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Introduction

Ix this paper we develop the homotopy theory of semi-simplicial com-
plexes which do not have degeneracy operators; we call such a complex
& A-set. In the original study of semi-simplicial theory it was natural to
introduce degeneracies, since the canonical example—the singular com-
plex—has degeneracies, also the definition of the product of two semi-
simplicial complexes appears simpler with degeneracies than without
(see § 3). However, a semi-simplicial complex without degeneracies is
geometrically a simpler object than one with degeneracies, and we will
show that the Kan condition [see (1)] can be used to replace the use of
degeneracies in the usual approach [see e.g. (2)]. This paper arose out
of our previous work (4) in which we defined A-groups which had no
degeneracy homomorphisms (and no natural degeneracy functions).

Our main result, Theorem 5.3, is a strong relative ‘simplicial approxi-
mation’ theorem for Kan A-sets:

Suppose Z c Y is a pair of A-gets and X is a Kan A-set. Suppose given
a map f:|Y]|— |X| such that f||Z| is the realization of a A-map.
Then f is homotopic rel|Z| to the realization of a A-map f': ¥ - X.

The theorem implies the equivalence of the homotopy categories of
Kan A-sets and ow-complexes. We also have an approximation theorem
in which X is not assumed to be Kan and Y is allowed to be derived
away from J (5.1). Both theorems are deduced painlessly from Zeeman’s
relative simplicial approximation theorem for simplicial complexes (8),
and some elementary collapsing lemmas.

The material is organized as follows. In§§ 1 and 2 we compare A-sets,

oss-sets, and ow-complexes, and the realization functors. In§ 3 products
of A-gets are introduced and elementary properties proved. § 4 contains
the collapsing lemmas needed for the main theorems in § 5. As a conse-
.quence of 5.3 we show that a Kan A-set always admits a system of
degeneracies! § 6 is devoted to homotopy theory, in particular homo-
topies of polyhedra in A-sets are defined—a concept which originated
from (4). In§7 we prove a polyhedral lifting property for a Kan fibration
of Kan sets and in §§ 8 and 9 we show how minimal complexes and
function spaces may be treated in the absence of degeneracies.
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In the second half of this paper we will apply our results to A-groups
and A-monoids in which it may not be possible to install a system of
degeneracy homomorphisms.

1. Semi-simplicial complexes

Let A” be the standard n-simplex in R#+! with vertices v,,..., v,,, where
v; = (0,...,0,1,0,...) with 1 occurring in the (14 1)th place.

Then css is the category with objects A™ (n = 0, 1, 2,...) and whose
morphisms are the simplicial maps determined by order-preserving
vertex maps. Define A to be the subcategory of css determined by the
injective maps.

A css-set (pointed css-set, css-group, etc.) is & contravariant functor
from css to the category of sets (pointed sets, groups, etc.). Replacing
088 by A gives definitions of A-sets, etc. A css-set or A-set is often
referred to as a complez. If X is a ¢sS- or A-set then X®W = X(A¥) is
the set of k-simplexes of X. A map A: A® > A¥ in ¢s8 induces A* = X (A):
X® > X@_ If Ais injective then A¥ is called a face map and A¥(o¥) is called
a face of o*, otherwise A% is a degeneracy operator and X(o*) a degeneracy
of o*. A simplex  is degenerate if it is a degeneracy of some o, otherwise
T i8 non-degenerate. A A-set is locally finite if 0 € X = o is a face of only
finitely many simplexes in X. It is also convenient to denote the set
U {X® |k a non-negative integer} by X. A simplicial complex K is
ordered if a partial ordering of the vertices of K is given so that the
vertices of any simplex of K are totally ordered. Then K determines
a A-set also denoted by K and a css-set denoted by K defined as follows.

K™ = {f|f: A" - K is injective, order-preserving, and simplicial},

K™ = {f|f: A" > K is simplicial and order-preserving}.

A¥f is defined to be fo A.

In particular with these definitions A®* now denotes both a subspace
of R*+1 and a A-set. In the latter case (A®)@ = {u|u: A2~ A, n e A}.

Now suppose that X, Y are css- or A-sets. A A-map or css-map
J: X > Y is a natural transformation of functors. This means that we
have commutative diagrams

xb 2, g0

(k) (l)
& — > Y@

where f™ = f(A7). We get a category of A-sets denoted by A and the
category of oss-sets denoted by css. There is a forgetful functor
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F': css > A defined in the obvious way and if K is an ordered complex
there is an inclusion K ¢ F(K). Now suppose K, L are ordered complexes
and f: K —» L is an order-preserving simplicial map, then a 0ss-map
J: K> L is defined by f(o) = f o 0. If in addition the map f: K - L is
injective on simplexes then it may be regarded as a A-map.

In particular & morphism A: A*—» A¥ in A may be regarded as a
morphism in A. Then Au) = Ao pu.

If X is a pointed A-set or css-set we denote the base simplex in
dimension k by *,. The base simplexes form a subcomplex * c X.

A group complex Gis pointed by the identities ¢, € G® and a 0ss-set X
can be pointed at any vertex %,c X© by setting %, = u%*, where
p: A¥ > A% ig the unique map.

If X is a complex the subcomplex of X generated by o € X® is de-
noted by o and the subcomplex generated by all (proper) faces of o is
denoted by . The simplex o determines a characteristic map 6: A¥ > X
defined by 6(x) = p¥(s). In the 0ss case 6: Ax > X.

8;: A¥-1 » Ak ig the morphism of A such that v; ¢ image(3;) and 8 is
usually denoted by 8;. It is an easy exercise to show that any face map
factors into a product of 9;s.

The i-th horn A, ; of A™ is the subcomplex of A™ defined by

An.i = Aﬂ_{ln}—{ai ln}’
where 1, = 1,.: A® > A™,
LEMMA 1.1. Every ¢: A™ - A¥ in 088 factors uniquely as ¢, o ¢y with
¢y surjective and ¢, tnjective.
Proof. There is a unique order-preserving isomorphism ¥: A™ - im(¢)
and we must have ¢, = ¥-1 0 ¢ and ¢, = incl. o V.
A left adjoint @ for F: css — A is defined by

A X)® = {(n, 0) |o € XD, u € cs8, and pu: A*¥ - A is surjective},
and by setting A¥(u, o) = (¢s, ¢f 0) where ¢ = pd and ¢ = ¢, o ¢, is the
factoring of Lemma 1.1.

If XY is a A-map then G(f): G(X)—> G(Y) is defined by
Q(f)(,0) = (p,f(0)). We leave the reader to check that G is a functor
and we prove adjointness after some further definitions and lemmas.

Definstion. Let Y be oss, then the core of Y is the A-subset
Core(Y) c F(Y)

consgisting of the non-degenerate simplexes of ¥ and their faces. We
say Y is ndec if there are no degenerate simplexes in its core.
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The following lemma is well known and easily proved.

Lemrma 1.2 (Eilenberg-Zilber). Let Y be cssand let o € Y™, Then there
exists a non-degenerate simplex 7o and a surjective p, such that o = uf =,
and if also o = pjr, with T, non-degenerate and p, surjective then
,U,0=/.L1a'nd7'o=‘7'1. ]

Remark 1.3. G(X) is nde and its core consists of simplexes (1,,o™)
and may be identified with X. Each simplex (u, ") is uniquely written
as p¥(1,, 1").

ProrosrTioN 1.4. Suppose ¢, [: Y, > Y, are css and g(7) = f(r) if
t8 non-degenerate. Then g = f.

Proof. Let 0 €Y,. Then by 1.2, ¢ = p¥r with 7 non-degenerate and
g(0) = g(p*7) = pg(r) = p¥f(r) = f(uPr) = f(o0).

Now define §: G(Core(Y)) > Y by 0(p,0) = u¥o. Then 0§ is a cSs map,
SIS N (i, 0) = B(¢y, pE o) = PE bt = Mufo = N0(u, ),
where uA = ¢, ¢, is the decomposition of Lemma 1.1.

ProrosrTioN 1.5. §: G(Core(Y)) > Y s onto for any Y and an tso-
morphism if Y 18 ndec.

Proof. Let a€ Y. Then o = u¥r with 7 non-degenerate by 1.2 and
6(p, 7) = o, which proves that 8 is onto. Suppose now Y is ndc and
B(po, 70) = B(py, 7). Then pfry = pfr; and pg = py, 79 = 7, by 1.2.

Suppose f: X »> FY is a A-map. We define the adjoint 0ss-map
f: X > Y by f(u, 0) = pif (o)

Remark 1.6. Observe that by combining 1.3 and 1.4 we may regard
f as the unique extension of .

TeEEOREM 1.7. The map ¢: {X, FY} > {GX, Y}, defined by $(f) = f, is
an adjunction morphism.

Proof. Since f is obtained from f by restriction it is clear that ¢ is
injective. Let g: GX - Y. Then g = f for some f by Remark 1.6 and
80 ¢ is surjective. We leave naturality to the reader.

2. The realization functors

Let cw denote the category of cw-complexes. In this section we
introduce two more pairs of adjoint functors so that there are commu-
tative diagrams

G
A——>css A<—css

w4
cw
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Here S is the well-known singular complex functor, || and ||, are
realization functors.
Let Y be css. Then |Y|,, is formed from the disjoint union

U {"}x A% o€ 7)
by identifying pairs (o, A(z)) with (A%o,z). If X is a A-set then |X| is
similarly defined. Then |X| is & cw-complex having one cell for each
simplex in X and |Y |, is & cw-complex having one cell for each non-
degenerate simplex of Y. (The functor ||, was introduced by Milnor in
(3) and the reader is referred to this paper and to (2) for unproved facts
about ||5.) Now let f: W — Z be a A-map (resp. css-map), then
1 1W]— |Z]  (vesp. |flar: |Wlar = |Z1a)
is defined by

[fl[o™ 2] = [f(o™), 2] (resp. [f[ulo™ x] = [f(a™),2]).

In particular |f| is &8 homeomorphism when restricted to the interior of
a cell of [W|. Further, ||5; and S (and similarly || and F o 8) are adjoint.

Prorosrrion 2.1. Let X be a css-set and Y a A-set. Then |[FX| and
| X |5y have the same homotopy type, and |GY |5, and Y | are homeomorphic.

Proof. Let o € X™. Then o = u*r, where p is surjective and = is
non-degenerate, by 1.2. Now define g(o,2) = (7, u(z)), where x € A™.
Then g respects identifications and determines a map g: |FX| > | X |,
It is now a standard exercise to show that g induces isomorphisma of
homology and fundamental groups. The result then follows from
Whitehead’s theorem (6). It follows from the definitions that |GY|,,
and |Y| have the same cell structure and hence in particular are homeo-
morphic.

