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ABSTRACT. We generalize the classical study of Alexander poly-
nomials of smooth or PL locally-flat knots to PL knots that are
not necessarily locally-flat. We introduce three families of gen-
eralized Alexander polynomials and study their properties. For
knots with point singularities, we obtain a classification of these
polynomials that is complete except for one special low-dimen-
sional case. This classification extends existing classifications for
PL locally-flat knots. For knots with higher-dimensional singu-
larities, we further extend the necessary conditions on the in-
variants. We also construct several varieties of singular knots
to demonstrate realizability of certain families of polynomials as
generalized Alexander polynomials. These constructions, of in-
dependent interest, generalize known knot constructions such as
frame spinning and twist spinning.
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1. INTRODUCTION

Background. One of the central motivations for studying knots and their in-
variants, including Alexander polynomials, is the central role that knots play in the
understanding of the geometry of subvarieties of real codimension two. Thus, for a
subpseudomanifold, Xn−2, of a manifoldWn, e.g. for a complex divisor of a com-
plex manifold, the local geometry of X inW is classically described in terms of link
pairs. Therefore, there is a large classical topological and algebraic geometric liter-
ature (e.g. [27], [22], [23], [24]) which studies the topology of the non-singular
knots that arise as the link pairs of isolated singular points. However, in general,
the singularities that arise naturally in (both high- and low-dimensional) topolog-
ical and algebraic geometric situations (see, e.g., [5], [6], [12]) cannot be assumed
to be isolated, and the corresponding link pairs of points of the singularities will
consist of knotted sphere pairs which are themselves singular embeddings.

In the non-singular case, more specifically, the focus of knot theory histori-
cally has been the study of smooth or locally-flat codimension two knots, that is
embeddings of Sn−2 in Sn which are differentiable or piecewise-linear such that
the neighborhood pair of any image point is PL-homeomorphic to an unknotted
ball pair Dn−2 ⊂ Dn. Furthermore, much effort has gone into the study of in-
variants of knots, algebraic objects which can be assigned to knots and which are
identical for equivalent knots. Prominent among these invariants are the Alexan-
der polynomials which are elements, up to similarity class, of the ring of integral
Laurent polynomials

Λ := Z[Z] � Z[t, t−1] .

They can be defined in may ways, one of which is as follows: By Alexander duality,
the knot complement C := Sn−Sn−2 is a homology circle and hence possesses an
infinite cyclic cover, C̃. The homology of C̃ with rational coefficients, Hi(C̃;Q),
has the structure of a module over Γ := Q[t, t−1], where the action of t is given
by the covering translation. These modules can be shown to be Γ -torsion modules
which, since Γ is a principal ideal domain, possess square presentation matrices.
The determinants of these matrices are elements of Γ which can be “normalized” by
“clearing denominators” to elements of Λ whose coefficients are relatively prime,
collectively. These normalized determinants are the Alexander polynomials. An
equivalent approach would be to begin with the homology modules of C taken
with a local coefficient system Γ , which is given by stalk Γ and action determined
by factoring the fundamental group to the group of covering translations.

In [19], Levine completely characterized the Alexander polynomials of PL-
locally-flat knots. (Some of these results were known somewhat earlier for low
dimensions; see [7], [32], [17], [15].) If we represent the polynomial correspond-
ing to the homology group in dimension i by pi, he showed that the following
conditions are necessary and sufficient for the collection {pi}, 0 < i < n − 1, to
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be the Alexander polynomials of such a knot Sn−2 ⊂ Sn (in the other dimensions
the polynomials are trivial):

1. pi(t) ∼ pn−i−1(t−1) (“∼” denotes similarity in Λ),
2. pi(1) = ±1,
3. if n = 2q + 1, q even, then p(−1) is an odd square.

In this paper, we study the generalization of these invariants and their prop-
erties to various classes of knots which are not necessarily locally-flat, that is non-
locally-flat (we also sometimes refer to knots which are definitely not locally-flat as
singular). For knots with only point singularities, we establish necessary and suf-
ficient conditions generalizing those of Levine and which form a complete char-
acterization in all dimensions save n = 5 (and even for n = 5, we come close to
a complete characterization; see below). For knots with more general singulari-
ties, we further generalize the necessary conditions, and we study several methods
for realizing given sets of polynomials, including a construction of independent
interest in the study of smooth knots which generalizes twist spinning [40], super-
spinning [4], and frame spinning [30].

We now outline our results section by section.
Section 2: Polynomial Algebra is a preliminary section in which we develop

some fundamental results of what we call polynomial algebra by analogy with ho-
mological algebra. In particular, to each torsion Γ -module there is associated an
element of Γ , up to similarity class. This is the determinant of the presentation
matrix of the module or, equivalently, the product of its torsion coefficients (recall
that Γ = Q[Z] = Q[t, t−1] is a principal ideal domain). We develop some rela-
tionships among the polynomials associated to the modules of an exact sequence.

In Section 3: Sphere Knots with Point Singularities and Locally-flat Disk Knots,
we first show that the study of the complement of a knot with a point singularity
is homologically equivalent to the study of the complement of a locally-flat proper
disk knot whose boundary sphere knot is the link pair of the singular point. In
fact, by a technique of Milnor and Fox [26], the same is true of a sphere knot with
any finite number of point singularities, and the boundary sphere knot will be
the knot sum of the link pair knots of all the singular points. In this context, we
define a family of three polynomials: λi, corresponding to the homology module
of the cover of the disk knot complement, C; νi, corresponding to the boundary
sphere knot complement, X; and µi, corresponding to the relative homology of
the cover of the pair (C,X). Furthermore, there is a natural factorization of these
polynomials: νi ∼ aibi, λi ∼ bici, and µi ∼ ciai−1. With this notation we prove
the following theorem:

Theorem 1.1 (Theorem 3.28). For n ≠ 5 and 0 < i < n − 1, 0 < j <
n−2, the following conditions are necessary and sufficient for λi, µi, and νj to be the
polynomials associated to the Γ -modules Hi(C̃;Q), Hi(C̃, X̃;Q), and Hj(X̃;Q) of a
locally-flat proper disk knot Dn−2 ⊂ Dn: There exist polynomials ai(t), bi(t), and
ci(t), primitive in Λ, such that
1. (a) νi ∼ aibi.
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(b) λi ∼ bici.
(c) µi ∼ ciai−1.

2. (a) ci(t) ∼ cn−i−1(t−1).
(b) ai(t) ∼ bn−i−2(t−1).

3. ai(1) = ±1, bi(1) = ±1, ci(1) = ±1, a0(t) = 1.
4. If n = 2q + 1 and q is even, then there exist an integer ρ and an integer ω ≥ 0

such that
(
(1 − t)ωρ)/ ± cq(t) is the discriminant of a skew Hermitian form

A×A → Q(Λ)/Λ on a finitely-generated Λ-module, A, on which multiplication
by t − 1 is an isomorphism (or equivalently, cq(t) = det[M(t)], where M(t) =
(−1)q+1(R−1)′τRt − τ′ for integer matrices τ and R such that R has non-zero
determinant and (R−1)′τR is an integer matrix (here ′ indicates transpose; see
Section 3.6 for more details).
For a locally-flat proper disk knot D3 ⊂ D5 (the case n = 5), these conditions are

all necessary. Furthermore, we can construct knots which satisfies both these conditions
and the added, perhaps unnecessary, condition that |c2(−1)| be an odd square.

In Section 3.3, we prove the necessity of the duality and normalization con-
ditions (2) and (3) by a generalization of Levine’s technique in [19] by

(i) constructing an appropriately generalized Seifert surface,
(ii) using the surface to construct the cover by a cut-and-paste procedure,

(iii) deducing from the homology modules of the pieces of the construction the
form of the presentation matrices of the desired modules, and

(iv) exploiting the properties of an integer linking pairing between the homology
of the Seifert surface and that of its complement to show that these matrices
have the requisite properties to induce those claimed for the polynomials.

In Section 3.5, we prove the sufficiency of these conditions, modulo condition
(4), by employing various explicit constructions using surgery and relative surgery.
In particular, we show complete sufficiency under the added (unnecessary) condi-
tion that if n = 2q + 1 and q is even, then |cq(−1)| is an odd square.

Section 3.6 contains a study of the additional issues which are involved in
characterizing the “middle dimension polynomial”, cq(t), for n = 2q + 1 and q
even. The necessity of condition (4) is a consequence of the existence of a skew
Hermitian form on the module ker(∂∗ : Hq(C̃, X̃;Q) → Hq−1(X̃;Q)) which we
deduce from the Blanchfield pairing [1]. The realization of a given polynomial
cq(t), for n ≠ 5, is deduced as a consequence of the following more general
theorem:

Proposition 1.2 (Proposition 3.21). Let A be a finitely generated Z-torsion freeΛ-module on which multiplication by t−1 is an automorphism and on which there is a
non-degenerate conjugate linear (−1)q+1-Hermitian pairing 〈 , 〉 : A×A→ Q(Λ)/Λ.
Then there exists a disk knot Dn−2 ⊂ Dn, n = 2q + 1, q > 2, such that:
1. Hq(C̃) � A,
2. Hi(C̃) = 0, 0 < i < n− 1, i ≠ q,
3. Hi(X̃) = 0, 0 < i < n− 2, i ≠ q − 1,
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4. Hq−1(X̃) = 0 is a Z-torsion module,
5. Hi(C̃, X̃) = 0, 0 < i < n− 1, i ≠ q,
6. the form on Hq(C̃) is given by 〈 , 〉. (Note that Hq(X̃) = 0 implies that Hq(C̃) �
A � ker(∂∗) in the long exact sequence).

The impediment to a complete characterization in dimension n = 5 is a
consequence of special difficulties associated with low-dimensional surgery and is
related to an open problem of Levine’s in the study of pairings on low-dimensional
locally-flat sphere knots [21].

In Section 4: Knots with More General Singularities, we consider the case
of a sphere knot K = Sn−2 ⊂ Sn with singular set Σ, which need no longer
consist solely of isolated points. It remains useful to study not the actual knot
complement, Sn−K, but the homotopy equivalent complement of the locally-flat
restriction of the knot to Sn − N(Σ), where N(Σ) is an open regular neighbor-
hood of Σ. Then, we again obtain a boundary “knot” which is the complement in
∂N̄(Σ) of its intersection with the knot K. Accordingly, we can again define three
sets of polynomials (corresponding to the boundary, absolute, and relative homol-
ogy modules of the covers) which again have natural factorizations νi ∼ aibi,
λi ∼ bici, µi ∼ ciai−1. In this setting, by further generalizing the above tech-
niques and by employing a number of homological algebra computations, we
show in Section 4.2 that the necessary conditions of Theorem 1.1 generalize as
follows:

Theorem 1.3 (Theorem 4.16). Let νj(t), λi(t), and µi(t), 0 < j < n − 2
and 0 < i < n−1, denote the Alexander polynomials corresponding toHj(X̃),Hi(C̃),
and Hi(C̃, X̃), respectively, of a knotted Sn−2 ⊂ Sn. We can assume these polynomials
to be primitive in Λ. Then, there exist polynomials ai(t), bi(t), and ci(t), primitive
in Λ, such that
1. νj(t) ∼ aj(t)bj(t),
2. λi(t) ∼ bi(t)ci(t),
3. µi(t) ∼ ci(t)ai−1(t),
4. ai(t) ∼ bn−2−i(t−1)(t − 1)B̃i ,
5. ci(t) ∼ cn−1−i(t−1),
6. bi(1) = ±1,
7. ci(1) = ±1,
8. if n = 2q+1, then cq(t) is the determinant of a matrix of the form (R−1)′τRt−
(−1)q+1τ′ where τ and R are matrices such that R has non-zero determinant.
Furthermore, if Hq = Hq(C̃;Q)/ker(Hq(C̃;Q) → Hq(C̃, X̃;Q)) and n =

2q+ 1, there is a (−1)q+1-Hermitian pairing 〈 , 〉 : Hq ×Hq → Q(Γ)/Γ which has a
matrix representative

t − 1
(R−1)′τ − (−1)q+1τ′tR−1

with respect to an appropriate basis.
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In this setting of general singularities, realization of polynomials is more diffi-
cult because the allowable set of polynomials will depend subtly on the properties
of the singular set, its link pairs, and its embedding. However, in Section 4.3,
we employ several constructions available for creating locally-flat knots including
the frame spinning of Roseman [30] and our own generalization to frame twist-
spinning. Together, these include as special cases the superspinning of Cappell [4]
and the twist spinning of Zeeman [40]. By adapting these techniques and gener-
alizing them to knots with singularities, it is possible to construct singular knots
and to obtain some realization results here as well. In particular, for any mani-
fold M which can be embedded with framing in Sn−2, we construct classes knots
Sn−2 ⊂ Sn whose singular sets are M.

Furthermore, we calculate the polynomials of the knots so constructed based
upon the polynomials of the knots being spun and the homology properties of
the manifolds, M, they are being spun about. Let λσi , µσi , and νσi denote the
polynomials of a frame spun knot; λτi , µτi , and ντi the polynomials of a frame
twist-spun knot; and λi, µi, and νi the polynomials of the knot K being spun. LetΣ be the singular set of the knot K. Denote the Betti numbers of Σ by bi, let Bi
be the ith Betti number of Mk, and let β̃i be the reduced Betti number of M × Σ.
Suppose that

Hj(Mk; Γ |Mk) � ΓBj ⊕
⊕
`

Γ
(ζj`)

(see Section 4.3.2 for the definition of this local coefficient system onM) and that
the torsion coefficients of the boundary knot of K which are relatively prime to
t − 1 are denoted by νi`, so that νi = (t − 1)bi

∏
` νi`. Similarly, let

λi =
∏
`

λi` and µi = (t − 1)b̃i
∏
`

µi` .

Then, we show in Sections 4.3.1 and 4.3.2 that:

λσi (t) =
m−2∏
`=1

[λ`(t)]Bi−`

µσi (t) =(t − 1)B̃i−1

m−2∏
`=0

[µ`(t)]Bi−`

νσi (t) =
m−3∏
`=0

[ν`(t)]Bi−`

λτj (t) =
∏
r+s=j
s>0

(∏
`

λBr
sl ·

∏
i,`

d(ζri, λsl)

 · ∏
r+s=j−1
s>0

∏
i,`

d(ζri, λsl)
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µτj (t) =(t − 1)β̃j−1
∏

r+s=n−j−1
s>0

(∏
`

µBr
m−s−1,` ·

∏
i,`

d(ζ̄ri, µm−s−1,`)



·
∏

r+s=n−j−2
s>0

∏
i,`

d(ζ̄ri, µm−s−1,`)



ντj (t) =(t − 1)βj
∏
r+s=j

∏
`

νBr
sl ·

∏
i,`

d(ζri, νsl)

 · ∏
r+s=j−1

∏
i,`

d(ζri, νsl)

 .
From these formulas, we then deduce the following realization theorems:

Proposition 1.4 (Proposition 4.23). Let Mk be a manifold which embeds in
Sn−2 with trivial normal bundle with framing φ and such that n−k > 3. Let Σ be a
single point. Let Bi denote the ith Betti number ofM, and let b̃i and β̃i denote the ith
reduced Betti numbers of Σ and M × Σ, respectively. Suppose that we are given any set
of polynomials, ai(t), bi(t), cj(t) and c′`(t), 0 < i < n−k−2, 0 < j < n−k−1,
and 0 < ` < n− 1, which satisfy:
1. ai(t) ∼ bn−k−2−i(t−1),
2. ci(t) ∼ cn−k−1−i(t−1),
3. c′i(t) ∼ c′n−1−i(t

−1),
4. bi(1) = ±1,
5. ci(1) = ±1,
6. c′i(1) = ±1,
7. if n − k = 2p + 1, p even, p ≠ 2, then cp(t) is the determinant of a matrix of

the form (R−1)′τRt−(−1)q+1τ′ where τ and R are integer matrices such that R
has non-zero determinant and (R−1)′τR is an integer matrix; if n−k = 2p+1,
p even, p = 2, then |cp(−1)| is an odd square,

8. if n = 2q + 1, q even, then |c′q(−1)| is an odd square.
Then there exists a knotted Sn−2 ⊂ Sn with singular set M and Alexander subpolyno-
mials aσi (t), b

σ
i (t), and cσi (t) satisfying

aσi (t) ∼ (t − 1)β̃i
m−2∏
`=1

[
a`(t)

]Bi−` ,
bσi (t) ∼

m−2∏
`=1

[b`(t)]Bi−` ,

cσi (t) ∼ c′i(t)
m−2∏
`=1

[c`(t)]Bi−` .

Theorem 1.5 (Theorem 4.27). LetMk, n−k > 3, be a manifold which embeds
in Sn−2 with trivial normal bundle with framing φ. Given a map
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τ : M → S1, let Bi be the rank of the free part and ζi` be the torsion invariants
of the Γ -modules Hi(M; Γ |M). (These modules are independent of the knot being spun
in the construction.) If γ ∈ Γ , then let γ̄ ∈ Γ be such that γ̄(t) = γ(t−1). If K
is a knot Sm−2 ⊂ Sm with Alexander invariants λi`, µi`, and νi` and with sin-
gular set Σ with reduced Betti numbers b̃i, then there exists a frame twist-spun knot
σφ,τM (K) with singular set M × Σ (whose reduced Betti numbers we denote β̃i) and
with Alexander polynomials given for j > 0 by:

λτj (K) ∼
∏
r+s=j
s>0

(∏
`

λBr
sl ·

∏
i,`

d(ζri, λsl)

 · ∏
r+s=j−1
s>0

∏
i,`

d(ζri, λsl)

 ,

µτj (K) ∼(t − 1)β̃j−1
∏

r+s=n−j−1
s>0

(∏
`

µBr
m−s−1,` ·

∏
i,`

d(ζ̄ri, µm−s−1,`)



·
∏

r+s=n−j−2
s>0

∏
i,`

d(ζ̄ri, µm−s−1,`)

 ,

ντj (t) ∼(t − 1)β̃j
∏
r+s=j

∏
`

νBr
sl ·

∏
i,`

d(ζri, νsl)

 · ∏
r+s=j−1

∏
i,`

d(ζri, νsl)

 .
In particular, by frame twist-spinning knots with a single point as their singular set,
we obtain knots with M as their singular sets.

Remark 1.6. In fact, we can create a knot with a single point as its singular
set and with (nearly) any given set of allowable invariants by the results of Section
3. Putting this together with the above theorem, we know exactly what kinds of
polynomials can be realized as those of frame twist-spun knots with singular set
M, modulo our ability to compute the homology Hj(M; Γ |M) and our difficulty
with the polynomial c2(t) of a disk knot D3 ⊂ D5.

Finally, we form singular knots by the suspension of locally-flat or singular
knots and compute their polynomials (λΣi , µΣi , and νΣi ) from those of the original
the knots (λi, µi, and νi). This is done in Section 4.3.3, where we obtain the
following result:

Proposition 1.7 (Proposition 4.30). With the notation as above,
1. λΣi ∼ λi ∼ bici
2. µΣi ∼ µi−1 ∼ ci−1ai−2

3. νΣi ∼ λiµi ∼ ai−1bic2
i .

This work originally appeared as part of the author’s dissertation [9]. In fur-
ther papers, we study the intersection homology analogues of Alexander polyno-
mials for non-locally-flat knots (see [9], [8]). I thank my advisor, Sylvain Cappell,
for all of his generous and invaluable guidance.
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2. POLYNOMIAL ALGEBRA

Let Γ = Q[Z] = Q[t, t−1] be the ring of Laurent polynomials with rational co-
efficients. In other words, the elements of Γ are polynomials

∑
i∈Z aiti, such that

each ai ∈ Q and ai = 0 for all but a finite number of i. Γ is a principal ideal
domain [19, §1.6]. Unless otherwise specified, we will generally not distinguish
between elements of Γ and their similarity classes up to unit. In this introductory
section, we study some basic facts, which will be used often, concerning torsionΓ -modules and their associated polynomials (the determinants of their square pre-
sentation matrices). In analogy with homological algebra for modules, we refer to
this theory of the behavior of the associated polynomials as polynomial algebra.

Let Λ = Z[Z] = Z[t, t−1],

the ring of Laurent polynomials with integer coefficients. Then Γ = Λ⊗Z Q. We
call a polynomial in Λ primitive if its set of non-zero coefficients have no common
divisor except for ±1. Any element of Γ has an associate in Γ which is a primitive
polynomial in Λ: Any element ati ∈ Γ is a unit and, in particular then, any
a ∈ Q. So given an element of Γ , we can first clear denominators and then divide
out any common divisors without affecting similarity (associate) class in Γ . We
will often choose to represent an element of Γ (technically, its associate class) by
such a primitive element of Λ.

Proposition 2.1. Suppose we have an exact sequence of finitely generated torsionΓ -modules

(2.1) 0 d0-----------------------------------------------------------------------------------------------------------------------------------------------------------→ M1
d1-----------------------------------------------------------------------------------------------------------------------------------------------------------→ M2

d2-----------------------------------------------------------------------------------------------------------------------------------------------------------→ ·· · dn−1-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Mn
dn-----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0,

and suppose that ∆i is the determinant of a square presentation matrix of Mi (which
we will refer to as the polynomial associated to the module). Then, taking ∆n+1 = 1
if n is odd, the alternating product

dn/2e∏
i=1

∆2i−1∆2i
∈ Q(t)

is equal to a unit of Γ , and, in particular, with a consistent choice of normalization
within associate classes for the elementary divisors of the Mi (in the language of [13]),
this product is equal to 1.

Proof. It is well known (see, for example, [13, p. 225]) that a finitely generate
torsion module over a principal ideal domain can be decomposed as the direct sum
of cyclic torsion summands of orders pkjj , the pj not necessarily distinct primes
in the ground ring and the kj positive integers, also not necessarily distinct. Fur-
thermore, we know that this decomposition is unique in the sense that the pj are
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determined up to associate class, but the cyclic summands Γ/(pkjj ), being inde-
pendent of the choice of pj within the associate class, are uniquely determined.
Hence, in particular, each Mi has a square presentation matrix of the form



p
ki1
i1 0 · · · 0

0 p
ki2
i2 0

...
. . .

...

0 0 . . . p
kimi
imi


,

and ∆i = ∏mi
j=1 p

kij
ij . Since we have a finite number of modules, each finitely

generated, we have a finite number of primes of Γ occurring in the elementary
divisors and in these matrices. We are free to choose these primes so that if two are
in the same associate class, then they are, in fact, the same element of Γ , and we
assign an order so that we may speak of the collection of distinct primes {pj}mj=1
which occur. Let Mi(pj) be the summand of Mi which is the direct sum of cyclic
modules of order a power of pj . This may be a trivial summand. Then each Mi
decomposes as

Mi �Mi(p1)⊕Mi(p2)⊕ · · · ⊕Mi(pm),

and, if we set ∆i(pj) to be the determinant of the presentation matrix of Mi(pj),
then ∆i = ∏

j ∆i(pj) and ∆i(pj) = pkj where k is the sum of the powers of pj
which occur in the elementary divisors ofMi.

Lemma 2.2. Let r and s be powers of distinct (non-associate) prime elements ofΓ . Then the only Γ -module morphism f : Γ/(r)→ Γ/(s) is the 0 map.

Proof. Suppose f is such a map. Then, letting elements of Γ stand for their
classes in Γ/(s) and Γ/(r) where appropriate, we have

0 = f(0) = f(r1) = rf(1) = ra

for some a ∈ Γ/(s). But ra = 0 implies that ra = sb in Γ for some b ∈ Γ . Since
s|sb but no prime divisor of s divides r , we must have s|a so that a = sc for
some c ∈ Γ . But then f(1) = a = sc = 0, for some c. This implies that f is the
0 map because f is completely determined by the image of the generator. ❐

Corollary 2.3. With the notation above, the only Γ -module morphisms f :
Mi(pk)→ Mj(p`), for k ≠ `, are the 0 maps.

Proof. This follows immediately from the lemma since the map on each sum-
mand must be 0. ❐
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Corollary 2.4. For any pj , the sequence

(2.2) 0 e0-----------------------------------------------------------------------------------------------------------------------------------------------------------→ M1(pj)
e1-----------------------------------------------------------------------------------------------------------------------------------------------------------→ M2(pj)

e2-----------------------------------------------------------------------------------------------------------------------------------------------------------→ ·· ·
en−1-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Mn(pj)

en-----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0

is exact, where the maps ei are the restrictions of the the maps di to the direct summands
Mi(pj).

Proof. First, we note that these maps are well-defined: Any element a ∈ Mi
can be represented as

∑
` a` where a` ∈ Mi(p`), and so if aj ∈ Mi(pj), we can

identify it via the inclusion of the summand with 0+· · ·+0+aj+0+· · ·+0 ∈
Mi, which we will also call aj . Then di(aj) is represented by a sum

∑
` b`,

b` ∈ Mi+1(p`). If r` is the projection of Mi toMi(p`), then r`di(aj) = b`. But
this gives a Γ -module morphism Mi(pj) → Mi+1(p`) and hence b` = 0 if ` ≠ j
by the preceding corollary. In other words, the image of the summand Mi(pj)
under di lies in Mi+1(pj). Thus the maps of this sequence are well-defined.

Next since di+1di = 0, we also have ei+1ei = 0.
It remains to show that Ker(ei) ⊂ Im(ei−1). Suppose that ei(aj) = 0, aj ∈

Mi(pj). Then we have also di(aj) = 0, since we have already observed that di
takes aj to 0 in all of the other summands Mi−1(p`), ` ≠ j. But since (2.1)
is exact, there is an element c in Mi−1 such that di−1(c) = aj , and we have
c = ∑

` c`, c` ∈ Mi−1(p`) and di−1(c) =
∑
` di−1(c`) = aj . Since we know

di−1(c`) ∈ Mi(p`), we must have di−1(cj) = aj and di−1(c`) = 0, ` ≠ j. But
then aj = ei−1(cj) ∈ Im(ei−1). ❐

Note that this lemma together with its corollary allows us to write the exact
sequence (2.1) as the direct sum of exact sequences of the form (2.2).

We will prove Proposition 2.1 in the special case that the exact sequence in its
statement has the form of that in equation (2.2). The proposition will then follow
for the general case by the formula

dn/2e∏
i=1

∆2i−1∆2i
=
dn/2e∏
i=1

∏
j ∆2i−1(pj)∏
j ∆2i(pj)

=
∏
j

dn/2e∏
i=1

∆2i−1(pj)∆2i(pj)
.

So it remains to prove that the exact sequence (2.2) implies that

dn/2e∏
i=1

∆2i−1(pj)∆2i(pj)
is a unit of Γ .

In particular, with our choice of consistent pj ’s within the associated classes, this
product will be 1. For this, recall that we have already observed that ∆i(pj) =
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pki(pj)j , where ki(pj) is the sum of the powers of pj which occur in the elementary
divisors of Mi. Therefore

dn/2e∏
i=1

∆2i−1(pj)∆2i(pj)
= pk(pj)j ,

where k(pj) =
∑dn/2e
i=1 (−1)i+1ki(pj). We claim that k(pj) = 0, which will

complete the proof.
Of course, each Γ -module Mi(pj) has the underlying structure of a rational

vector space if we forget about the t action, and similarly the exact sequence (2.2)
can be regarded as an exact sequence of vector spaces over Q. Suppose pj =∑b
`=a c`t`, where a and b are finite integers, ca ≠ 0 and cb ≠ 0 (we can always

find such a representation of an element of Γ ). Define ‖pj‖ = b − a. Then the
dimension of Γ/(pj) as a rational vector space is ‖pj‖, and, more generally, the
dimension of Γ/(pkj ) as a vector space is ‖pkj ‖ = k‖pj‖, for any non-negative
integer k. Therefore, the dimension of Mi(pj) as a rational vector space must be
ki(pj)‖pj‖. But since (2.2) is an exact sequence of vector spaces,

0 =
∑
i
(−1)i+1dim(Mi(pj)) =

∑
i
(−1)i+1ki(pj)‖pj‖

= ‖pj‖
∑
i
(−1)i+1ki(pj) = ‖pj‖k(pj).

Since ‖pj‖ ≠ 0 (else pj would be a unit of Γ and Γ/(pkj ) trivial), we must have
k(pj) = 0 as claimed. This completes the proof.

Note that had we not fixed the pj within their associate classes, the product

dn/2e∏
i=1

∆2i−1∆2i

would not necessarily be 1, but it would still follow from minor adjustments to
the arguments above that it would be a unit of Γ . ❐

Corollary 2.5. With the notation and assumptions as above, each ∆i = δiδi+1
where δi+1|∆i+1 and δi|∆i−1. Furthermore, if we represent the ∆i by the elements in
their similarity classes in Γ which are primitive in Λ, the δi will also be primitive inΛ.

Proof. Let Zi ⊂ Mi denote the kernel of di. Then we have the short exact
sequences

0 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Zi -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Mi -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Zi+1 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0

Let δi be the determinant of a square presentation matrix of Zi. Then, ap-
plying the above proposition for various choices of i, we obtain ∆i = δiδi+1 up



Alexander Polynomials of Non-locally-flat Knots 1491

to associate classes, as well as ∆i−1 = δi−1δi and ∆i+1 = δi+1δi+2. This proves
the first part of the corollary. For the second, recall that we can always find an
element in the associate class of δi in Γ which is primitive in Λ, and this choice
will be unique up to associate class in Λ. Similarly for δi+1. But the product of
two primitive elements of Λ is again primitive in Λ (the argument of [11, §3.10]
for Z[t] extends easily), so that, with this choice, δiδi+1 is a primitive element ofΛ which is equal to ∆i up to associativity in Λ. ❐

This corollary will be used often in what follows.
For convenience, we introduce the following notation. Suppose ∆i ∈ Γ . We

will refer to an exact sequence of polynomials, denoted by

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ ∆i−1 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ ∆i -----------------------------------------------------------------------------------------------------------------------------------------------------------→ ∆i+1 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ ,

to mean a sequence of polynomials such that each∆i ∼ δiδi+1, δi ∈ Γ . As we have
seen, such a sequence arises in the case of an exact sequence of torsion Γ -modules,
Mi, and, in that case, the factorization of the polynomials is determined by the
maps of the modules as in Corollary 2.5. In particluar, each δi is the polynomial
of the module ker(Mi → Mi+1).

Observe that knowledge of two thirds of the terms of an exact sequence of
polynomials (for example, all ∆3i and ∆3i+1, i ∈ Z) and the common factors of
those terms (the δ3i+1), allows us to deduce the missing third of the sequence
(∆3i+2 = δ3i+2δ3i+3 = (∆3i+1/δ3i+1) · (∆3i+3/δ3i+4) ).

Note also that for any bounded exact sequence of polynomials (or even a
half-bounded sequence), the collections {∆i} and {δi} carry the same informa-
tion. That is, suppose that one (or both) end(s) of the polynomial sequence is
an infinite number of 1’s (by analogy to extending any bounded or half-bounded
exact module sequence to an infinite number of 0 modules). Clearly, the ∆i can
be reconstructed from the δi by ∆i ∼ δiδi+1. On the other hand, if ∆0 is the
first nontrivial term in the polynomial sequence, then δ0 ∼ 1, δ1 ∼ ∆0, and
δi ∼ ∆i−1/δi−1 for all i > 1. Similar considerations hold for a sequence which
is bounded on the other end. Therefore, we will often study properties of the
polynomials ∆i in an exact sequence by studying the δi instead. We will refer
to the δi as the subpolynomials of the sequence and to the process of determining
the subpolynomials from the polynomials as “dividing in from the outside of the
sequence”.

3. SPHERE KNOTS WITH POINT SINGULARITIES AND LOCALLY-FLAT
DISK KNOTS

3.1. Introduction. Our goal in this section is to study the Alexander poly-
nomials of a knot with isolated singularities. More specifically, let α : Sn−2 ↩ Sn,
n > 3 be a PL-embedding such that for x ∈ α(Sn−2), the link pair of x in
(Sn,α(Sn−2)) is PL-homeomorphic to the standard unknotted sphere pair except
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at finitely many x, where it may be a knotted sphere pair. Henceforth, we will dis-
pense withα unless necessary and refer simply to the knot pair (Sn,K = α(Sn−2))
or the n-knot K. Just as in the classical locally flat case, Alexander duality tells us
that the homology of the knot complement Sn − K is that of a circle, and this
allows us to study the infinite cyclic cover of the knot complement and its homol-
ogy regarded as a module over Γ = Q[H1(Sn − K)] = Q[Z] = Q[t, t−1]. We can
then study the Alexander invariants of these modules.

