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In [1] P. Cohn suggested the construction of a localization of a ring with respect
to a class of square matrices. Let us briefly recall the definitions.

Let A be a ring and 2 be a set of square matrices over A. A ring homomorphism
f:A->8 (S being a ring) is said to be ^.-inverting if every matrix in 2 is mapped by
/ to an invertible matrix in S. A ring homomorphism a.: A -> AL is the universal 2-
inverting homomorphism if it is 2-inverting and any 2-inverting ring homomorphism
/?:A->$ factors uniquely by a, i.e. there is a unique ring homomorphism y:Az^8
such that the accompanying triangle

A

A s • S
y

commutes. It is easy to see that the universal S-inverting homomorphism a:A-* As

exists and is unique up to isomorphism. The ring As is also called Cohn's localization
of A with respect to 2.

This localization construction turned out to be extremely useful in the algebraic
topology of manifolds. It was shown in [8, 9] that F-groups (homology surgery
obstruction groups of Cappell and Shaneson) can be viewed as L-groups (Wall
surgery obstruction groups) of the localization (in the sense of Cohn) of the group
ring.

The aim of the present paper is to compute explicitly the Cohn localization of the
free group ring A with respect to the class 2 of square matrices which become
invertible after applying the augmentation e:A->k. We show in this paper that Az

is isomorphic to a ring of 'rational functions' in non-commuting variables. These
non-commutative rational functions are represented by their Taylor power series
having some 'periodicity' properties. They were discovered in the theory of formal
languages; we refer to [6] for a more comprehensive treatment and applications. In
the subsequent sections we will describe these rational functions as solutions of some
systems of linear equations [6] and will find a relation between rational functions and
link modules (homology modules associated to links of codimension two).

In view of [8, 9] and of the theory of Cappell and Shaneson [3], our computation
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of As is relevant to F^A-^fc) which is essentially isomorphic to the boundary link
concordance group.

Our construction and proofs are purely algebraic. Nevertheless some (algebraic)
notions and results which appeared first in link theory [4], naturally come into play.

1. Rational junctions

In this section we will describe a non-commutative generalization of the notion of
rational function. Our approach is a little different from [6]; the results of the next
section show that we obtain the same notion.

1-1. Fix an integer /i > 0 and a principal ideal domain k. Let Fh denote the free
group on fi generators tx,..., t^ and let A = &[JPJ be the group ring.

Consider also the ring F = k((xt,..., x^y of formal power series in non-commuting
variables xx, ..^x^. The ring A is embedded in F via the Magnus embedding

I t is convenient to use the following conventions on multiple indices. A multi-index
a is a sequence of integers a = (ilt ...,is) with i}e{l, ...,/*} for j = 1, ...,s. An empty
sequence is also allowed. For a sequence b — (blt..., fyj of symbols (letters) and for a
multi-index a = (ilt ...,fcs) define the monomials

b a = b i b t . . . b ( , b a = b t b t . . . b t

with the convention that
& = 1 = &,.

Now, each element ye F has a unique representation of the form

(o(a)eA),

where a runs over all multi-indices.
The augmentation e: F ->• k maps y into

e(y) = a(<p)ek.

I t is a ring homomorphism; its restriction to A is the usual augmentation

e.A^k, e(tt)=l.

1-2. Let us define derivations

If

define dty as
a

where ice denotes (i,ix, ...,is) for a = (iv ...,is). Thus dt acts as a cancellation of x{

from the left on monomials containing xt on the left-most position, and sends to zero
all other monomials. Each yeF has a representation

y = e(y)+£lxidi(y).
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9f is a ^-linear map; it is related to the product in F by the formula

where y1>y2eT. From this it follows that dt(A) r> A and the restriction of d{ on A
coincides with the Fox derivative [2] with respect to tt. (Note that di is also known
as an (e, 1 )-derivation or a transduction with respect to xt.)

13. Using the conventions of 1-1 on multi-indices we shall define the higher
derivatives

where a = (ilt ...,is) is a multi-index and

1-4. For y e A denote by Vy the &-submodule of F generated (over k) by all
derivatives day, where a runs over all multi-indices (including a = <j>).

