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INTRODUCTION

If topology were publicly defined as the study of families of
sets closed under finite intersection and infinite unions a serious
disservice would be perpetrated on embryonic students of
topology. The mathematical correctness of such a definition
reveals nothing about topology except that its basic axioms
can be made quite simple. And with category theory we are
confronted with the same pedagogical problem. The basic
axioms, which we will shortly be forced to give, are much too
simple.

A better (albeit not perfect) description of topology is that
it is the study of continuous maps; and category theory is
likewise better described as the theory of functors. Both de-
scriptions are logically inadmissible as initial definitions, but
they more accurately reflect both the present and the historical
motivations of the subjects. It is not too misleading, at least
historically, to say that categories are what one must define
in order to define functors, and that functors are what one
must define in order to define natural transformations.

1



2 ABELIAN CATEGORIES

The last notion existed in the mathematical vocabulary long
before it had a definition. The fact that it could be mathemati-
cally defined was discovered by Eilenberg and MacLane [6].
They began by describing what is perhaps the best known
example of a natural equivalence. Their approach seems un-
improvable and therefore we imitate it:

Consider a vector space V over a field F, and let V* be its
dual space—the set of linear functionals from V into F together
with the natural vector space structure. If V is finite-dimensional
then so is V'*, and, indeed,  and V'* have the same dimension.
The theory of vector spaces asserts, then, that V" and V* are
isomorphic. There does not exist, however, any particular iso-
morphism from ¥ to V*. (If one is so disposed, he may say that
V and V* are unnaturally equivalent.)

Let V** be the dual of ¥*. Again the finiteness of ¥ implies
that ¥ and V** are isomorphic. But here there is a particular
isomorphism, one which stands out, if you will, among all the
others. Its definition requires a preliminary definition. For
xeV and (f: V — F)e V*, define x(f) = f(x). x is a linear
transformation from V* to F, that is, x € V**. We define
®: ¥V — V** to be the function which assigns the value x e V'**
to each x e V. ® is a one-to-one linear transformation. The
equality of dimensions in the case when V is finite thus implies
that @ is onto and hence an isomorphism.

® is an example of a natural equivalence. The analysis of
“natural” starts by the observation that ® is not just an
equivalence between two vector spaces but an entire collection
of such equivalences, one for each finite-dimensional vector
space. But more importantly, the collection relates not just two
big families of vector spaces but two operations on vector spaces,
namely the identity operation and the second-dual operation.
And most importantly, the operation not only operates on
vector spaces but on the entire collection of linear transforma-
tions between them. We return momentarily to the first duals.

INTRODUCTICN 3

Fofg: V, — V,alinear transformation between vector spaces,
define g*: V¥ — V¥ to be the function which assigns to
(f: Vo — F) e V* the element (fg: Vi~ F)e Vi (g* is called
the dual of g). By iteration we obtain g**: Vi** — V'*. The
critical property of the collection of ®’s is that for every
g: V; — V, the following diagram commutes:

[+ o]
V, > VX

g

V2 —_— Vz**
@,

Such operations on linear transformations will be cal}ed
functors. A collection of maps which yield such commuting
diagrams as the above will be called a natural transformation
between functors. In the case at point, we will say that the
identity functor and the second-dual functor on finite-dimen-
sional vector spaces are naturally equivalent.

The second-dual functor assigns to each vector space a vector
space and to each map between vector spaces a map between the
corresponding vector spaces. The assignment has the property
that the second-dual of an identity map is an identity map and
that (fg)** = f**g** for any pair of composing maps f and g.
The proper abstraction of these statements will become our
definition of functor.

The notion of functor will be extended to operations which
assign objects with different types of structure. The best early
example of such is Poincaré’s fundamental-group functor: to
each topological space X there is assigned a group =(X); for
each continuous map g: X; — X; there is assigned a group
homomorphism 7(g): #(X,) — n(X,).

As before, 7 carries identity maps into identity maps and
behaves well with respect to composition. A similar example
is the first-homology functor. It too assigns to a topological
space X a group H(X), and to continuous maps it assigns
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group homomorphisms. These two functors are related by a
natural transformation (not an equivalence) which exhibits
H(X) as =(X) “made abelian.”

The precise definition of functor (and hence the precise
definition of natural transformation) requires a definition of the
things functors are defined on. As a first approximation, let a
notion of “structure” be assumed. Let a category be a class of
sets with structure and the class of structure-preserving maps
between them. A functor then is a function from one category
to another which assigns to the sets belonging to the first,
sets belonging to the second; and which assigns to the functions
between sets in the first, functions between sets in the second;
and which, furthermore, carries identity functions into identity
functions and behaves well with respect to composition.

As a second approximation, we eliminate the vagueness of
sets-with-structure and structure-preserving functions by defin-
ing a category of sets as a class 0 of sets together with a class
A of functions between them that includes the identity map
of each set in 0 and the composition of any two composing
maps. Thus we throw away the “structure” on the sets. If we
start with a category of sets-with-structure and move to this
second approximation the “structure,” though missing, will
have had its influence: first, in reducing the class . to a
proper subclass of the class of all functions; second, in insuring
that .# has identity maps and is closed as much as possible
with respect to composition.

For the third approximation we throw away the elements of
the sets and then, necessarily, the fact that .# is a class of
functions. We will use the words “object” and “map” as
primitives. Define a category as a class O of objects, a class of
maps # and a binary operation “not everywhere defined” on
. A list of axioms can be produced so that the class O is very
much like a class of sets, . like a class of functions between the
sets, and the binary operator like the composition of functions.

INTRODUCTION 5

Among the axioms there would have to be one which insures
for each object 4 € @ the existence of a map 1, which behaves
(under the binary operation) like the identity map on 4. Such
an axiom exhibits a redundancy among the primitives. Hence
we throw away not only the elements of the objects, but the
objects themselves and arrive, finally, at our definition. A
category is a class of “maps” . together with a subclass
CC # x # and a function ¢: C — . If (x,y) € C we write
c(x,y) = xp. If (x,y) ¢ C we say that “xy is undefined.”

Category Axiom 1 (Associativity)
For x,y,z € # the following are equivalent:
(a) xy and yz are defined
(b) (xy)z is defined
(¢) x(yz) is defined
(d) (xp)z and x(yz) are defined and equal.

Category Axiom 2 (Enough Identities)
Define an identity map as an element e € .# such that when-
ever either ex or xe is defined it is equal to x. For each
x € A there are identity maps ey, eg such that e;x and xep
are defined.

The recovery of the more familiar proceeds as follows:

Proposition 0.1

If e and €' are identity maps, and ex and €'x are both defined,
thene = é'.

Proof:

Let ex = x and e’'x = x. Then e(e'x) = ex = x; hence, by
Axiom 1, ee’ is defined and e = e’ =¢’. || (We shall use
the sign ]| to indicate ends of proofs.)

Proposition 0.1 together with Axiom 2 asserts the existence
of a function .# R: — .# such that R(x) is an identity map,
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(R(x))x is defined, and if e is an identity map and ex is defined
then e — R(x). Similarly we define D: # — .# such that
D(x) is an identity map, xD(x) is defined, and if e is an identity
map, xe defined, then e = D(x).

Proposition 0.2
xy is defined if and only if D(x) = R(p).

Proof:

—  Since xy is defined and x = xD(x) it follows that
(xD(x))y is defined. Therefore by Axiom 1, D(x)y is defined,
R(y)y is defined, D(x) and R(y) are both identity maps, and
D(x) = R(y).

<« If D(x) = R(y) = e, then xe and ey are defined and
Axiom 1 asserts that xy = (xe)y = x(ey) is defined. |

Proposition 0.3
If xy is defined then D(xy) = D(y) and R(xy) = R(x).

Proof:
Since yD(y) and xy are defined, Axiom 1 asserts that (xy) Dy
is defined and D(xy) = D(y). Similarly R(xy) = R(y»). |

“The” class of objects is defined to be a class 0, the elements
of which are indicated by capital Latin letters, in one-to-one
correspondence with the identity maps of #. Given A € 0 we
indicate the corresponding identity maps by 1, We define the
range of x € M to be the unique B € 0 such that 1; = R(x);
the domain of x is the unique A € ¢ such that 1, = D(x).
Propositions 0.2 and 0.3 translate therefore to the expected
statements about functions between sets. For objects 4,B € 0
we define (4,B) C A to be the set of maps with 4 as domain
and B as range. We sometimes indicate an element x € (4,B8)
by the symbolx: 4 — B, sometimes by 4 > B, and sometimes
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just by A — B (if only one element in (4,B) is under discussion).
The composition of two maps A — B and B — C will be
written 4 — B — C. Instead of writingequations 4 — B — C =
A — D — C we shall often say that the diagram

—_—

(W RSN

B
!
—C

commutes.

A functor from a category ., to ., is a function F: 4, —
A , such that:

Functor Axiom 1
If e is an identity map in .#, then F(e) is an identity map
in M.

Functor Axiom 2

If xy is defined in .#, then F(x)F(y) is defined in ., and
equal to F(xy).

If 0, and 0, are classes of objects for 4, and #, we define
for A € 0,, F(A) € 0, to be such that 154, = F(1,).

Proposition 0.4
F(Domain (x)) = Domain (F(x)) and F(Range (x)) = Range
(F(x)). || (And here the sign “j}” means no proof.)

Given x € (4,B) C A, it follows that F(x) e (F(4),F(B)) C
M, F will send commutative diagrams into commutative
diagrams. Indeed, the functor axioms may be summarized by:

if A-=>B
N
C

commutes,
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F(x)

then F(A) — F(B)

F)
F()

F(O) commutes.

Finally, we define a natural transformation between two
functors F and G, both from M, to My to be a function
n: 0, — My such that:

Transformation Axiom 1
For A € 0,, 7(A) € (F(4),G(4)).

Transformation Axiom 2 _
For any x € (4,B) C #, the diagram
F(4) 25> F(B)

7(A) B

G(A4) e G(B) commutes.

Once the definitions existed it was quickly notic&?d that
functors and natural transformations had become a major tool
in modern mathematics. In 1952 Eilenberg and Steenrqd pul?-
lished their Foundations of Algebraic Topology [7], an axiomatic
approach to homology theory. A homology theory Was deﬁne‘d
as a functor from a topological category to an algepr.anc
category obeying certain axioms. Among ‘the more strlk-mg
results was their classification of such “theories,” an impossible
task without the notion of natural equivalence of functors. In a
fairly explosive manner, functors and natural transformations
have permeated a wide variety of subjects. Such monumental
works as Cartan and Eilenberg’s Homological Algebra [4]
and Grothendieck’s Elements of Algebraic Geometry [11] tesnfy
to the fact that functors have become an established concept 1n

mathematics.
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In 1948, MacLane drew attention to categories themselves
[19]. He observed that many statements about abelian groups
were equivalent to statements about the category of abelian
groups. (One can prove that all statements about abelian groups
can be so translated.) He pointed out that an advantage of the
“categorical” statement was that it allowed dualization. As a
quick example, we shall define a map 4 — B to be a mono-
morphism if X > A — B = X -*> A — B always implies that
x = y. The dual notion is epimorphism: B —C is an epi-
morphism if B — C > X = B — C > Ximplies that x = y.
(In the category of abelian groups a2 map is a monomorphism
if and only if it is one-to-one, and it is an epimorphism if and
only if it is onto.) A list may be constructed of pairs of such
dual notions. The dual of a statement shall be the corresponding
statement in which all the words have been replaced by their
duals. MacLane found conditions on a category such that many
of the theorems true for the category of abelian groups still
held and he identified certain classes of statements that were
true if and only if the dual statement was true. He called such
categories abelian.

In 1955, Buchsbaum [2] refined the conditions and gave
convincing evidence that abelian categories allowed the full
development of homological algebra as in Cartan and Eilen-
berg’s book. In 1957 Grothendieck [10] pointed out that
certain categories of sheaves were abelian and proceeded to
revolutionize algebraic geometry. The ubiquity of abelian cate-
gories has since become clear and their importance to mathe-
matics has been widely accepted.

Without elements in the objects it was painfully difficult to
prove even simple lemmas for abelian categories. Enough were
proved, however, so that mathematicians began to recognize
a class of statements, true for the category of abelian groups,
which one could be confident were true for arbitrary abelian
categories. A metatheorem was in order. It was provided,
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roughly simultaneously, by Lubkin, Heron, and the author.
The proofs were entirely different. They were similar in that
they proved that small abelian categories (“‘small” means a
set of objects) were isomorphic to certain very manageable
categories of abelian groups.

The aim of this work is to serve as a basis for the theory of
abelian categories. The full metatheorem and embedding
theorem have been chosen as targets, and indeed the book,
exclusive of the exercises, assumes what is hoped to be a geodesic
course to those ends. There are no prerequisites except an
elementary knowledge of abelian groups and modules. (We
again except the exercises.)

The full embedding theorem closes the book in more than
a literal sense. Much of the theory within abelian categories
is reduced to the theory of modules. Further investigations in
the subject will necessarily be directed towards functor theory
rather than category theory. It is fortunate that the attempted
geodesic course of this work brings us into contact with the
fundamental tools of functor theory. Chapter 6 not only serves
as a vehicle for the major constructive part of the embedding
theorems but also as an indicator of the powerful similarity
of modules and functors. In Chapter 7 we not only dispatch
the embedding theorems, but illustrate the principle that im-
portant statements about functors viewed as functors may
follow from statements about functors viewed as objects in an
abelian category.

One important area of functor theory which is not touched
in the text is the theory of adjoint functors. It is too important to
leave out entirely, and hence we have included a range of
exercises on the subject.

Among the many people whose ideas and encouragement
were necessary for this book’s present existence are David
Buchsbaum, Samuel Eilenberg, David Epstein, Serge Lang,
Saunders MacLane, Norman Steenrod, and Charles Watts.

INTRODUCTION i

The writer must separately acknowledge his collaboration with
Barry Mitchell. For many -years Mitchell was the writer’s
mathematical conscience: the erroneous proofs left in this book
can be explained as the result only of the writer's perversity
in the presence of a master. The full embedding theorem, the
target of the work, was first observed by Mitchell, and if the
first rule of semantics had not prevented it, this book would be
entitled The Mitchell Theorem.

EXERCISES ON EXTREMAL CATEGORIES

A. A category in which all maps are identity maps is a
discrete category. Any function between discrete categories is a
functor.

B. A category with only one identity map is a monoid. A functor
from one monoid to another is a homomorphism.

C. A monoid in which every element has an inverse is a group.
Let Fand G be two functors, each from a group 4 to a group B, and
let %: F— G be a natural transformation. There then exists x € B
such that for all y € 4, F(y) = xG(y)x~! —i.e,, F and G are “‘con-
jugate” homomorphisms. An inner automorphism is a functor nat-
urally equivalent to the identity functor.

D. Let .# be a category with objects @ such that for every
A,B e 0 it is the case that (4,B) U (B,A) has at most one element.
Define the relation < on @ as follows:

A<Be (AB)#0.
< is a transitive, reflexive, asymmetric relation, i.e., (0,<) is a

partially ordered class. Given two such categories .#, and .#, with
classes of objects @, and 0O, a functor from .#; to .#, induces an
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order-preserving function from 0, to 0,. Moreover, any order-pre-
serving function from 0, to 0, is induced by a unique functor from
M 10 M,

Let (0,<) be a partially ordered class and define A =
{[4,B)| A < B}. We introduce a composition on 4 as follows:
[4,Bl[B,C] = [4,C); [4,B][B',C]is undefined if B 7# B

Then 4 is a category, O may be chosen as a class of objects for
A, and the partial ordering induced on @ by A is the original.

EXERCISES ON TYPICAL CATEGORIES

1. Let .# be a category with objects 0. Suppose # is a set. For
every A € 0, define F(A) ={x¢€ Jll range (x) = A} and for y: 4 —
Be #, define F(y): F(4) — F(B) to be the function induced by
composition. F is a one-to-one functor into the category of sets.

2. Let G be a semigroup (a set with an associative binary operation)
with a zero element 0 (Ox = 0 = x0, all x € G). A G-set is defined
to be a set S together with a “G-operation” on the set: for every
ge Gandse S thereis assigned gs € S. More formally, a G-set isa
set S together with a function G X §—§ such that for any pair
g, g € G and s € S it is the case that g(g's) = (gg')s. A pointed G-set
is a G-set with a distinguished element 0 € S such that for all s€ S,
0s = 0. A G-homomorphism between two G-sets is any function
h: S, — S, such that for all ge G and se S it is the case that
h(gs) = g(h(s))- A G-homomorphism between pointed G-sets is said
to be passive if it doesn’t kill any element: ie., forallse S — {0},
h(s) # 0.

Given any collection of pointed G-sets the collection of all passive
homomorphisms between them is a category. We shall call such a
category an algebraic category.

3. Returning to the category # of part 1, assume that 0¢.M
and define G = .# U {0}. G becomes a semigroup by defining all
products to be zero which are not previously defined in .. Redefine

INTRODUCTION 13

F(A) for A € 0 to be {x € A | range (x) = A} U {0}. F(4) is a one-
sided ideal in G. Given y: A — B, the induced function, F(y): F(4) —
F(B) is a passive map between pointed G-sets, and conversely, given
a passive homomorphism h: F(4) — F(B) we may define y = h(l4)
and obtain /h == F(y). Hence .# is isomorphic to an algebraic
category.



CHAPTER 1

FUNDAMENTALS

We shall work within a set-theoretic language such as that
in Kelly’s General Topology [17]. In the Introduction a category
was defined as a class # together with a “composition” relation
satisfying certain properties. We now explicitly impose what
was then tacitly understood, the axiom that for every two
objects 4 and B the class (4,B) is a set. (For heuristic purposes,
a set S is a class “small enough” so that it has a cardinality.
The class of all sets is not a set.) If A is a set we shall call it a
small category.

We have adopted the convention of composing maps in the
linguistic order, rather than the diagrammatic order. Since cate-
gory theory is intended to be applied to problems concerning
sets and functions, and since the linguistic order of composing
functions has been generally adopted ((fg)(x) = f(g(x))), the
theory ought to conform. Hence A £, B-L> C is written
A5

4

FUNDAMENTALS i5

The conflict could be avoided by writing the arrows in the
other direction: C <% 4 = C <.~ B <~ 4. But here again we
are confronted with the traditional precedent in older branches
of mathematics, and we hesitate to declare independence (largely
because we wish to avoid independence).

As often as possible we shall write “4 £ B L C” insteadof
“fg.” We are forced to write “‘fg” in expressions involving
addition of maps. The order conflict will concern us only
occasionally.

1.1. CONTRAVARIANT FUNCTORS
AND DUAL CATEGORIES

A contravariant functor from a category ., to a category
M, is a function F: #, — #, such that

CF 1. Ifeis an identity map in 4, then F(e) is an identity
map in A,.

CF 2. If xy is defined in #; then F(y)F(x) is defined in
A, and equal to F(xy).

(Sometimes we modify “functor” with the word covariant in
order to emphasize that it is not contravariant.)

For every category . we define the dual category #* =
{x*| x € M} where x*y* = (yx)*. The function D: M — M*
such that D(x) = x*, is a contravariant functor with a contra-
variant inverse D: M* — M, D(x*) = x.

If @is a class of objects for ., we may take 0* = {4*| A € 0}
as a class of objects for #*. Hence D(4 > B) = B* > A*.

For each property on maps or objects in categories there is
a dual property. If P is a property on maps in categories, P*
is the property defined by “x is P*” > “x* is P.”” Some proper-
ties are self-dual: P = P*, the most obvious example being
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the property of being an identity map. In the next chapter we
shall list a set of axioms for abelian categories and it may be
observed that if .# is an abelian category then so is .#*.
Hence for every theorem that follows from the axioms there is a
corresponding dual theorem; namely, the theorem in which each
property is replaced by its dual property.

1.2, NOTATION

Henceforth when we say that &/ is a category we shall inter-
pret & as being both the maps and a class of objects. Hence
the statemrents: “let 4 be an objectin ,” “let x beamap in &/
are legislated to be meaningful. We shall use only lower-case
letters for maps, upper-case for objects. “x € &/” means that
x is a map in &; “A € &/ means that 4 is an object in &.

The usual procedure used in defining a functor F: of —~ &
will be a two-step affair. In the first step we describe, for each
A € o, an object F(4) € Z. Inthe second step we describe, for
each x € (4,B) C 4, a map F(x) € (F(A),F(B)) C #.

Suppose that 4 is replaced by the category of sets &. In
the first step we must, for each 4 € &, specify a set F(A).

In the second step we must specify, for each 4 ~> Be «,a
function F(x): F(4) — F(B). To do so usually requires the
following initial horror:

“For y € F(A), [FOIp) =...."

Let this be taken as a warning for the next section.

1.3. THE STANDARD FUNCTORS

Let & be the category of sets, & an arbitrary category, and A4
anobjectin &. The functor.(4,—): & — & is defined as follows:
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For Be o, (A,—)(B) = (4,B) (the set of maps from A4
to B).

For B, =» B, € &, (A,—)(x) is the function
(A4,B,) 425 (A,Bs,) defined by
[(4,0))(A 2> B) = A 2> B, > B, € (4,B,).

The contravariant functor (—,4): & — & is defined as
follows:

For B e o, (—,A)B) = (B,A).

For B, > B, € &, (—,A)(x) is the function
(By,A) &4 (B,,4) defined by
[(x,A)|(B; 2> A) = B, *> B, 2> A € (B,,A).

1.4. SPECIAL MAPS

For the rest of this chapter and all of the next we shall be
working inside categories. That is, we assume that one category
is under discussion and that all maps and objects mentioned

are from that one category. Three special types of maps may
be mentioned:

A > B is an isomorphism iff there are maps
B> 4 and B 22> A such that
B2>A">Band A"> B> 4

are identity maps.
The property of being an isomorphism is self-dual.

A — B is a monomorphism iff the only pairs
C <> 4, C—> A such that
C *» A—> B = C-2» A —> B are the obvious ones:

X =J).
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A —> B is an epimorphism iff the only pairs

B> C, B-X> C such that

A —> B-*> C = A—> B> C are the obvious ones:
x =y.

Monomorphisms and epimorphisms are dual.

In the category of sets or abelian groups our definitions
coincide with the old (“monomorphism’™ means ‘“one-to-one,”
“epimorphism” means “onto”). The following propositions,
obviously true in the well-known models, can be proven in
general:

Proposition 1.41
If A — B — C is a monomorphism then so is A — B. If both
A — Band B — C are monomorphisms thensoisA ~B—C. |}

Proposition 1.42
If A — B — C is an epimorphism then so is B — C. If both
A - B and B — C are epimorphisms then so is A~ B —~C. |

Proposition 1.43
An isomorphism is both a monomorphism and an epimorphism.

Proof:
If A 2> B is an isomorphism then there are maps such that

. . b .
A %> B> A is a monomorphism and B> 4 —> Bis an
epimorphism. |

Proposition 1.44
If A->> B is an isomorphism then there is a unique map
B> Asuchthat A“>B'>A=1,and B> A—">B =

b . . .
13 and B—> A is an isomorphism,
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Proof: ,
Let b, and b, be as in the definition of isomorphisms.
B, A=B2>A'>4=B2>42>B2>4=B—x

B=2>A4=B2>4. |

Proposition 1.45
The composition of isomorphisms is an isomorphism. I

We say that two objects are isomorphic if there is an iso-
morphism between them. The above two propositions show
that the relation on objects so defined is an equivalence relation.

1.5. SUBOBJECTS AND QUOTIENT OBJECTS

Definition. Two monomorphisms 4, — B and A, — B are
equivalent if there are maps 4, — A, and 4, — 4, such that

Al AI

! T B and 1 e B commute.
/

A, %

A subobject of B is an equivalence class of monomorphisms
into B. We define the subobject represented by 4, — B to be
contained in that represented by A4, — B if there is a map
A, — A, such that

Y
4,
2

commutes.

Note that 4, — A, must be a monomorphism and unique.
From the uniqueness we may conclude that if it is also the
case that the subobject represented by 4, — B is contained in
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the subobject represented by 4, — B it follows that the sub-
objects are the same and that A, and A4, are isomorphic.
The relation of containment is a partial ordering on sub-
objects.

Note that the relation “is a subobject of” is not transitive.
Indeed, subobjects, as we have defined them, do not have
subobjects. But this is a baroque consideration. We are initially
misled, perhaps, by the transitivity of the relation “is a subset
of.” Such must be considered an isolated phenomenon. Consider
the relation “is a quotient group of”” in the classical theory of
groups, and recall that “quotient group” is there defined as a
set of cosets. Now a set of cosets of a set of cosets of 4 is not a
set of cosets of A. The relation “is a quotient group of”” is not
transitive.

Two epimorphisms B — C, and B — C, are equivalent if
there are maps C, — C, and C, — C; such that

Cl Cl
B / l and B / ] commute.
\ \
Cz C2

A quotient object is an equivalence class of epimorphisms.
The quotient object represented by B — C, is called smaller
than the quotient object represented by B — C; if there is a
map C, — C, such that

&

7

B I commutes.

N

Ce
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1.6. DIFFERENCE KERNELS AND COKERNELS

Given two maps A > B and 4 <> B we say that K — 4
is a difference kernel of x and y if

DK1. K—>A—>B=K—->A2 B

DK2  For all X—A such that X ~4——> B =X —~
A - B there is a unique X — K such that

X
v\
K> 4

commutes.

In other words, a difference kernel of x and y is a map into 4
which fails to distinguish x and y, and is universal in that respect
—Ii.e., is such that every map into 4 which fails to distinguish
x and y factors uniquely through it.

We are not asserting here that difference kernels exist. We
are only defining them.

Proposition 1.61

If K — A is a difference kernel of A~*> B and A 2> B then
it is a monomorphism and it represents the largest subobject
S of A such that S —~A~> B=S—>A-> B.

Proof:

Let C-*> K—A4 =C~> KA =C~> A. Then C =
A —+ B = C— A -©> B, by DKI. But by DK2 the factor-
ization through K is unique and hence a = b. |}

All difference kernels of 4 —> B and 4 - B represent the
same subobject, and conversely, if K — A4 is a difference kernel
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of A= B and 42> B and if K’ — A represents the same
subobject, then K’ — A is a difference kernel of 4 —> Band
A~ B.

The difference kernel of 4 = Band A - Bis the subobject
represented by any of its difference kernels and will be indicated
by the notation Ker(x-y). Formally, therefore, Ker(x-y) is a
subobject of 4. But the notation Ker(x-y) -4 shall be used
freely to refer to a difference kernel.

The dual notion is difference cokernel. Given 4 —> B and
A 2> B we say that B—F is a difference cokernel of x
and y if

DC1.. AX>B—>F=A-">B—F.

