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SIMPLICIAL TRIANGULATIONS OF
TOPOLOGICAL MANIFOLDS

DAVID E. GALEWSKI* AND RONALD J. STERN#**

In this lecture we will motivate and outline our work concerning simplicial
triangulations of topological manifolds. Details of these and related results will
appear in [8], [9], and [10].

The primary question we are concerned with is when can a given topological
manifold M be triangulated as a simplicial complex, and if so, in how many
“different” ways can it be triangulated? The work of R. Kirby and L. Siebenmann

([11], [12]) shows that in each dimension greater than four there exist closed

topological manifolds which admit no piecewise linear manifold structure and
hence cannot be triangulated as a combinatorial manifold. However, R. D, Edwards
[5] has recently demonstrated the existence of noncombinatorial triangulations of
S», n z 5. It is still unknown whether or not every topological manifold can be
triangulated as a simplicial complex. '

Let us first determine what restrictions are put on a triangulation of a topolo-
gical manifold. Note that if X is a compact space, then the (n — k)-suspension of
X, denoted 3»* X, is homeomorphic (=) to the n-sphere $* if and only if ¢'X x
R#* is an open topological n-manifold, where ¢’X denotes the open cone over X.
Thus X is a triangulation of a topological n-manifold M without boundary if and
only if the link L* of an (# — k — 1)-simplex in the first barycentric subdivision
K' has the homology of §* and 2»* L* ~ S». We improve this as follows.

Recall that a (polyhedral) closed homology manifold is a compact polyhedron
with the property that the links of (n — k)-simplices have the homology of S#1.

THEOREM 1. A closed homology n-manifold M is a topological n-manifold if and
only if
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(1) for every 3-dimensional link L3 of M, 2#=3 L3 ~ $*, and
(2) every (n — 1)-dimensional link of M is 1-connected.

OUTLINE OF THE PROOF. By our observation above we need only check that
Jnk [} ~ S»for every k-dimensional link L*of Mfor4 £ k < n — 1.

Case 1. k = 4. We show that ¢’L* x R*5 is an open topological n-manifold.
Now L# is a closed homology 4-manifold, so the only non PL sphere links are the
links of a finite number of vertices. For simplicity suppose there is only one such

" bad link and call it L. Then L* = P4 |J ¢L, where the union is taken along apt =
o(cL) = L. The double Q4 of Ptis a PL homology 4-sphere so that a recent result

~ warde [€] immliag a ~ anna w AT el
of R. D. Edwards [6] (A]] uupuca that Z'F‘Q" S=; hence ¢ Q" x R#5 is an -opeil

topological n-manifold. By the codimension one approximation theorem of Bryant-
Edwards-Seebeck or of Ancel-Cannon [1], we can re-embed c'P4 X Rﬂ—5 cc Q4 X

cL x R"-5 is an open topologlcal manifold by (1), the taming theorem of J
Cannon [4] implies that #(c'L x R#5)is collared in the closure of the complement
of h{c'P* x R*5) in ¢'Q* x R#5 This then implies that A(c’P* x R*5) | -
((c¢'L x R% x [0, 1) ~ ¢'L* x R*5is an open topological n-manifold as
required.

Case 2. k z 5. Suppose inductively that S»—*+174~1 ~ §» This then implies that
L* x R»* and hence L* x Tn* is a topological manifold for every k-dimensional
link L* of M. By the results of [7] or [14], there exist a topological homology .-
sphere H* and a simple homotopy equivalence f: H* x T»* - Lt x T *which
is homotopic to a homeomorphism 4. As k 2 5, the Kirby-Siebenmann obstruc-
tion to putting a PL manifold structure on H* is zero, so that we can assume that
H* is a PL homology k-sphere. Now lift 4 to a bounded homeomorphism &': H* x
R+*% — Lk x Rn* which therefore extends to a homeomorphism A’ : H¥ « S»41
L* « S=F1 (cf. [16]). By a recent result of R. D. Edwards [6] H* « S**1 ~ §» s0
that J#&[} ~ S asrequired. [

So we now know how to identify a simplicial triangulation of a topological
manifold. What “nice” properties of a simplicially triangulated topological mani-
fold would one like? Note that if K is a polyhedron, then X x Risa PL (n + 1)-
manifold if and only if K is a PL »-manifold. This is a fundamental transversality
property for PL manifolds. However, if K x R is a topological (n + 1)-manifold
it is not necessarily the case that Kis a topological n-manifold. But observe that the
links of K have ail the suspension properties of the n-skeleton of a simplicially
triangulated topological (n + 1)-manifold. This then motivates the following
definition.