We begin by seeing that the study of the homological properties of the com-
plements of sphere knots with isolated singularities reduces to the study of the
complements of locally-flat disk knots. This study of disk knots starts by emulat-
ing J. Levine’s study of Alexander invariants for the locally flat sphere knots [19].
In Section 3.3, we introduce two sets of polynomial invariants, λiq and µiq, corre-
sponding to certain absolute and relative homology modules and show that they
satisfy certain duality and normalization conditions. From these, we arrive at the
corresponding definitions and properties for the Alexander polynomials λi and µi
(see Section 3.4).

In Section 3.5, we turn to the realization of locally-flat disk knots with given
polynomial invariants which satisfy the properties obtained in Section 3.3. We
show that any allowable set of λi can be realized, first for a knotted D2 in D4

(Section 3.5.1) and then for arbitrary Dn−2 ⊂ Dn, n > 4 (Section 3.5.2). In
Section 3.5.3, we show that we can nearly completely characterize all three sets of
Alexander polynomials which can occur for a locally flat disk knot (the polynomi-
als λi and µi, which we have already mentioned, plus the Alexander polynomials
of the boundary locally-flat sphere knot). The barrier to a complete classifica-
tion, at that point, is a certain polynomial factor shared by λq and µq for knotted
D2q−1 ⊂ D2q+1, q an even integer.

In Section 3.6, we take up the study of this middle-dimensional polynomial
factor. We show that it is related to a certain Hermitian self-pairing induced by
the Blanchfield pairing on the middle-dimension homology modules. We estab-
lish the realizability of such pairings in disk knots and then study the relationship
between the Alexander polynomial factors and the presentation matrices of the
modules and their pairings. This allows us to state necessary and sufficient condi-
tions for this polynomial factor for n ≠ 5.

Finally, in Section 3.7, we gather together the results of Section 3. Theorem
3.28 states a complete set of necessary and sufficient conditions for Alexander
polynomials for locally-flat disk knots Dn−2 ⊂ Dn, n ≠ 5. For n = 5, the
classification is nearly complete, but we obtain only a partial characterization of
the middle dimensional polynomial factor.

3.2. The knot complement. For technical simplicity, we will often study not
the knot complement but rather a version of the the homotopy equivalent “knot
exterior”. For locally flat knots this is the exterior of an open tubular (PL-regular)
neighborhood of the knot. Similarly, we can consider the exterior of a regular
neighborhood of our singular knot.
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First, assume that the knot, K, has only one singular point, x. Then the
neighborhood Star(x) of x in Sn is a knotted ball pair (Dn,Dn−2) which is
(PL-homeomorphic to) the cone on Link(x), which is a knotted sphere pair
∂(Dn,Dn−2) = (Sn−1, Sn−3) = (Sn−1, k), where we let k denote the locally flat
(n-1)-knot of the sphere pair. Since the cone point no longer remains when we
consider only the knot complement, we can retract what remains of the comple-
ment in Star(x) out to the boundary and see that our knot complement is homo-
topy equivalent to the complement of a locally-flat knotted disk pair (Dn,Dn−2)
where this Dn is the complement of the open disk neighborhood of x in Sn. This
knotted disk pair in fact provides a null-knot cobordism of the slice knot k, and
the study of the knot complement reduces (up to homotopy equivalence) to the
study of the cobordism complement Dn −Dn−2, which we shall denote by C. If
desired, we can also retract this complement to the complement of an open tubu-
lar (regular) neighborhood of the locally-flatly embedded knotted disk in analogy
with the usual notion of knot exteriors. See Figures 1a–1g.

If K has multiple isolated singularities, xi, the situation is slightly more com-
plicated but similar. Fox and Milnor’s [26] analysis of the case of a two-sphere with
isolated singularities embedded in four-space carries over to higher dimensions. In
particular, we can choose a PL-arc, p, embedded in Sn−2 which traverses each sin-
gular point (where here we confuse Sn−2 with K). Then a regular neighborhood,
N, of p is again a disk pair (Dn,Dn−2) whose boundary is a knotted sphere pair
(Sn−1, Sn−3) = (Sn−1, k), where the knot k is the knot sum

∑
i k(xi) of the knots

of each sphere pair, Link(xi). As in the case of a single singular point, the knot
complement is homotopy equivalent to the complement of the disk pair which is
obtained from the sphere pair by removing the open regular neighborhood of p.
This can be seen as follows: First retract the star neighborhoods of the xi in the
knot complement radially away from the cone points, xi, as in the last paragraph.
The portion of Sn − K remaining in the interior of N then consists of a disjoint
set of standard ball pairs (Dn,Dn−2) whose boundaries lie in ∂N except for two
opposing sides (thinking of the balls as cubes) which lie in the link pairs of xi and
xi+1 and can be identified as neighborhoods there of points of k(xi) and k(xi+1),
respectively. But once we have gone over to the knot complement and hence re-
moved the (n-2)-balls, their complements easily retract out to ∂N − (∂N ∩ K).
Once again, our study is reduced to the complement of a knotted disk pair which
forms the null-cobordism of a slice knot. Henceforth, we refer to the knotted disk
L in Dn, ∂L = k ∈ ∂Dn. See Figures 2a–2e.

By this discussion, our study of the homological properties of Sn −K reduces
to a study of the homological properties of Dn − L.

3.3. Necessary conditions on the Alexander invariants.

3.3.1. Alexander invariants. We now undertake a study of the Alexander poly-
nomials of the complements of locally-flat knotted disks following the pattern of
Levine’s [19] study of the Alexander polynomials of locally flat sphere knots. In
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Figure 1a Figure 1d

Figure 1b Figure 1e

Figure 1c Figure 1f

Figure 1g

1a. Schematic diagram of a knot with one singular point. 1b. A close-up of the neigh-
borhood of the singular point. 1c–d. Slightly less schematic diagrams of the neigh-
borhood of the singular point. 1e–f. Schematic and slightly less schematic diagrams of
pushing the knot complement away from the singular point. 1g. Once we have removed
a neighborhood of the knot, we are left with the knot exterior.
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Figure 2a

Figure 2b

Figure 2c

Figure 2d

Figure 2e

2a. Schematic diagram of a knot with two singular points. 2b. A close-up of
the neighborhood of a path p connecting the singular points. 2c. A slightly
less schematic diagram of the neighborhoods of p in the knot and in the
ambient space. 2d. Pushing the knot complement away from the knot in a
neighborhood of p. 2e. The knot exterior.
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particular, let C be the disk-knot complement Dn − L and let C̃ be the infinite
cyclic cover associated with the kernel of the abelianization π1(C) → Z. Let t
denote a generator for the covering translation and Λ the group ring Z[Z] =
Z[t, t−1]. The homology groups of C̃ are finitely generated Λ-modules since C
has a finite polyhedron as a deformation retract, and the rational homology groups
H∗(C̃;Q) � H∗(C̃)⊗Z Q are, therefore, finitely generated modules over the prin-
cipal ideal domain Γ = Q[t, t−1] � Λ⊗Z Q. Therefore, letting MR(λ) denote the
R-module of rank 1 with generator of order λ, Hq(C̃;Q) � ⊕k

i=1MΓ (λiq) (note
that “i” is here an index, not a power). Furthermore, we can choose the λiq so
that: 1) The λiq are primitive in Λ but are unique up to associate class in Γ , and 2)
λi+1
q |λiq. For 0 < q < n− 1, the λiq are called the Alexander invariants of the knot

complement. We will also consider the relative homology modules H∗(C̃, X̃;Q),
where X is the complement of k in Sn−1 = ∂Dn and X̃ is its infinite cyclic cov-
ering. It will be clear from our construction that X̃ and the cover of X in C̃ are
equivalent. Then H∗(C̃, X̃;Q) has the same properties listed above for H∗(C̃;Q)
and its own Alexander invariants {µiq}, 0 < q < n− 1.

We will prove the following theorem concerning necessary conditions on these
polynomials:

Theorem 3.1. Let p = n− 1− q. With {λiq} and {µiq} as above for a knotted
disk pair (Dn,Dn−2), n ≥ 3, the following properties hold:
1. λi+1

q |λiq and µi+1
q |µiq in Λ;

2. λiq(1) = ±1, µiq(1) = ±1;
3. λiq(t) ∼ µip(t−1) in Λ, where ∼ denotes associativity of elements in Λ, i.e. a ∼ b

implies a = ±tkb for some k.

The proof of the theorem is given over the following sections.

3.3.2. Construction of the covering. We begin by finding Γ -module presen-
tations for H∗(C̃;Q) and H∗(C̃, X̃;Q) by generalizing the usual technique of
studying the Mayer-Vietoris sequence for the infinite cyclic cover obtained from
cutting and pasting along a Seifert surface.

Proposition 3.2. Given a knotted disk L ∈ Dn, there exists an (n− 1)-dimen-
sional connected bicollared submanifold V ∈ Dn such that ∂V = L∪ F , where F is a
Seifert surface for k in ∂Dn.

Proof. Letting T be a regular tubular neighborhood of L in Dn, there is a
map f : T − L → S1 given by projection on the fibers. (A trivialization of the
disk bundle is provided by the restricting the trivialization of the disk bundle
constituting the tubular neighborhood of the locally-flat sphere knot obtained by
gluing our disk knot and its mirror image along the boundary knots). As in the
construction of the usual Seifert surfaces, this map can be extended to the rest of
∂Dn so that the inverse image there of a regular value, x, of S1 is a Seifert surface
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for k after throwing away extraneous components. In fact, the map can be easily
modified so as to avoid extraneous components (the extraneous components will
be bicollared close manifolds of ∂Dn such that the fiber in the collar of each point
maps to an arc of S1 containing x, and so on each fiber we can reverse the map to
run around S1 the other way, avoiding x). Now we wish to extend f to the rest
of Dn − ((T − L)∪ ∂Dn).

The obstructions to this extension lie in

Hi+1(C, T ∪ ∂Dn;πi(S1)) � Hi+1(C, ∂C;πi(S1))

(see [2, p. 54]). We know that πi(S1) = 0 for i ≠ 1 and Z for i = 1 so we need
only calculate:

H2(C, ∂C;Z) � Hn−2(C) � H1(L, ∂L = k) � H1(Dn−2, ∂Dn−2) = 0,

since n > 3. The first two isomorphisms are due to Lefschetz duality and Alexan-
der duality for a ball [28, p. 426]. Therefore, the obstruction is 0, so the extension
exists, and we can take V as the inverse image of a regular value in S1 after, again,
throwing away extraneous components. If x is no longer a regular value, we
can instead choose a new regular value, y , in an ε-neighborhood of x such that
f−1(y)∩ ∂Dn is isotopic (in ∂Dn) to f−1(x) and hence gives “the same” Seifert
surface for k. It is clear that V has the desired boundary. ❐

We can now construct C̃ in the usual way by cutting along V to create a
manifold Y whose boundary is (Dn − V) ∩ Sn−1 together with two copies of V ,
V+ and V−, identified along L and then by pasting together a countably infinite
number of disjoint copies (Yi, V i+, V i−), −∞ < i < ∞, of (Y − L,V+ − L,V− − L)
by identifying Vi+ −L with Vi+1− −L for all i. Then X̃ is the submanifold resulting
from the restriction of this construction to ∂Dn∩(Yi, V i+, V i−). X̃ is thus the usual
infinite cyclic cover constructed for a classical knot complement as claimed. Note
that, just as in that case, Hq(Dn−V) � Hq(Y) due to homotopy equivalence. We
also denote Y ∩ ∂Dn by Z and have Hq(∂Dn − F) � Hq(Z).

The usual considerations (see, e.g., [19]) now allow us to set up the Mayer-
Vietoris sequences for C̃ and (C̃, X̃):

-→ Hq(V ;Q)⊗Q Γ d1- Hq(Y ;Q)⊗Q Γ e1- Hq(C̃;Q) -(3.1)

and

-→ Hq(V, F ;Q)⊗Q Γ d2- Hq(Y ,Z;Q)⊗Q Γ e2- Hq(C̃, X̃;Q) -(3.2)

We will see that di, i = 1,2, is a monomorphism for 0 ≤ q < n − 1. Hence
ei is an epimorphism, 0 < q < n−1, and the di provide presentation matrices for
the homology modules of the covers as Γ -modules. That the di are square matrices
in this range follows from the following proposition.
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Proposition 3.3.

1. Hq(V ;Q) � Hq(Y ;Q), 0 ≤ q < n− 1,
2. Hq(V, F ;Q) � Hq(Y ,Z;Q), 0 ≤ q < n− 1.

Proof.

1. In the proof, we assume rational coefficients while omitting mention for
the sake of notational convenience. Hq(Y) � Hq(Dn − V) � Hp(V, F),
p+q = n−1, by Alexander duality for the ball, while Hq(V) = Hp(V, ∂V)
by Lefschetz duality. So we must show that Hp(V, F) � Hp(V, ∂V). Recall
that ∂V = F∪k L � F∪kDn−2. From the reduced Mayer-Vietoris sequence,
we get immediately that Hk(F) � Hk(∂V ) for k < n−3, and the top of the
sequence is

� 0
Hn−2(F) � Hn−2(∂V) � Hn−3(Sn−3) � Hn−3(F) � Hn−3(∂V) �0

� 0

=
?
� Q

�
?

� Q

�
?

� Hn−3(F)

=
?

� Hn−3(∂V)

=
?

�0

because F is an (n−2)-manifold with boundary and ∂V is a closed (n−2)-
manifold. Since the map Q → Q must be an isomorphism, so must be
the map Hn−3(∂V) → Hn−3(F). Therefore, Hk(F) � Hk(∂V ) for k <
n−2. Now turning to the long exact sequences of the pairs, the inclusion
(V , F)↩ (V , ∂V) and naturality give a commutative diagram

Hk(F) � Hk(V) � Hk(V, F) � Hk−1(F) � Hk−1(V)

Hk(∂V)
?

� Hk(V)
?

� Hk(V, ∂V)
?

� Hk−1(∂V)
?

� Hk−1(V).
?

By the five-lemma, Hk(V, F) � Hk(V, ∂V) for k < n − 2. For k = n − 2,
we can use the facts that Hn−2(F) = 0 and Hn−1(V) = 0, since F is an
(n−2)-manifold with boundary and V is an (n−1)-manifold with bound-
ary, and that Hn−2(∂V) → Hn−1(V , ∂V) is an isomorphism Q → Q for
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similar reasons. These allow us to extract the following commutative dia-
gram near the top of the sequence:

0 � Hn−2(V) � Hn−2(V , F) � Hn−3(F) � Hn−3(V)

0 � Hn−2(V)
?

� Hn−2(V , ∂V)
?

� Hn−3(∂V)
?

� Hn−3(V).
?

Again using the five-lemma, we conclude that Hk(V, F) � Hk(V, ∂V) for
k < n− 1.

2. For q = 0, the statement is obvious as all of the spaces are connected. Oth-
erwise, from part (1), Hq(V) � Hq(Y), 0 ≤ q < n−1, and from the perfect
linking pairings L′ and L′′ (see Section 3.3.3, below), these are dually paired
to Hn−p−1(Y , Z) and Hn−p−1(V , F), respectively, for 0 < q < n− 1. From
the induced perfect rational pairings we get the statement of part (2). ❐

Returning to the maps di; i = 1,2; it follows from the construction of the
covering and the action of the covering translation, t, that the maps can be written
as

di(α⊗ 1) = i−∗(α)⊗ t − i+∗(α)⊗ 1

= t(i−∗(α)⊗ 1)− i+∗(α)⊗ 1,

where i± correspond to the identification maps of (V , F) to (V±, F±) and α ∈
Hq(V ;Q) or Hq(V, F ;Q) according to whether i = 1 or 2.

3.3.3. Linking Numbers. We now turn to the linking pairings on these ho-
mology groups. Let p = n − 1 − q. There are perfect (modulo torsion) pairings

(3.3) L′ : Hp(V, F)⊗Hq(Y)→ Z

(3.4) L′′ : Hp(Y ,Z)⊗Hq(V) → Z.

These are the usual geometric linking pairings which are induced, via some iso-
morphisms, by the classical Lefschetz dual intersection pairing Hi(Sn, Z) ⊗
Hn−i(Sn − Z) → Z, for Z ⊂ Sn. In particular, given the disk Dn and a closed
subpolyhedron B ⊂ Dn which meets ∂Dn = Sn−1 regularly, let A = B ∪ ∂Dn =
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B∪Sn−1. We also think of Dn = Dn+ as the top hemisphere of Sn = Dn+∪Sn−1Dn−.
Then a linking pairing

(3.5) L′ : Hi(B, B ∩ Sn−1)×Hn−i−1(Dn − B)→ Z,

0 < i < n − 1, can be defined by applying the following isomorphisms and then
applying the intersection pairing:

Hi(B, B ∩ Sn−1) � Hi(B ∪ Sn−1, Sn−1) by excision
= Hi(A, Sn−1) by definition of A
� Hi(A) by the long exact sequence of (A, Sn−1)
� Hi+1(Dn,A) by the long exact sequence of (Dn,A)
� Hi+1(Sn,A∪Dn−) by excision,

and
Hn−i−1(Dn − B) � Hn−i−1(Dn −A) by the homotopy equivalence of

Dn −A and Dn − B
= Hn−i−1(Sn −A∪Dn−) since Dn −A = Sn −A∪Dn−.

The linking pairing

L′′ : Hi(Dn − B, (Dn − B)∩ Sn−1)×Hn−1−i(B) → Z

can be obtained by considering an open regular neighborhood, N, of B in Dn.
Then N deformation retracts to B and (Dn − B, (Dn − B) ∩ Sn−1) deformation
retracts to (Dn − N, (Dn − N) ∩ Sn−1). So, if U = Dn − N, then H∗(B) �
H∗(Dn − U) and H∗(Dn − B, (Dn − B)∩ Sn−1) � H∗(U,U ∩ Sn−1). Then we
can apply L′ with U in place of B in equation (3.5).

See [9, Appendix] for more details on the construction of these linking pair-
ings.

By taking tensor products, these pairings extend to perfect pairings from the
rational homology groups to Q. Let {αpi }, {βqi }, {γpi }, and {δqi } represent dual
bases for Hp(V, F), Hq(Y), Hp(Y ,Z), and Hq(V), all modulo torsion, so that

(3.6) L′(αpi ⊗ βqj ) = L′′(γpi ⊗ δqj ) = δij.

These collections also form bases then for the rational homology groups that re-
sult by tensoring with Q, and the relations (3.6) hold under the induced perfect
rational pairing.

Given r ∈ Hp(V, F ;Q) and s ∈ Hq(V ;Q), we also have the relation

(3.7) L′(r ⊗ i−∗(s)) = L′′(i+∗(r)⊗ s).

This can be seen as follows: we can choose the inclusion maps i± : (V , F)↩ (Y , Z)
as isotopies which push V out along its collar in one direction or the other. Then
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any chain representing s gets pushed into Y under i− and the the linking form is
the intersection of this chain with a chain, R, representing the isomorphic image
of r in Hp+1(Dn,V ∪Sn−1;Q) (see [9, Appendix]). The latter chain can be taken
as some chain in Dn whose boundary, lying in V ∪ Sn−1, is a chain representing
r . Now, under the isotopy which takes V to i+(V) and i−(V) to V , the chain
representing s gets pushed back into V and R gets pushed into a chain inDn whose
boundary, lying in Y ∪ Sn−1, is i+ of the chain representing r . In particular, this
latter chain represents i+∗(r) ∈ Hp(Y ,Z). Thus this isotopy induces maps which
take i−∗(s) to s and r to i+∗(r), but since the geometric relationship between
the chains is unaffected by the isotopy, the intersection number is unaffected. The
formula then follows immediately using the definitions of L′ and L′′ as geometric
linking pairings (again, see [9, Appendix] for more details). Similarly, we get

(3.8) L′(r ⊗ i+∗(s)) = L′′(i−∗(r)⊗ s).
The final property of linking numbers which we will need is that given r and

s as above

L′(r ⊗ i−∗(s))− L′(r ⊗ i+∗(s)) = r ∩ s(3.9)

L′′(i−∗(r)⊗ s)− L′′(i+∗(r)⊗ s) = r ∩ s,(3.10)

where r ∩ s is the intersection pairing on V . The proof is analogous to that in the
usual case [19, p. 542].

3.3.4. The proof of Theorem 3.1.
We can now complete the proof of the theorem: With the bases {αpi }, {βqi },

{γpi }, and {δqi } as above, {αi ⊗ 1}, etc., give bases of Hp(V, F ;Q)⊗Q Γ , etc. Let

i+∗(δ
q
j ) =

∑
i
λqijβ

q
i ,

i−∗(δ
q
j ) =

∑
i
σqijβ

q
i ,

i+∗(α
q
j ) =

∑
i
µqijγ

q
i ,

i−∗(α
q
j ) =

∑
i
τqijγ

q
i .

Note that the λ, σ , µ, and τ will all be integers (by the chain map interpretation
of i± and the fact that theα and δ were initially chosen as generators of the torsion
free parts of the appropriate integral homology groups). Then

d1(δ
q
j ⊗ 1) =

∑
i
(tσqij − λqij)(βqi ⊗ 1) ,

d2(α
q
j ⊗ 1) =

∑
i
(tτqij − µqij)(γqi ⊗ 1) ,
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and we obtain presentation matrices

Pq1 (t) = (tσqij − λqij) ,
Pq2 (t) = (tτqij − µqij)

for Hq(C̃;Q) and Hq(C̃, X̃;Q). As we have already seen, these matrices will be
square for 0 < q < n− 1 by Proposition 3.3.

Applying the perfect linking pairing gives

L′(αpk ⊗ i+∗(δqj )) =
∑
i
λqijL

′(αpk ⊗ βqi ) = λqkj ,

L′(αpk ⊗ i−∗(δqj )) =
∑
i
σqijL

′(αpk ⊗ βqi ) = σqkj ,

L′′(i+∗(α
q
j )⊗ δpk) =

∑
i
µqijL

′′(γqi ⊗ δpk) = µqkj ,

L′′(i−∗(α
q
j )⊗ δpk) =

∑
i
τqijL

′′(γqi ⊗ δpk) = τqkj ,

and so by (3.7) and (3.8), we have σqjk = µpkj and λqjk = τpkj . This implies that
Pq1 (t) = −tPp2 (t−1)′, where ′ indicates transpose. Further,

Pq1 (1) = (σqij − λqij) = (−αpi ∩ δqj ) ,
Pq2 (1) = (τqij − µqij) = (−αqi ∩ δpj ) ,

by (3.9) and (3.10). Since this is the (modulo torsion) intersection pairing ∩ :
Hp(V) ⊗ Hq(V, F) � Hp(V) ⊗ Hq(V, ∂V) → Z, which is non-singular modulo
torsion, these matrices are non-singular which implies that the maps di of the
Mayer-Vietoris sequence (3.1) are injective as claimed above. In fact, as the ma-
trix of a perfect intersection pairing over Z of the free summands of the relevant
integral homology modules, the matrix is unimodular with determinant ±1.

With only minor modifications, the conclusion of the theorem is now ob-
tained just as in [19, §2.8] by looking at the ith order minors of Pq1 (t) and Pp2 (t)
and applying the properties of modules over principal ideal domains. In partic-
ular, if ∆qi and ∆̄pi are the greatest common divisors of the ith order minors of
Pq1 (t) and Pp2 (t), respectively, then they are elements of Λ, and λiq ∼ ∆qi /∆qi+1

and µip ∼ ∆̄pi /∆̄pi+1 in Λ. Furthermore, by the properties of Pq1 (t) and Pp2 (t)
proven above, ∆qi (1) = ±1, ∆̄pi (1) = ±1, and ∆qi (t) ∼ ∆̄pi (t−1) in Λ. These
imply that λiq(1) = ±1, µip(1) = ±1, and λiq(t) ∼ µip(t−1) in Λ. �

3.4. Some corollaries: Definition of Alexander polynomials.

Corollary 3.4. With the notations as above, if the boundary slice knot k is j-
simple, meaning that Sn−1−k has the homotopy of a circle for dimensions less than or
equal to j, then for 0 < i < j + 1 and n− j − 3 < i < n− 1,
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1. λiq(1) = ±1,
2. λiq(t) ∼ λin−q−1(t−1).

Proof. By [18, p.14], the simplicity condition implies that we can modify
the Seifert surface, F , to be j-connected without changing F near its boundary.
We can then use this Seifert surface to redefine the extension of the map f of
Proposition 3.2 on Sn−1 so that it yields this Seifert surface on the sphere. We
then extend to the interior of Dn − L as in Proposition 3.2 to get a new V with
∂V = F ∪ L.

Since πi(F) = 0 for 0 < i < j+1, we get Hi(F) = 0 in the same range, and so
Hi(V ;Q) � Hi(V, F ;Q) by the long exact sequence of the pair. This isomorphism
also holds for n − j − 3 < i < n − 1. In fact, by Lefschetz duality, H̃i(F ;Q) �
Hn−i−2(F, ∂F ;Q) � Hn−i−2(F, Sn−3;Q), since F is (n − 2)-dimensional and we
are using field coefficients. Thus Hi(F, Sn−3;Q) = 0 for n − j − 3 < i < n − 2
and Hi(F) = 0, n − j − 3 < i < n − 3 by the long exact sequence of the pair
(F, ∂F). Hn−2(F) = 0 since F is an (n − 2)-manifold with boundary, and, since
the top of the sequence is (suppressing the coefficients)

Hn−2(F) - Hn−2(F, Sn−3) - Hn−3(Sn−3) - Hn−3(F) - Hn−3(F, Sn−3)

0

�
?

- Q

�
?

- Q

�
?

- ?

�
?

- 0

�
?

,

we must have that Hn−3(F) = 0 also. Again by the long exact sequence of the
pair, we get Hi(V ;Q) � Hi(V, F ;Q), n− j − 3 < i < n− 1.

So, in this range, the perfect linking pairing L′ can be defined

L′ : Hp(V ;Q)⊗Hq(Y ;Q)→ Q

using the isomorphisms Hi(V) � Hi(V, F). From here, the proof follows as above
and as in [19] using the dual bases of Hp(V ;Q) and Hq(Y ;Q) in the relevant
dimensions. ❐

Corollary 3.5. If we define the Alexander polynomials λq(t) and µq(t) as the
primitive polynomials in Λ determined up to similarity class by the determinants of the
square presentation matrices of Hi(C̃) and Hi(C̃, X̃) as Γ -modules, then

1. λq(1) = ±1 and µq(1) = ±1
2. λq(t) ∼ µn−p−1(t−1).

Proof. From our earlier definitions, λq = ∏
λqj and µq = ∏

µqj . The corol-
lary now follows immediately. ❐
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Corollary 3.6. Let νi(t), λi(t), and µi(t), 0 < i < n − 2, be the Alexander
polynomials corresponding to Hi(X̃), Hi(C̃), and Hi(C̃, X̃), respectively. Then

(3.11)
∏
i>0

µ2i−1(t)ν2i−1(t)λ2i(t)
µ2i(t)ν2i(t)λ2i−1(t)

= 1,

where, for this formula only, we define the polynomials to be 1 for i > n− 2.

Proof. The Alexander polynomials are given by the determinants of the pre-
sentation matrices of the terms of the exact sequence of Γ -modules

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ H̃i(X̃;Q) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ H̃i(C̃;Q) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ H̃i(C̃, X̃;Q) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ .

We know that each term is finitely generated as a Γ -module, so the corollary fol-
lows immediately from Proposition 2.1, the triviality of H̃0(X̃;Q) (since X̃ is con-
nected), and the triviality of Hn−2(X̃;Q) (by classical knot theory). ❐

Corollary 3.7. With the notation above, λn−2(t) divides λ1(t−1).

Proof. From the proof of the last corollary and Corollary 2.5, λn−2(t) divides
µn−2(t), but µn−2(t) ∼ λ1(t−1). ❐

We can also use these methods to obtain this well-known fact:

Corollary 3.8. A classical slice 1-knot (S1 ⊂ S3) has Alexander polynomial of
the form ν1(t) ∼ p(t)p(t−1).

Proof. We take n = 4 for our disk knot pair, so that the boundary slice knot
will be a knotted S1 in S3. Then the only non-trivial Alexander polynomials are
ν1(t), λ1(t), λ2(t), µ1(t), and µ2(t). From Corollary 3.6,

ν1(t) ∼ µ2(t)λ1(t)
µ1(t)λ2(t)

∼ λ1(t−1)λ1(t)
λ2(t−1)λ2(t)

.

From here we can proceed more or less as in [26]: Let d(t) be the greatest common
divisor of λ1(t) and λ2(t) so that λ1(t) = d(t)a(t), λ2(t) = d(t)b(t), and a(t)
and b(t) are relatively prime. Then

ν1(t) ∼ d(t)d(t
−1)a(t)a(t−1)

d(t)d(t−1)b(t)b(t−1)
= a(t)a(t

−1)
b(t)b(t−1)

.

Similarly, now let c(t) be the greatest common divisor of a(t−1) and b(t) so that
a(t−1) = p(t−1)c(t) and b(t) = q(t)c(t). Then

ν1(t) = p(t)p(t
−1)

q(t)q(t−1)
,

and the numerator and denominator are now relatively prime. But ν1(t) is actu-
ally a polynomial so q(t) ∼ 1 and ν1(t) ∼ p(t)p(t−1). ❐
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3.5. Realization of given polynomials. In this section, we obtain results on
the realization of knots with prescribed Alexander polynomials. The construction
of a knot D2 ⊂ D4 with a given polynomial is done by hand to get a feel for the
geometric concepts involved. This lays the foundation for realization theorems in
higher dimensions.

Throughout this section, we continue to use λq, µq, and νq as defined in
Corollary 3.6.

3.5.1. Realizing λi for D2 ⊂ D4.

Theorem 3.9. Given any polynomial p(t) ∈ Λ such that p(1) = ±1, there
exists a knotted D2 in D4 with λ1(t) ∼ p(t) and λ2(t) ∼ 1.

Proof. For definiteness, let us normalize p(t) so that

p(t) =
m∑
i=0

aiti, p(1) = 1,

and p(0) ≠ 0. We will construct a knotted disk with H2(C̃) = 0 and H1(C̃) �Λ/p(t).
We begin by embedding a 2-disk, L, in S1×D3, so that, in a neighborhood of

a boundary point which is homeomorphic to the half-space R4+, L is embedded
as a standard disk. In other words, ∂D2 = S1 is an unknotted circle within a
neighborhood of a point of ∂(S1 × D3) = S1 × S2, int(L) lies in int(S1 × D3),
and (L, ∂L) is null-homotopic in (S1 ×D3, ∂(S1 ×D3)). We also let ∂L bound a
disk F in S1×S2 so that F ∪L bounds a manifold V homeomorphic to a standard
D3 such that int(V) lies in int(S1 × D3). Let C0 = S1 × D3 − L, and let C̃0
be the infinite cyclic covering associated with the kernel of the homomorphism
π1(C̃0) → Z defined by intersection number with V . Forming the infinite cyclic
cover by cutting along V , it is clear that H2(C̃0) = 0 and that H1(C̃0) � Λ,
where we can take as generator, α, the lift of a circle representing a generator of
π1(S1 ×D3) and which does not intersect F .

We will prove the following lemma below:

Lemma 3.10. There exists an embedding f : S1 ↩ S1×S2−∂L which lifts to an
embedding g : S1 ↩ C̃0 which represents the element λ(t)α ∈ H1(C̃0). Furthermore,
f can be chosen isotopic to the standard embedding which takes S1 to S1×x0 for some
x0 ∈ S2.

Now let
S = f(S1) ∈ S1 × S2 = ∂(S1 ×D3).

We will attach a 2-handle along S. In particular, there is a neighborhood S ×D2

of S in ∂(S1 ×D3) which we identify with half of the boundary

∂(I2 × I2) = (S1 ×D2)∪ (D2 × S1).
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If H denotes the handle, then (S1 × D3) ∪S×D2 H � D4, and we claim that L,
which is now knotted in D4, is the desired knotted disk.

