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1. Summary

If K ^ j£ B is a pushout in the category of rings (that is, B is

the coproduct of T and S amalgamating K) then

B®KB

is a pushout and pullback in the category of (i?, B) bimodules; equivalently,

(1) 0 > B®KB

is a short exact sequence of (B, B) bimodules.

The situation K can be conveniently described by an 'edge' K

with two 'vertices' T,8, depicted 2vJL_»$. The choice of sign in (1)
then amounts to an orientation of this edge.

We can extend the above, as follows. Informally, a 'graph of rings' is a
graph whose vertices and edges are labelled with rings, and for each edge e,
and any vertex v of e, there is a homomorphism from the ring B(e) corre-
sponding to e, to the ring B(v) corresponding to v. By generators-and-
relations arguments, this diagram of ring homomorphisms has a colimit,
B say. Given any orientation of the graph (that is, of each edge) we can,
as above, construct a complex

(2) 0

of (B, B) bimodules. Our main result, Theorem 2, says that the complex
(2) is exact if and only if the graph is a tree or B = 0.

t This research was partially supported by Canada Council Doctoral Fellowship
W73 2116.
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Under certain flatness assumptions it is straightforward to use the
exactness of (2) to obtain Mayer-Vietoris exact triangles, and hence
deduce an upper bound for the global dimension of the colimit of a tree
of rings. In more restricted situations there is even a formula for the
Euler-Poincare' characteristic.

Some of the applications require the author's results on the module
structure of the coproduct of two algebras. G. M. Bergman has provided
elegant proofs of those structure theorems in a self-contained appendix.

The author is profoundly grateful to G. M. Bergman for his extensive
comments, his guidance to the appropriate literature, and for his kind
permission to include the appendix.

2. The Mayer-Vietoris presentation
By an (oriented) graph F we mean a set F°, whose elements are called

vertices, and a set F1 whose elements are called edges together with two
maps i, T : F1 -> F°. For e e F1 we think of ie and re as the initial and
terminal vertices of e respectively; although we are glossing over the
situation where ie = re, since we are leaving such edges unoriented. We
may view F as a small category which has set of objects | F | = F° u F1

and has a morphism from each edge e to each of the edge's vertices ie and
re (together with the identity morphisms).

By analogy with Serre's graphs of groups [16], a graph of rings
R: F -> S&inpi is a functor from a graph F (viewed as a category) to the
category of (unitary associative) rings and (unity preserving) homo-
morphisms.

Recall from [9] that any functor R: (£ -> 0ting<i from a small category
(E, has a colimit (B,p{c): R(c) -> B)cem, written colimR = B, and a limit

We now fix a graph of rings R: F -» 0%i*tg<i and denote its colimit by B.
To avoid trivialities we assume B is non-zero. By abuse of notation we
shall, for each y e | F |, also write R(y) for the image of R(y) in B, and we
shall use the same symbol for an element of R(y) and its image in B,
though none of the maps is necessarily injective. For convenience we
abbreviate ®R(y> to ®y for all y e | F |.

We say an element m of an (B, B) bimodule M commutes with an element
x of B if the commutator [m, x] = mx — xm is zero.

We wish to construct the presentation (2) of the (B, B) bimodule JR.
Since B is generated as a ring by the R(v), where v e F°, an element of an
(B, B) bimodule will commute with every element of B if and only if it
commutes with all elements of each of the R(v). I t follows that we can
present B as an (B, B) bimodule with
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(i) generators tJ, where v e F°,
(ii) relations saying that for all v e F°, v commutes with all elements

ofR(v),
(iii) relations saying that all the v are equal.

Now clearly (i) and (ii) by themselves present the (JB, R) bimodule

(3) A

which maps onto R by sending v — 1®C1 to 1. We shall attempt to
construct the kernel of this map. It is determined by (iii), so is generated
by {ie-ri | e e F1} if and only if F is connected; we shall henceforth make
this assumption on F. (In situations where one has started with a dis-
connected graph of rings, it is possible to connect it by adding edges and
associating to them rings, for example Z, without afiFecting the colimit.)

Recall that a (reduced) F path P consists of a finite sequence e1} e2,...,en

of edges, with no repetitions, such that there is a sequence of vertices
vlJv2> ...,vn+1 and ê  connects Vj and vi+1. When vn+1 = v± the path is
called a cycle. To describe the orientation of an edge e in the path P we
define the sign of e in P to be

1
0 if e does not occur as some ê ,

+ 1 if e occurs as some et and le^ = vt,

— 1 if e occurs as some et and iet # v$.

We remark that if e occurs as some et and tfy # v$ then jei = vi and

Now, our candidate B for the kernel of the above map is the (R, R)
bimodule presented with

(i;) generators e, where e e F1,
(ii') relations saying that for all e e F1, e commutes with all elements

of R(e),
(iii') relations saying that SeerltT(e»c)^ = 0 f°r a ^ cycles c in F.

