CHAPTER 10

Classifications and Embeddings

Technically, the main result of the section is the 7;-negligible einbed-
ding theorem 10.6, which gives existence and uniqueness criteria for codi-
mension zero embeddings of 4-manifolds with boundary. From this we
deduce a criterion for a manifold to decompose as a connected sum. Per-
haps the most basic result, the classification of closed simply-connected
4-manifolds, is obtained as a corollary of the sum theorem.

These results are presented in the reverse of the logical order because
the more general ones are more complicated and technical. The chap-
ter begins, then, with the classification theorem in 10.1. The invariants
used in the classification are discussed in 10.2. Connected sums are de-
scribed in 10.3, and the characterization theorem is deduced from this.
m1-negligible embeddings are discussed in 10.5, and using this the con-
nected sum theorem is deduced in 10.6. A classification of manifolds
with infinite cyclic fundamental group is given as an exercise in sec-
tion 10.7. Finally the embedding theorem is proved; the existence part
in 10.8, and the uniqueness using embeddings in 5-manifolds in 10.9.
The technically inclined reader may prefer to see these in logical order,
beginning with 10.5.

10.1 Classification of closed 1-connected 4-manifolds

For the classification theorem we recall that if M is a compact oriented
manifold then intersection numbers define a bilinear form A: HoM ®
HoM — Z. This is symmetric, and if M is empty it is nonsingular
(the adjoint HyM — (HaM)* is the Poincaré duality isomorphism).
The Kirby-Siebenmann invariant ksM € Z/2 is the obstruction to the
existence of a smooth structure on M x R; see 8.3D and10.2B below.

Theorem.

(1) Existence: Suppose (H, \) is a nonsingular symmetric form on
a finitely generated free Z-module, k € Z/2, and if A is even then
we assume k = (signature))/8, mod 2. Then there is a closed ori-
ented 1-connected manifold with form X\ and Kirby-Siebenmann
invariant k.
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(2) Uniqueness: Suppose M, N are closed and 1-connected, h: Ho
— Hy N is an isomorphism which preserves intersection forms,
and ksM = ksN. Then there is a homeomorphism f: M — N,
unique up to isotopy, such that f, = h.

For example, S* and S? x S? have even forms, so are uniquely de-
termined by their forms. CP? has an odd form, so there is another
manifold with this form but which is not stably smoothable.

Note that by setting M = N in the uniqueness statement we see that
taking a homeomorphism to its induced isometry of the form gives an
isomorphism 7gTOP(M) — ISO(HoM, ). mgTOP(M) is the group of
path components of the homeomorphism group of M, which is the same
as isotopy classes of homeomorphisms. A homotopy equivalence also
induces an isometry of the form, but the analogous statement for these
is false; there are often many non-homotopic homotopy equivalences
inducing each isometry (see Wall [1, §16], Quinn [8], and Cochran and
Habegger [1]).

Some notation, suggested by the theorem, will be useful. If A is a
nonsingular form, denote by ||A|| the manifold with this form, and such
that ks(||A|) = 0 if the form is not even. So for example CP? = ||{1],
and S2 x 52 = ||[]4]1l. Part (1) of the theorem implies ||A] exists, and
(2) implies it is well-defined up to homeomorphism.

Suppose M is closed and 1-connected. Define *xM to be M if the
form is even, and the manifold with the same form and opposite Kirby-
Siebenmann invariant if the form is odd. Again the theorem implies
this exists and is well-defined, and every closed 1-connected manifold
is either ||A|| or *||A|| for some appropriate A. This operation will be
defined (independently of the classification theorem) for a wider class of
manifolds in 10.4.

10.2 The invariants

We briefly describe the invariants used in the theorem. For further in-
formation about forms over the integers see Milnor-Husemoller [1, Chap-
ter II]. Hirzebruch and Neumann [1] describe relations between these
invariants and the topology of manifolds. For information about the
Kirby-Siebenmann invariant see Kirby-Siebenmann [1]. For a geometric
point of view on the algebraic invariants of 4-manifolds see Kirby [2].

10.2A Symmetric forms over the integers. Important invariants
of these are rank, signature (or “index”), type, and whether or not the
form is definite.

The rank is the rank of the group on which the form is defined. The
type is “even” if A(x,x) is even for all z, and is “odd” otherwise. The
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form is definite if A(x,z) is always nonnegative, or always nonpositive
(and then is positive definite, or negative definite). Finally when the
form is tensored with the real numbers it can be divided into positive
and negative eigenspaces. The signature of the form is the dimension of
the positive eigenspace minus the dimension of the negative eigenspace.

For example [ ;], the form of $2x .52, has rank 2, is even, is indefinite,
and has signature 0. The form of CP? is [1], which has rank 1, is odd,
positive definite, and has signature 1.

There are some simple relations among these invariants. The sum of
the dimensions used to define the signature gives the rank. Therefore
|signature(\)| < rank()), and signature(\) = rank(A) mod 2. Similarly
the form is definite if and only if the real form is definite, so if and only
if |signature(\)| = rank(A). A deeper fact is that if the form is even then
the signature is divisible by 8.

Indefinite forms are determined up to isometry by the rank, signature,
and type. If the form is odd, then it is isomorphic to j[1] ® k[—1], where
j + k = rank and j — k = signature. If the form is even then it is
isomorphic to j(+Eg) ® k[? (1)], where 85 + 2k = rank, 87 = |signature|,
and FEjg is the even definite form of rank 8 represented by the following
matrix (blank entries are 0);
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——
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\ 1 2)
An interesting family of examples is provided by the algebraic surfaces
Z4 C CP3 obtained from the zeros of a generic homogeneous complex
polynomial of degree d. Ho(Zy) has rank d3 —4d? + 6d — 2, the form has
signature —3(d® —4d), and is even if and only if d is even. According to
the classification described above, this information is sufficient to iden-
tify these forms up to isomorphism. For example the Kummer surface
(d = 4) has rank 22, and even form with signature —16. Therefore the
form is 2(—FEg) ® 3[(1) é] .
Definite forms are much more complicated. Unlike the indefinite forms
they have unique decompositions into sums of indecomposibles (Eichler’s

theorem, Milnor-Husemoller [1, Theorem II16.4]). Unfortunately there
are over 10°! different indecomposable even definite forms of rank 40,
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and this number grows rapidly with increasing rank. We know nothing
useful about them. None of this host of indecomposible definite forms
occurs as the form of a smooth 4-manifold, however (see 8.4A).

If X\ is the intersection form of a 4-manifold, then wy(z) = A(=z, z),
mod 2. Therefore evenness of the form is equivalent to vanishing of wy
on the integral homology H2(M;Z). If there is no 2-torsion in Hy(M;Z)
then this also implies ws vanishes on mod 2 homology Hy(M;Z/2), which
is equivalent to the existence of a spin structure. (For the significance of
spin structures, see below.) We caution that without the H; condition
the connection with spin structures can fail: there are non-spin manifolds
with even forms on integral homology (Habegger [1)).

The form of a connected sum is the direct sum of the forms; ( Ho(M; #
M), A) = (Ha(My), A1) & (H2(Ma2), A2). The characterization theorem
implies a converse; a direct sum decomposition of the form comes from a
(topological) connected sum decomposition of the manifold. For example
the Kummer surface decomposes as 2| — Eg|| # 35? x §2. It does not
decompose smoothly, however (see 8.4A).

If M is a compact manifold with boundary there is still an intersec-
tion form defined on Hy(M;Z), but it usually is singular. All the in-
variants can be defined for singular forms, but only the signature seems
to be useful. If there is an isomorphism of boundaries M ~ 9N then
“Novikov additivity” asserts that signature(M Uy N) = signature(M) +
signature(IN), where the right side of the equation uses the signature of
the singular forms. This generalizes the additivity for connected sums,
where the boundary is S3.

10.2B The Kirby-Siebenmann invariant. Suppose M is a compact
tepological 4-manifold. The boundary has a unique smooth structure,
and there is an obstruction in H*(M,dM;Z/2) to extension of this to a
smooth structure on M x R, or M # kS? x §? (see 8.3D and 8.7). Each
component of M has H*(—,8;Z/2) ~ Z/2. Define ks(M) to be the sum
over all components, of these invariants in Z/2.

If M is connected then ks(M) is the stable smoothing obstruction.
In general it is the number of components mod 2 which are not stably
smoothable. 4

This number is an unoriented bordism invariant (i.e. if M UN = oW
then ks(M) = ks(NNV)), and is additive in a very strong sense. If M is a
union of manifolds Ny U N; with Ng N N; in the boundary of each N;,
then ks(M) = ks(Ny) + ks(N;). This is a consequence of the uniqueness
of smooth structures on 3-manifolds.

In general this invariant is somewhat distantly related to other char-
acteristic classes, but there is a direct relation for spin manifolds. Let
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SPTOP denote the universal cover of the identity component of the sta-
ble homeomorphism group TOP. (This is a 2-fold cover; mg and 7; of
TOP are the same as those of the orthogonal group O, and are both
Z/2). A spin structure is a lifting of the classifying map for the sta-
ble tangent bundle from Brop to Bsprop. A spin structure exists if
wiM = woM = 0 on Hy(M;Z/2). When one such structure exists
others are classified by H!(M;Z/2).

The basis for the relation is the theorem of Rochlin that a closed
smooth spin 4-manifold has signature divisible by 16. Divisibility by 8
follows from the evenness of the form, so the force of the theorem is that
there is another factor of 2. For closed topological spin manifolds the
result is that signature(M)/8 = ks(M) mod 2. Note this requires only
the existence of a spin structure, not a particular choice.