Definition. An element yeG will be said to be a rational function if Vy is finitely
generated over k. The set of all rational functions will be denoted by 01.

1-5. In case ft = 1 the above definition is equivalent to the statement that y e &[[#]]
is the Taylor power series of a rational function of the form

7 <?(*)'

where p(x),q(x) are polynomials with coefficients in k and q(O)ek*; cf. 2-4 below.
We will describe now some properties of rational functions in the sense of the

definition 1-4.

PROPOSITION 1-6. (1) Any element ye A is a rational function.
(2) The sum {product) of two rational functions is a rational function.
(3) If ye A. is a rational function and e(y) is invertible in k then y"1 is also a rational

function.

Proof. Let us prove (2) first. For ylty2eR we have

and both modules Vyi + Vyt and Vy Vy +Vy are finitely generated over k and invariant
under ^ , . . . , 5 ^ .

To prove (3), assume that y is a rational function with e{y) = 1. Let us define W
to be the set of all power series y1 represented in the form

where y2e Vy and cek. W is finitely generated over k and is invariant under dlt ...,d
because of the following formulae:

Since y 1 e W we get that y 1 is a rational function.
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Now (1) follows from (2) and (3). Each element y of A is a polynomial in tt = 1 +xt

and tj1 = (l + Zj)"1. By (2) it is enough to check that tt and tj1 belong to R. For tt it
is evident and for tj1 it follows from (3).

2. Systems of linear equations

PROPOSITION 2-1. Consider a system of equations of the form

with coefficients Atj, St rational functions. Assume that det (e(Ay)) is invertible in k. Then
(1) there exists a unique solution (y1; ...,yn) with each component yt a rational

function and
(2) any rational function is a component of solution of a system of the above type with

coefficients Ay, S( belonging to A.

Proof. (1) We may assume additionally that

e(Al7) = Sip

the Kronecker symbol. Then the above system can be written in the matrix form as

(I+A)a = b,

where a = (ylt . . . , y n ) , b = {Sv . . . , S n ) ,

and / is the unit matrix while each element of A belongs to the augmentation ideal
of T. Thus

a = (I-A+A2-A3 + ...)b

and the power series converges in F. This proves that there is a unique solution of the
above system in F.

Let us use the induction on n to show that all components yt of the solution are
rational.

If n = 1 then the system has the form

with e(A) = 1. So y = A~*8 and the result follows from Proposition 1-6.
Now consider a general system as above with e(Ay) = Si}. From the first equation

one finds

Substituting the expression in other equations of the system, we get a new system

n

^HiJi = (Ti (i = 2 ,3 , . . . ,»)
j-2

(of n—l equations in TO— 1 variables) with

/*« = A « ~ A<i A n Ai*> °~i = $i — K\ K\ ^i-

Firstly, one sees that the coefficients fti}, o~t are rational. Secondly,

e(/*y) = e(Ay)-e(Ail).e(A-1
1).e(Aw) = Si},

and our statement (1) now follows by induction.
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To prove (2), assume that y is a rational function. Let e1,...,en be a system of
generators (over k) of Vy. One may assume that y = ex. Because Vy is invariant under
dt, ...,d , we have

djei= S a%ek (i = 1 n;j= l,...,/i).
fc-l

Thus, e, = e(e,) + 2 a;,-a% ek,
i.ic

which can be rewritten in the form
n

£ Aye3- = <r, (i = l,...,n)

with Ay = £ y - 2 z s < , <rfc = e(e4).
s- l

I t is clear that Ay, cr^eA and e(Ay) = #y. This completes the proof.

2-2. One may consider systems of equations of the form

with Ay, 8je&, assuming det(e(Ay))efc*. It is clear that statements (1) and (2) of
Proposition 2-1 are true with respect to these systems.

2-3. Let 2 denote the set of all square matrices u = (Ay) over A with det (e(Ay))
ek*.