It is readily verified that the (R, R) map B ->• A sending e to ie — re is
well defined, and it clearly maps onto the kernel of the map A -> R (since
F is assumed connected) so we have a presentation JB -> A -» R -> 0. We
wish to prove that the left-hand map is injective, i.e. that

(4) o->B->A-+R->O

is exact. Before we can do this we need a presentation of B. Let F2

denote the set of cycles of F and for c e F2 let R(c) denote the limit of
the graph of rings obtained by restricting R to c. (This is by analogy with
R(e) and R(v) since it is obvious these are also limits.) Now (i') and (ii')
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by themselves present the (R,R) bimodule IIeeri2i!ei? = ]JeerijR®e2?
where e = 1 ®e 1; and (iii') comes from a map ]lcer2R®cR -> IIeer1*®e*
sending 1 ®c 1 to Srlff(e> c)̂ > s o that B ^ a s *^e presentation

cer2 eeT1

For any ring homomorphism K -> 22 we let Q.K denote the kernel of the
multiplication map 2?®^^ -> R. Now consider the diagram

0 0 0

(6)

0 0

II
r°

0 0

with exact columns. The bottom row is readily verified to be exact, so by
diagram chasing (or the 'fundamental theorem of homological algebra')
the middle row (and hence (4)) will be exact if the top row is exact. Now
Uro&o is the subbimodule A' of A generated by {[v,x] | v e T°, x e R}. If
we let Br denote the cokernel of the map II ̂ ^ -> ]JriQe we need only
show that the map B' -> A' is injective. For e e T1 and z e R, we use
[e,x] indiscriminately to denote the element of B, Qe, and its image in B'.
The correct interpretation should be clear from the context. Thus B' is
generated by {[e, x] \ e e T1, x e R}. I t will be convenient to have a some-
what smaller generating set for A', namely {[£,#] | x e R(i/),v,v' 6 F0}.
To see that this is, in fact, a generating set for A', observe that dividing
A out by these relations has the effect of making v commute with all
elements of R(s>') for all v' e F°, that is, of making v commute with all
elements of R. This gives us our desired result since this is the same effect
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as dividing out by A'. Similarly UriQe, and hence B', is generated by
{[etx]\eeT\ XGR(V), veT0}.

Now every [v, x], with x e R(v') and v' G F0, comes from an element of
B' of the form 2)e6r

ia(e> P)[&> x]> where P is a path from v to v'. Moreover
the choice of path P does not affect the element of B'. This suggests
constructing an (R,R) map A' -> B' which sends [v,x] to *£,ecr(e,P)[e,x],
where P is a path from v to vf and x G R(v'). We will devote the next
section to proving that there is such a map. (It is clearly unique since it is
defined on a set of generators.)

For the sake of continuity, let us assume, throughout the remainder of
this section, the truth of

LEMMA 1. There is an (R,R) linear map A' -> B' which sends [v,x] to
Jie<r{e,P)[i,x\, whenever P is a path from v to v' and x e R(w').

Proof. See § 3.

From this it follows that B' -> A' is an isomorphism, since for all
v e F°, e G F1, x e R(v) the composite B' -> A' -»- B' sends [e, x] to [le-re, x]
to Se'CT(e/>-P)[^'ja;]-Se'cr(e/>^)[^/'a;]» where P is a path from ie to ?; and Q
is a path from re to v. Since e,Q is a path from ie to v we may assume
that P is e,Q and therefore [e,x] is the difference, that is, the composite
sends [e}x] to [e,x]. Since the composite fixes a generating set it must be
the identity map. Hence B' -> A' is an isomorphism, so the top row of
(6) is exact, and hence (4) is exact. From (5) we have the following result.

THEOREM 2. Let T be an oriented connected graph, and letR: V ->
be a graph of rings with colimit R say. Then there is an exact sequence of
(R,R) bimodules

(7) U R®CR -» II R®eR -> II R®VR -> R -> 0
2 1 veT°

where 1 ®c 1 \-> ^iea(e,c)l®e 1, 1 ®e 1 H> 1 ®tel -1 ®rel, 1 ®v 11-^- 1.

APPLICATION. Let Z b e a ring. Recall that a K-ring is a ring R given
with a homomorphism K -> R. Let {i?̂  | v G A} be a set of iST-rings,
and let R denote the coproduct as IT-rings (i.e. amalgamating K). We can

construct a graph of rings whose edges are of the form K* *RV, v e A.
K.

