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Abstract

In this paper we give four definitions of Maslov index and show that they all satisfy the same
‘system of axioms and hence are equivalent to each otber. Moreover, relationships of several symplectic
anid differential geometric, analytic, and topological invariants {including triple Maslov indices, cta
invariants, spectral flow and signatures of quadratic forms) to the Maslov index are developed and
formulae relating them are given. The broad presentation is designed with a view to applications both
in geometry and in analysis. © 1994 John Wiley & Sons, Inc.

0. Introduction

" The object of this paper is to give a systematic and unified treatment of the
:Maslov index and some related invariants. In the literature, the Maslov index has
often been described as an integer invariant associated to any one of the following
‘situations:

(i) A smooth one-parameter family {(L\(t), lo(t);: a =1t = b}
of pairs of Lagrangian subspaces Ly(t), L»(t)
in a symplectic vector space V.

(0.1) (i) A triple (Ly, Ly, L3) of Lagrangian subspaces.

(iil) A pair (L1, L,) of elements in the universal covering Lf:é-é(V)
of the space Lag(V) of Lagrangian subspaces
in a symplectic vector space V.
Here all three will be considered and compared with each other in Sections 1

10 9. Following [5] and [12], we regard the setting (i} as the main theme, whereas
the others are variations.

. Let (V,{,}) be a fixed symplectic vector space with symplectic pairing {, },
~and let Lag(V) be the space of Lagrangian subspaces in V. To a continuous and
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piecewise smooth path f(1) = (L (), L,(t), a =t = b, in Lag(V) X Lag(V), there
is an associated integer invariant

(0.2) the Maslov index uy(f) .

[n the literature, this has been defined only under the assumption that f: [a, b]
— Lag(V) X Lag(V) is a proper path (i.e., L)) N Ly(t) = O for ¢t = a and 1 = b).
In the present treatment, we will see that this assumption is unnecessary.

In Section 1, the Maslov index uy(f) will be characterized axiomatically by
six simple propertics. After some preliminaries in Sections 2 and 3, we will
give in Sections 4 through 7, four equivalent and elementary definitions of pv(f).
Precisely, it is this wealth of different perspectives and the work of unifying them
which forms the main object of this paper.

The first two definitions of py(f) are geometrical in nature, denoted respec-
tively by fgeo.i- Hgeo2- The first pgeq 1 is given as the intersection number of an
oriented line segment with a codimension one submanifold of [a, b] % Lag(V). As
for the second, jgeo2 is defined in terms of a determinant line bundle on Lag(V).
Underlying both constructions is the basic lemma (2.1), which allows us to elim-
inate the assumption of transversality L;(r) N Ly(r) = 0 at the end points t = a,
t=b.

The third and fourth definitions of uy(f) are analytical: j,nq,) is defined in
Section 6 via an eta invariant

(0.3) DL, L2))

of a self-adjoint operator D{L;, L;) associated to two Lagrangians Ly, Ly; panat2
is defined in Section 7 via the spectral flow of {ID{Li(t), (1)) @ =t = b}. The
operator can be taken to be either D(L;, L»): L3([0,1]; L1, Ly) — L*([0,1)) defined
on the interval [0, 1] or D¥(Ly, L,): L{E) — L*(E) over the circle S' with coeffi-
cients in a flat, Hermitian bundle E; all these operators utilize a choice of complex
structure J and Hermitian inner product (, ) on V compatible with { , }. The defi-
nitions and basic analytical properties of these self-adjoint operators D(Ly, L) and
D¥(L,,L,) will be discussed in Section 3.

In Section 8, the Maslov triple index 7(Ly, Ly, L3) is also characterized by a
set of axioms. It is shown that the definition of the triple index by Kashiwara
(see [24]) satisfies these axioms as does (—1) times the index defined by Wall (see
[31]) in his study of Novikov additivity of signatures. Both of these generalize
the usual treatment (see [18]) where Ly N L3 = 0. A geometrical interpretation of
the Maslov triple index, following Wall, and of higher indices, e.g., Hormander’s
fourfold index, is given in Section 12.

In his study of the Morse index in variational calculus, Duistermaat (see [11])
introduced an integer invariant associated to a single smooth path of Lagrangians.
In Section 10, we express this invariant in terms of a Maslov index.

There are useful relations between the triple index 7(L1, L, L), the eta invariant
m{D(L1, L)), and the Maslov index py(f), as one may expect. For example, by
checking the axioms for 7(Li, Ly, L3), the following formula is proved in Section 8.

RSt
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TuroreM 0.1.

(0.4) (L, Ly, L3) = n(D(Ly, L2)) + n{D{Lz, L3)) + n{D(L3, L)) .

In view of the Atiyah-Patodi-Singer index theorem and the interpretation of
n(D(Ly, Ly)) as the eta invariant of D¥{L;, L>); T(E) — T(E), the above formula
allows us to further interpret 7(Ly, Ly, L3) as the index of a first-order elliptic
operator O coupled to a flat unitary vector bundle over the twice punctured disk.
(For details, see Proposition 8.6.)

D; = outside

Diagram 1.  Twice punctured disk in sphere $2.

Similarly, py(f) and 7(L), Lo, La) are related. Let {Lit}a = 1t = b}, for
j = 1,2,3, be three continuous and piecewise smooth paths of Lagrangians in
Lag(V). Set e(t) = (Li(t),Lo(t)), () = (La(0), L3()), g(t) = (La(e),L14r)) and
hu(r) = dim L;(5) 0 L.(2), then in Section 8 the following formula is proved:

THEOREM 0.2.

%IvtLl(b), Lo(b), La(b)) — 7Ly @), Lo(@), Ls(a))]

= pvie) + uv(f) + uv(g) + % {[Z hjk(b)] - I:Zhjk(a)] } :

J<k j<k

(0.5)

The analytical definition pana, 1(f) in Section 6 of the Maslov index gives the
following:
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THEOREM (.3,

h
w(f) = f (L) - L} )]
(0.6) + 2 [DULAB) Lo8) ~ n(DIL@), Lofa))]

+ %[ ~ h12(b) + hiz(a)]

where w is a 1-form on Lag(V), defined in Section 6. Comparing the three terms
on the right-hand side of ((.6) with the corresponding terms in the Atiyah-Patodi-
Singer index formula (see [3], p. 65), it is not surprising that uy(f) has an inter-
pretation as a spectral flow of the real self-adjoint operators

(DL, L) a=t=b}.

Indeed, in Section 7, we prove:

THEOREM 0.4,

(0.7) pv(f) = s-spectral flow of DXL, (t), Ly(t), a =t = b .

Here the phrase e-spectral flow is due to the following cohvention. Since in
our setting the solution space ker I{L;(¢), L(¢)), isomorphic to Li(f) N Ly(z) (see
Section 2), may be nonzero for t = a, t = b, the usual definition of spectral
flow does not necessarily apply. Instead, to define a notion of spectral flow quite
generally, we choose an £ > 0 such that at the end points t = a, t = b, no
eigenvalues A of D{L,(r), L,(?)} lie in the range 0 <. \ = &, and count the number of
eigenvalues crossing A = +# with signs (+1 for increasing and —1 for decreasing).
This definition of e-spectral flow agrees with the usual one when the latter is
defined.

There are similar definitions of generalized spectral flows: for example,
adapted specially to applications in gauge theory, one such definition can be found
in the works of Floer and of Fintushel and Stern; see [13] and [14}. In Section 7,
we will explain their approach and compare it with our definition of e-spectral
flow.

As indicated in (0.1) (iii), another common usage of the term “Maslov index”
is the index m(a, 8) for a pair of elements a, 3 in the universal covering space
m I,:Eé(V) — Lag(V) of Lag(V). This index m(a, #) is defined in Section 9. It can
be expressed in terms of uy(f): Choose a smooth path in LE(V) from « to g,
and denote by L(1), a = t = b, its projection in Lag(V). Then f(r) = (Li(b), L(1)},
a =t = b, gives a path of pairs of Lagrangians and from this a well-defined
invariant py(f) of (e, 8). In Section 9, we show that
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THEOREM (.5.
©.7) mia, B) = 2uy(f) +(n—h)

where n = dim V/2 and h = dim ={(a) N 7(B).

A=+& ~—"—7 i Skt ol Wi

Diagram 2.  The spectral lines of D(L, (1), Ly(2)).

An important feature in our treatment is the choice of a complex structure J
together with a Hermitian inner product ( , ) on (V,J) such that

(0.8) {v.w} = (=) Im{v,w) for v,winV .

From [18] it is known that such a complex structure J and Hermitian pairing {, )
always exists and in fact the space of all these structures (J, {, )} forms a cell.
Important to our applications is the geometrical observation that, once (J,¢, ))
is chosen, any two Lagrangians L, and [, can be deformed to a transverse position
in an almost canonical manner. (For details, see Section 2.) Another important
observation from the analytical side is the assignment to every pair (L1,Ly) of a
real self-adjoint operator D(L,, L) whose kernel is Ly N I (see Section 3).
Among other things, this last step provides us with a link between the spaces of
Lagrangians and self-adjoint operators. A map expressing such a relation between
these spaces can be seen by combining Bott periodicity (see [4]) with the theory of
skew-adjoint operators in [2]. Consider the symplectic space R2* as embedded in
R*2 = R2 ® Re,.; ® R f,41 by taking the orthogonal sum with the hyperbolic
plane Re,.1 ® Rf 4. This induces an inclusion Lag(R") — Lag(R"*z) by sending
a Lagrangian subspace L in Lag(R") to the direct sum L ® Reyiy. Asn — 00,
we obtain Lag(R*) = U, Lag(R?") which has the same homotopy type as Uu/o
because Lag(R2") = Uz,/Oz,. On the other hand, Jet H denote a real Hilbert
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space and SelfAdj(H) denote the topological space of real self-adjoint Fredholm
operators T: H — H, T = T*. Then, as shown in [2], this last space SelfAdj(H)
has the same homotopy type as Q7(BO). By Bott periodicity, Q7(BO) ~ U/0, and
therefore the two spaces Lag(R™} and SelfAdj(H} are of the same homotopy type.

One further perspective on the Maslov index uy(f) which is not treated here
is its Interpretation as the index of the Cauchy-Riemann operator & ® V with
coefficients in V and over a lens-shaped disk. On the two sides of the disk, the
two families of Lagrangians {L,{t); a =t = b} and {L,(); @ = ¢ = b} determine
the boundary conditions. Of course, this is in agreement with (0.7} where py{f)
is viewed as a spectral flow. The reader may refer to Floer’s paper, [14], for this
perspective and its generalization as the Viterbo index; see also the recent paper
of Otsuki and Furutani, [26].

Following Floer, and Salamon and Zehnder (see [27]), in Section 11 we con-
sider a real, first-order elliptic operator on R*" valued functions on a cylinder
defined using a path of symplectic matrices. There, we recapitulate {and slightly
extend) a recent result of Salamon and Zehnder expressing the index of such
operators in terms of Maslov indices. Section 12 relates the Maslov indices to
Wall’s work on Novikov additivity and Hormander’s fourfold index. Section 13
interprets the Masiov index of a path, following Floer and Walker, as that of an
associated loop. Further, there are natural generalizations of the Maslov index to
certain infinite dimensional settings, e.g., in works of Mrowka, Nicolaesco, [34],
and of the authors, [8].

Of course, it is not possible to list here all the varied contexts in which the
various Maslov indices have arisen. There are certainly early precursers, e.g., in
the context of phase change in crossing caustics, as notably”in the work of J.
B. Keller; see [20] and [21].

During our research, we have benefitied from a wealth of excetlent books and
research articles of various authors on symplectic geometry and the Maslov index:
Arnold, [1], Bott, [5], Duistermaat, [11], Edwards, [12], Gossen, [17], Guillemin-
Sternberg, [18], Hérmander, [19], Leray, [22] and [23], Lions-Vergne, [24], Maslov,
[25], Salamon-Zehnder, {27], Turaev, [28], Viterbo, [29], Wall, [31], and Weinstein,
[32]. Throughout this paper, we refer quite frequently to their works. (In par-
ticular, [18] will be used as a standard reference.) It was, however, Wall’s paper,
[31}, on the nonadditivity of signature, extending the Novikov additivity principle,
which first introduced us to this beautiful subject. Cheeger’s work in [10] illumi-
nated the role of Lagrangian boundary conditions in index theory. The works of
Floer, [14], [15], and [16], led to the development of connections between Maslov
index and spectral flow. Such connections are made in the paper of Yoshida, [33],
and in the papers of the present authors, [6], [7], [8], and [9]. The work of Atiyah,
Patodi, and Singer, [3], has influenced us throughout.

The following section titles outline the topics covered in the paper: Section
1, The Maslov Index uy{f); Section 2, Preliminary and Geometrical Observa-
tions; Section 3, Analytical Observations; Section 4, First Geometrical Definition
of the Maslov Index: pgeo 1{f); Section 5, Second Geometrical Definition of the
Maslov Index: pigeo2(f); Section 6, First Analytical Definition of the Maslov Index:
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panal1 (f); Section 7, Second Analytical Definition of the Maslov Index: piana2(f);
Section &, The Maslov Triple Index: 7(L;, L, L), Section 9, The Masiov Index
m(x, y} of a Pair in fzi-é(V); Section 10, The Duistermaat Index of a Path of La-
grangians; Section 11, The Maslov Index of a Path of Symplectic Matrices and a
Theorem of Salamon and Zehnder; Section 12, A Geometric Interpretation of the
Maslov Triple Index (Following Wall) and Hérmander’s Fourfold Index; Section
13, py(f) as the Maslov Index of Closed Loops & la Floer and Walker.

1. The Maslov Index uyv{f)

Let (V.{ .}) be a fixed symplectic vector space. For a <. b, we denote by
P([a, b]; V) the space of continuous and piecewise smooth maps

f: la, b] — {pairs of Lagrangian subspaces in V'}

That is, for each ¢, @ = t < b, we have an ordered pair of Lagrangians ) =
(L1{(9), L,(1)), and as ¢ varies the Lagrangians L,(t), Lx(¢) varies continuously and
piecewise smoothly. As for the topology on P{la,b]; V), it is given by the usual
compact open topology.