Still assuming the lemma, it remains to show only that we get the desired
homology of the cover. Notice that S lifts to an infinite number of disjoint em-
beddings, Si, in C̃0 which correspond to tiλ(t)α, −∞ < i < ∞. If we attach an
infinite number of handles sewn along Si × D2, we will obtain an infinite cyclic
covering of D4 − L, which we denote by C̃. That C̃ has the desired homology
follows from the reduced Mayer-Vietoris sequence:

-
∞⊕

i=−∞
H2(S1) -

( ∞⊕
i=−∞

H2(D4)
)
⊕H2(C̃0) - H2(C̃)

-
∞⊕

i=−∞
H1(S1)

d-
( ∞⊕
i=−∞

H1(D4)
)
⊕H1(C̃0) - H1(C̃)

-
∞⊕

i=−∞
H̃0(S1) -

( ∞⊕
i=−∞

H̃0(D4)
)
⊕ H̃0(C̃0) - H̃0(C̃) - .

The first two terms and the last are zero, as are Hi(D4), i = 1,2, and H̃0(C̃0).
The map

⊕∞
i=−∞ H̃0(S1) → ⊕∞

i=−∞ H̃0(D4) is an isomorphism Λ → Λ, and⊕∞
i=−∞H1(S1) and H1(C̃0) are both isomorphic to Λ. Since we know that the

generators of H1(Si) map onto the the generators tiλ(t)α, the map d must be
an injection. Hence, we can conclude from this information that H2(C̃) = 0 and
H1(C̃) � Λ/(λ(t)Λ), which is the desired result. ❐

Proof of Lemma 3.10. We wish to embed a circle S into S1 × S2 so that it
will be isotopic to a standard circle and so that that some lifting will represent
λ(t)α, where λ(t) =∑mi=0 aiti and α is some generator of H1(C̃0). It is possible,
and simpler for visualization purposes, to embed the circle into the standard solid
torus S1 ×D2 ⊂ S1 × S2 obtained by removing a neighborhood of some S1 × x,
x ∈ S2. We are also free to take L in the theorem so that ∂L is a circle concentric
to a standard meridian inside this solid torus. Then F can be taken as the disk
which fills in this circle. Note that α can be taken as a lift of a longitude, `, which
does not intersect F .

We will construct S primarily by running around the boundary S1 × S1 of
the solid torus with ever-increasing meridional angle. To be precise, we begin by
choosing an orientation for the longitude, ` = S1 × 0, which does intersect F ,
so that its lifts will be arcs running from x̃ to tx̃, where x̃ is the lift of a point
of the longitude. Now, choose a point x0 which lies in S1 × S1 on the meridian
concentric to ∂L and F . We begin by running an arc around the torus |a0| times,
choosing the direction to agree with the that of ` if a0 > 0 or to disagree if a0 < 0,
while the meridional angle increases slightly to avoid self intersection. Then run
the arc into the interior through F in the direction of ` and then back out to the
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boundary of the torus. It is clear that this can be done in such a way that the
radial retraction of the arc to the torus will continue to be an embedding with
increasing meridional angle. Now, follow the same procedure for each of the ai,
doing nothing but the final step of crossing F if ai = 0. Clearly we can choose
the rate of increase of the meridional angle so that we never complete a full cycle
meridionally. Lastly, after wrapping around the torus the amth time, we run the
arc back through F m times against the direction of ` (i.e. so that it links with
∂F m more times but the total linking number will be 0), still with increasing
meridional angle, and then connect it back to the starting point along a meridian.

To see that S is isotopic to the standard longitude S1, first observe that our
construction allows us to isotop S out to the torus S1 × S1. In the torus, the
homotopy type of S is (1,1) since λ(1) = 1 and by the method of construction.
Now by [29, p. 25], S is ambient isotopic in the torus to the standard representa-
tion of the (1,1) homotopy class, and this ambient isotopy can be extended to a
neighborhood S1 × S1 × [−1,1] of the torus in S1 × S2 (indeed, just perform the
isotopy, itself, on S1 × S1 × [−1,0] and then its reverse on S1 × S1 × [0,1]). But
the standard representation of (1,1) is clearly ambient isotopic to the standard
S1 × 0 ⊂ S1 ×D2 displacing it radially in each meridional disk.

It also apparent from the construction that S will lift to the proper element of
H1(C̃0). In fact, by considering the usual cut and paste construction of the infinite
cyclic covering, C̃0 looks like an infinite number of S1 ×D4’s glued together, and,
as remarked above, the generator ofH1(C̃0) corresponds to the generator of one of
these “solid tori” and projects down to a generator of the homology ofH1(S1×D4)
which does not intersect V (or hence, F). So, by this construction, if we lift the
starting point of S to its covering point in C̃0 corresponding to the t0 copy of
S1 ×D4, then S lifts to an arc which runs around this S1 ×D4, parallel to α, a0

times in the correct direction, then crosses into the t1 copy of S1 × D4 and runs
around it a1 times parallel to tα and so on. After finishing its circuits in the tm

copy of S1 × D4, it returns straight back to its starting point. Evidently, this lift
represents the homology class λ(t)α as desired. ❐

Corollary 3.11. The conditions λ2(1) = ±1, λ1(1) = ±1, and λ2(t)|λ1(t−1)
completely characterize all of the Alexander polynomials, λi, of a disk knot D2 ⊂ D4

and hence of a singularly knotted 2-sphere in S4.

Proof. We know that these conditions are necessary. To show that they are
sufficient, let λ1(t) = λ2(t−1)r(t). Then we must also have r(1) = ±1. It follows
from the preceding theorem that we can find a knotted D2 ⊂ D4 whose Alexan-
der polynomials are r(t) and 1 in dimensions 1 and 2, respectively. Taking the
cone on the boundary sphere pair gives a singular knot with the same Alexander
polynomial. We can also find a locally-flat knot whose first and second Alexander
polynomials are λ2(t−1) and λ2(t), respectively [19, §4]. Then the knot sum of
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these two knots has the desired Alexander polynomials since Alexander polynomi-
als multiply under knot sum. ❐

Note that for a knot D2 ⊂ D4 we have now completely classified all of the
Alexander polynomials, since µ1(t) ∼ λ2(t−1), µ2 ∼ λ1(t−1), and ν1 is com-
pletely determined by Corollary 3.6.

3.5.2. Realizing λi for Dn−2 ⊂ Dn, n ≥ 5. We next turn to realizing the
Alexander polynomials, λi(t), for n-disk knots, n ≥ 5. Our arguments are split
into two propositions. The first provides the realizability directly for the lower
dimensional polynomials. The second provides the realizability in higher dimen-
sions by constructing knots with the appropriate dual polynomials µi(t−1) in the
lower dimensions. The first result has been shown already by Sumners in his thesis
using similar methods (see [38], [37]). The second result on the higher dimen-
sional λi was also shown there but by different methods. Consequences of our
specific construction will be used again in the proof of Theorem 3.18 below.

Proposition 3.12. Given a polynomial p(t) such that p(1) = ±1 and integers
q and n such that 1 ≤ q ≤ (n− 2)/2 and n ≥ 5, there exists a knotted Dn−2 ⊂ Dn
such that λq(t) ∼ p(t) and λi(t) ∼ 1 for 0 < i < n− 1, i ≠ q, where λi(t) is the
Alexander polynomial corresponding to Hi(C̃), C̃ the knotted disk complement.

Proof. We can normalize p(t) so that p(1) = 1. It suffices to construct a
disk knot such that Hq(C̃) � Λ/(p(t)) and Hi(C̃) = 0 for 0 < i < n− 1, i ≠ q.
The proof is a variation of that of Levine [19] for locally-flat knots Sn−2 ⊂ Sn.

We begin by embedding an (n−2)-disk, L, in Sq×Dn−q, so that, in a neigh-
borhood of a boundary point which is homeomorphic to the half-space Rn+, L
is embedded as a standard disk. In other words, ∂Dn−2 = Sn−3 is an unknotted
sphere within a neighborhood of a point in ∂(Sq ×Dn−q) = Sq × Sn−q−1, int(L)
lies in int(Sq × Dn−q), and (L, ∂L) is null-homotopic in (Sq × Dn−q, ∂(Sq ×
Dn−q)). We also let ∂L bound a disk F in Sq × Sn−q−1 so that F ∪ L bounds a
manifold V , homeomorphic to a standard Dn−1, such that int(V) lies in int(Sq ×
Dn−q). Let C0 = Sq ×Dn−q − L, and let C̃0 be the infinite cyclic covering asso-
ciated with the kernel of the homomorphism π1(C̃0)→ Z defined by intersection
number with V . Similarly, we have the covering X̃0 of X0 = Sq × Sn−q−1 − ∂L.
Forming the infinite cyclic covers by cutting and pasting along V , it is clear that

H̃i(C̃0) �
{Λ, i = q,

0, i ≠ q,

H̃i(X̃0) �
{Λ, i = q, n−q−1,

0, i ≠ q, n−q−1 .

In fact Hq(C̃0) � Hq(X̃0), and we can take the lift of a sphere representing a
generator of πq(Sq × Sn−q−1) � Z which does not intersect F as a Λ-module
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generator, α, of both modules. (X̃0 is the connected sum along the boundaries
of an infinite number of copies of Sq × Sn−q−1 − {the open neighborhood of a
point}, and C̃0 is the boundary connected sum of an infinite number of copies of
Sq ×Dn−q.)

The Hurewicz map

hq : πq(X̃0)→ Hq(X̃0) � Hq(C̃0)

is an epimorphism. This follows immediately if q = 1 by the abelianization map.
For q > 1, we note that π1(X̃0) = 0 using the Van Kampen theorem, and then the
Hurewicz theorem applies. Since πq(X̃0) is isomorphic to a subgroup of πq(X0),
we can represent any element of Hq(C̃0) by the lift of an embedded sphere in X0

to X̃0. The embedding is possible since 2q < n − 1. In particular, we choose an
embedded sphere, S, in X0 whose lift represents p(t)α in Hq(C̃0). We will attach
a handle to Sq ×Dn−q along S to create a new manifold which will turn out to be
Dn. The image of L under the modification is the desired knotted disk.

In particular, the dimensions are sufficient for us to embed Sq ×Dn−q−1 as a
tubular neighborhood of S in ∂(Sq ×Dn−q), and we identify this neighborhood
with the first term of the boundary

∂(Dn) = ∂(Dq+1 ×Dn−q−1) = (Sq ×Dn−q−1)∪Sq×Sn−q−2 (Dq+1 × Sn−q−2)

to form the new manifold ∆ � (Sq×Dn−q)∪S×Dn−q−1Dn. On the boundary, this
gives the surgery which transforms Sq × Sn−q−1 into

∂∆ = (Sq × Sn−q−1 − S ×Dn−q−1)∪S×Sn−q−2 (Dq+1 × Sn−q−2).

We first show that ∆ is in fact isomorphic to Dn.
Since p(1) = 1, S represents the generator of πq(Sq ×Dn−q) � Z and hence

the generator of Hq(Sq × Dn−q) � Z. The reduced Mayer-Vietoris sequence
immediately gives us that H̃i(∆) = 0 for all i. On the boundary, following Levine
[19, p. 547], we can choose S isotopic, in Sq×Sn−q−1, to the standard embedded
Sq×x0, x0 ∈ Sn−q−1, provided q < (n−2)/2, and the modified boundary is then
diffeomorphic to Sn−1. In fact, we can extend the isotopy on the boundary radially
into Sq×Dn−q. Then the standard (q+1)-handle attachment to Sq×Dn−q along
a tubular neighborhood of Sq × x0 yields the n-disk.

For q = (n− 2)/2, we have n ≥ 6, and we will show that ∆ is a disk through
an application of the h-cobordism theorem [31]. First, it must be that dim(Sq ×
Sn−q−1) = n−1 is odd, and sincen ≥ 6, Sq×Sn−q−1 is simply-connected. It then
follows from simply-connected surgery theory (see [3, IV.2.13]) that H̃i(∂∆) = 0
for i ≤ (n− 2)/2 and then from Poincaré duality that

H̃i(∂∆) �
{
Z, i = n− 1 ,
0, i ≠ n .
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Furthermore, ∂∆ is simply connected by the Van Kampen theorem since Dq+1 ×
Sn−q−2 and Sq × Sn−q−1 − S × Dn−q−1 are both simply-connected, the latter
because Sq×Sn−q−1 is simply connected and S×Dn−q−1 is homotopy equivalent
to a subset of codimension > 2. We now wish to show that ∂∆ is homotopy
equivalent to ∆ − Bε(x), where Bε(x) is a small open ball neighborhood of a
point, x, in int(∆). ∆ is also simply connected by an easy application of the Van-
Kampen theorem, and therefore so is ∆ − Bε(x), which is homotopy equivalent
to ∆ − {a point}. Since H̃i(∆ − Bε(x)) = 0 except in dimension n − 1 (by an
easy long exact sequence argument for the pair (∆,∆ − Bε(x))), the inclusion
ı : ∂∆→ ∆− Bε(x) induces an isomorphism of Hi, i ≠ n− 1. It also induces the
isomorphism in dimension n− 1 from the long exact sequence of the pair, since

Hn(∆− Bε(x), ∂∆) � H0(∆− Bε(x), ∂B̄ε(x)) = 0,

using Lefschetz duality, and

Hn−1(∆− Bε(x), ∂∆) � H1(∆− Bε(x), ∂Bε(x))
� Hom(H1(∆− Bε(x), ∂Bε(x)),Z) = 0,

using Lefschetz duality, the universal coefficient theorem, the reduced long ex-
act sequence of the pair, and the simple-connectivity of each term of the pair.
Therefore, ı : ∂∆ → ∆ − Bε(x) is a homotopy equivalence by the Whitehead
theorem, since it is a homology equivalence of simply connected spaces. That
ı : ∂B̄ε(x) � Sn−1 → ∆− Bε(x) is a homotopy equivalence follows similarly, and
the h-cobordism theorem applies to tell us that ∆ − Bε(x) � Sn−1 × I. Filling
Bε(x) back in gives us that ∆ � Dn as claimed.

Finally, letting C denote ∆ − L, we need to show that C̃ has the desired ho-
mology modules. But we can form C̃ by attaching an infinite number of handles
to C̃0, attached along the infinite number of lifts of S which represent the ho-
mology elements tip(t)α obtained from p(t)α by the actions of the covering
transformations. Then it is immediate from the Mayer-Vietoris sequence that

H̃i(C̃) �
{Λ/(p(t)), i = q ,

0, i ≠ q ,

which completes the proof of the proposition. ❐

Proposition 3.13. Given a polynomial p(t) such that p(1) = ±1 and integers
q and n such that (n − 2)/2 < q < n − 2 and n ≥ 5, there exists a knotted
Dn−2 ⊂ Dn such that λq(t) ∼ p(t) and λi(t) ∼ 1 for 0 < i < n − 1, i ≠ q,
where λi(t) is the Alexander polynomial corresponding to Hi(C̃), C̃ the knotted disk
complement.
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Proof. It suffices to construct a disk knot such that Hq(C̃) � Λ/(p(t)) and
Hi(C̃) = 0 for 0 < i < n − 1, i ≠ q. In fact, letting X denote C ∩ ∂Dn and
p = n− q − 1 (so that 1 < p < n/2), we construct a disk knot that

Hi(C̃, X̃) �
{Λ/(p(t−1)), i = p ,

0, 0 < i < n−1, i ≠ p,

which will suffice since the Alexander polynomials corresponding to Hi(C̃) and
Hn−i−1(C̃, X̃) are related by λi(t) ∼ µn−i−1(t−1) according to Theorem 3.1. We
normalize p(t) so that p(1) = 1.

We begin by embedding an (n−2)-disk, L, in Dp × Sn−p, so that, in a
neighborhood of a boundary point which is homeomorphic to the half-space
Rn+, L is embedded as a standard disk. In other words, ∂Dn−2 = Sn−3 is
an unknotted sphere within a neighborhood of a point in ∂(Dp × Sn−p) =
Sp−1 × Sn−p, int(L) lies in int(Dp × Sn−p), and (L, ∂L) is null-homotopic in
(Dp × Sn−p, ∂(Dp × Sn−p)). We also let ∂L bound a disk F in Sp−1 × Sn−p so
that F ∪ L bounds a manifold, V , homeomorphic to a standard Dn−1, such that
int(V) lies in int(Dp × Sn−p). Let C0 = Dp × Sn−p − L, and let C̃0 be the infi-
nite cyclic covering associated with the kernel of the homomorphism π1(C̃0)→ Z
defined by intersection number with V . Similarly, we have the covering X̃0 of
X0 = Sp−1× Sn−p − ∂L. Forming the infinite cyclic covers by cutting and pasting
along V , it is clear that

H̃i(C̃0) �
{Λ, i = n− p ,

0, i ≠ n− p ;

H̃i(X̃0) �
{Λ, i = p − 1, n−p ,

0, i ≠ p − 1, n−p .

In fact, Hn−p(C̃0) � Hn−p(X̃0), and we can take as the generator, α, of both
modules the lift of a sphere representing a generator of Hn−p(Sp−1 × Sn−p) � Z
and which does not intersect F . (X̃0 is the connected sum along the boundaries
of a countably infinite number of copies of Dp×Sn−p −{the open neighborhood
of a point}, and C̃0 is isomorphic to the boundary connected sum of an infinite
number of copies of Dp × Sn−p.) By the long exact sequence of the pair,

Hi(C̃0, X̃0) �
{Λ, i = p ,

0, i ≠ p .

Now for a lemma:

Lemma 3.14. The Hurewicz map hp : πp(C̃0, X̃0) → Hp(C̃0, X̃0) is an epi-
morphism.
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Proof. We note first that C̃0 is simply connected because it is the universal
abelian cover of C0 whose fundamental group is π1(C0) = Z. This last statement
is true because we can decompose C0 into N − L, where N is the contractible
neighborhood of the boundary in which we have embedded L, andDp×Sn−p−N.
The latter is homotopy equivalent to Dp × Sn−p, and π1(Dp × Sn−p) = 0 due
to the range of p. N − L is homotopy equivalent to the complement of the trivial
sphere pair (Sn, Sn−2), and so π1(N − L) = Z. Since n ≥ 5, an easy application
of the Van-Kampen theorem proves the claim.

Then, using our knowledge of the homology of C̃0 and the Hurewicz theorem
[2, §VII.10], πi(C̃0) = 0, i < n − p. This implies by the long exact homotopy
sequence that πi(C̃0, X̃0) � πi−1(X̃0), 1 < i < n−p. Furthermore, Hi(C̃0, X̃0) �
Hi−1(X̃0), 1 < i < n − p, for the same homological reasons. Now, as in the
proof of Proposition 3.12, hp−1 : πp−1(X̃0)→ Hp−1(X̃0) is an epimorphism, and
since p < n − p, we have the following commutative diagram as a piece of the
“homotopy-homology ladder”:

πp(C̃0, X̃0)
�

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ πp−1(X̃0)

hp
y hp−1

yonto

Hp(C̃0, X̃0)
�

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hp−1(X̃0).

The truth of the lemma is now apparent. ❐

Since πp(C̃0, X̃0) � πp(C0, X0), there is therefore a map (Dp, Sp−1) -→
(C0, X0) whose lift represents the element p(t−1)β, where β is some generator
of Hp(C̃0, X̃0) as a Λ-module. Let (D, S) represent the image of the disk-sphere
pair. Since p < n/2, we can choose (D, S) to be an embedded disk in C0
whose boundary is an embedded sphere in X0 and such that int(D) ⊂ int(C0).
Note that, chasing the exact sequences around, this boundary must lift to the ele-
ment p(t−1)α ∈ Hp−1(X̃0), for some generator, α, of Hp−1(X̃0) as a Λ-module.
Let R be an open tubular (regular) neighborhood of (D, S). We will show that
(Dp × Sn−p − R,L), denoted by (∆, L), is our desired knotted disk pair.

We begin by showing that Dp × Sn−p − R is the n-disk. As in the proof of
Proposition 3.12, the fact that p(1) = 1 implies that S represents a generator of
πp−1(Sp−1 × Sn−p) � Z, and hence, using the long exact homotopy sequence,
(D, S) represents a generator of

πp(Dp × Sn−p, Sp−1 × Sn−p) � Hp(Dp × Sn−p, Sp−1 × Sn−p) � Z .

Hence (D, S) is homotopic in (Dp × Sn−p, Sp−1 × Sn−p) to Dp × x0 for some
x0 ∈ Sn−p. If 2(p + 1) ≤ n, then this can be taken as an ambient isotopy, and
then clearly Dp × Sn−p − R � Dp ×Dn−p � Dn.

If p = n/2−1/2, then 2(p−1)+2 = n−1, so there is still an ambient isotopy
of the boundary, Sp−1 × Sn−p, which takes S to Sp−1 × x0 for some x0 ∈ Sn−p,
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and this isotopy can be extended to an ambient isotopy of all of Dp × Sn−p, [31].
When we form ∆ = Dp × Sn−p − R, the new boundary will therefore be

(Sp−1 × Sn−p − Sp−1 × x0 ×Dn−p)∪Sp−1×x0×Sn−p−1 (D × Sn−p−1) � Sn−1,

since this is the standard torus decomposition of Sn−1. We will next show that ∆
is contractible. Then, since the manifold ∆ will be a homotopy n-disk bounded
by an n − 1 sphere, ∆ ∪ c̄(∂∆), (where c̄(∂∆) indicates the closed cone on the
boundary), will be a homotopy n-sphere. But n ≥ 5, so ∆ ∪ c̄(∂∆) is in fact a
true sphere by the Poincaré conjecture and ∆ will be a true n-disk. It remains
to show that ∆ is contractible. ∆ is simply-connected because, for p as given,
π1(Dp×Sn−p) = 0 and dim(D) = p < n−2. Together, these imply by a general
position argument that π1(Dp × Sn−p −D) � π1(Dp × Sn−p − R) = 0, as well.
To compute the homology of ∆, we observe that Hi(∆) = 0, i ≥ n, since ∆ is an
n-manifold with boundary; Hn(∆, ∂∆) � Hn−1(∂∆) � Z, since ∂∆ � Sn−1 and
these are generated by the orientation classes; andHi(∆) � Hi(∆, ∂∆), 0 < i < n,
by the long exact sequence of the pair. By excision and homotopy equivalence,

Hi(∆, ∂∆) � Hi(Dp × Sn−p, (Sp−1 × Sn−p)∪ R̄)
� Hi(Dp × Sn−p, (Sp−1 × Sn−p)∪D).

By the Mayer-Vietoris sequence, and using the fact that S is a generator of
πp−1(Sp−1 × Sn−p) and hence of Hp−1(Sp−1 × Sn−p),

H̃i((Sp−1 × Sn−p)∪D) �
{
Z, i = n−p, n−1 ,
0, i ≠ n−p, n−1 .

But the generators of Hi((Sp−1 × Sn−p) ∪ D) in dimensions n − p and n, re-
spectively, are the generators of Hi(Sp−1 × Sn−p) in the same dimensions (note
that D has no simplices of dimension > p). The former is also a generator of
Hn−p(Dp × Sn−p), and the latter is the boundary of the orientation class of
Hn(Dp × Sn−p, Sp−1 × Sn−p). Therefore, using these isomorphisms, the long
exact sequence yields that Hn−p(Dp ×Sn−p, (Sp−1×Sn−p)∪D) = 0, 0 < i < n,
which, by our calculations, shows that H̃i(∆) = 0, i > 0. Therefore, by the White-
head Theorem, ∆ is contractible, and we have finished proving that ∆ � Dn.

For the last step in the proof of the proposition, we begin by fixing some
notation. Let C denote ∆−L. We can lift (D, S) ⊂ (C0, X0) to an infinite number
of copies (Di, Si), −∞ < i < ∞, corresponding to the translates of a lift of (D, S)
under the covering translations, and similarly we lift the neighborhood R to an
infinite number of Ri. Let D̃, S̃, and R̃ denote the disjoint unions qiDi, qiSi,
andqiRi, respectively. Then C̃0−R̃ covers C0−R � C. Furthermore, let X denote
the manifold (X0 − S ×Dn−p)∪S×Sn−p−1 (D × Sn−p−1) which results as the new
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complement of ∂L in ∂∆. Then the cover X̃ corresponds to (X̃0 − R̃) ∪S̃×Sn−p−1

(D̃ × Sn−p−1). We show that the homology of (C̃, X̃) is as desired.
By excision, Hi(C̃, X̃) � Hi(C̃0, X̃0 ∪ R̃). Let us denote X̃0 ∪ R̃ by Ỹ . Since

H̃i(X̃0) �
{Λ, i = p−1, n−p ,

0, i ≠ p−1, n−p ,

and since the lifts Si represent tiλ(t−1)α ∈ Hp(X̃0), an easy Mayer-Vietoris se-
quence argument gives

H̃i(Ỹ ) �


Λ

p(t−1)
, i = p−1 ,

Λ, i = n−p ,
0, i ≠ p−1, n−p .

Then using

H̃i(C̃0) �
{Λ, i = n−p ,

0, i ≠ n−p ,

the long exact sequence of the pair (C̃0, Ỹ ) gives Hp(C̃0, Ỹ ) = Λ/p(t−1). The
only other part of the sequence that bears checking is where we have

Hn−p+1(C̃0) - Hn−p+1(C̃0, Ỹ ) - Hn−p(Ỹ )
i- Hn−p(C̃0) - Hn−p(C̃0, Ỹ ) - Hn−p−1(Ỹ )

0
?

- ?
?

- Λ? - Λ? - ?
?

- 0.
?

But the isomorphism Hn−p(Ỹ ) � Λ comes from the isomorphism Hn−p(X̃0)
�
-→

Hn−p(Ỹ ) induced by inclusion in the Mayer-Vietoris sequence we used, and we
already know that Hn−p(X̃0)

�
-→ Hn−p(C̃0) is induced by inclusion (see above).

Therefore, the map i is an isomorphism and

Hi(C̃, X̃) �


Λ
p(t−1)

, i = p ,
0, 0 < i < n−1, i ≠ p ,

as claimed. ❐

Putting the results of these propositions together yields the following classifi-
cation of polynomials which can be realized as the Alexander polynomials, λi, of
a disk knot.



Alexander Polynomials of Non-locally-flat Knots 1515

Theorem 3.15. Given polynomials pi(t) ∈ Λ, 0 < i < n − 1, n ≥ 4, such
that pi(1) = ±1 for each i and pn−2(t)|p1(t−1), there exists a knotted embedding
Sn−2 ↩ Sn with at most isolated point singularities such that the Alexander polyno-
mials, λi(t), of the knot are the given polynomials.

Proof. The case n = 4 has already been show. Suppose n ≥ 5. The necessity
of the conditions on the λi(t) has been shown above in Section 3.3. For the suffi-
ciency, let p1(t) = pn−1(t−1)r(t). By [19], there is a locally-flat knot Sn−2 ⊂ Sn
whose first and (n− 2)nd Alexander polynomials are pn−1(t−1) and pn−1(t), re-
spectively, and whose other Alexander polynomials are all 1. By Propositions 3.12
and 3.13, above, we can form n− 3 separate knotted disk pairs such that the first
pair has first Alexander polynomial r(t), the ith pair has ith Alexander polynomial
λi(t), 1 < i < n − 2, and all the rest of the Alexander polynomials are 1. Then,
taking the cone on the boundary of each knotted disk pair gives a knotted sphere
pair with point singularity, Sn−2 ⊂ Sn, and with the same Alexander polynomials.
Taking the knot sum of all of these knots (with the connections being made in
the neighborhoods of locally-flat points of the embeddings) gives the desired knot
because Alexander polynomials multiply under knot sum. ❐

As a corollary and sample application, we can re-prove the following known
result concerning the Alexander polynomials of locally-flat slice sphere knots.

Corollary 3.16. For any n ≥ 3 and collection of polynomials pi(t) ∈ Λ,
0 < i ≤ b(n − 1)/2c, such that pi(1) = ±1 and, if n is odd, p(n−1)/2(t) ∼
r(t)r(t−1) for some r(t), there is a locally flat slice knot Sn−2 ⊂ Sn whose ith
Alexander polynomials, λi(t), 0 < i ≤ b(n− 1)/2c, are the pi(t). These conditions
on p(n−1)/2(t) are also necessary. (Note that this also determines the Alexander poly-
nomials for b(n− 1)/2c < i < n− 1, as well, since λi(t) ∼ λn−i−1(t−1) for locally
flat knots.)

Proof. The necessity that pi(1) = ±1 is proven in [19].
We construct b(n − 1)/2c distinct locally flat slice knots such that the ith

Alexander polynomial of the ith knot is pi(t) and the rest of the Alexander poly-
nomials (for i ≤ b(n − 1)/2c) are 1. Then our desired knot is the knot sum of
these, since Alexander polynomials multiply under knot sum and the knot sum of
slice knots is slice.

Consider the long exact sequence of the pair (C̃, X̃) for the complement of
a knotted disk pair Dn−1 ⊂ Dn+1 . By Theorem 3.15, there is such a knotted
disk pair whose Alexander polynomial corresponding to Hi(C̃) is pi(t) and such
that Hp(C̃) = 0 for all other p, 0 < p < n. This implies by Corollary 3.5 that
Hn−i(C̃, X̃) has Alexander polynomial pi(t−1) and all other Hp(C̃, X̃) = 0. For
i < (n − 1)/2, we obtain immediately from the long exact sequence of the pair
that the boundary knot with complement X has the desired homology. In fact,
since n−i > i+1 in this case, the exact sequence implies thatHi(X̃) � Hi(C̃) and
Hp(X̃) = 0, 0 < p ≤ b(n−1)/2c, p ≠ i. So the boundary knot is the desired slice
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knot with λi(t) ∼ pi(t), λn−i−1(t) ∼ p(t−1), and no other non-trivial Alexander
polynomials.

For i = (n−1)/2, the necessity that λ(n−1)/2(t) ∼ r(t)r(t−1) follows just as
in Corollary 3.8 for the case of the classical slice knots, where n = 3, by using the
product formula (3.11) which relates the Alexander polynomials corresponding
to the homology modules of X̃, C̃, and (C̃, X̃). Note that for slice knots, this
condition along with p(n−1)/2(1) = ±1 implies Levine’s necessary condition (d)
for Alexander polynomials [19].

For the construction, we consider the knotted disk pair whose (n − 1)/2-
th Alexander polynomial corresponding to H(n−1)/2(C̃) is r(t) and whose other
Alexander polynomials, corresponding to the other Hp(C̃), are all trivial. Such a
disk pair exists by the theorem and the fact that we must have r(1) = ±1 in order
to have p(n−1)/2(1) = ±1. Then the Alexander polynomials corresponding to the
Hp(C̃, X̃) are r(t−1) for p = (n+1)/2 and trivial otherwise. It then follows from
the long exact sequence of the pair (C̃, X̃) that Hp(X̃) = 0 for 0 < p < n − 1,
p ≠ (n − 1)/2. Lastly, from the product formula of Corollary 3.6, which relates
the three sets of Alexander polynomials, it must be that the Alexander polynomial
λ(n−1)/2(t) ∼ r(t)r(t−1).

For the cases i < (n − 1)/2, we can also note the existence of the given slice
knots by observing that our procedure for creating disk pairs with given Alexander
polynomials in this range restricts on the boundary to Levine’s procedure [19] for
creating knotted sphere pairs with the same prescribed Alexander polynomials. ❐

3.5.3. Realization of all Alexander polynomials. So far, we have stated all of
our realizability conditions for disk knots in terms of the Alexander polynomialsλi
which correspond to the Γ modules Hi(C̃;Q). We now turn to a characterization
which simultaneously involves all of the Alexander polynomials we have discussed:
λi, µi, and νi, which correspond, respectively, to Hi(C̃;Q), Hi(C̃, X̃;Q), and
Hi(X̃;Q). It will prove more natural, however, to consider the corresponding
subpolynomials (see Section 2). In fact, the long exact reduced homology sequence
of the pair (C̃, X̃) yields an exact polynomial sequence

1 → λn−2 → µn−2 → νn−3 → ·· · → ν1 → λ1 → µ1 → 1

with all polynomials in primitive form. By the discussion in Section 2, this gives
rise to a sequence of primitive polynomials of the form

1 → cn−2 → cn−2an−3 → an−3bn−3 → ·· · → a1b1 → b1c1 → c1 → 1.

As noted there, knowledge of the ai, bi, and ci is equivalent to knowledge of the
λi, µi, and νi. While we have been referring to λi, µi, and νi as the Alexander
polynomials of the disk, we will refer to ai, bi, and ci as the Alexander subpolyno-
mials.

