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By Jeff Cheeger* and Mikhael Gromov?

0. Introduction

Let M" be a non-compact complete Riemannian manifold, whose sectional curva-
ture K, and volume Vol(M) satisfy

K| <1, (0.1)
Vol(M) < . 0.2)

Sometimes we will assume that M" is diffecomorphic to the interior of a compact
manifold M” with boundary N"~ 1.

Example 0.1. The simplest examples of manifolds of the above type are two
dimensional. A neighborhood of infinity looks like several copies of (4, c0) x S*,
with metric

dr* + f2(r) g, (0.3)
where § is the usual metric on S', f > 0, and
kit
/ (04)
Ojof <
A

By a standard argument | f'|/| | is also bounded in this situation.

Let P denote an invariant polynomial of degree k, (n = 2k) and P(Q) the
corresponding characteristic form in the curvature Q of M. Here, we will assume
that P(€) is either the Euler form P,(£2) or some Pontrjagin form, and for the most
part we will restrict attention to the Pontrjagin form F, (), corresponding to the
L-polynomial of the Hirzebruch Signature Theorem. Since |K| £ 1, Vol{M) < oo,
the integral

KEP(Q) = P(M,g) 0.5)
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Fig. 0.1

defining the geometric characteristic number P (M, g) is absolutely convergent (for
the case of Pontrjagin forms, we assume M* is oriented). The numbers P,(M, g)
and P, (M, g) will simply be denoted by (M, g) and o(M, g) respectively. We ask:

A) What values can P (M, g) assume?

B) To whatextentis P(M, g) independent of the particular metric satisfying (0.1),
0.2)?

C) What is the purely topological significance of P{M, g)?

These questions were first considered for y (M, g) in [CV], [Hu]and [Har], in the
2-dimensional and locally symmetric cases (see also [Ros]). They were also consid-
ered for y(M,g) in [G;] under the assumption that for some profinite covering
space M of M, the pulled back metric has bounded geometry (the definitions are
given below). Our main concerns in this paper are to provide the details of a basic
technical result (Theorem 2.1) which were not given in [G;], to extend the discus-
sion to the case of g(M,g) and to the case of normal coverings which are not
necessarily profinite.

Observe that since P(M, g) is a locally computable invariant, and thus behaves
multiplicatively under coverings, it is natural to consider the effect of placing
geometric hypotheses on various coverings M of M. A covering M is said to be
profinite if there exists a decreasing sequence of subgroups of finite index,
I; © n; (M), such that N[} = 7, (M).

Before describing answers to questions A)—C), we recall the situation for M"
closed. In this case, P(M,g) is independent of g and equal to the topological
characteristic number, P(M), corresponding to P under the Chern-Weil homo-
morphism. Thus P(M, g)is an integer if P comes from an integral class. Moreover,
by the Gauss-Bonnet-Theorem and Hirzebruch-Signature-Theorem,

(M, g) = x (M) (0.6)
a(M,g) = o (M); (0.7)

(since B, corresponds to a rational class under the Chern-Weil homomorphism,
(0.7) entails an integrality statement).

Since (M, g), 6 (M, g) are multiplicative under coverings, by (0.6), (0.7), the same
holds for y (M), 6 (M). Of course, since there is a local combinatorial formula for
the Euler characteristic, y(X) actually behaves multiplicatively for any space X.
But at present, there is no elementary proof of the existence a local formula for
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o (M), if M" is closed. Moreover, for manifolds with boundary, o(M) does not,
behave multiplicatively. Thus, there is no local formula in that case.
The generalizations of (0.6), (0.7) to manifolds with boundary are

1M, g) + IL(N, g9) = x(M), (0.8)
o(M,g) + n(N,g) + II,(N,g) = a(M). (0.9)

Here, I (N, g), 11,(N, g) are certain locally computable expressions involving the
second fundamental form of N, and n(N,g) is the y-invariant of Atiyah-Patodi-
Singer, a global (spectral) invariant of N; see [APS,;] and Sect. 4. Formula (0.9)
easily implies a crucial property of the y-invariant. If g, is a 1-parameter family of

metrics, the derivative, 5 = % n(N,g,), is in fact given by a locally computable

formula involving g, 4. Similarly, the y-invariant ng(N,g) can be defined with
coefficients in a flat orthogonal bundle E* and

Hge = k1. (0.10)
Thus

05N, g) — n(N.g) = pye(N) 0.11)

is independent of g. This invariant was introduced in [APS,]. We will study its
significance in our context.
We can now give some answers to questions A)—C).

A) The values of P(M,g), for P an integral class, are discussed in [CGY]. The
number y(M,g) is always an integer but the geometric Pontrjagin numbers
P(M, g) can be irrational; see Example 1.8. The relation between the rationality
of P(M, g) and the geometry of M is studied in [CG;].

B) Essentially, the standard argument for closed manifolds shows that P(M, g,) is
independent of t, provided the family of metrics g, satisfies (0.1), (0.2) and a growth
property at infinity. But even the Euclidean spaces R", (n = 3), admit metrics gy, g,
satisfying (0.1} and (0.2), which can not be connected by such a deformation, and
for which y(R",go) #+ x(R", ¢;), 6(R", g0} &+ 6 (R",g,) in appropriate dimensions;
see Sect. 1. However y(M,g), (M, g) are independent of g for metrics satisfying
(0.1), (0.2) and the following

Additional Hypothesis. For some neighborhood of infinity U < M, some profinite
or normal covering space U has injectivity radius at least (say) 1 for the pulled
back metric,

i(0) = 1. 0.12)

Since also |[K| = 1 on U we say that U has bounded geometry, geo; (M) < 1. If
U=M we write geo(M) = 1.> In this paper the notation geo; (M) = 1,
geo(M) £ 1 will indicate that in addition U, M are assumed to be profinite or

3 To simplify the exposition, most statements and all proofs will be given only for the case
geo(M)= 1
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normal. When the distinction between the two cases is important it will be men-
tioned explicitly.

Even for metrics with geo; (M) < 1, P(M,g) may not be independent of g for
arbitrary Pontrjagin numbers; see Example 1.9. Nevertheless, in certain special
situations, one can show that P (M g) is independent of g and even prove analogous
results for Pontrjagin classes, by bringing in ideas related to the Novikov Conjec-
ture; see [CG,].

C) If geo; (M) £ 1, then x(M, g) is a homotopy invariant and ¢ (M, g) is a proper
homotopy invariant of M ; see Theorems 3.1, 5.1, 6.1, 6.2. The topological signifi-
cance of these invariants is most easily explained if one adds further assumptions.
If M has finite topological type, i.e. M is diffeomorphic to the interior of a compact
manifold with boundary M, then (0.6) holds, x(M,g) = x(M). Now suppose in

addition, that the (not necessarily normal) covering space M, is profinite with
ind(I}) = d;. Then for the corresponding covering spaces p;: M; - M, we have

6(M,g) = lim %a(Mj); (0.13)

jmo Qj

see Theorem 5.1. The existence of the limit on the right hand side of (0.13) is not
obvious a priori. Although the limit can be shown to exist under more general
circumstances (see Theorem 7.3) whether it exists for arbitrary compact manifolds
with boundary seems difficult to decide.

If one continues to assume that M is profinite but drops the assumption of finite
topological type, there are still expressions for y(M, g), 6(M, g) which generalize
(0.13).

Finally, suppose M is normal but not necessarily profinite. We begin by observ-
ing that the I*-Index-Theorem for normal coverings of compact manifolds (see
[A], [S]) can be extended to our situation. Thus we have

x(M,g) = 22)(M),
0(M,g) = 6,)(M) (0.14)

where (,,(M), o(;,(M) are the I*-Euler characteristic and signature; see Sect. 6. If
M is compact, Dodziuk has shown that y;,(M), o,,(M), as well as the correspond-
ing I*-Betti numbers EZ)(M ), are homotopy invariants of M; see [D,]. Here and
in [CG,] we show that these numbers are homotopy invariants in our context.*

Parts of the general picture presented so far can be easily grasped on the basis
of the following (simply stated but difficult to establish) generalization of the
situation described in Example 0.1.

Assertion 0.1. If M" is complete with |K| < 1, and Vol(M") < co then M" admits
an exhaustion by compact manifolds with smooth boundary, M}, such that
Vol(é M}) - 0 and for which the second fundamental forms II1(0 M}) are uni-
formly bounded.

* As above, 6,,(M) is only a proper homotopy invariant
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If we grant the above assertion, it follows immediately from (0.8) that
1M g) =y (M) e Z, (0.15)
for k sufficiently large. The point is

lim IL, (0 Mz, g) = 0. (0.16)
k— w0
However, according to the discussion of B) above, different metrics satisfying (0.1),
(0.2) can give rise to topologically distinct exhaustions, if we omit the assumption
geo (M) = 1.

Assume now that geo; (M) < 1, and also that M" has finite topological type.
We can then explain (0.13) (which implies that o (M", g) is independent of g); the
analogous result for y(M”", g) follows similarly. Recall that the signature of an
(oriented) manifold with boundary X* is defined as the signature of the cup
product pairing restricted to the group.

JHPXH, 6 XY) < HH(XY), (0.17)
where j is the natural inclusion. In general, if we set

bi(A) = dim {j(H(4,0 A) = H'(4)} (0.18)
(where H'(A, ¢ A) denotes cohomology with compact supports) then 4, < 4, is
easily seen to imply

bi(4,) < b'(4,). (0.19)

It follows that if M has finite topological type and M} is any exhaustion, for all
sufficiently large k,

bi(p; (M) = bi(M)). (0.20)
Similarly,
a(p; (M) = o(M)). 0.21)

Thus, if we use the exhaustion supplied by Assertion 0.1, together with (0.9), it
suffices to establish that for all ¢ > 0, there exists ko, N (k) such that for k > k,,
j > N(k),

1
—n(p; "(OM{)| <e. (0.22)

dj
This is a direct consequence of the following basic estimate for the #-invariant; see
Sect. 4.

