[H]  of regular functions on H is identified with the group algebra C[ U,] 

of E. This means that we can regard a Laurent polynomial 

f (x)  -- ~ atoxto C[H]  
toeZ k 

as a complex-valued function co ~ ato with finite support on F~ -- Z k. In this 

language the multiplication in C[H]  is given by the convolution product: if (ato) 

and (bto) are elements of C[H]  then their product (cto) is given by 

coo = ~_~ ato, bto,, . 
tol_l_to._.to 

We want to describe in similar terms the de Rham complex formed by the 

~"~i (H), the spaces of regular differential/-forms on H. 

Let Ec = U, | C be the complexification of the free Abelian group E. By 

a discrete vector f ie ld  on U, we shall mean an assignment o9 ~ vto which takes 

any o) ~ ~, to a vector vto ~ Ec such that vto = 0 for all but finitely many o9. For 

o9 ~ E, v ~ U,c, we denote by (o9, v) the discrete vector field equal to v at co and 

0 elsewhere. 

a) 

x '~ d(x ~) x~,+~ 

I , , , z  l b) d( 

L. . . . .  J 0 ~- d(x ~) x ~ 

Figure 41. (a) A discrete vector field o n  Z 2 

(b) The proof of the Leibniz rule 



2. The discriminantal complex 277 

Denote by Vec 1 (E) the space of all discrete vector fields on ~,. Clearly 

Vec 1 (E) is a free C[E]-module of rank k under the obvious convolution product 

C[U,] @ Vec 1 (~)  ~ Vec 1 (~) ,  x a @ (09, v) ~ (o9 4- or, v). (2.1) 

Proposition 2.1. There is a canonical isomorphism ~a �9 f21(H) --~ V e c l ( ~ )  o f  

C[~,]-modules. This isomorphism takes d(x • E f~l(H) into the discrete vector 

field (y, - y). 

Geometrically, the field (y, - ? ' )  is just one vector at the point y which joins 

this point with 0 (see Figure 41 b). 

Proof. By associating to x~d(x ~) the discrete vector field (c~ + ]3, -I3)  we get the 

required isomorphism. The inverse isomorphism is defined as follows" 

d(x ~) 
(co, v) ~ - x  ~ = - x  '~ dlog(xV), (2.2) 

X o 

where v ~ ~,. This correspondence is additive in v and hence extends to any 

v ~ ~c  by linearity. 

It is instructive to see the validity of the Leibniz rule d(x a+l~) - x~d(x ~) + 
x t~d (x ~) in the language of discrete vector fields (Figure 41 b). 

Let us introduce the space Vec i (~)  of discrete i-vector fields on ~, whose 

elements are finitely supported functions o9 ~ ~.o, mapping F_, to A i (~c) .  For any 

co ~ E and Z ~ A i (~C) we shall denote by (co, Z) the discrete/-vector field on 

equal to ~. at co and 0 elsewhere. 

The space Vec~ is just the group algebra C[ El. We have multiplication 

Vec i ~ @ Vec j ~ ~ Vec i+j ~,, (co, ~.) | (q,/z) ~ (co + q, ~./x/z). (2.3) 

Proposition 2.2. The space s i (H) of regular differential i-forms on H is naturally 
identified (as a C[ H]-module) with Vec / (F~). Under this identification the exterior 
product in f2"(H) corresponds to the product (2.3) on Vec ' (~) .  The exterior 

derivative of  a form represented by a discrete i-vector field co ~ )~o~ on ~ is 
represented by the discrete (i + 1)-vector field co ~-~ )~o~ /x (-co). 

Proof The isomorphism in question takes 

x~~ ~') A .- .  A d ( x  u') w-> ( -1 ) i (o r  - [ - . . . - [ -  ffi, Ctl A . . .  A oti). 

The inverse isomorphism takes 

(ct, fll A . . .  A fli) w~ ( -1 ) i x  ~d(x~') 
d(x ~, ) 

x~---7 A . . . / x  x~, (2.4) 
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where c~,/~j e U,. The correspondence (2.4) is additive in the/3's and extends to 

the arbitrary/3j ~ Ec by linearity. 

B. Differential forms on an affine toric variety 

Let U, = Z k be a free Abelian group of rank k. Let S C E be a finitely generated 

semigroup containing 0 and generating E as a group. Let E R be the real vector 

space E | R and let K C SR be the convex hull of S. This is a convex polyhedral 

cone with apex 0. For any face F C K, we denote by Linc(F)  the smallest C- 

vector subspace in U,c containing F. Clearly, the complex dimension of Linc(F)  

equals the dimension of F in the usual sense. For example, Linc (K) is the whole 

Ec. For any to ~ S, let 1" (to) be the smallest face of K containing to. In particular, 

if to lies in the interior of K then F(to) = K. 

Definition 2.3. Denote by Vec i (S) the space of discrete/-vector fields (~.o,) on E 

with the properties: 

(a) vo~ = 0 if to ~ S; 
(b) for any to ~ S we have v~o ~ A i Linc(F(to)). 

Figure 42 illustrates this definition. 

. , /  

Figure 42. A discrete vector field from Vec 1 (S) 

As in subsection A, for w ~ S and ~. ~ A i Linc (F (w)), we denote by (w, ~.) 

the discrete/-vector field equal to ~. at to and 0 elsewhere. 

Clearly, Vec~ is the semigroup algebra of S. The multiplication (2.3) 

restricts to the multiplication 

Vec i S @ Vec j S - - ~  Vec i +j S. (2.5) 

With respect to (2.5), Vec i S is a finitely generated module over C[S] - Vec ~ 

Let us also define the "exterior derivative" 

d : Vec i S --~ Vec i+1 S, d( (to, ~.) ) = (to, - t o  A ~). (2.6) 
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Proposition 2.4. 
(a) The maps d satisfy d 2 -- 0 and the Leibniz rule thus making the direct sum 

Vet 'S  : ~) i  Veci S into a supercommutative differential graded algebra. 
(b) If S : za+ x Z b then Vec i S is identified with the space of regular differential 

i-forms on C a x (C*) b, and (2.5) and (2.6) coincide with the usual exterior 

multiplication and differential. 

Proof Obvious. 

Let Y = Spec C[S] be the affine toric variety corresponding to S. By Serre's 

theorem [Hart] any module over the coordinate ring of an affine algebraic variety 

gives rise to a coherent sheaf on this variety. In our case we consider the C[S]- 

module Vec iS. The coherent sheaf on Y corresponding to this module will be 
~i denoted by ~ r  and called the sheaf of Danilov i-forms on Y. 

Theorem 2.5. 
(a) Let gsm be the smooth locus of Y. Then the restriction of (2ir to gsm is naturally 

identified with the sheaf of  regular differential i-forms on Ysm. 
(b) The maps (2.3) and (2.6) extend to morphisms of sheaves on Y 

(2~, | (2 j --+ (2~,+J; d ' ~  --+ (2~ +1 (2.7) 

which, after restriction to Ysm, coincide with the usual exterior multiplication 

and differential on forms. 

Proof Clearly, Ysm is a union of open subsets of the form C a x (C*) b invariant 
under the toms action. The coordinate ring of any such subset in Y has the form 

C[S'] where S' is obtained from S by inverting some elements. Our statement now 

follows from Proposition 2.4 (b) and the identification 

Vec i (S t) -- Vec i S (~)c[s] C[St],  

which can be verified immediately. 

C. Combinatorial description of  the discriminantal complex 

Let A C Z k-1 be a finite set of n lattice points (-Laurent monomials) and let 

XA C pn-1 be the corresponding toric variety, see Section 1B, Chapter 5. Let us 

assume that XA is smooth and has dimension k - 1. In this case the formalism of 

Chapter 2 is applicable and we can represent the A-discriminant, i.e., the equation 

of the variety projectively dual to XA, as the determinant of the discriminantal 

complex 

A x ( f )  = const . det(C+(XA, .A/l), Of, e) C-1)k (2.8) 
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where .A4 is a sufficiently ample invertible sheaf on XA (Theorem 2.5, Chapter 2). 
We take .A4 = O(l) ,  l >> 0. We shall use the results of the previous subsection to 

describe this complex quite explicitly. 
Shrinking, if necessary, the lattice Z k- l ,  we can assume that it is affinely 

generated by A. As before, we embed Z k-1 into a free Abelian group U, = Z k = 

Z k- 1 x Z as the set of lattice points with the last component equal to 1. We denote 

by h �9 U, ~ Z the projection given by this last component. 

Let S C ~ be the semigroup generated by A and 0. The semigroup algebra 
C[S] is graded by means of h (i.e., the degree of the monomial t u, u ~ S, is set 

to be h(u)). Under this grading C[S] is the homogeneous coordinate ring of the 

projective toric variety XA and also the affine coordinate ring of the affine toric 

variety YA (the cone over XA). The space C A is embedded into C[S] as the graded 

component of degree 1. 

Let 1 be an integer. Consider the graded vector space C ~ (A, 1), where 

i 

C i (a ,  l) -- ~ A Lincl"(u). (2.9) 
ueS,h(u)=l+i 

Let us denote a typical element in the u-th summand of C i (A, l) by (u, ~.) where 
~. ~ A i LincF(u). For any f ( x )  - -  E o g ~ A  atoXt~ ~- cA '  we define the differential 
Of : C i (A, 1) --+ C i+l (A, l) by 

Of(u, X) = - ~ ao,. (02 + u, o9 A ~.). (2.10) 
ooEA 

It is straightforward to see that 0} = 0. 

Theorem 2.6. Assume that X A is smooth. For I >> 0 the complex (C~ I), Of) 

coincides with the discriminantal complex (C~_ (XA, 0 ( l ) ) ,  Of). 

Proof By Corollary 4.2, Chapter 2, the space Ci+ (X A, O(l))  (denoted there by 

C i (XA, 1)) is identified with the space of differential/-forms on Y - {0} homoge- 

neous of degree i + 1. On the other hand, (2.9) is the (i + l)-th graded component of 

the C[S]-module VeciS with respect to the following grading: deg (u, ~.) = h(u). 

This grading is obviously compatible with the similar grading on C[S] defined 

above. 

By our assumption XA is smooth and hence YA -- {0} is the smooth locus of 

YA. So the sheaf ~ i  ra on YA corresponding to VeciS is identified, after restriction 
i to YA -- {0}, with the sheaf of/-forms ~rA-101" Note that Theorem 2.5 gives a 

natural homomorphism of vector spaces 

t~ " Veci S ~ {/-forms on YA -- {0}}. (2.11) 
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Let j : YA -- {0} ~ YA be the embedding. Since the point 0 has codimension 

at least 2 in YA, the direct image under j of any coherent sheaf on YA -- {0}, in 
particular, of the sheaf ~'~i is a coherent sheaf on Y. The homomorphism YA--{O}' 
comes (by taking global sections) from a morphism 

. ~-~i �9 i 
YA ~ J* ~"~YA--{O} 

of coherent sheaves on YA whose existence follows from Theorem 2.5. Since tp is 

an isomorphism outside 0, it follows that Ker tp and Coker tp are coherent sheaves 

on Y supported at 0. Therefore, by taking global sections, we find that Ker 

and Coker �9 are finite-dimensional vector spaces. Since both spaces in (2.11) 

are graded, we conclude that, for l >> 0, the induced map of (i -t- l)-th graded 

components is an isomorphism, i.e., 

C~ (XA, 0 ( l ) )  ~ C i (A, l). 

The fact that the differentials in these complexes agree under this isomorphism 

follows from Theorem 2.5 (b). Theorem 2.6 is proved. 

The above theorem implies that (in the case of smooth XA) the A-discriminant 

equals const.  D (-1)k where D is the determinant of C ~ (A, l). We shall give a more 

precise formula, valid up to sign. 
Namely, consider the following system of bases in the vector spaces C i (A, l). 

For any u ~ S the vector space LincF(u)  contains a Z-lattice LincF(u)  M E. We 

choose any Z-basis in this lattice as a basis of LincF(u).  Correspondingly, we 
choose the basis in A i (LincF(u))  formed by exterior products of basis vectors in 

Linc F (u). Finally, we choose as a basis in the direct sum (2.9), the union of the 
chosen bases in the summands. Let e be the resulting system of bases in the terms 
C i (A, l). 

Theorem 2.7. Assume that X A is smooth. Then for I >> 0 we have 

AA(f)  -- +det(C~ l), Of, e) (-1)k. 

Proof. Up to a constant factor, the statement follows from Theorem 2.5, Chapter 

2. To prove it up to a sign, we proceed as in the proof of Theorem 2.5, Chapter 8. 

Namely, we denote by C~(A, l) the natural Z-form of C~ l)" 

i 

C ~ ( A , I ) - -  ~]~ A z 
uES,h(u)=l+i 

(Linc r (u) t3 F~). 
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Now let p be an arbitrary prime number, let F be the algebraic closure of Z / p Z  
and consider the graded F-vector space 

CF(A, l) - Cz(A, l) | F. 

For any f ~ F A we get a differential Of in C'F(A, l). As in the proof of Theorem 

2.5 Chapter 8, it suffices for our purposes to show that, for genetic f ~ F A, 
the complex (C'F(A, l), Of) is exact. The description of differential forms on 
a smooth toric variety given in subsection B, remains valid over a field of any 

characteristic. So our statement is proved in the same way as genetic exactness of 

the discriminantal complex over C (Theorem 2.3, Chapter 2). This completes the 

proof of Theorem 2.7. 

D. The degree of the A-discfiminant 

We continue to assume that XA is smooth and that A affinely spans Z k-1 o v e r  Z. 

Let Q c R k-1 be the convex hull of A. For each face F C Q, let AffR(F) be 

the smallest real affine subspace containing F. This space comes equipped with 

an affine Z-lattice Affz(l" N A) generated by F n A. Since we assume XA to be 

smooth, this lattice coincides with AffR (F) n Z k-1 (Corollary 3.2, Chapter 5). 
As in Section 4D, Chapter 5, the above lattice gives rise to a volume form on 

AffR (F) normalized so that the volume of an elementary lattice simplex equals 1. 
Let us denote this form as Volt. 

Theorem 2.8. Suppose X A is smooth. Then the degree of homogeneity of the 
A-discriminant equals 

( - - 1 ) c ~  F -t- 1) �9 Volr (lr). 
l"cQ 

In particular, this sum is always non-negative; it equals zero if and only if A A " -  1. 

Proof We retain the notation of the previous subsections. Thus S C Z k is the 

semigroup generated by A and 0; it is graded by h : S --+ Z+. Denote by St the 

graded component {u 6 S : h(u) = l}. We also need the convex hull K of S. 

This is a polyhedral cone with apex 0 whose base is Q. We extend h to a linear 

functional (denoted also h) from K to R and denote Kl = {u 6 K : h(u) = l}. 
Since X A is assumed to be smooth and, in particular, normal, the intersection 

K n Z k differs from S in finitely many points only. 

Let 1-' C Q be a face. Then the cone R+I-' generated by 1-' is a face of K. 

Let 1 -'~ be the interior of I". Consider the set St n R+ F ~ By the above, for I >> 0 

this set coincides with K I n  R+I -'~ Thus, for large l, the number # (St O R+F ~ 
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coincides with the number of integer points in the I times dilated open polytope F ~ 
It is known [D] that for l >> 0 this number is given by a polynomial in I which we 
denote by Pr (1) (it is closely related to the so-called Ehrhart polynomial counting 
the number of integer points in the dilations of 1", not F~ The leading term of 
this polynomial is, by Proposition 3.7, Chapter 5, 

Volr (F)/dim I'. 
(dim 1")! 

By Corollary 14 from Appendix A, the degree of AA is equal to 

k 
deg (AA) -- Z ( - - 1 ) k - i i  �9 dim Ci ( A, l). 

i=0 

By representing C i (A, l) as a direct sum over u ~ Si+l (see (2.9)) and separating 
the u's lying in different faces of K, we find that, for I >> 0, 

dim Ci (A l) Z ( d i m l - ' + l )  , = . p r ( l  + i ) .  

r ca  t 

Substituting this expression into the above formula for deg (AA) we obtain, after 
some easy algebraic transformations, that 

dimr(_l) dim r-i  (dim r )  
deg (AA) = ~ (--1) c~ (dim 1-' + 1) ~ �9 pr( l  + 1 + i). 

FC Q i=0 

To deduce Theorem 2.8 from this expression, we have only to show that the inner 
sum is equal to Volt (1-'). We shall use the following elementary lemma. 

Lemma 2.9. Let p( t )  = aot r + . . .  + ar be a polynomial o f  degree r. Then for  

any value o f t  the s u m  ~-~f=0(--1) i (7)p(t - i) is equal to r!ao. 

The lemma is well-known; the easiest way to prove it is to observe that the 
sum in question is the iterated difference m r p(t) ,  where Ap(t) = p(t)  - p( t  - 1). 

To complete the proof of Theorem 2.8, it is enough to apply Lemma 2.9 to 
each polynomial p(t)  = pr ( t  + dim 1-" + 1). 

Examples 2.10. Let us illustrate Theorem 2.8 for the sets A in Examples 1.6. 

(a) Let A consist of all monomials in xl . . . . .  xk-1 of degree < d (or, equiv- 
alently, of all homogeneous monomials in Xl . . . . .  xk of degree d). Since XA = 

pk-1 is smooth, Theorem 2.8 is applicable. The polytope Q is the simplex 

{(/1 . . . . .  tk-1) E R k - l "  t i > O ,  Y ~ t i < d }  
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of dimension k - 1. For each i = 0 . . . . .  k - 1, this simplex has exactly (ikl) 
faces of dimension i, and each of them has the normalized volume equal to d i . By 

Theorem 2.8, 

k-1 ( k ) d  i deg (ma) = ~ ( - - 1 ) k - l - i ( i  + 1) i + 1 
i=0 

-- k ~ -~ ( -1 )  k- l - i  dik(d - 1) k-I (2 12) 
i--0 i ' " 

the last equality being the binomial formula. By Lemma 2.9, deg(AA) is equal to 

k(d - 1) k-1. This is Boole's formula (see Examples 1.6 above). 

(b) Let A consist of bilinear monomials Xi " y j ,  i = 1 . . . . .  m; j = 1 . . . . .  n. 

The polytope Q is the product of two simplices A m-1 x A "-1. A face of Q is 

given by a pair of non-empty subsets I C { 1 . . . . .  m }, J C { 1 . . . . .  n } and is itself 

a product A i-1 x A j-1 where i = #(I) ,  j = #(J ) .  The normalized volume of 

such a face is [ i+j -2~  Since XA = pm-1 • pn-1 is smooth, the degree of AA is \i-l]" 
given by Theorem 2.8. We obtain 

m n ( m ) ( ; ) (  ) 
deg (AA)= Z ~ (-1)m+n-i- j ( i  + j -- 1) i + j - - 2  . 

i=~ j=l i -  1 
(2.13) 

Without loss of generality, we can assume that n < m. To simplify (2.13) we 

rewrite it as 
m (/m.) 

~ ( - 1 )  i p ( m - i ) ,  
i=0 

where p(t) is a polynomial of degree n given by 

n 
p(t) = y ~  ( -  1)n-J 

j=l 
1 ( ~ ) t ( t + l ) . . . ( t + j - 1 ) .  

( j -  1)! 

Using Lemma 2.9, we see that deg (AA) -- 0 unless m -- n, and in the latter case 

deg (A a) = n. This is in accordance with the fact that m a is identically 1 for 

m # n and coincides with the determinant of a n x n matrix if m = n. 

The above two examples have a common generalization to the case when A 

consists of all multihomogeneous monomials of a given multidegree in several 

groups of variables. An application of Theorem 2.8 to this case will be discussed 

in Section 2, Chapter 13. 

(c) Let A consist of monomials 

I ,  X ,  x 2 X m X 2 . . . . . .  y, yx,  y .... , yx ~. 
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The polytope Q is the trapezoid depicted in Figure 43. 

(0,1) (1,1) . . .  (n,1) 

(0,0) (1,0) . . .  (re, O) 

Figure 43. 

Its area normalized with respect to Z 2 is m + n. Under the normalizations 

used in Theorem 2.8, the horizontal sides have lengths m and n, and two other 

sides are of length 1. Four vertices of Q each should be ascribed the "volume" 1. 

Hence Theorem 2.8 gives 

deg (AA) -- 3(m + n) -- 2(m + n + 2) + 1 �9 4 = m + n. 

This is in accordance with the interpretation of AA as the resultant of two polyno- 

mials of degrees m and n in one variable, see Example 1.6 (c). 

3. A differential-geometric characterization of A-discriminantal hypersur- 
faces 

In this section, which is based on [Kal ], we exhibit one characteristic property of 

discriminantal hypersurfaces regarded as hypersurfaces in toil. As we have seen 

in Section 1, Chapter 6, the geometry of a hypersurface in a torus is closely related 

to the Newton polytope of the Laurent polynomial defining this hypersurface. The 

differential-geometric property described in this section can be compared with the 

description of the Newton polytope of the A-discriminant given in Chapter 11 

below. 

A. The Gauss map in an algebraic group 

Let G be an algebraic group. For each g 6 G, let lg : G ~ G be the left 

multiplication by g. Let O be the Lie algebra of G. Let Z C G be an irreducible 

algebraic hypersurface (possibly with singularities). The (left) Gauss map of Z 

is the rational map Yz : Z --+ P(g*) which takes a smooth point z ~ Z into 

d( lz  1)(Tz Z), i.e., to the translation to unity of the tangent hyperplane to Z at z. 

This translation is a hyperplane in Te G -- O, i.e., a point in P (0*)- 
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Note that both varieties Z and P (g*) have the same dimension. This raises 

the following natural problem. 

Problem. Classify algebraic hypersurfaces Z C G such that yz  " Z ---> P(g*) is 

a birational isomorphism. 

In what follows we shall consider only the case when G = (C*)  m is an 

algebraic toms. In this case we shall refer to Yz as the logarithmic Gauss map 

since explicit formulas for it involve logarithmic derivatives. 

It turns out that the above problem for tori can be completely solved and 

the class of hypersurfaces in question essentially coincides with the class of A- 

discriminantal hypersurfaces. 

B. The reduced A-discriminantal variety 

Let A C Z k- 1 be a finite subset of cardinality n, which generates Z k- 1 as an affine 

lattice. Let V A C C A be the corresponding discriminantal variety. We consider 

the action of (C*) k on C A given by 

(tl . . . . .  tk) " f ( x l  . . . . .  Xk-1) ~ t k f ( t l x l  . . . . .  tk-lXk-1). (3.1) 

This action preserves V A. Consider the subset (C*)  A C C A as an algebraic toms 

acting on C A componentwise. A point of (C*) a will be denoted as (Zo~)o~ea where 
zo, e C*. Then (3.1) comes from a homomorphism of tori 

~ "  ( C * )  k ~ ( C * )  A ~O(tl tk)o~ = tkt~ ~ ,o~k_~ 
' , ' ' ' '  " " " ' k - I  " 

Let tp* �9 Z A --~ Z k be the dual homomorphism of character lattices. Since we 

assume that A generates Z k-1 as an affine lattice, tp* is surjective. Set LA = Ker ~o*. 

Clearly, LA consists of all affine relations between elements of A, i.e., of families 

(co~)o~a, co, ~ Z such that 

_ , c ~ , . w - - O  and Zco~=O. 
togA w~A 

Let H(LA)  -- Spec C[LA] = Hom(LA, C*) be the algebraic toms whose 

character lattice is LA. Then we have an exact sequence of toil 

1 --> (C*) k ~o> (C,) A _~p H(LA)--> 1, (3.2) 

where p is the natural projection. Since V A is (C*)k-invariant, the intersection 

VA A (C*) A is the inverse image, under p, of some subvariety ~7 A C H ( L A )  which 
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is uniquely defined. Clearly, codim(Va) = codim(Va). We shall be interested 

only in the case when V A and V A are hypersurfaces. In this case we shall call 

VA the reduced A-discriminantal hypersurface. The defining equation of VA is 

obtained from the A-discriminant Aa by specializing some k of the variables a,o 

to be 1 so as to kill the k quasi-homogeneities. 

Now we state our main result. 

Theorem 3.1. Let G = (C*) m be an algebraic torus, and let Z C G be an 

irreducible algebraic hypersurface. The following conditions are equivalent: 

(a) The logarithmic Gauss map Yz " Z ~ pro-1 is birational. 

(b) There exist k > O, a (k + m)-element subset A C Z k-1 affinely generating 

Z k-l,  and an isomorphism of  algebraic varieties G --+ H ( L A )  (i.e., a group 

isomorphism of  tori fo l lowed by a translation) which takes Z to the reduced A- 

discriminantal hypersurface fT a. 

The proof of this theorem will be given later in this section. First, let us give 

some examples of hypersurfaces with birational Yz provided by Theorem 3.1. 

Examples 3.2. (a) The hypersurface Z C (C*) r2 consisting of r • r-matrices 

Ilaij II such that 
1 ~ 1 7 6 1 7 6  

1 all ... 
�9 �9 

�9 ~ . , ,  

1 a r l  ...  

has a birational logarithmic Gauss map. 

1 

a l r  
- -  O, 

. 

arr  

(b) The hypersurface Z C (C*) d-l ,  consisting of (al . . . . .  ad-1), such that 
the polynomial x d + x d-1 + a lx  d-2 + . . .  + ad-1 has a multiple root, possesses a 

birational logarithmic Gauss map. 

(c) Consider the affine hyperplane Z in (C*) m given by the equation ~ ai -- 1. 

It is straightforward to see that Z possesses a birational logarithmic Gauss map. 

The same, of course, will hold for any hyperplane I E ~.iai = 1 ] where all ~.i ~ 0, 
since it is a torus translation of the above hyperplane. 

The hyperplane Z can be realized as a reduced A-discriminantal hypersurface 

if the set A consists of the following monomials in two variables x, y" 

A -- {1,x . . . . .  x m y yx} ~ �9 

Then C A consists of polynomials of the form f ( x )  + yg (x )  where f ( x )  - 

am Xm q- " ' "  d- ao  has degree < m and g is an affine-linear polynomial blx  + bo. 

The A -discriminant A a (f,  g) is the classical resultant R ( f ,  g) which in our case 
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is equal to 

aob 7 - alb'~-lbo + . . .  -4- amb~. 

To get the reduced A-discriminantal hypersurface, we should specialize three vari- 

ables to 1, say b0, bl and a0. This specialization gives an affine hyperplane as 

above. 

C. The Horn uniformization 

The proof of Theorem 3.1 is based on some formulas from the paper [Hor] of 

Horn devoted to study of hypergeometric series. Crucial for us will be an explicit 

formula for a rational uniformization of the reduced A-discriminantal variety. This 

formula appeared in [Hor] although it was not realized at the time that the image 

of the corresponding map is in fact a discriminantal variety. 

Let A C Z k-1 be as before. Let us write A = {o9 (1) . . . . .  w (~)} where each 

to (j) is a vector (wl j) . . . . .  w~J_)l) ~ Z k-1. Thus we identify Z A and C A with Z n 

and C ~. Put m = n - k. Choose a Z-basis {a (1) . . . . .  a (m) } of the lattice LA C Z n, 

where each a (p) is an integral vector (al p) . . . . .  a~ p)) ~ Z ~. The choice of the basis 

{a (p) } identifies the torus H(LA) with (C*) m. 

Let us define a rational map h �9 pm-1 __+ (c , )m taking a point with homoge- 

neous coordinates ~. = (~.1 " . . .  " ~,m) to (~Pl (~,) . . . . .  q~m (~.)) where 

m a! l) 

tPl(~l . . . . .  ~m) = uj ^p . (3.3) 
j= l  

Since foreach a = (al . . . . .  an) E LA we have Y~. aj = 0, each ~Pl is homogeneous 

of degree 0. We shall call h the Horn uniformization. 

T h e o r e m  3.3. 

(a) Under the identification (C*) m ~ H(LA), defined by the chosen basis of  

LA, the image of h �9 pm-1 ~ (c*)m is identified with the reduced A- 

discriminantal variety XTA C H (L a ) .  

(b) lffTa is a hypersurface then h �9 pm-1 ~ Va is a birational isomorphism. In 

this case the inverse to h coincides with the logarithmic Gauss map YfZa" 

Thus part (b) of Theorem 3.3 proves the implication (a) =~ (b) of Theorem 

3.1. 

Proof of  Theorem 3.3. Let us define h in more invariant terms. Consider the 

rational map 

h " L a  | C > H o m ( L a ,  C * ) -  H(LA) 
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such that for (al . . . . .  an) E LA @ C and (bl . . . . .  bn) E LA, bi E Z we have 

h'(a! . . . . .  an)(bl . . . . .  bn) = I I  abj. 
j = l  

The map h' gives rise to a rational map P ( L A  ~ C) ~ H ( L A ) ,  also denoted by 

h', since ~ bj = 0 for each b e LA. 

L e m m a  3.4. Under the identification L A t~ C ~ C m induced by the choice o f  

basis, the map h' is identified with h. 

The proof is straightforward and left to the reader. 

In order to prove part (a) of Theorem 3.3, we recall the standard uniformization 

of VA arising from the fact that it is a projective dual variety. Denote the space 

C A = C n by V and consider the (C*)k-action on the dual space V* which is dual to 

(3.1). Let Y = YA C V* be the affine toric variety corresponding to A (see Section 

1B Chapter 5). Recall that Y is the closure of the orbit of the point (1 . . . . .  1) with 

respect to the (C*)k-action on V*. The conic variety VA C V is projectively dual 

to Y C V*. Therefore we have a diagram of rational maps 

yv = VA <or e ( r ; (v*) )  fl> Y, 

where T~ (V*) is the conormal bundle to Y and P stands for the projectivization 

(see Section 3A Chapter 1). (Since we are working birationally, we are free to 

delete from any of our varieties any proper algebraic subvariety, in particular, to 

delete from Y all the singular points where the conormal bundle does not make 

sense.) 

If yv is a hypersurface then ct is birational, as it follows from Proposition 3.2 

Chapter 1. 

The conormal space to Y at (1 . . . . .  1) is naturally identified with L A ~ C. 

Indeed, a linear functional on the ambient vector space V* of Y can be viewed, after 

restricting to Y, as a Laurent polynomial in tl . . . . .  tk of the form g(t l  . . . . .  t~) = 

tk f (tl . . . . .  tk-1) where f = Zwea ao~ t~ ~ CA. The linear functional corre- 

sponding to such a g vanishes on the tangent space to Y at (1 . . . . .  1) if and only 

if tiOg/Oti = 0 for all i = 1 . . . . .  k. This means precisely that the coefficients a~, 

should form an affine relation between the og's, i.e., (a~,) ~ L A ~ C. 

By using the (C*)k-action on Y, we get a birational trivialization of the conor- 

mal bundle to Y, i.e., a map 

E "  ( C * )  k X ( t  A (~C) > T~(V*). 
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Also let ~ �9 (C*) k x (LA ~ C) --> C A = V be induced by the (c*)k-action on 

V D LA (~ C. Then, by the above identification of the conormal space to Y and 

by the fact that Y is the closure of the orbit of (1 . . . . .  1), we find that the image 

of 8 is V A. 

Consider the commutative diagram 

h~h t 
LA ~ C > H(LA) = Hom(LA, C*) 

l T 
h C n = Z n | C > (C*)  n -- Hom(Z n, C*) 

(3.4) 

where the map h is given by the same formula as h', i .e.,  

h ( a l  . . . . .  an)(bl . . . . .  bn) = I-'I abj 
J 

for each (al . . . . .  an) ~- C n, (bl . . . . .  bn) 6 Z". The left vertical map is the natural 

injection, the fight vertical one is the projection p considered in subsection B. 

Now part (a) and the first statement of part (b) of Theorem 3.3 will follow 

from the commutativity of (3.4) and of the following diagram 

C A h > C A 

/ 
(C*)  k x (L A ~ C )  ~ (3 .5 )  

e " ~  
T ; ( V * )  et ~ VA 

We leave to the reader to check that (3.5) is commutative. 

To prove part (b) of Theorem 3.3, note the identities 

01ogqJi 01ogqJj 
= i, j -- 1 , . . . , m ,  (3.6) 

which follow immediately from (3.3). Now we consider the Jacobian matrix 

J (~.1 . . . . .  ~.m) = II 01ogkI/i/0~j II and regard it as a matrix-valued rational function 

in the )~'s. Since tpj and hence logtPj are homogeneous of degree 0, we have the 

identities 
a l o g q / j  

~ g ~  - 0 for j - 1  . . . . .  m. (3.7) 
i=1 O~i 

In other words, the matrix J (~. 1 . . . . .  ~.m) annihilates the column vector (~. 1 . . . . .  ~.m)t- 

If the image XTA of h is a hypersurface, then the kernel of J (~. 1 . . . . .  ~.m) for generic 

(~- 1 . . . . .  ~.m) is one-dimensional and hence generated by (~.1 . . . . .  ~.m)t. 
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On the other hand, the matrix J(~.) -- JO.1 . . . . .  ~ .m)  is symmetric by (3.6). 
Therefore the image Im(J(~.)) is the orthogonal complement, with respect to the 

standard quadratic form ~ x 2, to Ker(J  (~.)) = C.  (~.1 . . . . .  ~ , m )  t . This means that 

~-1 . . . . .  ~.m are coefficients of the linear equation of the hyperplane Im(J(~.)). 

Denote by log �9 (C*) m ~ C m the (multivalued) map which takes (zl . . . . .  Zm) 

to (log(zl) . . . . .  1og(Zm)). In invariant language, log is the logarithmic map from 
the torus H(LA) to its Lie algebra. The hyperplane Im(J(~.)) C C m above is noth- 

ing more than the tangent hyperplane to the image 1og(Va) at the point log(h (~.)). 

Hence the fact that the ~.i are coefficients of the equation of this hyperplane means 

that the point of pro-1 represented by ~. is the image of h(~.) under the logarithmic 

Gauss map. Theorem 3.3 and hence the implication (a) =~ (b) of Theorem 3.1, are 

proved. 

D. End of  the proof o f  Theorem 3.1 

Let Z C ( C * )  m be a hypersurface such that the logarithmic Gauss map ?'z : Z 
pro-1 is birational. Denote by * �9 pm-1 ~ Z the inverse rational map, given by 

m rational functions * i  (/~.1 . . . .  , ~ ,m) ,  i -- 1 . . . . .  m, homogeneous of degree 0. 

We reverse the arguments in subsection C. As a first step, let us prove that the 

�9 i satisfy (3.6). More precisely, we have the following lemma. 

L e m m a  3.5. I f  * = ( .1  . . . . .  q l m ) ,  kIli - -  ffkli ()~ 1 . . . . .  )~m)  is the inverse to the 

logarithmic Gauss map, then 

l o g * / -  ~ /  )~jlog*j . (3.8) 

Proof As in subsection C, let J(~.) = J(~.l . . . . .  ~ .m) denote the Jacobian matrix 

IlOlog*i/OXjll, and log : (C*) m --+ C m the componentwise logarithm map. The 

tangent space to log(Z) at z = *(~.) is the image of J(~.). Since each *i(Z) 
is homogeneous of degree 0, the kernel Ker (J(~.)) contains the column vector 

(~1  . . . . .  ~'m) t. 
Let (/zl . . . . .  /Zm) be the coefficients of the equation of Im(J(,k)), so that 

/ Z I ~ I  -[ ' -"""-1-"  ]-s - -  0 for (~1 . . . . .  ~m) 6 Im(J(~.)). 
To say that * is inverse to the logarithmic Gauss map of its image Z -- 

Im(qJ) is equivalent to saying that, for any Z = (Zl . . . . .  ~.m), the above vector 

# --- ( # 1  . . . . .  /Z m) is proportional to ~.. But # generates the 1-dimensional vector 

space Ker(J  t (,k)). Hence we have 

m 
j__~l )~j 0 l o g . j  = O, j = 1 . . . . .  m. (3.9) 
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Now we can prove our lemma. Indeed, we can rewrite (3.9) as 

ff -~.j Ologqsj _ _  --~.i Olog~P______~ 

j sk i O )~ i O )~ i 

Adding this equality with the obvious equality 

0 Ologqsi 
~ ( ~ i l o g q S i )  - -  ~ . i ~  + 1ogqSi, 
0~'i 0~.i 

we obtain (3.8). 

To complete the proof of Theorem 3.1, it remains to classify rational solutions 

of (3.6) which are homogeneous of degree 0. This classification is essentially due 

to Horn [Hor]. 

Proposition 3.6. Suppose that rational funct ions  ql  i (~ 1 . . . . .  )~m ) , i = 1 . . . . .  m, 

satisfy (3.6) and are homogeneous  o f  degree O. Then there exist n > O, an in- 

tegral m x n matrix Ila~/)ll, i = 1 . . . . .  n, 1 = 1 . . . . .  m and non-zero constants 

~1 . . . . .  ~m such that each ~l qSl has the f o r m  (3.3). 

Proo f  Let  Pl . . . . .  p ,  be all the irreducible polynomials entering into the factor- 

ization of the numerator or denominator of at least one qsj. The polynomials Pi 

are homogeneous. Let di = deg(pi). Thus we have 

kI / / (~ l  . . . . .  ~.m) "-  El I - I  p j (~ , )a j l ,  
j = l  

et e C*, ajt ~ Z.  

The equality Ologqsl/O~ r -- OlogqJr/O),t can be rewritten as 

n 

a j l ( O P J / O ~ r )  __ a j r ( O P j / O ~ ' l )  

j=l PJ j=l PJ 
(3.~0) 

In each of the fractions appearing in (3.10) the numerator has degree less than 

that of the denominator. It follows that 

OPJ OPJ l , r  = 1 . . . . .  m, j = 1 . . . . .  n. (3.11) 
a j l ' ~ r  --- a i r  O ~ l '  

In other words, for each j - 1 . . . . .  n, the 2 x m matrix 

aj  l a j  2 .. .  a j  m ) 
opj ~ps 

O ~. l 0 ~. 2 "'" O X ,,, 
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has rank one. This means that the numerical vector (ajl . . . . .  ajm) is proportional 

(over the field C(X1 . . . . .  ,km) of rational functions) to the vector of polynomials 
( ~  ~ 0p~ ) So we have 

OKI ' 0 ~ . 2 '  " " " ' O~.m " 

3Xr 
= ajr3j(~.) (3.12) 

for some polynomials 8j (~). Since the pj are homogeneous, we have 

m 

y ~  Xr Opj = djpj .  
r=l 3 ~ . r  

By (3.12), we conclude that 

( y ~ ) ~ r a j r )  ~j (~.) = dj pj (~.). 
r 

If dj > 1 then deg(3j) > 0 and this contradicts the irreducibility of pj. Hence 

dj = 1 for all j .  So the pj are linear homogeneous functions, say 

m 

Pj(~.l . . . . .  )~m) -- ~ -~b jr~r  �9 
r = l  

By (3.12), bjr --- ~j .air where 8j ~ C*. Hence 

tlIl(~) = E I ( H ~ j J t  )" ajr)~r 
j j = l  

as claimed in Proposition 3.6. 

Now let us finish the proof of Theorem 3.1. Since Z is a hypersurface, the 

rank of the matrix Ila~ ~ II, j = 1 . . . . .  n, l -- 1 . . . . .  m, given by Proposition 3.6, 

equals m, i.e., the rows a (0 ~ Z" are linearly independent. Denote by L C Z" 

the Abelian subgroup generated by the a (z). Then L is a primitive lattice, i.e., 

L = (L | Q) f3 Z" (otherwise the map qJ given by (3.3) would be a v-fold cover 

of its image, where v = [(L | Q) N Z ~ �9 L]). Since the kI/ l  a r e  homogeneous, each 

a ~ L has the sum of components equal to 0. Thus our claim is a consequence of 

the following lemma. 

n L e m m a  3.7. Let L C Z n be a primitive subgroup of  rank m such that Y~q=l aj -- 0 

for  any a = (al . . . . .  an) ~ L. Then there is an n-element set A C Z n-m-1 such 
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that L is the lattice of affine relations among elements of  A, and A generates 

zn-m-1 as an affine lattice. 

Proof. Put ~ = Zn/L.  This is a free Abelian group of rank n - m. Let to ~j) e ~, 

be the image of the j- th basis vector of Z", and let A = {a~ (1) . . . . .  og~n)}. Since 

each a ~ L has ~ aj = 0, a homomorphism Z ~ --~ Z, a ~ ~ aj factors through 

a homomorphism ~, ~ Z, denoted by h. Then A is contained in the affine lattice 

{u ~ ~ �9 h(u) - 1 } and (affinely) generates it. Identifying this lattice with 

Z n-m-l,  we obtain our statement. Theorem 3.1. is completely proved. 

E. Discriminantal varieties and entropy 

The formulas of subsections C, D can be rewritten in a nice way. Consider once 

more the space c m =  L A @ C. The matrix Ila)l)ll,- j = 1 . . . . .  n, l = 1 . . . . .  m, 

defines n linear functionals 

m 

Pj (~.) = Pj (~'1 . . . . .  ~,m) = uj A t 
/=1 

on this space. The rational functions q/l(),,) defined by (3.3) satisfy (3.6), i.e., the 

differential form ~ = E l  log(q~l)d~.l is closed. By Lemma 3.5, ~ = dS where 

S --  )--~4 ~/logqJ/.  

Proposit ion 3.8. The function S = ~ ~.tlogqJt can be written as 

S(~.) = ~ pj (~.)logpj (~). 
j=l  

Proof. Using (3.3), we obtain 

m m n 

S(~,) "-- ~ ~./logq//(~.) "- ~ ~l ~ a~l)logPj(~) = ~ pj(~)logpj(~,), 
/=1 /=1 j=l  j 

as required. 

The function S looks like the entropy of a probability distribution, the lin- 

ear functionals pj(X) playing the role of the probabilities of elementary events. 

Curiously, we have ~-~j pj(X) = 0 (compare with the usual rule ~ pj = 1 for 

probabilities). This is one of the mysterious appearances of entropy-like expres- 

sions in the theory of discriminants (cf. Proposition 1.8). 

Recall that the reduced discriminantal variety VA C (C*) m has the parametriza- 

tion xi = qJi(Zl ..... )~m). Lemma 3.5 and Proposition 3.8 imply that log(Va) C 
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C m, the image of VA under the (multivalued) map log �9 ( C * )  m ~ C m , has the 

parametrization Yi -- OS/a~.i (here the Yi ---- log(xi) are the coordinates in cm). 
This can be rephrased by saying that 1og(~'a) is projectively dual to the graph of 
the entropy S in the following sense. 

Note that S is homogeneous of degree 1, so its graph (denote it 1-') is a conic 
analytic subvariety in C m+l. Let (z, ~1 . . . . .  ~.m) be the coordinates in C m+l so 

that F is given by z = S(~1 . . . . .  )~m). Let P(F)  C em be the projectivization 

of 1-'. Consider the dual projective space pro, with homogeneous coordinates 

w, Yl . . . . .  Ym dual to z, ~.~ . . . . .  ~,m. Let P(F)  v C pm, be the hypersurface 

projectively dual to P (F'). Consider the affine chart C m in pm, given by w ~ 0. 

We assume that w ----- 1 in this chart and take y~ . . . . .  Ym as affine coordinates. In 
these coordinates the intersection P(F)  v N C m is nothing more than log(Va), as 

it follows from the above mentioned parametrization. 

Note that the (non-reduced) A-discriminantal hypersurface VA is projectively 

dual to the toric variety XA. 

E The relation to hypergeometric functions 

The aim of Horn's paper cited above was to study the domains of convergence of 

hypergeometric series in two (or more) variables. More precisely, Horn called a 

power series 

. . . .  I)1 �9 �9 �9 X Pm m F ( x ) =  E cv~ .vmX1 
Pl ,  . . . ,  Pm 

hypergeometric if the ratios of coefficients 

g i ( P l  . . . . .  Pm) - -  
C P l ,  . . . .  P i - I  ,vi +1 ,P i+I  . . . .  ,Pro 

C P  1 , . . . , I )  m 

are rational functions in Vl . . . . .  !) m . It is known that a power series converges 

"up to its first singularity" (see Proposition 1.5 Chapter 6). On the other hand, the 

knowledge of the functions Ri allows us to determine the growth of the coefficients 

and hence the convergence radius in any given direction. Thus we can obtain the 

information about singularities of the analytic function represented by F(x) .  The 

most interesting component in the singularity locus is the hypersurface with the 

parametric presentation 

Xi = q / i ( ~ ' l  . . . . .  ~.m),  w h e r e  qJi(~.l . . . . .  ~-m) = limt-,ooRi(t)~l . . . . .  t ~ m )  

(3.13) 
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(and other components are pull-backs of similar hypersurfaces from the spaces 
with a smaller number of variables). This is the Horn uniformization*. 

However, it appears to be a recent remark [GKZA] that any component 

of the singular locus of every hypergeometric series is in fact the reduced A- 

discriminantal variety for a suitable A. 

The fact that the q~i defined by (3.13), satisfy (3.6), follows from the cocycle 

relations 

Ri(v)Rj(v  + ei) = Rj(v)Ri(v  + ej), (3.14) 

where the ei e Z m are standard basis vectors. These relations hold by definition of 

the Ri. In other words, (3.14) means that the Ri form a 1-cocycle of the group Z m 

with coefficients in the multiplicative group of rational functions C(vl . . . . .  Vm)* 
on which Z m acts by translations of variables. 

The classification of solutions of (3.6) given in Proposition 3.6 is a limit case 

of the classification of solutions of (3.14) (i.e., the description of the corresponding 

cohomology group) due to Birkeland and Ore [Bir], [Ore]. 

* In principle, the limits in (3.13) may be identically equal to zero (this would 

mean that the corresponding series diverges) or infinity. In order for the limits to 

be other than 0, c~, the degree of the numerator of Ri should be the same as the 

degree of the denominator. This is the case for hypergeometric series satisfying 

differential equations with regular singularities. 



CHAPTER 10 

Principal A-Determinants 

Our aim in this and in the following chapter is to study the Newton polytope of 
the A-discriminant A A. This will be done through an intermediary object, the 

so-called principal A-determinant E A. Like the A-discriminant, E A = E A ( f )  is 
a polynomial function in coefficients ao, of an indeterminate polynomial f ~ C A. 

We shall do the following: 

(1) give a complete description of the Newton polytope of E A. It turns out to 

coincide with the secondary polytope E(A) (see Chapter 7); 

(2) give a formula (prime factorization) expressing Ea as a product of A A and 

discriminants corresponding to some subsets of A; 

(3) give a formula for the product of values of a polynomial at its critical points 

in terms of the principal A-determinants. 

The prime factorization of E A will allow us to express AA through the principal 
determinants corresponding to some subsets of A, thus providing information about 

the Newton polytope of AA. This will be done in Chapter 11. 

1. Statements of main results 

In this section we only give definitions and formulate the results. Proofs are given 
only when they are immediate; More involved proofs are postponed until later 
sections of this chapter. 

A. The pnncipal A-determinant 

Let A C Z k-1 be a finite subset which affinely generates Z k-1 over Z. As usual, 

let C A be the space of Laurent polynomials f ( x l  . . . . .  xk-1) -" ~-~toEA awxW with 

monomials from A. For k polynomials fl . . . . .  fk ~ C A, let RA (fl . . . . .  fk)  be 

their A-resultant (see Section 2A Chapter 8). Now for any f - f ( x l  . . . . .  xk-1) E 
C A we define 

Of Of , f ) .  (1.1) 
EA ( f )  -- RA Xl OXl ' " " Xk-1 Oxk-1 

Note that each Xi(Of/Oxi)  belongs to C A so (1.1) makes sense. Clearly EA 

is a polynomial function in coefficients of f .  We call E a ( f )  the principal A- 

determinant of f .  
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This name is explained by the fact that EA possesses a determinantal repre- 
sentation which is considerably simpler than the representation of AA (see Section 
2C Chapter 9). This is just the determinantal representation for RA (see Section 
2B Chapter 8), under the specialization (1.1). Since we shall make use of this 
construction, let us explain it in more detail. 

We again adopt the notation and conventions of Section 2B Chapter 8. So we 
embed A into the Abelian group Z k = Z k- 1 x Z by o9 F-~ ~ = (09, 1). As before, let 

h �9 Z k --+ Z be the projection given by the last coordinate, S the subsemigroup in 
Z k generated by A and 0, and for each I ~ Z, let Sl be the slice {u ~ S �9 h(u) = l}. 

Let I ~ Z and f = Eto~a ao~ x~ ~ CA. Define the complex L ~ (A, l) with the 

differential Of by setting 

i 

L i (A, l) = ~ A (Ck)" (1.2) 
uESl+i 

A typical element of the u-th summand will be denoted by (u, ~k), where Jk 
A i (ck). We define Of �9 L i (A, l) --+ L TM (A, l) by 

0f (u, ~.) = - E ao)" (u -I- w, ~. A w). (1.3) 
~ E A  

It is immediate that 19} = 0. 

The spaces L ~ (A, l) are equipped with natural Z-lattices 

i 

L ~ ( A , I ) =  ~ A z(Zk). 
uESi+t 

We denote by e some system of Z-bases in these lattices. 

Proposition 1.1. For I >> 0 and generic f ~ C A, the differential Of in L ~ (A, 1) is 

exact and 
EA ( f )  = -t-det(L ~ (A, l), Of, e) (-1)k . 

Proof. Comparing the above definitions with formulas (2.4) and (2.5) in Section 
2, Chapter 8, we see that L ~ (A, l) is obtained by the specialization (1.1) from the 
resultant complex C~ Thus our statement is a special case of Theorem 2.5, 

Chapter 8. 

Consider the particular case when X A is a smooth variety. Comparing 

L~ l) with the discriminantal complex C~ l) (see (2.9), (2.10) in Chap- 
ter 9), we see that C~ l) is a subcomplex of L~ l). This subcomplex is more 
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complicated than the complex itself, because each C i (A, l) is a sum of different 
summands, while all the summands in L i (A, l) are the same. 

B. The pr/me factorization of EA 

Let Q c R k-1 be the convex hull of A. For any non-empty face r c Q, we 

introduced (see Section 3A Chapter 5) the semigroup S~ F which is the image of 
S in the quotient lattice Z k/Z k n Linz(F). We also introduced the index 

i(r, A) = [Z k n Lint(r) : Linz(A n r)] .  

We denote by X ~ ( r )  c XA the torus orbit corresponding to F and its closure by 

X (F). Let multxw)Xa be the multiplicity of XA along X ( r )  (see Definition 3.11, 

Chapter 5). By Theorem 3.16 of Chapter 5, 

multxtr)XA = i(r, A) . u(S/  F), 

where u ( . )  stands for the subdiagram volume of a semigroup. 

For any face 1-' C Q and any f --  ~-~to~A a,o x'~ ~ cA' we denote by f l i t  = 
)--~,,canr a,ox'~ the coefficient restriction of f to r (cf. Section 1, Chapter 6). For 

f ~ C a we write A a n r ( f )  := Aanr( f l l r ) .  
Now we describe the prime factorization of the principal A-determinant. 

Theorem 1.2. The principal A-determinant is equal to 

EA( f )  =-4- H AAnr(f)i(r'A)u(s/r) 
r c Q  

the product taken over all non-empty faces F C Q including Q itself In particular, 
i f  X A is s m o o t h  then  

A ( f )  = + I-I  Aanr ( f ) .  E 
r c Q  

The proof will be given in Section 2 below. 

Examples 1.3. Let us illustrate Theorem 1.2 for the sets A given in Examples 1.6, 

Chapter 9. 

(a) Let A consist of all integral monomials of degree d in x l . . . . .  xk. The 

polytope Q c R k is the (k - 1)-dimensional simplex 

{<t, . . . . .  >_o, =a} .  
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There are 2 k - 1 (non-empty) faces of Q, corresponding to non-empty subsets 

I C { 1 . . . . .  k}. More precisely, the face 1" (I)  corresponding to a subset I is given 

by the equations ti = O, i ~ I. Since XA is s m o o t h ,  Theorem 1.2 gives 

E A ( f )  : l - I  AAnr(1)( f ) .  
O#tc{1 ..... k} 

For example, if k = 2, then a polynomial f ~ C A has the form 

f (xl, x2) = aox d -b a,xdl-'X2 -b . " . -b aax d 

and 

EA ( f )  = aoad A a ( f ) ,  

where AA is the classical discriminant of a binary form of degree d. 

If k = 3, then we can write f ~ C A as 

-~ ,,7 ~.i . . j .  d - i - j  
f (x l ,  x2, x3) - -  ,..ij.'~ 1-~,2 "~3 

iWj<d 

and 

EA ( f )  = AA ( f )  " aooaodadO " A(aodx a + aO,d-lxg-lX3 + ' ' "  + aooxg). 

Here three A factors are the discfiminants of binary forms, and AA is the discfim- 

inant of a ternary form of degree d. 

(b) Let A consist ofbilinearmonomials xiYj, i -- 1 . . . . .  m, j = 1 . . . . .  n. A 

polynomial f (x, y) = ~ aijxi Yj E C A is determined by its matrix of coefficients 

[[aij [[ of size m x n. The polytope Q is the product of two simplices A m-1 • A n-1.  

Its faces are products 1"1 x 1-'2 where F1 is a face of A m-1 and 1-'2 is a face 

of A n-1. In other words, faces correspond to pairs of non-empty subsets I C 

{1 . . . . .  m}, J C { 1 . . . . .  n} of arbitrary cardinalities. Let us denote the face 

corresponding to a pair (I, J )  by F(I ,  J) .  It was shown in Example 1.6 (b), 

Chapter 9 that the A M 1"(I, J)-discriminant A a n r ( t , j ) ( f )  identically equals 1 if 

I and J have different cardinalities, and if #(I )  = # (J )  then A anr (x , j ) ( f )  equals 

the minor Axj(llaijl[) of the matrix [[aijl[ on the rows from I and columns from 

J.  Therefore 

E A ( f )  -- Ea(llaijll) - I - I  Axj(llaijll)  (1.4) 
l,J 
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is the product of all the square minors (of all sizes, including 1 x 1) of the (m x n)- 

matrix Ilaij II. 
For example, if m -- n -- 2 then 

all  
EA a21 

\ 
a12 ] _ alla12a21a22(alla22 -- a12a21). 
a22 / 

(c) Let A consist of 1, x . . . . .  X m, y, yx . . . . .  yx ~. The space C A consists of 

polynomials g(x, y) = fo(x) + Yfl (x) where 

fo(x) = ao + alx + . . .  + am Xm, f l (X) = bo + blx + " "  + bnx n 

are polynomials in one variable x of degrees m, n. The polytope Q is the trapezoid 

in Figure 43. Therefore 

EA(fO(X) -+" y f l (x ) )  = aoambobnAm(fo) �9 A n ( f l )  " Rm,n(fo, f l )  (~.5) 

where A m is the classical discriminant of a polynomial of degree m in one variable 

and Rm,n is the classical resultant of two polynomials of degrees m, n in one 

variable. 

C. The Newton polytope of  E A 

Recall that E A is a polynomial in coefficients a,o of an indeterminate polynomial 

f ( x )  = ZtoEA a,o x~ ~ Ca" Let us write EA in an expanded form, as a sum of 

monomials: 

E z ( f ) =  Z c ~ ' H o ~ ( ' ~  ( 1 . 6 )  
~0:A--+Z+ ~oEA 

where ~o runs the exponent vectors of monomials in EA and c~o 6 Z is the coefficient 

at the monomial corresponding to qg. The Newton polytope N (EA) is, by definition, 

the convex hull in R a of all vectors r : A --+ Z+ such that c~0 -r 0. 

Recall that we defined the secondary polytope E(A)  C R a (Section 1D 

Chapter 7). Its vertices are in bijection with coherent triangulations of (Q, A): the 

vertex corresponding to a triangulation T is the function qgT : A --+ R given by 

r = ~ Vol (o) (1.7) 

gET 

wEVert(a) 

where Vol is a fixed translation invariant volume form on R k-1 . In the sequel we 

always assume that the volume form Vol - Vol zk-, is induced by the lattice Z k-1 

(see Section 3D Chapter 5). 
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Theorem 1.4. 

(a) The Newton polytope of EA coincides with the secondary polytope E(A). In 
particular, vertices of E A are the functions (Pr for all the coherent triangula- 
tions of ( Q, A ). 

(b) If  T is a coherent triangulation of(Q, A) then the coefficient at the monomial 

I-ItoEa a~ r(~ in E A equals 

c~r = + 1-I Vol (a) v~ (') 
a E T  

Proof. This is a corollary of Theorems 3.1 and 3.2 of Chapter 8 describing the 

Chow polytope of the toric variety XA (i.e., the weight polytope of the resultant RA) 
and the extreme monomials in RA. We have only to show that under specialization 
(1.1) the bracket monomial I-I,, er [a ]Vol (o) of Theorem 3.2, Chapter 8 becomes the 

monomial 4- I-Io~T Vol (a) v~ (~ 1-Ito~a a~ r(~~ (this means, in particular, that this 
specialized monomial is non-zero, and so the Newton polytope of E A coincides 
with the Chow polytope). Remembering the definition of the brackets [a ], we see 
that under (1.1), each [a ] becomes 

+Vol (a)  1-I ao~. (1.8) 
toEor 

This immediately implies our statement. 

Examples 1.5. (a) Let A = { 1, x, x 2}. The space C A consists of quadratic 
polynomials f (x) = ax 2 + bx + c. The polytope Q is the segment [0, 2]. The 
discriminant A a ( f )  is equal to b 2 - 4 a c .  The principal A-determinant has the 
form EA ( f )  = ac(b 2 - 4 a c )  = ab2c -  4a2c2; its Newton polytope is the segment 

in R a -- R 3 with the end-points (1, 2, 1) and (2, 0, 2). There are exactly two 

triangulations of (Q, A). The first triangulation 7'1 consists of just one "simplex" 
which is the whole [0, 2]. Its "volume" equals 2. The corresponding vertex ~or, 
of E(A) is (2, 0, 2), and the corresponding term in EA is --4a2c 2. The second 

triangulation T2 consists of two "simplices" which are segments [0, 1 ] and [ 1, 2], 

both of volume 1. The vertex tPr2 e E (A) is (1, 2, 1), and the corresponding term 
in EA is ab2c. 

The generalization of this example to polynomials of arbitrary degree in one 
variable will be discussed later (see Section 2, Chapter 12). 

(b) Let A consist of bilinear monomials xiYj with i = 1, 2, j = 1 . . . . .  n. 
Then C A is identified with the space of 2 x n- matrices [[aij II. By (1.4) above, we 
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have 
2 tl 

EA(llaijll)  = I - I  I - I  aij �9 I - I ( a l k a 2 1 -  a2kall) 
i=1  j = l  k<l 

2 tl 

-1-l lq aij 
i=1  j = l  

a??' a12 "l . . .  
n--2 

a l l  a 2 1  a l 2  2 a 2 2  . . .  

�9 . , 

�9 . . 

n - i  
a~?' a22 ... 

n - I  
aln 
n--2 

a ln a2. 

n--I a~ 

where the last equality follows from the formula for the Vandermonde determinant. 

We see that E A has n I monomials (corresponding to all the summands in the 

determinant) and the Newton polytope of E A is the permutohedron Pn, i.e., the 

convex hull of an orbit of the action of the symmetric group Sn in R" (see Section 
3C Chapter 7). This is in accord with the fact that the secondary polytope E (A) 

is the permutohedron. 

Generalizing this example to the case when C A is the space of matrices of 

arbitrary size m x n we see that the Newton polytope of the product of all minors 

(of all sizes) of such a matrix coincides with the secondary polytope ]~(A m-1 • 

A "-1) of the product of two simplices. The relationship between triangulations of 
A m-1 • A n-1 and the extreme monomials in the product of minors is not yet fully 

understood. Let us mention only that the standard triangulation To (see Section 

3D Chapter 7) corresponds to the product of diagonal terms in all the minors. We 
leave checking this fact (i.e., that the exponent vector of the product of all diagonal 

terms coincides with tPT0), to the reader. 

Remark 1.6. The coefficients of the extreme monomials in EA, given by Theorem 

1.4, have the form 

1-I Vi v~ -- e y~ Vi log Vi . 

We have already encountered entropy-like expressions ~ pilogpi  (see Section 3E 
Chapter 9). This is the second appearance of such expressions in the theory of 

discriminants. 
Here the role of probabilities Pi is played by the volumes Vol (a) of the 

simplices a in a given coherent triangulation T of (Q, A). Since Y-~o~T Vol (a) -- 

Vol (Q), we can regard the collection of Vol (a)/Vol (Q), a 6 T, as a probability 

distribution in the following model: we randomly throw points into the polytope 

Q and look at the probability of the event that a point lands in a given simplex of 

a triangulation. By Theorem 1.4, the coefficient of I-ItoEA a~ r(~ in the principal 

A-determinant is essentially the exponent of the entropy of this model. It would 

be nice to find a "probabilistic" explanation of this. 
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D. Applications to the geometry o f  discriminantal hypersurfaces 

As we have seen (Section 1B Chapter 6), the structure of the Newton polytope of 

a Laurent polynomial F in n variables is closely related to the geometry of the 

hypersurface { F = 0} in the toms (C*) n. 

We explore this relation for the polynomial F = EA in variables a~,, to ~ A. 

So we regard E A as a Laurent polynomial, i.e., as a function on the torus (C*) A. 

In other words, in this subsection we s consider only the polynomials f ~ C A all 

of whose coefficients are non-zero. 

If T is a coherent triangulation of (Q, A) then the normal cone C ( T )  to the 

secondary polytope E(A) at its vertex tpr was described in Theorem 1.7, Chapter 

7. It consists of those functions ,k -- (Xo~) " A ~ R whose values at vertices of T 

extend to a concave T-piecewise-linear function gr,z " Q --~ R and whose values 

at elements to of A which are not vertices of T do not exceed the values of gr, z (aO. 

Let Z C (C*) A be the zero set of EA. Since the A-discriminant AA is a divisor 

of E A, the variety Z contains the discriminantal variety VA intersected with (C*) A. 

Corollary 1.8 of Chapter 6 together with Theorem 1.4 imply the following. 

Corollary 1.7. Let T be a coherent triangulation of  (Q, A). There exists a vector 

b -- (b~o) E C(T )  with the following property: whenever f ( x )  -- Zw~A ao~ x~ ~ 

(C*) a is such that the vector (loglao~]) 6 R a lies in the translated cone C ( T )  + b, 

we have E A ( f )  ~ 0 (and hence A a ( f )  ~ 0). 

Plainly, whenever the logarithms of the absolute values of the coefficients of 

f 6 (C*) a are "concave enough" with respect to any given triangulation, then f 
has a non-zero discriminant. Thus such an f defines a smooth hypersurface in 

(C*) k-1 (since the presence of a singular point in the torus is, by the definition 

of AA, a sufficient condition for the vanishing of AA). If XA is smooth then the 

hypersurface in X A given by f is also smooth (since A a is the equation of the 

variety projective dual to XA). 

We shall discuss in Chapter 11 the consequences of this for real algebraic 

geometry. 

R e m a r k  1.8. There is another way of proving Corollary 1.7 which can provide, 

in principle, some bounds for the vector b. This is done by using the theory 

of hypergeometric functions. Namely, in [GGZ], to a set A C Z k-1 there is 

associated the A-hypergeometric system (cf. Remark 1.19 Chapter 7). This is a 

holonomic system of linear differential equations on a function C A ~ C. The set 

of singular points of this system is the hypersurface in C A which is the union of 

the hypersurfaces {Aanr , ( f  ) -- 0} for all the faces 1-' C Q. Taking into account 

the prime factorization of E A, we can write this hypersurface by one equation 
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EA ( f )  = O. 
On the other hand, in [GZK1] we constructed, for any coherent triangulation 

T of (Q, A), a complete system of solutions of the A-hypergeometric system given 

by the Laurent power series. These series have a common domain of convergence 

of exactly the form stated in Corollary 1.7" this domain is determined by some 

b ~ C(T)  and consists of f = Y]~ a~ox ~ ~ (C*) A such that (loglao~[) ~ C(T)  + b; 
therefore, in this domain the polynomial EA does not vanish. This method allows 

us, in principle, to give an effective bound for b by estimating the growth of the 

coefficients of the A-hypergeometric series. 