3. The products X @ Y and X XY
Let X and Y be A-sets (resp. css-sets). Then define X XY by
(XXY)m = XY™ and M(z,y) = (Alz, Aly).
Then X XY is a A-get (resp. oss-set) called the product of X with Y.

Now let X and Y be A-sets. The geometric productof X withY, X @ Y,
is defined by X ® Y = Core(G(X)x G(Y)).

Remarks 3.1. If X = A! and Y is a A-set then X X ¥ has simplexes
only in dimensions 0 and 1 and is consequently not a very interesting
object. This example provides motivation for the geometric product.
We shall show later (5.10) that if X and Y are both Kan then |[X X Y|
has the same homotopy type as | X @ Y|.
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Suppose that K is an ordered simplicial complex with vertices {o}.
Consider now (ay,...,oy) With ay < ... < . Then (..., o) corre-
sponds to the simplex (u,o) € @K = K, where ou(v,) = oy,. Further,
(0tgs-+-» ) i8 in K c K if and only if oy, 7 «,,, (0 < 8 < 7).

We now define an ordered simplicial complex F, , such that as a
space P, = A"XA™c R*+m+2 and a typical r-simplex r of GF,,, is
denoted by ((vy,, v,,),---, (¥4, 9;,)), Where 3, < 1,,; and j, < jouy (0 < 8 < 1),
Further, risin P, ., ifand only if s, 5 ¢, orj, # j,,, foreachs (0 < s < 1).

A css isomorphism ¢: GA® X GA™ > GF, , is defined by

B((1X), (1)) = ((uel00), X' (00))or (s, X' (2,))),
for each r-simplex ((u, A), (', A") ) of GA™ X GA™, It follows that ¢ restricts
to & A-isomorphism A™ ® A™ > F, .

Let X, Y be A-sets and let o® € X and v €Y. Then there is the
canonicel map G(A™ ® A™) > G(X) X G(Y) which restricts to a map
A" ® A™ > X ® Y. From this and the above discussion we see that
X ® Y may be defined by taking a copy of the prism P, , for each
o € X" and r € Y™ and then making identifications. There is a canonical
homeomorphism of |[A® ® A™| with |A®| X |A™| and we have

TaEOREM 3.2. Let X, Y be A-sets. Then the map
' f: GX ®Y) > X)X &Y)

8 a 88 tsomorphism and | X ® Y| 18 canonically homeomorphic with the
cw-complex |X | X |Y|. Further, if esther X or Y 18 locally finite then the
product topology on | XX |Y | coincides with the ow topology.

4. Subdivisions and collapsing

It will be convenient to confuse a A-set X with the complex |X|
equipped with its characteristic maps |6|: |A?| - [X|. Then X, is a
subdivision of X if |X,| = |X| and if for each o€ X{V there exists
a 7€ X™ (some m > 0) and a linear embedding e: [A"] - |A™| 50 that
|7l o e=|&|.

Note in particular that if K is & simplicial complex and X, X, are
obtained from K by ordering vertices, then X is a subdivision of X, and
conversely!

Recall that a derived subdivision of a simplicial complex may be defined
inductively (in increasing dimensions) by replacing a simplex by the
cone on its derived boundary or by itself. This definition readily extends
to A-sets—order the cone point later than all vertices in the boundary.
By iterating r times we get an rth-derived. If every simplex is replaced
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by the cone on its boundary then we have the 1st derived dX, and again
by iterating we have the r-th derived d'X.

Suppose X ¢ Y and let Y’ be the derived of ¥ obtained by replacing
a simplex by itself when possible, subject to the condition that dX c ¥".
We refer to Y’ as Y derived at X. There is a simplicial map of a derived
X’ to X defined by mapping a vertex of X’ to the last vertex of the
smallest simplex of X in which it lies.

Note that if we begin with a simplicial complex K then the vertices
of dK are partially ordered so that dK may be regarded as a A-set.
Conversely if we begin with a A-set X then d2X may be regarded as
a simplicial complex, since after deriving twice ¢ 7 j implies d;0 # 9;0.
In particular if X is locally finite then |X| = |d2X]| is a polyhedron (in
the sense of (8)) in a natural way.

Recall now that if f: A™ > A is a simplicial map then we can define
a simplicial complex 3], the mapping cylinder of f [see (5) 259]. Further,
there are natural disjoint inclusions A®, dA®, Ar c M, and each vertex
of M, is in the image of one of these inclusions and no simplex of M, has
vertices both in A™ and in A", so that M, becomes a A-set by ordering
all the vertices of dA™ later than those of A® and A".

We now generalize this construction. Let X and Y be A-sets. A map
J | X| > |Y| i8 simplicial if for each o € X there is a simplicial map f,
and & commutative diagram

x| -L> 1)
L I7]
A =25 AT,
where » = f(o).

The mapping cylinder M, is the A-set obtained from the disjoint union
U {M,, |0 € X} by identifying the mapping cylinder of f, | A(A™) with
the mapping cylinder of fyz, for each o and A: A™ —» A™ in A.

Then there are inclusions X, dX, ¥ ¢ M,. In particular M,, where
1 = 1x: X > X, is obtained from |X|X I by inductively deriving the
‘prisms’ |o|X I at their barycentres. Also there is a folding map
v: M, > M, which identifies X ® {0} with X @ {1} and restricts to the
identity on dX.

We now extend the notion of collapsing for simplicial complexes [see
e.g. (5) 247] to A-sets. Suppose a A-set X contains & simplex o which
is not the face of any other simplex and  is a free face of o, i.e. 7 is the
face of no other simplex except o. Then ¥ = X—{o, 7} is obtained
from X by collapsing o from . Then Y is a subcomplex of X and we
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write X\Y. We say X collapses to Z, and write X \\Z, if there exist
subcomplexes X, (1 = 1,...,n for some n) of X such that

XnX a2 X;.. 00X, = 2.

Lemma 4.1. If X\\Y and X' 18 a derived subdivision of X snducing Y’,
then X'\\Y".

Proof. By induction we may suppose XwY by collapsing ¢ from 7.
Corresponding to |5|: |A"| - |X|, there is a derived map

&']: [A™] > | X].
Then by the result for simplicial complexes [see (9)], A* collapses on to
@ = |6']71|Y’|. But |6'| is clearly injective on the complement of ¢ and
this collapse induces the required collapse X™\\Y".

Lemma 4.2. If X\Y then there exists a subdivision X' of X, so that
Y c X', and a stmplictal retraction r: | X'| > |Y|.

Proof. The result for simplicial complexes adapts as in the proof of
4.1 above.

Recall that o denotes the A-set generated by a simplex o € X, and &
denotes the union of the proper faces of o.

LEMMA 4.3. The complex o ® I derived at one end collapses to either
end together with © ® I.

LeMMa 4.4. If f: 0>t 18 simplicial and onto then M,\NM,, where
g =/fle.

Proofs. In both cases we may assume that o = A® (r = A" in Lemma
4.4) agin the proofof 4.1. Then 4.3 follows from 4.1 by using the cylindri-
cal collapse of A™ ® I [see (9)]. For Lemma 4.4 we use the Whitehead
collapse [see (5)].

Remark 4.5. The collapse of 4.4 can be taken to respect the half-way

level, i.e. the collapses which meet vertices of ¢ c M, can be performed
first.

5. Simplicial approximation and the generalized extension
condition
First we prove a simplicial approximation theorem in the category A.

THEOREM 5.1. Suppose JcY and X are A-sets, f: |[Y| > |X| 15 a
continuous map, and f||J| = |g|, where g: J > X 18 a simplictal map.
Then there exists a simplicial map f':|Y'| > |X| and a homotopy
H:f ~ f'rel|J|, where Y’ s a subdivision of Y and J c Y'.
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Proof

Case 1. Assume Y is finite. Let Y, denote ¥ derived n times but J
only twice so that d®J c Y,. By the relative simplicial approximation
theorem in (8) there is an n and a simplicial map f;: |Y¥,| > [d2X| which
is homotopic rel|J| to f. Now let X (resp. J) denote M, x (resp. 3M,;)
derived twice at the 0-end and let Y denote 2, derived at the 0-end
so that Y, is there. Then J c Y (see diagram 1).

1 0 0 1
J
dx .
[ X
Y b4 Ya X p X
Diagram 1

Let p: |X| > |X ® I| > |X| be the obvious simplicial composition.
Now Y\(J U Y,) by Lemma 4.4 and so by Lemma 4.2 there is a sub-
division Y’ of ¥, so that JUY,cY’, and a simplicial retraction
r:|Y'| > |JUY,|. Definef’:|¥Y'| > |X| by

fe) = {pgr(:v) if r(x) ¢ domain f;.

pfir(x) if r(z) € domain f,,

It is easy to check that f’ has the desired properties.

General case. This follows from Case 1 by induction over the skeleta
of Y.

Let X be a A-set. Then X satisfies the extension condition for the pair
of A-sets (Z, W) if every A-map f: W > X extends over Z.

X is Kan if X satisfies the extension condition for the pairs (A®, A, ).
A o0ss-set Y is Kan if Y is Kan. We then have by an easy induction

ProposITION 5.2. A Kan A-set has.the extension condition for each
A-pair (W, Z) such that W\ Z.

THEOREM 5.3. Suppose (Y, J) 18 a pair of A-sets and X 18 a Kan A-set.
Suppose given f: |Y| > |X| such that f||J| = |g|, where g: J > X 13 a
A-map. Then there exists a A-map f: ¥ - X and a homotopy

H:f~ |f'|rel|lJ]|.
Proof

Case 1. Y finite and g: J c X an tnclusion. As in the proof of 5.1 we
have JcY, X and ¥, ¥,cY and d*X, Xc X. Let (M,M,) be the
mapping cylinders of f; and and 1;,. By identifying the ends of M with
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the 0-ends of ¥ and X we have a A-set Z pictured in diagram 2 (the two
copies of J in the diagram should really be identified).
1 0 0 1

. J
X |x

J M
Y Y M

DiagraMm 2

We describe a A-retraction of Z on X. The restriction of this retraction
to Y will give the desired A-map f': ¥ - X. First observe that the
bottom half of M, (right-hand half in diagram 2) together with J c X
collapses to J by Lemma 4.4 (see also Remark 4.5). By using the
folding map v: M; - M,, the collapse, and 5.2 it is clear how to define
the retraction on J U M,. By Lemmas 4.1 and 4.4 there is a collapse
ZN\JM, U J U X and a final application of 5.2 can be made to complete
the definition of the retraction. It is now easy to check that f’ has all
the desired properties.