A TRI, m-manifold is a homology m-mamfold M such thatif k < nand Lisa
k-dimensional link of M, then »*L* = ‘S* or J»#1L*  D»*1, where D**1is the
(n + 1)-disk. We now list some facts about TRI, manifolds. Let X be a polyhedron.

() K x Ris a TRI, manifold if and only if K is a TRI, manifold.

(2) If Kis a TRI, m-manifold without boundary and withn = m, then K x R+
is a topological n-manifold without boundary.

(3) If K is a TRI,, m-manifold with m > n Z 6, then there exists a TRL, m-mani-
fold K which is also a topological manifold and a PL contractible map f: K - K.
(By Theorem 1, K is a topological manifold except that the (m — 1)-dimensional
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links of K need to be 1-connected and we blow up these links via a PL contractible
map to be 1-connected.)

We now wish to construct a “normal” bundle theory for TRI, manifolds similar
to PL block bundles. A TRI, g-sphere is a TRI, g-manifold H? having the homo-
logy of §7 and if g < n we further require that " ¢He ~ S». A TRI, cell complex
is then a cone complex whose cones are cones on TRI, spheres. A TRI, cone ¢-
bundle £¢/K over a TRI, cell complex X assigns to each p-cell a of X a block B,
which is the cone on a TRL(p + ¢ — 1)-sphere and these cones fit together like
the eclls in a cell complex. Using the mock bundle recipe of Buoncristiano, Rourke
and Sanderson [3] for representing homotopy functors, Theorem 1 and facts (1)—
(3) above, there exists a classifying space B TRI(q) for TRI, cone g-bundles,
g Z n 2 6. Let BTRI, = lim,_., B TRI,(g). Using fact (3) above, one shows that
every TRI, cone g-bundle, g = n = 6, is concordant to a topological block bundle,

so that there is a natural map j: B TRI, - B TOP, where B TOP classifies stable
topological block bundles.

We now return to our primary question, when can a given topological m-mani-
fold M be triangulated as a simplicial complex, and if so, in how many “different”
ways? Let N be a codimension zero submanifold of M and let 5, be a TRI,
manifold structure on N which extends to a neighborhood of N in M. Let
i, (M rel N, 2y) denote the set of TRI, manifold structures on M agreeing with
Jo near N modulo the equivalence relation (called TRI, concordance) that two such
structures 'y and I"; on M are TRI, concordant if there exists a TRI, manifold
structure /" on M x I agreeing with Xy x I near N x Jand I'| M x {i} = I'; for
i=01

Simiiarily let Lifi(z rel N, Fy) denote the set of lifts of the map 7: M — B TOP,
which classifies the stable topological tangent bundle of M, to B TRI, through
j: BTRI, -+ BTOP that agree near N with a fixed lift F; of 7 near N induced by
Zg, modulo the equivalence relation of vertical homotopy rel N.

THEOREM 2 (CLASSIFICATION THEOREM). Let M, 3, and F, be as above. If m > n =
6(m=nz= 6if N=9M), then M admits a TRI, manifold structure agreeing with
2o near N if and only if  has lift M — B TRI,, equaling Fynear N. In fact there is a
bijection #1g; (M tel N, 3y) — Lift(z rel N, Fy).

