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Introduction 
IN this paper we develop the homotopy theory of semi-simplicial com­
plexes which do not have degeneracy operators; we call such a complex 
a Ll-set. In the original study of semi-simplicial theory it was natural to 
introduce degeneracies, since the canonical example-the singular com­
plex-has degeneracies, also the definition of the product of two semi­
simplicial complexes appears simpler with degeneracies than without 
(see § 3). However, a semi-simplicial complex without degeneracies is 
geometrically a simpler object than one with degeneracies, and we will 
show that the Kan condition [see (1)] can be used to replace the use of 
degeneracies in the usual approach [see e.g. (2)]. This paper arose out 
of our previous work (4) in which we defined Ll-groups which had no 
degeneracy homomorphisms (and no natural degeneracy functions). 

Our main result, Theorem 5.3, is a strong relative 'simplicial approxi­
mation' theorem for Kan Ll-sets: 

Suppose Z c Y is a pair of Ll-sets and X is a Kan Ll-set. Suppose given 
a map f: IYI-+ IXI such that f IIZI is the realization of all-map. 
Then f is homotopic rellZI to the realization of all-map 1': Y -+ X. 

The theorem implies the equivalence of the homotopy categories of 
Kan Ll-sets and ow-complexes. We also have an approximation theorem 
in which X is not assumed to be Kan and Y is allowed to be derived 
away from J (5.1). Both theorems arededucedpainlessJyfrom Zeeman's 
relative simplicial approximation theorem for simplicial complexes (8), 
and some elementary collapsing lemmas. 

The material is organized as follows. In §§ 1 and 2 we compare Ll-sets, 
ass-sets, and ow -complexes, and the realization functors. In § 3 products 
of Ll-sets are introduced and elementary properties proved. § 4 contains 
the collapsing lemmas needed for the main theorems in § 5. As a conse­
quence of 5.3 we show that a Kan Ll-set always admits a system of 
degeneracies I § 6 is devoted to homotopy theory, in particular homo­
topies of polyhedra in Ll-sets are defined-a concept which originated 
from (4). In § 7 we prove a polyhedral lifting property for a Kan fibration 
of Kan sets and in §§ 8 and 9 we show how minimal complexes and 
function spaces may be treated in the absence of degeneracies. 
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m the second half of this paper we will apply our results to Ll-groups 
and Ll-monoids in which it may not be possible to install a system of 
degeneracy homomorphisms. 

1. Semi-simplicial complexes 
Let Lln be the standard n-simplex in .Rn+1 with vertices vo"'" v"' where 

Vi = (0, ... ,0,1,0, ... ) with 1 occurring in the (i+l)th place. 
Then css is the category with objects Lln (n = 0, 1, 2, ... ) and whose 

morphisms are the simplicial maps determined by order-preserving 
vertex maps. Define Ll to be the sub category of css determined by the 
injective maps. 

A ess-set (pointed ess-set, css-group, etc.) is a contravariant functor 
from ess to the category of sets (pointed sets, groups, etc.). Replacing 
ass by Ll gives definitions of Ll-sets, etc. A ass-set or Ll-set is often 
referred to 88 a complex. If X is a ess- or Ll-set then X(k) = X(Llk) is 
the set of k-simplexes of X. A map A: llB -+ Llk in ess induces A~ = X(A): 
X(k) -+ X(8). If A is injective then.,v is called a face map and A~( ok) is called 
a face of ok, otherwise A; is a degeneracy uperator and A'( ok) a. degeneracy 
of ok. A simplex 'T is degenerate if it is a degeneracy of some a, otherwise 
'T is non-degenerate. A Ll-set is locally finite if a E X ~ a is a face of only 
finitely many simplexes in X. It is also convenient to denote the set 
U {X(k) I k a non-negative integer} by X. A simplicial complex K is 
ordered if a partial ordering of the vertices of K is given so that the 
vertices of any simplex of K are totally ordered. Then K determines 
a Ll-set also denoted by K and a ess-set denoted by K defined 88 follows. 

K(n) = {f If: ~n -+ K is injective, order-preserving, and simplicial}, 
K(n) = {f If: ~n -+ K is simplicial and order-preserving}. 

)..tf is defined to be f 0 A. 
m particular with these definitions ~8 now denotes both a subspace 

of RHl and a ~-set. m the latter case (~8)<W = {JL I fl-: ~q -+ ~8, fl- E ~}. 

Now suppose that X, Y are ess- or ~-sets. A ~-map or css-map 
f: X -+ Y is a natural transformation of functors. This means that we 
have commutative diagrams 

),# 
X(k) ---+ X(B) 

IpJ:); Ip') 
-I(k) ~ -1(8) , 

where j<n) = f(~n). We get a category of ~-sets denoted by l1 and the 
oategory of ass-sets denoted by css. There is a forgetful functor 
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F: ess --+ A defined in the obvious way and if K is an ordered complex 
there is an inclusion Kc F(K). Now suppose K, L are ordered complexes 
and f: K --+ L is an order-preserving simplicial map, then a. ass-map 
f: K --+ L is defined by f(a) = f 0 a. If in addition the map f: K --+ L is 
injective on simplexes then it may be regarded as a 6,-map. 

In particular amorphism >.: 6,8 --+ 6," in 6, may be regarded as a. 
morphism in A. Then >.(p,) = >. 0 JL. 

If X is a pointed 6,-set or css-set we denote the base simplex in 
dimension k by *k' The base simplexes form a subcomplex * c X. 

A group complex G is pointed by the identities e" E G(k) and a ass-set X 
can be pointed at any vertex *0 E X(O) by setting *k = JLI*o where 
JL: 6,k --+ 6,0 is the unique map. 

If X is a complex the subcomplex of X generated by a E X(") is de­
noted by a and the subcomplex generated by all (proper) faces of a is 
denoted byo. The simplex a determines a characteristic map ii: 6,k -+ X 
defined by ii(JL) = JL#(a). In the css case ii: Ak --+ X. 

0i: 6,k-l --+ 6," is the morphism of 6, suoh that Vi f# image(oi) and of is 
usually denoted by 0i' It is an easy exercise to show that any face map 
factors into a product of 0iS. 

The i-th horn A
ll
,i of 6,n is the subcomplex of 6,n defined by 

An,i = 6,n_{ln}-{oi In}, 

where In = la .. : 6,n --+ 6,n. 

LEMMA. 1.1. Every cP: 6,n -+ 6," in ass factors 'Uniquily as cPl 0 cP2 with 
cP2 surjective and cPl injective. 

Proof. There is a unique order-preserving isomorphism 'Y: 6,m -+ im (cP) 
and we must have cPz = 'Y-1 0 cP and cPl = incl. 0 'Y. 

A left adjoint G for F: css -+ A is defined by 

G(X)(k) = {(JL, a) I a E X(r), JL E ass, and JL: 6,/& -+ 6,r is surjective}, 

and by setting >'#(JL, a) = (cPz, 44 a) where cP = JLA and cP = cPl 0 cP2 is the 
factoring of Lemma 1.1. 

If f: X --+ Y is a 6,-map then G(f): G(X) -+ G(Y) is defined by 
G(f)(JL, a) = (JL,J(a)). We leave the reader to check that G is a functor 
and we prove adjointness after some further definitions and lemmas. 

Definition. Let Y be ass, then the core of Y is the 6,-subset 

Core(Y) c F(Y) 

consisting of the non-degenerate simplexes of Y and their faces. We 
say Y is ndc if there are no degenerate simplexes in its core. 
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The following lemma is well known and easily proved. 

LEIDrA 1.2 (Eilenberg-Zilber). Let Y be css and let a E Y(n). Then there 
exists a non-degenerate simplex TO and a BUrjective I1iJ such that a = ~TO' 
and if also a = 14 Tl with Tl non-degenerate and JLl BUrjective then 

JLo = fL1 and TO = Tl· 

Remark 1.3. G(X) is ndc and its core consists of simplexes (In' an) 
and may be identified with X. Each simplex (JL, Tn) is uniquely written 
as JL#(ln' Tn). 

PROPOSITION 1.4. Suppo8e g, J: Yo ~ Yl are css and g(T) = f(T) if T 
i8 non-degenerate. Then g = J. 

Proof. Let a E Yo. Then by 1.2, a = JLfT with T non-degenerate and 
g(a) = g(JL#T) = JL#g(T) = JL#f(T) = f(JL#T) = f(a). 

Now define B: G(Core(Y)) ~ Y by B(JL,a) = JL~a. Then B is a css map, 

since B)..#(JL, a) = B(4)2' cg a) = 4>i 11 a = )..fJL#a = )"#B(JL, a), 

where JL'A = 4>14>2 is the decomposition of Lemma 1.1. 

PROPOSITION 1.5. (): G(Core(Y)) ~ Y is onto for any Y and an iso­
morphism if Y is ndc. 

Proof. Let a E Y. Then a = JL'JT with T non-degenerate by 1.2 and 
()(JL, T) = a, which proves that B is onto. Suppose now Y is ndc and 
B(JLo, TO) = B(JLl> Tl)· Then JLg TO = 14 Tl and JLo = JLl' TO = Tl by 1.2. 

Suppose J: X ~ FY is a Ll-map. We define the adjoint ass-map 
I GX ~ Y by /(JL, a) = JL'Jj(a). 

Remark 1.6. Observe that by combining 1.3 and 1.4 we may regard 
J as the unique extension of J. 

THEOREM 1.7. The map 4>: {X, FY} -+ {GX, y}, defined by 4>(j) = /, is 
an adjundion morphism. 

Proof. Since f is obtained from J by restriction it is clear that 4> is 
injective. Let g: GX -+ Y. Then g = / for some f by Remark 1.6 and 
so 4> is surjective. We leave naturality to the reader. 

2. The realization functors 
Let ew denote the category of ow-complexes. In this section we 

introduce two more pairs of adjoint functors so that there are commu-
tative diagrams G F 

11_ ess 11 +-- ess 

Ir~ ~/IIM FA /s 
ew ew 
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Here S is the well-known singular complex functor, II and IIM are 
realization functors. 

Let Y be oss. Then IYIM is formed from the disjoint union 

U {{an}x~n I a E Y} 

by identifying pairs (a,A(x)) with (A#a,x). IT X is a ~-set then IXI is 
similarly defined. Then IXI is a ow-complex having one cell for each 
simplex in X and IYIM is a cw-complex having one cell for each non­
degenerate simplex of Y. (The functor IIM was introduced by Milnor in 
(3) and the reader is referred to this paper and to (2) for unproved facts 
about IIM-) Now letf: W -+ Z be a ~-map (resp. ass-map), then 

If I: IWI-+ IZI (reap. IfIM: IWIM-+ IZIM) 
is defined by 

If/[an,x] = (f(an),x] (reap. Ifl~an,x] = (f(an) , x]). 

In particular If I is a homeomorphism when restricted to the interior of 
a cell of I WI. Further, IIM and S (and similarly II and F 0 S) are adjoint. 

PROPOSITION 2.1. Let X be a ess-set and Y a ~-set. Then IFXI and 
IXIM have the same horrwtopy type, and IGYIM and IYI are homeomorphic. 