Theorem 0.1. There exists a constant ® ¢(4/ — 1) such that if N*'~ ! is compact and
satisfies geo(N) < 1, then

In(N* 1) < ¢(41 — 1) Vol(N* 1), (0.23)

> Throughout the paper we make the following convention. We indicate the dependence of
constants appearing in estimates on parameters by writing e.g. ¢ (n) for any constant depending
only on n. Thus if any parameter does not appear, it means that the constant can be estimated
independent of this parameter
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As we mentioned, the simple picture provided by Assertion 0.1 is actually
technically difficult to establish. The proof depends on a generalization of the
arguments of [G, ] and will not be attempted here. But for our present purposes,
a much less delicate result will suffice. This is the analog of Assertion 0.1 for the
covering space M; see Theorem 2.1.

The rationality or irrationality of P(M,g) is related to the properties of a
generalized torus action (f-structure) which can be shown to exist outside of a
compact subset of M; see Sect. 1 for examples, and [CG,] and [CGY] for details.

The remainder of this paper will consist of seven sections as follows.

Examples

Approximation Theorems

The Euler Characteristic and Stable Acyclicity of the Boundary
An Estimate for the #-Invariant

The n-Invariant and Signature

I? Theory for Normal Coverings

I? Theory for Profinite Normal Coverings

Nk W=
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concept of von Neumann dimension used in Sect. 6.

1. Examples

An indication of richness of the class of complete Riemannian manifolds with
|K| £ 1, Vol(M) < o0, is provided by examples such as the following, which are
constructed “by hand”. These examples also give some feeling for the geometry of
manifolds in this class. Of course, certain classical examples such as locally sym-
metric spaces have been studied in enormous detail.

Example 1.1 (R?, g). By forming the surface of revolution generated by a suitable
curve as in Fig. 1.1, we obtain a metric g with [K| < 1, Vol(R?) < o on R>.
For this metric, clearly y(R?,g) = 1.

Example 1.2 (R?>™, g™). If g is as in Example 1.1, the metric g, = g x ... g (m factors)
on R?™ satisfies

2(R*™, go) = x(R*™) = 1. (1.1)
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We now recall a construction from [G;] for producing metrics with |[K| < 1,
Vol(M?) < o on a large class of 3-manifolds called graph manifolds. We then
show how this can be applied in a simple fashion to R*. Finally we generalize to
R", yielding in particular, a metric g, with x(R* g;) = 0.

Example 1.3 (graph manifolds). Let 27, i = 1,2,... be a sequence of compact
2-manifolds whose boundaries are unions of circles, S5, j = 1,..., j(i). Topologi-
cally, the graph manifolds in question are obtained as follows. Take an infinite
sequence of circles S and form X? x S!. Then form a non-compact manifold
without boundary, M3, by identifying the boundary components S} x S/,
S x S} in pairs, preserving the product structure but interchanging the roles of
the factors.®

The metric on M? is obtained by gluing together metrics on the pieces X7 x S
by isometries of their boundaries. The metric on 7 x S is a product metric
where the S factor has length ¢;. Given any sequence (9;) = 6(i,[),..., 6 (i, j(i)) we
can find a metric g, on X7 with

VOI(Z?, g(éi)) < C(th)a (13)
Length(S}) = (i, j) (1.4
such that g, splits isometrically as a product near the boundary v S;;. This is

done by a slight modification of the construction of Example 0.1. By taking
8(i,j) = &; where i, j, ', j’ are as above and choosing ¢; such that

e xc(ZP) <e< oo, (1.5)
we get the required metric.

Remark 1.1. If all 2? have non-positive Euler characteristic, the above metric can
be chosen to have non-positive curvature.

Example 1.4 (R3, h). Write R? as an increasing union of solid tori, D7 x S (each
contractible in the next) as in Fig. 1.2.

If we set 2% x S* = D? x S, it suffices to decompose the region between each
pair D? x §', D%, x S" into two pieces ¥3; x S' U 22,,, x S'. To do this, view
D2, x Stasasolid cylinder C about the x-axis, with ends identified. Let 4 denote
the axis of C and S a circle which links A. Identify D7 x S} with a small tubular
neighborhood T,(S) of S, and put £3,,, x S' = D},., x §' = T,(A).

Fig. 1.2

6 More generally one can use pieces which admit locally free circle actions; see Example 1.7. Still
more generally one can consider polarized f-structures; see [CG,]
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\ Fig. 1.3

Then C\T,(A\T,(S) split as a product X3, x S'. Here the S factors are circles
linking A. Each such circle intersects the positive quadrant of the x — z plane in
a unique point. It follows that X3, is a rectangle with a disc deleted and ends
identified (i.e., a band F? with a disc deleted).”

Example 1.5 (R>™*3% g™ x h*). As a consequence of the local product structure, it
follows that for k positive and even, any characteristic from vanishes identically.
In particular for n even, n = 6, we obtain metrics g on R" with

x(R",g) =0+ x(R"). (1.6)

Example 1.6 (R, g,). The construction of Example 1.4 generalizes to give a family
of metrics on R", n = 3. Thus for n even, n = 4, we get metrics satisfying

2(R",g,) = 0. (1.7)

To obtain g,, write R" as a union of solid tori D?x T" % where
T 2=8"x ... x S*(j — 2 factors). Replace 4 of Example 1.4 by 7"~ %. Let T" 3
be contractibly imbedded in 7"~ 2 and replace C by the product of 7" * and a
circle linking T" 2. The rest of the construction proceeds as before yielding

S22, x T 2=D*x T2 I3 xT 2=F2xT" 2

Example 1.7% (2-plane bundles, ¢(R* g,) = 32). Let E? > X" ? be a 2-plane
bundle with connection 8 and let S' - N" "' 5 X"~ 2 be the associated circle
bundle. We will construct a metric g, with |[K| £ 1, Vol(M") < « on the total
space M" of E?, for suitable f: R* >R ™.

Let X have metric h and let H denote the horizontal subbundle for . Let z be
the infinitesimal generator of the generator of the S! action and assume 0(z) = 1.
We consider the metric

pr=mn*h+ f?0? (1.7
on N and the metric
gr=4dr’ + pg (1.8)

on M".
If u is a vector field on X, let u denote its horizontal lift. Define the skew
symmetric transformation S: H — H by

= Q(u,v) = {S(u), vy = [u, v}, 2). (1.9)

7 The fact that the region between two solid tori decomposes as above is used in [So] for
example, to show that the connected sum of 3-dimensional graph manifolds is again a graph
manifold. More generally, as observed in {G,], this argument works in odd dimensions.

8 See [CGY] for a simplification and generalization of Examples 1.7 and 1.8
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Then the Euler form of E? is

1
(Q)=—2Q. (1.10)
2n
Let R 7.2 denote the curvature tensors of N, and X respectively. Let V be the
pullback of the Riemannian connection on X. Then by a straightforward calcula-
tion [based, for example, on formula (2.66) of Sect. 2]

2

R (uw,v)w = R(u,0)w +f4 {{S{),w> S(v) — {S@),w> S(u)
+ {SW),v> S(w) — {S),uy S(w)}
+ <V, S@),w) z; — V.S, w) z,, (1.11)

2

ﬁf(yvzf)zf: —J';“Sz(l_l)a (1.12)

where z, = z/f. In particular, as f— 0, Vol(N) — 0 but [K | remains bounded.
This is essentially the Berger example; see e.g. [CE].
A similar calculation shows that the curvature R of g, satisfies

R(u,v)w = R, (u,0)w, (1.13)
R(uwzp)v = Ryw,zp)o + [/ <S> T, (1.14)
R(u,z[)z; = Ry(u,zs) 2y, (1.15)
Ru, T)T =0, (1.16)
R(z;,,T)T = —];,,zf (1.17)

where we have put T=249/0r. In particular, we have |K| <1,
Vol([4, ) x N) < oo, for suitable f;e.g f=e "or f=r"¢c> 1.

Formulas (1.13)—(1.17) together with (0.9) can be used to calculate ¢ (Y*, g)if Y*
is isometric to ([1,00) x N, g) near infinity. Recall that in dim 4,

F(R) = 11!71(R) tr(R A R). (1.18)

370 T oap?
Assume now for simplicity that V'S = 0 where S is as in (1.8) and put
Q=—5-w (1.19)

where w is the volume form on X 2. If ;¢ denotes the curvature of X? a routine
computation gives

I’L(R):():rz{f3f’s3—,}i/'ff’s + f"f'sydr Ao A 6. (1.20)
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By choosing f = r near r = 0, we obtain a metric g, on M* for which
a(M*,g;) = 3 2 (E?). (1.21)
By (0.9), we get
}if%n(Nin) = 0(M*) — a(M*,g) = — sign x(E®) + 5 2(E?), (1.22)

where
sign 7 (E?) = {X(E)Z/DC(EZ)L 2(E*) #0 (1.23)
0, Z(E?) = 0.
Thus if Y* is as above
a(Y* g,) = a(Y* + sign x(E?) — L x(E?). (1.24)
In particular by considering the Hopf fibration S* — §° — 52, we get
a(R*g) = 3. (1.25)

Example 1.8 <0(R4, g,) = ;(y + %), O0<y< oo). We now construct a family of
metrics g, on R%,0 < y < oo, with bounded curvature and finite volume, such that

o(M,g) = % (y + )1)) (y = 1 corresponds to the metric in Example 1.7).