The Maslov index can be characterized as an integer-valued map

(1.1) - py: P(la, bl V) — Z
of P([a, b]; V) which satisfies the following:
Property 1 (Affine Scale Invariance). For k > 0, £ = 0, we have the affine

map ¢ [a.b] — [ka + €,kb + €] defined by () = kz + €. Given a path f in
P(lka + €,kb + €];V) we denote by f o 4 the composite path in P(la, b]; V). Then

(1.2) Al f) = py(f o).

Property II (Deformation Invariance rel. End Points). If f{s)(r) = (Lils, 1),
I5(5.0),0 =5 =1,a =t = b, defines a continuous map f(9): 10,11 — P(la, b]; V)
with the endpoints (L,{s, @), L2(s,a)) and (L{s, b), (s, b)) fixed (independent of
s), then

(1.3) py(£Q0)) = w(f(D) .

Property III (Path Additivity). If ¢ < b < ¢ and if f(r) = (Li(r), L2(1)),
a =t = ¢, is a continuous and piecewise smooth path in P(la, c|; V), then

(L.4) po(f) = w(flla, bl + py(flb,c) .
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Property IV (Symplectic Additivity). Let V and W be symplectic vector
spaces, and let f and g denote respectively elements in P(|a, b]; V) and P([a, b]; W).
Define the path f @ g in P([a,b};V & W) by

(f ® @)0) = (L) ® Li(1) , La(t) & (1)), a=t=bh

where Li(t), L,(t) are the components of f{¢) and f,l(r), f.;g(t) are those of g(r).
Then

(1.5) pvewlf @ g) = uv(f) + uwlg) .

Property V (Symplectic Invariance). Let f{t} = (L (1}, L(¢)), a =t = b, be
an element in P(la,b],V} and let ¢,:V — V, a = t = b, be a continuous and
piecewise smooth family of symplectic automorphisms in Sp(V). Define ¢, f in
P([a, b];V) by the formula

(. fX2) = (AL1 (1)), d:(L2(1))) as=t=bh.

Then

(1.6) py s f) = py(f) .

Property VI (Normalization). Let C = R? be the symplectic vector space
with the inner product
{0e, y1), Ge2, y2)} = xiy2 — yixe = —Imlxy + iy)xz + iy2)
= Re (iCr1 +iy1) - 0z + 1y2)) -
Define the path of Lagrangians f(t) in P([—7/4, n/4];R?) by the formula
f = R{1},R{"D , —r/d =t =xn/4.
Then
@) pee(fil-n/4.n/4) =1;
(1.7) (i) pre(fll-7/4,0)=0;
(it)  pra(f|(0,7/4]) = 1.
The situation in (1.7) can be interpreted diagramatically as in the following
figure. First, the space Lag(R®) can be viewed as a circle {¢??}0 = 6 = 7} via
the identification, e — R{e?}, and likewise Lag{R?) X [~/4, 7/4] as a cylinder.

Inside this cylinder, the graphs of R{1} and R{e”} can be represented respectively
by a straight line and a spiral. As these curves intersect transversely at ¢t = 0,

R AR 4 TR AT M A T R P T o e S e e - <

L
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formula (1.7)(i) agrees with the interpretation of counting the intersection number
of the two Lagrangian paths.

’ - p N
I’ ,/’ \\ \\ ' .
A / \ graph of R{e"}
;e \ \
. ) )
L [ S

e

Tea ! ! graph of R{1}
t=—n/4 Tl ’ /

,
) S = +n/4

Diagram 3. The cylinder Lag(R?) X [-n/4, =/ 4].

THEOREM 1.1.

(i) There exists a collection of functions py: P(a, b];V) — Z satisfying proper-
ties I-VI above.

(ii) Maslov index uy(f) is uniquely characterized by Properties 1-V1 above.

(iii) If a collection of functions fy: P(la, b}, V) — Z satisfies properties 1-V,
then -

fv(f) = (x + ¥ uv(f) + ylhan(b) — hi2(a)

where x and y are some fixed integers and hi2(t) = dim Li(t) N Lp(e) with f(t) =
(Ly (1), LotD)).

(iv) The Maslov index py satisfying I-V1 also enjoys the additional properties
VII-X11 listed below.

Theorem 1.1 will be proved at the end of Section 4. Four different ways of
defining Maslov index: 0,1 (f), Hgeo2(f)s pianat 1 (), fanar2(f) satisfying I-VI will
be given in Sections 4-7. From the uniqueness statement (1.1)(ii), all these four
are the same. By (1.1)(iv), each of them satisfies the additional properties VII-
XII below. Some of these properties cannot be deduced easily from a particular
definition. For instance, the Nullity Property can be easily seen from tgeo,1(F);
however it is not apparent from gipeo2(f).

Here are the additional properties of Maslov index:

Property VII (Normalization). Let g(¢) be the path of Lagrangian pairs in
P([—7/4,7/4);R?) defined by

o) = R{1}, R{e™)), -n/4=t=n/4.
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Then

D wlg)=-1;
(1.8) (i) w(gll-n/4,0) = -1;
(iii) pv(g|[0,7/4]) = 0.

Property VIII (Nullity). For a path of Lagrangian pairs
FO =L LAr)), a=1=b, inP(ab]V}

with
hi2(2) = dim Ly (¢} N Ly{1)

independent of ¢, and L;(#) N Ly(r) varying continuously, then

(1.9 pv(f) =0.

Property IX (Reparametrization Invariance). Let ¢ [c,d] — [a, b] be a con-
tinuous and piecewise smooth function with ¢(c) = a, ydd) = b, a < b, ¢ < d. For
f € P(la,b];V), we denote by f o ¢ the composite Lagrangian path in P([c,d]; V).
Then

(1.10) pv(f o) = py(f) .

Property X (Reversal). Let f(t) = (L(t},Lx(t)), a = ¢t = b be a path of
Lagrangian pairs in P([a,b];V). Denote the same path traveled in the reverse
direction in P([—-b, —al; V) by

F5) = (La(-9), Lo~ 5)) .
Then

(1.11) wv(f) = —uplf) .

Property XI (Symmetry). Let f(z) = (Li(#),1,(t)), a = t = b be a path of
Lagrangian pairs in P([a, b];V). Denote by fuip(r) = (Lo(r), Li(t)), a = t = b the
path obtained by flipping the two components. Then

(1.12) wv(faip) = —pv(f) + [hiala) — hia(b)]

where h12(¢) = dim L (r} N L(z).
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Property XII (Proper Path). Let f(z} = (L(0), (1)), @ =t = b, be a proper
path in P([a, b]; V). That is, it satisfies the transversality condition at the endpoints:
Li(a) N Ly(a@) = Li(b) N L(b) = 0. Then uv(f) equals the Maslov index of the
proper path f as defined by Guillemin and Sternberg in [18].

The symmetry property XI may seem strange, especially in view of the cor-
rection terms in (1.12): As an illustration, we consider the multiplicatipn of the
path f(z) = (R{1},R{e"}) by e~ —m/4 =t = n/dto get (1) = (R{e "}, R{1}).
Flipping the two components of 2, it becomes the path g(t) = (R{1}, R{e™"}) of
VIII. By V and XI, we have

e (gl[—7/4,0]) = —pre(@ll-—7/4,0) + 0 = 1)
(1.13) = —ugedfll=m/4,0) - 1
= -1

which is in agreement with VIL Similarly we have

pre(gl[0, 7 /4D = —pre (8110, 7/4]) + (1 ~ 0)
(1.14) = —upe(fHO, /4D + 1
=0

which is in agreement with VIL These formulae will be obvious once the definition
of pugeo,1(f) 1s given in Section 4.

2. Preliminary and Geometrical Observations

Throughout this section, we fix a complex structure J on vV, J* = —id, which
preserves the symplectic inner product { , }. Associated to this situation, there is
a Hermitian inner product (, ) on V with

{v,w} = —Im{v,w} , or equivalently

(2.1) (v,w) = —{Jv,w} — i{v,w}.

By definition, a Lagrangian subspace L in V is a real vector subspace of dimension
n = (dim V)/2 with the additional property

{v,w}=0 forall wv,winlL.
In particular, for an orthonormal basis {e;}1=;<, for L under the real inner product
(2.2) (v,w) = Re(v,w) = —{Jv,w}

then {¢;}1= =« 18 also an orthonormal basis of the complex vector space {V,J}
with respect to the Hermitian inner product {, ). Thus, in general, any Lagrangian
subspace L' in V is the real span

(2.3) L' = P Rie}
i=1
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of some orthonormal basis {e}};< ;<. of the complex vector space {V,J}.
There is a natural mapping

(2.4) ¢: Uln) — LagV

sending A in U(n) to the real span ij,LIR{A - ¢;}. From the discussion in the
previous paragraph, it is clear that ¢ is surjective and in fact gives rise to a
bijection

(2.5) H(L): Uln)/On) = Lag (V)

which depends only on L (not on the choice of basis {e;}1=;=,) and the choice
of complex structure J. In addition, there is an imbedding j: U(n)/O(n} — U(n)
defined by j(A mod O(n)} = A - ‘A, and combining with (2.5) we have an identi-
fication

(2.6) Lag(V) & Uln)/Om)2Un)

of Lag(V) with a subspace in U(n).

Having chosen the complex structure J, the basic geometrical observation is
that any two Lagrangians L, and L, may be perturbed (almost canonically) into a
transverse position.

LEMMA 2.1,  (BASIC GEOMETRIC OBSERVATION) Let L, and L, be two La-
grangian subspaces in V. Then o

(i) e’ - L, is a Lagrangian subspace of V for all 6;

(i) There exists an e, 0 < e < m, such that Ly N &' - Ly, = {0} for all 6 with
0 < 18| < e. A similar lemma with restriction on L, and L, can be found in [1].

Proof of Lemma 2.1: First of all, in view of the discussion in (2.3), the first
statement (i) is clear. In order to prove (ii), let @ = dimg(L; NL,) and let {e iHsjsn
be an orthonormal basis of L, such that the first a of the {e,},< j=n forms a basis
of Ly NL,.

Let U and W be the complex subspaces in V generated respectively by
{ej}lgjga and {ej}aJrléjém Le.

2.7) U=EPCley, W= P Clej}.
j=1 j=a+1
Then we have

(2.8) V=Ue&W with LinL,CU.

By dimension count, the real span of {e;}1s;s, is L1 N Ly and the real span of
{Ej}aﬂgjgn is Ll N W. Thus we have Ll = (Ll M Lz) & (Ll N W)
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In a similar manner, we choose a basis {e}}lg j=n for Lp orthonormal with
respect to the product (, } = Re(, ) such that ¢j = ej, 1 = j = a. Let W’ be the
complex subspace in V generated by {€j}s+isjsa 1€ W= e’}=a+1C{e}}. Then
we have the following orthogonal sum decomposition:

v=UesW, L2=(Llﬁla)€B'(LgﬁW’).

Since the inner product (, ) = Re(, ) is nondegenerate on {/, it has a unique
orthogonal complement and in particular W = W’. Thus we have two orthogonal
sum decompositions:

L]-”—‘(L]ﬁLg)@(Llr\W) in UseW=V

29) L=LNLyel,nW) in UsW=V.

We now turn to the proof of {2.1)(ii). Since {e;}1=j=q 15 areal basis for Ly N Ly
and a complex basis for U, the multiplication by ’*, 0 < 6] <, on {e;jhi<jza
gives us R-linearly independent elements [e'f e Hsj=a- In other words, we have

(2.10) (LinL)ne? (LiNk)=0
for 0 < |6 < . On the other hand, we have
(L AWYN (L, NW) =(LNILNWC UnNnw=(@0),

and so the subspaces Ly N'W and L, N W are transverse to each other. Since
transversality is an open condition, there exists & > 0 such that

(2.11) L, NW)Ne - (LNW) =0 forall [0 <e.

Combining (2.9), (2.10), (2.1 1), we have for this &, 0 < & <, the transversality
condition

LN L= [lnk)NdLinL)eLiNW) Ne'' (L, NnW)] =0

whenever 0 < |8] < &. This completes the proof.

3. Analytical Observations

As in (2.1), we fix a complex structure J and Hermitian inner product {, )
throughout. The basic analytical observation is that, associated to a pair of La-
grangians L; and L, there are two natural, self-adjoint operators D(Ly,Lz) and
D*(L,,Ly). Here the first is a real operator and the second complex; however

(3.1 dimgker D(L1, L) = dimgker D*(Ly, Ls) = dimg(L; N Ly) .
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The first operator D(L, L,) is implicit in the work of Cheeger (see [10]) and
Floer (see [14], [15], and [16]) and is discussed explicitly by Yoshida in [33].
Defined as a real operator on the space of differentiable, vector valued functions
¢: [0, 1] — V with boundary condition

(32) ¢(0) & L, and qb(l) el,,

it is given by the formula

_ g%
(3.3) DLy, Loy = =T ="

To define the operator D*(£,;, L,), we observe that, as in Section 2, there exists

a unitary matrix A in U(n) with L, = A - L. Using A - A, we have the space of
functions y: [0, 1] — C" satisfying the boundary condition

(3.4) Pp(l}) = A- A" y(0)
The operator D¥(L,, L,) is an operator on this complex vector space defined by

d
D¥(Ly, Loy = “id_'f

Note that, in the discussion of (2.6), the matrix A - A’ depends only on the pair
(L1, L), not the choice of A. Another explanation of A- A is that it is the clutching
function of the flat, Hermitian vector bundle ¢ — !,

(3.5} §=10,1] X C"/ modulo the relation (0,x) ~ (1,A - A’ - x)

defined over the circle §' = [0, 1]/modulo 0 ~ 1. The operator D*(L{, L,) may
be regarded as —id/d: acting on the space of smooth sections of &.