With this notation, we can observe the following lemma:
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Lemma 3.17. For a locally-flat disk knot Dn−2 ⊂ Dn, ci(t) ∼ cn−i−1(t−1)
for 0 < i < n − 1, aj(t) ∼ bn−j−2(t−1) for 0 < j < n − 2, and each of these
polynomials evaluates to ±1 at t = 1.

Proof. The last statement follows from the fact that each of the ai, bi, and ci
is a primitive polynomial in Λ which divides another primitive polynomial which
evaluates to ±1 at t = 1. The other results follow by induction from the outside of
the sequence to the inside using Theorem 3.1 and Corollary 3.5 (which states that
λi(t) ∼ µn−i−1(t−1)) together with Levine’s [19] necessary conditions for the
Alexander polynomials of the locally-flat boundary sphere knot (which states that
νi(t) ∼ ν(n−1)−i−1(t−1)). First, we note that cn−2(t) ∼ λn−2(t) ∼ µ1(t−1) ∼
c1(t−1). Next, µn−2(t) ∼ λ1(t−1), but µn−2(t) ∼ cn−2(t)an−3(t) and λ1(t−1) ∼
b1(t−1)c1(t−1). It follows that an−3(t) ∼ b1(t−1). The lemma is established by
continuing this procedure to the middle of the exact polynomial sequence. ❐

In these terms, we can now completely classify the Alexander polynomials
of disk knots with the exception of some extra middle-dimensional information
which we will study in the next section. For now, we impose one unnecessary
condition for the purpose of collecting the results that derive from our work in
this section.

Theorem 3.18. Let νi(t), λi(t), and µi(t) denote the Alexander polynomials
of a knotted Dn−2 ⊂ Dn corresponding to Hi(X̃), Hi(C̃), and Hi(C̃, X̃), respectively,
and suppose n ≥ 4. Recall that we can assume these to be primitive in Λ. Let qi(t),
0 < i ≤ b(n−2)/2c; ri(t), 0 < i ≤ b(n−2)/2c; and pi(t), 0 < i ≤ b(n−1)/2c,
be polynomials in Λ satisfying the following properties:
1. (a) qi(1) = ±1 ;

(b) ri(1) = ±1 ;
(c) pi(1) = ±1 ; and hence, in particular, they must each also be primitive in Λ.

2. There exist polynomials ai(t), bi(t), and ci(t), primitive in Λ, such that
(a) qi(t) ∼ ai(t)bi(t), 0 < i < b(n− 2)/2c ;
(b) q(n−2)/2(t) ∼ b(n−2)/2(t)b(n−2)/2(t−1), if n is even ;
(c) ri(t) ∼ bi(t)ci(t), 0 < i ≤ b(n− 2)/2c ;
(d) pi(t) ∼ ci(t)ai−1(t), 0 < i ≤ b(n− 1)/2c (taking a0(t) = 1) ;
(e) c(n−1)/2(t) ∼ c(n−1)/2(t−1), if n is odd ;
(f ) c(n−1)/2(−1) = ±an odd square if n = 2k + 1, k even, and c(n−1)/2(t) is

in normal form (defined below).

Then, there exists a knotted Dn−2 ⊂ Dn such that νi(t) ∼ qi(t), λi(t) ∼ ri(t), and
µi(t) ∼ pi(t) in the relevant ranges. Note that this determines all of the Alexander
polynomials using νi(t) ∼ νn−i−2(t−1) and λi(t) ∼ µn−i−1(t−1). Furthermore,
these conditions are necessary except for condition (2f).

Proof. Most of the necessity has already been shown either above or in [19].
Conditions (2e) and (2b) are necessary by Lemma 3.17 since n−((n−1)/2

)−1 =
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(n − 1)/2 is an integer for n odd, and, if n is even, (n − 2)/2 is an integer, n−(
(n− 2)/2

)− 2 = (n− 2)/2, and ν(n−2)/2 ∼ a(n−2)/2(t)b(n−2)/2(t). Condition
(2f) is not necessary and will be weakened in the following section. Following
Levine [19], the normal form for c(n−1)/2(t) is the member, c(t), of its similarity
class in Λ which satisfies c(t) = c(t−1) and c(1) = 1. Due to the other conditions
on c(n−1)/2(t), it is always possible to find such a similar polynomial with these
properties (see [19, §1.5]).

To show that there is such a knotted disk, we will find a series of knots whose
only nontrivial Alexander polynomials are the ai(t), bi(t), or ci(t) in the correct
dimesnions and then take a knot sum. In this case, by a knot sum of two knots
we mean the following: Suppose we have two knotted disk pairs Dn−2

1 ⊂ Dn1 and
Dn−2

2 ⊂ Dn2 . We can first take the connected sum of the Dni to form a new disk,
Dn, in which the two knotted (n − 2)-disks are embedded disjointly. We can
then connect the two knotted disks by an unknotted tube, T � D1×Dn−2, which
connects a neighborhood of a point of ∂Dn−2

1 in Dn−2
1 with a neighborhood of a

point of ∂Dn−2
2 in Dn−2

2 with the reverse orientation. The knot sum is the closure
of

(Dn−2
1 ∪Dn−2

2 ∪ T)− (int(T)∪ (T ∩ (Dn−2
1 ∪Dn−2

2 ∪ ∂Dn)).

On the boundary this is the usual knot sum of the knots given by ∂Dn−2
1 and

∂Dn−2
2 in ∂Dn. From the usual Mayer-Vietoris considerations, the Alexander

polynomials multiply under this knot sum. (Alternatively, we could define knot
sum by coning on the boundary of the knotted disk pairs to create possibly non-
locally flat sphere pairs, taking the usual knot sum with the connections in neigh-
borhoods of locally flat points, and following our original procedure for turning
such a singular knot back into a knotted disk pair.)

For the remainder of the proof, the term “lower dimensional Alexander poly-
nomial” will refer to the Alexander polynomials in the lower dimensions listed
above. We make this definition in order to avoid repetition of conditions that
arise from the duality in the upper dimensions.

The knotted disk pairs with νj(t) ∼ λj(t) ∼ bj(t) for a single j, 0 < j <
b(n − 2)/2c, and all other lower dimensional Alexander polynomials trivial is
constructed in the proof of Corollary 3.16, as is the case where ν(n−2)/2(t) ∼
b(n−2)/2(t)b(n−2)/2(t−1), λ(n−2)/2(t) ∼ b(n−2)/2(t) and all other lower dimen-
sional Alexander polynomials are trivial.

To construct the knotted disk pair with λj(t) ∼ µj(t) ∼ cj(t) for a single
j, 0 < j ≤ b(n − 1)/2c, and all other lower dimensional Alexander polynomials
trivial, we have stipulated the sufficient conditions [19] to construct a locally flat
knot Sn−2 ⊂ Sn with cj(t) as its only non-trivial lower dimensional Alexander
polynomial in the usual sense. Then, we can take the trivial slicing of this knot
by excising a ball neighborhood of a point of the knot. Then λj(t) ∼ cj(t); all
of the νi(t) ∼ 1; µj(t) ∼ cj(t), by the long exact sequence; and all other lower
dimensional Alexander polynomials are trivial.
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To construct the knotted disk pair with µj+1(t) ∼ νj(t) ∼ aj(t) for a single
j, 0 < j < b(n − 2)/2c, and all other lower dimensional Alexander polynomials
trivial, we recall our procedure from Proposition 3.13. As in that proof, we can
construct a knotted disk pair with µj+1(t) ∼ aj(t), 0 < j < b(n− 2)/2c, and all
other µi(t) and all lower dimension λi(t) trivial. But the construction restricted
to the boundary was a surgery which we can check to be equivalent to Levine’s
method [19] for creating a knotted Sn−1 ⊂ Sn−3 whose only lower dimensional
Alexander polynomial is νj(t) ∼ aj(t). Therefore, this knotted disk pair is the
desired one.

By taking the knots sums of these constructions as indicated above, we obtain
our desired knot. ❐

3.6. The middle dimension polynomial. We now turn to the case of real-
izing Alexander polynomials in the middle dimension of a (2q + 1)-disk knot,
q even. In particular, for q > 2, we give a characterization of the polynomials
c(t) ∈ Λ such that there exists a locally-flat knotted disk pair D2q−1 ⊂ D2q+1

such that c(t) is the Alexander polynomial factor shared by Hq(C̃) and Hq(C̃, X̃).
Equivalently, c(t) is the Alexander polynomial associated to the modules ker(∂∗)
and cok(i∗) in the long exact sequence of the pair

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk(X̃)
i∗-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk(C̃) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk(C̃, X̃)

∂∗-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk−1(X̃) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ .

We will show, in particular, that for any realizable c(t) there exists such a knot
with all other Alexander polynomials (and Alexander subpolynomials) equal to
1 so that c(t) will be the only non-trivial Alexander polynomial of H∗(C̃) and
H∗(C̃, X̃). We can then use the usual procedure of taking connected sums of disk
knots to combine this with other Alexander polynomials.

We will in fact show something more. We will realize entire Λ-modules and
intersection pairings. First, we need a few definitions. Following Levine [21], we
say that a Λ module, A, is of type K if it is finitely generated and multiplication by
t − 1 induces an automorphism of A. It is a standard fact, see e.g. [21], that the
Alexander modules of locally-flat sphere knots must be of type K. The standard
proof following Milnor [25] extends easily to disk knots. We provide it here to
add the few words relevant for the cases we will consider.

Lemma 3.19. Let Dn−2 ⊂ Dn be a locally flat disk knot. Then the Λ-modules
Hi(X̃), Hi(C̃), and Hi(C̃, X̃), i > 0, are all of type K.

Proof. That the modules are finitely generate follows from the usual argu-
ment stemming from the fact that there is a one-to-one correspondence between
generators of the chain complexes of the knot exteriors (which are finite com-
plexes) and the generators of the chain complexes of the infinite cyclic covers asΛ-modules. Specifically, we choose one lift of each simplex.

Now, letW stand for C, X, or the pair (C,X). Then we have an exact sequence

0 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Ci(W̃)
t−1

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Ci(W̃) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Ci(W) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0,
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which generates the long exact homology sequence

(3.12) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hi(W̃)
t−1

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hi(W̃) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hi(W)
∂∗-----------------------------------------------------------------------------------------------------------------------------------------------------------→ .

But by Alexander duality (Alexander duality for a ball), X and C are homology cir-
cles, and it is easy to see that (C,X) is a homology ball. Therefore, it is immediate
for i ≥ 2 that t − 1 is an automorphism of the homology groups of the covers of
C and X, and in all dimensions i > 0 for W = (C,X).

For the remaining cases, we note that the long exact sequence must terminate
as

0
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ H1(W)

�
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ H0(W̃)

0
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ H0(W̃)

�
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ H0(W) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0.

The rightmost isomorphism is induced by the projection of a point that generates
H0(W̃ ) to a point that generates H0(W). To see the other isomorphism, observe
that in the diagram chase that defines the boundary map of the long exact sequence
of homology, the generator of H1(W), a meridian of the boundary sphere knot
(disk knot), gets lifted to a 1-chain in the cover whose boundary is (t − 1)x for
some point x in W̃ representing an element of C0(W̃). This is the image of x
under the map t− 1. Thus the image of a generator of H1(W) goes to a generator
ofH0(W̃) under the boundary map of the long exact sequence. The sequence now
shows that t − 1 is also a homology automorphism of the cover for i = 1. ❐

3.6.1. The Blanchfield pairing. We will also need the Blanchfield pairing on
the infinite cyclic cover. We summarize its construction and properties following
[21]. More details can be found in the references cited there. (Note: for notational
convenience we introduce the symbol ( , ) to represent the general Blanchfield
pairing and reserve 〈 , 〉 for the induced middle dimensional self-pairing.)

For M a compact m-dimensional PL-manifold with boundary which admits
a regular cover with group of covering transformations π , one first defines an
intersection pairing on the chain groups of the covers, Cq(M̃, ∂M̃)×Cm−q(M̃1)→
Z[π], α×β → α·β, where the chain groups are thought of as (left) Z[π]modules
and M1 represents the dual complex to the triangulation of M. This pairing is
bilinear over Z and satisfies
1. (gα) · β = g(α · β), for g ∈ π ,
2. α · β = (−1)q(m−q)β ·α, where the bar denotes the antiautomorphism of
Z[π] induced by ḡ = g−1 for g ∈ π ,

3. (∂α) · β = (−1)qα · (∂β).
This induces a pairing on the appropriate homology groups.

Now assume π = Z and that α ∈ Hq(M̃, ∂M̃) and β ∈ Hm−q−1(X̃) are Λ-
torsion elements represented by chains z ∈ Cq(M̃, ∂M̃) and w ∈ Cm−q−1(M̃1).
Then z = (1/λ)∂c for some λ ∈ Λ = Z[Z] and c ∈ Cq+1(M̃, ∂M̃). Define
(α,β) = (1/λ)c ·wmod Λ. This induces a well-defined pairing Hq(M̃, ∂M̃) ×
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Hm−q−1(M̃) → Q(Λ)/Λ, where Q(Λ) is the field of fractions of Λ. The pairing
( , ) is conjugate linear, meaning that it is additive in each variable and (λα,β) =
λ(α,β) = (α, λ̄β). The conjugation on elements of Λ is induced by t̄ = 1/t.
Furthermore, if m = 2q + 1, ( , ) induces a self-pairing 〈 , 〉 : Hq(M̃)×Hq(M̃) →
Q(Λ)/Λ by 〈α,β〉 = (j∗α,β), where j∗ : Hq(M̃) → Hq(M̃, ∂M̃) is the map
of the long exact sequence. This pairing is (−1)q+1-Hermitian, meaning that
〈α,β〉 = (−1)q+1〈β,α〉.

We observe that, in the case of a disk knot, the arguments of [21, §5] carry over
to show that ( , ) is a non-singular pairing on the Z-torsion free parts ofHq(C̃) and
Hn+1−q(C̃, ∂C̃). If n = 2q+1, the induced pairing 〈 , 〉 onHq(M̃) further induces
a nondegenerate (though possibly singular) conjugate linear (−1)q+1-Hermitian
pairing on the Z-torsion free part of coim(j∗) (though we will keep the same
notation 〈 , 〉): To see that this is well-defined, we observe that if α + β,γ ∈
Hq(M̃), β ∈ ker(j∗), then

〈α+ β,γ〉 = (j∗(α+ β), γ) = (j∗α,γ) = 〈α,γ〉 .

By the Hermitian property, similar considerations hold for the second argument
so that 〈 , 〉 only depends on Hq(M̃)/ker(j∗). For the non-degeneracy, note that
the non-singularity of ( , ) implies that for every non-zero, non-Z torsion element
j∗α ∈ Hq(M̃, ∂M̃), there is a non-Z torsion γ ∈ Hq(M̃) such that 〈α,γ〉 =
(j∗α,γ) ≠ 0. But from the well-definedness argument above, if γ ∈ ker(j∗),
then 〈α,γ〉 = 0. So γ has non-zero image when projected into coim(j∗). This
establishes the non-degeneracy since such a γ exists for all such j∗α.

In the arguments above, we can replace Hi(C̃, ∂C̃) with Hi(C̃, X̃), i < n− 2,
as follows: First observe that

∂C̃ = X̃ ∪Sn−3×R Dn−2 ×R ,

so that Hi(∂C̃, X̃) = Hi(Dn−2, Sn−3), by excision and homotopy equivalence.
Therefore, by the long exact sequence of the pair, the map induced by inclusion,
j∗ : Hi(X̃) → Hi(∂C̃), is an isomorphism for i < n− 3 and onto for i = n− 3.
Using long exact sequences and the five-lemma, this implies that Hi(C̃, X̃) �
Hi(C̃, ∂C̃), i < n− 2.

Summarizing part of this discussion gives the following result:

Proposition 3.20. LetDn−2 ⊂ Dn be a disk knot, n = 2q+1, k > 0. Let f(A)
denotes the Λ-module A modulo its Z-torsion. Then Hq(C̃) and Hq(C̃, X̃) are Λ-
modules of type K, and the non-singular pairing ( , ) : f(Hq(C̃, X̃))× f(Hq(C̃)) →
Q(Λ)/Λ induces a nondegenerate conjugate linear (−1)q+1-Hermitian pairing
f(coim(j∗))× f(coim(j∗)) → Q(Λ)/Λ.

3.6.2. Realization of middle dimensional pairings. We will establish a converse
to Proposition 3.20:
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Proposition 3.21. Let A be a Z-torsion free Λ module of type K with a non-
degenerate conjugate linear (−1)q+1-Hermitian pairing 〈 , 〉 : A × A → Q(Λ)/Λ.
Then there exists a disk knot Dn−2 ⊂ Dn, n = 2q + 1, q > 2, such that:
1. Hq(C̃) = A,
2. Hi(C̃) = 0, 0 < i < n− 1, i ≠ q,
3. Hi(X̃) = 0, 0 < i < n− 2, i ≠ q − 1,
4. Hq−1(X̃) = 0 is a Z-torsion module,
5. Hi(C̃, X̃) = 0, 0 < i < n− 1, i ≠ q,
6. the pairing on Hq(C̃) is given by 〈 , 〉. (Note that Hq(X̃) = 0 implies that
Hq(C̃) � A �coim(j∗) in the long exact sequence).

Proof. By [21, Proposition 12.5], given such an A and 〈 , 〉, there exists
a smooth compact (2q + 1)-dimensional manifold, C, such that π1(C) = Z,
Hq(C̃) = A, Hi(C̃) = 0 for i ≠ 0, q, and the given pairing 〈 , 〉 corresponds to the
pairing on Hq(C̃). The proof consists of first being able to write the defining ma-
trices for the presentation of A and the pairing with respect to the basis of presen-
tation in certain forms, which follows from [21, Proposition 12.3] and the remarks
before [21, Proposition 12.5] becauseA is of type K; and then ([21, Lemma 12.2])
constructing C using the matrix information to attach appropriate q-handles to

C0 = (#mi=1S
q ×Dq+1)#(S1 ×D2q),

where the presentation matrix has sizem×m and #mi=1S
q×Dq+1 denotes the con-

nected sum ofm copies of Sq ×Dq+1. This C will be our disk knot complement.
We observe that C is a homology circle: H1(C) = π1(C) = Z as above, and

the triviality in the remaining dimensions, i > 1, follows from Milnor’s exact
sequence (3.12) and A being of type K. As Levine notes in Proposition 12.6 of
[21], we also have Z = π1(C) � π1(C − K) � π1(∂C), where K is the (q + 1)-
dimensional subcomplex formed from the cores of the handles added onto C0:
C − K deformation retracts to ∂C, and the claim follows from general position
since q > 2. Thus, we can add a 2-handle onto C along a generator of π1(∂C)
to obtain a manifold which is contractible (using the Hurewicz and Whitehead
theorems) with simply-connected boundary, hence a disk by [33]. If D2 × Dn is
the attached handle, then our disk knot is 0 × Dn, the “cocore” of the handle.
Clearly then C is the knot’s exterior with modules and pairings as claimed.

It remains to show that properties (3), (4), and (5) hold. Again from the proof
of [21, Proposition 12.6],Hi(∂C̃) = 0 for i ≠ 0, q−1, q, 2q−1, andHi(C̃, ∂C̃) =
0, i ≠ q − 1, q, 2q − 1. The argument uses the Hurewicz theorem, a version of
Poincaré duality for coverings ([25] and [21]), and a universal coefficient short
exact sequence for torsion Λ-modules. As noted above, j∗ : Hi(X̃) → Hi(∂C̃) is
an isomorphism for i < n− 3, so Hi(X̃) = 0, i < q − 1, and therefore

Hi(X̃) = 0 , q < i < n− 2,
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by the duality of sphere knot modules [21]. Similarly,

Hi(C̃, X̃) = 0 , i < q or q < i < n− 1,

using the long exact sequence of the pair (C̃, X̃).
At this point we have all of the Alexander modules 0 except for Hq(C̃),

Hq(C̃, X̃), Hq−1(X̃), and Hq(X̃). But Hq(X̃) must be 0 because the non-de-
generacy of the pairing on C implies that the map

j∗ : Hq(C̃)→ Hq(C̃, X̃)

of the long exact sequence must be injective. It now follows from Levine’s duality
properties for the Alexander modules of locally-flat sphere knots (see [21]) that
Hq−1(X̃) is a Z-torsion module. ❐

3.6.3. Matrix representations of the middle dimension module and its pairing;
Characterization of the middle dimensional polynomial in these terms. It is also use-
ful to study these middle-dimensional Alexander modules using presentation ma-
trices. We first examine the form that these matrices take. From the proof of
Corollary 2.5, we know that cq(t) is the determinant of the presentation matrix
of the kernel of the map

∂∗ : Hq(C̃, X̃;Q)→ Hq−1(X̃;Q)

in the long exact sequence of the pair. Let us denote this kernel module by H.
Equivalently, it is the determinant of the presentation matrix of the isomorphic
coimage of the map

p∗ : Hq(C̃;Q)→ Hq(C̃, X̃;Q).

We will refer to this module as H̄.
To obtain a presentation matrix for H (or H̃), recall the Mayer-Vietoris se-

quences (3.1) and (3.2) used to obtain the presentation matrices for the Alexander
polynomials. The long exact sequences of the rational homology of the pairs
(V , F) and (Y , Z) must split at each term as exact sequences of vector spaces; in
other words, each is isomorphic to an exact sequence of vector spaces of the form

-→ A⊕ B → B ⊕ C → C ⊕D -→ .

This splitting and exactness is preserved under the tensor product with the free
module Γ overQ. Hence we obtain the following diagram which commutes owing
to the obvious commutativity at the chain level induced by the maps in the Mayer-
Vietoris sequence and by naturality of the homology functor. The 0 terms arise
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by truncation, using our knowledge that the Mayer-Vietoris sequences break into
short exact sequences.

(3.13)

0 - Hq(F ;Q)⊗Q Γ?
- Hq(Z;Q)⊗Q Γ?

- Hq(X̃;Q)
?

- 0

0 - Hq(V ;Q)⊗Q Γ? d1- Hq(Y ;Q)⊗Q Γ? e1- Hq(C̃;Q)
?

- 0

0 - Hq(V, F ;Q)⊗Q Γ
r

? d2- Hq(Y ,Z;Q)⊗Q Γ
s

? e2- Hq(C̃, X̃;Q)
?

- 0

∂∗ ? ∂∗ ? ∂∗ ?

Let E and G denote, respectively, the kernels of the boundary maps ∂∗ in
Hq(V, F ;Q) ⊗Q Γ and Hq(Y ,Z;Q)⊗Q Γ . Let J, K, and L be the respective cok-
ernels of the boundary maps of which E, G, and H are the kernels. Then, by the
snake lemma, we obtain an exact sequence

0 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ E d
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ G -----------------------------------------------------------------------------------------------------------------------------------------------------------→ H -----------------------------------------------------------------------------------------------------------------------------------------------------------→ J -----------------------------------------------------------------------------------------------------------------------------------------------------------→ K -----------------------------------------------------------------------------------------------------------------------------------------------------------→ L -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0.

But note that by the splitting of the two leftmost (non-zero) vertical sequences
in the diagram (3.13), J and K are direct summands of Hq−1(F ;Q) ⊗ Γ and
Hq−1(Z;Q)⊗ Γ , respectively. Hence the injectivity of the map Hq−1(F ;Q)⊗ Γ →
Hq−1(Z;Q) ⊗ Γ in the Mayer-Vietoris sequence implies that the induced map
J → K must also be injective. Therefore, we get an exact sequence

0 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ E d
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ G -----------------------------------------------------------------------------------------------------------------------------------------------------------→ H -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0.

This sequence gives a presentation for H. In fact, E and G are certainly free Γ -
modules (each being a rational vector space tensored with Γ over Q), and the
matrix representing d gives a presentation matrix for H. Note that the matrix
for d is a submatrix (which we can arrange to be the upper left submatrix) of
the matrix representing d2. The generators of E and G are the elements {ei ⊗ 1}
and {gi ⊗ 1}, where {ei} and {gi} are the generators of the direct summands of
Hk(V, F ;Q) and Hq(Y ,Z;Q) which are the images of Hq(V ;Q) and Hq(Y ;Q)
under the projection maps of the exact sequences of the pairs. Furthermore, d
must be represented by a square matrix: If it had more columns than rows, then
there would be more generators than relations in H which is impossible since we



Alexander Polynomials of Non-locally-flat Knots 1525

know that H is a Γ -torsion module; and if it had more rows than columns, then
since the elements in the summand E map only into the summand G and d2
is square, d2 would be forced to have determinant 0, which is also impossible
as we saw in the proof of Theorem 3.1. Hence the matrix of d gives a square
presentation of H, which we can take to be the upper left m ×m submatrix of
d2, by changing bases if necessary. Similar considerations give the isomorphic
presentation of the coimages

0 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Ē d̄
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Ḡ -----------------------------------------------------------------------------------------------------------------------------------------------------------→ H̄ -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0.

From the termwise splitting of the leftmost column of (3.13) before tensoring
with Γ , there exist vectors space summands Ẽ and ˜̄E inHq(V, F ;Q) andHq(V ;Q),
respectively, such that E = Ẽ ⊗ Γ and Ē = ˜̄E⊗ Γ . Furthermore, r can be written as
r̃ ⊗ id, where r̃ : Hq(V ;Q) → Hq(V, F ;Q) is the map of the long exact sequence
induced by inclusion (and induces the isomorphism of the summands Ẽ � ˜̄E). We
can make similar conclusions about G in the second column of (3.13) and carry
over all of the bar and tilde notations. Identifying quotient vector spaces with
summands, for convenience, we obtain the diagram:

˜̄E ⊂ Hq(V ;Q) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hq(Y ;Q) ⊃ ˜̄G

r̃
y s̃

y
Ẽ ⊂ Hq(V, F ;Q) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hq(Y ,Z;Q) ⊃ G̃.

We will now choose suitable bases for Ẽ, ˜̄E, G̃, and ˜̄G. Consider now the
integral homology groups and long exact sequence maps r̃Z : Hq(V) → Hq(V, F)
and s̃Z : Hq(Y) → Hq(Y ,Z). As abelian groups, each of these is the direct sum
of its free part and its torsion part, and we can choose bases so that maps between
the free summands are represented by diagonal matrices ordered so that all of the
zero diagonal entries are moved to the bottom right [28, §11]. Clearly then when
we tensor with Q, we get the maps in the above diagram with the vector space
summands Ẽ, ˜̄E, G̃, and ˜̄G being represented by the Q spans of the first m basis
elements of the groups, i.e. we can now choose bases {αi}, {β′i}, {γi}, {δ′i}, of the
free parts of Hq(V, F), Hq(Y), Hq(Y ,Z), Hq(V), such that, upon tensoring with
Q, the first m elements of each basis will span Ẽ, ˜̄G, G̃, and ˜̄E, respectively, and
the maps r̃Z ⊗Q and s̃Z ⊗Q induce the appropriate vector space isomorphisms.
Furthermore, {αi ⊗ 1}mi=1, {β′i ⊗ 1}mi=1, {γi ⊗ 1}mi=1, {δ′i ⊗ 1}mi=1 now span E, Ḡ,
G, and Ē.

We claim also that with these choices Ẽ and ˜̄G are dual with respect to the
linking pairing L′ (see Section 3.3) and ˜̄E and G̃ are dual with respect to L′′,
which will allow us to perform changes of bases of ˜̄G (to {βi}) and ˜̄E (to {δi})
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such that
L′(αi ⊗ βj) = L′′(γi ⊗ δj) = δij,

1 ≤ i ≤ m. The changes of bases can be taken to be integrally unimodular (see
below).

We proceed by first proving that the duals to the {γi}mj=1 under L′′ span
˜̄E ⊂ Hq(V ;Q). To see this, we first observe that, up to sign, L′′([v], s̃([y])) =
L′(r̃ ([v]), [y]) for [v] ∈ Hq(V ;Q) and [y] ∈ Hq(Y ;Q). This follows by con-
sidering the definition of the linking pairings. If v and y are chains representing
[v] and [y], then they also represent r̃ [v] and s̃[y] (as relative chains modulo
the chain complexes Cq(F) and Cq(V)). Then L′′([v], s̃([y])) is the intersection
number of y with a chain in Dn whose boundary is v, while L′(r̃ ([v]), [y]) is
the intersection number of v with a chain in Dn whose boundary is y . By the
properties of intersection numbers, these agree up to sign. Now suppose that v is
an element of Hq(V ;Q) which lies in the summand ker(r̃ ) and that {s̃−1γi}mi=1
are elements of Hq(Y) which map onto the γi. Then 0 = L′(r̃ (v), s̃−1γi) =
L′′(v, γi). Therefore, ker(r̃ ) is orthogonal to G̃ under L′′. Thus, the dual sub-
space to G̃, spanned by {δi}mi=1, must lie outside ker(r̃ ) and project onto an
m-dimensional subspace of coim(r̃ ) = ˜̄E. But dim( ˜̄E) =dim(Ẽ) =m by isomor-
phism and dim(Ẽ) =dim(G̃) because the map d was a square presentation. This
proves that ˜̄E and G̃ are dual.

It also follows from the discussion of the last paragraph that we must have
δi ∈ ker(r̃ ) for i > m: Suppose not. Without loss of generality, suppose δm+1 ∉

ker(r̃ ). Then, in the rational vector space ˜̄E ⊗Q, there will be (at least ) m + 1
linearly independent vectors, {δi}mi=1, which do not lie in the kernel. But since
the kernel has dimension n −m (rationally), the span of {δi}mi=1 must intersect
the kernel. Therefore there is a vector v ∈ ker(r̃ )⊗Q such that

v =
m+1∑
i=1

niδi, ni ∈ Q .

Furthermore, there must be some nj , j ≤ m, such that nj ≠ 0 (else v =
nm+1δm+1 ∉ ker(r̃ ) ⊗ Q). Then L′′(v,αj) = nj ≠ 0, contrary to the results
of the last paragraph. Therefore, δi ∈ ker(r̃ ) for i > m. Now, since each δ′i is
an integral linear combination of the {δi} (since each is a basis for Hq(V)), the
same must be true under the projection to ˜̄E, i.e. the projection of each δ′i is an
integral linear combination of the projections of the {δi}. But since δi ∈ ker(r̃ )
for i > m, each projected δ′i is a linear combination of the projections of {δi}mi=1.
Since the projected {δ′i}mi=1 form a basis for ˜̄E, it follows that the projections
{δi}mi=1 also form a basis for ˜̄E. In particular, we see that ˜̄E is integrally dual to G̃
(and hence also rationally when tensored with Q). In what follows, we shall also
refer to the projections of the {δi}mi=1 into ˜̄E as {δi}mi=1.
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Similar considerations apply for the other case to show that ˜̄G with basis
{βi}mi=1 is dual to Ẽ.

Next, we can apply our previous notations, procedures, and results (see Sec-
tion 3.3) to these modules to obtain the formulae:

i+∗(δj) =
∑
i
λijβi ,

i−∗(δj) =
∑
i
σijβi ,

i+∗(αj) =
∑
i
µijγi ,

i−∗(αj) =
∑
i
τijγi ,

L′(αk ⊗ i+∗(δj)) =
∑
i
λijL′(αk ⊗ βi) = λkj ,

L′(αk ⊗ i−∗(δj)) =
∑
i
σijL′(αk ⊗ βi) = σkj ,

L′′(i+∗(αj)⊗ δk) =
∑
i
µijL′′(γi ⊗ δk) = µkj ,

L′′(i−∗(αj)⊗ δk) =
∑
i
τijL′′(γi ⊗ δk) = τkj,

where all of the indices run only to m and everything is of dimension q. We get
presentation matrices

P1(t) = (tσij − λij) ,
P2(t) = (tτij − µij)

for H̄ and H, and we know that σjk = µkj and λjk = τkj .
We are further furnished with one more relation between the matrices µ and

τ. Let R = (Rij) be the matrix representation of r̃ | ˜̄E. Let vi be a chain repre-
senting δi ∈ ˜̄E, 1 ≤ i ≤m, and observe that the same chain (modulo chains in F)
represents r̃ (δi) ∈ Ẽ. Thus, using chains interchangeably with their appropriate
homology classes,

L′′(i+∗(r̃δj)⊗ δi) = L′′(i+(vj)⊗ vi)
= (−1)q+1L′′(i−(vi)⊗ vj) = (−1)q+1L′′(i−∗(r̃δi)⊗ δj),

where the middle equality comes from the usual geometry of the isotopies ob-
tained by “pushing along the bicollar” (see Section 3.3.3), and the sign change is
the usual sign change in the commutativity formula for a linking pairing induced
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by an intersection pairing (see [9, Appendix]). But

L′′(i+∗(r̃δj)⊗ δi) = L′′(i+∗
( m∑
k=1

Rkjαk
)
⊗ δi)

=
m∑
k=1

RkjL′′(i+∗(αk)⊗ δi)

=
m∑
k=1

Rkjµik.