Now we consider manifolds with boundary. Suppose N is a closed 3-
manifold, with a spin structure denoted by 7. The 3-dimensional smooth
spin bordism group is trivial, so (N, 7) is the boundary of a smooth spin
4-manifold (W,n). The Rochlin invariant roc(N,T) is defined to be
the signature of W, mod 16. This is well defined: Two such bounding
manifolds glue together to give a closed smooth spin 4-manifold, whose
signature is the difference of the signatures of the pieces. According to
Rochlin’s theorem for closed manifolds this difference is divisible by 16.

This invariant may depend on the spin structure. For example the
3-torus has H'(M;Z/2) of order 8, so has 8 spin structures. 7 of these
have invariant 0, and one (corresponding to the Lie group framing) has
invariant 8 (see Kirby [2]). When there is a unique spin structure then
of course the invariant is well defined.

This occurs when H!(N;Z/2) = 0, i.e. exactly when components of
N are Z/2 homology spheres.

Proposition. Suppose (M, n) is a compact oriented 4-dimensional topo-
logical spin manifold. Then 8ks(M) = signature(M )+roc(0M,dn), mod
16.

This follows easily from the additivity of the signature and ks, and the
closed case. When M is not spin there is a more complicated formula
involving the Brown invariant of a linking form on a surface dual to wo,

see Guillou and Marin [1], and Kirby [2].

10.3 Connected sum decompositions

The objective is to determine when a manifold W can be expressed
as a connected sum M # W;, where M is a closed simply connected
4-manifold. The hypotheses are in terms of intersection and selfintersec-
tion forms on moW.
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If W is a connected sum M # W;, with M closed and 1-connected,
then moW ~ (moM ® ZmyW) @ moW;. Intersection numbers on the M
summand are given by: if t®a, y®B € moM QZm; W, then AM(z R,y ®
B) = Mz, y)aw(B). Similarly ji(z ® a) = ji(z)ow(a).

Abstracting this, we say a Zm; W homomorphism (7o M ® Zm W) —
moW “preserves A and fi” if intersection numbers of images are given by
these expressions. Since A in M is nonsingular this implies the homo-
morphism is an injection onto a direct summand of moW.

Theorem. Suppose M is a closed 1-connected 4-manifold, and W has
good fundamental group.

(1) Let (meM) ® ZmyW — mW be a myW monomorphism which
preserves A and fi. If either wy = 0 on maW or wy does not vanish
on the subspace of 1oW perpendicular to the image, then there is
a decomposition W ~ M # W' inducing the given decomposition
of my. If we # 0 does vanish on the perpendicular then exactly
one of W or xW decomposes (see 10.4 below for xW ).

(2) Suppose hy: W ~ M #Wj and hy: W ~ M #W, are two decom-
positions inducing the same decomposition of wy. If wy: mW —
Z /2 is injective on elements of order 2, then the decompositions
are pseudoisotopic. If the form of M is even the canonical homo-
topy equivalence Wiy — W5 is homotopic to a homeomorphism
(regardless of w;).

Two decompositions are isotopic if there is an isotopy from the identity
to a homeomorphism g: W — W so that hag(hi)™! is the identity on
M. Similarly they are pseudoisotopic if there is a pseudoisotopy to such
a ¢g; a homeomorphism W x I ~ W x I which is the identity on one end
and g on the other. Pseudoisotopy implies isotopy if 7;WW = 0 (Quinn
[8]).

We remark on the ws hypothesis. If J C maW is a subgroup then
a is “perpendicular” to J if A(a,b) = 0 for all b € J. Therefore the
phrase “w; vanishes on the subspace perpendicular to J” means that if
Ma,b) = 0 for all b € J then wy(a) = 0. If the form ) is nonsingular on
7o, for example if W is closed, then this condition is equivalent to the
existence of an element b € J dual to ws in the sense that A(a, b) = wa(a),
mod 2.

To complete the statement a definition of the * operation used in the
second part of (1) is needed. This was described in a special case in the
discussion after the characterization theorem.

10.4 Definition of xW
Suppose W is a 4-manifold. If we: moW — Z /2 is trivial, define xW =
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W. If ws is nontrivial define *W to be a manifold with a homeomorphism
(*W) # CP? ~ W # (xCP?) which preserves the decompositions of 7,
where *C P? is a manifold with form [1] and ks = 1.

Note that if xW is defined and different from W, then it has the op-
posite Kirby-Siebenmann invariant. Also there is a canonical homotopy
equivalence xW — W which is an isomorphism on the boundary.

The manifold *CP? is shown to exist and be unique in the begin-
ning of the proof of 10.1, below. If the fundamental group of W is
good then the first part of 10.3(1) implies that a manifold *M exists:
first note that m,W is the subspace of mo(W # xC P?) perpendicular to
no(xC P?)®@ZmW. Therefore if ws # 0 on maW, part (1) of the theorem
implies the injection of mo(*CP?) ® Zm W corresponds to a decompo-
sition as a connected sum with CP?. The complementary piece of the
decomposition is—by definition—xW.

Similarly (2) shows that if m; W is good and w;: mW — Z/2 is injec-
tive on elements of order 2, then *W is well-defined up to homeomor-
phism. This applies for example when m; W has no 2-torsion, or is RP*.
We do not know if *W is well-defined when the w; condition fails, for
example if W is RP3 x S or RP?> x RP?. &

Proof of 10.1: We deduce the Characterization Theorem from the sum
theorem, and the fact that a homology 3-sphere bounds a contractible
topological 4-manifold.

The first step is to realize the matrix Eg. This can be realized as the
intersection matrix of a simply connected manifold with boundary, by
plumbing together 8 copies of the D? bundle over S? whose core 2-sphere
has selfintersection 2 (this is the tangent disk bundle of $2). Specifically,
form a linear chain of 7 copies by introducing single intersection points
between their core spheres. Then introduce an intersection between the
remaining one, and the third from one end in the chain.

It follows from the fact that the intersection matrix is nonsingular
that the boundary of this manifold is a homology sphere (see Browder
[1, V.2.6]; in fact it is the famous Poincaré homology sphere). According
to 9.3C a homology sphere bounds a contractible manifold. The union
of the plumbing manifold and the contractible one gives a closed 1-
connected manifold which we denote by || Es||-

Next we construct *CP?, with form [1] but ks = 1. According
to 10.2B, since Ejg is even ks||Eg|| = 1, and by additivity ks(|| Eg|| #
(=CP?)) = 1. However according to the classification of indefinite
forms, the form of this manifold is isomorphic to 8[1] &[—1], which is the
form of 8C P2 #(—CP?). Restrict the isomorphism to get an injection of
the form of 7CP? # (—CP?) to a direct summand. The perpendicular
subspace is the homology of the remaining copy of C P2, so the form
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is not even on it, and ws does not vanish on it. The existence part of
the decomposition theorem therefore applies to show there is a decom-
position (|| Eg|| # (—CP?)) ~ 7TCP? # (—CP?) # N, for some manifold
N. This manifold has form [1], and additivity of ks shows ksN = 1. It
therefore satisfies the conditions required of *C P2.

Next we show there is a manifold realizing an arbitrary form A. Since
[5°] is indefinite and odd, A @ [; ° ] is also. By the classification
of forms it is isomorphic to j[1] ® k[—1] for some j, k. This can be
realized as the form of the manifold jCP?#k(—CP?). The isomorphism
gives an injection of [ ° ] into this form. Since [} °] is the form of
CP? # (—CP?), part (1) of the theorem gives a decomposition jC P? #
k(—CP?) ~ CP? # (—CP?) # N, for some manifold N with form .

We now have all the manifolds required for the existence part of the
characterization theorem; the paragraph above gives at least one with
any given form, and the operation * defined in 10.4 reverses the Kirby-
Siebenmann invariant when the form is not even.

For the uniqueness part suppose M and N are closed and 1-connected,
have the same Kirby-Siebenmann invariant, and A: HoM — HyN is
an isomorphism which preserves forms. Regarding an isomorphism as
an injection, the theorem asserts that there is a decomposition, either
N ~ M # P, or xN ~ M # P, realizing this injection. However P
must be a simply connected homology sphere, so is homeomorphic to
54, by the Poincaré conjecture Corollary 7.1B. This means N ~ M or
*N ~ M. Since * changes the Kirby-Siebenmann invariant if it changes
the manifold, we conclude there is a homeomorphism N >~ N realizing
the isomorphism of forms.

Finally we show that the homeomorphism is determined up to isotopy.
Suppose h;: M — N are homeomorphisms, ¢ = 1,2, which induce the
same homomorphism on Hy. Regard N as N #.54, then according to the
uniqueness part of the decomposition theorem there is a pseudoisotopy
of the identity of M to a homeomorphism g so that (h;g)(h; ') is the
identity on Np. Since M is 1-connected, pseudoisotopy implies isotopy
(Quinn, [8]). The complement of Ny is a disk, and hyg(h; ') is the iden-
tity on the boundary. Therefore Alexander’s isotopy (“squeeze toward
the middle”) on the disk gives an isotopy of (h1g)(h; ") to the identity.
The Alexander isotopy and the isotopy of g therefore give an isotopy of
h1 to a map which when composed with (h 1) gives the identity. This
characterizes hs, so hq is isotopic to hs, as required for the theorem.

10.5 mi-negligible embeddings

An embedding (V,0pV) — (W, 8W) is m1-negligible if 7y (W — V) —
7w1(W) is an isomorphism. We also assume it is proper in the sense that
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there is a collar on W which intersects V' in a collar on 9pV. The disk
embedding theorems of chapter 5 provide m;-negligible embeddings of
unions of 2-handles (D? x D?,S! x D?) extending a given embedding
of 8! x D? in the boundary. Here this is generalized to embeddings of
4-manifold pairs (V,3yV), extending given embeddings of 0V in OW.