DC2. For all B — X such that A=> B—> X = A >
B —> X there is a unique F —> X such that

B——>F
N
X

commutes.

A difference cokernel must be epimorphic and if one exists
it determines a quotient object of difference cokernels called the
difference cokernel, symbolized by Cok(x—y).

1.7. PRODUCTS AND SUMS

Given a pair of objects A, B we say that an object P is a

product of 4 and B if there exists maps P> 4 and PX> B
such that for every pair of maps X — 4 and X — B there is a
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unique X" — P such that

A
7

X-—P commutes. .
\ll’z
B

Note that in the well-known categories of sets, groups, rings,

and topological spaces products can be constructed by taking
Cartesian products.

Proposition 1.71
If both P and P’ are products of A and B they are isomorphic.

Proof:

Let P2> 4, P2> B, p'Bs 4, PP B be the maps
described in the definition of products. There is a map P — P’

such that the diagram
A
Py
/ I

P— P
\ 8
Py
B
and there is a map P’ — P such that the diagram
A
23
7
P'—sp
PN
23
B

commutes,

commutes.
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The composition P — P’ — P = P == P shares with the map

1p the property that
A
7

PP
Nl”’
B commutes.

The uniqueness condition in the definition of products then
implies that x = 1. Similarly P’ —~ P — P’ is the identity. [

Products are determined “up to isomorphism” and we ought
not speak of the product. Again, this turns out to be a baroque
consideration. The notation A x B s interpreted as the product
of A and B, and it is assumed that

AX B> A and
A x B2> B,

though not uniquely determined, are fixed.
The dual of product is sum. Given a pair of objects A4 and B
we say that an object S is a sum of A and B if there exist maps

A-“> S and B-2> S such that for every pair of maps 4 — X
and B — X there is a unique map S —> X such that

AN

S—r X commutes.

1/
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Sums of the same objects are isomorphic; the notation
A + B refers to “the” sum of 4 and B; the maps A —> 4 +B

and B—> A + B are “the” associated maps.
In the well-known categories the word *“sum” is traditionally
replaced by:

Categories Sum

Sets Disjoint union

Abelian groups Direct sum (Cartesian product)
All groups Free product

Commutative Rings Tensor product

Given X > A4 and X = B, the unique map X -4 x B
such that

X—>AxBlsa=Xx3I54 and
X>AxBP2sB=X2>B

shall be designated X5 4 ¢ B,
x1
On the other side we define 4 + B (x—z-* X to be the unique
map such that

‘ ) x
A—‘>A+B(——’—> X=A- > X and
B“—’>A+B(‘—2)>X=B—"l+ X.

1.8. COMPLETE CATEGORIES

Given an indexed set of objects {4,}, in a category, its product
is defined to be an object I, A4, together with maps
{1,

i€l

A A
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such that for any family {X => A,), there is a unique X — 11,4,
such that X —I,4,%> A; = X—> A,. The dual notion is
sum and it is denoted {4; —> Z;4,}.

A category is left-complete if every pair of maps has a
difference kernel and every indexed set of objects a product.
Dually, a category is right-complete if every pair of maps has a
difference cokernel and every indexed set of maps a sum. If a
category is both left- and right-complete it is complete.

1.9. ZERO OBJECTS, KERNELS, AND COKERNELS

A zero object is an object with precisely one map to and
from each object. We reserve the symbol O for a zero
object. Hence the sets (0,4) and (4,0) have one object each,
for all 4. The category of sets does not have a zero object;
the category of groups does: namely, the group with one
element.

If the category has a zero object we define the zero map
A—>> B to be the unique map 4 — O — B. (It does not matter
which zero object is used.)

The kernel of A —> B is defined to be the difference kernel
of A—*> Band A —> B.Henceif K — Aisakernelof 4 —> B
then

K. K—>A>>B=K-B
K 2. For all X — A such that
X

N

A= B commutes
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there is a unique X — K such that

X
K—s A commutes.
The usual notation for kernel of x is Ker(x). (Hence Ker(x) =
Ker(x-0).)
The cokernel of 4 = B is the difference cokernel of A ~—> B
and A —— B, and it is symbolized by Cok(x).

EXERCISES

A. Epimorphisms need not be onto

1. Let R be the topological space of real numbers, Q C R the
subspace of rationals. The inclusion map @ — R is an epimorphism
in the category of topological Hausdorf spaces and continuous maps.
Indeed, dense subobjects may be defined as those represented by
epimorphic monomorphisms.

2. The values of a functor need not form a subcategory, i.e., need
not be closed under composition. The construction of the minimal
counterexample will be useful in a later exercise.

Let [—] be the category with two objects L and R and just three
maps: 1, 1z and a map L — R.

Let [->—] be the category with objects L, M, and R and just six
maps: the three identities 15, 1,, 1k, a unique map in (L,M) to be
called L — M, a unique map in (M,R) to be calied M — R, and
their composition L — R the unique map in (L,R).

The sum of [—] with itself in the category of small categories may
be constructed as the category with objects L, R;, L,, R, and just
six maps: the four identities and the two maps L; — Ry, L, — R,.
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Define the functor [—~] + .[—+] —> [->—] by the following;:
m(L) =L '
m(Ry) = m(Ly) =M
m(Ry) = R
a(ly—>R)=L—-M
n(Ly— Ry)) = M — R.

mr is an epimorphism in the category of small categories. The map
L — Ris not a value of . The maps L — M and M — R are values.

B. The automorphism class group

Let & be a category, and I the class of functors from &/ to &/
which are naturally equivalent to the identity functor. We say that
F: o — & is an equivalence if there is a functor G: & — &/ such
that FG and GF are in I. Let J be the class of functors from &/ tos/
which are equivalences. I and J are closed under composition. Let
K be the class of natural equivalence classes of J. K, if it is a set, is a
group, and is calied the automorphism class group of /.

1. Let & be the category of ordered sets and order-preserving
functions. Let D: o/ — o/ be the functor which assigns to each
ordered set the dual (opposite) ordered set. The automorphism class
group of &/ has at least two elements.

2. For many interesting categories, the automorphism class group
is trivial. When such is the case it is significant for roughly the same
reasons that it is significant that the groups of field automorphisms
of the reals is trivial. All the structure on the real numbers may be
recaptured from the field structure alone; any property on real
numbers may be, perhaps laborously, defined solely in terms of the
properties of that number as an element of a certain field.

In essence the triviality of the automorphism class group means
that all the structure on an object that can be defined anywhere can
be defined “categorically”—in terms of its properties as an object in
an abstract category. In throwing away everything except the way
in which the maps compose, enough remains so that all the original
structure may be recovered.
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C. The category of sets
Let & be the category of sets and functions. A set D with one
element is distinguished in the category by the fact that (4,D) has

one element for all 4 € &. The elements of a set 4 are in obvious )

correspondence with the maps (D,4). The automorphism class
group of & is trivial.

To prove it, let F: & — & be any automorphism and first observe
that F(D) still has precisely one element. Define, for each 4 € &7, the
function A — F(A4) to be such that

D —> F(D)

xl LF(x)

A —> F(A)

commutes for all x € (D,A).

D. The category of small categories

Let € be the category of small categories. The empty category is
distinguished by the fact that there are no functors (maps) into it
aside from its own identity map. The category consisting of a single
identity map, which category shall be denoted by “1,” is distinguished
by the facts that it is not the empty category and that (1,1) has a
unique element. The special category [—] defined in Exercise A is
distinguished, up to isomorphism, by the facts that (1,[—]) has two
elements and ({—],[—]) has three elements. The category [~] + [—]
is distinguished by the fact that it is the sum of [—] with itself. The
category [>—] is distinguished by the fact that (1, [>—>]) has three
elements and ([—], [—=—]) has six elements, and by the existence
of an epimorphism

(-] + =D > [l

There are two such epimorphisms. We choose one of them and call
it 7.

There is a unique map [-»] —> [->—] which does not factor
through 7.
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1. The objects of a small category A are in obvious correspondence
with (1,A).

2. The maps of A4 are in obvious correspondence with ([—], 4).

3. Given the category € and an object 4 € €, may we reconstruct
the composition table for 4?7 Not quite. The automorphism class
group of € has at least two elements: the identity and the “dual”
functor which assigns to each small category its dual. The choice
mentioned above in selecting « will determine whether we construct
the composition table or the dual composition table.

We may, however, do one or the other, as follows: Given two

maps in A, represented by [] —> A and [-»] <> 4, their compo-
sition is defined and equal to the map in A represented by [»] —> A4
iff there exists a map [+—] — A4 such that

commutes.

4, The automorphism class group of ¥ is the cyclic group of
order two.

5. The automorphism group of the category of partially ordered
sets and order-preserving maps is the cyclic group of order two.
(By Exercise 0-D we may consider the category of partially ordered
sets to be a part of the category of small categories. It contains the
special objects [—], [>—], [] + [—] and they are distinguished
by the same facts.)

E. The category of abelian groups
Let & be the category of abelian groups. The group of integers Z
is distinguished, up to isomorphism, by the facts that:

(1) For every 4 € %, A not a zero object, (Z,4) has more than
one element.
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(2) If Z-=> Z is such that ¢ = ¢, then either e = 1 or e = 0.

Z + Z is distinguished by the fact that it is the direct sum of Z
with itself in 4. Let Z 2> Z + Z be the unique map such tha

1
Zl+z+z&LZ=1 and

0
Zi+z+zﬁLZ=L

1. The elements of A € ¢ are in obvious correspondence with
(Z,4).
2. Given two elements represented by Z —> A and Z > 4, their

sum in 4 is represented by Z 2> Z 4 Z % A.
3. The automorphism class group of ¥ is trivial.

F. The category of groups
Let & be the category of all groups, abelian or not. The group of
integers is distinguished by the same facts as in Exercise E. The map

Z-2>Z+Z is not distinguished. There are two maps with the
following properties:

1
mzl+z+z§LZ=L

0
mzi+z+z&Lz=L

[

3 Zz »Z+Z
l(d.l)
’ Z+2)+2

Z4+Zgp Z+(Z+Z) > Z+Z+2Z

commutes.
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(Tedious computation is needed. Recall that Z +2Z is the
free sum.) s

We choose Z —> Z -+ Z to be one of the two maps and as in
Exercise E we recover either the multiplication table of A € # or the
dual multiplication table.

The automorphism class group of % is trivial. The two-way
choice for & suggests that there are two elements in the group. How-
ever, the functor D: & — % which carries each group into its dual
(opposite) group is naturally equivalent to the identity.

G. Categories of topological spaces

1. Let 7 be the category of topological spaces. The space S with
two elements and the nonextremal topology (S has three open sets),
is distinguished by the fact that (S,S) has three elements. The space
with one element, “D,” is distinguished by the fact that (S, D) has one
element. Choose one of the two maps in (D,S) and call it D - S.
There is an obvious correspondence between the elements of 4 € 7
and the maps (D,4). For every map A— S, let 4, C(D,A4)
be defined by 4, = {D —~ A | D—~ A4 —> S = u}. Then one of the
two following facts is always true (depending on the choice
of u):

(i) Forevery A = S, A, corresponds to a closed subset of A and,
conversely, every closed subset of 4 corresponds to 4, for some map
A= S. '

(ii) For every A= S, A, corresponds to an open subsct of 4 and
conversely.

Which of these two possibilities is true may be tested by the
following: Let A4 be any object in 7 such that for every D —> 4
there exists a € (4,S) such that 4, = {x}. If for all such A every
subset of (D,A) is of the form A, for some a€(4,5), then (ii)
is true.

The automorphism class group of J is trivial.

2. Let 7, be the category of T; spaces, i.e., those in which single
points are closed. The space S does not live in J ;. The space D is
distinguished by the fact that (4, D) has one element for all 4 € 7.
A subset C C (D,A) corresponds to a closed set iff there is a space
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X and maps A — X, D—> X such that
C={D"> A|D"> A—>X=u}.

The automorphism class group of 7, is trivial.

3. Let 7, be the category of Hausdorf spaces. The space D is
distinguished by the same fact as before. C C (D,A) corresponds to
a closed set iff there is a space X and maps A 2> X, A=> Xsuch
that G = {D <> A| D> A-“> X = D> A=> X}. (Every
closed set is a difference kernel and conversely.) The automorphism
class group of 7, is trivial.

H. Conjugate maps

For distinct objects A and B in a category &/ we say that 4 => B
and A ¥ B are conjugate if there are automorphisms ¢, € (4,4),
&, € (B, B) such that

AL B=APs 45> pY p

We say that 4 = A and 4 —> A are conjugate if there is an auto-
morphism ¢ € (4,4) such that

A2> A= 44> 45> 455 4,
A functor F: & — & is an inner automorphism if:

(1) F is naturally equivalent to the identity.
(2) F(A) = A forall A € &7.

1. Two maps are conjugate iff there is an inner automorphism
which carries one into the other.
2. The two é's of Exercise F are conjugate.

I. Definition theory

Let & be the category of groups. Suppose F(A) is a one-variable
formula in the nth order language of the theory of groups (where the
one free variable is understood to be a group). There exists a formula
F'(A) in the nth order theory of # such that F'(4) <> F(A). Indeed,
F' will often be in a lower order language than that of F, as is the
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case for F(A) © A is isomorphic to the infinite cyclic group.

F(A) © Ved{[x e (A,B) A [(x # 0) V(B = O)]}
AVilee (4 A A (e =e)—>[e=0V(e= D]}

Moreover, for each of the above mentioned categories with
trivial automorphism class group the same situation occurs. In the
case of the category of small categories we must take the map

[-] + [=] > [=—] as an additional predicate.

CHAPTER 2

FUNDAMENTALS OF ABELIAN
CATEGORIES

A category &/ is abelian if
A 0. </ has a zero object.

A1l.  For every pair of objects there is a product and
Al1*. asum.

A2. Every map has a kernel and
A 2*. acokernel.

A 3. Every monomorphism is a kernel of a map.
A 3*. Every epimorphism is a cokernel of a map.

Axiom A 3 may be read as ‘““every subobject is normal.”” Most

categories that arise in nature satisfy Axioms A 0 through A 2.

Often Axiom A0 is satisfied by using base points. Many

categories satisfy one of A 3 or A 3*. Compact Hausdorf spaces
35
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with base points satisfy A 3; all groups (abelian or not) satisfy
A 3%,

2.1. THEOREMS FOR ABELIAN CATEGORIES

Consider an object 4. Let S be the family of subobjects of A4,
Q the family of quotient objects. Define Cok: S — Q to be
the function which assigns to each subobject its cokernel.

Dually, define Ker: Q — S to be the function which assigns
kernels. Note that Cok and Ker are order-reversing functions.
Axioms A 3 and A 3* are equivalent to:

Theorem 2.11 for abelian categories
Ker and Cok are inverse functions.

Proof:

Let A’ — A be a monomorphism. By Axiom A 3 it is the
kernel of some map 4 — B. Let A — F be the cokernel of
A’ — A and let K — A be the kernel of 4 — F. We shall apply
the definition of kernel and cokernel a number of times. For
each it will be necessary to verify that a certain composition is
the zero map. To begin: A" — A4 — B = 0 and there is a map
F — Byielding a commutative diagram:

Ker(A > B)y = A’ F = Cok(A’ — A)
NS
4
7\
Ker(A -~ F) =K B

A’ — A — F = 0; there is a map A" — K such that
AI

T~
}

A commutes.
K
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K — A — B = 0; there is a map K — A’ such that

AI

\
3 A
K~

commutes.

Thus the subobjects represented by 4" — A4 and K — A4 are
contained in each other and hence equal. A" — A4 is a kernel
of A — F. Thus KerCok = Identity, and dually, CokKer =
Identity. [}

Theorem 2.12 for abelian categories
A map that is both monomorphic and epimorphic is an iso-
morphism.

Proof:
Let 4 — B be monomorphic and epimorphic. B — O is

clearly the cokernel of 4~ B. B— B is clearly a kernel
of B — O. By the last theorem so is 4 — B. (Already we have
shown that 4 and B are isomorphic—they are both kernels

of the same map. The theorem asserts that the map 4 — B
is an isomorphism.) Hence there is a map B> A such that
B> A=> B = B—> B. Dually we note that O —~ A4 is a
kernel of 4> B and that both 4~ B and 4 —> A are
cokernels of O — A. Hence there is a map B> A such that
A—> B=> 4 = A— A. By the definition of isomorphism,
A—— Bissuch. []

The intersection of two subobjects of 4 is defined to be their
greatest lower bound in the family of subobjects of A.

Theorem 2.13 for abelian categories
Every pair of subobjects has an intersection.
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Proof:

We shall prove a stronger property. Let 4, — 4and 4, —~ 4
be monomorphisms, 4 — F a cokernel of 4, — A and 4,, — A,
a kernel of 4, - A — F.

First note that since

Ay — 4,

M
A-—F

is zero there is a map A,; — A4, (necessarily monomorphic)
such that

(2.131) Agp — Ay
! !

A, — 4 commutes.

(We use the fact that 4, = Ker(4 — Cok(x,)).)
Let X — 4, and X — A, be any pair of maps such that

X""’A2
11

Ay — A commutes.

We shall show that there is a unique X — A, such that
X—>A12—>A1=X_)‘A1 and X_)A12_)A2=X—+A2

(when X “is a subobject” we will have proved containment in
A12)-

Themap X — A, existssince X >4, - F=X—> A4, >F =
0 and A4,, — A, = Ker(A, — F). Thus there is a unique map
X — Ay, such that X — A4,, - A, = X — A,. The other equa-
tion follows from X — A, > 4, > A = X > 4, - A =
X — A, — A and the fact that 4; — A4 is a monomorphism. [}
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Dually every pair of quotient objects has a greatest lower
bound. Since Ker and Cok are order-reversing and inverses of
each other, every pair of subobjects has a least upper bound.
Hence the family of subobjects of A is a lattice. We shall use
the standard lattice symbols UJ and .

Theorem 2.14 for abelian categories
Every pair of maps A—> B, A=> B has a difference kernel.

Proof:

We construct the difference kernel by “intersecting the
graphs.”

Consider the monomorphisms 4 2> 4 x B and 4 42>
A X B. Let K — A x B represent their intersection. ((1,x) is a
monomorphism since when it is followed by p, the composition
is a monomorphism.) We obtain a commutative diagram:

kzl l(l.y)

By applying p, we see that k; = k,, and by applying p, we see
that K > 4 <> B = K*> 42> B(wherek = k, = k,). Let
X —>A be such that X > 4"> B= X —>A2> B. Then

X——> 4

i

A5 A x B commutes.

(to prove it apply both p; and p,), and by the proof of Theorem
2.13 there is a unique factorization of X — A through K — 4. ]
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Dually for every pair of maps 4 = B, A > B there is a
difference cokernel.
A commutative diagram

is a pullback diagram if for every pair of maps X — 4 and
X — B such that

X—>B
Voo

A—->C commutes,

there is a unique X —P such that X -P—>A4 =X~ 4
and X—-P —> B = X— B. Our proof in Theorem 2.13
was actually a proof that Diagram 2.131 was a pullback
diagram.

Theorem 2.15 for abelian categories
Every diagram B

A — C can be enlarged to a pullback diagram.

Proof:
Consider 4 X B and the two maps 4 x B> 4 —~C and

Ax B2» B> C, and let K— A4 x B be their difference
kernel. Define

K>A=K—>AxBE> 4

K>B=K—A4x B2>B.
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It is easy to verify that

K—B

Vool
A—~>C

is a pullback diagram. [}

Proposition 2.151
P—>B P —B
Ifl Vand | | are pullback diagrams then P and P’
A—-C A ->C
are isomorphic. Indeed there is a unique map P — P’ such that

A/ \B
NP

Pl
commutes, and it is an isomorphism.

Proof:

Virtually the same as for products (Prop. 1.71). To make it
easy we may note that in the category whose objects are
{(4 — C)| A € «}(C fixed) and whose maps are described by
(A4—>C,B—>C)={Ad—>Bec(4,B)|4A—B—C=4-C},
the product (P — C) = (4 — C) x (B—C) is precisely the
diagonal map of the pullback diagram in «/. |}

A commutative diagram

A—B

[
C—P
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is a pushout diagram if for every pair of maps B — Xand C — X
such that

A—B

Lol

C—X commutes,

there is a unique P — X such that B—»P —» X = B— X and
C->P->X=C—X

Theorem 2.15* for abelian categories
Every diagram A — B

c can be enlarged to a pushout diagram,
and, up to isomorphism, uniquely so. .

The image of a map 4 — B is properly defined as the smallest
subobject of B such that 4 — B factors through the representing
monomorphisms. ‘

Theorem 2.16 for abelian categories
A — B has an image and it is equal to KerCok(A — B).

Proof:

We shall say that a monomorphism S — B allows A — B
if A — B factors through it, i.e., if there is a map 4 — S such
that A - S — B = A — B. We shall say that an epimorphism
B — Fkills A — Bif A — B— F = 0. These two properties are
subobject and quotient object properties respectively.

Lemma. A subobject allows A — B iff its cokernel kills
4-B 1

Now Cok(A — B) is the largest quotient oI;ject that kills
A — B. Hence KerCok(A — B) is the smallest subobject that
allows 4 — B, i.e., it is the image of A - B. |}
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Notation: Im(A-—> B) or Im(x) is the image of 4 —> B.

Theorem 2.17 for abelian categories
A — B is epimorphic iff Im(A — B) = B, and hence, iff
Cok(A — B) = O.

Proof:

- Clear.

“« If Cok(4 — B) = O then by last theorem Im(4 — B) =
B-> B. Suppose A -~ B> C = 4 - B> C. Let
Ker(x-y) — B be the difference kernel of x and y. Then there is
A — Ker(x-y) such that 4 — B = A — Ker(x-y) - B, and
Ker(x-y) contains the image of 4 — B. Thus Ker(x-y) = B and

x=y }

For A= B there exists a unique map 4 — Im(x) such that
A — Im(x) - B=A-—> B.

Theorem 2.18 for abelian categories
A > Im(x) is epimorphic.

Proof:
If Cok(A — Im(x)) # O, then A — Im(x) factors through a
proper subobject of Im(x), which contradicts the definition of

Im(x). |}

The dual of image is coimage. The coimage of 4 — B is the
smallest quotient object of A through which 4 — B factors.
Notation: Coim(A — B), Coim(x).

Theorem 2.16* for abelian categories
Coim(A — B) = CokKer(4A — B). |}
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Theorem 2.17* for abelian categories
A — B is monomorphic iff Coim(A — B) = A iff Ker(A — B) =

o. 1
Let A — I' be a coimage of 4 — B and consider 4 — I’ — B.

Theorem 2.18* for abelian categories
I' — B is monomorphic. |}

“Unique factorization theorem”
for abelian categories, 2.19

IfA — B = A — I — Bwhere A — I is epimorphic and I — B
is monomorphic, then A — I is a coimage of A — B and I — B is
animage of A — B and for any other such factorization A — 1 —~ B
where A — [ is epimorphic and I — B monomorphic, there is a
unique I — I such that

N
\ I / commutes,

and I — I is necessarily an isomorphism. |}

2.2. EXACT SEQUENCES

Theorem 2.21 for abelian categories
For A — B — C the following conditions are equivalent:

(@) Im(A — B) = Ker(B — C)
(b) Coim(B — C) = Cok(A — B)
) A>B—>C=0and K—-B—~F=0

where K — B is a kernel of B~ C and B— F is a cokernel of
A — B.
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Proof:

(a) = (¢) That A - B — C = 0 is clear; we must show
that K — B — F = 0. We note that Ker(B — C) = Im(A — B) =
KerCok(A — B) = Ker(B — F). Because K — B is a kernel of
B — C, it follows that K — B — F = 0.

() > (a) Let I — B be a kernel of B — F, and thus an
image of 4 —B. Since K—B—>F =0, Ker(B—C) C
Im(A — B). On the other hand, since A -B—~C =0,
Im(A — B) C Ker(B — C).

That (b) <> (c) is proved dually. |

We say that a sequence - - — 4, — Ay —> Ay > Ay —> - is
exact if for each i, Im(A;,_, > A;) = Ker(4; — A,;,,).

Proposition 2.22

O—->K—>4 is exact iff K — A is monomorphic.

O—~K-—>A—B is exact iff K— A is the kernel of
A — B.

B—~>F—0 is exact iff B— F is epimorphic.

A—-B—>F—0 is exact iff B — F is the cokernel of
A — B.

O—->A—->B—-0 is exact iff A — B is an isomorphism.

A—~B—> B is exact iff A — B is the zero map.

O —~ A —>B—C— 0 isexact iff A — B is a monomorphism
and B — C is a cokernel of A—~B. |}

2.3. THE ADDITIVE STRUCTURE FOR ABELIAN
CATEGORIES

Theorem 2.31 for abelian categories

®

The sequence O — A —> 4 + B B — O is exact.
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Proof:

A-> 4 + Bis clearly monomorphicsince 4 > 4 + B E.L
A is. To prove that 4 + BQ> B is a cokernel of u,, let
A +B(;—)> X be a map such that Aﬂ+A+Bi)>X=O.
Thenx = Oand 4 + B> x = 4 +BQ> B> x. |

Theorem 2,32

0>A22 4 xB2> B O is exact. l

Proposition 2.33 for abelian categories
The intersection of A => A + B and B> A + B is zero.

Proof:
The proof follows from the construction of intersections. [

Dually, 2.34
The greatest lower bound of the quotient objects A x B> A
and A x B=> Bis0. |

By Ker-Cok duality, the least upper bound of 4 => 4 + B,

B-*> 4 + B is A+ B. Given a sum Ay + Ay -+ A,
and a product B, X --- X B,, every map from the sum
to the product is represented uniquely by a matrix (x;,;)
where

A" B =A,;=> A, + -+ A,— B, X -+ X B, 2> B,

Theorem 2.35 for abelian categories

G

A, + Ay —> A, X A, is an isomorphism.
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Proof:
Let K— A4, + A, be the kernel of ((1) (l)) Then K —

1 0

)
A1+A20—1>A1 ><142'£a—> A2=K—)‘A1+A2;>A2 and
K — A, + A, is contained in 4, => 4, + A,. Similarly it is
contained in 4, —> A, -+ A,, and hence it is contained in their

itersection, which is zero. Thus K = O and ((1) (1)) 1S mono-
morphic. Dually it is epimorphic and hence an isomorphism. [

1 0
Thus A4, + 4, 92* Ay, A] + A, (1—)> A, may be taken as the
product of 4, and 4,.
Notation: A @ B shall be used to denote the sum 4 + B
and the product 4 X B, and shall be called the direct sum of
A and B.

(1,1)

AS> A@A=A4"> 4 + Athe “diagonal map.”