E. General formalism of  principal A-determinants 

For future convenience, we need to put the principal A-determinants into a slightly 

more general context. Suppose we are given a free Abelian group 2 -~ Z k of 

rank k and a finite subset A C 2 satisfying the following condition: there exists 

a homomorphism h : 2 --+ Q equal to 1 on A. Note that we do not require 

that A generates 2, nor that h takes integer values on 2; in particular, we allow 

the situation when the subgroup generated by A has rank < k. As usual, let 

Q = Conv(A) C 2 R  = 2 (~) R. 

Suppose also that we have a finitely generated semigroup S C 2 satisfying 

the following condition: S contains A and the convex hull of S is the minimal 

convex cone containing A. As before, we denote Si = {u ~ S : h(u) = i}. Note 

that we do not require that A generates S as a semigroup. 

As usual, we identify points of 2 with Laurent monomials in k variables. Let 

C A denote the space of Laurent polynomials with monomials from A. Fix some 

f 6 C A. We now define the complex L ~ (A, l, S, 2). Its terms are 

i 

t i (A, 1, S, 2) = ~]~ A 2c.  
aESi+t 

(1.9) 

The differential Of is given by (1.3). 

Proposition 1.9. For I >> 0 the complex (L~ 1, S, 2), Of) is exact whenever 

A Ant" ( f )  =t/= 0 for any face I" C Q. 

The proof of this proposition as well as of Proposition 1.10 and Theorem 1.11 

below will be given later in Section 3. 

We introduce the Z-lattice in each term L i (A, l, S, 2) by 

i 

Liz(A,l ,  S, " ~ ) -  0 A 2. 
a~S~+t 

(1.10) 
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Let e be some system of Z-bases in the lattices (1.10). For any f ~ C A and l >> 0, 

we set 

Ea,l(f ,  S, ~) -- det(L~ 1, S, F~), Of, e) (-1)k. 

This gives us a rational function on C A defined up to a sign. 

Proposi t ion 1.10. The rational function E A,t(f, S, ~) is independent (up to a 

sign) of  the choice of  I >> 0. 

So we write E A (f ,  S, "~) for E A,l(f, S, ~) with I >> 0. This function in- 

cludes the principal A-determinant E A ( f )  considered above, as a special case 

corresponding to the following situation: 

F~ = Z k-1 x Z, and h �9 E -+ Z is given by the last coordinate; 

A affinely generates Z k-1 x { 1 }; 

S is the semigroup generated by A. 

In fact, any E A (f ,  S, ~) can be reduced to this special case, as the following 

theorem shows. 

T h e o r e m  1.11. 

(a) Ifthe linearspan Lina(A) C ~R hasdimensionlessthank then EA ( f  , S, F~) : 

4-1 identically. 

(b) I f  Ling ( A ) has full dimension k then 

Ea ( f  , S, ~) : -4-[~ " Linz(A)]V~ ~ (f)[Linz(Sz):Linz (a)] 

where Linz means the Abelian subgroup generated by a set; | -- Linz (S) f3 

{u ~ E " h(u) -- 1}; and Sz -- {u ~ S " h(u) ~ Z}. 

The appearance of the semigroup Sz in the theorem is natural since the com- 

plexes (1.9) involve the summation over points which always belong to Sz. In 

most (but not all) applications we will be interested in, we have Sz - S. 

Theorem 1.11 shows that the increase of generality in passing from E A ( f )  

to E A ( f ,  S, F~) is largely nominal. However, many formulas below can be written 

much more simply in terms of EA (f, S, ~). 

E Coefficient restrictions of  EA 

By Theorem 2.4 Chapter 7, the faces of the Newton polytope N(EA) -- E(A) 

correspond to coherent polyhedral subdivisions P = {(Oi, Ai)} of (O, A). Let 

F (P)  C N (EA) be the face corresponding to a subdivision P. We shall describe 

the coefficient restriction 

~o~.F(P) w~_A 
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where the c~0 are coefficients of E A (see (1.6)). If P is a triangulation then F (P)  

is a vertex and the coefficient restriction is just the monomial in E A described 

in Theorem 1.4. The general answer is formulated in terms of the generalized 

A-determinants of subsection E. As before we assume that A C Z ~- 1 is embedded 

into the Abelian group Z k, and that S C Z k is the semigroup generated by A. 

Theorem 1.12. Let P = {(Qi, Ai)} be a coherent subdivision o f (Q ,  A). Then 

EA(f)IIFr = I-I Eai( f ,  S (i), Z k) 
i 

where S (i) = S f3 R+ Qi is the intersection of  S with the cone over Qi. 

Here and later on the principal determinant associated to a subset B C A is 

regarded as a function on C A via the coefficient restriction C A --+ C 8 (this applies, 

in particular, to B -- A i in Theorem 1.12). 

By using Theorem 1.11, we can reformulate Theorem 1.12 in terms of the 

Eai.  

Theorem 1.12'. In the above assumptions we have 

EAIIFr - l - -I[z  k" Linz(ai)]V~ Ea, ( f )  [zk:Linz(a')]. 
i 

More precisely, we should note that Linz(S ~i)) = Linz(S) = Z k (this is 

because S <i) is the intersection of S with a cone having non-empty interior). Thus 

the lattice | in Theorem 1.11 coincides with Z k-1. Also the semigroup S~ ) 
coincides with S <i), since S <i) is generated by Ai. 

Let us prove Theorem 1.12. By Proposition 1.3 Chapter 6, the coefficient 

restriction of any Laurent polynomial F(xl . . . . .  x , )  to any face of its Newton 

polytope can be found from leading terms of 1-variable polynomials of the form 

Z" ~ F('t '~'lx1 . . . . .  "tS~'nXn). 

Hence Theorem 1.12 is a consequence of the following statement. 

Theorem 1.13. Let P = {(Oi, Ai)} be a coherent polyhedral subdivision of  

(Q, A) and let C(P)  C R a be the corresponding cone (Section 2A, Chapter 

5). Let 3, -- (~.o,)o,~a be an integral vector lying in the interior of  C(P). Then 

for  a generic f -- ~ ao~x ~ E C A, the leading term of  the Laurent polynomial 

r ~ EA (~co rX~a~o x~ equals 

-4- I - I  Eai ( f  , S (i) , z k )  "C~'(F(P)) , 
i 
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where the S (i) a re  the same as in Theorem 1.12 and ~.(F(P)) is the value of  ~. 

(regarded as a linear functional o n  R A) at any point of  F ( P ). 

The proof of Theorem 1.13 is quite similar to that of Theorem 3.3, Chapter 
8. Using Proposition 1.1, we interpret EA as the determinant of the complex (1.2), 

then, out of ,k, construct a filtered complex over the field C((r-1))  and study the 

associated graded complex using the Kouchnirenko resolution. The first term of 

this resolution will be the direct sum of complexes calculating the EA, ( f ,  S ~i~ , Z k) 

and other terms will have determinant 4-1 by Theorem 1.11 (a). We leave the 

details to the reader (cf. also [GZK3]). 

G. Modifications o f  triangulations and signs in Theorem 1.4 

In Theorem 1.4 we described only the absolute value of the coefficient in the 

monomial of E A corresponding to a coherent triangulation T. However, the sign 
of the coefficient is also of interest. For instance, when A consists of bilinear 

monomials xi Yj, i = 1, 2, j = 1 . . . . .  n, the polynomial E A is essentially the 

Vandermonde determinant (see Example 1.5 (b)) so monomials in EA correspond 

to permutations of { 1 . . . . .  n} and the sign of a monomial equals the sign of the 

corresponding permutation. 
Since E A itself is defined only up to a sign, it is possible to describe the 

coefficients only up to a simultaneous change of sign. Thus we can compare the 

signs of any two monomials. 

Let T, T' be two coherent triangulations of (Q, A) such that the corresponding 

vertices tpr, 99r, of the secondary polytope are joined by an edge. Let c~0r, q0r, be 
the corresponding coefficients in EA. Let p(T,  T') e {0, 1 } be such that ( -  1)P~r'r'~ 

is the sign of the ratio q0r/c~r,. 
Since any two vertices of a polytope can be joined by an edge path, knowing 

all the p(T,  T') will allow us to compare the signs of any two coefficients corre- 

sponding to vertices of N (E A). (This, in fact is how the sign of a permutation is 

defined: we postulate that the sign changes under any transposition and ascribe 

sign + 1 to the identity permutation.) 

By Theorem 2.10, Chapter 7, the vertices tpr, tpr, are joined by an edge if and 

only if the coherent triangulations T, T' of (Q, A) are obtained from each other 

by a modification along some circuit Z C A. We shall use the terminology of 

Section 2, Chapter 7. 

Theorem 1.14. Let T and T' be two coherent triangulations of  (Q, A) obtained 

from each other by a modification along a circuit Z C A. Then 
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where the summation is over all separating subsets. 

Note that if we embed A into Z k as above, then [Z k-1 �9 Affz(J  t.J Z)] = 

[Z k �9 Linz(J  t_J Z)]. In the formulation of Theorem 1.14 we prefer to use the affine 

notation since it does not involve the embedding into Z k. Note also that in [Lo] 
a seemingly different formula for the p(T, T') was stated; however, it becomes 

identical with the one above once we take into account the normalization of the 

volume Vol (Conv(J U Z)). 

Proof We consider the coefficient restriction EA II [~Or,~0r, ] of EA to the edge 

[~0T, ~or,]. This restriction is a polynomial which depends essentially on one vari- 

able. 

For any Laurent polynomial F in the a~o with real coefficients whose Newton 

polytope is a segment, let p(F) ~ {0, 1} be such that ( - 1 )  p(F) is the sign of the 

ratio of the two extreme coefficients of F. Clearly, the assignment F w-~ p(F) 
has the following multiplicative property: for any two polynomials F and G 

whose Newton polytopes are segments parallel to each other, we have p(FG) =_ 
p(F) + p(G) (mod 2). 

Using Theorem 1.12 and the description of the polyhedral subdivision corre- 

sponding to [~Pr, ~or,] (Proposition 2.12 Chapter 7), we see that EA IlI~0r,~0r, l equals, 

up to multiplication by a monomial and a constant, the product 

I-I Ejuz( f ,  Sj, Zk), where Sj -- S N Conv(R+(J  U Z)). 
J separ. 

Each of the factors in this product has, as its Newton polytope, a segment parallel 
to [~oT, qgT,]. Hence we can write, using the multiplicative property of F ~ p(F) 
and Theorem 1.11, 

p(Eall[~r,~r,](f)) =-- Z p(Ejuz( f ,  Sj, Zk)) 
J separ. 

~ [Z k-1 " Affz(J  1,3 Z)] p(Ejuz ( f ) )  (mod 2). (1.12) 
J separ. 

The principal determinant Ejuz is calculated with respect to the Abelian subgroup 

in Z k -- Z k-1 • Z generated by J U Z. To prove Theorem 1.14, we need another 

lemma. 

Call a set B C R k-1 weakly dependent if it is obtained from an affinely 

independent set (the set of vertices of a simplex) by adding exactly one point lying 
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in its affine span. Such a subset contains a unique circuit. Note that the subsets 

J U Z above are weakly dependent. 

Lemma 1.15. Let ~ be an affine lattice and let B C "~ be a weakly dependent 

subset which affinely generates "~ over Z. Then 

p(En) =--- Vol z(Conv(B)) + 1 (mod 2). 

Let us deduce Theorem 1.14 from Lemma 1.15. We apply this lemma to 

B = J U Z and ~, = Affz (J  U Z). Therefore the summand in (1.12) corresponding 

to J is equal to 

[Z k-1 " Affz(J U Z)](Vol Affz(jUz)(Conv(J U Z)) -k- 1) 

= Vol zk-, (Conv(J tO Z)) + [Z k-1 �9 Affz(J  tO Z)], 

as claimed. 

Proof of  Lemma 1.15. Let Z be the circuit contained in B. By Theorem 1.2, 

the polynomial EB has the form -1-I-Ir A Bnr, where 1" runs through all faces 

of Conv (B). But if such a face does not coincide with Conv(Z), then we have 

A Bnr = 4-1 since B nl" is independent and hence the corresponding discriminantal 

subvariety has codimension > 2. In other words, E8 -- A z. 

Let Z -- Z+ U Z_ be the decomposition of Z into the positive and negative 

parts (see Section 1B Chapter 7). We set 

m(w) = Vol Affz(Z) Conv(Z - {o9}) for o9 ~ Z+, 

m(oo) = -Vol  Affz(Z) Conv(Z - {o9}) for 09 e Z_. 

Since B affinely generates E over Z, it follows that m(w) - +Vol z C o n v ( B -  {w}) 

for o9 e Z+. 

Let us use the explicit formula for Az given in Proposition 1.8, Chapter 9. 

The first term in this formula has a positive coefficient, and the coefficient in the 

second term has the sign 

-- I - I  (--1)m~ - -  (--1)V~176 

w~Z_ 

as required. 
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H. The product o f  values o f  a polynomial at its critical points 

Suppose we are given a finite set A C Z k-1 of Laurent monomials in the variables 

Xl . . . . .  xi,-1, as before. For a polynomial f ~ C A, we let 

Sing ( f )  = {ct E (C*) k-1 "(Of/Oxi)(ot) = 0 Vi = 1 . . . . .  k -  1} (1.13) 

denote the set of critical points of f .  As before, we suppose that A affinely 

generates Z k-1 over Z. This implies that, for genetic f ~ C A, the set Sing ( f )  is 

finite, and all of the critical points are non-degenerate. For such f we define the 

number 

H a ( f )  -- 17  f(ct).  (1.14) 
u~Sing (f) 

Since (1.14) is a symmetric expression in the irrationalities ct ~ Sing ( f ) ,  ele- 

mentary Galois theory shows that HA is a rational function on C A. Unlike the 

discriminant AA, the function HA depends not only on the affine geometry of A, 

but also on the choice of zero (origin) in Z k-1. 

Our purpose now is to find the prime factorization of the rational function FI A 

(in the ring Z[(aoj)weA]). It turns out that H A has a simple expression in terms of 

the principal A-determinant and the principal (A N F)-determinants for the facets 

F C Q (i.e., faces of codimension 1). This gives us the prime factorization of FIA 

since the prime factorization of the principal determinants is given by Theorem 

1.2. 

As we said, FIA depends on the choice of the origin of the coordinate system 
in Z k-1. Let w0 denote this origin. 

Definition 1.16. A polytope Q c R k-1 is said to be convenient if the origin w0 

does not lie in the affine span of any proper face l" C Q. (cf. Kouchnirenko [Kou]). 

It is clear that any polytope can be made into a convenient one by a suitable 

translation. Thus, we suppose that Q = C o n v  (A) is convenient. 

We regard Z k-1 as an additive group with the neutral element coo. Let l" C Q 

be a facet. We define the group homomorphism hr  " Z k-1 -+ Q by the conditions 

hr l r  = 1 and hr(w0) = 0. 
We define a number p (F)  ~ Z, called the distance from F to COo as follows; 

its absolute value Ip(F)l is given by 

Ip( r ' ) l  -~ - min{a > O" a - hr(co) for some co ~ Zk-1}. 

In addition, we set p(1-') > 0 if hrlQ > 1 (i.e., F separates o90 from Q), and 

p(F)  < 0 if h r l a  < 1. Let K(F)  be the cone with apex coo generated by F. 
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As usual, we embed Z k-1 into Z k as the set of points (MI . . . . .  mk- l ,  1). Let 

K (A) be the cone in R k with apex 0 generated by the image of A in this embedding. 

Theorem 1.17. I f  Q is a convenient polytope, then we have 

I-IA(f) 
"- d=EA ( f ,  K (A) n Zk), Z k) l-I 

codim(r)=l 

EAnr ( f ,  K(F) n Z k-~ , Zk-~) p(r), 

where r runs through all facets o f  Q. 

Here the factors in the product are the generalized determinants of subsection 

E. The proof will be given in Section 4 below. 

Using Theorem 1.1 l, we can rewrite Theorem 1.17 in terms of ordinary 

principal determinants. It is easy to see that 

[Z k-I �9 Linz(A 0 F)] = Ip(r)l. i ( r ,  A), 

where 

i(1", A) = [Affr(l") tq Z k-l �9 Affz(A N F)] 

is the affine index encountered earlier. Also the index [Z k-1 �9 Linz(Sz)] for the 
semigroup S = K ( F ) N Z  t - I  is equal to ]p(F)I. A similar index for S = K ( A ) N Z  t 

is equal to 1. Combining this information with Theorem 1.11 we have: 

Corollary 1.18. In the situation o f  Theorem 1.17 we have 

I ' la(f)  "-  "4-[Z k - l "  Affz(A)] v~ �9 E a ( f )  [zk-l:Affz(a)] 

( ) v~ Affz(A"r)(r)'p(r) (f)p(r).i(r,a) 
1--I Ip(r) l .  i(r ,  A) .EAnr 

codim(r)=l 

Example 1.19. Let A = {x, x 2 . . . . .  xd}, SO C A consists of all polynomials in one 

variable of degree < d with constant term 0. The polytope Q is the segment [ 1, d], 

so Q is convenient and has two faces {1 } and {d} of codimension 1. We have 

p({1}) = 1 and p({d}) = - d .  The indices i(1-', A) are equal to 1. For f ( x )  = 

a lx  + . . .  + adx d we have E a ( f )  = a l a d A a ( f ) ,  El l l ( f )  = al,  E(dj ( f )  -- ad. 
The 0-dimensional volume of a point is 1. Hence Corollary 1.18 gives 

HA( f )  "- EA( f )  �9 l l E l l l ( f )  �9 d - d E l d l ( f )  -d = a'-dalad2 l - d A A ( f  ) 

which can, of course, also be seen by elementary means. 
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2. Proof of the prime factorization theorem 

In this section we prove Theorem 1.2 which describes the prime factorization of 

the principal A-determinant EA. The general line of the proof is as follows. We 

interpret the exponents of prime factors in EA in terms of multiplicities of some 
coherent sheaves on  C A X ( c A )  * along some subvarieties. Then we interpret the 

numbers i (1-', A) �9 u(S/1") as multiplicities along the same subvarieties of some 

constructible sheaves on the same space. Finally, we compare the two kinds of 

sheaves using the theory of D-modules and the Riemann-Hilbert correspondence. 

A. The logarithmic de Rham complex 

We assume the setup of Section 1A. So A C Z k-1 is a finite subset affinely 

generating Z k-1 over Z. We realize Z k-1 as the set of vectors in Z k with the last 

coordinate 1. We denote by S = SA the semigroup in Z k generated by A and by 

Y = YA = Spec C[S] the affine toric variety corresponding to A (see Section 1B 

Chapter 5). 

We consider the free C [S]-module 

i i 
Li(s) = C [S] r A ck - ~ A Ck" (2.1) 

y6S 

Elements of L i (S) can be regarded as discrete/-vector fields on Z k with support 

in S, in the sense of Section 2A Chapter 9. As explained there, these vector fields 

represent meromorphic differential/-forms on Y. 

Let us denote the union of all toms orbits of codimension >_ 1 by Y~ C Y and 
the open orbit by y0 _ y _ Y1. 

We consider the coherent algebraic sheaf on Y corresponding to the C IS]- 
module L i (S). We denote this sheaf by ~ ,  (logY1) and call it the sheaf of logarith- 
mic/-forms. As in Section 2A Chapter 9 we see that the restriction of ~ ,  (log Y1) 

to y0 coincides with ~2~0. 

k Example  2.1. If A is the set of vertices of a simplex then S -~ Z+ is a free 

semigroup, so Y = C t and Y1 C Y is the union of all coordinate hyperplanes in 

C k. In this case ~2~, (log Y1) is the usual sheaf of / - forms on Y with logarithmic 

singularities along Y1, see [De 1]. This can be immediately seen from formula 

(2.4) of Chapter 9 describing the correspondence between discrete/-vector fields 

on the lattice and meromorphic forms on the toms. 

We denote a typical element from the y-th summand in (2.1) by (y, ~.) where 

~. ~ A i c t. As in Section 2A Chapter 9, we define the map 

d �9 L i ( S )  --+ L i+l ( S ) ,  d(y, X) = (?', - y  A ~.) (2.2) 
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which gives rise to a morphism of sheaves 

d"  ~ ,  (log Y1) -+ ~2~ § 1 (log Yl) (2.3) 

extending the usual exterior derivative of forms on y0. Similarly, by using the 

identical formula to (2.3), Chapter 9, we define the exterior multiplication 

~2~,(logVl) | ~ , ( logVl)  --> ~ r  +j (logVl). (2.4) 

Let Yan be the complex analytic space corresponding to the algebraic variety 

Y. For any coherent algebraic sheaf.T" on Y, let .T'~n be the corresponding analytic 

sheaf on Yan. We are interested in the complex of sheaves 

~2 ~ (logY1) -- { ~0 (logY1) d 1 d Y, an Y, an ' flr, an (log Y1) ----+ "'" } (2.5) 

which we call the logarithmic de Rham complex of Y. 

Let j �9 y0 ~ y be the embedding of the open orbit. Since the restriction 

of (2.5) to y0 is the usual de Rham complex on y 0 ,  which is a resolution of the 

constant sheaf C__r0, we get a morphism in the derived category of sheaves on Y" 

( " ~,,an(logY1) ; Rj,  (C__ro). (2.6) 

Along with the analytic version of the de Rham complex, we use the formal 
version, i.e., the one obtained by considering the formal power series as coefficients 
of our forms. More precisely, let Z be an algebraic variety and let z 6 Z be a 

point. We denote O A = lim inv (Oz/ I  z )  where Iz C Oz is the ideal of functions z,Z 
vanishing at z. The ring OzA, z is called the formal completion of Oz at z. If .T" 

is any coherent algebraic sheaf on Z then its formal completion at z is defined as 

~z  ~ = Y" |  0 ^ z,Z" 

Returning to our situation of a toric variety Y, we have the vector spaces 

A which are connected by the differentials induced by (2.3). ~ ,  (log Y1)y 

Theorem 2.2. 
(a) The morphism (2.6) is a quasi-isomorphism. 
(b) For any y ~ Y the map 

~,an(logY1)y ~ ~,an(logY1)y (2.7) 

from the complex of stalks at y to the formal completion at y, is a quasi- 
isomorphism of complexes of vector spaces. 
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Proof. For the case when Y is a normal variety, this follows from the results of 

Danilov [D]. Let us treat the general case. 

The statement (a) means that, for any y ~ Y, the morphism (2.6) induces 
isomorphisms on the cohomology of complexes of stalks at y" 

n r ( ~ "  (logY1)y) ~ nr(Rj,(C___yo)y) -- n r ( u  n yO, C), (2.8) Y, an 

where U is a small neighborhood of y in Y. 

To prove (2.8) we look at the toms orbit containing y. Let K C R k be the 

convex hull of the semigroup S. This is a cone with base Q = Conv(A). Torus 

orbits on Y correspond to faces of K or, equivalently, to all (possibly empty) faces 
of Q. For a face F C Q let y0(F) C Y be the corresponding orbit. 

Suppose that y ~ Y~ The local structure of Y near y was described in 

Section 3A Chapter 5. Namely, near y the variety Y has the structure of the product 

y0 (F) x T where the transversal slice T has the form 

T = Spec C[E], E -- (Linz(A n F) + S) /Linz(A n F). (2.9) 

We denote the unique toms fixed point on T simply by 0. 

The semigroup E contains a finite Abelian group 

G -- (Z k n LinR(F))/Linz(A n F) 

of order i(F, A). We have Z / G  - S~ F, where the semigroup S~ F is the image 

of S in C k/Linc (F). Let 

q " Z --~ Z / G  - S~ F (2.10) 

be the natural projection. It follows that the cohomology group on the fight hand 
side of (2.8) is the direct sum of i (F, A) copies of the r-th cohomology group of 

the open orbit in Spec C[S/F],  i.e., it is 

( ~  )~i(F,A) 
(C k/Linc (1-')) (2.11) 

As for the complex ~2~,,a n (log Y1)y, we find that it splits into the (topological) 

tensor product of two complexes: 

(~'2 y0(r'),an)y ~) ~'2" an �9 r, ( logT1)0.  ( 2 .12 )  

Here 7"1 is the union of toms orbits on T of codimension > 1 and f2 ~ (logT1) ' T, an 
is the coherent analytic sheaf on Tan corresponding to the C[Z]-module 

i 
L i (•) -- ( ~  A(Ck/Linc(F) )  (2.13) 

uEE 
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(the C[Z]-action is defined by (2.10) and the inclusion S~ F C Ck/Linc(F)). As 
before, an element in the u-th summand of (2.13) will be denoted by (u, X). The 
differential in ~ .  an(logT1) comes from the map similar to (2.2) 

d" L i (~)  ~ L TM (~),  (U, ~.) ~ (U, --q(u) /X ~.) (2.14) 

with q from (2.10). 

Since Y~ is a smooth variety, the complex (f2~,0(r, an)Y is a fight resolution 
of C. It remains therefore to prove that the r-th cohomology of the complex 
Q~.,an(logT1)0 is identified with (2.11). An element of the stalk f2~,an(logT1)0 is a 
(possibly infinite) sum 

m 

~-](u,X~), ~.u ~ A(Ck/Linc(r)) (2.15) 
u E ~  

where the vectors ~., grow at most polynomially. If u ~ E is such that q(u) ~ 0 
then the complex 

0 1 

A ( Ck/Linc (F)) ̂ q(~) A ( Ck/Linc (F)) ̂ q(~) " " " 

is exact, so every ~.u ~ A m (Ck/Linc (F)), annihilated by multiplication with q(u), 
has the form 

m - 1  

~.u = q(u) A/zu, /zu ~ A ( C k / L i n c ( r ) ) "  

It is clear (compare [D], Proposition 13.4) that the/Zu can be also chosen to grow 
at most polynomially. This proves that 

Hm(~2~,an(logT1)o)-- { ~ (u, ~.u)} 
u~,,q(u)=O 

which is the same as (2.11). Part (a) of Theorem 2.2 is proved. To prove (b) we 
apply the same reasoning to formal series of the form (2.15) (without any growth 
conditions on the ~.u). 

B. The exponents of  prime factors in E A 

We retain the notation of subsection A. Recall in addition that the semigroup 
S C Z k is graded by the homomorphism h �9 Z k --+ Z given by the last coordinate. 
So C[S] is a graded algebra. We regard the space C A as the degree 1 component of 
C[S]. Therefore, we regard polynomials from C A as regular functions on Y which 

are homogeneous of degree 1 with respect to dilations of Y. 
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For any i, the space L i (S) introduced in (2.1) is a graded C[S]-module. The 
terms L i (A, l) of the complex calculating EA (see Section 1A) are just graded 
components of L i (S). This implies the following. 

Proposition 2.3. For I >> 0 the space L i (A, l) is identified with the space of  global 
sections 09 ~ H ~ (Y, f2ir (log Y1)) which are homogeneous of  degree i with respect 
to dilations of  Y. The differential Of �9 L i (A, l) --4 Li+I(A, l), for f ~ C A, is 
identified with exterior multiplication by d f . 

Proposition 2.4. Suppose that f ~ C A is such that, for any face F C Q, we have 
A a n r ( f )  r O. Then for I >> 0 the complex (L~ 1), Of) is exact. 

Proof. Consider the complex (L~ d f )  of graded C[S]-modules with the dif- 
ferential given by the multiplication with d f .  This is just the direct sum of all the 
(L~ l), Of). It is enough to prove that under our assumptions all the cohomol- 
ogy spaces of (L ~ (S), d f )  are finite-dimensional (so they will be situated in only 
finitely many graded components). This can be reformulated by saying that the 
complex of sheaves on Y 

f2O(logVl ) af/~ ~21r(logY~ ) af/~ . . .  (2.16) 

is exact outside the point 0 (the only 0-dimensional torus orbit). 

Let y r 0 be any point of Y. Suppose that y lies in the torus orbit y0 (F) where 
1 r" C Q is a face (non-empty, since y ~ 0). The assumption that A a n t ( f )  ~ 0 
means that the restriction flrow) does not have critical points. 

Now, as in the proof of Theorem 2.2, we use the identification of a neighbor- 
hood of y in Y with a neighborhood of (y, 0) in y0(1-,) x T where T is described 
in (2.9). 

Let us prove that the stalk at y of the complex (2.1 6) is exact. It is enough to 
show this after the formal completion at y. As in (2.12) this completion, regarded 
as a graded vector space, splits into the (completed) tensor product 

" ^~) ~ .  (logT1)~ (2.17) (~"2y0(F))y 

Consider the filtration on (2.17) by the degree of the second factor. This filtra- 
tion is compatible with the differential coming from (2.1 6) and the quotients are 
complexes of the form 

f2ro(r ), d(f lrotr))  ~) f2~ (logT,)~. 
Y 

Since fifo(r) does not have critical points, the first factor in the above product is 
exact whereby the completion of (2.1 6) is also exact. The proposition is proved. 
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Corollary 2.5. The prime factorization of EA in the ring Z[(ao')] has the form 

EA( f )  = C .  I"I AAnr(f)m(r)' (2.18) 
rcQ 

where c ~ Q and the m(l") are some non-negative exponents. 

Our aim now is to find the numbers m(l"). Denote the space C A by V. The 

coefficients ao" of an indeterminate polynomial f ( x )  = ZO'~A ao'xo" are affine 
coordinates in V. Denote by C[a] the ring of polynomials in ao', i.e., of regular 
functions on V. 

Choose I > 0. The complex L~ l) gives rise to a complex of free C[a]- 
modules 

C[a] | L~ I) --+ C[a] | LI(A, I) ---> . . .  (2.19) 

whose differentials have the form Zo'~a ao" | 0x~. Denote this complex by 
L~ 

Let F C Q be a face. Denote by Y (1") v C V the conic variety projectively 

dual to the orbit closure Y (1") C Y corresponding to 1". In the rest of this subsection 
we shall assume that Y (1-')v has codimension 1, so that Aanr is its equation. Note 
that only in this case do we need to find the exponent m (1"). 

According to Theorem 30 of Appendix A, m (1") can be expressed as 

m(r )  = (-1)tCmultr(r)v H'(L~ (2.20) 

Here mult stands for the multiplicity of a module along an irreducible component of 
its support, see the discussion immediately preceding Theorem 30 from Appendix 
A. As usual, we extend multiplicity to graded modules (like the H ~ of a complex) 
by alternating summation. 

Let V* be the space dual to V = C A. Let (bo') be coordinates in V* dual to 

(ao'), and C[b] be the ring of polynomials in bo', i.e., the ring of regular functions 

on V*. The variety Y is embedded into V*. 

We regard L i (S) --  ~ l  Li (A, l) as a C[b]-module using the homomorphism 

C[b] --+ C[S] taking bo" to the monomial t ~ Let C[a, b] = C[a] | C[b] be the 

ring of polynomials in a's and b's, i.e., of regular functions on V x V*. Consider 

the complex of C[a, b]-modules 

C[a] | L~ --+ C[a] | L I(s) --+ . . .  (2.21) 

with the differential defined by the same formula y~ ao" | 0x~. Let us denote this 

complex by L ~ (S) [a ]. 
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Recall (Section 3B Chapter 1) that to any irreducible subvariety Z of a smooth 
variety M, there corresponds a Lagrangian variety Con(Z) C T* M. In our situa- 

tion, the product V x V* is identified with the cotangent bundles of both V* and V. 

Under this identification the conormal variety Con(Y ( r ) )  c T* V* corresponds to 

the conormal variety Con(Y (l")v) C T* V (since Y (1-') and Y (1-')v are projectively 

dual). Let us denote this variety simply by Con(F). 

Proposition 2.6. We have 

m ( r )  = (-1)kmultcon(r)n'(L'(S)[a]).  

Proof Consider in C[a, b] the grading given by deg(ao,) = 0, deg(b,o) = 1. 
Let 7rr �9 Con(F) ~ Y(F) v be the natural projection. Since dim(Con(F)) = 

dim(V) = n, and, by our assumptions, the variety Y(F) v C V has codimension 

1, we find that the fibers of zrr over genetic points have dimension 1. We claim 

that for I >> 0 we have 

multcon(r) H i L~ (S)[a] -- multr(r)~ H i (L~ (A, l)[a]). 

Indeed, Con(F) is a line bundle over Y (1") v at its genetic point. Thus we have a 

trivialization Zrr 1 (U) -~ U x C  for sufficiently small Zariski open U C Y(I') v. Let 

F be the field of rational functions on Y (F)V. Then the field of rational functions 

on Con(F) is identified, by the above trivialization, with F(t). Let Oy(r)v,v be 

the local ring of the irreducible subvariety Y (F)V C V (see [Hart]). By definition, 

this ring is obtained from C[V] = C[a] by inverting all polynomials which do not 

vanish identically on Y(F) v, i.e., all polynomials prime to A anr. Let m be the 
maximal ideal in Ol,(r)v,v, so that O~,(r)~,v/m = F. For a C[a]-module N we 

have, by definition of multiplicity, 

multr(r)vN -- ~ dimF m j N / m  j+IN. 
J 

Now we take N : HiL~ for some i. In this case m J N / m J + l N  is the 

1-th graded component of a certain graded module M over F[t] (the grading on 

F[t] is given by deg(t) = 1). Namely, let us consider the ring Oy(r)~,v[b] with 

the grading deg b~o -- 1. Let/Con(r) be the ideal in this ring whose elements are 

functions vanishing on Con (r ) .  Then 

Oy(r)v,v[b]/Icon(r) : F[t] 

by virtue of the trivialization 7rr 1 (U) - U x C above. Consider the graded module 

M ~ .  
l~on(r) Hi L~ (S)[a] 

I j+l H i L~ Con(F) 
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Then mJ N/mJ+IN is the/-th graded component of M. 

Our statement follows now from the following obvious fact. 

Let F be a field and M = (~  MI be a finitely generated graded F[t]-module. 

Then for I >> 0 we have 

dimF(t) M | F(t) = dimF Ms. 

C. Constructible sheaves and characteristic cycles 

We start by recalling background material on constructible sheaves. For a detailed 

treatment see [KS]. 

Let M be a complex algebraic variety. A sheaf.T" on M is called constructible 
if there is a Whitney stratification [KS] of M by locally closed algebraic subvarieties 

M,~ such that the restriction of ~- to each M~ is a locally constant sheaf of finite 

rank. A constructible sheaf.T" on M defines a function M --+ Z+ which associates 

to x e M the rank rk(.?'x) of the stalk of ~- at x. 

A complex ~'~ of sheaves on M is called constructible if each cohomology 

sheaf H i (.~L"o) is constructible and almost all cohomology sheaves are zero. Every 

sheaf will be regarded as a one-term complex placed in degree 0, so all of the 

following discussion is applicable to individual sheaves as well. 

A constructible complex ~'~ on M defines a function M ---> Z denoted by 

X --+ X (.T", X) -" E(-1) i rk(_n__ i (.~"~ (2.22) 

If ~o �9 M ---> N is a regular map of algebraic varieties and .T TM is a constructible 

complex on M then the direct image R~o, (.T "~ is a constructible complex on N. 

Let ~o be a regular function on an algebraic variety M and let ~'~ be a con- 

structible complex on M. To ~ and .T "~ there are associated two new constructible 

complexes on the subvariety Z = tp -1 (0) C M called the complexes of nearby 
cycles and vanishing cycles and denoted respectively qJ~0(.T "~ and ~0(.T TM) (see 

[De 1 ] [KS]). 

Let us first describe q% (.T'~ Before giving a formal definition let us look at 

the underlying idea. Let x 6 ~o -1 (0) be any point. Take a small ball Bx around 

x. Call the space of nearby/-cycles at x for tp with coefficients in .T "~ the space of 

(hyper)cohomology 

I'I i (Bx N ~-1 (E), .~"~ (2.23) 

where e :/: 0 is a small complex number (see Figure 44). 
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Figure 44. Nearby cycles 

We would like to define a constructible complex ~0(.F "~ such that, for any 

x 6 ~o -1 (0), the stalk of q%(.T "~ at x is identified with (2.23). An obvious subtle 

point is that we do not have any canonical choice of e. The formal definition which 

we are now going to state takes care of this subtlety by considering the universal 

coveting of the space of all possible e. 

Let e �9 C ~ C* be the universal coveting (the exponential function). Let 

U -- M - ~o-1 (0), so ~o gives a map U --+ C*. Consider the fiber product U of U 

and C over C*, so that we have maps zr �9 U ~ U (which is a coveting with the 

Galois group Z) and q3 �9 0 --+ C. Let also i �9 ~o -1 (0) ~ M, j �9 U ~ M be the 

embeddings. 

Definition 2.7. The complex of nearby cycles is a complex on qg-1 (0) given by 

qs ~o (.U ~ ) -- i * R ( j rr ) , ( zr * y'~ ) . 

In fact, we shall be interested only in numerical invariants of this complex for 

which the naive point of view of (2.23) is sufficient. 

Proposi t ion 2.8. Let x 6 q9 -1 (0) be any point. Then in the notation o f (2 .22 )  and 

(2.23), we have 

x(qs~o(.T"),x)  = X(Bx  N ~ - 1 ( 8 ) ,  .~ L'') " =  ~ ( - - 1 )  i d i m H i ( B x  ["] q9-1(~5), -~"') �9 
i 

The proof is straightforward and is obtained by unraveling the definitions of 

the direct and inverse images. 
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There is a canonical map can �9 i*(.T") --+ ~P~0(.T") of complexes of sheaves 

on tp -1 (0) (recall that we denote by i �9 tp - l  (0) ~ M the embedding). 

Definition 2.9. The complex of vanishing cycles ~0 (.T "~ is the chain cone of the 

map can. 

Thus we have an exact sequence of sheaves 

. . . . . - +  i*H___P(ff:") --> H P ( ~ , p ( 7 ) )  -~  H P ( ~ o ( . ~ ) )  --~ i*H__p+I(JL -~) -+  . . .  

so ~0(.T "~ measures the difference between the cohomology of the genetic fiber 

9 -1 (e) and the special fiber ~0 -1 (0). 

For example, if M = C, 3 r = C__ is the constant sheaf on C (regarded as 

a complex placed in degree 0) and tp(z) = z then ~0(.7 r) = 0, since there is no 

difference between stalks of .T" at 0 -- tp-I (0) and other points. 

Proposition 2.8 implies the following fact. 

Proposition 2.10. The stalk Euler characteristic ~( (~0 (.T'~ x)  at any point x 

q9 -1 (0) can be calculated as 

X (Bx n ~o -~ (o), ~ ' )  - x (8~ n ~o -~ (e), ~ ' )  

where Bx is a small ball around x. 

Now let M be a smooth complex algebraic variety with the cotangent bundle 

T* M. Let .T "~ be a constructible complex on M. The characteristic cycle of.T "~ is 

an algebraic cycle in T * M  of the form 

SS(.T'*) -- E c(A; .T'~ �9 A, (2.24) 
ACT*M 

where A runs over conic Lagrangian subvarieties in T * M  and the c(A; .T") are 

some integers defined as follows [Gi] [KS]. 

As we saw in Proposition 3.1, Chapter 1, every conic Lagrangian subvariety 

A C T * M  has the form 

Con(Z) = T* (M), Zsm 

i.e., is the closure of the conormal bundle to the smooth part of some possibly 

singular closed subvariety Z C M. Take A = Con(Z). Take a genetic point 

x ~ Z and a generic function tp in a neighborhood of x such that tp -- 0 on Z and 

the cotangent vector dx9 lies in T* (M) Then the coefficient c(A" 3 r~ is given Zsm " 
by 

c(A;  .To) = (-1)dim(M)-I X ((I)tp(.~"~ x).  (2.25) 
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It is known that the right hand side of (2.25) does not depend on the choice of 

generic tp and x as above. If A = M is the zero section of the cotangent bundle, 

we set c(A; .T'*) to be the stalk Euler characteristic X (.T'*, x) for a genetic point 

x ~ M .  
Informally, c(A; ~~ measures the "jump" of .T "~ at a genetic point of the 

subvariety Z C M corresponding to A. For example, if.7 r is a constant sheaf then 

c(A; .Y "~ = 0 for any A r M. Moreover, it is known that if {M,~} is a Whitney 

stratification of M such that the H__,. (.T "~ are locally constant on each M,~ then only 

the varieties Con(M~) can occur in SS(.T "~ with non-zero coefficients, see [KS]. 

D. The case of  toric varieties: interpretation of  multiplicities 

Now we return to the setup of subsections A, B, and the notation there. So V = C A; 

Y = YA C V* is an affine toric variety associated with A; Y~ is the torus orbit 

corresponding to the face 1" C Q, Q = Cony(A); y0 = yo(Q) is the open orbit; 

and Y (F) is the closure of y0 (F). 

Let j �9 y0 ~ V* be the embedding. Then Rj,  Cro is a constructible complex 

on V* whose cohomology sheaves are locally constant (in fact, constant) along 

each y0 (1-'). For several reasons it will be more convenient to consider the shifted 

complex Rj,  C__yo [n - k], where k = dim Y, n = #(A) = dim V. We are inter- 

ested in the multiplicity of the Lagrangian variety Con(F) = Con(Y(F)) in the 

characteristic cycle of this shifted complex (see (2.25)). 

Theorem 2.11. For any face F C Q, we have 

c(Con(F), Rj,  C_ro [n - k]) -- i(F, A)u(S /F) .  

Here i (F, A) and u(S/  F) are the same as in Theorem 1.2. 

Of course, the shift amounts to multiplying the multiplicity in question by 
(--1) n-k. 

Proof. We use the "transversal slice" to Y (l") constructed in Theorem 3.1 Chapter 

5. Let us use the terminology of Section 3 Chapter 5. 

Let S be any admissible semigroup, and let U, - Z m be its group completion. 

Choose a system B of generators of S. Let C 8 denote, as usual, the space of 

Laurent polynomials f (xl . . . . .  Xm) -- ~-~oeB ao~x~ So the (ao~) form a system of 

coordinates in C B. Consider also the dual space (CB) * with coordinates zo, dual 

to the ao~. 

Let Ys = Spec C[S] be the toric variety corresponding to S. It is embedded 

into the space (CB) * as the closure of the set 

y O _  {(Zto)toEB " Z w -  Xt~ X U= (c*)ml 
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which is the open toms orbit. Let j �9 yO ~ (cB),  be the embedding. Let 0 ~ Ys 
be the unique zero-dimensional toms orbit. 

Theorem 2.11 will be a consequence of Theorem 3.1 Chapter 5 and the fol- 

lowing fact. 

Theorem 2.12. Under the above assumptions, the multiplicity 

c(Con(O), Rj, C_: [#(B) - m]) 

equals u(S), the subdiagram volume of the semigroup S. 

Proof of Theorem 2.12. Let K C ER = R m be the convex hull of S, and let 

K+ = C o n v  ( S -  {0}), K_ = K - K+ so u(S) = Vol z(K-).  We assume that 

the set B of generators of S does not contain 0. Let Pl C R m be the convex 

hull of Bt0{0},  and P2 be the convex hull of B. Then K_ = P1 - P2, so 

u(S) = Vol z(Pl)  - Volz(P2) (see Figure 45). 

K 

Figure 45. 

After these preparations, let us calculate the multiplicity in Theorem 2.12. 

By definition, 

c(Con(O), Rj, C__yO [#(B) - m]) = Z (dpq,(Rj, C__yO)[#(B) - m], 0), 

where ~o is a genetic linear functional on the ambient space (cB) *. By Proposition 

2.10, this number equals 

( - 1 )  m-1 (X (tp-1 (0), Rj, C__ro s) - X (~0-1(e), Rj, C__rOs) ) 

(there is no need to intersect with a small ball around 0 since the Euler characteristics 

of the parts of tp -1 (0) and ~o -1 (e) situated away from 0 will cancel out). After 
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restricting to yO _~ (c*)m a genetic linear function tp becomes a generic Laurent 

polynomial 

f ( x )  -- Zao~x~176 EC B. 
w~B 

So our multiplicity can be written as the difference of the usual Euler characteristics 

(with coefficients in C): 

c(Con(O), Rj, C__yo) 

= (--l)m--I XIX E (c*)m" f(x)--= El -- (--l)m-I xIX E (c*)m" f ( x ) :  0}. 

By Theorem 2.4 of Chapter 6, the first summand equals Vol z, (P1) (since P1 is the 
Newton polytope of the polynomial f ( x ) -  e); the second one, by the similar reason, 

is equal to Vol z(P2). So the difference equals u(S) = Vol z(P1) - Vol z(P2). 
Theorem 2.12 and thus 2.11 are proved. 

E. End of the proof: Riemann-Hilbert correspondence 

We now prove that for any face F C Q 

m(r)  = i(r ,  A)u(S /  F), (2.26) 

where m(F) is the exponent of AAN F in EA. This will establish Theorem 1.2 up 

to a scalar multiple. Finally, at the end of the subsection we shall explain how to 

take care of the scalar multiple. 

By Proposition 2.6, m (1") is the alternating sum of multiplicities along Con (F) 
of a certain complex of C[a, b]-modules. By Theorem 2.11, i (F, A) .u (S /F)  is the 
multiplicity of Con (1-') in the characteristic cycle of some constructible complex of 

sheaves. To relate these objects to each other we use a certain ring of differential 
operators whose associated graded ring is C[a, b]. We shall use the Riemann- 
Hilbert correspondence between holonomic regular D-modules and constructible 

sheaves [KK] [Meb 1-2]. Let us recall the main features of this correspondence. 

Let M be a smooth complex algebraic variety and let DM be the sheaf of 

(algebraic) linear differential operators on M. This is a sheaf of filtered tings, the 

filtration F being defined by the order of the differential operators. The associated 

graded sheaf of rings is S ~ (TM), the symmetric algebra of the tangent bundle of 

M. 

We are interested in coherent sheaves of DM-modules which will be called 
just DM-modules (left or fight). For example, the sheaf OM is a left 7PM-module. 

If .A4 is a DM-module, then it is known that .A4 possesses a good filtration, i.e., 

a filtration Fo.A4 which is compatible with FoDM and such that the associated 
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graded module gr ((.A4) is coherent over S~ The support of gr F (.A4) is a conic 
subvariety in T* M. It is known to be independent of the choice of a good filtration. 
This support is denoted Char(M) and called the characteristic variety of A4. If 
A is any irreducible component of Char(M) then the multiplicity multagr F (.A4) 
is also independent of F. Let us denote this multiplicity by c(A; .All). Therefore 
we can form the characteristic cycle of .A4: 

C h a r ( M )  -- y ~  c ( A ; . M ) .  A. (2.27) 
ACT*M 

It is known that dim (Char(M)) > dim (M). If dim(Char(M)) = dim(M), 
a module .A4 is called holonomic. In this case Char(M) is a Lagrangian subvariety 
[Bj] [Gi] [KS] and hence the characteristic cycle C h a r ( M )  is an object of the same 
nature as the characteristic cycles of constructible complexes defined in subsection 
C above. 

The de Rham complex of a fight DM-module .A4 is the complex 

DR(M)  -- .Ad | OM,an, (2.28) 

where |  is the left derived functor of the tensor product and OM,an is the sheaf 
of complex analytic functions on M. We consider the functor DR for complexes 
of fight D-modules as well. 

The Riemann-Hilbert correspondence is the functor DR from (complexes of) 
holonomic D-modules to complexes of sheaves of C-vector spaces. We need the 
following fundamental properties of this correspondence [KK], [Meb 1-2]. 

Theorem 2.13. 

(a) If  .A/l is a holonomic right DM-module then DR(M)  is a constructible com- 
plex. 

(b) If  All ~ is a complex of coherent right DM-modules such that the cohomology 

modules H i (A4 ~ are holonomic and regular (see loc. tit.) then we have the 
equality of algebraic cycles in T*M 

Z(-1)iChar(_H_H i (j~/[~ : ( - 1 )  dim MSS(DR(jL~~ 
i 

In this theorem the regularity condition is essential. We shall use the following 
fact [KK], [Meb 1-2] giving a necessary and sufficient condition for regularity. 

Theorem 2.14. Let .A4 ~ be a complex of coherent right DM-modules such that 
the cohomology modules I~ i (./~~ are holonomic. The condition that all these 
modules are regular is equivalent to the following condition: 
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(*) Let x ~ M be any point and let 0 ^ be the formal completion of OM at x. x , M  

Let 
DR(M ~ x) ̂  .M | ^ , ~ �9 O x ,  M 

be the formal de Rham complex at x. Then the natural map from the stalk at x of 
DR(M ~ to DR(M ~ x) ̂  is a quasi-isomorphism. 

Let us now proceed to the proof of (2.26). By Theorem 2.11, this is equivalent 
to the following. 

Theorem 2.15. For any face F C Q, we have 

m(r) - c(Con(r) ,  Rj, C_C_ro [n - k]). 

As in subsection B above, let V* be the dual space to V = C A, and (bo,) 
the distinguished coordinates in V*. Let Dif be the Weyl algebra of polynomial 
differential operators on V*, generated by the bo~ and the O/Obo~. We introduce 
a filtration F on Dif by letting FkDif consist of the operators of order < k. The 
associated graded ring grffDif will be identified with the algebra of polynomials 
C[a, b], where we associate the image of O/Obo~ to the variable a,o. The category of 
finitely generated fight modules over the algebra Dif is equivalent to the category 
of coherent sheaves of fight Dv,-modules (see [Bj]). 

Now consider the exterior derivative d �9 L~(S) --+ Lk+I(S) defined by (2.2). 
We also consider the fight Dif-modules Lk(S) ~Ctbl Difand the maps 0k " Lk(s) |  
Dif --+ L k+l (S) | Dif, having the form 

~gk(~. | p) -- d(~.) | p + Z Ox'~ | (O/Oboj)p, 
r 

(2.29) 

where ~. ~ Lk(S), p ~ Dif. We introduce a filtration on Lk(S) | Dif by setting 
Fm(Lk(S) | Dif) = Lk(S) | Fk+mDif. The following proposition is checked 
directly. 

Proposition 2.16. 
(a) The right Dif-modules Lk(s) | Dif together with the differentials Ok and 

the above filtration form a filtered complex. 
(b) The graded complex of C[a, b]-modules associated to the filtered complex of 

Dif-modules L~  is isomorphic to the complex L~ 
(see(2.21)). 

If M is a finitely generated fight Dif-module then, by the de Rham complex 

of M, the de Rham complex (2.28) of the Dv,-module is 

.Ad = M (~)Dif T)V* 
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canonically associated to M. The same for complexes of Dif-modules. 
We calculate the de Rham complexes of the complex of fight Dif-modules in 

Proposition 2.16 in terms of the ordinary de Rham complexes of differential forms. 
More precisely, we introduced in subsection A the logarithmic de Rham complex 

~"2~,,an (log Y1 ) . 

Proposition 2.17. The complex DR(L~ | Dif) is naturally identified with the 
direct image to V* of the logarithmic de Rham complex ( ~ ,  an(log Y1), d). 

Proof. The 79v,-module, corresponding to L i (S)@ Difis nothing but f2~, (logY1)| 
Dr, .  Hence after tensor multiplication over 79v, with Or,, we get back fl~, (logY1). 
Similarly we compare the differentials. 

Combining Theorem 2.14 and Theorem 2.2 (b) implies that all the cohomol- 
ogy modules of the complex 

(L ~ (S) | Dif) ~Dif ~)V* (2.30) 

are regular. Proposition 2.17 together with Theorems 2.13 and 2.2 (a) imply that 
the characteristic cycle (2.24) of the constructible complex Rj, Cro coincides, up 
to a sign ( -  1)", with the characteristic cycle (2.27) of the complex (2.30) of Dr , -  
modules. The latter characteristic cycle is defined in terms of multiplicities of 
associated graded modules. Therefore 

m (1-') -- multconcr~ H ~ (L ~ (S) [a]) = ( -  1)k (_  1)n c(Con(F'), Rj, C__ro). 

This proves Theorem 2.15 and hence (2.26). 

To complete the proof of Theorem 1.2, we need to show that no prime number 

p ~ Z can enter the prime factorization of EA in the ring Z[(ao~)]. This is done 
as in the proof of Theorem 2.5 Chapter 8. Namely, we consider the field F which 
is the algebraic closure of Z/pZ  and define the F-form of the complex L~ A). 
This is a complex L'F(A, l) of F-vector spaces with the differential af depending 
on a polynomial f ~ F a with coefficients in F. As before, it is enough to prove 

that, for a generic f ~ F A, the complex (L'F(A, l), Of) is exact. But this follows 
as in Proposition 2.4 by considering sheaves of logarithmic forms on the F-variety 
obtained from Y. 

Theorem 1.2 is completely proved. 
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3. Proof of the properties of generalized A-determinants 

In this section we keep the notation of Section 1E. 

A. Proof of  Proposition 1.9 

We first consider the case when S generates E. The proof is entirely similar to that 

of Proposition 2.4: we consider the toric variety Y = Spec C[S], and the complex 

in question will be exact whenever the restriction of f to any torus orbit of positive 

dimension in Y has no critical points. Since we assume that the convex cone 

generated by A coincides with Conv(S), the conditions AAnr( f )  ~ 0, F C Q, 

guarantee the absense of critical points. We leave the details to the reader. 

If Linz (S) has the same rank as E then we are reduced to the above case since 

L'(A,  1, S, ~) -- L~ 1, S, Linz(S)) 

(the choice of the lattice affects only the choice of bases in the terms of these 

complexes). 

Suppose now that Linz(E) has rank k - d < k -- rk(~,). Introduce on 

L ~ (/, A, S, ~) an increasing filtration F by 

IA x A / FpL i (A, 1, S, U,) -- ~ )  Im Linc(S) | (,~,c) ~ ,~c �9 
uESi+l 

(3.1) 

Clearly, F makes L~ 1, S, ~) into a filtered complex and the quotients of this 
filtration are 

P 

grffL'(A, 1, S, F__,) = L'(A,  I, S, Z f3 LinR(A)) | A Cd [p]" (3.2) 

In other words, the p-th quotient is the direct sum of (ap) copies of the p times 

shifted complex corresponding to the lattice of the same rank as Linz (S). For such 

complexes we already know the exactness. Since the exactness of the quotients of 

a filtration implies the exactness of a complex, we are done. 

B. Proofs of  Proposition 1.10 and Theorem 1.11 

The fact that for I >> 0 the rational function f F-~ EA,/(f, S, ~,) is independent of 

I up to a constant is proved as in Proposition 2.6. We leave the details to the reader. 

The independence up to a sign is known (Proposition 1. l) for the case when S 

and E are generated by A as a semigroup and a group, respectively. In the general 
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case this will follow from the next two comparison lemmas, which will also imply 
Theorem 1.11. 

Lemma 3.1. 

(a) I f rkLinz(A)  = rk F_, then 

EA,l(f, S, ~) "-- .4-[~ �9 Linz(S)]V~ S, Linz(S)), (3.3) 

where O = Linz(S) t3 {u ~ ~ �9 h(u) = 1 }. 
(b) l f  rkLinz(A) < rk ~ then EA,I(f, S, ~) is identically equal to 4-1. 

Lemma 3.2. Suppose that "~ is generated by S as an Abelian group and let S(A) 
be the subsemigroup in S generated by A. Then, in the notation of Theorem 1.11, 
we have 

Ea,t(f,  S, U,) -- Ea,l(f,  S(A), ~) [Linz(Sz):Linz(a)]. (3.4) 

It remains therefore to prove these two lemmas. 

Proof of Lemma 3.1. (a) The principal determinants on both sides of (3.3) are de- 
terminants of the same complex, but with different choices of bases, corresponding 
to the lattices L~(A, l, S, ~) and L~(A, l, S, Linz(A)). Hence, their ratio is the 
alternating product 

EA,l(f, S, "~) 
EA,I(f, S, Linz(S)) 

= H [L/z(A ,1, S, "~) " Liz(A, 1, S, Linz(A))] (-1)k-' 

For typographic reasons we introduce the notation a 1" b for the power a b. Clearly, 

[A ] ( ') Z " / ~  Linz(S) = [,7," Linz(S)]T i - 1 ' 

where (~1) is taken to be 0. Hence, our alternating product is equal to 

T( -i( k ) #(Sl+i)) [~, �9 Linz(S)] ~ -~ ( -  1) k i -  1 
i=0 

(3.5) 

For large I the cardinality #(St) is a certain polynomial ps(1) in l (cf. the proof 
of Theorem 2.8 Chapter 9 for similar situation). The easiest way to see this in 
our case is to note that #(S l) is the dimension of the/-th graded component of the 
semigroup algebra C [S]. It is well known that, for any finitely generated graded 

commutative algebra R = ~)  Rt, the dimension dim gl is for I >> 0 given by a 



3. Proof of the properties of generalized A-determinants 331 

polynomial in l, the Hilbert polynomial of R (see Section 3F Chapter 5 above or 
[Hart], Chapter I, Section 7). 

To find the leading term of ps(l), we note that, for large l, the numbers 
#(St) and #(1Q n Linz (S)) differ by the contribution from points situated near the 

boundary of the cone K = Conv(S), so this difference has asymptotics o(lk-1). 
Thus, by Proposition 3.7 Chapter 5, we find that 

ps(l) = (Vol o (Q)"  lk-1/(k - 1)!) + (terms of degree < k - 1). 

The cardinality of Si+l has, as a function of l, the same leading term. Therefore, by 

Lemma 2.9 Chapter 9, the exponent in (3.5) is equal to Vol o(Q),  proving (3.3). 

(b) We use the filtration F of (3.1). There is a similar filtration on the Z- 

lattices. Using multiplicativity of determinants under filtrations and (3.2), we 
conclude that 

EA,l(f, S, ~) : EA(f, S, LinzA) ( - 1 )  p . (3.6) 
~ p - 0  

By the binomial formula, the exponent in (3.6) is equal to 0, from which we get 

the assertion. 

Proof of Lemma 3.2. Let U be any subset in S such that U + A C U. We define 

the subcomplex L'(A, l, U, U,) in L~ l, S, "~) by putting 

i 

L i ( A , I , U , , Z )  = ~ A Z C "  
u~Si+tnu 

The terms of this complex are equipped with obvious Z-lattices obtained by sum- 
ming the lattices A i ~. 

Recall that by Sz, we denoted the semigroup {u ~ S �9 h(u) ~ Z}. Let 

?' C Linz(Sz) be any coset of Linz(A). We take U = S n y. Obviously, 

L ~ (A, l, S, ~) = ~]~ L ~ (A, l, S O y, E). (3.7) 
y aLin z (S z )/Lin z (A) 

So Ea, l ( f ,  S, ~) is the product of the determinants of the complexes on the fight 

hand side of (3.7) (taken with respect to the above lattices). It remains to show the 

following lemma. 

Lemma 3.3. Let S(A) C U, be the semigroup generated by A. Then for I >> 0 

and any coset y as above, we have 

det(L~ A, S O y, ~), Of) "- +det(L~ A, S(A), ~), Of). 
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Proof of Lemma 3.3. Let ~ ~ S be an element lying in the interior of Conv(S). 

Suppose h (~) = m. For any I the translation by ~ gives rise to an embedding of 

sets 

S(A)I+i ~ Sl+m+i [") (~ "~ Linz(A)) 

and hence to an embedding of complexes 

~Ol,r " L'(I, A, S(A), 2) ~ L~ + m, A, S f) (~ + Linz(A)), 2). 

For I >> 0 and generic f ~ C A, both of these complexes are exact so Coker qgl, ~ is 

exact as well. By definition, the i-th term of Coker ~ot,r is equal to the direct sum 

of the copies of A i 2 c over the points of the set-theoretic difference 

Wi, l = (Sl+m+ i I")(~ -+- Linz(A)))-(S(A)l+i + ~). (3.8) 

So this term has a distinguished Z-lattice (the sum over Wi,l of the copies of A i 2) 

and we can speak of the determinant of Coker ~01,,. 

We need to show that for I >> 0 we have det(Coker tp/,r 19f) = 4-1. Let us note 

that the set (3.8) is, for I >> 0, "situated near the boundary" of K -- Conv(S) C ~R. 

More precisely, for any face 1-' C K of codimension 1, there are finitely many affine 

hyperplanes Hr,1 . . . . .  Hr,r~r) parallel to LinR(l") such that, for every i, l, we have 

Wi,l c U Hr.,j. 
r',j 

Let C~.,l be the subcomplex of Coker 91,~ whose i-th term is the sum of A i 2 C 

over the points of Wi,l N ~ j  Hr,j. The terms of C~, t are equipped with obvious 

Z-lattices. We have a surjection of complexes 

@ 
I ' c K  

codim r = 1 

C~, l > Coker @~,l" (3.9) 

The kernel of (3.9) comes from points of Wi,l which lie in more than one Hr, j. 
Since l >> 0, we can assume that whenever Hr, j f3 Hr,,j, fq K :# 13, the faces 

I", 1"' C K also intersect. Thus the kernel of (3.9) comes from points of Wi,l 
lying on finitely many translates of subspaces LinR(E) where E C K is a face of 

codimension 2. Continuing in this way, we get, for any face 1-' C K of arbitrary 
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codimension, finitely many translates Hr,j of LinR (1") and a complex C~, l similar 
to the above so that we have a Kouchnirenko-type resolution 

�9 "" ~ ( ~  C~, l ~ ~ C~, l ~ C o k e r  qot;,t (3.10) 
FCK FCK 

codim 1" = 2 codim I" = 1 

(see Section 3C Chapter 8). However, the determinant of every C~.,l with respect 

to the natural system of Z-lattices is equal to 1. Indeed, there is a filtration of C~.,l 

with quotients of the form L~ N F, l, S', F,) where S' is a subsemigroup in F. 

To get such a filtration it is enough to pick a sufficiently genetic vector v 6 K 
s i A i and define F Cr, l -- (~  Ec where the sum is over u ~ ~ j  Hr, j such that 

u ~ s v + K. This is a filtration labeled by s 6 R+ with jumps occurring for only 

finitely many values of s, namely for those s for which the boundary of s v + K 

contains a relatively open part of some Hr,j. It is straightforward to see that, for 
such s, the quotient indeed has the specified form. 

Since the determinant of each L~ A F, l, S', ~) is equal to 4-1 by Lemma 

3.1 (a), we conclude that det(Coker q)t,~) = + 1. Lemma 3.3 is proved. 

4. The proof of the product formula 

Now we prove Theorem 1.17. We shall use the terminology and notation of Section 

1H. 

A. The Koszul complex on the torus and its filtrations 

We start by constructing a complex whose determinant can be expressed explicitly 

in terms of rl A ( f ) .  

Let T denote the toms (C*) k-1. Let ~ be the sheaf of regular differential 
/-forms on T and ~i (T) be the vector space of global sections of this sheaf. For 

i ct ~ T by ff2r, ~, we denote the fiber at ct of ~ considered as a vector bundle. 

Consider the complex (~~ (T), d f )  whose differential is the exterior multi- 

plication by the 1-form d f .  If f has only non-degenerate (Morse) critical points, 

then the only non-zero cohomology of this complex is 

Hk-l ( f2~ d f )  = f 2 k - l ( T ) / d f  A ~ ' 2 k - 2 ( T )  - -  ( ~  ~'2 k-1  (4 1) 
T,o~ 

a6Sing (f)  

(because of the standard properties of the Koszul complex, see Section 1B Chapter 
2). So if we consider the endomorphism of (~~ (T), d f ) ,  given by multiplication 

by f ,  then it is natural to expect that the determinant of this endomorphism ( = 

the determinant of the complex obtained as the cone of the endomorphism) will be 
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related to H A ( f ) .  However, the terms of ~~ (T) are infinite-dimensional. Namely, 
~'2 i (T) can be identified with C[Z k-I ] | A i c k-1 (see Section 2A Chapter 9). So 

our first step will be to replace f2 ~ (T) by a certain finite-dimensional complex. 

The above identification of f2 i (T) with the tensor product allows us to write 

~'2 i (T)  as ~ y e Z k - I  A i C k-1. Denote a typical element of the y-th summand by 

(y, X). For a Laurent polynomial f = ~-~og~.a atoXt~ the differential given by the 

exterior multiplication with df  can be identified with Of = ~~to~A ato()w, where 

O,o(y, x)  = (o~ + ?,, -~o A x)  

(the addition is understood relative to the group structure on Z k-1 with o9o as zero). 
Suppose we are given an integer I > 0. Consider the subspace 

i 
V i (1) : ~ A ck-1 C ~'~i (T ) .  

y~(l+i)Q 

Exterior multiplication by df  takes Vi(l) to vi+l(1), so that (V~ is a 

subcomplex in (f2~ df). 