TOWARDS A PROOF OF THEOREM 2. Assume 9M = (3 and supposez: M - B TOP
lifts to B TRI,. Then embed M in Rs for some large s and let Q be a PL manifold
neighborhood of N equipped with a deformation retraction r: @ — M. Then ¢r
classifies a topological bundle over Q whose total space is homeomorphic to
M x Rk, for some k. As zr lifts to B TRI,, M x R*is a TRI, manifold. We now
wish to show that this implies that M has a TRI, manifold structure. It olpnrlv

suffices to show that if M x Ris a TRI, mamfold then so is M. This is accom-
plished via

THEOREM 3 (PRODUCT STRUCTURE THEOREM). Let M™ be a connected topological
m-manifold and let 6 be a TRI, manifold structure on M x R. Let N be a codimen-
sion zero submanifold of oM and 2y a TRI, manifold structure on N which extends
to a neighborhood of N in M such that 2y x R agrees with © near N x R. If
m>nz6(mznz6if N=0oM), then there exists a TRI, manifold siructure I'
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on M agreeing with 3, near N, unique up to concordance rel 2y, such that I' x R
is concordant rel 3y x R to 6.

TowARDS A PROOF OF THEOREM 3. Our proof i1s modeled on W. Browder’s
Structures on M x R [2]. Assume M is closed. Triangulate M x R and R so that
there is a simplicial map z: M x R — R homotopic to the projection of M x R
onto R. Let # be a point interior to a simplex of R. Then z~1(s) x Ris a codimen-
sion zero TRI, submanifold of M x R, so that by fact (1) above K =z"1(x) is a
TRI, manifold. We can assume K is connected, so let W be the cobordism between
K and M. By doing a series of handle exchanges we wish to make W into a topolo-
gical manifold and the inclusion of K into # a simple homotopy equivalence. Then
the topological s-cobordism theorem would yield a TRI, manifold structure on M.

Step 1. We first do the handle exchanges in the homology manifold category. To

do this we need surgery below the middle dimension for homology manifolds, a
Whitney type trick, and some algebra. The first requirement is accomplished by
Matsui [13]; the second is accomplished by using the topological Whitney trick in
M x R and then making it polyhedral by using the homology transversality the-
orem of [7] and the established surgery below the middle dimension; and the last
requirement is purely formal. Thus by doing a series of homology handle exchanges
we arrive at a homology m-manifold X’ and a cobordism W between K’ and M
with K’ ¢ W a simple homotopy equivalence. Also W= W’ |J W" where W'
union a collar is a topological manifold and W is a homology manifold cobordism
from Kto K'.

Step 2. We observe that as K is a TRI, manifold, by using Theorem 1 and fact

(/4
(3) we can resolve the singularities of W via a simple homotopy equivalence so

that W is in fact a TRI, manifold which is a topological manifold. Thus W is our
desired topological s-cobordism. [J

We now discuss the (homotopic) fiber TOP/TRI, of j: B TRI, - BTOP. Let
0T%= denote the group of oriented PL homology 3-spheres modulo those which
bound acyclic TRI, 4-manifolds; let 6FR»FL denote the group of oriented PL
homology 3-spheres which bound acyclic TRI, 4-manifolds modulo those which
bound acyclic PL 4-manifolds; and let 8§ denote the group of PL homology 3-
spheres modulo those which bound acyclic PL 4-manifolds. The only concrete the-
orem known about 0¥ is the existence of the Kervaire-Milnor-Rochlin surjection
a: 0§ — Z,. From the definitions we have the short exact sequence 0 — §TRWPL
6§ — TR > 0.

THEOREM 4. If n = 6, the homotopy groups of TOP/TRI, are zero except possibly
for &5 and z4. Furthermore there are two exact sequences '
(1) 0 = 7y = kernel(a: 08 — Z3) — 038 5 73— 0,
(2)0—’754—>0gRI”IPL—*“Zz—’I3—>O, '
where a is the Kervaire- Milnor-Rochlin map.

COROLLARY 5. (1) z3(TOP/TRI,) has at most 2 elements.

(2) zz(TOP/TRIL,) = O if and only if there exists a PL homology 3-sphere with
a(H3) =1 and 273 H? ~ S~

(3) z4(TOP/TRI,) = O if and only if any PL homology 3-sphere with a(H3) = 0
and >»3H3 ~ S bounds an acyclic PL 4manifold.



"
o

SIMPLICIAL TRIANGULATIONS

We also have the following existence theorem.