LEMMA 3.1.  (BASIC ANALYTICAL OBSERVATION)

(i} Let L}([0,1]; L1, L) denote the Sobolev completion of the smooth functions
¢: [0,1] — V satisfying the boundary condition (3.2). Here the Sobolev norm is
defined by fol VReld, @) + Re{dd/dt, d/drydt. Let L*([0,1];V) denote the L3-
completion of the smooth functions ¢: [0,1] — V. Then —J d/dt defines a real,
self-adjoint operator

(3.6) DLy, Lo): L([0, 1) Ly, Lz) ~ LK(0, 1;V)

which is Fredholm of unbounded, pure spectrum without limit points.
(i) The kernel of D(Ly,Ly) coincides with the space of constant Junctions
f:00,1) = Ly N L, and in particular is isomorphic to Ly N L.
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(iii) Let L?([O, 1]; A - AY) denote the completion o_f the complex vector space of
functions . [0, 1] — C” satisfying (3.4). Define on L1([0, 11; A-A’) and L0, 1];: V),
the Hermitian inner products:

(1, 2) :f()](llll,!,bz)'f' <d¢1 d—lp2> dr

dr 7 dt
1
(1, b2 = [0 (b1, dadd

Then —id/dt defines a complex, self-adjoint operator
3.7 D*(L1, Ly} L{(10, 1;A - A) — LA([0.1]:C")

which is Fredholm of unbounded, pure, point spectrum without limit points.
(iv) The kernel of D¥(Ly,Ly) coincides with the space of constant functions
g [0,1] — (R" N AR") ®g C and in particular is isomorphic to (L N Ly) ® C.

The above two operators D{L1, L2), D*(L,, L) are closely related; one aspect
is the dimension formula (3.1) and the other, as will be explained in (6.3), is that
the eta invariant of these two operators are the same
(3.8) (L1, Lz)) = n(D*(Ly, La) ) .

Thus, it is immaterial whether we use n(D{(L,, L2)) or n(D*(Ly, L)) to provide the
analytical definition of Maslov index a1 ;(¢), j = 1,2. For simplicity n(D(L, L2))
is used throughout;-only in Section 8 do we shift to n(D*(L;, L2)).

Proof of Lemma 3.1: Given two functions f,g: [0,1] — V satisfying (3.2),
we have

(D(Ly, Lo)f 8) — (F, D{L1, La)g) = fo 1 Re(<—J%,g> - ( f, 4%)) dr

1
d
— —Re fo ia(f,g)dr = Im (f(0), g0

—{f(1),g(1)} + {f(0),g(0)} = 0.

By the standard theory of elliptic partial differential equations, the remaining proof
that D(L,, L) is Fredholm, self-adjoint, etc., is now apparent. From the definition
of D(Ly, L), ker{D(Li, Ly)) consists of precisely the constant functions f(t) = k.
From the boundary condition, it follows that this constant k lies in Ly N L,. This
proves (i} and (ii).

In a similar manner, because A - A’ is unitary, we have

(D¥(Ly, 12)f . 8) — {f.D*(L1,L2)g)

- Jy (i) - ()

1 d -
- [0 2 (s yat = -ilf 0,80
—i[(A - A'F(0),A - A'g(0)) - (F(0),g(0)] =0
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for f,g:[0,1] — V with f(1) = A- A" £(0), g(1) = A- A - g(0). Again standard
elliptic theory yields (iii).

The kernel of D*(L;, L,) consists of constant functions f(t) = v forall 0 =
t=1,withA-A'v = v for v € C?,

ker D*(Ly, L)) = {v € C"|A-A"-v = v} .

We write v = x + iy, x € R", y € R”. Then a straightforward computation shows
that the equation A+ A’ - v = v is equivalent to

A-Ax=x and A- A" y=y

(since taking conjugates (by A unitary) gives (A') 'A 'o = b or i = A- A'D). In
addition, we have the following sequence of implications

A-A-x=xforxeR" A -x=Al. xforxe R"
A x=AlxforxeR © A 'x € R" for x € R”
oxeR'NA-R".

Thus
ker DML, L) = {v € C*|A- Aly = v}

={xeR"|A-Ax=x}C
=(R"NA-RY®C
={LiNL)eC.

This proves Lemma 3.1,

4. First Geometrical Definition of the Maslov Index: Pgeo1(f)
Given a continuous and piecewise smooth path of Lagrangians
(4.1) fO =W, L), a=t=bh

we have by the basic Lemma 2.1 an &, 0 < & < , such that for all § with
0<|8 <e

(42) Ll(a) M ew - Lz(a) =10 , Ll(b) N e” . Lz(b) = 0 .
In particular, the perturbed path with 0 < &' < ¢
(4.3) go() = (L), e - L)), as=t=b

is proper; that is, at t = g and ¢ = b, the intersection of the two Lagrangians
equals {0}. For a proper path, say A(z} = (L;(1),L,(r) ), a = t = b, one already has
a definition of the Maslov index; see [18].

(4'4) ,u:proper(h) iIl Z B
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Hence for a general path f, we set

4.5) .U'gco,l(f )= Hproper(go’)

with g¢ as in (4.3). In this section, we will show that this is well defined and
satisfies Properties I-VI of Section 1. '
Before proceeding further, let us review the definition of Eproper(). The idea is

to count with signs and multiplicities the number of times that il(t) M f,g(t) + (0)
as t ranges from t = a to t = b. First we consider the situation when A(r) =
(L.(t), Lo()) is a smooth path for a =t = b.

Let & be the subspace in [a, 5] X Lag(V) consisting of all pairs {7, L) which has
the property

(4.6) LiNL=0.

As shown in [18], Proposition 3.5, the intersection Z N ({t} x Lag V) is a codi-
mension one subvariety of {t} X Lag V and has singularities of codimension 3 in
{1} x Lag V. Moreover, by a fundamental lemma of Arnold (see [1]). the top stra-
tum of Z N ({1} X Lag V) has a canonical transverse orientation. Indeed, Arnold
proved that if {r} X L is a point on this top stratum, then the path of Lagrangian
{1} X ¢’ - L crosses the stratum transversely as 6 increases. It defines the desired
transverse orientation. R R

Hence given a proper path A(f) = (Li(2), L,(1)), a = t = b, we may, by a slight
perturbation keeping the endpoints fixed, modify the oriented path

(4.7) y={(t 1)), a=t=h}

to a new path ' intersecting Z only at points of the top smooth stratum and cross-
ing them transversely. Define pproper(h) to be the geometric intersection number,
counted with signs, of the oriented path ' with the top stratum of z, ie.,

(4.8) Pproper(t) = #(Z N ' In [a,b] X Lag V) .
Since A(t), and so L((2), is assumed to be smooth, the union of strata

H {top strata of Z N ({t} X Lag (V))}

a<t<h

forms a smooth open manifold in Z and the singularities in .Z" are of codimension
at least 3. Because of this codimension 3 property, two different choices of ¥’ may
be deformed from one to another avoiding the singularities. Thus the intersection
number of {4.8) is well defined and independent of the choice of y'.

Similarly if A(z) = (Li(r), Lz(2)) is continuous and piecewise smooth, then we
can approximate k() by a smooth path and define Eproper(R) by (4.8) using this
smooth approximation, Again the codimension 3 property of the singularities
guarantees the independence from the choice of approximation.
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From the properties of geometric intersection number, the function

Pproper- {proper continuous and piecewise smooth maps

4.
(4.9) h:la,b] -~ Lag VX LagV} ~ Z

satisfies the properties of Section 1: 1. Affine Scale Invariance; II. Deformation
Invariance (Fixed End Points); III. Path Additivity; IV. Symplectic Additivity;
V. Symplectic Invariance. The normalization condition VI is of the form:

pre (fl[—7/4, +n/4]) = 1

where f() = (R{1},R{e"}), ~7/4 =t = n/4. This computation can be casily
seen by referring to Diagram 3. In addition we have:

Property XIII (Proper Deformation Invariance). If (L,(s, ), Ly(s, 1)}, a =t
b, 3 = s = 1, defines a continuous mapping

A

[a.b] x[0,1] -~ LagV X LagV
such that for each s, 0 = 5 = 1, the path
hi() = (Li(s, 1), La(s, t)) ast=sh
is a proper, continuous and piecewise smooth path in Lag V X Lag V, then

{4.10) Hproper(hﬂ) = .uproper(hl) .

Note that in XIII, the endpoints of A,(z) may move so long as the properness
condition is satisfied. This last condition ensures that all intersections are confined
to a compact subset of the open interval {(a, b) away from the end points. By a
small perturbation, the above mapping [a,b] X [0,1] — Lag V X Lag V may be
moved so that the new mapping image is disjoint from the codimension 3 singular
strata and is transverse to the top smooth stratum. From this, it follows that

;Ulproper(h()) = Hproper (h1).

Property XIV (Proper Nullity). If A(t) = (L1(t), L,{()), a = t = b, satisfies the
condition Ly (t) N Ly(t) = 0 for all £, then puproper(?2) = 0.

Again this is obvious because & gives rise to a path in Lag V X Lag V which
does not intersect %,

Proof of well definedness of y1,c,1(f) in (4.5): First, as ' varies with 0 <
8" < 8, the corresponding path gg = {(L,(t), &% - L,{1)), a = t = b} is a continu-
ously varying, piecewise smooth path which is proper. Hence, by Property XIII
of proper deformation, pproper(ge’) is independent of 8’ with 0 < ¢ < 4. Similarly



ON THE MASLOV INDEX 139

by choosing 0 < ' < ¢ with ' small, we ensure that (4.2) holds as we smoothly
interpolate between any two choices of J, (). Asin [18], these choices form a cell.
Again by Property XIII, this proves that proper(ge) is independent of the choice
of complex structure J and the Hermitian inner product {, ). Thus figeo1(f) is
well defined and depends only on the symplectic structure of V.

Proof of Properties I-VL: By the above discussion of Properties I, II, IV
of pproper(h), the analogous properties of i, 1(f) follow immediately from the
definition. In II, the endpoint conditions ensure that once ¢ is chosen 0 < 8 < &
satisfying (4.2) for the path f(0), it also satisfies the same condition (4.2) for all
f(s), 0 = s = 1. Hence,

ﬂgeo.l(f(s)) = ;ulproper(g(s)ﬂ’) » 0=s=1 .
and applying Property XIV to
gy = {(Lils. 1), eV Lals,1)), a=t=b},

we have Mgeo,l(f(o)) = I—Lgeo,l(f(l))-

To prove the Path Additivity Property III for f(r) = (Li(0), L2(t)), a = ¢ = ¢,
and a < b < ¢, we choose &, 0 < g < 7 such that L;{#) N &'? - Ly(t) = 0 for all 8
with 0 < |8]| < e and for t = aand t = b and t = c. Hence, forD <@ <eg

e={(Lit),e ' - L(0)), a
m={(Li{t),e ' - L), b=
n={L0),e’? L), a=t=c}

are proper paths, and by Proper Path Additivity,

(4.11) .uproper(”) = Nproper(’e )+ ,U:proper(m) .

Thus Property 11T holds for tigeo,1(f).

In a similar fashion, Property V (Symplectic Invariance) is proved. Given
&: la,b] = Sp(V), we choose a piecewise smooth map i [a, b] x 0,1} — Sp(V)
such that sz, 1) = ¢(¢) and ¥(t, 0} = id for a = ¢t = b. For ¢ = a or b, we consider
the largest &, 0 < g, = /2, such that

{4.12) (2, 5) - L) N e -z, s)La(e) = (0)
for all & with 0 < |#| < &,. Since &, varies in an upper-semicontinuous manner

on s, we may choose & such that (4.12) holds for all s, all # with 0 < 6| = ¢ and
for t = g or b. With this choice & and any 8, 0 < § < &, the path

{((t,5)- Li(0), e 7 - 91, 8) - Lo(0), @ = 1 = b}
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is a proper path for all s. By Property XIII, we have pgeoi{@sf) = fgeoi(f)
because ¢(t) = iz, 1), (¢, 0) = id.

The Normalization Property VI is easily verified for pgeo,1(f). The following
diagram indicates that, after a perturbation, the graphs of f() = (R{1}, R{e*}),
—n/4 =t = 7/4, become gp(r) = (R{1}, R{“"9}), —n/4 =t = /4. In this
new position, the graphs (z, R{1}} and (z, Re’*~%") have no intersection between
—7x/4 =t = 0, and have intersection +1 in 0 = r = n/4. This proves formula

(1.7)(i)iii).

¥y
graph of (f, Re")

f graph of (¢, Re'*~%))
N VS

X

8¢ :
t = —n/4 co.unterc.:lockwme
orientation as
A increases.

t=mn/4

Diagram 4.
The proof of Property VII is identical and we omit the details.
We now come to the proof of Properties VIII (Nullity) and XII (Proper Path).
If L;(#) N L;{(¢) has constant dimension and varies continously with {, a =t = b,

we can choose &, 0 < & < 7, such that Ly(t) N e’ - Ly(t) = O forall 0 < |#] < &
and a =t = b. After choosing #', 0 < #' < &, we have

P'geo.l(f) = .Uproper{Ll(f), e 7. Ly} =0

by the Nullity Property of a proper path.
Suppose we are given a proper path g(r) = (L1(2), L,(1)), @ = t = b. Then there
exists an g, 0 < & < 7 with .

Liyne® L,1)=0, for t=aorh, and |6 <e.
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Here @ can approach zero because g is proper. By the deformative invariance XIII
of pproper( ), we have, for0 <8 <es,

Jugeo,l(g) = P'fproper({Ll (1), e - LN}
= I-*propcr({Ll(I), Lz(t‘)})
= ;Utproper(g) .

Since the above definition (4.8) of pproper(g) agrees with that of Guillemin and
Sternberg (see [18]), Property XII is proved.