10.5A Embedding theorem. Let (V;0,V,3,V) be a compact 4-maun-
ifold triad so that m(V,0,V) = {1} = m1(V,0,V) (all basepoints), each
component has nonempty intersection with 81V, and components dis-
joint from OyV are 1-connected. Suppose h: V — W is a map which
restricts to an embedding of OyV in OW.

(1) Existence: Suppose myW is good, H}’(Wh, VUow,;Zn, W) =0,
and h “preserves relative intersection and selfintersection num-
bers.” If wsq is trivial on maW | or does not vanish on the subspace
of moW perpendicular to Hy(V,00V; Z7w, W), then h is homotopic
rel OV to a m;-negligible embedding. If w, # 0 does vanish on
the perpendicular, then h is homotopic to such an embedding in
exactly one of W or sW.

(2) Uniqueness: Suppose hg,h1: V x I — W are my-negligible
embeddings, homotopic rel 0gV. Then there is an obstruction
in H3(V,8,V;(Z/2)[Ty]), where T, is the set of elements in
kerwo C mW of order exactly two. If this vanishes then hg
is my-negligibly concordant to h;.

A concordance of embeddings, as in (2), is an embedding V x I —
W x I which restricts to the given embeddings on V x {i} — W x {i},
t = 0,1. The m;-negligibility and duality imply that the complement of
the interior of F(V x I) is an s-cobordism. If the fundamental group
of W is good then the s-cobordism theorem implies this has a product
structure, so the two embeddings are “pseudoisotopic.” Finally if W is
1-connected the pseudoisotopy theorem of Quinn [8] implies the embed-
dings are isotopic. We caution that the concordance produced by the
theorem may not be homotopic to the original homotopy.

The proof of the existence part of the theorem is given in 10.8, and
the uniqueness in 10.9.

We now discuss the hypotheses. H :f; denotes the finite cochain coho-
mology, which on compact spaces is the same as ordinary cohomology.
For manifolds it is Poincaré dual to ordinary homology even when the
manifold is noncompact. W} denotes the mapping cylinder of A. As in
10.3 above, the subspace of moW perpendicular to Hy(V,9pV) is the set
of elements a € moW with A(a,b) =0 for all b € Ha(V,00V; Zm, W).

Next “preserves relative intersection numbers” will be defined. The
term is supposed to suggest that relative classes in (V,3,V) have the
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same algebraic intersection structure as the images in (W,3,W). This
cannot be defined the way it sounds because intersection numbers are not
well defined for relative classes. Instead we form absolute classes from
the differences a — h,a in V U W, and say that “relative intersections”
are the same if the absolute intersections of these differences are trivial.

Let dp: H;(V,00V;Z7n) — H;(VUs,v W; Z7) be induced by the chain
map which takes a relative chain z to £ — h,z. Define Ap(z,y) to be
the intersection number A(dp(z),dn(y)) € Zm, and similarly jin(z) =
i(dn(z)). Then “h preserves relative intersection numbers” if A, and pp,
vanish on H;(V,0,V; Zr).

Sometimes the selfintersection part of this definition can be omitted.
Recall that intersection numbers (in 4n-manifolds) determine selfinter-
sections except for coefficients of elements g € m{W with g = g~! and
w1(g) = 1. Therefore the selfintersection condition is unnecessary if w;
is trivial on 2-torsion in 7; W. In general if the selfintersection hypoth-
esis is dropped then the undetermined part can be organized to give an
obstruction: denote the elements of order 2 and w; =1 by T_, then we
get an obstruction in H2(V,0,V;Z/2[T-)).

Analogously to this the Z/2[T’, ] obstruction encountered in the unique-
ness part of the theorem also comes from a selfintersection problem. The
signs change because this problem occurs in a 6-manifold.

Next we show that many of the hypotheses are necessary as well as
sufficient.

10.5B Proposition. Suppose h: V — W, as above, is homotopic rel
OV to a my-negligible embedding, either in W or xW. Then 7ty (V,0,V) =
{1} (for all basepoints), h “preserves relative intersection and selfinter-
section numbers,” and H;(Wh, VUuow;ZmW) =0.

Basically, the only condition in 10.5A that is not always necessary is

the requirement that 71 (V,8,V) = {1}.
Proof: If V is embedded, the Seifert-Van Kampen theorem identifies
the fundamental group of W as the free product of m1V and m; of the
complement, amalgamated over m,0; V. If the complement has the same
fundamental group as W then 0; V must be connected and 10V — mV
must be onto. The long exact sequence of the pair shows these to be
equivalent to the vanishing of m;(V,0,V).

An embedding does not change intersections, so preserves intersection
numbers. Finally if h is an embedding then by excision H ;’(Wh, Vu
oW, ZmyW) = H?(W — inth(V),0(W — inth(V))). This is dual to
H,(W — inth(V); Z7, W), which is H; of the covering space associated
to the homomorphism to m; W. The m;-negligible condition implies this
covering space is 1-connected, so H; vanishes. §
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10.6 Proof of 10.3

We show that the connected sum decomposition theorem follows from
the 7;-negligible embedding theorem.

Let M be a closed simply-connected manifold, and denote—as above—
the complement of a flat open 4-ball by My. Consider this as a triad
with JyMy empty, then a decompostion of W as a connected sum with
M corresponds exactly to an embedding of this triad in W.

M, is homotopy equivalent to a wedge of 2-spheres, so 1o M QZm, W is
a free Zm; W-module. Given a Z7; W homomorphism (me M QZm W) —
oW there is a map (unique up to homotopy) My — W inducing it. This
map preserves intersection and selfintersection numbers in the sense of
10.5 if and only if the homomorphism preserves A and u in the sense of
10.3. Finally the w, on perpendicular subspaces is the same in the two
statements. Thus 10.5(1) implies 10.3(1).

For the uniqueness part, assume that two connected sum decomposi-
tions of W are given. Since the homomorphism on 7y determines the
map My — W up to homotopy, if the decompositions induce the same
decomposition of moW the embeddings are homotopic. Therefore 10.5(2)
provides an obstruction in Z/2[T ] whose vanishing implies pseudoiso-
topy of the embeddings. But 77 is the set of elements in the kernel of
wy: mW — Z/2 of exponent exactly 2, so the injectivity assumption
in 10.3(2) is equivalent to Ty being empty. Thus 10.5(2) implies the
pseudoisotopy part of 10.3(2).

To complete the proof of 10.3 we need uniqueness of the complement
when the form of M is even. This is proved independently of 10.5, and
in fact will be used in its proof.

We suppose W ~ M # W, ~ M # W,. Define W by connected sum of
with a copy of —M, so W ~ M#Wl ~ M#Wg, with M = M #(—M).
The form of M is even, indefinite, and has signature 0, so it is isomorphic
to k[}¢] for some k. According to the characterization theorem the
manifold is supposed to be kS? x S2. We give a direct proof of this by
finding the core spheres using the disk embedding theorem.

Choose a basis for moM, {a;,b;} for 1 = 1,... ,n so that all inter-
sections and selfintersections are trivial except A(a;,b;) = 1. Represent
the {a;} by framed immersions 4;: $2 — M, and choose a 4-ball D
which intersects the A; in mutually disjoint embedded disks. Delete the
interior of D, then the result is a collection of framed immersed disks
with algebraically transverse spheres (the b;). M is simply connected,
so the corollary to 5.1 applies to give a regular homotopy rel boundary
of | J; A; to an embedding. Replacing D gives disjoint framed embedded
spheres representing {a;}.
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Next find disjoint framed embedded spheres {B;} representing {b;},
and so that the only intersections with the A, is a single point in each
A; N B;. This is done either by deleting a neighborhood of [ J, A; and
applying corollary 5.1 again, or much more directly by using the spheres
A; as in the exercise in 1.9.

Now let h;: W~M # W; denote the given homeomorphism for j =
1,2, so that hih;’ preserves the decompositions of the forms and is
the identity on the part coming from M. Construct a 5-manifold Z by
starting with W x I, adding 3-handles on the spheres hl—lAz- c W x {0},
and 3-handles on the spheres h;'B; ¢ W x {1}. The boundary of Z
is the union of three pieces; Wi connected sum the manifold obtained
by surgery on | J, A; C M, W, connected sum the manifold obtained by
surgery on | J, B; C M, and (OW)x 1. Since M is reduced to a homotopy
sphere (thus a sphere) by surgery on either the A; or the B;, the first
two pieces are W7 and W.

The basic idea is that Z is an s-cobordism rel boundary from W; to
W5, so since the fundamental group is good the s-cobordism theorem im-
plies the ends are homeomorphic. We have not assumed W is compact,
so we use the “enlargement” version 7.1C of the s-cobordism theorem
rather than 7.1A. There is a handlebody structure for (Z, W;) with 2-
handles the duals of the handles added to the h] ' A;, and with 3-handles
the handles added to the hy 1B.. W is the level manifold between the
2- and 3-handles. Since hjh, ! is the identity on the part of the forms
coming from M, the matrix of intersection between the h71A, and the
h; !B, is the identity.

Choose nullhomotopies for Whitney circles for all excess intersections
and intersections, and let X be a compact submanifold of W containing
all the spheres and nullhomotopies. Let Y be the submanifold of Z
obtained by attaching the handles, then (Y,Y N Wj) is an s-cobordism
and Z has a product structure in the complement of Y. Since mZ =
71 W is good, version 7.1C of the h-cobordism theorem implies that Z has
a product structure. In particular there is a homeomorphism W; ~ W5,
as required. 1

10.7 Manifolds with infinite cyclic fundamental group

Analogs of the characterization and connected sum theorems are stated
without formal proof, basically as an extended exercise. We denote the
infinite cyclic group by J, to distinguish it from the coefficient ring Z.