Case 2. Y finite. Define¥ = ¥/~ where o, ~ o, if 0y, 0, € J and
g(oy) = g(gy). Then f factors via |¥| and Case 1 may be used.

General case. This follows from Case 2 by induction over the skeleta
of Y.

CoroLLARY 5.4. A Kan A-set satisfies the generalized extension con-
dition (GEC), s.e. X satisfies the extension condition for pairs (W, Z) such
that |Z| t8 a retract of |W|.

We can also use Theorem 5.3 to show that a Kan A-set admits
degeneracy operators. First we prove two lemmas.

LemMA 5.6. Let X be a A-set and o € X™. Then there 18 a deformation
relraction r: |[FQ(o)| - | FG(6™) U o™|, where o t8 included in FG(c) by
the map ¢-1(1g,).

Proof. It is enough to show that the inclusion

+: |FG(-™ U a™| c |FQ(o)|
is & homotopy equivalence. One simply checks that + induces isomor-
phisms on 7, and H,( , Z) using well-known techniques ; the result then
follows from Whitehead’s theorem (6).

Lenmia 5.6. A A-set X admits degeneracy operators +f and only if there
exists a A-retraction r: FG(X) - X satisfying r(A,r(n,0)) = r(ud, o) for
al A, p, o.
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Proof. Suppose X admits degeneracy operators. Then r(A, o) = Afo
gives the required retraction. Conversely, given a retraction r, define
Mg tober(dy, Af o) where X = A, A, is the factoring provided by Lemma 1.1.
Now let A: A —> A™, ;: A™ - A%, Then by 1.1 there is a commutative

\/\/
N

where A,, ¢, pq are surjective and A, ¢,, u, are injective. We must show
Au¥ = (uA)¥. From definitions we have

N(uFo®) = Nor(pg, puf o)
= r(Ag, M (g, i o))
= 7(Ag, "M{(1t2, i 0))
= 1Ay, (s, (1, $)¥0)),

but (pA)fo = 7(pgAg, (1, ¢1)%0) and the result follows from the condition
on r.

THEOREM 5.7. A Kan A-set X admits a system of degeneracy operators.
Proof. We define inductively d;: FG(Sk*X) - X and

ry: FG(image(d,;)) - image(d,) ¢ X,

where Sk*X denotes the ith skeleton of X, so that r,(A, r;(, o)) = r,(ud, o)
whenever this makes sense and d; (resp. r,) extends d,_; (resp. r;_,).
The induction begins by taking d_, = r_; = the empty map. Suppose
now that r,,_, has been defined and o € (X™—imr,__,). Let

8, |FQ(o)] > |FG(s) VU a]

be the retraction of Lemma 5.5. Now apply Theorem 6.3 with Y, J, X,
f, g replaced by FG(e), FG(6)V o, X,r, .0, U1, r._ U1 respectively
to get a map g,: FG(o) > X. Then define dn(p,, o) = g,{u,0) and
ro(, d,(A, 0)) = d,(An, 0). Finally define r = |J {r,}. Then r satisfies
the condition of Lemma 5.6 and the theorem is proved.

Remark 5.8. The proof of 5.7 shows that | X| c |FG(X)| is a deforma-
tion retract, since the maps 8, used in the proof were deformation retrac-

tions. A specific deformation retraction can also be defined using formula
(20.8) on p. 104 of (7), even in the case when X is not Kan.
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CoROLLARY 5.9. A Kan A-set can be based at any vertex.

Proof. Let %, € X©@ be the vertex. Then introduce degeneracies and
define *, = pé*,, where pu: A¥ > A® is the non-empty map.

COROLLARY 5.10. If X and Y are Kan A-sets then | X X Y | has the same
homotopy type as | X @ Y.

Proof. Introduce degeneracies. Then [XXY|~ |XxY|, and
| X | X |Y] =~ | X {34 X |Y |3 by Proposition 2.1. Finally

| XXY a2 | Xy X [¥]y by (3),

and X® Y|~ |X|x|TY| by 3.2.

6. Homotopy of A-sets

Definition. A-maps f,, f;: X > Y are homotopic, f, =~ f;, if they are
restrictions of a map F: X @ I »> Y.

THEOREM 6.1. SupposeY t8a Kan A-set. Then mapsf,, f, are homotopic
if and only if their realizations |f,|, |f,| are homotopic.

Proof. Since | X @ I|~ |X|x |I|,itissufficient toshow that |f,| =~ |f;]
implies f, ~ f;. This follows from Theorem 6.3.

Remark 6.2. If a homotopy F': |f,| ~ |f.| is already a realization on
a subcomplex of X, ie. F||Z|X|I| = |G| for some G: ZQ I->7Y,
z ¢ X, then the resulting homotopy f, ~ f; may be agsumed to extend G.

There is also a version of 6.1 for maps of pairs of A-sets, etc.

CoroLLARY 6.3. Homotopy of A-maps 48 an equivalence relation when
the range snvolved 18 a Kan A-get.

Using 6.1 and 6.3 we can define a category AA with objects Kan A-sets
and Morph(X,Y) = [X, Y], the set of homotopy classes of A-maps.

Now recall that a polyhedron P is a topological space, denoted by | P|,
together with a maximal family & of homeomorphisms ¢: |K| - |P],
where K is a locally finite simplicial complex (and there is no loss in
assuming K ordered) satisfying: ¢, ¢, € # implies #;%, is PL. The
elements of & are called triangulations of P.

Definition. Let X be a A-set and let P be a polyhedron. Then a map
(f,t): P> X is a triangulation ¢: |[K|— |P| and a A-map f: K > X.
Maps (fy, t,) and (f,,t,) are homotopic if there exists a map

(F,T): PxI—>X
80 that the appropriate restrictions yield (f,,¢,) and (f,,¢)-

Homotopy is easily proved to be an equivalence relation where the

range is Kan and we denote the set of equivalence classes of maps P > X
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by [P, X]. The next theorem shows that in representing a homotopy
class or a homotopy there is freedom of choice of the triangulation
involved. The theorem also has relative versions.

THEOREM 6.4. Let t;: |[K;| > |P| (¢ =0, 1) be triangulations of the
polyhedron P and let a € [P, X], where X ts a Kan A-set. Then

(1) « 48 represented by some (fg,1,),

(1) #f (forto) = (f1,t1) and t: |[K| - [P X I| extends t, and t, then there
exists f: K - X extending f, and f,.

Proof. This is an application of Theorem 5.3. For (i) one also needs
Lemma 2.5 of (4).

Remark 6.5. Let Y be a locally finite A-set so that |¥ | is a polyhedron
in a natural way and denote it by Py to avoid confusion. It now follows
from 6.1 and 6.4 that the obvious maps [|Y|,|X|] < [¥,X] - [Py, X]
are bijections.

Now let X, Y be Kan A-sets pointed by * ¢ Y c X. We define homo-

to b

PYBOUER DY m (X, Y, %) = mo(IX], Y, [o]),

(Y, %) = 7 ([T, [%]).
Asis usual we simply write 7,,(X,Y) and =, (Y) if X and Y are connected.
It follows from a relative version of 6.5 that we could also have defined
mo(X,Y, %) tobe[Zn, % 57 X ¥, x|, where Z7 is the polyhedron defined
by Z* = {x € R**: |z;| = 1forsomes(l <+ < n4+1)and0 < |z,] < 1
forallj (1 <j<n+1)}and
Sr={reInmz,, >0} Sy ={zeimz,, <0}
Similarly we could define 7, (X, %) to be [, Z*-1; X, %], where
In = {x € R™: |z;| < 1 for each 3}

There is another definition of homotopy groups [see (2) 7] which we

refer to as the Kan definition. Although it refers to css-sets, degeneracies

are not needed for the definition and again using 8.5 one readily shows
that the result agrees with our definitions.

TBEOREM 6.6. Let X and Y be connected pointed Kan A-sets and let
f: X > Y be a pointed A-map which induces 1somorphisms
Ja: 7 (X) > 7, (Y) foralln = 0.
Then f 18 a homotopy equivalence.
Proof. From Whitehead’s theorem we have that |f|: | X| > |Y] is
a homotopy equivalence. Let ¢: |Y| > |X| be a homotopy inverse.
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Use 5.3 to homotope g to |g'| where g': Y - X is a A-map, and again
to replace H: |f||g’| = 1 and G: |¢’||{f| = 1 by homotopies in A.

Remark 6.7. Theorem 6.6 gives simple conditions for X c Y to be
& deformation retract. For example, the condition used in (4) § 5: any
A-map A, ; > Y which carries A, into X extends to a A-map A" > Y
which carries 9; A" into X. This can now be interpreted as saying that
a typical element of =, (Y, X) is zero.

THEOREM 6.8. Let hew denote the category of ow-complexes and homo-
topy classes of maps. Then ||: hRA - hcw 18 a natural equivalence.

Proof. There is no loss in assuming that all A-sets and cw-complexes
are connected.

There are adjunction morphisms tx: X - S|X| and jp: [SX)| > Y
[see (3)], and since jix o |ix| = id x;, it suffices to prove that ix is a
homotopy equivalence or, by 6.6, that t,: 7, (X) > 7,(S|X]) is an iso-
morphism. Now %, is a monomorphism and to see that i, is onto it is
convenient to use the combinatorial definition of =, () and let

[fD] € 7T11(S|X|)’
80 that f,: (I, £7-1) > (8] X|, ix(%)). Then

Jixi © 1fol: (17, |Z772) — (1X1, |*]),
and this is homotopic rel|2*-1| to the realization of & polyhedral map
Al (1271, [Z7-1]) > (I X1, *]). We claim that i,[f,] = [fo]. To see this,
triangulate the domain of the above homotopy extending the given
triangulations on the ends. The adjoint of the result is the required
homotopy f, =~ ix fi-

We now prove a similar result for ||,: Acss - hcw (this result is well
known, see for example (2)). First we show that F: hcss -+ kA is a
natural equivalence. Unfortunatelyits adjoint G: RA — hcss is not well-
defined since G(X) may not be Kan even if X is Kan. An example is
provided by X = D, the complex of § 8. The gituation is easily remedied:

Definition. Let X be a A-set and define H'(X) > X to be the A-set
obtained from X by adjoining an n-simplex to X for each A-map
fi A, X, and inductively define H*X) = H(H"1(X)). Let H(X)
be the union |J H*X). If f: X - Y then it is clear how to define
H(f): HX)—> H(Y) and H becomes a functor—the hkorn functor.
Further, H(X) is clearly Kan.