Proof. Let a E X(n). Then a = P.17, where p. is surjective and T is 
non-degenerate, by 1.2. Now define g(a,x) = (7,P.(X)), where XE~n. 
Then g respects identifications and determines a map g: IFXI-+ IXIM' 
It is now a standard exercise to show that g induces isomorphisms of 
homology and fundamental groups. The result then follows from 
Whitehead's theorem (6). It follows from the definitions that IGYIM 
and IYI have the same cell structure and hence in particular are homeo­
morphic. 

3. The products X 0 Y and X X Y 
Let X and Y be ~-sets (reap. ess-sets). Then define X X Y by 

(X X y)(n) = X(n) X Y(n) and AI(x, y) = (Alx, Aly ). 

Then X X Y is a ~-set (resp. ass-set) called the product of X with Y. 
Now let X and Y be ~-sets. The geometric product of X with Y, X 0 Y, 

is defined by X 0 Y = Core ( G(X) X G(Y)). 

Remarks 3.1. IT X = ~ 1 and Y is a ~ -set then X X Y has simplexes 
only in dimensions 0 and 1 and is consequently not a very interesting 
object. This example provides motivation for the geometric product. 
We shall show later (5.10) that if X and Y are both Kan then IXxYI 
has the same homotopy type as IX 0 YI. 
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SUppose that K is an ordered simplicial complex with vertices {~}. 
Consider now (cxt., ... , 0Cj,.) with Oio ~ ..• ~ 0Cj,.. Then (Oio, ... , 0Cj,.) corre­
sponds to the simplex (p., a) E GK = K, where afL(vk} = ~!. Further, 
(exio' ... '~) is in Kc K if and only if ~. ;(= ~t+l (0 ~ S < r). 

We now define an ordered simplicial complex Pn•m such that as a 
space Pn.m = LlnxLlmc Jln+ni+2 and a typical r-simplex 'T of GPn,m is 

denoted by ((Vio' Vi.},···, (Vi.' Vir})' where ia ~ ia+l andjs ~ jHI (0 ~ S < r). 
Further, 'TisinPn.mifandonlyifis ;(= is+l orjs ;(=ja+l for each s (0 ~ s < r). 

A css isomorphism cP: GLlnx GLlm -+ GPn.m is defined by 

CP((fL,>.}, (fL',>.'}) = ((>'fL(Vo},>"fL'(Vo)),···, (~(VT},>"fL'(VT}))' 

for each r-simplex ((fL, >.), (11,', >.')) of GLlnx GLlm. It follows that cP restricts 
to aLl-isomorphism Lln ® Llm -+ Pn,m. 

Let X, Y be Ll-sets and let an E X and T'" E Y. Then there is the 
canonical map G(Lln ® ilm) -+ G(X) X G(Y) which restricts to a map 
iln ® ilm -+ X ® Y. From this and the above discussion we see that 
X ® Y may be defined by taking a copy of the prism P',.m for each 
a E Xn and 'T E ym and then making identifications. There is a canonical 
homeomorphism of ILln ® Llml with ILlnl X ILlml and we have 

THEOREM 3.2. Let X, Y be il-sets. Then the map 

8: G(X ® Y) -+ G(X) X G(Y} 

is a css isomorphism and IX 0 Y I is canonically homeomorphic with the 
cw-complex IXI X IYI. Further, if either X or Y is locally finite then the 
product topology on IXI X IYI coincides with the cw topology. 

4. Subdivisions and collapsing 
It will be convenient to confuse a Ll-set X with the complex IXI 

equipped with its characteristic maps 10'1: ILlnl-+ IXI. Then Xl is a 
subdivision of X if IXII = IXI and if for each a E X~") there exists 
a 'T E X(m) (some m ~ 0) and a linear embedding e: ILlnl -+ ILlml so that 

11"10 e = 10'1· 
Note in particular tha.t if K is a simplicial complex and X, Xl are 

obtained from K by ordering vertices, then X is a subdivision of Xl and 
conversely! 

Reca.ll that a derived subdivision of a simplicial complex may be defined 
inductively (in increasing dimensions) by replacing a simplex by the 
cone on its derived boundary or by itself. This definition readily extends 
to Ll-seta--order the cone point later than all vertices in the boundary. 
By iterating r times we get an rth-derived. If every simplex is replaced 
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by the cone on its boundary then we have the 18t derived dX, and again 
by iterating we have the r-th derived drX_ 

Suppose Xc Y and let Y' be the derived of Y obtained by replacing 
a simplex by itself when possible, subject to the condition that dX c Y'. 
We refer to Y' as Y derived at X. There is a simpliGial map of a derived 
X' to X defined by mapping a vertex of X' to the last vertex of the 
smallest simplex of X in which it lies. 

Note that if we begin with a simplicial complex K then the vertices 
of dK are partially ordered so that dK may be regarded as a ~-set. 
Conversely if we begin with a ~-set X then d2X may be regarded as 
a simplicial complex, since after deriving twice i 0:/= j implies 0i a 0:/= OJ a. 

In particular if X is locally finite then IXI = Id2Xj is a polyhedron (in 
the sense of (8)) in a natural way. 

Recall now that if f: ~n --?- ~r is a simplicial map then we can define 
a simplicial complex~, the mapping cylinder off [see (5) 259]' Further, 
there are natural disjoint inclusions ~n, dl:1n , ~r c M, and each vertex 
of ~ is in the image of one of these inclusions and no simplex of M, has 
vertices both in ~n and in ~r, so that ~ becomes a ~-set by ordering 
all the vertices of d~n later than those of ~n and ~r. 

We now generalize this construction. Let X and Y be ~-sets. A map 
f: IXI-+ IYI is simplicial if for each a E X there is a simplicial map fa 
and a commutative diagram 

IXI~IYI 
flul flTI 
~n~~r, 

where 'T = f(a). 
The mapping cylinder ~ is the ~-set obtained from the disjoint union 

U {~(11 a E X} by identifying the mapping cylinder of fa I.\(~m) with 
the mapping cylinder of f>.'a for each a and .\: ~m -+ ~" in ~. 

Then there are inclusions X, dX, Y c~. In particular Ml> where 
1 = Ix: X --?- X, is obtained from IXI X I by inductively deriving the 
'prisms' lal X I at their barycentres. Also there is a folding map 
v: Ml -+ Ml which identifies X ® {O} with X ® {l} and restricts to the 
identity on dX. 

We now extend the notion of collapsing for simplicial complexes [see 
e.g. (5) 247] to ~-sets. Suppose a ~-set X contains a simplex a which 
is not the face of any other simplex and T is a free face of a, i.e. T is the 
face of no other simplex except a. Then Y = X-{a,'T} is obtained 
from X by coUapsing a from 'T. Then Y is a sub complex of X and we 
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write X ~Y. We say X collapses to Z, and write X'\..Z, if there exist 
sub complexes Xi (i = 1, ... , n for some n) of X such that 

X~X1~Xg ... ~Xn = Z. 

LEMMA 4.1. If X'\..Y and X' is a derived subdivision of X inducing Y', 
then X'~Y'. 

Proof. By induction we may suppose X ~Y by collapsing a from -r. 
Corresponding to lal: ILlnl-+ lXI, there is a derived map 

16'1: ILln' 1-+ IX'I· 

Then by the result for simplicial complexes [see (9)], Lln' collapses on to 
Q = IU' I :-11 Y' I. But IU'I is clearly injective on the complement of Q and 
this collapse induces the required collapse X'''xY'. 

LEMMA 4.2. If X"xY then there exists a subdivision X' of X, so that 
Ye X', and a simplicial retraction r: IX'I-+ IYI. 

Proof. The result for simplicial complexes adapts as in the proof of 
4.1 above. 

Recall that (J denotes the Ll-set generated by a simplex a E X, and et 
denotes the union of the proper faces of a. 

LEMMA 4.3. The complex (J ® I derived at one end collapses to either 
end together with (J ® I. 

LEMMA. 4.4. If f: (J -)- 't" is simplicial and onto then ~"x~, where 

'J =flo-· 
Proofs. In both cases we may assume that a = Lln (-r = Llr in Lemma 

4.4) as in the proof of 4.1. Then 4.3 follows from 4.1 by using the cylindri­
cal collapse of Lln ® I [see (9)]. For Lemma 4.4 we use the Whitehead 
collapse [see (5)]. 

Remark 4.5. The collapse of 4.4 can be taken to respect the half-way 
level, i.e. the collapses which meet vertices of (J c ~ can be performed 
first. 

5. Simplicial approximation and the generalized extension 
condition 

First we prove a simplicial approximation theorem in the category A. 

THEOREM 5.1. Suppose J c Y and X are Ll-sets, f: IYI-+ IXI is a 
continU0'U8 map, and fllJI = Iyl, where y: J -+ X is a simplicial map. 
Then there exists a Bimplicial map 1': IY'I-+ IXI and a homotopy 
H:f ~ j'rellJI, where Y' is a subdivision of Y and J c Y'. 
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Proof 
Case I. Assume Y is finite. Let Yn denote Y derived n times but J 

only twice so that d2J C Yn . By the relative simplicial approximation 
theorem in (8) there is an n and a simplicial mapf1: IYnl-+ Id2XI which 
is homotopic rellJI to f- Now let g (resp. J) denote M11x (resp. M1IJ) 

derived twice at the O-end and let Y denote M11y derived at the O-end 
so that Yn is there. Then J c Y (see diagram 1). 

DIAGRAM 1 

Let p: 1.11-+ IX ® 11-+ IXI be the obvious simplicial composition. 
Now ~(J U Yn ) by Lemma 4.4 and so by Lemma 4.2 there is a sub­
division Y' of Y, so that J U Yn c Y', and a simplicial retraction 
r: IY'I-+ IJu Ynl. Define/,: IY'I-+ IXI by 

/,(x) = {Pf1 r(x) 
pgr(x) 

if r(x) E domain f1' 

if r(x) £/= domainfI, 

It is easy to check that /' has the desired properties. 

General case. This follows from Case 1 by induction over the skeleta 
ofY. 

Let X be a ~-set. Then X satisfies the extension condition for the pair 
of ~-sets (Z, W) if every ~-map f: W -+ X extends over Z. 

X is Kan if X satisfies the extension condition for the pairs (~", ~ i)' 
A oss-set Y is K.an if FY is Kan. We then have by an easy induction 

PROPOSITION 5.2. A Kan ~-set has. the exte'Mion condition for each 
~-pair (W, Z) such that W'\..Z. 

THEOREM 5.3. Suppose (Y, J) is a pair of ~-sel8 and X is a Kan ~-set. 
Suppose given f: IYI-+ IXI such that f IIJI = Igl, where g: J -+ X is a 
~-rnap. Then there exists a ~-ma,p /': Y -+ X and a lwmotopy 

H:f ~ 1/,lreIIJI· 
Proof 

Case 1. Y finite and g: J c X an inclusion. As in the proof of 5.1 we 
have J c Y, .1 and Y, Yn c Y and d2X, X c g. Let (M,M1 ) be the 
mapping cylinders off1 and and I J • By identifying the ends of M with 
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the O-ends of Y and g we have a ~-set Z pictured in diagram 2 (the two 
copies of J in the diagram should really be identified). 