First consider a local orthonormal frame field e,,..., e,, on a Riemannian
manifold N™. Recall that if

w; = e¥ (1.26)
Qu(x y) = <R X, y) €€, (1.28)

then we have the structural equations
= — Zwu f (1.29)
dwij: —Zwikwkj+ QU (130)

k

(Here and below the wedge product symbol is omitted.) Consider a 1-parameter
family of metrics h, for which e,,..., e, 1, % e,, is orthonormal. Since the connec-

tion forms are the unique forms satisfying (1.29) (for h,) which are antisymmetric
in i, j, we easily obtain

wh=w;+ (1 — ) bw,, 1=is=m-1 (1.31)
1
W, = t<w1m+2(1 — %) byw ,) (1.32)

Here b;; are the unique functions for which

= i bi;wiw; (1.33)

=1
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and

jit

If however, e,, = f - v for some smooth function f and (non-vanishing) Killing field
v, then using (1.27) and

v, y> + Vo, x) =0, (1.35)

it follows that

m

m
i=

Thus, (1.32) is replaced by
Wim = Wi m (1.37)
in this case. By (1.30) (for h,)
Q=0+ (1 + 1) [d(bij) W + 'Zzill bt Wei W — b Wi Wn — Wi wm,],
(1.38)
Q= Qi — (L — 1) X bij Wi Wi (1.39)

Note that (1.37)—(1.39) exhibit the basic fact that as t — 0, h, converges to a
metric which is the warpped product of a smooth metric on some U™~ ! and an
interval (whose length approaches zero).

Now suppose N*'~1 is compact, oriented and that v (non-vanishing) is globally
defined. Then (1.37)—(1.39) can be used to calculate the derivative with respect to
t of the secondary invariant corresponding to B, and hence of the #-invariant, #,
(see [APS,], [APS,] and [CS)). In particular, in dim 3, we have

-5 (j) [ @~ o), (1.40)

lim#n, = n,
t—0

where (w') denotes the derivative of the connection form with respect to t. For the
case in which h; is the standard metric on S°, we have n, = 0, Q; = w; w;,

Wio) = — 2th,ws, (1.41)
(Wy3) = wys = — b, wy — b3ws, (1.42)
(Was) = Wy = — byywy — byaws, (1.43)
o =wyw,y + (1 — t2) [d(byawi) — Wiz Ws,) (1.44)
Qi =twyw, — (1 —t3) by wysws (1.45)
Qs =twywy — (1 — t2) byy wyaws. (1.46)

Using
dws =2b, ww, (1.47)
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in (1.44), and (1.43), (1.44) in (1.45), (1.46) one checks that

BT tr(Q A w) = o [Q, Wiy + Qs wis + Q53 whs]
2
=33 tH1 — ) b3, w, wyws. (1.48)
Hence by (1.40),
}ijrol N=— # SL b3,. (1.49)

Now let (r;,8,,r,,0,) be polar coordinates on R* x IR? = IR*, and introduce
coordinates (s, 6, 0,) on the unit sphere S* by putting

tans =rfr,, O0=s=7%. (1.50)

Then the standard metric on S3 is

hy = ds? + cos? sd0? + sin? sd 62. (1.51)
Up to isometry any Killing field v on S* is given by
v:ai—i-ﬂi, (1.52)
06, 06,

where o, f are constants. Take

1 é
e; = tans — — axcots — ). 1.53
* 7 (% cos? s + B2 sin? 5)!12 <ﬁ 00, 092> (1.53)
Then
by =Ldws(ey,en) = L<er,es], e3> = *p (1.54)
12 2 31562 2 1>¢2],¢€3 ((Zz(?OSZS-FﬂZSinZS). .
Since
area(S! x S!) = 4n?sin s cos s, (1.55)
we get

sinscossds

b3 — 4TC2 O(4 4 H
sL 12 4 g(oc2 cos® s + fB%sin? s)?
2n% o3 B3 @ du o
e (—ﬂ). (1.56)
(B —o?) p= w? B«
Thus if a/f =y, (1.49) gives
) 1
limy, = _§<V +>A (1.57)
=0 Y
Finally, for fixed y, consider a metric on R* which, near infinity, looks like
gy:dr2+he..,, (158)
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Then (0.9) and (1.57) give

1
o(R%g,) = %(w + ;>. (1.59)

Example 1.9 [Non-invariance of P(M#,g)]. Let N*~' be compact and oriented.
Suppose (M*,g) is isometric to ([0,00) x N*~!,g,) near infinity, with
Vol([0, ) x N, go) < o0, geo([0,0) x N) < 1. After changing g, on a compact
set, an operation which preserves P(M,g), we can assume that on [0,1] x N,

go=dt* + g, (1.60)

for some metric on g on N.
Construct a second metric g, as follows. Let ¢: N — N be an orientation pre-
serving diffeomorphism (which might not be isotopic to the identity). Let

gO [09%] X N
gi=1h 121 x N (1.61)

(1 x 4)*(go) [5,00) x N
where h is any smooth interpolation between g, and (1 x ¢)*(g). Since for any P
we have P([0,1] x N,g,) = 0, it follows that
P([0,00) x N,g;) — P([0,0) X N,go) = P([0,1] x N,g,). (1.62)

Form a closed manifold X** by identifying 0 x N with 1 x ¢(N). Clearly
g11[0,1] x N pushes down to a metric on X*. Thus if P corresponds to an
integral class, the difference in (1.62) is an integer. But if P + F,, in general

P([0,1] x N,g1) = P(X*,g,) * 0. (1.63)
Thus, P(M,g) may depend on g even if geo; (M) < 1.

For further examples and related constructions the reader is referred to [G;].

2. Approximation Theorems

We begin this section with a theorem which asserts that any subset of a manifold
of bounded geometry is contained in a (top dimensional) submanifold the geome-
try of whose boundary is controlled. Although this suffices for the application to
x(M", g), a second result (Theorem 2.5) concerning the regularization of metrics of
bounded geometry is required in order to treat o (M", g).

Theorem 2.1 (Neighborhoods of bounded geometry). Let V" be a complete Rie-
mannian manifold and W, < ¥, an arbitrary subset. Assume that on the 1-tubular
neighborhood T; (W,), we have geo[T; (W,)] < 1. Then given ¢ > 0, there exists a
submanifold with boundary W,” — V" such that

1) Wy W
2) W' is contained in the e-tubular neighborhood T,(W,) of .
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3) There are constants c(n), ¢(n,i, €) such that
Vol(@W;") < ¢(n) Vol[T;(0 W), 21
[V IE@W | < c(nie). 2.2)

If V = IR", then W/ can be obtained as follows. Divide IR" into closed cubes of
side ¢, with disjoint interiors. Let W, consist of those cubes whose intersection
with W, is non-empty, and smooth the corners of W, appropriately to obtain W,.
Although this approach can be made to work in general (by using the trian-
gulation lemma of [CMS], Sect. 7 or related unpublished results of Calabi) it is
more efficient to proceed by combining the following three lemmas.

Let Ric denote the Ricci curvature of M".

Lemma 2.2 (Covering lemma). Let M”" be complete with Ric = — 1. Fix po > 0
and A > 1. Then for all 0 < p £ p,, there is a covering of M" by sets U,..., Uy,
such that

1) Each U; is a union of (possibly infinitely many) disjoint metric balls of radius
p, and the distance between the centers of each pair of balls is at least 2 4p.
2) N < c(n,po, 4).

To state the next lemma we need a definition. Let X* = M" be a submanifold
with empty boundary, and let N, (X*) denote the normal space to X* at x. A metric
ball B,(p) is called e-transversal to X* if the following holds. If x € X* and 7 is a
minimal geodesic from x to p whose length L[y] satisfies,

p—esLhyJsp+te
then the angle between y'(0) and N,(X*) is at least &.

Lemma 2.3 (Transversality lemma). Let geo[T,,(X*)] <1 and |II(X")| < 4.
Then for alt § > 0, B;(q) contains a point p such that B,(p) is e-transverse to X k
with

c(n,A) o"e "

Vol(W¥) @3)

Lemma 2.4 (Smoothing corners). Let V", V; = M" be compact manifolds with
smooth boundary. Assume geo(V)) < 1, [II(@V))| £ A,and forallx e dV{'n o V7

£ (NOVY), N(0V7)) =z e. 2.4)
Then for all ¢ > 0, there exists a smooth manifold X" such that
X" Vo Vs e T.(X", (2.5)
Vol(6X") £ c(n, e, A) [Vol(V;) + Vol(Vy)]? (2.6)
[TI@ XM £ c(n,e ¢, A). (2.7)

Proof of Theorem 2.1. Take p = ¢/4, 4 = 10 and let Uy, ..., Uy be as in Lemma 2.2
with
N < ¢(n,¢/4,10). (2.8)
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Let S; = U B, 4(p; ;) consist of those balls of U; whose intersection with W, is
non-emptgf, and let ¥, = () Bs,4(pi,)- Let ¥ = V;. By Lemma 2.3, we can find
points p, ; with dist(ﬁzj,j,pz,j) < ¢/4, and such that V, = U Bi.a(p2,)) is
e-transverse to ¥, with ¢ as in Lemma 2.3. Since in particular /

[IEV)l < cme!, (2.9
applying Lemma 2.4 with ¢’ = ¢/4 N gives

Siu S, e W, c T,(W). (2.10)

Now replace V;, V, by W,, ¥, and repeat the construction to get W;. By proceed-
ing in this fashion, after N steps we obtain required manifold W)= W > W,.