Suppose M is a closed manifold with myM ~ J. Then Hy(M;Z[J])
is a free Z[J] module; the fact that it is stably free is a byproduct of
the proofs of the results below, and for this ring stably free implies free.
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When M is orientable the intersection form is a nonsingular hermitian
form on this free module. Generally the form is defined using an orien-
tation at the basepoint, and is @;-hermitian.

10.7A Classification Theorem.

(1) Existence: Suppose (H, ) is a nonsingular hermitian form on
a finitely generated free Z|J]-module, k € Z/2, and if A is even
then we assume k = (signaturel)/8, mod 2. Then there is a
oriented closed manifold with m; = J, intersection form A and
Kirby-Siebenmann invariant k.

(2) Uniqueness: Suppose M, N are closed and oriented with 7, =
J, h: Hy(M;Z[J]) — Hy(N;Z|[J]) is a Z[J] isomorphism which
preserves intersection forms, and ksM = ksN. Then there is a
homeomorphism f: M — N, unique up to pseudoisotopy, which
induces the given identification of fundamental groups, preserves
orientation and such that f, = h.

This is the analog of 10.1, except the uniqueness is only up to pseu-
doisotopy. We caution that the situation with other fundamental groups
is much more complicated (see 10.10).

To state the analog of the sum theorem we need an S!' analog of
connected sums. A map S! — M* is homotopic to an embedding with
neighborhood a D? bundle over S!. This bundle is either S! x D3 or a
Mobius band times D?, depending on the value of w; on the homology
class. Now suppose there are embeddings of S! in both M and W,
on which the respective w; take the same value. Define M #g W by
deleting the interiors of disk bundle neighborhoods and identifying the
boundaries. More precisely if local orientations are given then this can
be done so the result has a local orientation compatible with those of the
pieces, and when normalized in this way the operation is well-defined.

Continuing with the same notation, suppose M has fundamental group
J and S! C M represents the generator. Suppose also

the inclusion S C N is injective on ;. Then 7 (M #g5 N) ~ 7 N.
Denoting this group by =, it is also true that Hy(M #g1 N;Z[r]) =
(H2(M; Z[J)) @z Z[r]) ® H2(N; Z[x]). Similarly the intersection form
of the sum is the form on M tensored up to Z[x], plus the form on N.

10.7B Theorem. Suppose M is a closed locally oriented 4-manifold

with fundamental group J, W has good fundamental group w, J — =
is injective, and w; of the two manifolds agree on J.

(1) Suppose H>(M;Z[J]) ®zy Z[r] — HaW is a Zn homomorphism

which preserves A and fi, and either we = 0 on maW, or wy does

not vanish on the subspace perpendicular to the image. Then
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there is a decomposition W ~ M #g1 W’ inducing the given
homomorphism to moW. If ws # 0 does vanish on the perpen-
dicular, then exactly one of W or xW decomposes.

(2) Suppose hi: W o~ M #q W; and hy: W ~ M #g W, are
two decompositions inducing the same decomposition of wy. If
wy: mW — Z/2 is injective on elements of order 2, then the
decompositions are pseudoisctopic.

Note that, unlike the previous theorem, the manifolds are not assumed
orientable.

This result is proved from the 7;-negligible embedding theorem. De-
note by Mg the complement of the open disk bundle of the embedding
S1 ¢ M, then the data of (1) defines a map Mg — W. Let S! C Mg
be another generating circle, with disk bundle neighborhood E. Show
that the map Mg — W is homotopic to one which is a homeomorphism
on E and takes Mg — F into the complement of the image of E. Then
10.5 applies to the map (Mg — intE,dF) — (W —imFE,im0FE).

It may be helpful to note that after addition of a closed 1-connected
manifold with even form, (Mg — intE, OF) has a handlebody structure
with only 2-handles (see the next section).

The characterization theorem is proved, as in the 1-connected case,
from the sum theorem and a few additional facts. The first fact is a
stable classification of nonsingular hermitian forms over Z[J]. Given
(H, ) there is an m X n hermitian Z[J]-matrix A (possibly singular)
such that (H,)) @ (Z[J]*,[? 4]) is isomorphic to a sum of copies of
[1] and [—1]. This is the statement that the group of stable equivalence
classes of such forms is generated by the form [1], see Ranicki [1, §10].

To remove summands [? }] as in the proof of the 1-connected version,
we need to construct manifolds with these forms. Begin with E = S x
D3. Choose n pairs of embedded disks B;, C; in OF which are mutually
disjoint except for a clasp of intersections in B; N C;. Adding 2-handles
to E on the standard framings of 8B;, 9C; gives E # n(S? x S?), with
form [(1’ (1)] . Now modify the C;: push a piece of C; around a loop g and
introduce a clasp with C;.
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This changes the intersection matrix by the symmetrization of the ma-
trix with ¢ in the ¢, j place. Any symmetric matrix A over Z[J] can be
realized by this operation and changing the framing on the 0C;. Attach-
ing handles to these new framed circles gives a manifold with boundary,
and form [} }].

The nonsingularity of the form implies the boundary of this manifold
has the Z[J] homology of 0E. However (acccrding to surgery, in 11.6)
any such manifold bounds a topological manifold with the homotopy
type of S'. Attach such a bounding manifold to the construction to
obtain a closed manifold with the desired form.

The uniqueness statements require an additional fact from surgery.
Let E be a D’ bundle over S!. If N — E is a homotopy equivalence
which is a homeomorphism on the boundary, then it is homotopic rel
boundary to a homeomorphism (see 11.5). This is used in the cases

j=3and 7 =4.

10.8 Proof of 10.5(1)

In outline, the theorem is first reduced to the case where (V,3,V) is
a handlebody with only 2-handles. The 2-handles are then embedded
using the embedding theorem for disks. When w9 # 0 on 72 but vanishes
on the subspace perpendicular to Hy(V, 3V'; Zm; W) then complications
arise because we cannot always find framed immersed dual classes for
the 2-handles.

Much of the chapter to this point has consisted of deductions from
the result now being proved. However the uniqueness of cancellation for
manifolds with even forms, and the existence of the manifold || Eg|| were
established independently, in 10.6 and the proof of 10.1, respectively.
We will use these facts here.

Suppose M is a closed 1-connected manifold with even form, and
suppose the map obtained by connected sum with the identity M #V —
M #W is homotopic rel 9V to a m;-null embedding. This gives a second
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embedding of My in M # W, and therefore a decomposition M # W ~
M # W', with the two copies of M representing the same summand of
the form. The uniqueness of cancellation shows the canonical homotopy
equivalence W ~ W’ is homotopic rel W to a homeomorphism. But
W’ has V embedded m;-negligibly in it. Therefore we get an embedding
of Vin W.

This shows it is sufficient to embed M # V in M # W, where M is
any closed manifold with even form and 1-connected components.

As a first consequence we note we can assume V is smoothable. Add
a copv of the Fg manifold to each component with nontrivial Kirby-
Siebenmann invariant to change it to be zero. According to 8.7(1), a
manifold with vanishing Kirby-Siebenmann invariant can be smoothed
after connected sum with some number of copies of S? x S2. Therefore
V # jl Es| # k(S? x S2) is smoothable, and to embed V it is sufficient
to embed this.

The second consequence of cancellation is that we can assume (V,3,V)
has a handlebody structure with only 2-handles. We first arrange that
0oV intersects each component nontrivially; in each component where
this fails make h a homeomorphism on a ball, delete the interior from
both V and W, and add the boundary to V. Now since V is smooth-
able it has some handlebody structure. Each component intersects 9gV’
and 0,V nontrivially, so there is a handlebody structure with no 0- or
4-handles. 1- and 3-handles will be eliminated by showing they can be
changed into 2-handles by connected sums with 52 x S2. :

Consider a 1-handle, attached to 9pV. The connectivity assumptions
imply that m;(V,3,V) = 0, so the core of this 1-handle is homotopic
relative to the ends into Gy V.

Approximate the homotopy by a framed immersed 2-disk which is
standard near the core of the handle, and push selfintersections off by
finger moves (see 1.5). This gives a framed embedded disk whose bound-
ary is the union of the handle core and an arc on 0yV. Let B denote
a 3-ball neighborhood of the arc in 9yV, then a collar on B union with
the 1-handle is isomorphic to S* x D3.

The connected sum operation #52 x S? removes a 4-ball and replaces
it with S x S? — D? x D2, where §? = D? U D?. Identify D% x D?
in this with a 1-handle in the original 4-ball. The complement of this
1-handle is isomorphic to S x D3, so the operation becomes: remove
a copy of ST x D3 (whose core bounds an embedded D?), and replace
it with D2 x S2. (This is a “surgery” on the S'.) Therefore by such
a connected sum we can replace the 1-handle on B x I with a copy of
D? x S2. This can be regarded as a 2-handle added on B x I, so the
original 1-handle has been replaced by a 2-handle.
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A 3-handle can be considered dually as a 1-handle attached to 0,V so
the same argument can be used to convert all 3-handles into 2-handles.
We now assume (V,9pV') has only 2-handles. Denote the core 2-disks
of these handles by {D;}. The first step toward applying the disk em-
bedding theorems is to find an appropriate immersion homotopic to A.