For future reference, we summarize the above results in the following:

PrOPOSITION 4.1. (i) The mapping given by (4.5)
teeot P(la, b, V) — Z

is well defined, independent of the choice of (J,(, N.
(1) pgeo,1 Satisfies properties I 11, I0L, 1V, V, VI, VIL, VIIL, XII of Secrion 1.

As far as the existence of Maslov index is concerned, the above proposition
proves Part (i) of Theorem 1.1. In order to prove Parts (ii) and (iil), we assume
that uy(f) satisfies Properties I to V.

First note that £or the constant path {(L1, L2}, @ =t = b} we have by the Scale
Invariance Property 1 and Path Additivity IIL

T L), 0=t = 1} = wl{lL, L2x 0 =1 =2}
= uylilly, L), 0 =t = 1}

+uyl{L, L) 1 =1 =2}

= 2uy[{{L1, Lo, 0=t = 1}].

Thus, pyl{(Ly, L2); a = 1 = bY) = pwl{{L, L1 0= =1} = 0.

Let {(Li{1), Lo(t)); @ = t = b} be any path of continuous and piecewise smooth
Lagrangians such that the dimension of the intersection Lj(r) N Ly(¢) is constant
dimensional and varies smoothly for @ = ¢ = b. It is not difficult to show that
{(L{(0), (1), a =t = b} is symplectic equivalent to a pair {(E],fg); a=1t=b}
where El, Al/z are fixed Lagrangian and dim(f,l ﬁiz) = k. Hence, by the Symplectic
Invariance Property V, it follows that

w0, L), ast=b} =0

for any such path. In particular, uy(f) = 0 when the two Lagrangians have empty
intersection, L, () N Ly(t} =0, fora =t = b.

Next, we apply the Deformation Invariance Property to a path which first traces
along a path -y and then back in the opposite direction —7 to the original position.
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Such a path y * —y can be deformed, relative to fixed end points, to a constant
path. Since, by the above discussion, a constant path has uy = 0, we have by Path
Additivity:

py{path y) = —uy(path — vy traced in the opposite direction) .
As a special case,

py[{(R,Re"); a =t = b}] = —p[{{(R,Re *); ~b =1 = —a}]
= ul{Re",R);, =b = 1 = —a}] .

To prove the uniqueness property in Theorem 1.1 (ii}, we develop a formula to
calculate uy(f) for a general path f(r) = (Ly(1), Lx{#)), a = ¢t = b, in terms of two
numbers x = uy[{(R,Re*); 0 =t = n/4)] and y = uy[{(R, Re"); —n/4 = ¢t = 0}].
To simplify the problem, we choose a family of symplectic automorphism ¢(¢)
such that L;(r) = ¢(1) - L for a fixed L. Then, by Symplectic Invariance,

ul ) = wll@, L) a = ¢ = b))

where f,g(t) = ¢()"! - Lr(¢). In other words, the problem can be reduced to one

(E,fa(t)) where the first Lagrangian is fixed.

Next we reduce the problem to one for a proper path. At the end point 1 = a
and up to a symplectic automorphic, we can present the data as; V = C", and
Li(a) = R*, and Ly(a) = R*® i -R"* Here Li{fa) NI(a) = R* and a =
dim L,(a) N L,(a). The idea of the reduction is to add a “tail” to f. For this we
introduce the path

yila)) = R, R o R ), 0=t =x/4.

Then the “tail” consists of first traveling along y(a)(t —{(a — x/2)) fora—x/2 =
t = a — n/4 and then along the reverse path for a — /4 = t = a. Denote by A

the composite of the “tail” with the original path {(E, Ez(t)); a =t = b}, and A
the part of A from a — w/4 to b. Then, by the above discussion,

ur(f) = uv(A) = pyl{yi()(t); 0 = 1 = 7/4}] + Q) .
Note that at the beginning point ¢t = a — n/4 the path A is propet.
In a similar manner, at + = b, we may arrange that V = C", Li{b) = R”,
L»(b) = R? @ iR*? and consider the path

v2(B)1) = (R, " R & iR"P),0=1=n/4

and the composite path 3 of ‘A and v2(B¥n/4—t—b), b=t = b+ /4. Then,
after repeating the same argument, we have

py(f) = pyl{y1(@)); 0 =t = 7/4} + pvl{v2B8)1); 0 = 1t = n/4}] + uv(/’i)
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where Ais proper.
Next we modify A = {(El,fg(t}); a— /4 =t = b+ m/4} by continuously
deforming fg(t) to a smooth path which intersects il transversely. At these finite

intersection points {f;}, we may assume A is locally isomorphic to one of the
following two types:

(1) {(R*, R @ R, 1t — 1] < 6},
(2) {({Rr, e . R'@R* 1), |t —1| <6}

Outside these intervals |z — ;| < &, the two Lagrangians have trivial intersection.
From the definition of x and y, it follows that

uy(type (1) intersection) = x +y ,
uy(type (2) intersection) = —(x +y) ,

pyl{vi@@);, 0= = %}] = ax,

wl{y2); 0 =1 = %}] = By .

Thus if after making A transverse to L there are p intersection points of type (1)
and g intersection points of type (2), then the above yields the computation:

py(f) =ax+(p—gllx+y}+8y.

For the invariant igeo1{f), we have x = 1 and y = 0 by Property VL. Applying
the above formula,

pgeot{f) =a+{p-—q).

The same formula holds for uy(f) whenever it satisfies properties I to VI, or, in
other words, these properties determine wy(f). This proves Part (ii) of (1.1).
Note that if a collection of functions fiv: P([a, bl; V) — Z satisfies properties
[-V, then
i) = la+(p—)x + y) + (8~ a)y
= F’geo,l(f) [x+ J’] + [h12(b) — h1z(a)]y .

This proves Part (iii) of (1.1).

In the above discussion we proved the following: Property VIII and Prop-
erty XII for pigeo1(f); Property VIII (Nullity) and Property IX (Reparametrization
Invariance) and Property X (Reversal) for general uy(f). There remains only Prop-
erty XI (Symmetry). Note that pgeo,1(fip) can be regarded as a system of Maslov
functions satisfying I-VL. Hence pgeo1{ftip) = [tigeo,1 ()Ix +¥) + h12(b) — hi2(a)ly
where the constants x and y are given by

X = Ngeo,l[{(eirR, RrO0=t=%/4}1 =0,
y= .Ugeo.l[{(ei‘Ra R), —n/4=t= 0} =-1.
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Hence pgeo,1(fip) = —fgeo,1(f) — [h12(b) — h12(a)] and completes the proof of (1.1).

5. Second Geometrical Definition of the Maslov Index: ptgeo2(f)

Recall from Section 2 that a Lagrangian subspace L of V is the real span
n
(5.1) L=PRie}
Jj=1

of an orthonormal basis of the complex vector space (V,J), with respect to the
Hermitian inner product { , }. This gives rise to a natural identification

(5.2) S(L): Uln)/O(n) =-Lag (V)

sending A mod O(n) to A - L.

Since the determinant of a real orthogonal matrix equals *1, the square of the
determinant map (det)?: U{n) — S factors through U{n)/O(n) and hence defines
a natural mapping

(5.3) (det)*: Lag V — §!

by (det)*(A-L) = (det A)*>. By a theorem in [18], page 122, the fundamental group
m1(Lag V) of Lag V equals Z and the above map (det)’ induces an isomorphism

(5.4) m{Lag V) =m(S1) = 7.

For a closed loop in Lag V, the above isomorphism (5.4) gives an integer which
is again referred to as the Maslov index; see [18]. It counts the number of times,
with signs and multiplicities, that L(r) intersects a fixed Lagrangian. Qur theeo2{f)
will be so defined that it becomes identical to the above procedure when f is a
closed loop (i.e., £(£) = (Lnets L2(0); @ = t = b with Ly(a) = L(b)).

It will be convenient to have a functorial description of (det)” which does not
invoke a reference Lagrangian L as in (5.2). If {e¢;}1<;=n is an orthonormal basis
for (V,J)} with respect to {, ), giving a real basis for L', then

(5.5) ( /\ e j) is an element of AGV , the top

i=1
exterior complex power of ALV .

The above element is of norm 1, with respect to the induced metric {, ) on AgV,
and different choices of orthonormal basis for L' change A7_je; by a factor * 1.
Thus we obtain, after squaring, a well-defined mapping

(5.6) “det>”: Lag (V) — S'[(AEV)?]
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by sending L’ to the tensor square (Nicre %% in (AgV). Here the notation
S'[(ALV)®2] stands for the unit circle in the complex line (AEV)®2. Given an-
other Lagrangian L} = ]_|RA-¢; with A €U (n), we have
2 ®2
n mn
“det?”(L") = ( NA- ej) = (det A)* - ( A e,-) " = (det A - “det”’(L) .
j=1 i=1

Hence, under the identification
S'ARV)®?] = §'

which sends “det?”(L) to +1, the mapping «det2” of (5.6) coincides with (det®) of
(5.3).
Before we define pgeo2(f) as an intersection number in the cylinder

(5.7) [a,b] X S'(AZV)®H],

we need to clarify our orientation conventions:

(i) The space (ALV)®2, being a complex line, has a natural orientation. As
the oriented boundary of the unit disk, S![(A%V)®?] inherits an oriention (coun-
terclockwise).

(ii) The cylinder [a, b] X S1[(ALV)®?] can be identified with the annulus {w: 1 <
lw| < 1+ (b — a)} by sending (p.7) — [1 +(p— a)lw. The orientation on
[, b] x S'[(ALV)®?] is induced from the complex orientation on (ALV)®2.

To define pgeo2(f) for f@) = (LD, L), a =t = b, In P(a,bl;V), we
proceed as before by choosing &, 0 < € < m, such that

(5.8) Lyné? L) =0 forall 0<ifl <eandt=aandt=b.

Choose & with 0 < ne < 7 where dim V = 9 and choose & with 0 < @' < e. By
[18], page 118, the space of Lagrangians transverse to a fixed Lagrangian L forms
a cell. Hence there exist two paths of Lagrangians in V (unique up to homotopy)

(5.9) vet) ,a-1=1=a, and 7r(t),b§t§b+1
such that
{W(ﬂ N Ly(a) = {0} foralla—1=t=a
(5.10) yela—1) =e -Li(a), vela) = e . Lya) .
) {'yz(t) N L) = {0} forallb=t=b+1
v, (b) = e - Ly(b) , yAb+ 1) = e - Li(b) .

Let I be the composite path

(5.11) I = ype{e?" L) ,ast=br* v



146 S. E. CAPPELL, R. LEE, AND E. Y. MILLER
of y¢ and e™”” - L;(#) and .. This I" is to be compared to the composite path
(5.12) U= [Li(a)] * {Ly(), a =t = b} * [L;(B)]

where [Li{a)] and [L(b)] stand respectively for the constant paths withg -1 =
t=aandb=1=b+1. These two paths I' and I'" have end points e . L, (a),

e™? . L, (b} and respectively Ly(a), L,(b). Diagramatically we have:
e 7 Ly(1)
Yr
e
e 77 Li(b)
Li(a) L) Li(b)

Diagram 5,

Note that for 0 << §' < ¢ << 7/n we have

“det? (e - Li(1)) = e 727 . “det® (Ly(1)) + “de(Ly (1)
in the circle §f[(AEV)®2]- Thus, in the cylinder [¢ — 1,5 + 1] X S, there are two
paths I" and I given by the formula:

T = “ 23y . -, <
(5.13) {r—{(t, det? (@), a~ 1=t =b+1)

T = {(t.“de®™ (M), e~ 1 =rsb+ 1}
These two paths are oriented according to the increasing r-direction, and they
have disjoint endpoints lying on the boundary of the cylinder. Consequently, the

intersection number of T, T is well-defined, and teeo2(f) is defined to be this
intersection number

(5.14) tgeo2(f) = 4T NT)

The numbers ${T' T} are independent of the choice of §',0 < §' < &, because
changing 8’ smoothly varies the paths T and T’ smoothly with end points disjoint
throughout. Similarly the structure (J,{, )) may vary without changing #(T' N ™.
Thus (5.14) gives a well-defined map

Hgeo2 = P(la,plV) — Z

which depends only on the symplectic structure {, } of V.
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PROPOSITION 5.1, The functions pgeo: Pla,bl;V) — Z satisfy Properties 1-
XI1 of Section 1. In particular, pgeo2(f) = pgeo1(f) for all f.

Proof of Proposition 5.1: In view of (1.1), it suffices to show that pgeo2
satisfies Properties 1-VIL. Since the intersection number of two oriented arcs in
[a = 1,6+ 1] X SI(ALV)®?] remains the same under perturbation, the proofs of
Properties I and H are clear.

Similarly, to prove the Symplectic Invariance Property 1V, it suffices to choose
# with 0 < @ < & < #x/n so that

(5.15) s, t) - Li) N[ - pls, 1) - Lo()] = O

forQ < || <e 0=s=1,andt =aand r = b. Here ¢(s,7} is a continuous
mapping ¢: [0, 1] X [a, b] — Sp(V} such that ¢(1,¢) is the given symplectic auto-
morphism ¢(¢) in Property IV, ¢(0, 1) = id, and for each fixed s, ¢p{s)(t}) = dbls, t) are
piecewise smooth, Thus, for each s the above procedure with the data (¢(t, 5)- L(¢),
&(s,1) - Lo(t)), a = t = b, constructs a pair of oriented arcs T(s) and I (s). The
deformation invariance of #(I'(s), T (s)) yields the desired identity:

P’geo,?.(f) = Mgeoﬂ(‘.b(oy f)*f) = #geo,z(fb(l,f)*f) = #gw.2(¢*f) .