I 

DIAGRAM 2 

We describe a ~-retraction of Z on X. The restriction of this retraction 
to Y will give the desired ~-map 1': Y -+ X. First observe that the 
bottom half of M1 (right-hand half in diagram 2) together with J c g 
collapses to J by Lemma 4.4 (see also Remark 4.5). By using the 
folding map v: M;. -+ M1, the collapse, and 5.2 it is clear how to define 
the retraction on J U M1• By Lemmas 4.1 and 4.4 there is a collapse 
~M1 U J u X and a final application of 5.2 can be made to complete 
the definition of the retraction. It is now easy to check that l' has all 
the desired properties. 

Case 2. Y finite. Definef = Y/f'"o.J where U1 f'"o.J U 2 if Uv U2 E J and 
g(Ul) = g(u2). Then f factors via If I and Case 1 may be used. 

General case. This follows from Case 2 by induction over the skeleta 
ofY. 

CoROLLARY 5.4 . .A Kan ~-set satisfies the generalized extension con­
dition (GEC), i.e. X satisfies the extension condition for pairs (W, Z) such 
that IZI is a retract of IWI. 

We can also use Theorem 5.3 to show that a Kan ~-set admits 
degeneracy operators. First we prove two lemmas. 

LEMMA 5.5. Let X be a ~-8et and U E X(n). Then there is a deformation 
retraction r: IFG(a)l-+ IFG(bn) U ani, where a is included in FG(u) by 
the 'TIUlp g,-1(10a). 

Proof. It is enough to show that the inclusion 
i: IFG(~n) U ani c IFG(a)1 

is a. homotopy equivalence. One simply checks that i induces isomor­
phisms on 171 and H.( ,Z) using well-known techniques; the result then 
follows from Whitehead's theorem (6). 

LEMMA 5.6 . .A ~-set X admits degeneracy operators if and only if there 
exists a ~-retraction r: FG(X) -+ X satisfying r(.>t, r(f', u)) = r(~, u) for 
all.>t, f'. u. 
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Proof. Suppose X admits degeneracy operators. Then r(;\, a) = ;\ra 

gives the required retraction. Conversely, given a retraction r, define 
Ala to ber(~, ;\fa) where;\ = ;\l~is the factoring provided by Lemma 1.1. 
Now let A: ~n ~ ~m, fL: ~m ~ ~8. Then by 1.1 there is a commutative 
diagram 

where~, <P2' fL2 are surjective and;\1I <PI' fLl are injective. We must show 
A'fL' = (tt>-}I. From definitions we have 

;\#(fLl;aB) = ;\#r(fL2' 14 a} 

= r(~,;\i r(/L2, 14 a)) 

= r(~,r;\i(fL2,l4a)) 
= r(~, r(<p2' (fL, <p)la)), 

but (tt>-)~a = r(<p2~' (ILl <Pl)la ) and the result follows from the condition 
on r. 

THEOREM 5.7. A Kan ~-set X admits a system of degeneracy operators. 

Proof. We define inductively di : FG(SkiX) ~ X and 

r i : FG(image(d,}) -+ image(d,) eX, 

where Sk'X denotes the ith skeleton of X, so that r,(;\, r,(fL, a)) = r.(tt>-, a) 
whenever this makes sense and d. (resp. r.) extends d'-l (resp. r.-l). 
The induction begins by taking d_l = r -1 = the empty map. Suppose 
now that rn - l has been defined and a E (X<n)-imrn_l). Let 

Ba: IFG(a) I -+ IFG(b) U al 
be the retraction of Lemma 5.5. Now apply Theorem 5.3 with Y, J, X, 
J, g replaced by FG(a), FG(a) U a, X, rn- l Ba U la' rn- l U la respectively 
to get a map ga: FG(a) -+ X. Then define dn(fL, a) = ga(p., a) and 
r n(p., dn(;\, a)) = dn(;\p., a). Finally define r = U {rt}' Then r satisfies 
the condition of Lemma 5.6 and the theorem is proved. 

Remark 5.8. The proof of 5.7 shows that IXI c iFG(X) I is a deforma­
tion retract, since the maps Ba used in the proof were deformation retrac­
tiollB. A specific deformation retraction can also be defined using formula 
(20.8) on p. 104 of (7), even in the case when X is not Kan. 
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CoROLLARY 5.9. A Kan 6.-set can be based at any vertex. 

Proof. Let *0 E X(O) be the vertex. Then introduce degeneracies and 
define *k = Ji-r.o, where Ji-: 6.k -+ 6.0 is the non-empty map. 

CoROLLARY 5.10. If X and Y are Kan 6.-sets then IXxYI has the same 
horrwtopy type as IX 0 Y I. 

Proof. Introduce degeneracies. Then IXx YI ~ IXx Ylu and 
IXI X IYI ~ IXIMx IYIM by Proposition 2.1. Finally 

IXxYlu "-' IXIMx IYIM by (3), 

and IX 0 YI "-' lXI X IYI by 3.2. 

6. Homotopy of 6.-sets 
Definition. 6.-maps io, f1: X -+ Y are homotopic, fo ~ f1' if they are 

restrictions of a map F: X 0 1-+ Y. 

THEOREM 6.1. Suppose Y is a Kan 6.-set. Then maps fO,]l are homotfJpU 
if and amy if their realizations Ifol, If 1 I are homotopic. 

Proof. Since IX 011 '"'-' IXI X III,itissufficienttoshowthat Ifol ~ If11 
implies fo ~ k This follows from Theorem 5.3. 

Remark 6.2. If a homotopy F: 1/01 ~ If 1 I is already a realization on 
a sub complex of X, i.e. F IIZI X III = IGI for some G: Z 0 1-+ Y, 
z c X, then the resulting homotopy 10 ~ 11 may be assumed to extend G. 

There is also a version of 6.1 for maps of pairs of 6.-sets, etc. 

CoROLLARY 6.3. Homotopy 01 6.-maps is an equivalence relation when 
the range involved is a Kan 6.-set. 

Using 6.1 and 6.3 we can define a category hl1 with objects Kan 6.-sets 
and Morph(X, Y) = [X, YJ, the set of homotopy classes of 6.-maps. 

Now recall that a polyhedron P is a topological space, denoted by I PI, 
together with a maximal family 9 of homeomorphisms t: IKI-+ IPI, 
where K is a locally finite simplicial complex (and there is no lOBS in 
assuming K ordered) satisfying: tll t2 E 9 implies ti1~ is PLo The 
elements of 9' are called triangulations of P. 

Definition. Let X be a 6.-set and let P be a polyhedron. Then a map 
(j, t): P -+ X is a triangulation t: IKI -+ IPI and a 6.-map f: K -+ X. 
Maps (fo, to) and (/1>~) are homotopic if there exists a map 

(F, T): PxI -+ X 

so that the appropriate restrictions yield (/0' to) and (f1> ~). 
Homotopy is easily proved to be an equivalence relation where the 

range is Kan and we denote the set of equivalence classes of maps P -+ X 
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by [P, Xl The next theorem shows that in representing a homotopy 
class or a homotopy there is freedom of choice of the triangulation 
involved. The t,heorem also has relative versions. 

THEOREM 6.4. Let ti: IK.I-+ IPI (i = 0, 1) be triangulations of the 
polyhedron P and let ex E [P, X], where X is a Kan tl.-set. Then 

(i) ex is represented by some (/0' to), 
(ii) if (/o,to) ~ (/l>t1 ) and t: IKI-+ IPxII extends to and tl then there 

exists f: K -+ X extending fo and k 
Proof. This is an application of Theorem 5.3. For (i) one also needs 

Lemma 2.5 of (4). 

Remark 6.5. Let Y be a locally finite tl.-set so that IYI is a polyhedron 
in a natural way a.nd denote it by Py to avoid confusion. It now follows 
from 6.1 and 6.4 that the obvious maps [IYI,IXI]+-[Y,X]-+ [Py,X] 
are bijections. 

Now let X, Y be Kan tl.-sets pointed by * eYe X. We define homo­
topy groups by 

7Tn(Y, *) = 7Tn(IYI, 1*01)· 

As is usual we simply write 7Tn(X, Y) and 7Tn(Y) if X and Y are connected. 
It follows from a relative version of 6.5 that we could also have defined 
7Tn(X, Y, *) to be[~n, ~+, ~~;X, Y,*], where~nisthepolyhedrondefined 
by~n = {x E .Rn+1 : IXil = lfor some i (1 ~ i ~ n+l) and 0 ~ Ix,1 ~ 1 
for a.llj (1 ~j ~ n+l)} and 

~,t = {x E ~n: X n +1 ~ O}, ~; = {x E ~n: xn +1 ~ O}. 

Similarly we could define 7Tn(X, *) to be [In, ~n-l; X, *], where 

In = {x E .Rn: IXil ~ 1 for each i}. 

There is another definition of homotopy groups [see (2) 7] which we 
refer to as the Kan definition. Although it refers to css-sets, degeneracies 
are not needed for the definition a.nd again using 6.5 one readily shows 
that the result agrees with our definitions. 

THEOREM 6.6. Let X and Y be connected pointed Kan tl.-sets and let 
f: X -+ Y be a pointed tl.-map which induces isomorphisrruJ 

f.: 7Tn(X) -+ 7Tn(Y) for all n ~ o. 
Then f is a homotopy equivalence. 

Proof. From Whitehead's theorem we have that Ifl: IXI-+ IYI is 
a homotopy equivalence. Let g: IYI-+ IXI be a homotopy inverse. 
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Use 5.3 to homotope g to lu'l where g': Y -+ X is a Ll-map, and again 
to replace H: If Ilg'l =:: 1 and G: Ig'llf I =:: 1 by homotopies in Il.. 

Remark 6.7. Theorem 6.6 gives simple conditions for Xc Y to be 
a deformation retract. For example, the condition used in (4) § 5: any 
Ll-map ~.i -+ Y which carries An .• into X extends to all-map Lln -+ Y 
which carries 8i Lln into X. This can now be interpreted as saying that 
a typical element of 1Tn(Y' X) is zero. 

THEOREM 6.8. Let hew denote the category of cw-complexe8 and homo­
topy clasSe8 of maps. Then 11: hll. -+ hew is a natural equivalence. 

Proof. There is no 1088 in assuming that all Ll-sets and cw-complexes 
are connected. 

There are adjunction morphisms ix: X -+ SIXI and jy: IS(Y)I-+ Y 
[see (3)], and since jlxl 0 lix I = idlXl , it suffices to prove that ix is a 
homotopy equivalence or, by 6.6, that i.: 1Tn(X) -+ 1Tn(SIXI) is an iso­
morphism. Now i. is a monomorphism and to see that i. is onto it is 
convenient to use the combinatorial definition of 1T.,( ) and let 

[Jo] E 1Tn(SIXI), 

so that fo: (In, Ln- l) -+ (SIXI, ix (*))' Then 

jlxl o Ifol: (IInl, ILn-ll) -+ (lXI, 1*1), 
and this is homotopic rellLn-ll to the realization of a polyhedral map 
If 1 I : (IInl, ILn-ll) -+ (lXI, 1*1). We claim that i.[Jl] = [10]. To see this, 
triangulate the domain of the above homotopy extending the given 
triangulations on the ends. The adjoint of the result is the required 
homotopy fo =:: ixfI. 