®

A®A— A=A x A—> A the “summation map.”
Given two maps 4 — B, A-~> B we define

1 G)

A—->B=A> 404> B

x+y
A=X>B=4% B x B> B.

Proposition 2.36
O4+x=x=x4+0; 0+x=x=x+0.
L L R R
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Proof:
A@A—)>B A+ A2 4-">B
and A-—> A+A(—>B A—>A+A2> 45> B

=4 B. |
Proposition 2.37
For B—> C, (ux + uy) = u(x + y) and for C > 4,
L L

(xz —Iii- yz) = (x —1{; )z

Proof:
)
A+45 B> C= A+A-(——>C. |
Theorem 2.38

-+ and + are the same binary operations, and they are (it is)
L R

associative and commutative.
Proof:

G 7

Consider 4-> 4 ® A~ B@® B->> B. Observe that

(;” ’;) - ((;”) (z)) (i.e., if we label 4 @ A = D and (;”) —

d]_, (;) = dz, thel’l (;J z) = (dl,dz))- Thus

v passe - [() (1]

Y/ g \2Z
and
A"—»A@A(’—>B@B B=[(w)6+(x)6
Y/ gr \Z
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On the other hand, A ~> 4 @ A->"> B® B = [(w,x) + (3,2)]
L

and A — (4 @A)b——* (BO®B)—>B=w+x)+(y +2).
R L R
Thus (w + x) + (y +2) = (W + ) + (x +2). Letting x =
R L R L R L
y—Oweobtainw+z—w+z
Calling both + and + by the same name “‘+” the equation

rewrites: (u+x)+(y+z) (u +y) + (x + 2); letting y = 0,
uM+x)+z=u+(x+2),and letting u=2z=0, x +y=

y +x l

The usual rules of matrix multiplication can now be proven.

Theorem 2.39 for abelian categories
The set (A,B) with the operation + is an abelian group.

Proof:
1 x
Given 4 — B consider the map 4 @ B 25 4@ B Its

1 x
(a,b)

kernel K22 4 @ A is such that 0 = K="> A ® B ~—>

(a.xa+b

A®B=K—> A®B and a =0,b =0. Thus ((1) )lc)

is monomorphic. Dually it is epimorphic and thus an iso-
morphism. It is easily seen that its inverse must be of the form

((1) }1)) where y + x =0. |}

From now on, (4,B) shall refer to the group of maps from
A to B. For each triple 4,B,C we have a bilinear function
¢: ((4,B),(B,C)) — (4,C) defined through composition of maps.
The endomorphisms of an object 4, that is, the maps from Ato A4,
form a ring with unit.
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2.4. RECOGNITION OF DIRECT SUM SYSTEMS

A set of four maps

A, 2> S, A, S
SH> 4, S 4,

is a direct sum system if S is a direct sum of A4, and A, and

u, = (1,0, = (O,1), p, = ((1)

on the recognition of direct sum systems are the following:

), P2 = ((1)) Two useful theorems

Theorem 2.41 for abelian categories
If uy, uy, py, p, are such that

A= SE A =1, A, 584, = 1,
Al_ﬂ_)Sﬁ*Az——-O, Az_“L)S&*A]:O,

and u\p, + usp, = lg,
then uy, u,, p,, p, form a direct sum system.

Proof:

Let X=> 4, and X > 4, be an arbitrary pair of maps.
Define X~ § = X1 + Usxy. Then pix = pi(ux; + upp,) =
PrthXy + PilipXy = X15 PoX = Py(th X1 + UpX,) = Pathy X; + DaliaXy =
Xo. We shall know, then, that {S 25 Ay, S B> Az} is a product,
once we know that x = u;x; + u,x, is the only map such that
P1X = X3, poX = X,. But for any such x,

X = lgx = (Up; + Ugpy)x = yx; + upx,.
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Dually (4, 2> S, 4,—*> ) is a sum of 4, and 4,, and the
theorem is proved. ]

Theorem 2.42 for abelian categories

If uy, uy, py, ps are such that A > S8 Ay =14, 4, =
SE> Ay = 1,, and A, => S B> 4, and 4, => S P> 4, are
exact, then u,, u,, p,, p, form a direct sum system.

Proof:

Just as in the last proof, it may be shown that for every pair
(X > 4, X => 4,) there is a map X ~> S such that p,x =
X3, P2X = X,. For the uniqueness of x suppose x’ is such that
Pix" = X1, pex’ = X,. Let z = x — x" and note that p;z =0,
P22 = 0. We must show that z=0. 0 - 4, > g0, Ay
is exact since v, is a monomorphism (p,u, is a monomorphism).
Hence there is a map X — 4, such that

X

00— A, = S5 4, commutes,

and X—>A1=X—)Al—l>Al=X-—>A1u—1>Sp—l)A2=
X— S%> 4, =0.Hence X > S = X—> 4, - § = 0.

2.5. THE PULLBACK AND PUSHOUT THEOREMS

Proposition 2.51 for abelian categories
(Ker(s—y) = Ker(s—y))

Given A~> Band A=~ B, let z = x — y. Then Ker(A—> B)
is the difference kernel of A—> B and A <> B. |
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Theorem 2.52 for abelian categories

Let
P-—>B

Lo

A—->C
be a pullback diagram and K — P a kernel of P — B. Then
K—~P—A is a kernel of A— C. In particular, P— B is
monomorphic iff A — C is monomorphic.

Proof:
Suppose X — A4 is such that X - 4 — C = 0. Then the
diagram
X-—>B

b

A—C

commutes and there exists a unique map X — P such that
X—>P—>A=X-—>4and X —P— B =0. From the latter
we obtain a unique map X — K such thatX - K —>P — A4 =
X—4. |

Proposition 2.53 for abelian categories
Given a square
C- 4
bl ls
B - P
)

consider the sequence C “®> A ® B—">P.

CA®B—-P=0 iff the square commutes.
O0->-C—>A®B—P is exact iff’ the square is a pullback.
C—-ADB—-P—->0 is exact iff the square is a pushout.

O—->C—>A®B—>P—0 is exact iff the square is both a
pullback and a pushout. |}
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In the last mentioned case the square is said to be a Doolittle
diagram. (The apparent asymmetry of the sequence vanishes
when it is observed that the minus sign could have been placed
before any one of the four maps.)

Pullback theorem 2.54 for abelian categories

If

MNo— Ny
!
O«

!

is a pullback diagram and B — C is epimorphic, then so is
P— A

We shall prove the dual:

Pushout theorem 2.54*

I

is a pushout diagram and C —> A is monomorphic, then so is
B P.

Proof:

5
By hypothesis the sequence C23 4 @ B L p 0 is

(a.b) . . .
exact and C®®> 4 ® B is a monomorphism since C <2

A®BE> 4is. Hence, the diagram is a Doolittle diagram, in
particular it is a pullback diagram and Theorem 2.52 applies. [}
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2.6. CLASSICAL LEMMAS

We have proved all the “internal” lemmas on abelian cate-
gories that will be needed for the weak embedding theorem.
Once that theorem is proved an infinite variety of lemmas
become provable by checking their truth in the category of
abelian groups, i.e., by the classical procedures of “chasing”
elements around diagrams. This process will be elucidated in
Chapter 4.

In this section we shall state and prove a number of such
lemmas for abelian categories. We of course do not use the
weak embedding theorem. The proofs are, however, instructive
and the lemmas will be needed, albeit after the proof of the
weak embedding theorem.

Throughout this section we suppose we are working in an
abelian category.

Lemma 2.61 for abelian categories
Suppose that the commutative diagram

By, — By,

! L\
O — By — By, — By

is such that the bottom row is exact. Then the square

Bn g Bm

! i
le g Bzz

is a pullback iff O — By, — Bys — By3 is exact.
Proof:

- We shall prove that By, — B, is a kernel of By, — Bas.
Suppose X — By, is such that X — B;, — By; = 0. Since
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X ——>.Bl2 — By, when followed by B,, — B, is zero, we have
a unique factorization X — By, such that X — B,; — B,, =
X — By — By,. That is, the diagram

X — B,
! !

By, — B,, commutes,

and hence there is a unique factorization X — B,; such that
X — By, = By, = X — B,

< Let 0 - le - B22 — B23 and 0 —r Dy Blz > Dgg
be exact and

X — By
l l

By — B,y commutative,

Since X — By; — By; = X — By, ~> B,y — B,; = 0 we have a
upique factorization X — By, such that X — B;; — B,, is the
given X — B,,. We will know that B, is the pullback when it
is established that X — B, — B,, is the given X — B,,.
But X — By, — By, — By, = X > By =By —>Bp=X—
Byp — By = X — By — B,,. Since By — By, is a mono-
morphism it may be cancelled from the extremes of the last
equation. |

Lemma 2.62 for abelian categories
If B, — By is a monomorphism,

Ker(B, — B,) = Ker(B, — B, — B;).

Proof:
X—>Bl_)B2=Oiﬁ’X_>Bl——>B3=O' l
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Lemma 2.63 for abelian categories
Consider the commutative diagram

)

!
0—>B0’—>Bl_>82—'>0

1
R
0 — Bo — Bl - Bg
in which the top row is exact. The bottom row is exact iff the

column is exact.

Proof:
< By preceding lemma.
—> Consider the commutative diagram

o

!
P—-K -0
Voo

0_)BO_>B1_>82_)‘0

Py

0_)‘B0_>B1_)‘Ba

in which the two bottom rows and the right hand column are
exact, and the (sub)diagram

P K

Voo
B, — B, is a pullback diagram.

The top row is exact by the pullback theorem, 2.54. We wish
to prove that K = O. It suffices to prove that P — K—B, =0.

P — B;—> B, — B = Oimplies that there is a map P —~ B,
such that P — B, = P — B, — B,. Hence P > K — B, =
P—>B —B,=P—>B,—>B—~B=0 |
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Lemma 2.64 for abelian categories
Consider the commutative diagram

(0] (0] (0]
! ! }
O — By; — By, — B,
! } 1
O — By, — By, — By;
! !
O — By, — Bj,
! with exact columns and
o exact middle row.

The top row is exact iff the bottom row is exact.

Proof:

Since B,; — B,; is monomorphic, O — By; ~> Byy — By3 is
exact iff O — B,; — B,, — By; is exact (by 2.62). O — B;; —
B, — B,; is exact iff

By, — By,

! l

By, — By, is a pullback diagram (by 2.61).

Again by 2.61 (turned sideways),

B,y — B,

! !
By, — By,

is a pullback diagram iff O — By, — By, — B, is exact. Since
O — By, — By, — By, is exact, Q — By; — By, — B, is exact iff
O — B,, — B, is exact (by 2.63). |}
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“Nine lemma’* for abelian categories, 2.65
Consider the commutative diagram

(0] 0 (0]
! l !
O — B,y > By —B8;;,~> 0
! i i
O — By — Byy — By — O
! ! !
O — By; — B3y —> By; —~ O
! l l with exact columns and
0 o o exact middle row.

The top row is exact iff the bottom row is exact.

Proof:
Simply adjoin the last lemma and its dual. [

The full proofs of the following are left as exercises.

2.66 Noether isomorphisms

By/By, B
(Let By, C By, C By, then /B _ B ) Let By, — By, and

B21/ Bll - BZI
let By, — By, be monomorphisms. Then there exists an exact
commutative diagram:

0 0 0
i ! !
O—- B, —- B, —- 0
! ] ]
O—~ By — By — Bys[Byy — O
! i }
O — By/[By; — Bzz/ B,; — Bzz/ By, — O
! i) $
0 0 (0] l

* ““Three-by-three lemma’” would be a better name.
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2.67
( By By YUBy
Bl2 N B2l - B 21
monomorphisms such that the union (least upper bound) of their
images is Byy. Then there exists an exact commutative diagram:

.) Let BlZ - Bzz and B21 - Bgz be

(0] (0] (0]
! ! !
O—~ B, — B — BIZ/BII -0
! ! !
O— By — By — 322/321 -0
! ! !
0~ le/Bn g 322/312 - 0
! !
0 0 i

Splitting maps, 2.68

Let By, — By, be such that there is a map By, — By, such that
By, — By, — By, = 1. Thenif O — By, —> Byy — By — O is exact
there is a map Byg — By such that Byy — B,y — Byg = 1, and By,
together with the four maps to and from By, and By is a direct
sum system.

Proof:
Use the nine lemma (2.65) on the following:
o o
) !
0 d B12 Aol Bl3 i 0
! ! {
O — By — Byy — By —~ O
{ { !
0—>BZ]__')B21 _*0
! !
0 0

For the last part of the proposition use 2.42. |}
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EXERCISES

A. Additive categories

A monoidal category is a category .# with a zero object and an
operation not everywhere defined on .# (indicated by the symbol
“+”’) such that

MCL1. wxz and wyz are defined iff w(x + y)z is defined iff wxz
and (x + y) are defined iff wyz and (x - y) are defined.

MC2. If 0 is a zero map then (x + 0) and (0 + x) are equal
to x, whenever defined.

1. If .# is a monoidal category and 4 X B exists, where 4 and
B are objects for .#, then A 4 B exists and is isomorphic to 4 X B.

2. If A4 is a category with a zero object such that for every object
10

A, Ax Aand 4 + A exist and 4 + 4215 A X A is an isomor-
phism, then there is a unique operation ‘4> which not only satisfies
the data for a monoidal category but alsois such thatx + y =y 4+ x
whenever defined and x + (y + z) = (x + y) + z whenever defined.

An additive functor between monoidal categories is a functor
which preserves the monoidal structure.

3. Let # be a monoidal category such that x +y=y + x
whenever defined and x + (y + z) = (x + y) + z whenever defined,
and let .# ® be the category of all rectilinear matrices. Prove that .#®
is a category under the usual composition rules for matrices.

4. Every pair of objects in .# ® has a product and a sum, and they
are isomorphic.

5. The obvious functor .# — .#® has the property that, for
every monoidal category # with products for every pair of objects
and additive functor .# — %, there is an additive functor #® —~ &
such that

M AP
N

and, moreover, # ® — Z is unique up to natural equivalence.

commutes,
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B. Idempotents

An idempotent is a map e such that ee = e. We say that idem-
potents split in a category &/ if for every A4 <> 4 such thate? = e
there is an object Band maps 4 — B, B— Asuchthatd - B —~ A4 =
eand B>~ A—>B=1.

1. If every idempotent may be factored into an epimorphism
followed by a monomorphism, then idempotents split.

2. Let & be any category. Let & be the category whose objects
are pairs (A4,e) where 4 € 7 and e is an idempotent on A. The maps
from (A,,e,) to (4,,e,) are defined to be those maps 4, — 4, such
that 4, = A; — A, “i> A, = A, — A, Prove that & is a category
in which idempotents split.

Letting &/ — & be the functor which sends A4 to (4,1), prove that,
for every category & in which idempotents split and every functor
o — B, there is a functor & — & such that

A —> L

<

and moreover the functor & — & is unique up to natural equi-

valence.
3. If every pair of objects in &/ has a product (sum) then every
pair of objects in & has a product (sum).

commutes

C. Groups in categories
1. In the category of sets with base points, a group is an object
A together with a map 4 X 4 —> A such that:
(1) AXUAXAHZ"> AXAT> A=

mx1

AXAXAZ> Ax A=> A.

©,1)

2 A=>AxA=> A=1

(3) There exists a map A —> A such that
A A xAT>4=0
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The group is commutative if':

(4) For AX A=> A X A the map which “twists compo-
nents,” i.e., is such that

AxA—'—-»AxA”—‘»A:{pz%f'::l
pifi=2,

jtisthecasethat A X A—> A X A2> A =m.

Given two groups 4 X A—> A and B x BZ> B, a homo-
morphism from A to B is a map A = B such that

AX A" A
(xpl.xp,)l lx commutes.

Bx B> B

2. Let & be a category with finite products and a zero object.
A group in &/ may be defined precisely as above and so may
homomorphisms between groups in 7.

If A X A= A is a group in &7, then the contravariant functor
(—,A4): o/ — & may be factored through the forgetful functor from
the category of all groups to the category of sets with base points (the

functor forgets the group structure). This is simply the observation
(B,m)

thatforany Be «7,(B,4) X (B,4) — (B,A X A)—> (B,A)isagroup
in &, and that for any B — B’ € &, the induced map from (B’,4) to
(B,4) will satisfy the requirement for a homomorphism.

3. Let 4 be an object in & and let F be a contravariant functor
from & to the category of all groups ¢ such that when followed by
the forgetful functor into the category of sets the composition results
in the functor (—,4). Define m € (4 X A,4) to be the image of
(p1,p2) under the map (4 X 4,4) X (4 X A,4)— (4 x A,A) which
results from group multiplication. Then 4 X 4 —> 4 is a group in
&/ and the given functor F is the same as described in part 2 above.
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4. A cogroup in & is an object 4 together withamap 4 — 4 + 4
which satisfies the duals of the axioms for a group. If 4 is a co-
group and B is a group then the set (4,B) enjoys group structures
inherited from either 4 or B. They are, in fact, the same, and re-
gardless of the commutativity of either the given group or cogroup
structures, (4,B) is a commutative group. (2.38.)

5. A topological group is a group in the category of topological
spaces. Let € be the category of commutative groups in the category
of compact Hausdorf spaces. € is an abelian category.



CHAPTER 3

SPECIAL FUNCTORS
AND SUBCATEGORIES

It has been said that categories were invented in order to
eliminate the inside theory and thus concentrate on the outside.
Thus far we have been inside a given, but unspecified, category.
But as is usually the case (wherefore categories), it is necessary
to go outside in order to see the inside. Hence our first chapter
on functors.

3.1. ADDITIVITY AND EXACTNESS

Let & and # be categories. Given a functor F: & — %
and any two objects 4;,4, € o, F induces a function

(4,,45) — (F (41),F(4,)).

Let & and # be abelian categories. F is additive if the
function (4,,4,) — (F(4,),F(4,)) is a group homomorphism
for every 4,4, € .

Example. Let o/ be an abelian category, 4 an object in &/
and (4,—): & — @ the functor from A to the category of
abelian groups ¢, defined by (4,—)(B) = (4,B) the group of
maps from A4 to B.

64
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Theorem 3.11
For abelian categories % and & a functor F: & — & is
additive iff it carries direct sum systems into direct sum systems.

Proof:
—  The conditions in the hypothesis of Theorem 2.41 are
preserved by additive functors.

- LtdS> A@4, 4" AQA4,A®4 4,
A @ A=> 4 be a direct sum system in /. By hypothesis it is

the case that F(u,), F(u,), F(p,), F(p,) is a direct sum system in
4. Let x,y € (4,B). Then by the definition of + in 2.3 we obtain

A = 4% A@AQ»B. Hence F(4=2> B) =
F(;) a,n 583)

F(A) XD f4 @ 4) —2— F(B) = F(4)=> F(4) @ F(4) —>
F(B) = F(x) + F(3). |}

A left-exact sequence is an exact sequence of the form
O — A, — A, — A;. Aleft-exact functor between abelian cate-
gories is a functor which carries left-exact sequences into
left-exact sequences. (Equivalently, it is a functor which pre-
serves kernels.)

Theorem 3.12
A left-exact functor is additive.

Proof:

The conditions of the hypothesis of Theorem 2.42 are pre-
served by left-exact functors. Indeed, we use only the fact that
for every exact O > A4' > A —A"—0 it is the case that
F(A") — F(A) — F(A") is exact. Such a functor is called half-
exact or middle-exact. [

Example. (A,—): & — ¢ is left-exact.
A right-exact sequence is an exact sequence of the form
A, — Ay - A, — O. A right-exact functor is a functor between
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abelian categories which carries right-exact sequences into right-
exact sequences.

Theorem 3.12*
A right-exact functor is additive. |}

An exact functor is a functor between abelian categories
which carries exact sequences into exact sequences.

Proposition 3.13
A functor is exact iff it is both right-exact and left-exact. |}

Henceforth all functors between abelian categories will be
additive.

3.2. EMBEDDINGS

A functor F: o/ — % is an embedding if for any two
A;,A, € o the function (4,,4,) — (F(A4,),F(A,)) is one-to-one.

Theorem 3.21
Let o/ and # be abelian categories, F: o/ — % an additive
Sfunctor. Then the following are equivalent:

(a) F is an embedding

(b) F carries noncommutative diagrams into noncommuta-
tive diagrams

(c) F carries nonexact sequences into nonexact sequences.

Proof:
(@) & (b)  Trivial.
(€)= (@) Let A, > A, # 0. Then 4, —> A, > A, is
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not exact. Hence F(A4,) — F(A4,) 2, F(A,) is not exact and

F(x) # 0.

(a) =» (¢) Let 4’ — A — A" be a nonexact sequence. Let
O—>K—+A—>A"and 4" > A - G — O be exact.

By proposition 2.21 then either 4" >4 —>A4"#0 or
K—~A4—G#0.

Hence either F(4") — F(4) — F(A") # 0 or F(K) — F(4) —
F(G) #0.

In the first situation it is clear that F(4') — F(4) — F(A")
is not exact. Assume that F(K)— F(4) — F(G) #0. Let
O — B’ — F(A) — F(A") and F(A’) — F(A) — B" — O be exact
in 4.K - A - A" = Oimpliesthat F(K) - F(4) — F(A") = 0,
and there is a map F(K) — B’ such that F(K) > B’ — F(4) =
F(K)— F(4) and a map B" — F(G) such that F(4) - B" —
F(G) = F(A) — F(G). Hence if F(A") — F(4) — F(A") were
exact then B — F(4) - B” = 0and F(K) -+ B’ — F(A) -~ B" —
F(G) =0, a contradiction. [}

If a functor F: & — % is an exact embedding, the exact-
ness and commutativity of a diagram in &/ is equivalent
to the exactness and commutativity of the F-image of the
diagram.

3.3. SPECIAL OBJECTS

A phenomenon in category theory is that an interesting
property on functors may be used to define what is usually an
interesting property on objects in categories. As an example we
define an object P in an abelian category &/ to be projective iff
the functor (P,—): & — % is exact. (For any 4 € & it is the
case that (4,—) is left-exact; hence P is projective iff (P,—) is
right-exact.) The easiest example of a projective is the ring
itself in the category of its modules.
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Proposition 3.31
P is projective iff for every epimorphism A — A" and map
P — A" there isamap P — A such thatP - A —~ A" =P — A".

Proposition 3.32
If {P.} is a family of projectives in an abelian category, then
the direct sum TP, (if it exists in &) is projective. [}

An object G e« is a generator iff the functor (G,—):. &/ —~ ¢
is an embedding. Again the ring itself in the category of its
modules is an example.

Proposition 3.33

G is a generator iff for every A — B # O there isamap G — A
such that G - A — B # 0.

G is a generator iff for every proper subobject of A there isamap
G — A whose image is not contained in the given subobject. |

Proposition 3.34
If P is projective then it is a generator iff (P,A) is nontrivial for
all nontrivial 4. |}

It may also be shown that an exact functor is an embedding
iff it fails to kill nonzero objects.

The curious contrary relation of exact and embedding functors
exhibited by Theorem 3.21 (part c) is reflected among projectives
and generators and may be seen most strikingly in the category
of modules over a ring R where:

A is projective iff 4 appears as a direct summand of a
direct sum (possibly infinite) of copies of R.

A is a generator iff R appears as a direct summand of a
direct sum (possibly infinite) of copies of 4.
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Proposition 3.35
If an abelian category has a generator then the family of
subobjects of any object is a set.

Proof:
If G is a generator and A is any object, then a subobject
A’ — A is distinguished by the subset (G,4') C (G,4). |}

Proposition 3.36

G is a generator in a right-complete abelian category S iff
for every A€ &/ the obvious map Z; G — A is epimorphic.
(The “obvious” map is such that for all x € (G,4),

G=> 3, ,G>A=G"—>A4) |

The dual notions are as follows: An object Q is injective if
the contravariant functor (—,Q) carries exact sequences into
exact sequences, albeit with a reversal in direction. (Q is
injective in & iff Q* is projective in &/*)) An object C is a
cogenerator if the contravariant functor (—,C) is an embedding,.
(C is a cogenerator for & iff C* is a generator for &/*.)

Proposition 3.37

Let o be a left-complete abelian category with a generator.
Every object in o/ may be embedded in an injective object iff
has an injective cogenerator.

Proof:

<«  Let C be an injective cogenerator for &/, and 4 € &
an arbitrary object. The obvious (or perhaps ‘“co-obvious”)
map 4 — I, ¢,C is a monomorphism and II , ,, C is injective.
(We are using 3.36*.)

—  Let G be a generator for &/, and let P be the product
of all the quotient objects of G (Prop. 3.35 says there are only
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a set of quotient objects of G). Let P — E be a monomorphism
with E injective. Then E is a cogenerator. To prove it, let
A — B be a nonzero map. Since G is a generator there exists
a map G — A4 such that G - 4 — B # 0. Let I — B be the
image of G — A — B, and I - P — E a monomorphism. Since
E is injective, there exists a map B — Esuchthat/ - B — E =
I—-P—>E A-—>B—>E#0 because G >4 —+B—>E =
G>A—-I-B->E+#0. |}

3.4. SUBCATEGORIES

Recalling the original definition of a category as a class of
maps # together with a composition relation, we define a
subclass .#’ to be a subcategory if (1) for every x,y € 4" such
that xy is defined in .# it is the case that xy € .#’, and (2) if e
is an identity map in .#, x € #’, and either ex or xe is defined
in #,thenee 4.

A’ is easily seen to be a category and the inclusion function,
an embedding functor.

Let &/ be an abelian category and &/’ a subcategory. We
say that &/’ is an exact subcategory if &/’ is abelian and the
inclusion functor is exact. The inclusion functor is automatically
an embedding and all questions relating to the exactness of
diagrams it &/’ can therefore be answered by considering their
exactness in /.

F: of —~ # is a full functor if for every A4,,4, € & the in-
duced function (4,,4,) — (F(A4,),F(A4,)) is onto.

A full subcategory is a subcategory whose inclusion functor
is full. Given a category &/ and a collection of objects, 0 C &,
the subcategory consisting of all the maps between the
objects in @ 1is a full subcategory (said to be that which is
generated by @), and every full subcategory can be so
obtained.

e S o ity
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When we are considering a subcategory 7 of a category %
the statement “A4; — A4, is an »/-monomorphism” means that
A, — A, i1s a monomorphism in &. 4, — A4, is a #-mono-
morphism” means that 4, — 4,, considered as a map in %, is
a monomorphism. Similarly we may say that K is an “&/-
kernel of 4, — A,,” “%-kernel of A, — A, In general the
prefixes “«o/-” and “#-” qualify a property or description
relative to &/ or 4.