THEOREM 6. Every topological m-manifold has a TRI, manifold structure for
m>n=6mz=nz6if oM = @)if and only if there exists a PL homology
3-sphere H3 satisfying the following 3 properties.

(1) a (H3) =1,

(2) 3*3H3 ~ S,

(3) H3® # H? bounds a PL acyclic 4manifold.

REMARK. When m = 5, L. Siebenmann demonstrated in [16] that the existence
of a PL homology 3-sphere H?3 satisfying (1) and (2) above implied that all closed.
oriented 5-manifolds can be triangulated as simplicial complexes. If H3 ¥ H? bounds
a contractible PL 4-manifold, then he also shows that all 5-manifolds can be tri-

1 logical m-manifolds M wi £n<8and wi
integral Bockstein of the Kirby-Siebenmann obstruction to putting a PL manifold
structure on M being zero, M. Scharlemann [15] has shown that (1) and (2)
above imply that M is triangulable as a simplicial complex. T. Matumoto [14]
proves a version of the sufficiency of Theorem 6 with (2) replaced by the condition
that J»4H3 ~ S»1,

ReMARK. Our proof of Theorem 6 actually shows that if there exists a PL homo-
logy 3-sphere satisfying (1)—(3) above, then every topological m-manifold has a
TRI, manifold structure in which the 3-sphere links are PL homeomorphic to con-
nected sums of H3, — H3, and $5.

TOWARDS A PROOF OF THE SUFFICIENCY OF THEOREM 6. Let H3 be a PL homology
3-sphere satisfying (1)—(3) of Theorem 6. One can consider TRI, manifolds M
whose 3-dimensional sphere links in M and 9M are PL homeomorphic to con-
nected sums of H3, — H3, and S3. Call such manifolds H3 manifolds. One can con-
struct a classifying space BH3 for stable TRI, cone bundles based on H3 manifolds.
There are natural maps #: BH3 - BTOP, i;: BPL - BH3 and i,: BH?® —»
BTRI,. The fiber of i; is a K(Z;, 3) so that by considering the homotopy exact
sequence of the triple (B TOP, BH3, B PL) we have that i, is a homotopy equi-
valence. The result now follows from Theorem 2. []

More generally we have the following existence theorem. Let Sg,: HY ; Z,) —
H5( ; Z,) denote the Bockstein associated with the short exact coefficient sequence
0> Z, 5" Zy,, - Zy > 0. Also let A M)e H{(M; Z,) denote the Kirby-Sieben-
mann obstruction to the existence of a PL manifold structure on M.

COROLLARY 7. If there exists a closed topological m-manifold M with a TRI,
manifold structure, m = n = 6, and if Sq,4(M) # O, then there exists a PL homo-
logy 3-sphere H3 such that :

(1) a(H® =1,

(2) 2»3H3 =~ S», and

(3) the 2k-fold connected sum of H3 bounds a PL acyclic 4&-manifold.

Also, if there exists a PL homology 3-sphere H3 satisfying (1)—(3), then every
topological m-manifold M with Sq. M) = 0 has a TRI, manifold structure if
m>nz6mznz6ifoM = Q).

We also remark that there is a surgery theory for TRI, manifolds completely
analogous to topological surgery theory. This is given in [9),
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We also investigate the question of whether a given topological n-manifold,
n Z 5, can be triangulated as a simplicial homotopy manifold. For example,

PROPOSITION 5. Suppose that every PL homotopy 3-sphere bounds a contractible
PL 4-manifold. Then there is a one-to-one correspondence between the set of con-
cordance classes of simplicial homotopy manifold triangulations of a topological
n-manifold M, n = 5, and concordance classes of PL manifold structures on M.

PROPOSITION 6. Suppose there exists a bad counterexample to the 3-dimensional
Poincaré conjecture; namely suppose there exists a PL homotopy 3-sphere H3, with
() a(H3) =1, and
(ii). H3#% H3 bounds a contractible PL 4-manifold.
Then every topological n-manifold, n Z 5, can be triangulated as a simplicial homo-

___ topy manifold.
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