Similarly, we get that

L′′(i−(r̃δi)⊗ δj) =
m∑
k=1

Rkiτjk.

This yields the matrix equations

µ · R = (−1)q+1(τ · R)′ = (−1)q+1R′ · τ′,

and we can conclude the following:

Proposition 3.22. The Γ -module H has a presentation matrix of the form τt −
(−1)q+1R′τ′R−1, where R is the matrix of the map ˜̄E → Ẽ induced by r̃ : Hq(V)→
Hq(V, F). H̄ has presentation matrix (−1)q+1(R−1)′τRt − τ′.

Remark 3.23. Both of these presentation matrices have the same determi-
nant, up to sign, as expected.

In this situation, we can say the following about the matrix of the pairing
〈 , 〉 : H̄ × H̄ → Q(Λ)/Γ :

Proposition 3.24. In the above situation, taking {Bi}mi=1 as the generators of H̄,
where Bi is the image of the {βi ⊗ 1} ∈ ˜̄E ⊗ Γ = Ẽ in H̄, a matrix representative of
the pairing 〈 , 〉 : H̄ × H̄ → Q(Λ)/Λ is given by

t − 1
(R−1)′τ − (−1)q+1tτ′R−1 .

Proof. The proof follows closely that of [21, Proposition 14.3]. We choose
particular lifts of V and Y which adjoin (i.e. any path from t−1Y to Y must cross
V , identifying t as the covering translation) and identify δi ∈ V with δi⊗1, which
we will call δ̃i for convenience. Set p(t)δ̃i = δi ⊗ p(t) for p(t) ∈ Γ . We treat
the other bases similarly.
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Since i+∗(δ̃i) =
∑
i λjiβ̃j and i−∗(δ̃i) =

∑
j σjiβ̃j are induced by homo-

topies, there are chains ci and c′i such that

∂ci = δ̃i −
∑
j
λjiβ̃j ,

∂tc′i = δ̃i −
∑
j
σjitβ̃j .

Thus

∂(tc′i − ci) = −
∑
i
tσjiβ̃j +

∑
i
λjiβ̃j

=
∑
i
(λji − tσji)β̃j.

As usual, let λ and σ denote the matrices (λji) and (σji). Let ∆(t) =
det(λ − tσ) and M(t) = ∆(t)(λ′ − tσ ′)−1, i.e. the matrix of cofactors of
(λ′ − tσ ′). Thus

(3.14) δjk∆(t) =∑
i
Mki(t)(λji − tσji),

so that

∆(t)β̃k =∑
j
δjk∆(t)β̃j

=
∑
i,j
Mki(t)(λji − tσji)β̃j

=
∑
i
Mki(t)∂(tc′i − ci)

= ∂
(∑
i
Mki(t)(tc′i − ci)

)
.

Now, as outlined above, to compute 〈Bk, B`〉, we choose representative chains
for the Bi (denoting both the chains and classes by the same symbol for simplicity)
and find a chain c such that ∂c = p(t)Bk for some p(t) ∈ Λ. Then

〈Bk, B`〉 = 1
p(t)

c · B` mod Λ .
Based upon the computations above, we can take p(t) = ∆(t) and c(t) =∑

i Mki(t)(tc′i − ci) from which

〈Bk, B`〉 =

∑
i
Mki(t)(t(c′i · B`)− (ci · B`))

∆(t) .
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Since the ci, c′i , and Bi all lie in the same lift of Y , the intersection numbers in this
formula are the ordinary intersection numbers in Y ⊂ Sn and are thus the same
as the usual linking numbers of the chains ∂ci and ∂c′i with B`. Since a chain
representing δ̃i represents

∑
j Rjiα̃j in Ẽ, we get

ci · B` = L′′
(∑
j
Rjiα̃j, β̃`

)
−
∑
j
λji`(β̃j, β̃`)

= R`i −
∑
j
λji`(β̃j, β̃`)

c′i · B` = L′′
(∑
j
Rjiα̃j, β̃`

)
−
∑
j
σji`(β̃j, β̃`)

= R`i −
∑
j
σji`(β̃j, β̃`),

where `(β̃j, β̃`) is the linking number in Sn of chains representing βj and β`.
Thus,

〈Bk, B`〉 =
∑
i

Mki(t)∆(t)
[
(t − 1)R`i +

∑
j
(λji − tσji)`(β̃j, β̃`)

]

=
∑
i

Mki(t)(t − 1)R`i∆(t) +
∑
ij

Mki(t)(λji − tσji)`(β̃j, β̃`)∆(t)
=
∑
i

Mki(t)(t − 1)R`i∆(t) +
∑
j
δjk`(β̃j, β̃`),

where we have used equation (3.14) to simplify in the last step. Since `(β̃j, β̃`) is
an integer,

〈Bk, B`〉 =
∑
i

Mki(t)(t − 1)R`i∆(t) mod Λ.
Thus the matrix of the pairing is given by

t − 1∆(t)M(t)R′ = (t − 1)(λ′ − tσ ′)−1R′

= (t − 1)(τ − (−1)q+1tR′τ′R−1)−1R′

= t − 1
(R−1)′τ − (−1)q+1tτ′R−1

❐

Conversely, suppose we are given integer matrices τ and R such that R has
non-zero determinant, (R−1)′τR is an integer matrix, and det[M(1)] = ±1,
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where M is the matrix M(t) = (−1)q+1(R−1)′τRt − τ′. Let A be the Λ-module
whose presentation matrix is M(t), i.e. A = Λ/MΛ. Then

N(t) = t − 1
(R−1)′τ − (−1)q+1τ′tR−1 =

1− t
(R−1)′M(t)′

determines a nondegenerate (−1)q+1-Hermitian form 〈 , 〉 : A×A→ Q(Λ)/Λ by
〈a1, a2〉 = a′1N(t)ā2. (For a more general discussion of the construction of which
this is a minor modification, see [39, §1].) A simple calculation shows that N(t) is
(−1)q+1-Hermitian. The pairing is well-defined because if a1 = 0 in A, then a1 ∈
M(t)Λ so that it can be represented as M(t)a0. Then 〈a1, a2〉 = a′1N(t)a2 =
(M(t)a0)′N(t)ā2 = (1 − t)a′0M(t)′(M(t)′)−1R′ā2 = (1 − t)a′0R′ā2 ∈ Λ. For
the non-degeneracy, the work of Blanchfield [1, pp. 350-1] implies that N0(t) =
[(R−1)′M(t)′]−1 = [M(t)′]−1R′ is a non-singular Γ -module pairing B × B →
Q(Γ)/Γ , where B = Γ/[N0(t)′]−1Γ , provided this is a Γ -torsion module. But since
R is rationally unimodular, Γ/[N0(t)′]−1Γ = Γ/M(t)R−1Γ = Γ/M(t)Γ = A ⊗Q.
Hence, B is Γ -torsion because A is Λ-torsion. Thus N0(t) can have no rows or
columns composed completely of elements of Γ , hence of Λ. This together with
the fact that (t − 1) is an isomorphism on A (which is clearly of type K) shows
that the pairing N(t) is non-degenerate.

Given any module and pairing as defined in the last paragraph, it is realizable
as the middle-dimensional module and pairing of a disk knot D2q−1 ⊂ D2q+1,
q > 2, by Proposition 3.21. Thus, we have proven:

Theorem 3.25. A polynomial c(t) ∈ Λ can be realized as the Alexander sub-
polynomial factor shared by Hq(C̃) and Hq(C̃, X̃) for the locally-flat knotted disk
pair D2q−1 ⊂ D2q+1, q > 2, if and only if c(t) = det[M(t)], where M(t) =
(−1)q+1(R−1)′τRt − τ′ for integer matrices τ and R, such that R has non-zero
determinant, (R−1)′τR is an integer matrix, and det[M(1)] = ±1.

Remark 3.26. If the boundary knot is trivial, then we will have R = I, and
we expect our formulae to look like those in [21] for the middle-dimensional du-
ality of a sphere knot. That these formulae do not agree identically is due to two
differences in conventions: The first is that we have chosen to use Levine’s original
convention of [19] for which map to label i− and which to label i+ (these choices
are reversed in [21]). The second is that while we have employed presentation ma-
trices acting on the left, so that the matrix A corresponds to the module Λk/AΛk,
in [21] Levine allows his presentation matrices to act on the right so that A cor-
responds to Λk/ΛkA. Thus our presentation matrices are transposed compared to
those in [21].

3.6.4. Characterization of the middle dimension polynomial in terms of pairings.
An alternative way of formulating Theorem 3.25 is the following:

Theorem 3.27. A primitive polynomial c(t) ∈ Λ can be realized as the Alexan-
der polynomial factor shared by Hq(C̃) and Hq(C̃, X̃) for the locally-flat knotted disk
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pair D2q−1 ⊂ D2q+1, q > 2, if and only if c(1) = ±1 and there exist an integer ρ
and a non-negative integerω such that

(
(t − 1)ωρ

)
/± c(t) is the discriminant of a

(−1)q+1-Hermitian form on a Λ-module of type K.

Proof. If c(t) is the Alexander subpolynomial in primitive form, we know
that c(1) = ±1, c(t−1) ∼ c(t) = det

[
(−1)q+1(R−1)′τRt − τ′], and

t − 1
(R−1)′τ − (−1)q+1τ′tR−1

is the matrix of a form of the given type on a Λ-module of type K. Letting |τ|
stand for the number of rows (or columns) of the square matrix τ, the discriminant
of the form is

det
[

t − 1
(R−1)′τ − (−1)q+1τ′tR−1

]
= (t − 1)|τ|det(R)

±c(t) .(3.15)

Setting ρ = det(R) andω = |τ| proves the claim in this direction.
Conversely, suppose that we are given a primitive polynomial p(t) ∈ Λ such

that p(1) = ±1 and there exist ρ and ω such that
(
(t − 1)ωρ

)
/p(t) is the dis-

criminant, D, of a (−1)q+1-Hermitian form on a Λ-module of type K. Then by
Propositions 3.21 and 3.24, the module and pairing can be realized as an appro-
priate middle-dimensional knot pairing such that the module has a presentation
matrix of the form (−1)q+1(R−1)′τRt − τ′ and the pairing has a matrix of the
form

t − 1
(R−1)′τ − (−1)q+1τ′tR−1 .

The associated Alexander polynomial is then c(t) =
det((−1)q+1(R−1)′τRt − τ′), while the discriminant is

D = det
[

t − 1
(R−1)′τ − (−1)q+1τ′tR−1

]
.

Thus we have

c(t) ∼ (t − 1)|τ|det(R)
D

as in the last paragraph

∼ p(t)(t − 1)|τ|det(R)
(t − 1)ωρ

by assumption

∼ p(t)(t − 1)|τ|−ω
(

det(R)
ρ

)
.

But since we know that both c(1) and p(1) are equal to ±1, we must have ω =
|τ| and ρ = det(R), so that c(t) ∼ p(t) and p(t) is an Alexander polynomial of
the desired type. ❐
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For the case where q is odd, we already know from Sections 3.3 and 3.5 that
these polynomials must be completely classified as those such that c(1) = ±1 and
c(t) ∼ c(t−1). I do not know of such a similarly straightforward classification
for the case where q is even, although we will show that the previously imposed
condition that |c(−1)| be a square is not necessary. In fact, we will show that any
quadratic polynomial, c(t) ∈ Λ, satisfying
1. c(1) = ±1 ,
2. c(t) ∼ c(t−1)
can be realized. It is easy to show that any such polynomial has the form at2 +
(±1− 2a)t + a. Now, we can just take

R =
(
±1+ 4a 0

0 1

)
τ =

(
a 0
1 1

)
.

Then

c(t) = det[(R−1)′τRt − (−1)q+1τ′] = det

(
at + a 1

(±1+ 4a)t + 1 t + 1

)
= at2 + (±1− 2a)t + a.

Note that c(−1) = 4a± 1, so that, by choosing a suitably, we can realize any
odd number as c(−1). Observe that c(−1) must be odd for any c(t) satisfying
conditions (1) and (2) above (see [19]).

For q > 2, we can now replace condition 2f of Theorem 3.18 with the neces-
sity statement of Theorem 3.25 or Theorem 3.27. The constructibility follows by
taking an appropriate connected sum with the knots constructed in Proposition
3.21.

For n = 2q + 1, q = 2, the methods employed above break down. The
difficulties in this case are clearly related to the difficulties of classifying the Z-
torsion part of the dimension-one Alexander module of a locally-flat knot S2 ⊂ S4

(see [21]).

3.7. Conclusion. We summarize our results on the Alexander polynomials
of locally-flat disk knots, or equivalently, sphere knots with point singularities.

Theorem 3.28. For n ≠ 5 and 0 < i < n − 1, 0 < j < n − 2, the following
conditions are necessary and sufficient for λi, µi, and νj , to be the polynomials asso-
ciated to the Γ -modules Hi(C̃;Q), Hi(C̃, X̃;Q), and Hj(X̃;Q) of a locally flat disk
knotDn−2 ⊂ Dn or a knot Sn−2 ⊂ Sn with point singularities (see Section 3.3 for the
definitions of C and X) : There exist polynomials ai(t), bi(t), and ci(t), primitive
in Λ, such that
1. (a) νi ∼ aibi ;

(b) λi ∼ bici ;
(c) µi ∼ ciai−1 ;
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2. (a) ci(t) ∼ cn−i−1(t−1) ;
(b) ai(t) ∼ bn−i−2(t−1) ;

3. ai(1) = ±1, bi(1) = ±1, ci(1) = ±1, a0(t) = 1 .
4. If n = 2q + 1 and q is even, then there exist an integer ρ and a non-negative

integer ω such that
(
(t − 1)ωρ

)
/ ± cq(t) is the discriminant of a (−1)q+1-

Hermitian form on a Λ-module of type K (or equivalently, cq(t) = det[M(t)],
where M(t) = (−1)q+1(R−1)′τRt − τ′ for integer matrices τ and R such that
R has non-zero determinant and (R−1)′τR is an integer matrix). See Section 3.6
for definitions and more details.
For a locally-flat disk knot D3 ⊂ D5 or a knot S3 ⊂ S5 with point singularities,

these conditions are all necessary. Furthermore, we can construct any knot which satis-
fies both these conditions and the added, perhaps unnecessary, condition that |c2(−1)|
be an odd square.

Proof. This is simply a conglomeration of the results of this section. Note
that the duality statements of (2) follow from the duality results of Section 3.3
and some simple polynomial algebra (see Lemma 3.17 in Section 3.5.3). ❐

Remark 3.29. For a locally-flatD1 ⊂ D3, the boundary modules are all trivial
in dimensions greater than 0. In fact the only nontrivial Alexander modules will
be H1(C̃;Q) � H1(C̃, X̃;Q), and the only non-trivial polynomial c1 ∼ λ1 ∼
µ1 is completely classified by c1(t) ∼ c1(t−1) and c1(1) = ±1. Noting that
the complement of a locally-flat 1-disk knot is the same as that of the S1 knot
obtained by coning on the boundary (such a cone remains locally-flat at all points),
this follows by Levine’s conditions [19]. These conditions are equivalent to the
conditions stated above, taking n = 3, although we have not proved here that
any such knot can be constructed. (The necessity could follow from our proof for
higher dimensional knots as the assumption n > 3 was imposed only to focus our
attention on knots which could have point singularities.)

4. KNOTS WITH MORE GENERAL SINGULARITIES

4.1. Introduction. We now study the Alexander polynomials of non-locally-
flat knots with singularities more general than the point singularities of the last
section. To be specific, let α : Sn−2 ↩ Sn, n ≥ 3, be a PL-embedding which is
locally-flat except on a singular set Σn−k ⊂ Sn−2 ⊂ Sn. Note that if we view Sn as
a PL-stratified space with singular locus Sn−2, then Σ will be a subpolyhedron of
dimension less than n−3 (see Section 5 of [9] or [8] for a more detailed discussion
of knots as stratified spaces).

By analogy with Section 3, we can study the homology modules of the infinite
cyclic covers of the complement of the knot in the exterior of a regular neighbor-
hood of the singularity and of the complement of the intersection of the knot with
the boundary of this regular neighborhood (see Section 4.2.1). We can also study
the relative homology of the pair. These will all be torsion Γ -modules, and thus
we again obtain three sets of polynomials to study: νi, λi, and µi.
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In Section 4.2.2, we show that λi and µi satisfy a modified version of the
duality and normalization results for disk knots (Theorem 3.1). In fact, the results
are the same except for the appearance of a power of t−1 as a factor in each µi. In
Section 4.2.3, we show that the νi also satisfy self-duality and normalization con-
ditions which generalize Levine’s conditions for the boundary locally-flat sphere
knots of Section 3. Again there are extra t − 1 factors to account for.

In Section 4.2.4, we discuss the factorization of the Alexander polynomials
into subpolynomials and rephrase our results in that context. In Section 4.2.5, we
show that the Alexander polynomials are all trivial for sufficiently large dimension
index i.

4.2. Necessary conditions on the Alexander invariants.

4.2.1. Geometric preliminaries. Letting K = α(Sn−2), Sn − K is a homology
circle by Alexander duality, and again, just as in Section 3, we can study the ra-
tional homology of its infinite cyclic cover viewed as a module over Γ = Q[Z] =
Q[t, t−1]. The Alexander polynomials are the determinants of the presentation
matrices of these modules. We begin with some geometric preliminaries and no-
tations.

As usual, we use the homotopy equivalent knot complement or knot exterior
as it suits our needs (the knot exterior being the complement in Sn of an open
regular neighborhood of K). As already stipulated, K is locally flat away fromΣ so that each point in K − Σ has a distinguished neighborhood homeomorphic
to Dn−2 × c(S1) (where c(X) denotes the open cone on X). Let D denote the
manifold Sn − N(Σ), where N(X) is the open regular neighborhood of X, and
let ∂D = S = ∂N(Σ). Note that the boundary of the knot exterior is the union
of two pieces: a circle bundle in D over Sn−2 −N(Σ) and the exterior in S of an
open neighborhood of S ∩ K in S. These pieces are joined along their intersec-
tion, a circle bundle in S over S ∩ K which is the boundary of the closed regular
neighborhood of S ∩K in S.

We now construct a version of the Seifert surface in this context.

Lemma 4.1. There is a retract R : Sn−K → S1, where S1 is a given PL-meridian
of the knot K.

Proof. Let i : S1 → Sn − K be the inclusion of the meridian S1. Since
Sn − K is a homology circle and the meridians generate its first homology group,
i∗ is a homology isomorphism in all dimensions. Hence, H̃∗(Sn − K, S1) �
H̃∗(Sn − K, S1) = 0. But by Eilenberg-MacLane theory, since S1 is a K(Z,1)
and since (Sn − K, S1) as a simplicial pair can also be considered a CW pair, this
implies that the identity map S1 → S1 can be extended to a map R : Sn −K → S1

(see [34, 8.1.12]). ❐

Proposition 4.2. With D and S as above, there is a bicollared (n−1)-manifold
V ⊂ D, such that ∂V = (K ∩D)∪ F , where F is a bicollared (n− 2)-manifold in S
with ∂F = K ∩ S.
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Proof. Consider the regular neighborhood N(K ∩D) in D which is a 2-disk
bundle overK∩D. Let γ be a fiber of the boundary circle bundle ∂N(K ∩D) inD.
Then γ, with the proper choice of orientation, generates H1(Sn −N(K)) = Z. In
fact, γ certainly has linking number ±1 with K, corresponding to the intersection
point of K with the obvious 2-disk in Sn which bounds γ and makes up a fiber of
the regular neighborhood of K. Since the linking pairingH1(Sn−K)⊗Hn−2(K) �
Z⊗ Z → Z is perfect (see [9, Appendix]) any element of H1(Sn − K) which maps
to 1 under the pairing must be a generator.

Now, by the lemma, there is a retract R : Sn − K to γ which, by restricting
to ∂N(K ∩D) in D, provides a homotopy trivialization of this circle bundle and
hence of the disk bundle N(K ∩D) in D by extending in the obvious way to the
interior of the bundle. This homotopy trivialization is homotopic to an actual
trivialization, i.e. a projection ∂N(K ∩D) � (K ∩ D) × S1 → S1, and by the
homotopy extension principle, we can obtain a map r , homotopic to R, such that
r |∂N(K ∩D) is the projection to S1. Consider now r restricted to ∂(Sn−N(K)).
We wish to obtain our Seifert surface, V , by taking the transverse inverse image
of a generic point under a PL-approximation of r , but first we must take care to
avoid getting excess boundary components.

We can first take a PL-approximation to r |∂(Sn −N(K)) which remains the
projection on (K ∩D)× S1. Now, we take the transverse inverse image in ∂Sn −
N(K) of a sufficiently generic point, say y , of S1, which gives us a bi-collared
(n − 2)-submanifold. One component of this submanifold consists of the union
of (K ∩ D) × y ⊂ (K ∩ D) × S1 and a manifold F ⊂ S, with the union taken
along their common boundary (K ∩ S)×y ⊂ (K ∩ S)× S1. This can be seen by
considering F to be a component of the transverse inverse image of the restriction
to S − S ∩ N(K) of the PL-approximation to r |∂(Sn − N(K)). Unfortunately,
there may be excess closed components of the inverse image in S, but these can be
removed by replacing the approximation to r with the map to S1 determined by
the connected bicollared submanifold consisting of the main component discussed
above (in particular, the map which takes the submanifold to the point y ∈ S1,
the hemispheres of the bicollar to the two halves of the circle, and the rest of
∂(Sn − N(K)) to the point antipodal to y). Since Sn − N(K) ∼h.e. Sn − K is
a homology circle, H2(Sn − N(K), ∂(Sn − N(K))) � Hn−2(Sn − N(K)) = 0,
(recall n ≥ 4), and therefore there is no obstruction to extending this new map
to a map r : Sn − N(K) → S1. Now we take the transverse inverse image of a
PL-approximation to r at y or another sufficiently close point and discard excess
components to obtain a bicollared submanifold in Sn − N(K) which will have
the desired properties once we extend it trivially to the interior of the disk bundle
N(K ∩D) in D. ❐

We now establish some notation. We have already denoted V ∩ S by F . Let
Y = D−V , Z = Y ∩S,W = V∪N(Σ), and Ω = Y ∪N(Σ). Note that bothW and
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Ω contain Σ. We observe that D−(K∩D) is homotopy equivalent to Sn−K, and
so we can consider the homology of either to study the Alexander polynomials.

We begin our study of the Alexander invariants with the following observa-
tions and definitions: Let C be the knot complement D − (K ∩D) ∼h.e. Sn − K,
and let C̃ be the infinite cyclic cover associated with the kernel of the abelianiza-
tion π1(C) → Z. Letting t denote a generator of the covering translation, the
homology groups of C̃ are finitely generated Λ-modules (Λ = Z[Z] = Z[t, t−1])
since C has a finite polyhedron as a deformation retract, and the rational homology
groups H∗(C̃;Q) � H∗(C̃) ⊗Z Q are finitely generated modules over the princi-
pal ideal domain Γ = Q[t, t−1] � Λ ⊗Z Q. Therefore, letting MR(λ) denote the
R-module of rank 1 with generator of order λ, Hq(C̃;Q) �⊕k

i=1MΓ (λqi), where
we can choose the λqi so that: 1) The λqi are primitive in Λ but are unique up
to associate class in Γ and 2) λqi+1|λqi . For 0 < q < n − 1, these are called the
Alexander invariants of the knot complements. The polynomial λq =

∏k
i=1 λqi ,

which is also primitive in Λ, is the Alexander polynomial of the knot complement.
We will also consider the relative homology modules H∗(C̃, X̃;Q), where X is the
complement in S of K ∩ S (the “link complement”, as S is the link of Σ) and X̃
is its infinite cyclic covering. It will be clear from our construction that X̃ and the
cover of X in C̃ are equivalent. Then Hq(C̃, X̃;Q) has the same properties listed
above for Hq(C̃;Q) and its own Alexander invariants {µqi}, 0 < q < n − 1, and
relative Alexander polynomial µq =

∏
i µqi .

4.2.2. Duality and normalization theorem. We will prove the following the-
orem analogous to that already established in Section 3 for the case of a point
singularity:

Theorem 4.3. Let p+q = n−1 with knot and notation as above. The following
properties hold:
1. λp(1) = ±1,
2. µq(t) ∼ λp(t−1)(t − 1)B̃q−1 , where ∼ denotes associativity of elements in Λ (i.e.,
a ∼ b if and only if a = ±tkb for some k) and B̃i is the ith reduced Betti number
of Σ (i.e., the Betti number of the reduced homology).

The proof will occupy the next several pages. We begin the proof by findingΓ -module presentations for H∗(C̃;Q) and H∗(C̃, X̃;Q) by studying the Mayer-
Vietoris sequences for the infinite cyclic cover obtained by cutting and pasting
along the Seifert surface V ⊂ D.

We construct C̃ as in Section 3 by first cutting D open along V to create a
manifold, Y ′, which is homotopy equivalent to Y and whose boundary is Z plus
two copies of V , V+ and V−, identified along K ∩D, and by then pasting together
a countably infinite number of disjoint copies (Y i, V i+, V i−), −∞ < i < ∞, of
(Y ′ −K,V+−K,V− −K) by identifying Vi+−K with Vi+1− −K for all i. Then X̃ is
the sub-manifold resulting from looking at the restriction of this construction to
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S ∩ (Y i, V i+, V i−). X̃ is thus an infinite cyclic cover of X as claimed. We note once
again that Hi(D − V) � Hi(Y) and that Hi(S − F) � Hi(Z).

The usual considerations (see [19] and Section 3.3.2) now allow us to set up
the Mayer-Vietoris sequences for C̃ and (C̃, X̃):

→ Hq(V ;Q)⊗Q Γ d1
q

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------→ Hq(Y ;Q)⊗Q Γ e1
q

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------→ Hq(C̃;Q) → ,(4.1)

→ Hq(V, F ;Q)⊗Q Γ d2
q

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------→ Hq(Y ,Z;Q)⊗Q Γ e2
q

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------→ Hq(C̃, X̃;Q)→ .(4.2)

We will see later that diq, i = 1,2, is a monomorphism for 0 ≤ q < n − 1.
Hence eiq is an epimorphism, 0 < q < n − 1, and the diq provide presentation
matrices for the homology modules of the covers. In fact, the surjectivity of the
ei1 and the equivalent injectivity of the di0 follows from standard connectedness
considerations or by replacing homology with reduced homology, so we need only
show injectivity of diq, 0 < q < n − 1. That the d1

q are square matrices in this
range follows from:

Proposition 4.4. Hi(Y ;Q) � Hi(V ;Q), 0 < i < n− 1.

Proof. In the proof (and often from here out) we suppress the rational coeffi-
cients for simplicity of notation.

On the one hand, for 0 < i < n− 1:

Hi(Y) � Hi(D − V) by definition of Y ,
� Hi(D − (V ∪ S)) by homotopy equivalence ,
� Hi(Sn −W) from the definition of W ,
� Hn−i−1(W) by Alexander duality .

On the other hand, for 0 < i < n− 1:

Hi(V)

� Hn−i−1(V , ∂V) Poincaré Duality and the universal coefficient theorem ,
� Hn−i−1(W, ∂V ∪N(Σ)) by excision ,
� Hn−i−1(W,K ∪N(Σ)) by the definitions of the spaces ,
� Hn−i−1(W, Sn−2) by homotopy equivalence (N(Σ) collapses to Σ) ,
� Hn−i−1(W) for i ≠ 1 by the reduced long exact sequence of the pair .

For i = 1, we examine the top of the long exact sequence of the pair (W, Sn−2):

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hn−1(W) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hn−1(W, Sn−2) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hn−2(Sn−2)

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hn−2(W) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hn−2(W, Sn−2) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hn−3(Sn−2) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ .
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Of course Hn−3(Sn−2) = 0 and Hn−2(Sn−2) � Q. We claim that Hn−1(W) � 0
and Hn−1(W, Sn−2) � Q. This will suffice because any injection Q to Q must be
an isomorphism.

Hn−1(W, Sn−2) � Q because, as above, Hn−1(W, Sn−2) � Hn−1(V , ∂V),
which is isomorphic to Q since V is a connected (n − 1)-manifold with bound-
ary. To see that Hn−1(W) � 0, consider the Mayer-Vietoris sequence of W �
V ∪F N(Σ). We know that
1. Hn−1(V) = 0 , since V is an (n− 1)-manifold with boundary;
2. Hn−1(N(Σ)) = 0 , since N(Σ) is homotopy equivalent to a complex (Σ) of

dimension less than n− 1; and
3. Hn−2(F) = 0 , since F is an (n − 2)-manifold with boundary. Therefore,
Hn−1(W) = 0 by the Mayer-Vietoris sequence.

Therefore, Hi(V) � Hn−i−1(W) � Hi(Y) for all i, 0 < i < n− 1. ❐

We will show later that it is also true thatHi(Y ,Z;Q) � Hi(V, F ;Q), 0 < i <
n− 1, and so the maps d2

q also give square presentation matrices.
It follows from the construction of the covering and the action of the covering

translation, t, that the maps can be written as

diq(α⊗ 1) = i−∗(α)⊗ t − i+∗(α)⊗ 1

= t(i−∗(α)⊗ 1)− i+∗(α)⊗ 1,

where α ∈ Hq(V ;Q) or Hq(V, F ;Q) according to whether i = 1 or 2, and i±
correspond to the identification maps of (V , F) to (V±, F±) obtained by pushing
chains out along the bicollar.

To identify these maps (and their matrices) more specifically, we will turn from
the context of D, which was useful for the the geometric construction, back to the
context of Sn, which will be more useful for the following algebraic constructions.
In particular, we will make use of the facts that
1. Hi(Y) � Hi(Sn −W) since the two spaces are homotopy equivalent,
2. Hi(V, F) � Hi(W,N(Σ)) � Hi(W,Σ) by excision and homotopy equivalence,
3. Hi(V) � Hi(Sn −Ω) by homotopy equivalence, and
4. Hi(Y ,Z) � Hi(Ω, N(Σ)) � Hi(Ω,Σ) by excision and homotopy equivalence.
We also need to define maps j± : W → Ω which extend the maps i± which push
V out along its collar isotopically. Let N′(Σ) be another regular neighborhood ofΣ such that N′(Σ) lies in the interior of N(Σ). Then the closure of N(Σ)−N′(Σ)
is a collar of ∂N(Σ) using the “generalized annulus property” (see [35, Proposition
1.5]). Define j± to be i± on V and the identity on N′(Σ). Extend it to N(Σ) −
N′(Σ) as the homotopy induced on ∂N(Σ) by i±. It is easily seen that with
the canonical identifications of homology groups above, i±∗ : Hi(V) → Hi(Y)
corresponds to j±∗ : Hi(Sn −Ω) → Hi(Sn −W) and i±∗ : Hi(V, F) → Hi(Y ,Z)
corresponds to j±∗ : Hi(W,Σ) → Hi(Ω,Σ). This follows by making the correct
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identifications at the chain level. Of course we also get maps j±∗ : Hi(W) →
Hi(Ω). Therefore, to study the matrices d1 and d2 we can use

di(α⊗ 1) = j−∗(α)⊗ t − j+∗(α)⊗ 1

= t(j−∗(α)⊗ 1)− j+∗(α)⊗ 1,

where α ∈ Hq(Sn −Ω;Q) or Hq(W,Σ;Q) according to whether i = 1 or 2.
We will make use of the rational perfect linking pairings (suppressing the “Q”

in the homology notation)

L′ : Hp(W)⊗Hq(Sn −W) → Q

L′′ : Hp(Ω)⊗Hq(Sn −Ω)→ Q,

p + q = n − 1 and 0 < p < n − 1, which derive from the perfect intersection
pairings ⋂

: Hp+1(Sn,W)⊗Hq(Sn −W)→ Q⋂
: Hp+1(Sn,Ω)⊗Hq(Sn −Ω)→ Q

and the isomorphisms Hp+1(Sn,W) � Hp(W) and Hp+1(Sn,Ω) � Hp(Ω),
0 < p < n − 1, obtained from the long exact sequences of the pairs. Note, to
be technically precise, there is the issue that Ω is an open set and not a closed
subcomplex of Sn, but we can get around this by replacing Y = D − V with the
homotopy equivalent D−N(V) (the neighborhood taken in D) and then formingΩ from this Y and N(Σ) as above. This new Ω will be homotopy equivalent to the
old one but have the benefit of being a closed subcomplex. We will usually avoid
the distinction since the two versions are equivalent for homological purposes. Re-
call also that these pairings are induced (after tensoring with the rationals) from
perfect pairings on the integral homology groups modulo their torsion subgroups.