THEOREM 6.9. F: hcss — hA 18 an equivalence of categories and H(@
18 an inverse for F.
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Proof. Suppose Y is Kan. Then any css-map GX —» Y admits an
extension HGX — Y which is easily seen to be unique up to homotopy,
and by 1.7 we have a bijection ¢:[X,FY]—>[HGX,Y] and maps
J: X > FGHX, g: HGFY - Y. It is enough to show that f and g are
homotopy equivalences. The first follows easily from Remark 5.8, the
obvious deformation retraction |[FHGX|—> |FGX|, and Theorem 6.8.
For the second we use the Whitehead theorem in css [see (2)] so that
all we need prove is that g,: =, (HGFY) - m,(Y) is an isomorphism for
each n. (There is no loss in assuming ¥ connected.) But using the Kan
definition of =,() we can forget degeneracies, and by 6.8 again it is
enough to show that |FGHFY| — |FY | is a homotopy equivalence, and
this is a special case, X = FY, of the result already proved.

COROLLARY 6.10. ||y: hcss - hew 18 an equivalence and S() is an
tnverse.

Proof. This follows from 6.8, 6.9, the deformation retraction
|HY | - |Y|, and commutativity in the diagrams of § 2.

7. The homotopy lifting property

A A-map I1: £ — B has the extension lifting property, ELP, for a pair
(W, Z) if given f: W > B and f;: Z - E such that IT1 o f; = f| Z, then
there exists an f: W — E such that IIf = f and f| Z = f;.

II: E - B is a Kan fibration if Il has the ELP for (A® A, /) (n = 0,
0 <1< n).

ProrosrTioN 7.1. A Kan fibration has the ELP for (W, Z) if WN\Z.

Proof. This follows by induction on the collapse.

Remark 7.2. In particular we may take (W,2) = (ZQ® I,Z ® {0})
so that homotopies in A may be lifted.

ProposrrioN 7.3. A Kan fibration of Kan A-sets has the ELP for pairs
(W, Z) with the property that (|W|, |Z|) +8 18omorphic, as a polyhedron,
with (I"x I, I x{0}).

Proof. Let C(X) denote the cone on X. Extend f; to f,: C(Z) > E,
by the GEC. Let f, = IIf,. Now extend fU f, to f;: C(W)— B by the
GEC. Now C(W)\C(Z) and so, by 7.1, f; lifts to f3: C(W) > E. Then
f = fs| W is the required lift of f.

Remark 7.4. From 7.3 one easily proves that if [I: E » Bis a pointed
A-map of Kan sets and F = II-'(%) then Il,: = (&, F) - m,(B) is an
isomorphism. Thus we have the usual exact sequence of a fibration.
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TEEOREM 7.5. A Kan fibration of Kan A-sets has the ELP for pairs
(W, Z) such that (|W|,|Z|) = (P X I, P) for some polyhedron P.

. CoroLLARY 7.6. A Kan fibration of Kan sets has the homotopy lifting
property for polyhedral maps.

Proof. Let J be another copy of I (to avoid confusion) and triangulate
P x IxJasfollows. Use Won PxIx{0}andon PXIX{1}useastellar
subdivision W’ of W such that |o|X I is a subcomplex of W’ for each
o€ Z [see (9) Lemma 4]. Now extend over W ® J by deriving at the
halfway level. Let the whole triangulation be W and the restriction to
Px{0}xJ be 2.

Now extend f: W - B to f: W - B using the Kan condition and the
collapse W\ W (cf. 4.3). We lift f and this lifts f as required. First lift
712z using 7.1 and the collapse Z\\Z. Then lift f| W’ by inductive use
of 7.2. Finally lift f using 7.1 and the collapse WN\W’ U Z.

8. The minimal complex

Throughout this section X denotes a Kan A-set.

Definitton. We define a mintmal compler X, c X as follows. Choose
one 0-simplex from each component of X. The result is X{®. Suppose
now that X{*~1) has been defined. We say that simplexes o, 7 € X are
equivalent and write ¢ ~ 7 if 9;0 = 9;7 (0 < ¢ < n) and there is a
homotopy &;: |A®| -> | X |rel|A®| with h, = |G|, h, = |#| the characteristic
maps of o and 7. Define X{® by choosing a simplex from each equivalence
class which contains simplexes o with 3,0 € X{*~V for each 1.

It follows from 5.3 that the equivalence relation can also be defined
as follows: let °An+1, 1An+1 he copies of A"+ and let D,, ., be the result
of identifying °A,,,, , with A, |, ;. Then there are inclusions

b
te: AP > An+l  kAn+Lc D for k=0, 1.
We now say that o is equivalent to = if there exists f: D,,,, - X extending
7151 and 64,1,
Lemma 8.1. If X, c X 13 minsmal then it 18 Kan.

Proof. Let f: A, ;- X, be a A-map. Since X is Kan there is an
extension f;: A" > X, Now consider |f, 08,]: |A®-!| > |X|. This is
homotopic rel(8, (A"-1)) to a map |fy|: |A"-1| - |X,|, by the definition
of X,. Extend the homotopy to a homotopy rel|A?| of |A®|. Let the
resulting map be fy: |A%| > X. Finally use the definition of X, once
more to homotope f; to the realization of the required map

|fal: 1A™] > | X,
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Lenmma 8.2. Let X c X be a minimal complex. Then X, 48 a deforma-
tion retract of X.

Proof. Let f: (A, Aps) > (X, X,) be a A-map. Then there is an
extension f;: A® » X. By the definition of X, and by 5.3 we may assume
f105(A"1) c X,,. The result then follows from 6.7.

TeEOREM 8.3. Suppose X and Y are Kan A-sets of the same homotopy
type and X,c X, Y,c Y are minimal. Then any homotopy equivalence
[ Xy > X, 18 an 1somorphism.

Proof. Let f: X, > Y, be a homotopy equivalence and let g: ¥ > X,
be a homotopy inverse. We show that fg = 1 and gf = 1, which proves
the result. Let o™ € ¥, and suppose inductively that fg|é = 1. Then
fg(0) ~ o by the HEP and the fact that fg ~ 1. It follows that fg(o) = o
as required.

COROLLARY 8.4. Any two minimal complexes of X are tsomorphic.

Proof. This follows from 8.2 and the theorem.

CoroLLARY 8.5. There 18 a 1:1 correspondence between minimal com-
plexes and homotopy types.

CoroLLARY 8.6. Suppose that X,c X ts minimal and Xqc X, s a
homotopy equivalence so that tn particular Xg 18 Kan. Then X§ = X,.

Proof. Let Xgjc X; be minimal. Then by 8.2 and the theorem
X;c Xyc X, is an isomorphism.

9. Function spaces

Definition. Let X, ¥ be A-sets. A A-set X¥ is defined as follows.
A typical k-simplex is a A-map o: ¥ ® A¥* > X. Face maps are defined
by restriction.

TaeorEM 9.1. If X 18 Kan then so is X¥.

Proof. A A-map f: A, ;> X¥ corresponds to amap f: Y ® A, ;> X
and this extends over ¥ ® A" by the GEC. This is sufficient.

The following theorem may be regarded as generalizing 1.7.

TreEOREM 9.2. If X is 0ss and Y a A-set then the A-sets F(XCY) and
(FX)Y are 1somorphic.

Proof. A k-simplex of (FX)Y isa A-map Y ® A* > FX. By 1.6 and
3.2 this corresponds to a css-map GY X GA* > X, i.e. a k-simplex of X9Y.
Since this correspondence commutes with face maps we have the result

on forgetting degeneracies in X¢¥.
3695.2.22 Z
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A-SETS II: BLOCK BUNDLES AND
BLOCK FIBRATIONS

By C. P. ROURKE and B. J. SANDERSON
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Introduction

In ‘A-gets I’ we showed how to handle semi-simplicial complexes
without degeneracies. In this paper we apply some of the results to
semi-simplicial groups and monoids. Our results have application in
the theory of block bundles. This paper is organized as follows:

In § 1 we define a principal G-bundle where @ is an arbitrary Kan
A-group and we construct a Kan classifying space for such bundles.
The construction is based on Heller’s method in (3). We then define
& G-bundle over a polyhedron and deduce a classification of concordance
classes of such bundles. Examples of G-bundles over polyhedra are
principal bundles of block bundles.

In§ 2 we give a considerably more general definition of a block bundle
than hag been given elsewhere [cf. (1), (4), (5), (6)]. The base is an
arbitrary A-set, the fibre an arbitrary topological space #, and the group
an arbitrary Kan subgroup of Tép(F). We construct & universal block
bundle of this type. We then show that amalgamation and subdivision
of such bundles is a formal consequence of the fact that the group is Kan
and satisfies a natural ‘amalgamation’ condition. This recovers results
proved geometrically by ourselves [in (6)] and others [in particular by
Casson in (1)].

In § 3 we introduce a new kind of homotopy bundle, namely a ‘block
fibration’. This is the correct homotopy analogue of a block bundle,
a block bundle being itself an example. We construct a universal block
fibration and classify block fibrations within block homotopy equiva-
lence. Since a Serre fibration gives a block fibration in a natural way
(and conversely) this classification recovers the one in (8). The idea of
a block fibration was arrived at while trying to understand the Serre
fibration associated with a block bundle [see (6) § 5] and the notion
eliminates previous difficulties. See also (1) for a construction of the

associated Serre fibration.
We end this introduction with a short discussion of the foundations

of block bundle theory. The block bundles we define here (in § 2) all

Quart. J. Math. Oxford (2), 23 (1971), 465-85.
8605.2.22 Hh
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have a local block triviality condition, in other words we assume the
existence of ‘charts’, and our results show that there is a good ‘theory’
of such bundles as a formal consequence of the definition. On the other
hand, the PL block bundles we defined in (6) § 1 did not have charts
and we proved the existence of charts geometrically using relativeregular
neighbourhoods. This approach is good when the fibre is a polyhedral
cone and the base is a polyhedron and then charts exist by a similar
argument to (6) § 7 using Cohen’s regular neighbourhood theory (2).

0. Definitions

We refer to (7) as I. Notation and definitions are as in I, and we recall
the principal ones.