After choosing & withe <n/(m+n),m=_dmW,n= dim V, we have pairs
of arcs T(V), T (V) op [a, b] X ST(ALV)®*?] and T(W), T (W) on [a, BIx ST (AEW)®2].
The Symplectic Additivity (IV) is a consequence of the following:

LEMMA 5.2. Let vy, yg,yf, «,3: [0,1] = 8! be continuous mappings such that
y200) = e ¥ 91(0),  ya1) = ey (1)
Y0 = e y{ @, v =e "y

with 0 < & < w/2. Form the paths

(5.16)

(y1- ¥ = v () - Yy, 0=st=1

(5.17) . .
(y2 - Y2 )(8) = y2{8) - y2(1) , 0=r=1

Then the intersection numbers in [0, 11X S" of the graphs Ty, T, T e, T2, T,
Fvw%‘ of the functions 1, y2, eic., are related by:
(5.18) g «NT

#
YY1 Y¥2

)= $(Ty, NTy,) + #(T NT ).

Proof of Lemma 5.2: The mappings 1, Y2, yf, yg, can easily be deformed
continuously so that throughout the deformation condition (5.16) holds and at the
end, the mappings enjoy the additional properties:

(5.19) i) =410, ) =~{0.



148 8. E. CAPPELL, R. LEE, AND E. Y. MILLER

Since this process leaves the terms in (5.18) unchanged, it suffices to treat only
those cases satisfying (5.19).

Note (5.19) implies that (y1 - yl)(l) = (y1- yl)(()) and (y; - yz)(l) = (y2+v2 )(O)
Hence, by forming the torus 72 = §' x $1 = ([0,1]/0 ~ 1) x §1, the arcs T, Ty,

Ly, T, I o, Tt canbe closed up to produce loops on T? which are denoted
1? ‘Yz Y1 ‘Y Y2 ¥z

respectively by T, Fn, F 1" l",’,l s I“TZ Since the endpoints of the pair
of arcs (I'),,T'y,), ( ::) (1"?l RN DV ‘Yz) are disjoint, the close-up operations

do not produce new 1ntersect10n points and so
4Ty, NT,,) = ¢, NT,,) in ST x §',
#CpNT ) =T NTe)inS' X8,

#(F“?fﬂl—‘ ) = #(T sﬂ]"uﬂ)mSlxsl

e Tz) Y1I'Y1

Let H((T?,7Z) = Z & Z with generators x = [S! x 1] and y = [1 x §!]; then the
above closed loops with the obvious orientation give rise to cohomology classes

[f7l]=x+py, [?},2]=x+qy,
[T,:]=x+p'y, [Tl =x+4q".

As for the cycles fw'vf’ j
by multiplication on the second factor ¢{(z,?), (s, %)) = (1,"®*®). Since the
multiplication §! X §! — §1, (¢, &%) = (e ®*?} induces addition on homology, it
follows that

= 1,2, they can be constructed from the graphs T, FY?

- vf] —x+(q+q“)y

IC,. d=x+@+phy. [T

YY1

Appealing to the relation between cup product and intersection number, we have

T, +In[r

Y'Yy

il =@+ g —(p+p")=(g—p+* - p"
— (10T, + (T, N [T 4D

and hence Lemma 5.2.
To prove Path Additivity Property III for f(t) = (L1(1), L,(2)), a = t = ¢ with
a < b < ¢, we choose e, 0 < & < 7/n, so that (5.8) holds for t = a,b,c.

Construct ye, v, as above for f|[a,b). Let yﬁ(s) be y.(1), but travelled in the
opposite direction as s ranges fromb—1 =5 = b, i.e,

yh(s) = v.(2b - 3) b—1=s=b.

Using the transversality of &% - Ly(c) and &% - Li(c) to L,(c), we choose a path
yf(s), c=s=c+1 with

YO NL) =0, c=s=c+1,
Yoy =& L), Yie+D=e" L),
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With these choices, fgeo2(f |[a, b)), respectively pigeo2(f |16, c}), is computed from
the paths

T = “detlye + " L) a=t =bh+ v,
T = “det?[{Li(@)} = {Ly(t); a = t = b} = {L(@}],

respectively,

T = “de?[y} = {e7% Lot b=t1=ct* oy

T = “de[{L(B)} * {La(); b =t = ¢} * {La(o)}]

where the parameter ! lies in [a —1,b + 1] for T', T and in [6 — 1,¢ + 1] for 1:“',
T LetT, T, fﬁ,jﬁ:_denote the corresponding paths in the cylinder.
Reparametrize I, " by shifting s to s—2 and replacing tEe interval of definition
la — 1,6+ 1] by [a — 3,b — 1]. Then the end points of T’ and T coincide with
the starting points of i and, respectively Tﬁ with the same parameter t = b— 1.

This allows us to form the composite paths T * r and T+ T,
From the definitien, we have

(5.20) geo2 (£ 11, BD) + prgeon(f11B, c]) = #(T * T

where the intersection number is evaluated in the ambient space [@ — 3,¢ + 1]

x S'[(ALV)®?)]. Since the path ye * y# can be continously deformed to the
constant path {e™? - L>(b)}, the term on the right-hand side of (5.20) equals the
intersection of {L1(@)} * {L1(t); a =t = b} * (LB} « {Lit);a=t=c}* L)
and {ye®)} * {7 -La(tha =t = b} # (e L)} * {7 - L) b =
t = c}* {'yﬁ(r)}. By rescaling and shrinking the middle constant path, this last
intersection number is precisely that from {(Lit)} * {Litha=t = c} * {Li{c)}
and {ye()} * {e™ ¥ . Lt,asSt=SchH {yf ()}, Clearly this is pgeo2(f |[a, b]} and
hence

P:geo,2(f|[a, bl} + ngo,il(f'[b’ c]) = cho,z(f‘[aa cl),

as claimed.

The Normalization Property VI for pgeo2(f} can be verified directly from the
definition. The following diagrams illustrate the procedure of constructing T, |
in each of the cases (1.7}(iii).
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N ///\\ :
W77 (&P

Diagram 6.  For (1.7)(i), we obtain {+1) intersection on the right-hand side.

A A

ﬂ\ \};“
Q j) e~ R

Diagram 7. For (1.7)ii), we have no intersection on the right.

iy,
I
=

[

- I-w,f

A
R ei:

Diagram 8.  For (1.7)iii), we have (+1)-intersection.
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6. First Analytical Definition of the Maslov Index: ganar,1(f)

Given a pair of Lagrangian subspaces L;, L, of V, we consider the first order
elliptic operator —J % on the functions ¢: [0,1] — V satisfying the boundary
condition

(6.1) $#0)eL; and (1) € Ly
As explained in (3.6), this operator
(6.2) D(Ly, Lo): L0, 1]; Ly, Lo) — L*([0,11;V)

is self-adjoint and has as its kernel the space of constant function ¢(t} = k, with
ke LN,

The eta invariant n(D(L;, L)) of D(Ly, L,) is defined in [3] by first forming the
meromorphic continuation of the function n(s) = -, .ofsign X;)IN;|™*, where ;
are eigenvalues of D(L;, L), and then setting s = 0, i.e., n(D{L1,L2)) = n(0). In
the present situation, this eta invariant can be computed explicitly.

Let L; = @.;Ré;, where {&;}15;<n is an orthogonal basis of (V,J) under { ).
Then for some unitary matrix A, we can write L as &;-|R{A - &;}. In fact, we
diagonalize A:

(6.3)  A=B'-D",....é") B

where B is unitary and D{e'®', ... , ¢*) is the diagonal matrix with (j, j)-entry €.
Under the unitary transformation

BV -V, v—B-v,

the pair of Lagrangians (Ly, Ly} is sent to {(BL;, D{¢'"", ... ,e ). BL,). Thus the
transformation induces an isometry

L¥[0, 11; L1, Ly) — LM(0,1]; BLy, D(e™, ... , ™) BL)) ,

which in turn commutes with —J g;. Or in other words, the operator D(Ly, L,) is
transformed into D[BLy, D(¢", ... ,e"%)-BL,]. Since the spectrum is a unitary in-
variant, the spectrum of D(L;, L,) is identical to that of D{BL,, D{e?", ..., e )BL,]
and so

2(D(L1, L)) = nlDBLy, K™, ... ™) - BLy] .

Choosing Be;, 1 = j=n, as the opthonormal basis {f;} of V, we can identify
BL, as R* in V = C" and D(e™,... ,e™)B- L as the subspace &}_R{¢” - f;}. In
this way, the operator DI[BL,, D(e® ..., &%) BL,| becomes

(6.4) D (R”, GB R{e®: fj}) .
=1

j=
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Since ¢? = —e"**™), we can choose 8, with the property that

(65) 0§t9j<1T, jtl,...,n.

ProposITION 6.1.  Given a pair of Lagrangians (L,, L;} we choose 8; as in
(6.5). Then

(DL, L)) = 7 (D (R", . R{ef"ffj}))
=1
= Z {1 —Z(QJ/W)} .

0<8J:<7T

(6.6)

Note that the angles #; = 0 or /2 make no contribution to 7(D(L;, L;)). The
discontinuity of n(IXL,, L;)) occurs whenever @; becomes 0 or equivalently 7. For
9; small and positive, the contribution of ¢ to (6.6) is approximately +1; while
for §; small and negative we must use = +; in (6.6) and so the contribution is —1.
Hence n(IXLi, L,)) jumps by +2 as @; crosses 0, or in other words, the spectral
flow is +1. Despite this discontinuity, for smoothly varying 6(¢), the left and

right derivatives —% ‘% remain the same. That is, f;n(D(Ll(r), Ly(t)) is a smooth
function if L;(¢), L,(¢) are smooth.

Proof of Proposition 6.1: The eigenvectors for D{R", $?=1R{ewf fi}) are

3

fir

fj,mj = cxp(i(vrmj + 9})1) ‘fj,mj , 1=j=n

where m; € Z. Since —i%fj’mj = (mm; + 0;)f;m, the eigenvalue of fjm; 18
(TI' m; + 6 j).

Recall that the generalized zeta function {(s, w) is defined for 0 < w = 1 by
the formula

e.o]
Lsyw) =D (v +w)™
=0
and has a unique meromorphic extension to s = 0 with
G0, w) =(1/2) — w, O<w=1.

In terms of {(s,w), the eta invariant n(D(R", ®_;R{e”/ f,}) for 0 = @; < = is
given by

> [Glsby/m) - Lls 1 — 8/

T w04,

Thus we obtain

n0) = > 1-28;/n)

0<9',:<7I'




ON THE MASLOV INDEX 153
as claimed.

COROLLARY 6.2. For Ly = ALy with A € U(n) we have

exp [—27ri (n(D(Ll,zlxz)) * h)] = (=1)" (det A
where h = dim Ly N Ly and n = dimV/2.

Since the value (det A)? is independent of the choice of B, we take A to be of
the above form with 0 = 8; < n. Hence by Proposition 6.2,

expl—min(D(L1, L))] = exp [—ffwz;ﬂ (1 2 (%) )}

7

= exp |:—m'(n —h)+ 2ii9j:| = (=1)"- (~1)* - (det A)?,
=1

as claimed.
In Section 3, the flat unitary bundle

(6.7) = &4 =[0,1] X C"/(0,v) ~ (1,A- A'Y)

over 5! was introduced and the operator D*(L,,L;) was defined as —i % acting

on the sections of £4. As shown in (3.1), D*(L;, L) is complex self-adjoint with
dimg ker D¥(L,, L) = dimg(L, N Ly). Equivalently D¥(L1, L;) may be viewed as
—i % acting on functions : [0, 1] — C" with boundary conditions

(6.8) ¥(1) = A- A'(0) .
If we diagonalize A - A’ as
(6.9) A-A =C'De?, ... ,e)C
by a unitary matrix C and choose ¢; to lie in [0, 27), then, as in Proposition 6.1,

the eigenvalues of D*(L1, L,) may be easily computed. They are {2nm; + ¢jlm; €
Z}1xjs» and the associated eta function n(s) 1s

(2;}‘ Z {Z sign(mj + ¢j/27r)|mj + (¢j/2ﬂ')l_s}
O0<dpy<2m

1 S {Ls(d/2m) — Lls, | — ¢;/2m)}

2y 0<dy<2m
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Consequently, we arrive at the formula for the eta invariant

(6.10) DLy, L) = > (1 —2p;/2m) .

O<¢h;<2nm

The relation between the eigenvalues {e®/} of A and {e’%/} of A - A’ is not
obvious; however, their determinants satisfy

det(A - AY) = (det A)

and so &Z9) = i(Z26)}
In particular, we have

1 1
— = 26; | mod Z .
F(Le) ()

As a consequence (by Corollary 6.2 for 7(D) and n(D*)), the eta invariants n(D(L,,
L)), n(D*(Ly, Ly)) are related by

(61 1) [T)(D(LI,Lz)) + h] = %[T}(Dﬁ(Ll,L}_)) + h] mod 7 .

B | =

Here, h = dim LyNL; = dimg ker D(L,, L,) = dim¢ ker D*{L{, L,) by Lemma 3.1.

In fact, we have a stronger relation as in the following:
PROPOSITION 6.3. The two eta invariants n{D(L(, L)) and n{D*{Li,L,)) are
the same.

Because of (6.3), we may interchange n(D{(L;, L,)) and D*(Ly, L)), and sim-
ilarly the spectral the flow of the two families of operators D(L;(1), L(1)) and
D*(Ly (1), La(1)).

Proof of Proposition 6.3: Let B(s) be a smooth family of unitary matrices
such that B(0) = id, B(1) = B, and L, = B‘ID(g”’l,. . ,e")B.L,0=8; <m, as
discussed above. Set A(s) = B 1(s)D(&?,. .. ,e")B and define the function

h(s) = n(D(Ly, A(s)L,)) — n(D*(L,, A(s)Ly) .