Proof of Lemma 2.2. Take a maximal set of balls of radius p such that 1) is
satisfied; i.e. the centers of each pair of balls are at distance = 2 Ap. Let U, be the
union of these balls. Then for all pe

dist(p, U,) <24ip — p. (2.11)

Now choose a set U, of balls of radius p such that 1) is satisfied, the centers of all
balls lie in the complement U] of U, and the set is maximal with respect to these
properties. Then if p € U]

dist(p, U,) < 24p — p. (2.13)

By repeating the process with U, replaced by U; u U, we construct U; such that
if p e (U; v U,) then

dist(p, Us) < 24p — p. (2.14)
We can proceed in this fashion to construct non-empty sets Uy, ..., Uy, ; provided
M"+ Uv...0Uy. Butif pe (U, u...u Uy), by induction, for j < N,

dist(p, Uj) < 24p — p. (2.15)

Let B,(q;) be a ball from U; such that dist(p,q;) < 24p. Note that the condition
gje (Uyu...u U;_,) for all j, implies that the balls B,,(q;) arc all disjoint. Then
since dist(p, q;) £ 24 p implies
N
Bzzp+p/2([’) = Ll) Bp/z(qj)’ (2.16)

we have
N
Vol(B,;,+ 52(p) 2 21 Vol(B,2(q,)). (2.17)
i=

By the relative volume estimate (see [G,] or [CGT))

(24 + 3) po,m) Vol(B,5(q;)) 2 VOl(Bys, 4 12(P) (2.18)
from which it follows that

N = c(24 4 D) po.n) = c(po. 4, N). (2.19)
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Proof of Lemma 2.3. Let V, ,(X*) denote the set of points m, such that B, (m) is not
e-transversal to X*. We must show that for ¢ as above,

By(q) ¢ V,,(X"). (2.20)
For this it suffices to have

Vol(V, .(X*) < Vol(B;(q)). (2.21)

Let me V, ,(X*). By definition, there is a minimal geodesic y from some x € X kto
mthatp —e < L[y] £ p +¢,and x [N,y (0)] < ¢, for some N e N(X¥), | N|| = 1.
A standard Rauch Comparison argument shows

dist(exp, pN,m) < 2e”e. (2.22)
In other words, if

X (p) = {exp, pN [N € N,(X")}, (2.23)
then

V. o(X¥) © Thoro(X (p)). (2.24)
Suppose we can show

Vol(T,r (X (p)) < c(n, A) Vol(X*) e™e. (2.29)
Then since we can assume 6 < 1, we have

¢(n) 8" = Vol(B;(q)), (2.26)

and we obtain (2.21) with

c(n) d" c(n,A)do"e ™
& = =
c(n, A) Vol (W*) e Vol (W¥)

(2.27)

as claimed.
To prove (2.25), we observe that if y,..., yy is an e”¢ dense in X (p), then

N
T (X (p) = kl)Bseps(yi), (2.28)
which implies
Vol(Tzers(X (p)) = c(n) (€”8)" N. (2.29)
Choose y;,..., yy as follows. Let xy,..., xy, be a maximal set of points of Xk
which are at mutual distance at least ¢. Then x,,..., xy, is ¢&-dense and
Vol(X*)
= (2.30)
c(n, A) &*
For each x;, let z; 4,..., z; y, be an ¢-dense set of points in the unit sphere of the
fibre N, (X*), with
c(n
N, = —(L (2.31)

8n*k*l )
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If we take

{ylw-wyN} = {expxipzi,j}9 (2'32)
by a standard Rauch Comparison, y,,..., yy is e’ e-dense in X (p). Since

c(n) Vol(x%
N=N;-N,= — (2.33)
cn, ) ™Y
(2.25) follows from (2.29). This suffices to complete the proof.
Proof of Lemma 2.4. Let 0V, N0V, = Y" 2.
Claim:
Vol(Y" %) < c(n,e” ', A) Vol(@ V) - Vol(0 V), (2.34)
[TL(Y" ") | < c(ne” 1, A). (2.35)

Granting this for the moment, a standard Rauch Comparison shows that if
W, < V, u V, denotes the set of points at distance = ¢ from (V; U V,) (¢ small) then

Vol(8 W) < ¢(n, A) [Vol(@V,) + Vol(@ V3)2. (2.36)

Moreover, d W, is C' and I1(d W) is well defined except along the set expy eN;,
where N; is the inward normal to dV;, j = 1,2. Off this set, a standard Rauch
Comparison argument shows

ITIE@W) | < c(ne™", ). (2.37)

Now, by an elementary argument (the details of which will be omitted) we can
approximate & W, by a manifold @ W such that the conditions of Lemma 2.4 are
satisfied for i = 0. The case i > 0 can then be handled using the argument of
Theorem 2.5 below.

Proof of (2.35). Let T; denote unit normal fields to Y2, which are tangent to
JV;. If 7 is the ambient connection and y is tangent to Y, | y| = 1, we have

(‘7yy)i = Ty + BNy =0T, + o N, (2.38)
where | ;| < A. Taking the inner product of (2.38) with N, yields

oy = — B NNy + B,
' (TN

(2.39)

Thus

2 2
ocf-{-ﬂf:ﬂl 2ﬂ1ﬂ2<N1,§‘]2>+B2 (2.40)
<T19N2>

which gives (2.35).

Proof of (2.34). Since geo(M) < 1, [[II(0V))|| £ 4, a standard argument shows
that there exists r = r(n,e ', A) with the following property. Let Z7 ' be a con-
nected open submanifold of ¢ V; which is a relatively closed subset of some
B,,(p) = M, j=1,2. Then if Z, n Z, ~ B,(p) is non-empty, there exists a diffeo-
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morphism y: B,,(p) — B,,(p) carrying Z,Z, onto a pair of transversally inter-
secting hyperplanes (in normal coordinates). Moreover, { can be chosen so that

1Yl < clme™ ', A). (2.41)

Let Z, 1 Z, ;... denote the components of 3V, N B,,(p) whose intersection with
Z, N B,(p) is non-empty. It follows in particular that Z, nZ, ;n B,(p) is con-
nected. Thus by (2.41),

Vol(dV,) 2 Vol(u Z, ;) 2 c(n,e” 1, A) Y Vol(Z\nZ, ;0 B.(p). (242)
Since geo(M) < 1, [[(0V))]| £ A, we have geo(0V)) < c(n, A) and there exists a

covering of 0V by c(n,&_ 1 A) Vol(d V) balls of radius r (in the metric of J V}).
Then for some ball, say B,(p) < 0V},

Vol(Y"?)
c(n,e” ', A) Vol(@V,)

Vol(Y""2n B,(p) 2 Vol (Y* 2 " B,(p) 2 (2:43)
If we take Z, to be the component of 8 V; N B,,(p) containing B,(p), combining
(2.42), (2.43) gives (2.34).

We now give a result concerning the regularization of metrics of bounded
geometry. Let ¢,,g, be Riemannian metrics on M". Put

B=g,—g:, (2.44)
D(x,y) = ,Vyy —1Vey (2.45)

where ;¥ is the Riemannian connection of g;. Note that
92(D(x,y),2) = 5 {1V B(y,2) + 1V, B(x,2) =V, B{x, y)} (2.46)
ViB(Y,2) = g, (D(x,),2) + g1 (y, D(x, 2)). (247)

The proof of the following theorem is closely related to (and easily yields) the
theorem concerning finiteness up to diffeomorphism discussed in [C, ], [G, |, [GLP],

[P].

Theorem 2.5. Let g be a metric on M" with geo(M,g) < 1.° Then for all ¢ > 0,
there exists a metric g, on M" such that if B, = g, — g, D, = .,V — V, we have

1) [B. |l = e

2) | Dyl < clne™ ).
3) Foralli=0.

IV RN < cln,ie™ ). (2.48)
4) There is a constant ¢(n) > 0 such that
i(M", g;) 2 c(n). (2.49)

Proof: Step 1: Let the positive number p be determined as follows. If p,q,.q, are
points on the unit 2-sphere such that dist(p, q,) =  — p, dist(q,,4q,) < p, then the

® See [BMR] for a deeper result concerning manifolds with |K|< |
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angle between the minimal geodesics y;,y, from p to g,,4, is at most say 5. Apply
the Covering Lemma 2.1 with 2ip =1 to construct U,..., Uy, where

U= B,(py) and N = c(n,p, 1) = c(n).

Step 2: Let ¢: [0,] — [0,1] be a smooth non-increasing function with |¢| = 12
such that ¢|[0,2]=1and ¢|[3,5] = 0. If

Pij(Z) = diSt(Z’sz), fi= Zpij,
J

then f: z = (fi,..., fy) is an immersion of M" into R¥. Clearly, if g, is the induced
metric,

1g< g, clnyg (2.50)

where the first inequality follows from the choice of p and Rauch’s Comparison
Theorem. Let II denote the second fundamental form of £, and ;¥ the Riemannian
connection of g, .

If y is a geodesic with tangent vector T, then

|TI(T, T) II} <<§( f_,,(t)z)>”2 (2.51)
| 7T S \T ' |

Using |K| £ 1, each term on the right hand side of (2.51) can be estimated by a
standard Rauch Comparison argument based on the second variation formula.
Thus, for ¢g,g, we have

D]

I H} < c(n). (2.52)

Step 3: Let Z" denote the zero section of the normal bundle, v = v(f(M")). In view
of the definition of f and the bound (2.52), there exists r = r(n) such that the
restriction of the exponential map of v to a ball B,(x), x € Z" is a diffeomorphism.
We can equip the r-tubular neighborhood T,(Z") with the flat metric pulled back
from RM via exp. Moreover, the tangent bundle of T.(Z") is the pull back
exp*(T(R")), and thus is canonically trivial. In particular, let B be the subbundle
whose fibres F, are the tangent spaces to the fibres of v. The orthogonal projections
P, onto the F, can be represented by a field of matrices A(x), with 4 = A* A% = I,
The estimate (2.52) easily implies a bound

lAll+[1dA] £ c(n) (2.53)
on the C'-norm of A(x), measured with respect to the flat structure on T.(Z").