According to the immersion lemma b is homotopic to an immersion
which differs by rotations from the given one on the attaching region
of the handles. Let y; denote the rotation on dgD;. A; = D; U h(D;)
defines immersed 2-spheres with possibly nontrivial normal bundles. The
1 coefficient (in Z7; W) of the selfintersection forms of these immersions
satisfy 2}1.1 (Az) + X = A (Az, Az)

The hypothesis that A “preserves relative intersection numbers” im-
plies A;(A;, A;) = 0, so x; is even. According to 1.3 it can be changed
by any even number by twisting inside h(D;), so we can arrange for it
to be zero. This gives an immersion of V extending the embedding of
0gV, and the intersection and selfintersection forms of the core disks are
trivial. Note that according to Proposition 1.7 this immersion is well-
defined up to regular homotopy; different regular homotopy classes rel
boundary oif immersions of disks can be distinguished by selfintersection
numbers.

Next we locate homologically transverse elements for the h(D;), in
s 2W.

Since the cohomology group H$(Wp,dW U V) (ZmW coefficients)
is assumed trivial, the long exact sequence of the triple (W,,0W U
V,0W) shows that H%(W,0W) — H?(V,8,V) is onto. The first group
is Poincaré dual to Ho(W;ZmW) ~ mW. Since (V,0V) has only
2-handles the cohomology group is isomorphic to the dual of the ho-
mology; (H2(V, 3V))*. The resulting homomorphism Hy(W; Zm W) —
(H2(V,0,V))* is the adjoint of the intersection form A: Hao(W; Zm W) x
Hy(V,00V) — ZmW. Since the homomorphism is onto we conclude
that there are elements a; € oW such that A(D;,a;) =0 if i # j, and
=1ifi=j.

To apply the embedding theorem we need such classes o; represented
by framed immersions. According to 1.3 this will be the case if wa(a;) =
0. If wa = 0 on moW this holds automatically. If there is an element
v € maW so that A(D;,v) = 0 for all ¢ and wa(7y) # 0, then we can add
~v to the a; with nontrivial wy, to obtain new a; on which ws vanishes.
Therefore framed immersions can be obtained unless wq is nontrivial on
moW, but vanishes on the subspace perpendicular to Hy(V,8,V).

When there are framed immersed a;, Corollary 5.1B implies that A is
regularly homotopic rel dyV to a m;-negligible embedding. This proves
theorem 10.5(1) unless ws # 0 on W, but vanishes on the perpendic-
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ular to Hy(V,0,V).

To analyse the situation when the a; cannot be chosen to be framed,
we recall the proof of the appropriate embedding theorem (the proof
of Corollary 5.1B from Theorem 5.1A). First immersed Whitney moves
are used to change h by regular homotopy so that the a; are repre-
sented by framed immersions which are transverse spheres for the h(D;).
Then immersed Whitney disks are chosen for all intersections among the
h(D;). These are made disjoint from the h(D;) by adding copies of the
a;. Framed immersed transverse spheres for the Whitney disks are con-
structed by contraction from the linking tori and caps, after the caps
are made disjoint from h(D,) using the ;. Theorem 5.1 then applies to
the Whitney disks; they can be replaced by embeddings with the same
framed boundaries. Whitney isotopies using these embedded disks give
a regular homotopy of h to the desired embedding.

The only step which requires the framing is the use of sums with
the o; to make the Whitney disks disjoint from h(D;). For example,
in the last step (constructing transverse spheres for the Whitney disks)
each o; enters algebraically zero times, because it is added to caps in
a capped surface which is then contracted. This implies twists in the
normal bundle cancel out. Since the problem comes from these Whitney
disk—h(D;) intersections, we use them to define an invariant.

10.8A Definition. In the situation above suppose B is an immersed
Whitney disk for intersections among the h(D,), with boundary arcs on
h(D;) and h(D;). Define km(B) = wa(as)wa(a;) Y i |BNh(Dg)|wa(ak),
in Z/2. Here |B N h(D;)| denotes the number of intersection points, in
general position, mod 2. If {B;} is a complete set of Whitney disks (with
disjoint boundaries) for all the intersections, define km(h) =}, km(B;).
Finally if hg is a map as originally specified in the theorem, and h is a
map of a 2-handlebody obtained from it as above, then define km(hg) =
km(h).

This invariant extends an embedding obstruction for 2-spheres dis-
covered by Kervaire and Milnor [1], and the notation is intended to
reflect this. The following lemma completes the proof of part (1) of the
theorem.

10.8B Lemma. Suppose h satisfies the hypotheses of 10.5(1), and de-
termines wy on moW. Then km(h) is well defined, and h is homotopic
rel 3oV to an embedding in W, or W, if and only if km(h) = 0, or
km(h) = 1 respectively.

Proof: We claim it is sufficient to show the invariant is well-defined,
and that if it vanishes then h is homotopic to an embedding. Since
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an embedding trivially has vanishing invariant these assertions directly
imply that A is homotopic to an embedding if and only if the invariant
vanishes. We show next the assertions also imply that if km(h) = 1
then A is homotopic to an embedding in xW. Together these statements
imply the lemma.

Let f: CP? — %CP? denote the canonical homotopy equivalence,
then fo: CP} — xCP? satisfies the hypotheses of the theorem, but
cannot be homotopic to an embedding. Therefore km(fy) = 1. Consider
hU fo: VUCPZ — W # (xCP?). If km(h) = 1 then km(h U fo) = 0,
so is homotopic to an embedding. This gives an embedding of V in
the complement of CPZ C W # (xCP?), which is by definition (xW ).
Therefore h is homotopic to an embedding in xW.

We now show that if V has a handlebody structure with only 2-handles
such that km(h) (defined with respect to this structure) vanishes, then
h is homotopic to an embedding.

The first step is an operation which changes intersections of Whitney
disks. Suppose D is an immersed disk, and B, C are Whitney disks
with disjoint boundaries, for intersections of D with a surface D’. Push
a piece of the boundary arc of B through one of the C intersection points,
to introduce a new BD' intersection and a point of intersection of the
Whitney arcs.

DI ﬂ new BD'
A - intersection
.~
I

G A

Now push the C boundary arc along the B arc through one of the B
intersection points.

RNID

push 0C

off OB \/ e

=8
o

A 4

fr——
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This makes the boundary arcs disjoint once again, and introduces a
CD' intersection. If km is defined using intersections with D’ then this
procedure changes both km(B) and km(C).

Now suppose h is an immersion of a 2-handlebody, with Whitney disks
{B;} and km(h) = 0. We change this so that each Whitney disk has
km = 0. If there is a Whitney disk with km # 0 then there must be two
since the total is 0 mod 2. Suppose they are B; and Bj, with a boundary
arc on h(Dy), h(D;) respectively. Use a finger move to introduce a
new pair of intersections between h(D;) and h(D,), with embedded
Whitney disk C' with boundary arcs on both A(D;) and h(D3). Apply
the procedure above to the pair C, B;, and to C, Bs. A single new
BN h(D) intersection is introduced into each of B; and By, so they now
have km = 0. Two intersection points are introduced into C, so it also
has km = 0. This reduces the number of km # 0 Whitney disks by 2,
so by induction they can all be converted.

Thus we may assume all Whitney disks have km = 0. Use connected
sums with the (possibly unframed) transverse spheres to make them
disjoint from the h(D,). If a disk B; is changed by an even number of
sums with spheres with wy # 0 then the normal bundle of the result
differs on the boundary by an even number of twists from the Whitney
framing. Interior twists as in 1.3 can be used to correct this. If there
are an odd number of such spheres then by definition of km(B;) one
of the boundary arcs must be on a disk with framed transverse sphere,
say h(D;). A boundary twist about this arc corrects the framing on the
Whitney disk, but introduces a new intersection with h(D;). Since h(D;)
has framed transverse sphere this intersection can be removed without
disturbing the framing. .

Therefore we can arrange that there are Whitney disks with interiors
disjoint from the h(D.). As noted above the rest of the proof of the
embedding theorem does not require framings on the transverse spherse
of the h(D,), so (if the fundamental group is good) there are embedded
Whitney disks, and h is homotopic to an embedding.

The lemma will be completed by showing that km(h) is well-defined.
Note that if it is well-defined with respect to a fixed handlebody struc-
ture then its vanishing is equivalent to embedibility of the manifold. But
embedibility is independent of the handlebody structure, and indepen-
dent of the connected sums used to get such a structure. Therefore it is
a well-defined invariant of the original map. This reduces the problem to
showing it is well defined with respect to a fixed handlebody structure.

Fix a handlebody structure for (V,8,V') with only 2-handles. Recall
that the immersion homotopic to A is well-defined up to regular homo-
topy by the intersection number conditions. A regular homotopy is a
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sequence of Whitney moves, finger moves, and isotopies. Since a Whit-
ney move is inverse to a finger move, it is sufficient to see that km is
invariant under finger moves.

A finger move introduces a single embedded Whitney disk disjoint
from everything else, so adding it to a collection of Whitney disks gives
a new collection with the same invariant. This reduces the proof of the
lemma to showing the invariant is independent of the choice of Whitney
disks, for a fixed immersion in general position.

The first step is to generalize the definition. Define “weak” Whitney
disks to be disks satisfying all the conditions on Whitney disks, except
the boundary circles are allowed to be immersed arcs in A(D.). (Usually
they are required to be disjointly embedded.) Now suppose {By} is
a complete collection of weak Whitney disks for the intersections of
h(D,). Define km(B,) to be the sum over all intersections intB, N
h(D,) and selfintersections of 0B, of products wa(a;)wa(a;)ws(ak) in
Z/2. For a BD intersection, i is the index of the D,, and j, k are the
indices of the hA(D,) containing the boundary of B. For a B intersection
between boundaries of distince B, 7 is the index of the D, on which the
intersection takes place, and j, k are the indices of D, containing the
other boundary arcs of the Bs. For a B selfintersection, 7 is the index
of the D, on which the intersection takes place, and 5 = k is the index
of the D, containing the other boundary arc of B.