Proposition 4.1. If f ~ C A is a genericpolynomial, then for l >> 0 the embedding 
of complexes (V~ df)  ~ (~2~ df)  is a quasi-isomorphism. 

Proof Let A = O Q be the boundary of the polytope Q. It is the union of two 

subsets: the positive part A+ and the negative part A_, defined as follows (see 

Figure 46). 

WO 

/ 
/ 

/ 
/ 

Figure 46. 
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The set A_ consists of all ~ 6 Q for which the interval [w0, ~] contains no other 

points of Q; we also define A+ = 0Q - A_. In other words, A+ (resp. A_) is 

the union of the facets of Q having positive (resp. negative) distance from o90. 
Let E C R k-1 be the convex cone with apex w0 generated by Q (if o~ lies 

in the interior of Q, then E -- R k-l). The intersection E fq Z k-1 has a natural 

semigroup structure with o90 as zero. 
We define an increasing filtration F on E N Z k-1 by letting Fm (E N Z k-l) 

consist of all ~ 6 E f3 Z k-1 such that (1/m)~ 6 Conv({w0} U A+). Similarly, we 
define a decreasing filtration G on E NZ t-1 by letting G m (E OZ k-l) consist of all 

for which the interval [too, (1/m)~] intersects with A_. Clearly, both filtrations are 
compatible with the semigroup structure, i.e., Fk + Ft C Fk+l, G k + G l C G k+l. 
The filtrations F and G on E f3 Z k-1 give rise to ring filtrations on the semigroup 

algebra C[E A Zk-1], also denoted by F and G. 
Let Z -- Spec C[~,NZ k-1 ] be the toric variety corresponding to the semigroup 

E f3 Z k-1. Thus, if 090 lies outside Q then Z is an affine normal toric variety with 

a unique zero-dimensional torus orbit. If 090 lies inside Q then Z - T is the torus. 

Let Z1 C Z be the union of the torus orbits of codimension > 1 (so Z1 is empty 

in the case when w0 is inside Q). Consider the sheaf ~ ( l o g Z 1 )  of logarithmic 

forms on Z (see Section 2A). The space of global sections 1-'(Z, s will 

be denoted simply by 12 i. This is the direct sum of the copies of A'  Ck- 1 over all 

the points in E f3 Z k-~. 

Now suppose that f 6 C A is a Laurent polynomial. We consider the complex 
of vector spaces (f~~ d f )  which is obtained by taking the global sections of the 

complex of sheaves (f2~(logZ1), df )  on Z. We introduce filtrations F and G in 

(12 ~ d f )  by setting 

i i 
F m ~ i - -  @ A c k - l '  am~"~i-" @ A Ck-'" (4.2) 

y eFm+i (Zf3Z k-l) Y EG m+i (Z f'lzk- 1 ) 

In this notation the complex V~ which is of interests to us is (FI fq Gt)(12 ~ df) .  

Lemma 4.2. For generic f ~ C A and for I >> 0 the embedding 

G 1 (~*, d f )  ~ (~" (T), d f )  

is a quasi-isomorphism. 

Proof The space G t ~,-~i is a module over C[E fq Z k-1 ], and hence it is the space of 

global sections of some coherent sheaf on Z which we denote by Gtf2iz(logZ1). 
Thus, we have a decreasing filtration of the sheaf ~ ( l o g Z 1 )  by subsheaves 

Gm~(logZ1)  which is invariant under the exterior multiplication by df .  Hence, 
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any cohomology space of G l (~~ d f )  is the space of global sections of the cor- 

responding cohomology sheaf of G t (f2[(logZ1), df) .  In the next lemma we find 

these cohomology sheaves. 

Lemma 4.3. For generic f ~ C A and I >> O, we have 

n k-1 (G 1 (~2 ~ d f ) )  --  ~ )  �9 k - 1  
l,~. ~ r ,  ~ , (4.3) 

trrSing (f) 

where i~ : {ct} ~ T is the embedding of the one-point set. The rest of the 
cohomology sheaves are zero. 

Proof A genetic polynomial f 6 C A, regarded as a function on T, has only 

Morse critical points. The open T-orbit in Z is identified with T. The restriction 

of each sheaf Gl~2iz(logZ1) coincides, under this identification, with f2~, so that 

our assertion holds there. It remains to show that the complex (G/f2~ (logZ1), df )  
is acyclic over all points of Z1. 

If too is inside Q then there is nothing to prove since Z coincides with T (see 

above). So we suppose that o90 is outside Q. Let z ~ Z be the unique point fixed 

under T. The sheaf Glf2~(logZ1) coincides with f2~ (logZ1) on the complement of 

{z}. Hence, to prove our claim for points different from z it suffices to consider the 

complex (f2~:(logZ1), df) .  Let L C Z be a torus orbit different from {z} and from 

T. Since Q is a convenient polytope, the restriction f lL is quasi-homogeneous, 

and so it vanishes at all of its critical points. Consequently, if A r'na ( f )  # 0 for all 
of the faces F of the cone E, it follows that f lL has no critical points. An argument 
similar to the proof of Proposition 2.4 shows that (f2~:(logZ1), df )  is acyclic over 

L in this case. 

It remains to prove the acyclicity over the point z. We shall use an easy 

general lemma. 

L e m m a  4.4. Suppose that Y is an algebraic variety, y ~ Y, and ~~ is a finite 
complex of coherent sheaves on Y. Then .1:~ is acyclic at y if and only if the 
complex of vector spaces .~~ | Cy is acyclic where Cy is the skyscraper sheaf at 
y. 

Proof Only the "if" part needs a proof. To this end, suppose that .T "~ | Cy is 

acyclic but .T "~ is not acyclic at y, i.e., some cohomology sheaf H j (~~ is not 

zero in a neighborhood of y. Let j be maximal with this property. But since the 

tensor product functor is left-exact, we have H j (,.~-'~ 1~) Cy - H j (,~-'~ (~) Cy) = 0 

contradicting the choice of j .  

We apply Lemma 4.4 to r = Z, y = z and .T "~ = (f2~:(logZ1), df) .  Thus, to 

prove Lemma 4.3 we need to show the acyclicity of the complex of vector spaces 
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Glf2"z(logZ1) | For I >> 0 the space Gl~2~(logZ1) (~C z can be identified with 
the space of functions from (l + i)A_ tq Z k-1 to Aick-1; here (l + i )A_ stands 

for the image of A_ under the dilation with center w0 and coefficient l + i. Now 
we can relate, using a version of the Kouchnirenko resolution (Section 3C Chapter 
8), the complex (Gl~'z(logZ1) | C z, d f )  with the complexes defining principal 
determinants. In the next lemma, describing this resolution, we use the complexes 
L ~ (see Section 1E). 

Lemma 4.5. There exists a left resolution of the complex Glf2"z(logZ1) | Cz, 
whose p-th term is the direct sum 

@ 
FCA_, 

codim l"=p+ 1 

L~ N F, 1, K(F) f) Z k-l, Zk-1). (4.4) 

Here F runs through the faces of Q of codimension p + 1, contained in A_, and 
K (r)  is the cone generated by F with apex 020. 

The proof is completely analogous to the proofs of Theorems 3.4 and 3.5 in 
Chapter 8. 

Since the summands in (4.4) are acyclic for genetic f 6 C A, we now obtain 

Lemma 4.3. This in turn implies Lemma 4.2, because we find that ( ~ . ,  d f )  has 

the same cohomology as (Gl(~2"z(logZ1)), d f ) ,  namely (~)ct6Sing (f)i~. f2k, -l" 
Now we are in a position to prove Proposition 4.1. We consider the increasing 

filtration 

(Fl 1"I Gl)(~"~ ~ d f )  C (/7/+I N Gl)(f~ ~ d f )  C "'" C G l (f~~ d f ) .  

Lemma 4.6. For generic f ~ C a and l >> 0 all embeddings 

(El+ i N Gl)(f~ -, d f )  C (Fl+i+l ~ Gl)(~ ~ df) 

are quasi-isomorphismsfor i = 0, 1, 2 . . . . .  

Proof. For the quotient complexes of the embeddings in question, we have 
the Kouchnirenko resolutions in terms of the complexes L~ N F, l, K(F) C) 
Z k-l, Z k-l) corresponding to the faces 1-' of Q that lie in A+, by analogy with 

Lemma 4.5. Hence, the quotient complexes are acyclic for genetic f .  
Lemma 4.6 implies Proposition 4.1 since V~ = (FI fq Gt)(f~ ~ df) .  
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B. Proof of  Theorem 1.17 

We have seen (Proposition 4.1 together with formula (4.1)) that, for generic f and 

l >> 0, the complex (V~ d f )  has only the highest dimensional cohomology, in 

degree k - 1, which is naturally isomorphic to t~)~eSing (f) f2kr, -1. Consequently, 

for such I we have an identification (see Proposition 3 Appendix A) 

Sin~g ) | et " Det(V~ ---> f2~,-~ 
ot~. ( f )  

(4.5) 

Here Det means the determinantal vector space of a complex. The bases of mono- 
mials in the terms of V~ determine some basis (i.e., vector) e(l) in Det(V~ 
This vector is determined uniquely up to sign. Note that for any two non-zero 

vectors of a 1-dimensional vector space we can speak about their ratio which is a 

non-zero number. 

Proposition 4.7. For l >> 0 we have 

el+l(e(l + 1)) = -4- l - I  
~l(e(1)) codim 1"= 1 

EAnr(f, K (I') f"3 Z k-I  , zk-l) (-')~-'p(r), 

where F runs through all facets of Q. 

Proof Consider the following diagram of quasi-isomorphic embeddings of com- 
plexes (the differential in each of them is given by the exterior multiplication with 

d f):  

V'( l )  = (Ft fq Gt)Q . ~ (FI+I fq Gl)Q . ~-- (FI+I f3 Gt+1)s . = V'( l  + 1). 

If g �9 C ~ --+ D ~ is a quasi-isomorphism of based complexes then we de- 

note simply by det(g) the determinant of the based exact complex Cone(g) (see 

Appendix A). In the particular case when C ~ and D ~ each consist of one vector 

space in degree 0, a quasi-isomorphism is just an isomorphism of vector spaces 
g : C O ~ D O and det(g) is the ordinary determinant of the matrix of g in the 
chosen bases of C O and D O . 

The ratio 1///-10~l represents a morphism in the derived category from V ~ (1) to 

V ~ (l + 1) such that the induced morphism on the cohomology spaces is the identity 

map on ~)~Sing (f) f2~,-2. Therefore, et+l (e(l + 1))/et(e(l)) = det(qg/)/det(70), 
and our assertion follows from the next lemma. 
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L e m m a  4.8. For I >> 0 we have 

det(@) = I - I  EAnr(f, K(F)  f3 Z k-l,  zk-1) (-1)k-'Ip(F)I 
FCA+ 

det(apt) = H EAnr(f, K(F)  Z k-1 ' zk-1)(-1)k-I Ip(l")l FI 
FcA_ 

where F runs over facets of Q and the determinants are taken with respect to the 

monomial bases. 

Proof. Recall that we have a linear function h r on R k-1 equal 1 on F (and 0 

at coo which is the zero of our group structure on Rk-l).  It follows from the 

definition of the number ]p([')] (Section 1H) that in each region of the form 

{U E R k-1 " 1 < hr (u)  < 1 + 1 }, 1 E Z, there are exactly [p(1-')l translates of the 

hyperplane AffR (1-') which intersect Z k-1. 

Let E, as before, denote the convex cone with apex w0 generated by Q and 

let g �9 E --+ R be the function which is homogeneous of degree 1 and equal to 1 

on A+. Note that for any facet 1-' C Q such that 1" C A+, the restriction of g on 

K (F) (the convex cone with apex o90 generated by F) coincides with hr. 
Note that ~ot is a quasi-isomorphism and an embedding, and, moreover, it 

takes monomial bases in its domain into subsets of monomial bases in its range. 

This implies that det(@), i.e., the determinant of the complex Cone(@), is equal to 

the determinant of the complex Coker ~l with respect to the natural system of bases 

there. This follows by considering a natural two-term filtration in Cone(@) whose 

first quotient is the cone of the identity map and the second quotient is Coker(@). 
As a vector space, 

i 
(C~176 i = @ A c ' - ' .  

u~ENzk-l: 

i+l<g(u)<i+l+l 

For any facet F C A+ of Q, let D~.,l C Coker ~ot be the subcomplex defined by 

i 

Oir,l = @ A c ' - ' .  

u~ENzk-l: 

i+l<hr(u)<i+l+l 

We have a surjection of complexes 

@ 
FCA+ 

codimQ (F)=I 

D~.,t ---+ Coker q91 . 
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As in the proof of Lemma 3.3, we can extend this surjection to a Kouchnirenko- 
type resolution of Coker ~ol whose p-th term is the sum of certain complexes D~, l 
associated to the faces F C A+ of codimension p + 1 in Q. If codim F = 1, the 
complex D~, l has a decreasing filtration �9 with Ip(F)l layers given by 

i 

�9 = @ A c'-', 
u~I~OZk-l: 

i+l+l- lp~r)l <hr(u)<i+l+l 

where m = 1, 2 . . . . .  Ip(r)l. Every quotient of this filtration is isomorphic to the 
complex 

L~ Q F, K(F) tq Z k-l, Zk-1). (4.6) 

For codim F > 2 the determinant of D~, l is equal to 4-1 by the same reasoning as in 
the proof of Lemma 3.3 (d6vissage into L-complexes corresponding to semigroups 
of smaller rank and application of Lemma 3.1 (b)). By multiplicativity of the 
determinants of complexes in filtrations (Appendix A, Proposition 17) we get the 
first equality claimed in Lemma 4.8. The second equality (for ~Pt) is similar. This 
concludes the proofs of Lemma 4.8 and Proposition 4.7. 

We now consider the morphism ofcomplexes Xf, l " V~ ~ V~ l + 1) given 
by multiplication by f .  Let Cone (Xf, l) be the cone of Xf, I. This is a complex with 
terms 

Cone(xf ,  l) i -- Vi(l d- 1 ) ~  vi+l(l) ,  i - -0 ,  1 . . . . .  k. (4.7) 

For ui ~ Vi(l + 1), ui+l ~ vi+l(l)  the differential in Cone (Xf, l) acts by 

d(ui ,  ui+l) : ( d f  Au i  + ( - 1 ) i + l f  �9 U i + l , d f  A Ui+l)  E v i+l ( l  -I- 1 ) ~ )  vi+2(l) ,  

(see formula (1) of Appendix A). For I >> 0 and genetic f ,  the morphism Xf, t is a 
quasi-isomorphism. Indeed, each of these complexes has the unique cohomology 
space isomorphic to ~),~eSing <f) ~k,-2 and the action of f on this space is diagonal 
with diagonal entries f (a). So whenever all f (ct) :/: 0 Xf, t is a quasi-isomorphism 
and so Cone (Xf, l) is acyclic. In addition, this cone is equipped with natural Z- 
lattices, hence its determinant is uniquely determined up to sign. 

Corollary 4.9. For generic f ~ C A and for  I >> O, the determinant of  the acyclic 

based complex Cone (Xf, t) is equal to 

HA(f)"  I-'I 
codim F= 1 

EAnr( f ,  K (F) CI Z k-1 , zk-1) -p(r))  (-1)k-' (4.8) 
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The exponent (-1)k-1 appears because of the normalization of the grading 
of complexes we have chosen: the degrees go from 0 to k - 1. 

Proof Consider the identification 

0 l - -  821 O El " Det(V ~ (l)) --~ Det(V ~ (l + 1)) 

where the el are given by (4.5). Let 

�9 ~ ' 2 r , o  ~ 
o~Sing (f) a~Sing (f) 

k-1 be the map induced by the multiplication by f .  Since the action of f on each ~r,,~ 
is the multiplication by f(c~), the map f .  is the multiplication by the product of 

f(c~) over c~ ~ Sing ( f ) ,  i.e., by H A ( f ) .  Let 

(Xf, t). " Det(V ~ (1)) --+ Det(V ~ (l + 1)) 

be the identification induced by the quasi-isomorphism gf, t. If we denote, as 
in Proposition 4.7, by e(l) the basis vector in Det(V~ corresponding to the 
monomial basis in V~ then, clearly, 

det(x/,t) = 
e(1 + 1) 

(Xf, l).e(1) 

Note that 

Thus 

= 0 E l . 

det(x/,l) = et+l(e(l + 1)) . HA(f)(_l)k-, 
el(e(1)) 

and our statement follows from Proposition 4.7. 

Theorem 1.17 claims that the expression in (4.8), i.e., the determinant of 

Cone (Xf, t), coincides with a certain principal A-determinant, namely the deter- 
minant of the complex L~ l, K(A) N Z k, Zk). Here K(A) C R k is the cone 

with apex 0 generated by A • { 1 } (see Section 1H). Thus, the theorem will follow 

from the next proposition, which is a complete analog of Theorem 4.6 Chapter 2. 

Proposition 4.10. There is an isomorphism of complexes 

(L~ K(A) A Zk, Zk), Of) --~ Cone (X/,t)[1], (4.9) 

which induces an isomorphism of the integral lattices in all the terms. 
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Proof. We regard Z k-1 as the affine lattice {(ml . . . . .  mk) ~ Z k " mk = 1} in Z k. 

We abbreviate the complex on the left hand side of (4.9) by L ~ (l). Elements of 

L ~ (l) can be viewed as discrete vector fields on Z k and thus as differential forms 

on (C*) k (see Section 2A Chapter 9). Let xl . . . . .  Xk be the standard coordinates 

on (C*) k. Similarly, elements of V ~ (l) can be regarded as discrete vector fields on 

Z k-1 C Z k and hence as differential forms on (C*) k-I C (C*) k. The coordinates 

on  (C*)  k-1 are  Xl . . . . .  Xk-1. 

Lemma 4.11. For all i and I we have the decomposition 

dxk vi_t_ 1 ) Li+l(l) : X~ +/+1 Vi(l + 1) A .... ~) (1) 
Xk 

which induces an analogous decomposition of the integral lattices. 

Proof. By definition, L i+l (l) is the direct sum of the copies of A i+1 c k over all 

points of K (A) N Z k with last coordinate i + l + 1. Such points are in bijection 

with integral points in (i + l + 1)Q c R k-l ,  the dilation of Q with coefficient 

i + l + 1 and center w0. The space vi(1 + 1) (resp. vi+l(1)) is the sum of the 

copies of A i c k-1 (resp. A TM C k-l) over the integral points of the above dilation. 

Under the correspondence between forms on a torus and "discrete vector fields" 

on a lattice (see Section 2A Chapter 9), the form dxk/Xk corresponds to the vector 

field ( 0 , - e k )  where ek -- (0 . . . . .  0, 1) ~ Z k is the basis vector complementing 

Z k-1 to Z k. This makes the lemma obvious, since 

A Ck "-- C k-1 A ek ~ A Ck-1 

To complete the proof of Proposition 4.10, we identify, for each i, 1 the space 

Vi(l + 1) ~) vi+l(l) with Li+l(1) by the map 

dxk ) 
(ui, Ui+l) ~-~  xik +1+1 ui A + Ui+l �9 (4.10) 

Xk 

Then we write the action of the differential Of on the image of (U i, U i+l) in L ~ (1). 

This action is given by the multiplication by the 1 -form d f ,  where f (x 1, �9 �9 �9 xk) = 

Xk f (Xl . . . . .  Xk-1). (The replacement of f by jr is the consequence (on the level 

of Laurent polynomials) of regarding Z k-1 as an affine lattice in Z k as above.) 

Therefore 

d f = fdxk  + xkdf  
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SO ( ) d f A xik +l+l ui A + Ui+l 
Xk 

( dxk 1 ) i +  1 dxk ) 
- -  X~ +/+2 d f /k U i A + (-- f ui+ 1 A + d f A U i +  1 . Xk Xk 

If we map this element of Li+2(l) back into vi+l(l -4- 1) ~ vi+2(1), by the map 

inverse to (4.10) with shifted i, we get the formula for the differential in the cone. 

Proposition 4.10, and hence also Theorem 1.17, are proved. 



CHAPTER 11 

Regular A-Determinants and A-Discriminants 

In the previous chapter we established some structural properties of the principal 

A-determinant E A. Now we shall apply this information to the A-discriminant 

AA. In the most important case when the toric variety XA is smooth, we have 

A ( f )  "-- H AAnr ( f )  E 
F c Q  

where the product is taken over all the faces of the polytope Q = Cony (A) 

(Theorem 1.2 Chapter 10). Since (in the case when XA is smooth) a similar equality 

holds for each EAnr, we have a system of equalities relating the polynomials A Anr 

and EAnr that allows us to r e c o v e r  A A as as an alternating product of the EAnr. 

Consequently, alternating sums and products will appear in the expressions for the 

Newton polytope and coefficients of A A. 

1. Differential forms on a singular toric variety and the regular A-determinant 

A. Definition o f  the regular A-determinant  

Let A C Z k-1 be a finite set. If the toric variety XA is smooth, we represented 

the A-discriminant A A as  the determinant of a combinatorially defined complex 

C ~ (A, l) (see Section 2C Chapter 9). This combinatorial definition can in fact be 

given without any restrictions on A. Our first task will be to study this in general. 

We make our standard assumptions that A affinely generates Z k-1 over Z, 

and that Z k-1 is realized as {u ~ Z k �9 h(u)  = 1 } where h(ml  . . . . .  ink) = ink. As 

before, by S we denote the semigroup in Z k generated by A and for any i we set 

Si = {u ~ S �9 h(u)  = i}. We also denote by Q c R k-1 the convex hull of A, and 

by K C R k the convex hull of S, i.e., the convex cone with apex 0 and base Q. 

Let l be an integer. As in Section 2C Chapter 9, we consider the graded vector 

space C ~  1) - -  (Di Ci  (A, l) where 

i 

C i (A, 1) = ~ A LincF(u),  (1.1) 
uES,h(u)-l+i 

and F(u) is the minimal face of the cone K containing u. For a polynomial 

f (x)  = ~~<oEA atoxt~ C. C a , we define the differential Of �9 C i (A,  l) ~ C i +1 (A,  l) 
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by the same formula as (2.10) Chapter 9. It is immediately verified that 0} -- 0, 
i.e., we get a complex. 

Let Y = Ya = Spec C[S] be the affine toric variety corresponding to S. We 
defined, for any i, the coherent sheaf (2~, of Danilov i-forms on Y in Section 2B 

~i  Chapter 9. The restriction of ~ r  to the smooth part of Y coincides with the usual 

sheaf of regular i-forms. 

Proposition 1.1. For I >> 0, the space C i (A, l) is identified with the space of  
global sections of  ~i f2 r which are homogeneous of  degree i + 1 with respect to 

dilations of  the conic variety Y. For f E C A the differential Of is identified with 
the exterior multiplication by d f  ~ H~ ~1). 

The proof is similar to that of Proposition 2.3 Chapter 10. 

Proposition 1.2. Let f ~ C A be such that A a n t ( f )  ~ 0 for any face F C Q. 
Then for I >> 0 the complex (C ~ (A, 1), Of) is exact. 

Proof. The proof is similar to that of Proposition 2.4 Chapter 10. We leave details 

to the reader. 

Note that the terms of (1.1) are equipped with natural Z-lattices 

i 

C~(A, 1) -- ~ )  A Linz(l"(u) n A). (1.2) 
u~S,h(u)=l+i 

We take some system e of Z-bases in these lattices and define the regular A- 
determinant of weight I as 

DA,I(f)  -- det(C~ 1), Of, e) (-1)k. (1.3) 

This is a rational function on C A defined uniquely up to a sign. 

Theorem 1.3. 
(a) If  A is such that XA is smooth then, for I >> 0, the regular A-determinant 

Da,l coincides with the A-discriminant A a. 
(b) For any A the rational function Oa,l is, for I >> 0, independent up to a sign 

of the choice of l; more specifically, we have 

DA,I(f) =-4- H EAnl'(f)(-1)c~ 
F c Q  

(1.4) 

Proof Part (a) of this theorem is just Theorem 2.7, Chapter 9. 

To prove part (b) we consider the complex L~ l) whose determinant is EA 

(see (1.2), (1.3) Chapter 10). Let us define the subspace Lint(A, l) (5 L i (A, l) to 
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be the sum of the summands in (1.2), Chapter 10, corresponding to those u ~ Si+l 
which are interior points of the cone K. Clearly these subspaces form a subcomplex 

so we have the following embeddings of complexes: 

Lint(A, l) C C~ l) C L~ l). 

Let us introduce in C ~ (A, l) an increasing filtration F by setting 

i 

FpC i (A, l) = ~ )  A Lincr'(u). (1.5) 

u~Si+l 
dim F(u)<p 

Then 
grffC~ l) = ~ Lint(A O 1-', l). (1.6) 

r ' cQ  

dim(F)=p-  1 

(Note that F in (1.6) is a face of Q, and F (u) in (1.5) is a face of K, the cone over 

Q, which explains the shift of dimension by 1.) For any face F C Q we have 

E a n r ( f )  = det(L~ n F, 1), Of, e) (-1)dimtr)+l, (1.7) 

where e is a system of Z-bases in the natural Z-lattices in the terms of the complex. 
Comparing (1.6) and (1.7) and using the multiplicativity of determinants with 

respect to filtrations (Proposition 17, Appendix A), we see that it is enough to 

prove the following. 

Proposition 1.4. For generic f ~ C A and I >> 0, the complex (Lint(A, l), Of) is 
exact and 

det(Lint(A, l), Of) = det(L~ l), Of) -- E A ( f ) .  

More precisely, to prove part (b) of Theorem 1.3 we apply Proposition 1.4 to 

each A n F. 

Proof of  Proposition 1.4. We consider the quotient complex L ~ (A, l) / Lin t (A, l). 
Its terms are direct sums of summands corresponding to the u 6 S which lie on 

the boundary of K. Hence our quotient has a Kouchnirenko-type resolution (see 

Section 3C Chapter 8) whose p-th term is the sum 

@ 
F c Q  

d im(F)=k-2-p  

L ~ (A n F, l, S n R+F, Z k) 
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of complexes similar to those in Section 1E Chapter 10. The determinant of any 
of these complexes is equal to 4-1 by Theorem 1.11 (a) Chapter 10. Hence the 
quotient L~ l)/Lint(A, l) has determinant 4-1, which implies that the determi- 
nants of L~ l) and Lint(A, l) coincide up to a sign. This completes the proofs 
of Proposition 1.4 and Theorem 1.3. 

Using Theorem 1.3 (b), we shall write DA ( f )  for Dad( f )  with l >> 0. It is 
important to notice that (in contrast to AA and EA) the function DA ( f )  in general 

is not a polynomial, but only a rational function (of course this may happen only 

when X A is singular). We shall exhibit a concrete situation when DA is not a 
polynomial in Example 2.5 below. 

Nevertheless, we have the following corollary generalizing Theorem 2.8 
Chapter 9. 

Corollary 1.5. The rational function DA ( f )  is homogeneous of degree 

(--1)c~ -' + 1)Volt(I-'). (1.8) 
rcQ 

Proof For any set A, the A-resultant RA is homogeneous of degree Vol(Q) with 
respect to any of its arguments (Corollary 2.2 Chapter 8). Here Q = Conv(A) and 

the volume is taken with respect to the lattice affinely generated by A. It follows 
from this and the definition of the principal A-determinant Ea (formula (1.1) 
Chapter 10) that EA is homogeneous of degree (dim Q + 1)Vol(Q). Applying this 
to every set ANI" we find that Eanr is homogeneous of degree (dim F + 1)Volt (1"). 
Now our statement follows from (1.4). 

B. The case when X A iS quasi-smooth: the polynomiality of DA 

We have already mentioned that when Xa is not smooth then DA is not necessarily 
a polynomial. However, we shall prove below that DA is a polynomial provided 

that X A is quasi-smooth. This means (Section 4D Chapter 5) that the polytope 

Q = Conv (A) is simple and for any face F C Q, the index i (1-', A) is equal to 1. 

Theorem 1.6. If X A is quasi-smooth then DA is a polynomial. In particular, its 
degree (1.8) is a non-negative number. 

Note that we do not claim that DA = A A .  

The proof of Theorem 1.6 will occupy this and the next subsection. We start 
with the observation that by Theorem 1.3 and Theorem 1.2 of Chapter 10, the 

factorization of DA into prime elements of the ring Z[(a,o)] is 

DA(f )  -- 4- H AAnr(f)~(r)'  (1.9) 
rcQ 
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where the/z(1-') e Z are some exponents. We shall give an interpretation of the 
~(1") in terms of constructible sheaves (as in Section 2 Chapter 10). 

Let V -- C A, so that the toric variety Y -- YA is embedded into V*. Consider 

the constant sheaf C__ r on Y. We can regard it as a sheaf on V*. This sheaf is 

obviously constructible so we can consider the characteristic cycle SS(Cr)  (see 

Section 2C Chapter 10). We shall use the notation of the cited section, in particular 

the Lagrangian varieties Con (F) C V* x V. 

Theorem 1.7. Let the set A be such that i(1", A) = 1 for any face F C Q. Then 
the exponent/x(l") in (1.9) is equal to c(Con (1"), C__r[n - k]), the multiplicity of 

Con (F) in the characteristic cycle of the shifted sheaf C__r[n - k]. 

The proof of Theorem 1.7 is quite similar to that of Theorem 2.15 Chapter 
10. So we give only a sketch. 

Let (a~,) and (bo~) be the dual coordinates in V and V*, and C[a, b] be the 

polynomial ring in these coordinates, graded by deg (ao,) = 0, deg (b,o) = 1. We 
consider the C[S]-modules Vec i (S) (Section 2B Chapter 9). Note that Vec i (S) = 

~l Ci (A, l). We regard each Vec i (S) as a C[b]-module by the homomorphism 

C[b] --+ C[S], bo~ ~-+ x ~ 

We consider the complex of C[a, b]-modules 

Vec~ = {C[a] | Vec~ C[a] | Vec 1 (S) ; . . .  } (1.1o) 

with the differential Eto~A ao~| Since C[a, b] is the coordinate ring of V x V*, 
any C[a, b]-module has a well-defined multiplicity along any subvariety in V x V*. 

Proposition 1.8. We have 

/z (1") -- ( -  1)kmultconCr)H ~ (Vec ~ (S) [a]). 

The proof is similar to that of Proposition 2.6 Chapter 10. 

To establish the relation with constructible sheaves, we consider the analytic 

de Rham complex of Danilov differential forms on Y (cf. Theorem 2.5 Chapter 

9): 
~'~,an = { ~'r20 d d Y, an ) ~=~1 Y, an .~ . . . } .  (1.11) 

Proposition 1.9. Suppose that i (1-', A) = 1 for any face F C Q. Then 

(a) The complex f2 ~ is a right resolution of the constant sheaf C__y. Y, an 
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" ~  A 
(b) For any y ~ Y the formal completion (f2r, an)y (considered as a complex of 

vector spaces) is a right resolution of the vector space C. 

Proof This is similar to Theorem 2.2 Chapter 10. As in that proof, we use the 

transversal slice to Y at y. Suppose that y lies in the orbit y0 (1-') C Y where 1-' is a 

face of Q. The condition i (1-', A) = 1 means that the transversal slice is the toric 

variety Spec C [S/1-'] (see Section 3A Chapter 5). So our statement is reduced to 
the following. 

Lemma  1.10. Let E be an admissible semigroup (Section 3C Chapter 5) embedded 
into some Z m. Let Y~ = Spec C[E] be the corresponding affine toric variety and 

0 ~ Yr. be the unique O-dimensional torus orbit. Then both the stalk and the formal 
completion at 0 of the complex f2 ~ Yz,an are right resolutions of C. 

Proof of the lemma. The space Vec i (E) = H ~ (Yz, (2i) consists, by definition, of 

finite sums 
i 

~-~(u, Z,), Z, ~ A Lincr ' (u) ,  (1.12) 
uEE 

where F(u) is the minimal face of the cone K = C o n v  (E) containing u. The 
differential d : Vec i (E)  --+ Vec i + 1 (E) acts by 

(u, ~.u) v----+ (u, - u  A ~.u). (1.13) 

The stalk at 0 of ~ i  consists of (possibly infinite) sums of the form (1 12) with Yz, an 
the condition that the ~.,, grow at most polynomially. If u r 0 then the Koszul 

complex, given by the exterior multiplication with u, is exact, so from u A Xu -- 0 
it follows that ~.u -- u A/z ,  for some #u 6 A i -1LincF(u) ,  and the/Zu can be 

chosen to grow at most polynomially if the ~., do. So the cohomology comes only 

from the summands in (1.12) with u = 0. The only non-trivial summand is the 

one with i = 0 and is generated by (0, 1) 6 Vec~ This gives the exactness 

of the analytic stalk. The case of formal completion is similar and amounts to 

considering the formal series of the form (1.12). 

Now, to the complex (Vec ~ (S), d), we associate a complex of free right mod- 

ules over the Weyl algebra Dif = C[b~o, O/Obo~]. This complex is 

Wec~ (~)C[b] Dif, 0 )  (1.14) 

with the differential given by (2.29) Chapter 10. The associated graded complex 

of this complex of Dif-modules is Vec ~ (S)[a] appearing in Proposition 1.8. The 
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de Rham complex DR(Vec~ | Dif) is the usual de Rham complex (1.11). So 
by Theorem 2.13 (b) Chapter 10 we have 

/z(I') = ( -  1)kmultcon(r)H ~ (Vec ~ (S)[a]) 

-- ( - 1 )  n-k c(Con(r), DR(Vec~ | Dif)) = c(Con(r), C__v[n - k]). 

Theorem 1.7 is proved. 

C. Perverse sheaves and positivity of /z(F)  

Let M be a complex algebraic variety. A constructible complex .T "~ on M is called 

a perverse sheaf [B B D ], [KS] if the following conditions hold: 

(Perv+). For i > 0 the cohomology sheaf H i (Jr~ has support on an algebraic 

subvariety of  codimension > i. 

(Perv+). For every smooth (not necessarily closed) subvariety Z C M of  codi- 
mension d, the sheaves Iliz(.7 r~ of  hypercohomology with support in Z are zero 

for  i < d. 

The main property of perverse sheaves which we shall need is as follows (see 

[KS]). 

Theorem 1.11. I f  M is smooth then the characteristic cycle of  any perverse sheaf 
.7 r~ is positive, i.e., c(A,  .7:~ > O for  any conic Lagrangian variety A C T*M. 

Returning to our situation, we have the following. 

Theorem 1.12. Let Y be a quasi-smooth toric variety. Then the constant sheaf 

C__y is perverse. 

Proof In our case (Perv-) is obvious, so it remains to show (Perv +). Let Jr �9 I 7 -+ 

Y be the normalization morphism of Y. Since Y is quasi-smooth, it follows that 

Jr is a homeomorphism of topological spaces. Therefore it is enough to prove the 

perversity of the constant sheaf on Y. In other words, we can and will assume that 

Y is normal. Then C__y has the de Rham resolution ((2~,, d) where the (2 i are the 

sheaves of Danilov/-forms (see above). It was shown in [D] (Proposition 4.8) that, 

for a quasi-smooth normal Y, the sheaves ~i on Y satisfy the Cohen-Macaulay 
condition, i.e., J ~ i Hz(f2  ) = 0 for j ~ d .  This implies (Perv+). 

Now we can finish the proof of Theorem 1.6. We need to prove that all the 

exponents/z(1-') are non-negative. Since XA is assumed to be quasi-smooth, Y-{0} 

is also quasi-smooth since this is the punctured cone over XA. The perversity of 
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the sheaf C__r_lo ] on Y -  {0} implies the perversity of the shifted sheaf C__r_lo] [n - k ]  

on V* - {0} D Y - {0}. Since for any face F C Q we have, by Theorem 1.7, 

l z ( r )  = c ( C o n ( r ) ,  C__y_{0i[n - k ] ) ,  

the non-negativity follows from the perversity. 

2. Newton n u m b e r s  and Newton functions 

A. The Newton number of an admissible semigroup 

The exponents /z (F)  of prime factors in the decomposition (1.9) of the regular 

A-determinant DA are, by virtue of Theorem 1.3 and Theorem 1.2 Chapter 10, 

certain alternating sums. In this section we study sums of this kind in a more 

systematic way and in a slightly more general context. This will allow us to apply 

them later (Section 4) in a different situation. 

Let S be an admissible semigroup (see Section 3C, Chapter 5), ,7, its group 

completion (it is a free Abelian group), k = rk(U,), and K C ~R = Rk the convex 

hull of S (it is a polyhedral cone with apex 0). We define the Newton number of S 
as  

v(S) ---- Z (--1)c~ N 1-') (2.1) 
FCK 

where F runs over all faces of K (including 0 and K itself), and u( .  ) is the 

subdiagram volume of a semigroup (see Definition 3.8 Chapter 5). For the trivial 

semigroup S = {0} we set v(S) = 1. 

Example  2.1. For a free semigroup S -- Zk+, k > 0, we have v(S) = 0. Indeed, 

the subdiagram part K_ (S) is an elementary simplex for the lattice E = Z k, so 

u(S) = Volz (K_ (S)) = 1. Since each S n F is also a free semigroup, we have 

u(S n F) = 1 for all faces F C K -- Rk+. Since for each i -- 0, 1 . . . . .  k there are 
(~) faces of dimension i, we have 

v ( S )  - -  z . _ ~ ( - 1 ) / - i  : 0, 
i=0 

in view of the binomial formula. 

The relationship between the Newton numbers and the exponents /z (F)  in 

(1.9) is given by the following. 

Proposi t ion 2.2. Suppose, in the situation and notation of Section 1B Chapter 10, 
that i (F, A) -- 1 for any face F C Q (this holds, for example when XA is normal). 
Then #(1") = v(S/1"). 
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Proof Combining Theorem 1.2 Chapter 10 and Theorem 1.3 of this chapter, 
we obtain the formula which is valid for arbitrary A (without the assumption 

i(r', A) = 1): 

i(F, A n O)u(S(A n ~))] F), (2.2) g(r) 
e : r c o c Q  

where S(A n (9) is the semigroup in Z k generated by A n (9. The assumption that 

all i ((9, A) are equal to 1 implies that i (F, A n (9) = 1 as well. Replacing all these 

indices in (2.2) by 1, we obtain our statement. 

In general, the Newton number v(S) may be negative (and DA ( f )  may not 

be a polynomial in coefficients of f ) .  There is, however, one important case when 

non-negativity holds. 

Theorem 2.3. Suppose an admissible semigroup S has the following two proper- 
ties: 
(a) The convex hull K (S) C ~R is a simplicial cone. 
(b) Linz (S n F) = ~, N LinR (F) for any face F C K (S). 

Then v ( S) >__ O. 

This theorem is completely analogous to Theorem 1.6, but is slightly more 

general since it deals with a semigroup S not necessarily coming from a set A. In 

the case when K (S) is strictly simplicial (i.e. K (S) n F_, is a free semigroup) it is 

due to Kouchnirenko [Kou]. 
The proof is based on the topological interpretation of Newton numbers sim- 

ilar to what was done in Section lB. Let Ys = Spec C [S]; note that the properties 
(a) and (b) in Theorem 2.3 mean exactly that Ys is quasi-smooth, see Theorem 3.6 
(b) Chapter 5. Let B be a finite set of generators of S. The variety Ys is embedded 

into (cB) * and 0 is the unique 0-dimensional torus orbit on Ys. We regard Cr~ as 

a sheaf on (C B).. 

Theorem 2.4. The Newton number of S has the following interpretation: 

v(S) - c(Con(O), Cr~[#(B) - k]). 

This theorem is analogous to Theorem 1.7. 

Proof. For every face F C K (S) let Y~ C Ys be the corresponding toms orbit 

and let j r  " Y~ --+ Ys be the embedding. Denote by Y~ C Ys the union of 

all toms orbits of codimension < r and by jr the embedding of this union into Ys. 
Then Ys k = Ys and for every r we have an exact triangle 

--+ Rjr'*Cr~ -+ Rjr-l'*Crs-~ ~ 0 RJF,*C--y~ 
codim F=r 
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in the derived category of constructible complexes on (CB) * (see [KS] for back- 

ground on derived categories and exact triangles). Theorem 2.4 follows from the 

additivity of multiplicities in exact triangles and from Theorem 2.12 Chapter 10 

yielding 

c(Con(0), Rjr,.Cro(r)s) = (--1)c~ f') r ) .  

Theorem 2.3 follows now from the perversity of C_r s [m - k] as a complex on 

(cB) * (Theorem 1.12) and from Theorem 1.11. 

Example 2.5. Let us exhibit a semigroup S with v(S) < 0 and a set A such that 

DA is not a polynomial. We consider R E • R 3 with basis el, e2, f l ,  f2, f3 and 

the semigroup S in this space generated by the set B consisting of the six vectors 

ei + fj. The linear span LinR (S) has dimension 4 and the cone K = Cony(S) has, 

as its base, the triangular prism Conv (B) - -  A 1 • A 2. Note that 

v(S) - ( ~ (--1)c~ 

V C A I x A  2 

Here the summation is taken over all non-empty faces F of A 1 x A2 and Volt is 

induced by the lattice Affz(B f3 F) C AffR(F). Indeed, for a face F C A 1 • A 2 

the corresponding face of K is R+ F. The subdiagram volume u(S f3 R+ F) (i.e., 

the volume of K_ (R+ F) (see Section 3E Chapter 5)) coincides with Volt (F) since 

K_ (R+F) is the pyramid with base F and height 1. 

The volume of A 1 x A 2 is equal to 3, that of a triangular face to l, of a 

quadrangular face to 2, of any edge to 1. Hence 

v(S) = 3 -  (2 .1  + 3 . 2 ) +  9 . 1 -  6 . 1  + 1 = - 1 .  

Consider now A which is the set of vertices of the hypersimplex A (3, 6) (see 

Section 3A Chapter 6). Thus a C R 6 consists of (63) vectors ei -I- ej "1- ek where 

el . . . .  e6 is the standard basis of R 6. It is straightforward to see that, for any 

vertex 1" -- ei + ej + ek of Q - A(3, 6), the semigroup S(A) /F  is isomorphic to 

the semigroup S described above (geometrically, near each vertex A(3, 6) looks 

like a cone over A 1 x A2). Thus v(Sa/I") -- -- 1. Since for any face 1-" C A 1 x A 2 

we have i (1"', A) - 1, we find by Proposition 2.2 that DA is not a polynomial. 

B. Combinatorial Newton numbers 

Let K C R m be a convex polyhedral cone. We shall assume that K is rational, 

i.e., it is given by a system of linear inequalities with rational coefficients. By 

a triangulation of K we mean a partition of K into a finite number of rational 
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simplicial cones, any two of which intersect along a common face. The definition 

of a coherent triangulation is analogous to that in Section 1C Chapter 5. 

Let 1" be a face of K, dim F = i. By the combinatorial volume of F with 

respect to a triangulation E, we mean the number of/-dimensional cones in E into 

which 1" is partitioned. We let C Vz (1") denote this number. If 1" is a vertex of K, 

then we set C Vz (F) = 1. 

By the combinatorial Newton number of K with respect to E, we mean 

C N z ( K )  = y~(--1)c~ (2.3) 
F 

where F runs through all (non-empty) faces of K, including K itself. 

Theorem 2.6. 
(a) I f  K is a cone in R 3, then for  any triangulation I] we have C N z ( K )  > O. 

(b) I f  ]E is a coherent triangulation of  the cone R p x Rq+ C R p+q, then 

C N z ( R  p x R q) > 0. 

Proof (a) Consider first the case when K is strictly convex, i.e., it does not contain 
straight lines. Let P be the plane polygon at the base of K. Then E induces 

a triangulation T of P, i.e., a decomposition of P into finitely many triangles. 

Assume that T has more than one triangle (otherwise C N x ( K )  = 0 and there 

is nothing to prove). Let To denote the set of vertices of P, T~ denote the set of 
sides of triangles from T which lie on the boundary of P, and T2 denote the set of 
triangles from T. By definition (2.5), we have 

C N x ( K )  = #(T2) - #(T1) + #(To) - 1. 

Clearly, each segment from 7'1 is contained in exactly one triangle from 7"2. We 
want to cancel out all the segments from T1 with corresponding triangles. This is 

always possible except when two segments share the same triangle; however, such 

segments also share a vertex of P, and so they can be cancelled together with their 

common triangle and common vertex. Performing these cancellations, we see that 

CNr~(K) -- #(T~) + #(T~) - l, 

where T~ is the set of interior triangles from 7"2 (having no sides on the boundary), 

and T~ is the set of vertices of P which belong to more than one triangle from T2. 

Therefore, it remains to show that at least one of the sets T~ and T~ is non-empty. 
Suppose, on the contrary, that T~ = T~ = 13, i.e., T has no interior triangles, 

and each vertex of P belongs to exactly one triangle from T. Let us count how 

many triangles, edges and vertices can T have under such an assumption. First, T 
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has m triangles having a vertex of P as one of the vertices. Each of these triangles 

has two boundary edges and one interior edge. Suppose, T has p more triangles. 

Due to our assumption, each of them has one boundary edge and two interior edges. 

Hence, the number of boundary edges in T is (2m + p), and the number of interior 

edges is (2  + P) (since each boundary edge belongs to one triangle, while each 

interior edge belongs to two triangles). Furthermore, it is easy to see that under 

our assumptions T has no interior vertices. So the number of vertices is equal to 

the number of boundary edges, i.e., to (2m + p). It follows that 

#(triangles of T) - #(edges of T) + #(vertices of T) 

m m 
= ( m + p ) - ( ~ + p ) - -  ~-. 

On the other hand, by Euler's theorem, for a polygon the last expression is equal 

to 1. We conclude that m -- 2, which gives a desired contradiction. 
The case when K is not strictly convex is actually easier, and we leave it to 

the reader. 

(b) Suppose we are given a coherent triangulation E of R p x Rq+. We regard 

E as a fan and consider the corresponding toric variety X (E) (see Section 4A 

Chapter 5). This toric variety is glued from the affine charts Spec C[6 f3 zP+q], 

where ~r ~ E, and 6 C R p+q - (RP+q) * is the dual cone of tr. The r-dimensional 

torus orbits on X (E) correspond to the cones of codimension r in E. We consider 

the map of fans (R p+q, ]~) ~ (R q, R q) extending the projection R p+q ~ R q. 

This map corresponds to a proper morphism of toric varieties rr �9 X (E) --+ C q -- 
X(R~).  

Let.T "~ be a finite complex of sheaves on C q which is constructible with respect 
to the stratification by coordinate subspaces (i.e., whose cohomology sheaves are 

locally constant on the interior of each coordinate subspace). For every subset 
I C { 1 . . . . .  q }, we let rk(.T "~ C I) denote the alternating sum of the ranks of the 

m 

cohomology s h e a v e s  H i (.~") at the genetic point of the stratum (C*) I x {0} I, where 
m 

I = { 1  . . . . .  q } - l .  

I Lemma 2.7. For every I C { 1 . . . . .  q } the combinatorial volume C Vz (R p x R+) 

is equal to rk(Rzr.C__x(x), C/). Furthermore, RZi+llr, C__x(E) - O f o r  all i. 

I Proof The cones in E of dimension p + #(I)  into which R p x R+ is partitioned 

are in one-to-one correspondence with the torus orbits on X(E)  which project 

isomorphically onto the orbit (C*) I C C q corresponding to the face R/+ C Rq+ 

(see Section 4A, Chapter 5). For all of the other orbits which project to (C*) I, the 

fibers of the projection are isomorphic to algebraic toil (C*) m for various m >_ 1. 
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C z Hence, they do not contribute to the Euler characteristic, i.e., to rk(Rrr, Cx(x), ). 

Thus, this number coincides with CVr.(R p x Rt+). 

It remains to show that any higher direct image with odd index is 0. We 
shall prove that R2i+lrg, Cx(r,) has the zero fiber at 0 e cq; the proof for other 

points is analogous, except that we reduce it to the case of lower dimensional 
varieties. Since rr is a proper morphism, the fiber in question is H 2i+1 (:rr -1 (0), C). 

Furthermore, zr -1 (0) is a deformation retract of X (Z), so our fiber coincides with 
H 2i+1 (X (]~), C). 

Let us compactify X(Z).  To do this we consider the diagonal subgroup 

C* C (c*)q which corresponds to homotheties, and we attach to X (E) its set of 

infinite points, i.e., the set Z of orbits of C* in X(E) that are not contained in 

rr -1 (0). We let X = X U Z denote the resulting compactification. Both X and Z 
are quasi-smooth normal projective toric varieties. Hence (see [D], w 10), the odd- 

dimensional cohomology groups of X and Z with complex coefficients are 0. In 
order to prove that H 2i+1 (X (E), C) = 0 for all i, it remains to use the Gysin exact 

sequence [BBD], [KS]. This sequence exists in our case because quasi-smooth 

toric varieties are rational homological manifolds (see again [D]). The vanishing 
of H 1 (X (E), C), which is situated at the very end of the Gysin sequence, follows 

from the fact that the fundamental group of X (E) is finite ([D], Proposition 9.3). 

Lemma 2.7 is proved. 

Lemma 2.8. We have the following isomorphism in the derived category of con- 
structive complexes on C q" 

C_c, | 
1 

where I runs through all subsets of { 1 . . . . .  q },  C__ C, is the constant sheaf on the 
coordinate subspace C t, and the M~ are some graded vector spaces. 

Proof As noted above, X (E) is a rational homological manifold. Hence, the con- 

stant sheaf Cx(~) coincides with the intersection cohomology complex on X(E)  

(see [BBD] for general background). As shown by Saito [Sal], the intersection 

cohomology sheaf of any manifold extends to an object in the category of the 

pure polarizable Hodge modules. We let HCx(r~) denote the Hodge module corre- 

sponding to C__x(r~ ). Next, by the decomposition theorem in [Sal ], the direct image 

Rzr,(HCx(~)) is a direct sum of twists of pure polarizable Hodge modules. The 

category of such modules is semisimple, and its irreducible objects correspond to 

the intersection cohomology extensions of irreducible locally constant sheaves on 

the strata, equipped with a variation of the Hodge structure. In our case all of the 

strata are tori. In order to show that every irreducible summand is a shifted constant 

sheaf, it is sufficient to demonstrate that it has no monodromy on an open subset of 
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its domain of definition. Notice that the action of (c*)q on C q extends to an action 

on the sheaves R i 7r, HCx(x). Moreover, the holonomy (parallel translation) of any 

such sheaf from a point a to a point b is given by the action of any torus element 

taking a to b. Consequently, the monodromy around any closed loop is trivial, 

since it corresponds to the action of the identity element of the torus. Lemma 2.8 

is proved. 

We now conclude the proof of Theorem 2.6. Note that, if J C { 1 . . . . .  q } is 

a non-empty subset, then 

~-'~(--1) #(I). rk(__Cc,, C I) = E ( - 1 )  #(I) -- 0. 
I ICJ  

As for the case J = 0, corresponding to the skyscraper sheaf at zero, the graded 

space of multiplicities M~ has only even graded components, since R~ Cx(x) = 

0. Hence, Y]1 ( -1) l t l . rk(C I, Rzr, Cx(z)) -- Y~i dimMt] / is anon-negative number, 

and Theorem 2.6 is proved. 

In the process of the proof we have also obtained the following topological 

interpretation of the combinatorial Newton numbers. 

Corollary 2.9. Let E be a coherent triangulation o fR  p • Rq+. Let Jr �9 X (E) --+ C q 

be the proper morphism corresponding to E. Then CNz  (R p x R q) is equal to 

the sum of the multiplicities in Rrr,Cx(x) of all the shifted sheaves C{01[d] (here 

the shift parameter d is necessarily even). 

C. The Newton function of  a triangulation 

Let Q be a polytope in R k- 1 with vertices in Z k-1 . Let T be a coherent triangulation 

of Q into simplices with integral vertices. 

Definition 2.10. A simplex ~r of T (of any dimension j >_ 0) is called massive if 

it lies in a j-dimensional face of Q. 

We define an integral-valued function C NT on the set of simplices of T (of 

every dimension) by setting 

CNT(tr ) - -  E (-- 1)dimQ-dimy ' (2.4) 

yDo 

y massive 

where y runs through all of the massive simplices of T containing cr as a face. We 

call CNr the Newton function of T. 
The definition of the Newton function is quite similar to that of the combina- 

torial Newton number of a cone with respect to its triangulation, see (2.3). In fact, 
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if we assume, as usual, that Q lies in an affine hyperplane in R k, and let K be the 

cone with apex 0 over Q, and E the triangulation of K formed by the cones over 

the simplices of T, then 

C N z ( K )  = CNT(O) 

(with the understanding that in (2.4) dimfl = -1 ) .  

On the other hand, the Newton function of any simplex tr can be expressed 

as a combinatorial Newton number by the following construction. 

First, notice that for every affine subspace L in an affine space W we can 

define the quotient vector space W / L  whose elements are parallel translations of 

L. In particular, this space has a distinguished vector 0 represented by L itself. 

Now let cr be a simplex in T, and let 1" (tr) C Q be the smallest face containing 

tr. Consider the image of Q in the quotient space AffR(Q)/AffR(tr) (where AffR 
stands for the affine span). Let K(tr, Q) denote the cone in AffR(Q)/AffR(cr) 

whose apex is the distinguished point 0 of this quotient space, and the base is the 

image of Q. For each simplex ), of T having tr as a face, let K (?,) denote the cone 

in AffR(Q)/AffR(tr) with apex 0 whose base is the image of y. It is clear that the 

cones K (y) form a triangulation of K (or, Q), which we shall denote E(T,  tr) and 
call the triangulation induced by T. This triangulation is coherent if T is coherent. 

It is implied at once that 

CNr(cr) = CNr(r.o)(K(tr,  Q)). (2.5) 

Theorem 2.11. Suppose that Q is simple or lies in R 3. Let T be a coherent 

triangulation of  Q as above. Then the Newton function C Nr takes only non- 

negative values. 

Proof This follows from (2.5) and Theorem 2.6, once we observe that if Q 

is a simple polytope, cr is any simplex in T, and l"(tr) C Q is the smallest 

face containing tr then K(tr, Q) ~- R p • R q, where p = dimF(tr )  - dimtr,  

q = dim Q - dim F (tr). 

We conclude this subsection by a property of the Newton function, which will 

be used later. 

Proposition 2.12. For every simplex tr E T we have 

[ 0 
E (--1)dimr-dim~ { 

• • ~o [ ( -  1 ) dim e-dimo 

i f  or is not massive, 

if  tr is massive, 
(2.6) 

where the summation is over all simplices y ~ T having tr as a face. 
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Proof. Expressing CNT (y) in the left hand side of (2.6) with the help of (2.4) and 

changing the order of the summation, we obtain 

( -  1 )dimQ-dim8 Z (-- 1 )dimy-dimo 

8Do y:oCyC8 

8 massive 

If 8 # a ,  the second sum has, up to sign, the form X - 1 where X is the Euler 

characteristic of a certain polyhedral ball. Thus g - 1 = 0. When 8 = cr we 

obtain the required expression. 

Note that in [GZK3] what we now call the Newton function was called the 

MObius function of a triangulation. The reason was that (2.6) is reminiscent of the 

property of the classical MObius function. Still, we have finally decided that the 

present terminology is less ambiguous. 

D. Non-negativity of Newton numbers and polynomiality Of DA for low-dimensional 
c a s e s  

Proposition 2.14. 
(a) Let S C Z 2 be any admissible semigroup. Then v(S) > O. 
(b) Let S C Z 3 be any admissible semigroup generating Z 3. Suppose that for 

any face F C K we have 

Linz(S N F) = Z 3 N LinR(F). 

Then v ( S) >_ O. 

Proof. (a) Consider an arbitrary lattice triangle A B C. Since the area and lengths of 

sides are normalized with respect to the corresponding lattices, the usual formulas 

of the plane geometry need some adjustment. Let (A BC) denote the normalized 

area Volz2(ABC), and IABI, [ACI, Inf[  denote the lengths of sides each normal- 

ized with respect to the induced one-dimensional lattice (so say I ABI equals the 

number of integral points in the segment [AB] minus 1). Using these definitions, 

we have the following "strange" inequality: 

(ABC) > IAB[. IACl. (2.7) 

(Indeed, if B' ~ [A, B], C' ~ [A, C] are lattice points such that [AB'I -- [AC'I = 

1 then (ABC) = IABI. (AB'C) = IABI. IACI. (AB'C') >_ IABI. IACI.) It 
follows that 

( A B C ) -  I A B I -  IACI + 1 >__ ( I A B I -  1 ) ( I A C I -  1) >__ 0. (2.8) 
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Let now S C Z 2 be an admissible semigroup which we assume (without loss of 
generality) to generate Z 2. Let K+(S) = Conv(S - {0}) C R 2 (see Section 3E 

Chapter 5). The finite part of the boundary of K+ (S) consists of finitely many 

segments, say, [Bo, B1], [B1, B2] . . . . .  [Bm-1, Bm]. By definition, 

v(S)--(~(OBiBi+l)) \  i=0 -IOBoI-IOBmI+I, 

which can be rewritten as 

m - 1  m - 1  

((onini§ -10ni l -  10ni§ + 1) + y~ (2.10nil- 1). 
i=0  i=1 

Now the first sum in the last expression is > 0 by (2.7), and the second sum is 

always positive if present at all (i.e., if m > 2). This proves part (a). 

(b) Let K_ (S) be the subdiagram part of K (S) (Section 3E Chapter 5), i.e., the 

closure of K(S) - K+(S) where K(S) = Conv(S) and K+(S) = Conv(S - {0}). 
Thus the subdiagram volume of S is u (S) = VoI(K_ (S)). Let A be the common 
boundary of K+(S) and K_(S). It is a polyhedral surface in R 3. Consider the 

decomposition T of K (S) into polyhedral cones obtained by taking a cone through 

every face of A. This decomposition is coherent since A is a part of the boundary 

of the convex polyhedron K+ (S). Let us refine T to a coherent triangulation E of 
K (S) by subdividing every 3-cone from T into simplicial cones without adding 

new edges. Then 

u(S) = Z u(S A L). (2.9) 

L~E 

dim L=3 

This is because, first, K_(S) is the union of K_(S N L) by construction, and, 

second, the lattice Linz(S n L) defining the volume of K_ (S N L), coincides with 
Linz (S) -- Z 3. 

Let P be a (bounded) plane polygon (which is a section of K (S)) by a plane 

whose equation has rational coefficients. The triangulation E of K (S) induces a 

triangulation T of P into triangles with rational vertices. For every simplex cr of 

T (of dimension 0,1 or 2) let L(cr) 6 E be the corresponding cone. We also add 

to T the empty set 13 regarded as a simplex of dimension (-1) and set L (0) -- {0}. 

Applying (2.9) and Proposition 2.12, we obtain 

v(S) = ~ CNr(tr) . v(S n L(cr)), 
tr E T  

where the sum is over all simplices including 0, and CNr(O) = CN~(K (S)). 
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Every v(S N L(a)) is non-negative by Theorem 2.3. Indeed, the L(a) are 
simplicial cones, so condition (1) of Theorem 2.3 is satisfied. As for condition 

(2), it also holds for any a and any face L(r)  C L(a). More precisely, if L( r )  
has dimension 2 and lies on a 2-dimensional face F of K (S), then the condition 

follows from our assumption 

Linz(S O 1-') = Z 3 n LinR(1-'). 

In other cases the condition follows because S n L(r )  = (S n L(a)) n L(r) .  To 

finish the proof of Proposition 2.14 (b), it remains to note that the numbers C NT (a) 
for all a including a = 0 are non-negative by Theorem 2.6. 

Corollary 2.15. Let A C Z k-1 be a finite subset affinely generating Z k-1 over Z. 

Suppose that k - 1 < 3 and for any face F C Q - Conv(A) we have i (F, A) -- 1. 

Then the regular A-determinant DA is a polynomial. 

Proof. By (2.2), A A always enters the factorization of DA with exponent 1. As 

for other factors A ant corresponding to proper faces of Q, their exponents are 

the Newton numbers of the semigroups of the form S~ F (Proposition 2.2), and so 

they are non-negative by Proposition 2.14. 

3. The Newton polytope of the regular A-determinant and D-equivalence of 
triangulations 

A. Vertices of the Newton polytope and D-equivalence 

The regular A-determinant DA is not always a polynomial (see Example 2.5). By 

Theorem 1.6 and Corollary 2.5, DA is a polynomial provided the set A C Z k-1 

satisfies the following two conditions: 

(1) The polytope Q - Cony(A) is simple or has dimension _< 3. 

(2) For every face I" c_ Q the index i (1-', A) (see Section 3A, Chapter 5) is equal 
to 1. 

In this section we assume that A satisfies these conditions. In particular, they 

hold in the most important case when X A is smooth. In this case DA coincides 

with the A-discriminant AA. 

For f -- EtoEA ao, x~ ~ CA let us write DA ( f )  as the sum of monomials 

DA ( f )  -- E do U a~(~ (3.1) 
q~ZA+ w~A 

The Newton polytope N(DA) C R A is the convex hull of the set of 17 ~ Z A for 

which d o ~ O. We are interested in describing this polytope. 
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Let 1-' c Q be a face, and let Affs (1-') C R k- 1 be its affine span. We introduce 

the volume form Volt on AffR(F), induced by the lattice Affz(A n 1"). 

Let T be a triangulation of (Q, A). According to Definition 2.10, we call a 

simplex tr of T of some dimension j > 0 massive if it lies in a j-dimensional face 

of Q. In that case the face is obviously unique; we shall denote it by l"(cr). In 

particular, all simplices of full dimension k - 1 are massive, and for each of them 
1-'(or) = Q. 

For o9 6 A we set Or,j(og) = )--~,, Volr(,,)(tr), where tr runs through all of 

the massive j-dimensional simplices in T for which o9 is a vertex. We thus obtain 

functions OT,j " A -+ Z; note that OT,n-1 coincides with the function tpr (Section 
1D Chapter 7). Let 

k - 1  

OT = ---'~,(--1)k-l-JrlT,j E Z A (3.2) 
i 

j=0 

Definition 3.1. We say that two triangulations T and T' of (Q, A) are D-equivalent 

if Or = Or'. 

Theorem 3.2. Under the above assumptions (1) and (2), we have 
(a) The vertices of N(DA) are exactly the points Or for all coherent triangu- 

lations T of (Q, A). Thus, they are in one-to-one correspondence with the 
D-equivalence classes of coherent triangulations of (Q, A). 

(b) The monomial in DA corresponding to (the class of) a coherent triangulation 
T has the form 

where 

dot I-I aOJ(~ 
toEA 

dot = + H VOlr(o)(Cr)(-1)k-t-dim~176176176 
o ~ T-mass ive  

( 1 ) c ~  
This theorem follows from the fact that DA -- I-Ire Q Ea-nr  (Theorem 

1.3 above) and from Theorem 1.4 of Chapter 10. 

Remarks  3.3. (a) Let T be a coherent triangulation of (Q, A). Theorem 3.2 

implies, in particular, that the function Or " A --, Z takes only non-negative 

values. Another non-trivial consequence is that the expression for d0r in part (b) 

is an integer. Furthermore, if T and T' are D-equivalent coherent triangulations 

then dot = dot,. 

(b) Since the polynomial EA is divisible by DA, it follows that N(EA) is the 
Minkowski sum of N(DA) and some other polytope. Intuitively, N(EA) can be 

obtained from N(DA) by "cutting comers"; conversely, N(DA) can be obtained 

from N(EA) by a deformation merging together some vertices (see Figure 47). 
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Figure 47. 

The fact that DA is a factor of E A also implies some information about the 
face poset of N(DA). Recall that faces of N(EA) are in bijection with coherent 
subdivisions of (Q, A). 

Theorem 3.4. 