Given r ∈ Hp(W ;Q) and s ∈ Hq(Sn −Ω;Q), we have

(4.3) L′(r ⊗ j−∗(s)) = L′′(j+∗(r)⊗ s).

This can be seen as follows: Any chain representing s (which lies in W −N(Σ) by
the definition of Ω) gets pushed into Sn−W under j− and the the linking form is
the intersection of this chain with a chain, R, representing the isomorphic image
of r inHp+1(Sn,W ;Q) (see [9, Appendix]). The latter chain can be taken as some
chain R in Sn whose boundary is a chain representing r . Now, under the isotopy
of Sn which takes W to j+(W) and j−(W) to W , the chain representing s gets
pushed back intoW and R gets pushed into a chain in Sn whose boundary is j+ of
the chain representing r (which represents j+∗(r) ∈ Hp(Ω)). Thus this isotopy
induces maps which take j−∗(s) to s and r to j+∗(r), but since the geometric
relationship between the chains is unaffected by isotopy, the intersection number
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is unaffected. The formula then follows immediately using the definitions of L′
and L′′ in the appendix. Similarly, we get

(4.4) L′(r ⊗ j+∗(s)) = L′′(j−∗(r)⊗ s).

We will need one other property of linking numbers. Given r and s as above

L′(r ⊗ j−∗(s))− L′(r ⊗ j+∗(s)) = r ∩ s ,(4.5)

L′′(j−∗(r)⊗ s)− L′′(j+∗(r)⊗ s) = r ∩ s ,(4.6)

where r ∩ s is the intersection pairing of r and s on W . The geometric proof is
analogous to that in the usual case [19, p. 542]. Recall that r ∈ Hp(W ;Q) �
Hp(V, ∂V ;Q) (see the proof of Proposition 4.4) and s ∈
Hq(Sn −Ω;Q) � Hq(V ;Q). We claim that this intersection pairing is equivalent
to the perfect intersection pairing ∩ : Hp(V, ∂V ;Q) ⊗ Hq(V ;Q) → Q (using
V ∼h.e. V − ∂V ). In either case the intersection pairing is given by the sum of
signed point intersections (assuming general position) of chains in the manifold
W − N(Σ). If s̄ is a chain representing s, then, since it lies in Sn − Ω ⊂ V , it
also represents the corresponding class in Hq(V ;Q). Meanwhile, by tracing back
what happens at the chain level in the equations of the second half of the proof
of Proposition 4.4, any chain r̄ representing r also represents its image under the
isomorphism Hp(W ;Q) � Hp(V, ∂V ;Q). But none of this affects the geometric
intersection, and the choice of chain is irrelevant since the intersection pairing
is well-defined up to homology. Therefore, the pairings correspond under the
isomorphisms.

We now show the following:

Proposition 4.5. Hm(W,Σ;Q) � Hm(Ω,Σ;Q), 0 < m < n − 1, and hence
Hm(V, F ;Q) � Hm(Y ,Z;Q) and d2

m is a square matrix in the same range.

Proof. Again we suppress the “Q” in the proof for notational convenience.
We begin with the claim that

Hm(W,Σ) � Hm(W)⊕ H̃m−1(Σ)
and

Hm(Ω,Σ) � Hm(Ω)⊕ H̃m−1(Σ)
for 0 < m < n − 1. This will follow from the fact that, for 0 < m < n − 1,
the inclusion map i∗ of each of the long exact reduced homology sequences of the
pairs (W,Σ) and (Ω,Σ) is the 0 map. For i∗ : Hm(Σ)→ Hm(W), 0 <m < n−2,
this follows because the inclusion map can be factored Σ ↩ K = Sn−2 ↩ W sinceΣ ⊂ K ⊂ W . Then i∗ factors through Hm(Sn−2) which is 0 in the appropriate
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range. Form = n− 2, the equation still holds from the long exact sequence sinceΣ has dimension n − k, k ≥ 4, so that Hn−2(Σ) � 0. The idea is the same for
i∗ : Hm(Σ) → Hm(Ω) except that a little more care must be taken to identify the
Sn−2 that the inclusion factors through. This can be done by employing one of
the maps j± to K. Since the j± are ends of isotopies they take the (n− 2)-sphere
K to another (n − 2)-sphere. But by the properties of the map, j±K ⊂ Ω andΣ ⊂ j±K. Thus, we can conclude the homology arguments just as in the previous
case.

Now, from the proof of Proposition 4.4, we have Hm(W) � Hn−m−1(V),
0 < m < n − 1; we know that Hn−m−1(V) � Hn−m−1(Sn − Ω) by homotopy
equivalence; and there is a perfect linking pairing between Hn−m−1(Sn −Ω) and
Hm(Ω) which gives an isomorphism since each is a finitely generated vector space.
Putting these together with the above identities establishes the proposition. ❐

We next study the maps dq1 and dq2 using j±∗. Recall that

diq(α⊗ 1) = j−∗(α)⊗ t − j+∗(α)⊗ 1(4.7)

= t(j−∗(α)⊗ 1)− j+∗(α)⊗ 1,

where α ∈ Hq(Sn −Ω;Q) or Hq(W,Σ;Q) according to whether i = 1 or 2.
Let {αpi }, {βqi }, {γpi }, and {δqi } represent dual bases for Hp(W ;Z), Hq(Sn−

W ;Z), Hp(Ω;Z), and Hq(Sn −Ω;Z), all modulo torsion, so that

(4.8) L′(αpi ⊗ βqj ) = L′′(γpi ⊗ δqj ) = δij,

where δij is here the delta function (i.e. 1 if i = j and 0 otherwise). These
collections then also form bases for the rational homology groups that result by
tensoring with Q, and the relations (4.8) hold under the induced perfect rational
pairing.

Let {ξpi } be a basis for H̃p(Σ). Then, letting {ᾱpi } and {ξ̄p−1
i } represent

the bases {αpi } and {ξp−1
i } under their isomorphic images as direct summands

in Hp(W,Σ) (see the proof of Proposition 4.5), {ᾱpi } and {ξ̄p−1
i } taken together

form a basis for Hp(W,Σ). Similarly, we define {γ̂pi } together with {ξ̂p−1
i } form-

ing a basis for Hp(Ω,Σ).
Let

j+∗(δ
q
j ) =

∑
i
λqijβ

q
i ,

j−∗(δ
q
j ) =

∑
i
σqijβ

q
i ,

j+∗(ᾱ
q
j ) =

∑
i
µqijγ̂

q
i +

∑
i
eqijξ̂

q−1
i ,
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j−∗(ᾱ
q
j ) =

∑
i
τqijγ̂

q
i +

∑
i
f qijξ̂

q−1
i ,

j+∗(ξ̄
q−1
j ) =

∑
i
φqijγ̂

q
i +

∑
i
gqijξ̂

q−1
i ,

j−∗(ξ̄
q−1
j ) =

∑
i
ψqijγ̂

q
i +

∑
i
hqijξ̂

q−1
i ,

where the first two equations are maps Hq(Sn −Ω) → Hq(Sn −W) and the rest
are maps Hq(W,Σ) → Hq(Ω,Σ). Note that the λ, σ , µ, and τ will all be integers
(by the chain map interpretation of j± and the fact that the α and δ were initially
chosen as generators of the torsion free parts of the appropriate integral homology
groups).

Lemma 4.6. In the equations above, all of the eij and fij are 0 and each gij =
hij = δij (i.e., 1 if i = j and 0 otherwise).

Proof. The proof comes from studying the action of j± on chain representa-
tives of the ᾱ and the ξ̄.

First, since the ᾱ come from Hq(W) under the standard map Hq(W) →
Hq(W,Σ) induced by projection of chain complexes, each ᾱ can be represented
by a chain a mod C∗(Σ) (where C∗(Σ) is the chain complex of Σ) and such that
a is a cycle in W . But since j± is induced by an isotopy which fixes Σ, the image
of each ᾱ should also have such a representation, i.e. j±a is a cycle in Ω. But
by a similar argument from the geometric underpinnings of the boundary map
∂∗ : Hq(Ω,Σ) → H̃q−1(Σ), each ξ̂ is represented by a chain x mod C∗(Σ) with
∂x a non-zero cycle representing a basis element of Hq−1(Σ). Since none of these
can occur in the image of a under j± (since ∂j±a = j±∂a = 0), each of the e and
f must be zero.

For the last pair of maps, we observe similarly that each ξ̄ is represented by
a chain y mod C∗(Σ) with ∂y a non-zero cycle representing a basis element of
Hq−1(Σ). We have ∂j±y = j±∂y = ∂y since j± fixes Σ. Since ξ̄ and ξ̂ are both
induced by the same basis for H̃q−1(Σ) and since the ξ̂ component of any element
of H∗(Ω,Σ) is determined by its image under the boundary map ∂∗, it is clear
that each ξ̄ maps to an element whose component in the summand H̃∗−1(Σ) of
H∗(Ω,Σ) is the corresponding ξ̂. ❐

Thus we have

j+∗(δ
q
j ) =

∑
i
λqijβ

q
i ,

j−∗(δ
q
j ) =

∑
i
σqijβ

q
i ,

j+∗(ᾱ
q
j ) =

∑
i
µqijγ̂

q
i ,
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j−∗(ᾱ
q
j ) =

∑
i
τqijγ̂

q
i ,

j+∗(ξ̄
q−1
j ) =

∑
i
φqijγ̂

q
i + ξ̂q−1

j ,

j−∗(ξ̄
q−1
j ) =

∑
i
ψqijγ̂

q
i + ξ̂q−1

j .

Using (4.7) we have therefore that the matrices d1
q can be written as

d1
q(t) = (tσqij − λqij),

while d2
q has the form (

Pq 0
Qq Rq

)
,

where Pq is the matrix given by

Pq = (tτqij − µqij)

and Rq is the block sum of B̃q−1 copies of t − 1 along the diagonal, where B̃q−1 is
the reduced (q − 1)-Betti number of Σ.

Since the Alexander polynomials in which we are interested are the determi-
nants of these presentation matrices, theφij andψij ofQ are at present irrelevant
(since by elementary linear algebra, det(d2

q) = det(Pq) det(Rq) =
det(Pq)(t − 1)B̃q−1 ). To determine the relationships amongst the λ, µ, σ , and τ,
we identify the chains representing the ᾱ with those representing α as above, and
similarly for the γ̂ and the γ. Then we can apply the linking pairings to get:

L′(αpk ⊗ j+∗(δqj )) =
∑
i
λqijL

′(αpk ⊗ βqi ) = λqkj ,

L′(αpk ⊗ j−∗(δqj )) =
∑
i
σqijL

′(αpk ⊗ βqi ) = σqkj ,

L′′(j+∗(α
q
j )⊗ δpk) =

∑
i
µqijL

′′(γqj ⊗ δpk) = µqkj ,

L′′(j−∗(α
q
j )⊗ δpk) =

∑
i
τqijL

′′(γqj ⊗ δpk) = τqkj .

We can now use (4.3) and (4.4) to obtain σqjk = µpkj and λqjk = τpkj . This implies
that Pq(t) = −tdp1 (t−1)′, where ′ indicates transpose.

It remains only to prove that the diq, 0 < q < n − 1, are non-singular and
det(d1

q(1)) = ±1. As noted above, the first will show that the diq are presentation
matrices. The theorem will then follow by taking determinants.
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Lemma 4.7. The diq, 0 < q < n − 1, are non-singular, and, in particular,
det(d1

q(1)) = ±1.

Certainly if d1
q is nonsingular, then d2

p is nonsingular, since, up to sign, the
determinant of d2

p will be (t−1)B̃p−1 times some power of t times the determinant
of d1

q(t−1), and the last will be nonsingular if d1
q(t) is. Therefore, it remains to

show that the d1
q, 0 < q < n − 1, are non-singular. We will show that d1

q(1) has
determinant ±1 which will establish the claim.

d1
q(1) = (σqij − λqij)

= (L′(αpi ⊗ j−∗(δqj ))− L′(αpi ⊗ j+∗(δqj )),

but by the properties of the linking pairings above, this is the matrix of the perfect
intersection pairing between Hp(W ;Q) and Hq(Sn −Ω;Q), which is equivalent
to the perfect intersection pairing between Hp(V, ∂V ;Q) and Hq(V ;Q). In fact,
since we have chosen generators corresponding to the generators of the integral
homology groups modulo torsion and since

Hp(W ;Z) � Hp(W, ∂W ;Z) ,
Hq(Sn −Ω;Z) � Hq(V ;Z)

(the latter by homotopy equivalence and the former as in the proof of Proposition
4.4), this is the matrix of the integral perfect intersection pairing between the tor-
sion free parts Hp(V, ∂V ;Z) and Hq(V ;Z). Therefore, this matrix is unimodular
over Z and has determinant ±1. ❐

4.2.3. Polynomials of the boundary “knot”. We now wish to study the prop-
erties of the polynomials associated to the homology of the infinite cyclic cover
of

X = ∂N(Σ)− K ,
or, in other words, the complement of K ∩ S in S. Note that (S,K ∩ S) is a
locally-flat manifold pair. If Σ were a point singularity, this would be the boundary
sphere knot of a slicing locally-flat disk knot (see Section 3). Note, however,
that for the case of multiple point singularities, we here diverge slightly from our
previous treatment. Instead of linking the point singularities with an arc and
considering the regular neighborhood of that arc, we instead consider the regular
neighborhood of the collection of points. This will consist of a collection of balls,
and, in this case, (S,K ∩ S) will be a collection of locally-flat sphere knots in
disjoint spheres.
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In order to study these “boundary knots” or “link knots”, we begin by ex-
amining the kernels of the boundary maps of the vertical exact sequences in the
following commutative diagram in which 0 < k < n− 1:

0- Hk(V ;Q)⊗Q Γ
a

? d1
- Hk(Y ;Q)⊗Q Γ

b

? e1
- Hk(C̃;Q)

c

?
0 -

0- Hk(V, F ;Q)⊗Q Γ
r

? d2
- Hk(Y ,Z;Q)⊗Q Γ

s

? e2
- Hk(C̃, X̃;Q)

u

?
0 -

f 3
- Hk(F ;Q)⊗Q Γ

∂∗

? d3
- Hk(Z;Q)⊗Q Γ

∂′∗

? e3
- Hk(X̃;Q)

∂′′∗

?
f 3

-

.

a

?

b

?

c

?

(4.9)

The top two rows are the exact rows of the Mayer-Vietoris sequences constructed
in Section 4.2.2. The bottom row is the Mayer-Vietoris sequence of the restriction
to S of the construction which gives us the top row. The columns are the usual
long exact sequences of the pairs in which the left two have been tensored with Γ
overQ. This preserves exactness since the initial sequence consists of free modules,
in fact vector spaces. Commutativity of the diagrams is obvious at the chain level.
The 0 maps are a consequence of the non-singularity of d1 and d2 (see Section
4.2.2).

Using the exactness, this diagram induces the following commutative dia-
gram:

(4.10)

0 - cok a - cok b - cok c - 0

0 - ker ∂∗

�
?

- ker ∂′∗

�
?

- ker ∂′′∗

�
?

- 0.
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That the left vertical map is an isomorphism follows readily from the isomor-
phisms of ker ∂∗ to im r from exactness, the canonical isomorphism of coim r to
im r induced by r , and the isomorphism coim r to cok a induced by ker r = im a
from the exactness. The other vertical isomorphisms follow similarly, and so the
sequences are isomorphic. Furthermore, the long exact sequences of the rational
homology of the pairs (V , F) and (Y , Z), as exact sequences of vector spaces, must
split at each term; in other words, each is isomorphic to an exact sequence of vec-
tor spaces of the form → A⊕ B → B ⊕C → C ⊕D →. This splitting and exactness
is preserved under the tensor product with Γ over Q so that each of the left two
kernels and cokernels in diagram (4.9) is isomorphic to a direct rational vector
space summand of the appropriate homology module tensored with Γ . Thus each
of the left four terms is a free Γ -module, and once we show that the rows are exact
and the rightmost maps are surjective, the leftmost non-trivial maps will give us a
presentation matrix for ker ∂′′∗ � cok a. For notational convenience, we relabel to
get the sequence

(4.11) E -----------------------------------------------------------------------------------------------------------------------------------------------------------→ G -----------------------------------------------------------------------------------------------------------------------------------------------------------→ H

but leave ourselves free to think of these modules as kernels, images, cokernels, or
coimages as the proper contexts allow.

Lemma 4.8. The following sequence is exact:

(4.12) E d
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ G e

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ H -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0.

Proof. Thinking of E, G, and H as the appropriate kernels, im(d) ⊂ ker(e)
because d and e are induced by d2 and e2 and e2d2 = 0 by the exactness of the
rows of (4.9).

We next show that ker(e) ⊂ im(d). Again we think of E, G, and H as the
appropriate kernels. We will examine the following piece of (4.9):

(4.13)

Hk(V, F ;Q)⊗Q Γ d2

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk(Y ,Z;Q)⊗Q Γ e2

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk(C̃, X̃;Q)

∂∗
y ∂′∗

y ∂′′∗
y

Hk−1(F ;Q)⊗Q Γ d3

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk−1(Z;Q)⊗Q Γ e3

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk−1(X̃;Q).

Using the definitions of E, G, and H and the splittings of the left two vertical
columns of (4.9), we can write this isomorphically as

(4.14)

E⊕
A

d2

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ G⊕
B

e2

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ C

∂∗
y ∂′∗

y ∂′′∗
y

A⊕
P

d3

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ B⊕
Q

e3

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ R,
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where the label changes are the obvious ones, and, of course, H ⊂ C. Note that
A and B are the kernels of the maps a and b at the bottom of (4.9). Thus since
they are all kernels of the appropriate vertical maps, d2(E) ⊂ G and d3(A) ⊂ B.
Therefore d2 and d3 each have the block forms

(
X 0
Y Z

)
in the appropriate bases.

By the commutativity, the lower right submatrix of d2 is the upper left submatrix
of d3, at least up to equivalence under change of bases; the upper left submatrix of
d2 is the matrix d of (4.12) in the statement of the lemma. Observe that d must
be represented by a square matrix: if it had more rows than columns, d2 would
have determinant 0 which is impossible since d2 is nonsingular; if it had more
columns than rows, then, using the fact that d is also the lower right submatrix of
a similar block decomposition of d1 (by simply moving the whole argument up
one level of the grid (4.9)), d1 would have determinant 0 which is also impossible.
But d2 is square and so its lower right submatrix, say δ (so that d2 =

(
d 0
Y δ

)
), is

also square. In addition, d and δ must each be nonsingular since d2 is.
Now, let x ∈ G be also in ker(e). Since e : G → H is a restriction of e2,

e2(x) = 0. Therefore, by the exactness of the Mayer-Vietoris sequence, x ∈
im(d2) and so x = d2(ε + α), where ε ∈ E and α ∈ A. We need to show that
α = 0 so that x ∈ im(d) = im(d2|E). Since x ∈ ker(∂′∗) and ε ∈ ker(∂∗),

0 = ∂′∗x = ∂′∗d2(ε+α) = d3∂∗(ε+α) = d3∂∗α.

But ∂∗α ∈ ker(a) = A so that d3∂∗α = δ∂∗α. Since δ is nonsingular, hence
injective, ∂∗α must be 0, but this is only possible if α = 0 since α ∈ A and A is
mapped injectively under ∂∗. This completes the proof that ker(e) ⊂ im(d).

Lastly, we show that e is surjective, this time treating E, G, and H as the
appropriate cokernels. We can make use of the following fact of homological
algebra [14, p.3]: In any exact category, given the commutative diagram with
exact rows

(4.15)

W -----------------------------------------------------------------------------------------------------------------------------------------------------------→ X -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Y -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Z

w
y x

y y
y z

y
W ′ -----------------------------------------------------------------------------------------------------------------------------------------------------------→ X′ -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Y ′ -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Z′

and such that z : Z → Z′ is injective, the induced sequence

cok w -----------------------------------------------------------------------------------------------------------------------------------------------------------→ cok x -----------------------------------------------------------------------------------------------------------------------------------------------------------→ cok y

is exact.
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From (4.9), we have a commutative diagram with exact rows

(4.16)

Hk+1(Z;Q)⊗Q Γ e3

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk+1(X̃;Q)
f 3

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk(F ;Q)⊗Q Γ
b
y c

y y
Hk(Y ;Q)⊗Q Γ e2

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk(C̃;Q) 0
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk−1(V ;Q)⊗Q Γ .

We can truncate this to get a diagram

(4.17)

Hk+1(Z;Q)⊗Q Γ e3

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk+1(X̃;Q)
f 3

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ im f 3 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0

b
y c

y f
y y

Hk(Y ;Q)⊗Q Γ -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk(C̃;Q) 0
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0,

which is still commutative (an easy verification) with exact rows. The map in the
last column is an isomorphism, so the fact quoted above gives an exact sequence

cok b e
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ cok c -----------------------------------------------------------------------------------------------------------------------------------------------------------→ cok f .

In this case, cok(f ) is clearly 0 and so e is surjective. ❐

Thus d gives a presentation matrix for H which we will now study. From
here on, the Q in the homology notation will once again be implied but not
written. We will also use Ek, Gk, Hk, and dk when we mean to think of the
groups as the appropriate kernels in the appropriate dimensions and Ek, Gk, Hk,
and dk when we think of them as the appropriate cokernels. For Ek and Gk, we
also sometimes make the identification of the cokernels with appropriate direct
summands of Hk(V)⊗ Γ and Hk(Y)⊗ Γ which maps onto the cokernels under the
projection to them (since Ek and Gk are submodules, they can be automatically
identified as summands). Note that dk is the restriction of d2 to Ek, while dk can
be thought of as d1 acting on the summand Ek followed by the projection to the
summand Gk.

From the splitting of the leftmost column of (4.9) before tensoring with Γ ,
there exist vectors space summands Ẽk and Ẽk in Hk(V, F) and Hk(V), respec-
tively, such that Ek = Ẽk ⊗ Γ and Ek = Ẽk ⊗ Γ . Furthermore, r can be written
as r̃ ⊗ id, where r̃ : Hk(V) → Hk(V, F) is the map of the long exact sequence
induced by inclusion (and induces an isomorphism of the summands Ẽk � Ẽk ).
We can make similar conclusions about G in the second column of (4.9) and carry
over all of the tilde notations.

For what follows, it is once again simpler to make the identifications of Section
4.2.2:: Hk(V ;Q) � Hk(Sn−Ω;Q), Hk(Y ;Q) � Hk(Sn−W ;Q), Hk(V, F ;Q) �
Hk(W,Σ;Q), and Hk(Y ,Z;Q) � Hk(Ω,Σ;Q), but for convenience we maintain
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all of the other labels, both of submodules and maps, making the suitable iden-
tifications. We continue to use {αki }, {βki }, {γki }, and {δki } as bases for Hk(W),
Hk(Sn −W), Hk(Ω), and Hk(Sn −Ω), respectively, appropriately dually paired,
and {ξki } as a basis for H̃k(Σ). Recall that Hk(W,Σ) � Hk(W) ⊕ H̃k−1(Σ) and
Hk(Ω,Σ) � Hk(Ω)⊕ H̃k−1(Σ), 0 < k < n−1, from the proof of Proposition 4.5.
We observe that Ẽk ⊂ Hk(W) ⊂ Hk(W,Σ) and G̃k ⊂ Hk(Ω) ⊂ Hk(Ω,Σ). In fact,
since we have the diagram

(4.18)

Hk(Sn −Ω) �
-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk(V)y r̃

y
Hk(W,Σ) �

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hk(V, F),

where the top isomorphism is induced by homotopy equivalence and r is induced
by the chain projection, and since Ẽk � im(r), then any element ε ∈ Ẽk can be
represented by the image of a cycle (mod C(F)) in V which is thus a cycle in W .
Therefore, the image of ε under ∂∗ : Hk(W,Σ)→ Hk−1(Σ) is 0, which implies that
ε lies in the the Hk(W) summand. The argument for G̃k ⊂ Hk(Ω) ⊂ H∗(Ω,Σ) is
the same. Thus Ẽk and G̃k are contained in the summands spanned by the {αki }
and {γki }, respectively. We can now prove the following lemma:

Lemma 4.9. Ẽp ⊂ Hp(W,Σ) and G̃q ⊂ Hq(Sn,W) are perfectly dually paired
under L′, p+q = n−1; Ẽp ⊂ Hp(Sn−Ω) and G̃q ⊂ Hq(Ω,Σ) are perfectly dually
paired under L′′, p + q = n− 1.

Proof. We begin with the latter:
By the preceding discussion and without loss of generality, let us assume that

the {γqi } are chosen so that the firstm form a basis {g̃qi }mi=1 for G̃. We claim that
the sub-basis {δpi }mi=1 in Hp(Sn − Ω), which is dual to the {g̃qi }mi=1 = {γqi }mi=1
under L′′, can be taken as the basis for Ẽp under the projection from Hp(Sn−Ω).

To see this, we first observe that, up to sign,

L′′([v], s̃([y])) = L′(r̃ ([v]), [y])

for [v] ∈ Hp(Sn − Ω) and [y] ∈ Hq(Sn − V ;Q). This follows by consid-
ering the definition of the linking pairings. If v and y are chains representing
[v] and [y], then they also represent r̃ [v] and s̃[y] (as relative chains). Then
L′′([v], s̃([y])) is the intersection number of y with a chain in Sn whose bound-
ary is v, while L′(r̃ ([v]), [y]) is the intersection number of v with a chain in Sn
whose boundary is y . By the properties of intersection numbers, these agree.

Now suppose that v is an element ofHp(Sn−Ω) which lies in ker(r̃ ) and that
{g̃i}mi=1 are basis elements of G̃q which map onto the g̃i. Then 0 = L′(r̃ (v), g̃i) =
L′′(v, g̃i). Therefore, the intersection of ker(r̃ ) and the dual space to G̃q is 0.
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Thus, the dual subspace to G̃q, spanned by {δpi }mi=1, can be chosen as a sub-basis
for Ẽp under projection. In other words, {δpi + ker(r̃ )}mi=1 is a basis for a linear
subspace of Ẽp and L′′(δpi + ker(r̃ ), γj) = δij . We will be done once we show
that dim(Ẽp) = m. Since the above gives dim(Ẽp) ≥ m, we need only show
dim(Ẽp) ≤m

Observe that the same arguments, suitably but easily modified, apply to a basis
{α̃pi }µi=1 for Ẽp (where we have taken a subbasis of the {αpi } which span Hp(W))
to show that the duals {βqi }µi=1 span a subspace of G̃q under the projection, and
µ ≤ dim G̃q. But then we have

dim Ẽp = dim Ẽp = µ ≤ dim G̃q = dim G̃q =m,
which is what we needed to show.

This establishes the duality of Ẽp and G̃q. The other statement follows simi-
larly. ❐

Using this lemma and once again the fact that

L′′([v], s̃([y])) = L′(r̃ ([v]), [y])

for [v] ∈ Hp(Sn − Ω) and [y] ∈ Hq(Sn − V ;Q), we can choose bases {α̃ki },
{β̃ki }, {γ̃ki }, and {δ̃ki } of Ẽk, G̃k, G̃k, and Ẽk such that:

1. L′(α̃pi ⊗β̃qj ) = L′′(γ̃pi ⊗δ̃qj ) = δij , the Kronecker delta function, p+q = n−1;
2. r̃ (δ̃ki ) = α̃ki and s̃(β̃ki ) = γ̃ki .

In fact, we can, for example, start with a basis {γqi } for G̃q, dualize it to a basis for
Ẽp, push these to a basis for Ẽp under r , and then dualize again to get a basis for
G̃q. That s applied to these last basis elements returns us to our initial basis is easy
to check using the duality and that L′′([v], s̃([y])) = L′(r̃ ([v]), [y]).

With this choice of bases, the diagram

Ẽk ⊗ Γ = Ek
dk-----------------------------------------------------------------------------------------------------------------------------------------------------------→ G̃k ⊗ Γ = Gk

r̃⊗id=r
y� s̃⊗id=s

y�
Ẽk ⊗ Γ = Ek dk-----------------------------------------------------------------------------------------------------------------------------------------------------------→ G̃k ⊗ Γ = Gk

makes it clear that as matrices dk = dk.
We can now establish duality for the polynomials of the modules Hk.

Proposition 4.10. dp(t) = −tdq(t−1)′, p + q = n − 1, where ′ indicates
transpose.

Proof. By the immediately preceding comment, it suffices to show that dp(t) =
−tdq(t−1)′, where the bases of the modules have been chosen as in the preceding
discussion.
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The proof is essentially the same as that of Theorem 4.3:

dq(α̃⊗ 1) = j̃−∗(α̃)⊗ t − j̃+∗(α̃)⊗ 1

= t(j̃−∗(α̃)⊗ 1)− j̃+∗(α̃)⊗ 1,

where α̃ ∈ Ẽq and j̃± indicates the restriction of j± to Ẽq; and, similarly,

dq(δ̃)⊗ 1) = j̃−∗(δ̃⊗ t − j̃+∗(δ̃)⊗ 1

= t(j̃−∗(δ̃)⊗ 1)− j̃+∗(δ̃)⊗ 1,

where δ̃ ∈ Ẽq and j̃± indicates j± restricted to the summand Ẽq followed by
projection to G̃q of Hq(Sn −W).

Let

j̃+∗(α̃
q
j ) =

∑
i
µqijγ̃

q
i ,

j̃−∗(α̃
q
j ) =

∑
i
τqijγ̃

q
i ,

j̃+∗(δ̃
q
j ) =

∑
i
λqijβ̃

q
i ,

j̃−∗(δ̃
q
j ) =

∑
i
σqijβ̃

q
i .

Then dq and dq have the forms

dq(t) = (tτqij − µqij) ,
dq(t) = (tσqij − λqij) .

To determine the relationships amongst the λ, µ, σ , and τ, we use the linking
pairings to get:

L′(α̃pk ⊗ j̃+∗(δ̃
q
j )) =

∑
i
λqijL

′(α̃pk ⊗ β̃qi ) = λqkj ,

L′(α̃pk ⊗ j̃−∗(δ
q
j )) =

∑
i
σqijL

′(α̃pk ⊗ β̃qi ) = σqkj ,

L′′(j̃+∗(α̃
q
j )⊗ δ̃pk ) =

∑
i
µqijL

′′(γqj ⊗ δ̃pk ) = µqkj ,

L′′(j̃−∗(α̃
q
j )⊗ δ̃pk ) =

∑
i
τqijL

′′(γ̃qj ⊗ δ̃pk ) = τqkj.
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Once we establish that our previous equations

L′(α⊗ j−∗(δ)) = L′′(j+∗(α)⊗ δ) ,(4.19)

L′(α⊗ j+∗(δ)) = L′′(j−∗(α)⊗ δ) ,(4.20)

for α ∈ Hp(W ;Q) and δ ∈ Hq(Sn −Ω;Q), are still applicable for the restricted
pairings with α ∈ Ẽp and δ ∈ Ẽq, we can employ them to obtain σqjk = µpkj and
λqjk = τpkj . This will imply that dp(t) = −t dq(t−1)′, and the proposition will be
proved.

We begin once again with the observation that j±∗ takes elements of Ẽk to
elements of G̃k so that for α ∈ Ẽp and δ ∈ Ẽq,

L′′(j±∗(α)⊗ δ) = L′′(j̃±∗(α)⊗ δ)

simply as a matter of making the obvious restrictions. On the other hand j±∗(δ)
might have components in both G̃q and its complementary summand. Since j̃±∗
is j±∗ followed by projection to G̃q, we can write j±∗(δ) = j̃±∗(δ)+ x, where x
lies in the ker(s). But Ep and ker(s) are orthogonal as in the proof of Lemma 4.9,
so we have, for α and δ as above,

L′(α⊗j−∗(δ)) = L′(α⊗j̃±∗(δ)+x) = L′(α⊗j̃±∗(δ))+L′(α⊗x) = L′(α⊗j̃±∗(δ)).