Similarly, the field r % along the fibres of v induces a section s of B, and

sl + ldslly = c(n). (2.54)
Step 4: If we identify Z" with M", then the induced metric on Z" coincides with g, .

Moreover, Z" is canonically identified with the transversal intersection of s and
the zero section 0 of B. The angle between s and 0 along Z" is 7.
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Let ¢; = 6 "¢ ((x — y)/d) be an C* approximate identity, where ¢ is supported
on a ball of radius 1. For ¢ < r/2 the convolution

dsx A = As (2.55)

is well defined at points of T;/,(Z"). For ¢ small, the sum of the dimensions of the
eigenspaces of 4; corresponding to the eigenvalues > 4 equals N — n. A simple
argument based on the finite dimensional Spectral Theorem (Cauchy Integral
Formula) shows that the matrix C,(x) representing orthogonal projection onto
the direct sum of these eigenspaces satisfies

1Cslle: < c(n,i) (2.56)

for all i. Similarly,
[ Cs(@s*s)llc: < c(n,i), ‘ (2.57)

and for 6 < d(n), C;(¢;* s) makes an angle > % — (), where ¥/ (6) > 0 as § — 0.
Thus, Cs(¢s*s) n 0 is a submanifold Z". It follows from (2.56) and (2.57) that the
curvature R; of the metric h; induced on Z” satisfies

IV Rslls < c(m,i,07 1), (2.58)

Moreover, by using the normal projection of T,(Z") onto Z” we see that for
0 < d(n), Zj is diffeomorphic to Z” and

Ihs —gilli + s — g1 115> 0 (2.59)
as 0 — 0. Finally,
IV = Vi Scmd?) (2.60)
Step 5: As in Step 3, identify Zj with M" and put
g(x,y) = hs(Esx, y). (2.61)

Extend E, to the orthogonal complement bundle B* of B, by parallel translation.
If we choose 6 = §(¢) sufficiently small and set

ge(x,y) = hs(( — C3) (¢s* E) (I — C;) X, y), (2.62)
then g, has the properties claimed in the statement of the theorem.

For the application in Sect. 5, we will also require the following rather standard
result (the notation is as in (2.44), (2.45) and we put || |, =1 | + || I|2)

Lemma 2.6. Let g, g, be Riemannian metrics on M". Let h be the metric
h=dt*+tg, +(1 —t)g, (2.63)

on [0,1] x M". Then there is a constant ¢ such that the ambient curvature R, and
second fundamental form II, of (¢, M) satisfy

IL(x,y) = D(x, ) % (2.64)

IR e =1TRily+ IR M2+ c(IBIFs2+ I Dllysa+ [DIT+2). (265
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Proof: Let V,V be connections on the tangent bundle of a manifold ¥, with V
torsion free. If

Vo —Vo=2u,v) (2.66)

denotes the difference tensor, then by a standard calculation, the difference of the
curvature tensors is given by
R(u,v)w = R(u,v)w + D (u, 2 (v,w)) — 2 (v, 2 (u, w))
- @(@ (ua U)a W) + @(@ (U’ U), W)
+ V.20, w) — V,D(u,w). (2.67)

Let V be the Riemannian connection on Y = (0,1) x M" with metric 4. Let ¥ be

the Whitney sum of the connection for which 6% is parallel and the Riemannian

connection ,V of tg, + (1 — t)g, on the subbundle tangent to the factors (z, M").
A computation based on (2.67) shows that

IR M < U R M+ c{IBli+a+ 1D l1+2}, (2.68)

where R, is the curvature of g,.

In order to calculate || R, ||, we observe that if M" x M" is equipped with the
product metric t7¥ g, + (1 — 1) 7% g,, then the metric g, is the metric induced on
the diagonal. A simple computation with the Gauss equation gives

IR S IRy 1y + IRy 2 + 1Dl +2 (2.69)
which, together with (2.68) yields (2.65).

3. The Euler Characteristic and the Stable Acyclicity
of the Boundary

In this section we state our main result on the geometric Euler characteristic
x (M", g) for coverings which are either profinite or normal. The proof and explicit
interpretation will only be given for the case in which M is profinite. In Sect. 6, we
give a second (I?) interpretation assuming M” is normal. However, the proper
homotopy invariance of this interpretation will only be proved if M”" is both
profinite and normal (see Sect. 7). The proof for general normal coverings will be
given in [CGy].
Let A, =« A, and set

bi(4,, 4,) = dim {j(H'(4,)) = H'(4,)} (3.1)
where j: A, — A, is the inclusion map (and real coefficients are understood);
compare (0.18). If 4, = 4, = A; = A,, one easily checks that

bi(4;) < b'(4,)  b(A4,, 4,) < B(4;, A,). (32

Moreover, let A = Y, be a finite complex and let f: Y — Z, g: Z — Y be simplicial
and determine a homotopy equivalence. Then

b(4,Y) S b(f(A),Z) S b (g f(A), Y). (3:3)
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Now let p: ¥* — Y™ be profinite. Put

n 1 . -
sup £(¥") = lim 1 2 (- )‘d—b‘(p,-’l(A), Y £ o0 (3.4)
= j
and define inf #(Y") similarly.'® These are not, a priori, homotopy invariants in
general. But by (3.2) and a diagonal argument, there are subsequences, S = {Y, Yo,
such that
def oy 1 i — oy
o = b (Y", $)E lim Lim — b (p; (4), Y]y, (3.5)

A—-w 2w i
: ; 1 i(,—1 vn
= lim lim — b'(p;q, (A), Yj(l))a
A-w >0 0
exists. Using (3.3), b'(Y", S) is a homotopy invariant. Thus, if
bi(Y",S)<w, i=0,...n, (3.6)

and sup #(Y") = inf §(Y"), this number is also a homotopy invariant. (In the
proof of Theorem 3.1 below, (3.6), for Y” = M*, follows from (3.10) and the analog
of (3.13) with B — Ay, replaced by Bj).

Theorem 3.1. Let M be complete, Vol (M") < co. Suppose M is either profinite or
normal, and that geo(M) < 1.

1) Then y(M", g) is a proper homotopy invariant of M.
2) In case M is profinite,

x(M, g) = sup {(M) = inf y (M) (3.7)
3) If, in addition, M has finite topological type,
(M, g) = x(M). (3.8)

Remark 3.1. As we indicated in the introduction Theorem 3.1 has a simple gener-
alization to the case geo., (M) < 1; the details will be omitted.

Remark 3.2. Note that for M profinite (but not normal) we can view Theorem 3.1
as providing asymptotic information about the sequence of finite covermgs M;,in
terms of ¥ (M, g). However, in contrast to the situation in which M is normal we
do not obtain information about M itself; compare Sect. 6.

Proof of Theorem 3.1. Let M be profinite and let U M, = M be an exhaustion of
M by compact submanifolds with boundary. Let M, — R denote the set of points
of M, at distance R from the boundary. For ] sufﬁmently large, we can apply the
approximation theorem (Theorem 2.1), to p; (M;) — 1, p; (M), with & = i, to
obtain submanifolds 4, < p; ' (M,) < By It follows from {0.8),(2.1)and (2.2) that

10 The notation A4 —oo refers to the partial ordering on finite subcomplexes induced by
inclusion
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for all £ > 0, k there exists ko, N (k) such that for k > kg, j > N (k),

1
‘X(Mn,g) - ZX(Bjk)

J

1
é‘x(M",g)—' 9)’ —jP(Q) 1B < 69
By (3.2)
bi(45) < bi(p; (M) < bi(p; (M), M) < b'(Byo). (3.10)

However, the exact sequence of the pair (B, Bj — Aj) together with excision
shows _
b(A4;) — b'(Bj)| £ b (B — Az) + b (B — Ap). (3.11)

The manifold with boundary Bj — Ay has bounded geometry, for j > N (k).
Moreover, for k sufficiently large,

Vol(By, — Jk) < d;e. (3.12)

By a standard argument, it follows that
Zbi(Bjk — Ay) < c(n) Vol(By — Ay (3.13)

which together with (3.10)-(3.12), allows us to replace x(Bj) in (3.9) by
2(p; 1 (M,), M)). This suffices to prove 1) and 2) in case M is profinite.

3) In case M has finite topological type, we note that for k sufficiently large,
&M, will be contained in the image of a tubular neighborhood of d M. Then

bi(p; ' (M), M) = bi(M)) (3.14)
and we can replace y(p; ' (M), M;) by x(M)). Since

1 .
4 M) =1 (M), (3.15)
j
(3.8) follows.
By a similar argument, we have the following result on the stable Betti numbers
0~f the boundary for the case in which M has finite topological type, ¢ M = N and
N is profinite.

Theorem 3.2. Let N be compact and suppose N — N is profinite. If [0, ) x N
admits a complete metric with Vol([0, o) x N) < oo and geo([0, ) x N) < 1,
then for all i,

| B
lim — b'(N;) = 0. (3.16)
jmoo dj
Proof: Take M, = [0,R] x N in (3.10). Note that
bi(p; (M) = (3.17)

bi(pj_l(Mk)’pj (Mk+1))= ( )- (3.18)
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But as in the proof of Theorem 3.1,

1 . 1 .
lim —b'(M,)) = lim 1 b(p; ' (My), pj (M4 1), (3.19)

jmw 4 jmw 4

which together with (3.17), (3.18) completes the proof.