Theorem 3.41
Let # be an abelian category, and s/ a nonempty full sub-

category. Then o is an exact subcategory iff for every A, —>
A, € A there is a B-kernel of x, a %-cokernel of x, and a
AB-direct-sum of A, and A,, all lying in .

Proof:

- Let 7 be an exact full subcategory of #. In particular,
then, &/ is abelian and 4, —> A4, has an &/-kernel, X, and an
&-cokernel, F, in &/. The exactness of the inclusion functor
implies that K is a %#-kernel of x and F is a #-cokernel of x.
Similarly, if § is an /-direct-sum of A; and A4,, then the
additivity of the inclusion functor implies that it is a #-direct-
sum.

<  Let &/ be a nonempty full subcategory closed under
the operations (defined in #) of kernel, cokernel, and direct
sum. We must first show that &/ is abelian. We consider half
of the axioms (the other half are dual).

Axiom 0. &/ is nonempty; let A > Ades/ and let
O—Ae s be a H-kernel of 1,. Then O is a zero object
for 7.

Axiom 1. Let A, A€ o/, and S 2> 4, S2> 4, a B-
direct-sum, where S € .«/. The fullness of & implies that §
is an %/-direct-sum.
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Axiom2. LetA; -~ A, &/ and O — K —- A, — A, be exact
in #, K e &/. Again the fullness of «/ implies that K is an
o/ -kernel of A; — A,.

Axiom 3. A map A, — A, is an &/-monomorphism iff it is
a Z-monomorphism (in each case the kernel must be trivial).
Hence if A; — A, is an «/-monomorphism we let O — 4, —
Ay, — A3 — O be exact in #, A; € /. Then 4; — A4, is an /-
kernel of A, — A,.

The exactness of the inclusion functor is straightforward. [

3.5. SPECIAL CONTRAVARIANT FUNCTORS

A contravariant functor F: &/ — & induces for each pair
of objects A;,4; € &/ a function (4,,4;) — (F(4,),F(4,)).

If o and # are abelian we say that F is additive if these
induced functions are group homomorphisms; F is an embed-
ding if they are one-to-one, F is full if they are onto. An exact
contravariant functor carries exact sequences into exact se-
quences (with an order reversal, of course).

Proposition 3.51

The additive functor (—,A): o/ — % where & is abelian,
Ae o, and ¥ is the category of abelian groups, carries right-
exact sequences into left-exact sequences. |}

3.6. BIFUNCTORS

Let #, and .#, be categories, i.c., classes of maps with
composition relations. The Cartesian product .#; X .#, en-
joys a natural category structure. If 0, and 0, are classes
of objects for .#; and .#, then 0; x O, may be taken as a
class of objects for A, x A,.

SPECIAL FUNCTORS AND SUBCATEGORIES 73

A functor from #, x #, is said to be a functor on two
variables, one from .#, and the other from .#,.

Proposition 3.61
Let F: M x My— My be a function. F is a functor iff:

(1) For each identity 14 € M, the function
F(l,—): My— M4 is a functor.

(2) For each identity 15 € M, the function
F(—,1g): M, — M3 is a functor.

(3) For any A ~“> A" e My, B,~> By € M, the diagram
F(4,B) =2 5 F(A',B)
£

Fd A,y)l ) lF(lA'.y)

F(4,B) o> F(A',B"y  commutes. |}

We complicate matters by allowing functors to be covariant
on one variable, contravariant on the other. In so doing, we
obtain for any category & the functor Hom: &/ X & —~ &
(& is the category of sets). Hom(A4,B) = the set of maps (4,B).
(We could take &/* x & as domain.)

A natural transformation from F: .#, X M, — M, tO
G: M, x My— M, is precisely what it must be: a function
n: 0, x Oy — M, which satisfies the requirements of natural
equivalences.

Proposition 3.62
n: My X My— My is a natural transformation from F 1o G
iff:
(1) 7(4,B) € (£(4,B), G(4,B)).
(2) For each A € Oy, n(A,—): My — M is a natural trans-
formation from F(A,—) to G(4,—).
(3) For each B € 0,, y(—,B): M, — M is a natural trans-
formation from F(—,B) to G(—,B). |
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Let &/, #, and % be abelian categories and F a functor from
A x #to €. Fis a bifunctor if:

(1) For each 4, € &, F(A,,—): # — ¥ is additive.
(2) For each A, € &, F(—,4,): & — ¥ is additive.

Proposition 3.63
Hom: & x o — % is a bifunctor where Hom(A,B) is the

group of maps (4,B). |}

EXERCISES

A. Equivalence of categories

Let & and # be two categories. They are isomorphic if there
exist functors F;: & — &, F,: # — & such that F}F, and F,F, are
identity functors. &/ and % are equivalent if there exist functors
Fi: A B, F: #— o such that FyF, and F,F, are naturally
equivalent to the identity functors; in this case F; and F, are called
equivalences. There are few properties or categories of any conse-
quence which are not preserved by equivalences. Besides the prop-
erty of smallness, perhaps the only two are the following:

& is a skeletal category if every isomorphism of objects in &/
implies equality (i.e., all isomorphisms in %/ are automorphisms).

& is a replete category if for every 4 € &7 the class of objects in
& isomorphic to A is not a set, or, equivalently, enjoys a one-to-one
correspondence with the universal class.

Every category is equivalent to a skeletal category and to a replete
category.

Equivalent skeletal categories are isomorphic and equivalent
replete categories are isomorphic. If &7 and & are skeletal and F;:
& — B and F,: # — &/ are such that F,F, and F,F, are naturally
equivalent to the identities then both F, and F, are isomorphisms
(which is not to say that F,F, and F,F; are equal to the identities).
The same statement for replete categories is false.
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If & is replete and F: &/ — & is any functor, then F is naturally
equivalent to a functor which is one-to-one on objects.

Two properties on subcategories are as follows:

A subcategory &/ C & is a replete subcategory in & if for every
B € # isomorphic to an object in & it is the case that B e 7.

A subcategory &7 C & is representative in & if for every Be &
there is an object A € o/ which is isomorphic to B.

If o is a replete representative full subcategory of # then & = &.

If .o is a full representative subcategory of & then &/ is equivalent
to 4.

Every category has a full representative skeletal subcategory (often
called its skeleton). Skeletons of equivalent categories are isomorphic.

The image of a full functor or of a functor which is one-to-one on
objects is a subcategory. A functor is an equivalence iff it is a full
embedding whose image is representative.

Any number of baroque considerations may be obviated by
adopting the convention that the categories and functors under dis-
cussion can always be replaced by equivalent categories and functors.
This convention, of course, makes sense only when properties in-
variant under such substitutions are being discussed.

B. Roots

Let 2 and & be categories and F: £ — & a functor. The left root
(if it exists) of Fis a constant functor L: £ — & which “best approxi-
mates” F via a transformation L — F. To wit: for any constant
functor C: 9 — .« and transformation C — F there exists a unique
C — L such that C— L — F = C — F. Bear in mind that the con-
stant functors into &/ are in obvious correspondence with the objects
of &, and the transformations between constant functors with the
maps of &. If we use L to represent both the functor and its unique
value we note that L — F is a collection of maps {L — F(D)| D € 2}

with the condition that for any D = D', the triangle
F(D)

L F(x)

N\

F(D" commutes.
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L is a left root therefore if for any such family {C — F(D) | D € 2}
(which satisfies the same sort of “consistency’ requirement) there is
a unique map C — L such that

C—L—F(D)= C— F(D) for all D € 9.

If L and L' are both left roots of F they are naturally equivalent.
Let & be the category with two objects 4 and B and two non-

identity maps A <> B and A %> B. For F: @ — &, the left root
of F is the difference kernel of F(x) and F(y).

Let & be the category with two objects 4 and B and no maps
besides the two identities (the discrete category with two objects).
For F: 2 — s the left root of F is the product of F(4) and F(B).

Let 2 be a category with only identity maps (any discrete category).
For F: 9 — o/ the left root of Fis the product of {F(D)}peqp-

Let 4 be an object in o/ and & a family of monomorphisms into 4
together with all the inclusion maps between them. The left root of
the inclusion functor &# — &7 is the intersection of the subobijects in
& ; that is, the left root is a subobject of 4 and itis the greatest lower
bound of the subobjects in &

The dual notion is as follows. The right root of a functor F: 2 —
&/ is a constant functor R: & — .o/ together with a natural trans-
formation F — R such that for any constant functor C: 2 — &/ and
transformation F — C there exists a unique transformation R — C
such that F— R — C = F— C. As examples of right roots we may
obtain difference cokernels, sums, and the dual of intersections,
namely greatest lower bounds in the families of quotient objects.

What we have called a left root is sometimes called an inverse
limit, and what we have called a right root is sometimes called a
direct limit. We prefer to reserve the word “limit” for the case in
which the domain category is “directed.” In Exercise 0-D we defined
a partially ordered category. A directed category is a partially ordered
category such that for every pair of objects 4 and B there exists an
object C such that neither (4,C) nor (B,C) is empty (in terms of the
partial ordering on the objects: A < Cand B < C). If @ is a directed
category and F: & — &/ a functor, F is sometimes called a direct
system in o/, and its right root is what we call a direct limit.

PR

po—
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The best known example of a direct limit is the following: Let G
be an abelian group and % the family of finitely generated subgroups
of G, together with all the inclusion maps between them. % is a
directed category. The direct limit of its inclusion functor is G, or, as
is usually said, G is the direct limit of its finitely generated subgroups.

If @ is the dual of a directed category then F: & — &/ is an inverse
system in & and its left root is its inverse limit.

We insist upon the word “root” because there are too many im-
portant theorems special to limits to justify the destruction of the
word “limit” in that use. (For an example see Exercise 5-E). There
are important functors which preserve all direct limits but do not
preserve all right roots. The phrase directly continuous has been used
to describe such functors. The stronger condition, that all right roots
are preserved, we shall describe by the phrase right-root-preserving.

The classical notation for the direct limit of a functor Fis lim F, and
for the inverse limit, lim F. This notation we shall use for all roots.
Hence lim F'is the right root of F, whether the domain of Fis directed
or not, and lim F is the left root of F.

C. Construction of roots

It is tempting to call & left-complete if for every small category
2 and functor F: 92 — & it is the case that F has a left root. We
are prevented from doing so only by our definition in Chapter 1 of a
left-complete category as one which has difference kernels and in-
finite products. Luckily the two definitions are coextensive.

The classical construction of left roots is as follows:

Given a functor F: 2 — & into the category of sets, consider the
product P = II, 5 F(D) and let L C P be the subset of all elements

F(x)

y € P such that for each D= D' € 9,[P-*> F(D)—> F(D))(y) =
[P -L> F(D"](y). L is the left root of F.

Theorem: If s is a left-complete category (that is, it has difference
kernels and products), then every functor into £ from a small category
has a left root. (And, obviously, conversely.)

Given F: @ — o/, 2 small, let P = I1 ,_, F(D). For each D = D',
F(x)

let K, — P be the difference kernel of P *> F(D) ——> F(D')and
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P> F(D"). The intersection of all such difference kernels is the left
root of F.

But we don’t know yet that we have intersections.

On the other hand, we do not need the intersection of just any old
family of subobjects, but only of families of difference kernels, and

such intersections may be constructed as follows: Let {(P > 4,
P> A)}. beafamily of pairs of maps. The difference kernel of the
two maps P—> IT;4; and P-2> I1,4,, where

Pé HIAlp_i> A‘:= x,-,P'—v'* I_[IAtL> Ai =yi’

is the intersection of the family {Ker(x, — y,)},c;-

The proof of the above theorem yields a proof of the fact that a
functor from a left-complete category is left-root-preserving iff it
preserves difference kernels and products. A slight modification
yields that a category with difference kernels and finite products
possesses left roots for every functor from a finite domain, as is the
case with abelian categories. And in the case of abelian categories, a
functor is finite-left-root-preserving iff it is left-exact.

D. Small complete categories are lattices

Suppose that o7 is a small left-complete category and that for
some pair of objects 4,B € & it is the case that (4,B) has more than
one element. Let K be an indexing set of cardinality larger than that
of the category 7. Then if I 4B existed in &/ we could reach a
contradiction since (4,115 B) must have at least 2X elements. We
conclude therefore that for every 4,B € &/ it is the case that (A4,B)
has at most one element.

Let &/’ be a skeleton of 7. It follows that &/’ is a partially
ordered category. The completeness of o/’ implies that the partial
ordering is complete; in other words, & is equivalent to a complete
lattice category.

The moral: If one insists upon simplifying the language so as to
exclude categories that are not small, then all interesting complete
categories will have been excluded.

E. The standard functors
Let o7 be any category and 4 € /. The functor (4,—): & — &
preserves all left roots; formally speaking, for any F: &2 — &/ such

TITRTES
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that Lim F exists, it is the case that (4, Lim F) is the left root of

25> 9Ly

The functor (—,4): &7 — & carries right roots into left roots.

Given any constant functor C: & — &/ and transformation C —
F, we may test whether C is a left root of F by applying all the functors
of the form (4,—). For &/ an additive category, we may replace &
with & and obtain the same statements.

The functor (4,—): ¥ — & preserves direct limits (is directly
continuous) iff 4 is a finitely generated group.

F. Reflections

Let o/ be a subcategory of #. Given an object B € & we define
its reflection in &7 (if it exists) to be an object B € &/ which “best
approximates” B via a map B— B. To be precise, for any 4 € &
and map B — A there is a unique map B — 4 € &/ such that

N A commutes.

Reflections are unique up to isomorphism. If every object in &
has a reflection in & we say that .« is a reflective subcategory. In
this case we obtain a functor R: & — &/ which assigns to each
object B € & a reflection in &Z. R is called a reflector. If we consider
R to be a functor from & to & we obtain a natural transformation
from the identity functor on & to R. This transformation establishes
a natural equivalence from (R(B),A),, to (B,A)4 for all Be & and
Aed.

The dual notion of reflection is coreflection.

Among the best known examples of reflective subcategories are:
the category of compact spaces in the category of normal Hausdorf
spaces; the category of abelian groups in the category of all groups;
the category of torsion-free groups in the category of abelian groups;
the category of complete metric spaces in the category of all metric
spaces and uniformly continuous maps. The category of torsion
groups in the category of abelian groups is an example of a coreflective
subcategory.
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If & is a reflective subcategory of %, then:

The inclusion functor &/ — % preserves left roots.

The reflector R: # — & preserves right roots.

If & is right-complete and ¢ is full then & is right-complete.
(First obtain the right root in %, then reflect.) !

If &7 is a full subcategory then the inclusion functor of 2 followed
by the reflector is naturally equivalent to the identity on /.

If 4 is left-complete and &7 is full then & is left-complete.

Let r: I — R be the associated transformation from the identity
to the reflector. By iteration we obtain a transformation R — R* !
which splits; i.e., there exists a transformation R%®— R such that ?
R — R?— R is the identity transformation of R. o/ is a full sub- E
category iff R — R? is an isomorphism. X

Let & be an arbitrary subcategory of #, R: & — % a functor
whose image lies in &/, and r:/— R a transformation such
that r | N4 I| & — R | & splits in &; i.e., such that the inverse
s: R| o — I| o assumes all of its values in 7. Then &/ is a reflec-

tive subcategory and R is its reflector. (Prove that for any B € &4
and 4 € &

R(B),*
(R(B).*4)

(B,A)g = (R(B),R(4)) s (R(B),A)

is an isomorphism and is equal to

(BA)g~22> (R(B)A)y )

G. Adjoint functors

Let &/ and & be two categories, and §: o —~ Zand T: B — o
covariant functors. We say that S is the left-adjoint of 7 (and T is the
right-adjoint of S) if (S(A4),B)4and (4,7(B)),, are naturally equivalent;
more formally, if there exists a natural equivalence between the two
functors

AXBZL B BED &
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If & and % are additive categories we replace & with %,
and require, of course, that the equivalence preserve group
structure.

Some examples of adjoint functors are the following:

Let &7 be a reflective subcategory of #. Then its reflector is the
left-adjoint of the inclusion functor &/ — . Indeed, a subcategory
is reflective iff its inclusion functor has a left-adjoint, and is co-
reflective iff its inclusion functor has a right-adjoint.

If o7 is a complete category then the functor (4,—): &/ — &
has a left-adjoint, thus: Define F: & — &/ by F(S) = Zg 4. Then
(F(S),4’) is naturally equivalent to (S,(4,4").

The functor (4,—): ¢ — @ has a left-adjoint, namely the tensor
product. (B ® 4,4") is naturally equivalent to (B,(A4,A4’)). We have
not defined tensor products in this book, nor need we now give any
other definition save the one just given: - ® 4 is the left-adjoint of
(4,—). The proof of its existence is another matter.

The contravariant cases:

Let S: of — % and T: & — & be contravariant functors. S and
T are adjoint on the left if (S(4),B)g is naturally equivalent to
(T(B),A),,, and they are adjoint on the right if (B,S(4)), is naturally
equivalent to (4,7(B))g-

For a complete category & the functor (—,4): & — & has an
adjoint on the right, thus: Define F: & — & by F(S) = Ilg4. The
functor (—,4): ¢ — ¢ has an adjoint on the right: itself!

Some facts about adjoint functors are the following:

If S is the left-adjoint of T and T is the right-adjoint of S then T
preserves left roots and S preserves right roots.

If S and T are adjoint on the left then they both carry left roots
into right roots. If S and T are adjoint on the right then they both
carry right roots into left roots.

If a covariant functor S: & — & has a left-adjoint then there
exists 4 € & such that S is naturally equivalent to (4,—). (In which
case we say that S is a representable functor; in particular, it is
represented by 4.) To find 4, simply evaluate the left-adjoint of §
on a set with a single element.

In the additive case the same statement is true. If a covariant
functor S: &7 — & has a left-adjoint then it is representable. To

~
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find the object which represents it, evaluate the left-adjoint on the
infinite cyclic group.

A contravariant functor S: &/ — & which has an adjoint on the
right is representable, which in this case means that there is an object
A € &/ such that S is naturally equivalent to (—,4). And the same
statement is true in the additive case.

H. Transformation adjoints

Let T,,T,: & — % be covariant functors and 5: T; — T, a natu-
ral transformation. For every 4 € &/, B € %, n induces a function
(B,Ty(A4)) — (B, Ty(A)). If we define (—,T(—)): Z x & — & to be
the composition # x o 2Ls F « B> % we obtain a
natural transformation #:(—,Ty(—))— (—,T,(—)). Conversely,
given any such 7 define the natural transformation #: T; — T, by
N4 =Tz 4,4 17, p) These two processes take us around in
a circle.

Similarly, given S, S,: % — &/ and a natural transformation
7n: S; — S; we obtain 7j: (Sy(B),4) — (Sy(B),4). (The interchanging
of the indices is not a misprint.)

If S, is a left-adjoint of T; and #: T; — T, is a natural transfor-
mation then there is a unique n*: S, — S such that

(B,Ty(4)) 22> (B, T,(4))

| |
(SI(B)’A) _(.'IW (Sz(B)aA)
commutes for all A € &/, Be #.

If further, 8: T, — T} is a natural transformation, then (87)* =
n*p*. Set theoretical difficulties prevent us from saying that the
category of functors from & to & with left-adjoints is dual to the
category of functors from % to 7 with right-adjoints.

Adjoints are unique up to isomorphism.

Given abelian categories &/ and %, covariant functors T;,7,,T5:
& — %, and transformations T; — T,, T, — T such that for all
A e, 0 — Ty(A) — T(A) — Ts(A) is exact in &, then if S;,55,5;
are left-adjoints of T),T,,T; the induced transformations S; — S,,

< eI

L
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S, — S, are such that S;(B) — S,(B) — S,(B) — O is exact for all
Be 4.

Suppose that S: & X # — € is a covariant functor such that for
every Be #, S(—,B): & — % has a right-adjoint T: ¥ — 7. We
obtain then a functor T: # X € — &/ contravariant on %, co-
variant on #. The adjointness yields isomorphisms (S(4,B),C) —
(4,T(B,C)). (For the foundational example let S: ¥ X ¥ - ¥
be the tensor product and 7(B,C) the group of maps from B
to C.)

Because S(—,B) and T(B,—) are adjoint, S(—,B) is right-exact
and T(B,—) is left-exact. If furthermore S(A4,—) is right-exact then
T(—,C) carries right-exact sequences into left-exact sequences and
conversely.

I. The reflectivity of images of adjoint functors

Let S: o/ — & be the left-adjoint of T: & — &Z. Suppose that T
is one-to-one on objects. Let &/’ be the image of T For each 4 € &/
define r : A —TS(A) to be the map which corresponds to 1g,
under the natural equivalence (S(A),S(4)) — (4,7S(A)). The col-
lection {r,} forms a natural transformation from the identity on &/
to T'S. Similarly the isomorphisms (ST(B),B) — (T(B),T(B)) establish
a transformation r’ from ST to the identity on #. (r corresponds
to lpep).)

For each 4 € &' define s54: TS(4) — A to be the map T(rp) for
any B such that T(B) = 4. The collection {s,} forms a natural
transformation from TS | & to the identity of &#’. The composition

Iy —> TS| ' —> I,

may be seen to be the identity.

By Exercise 3-F, therefore, TS is the reflector of &/’ and dually
ST is the correflector of the subcategory of # generated by S. We
may say, therefore, that the images of right-adjoints generate
reflective subcategories, and the images of left-adjoints generate
correflective subcategories.

If we consider the functor T: & — &/’ (that is, if we redefine the
range of T to be .&/") then it is clear that the composition &’ C o/ 5,
4 is the left-adjoint of T.
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J. The adjoint functor theorem

A category is well-powered if it shares with the category of sets
the property that the family of subobjects of any object is a set.
(Prop. 3.35 says, then, that an abelian category with a generator is
well-powered. Electrifying.)

Let &/ be a well-powered, left-complete category, and T: s/ — &
any covariant functor. Then T has a left-adjoint iff
(0) For every Be % there is A€ &/ and amap B— T(A) € &.
(1) T preserves left roots.
(2) (The solution set condition.) For every B € B there exists a set

Sp C & such that for every A€ of and map B—~T(A)e B

there is an object A'€ Sy and maps A' > Ac s, B—
T(A") € # such that

T(A")

/lT()
5 e
\

T(A) commutes.

One direction has almost been established : If T has a left-adjoint §
then condition (1) appeared in Exercise 3-G, and for the solution
set take Sp = {T'S(B)}.

For the other direction, let B € # and let S be a solution set as
described in the second condition. Define 4 = Hg Il 5 4,4’ and
note that there is a map B — T(A) such that for any 4 € & and

B — T(A) € & there is a map A —> A € & such that

7(d)

B T(x)

N

T(A) commutes. (No uniqueness.)

A few definitions which not only simplify the statement of the
rest of the proof, but will be needed in the next few exercises, are
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the following: Given a map B > T(A), we shall say that a subobject
A’ — Aallows yif B2~ T(4) may be factored through 7(4') — T(A).
We shall say that y generates A if no proper subobject of 4 allows y.
(The word “generates’ here is best appreciated by letting &/ be the
category of groups and T the forgetful functor into the category of
sets.

lee left-completeness of .o/ together with the left-root-preser-
vation of T implies that for every map B > T(A) there is a minimal
subobiject of 4 which allows y. Thus there exists a factorization B L
T(4) =B 2> T(A’) — T(A) such that y’ generates 4". We shall call
the subobject A’ the subobject generated by y.

If B L> T(A) generates A, then if B-X- T(4) ™> T(C) = B>
T(4) IO, T(C) it is the case that Ker(a — b)— A allows y and
hence that Ker(a — b) = A and that a = b.

Starting with the map defined above, B—T (A), we let A be the
subobject of 4 generated by B — T(4). The map B— T(A) has the
property that for every B> T(4) there exists a unique 4 ~—> 4
such that

T(4)

/ l
B x)
N

T(A4) commutes.

We define S: # — & by, first, letting S(B) = A; second, doing the
same for all the other objects of #; third, for a map B, —> By, letting
S(z) = x, where x is the unique map from S(B,) to S(B,) such that

B, —~ T(S(By))

zl lnx)

B, — T(S(By)) commutes.

The stipulation in condition two, that S, be a set, is not baroque.
Because mathematics has progressed for a long time without having
had to take the set—class distinction seriously does not mean that the
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distinction is spurious. The requirement that there be a set such as
Sy is of the same nature as a requirement that a group be generated
by a finite set. Both requirements can be very difficult to fulfill, and
both can have powerful consequences.

Whereas the set—class distinction first appeared in order to solve
certain puzzles in the formulation of a language for mathematics,
the distinction must be considered more than a linguistic accident.
True, there are languages for mathematics which do not admit the
distinction; and it is likewise true that such languages either do not
admit any interesting examples of complete categories (Exercise 3-D),
or, if they do, have simply renamed the distinction (usually in terms
of accessibility of cardinals or of level of type). Many of the classic
results of algebraic number theory may be stated in a language which
does not admit infinite sets. Indeed, theorems such as the Dirichlet
unit theorem become much more obviously the deep theorems
which they are when so stated, for they become in such languages
existence theorems. (There is a group of units.) It is another question
whether the theorems may be proved in such languages.

K. Some immediate applications of the adjoint functor theorem

Let o/ be a complete well-powered and co-well-powered additive
category and A € of. Then the functor (A,—): o/ — G has a left-
adjoint.

The functor (4,—) preserves left roots and we need only verify the
solution set condition. Let G € ¢ and define S, to be a representative

set of all the quotient objects of X;4. For any G <> (4,B) e g

let B’ > Bbe the image of the map ;A4 — B where A —> X4 —
B=f(g) for all geG. Then B'€S; and the image of f lies in

(4,x)

(AaB') —_— (A,B)

The adjoint of (4,—) we shall call —®4: % — &/. Hence for
Ge¥, A,A' € A, (G ® A,A’) is naturally equivalent to (G,(4,4")).
By Exercise 3-H we may obtain a functor ®: ¥ X & — ./ which
is right-exact in both variables. We call this functor the tensor product.
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Dually, the contravariant functor (—,4): &/ — ¢ has an adjoint
on the right which we shall indicate by the symbol (—,A).ForGe %,
A€ o, (G,A) is an object in . For 4’ € «, (G,(4',4)) is naturally
equivalent to (A',(_Gt;ﬁ). Exercise 3-H leads to the definition of (—,—):
Y x o - o/ a functor on two variables, contravariant on the
first and covariant on the second. We call it the symbelic hom functor.

The tensor product and symbolic hom functors are related through
duality as follows:

G®A=(GAD*, (GA) =(G®A%*

There is a natural equivalence between (4,(G,4")) and (G ® 4,4").
The solution set condition is often guaranteed to hold by certain
other hypotheses. For instance, we may obtain the old theorem:

Let & be a complete well-powered and co-well-powered category and
& a full subcategory replete in B such that &/ is closed under the
formation of products and subobjects. Then o is a reflective sub-
category of A.