Now dim L; N A(s).L; = dim[B(s)Li] N [D{e?,...,e")  B(s)Ly) = {46;
with 8; = 0} is independent of s and is equal to dim ker D(L;, A(s)L,) and also
dimcker D*(L;, A(s)L,) by Lemma 3.1. Moreover, the kernel of D*(L;, A(s)L,),
by Lemma 3.1, coincides with the complexification of R* N A(s) - R" = R" N
B(s) D!, ..., &%) B(s)R" = B~(s)[B(s)R* N D{e™, ..., €%)B(s)R"], which has
constant dimension (= dim L; N L;) and varies continuously with respect to s. In
particular there is zero spectral flow, and by the continuity of these kernels we
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conclude that A(s) is a continuous function of s. As observed in (6.11), however,
A(s) is integer valued and hence A(1) = h(0).
In the specal case when A(0) = D(e,. .. , e}, we have A(0)- A(OY = D(e*"",
., %%} and so

20 :
AL AOL) = 32 1-2(52) = nDiLs, AL,

=

by (6.10). Hence, h(1) = h(0) = 0, proving Proposition 6.2.

In order to define papa1(f), one more ingredient is needed: a canonical one
form w on Lag V, depending only on the choice {J,(,)}. Fix a reference La-
grangian Ly, we have the map

(dety: Lag V — S',  det’(4-Lo) = (det A)*

defined as before. Pulling back the standard 1-form (1/2)d# on the circle St =
{£®} via this map (det)?, we have the canonical 1-form (sometimes called the
Keller-Arnold-Maslov form)

6.12) w = (det?)* (El— d&) onLagV .
T

Since (1/27)d represents the generator of H'(S!,Z) = Z and (det)? induces
an isomorphism on gohomology (see [18], p. 116),

H'(Lag vV:Z2)-—H' (S Z)=7,
the above 1-form w represents in H'(Lag V;R) an integral generator of
H' (LagV:Z) =7 .

Note that another choice of the reference Lagrangian Ly = B - Ly would change
(det?) by the multiplication of a constant {det B)~2. Since such a multiplica-
tion leaves (1/27)d#@ invariant, the 1-form w in {6.12) is independent of the
choice of L.

DEFINITION OF ,um;'j (f). Given a pair of continuous and piecewise smooth
Lagrangians f(t) = (Li(t),L;(1)), a = + = b, we define (see Theorem 0.3 in the
Introduction),

a1 (F) = % [n(D(LL(B), La(B)) — n(D(Lia), La(@)]
(6.13) , |
+[ [L;{w) — LT (w)] + E(‘hlz(b) + hppia)) .

where L} (w), j = 1,2; is the pullback of w by the map L;: [a,6] — LagV,
{— Lj(!).
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In Section 7, we will compare the above formula (6.13) with the Atiyah-Patodi-
Singer Index Theorem. Note that, by Proposition 6.2, we may replace (D(Ly, L»))
by n(D¥(Ly, L))

PROPOSITION 6.4.  The formula (6.13) defines pna 1(f) as an integer invariant
depending only on the symplectic structure and i @ Pla, b, V) — Z satisfies
Properties 1 10 X1 of Section 2. That is, pana1(f) is a Maslov index.

Proof of Proposition 6.4: From our previous discussion, it suffices to check
that pana,1(f) is an integer depending on {, } and satisfies Properties I to VL.

Note that all the terms except the integrals [o L; (w) depend only on the end

points. Since fab L ; (w), j = 1,2, are invariant under the deformation of f keeping
the end points fixed, the Deformation Property II is apparent. Similarly, Affine
Scale Invariance holds because these integrals are unchanged and Path Additive
Property HI follows because

/;bL}'(w) +]:Lf(w) =/:L;(w) .

As for Symplectic Additivity Property IV, we need only to observe that under
the inclusion
i LagV xXLag W —~ Lag (Ve W)

the pullback 1-form i*(w) equals 7 w+m; w where 7;, j = 1,2, denote respectively
the projection on the first and second factor. This computation for i*(w) follows
from a similar additive property for the map det?.

Note that the dependence of pang1(f) only on the symplectic structure { }
and the Symplectic Invariance Property V follows once paga,1{f) is shown to be
an integer. Indeed, under such deformations the dimension h2(f) = dim L;{z) N
Ly(#) = ker D(Ly(z), L,(r)) is unchanged and so-are the eta invariant terms; hence,
{anal,1 (f) varies continuously. As an integer valued invariant, giag,;1(f) is constant
for such deformations.

To show panar 1 (f) is an integer, we choose a reference Lagrangian Ly, and two
continuous and piecewise smooth families of unitary matrices A;{), A>(t) with

Li©)=At)-Lo, L(t) = Ax(1)- Lo
for @ = t = b. Diagonalize A;(t), j = 1,2 in a piecewise smooth manner
AfD) = B;'(0) - D(™Y, .., i) . B(2)
where 0,;(t), 1 = a = n, j = 1,2, are continuous and likewise B;(t) € U(n). Thus

(detz)(Lj(r)) = e2i(E:=l guj{f))
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and so
b n

. 1 dBy;
/;Lj(w)—;LZ i dt .

a=1

b
exp 2§ (f (L (w) — Lf(w)))

= exp2i {Z [84,(B) — 84, (B)] — [0a,(a) — Gm(a)]}

a=1

Hence,

= [det Az(b) A;(b)"'1* / Idet Axia) Al(a@) ']

On the other hand, by Corollary 6.2,

1
exp (-2ri {Sn06) o) + Slha) + hatal}

= exp ( — mi{[n(Db)) + h12(b)] — in(D(a)) + hrz2(a)]})
= [det Ay(b) A,(B) 'V / [det Ax(@) Arl@) '

Thus exp 2mipaa 1 (f) = 0. That is, panar1 (f) is an integer as claimed. {Here

n(D(#)) is short for n{D(L1(t), Lo(1))).)
To complete the proof of Proposition 6.3 it remans to check the Normalization

Property VL Applying (6.1) to the setting R2 = C, Li(6) = R, L,(#) = Re®, we

have
1-2  for0<6=]

DUy, L) =4 0 forg =0
| - 2otm) for—%§9<0

w

and also
deo

Liw=0, Lw=", =

A

)

A

IS
&1

For f(t) = (R,GE‘R), —% == %, the term h12("—§) = hlz(%) = (], h;(0) = 1.
Putting these data into (6.13), it is straightforward to see that

pons (n[-5]) = o= {2 (F+ L, T 3000
0

while panai,1(f110,7/4]) = 1 and pana 1 (f \[-#/4,7/4)) = 1. This completes the
proof of Proposition 6.4.

Note that if L, = AL; with A = B™1D(e®,... ,&)B and 0 = 6; < 7, then
L, = A"'L, with A as above. By e = — ™)) and Proposition 6.1, then:
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PROPOSITION 6.5.

K

_ B;
- {r-2(2)
0=8;<n n

= ~plD{Ly, L2)) .

DALy, L)) = 2 [1 ~2 (” — af)]

In many applications the interpretation of the Maslov index as . 1(f) in
(6.13) is very useful and flexible. We will see examples of this in proving Theo-
rems 0.1 and 0.2 of Section 0.

7. Second Analytical Definition of the Maslov Index: pyna2(f)

Let f() = (Li(1),L2(1)), @ = t = b, be a continuous and piecewise smooth
family of pairs of Lagrangians. As shown in Lemma 3.1, there is a correspond-
ing family of self-adjoint, elliptic operators D{L,(f), L,(t)), @ = ¢t = b. At the
endpoints ¢ = a, t = b there exists an & > 0 which is smaller than the absolute
value of any nonzero eigenvalue of D(L(a), L;(a)) and D{L(b), L,(b)). Then the
self-adjoint operator D(L,(2), L,(#)} — ¢ - (id} has no O-eigensolutions for t = q, b,
and allows us to define w

(7.1)  panap2(f) = spectral flow of [D(Ly(r), L2(t)) —eid ], as=t=b

This is the e-spectral flow of Section 0; it counts with signs {(+1 for increas-
ing value, —1 for decreasing) and multiplicities the number of eigenvalues of
D(L1(1), L,(#)} crossing the line A = e. The situation is represented schematically
in Diagram 2.

Clearly pana2(f) is independent of the choice of & > 0. It is also easy to verify
that it satisfies Properties (I){V). For example, in verifying III we only have to
choose & > 0 small enough so that for + = a,b,c, the operator D(L{z), L,(t))
has no eigenvalues in the interval (0, £]. Then the additivity of pana2(f) follows
from the additivity of spectral flow. For example, the deformation property of
(IT} holds because these deformations leave hyz(a) and hjp(b) unchanged and so
we can choose £ > 0 so that no eigenvalues for D(L(b), Ly{b)) and D(L(a), L;(a))
are in the range (0, £] throughout the deformation. Similarly, for the symplectic
invariance of V.

For the Normalization Property VI, we recall the discussion preceding Proposi-
tion 6.1 that for —n/4 = 6 = /4 the operator D(R, Re’®) has eigenvalues mm + 6.
Thus in the situation of (1.7)(i}iii), the spectral curves of f{t) = (R, Re") are
straight lines.
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8 = —-w/4 #=0 8 =n/4

Diagram 9. For eigenvalues in the range (—n/2,7/2),
a single spectral line of DR Re®).

From Diagram 9 abOve, it is apparent that the e-spectral flowisQon —n/4 21 =0
and 1 on O = t = /4, as desired. Thus we obtain the proof of the following (by
using Theorem 1.1).

PROPOSITION 7.1. The invariant paa2(f) depends only on the symplectic
structure {, } not on the choice of complex structure J,( ). Moreover,

Hanal 2+ @([as b]! V) - Z

satisfies properties 1 to X1 of Section 2 and pgeo1(f) = pigeo2(f) = panain(f) =
panal.2(f)-

To clarify the two definitions papa,1(f) in (6.13) and panar2(f) in (7.1), we

compare the quantity pnal,1(f)—h12(@) = pana2(f)—h12(a) with the Index Theorem
in [3]. Note that ptana 1{f) — k12(a) equals by definition

~ [HDLr(B), LoB) ~ n(DAL1(@), L)

b 1
+[ [L; (w) ~ L (w)] — E“m(b) + hizla)) .

On the other hand, pana2(f) — hi12(a) is the spectrai flow (or (—e/ + &) spectral
fiow) counting the number of eigenvalues of D(L, (1), Ly(1)) crossing the tilted line
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from {(a, —¢) to (b, e). This is seen by deforming this line to a line passing from
{a, —¢) to (a, +&) thence straight to (b, +¢).

= -----"""""""’ﬂ hz +E
’f
-
’I
,f
-
hi2{a) —
Zero - A=0
s
modes -~
A=—g¢

Diagram 10. The difference between the two crossing numbers
with A=—¢ and the tilted line is h;2(a).

To relate these expressions to the Atiyah-Patodi-Singer Theorem, we recall
that

Index D = '[Xag(x) dx — % ['q (ﬁ) + h] :

where D is a first-order, elliptic operator on an oriented manifold ¥ with boundary
X = 8Y. On a product neighborhood X X [0, 1] in ¥, the operator D is asumed

to be of the form n*o o (% + ﬁ*ﬁ) where s the normal coordinate, 8/8s points
inward, 7 [0, 1] XX — X is the projection, and Disa self-adjoint elliptic operator
on X. Let # be the kernel of D, and let P, (respectively P_) be the span of the

positive (negative) eigenvectors for D. The operator D becomes Fredholm when
the boundary condition ¢|X € P_ is imposed on sections ¢ over Y. Index D
refers to the index of this Fredholm operator; n(ﬁ) to the eta invariant of D, and
h = dim ker D = dim #. R R

Now consider the situation when Y = Z x [a,b] and D = £ + D(¢) where D(z),
a =1 = b, is a smooth family of self-adjoint operators on X. Since +3/¢ points
inward into Z X [a,b] at a and outward at b, the Atiyah-Patodi-Singer formula
reads:

Index D = fao(x)d - % [—n (ﬁ(b)) +n (5((1))]

~ S [h6) + @]
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Here the sign ﬂn(f)(b)) is due to the change from D(b) 1o ﬂﬁ(b) in our formula
g; +D = (—1)-(—-—(% +{=D))att=b. As for h(r} = dim ker D, it is independent
of this sign change. Thus if we consider D(r) as a smooth family of operators, the

spectral flow of this variation is by definition the change in Index D. In particular,
if h(a) = h(b) = O, then '

Index(D|X X [a,b]) = spectral flow of (D), a =t =b}.

In all cases,

Index(D|X X [a, b)) + hla) = f ag(x)dx + %[n(ﬁ(b)) - n(ﬁ(a))]

+ %(—h(b) + ha))

which is the analog of a1 (f)} for f() = (L1G0), L)), a =1 = b, as defined in
(6.13).
We claim as in Theorem 0.4 that, analogous 10 pana2{f)}, the quantity Index

(D|Z X [a, b)) + h(a) is the e-spectral flow of 5(t), a=1t=b Heree >0is
chosen so that no nonzero eigenvalues A # 0 of ﬁ(a) or D(b) lies in [—¢, €], and
the e-spectral flow is computed by counting the crossings of spectral curves with
respect to the line A = &. As noted earlier, for D(Li(t), Lo(t)), this means that

Index(D|Z X [a, b)) is the spectral flow of 5(t) with respect to a tilted line. For
operators in gauge theory, a discussion of such spectral flow can be found in [13].
To prove the above claim, we may assume, by a smooth perturbation, that the

(O-eigenvalues for ﬁ(a), ﬁ(b) bifurcate transversally into nonzero eigenmodes in
the interval [a,a + 6], [b — 6,b]. Let h.(a), h.(b) denote the numbers of posi-
tive eigenmodes after the bifurcation and h_(a), h_(b), the numbers of negative
eigenmodes. Then

tim (B(b — &) = [h(b).. — hib)-] = 7(D(b)
limn(Bla + 8) - [h(a). — hia)-] = n(Dla)
By the Atiyah-Patodi-Singer formula, we have (dropping D for convenience)
Index D|Z X [a, b]

b
- f o) dx + %(n(b) - %(h(b) + ha)
b
- / colx) dx + % tim{n(b — §) — nla + O] + %(—h(z;.)+ + ha).)