Putting these together with (4.19) and (4.20) gives the desired

L′(α⊗ j̃−∗(δ)) = L′′(j̃+∗(α)⊗ δ) ,
L′(α⊗ j̃+∗(δ)) = L′′(j̃−∗(α)⊗ δ)

for α ∈ Ẽp and δ ∈ Ẽq. ❐

Corollary 4.11. det(dp(t)) ∼ det(dq(t−1)), p + q = n − 1, where ∼ indi-
cated the similarity relationship for polynomials in Γ .

Proof. This follows immediately from Proposition 4.10 by taking determi-
nants. ❐

Theorem 4.12. Recall that S = ∂N(Σ), X = S − (K ∩ S), and X̃ is the infinite
cyclic covering of X. Let νi(t), 0 < i < n − 2, be the Alexander polynomials of
K ∩ S in S. In other words, νi(t) is the determinant of the presentation matrix of theΓ -module Hi(X̃;Q). Then νi(t) = ri(t)(t − 1)B̃i , where B̃i is the ith reduced Betti
number of Σ; rP(t) ∼ rQ(t−1), P +Q = n− 2; and, if νi(t) is taken primitive inΛ, then ri(1) = ±1.
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Proof. We will make us of the long exact sequence

(4.21) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hi(X̃)
ui-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hi(C̃)

vi-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hi(C̃, X̃)
∂i∗-----------------------------------------------------------------------------------------------------------------------------------------------------------→ ,

in which we continue to suppress the Q’s which indicate rational homology. Ob-
serve that the Γ -module structure is preserved trivially at the chain level, by in-
terpreting t as the covering transformation, so that this is an exact sequence ofΓ−modules. Since the Hi(C̃) and Hi(C̃, X̃) are Γ−torsion modules for i ≤ n − 2
by Theorem 4.3, the Hi(X̃) must also be Γ−torsion modules for i < n−2. Thus,
recalling that any module over a principal ideal domain can be given a square pre-
sentation matrix, νi(t) will be well defined as the determinant of that of Hi(X̃).
(Equivalently, we can think of νi(t) as

∏
νij (t) where Hi(X̃) =

⊕
j Γ/(νij (t)).)

Recall that, by Corollary 2.5, we know that whenever we have an exact se-
quence of torsion Γ -modules, say

M1
f1-----------------------------------------------------------------------------------------------------------------------------------------------------------→ M2

f2-----------------------------------------------------------------------------------------------------------------------------------------------------------→ M3
f3-----------------------------------------------------------------------------------------------------------------------------------------------------------→ M4,

then the determinant of the presentation matrix of M2 is the product of the deter-
minants of the presentation matrices of ker(f2) and ker(f3) = im(f2).

Let ck be the determinant of the matrix dk above. With λk(t), µk(t), and
νk(t) all as above, we have then that ck|µk and ck|λk, each because dk is the
presentation matrix of Hk, the kernel of ∂k∗. Further, we must then have that
µk(t)/ck(t) is the determinant of the kernel of uk−1 and λk(t)/ck(t) is the de-
terminant of the kernel of vk. Thus

νk(t) ∼ λk(t)ck(t)
µk+1(t)
ck+1(t)

.

Recall that µq(t) ∼ λp(t−1)(t − 1)B̃q−1 , p + q = n − 1, and we have just
proven in Corollary 4.11 that cq(t) ∼ cp(t−1). Thus

µq(t)
cq(t)

∼ λp(t
−1)(t − 1)B̃q−1

cp(t−1)
.

Further, since (t − 1)B̃k−1|µk(t) but (t − 1) ö λk(t) (because λ(1) = ±1), it
follows from the above formula for the decomposition of the determinants that
(t − 1)B̃k−1|νk−1(t). Therefore, if we take p + q = n− 1, P = p, Q = q − 1, and
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rk(t) = νk(t)/(t − 1)B̃k , then

rP(t−1) ∼ νP(t−1)
(t−1 − 1)B̃P

∼ 1
(t−1 − 1)B̃p

· λp(t
−1)

cp(t−1)
· µp+1(t−1)
cp+1(t−1)

∼ 1
(t−1 − 1)B̃p

· µq(t)
cq(t)(t − 1)B̃q−1

· λq−1(t)(t−1 − 1)B̃p

cq−1(t)

∼ 1
(t − 1)B̃q−1

· µq(t)
cq(t)

· λq−1(t)
cq−1(t)

∼ νQ(t)
(t − 1)B̃Q

∼ rQ(t).

Lastly, we know, again from Corollary 4.11, that we can take each ck, λk/ck,
and µk/ck to be primitive in Λ, which will make λk, µk, and νk primitive inΛ. Since, in that case, λk(1) = ±1, we must have each of its factors ck(1) and
ck(1)/ck(1) equal to ±1. Also, since

µk(t)
(t − 1)B̃k−1

= λn−k−1(t) and ck(t)

are equal to ±1 at 1, so must be

µk(t)
(t − 1)B̃k−1(t)∆k(t) .

But then

rk(t) = νk(t)
(t − 1)B̃k

= 1
(t − 1)B̃k

λk(t)∆k(t) µk+1(t)∆k+1(t)

must also be primitive in Λ and evaluate to ±1 at 1. ❐

Remark 4.13. Note that when n = 2q + 2, our duality results and the proof
of the theorem imply that rq(t) is similar to a polynomial of the form p(t)p(t−1),
p ∈ Λ.

Remark 4.14. In the case where the singularity Σ is a point, the results of this
section reduce to well-known facts about locally-flat sphere slice knots (see [19],
[26], [20]).

4.2.4. The subpolynomials. The same algebraic considerations, which we ap-
plied in Sections 3.5.3 and 3.7 to split the three sets of Alexander polynomials of a
disk knot into three sets of subpolynomials and to show that these subpolynomials
satisfy their own duality relationships, readily generalize to the case of a knot with
more general singularities. Note that all of the (t − 1) factors are shared between
the relative and boundary polynomials.
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Furthermore, if ck(t) is the polynomial factor shared by Hk(C̃) andHk(C̃, X̃)
(i.e. the polynomial of ker

[
∂′′∗ : Hk(C̃, X̃;Q)→ Hk−1(X̃;Q)

]
), then, for a knot

S2q−1 ⊂ S2q+1, we can generalize the necessary conditions we obtained for the
middle dimension polynomial, cq(t), of a disk knot in Section 3.6. In fact, if
we replace integral homology and integral pairings with rational homology and
rational pairings, the computations of the presentation and pairing matrices goes
through unchanged. It is only necessary to note that, in this context, the pairings
L′ and L′′ again induce perfect pairings between certain kernels and coimages (or
cokernels) of diagram (4.9), but this is shown in Section 4.2.3. Therefore, we
have the following proposition:

Proposition 4.15. Hq = ker(∂′′∗ : Hq(C̃, X̃;Q) → Hq−1(X̃;Q)) has a presen-
tation matrix of the form τt − (−1)q+1R′τ′R−1, where R is the matrix of the map
Ẽ → Ẽ induced by r̃ : Hq(V) → Hq(V, F). Hq = Hq(C̃;Q)/ker(Hq(C̃;Q) →
Hq(C̃, X̃;Q)) has presentation matrix (−1)q+1(R−1)′τRt − τ′. Furthermore, there
is (−1)q+1-Hermitian pairing 〈 , 〉 : Hq ×Hq → Q(Γ)/Γ with matrix representative

t − 1
(R−1)′τ − (−1)q+1τ′tR−1

with respect to the appropriate basis.

All of these necessary conditions on the polynomials can now be summarized
in the following theorem. The duality conditions on the Alexander subpolyno-
mials follows from that on the Alexander polynomials as in the proof of Lemma
3.17. The only change, in fact, is the need to keep special track of the (t − 1)
factors, but, as already noted, we know that these must all divide the ai.

Theorem 4.16. Let νj(t), λi(t), and µi(t), 0 < j < n−2 and 0 < i < n−1,
denote the Alexander polynomials corresponding to Hj(X̃), Hi(C̃), and Hi(C̃, X̃),
respectively, of a knotted Sn−2 ⊂ Sn. We can assume these polynomials to be primitive
in Λ. Then there exist polynomials ai(t), bi(t), and ci(t), primitive in Λ, such that
1. νj(t) ∼ aj(t)bj(t),
2. λi(t) ∼ bi(t)ci(t),
3. µi(t) ∼ ci(t)ai−1(t),
4. ai(t) ∼ bn−2−i(t−1)(t − 1)B̃i ,
5. ci(t) ∼ cn−1−i(t−1),
6. bi(1) = ±1,
7. ci(1) = ±1,
8. if n = 2q+1, then cq(t) is the determinant of a matrix of the form (R−1)′τRt−
(−1)q+1τ′, where τ and R are matrices such that R has non-zero determinant.
Furthermore, if n = 2q + 1, there is a (−1)q+1-Hermitian pairing 〈 , 〉 : Hq ×

Hq → Q(Γ)/Γ with matrix representative

t − 1
(R−1)′τ − (−1)q+1τ′tR−1
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with respect to an appropriate basis, where Hq = cok(c) in diagram (4.9) above.

Remark 4.17. Note thatH0(C̃;Q) � Q � Γ/(t−1), since C̃ is connected and
the action of t on H0(C̃;Q) is trivial. Similarly, H0(X̃;Q) �⊕Q �⊕Γ/(t−1),
where the number of summands is equal to the number of components of Σ. And
of course, H0(C̃, X̃) = 0. Therefore, by the long exact polynomial sequence of the
knot, it is consistent in the above theorem to take a0(t) ∼ (t − 1)B̃0 .

4.2.5. High dimensions. For completeness, we observe the following concern-
ing the triviality of the knot homology modules in the dimensions above those
which we have treated in detail. We maintain the notation above.
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Proposition 4.18.

1. Hi(X̃;Q) � 0 for i ≥ n− 2.
2. Hi(C̃;Q) � 0 for i ≥ n− 1.
3. Hi(C̃, X̃;Q) � 0 for i ≥ n− 1.

Proof. The assertion for Hi(C̃, X̃;Q) will follow from the other two and the
long exact sequence of the pair.

The proposition is trivial for i ≥ n− 1 in the case of X̃ and for i ≥ n in the
case of C̃ because X̃ and C̃ are noncompact manifolds of respective dimensions
n− 1 and n.

To show that Hn−1(C̃;Q) � 0, we can employ Assertion 9 of Milnor [25],
which states that for M a compact triangulated n−manifold, M̃ the infinite cyclic
cover, there is a perfect orthogonal pairing toQ ofHi−1(M̃ ;Q) � Hi−1(M̃ ;Q) and
Hn−i(M̃, ∂M̃ ;Q) � Hn−i(M̃, ∂M̃;Q), provided that H∗(M̃ ;Q) is finitely gener-
ated over Q. We can take i = 1 and M = C (replacing C by the homotopy
equivalent knot exterior to get compactness). Then H0(C̃, ∂C̃;Q) � 0, which
implies Hn−1(C̃;Q) � 0, provided H∗(M̃ ;Q) is finitely generated over Q. But
Assertion 5 of the same paper states that this holds if M is a homology circle over
Q, which we know to be true by Alexander duality.

The same argument holds to show that Hn−2(X̃;Q) � 0 provided H∗(X̃;Q)
is finitely generated over Q. We know that Hi(X̃;Q) is 0 for i ≥ n− 1 and that it
is a torsion Γ -module for 0 < i < n−2, which implies that it is finite dimensional
over Q in this dimension range. H0(X̃;Q) is also finite dimensional, being equal
in dimension to the finite number of components of Σ. Therefore, it only remains
to show that Hn−2(X̃;Q) is finite dimensional over Q. For this, we will show
directly that Hn−1(C̃, X̃;Q) = 0. Then, because Hn−2(C̃;Q) is finite dimensional
(in fact a torsion Γ -module), the result for Hn−2(X̃;Q) will follow from the long
exact sequence of the pair.

To prove that Hn−1(C̃, X̃;Q) = 0, we once again employ the Mayer-Vietoris
sequence of the covering:

-→ Hn−1(V , F ;Q)⊗Q Γ -→ Hn−1(Y , Z;Q)⊗Q Γ -→ Hn−1(C̃; X̃;Q) 0
-→ .

The last map can be taken as the zero map because we know that

Hn−2(V , F ;Q) -→ Hn−2(Y , Z;Q)

is injective from the proof of Theorem 4.3. So the proof will be complete if we
show that Hn−1(Y , Z;Q) = 0. But we saw in Section 4.2 that Hn−1(Y , Z;Q) �
Hn−1(Ω,Σ;Q), and, since Σ is a complex of dimension at most n − 4, this is
isomorphic to Hn−1(Ω;Q). Hence it suffices to show that this group is 0.
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Consider the long exact sequence (with rational coefficients suppressed in the
notation)

Hn(Ω) -→ Hn(Sn) -→ Hn(Sn,Ω) -→ Hn−1(Ω) -→ Hn−1(Sn).

Hn−1(Sn) = 0 and Hn(Sn) � Q, trivially, and Hn(Ω) = 0 by Alexander duality.
Furthermore, by Lefschetz duality, Hn(Sn,Ω) � H0(Sn − Ω) � Q since Sn −Ω ∼h.e. V is connected. Therefore, the long exact sequence reduces to

0 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Q -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Q -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hn−1(Ω;Q) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0.

Since any injective map Q -→ Q must be an isomorphism, the result follows. ❐

4.3. Constructions. For the case of knots with general singularities, realiza-
tion of polynomials is more difficult than it was for the case of point singularities
because the allowable set of polynomials may depend subtly on the properties
of the singular set, its link pairs, and its embedding. However, in the following
sections, we will employ several constructions to create knots with singularities
and to compute their Alexander polynomials. These will provide at least partial
realization results.

In Section 4.3.1, we will use the frame spinning of Roseman [30] (generalized
to spin non-locally-flat knots) to construct knots with certain kinds of manifold
singularities. In Section 4.3.2, we further generalize this construction to create
frame twist-spinning. Together, these procedures include as special cases the super-
spinning of Cappell [4] and the twist spinning of Zeeman [40]. In Section 4.3.3,
we construct knots by suspension.

4.3.1. Frame spinning. To construct some examples of knots with a given
singular stratum, we will employ the technique of frame spinning, which was in-
troduced by Roseman in [30] and studied further by Suciu [36] and Klein and
Suciu [16]. It generalizes the earlier techniques of spinning and the superspinning
of Cappell [4]. We begin by describing this procedure.

Let K be a knot Sm−2 ⊂ Sm, and let Mk be a k-dimensional framed sub-
manifold of Sm+k−2 with framing φ. Suppose that Sm+k−2 is embedded in Sm+k
by the standard (unknotted) embedding. Roughly speaking, the frame spun knot
σφM(K) is formed by removing a standard disk pair (Dm,Dm−2) at each point of
M and replacing it with the disk knot obtained by removing a neighborhood of a
nonsingular point of the knot K.

More specifically, let (Dm− ,Dm−2− ) be an unknotted open disk pair which is
the open neighborhood pair of a point which does not lie in the singularity of the
embedding of the knot K ⊂ Sm. Let (Dm+ ,Dm−2+ ) = (Sm,K)−(Dm− ,Dm−2− ). This
is a disk knot, possibly non-locally-flat, with the unknotted locally-flat sphere pair
as boundary. Let Mk ×Dm−2 be the normal bundle of Mk ∈ Sm+k−2 determined
by the trivialization φ. Finally, writing Sm+k as Sm+k = Sm+k−2 ×D2 ∪Sm+k−2×S1
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Dm+k−1 × S1, we let Sm+k−2 × 0 in the first factor represent the unknot in which
M is embedded.

Now define σφM(K) to be the (m+ k− 2)-sphere

(Sm+k−2 −Mk × int Dm−2)∪Mk×Sm−3 Mk ×Dm−2+

embedded in the (m+ k)-sphere

(Sm+k −Mk × int (Dm−2 ×D2))∪Mk×Sm−1 Mk ×Dm+ .

This construction corresponds to removing, for each point of M, the trivial disk
pair (Dm,Dm−2), which is the fiber of the normal bundle of M, and replacing
it with the knotted disk pair (Dm+ ,Dm−2+ ). In the above references, K is always
assumed to be a locally-flat knot, but there is nothing to prevent us from applying
this construction to a non-locally-flat knot so long as we are careful to embed
(Dm− ,Dm−2− ) away from the singularity. Observe that, in the case where Mk is the
sphere Sk with the standard unknotted embedding and bundle framing, σφM(K)
is the superspin of K (see [4]).

Let n =m+ k. We obtain the following:

Proposition 4.19. Let Mk be a manifold which can be embedded in Sn−2 with
trivial normal bundle. Then there exists a knot Sn−2 ⊂ Sn withM as its only singular
stratum.

Proof. Let K be any knot Sm−2 ⊂ Sm whose singular set constists of a single
point. Let φ be a trivialization for the normal bundle of the embedding of M ∈
Sn−2. Then σφM(K) provides an example. ❐

To study the Alexander polynomials that occur from such constructions, we
first need a geometric formula for the exterior of a frame-spun knot. This is
provided, as follows, by Suciu in [36], although we adopt our own notations.
Throughout this section, let X(·) denote the exterior of a knot and X̃(·) the corre-
sponding infinite cyclic covering. X(K), the exterior of the knot K, is homeomor-
phic to the exterior of the induced disk knot (Dm+ ,Dm−2+ ). Its intersection with
the exterior of the induced boundary sphere pair isDm−2×S1 because the induced
boundary sphere pair of the disk knot is unknotted. Let Mk × int(Dm−1) repre-
sent the intersection of the tubular neighborhood of Mk in Sn with Dn−1 × 0 ∈
Dn−1 × S1, the exterior of the trivial knot Sn−2 ⊂ Sn. It can be seen that

X(σφM(K)) = (Dn−1 −Mk × int(Dm−1))× S1 ∪Mk×Dm−2×S1 Mk ×X(K).

In the following lemma, we use Cov[·] to denote the infinite cyclic covering
where the tilde notation would be unwieldly.
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Lemma 4.20.

X̃(σφM(K))

= Cov
[
(Dn−1−Mk×int (Dm−1))×S1

]
∪Cov[Mk×Dm−2×S1]Cov

[
Mk×X(K)

]
∼h.e.

(
Dn−1 −Mk × int (Dm−1)

)
×R∪Mk×Dm−2×R Mk × X̃(K) .

Proof. As observed in [16], if V is a Seifert surface for the knot K and we
define

σφM(V) = (Dn−1 −Mk × intDm−1)∪Mk×Dm−2 Mk × V,

then σφM(V) is a Seifert surface for σφM(K) (Note that if K is not locally-flat then
we mean the knot exteriors and Seifert surfaces in the sense of Section 4.2). Using
this Seifert surface we can form the infinite cyclic cover X̃(σφM(K)) by the usual
“cut and past” construction. From this, the first equation follows by considering
what the construction does on each piece. The second equation follows from the
observation that the covering space can be obtained by “unwrapping” S1 to R. ❐

Remark 4.21. The ability to create the Seifert surface in this manner relies
heavily on the following fact: While the particular framing of M may serve to
“spin” the knots K tangentially to Sn−2, the knots are never “twisted”. No ro-
tation takes place along the meridians circling Sn−2 in Sn. Thus, contrary to a
remark of Roseman [30], frame spinning can not yield instances of Zeeman’s twist
spinning [40]. In cases involving twisting, it is not always possible to get the Seifert
surfaces to “line up” so that they may be connected by a disk (although this can
happen in special cases, particularly with fibered knots where the Seifert surfaces
can be forced to align by “rotating them around the fibration”). However, see the
following section (Section 4.3.2), in which we introduce a method to obtain such
twisting.

We can now use a Mayer-Vietoris sequence to study the Alexander modules of
σφM(K). In particular, we have the rational exact sequence (in which we suppress
the Q’s from the notation)

→ H̃i(Mk×Dm−2×R)→ H̃i(Dn−1×R)⊕H̃i(Mk×X̃(K)) → H̃i(X̃(σφM(K)))→ ,

in which we have used the homotopy equivalence of Dn−1−Mk× int (Dm−1) and
Dn−1 to replace H̃i((Dn−1 −Mk × int (Dm−1)) ×R;Q) with H̃i(Dn−1 × R;Q).
This sequence simplifies in the obvious manner to

(4.22) -→ H̃i(Mk;Q) i∗-→ H̃i(Mk × X̃(K);Q) -→ H̃i(X̃(σφM(K));Q) -→ .

From this, we will prove:
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Proposition 4.22. Let Bi be the ith Betti number of Mk. Let λj(t) be the jth

Alexander polynomial of K and λσi (t) the ith Alexander polynomial of σφM(K). Then,
for 0 < i < n− 1,

λσi (t) =
m−2∏
`=1

[λ`(t)]Bi−` .

Proof. We first study Hi(Mk × X̃(K);Q), which, by the Künneth theorem,
is

Hi(Mk × X̃(K);Q) �
⊕
j+`=i

Hj(Mk;Q)⊗Q H`(X̃(K);Q).

Now let Bi be the ith Betti number of Mk, and, for a rational vector space A,
let Ai denote the direct sum of i copies of A. Since A⊗Q Qi = Ai,

(4.23) Hi(Mk × X̃(K);Q) �
⊕
j+`=i

[H`(X̃(K);Q)]Bj .

To establish the Γ -module structure, it is evident from the geometry that if

α⊗Q β ∈ Hj(Mk;Q)⊗Q H`(X̃(K)) ,

then t(α ⊗Q β) = α ⊗Q (tβ). Therefore, equation (4.23) is a Γ -module isomor-
phism.

For the knot K : Sm−2 ↩ Sm, recall that
1. H0(X̃(K);Q) = Q,
2. Hi(X̃(K);Q) = 0, i ≥m− 1,

by Proposition 4.18. Taking this into account,

Hi(Mk × X̃(K);Q) �
⊕

j+`=i,`<m−1

[H`(X̃(K);Q)]Bj .

We next study the map i∗ : Hi(Mk;Q) -→ Hi(Mk × X̃(K);Q) in the Mayer-
Vietoris sequence (4.22). From the geometric constructions above and considera-
tion of the chain maps used to define the Mayer-Vietoris sequence and Künneth
theorem, i∗ is the map which takes an element α ∈ Hi(Mk;Q) to α ⊗ {∗} in
the submodule Hi(Mk;Q) ⊗ H0(X̃(K);Q) of Hi(Mk × X̃(K);Q), where {∗} is
a point representing the generator of H0(X̃(K);Q). It follows that i∗ is injective,
and thus the Mayer-Vietoris sequence gives

Hi(X̃(σ
φ
M(K));Q) �

⊕
j+`=i,0<`<m−1

[H`(X̃(K);Q)]Bj .
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So, if λj(t) is the jth Alexander polynomial of K, then the ith Alexander
polynomial of σφM(K) is

λσi (t) =
m−2∏
`=1

[λ`(t)]Bi−`

since the polynomial associated to a direct sum of torsion Γ -modules is the product
of the polynomials associated to the summands. ❐

Now assume that the knot K has singular set, Σ. Then σφM(K) will have
singular set Σ ×M stratified by (Σ ×M)i = Σi−k ×M. We can use our previous
duality results (Theorem 4.3) to calculate the relative Alexander polynomials of
the pair given by the spun knot complement and the link pair complement ofΣ ×M. In particular, let Bi continue to denote the ith Betti number of M, let b̃i

denote the ith reduced Betti number of Σ, and let β̃i denote the ith reduced Betti
number of M × Σ. Then, for i > 0,

µσi (t) ∼ (t − 1)β̃i−1λσn−1−i(t
−1)

= (t − 1)β̃i−1

m−2∏
`=1

[λ`(t−1)]Bn−1−i−`

∼ (t − 1)β̃i−1

m−2∏
`=1

[
µm−1−`(t)
(t − 1)b̃m−2−`

]Bn−1−i−`
.

Rather than explore the relations among these Betti numbers directly, we can sim-
plify this formula by alternatively studying the relative Alexander polynomial di-
rectly using a Mayer-Vietoris sequence, as we did for the λσi (t). The one sig-
nificant difference is that the relative homology module for K in dimension 0
is H0(X̃(K),Cov(X ∩ N(Σ))) = 0 so that instead of all of the maps i∗ of the
Mayer-Vietoris sequence being injective, they are all 0 instead. Since H̃i(Mk;Q) �
(Γ/(t−1))B̃i−1 , because the Γ action of t on the coverMk×R induces the identity
map on the homology, we can conclude by polynomial algebra that

µσi (t) = (t − 1)B̃i−1

m−2∏
`=0

[µ`(t)]Bi−`

for i > 0. Note that µ0 = 1.
Letting νi(t) denote the ith Alexander polynomial of the link pair of Σ for

the knot K, the ith Alexander polynomial of the link pair of Σ ×M for the knot
σφM(K) is easily derived from the Künneth theorem to be

νσi (t) =
m−3∏
`=0

[ν`(t)]Bi−` .
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Note that ν0(t) = (t − 1)b̃0+1.
As we know, the Alexander polynomials of σφM(K) factor into Alexander sub-

polynomials aσi (t), b
σ
i (t), and cσi (t). It is an exercise with the long exact se-

quences to show that this factorization is preserved under the spinning, modulo
some minor extra complication in the t − 1 factors. In other words,

bσi (t) =
m−2∏
`=1

[b`(t)]Bi−`(4.24)

cσi (t) =
m−2∏
`=1

[c`(t)]Bi−`(4.25)

aσi (t) = (t − 1)β̃i
m−2∏
`=1

[
a`(t)
(t − 1)b̃`

]Bi−`
.(4.26)

For example, to perform the calculation for the ci, let L̃(K) represent the the
infinite cyclic covering of the intersection of the knot exterior X(K) with the
closed neighborhood of the singularity N̄(Σ) (i.e. the “link exterior”, the usual
subset for our relative homology modules) and similarly for σφM(K). The above
calculations show that the kernel module of the map of the long exact sequence

Hi(X̃(σ
φ
M(K));Q) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hi(X̃(σ

φ
M(K)), L̃(σ

φ
M(K));Q)

is isomorphic to the kernel of the map

⊕
j+`=i, 0<`<m−1

[
H`(X̃(K);Q)

]Bj
f−−−−→

⊕
j+`=i, `<m−1

[
H`(X̃(K), L̃(K);Q)

]Bj

because we know that Hi(X̃(σ
φ
M(K));Q) maps trivially to the other summand of

Hi(X̃(σ
φ
M(K)), L̃(σ

φ
M(K));Q),

which consists of a sum ofQ’s with trivial Γ -action, i.e. Γ/(t−1)’s. (The triviality
of this part of the map, f , is a result of the splitting of maps of torsion modules
into their p-primary summands (see the proof of Proposition 2.1).) But from the
Künneth theorem, this map is induced by the usual map p∗ : H`(X̃(K);Q) →
H`(X̃(K), L̃(K);Q) in the long exact homology sequence tensored with the iden-
tity map on the homology of M. Since we are working with rational homology,
this tensor product is an exact functor and so the kernel of the map as a rational
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vector space is
⊕
Hj(M) ⊗ ker p∗. But the Γ -module structure is also evidently

preserved, acting trivially on the Hj(M) factors and with the action on ker p∗
induced by that on H`(X̃(K);Q). Passing from the modules to the polynomials
gives the above equation for cσi (t). The other equations are handled similarly
modulo their (t − 1) factors, these terms being accounted for separately by con-
sideration of what the t − 1 factors must be according to the duality formulas of
Theorem 4.3.

Perhaps a simpler way to look at what happens to the Alexander polynomials
of a frame spun knot is the following interpretation which follows readily (with
a little checking) from the calculations above. Take, for example, the polynomial
λi(t) of the knot K for some i. This polynomial will be a factor of λσj (t) a
number of times equal to the the Betti number Bj−i of M. So if, for example, we
take M = Sk, each λi(t) will appear exactly twice as a factor of the λσj (t), once
in its “native” dimension i and once k dimensions higher. Similar consideration
apply for all of the other polynomials and subpolynomials modulo the t−1 terms
which can be computed at the end by tallying the reduced Betti numbers.

By taking Σ to be a point we can therefore construct a knot with singularity
M and certain specified polynomials as follows:

Proposition 4.23. Let Mk be a manifold which embeds in Sn−2 with trivial
normal bundle with framing φ and such that n − k > 3. Let Σ be a single point.
Let Bi denote the ith Betti number of M, and let b̃i and β̃i denote the ith reduced
Betti numbers of Σ and M × Σ, respectively. Suppose that we are given any set of
polynomials, ai(t), bi(t), cj(t) and c′`(t), 0 < i < n− k− 2, 0 < j < n− k− 1,
and 0 < ` < n− 1, which satisfy:

1. ai(t) ∼ bn−k−2−i(t−1),
2. ci(t) ∼ cn−k−1−i(t−1),
3. c′i(t) ∼ c′n−1−i(t

−1),
4. bi(1) = ±1,
5. ci(1) = ±1,
6. c′i(1) = ±1,
7. if n− k = 2p + 1, p even, p ≠ 2, then cp(t) is the determinant of a matrix of

the form (R−1)′τRt−(−1)q+1τ′, where τ and R are integer matrices such that R
has non-zero determinant and (R−1)′τR is an integer matrix; if n−k = 2p+1,
p even, p = 2, then |cp(−1)| is an odd square,

8. if n = 2q + 1, q even, then |c′q(−1)| is an odd square.

Then there exists a knotted Sn−2 ⊂ Sn with singular set M and Alexander subpolyno-
mials aσi (t), b

σ
i (t), and cσi (t) satisfying

aσi (t) ∼ (t − 1)β̃i
m−2∏
`=1

[
a`(t)

]Bi−` ,
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bσi (t) ∼
m−2∏
`=1

[b`(t)]Bi−` ,

cσi (t) ∼ c′i(t)
m−2∏
`=1

[c`(t)]Bi−` .

(The first equation comes from equation (4.26) by taking into account that Σ is being
taken as a point. Note that this also implies that β̃j is just the reduced jth Betti number
of M.)

Fist, we need one lemma regarding disk knots which was not available before
our discussion of frame spinning. It will be proven below.

Lemma 4.24. For any n ≥ 4, there exists a locally-flat disk knot, Dn−2 ⊂
Dn, with non-trivial boundary knot and with all Alexander polynomials equal to 1.
Equivalently, there exists a sphere knot, Sn−2 ⊂ Sn, with a point singularity and with
all Alexander polynomials equal to 1.

Proof of the Proposition. By the results of Section 3 and Lemma 4.24, there
exists a sphere knot, K, with a single point singularity and with the desired poly-
nomials a(t), b(t), and c(t) (if the construction of Section 3 yields a locally-flat
knot, we can take the knot sum with the knot of the lemma). Then, by the cal-
culations above, σφM(K) has the desired aσi (t), b

σ
i (t), and cσi (t) except for the

c′i(t) factors. To get the latter, we can take the knot sum with a locally-flat knot
Sn−2 ⊂ Sn which has the c′i(t) as its Alexander polynomials. Such a knot exists
by [19]. ❐

Proof of Lemma 4.24. It is well known that there exist nontrivial locally-flat
knots S1 ⊂ S3 whose Alexander polynomials are trivial but whose knot groups are
nontrivial (see, for example, [29]). For n > 4, we can now frame spin one of these
knots about the sphere Sn−4 with the trivial framing and embedding in Sn−3 to
obtain a locally-flat knot K : Sn−3 ↩ Sn−1. For n = 4, we can simply choose
K to be the knot with which we started. In each case the knot is still nontrivial
because superspinning preserves knot groups by Cappell [4]. Next, we convert K
to a disk knot, L : Dn−3 ↩ Dn−1, by removing a trivial disk pair neighborhood
of a point on the knot, just as in the first step of the frame spinning construction.
Lastly, we take as our desired disk knot the product of the disk knot, L, with an
interval I, L× I : Dn−3 × I ↩ Dn−1 × I. Since its exterior is homotopy equivalent
to the exterior of L, all of its Alexander polynomials λi(t) are trivial. By duality,
the µi are also trivial. The νi are then trivial by polynomial algebra from the long
exact sequence of the knot pair. The boundary knot is the knot sum K#(−K),
where −K denotes the reflection of K. Therefore, by the Van Kampen theorem,
the group of the boundary knot is nontrivial and so L× I is, in fact, knotted.