If for some K G A we collapse the edge Km *RK to RK, we get a new

graph of rings (with the same colimit R) whose edges are of the form

RK
m *RV, where v ̂  K. Since our new graph is connected at K, (7) in

6388.3.34 MM
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this case is

(8) 0-> II R®KR->UR®R R-*R->0.
A-AK) A •

REMABKS. (i) The above application demonstrates the general principle
for constructing a graph of rings from a given diagram of ring homo-
morphisms. Let R: (E -> SHin/pa be a functor from a small category. Let
F((E) be the (oriented) graph whose vertices are the objects (or identity
morphisms) of (E and whose edges are the non-identity morphisms of (E.
For such an edge e we understand ie = domain e and re = codomain e.
Define R': F((E) -> 0tin#4 as the functor given by R'(v) = R(v) for all
v e | (E |, R'(e) = R(domain e) for all e e (E, and R'(e -> v) as the obvious
map, namely either R(e) or the identity on R(domain e). In a sense R' is a
'barycentric subdivision' of R.

(ii) There seems little hope of extending (7) further to the left in
any generality, since the kernel of the left-hand map in (7) may contain
elements that depend heavily on the choice of functor R. For example,
let F consist of two vertices vx and v2, and two edges ex and e2 both
connecting the vertices. Let K be a non-zero ring, and let x1 and x2

be commuting indeterminates over K. Define R(^) = K[xlt x2] and
R(e )̂ = K\x^\, for i = 1,2, where the corresponding maps are the obvious
ones. Then colimR = R is K[x1,x2], and, for c = elt e2 e F2, R(c) = K.
But in R ®c Ry x±x2 ® 1 — x1 ® x2—x2 ® xx +1 ® xxx2 is a non-zero element of
the kernel.

3. Universal derivations and a proof of Lemma 1
If R is a ring and B is an (R, R) bimodule, a derivation of R into B is

generally defined as a map 8: R -> B satisfying

(9) S(x + y) = 8(x) + 8(y), 8(xy) = 8(x)y + x8(y).

For example, if b e B then x h> [x, b] is a derivation. This fact, together
with the theory of derivations, will provide the key to verifying Lemma 1.

( R B\
I then (9) is equivalent to the condi-

tion that the map

(R B\ (x 8x\
( ) )

is a homomorphism of rings. More generally, if R is a iT-ring for some
ring K, and we make our matrix ring into a iT-ring by the diagonal map,
then the condition that (10) be a homomorphism of IT-rings is equivalent
to (9) and 8(K) = 0. Such a map is called a K-derivation.

The ring homomorphism form of the concept of a derivation makes it
easy to relate it to that of a colimit.
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LEMMA 3. Let R be the colimit of a functor R: (L -> S&ingc, where (£is a
small category. Let B be an (R,R) bimodule, and let us be given a set
{Bc: R(c) -> B | c G | (£ |} of derivations such that for any morphism c-> c' in
(£, the restriction of Bc> to R(c) is Bc. Then there is a unique derivation
8: R ->• B such that for any object c, the restriction of B to R(c) is Bc.

We say that the B so constructed is 'patched together' from the Sc.

I /R B\ \

R(c) -> I _ l | c G |(E| |
of homomorphisms, which by the universal property of the colimit

(7? 7?\
I. I t is clear that this gives

the desired derivation.
COROLLARY 4. Let B and Bbeas above, and let {bc | c G | (£ |} be a subset of

B such that, for any morphism c -> c' in d, 6C — 6^ commutes with all elements
of R(c). Then there exists a unique derivation 8: R -*• B whose restriction to
R(c) sends x to [bc,x].

Proof. Patch together the derivations 8C: R(c) -> B which send x to

We need one more preliminary result, this time from [6, IX.3] (cf.
also [5]).

LEMMA 5. Let K - » R be a ring homomorphism. Then the map
dK: R -> Q.K, x \-> \®x — x®l, is a universal K-derivation in the sense
that any K-derivation R -> B comes from a unique (R, R) linear map
£lK ~* & composed with dK.

Proof. [6, Proposition IX.3.2.]

Proof of Lemma 1. In the situation of §2, let v0 e T°. For any v e T°
there is a derivation

(12) R(v) -* B', xh+ [S a(e, P)e, x],
e

where P is a path from vQ to v, and this derivation is independent of the
choice of P. We claim that the derivations (12) patch together to give a
derivation dVo: R -> B'. By Lemma 3 we need only show that for any
e0 G F1 the diagram
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commutes, i.e. that for all x e R(e0)

(13) [2 a(e, P)e, x] = [S a(e, G)e, *] ,
e e

where P is a path from v0 to ie0 and Q is a path from v0 to re0. But P, e0

is also a path from v0 to re0, so we may assume that Q = P, e0. Hence
2e<r(e,#)e = T,ecr(e,P)e + e0. This proves (13) since [eo,x] = 0. Hence the
derivations (12) patch together to give a derivation dVo: R -> j?'. More-
over, since the path from v0 to v0 is empty, we see from (12) that dVo

vanishes on R(v0), i.e. that dVo is an R(v0) derivation. Let us write v for v0.
Now by Lemma 5, there is a unique (R, R) linear map

(14) c v O , - * . * '
sending [v,x] = 1®« — a:® 1 to ^(a;) for all a; G JR. Since A' = U»6r°^«»
there is an (R,R) map ]J aB: A' -• 5 ' . By (14) and (12) this map has the
property described in the statement of Lemma 1.