A is the category with objects A™ (» = 0, 1,...) and maps order-
preserving injective simplicial maps. A A-get, -group, -monoid is &
contravariant functor from A to the category of sets, groups, monoids.
If @ is & A-group, we denote by e, the identity in G™ = G(A"). An
ordered simplicial complex K is regarded as a A-set by letting K™ be
the set of order-preserving injective simplicial maps A® - K and defining
K(A) for A € Map(A) by composition. If X is a A-set and o0 € X™ is an
n-simplex then the characteristicmap 6: A® - X is defined by 6(2) = A¥(o)
and we denote by o the subcomplex of X consisting of o together with
all its faces (here we write A¥ for X (), as usual, and use ‘complex’
synonymously with ‘A-get’). & C o consists of all faces of o.

8;: A™1 » A7 ig the map in A which fails to cover the sth vertex and
we write 9, for 8. A, ; = A"—§,(A"-1) is the ith horn.

If K o L are A-sets we write KL if K— L consists of two simplexes
o, 7 with 1 = 9,(0), some %, and o, T not the faces of other simplexes
of K. We write K\\L if KxK;n...nK, = L and we write K\0 if
K\ vertex.

1. Principal bundles

Let @ be a Kan A-group. A A-map E X G — E is a free action of @
on ¥ if

(1) (0g1)ge = o(g19s),
(]_1) oé, = o,
(iil) 0gy = affz <> g1 = s
for all o € E™, g,, g, € G (n > 0).
A principal G-bundle ¢/ B with base B, where B is a A-set, consists of
(1) a surjective A-map p: E(£) > B, the projection of £,
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(ii) a free G-action E X @G — E over p (i.e. p(og) = p(o) for all g, g),
such that p~1(¢) = 7G™ whenever p(r) = o € B™. In other words B is
canonically isomorphic to the orbit space of £ under the action of G.

Principal G-bundles £, £,/B are tsomorphic if there is a A-isomorphism
h: E,— E, which commutes with the projection and with the action
of @ (i.e. p, = p, h and h(og) = k(o)g for all o, g).

¢/ B is trivial if it is isomorphic with the trivial G-bundle ¢/B, given
by E(e) = BX G, (0,91)9 = (0,91 95), and p(o,g) = o.

Given ¢/Band B, c Bdefinetherestriction £| B, by E(¢ | By) = p~Y(B,)
with induced action and projection.

A bundle map f: & > £, is & pair of A-maps such that the following

diagram commutes: g
E(¢,) — E(£s)

i)

. B,—— B,
and fi commutes with the action of G.

If £/ B is a principal G-bundle and f: X —+ Bis a A-map then we define
the induced bundle f*(£)/X by E(f*(£)) c X X E(£) consists of pairs (,7)
such that f(s) = p(7), (0, 7)g = (0, 7g), and Prp(o,7) = 0. Then .5
is a bundle map, where f(s,7) = 7.

The following easy proposition is left to the reader:

ProrosiTioN 1.1. Letf: £, - £, be a bundle map. Then there s a unique
seomorphism h: E(f§(£,)) - E(&,) so that

B(f3(£,))

h E(§1)

B
N\
/f/

y)

B(&)
commudes.

Now for each A-set B let PGQ(B) denote the set of isomorphism classes
of principal G-bundles with base B, and for each A-map f: B,— B, let
PG(f): PQ(B,) > PG(B,) be induced by f*.

Then PG( ) becomes & contravariant functor on the category A. Our
aim is to represent PG ).

Proposrrion 1.2. If p: E — B 1is the projection of a principal G-bundle
then p 18 a Kan fibration.
(Note that neither F nor B is assumed to be Kan.)
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Proof. We must find an A’ which makes the diagram below commute:

Awsk B
/
n h’/
Y P
A”/ / B

Let f: A" > E be any lifting of f ( f is the characteristic map of any
simplex in p~1(f(id)). Let e: A, - G be defined by f(z)e(z) = h(z).
e i8 easily seen to be a A -map. Since G is Kan, e extends to e’: A > G.
Then &’ defined by &'(z) = f(z)e’(2) is the required map.

CororLARY 1.3. Suppose £JA™ are principal G-bundles (1 = 0, 1) and
h: &yl A, ;= €| Ay, 138 anisomorphism. Then h extends to an tsomorphism
hy of &, with &,.

Proof. Let s: A® > E(£,) be a section (a lifting of ¢d|,.). Then
hos|: A, ;> E(£) extends to a section &;: A® - E(£;) by 1.2. Define
hy(3(0)g) = 8,(0)g for each o € A",

CororLrLARY 1.4. If KN\(L and if £,/K (1 = 0, 1) are G-bundles then
any bundle isomorphism h:§,| L - £,| L extends to an tsomorphism
ki gy, €.

Proof Suppose the collapse is elementary across o® from -1 = 9, 0™
Let 6: A — K be the characteristic map for 0. Then k defines an

ts0mOrphisin B %) | A > 3%(0) A

% extends over A" by 1.3 and this defines an extension of 4 since o and =
are not identified with faces of other simplexes of K. The result now
follows by induction on the collapse.

CororrLaryY 1.5. If K'\\O then any ¢/K is trivial.

CororLARY 1.6. If K\\L and if ¢/L t8 a G-bundle then there 13 a
Q-bundle ¢, |K with &,| L = €/ L.

Proof. Suppose the collapse is elementary across o™ from -1 = 9, 0™,
and g: A, ; - L is the restriction of 5. ¢g*({) is trivial by 1.5 and we can
define £, by attaching /A™ to £ by §: E(g*(£)) > E(£). The general result
follows by induction.

CoroLLARY 1.7. Suppose that £, n/B @ I are two principal G-bundles

and that h: E(¢ | B ® {0}) > E(n | B ® {0}) 18 an isomorphism. Then h
extends to an tsomorphism of & with .
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Proof. This follows from 1.4 by induction over the skeleta of B using
the fact that A ® I'NA" ® {0} U A»x I, which implies (cf. I, § 4) that
forceB,e®@ INo® {0}Ue R I.

Remark. 1.7 will imply (see 1.11 below) that £ | B® {0} ~ ¢ | B ® {1},
since it will follow from the existence of & Kan classifying space that
there is & bundle over B ® I with ends isomorphic to ¢ | B ® {0}.

Construction of the universal bundle. We will construct a principal
bundle y with projection m,: EG —» B@ so that

(i) both EG and B@ are Kan complexes,
(ii) E @ is contractible.

We define EG™. For any A-set K, denote by K, the graded set of
simplexes of K (i.e. forget the face operators). Define EG™ to be the
set of graded functions A} —» G,

Then EG™ is a group, since we can multiply two graded functions by
multiplying images in G, and we can identify G™ with the subgroup
of EG™ corresponding to A-maps A™ > G (a A-map determines a graded
function on forgetting face maps).

We now define face operators in E@, making it a A-group. Let
A: A" > A® be a face map. Then we have the corresponding map of
graded sets A;: A} > A} and we define for o0 € G,

Mg = gy Af > G,

The reader will have no trouble checking that A% is a homomorphism
and that this makes ¢ c EG a A-subgroup.

Observe that if K is a A-set then A-maps K - EG can be identified
with graded functions K, - G, and hence:

OBSERVATION 1.8. Any A-map A" > EG possesses an extension to A™.
For a graded function A} - G, clearly possesses an extension to A}.
CoroLrarY 1.9. E@ is Kan and condractible.

Proof. Extend a A-map A, ; > EG in two stages using 1.8. Extend
first over 9;A™, then over A®. The second part now follows from 1.8
and I, 6.6.

Define BG = EG/G (i.e. the A-set of right cosets of G'in E@) and let
m,. EG > BG@ be the natural projection. Then we have defined a
principal G-bundle y/BG with E(y) = E@ and it follows from 1.2 and
1.9 that B@ is Kan.
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ProrosrrioN 1.10. Let Lc K be A-sets and ¢/K a G-bundle. Any
bundle map f: £ | L - y extends over £.

Proof. By induction over the skeleta of K—L we may assume
L, K = 6", o™ Let n/A" = 6*(£). We extend b = fo a: 5|A® >y to
k’: 7 —> v, and this determines the required extension of f. Let

8: A" > E(n)
be a section; A o 8: A" > EQ extends to s;: A® > E@ by 1.8. Now define
k' (s(o)g) = &,(0)g for o € A™.

CoroLLARY 1.11. Suppose (/B ® I t8 a principal G-bundle. Then
(1BR{0}=£| B {1}

Proof. By 1.7 it is only necessary to find a bundle /B ® I with
B} =£¢|BR{0} (1 =0,1). Let f: {| B® {0} >y be a bundle
map (from 1.10) and let 2: B® I - B@G be a homotopy of fg to itself
(see I, 6.1). Then n = h*(y) is the required bundle.

Now for each A-map f: K > B@ define 7'(f) € PG(K) to be the class
of f*(y). By 1.11 T(f) depends only on the homotopy class of f. T is
then a natural transformation from [ , BG} to PG( ) and is an isomor-
phism of sets by 1.10. ([ , BG] is regarded as a functor via I, 6.1.) We
have proved:

THEOREM 1.12. The natural transformation
T:[,BG]—> PG()
defined by T[f] = [f*(y)] 6 a natural equivalence of functors on the
category of A-sets.
Remarks. (1) The construction of y is clearly functorial on the cate-

gory of A-groups.
(2) If H c G is a A-subgroup then one has a fibration (up to homotopy

type) @/H -~ BH - BG.
For factor the universal bundle of G by H and use the fact that
EG/H ~ BH

from the classification theorem (cf. 3.18).
(3) Given a Kan fibration
G, c G, — G,

of Kan A-groups with 7= & homomorphism, then there is a corresponding

fibration Ba
BG@G, c BG; — BG,
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of classifying spaces. That B is a Kan fibration follows from the com-

mutative diagram En
EG, — EG,

| . ]

BGﬁ —_> BGS

in which the other three maps are all Kan fibrations (Ew trivially from
definitions, the vertical maps by 1.2). Then the reader may readily
identify the fibre of Br with BG,.

(4) There is a natural identification of B(@,; X G;) with B(G,) X B(G,),
since there is a natural identification of E(G; X G;) with E(G,) X E(G,).

Principal bundles over polyhedra. Let P be a polyhedron and ¢ a Kan
A-group. A G-bundle ¢/P is an ordered triangulation K of P and a
principal G-bundle (/K. £, £,/P are equivalent if there is a G-bundle
n/P X I such that 5| PXx {1} =~ £ (§ = 0, 1). Let G(P) denote the set
of equivalence classes.