We now prove a similar result for IIM: hcss -+ hew (this result is well 
known, see for example (2)). First we show that F: hcss -+ hll. is a 
natural equivalence. Unforlunatelyits adjoint G: hll. -+ hess is not well­
defined since G(X) may not be Kan even if X is Kan. An example is 
provided by X = Dn, the complex of§ 8. Thesituationiseasilyremedied: 

Definition. Let X be a Ll-set and define Hl(X) ::> X to be the Ll-set 
obtained from X by adjoining an n-simplex to X for each Ll-map 
f: ~.i -+ X, and inductively define H1l(X) = Hl(Hn-l(X)). Let H(X) 
be the union U Hn(X). If f: X -+ Y then it is clear how to define 
HU): H(X) -+ H(Y) and H becomes a functor-the horn functor. 
Further, H(X) is clearly Kan. 

THEOREM 6.9. F: hcss -+ hll. is an equivalence of categorie8 and HG 
is an inverse for F. 
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Proof. Suppose Y is Kan. Then any css-map GX -+ Y admits an 
extension HGX -+ Y which is easily seen to be unique up to homotopy, 
and by 1.7 we have a bijection g,: [X, FYJ -+ [HGX, YJ and ma~ 
f: X -+ FGHX, g: HGFY -+ Y. It is enough to show that f and g are 
homotopy equivalences. The first follows easily from Remark 5.8, the 
obvious deformation retraction IFHGXI-+ IFGXI, and Theorem 6.8. 
For the second we use the Whitehead theorem in css [see (2)] so that 
all we need prove is that gx: 1Tn(HGFY) -+ 1Tn(Y) is an isomorphism for 
each n. (There is no loss in assuming Y connected.) But using the Kan 
definition of 1Tn( ) we can forget degeneracies, and by 6.8 again it is 
enough to show that IFGHFYI-+ IFYI is a homotopy equivalence, and 
this is a special case, X = FY, of the result already proved. 

COROLLARY 6.10. IIM: hess -+ hew is an equivalence and S( ) i8 an 
inverse. 

Proof. This follows from 6.8, 6.9, the deformation retraction 
IHYI-+ IYI, and commutativity in the diagrams of § 2. 

7. The homotopy lifting property 
A ~-map 11: E -+ B has the extension lifting property, ELP, for a pair 

(W, Z) if given f: W -+ Band /1: Z -+ E such that 11 0/1 = f I Z, then 
there exists an J: W -+ E such that 11! = f and / I Z =!t-

11: E -+ B is a Kan fibration if 11 has the ELP for (~n'~i) (n ~ 0, 
o ~ i ~ n). 

PROPOSITION 7.1. A Kan jibration has the ELP for (W, Z) if ~Z. 

Proof. This follows by induction on the collapse. 

Remark 7.2. In particular we may take (W, Z) = (Z 0 I, Z 0 {O}) 
80 that homotopies in 11 may be lifted. 

PROPOSITION 7.3. A Kanfihration of Kan ~-8el8 has the ELP for pairs 
(W, Z) with the property that (IWI, IZI) is isomorphic, aB a polyhedron, 
with (InxI, InX{O}). 

Proof. Let O(X) denote the cone on X. Extend /1 to /2: O(Z) -+ E, 
by the GEC. Letf2 = 11!2' Now extendfUfz to fa: O(W) -+ B by the 
GEC. Now O(W)",..O(Z) and 80, by 7.1, fa lifts to!a: O(W) -+ E. Then 
! = !a I W is the required lift of f. 

Remark 7.4. From 7.3 one easily proves that if 11: E -+ B is a pointed 
~-map of Kan sets and F = 11-1(*) then 11*: 1Tn(E, F) -+ 1Tn(B) is an 
isomorphism. Thus we have the usual exact sequence of a fibration. 
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THEOREM 7.5. A Kan fibration of Kan /).-sets has the E LP for pairs· 
(W, Z) such that (I Wj, IZi) = (Px I, P) for sorne polyhedron P . 

. CoROLLARY 7.6. A Kanfibration of Kan sets has the honwtopy lifting 
property for polyhedral maps. 

Proof. Let J be another copy of I (to avoid confusion) and triangulate 
Px Ix J as follows. Use Won Px IX{O} and on Px IX{I}use a stellar 
subdivision W' of W such that lal X I is a subcomplex of W' for each 
(T E Z [see (9) Lemma 4]. Now extend over W 0 J by deriving at the 
halfway level. Let the whole triangulation be Tt and the restriction to 
Px{O}xJ be Z. 

Now extend j: W -+ B to 1: -W -+ B using the Kan condition and the 
collapse ~W (cf. 4.3). We lift} and this liftsf as required. First lift 
J I Z using 7.1 and the collapse Z\...Z. Then lift J I W' by inductive use 
of 7.2. Finally liftJusing 7.1 and the collapse ~W' U Z. 

8. The minimal complex 
Throughout this section X denotes a Kan /).-set. 

Definition. We define a minimal corn,plex Xo c X as follows. Choose 
one O-simplex from each component of X. The result is XbO

). Suppose 
now that Xbn-l) has been defined. We say that simplexes a, 'T E X(n) are 
equivalent and write a'"" 'T if 0ia = 0i'T (0 ~ i ~ n) and there is a 
homotopyh,: I/).nl-+ IXlrellAnlwithho = lul,h1 = If I the characteristic 
maps of a and 'T. Define Xbn) by choosing a simplex from each equivalence 
class which contains simplexes a with 0i a E Xbn- 1) for each i. 

It follows from 5.3 that the equivalence relation can also be defined 
as follows: let o/).n+1, l/).n+1 be copies of /).n+! and let Dn+l be the result 
of identifying o~+l.o with l~+l.O' Then there are inclusions 

i k : /).n ~ /).n+! "-' k/).n+! C Dn+l for k = 0,1. 

We now say that a is equivalent to 'T if there existsj: Dn+l -+ X extending 
fin 1 and ~-1. 

LEMMA 8.1. If Xo c X is minimal then it is Kan. 

Proof. Let f: ~ i -+ Xo be a /).-map. Since X is Kan there is an 
extension f1: /). .. -+ X. Now consider If 1 0 Oil: l/).n-1 1-+ IXI· This is 
homotopic rel(o, (An-I)) to a map Ifsl: l/).n-1 1-+ IXol, by the definition 
of Xo. Extend the homotopy to a homotopy rellAnl of I/).nl. Let the 
resulting map be f3: I~nl-+ X. Finally use the definition of Xo once 
more to homotope fa to the realization of the required map 

If"l: 1/)."1-+ IXol· 
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LEMMA 8.2. Let Xo c X be a minimal complex. Then Xo is a deforma­
tion retract of X. 

Proof. Let f: (A..,i' An,i) -r (X, Xo) be a ~-map. Then there is an 
extensionfl: ~n -r X. By the definition of Xo and by 5.3 we may assume 
flSo(~n-l) C Xo' The result then follows from 6.7. 

THEOREM 8.3. Suppose X and Y are Kan ~-8ets of the 8ame honwtopy 
type and Xo eX, Yo c Y are minimal. Then any honwtopy equitJll.leme 
f: Xo -r Yo is an isomorphism. 

Proof. Let f: Xo -r Yo be a homotopy equivalence and let g: Yo -r Xo 
be a homotopy inverse. We show that fg = 1 and gf = 1, which proves 
the result. Let an E Yo and suppose inductively that fg le) = 1. Then 
fg( a) ,...", a by the REP and the fact that fg ,....- 1. It follows that fg( a) = a 
as required. 

CoROLLARY 8.4. Any two minimal complexes of X are i80m0rphic. 

Proof. This follows from 8.2 and the theorem. 

CoROLLARY 8.5. There is a 1: 1 correspondence between minimal com­
plexes and honwtopy types. 

CoROLLARY 8.6. Suppose that Xo c X is minimal and X~ c Xo is a 

honwtopy equivalence 80 that in particular X~ is Kan. Then X~ = Xo' 

Proof. Let X~ c X~ be minimal. Then by 8.2 and the theorem 
X~ c X~ c Xo is an isomorphism. 

9. Function spaces 
Definition. Let X, Y be ~-sets. A ~-set XY is defined as follows. 

A typical k-simplex is a ~-map a: Y 0 ~k -r X. Face maps are defined 
by restriction. 

THEOREM 9.1. If X is Kan then 80 is XY. 

Proof. A ~-map f: A..,i -r XY corresponds to a map f': Y 0 A..,i -r X 
and this extends over Y 0 ~n by the GEe. This is sufficient. 

The following theorem may be regarded as generalizing 1.7. 

THEOREM 9.2. If X is ass and Y a ~-8et then the ~-8ets F(XGY) and 
(FX)Y are isomorphic. 

Proof. A k-simplex of (FX)Y is a ~-map Y 0 ~k -r FX. By 1.6 and 
3.2 this corresponds to a ass-map CIY X G~k -+ X, i.e. a k-simplex of XGY. 
Since this correspondence commutes with face maps we have the result 
on forgetting degeneracies in XGY. 

z 
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~-SETS 11: BLOCK BUNDLES AND 
BLOCK FIBRATIONS 

By C. P. ROURKE and B. J. SANDERSON 
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Introduction 

IN '~-sets I' we showed how to handle semi-aimplicial complexes 
without degeneracies. In this paper we apply some of the results to 
semi-simplicial,groups and monoids. Our results have application in 
the theory of block bundles. This paper is organized as follows: 

In § 1 we define a principal G-bundle where G is an arbitrary Kan 
~-group and we construct a Kan classifying apace for such bundles. 
The construction is based on HelIer's method in (3). We then define 
a G-bundle over a polyhedron and deduce a classification of concordance 
classes of such bundles. Examples of G-bundles over polyhedra are 
principal bundles of block bundles. 

In § 2 we give a considerably more general definition of a block bundle 
than has been given elsewhere [cf. (1), (4), (5), (6)]. The base is an 
arbitrary ~-set, the fibre an arbitrary topological apace F, and the group 
an arbitrary Kan subgroup of Top(F). We construct a universal block 
bundle of this type. We then show that amalgamation and subdivision 
of such bundles is a formal consequence of the fact that the group is Kan 
and satisfies a natural 'amalgamation' condition. This recovers results 
.proved geometrically by ourselves [in (6)] and others [in particular by 
Casson in (1)]. 

In § 3 we introduce a new kind of homotopy bundle, namely a 'block 
fibration'. This is the correct homotopy analogue of a block bundle, 
a block bundle being itself an example. We construct a universal block 
fibration and classify block fibrations within block homotopy equiva­
lence. Since a Serre fibration gives a block fibration in a natural way 
(and conversely) this classification recovers the one in (8). The idea of 
a block fibration was arrived at while trying to understand the Serre 
fibration associated with a block bundle [see (6) § 5] and the notion 
eliminates previous difficulties. See also (1) for a construction of the 
associated. Serre fibration. 

We end this introduction with a short discussion of the foundations 
of block bundle theory. The block bundles we define here (in § 2) all 
Quart..1. Matb. OIford (l),:n (1971), ~&. 