Using the terminology of Cohn[l], chapter 7, we may reformulate Proposition 2-1
and the remark of 2-2 as follows: the inclusion A -> T is a S-inverting ring
homomorphism and the set of rational functions ^? coincides with the ^-rational
closure of A in F.

2-4. The following expression

gives an example of a rational function. In fact, any rational function can be
represented by a finite algebraic formula (similar to that given above); this follows
from the proof of Proposition 21 .

2-5. Let 54:r->-r be the cancellation of xi from the right (cf. V2). One may use S{

instead of di and define rational functions as those y for which {8a y}a has finite rank
over k. I t follows from the above remark (and also from 2-2) that this gives the same
class of formal power series.

3. Link modules

3-l. A finitely generated left A-module M is of type L (or a link module) if
Tor£ (k, M) = 0 for allf q, where k is regarded as a right A-module with trivial action
via the augmentation map. As was shown by Sato [7], this condition is equivalent
to the following: the map

*~ ^

li times

t Note that TorJ vanishes identically for q > 2.
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given by (m1;...,m^)>-*Sf_x (ti—\)mi is a bijection. In other words, each meM has a
unique representation in the form

Because of this it is possible [4] to define the derivations d^.M^-M for i = 1, ...,ju
by d^m) = mt, where mt is the element of M appearing in the above decomposition.
Now we can think of M as also having a left module structure over the ring

of polynomials in non-commuting variables 81, ...,3^. Any A-homomorphism/r-Mj-^
M2 between modules of type L is also a J)-homomorphism; the converse is also true.

32. A relation between the Z)-module structure and the A-module structure is
given by

dt(A.m) = di(A).m + e(A).di(m),

where AeA, meM and dt(A) is the Fox derivative with respect to t{.

33. Following [4], let us define some other operations on a module M of type L. For
i = 1 , . . . , /* define

nt{m) = (t(- l)d,(ra) (meM).

Then m = 7T1(m) + .

7TiO7Ti = 7Tit TJi O TTj = 0 for i 4= j -

3-4. Let M be a A-module of type L. A lattice in M is a &-submodule 1̂ c jfef which

(a) is invariant under d^n^ for i = 1, ...,fi,
(b) generates M over A, and
(c) is finitely generated over k.
It is proved in [4] that any module of type L admits a lattice and any such lattice

determines the whole module: two modules of type L are isomorphic if and only if
they admit lattices which are isomorphic as Z)-modules, cf. [4], lemmas 1/5 and 2-6.
(Note: because of property (a) above, each lattice is a Z)-submodule of M.)

PROPOSITION 3-5. The following conditions are equivalent:
(a) y e T is a rational function;
(b) there exists a left A-submodule M a F/A which is of type L and contains the image

of y under V -s* F/A.

Proof. (a)=>(b) Let W <= F/A be the image of Vy under F^F/A. W is finitely
generated over k and dt(W) a W, for i= 1,..., /i. Consider the left A-moduleM a F/A
generated by W over A. Then di(m)eM for meM and we see that each meM has a
unique representation of the form

f

i-l

with m,i = dfim). By the Sato theorem [7], M is of type L.
(b) => (a) Suppose that y, the image of y under the projection F-> F/A, belongs to

a submodule M cr F/A of type L. From the proof of lemma 1/5 in [4] it follows that
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there is a lattice W <= M containing y. Let y1, ...,yneWgenerate W over k. One may
assume that y\ = y. Because dt(W) c W for i = 1, ...,/*, there is a presentation

r - l

Let -/j e F be a representative of yt for ̂  = 1 ,. . . ,/*; we may choose y1 = y. Then we have

r - l

with cr^eA. Because y,- = e(y )̂ + S?-ia;<5i(7i)> w e obtain that (yx, ...,yre) is a solution
of the system

j - 1

ft ft

with Ay = <Jy— S x
s
ati> bt = e(yt)+ 2 x

s°~si-
S - l 5 - 1

We observe that e(Ay) = 8tj and by Proposition 2-1 we see that y = y1 is a rational
function. This completes the proof.