(a) There is a monotone surjective map from the poset of coherent subdivisions 

of(Q,  A) onto the poset of faces of N(Da). 
(b) If P = {(Qi, Ai)} is a coherent subdivision of (Q, A) and F C N(DA) is 

the corresponding face then the coefficient restriction DAIIF (see Section 1A 
^mi.E where E runs over all Chapter 6) is equal to the product Hi HEcQi "'ainE 

the faces of Qi and the mi, E are some non-negative exponents. 
(c) We have mi,~, > 0 whenever Ai n E is not contained in a proper face of Q. 

Proof (a) It follows from (1.4) that 

( f )  = H Danr(f) .  EA (3.3) 
r c Q  

By our assumptions, each Danr is a polynomial. Thus EA is divisible by Oa so 
the Newton polytope N(DA) is a Minkowski summand of N(EA). By Theorem 
4.18 Chapter 5 the normal fan of N(EA) is a refinement of the normal fan of 
N(DA). However (Theorem 1.4 Chapter 10) the polytope N(EA) coincides with 
the secondary polytope E (A) and its poset of faces is identified with the poset of 
coherent subdivisions of (Q, A) by Theorem 2.4 Chapter 7. This implies (a). 

(b) Let F(P) be the face of N(EA) corresponding to P. By Theorem 1.12' 

Chapter 10, the coefficient restriction of EA to Fp is the product of some positive 
powers of EA~. The prime factors of each EA, are the Aan~;, E C Qi (Theorem 
1.2 Chapter 10). Now expressing DA by (3.3) we find the statement about the 
coefficient restriction of DA as well. 
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(c) If Ai N E is not contained in a proper face of Q, then A A, NZ; will occur 

in the factorization of EAIIF(P) but not in the factorization of EANI'I]F(P) for any 

proper face 17 C Q. This implies our statement. 

B. The D-equivalence and modifications of triangulations 

The notion of D-equivalence is rather implicit. In general, this is still an open 

problem to describe D-equivalence in combinatorial terms. Later in this chapter we 

shall reduce this problem to two classification problems: one from combinatorial 

geometry and the other from " the  geometry of numbers." For small-dimensional 

polytopes, these latter problems can be solved explicitly thus providing a complete 

description of the D-equivalence. 

Intuitively, the D-equivalent triangulations can differ only "near" the bound- 

ary of Q. To make such a statement more precise, we need a notion of integral 

distance between two subspaces. 

Definition 3.5. Let W be a finite-dimensional affine space over Q equipped with 

an integral lattice U,, and let U1, U2 C W be affine subspaces such that dimU1 d- 

dimU2 = dimW - 1. We call the integral distance between U1 and U2 and denote 

by p (U1, U2) the volume Volz (tr), where cr C W | R is a simplex such that 

O" n (U 11~) R) and cr n (U 2 1~) R) are elementary simplices with vertices in E n U1 

and E n U2, respectively (this number obviously does not depend on the choice of 

tr). 

Now we can give some examples of D-equivalent triangulations. We shall 

use the notion of the modification of a triangulation along a circuit (see Section 

2C Chapter 7). 

Examples 3.6. (a) Let A be a subset of Z 2 so Q c R E is a plane polygon. Let 

F be an edge of Q. Suppose F contains at least three elements of A, say, a, b, c. 

Suppose also that there is a point d E A whose integral distance to the line AffR(F) 

containing l" is equal to 1 (this means that there are no lattice points inside the 

strip bounded by AffR (l ') and by the parallel line through d (see Figure 48). 

Suppose that T is a triangulation of (Q, A) having the triangle acd as one 

of its simplices. Then T is supported on the circuit Z = {a, b, c} (see Definition 

2.9 Chapter 7). The modified triangulation T' = sz(T)  is obtained from T by 

subdividing the triangle acd into the two triangles abd and bcd. It follows at once 

from the definitions that T and T' are D-equivalent. 

(b) More generally, let A C Z k- 1 and let F C Q be a facet. Suppose that there 

is a circuit Z C A n 1 r' whose convex hull has the same dimension as 1". Suppose 

also that there is a point d ~ A whose integral distance to Aft(F) equals 1. Since 
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d / 

a b c 

Figure 48. A D-equivalent modification of a triangulation of a plane polygon 

the set {d} tO Z is weakly dependent, its convex hull has exactly two triangulations. 

Let T be a coherent triangulation of (Q, A) such that Conv({d} t_J Z) is a union of 

simplices from T. Then the modification T' -- sz T is well-defined and T and T' 

are D-equivalent. 

We let CI(T) denote the D-equivalence class of a coherent triangulation T, 

and we let r/cl(r) denote the corresponding vertex of N(DA). 

Proposition 3.7. The normal cone of N(Da) at r/Cl(T) is the union [.-Jr'ecl(r) C(T') 
where C(T') is the cone of  Definition 1.4 Chapter 7. 

Proof Since DA divides EA, the Newton polytope N(DA) is a Minkowski sum- 
mand of N(EA). By Theorem 4.8 Chapter 5, the normal fan of N(EA) is a 

refinement of the normal fan of N(DA). The D-equivalence just describes this 

refinement, from which we obtain the statement. 

Proposition 3.8. 
(a) Two vertices 11 and rl' of N(DA) are joined by an edge if and only if there exist 

coherent triangulations T and T' of (Q, A) such that 17 = Or, ~' = Or', and 

T' -- s z ( T ) f o r  some circuit Z. 
(b) Any two D-equivalent coherent triangulations T and T' can be obtained from 

each other by a finite sequence of modifications such that all intermediate 

triangulations are coherent and belong to the same D-equivalence class. 

Proof Both statements follow from Proposition 3.7 and from the description of the 

edges of E(A)  = N(EA) (see Theorem 2.10 Chapter 7). Indeed, translating the 

cited theorem into the language of normal cones, we obtain that the cones C(T) 

and C(T') are separated by a "wall" of full dimension, if and only if T' = sz(T)  

for some circuit Z. This implies both statements of our proposition. 
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In view of Proposition 3.8, to describe the D-equivalence relation, it is enough 
to describe which modifications lead to D-equivalent triangulations. We shall give 
a complete answer to this question for the case when dim Q < 3. The proof of the 
following two propositions will be given in Section 4 below. 

Proposition 3.9. 
(a) I f  Q has dimension 1 (i.e., is a segment), then no two different triangulations 

of  ( Q, A) are D-equivalent. 

(b) Suppose Q has dimension 2 (i.e., is a plane polygon), and Z C A is a circuit 

which modifies a triangulation T into a D-equivalent triangulation T'. Then 

Z consists of  three points belonging to some side F C Q;furthermore, there 

is a unique separating subset J C A - Z, and J consists of  a single point 09, 

having integral distance 1 from F. (In other words, we have the situation in 

Example 3.6 (a).) 

Proposition 3.9 can be applied, in particular, to the Newton polytope of the 
classical discriminant of a homogeneous polynomial of degree d in three variables. 
This case will be considered in more detail in Chapter 1 3. 

Proposition 3.10. Suppose dim Q = 3. Then all of  the situations when a mod- 

ification along a circuit Z takes a coherent triangulation T to a D-equivalent 

triangulation are as follows. 

(a) The circuit Z consists of  four points and lies on a facet (= two-dimensional 

face) F C Q. The only separating subset consists of  a single point 09 ~ A 

and the integral distance from 09 to Aft(F) is equal to 1. In other words, we 

have the case of  Example 3.6 (b). 

(b) The circuit Z consists of  three points and lies on an edge R C Q. Let 

1"1, 1-'2 be the facets of  Q containing R. There is a unique separating subset 

J = {091,092}, and we have 091 ~ 1-'1, o92 ~ 1-'2. The integral distance between 

the affine spans of  R and J is equal to 1. 

(c) The circuit Z consists of  three points and lies on a facet I" C Q, but does 

not lie on an edge. There are two separating subsets: {o9, 09'} and {09, 09"}, where 

09', 09" ~ F, o9 ~[ F and to', 09" lie on different sides of  the line through Z. The 

integral distance from 09 to Aft(F) is equal to 1. 

Figure 49 depicts various cases given by Proposition 3.10. 

C. The Newton polytope of  the A-discriminant 

If the toric variety XA is smooth then D A coincides with the A-discriminant AA 

so the previous analysis gives information about AA. In general, the fact that AA 
is a factor of EA gives some information of the structure of the Newton polytope 
N (AA). For example, the same argument as in Theorem 3.4 gives the following 
statement. 
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Figure 49. D-equivalent modifications of triangulations of 3-polytopes 
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Theorem 3.11. All the statements of Theorem 3.4 remain valid if we replace DA 
by Aa. 

Using Theorem 3.11, we can define a new relation on the set of coherent trian- 

gulations of (Q, A): "A-equivalence" which is stronger than the D-equivalence 

(when the latter is defined). 

In order to describe the A-equivalence more explictly, we have to write ex- 
plicitly the monomial in m A corresponding to a coherent triangulation T. One 

way to do this is to express A a in terms of the principal determinants Eanr  for all 

faces r c Q. Namely, by Theorem 1.2 Chapter 10, each E anr can be written as 

EAnr (f )  = 4- I-I AANN (f)m(E,r), (3.4) 
Ecl-' 

where E runs through the faces of Q contained in 1", and the m(E,  1-') are non- 
negative exponents. Under a suitable order of the faces of Q, these exponents form 
an upper-triangular matrix M = IIm(E, 1-')ll with l 's  on the diagonal. We then 

have 

m A ( f )  = 4- I-I EAnr(f)(M-~)fr"o)' (3.5) 
FcQ 

where M -1 is the inverse matrix of M. This leads, in principle, to an explicit 

formula for the required monomial in AA. The main difficulty of this approach is 

that we do not know an explicit formula for M -1. Note that the analogs of (3.4) 
and (3.5) for Da are the formulas (3.3) and (1.4), which are much simpler. 

Let us finish the discussion of discriminants with an example. 

Example 3.12. An elliptic curve in the "Fate normal  form. Consider the space 
C A of polynomials 

f (x, y) - aoo + alox + a20x 2 + a30x 3 -q- aoly + al lxy + a20Y 2. (3.6) 

So A C Z 2 is the set of exponents of the monomials in (3.6). The polytope 

Q is a fight triangle in R 2 (see Figure 50). It easily follows from Proposition 

2.2 that DA -- ao2a3oAa. Thus N(DA) is obtained from N(AA) by a simple 
translation, and the A-equivalence in this case coincides with the D-equivalence. 

The polynomial A a (i.e., the discriminant of the elliptic curve {f  = 0}) can be 
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Figure 50. 

found from formulas in [La] (Appendix 1). In expanded form it has 26 terms: 

2 3 2 3 3 3 3 27a41ao2a2 ~ 
AA = - 2 7  �9 16aooao2a3o - 64aooa2oao2 - 64aloao2a3o - 

2 2 3 2 3 2 2 4 
+aooa61 + 16aloa20a02 + 16aola20a02 + ao2aloall -- aolaloaS1 

2 4 3 2 2 
+aolal la2o  a3ola~la3o + 32 -- �9 9aooao2a loa2oa3o + 48aooaoza 11 a2o 
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+ 8 2 7 a o o a 2 1 2  2 2 2 2 2 �9 ao2a30  - -  72a01  ao2a loa2oa3o  - -  7 2 a o o a o 2 a  l oa  11 a3o 

_ 16aola2o2aloalla22o _ 8ao2aloalla2 + 96aolaEEaEoalla3 ~ 

2 - 144aooao 1 aEEa 11 aEoa30 - 12aooao2 a 41 a2o + 8ao 1 ao2a 1 o a  11 a20 

2 2 2  _ 30a21aoEaloa2 36a31aoEal --8aolao2al la20 I la30 -t- 1a20a30 

+3 6a0oa01 a0Ea ~1 a30. 

The first 11 terms in this formula correspond to the vertices of N(AA) .  Figure 

50 shows the 11 D-equivalence classes of triangulations of (Q, A) (all triangu- 

lations are easily seen to be coherent) and the terms which correspond to them 

by Theorem 3.2. The modifications inside a given D-equivalence class consist of 

taking away or adding back some of the dotted segments. Thus, N (AA) has 11 

vertices. Its dimension can be easily found to be 4 (cf. Theorem 1.7 Chapter 7). 

4. More on D-equivalence 

A. How does a modification affect Or 

In this section we keep assumptions (1) and (2) from Section 3A. 

In view of Proposition 3.7, for a description of D-equivalence it is enough 

to describe which modifications preserve D-equivalence. By definition, two tri- 

angulations T, T' are D-equivalent if the functions Or, Or' " A -+ Z coincide. It 
turns out that whenever T' is obtained from T by a modification, the differences 

~r (to) - Or' (to) are subject to certain non-negativity conditions. 

Theorem 4.1. Let T be a coherent triangulation of  (Q, A) which is supported 

on a circuit Z C A, and let T' = s z (T)  be the modification of  T along Z. 

Let T+(Z) = TlconvCZ) and T_(Z) = T'lconvCZ) be the induced triangulations of  

Conv(Z), and Z+ = {to ~ Z : C o n v ( Z -  to) ~ T+(Z)} be the corresponding 

subsets in Z. Then 

0r(o9) = Or'(co) for to ~ Z, 

Or (co) < Or,(~o) for ~o~Z+ ,  

0r(co) > r/r,(~o) for co ~ Z_. 

For o9 r Z, this assertion follows immediately from (3.2). For o9 ~ Z+ we 

shall expand -+-(0r(to) - r/r, (to)) as a sum of non-negative terms. This will be done 

using Newton functions (see Section 2C), and the following version of Newton 

numbers. 
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Let W be a real affine space equipped with a lattice E. Let o- C W be 

a simplex (of arbitrary dimension) with vertices in U,, and let r be a face of ~r 

(possibly the empty face). By the relative Newton number of (r, or) we mean 

VZ('C , O') : ~ (--1)dima-dimYVOl(y). (4.1) 

r~[r,a] 
Here y runs through all of the faces of a containing r (including cr and r),  and the 

volume of y is taken with respect to the lattice AffR (y) fq U, (we take the volume 

of the empty face to be 1). We shall adopt the abbreviation vz(a)  for vz(O, or). 

We let a / r  denote the simplex in the quotient space W/AffR(r) whose vertices 

are the images of the vertices of a.  Let ,7,/AffR(r) C W/AffR(r) be the image of 

the lattice E. 

Lemma 4.2. 

(a) We have vz(r,  cr) = Vol(r) �9 PZ/AffR(r)(O'/Z" ). 
(b) The number vz(r,  cr) is always non-negative. 

Proof. Part (a) is obvious, since for every }I in (4.1) we have Vol(y) = Vol(r) �9 

Vol(• 
Using (a), we reduce the proof of (b) to the special case of vz (or) = vz (13, o'). 

To show that vz(a)  > O, we remark that vz(~r) is a particular case of Newton 

numbers (see Section 2A). Indeed, let us realize W as an affine hyperplane in a 

vector space V such that 0 ~ W. Let c~ be the Abelian subgroup in V generated 

by E, and let K C V be the convex cone with apex 0 generated by cr. Let 

S -- F~ N K. Then vz (cr) is easily seen to coincide with the Newton number v(S) 

of the semigroup S. Since K is a simplicial cone, v(S) > 0 by Theorem 2.3 (note 

that condition (2) of that theorem is satisfied by the definition of S). Lemma 4.2 

is proved. 

Returning to Theorem 4.1, let C Nr be the Newton function of the triangulation 

T (see Section 2C). We shall say that a subset J C A - Z is subseparating for T 

and T' if for some w ~ Z the set (Z - {o9}) U J is the set of vertices of a simplex 

of T; the only difference with separating subsets (Definition 2.11 Chapter 7) is 

that the simplex can now be of arbitrary (not necessarily maximal) dimension. It 

is easy to see that for w 6 Z and a subseparating subset J C A - Z, the number 

CNr(Conv((Z  - {o9}) U J))  does not depend on o9. We denote this number simply 

as CN~,z(J) .  
We deduce Theorem 4.1 from the following more precise fact. 

Proposition 4.3. In the case of Theorem 4.1, for o9 ~ Z+ we have 

+(o~,co)  - ~ ( c o ) )  

CNr, z ( J ) "  vz(Conv(Z - {o9}), Conv((Z - {o9}) U J)) ,  (4.2) 
J -  subsep. 
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where the summation is taken over all subseparating subsets for T and T' (includ- 
ing 0). 

Proof Let T+ and T_ be the triangulations of Conv(Z) induced by T and T' 

respectively. Note that for every co e Z+ we have 

V o l ( r ) -  ~ V o l ( r ) =  Vol(Conv(Z-{to})) ,  (4.3) 

r~T_ r~T+ 

o~Vert(r) o~Vert(r) 

where the sums are taken over maximal simplices r of T+ having o9 as a vertex. 

Recall also that by definition 

tiT(tO ) = ~ (--1)c~ 

massive or e T 

w~Vert(a) 

and similarly for Or,(oo). Since T' is obtained from T by modification along Z, 
both T and T' are supported on Z (Definition 2.9 Chapter 7). Thus simplices of 

T having co as a vertex are Conv(r U J ') ,  where r is a maximal simplex in T+ and 

J '  is subseparating. Similarly for simplices of T'. Thus, by (4.3), we can write 

or' (co) - or (co) 

= I 2  
1: ~T_, J' subsep.: 

Conv(~'UJ') massive 

cosVert(r) 

(-- 1)c~176 U J ' )  

r eT+,J' subsep.: 

Conv(r UJ') massive 

oJeVert(r) 

( -  1)c~176 tO J ' )  

= Vol(Conv(Z - {09})) 

X ~ (-1)c~176 AffQ ( Z ) ) )  

subsep. J '  �9 
Conv(ZUJ) massive 

where p means the integral distance and the condition "Conv(Z U J)  massive" is 

an abbreviation for "Conv(tr U J)  massive for any maximal simplex tr ~ T+ or 

T_" (if this holds for one such simplex it holds for any other). By Proposition 
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2.13, the last sum is equal to 

Vol(Conv(Z - {to})) 

• E E 
subsep. J '  subsep. JDJ'  

- E  
subsep. J 

CNr, z ( J ) ( -  1)#(Y)-#(Y')p (AffQ (J ' ) ,  AffQ (Z)) 

CNT,z(J) E (--1)#(J)-#(J') {Vol(Conv(Z - {co})) 
J 'CJ  

x p(AffQ(J') ,  AffQ(Z)) } 

- E  
subsep. J 

CNT, z ( J ) .  vz(Conv(Z - {w}), Conv((Z - {w}) t3 J)) ,  

as claimed. For o9 ~ Z_ the argument is completely similar. 

To conclude the proof of Theorem 4.1, it remains to note that each summand 
in (4.2) is the product of two non-negative terms: the value of the Newton function 

(non-negative by Theorem 2.15) and the relative Newton number (non-negative by 

Lemma 4.2). 

Proposition 4.3 implies a criterion for two triangulations T and T' obtained 

from each other by modification along a circuit Z, to be D-equivalent. To formulate 

it, for every subseparating subset J C A - Z, we let J denote the image of J in 
the quotient space R k-1/Aft(Z).  

Corollary 4.4. In the case of Theorem 4.1, T and T' are D-equivalent if and only 

iffor every subseparating subset J C A - Z at least one of the numbers CNT, z (J )  

and Vzk-~/AffzCz)(Conv(J)) is equal to O. 

Corollary 4.5. Suppose that T, T' are D-equivalent coherent triangulations of 

(Q, A) obtained from each other by modification along a circuit Z C A. Then Z 

lies on some proper face of Q. 

Proof Corollary 4.4 implies, in particular, that C Nr, z(O) -- O. Let p be the 

codimension of Conv(Z) in Q. Assume that Z does not lie in a proper face. 

Taking a transversal slice R p to Conv(Z), we derive from T a decomposition of 

this transversal slice into simplicial cones, i.e., a triangulation E of the whole R p 

(here we use our assumption" if Z lies in a proper face we get a triangulation of 

some cone in RP). Note that C Nr, z(O) = C Nr,(RP). Since R p has no proper 

faces, C Nz (R p) "- C V I: (R p) > 0. 

Intuitively, Corollary 4.5 means that a modification which leads to a D- 

equivalent triangulation must take place near the boundary of Q. 



374 Chapter 11. Regular A-Determinants and A-Discriminants 

B. Thin lattice simplices 

We shall study both of the possibilities in Corollary 4.4. 

Definition 4.6. Let W be a real affine space equipped with an integral lattice ~. 

We say that a simplex cr C W with vertices in ~, is thin (with respect to ~) if 

vz(cr) =0 .  

Examples  4.7. (a) If cr has a vertex co of height 1 (i.e., the integral distance from 

co to the opposite face is equal to 1), then cr is thin. Indeed, for every face ~: C t~ 

not containing co, the face Conv(r  tA {co}) has the same volume as r under our 

normalization. So the volumes of these two faces cancel out in (4.1), and the sum 

in (4.1) is equal to 0. 

(b) The triangle in R 2 with vertices (2, 0), (0, 2), (0, 0) is thin with respect to 

Z 2. Indeed, in this case (4.1) becomes 4 - 3 �9 2 -1- 3 �9 1 - 1 = 0. 

(c) A segment joining two points from E is thin if and only if it has length 1 

with respect to E, i.e., it does not contain other lattice points. 

In general, a classification of thin lattice simplices seems to be an interesting 

problem in the "geometry of numbers." 

The following statement explains the term "thin simplex." 

Proposition 4.8. I f  tr C R m is a thin simplex with respect to Z m, then there are no 
integral points in the interior of cr. 

Proof. Suppose there is such a point p. Let k = dimtr. We divide cr into (k + 1) 

simplices of dimension k by forming the cones from p over the facets of a .  Let T 

denote the resulting triangulation of tr, and let CNr denote the Newton function 

of T. It easily follows from Proposition 2.13 that 

v(a) = E CNr (y )vCy) ,  
yET 

where y runs through the simplices of arbitrary dimension in T. All terms in 

this sum are non-negative, and we have CNr({p}) = k + 1, v({p}) = 1 and so 

v(a) > 0, a contradiction. 

Proposi t ion 4.9. Up to integral affine equivalence, all thin triangles (i.e., thin 
two-dimensional simplices) are exhausted by the triangles in Example 4.7 (a), 
(b). 

Proof Let tr C R 2 be a thin triangle with vertices in Z 2. If cr has a vertex of 

height 1, then we are in the situation of Example 4.7 (a), and there is nothing to 

prove. So we assume that all heights of a are > 2. We want to prove that such a 
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thin simplex is essentially unique, i.e., coincides with the triangle in Example 4.7 

(b) up to integral affine equivalence. This will be done in several steps. 

First, we claim that all sides of a have length (with respect to Z 2) < 2. Suppose 

this is not true, i.e., cr has a side of length I > 3. Let h be the corresponding height; 

by assumption, h > 2. Under our normalization, the area of cr is lh. It follows 

from the "strange" formula (2.7) that each of the other two sides has length < h. 

Hence, v(cr) > lh - 2h - l + 2 = (l - 2)(h - 1) > 1, a contradiction. 

Now let us show that all sides of cr have length 2. Suppose the lengths are 

a, b, c with a < b < c < 2. Since cr is thin, its area is equal to a + b + c - 2. On 

the other hand, since we assumed the heights of cr to be > 2, the area is > 2c. We 

obtain the inequality a + b + c - 2 > 2c, which can be rewritten as a + b > c + 2. 

Obviously, this implies a = b = c = 2, as required. 

Finally, we see that cr has area 4. If we join the midpoints of the sides of or, 

we obtain a partition of cr into 4 integral triangles, each of which must have area 

1. Hence, cr is equivalent to the triangle in Example 4.7 (b). This completes the 

proof of Proposition 4.9. 

C. Thin triangulations 

The second possibility for a subseparating set J given in Corollary 4.4 is the 

vanishing of CNr, z ( J ) ,  which is equal to CNr(Conv( (Z  - {o9}) U J) )  for any 

o9 ~ Z. According to Lemma 2.16, this number is a "combinatorial analog" 

of the Newton number. More precisely, suppose that F (Z  U J )  is the smallest 

face of Q containing Z u J ,  p = d imF(Z  U J)  - dimConv(Z U J) ,  and q = 

dimQ - diml"(Z U J) .  Let K ( Z ,  J) be the cone in AffR(Q)/Affr~(Z u J) whose 

apex is the zero of this vector space, and the base is the image of Q. Since Q is 

simple, K ( Z ,  J) is isomorphic to R p • R q. Let E(T ,  Z, J )  be the triangulation 

of K ( Z ,  J), induced by T. Lemma 2.15 says that CNr, z ( J )  is equal to the 

combinatorial Newton number C Nz(r,z, j)  ( K ( Z, J)). 

L e m m a  4.10. The j-dimensional cones in E(T,  Z, J) are in one-to-one corre- 

spondence with the subseparating subsets J' D J for  which #(J '  - J) = j. In 

particular, the cones of  maximal dimension correspond to the separating subsets 

containing J. 

The proof follows from the definition of separating subsets (Definition 2.11 

Chapter 7). 

Definition 4.11. Let K be a cone isomorphic to R p x Rq+. A coherent rational 

triangulation E of K is thin if CNz  (K) = 0. 

Examples 4.12. (a) Let E be an arbitrary coherent rational triangulation of 

R p • R q-1. We consider the new triangulation C o n e ( E )  of R p x R q = 
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(R p x R q-I) x R+, which consists of the cones of the form 19 x {0} and 19 x R+ 

for all | e E. We call this triangulation the cone over E. The argument similar 

to that in Example 4.7 (a) (the cones 19 x {0} and 19 x R+ will give cancelling 

contributions) shows that Cone (E) is always thin. 

(b) Let T be a triangulation of a plane triangle P into triangles all of whose 

vertices lie on the boundary of P. Let K be the cone over P. Let E be the 

triangulation of K corresponding to T. Then E is thin. Indeed, let B be the set 

of vertices of T, so T is a triangulation of (P, B). It is verified immediately that 

if T' is another triangulation of (P, B) obtained from T by a modification and 

E '  is the corresponding triangulation of K then C N z ( K )  = CN~,(K) .  By a 

chain of modifications we can obtain from T any other coherent triangulation of 

(P, B), in particular the triangulation consisting of just one triangle P, for which 

the statement is obvious. 

(c) The triangulation of R x R 2 = {(x, y, z) e R 3 " x > 0, y > 0} whose 

slice by the plane x + y -- 1 is the triangulation of the strip shown on Figure 51, is 

thin. Infinite regions r+ and r_ are cut out at the left and fight. The polygonal line 

A IB1. . .  Ar Br contains at least two vertices, and it may begin and end on either 

of the lines bounding the strip. Each of the triangles bordered by this line can be 

further subdivided, as indicated by the dotted lines. 

A1 

B1 

AT" 

ooo  

7"-- 

B~ 

Figure 51. 

It is clear that a triangulation of R 2 is thin if and only if it consists of just R 2. 

The classification of thin triangulations of R p x R q (when p - 0 we essentially + 
have triangulations of a (q - 1)-dimensional simplex) seems to be an interesting 

problem in combinatorial geometry. 

Similar to the case of lattice simplices, the term "thin triangulation" is ex- 

plained by the following statement. 

Proposition 4.13. Let E be a thin triangulation of R p x R q. Then every ray 
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6) ~ E (i.e., a one-dimensional cone from E)projects to the boundary of Rq+ 
under the natural projection onto R q. 

Proof Let rr : X (E) --, C q be the "desingularization of the affine space" corre- 

sponding to E (see the proof of Theorem 2.8 above). A ray 19 defines the orbit 

closure X (| in X (E) which is a hypersurface. If the projection of | does not lie 

on the boundary of R q, then rr(X (19)) = {0}. Since the fiber zr -1 (y) of a point 

y e C q - {0} has dimension less than p + q - 1, the shifted sheaf C__[0 ] [2p + 2q - 2] 

is a direct summand of the complex Rrr.Cxr in the derived category. This con- 

tradicts Corollary 2.9. 

Proposition 4.14. 
(a) Every thin triangulation of R p x R+ is linearly equivalent to the cone over 

some triangulation of R p. 
(b) Every thin triangulation of R x R E is combinatorially equivalent to a trian- 

gulation in Example 4.12 (c). 
(c) Every thin triangulation o fR  3 is combinatorially equivalent to a triangulation 

in Example 4.12 (b). 

Proof. (a) The combinatorial Newton number is equal to the number of (p + 

1)-dimensional cones into which R p x R+ is divided, minus the number of p- 

dimensional cones into which R p x {0} is divided. In order to obtain 0, each 

(p + 1)-dimensional cone must be supported on R p • {0} by a p-dimensional face. 

This implies part (a). 

Parts (b) and (c) follow from the fact that there are no interior rays (Proposition 

4.13). 

D. Proofs of  Propositions 3.9 and 3.10 

Now we are in a position to prove Propositions 3.9 and 3.10 which give a classi- 

fication of modifications preserving the D-equivalence in dimensions _< 3. In the 

proofs below we make use of the following fact which is a direct consequence of 

Definition 3.5. If cr is a lattice simplex whose set of vertices is decomposed into a 

disjoint union I t3 J and r = Conv(1), ~ = Conv(J) then 

Volo (tr) -- Vole(r) .  Vol~(8) �9 p, (4.4) 

where p is the integral distance between AffQ(1) and AffQ(J). 

Proof of Proposition 3.9. If dim (Q) - 1, i.e., Q is a segment, then EA differs from 

DA by multiplication with a monomial so the corresponding Newton polytopes are 

linearly isomorphic. Hence no two different triangulations are D-equivalent. 

Now suppose that dim (Q) = 2, i.e., Q is a plane polygon. Let T, T' be D- 

equivalent coherent triangulations of (Q, A) which are obtained from each other 
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by modification along a circuit Z. First, by Corollary 4.5, Z should consist of 3 

points, say Z = {a, b, c}, and lie on some side 1" C Q. We can assume that b lies 

inside the segment [a, c]. In this situation there is just one separating subset: it 

consists of a single point to ~ A lying inside Q. Comparing or (b) and ~r,(b), we 
find (by using (4.4) with I = {to}) that the integral distance from to to F is 1. This 

proves Proposition 3.9. 

Proof of Proposition 3.10. Now we consider the case dim (Q) = 3. Let T, T', Z 

have the same meaning as above. Corollary 4.5 implies that Z lies on some proper 

face F of Q. Hence, Z consists of < 4 points. 

Suppose that #(Z) = 4 so Conv(Z) is a polygon with 3 or 4 vertices lying on 

some 2-face F C Q. Then there is only one separating subset, and it consists of 

a single point to e A lying inside Q. Again a simple computation (by using (4.4) 

with I -- {to}) shows that the integral distance from to to 1" should be equal to 1, 

so we have the situation of Proposition 3.10 (a). 

Suppose that #(Z) = 3. There are two cases to consider: the minimal 

face F C Q containing Z can be a 2-face or an edge. First, suppose 1-' is a 2- 

face. By Corollary 4.4 and Lemma 2.15, the triangulation E(T,  Z, 0) of the cone 
K (Z, 13) _~ R x R+ must be thin. So by Proposition 4.14 this triangulation consists 

of two cones, i.e., the separating subsets (which correspond to the maximal cones 

of the triangulation) are as in Proposition 3.10 (c). Let z be the middle point of Z. 

Then 

Or(z) - Or'(z) = VolQConv(Z U {to, to', to"}) - VolrConv(Z t.) {to', to"}). 

Since Conv(Z U {09, to', to"}) is a pyramid with base Conv(Z t_J {to', to"}), it follows 

that the difference of volumes vanishes if and only if the height of the pyramid 
(i.e., the integral distance from to to F) is equal to 1. 

Now consider the last case when #(Z) = 3 and Z lies on an edge R C Q. 

Then the cone K (Z, 0) is R 2, and its induced triangulation E (T, Z, 13) must be 

thin. Consequently, this triangulation consists only of R 2 itself, i.e., the separating 

subsets are as in Proposition 3.10 (b). The statement concerning the integral 

distance is proved in the same way as before (by using (4.4) with J as in Proposition 

3.10 (b)). 

Proposition 3.10 is proved. 

5. Relations to real algebraic geometry 

Results of previous sections provide some information about Newton polytopes 

of the A-discriminant A a and related polynomials E A and DA. As we have seen 

(Section 1A Chapter 6), the structure of the Newton polytope of any (Laurent) 
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polynomial is closely related to the geometry of the hypersurface defined by this 

polynomial. In particular, the Newton polytope of AA sheds some light on the ge- 

ometry of the discriminantal hypersurface VA. In this section we shall be interested 

in the study of VA from the point of view of real algebraic geometry. 

A. Hilbert's sixteenth problem 

The original problem posed by Hilbert, is as follows: 

Investigate possible types of topological behavior of a non-singular real al- 
gebraic curve in R P  2 of a given degree d. 

Let us make the terminology more precise. By a real plane curve we mean an 

algebraic curve Z C CP 2 given by a homogeneous equation f(xo, Xl, x2) = 0 

with real coefficients. For such a curve Z by Z(R) we denote the set Z N R P  2 

of real points of Z. (It may happen that Z(R) = 0.) A curve is non-singular if it 

has no singular points in C p2. For such a curve Z, the set Z (R) is a smooth one- 

dimensional real submanifold in Rp2; so topologically Z(R) is a disjoint union 

of circles ("ovals"). These ovals are situated in some way in Rp2;  for instance, 

some of them divide R P  2 into two parts and some do not; some may lie inside 

others etc. The problem is to describe all possible patterns of behavior of ovals up 

to isotopy, i.e., continuous deformation of the ambient R P  2. 

This problem and its higher-dimensional generalizations have been the subject 

of many works, see surveys [Gud], [Wi]. The complete classification is by now 

known for curves up to degree 7. We cannot give here even a partial overview of 

main developments since this would lead us too far away. We shall concentrate 

only on one aspect of the problem related to the kind of questions studied elsewhere 

in this book. 

Fix a natural number d. Let A be the set of monomials in x0, x l, x2 of degree 

d, and R a (resp. C A) the space of real (resp. complex) homogeneous polynomials 

of degree d. A real plane curve of degree d is just a curve with the equation 

f = 0 for f ~ R a. Such a curve is non-singular if and only if the A-discriminant 

A a ( f )  does not vanish. Let VA C C A be the A-discriminantal hypersurface, 

i.e., the hypersurface {Aa( f )  -- 0}, and VA(R ) C R a the set of real points 

of VA. The hypersurface VA (R) divides R a into several components. If f ,  g 

are two polynomials lying in the same connected component of the complement 

R a - -  V A (R) then the curves {f  -- 0} and {g - 0} in R P  2 are isotopic. Thus 

the classification problem of topological types of curves {f  = 0}, f ~ R A - 

V A (R) can be reduced to two steps. First, we have to describe all the connected 

components of R A - VA (R) and second, describe the topological behavior of the 

curve given by a polynomial from a given component. 
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It is convenient to consider a more general framework of hypersurfaces in 
toric varieties, not only in p2. Let A C Z k-1 be a finite set of lattice points 

which we regard, as usual, as Laurent monomials in k - 1 variables. Let XA be 

the corresponding projective toric variety (Section 1B, Chapter 5). This variety 

is defined over Q and hence over R so we can consider the set of its real points 

XA (R). Let R A (resp. C A) be the space of real (resp. complex) polynomials all 

of whose monomials are from A. Any f ~ C A defines a hypersurface Zf  C X A. 

We are interested in the case when f ~ R A and we consider the set of real points 

Zf  (R) C XA (R). 
Let V A Q C A be the A-discriminantal variety (Section 1A, Chapter 9). If 

XA is smooth then Zf  is non-singular if and only if f r  As in the particular 

case considered above, if f,  g ~ R a lie in the same connected component of 

R a - -  V a (R) then the hypersurfaces Zf(R)  and Zg(R) are isotopic. 

The natural "Hilbert problem" associated with A is to study the possible 

types, up to isotopy, of topological behavior of hypersurfaces Z f  (R) for f 

R a _ V A. 

There is also a second setup for the problem. Namely, let Q c R k- 1 be the convex 
hull of A. For any face F C Q, let pr " RA ~ RANt be the natural projection 

(the coefficient restriction of polynomials). Consider the open subset 

Rg An = RA -- U PFI(VAAF)" (5.1) 
r_Q 

We call RgAn the generic stratum in R A. The complex generic stratum CgAn C C A is 

defined similarly. The "refined Hilbert problem" for A is to study the components 
o f R  A gen" 

If XA is smooth then the condition f ~ CgA n means that not only the hypersur- 

face Zf  is smooth but so are its intersections with all the orbit closures X (1-') C XA. 

Thus the study of connected components of RgAn amounts to the study of possible 

types of generic topological behavior of Zf  with respect to all X (1-'). 

Examples 5.1. (a) Let A = { 1, x, x 2 . . . . .  x d} so R A consists of polynomials 

of degree _< d in one variable x. Two polynomials f, g ~ R A - VA lie in the 

same connected component if and only if they have the same number of real roots 

(including infinity; by our conventions, f has a root of multiplicity i at infinity if 

deg( f )  = d - i ,  so for f r VA we have deg( f )  >_ d -  1). In Figure 52 we consider 

the case d -- 4 and we have depicted the section of the hypersurface VA (R) by the 

3-dimensional affine space {ao + . . .  -t- a4 x4 " a3 - 0, a4 -- 1}. 

(b) Let A consist of bilinear monomials xiYj where the xi and yj (i -- 

1 . . . . .  rn; j -- 1 . . . . .  n) are two sets of variables. (see Example 1.1 (b) 
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quadruple root 

. . . ~ / - ' ~  triple root which 
triple root which ~ ~ ~ is greater than 
is less than the / ~" ~ \ the fourth one 
f~176 ~ " ~ ~ ~ ~ / / /  

 WAs OU 'e / \ 

Region above V: " ~ 1 / ~ ~r  Region below V: 
two real roots ~ ~ .  " ~ ~ r o o t s  

Region inside V: 
all roots real 

Figure 52. The space of polynomials ao -t- a l x  -~- a2x 2 -1- X 4 

Chapter 5). The space R A consists of real m x n matrices Ilaij II. The genetic 

stratum Rgan consists of matrices of which all the square minors, including 1 x 1, 
are non-zero (see Example 1.3 (b) Chapter 10). Denote by M the (m + n) x n 

matrix obtained from Ilaij II by appending a unit n x n matrix. The fact that all 

the square minors of Ilaij II are non-zero is equivalent (see (1.3) Chapter 3) to the 
fact that all the maximal minors of M are non-zero or, in other words, that the 

system of vectors in R n, formed by the standard basis vectors and the columns 

of Ilaij II, is in general position (no n vectors are linearly dependent). Therefore 
connected components of RgAn are in bijection with connected components of the 

configuration space of (m + n)-tuples of vectors in R n in general position. 

The relevance of the Newton polytope of m A for the "A-Hilbert problem" 
considered above stems from Corollary 1.7 Chapter 10. More precisely, let T be 
a coherent triangulation of (Q, A). Let C (T) be the normal cone to the secondary 

polytope E(A) at the vertex corresponding to T, see Definition 1.4 Chapter 7. The 

above cited corollary guarantees the existence of a vector b = (b~o)~o~a E C ( T )  

such that A a ( f )  -r 0 whenever f = Y~wEA awxW E C a has all ao~ :/: 0 and the 
logarithmic vector (logla,ol) belongs to the translated cone C ( T )  + b. 

We apply this to polynomials with real coefficients. Let (R*) a be the set of 

polynomials in R a with all the coefficients non-zero. Consider the region 

U(T,b)--If--~aojx~ (logla~l) 6C(T)+b}. 
w6A 

(5.2) 
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When b lies "deeply enough" inside C(T), the region U(T, b) does not intersect 
the real discriminantal variety VA (R). On the other hand, U (T, b) is the union of 
2 #(3) connected components U(T, b, e) labeled by functions e �9 A -+ {4-1} which 
prescribe signs of a,o. By definition, 

U(T,b,e) = { f  = Eao~x~ 
togA 

U (T) " sgn(a,,,) = e(w) }. (5.3) 

The logarithm map identifies each U(T, b, e) with C(T) + b. 
We arrive at the following conclusion. 

Proposition 5.2. Let T be any coherent triangulation of (Q, A), and let e : A --~ 

{+l} be any function. Then for any f E U(T, b, e) with b as above the isotopy 

type of the real hypersurface Zf(R) -- {f -- 0} C X A (R) is the same, i.e., it is 
completely determined by T and e. 

Clearly, if b lies "deeply enough" inside C(T), then all the AAnr( f )  ~ 0 
for all f 6 U(T, b, e). Hence, (T, e) determine in fact the isotopy class of the 
hypersurface together with its intersections with the orbit closures X (l"). 

We are interested in a direct description of the isotopy type of Zf(R) for 
f ~ U(T, b, e). Such a description is equivalent to a result of Viro [V l] that was 
obtained without using secondary polytopes. We shall present his construction. 

B. The real part of  a toric variety 

The first step in a combinatorial description of Zf is to give a direct construction 
of the set of real points of the toric variety XA. 

For simplicity of exposition we shall assume that XA is normal. 
Let A - -  { to  (1) . . . . .  o ) ( n ) } .  Clearly the real part XA(R) can be defined in 

RP n-1 as the closure (in the real topology, not Zariski) of 

X~ = {(t ~ " . . .  "t~ = ( t l , . . . ,  tk_l) E (R*) k-11. (5.4) 

The set X ~ (R) is the union of 2 k- 1 connected components, according to the choices 

of signs of the ti. All these components are isomorphic to each other. Consider 
one of them, namely 

X~ = {(t '~ �9 . . .  "t~ (tl , . . .  ,tk-1) E (R+) k-1 } , (5.5) 

where R+ stands for the set of positive real numbers. Let XA (R+) be the closure of 
X ~ (R+); we shall call it the positive part of XA. It is stratified by its intersections 
with subvarieties X (F) where lr runs through the faces of Q. 
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a) 

b d 
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e g e 
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a l C l h f 
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b d 

Figure 53. Gluing RP 2 and RP 1 x RP 1 out of 4 triangles (resp. squares). 

Theorem 5.3. The space X A ( R + )  stratified by its intersections with the X (1-') is 
homeomorphic to the polytope Q = Conv(A) stratified by its faces. The homeo- 

morphism is given by the restriction of the moment map lz " X A ~ Q (Section 1C 

Chapter 6). 

This fact is well-known and we refer to [Fu2] for the proof. 

Theorem 5.3 implies that XA (R) can be obtained by gluing together 2 k-1 

copies of Q by identifying some faces. More precisely, for any group homomor- 
phism ~ �9 Z k-1 ~ {4-1 }, we take a copy Q(~) of Q. If 1" c Q is a face then by 

F (~) we shall denote the corresponding face of Q (~). 

Theorem 5.4. The space X A ( R )  is identified with the result of the gluing of the 
polytopes Q(~), ~ ~ Hom(Z k-l, {+1}) by the following identifications: for any 

face [" C Q we identify F (~ ) c Q (~ ) with [" (~') C Q (~') if and only if ~ and ~' 

coincide on the affine sublattice AffR(1-') fq Z k-1. 

The proof, which is based on a straightforward interpretation of the moment 

map, is left to the reader. 

Example 5.5. (a) Let A C Z 2 consist of three points (0, 0), (0, 1), (1, 0). Then 
Q is a triangle, and XA is the projective plane p2. Theorem 5.4 represents RP 2 

as the result of the gluing of four triangles (copies of Q) as in Figure 53a. 

(b) Let A C 2 2 consist of four points (0, 0), (0, 1), (1, 0), (1, 1). Then Q is 
a square, and XA - "  P 1 x P1. Theorem 5.4 represents RP 1 x RP 1 (topologically 

a toms) as the result of the gluing of four squares as in Figure 53 b. 

C. Viro's theorem 

Let A satisfy the assumptions of subsection B. Denote by Q the result of the gluing 
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of 2 k-1 copies of Q as in Theorem 5.4. So Q is a CW-complex homeomorphic to 

XA(R). 
Let T be a coherent triangulation of (Q, A) and e �9 A ~ { 4-1 } any function. 

We shall construct a subspace Z (T, e) C Q which will represent the isotopy type 

of any hypersurface Zf for f e U (T, b, e) (see subsection A). 
For any group homomorphism ~ �9 Z k- 1 __~ { 4-1 }, we denote by A (~) the copy 

of A in Q (~). Let ,4 C Q be the union of all A (~). We extend any e �9 A ---> {4-1 } 

to a function ~ �9 ,4 ---> {4-1} by setting ~(09(~)) = e(09). ~(09), where 09(~) ~ A(~) 

is a copy of 09 e A. Clearly, this is well-defined: if 09(~) is identified with 09(~') 

in Q then ~ (09) = ~'(09) by definition of Q. 

A triangulation T of (Q, A) obviously extends to a triangulation of Q with 

vertices in ,4, denoted by T. It is convenient to work with the dual subdivision 

of Q defined as follows. Let Bar (T) be the first barycentric subdivision of the 

triangulation 7 ~ (see Figure 54). 

Figure 54. 

For any ct e A let B,~ be the union of all simplices of Bar (T) having ct as a 

vertex. (Note that B~ = 0 if ct is not a vertex of T; otherwise dim (B,~) -- k - 1.) 

The subdivision of Q into the B~ will be called the dual subdivision to 7: and 

denoted by Dual (7:). In the case when XA is smooth, XA(R) is a smooth real 

manifold and each B,~ is a cell so we have the dual CW-decomposition. In the 

general case the B,~ may be more complicated, but we shall still call them "cells." 

Finally, we define the subspace Z+(T, e) (resp. Z_(T, e)) in Q to be the 

union of "cells" B,~ ~ Dual(7:) for which ~(c~) -- 1 (resp. ~(c~) = -1 ) .  Let 

Z(T,  e) = Z+(T, e) fq Z_(T,  e). 

The theorem of Viro is as follows. 
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Theorem 5.6. Let T be a coherent triangulation of  (Q, A), e �9 A -+ {:El} 

any function and U(T, b, e) the corresponding region (5.3) in R A. Then the 

hypersurface Zf(R)  = { f  - - 0 }  C X A ( R ) f o r  f E U ( T , b , e )  has the same 
isotopy type as the subspace Z(T ,  e) C Q (under the identification XA (R) : 0 
given by Theorem 5.4). Moreover, the intersection of  Z f  with any of  the 2 k-1 copies 

of Q constituting XA (R) has the same isotopy type as the intersection of ,Z (T, e) 

with the corresponding copy of Q inside Q. 

The proof will be given in subsection D. We conclude this subsection with a 

couple of examples. The first one is an elementary particular case to be used in 

the general proof. 

Example  5.7. Let A consist of monomials 1, x l . . . . .  Xk-1, that is, of vectors 

O, el . . . . .  ek-1 ~ Z k-l ,  where the ei are standard basis vectors. So R a is the space 

of affine-linear functionals f (x) = ao + Y~2_~ aixi. The polytope Q is the simplex 

 l,t, ..... ti>o ti  l 

of dimension k - 1. The vertices of Q are the basis vectors el . . . . .  ek-1 and the 

zero, denoted by e0 for uniformity. The variety XA is the projective space P~-  1 and 

xl . . . . .  Xk-1 are coordinates in an affine chart of this space. In these coordinates 

the moment map /z  �9 pk-1 ~ Q is given by (cf. Section 1C Chapter 6): 

Ixll 
/Z(Xl . . . . .  xk-1) -- 1 + ~ Ixil' 

Ixk-11 ) (5.6) 
1 + ~ Ixil " 

Fix some f ( x )  = ao + ~-~=~ aixi ~- (R*) A (SO all the coefficients are non- 

zero). Then Zf (R)  is a hyperplane in XA(R) -- R P  k-1 transversal to all the 

coordinate hyperplanes. Let us see what Theorem 5.6 means in this case. Consider 

first the intersection of Zf  with the positive part of XA, i.e., the set of solutions of 

f ( x l  . . . . .  xk-1) = 0 with all xi > 0. The moment map (5.6) takes this set to the 

following hyperplane section of Q: 

/ t k l/k-  } 
I~(Zf N X ~ (R+)) -- (tl . . . . .  tk-1) E Q"  ao 1 - ~ ti -[- aiti - 0 . 

i=l i=l 
(5.7) 

This section separates the vertices ei for which ai > 0 from those with ai < 0. So 

topologically the same result will be obtained if we take the CW-decomposition 

of Q dual to that given by its faces, take the union Z+ of cells around the vertices 
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Figure 55. 

ei with ai > 0 and a similar union Z_ of cells around the e~ with a~ < 0, and then 

consider the common boundary of these parts (see Figure 55). 

We see that Theorem 5.6 gives a correct answer for the positive part of XA. 

The study of other parts (correponding to other choices of signs of the xi) can be 

reduced to the positive part by changing the signs of the ai. Indeed, to study the 

equation ao + Y~ik=~ aixi - -  0 in the region {e, iX i  > 0} for some fixed ei - -  +1,  is 
k- I  the same as to study the equation a0 + E i - - 1  e i a i x i  - -  0 in the region {xi > 0}. 

Thus the theorem is true in this case. 

Example  5.8. We remarked (Section 2C Chapter 7) that the modification of a 

triangulation along a circuit is analogous to the surgery in the theory of manifolds. 

Viro's theorem provides a direct connection between these two notions. 

More precisely, let M be a (real) m-dimensional topological manifold and 

let p, q be such that p -I- q -- m + 1. A surgery of type (p, q) on M consists 
in finding a submanifold (of full dimension) in M homeomorphic to the product 

S p-I • B q of a sphere and a ball, deleting it from M (so the result will be a manifold 

with boundary S p-1 x S q-l) and then gluing in the product B p x S q-1 along the 

boundary; see [Milnl ] for more background information. 

Now suppose that Z C A is a circuit lying in the interior of Q such that 

Conv(Z) has full dimension. Let T+, T_ be the only two triangulations of Conv(Z). 

Le tZ+ = {to e Z"  Conv(Z-{w})  e T+}. T h e n # ( Z + ) + # ( Z _ )  = #(Z) = k + l .  

Let p = #(Z+) - 1 and q = #(Z_) - 1. Suppose we are given a function 

e �9 A --+ {+1} such that e(w) = 1 for to e Z+ and e(w) = - 1  for ~o e Z_. Let 

T, T' be two triangulations of (Q, A) obtained from each other by modification 

along Z. Then the parts of the hypersurfaces Z(T,  e) and Z(T ' ,  e) lying inside 

the positive copy Q of Q (the one corresponding to the trivial homomorphism 

Z k-1 ---> {4-1}), are obtained from each other by a surgery of type (p, q) (see 

Figure 56 a, b). 

If a function e is not compatible with the decomposition of Z into Z+, i.e., if 

there are two elements to, to' lying in say Z+ for which e(w) # e(w') then Z(T ,  e) 

and Z(T ' ,  e) have the same isotopy type (see Figure 56c). For other parts of Q 

the situation is similar. 
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a) 

§ 

I + 

c) 

§ I _ 

Figure 56. Modification of triangulations and Morse surgery 

It is also possible to see, in some instances, the effect of a D-equivalent 
modification of a triangulation on the corresponding hypersurface. This amounts 

to moving the hypersurface across some stratum of Q (or equivalently, across some 

torus orbit on XA (R)), without changing the isotopy type of the hypersurface (see 

Figure 57). 

§ § § § 

Figure 57. 

D. Proof of  Theorem 5.6 

First we note that, similar to the end of Example 5.7, studying the hypersurface 

Zf in any domain Q (~) ~ Q of the variety XA ( l )  can be reduced to studying the 

positive domain XA (R+). So we shall restrict ourselves to this case. We denote 

by Dual(T) the CW-decomposition of Q dual to a triangulation T. It consists of 

cells B~,, ~o E A. (Now when we consider only Q, these are indeed cells.) 

By 2+ (resp. Z_) we denote the union of cells Bo~ such that sgn(a,o) = 1 

(resp. sgn(ao~) = -1) ,  and by Z we denote the common boundary of Z+ and Z_. 
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Q 

R ~ 

Rk-~ 

Figure 58. 

We need to prove that the intersection of Z f  (R) with XA (R+) -~ Q can be taken 

into Z by a self-homeomorphism of Q which takes each face into itself. 

Since for any f ~ U(T,  b, e) the isotopy class of Zf(R) is the same, it suffices 

to consider some particular polynomial. We fix an integral vector (~.o,) ~ Z a lying 

in the interior of the cone C ( T )  and consider the Laurent polynomial F (x, t) = 

F (xl . . . . .  Xk- 1, t) in k variables x 1 . . . . .  Xk- 1, t defined by 

F(x, t) = y~. e(w)tX~x w. (5.8) 
to6A 

We also regard F(x,  t) as a family of polynomials Ft (x) := F (x, t) with a param- 

eter t. Then for t >> 0 we have Ft ~ U (T, b, e), so we shall study the hypersurface 

defined by Ft with t >> 0. 
Consider the Newton polytope P = N ( F ( x ,  t)). By definition, P is the 

convex hull in R k = R k-1 x R of the set 

B = {(w, ~.o,) e z k  " o.) E A}. 

Let p �9 R k -+ R/-1 be the projection to the first factor. Then p ( P )  -- Q. Let 0 P 

be the boundary of P. With respect to the projection p it splits into two parts: the 

top part 0+ P and the bottom part O_P (see Figure 58). 

The top part O+ P is the graph of the concave T-piecewise-linear function 

gx : Q --+ R (see Lemma 1.8 Chapter 7); we have gx (o9) = ~.~, for any o9 e A 

which is a vertex of some simplex in T. Since ~. lies in the interior of C ( T ) ,  the 

faces of 0+ P are simplices projecting bijectively under p to the simplices of T. 

Let X B be the toric variety corresponding to B and/zB " X B --+ P the 

corresponding moment map. Consider the hypersurface Z F(R) C XB (R) given 
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by F(x,  t) = 0. Letus study the intersection of ZF with the positive part XB (R+). 
More precisely, we consider its image under the moment map 

lzB : ZF N XB(R+) --> P. (5.9) 

Since the coefficient restriction of F to any face of P is essentially an affine- 
linear function, the analysis in Example 5.7 implies that if the intersection of 
/xB (ZF t3 XB (R+)) with a face of P (which is a simplex) is non-empty then it is a 
hyperplane section of this simplex of the form (5.7). We are interested only in the 

faces lying in O+ P. Example 5.7 implies the following. 

Lemma 5.9. The projection p(tzB(ZF N XB(R+)) N O+P) C Q is isotopic to the 

subcomplex Z = Z+ fq Z_ defined above. The isotopy may be chosen so as to 

preserve the faces of Q. 

It remains to compare the projection in Lemma 5.9 with the image of 

#A : Z f  f"l XA(R+) ---> Q, (5.10) 

where f (x) = Fro (x) for some to >> 0. Consider the hypersurface Hto = {t = to} 
in XB (R+). Let/zB (Ht0) C P be the image of Hto under the moment map. 

Proposition 5.10. Forto > 0 the hypersurface lzR(Hto) is the graph of a continuous 

function Oto : Q ---> R which is smooth everywhere outside the boundary of Q. 
For to ---> oo this function converges uniformly to the function gx (whose graph is 
3+P). 

Assuming Proposition 5.10, Theorem 5.6 is proved as follows. By Lemma 
5.9, the subcomplex 

p(IZB(ZF CI XB(R+)) f') 3+p) C Q 

is isotopic to the polyhedral hypersurface Z. By Proposition 5.10, for to >> 0 the 
intersection 

#8(ZF N XB(R+)) A Hto = #A ( Z f  A X A (R+)) C Q 

is also isotopic to the above subcomplex, hence to 2 ,  thus proving the theorem. 

The behavior of Ht, t >> 0 and Z F inside the positive part XB (R+) ~ P is 

depicted in Figure 59. 



390 Chapter  11. Regular  A -De te rminan t s  and  A-Discr iminan t s  

Figure 59. Intersection of Ht and Z F tq XB (R+). 
The shadowed resgion is the compactified amoeba of F (Figure 19). 

P r o o f  o f  Proposi t ion 5.10. We start by recalling the definition of the moment map 
/zB (formula (1.3) Chapter 6). For clarity of notation we denote the system of 
variables xl  . . . . .  Xk - l ,  t by Yl . . . . .  Yk. Thus Yk = t and Yi -- xi ,  i < k -  1. 

Then 

/zB(y) -- ~]• ly~'I " Y. (5.11) 
~,~B lYYl 

Thus tzB(Hto) is obtained by setting in (5.11) Yk = to and letting the rest of the 
variables vary freely. Since (5.11) depends only on the absolute values of the yi,  

we will assume in the sequel that all the Yi are positive. Note that 

( 0 ~ / )  Y~' Yi Y• - -  Yi 

where Yi is the i-th component of y. Thus for y e Rk+ we have 

~ , ~ �9 # B ( Y )  = Yl Oyl . . ,  Yk ~ (5 12) 

where 

�9 ( y ) =  l o g ( ~  y•  

Let us make a change of variables Yi - e zi where zi ~ R ,  i = 1 . . . . .  k. We regard 
/.t B as a function of the vector of new variables z = (z 1 . . . . .  zk). Then from (5.12) 
we get 

(0~P 0 , )  (5.13) 
~ . o  . ~ 

IZB(Z) : OZl OZk 
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where 

q ~ ( z ) -  log(ye~ B e(• ( y ,  Z) -- y ~  Yi Zi . 

Suppose that to > 0 and q > 0 are given. Consider the points of #B (Z  f )  (where 
f = Fro) which project under p onto q. By (5.13), such points correspond to the 
points z' ~ R k-1 where the gradient of the function 

( Z l  . . . . .  Zk-1) ~ > k I / ( Z l  . . . . .  Zk-1, log to) 

is equal to q ~ R k-1. The uniqueness of such z' (provided it exists) is implied by 

the next lemma 

Lemma 5.11. The function qJ : R k --~ R is strictly convex, i.e., the region 

I"+(qJ) -- {(z, w) ~ R k x R ' w  > qJ(z)} 

is convex and its boundary does not contain line segments. 

Proof Let 1-'(qJ) denote the graph of q~, i.e., the boundary of 1-'+(q~). Consider 
the Laurent polynomial ( in k + 1 variables defined by 

( ( y , u )  = u - y ~ y •  u ~C*,  y ~ ( C * )  k. (5.14) 
y~A 

We claim that 1-'+(qJ) is a component of the complement of the amoeba of this 
polynomial (see Section 1B Chapter 6) so our statement will follow from Corol- 
lary 1.6 Chapter 6. Indeed, by definition, the amoeba of ( is the set of points 

(loglYll . . . . .  loglYkl, loglul) for all yl . . . . .  yk, u ~ C* such that ((y,  u) = 0. 
Thus, in view of the correspondence between the variables yi and zi the graph 
1-" (qJ) is a part of the amoeba (it corresponds to the choice of yi, u in R+, not just 
in C*). If, however, a point (z, w) lies strictly above F(qJ), i.e., w > ~(z)  then 

there cannot exist Yi, u c= C* such that 

((y,  u) = 0, loglu[ -- w, loglYi[ = zi. 

Indeed, w > qJ(z) would mean that lul > ~ lyrl which is inconsistent with 

u = Y] yr ,  i.e., the vanishing of (. Therefore the graph 1-'(qJ) is a component of 

the boundary of the amoeba so qJ is convex. To see that it is strictly convex, it 

remains to note that the Hessian determinant detllO2qj/OziOzj II is the same as the 
Jacobian of the moment map hence non-zero. The lemma is proved. 



392 Chapter 11. Regular A-Determinants and A-Discriminants 

Thus, to find the point of l zB(Zf)  which projects under p onto q ~ Q, we 

should take the minimum over z l . . . . .  Zk-1 of 

k - 1  

~P(zl . . . . .  Zk-1, log to) -- ~ q i z i  

i=1 

and evaluate the gradient of qJ at the point where the minimum is achieved. (The 

point of IzB(Zf)  with the required property exists if and only if the minimum 

exists.) Since the first k - 1 components of the gradient will be the components 

of q, we arrive at the following conclusion. 

Lemma 5.12. The set #B(Hto) consists o f  the points (q, Oto(q)) where 

Oto (q ) = -~s 
( 's ) minz~ ..... zk_,~R ~I / (Z l  . . . . .  Zk-1, S)  - -  q i z i  

s=logt0 i=1 
(5.15) 

and q ~ Q is such that the minimum exists. 

To show that the minimum in (5.15) exists for all q ~ Q, note that the 

interpretation of the graph of ~P in terms of the amoeba can be exploited further. 

Let FI be the Newton polytope of the polynomial (.  This is a pyramid in R k+l 

with base P and apex e -- (0 . . . . .  0, 1). Obvious estimates of the growth of ~P 

imply that the region I"+(~P) contains some affine cone with non-empty interior. 

By Corollary 1.8 Chapter 6, this region, being a component of the complement to 

the amoeba of ~', contains a translation of the normal cone No P for some vertex 

v of FI. This vertex is easily seen to be e, the apex of I-I. Thus I"+(~P) contains 

a translation of the cone Ne(FI) and does not intersect some translation of all the 

other normal cones No(H), v -5/= e. This means that asymptotically, as Ilzll ~ c~ ,  

the boundary of I"+(~P), i.e., the graph of ~P becomes parallel to the boundary of 

Ne FI. The latter boundary projects onto R k in a one-to-one way so it is the graph of 

a piecewise-linear function R k ~ R denoted by W. This function is homogeneous 

of degree 1. Now note that, for any s ~ R, the set of q = (ql . . . . .  qk-1) ~ R k-1 

for which the minimum 

( 's ) minz, ..... zk_,~R W ( Z l  . . . . .  Zk-1, S) -- qizi 
i=l  

(5.16) 

exists, is precisely the polytope Q; this follows from the definition of the normal 

cone. This implies that for every q e Q the minimum in (5.15) indeed exists. This 

proves the first statement of Proposition 5.10. 
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Let us prove the second part of Proposition 5.10. Denote the minimum in 
(5.16) by W*(q, s). This is a linear function in s so its derivative in s depends only 

on q. It is straightforward to verify that 

W* (q s) gx (q), 
Os 

i.e., it is the function whose graph is 0+ P. Thus when to ---> c~, the graphs of 

q~ and W become more and more parallel so the the derivative 
R k-I  x {logt0} R k-I  x {logt0} 

in (5.15) converges to gx (q), as claimed. This concludes the proof of Proposition 

5.10 together with Viro's theorem 5.6. 
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Classical Discriminants and Resultants 



CHAPTER 12 

Discriminants and Resultants 

for Polynomials in One Variable 

In this chapter we consider the most classical case of the discriminant of a poly- 

nomial in one variable, and the resultant of two such polynomials. In the general 

language of Part II, we consider the A-discriminant AA where A consists of mono- 

mials 1 , x , x  2 . . . . .  x n and the (A1, A2)-resultant where A1 = {1,x . . . . .  x m} and 
A2 -- { 1, x . . . . .  xn}. 

1. An overview of classical formulas and properties 

Here we collect some well-known formulas and properties of discriminants and 

resultants (for polynomials in one variable). Many of these formulas have already 

appeared as examples of the general theory developed earlier. We collect them in 

one place for the benefit of the practical reader. Whenever possible, we give short 

independent proofs of the formulas, not referring to the general theory. 

A. The resultant o f  two polynomials in one variable 

Le tm ,  n > 1 and 

f (x) -- ao -F alx  + . . .  + amX m, g(x)  = bo + blx + . ' .  + bnx n (1.1) 

be two polynomials in one variable of degrees less than or equal to m and n 

respectively. By R( f ,  g) we denote their resultant. If necessary, we use the 

notation Rm,n (f ,  g) to emphasize the dependency of m and n. For example, f is 

also a polynomial of degree < m + 1 but gm+l,n(f, g) is not necessarily the same 

a s  Rm,n(f, g) (see below). 

Equivalently, let 

m - 1  F(xo, x 1 )  - -  aox~ + alx o xl + . . .  4;- amX~, 

G(xo, xl)  -- box~) + b lx~- lx l  + . . .  + bnx~ (1.2) 

be two binary forms (homogeneous polynomials) of degrees m and n. If the 

coefficients ai, by in (1.2) are the same as in (1.1) then the resultant R (F, G) is the 

same as R ( f ,  g). The use of binary forms is sometimes more convenient. 
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Product formula. If am 5# 0 and b~ # 0 then 

n ( f  , g) -- an bn I--I(xi - yj), (1.3) 
i,j 

where xl . . . . .  Xm are roots of f and Yl, . . . ,  Y,, are roots of g. 