86V6.2.22 H h 
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have a local block triviality condition, in other words we assume the 
existence of 'charts', and our results show that there is a good 'theory' 
of such bundles 8.8 a formal consequence of the definition. On the other 
hand, the PL block bundles we defined in (6) § 1 did not have charts 
and we proved the existence of charts geometrically using relative regular 
neighbourhoods. This approach is good when the fibre is a polyhedral 
cone and the base is a polyhedron and then charts exist by a similar 
argument to (6) § 7 using Oohen's regular neighbourhood theory (2). 

O. Definitions 

We refer to (7) 8.8 1. Notation and definitions are as in I, and we recall 
the principal ones. 
~ is the category with objects ~n (n = 0, 1, ... ) and maps order­

preserving injective simplicial maps. A 6.-set, -group, -monoid is a 
contravariant functor from ~ to the category of sets, groups, monoids. 
If G is a ~-group, we denote by en the identity in (}<n) = G(~n). An 
ordered simplicial complex K is regarded 8.8 a ~-set by letting K(n) be 
the set of order-preserving injective simplicial maps ~n -+ K and defining 
K('\) for ,\ E Map(~) by composition. If X is a ~-set and a E X(n) is an 
n-simplexthen the characteri8ticmap a: ~n -+ X is defined bya('\) = ,\I(a) 

and we denote by (J the subcomplex of X consisting of a together with 
all its faces (here we write ,\1 for X('\), 8.8 usual, and use 'complex' 
synonymously with '~-set'). a C (J consists of all faces of a. 

Si: ~n-l -+ ~n is the map in ~ which fails to cover the ith vertex and 
we write Vi for Sf. An.i = An-Si(~n-l) is the ith horn. 

If K :J L are ~-sets we write K ~L if K-L consists of two simplexes 
a, 'T with 'T = vi(a), some i, and a, 'T not the faces of other simplexes 
of K. We write K""L if K~Kl~'" ~Kn, = L and we write K'\..O if 
10-.. ..... a vertex. 

1. Principal bundles 

Let G be a Kan ~-group. A ~-map Ex G -+ E is a free action of G 
on E if 

(i) (ag1)!12 = a(gtY2), 

(ii) aen = a, 

(iii) UfJl = UfJ2 <=> gl = gB' 

for all a E E(n), gv g2 E ()C.n) (n ;;?: 0). 

A principal G-bundle UB with base B, where B is a ~-set, consists of 

(i) a surjective ~-map p: E(~) -+ B, the projection of ~, 
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(ii) a free G-action Ex G -+ E over p (i.e. p(ag) = p(a) for all a, g), 
such that p-l(a) = T(}<n) whenever p(T) = a E B<n). In other words B is 
canonically isomorphic to the orbit space of E under the action of G. 

Principal G-bundles go, g 11 B are isomorphic if there is all-isomorphism 
h: Eo -+ El which commutes with the projection and with the action 
of G (i.e. Po = PI hand h(ag) = h(a)g for all a, g). 

giB is trivial if it is isomorphic with the trivial G-bundle e/B, given 
by E(e) = Bx G, (a,gl)U2 = (a'UlUll)' and p(a, U) = a. 

Given giB andBo c BdefinetherestrictionglBo by E(g I Bo) = p-l(Bo) 
with induced action and projection. 

A bundle map f: gl -+ gz is a pair of Ll-maps such that the following 
diagram commutes: iN 

E(gl) --+ E(g2) 

1 iB 1 
Bl-Bll 

andfE commutes with the action of G. 
If giB is a principal G-bundle andf: X -+ B is a Ll-map then we define 

the induced bundlef·(g)/X by EU·(g») c Xx E(g) consists ofpa.irs (a,T) 
such thatf(a) = p(T), (a,T)U = (a,-rg), and Pr«'M,T) = a. Then (!,J) 
is a bundle map, where!(a,T) = T. 

The following easy proposition is left to the reader: 

PROPOSITION 1.1. Letf: go -+ gl be a bundle map. Then.there is a unique 
isomorphism h: EU'tJ(gl») -+ E(go) 80 that 

commutes. 

Now for each Ll-set B let PG(B) denote the set of isomorphism cl8BSe8 
of principal G-bundles with base B, and for each Ll-map f: Bo -+ Bl let 
PG(j): PG(Bl ) -+ PG(Bo) be induced by f·. 

Then PG( ) becomes a contravariant functor on the category 11. Our 
aim is to represent PG( ). 

PROPOSITION 1.2. If p: E -+ B is the projection of a principal G-bun&e 
then P is a Kan jibration. 

(Note that neither E nor B is assumed to be Kan.) 
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Proof. We must find an h' which makes the diagram below commute: 

h 
~.k ... E 

n /,/"lp 
An / f ) B 

Let!: b.n -+ E be any lifting of f (J is the characteristic map of any 
simplex in p-1(f(idt._»). Let e: ~.I.: --+ G be defined by J(x)e(x) = h(x). 
e is easily seen to be a b.-map. Since G is Kan, e extends to e': An -+ G. 
Then h' defined by h'(x) = J(x)e'(x) is the required map. 

CoROLLARY 1.3. Suppose gi/b.n are principal G-bundles (i = 0, 1) and, 
h: go I A...i --+ g 11 ~.i is an isomorphism. Then 11. extends to an isomorphism 
hI of go with g1' 

Proof. Let s: b.n -+ E(fo) be a section (a lifting of mlt.-). Then 
h 0 si: ~.i -+ E(g1) extends to a section SI: b.n -+ E(g1) by 1.2. Define 
hl(8(a)g) = sl(a)g for each a E An. 

CoROLLARY 1.4. If K'\,..L and if gi/K (i = 0, 1) are G-bundles then 
any bundle isomorphism h: gol L -+ gll L extends to an isomorphism 

h,':gO-+g1' . 

Proof. Suppose the colla.pse is elementary across an from -rn - 1 = 0" an. 
Let ii: An -+ K be the characteristic ma.p for a. Then h defines an 

isomorphism h: 0'*('0) I ~.i --+ ii*(e1) I ~.i' 
1i extends over An by 1.3 and this defines an extension of 11, since a and-r 
are not identified with faces of other simplexes of K. The result now 
follows by induction on the collapse. 

CoROLLARY 1.5. If K'\....o then any g/K is trivial. 

CoROLLARY 1.6. If ~L and if g/L is a G-bundle then there is a 
G-bundle gJK with gll L = g/L. 

Proof. Suppose the colla.pse is elementary across an from -rn - 1 = 0i an, 
and g: ~.i -+ L is the restriction of o'. g*(g) is trivial by 1.5 a.nd we can 
define g1 by a.ttaching t/b.n to g by~: E(g*(g») -+ E(g). The general result 
follows by induction. 

CoROLLARY 1.7. Suppose that g, TfIE ® I are two principal G-bundles 
and that 11,: E(g I B ® {O}) --+ E(Tf I B ® {O}) is an isomorphism. Then 11. 

extends to an isomorphism of g with 7]. 
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Proof- This follows from 1.4 by induction over the skeleta of Busing 
the fact that ~n ® 1'\..~n ® {O} u An X I, which implies (cf. I, § 4) that 
for a E B, 0 ® 1'\..0 ® {O} U a ® I. 

Remark. 1.7 will imply (see 1.11 below) that giB ® {O} ,.."., giB ® {I}, 
since it will follow from the existence of a Kan classifying space that 
there is a bundle over B ® I with ends isomorphic to giB ® {O}. 

Oonstruction of the universal buruIle. We will construct a principal 
bundle y with projection 7Ty : EG -+ BG so that 

(i) both EG and BG are Kan complexes, 

(ii) EG is contractible. 

We define EQ<n). For any ~-set K, denote by ~ the graded set of 
simplexes of K (i.e. forget the face operators). Define EG(n) to be the 
set of graded functions ~ -+ Go. 

Then E(}(n) is a group, since we can multiply two graded functions by 
multiplying images in Go, and we can identify Q<n) with the subgroup 
of EQ<n) corresponding to ~-maps ~n -+ G (a ~-map determines a graded 
function on forgetting face maps). 

We now define face operators in EG, making it a ~-group. Let 
>.: ~r -+ ~n be a face map. Then we have the corresponding map of 
graded sets >-0: ~ -+ ~ and we define for a E Q<n), 

>.la = a>-O: ~ -+ Go. 

The reader will have no trouble checking that >.1 is a. homomorphism 
and that this makes Gc EG a ~-subgroup_ 

Observe that if K is a ~-set then ~-maps K -+ EG can be identified 
with graded functions Ko -+ Go and hence: 

OBSERVATION 1.8. Any ~-map An -+ EG possesses an extension to ~n. 

For a graded function ~ -+ Go clearly possesses an extension to ~. 

CoROLLARY 1.9. EG is Kan and contractible. 

Proof- Extend a. ~-map A",i -+ EG in two stages using 1.8. Extend 
first over ai~n, then over ~n. The second part now follows from 1.8 
and 1,6.6. 

Define BG = EGJG (i.e. the ~-set of right cosets of G in EG) and let 
7Ty : EG -+ BG be the natural projection. Then we have defined a. 
principal G-bundle yJBG with E(y) = EG and it follows from 1.2 and 
1.9 that BG is Kan. 



470 C. P. ROURKE AND B. J. SANDERSON 

PROPOSITION I.lO. Let Le K be !:l.-sets and g/K a G-bundle. Any 
bundle map f: g I L ~ y extends over g. 

Proof. By induction over the skeleta of K - L we may assume 
L, K = an, an. Let T}/!:l.n = a*(g). We extend h = f 0 ~: T}I An ~ y to 
h': T} ~ y, and this determines the required extension of f. Let 

s: !:l.n ~ E(T}) 

be a section; h 0 s: An ~ EG extends to SI: !:l.n ~ EG by 1.8. Now define 
h'(s(a)g) = sl(a)g for a E !:l.n. 

CoROLLARY loll. Suppose giB 0 I is a principal G-bundle. Then 
giB 0 {O} r<o.J giB 0 {I}. 

Proof. By 1.7 it is only necessary to find a bundle T}/B 0 I with 
T} I B 0 {i} r<o.J giB 0 {O} (i = 0, 1). Let f: giB 0 {O} ~ y be a bundle 
map (from I.lO) and let h: B 0 I ~ BG be a homotopy of fE to itself 
(see I, 6.1). Then T} = h*(y) is the required bundle. 

Now for each !:l.-map f: K ~ BG define T(f) E PG(K) to be the class 
of f*(y). By l.ll T(f) depends only on the homotopy class of f. T is 
then a natural transformation from [ ,BG] to PG( ) and is an isomor­
phism of sets by 1.10. ([ ,BG] is regarded as a functor via 1,6.1.) We 
have proved: 

THEOREM 1.12. The natural transformation 

T: [ ,BG] ~ PG( ) 

defined by T[f] = [f*(y)] is a natural equivalence of functors on the 
category of !:l.-sets. 

Remark8. (1) The construction of y is clearly functorial on the cate­
gory of !:l.-groups. 

(2) If BeG is a !:l.-subgroup then one has a fib ration (up to homotopy 
type) G/B ~BH ~BG. 