Alexander Polynomials of Non-locally-flat Knots 1567

We have thus produced a disk knot, L × I, with the desired properties. To
obtain the desired sphere knot with point singularity, we simply take the cone on
the boundary of the disk knot. ❐

4.3.2. Frame twist-spinning. We now slightly generalize the frame-spinning
construction to include “twisting”. In the special case where we frame twist-spin
about a circle, S1, embedded with standard framing in Sn−2, we will obtain the
twist-spun knots of Zeeman [40].

Before beginning the construction, we recall that one alternative way to com-
pute Alexander modules and hence Alexander polynomials is the following: Rather
than considering the infinite cyclic cover of the knot complement and its homol-
ogy with rational coefficients, we can instead consider the homology of the knot
complement with a certain local coefficient system with Γ as the stalk. If α is an
element of the fundamental group of the knot complement and `(α) denotes the
linking number of α with the knot, then the action of the fundamental group on
the stalk module is given by α(γ) = t`(α)γ, and this completely determines the
coefficient system which we shall call Γ . It is not hard to see that the (simplicial or
singular) chain complex of Γ -modules determined by this coefficient system on the
knot complement is equivalent to the chain complex of the infinite cyclic cover
with rational coefficients. Thus, if X stands for the knot complement, the homol-
ogy modules H∗(X; Γ ) and H∗(X̃;Q) are isomorphic. (See, for example, [10] for
a related discussion of the relationship between homology with local coefficients
and homology of covering spaces).

The procedure for forming a frame twist-spun knot from a lower dimensional
knot is similar to the procedure for frame spinning except that we add a “longitu-
dinal twist” to the gluing. To set up the proper language, we adapt some notation
from Section 6 of Zeeman’s paper, [40], in which he introduces twist spinning.
Following Zeeman, if we consider the unit sphere Sm−1 in the Euclidean space
Rm = Rm−2 × R2, then we can define the latitude for a point y ∈ Sm−1 as its
projection onto Rm−2 and its longitude as the angular polar coordinate of the pro-
jection of y onto the R2 term. Hence the latitude is always well-defined, while
the longitude is either undefined or a unique point of S1 dependent on whether
or not y lies in the sphere Sm−3 that is the intersection of Sm−1 with Rm−2 × 0.
Notice that in the case where the longitude in undefined, the point on the sphere
is uniquely determined by its latitude (just as on a standard globe). As in Zee-
man’s paper, to simplify the notation in abstract cases, we will simply refer to the
latitude-longitude coordinates, (z, θ), in either case.

Now, just as for frame spinning, we choose a knot K ⊂ Sm and form the pair
(Dm+ ,Dm−2+ ) = (Sm,K) − (Dm− ,Dm−2− ) by removing a trivial (unknotted) disk
pair. We can then identify the trivial boundary sphere pair (Sm−1, Sm−3) with
the unit sphere of the preceding paragraph and its intersection with Rm−2 × 0.
Thus, each boundary point in (Sm−1, Sm−3) can be described by its latitude and
longitude coordinates (z, θ) ∈ Dm−2×S1. ThenMk×(Dm+ ,Dm−2+ ) gives a bundle
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of knots, and the points in ∂[Mk×(Dm+ ,Dm−2+ )] have coordinates (x, z, θ), where
x ∈M and (z, θ) are the latitude-longitude coordinates of ∂(Dm,Dm−2).

Similarly, given an embedding of Mk ⊂ Sm+k−2 with framing φ, where
Sm+k−2 is the (m + k − 2)-sphere embedded in Sm+k with the standard normal
bundle, we form

(Sm+k, Sm+k−2)−Mk × int(Dm−2 ×D2,Dm−2)

as in the frame spinning construction (Section 4.3.1). Again the boundary can
be identified as Mk × (Sm−1, Sm−3), and the framing φ, together with the triv-
ial framing of Sm+k−2 in Sm+k, allows us to assign to this boundary the same
(x, z, θ)-coordinates.

Given a map τ : Mk → S1, we can form the frame twist-spun knot
σφ,τM (K) as

[(Sm+k, Sm+k−2)−Mk × int(Dm−2 ×D2,Dm−2)]∪f [Mk × (Dm+ ,Dm−2+ )],

where f is the attaching homeomorphism of the boundaries

f : ∂[Mk × (Dm+ ,Dm−2+ )]→ ∂[(Sm+k, Sm+k−2)−Mk × int(Dm−2 ×D2,Dm−2)]

which, identifying each with Mk × (Sm−1, Sm−3) as above, takes (x, z, θ) →
(x, z, θ + τ(x)), where we define the addition in the last coordinate as the usual
addition on S1. The map f is clearly well-defined on Mk × (Sm−1 − Sm−3) and
also on Mk × Sm−3, if we ignore the undefined longitude coordinate. To see that
this is a well-defined continuous map overall, simply observe that on each sphere
∗×(Sm−1, Sm−3), the map is just the rotation by angle τ(x) of the longitude co-
ordinate induced by the rotation in the second factor of Rm−2 × R2. Considered
along with the continuity of τ, f is obviously a homeomorphism.

Roughly speaking, we are once again removing a bundle of trivial knots over
M and replacing it with a bundle of non-trivial knots. The new element is the
longitudinal twist determined by τ. The framing φ employed in non-twist frame
spinning dictates how the trivial bundle of knots overM is attached “latitudinally”,
while the addition of “twist” allows us to alter the attachment “longitudinally”. As
an example, if M is taken as the standard circle S1 ⊂ Sm+k−2 with φ the trivial
framing, then σφS1(K) gives us the spun knot of Artin, but if τ : S1 → S1 is a map
of degree k, then σφ,τS1 (K) is the k-twist spun knot of Zeeman [40]. Note also
that if τ is the trivial map, which will always be the case ifM is simply-connected,
then the frame twist-spin σφ,τS1 (K) is simply the standard frame-spin σφS1(K).

We next wish to compute the Alexander polynomials of the frame twist-spun
knots. First, we recall the following basic facts of algebra, some of which we have
used before: Since Γ is a principle ideal domain, any Γ -module can be written as
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ΓB ⊕ (⊕i Γ/(pi)) for some B ≥ 0 and pi ∈ Γ , pi ≠ 0. It is also sometimes as-
sumed that the pi satisfy pi|pi+1 or some other similar formula simply to provide
a normalization, but we will not impose that condition here. If b = 0, then

∏
i pi

is what we have been calling the polynomial associated to the module. We will
sometimes refer to the pi as the invariants or torsion invariants of the module.

We also recall that for p,q ≠ 0, Γ/(p) ⊗Γ Γ/(q) � Γ/(p) ∗Γ Γ/(q) �Γ/(d(p, q)), where ⊗Γ and ∗Γ represent the tensor and torsion products over
the ring Γ , respectively, and d(p, q) is the greatest common divisor of p and q
in Γ . In addition, for any Γ -module A, Γ ⊗Γ A � A and Γ ∗Γ A � 0. Since we
will always assume Γ as our ground ring in the following, we will often simply use
⊗ and ∗ to mean the respective products over Γ . Observe that the distributivity
of ⊗ and ∗ over ⊕ allow us to calculate the tensor and torsion products of any
two Γ -modules A � ΓBA ⊕ (⊕i Γ/(pi)) and B � ΓBB ⊕ (⊕i Γ/(qi)). If we let
Ai stand for the direct sum of i copies of the module A and T(A) stand for the
torsion summand of the module A (i.e., T(A) �⊕

i Γ/(pi)), then we obtain the
following formulas:

A⊗ B � ΓBA+BB ⊕ T(A)BB ⊕ T(B)BA ⊕
(⊕
i,j

Γ
d(pi, qj)

)

A∗ B �
(⊕
i,j

Γ
d(pi, qj)

)
.

We will also be using the fact that an exact sequence of Γ -torsion modules can
be split into the direct sum of exact sequences of the p-primary summands of the
modules (see the proof of Proposition 2.1).

With these formulas in hand, we can compute the Alexander modules of frame
twist-spun knots. Suppose that K is the knot Sm−2 ⊂ Sm which is to be spun and
that its Alexander modules are Hj(Sm − Sm−2; Γ ) � ⊕

` Γ/pj` (recall that these
will always be Γ -torsion modules). We wish to compute the homology modules
Hj(Sn − Sn−2; Γ ), where n = m + k, Sn−2 ⊂ Sn is the frame twist-spun knot
σφ,τM (K), and Γ is the local coefficient system as discussed above. Using the above
description of the spun knot, let

Y = Sn − (Sn−2 ∪ int(Mk ×Dm)) ,
Z =Mk × (Dm+ −Dm−2+ ) ,

so that

Y ∩ Z = Mk × (Sm−1 − Sm−3) ,

Y ∪ Z = Sn − Sn−2 .

Then we can employ the Mayer Vietoris sequence

(4.27) → Hj(Y ∩ Z; Γ |Y∩Z) i∗-→ Hj(Y ; Γ |Y )⊕Hj(Z; Γ |Z)→ Hj(Y ∪ Z; Γ )→
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to computer the Alexander modules.
We now examine the terms and maps of this sequence.
First, we observe that Y ∼h.e. Dn−1 × S1 ∼h.e. S1, just as it is for the corre-

sponding piece of the exterior of the non-twist frame-spun knot in the previous
section. The S1 here can be viewed as a meridian of the knot outside of a neigh-
borhood of the surgery. Therefore, Hj(Y ; Γ |Y ) � Hj(Ỹ ;Q) � Hj(R;Q), so

Hj(Y ; Γ |Y ) =
Q �

Γ
t−1 , j = 0 ,

0, j ≠ 0 .

For the Z component, we need to investigate the coefficient system Γ |Z .
Since Z is a product space, its fundamental group is π1(Mk × (Dm+ −Dm−2+ )) =
π1(Mk) × π1(Dm+ − Dm−2+ ). Therefore, the action of an element α × β =
(α × 1) · (1 × β) = (1 × β) · (α × 1) of the fundamental group on the stalkΓ over the basepoint is determined by the product of the actions of α and β,
which we can take to be loops in Mk ×∗ and ∗× (Dm+ −Dm−2+ ). But this means
that Γ |Z is equivalent to the product system Γ |Mk×∗ ì Γ |∗×(Dm+ −Dm−2+ ). Therefore,
we can compute Hj(Z; Γ |Z) via the Künneth theorem (see [34]) to be

Hj(Z; Γ |Z) �
⊕
r+s=j

Hr (Mk; Γ |Mk)⊗Hs(Dm+ −Dm−2+ ; Γ |Dm+ −Dm−2+ )

⊕
⊕

r+s=j−1

Hr(Mk; Γ |Mk)∗Hs(Dm+ −Dm−2+ ; Γ |Dm+ −Dm−2+ ),

where we have written Γ |Mk to mean Γ |Mk×∗ and similarly for the other term.
We may observe that the terms Hs(Dm+ −Dm−2+ ; Γ |Dm+ −Dm−2+ ) are none other

than the Alexander modules for the knot K. To see this, we need only show
that the action of an element α ∈ π1(Dm+ − Dm−2+ ) on the stalk Γ is given by
multiplication by t`K(α), `K(α) being the linking number of α with the knot K.
But Γ |Dm+ −Dm−2+ is the restriction of the system Γ on Sn − Sn−2, so the action on Γ
of a curve representing α is multiplication by t`σ(K)(α), where the exponent is the
linking numer of the loop α ⊂ Dm+ −Dm−2+ ⊂ Sn − Sn−2 with the spun knot. So
we need only show that the two linking numbers are equivalent. As an element
of H1(Dm+ −Dm−2+ ) (or H1(Sn − Sn−2)) under the Hurewicz map, α bounds in
Dm+ ⊂ Sn. If α = ∂c and we use a ∩ b to denote the intersection number of the
chains a and b, then

`K(α) = c ∩Dm−2+ = c ∩ Sn−2 = `σ(K)(α),

where the leftmost and rightmost equalities are taken from the definitions of
linking and intersection numbers and the central equality is due to Dm−2+ =
Sn−2 ∩Dm+ .
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Observe that, because the knot modules are all torsion Γ -modules, then
Hj(Z; Γ |Z) will also be a torsion Γ -module.

The homology modules Hr(Mk; Γ |Mk) depend, of course, on M so that we
cannot give a general formula for their structure. However, we can obtain a little
more information about the structure of the coefficient system Γ |Mk . In fact, we
claim that the action of α ∈ π1(M) on the stalk Γ is given by multiplication

by tdeg(τ(α)), where deg(τ(α)) is the degree of the map S1 → S1 given by the
image of the loop α under τ. To see this, it is simplest if we choose basepoints
so that M × ∗ ⊂ M × (Dm+ − Dm−2+ ) lies in the boundary M × (Sm−1 − Sm−3).
This allows us to consider the loop which represents α ∈ π1(M × ∗) as lying in
the component Y via the attaching homeomorphism f . We need to compute the
linking number ofα with the spun knot. As remarked, Y ∼h.e. Dn−1×S1 ∼h.e. S1,
where S1 gives a meridian of the knot. So if we let h : Y → S1 be the homotopy
equivalence, we need only compute the degree of h◦f(α). But by considering the
construction, we can choose h so that its restriction to M × (Sm−1 − Sm−3) ⊂ Y
is the projection to the third coordinate in the (x, z, θ) coordinate system. In
other words, the map is given by projection to the longitude coordinate. So if
M × ∗ = M × (0,0) in the coordinate system, then it is clear from the above
description of f that h ◦ f ◦ α(t) = τ(α(t)), so the degree of h ◦ f(α) is equal
to the degree of τ(α).

The homology of Y ∩ Z � Mk × (Sm−1 − Sm−3) can also be computed by
the Künneth theorem, but here the result is much simpler becuse Sm−1 − Sm−3 is
an unknotted sphere pair. Since m must be ≥ 3, the same linking number argu-
ment applies to show that the homology modules of Sm−1−Sm−3 with coefficient
system Γ |Sm−1−Sm−3 are the Alexander modules of a trivial knot. In other words,
H0(Sm−1 − Sm−3; Γ |Sm−1−Sm−3) � Γ/(t − 1), and the homology is trivial in all
other dimensions. Thus,

Hj(Y ∩ Z; Γ |Y∩Z)
�
(
Hj(Mk; Γ |Mk)⊗ Γ

t − 1

)
⊕
(
Hj−1(Mk; Γ |Mk)∗ Γ

t − 1

)
.

Notice that t − 1 is prime in Γ , so for any p ∈ Γ , d(t − 1, p) is (t − 1) or 1.
Therefore, Hj(Y ∩ Z; Γ |Y∩Z) is a direct sum of Γ/(t − 1)’s.

Next, we claim that the map i∗ of the Mayer-Vietoris sequence (4.27) is injec-
tive. We have computed that all the terms of the sequence are torsion Γ -modules
except for the Hj(Sn − Sn−2; Γ ), but these must also be torsion modules because
the other terms are or simply because we know that these are knot modules. We
know that exact sequences of Γ -torsion modules can be broken up into the di-
rect sum of the exact sequences of their p-primary components (see the proof of
Proposition 2.1). We also know that Hj(Sn − Sn−2; Γ ) has no (t − 1)-primary
component for j > 0 because t − 1 does not divide the Alexander polynomials
(which we know up to similarity must evaluate to ±1 at 1). Therefore, on the
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exact sequence summand corresponding to the (t − 1)-primary components, the
Hj(Sn − Sn−2; Γ ) terms are 0, and i∗ must be injective. But Hj(Y ∩ Z; Γ |Y∩Z)
consists entirely of its t − 1 primary component as noted in the previous para-
graph. Therefore, i∗ is injective for all j > 0. It is also injective for j = 0 by
standard arguments.

Therefore, we obtain short exact sequences

0 -→ Hj(Y ∩ Z; Γ |Y∩Z) i∗-→ Hj(Y ; Γ |Y )⊕Hj(Z; Γ |Z) -→ Hj(Y ∪ Z; Γ ) -→ 0,

and based upon the previous calculations, we can compute

Hj(Y ∪ Z; Γ ) � Hj(Sn − Sn−2; Γ )

to be

Hj(Sn − Sn−2; Γ ) �
⊕
r+s=j
s>0

Hr(Mk; Γ |Mk)⊗Hs(Dm+ −Dm−2+ ; Γ |Dm+ −Dm−2+ )

⊕
⊕

r+s=j−1
s>0

Hr(Mk; Γ |Mk)∗Hs(Dm+ −Dm−2+ ; Γ |Dm+ −Dm−2+ )

for j > 0.
Supposing that the Alexander modules of the knot K are given as

Hj(Dm+ −Dm−2+ ; Γ ) �
⊕
`

Γ(
λj`

) ,
Hj(Mk; Γ |Mk) � ΓBj ⊕

⊕
`

Γ(
ζj`

) ,
we can then compute the Alexander polynomial λτj (K), j > 0, of the frame twist-
spun knot to be

λτj (t) =
∏
r+s=j
s>0

(∏
`

λBr
sl ·

∏
i,`

d(ζri, λsl)
)
·
∏

r+s=j−1
s>0

(∏
i,`

d(ζri, λsl)
)
.

We next calculate the “relative” and “boundary” polynomials µτj (t) and ντj (t)

of the spun knot σφ,τM (K). Let p̄(t) = p(t−1) for any p ∈ Γ , suppose Bi contin-
ues to denote the rank of the free Γ component of Hi(M; Γ |M), and let β̃i denote
the ith reduced Betti number of M × Σ. Then, for j > 0, we can calculate µτj (t)
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using the duality of Alexander polynomials:

µτj (t) ∼ (t − 1)β̃j−1 λ̄τn−1−i

= (t − 1)β̃j−1
∏

r+s=n−j−1
s>0

(∏
`

λ̄Br
sl ·

∏
i,`

d(ζri, λsl)
)
·

∏
r+s=n−j−2
s>0

(∏
i,`

d(ζri, λsl)
)

= (t − 1)β̃j−1
∏

r+s=n−j−1
s>0

(∏
`

λ̄Br
sl ·

∏
i,`

d(ζ̄ri, λ̄sl)
)
·

∏
r+s=n−j−2
s>0

(∏
i,`

d(ζ̄ri, λ̄sl)
)
.

One can also go a step further and calculate µτi in terms of the µsl, which we define
as follows: Let X(K) denote the exterior of the knot K, and let L(K) represent in-
tersection of the knot exterior X(K) with the closed neighborhood of the singular-
ity N(Σ) (i.e. the “link exterior”). Then we know that Hi(X(K), L(K); Γ ) has the
form Ti⊕`Γ/(µi`), where Ti is the (t−1)-primary summand ofHi(X(K), L(K); Γ ),
t − 1 ö µi`, and µi` ≠ 0. Applying Theorem 4.3, we may assume that each
µi` = λ̄m−i−1,`. Thus

µτj (t) ∼ (t − 1)β̃j−1
∏

r+s=n−j−1
s>0

(∏
`

µBr
m−s−1,` ·

∏
i,`

d(ζ̄ri, µm−s−1,`)
)

·
∏

r+s=n−j−2
s>0

(∏
i,`

d(ζ̄ri, µm−s−1,`)
)
.

Lastly, to calculate ντj (t), we can once again employ the Künneth theorem

since L(σφ,τM (K)) =M × L(K). We have

Hj(L(σ
φ,τ
M (K)); Γ ) � Hj(M × L(K); Γ )

�
⊕
r+s=j

Hr (Mk; Γ |Mk)⊗Hs(L(K); Γ |L(K))

⊕
⊕

r+s=j−1

Hr(Mk; Γ |Mk)∗Hs(L(K); Γ |L(K)).

Based on our previous calculations in Section 4.2.3, we know that if we let bi
stand for the ith Betti number of Σ, the singular set of K, then the (t−1)-primary
summand, Tj , of Hj(L(K); Γ ) will be isomorphic to [Γ/(t − 1)]bj . (For j > 0,
we showed that it was [Γ/(t − 1)]b̃j for reduced Betti number b̃j , but b̃j = bj

in this range and clearly H0(L̃(K);Q) � [Γ/(t − 1)]b0 � Qb0 .) So we can set
Hj(L(K); Γ |L(K)) � Tj⊕`Γ/(νj`), where Tj � [Γ/(t−1)]bj , t−1 ö νj`, and νj` ≠
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0. Then we can use the above equation to calculate the Alexander polynomial of
Hj(L(σ

φ,τ
M (K)); Γ ):

ντj (t) ∼
∏
r+s=j

(
(t − 1)Br ·bs ∏

`

νBr
sl ·

∏
i
d(ζri, t − 1)bs ·

∏
i,`

d(ζri, νsl)
)

·
∏

r+s=j−1

(∏
i
d(ζri, t − 1)bs ·

∏
i,`

d(ζri, νsl)
)

∼(t − 1)βj
∏
r+s=j

(∏
`

νBr
sl ·

∏
i,`

d(ζri, νsl)
)
·

∏
r+s=j−1

(∏
i,`

d(ζri, νsl)
)
,

where, for the last line, we have used our knowledge of to what power the t − 1
factor should occur, based upon some polynomial algebra and our calculations for
λτj and µτj

Remark 4.25. As a special case, we can take M = S1 with the standard triv-
ialization and τ : S1 -→ S1 to be a map of degree k ≠ 0. Then σφ,τS1 (K) is the
Zeeman k-twist spin of K. Since the action of a generator of α ∈ π1(S1) on the
stalk Γ is multiplication by tk, we have

Hi(S1; Γ |S1) �


Γ
tk − 1

, i = 0 ,

0, i ≠ 0 .

Therefore, Br = 0 for all r , ζ0,1 = tk − 1, and all other torsion invariants ζri are
trivially equal to 1. Thus, for j > 0, we get the polynomials:

λτj (t) ∼
∏
`

d(tk − 1, λj`) ·
∏
`

d(tk − 1, λj−1,`) ,

µτj (t) ∼(t − 1)β̃j−1
∏
`

d(t−k − 1, µm−n+j,`) ·
∏
`

d(t−k − 1, µm−n+j+1,`) ,

ντj (t) ∼(t − 1)bj+bj−1
∏
`

d(tk − 1, νj`) ·
∏
`

d(tk − 1, νj−1,`) .

Remark 4.26. If k = 0, we can check that we obtain the polynomials of the
non-twist frame-spun knots as in the last section. For k = 1, note that all of the
λτi , 0 < i < n−1, are trivial (i.e. similar to 1), while the µτi and ντi are all powers
of t − 1.

As for the subpolynomials aτi (t), b
τ
i (t), and cτi (t), the existence of Γ -torsion

terms in Hi(M; Γ |M), the lack of naturality in the splitting of the Künneth theo-
rem, and the lack of exactness of the tensor and torsion products make it impos-
sible to derive simple formulae in terms of the subpolynomials of the knot being
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spun as we did in Section 4.3.1 for frame spun knots. This is not a great loss,
however, since we can always calculate the subpolynomials from λτi (t), µ

τ
i (t),

and ντi (t) by “dividing in” from the outside of the exact sequence. In other words,
recall that we can calculate aτi (t), b

τ
i (t), and cτi (t) by cτn−2(t) = λτn−2(t) and

then

aτn−3(t) =
µτn−2(t)
cτn−2(t)

,

bτn−3(t) =
ντn−3(t)
aτn−3(t)

,

cτn−3(t) =
λτn−3(t)
bτn−3(t)

,

... .

Of course we could also begin from the other side with cτ1 (t) equal to µτ1 (t)
divided by its t − 1 terms, and so on.

Lastly, we summarize the above calculations as the following realization theo-
rem:

Theorem 4.27. Let Mk, n− k > 3, be a manifold which embeds in Sn−2 with
trivial normal bundle with framing φ. Given a map τ :M -→ S1, let Bi be the rank
of the free part and ζi` be the torsion invariants of the Γ -modules Hi(M; Γ |M), where
the coefficient system is given as above. (Note that these modules are independent of the
knot being spun in the construction.) Then, if K is a knot Sm−2 ⊂ Sm with Alexander
invariants λi`, µi`, and νi` and with singular set Σ with reduced Betti numbers b̃i,
then there exists a frame twist-spun knot σφ,τM (K) with singular set M × Σ (whose
reduced Betti numbers we denote β̃i) and with Alexander polynomials given for j > 0
by:

λτj (K) ∼
∏
r+s=j
s>0

(
(
∏
`

λBr
sl ·

∏
i,`

d(ζri, λsl)
)
·
∏

r+s=j−1
s>0

(∏
i,`

d(ζri, λsl)
)
,

µτj (K) ∼(t − 1)β̃j−1
∏

r+s=n−j−1
s>0

(
(
∏
`

µBr
m−s−1,` ·

∏
i,`

d(ζ̄ri, µm−s−1,`)
)

·
∏

r+s=n−j−2
s>0

(∏
i,`

d(ζ̄ri, µm−s−1,`)
)

,

ντj (t) ∼(t − 1)β̃j
∏
r+s=j

(∏
`

νBr
sl ·

∏
i,`

d(ζri, νsl)
)
·

∏
r+s=j−1

(∏
i,`

d(ζri, νsl)
)
.

In particular, by frame twist-spinning knots with a single point as their singular set,
we obtain knots with M as their singular sets.
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Remark 4.28. Although we have focused on realizing given Alexander poly-
nomials in our previous constructions of knots with point singularities, observe
that the methods of proof actually allow us to create knots with given invariants.
In fact, we can create disk knots with specific single invariants and string these to-
gether using the disk knot sum. Then coning on the boundary gives us a knot with
the same invariants and a point singularity. Putting this together with the above
theorem, we know exactly what kinds of polynomials can be realized as those of
frame twist-spun knots with singular set M, modulo our ability to compute the
homology Hj(M; Γ |M) and our previous difficulty with the polynomial c2(t) of a
disk knot D3 ⊂ D5.

Remark 4.29. We can, of course, further enrich the class of polynomials we
can realize as polynomials of a knot with singular set M by attaching locally-flat
knots to our frame twist-spun knots using ordinary knot sums away from the
singularities.

4.3.3. Suspensions. Another method for obtaining new knots from old ones
is by suspension, which, in some sense, constitutes the extreme case, as the number
of singular strata will always increase. In particular, if we begin with the knotted
sphere pair Sn−3 ⊂ Sn−1 with singular set Σ, filtered by the nested subsets Σi
and with “pure strata” Uk = Σn−k+1 − Σn−k, then the suspension, thought of as
(Sn−1, Sn−3) × I/{x × 0 ∼ ∗−, x × 1 ∼ ∗+}, is a sphere pair Sn−2 ⊂ Sn. Its
singular set is given by the suspension of Σ, and it is filtered by the suspensions
points, {∗±}, and the suspensions of the Σi.

We will employ the italicized Σ to denote suspensions. Thus, the suspension
of the knot K with Alexander polynomials λi ∼ bici, µi ∼ ciai−1, and νi ∼ aibi
will be denoted by ΣK with polynomials λΣi , µΣi , and νΣi . We will compute these
polynomials.

Proposition 4.30. With the notation as above,
1. λΣi ∼ λi ∼ bici
2. µΣi ∼ µi−1 ∼ ci−1ai−2

3. νΣi ∼ ai−1bic2
i .

Proof. We first observe that λΣi = λi. This follows immediately from the fact
that the suspension points ∗± lie in the knot ΣK so that Sn−ΣK � (Sn−1−K)×
(0,1). Therefore, Sn − ΣK ∼h.e. Sn−1 − K, and Hi(Sn − ΣK; Γ ) � Hi(Sn−1 −
K; Γ ). The claim follows because λΣi and λi are the polynomials associated to these
modules, respectively. (Note that the local coefficient system, Γ , on Sn − ΣK is
simply that induced by the homotopy equivalence with Sn−1 − K).

We next turn to the computation of νΣi . We will use N to denote open reg-
ular neighborhoods and N̄ to denote closed regular neighborhoods, letting the
context in each case determine the ambient space. Then νΣi will be the poly-
nomial associated to the homology of the “link compliment” ∂N̄(Σ(Σ)) − ΣK ∩
∂N̄(Σ(Σ)) or, equivalently, the “link exterior” ∂N̄(Σ(Σ)) −N(ΣK ∩ ∂N̄(Σ(Σ))).
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For the current argument, it is simplest if we think of the suspended knot pair
as
[
(Sn−1, Sn−3)× I] ∪ q±c̄±(Sn−1, Sn−3), where q±c̄±(Sn−1, Sn−3) indicates

the disjoint union of the “northern” (+) and “southern” (−) closed cones on the
original knot pair. The cones attach to the product with the unit interval in the
obvious manner. In this case, it is clear that N̄(Σ(Σ)) � N̄(Σ) × I ∪q±c̄±Sn−1

and ∂N̄(Σ(Σ)) � (∂N̄(Σ)×I)∪q±(Sn−1−N(Σ)). Finally, sinceN(Σ) ⊂ N(K) ⊂
Sn−1, when we remove the neighborhood around ΣK in ∂N̄(Σ(Σ)), we see that

∂N̄(Σ(Σ))−N(ΣK ∩ ∂N̄(Σ(Σ))) �[
(∂N̄(Σ)−N(K ∩ ∂N̄(Σ)))× I]∪q±(Sn−1± −N(K±))

glued together at (∂N̄(Σ)−N(K∩∂N̄(Σ)))×{0} and (∂N̄(Σ)−N(K∩∂N̄(Σ)))×
{1}.

For simplicity, let us readopt some of the notation of Section 3. Let us set X =
∂N̄(Σ)−N(K ∩ ∂N̄(Σ)), the link complement of K, and C = Sn−1 −N(K), the
knot complement of K. Let us also define XΣ = ∂N̄(Σ(Σ))−N(ΣK∩∂N̄(Σ(Σ))),
the link complement of ΣK, and CΣ = Sn−N(ΣK), the knot complement of ΣK.
We will also continue to use + and − in the subscript as indicators in the cases
where there are multiple copies. From the preceding paragraph, we can form a
Mayer-Vietoris sequence (in which the coefficient system Γ or its restriction is
implied):

-→ Hi(X+)⊕Hi(X−) i∗-→ Hi(X × I)⊕Hi(C+)⊕Hi(C−) -→ Hi(XΣ) -→ .
Now, to study the polynomials, we already know that each Hi(X) has associ-

ated polynomial νi ∼ aibi and each Hi(C) has associated polynomial λi ∼ bici.
So, according to the results of Section 2, we can determine the polynomial asso-
ciated to Hi(XΣ) by determining the polynomial associated to the kernel of i∗.
But, by the definition of the Mayer-Vietoris sequence, the map i∗ is induced by
inclusion so that each induced map Hi(X±)→ Hi(X × I) is the identity and each
map Hi(X±) → Hi(C±) is the standard map, say j∗, induced by inclusion. Form
this, and identifying Hi(X+) � Hi(X−) � Hi(X × I) and Hi(C+) � Hi(C−), we
can conclude that the kernel of i∗ consists of pairs (α,−α), where α ∈ Hi(X) and
furthermore α ∈ ker(j∗). This implies that ker(i∗) � ker(j∗) and that the poly-
nomial associated to the kernel of i∗ is ai, as, by definition, this is the polynomial
of the kernel of j∗. Hence, in the exact sequence, the natural factorization of the
polynomial associated to Hi(X+) ⊕ Hi(X−) is as ai times aib2

i , and the natural
factorization of the polynomial associated to Hi(X × I)⊕Hi(C+)⊕Hi(C−) is as
aib2

i times bic2
i . Applying this argument in all dimensions, we see then that the

polynomial νΣi associated to Hi(XΣ) must be ai−1bic2
i .

Finally, note that in the long exact sequence of the pair (CΣ,XΣ) � (C×I, XΣ),

-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hi(XΣ)
j∗-----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hi(C × I) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hi(C × I, XΣ) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ ,
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the map j∗ : Hi(XΣ) → Hi(C × I) is an epimorphism. This is due to the fact
that any cycle in C × I can be homotoped to a cycle in C × [0] ⊂ XΣ . Since
the polynomial of Hi−1(C × I) is λi−1 ∼ λΣi−1 ∼ bi−1ci−1 and the polynomial of
Hi−1(XΣ) is ai−2bi−1c2

i−1, this implies that the polynomial of Hi(C × I, XΣ) is
µΣi ∼ ai−2ci−1. ❐
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