If the Whitney disks are standard, so there are no boundary intersec-
tions, this reduces to the previous definition.

The new definition of km is invariant under regular homotopy of the
Whitney disks. During a regular homotopy intersection points appear
and disappear in pairs, leaving the sum in Z/2 unchanged, except when
one boundary arc of a Whitney disk passes over an endpoint of another
boundary arc. This changes the number of boundary intersections by
one. Since endpoints are h(D,) intersection points, it also changes the
interior intersections by one, as in the pictures above. The Z/2 elements
assigned to the two types of intersections are the same, so the sum is
invariant in this case also.

Next we show the invariant depends only on the Whitney circles,
not on the choice of disks. Suppose B and B’ are Whitney disks with
the same boundary circle, on disks h(D;) U h(D;). Both B and B’
define framings of the normal bundle of the boundary circle. Using
the uniqueness of the normal bundle of the circle, we may assume after
isotopy that B’ intersects the B framing in a subbundle, which may be
twisted. Suppose there are r twists along the arc on h(D;) and s twists
on h(DJ)

Applying the boundary twisting operation of 1.3 to B’ straightens out
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B’, but introduces rotations in its normal bundle. Once B and B’ are
aligned near the boundary they can be glued together a short distance
out from the boundary curve to give an immersed sphere, C. Because of
the rotations introduced by the twisting operation wy(C) = r + s mod
2.

Note that w(C) is also given by 3", |C N h(Dk)|wa(ak). This is be-
cause C' can be expressed (in moW) as a linear combination of the a.,
plus an element perpendicular to h(D,). Since wy vanishes on the per-
pendicular subspace, this last has wy = 0. The number of copies of ay
in the sum is |C N h(Dyx)|, so the formula follows from additivity of ws.

This expression for wy(C) can be related to the km contributions of
B and B’. C has the same intersections with the hA(D.) as intBUintB’,
plus some introduced by the twisting operation; r with h(D;) and s
with h(Dj). Since we have assumed ws(a;) and wq(a;) are nontrivial,
the intersection expression gives wy(C) = ", |(intB) N h(Dy)|wo (o) +
Y i [(intB') N h(Dg)|wa (o) + 1 + s.

Subtracting wa(C') = r + s and multiplying by wa(a;)wa(a;) shows
that the interior contributions of B and B’ to km are equal. Therefore
km(B,) depends only on 9B,.

Now we show it does not depend on 3B either. Note that two collec-
tions of immersed arcs in a 2-disk, with the same endpoints, are regularly
homotopic rel endpoints. Regular homotopies of the boundary curves
can be extended to Whitney disks, and km is invariant under regular
homotopy. Therefore km depends only on the pairing of intersection
points, not on the choice of arcs.

A pairing of intersection points can be deformed to any other pairing
by a sequence of moves, each of which changes two pairs. It is therefore
sufficient to see that such a move does not change the invariant.

Suppose a;, as are positive and by, by are negative intersection points
between h(D;) and h(Dj), all with the same associated element of the
fundamental group. Let B;, By be (weak) Whitney disks for the pairs
{a1,b1} and {az2,be}. Suppose C is a Whitney disk for {a;,b2}. Then
a Whitney disk C, for {a2,b;1} can be constructed from parallel copies
of By, Bs, and C;, and small twists near {a;,b2}.

() () (\/02{/\
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o has the same intersections as the union of the other disks, so C; UCs
1as the same intersections mod 2 as B; U B,. Therefore km is invariant
inder replacement of C; U Cy by By U Bs.

This completes the proof of the lemma, and therefore of the existence
vart of the 71-null embedding theorem. §

10.9 5-dimensional embeddings

The uniqueness part of the embedding theorem will be deduced from
\n analogous embedding theorem for 5-manifolds. Specifically, suppose
1 (V x I,V x {0,1} U8V x I) > W x I is a homotopy rel boundary
yetween embeddings of V. Set (X,00X) = (V xI,V x{0,1}UGyV x I),
nd Y = W x I, then g is a map which is an embedding on 0y X.
\ m;-negligible embedding which agrees with g on 9y X is exactly the
‘concordance” required for the uniqueness statement.

['heorem. Suppose (X;00X,0:X) is a compact 5-manifold triad with
X, 8y X) 2-connected and (X, 0, X) 1-connected. Suppose g: X° — Y?®
s a map which embeds 8o X in Y , and H}(Yy, XUOY';ZmY) = 0. Then
here is an obstruction jid, € H3(X,80X;(Z/2)[Ty]) which vanishes if
ind only if there is a ;-negligible embedding ¢': X — Y equal to g
n Oy X and inducing the same homomorphism H3(X,00X;ZmY) —
r{3 (Y', 60X; Z’/T] Y)

H¢ denotes, as in 10.5, the finite cocycle cohomology, and Y, the
napping cylinder of g. T'y is the subset of 7Y of elements of exponent
xactly 2 on which w, is trivial, as in 10.5. In particular if w;: mY —
,/2 is injective on elements of order 2 then the obstruction group is
rivial, and embeddings exist.

As explained above, the uniqueness in 10.5 follows by applying this
o a homotopy g: (V x I,V x {0,1} UGV x I) — W x I. Delete a
all from each component of V' which does not intersect 33V, to get the
roper connectivity.

>roof: The proof is rather lengthy, so we begin with an outline. The
rst step is the definition of the obstruction, in terms of selfintersections
n a 6-manifold. Then there is a reduction to the case where (X, Jp X) has
, handlebody structure with only 3-handles. The images of these handles
1ave 1-dimensional intersections and selfintersections. The invariant is
lescribed in terms of these intersections, and in fact only involves circles
vith connected preimages. Then the process of simplifying intersections
egins, with the elimination of arcs joining singular points. Next is a
ersion of the Whitney move, which joins intersection circles. When
he invariant vanishes this is used to eliminate intersection circles with
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connected preimage. This leaves circles of intersection whose preimages
are two circles. These are eliminated (after some preparation) by a
surgery procedure, which may change the homotopy class of the map.
The result is a map with no intersections or selfintersections among the
handles, so an embedding.

We begin by describing the obstruction. The connectivity hypotheses
imply that the relative homology and cohomology of (X, 39 X) is trivial
except in dimension 3. Therefore the obstruction group is given by
H3(X,00X;(Z/2)[T}]) = hom,(H3(X,8X;Znr),(Z/2)[T,]), where =
denotes m1Y. The obstruction will be described as a homomorphism on
Hs.

The homomorphism dg: H3(X,8X) — H3(X UY) is induced by
the chain map 1 — g, as in 10.5. Multiplying by R takes this to
H3(X UY x R), where intersection and selfintersection forms are de-
fined. The intersection form vanishes since homotopy classes can be
separated using the R coordinate. The selfintersection form takes val-
ues in Zn/((14+@)Zn). Recall that in an 2n-manifold A satisfies A(x,y) =
(—=1)"@A(y, z), and p(z) is defined modulo ((1+ (—1)"*1@)Zx). Before
now we have been working in dimension 4. Here the dimension is 6,
so the signs have changed. Except for the coefficient on the identity
element in Zz these satisfy A(z,z) = p(x) — op(x) (see 1.7), so the re-
duced selfintersection takes values in the kernel of this symmetrization
homomorphism. This kernel can be naturally identified with (Z/2)[T7].

Assembling these gives fi(dg x R): H3(X,8,X) — (Z/2)[T}], which
will be the obstruction to embedding.

The first objective in the proof is to arrange (X, 3pX) to have a han-
dlebody structure with only 3-handles. This is done in several steps,
each of which involves “stabilizing” the problem. To stabilize, suppose
g is an embedding on a collar of 9y X, and consider the collar as a han-
dlebody with a cancelling pair of 2- and 3-handles. Delete the 2-handle
from both X and Y to obtain ¢’: X/ — Y’. This map also satisfies the
connectivity and homological hypotheses of the theorem. If ¢’ can be
replaced by an embedding agreeing with ¢’ on Jg X', then an embedding
of X is obtained by replacing the 2-handle. It is therefore sufficient to
consider the stabilized problem.

X is changed by the addition of the 3-handle. Specifically X’ is the
boundary connected sum X #g, .52 x D3. This new 3-handle is embedded
in both X’ and Y’, so the obstruction homomorphism vanishes on it.
This shows the obstruction for g’ is the image of the obstruction for g.
8o X is changed by connected sum with S2? x $2, and 8; X is unchanged.
The homotopy type of X'/ is the 1-point union X V §2.

Choose a handlebody structure on (X, 3;X) (one exists since X is a
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5-manifold; see 9.1). According to the “geometrical connectivity” the-
orem (Wall [2]) a 1-connected 5-manifold pair has a handlebody struc-
ture without 0- and 1-handles. More precisely these handles can be
eliminated from a given structure at the expense of introduction of 2-
and 3-handles. Applying this to both (X,0pX) and (X, 0,X) gives a
structure with only 2- and 3-handles. Basically we would like to make
g an embedding on the 2-handles, delete them as in stabilization, and
concentrate on the 3-handles. It is a bit difficult to get the 3-handles
disjoint from the 2-handles, and to relate the properties of the result-
ing ¢’ to those of the original g, so we use a less direct approach. We
show that after a suitable number of stabilizations the resulting X’ has
a handlebody structure with only 3-handles.