4. Mayer-Vietoris triangles
We turn now to the situation where F is an oriented connected graph

with no cycles, commonly called a tree. In this case a graph of rings
R: F -> 8%**ip<i is called a tree of rings. Throughout this section we fix a
tree of rings R, and denote its colimit by R.

Trees are of interest because they are precisely the graphs for which (7)
becomes a short exact sequence

(15) 0 -> U R®6R -> U B®vR-+R-*0
r1 r°

of (R, R) bimodules.
Since the right-hand term of (15) is flat (even free) as left jR-module,

we may tensor this sequence over R with any (unital) right iH-module M
to get, in the language of [18], a Mayer-Vietoris presentation of M:
(16) 0- MR

Notice that the first two terms are constructed from the R(y) module
structure of M for y e F1, F° respectively. Hence in good cases this
presentation allows us to study the module theory of R in terms of the
module theories of the R(y), y e | F | . For any right iZ-module N,
ExtB( —, N) applied to (16) gives an exact triangle

ExtR(M, N) • E x t ^ U M ®VR, N)

(17) \ / "
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where 8 is of degree 1. Since E x t ^ d J - , - ) = n E x t j R ( - , - ) (cf. [6,
V.9]), (17) can be written

(18)

We have not yet reached the true Mayer-Vietoris triangle, which should
look like

ExtB(M, N)

(19)

In some situations (cf. the example in §5) there is no exact triangle (19);
but at least in certain cases (18) is already in the form (19), namely if for
every y e \ V | the canonical map

(20) ExtR{M®yR,N) -> E x t n ^ i f . t f )

is an isomorphism. Let us recall a situation where this will occur. Let

(21) ...-+P1-+P0^M -+0

be a protective R(y) resolution of M, and apply — ®y R to it. If the new
sequence

... -+ Px®rR -> P0®7R -> M®yR -+ 0

is exact we will have a protective JR-resolution of M ®yR, and applying
Hom^ — ,N) to it we get the same complex as we would by applying
HomR(?)( — ,N) to (21); so the homology groups are naturally isomorphic,
that is, 'ExtB(M®yR,N) = 'ExtRiy)(M,N), which means that (20) is an
isomorphism of graded modules. To get this we only need protective
R(y)-resolutions (21) of M to 'lift' under —®yR to jR-resolutions of
M®yR. The precise requirement for this to hold is clearly

(22) TOT*W(M, R) = 0 for all n > 0.

DEFINITION. We call a homomorphism K -> R of rings lifting, and call
R K-lifting, if for all n > 0, Torf {M,R) = 0 for all right i?-modules M.

By what has been said, we get an exact Mayer-Vietoris triangle (19)
if R is R(y)-lifting for all y e |F | . We will be more interested in the
stronger requirement that R be flat as left R(y)-module for all y e | V |,
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but we postpone a discussion of this situation to § 5 and here summarize
the above information and its counterpart for homology.

THEOREM 6. Let R: F -> 0tinp4 be a tree of rings, and denote its colimit
by R. If R is R(y)-lifting (for example, left flat) for all y e \ F \ then there is
an exact Mayer-Vietoris triangle

(23)

of bifunctors on right R-modules, and there is an exact Mayer-Vietoris
triangle

Tor* < ]J TorR<v>

(24) \ y
I I TorR<e>
e

of bifunctors on R-modules (right modules in the first variable and left
modules in the second variable).

Proof. We have already proved (23) by applying the trifunctor
ExtB( - ®R - , - ) to (15); and (24) arises similarly under our hypotheses
by applying T o r * ( - ® B - , - ) to (15).

REMARKS, (i) In the situation where R is the group ring of the co-
product of two groups amalgamating a subgroup and M = Z, (16) as
derived from (8) is due to Lyndon [12] and was made explicit by Swan
[17] in his construction of the consequent Mayer-Vietoris triangle; cf.
also [18].

(ii) It is possible to derive results analogous to Theorem 6 for Hoch-
schild's relative cohomology, as follows. Observe that for any vQ £ F°, (16)
is split as a sequence of right R(v0)-modules, with splitting M -> JJ M ®v R,
m \-> m®Vo 1. In particular (16) is split as a sequence of right Q-modules,
where Q is the limit of all the natural maps lim R -> R (that is, Q is the
limit of the system obtained by augmenting R with R). In the language of
[10], (16) is (R,Q) exact. Thus we can replace Ext_ in Theorem 6 with
Ext(_>Q) and the result will still hold. For coproducts amalgamating a
ring we have Q = R(e) for all e 6 F1, and since Ext(QQ) is trivial in degrees
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greater than 0, (23) gives rise to an isomorphism Ext(i?)g} ~ n
in degrees greater than 1; cf. [1, Theorem 4.1].