For factor the universal bundle of G by H and use the fact that 

EG/B~BH 

from the classification theorem (cf. 3.18). 
(3) Given a Kan fibration 

fT 

G1 e Gz-- G3 

ofKan !:l.-groups with 7T a homomorphism, then there is a corresponding 
fibration BfT 

BG1 e BG2 -- BG3 
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of classifying spaces. That Brr is a Kan fibration follows from the com-
mutative diagram Err 

EG2 --+EGa 

1 Brr 1 
BG'I,--+BGa 

in which the other three maps are all Kan fibrations (Err trivially from 
definitions, the vertical maps by 1.2). Then the reader may readily 
identify the fibre of Brr with BG1• 

(4) There is a natural identification of B(G1 X G2 ) with B(G1) X B(G2 ), 

since there is a natural identification of E(G1 X G2 ) with E(G1) X E(G2 ). 

Principal bundles over polyhedra. Let P be a polyhedron and G a Kan 
~·group. A G-bundle giP is an ordered triangulation K of P and a 
principal G-bundle g/K. go, gl/P are equivalent if there is a G-bundle 
TJ/PXI such that TJ I PX{i} '"" gi (i = 0,1). Let G(P) denote the set 
of equivalence classes. 

PROPOSITION 1.13. The function T: [P; BG] -+ G(P) defined by 
T(j) = f*(y) is a bijection. 

Proof. This follows at once from 1.12 and the definition of polyhedral 
maps P -+ BG (see I, § 6). 

Now [ ; BO] is a functor on the category of polyhedra and continuous 
maps (see 1,6.1) and we make G( ) into a functor by insisting that T be 
a natural equivalence. This defines' the induced classf*(g)IP for a map 
f: P -+ Q and G-bundle g/Q. There is a direct construction of f·(g), as 
follows. 

Let g be defined over K and find a triangulation L of P and a simplicial 
map fl: L -+ K homotopic to f. Let M" be the simplicial mapping cylin­
der. Then ~,'\..K and hence g extends over ~,' uniquely up to iso­
morphism, by 1.4 and 1.6. Let this extension be gl. Then gl I L is in 
the class f*(g) since the classifying map for gl I L is homotopic to f 
composed with the classifying map for g. 

CoROLLARY 1.14. If K is a ~-8et such that IKI is homotopy equivalent 
to P then PG(K) is isomorphic to G(P). In case IKI = P the isomorphism 
is the natural one. 

Proof. This follows from 1.13 and the results of I, § 6. 

Remark. 1.14 recovers (6) 3.3 since for a ~-set K, IF(K)I ~ IKI. 
However, the results ofthe present paper show that (6) 3.3 is irrelevant 
to block bundle theory. 
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2. Application to block bundles 

Let K be a Ll-set. The associated category of K, denoted by :R, is 

defined by Ob(1t) = U K(n), 

n 

MapR(T,a) = {(A,T, a) I A:a = T} for a, T E K. 

Composition of maps in It is just composition of the corresponding face 
relations. 

Now suppose I: K -+ L is a Ll-map. Then we associate to I the functor 
I: It -+ L defined by r = I on objects and l(A, T, a) = (A,fT,fa), which is 
a map in L since I is aLl-map. 

A K -space Q is a functor from R to the category of topological spaces 
and embeddings. If I: L -+ K is a Ll-map then we define the L-space 
f"'(Q) to be Q 0 f. 

Thus for each a E K(n) we have the Lln-space Q" = (j.(Q) where we 
write (j for the functor associated to the characteristic map of a. 

Associate to each K -space Q a topological space I Q I defined by 

IQI = U Q(a)/Q(Map"R), 

i.e. identify the Q(a) via the family of embeddings Q(Map :It). 
A map of K-spaces (or K-map)/: Q1 -+ Q2 is a natural transformation 

of functors where the range category is enlarged to include all maps 
(rather than just embeddings), i.e. I consists of maps lu: Ql(a) -+ Q\!(a) 
for each a E K such that the obvious diagrams commute. A K-lwrneo­
morphism is a K -map in which eachlu is a homeomorphism. A K -map I 
determines a map Ill: IQ!I-+ IQ21 in the obvious way. 

For any Ll-set K and topological space F, define the trivial K-space 
t(K, F) by e(a) = Llnx F for each a E K(n) and 

e(A, a,1") = Axid: Llnx F -+ Ll'x F 

for each a E K(n), T E K(') with a = A#T. Then lel can be naturally identi­
fied with IK I X F, if we endow the latter with the identification topology. 
We often write Kx F for e(K, F). 

Re:rnarks. (I) If Q is a. ~n-space then the natural map Q(In) -+ IQI 
is a homeomorphism, since each Q(A) is the domain of a unique embedding 
in Q(ln). Thus the natural map Q(a) -+ IQ"I is a homeomorphism for 
each a E K, where Q is any K-space, and we can identify the two. 

(2) If K is a simplicial complex and Q is a K-space, then the natural 
maps 7Tu: Q(a) -+ IQI are all embeddings for a E K. This is for similar 
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reasons to example (1)_ Hence Q is determined up to K-homeomorphism 
by the space IQI and the family of subspaces 

7T,,(Q(a))c IQI (aEK)_ 

(3) Generalizing (2) to Ll-sets, define for each a E K the characteristic 
map for Q at a to be the natural map 

7T,,: Q(a) -+ IQI-

Using the identification of (2) we can regard TT" as a map 

TT,,: IQ"I-+ IQI-
Then the K -space Q is determined up to K -homeomorphism by the 

space IQI, the Lln-spaces Q" for each a E K, and the characteristic maps 
IQ"I-+ IQ 1- Compare this with the idea of a Ll-set as a ow-complex IKI 
together with a set of characteristic maps for the cells of IKI (cf. I, § 4)_ 

A block bundle with base K and fibre F is a K -space, such that for 
each a E K(n) there is a Lln-homeomorphism Llnx F -+ ,,,_ We usually 
write E(,) for 1,1 and fJ,,(,) for ,(a) (the 'block' over a). 

An isomorphism h: '1 -+ '2 of block bundles is simply a K-homeo­
morphism. 

Notice that when K is simplicial, , is determined up to isomorphism 
by E(,) and the natural embeddings TT,,: fJ" -+ E(,) [see Remark (2) above, 
and compare (6)]. When K is all-set, ,IK may be regarded as being 
made up of block bundles over simplexes, with a recipe for gluing. 

Notice that if ,IK is a block bundle and f: L -+ K is a ~-map then 
r(,) is a block bundle, the induced bundle. 

A block bundle, is trivial if it is isomorphic with the trivial bundle 
£(K, F) defined above. 

A chart for, at a E K(n) is an isomorphism 

h,,: £(Lln, F) -+ ,,,, 

An atlas for, is a family ;R = {h" I a E K} of charts. 
Now let Top(F) be the Ll-group in which a typical n-simplex is a self­

isomorphism of £(~n, F) and the group operation is composition. Face 
operators are defined by the diagram 

'\xid 
Llrx F ----+ Llnx F 

1,\#" 1" t '\xid 
Llrx F ----+ Llnx F 

i.e. 'by restriction'. 
Suppose that r = >t;an is in K and that h", hT are charts for, at a, T_ 
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Then ha, hT are related by the element I-' E Top(F)(r) defined by the com­
mutative diagram 

hr 
tlrx F ) gT 

11-' le(.\.T.O') 
'\xid h 

tlrxF _tlnxF~gO' 

If hO', hT belong to an atlas £, then we write I-' = Jf'(>t, T, a). 

PROPOSITION 2.1. If g/K is a block bundle with atlas £ then g is 
isomorphic with the bundle gl defined by 

gl(a) = tlnx F for each a E K(n), 

gl(>t, T, a) = (>t X id) 0 £(>t, T, a) for each (>t, T, a) E Map(:tt). 

Proof. The homeomorphisms IhO'I: gl(a) -+ g(a) clearly determine an 
isomorphism. 

2.1 shows that all the information about g is contained in the set 
Jt"(Map(:tt)) c Top(F). This motivates the next definition. 

Let A(F) be a Kan subgroup of Top(F). An A (F)-block bundle with 
base K is a pair (g, £(g)) where g is a block bundle over K with fibre F, 
and Jf'is an atlas for g such that Jf'(Map(:tt)) c A(F). 

AnA (F)-isomorphism of A (F)-bundles (gl' ~), (g2'~) is an isomorph­
ism g: gl -+ gz such that for each a E K(n) the element 1-'0' E Top(F)(n), 
determined by the following diagram, lies in A(F)(n): 

tlnx F ~ gl(a) 

11'a 1U(0') 

tln X F ~ gz(a). 

Note that the elements 1-'0' determine the isomorphism g. 
From now on we will confuse g with the pair (g, £) and write 'g is 

an A(F)-block bundle'. 
An A(F)-chart for g at a is an A(F)-isomorphism 

gO': g(tln, F) -+ gO', 

where e(K, F) has the natural A(F)-structure (charts being the identity 
maps). In other words gO' is simply a composition 

e(~n, F) ~ e(tln, F) ~ gO', 

where I-' E A (F)(n) and hO' E £'(g). 
We associate to g the principal A(F)-bundle P(g)/K defined by 

E( P(O )(n) = {gO' I gO' is an A(F)-chart for g at a E K(n)}. 
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).~(gO') is the element determined by 

6.rXF~g(T) 
l>.xid l~(>"T'O') 

6nxF~g(a), 
where T = )'#a. 
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In other words, if g().j;a) is regarded as a subspace of g(a) then ).#(gO') 
is defined 'by restriction'. It is easy to check that if gO' = hO' 0 JL then 
).~(gO') = hT~-l(;I.,a,T) o;l.I(JL), and hence lies in E(p(g))(r). 

Define E(P/g) X A(F) -+ E(P/(g)) by (gO', JL) -+ gO' 0 JL. Finally define 
7T: E(PW) -+K by 7T(gO') = a. 

It is trivial to check that isomorphic A(F)-bundles yield isomorphic 
principal A(F)-bundles. 

We now define the functor A(F)( ) by letting A(F)(K) be the set of 
isomorphism classes of A(F)-block bundles with base K and setting 
A(F)(f)[g] = [f*(g)), where f: L -+ K and f*(g) is given the induced 
A(F)-structure: for each a EL define hO' = hfO' where hfO' E £(g) and 
hO' E Jf' U*(g)). This makes sense since f*g(a) = g(fa) by definition. 

This makes A(F)( ) into a functor and it is easy to check that 

P( ): A(F)( ) -+ PA(F)( ), 

where P(K)[,] = [P(g)], is a natural transformation. 

THEOREM 2.2. P() is a natural equivalence of functors on t.. 

Proof. We need to show that P(K) is an isomorphism for each K. 
To prove it onto, let g/K be a principal A(F)-bundle and choose a 
pseudo-section s: K -+ E(g), i.e. a function s: Ko -+ E(g)o such that 
p 0 s = idx. Then for each (;I., T, a) E Map(K) define the element 
£(;1., T, a) E A(F)(r) by S(T)Jf'(;I., T, a) = ;l.1(s(a)). The elements Jf'(;I., T, a) 
determine an A(F)-block bundle gv with identity charts, as in the proof 
of2.1 and it is trivial to check that P(gl) ro..J" 2.1 implies that gl depends 
only on g and hence P(K) is an isomorphism of sets, as required. 