For B € # let Sy be a representative set of quotient objects of B
which lie in &.

As immediate applications one may obtain the reflectivity of
Hausdorf spaces in all spaces, torsion-free groups in all groups
(abelian or not), and countless similar well-known cases.

Let &/ be a well-powered left-complete category and let T: of — %
be a left-root-preserving full functor whose image is all of %. Then T
has a left-adjoint.

For Be 4, {A} is a solution set if T(4) = B.

As a consequence, a left-root-preserving functor from a left-
complete well-powered category has a left-adjoint iff its image
generates a reflective subcategory of the range.

L. How to find solution sets
Let o7 be a left-complete well-powered category, and T: & — &
a left-root-preserving functor. Fix an object B € #. Given an object
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A € o/ we shall say that B generates A through T if there exists a
map B > T(A) such that y generates A (as defined in Exercise 3-J).
Let Sy be a solution set for B and let B2 T(4) generate A.

There exists an object A’ € Sy and 4’ = A €. such that B>

T(4) = B— T(4") ™ T(4). A’ <> A must be an epimorphism, for

if A" 2> A-2> C= A’ 2> 4= Cthen Ker(a — b) — A allows
x and Ker(a — b) = A and a = b.

If o is co-well-powered and if T has a left-adjoint then each object
in 9 generates at most a set of nonisomorphic objects in A .

Conversely, if B generates at most a set of nonisomorphic objects
in &7 then B has a solution set. Indeed, if we let Sp; be a representative
set of objects in &/ which may be generated by B it is easy to verify
that S is a solution set.

Let s/ be a left-complete well-powered category and T: o/ — & a
covariant functor. Then T has a left-adjoint if (and, in the case that o/
is also co-well-powered, only if)

(0) For every Be ¢ thereis A € & and B—T(A) € &.

(1) T preserves left roots.

(2) Every object in & generates through T at most a set of non-
isomorphic objects in S .

As an immediate application (see Exercises 5-D, F, and I for
more), let &7 be the category of lattices and functions between lattices
that preserve finite unions and intersections. Let T: &/ — & be the
forgetful functor into the category of sets. For B € & the only objects
in & which may be generated by B are of cardinality less than or
equal to that of B (unless B is finite, in which case, B generates only
denumerably infinite lattices). The left-adjoint of T carries B into
what is usually called the free lattice generated by B. We can com-
plicate the example by defining &/ to be the category of countably
complete lattices and then replacing “countable” with any cardinal.
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M. The special adjoint functor theorem

The chief failing of the adjoint functor theorem is that it involves
not only the (unavoidable) continuity condition on the functor but
also a (generally necessary) smallness condition relating the domain
category, the functor, and the range category. The special adjoint
functor theorem below says in effect that the smallness condition
will always be satisfied by left-root-preserving functors if the domain
category is “‘small enough” to have a cogenerator.

Let o be a well-powered, left-complete category with a cogenerator
and T: sf — & any covariant functor. Then T has a left-adjoint iff T
preserves left roots and for all Be % there is Ae o and

Let C be a cogenerator for &/ and suppose that B <> T(A) gen-
¢y, TP,

erates A. The function (4,C)—> (T(4),T(C)) 2—> (B,T(C)) is
one-to-one. Hence 4 — I, ¢yC — (5 7(c»C is monomorphic.

If B generates A through T (see last exercise) then A is isomorphic
to a subobject of 11y 1 C.

As an immediate application, we note that the full subcategory of
compact spaces in the category of Hausdorf spaces is reflective. The
Urysohn lemma asserts that the unit interval is a cogenerator for the
category of compact Hausdorf spaces, and the Tychonoff theorem
implies that the inclusion functor preserves left roots.

N. The special adjoint functor theorem at work
By dualizing the range and domain we obtain three other theorems,
in which we omit the *“zero” condition:

Let &7 be a well-powered, left-complete category with a cogenerator
and T: of — B a contravariant functor. Then T has an adjoint on the
left iff T carries left roots into right roots.

(Dualize Z.) |}
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Let o/ be a co-well-powered, right-complete category with a
generator and T: ¢ — % a contravariant functor. Then T has an
adjoint on the right iff T carries right roots into left roots.

(Dualize «7.) |}

Let & be a co-well-powered, right-complete category with a
generator and T. o/ — & a covariant functor. Then T has a right-
adjoint iff T preserves right roots.

(Dualize both &/ and #.)

Let R be a ring and ¥® the category of left R-modules. Let T
&% — @ be any contravariant functor which carries right roots into
left roots. Then T is representable.

We may easily determine that T is represented by a module whose
underlying abelian group is T(R). The module structure of T(R) is
determined by r: T(R) — T(R) = T(r).

If we are allowed to use the fact that the group of rational numbers
modulo the subgroup of integers, which group we shall call Q/Z, is
an injective cogenerator for ¢, then we may construct an injective

cogenerator for ¥R The forgetful functor ¥% —> & preserves all
roots, and hence ¥ & Ly 292 @45 an exact contravariant em-
bedding which carries right roots into left roots. Since it is represent-
able, it must be represented by an injective cogenerator.

Now that %% has a cogenerator we may obtain Watts’ theorem:

A covariant functor T: 98 —~ G is representable iff it preserves
left roots.

Finally, we obtain the local representation theorem:

Given an arbitrary left-complete category o/, a small subcategory
o', and a covariant left-root-preserving functor T: o — ¥, there
exists an object A € o such that (A,—) | &’ is naturally equivalent
toT|A'.
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Let /" be the smallest full subcategory replete in &/ which con-
tains &’ and is closed under the formation of products and difference
kernels. Then I1 . A is a cogenerator for &/“, and T| " is left-root-
preserving.

0. Exercise for model theorists
An n-ary predicate on a set S is a subset of the n-fold product of

S. Given an indexed collection of finite numbers {n;, ny, - * *, n;}, a
first-order statement is a well-formed formula obtained by combining
the atomic formulas, Py(xy, Xg, * ", X, ), """ s PiXp, X, """ Xp,)

using conjunction, disjunction, implication, negation and then
quantifying the lower-case variables. Examples:

V,V,V.[P(x,y) A P(y,z) => P(x,2)],
V:tVy[P(xay) A P(J’,x) - x = }’], H:cvv[P(ysx)]

A theory T is any set of first-order statements. The above list of
examples is a theory of partial orderings with maximal elements.
A model for T is a set S together with a designated set of predicates
on S such that all the statements in T become true. We shall
notationally confuse the model with its underlying set.

We may start with a theory and consider its class of models;
conversely we may start with a model (for the empty theory) and
consider its complete theory. Two models are said to be elementarily
equivalent if they have the same complete theories. A function

between the underlying sets of two models 4 > Bis said to be an
elementary extension, if for every formula F (not all the lower-case
letters need be quantified) that can be built from the original
predicates and for every x;, Xp, ***, X, € 4 it is the case that

F(xl’ T, xn) <")};‘(f(xl)’ T ’f(xn))'

If £ is an inclusion function, A4 is an elementary submodel of B.
The Lowenheim-Skolem theorem says that every model B has a
countable elementary submodel in the case that the original list of
predicates is finite or countable and otherwise of cardinality equal
to that of the original list of predicates.
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Godel’s completeness theorems say that every logically consistent
theory has a model (and it is an article of faith that the complete
theory of a model is consistent). A corollary is the compactness
theorem: If every finite subset of T has a model then so does T.
Finally, using Jonson’s amalgamation, every set of elementarily
equivalent models has a common elementary extension.

In order to define a category of models it is necessary to specify
what we mean by maps. Categories of elementary extensions do not
seem to be interesting as categories. Suppose F is a set of formulas
made up from the original list of predicates. We shall say that a

function between models A <> Bis an F -map if every formula in F
is “preserved,” in the positive sense, by f. That is, for FeF and
X1 Xgy "7y Xp EA,F(XI, T xn)*F(f(xl)a U ’f(xn))' IfFis emptY’
any function is an F-map; if F is the set of all possible formulas then
only elementary extensions are F-maps. (Note that if the formula
x # y is in F, then every F-map is one-to-one.) Given a theory T
and a set of formulas F, a category of models is determined. As
familiar examples we can obtain the category of groups and group
homomorphisms, the category of lattices and lattice homomorphisms,
the category of small categories and functors.

If F is empty and T has models of every cardinality (and one
infinite model implies a model of every infinite cardinality) then the
corresponding category of models is equivalent to the category
of sets. We shall tacitly assume this to be the case throughout.

A category of models is well-powered. Suppose f: 4 — B is an
F-map and that | 4] (the cardinality of A) is greater than 2!®! and 2!™.
We shall show that f'is not a monomorphism. For each y € B let U,
be a new unary predicate: Uy(x) is true for 4 iff f(x) = y. Let T,
be the complete theory of 4 with respect to the original predicates
and the new. Let E be the set of elementary (with respect to the
original predicates and the new) submodels of A of cardinality
{Tyl = |B| -+ |T;]. The union of the models in E is all of 4 because
for each xe€ A4 we could have added another unary predicate
insuring that elementary submodels contain x. Hence E contains at
least |A| distinct subsets of 4 and there are only 2/B1+ITl jso.
morphism classes. Necessarily, then, there is a model 4’ and distinct
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elementary extensions A’ D> 4, 4’ 2> A which when followed by

Jfagree. g; and g, are certainly F-maps.

A category of models is co-well-powered. Let f: 4 — B be an F-
map and suppose that | B| is greater than 2'4!*!™, We shall show that
S is not an epimorphism. For each x € 4 let U, be a new unary
predicate: Uy(y) is true for B iff f(x) = y. Let F, be the set of
formulas involving both the original and the new predicates. There
must be distinct y,,y, € B such that for any unary formula Fe F,
F(y;) > F(y,). Let V be another unary predicate and consider the
two models B; and B, defined by: V(x) is true in B; iff x = y,. B, and
B, are elementarily equivalent with respect to all the predicates.
Let B’ be a common elementary extension. The two embeddings

B, 2> B’ and B, > B’ must be different, for in the complete
theories of B, and B, is to be found the statement

Ve [V AV (y) == x = yl.

g, and g, are both F-maps and when preceded by f are the same.

A left-complete category has a generator: Let {4,} be a set which
represents every countable isomorphism class of models. 24, is a
generator (regardless of F).

Let .« be a category of models. The forgetful functor & —» & into
the category of sets always satisfies the solution set condition. (For
infinite S €& define S to be a representative set of models of
cardinality no greater than |S| + |T,|.) The zero condition is easy,
and hence the forgetful functor has an adjoint iff it preserves left
roots, which is equivalent to saying that the standard constructions
of products (cartesian) and difference kernels (subsets) work. The
adjoint of the forgetful functor has for values what would normally
be called free models. The situation may be generalized by letting
T, CT, and F, C F, considering the forgetful functor .o/, — o/,
where &, is determined by T, F,.



CHAPTER 4

METATHEOREMS

In Chapter 7 we shall prove that for every small abelian
category & there is an exact embedding & — &.

To illustrate the usefulness of the existence of exact embed-
dings let us consider the “five lemma”:

Let &/ be an abelian category and

o

!
O K O
! ! i

Ay — Ay —> A3 —~ Ay
! ! ! i
Ap — Ayg — Az — Ay
!

0

a commutative diagram in &/ with exact rows and columns.
We wish to prove that K = O. Let F: &/ — & be an exact
94
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embedding. F sends the diagram into a similar exact commuta-
tive diagram of groups and homomorphisms and K = O iff
FK) = 0.

The verification that the five lemma is true in ¥ may be
effected by classical diagram-chasing techniques such as the
following, in which we will write x,, — x,, instead of

(A;; = A )X = X

Let x5 € A;3 be such that x;3 — 0,5. We wish to show that
X153 = Oy3. Let x;5 — X34 and observe that x;, — 0,4, and hence
that x,, = Oy4. By exactness there is x;, € 4;; such that x;, —
x5 Let x;, — X5, and observe that x,, — 0y, and hence, by
exactness, there is x,, € Ay such that x, — x,,. Let x;; € Ay
be such that x;, — x,;. Because 4,, — A,, is one-to-one, x;; —
X, and then x;, — 0 = x5,

4.1. VERY ABELIAN CATEGORIES

For expository purposes we say that an abelian category Z is
very abelian if for every small exact subcategory &/ C % there
is an exact embedding &/ — . The weak embedding theorem of
Chapter 7 will prove that every abelian category is very abelian.

We wish to describe a class of statements which are true in
every very abelian category iff they are true in 4. As a first
approximation we may consider the following. Define a simple
diagrammatic statement to be a statement about the exactness
and commutativity of a diagram. A compound diagrammatic
statement shall be of the form P — Q where P and Q are simple
diagrammatic statements. A compound diagrammatic statement
is true in every very abelian category iff it is true in &,

The formalization of the matter starts by defining ‘““diagram.”
A diagram scheme is a small category, and a diagram in a
category & is a functor from a diagram scheme into 7. A set
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of exactness conditions on a scheme is a set of ordered pairs
of maps in the scheme. Given a scheme (category) S, a set of
exactness conditions E, and a diagram D (functor) on S into
an abelian category &/, we say that D satisfies the exactness
conditions if for every (x,y) € E, it is the case that (D(x),D(y)) is
an exact sequence in .

A surprising amount may be said about a diagram by
imposing exactness conditions. Let D: S — & be a diagram
which satisfies a set of exactness conditions E. Then

D(A) = 0 if (Ad—> 4,4 A)<cE
DA—~>B)=0 if (4— B,B-> B)cE
A= SB> 4, =1
D(4, 2> S), D(4, 2> S) A, S 4, =1
D(SE> A4), DS B> 4 if {(4,"> S5, SP> 4,)€eE
is a direct-sum system (A;=2> S, S P> A)€eE

(See Prop. 2.42.)

By extending these “ifs” one may see that commutativity
conditions may be imposed through exactness conditions.
Given a scheme S, and two sets of exactness conditions £,
E,, we say that the compound diagrammatic statement (S, E,, E,)
is true in & if every diagram D: S — o which satisfies the
exactness conditions E;, also satisfies the conditions E,.
. We observe that if &/ — % is an exact embedding then if
(S, E,, E;) is true in & it is true in &.

4.2. FIRST METATHEOREM

To finish off the metatheorem we need the following:

Proposition 4.21
For every set {4,}; of objects in an abelian category, there is

a full small exact subcategory o C o such that A; € o for all i.
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Proof:
Let
K: (Maps in &) — (Objects in &)
F: (Maps in &) — (Objects in &), and
S': (Pairs of objects in &) — (Objects in )
be functions such that

K(x) is a kernel of x
F(x) is a cokernel of x
S(A4,B) is a direct sum of 4 and B.
Given a full subcategory # C o define C(#) to be the full

subcategory generated by #, K(%), F(%) and S(Z x %).
If # is small then so is C(%). Define C*+{( &) = C(C™(%)).

C*(%) = C"(Q?) is, by Theorem 3.41, a full exact sub-
category. C”(.@) is small if 4 is small. |}

Metatheorem 4.22
Every compound diagrammatic statement true in & is true

in every very abelian category.

Proof:
Suppose (S, Ey, E, ) is truein 9. Let D: S — & be a diagram
in a very abelian & satisfying the exactness conditions E,.

Let o7 be a small exact subcategory of & such that the image
of D lies in 7. Then D satisfies E, in &7, and it satisfies E, in o
iff it satisfies Eyin &. Let F: of — & be an exactembedding. FD:
S — & satisfies E; and it satisfies E, iff D: S — o satisfies E;. I

4.3. FULLY ABELIAN CATEGORIES

The important connecting homomorphism theorem is stated
as follows:
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I
(0] (0] (0]
i i i
Ay — sz — A3
i i i
Ag — Apa — Apy —~ O
! i !
O — Ay — Agy — Ay
i ! !
Ay — Ay — Ags
! ! !
(0] (0] (0]

is a commutative diagram in an abelian category with exact
rows and columns then there is a map A3 — Ay such that
A12 —_ A13 b d A41 b A42 iS exact.

The first metatheorem does not shed light on the existence of
maps. The connecting homomorphism theorem was classically
proved for modules over a ring R, as follows: Given x;5 € 4,4
let x;3 — xp3 and choose x,, € 4,y such that x,;, — x,. Let
Xag —> Xgp. SinCE X33 — 033 there is x,, € 43, such that x5, — xg5.
Let x5, — x4 and define f(x;3) = x,,. The definition is invariant
under the choice of x,, since if xj, is such that x,, — x,; then
(%22 — X35) 0,5 and there is x;; € 45, such that x,; — (xa5 — X30).
Letting x3, — x5, and xj — x3, we see that (x5 — x3;) —
(xa2 — x32) and that xp — (x5 — Xjo). Xa1 — (X5, — X3,) since
A3 — A3 is monomorphic, and x;, — x4, — 0,;; hence x5, — x,4,.

J is a homomorphism since it is a composition of additive
correspondences. To show that A;, — A;, L A, is exact
we suppose that f(x,3) =0, and let x;;3 — Xp5, Xop — Xo3,
Xgg —> X39, X33 —> X35, Xgy — Og;. There is x,, € Ay such that
Xp —> X3. Let x5 — x4, and noic that

(X52 — xg9) — Xy, (x32 — X39) — 035.
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Hence there is x,, € 4,, such that x,, — (x5 — xj3)and x;5 — X;3.

To prove that A, Ay — 4,, is exact let Xy € Ay be
such that x,; — 0. Choose x;, € 4, such that X3 — X, and
let x5 — x3,. Note that xg, — 0,,. Hence there is Xgg € Ayg
such that xp, — X5, and we let x,, — x,5. Since x5 — 035 there
IS X;3 € Ay such that x;3 — xy5. f(X13) = X,y

The full embedding theorem which will be proved in the last
chapter says that for every small abelian category there is a
ring R and an exact full embedding into the category of R-
modules. The full embedding theorem allows us to dispatch
certain existential questions in abelian categories exemplified
by the connecting homomorphism theorem.

Define a map extension of a scheme S to be a scheme S
together with a one-to-one functor G: S — § such that all the
objects of S appear as values of G (i.e., G establishes a one-to-one
correspondence between the objects of § and the objects of S).

Given a scheme S, a map extension S — S, and sets of exact-
ness conditions E for S and E for S, we say that the full com-
pound diagrammatic statement (S — S, E, E) is true for & if
for every diagram D: S — 7 which satisfies the conditions E,
there is a diagram D: S — &/ which satisfies the condition £
and D = DG.

We say that an abelian category ./ is fully abelian if for
every full small exact subcategory o7 C # there is a ring R and
a full exact embedding of &/ into the category of R-modules.
(We shall show in Chapter 7 that every abelian category is
fully abelian.)

The full metatheorem, 4.31

If a full compound diagrammatic statement is true for all
categories of R-modules then it is true for all fully abelian
categories.

The proof is similar to that of the first metatheorem. |
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4.4. MITCHELL'S THEOREM

Let R be a ring and #* the category of left R-modules. Then
R is a projective generator in ¥*. Indeed the functor

(R,—): 92> ¢

is the “forgetful” functor—it assigns to each R-module M the
underlying abelian group M (it forgets that M is an R-module).
If we were consistent category theorists we would not speak
of elements of an R-module M but of maps from R to M.
The element-chasing proof of the five lemma could be replaced
by a map-chasing proof. Instead of starting with an element
X33 € Ay such that x;3 — Og3, We could start with a map R — Ay,
such that R — 4,3 — Ay = 0. We would prove that R — A3 —
A;, = 0, and using the exactness of A4;, — 433 — 4,4 and the
projectiveness of R obtain a map R — 4, such that R — 4,, —
Ay3 = R — Ay5. We could continue chasing until we reached a
commutative diagram of the form

Am — Ay, — Ay — Ay

Finally, then, R - A;3 = R — Ay — A1~ A =0.

All that was used in the chasing process was the projectiveness
of R. We conclude that 4;; — 4,3 is 2 monomorphism because
R is a generator. Hence the entire proof of the five lemma could
have been effected in any abelian category with a projective
generator. This fact, that projective generators are as good as
elements, was a part of the folklore of the subject from the
beginning. We can formalize with
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Proposition 4.43

An abelian category with a projective gemerator is very
abelian. |}

But far better is

Theorem 4.44 (Mitchell)
A complete abelian category with a projective gemerator is
fully abelian.

Proof:

Let &’ be a small full exact subcategory of a complete
abelian category &, and P a projective generator for . For
each A € &' we consider the epimorphism

S P-—A

(P, A

By taking I = U 4., (P,4) and defining P = Z,P, we obtain a
projective generator P such that for each 4 € &/’ there is an
epimorphism P — A.

Define R to be the ring of endomorphisms of P. For every
A € o, the abelian group (P,4) has a canonical R-module
structure: for P ~> A4 € (P,A) and P> P € R define rx e(P,A)
to be P> P> A.

Given a map 4 2> B € «, the induced map (P,4) > (P,B)
is an R-homomorphism ( j(rx) = P —> P > 42> B =
r(7(x)) ). We define, therefore, F: & — %% (4% is the category
of R-modules) by F(A4) = (P,4) with the canonical R-module
structure. F is an exact embedding since P is a projective
generator. F| &/’ is known to be an exact full embedding,
therefore, once it is known to be full. Given 4,B € & and a

map F(A) 2> F(B) € ¥® we wish to find a map A "> Be &
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such that F(y) = 5. Let 0 » K —-P—>A—~OandP—~B—~0
be exact sequences in &. Notice that F(P) = R. We obtain
the commutative diagram in ¢%:

O — F(K) - R — F(4) -~ O

¥

R—>FB)—O0

where the existence of the map fis insured by the projectiveness
of Rin %%, Since R is a ring, any automorphism on R must be
equivalent to multiplication on the right by an R-element. We

assume then that f(s) = sr for all s € R, where P—> PeR
Returning to &, the diagram

O—-K—+P—->A4A—-0
1

P—-B—-0

is such that K — P <> P — B = 0, since F(K) - R > R~
F(B) = 0 and F is an embedding. Hence there is a map 4 <> B
such that

P-4
Lo
P—B commutes.
Hence

R — F(A)

i

R — F(B) commutes

and since R — F(4) is epimorphic, F(y) =jy. |}

S
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This last theorem reduces the problem of proving that every
abelian category is fully abelian to the following: Given a small
abelian category 7, find a complete abelian category & with a
projective generator and an exact full embedding & — Z.

EXERCISES

A. Abelian lattice theory

Let &/ be a very abelian category and A € . The lattice of sub-
objects of A4 is a modular lattice. (If 4; C A4, then 4; U (B N 4y) =
(4, Y B) N 4,)

B. Functor metatheory

One may state (or at least feel) a metatheorem concerning functors
between very and fully abelian categories. It may be strong enough
to handle connected sequences of functors and, as a test, Prop-
osition 11I.4.1 of Cartan & Eilenberg [4, page 44].

C. Correspondences in categories
Let & be any category. For 4,B € & define a pam from 4 to B
to be an element of (B,4). Given a finite sequence

Ay, Ay A, € A

define a cword from A4 to B to be a sequence of maps and pams
running through A, 4,, - - -, 4,, or, more precisely, an element in
the set (A4,4,) X (ApA;) X (Ag,A3) X + -+ X (A,,B). The composi-
tion of two cwords, one from A4 to B, the other from B to C, is defined
to be their concatenation.

A map from A to B induces a function from (X,4) to (X,B) for
every X, and a pam from A to B induces a correspondence from
(X,A) to (X,B) (that is, a set of ordered pairs in (X,4) X (X,B)). A
cword from A4 to B likewise induces a correspondence from (X,A)
to (X,B). Dually it induces a correspondence from (B, Y) to (4, Y) for
every Y. We define two cwords from A to B to be equivalent if they
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always induce the same correspondences from (X,4) to (X,B) and
from (B,Y) to (4,Y). An equivalence class of cwords from 4 to B will
be called a correspondence in 7. If a correspondence in & is such that
all the induced correspondences are functions then it will be called a
fanction in /.

In the classical construction of the connecting homomorphism a
cword was defined and then shown to represent a function.

In a category of R-modules every function is represented by a map.

If o is fully abelian then every function in & is represented
(obviously uniquely) by a map in &/. More generally, every cor-
respondence from A to B may be represented by a map from a sub-
object of A to a quotient object of B.

D. A specialized embedding theorem
The proof of Theorem 4.44 proved a stronger statement than that
of the theorem: If & is a small full exact subcategory of a complete
abelian category & with a projective generator, then & is isomorphic
to a full exact subcategory of cyclic modules over some ring R. We
may go a step further. Assume, & is a category of modules and re-
place the projective generator P in the proof by Z P, where X is an
infinite indexing set at least as large as P. Then the ring R is such
that for every 4 € & there is an exact sequence R+ R— A4 — 0.
By iteration we may finally obtain a ring R big enough so that for
every A € o there is an infinite exact sequence * - - —~ R— R — R —
A—O. '
But instead of making the ring larger we may make it smaller.
There is a ring R such that R and &/ have the same cardinality and
‘such that & is isomorphic to a full exact subcategory of cyclic
modules over R. To obtain such, assume that &/ is a full exact
subcategory of cyclic modules over a ring S. Let F be a minimal
family of ideals such that for every 4 € & there is A €F and an
exact sequence O — A —> S — 4 — 0. Let T be a subset of S such
that for every 2,2 € F and s € S with %s C £ there exists 7 € T with
s — t € 8. The cardinality of 7 need be no larger than that of /.
For any ring R, T C RC S, & is isomorphic to a full subcategory
of cyclic modules over R. (S/% — R/R N %), but not necessarily an
exact subcategory. However, if R has the further property that for
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every t,t' € T, A € F, s €S such that st — ¢’ € U there is r € R such
that rt — ¢’ €, then & is isomorphic to a full exact subcategory
of cyclic modules over R.

Using the Lowenheim-Skolem theorem from the theory of models
it suffices for metatheoretic purposes to test any theorem on just
countable abelian categories. Joining that fact with the observation
that an onto ring homomorphism ¥ — R induces an exact full
embedding ¥® — ¥V and assuming the final theorem of the book,
7.34, we may improve Theorem 4.31 to:

A full compound diagrammatic statement is true for all abelian
categories if and only if it is true for the category of countable modules
over the ring freely generated by a countable set of (noncommuting)
indeterminants.

E. Small projectives

Let o/ be a right-complete abelian category. A projective object
P € &/ is a small projective if the functor (P,—): &/ — ¥ preserves
all roots, or equivalently if it preserves sums.