COROLLARY 3-6. If M is a left A-module of type L then the image of any A-
homomorphism M-^- F/A belongs to 8&IA.

Proof. The result follows from Proposition 3-5 because the image of M -> F/A is a
module of type L.

COROLLARY 3-7. 0tjA is the union of all left A-submodules M c F/A q

4. H-local modules

4-1. As in 2-3, let £ denote the set of all square matrices u = (Ay) over A with
det(e(Ay))e/fc*.

A right A-module X is called "L-local if for any nxn matrix u = (Ay) 6 2, the map

n
where J/, = 2 ^ Ay (j = 1,..., n),

i=l

is a bijection.
Examples of S-local A-modules are provided by F and 8ft, cf. 2-3. As is also an

example.

PROPOSITION 4-2. A right A-module X is 1,-local if and only if

for every left A-module M of type L without k-torsion and for every q.

In the proof (cf. 4-4) we will need the following lemma.
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LEMMA 4-3. Let u — (Aw) beannxn matrix in S. Thus u determines a homomorphism
(of left A-modules)

l ) ...,an) = (blt ...,bn),

where bj — ^, a(Ai} (j'< = 1, ...,n).

Then
(1) ker(w) = 0;
(2) coker («) is a left A-module of type L without k-torsion;
(3) any module of type L without k-torsion is isomorphic to coker (u) for some ue2.

4-4. Proof of Proposition 42. Let .X be a S-local module andilf be a module of type
L without fc-torsion. According to statement (3) of Lemma 43, M has a free
resolution

u

with ue2. Now Tor*(X,M) is the homology of

0—>Xn-^->Xn—>0

which vanishes since X is 2-local.

The converse statement follows similarly.

4-5. Proof of Lemma 43 . Statement (1) follows from

ker[u:An —>A"] c ker[u:Tn —>Vn]
since the group on the right is trivial (cf. the beginning of the proof of Proposition
2-1).

To prove (2), consider M = coker (u), uel,. Then

u

is a resolution of M and Tor£ (k;M) may be computed as the homology of

0 — ^ ® A A n -

which coincides with 0—>k"—>kn—>0.

The last complex is acyclic because e(u) is invertible over k.
By similar arguments Tor£ (T;M) = 0 and this can be used to show that i f has no

^-torsion: from the exact sequence

0—>A—>T—>T/A—>0
we get an isomorphism

M

and thus M is isomorphic to the kernel of

1 ® u: T/A ® A A" —> T/A ®AA n.

I t is clear that this kernel (and M as well) are free of ^-torsion since the modules T/A
and T/A ®A A" = (V/A)n are free of fc-torsion. This proves (2).
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Let us prove (3). Consider a module M of type L and N <= M be a lattice (cf. (3-4).
Nis finitely generated over k and has no i-torsion (assuming thatilf has no fc-torsion).
Thus N is free over k. Consider the homomorphism

u:A®kN—>A®lcN, it(A®w) = A ® n- dt{n),
i - l

where AeA, neN. It is clear that
want to show that coker (u) ~ M.

Consider the following diagram

and thus coker (it) is a module of type L. We

coker (u)

where ^(w) = l ® w (neN),

f(A®n) = An (XeA,neN),

yjr = eo(j).

Since fou = Q we get a A-homomorphism g:coker (u)^-
i/r: iV-> coker (u) is a i)-homomorphism:

with goe = / . The map

dt(n)) =
i - l

and thus dt\{r(n) = \lf(dtn) (i = 1, . . . , /*)•

Moreover ^ is a monomorphism because ^o^r = fo<j> coincides with the inclusion
N-+M. Thus r̂ provides a ^-isomorphism between N (which is a lattice in M) and
if(N) (which is a lattice in coker (u)). ThatM and coker (u) are isomorphic now follows
from lemma 2-6 of [4]. This completes the proof of Lemma 43.