CoROLLARY 2.3. There is a universal A(F)-block bundle YA(F . over 
BA(F). 

Proof. Let YA(F) be the bundle defined by 2.2 such that P(y) is the 
universal principal bundle. Then the universality of Y is clear. 

Subdivision and amalgamation. We proceed to give formal proofs of 
the usual results on subdivision and amalgamation. 

We say A(F) satisfies the amalgamation condition (a.c.) if, given a 
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linear ordered triangulation J of ~n and an A(F)-bundle isomorphism 
f: £(J, F) -7 £(J, F), the element a E Top(F)(n) defined by the diagram 

lies in A(F)(n). 

I£(J,F)I ~ I£(J,F)I 

jid lid 
~nxF_~nxF 

lal 

Now let K' be a subdivision of the ~-set K (see I, § 4). Then for each 
a E K(n) we have a linear triangulation Ja of ~n and a ~-mapfa: Ja -7 K

r 

such that Ifal = lal, and for each face relation (.\, T, a) a simplicial 
inclusion J)..: JT -7 Ja . 

Now let glK' be an A(F)-block bundle. Define a block bundle gl/K, 
the amalgamation of g, by letting gl(a) = If:(g) I and defining gl(.\' T, a) 
by the diagram ./, 

If:(g) I ) Igl 
t1()..,T,a) j (IT 

If~W 

where la' IT are the natural maps. In other words, factor fT as fa 0 J~ 
and then gl(.\' T, a) is the bundle map from f~W = J>'(J:(O) to f:(g)· 

If A(F) satisfies the a.c. then we can give gl an A(F)-structure by 
choosing an atlas .;tl' with ha E :I(' defined by 

ITal 
I£(ta' F) I ---+ If:W I 

jid /~I 
~nxF 

when ta is any A(F)-trivialization. 
Now there is a bijection 

q: A(F)(K') -7 A(F)(K) 

given by 2.3 and I, 5.3, since IK'I = IKI. 
THEOREM 2.4. A8 a block bundle witluYut group (or equivalently as a. 

Top(F)-bundle), qW is the cla88 given by amalgamating r If,further, A(F) 
satisfies the a.c. then q(g) is given as an A(F)-bundle by amalgamating g-

Proof. We show that if A(F) has the a.c. then qW is given by amal­
gamating g. The first part of the theorem then follows by taking 
A(F) = Top(F). 

Let gl be the amalgamation of g, and let J be a subdivision of K ® I 
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which has K' on one end and K on the other_ Extend ~/K' to an A(F)­
bundle '7/J and let '7JK ® I be the amalgamation. Then '71 has ~1 on 
<me end and ~, say, on the other, while '7 has ~ and ~ on its ends. It 
follows that ~ and ~1 bound a bundle Cl, say, on L = J uK K ® I. But 
the cla.ssifying map for Cl gives a homotopy between those for ~ and ~1 
JIDd it follows that q(~) "-' ~, as required. 

Let the converse process to amalgamation be subdivision. 

CoROLLARY 2.5. Subdivisions exist uniquely if A(F) satisfies the a.c. 

Block bundles over polyhedra. Define an A(F)-block bundle ~ over 
.a polyhedron P to be an ordered triangulation K of P and an A(F)-block 
bundle ~/K. 

~ 0' ~ 1/ P are concordant ifthere is an ordered triangulation J of P X I 
.and an A(F)-block bundle 'YJ/J with 'YJ I PX{i} "-'~, (i = 0, 1). 

fo, ~1 are equiValent if they have isomorphic subdivisions (this is an 
~quivalence relation only if A(F) satisfies the a.c.; see 2.6 below for the 
proof). 

Denote by A(F)(P) the set of concordance classes of A(F)-bundles 
()ver P (this is coherent with § 1 using 2.2). 

CoROLLARY 2.6. Let K triangulate P. The natural map 

A(F)(K) -+ A(F)(P) 

is an isomorphism of sets. Further, if A(F) ha.s the a.c. then ~o, ~1 are 
equivalent iff they are concordant. 

Proof. The first part follows at once from 1.14 and 2.2. Suppose ~o, ~1 
have isomorphic subdivisions. Then they are concordant by 2.4. Con­
verselyif ~o/~, ~JK1 are concordant, then let Jbe a common subdivision 
()f~, K1 and let ~~, ~~ be subdivisions given by 2.5. Then ~~ "-' g~ by 2.4. 

Remarks. Induced block bundles are defined for a topological map 
J: P -+ Q using 2.2 and 1.12 (PG( ) is a homotopy functor) but for a 
direct construction we could use the construction given below 1.13. 

3. Block fib rations 

Let K be a ~-set. A K-complex Q is a functor from 1i to the category 
()f ow -complexes and embeddings of sub complexes which satisfies the fol­
lowing intersection condition for each pair (},I> TI> a), (~, TZ' a) E Map(.K): 

Q(>.v TV a){ Qh)) n Q(~, TZ' a){ Qh)) 

= { 0Q(>'3' Ta, a){ Q(Ta)) if Im},l n Im},2 = Im},a, 
if Im},l n Im ~ = 0. 
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A K-map f: Q1 -+ Q2 of K-complexes is a. map as K-spaces. There is 
an obvious notion of homotopy of such maps. 

PROPOSITION 3.1. AK-mapf: Ql-+ Q2 0fK-complexesisaK-7wrTwtopy 

equivalence ;,If each f(a): Ql(a) -+ Q2(a) is a 7wrTwtopy equivalence of 
ow -complexes. 

Proof. 'Only if' is obvious. To prove 'if' define the K-complex M, 
by M,(a) = MJfu), the cw mapping cylinder, with the obvious embeddings. 
We show that Q1 X {O} c M, is a strong K -deformation retract and the 
result follows. Denote QIcKn), etc., by Qf, etc. Suppose inductively 
that Q)'-l X {O} c M;-l is a strong Kn-1-deformation retract and prove 
the same for n. Then, using the intersection condition, we can work 
separately for each a E K(n). 

Define the sub complex Q(a) c Q(a) to be the union of the images of 
Q(A, 'T, a) for A E Map(dn) (..\ =1= id). Then denoting f(a) 1 Q(a) by g we 
have a deformation retract defined by the rl(T) (T < a): 

such that 

and 

r l : Mo -+ Mo, 

rt! Q(a) X {O} = id 

rlMu) c Q(a) X {O}. 

Now consider the inclusions 

Q(a) X {O} C Q(a) X {O} U Mo C M,(a). 

Q(a) X {O} c M,(a) is a homotopy equivalence by hypothesis, and the first 
inclusion is a homotopy equivalence since Mu n Q(a) X {O} = Q(a) X {O}. 
It follows that the second inclusion is a homotopy equivalence and hence 
that there is a strong deformation retraction 

rl : M,(a) -+ M,(a) 

of M,(a) to Q(a) X {O} U Mo' 
Extend TI to.Mj by defining rll Q(a) X {O} = id and then using the REP 

for ow-complexes. 
Now define r l( a): .Mj( a) -+ M,( a) to be rt 0 it. Then rt( a) is a strong 

deformation retract compatible with the inclusions of Q(T) for each 
T = ..\'a and hence continues the induction. 

A block fibration with base K' and fibre the ow-complex F is a. K­
complex g such that for each a E K(n) there is a Lln-homotopy equivalence 
LlnxF-+gu ' 

A block homotopy equivalence of block fibrations is simply a K -homotopy 
equivalence. g is block homotopy trivial if it is block homotopy equivalent 
to e(K,F). 
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Note that for each ~-map f: L -+ K we have the induced fibration 
f*(g) defined, as before, to be go I. If Le K then we write g 1 L for i*m. 

PROPOSITION 3.2. Given g/~n a block jibration and a block homotopy 

trivialization t: An." X F -+ g 1 ~." 
then there is an extension of t to 

~: ~nxF-+g. 

Proof. Since g is a block fibration, there is a block homotopy equiva­
lence h: ~nx F -+ g. Let~: g -+ ~nx F be an inverse to h (cf. 3.1). 

Now hI 0 t: ~." X F -+ ~ n X F extends to a block homotopy equiva­
lence g, say, of ~nx F with itself since we can write ~n as An." x I. 

Then consider hog: ~nx F -+ E(g). This is a block homotopy equiva­
lence and hog 1 An." X F = h 0 ~ 0 t is block homotopic to t via the 

homotopy M, say, M:An."xFxI -+gIAn.i' 
since h and hI are block homotopy inverses. 

Now write ~n = ~~ U An." X I when the latter is a collar neighbour­
hood of An.". ~~ is a 'smaller' n-simplex: 

A" .. xI 

Then define tl to be M on An." X F X I and to be hog 0 q on ~f, where 
q: ~f X F -+ ~n X F is the product of the linear identification with the 
identity map on F. 

CoROLLARY 3.3. Given block fibrations gi/~n (i = 1, 2) and a block 

homotopy equivalence h: g I I An.i -+ g 21 ~.i' then h extend8 to a block homotopy 
equivalence of gl with g2' 

Proof. Choose a block homotopy trivialization g: ~n X F -+ gl and an 
inverseg1forg. Thenh 0 gextendsto~, sa.y, by 3.2 and wecanhomotope 
hI to extend h by the REP for aw-complexes. 

The next three corolla.ries follow from 3.3 in the same way that 1.4-1.6 
followed from 1.3: 
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CoROLLARY 3.4. If ~L and if g,/K (i = 1, 2) are block fibrations 
then any block homotopy equivalence gll L -+ g21 L extends to one of gl 
with g2' 

COROLLARY 3.5. If K\..o then any g/K is block hornotopy trivial. 

COROLLARY 3.6. If g, 7J/K ® 1 are blockfibrations then any block homo­
topy equivalence g I K ® {O} -+ 7J I K ® {O} extends to one of g with 7J. 

Let g/K be a block fib ration where K is a ~-set. A chart for g at a is 
a block homotopy equivalence hu: ~nX F -+ gu' We now define the 
associated principal bundle P(g) of g: 

p(g)(n) = {hu I hu is a chart for g at a E K(n)}, 

face operators in P(g) are defined as in § 2 ('by restriction'), and 
7T: P(O -+ K is defined by TT(hu) = a. 

PRo:rOSITION 3.7. TT: P(g} -+ K is a Kan jibration. 

Proof· Let a E K and suppose given a lift f: An.'! -+ P(g) for ij I An.,. 
We have to extendf to a lift for ij. Now f can be identified with a block 
homotopy equivalence 

fl: An .• X F -+ gu I An.i' 
which we can extend to a block homotopy equivalence 

f2: ~nx F -+ gu' 

Define f (In) = 12' This extends f over ~ n, as required. 

The prolongation construction. Let g/K be a block fibration and 
f; Iln -+ P(g) a ~-map. We will construct a new block fibration gl/Kl 
which extends g. Write g = TTf: Iln -+ K and define Kl = K Uo Lln, i.e. 
define K~n) = K(n) U {a} and ;\#(a) = g(;\) for ;\: Llr -+ ~n. The other 
simplexes and face maps in Kl are those in K. 

Next write f1: IlnxF -+ g*(g) for the block homotopy equivalence 
determined by f and define gl(a) = Ig*(g) I u" Lln X F. Then there are 
natural inclusions of g(T) in gl(a) for T = ;\~a and this determines 
gl(;\' T, a}. On the rest of El let gl equal g. 