_ %(—h(b)_ — h{a)_) — %(h(b) + h(a))

= %iné {spectral flow for 5(t); a+8=t=b-6}—hb), —hla)-).
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From the following Diagram 11, it is easy to see that the last expression is the
{—&/&)-spectral flow of D(t), a =t = b, and so

Index D|Z X [a,b] + hla) = {e-spectral flow of D{1) , a =t = b} .
This proves Theorem 0.4.

th(a), curves h®)+ 1 " (b, +£)

(a, —¢)

(o]

: Yh{a)_ curves hb)-{ |

t=a t=a+éd t=b—-6 t=b

Diagram 11.

8. The Maslov Triple Index: 7(L;,L;,L3)

Given three Lagrangians Ly, L,, L3 in a symplectic vector space (V, {, }), Kashi-
wara (see [24]) defines an integer 7v(Ly, L,, L3) as the signatur€ of the symmetric
quadratic form

QLisel,ols - R
Qx1,x2,x3) = {x(,x2} + {xz, %3} + {x3,01} .
This invariant v can be shown to have the following properties:

Property I (Skew Symmetry). For a permutation o of the three letters {1, 2, 3},
v(Lo(1), Lo)s Lo3) = Sign(o) - 7(Ly, Lo, L) .
Property II (Symplectic Additivity). For three Lagrangians L; C V, j =
1,2,3, and three Lagrangians Lf CW,j=123,

mvew(Ly ® LY, Ly @ L} Ly ® L) = 1y(Ly, L, L) + mw(L, L2, 1Y) .

Property HI (Symplectic Invariance). For a symplectic automorphism g €
Sp(V),
ry(Ly, Lo, L) = Tv(gLy), g(L7), 8(L3) ) .
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Property IV (Normalization). For the Lagrangians R, R(1+1), R(),inR2 =C
with the standard skew symmetric pairing { , } in C,

o(R,R(1 + D),RE))=1.

Two more properties, V and VI, are proved in [24].

Property V (L, Transverse to L3). If L, N L3 = 0, then 7v(Ly, L3, L3) is the
signature of the quadratic form

gL —-R, g ={x"}
where x = x’ + x"' is the decomposition of x in L; + L3 = V {(cf. [18], p. 40).
Property VI (Cocycle Condition). For four Lagrangians Ly, Lz, L3, L4 inV,
(L1, Ly, L) = 7(L1, Lo, La) + Ty(La, L3, La) + Tv(L3, L1, La)
(cf. [24], p. 42).

Property V can be taken to be the definition of triple index 7(Ly, L, L) when
L, N Ly = 0. For example, Guillemin and Steinberg defined

1
(L, Ly, L3) = 3 signature of quadratic form

x - {x",x}=—-{x' 2"}, x€ly

which is —% of Kashiwara’s index (cf. [24], p. 126).
Analogous to the characterization of Maslov index py(f) in Theorem 1.1, we
will prove the following:

THEOREM 8.1.

(i) There is a unique system of functions tv(Li, Ly, L3} which satisfies the above
Properties 1, 11, 111, and 1IV.

(ii) Any such system which satisfies Properties 1 through IV equals Kashiwara’s
rv(Ly, Ly, L3) and so satisfies Properties V and VL

(iii) If a system Fv{Ly, Lo, L3) satisfies only Properties 1, 11, and 11, then

f:(-L]’L/Za L3) = kTV(th/Zs L3)
where k = Fc(R, R(1 + 1), R()).

We consider C. T. C. Wall’s definition Tv(L;, Ly, La}way of the triple in [31] as
an application of (8.1) (ii). Let 7(Ly, Ly, L) denote the subspace in L, ® Ly @ L3
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consisting of (xj,x2,x3) with x; + x; + x3 = 0. Defined on 7 (L;, L;, L3) there is
the quadratic form

@V (L, Ly, L3) - R

given by @'(x1,x2,x3) = 3{x1,x2}. Then 7y(Li, Ly, L3)way is the signature of this
quadratic form @(x;, x2,x3). From the equality

Qlxy, x3,x3} = {xy, 22} + {x2,x3} + {x3,%1}
= {x1,x2} + {x2, —x1 — x2} + {—x1 — x2, %1} = @' (x1, %2, x3)

on 7(Ly, L, L), the properties (I), (IT), (IIT) are immediate. On 7 (R, R(1 + i), R(:)),
this quadratic form equals

t e (t—t(1 + d), ) — 3{t, —(1 + D)} = =3¢
and hence v (R, R(1 + i), R(})) = —1.
PROPOSITION 8.2.  Let 7y(L1, Ly, Ls)wan be defined as above. Then

TvALy, Lo, La)wan = —7v{Ly, L, L3) .

Another application of Theorem 8.1 is in proving Theorem 0.1 which is restated
here: "

PROPOSITION 8.3.  For a triple of Lagrangians Ly, L, L3 in 'V,

T(Ly, Ly, La) = {n(D(L1, Lp)) + DALz, L3)) + n(D(L3, L1))} .

Proof of Proposition 8.3: By Theorem 8.1, we only have to show: first, the
right-hand side is independent of the choice of complex structure J and ( }; second,
the right-hand side satisfies properties 1, I, IIT, TV.

Now if {J;, {. )}o=¢= is a smooth, 1-parameter family of complex structures
and Hermitian inner products, then there exist smoothly varying unitary matrices
Ay(2), As(2) with

Ly =A(t) Ly, Ly = Ax(r) - Ly O=t=1.

By Proposition 6.1,

n{D(Ly, L) for J., { ;) = Z [1—2(8—19)]

0<h;<w T
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where +e are the eigenvalues of A;(r), chosen so that 0 < ;{t) = « and hence

exp [2nin(D(L1, Lo) for J;, ()]

= exp [—ZWf (z": 29j(t)):| = [det Ay(1)]7*.

=1 7

Similarly, we have

exp [2mintD(Ly, L) for J;,{ ))] = [det Ax(9]~*
exp [2rmin(DALs, Ly) for J1,( )] = [det(A, ()" - (A20)~117*

and hence

exp {2mi[n(D(Ly, Ly) ) + n(D(La, L3)) + n(DAL3, Ly) ) for Jo, ]}
— {det A, (O*[det A2(0)]7 - [det A;()) ! - det A0y '™ = 1.

This last equation means that 7(D(L, L2) Y+nlD(Ly, L3) ) +n(D(Ls, Ly)) is an integer
for all 7. On the other hand, the kernel of the operator D(L;, L) equals L; N Ly
and is independent of z. 1t follows that n{D(L;, Li})} is continuous and hence the
triple sum n(D(L, L3) } + (DL, L3)) 4 n{D(Ls, 1)) is a fixed integer. Since two
complex structures can be connected up by a path J,, (), we have shown the
independence of complex structure.

By Proposition 6.5, the right-hand side is skew-symmetric with respect to
interchanging of a pair L;, L, j # k. Since these are the generators of a symmetric
group, Property I follows immediately. Property 1l is clear from the definition of
m(D(L;, Ly)). Property IIL is proved as above by deforming g to the identity. As for
Property 1V, it follows from a straightforward calculation using Proposition 6.1.
Since the subspaces R(1 + i), R(i), R can be written respectively as exp(iy) - R,
exp(iy) - R(1 + i), exp(i7) - R(), we have

(DR, R( + i) + n(DRA + i), R(E)) + n(DRE, R) }
[i-2 ()] ¢ 2 () [ -2 ()]
=1

This proves Proposition 8.3.

The above proposition may be combined with the definition of pana1{f) to
prove Theorem 0.2. This is reformulated as:

PROPOSITION 84. lLet Li{t), a =t = b, j = 12, 3, be three families of
smoothly varying Lagrangians. Let e(t) = (Li(1), Lo1)), f() = (Lz(1), La(D)), g(t) =
(La(0), Li(1)), a =t = b, and let hy(t) denote the dimension of Li(t) N Li(z). Then



166 S. E. CAPPELL, R. LEE, AND E. Y. MILLER

the Maslov indices uy(e), uv(f), py(g) are related to the triple indices T(L(¢),
Ly(0), Ls(1)) at t = a, b, by the formula:

% [H(LA(B), La(b), La(B)) — ~(L1(a), Ln(@), La(@))]

= py(e) + uy(f) + wy(g) + % { [Z hjk(b):| - |:Z hjk(a)] } .

J<k j<k

Proof of Proposition 8.4: Using the definition of piana1(f), the sum uy{e) +
uy(f) + pv{g) equals

; [(D(Ly (B), Lo(B))) + n(D(La(b), L3 (b)) + n(D(La(b), L1(B)))]

- %[T,‘(D(Ll (@), Lo(@))) + n{D{Lala), Ls(@)) + n(D(L3(a), Li(a))}]

N [_ (; ,,jk(b)) + (;khﬂc(a))].

By Proposition 8.3, the first and second sum in the above can be replaced by
Maslov triple indices, and hence uy(e) + uy(f) + uy(g) equals %[TV(Ll(b),Q(b),
La(b) — 7y(Ly(a), Lafa), Ly@)] + 3(=[Xj<x hp®)] + [ hjx(@))). This proves
Proposition 8.4. -
Another application of Proposition 8.3 is another proof of Property VI (Co-
cycle Condition). By Proposition 8.3, the right-hand side of the cocycle formula
can be rewritten as [p(D(Ly, L)) + n(D{Ly, Ly)) + n{D(Lg, L1))] + (n(D(Ly, L3)) +
MD(Ls, L)) + n(D(La, )] + [n(D{Ls, L)) + n{D(Ly, Ls}} + {D(L4, L3})]. Since
n(D(L;, L)) = —n(D(Lg, L;)), four of the terms in the last expression cancel leav-
ing n(D(Ly, L)) + n{D(Ly, L3)) + n(D(K L3, L)), which is Tv{(L, L, L3), by Propo-
sition 8.3.
The combination of cocycle condition and symplectic invariance implies that
the function
z: Sp(2a, R) X Sp(2x,R) x Sp(2n,R) — Z
(g1,82.83) = (g1 - R", g2 - R", g3 - R")

is a homogeneous 2-cocycle and so defines a cohomology class
[z] € H*(Sp(2n,R); Z)

where Sp(2n; R)® stands for the real symplectic group endowed with discrete topol-
ogy. Proposition 8.3 implies that regarding [z] as a 2-cocycle in R, the restriction
[z]!U(n}® to the discrete unitary group U(n)® C Sp(2n; R)® is a coboundary,

z=0bw with w(gi,g)=nD(g R g -R").
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It is well known that the restriction of [z} to Sp(2n;Z) in Sp(2n; R)* gives a gen-
erator [z|Sp(2n; Z)] of H*(Sp(2n;Z); Z) = Z for n = 2 (cf. [24]).

As still another application of Proposition 8.3, we relate 7(L;, Ly, L3) to the
index of a Cauchy-Riemann operator & ® ¢ with coefficients on a flat Hermitian
vector bundle £(L;,1;,L3) over a twice punctured disk X of Diagram 1. The
holonomy is defined as A - A', B - B, over 9D1,0D, with L, = ALy, Ly = BLs.

As in [3], page 62, the tangential component of the Cauchy-Riemann operator
& near AD; can be identified with —i d% Hence, forming the & operator coupled

to &(Ly, Lo, L3), we obtain an elliptic operator 9 ® &(Ly, L, La) whose tangential
component near 3D; coincides with —ijg-j operating on sections of the flat, Her-
mitian vector bundles £ 4.4, £z Here the notation is the same as in (3.5), and the
tangential components of 0 & £(Ly, Ly, L3) are nothing but D% (Ly, L), D*(Ly, L3)
on 9D, respectively dD,.

We regard X as embedded in the extended complex plane CP!' = §? with
local coordinates zj,22,2z3 on neighborhoods of the three disks Dy, D2, D3. The
space CP' is endowed with a metric so that on these disks [z;| = 1 and near the
boundary 8D; the metric is |dz;/z;|* = [dlogr;1* +(d8,)* where z; = r;e?. With
this metric, a neighborhood of 8X = 8D, U 8D, U 9Ds is metrically a product
89X x [0, &).

In order to describe the operator @ ® 0¢(Ly, Ly, L3) we need the following;

LEMMA 8.5. Let Ly, L,, L3 be three Lagrangian subspaces in V. Then there
exists a complex structure (J,()) on'V together with two unitary, diagonal matrices
A=Di{e™,... e®), B=DE?, . .. ,ef) suchthat Ly =A-Land L3 = B- L.

Choosing A, B as above, we have a flat, Hermitian vector bundle £(L, Lz, L3)
with fiber C" such that, around the two boundary curves 8D, 8D, in the coun-
terclockwise direction, the holonomies are respectively

A-A' = D(e¥, ... e¥) and B-B = D(e¥0, ... e¥P) .
Hence the holonomy around the outside circle is
[(B-B) (A A)l]—l — D(e-'2:'(a1+ﬂ1), L e HlanthBny

Thus, over D3 we get the operator D*(Ls, Ly).
Note, by Proposition 6.3,

mDMLy, L)) = n{D(Ly; Ly)) and dim kergD*(Ly, Ly) = dimpker D(Ly, Lo) .

Hence, applying the Atiyah-Patodi-Singer theorem to 8 ® £(Li, Lz, L3) on X, it
yields:

Index 8 ® &(Ly, L5, L3) = [ag(x) dx

- %[n(D(Ll,Lz)) + 7(D(L, Ly)) + p(D(La, L)]

1
- E[hIZ + hos + hapd -
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Since &Ly, Ly, Ls) is flat, the integral term is n times the corresponding values for
8. As in [3], page 62, this last term is given by

1
—/ c) = l(2 — 2 genus(X) — # of comp.)
2Jx 2
1 1
= 5(2 -3)= —5-

This proves the following:

PROPOSITION 8.6. Let Ly, L,, L3, A, B, be defined as above. Then

_ )|
Index 8 ® &(Ly, Ly, Ls) = —= — ~(r(Ly, Ly, L3))

2 2
- % [Zdim (LjnLk)].
J<k

The proof of Lemma 8.5 is an immediate consequence of the following:

ProrosiTION 8.7.  Let Ly, L;, Ls be three Lagrangian subspaces in a symplectic
vector space V. Then there exists a symplectic basis e;, f;, 1 = j = n such that

-~

(l} Ll = @REJ; .
j=1

(i) L, = P Riaje; + B;f;) where (a;, 8)) = (0,0)
ii j=1

are pairs of real numbers ,

n

(i) Ls = @ R(y}-ej + (5jfj) where (']’ja 6j) + (0,0
iii j=1
are pairs of real numbers .