(1) A projective object is a small projective iff for every map
P— XA, there is a finite JCJ such that P— 24, =
P— EJA,. — 24,

(2) Every ascending chain of proper subobjects in a small
projective is bounded by a proper subobject and every
family of proper subobjects closed under finite union is
bounded by a proper subobject. (Let {P; — P}; be an ascend-
ing family of subobjects which is not bounded by a proper
subobiject. It follows that % P; — P is epimorphic. Now use
the fact that P is projective.)

(3) If the category & is such that for x: P — 4 and ascending
family of subobjects {4, — A4}, it is the case that U x7(4,) =
x}(UA;) then the property of small projectives in (2)
characterizes them. (Given P — Z;4; consider the inverse
image of Z;4, for all finite J C I.)

(4) A projective module is small iff it is finitely generated.
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F. Categories representable as categories of modules

Let &/ be a right-complete abelian category with a small
projective generator P. Let R be the ring of endomorphisms of P and
define F: & — %R as in 4.44. F(A) is the left R-module (P,4). Then
Fis an exact embedding which preserves all roots. Its image contains
R and all free modules. Moreover, any map between free modules
comes from a map in 2. Since the image of F is closed on the right
we may conclude that it is a full representative subcategory. By
Exercise 3-A, F is an equivalence of categories.

A category is equivalent to a category of modules iff it is a right-
complete abelian category with a small projective generator.

G. Compact abelian groups

Let € be the category of compact abelian groups, advertised in
Exercise 2-C as being an abelian category. Let C € € be the “circle
group,” defined as the multiplicative group of complex numbers of
modulus one, or additively, as the group of reals modulo the sub-
group of integers. We shall treat C as an additive group. The only
proper closed subgroup of C are finite and cyclic. The only auto-
morphisms of C are rigid (the metric structure of C may be defined
via the group structure and topology and a continuous automor-
phism must be an isometry). The only rigid automorphisms on C are
the identity and the map which results by multiplying by —1. The
last three sentences combine to prove that the only endomorphisms
of C are those which result by multiplying by integers. That is, the
ring of endomorphisms of C is the ring of integers.

"C may be proven to be a cogenerator for €. The most efficient
proof is beyond the scope of this book. It involves among other
things the fact that the space of complex numbers is a cogenerator
for the category of Banach algebras. But granted that C'is a cogenera-
tor we may prove the Pontrjagin duality theorem:

First, C is injective in . Indeed, any cogenerator for any abelian
category whose ring of endomorphisms is a principal ideal domain
is an injective cogenerator. (Given a monomorphism C— 4 let
I C (C,C)be the set of maps of the form C— 4> C. I'is an ideal

and if it is generated by C = C then every mapinJkills Ker(n). Now
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using the fact that C is a cogenerator we conclude that Ker(n) = O
and that I is generated by the identity.)

For any x:4—Be¥ and descending family of subobjects
{4, — A}, it is the case that x(N 4;) = N x(4,). Hence C*is a small
projective generator for ¥* (Exercise E). The Tychonoff theorem
implies that € is a left-complete category and hence that ¢* is right-
complete. By the last exercise %'* is equivalent to . More particularly
(—,C): € — ¥ is a contravariant equivalence. Ar_l_ilgerse of (—,0)
may be described as the symbolic hom functor (—,C): 4 — % and
computed to be such that (G,C) is the space of homomorphisms
from G to C topologized by pointwise convergence.

H. Fully is more than very
1. The fact that not every small abelian category enjoys a full
embedding into ¥ is easily established, thus,

(1) If G is an abelian group whose ring of endomorphisms is a
field of characteristic zero then G is isomorphic to the group
of rational numbers.

(2) Let F be a field of characteristic zero, not isomorphic to the
field of rational numbers, and let &/ be the category of
finite-dimensional vector spaces over F. Then &/ does not
enjoy a full embedding into ¥.

2. The statement of the full metatheorem cannot be simplified by
replacing the arbitrary ring R with the ring of integers. For,

(1) If 0 — A — B is an exact sequence in & and B2> B = 0,
then the map 4 — B splits, i.e., there is a map B — A such
that A —-B—>A =1,

(2) Let Z, be the ring of integers modulo two and let R be the
ring {(a,b) | a,b € Z,} whose multiplication is defined by
(a,b)(d’ b)) = (ad’,ab’ + a’b). (R is isomorphic to ZJ X]/(X ?)
and Z[X)/(2,X%).) Let 4 = {(0,0)|a€Z,} CR. The in-
clusion map 4 — R does not split in the category of R-
modules.
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I. Unembeddable categories

Not every category may be embedded in the category of sets.
What seems to be the simplest counterexample may be described as
follows:

For objects let there be for each ordinal number « an object
named A,; let there be a zero object O; and let there be a special
object S. - @ = "

Let there be maps named A4, 2588 2, A,, and 4, 2> A, for
every pair of ordinal numbers # < a, and let there be a zero map
between any two objects, and let there be an identity map for every
object.

For the composition of maps let 4, 2y s 4= A, where
B” = max(B,f'). Let all other compositions of nonidentity maps be
zero maps (which makes the verification of associativity downright
trivial), and finally, let the composition of maps with identity maps be
what it must.

Calling the above-described category %, suppose that F: & — &
is an embedding into the category of sets. Let « be an ordinal number
of cardinality greater than that of the family of subsets of F(S). There
must exist § < p” < o such that Im(F(x3)) = Im(F(x3)). On the other
hand the image of F(x3) is not in the difference kernel of F(y3) and
F(yg), whereas the image of F(x}) is. A contradiction.

(Every category may be embedded in an abelian category (using
techniques not to be covered in this book) and the above counter-
example leads to an example of an abelian category which cannot be
embedded, exactly or not, in the category of abelian groups. The
presence of a projective generator or an injective cogenerator, of
course, implies the existence of an exact embedding. The only em-
bedding theorem for large abelian categories that we know of
besides the just named triviality is, that if an abelian category, small
or not, has both a generator and a cogenerator, then it has a group-
valued exact embedding. The proof is, in light of the special nature of
the result, too long for inclusion.)

CHAPTER 5

FUNCTOR CATEGORIES

We began this book with the observation that to describe
topology as the study of continuous maps is more to the
point than to describe it as the study of the models of the
axioms for a topological space. It has often been said that most
of mathematics is concerned with functions rather than the
things functions are defined on. The axioms for a category
stand as an embodiment of such a viewpoint. But the same
viewpoint leads one to study not categories but functors; and
then not functors but natural transformations. And happily
this returns us to categories.

5.1. ABELIANNESS

Let & be a small abelian category, and ¢ the category of
abelian groups. (#,%) shall denote the category of additive
functors from &/ to ¥. The objects are functors, the maps
are natural transformations.

Theorem 5.11
(H,9) is an abelian category.

Proof: .
We indicate the verification of half of the axioms:
109
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Axiom 0. The constantly zero functor is a zero object.
Axiom 1. Given Fy,F, € (#,9) define F; @ F, to be a functor

F(x) 0 )
F, @ F, =( 1
Axiom 2. Let F; - F, € (#,%). For each 4 € & let O —

K(,-i) ~— Fy(4) — Fy(A4) be exact. Given 4 => B € & thereis a
unique map K(x): K(4) — K(B) such that

K(4) — Fy(4)
mx)l lrlcx)

K(B) — Fy(B) commutes.

Then K is a functor and K — F; is a natural transformation.

Axiom 3. The above construction shows that a transforma-
tion F, — F, is a monomorphism in (&,9) iff Fi(4) — Fy(4)
is a monomorphism in % for each 4. The dual construction
needed for Axiom 2* indicates that if F; — F, is a mono-
morphism then it is a kernel of its cokernel. [}

The constructions above indicate that a sequence F* — F — F’
is exact in (&, %) iff the sequences F'(4) — F(4) — F'(A) are
exact in & for all 4 € &#. More formally the evaluation functor
E:(,9) — @ defined by E (F,—>> Fy) = Fy(4) ™> Fy(d)
is an exact functor for each 4 € &/. The product

(N E): (#,9) > 9

defined by (I1 E )(F) = I JE,(F) = II ,F(A) is an exact em-
bedding.

Proposition 5.12
(A ,9) is a complete abelian category.

FUNCTOR CATEGORIES 11

Proof:
Let {F,}; be an indexed family of functors in (&,9). I, F;
and =, F, are constructed “pointwise” (just as were finite direct

sums):
(I F)A) = U F(A)

(EF)A4) =ZF4). 1

5.2. GROTHENDIECK CATEGORIES

@ and (&, %) enjoy a critical property with respect to certain
infinite operations. Note that if G is an abelian group and {G,};
is a linearly ordered family of subgroups, and H is any subgroup
of G,thenH nU G, =UHNG) A complete well-powered
category in which this same statement is always true for the
lattice of subobjects of any object is called a Grothendieck
category (the property is elsewhere referred to as ABS). Just one
of the many consequences of the Grothendieck property is
explored in the next chapter. Among the many properties
equivalent to the Grothendieck property is the following: for
all x: A — B and ascending families {B; — Bj}; it is the case
that x~%(U B,) = U x~1(B,). For any category such is the case
(purely lattice theoretically) for epimorphic x. In the case that
x is a monomorphism the two properties are immediately
equivalent.

Proposition 5.21
(,9) is a Grothendieck category.

Proof:

We simply observe that given a collection {F,}; of subfunctors,
their union and intersection may be constructed “pointwise”:
(U F)(A4) = U (F(4)) C F(A). Hence given a linearly ordered
family {F,}and a subfunctor H C F,(H N U F)4) = HA) N
U Fi(4) = U [H(4) A F(4) = [(U EH n F)IA.
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5.3. THE REPRESENTATION FUNCTOR

We define the representation functor as the contravariant
functor & —> (#,9) such that H(A) = (4,—) e(#,9),
H(A > B) = (B,—) “=> (4,—). When (4,—) is being con-
sidered as an object in (#,%) we shall denote it by H4. Given
A—> Be & it is convenient to denote the corresponding
transformation by H® “> H4.

Proposition 5.31

H . . .
A —> (A,9) carries right-exact sequences into left-exact
sequences. |}

Given 4 € o, F e (#,9) we consider the group of natural
transformations (H4,F). Let 7 e (H4,F). By evaluating at 4
we obtain a group homomorphism 7, € (H4(4),F(4)). By
evaluating at 1, €(4,4) = H(4) we obtain an element
14(10) € F(4). We define the Yoneda function y: (H4,F) —F(A)
by y(n) = n4(1,). It is clear that y is a group homomorphism.
Moreover, it is a natural transformation: a statement which
needs clarification.

We define two group-valued functors D,E each on two
variables, one variable from &, the other from (#7,9). D is
defined to be the composition

oA x (H,9) LD (#£,9) x (#£,9) > 4.
Hence D(A4,F) = (H4,F)e 4.

E:of x (#,9) — %, the “evaluating functor,” is defined

b
d E(A,F) = F(4)
E(A,F, > F;) = Fy(4) > Fy(4)

E(4, > A5, F) = F(4))™> F(4,).
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(Prop. 3.61 on the recognition of functors on two variables is
useful here. Condition three of that proposition is here equiva-
lent to the defining condition for natural transformations.)

Theorem 5.32
The Yoneda functionsy: (H?,F) — F(A), y(n) = 11.4(14), provide
a natural transformation from D to E.

Proof:
By proposition 3.62 it suffices to show that

(1) for F,—> F,e(A,9),

(HA, 0)

(HA’FI) - (HA9F2)
N
F(d) —— (F.4) commutes,
and

- (2) for A, —> A,

(H*,F) S (#4,F)
- ¥ ¥y
F(4,) 2> F(4,) commutes.
(1) is easy: starting with n € (HA,F,) and traveling clockwise
we obtain 7 — an — (an)4(1,); traveling counterclockwise, 7 —
n4(Ly) — (en4(14)). But, of course, (an), is the composition
of «, and 7, and we obtain the same element in F,(A) regardless
of direction of travel.
For condition (2) we start with « € (H“,F), and traveling
clockwise we obtain

« — o — (aH?), (1,,) = “A,(xaAz)(lA,) = a,,(X).
Traveling counterclockwise we obtain
x = “A,(lAl) - F(x)[“A,(lAl)]-
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To see that «, (x) = F(x)[«, (1,)] we use the fact that « is a
natural transformation and that the diagram

(A, 47) 22> (4,,4,)
a(Al)l la(A,)

F(4,) — F(4,) commutes.
Starting with 1, € (4,,4,) and traveling clockwise:
Ly, = x—a, (x);
traveling counterclockwise,

1,4, - “A,(IAI) g F(x)(“Al(lAl))' l

Theorem §5.34
The Yoneda transformation y: D — E is a natural equivalence.
((H*,F) is naturally equivalent to F(A).)

Proof:

First, y is one-to-one. Let « € (H4,F) and 0 = y(a) = a,(1,).
We must show that « is the zero transformation. Let 4, € &
and x € (4,4,) = H*(4,). In the last step in the last proof it
was shown that «, (x) = F(x)(«(L,)). Henceif y(«) = a,(1,) =
0 then «, (x) =0 and « = 0.

To show that y is onto, we let z € F(A). For each Be &
‘we define the function «p: (4,B) — F(B) by ag(x) = (F(x))(2)
for x € (4,B). The additivity of F implies that oy is a group
homomorphism. If the collection of «z’s produces a natural
transformation « it is clear that y is onto since y(«) = z.

To prove that « is natural we must show that for any B, —>
B, the diagram

(4,B,) > (4,B,)

a'Bl o B

F(B,) S 1 (By) commutes.
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Starting with x € (4,B,) and traveling clockwise,
x = wx = g (Wx) = [FOr](2);
counterclockwise,
x — g (x) > [F(W)l(ap,(x)) = FW)F(x)2)]-
Since F is a functor, F(wx) = F(w)F(x) and o is natural. [J

Theorem 5.35
T_H4 is a projective generator for (,%).

Proof:
(SHA, — ), %) — ¥ is naturally equivalent to

(IEy): (#£,%9) ~ %. |}

Theorem 5.36
‘The representation functor > (,9) is a contravariant
full embedding.

Proof:
(HAH") = (BA). |}

EXERCISES

A. Duals of functor categories

Let &/ be a small category, # any category, & * and #* their
duals.

Both (&/*,%) and (&,%#*) may be interpreted as the category of
contravariant functors from & to #. However, (& *,%) and (&, %*)

are dual.
(A, B) is dual to (L*,Z*).
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B. Co-Grothendieck categories
1. If the dual of an abelian category &/ is a Grothendieck category,
then the lattice of subobjects of each object A € &7 has the property:

if {A,} is a descending family then

2. The category of abelian groups is not the dual of a Grothendieck
category.
3. If the abelian category &7 and its dual both were Grothendieck

0 -]
categories, then for every 4 € & the naturalmap > A —~ [ A isan
=1 =1

isomorphism and 4 = 0. (Let x=14+4+ 14+ 14+ -*-. Then
x=1,4x)

C. Categories of modules

Let &/ be any monoidal category and (&/,%9) the category of
additive functors.

1. (#,9) is abelian.

2. Consider a ring R as a monoidal category. (R,¥%) is isomorphic
to the category of R-modules.

3. If €, the category of compact abelian groups, has been identified
as the dual of the category of groups, then the dual of the category of
left R-modules may be identified as the category of compact right
R-modules.

D. Projectives and injectives in functor categories

The functor 2 E,: (,9) — ¥ preserves all right roots and if
" followed by (—,0/Z): % — % results in a contravariant exact
embedding which carries right roots into left roots. (Exercise 3-G.)
It must be representable, and therefore (&/,%) has an injective
cogenerator.

More generally: If # has a projective generator then so does
(#,%). Each evaluation functor E : (&, %) — & preserves all roots.
That it satisfies the further condition of Exercise 3-J for functors with
left-adjoints may be directly verified. Letting E%: # — (&, %) be the
left-adjoint of E,, and P a (projective) generator for &, it follows
that X _,E%(P) is a (projective) generator for (&, %).

FUNCTOR CATEGORIES "7

For arbitrary B € &, the functor E (B) may be identified as the
functor from & to &% which sends A’ into (4,4") ® B, where ®
refers to the functor defined in Exercise 3-K. The right-adjoint of
E,: (4, %) — B, evaluated at B € &, is the functor which sends A’

into ((4',A4),B).

E. Grothendieck categories

Let # be a Grothendieck category, £ a directed category (see
Exercise 3-B), F,G: 2 — # two functors, and F— G a mono-
morphic transformation. The induced map lim F— lim G is a
monomorphism. (“The direct limit of monomorphisms is a mono-
morphism.”) If such is always the case in a complete abelian category
then the category is a Grothendieck category.

Let A4 be an object in a Grothendieck category, {4,} an ascending
family of subobjects of A the union of which is all of 4. Then 4 may
be identified as the direct limit of the system {4;}. The statement
remains true for Grothendieck categories if we require only that
{4;} be directed (i.c., that every pair of subobjects in {4} have an
upper bound in {4,}), and becomes another characterization of
Grothendieck categories among complete categories.

F. Left-completeness almost implies completeness

Let & be any category, and 2 any small category. Define % to be
the full subcategory of constant functors in the category of all
functors (2,o7). Given F € (2,57), F has a reflection in % iff F has a
left root, and, in fact, the two are the same. On the other side, Fhas a
coreflection in ¥ iff F has a right root, and, again, the two are equal.

Suppose that & is a left-complete, well-powered category with a
cogenerator and a “right zero object” Oy € & with the property
that for all 4 € &, (4,0z) has precisely one element. Then the same
is true for € (they are isomorphic categories), and the inclusion
functor € — (2,%) is left-root-preserving. By Exercise 3-M, there-
fore, € is reflective, and since this is true for any small 2, we conclude
that & is right-complete.

Suppose that &/ does not have a cogenerator but that it is left-com-
plete, well-powered, and co-well-powered. The right-completeness
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of & is implied by the existence of difference cokernels and sums.
By the left-completeness of &7 every map has an image (the partially
ordered family of subobjects of any object is a complete lattice; the
image of A =+ B is the least subobject which allows x). Because &/
has difference kernels one may prove that if the image of x is all of B
then x is an epimorphism.

Given an object 4 and a family of quotient objects {4 — 47}, let
A" be the image of 4 — I147. Then A — A” represents the least upper
bound of all the quotient objects {4 — A7}. Hence, the family of
quotient objects of A is a complete lattice.

Necessary and sufficient conditions for the existence of sums are
best expressed by expanding the language of Exercise 3-J as follows:

Given a family & = {4, > B} we shall say that a subobject
B’ — Ballows Z ifit allows every x, € #. We shall say that & gener-
ates B is no proper subset of B allows &#. We shall say that {4,}

generates B if there exists a family {4, —> B} which generates B.
Finally, then, if & is a left-complete, well-powered and co-well-
powered category with a right zero object then it is right-complete
iff every set of objects generates at most a set of nonisomorphic
objects.

If o does not have a right zero object we may easily adjoin one.
In that case, the right root of T: 2 — &/ is the right zero object iff
T has no transformations into any constant functor into the original
category. The ideal right zero object plays a role analogous to +
for the real numbers and indeed + co is a right zero object in the
category that is associated with'the ordering type of the real
numbers.

If we were to relax our definition of completeness in categories in
the analogous way (sets of real numbers with any upper bound have
a least upper bound) then we could leave out the ideal zero objects.
In particular, we could prove that categories of models [Exercise
3-0] are left-complete iff they are right-complete, where the notion
of completeness is understood to be the relaxed notion.

Let o be a small abelian category and define £(#) to be the full sub-
category of left-exact functors in the category of all additive functors
(#,9). In the next chapter £(«) will be shown to be a reflective category
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(but not via the adjoint functor theorem). Let #(«) be the full subcategory
of right-exact functors. The only proof that we know of that #(#) is a
coreflective subcategory (or, in classical language, that Oth left-derived
functors always exist), is via the special adjoint functor theorem and the
statement that the set {7 € #(«) | the cardinality of UT(A) is less than
that of #}, is a generating set for #().

The result may be generalized as follows: Instead of specifying right-
exactness, consider any class of functors into &, and then consider the fuil
subcategory of all those functors which preserve their right roots. It is
coreflective.

On the other side, the full subcategory of functors which preserve the
left roots of some specified class is reflective. These two results do not have
a common proof, and both depend on the special nature of the range
category 9. (It does not depend on the abelianness of «, or for that
matter on anything about & save its smallness, and ¥ may be replaced
with the category of sets.)

G. Small projectives in functor categories

Let &/ be a small additive category, and (&/,%) the category of
additive functors from &/ to &. By the Yoneda theorem H4 is a
small projective in (7,%), and the family of all such small projectives
generates (&,9).

Suppose that & not only is additive but also has finite direct sums
and that idempotents split in &7 (see Exercise 2-B). Such a category
is called amenable. Let P be a small projective in (<7,%). Then P is
isomorphic to H4 for some 4 € &. To prove it, first find {4,}, and
an epimorphism X, H4: — P (the H4’s generate (&/,%)); second, let
P — ZH4 — P = 1 (Pis projective); third, letJ C I be a finite sub-
set such that P — X H4¢— X, H4¢ = P X HA4:(Pis small); fourth,
let A = @ A, (« has finite direct sums) and simplify to the maps
P HA - P = 1; fifth, find x € (4,4) C & such that H4 — P —
H4 = H* (& is additive) and observe that x* = x; sixth, let A — B
and B— Abesuchthat 4 -~ B—~ A =xand B— A— B=1(idem-
potents split in &/); seventh, conclude from the factorization
H* = H4 P H4 = HA -~ H®—~ HA that P is isomorphic to
HE («,9) is abelian).

The moral is that any property of F: &/ — % which may be stated
in terms of its behavior as a functor may be stated in terms of its
behavior as an object in (&, 9).
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H. Categories representable as functor categories

Let # be a right-complete abelian category with a generating set
of small projectives 2. That is, for any 4 — B 5 0 there exists a
small projective P € & and a map P — A such that P— 4 — B # 0.

Let o/ be the full subcategory of # generated by & and let
(&7*,%) be the category of contravariant additive functors from -4
to &. Define F: & — (£ *,%) to be the covariant functor which
sends B into the contravariant functor (—,B) | 7. Regardless of the
special nature of &, F preserves left roots. The fact that the objects of
& are small projectives in & implies that F preserves right roots.
And the fact that the objects of &7 generate % implies that F is an
embedding.

Asin Exercise 4-F it may now be shown that F is an equivalence of
categories. A4 category is equivalent to a category of group-valued
functors iff it is a right-complete abelian category with a generating
set of small projectives.

I. Tensor products of additive functors

Let <7 be a small additive category, & any additive category and
(' *,%) the category of contravariant group-valued additive functors
from . Given any covariant F: & — % define F: & — (&*,9)
to be such that B is sent into the contravariant functor (F(—),B) €
(#*,%). We obtain a diagram

#
.sx’F/Y"'

H
(#*,9)

where H: o — (*,%) is the covariant functor which sends 4 into
the contravariant functor (—,A4). (If & = &/ and F is the identity
then H = F.)

If 4 is left-complete and well-powered and has a cogenerator, then
F has a left-adjoint F*: (o/* %) — %. Somewhat surprisingly it
suffices to assume that # is right-complete, well-powered, and co-
well-powered. (This is a weaker assumption by Exercise 5-F.)

Define #' C & to be the smallest full subcategory which contains
the image of Fand is closed under the formation of sums and quotient

FUNCTOR CATEGORIES 121

objects. &’ is a coreflective subcategory and we define R: # — &'
to be its coreflector. By the isomorphisms (F(—),B) — (F(—),R(B))
we obtain a commutative diagram

m

Because &, is right-complete and co-well-powered and has a
generator, namely 2, F(4), it is also left-complete. It is clear that if
F. # — (*,%) has a left-adjoint then so does F: Z — (&*,9).
We thus reduce to the case that & is left-complete, well-powered, and
co-well-powered.

Let T € (&7 *,%) and suppose that B € # is generated by T through
F, i.e., there is a transformation 7: T — F(B) € (&/*,9) such that 5
generates B. It follows that we obtain an epimorphism

(A*,9).

2 Zre F(A) <>B

where y is such that for x € T(4) F(4) 2> Z,Zr, F(4) <> B=
n0(%) (the image of y allows 7). Hence T generates B only if B
is a quotient object of T X, F(4) and by Exercise 3-K F has a left-
adjoint F*: (*,%) -~ %. We obtain a commutative diagram

H/’(Jf *9)
-4 Fe R
9
%

that is, F(H,) = F(A). This fact together with the fact that F pre-
serves right roots characterizes F up to isomorphism.

Given a transformation 7: F; — F, we easily obtain 7: F, — F,
and then by Exercise 3-H a transformation n*: F} — F3. Define for
Te(#*¥9), Fe(HA,B) T® F = F*T). We obtain a bifunctor



122 ABELIAN CATEGORIES

(F*9) x (A,#)—~F which preserves right roots on both
variables separately. (This fact together with H, ® F = F(4)
characterizes it.)

Define for Be # Fe (A, B) (F,B) = (F(—),B) € (#*,%). We
obtain a bifunctor (&7,%) X # — (& *,9), contravariant on the
first variable, covariant on the second. The adjointness yields iso-
morphisms (T ® F,B) — (T(F,B)).

When &7 is the category consisting only of the group of integers we
obtain the previously described tensor product and symbolic hom
functors.

If we view these bifunctors as operations and replace # with
(¥¢,%) we obtain a long list of associativity and commutativity
statements which generalize the classical list on tensor products and
the hom functors on modules.

CHAPTER 6

INJECTIVE ENVELOPES

We have shown that the category (#/,%) is a Grothendieck
category with a generator. In this chapter we prove that such
conditions insure the existence of injective envelopes. In the
next chapter we shall return to (/,%) and put the injectives
to work.

All categories in this chapter are abelian.

6.1. EXTENSIONS

We recall that an object £ in an abelian category & is
injective if the contravariant functor (—,E): & — ¢ is exact.

Given an object 4 € & we shall call a monomorphism
A — B an extension of 4, and sometimes B itself will be called
an extension.

A trivial extension of an object is a monomorphism 4 — B
which “splits,” i.e., which is such that there is a map B —A

123
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such that A > B — A4 = A—> A. [Equivalently, 4 — B is a
trivial extension if there is an object C such that B=A & C

and A - B =A=> 4®C. (See 2.68.)]

Proposition 6.12

An object E in  is injective iff it has only trivial extensions.

Proof:

=»  From the dual of 3.31.

<  Let A — B be a monomorphism and 4 — E any map.
Consider the pushout diagram

A—B

Il
E—~P,

The pushout theorem, 2.54*, asserts that E — P is monomorphic;
hence by hypothesis P is a trivial extension of E. Let P — E be
such that E — P — E = E —> E and define

B—~E=B—-P—E,
Then

A—-> B

N

An essential extension is a monomorphism 4 — B such that for
every nonzero monomorphism B’ — B, the intersections (of the
images) of A — B and B’ — B are nonzero.