(iii) We observed that (23) arises by applying ExtA( -®R-, —) to (15).
Alternatively, we can apply ExtB( —, H o m ^ —, —)) to (15) (still as the
second variable), and if R is projective as right R(y)-module for all y e | F |
we again derive (23). However, situations where R is known to be right
projective, but not known to be left flat over R(y), are rare indeed, so
we will say no more of this case. Similarly, (24) can be derived by applying
TOTR( —, — ®B —) to (15) and assuming that R is right flat over each R(y).

In any category a Mayer-Vietoris triangle will have automatic con-
sequences for 'dimension'. Thus we confirm one of Bergman's suspicions
([3], and correspondence):

COROLLARY 7. Let R: F -» ^?«V^<J be a tree of rings with colimit R say.
If R is flat as left H(y)-module for all y e | F |, and sup{rt.gl.dimR(v) | v e F0}
is finite, say n, then

rt.gl.dim R ^ n+1;

and equality can only be achieved if there is an edge e such that

rt.gl.dim R(e) ^ rt.gl.dim R(ie) = rt.gl.dim R(re) = n.

Proof. For any e e F1 and right JR-modules M, N we have

^.-tf) = ExtB( i f ®R{e)R,N)

= E x t ^ J f ®R(e) R(te) ®R(te) R, N)

= ExtR(te)(M®R(e)R(ie),2\T).
Since Extg+i) = 0, it follows that UeeT^xKue) = 0 on right .R-modules
(and it is clear that n«er°^x^o?) = °)> s 0 by the exactness of (23),
Extjj+2 = 0 and rt.gl.dim R ^ n+ 1. If in fact equality holds then, from
the vanishing of II Extg+Jj and the exactness of (23), we see there is some
edge e such that Extg(e) is not the zero bifunctor on right i?-modules.
Hence, as in the first sentence of this proof, the right global dimension of
each of the rings R(e), R(ie), R(re) is at least n.

REMARKS, (i) The analogous result holds for weak global dimension.
(ii) For the coproduct R of a set {Ro \ v e A} of i£-rings, if we choose

K in (8) carefully, Corollary 7 implies that if R is flat as left module over
K and all the Rv, and sup{rt.gl.dimi2v| v e A} = n is finite, then

( 1 if rt.gl.dimK ^ n = rt.gl.dimRv for all v e A,

n in all other cases.
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In [3], Bergman shows that if K is a semisimple (that is, global dimension
zero) subring of the Rv then equality holds in the second case of (25).

(iii) Bergman has made the following observations. For the direct
limit (that is, colimit) R of a countable directed system R± -> R2 -» R3 -» ...
of rings, Corollary 7 has conclusion

(26) rt.gl.dim R ^ 1 + lim inffrt.gl.dim Rn},

a result that is already known without any lifting assumptions [2]. (To
see 'liminf' take an appropriate cofinal subsystem.) Observe that in this
case the exactness of (16), which is used in [2], is very easy to see. I t is
not surprising that (26) is inappropriate for uncountable directed systems
(see [13]) since an uncountable directed system is clearly not a tree.

Another application of (16) is the derivation of a formula for the Euler-
Poincare* characteristic. In the situation studied by Lyndon and Swan,
this formula was observed by Serre [15].

DEFINITION. If R is a ring and M is a right R module, we say M has
R-characteristic if there is a finite i2-resolution

0 ->• Pn -> ... -» Px -> Po -* M -> 0

where all the i^ are finitely generated protective jR-modules. In this
event, there is a well-known (cf. [14]) invariant of M, the R-characteristic
XR{M) = S?=o(- l)\Pi\- Here [P] denotes the class of P in the Grothen-
dieck group K(R) of the semigroup of finitely generated protective
JK-modules, where addition is given by ]J.

T H E O R E M 8. Let V be a finite tree, and let R : F -> 0tin/f<i be a tree of
rings, and denote its colimit by R. If R is H(y)-lifting for all y e\T\ then
any right R-module M which has B,(y)-characteristic for all y e\T\ has
R-characteristic, and

Here, for simplicity, we have identified K(R(y)) with its image in K(R)
under the canonical map sending [P] to [P®yR]. We are not assuming
this map to be injective.