This formula is often taken as the definition of the resultant. According to 

the general theory (Chapter 8), the resultant is defined only up to sign as the irre- 

ducible integral polynomial in the coefficients ai, bj which vanishes whenever f 

and g have a common root. Note that (1.3) does not have sign ambiguity. The con- 

nection between the two definitions is straightforward. To see that the fight hand 

side of (1.3) is a polynomial in the ai, bj, we use the fundamental theorem on sym- 

metric polynomials and the Vietae formulas which say that the ai/am (respectively 

the bj/b,,)  are the elementary symmetric polynomials in xl . . . . .  Xm (respectively, 

Yl . . . . .  Yn). So the product in (1.3) is a polynomial in ai, bj which obviously 

vanishes whenever f and g have a common root. Its irreducibility follows from 

elementary Galois theory. 

Vanishing of the resultant. For two concrete binary forms F, G as in (1.2) the 

vanishing of R (F, G) is equivalent to the fact that F and G have a common root 

other than (0, 0). 

For two concrete polynomials f and g, the vanishing of R (f,  g) = Rm,,, ( f ,  g) 
is equivalent to the fact that f and g satisfy at least one of the following two 
conditions: 

(a) f and g have a common root; 

(b) deg f < m and deg g < n, i.e., am = b,, = 0. 

The case (b) means that the common root is at infinity. 

The next three properties are immediate consequences of (1.3). 

Symmetry. 
Rm,n(f, g) -- (-1)mnRn,m(g, f ) .  (1.4) 

Multiplicativity. If f '  is another polynomial of degree < m' then 

em+m,,n ( f  f ' ,  g) = em,n ( f ,  g) " em,,n ( f ' ,  g). (1.5) 

The multiplicativity in the second argument follows from (1.4). 

Quasi-homogeneity. The polynomial R ( f ,  g) -- R(ao . . . . .  am, bo . . . . .  bn) is 

homogeneous of degree n in the ai and of degree m in the bj. In addition, it has 
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the following quasi-homogeneity: 

R(~.~ ) . l a l  . . . . .  ~.mam, ~.~ ~ . lb l  . . . . .  ~.nb,) : ~ .mne(ao  . . . . .  am, bo . . . . .  bn). 

The homogeneity conditions can be written in differential form: 

OR OR 
Z a i - - - - n R ,  Z b j ~ j  - -mR,  

i Oai J 

OR OR 
~-~ iai -~iai 4r ~ jbj -~j 

i j 

(1.6) 

= mnR. (1.7) 

PGL(2)-invariance. For any non-degenerate matrix h (ct  ~ )  -- ~ GL(2, C) 
g 

let 

(h* f ) ( x )  = (yx +,~)m f yx -1- 8 ' yx q- 8 " 

Then 

R(h* f,  h'g) -- det(h)mnR(f, g). (1.8) 

Proof For any given h both sides of (1.8) are polynomials in coefficients of f 
and g which vanish for the same pairs (f, g). Indeed, f and g have a common root 
if and only if the same holds for h*(f)  and h*(g). So R(h*f, h'g) and R(f ,  g) 
are proportional for any h. The coefficient of proportionality e(h) satisfies the 

property e(hh') = e(h) �9 e(h'). This implies that e(h) is a power of det(h). The 

exponent of the power is found from the homogeneity of R. 

For the case of a diagonal matrix h, the equality (1.8) follows from the ho- 
mogeneity conditions above. The validity of (1.8) for all matrices leads to two 
additional differential equations on R: 

m--l~ OR n--1 OR 
L ( m  - i ) a i  + ~ ( n  - j)bj = O. (1.9) 

Oai+l Obj+l i =0 j =0 

OR ~ OR _ 
iai + jbi Obj_l - O. (1.10) 

i=1 Oai-1 j = l  

Finding the common root. If, for given f, g, we have R ( f ,  g)  = 0 but at least 

one first partial derivative of R at (f, g) is non-zero then f and g have a unique 

common root c~ (possibly c~ = cx~), and it can be found from the proportions: 

( O ao o a R mO R ) (1 �9 ~ " ~2 . . . . .  am)  _ : _ _ ( f ,  g)  . = _ _ ( f ,  g)  . . . . .  o T ( f  ' g)  , (1.11) 
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aR aR ) ,) 
(1 �9 u "  u2 . . . . .  u , )  = OR ( f ,  g)  " - ~ ( f '  g)  " �9 Ob----~(f, g)  . (1.11 

This is a particular case of Corollary 3.7 Chapter 3. The general proof given 

there (reduction via the Cayley trick, to the biduality theorem for projective dual 

varieties), is probably the most transparent. 

Sy lves ter  formula .  We have 

R(f ,  g) = 

ao al a2 �9 �9 �9 am-1 am 0 0 . . .  0 

0 ao al �9 �9 �9 am-2 am-1 am 0 . . .  0 
�9 , , �9 �9 �9 , �9 . �9 

�9 �9 �9 �9 . �9 �9 �9 , �9 

0 0 0 . . .  ao al a2 a3 . . .  am 

bo bl b2 . . .  bn-1 bn 0 0 . . .  0 

0 bo ba . . .  bn-2 bn-1 bn 0 . . .  0 
�9 �9 , . �9 �9 �9 �9 , . 

�9 , , . 

�9 , �9 , , , . �9 . �9 

0 0 0 . . .  bo bl b2 b3 . . .  bn 

(1.12) 

This determinant is of order m + n; it has n rows involving the a 's  and m rows 

involving the b's. 

Proof.  The determinant in (1.12) is a polynomial in the ai, bj of the same degree 
n m as R. It is non-zero since, e.g., it contains the monomial aob n with coefficient 

1. So it is enough to show that if f and g have a common root, say ct, then the 

determinant vanishes. The matrix in (1.12) is the matrix of the linear operator 

8 " Sn-1 @ Sin-1 --+ Sin+n-l, O(U, V) = f u  + gv ,  

where by Sd we denote the space of polynomials of degree < d. If f,  g both vanish 

at ct then any polynomial in the image of 0 also vanishes; so 0 is not of full rank 

and det(0) -- 0. 

D e p e n d e n c e  on  m and  n. If m' > m then 

Rm,,n ( f  , g) -- bn ' -m Bin, n ( f  , g) .  

Similarly, if n' > n then 

m(n'--n) n'-n (L g)" 
Rm,n ' ( f ,  g)  --  ( - 1 )  a m Rm,n 

This follows at once from the Sylvester formula. 

Examples. For two linear polynomials 

Rl,1 (ao + a l x ,  bo + b l x )  = aobl - albo.  (1.13) 
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For two quadratic polynomials 

R2,2(a0 + a l  -f- a2 x 2 ,  bo + b l x  + b2 x2)  
2 2 = aobz2 2 _~_ aoazb2 - aoalblb2 + a2bob2 - alazbobl  + azb  0 - 2aoazbob2. (1.14) 

Expression in terms of coefficients of g ( x ) / f ( x ) .  Suppose that a0 = 1 and 

g ( x ) / f  (x)  = ro + r l x  + r2 x 2  -f- . . . .  

Then 
rn rn+l  ... r n + m - 1  

r n - 1  rn ... r n + m - 2  
R ( f ,  g)  -- . 

�9 ~ 

r n - m  + l m - m + 2  ... rn 

Proo f  Multiply the Sylvester matrix (1.12) on the fight by 

(1.15) 

1 Sl $2 ... Sm+n-1  

0 1 Sl ... S m + n - 2  

0 0 1 ... Sm+n_ 3 , 
�9 , , ,  , 

0 0 0 ... 1 

where 1 I f ( x ) -  1 + ZiZ1  sixi. 

Bezout-Cayley formula.  Suppose m -- n. Consider the polynomial in two 

variables 

Then 

n-1 
~o(x, y)  -- f ( x ) g ( y )  - g ( x ) f  (y)  _ Z C i j x i y j "  (1.16) 

x -- y i,j=o 

R ( f ,  g) = detllcijll. (1.17) 

Proo f  It is not hard to show that the determinant in (1.17) is a non-zero polynomial 

in the ai, bj having the same degree as R and the same coefficient 1 at the monomial 

a~b~. It remains to show that the determinant vanishes whenever f and g have a 

common root. We claim that if ct is such a root then the vector (1, ct, t:t 2 . . . . .  o~n- 1) 

is annihilated by the matrix C - Ilcij II. Indeed, we have qg(ct, y) = 0 for any 

y. By (1.16), this means that the row vector (1, ct, ct 2 . . . . .  a n - 1 ) C  is orthog- 

onal to all vectors of the form (1, y, y2 . . . . .  y,,-1). Since vectors of the form 

(1, y, y2 . . . . .  y,,-1) generate C", we conclude that (1, ct, ct 2 . . . . .  ct " - I ) C  = 0, as 

claimed. Hence det (C) = 0. 
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Let us denote by [i j] the expression aibj - ajbi. An easy computation shows 

that the coefficients cij in (1.16) are given by 

min(i,j) 

cij = ~ [p, i  + j  + l - p ] .  
p=0 

Thus the explicit form of (1.17) is 

R( f ,  g) = 

[01] [02] [03] ... [On] 
[02] [03] + [12] [04] + [13] ... [In] 
[03] [04 ]+  [13] [05] + [14] + [23 ]  ... [2n] 

�9 , , , ~ 

�9 ~ , . , 

[On] [In] [2n] ... [n - 1, n] 

(1.18) 

Interpo la t ing  be tween  Syivester  and Bezout .  Suppose m = n. Let r be any 

integer such that n < r < 2n. Then 

Syl(a) ..... ) 
R(f ,  g) -- det Syl(b) ..... 

Bez2n-r,r 

(1.19) 

where Syl(a)r-n,,, is the left comer submatrix of the Sylvester matrix (1.12) on 

the first (r - n) rows of the a 's  and first r columns; similarly, Syl(b)r-n,,, is the 

submatrix in (1.12) on first (r - n) rows of the b's and first r columns. Finally, 

Bez2n-r,r is the left comer submatrix in the Bezout matrix (1.18) on the first 2n - r 
rows and first n columns which is accompanied by the (2n - r) x (r - n)-block of 

zeros. For r = n the formula (1.19) gives the Bezout-Cayley formula (1.18) and 

for r -- 2n we get the Sylvester formula (1.12). 

For n = 4 (i.e. for the resultant of two quartic polynomials) and r -- 5, 6, 7 

we get 

R(f ,  g) -- 

ao al a2 a3 a4 
bo bl b2 b3 b4 

[0, 1] [0, 21 [0, 31 [0, 4] 0 
[0,2] [ 0 , 3 ] + [ 1 , 2 ]  [ 0 , 4 ] + [ 1 , 3 ]  [1,4] 0 
[0,3] [ 0 , 4 ] + [ 1 , 3 ]  [ 1 , 4 ] + [ 2 , 3 ]  [2,4] 0 

a0 
0 

b0 
0 

[0, 1] 

[0, 21 

al a2 a3 a4 0 
ao al a2 a3 a4 
bl b2 b3 b4 0 
bo bl bE b3 b4 

[0, 2] [0, 3] [0, 4] 0 0 
[ 0 , 3 ] + [ 1 , 2 ]  [ 0 , 4 ] + [ 1 , 3 ]  [1,4] 0 0 



1. An overview o f  classical formulas 403 

ao al a2 a3 a4 0 0 

0 ao al a2 a3 a4 0 
0 0 ao al a2 a3 a4 
bo bl b2 b3 b4 0 0 
0 bo bl b2 b3 b4 0 
0 0 bo bl bE b3 b4 

[0,1] [0,2] [0,3] [0,4] 0 0 0 

(1.20) 

Formula (1.19) first appeared in [WZ1]; its proof can be obtained by unrav- 
eling the resultant spectral sequence C;'__(O(n), O ( n ) l O ( r  - 1)) (see Section 4C 

Chapter 3). 

B. The discriminant o f  a polynomial in one variable 

Let 

f (x) -- ao + a lx  + . . .  d- a , x"  (1.21) 

be a polynomial in one variable of degree _< n. We denote by A ( f )  its discriminant. 

If necessary, we shall use the notation A,, ( f )  to emphasize the dependence on n. 

Equivalently, let 

n - 1  x n F(xo, Xl) -- aox~ + a l x  0 1 d -  " " " -~- a n X  1 (1.22) 

be a binary form of degree n. If the ai in (1.22) and (1.21) are the same then the 

discriminant A (F) is the same as An (f) .  As for the case of resultants the use of 

binary forms is sometimes more convenient. 

Here are the main properties of discriminants. They are parallel to the prop- 

erties of resultants discussed above, and we usually omit the proofs. 

Product formula. If a~ --/= 0 then 

( - 1 ) ~ a , ,  2n-2 2 
A ( f )  - -  I - I (x i  -- Xj) , (1.23) 

i < j  

where x l . . . . .  x,, are roots of f .  
As for the resultants, the equivalence of (1.23) to the general definition is 

proven by using symmetric polynomials and Galois theory. The formula (1.23) is 

used to normalize the discriminant uniquely, not just up to sign. Later we will use 

this normalization. 

Vanishing of the discriminant. For a concrete binary form F (x0, x l) of degree 

n, the vanishing of A (F) means that F is divisible by the square of a linear form. 



404 Chapter 12. Polynomials in One Variable. 

For a concrete polynomial f ( x )  of degree < n, we have A n ( f )  = 0 if and 

only if f satisfies at least one of two conditions: 

(a) f has a double root; 

(b) deg ( f )  _< n - 2, i.e., an = an-1 = 0. 
Under the second condition, the double root is at infinity. 

Quasi-homogeneity. The discriminant A ( f )  -- A (a0 . . . . .  an) is a homogeneous 

polynomial in the ai of degree 2 n -  2. In addition, it satisfies the quasi-homogeneity 

condition: 

A(~.~ ~.lal . . . . .  ~.nan) = ~.n(n-1)A(a0 . . . . .  an). (1.24) 

In the differential form the homogeneity conditions are 

0A 0A 
~ ~ a i - ~ -  "- (2n -- 2)A, ~ iai-2-- -- n(n - 1)A. (1.25) 
i-------~ O a i oai 

/ 

For a non-degenerate matrix h -- [ a PGL(2)-invariance. 
\ Y 

\( ~x+~ (yx + 3)n f ,  . Then 

~) , let (h* f ) ( x )  = 

A ( h * f )  --- det (h)n(n-1)A( f ) .  (1.26) 

The equality (1.26) is equivalent to the homogeneity conditions (1.25) together 

with two additional differential equations" 

L 0A 
n-1 OA iai O-a~l 
E ( n  - i ) a i  O-'~i+l - -  
i=0  i=1 

= 0. (1.27) 

Finding the double root. If for a particular f we have A ( f )  -- 0 but at least 

one partial derivative of A at f is non-zero, then f has a unique double root 

(possibly a = cx~), and it can be found from the proportions: 

0A 0A 0A ) 
( l ' o t ' o t  2 " ... " t~ n) - ~ ( f )  " ~ ( f )  " . . .  �9 Oa----~ ( f )  " (1.28) 

Relations with resultants. We have 

1 f,~_ n . - ~  
--  - - R n , . - l ( f ,  j . n a .  H f (ot). A ( f )  

a n  a" f '  (a)=O 

(1.29) 
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In view of (1.29), every formula for the resultant gives rise to a formula for the 

discriminant. For instance, Sylvester formula (1.12) represents A ( f )  in terms of 

the determinant of order 2n - 1" 

A ( f ) =  1 
an 

ao al a2 ... an-1 an 0 
0 ao al ... an-2 an-1 an 

~ 

�9 . . . . . . .  �9 
~ 

1 �9 a l  2 .  a2 ... (n - 1 ) a n _ l  nan 0 

0 1 .a l  ... (n - 2)an-2 (n - 1)an-1 nan 

� 9 1 4 9 1 4 9  

� 9 1 4 9  

(1130) 

The following two equalities are similar to (1.29) but are more conveniently for- 

mulated in terms of a binary form F in (1.22)" 

1 1 
A ( F ) -  nn_2 Rn-l,n-1 Oxo' Oxl -- n"aoa,, ~ Rn,n xo-~x 0 , X l (1.31) 

Conversely, using (1.3) and (1.23), the resultant can be obtained as the "po- 

larization" of the discriminant: If g is a polynomial of degree < m then 

(Rn,m(f ,  g))2 __ (__l)mn A m + n ( f  " g) 
An ( f ) "  /~m (g) 

(1.32) 

Examples. For a quadratic polynomial 

A(ao + alx  + 02 x2) - -  4 a 0 a 2  - a 2 1" (1.33) 

For a cubic polynomial 

A ( a o W a , x + a 2 x 2 + a 3 x  3) __ 27a2a2+4a0a32 +4a~a 3 _ a , a  222_ 18a0al a2a3. (1.34) 

For a quartic polynomial 

A(ao + a lx  -I- a2x 2 -}- a3x 3 -t- a4x 4) 

__ 256a03a43 . . . . .  27a2a 4 2 7 a 4 a j + 1 6 a o a 3 2 a  4 4 a o a 3 a 2 3 4 a ~ a 3 2 a 4 4 a  133a3_t_ala2a 3 2 2 2  

- -  192o2olo3o 2 -- 128o0o2o 4 2  2 2 + 144000203042 24-  144o0o 2o2o 2 -- 600020204 

-80aoala~a3a4 + 18a0a,a2a33 + 18a~a2a3a4. (1.35) 



406 Chapter 12. Polynomials in One Variable. 

For a quintic polynomial  

A(a0 + a l x  + . . .  + a s x  5) 

3 2 2 2 2 5 0 a 3 a 2 a 4 a  2 = 3125a4a 4 -- 2500a3oala4a 3 -- 3750030203a 3 + 2000aoa2a4a 5 q- 

2 2 3 2 2 2 2 2250aZa 2 3 1600a3oa3a34a5 + 256a03a45 + 2000aoa ,a3a 5 _ _ 50a0a la4a  5 + la2a 5 

-2050a2ala2a3a4a 2 + 16002ala2a34a5- 900a2al  32a3a 5 + 1020a2ala2a2a5 

192a2ala3a 4 2 3 2 2 2 2 2 2 2 2 2 2 4 
- -  -- 900aoa2aaa 5 + 825aoa2a3a 5 -t- 560aoa2a3ana5 -- 128aoa2a 4 

2 2 3 OgaZa~a5 2 4 2 3 3 --630aZaza3 a4a5 -+ 144aoazaaa 4 -k- 1 -- 27aoa 3 a 4 1600aoal aza5 

+160aoa~a3a4a 2 _ 36aoa 3 3  2 2  2 2 2 2  la4a5 + 1020aoalaza4a 5 + 560aoalaza3a 5 

_746aoa  2 2 44aoaZaza44 + l aza3a4a 5 + 1  24aoaZaa a4a5 -- 6aoa21 a32a43 
3 2 2 2  80aoa 2 3 _ 630aoalaaaaa25 + 24aoala2aaa5 -I-356aoala2aaa4a 5 - -  l a E a 3 a  4 

--72aoala2a4a5 + 18aoala2a3a 2 + lOSaoaSa 2 _ 72aoa4a3a4a5 + 16aoa4a34 

+1 3 3  3 2 2 2 5 6 a S a  3 192a402a4a 2 4 2 2  6aoa2a3a5 4aoa2a3a 4 + -- _ -- 128al a3a5 

3 2 2 3 2 2 80a~a2a~a4a5 +144a4a3a2a5 27a4a 4 + 144a,a2a3a 5 
_ _ 6a 1 a2ana5 -- 

~ _ l S a  3 3 3 4 A 3 3 2 2 4 2 8 a 2 a 3 a 3 a 4 a 5  laEaaa4 "k- 1 6 a l a a a 5 -  '4alaaa 4 - 2 7 a l a z a  5 + 1 
_ 4 a  2 3 3 , , 2  2 3 2 2 2 2 

laEa4 -- ~ d- alaEaaa 4. (1.36) 

T h e  d i s c r i m i n a n t  o f  a b i n o m i a l :  

A(a  + bx n) = nnan- lb  n-1. (1.37) 

This is a special case of the second equality in (1.29). 

T h e  d i s c r i m i n a n t  o f  a t r i n o m i a l :  

For 0 < m < n and m and n relatively prime, we have 

A ( a + b x m W c x  n) -- n n a n - l c n - l w ( - 1 ) n - l m m ( n - m ) n - m a m - l b n c  n-m-1. (1.38) 

Proof. Using again the second inequality in (1.29), we obtain 

A(a  + bx m + cx n) - nnc"- la  m - 1  H (a + bu m -1- corn), (1.39) 
O1 

the sum over all the roots of the equation ol n-m - -  mb. For every such ct, we have 
nc 

a -I- bam -t- cot" -- a -t- 
n m m  

b o l  m ~ 
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Since m and n are relatively prime, we can make the change of variables/3 -- o( m 

and rewrite (1.39) as 

A(a + bx  m -k- cxn)  -- n n c n - l a  m - 1 H ( a  + 
,8 

n - m  
b f ) ,  (1.40) 

where/3 runs over the roots of the equation ~n--m __ ( m b ) m  Introducing the ~-S �9 
polynomial q (x) = x n-m - ( -  mb)m, we see that the product in (1.40) equals 

n - m b ) n _ m  an  

" q ( - b ( n  m )  )" n 

Substituting this into (1.40) yields (1.38). 

It is also possible to prove (1.38) in a more conceptual way. Denote by Z and 

A the sets of monomials { 1, x m, x ~ } and { 1, x ,  x 2 . . . . .  x n } respectively. Then our 

discriminant A is, in the notation of Chapter 9, AA. Proposition 1.8 of Chapter 9 

gives that the discriminant Az coincides, up to a non-zero scalar factor, with the 

fight hand side of (1.38). On the other hand, the restriction of A a to C Z, the space 

of trinomials a + bx  m -k- cx  n, should have the form e .  A lz for some s 6 C*, l > 1, 

since the two discriminants define the same locus in C z. By comparing the degrees 

we see that I = 1. This means that (1.38) holds up to a constant factor. To show 

that the constant factor is 1, we put b -- 0 and use (1.37). 

Dependence on n. We have 

A,,+I ( f )  -- ( -  1)n a 2 An ( f ) ,  A, , , (f)  - - 0  f o r  n' > n + 2. (1.41) 

P r o o f  If A,,+l ( f )  vanishes then either f has a double root (so A,  ( f )  -- 0), or 

f has degree _< n - 1 (so an = 0). This implies (1.41) up to a constant factor (for 

n >_ 2 this follows by comparing degrees; the case n _< 2 is obvious). To show 

that the constant factor is 1, we take f --  a + bx  n and apply (1.38) to trinomials 
of the form a + bx  n + CX n+l. 

Hilbert's formula: Consider a t erminat ing  hypergeome t r i c  p o l y n o m i a l  

2Fl(~, fl, y; x) -- 1 + 
ctfl ct(ct + 1)/3(/3 + 1) 2 

x +  x + . . . ,  
1.  y 1 . 2 .  Y ( V  + l) 

where u -- - n  is a negative integer. This is a polynomial in x of degree n. We 

have 

n- l  j j  (fl + j _ l ) n - j  (fl _ F + j _ l ) n - j  
A(2FI(--n,/~,  y; x)) -- H j=l (Y -~" j )Zn - l - j  

(1.42) 
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This formula was proved in [Hil2]. 

C. The monomial  expansion o f  the resultant 

We return to the resultant of two polynomials f and g. Let us write down the 

resultant as the sum of monomials: 

R ( f ,  g) = ~ CpqaPb q, (1.43) 
P,q 

where p -- (p0, pl . . . . .  Pm) ~ Z~ +1, q -- (qo, ql,  . . .  , qm) ~- Z~- +1. Despite 

many explicit formulas for R ( f ,  g) given above, there seems to be no simple 

formula for the coefficients Cpq. In fact, these coefficients can be put into the 

context of the classical theory of symmetric polynomials. We are now going to 

describe this relation. 

Let Am(n) denotethe set ofall P -- (Po, Pl . . . . .  Pm) ~ Z~ +1 with ~ Pi = n. 

Then Cpq = 0 unless p ~ A m ( n ) ,  q 6 A n (m). We associate to q 6 A n (m) a 

symmetric polynomial Mq (Xl . . . . .  Xm) as follows: Mq (xl . . . . .  Xm) is the sum of 

all monomials x~' x22 . . .  x~ m such that qo of the exponents f f i  are equal to n, ql of 

them are equal to n - 1, and so on, qn of them are equal to 0. Being symmetric, each 

Mq is uniquely represented as a polynomial in elementary symmetric polynomials 

e i ( x )  = e i ( x l  . . . . .  X m )  - -  y ~  

l< j l< . . .< j i<m 

Xjl " " " Xji " 

Proposition 1.1. For every p ~ Am(n), q ~ An(m),  the coefficient Cpq in the 

resultant is equal to (-1)Y~, ipi times the coefficient a t  I-Ii ei (X) pi in the expansion 

o f  Mq as a polynomial in elementary symmetric polynomials. 

For example, if m -- n -- 2, and q -- (1, 0, 1) then Mq -- x 2 + x 2 -- 

el(x)  2 - 2e2(x), which contributes bob2(a 2 - 2a0a2) to (1.14). 

Proof  Since g(x)  - bn I-Ij (x - yj), we can write (1.3) as 

R ( f ,  g) -- an I - I  g(xi) .  
i 

Expanding this product into the sum of monomials in X l . . . . .  X m ,  we see that 

" 

R ( f  , g) -- a m Mq(Xl . . . . .  Xm). 
q 

It remains to expand each Mq (xl . . . . .  Xm) as a polynomial in elementary symmet- 

ric polynomials and notice that ei (Xl . . . . .  Xm) = ( -  1)m-i ai  / a m .  
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By apartition of length < m, we shall understand a collection ~. = (~ 1 . . . . .  ~.m) 

of non-negative integers such that ~.l > ~.2 >__ ' ' '  >__ ~.m. The numbers ~.i are called 

parts of ~. For any such ~. we have the following monomial symmetric function in 

m variables: 

mx(xl . . . . .  Xm) = Z Xl''''X~nm' (1.44) 
a~SmX 

where Sm is the group of permutations acting on Z m, and ~ runs through the 

Sin-orbit of ~. (cf. Section 2C Chapter 4). For example, the function Mq above 

coincides with mx, where the partition ~. has qi parts equal to n - i for i = 0 . . . . .  n; 

the elementary symmetric polynomial ei is also of the form mx, where ~ has i parts 

equal to 1 and m - i parts equal to O. 

Clearly, the functions m x form a basis in the vector space of all symmetric 

polynomials in xl . . . . .  Xm. A different basis in the space of symmetric polynomials 

m P~ of elementary symmetric polynomials. Such a is provided by the products I-Ii=1 ei 
product is also encoded by a partition/1, having Pi parts equal to i for i = 1 . . . . .  m; 

so we shall write 
m 

e u (x) = l-I  ei (X )  pi �9 ( 1 . 4 5 )  

i=1 

Thus , / z  runs over the partitions all of whose parts are _< m. However, such a 

partition/z can have more parts than m, so we obtain a different class of partitions. 

The relationship between these two classes of partitions (with length < m, 

and with parts not exceeding m) is given by the conjugation of partitions. Recall 

[Macd] that the diagram of a partition ~. is defined as the finite set 

{ ( i , j )  ~ Z  2 �9 1 < i  < m ,  1 _<j <Xi}.  

The conjugate partition ~.* is defined by the condition that its diagram is transpose 

of the diagram of ~.. This means that if/2. has pi parts equal to i for i = 1 . . . . .  m 

then the parts of/z* are (Pl + p2 + " "  + Pm, P2 -4-... +Pm . . . . .  Pro). Thus, the 
correspondence/z ~ / z *  is a bijection between the partitions with parts < m and 

those of length < m. 

Proposition 1.1 says that the coefficients in the resultant are essentially the 

entries of the transition matrix between the two bases (mx) and (eu). Although 

there is known some combinatorial interpretation of these entries [ER], it is not 

good enough even for deciding what are the signs of the Cpq, o r  which of the 

coefficients are non-zero. 

A much better interpretation is known for the entries of the inverse matrix 

dxu, i.e., the coefficients in the expansion 

e. - ~ d~m~. 
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Expanding the product of elementary symmetric polynomials, we see that dxu is 

equal to the number of (0, 1)-matrices with row sums ,k I . . . . .  ~-m and column sums 

/zl . . . . .  >n. The quantities dxu play an important role in combinatorics, represen- 

tation theory of symmetric groups and classical theory of symmetric polynomials, 

see e.g. [Macd]. The description of all pairs (~.,/z) such that dxu > 0 is known 

as the Gale-Ryser theorem. To state it we need the so-called dominance  part ia l  

order on partitions. 
Let  ~ = (Xl . . . . .  ~=), v = (vl . . . . .  Vm) be two partitions of length < m. 

We say that v dominates  ~ and write ~. < v if ~1 + " "  + ~.i < vl + . . .  + vi for 

i = 1 . . . . .  m - 1, and ~.1 + ' "  + Xm = vl + " "  + v=. 

Proposit ion 1.2. (Gale-Ryser Theorem). We have dxu > 0 i f  and only i f  ~. < lz*. 

Furthermore,  du, u -- 1. 

For the proof see [Ry], Theorem 1.1 Chapter 6. 

Combining Propositions 1.1 and 1.2, we can find an upper bound for the set 

of all pairs (p, q) such that the corresponding coefficient Cpq in the resultant is 

non-zero. 

Proposition 1.3. Let p ~ A m (n), q ~ A n (m), and let ~, lz be the part i t ions such 

that ~. has qi par ts  equal  to n - i f o r  i = 0 . . . . .  n, and tz has pi par ts  equal  to 

i f o r  i = 1 . . . . .  n. Then Cpq = 0 unless lz* < ~. Furthermore,  i f  lz* = )~ then 

Cpq : ( - -  1)Y~" ipi. 

We shall see in Section 2 that the pairs (p, q) such that/z* = ~. are exactly 
the vertices of the Newton polytope of the resultant. It is interesting to note 

that although the concept of the Newton polytope was not popular among the 

algebraists in the 19th century, the extreme monomials in the resultant were singled 

out by Gordan [Go2]. To explain his observation, we represent the resultant by the 

Sylvester formula (1.12). Expanding the Sylvester determinant into monomials, 

we get 

R ( f ,  g) = y ~  sgn (rr)b~r~_lb~2_2... brtm-ma~rm+l-laTrm+2-2""ajrm+.-n, (1.46) 
71" 

the sum over all permutations Jr = (Zrl . . . . .  Zrm+n) of the indices 1 . . . . .  m + n 

(with the convention that ai - - 0  unless 0 < i < m,  by = 0 unless 0 < j < n). We 

call a permutation zr an (m, n)-shuffie permutat ion  if 

7/" 1 < 7/" 2 < . . .  < 7/ 'm,  7 t 'm+  1 < 7 / ' m +  2 < . . .  < 7~m+ n. (1.47) 

It is easy to see that the monomial in (1.46) corresponding to an (m, n)-shuffle 

permutation rr has the form ( -1 )Y~ , ip 'aPbq ,  where the exponents Pi and qj are 
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given by 

P0 = 7r l -1 ,  Pi "-- 7 [ i + l - - Y g i - - 1  for i = 1 . . . . .  m - 1 ,  Pm -- m-k-n-Trm, (1.48) 

q 0 -  7rm+l - -  1, qj - - 7 / ' m + j +  1 - 7 r m +  j - 1 for j = 1 . . . . .  n -  1, 

qn -- rn + n - 7 C m +  n . (1.49) 

It is easy to see that every such monomial appears exactly once in (1.46), and that 

(1.48) and (1.49) establish a bijection between (m, n)-shuffle permutations and 

pairs (p, q) from Proposition 1.3 such that the corresponding partitions ,k and/x 

are conjugate to each other. 

2. Newton polytopes of the classical discriminant and resultant 

A. The Newton polytope o f  the discriminant 

We write the discriminant of a polynomial f (x) = ao + alx  + . . .  + a ,x"  in one 

variable x as a linear combination of monomials 

tpO , ..., tpn 

a ~ a ~O~ ~ ,  
Cqgo .. . . .  ~on o 1 "''an 

or in abbreviated form as A ( f )  = Y-~0 c~ a~, where ~o -- (~o0 . . . . .  ~o,,) runs over 

finite set in Z~_ +1. No simple explicit formula seems to be known for the some 

coefficients c~o. Nevertheless, it is possible to describe the Newton polytope N (A) 

of A. 

By definition (see Chapter 6), N (A) 6 R "+ 1 is the convex hull of the vectors r 

such that c~0 :/: 0. Let A = {0, 1 . . . . .  n } C Z be the set of exponents of monomials 

which may occur in f .  By definition, our discriminant A ( f )  coincides with the 

A-discriminant AA ( f ) .  In Theorem 1.4 Chapter 10 we have described the Newton 

polytope of the principal A-determinant EA. On the other hand, in our situation 

Theorem 1.2 Chapter 10 means that E A ( f )  -- aoan A A ( f ) .  Combining these two 

facts we get the following description of N (A). 

Theorem 2.1. The Newton polytope of  A ( f )  is the secondary polytope E(A) C 

R n+l translated by the vector ( - 1 ,  0, 0 . . . . .  0, -1 ) .  

Here the secondary polytope is taken with respect to the measure on R nor- 

malized in a usual way (so that the segment [0, 1] has length 1). This polytope 

was described in Section 3A Chapter 7: the "triangulations" which parametrize 

the vertices of the secondary polytope are, in this simple case, just subdivisions 
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of the segment Q = [0, n] into several subsegments. We summarize these results 

explicitly by taking into account the translation vector in Theorem 2.1. 

Theorem 2.2. The Newton poly tope  N (A) is combinatorial ly  equivalent  to an 

(n - 1)-dimensional  cube. It consists o f  all points  tp = (t#o, ~1  . . . . .  ~n) E R n§ 

satisfying two linear equations 

E qgi = 2n - 2, Z ( n  - i)~oi = n(n - 1), 
i i 

and 2n - 2 l inear inequalities 

J 
goj > O, ~--~ ( j  - i )tpi > j ( j  - 1) 

i = 0  

for j = l , 2  . . . . .  n - 1 .  

The vert ices o f  N(A)  are in a bijection with the subsets I C {1, 2 . . . . .  n - 1}; 

the vertex ~o(I) corresponding to I = {il < i2 < . . .  < is} has coordinates 

~Oo = il - 1, ~On = n - is - 1, (pip - -  ip+ 1 - -  ip_l f o r  p = 1 . . . . .  s, and  (19 i = O f o r  

i q ~ { O , n } U l .  

The absolute values of the coefficients of extreme monomials in A are given 

by specializing Theorem 1.4 (b) Chapter 10. Theorem 1.14 of Chapter 10 gives the 

ratio of signs for any two triangulations obtained from each other by a modification. 

By "integrating" this ratio, starting from the coefficient at the monomial a~) -1 ann -1 

which is, by (1.37), equal to + n  n, we arrive at the following. 

Theorem 2.3. For every subset  I = {il < i2 < - . .  < is} C {1, 2 . . . . .  n - 1} the 

monomia l  

a~O(t) = a~- I  ai  ~i2 ai  2i3-ilai4-i2i3 " " �9 a!S--is-2 -n--i~-l  tlis an 

appears  in A with the coefficient 

s 

c,(l> -- (-- 1)n(n-1)/2 [~ (__ 1)lp(lp-l>/211pp, 

p=O 

where lp -- ip+l - ip (with the convention 1o = il, ls = n - is). 

The case of a cubic polynomial is illustrated by Figure 60. 

B. The Newton  poly tope  o f  the resultant: the vertices 

We fix numbers m, n >_ 1 and consider the resultant R ( f ,  g) -- Rm,n( f ,  g) where 

f (x)  -- ao + a l x  + . . .  + amX m, g ( x )  -- bo + b l x  - I - ' "  "1- bnx n 
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~(~3 ~ 

2 2 

10'2 (~3 

Figure 60. The discriminant of a cubic polynomial 

are indeterminate polynomials. So R(f ,  g) is a polynomial in the ai and bj and 

we write it as a sum of monomials, as in (1.43): 

R(f ,  g) -- y ~  CpqaPb q 
P,q 

where p = (p0, pl . . . . .  Pro) and q = (q0, ql . . . . .  qn) are multi-indices. The 
Newton polytope of the resultant lies in the space R m+n+2 with coordinates 

P0, Pl . . . . .  Pm, qo, ql . . . . .  q,. By definition, it is the convex hull of all lattice 
points (p, q) such that Cpq ~ O. We shall denote this polytope by Nm,,. 

Let A be the set of points (0, 0), (1, 0) . . . . .  (m, 0), (0, 1), (1, 1) . . . . .  (n, 1) 
in Z 2. The convex hull Q of A is the trapezoid shown in Figure 43. 

Using the Cayley trick (Proposition 1.7 Chapter 9) we see that R(f ,  g) is 

equal to A a ( f ( x  ) + yg(x)). The toric variety XA associated to A is smooth: this 
is the rational normal scroll of type (m, n) (see Examples 1.1 (d) of Chapter 5 and 
3.6 of Chapter 3). Thus A a coincides with the regular A-determinant DA (see 

Theorem 1.3 Chapter 11). It follows that Nm,, = N(DA). 

By Theorem 3.2 Chapter 11, the vertices of N(DA) = Nm,n are in bijection 

with the D-equivalence classes of coherent triangulations of (Q, A). We recall that 

every coherent triangulation T of (Q, A) gives rise to a vertex r/r of the Newton 

polytope N (AA). The component of r/r corresponding to to 6 A is equal to 

tiT(to) --  ~ ' ~ ( - -  1)dim(Q)-dim(tr)Vo1 ((7") 
17 

where the sum is over the simplices A of arbitrary dimension appearing in T that 

have to as a vertex and are massive (i.e., affinely span a face of Q); the volume 
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form on each face F C Q is induced by the integral lattice spanned by A N 1-'. 

Two triangulations T and T' are called D-equivalent if Or -- Or'. In our situation 

when Q is a trapezoid it is easy to see that all triangulations of (Q, A) are coherent 

(this is proved in the same way as Proposition 3.4 of Chapter 7). Furthermore, the 

D-equivalence is generated by the following relation: T "~ T' if T' is obtained 

from T by a subdivision of a triangle into the union of two smaller triangles. This 

follows from the description of the D-equivalence for plane polygons given in 

Proposition 3.9 Chapter 11. 

We say that a triangulation T is coarse if no triangle of T is the union of 

two other triangles. Clearly, coarse triangulations form a set of representatives of 

D-equivalence classes. 

The vertex Or of Nm,n corresponding to a coarse triangulation T can be de- 

scribed as follows. The coordinate pi = pi (T) is equal to Ib-cl  if there is a triangle 

in T with vertices (i, 0), (b, 1), (c, 1), otherwise pi (T) = 0; similarly, qj = qj (T) 

is equal to [b - c[ if there is a triangle in T with vertices (j, 1), (b, 0), (c, 0), 

otherwise qj(T) = 0. Summarizing, we have 

Theorem 2.4. The correspondence T ~ (p(T) ,  q(T))  is a bijection between the 

set of  coarse triangulations of (Q, A) and the set of  vertices of Nm,n. 

We illustrate this theorem for the case m = n = 2. By (1.14), the resultant 
of two quadratic forms contains 7 monomials, but only 6 of them are vertices of 

N2,2. They correspond to 6 coarse triangulations of (Q, A) as shown in Figure 61. 

a~b~ a oa2 b2 - aoalbl b 2 

2 2 a2b 0 a2bob2 - ala2bob I 

2 2 - 2aoa2bob 2 

aoal b 1 b 2 ~ ~ , , , ~ ~  ~ ~  -ala2b~ b 1 

aoa2~ Figure  61. The polytope N2, 2. 
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We are going to study Nm,, in detail. Unfortunately, we cannot apply the 

general theory of Chapter 7 since Nm,, is not a secondary polytope. So we start 

describing Nm,n from scratch using nothing but Theorem 2.4. First we present 

several convenient combinatorial interpretations of the vertices of Nm,,. 

Let us label the horizontal unit segments on the boundary of Q as follows: 

we attach the symbol Ai to the segment [(i - 1, 0), (i, 0)] for i = 1 . . . . .  m, and 

the symbol By to the segment [(j - 1, 1), (j, 1)] for j = 1 . . . . .  n. Now let T be 

a coarse triangulation of (Q, A). We associate to T a shuffle w(T) of two words 

A1A2.. .  Am and B1B2.. .  B,. We recall that a shuffle is a word of length m + n 

containing each of the A 1A2... Am and B1B2.. .  B, as a subsequence; the shuffles 

were introduced (Section 3D Chapter 7) in relation to lattice paths. To construct 

w(T) we order the triangles of T into a sequence or1, cr2 . . . . .  err so that or1 is the 

triangle containing the side [(0, 0), (0, 1)], and each cri has a common side with 

cri-1. The shuffle w(T) lists all the horizontal unit segments on the boundary of Q 

in the following order: first the segments on the horizontal side of crl, then those 

on the horizontal side of or2, etc. (see Figure 62). This construction makes clear 

all the statements in the next proposition. 

Proposition 2.5. The correspondence T w-~ w(T) is a bijection between the 

set of coarse triangulations of (Q, A) and the set of shuffles of the A1A2 . . . Am 
and B1B2... Bn. Hence the number of coarse triangulations, i.e., the number of 
vertices of Nm,n is (m+n]. The components of the vertex )IT are recovered from 
w(T) as follows: pi(T) is the number of letters between Ai and Ai+l, and qj(T) 
is the number of letters between Bj and Bj+I (with the convention that Ao and Bo 
stand to the left of the whole shuffle, while Am+I and B,+I stand to the right). 

Motivated by Proposition 2.5, we call Nm,, the (m, n)-shuffie polytope. It 

turns out that Nm,, can be realized as a subpolytope of thepermutohedron Pm+,. We 

recall (see Section 3C Chapter 7) that Pro+, is the convex hull in R m+n of (m -k- n)! 

points rr = (7rl . . . . .  rrm+,) representing permutations of { 1, 2 . . . . .  m +n}. Recall 

also that a permutation zr is an (m, n)-shuffle permutation if it satisfies (1.47). 

There is a natural bijection between (m, n)-shuffle permutations and shuffles of 

A1A2.. .  Am and B1B2... B," we put Ai on the zri-th place in the shuffle, and 

Bj on the 7rm+j-th place. Translating Proposition 2.5 into the language of shuffle 

permutations, we see that if zr is a shuffle permutation corresponding to the shuffle 

w(T) then the components of r/T are given by (1.48) and (1.49). This implies the 

following. 

Proposition 2.6. The shuffle polytope Nm,, can be affinely embedded into Pm+n 
so that each vertex OT goes to the vertex Jr corresponding to the shuffle w(T). 

We know (from Section 3D Chapter 7) that the shuffles of A1A2.. .  Am and 
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q 4 = 1  

q3=1 

q2=1 

ql--0 

q0 = 1 
A1 

A4 

B2 

B1 

A2 
B3 

A3 
i 

B4 

Po = 0 Pl = 2 P2 = 1 P3 = 1 P4 : 0 

w - w ( T )  - A1BI B 2 A 2 B 3 A 3 B 4 A  4. 

T: 

(0, 1) i~ , .,I ,I . , ( 4 , 1 )  

(o, o) '  v v v J (4, o) 

t31 (1,1) /32 133 134 

A1 (1,0) A 2 A 3 A 4 

F i g u r e  62 .  

B1B2. . .  B,, are also in bijection with the lattice pa ths  from (0, 0) to (m, n). This 

time the symbols in the shuffle are interpreted as unit moves, the symbol Ai meaning 

the horizontal move from the vertical line x - i - 1 to the line x -- i, and Bj 

meaning the vertical move from the horizontal line y = j - 1 to the line y = j .  For 

a lattice path L from (0, 0) to (m, n), we define the integers p i ( L )  (i -- 0 . . . . .  m)  

and q j ( L )  ( j  = 0 . . . . .  n) as follows: p i ( L )  is the length of the part of L lying 

on the vertical line x = i, and qj (L )  is the length of the part of L lying on the 

horizontal line y = j .  In particular, pi (L) = 0 if L just crosses the line x -- i in 

the horizontal direction, and similarly for q j ( L ) .  Translating Proposition 2.5 into 
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the language of lattice paths, we obtain the following. 

Proposition 2.7. If L is the lattice path corresponding to the shuffle w(T)  then 
the vertex ~r has components p i (T)  = pi(L) and qj(T)  = qj(L) for  all i, j .  

In view of this proposition, it will be convenient for us to use the notation 

Or = OL for a lattice path L corresponding to w(T).  

The correspondence between coarse triangulations of the trapezoid, shuffles, 

and lattice paths is illustrated in Figure 62. 

C. The Newton polytope of  the resultant: further properties 

Theorem 2.8. The polytope Nm,n has dimension m + n - 1. Its affine span in 
R m+n+2 is given by three linear equations 

m s s s 
E Pi --" n, qj  = m, (m -- i ) p i  + (n - j ) q j  = m n .  

i =0  j =0  i =0  j =0  

(2.1) 

Proof First we show that every vertex of Nm,, satisfies (2.1). From the point 
of view of the resultant, this is equivalent to the three homogeneity conditions 

(1.7). It will also be instructive for us to deduce the last equation in (2.1) in a 

purely combinatorial way (the first two equations are obvious from any of the 
above interpretations of vertices). In fact, we shall prove a stronger statement. For 

every integral point (k, l) ~ [0, m] • [0, n], we define an affine-linear function hkt 
on R m+n+2 by 

k 1 

hkt = ~--~(k - i)pi + ~-~(1 - j)qj  - kl. (2.2) 
i =0  j =0  

Lemma 2.9. Every vertex OL of  Nm,, satisfies the inequalities hkl(OL) > O for  all 
k, 1. Furthermore, hkl(rlL ) --- 0 if and only if a lattice path L passes through the 
point (k, l). 

The last equation in (2.1) is a special case of Lemma 2.9 corresponding to 
(k, l) -- (m, n). 

Proof of  Lemma 2.9. By Proposition 2.7, the component Pi of r/L is equal to pi(L),  

i.e., to the length of the intersection of the polygonal line L with the vertical line 
k k k-1 x = i. We write ~-~i=0( -- i)pi in the form )-~i=0 (Po + Pl + ' "  + Pi). Clearly, 

this sum is equal to the area of the part of the rectangle [0, k] • [0, n] lying below 

the polygonal line L. Similarly, )--'/~=0(l - j )qj  is equal to the area of the part of 
, A '  

the rectangle [0, m] • [0, l] lying above L. These two parts cover the rectangle 

[0, k] • [0, l] and do not overlap; moreover, their union is equal to [0, k] • [0, l] if 
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~-~ (l - j )q j  
j=o 

k 

~-~(k - i)pi 
i = 0  

Figure 63. Proof that hkl(OL) >__ 0 

and only if L passes through (k, l). Hence, the sum of their areas is > kl  with the 

equality if and only if L passes through (k, l) (see Figure 63). This proves Lemma 

2.9 and the equations (2.1). 

Clearly, the three linear equations in (2.1) are independent, i.e., define an 
affine subspace of dimension m + n - 1. To complete the proof of Theorem 2.8, 

it remains to construct m + n affinely independent vertices of Nm,n. To do this, 

we consider all (m, n)-shuffles with the property that at least one of the words 

A 1 A 2 . . .  Am and B1B2.. .  Bn is a subword of our shuffle, i.e., is not separated 
by other symbols. There are exactly m + n such shuffles, and the corresponding 

vertices of Nm,n given by Proposition 2.5 have the form 

I ! l l 
neo + m e  n, n e m +  m e  o, nei + i e o + (m - i )e  n, i = 1  . . . . .  m - l ,  

j eo  + (n - j ) em + mej., j -- 1 . . . . .  n - 1, 

' ' is the standard basis where eo . . . . .  em is the standard basis in R re+l, and e 0 , . . . ,  e n 

in R ~+1. The proof that these points are affinely independent is straightforward, 

and we leave it to the reader. 

Note that Lemma 2.9 is a lattice analog of the classical Young inequality (see, 

e.g., [HLP]), stated as follows. Let y = tp(x) be a continuous, strictly increasing 

function of x for x > 0, with ~o(0) = 0. Then for a, b > 0 

fo a fo ab < tp (x )dx  + t p - l ( y ) d y ,  
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~ - i ( y / ~ y  . 

,, / z  

a 2; 

Figure 64. The Young inequality 

where ~o-l(y) is the function inverse to ~o(x). The inequality is strict unless 

b = ~o(a). The proof is the same as that of Lemma 2.9 (see Figure 64). 

Proposition 2.10. Each of  the polytopes NI,, and N,,1 is an n-dimensional sim- 

plex. 

This is clear since both NI,, and Nn,1 are of dimension n and have n + 1 

vertices. 

Now we describe the face lattice of Nm,,. We need some terminology. By a 

block in the rectangle [0, m] x [0, n], we mean a sub-rectangle [k, k'] x [1, I'] with 

integral vertices, together with a collection of some vertical chords x -- kl, x = 

k2 . . . . .  x -- kr and some horizontal chords y -- 11, y -- 12 . . . . .  y -- 1~. A block 

can be degenerate, i.e., a vertical or horizontal segment, but not a point. The chords 

can be taken only for non-degenerate blocks, but even then each of the collections 

of selected vertical or horizontal chords (or both) can be empty. The ki's and lj's 

are integers such t h a t k  < kl < . . .  < kr < k ' , l  < 11 < "'" < ls < I'. F o r a  

block/3 we denote its south-west comer  (k, 1) by min (/3) and its north-east comer  

(k', 1') by max (/3). 

By a (m,n)-labyrinth we mean a (non-empty) collection A of blocks 

131,132 . . . . .  Br in [0, m] x [0, n] such that min (/31) -- (0, 0), max (13r) = (m, n), 

and min (Bi) - max (Bi-1) for i = 2 . . . . .  r.  By a slight abuse of notation, we 

denote by the same symbol A the subset of the rectangle [0, m] x [0, n] formed by 

all the sides and chords of all blocks 131,132 . . . . .  Br. Figure 65 shows an example 

of a block and a labyrinth. 

Theorem 2.11. The faces o f  Nm,n are in bijection with (m, n)-labyrinths: the 

face F ( A )  corresponding to a labyrinth A has vertices OL for  all lattice paths L 

contained in A. 
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(k,l') (k',z') 

(]~,/1) 

(k,z) 
(kl,/) (]r (k3,/) (k',l) 

Figure 65. A block and a labyrinth 

Corollary 2.12. The bijection A r-+ F(A) is order-preserving: F(A) C F(A' )  
if and only if A C A', where A and A' are considered as subsets of the rectangle 
[0, m] • [0, n]. 

Corollary 2.13. The edges of Nm,n correspond to labyrinths having only one 

non-degenerate block, with no chords selected (see Figure 66). 

In the course of the proof of Theorem 2.11 we shall also prove the following. 

Theorem 2.14. The polytope Nm,, is defined in R m+n+2 by linear equations (2.1) 

and linear constraints 

Pk > 0, ql >__ O, hkl > 0 for (k, l) E [0, m] x [0, n]. (2.3) 

Proof of Theorems 2.11 and 2.14. We temporarily denote by N'm,,, the set of points 
in R m+n+2 satisfying (2.1) and (2.3). Clearly, N,~,,, is bounded, hence is a convex 

polytope. By Theorem 2.8 and Lemma 2.9, Nm,n c N'm, ~. 
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Figure 66. An edge of Nm,n 

For every three subsets I C [0, m], J C [0, n], K C [0, m] x [0, n] we set 

F ( I , J , K )  = 

{(P, q) ~ Ntm,n " Pi " -0  f o r  i ~ I, qj - - 0  f o r  j ~ J, hk,t = 0 f o r  (k, l) ~ K }, 
(2.4) 

where the functions hkt are defined by (2.2). By definition, the faces of N',n are 

exactly non-empty subsets of the type F(I ,  J, K). 
We say that a triple (I, J, K) is related to an (m, n)-labyrinth A if for a lattice 

path L the conditions 0L ~ F(I ,  J, K) and L C A are equivalent to each other. 

Lemma 2.15. 
(a) For every (m, n)-labyrinth A there exists a triple (I' J, K) related to A. 

(b) Fix a (non-empty)face F of  N'm, ~, and set 

I = {i 6 [0, m] :  Pi = 0 on F}, J -- {j ~ [0, n] :qj = 0 on F}, 

K = {(k, 1) ~ [0, m] x [0, n]:hkt  = 0 on F}. 

Then the triple (I, J, K) is related to some labyrinth A. 

Before proving this lemma we derive Theorems 2.11 and 2.14. Since every 

labyrinth contains some lattice path, it follows from Lemma 2.15 (b) that every 

face F of N'm, n contains some vertex r/L of Nm,n. In particular, every vertex of 

N~,,, is a vertex of Nm,n, which proves Theorem 2.14. Applying again Lemma 

2.15 (b), we see that every face F of Nm,, has as vertices the points r/L, where L 

runs over all lattice paths contained in some labyrinth A. Hence F has the form 

F(A)  from Theorem 2.11. Conversely, by Lemma 2.15 (a), each F(A)  is a face 

of Nm,n, which completes the proof of Theorem 2.11. 
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Proof  o f  Lemma 2.15. (a) We can take K to be the set of all lattice points lying 

on degenerate blocks of A, and I (resp. J )  to be the set of all i 6 [0, m] (resp. 

j ~ [0, n]) such that the line x = i (resp. y = j )  is a chord of some non-degenerate 

block of A but not a selected one. The fact that (I, J, K) is related to A follows 

from Lemma 2.9. 

The proof of Lemma 2.15 (b) is more elaborate. We deduce it from the next 

description of the triple (I, J, K) corresponding to a face F of N~, n. 

L e m m a  2.16. Let (I, J, K)  be a triple associated to a face  F o f  N~, n as in Lemma 

2.~5(b). 
(a) The set K is the disjoint union o f  several lattice paths L1 . . . .  , Lr such that 

rain (L1) = (0, 0), max (Lr) = (m, n), and min (Li) lies to the northeast 

of max (Li-1)  f o r  i = 2 . . . . .  r. In other words, i f  Li is a path f rom [ki, li] 

to [k~,l~] then 0 = kl < k~ < k2 < k~ < . . .  < k r ~_~ k' r = rn and 

0--11 <1 '  1 <12 <I~ < - . .  <lr  <_I' r - - n .  
(b) Suppose i is such that K crosses the vertical line x = i. Then i ~ I i f  and 

! 
only i f  i is different f rom k' 1 , k2, k' 2 . . . . .  kr_ 1 , kr and the intersection K f3 {x = i} 

consists o f  one point. Analogously, i f  K crosses a horizontal line y = j then 

j e J i f  and only i f  j is different f rom l~, 12, l~ . . . . .  l'r_ 1 , l~ and the intersection 

K f3 {y = j } consists o f  one point. 

Using Lemma 2.16, we associate to (I, J, K)  an (m, n)-labyrinth A in the 
following way. The degenerate blocks of A are horizontal and vertical segments 

of lattice paths L1 . . . . .  Lr from Lemma 2.16 (a). The non-degenerate blocks 

of A are rectangles 131,132 . . . . .  Br-1 in [0, m] x [0, n] such that rain (Bi) = 

(k~, l~), max (Bi) = (ki+l, li+l). Finally, in every non-degenerate block we select 
the chords x = i for all i r I, and the chords y = j for all j r J .  The fact that 

(I, J, K) is related to A is clear. 

It remains to prove Lemma 2.16. 

Proof  o f  Lemma 2.16. (a) It suffices to prove the following three statements: 

(al) K contains (0, 0) and (m, n). 

(a2) K cannot contain two lattice points (k, l), (k', l') such that k < k', l > l'. 

(a3) If K contains two lattice points u, v lying on the same horizontal or vertical 

line then K contains all the lattice points of the segment [u, v]. 

The item (a l) is clear. To prove (a2) suppose that K contains (k, 1), (k', l') 

such that k < k', l > l', i.e., hkl = hk,l, -- 0 on F. To arrive at a contradiction, we 

consider the following identity: 

hkl q- hk'l' -- hk'l -- hkl' -- (k' - k)(l  - 1'), (2.5) 

which follows directly from (2.2). The left hand side of (2.5) takes a non-positive 
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value at each point of F,  which contradicts the fact that the fight hand side is 

positive. 

To prove (a3) it is enough to consider the case when u and v lie on a horizontal 

line (the proof for a vertical line is the same). So we have to prove the following: 

if k < k" < k' and (k, l), (k', l) 6 K then (k", l) 6 K. To see this we use another 

identity, which is also a direct consequence of (2.2): 

d- hk'l - -  hk+l,l -[- hk ' - l , l  d- ~ Pk". hkl (2.6) 
k <k" <k' 

Evaluating both sides of (2.6) at some point of F,  we see that if (k, l), (k', l) 6 K 

then the left hand side vanishes, hence all summands on the fight hand side also 

vanish. In particular, this shows that (k + 1, l), (k' - 1, l) ~ K. Repeating this 

argument if necessary, we see that (k", l) 6 K for k < k" < k', which completes 

the proof of (a3). 

(b) We shall prove only the statement about I (the proof for J is completely 

analogous). It is easy to see that our statement is a consequence of the following 

two statements. 

(bl)  I f (0 ,  j )  6 K f o r s o m e j  > l t h e n 0 ~  l ; i f ( m , j )  6 K f o r s o m e j  < n - 1  

then m ~ I. 

(b2) If (i, j )  6 K, i ~ I, and l i ' - i l  = 1 then (i', j )  6 K. 

The proof of (b 1) and (b2) uses the same method as the above proof of (a2) 

and (a3). For (b 1) we use the identities 

hoj + Po = hl j  + j ,  hmj + Pm -- hm-l, j  + (n - j )  + (Po + " "  + Pm - n). (2.7) 

If i 6 [ 1, m - 1 ] then (b2) follows from the identity 

2hij  d- Pi "- h i - l , j  d- h i+l , j ,  

which is a special case of (2.6). If i -- 0 then in view of (b 1) we have j -- 0, hence 

in this case (b2) follows from the first identity in (2.7) for j = 0. The case i = m 

in (b2) is treated in the same way. This completes the proof of Lemma 2.16 and 

hence of Theorems 2.11 and 2.14. 

Corol lary  2.17. I f  m, n > 2 then Nm,, has exactly mn + 3 facets. They are given 

by linear equations Pi -- 0 for  i = 0, 1 . . . . .  m, qj = 0 for  j -- O, 1 . . . . .  n, and 

h k t - - O f o r k  = 1,2 . . . . .  m -  1, l -  1,2 . . . . .  n -  1. 

Proof By Theorem 2.14, every facet of Nm,n is supported by one of the inequal- 

ities in (2.3). It remains to check which of these inequalities defines a facet, i.e, 
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corresponds  to a maximal  proper  labyrinth. The face {Pi "- 0} for 1 < i < m - 1 

corresponds  to the labyrinth having one block [0, m] • [0, n] with all the chords 

selected except  the chord {x = i }. The face {P0 = 0} corresponds  to the labyrinth 

having one non-degenera te  block [ 1, m ] x [0, n] with all the chords selected,  and 

the unit horizontal  segment  f rom (0, 0) to (1, 0). The face {Pm "- 0} and all the 

faces {qj = 0} are descr ibed in a similar  way. As for the face {hkl "- 0} for 

k = 1, 2 . . . . .  m - 1, l = 1, 2 . . . . .  n - 1, it corresponds  to the labyrinth with 

two blocks [0, k] x [0, l] and [k, m ] x  [/, n] and all chords selected. Each  of  these 

labyrinths is seen to be a maximal  proper  one. 

It remains  to check the faces {h01 -- 0} and {hml = 0} for I = 1, 2 . . . . .  n - 1, 

and {hk0 = 0}, {hk, = 0} for k = 1, 2 . . . . .  m - 1. Clearly, each of  the faces 

{h01 = 0} is contained in the facet {q0 = 0} already taken into account.  All the 

remain ing  cases are totally similar. 

T h e o r e m  2.18. The face F ( A )  of  Nm,n corresponding to an (m, n)-labyrinth A 

is combinatorially equivalent to Nm~,n~ x . . .  x Nm~,nr, the product over all non- 

degenerate blocks 131,/32 . . . . .  13r in A, where mi - 1 and ni - 1 are numbers o f  

vertical and horizontal chords selected in the block 13i. 

Proof. Using induction on m + n, it is enough to prove the s ta tement  for the facets 

F (A)  of  Nm,,. The cases m -- 1 and n = 1 are clear f rom Proposi t ion 2.10, so we 

assume that m, n > 2. Then the facets of  Nm,, are given by Corol lary  2.17. 

Cons ider  first the facet {hkl = 0} for some k = 1, 2 . . . . .  m - 1, l --  

1, 2 . . . . .  n - 1. We claim that this facet is not only combinator ia l ly  but affinely 

i somorphic  to Nk,l • Nm-k, ,- l .  To see this, consider  the l inear maps  

Ct " R TM • R/+1 • R m-k+l • R n- l+  1 ___> R m + 1 • R n + 1 

f l"  R m+l • R n+l ~ R k+l x R t+l x R m-k+l • R n-l+l  

defined as follows. For 

(p' ,  q') e R k+l • R l+l ,  (p",  q") ~ R m-k+l X R n - l + l  

we set a (p', q', p", q") -- (p,  q) ,  where  

l l t t  

Pi -- Pi for 0 < i < k; Pt  -" Pk + PO, 

and similarly, 

Pi = P" for k < i < m i - k  - -  ' 

I I t  I t  
qj = qj for O < j < l, ql = ql + qo, qj "- qj-I for l < j  < n .  
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Conversely, for (p, q) 6 R m+l • R "+1 we set fl(p, q) -- (p',  q', p", q"), where 
! ! 

Pi -- Pi for 0 < i < k, p~ -- l - P0 - PJ . . . . .  Pk-1, 
t t  t t  

Po = n - l - Pk+l . . . . .  P r o ,  P i  " -  Pk+i for 1 < i < m -- k, 

and similarly, 

= q j  for O < j < l ,  q[ = k - qo - ql . . . . .  qt-1,  
11 I I  

q o = m - k - q t + 1  . . . . .  q~, qj =q1+j for ] _ < j _ < n - / .  

It is straightforward to verify that ct and 13 define mutually inverse isomorphisms 

between Nk,l X Nm-k,, ,-I  and Nm,,,A{hkt = 0}. The same argument shows that each 

of the facets {P0 - 0} and {Pm = 0} is affinely isomorphic to Nm-l, , , ,  and each of 

{q0 = 0} and {q~ = 0} is affinely isomorphic to Nm,n-1. It remains to show that a 

facet {Pi = 0} for i -- 1, 2 . . . . .  m - 1 is combinatorially isomorphic to Nm-l, , , ,  

and a facet {qj = 0} for j - 1, 2 . . . . .  n - 1 is combinatorially isomorphic to 

Nm,,,- 1. As shown in the proof of Corollary 2.17, each of these facets corresponds 

to a one-block labyrinth. More generally, consider a one-block labyrinth A on 

[0, m] x [0, n] with vertical chords x - kl, x = k2 . . . . .  x = kr -  1 and horizontal 

chords y = 11, y = 12 . . . . .  y = Is-1. We claim that F (A)  is combinatorially 

equivalent to Nr,~. The vertices of F (A) correspond to lattice paths from (0, 0) to 

(m, n) lying in A. The only difference with Nr, s is that the lattice paths are now 

taken on the rectangular lattice, where the sizes of all rectangles can be different. 

Going through the above arguments, we can show that Theorem 2.8, Lemma 2.9, 

and Theorem 2.11 after a suitable modification extend to the polytope F (A), hence 

F ( A )  is combinatorially equivalent to Nr, s. 

Shuffle polytopes Nm,,, are reminiscent of another family of polytopes: the 

hypersimplices Am,~ (see Section 3A Chapter 6). The hypersimplex Am,,, has the 

same dimension rn + n - 1 and the same number of vertices (m+n) as Nm n, but in 
x m / 

general Am, n and Nm,,, are not combinatorially equivalent. 