See Theorem 7.2 and [CG, |for an I? version of Theorem 3.2 in case N is normal
but not necessarily profinite.

As noted in [G;] the argument given in the proof of Theorem 3.1 also applies
to certain situations in which M" has infinite volume. For example, suppose that
M?" is stable at infinity in the sense that there exists an exhaustion by compact
submanifolds with boundary M,, such that for some fixed p > 0,

Vol(M,)/Vol(T,(M,) - 1. (3.20)

In this case M, is called a stable sequence. Note that if M has subexponential
growth

lim log Vol (B, (p))/r = 0, : (3.21)

r— o

then M is stable at infinity.

Theorem 3.3. Let geo(V) = 1 and let V}* be a stable sequence for V*. Then

lim Vo, V) — x(Vi,g)| = 0. 3.22
Jim Vol(Vk)lx( V) — 1V, 9)| (3.22)
Proof:: The argument is completely analogous to the proof of Theorem 3.1.

In the same way we obtain.

Corollary 3.4. Let M be profinite and satisfy geo (M) < 1. If M, is a stable sequence
for M,

| % (My, g) — sup 7 (My)|

lim
k—x

Vol(M,)

= lim | % (My, g) — inf Z(My)] = 0. (3.23)

k>o Vol(M,)
Corollary 3.5. Let M" be as in Corollary 3.4 and assume that for some constant
k > 0, one of the following pointwise relations holds (where w denotes the volume
form)
B(Q) > ko, (3.24)

P(Q) < —kw. (3.25)
1) If M has finite topological type then Vol(M") < 0.

2) Suppose n = 4 and (3.24) holds. If one only assumes that M* admits a CW
decomposition with finitely many 2-cells, it follows that M* has finite volume.
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Example 3.1. Recall that if M* has pinched negative curvature, — 1 < K < ¢ <0,
then

P(Q) > k(c) . (3.26)

Also, if for example, M>™ has constant negative curvature, then (3.24) holds for
n even and (3.25) holds for n odd. Thus, Corollary 3.25 applies in these cases.
Conversely, Jorgensen has constructed an example of a 3-dimensional manifold
having constant negative curvature, finite topological type, linear growth and
infinite volume; see [J]. (In fact his manifold is an infinite cyclic covering of a
compact manifold of constant negative curvature.) One suspects that such exam-
ples exist in all odd dimensions, but not in even dimensions (see Example 5.1 for
the continuation of this discussion).

4. An Estimate for the n-Invariant

Recall that the y-invariant can be defined as follows. Let N* ™! be an oriented
Riemannian manifold and consider the self adjoint operator = d, which sends the
space of coexact (2! — 1)-forms to itself. On this subspace *d is a certain square
root of the Laplacian, A. Thus, if {4;} are the eigenvalues of A, the eigenvalues
p; of =d satisfy puf = 4;.

One defines the zeta functions {4 (s) by

(@)= X [yl (4.1)
iuj>0
where the individual series converge for Re s > (41 — 1)/2. If we put

n(s) = L (s) — (- (s), (4.2)

then n(s) extends by analytic continuation to a meromorphic function in the
whole complex plane; see [APS;]. A more refined analysis shows that #(s) is
holomorphic for Res > —1; see [Gil]. The value #(0) is by definition the
n-invariant #(N*'~') and the Atiyah-Singer-Patodi formula, (0.9), for the signa-
ture of a manifold with boundary holds.

Let I'(s) be the gamma function, defined by

I ={etetds, 4.3)
0

for s > 0. If e 2" = E(x, y,t) denotes the heat kernel on (21 — 1)-forms, we have
the function
tr(xde 2y = Zpje *, (4.4)

which is smooth for r > 0, and exponentially decreasing as ¢ — oo. The analysis
mentioned above shows that

tr(xde ) ~co+cit+...+ 4.5)
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as t — 0. Hence, by a simple change of variables, we obtain the integral formula

1

n(s) = ro+h o

j £U2 tr(xde ) dt, (4.6)

valid for s > — 1. The assertion of Theorem 0.1,
[p(NH Y < c(dl-1) Vol(N*~1) 4.7
if geo(N) £ 1, is based on (4.6).

Proof of Theorem 0.1. Set s = 0, in (4.6) and break the integral into j + f We
estimate these pieces separately.

1
Estimate for {: By combining (0.9) with the regularization theorem (Theorem 2.5)
0

and Lemma 2.6, it suffices to assume that |V'R|| < c¢(i,4] —1),i=0,.... The
argument is now very close to that of [C,], [CGT], so we will be brief.

Let P be a parametrix for e %, which is compactly supported in space and time.
Set

<Ax + i) P(x,y,t) = Q(x, 1) 4.8)

If we choose P sufficiently accurately, we will have
[ AL A *dQ(x,p,0) || S c(dl=1) (4.9)

for z] <1 and all t >0. Here |*dQ| and c(4]—1) depend on c(i,4l— 1)
i= ., 21 Asin [C,], Sect. 5, we can now employ Duhamel’s principle

AL AI(*dE(x,y, 1) — xd P(x, y,1))

e™20 9 ALAT xdQ(s)ds, (4.10)

ouqn

and the elliptic estimate
l .
[fIlsc@dl-1) Z_O A, (4.11)

to bound the pointwise norm of (*d E — xd P), for 0 < t < 1 (the constant (4.11)
is controlled by | R ||; see [CGT]). If we write

tr(+dE() = tr(+dE — *d P) + tr(xd P) (4.12)

1
(where the fact tr(xd P) ~ 0 as t - 0 plays no essential role) the estimate for |
follows easily. 0
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o
Estimate for {:We have
1

00

(172 tr(ede 2 de| <3 [ 112 212 e M) do
1 i1

— A e —Ai(t— 1)/L1/2t 1/2 dt

i 1
=3e ™ 0fe_"(u +A) Y2 du
i 0
<Ye? Oj?e U2 du
i 0
= /rtr(B.e® (4.13)

where P, denotes orthogonal projection on coexact forms. But by the same
techniques as were employed above,

tr(e ®) £ c(4l — 1) Vol(N¥~1), 4.14)
which suffices to complete the proof.

Note that the proof of Theorem 0.1 immediately generalizes to give the bound
Mge(N)| £ c(@l— D)k 4.15)

5. The n-Invariant and Signature

Let M* be complete and M* profinite. If M’ « M*' is a compact submanifold
with boundary set

1
sup & (M,) = lim sup n a(p; (M)
! g (5.1)
sup 6(M) = limsup sup ¢ (M,).
M

Similarly, we have inf 6(M,), inf 0 (M). Recall that o(M,) can be defined as the
signature of the cup product pairing on

JEHP (M, M) < HX (M),

Thus we could also write ¢ (M,), etc.

As in Sect. 3, sup 6 (M), inf 6 (M) are proper homotopy invariants. Moreover,
we have the following generalization of (0.13) of the introduction (and analog of
Theorem 3.1).

Theorem 5.1. Let M* be complete, Vol M") < co. Suppose M is either profinite
or normal and that geo(M) < 1.
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1) Then o(M,g) is a proper homotopy invariant of M.
2) In case M is profinite, for any exhaustion by compact subsets, U M, = M,

o(M,g) = sup ¢(M) = inf 6 (M). (5.3)

3) If, in addition, M has finite topological type,

o(M,g) = lim l o(M) (5.4)

Jj—= oo j

Proof: 1) See Sect. 6 and 7 and [CG, ].

2) If M is profinite, in view of (0.9) and Theorem 0.1, the proof follows by an
argument analogous to that of Theorem 3.1.

3) The case in which M has finite topological type follows similarly.

Remark 5.1. There is also an easy generalization of Theorem 5.1 to the case
geos, (M) < 1.

Now recall the invariants pg(N* ') defined in (0.11). Note that these include
as a special case invariants of finite coverings N — N of order d; < «. To every
such covering there corresponds a bundle E% (N ) whose holonomy representation
is the representation of =, (N } induced from the trivial representation of
nl(N ) < 7, (N). Analy51s on N7 is canonically identified with analysis on N; with
coefficients in E“/(N)).

We now observe that for certain degenerating sequences of metrics g; which
might exist on N, we have

lim ne<(N,g:) = ppx(N); (5.5)

compare Example 1.7.

Theorem 5.2. Let N*'~! admit a sequence of metrics g; such that geo(N,g;,) < 1,
for some covering space N, and such that

Vol(N, g;) — 0. (5.6)

Then for all E* we have
o1
l_mol % nee(N,g;) = pg(N). (5.7)

Proof: If N is profinite the claim follows 1mmed1ately by applying (4.14) to a
sequence of finite covering spaces N; ;)» With say geo (N @) = 2.

Note that if there exists a manifold with boundary X*' with 0 X*' = N*~!, such
that E* extends to X* as a flat bundle and 7, (N) injects into 7, (X), then pp is a
homotopy invariant of (X, N).

We also have the following analogs of the results of Sect. 3 for manifolds of
infinite volume which are stable at infinity.
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Theorem 5.3. Let geo(V) < 1 and let V}” be a stable sequence of V. Then

:gri Vol(V) lo(Viog) — a (V)| = 0. (5.8)

Corollary 5.4. Let M be profinite and satisfy geo (M) < 1.If M, is a stable sequence
for M,

lim —

M,,g) —sup ¢ (M,
. m Vol(Mk)|6( o d) up 6(M,)|

1
= lim — o (M, g) — inf 6(M,)| = 0. 5.9
o Vol(Mk)l (M, g) (M| (5.9)
Corollary 5.5. Let M* be as in Corollary 5.3 and assume that for some constant
k > 0, one of the following pointwise relations holds (where « denotes the volume

form)
F(Q) > ko, (5.10)

B(Q) < — k. (5.11)

Then if in addition M*' admits a CW decomposition with finitely many cells in
dimension 2/, it follows that Vol(M) < co.