THEOREM 4-6. Let 0$ <= F be the ring of rational functions. Consider
A-module. If X is a H-local right A-module then the map

X = X<S)AA—>X®A@
is an isomorphism.

Proof. We have an exact sequence

as a left

Therefore 46 will follow if we prove that Tor£ (X; ffl/A) = 0. Consider all submodules
Ma <= mi A of type L. By Corollary 3-7, 3/t /A is the direct limit of {MJ. Now from
Proposition 4-2 we get

= limTor£ (X;Ma) = 0

as required.
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COROLLARY 4-7. Each 1,-local right A-module X has an Si-module structure extending
its A-module structure. If X and Y are two "L-local A-modules and f:X->Y is a A-
homomorphism then f is also an &-homomorphism.

5. The main theorem

THEOREM 5-1. The ring of rational junctions M is isomorphic to the ring As, the Cohn
localization of A with respect to S.

Proof. Let a:A->A2 and fi:A^!% denote the canonical inclusions. Since /? is
S-inverting (cf. Section 2), there is a unique ring homomorphism y:Az->& with
yoa = /?. On the other hand, since As is a S-local right A-module it has a right
^-module structure (by Corollary 4-7). Let us denote the product in this structure of
AeAx and r e ^ by (A,r)eAs. For each aeAz the left multiplication by a,

/ a : A E ^ A z > /o(A)=oA (AeAr),

is a homomorphism of right A-modules. By Corollary 4-7, fa is also an 3%-
homomorphism. Thus

a(X,r) = (aA,r) (*)
for aeAj, AeA2, reM.

Let us now define a homomorphism d: 3ft, -> As by

S(r) - (l,

where 1 is the unit element of A2. Thus d is a ring homomorphism : using (•) we have

8(r)S(r') = ( l , r ) ( l , / ) = ((l,r) 1,/) = (( l , r) , / ) = ( l , r / ) = S(rr').

It is clear that for r e A w e get 8(r) = r. Thus we have the following diagram of ring
homomorphisms

A

A T ^

with yoa. = fi, 8ofi = a.

Now one gets
(8oy)oa = a and thus Soy = 1A

by the universal property of a. On the other hand

and soyo5:^?->^isa ring homomorphism which acts as identity on A. Since any
rational function re M is a component if solution for a linear system with coefficients
in A (with matrix in £), cf. Proposition 2-1 (2), then applying yo8 to this system we
will get another solution of the same system. From uniqueness of the solution (cf.
Proposition 2-1 (1)) it follows now that yo 8 = \m. Thus y and 8 are mutually inverse
ring homomorphisms.
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52. We will show now that the ring of rational functions is the Cohn localization
with respect to other ' fc-points' of A.

Let CD = (w1,..., w^) be an ordered set of invertible elements wie k*. It defines a ring
homomorphism ew: A -*• k where ew(<4) = w{. Denote by Sw the set of all square matrices
(Aw) over A with

THEOREM 5-3. The ring homomorphism fS^-.h^-M, where fiu(tf) = o)t(xt + i) for i = 1,
...,/i is the universal ^-inverting ring homomorphism.

Proof. For w = (1, . . . , 1) this was proved in Theorem 5*1. For general w it follows
from the following commutative diagram

k

where /? is the Magnus embedding and / is the ring automorphism of A denned by
f(tt) = uoiti for i = l,...,/i.

5-4. Remark. We are thankful to the referee for pointing out Lewin's paper [5]
to us. There he gave a representation of Cohn's universal field of fractions U of A in
the Mal'cev-Neumann ring of formal series. U is a (non-commutative) field; it can be
represented as Ao, where <t> is the class of all full square matrices, cf. [1]. Lewin
showed in [5] that U is isomorphic to the rational closure of A in any
Mal'cev-Neumann embedding of A.

There is an obvious ring homomorphism/: ^? -> U (because our S is embedded in $).
It seems plausible that / is an inclusion; however, / is not surjective (for obvious
reasons).

The first author is supported by grant no. 88-00114 from the United States-Israel
Binational Science Foundation (BSF), Jerusalem, Israel.
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