We conclude this chapter with an illustration of how the algebraic properties 

of discriminants and resultants can provide geometric properties of the Newton 

polytopes. Consider the discriminant A ( f )  of a binary form f of degree r + 1. 

Denote its Newton polytope by Nr. The  description of N~ is given by Theorem 2.2; 

it is a subpolytope in R r+2 combinatorially equivalent to an r-cube. According 

to (1.31), A ( f )  is equal to the resultant of two partial derivatives of the binary 

form F(x0, x l) corresponding to f .  Translating this statement into the language 

of Newton polytopes, we obtain the following. 

Proposition 2.19. Let Jr �9 R r+l • R r+l ~ R r+2 be the project ion def ined by 

Jr(po . . . . .  Pr, qo . . . . .  qr) : (PO, Pl d- qo . . . . .  Pr q;- qr-1,  qr). 

Then 7r(Nr, r) -- Nr. 



CHAPTER 13 

Discriminants and Resultants 

for Forms in Several Variables 

We now consider the most straightforward generalization of the resultants and 

discriminants treated in Chapter 12, namely the resultants and discriminants for 

homogeneous forms in several variables. Although they are very classical objects 

of study, many fundamental questions about them still remain open. To realize 

how little is known it is enough to mention that an explicit polynomial expression 

still remains unknown with the exception of some very special cases. The meth- 

ods developed in Parts I and II help to put this and other questions in a general 

perspective. Without pretending to be complete, we present an overview of some 

fairly classical results together with more fresh developments. 

1. Homogeneous forms in several variables 

Here we collect some basic facts on discriminants and resultants for forms in several 

variables. To benefit the reader less interested in generalizations and more in the 
classical material, we have tried to make the exposition reasonably self-contained, 

at the price of some repetition. 

A. The resultant: basic properties and Poisson formula 

Let f0, f l  . . . . .  fk be k + 1 polynomials in k variables x 1, X2 . . . . .  Xk*. The resultant 
R( fo  . . . . .  fk) is an irreducible polynomial in the coefficients of fo, f l , . . . ,  fk 
which vanishes whenever fo, f l  . . . . .  fk have a common root. When k = 1 this 

amounts to the resultant of two polynomials in one variable, treated in Chapter 12. It 

is not so easy to describe what exactly the vanishing of the resultant means because 

we have to take care of roots "at infinity." The best way to do it is to "homogenize" 

polynomials fo, f l  . . . . .  fk, i.e., to replace each 3~ by the homogeneous form 
di x o f ( x l / x o  . . . . .  Xk/XO), where di is the degree of fi. With some abuse of notation 

we denote the homogeneous forms thus obtained also by f0, fl  . . . . .  fk. The 

advantage of this homogeneous setting is that now the vanishing of R (f0 . . . . .  fk) 

is equivalent to the fact that the forms f0 . . . . .  fk have a common root in C k+l - {0}. 

It is also helpful to view each fi as a section of the line bundle O(di) on pk; then 

* In this and in the next chapter we find it more convenient to switch from the 

notation in Parts I and II where we mostly considered k forms in k - 1 variables. 
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the vanishing of R (f0 . . . . .  fk) means that these sections have a common root in 
pk. 

As usual, the resultant is defined up to sign by the requirement that it is 

irreducible over Z, i.e, it has integral coefficients with the greatest common divisor 

equal to 1. In the present case it is possible to fix the resultant uniquely by the 
d0 dl dk requirement that R(x , xl . . . . .  x k ) = 1. 

The resultant R(fo  . . . . .  fk) is a special case of the mixed (A0 . . . . .  Ak)- 

resultant (Section 1 Chapter 8). Here Ai is the set of all monomials of degree di 

in (k + 1) variables or, equivalently, the set of all integral points in the simplex 

di A k - {(090 . . . . .  wk) E Rk+l " wj > 0 ,  Z wj -- di }. 
J 

The degree of the resultant can be found with the help of Corollary 1.6 Chapter 8. 

We arrive at the following well-known proposition. 

Proposition 1.1. The resultant R (fo . . . . .  fk) is a homogeneous polynomial in the 

coefficients of  each form fi of  degree dodl . . .  di-1 di+ 1""  dk. 

In particular, in the case when all the forms f0 . . . . .  fk have the same degree 
d, the resultant has degree d k in the coefficients of each fi, i.e., has total degree 

(k + 1)d k. 

Now we give an analog of the product formula (1.3) from Chapter 12. It 

is more convenient to state it in the non-homogeneous setting, so we consider 

again k + 1 polynomials fo, f l  . . . . .  fk in k variables x l, x2 . . . . .  Xk. Let di be the 
degree of fi for i = 0, 1 . . . . .  k, so each f/ contains some monomials of degree 

di and possibly some monomials of smaller degree. For i = 1, 2 . . . . .  k, let f i  

denote the homogeneous component of degree di in jS. By the Bezout theorem, if 

f l ,  f2 . . . . .  fk are sufficiently genetic then they have d ld2 . . ,  dk distinct common 
roots. In such a situation we denote by 1-I (f0; 3"1 . . . . .  fk) the product of values of 

f0 at all common roots of f l ,  f2 . . . . .  fk. 

Theorem 1.2. The resultant R (fo . . . . .  fk) is given by 

R( fo  . . . . .  fk) - R(- f  l . . . . .  fk)a~ fl . . . . .  fk). (1.1) 

Formula (1.1) is known as the Poisson formula (cf. [Jou], Proposition 2.7). 

The term R ( f l  . . . . .  f k )  appearing on the fight hand side is the resultant of k 

homogeneous forms in k variables. We can prove (1.1) using the same approach as 

in the proof of Theorem 1.17 Chapter 10 (in fact, the present case is much easier). 

The Poisson formula implies the following multiplicative property. 
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r  be a product of  two homogeneous forms. Then Proposi t ion 1.3. Let fo = J oJo 

R(f fd' f, fk) = R(f/,, f, A)R(f/,', A) 

B. The Cayley determinantal formula 

We now present the classical formula due to Cayley for the resultant of k + 1 

homogeneous forms in k + 1 variables, expressing it as the determinant of the 

resultant complex. This is a special case of the general formula given by Theorem 

4.2 Chapter 3, but we wish to state it in the most "down-to-earth" manner. For 

simplicity we consider the case when all the forms f0, f l  . . . . .  fk have the same 

homogeneity degree d. 

The resultant complex depends on m and is the twist parameter m ~ Z 

C'=C~ fo . . . . .  fk) = .  {c_k_l a C_ k a a C _  1 a cO } ; .~ - - _ _ ~  . . .  ~ > , 

where 
C -p  = s m - p d c  k+l ~ APC TM. (1.2) 

Here S m-pal C k + l is regarded as the space of forms of degree m -  pd  in x0, xl . . . . .  Xk 

(so this term is absent if m - p d  < 0). The differential 0 �9 C -p --> C -p+I acts by 

0 = Y~k=0 fj  | Oj, where each j~ acts by multiplication, and Oj is the derivation 

of the exterior algebra AoC k+l with respect to the j - th  standard basis vector. 

We choose a basis in each C -p consisting of monomials of degree m - pd  

in x0, X l . . . . .  Xk, tensored with the wedge monomials of degree p in the standard 
basis vectors of C k +1. 

Theo rem 1.4. For each m > (k + 1)(d - 1) the resultant R (fo . . . . .  fk) is equal 

to the determinant of  the complex C ~ (m; f0 . . . . .  fk). 

Proof The statement follows from Theorem 4.2 Chapter 3 (or from Theorem 2.5 

Chapter 8) provided the resultant complex is stably twisted. This means that for 

each p = 0, 1 . . . . .  k +  1 the sheaf O ( m -  pd) on pk has no higher cohomology. By 

Serre's theorem (Theorem 2.12 Chapter 2), this happens exactly when m - pd  >_ 

- k  for p = 0, 1 . . . . .  k + 1, i.e., when m > (k + 1)(d - 1). 

Theorem 1.4 gives an explicit formula for the resultant. Unfortunately, for 

large k and d this formula is impractical for the purposes of actual computation. 

This is so because even in the most "economic" case m = (k + l ) (d  - 1) + 1 the 

resultant complex has many non-zero terms. Namely, C -p ~ 0 for p such that 

(k + 1)(d - 1) + 1 - pd > O, i.e., for 0 < p < k -t- 1 - [~l, where [xl is the 
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smallest integer > x. Remembering the explicit formula for the determinant of a 

complex (see Theorem 13, Appendix A), we see that the Cayley formula expresses 

R(f0 . . . . .  fk) as the alternating product of k + 1 - [k] ordinary determinants 

whose entries are linear combinations of the coefficients of the jS. 

The number k - [~] can be thought of as the "determinantal complexity" 

of Cayley's formula. It is always non-negative and is equal to 0 only in two 

extreme cases when k = 1 or d - 1. For k = 1 Cayley's formula becomes the 

Sylvester formula (1.12), Chapter 12 for the resultant of two binary forms. For 

d -- 1 Cayley's formula expresses the resultant of a system of linear forms as the 

determinant of their coefficient matrix. 

The differential at the fight in the resultant complex has the form 

sk(d_l)ck+l ~ ck+l  Oo s(k+l)(d_l)+lck+l > 

Oo - -  Oo(fo  . . . . .  fk)  " go | e0 + gi | el + . . .  + gk | ek 

gofo + g~fl + . . .  + gkfk, 

where e0, el . . . . .  ek are standard basis vectors in C k+l. The resultant 

R (f0, f l  . . . . .  fi,) is equal to the greatest common divisor of all the maximal mi- 

nors of the matrix of/90 = 0o(f0 . . . . .  fk) (see Appendix A, Theorem 34). (As 

above, we choose a basis in s(k+I)<d-1)+IC k+l consisting of all monomials of de- 
gree (k + 1 ) ( d -  1 ) +  1 in xo, xl . . . . .  xk, and a basis in sk(d-1)C k+l ~ C k+l 

consisting of all monomials of degree k(d - l) tensored with e0, el . . . . .  ek.) 

In fact, in the present case we do not need all the minors; it suffices to take 

only k + 1 specific minors of the matrix of 00. In order to see this for each 

i -- O, 1 . . . . .  k, let Mi denote the set of all monomials x0t~OXCql " "  " Xkak of degree 

k ( d -  l) such that max (ct0, ctl . . . . .  cti_l) < d (so M0 consists of all monomials of 

degree k(d - 1)). We claim that the set I..J~=0 (Mi | {ei }) is in bijection with the set 

of all monomials of degree (k + l ) (d  - l) + 1 in x0, x l . . . . .  xk. Such a bijection 

can be given by sending x ~ | ei E Mi t~ {ei } t o  the monomial x~x d (the inverse 

bijection takes every monomial x~ = X~o ox~ . . .  Xk~k of degree (k -t- 1) (d - 1) + 1 to 

x ~/x  d, where i is the minimal index such that ~i ~-~ d). It follows that the subspace 

of skCd-1)C k+l | C k+l spanned by [..J~=0(Mi | {ei}) has the same dimension as 

S(k+l)~d-1)+lC k+l. Let Dk(fo . . . . .  fk) denote the maximal minor of the matrix 

of O0(f0 . . . . .  fk) corresponding to its restriction to the span of [..J~=0(Mi | {ei}). 

Likewise, for each j = O, 1 . . . . .  k - 1, we denote by Dj (fo . . . . .  fk) the maximal 

minor of the matrix of Oo(fo . . . . .  fk) corresponding to its restriction to the span 
k of [..Ji=o(M~(i) | {ei}), where tr is some permutation of indices O, 1 . . . . .  k such 

that or(j) = k. 
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Theorem 1.5. The resultant R(fo . . . . .  fk) is the greatest common divisor of the 
polynomials Do, D1 . . . . .  Dk. 

Proof Clearly, the resultant being the g.c.d of all maximal minors of the ma- 

trix of 00 divides the g.c.d (Do, D1 . . . . .  Dk). On the other hand, by construc- 
tion each polynomial Dj has degree d k in the coefficients of j~. Therefore, the 

g.c.d. (Do, D1 . . . . .  Dk) has degree less than or equal to d k in the coefficients of 

each of the forms f0 . . . . .  fk. Hence its total degree is less than or equal to that of 

the resultant. This implies our theorem. 

Note that each minor Dj in Theorem 1.5 depends on the choice of a permuta- 

tion a of indices, but this dependence does not matter, i.e., Theorem 1.5 remains 

valid for all possible choices. 

C. Polynomial expressions for the resultant via Weyman's complexes 

It follows from the general theory developed in Section 4 Chapter 3 that even those 

values of the twist parameter m e Z, for which the resultant complex (1.2) is 

not stably twisted, still give rise to an explicit expression for the resultant as the 

determinant of a certain spectral sequence (Cr ~ , 0r ), the so-called resultant spectral 

sequence. Recall that this spectral sequence arises from the twisted Koszul complex 

k+l 1 
A (O(-d)ek+ , )  | O(m) --->... ---> A (O(-d)r ~ O(m) --+ O(m) (1.3) 

of sheaves on pk. By Theorem 4.11 of Chapter 3, we can interpret the determinant 
of the spectral sequence (Cr ~ as the determinant of some complex which incorpo- 
rates, in a sense, all the higher differentials in (C~~ Using Serre's description of 

the cohomology of the sheaves O(n) on a projective space (Theorem 2.12 Chapter 

2), we can describe the complex in question as follows. 
The complex corresponding to an arbitrary twist parameter m 6 Z has the 

form 

C ~ = C ~ (m; fo . . . . .  fk) = [ C -k-1 

where 

0 0 1 0 c O  o 0 c k  } 
> ' ' '  > C -  > > . . .  ----~ 

c - .  = [ s ' - . " c  | ^ . c  , * | 

(1.4) 

Here the first summand in (1.4) can appear only for p such that 0 < p < k + 1 

and m - pd > 0; it arises as the space of global sections 

) .o p ,  A | O(m  . 



1. Homogeneous forms in several variables 431 

Similarly, the second summand can appear only for - k  < p < 1 and pd  - m + 

k(d  - 1) - 1 > 0; it arises as the top cohomology space 

p+k ) 
H k pk, A (O(-d)~Dk+l) ~ O(m) . 

In particular, in the stably twisted case when m > (k + 1)(d - 1), the second 

summand never appears so that (1.4) reduces to (1.2). 

The differential 

O " [sm-pdc k+l (~ APC k+l] I~ [(sPd-m+k(d-1)-lck+l) * (~ Ap+kc TM] 
[sm-(p-1)dc k+l . AP-lck+l].[(S(P-l)d-m+k(d-1)-lck+') * . AP+k-lck+ 1 ] 

is represented by a block 2 • 2 matrix 

( 0~1 012 ) 
0 022 " 

Here the operator 

Oll " s m - p d c  k+l @ APC k+l > sm-<P-1)dc k+l r AP-IC k+l 

is given by the same formula 011 = Y~f=0 J~ | Oj as in subsection lB. This is one of 
the components of the differential 01 in the resultant spectral sequence, namely the 

map of the spaces of global sections of sheaves in (1.3) induced by the differential 
in (1.3). The operator 

022 �9 (sPd-m+k(d-1)-Ick+l) * (~ Ap+kc k+l 

) (S(P-1)d-m+k(d-1)-lck+l)* @ Ap+k-Ic k+l 

is seen to be given by 022 -- ~-~:0 fj* | Oj, where f7  stands for the operator adjoint 
of the multiplication by j~. This is also one of the components of the differential 

01 in the resultant spectral sequence, this time the map on the top cohomology of 

the sheaves in (1.3) induced by the differential there. The operator 

012" (sPd-m+k(d-1)-lck+l) * ~ Ap+kc k+l > sm-(p-1)dc k+l ~ A p - I c  k+l 

can appear only for p = 1 where it takes the form 

312" (s(k+l)(d-1)-mck+l) * (~ Ak+lck+l > smc k+l. 
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This is a lifting of a component of the differential Ok+l of the resultant spectral 

sequence. In a more symmetric form 022 can be viewed as a bilinear form 

( s ( k + l ) ( d - l ) - m c k + l )  * )< ( s m c k + l )  * > C; 

this form depends polynomially on the coefficients of f0, f l  . . . . .  fk and is antisym- 

metric with respect to permutations of f0, f l  . . . . .  fk. No nice explicit expression 

of this form seems to be known at present. 

For general values of k, d and m the complex (1.3) can have many non-zero 

terms, and its determinant is a quite complicated rational expression. But there 

are some special cases when the complex has only two non-zero terms C -1 and 

C O , so its determinant is the ordinary determinant of the matrix of the differen- 

tial 0 �9 C -1 > C ~ This leads to a polynomial expression for the resultant 

R (f0 . . . . .  fk). An example of such an expression is the Sylvester formula for the 

resultant of three ternary forms (Section 4D Chapter 3). In the present notation 

this corresponds to k = 2, d > 2 and m = 2d - 1 or 2d - 2, so R(fo, f l ,  f2) is 

the determinant of the matrix of the differential 

3 | A 'C �9 * . 3] 3, 

where e -- 0, 1. 

The following proposition lists all the values of k, d and m which give rise to 

polynomial formulas for the resultant. 

P r o p o s i t i o n  1.6. The complex (1.3) has only two non-zero terms exactly for  the 

following values of  k, d, m. 

(a) L i n e a r  f o r m s :  k > 1 , d  = 1, 1 > m > - 1 .  

(b) B i n a r y  f o r m s :  k = 1, d > 2, 2 d -  1 > m > - 1 .  

(c) T e r n a r y  f o r m s :  k = 2, d > 2, 2d  - 1 > m > d - 2. 

(d) Q u a t e r n a r y  f o r m s :  k - 3, d >_ 2, 2 d -  1 > m >_ 2d  - 3. 

(e)  Q u a d r a t i c  f o r m s  in f ive v a r i a b l e s :  k = 4, d - 2, 3 >_ m >_ 2. 

(99 C u b i c  f o r m s  in f ive v a r i a b l e s :  k - -  4, d = 3, m = 5. 

(g) Q u a d r a t i c  f o r m s  in s ix  v a r i a b l e s :  k - 5, d = 2, m - 3. 

In each of the cases the only two non-zero terms in the complex are 

C - I  __ [ s m - d c k +  1 ~ A1C k+l] ~)[(s(k+l)(d-1)-mck+l) * ~ Ak+lck+l], 

C 0 ..- s m f k + l  ~) [ ( s ( k+ l ) (d -1 ) -d -mck+l )  * ~ Akck+l], 

so the resultant is equal to the determinant of the matrix of  0 �9 C -1 > C ~ 

Proof The classification follows directly from (1.3). First we see that all the 

terms C -p with p > 2 vanish exactly when 2d - 1 > m (we have to care only 
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about the first summand in ( 1.3) because the second summand involves A k + p C k -t- l, 

hence is zero for all m). Similarly, all the terms C - p  with p _< - 1  become zero 

exactly when m >_ k d  - k - d.  Hence the triples (k, d, m) such that (1.3) has only 

two non-zero terms are exactly those satisfying the inequalities 

2 d - 1  > m > k d - k - d .  (1.5)  

This is now an elementary exercise to check that the cases (a) to (g) provide a list 

of all integral solutions of (1.5) with k, d > 1. (One way to see this is to rewrite 

the inequality 2d - 1 > k d  - k - d in the form (k - 3)(d - 1) < 2.) 

D. The  d i sc r im inan t  

For the convenience of the reader we collect here some basic properties of the 

discriminant of a polynomial in several variables. Most were already mentioned 

as examples in the preceding chapters. 

We can consider the discriminant in two equivalent versions: for polynomials 

in k variables of degree less than or equal to d, or for (homogeneous) forms in 

k + 1 variables of degree d. In the homogeneous version, the discriminant is an 

irreducible polynomial A ( f )  in the coefficients of a form f -- f (x0, x l . . . . .  xk) 

which vanishes if and only if all the partial derivatives Of/Oxo,  Of /OXl  . . . . .  Of/OXk 

have a common zero in C k+l - {0}. The polynomial A ( f )  is defined uniquely up 

to sign by the requirement that it is irreducible over Z, i.e., it has relatively prime 

integer coefficients. 

Under the geometric approach of Part I, the discriminant corresponds to the 
Veronese embedding p k  = p(ck+l )  ~ p ( s d c k + l )  which associates to each 

(x0 �9 x l " . . .  " xk) a point whose homogeneous coordinates are all monomials 

of degree d in x0 . . . . .  xk. Since this embedding is toric, A ( f )  is also the A- 

discriminant in Part II, where A is the set of all homogeneous monomials in 

x0 . . . . .  Xk of degree d, or, equivalently, the set of all integral points in the scaled 

simplex 

dAk--{(og0,  tOl . . . . .  wk) " wi > O, ogo -l- Wl W . . . d-- wk --  d } .  

The discriminant of a form f of degree d in k + 1 variables is a polynomial in the 

coefficients of f whose degree is equal to (k + 1)(d - 1) k (see (2.12) in Chapter 

9). In particular the discriminant is non-trivial exactly when d >_ 2. 

The relationships between the discriminants and the resultants are similar to 

the case of one variable (see formula (1.31) of Chapter 12), but more complicated 

as far as the numerical constants are concerned. To keep the notation straight, we 
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denote by A d the discriminant of a form of degree d and by Rd the resultant of 

k + 1 forms of degree d in k + 1 variables. We also use the notation a 1" b for a b. 

Proposition 1.7. For a form f (xo . . . . .  xk) of  degree d, we have 

A d ( f )  -- Cd,k" Rd-1 OXo . . . . .  OXk ' 

where 

(1.6) 

Proof  By comparing degrees we find that (1.6) holds with some non-zero constant 

ca,k, since both sides define the same locus in the space of polynomials. To find 
d Then Cd,k we take a special polynomial fo(x)  = x d + . . .  + x k �9 

(Ofo  O f o ) _  Rd_l(dxd_ 1 . , dxd_ l )=d(k+l ) (d_ l ) .  (1.8) 
Rd-1 OX'-'-O . . . . .  OXk ' '"  

by the homogeneity of the resultant. To calculate Ad (f0), we first find the principal 

A-determinant EA (fo) where A is the set of homogeneous monomials of degree d 

(so Ad is the same as AA). Let B C A be the set {x~ , . . . ,  x kd}, so that f0 ~ C B. We 

apply the formalism of Section 1E Chapter 10. Thus in the notation of this section, 

E A (fo) -" E A (fo, S, ~) where S and ,7, are, respectively, the subsemigroup and 
subgroup in Z TM generated by A. Clearly, ~, consists ofw = (w0 . . . . .  wk) 6 Z k+l 

such that Y~ wi is divisible by d. The definition of the principal A-discriminant 
,- ,  1 calls also for a function h �9 c, --+ Q which can be chosen as h(w) = d Y] wi. 

For our particular choice of f0 we can rewrite EA(fo)  = EB(fo,  S, ~),  by using 
Theorem 1.11 (b) Chapter 10, as 

[~ , -Linz(B)]  v~ �9 EB(fo)[Linz(Sz):Linz (A)I, 

where Q = Conv(A) = d A  k is the scaled simplex and 19 = Affz(A). Note that 

EB(fo)  = 1 and both [U, �9 Linz(B)] and Volo(Q) are equal to d k. Thus 

Ea( fo)  -- (dk) (dk) = d kdk. (1.9) 

The discriminant A A (f0) is obtained as the alternating product 

AA (fo) -- V I  EAnr(fo)(-1)c~ 
rcQ 

(see Theorem 1.3 Chapter 11). Since every face of Q = d A k is a simplex, for 

each j-dimensional face l", we have Eanr( fo)  = d jdj �9 Thus 

( ) ) A a (fo) -- d ( -  1)i k + 1 )dk_ i i ( k - i  . (1.10) 

Simplifying the exponent in (1.10) by the binomial formula and combining this 

with (1.8) we obtain (1.7). Proposition 1.7 is proved. 

(1.7) 
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Proposition 1.8. For A as above and any form f = f (xo . . . . .  Xk) of  degree d, 
we have 

ed ( XO OfOX O'''''Xk ff-~fXk) --ddkEA(f) =ddk H AANr(f'" (1.11) 
rcdAk 

Proof Again, the equality up to a constant factor follows by comparing degrees, 
since both sides of (1.11) define the same locus. The value of the constant is found 
by considering the same polynomial fo(x) = ~ xdi as in the proof of Proposition 
1.7 and using (1.9) and the following equality: 

0f0 0f0) 
Rd XO Oxo . . . . .  Xt ~xk = Rd(dxdo . . . . .  dXdk ) --  d(k+l)dk" 

Propositions 1.7 and 1.8 are higher-dimensional analogs of the equalities 
(1.31) of Chapter 12. 

By Theorem 1.4 Chapter 10, the Newton polytope of E -- EA is the secondary 
polytope E(A). Thus, the extreme monomials in EA ( f )  correspond to coherent 
triangulations of (Q, A) (here Q is the scaled simplex d A k, and A is the set 

of all integral points in Q). When d and k are increasing the number of these 
monomials seems to grow very fast. As for the Newton polytope of the discriminant 
Ad(f) ,  Theorem 3.2 Chapter 11 implies that its vertices correspond to so-called 
D-equivalence classes of coherent triangulations of (Q, A). 

E. Example: ternary qundrics 

Consider the case k -- d = 2 when A consists of the quadratic monomials in three 
variables; using the language of lattice points, we write A as 

A = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}. (1.12) 

Thus, A consists of three vertices and three midpoints of edges of a regular triangle, 

(see Figure 67). 

The A-resultant is the resultant R (fl ,  f2, f3) of three quadratic forms in three 
variables; in accordance with the numeration of points of A in (1.12), we write 
these forms as 

fl (x, y, z) = allX 2 + alzy 2 + al3z 2 + a14xy -t- alsxz -t- al6YZ, 

f z (x ,  y, z) = a21x 2 + azzy 2 -t- az3z 2 + azaxy + azsxz -t- az6yz, 

f3(x,  y, z) -- a31 X2 + a32Y 2 + a33z 2 + a34xy + a35xz + a36YZ. 



436 Chapter 13. Forms in Several Variables. 

3 

1- ~1 -2 

3 

5 6 

1 2 

4 

(a) (b) 

Figure 67. 

The resultant R (fl,  f2, f3) is a polynomial in the aij of degree 12. It can be 
also expressed as a polynomial of degree 4 in brackets 

al,jl al ,h al,j3 ) 
[jljEj3] = det aE,h aE,j2 aE,h , 

a3,j~ a3,j2 a3,h 
where 1 <_ jl < h < j3 <__ 6. 

The polytope Z (A) has dimension 3. In fact, it is combinatorially equivalent 
to the associahedron Z (A'), where A' is the set of vertices of a convex hexagon 
(the associahedron was described in detail in Section 3B Chapter 7). The combi- 
natorial equivalence Z (A) -~ Z (A') is induced by the deformation indicated in 
Figure 67. Thus, (Q, A) has fourteen coherent triangulations corresponding to the 
triangulations of the hexagon shown in Figure 34 in Chapter 7. 

By Theorem 3.2 Chapter 8, the extreme terms in R (fl,  f2, f3) are in bijection 
with the coherent triangulations of (Q, A); these extreme terms are the following 
fourteen bracket monomials: 

-[145][246][356][456], [146][156][246][356], [145][245][256][356], 

[145][246][346][345], [12612[156][356], [125121256][356], [134121246][346], 

[13612[146][246], [145][245][23512, [145][345][234] 2, [136121126] 2, 

[125121235] 2 , [134121234] 2 , [123] 4 . 

(Here in each term the brackets correspond to the triangles of a coherent triangu- 
lation, and the exponent of a bracket is the volume of the corresponding triangle.) 
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The complete decomposition of the resultant into the sum of bracket monomials 

can be found in [KSZ2]. 

Now let 

f (x ,  y ,  z) = a l x  24- a2y 2 + a3z 2 Jr a4xy  + asxz  + a6yz  

be a quadratic form. The A-discriminant A ( f )  can be computed from Proposition 

1.7. We obtain 

A ( f )  - -  ala  2 -F a2a2 -F a24a3 -- a4asa6 -- 4ala2a3. (1.13) 

According to Theorem 1.2 Chapter 10, the principal A-determinant E A ( f )  

of a quadratic form is 

E A ( f )  -- a laza3(4ala2 -- a24)(4a~a3 -- a~)(4aza3 -- a26)A( f ) ,  (1.14) 

where A ( f )  is given by (1.13), and the remaining six factors are discriminants 

corresponding to three vertices and three sides of the triangle Q = Conv (A). 

We leave to the reader an easy calculation of the lattice points tpr and Or 

corresponding to all coherent triangulations of (Q, A). The points tpr (resp. Or) 

are exponent vectors of the fourteen extreme monomials in E A ( f )  (resp. five 

extreme monomials in A(f)) .  Thus, fourteen coherent triangulations of (Q, A) 

break into five D-equivalence classes. 

2.  F o r m s  in  s e v e r a l  g r o u p s  o f  v a r i a b l e s  

Here we extend the results of Section 1 to forms in several groups of variables 

which are homogeneous in the variables of each group. 

A. The resultant: degree and Sylves ter  type formulas 

We shall be dealing with the following version of the resultant. Fix natural numbers 

kl ,  k2 . . . . .  kr and consider r sets of variables 

X(1) (X0(1) XI1) .(1)x (r) (r) It) .(r) - , . . . . .  x k , )  . . . . .  x - ( x  , x  . . . . .  % ) ,  

each set x (j) consisting of kj + 1 variables. For every sequence of non-negative 

integers dl . . . . .  dr, we denote by S(dl  . . . . .  dr) the space of polynomials in 

x (~) . . . . .  x (r) homogeneous of degree dj in x (j). We call the elements of 

S(dl  . . . . .  dr) the f o r m s  o f  type (kl . . . . .  kr; dl . . . . .  dr). Such a form can also 
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be regarded as a section of the line bundle O(dl  . . . . .  dr) on the product of projec- 
tive spaces pk~ x . . .  x pkr, defined as: 

O(dl  . . . . .  dr) -- p~O(d l )  |  | p*O(dr) ,  

where pj �9 P ( V~ ) x . . .  x P ( Vr* ) ---> P ( Vj* ) is the projection. 

Let k = kl + . . .  + kr, and let V = S(dl ,  . . . .  dr) TM be the space of (k + 1)- 

tuples of forms (f0, fl  . . . . .  fk) from S(dl  . . . . .  dr). The resultant R (f0 . . . . .  fk) 
is an irreducible polynomial function on V which vanishes at (f0 . . . . .  fk) if and 

only if a tuple (f0 . . . . .  fk) has a common root in pk~ x . . .  • pk, .  In the general 

framework of Part 1, this is the resultant corresponding to the embedding 

pkl •  • pk, = p ( c k t + l )  x . . .  x P(C kr+l) 

> p(sdlc  kl+l (~. . .  ~ SdrCkr+l), 

which is a combination of classical Veronese and Segre embeddings. We call 

R ( f o  . . . . .  fk )  the resultant of type (kl . . . . .  kr; dl . . . . .  dr). 

Let Ak(d) denote the set of all non-negative integral vectors (io, il . . . . .  

ik) with i0 + il + . . .  + ik = d. The resultant of type (kl . . . . .  kr; dl . . . . .  dr) 

coincides with the A-resultant (defined in Section 2 Chapter 8), where 

A := Ak'(dl) x . . .  x Ak~(dr) C Z k'+l x . ' .  x Z kr+l. 

The degree of the resultant is given by the following. 

Propos i t ion  2.1. The resultant R ( f o  . . . . .  fk )  o f  type (kl . . . . .  kr; dl . . . . .  dr) is a 

polynomial  o f  total degree 

(k 'Jl-1)(kl ,k2k o,kr)d~ ldk2~176 

Proof. By Corollary 2.2 Chapter 8, the resultant is an irreducible polynomial func- 

tion on S(dl, dE . . . . .  dr) TM of degree (k + 1). Vol (Q), where Q = Conv (A), 

and Vol is the normalized volume form with respect to the affine lattice spanned 

by A (so that an elementary lattice simplex has volume 1). 

The polytope Q is a product of simplices. If d l =  dE = . . .  = dr = 1, then it 
{kl +'"+kr is well-known that Vol (Q) = ~,k2 ..... k,) (the most geometrically transparent way 

to see it is to construct a triangulation of Q into (,k~+...+kr ~ elementary simplices, ~l ,k2 ..... kr] 
by iterating the construction for the product of two simplices given in Section 

3D Chapter 7). Clearly, the volume of any product of polytopes of dimensions 
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k l . . . . .  kr is homogeneous of degree kj with respect to scaling of the j - th  factor. 

Hence the normalized volume of Q equals '~l,k2('kl +"'+krk~)d Ikl d2k2 . . .dr.k r 
The construction of the resultant complex (1.2) and Theorem 1.4 can be 

extended to the resultant of type (kl . . . . .  kr; dl . . . . .  dr) in a completely straight- 

forward way. We leave the details to the reader. Note only that the resultant 

complex will now depend on r integers ("twist parameters") m l . . . . .  mr, which 

we abbreviate as a vector m ~ Z r. Thus, whenever m is such that the complex 

is stably twisted, our resultant is the determinant of the resultant complex. The 

explicit formulas for the resultant obtained in this way are, understandably, more 

complicated than the corresponding formulas for the case of forms in only one 

group of variables (see Subsection B above). So it is natural to single out some 

"lucky" cases when the answer reduces to just one determinant of a square matrix. 

This will happen when the resultant complex has only two non-zero terms, at the 

far fight. 

The differential at the fight of the complex has the form 

S(ml - d l  . . . . .  mr - dr) ~ C k+l ~ S(ml . . . . .  mr), (2.1)  

00 -- 00(f0 . . . . .  fk) : go | e0 -1- gl | el + ' ' '  4- gk | ek 

gofo + glf~ + ' ' "  + gkfk, (2.2) 

where e0, el . . . . .  ek are standard basis vectors in C TM. So, if m is such that the 

resultant complex is stably twisted and reduces to (2.1), then, under the natural 

choices of the bases, we have 

R(fo . . . . .  fk) = det ( 00 ). (2.3) 

For instance, the Sylvester formula for the resultant of two binary forms of degree 

d (see (1.12) of Chapter 12) appears in this way when r = 1, k = 1 and m = m 1 = 

2d - 1. The following Proposition describes all such situations (for the proof see 

[SZ1]). 

Proposi t ion 2.2. For given kl . . . . .  kr, dl . . . . .  dr, the following two conditions 
are equivalent: 
(a) There exists m ~ Z r such that the corresponding resultant complex is stably 

twisted and has only two non-zero terms at the far  right. 
(b) min(kj, dj) -- 1 for  all j = 1 . . . . .  r. 

Under these conditions, there are exactly r! choices of  the vector m satisfying 
(a). They correspond to the permutations zr of  { 1 . . . . .  r }. Given such Jr, the 
corresponding m has components 

mj - dj ( l + ~ ki ) - kj . (2.4) 
i:rr(i)<rr(j) 
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We see that whenever the condition (a) of Proposition 2.2 is satisfied, we 
get r! explicit polynomial formulas for the resultant. We call them Sylvester type 
formulas since they include the classical Sylvester formula as a particular case. 

Another particular case of Proposition 2.2 is the classical formula of Dixon [Di] 

for the resultant of three forms 35 (x0, xl, Y0, Yl), (i = 0, 1, 2) bihomogeneous of 

degree dl in x0, xl and dE in Y0, Yl. Here r = 2, kl = k2 = 1 and the two choices 
of m leading to a Sylvester type formula are 

m = ( 2 d l - l , 3 d 2 - 1 )  and m = ( 2 d 2 - 1 , 3 d l - 1 ) .  

As a third example, let us mention the case of multilinear forms (all dj are equal 

to 1). The resultant in this case will be discussed in Chapter 14 below. 

The class of situations covered by Proposition 2.2 is not very large. There 

is, however, a possibility of "Sylvester type formulas" of a more general kind. 

We mean the situations when the resultant complex has more than two non-zero 

terms but the dimensions of the two last components coincide and are equal to the 

degree of the resultant. In other words, suppose that m = (ml . . . . .  mr) satisfies 

the following two Diophantine equations" 

( k + l , . I L K ( k j + m j - d j )  = ~ (kj Wmj) 
j = l  kj j= l  kj 

( k )d~,dk22...dkr" (2.5) 
= (k + 1) kl,k2 . . . . .  kr 

In this case the determinant of the corresponding matrix 00 in (2.2) has the same 

degree as the resultant R (f0 . . . . .  fk) and is divisible by it. Hence det (0o) is either 
equal to the resultant or is identically zero. 

Any vector m given by (2.4) satisfies (2.5) (this can be either shown directly 

or deduced from Proposition 2.2). However, (2.5) has other solutions as well. For 

instance, if r = 4 then the following values of the kj, dj and m (found with the 

help of MAPLE in [SZ1 ]) give a solution of (2.5) but do not come from (2.4): 

(kl . . . . .  k4) = (1, 1, 1, 1), (dl . . . . .  d4) = (1, 3, 5, 13), m = (3, 12, 17, 24). 

We do not know at present whether such solutions can provide new formulas for 

the resultants. 

The construction of Weyman's complexes (Section 1C) also extends to our 

present setting. We can extend Proposition 1.6 by giving a complete description 

of twist parameters m I . . . . .  mr such that the corresponding complex has only two 

non-zero terms. (We have seen that every such complex gives rise to a polynomial 
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expression for the resultant.) It turns out that this method provides a polynomial 

expression for the resultant of type (kl . . . . .  kr; dl . . . . .  dr) if and only if each pair 

(kj, dj) for j = 1 . . . . .  r belongs to the list in Proposition 1.6 (proved in [WZ1]). 

B. The degree o f  the discriminant 

Now we discuss the discriminant A ( f )  of a multihomogeneous form f on the 
product of projective spaces pk~ X pk2 X . . .  X pkr. Recall that we denote by 

S(dl . . . . .  dr) the space of forms on pk~ x . . .  X pkr which are homogeneous of 

degree dj in the homogeneous coordinates on each pkj. We call the discriminant 

of a form from S(dl . . . . .  dr) the discriminant of  type (kl . . . . .  kr; dl . . . . .  dr). 
By definition, the discriminant of type (kl . . . . .  kr; dl . . . . .  dr) is non-trivial 

if and only if the dual variety (pk, x . . .  X pk~)v is a hypersurface, where 
pk, x . . .  x pk~  is taken in the embedding into p ( s d ~ c  k~+l ~ . . .  ~ sd~ckr+l). 

The criterion for this was given in Corollary 5.11 Chapter 1 which we reproduce 

here for the convenience of the reader. 

Proposition 2.3. The discriminant of  type (kl . . . . .  kr; dl . . . . .  dr) is non-trivial if  

and only if  

2kj < kl + . . .  + kr (2.6) 

for  all j such that dj = 1 (in particular, if  all dj > 1 then the discriminant is 

non-trivial for  arbitrary dimensions kl . . . . .  kr). 

Now we compute the degree N(kl  . . . . .  kr; dl . . . . .  dr) of the discriminant of 

type (kl . . . . .  kr; dl . . . . .  dr). We fix positive integers dl . . . . .  dr, and consider the 
generating function 

F d  I ..... dr (Z l  . . . . .  Zr )  "-- 

kl ..... kr>O 

�9 kr N(kl  . . . . .  k r ;  d l  . . . . .  d r ) z ] '  "" z r �9 (2.7) 

Theorem 2.4. The generating function Fd, ..... dr (Zl  . . . . .  Zr) is given by 

Fdl ..... dr ( Z  1 . . . . .  Zr ) - -  

(I-Ij (1 -k- Zj) -- ~-~q djzj Fiir d- Zi)) 
2 "  

(2.8) 
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Proof. We use the general formula for the degree of the A-discriminant given in 

Theorem 2.8 Chapter 9: 

N (kl . . . . .  kr ; dl . . . . .  dr) = Z ( -  1)dim(Q)-dim(r) (dim(F) + 1)Vol (1"), (2.9) 
FcQ 

where Q = Conv (A), the sum is over all faces 1" C Q, and the volume form 

on each face 1" is normalized so that an elementary simplex on the lattice affinely 

spanned by A N 1" has volume 1. 

In our situation Q is the product of scaled simplices, and its volume was 

computed in Proposition 2.1" 

Vol ( Q ) = ( k  l + k2 + " " + kr ) k, k2 k r 

kl, k2,. , kr dl d2 "'" dr " 

Clearly, each face 1" C Q has the form 1" = dl A m l  X . . .  )< dr A n t  for some 0 < 
�9 i'kJ +1 ~ faces of this type. Furthermore, mj < kj, for given m 1 . . . . .  mr there are I-Ik ~m~+lJ 

for a face F = dl mml X ' ' '  >( dr A mr we have 

(1") = ml + . . . +  mr, Vol (1", = ( m l  + . . . + m r ~ d l , d ~ 2  . . .dmr. dim 
k, ml, , m r /  

Substituting all this into (2.9) we get 

N ( k l  . . . . .  k r ; d l  . . . . .  dr)  = ~ (-1)~-~(kJ-"~)(ml + ' " + m r  + 1) 
O<_my <_kj 

•  I - I  ( k j + l l ) d l l d 2 2 " " d r m r "  (2.10) 
\ ml, , m r  , ] ' j .  m j  -Jr 

Setting kj - m j  = pj we see that our generating function takes the form 

Fdl ..... dr (Z 1 . . . . .  Zr ) 

-- ~ (ml + ' " + m r  + 1) (  ml + " " + m r ~ ( d l Z l ) m '  " " (d r z r )  mr 
ml ..... mr>O ~ m l , , mr  ,I 

x I - I  ~ ( - 1 ) p j ( m j  + pj + l )  pj j pj>_o \ m j + l  zj . (2.11) 

By the binomial formula, the inner sum on the fight hand side of (2.11) is equal to 
(1 + zj)-mj-2.  It follows that the generating function is equal to 

1 ( 
( s + i )  m 

j s>O ml+...+mr=S 

s 
1 . . . . .  1 + z j )  m~" (2.12) 
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djzj ~s, By the multinomial formula, the inner sum in (2.12) is equal to (~-~j T~j-  and 

then the summation over s gives 

1 

1 - ~ j  e -~  I+Zj 

Substituting this into (2.12) yields (2.8). 

Now we derive a combinatorial formula for the degree N(kl  . . . . .  kr; 
dl . . . . .  dr), simply by expanding (2.8) as a power series in Z l . . . . .  Zr. To state 

the formula we need some notation. Let B --- Br denote the set of all non-empty 

subsets f2 C { 1, 2 . . . . .  r } (so #(B) = 2 r - 1). For each ~ ~ B we set 

dfz = ~ dj, (2.13) 
jef2 

and let 8(f2) ~ Z~_ be the characteristic vector of f2 (so 8([2)j = 1 for j ~ f2, 

and 8(f2)j = 0 for j r [2). For every K = (kl . . . . .  kr) e Z~_ let 79(K) denote 

the set of all partitions of r into a sum of vectors 8(f2), i.e., T ' ( r)  is the set of all 

non-negative integral vectors (m~)~eB such that )--~en m~S(~)  = r .  

Theorem 2.5. The degree N(kl . . . . .  kr; dl . . . . .  dr) is given by 

N(kl  . . . . .  kr; dl . . . . .  d r ) - -  ~ (1 + ~ m f 2 ) !  H (dfz . . . .  - 1)m". (2.14) 
(mf~)ET'(r) ~2EB ~2EB m~ ! 

Proof Expanding the products in the fight hand side of (2.8), we can rewrite it as 

1 
(2.15) 

(1 - ~ n ~ B ( d n  - t ) z ~ n ) )  2' 

where z ~(~) means, according to our general conventions, the monomial I-lje~ zj. 
Expanding (2.15) in a power series with the help of the binomial formula, we 

obtain (2.14). 

Comparing (2.10) and (2.14) we see that (2.14) has the advantage that all its 

terms are positive. This implies, in particular, another proof of the criterion in 

Proposition 2.3. Namely, the fight hand side of (2.14) is non-zero if and only if 

tc = (kl . . . . .  kr) can be represented as a sum of vectors 3(f2) corresponding to 

subsets Q such that dn > 1. But this condition is easily seen to be equivalent to 

the criterion in Proposition 2.3. 

In the case when all dj's are equal to 1, the formula (2.14) can be simplified 

further. This will be done in Chapter 14, where we also give some numerical 

examples. 



CHAPTER 14 

Hyperdeterminants 

The goal of this chapter is to provide a natural "higher dimensional" generalization 

of the classical notion of the determinant of a square matrix. There were some 

attempts toward a rather straightforward definition of the "hyperdeterminant" for 

"hypercubic" matrices using alternating summations over the product of several 

symmetric groups (see e.g., [P], w and references therein). Here we system- 

atically develop another approach under which the hyperdeterminant becomes a 

special case of the general discriminant studied in the previous chapters. As so 

many other ideas in the field, this approach is due to Cayley [Ca l ]. 

1. B a s i c  p r o p e r t i e s  o f  t h e  h y p e r d e t e r m i n a n t  

A. Definitions and the non-triviality criterion 

Let r >_ 2 be an integer, and A = (ai~ ..... i,), 0 _< ij <_ kj be an r-dimensional 
complex matrix (or array)of format (kl + 1) x . . .  x (kr + 1). 

The definition of the hyperdeterminant of A can be stated in geometric, ana- 

lytic or algebraic terms. Let us give all three formulations. 

Geometrically, consider the product X -- pk~ •  • pkr of several projective 

spaces in the Segre embedding into the projective space p(k~+l)...(k~+l)-I (if pkj is 

the projectivization of a vector space Vj* = C kj+l then the ambient projective space 

is P(V~ |  | Vr*)). The hyperdeterminant offormat (kl + 1) x . . .  x (kr + 1) 
is the X-discriminant as defined in Chapter l, i.e., a homogeneous polynomial 

function on V1 | . . .  | Vr which is a defining equation of the projectively dual 
variety X v (provided X v is a hypersurface in (p(k~+l)...(kr+l)-l)*). We denote the 

hyperdeterminant by Det. As usual, if X v is not a hypersurface, we set Det equal 

to 1, and refer to this case as trivial. If each Vj is equipped with a basis then an 

element f ~ V 1 ~ .  . . ~ V r is represented by a matrix A -- (ail . . . . .  ir), 0 < ij < kj as 

above, and so Det (A) is a polynomial function of matrix entries. It is determined 

uniquely up to sign by the requirement that Det (A) has integral coefficients and 

is irreducible over Z. 

Analytically, the hyperplane {f  = 0} belongs to X v if and only if f vanishes 

at some point of X with all its first derivatives. If we choose a coordinate system 

- (X o xl  . . . . .  "~kj ) on each Vj* then f ~ V1 |  | Vr is represented 
after restriction on X by a multilinear form 

, . . (r) 
f(x(1) " '  x ( r ) )  - -  E ai, . . . . .  i rX~l  1) " " " X i r  . ( 1 . 1 )  

il . . . . .  ir 
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Therefore, the condition Det (A) -- 0 means that the system of equations 

Of(x) 
f (x) = Oxr ) = 0  (1.2) 

(for all i, j )  has a solution x = ( x  (1) . . . . .  x (r)) with all x (j) =/= O. We say that a 

multilinear form f (or a matrix A) satisfying this condition is degenerate. 
Algebraically, the degeneracy of a form f can be easily characterized as 

follows. We denote b y / C ( f )  (or/C(A)) the set of points 

X --" (X  (1) . . . . .  X (r)) ~_ X - -  p k l  X ' ' '  X p k r  

such that 
f (x (1) , . . . ,  x ( j - l )  , y, X ( j + l )  , . . . ,  X (r)) - -  0 

for every j = 1 . . . . .  r and y ~ Vj*. We shall sometimes call/C(A) the kernel of 

A. For a bilinear form f (x, y), there is a notion of left and fight kernels 

K t ( f )  = Ix" f (x, y) = O, 'r Kr ( f )  -- {y " f (x, y) = O, Vx} 

and /C( f )  = K l ( f )  x Kr( f ) .  

Proposition 1.1. A form f is degenerate if and only if 1C(f) is non-empty. 

Proof. Computing the differential of f we see tha t /C( f )  is exactly the set of 

solutions of (1.2). 

In particular, for r = 2 when f is a bilinear form with a matrix A, the 
degeneracy of f just defined coincides with the usual notion of degeneracy and 
means that A is not of maximal rank. Obviously, this condition is of codimension 

one if and only if A is a square matrix, and in this case Det (A) coincides with the 

ordinary determinant Det (A). 

The following proposition is a special case of Theorem 1.4 Chapter 1. 

Proposition 1.2. Suppose that an r-dimensional matrix Ao = (ai~ ..... ir) is  o f  s u c h  

a format that the hyperdeterminant is non-triviaL and that Ao is a smooth point of 

the hypersurface of degenerate matrices. Then 1C(Ao) consists of the unique point 
(x (1) . . . . .  x(r)). Furthermore, under a suitable normalization we have 

for all i l . . . . .  ir. 

X}] )  . x ! r )  __ 0Det(A) 
"" lr - -  "~laill.m.,ir lA=A ~ 

(1.3) 

The first natural question about hyperdeterminants is to describe all matrix 

formats for which Det (A) is non-trivial, i.e., X v is a hypersurface, or in other 
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words, the degeneracy of A is a codimension one condition. The matrices of such 

formats can be viewed as multidimensional generalizations of ordinary square 

matrices. 

Theo rem 1.3. The hyperdeterminant of  format (kl + 1) x . . -  x (kr -1- 1) is 

non-trivial if and only if 

kj <_ E k i  (1.4) 

for all j = 1 . . . . .  r. 

Proof By definition, the hyperdeterminant of format (kl + 1) x . . -  x (kr + 1) is a 

special case of the discriminant of type (kl . . . . .  kr; dl . . . . .  dr) (Section 2 Chapter 

13), corresponding to d l =  . . .  = dr = 1. Hence Theorem 1.3 is a special case of 

Proposition 2.3 Chapter 13. 

B. Invariance properties 

Until the end of this section we assume that (1.4) holds, i.e., the hyperdeterminant 

of a matrix A is non-trivial. The next property of Det follows at once from any of 

the definitions. 

Proposi t ion 1.4. The hyperdeterminant is relatively invariant under the action 
of the group G L ( V1) x . . .  x G L ( Vr ) (and so invariant under the action of  
SL(VI) •  x SL(Vr)). 

To state explicitly the consequences of Proposition 1.4, we need some termi- 

nology. We shall identify the set of matrix (multi-)indices I = {(il . . . . .  ir) " 0 < 
ij < kj } of a matrix A with the set ofvertices ofthe product A k' •  • A k~ o f r  stan- 

dard simplices. Thus, the submatrices of A correspond to faces of A kt • . . .  • A k~. 

By a slice in the j-th direction we mean the subset of all indices in I with the fixed 

j - th  component, and also the corresponding submatrix of A. Two slices in the 

same direction are called parallel. 

Corollary 1.5. 
(a) Interchanging two parallel slices leaves the hyperdeterminant invariant up to 

sign (which may equal 1). 

(b) The hyperdeterminant is a homogeneous polynomial in the entries of  each 

slice. The degree of homogeneity is the same for parallel slices. 

(c) The hyperdeterminant does not change ifwe add to some slice a scalar multiple 

of a parallel slice. 
(d) The hyperdeterminant of a matrix having two parallel slices proportional to 

each other is equal to O. In particular, Det (A) = 0 if A has a zero slice. 
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Proof The properties (a) to (c) express the (relative) invariance of Det (A) 

under the action of various elements from G L (Vj) = G L (kj + 1, C): permutation 

matrices, diagonal matrices, and unipotent matrices with only one non-zero off- 
diagonal entry. In fact, these matrices are known to generate the group GL(kj  + 
1, C), and so the combination of these three properties is equivalent to Proposition 
1.4. Part (d) follows at once from (b) and (c). 

It is clear that a polynomial P (ai~ ..... i r )  satisfies the condition (c) from Corol- 
lary 1.5 if and only if P is annihilated by the differential operators 

Dij)(1 __ ~ _ d  a j , i2  ..... ir O a  i i2 ..... ir 
i2 ..... i~ 

(for all i # j) ,  and by similar operators for the slices in other directions. This is 
probably the most practical way of verifying this condition. 

Our next result will lead to a combinatorial characterization of the hyperdeter- 
minant. This again requires some terminology. We define the support of a mono- 

Oil I . . . . .  i r  
m i a l  I - I i l  ..... ir ail ..... ir as the set of all indices (il . . . . .  ir) such that Olil ..... ir # O. By 
the star of (il . . . . .  ir) we mean the set of all indices which differ from (il . . . . .  ir) 

in at most one place. In other words, if we represent the indices by vertices of 

the product of simplices then the star consists of a vertex itself and all the vertices 
connected to it by an edge. To give one more interpretation, we consider the set 

rI~=l [0, kj ] with the Hamming metric used in the coding theory: the distance be- 
. l  tween two indices (il . . . . .  ir) and (i' 1 . . . . .  lr) is the number of positions j such 

that ij # tj" . . . . .  Then the star of i = (il . ir) is the Hamming ball of radius 1 with 
center at i. 

Proposition 1.6. For a polynomial P ( a i l  ..... i r )  the following conditions are equiv- 
alent: 

(a) P is relatively invariant under the group GL(k l  + 1, C) x . . .  x GL(kr  + 1, C) 

and is divisible by Det (A). 

(b) P satisfies the conditions (a) to (c) o f  Corollary 1.5, and there exists an index 

(il . . . . .  ir) such that the support o f  each monomial in P (ail ..... ir) meets the 

star o f  (il . . . .  , ir). 

(c) P satisfies the conditions (a) to (c) o f  Corollary 1.5, and the support o f  each 

monomial in P (ai~ ..... i r )  meets the star o f  every index (il . . . . .  ir). 

Proof We already mentioned in the proof of Corollary 1.5 that P is relatively 

invariant if and only if it satisfies the conditions (a) to (c) of Corollary 1.5. Suppose 

this is the case. By definition, P is divisible by Det (A) if and only if P vanishes 

at all degenerate matrices A. By Proposition 1.1, A is degenerate if and only 

if/C(A) -#- t3. Using the invariance of P we can assume that/C(A) contains a 
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point (x (1) . . . . .  x (r)) such that each x (j) is a basis vector e~/). Then the condition 

, . .  ' i ' )  in the star of (x (1) ., x (r)) ~ 1C(A) means that ai,~ ..... i~ = 0 for all (i I . . . . .  

(il . . . . .  ir). Clearly, P vanishes at all such matrices if and only if the support of 

each monomial in P meets the star of (il . . . . .  ir), and we are done. 

Note that the second assertion in part (b) means that the support of any mono- 
r mial from Det forms a 1-net in I-Ij=l [0, kj ] with respect to the Hamming metric. 

Such nets are known as error-correcting codes. It would be interesting to study 

monomials in the hyperdeterminant from this point of view. 

To illustrate the use of Proposition 1.6, we give an explicit formula for the 
three-dimensional hyperdeterminant of format 2 x 2 x 2. The hyperdeterminant 

in this case was already known to Cayley (see [Cal], p. 89). 

Proposition 1.7. The hyperdeterminant o f  a matrix A = (aijk) (i, j ,  k = 0, 1) is 
given by 

Det (A) 2 2 2 2 - (a00oall  + + a0 0a 0  + a0   al 0O) 

--2(aoooaool al  loa l l l + aoooaoloalol a l l l + aoooaol l a looa111 

+aoo lao loa lo la l  lO -]- aoolaol la l  loaloo q- aoloaol lalOlalOO) 

+4(aoooaol l alOl al lO + aool aoloalooal l l ). 

(1.5) 

Proof. First, we claim that the polynomial P defined by (1.5) satisfies conditions 

(a) to (c) of Corollary 1.5. This is verified directly (to check (c) we can use the 

remark after Corollary 1.5). 

The monomials appearing in P can be visualized as follows. If we represent 

matrix entries by the vertices of the cube then the monomials in the first group 

correspond to four main diagonals of the cube; the monomials in the second group 

correspond to six rectangles formed by pairs of opposite edges, and the monomials 

in the third group to two tetrahedra whose edges are diagonals of the cube's faces. 

Obviously, the support of each of these monomials meets the star of every vertex 

of the cube. This shows that P satisfies the equivalent conditions of Proposition 

1.6 and hence is divisible by Det (A). 

There are several ways to complete the proof, i.e., to show that P = Det (A). 

For instance, it is not hard to see that P is irreducible. We can also refer to the 

results of Section 3 below which show that Det (A) in our case has degree 4. In 

fact, it is easy to see that in our case Det (A) is the SL(2) x SL(2) x SL(2) invariant 

of minimal degree. 
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By definition, the vanishing of Det(A) for a 2 x 2 x 2 matrix A (or, equivalently, 

degeneracy of A) means that the following system of 6 homogeneous equations 

with 6 unknowns has a non-trivial solution: 

aoooxoYo + a010x0Yl + a 100xl Y0 + a110xl Yl = 0, 

aoolxoYo + aollxoYl + alolxlyo + al l lXlyl  = O, 

aoooXoZo -t- aoolXoZl + alooX~Zo + alOlXlZl "-- 0 ,  

ao~oxozo -t- a O l l X o Z l  + a l l O X l Z o  + a l l l X l Z l  - -  O, 

aoooYozo + aoolYozl + ao~oY~zo + aollYlZl = O, 

alooYozo + alOlYOZl + alloYlzo + all lYlZl - O. 

(1.6) 

It is not so easy (although possible) to prove directly that (1.6) has a non-trivial 

solution if and only if (1.5) vanishes. 

C. Algebraic properties 

We start with a multidimensional generalization of the fact that transposing a matrix 

preserves the determinant. For a matrix A = (ai~ ..... i,) of format (kl + 1) x . . .  x 

(kr + 1) and a permutation a of indices 1 . . . . .  r, we denote by a (A)  the matrix 

of format (k~-~(1) + 1) x . . .  x (ka-~(r) + 1), whose (il . . . . .  ir)-th entry is equal 

to ago ) ..... ia(r)" The following result is an immediate consequence of definitions. 

Proposition 1.8. We have Det (a (A)) = Det (A) for  every permutation a. In 

particular, if  A is degenerate then cr (A) is degenerate. 

Now we discuss an analog of the multiplicative property of the ordinary 

determinant. Let A = (ai~ . . . . .  ir)  be a matrix of format (kl + 1) x . . .  x (kr + 1) and 

B = (bj~ ..... j,) be amatr ix offormat (11 + 1) x . . .  x (ls + 1). Suppose that kr = 11. 

We define the convolution (or product) A �9 B to be the (r + s - 1)-dimensional 

matrix C of the format 

(kl + 1) x . . .  x (kr-1 + 1) x (12 + 1) x . . .  x (Is + 1) 

with entries 
kr 

Cil ..... ir-l , j2 ..... js "-- ~ ai~ ..... i r - l , hbh , j2  ..... A" 
h=O 

Similarly, we can define the convolution A * B with respect to a pair of indices 
P,q 

p, q such that kp = lq. 

Proposition 1.9. I f  A, B are degenerate then A �9 B is also degenerate. 
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Proof. We shall use Proposition 1.1. The definitions readily imply that if 
(x (1) . . . . .  x (r)) ~ 1C(A) and (y(l) . . . . .  y(S)) ~ K~(B) then 

(X(I) . . . . .  x ( r - l ) ,  y(2) . . . . .  y(S)) ~ 1C(A �9 B), 

which implies our statement. 

Corollary 1.10. Let the formats of A, B be such that the hyperdeterminants of A, B 
and A �9 B are non-trivial. Then there existpolynomials P(A, B) and Q(A, B) in 

entries of A and B such that 

Det (A �9 B) = P(A, B)Det (A) + Q(A, B)Det (B). (1.7) 

Since Det (A) and Det (B) depend on disjoint sets of variables, it follows that 

P and Q in (1.7) are defined uniquely up to transformations 

P ~ P + R(A, B)Det (B), Q ~ Q - R(A, B)Det (A). 

Multiplicative properties of hyperdeterminants deserve further study, but this 

goes beyond the aims of the present book. 

2. The Cayley method and the degree 

A. The discdminantal complex 

We describe the discriminantal complex whose determinant is the hyperdeter- 
minant of an r-dimensional matrix. We use the language of differential forms 

developed in Section 4 Chapter 2. 

As in Section 1, we interpret A as the matrix of a multilinear form f on 
- ( j )  ( j )  

Vj* •  x Vr*, where each Vj is a finite-dimensional vector space ano x 0 , x 1 . . . . .  

x~  ) are coordinates in V 7. We often make use of the standard invertible sheaves 

O(ml  . . . . .  mr) on P(V~) x . . .  x P(V~*); see Chapter 13, Section 2A. 

Let ~ "  be the space of polynomial differential p-forms on VI* x . - .  x Vr*. 

For each vector field ~ on VI* • . . .  x Vr*, let i~ �9 f~P --+ ~ p - l  be the contraction 

with ~, and Liet = di~ + i~d the Lie derivative. For j = 1 . . . . .  r let 

~J = ~x~J' OxO'J'i i 
be the Euler field on Vj* regarded as a vector field on V1* x . . .  x V*. 

Now let m l . . . . .  mr E Z. We associate to m] . . . . .  mr and f the complex 

C ~ = C ~  mr; f )  = {C O a/> C1 a/> . . . }  
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in the following way. We define C p = CP(ml . . . . .  mr) to be the space of all 
differential p-forms to with polynomial coefficients on VI* x . . .  x V* satisfying 
conditions 

Lie~j (to) -- (p + mj)oo ( j  = 1 . . . . .  r) (2.1) 

and 

it, (09) = i~2 (o9) = . . .  = itr (09). (2.2) 

The differential Of �9 C p --+ C p+I is defined as the exterior multiplication by the 

1-form d f . 

The terms of C ~ do not depend on f .  In fact, (2.1) means simply that co 
C p (ml . . . . .  mr) is homogeneous of degree (p + mj)  with respect to the variables 
X(o j) xl  j) x (j) where we assume deg(x~ j)) = deg(dx~ j)) = 1 

, ' ' ' ' '  kj  , 

Theorem 2.1. Under a suitable choice o f  bases in the terms o f  C ~ we have 

Det (A) = det (C~ . . . . .  m r ;  f))(_l)h+'"+i'r+' (2.3) 

f o r  all non-negative integers m l . . . . .  mr. 

Proof. We shall deduce the statement from Theorem 2.5 Chapter 2. To this end 
it is enough to prove the following. 
(1) The complex C ~ coincides with the discriminantal complex C+ (X, O) where 

x : I-I : I I ( |  

is the Segre variety. In other words (see formula (2.1) Chapter 2), we have 

( ) CP = H~ H P k J ' A J ( / ~ )  

where/2 = Ox (1 . . . . .  1) is the inverse image of the sheaf O(1) from the 

ambient projective space P ((~) Vf).  

(2) The complex C+ (X, O) is stably twisted, i.e., 

(rI ) Hq pkj, A J (~') -- O, Vp,  Vq > 0 .  

To prove (1), we denote the natural projection by 

~ I-I(~* - { o } ) ~  x = FI  p(~*).  
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All the tangent spaces to the fibers of 7r are spanned by the vector fields ~j. The 
conditions (2.1) and (2.2) define a certain subsheaf f2p p in the sheaf of all regular 

forms on I-I (vj* - {0}). The argument, similar to that in the proof of Propositions 
4.1 and 1.3 of Chapter 2, shows that 

p 

which implies (1). 

To prove the statement (2), we use Corollary 4.9 Chapter 2. In our situation, 

this corollary says that C+(X, O) is stably twisted if and only if the following 

sheaves on X = 1-'I P(Vj*) have no higher cohomology: 

~P@/~| f2 p-1@/~| p > 0 ,  / Z : O ( 1  . . . . .  1). 

The vanishing of the higher cohomology of these sheaves follows, in a straight- 
forward way, from the Kiinneth formula and the Bott theorem describing the co- 
homology of sheaves of the form ~ / ( j )  on a single projective space (see [OSS], 

Chapter 1). This concludes the proof of Theorem 2.1. 