Remark 5.2. If G is a semisimple group without SO (k, 1) or SU (n, 1) factors, then
the following stronger assertion was pointed out to the authors by D. Kazhdan.

If G/I" has subexponential growth, then Vol(G/I') < oo for an arbitrary discrete
subgroup I" < G. This follows immediately from Kazhdan’s T-property for G (see

(K]

Example 5.1. Corollary 5.5 is similar to Corollary 3.5 in dimension 4, but unlike
the latter, it does not yield non-trivial information if M*' has constant negative
curvature. However, for spaces covered by the complex ball (the dual of complex
projective space) it is stronger than Corollary 3.5.

6. I*-Theory for Normal Coverings

In this section we assume only that M is normal.'' We begin by observing that
the I*-Index Theorem for coverings of compact manifolds (see [A], [S]) has an easy
generalization to our situation. The proper homotopy invariance of (M, g),
6(M,g) is then a consequence of the proper homotopy invariance of the corre-
sponding I?-Betti numbers, bez)(M). The latter is proved in Sect. 7, under the
additional hypothesis that M profinite. The general case will be treated in [CG, |.

Before discussing the I7-Index Theorem, we will briefly recall the relevant
concept von Neumann dimension; for further details see [A], [Co], [Gui], [Nai].
Let I be a discrete countable group and let I*(I') be regarded as a I'-module via
the left regular representation {L,}. If W is a Hilbert space with trivial I"-action,

11 We continue to assume geo (M) < 1, but drop the assumption that M is profinite
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[ ® W splits naturally as a direct sum of copies of W, one for each element
of I Relative to this decomposition a bounded operator A can be written as a

matrix (4,, ,,) where 4, ,,: W,, » W, . If A commutes with all {L,}, it follows
immediately that
Aqisyzz Ag{‘glegz‘lgl.e (6.1)

for some A,: W — W. The operators R, of the right regular representation satisfy

mﬁ={° 979, (6.2)
I g=g¢
It follows that any A4 as above can be written as

A=3YR,®A4,. (6.3)
If A, is trace class, define

trp(A4) = tr(A,). (6.4)

Let 4" consist of all T commuting with {L,} such that (T* T), is trace class. Let
M = N'? be the set of all A of the form

N
A=3 TS (6.5)
i=1

where T;, S;e 4. Then it is not difficult to see that if A € .# and B is a bounded
operator commuting with {L,}

tr(4B) = 3 tr(4,B,-1) = X tr(B,-1 4,) = tr(BA). (6.6)
g g
In particular, if U is unitary and commutes with {L,},
tr(UAU ™Y = tr(A). (6.7

Let H be a I'-module, i.e. I" acts on the Hilbert space H by unitary operators.
Let f;: H—> (I ® W, j = 1,2 be isometric I'-imbeddings and put

X ® W, = fi(H)® f(H)". (6.8)
Then since

fiH)® fi(H)* @ fL(H)* @ fr(H)
it S (6.9)

LH)® f(H)* @ f1(H)" @ fi(H).

It follows that a [I-isomorphism f, f; ~': fi(H)— f,(H) extends stably to
I-automorphism of

rZnew o (N Ww,=L(I) W e W) (6.10)
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In view of (6.7), this immediately implies that if =, (H) denotes orthogonal
projection on f;(H),
dimp H ® trp(ny, ) (6.11)

is well defined independent of f;.
If H= H, ® H, splits as an orthogonal direct sum,

dim;H = dimH; @ dim H,. (6.12)
Moreover, if jtr A;] £ const and A; - A weakly,

tr(4;) - A. (6.13)
Finally,if A: H, — H, is a bounded injective map of I'-modules with dense range,

A(A*A)~'Y?: H, —» H, (6.14)

is a I'-isometry. _ _
Now suppose that M —> M is a normal covering, M = M/I", Vol(M) < oo,
geo(M) < 1. Any choice of fundamental domain F determines an isomorphism

[2(M) ~ I2(I') ® (I?(F). (6.15)
Define the reduced I2-cohomology of M by

H, (M) = ker d,fimd,_, (6.16)
where o € dom d, if a,da € 2. Since M is complete, we have the I'-isomorphism

HiL) (M) ~ #' < [2(M) (6.17)
where #" is the space of (necessarily closed and coclosed) [*-harmonic forms. It
follows from the above discussion that the I?-Betti numbers,

hiay(M) < dimp 7", (6.18)
depend only on the quasi-isometry class of g, as does the isomorphism class of the
I'-module #" itself. Note that if I; = I, and ind I; = d < cc, then

bio)(M[L) = d - Bigy(MT). (6.19)

Thus, the b () behave multiplicatively under coverings, even though they are not
locally computable. .
If T denotes orthogonal projection on #, then

[T(w) = [A(x,y) o(y)dy (6.20)

where h'(x, y) is a symmetric C* kernel which for each fixed x, satisfies
hi(x,y) e I2(V). (6.21)

The pointwise norm of A*(x,y) can be bounded in terms of the constant in the
elliptic estimate near the points x, y (see [CGT]). Hence, if we assume

geo(M) < 1, (6.22)
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it follows that
sup | A'(x,y) || £ ¢(n). (6.23)

Since A'(x,y) is invariant under isometries, the pointwise trace, tr(h(x, x)), is
invariant under I' and thus can be regarded as a function on M. It is not difficult
to verify that

bl,y (M) = | tr(h¥(x,x)) dx. (6.24)

Example 6.1. Let M/I" be a compact manifold admitting a sequence of metrics g;
with geo(M, g:i) <1, Vol(M, g;) — 0. Since (6.24) is independent of metric, (6.23)
implies dim #* = 0 for all i.

Set
Ty (M) = T (= 1) bipy(M) (6.25)
5(2)(M4l) = f tr(x h?(x, x)) d x
M

Then we have:

Theorem 6.1 (I*-Index Theorem).!?
a(M,g) = J2)(M) (6.26)
(M, g) = 6)(M). (6.27)

In case M is compact, Dodziuk [D] showed that the bi,,(M) are homotopy
invariants, thus answering a question of Atiyah, [A]. Dodziuk’s argument extends
in a straightforward manner to manifolds with boundary and either relative or
absolute boundary conditions. Then the homotopy invariants b(z)(M ) b2y (M, M)
are defined in the obvious way.

Theorem 6.2. If M, is any exhaustion of M by compact submanifolds with bound-
ary, we have

hm b(z,(Mk) = hm lim bi,) (M, M) = b1,(M). (6.28)

—w [—w0

Theorems 6.1 and 6.2 formally imply Theorem 0.1 and 1) of Theorem 3.1. These
assert the homotopy invariance (respectively proper homotopy invariance) of

x(M,g), 6(M,g) in our situation. We now prove Theorem 6.1. The proof of
Theorem 6.2 will be given in Sect. 7 under extra the assumption that M is pro-
finite. The general case will be dealt with in [CG,].

Proof of Theorem 6.1. 1) x (M, g) = J,(M). Let Ei(t) denote the heat kernel of M
on i-forms. The constructions and estimates of [CLY], [CGT] show that the

12 Clearly, this theorem generalizes to other operators which are invariantly attached to the
geometry e.g. the Dirac operator (compare also [CM])
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pointwise trace tr(E'(¢)) is uniformly bounded for t > t, > 0. Since the covering is
normal, tr(E'(1)) is the pull back of a function on M, which we also denote by
tr(E'(1)). Since geo (M) < 1, the estimates of [CLY], [CGT] show that for ¢ small,

Itr E'(t) — t "2(d} + dit ... dit")| < e(n) ™! (6.29)
pointwise. Hence as t — 0, we have the uniform pointwise estimate
> (= 1 tr E'(t) — B(Q)| S cm)t. (6.30)
i=0
Next, we claim that

d o
o (=1 ,&" E'(t)] =0, (6.31)

or equivalently,
(=1 ftr(AE@) =0. (6.32)

To see this formally, let ¢ be a coexact eigenform, || ¢ || = 1, with eigenvalue 4 > 0.
Then by Stokes” Theorem,

e ignxg=1(e  5dp nx¢

e
+ e Mdxdg A )+ [e Hdp A xds
M M

¢ d¢

=je“'”/lﬁ/\ *ﬁ (6.33)
In actuality, by the Spectral Theorem, we have the pointwise relation
d(A *, %, d E' () = tr(3d E'(t)) — tr(dSE"* 1 (1)). (6.34)
If M is complete and the forms in (6.34) as well as the form
A xyx d E(2) (6.35)
are integrable over M, by [G] we obtain
Aj{ tr(0d Ei(r)) = Aj4 tr(dd E'(1)) (6.36)

which gives (6.26). In our case the forms in question are pointwise bounded and
M has finite volume so integrability is obvious, g.e.d.
Suppose we attempt to show by a similar argument that

[ tr(RE(0) = [ w(RE" (), (6.37)

where B, P, denote orthogonal projection on coexact and exact forms respec-
tively. The form in (6.35) is now replaced by

A %, %,.d,. G E\(t), (6.38)
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where G denotes the Greens operator. Due to the possible unboundedness of G
we can not control the pointwise norm of this form without further information.
However, for any complete manifold V' we have the following result.