(X, 01X) has a handle structure dual to the one on (X, 9y X); let Z de-
note 0; X union with the 2-handles in this dual structure. Obstructions
to factoring the identity of X (up to homotopy, rel 8;X) through the
inclusion i: Z — X lie in HY(X,0,X;m;(X, Z)). These groups vanish,
since Z is a 2-skeleton if ¢ < 2, and by duality using the 2-connectivity
of (X,00X), if ¢ > 2. Therefore there is j: X — Z, with 75 homotopic
to the identity.

This factorization gives a decomposition H;(Z) = H;(X)®H;+1(X, Z)
(Zm X coefficients). But H;+1(X, Z) is concentrated in dimension 3,
and is free (generated by the 3-handles). Hy(Z) = m(Z), so choose
maps S2 — Z representing the generators of H3(X, Z). Together with
j these define X V kS? — Z which induces a simple equivalence of
chain complexes with Zm; X coefficients. Since both complexes have
fundamental group m; X, the map is a simple homotopy equivalence.

The conclusion is that the manifold X’ obtained by k-fold stabiliza-
tion is simple homotopy equivalent rel 3; X to a handlebody Z (on 0, X)
with only 2-handles. Approximate the equivalence rel 9; X by an em-
bedding Z — X. This is be done using the 5-dimensional analog of the
immersion lemma, and might involve changing the attaching maps of
the 2-handles by rotations. (Although it is easy to see that for the par-
ticular Z constructed above no rotations are necessary.) Let W denote
the closure of the complement of Z in X.

W is an s-cobordism from 0pX to the rest of its boundary. The
fact that the inclusion is a simple equivalence implies by excision and
duality that W is a simple Zm; X coefficient homology H-cobordism,
so it is sufficient to see the boundary pieces and W all have the same
fundamental group as X. 99X does by the 2-connected hypothesis. W
does since it is obtained by deleting 2-handles from X, and X is 5-
dimensional. Similarly 0, W is obtained by deleting 2-handles from Z,
so has the same fundamental group as Z.
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Further stabilization of the problem can be arranged to change W
by connected sum along an arc with $2 x §? x I, as in the exercise
preceeding 7.3. To see this choose the cancelling 2- and 3-handle pair
to lie in a neighborhood of a collar arc going from 9o X to 8; X (missing
the handles). Delete a neighborhood of the 2-handle to get X’, and add
the dual of the 3-handle to Z. Then the dual also gets deleted to form
W', leaving the desired arc sum.

Finally apply the stable 5-dimensional s-cobordism theorem (in the
exercise preceeding 7.3) to conclude that after some number of stabi-
lizations the associated manifold W is a product. This means X is
homeomorphic to Z, so (X,0;X) has only 2-handles. Dually (X, GyX)
has only 3-handles, as desired.

Now we construct “transverse spheres” for the images of the 3-handles
in Y. If the core disks of the handles are denoted D);, then the objective
is a collection of embeddings a;: $* — Y so that g(D;) N a; is empty
unless 7 = j, and then is a single (transverse) point. These embeddings
are not required to be framed.

As in the proof of 10.5(1) in 10.8 the vanishing of the cohomology
group H$(Yy, X U 0Y;ZmY) implies there are elements o; € m2(Y)
with intersection numbers A(g(D;), ;) =0 if ¢ # j, and = 1 if ¢ = j.
Since dim(Y) = 5 these can be approximated by embeddings. The extra
intersections between these and the g(D;) can be arranged in pairs with
Whitney disks. Again since dim(Y) = 5 the Whitney disks can be
chosen to be embedded, although their interiors may intersect the g(D;).
Push the g(D;) across these Whitney disks. This may introduce new
intersections among the g(D;), but reduces intersections with the a; to
single points.

The rest of the proof involves studying the intersections among the
images of the 3-disks g(D;). Approximate them to be in general position
and transverse to each other, then the intersections are circles and arcs of
double points. These are disjoint from the boundaries of the disks since
g is an embedding there. g is an immersion except at isolated “cusps”
ocurring at the ends of arcs of double points. The preimage in UD; is
a union of circles. Over a circle of intersections the preimage is a 2-
fold covering space, so either two circles each going by homeomorphism,
or a single circle going around twice. There is a single circle over an
intersection arc, a 2-fold “branched cover” branched over the endpoints.

We describe the obstruction in terms of these intersections. For this
it is sufficient to determine the value of fi(d, X R) on generators; the
classes represented by the handle cores D;. The images in H3(X UY)
are represented by D; U g(D;). Let f;: S — R, then the graphs of
these in (X UY’) x R represent (d, x R)([D;]).
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Intersections among these occur at points identified both by g and f;.
Consider a circle of intersections of g which is covered by two circles in
D,. The function f can be arranged to have values on one component
strictly greater than on the other, so this circle produces no intersections
in (XUY) x R. The intermediate value theorem implies that arcs, and
circles covered by a single circle, must have points for which the two
points in the preimage are taken to the same value by f. But f can be
arranged so there is exactly one such point on each such arc or circle,
so these produce exactly one selfintersection point each. i € (Z/2)[T%])
therefore counts these mod 2; if v € T, then the coefficient on v in
fi(D; U g(Dy)) is the number mod 2 of intersection circles covered by a
single circle, and with associated 7m; element v. The arcs do not show
up since they have associated element 1 € n, and 1 is omitted from g
and T,.

A selfintersection circle covered by a single circle is itself a repre-
sentative for its associated element in m;Y. Since the double cover is
nullhomotopic, it follows that it is an element of exponent 2. The fact
that D is self-transverse at this circle divides the normal bundle of the
circle locally into two 2-dimensional subbundles. The double cover splits
globally as a sum of orientable subbundles. This identifies the normal
bundle of the circle in Y as being obtained from the bundle R? x R? x I
over I by identifying the ends via the matrix [? (I)] This is orientable, so
as a m; element it lies in the kernel of w;. Therefore the elements which
can occur this way are T, U {1}. We conclude that the obstruction
fi(dy x R) vanishes if and only if: for each j and v # 1 in m;Y there are
an even number of selfintersection circles of g(D;) covered by a single
circle and with associated group element +.

We begin the modification of intersections by first eliminating arcs.
The map has no arcs if and only it is an immersion, so the fastest way to
do this is to use the immersion theorem and the fact that n3(Brop) = 0.
A geometric argument will be given because it gives additional informa-
tion about circles double covered by a circle.

At each end of an arc of intersections is a “cusp” as pictured in 1.6
(but multiplied by (R2,R) to make it 5-dimensional; see Whitney [2]).
The basic idea is that the cusps on the ends of an arc can be joined
together to give an intersection circle. After this is done the map is an
immersion.

In detail, a small ball about the singular point intersects the image
g(D;) in the cone on a standard immersion of S? in S*, with a single
selfintersection. This immersion is obtained from a 2-sphere in 3-space
with a line of intersections by pushing one sheet into the future on one
side of the midpoint of this line, and into the past on the other side.
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There are two of these, depending on which side of the midpoint is
pushed into the future, and these are distinguished by the sign of the in-
tersection point. In a 5-manifold these signs depend—as do intersection
numbers—on choices of paths from the handle images to the basepoint,
and an orientation at the basepoint. Transport the orientation along the
path to get an orientation at the singular point, and use the induced ori-
entation on the boundary of a ball about that point. Cusps on opposite
ends of an arc of intersections have opposite signs.

Cusps of opposite sign can be “cancelled.” Choose an arc between
them disjoint from the double curves. A neighborhood of this arc can
be thought of as a boundary connected sum of ball neighborhoods of
the endpoints. The intersection of the handle image with the boundary
of this neighborhood is the connected sum of two standard immersed
spheres. If the intersection points have opposite sign then this is also
the boundary of the product with I of a standard immersion of D? in
D* with a single selfintersection. Replacing the original intersection with
this product removes the cusps and joins the ends of the original double
point arcs. As observed above joining the ends of all double arcs in this
way gives an immersion with only double circles.

When ends of a double arc are joined in this way there is a choice which
determines whether the resulting circle is covered by a single circle or
by two circles. As above consider the intersection of the handle image
with the boundary of the arc neighborhood as a sum of two immersed
2-spheres. The resulting sphere has two intersections of opposite sign,
and there are two Whitney disks, differing by a twist, which can be used
to remove the intersections leaving a standard (unknotted) 2-sphere.

twist here / Whitney disk
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Put the trace of the Whitney move in a collar of the boundary S$*,
and then fill in with a standard embedded D3 C D®. The track of
the intersection points in the Whitney move is the new double arc. By
following sheets near this arc the structure of the double cover can be
deduced, and in particular single twists in the sum tube switch the
double cover between a single circle and two circles.

The intersection points in circles generated from arcs have trivial as-
sociated element in the fundamental group. This is because near the
singularity there are loops going from one sheet to the other inside a
ball. The discussion above implies that we can introduce an arbitrary
number of circles doubly covered by a single circle, and with trivial as-
sociated element in 7;. To do this introduce folds with arcs of double
points, then join the ends in such a way to get a connected double cover.

We now describe a version of the Whitney isotopy, which will be used
to eliminate circles with connected double covers.

Suppose = and y are points of intersection between g(D;) and g(D;),
whose associated group elements are equal. Join the preimages by em-
bedded arcs in both D; and D,, then the resulting loop in Y is con-
tractible. Approximate a nullhomotopy by an embedded disk. The
interior of this disk may have point intersections with the g(D.), which
can be removed using connected sums with the transverse spheres a..
A neighborhood of this disk can be parameterized by the model shown
below, modified to be 5-dimensional; multiply by I x I, and multiply
D;, D; by the first and second coordinates respectively.