Equivalently, 4 — B is essential if for every B — F such that
A — B— F is monomorphic it is the case that B—F is
monomorphic.

commutes. l

R e

P e
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Theorem 6.13
In a Grothendieck category an object is injective iff it has no
proper essential extensions.

Proof:

— If E is injective, its only proper extensions are trivial
and thus clearly not essential.

<«  Let E have no proper essential extensions and consider
an extension E — B. We wish to show that the extension is trivial.

Let & be the partially ordered family of subobjects of B
which have zero intersections with (the image of) E — B. The
following lemma is provable directly from the definition of the
Grothendieck property.

Lemma 6.131.  If {B,}; is an ascending chain in & then \ B,

isin .

By Zorn’s lemma, then, # has a maximal element B’ C B.
The corresponding family #* of quotient objects of B (B —~F €
F* iff E— B — F is monomorphic) likewise has a minimal
element: B — B”. Certainly then E — B — B” is monomorphic.
Moreover the minimal nature of B” insures that E— B” is
essential, since if B” — F is such that E—~B—>B" —F is
monomorphic, then the coimage of B — B” — F yields an
element in #* not smaller than B” and hence equal to B".

By hypothesis E has no proper essential extensions: E — B —
B’ is an isomorphism and E — B is a trivial extension. [

The next theorem is a classic characterization of injective
modules. We have included it, not because it will be directly
needed, but because its proof, suitably modified, will become
the proof of the main theorem of this chapter.

Theorem 6.14

Let R be a ring. If a left R-module A has the property that
for every left ideal I C R it is the case that (R,4) — (1,A) is epi-
morphic, then A is injective in the category of left R-modules.

Rheinisch-VWestfs1:
",..:'msd?—\ ‘lestfiilicchos Institys
Ur fastroasomt-fn tiaan . L)
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Proof:
By the last theorem it suffices to show that 4 has no proper
essential extensions. Assume then that 4 C B and that x € B

and x ¢ A. Let R—> B be the map which sends 1 into x and let

I —+R

Voo
A—B

be a pullback diagram. Let y € A be such that ] - R-*> 4 =
I— A. The element x—y is not trivial and it generates a sub-
module of B which meets 4 only trivially. B is not essential. [

6.2. ENVELOPES

An injective envelope of A is an injective essential extension.
It is, therefore, a maximal essential extension and a minimal
injection extension. The latter follows easily since 4 — E is an
essential extension of every proper subobject between (the image
of) 4 and E and thus none could be injective.

The construction of injective envelopes for arbitrary objects
in Grothendieck categories proceeds from the following propo-
sitions :

Lemma 6.21
An essential extension of an essential extension is essential. |}

Lemma 6.22 A

Let {A — E} be an extension of A in a Grothendieck category,
and {E} an ascending chain of subobjects between (the image of)
A and E. If E, is an essential extension of A for each i, then \J E,
is an essential extension of A.

o VAR Wenr
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Proof:

Let S be an arbitrary nonzero subobject of UE;. Then
S=SNUE, =UE NE) and S NE;# O for some i.
Because E, is an essential extension of A4 it follows that
Ans=0. |

We show next that in a Grothendieck category every ascend-
ing chain of extensions may be embedded ina common extension.
Lemma 6.22 says, then, that every ascending chain of essential
extensions is bounded by an essential extension.

Theorem 6.23

Let # be a Grothendieck category, I an ordered set, and
(E; — E}:; a family of monomorphisms such that for i < j < h
E, —» E; — E, = E; — E,. Then there is an object E€ # and a
family of monomorphisms {E; — E}, such that for i <},

E,—~E;,~E=E,—~E.
Proof:

Let S = Z,E; and for each i € I let E| ~4> § be the associated
map. For each j € I define 4;: S — S to be the unique map such
that
E,—~E,~> S ifi<j

hy
. — ——>S= u .
E—5 {E,.—‘—>S if j <.

Let S—> Ebean epimorphism such that Ker(h) = U Ker(h,).
Note that {Ker(h;)} is an ascending family since for j < j’

Sty s .52 st g

To conclude that E; ~> S~ E is a monomorphism it suffices
to establish that Im(E; —S) N U(Ker(h;)) = O. By the
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Grothendieck property, therefore, it suffices to establish that
Im(E, — S) N Ker(h,) = O for all j, i.e., that E, -~ S—> S is
a monomorphism. But this last statement follows immediately
from the definition of 4,. |}

Let # be a Grothendieck category and using the axiom of
choice let E: (objects of #) — (monomorphism in %) be such
that E(4) = (A4 — B), where B is a proper essential extension
of A, unless, of course, 4 is injective, in which case B = A4.
We define E¥(4) for all ordinal numbers y by

E"{(A) = E — E'(4) — E(E"(4)),

and for «, a limit ordinal, we let E*(4) be a minimal essential
extension for all E*(4), y < « as insured by the last theorem.

Then the sequence {E”(4)} becomes stationary only when
it reaches an injective envelope of 4.

We need only show that {E¥(4)} becomes stationary and we
will know that—

Theorem 6.25

If & is a Grothendieck category with a generator, then every
object has an injective envelope.

The presence of the generator in # is necessary: without
it the sequence {E"(4)} might very well continue to grow
through the entire sequence of ordinal numbers (see Exercise
6-A).

But in the presence of a generator G we show that any
sequence of essential extensions becomes stationary at some
ordinal number.

We shall indicate three proofs. The first two use results
which have appeared only in the exercises.

First Proof, in which it is assumed that # has a cogenerator C
(which by Exercise 5-D is good for («4,9)):
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Let 4 — E be an essential extension. Letting G be a generator
choose for every xe(G,4) a map f(x) €(E,C) such that

GE> A —EX C#0. Then 4 — EZX> I 4 ,,C is a mono-

morphism (E = Mg ,C *> C = f(x)). Since 4 —E i
essential it follows that y is a monomorphism. Hence every
essential extension of A is isomorphic to a subobject of I 4,C.
To finish things off let Q be an ordinal number of greater
cardinality than that of the family of subobjects of I, 2C.
Then any sequence of essential proper extension must terminate
before Q.

Second Proof (Mitchell), in which it is assumed that modules
may be embedded in injectives (Exercise 5-D):

Let R be the ring of endomorphisms of the generator G and
define the functor F: & — %% to be that which sends B into
the R-module (G,B). (The endomorphisms of G operate obvi-
ously on the group (G,B).)

 Lemma. If A—E is an essential extension in # then

F(A) — F(E) is an essential extension in gR,

Proof of lemma. Let M C F(E) be a nontrivial submodule
and x € M a nontrivial element. We shall construct a non-
trivial element in M N Im[F(A) — F(E)]. Remembering that
x € (G,E) we let ,

P—G
lx
zl‘i — F

be a pullback diagram. Since 4 —F is essential, P # O

and there exists G — P such that G ~P —~G—> E #0.

G -» P — G-=> E is an element of M (M is a submodule)

and in the image of F(4 — E).

The lemma implies the theorem by a cardinality argument
similar to that in the first proof. Using the fact that F(A) has
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an injective extension F(A) — Q it follows that there exists a
map F(E) — Q such that F(4) - F(E) > Q = F(4) - Q and
that F(E) is isomorphic to a subobject of Q. If Q is an ordinal
of cardinality larger than that of the family of subobjects of Q
then the fact that F is an embedding implies that any sequence
of proper essential extensions of 4 must terminate before Q.

If we were to have made this second proof independent of
the exercises we would have had to include in the text the proof
that & has an injective cogenerator, then the proof that modules
have injective extensions, and then this proof of a theorem
which has those two results as special cases.

Third Proof:

In analysing the proof of Theorem 6.14 two points may be
made. The first is that the projectiveness of the ring R is not
used. The fact that it is a generator is sufficient. The second
point is more subtle. In proving that 4 — B is not essential
we did not use the fact that every map into A from a subobject
of the generator extends to a map from the generator into A.
We need only to extend those maps which allow an extension
into B.

We suppose that & is a Grothendieck category with a
generator G and that {E,} is a sequence of essential extensions
throughout the entire sequence of ordinal numbers. We wish
to show that the sequence eventually becomes stationary.
~ For any monomorphism G’ — G and ordinal number y we
note that {Im[(G,E,) — (G',E )]}, is an ascending family of
subsets of (G',E,). This family therefore must stabilize (there is
only a set of subsets of (G',E)), and since there is only a set of
subobjects of G it follows that there is an ordinal number F(y)
such that Im[(G,Ep,,) = (G’,E,)] D Im[(G,E,) — (G'E,)] for all
a > y and G’ C G. Because it suffices to prove that any cofinal
subsequence of {E,} is eventually stationary we may suppose
that the sequence is such that F(y) = y + 1.
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Now let Q be the first ordinal of cardinality greater than that
of the family of subobjects of G. We shall prove that E, , = Eg.

Supposing otherwise, we let G—> E be a map whose image
is not contained in the image of E; — E ;.

For all y < Q + 1, we shall identify E, with the image of
E, — Eg,,—that is, we shall suppose that it is a subobject of
E,,,- The family of subobjects of G, {x~*(E,)}, is an ascending
family, and by the choice of it must stabilize before Q. There
exists, then, an ordinal y < Q such that x~%(E)) = x(Ey).
(We use here the fact that in a Grothendieck category the
inverse images of ascending unions behave well) By our

assumption that F(y) =y + 1 we obtain a map G->E,,,
such that Im(y) C E, C Eq,, x # ¥, Ker(x—y) = x7Y(Ep).

We conclude that the map x — y has a nontrivial image which
meets E, only trivially. If such were not the case there would
exist a map G- G such that O # Im((x—y) z) C E,. But
then Im(z) C x~Y(E,) and (x—y) z # 0. This involves a contra-
diction. [

EXERCISES

A. A very large Grothendieck category

Define & to be the category whose objects are pairs (G, f: S —
(G,G)) where G is an abelian group, S is a set, and f is a function
from S into the set of endomorphisms on G. We adopt the con-
vention that f(y) = O for all y ¢ S. A homomorphism G %> G is a
map from (G, f: S — (G,G)) to (G, f": §' —(G',G)) iff

G ) G
o
G' J ¢ G'

commutes forall xe S U S'.
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1. # is a Grothendieck category.

2. # is well-powered.

3. Let Z be the group of integers, 4, = (Z2,0:0 —~(Z,Z))e &.
For every x define 4, = (Z ® Z, f,: {x}) € # by

1 ifi=2j=1.

VAV ACY A AV AT A
0 otherwise
ZH8>Z®Z and Z ® Z 2> Z yield maps 4, —> A,, A, 22> A4,.
0 —Ay—2> A, 22> 4, O is exact.

For x #y, A, and A, are not isomorphic. Hence the class of
isomorphism types of objects B such that O — Ay —B—> Ay — 0
is exact, is not a set.

4, If &' is an abelian category, 4 € %', and A — E is an injective
extension, O — A — B— C — O exact, then there is a monomor-
phism B—~E @ C.

5. Ay € # does not have an injective extension. In fact, no non-
trivial object in 4 is injective or projective.

6. Construct a sequence {E,} of proper essential extensions
running through the entire range of ordinal numbers.

7. Let & be any small category. Construct an exact full embedding
(#,9)—~ Z.

B. Divisible groups

Let R be a principal ideal domain. The characterization of injective
modules of Theorem 6.14 reduces, for modules over R, to the
condition that A —> A is epimorphic for all nonzero r € R. This

 property is clearly inherited by quotient modules of 4. Finally, then,

we may prove that Q/Z is an injective object in &. (Q/Z is the group
of rationals modulo the subgroup integers.) A direct argument now
suffices for the fact that Q/Z is a cogenerator.

The exact contravariant embedding % 22D % may be used to
prove a duality metatheorem for very abelian categories.

C. Modules over principal ideal domains
1. In the last exercise it was learned that if R is a principal ideal
domain and if O - R—E— E[R— O is exact, where E is an
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injective envelope of R, then E/R is injective. Let r # 0 and consider
an exact commutative diagram:

O—+R-> R—~R|r)—0

! l !
O—->R— E— E/R—*O

All three vertical maps are monomorphisms. Hence every proper
cyclic module is embeddable in E/R.

Let A CE be a finitely generated submodule. Because E is
essential over R and R is a domain, 4 is isomorphic to a submodule
of R, hence to R itself. Every finitely generated submodule of E is
cyclic and therefore every finitely generated submodule of E/R is
cyclic.

2. Let A4 be a finitely generated module. The family of all ideals
that appear in the form Ker(R — A) is a finite family with (r) as a
minimal member. Let R/(r) — A be an embedding. If (r) = O let
A — E be such that R/(r) > A — E is a monomorphism. If (r) # O
let A — E/R be such that R/(r)— A — E[R is a monomorphism.
In either case the map from A has a cyclic image and we obtain a
monomorphism R/(r) — 4 — R/(s). Note that (s) C (r).

There exists R — A such that R — 4 — R/(s) is onto.

Ker(R— A) C(s) C(r),
hence Ker(R — A) = (s) = (r) and we obtain a splitting
R/(r)—> A— R[(r) = L.

By iteration, A = R/(r;) @ - + @ R/(r,), where (r)) C(r))C---C
(rn)-

3. The uniqueness of any such representation of A may be obtained
from the following: For any prime p € R, the number of (r,)’s such
that (r,) C(p™) is equal to the dimension of (p™14)/(p™A) as a
vector space over R/(p).

In particular if (p) and (g) are distinct nonzero prime ideals then
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R/(p™ @® R/(q™) = R/(p™q™), which when read backwards yiclds a
representation of 4 as a sum of indecomposable cyclic modules,
that is, of the form R/(p™) where (p) is a prime ideal.

D. Injectives over acc rings

A ring R obeys the ascending chain condition for left ideals iff the
class of injective left R-modules is closed under infinite sums. For
one direction, assume R is an ascending chain ring and use Theorem
6.14, recalling that a map from a finitely generated module into an
infinite sum must factor through a finite subsum. For the other
direction consider an ascending chain A, CA, C--- and let
A = VU U,. For each i, let E, be an injective envelope of A/U;. Define
f: A —ILLE, to be such that Ker(p,f) = U,. For any x e U, p, f(x)
= 0 for almost all i and Im(f) C Z,E, CII,E,. Since f extends to R
and any map from R factors through a finite subsum we conclude
that p, f = 0 for almost all J, that is, %; = A for almost all i.

Define a module to be absolutely indecomposable if it contains no
decomposable submodules (2 module is decomposable if it is iso-
morphic to the sum of two nonzero modules). An indecomposable
injective is absolutely indecomposable. A module is absolutely
indecomposable iff it is an essential extension of an absolutely
indecomposable module iff its injective envelope is indecomposable.
Two absolutely indecomposable modules 4 and B have isomorphic
injective envelopes iff there exist nonzero A" C 4, B’ C B such that
A’ is isomorphic to B’.

Every module contains an absolutely indecomposable submodule.
To prove it, it clearly suffices to start with a finitely generated module
"A. If A4 is not absolutely indecomposable, there exist nonzero sub-
modules B,,C,,B; N C; = 0. If C is not absolutely indecomposable
there would exist nonzero B,,C, in Cy,B; N C, = O. If this process
did not stop we would obtain an ascending chain C;,C; @ Gy, - - -

Given an injective E we shall say that a set of indecomposable
injective submodules {E; C E} is independent if none of them over-
Iaps nontrivially the submodule generated by the others. By Zorn’s
lemma choose a maximal independent family of indecomposable
injective submodules. They generate in E a module £’ isomorphic to
a sum of indecomposables. If E” were not all of E then E = E' @ E”
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and by the last paragraph E” contains an indecomposable injective,
hence contradicting the maximality of the family used to construct
E'. Every injective is a sum of indecomposable injectives.

The injective envelope of a finitely generated module is a finite
sum of indecomposables. Moreover, if E,, -+, E,, E;,** -, E,, are
indecomposable injectives and f* E, @ - D E,~E, @ * D E,,
is an isomorphism then n = m and there is a one-to-one correspon-
dence between the indexed sets {E,} and {E;} pairing isomorphic
injectives. In other words, a unique factorization theorem holds.
To prove it note that (,Ker(p; fu,) = O, thus there is an i such that
Ker(p,fu,) = O, hence p; fu, is an isomorphism. If we let i = m and
use standard matrix manipulations we obtain an isomorphism
E®  "OE, 1, >ED  @Ey.

E. Semisimple rings and the Wedderburn theorems

1. Let K be a skew field (a division ring). Every K-module is
injective. The only indecomposable injective is K itself.

If V is an n-dimensional vector space over K(V =K@ - @K,
ntimes) and Ris the ring of endomorphisms of ¥, then ¥% ~==2> @k
is an equivalence of categories by Exercise 4-F. (All exact sequences
in @% split, hence every object is projective.) R, of course, is simply
the ring of n X n matrices. If R, - - -, R,, are all matrix rings over
skew fields K, -, K, then P> "*Bxr~ @Rix ... @By~
G x -+ - x GEn Allmodulesover S = R, x * * - X R,, are injective.

The uniqueness of the skew fields and of the dimensions of the
matrix rings in such representations of the ring S may be seen as
follows: The number m is equal to the size of a maximal set of
nonisomorphic simple S-modules (simple modules have no proper
nonzero submodules). Letting {4,, - - -, 4,.} be such a set of simple
modules, it follows that the dimensions of R, may be obtained from
the number of components of S, when decomposed into simple
modules, that are isomorphic to A, (we are assuming that the num-
bering has been arranged to our advantage).

2. Let R be a ring such that all left R-modules are injective.
Because a sum of injective R-modules is injective, R obeys the
ascending chain condition. R as an R-module is a finite sum of
indecomposable modules which must be simple modules. Any map
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between simple modules is either zero or an isomorphism and R is
jsomorphic, as a ring, to a product of matrix rings over skew fields.

3. Let R be a semisimple ring, that is, a ring which obeys the de-
scending chain condition and has no nilpotent ideals (A" = O im-
plies & = O). Every ideal in R is a direct summand, as an R-module,
of R. To prove it let % be a minimal counterexample. If A is not mini-
mal in the family of all nonzero ideals there exist B C U and a map
R — Bsuchthat B8 > A — R— B = 1. Letting € = Ker(d - R—
%B), we obtain A =B ®C. Hence A>R->BPE->A=1.
If % is minimal in the family of all nonzero ideals there must exist
x e such that A — R Z> A £ 0, otherwise A* = O. But any
nonzero endomorphism on a simple module is an automorphism.

By Theorem 6.14 every R-module is injective and R is isomorphic
to a finite product of matrix rings over skew fields.

F. Noetherian ideal theory

Let R be a ring which obeys the ascending chain condition for
left ideals. All modules over R will be understood to be left-modules.

Let E be an indecomposable injective and R — E any nonzero
map. If O — % — R— E is exact, then R/U is embeddable in E and
R/ is absolutely indecomposable. Equivalently, % is not the inter-
section of two larger ideals, or as classically stated, U is indecom-
posable. Two indecomposable ideals %, B are such that R/¥ and
R/B have isomorphic injective envelopes iff there exists x,y € R such
that reR|rx e} = {re R|ry e B}.

Henceforth let R be commutative, that is, a Noetherian ring. The

last paragraph says that if R/% and R/B have isomorphic injective

envelopes there exists € C R such that % Cg, BCGE, and R/C
has the same injective envelope. The family of ideals F that appear
as kernels of maps R — E has a unique maximal member . More-
over, for any x € R, {r| rxe B}, if not allof R, isa member of Fg.
That is B is a prime ideal. For any % € Fy, there exists x € R such
that {r|rx €%} = P, hence P is the only prime in Fg. Every
indecomposable injective is the injective envelope of R/P for some
unique choice of prime ideal .

Let B and P’ be prime ideals and E,E’ their corresponding injec-
tives. (E,E) # O iff PCP'.
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Let A be a finitely generated module. The injective envelope of
R|P appears as a summand of the injective envelope of 4 iff there is
x € A such that {r|rx = 0} = P. We shall call such primes the
annihilating primes of A.

Let U be an ideal. The annihilating primes of R/% are defined to
be the associated primes of U. If A has only one associated prime P,
and if B’ is another prime such that % C 9’, then there exists a
nonzero map from the injective envelope of R/ to that of R/P’
and P C P’. That is the intersection of all primes containing U is
P

In any commutative ring R, Noetherian or not, the set {x | x* € %,
some n} (usually called the radical of A and written V/9) is the inter-

section of all primes that contain %. To prove it note that VU is
clearly contained in any prime that contains %. Conversely suppose
that x ¢ VVU. We wish to find a prime ideal containing % but not
x. In the formal power series ring (R/2)[[X]] the inverse of 1 — xX
is 1 + xX 4+ x*X* + x*X® + - -~ and 1 — xX is a unit in the poly-
nomial ring (R/A)[X]iff x € V9. Let Dt be a maximalideal containing
1 — xX and f: R— ((R/M[X])/M the induced ring homomorphism.
f(x) # 0, hence x ¢ Ker(f). Since the range of fis a domain, Ker(f) is
a prime ideal.

To return to the Noetherian case. If % has only one associated
prime 5, then VU = P and for all x ¢ %, {r [ rxeAFC P = VAU
Thus ¥ is a primary ideal with associated prime P.

The Lasker-Noether ideal theorems are now obtainable by examin-
ing the injective envelope E of R/U. The factorization of E into
components, not indecomposable, but each with its own annihilating
prime, pulls back to a decomposition of A as an intersection of
primary ideals. The uniqueness of the primes involved and the
primaries corresponding to the minimal primes follows easily.



CHAPTER 7

EMBEDDING THEOREMS

We return to the functor category (#/,%). In Chapter 5
we observed that (#/,%) is a Grothendieck category with a
generator, and in Chapter 6 we constructed, under such con-
ditions, injective envelopes.

7.1. FIRST EMBEDDING

Proposition 7.11
- If an object E € (,9) is injective, then it is a right-exact
functor.

Proof:
Let A" - A — A” — O be any exact sequence in &. Applying
the representation functor A we obtain the exact sequence

O —~ HY — HA . H¥ in (A, 9).

The functor (—,E): (&,9) — ¢ is an exact functor. Hence
we obtain the exact sequence
138
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(H*'\E) — (HA,E) — (H*",E) - O in %.

By the Yoneda lemma, the above sequence is isomorphic to
E(A") — E(4) — E(A") — O and hence E is right-exact. [

A right-exact functor is exact iff it carries monomorphisms
into monomorphisms. We introduce the term mono functor to
describe a functor which preserves monomorphisms. An injec-
tive mono functor is, therefore, an exact functor. The next
lemma will provide a proof that the injective envelope of a
mono functor is an exact functor.

Essential lemma 7.12
Let M — E be an essential extension in (#,9). If M is a
mono functor, then so is E.

Proof:

Suppose E is not a mono functor. There exists, then, a
monomorphism 4" — 4 in & such that E(4') — E(4) is not a
monomorphism in ¥. Let 0 # x € E(4") be such that

[E(4’) = E(4))(x) = 0.
We construct the subfunctor FC E “generated” by x. Define
F(B) == {y € E(B) | there is A" — B € & such that
[E(A") ~ E(B))(x) = y}-
It follows that for B* — B
[E(B") — E(B)(F(B')) C F(B)

and that we may define F(B' — B) by restriction. F is clearly
a set-valued functor. It is seen to be a group-valued functor
once it is established that F(B) is a subgroup of E(B), and such
is clearly the case. (F is the image of the transformation

H4 "> E such that 5(1,) = x.)
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Since x € F(A") C E(A"), we know that F 5 O. Since MCE
is essential, F N M 3 O. In particular then, there is an object
B such that F(B) N M(B) # O. Let 0 # y € F(B) N M(B). By
the construction of F there is a map 4’ — B such that y =
[E(4") — E(B)](x). Let

A —~A4
Lol
B —P

be a pushout diagram. The pushout theorem asserts that B — P
is a monomorphism. Since M is a mono functor

[M(B) — M(P)](y) # O,
and hence

0 # [E(B) — E(P))(y) = [E(B) —~ E(P)][E(4) — E(B)](x)
= [E(4’) — E(P)](x)
= [E(4) — E(P)][E(A") — E(4)](x)
=0,

a contradiction. I

Corollary 7.13
A group-valued functor may be embedded in an exact functor
iff it is a mono functor. |}

First embedding theorem, 7.14

- Every small abelian category is isomorphic to an exact full
subcategory of 4. Equivalently, for every small abelian category
A there is an exact embedding functor £ — . In the termi-
nology of Chapter 4, every abelian category is very abelian. |}

Proof:
Consider the group-valued functor G = Y H“. G is a mono

Adesd
functor. Let E be its injective envelope. By 7.13 E is an exact
functor. Since G is an embedding functor it follows that any

Aw g e e

AR i 8 TN, T
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extension of G is an embedding functor. Hence E is an exact
embedding functor. [}

7.2. AN ABSTRACTION

Let #(%) be the subcategory of (&7,%) consisting of all
mono functors and all transformations between mono functors.
M () is a full subcategory of (&,9).

A () is closed under certain operations: any subobject
of an object in #(&) is in #(); any product of objects in
M () is in H(HL); any essential extension of an object in
M () is in A ().

Let us abstract the situation. Let # be a Grothendieck
category with injective extensions, and let .# be a full subcate-
gory of # closed under the three operations of subobject,
product, and essential extension. We shall call objects in .#
mono objects. We have two reasons for this further abstrac-
tion: first, the situation occurs in other interesting cases, most
noticeably in the category of group-valued presheaves on
topological spaces and in the theory of relative homological
algebra (see Exercises 7-F and 7-G); second, without abstraction
we would be lost in a forest of functors defined on functors.

An example worth keeping in mind is the following: Let R
be an integral domain, & the category of R-modules, and .#
the subcategory of torsion-free modules.

Proposition 7.21
Given any B € & there is a maximal quotient object lying in
M, B —~ M(B).

Proof:
Let & be the family of mono quotients of B, and define
M(B) to be a coimage of

B> TI B,
BeF
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where each component of 4 is the obvious epimorphism. Then
M(B) € M, since IIB' € .4 and M(B) is a subobject of I1 B’
Moreover, given any epimorphism B — B” where B” € .# we
may find M(B) — B” such that

B—> M(B)

%

commutes, '
by defining M(B) — B” as M(B) —~ 1B’ -=> B". |}

Proposition 7.22
Let B¢ #, M e M4, and B —~ M any map. Then there is a
unique M(B) — M such that

B—> M(B)

N

In the terminology of Exercise 3-F, M(B) is the reflection of B
in #

commutes.