Lemma 6.3. We have pointwise converge of kernels
lim E(x, y,t) - h{(x, y). (6.39)
t— o

The convergence is uniform in the C* topology on compact subsets K of V x V.

If we grant Lemma 6.3, the proof ~of Theorem 6.1 is easily completed. If
UM, =M is an exhaustion and n,(M) < n,(M) is normal, then for each k,
n,(M)/n (M) = I operates uniformly on p~'(M,). Thus the convergence

Eipy—h' (6.40)

is uniform on p~'(M,). The assumption geo(M) < 1 implies pointwise bounds,
independent of t = 1, on

tr (E'(x, x, 1)), (6.41)
and on
tr(A'(x, x)). (6.42)

Since M has finite volume, it follows that
lim | tr E'(0) = [ tr A, (6.43)
t=>o0 M M

which suffices to complete the proof.

Proof of Lemma 6.3. By Duhamel’s principle we can write
1
E(x,p.) = P(x,y,0) + [e 2079 Q(s) ds, (6.44)
0
where
0
Q(zayas):<Az+a P(Zayas)' (645)
s

As y varies in a compact subset K the functions Q(z, y,s) (viewed, for each s, as
functions of z) vary in a compact subset of L*(V). Thus, using the existence of A
such that P(t)|[4, o) = 0, and the Spectral Theorem, we have pointwise conver-
gence as t — oo,

e o

E(x,y,0)> | [Rh(x,2) Q(z,y,5)dz ds. (6.46)

oV

The convergence is uniformly C* as y varies over K and x varies over any set on
which the local C* geometry is uniformly bounded. The right hand side of (6.46)
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can be rewritten as

lim

&0

h A ¢ P
Ij; (X,Z) ( z+£> (Z,%S)

) oy &

aon 3 a [o¢] 3
=lim [ {h(x,2) — P(z,y,5) = lim { h'(x,z) P(z,y,€)
v as e~0 ¥

20 ¢
= h(x, y). (6.47)

We now observe that Theorem 6.2 is a direct consequence of Assertion 0.1.
Essentially the same argument with Assertion 0.1 replaced by Theorem 2.1 is used
in Sect. 7 to prove Theorem 6.2 if in addition M is profinite. In [CG, |, it is shown
that this argument also applied to small balls of suitable radius. It can then be
globalized to obtain Theorem 6.2 without the benefit of Assertion 0.1.

Let A: H; » H, be a bounded map of I'-modudes. It is convenient to define
im A = range A. (6.48)

With this proviso, concepts such as a cochain complex C* of I'-modules, the
cohomology H'(C*) and the cohomology sequence associated to an exact se-
quence of chain complexes have their usual meaning. Even though H'(C*) are
reduced cohomology groups, one can see using (6.12), (6.13) and the cohomology
sequence

— H(C3)— H(C,) - H(C,) » H(C3) — ... (6.49)
is exact. It follows without difficulty that there is an exact sequence of I'-modules
e ™ H:Z)(M, Mk) g ﬁ(lz)(M) 4 H(‘Z)(M\Mk) - ... (6.50)

The analog for manifolds with controlled boundary geometry of the pointwise
bound (6.23), implies

klim i, (M\M,) = 0. (6.51)

Together with (6.50), this gives (6.28) of Theorem 6.2.
We close this section by noting a proportionality principle which holds for
invariants obtained by integrating I'-invariant functions on M.

Proposition 6.4 (Proportionality Principle). Let I, I, be discrete groups of isome-
tries of (¥, g) such that Vol(V/I}) < co. If f'is a bounded continuous function which
is invariant under I}, I}, then
{7
Vi

!

Vil

= Vol(V/I)/Vol(V/I3). (6.52)

\I

Moreover, the quantity in (6.52) is the same for all I, I;-invariant metrics which
are quasi-isometric to g.
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Proof: Let G be the group of isometries generated by I U I3. Note that f is
invariant under G. If G is discrete (6.52) is clear. Otherwise we restrict attention
to V the open dense subsct of V which is the union of orbits of principal type. Let
Y = V/G carry the induced Riemannian metric. Note that f is constant on the
orbits K\G

VJF fdy =] J(K\G) Vol(K\G/T}) dy. (6.53)
Note that K\ G is homogeneous and all principal orbits are equivalent as G spaces.
Thus

Vol(K\G/I7)/Vol(K\G/I;) (6.54)

is independent of the particular left invariant metric and of the particular orbit.
It follows that for all £, the value of the left hand side of (6.52) equals the quantity
in (6.54). Taking f = 1 we get the right hand side of (6.52).

Corollary 6.5. Suppose geo (M) < 1,and M; = M/I;, Vol(M;) < co. If H3(M) + 0
for some i, then Vol(M,)/Vol(M,) is a homotopy invariant.

Observe that the conclusion of Corollary 6.5 fails for M" = R".

7. I*-Theory for Profinite Normal Coverings

Let the covering M — M be profinite finite and normal. Thus, there exist finite
coverings M; - M and
M—»...!\%—».‘.IVII—)M. (7.1)

In this situation it is somewhat easier to discuss analysis on M.

Proof of Theorem 6.2 (for M profinite). Let M, be an exhaustion. Pick k so large
that

Vol(M\(M, — 1)) < e (7.2)

For j > N (k), there exists Ay < p; ' (M,) with
Vol(0Ay) S c(n)-d;- e, (7.3)

I Ap) | = c(n). (7.4)
As in (6.51), this gives

0= E:Z)U\Zj) - sz)(Ajk) <c(n)-dj- e (7.5)
If we use _

biny(M) = di] oy (M), bioy(My) = dij biny (i (M), (7.6)

1_ 1. 1 .-

E sz)(Ajk) = z 522)(171' (M) = d_ bz (M) (7.7)

J J J

for A, < p; '(M,), Theorem 6.2 follows in this case.
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We also have the following analog of Theorem 3.2 (by Remark 7.1 below it is
a generalization Theorem 3.2 in the profinite case).

Theorem 7.1. Let N be compact, and N - N normal. If [0, o) x N admits a
complete metric with Vol([0, o) x N) < oo, and geo([0, ) x N) < 1, then for
all i,

) (N) = 0. (78)

For the general case of Theorem 7.1, see [CG,]. The profinite case is easily
obtained by combining the idea of proof of Theorem 3.2 with that of the profinite
version of Theorem 6.2.

In view of Theorem 7.1, the following result is a generalization of (5.4) of
Theorem 5.1.

Theorem 7.2. Let M*' be compact oriented, d M* = N* ~'. Suppose that for some
profinite normal covering M*, the induced covering N* ! satisfies

by HNH=1) = bE(N* 1) =0. (7.9)

Then the following limits exist.

o1 1
lim = a(M*) = a(M*,g) + lim — 5(N)). (7.10)
Jjo oo dj j—oo d
Proof: Observe that since N is the limit of the {N 1 we have the following: Let
P N —+N For all R there exists j(R) such that if Bg(p) < N) then p; is a
homeomorphlsm from each component of pi j YB(p)) to B, (p) whenever j < ](R)
Now consider the integral for # ( j) given in (4.6). Since N is a normal covering
of N, we also have the periodic function tr(xde” 2% on N corresponding to the
integrand of (4.6). The estimates of [CGT], together with the fact mentioned above
imply that if we identify Bg(p;) with some component of Bg(p; *(p;)) (j large) then
we have uniform convergence

tr(xde” %) > tr(xde™ 2, (7.11)
tr(e” " > tr(e 2, (7.12)

and any fixed interval [0, 4]. Thus,
lim — [
jooo d; LI(1/2

1/2) f [t712 tr(xde™ 2 d % di (7.13)
0N

(this can also be seen by the arguments of [Don]).
In view of (7.9), we have uniform pointwise convergence

A
g [t (xde” P d%; dt:|

N;

~—

lim tr(e”24) = 0. (7.14)

A— 0
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It now follows as in (4.13) (by use of the Spectral Theorem) that

[ [t tr(xde 5 (7.15)
AN

exists and thus that
tim | [¢'2 tr(xd "2 =0. (7.16)
A—-w A4 N

Using (7.12) and (7.14) we also get

1= L
lim lim — jt’”z tr(*de %)
A= jA

= lim llm jt 2 tr(xde” 24 = 0. (7.17)
A= dj

If we now put

def 1 —12 - At
T F(1/2) f}; 2 tr(xde” 29, (7.18)

it follows from (7.13), (7.16), (7.17) that

1
lim — 7(N) = () (7.19)

jmo 4

This suffices to complete the proof.

Remark 7.1. If N is compact and N is profinite and normal, then Lemma 6.3 and
(7.12) (for forms of arbitrary degree) imply

I B o
lim 7 b'(N)) < b(z)(N). (7.20)
j
If 5, (N) > 0, it seems difficult to decide under what circumstances the inequality
in (7.20) is an equality. A similar point occurs in connection with the hypothesis
(7.9) of Theorem 7.2 (compare also [K,]).

Example 7.1. If N V2* is a symmetric space of rank 1 of the non-compact type, then
i (N2¥) =0 for i+ k but b (N**) + 0. However, by applying the I?-Index
Theorem for the Euler characteristic it follows that for all i,

| -
lim — bi(N) = By (N). (7.21)
j— oo dj

Remark 7.2. If N is profinite but not necessarily normal, as in (7.12) one can see
that for all finite ¢, we have uniform pointwise convergence

lim tr(e” %) - tr(e” ). (7.22)

jo®
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However, in the absence of a group action on N one can not use Lemma 6.3 to
lett — oo and obtain a dj:ﬁnition of b{5)(N). Similarly, analogs of Theorem 6.1 and
of (7.20) are lacking if N is not assumed normal (compare [D,]).
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