Proposrrion 1.13. The function T:[P;BG|—> G(P) defined by
T(f) = f*(y) 18 a bijection.

Proof. This follows at once from 1.12 and the definition of polyhedral
maps P > B@ (see I, § 6).

Now [ ; B@] is a functor on the category of polyhedra and continuous
maps (see I, 6.1) and we make (( ) into a functor by insisting that T be
a natural equivalence. This defines the induced class f*(§)/P for a map
f: P—> @ and G-bundle £/¢. There is a direct construction of f*(£), as
follows.

Let £ be defined over K and find a triangulation L of P and a simplicial
map f;: L - K homotopic to f. Let M, be the simplicial mapping cylin-
der. Then M, \\K and hence ¢ extends over M, uniquely up to iso-
morphism, by 1.4 and 1.6. Let this extension be ¢,. Then &, | L is in
the class f*(£) since the classifying map for ¢, | L is homotopic to f
composed with the classifying map for £.

CororraryY 1.14. If K i8 a A-set such that | K| is homotopy equivalent
to P then PG(K) 1s 1somorphic to G(P). In case |K| = P the tsomorphism
18 the natural one.

Proof. This follows from 1.13 and the results of I, § 6.

Remark. 1.14 recovers (6) 3.3 since for a A-set K, |F(K)| ~ |K]|.
However, the results of the present paper show that (6) 3.3 is irrelevant
to block bundle theory.
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2. Application to block bundles
Let K be a A-set. The associated category of K, denoted by K, is

n

MapK(r,0) = {(A,7,0) | N¥d = 7} foro, 7€ K.

Composition of maps in K is just composition of the corresponding face
relations.

Now suppose f: K - Lis a A-map. Then we associate to f the functor
t: K > 1 defined by f = f on objects and (A, 7,0) = (A,fr,fo), which is
a map in L since f is a A-map.

A K-space Q is a functor from K to the category of topological spaces
and embeddings. If f: L > K is a A-map then we define the L-space
f*(@) tobe Qof.

Thus for each o € K™ we have the A*-space @, = 6*(Q) where we
write @ for the functor associated to the characteristic map of o.

Associate to each K-space @ a topological space || defined by

19l = U Q(o)/@(MapK),

i.e. identify the Q(o) via the family of embeddings @(Map K).

A map of K-spaces (or K-map) f: @, - @, is a natural transformation
of functors where the range category is enlarged to include all maps
(rather than just embeddings), i.e. f consists of maps f,: @,(c) > Q4(0)
for each ¢ € K such that the obvious diagrams commute. A K-homeo-
morphism is & K-map in which each f, is a homeomorphism. A K-map f
determines a map |f|: |@;| = |@Q;| in the obvious way.

For any A-set K and topological space F, define the trivial K-space
&K, F) by g(o) = A* X F for each ¢ € K™ and

eA,0,7) = AXtd: A"X F > ATX F

for each 0 € K™, 7 € K with o = A%r. Then |¢| can be naturally identi-
fied with |K | X F, if we endow the latter with the identification topology,
We often write K X F for ¢(K, F).

Remarks. (1) If @ is a A™-space then the natural map Q(1,) - |Q|
is & homeomorphism, since each @(2) is the domain of a unique embedding
in @(1,). Thus the natural map @(¢) - |@,| is & homeomorphism for
each o € K, where @ is any K-space, and we can identify the two.

(2) If K is a simplicial complex and @ is a K-space, then the natural
maps m,: Q(o) > || are all embeddings for o € K. This is for similar
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reasons to example (1). Hence @ is determined up to K-homeomorphism
by the space |@| and the family of subspaces

m,(Q(0)) C Q| (o€ K).
(3) Generalizing (2) to A-sets, define for each ¢ € K the characteristic
map for ¢ at o to be the natural map

m,: Qo) > |Q].

Using the identification of (2) we can regard =, as & map

7ot [Q6] > 1€

Then the K-space @ is determined up to K-homeomorphism by the
space |@|, the An-spaces @, for each ¢ € K, and the characteristic maps
(@] > |@|. Compare this with the idea of a A-set as a ow-complex |K|
together with a set of characteristic maps for the cells of |K| (cf. I, § 4).

A block bundle with base K and fibre F is a K-space ¢ such that for
each o € K™ there is a A®-homeomorphism A"X F —» £,. We usually
write E(£) for |¢| and B,(€) for £(c) (the ‘block’ over o).

An tsomorphism h: &, - &, of block bundles is simply a K-homeo-
morphism.

Notice that when K is simplicial, £ is determined up to isomorphism
by E(¢) and the natural embeddings ,: B, > E(£) [see Remark (2) above,
and compare (6)]. When K is a A-set, {/K may be regarded as being
made up of block bundles over simplexes, with a recipe for gluing.

Notice that if £/K is a block bundle and f: L - K is & A-map then
S*(&) is a block bundle, the tnduced bundle.

A block bundle £ is #révial if it is isomorphic with the trivial bundle
¢(K, F) defined above.

A chart for £ at o € K™ ig an isomorphism

by e(A™, F) > £,.

An atlas for ¢ is & family 5 = {h, |0 € K} of charts.

Now let Top(F') be the A-group in which a typical n-simplex is a self-
isomorphism of £(A®, F') and the group operation is composition. Face
operators are defined by the diagram

‘ AXsd
A F 2 Anx F

11\50 lo‘
AxXtd
A F 2 Anx F

i.e. ‘by restriction’.
Suppose that 77 = Afo™ is in K and that A, k, are charts for £ at o, 7.
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Then h,, k, are related by the element p € Tp(F)? defined by the com-

mutative diagram
h.
Arx F . — £,

ly. lm.m)
Axid h
A’xF—X—»A”xF—"-»g‘7

If h,, k, belong to an atlas 52, then we write p = (A, 7, 0).
PropostTiON 2.1. If £/K is a block bundle with atlas 3¢ then & 18
tsomorphic with the bundle ¢, defined by
£(c) = A"X F  for each o € K™,
£\, 7,0) = (AXid) o (A, 7,0) for each (A, 7,a) € Map(K).

Proof. The homeomorphisms |k, |: (o) - £(o) clearly determine an
isomorphism.

2.1 shows that all the information about ¢ is contained in the set
3¢ (Map(K)) c Tép(F). This motivates the next definition.

Let A(F) be a Kan subgroup of Tép(F). An A(F)-block bundle with
base K is a pair (£, #(£)) where £ is a block bundle over K with fibre F,
and  is an atlas for £ such that #(Map(K)) c A(F).

An A (F)-isomorphism of A(F)-bundles (£,, 747), (£,, 5%;) is anisomorph-
ism ¢: ¢ — ¢, such that for each o € K™ the element u, € Top(F)™,
determined by the following diagram, lies in A(F)™:

h
Ansc 7L e (o)
Ho g(a)
(ha)l
A X F — £4(0).
Note that the elements u, determine the isomorphism g.
From now on we will confuse ¢ with the pair (£, 5£) and write ‘{ is
an A(F)-block bundle’.
An A(F)-chart for £ at o is an A(F)-isomorphism
ga: f(An’ F) - fa’
where (K, F') has the natural A(F)-structure (charts being the identity
maps). In other words g, is simply a composition
h
g(A®, F) > g(An, F) —> ¢,
where p € A(F)™ and h, € #(£).
We associate to £ the principal 4(F)-bundle P(£)/K defined by
E(P§))™ = {g, |9, is an A(F)-chart for £ at o € K™},
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A¥(g,) is the element determined by

Ars F ) A(g,) 2, )

AXid ¢(A,7,0)
Arx F—2 5 ¢(o),
where 7 = Ao,

In other words, if £(A%o) is regarded as a subspace of ¢(g) then A%*(g,)
is defined ‘by restriction’. It is easy to check that if g, = h,op then
A¥(g,) = h,H#-1(A,0,7) 0 A¥(u), and hence lies in E(P(£))".

Define E(P[£)X A(F) - E(P/(£)) by (9,, 1) > g, © - Finally define

E(P(¢§)) > K by =(g,) = o.

It is trivial to check that isomorphic A(F')-bundles yield isomorphic
principal A(F)-bundles.

We now define the functor 4(F)( ) by letting A(F)(K) be the set of
isomorphism classes of A(F)-block bundles with base K and setting
A(F)f)€] = [f*(é)], where f: L > K and f*({) is given the induced
A(F)-structure: for each o€ L define h, = h;, where h,, € #(£) and
h, € 5 (f*(£)). This makes sense since f*£(o) = £(fo) by definition.

This makes A(F)( ) into a functor and it is easy to check that

P(): A(F)() > PA(F)(),
where P(K)[£] = [P(£)], is a natural transformation.
THEOREM 2.2. P() 8 a natural equivalence of functors on A.

Proof. We need to show that P(K) is an isomorphism for each K.
To prove it onto, let {/K be a principal A(F)-bundle and choose a
pseudo-section s8: K - E(£), i.e. a function s: K, > E(£), such that
pos=1idg. Then for each (A, 7,0) e Map(K) define the element
H(A,7,0) € A(F)? by 8(r)#° (A, 7,0) = A¥(8(c)). The elements (A, 7, 0)
determine an A(F')-block bundle £,, with identity charts, as in the proof
of 2.1 and it is trivial to check that P(£,) =~ £. 2.1 implies that £, depends
only on £ and hence P(K) is an isomorphism of sets, as required.

CororLrary 2.3. There 18 a universal A(F)-block bundle vy over
BA(F).

Proof. Let y,; be the bundle defined by 2.2 such that P(y) is the
universal principal bundle. Then the universality of y is clear.

Subdivision and amalgamation. We proceed to give formal proofs of
the usual results on subdivision and amalgamation.
We say A(F) satisfies the amalgamation condition (a.c.) if, given a



476 C. P. ROURKE AND B. J. SANDERSON

linear ordered triangulation J of A® and an A(F)-bundle isomorphism
f:&(J, F) > &(J, F), the element o € TGp(F)™ defined by the diagram

(7, ) 2o fe(7, )
d id
A*X F o A"X F
lies in A(F)™,
Now let K’ be a subdivision of the A-set K (see I, § 4). Then for each
o € K™ we have a linear triangulation J, of A™ and a A-map f,: J, > K~
such that |f,] = |6|, and for each face relation (A, r,0) a simplicial
inclusion Jy: J, - J.
Now let {/K’ be an A(F)-block bundle. Define a block bundle £,/K,
the amalgamation of £, by letting £,(0) = |f¥(£)| and defining &,(A, 7, o)

by the diagram /
1f5(6)1 —°> €]

1A r,a) f
I/ :(f)/
where f,, /. are the natural maps. In other words, factor f, as f, o Jy
and then £,(A, 7, 0) is the bundle map from f¥(£) = J(f%(£)) to f5(£).
If A(F) satisfies the a.c. then we can give £, an A(F)-structure by
choosing an atlas 5# with h, € #°defined by

|7o|

le(t,, F)| —; 1/5(6)
u A
L
ArX F
when ¢, is any A(F)-trivialization.
Now there is a bijection
¢: A(F)(K') -> A(F)(K)
given by 2.3 and I, 5.3, since |K'| = |K]|.