Proof: -

Let B — B” be the coimage of B — M. Since .# is closed
under subobjects, B” € .4 and the maximality of M(B) among
mono quotients insures a map M(B) — B” such that

B—>M(B)—~B =M—PB.

Hence, we may define M(B) — M as M(B) - B" — M where
B —» M is such that B—+ B" —- M = B — M. Its uniqueness
is insured by the fact that B — M(B) is epimorphic. [}

B i s . = . ok
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Given a map B’ — B we obtain then a unique map M(B’) —
M(B) such that
B’ — M(B')
l !
B — M(B) commutes.
The uniqueness forces M to be an additive functor. The epi-
morphisms B — M(B) produce a natural transformation from
the identity functor on & to M.

Proposition 7.23
The transformation I —~ M yields a natural equivalence

(M(4),B) ~ (I(4),B) for all A€ B, Be A.

Proof:
The last proposition restated. [}

‘We shall say that T€ # is a torsion object if for every
M e #,(T,M) = O.Equivalently, T'is torsion if M(T) = O.

Proposition 7.24
Ker(B — M(B)) is the maximal torsion subobject of B.

Proof:

It is clear that for every torsion object T and map T — B,
the image of T — B lies in Ker(B — M(B)), and hence if
Ker(B — M(B)) is torsion it is the maximal such.

Suppose B” € .4, K —~ B” is any map, and O -~ K —~ B —
M{(B) — O is exact. Let B” — E be the injective envelope of
B’

We know that E € #. Let B — E be such that

O—+K-—>B—>MB)—O0

VoL

B"—F commutes,
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where M(B) — E is the map insured by Proposition 7.22. It is
clear then that X — B” = 0 and that X is torsion. l

 is not in general an abelian category. Not every mono-
morphism in .# appears as a kernel of a map in #.

Borrowing from group theory terminology, let us define a
subobject M'C M e .# to be pure if the exact sequence
O—->M —»M-—> MM — 0O lies in 4, i.e., if M{M'is mono.
We shall say that a mono object is absolutely pure iff whenever
it appears as a subobject of a mono object it is a pure subobject.
An everpresent example of such is an injective mono object.
Indeed, in the case of torsion-free modules over a domain such
are the only examples. In the case of mono functors, however,
we find that a mono functor M € (#,%) is absolutely pure iff
it is left-exact.

First,
Lemma 7.25 .

IfO—> M, —B—>M,—Oisexactin # and My, M, € A,
then Bec MA.

Proof:
Let M, — E be an injective envelope, and B — E an extension
of M, — E. Then B —> E @ M, is a monomorphism. [}

Lemma 7.26
A pure subobject of an absolutely pure subobject is absolutely

pure.
Proof:

Let A be absolutely pure, P — 4 pure in 4, and P — M any
monomorphism into a mono object M.

Let P d

Vol
M—R

EMBEDDING THEOREMS 145

be a pushout diagram and

o o o

{ { l

{ ! !

l l l
O —> M[P -~ R[4 —~ O

l !

o o

an exact commutative diagram. Since M and P[4 are mono,
R is mono. Hence R/4 is mono and M/P is mono. Thus P is
absolutely pure. |}

Theorem 7.27
A mono functor M e (#,%) is absolutely pure iff it is left-
exact.

Proof:

Sir{ce M may be embedded in a functor that is both absolutely
pure and left-exact, namely its injective envelope, it suffices to
prove that a pure subfunctor of a left-exact functor is left-exact.

Let O - M — E — F — O be exact in (#,9), E left-exact,
F mono. Let 0 - A’ — A — A" be exact in «/. Consider the

commutative diagram

0 0 0
! l !

0 — M(4") — M(4) —~ M(4")
! l !

0 — E(4') — E(4) — E(A4")
! !

0 — F(A') - F(A)
! l
0 0
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The hypothesis of 2.64 is satisfied: F is mono iff M is left-
exact. |}

We return to the abstract situation: a Grothendieck category
% and a full subcategory .# closed with respect to subobijects,
products, and essential extensions. We define % to be the full
subcategory of absolutely pure objects.

Given M € .# we say that M — R, Re %, is a reflection
of M in Z if for every map M — L, L € &, there is a unique
map R — L such that

M—>5sR

N

commutes.

Recognition theorem 7.28

If the sequence O —- M — R — T — O is exact in &, M mono,
R absolutely pure, T torsion, then M — R is a reflection of M
in 2.

Proof:

Consider any M — L, Le %. Let L —E be an injective
envelope and E — F a cokernel of L — E. Consider the com-
- mutative diagram with exact rows:

O—-M-—-R->T—->O0

! Il
O—-L -—E—->F—0

where R — E is any commutative map insured by the injective-
ness of E, T F the commutative map arising from the
exactness of rows.

T i it i T

ol B bR
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E is mono by the essential theorem, F is mono since L is
absolutely pure. Hence T'— F = 0 and Im(R — E) C L. Thus
is obtained a map R — L such that

M—>R

N

The uniqueness is seen easily by considering two extensions
of M — L. Their difference R~ L is such that M —~ R >
L = 0, hence R - L factors through R —T. But T is torsion,
L is mono,and 6 = 0. |]

commutes.

Construction theorem 7.29
For every mono object M € .# there is a monomorphism

M — R which is a reflection of M in .

Proof:

Embed M into any absolutely pure object E (an injective
envelope will do).

Construct the exact commutative diagram

o o 0
! | l
O-M—- R - T —0
Lo |
O-M—> E - F -0
Lo l
0 — M(F)—~ M(F)— O
| |
0 0

by starting with the middle row, then the right-hand column,
then the bottom row, then the top row (nine lemma, 2.65).
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T is torsion, R is a pure subobject of an absolutely pure object,
and hence absolutely pure. The top row fits the last theorem. [

Choosing M — R(M) a reflection in % for each M € .#, we

obtain an additive functor 4 —> % and a natural trans-
formation from the identity functor on .#, I — R that induces
an isomorphism (I(M),L) — (R(M),L) forevery M € #4,L e Z.

7.3. THE ABELIANNESS OF THE CATEGORIES OF
ABSOLUTELY PURE OBJECTS AND
LEFT-EXACT FUNCTORS

Theorem 7.31
% is abelian and every object has an injective envelope.

Proof:

Axiom 0. The zero object is obvious.

Axiom 1,1*, For M€ A it is the case that M e .Z iff
M — R(M) is an isomorphism. R is an additive functor. Hence
2 is closed under the formation of products and sums.

Axiom 2. Lemma 7.26 asserts that the #-kernel of (L, —L,) €
Z is in % and hence £ has kernels. Moreover, a map in &
is an Z-monomorphism iff it is a %#-monomorphism.

. Axiom 3. Given a monomorphism L, -+ L,€ % let O —
L, —~L, -~ M — O be exact in #%. The absolute purity of L,
asserts that M € .#. Then L, — L, = Ker(L, - M — R(M)).

Axiom 2*. Let L, »>L, € ¥ and L, - Ly, — F — O be exact
in 4. Then L, — F — M(F) — R(M(F)) = Cok(L, — L,).

Axiom 3*. The above construction shows that a map
L, —~L;e? is an Z-epimorphism iff the %-cokernel of
L, —~ L, is torsion. Let L, - L, be an Z-epimorphism, and
M—L, the #-image of L, L,y O->M—-L,—~T—0
exact in #. T is torsion and the recognition theorem asserts
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that L, = R(M). Hence if L,—L, = Ker(L, - M), then
Cok(Ly ~L,) = L, - M — R(M) and every Z-epimorphism
is an Z-cokernel.

Since monomorphisms are the same in # and &, if E is a
Z-injective envelope of an £-object, it is injective in . ]

Returning to (&,%9) we define L (&) C (H,9) to be the
full subcategory of left-exact functors. The last theorem asserts
that #(&/) is an abelian category with injective envelopes.
The representation functor H: & — (&,%) factors through
L(A).

Theorem 7.32
ZL() is complete and has an injective cogenerator.

Proof:

The construction of products in #(&) is straightforward.
Surprisingly, the construction of sums in £ (&) is also straight-
forward. Given a family of left-exact functors {F,} their sum as
defined in (%7, %) is already left-exact and is the sum defined in
().

The product of all the functors {H4},_, is also left-exact and
a generator for £(&). Proposition 3.37 now implies that
Z() has an injective cogenerator.

Theorem 7.33
H: of — L(A) is an exact full embedding.

Proof:

We know that H is a full embedding (5.36). Let O — 4’ —
A — A" — O be exact in . We wish to show that O — H4" —
H* —~ H4 — 0 is exact in £(&f). Such is the case iff the
sequence O — (H4',E) — (H4,E) — (H*",E) — O is exact for
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E an injective cogenerator in #(&). This last sequence is
isomorphic by the Yoneda theorem, 5.34, to

G — E(4") —~ E(4) — E(4") — O

and this sequence is always exact iff E is an exact functor.
The exactness of E was proved in the essential lemma 7.12. |

Theorem 7.34 (Mitchell)
Every abelian category is fully abelian.

Proof:

The last theorem shows that for every small abelian category
there is an exact full contravariant embedding into a complete
abelian category with an injective cogenerator. By taking the
dual of the range category, we obtain for every small abelian
category an exact full embedding (covariant) into a complete
abelian category with a projective generator. Theorem 4.44
implies therefore that for every small abelian category there is
an exact full embedding into a category of modules. |

EXERCISES

A. Effaceable and torsion functors

Let Fe(,9), A € o, x € F(A). x is an effaceable element if there
is a: monomorphism A — B such that [F(4) — F(B)](x) = 0. F is an
effaceable functor if all elements in F are effaceable.

1. Subfunctors and quotient functors of effaceable functors are
effaceable.

2. The only effaceable mono functors are trivial.

3. Effaceable functors are torsion functors.

4. Define T(4) = {x € F(4) | x is effaceable}. T is a subfunctor of
F. (Use the pushout theorem.)
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5. F|T is mono.
6. T is the maximal torsion subfunctor of F and torsion functors
are effaceable.

B. Effaceable functors and injective objects
If & has injective extensions then Fe(o,¥%) is effaceable iff
F(Q) = O for all injective Q € &.

C. Oth right-derived functors

Define Ry: (,9) — (L) = (£,9) > M(A) > L(oA) and
F— Ry(F) = F — M(F)— R(M(F)). F— Ry(F) is the Oth right-
derived functor of F.

1. For any F— L, Le %(«) there is a unique factorization
Ry(F)— L such that F— L = F— Ry(F)— L.

2If 0O>T1,>F—>R—T,—»0 is exact in (F,9), T;, T,
torsion and R left-exact, then R = Ry(F).

3. Given F— Re(,9), Re P (), where & has injective
extensions; F — R is the Oth right-derived functor iff O — F(Q) —
R(Q) — O is exact for all injective Q € .

4. Let 0 > A4 — Q —+ A" — O be exact in &, Q injective. Then
F(A) — Ker(F(Q) — F(A")) = F(A4) —~ R F(A).

D. Absolutely pure objects
In the abstract situation define

Ry B~L =B # 2 &

1. R, is an exact functor. (Use an injective cogenerator on .Z.)

2. Ry: & — & preserves right roots, as do all reflectors, and we
may construct right roots for £ by constructing them in 4 and then
reflecting in &. Since Ry: # — & is also left-exact we obtain a proof
via Exercise 5-E that % is a Grothendieck category.

E. Computations of Oth right-derived functors

Let F e (o,9). For each 4 € & consider the set of pairs S(4) =
{(4—~B,y)| A— B is a monomorphism, ye F(B)}. Given two
elements in S(4) define (4 — B,, J1) = (4 — B,, y,) iff there exist
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monomorphisms B, — B, B, — B such that [F(B,) — F(B))(y;) =
[F(By) — F(B)Kyy)-

1. There is a functor Re(&,%) such that R(A) is the set of
equivalence classes in S(4), and the functions F(4) 24> R(A),
n4(x) =1[4 e yield a natural transformation.

2. The kernel and cokernel of 7 are effaceable.

3. Ris left-exact.
4. F — R is the Oth right-derived functor of F. (Use 7-G-2 )

F. Sheaf theory

Let X be a topological space, 7 the category of open sets and
“restriction” maps (the dual of the category of open sets and in-
clusion maps). (7,9) is called the category of group-valued pre-
sheaves on X. Given an open set U C X let HU & (7,%) be defined
by
Z fvCvu
0 otherwise.

1 fV,CU
0 otherwise.

HY(V) = {
HY(V, — V) = {

Let {U;} be a family of open sets, U = U

Define the sequence 3 HUs @), s puitlsy v by

)

U,= U NU,.

HUn 3 HUs 2 3 HUs = HUs 5 HUs 5 5 gUs

HUn .Y HUs 23y 5 gU: — HUu _, QU1 _, 5 HUs

HU"—PEHU"'—* HU HU"—PHU

We shall call all such sequences the family of fundamental se-
quences in (,9).

1. All fundamental sequences are exact.

2. For F € (J ,9) we say that Fis substantial if O — (A,F) — (B,F)
is exact for all fundamental C — B— 4 in (J,%). An essential
extension of a substantial presheaf is substantial.
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3. For F € (7 ,9%) we say that Fis a sheaf if O — (A4,F)— (B,F)—
(C,F)is exact for all fundamental C - B — 4 in (J,¥). An injective
substantial presheaf is a sheaf.

We may apply the abstract situation of this chapter to prove that
the full subcategory of sheaves #(X) is an abelian category with

injective envelopes and that there is an exact functor (J,%)
L (X)C(J,9) and a transformation from the identity functor 7 —
S'such that for every F— T, T € &#(X) there is a unique map S(F)—T
such that
I(F) — S(F)
N/
T

commutes.

&(X) is a Grothendieck category (Exercise 7-D), but the inclusion
functor F(X)— (J,9), unlike Z( ) — (L,9), is not directly
continuous.

G. Relative homological algebra
Let o be a small additive category and M a family of mono-
morphisms which appear as kernels in ./ and such that

(0) Forevery A€, 1,€ M.
(1) M is closed under composition.
@ IfA—-B—>CeMthen A—->Be M.

(3)If A—~BeM and 4A— Ce then there exist maps
C— D€ M and B— D e such that

A—B
ol

C—~D commutes.

We give some examples of such families:

1. The family of all monomorphisms in an abelian category.
2. The family of all splitting monomorphisms in an additive
category.
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3. Leto be an additive category with pushouts and a cogenerator
C.
Define M to be those maps 4 — B such that (B,C)— (4,C) is
epimorphic.

4. Asin the last example except that instead of using a cogenerator
use a covariant embedding functor &/ — & which preserves push-
outs.

Define #(</) to be the full subcategory of those functors in
(/,%) which carry maps in M into monomorphisms in 4. (&) is
closed under essential extensions and £(&/), the subcategory of
absolutely pure functors in (&), is abelian. If & has kernels, the
functors in (&) may beidentified as those which are *“ M-left-exact.”

Suppose that & has cokernels. We may define £ C&/ to be the
family of epimorphisms which appear as cokernels of maps in M.
We assume that E satisfies the dual of the properties listed above.
(If & is abelian this turns out to be a gratuitous assumption.) Define
A’ — A — A" to be relatively exactin s/ if A’ >4 = A" > K— 4,
A>A"=A—>F—> A" A'>KeE,K—+~AcM,A—~>FecE F—~
A" € M, and K— A = Ker(4 — F). An exact functor Q: & — ¥ is
one that carries relatively exact sequences into exact sequences.

By the weak embedding theorem there exists an exact functor Q:
o — G which is faithfully left-exact, that is, @(4") — Q(4) is mono
iff 4’ — A € M. Through dualization, we may obtain an exact functor
which is faithfully right-exact.

Let M C #(s/) be the family of monomorphisms such that T° —
T € M iff (T,Q) — (T",Q) — O is exact for all exact Q € £(). By
the last paragraph, H* — H%e M iff A~ A" E, and H* —
HA— HA is exact relative to M iff A’ —~ A — A" is exact relative
to M. Let ¥, be a small exact subcategory of .#(«/) which contains
the representable functors and embed %, into £(£}) in a manner
dual to that described above.

The composed full embedding & — £(Z7) is exact and faithfully
so, that is, only relatively exact sequences are carried into exact
sequences.

The full metatheorem holds for the relative case.

e e e

e e e e e tine e < e . .

APPENDIX

" In writing and preparing this book I repeatedly told myself
that I would give everyone his credit in the appendix. Now the
book is written, the proofs are read, the publisher is waiting,
and I realize I don’t know who is to be credited for what.
There are some who learn by reading, I am told. The material
in this book I have learned either by discovery or by con-
versation. '

The origin of concepts, even for a scholar, is very difficult to
trace. For a nonscholar such as me, it is easier. But less accurate.
Nonetheless, I have a few stories to tell. I shall tell them. I shall
read all the letters that refute them. I shall hope for enough
book buyers to pay for a revision.

To start at the beginning, MacLane tells me that there
is an intellectual ancestry for the words ‘“‘category” and
“functor” in Kant’s Critique of Pure Reason. As I said in the
Introduction, he should know, for he and Eilenberg defined
them.

155
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The definitions in Chapter 1 are also the work of Eilenberg
and MacLane. That statement requires a definition of “work.”
In 1940 algebraic entities were defined by the remnants of
generators and relations. MacLane’s definition of “product™ [20]
as the solution of a universal mapping problem was revolution-
ary. So revolutionary that it was not immediately absorbed
even by the most category minded people. It was common to
define finite direct sums as suggested in Theorem 2.41, which
definition can only apply to additive categories and allows,
even there, no generalization to the infinite case.

The axioms for abelian categories in Chapter 2 are new.
The first set of equivalent axioms appears in Buchsbaum’s
dissertation [2], where they are said to describe an “exact”
category. The word “abelian” has stuck, partly to honor
MacLane who suggested the whole idea [20], partly because
Grothendieck writes in French and “abelian™ seems to mean
“very nice structure” in French [10]. (There are two words:
“Abelian” and “abelian.”)

The word “pullback” and the ubiquity of the concept I
learned from Lang, who also pointed out the pullback theorem
and its importance. I plead guilty to “pushout” and *“difference
kernel.”

Since this note is already so personal (it certainly isn’t
objective) let me relate my awakening as a graduate student
to the newness of my own language. I was brought up, as an
undergraduate at Brown, by Massey and Buchsbaum to think
in exact sequences. The notion of exactness seemed as funda-
mental as the notion of continuity must seem to an analyst.
And then one day at Princeton my advisor, Norman Steenrod,
calmly told me how he and Eilenberg—just a few years before—
had chosen the word “‘exact.”

By now I have heard the story from both Eilenberg and
Steenrod, the combined version being somewhat as follows:
in writing Foundations of Algebraic Topology [7] they so

et

—

e e e e
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recognized the importance of the choice that they used the word
“blank” throughout most of the manuscript. After entertaining
an unrecorded number of possibilities they settled on “exact.”
It was initially suggested by history: the exact sequence in
DeRham’s theorem 1s about exact differentials. It was chosen
because it is descriptive, it is short, it translates easily, and it
inflects well (“exactly,” “exactness”).

The notion of projective objects is implicit in much early
work. MacLane called them “free” objects [20] (and in a foot-
note used the word “fascist” for the dual). The words “pro-
jective” and “injective” appear in Cartan and Eilenberg [4].
MacLane’s “integral” objects [20] are the first generators. To
be precise, an integral object is a generator which does not
contain any generators as direct summands and which has no
nontrivial idempotents. He observed that the only integral
object in the category of groups is the group of integers, thus
anticipating all the Chapter 1 exercises. The word “generator”
appears in Grothendieck [10].

I might have been the first to observe that the additive
structure of an abelian category is implied by the other axioms.
On the other hand, MacLane knew [20] that the additive
structure could be recovered from the way in which maps
compose. The specific proof of the associativity, commutativity,
and identity of the two operations is probably from Eckmann
and Hilton, who seem to be responsible for the concept of
groups in categories. I learned the proof from Eilenberg who
also devised the neat construction of additive inverses.

The “classical” lemmas that close Chapter 2 have their
origins in algebraic topology (and hence, so does the entire
subject). I believe that Eilenberg, Hurewicz, MacLane, and
Steenrod were the prime movers. To Buchsbaum [2] goes the
credit for demonstrating that the lemmas are categorically
provable. He had been anticipated by MacLane’s proof [20]
that any map between extensions of the same objects was an
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isomorphism. The repeated use of pullbacks and pushouts that
I use, I trace to Lang.

I believe that the term “skeleton” applied to categories is
Isbell’s, who also knew the facts in Exercise 3-A. The concept
of direct limit first appears in Steenrod’s dissertation. Allow
me to go back a bit. Emma Noether is credited with selling the
idea that the homology of a space is a group, not a set of
numerical invariants. The “mother of modern algebra” is more
than that. She seems to be the mother of modern mathematics.
(There were some fathers too.) Again, I point out that groups
used to be generators and relations. After Emma Noether they
were things. Now, when Steenrod wrote his dissertation, Cech
cohomology was still a set of numerical invariants. In order to
define it in a way such that he could prove the universal
coefficient theorem he needed direct limits. So he invented
them.

Adjoint functors were defined by Kan [16], who borrowed
their name from functional analysis and who exposed their
properties as outlined in Exercises 3-G and 3-I. Except for
Watts’ theorem in 3-N [22], the adjoint functor theorems that
are developed in the rest of the Chapter 3 exercises appeared
in my dissertation [8]. I never published them before now. In a
new subject it is often very difficult to decide what is trivial,
what is obvious, what is hard, what is worth bragging about.
A man learns to think categorically, he works out a few
definitions, perhaps a theorem, more likely a lemma, and then
he publishes it. Very often his exercise, though unpublished, has
been in the folklore from the beginning. Very often it has been
published faithfully every year. I think the notion of “generator”
has appeared regularly, each time under a new name, since
MacLane defined his integral objects in 1950.

It was not until my unpublished dissertation began to be
rather frequently cited for its adjoint functor theorems that I
entertained their publication. I tried to write them as a separate
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chapter but the chapter grew longer than the rest of the book.
I did validate the exercises as exercises during the 1963 NSF
Summer Institute in Algebra and the participating students
should be blessed for their service.

Mitchell’s theorem of Chapter 4 appeared in his disserta-
tion [21].

The possible importance of functor categories was pointed
out to me by Watts, along with the niceness of the representation
functor. The nature of the Yoneda transformation was first
worked out by Yoneda [23].

Baer discovered and proved the existence of enough injective
modaules [1], using as a start his theorem herein known as 6.14.
Injective envelopes were discovered by Eckmann and Schopf [5],
who constructed them by first taking any injective extension
and then minimizing. Grothendieck showed that the Baer con-
struction of injectives worked in Grothendieck categories with
generators [10]. Yes, Grothendieck discovered, but did not
name, Grothendieck categories. Mitchell [21] was the first to
construct injective envelopes in one sweep as maximal essential
extensions.

The weak embedding theorem was obtained independently
by Heron [13], Lubkin [18], and myself [8]. Our proofs were
entirely different. I do not think that it was coincidence that I
had just read Hurewicz and Wallman’s Dimension Theory [15],
which embeds topological spaces into Euclidean space via a
theorem about function spaces.

For some time now there has been a flow of ideas between
Gabriel and myself. We have never met, or even corresponded.
At first we didn’t even know each other’s name. (I was known
as “a student of Xxxx” [9]. But I was not a student of Xxxx.)
Anyway, Gabriel first noticed the nice nature of the category
of left-exact functors. The proofs using injectives seem to be
mine. And to repeat, Mitchell put things together for the full
embedding theorem.
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The term “effaceable” is Grothendieck’s. Relative homo-
logical algebra has its roots, as does just about all of homo-
logical algebra,in Hochshild. Moreover, he made it explicit in
[14], as did Buchsbaum [2] and Heller [12].

Finally, let it be understood that this is not meant to be a
history of categories and functors. Much work has been done
on many aspects of the subject not even hinted at in this work.
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Difference cokernel, 22
Difference kernel, 21
Direct limit, 76

Direct sum, 47

Direct sum system, 50
Direct system, 76
Directed category, 76
Directly continuous, 77
Discrete category, 11
Divisible group, 132
Domain, 6

Doolittle diagram, 53
Dual category, 15

Effaceable, 150
Embedding, 66
Endomorphism, 49
Epimorphism, 18
Equivalent categories, 74
Essential extension, 124
Evaluation functor, 110
Exact functor, 66

Exact sequence, 45
Exact subcategory, 70
Exactness conditions, 96
Extension, 123

Forgetful functor, 62
Free models, 93

Full functor, 70

Full subcategory, 70
Fully abelian, 99
Function, 103
Functor, 7



164

INDEX

Functor category, 109

Generator, 68
Grothendieck category, 111
Groups in categories, 61

Half-exact, 65
Hom, 73

Idempotents split, 61
Identity map, 5
Image, 42

Injective, 69

Injective envelope, 126
Inner automorphism, 33
Intersection, 37
Inverse limit, 76
Inverse system, 77
Isomorphic objects, 19
Isomorphism, 17

Kernel, 26
Kittygory, 14

Lattice, 78
Left-complete, 26
Left-exact, 65

Left root, 75
Left-root-preserving, 78
Legerdemain, 49, 138
Limit, 76
Middle-exact, 65
Mitchell, 101, 150
Model theory, 91
Mono functor, 139
Mono object, 141
Monoid, 11

Monoidal category, 60
Monomorphism, 17

Natural transformation, 8
Nature, 35

Nine lemma, 58

Noether isomorphisms, 58
Noetherian ring, 136
Normal subobject, 35

Object, 6

Pam, 103
Product, 22, 25
Projective, 67

Pullback, 40
Pullback theorem, 53
Pure, 144

Pushout, 42

Pushout theorem, 53

Quotient object, 20

Range, 6

Reflection, 79

Relative homological algebra, 153
Replete category, 74

Replete subcategory, 75
Representable functor, 81
Representation functor, 112
Representative subcategory, 75
Right-complete, 26
Right-exact, 65

Right root, 76
Right-root-preserving, 77
Root, 75

Semisimple, 136
Sheaf, 152

Skeletal category, 74
Skeleton, 75

Small category, 14
Small projective, 105
Solution set, 84
Special adjoint functor theorem, 89
Splitting map, 59
Standard functor, 16
Subcategory, 70
Subobject, 19

Sum, 24, 26
Symbolic hom, 87

Tensor product, 86

Tensor product of functors, 120
Three-by-three lemma, 58
Topological group, 63

Torsion object, 143
Transformation, 8

Trivial extension, 123

Very abelian, 95

Watts’ theorem, 90
Well-powered, 84

Yoneda function, 112
Zero, 26