Proof. The lifting assumption guarantees that protective R(y)-resolu-
tions lift, so XR(M®YR) = XR(y){M). Thus ^ ( U r o ^ ® ^ ) = 2I*XRUM),

and similarly for F1. But for any short exact sequence Q->A->B-*C-+0,
if any two terms have iJ-characteristic then so does the third and
x(A) — x(B) + x{C) = 0. The assertion therefore follows from the exact-
ness of (16).
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5. When is the colimit flat?
Recall that R is the colimit of a tree of rings R: F -» Sfringt. We want

to know when R is flat as left R(y)-module for all y e | F |. The minimal
assumption we could hope to get away with is that each R(v) is flat as
left R(e) module for each vertex v of each edge e (but we will see that this
is not sufficient). By transitivity of flatness, we would then only need
that R is flat as left R(v)-module for all vertices v.

Let us fix a vertex v. Then R as R(v)-ring is the direct limit of the
following directed system. For each finite subtree T of F containing v,
restrict R to T to get a 'subtree of rings' and form its colimit. It is easy
to see that this is a directed system of R(w)-rings and that its direct limit
(in the category of rings or the category of left R(w)-modules) is R. Since
a direct limit of flat modules is flat, it suffices therefore to consider the
case where F is finite. Here the colimit is obtained by inductively forming
the colimit of two-vertex trees. Thus it should suffice to have enough
information about the colimit in the two-vertex case, that is, the co-
product with amalgamation.

To facilitate a summary of what is known in this area, we introduce
a convention and recall some definitions. Let K -> R be a ring homo-
morphism. We will say R is flat as iT-ring if R is flat as left ^-module,
and similarly for other module properties. A left if-module M is faithfully
flat if the functor —®KM carries exact sequences of right iT-modules to
exact sequences of abelian groups, and carries non-exact sequences of
right ^-modules to non-exact sequences of abelian groups. If K is com-
mutative, a K-algebra is a if-ring R such that the image of K lies in the
centre of R. An epic K-ving R is such that K -» R is an epimorphism in
the category of rings.

THEOREM 9. Let K be a ring, let 8 and T be K-rings, and let R be the
coproduct amalgamating K.

(i) (Cohn) If S and T are faithfully flat K-rings then R is a faithfully flat
S-ring.

(ii) (Knight) / / 8 and T are flat epic K-rings then R is aflat epic 8-ring.
(iii) / / S and T are flat K-algebras then R is aflat 8-ring.

Proof, (i) [7, Theorem 4.4.]
(ii) [11, Proposition 2.]
(iii) Corollary A3 of our appendix.

COROLLARY 10. Let R: F -* Stingo be a tree of rings. The colimit R is
flat as left Ti(y)-module for all y e | F | if any of the following hold:

(i) H(v) is a faithfully flat R(e)-ring for each vertex v of each edge e;
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(ii) R(v) is aflat epic R(e)-ring for each vertex v of each edge e;
(iii) {for coproducts of K-algebras, where K is a ring) R(v) is a flat K-

algebra for all vertices v, and R(e) = K for all edges e.

Proof. As in the argument at the beginning of this section, we may as well
assume that F is finite. We can now proceed by induction on the number
of vertices of F. If this is 1, the result is obvious. Otherwise, we form the
colimit of a two-vertex subtree of rings, and easily form a new tree of
rings with fewer vertices, while preserving all the induction hypotheses.
The result now follows.

EXAMPLE. Let & be a commutative field, and let x,y, e be indeter-
minates, and suppose e2 = e so k[e] ~ kxk. Then the tree

has colimit k(x,y,e\ e2 = e>, and by Corollary 7 the global dimension
does not exceed 1. Now consider the tree

k\f\
k(x, y, e, t = xey | e2 = e> • • k[z, t = z2].

Both extensions are left (and right) free on monomial bases. So again by
Corollary 7, the global dimension of the colimit k(x,y,e,z\ xey = z2)
does not exceed 2. Finally consider the tree

k(xfy,e,z\ xey = z2> ^ £ L k[e]/(e) = k.

By rights this should be a good tree: we are amalgamating a semisimple
ring, the left extension is free (so faithfully flat) and the right extension
is a flat epic algebra. Nonetheless, the colimit k(x, y, z \ z2 = 0> is well
known to have infinite global dimension (one implication of which is that
there can be no exact triangle (23) for this tree). This demonstrates that
the various conditions of Theorem 9 cannot be readily weakened. In [11],
Knight remarks that (i) and (ii) of Theorem 9 are complementary since
a faithfully flat epimorphism is an isomorphism. We now see further that
there can be no nice common generalization.