THEOREM 2.4. As a block bundle without group (or equivalently as @
Top(F)-bundle), g(£) 18 the class given by amalgamating £. If, further, A(F')
satisfies the a.c. then q(£) 18 given as an A(F)-bundle by amalgamating £.

Proof. We show that if A(F) has the a.c. then ¢(£) is given by amal-
gamating £. The first part of the theorem then follows by taking
A(F) = Top(F).

Let £, be the amalgamation of ¢, and let J be a subdivision of K @ I
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which has K’ on one end and K on the other. Extend £/K’ to an A(F)-
bundle 5/J and let n,/K ® I be the amalgamation. Then 75, has ¢, on
one end and {, say, on the other, while 7 has { and £ on its ends. It
follows that £ and £; bound a bundle a, say, on L = J U K @ I. But
the classifying map for « gives a homotopy between those for ¢ and £,
and it follows that ¢(£) ~ £, as required.

Let the converse process to amalgamation be subdivision.

CoRroLLARY 2.5. Subdivisions exist untquely sf A(F) satisfies the a.c.
Block bundles over polyhedra. Define an A(F)-block bundle ¢ over

a polyhedron P to be an ordered triangulation K of P and an A(F)-block
bundle ¢/K.

&0, &1/ P are concordant if there is an ordered triangulation J of P X I
and an 4(F)-block bundle n/J with 5| P X {i} ~ & (i =0, 1).

&o, &, are equivalent if they have isomorphic subdivisions (this is an
equivalence relation only if 4(F) satisfies the a.c.; see 2.6 below for the
proof).

Denote by A(F)(P) the set of concordance classes of A(F)-bundles
over P (this is coherent with § 1 using 2.2).

CoroLLARY 2.6. Let K triangulate P. The natural map
A(F)(K) > A(F)(P)
18 an isomorphism of sets. Further, if A(F) has the a.c. then £, &, are
equivalent iff they are concordani.
Proof. The first part follows at once from 1.14 and 2.2. Suppose &, £,
have isomorphic subdivisions. Then they are concordant by 2.4. Con-

versely if £,/ K,, £,/ K, are concordant, then let J be & common subdivision
of K, K, and let £, £, be subdivisions given by 2.5. Then £, =~ & by 2.4.

Remarks. Induced block bundles are defined for a topological map
J: P> @ using 2.2 and 1.12 (P@( ) is a homotopy functor) but for a
direct construction we could use the construction given below 1.13.

3. Block fibrations
Let K be a A-set. A K-complex @ is a functor from K to the category
of ow-complexes and embeddings of subcomplexes which satisfies the fol-
lowing intersection condition for each pair (A;, 7, 6), (A, T4, 0) € Map(K):
QA 71, 0)(Q(71)) N @Ay, 75, 0)(Q(72)
. { Q(A;,75,0)(Q(r5)) if ImA, NIm A, = ImA,,
%} if ImA, nIm A, = @,
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A K-map f: @, > @, of K-complexes is & map as K-spaces. There is
an obvious notion of homotopy of such maps.

ProrosrrioN 3.1. A K-mapf: @, > @, of K-complexes is a K-homotopy
equivalence sff each f(o): @Q,(c) > @o(c) 18 a homotopy equivalence of
ow-complexes.

Proof. ‘Only if’ is obvious. To prove ‘if’ define the K-complex M,
by M o) = My, the cw mapping cylinder, with the obvious embeddings.
We show that @, X {0} c M, is a strong K-deformation retract and the
result follows. Denote @,(K™), etc., by @7, etc. Suppose inductively
that @F~1x {0} c M?~! is a strong K"»-1-deformation retract and prove
the same for n. Then, using the intersection condition, we can work
geparately for each o € K™,

Define the subcomplex @(c) c Q(c) to be the union of the images of
Q(,7,0) for A € Map(A®) (A # id). Then denoting f(o) | @(c) by g we
have a deformation retract defined by the 7(7) (r < o):

i My > M,
such that 7,1 Qo) x {0} = ¢d
and (M) c Qo) x {0}.

Now consider the inclusions
Q(o) x{0} c Qo) X {0} U M, c M/o).
@(0) X {0} c M{0) is a homotopy equivalence by hypothesis, and the first
inclusion is a homotopy equivalence since M, N Q(o) X {0} = @(o) x {0}.
It follows that the second inclusion is a homotopy equivalence and hence
that there is a strong deformation retraction
72 My(o) - Mi(o)

of M,(c) to Qo)X {0} U M,.

Extend r, to M, by defining r, | @(c) X {0} = 4d and then using the HEP
for ow-complexes.

Now define r,(0): M,(c) > M)(0) to be r,of,. Then r(o) is a strong
deformation retract compatible with the inclusions of Q(r) for each
T = Ao and hence continues the induction.

A block fibration with base K and fibre the cw-complex F is a K-
complex ¢ such that for each o € K™ there is a A*-homotopy equivalence
APXF > ¢,

A block homotopy equivalence of block fibrations is simply a K-homotopy
equivalence. ¢ is block homotopy trivial if it is block homotopy equivalent
to e(K, F).
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Note that for each A-map f: L > K we have the induced fibration
f*(¢) defined, as before, tobe £ o f. If L ¢ K then we write £ | L for $*(£).

Prorosrrion 3.2. Given £/A™ a block fibration and a block homotopy
trivialization b Ap X F o> €A,
then there is an extension of t to
t: APXF > £

Proof. Since £ is a block fibration, there is a block homotopy equiva-
lence h: A®X F - £. Let ky: £ > A*X F be an inverse to & (cf. 3.1).

Now hyot: A, X F - A"X F extends to a block homotopy equiva-
lence g, say, of A®X F with itself since we can write A™ as A, ;X I.

Then consider & o g: A® X F — E(£). Thisis a block homotopy equiva-
lence and Aog|A, ;X F = hoh, ot is block homotopic to ¢ via the

homotopy M, say, M A XFXI—> €A,

since h and A, are block homotopy inverses.
Now write A® = AP U A, ;X I when the latter is a collar neighbour-
hood of A, ;. AT is & ‘smaller’ n-simplex:

Anixl

Then define ¢, to be M on A, ;X F X I and to be 5 o g o ¢ on A}, where
g: ATX F - A*X F is the product of the linear identification with the
identity map on F.

CoroLLARY 3.3. Given block fibrations £,/A™ (i = 1, 2) and a block
homotopy equivalenceh: £, | A, ; > £;| A,, (, then h extends to a block komotopy
equivalence of £, with £,.

Proof. Choose a block homotopy trivialization g: A*X F — ¢, and an
inverse g, forg. Then A o g extends to k., say, by 3.2 and we can homotope
h, to extend A by the HEP for cw-complexes.

The next three corollaries follow from 3.3 in the same way that 1.4-1.6
followed from 1.3:
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CoroLrLarY 3.4. If K\\L and if £,/K (i = 1, 2) are block fibrations
then any block homotopy equivalence &,| L — £,| L extends to one of £,
with £,.

CoroLrARY 3.5. If K\O then any ¢/K is block homotopy trivial.

CoroLLARY 3.6. If ¢, n/K & I are block fibrations then any block homo-
topy equivalence £| K @ {0} - n| K ® {0} extends to one of £ with 1.

Let £/K be a block fibration where K is a A-set. A chart for ¢ at o is
a block homotopy equivalence h,: A*X F - ¢,. We now define the
associated principal bundle P(¢) of ¢:

P(£)™ = {h, | b, is a chart for £ at 0 € K™},
face operators in P(f) are defined as in § 2 (‘by restriction’), and
7. P(£) > K is defined by #(k,) = o.

ProrosrrionN 3.7. 7 P(§) > K 138 a Kan fibration.

Proof. Let o € K and suppose given a lift f: A, ; > P(£) for ¢ |A, ;.
We have to extend f to a lift for . Now f can be identified with a block
homotopy equivalence

i Ay X F > £ | Ay
which we can extend to a block homotopy equivalence
Jor A"X F > £,.
Define f(1,,) = f,. This extends f over A®, as required.

The prolongation construction. Let £/K be a block fibration and
f: A" P(¢) a A-map. We will construct & new block fibration ¢,/K,
which extends £. Write g = 7f: A* > K and define K, = K U, A", i.e.
define K{™ = K™ U {0} and A*(o) = g(A) for A: A" > A". The other
simplexes and face maps in K, are those in K.

Next write f,: AnX F —» g*(¢) for the block homotopy equivalence

determined by f and define £,(0) = [g*(£)| U, A®X F. Then there are
natural inclusions of £(r) in §,(¢) for 7 = Mo and this determines

&1(A, 7, o). On the rest of K, let £, equal §.
Define Prol}(¢) to be the block fibration obtained from ¢ by this

construction applied to every A-map A® —» P(£).
Define Prol*(¢) = Prol*(Prol®-1(£)) and Prol(¢) = (J Prol™(¢§)

ProrosrrroN 3.8. The base BProl(£) of Prol(£) is Kan, and P(Prol(£))
18 Kan and contractible.

Proof. Each A-map A™ - P(Prol(£)) has an extension to A™ by the
construction of Proll( ). The proposition now follows from 3.7 exactly
asin § 1 (see 1.8, ete.).
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CoroLLARY 3.9. Given a block fibration ¢/K Q@ I, there 18 a block
homotopy equivalence £ | K ® {0}~ ¢ | K ® {1}.

Proof. By Corollary 3.6 we only have to show the existence of
¢/K ® I with £,/K @ {i} (i = 1, 2) both block homotopy equivalent to
£/K % {0}. But consider the inclusion

+: K x{0} - BProl(¢/K x{0}).
Then by 3.8 there is a homotopy 4, say, of ¢ to itself.
¢, = j*(Prol(¢/K x {0}))
now satisfies the requirements.