Define ProP(g) to be the block fibration obtained from g by this 
construction applied to every Ll-map Iln -+ P(g). 

Define Proln(g) = Prol1 (Proln- l(g)) and Prol(O = U Proln(g). 
a n 

PRO:rOSITION 3.8. The base B Prol(g) of Prol(g) is Kan, and P(Prol(g)) 
is Kan and contractible. 

Proof. Each Ll-map An -+ P(Prol(g)) has an extension to Lln by the 
construction of Proll( ). The proposition now follows from 3.7 exactly 
a.s in § 1 (soo 1.8, etc.). 
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CoROLL.ABY 3_9. Given a block jibration g/K 0 I, there is a block 
homotopy equivalerzce g I K 0 {O} ~ g I K 0 {I}. 

Proof. By Corollary 3.6 we only have to show the existence of 
g/K 0 I with gl/K 0 {i} (i = I, 2) both block homotopy equivalent to 
g/Kx{O}. But consider the inclusion 

i: Kx{O}-+ BProl(g/Kx{O}). 

Then by 3.8 there is a homotopy j, say, of i to itself. 

gl = j*(Prol(g/K X {O}») 

now satisfies the requirements. 

The classifying block fibration. Let O(F) be the Ll-monoid of which 
a typical n-simplex is a self block homotopy equivalence of Ll1l X F. 
Then for any block fibration g/K we have an action P(g) X O(F) ~ P(g) 
over K defined by composition. 

Let EO denote the trivial block fibration over Llo and define 

BO(F) = BProl(EO), EO(F) = P(Prol(EO»). 

Define inductively a base complex * c BO(F) so that 

Prol(EO) 1* = E(*, F), 

by letting *0 = Llo and *n be the simplex in B Prol(eO) defined by the 
Ll-map An ~ p(Proln-I(Eo») determined by the identity maps 

Llrx F -+ Proln-I(EO)(*r) 
for each r < n. 

PROPOSITION 3.10. 7T: EO(F) ~ BG(F) is a principal O(F)-fibration 
with contractible total space. 

(For a Kan Ll-monoid A, a principal A-fibration is a Kan fibration 
7T: E -+ B of based Kan Ll-sets with B connected and 7T-1(*) = A, and 
an action E X A ~ E over B which extends the multiplication in 7T-1 ( *).) 

Proof. This is clear from 3.8 and the choice of base-point in BG(F). 

Now denote Prol(eO) by y/BO(F), and let BfF(K) be the set of block 
homotopy equivalence classes of block fibrations with base K and 
fibre F. Then BfF( ) is a functor on A via the induced block fibration, 
and we have a natural transformation 

T: [ ; BO(F)] ~ BfF( ), 

defined by T(f) = f*(y), which is well defined in BfF(K) by 3.9. 

THEOREM 3.11. T is a natural equivalence of fUndo1'8 on A. 

Proof. We have to show that T(K): [K;BO(F)] -+ BfF(K) is a 
bijection. 

I i 
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T(K) is onto. Let glK be a block fibration and define g+IK+ to be 
the disjoint union g u EO. Consider the diagram 

, 
K 2 BProl(g) 

n nit 
".+ 

K+ C BProl(g+) __ P(Prol(g+)) 

u hlU& U 

/10 c B{}(F) ('" E{}(F). 

Then ie is a homotopy equivalence of Kan /1 -sets, since n, n+ are both 
projections of principal G(F)-bundles with contractible total spaces. 
Choose ahomotopyinverse hto if:. Now let cx = h 0 ill 0 il and f = cx*(y). 
Then it: 0 cx ~ i2 0 il since ia 0 h ~ id. Hence cx*(y) = (if: 0 ex)* Prol(g+) 
is block homotopy equivalent to (ill 0 i 1)* Prol(g+) = g, as required. 

T(K) is I-I. Use a similar argument to the above after noting that 
g is block homotopy equivalent to TJ ill they bound over K ® I. 'If' 
is 3.9 and 'only if' follows by gluing to TJ the bundle gl (constructed 
in the proof of 3.9), via the block homotopy equivalence. 

Subdivision and amalgamation. This part is so similar to the corre­
sponding part of § 2, that we just sketch it. 

Let K' be a subdivision of K and glK' a block fibration. Define .the 
amalgamation g1/K of g by letting gl(a) = If!(g) I [see the notation in 
§ 2], and defining gl(.\' 'T, a) exactly as in § 2. 

gl is a block fibration since f:(g) is block homotopy.trivial for each 
a E K (from Theorem 3.11) and the trivialization 

Ja X F -+ Ii:(g) I 

then respects the /1 ... -structure on each of these spaces, hence is a block 
homotopy trivialization of (gl)a by 3.l. 

THEOREM 3.12. The bijection 

q: BfF(K') -+ BfF(K) 

is determined by amalgamation. 

Proof. 2.5 readily adapts to prove 3.12. 

CoROLLARY 3.13. Given glK, there exists "IlK' such that TJlfK is block 
homotopy equivalent to g. 

Remark. One would not expect to do better than 3.13 and obtain 
"11 = g, since g might not have enough cells to subdivide. 

The long exact sequence. Let g{K be a block fibration. We define a 
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projection p: 1,1-+ IKI which is a map of K-spaces and is unique up to 
K-homotopy_ Suppose p defined on I,n-ll. Then the extension to any 
'(0') (0' E K(n» follows from the contractibility of ~n and the REP, as 
does the uniqueness. 

THEOREM 3.14. For any vertex v E K, p*( 1,1, 1,(v)l) -+ (IKI, v) induc,es 
isomorphisms of homotopy groups. 

COROLLARY 3.15. There is a long exact homotopy 8equence 

... -+ 7Tn(F) -+ 7Tn l,l-+ 7Tn IKI-+ ... 

Proof. This follows at once from 3.14, since I,(v) I ~ F. 

COROLLARY 3.16. There i8 a bijection between BfF(K) and the 8et of 
f.h.e. clas8es of Serrefibrations with base IKI andfibre having the homotopy 
type of F. The bijection is given by the proces8 of 'making p Serre' [see 
(8) for example]. 

Proof. Construct the inverse to 'making p Serre' as follows. Let 
,IIKI be a Serre fibration and inductively replace E(u*(g») by cw­
complexes of the same homotopy type [see e.g. (8)]. This defines the 
required block fibration up to b.h.e. Then the two functions are inverse 
by the usual argument, using 3.14. 

Remark. 3.16 and 3.12 recover Stashefl"s main theorem in (8), since 
A and cw are homotopy equivalent (see I, § 6). 

Proof of 3.14. We first replace (K, v) by Kan complexes. Let 
H(K):J K be the complex obtained from K by the 'horn 00' functor 
determined by repeatedly attaching simplexes along all horns in K 
[see I, § 6], and let * c H(v) be a base complex containing v. Then 
(IKI,v) c (IH(K)I, 1*1) is a homotopy equivalence of pairs. Now extend 
, to TJIH(K) by the usual method (extend the inclusion Kc BProl(,) 
over H(K) and then take induced block fibrations). 

To complete the proof of 3.14 we now require a lemma. 

LEMMA 3.17. (IH 1,(v)l) c (1"11,1"1 I */) isahomotopy equivalence ofpair8. 

Proof. If K",,-L and if ,IK is a block fib ration then it is trivial to 
construct a deformation retract of "Ion I, I L I. It follows by induction 
that I" c 1"11 is ahomotopy equivalence. But Ig(v)1 c 1"1 I *1 is a homotopy 
equivalence since 1*1 is contractible. 

We may now complete the proof of 3.14 as follows. By 3.17 we have 
to show that 

induces isomorphisms of homotopy groups. 
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p. is onto. Let f: (In, in) --?- (IH(K) I, 1*1) represent an element of 7Tn­

By I, 5.3 we can approximate f by a ~-map f1: K -+ H(K) where K is 
a. simplicial complex and ~O. It is then easy to lift f1 to 11]1 up to 
homotopy within cells. 

p. is 1-1. The proof of this part is similar. 

Block bundle.9 and block jibrations. We now examine the connection 
between block bundles and block fibrations. We first observe in analogy 
to remark (2) after Theorem 1.12, that there is a fibration (up to homo­
topy type): 

O(F)jA(F) ~ BA(F) ~ BG(F), 

which is obtained by factoring the first two terms of 

G(F) c EG(F) -+ BG(F) 

(3.18) 

by A(F), which acts freely. Then EG(F)jA(F) ~ BA(F) from the 
classification theorem. 

We proceed to identify G(F)jA(F) as the classifying space for the 
theory of 'A(F)-block bundles with block homotopy trivialization' as 
is suggested by the fibration 3.18. 

We consider pairs (g, t) where gjK is an A(F)-block bundle and 
t: g -+ £(K, F) is a block homotopy trivialization. (gv t1 ) is isomorphic 
to (gz, t z) if there is an A(F)-isomorphism h: gl -+ gz such that tz 0 h = t1· 

PROPOSITION 3.19. There is a bijection between the set of il-maps 
K -+ G(F)jA(F) and the set of isomorphism classes of A (F)-block bundles 
base K with block homotopy trivialization. 

Proof. Given t: g --?- £(K, F), define tf: K -+ O(F)jA(F) by 

t'(a) = {gha 1 ha is a chart for g at a}. 

This is readily proved to induce the bijection. 
Now let (y, ty)jG(F)jA(F) be the A(F)-block bundle with trivialization 

given by 3.19 and the identity map. Define induced bundles in the 
natural manner-f*(g,t) = (f*g,t o f)-and then the bijection of 3.19 
is clearly induced by sending f to f*(y, ty)' 

Next define (gv t1 ), (g2' tz) to be equivalent if there is an isomorphism 
h: gl --?- gz so that the diagram 

gl ""'-t 
hl )£ 
g2/t, 

commutes up to block homotopy. 
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PROPOSITION 3.20. (go, to), (gv t1 ) are equivalent if! there is a pair 
(7], t)/K ® I with (7], t) 1 K ® {i} '" (gi' ti ) (i = 0, 1). 

Proof. 'If' is obvious. To prove 'only if', find 1J/K ® I with ends 
isomorphic to gi by the usual method and use the given homotopy (and 
the fact that if '/D." X I then 1'1 '"" 1 'ID."X {O}I X I) to construct com­
patible maps 

for each G E K, where fa: D." 0 1--+ K 0 I is the map which covers the 
characteristic maps for G. 

We have to deform the ta to make them preserve the block structures 
off!(7]) for each G, but there is no obstruction to doing this inductively. 

Now let A(F)t(K) denote the set of equivalence claases of A(F)-block 
bundles over K with block homotopy trivializations and make A(F)t( ) 
into a functor via the induced bundle construction. 

THEOREM 3.21. The natural tra1U3formation 

T: [ ; O(F)/A(F)] --+ A(F)t( ) 

given by T[j] = [f*(y, t)] is a natural equivalence. 

Proof. This follows from 3.19 and 3.20. 

Remark. We can easily identify i and TT in (3.18) as the maps which 
classify y as an A (F)-bundle and the classifying block bundle as a block 
fibration respectively_ 
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