Whitney disk push across disk
/

e 1
= ap—==

D;
the model after the move

The reason this is always possible, and there is not an “opposite sign”
condition as with isolated intersection points is that there is an addi-
tional degree of freedom: the orientations of the intersection curves can
be changed. The picture on the right shows D;, D, after a Whitney
isotopy across the disk. The two intersections circles-are modified by a
connected sum operation at the points  and y.

For the first application of this Whitney move we observe that if x
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and y lie on different circles, both covered by a single circle, then the
operation combines the circles to give a single circle covered by two
circles. This implies that if there are an even number of circles with
connected double cover and some fixed associated v € 7; then they can
be joined in pairs and all converted to trivially covered circles.

We conclude from this that if the obstruction fi(d,y) vanishes g can be
modified to have no circles with connected double cover. First, vanishing
means that for any nontrivial element in 7Y there are an even number
of circles in each D; with connected cover and that particular element.
Thus all these can be combined, leaving only circles with trivial associ-
ated m; element (or disconnected cover). If the number of these in some
Dj is not even then according to the analysis of arcs we can introduce a
single new one, and then eliminate these also.

Now we describe a type of “surgery” on g(D.), which will be the
main technique for removing intersection circles. Suppose a circle of
intersections has preimage two circles r C D; and v’ C D;. Begin with
the simplest case where r is unknotted and unlinked, so suppose C C D;
is an embedded 2-disk with boundary r and interior disjoint from the
double points of g. This data will be used to construct a 4-dimensional
handlebody with D, at one end, and a map into Y extending g.

Start with D; x I, and add a 2-handle on v’ x {1} € D; x {1}. Map
this to the normal disk bundle of the image of D;, restricted to the 2-
disk C' (note that requiring this map to be defined singles out a specific
framing of ' x {1} on which to attach the handle). To construct a
second 2-handle begin with the core of the dual of the first handle (a
fiber of the disk bundle over C). Perturb the interior to be disjoint from
the construction to date. There is a single intersection point of this disk
with D;, remove this by connected sum with a copy of the transverse
2-sphere ;. This gives an embedded 2-disk in Y. To get a 2-handle
we need a 2-disk bundle over this extending the normal bundle of the
boundary circle in the boundary of the handlebody. The normal bundle
in Y is 3-dimensional, and the complement of the 2-dimensional bundle
over the boundary is trivial, so according to the stability of bundles it
is possible to extend the splitting over the 2-disk. This splitting is not
unique, and we discuss the effect of different choices below.
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7 EA

bundle over «;

The handlebody gives a bordism from g on D; to a map on some 3-
manifold, which has the same selfintersections and intersections with
the other D, as Dj;, except that the image of rUr’ has been eliminated.
The bordism shows that this manifold and D, represent the same rela-
tive homology class, so we can replace D; with it (thereby simplifying
the situation) provided the new manifold is a 3-disk. We describe two
situations in which this is the case.

First, if the sphere o; can be framed then the manifold can be arranged
to be a disk. If a; can be framed (which is equivalent to wa(a;) = 0)
then there is a trivial 2-disk subbundle of its normal bundle. Connect
sum with the trivial bundle does not change framings on the boundary,
so in this case the second 2-handle is attached on the same framing
of the boundary S! as the framing coming from the dual disk of the
first 2-handle. The effect on the boundary is the same as deleting a
neighborhood of the dual disk. However this operation undoes the first
handle attachment, and gives D3.

For the other case suppose that the circle 7' C D; bounds an embed-
ded disk (not necessarily disjoint from the other double points). This
disk defines a trivialization of the normal bundle, which differs by ro-
tations (ie. by an element of 7;(0(2)) ~ Z) from the framing used to
attach the first 2-handle. If these framings agree then the new manifold
is a 3-disk. This is because the disk and the core of the first 2-handle fit
together to give an embedding of $2 x D? in the handlebody. Replac-
ing this with D3 x S! gives a new handlebody with a 1-handle and a
2-handle (the second 2-handle in the original). The 2-handle is attached
on a circle which intersects the dual sphere of the 1-handle in exactly
one point, so the two handles can be cancelled. Again the modified han-
dlebody is a collar on D; and the complementary piece of the boundary
is a 3-disk.

The next step is to obtain embedded disks bounding preimage cir-
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cles, so the surgery procedure above can be applied. To begin with
there are immersed disks bounding the circles, whose intersections are
all “clasps.” To get these choose nullhomotopies in general position, so
immersed except at isolated cusps. Push cusps across the boundary (this
introduces twists about the boundary circle which change the framing).
If there are circles of intersection, push one disk across the edge of the
other to convert them to arcs. Then triple points can be pushed along
a double arc across the boundary, and eliminated. Finally if there is an
arc lying entirely in the interior of a disk, a piece of its interior can be
pushed across the boundary to convert it into two clasps. None of these
modifications involve changing the boundary circles.

We now associate a “rotation number” to preimage circles. If r C
D; is the preimage of g(D;) then the normal bundle of r in D; is (by
transversality) the restriction of the normal bundle of g(D;) in Y. The
contractibility of D; defines a trivialization of this bundle. But r is also
the boundary of an immersed disk in D;, which also gives a trivialization
of the bundle. These trivializations differ by a rotation in m;(0(2)) ~ Z,
and this is defined to be the rotation number of r.

Now clasps will be removed. Suppose C; and C, are disks in D; with
boundaries preimages of D; and Dy, respectively. Suppose these intersect
in a clasp arc. A finger move of D; along this arc gives an immersion in
which the clasp is removed, but introduces a new circle of intersections
between D; and Dj. There are standard embedded 2-disks, say E and
E’, bounding the preimage circles, and there are clasps between these
and disks in D, and Dx.

j in D; in Dy,

These new intersection circles have rotation number 0 since they arise
from finger moves. We repeat the move, pushing D; along the clasp in F.
This introduces new D;, Dy intersections with disks F', F’ which clasp
E’ and C) respectively. But E is now embedded disjointly from other
double points, and has rotation number 0, so the surgery procedure can
be used to change the immersion to eliminate it. The disk E’ is also
removed, so after this the disk F' is disjointly embedded. It also has
rotation number 0, so can be removed by surgery. After doing this we
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have an immersion with all the same data as the original except that
the clasp in C; N Cy has been removed.

Applying this operation at each clasp yields an immersion whose
preimage circles bound disjointly embedded disks.

At this point we can use the surgery procedure to eliminate a great
many circles: any (trivially covered) circle involving a D; with wo(a;) =
0, or with trivial rotation number. In fact we can complete the proof of
the theorem if wo does not vanish on the subspace of m2Y perpendicular
to the image of H3(X,3,X;ZmY) in a sense analogous to the condition
in 10.5. This condition is equivalent to the existence of a 2-sphere disjoint
from the image of g, with nontrivial ws. Using connected sums with
this sphere we can arrange that all «; can be framed. This means all
trivially covered circles can be eliminated. Since vanishing of the fi(dg)
obstruction implies the nontrivially covered circles can be eliminated,
we can get an embedding.

To complete the proof in the remaining cases we show how to change
the rotation numbers of circles in D; when wo(a;) # 0. If g can be mod-
ified so all the rotation numbers are zero, then circles can be eliminated
using the surgery procedure independently of wo ().

Suppose wo(a;) # 0. Then the normal bundle of a; in Y is the sum
of the 2-dimensional bundle with Euler number 1 (see 1.7) and a trivial
line bundle. The sphere bundle of this bundle is the Hopf fibration
53 — 52, Let E: S — Y denote the embedding of this sphere bundle,
then E N g(D;) is a circle; a fiber of the Hopf fibration.

/ C; /a,;

%g/// =

The preimages of this circle bound embedded disks in both S3 and D;.
The rotation number of the circle in S2 is 1: the preimage of the normal
bundle of ¢g(D;) is the same as the preimage under the Hopf map of the
normal bundle of a point in S2. That this bundle has rotation number
1 can be seen from the fact that distinct fibers of the Hopf map have
linking number 1: linking numbers are defined in terms of intersections
with bounding disks, so in the case of images of standard sections of a
framing linking is the same as the rotation number.

Now suppose z € g(D;) N g(D;). Choose an arc in D; from the

. Hopf bundle
over q;
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preimage of z to a point in E N g(D;). Denote by g’ the map of D; =
D; # S® obtained by connected sum of g(D;) with E. . This map induces
the same homomorphism on homology as g because E bounds the disk
bundle, so is trivial in H3(Y). All intersection structure is the same
except that the circle containing z is replaced by its connected sum
with E N g(D;). Rotation numbers are additive under connected sum,
so the rotation number of the new circle is greater by 1 than that of
the old. Alternatively, reversing the orientation of E gives a sphere with
intersection circle with rotation number —1, and connected sum with
this reduces rotation numbers by 1.

All rotation numbers can be changed to be 0 by adding such spheres
repeatedly. This gives intersection circles which can be eliminated by
surgery, so completes the proof of 10.9. |

10.10 References

The classification theorem 10.1 comes from Freedman [2]. The char-
acterization of connected sums in 10.3, the definition of *W in 10.4, and
the m;-negligible embedding theorem of 10.5 all appear here for the first
time.

The characterization theorem has been extended in several ways. Sim-
ply connected 4-manifolds with boundary have been described by Vogel
[1], and Boyer [1]. The surgery approach to classification has been
pushed through for certain classes of finite fundamental groups by Ham-
bleton and Kreck [1]. The results are quite a bit more complicated than
the trivial and infinite cyclic cases treated here.