(Added 28 May 1975.) Another version of Theorem 2 is suggested by
recent results of Chiswell [19]. Let us pick a maximal subtree T of the
connected graph F and construct a ring RT universal with respect to the
following properties: for each v e F° there is a homomorphism J&(v) ->• RT;
for each e e F1 the two induced homomorphisms ie, re: R(e) -> RT are
'conjugate' by a distinguished element te e RT such that tex

16 = xT%
for all x e R(e); and for all e e T, te = 1. (Thus ie and re agree for e eT.)
We view RT as left and right R(e)-module via te and re respectively.
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By our methods it is possible to show that there is a short exact
sequence 0 -> ]XriRT®eRT -> ]XYORT®VRT -» RT -> 0 where the first
map is given by x®ey i-> xte®iey-x®Tet^y (cf. [19, Theorem 1]). We
could use this to generalize Theorem 6. Unfortunately examples abound
where the isomorphism class of RT depends on T. We can overcome this by
insisting that all the te be units in RT, which does not affect the (proof of)
exactness of the above sequence. Since the analogue of Corollary 10 (i)
holds, we have a useful generalization of Theorem 6 to arbitrary graphs
(cf. [19, Theorem 2]). The reader can verify the analogue of Corollary 10 (i)
by a familiar argument which we sketch. Suppose the R(ie) and R(re) are
all left faithfully flat as R(e)-rings. We wish to show that RT is left
faithfully flat over the R(}/). Since left faithfully flat is a local condition
for ring extensions (but not for modules!) it is preserved by direct limits.
Thus we may assume F is finite. By first forming the colimit of the
restriction of R to T (and knowing Theorem 9 (i)) we may assume that
T consists of one point. By induction we may assume that F has one
edge, e. Consider the infinite tree

and form its colimit 8 say. We can make the shift automorphism a inner
via an indeterminate te and its inverse. Then RT = S[te, t-

1, a] and is
clearly left faithfully flat over 8 and hence over R(e), R(ie), and R(re),
as desired.

Appendix. The module structure of the coproduct of two algebras
In the following we present G. M. Bergman's simplified proofs and

generalized statements of results that the author discovered in the course
of proving Theorem 9 (iii). This account is taken verbatim from a written
communication from Bergman.

Let K be a commutative ring, let 8, T be i£-algebras, and let R denote
their coproduct as ^-algebras. By abuse of notation, we shall also write
K for the image of K in 8 or T, and we shall use the same symbol for an
element of 8 or T and its image in R (though none of these maps is
necessarily injective).

Let M denote the Z-module (S/K)®K(T/K). Clearly, we may define
a i£-linear map M -> R by (s + K) ® (t + K) i-> [s, t] = st — ts; we shall
write this map m H> m (where m e M). For suggestiveness, we shall
denote the generators (s + K)®(t + K) of M by {s,t} (where s e 8, t e T).

Now let K(M} denote the tensor algebra on the ^-module M. By
the universal property of tensor algebras, ~ extends to a ^-algebra
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homomorphism K(Jdy -> Rt which we shall again denote p \-> p. We can
now prove

PROPOSITION Al. The map a: S®KT®KK(M} -> R given by
<x(s®t®p) = stp is an isomorphism of left S-modules.

Proof. Consider also the T-module T®KS®KK(M} and the ^-module
homomorphism of this into R given by oc'(t®s®p) = tsp. We claim
these two modules may be joined by iT-module isomorphisms to get a
commuting diagram

(Al)

Indeed, the natural choices for i and i are given by

i(s®t®p) = t®s®p+lT®ls®{s,t}p,

A

(A2)
)s®p) = s®t®p — ls® lT®{s,t}p,

and one easily verifies that these are inverse to each other and make (Al)
commute. We can use the isomorphism i to carry the natural left T-
module structure of T®S®K(M} over to S®T®K(M}. Having both
S and T module structures which agree on K, it becomes a left jR-module.
Let us record the formulae defining left multiplication by elements of S
and T (the latter obtained using (A2)):

( s'{s®t®p) — s's®t®p,

t'(s®t®p) = s®t't®p— ls® lT®{s,t't]p + ls®t'®{s,t]p.

(Remark. We could have defined S and T module structures on
S®T® K(My directly by (A3), without introducing T®S® K(M} and i.
However, then we would have had to verify t"(t'x) = (t"t')x and
oc{t'x) = t'oc(x) (where t', t" e T and x e S®T®K(M» which would have
been unmotivated and moderately tedious.)

In particular we have

(A4)

= \®t®p,

s(l®t®p) = s®t®p,

- t(s(l ® 1 ® p)) = 1 ® 1 ® {s, t}p.
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From this it follows that 8 ® T ® K(M} is generated as an .R-module by
1®1®1. (The last formula shows that the jR-submodule generated by
this element contains all of 1 ® 1 ® K(M~); the first two formulae then
give us everything.) Now define a right .R-module homomorphism
j8: R -* S®T®K(M} by j8(l) = 1® 1® 1. We see that ajS and jSa fix the
generators 1 and 1 ® 1 ® 1, hence are the identity maps, and hence a is an
isomorphism as claimed.

In particular, the above result shows that the JT-module structure of
R is uniquely determined by the if-module structure of S, T, S/K, T/K.
Now, in general, even when a iJT-ring 8 has 'nice' iT-module structure, the
if-module S/K may not be 'nice', for example, Q is flat over Z, but Q/Z
is not. Nevertheless, the next result will show that the kind of tensor
product involved in the above description will have 'nice' module structure
over K, and even over 8.

