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Abstract

A smooth knot is non-trivial precisely if it cannot be unlinked from every
small deformation of itself. White’s formula expresses the linking number
of a representative of a knot and a deformation of it as a sum of two, not
necessarily integral, terms — a writhe and a twist. An elementary proof is
given of this formula. A byproduct of the proof is an easy derivation of
the expression for the writhe of the knot in terms of standard invariants
of the curve and the writhe of the knot diagram obtained by projection
onto a plane.

1 Statement of White’s Formula

Let K be a smooth knot in R% and k : § — R3, where S is a circle, be the
smooth, injective, arc length preserving map that parametrises K. Let v be
a smooth non-zero vector field defined on a neighbourhood of K. In White's
formula one considers the case where at each point k(s) of K the vector v(s)
has unit length and is perpendicular to the unit tangent k'(s) of K. One further
supposes that the scale has been chosen sufficiently small so that the intervals
in R? that join k(s) to k(s) +v(s) are disjoint for distinct s € S. These intervals
form a ribbon, as s varies, with edges K and K, (say).

The linking number of K and K, is given by the well-known formula of
Gauss

Lk(K,K,) = ~il{9{(w)»

where g; : § xS — R3\ {0} is given by g:(s,£) = k(s) — k(t) —v(t) and where w
is the 2-form (22 + 22 +22)~ % (z,d2opdzs — 22dx; AdT3 +T3dT) AdT2) ON R3\ {0}.
The twisting number Tw(K,v) is defined to be

Tw(K,v) = §}7~r /(k'(s) x v(s)).v'(s)ds .
5

Using the Serret-Frenet equations one can rewrite this definition as the formula,
which first appeared in (3],
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Tw(K,v) = —21; /Tds+d(K,v)

where T is the torsion of the curve K and the integer d(K,v) is the number of
revolutions about the origin that v makes in the Frenet frame as k(s) moves
once around K. The writhing number Wr(K) is defined to be

where go(s,t) = k(s) — k(t) and A is the diagonal subset {(s,s) : s € S} of
S x S. A more elementary formula for Wr(K) is mentioned in the final remark
of §2.

White's formula is the theorem that

Lk(K, K,) = Wr(K) + Tw(K,v).

Here, although Lk(K, K,) is always an integer, in general Wr(K) and Tw(K ,0)
are not integers.

A very elegant proof by White [11] of the formula exploits the algebraic
geometric concept of a blow-up. A fluid dynamics proof based on the invariance
of helicity may be found in [7]. This paper also contains a historical survey
of the theorem and mention of its relevance in applied mathematics. White's
formula is of interest to biologists ([1,6,11]) and it serves a purpose to record a
proof, that is much less sophisticated than [7,11] and much shorter than previous
elementary proofs by C#luggreanu, Pohl and others ([3,4,5,9,10,12]). For recent
generalisations of White’s formula the reader is referrred to [2].

2 A Proof of White’s Theorem

Consider the region Q = {(s,t,u) € Sx S x I :|s—t|° +u? > €%} in § x § x
I. The boundary of Q., for ¢ sufficiently small, is Q. = By F,N, where

B = {(s,t,1):seS,te S}
F {(s,t,0):s€ S,t € S,|s—t| > €}
N = {(s,s—ecosf,esinf):s€ S5,0<6 <7}

Il

Define g : Q. — R3\{0} by g(s,t,u) = k(s) — k() — wv(t).
The 2-form w on R3\ {0} is closed, since dw = —3r~*dra(z,dr2AdTs —
Lody adT3 +T3dT) AdT2) + 37 3dT) adToadzs =0, where r? = 22 + 22 + 22 (and
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so rdr = x,dxy + Todxe + z3dzs). If we orient N by dsadf, then

e fo o = [

B F N Q.