The classifying block fibration. Let G(F) be the A-monoid of which
a typical n-simplex is a self block homotopy equivalence of A X F.
Then for any block fibration ¢/K we have an action P(£) X G(F) - P(£)
over K defined by composition.

Let £° denote the trivial block fibration over A? and define

BG(F) = BProl(e?),  EG(F) = P(Prol(c").
Define inductively a base complex % c BG(F) so that
Prol(e?) | * = &(x, F),
by letting *, = A° and %, be the simplex in B Prol(c?) defined by the
A-map A™ » P(Prol"-1(¢%)) determined by the identity maps

ATX F - Prol™-1(g%)(*,)
for each r < n.

ProrosiTION 3.10. 7: EG(F) > BG(F) is a principal G(F)-fibration
with contractible total space.

(For a Kan A-monoid A4, a principal A-fibration is a Kan fibration
m: E - B of bagsed Kan A-gets with B connected and »—'(x) = 4, and
an action E X A - F over B which extends the multiplication in =—1(%).)

Proof. This is clear from 3.8 and the choice of base-point in BG(F).

Now denote Prol(e?) by y/BG(F), and let Bfy(K) be the set of block
homotopy equivalence classes of block fibrations with base K and
fibre F. Then Bfg( ) is a functor on A via the induced block fibration,
and we have a natural transformation

T: [ ; BG(F)] - Bfy( ),
defined by 7'(f) = f*(y), which is well defined in Bfy(K) by 3.9.

TaeorEM 3.11. T i3 a natural equivalence of functors on A.

Proof. We have to show that T(K):[K;BG(F)] > Bfs(K) is a
bijection.

3695,2.22 Ii
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T(K) 18 onto. Let £/K be a block fibration and define £+/K+ to be
the disjoint union £ U €°. Consider the diagram

K & BProl(g)

n nh
at
K+ c BProl(¢é+) «— P(Prol(£+))
U h|Ute U

A® ¢ BG(F)«———— EQ(F).

Then 1, is & homotopy equivalence of Kan A-sets, since 7, 7+ are both
projections of principal G(F)-bundles with contractible total spaces.
Choose a homotopy inverse A to1.. Nowleta = h ot,0¢,and § = a*(y).
Then 1; 0 « =~ %, 0 1, since 130 h =~ id. Hence a*(y) = (¢, 0 o}* Prol(¢;)
i8 block homotopy equivalent to (i, o 4,)* Prol(§+) = £, as required.

T(K) 18 1-1. Use a similar argument to the above after noting that
¢ is block homotopy equivalent to 7 iff they bound over K ® I. ‘If’
is 3.9 and ‘only if’ follows by gluing to » the bundle £, (constructed
in the proof of 3.9), via the block homotopy equivalence.

Subdivision and amalgamation. This part is so similar to the corre-
sponding part of § 2, that we just sketch it.

Let K’ be a subdivision of K and £/K’ a block fibration. Define the
amalgamation £,/K of ¢ by letting £,(c) = |f¥(£)| [see the notation in
§ 2], and defining £,(A, 7, 0) exactly as in § 2.

£, is a block fibration since f2(£) is block homotopy .trivial for each
o € K (from Theorem 3.11) and the trivialization

o X F > |f5(6)
then respects the An-structure on each of these spaces, hence is a block
homotopy trivialization of (¢;), by 3.1.

TaEOREM 3.12. The bijection
q: Bfp(K') - Bfp(K)
8 determined by amalgamation.
Proof. 2.5 readily adapts to prove 3.12.

CoroLLARY 3.13. Given £/K, there exists n/K' such that n,/K 1is block
homotopy equivalent to &.

Remark. One would not expect to do better than 3.13 and obtain
7, = &, since § might not have enough cells to subdivide.

The long exact sequence. Let ¢/K be a block fibration. We define a
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projection p: |£] - | K| which is a map of K-spaces and is unique up to
K-homotopy. Suppose p defined on |£#-1|. Then the extension to any

£(o) (o € K™) follows from the contractibility of A™ and the HEP, as
does the uniqueness.

THEOREM 3.14. For any vertex v e K, p*(|¢|, |€(v)]) - (|K|, v) snduces
18omorphisms of homotopy groups.

CoroLLARY 3.15. There 18 a long exact homotopy sequence
oo mp(F) > o] > m K| > ...
Proof. This follows at once from 3.14, since |£(v)| ~ F.

CoroLrLARY 3.16. There 18 a bijection between Bfp(K) and the set of
[f-h.e. classes of Serre fibrations with base | K| and fibre having the homotopy
type of F'. The bijection i given by the process of ‘making p Serre’ [see
(8) for example].

Proof. Construct the inverse to ‘making p Serre’ as follows. Let
£/|K| be a Serre fibration and inductively replace E(5*(¢)) by cw-
complexes of the same homotopy type [see e.g. (8)]. This defines the
required block fibration up to b.h.e. Then the two functions are inverse
by the usual argument, using 3.14.

Remark. 3.16 and 3.12 recover Stashefl’s main theorem in (8), since
A and cw are homotopy equivalent (see I, § 8).

Proof of 3.14. We first replace (K,v) by Kan complexes. Let
H(K)> K be the complex obtained from K by the ‘horn oo’ functor
determined by repeatedly attaching simplexes along all horns in K
[see I, § 6], and let * c H(v) be & base complex containing v. Then
(IK1|,v) c (|JH(K)], |*|) is & homotopy equivalence of pairs. Now extend
¢ to n/H(K) by the usual method (extend the inclusion K c BProl(¢)
over H(K) and then take induced block fibrations).

To complete the proof of 3.14 we now require & lemma.

Lemma 3.17. ([€], [£(w)]) c(In], [7|*]) t8 a homotopy equivalence of pairs.

Proof. If KL and if ¢/K is a block fibration then it is trivial to
construct & deformation retract of [£| on |&€|L|. It follows by induction
that [£] ¢ |y|is a homotopy equivalence. But [£(v)| c | |*|is a homotopy
equivalence since |%| is contractible.

We may now complete the proof of 3.14 as follows. By 3.17 we have

how th
o show that p: (lal, [n %)) > (IHE)], [+])
induces isomorphisms of homotopy groups.
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Dy 18 onto. Let f: (I, I*) > (|H(K)|, |*|) represent an element of m,,.
By I, 5.3 we can approximate f by a A-map f,: K - H(K) where K is
a simplicial complex and K\0. It is then easy to lift f; to || up to
homotopy within cells.

Px 18 1-1. The proof of this part is similar.

Block bundles and block fibrations. We now examine the connection
between block bundles and block fibrations. We first observe in analogy
to remark (2) after Theorem 1.12, that there is a fibration (up to homo-

topy type): i .
G(F)]A(F) — BA(F) — BG(F), (3.18)

which is obtained by factoring the first two terms of

G(F)c EG(F) > BG(F)
by A(F), which acts freely. Then EG(F)/A(F) ~ BA(F) from the
clagsification theorem.

We proceed to identify G(F)/A(F) as the classifying space for the
theory of ‘A(F)-block bundles with block homotopy trivialization’ as
18 suggested by the fibration 3.18.

We consider pairs (£,t) where ¢/K is an A(F)-block bundle and
t: £ —> e(K, F) is a block homotopy trivialization. (,,¢;) is tsomorphic
to (£,,,) if there is an A(F)-isomorphism A: £, > £, such that {, 0 A =¢,.

ProposiTiON 3.19. There 8 a bijection between the set of A-maps
K > G(F)|A(F) and the set of isomorphism classes of A(F)-block bundles
base K with block homotopy trivialization.

Proof. Given t: ¢ > ¢(K, F), define t': K - G(F)]A(F) b

t'(0) = {gh, | k, i a chart for £ at o}.
This is readily proved to induce the bijection.

Now let (y, t,)/G(F)]A(F) be the A(F)-block bundle with trivialization
given by 3.19 and the 1dent1ty map. Define induced bundles in the
natural manner—f*(§,t) = (f*¢,t o f)—and then the bijection of 3.19
is clearly induced by sending f to f*(y,t,)

Next define (£,,¢,), (£, ts) to be equivalent if there is an isomorphism
h: £, - £, 8o that the diagram

§1 \‘1
N\
A
l 4
&7"
commutes up to block homotopy.
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ProrosrTioN 3.20. (£, 1), (£1,t,) are equivalent iff there 18 a pasr
(. )/K ® I with (n,t) | K ® {8} = (%) (6 =0, 1).

Proof. ‘If’ is obvious. To prove ‘only if’, find 9/K ® I with ends
isomorphic to ¢; by the usual method and use the given homotopy (and
the fact that if {/A"Xx I then |{| =~ |{|A"X{0}| X I) to construct com-

patible maps 80 1f% )| > APX IXF

for each ¢ € K, where f,: A" ® I » K ® I is the map which covers the
characteristic maps for o.
We have to deform the ¢, to make them preserve the block structures
of f*(n) for each g, but there is no obstruction to doing this inductively.
Now let A(F)/(K) denote the set of equivalence classes of 4(F)-block
bundles over K with block homotopy trivializations and make A(F)()
into a functor via the induced bundle construction.

THEOREM 3.21. The natural transformation
T:[ ; G(F)[A(F)] > A(F)()
given by T[f] = [f*(y,t)] t8 a natural equivalence.
Proof. This follows from 3.19 and 3.20.

Remark. We can easily identify ¢ and = in (3.18) as the maps which
classify y as an A(F)-bundle and the classifying block bundle as a block
fibration respectively.

REFERENCES

. A. Casson, ‘Block bundles with arbitrary fibres’ (to appear).

. M. M. Cohen, ‘A general theory of relative regular neighbourhoods’, Trans.
Am., Math. Soc. 136 (1969) 189-229.

3. A. Heller, ‘Homotopy resolutions of semi-simplicial complexes’, ibid. 80
(1955) 299344,

. M. Kato, ‘Combinatorial prebundles: I°, Osaka J. Math. 4 (1967) 289-303.

. C. Morlet, ‘Les Voisinages tubulaires des variétés semi-linéaires’, C.R. Acad.
Sci. Paris, 262 (1968) 740-3.

[ SHCS

(3

6. C. P. Rourke and B. J. Sanderson, ‘Block bundles: I’, Ann. of Math. 87
(1968) 1-28.
7. —— ——‘A-sets: I. Homotopy theory’, Quart. J. of Math. (Oxford) 22

(1971), 321-38.
8. J. Stasheff, ‘A classification theorem for fibre spaces’, Topology, 2 (1963)
239-46.

Mathematics Institute
University of Warwick
Coventry