LEMMA A2. Let us be given the following commutative diagram of
associative rings

{n > 1).

Then the natural map

of (Kv Sn+1) bimodules, splits.

Proof. Consider the case where n = 1; there the splitting of the map
sx ® s21-»- («! + K) ® s2 may be given by {sx + K) ® s2 h
The generalization of this formula to arbitrary n involves 2n terms, but
it may be formally abbreviated

(sx + K) ® (s2 + K) ® ... ® (sn + K) ® sn+1

Indeed this is easily seen to be well defined and to split the given map.

Now the left ^-module 8®T®K(M} of Proposition Al will be a
direct sum over m > 0 of S®T®M®m (all tensor products over K,
(_)®m denoting an m-fold tensor product of copies). Applying the
definition of M, we see that this becomes S®T®[{S/K)®(T/K)]®m,
which is isomorphic to [8®{8/K)®m]®[T®(T/K)®m]. By Lemma A2
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these two factors become direct summands in S®m+1 and T®m+1 respec-
tively. Combining Lemma A2 and Proposition Al we get

COROLLARY A3. If K is a commutative ring, and 8, T are K-algebras,
then the map of left S-modules Un>is®n®T®n ^* SJIKT given by
5X ® ... ® sn ® tx ®... ® tn \-+ 51<1[s2> y • • • lsn> tn\ splits. Hence if 8, T are flat
(respectively protective) as K-modules, 8]1KT will be flat (respectively
protective) as a left S-module.

(Remark. To get the above corollary, we did not need to know that the
map a in Proposition Al was an isomorphism, only that it split as a map
of left /S-modules. This followed as soon as we had a left jR-module
structure on 8®T®K(M} such that a was an ̂ -module homomorphism.
Thus so far as Corollary A3 is concerned we could have ended the proof
of Proposition Al before (A3).)

There are variants to the description of R as an /S-module obtained in
Proposition Al. For instance, we may take 8®K<(M} ® T and map it to
R by s®p®t h-> spt and show this to be an isomorphism of (S, T) bi-
modules. It is clearly an (8, T) linear map so it suffices to show it is an
isomorphism of left /S-modules. This is quite messy to prove. Essentially
we must again find the left T-module structure on our tensor product.
This turns out to be given by the formula

(A5) to(so ® {s1} tj... {sn, Q ® tn+1)

= -ls® {s0, t0}.. .{sn, tn} ® tn+1

+ S0® {Slt «o*iK*2> h}-• -K»

±s0® {sv t0}... {sn_v tn_2}{sn, tn_xt^ ® tn+1

+ s0® {slt t0}.. .{sn, *n_j} ® tntn+1.

However, there is a less computational way to get this result from the one
already proved. We first note that the idea behind (A5) is simply that in
R, elements of T can be 'moved past' elements of [8,T]; the explicit
formula is

(A6) t[s,t'] = [s,tt']-[s,t]t',

which simply says that [s, — ] is a derivation.

We now use (A6) to define a IT-module isomorphism T ®K M ~ M ®K T:

t ® {s, t'} \-+ {s, tt'} ®1T- {s, t) ® t',

lT®{s,tt'}-t®{s,t'} +-\ {s,t}®t'.



MAYER-VIETORIS PRESENTATIONS 575

Again the verification that these maps are well defined and mutually
inverse is immediate. Thus, M®^T ~ T®KM becomes a (T,T) bi-
module which we name MT. We then form the tensor algebra T(MT}\
because of (A6) this will have a T-ring homomorphism into R taking t to t,
and {s,t} to [s,t].

The general homogeneous component of this tensor algebra will have
the form MT®T...®TMT. Now consider for simplicity the second
degree term

(M®KT)®T(M®KT) ~ M®K{T®T(M®KT))

~M®K(M®KT)

(Caution: the parentheses are essential since M is not a left T-module.)
Treating the wth degree term analogously we see that

as right T-modules (and this isomorphism respects our maps into R).
But likewise, using the identification MT = T®KM, we get

Hence
/SII T

K
as left ^-modules, as desired. Thus S]\KT ~ S®K(My®T as (S,T)
bimodules.

(Exercise. To indicate an opportunity to apply the results of this
section we remark that recently W. Stephenson orally raised the question
"If K is a commutative ring and R is a IT-algebra, what is the centre of
R ]\^K[X'\ ?" It is straightforward using (A5) to show that the centralizer
of X is D[X] where D = {r e R\r®l = l®r in R®KR} (that is, the
kernel of the universal ^-derivation on R), and hence that the centre is
D + c[X], where c = {r e R\ rR c J)}. For example, for K = Z and
R = Z[t, y]/(U - 2, ty), we have D = Z + 2R, c = 2R.)
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