/ d(g"w)

Qe

= / g" (dw)
Qe

= 0,

where the second equality is obtained from Stokes' theorem. Since f gd'w =
—4nLk(K,K,) and lirr(n) fpg'w = —4nWr(K), to establish White’s formula it
. Emnb
suffices to show that lim [y g°w = —4rTw(K,v).
e—

To show this we first evaluate g*w. By definition g*w is found by substituting
z; = ki(8) — ki(t) — wvi(t) and dz; = kl(s)ds — kl(t)dt — wvj(t)dt — vi(t)du, for
i=1,2,3, into the definition of w. Rearranging the terms we find that

~g'w = '—5|—§[g, k'(s), k' (t) + uv'(t)](dsadt + Ig% lg,&'(s), v(t)]dsadu
+|_.<-JIT§ lg,v(),k'(t) + wv'(t)]dt ndu (2.1)

where g = g(s,t,u) = k(s) — k(t) — uv(t) and the notation [a,b,c] is used for
the scalar triple product a.(b x c).
For (s,t,u) € N we havet = s—e cos §, where ¢ is small. By Taylor’s theorem

k(t) = Y (—ecos8)ik()(s). Similarly expand v(t), and hence g(t),k'(t),v'(t),
i=0

about s and substitute these expressions into (2.1). On N, u = esin@ and
writing du = e cos0df and dt = ds + esin0df we now express g*w in terms of
5,0 (and €) only. The reader can check that apart from 0O(¢) terms the three
summands on the righthand side of (2.1) contribute

(—[v, k', k") sin? B cos B + [v, k', v'] sin® ) ds A db,

(—[v, k', v")sinfcos® 0 + %[k", k',v) cos® 0 — [v', k', v] sin 0 cos® §)ds ndf
and ([k',v, k"] cos® 8 — [k',v,v"] cos? fsin § — [v,v', k] sin f cos® 6
+%[k”,v, k') cos® 0 — [v', v, k'] sin 0 cos® 8)dsndf

respectively, where v, v, k, k', k" are all to be evaluated at s. To evaluate [y 9*(w)
we integrate over 8 first. This gives

/ g'(w) = —/ 2[v'(s), k'(s),v(s)]ds + 0(¢),
N s




614 M. H. Eggar

and hence

lim / ¢ (w) = —4rTw(K,v).
e=0 [

We conclude with two remarks. The first disposes of the question inherently
raised by the last sentence of §3 of [7].

Remark 1 Even when Lk(K,K,) = 0, the knots K and K, are necessarily linked
if K represents a non-trivial knot. To see this suppose the contrary, so one can
find a 3-ball B in R3? such that K, C B and K C R*\B. By the compactness
of B and K one can thicken K to a tubular neighbourhood TK of K such that
TK C R3\B. Since B is contractible K, bounds a (possibly singular) 2-disc
D in B. Let K} be the curve on TK in which the boundary of TK intersects
the ribbon in §1 with edges K and K,. Then K is the boundary of the disc
consisting of the union of D and the annulus of the ribbon between K} and
K,. No point of K} is a singular point of this disc. By Dehn's Lemma (8] K}
bounds a non-singular disc in the 3-manifold R3\TK, hence K (and hence K)
represents a trivial knot, and so we have a contradiction. Indeed the linkedness
of K and K, for all permissible v is equivalent to the non-triviality of the knot
K. One can, however, of course easily construct representatives K of the trivial
knot and permissible vector fields v such that K and K, are linked.

Remark 2 Let ¢ be a fixed unit vector in R®. Suppose that the projection of K
in the direction c onto a plane has no singularities other than at most finitely
many double points and let D denote the knot diagram obtained. Suppose the
scale has been chosen so that the intervals in R® that join k(s) to k(s) + c are
disjoint for distinct s € S. Let (s) and ((s) denote respectively the components
in the direction c of the unit tangent and binormal to the curve K at k(s) and
let k(s) denote the curvature of K. Following the same method as the proof of

White's theorem, except with the constant vector field c in the place of v, one
obtains

Wr(K) = LK(K, K.) + 4—1—7r / (8)B(s)  (s)ds,
S

where f{s) = f0"(1 —2v(s) cos #sin 8)~ 2 cos f sin® 8d6. This gives an elementary
formula for Wr(K), since Lk(K, K.) is the writhe of the knot diagram D, i.e.
the signed sum of the crossings of D.
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