The group G L (V l)  X " ' '  X G L (Vr) acts naturally on each term of C ~ To 
describe this action we need the following notation. For a finite dimensional vector 
space V, denote by S (plq) ( V )  the irreducible GL(V)-module corresponding to the 
hook Young diagram having one row of length q and p rows of length 1 (i.e., one 

column of length p + 1). We use the following well-known realization of this 
module. 

Proposition 2.2. The G L(V)-module S (plq) (V)  is isomorphic to the space B p (q) 

of polynomial differential p-forms o) on V* such that Lie~ (to) -- (pWq)oa, i~ (w) -- 

O, where ~ is the Euler vector field on V*. 

To prove Proposition 2.2 is is enough to show that B P(q) has a unique 

(up to multiple) highest vector, and that the corresponding highest weight is 

(q, 1, 1 . . . . .  1, 0 . . . . .  0) (with p units and k - p zeros, where dimV = k + 1). 

We leave it to the reader to check that this is indeed the case; the highest vector in 
B e (q) has the form 

p 
q-1 ~ ( - - 1 ) i  x o x idxo /x  . . . / x  d x i - I / x  dXi+l/x . . .  A dxp, 

i=o 

where x0 . . . . .  xk are coordinates in V*. 
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Proposition 2.3. Each t e r m  C P ( m l  . . . . .  m r )  is a multiplicity free module  over 

GL(V1)  x . . .  x G L ( V r )  isomorphic to 

~p (S(P+m,-P, lP,)(V1)@...@S(P+mr-prlp.)(Vr)), 
p ,..., , 

the sum over all pl  . . . . .  Pr with Pl + "'" + Pr = P or p -- 1. 

Proo f  Let BP(ml  . . . . .  mr) denote the subspace of CP(ml  . . . . .  mr) consisting 

of p-forms 09 satisfying (2. l) and such that 

it, (09) = it2 (09) = . . .  = itr (09) = O. (2.2') 

Clearly, BP(ml  . . . . .  mr) is the kernel of the projection 

C P ( m l  . . . . .  m r )  ~ B p - I ( m l  + 1 . . . . .  mr + 1) 

sending each 09 ~ C p (ml  . . . . .  mr) to 

w' = it, (09) = it2 (09) = . . .  = itr (09). 

Therefore, CP(ml  . . . . .  mr) is isomorphic as a GL(V1)  x . . .  x G L ( V r ) - m o d u l e  

to 

BP(ml  . . . . .  mr)  ~ B p - I ( m l  + 1 . . . . .  mr + 1). 

By definition, we have the decomposition 

/ \  

B P ( m l  . . . . .  m r )  = ~ ( B P I ( p  + m l  - P l )  @ " " @ B P r ( p  + m r  - P r ) ) ,  

pl +'"+ Pr =P X, / 

(2.4) 

and the analogous decomposition for Bp-1 (ml + 1 . . . . .  mr + 1). It remains to 

apply Proposition 2.2. 

B. Degree o f  the hyperdeterminant  

Fix r > 2 and let N(kl  . . . . .  kr) be the degree of the hyperdeterminant of format 

(kl + 1) x . . .  x (kr -1-1) (we assume that N (kl . . . . .  kr) = 0 if the hyperdeterminant 

is trivial). The following theorem is essentially a special case of Theorem 2.4 of 

Chapter 1 3. 
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Theorem 2.4. The generating function for  the degrees N(kl  . . . . .  kr) is given by 

. k, 1 
N(kl  . . . . .  kr)Z~' " 'Z  r = 

(1 - Y~=2(i - 1)ei(zl . . . . .  Zr))2, (2.5) kl ..... k,>__O 

where ei (Zl  . . . . .  Zr) is the i-th elementary symmetric polynomial. 

Proof The generating function in question is obtained by setting all di equal to 

1 in formula (2.8) of Chapter 13, i.e., is equal to 

( H i ( 1  "~- Zj) -- Z j  Zj H i , j ( 1  "1- Zi)) 2" 
(2.6) 

It remains to observe that the polynomial 

H ( 1  + zj) - ~ zj I - I ( l  + Zi) 
j j i~ j  

contains only square-free monomials in z l . . . . .  Zr, and every such monomial of 
degree i occurs with the coefficient (1 - i). 

A symmetric form (2.5) allows us to derive a combinatorial formula for 

N (kl . . . . .  kr); this is more convenient for computations than the general formula 
(2.14) of Chapter 13. We shall use the terminology and notation of Section 1C 
Chapter 12 related to partitions and symmetric polynomials. Recall that apartition 

is a finite weakly decreasing sequence ~ = (~1 . . . . .  ~.s) of non-negative integers; 

the numbers ~.i are called parts of ~.. We shall denote the number of parts of 
equal to i by mi -" mi(~.), and write ~. also as ,k = (1 m~ , 2 m2 . . . .  ); for instance, the 

partition (4, 2, 2, 1) can also be written (1, 22, 4). 

The degree N (kl . . . . .  kr) is obviously symmetric in kl . . . . .  kr and so depends 

only on the partition r obtained by rearranging kl . . . . .  kr in the weakly decreasing 

order. Our expression will involve the quantities d~x (see Section 1C Chapter 12); 

recall that dKx is the number of (0, 1)-matrices whose row sums are the parts of r 

and column sums are the parts of ~.. 

Theorem 2.5. Let r. be thepartition obtained by rearranging the numbers kl . . . . .  kr 

in a weakly decreasing order Then 

P (i _ 1)m, 
N(kl  . . . . .  kr) = ~ ( m 2  + " "  + m p  + 1)!. drx. H 

)t i=2 mi !  
(2.7) 

the sum over all partitions ~. = (1 m~ , 2 m2 . . . . .  pmp) with m l = O. 
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Proof Expanding the fight hand side of (2.5) by the binomial formula, we obtain 

P ( i _ l )  m, 
~ ( m 2  W " "  W mp  W 1 ) '  " ex " l~2 2 �9 mi  T 

(the same summation as in (2.7)), where 

p 

ex (z 1 . . . . .  Zr) --- I - I  ei (Z 1 . . . . .  zr)mi.  
i=l 

It remains to notice that each monomial z~' . . .  Zkr r appears in ex with the coefficient 

d~x (see Section 1C Chapter 12). 

The behavior of d,x is controlled by the Gale-Ryser theorem (Proposition 1.2 

Chapter 12). Using it, we can explicitly evaluate the d,x in many special cases 

which leads to a more explicit formula for the degree N(kl . . . . .  kr). Probably, 
the most important special case is the following. We say that the matrix format 

(kl + 1) x . . .  x (kr + 1) is boundary if one of the numbers kj equals the sum of 

all the others (i.e., one of the inequalities (1.4) becomes an equality); without loss 

of generality we can assume that k l = k2 + . . .  + kr. 

Corollary 2.6. The degree of  the hyperdeterminant of  the boundary format is 

k 2 - J r ' "  -Jr k r "~ ( k l + 1)! 
N (k2 + . . .  + kr, k2 . . . . .  kr)  = (k2 + . . .  + kr + 1) \ k2, , kr |2I - -  k2 ! - kr !" 

(2.8) 

Proof We use the following obvious combinatorial statement. 

Lemma 2.7. We have 

( k 2  + " "  + kr~  
d(k2 ..... kr)'(lk2+'"+k" ) = \ k2, , kr ,]" 

It follows easily from the Gale-Ryser theorem that in the boundary case there 

is exactly one summand in (2.7), and it corresponds to ~ = (2k2+'"+k'). Clearly, 

every (0, 1)-matrix contributing to d,x has all the entries in the first row equal to 1. 

Hence d,x is given by Lemma 2.7. Substituting this into (2.7) yields our statement. 

Note that for r = 2 the boundary format is just that of ordinary square matrices, 

and (2.8) expresses the fact that the (ordinary) determinant of a (k + 1) x (k + 1) 

matrix has degree k + 1. 
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W e  call the matrix format (kl q- 1) x . . .  x (kr + l )  with kl >_ k2 >_ "'" >_ kr 

subboundary if k l = k2 + . . .  + kr - 1. 

Corollary 2.8. The degree of  the hyperdeterminant of  the subboundary format is 
given by 

k2 "+'"" "1- kr % 
N(k2 -t'- �9 �9 �9 + kr - 1, k2 . . . . .  kr) = 2 \ k2, , kr ,/" e2(k2 . . . . .  k,.). (2.9) 

Here e2(k2 . . . . .  kr) -- Y]2<_i<jsrkikj is the second elementary symmetric 
polynomial. 

Proof As for the boundary format, the Gale-Ryser theorem implies that (2.7) 

reduces to one summand corresponding to ~. = (2 k2+'''+kr-2, 3). Clearly, every 

(0, 1)-matrix contributing to d~x has all the entries in the first row equal to 1. 

Consider now the column with sum 3, i.e., containing three unit entries. We know 
that one of these units lies in the first row. Decomposing the set of our (0, 1)- 

matrices into the subsets according to the location of the remaining two units and 

using Lemma 2.7, we see that 

N K ~ . - - y ~  ( k2-l-"" Jrkr - 2  ) 
2<i<j<_r k2 . . . . .  ki - 1 . . . .  kj - 1 . . . . .  kr 

(k2 + . . . - I -  kr - 2)! 
= e2 (k2 . . . . .  kr). 

k2 ! ' "  kr ! 

Substituting this into (2.7) yields our statement. 

C o r o l l a r y  2.9. The degree of  the hyperdeterminant of  the cubic format (k + 1) x 

(k + 1) x (k + 1)is given by 

(j --t- k -t- 1)! . 2k_2j (2.10) 
U(k,  k, k) = ~Y~ j ~&:13rt. _ 2j);  " 

O<_j<_k/2 " 

Proof. We have x = (k, k, k). By the Gale-Ryser theorem, the partitions 
~. contributing to (2.7) have the form (23j, 3 k-2j) for 0 < j < k/2.  Clearly, 

dr,(23J,3k-2j) = d((2j)3),(23J ) because every (0, 1)-matrix contributing to dx,(23),3k-2) ) 

has all the entries in the first (k - 2j)  columns equal to 1. It is also easy to see that 

3 
d((2j)3),(23J ) ~- j , .  j )  (2.11) 

because every 3 x 3j matrix contributing to d((2j)3),(23J ) is determined by a disjoint 

decomposition of the set of columns into three j-element subsets C12, C13, C23, 
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where say C12 is the set of columns with unit entries in the first two rows. Substi- 

tuting (2.11) into (2.7) yields (2.10). 

For k = 1, 2, 3 the degree (2.10) is equal to 4, 36, and 272 respectively. It 
seems that the sum in (2.10) cannot be simplified. 

Our last application of (2.7) is the expression for the degree of the hyperde- 

terminant of the r-dimensional format 2 x 2 x . . .  x 2. Denote this degree by 

N( ( l r ) ) .  

Corol lary  2.11). The exponential generating function for the sequence N ((1 r)) is 
given by 

Z r e - 2 Z  
E N ( ( l r ) ) - -  - (2 12) 
r>_O r! (1 - z) 2" 

Proof It follows from (2.7) and Lemma 2.7 that 

(m2 + - . . - k -  m r  -4r 1)! 
N( ( l r ) )  = r! Z ~//~2i(i L. 2 ) i i ]~ml i  ' (2.13) 

the sum overall partitions ~. = (2 m: , 3 m3 . . . .  ) with 2m2+3m3+.  �9 �9 "- r. Therefore, 

we have 

Z r (m "k- "" "k- m p  -I- 1)!Z 2m2+3m3+'' '+pmp 
~ N ( ( i r ) ) ~ . .  _. Z 2 �9 ._ ?_p____. . ) 
r>0 H i = 2  [(! - 2 ) ) i ] m ' m i "  

the sum over all sequences of non-negative integers (m 2 . . . . .  m p) of arbitrary finite 

length p. The latter sum simplifies to 

zi )2  " 
1 - Zi>_2 (i--2)!i 

It remains to notice that 

Z i 
1 

Z J  (i - 2)!i i>2 

= (1 - z)e z 

since 
1 i - 1  1 1 

(i - 2)!i i! (i - 1)! i! 

In particular, for r = 2, 3, 4, 5, 6 the degree is respectively 2, 4, 24, 128, 880 

and then grows very fast. 
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3. Hyperdeterminant of the boundary format 

In this section we study in detail the hyperdeterminant of the boundary format, i.e., 

the hyperdeterminant of an (r + 1)-dimensional matrix A = (ail ..... i r , io )O<i j<k)  of 

format (kl + 1) x . . .  x (kr "+- 1) x (k0 + 1) such that ko = kl + k2 + . . .  + kr. We will 
show that Det (A) in this case admits several different geometric interpretations, 

and has several nice explicit polynomial expressions. 

A. Boundary hyperdeterminant as the resultant of  a system of multilinear forms 

We fix the matrix format (kl d- l) • . . .  • (kr d- 1) x (k0 + 1) such that ko = 
k l + k 2 +  +kr Weconsiderrgroupsofvariablesx (j) (X~o j) xl j) '(J)" for �9 . .  . --- , , . . . , . S ,  kj ) 

1 < j < r. Let S(ml . . . . .  mr) denote the space of all polynomials inx (1) . . . . .  x (r) 
which are homogeneous of degree my in the variables of each group x (j). We shall 

view a matrix A as a collection of (k0 + 1) multilinear forms f0, fl  . . . . .  fko 
S(1, 1 . . . . .  1) corresponding to the slices of A in the 0-th direction" 

f i o  "-- Z a i l  ..... ir , ioX~ll  ) " " " X ~ ;  ) .  (3.1) 
il ..... ir 

Theorem 3.1. The hyperdeterminant Det (A) of the matrix of  the boundary format 
is equal to the resultant of the system of multilinear forms fo, f l . . . . .  fko. In other 
words, A is degenerate if and only if the system of multilinear equations 

f o ( x )  = f ~ (x)  = . . - =  Ao (X) = 0 (3.2) 

has a non-trivial solution. 

Proof By definition, Det (A) is the X-discriminant in the sense of Chapter 1, 
where X is the product of projective spaces pkl x . . .  x pk, X pko. Our statement 

is just a special case of the Cayley trick (Corollary 2.8 Chapter 3). In our case it is 

also very easy to give an independent proof. The "only if" part is obvious because 

the consistency of (3.2) is one of the conditions defining degeneracy (see Section 

1). The "if" part follows from the fact that the consistency of (3.2) is a non-trivial 

condition on matrix entries. 

We see that the hyperdeterminant of the boundary format is a special case of 

the resultant of type (kl . . . . .  kr; dl . . . . .  dr) considered in Section 2 Chapter 13. 

Analyzing the conditions of degeneracy (see Proposition 1.1), we can easily 

generalize Theorem 3.1 to the case when ko > kl + k2 + . . .  q- kr. In this case we 

define the multilinear forms JS0 by the same formula (3.1). 

Theorem 3.1'. Suppose that ko > kl + k2 + . . .  -k- kr. Then a matrix A of  format 
(kl + 1) x . . .  x (kr + 1) x (k0 + 1) is degenerate if and only if the system (3.2) 
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has a non-trivial solution. The subvariety o f  degenerate matrices has codimension 

ko - (k~ + k2 + . . .  + kr) + 1. 

B. Sylvester type formula and its applications 

We assume again that ko --- k l + k2 + . . .  + kr. Let 

mj = kl + k2 + . . .  + kj_l ,  j - - 1  . . . . .  r (3.3) 

(with the convention m l = 0). We associate to our matrix A the linear operator 

OA : S(ml, m2 . . . . .  mr) k~ --~ S(1 + ml, 1 + m2 . . . . .  1 + mr) 

k0 
given by 0 A (go . . . . .  gko) --- Z i = 0  f igi .  

Proposition 3.2. Each o f  the spaces S ( m l , m 2  . . . . .  mr) k~ and S(1 + ml, 1 + 
(k0+l)! 

m 2  . . . .  , 1 + mr) has the same dimension N -- k~ !k2 !'"kr !" 

Proof  This follows at once from the standard fact that dim (Sin (C1'+1)) =(k)'k+m 

Letus choose in each ofthe spaces S(ml  . . . . .  mr) k~ and S(1 + m l  . . . . .  1 + 

mr) the basis consisting of monomials. We will denote by the same symbol OA the 

matrix of the operator aa in these bases. By Proposition 3.2, this matrix is square. 

Theorem 3.3. We have Det (A) = det (0 A). 

Proof  Our statement is in fact a special case of Proposition 2.2 Chapter 13. 

Because of the significance of the result we give an independent "elementary" 

proof. 

First suppose that A is degenerate. By Theorem 3.1, this means that the system 

(3.2) has a non-trivial solution x. This obviously implies that each polynomial 

h ~ I m  (OA) vanishes at x. Therefore, Oa is not onto, and so det (0a) -- 0. This 

implies that the polynomial det (Oa) is divisible by Det (A). 

Clearly, each entry of the matrix 0a is a linear form in the matrix entries of A. 

Comparing Proposition 3.2 with Corollary 2.6 we see that the polynomials Det (A) 

and det (Oa) have the same degree. Therefore, Theorem 3.3 is a consequence of 

the following lemma. 

Lemma  3.4. The polynomial det (OA) is non-zero, and it is irreducible over Z. 

Proof  o f  Lemma 3.4. It suffices to exhibit a matrix E with integral entries such 

that det (0e) = 4-1 (recall that Det (E) is defined only up to sign). Let E be the 

matrix whose entry ai~ ..... i,,io is equal to 1 if io = il + . . .  + ir, and is equal to 0 

otherwise. To show that det (0e) -- 4-1 it is enough to establish the following. 
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P r o p o s i t i o n  3.5. The matrix OE becomes triangular with ones along the main 

diagonal under a suitable ordering o f  its rows and columns. 

Proof. First we give an explicit description of the matrix OA. We identify the set 

of all monomials  of degree m in (k + 1) variables xo . . . . .  Xk with the set of their 

exponent vectors 

A k ( m ) =  { b = (bo . . . . .  bk) E Zk+l " bi > O, y ~  bi = m }. 

Thus the set of all monomials  in S(ml  . . . . .  mr) is identified with 

D = D(kl  . . . . .  kr) = Ak~(ml) x . . .  x A kr ( m r ) ,  

and the set of all monomials  in S(1 -I- m l, 1 + m2 . . . . .  1 @ mr) with 

R = R(k l  . . . . .  kr) : Akl(1 -I- ml)  x . . .  x Ak'(1 -t-mr). 

Now the rows of OA a r e  labeled by the set R, and the columns are labeled by 

C -- C(kl  . . . . .  kr) = D x [0, k0], where [0, k0] = {0, 1 . . . . .  k0}. We will denote 

a matrix entry of OA by 

(c; iolb) = (c (1) . . . . .  c(r); iol b(l) . . . . .  b(r)), 

where c = (c  (1) . . . . .  C (r)) ~ D, io ~ [0, ko], b = (b (l) . . . . .  b (r)) ~ R. We say 

that b covers c if b (j) - c (j) has the form eij for each j = 1 . . . . .  r, where ei 

is a vector with the i-th component 1 and zeros elsewhere; in this case we write 

b > c or b il...ir " " > c. By definition, (c; iolb) = 0 unless b covers c; if b ,1 .,~ c 

then (c; iolb) = ai~ ..... ir,io" 

In particular, we see that Oe is a (0, 1)-matrix, and its entry (c; iolb) is equal 
�9 . 

to 1 if and only if b E_~ c for some il . . . . .  ir such that i l + . . .  + ir -- io. In this 

case we say that b e R and (c; i0) ~ C are incident to each other. 

For 0 < j < r we let 

R j  - -  e j ( k l ,  kr) = {b ~ R"  b (p) : O} �9 " ,  k~ > 0  for j < p _ < r , b  tj)kj 

(for j = 0 the last condition is empty). For 1 < j < r we let 

C j  - -  C j ( k  1 . . . . .  k r )  

- -  { ( c ;  io) E C"  c (p) -- kp > 0  for j < p < r , c  ( j ) = O , i o < k 0 } ;  - kj 
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also let 

Co "- Co(kl . . . . .  kr) -- {(c; io) ~ C " io -- ko, e a r b i t r a r y } .  

Lemma 3.6. 
(a) We have 

both unions disjoint. 

U U 
O<j<r O<j<r 

(b) If b ~ Rj is incident to (e; io) ~ C e then p > j .  

(c) For every (c; io) E Co there is exactly one b E R which is incident to (C; i0). 

(d) For every j = 1 . . . . .  r there are natural bijections 

R j ( k l  . . . . .  kr) ----+ R(k l  . . . . .  k j_ l ,  kj - 1, kj+l . . . . .  kr), 

Cj(k l  . . . . .  kr) ~ > C(kl  . . . . .  k j-1,  kj - 1, kj+l . . . . .  kr) 

such that the  elements b ~ R j (k l  . . . . .  kr) and (c; i0) 6 Cj(kl  . . . . .  kr) are incident 

to each other i f  and only i f  their images are incident to each other 

Proof. Statements (a) to (c) are immediate consequences of the definitions. 

The bijections in (d) are defined as follows. The image of b ~ Rj (kl . . . . .  kr) is 

obtained from b by forgetting the coordinate b (j) and subtracting 1 from b (p) for kj k~ 
j < p < r; the image of (c; i0) ~ Cj(kl  . . . . .  kr) is defined in exactly the same 

way (with i0 remaining unchanged). Now (d) is also straightforward. 
We can now easily complete the proof of Proposition 3.5. Choose an ordering 

of R so that elements of Rj will precede elements of R e for j < p (and similarly 
for C). By Lemma 3.6 (b), under such orderings the matrix 0e becomes block 
triangular with (r -4- 1) diagonal blocks, the j-th block being the incidence matrix 

for the incidence relation between Rj and Cj, where 0 < j < r. By Lemma 3.6 

(c), the 0-th block becomes the identity matrix under a suitable ordering of R0 and 

Co. But if 1 < j < r then by Lemma 3.6 (d), the j- th block of 0e coincides with 

the matrix of the same type 0e of the smaller format (kl + 1) x . . .  x (kj-1 + 1) x 

kj • (k j+l  -f- 1) • . . .  • (kr -4- 1) x k0. Using induction on ko - kl + . . .  + kr, 
we can assume that all the diagonal blocks of 0e can be made unitriangular by a 

permutation of rows and columns. Therefore, the same is true for 0e itself. This 

proves Proposition 3.5, and hence Lemma 3.4 and Theorem 3.3. 

The matrix E can be viewed as a multidimensional analog of the identity 

matrix. In fact, we can show easily that the corresponding system (3.2) has only a 

trivial solution. To see this we represent each vector x(J) -- (X(o j)' X~ j) . . . . .  "~kj" (j)) 
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by a "generating" polynomial P(J)( t )  -- Y'~ikJ=o x [ J ) t  i .  Then the system (3.2) for 

A -- E can be written 

p ( l ) ( t )p (2 ) ( t ) . . ,  e(r)  (t)  = O, 

which implies that some P(J)( t )  is a zero polynomial, i.e., x (j) = O. 

Proposition 3.5 has an interesting combinatorial corollary. 

Corol lary  3.7. There exists exact ly  one bi ject ion ~o �9 R --+ C such that  tp(b) is 

inc ident  to b f o r  each b ~ R. 

The bijection tp from Corollary 3.7 and its inverse can be explicitly con- 

structed as follows. For b = (b (1) . . . . .  b (r)) 6 R, we define the indices il . . . . .  ir 

successively: if il . . . . .  i j - l  are already constructed, we define ij as the minimal 

index such that 

b(o j) + b~ j) + " "  + b~/) > i l + i 2  + " "  + i j - ,  

(the index il is defined by b (1) = ei~ ). We define then 

tp(b) (b (1) b (r) " il + ' '  + i r ) .  = -- ei~, �9 �9  - -  e i r ,  " (3.4) 

It is easy to see that ~o is a well-defined mapping from R to C such that tp(b) is 

incident to b for each b ~ R. 

To show that tp is a bijection we construct the inverse mapping ~r �9 C --+ R. 

For (c (1) . . . . .  c(r); i0) 6 C we define the indices ir, ir-1 . . . . .  il successively: if 

ir . . . . .  ij+l are already constructed, we define ij as the minimal index such that 

(1 + C(o j>) + (1 + j>) + . . .  + (1 + iy ) > io -- ir . . . . .  ik+l. 

Now we define 
. . . .  c (r) lp (c; i0) = (c (1) + ei, , + eir). (3.5) 

It is straightforward to verify that ~p is well-defined, and both compositions ~r o ~o 

and tp o r are identity mappings. 

Example  3.8. Let r = 3 and k0 - 2, kl = k2 = 1, i.e., A = (aijk) (0 < i, j < 

1, 0 < k < 2) is a 3-dimensional matrix of format 2 • 2 • 3. Let A0 and A1 be 

two slices of A in the second direction, i.e., 

Aj  = ( aojo aojl aoj2 ) ( j  = O, 1)" 
al jo a l j l  al j2 
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Then the 6 x 6 matrix 0A can be written as the block matrix 

Ao 0 ) 
0 A --- A 1 Ao �9 

0 A1 

This corresponds to the following ordering of the sets R and C: 

(3.6) 

R = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)}, 

C -- {(0; 0), (0; 1), (0; 2), (1; 0), (1; 1), (1; 2)}, 

where (a, b) stands for ((1 - a, a), (2 - b, b)) ~ A1(1) x AI(2) = R, and (c; k) 

stands for ((1 - c ,  c); k) e Al(1) x [0,2] = C. By Theorem 3.3, we have 

Det (A) = det (0A). This polynomial can be rewritten in many different ways. For 

instance, taking the Laplace expansion of det (0A) in three first columns we see 

that 

(ao a o am0,) 
D e t ( A ) - - d e t  aloo alOl alo2 det aolo aOll ao12 (3.7) 

a010 aOll ao12 allO a l l l  a l l2  

(ao . 2 ) (ao  .2) 
- det al00 al01 a102 det a010 aOll ao12 �9 

allO a l l l  a l l2  allO a l l l  a l l2  

More examples for three dimensional matrices will be given in subsection D 

below. 

The expression (3.7) has a nice geometric interpretation. The 3 x 3 deter- 

minants appearing in (3.7) can be viewed as Pliicker coordinates (or "brackets") 
on the variety of lines in p3, and (3.7) is the Chow form of the Segre subvariety 
p1 x p1 C p3. 

Returning to general boundary format, we can always interpret the hyper- 

determinant as the Chow form of the subvariety pk, x . . .  x pk, in the Segre 

embedding. Therefore, an expression of type (3.7) can be given for an arbitrary 

boundary format. To do this we introduce some terminology. For every sub- 

set t~ C [0, k l] x . . .  x [0, kr] of cardinality k0 + 1 we define the polynomial 

[(r] = [trl(A) to be 

[tr] = det (ai, io) (i e tr, 0 _< io _< ko) (3.8) 

(note that if we do not specify an ordering of tr then [tr ] is defined only up to sign). 

Let R and D have the same meaning as above. We say that a mapping 

Jr �9 R ~ D is a covering if it satisfies two conditions: 
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(1) An element b covers zr (b) for each b ~ R. 

(2) For each c e D the subset zr - l  (c) C R has cardinality k0 + 1. 

To every coveting zr �9 R --~ D and every c = (c (l) . . . . .  c (r)) ~ D, we 

associate a subset cr,~(c) C [0, kl] x . . .  x [0, kr] of cardinality k0 + 1 in the 

following way: 

" -  . . . . .  c ( r ) ' J l  - ) E 71 "-1 (C)} CrTr (c) {(il . . . . .  i r )  " (C (1) q- e i l  e i r  �9 

Proposition 3.9. The hyperdeterminant Det (A) can be written ~i-~r 4- I-Iceo [tr~ (c)], 

the sum over all coverings zr �9 R ~ D. 

Proof. Consider the Laplace expansion of det (0A) corresponding to the following 

grouping of columns of Oa" we join together the columns (e; i0) having the same 

component e. By definition, summands in the Laplace expansion correspond to 

coverings Jr �9 R ~ D, the summand corresponding to a coveting rr being just 

+ 1-I~o [~r~ (e)]. 

Note that the signs in Proposition 3.9 are determined directly once we specify 

orderings of all subsets tr; since Det (A) itself is defined only up to sign, we can 

actually compute only the ratio of signs for every two summands. 

Note also that even the existence of a covering Jr �9 R ~ D is a non-trivial 

combinatorial fact. Obviously, this implies (and in fact is equivalent to) the fol- 

lowing property: for every subset E C D we have 

#{b e R �9 b covers C for some e e E} > (k0 + 1). #(~,). 

C. Another geometric interpretation 

Now we give another geometric interpretation of Det (A) for the boundary format. 

Let V' be the space of all matrices of format (k2 + 1) x .- .  x (kr + 1) x (ko + 1). 
Let V' be the variety of all degenerate matrices in V', and let X' C P(V' )  be the 

projectivization of V'. By Theorem 3.1', X' has codimension k0 - (k2 -t- . . .  + 

kr) -1- 1 = kl + 1 in P(V') .  Consider its Chow form Rx,: by definition, this is 

an element of the coordinate ring of the Grassmann variety G(kl + 1, V') which 

defines the hypersurface 

{~ E G(kl q- 1, V') " ~ f') X' ~ ~J}. 

We will show that this Chow form is given by the hyperdeterminant of the boundary 

format (kl + 1) x . . -  x (kr + 1) x (k0 + 1). 
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To be more precise we represent a matrix A of this boundary format as an 
ordinary (two-dimensional) matrix (aid,j) of the format 

(k~ + 1) x [(k2 -~- 1) . . .  (kr -~- 1)(ko + 1)], 

where il ~ [0, kl], and j is a multi-index (i2 . . . . .  ir, io) ~ [0, k2] •  x [0, kr] • 
[0, k0]. Thus, A represents a linear operator/~ �9 C k~+l > V'. Clearly, for all A 

except the subvariety of codimension more than 1, we have rk (/~) = kl + 1, i.e., 

Im (/~) ~ G(kl + 1, V'). 

Theorem 3.10. The Chow form Rx, evaluated at Im (A) is equal to Det (A). 

Proof Remembering all the definitions, we have only to prove that A is degenerate 

if and only if/~ (x) 6 V' for some non-zero x 6 C k'+l. But this follows at once 

from characterizations of degenerate matrices given by Theorems 3.1 and 3.1' (we 

apply Theorem 3.1 to A and Theorem 3.1' to ,~ (x) 6 V'). 

Note that the format (k2+ 1) •  x (kr+ 1) x (k0+ 1) is (up to permutation ofits 
r directions) an arbitrary format not satisfying (1.4), i.e., such that the variety V' of 

all degenerate matrices of this format is of codimension > 1. Since any subvariety 

in the projective space can be recovered from its Chow form (see Section 2C 

Chapter 3), it is possible to express the conditions of degeneracy in terms of the 
hyperdeterminant of boundary format. These conditions take the following form 

(cf. Corollary 2.6 Chapter 3). 

Corollary 3.11. A matrix A' offormat (k2 d- 1) x . . .  • (kr d- 1) x (k0 + 1) 

is degenerate if and only if the hyperdeterminant Det (A) of the boundary format 
(kl + 1) • (k2 + 1) •  x (k0 + 1)vanishes whenever A has A' as a slice in the 

first direction. 

To make Theorem 3.10 more explicit, we represent R x, as a polynomial in 
Pliicker coordinates [~] on the Grassmannian G(kl + 1, V'), where ~ runs over 

the subsets of [0, k2] x . . .  x [0, kr] x [0, k0] of cardinality (kl + 1). For such 
a subset we denote by [~] = [f2](A) the corresponding Plticker coordinate of 

Im (/~), i.e., the minor 

[~] = det (aid,j), il ~ [0, kl], j e (3.9) 

(as the polynomials [tr] above, [f2] is defined only up to sign). Then Theorem 3.10 

means, in particular, that Det (A) can be expressed as a polynomial in these minors. 

Such an expression can be given quite explicitly in full analogy with Proposition 

3.9. For this we need some more terminology. 

Let R ' =  Ak2(1 + m2) •  x Ak'(1 + mr), where m2 . . . . .  mr are given by 

(3.3) (thus the set R of row indices for the matrix OA in subsection B is equal to 
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A k~ (1) x R'). Let C = D x [0, k0] have the same meaning as in subsection B. We 
say that (c; i0) = (c (1), c (2) . . . . .  c(r); io) E C covers b' -" (b (2) . . . . .  b (r)) ~ R'  if 

b (j) - c  (j) has the form eij for j = 2, 3 . . . . .  r. We say that a mapping ~ �9 C - - ,  R'  

is a covering if it satisfies two conditions: 

(1) Every (c; i0) e C covers its image r(C;  i0). 

(2) For each b' ~ R' the fiber r - l  (b') C C has cardinality k l + 1. 

To every covering r �9 C --~ R' and every b' = (b(2) , . . . ,  b (r)) E R' we 

associate the subset fir (b') C [0, k2] x . . .  x [0, k~] x [0, ko] of cardinality kl + 1 

in the following way: 

~2~ (b') -- {(i2 . ,  ir, io) " (0, b (2) b (r) z -1  , . .  - -  e i 2  . . . . .  - -  e i , ;  i0) ~ (b')}. 

Proposition 3.12. The hyperdeterminant  Det (A) can be written 

E 4- I - I  [ ~ ( b ' ) ] ,  
t b ' ~ R '  

the sum over all coverings r : C --> R'. 

Proo f  Consider the Laplace expansion of det (OA) corresponding to the following 

grouping of rows of OA: we join together the rows (b (1), b') having the same 

component b'. By definition, summands in the Laplace expansion correspond to 
coverings r : C --> R',  the summand corresponding to a coveting r being just 

-1- I-Ib, eR, [~ t  (b')]. 

Combining Theorem 3.3 with Proposition 1.8, we obtain r! different deter- 

minantal formulas for the hyperdeterminant Det (A) of an (r + 1)-dimensional 

boundary format. Namely, for each permutation tr of indices 1 . . . . .  r, r 4- 1 leav- 

ing (r + 1) invariant we have 

Det (A) = det (Otr(A)), (3.10) 

where 0a(A) is a square matrix constructed as in the proof of Lemma 3.4 but 

with respect to the "transpose" matrix a (A)  instead of A. All the matrices 0a(A) 
are of the same order and consist of zeros and matrix entries of A. But their 

block structures can differ substantially, so it is far from obvious that they have 

the same determinant. In particular, the expressions for Det (A) as Chow forms 

given by Propositions 3.9 and 3.12 depend upon the choice of a .  Of course, two 

different expressions for the same Chow form can be transformed one to another 

by means of Plticker relations on the corresponding Grassmannian. In order to 

avoid cumbersome indices we illustrate all these phenomena by treating in great 

details the case of three-dimensional matrices. 



3. Hyperdeterminant of the boundary format 467 

D. Three-dimensional boundary format 

Now we deal with the matrices of a three-dimensional boundary format. We 

reproduce the results of previous subsections but also add some further results�9 

It will be convenient to modify our notation as follows. We fix three positive 

integers m, n, p > 2 with n -- m -I- p - 1. Let C mxnxp denote the space of 

matrices of boundary format m x n x p. We write a matrix A ~ C mxnxp a s  

A = ( a i j k ) i e [ m ] , j e [ n ] , k e [ p ] ,  where we use the notation [m] = {1, 2 . . . . .  m}. By 

Corollary 2.6, the hyperdeterminant is a polynomial in matrix entries aijk of degree 
n! 

(m-1)!(p-1)! " 
A matrix A ~ C m xn x p can be represented by each of three ordinary matrices 

A 1E E C mnxp, A 13 ~ C "• A 23 E C npxm. Here A 1E has the same entries as A 

but they are arranged so that the row index set is [m] x [n], and the column index 

set is [p] (likewise for A 13 and A23). For example, if A has format 3 x 4 x 2 then 

A 12 

( a l l l  

a121 

a131 

a141 

a211 

a221 

a231 

a241 

a311 

a321 

a331 

a341 

A 13 

all2 '~ 

a122 

a132 

a142 

a212 

a222 

a232 

a242 

a312 

a322 

a332 

a342 

a l l l  all2 a211  a212 a311 

a121 a122 a221  a 2 2 2  a321 

a131 a132 a231  a232 a331 

a141 a142 a241  a242 a341 

( a l l l  a211 

all2 a212 

a121 a221 

a122 a222 

a131 a231 

a132 a232 

a141 a241 

a142 a242 

A23 m 

a311 ~ 

a312 

a321 

a322 

a331 

a332 

a341 

a342 

a312 t a322 
) 

a332 

a342 

The three "flattenings" of A give rise to three different geometric interpreta- 

tions of the degeneracy of A and of Det (A). 
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1. Let a 12 " C p - -~  C mxn be the linear map with matrix A 12. We interpret the 

p x p minors of A 12 as the Pliicker coordinates on the Grassmannian of subspaces 

of dimension p in C m xn. Now Theorem 3.10 takes the following form. 

Proposition 3.13. A matrix A is degenerate if  and only if  either rk (A 12) < p, 

or rk (A 12) = p and Im (a IE) has non-zero intersection with the variety Vm,n of  

degenerate m x n matrices. The hyperdeterminant Det (A) is a polynomial of  

degree (p) in the p x p minors of  A 12, and this polynomial is the Chow form of  

P(Vm,n).  

2. Le ta  13 " C mxp ~ C n b e  the linear map with matrix A 13. Now we interpret 

the n x n minors of A 13 as the dual Pliicker coordinates on the Grassmannian 

of subspaces of codimension n in C m• The following result is a geometric 

reformulation of Theorem 3.1. 

Proposition 3.14. A matrix A is degenerate if  and only if  either rk (A 13) < n, 

or rk (A 13) = n and Ker (a 13) has non-zero intersection with the variety VI,p 

of  m x p matrices of  rank 1. The hyperdeterminant Det (A) is a polynomial o f  
degree n-1 (m-l) in the n x n minors of  A 13, and thispolynomial is the Chow form of  
pm-1 x P p- 1 in the Segre embedding. 

3. Let a 23 " C m ~ C nxp be the linear map with matrix A23. We interpret the 

m x m minors of A23 as the PlUcker coordinates on the Grassmannian of subspaces 

of dimension m in C nx P. Interchanging the roles of m and p in Proposition 3.13, 

we obtain the following. 

Proposition 3.15. A matrix A is degenerate if and only if either rk (A 23) < m, 

or rk (A 23) -- m and Im ( a  23) has non-zero intersection with the variety Vn,p of  

degenerate n x p matrices. The hyperdeterminant Det (A) is a polynomial of  

degree (~) in the m x m minors of  A23, and this polynomial is the Chow form of  

P(Vn,p). 

Now we present several explicit polynomial expressions for the hyperdeter- 

minant of the boundary m • n x p format. We start with Sylvester type formulas. 

Let f l ,  f2 . . . . .  fn be linear forms on C m• p corresponding to the rows of A 13. We 

can also think of f l ,  f2 . . . . .  f~ as bilinear forms on C m • C e given by 

J~(Xl . . . . .  Xm, Yl . . . . .  Yp) = ~ aijkXiYk. (3.11) 
i,k 

For every two integers q, r > 0 let S(q, r) denote the space of bihomogeneous 

forms in xl . . . . .  Xm, Yl . . . . .  yp having degree q in xl . . . . .  Xm and degree r in 

Yl . . . . .  yp. In particular, f l ,  f2 . . . . .  fn ~ S(1, 1). We define a linear map r " 

S(q, r) | C n --~ S(q + 1, r + l) by 

~q,r(gl (~ el + ' ' '  + g, | e,) = g l f l  + " "  + g, fn, (3.12) 
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where el . . . . .  en is the standard basis in C n. We denote by the same symbol tY~q, r 

the matrix of this linear map in the bases consisting of monomials in S (q + 1, r + 1) 

and of monomials tensored with the ej's in S(q, r ) |  n. The following is a special 

case of Theorem 3.3 (and also of Proposition 2.2 Chapter 13). 

Proposition 3.16. Each of the matrices (I)0,m_ 1 and dpp_l,o is square of order 
n! and 

(m-1)!(p-1)! '  

Det CA) = det ((])0,m--1) -"  det (~p-l,o). (3.13) 

To present the matrix (l)0,m_ 1 in a more explicit form, we use the notation 

A p - l C m ) =  {oe=(Oel,Oe2, . C~p) ~ Z  p �9 } . .  , + O( 1 -t-O~ 2 -~- . . . -+-  O~p = m 

Then the columns of t~)0,m_ 1 a r e  labeled by A p-1 (m - 1) x [n], and the rows are 

labeled by [m] x A p-1 (m). The matrix entry (i, ct I/3, j )  of ~0,m-1 is equal to auk 
if ct = /3  + ek for some k 6 [p], and 0 otherwise. The matrix ~0,m-1 is described 

in exactly the same way with m and p interchanged. 

For the 3 x 4 x 2 format these matrices are as follows: 

t A..1 0 0 t A~ A..1 0 
(I)0'2 - -  0 Ao~ A..t ' 

0 0 A . . 2  

where for k = 1, 2 we have 

m ook "-'- 

al lk al2k al3k al4k ) 
a21k a22k a23k a24k ; 
a31k a32k a33k a34k 

Aloo A2o~ A3~ 0 0 0 \ 
�9 ~ = 0 A 0 A2o~ A3~176 0 ) ,0 I~  

0 0 AI..  0 A2 .  A3.o 

where t stands for the transpose matrix, and for i -- 1, 2, 3 we have 

t aill ail2 t Aio, = ai21 ai22 . 
ai31 ai32 
ai41 ai42 

The above formulas represent Det (A) as the determinant of a sparse matrix 

whose non-zero entries are the entries aijk o f  A arranged into a non-trivial pattern. 
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Our next formula is essentially of the same kind although it does not fit into the 

general framework of Sylvester type formulas (see Section 2 Chapter 13). We 

consider again the bilinear forms f l ,  f2 . . . . .  fn on C m x C p given by (3.11). Now 
we think of fj as a linear map C m ~ (CP) * which sends each vector x e C m 

to a linear form fj(x,  .) on C p. We define a linear map �9 : C m | Amcn 
(CP) * @ A m - I c  n by 

�9 (x | ~) = ~ j~(x, .) | Oj~, (3.14) 
J 

where Oj for j ~ [n] is the j- th partial derivative in the exterior algebra A~ ~. We 

denote by the same symbol �9 the matrix of this linear map in the bases formed by 

tensoring standard basis vectors in C m and (CP) * with wedge monomials in the 

exterior algebra. 

n! Theorem 3.17. The matrix �9 is square of order (m-1)!r and 

Det (A) = det (~).  (3.15) 

Proof. This is a consequence of Theorem 4.7 Chapter 3. More precisely, we 

consider the resultant spectral sequence 

C~"__(O(1, 1) . . . . .  O(1, 1)1 O ( - 1 ,  m)) 

for the variety X = pm-~ x P P-~, whose determinant, according to the cited 

theorem, is equal to Rx( f l  . . . . .  f , )  = Det(A). An explicit calculation of the 
cohomology by the KUnneth formula and Serre's theorem (Theorem 2.12 Chapter 

2) shows that the only non-trivial differential in this spectral sequence is 

01 " H m-1 pm-1, ( 0 ( -  1, - 1)*n) | (..9(- 1, m) 

(m-X ) 
~ ~ n m - 1  pro-1  ( 0 ( - - 1 ,  -1)*n) | 0 ( - 1 ,  m) 

and that this differential is canonically identified with ~.  This implies (3.15). 

It is also possible to give an "elementary" proof of (3.15) similar to that of 

Theorem 3.3 above. We leave such a proof as an exercise for the reader. 

The companion formula obtained from (3.15) by interchanging m and p 

appears to coincide with (3.15). To see this we represent the matrix ~ in the 
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following form which exhibits the symmetry between m and p. We use the notation 
(tml) for the set of all m-element subsets of [n]. Then the columns of �9 are labeled 
by [m] x (Imnl), and the rows can be labeled by [p] x ([pl) (we identify ~%11) with 

(tpl) by taking complements). The matrix entries of are given by 

+aij k if cr fq p = {j}, 
di)(k'P)'(i'e) --" 0 if#(cr fq p) > 2. (3.16) 

Here (k, p) ~ [p] x (tp]), (i, tr) ~ [m] x (In]), and the sign 4- is equal to ( -1 )  r-1 

if j is the r-th member of tr in the increasing order. 
For the 3 x 4 x 2 format this matrix is as follows: 

Cl) t - - -  

A.3. -A~176 0 A.1. 0 0 / 
A~ 0 - A . 2 .  0 A.1. 0 

0 A~176 -A .3~  0 0 A.s .  ' 
0 0 0 Aoao -A.3~ Ao2~ 

where for j = 1, 2, 3, 4 we set 

a l j l  alj2 ) 
Aojo = a2jl a2j2 �9 

a3jl a3j2 

Our next goal is to present three more formulas for Det (A) explicitly express- 
ing it in terms of maximal minors of each of the three matrices A 12, A 13 and A 23. 
Consider the linear map ~p23 : A m c  n ~ S m (Up). given by 

k i,qE[m] 
(3.17) 

Here S m (C")* is identified with the space of forms of degree m in Yl . . . .  , Ye" We 
denote by the same symbol ~p23 the matrix of the map (3.17) in the monomial 
bases. Clearly, qja3 is square of order ~ ) ,  and its entries are polynomials of 
degree m in the (aijk). The following formula was communicated to the authors by 
A.I. Bondal. 

Theorem 3.18. We have Det (A) = det ( k i d 2 3 ) .  

For an elementary proof of this theorem see [SZ2], Theorem 6.5. We leave it 
to the reader to put it into the context of the resultant spectral sequence or that of 

the Weyman complex (cf. [WZ1 ], Section 4). 
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In an explicit matrix form, the rows of tI/23 are labeled by AP-n (m), and the 
columns are labeled by ([~]). For ct = (cts . . . . .  Up) ~ A p-l (m), a = {js < j2 < 
�9 "" < jm} ~ (in]) the matrix entry qjE3 of q~23 is given by 

Z [ j l  k .k2 .t., , 2 3  = l J2 Jm ], 9 q9 ~ 1 7 6  9 (3.18) 

�9 k2 "kin where [ j~ ,  J2 . . . . .  Jm ] -- det (ai,jq,kq)i,qe[m] is a maximal minor of A 23, and the 
sum in (3.18) is over all sequences (ks . . . . .  km) such that Y k ~ ' " Y k m  

dip = y~l . . .  yp �9 

For the 3 x 4 x 2 format the matrix (q/23)t is as follows: 

t 
[ll2n3 l] [112n32] + [11223 l] + [12213 l] [112232] + [122n32] + [122231] [122232]\ 
[ll214n] [ll2n42] + [11224 l] + [122n4 l] [112242] + [122142] + [12224 l] [122242] 

) [11314 l] [113x42] + [lX324 l] + [123n4 l] [113242] + [123142] + [12324 l] [123242] �9 
[213141] [213142] + [213241] + [223141] [213242] + [223142] + [223241] [223242] 

Let q/12 denote the linear map A P C  n -+ S P ( C m )  * and the corresponding 
matrix constructed in the same way as tI/23 but with m and p interchanged. Thus 
tI/12 is a square matrix of order (p), and its entries are polynomials of degree p in 
the (aijk). T h e  companion Bondal formula is 

Det (A) = det (q/12). (3.19) 

The matrix description of �9 12 is totally similar to that of tI/23. For the 3 x 4 x 2 
format the matrix (~  12)t is as follows: 

[1112] [1122] + [2112] [1132] + [3112] [2122] [2132] + [3122] [3132] 
[1113] [1123]+[2113] [1133]+[3113] [2123] [2133]+[3123] [3133] 
1114] [1124] + [2114] [1134] + [3114] [2124] [2134] + [3124] [3134] 
1213] [1223] + [2213] [1233] + [3213] [2223] [2233] + [3223] [3233] 

[1214] [1224] + [2214] [1234] + [3214] [2224] [2234] + [3224] [3234] 
[1314] [1324] + [2314] [1334] + [3314] [2324] [2334] + [3324] [3334] 

�9 i2 �9 where [in J1 J2] := ain,h,laiE,j2,2 -- ain,h,2ai2,h,1 is a maximal minor of A 12. 

Our last formula for Det (A) resembles the classical Bezout formula. We asso- 
ciate to a family fl  . . . . .  fn  of bilinear forms a polynomial function in X l . . . . .  Xm, 

Yl . . . . .  yp which we call the g e n e r a l i z e d  J a c o b i a n  of fl . . . . .  f n .  To this end, we 
associate to every family (gl . . . . .  gs)  of functions on C m x C p a differential form 
of degree s - 1 given by 

$ 

o 9 ( g l , . . . ,  gs)  - -  ~ _ ~ ( - 1 ) i - l  g i d g l  A . . . A d g i - 1  A dg i+l  A . . . A gs.  
i=1 



3. Hyperdeterminant of  the boundary format 473 

It is not hard to show that the form og(fl . . . . .  fn) is proportional to to(x1 . . . . .  X m )  A 

w(yl . . . . .  yp). We define the generalized Jacobian J (f l  . . . . .  f,,) as the coefficient 

of proportionality in 

o) ( f l  . . . . .  A )  -- J ( f l  . . . . .  A ) ( o ) ( x l  . . . . .  Xm) A w(y l  . . . . .  yp)). (3.20) 

Clearly, J (fl  . . . . .  fn) is a bihomogeneous form of degree p - 1 in x 1 . . . .  , Xm 

and of degree m - 1 in Yl . . . . .  y,.  We write it down as a linear combination of 

monomials: 

( f l  . . . . .  fn) - ~ ba,#x ~ Y~, J (3.2 1 ) 
a,fl 

where ct runs over A m-1 (p- -  1), and/~ runs over A p-1 ( m -  1). Consider the matrix 

- -  (m--l) whose entries are polynomials B (b~,t~). This is a square matrix of order ~-1 

of degree n in the aijk. 

Theorem 3.19. We have Det (A) = det (B). 

Sketch of  the proof  We consider the variety X = pm-  1 

4.7 Chapter 3 to the resultant spectral sequence 

x P p-1 and apply Theorem 

Cr'__ (O(1, 1) . . . . .  O(1, 1)l O(0, m - 1)). 

Thus the determinant of this spectral sequence is R x ( f l  . . . . .  fn) = Det(A). An 

explicit calculation of the cohomology involved shows that the first term of our 

spectral sequence has only two non-trivial components, namely 

( A ) H n - I  pm-1 • pp -1  ( 0 ( - 1  --1) @n) t ~ ) O ( O , m -  1) --  S p - I c  m 

( o ) 
H 0 pro-1 • p p - 1  A ( O ( _ I  ' _ l ) . n )  @ (.9(0, m -- 1) = s m - I ( c p )  * 

which are connected by the (unique) differential On. Thus Det(A) = det(0,,). It 

can be seen by an explicit calculation (similar to the one in the proof of Proposition 

5.4 Chapter 2) that 0,, coincides with J ( f l  . . . . .  f~), if we regard the latter as a 

linear map SP-IC m --~ S m-1 (CP) *. This implies our theorem. 

It is also possible to give an elementary proof of Theorem 3.19, similar to 

what was done in the proof of Theorem 3.3. 

Let us describe the matrix entries b~.~ in Theorem 3.19. We need some 

terminology. We shall identify a subset ~ C [m] x [p] with a bipartite graph with 

the vertex set [m] U [p] by representing each (i, k) ~ [ml x [Pl as an edge joining 
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i 6 [m] with k 6 [p]. We say that s is a base if the corresponding graph is a 

spanning tree (in particular, #(s = m + p - 1 = n). We say that a base Q is 

of type (ct,/~) and write fl F- (a, t3) if fl has cti + 1 elements in the i-th row and 

/~k + 1 elements in the k-th column for i ~ [m], k ~ [p]. 

Lemma 3.20. Every base f2 can be uniquely represented in the form 

if2 = {(1, kl), (2, k2) . . . . .  (m, kin), (i2, 2), (i3, 3) . . . . .  (ip, p)} (3.22) 

for some kl . . . . .  km E [p], i2 . . . . .  ip E [m]. 

Proof Let us orient the tree ~ so that all the edges point out from the vertex 

1 6 [p]. Clearly, every vertex in [m] t3 ([p] \ { 1 }) is an end-point of some edge, 

and we write an edge (i, k) 6 fl as (i, ki) if its end-point is i ~ [m], and as (ik, k) 
if its end-point is k 6 [p]. This establishes the existence of (3.22). The proof of 

uniqueness is an easy combinatorial exercise (cf. [SZ2], Lemma 1.6 (b)). 

For every sequence ( i l ,k l )  . . . . .  (in, kn) ~ [m] x [p] we denote by 
[ilk1 . . . . .  ink,] the corresponding maximal minor of A 13 given by 

[ilkl . . . . .  ink,,] = det (aiq,j,kq)j,qe:[n]. (3.23) 

If a base fl is expressed as in (3.22) then we write 

[f2] := [lkl ,  2k2 . . . . .  mkm, i22 . . . . .  ipp]. 

The definitions (3.20) and (3.21) readily imply the following. 

Proposition 3.21. The matrix entries of B are given by 

b., e = y ~  [f2]. (3.24) 
fa-(~,/~) 

For the 3 x 4 x 2 format the matrix B is as follows: 

[11 ,21,31,  12] [11,21,32,  1 2 ] + [ 1 1 , 2 2 , 3 1 ,  12] [11 ,22 ,32 ,  1 2 ] )  
B =  [11 ,21 ,31 ,22]  [ 1 1 , 2 1 , 3 2 , 2 2 ] + [ 1 2 , 2 1 , 3 1 , 2 2 ]  [12 ,21 ,32 ,22 ]  . 

[11 ,21 ,31 ,32]  [ 1 1 , 2 2 , 3 1 , 3 2 ] + [ 1 2 , 2 1 , 3 1 , 3 2 ]  [12, 22, 31, 32] 
(3.25) 

The formula (3.25) can be found in [Sal], Art. 277. One can find there some 

ideas on the general m x n x p case as well, but Theorem 3.19 and Proposition 

3.21 seem to be new. 



4. Schlfifli's m e t h o d  

4. Schliifli's method 475 

A. Statements and proofs 

In this section we study Schlafli's method of computing hyperdeterminants ([Schl]). 

Although this method does not give an answer in general, it works in some impor- 

tant special cases and provides interesting additional information. 

Let A = (aio,il . . . . .  i t )  be an (r + 1)-dimensional matrix of format (k0 + 1) x 

(kl 4- 1) x . . .  x (kr + 1). We associate to A a family of r-dimensional matrices 

/~ (x) linearly depending on the auxiliary variables x = (x0 . . . . .  x~) �9 

ko 

A (x)i, . . . . .  ir = ~ "~ aio,i, . . . . .  i r X i o  �9 

io=O 
(4.1) 

In other words, A is the linear operator 

cko+] __+ Ck,+l |  | C k,+l 

naturally associated to A. 

Let us assume that k] . . . . .  kr satisfy (1.4), i.e., the r-dimensional hyperde- 

terminant of format (kl 4- 1) x . . .  x (kr 4- 1) is non-trivial. We associate to 

A a polynomial function FA (x) = Det (,4(x)). This is a homogeneous form in 

x0 . . . . .  xk0 of degree N(kl . . . . .  kr) (see Section 2). Denote by A(FA) the dis- 

criminant of FA. We consider A (FA) as a polynomial in matrix entries of A. Using 
the known formula for the degree of the discriminant ((2.12) of Chapter 9) we see 

that A (FA) has degree 

deg (A(Fa))  -- (k0 4- 1)(N(kl . . . . .  kr) - 1)k~ . . . . .  kr). (4.2) 

T h e o r e m  4.1. The polynomial A(FA) is divisible by the (r + 1)-dimensional 
hyperdeterminant Det (A). 

Note that A (F A) might be identically zero. 

Proof Suppose that A = (aio,it . . . . .  ir) is degenerate; we have to show that the 

corresponding form FA (x) = Det (,4 (x)) has a zero discriminant. Choose a point 

(x (~ x (1) . . . . .  x (r)) ~ IC(A) (see Proposition 1.1). It is enough to show that FA 
vanishes at x (~ with all its first derivatives. Denote 

- 0Det I 
A0 = A(x(~ bi, ..... ir---Oaillm.. , i  r ao 
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Then we have FA (x ~~ = Det (Ao), and 

O FA (X) I -- Y ~  aio,i~ .... i, bi~ .... i, 
OXio (o) ' ' X--~X i l . . . . .  ir 

(4.3) 

for all i0 = 0, 1 . . . . .  k0. Clearly, (x ~1) . . . . .  x ~r)) ~/E(A0), hence FA (x ~~ -- 0. 

a FA (x)[ = 0 for all i0, and If bil . . . . .  ir = 0 for all il . . . . .  ir then by (4.3) a~,0 ,~=x~0) we are 

done. So we can assume that some bi~ ..... i, is non-zero. But this means that A0 is a 
smooth point of the variety of degenerate matrices, and we can apply Proposition 

1.2. Bythis proposition, wecan assume thatbi~ ..... i, = x~ ) ' ' "  x~ ) forall il . . . . .  ir. 

Substituting this into (4.3) and remembering the definition of/C(A) we see that all 

the first partial derivatives of FA vanish at x (~ which proves our theorem. 

Denote by V -- V(kl . . . . .  kr) the variety of all degenerate matrices of format 

(kl + 1) x . . .  x (kr + 1); by definition, the projectivization of V is the projectively 

dual variety X v of X = pkl x . . .  x pk,.  Let ~ s i n g  be the variety of singular 
v points of V, and Xsing the projectivization of Vsing. Let c = c(kl . . . . .  kr) denote 

the codimension (i.e., the minimum of codimensions of irreducible components) 
v of X~i~g in the projective space P(C~k'+l)~k~+l)). 

Analyzing the proof of Theorem 4.1 we get the following refinement. 

Theorem 4.2. The ratio G ( A )  = A ( F A ) / D e t  (A) has the fol lowing form:  

(a) l f  ko + 1 < c(kl . . . . .  kr) then G is a non-zero constant. 

(b) l fko + 1 -- C(kl . . . . .  kr) then G(A)  "- ~ R z  z (Im(A)), where Z ranges over 

irreducible components o f  v Xsing having codimension c(kl . . . . .  kr), Rz  is the 

Chow form o f  Z, and the m z are some multiplicities. 

(c) l f  ko + 1 > C(kl . . . . .  kr) then G (and hence A(FA))  is identically zero. 

Proof. First we establish the following. 

Lemma 4.3. I f  A(FA) is not identically zero then it is not divisible by Det (A) 2. 

Proof. By definition, X v is the union of projective spaces Px, x ~ X where 

Px is formed by hyperplanes tangent to X at x. The codimension of Px is equal 

to d i m  (X)  + 1 = kl + . . .  + kr + 1. The vanishing of A(FA) means that the 

image Im (,4) = ,4(C k~ is tangent to V at some non-zero point. Suppose that 

A(FA) is divisible by Det (A) 2. Then for any one-parameter algebraic family of 

(r + 1)-dimensional matrices At such that Im (,40) is tangent to V, the function 

A (FA,) is divisible by t 2. We will show that this is impossible by constructing a 

suitable "genetic" family. 

Let B be a genetic point of V and ~ e X v be the projectivization of B. We can 

assume that ~ lies on exactly one Px (if this were genetically not so then X v would 
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not be a hypersurface). Consider the variety Z of all k0-dimensional projective 

subspaces in P(C(k~+l)'"(k'+l)), tangent to X v at ~. Since ko < kl + . . .  + kr it 

follows that a dense open part of Z is formed by subspaces which meet Px only at ~. 

Let L be a genetic element of Z. Then L has a simple tangency with X v. Now take 

a genetic one-parameter family of matrices At such that L is the projectivization 

of Im (,40). The simple tangency condition implies that the function t ~ A (FA,) 

has a simple zero at t = 0. This completes the proof of Lemma 4.3. 

Now we can easily complete the proof of Theorem 4.2. In the course of the 

proof of Theorem 4.1 we have actually shown that A (FA) = 0 if and only if either 

Det (A) = 0 or ,4(x (~ e V~i~g for some non-zero x (~ ~ C k~ Denote by W 

the variety of all matrices A such that Im (A) meets  Vsing at some non-zero point. 

Taking into account Lemma 4.3 we see that the ratio G (A) may vanish only when 

A ~ W .  
Clearly, codim (W) > 1 for k0 + 1 < c(kl . . . . .  kr), codim (W) = 1 for 

ko + 1 = c(kl . . . . .  kr), and W coincides with the whole matrix space for k0 + 1 > 

c(kl . . . . .  kr). Now all assertions of our theorem follow at once from the definition 

of the Chow form. 

B. Examples 

Example  4.4. Let r = 2, and V be the space of degenerate m x m matrices, m > 2. 

The variety Vsing consists of matrices of rank < (m - 2) and has codimension 

four. Therefore, the hyperdeterminant of a three-dimensional matrix A of format 

2 x m x m (resp. 3 x m x m) is equal to the discriminant of the binary (resp. ternary) 

form Det A (x). Note that for matrices of format 2 x 2 x 2 or 3 • 3 • 3, we obtain 

three different formulas for the hyperdeterminant corresponding to three different 

choices of a distinguished direction. For the format 2 x 2 x 2 the hyperdeterminant 

is given by (1.5). For each of the formats 2 x m x m and 3 x m x m we obtain 

from (4.2) the formula for the degree of the hyperdeterminant: 

N(1, m - l , m - 1 ) = 2 m ( m - 1 ) ,  N(2, m - l , m - 1 ) = 3 m ( m - 1 )  2. (4.4) 

Note that 2 x m x m is a subboundary format, and the first of the formulas (4.4) is 

consistent with (2.9). It is an easy exercise to deduce the second formula in (4.4) 

from the general formula (2.7). 

For the format 4 x m x m Theorem 4.2 (b) says that A (F A) is equal to the 

product of Det (A) and some power R v of the Chow form R of XsV.ng. The value 

of v can be obtained by calculation of degrees. By (4.2), the degree of A(FA) is 

equal to 4m(m - 1) 3. It follows easily from (2.7) that the degree of Det (A) is 

equal to ~2 m (m - 1)(m - 2)(5m - 3). On the other hand, the degree of the variety 
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XsVng is known to be m2(m - 1)(m + 1)/12 (see [ACGH], Chapter 2, formula 
V (5.1)). Since X~ing has codimension four, the degree of its Chow form R as a 

V polynomial in matrix entries of A is four times the degree of X~ing, i.e., is equal to 

m2(m - 1)(m + 1)/3. These three expressions imply that the exponent v is equal 

to 2. 

Example 4.5. Let r = 3 and let V1 = V2 = V3 = C 2 be three two-dimensional 

vector spaces. Let V = Vl | V2 | V3 be the space of 2 x 2 x 2 -matrices, and let 

eijk (i, j, k ~ {0, 1 }) be its standard basis vectors (matrix units). Let V C V be 

the variety of degenerate matrices. The group G = GL(V1) x GL(V2) x GL(V3) 
acts on the space V, leaving varieties V and Vsing invariant. It is known and easy 

to check that G has only seven orbits on V, including {0} (and hence six orbits on 

P(V)). The closures of six orbits in P(V) and representatives of these orbits are 

the following: 

dim = 7: P(V) itself; a representative e0oo 4- ell1. 

dim = 6" The projectivization X v of V; a representative el0o 4- e010 4- e0ol. 

dim -- 4: Three varieties 

P(V1) x P(V2 | V3), P(V2) x P(V1 | V3), P(V1 | V2) x P(V3); 

representatives e01o 4- e0ol, el0o 4- e0ol, eolo + el0o. 

dim = 3" The product P(V1) x P(V2) x P(V3); a representative e0o0. 

The singular locus XsV.ng has three irreducible components, namely the orbit 

closures of dimension four just described. This can be seen by calculating partial 

derivatives of the hyperdeterminant of a 2 x 2 x 2 -matrix (given by (1.5)) at all 

the representatives listed above. 
V In particular, we see that X~i~g has codimension three. Hence for a 2 x 2 x 2 x 2 

matrix A we have Det (A) = A(FA). This was already known to Schlafli ([Schl], 

w 19). The degree of Det (A) is equal to 24. 

For a 3 x 2 x 2 x 2 matrix A, it follows from Theorem 4.2 (b) and the obvious 

symmetry that for some u > 0 

A(FA) = Det (A).  (R12R13R23)V(Im (/1)), 

V where gab is the Chow form of the component P (Vc) x P (Va | Vb) C Xsing for 

{a, b, c} = { 1, 2, 3}. The exponent v can be found as in the previous example. 

By (4.2), the degree of A(FA) is equal to 33 �9 4 = 108. By (2.9), the degree of 

Det (A) is equal to N(2, 1, 1, 1) -- 2 .3 ! .  3 = 36. Finally, each ofthe Chow forms 
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Rab(Im(A)) is easily seen to have degree 12 as a polynomial in matrix entries of 

A. It follows that v -- (108 - 36)/3 �9 12 -- 2. 

It seems likely that in the general case of Theorem 4.2 (b), for any component 

Z of XsVi,g the exponent with which Rz enters A(FA) is equal to the multiplicity 

of X v along Z (i.e., the degree of the normal cone, see [ACGH], Ch.2, w 1). In 
V both Examples 4.4 and 4.5 the normal cone at a genetic point of Xsi,8 can be seen 

to be a quadratic cone, and the exponent is equal to two. 

It follows from Theorem 4.2 that whenever the hyperdeterminant of format 

(kl -I- 1) • . . .  • (kr + 1) is non-trivial, we can apply Schl~ifli's method to matrices 

of format 2 • (kl + 1) • . . .  • (kr "q- 1), and conclude that A (FA) is the product of 

Det (A) with some extra factors. In particular, this gives a method for calculating 

the hyperdeterminant of format 2 r by successive computations of discriminants of 

binary forms. However, the extra factors grow very fast with r. 

We conjecture that formats 2 x m x m, 3 x m • m and 2 • 2 x 2 • 2 are the only 

ones for which Schlafli's method gives the hyperdeterminant exactly (i.e., A (FA) 

is not identically zero and does not contain extra factors). This is equivalent to the 

assertion that, for any formats other than m • m and 2 • 2 • 2, the singular locus 

of V has codimension two in the matrix space. 
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Determinants of Complexes 

Complexes 

Let k be a field. A complex of k-vector spaces is a graded vector space W ~ = 

E]~)iez W~ together with a family of linear operators 

d = {di" W i ~ wi+l}, di+l o di = O. 

The spaces W i are called the terms of W ~ Throughout this Appendix we shall 

assume that all but finitely many terms of a complex are zero. Cohomology spaces 

of a complex W ~ are defined as H i (W*) -- Ker (d i ) / Im(d i_ l ) .  A complex W ~ is 

called exact if all H i ( W  ~ are equal to zero. 

Example 1. Any linear operator between two vector spaces, say, W -1 and W ~ 

can be regarded as a complex with only two non-zero terms: 

{ . . . - -> 0---> W -1 d_ g w O ---> 0---> . . . } .  

Such a complex is exact if and only if d_l is invertible. 

For any graded vector space W ~ and any m ~ Z we shall denote by W~ 

the same vector space but with the grading shifted by m" 

( W ~  W m+i " 

The same notation will be used for complexes. 

Let V ~ and W ~ be two complexes of vector spaces. A morphism of complexes 

f �9 V ~ ---> W ~ is a collection of linear operators fi " V i ---> W i which commute 

with the differentials in V ~ and W ~ The cone of a morphism f is a new complex 

Cone( f )  with terms Cone( f )  / = W i ~ V i+1 and the differential given by 

d ( w ,  v) - ( d w ( w )  + ( - 1 ) i + l  f (v),  d v ( v ) ) ,  w ~. W i, 1) ~_ V i+l. (1) 

Any morphism of complexes f : V ~ ---> W ~ induces a morphism of cohomology 

spaces H i ( f )  : H i ( V  ~ --+ H i ( W ~  A morphism f i sca l ledaquas i - i somorphism 

if all H i ( f )  are isomorphisms. The derived category of vector spaces D(Vect) is 

obtained from the category of complexes of vector spaces by formally inverting 

the quasi-isomorphisms. 
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The proofs of several results in this Appendix and in the main body of the 
book require the use of more general derived categories involving, for example, 

complexes of modules over a ring R, complexes of sheaves etc. We refrain from 

giving more detailed background material on this subject referring the reader to 

first chapters in [Bo], [KS]. 

Determinantal vector spaces 

Let W be a vector space of dimension n over a field k. Denote the one-dimensional 

vector space/~n (W) by Det(W). For W = 0, we set Det(0) = k. 

Let now W ~ -- ~ )  W i be a finite-dimensional graded vector space. We set 

Det(W ~ --- (~)  Det(Wi)  | , (2) 
i 

where V-1 for a one-dimensional vector space V stands for the dual vector space 

V*. The correspondence W ~ w--+ Det(W ~ defines a functor Det from the cat- 

egory of finite-dimensional graded vector spaces and their isomorphisms to the 

category of one-dimensional vector spaces and isomorphisms. Let us list some 

basic properties of this functor. 

Proposition 2. 

(a) Det takes multiplication by ~ ~ k* to the multiplication by ~x(w'), where 

x ( W  ~ -- ~ i ( _ l ) i d i m ( W i ) .  

(b) Let V ~ and W ~ be two graded vector spaces. Then there is a natural isomor- 

phism 

Det(V ~ ~ W ~ -.~ Det(V o) | Det(W~ 

(c) There is a natural isomorphism 

Det(W~ ~ Det(W~ -1. 

The proofs are obvious. 

The Euler isomorphism 

Let (W ~ d) be a finite-dimensional complex of vector spaces. Forgetting the 

differential, we can regard W ~ simply as a graded vector space. The cohomology 

spaces of our complex form another graded vector space H ~  ~ = ~)  H i (W~ 

Proposition 3. There is a natural isomorphism 

Eud " Det(W ~ ; D e t ( H ' ( W ' ) ) .  
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We call Eud the Euler isomorphism because of the following corollary. 

Corollary 4. We have an equality 

E ( - 1 ) i d i m ( W  i) -- E ( _ l ) i d i m ( H  i (W~ 

To deduce Corollary 4 from Proposition 3 it suffices to consider the action of 
~. ~ k* on Det(W ~ and Det(H~176 

Proof  o f  Proposition 3. As in the standard proof of the above corollary, we split 
our complex into several short exact sequences: 

0 ~ Ker(di) ~ W i ~ Im(di) ~ 0, 

and 

0--~ Im(di_l) ~ Ker(di) ~ H i ( w  .) ~ 0 

for all i. The proof then reduces to the following particular case. 

Lemma 5. For an exact sequence o f  vector spaces 

O---~ A---~ B---~ C---~ O 

there is a natural isomorphism 

Det(B) ~- Det(A) | Det(C). 

Proof  Let m, n, p be the dimensions of A, B, C respectively. We identify A with 
its image in B, and C with the quotient space B / A .  Let 

m 

al A . . .  A am ~- Det(A) = A ( A ) ,  
P 

C 1 A ' ' "  A Cp E Det(C) = A(C).  

We define a map Det(A) | Det(C) ~ Det(B) by sending 

(al A . . . A a m )  ~ (Cl A . . .  A Cp) I---> al A " " A am A Cl A . . . A Cp, 

where t?j ~ B is some representative of cj ~ C = B / A .  We leave it to the reader 
to check that this map is well-defined and establishes the desired isomorphism. 

Corollary 6. Let (W ~ d) be an exact complex o f  k-vector spaces. Then there is a 

natural identification 

EUd : Det(W ~ ~ k. 
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Indeed, Det (H~176 is canonically identified with k. (We can easily avoid 

appealing to the determinant of the zero vector space by splitting an exact complex 

into only one group of short exact sequences and then applying Lemma 5.) 

Note that even if we fix the terms W i, the isomorphism in Corollary 6 depends 

on d in a very essential way. 

The determinant of a based exact complex 

Let e = {e,~, ct = 1 . . . . .  dim(W)} be a basis of a vector space W. Denote by 

Det(e) ~ Det(W) the wedge product e l /x  . . . / x  edim(W). Clearly, Det(e) is a basis 

(i.e., a non-zero vector) in Det(W). 

Now let W ~ = ~ W i be a graded vector space and suppose that e = {e(i)} is 

a system ofbases in all W i, so that each e(i) is a basis {e(i)l, e(i)2 . . . . .  e(i)dim(W i) } 
in W i. Let us define a non-zero vector Det(e) e Det(W ~ as 

Det(e) = ~ Det(e(i)) (-1)' , 
i 

where for any non-zero element I of a 1-dimensional vector space L the element 

l -  1 ~ L-1 _ L* is defined by l - l  (l) -- 1. 

We call a based complex a system (W ~ d, e), where (W ~ d) is a complex 

and e = {e(i)} is a system of bases in all terms of W ~ 

Definition 7. Let (W ~ d, e) be a based exact complex. We call its determinant 
the number 

det(W ~ d, e) = Eud(Det(e)) ~ k*. 

Proposition 8. 
(a) Let 

W_ l d> W0 

be a two-term exact complex (i.e., just an isomorphism of  vector spaces). 
Then det(W ~ d, e) is the usual determinant of  the matrix of  d with respect to 
the chosen bases. 

(b) For the shifted complex we have 

det(W~ 1 ], d, e) = det(W ~ d, e) -1 . 

Proposition 9. Let e -- {e(i)} and f - {f(i)} be two systems ofbases in an exact 

complex (W ~ d). Let {A(i)} be the transition matrices, i.e., we have 

dimWi 

f (i)p - ~ A(i)pqe(i)q. 
q=l  
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Then we have 

det(W ~ d, f )  = det(W ~ d, e ) .  H det(A(i))(-1)' 
i 

The proofs of Propositions 8 and 9 are obvious. 

Example 10. Suppose we have a three-term exact complex 

O--~ A ~Z~ B A---~ C--+ O. 

Let {al . . . . .  am }, {bl . . . . .  bn }, {Cl . . . . .  Cp} be bases in A, B, C respectively, so 

n = m + p. Let us fix the grading of the complex so that B lies in degree 0. Let us 

calculate the determinant of this exact complex with respect to the chosen bases. 

Denote by D-I  and Do the matrices of d- i  and do in the chosen bases; 

thus, D-1 is an n x m matrix of rank m, and Do is a p x n matrix of rank p. 

Let D-1 be the submatrix of D_I given by all the m columns and first m rows. 

Permuting if necessary the basis vectors bi (i.e., the rows of D - l )  we can assume 

that det(D_l)  ~- 0. Denote by Do the submatrix of Do formed by the last p = n - m  

columns and all the p rows. It follows from our assumption that det(D0) :/: 0 either. 

d-I 
Proposition 11. In the above situation, the determinant o f  the complex 0 --+ A --+ 

det(o_~) 
B ~ C --+ 0 with respect to the chosen bases is equal to det(b--~0) " 

Proof Let ~1 . . . . .  ~p ~ B have the same meaning as in the proof of Lemma 5, 

i.e., do(~j) = cj. Using the construction in Lemma 5, we see that the determinant 

in question is the coefficient of proportionality 

d - l ( a l )  A . . .  /x d- l (am) /x el A ' ' "  A Cp 

bl A . . .  A bn 

Since Do is invertible, we can choose all the t~j to be linear combinations of 

bm+l . . . . .  bn. Hence the transition matrix between the bases {d- l (a l )  . . . . .  

d-l (am),  cl . . . . .  ~p} and {bl . . . . .  bn} in B has the block form 

D-1 0 ) 
~ - - l  �9 

�9 Do 

The determinant of our complex is the determinant of this matrix, i.e., is equal to 

det(b-S_~) as claimed. 
det(b-~o) ' 

Thus we have several different ways to calculate the determinant of a three- 

term exact complex: they correspond to different choices of a non-zero minor of 

order m of the matrix D_ I. 
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The Cayley formula for the determinant of a complex 

Proposition 11 can be generalized to the case of an exact complex of arbitrary 

length. For simplicity we assume that the non-zero terms of the complex are 

situated in degrees between 0 and r > 0 (the general case can be reduced to 

this one by using Proposition 8 (b)). We shall write our complex in the explicit 

coordinate form 

W ~  {0 ~ k 8~ Do kB~ > . . .  >k  (3) i 

so that a totally ordered set Bi is the indexing set for the chosen basis in the i-th 

term of the complex, and Di is a matrix with columns Bi and rows Bi+l. We 

denote by B the system of standard bases in all the terms of W ~ For any subsets 

X C Bi, Y C Bi+l we shall denote by (Di)xY the submatrix in Di on columns 

from X and rows from Y. Let ni be the cardinality of Bi. 

Definition 12. A collection of subsets li C Bi, i = 0 . . . . .  r is called admissible 

if I0 = 13, Ir = Br, and for any i = 0 . . . . .  r - 1 we have #(Bi - li) -- #(Ii+ 1) 

and the submatrix (Di) B,-li,li+~ is invertible. 

Proposition 13. Admissible collections exist. For any admissible collection (l  i), 

we have 
i - I  

# ( [ i )  - -  ~ - ~ ( _ | ) i - 1  " - J  n j .  

j=O 

Proof Since #(Ii+1) - n i  - # ( l i ) ,  the statement about the cardinality follows by 

induction on i. Denote by Ki Q k 8i the kernel of Di which coincides with the 

image of Di-1. It follows from the definition that (l  i) is an admissible collection 

if and only if for each i we have k B' = k B'-ti (9 Ki. Thus, the existence of an 

admissible collection follows from the obvious fact that any vector subspace of a 

coordinatized vector space has a complementary coordinate subspace. 

Theorem 14. Let (li) be an admissible collection of  subsets for  a based exact 

complex (3). Denote by A i the determinant of  the matrix (Di)B,-l~,li+~. Then the 

determinant of  W ~ equals 

r - 1  

det(W ~ D, B) = H Ai(-1)~-~-~ 
i=O 

In this form the determinant of a based exact complex was introduced by 

Cayley in [Ca4] (see Appendix B). 
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Proof Let Ki be as in the proof of Proposition 13; in particular, K0 = 0, Kr -- k Br �9 
Consider the exact sequences 

Si = {0 ~ K i  ----> k B' ---> K i + l  ~ 0} 

for i = 0 . . . . .  r - 1. For each i we choose a basis f ( i )  in Ki and denote by e(i) 

the system of bases {f(i) ,  Bi, f ( i  + 1)} in the terms of Si. By Definition 7 and 
the construction of the Euler isomorphism (Proposition 3), we have 

det(W ~ D, B) = 17  det(Si, D, e(i)) (-1)'-~-i , 
i 

where the grading in each Si is specified so that the middle term k B' has degree 

1. According to the proof of Proposition 13, we can choose a basis f ( i )  so that 

its image under the coordinate projection k B' ---> k ti is the standard basis of k t'. 
. . . .  

Now we can calculate det(Si, D, e(i)) by Proposition 10. For Si the matrix D-1 

becomes the identity matrix, and Do is just (Di)B~-I~,I~§ Thus in the chosen 

grading we have det(Si, D, e(i)) = A i (see Proposition 8 (b)). The theorem is 

proved. 

Corollary 15. Let (W ~ d, e) be any based exact complex and let 

( = ~ ( - 1 )  TM �9 i �9 dim(W/). 
i 

Then we have 

det(W ~ ~.d, e) = ~.~ det(W ~ d, e). 

For a complex situated in non-negative degrees this follows at once from 

Theorem 14 and Proposition 13. For an arbitrary based exact complex this follows 

from Proposition 8 (b). 

Filtrations and triangularity 

The determinant of a block-triangular matrix is equal to the product of the deter- 

minants of the diagonal blocks. We want to generalize this fact to the determinants 

of complexes. 

A filtration on a vector space W is just an increasing family of subspaces 

Fo W C Fl W C . . .  C Fm W = W. The successive quotients of a filtration F will 
be denoted by grjF(w) = Fj W/Fj_I  W. A filtration on a graded vector space is, 

of course, an increasing family of graded vector subspaces. 



Determinants of  complexes 487 

Proposition 16. If  F is a filtration on a (graded) vector space W then there is a 

canonical isomorphism 

Det(W) ~ (~)  Det(gr~ (W)). 
J 

Proof It suffices to consider the case of a filtration on a vector space with only 

one intermediate space, i.e., an exact sequence of three terms. The statement in 

this case follows from Lemma 5. 

Let W be a filtered vector space and let e = {el } be a basis of W. Then the 

filtration F induces a filtration of e by subsets: Fj (e) = e t3 Fj W}. A basis e is 

said to be compatible with a filtration F if for each j the images ~'i of the vectors 

ei from Fj(e) - Fj_l (e) form a basis in grjF(w). 

A filtration on a complex (W ~ d) is just an increasing family of subcomplexes 

Fj W ~ C W ~ The successive quotients grj F (W o) of the filtration F in this case 

will be complexes themselves; we denote the differentials in these complexes by 

d. Let e = {e(i)} be a system of bases in all the terms of W ~ We say that e is 

compatible with F, if each e(i) is compatible. In this case we denote by s the 

systems of bases in the quotients grj F (W o), formed by images of the vectors from 

e .  

Proposition 17. Let (W ~ F) be a filtered finite complex of finite-dimensional 
k-vector spaces such that all the quotients grj F (W ~ are exact complexes, and let 

e = {e(i)} be a system of bases in the W i compatible with F. Then W ~ is exact 
and 

det(W ~ d, e) = l'-I det(grj F W ~ ' t~, ~').  

J 

Proof Under the identification of Proposition 16, the Euler isomorphism for W ~ 

is identified with the product of Euler isomorphisms for the gr F(W~ A basis 

Det(e) in Det(W ~ is taken by this identification to the tensor product of the bases 

Det(s Our proposition follows from these two facts. 

Let f �9 V ~ -+ W ~ be a morphism of exact complexes and Cone( f )  its cone. 

We have an exact sequence of complexes 

0--+ W ~ ~ Cone(f )  --+ V~ --4 0 (4) 

which implies that Cone( f )  is also an exact complex. Since the i-th term of 

Cone(f )  is V TM ~ W i, systems of bases in the terms of V ~ and W ~ naturally 

produce a system of bases in the terms of Cone(f) .  The following proposition is 

a consequence of the previous one and the exact sequence (4). 
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Proposition 18. For an arbitrary choice of bases in the terms of V ~ and W ~ and 

the corresponding bases in the terms of Cone( f )  we have 

det(Cone(f))  = det(W ~176 

Determinants of complexes of modules over a ring 

Let R be a Noetherian integral domain. We denote by R* the group of invertible 

elements of R. By a based complex over R we shall mean a complex of free 

R-modules (W' ,  d) equipped with a system e of R-bases in all the terms. We 

would like to associate to an exact based complex (W ~ d, e) over R an element 

Det(W ~ d, e) e R*. To do this we can consider the field of fractions k and replace 

a complex of free R-modules by the corresponding complex of k-vector spaces. 

The determinant of the latter complex will lie a priori in k*; we have to prove that 

it lies in fact in R*. To do this we shall extend the concept of the determinantal 

vector space to the case of tings. 

It is necessary to consider not only free R-modules but also the projective 

ones. Recall that a finitely generated R-module P is called projective if it is 

a direct summand of some free module R m. In algebraic-geometric language 

projective modules correspond to vector bundles over the spectrum of the ring, 
while free modules correspond to trivial vector bundles. Let us summarize the 

main properties of the projective modules. All of them are well-known (see, e.g., 

[Bou2], Chapter II,w 

Proposition 19. 
(a) For any exact sequence of R-modules 

O___~ M___~ N f p___~ O 

with P projective there exists a homomorphism g �9 P --~ N such that f g = 

Ide (and hence N ~- M @ P). 

(b) If P is a projective R-module, p is a prime ideal in R, and Sp = R - p then 

the localization P (S~ 1) is a free module over the local ring R (S~ 1). Its rank 

does not depend on p; it is called the rank of  P and denoted rk(P).  

(c) If  P, Q are projective R-modules of ranks m, n respectively, then R-modules 

P |  Srnp, A 
' R 

P, HomR(P, R) 

are projective of  ranksmn,,(m+r-l)r , '  (m), m respectively. 
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(d) I f  P is a projective R-module of  rank 1, then the natural map 

P | (HomR(P, R)) --+ R 

is an isomorphism of  R-modules. 

Part (b) of this proposition means that projective modules are "locally free." 

In view of part (d), we shall call projective R-modules of rank 1 invertible. We 
denote by Inv(R) the category of invertible R-modules and their isomorphisms. 
The module HomR(P, R) for an invertible P will also be denoted by p-1.  

For a projective R-module M of rank r, we denote DetR(M) = A~(M) 
Inv(R). This is an invertible R-module. The determinantal module DetR(M ~ 
for a projective graded R-module M ~ (in particular, for a complex of projective 

R-modules) is defined similarly to the vector space case. 

Theorem 20. Let (M ~ d) be a finite exact complex of  projective R-modules. Then 

there is a natural isomorphism Eud �9 DetR(M ~ -+ R of  invertible R-modules. 

Proof Denote by Ki Q M i the submodule Ker(di) -- Im(di_l). Consider the 

exact sequences 
0--4 Ki ~ M i ~ Ki+l --+ O. 

The theorem follows from two lemmas" 

Lemma 21. All Ki are projective R-modules. 

Lemma 22. For a short exact sequence 

O--+ K--+ M--~ L--+O 

of  projective R-modules there is a natural isomorphism 

DetR(M) ~ DetR(K) | DetR(L) 

in the category Inv(R). 

Lemma 21 is proved by induction starting from the fight end of the complex 

using Proposition 19 (a). Note that even if all M i are free we cannot guarantee in 

general that the Ki will be free; this is why we have to consider projective modules. 

Lemma 22 is proved by localization using Proposition 19 (b). We define first 

the required isomorphisms for each localization similarly to Lemma 5. Then we 

have to check that these isomorphisms fit together into an isomorphism of invertible 

R-modules. We leave these details to the reader. 
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If e is a system of R-bases in terms of a finite complex M ~ of free R-modules 
then we define a basis element Det(e) of the free R-module DetR (M ~ of rank 1 as 

in the case of vector spaces. Note that any two basis elements of a free module of 

rank 1 can be obtained from each other by multiplication by an invertible element. 

Definition 23. Let (M ~ d, e) be a based exact complex of free R-modules. Its 

determinant is defined 

detR(M ~ d, e) = EudDet(e)) e R*. 

Proposition 24. If k is any R-algebra and (M ~ d, e) is a based exact complex of 
free R-modules then 

detR(M ~ d, e) = detk(M" | k, d, e). 

The proof is obvious. Thus we have proved, in particular, that if k is the field 

of fractions of R, then detk(M ~ | k, d, e) e R*. 

The case of a discrete valuation ground field 

Another possibility of using a "triangular" structure of a complex appears when 

the ground field k itself is filtered or, more precisely, is equipped with a dis- 

crete valuation (see, e.g., [vdW], Chapter 18). In this book we use only the case 

when k = C((t)),  the field of formal Laurent series with complex coefficients 
Y'~.i~ ti -N ai , ai E C. (Another important example would be the field Qp of p- 

adic numbers.) But it is notationally even easier to consider the case of an arbitrary 
discrete valuation field k. 

We denote the valuation by ord : k* ~ Z. For C((t))  it is given by 

o r d ( ~  ai t i )= min{i " ai ~ 0}. 

We define a decreasing filtration on k by 

Fmk -- {f  ~ k :  o rd( f )  > m}. 

We have 
(rmk)(Fnk) C Fm+nk. 

In particular, F~ is a subring called the ring of integers of k. (For example, for 

k = C((t)) we have F~ -- C[[t]], the ring of formal power series Ei=oaiOO ti.) 
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The quotient fr = F ~  is a field called the residue field of k (for k = C((t)) 
we have k = C). The associated graded ring 

gr~k = ~ )  Fik /Fi+lk  

i 

is isomorphic to the Laurent polynomial ring k[t, t - l  ]. In general this isomorphism 
is not canonical and requires a choice of an element Jr e k with ord(rr) = 1 which 

will correspond to t ~ kit, t - l ] .  (For k = C((t)) the obvious choice is zr = t.) 

For any f ~ k we define the of f as the image of f in grF rdfk. We denote this 

leading term by Lt ( f )  e gr~k. (For k = C((t)) the leading term of a series is just 
its first non-vanishing term; so it is "leading" when t --+ 0.) 

Definition 25. Let W be a finite-dimensional vector space over a discrete valuation 
field k. A decreasing filtration { F m W} of W by additive subgroups is said to be 

compatible with the valuation if the following conditions hold: 
(a) (Fmk)(FnW) C Fm+nw. 

(b) If Jr ~ k* is any element of order 1, then the multiplication by Jr gives an 
isomorphism F i (W)  --+ F i+l (W) .  

(c) The F~ F~ is free of finite rank and generates W over k. 

Such a filtration is uniquely determined by the "lattice" F~ C W. For any 

w ~ W we denote by OrdF(w) the minimal m such that to ~ F m (W) and by Lt(to) 
ord(w) the image of to in gr F (W). The following proposition is obvious. 

Proposition 26. I f  F is a filtration on W compatible with the valuation then the 

gr'Fk-module gr~ W is free. I f  the ei form a basis of W, then the Lt(ei) are free 

generators of  gr" F W. 

Proposition 27. Let W ~ be a complex of k-vector spaces equipped with a decreas- 

ing filtration F compatible with the differentials and valuation. Suppose that the 

complex gr~(W ~ of modules over gr~k --/r t -1 ] is exact. Then 

(a) W ~ is an exact complex. 

(b) For any system e of  bases in the terms of  W ~ we have 

Lt(det(W ~ d, e)) - det(gr,~(W~ d, Lt(e)). 

Proof. (a) Consider the spectral sequence of the filtered complex 

E~ q -- Hp+q (gr-q (W~ ~ H p+q (W~ 

Each term of this spectral sequence is a finitely generated module over grffk - 

k[t, t - l ] .  Since the ring k[t, t -1] is Noetherian, the spectral sequence converges 

(even although the filtration has infinitely many terms). Hence W ~ is exact. 
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(b) By our assumptions, we have a filtration on the one-dimensional vector 

space Detk(W ~ which is compatible with the filtration on k. The associated 

graded module of this filtration is identified with Detf4t,t_~l(grl.(W~ Similarly, 

in Detk(W ~ and Detitt,t_~l(gr'~(W~ we have bases Det(e) and Det(Lt(e)). Our 

assertion follows from the fact that Det(Lt(e)) = Lt(Det(e)). 

Note that in particular we have calculated the order of the determinant (this 

will be used below). Apart from this, Proposition 27 is a generalization of the 

following obvious fact. 

Proposition 28. Let D be an n x n matrix with entries in the ring C[[t]]. Then the 

constant term of the series det(D) equals the determinant of the numerical matrix 

formed by constant terms of entries of D. 

Prime divisors of the determinant and cohomology 

Let D : Z n -+ Z" be an integral n • n matrix. It is known that if Det(D) is 

non-zero then its absolute value coincides with the order of the quotient group 

zn/Im(D).  We give a generalization of this fact to the case of determinants of 

complexes over more general tings. 

Let R be a Noetherian integral domain (in our applications we need the cases 

when R = C[xl . . . . .  xn] or Z[xl . . . . .  Xn] is a polynomial ring). We shall impose 
on R the following conditions (which hold in the above examples): 

(a) R is regular, i.e., any finitely generated R-module has a finite projective 

resolution. 

(b) R is factorial, i.e., any non-zero element a ~ R has a prime decomposition 

1-~ nv a = e Jr v , (5) 

(where e ~ R* and the Try are prime elements) which is unique up to a 

permutation of the try and multiplication of them by elements from R*. 

Condition (b) is not strictly necessary and is imposed to simplify an exposition. In 

the case of polynomial tings, in (a) we can replace "projective" by "free." 

Let k be the field of fractions of R. Any non-zero a ~ k has a prime decom- 

position of the type (5) but with possibly negative exponents n~. We call nv the 

rr~-adic order of a and denote it by ord~ v (a). 

Let (M ~ d, e) be a based complex of free R-modules. Suppose that the 

complex M ~ | k of k-vector spaces is exact but M ~ is not necessarily exact. 

(Geometrically we can view M ~ as a complex of vector bundles and our assumption 

means that it is exact "at a genetic point", but not necessarily everywhere so we 
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shall use the term "generically exact" for such complexes.) We are interested in the 
prime decomposition of det(M ~ | k, d, e) e k*. Note that the problem discussed 

in the previous subsection is a particular case of this problem, corresponding to 

the case when R = F~ is a discrete valuation ring and M ~ -- F~ ~ 

Proposition 29. For any prime element Jr ~ R the 7r-adic order of 

det(M ~ | k, d, e) 

does not depend on the choice of R-bases in terms of M ~ 

Indeed, another choice of bases leads, by Proposition 9, to the multiplication 

of the determinant by an element from R*. 

So zr-adic orders of the determinant depend only on the complex M ~ itself. 

If M ~ is exact then its determinant lies in R* and all its zr-adic orders are zero. So 

in the general case, it is natural to relate these orders to the cohomology modules 

of M ~ 

We shall need the notion of multiplicity (or length) of a finitely generated R- 

module along a prime ideal p C R. It is defined as follows (cf. [Bou 2], Chapter 4 

w Let Sp = R - p and Rp = R(S~ 1) be the localization of R at p. This is a local 

ring and we denote by m p =  p �9 Rp its maximal ideal. The quotient kp = Rp/mp 
is a field which is the field of fractions of the domain R/p. 

Let M' be a finitely generated module over Rp. Every quotient mpMi t/mpi+ 1M' 

is a finite-dimensional vector space over kp. We say that M' has finite length if 

i M'  = 0 for i >> 0. For such M', we define the multiplicity of M' mp 

i . - p -  i + l M P  multmp (M') = ~ dimkp mp M / r a p  . 
i 

Now let M be a finitely generated R-module. We denote by Mp = M | Rp 

the localization of M at p. We define the multiplicity of M at p to be 

mult,n p (Mp), 
multp(M) -- { 0 

if Mp has finite length; 
otherwise. 

Theorem 30. For any prime element 7r ~ R and any generically exact based 
complex (M ~ d, e) of free R-modules we have 

ord,~ (det(M" | k, d, e)) = ~-~(-1)imult(~)(HiM'), 
i 

where (zr ) is the principal ideal generated by zr. 
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Note that the localization R(,~) is a discrete valuation ring with the maximal 
ideal generated by Jr. 

To prove Theorem 30 we shall define, following [Knud-Mum], the determi- 
nantal modules for R-modules and complexes which are no longer projective. The 
main idea is to use a projective resolution 

O--~ Pm-->"'---> Po--'~ M--> O 

of an arbitrary module M and to define DetRM a s  ~i DetR(Pi) | postulating 
the Euler isomorphism. This requires checking a lot of compatibility properties 
most of which we will refer the reader to loc. cit. 

Let D b (R) be the derived category of finite complexes of finitely generated 
R-modules. Recall [Bo], [KS] that this category is triangulated, i.e., equipped 

with a class of diagrams 

A ---> B ---> C ---> A[1] (6) 

called exact triangles. They satisfy the four axioms of Verdier, see loc. cit.. For 

any triangulated category .,4, we denote by Ko(.A) the Grothendieck group of .,4, 

i.e., the Abelian group generated by symbols [A], A ~ Ob(.A) which are subject 
to relations [B] = [A] + [C] for any exact triangle (6). Recall that by Inv(R) we 

have denoted the category of invertible R-modules, i.e., of projective R-modules 
of rank 1. 

Proposition 31. There exists a functor DetR : Db(R) ~ Inv(R) which coincides 
with the above defined determinant functor on complexes of projective modules, and 
has the following property: for any exact triangle (6) there is a natural isomorphism 

DetR(B) ~ DetR(A) | DetRC. 

The proof is based on the fact that any object of Db(R) is isomorphic to a complex 

of projective R-modules (existence of projective resolutions) and on Theorem 20 

which ensures that Dets behaves as expected on exact complexes (see [Knud- 

Mum]). 

Let us mention also the following corollary of this proposition, to be used later. 

Let M ~ be any finitely generated graded R-module. Regarding M ~ as a complex 

with zero differential, we get a well-defined invertible R-module DetR(M~ 

Corollary 32. If d is a differential making a graded R-module M ~ into a complex 
then there is a natural isomorphism of invertible R-modules 

EUd : DetR(M ~ ---> DetR(H~176 
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which is compatible with the extension of scalars from R to k, its field of fractions. 

Now let us prove Theorem 30. First note that both sides of the required 

equality are of local nature. Thus it suffices to consider the case when R is a local 

discrete valuation ring. Then projective R-modules are free and every submodule 

of a free R-module is free so every finitely generated R-module has a free resolution 

of length 2. Let 791 C Db(R) be the subcategory of genetically exact complexes. 

For every complex M ~ ~ 791, every cohomology module H i (M*) is torsion, i.e., 

is annihilated by some non-zero element of R. 

Consider the function M ~ ~ ord~det(M ~ on objects of 7)1. It is additive in 

exact triangles by Proposition 31 and so defines a homomorphism K0(Z)l) ~ Z. 

Note that the fight hand side of the equality in Theorem 30 also defines a 

homomorphism of the same groups. 

Proposition 33. Let R be a discrete valuation ring and let yr ~ R be an element of  
order 1. Then the Grothendieck group Ko(791) is isomorphic to Z. The generator 

can be identified with the class of the R-module R/Jr R. 

Proof. This follows by considering the filtration of every R-module M by sub- 

modules zr a M. If M is torsion then zraM = 0 for a >> 0 so the class [M] of M in 

K0(791) is equal to ~-~[rraM/rr a+l M]; also every zraM/jra+lM is a vector space 

over the field R/rr R so its class in K0 is a multiple of the class of R/zr R. This 

proves our proposition. 

In order to complete the proof of Theorem 30, it remains to compare how the 

two homomorphisms in question act on the generator of the Grothendieck group. 

By definition, mult~ (R/zr R) -- 1. On the other hand, this module has a two-term 
free resolution 

O--+ R--~ R--+ R/Tr R - +  O. 

The determinant of the two-term complex given by multiplication by zr is zr itself 

and its zr-adic order is also 1. Theorem 30 is proved. 

The de terminant  of a complex as a g.c.d, of maximal  minors 

Theorem 13 expresses the determinant of a complex as a rather complicated alter- 

nating product of certain minors of the differential matrices. Here we show that 

this determinant can be sometimes expressed as the greatest common divisor of 

the maximal minors of the rightmost differential. 

Let R be a Noetherian integral domain satisfying conditions (a) and (b) above, 

and k be the field of fractions of R. Consider a genetically exact based complex 

of free R-modules of the form 

M ' =  {0---> R B-" O-m> e B_m+, O-m+,~ . . .  o_2> R B-' O_l> R nO ___> 0}. (7) 
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We assume that R si is situated in degree i for i = - m  . . . . .  0. 

Theorem 34. Suppose that mult(~r)H i (M ~ = O for i < 0 and any prime element 

zr E R. Then det(M ~ is equal up to an invertible element e E R*, to the greatest 

common divisor of  the maximal minors of  the matrix D-1. 

Proof. By considering localizations of R at various ideals (zr), this reduces to the 

following lemma. 

L e m m a  35. Let k be a discrete valuation field with the ring of  integers R and 

maximal ideal m. Let D �9 R B-~ --+ R B~ be a homomorphism of  free R-modules 

such that Dk �9 kB-' __+ kB~ is surjective. Then 

multm(Coker(D)) = minlord(At,  s0), (8) 

where I runs over all subsets of  B_I of  size #(B0), and At, s0 is the minor of  D on 

the columns from I and rows from Bo. 

Proof of  the lemma. Both sides of (8) remain unchanged if we subject D to ele- 

mentary transformations of rows and columns (with coefficients in R) or multiply 

any row or column by an element from R*. Using a version of the Euclid algorithm 

for the ring R, we can bring, by transformations of the described type, any matrix 

over R to a matrix of the form [laij II where aij -- 0 for i # j and each aii is either 
0 or 7f mi where Jr ~ R is some fixed element with ord(zr) -- 1. For such a matrix 

the statement is obvious. 

Determinants  of spectral  sequences 

Consider a spectral sequence (Er pq, dr), r > 1 of k-vector spaces. We assume 

that the Er pq for p, q e Z are finite-dimensional, and, for any given r, only a finite 

number of them are non-zero. Each dr is thus a differential in Er ~ = ~])p,q Er pq 

of bi-degree (r, r - 1) such that the cohomology of Er ~ with respect to dr is Er'~l. 

A spectral sequence is called convergent if for r >> 0 all the differentials dr 

are 0 so that Er pq -- Er+ 1 ,Pq �9 this common vector space is denoted by EPoo q. We call 

a spectral sequence exact if Er ~ -- 0 for r >> 0. 

It is possible to generalize the notion of the determinant of a complex to 

based exact spectral sequences. Namely, for any spectral sequence we define the 

determinantal vector spaces 

Det(Er ~ = (~ )  Det(Efq) (-1)p+q 
P,q 

The Euler isomorphism identifies, for each r, the space Det (Er ' )  with Det(Er~ ). 

Therefore, if the spectral sequence is exact, we obtain an isomorphism Eu �9 

Det(E~") -+ k. 
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Suppose now that we have chosen a system of bases in all the graded com- 

ponents of the first term E f q of an exact spectral sequence. Denote this system 

of bases by e. Then we obtain a basis vector Det(e) ~ Det(E~ '~ as before. We 

call the determinant of a based exact spectral sequence (Er ~ dr, e) the image 

Eu(Det(e)) e k*. Any exact complex W ~ of vector spaces can be considered as 

an exact spectral sequence: E~ ~ = Wp, E pq -- 0 for q # 0, and Er pq -- 0 for 

r > 1. The determinant of this spectral sequence coincides with the determinant 

of a complex defined earlier. 

Now we extend Theorem 30 to describe the prime decomposition of the 

determinant of an exact spectral sequence. Let R be a Noetherian integral domain 

with the field of fractions k. As before, we assume that R is regular and factorial. 

Let (Er ~ be a spectral sequence of finitely generated R-modules such that the 

components E fq of its first term are projective. We call (Er ~ generically exact if it 

becomes exact after tensor multiplication with k. Suppose that (Er ~ is convergent 

(over R) and genetically exact. Then, as for usual complexes, we have an element 

det(E) e k defined up to multiplication with elements of R*. We want to find 

rr-adic orders of det(E) in terms of the limit R-modules EPoo q. 

Theorem 36. Let rr ~ R be a prime element. Then 

ordjrdet(E ~176 -- Z( -1 )P+qmul t~r  E~. 
P,q 

Proof Let M ~ = (~  M i be a finitely generated graded R-module. The con- 

struction of the determinant R-module DetR(M ~ above may be reformulated as 

follows. 

(1) The determinant k-vector space Detk (M ~ | k) contains a distinguished vector 

Det(M ~ defined up to multiplication by elements of R*. 

(2) If M ~ is a complex with differential d then the Euler isomorphism EUd takes 

Det(M ~ to Det(H~176 

(3) If each M i is torsion, then 

det (M')  = e .  
)(_1)~ 

I-I l-I  multor)Hi(M') 
n'ER prime i 

All these statements apply as well to doubly graded complexes like Er ~ By 

applying (2) to each Er ~ and (3) to E ~  we get our theorem. 
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On the Theory of Elimination 

A. Cayley 

[Cambridge and Dublin Math. Journal, 3 (1848), 116-120] 

Suppose the variables X1, X2 . . . . .  g in number, are connected by the h linear 

equations 
0 1  - -  ( ~ l X l  -~- c t2X 2 -~- " ' "  - -  O, 

0 2  - -  / ~ l X l  + / ~ 2 X 2  + " "  -"  O, 

these equations not being all independent but connected by k linear equations 

t O  -+- t O  2 + ' ' '  - - 0  0 1  --- Or' 1 1 Ct 2 

(I)2 " -  ]~t l 1~1 "~-/~t202 - F ' ' "  -"  0 

these last equations not being independent but connected by the I linear equations 

"O1+  " O 2 + . . . = 0 ,  ~I/l - -  0~1 ~2 
It It 

3 2 0 2  "F " ' "  O, q~2 = / ~ l ~ l  + = 

and so on for any number of systems of equations. 

Suppose also that g - h + k - l - t - . . .  = 0; in which case the number of 

quantities X1, X2 . . . .  will be equal to the number of really independent equations 

connecting them, and we may obtain by elimination of these quantities a result 

V - - 0 .  

To explain the formation of this final result, write 
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Oll 

012 ~2 

! 

Ol 1 
! 

ot 2 

! I /  11 
Ol l [31 

/ /  II 
Ol 2 [32 

PiP 
Ol 1 

0ltr162 2 

I 

2 

which for shortness may be thus represented, 

where Q, f2', f2", f2'", f2 ' ' ,  ... contain respectively h, h, l, l, n, n, ... vertical 

rows and g, k, k, m, m, p .... horizontal rows. 

It is obvious from the form in which these systems have been arranged, what 

is meant by speaking of a certain number of the horizontal rows of f2' and the 

supplementary vertical rows of f2; or of a certain number of the horizontal rows 

of f2" and the supplementary vertical rows of ~2', &c. 

Suppose that there is only one set of equations, or g -- h: we have here only a 

single system Q, which contains h vertical and h horizontal rows, and V is simply 

the determinant formed with the system of quantities f2. We may write in this case 

V = Q .  

Suppose that there are two sets of equations, or g -- h - k: we have here 

two systems Q, Q', of which f2 contains h vertical and h - k horizontal rows, f2' 

contains h vertical and k horizontal rows. From any k of the h vertical rows of 

f2' form a determinant, and call this Q'; from the supplementary h - k vertical 

rows of f2 form a determinant, and call this Q: then Q' divides Q, and we have 

V = Q + Q ' .  
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Suppose that there are three sets of equations, or g -- h - k -t- l: we have here 

three systems, f2, f2', ~ "  of which f2 contains h vertical and h - k + I horizontal 

rows, ~ '  contains h vertical and k horizontal rows, fl" contains l vertical and k 

horizontal rows. From any I of the k horizontal rows of ~2" form a determinant, 

and call this Q"; from the k - l supplementary horizontal rows of fl ' ,  choosing the 

vertical rows at pleasure, form a determinant, and call this Q'; from the h - k -I- l 

supplementary vertical rows of fl form a determinant, and call this Q: then Q" 

divides Q', this quotient divides Q, and we have V = Q + (Q'  + Q"). 

Suppose that there are four systems of equations, or g = h - k -t- l - m: 

we have here four systems, fl, f2', ~2" and f l " ,  of which ~2 contains h vertical 

and h - k + l - m horizontal rows, ~ '  contains h vertical and k horizontal rows, 

~ "  contains 1 vertical and k horizontal rows, and f2"' contains 1 vertical and m 

horizontal rows. From any m of the 1 vertical rows of ~" '  form a determinant, 

and call this Q'"; from the I - m supplementary vertical rows of f2", choosing the 

horizontal rows at pleasure, form a determinant, and call this Q"; from the k -  1 + m  

supplementary horizontal rows of fl ' ,  choosing the vertical rows at pleasure, form 

a determinant, and call this Q'; from the h - k -t- l - m supplementary vertical 

rows of Q form a determinant, and call this Q: then Q'" divides Q", this quotient 

divides Q', this quotient divides Q, and V = Q + {Q' + (Q" + Q'")}. The mode 

of proceeding is obvious. 

It is clear that if all the coefficients ct,/~ . . . .  be considered of the order unity, 

V is of the order h - 2k + 3l - &c. 

What has preceded constitutes the theory of elimination alluded to in my 

memoir "On the Theory of Involution in Geometry", Journal *, vol. II, p. 5 2 -  

61. And thus the problem of eliminating any number of variables x, y . . . .  from the 

same number of equations U = 0, V = 0 . . . .  (where U, V . . . .  are homogeneous 

functions of any order whatever) is completely solved; though, as before remarked, 

I am not in posession of any method of arriving at once at the final result in its most 

simplified form; my process, on the contrary, leads me to a result encumbered by 

an extraneous factor which is only got rid of by a number of successive divisions 

less by two that the number of variables to be eliminated. 

To illustrate the preceding method, consider the three equations of the second 

order, 

U = ax  2 -t- by 2 + cz 2 -t- l y z  -t- m z x  + n x y  = 0, 

V --- a ' x  2 + b 'y  2 d- CtZ 2 4;" l ' y z  + m ' z x  + n ' x y  = 0, 

* Cambridge and Dublin Math. Journal 
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1f I I  W = a " x  2 q- b " y  2 d- cttz2 -Jr- l y z  + m zx  + n " x y  = O. 

Here, to eliminate the fifteen quantities x 4, y4, z 4, y3z,  z3x,  x3y ,  y z  3, z x  3, xy3 ,  

yEz2, z2x 2, xEy 2, x 2 y z ,  yEzx ,  zExy,  we have the eighteen equations 

x 2 U  = O, y 2 U  -- O, z2U = O, y z U  = O, z x U  = O, x y U  = O, 

x 2 V  -- 0, y 2 V  -- 0, z 2 V  = 0, y z V  -- 0, z x V  = 0, x y V  -- 0, 

x 2 W  -- 0, y 2 W  "- 0, z 2 W  -- 0, y z W  = 0, z x W  = 0, x y W  -- 0, 

equations, however, which are not independent, but are connected by 

a " x  2 V + b"y  2 V + c"z 2 V + l " y z  V + m " z x  V + n " x y  V 

- ( a ' x  2 W + b 'y  2 W + c'z  2 W + l ' y z  W + m ' z x  W + n ' x y  W )  = O, 

a x 2 W  + b y 2 W  + c z 2 W  + l y z W  + m z x W  + n x y W  

- ( a ~ t x 2 U  + b " y 2 U  + c" z2U + l " y z U  + m " z x U  + n " x y U )  = O, 

a ' x  2 V + b ' y  2 V + c'z 2 V + l ' y z  V + m ' z x  V + n ' x y  V 

- ( a x 2 V  + b y 2 V  + c z 2 V  + l y z U V  + m z x V  + n x y V )  = O. 

Arranging these coefficients in the required form, we have the following value 
of V. 

a a t a tt 

b b' b" 
C C t C tt 

l b l' b' l" b" 
m c m t c t m t, c t, 

n a n t a '  ntt 
l c l' c' l" c" 

m a m' a' m" a" 
n b n p b' n" 
c b l c' b' l' c" b" l" 

c a m c ' a ' m ' c 't a" 
b a n b' a' n' b" a" 
1 a n m l' a' n' m' l" 

m n b l m' n' b' l' m" 
n m l c n' m' 1' c' n 't 

m it 

a tt 

b tt  

n It 

a tt r l  tt m tt 

n" b" l" 
mtt lit ctt 

a" b" c" l" m" n" - a -  - b '  - c '  - l '  - m '  - n '  
- a "  - b "  - c "  - I"  - n "  a b c 1 m n 
a' b' c' l' m' n' - a  - b  - c  - l  - m  - n  
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which may be represented as before by 

Thus, for instance, selecting the first, second and sixth lines of fl' to form 

the determinant Q', we have Q' = a"(a'b" - a"b'); and then Q must be formed 

from the third, fourth, fifth, seventh, &c . . . .  eighteenth lines of f2. (It is obvious 
that if Q' had been formed from the first, second, and third lines of f2', we should 

have had Q' = 0; the corresponding value of Q would also have vanished, and an 
illusory result be obtained; and similarly for several other combinations of lines.) 
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Notes and References 

Here we collect some additional bibliographic comments and references. 

Part I 

Chapter 1. The concept of projective duality is very classical, going back at least 
to Poncelet. Duality for plane curves is discussed in many classical books, see, 
e.g., [Br 2], [Hilt], [vdW 1]. For a modem survey of projective duality in higher 
dimensions see [K1], [Ho12]. A detailed discussion of subtleties appearing in finite 
characteristic (e.g., the violation of the biduality theorem) can be found in [KP], 
see also references therein. The exposition in Section 5 follows [WZ2]. 

Chapter 2. A better understanding of the origins of Cayley's "homological elim- 
ination" method can be obtained from his paper [Ca3] studying systems of hyper- 
surfaces "in involution" (in modem terminology, linear systems of hypersurfaces). 
This paper contains a discussion of the idea of higher syzygies as well as an inter- 
esting bibliograpgy of still older works on the subject. 

The material of Sections 2-4 is taken mostly from [GZK2]. Theorem 3.3 
appeared first in [GK]. 

Chapter 3. More information on Grassmannians can be found in [GH], [HP], see 
also [DEP] for a modem treatment of the questions related to the coordinate ring. 
A classical reference for associated hypersurfaces and Chow forms is [vdW 1 ]; a 
more modem exposition is given in [Ga]. Theorem 2.7 appeared in [KSZ2]. 

In our approach the mixed (El . . . . .  Ek) resultant is defined only up to a 
constant. This can be reformulated in a more "invariant" way by saying that 
the resultant takes values in a certain one-dimensional vector space which is not 
canonically identified with C. For a detailed discussion of this space as a functor 
of the bundles ~i see [De3], where this vector space is denoted (s . . . . .  Ek). 

Chapter 4. As in Chapter 3, the standard reference on Chow varieties is 
[vdW1], w In the complex analytic situation the analogs of Chow varieties 
were constructed in [Bar]. The topology of Chow varieties G(k, d, n) in the limit 
d --~ oo was studied in [Law]. Theorem 1.6 was brought to our attention by 
L. Ein. 

Symmetric functions in vector variables were studied at the turn of the century 
by E Junker [Ju 1 ], [Ju 2], following earlier work of MacMahon [Macm]. 

The differential-geometric structure on Grassmannians (Section 3) is very 
important in integral geometry, see, e.g, [GGS]. 
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Part H 

Chapter 5. This material is mostly well-known (see e.g., [Fu2], [O]). 

Chapter 6. The Newton polytopes (or rather polygons) go back to Newton who 
used them to construct power series expansions of algebraic functions in one 
variable, see [Wal] and also [Hilt], [vdW1 ]. In classical times mainly the lower 
part of the boundary of the Newton polygon (the so-called Newton diagram) was 
taken into account. See, however, [Br2] for a surprisingly modem treatment of the 
full Newton polygon and its application to the study of curves with singularities. 
Applications of higher-dimensional Newton polytopes to the study of singularities 
of functions can be found in [AVG]. 

The moment map can be defined for any Hamiltonian action of a Lie group G 
on a symplectic manifold M, see [Ar]. Here we consider the case when G = ($1) k 
is the compact torus, and M is a toric variety with Kiihler metric. 

The material in Section 3 is mostly taken from [KSZ2]. 

Chapter 7. The material is mostly taken from [GZK3]. Sections 1E and 1F are 
based, respectively, on [BS] and [BFS]. The results in Section 3D were obtained 
by two of the authors (M.K. and A.Z) together with I.Pak and A. Postnikov. 

Chapter 8. The results in Sections 2, 3 are mostly based on [KSZ2]. 

Chapter 9. The exposition in Sections 1, 2 is based on [GZK3]; that in Section 3 
is based on [Kal ]. 

Chapter 10. The principal A-determinant was originally introduced in [GZK 3] 
as the determinant of the complex L ~ (A,/); the interpretation (1.1) was found in 
[KSZ 2]. The exposition here is a modified and expanded version of [GZK 3]. 

Chapter 11. The material of Sections 1-4 is taken from [GZK 3] (with some cor- 
rections and modifications). The combinatorial Newton numbers and the Newton 
function of a triangulation were rediscovered and studied by R. Stanley in [Stan] 
under the name of "local h-vectors." The results and methods in [Stan] are similar 
to ours although the motivations are different. R. Stanley represents the Newton 
function (in our terminology) as the value at 1 of some polynomial in one variable 
with non-negative coefficients. The coefficients of these polynomials come from 
the multiplicities of sheaves C__10 ] [d] in Corollary 2.11. 

An exposition of Viro's theorem (Section 5) and related questions was recently 
given in [Ris]. This theorem influenced many further developments, see, e.g., 
[Shu], [Stu 2]. In fact, the result of Viro is more general: in some cases it makes 
possible to decribe the isotopy type of a hypersurface by "gluing" isotopy types of 
simpler hypersurfaces. 

Part III 

Chapter 12. Discriminants and resultants for polynomials in one variable are 
discussed in many classical books on algebra, see, e.g., [Net], [Sal]; the latter 
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reference contains extensive tables for discriminants and resultants written in terms 
of monomials, and also using the formalism of the symbolic method of the invariant 
theory. The paper [Go 1 ] treats the problem of writing the resultant in the symbolic 
form. Some numerical invariants of singularities of discriminantal hypersurfaces 
were calculated by Hilbert [Hil 1 ]. 

The material in Section 2 is mostly taken from [GKZ1 ]. For applications of 
the polytopes Nm,n in the category theory see [KV]. The interpretation of the faces 
of Nm,n in terms of labyrinths (equivalent to that of [GKZ1 ]) is due to M. Kapranov 
and V. Voevodsky. 

Chapter  13. For a discussion of discriminants and resultants of forms in sev- 
eral variables from the classical point of view, see [Net], [Macaul2]. A modem 
treatment of resultants is given in [Jou], see also references therein. The Cayley 
formula is discussed in [Net], [Sal], [Fi]. Section 1C is based on [WZ1]. The 
discussion of Sylvester type formulas in Section 2A is based on [SZ1 ], [WZ1 ]. 

Chapter  14. The exposition is based mostly on [GKZ 3]. Section 3D is motivated 
by [WZ1 ]. 

Appendix A. A systematic early treatment of determinants of complexes can be 
found in [Fi] whose aim was to give a rigorous proof of Cayley's formula for 
the resultant [Ca 4]. (Fischer called complexes "Ketten der korrespondierenden 
Matrizen"; the present-day terminology goes back to [Hop].) 

In topology determinants of complexes were introduced in 1935 by Reide- 
meister and Franz [Fr], who seemed to be unaware of the work of Cayley and 
Fischer. They used the word "torsion" for the determinant-type invariant they 
constructed. The 1950 paper of Whitehead [Wh] (see also [Miln 2]) contains a 
generalization of the Reidemeister-Franz torsion and applications to the theory of 
simple homotopy type. 

There are several more recent works on the subject which influenced our 
exposition: [BF], [De 3], [Knud-Mum], [Q], [RS]. 



List of Notations 

A: a finite subset of Z k-1 or R k- 1 

AffR(1): the real affine subspace (in an affine space) spanned by a set I 

Affz(1)" the affine Z-lattice (in an affine space) generated by a set I 

/3 = /3 (k ,  n): the coordinate ring of the Grassmannian G(k, n) 
Bd" degree d graded component of/3 

B ~ (l)" one of two complexes whose cone is the discriminantal complex 

B ~ (l)" the complex of sheaves whose complex of global sections is B ~ (l) 

C A. the space of Laurent polynomials on monomials 

with exponents in A C Z k-1 

c(A, ~-~ the multiplicity of a Lagrangian variety A in the charac- 

teristic cycle of a constructible complex .T "~ 

Char(M)" the characteristic variety of a 7~-module A4 

C h a r ( M ) "  the characteristic cycle of a D-module A4 

ci(E): the i-th Chem class of a bundle E 

cx (q): the Chem polynomial of a projective variety X 

Con(Z)" the conormal space of a subvariety Z 

Conv(1)" the convex hull of a set I 

C~ (X, A4): the discriminantal complexes of a projective variety X 

with respect to a twisting sheaf .A4 

C ~ (X,/) :  the same as C~_ (X, O(l)) 
C~: (/~1 . . . . .  /~k I.A/[)" the mixed resultant complex 

C ~ (A,/) :  the discriminantal complex of the toric variety XA; 

the complex calculating the regular A-determinant DA 
CVr~ (K)" the combinatorial volume of a cone K with respect to 

a triangulation E 

CNr. (K)" the combinatorial Newton number of a cone K with respect 

to a triangulation E 

DA" the regular A-determinant 

79M" the sheaf of differential operators on a manifold M 

e: a basis vector, a basis or a system of bases in terms of a complex 

EA" the principal A-determinant 



518 List of  Notations 

E A (f ,  S, ~)" the generalized principal determinant 

.Tr: a sheaf; a fan 

.T'~ a complex of sheaves 

f" a polynomial from C A', a section of a line bundle. 

G (k, n)" the Grassmann variety 

G (k, d, n): the Chow variety 

gq," the concave function corresponding to ~p" A --+ R 

H__ / (.T'~ �9 the cohomology sheaf of a complex of sheaves .Y TM 

H i (M, .T'~ the hypercohomology of a space M with coefficients in 

a complex of sheaves .T "~ 

[il . . . . .  ik]: the bracket (Plticker coordinate) 

J (E): the first jet bundle of a line bundle E 

j ( f ) :  the first jet of a section f 

K: a convex cone 

K (I): the convex cone generated by a set I 

K+(S): the convex hull of S - {0} where S is a semigroup 

K_(S): the subdiagram part of a semigroup S 

/C+(E, s): the Koszul complexes associated to a section s 

of a vector bundle E 

L i (~): the space of discrete/-vector fields on a lattice 

L i (S): the space of discrete/-vector fields on a semigroup S 

L~ the complex calculating the principal A-determinant EA 

L~ I, S, E): the complex calculating Ea(f ,  S, "~) 

LinR(l): the R-vector subspace (in a vector space) generated by a set I 

Linz(1): the abelian subgroup (in a vector space) generated by a set I 

multz(M)" the multiplicity of a module M along a component Z 

of its support 

multz(Y)" the multiplicity of a variety Y at the generic point of 

a subvariety Z 

N ( f ) :  the Newton polytope of a Laurent polynomial f 

Nr (Q)" the normal cone to a polytope Q at a face 1" 
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N (Q): the normal fan of a polytope Q 

P" a projective space 

P*" the dual projective space 

P(V)" the projectivization of a vector space V 

Proj(R): the projective spectrum of a graded ring R 

Pil . . . . .  i k :  the PlUcker coordinate 

pp(xl  . . . . .  Xd): the power sum symmetric function 

Q: a convex polytope, typically Conv(A) 

R x" the Chow form of a projective variety X 

R x" the X-resultant, i.e., the Chow form R x written as a 

polynomial in k linear forms 

Rz:l ..... z:k: the mixed (s . . . . .  s 

RA: the space of real polynomials on monomials from A; 

the space of functions A ~ R 
A . Rgen. the generic stratum in the space of real polynomials 

S: a semigroup 

SS(.T'~ the characteristic cycle of a constructible complex .T "~ 

T" a triangulation; a toms 

u(S): the subdiagram volume of a semigroup S 

Vec i (S): the space of discrete/-vector fields on a semigroup S 

with some boundary conditions 

Volz: the volume form induced by a lattice F~ 

Wt(x): the weight polytope 

X: a projective variety 

XA" the toric projective variety associated with A C Z k-1 

X v" the projective dual variety 

Y: an affine variety, typically the cone over X 

YA: the affine cone over XA 

yv: the conic affine variety projectively dual to a conic affine variety Y 

Z" a circuit; a subvariety 



520 List of Notations 

Zx" the associated hypersurface of a projective variety X 

A m. the m-dimensional simplex 

Ax: the X- discriminant 

AA" the A-discriminant 

Or" the vector of exponents of the monomial in DA 
corresponding to a triangulation T 

A: a Lagrangian subvariety 

A+, A_" parts of the boundary of the Newton polytope 

/z: the moment map 

v(S)" the Newton number of a semigroup S 

E" a triangulation of a cone 

E (A)" the secondary polytope of a set A 

,~" a lattice 

tpr" the characteristic function of a triangulation T 

~0" the complex of vanishing cycles 

qJ~o" the complex of nearby cycles 

X" the Euler characteristic 

o9: a typical element of A 

~ "  the sheaf of differential forms on a smooth variety X 

~2~" the sheaf of Danilov differential forms on a (possibly 

singular) toric variety X 

fl~ (logXl): the sheaf of logarithmic differential forms 

V A" the A-discriminantal variety 

VL~ ..... s the mixed resultant variety 



Index 

A-discriminant, 271,344 
A-resultant, 255 
ct-subspace, 147 
or-distribution, 157 
admissible semigroup, 180 
algebraic cycle, 122 
apolar covariant, 141 
associahedron, 240 
associated hypersurface, 97, 157 

complex, 480 
cone of a morphism of complexes, 480 
conic variety, 13 
conormal bundle, 27 
conormal variety, 28 
constructible 

sheaf, 320 
complex, 320 

cusp, 19 

/~-subspace, 147 
Bezout formula, 83-84, 117 
bigraded complex, 86 
biduality theorem, 14 
bipartite graph, 247 
block, 419 
boundary format, 455, 458 
Brill's equations, 144 

caustic, 17 
Cayley trick, 103, 107, 111,273 
Chern classes, 64, 68-69 
Chern polynomial, 65 
Chow embedding, 123 
Chow form, 99, 122, 256 
Chow polytope, 206, 259 
Chow variety, 123 
Chow-van der Waerden theorem, 

123, 126 
circuit, 216-217 
coefficient restriction, 193 
coherent triangulation, 218 
coisotropic hypersurface, 149 
combinatorially equivalent polytopes, 

234 

D-equivalence, 362, 370 
D-module, 325 

holonomic, 326 
regular, 326 

Danilov differential forms, 279 
determinant 

of a complex, 483, 499 
of a spectral sequence, 497 

determinantal variety, 36 
discriminant 

classical, 15, 37, 403, 433 
general, 14 

discriminantal complex, 54, 71,275, 450 
discriminantal spectral sequence, 80 

elementary simplex, 182 
entropy, 294, 303 
Euler isomorphism, 481 

facet, 230, 311 
fan, 187 

normal, 189 
secondary, 219 

Fermat curve, 20 
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fiber polytope, 225 
flex, 18 
formal completion, 314 

Gale transform, 225 
Gauss map, 285 

logarithmic, 286 
Girard's formula, 21, 141 
Grassmannian, 91, 146 
Grothendieck group, 66, 494 

Hilbert polynomial, 63, 186 
Horn uniformization, 288 
hypercohomology, 80 
hyperdeterminant, 38, 273, 444 

2 x 2 x 2 , 4 4 9  
hypergeometric functions, 166, 295 
hy~rsimplex, 207 

incidence variety, 27 
integral distance, 364 
invertible sheaf, 34, 49 

jet bundle, 48 

Katz dimension formula, 39 
Kouchnirenko 

resolution, 262, 337 
theorem, 201 

Koszul complex, 51, 112, 333, 501 

labyrinth, 419 
Lagrangian variety, 28, 156 
lattice path, 247, 416 
leading term, 172 
line bundle, 34 
linear normality, 34 
logarithmic 

de Rham complex, 313, 328 
Gauss map, 286 

matroid polytope, 209 
Minkowski sum, 190 
Minkowski integral, 223 
mixed resultant, 105, 252 
mixed volume, 205 
moment map, 198 
multiplicity, 

of a module, 493 
of a singular point, 184 

nearby cycles, 321 
Newton function, 357 
Newton number, 351 

combinatorial, 353-354 
Newton polytope, 193, 301, 361, 411 
normal variety, 174 
normalization, 175 

permutohedron, 209, 243 
perverse sheaf, 350 
Pliicker 

coordinates, 93 
embedding, 93 
formulas, 22 
relations, 94 

polars, 24, 140 
polytope, 189 
polyhedral subdivision, 227 
polyhedron, 189 
poset, 209 
principal A-determinant, 297 

quadric, 35 
quasi-smoothness, 177, 191,350 

rational normal scroll, 108, 167 
regular A-determinant, 345 
Riemann-Roch theorem, 61 

Schl~fli method 
for studying hyperdeterminants, 475 
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secondary polytope, 220, 259 
Segre embedding, 37 
semigroup 

admissible, 180 
shuffle, 248, 410 
stably twisted complex, 54, 113 
Stasheff polytope, 239, 241, 
Stiefel coordinates, 92 
Stiefel variety, 92 
subdiagram volume, 184 
supporting face, 189 
synm~tric polynomial 

of vector variables, 133 
symmetric product, 132 
symplectic structure, 28 

toric specialization, 170, 209 
toric variety, 168 
toms, 165 
triangulation, 214 

coherent, 218 

vanishing cycles, 322 
Veronese embedding, 38, 167, 433 
vertical Young multiplication, 141 
Viro's theorem, 383 
volume form 

induced by a lattice, 182 

weight polytope, 170 
Weyman's complexes, 86, 121,430 