Note that, any triple of Lagrangians (L, Ly, Ls) in R? = C is symplectically
equivalent to one of the following:

Type (1) (R, R(1 + i), R(G)

Type (2) (R, R(), R(1 + i)
Type (3) (R, R, R(#)), (R, R({), R}, (R(}), R, R)
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Type 4) (R, R, R)

More generally, by Proposition 8.7, any triple (Ly, L, L3} is symplectically equiv-
alent to a direct sum of, say « of Type (1), 8 of Type (2), y of Type (3), 6 of
Type (4). If 7y(Ly, L, La) is a function satisfying Property I (Skew Symmetry),
then 7y vanishes on Type (3) and (4) and takes on opposite signs for Type (1) and
Type (2). If 7y also enjoys Property II (Symplectic Additivity) and Property II
(Symplectic Invariance), then

Fy(Li, La, L3) = (o — Bk

with k = Fp(R, R(1+), R(:)). This proves Theorem 8.1, Part (i). Since Kashiwara’s
7v function satisfies Properties 1 to VI, the proof of Theorem 8.1 is complete after
proving Proposition 8.7.

Proof of Proposition 8.7: If the three Lagrangians are transverse to each
other, Iy N L, = L, NLy = L3 N L; = 0, then Proposition 8.7 is proved by
Lions and Vergne; see [24], page 41. The general case can be deduced from this
transverse situation by the following device.

Let L be an isotropic subspace in V and L* be its perpendicular subspace
{x € V|{x,L} = 0}. Then the restriction of { } to L* has L N L* as its null space
and hence gives an induced symplectic structure on L'/L. Moreover, there is
an induced pairing L X (V/L*) — R, which in turn gives rise to an isomorphism
V/L* = L*. By chbosing a splitting of the sequence 0 — L* =V — V/L* — 0
by an isotropic subspace in V, we obtain an orthogonal decomposition

V=L-/LeLel".

Now consider L to be the intersection L, N L, N L3. Choose a basis {e,(123)}
of Ly N L, N Ly and a partial basis {f,(123)} in V, with {e,{123), f5(123)} = 845
and {f,(123), f4(123)} = 0. By the above discussion, we have a decomposition:

V =(L N L, N L3)* /(L) N Ly N L) @ Span{f,(123)}
® Span{e,(123)} .

Note that L; C (L; NL; NL3)* for j = 1,2,3, and, in fact, they induce Lagrangian
subspaces Ly /(L1 N Ly N L3), Ly/(Ly N Ly N L3, L3/(Ly N Ly N L3) in the symplectic
subspace (L N Ly N L3)* /(L1 N Ly N L3). In other words, we can reduce the proof
of Proposition 8.7 to the situation Ly NI, N L; = 0.

Next, consider the isotropic subspace Lz = L; N Ly in the situation when
LiNLyNL; = 0. Note that L; and L, are maximal isotropic subspaces in Li>, and
their quotients L;/Ly2, L»/Li2 form a pair of transverse Lagrangians in Li5/L12.
As for Ls, it can be written as a sum

Ly = (L3 N Li) @ Span{f5(12)}
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where f5(12) is part of a dual basis {f,(12)} to L» = &,Re,(12).

Applying the work of Lions and Vergne to the situation Ly/Ly2, Lz2/L12, and
(L3N Ly2)/L13 in Li>/L12, we obtain symplectic basis {eq, fo|1 £a =dim Liz/L12}
so that L;/Li is spanned by {e.}, Lz/L by {f.}, and (L3 N Lia/Lys by {ane, +
b fi|l = a < dim Ly N Li3/Li>}. Clearly, we can pull back e to elements e, in
Ly and f, to f, in L. Combining {e,. f,} with ,(12} in Ly, and f(12)in Li5, we
obtain a symplectic basis for V. It is easy to verify that the Lagrangian subspaces
Ly, Lo, Ly are in the desired position with respect to {ea, fa-€,(12), f,(12)}. This
completes the proof.

9. The Maslov Index m(x, y) of a Pair in Ijﬁ_é(V)

Let I:EE(V) — Lag(V) denote the universal covering space. Given a pair (¥, y)
in Lag(V), then by the unique path lifting property, there exists a path ¥: fo,1] -
Lag(V), unique up to homotopy relative boundary, such that

(9.1) y0)=x, y()=y.

In particular, for any pair (x, y} in I:EJg(V) and any Lagrangian L in V, we have a
well-defined invariant given by

9.2) M(Lo;x, y) = pv([Lol, 7)

where [Lg] is the constant path and y = 7. ”
A natural choice to use for Lg is one of the end points. For instance, setting
Ly = w(y) = y(1), we may define

Mx,y) = pr(iy(D], ) .

If x,y,z are in ITEE(V), the quantity #(x,y) + M(y,7) + M(z,x) can be easily
computed via the definiton of pana1( ). Let yy be a path from m(x) to m(y} and
v from m(y) to w(z) which lift to paths ¥, ¥ from x to z, respectively from y
to z in I:Eé(V). Then the composite vy o y; lifts to % o 2 from x to z, and so
the reversed path (y; o y1)~! serves to compute #(z,x). The integral terms in
(6.13) for pv(lyAD), v:) are [ 7 (w) while pv([(y2 @ v1) (D], (y2 o ¥1)7') gives
fl(y2 0oy 11 # (w) = = [y (w) — [ y3{w). Thus, the last integral cancels the
other two.
The eta invariant terms in (6.13) are

2 D), 7)) — D). w0

S WDlr(a), w(2)) = n(Dlr(2). 7))

%[W(D(W(‘x)’ ‘JT(X) ) - T](D(W(X), W(Z) )] .
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Since n(D(Ly, Lo)) = 0 and n(D(L,, L,)) = —n{D(L,, L1)), these three terms add up
to

%[n(D(ﬂ"(x). 2O1) + n(Dr(y), 7(2))) + nDlr(), 70}

= %T('n(x), vr(y), 7(2)) .

Finally, the zero-mode terms are
1(—n + hi2) 1(—ﬂt~%~h ) l(—n + h31)
5 12}, n), 5 31

where by = dim L; N Lg, and (L1, Ly, Ls) = (a(x), n(y), m(z)). In toto, this proves
the cocycle equation:

Mx,y) + M(y,2) + Mz, %)

(9.3) 1 1
= 27, 7 7)) - 323 + 2y + s + ).

To compare (x, y) with #(y,x), we consider as before the path y from m(x)
to m(y) and use the reversed path y ! from =(y) to m{x). Utilizing the formula of
panai,1 ( ), we have

My, 3= pana 1 ()], vy

= Zn(Dlr(s), 7)) = (D), 7))

1
. f () w+ S(on+ i)
= — n(Dlr(o), 5))] - f y'wt o (onthi)

= —tana 1 {[r(M], y) + (=1 + h12)
= —Mx,y)—n+hy .

In particular, this proves the following (Theorem 0.5):

PROPOSITION 9.1. Let x,y be elements in GE(V) and vy be a path from w(x)
to 7(y) lifting to a path ¥ from x to y as before. Set

mix,y) = 2HM(x,y) + (n — dim 7(x) O ()
= 2uy (%)), ) + (n — dim 7(x) N 7(y)) .
Then m(x, y) satisfies

(i) it is independent of the choice in ¥,
(i) mix, ) + m(v,2) + miz,x) = Ty(mlx), n(y), m{z2)),
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(iii) m(x, y) = —m(y, x).

In [17] Gossen defined a Maslov index u{x, y) and showed that p(x, y} is char-
acterized uniquely by two properties:

(i) plx, ¥} + plx, 2) + ply, 2) = Tvinlx), w(y), m(z})
(i)  plx, ¥) — m(wlx), 7(y), Lo) is locally
constant for x, y transversal to Ly . That is,
) NLg=n(y)NL=0.

(9.4)

Comparing (9.4) (i)-{ii) with Proposition 9.1 (i)iii), we have

PROPOSITION 9.2.  For all x,y in ]:Efé(V), the index plx,y) of Gossen is the
same as m(x, y).

Proof: It suffices to prove properties (9.4) (i), (ii) for m(x, y). The condition
(9.4) (i) is clear from (9.1) (ii). As for (9.4) (ii), by letting Ly = 7(z) in (9.4) (i), it
can be reformulated as

— mix, z) + m(y, z) is locally constant

©3) on the subspace {(x,y,2)|w(x) N n(z) = =(y) N #(z) = 0} .

To comprehend (9.5) analytically, we take a path vy, from Ly = =(x) to Ly = (2),
and a path v, from L, = w(y) to Ls = w(z) in the same manner as before lifting
to paths from x to z, y to z respectively. Then by the transversahty of Ly, L3, we
have
mlx,z) = 2M(x,z) + n
=2uy({Lsl,v)) +n

1
5 {Eln(o(m, L3)) = n(D(Ls, L))] + f St W) + %(_n)} o

—n(D(Ls, L)) + 2_/7;‘&0)
and similarly,
m(.9) = ~n(DlLs, 1) +2 [ 73l
Combining the two, we have
— m(x,2) + m(y,2)

= [n(DLas 1)) — (DL, L)) +2 f Ly + i)

On the other hand, by the transversality of L;, L3 and L, L3, the eta invariants
n(D(L3, L)) and n{IXLa, L,)) vary smoothly on the subspace {(x, y, 2)|w(x) N 7(z) =
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2(x} N 7(y) = 0}, and so do y{ (w), y3 (w). Hence, the integer —m(x,z) + m(y,z) is
continuous and therefore locally constant on this subspace. This proves (9.5) and
so Proposition 9.2.

In [17], page 28a, Gossen further identifies (u(x, y} + n) with the definition of
Maslov index 4(x, y)amod by Arnold for w(x} N n(y) = 0; see [1]. In view of the
above proposition, we have for m(x} Min(y)

A%, Y)Amos = %(m(x, $) + )

= Mlx, y)+n
= py{[r(W],y) +n.

10. The Duistermaat Index of a Path of Lagrangians

Duistermaat has introduced an integer invariant Z({L(1): a =t = b}) associ-
ated 1o a single smooth path of Langrangians L(z): @ = ¢ = b. This symplectic
invariant is a homotopy invariant relative to fixed end points and plays a pivotal
role in his analysis of the Morse index in variational calculus; see [11]. In this
section we show that

.

b 1
DUL Ity a=1=<b)) = [ / Lt (w)] + Srlla(@, Li(®))
(10.1) = u{Lia), Li)): 0=t = 1})
+ %[dim(Ll(a) N L)) — nl.

First we recall Duistermaat’s definition. Choose a fixed Lagrangian a with
aM L), a M Li(b). Choose a path 4 from Li(b) to Li{a) which is always
transverse to a. Thus the composite path

vy*45 with y={Li{tya=t=b}

is a loop. Then the number of times « is not transverse to the loop y * ¥ is counted
via

pvilal,y * %) = py((al, Li(®) ) a = t = b}) .

This quantity depends on the choice of a; however, Duistermaat normalizes it by
defining

DL a =1 = b} = py(lal,y * $) + 35

with s = signature of the quadratic form in L,(a) given by x — {x',x""} with
xe€Lila), x=x+x" and x’ € a, x"” € L,(b).
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Equivalently, utilizing Property IV of Section 8
Ly a=t =bY) = {w(a L)) a £t = b) + 37(a, L), Li(B))} .

The close relation between %( ) and the m(, } of Section 9 is clear from this
definition.

For « arbitrary we may use definition a1 ( ) and Proposition 8.3 to compute

pr((a, Li(0): @ = t = b) + 2rla, Li(a), Ly (b))
= (Lnla, Liy) - nla, Lr(a))]

b
+[ (L (w) — 0) + %( —dim a N L) + dim a0 Li{a))
+ (3 [nle, Li(a)) + n(L1(a), L (B)) + n(L1(b), @} 1)

b
= [ L1+ttt o)
+(3)(— dim {a N Li(®) + dim (@ N Li(a))) .

In particular for « ML)(a), a 1 Lz(b) we have the first equality of (10.1)

b
PLra=r=hY = [ L)+ IniLia) La®))

and for any «, we also have

Ok 1nLi(a), Lo(b))

= uvl{e, Li(n)): a = ¢ = b) + 37(a, Li{a), Li (b))
+(3) - [dim(a N Ly (b)) — dim(a N Li(@)] .

Setting @ = Li{a) gives the second equality in (10.1). This last formula makes the
independence of « and independence of choice of J and (, ) (used in computing
7{) and [L;(w)) clear. Moreover, the left-hand side has the desired homotopy
invariance relative to endpoints. The right-hand side has the desired symplectic
invariance property.

For a composite path y; * y2 where y; traces from x to y and y; from y to
z in Lag(V) as ¢ traces from a to b and & to ¢, then (using (6.13) and Proposition
8.3)

C
/ (y1 % v2)*w + 3n(x,2)
[+

b fug
=/ wf(w)+fb ¥ W)+ 5[ = 76, .2 + s, y) + 0. 2)] -

Thus,
Dlyy * y2) = D) + D) — GIrlx, 3, 2) -
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This is the additivity formula for 2(-).

11. The Maslov Index of a Path of Symplectic Matrices
and a Theorem of Salamon and Zehnder

Let ¢(t): 0 < ¢ = 7 be a smooth path in Sp(2n,R), the 2n X 2n symplectic
matrices. Regarding R? @ R?" as a symplectic vector space via the new symplectic
inner product

(1L.1) {1, v2), (Wi wadle = +{vi,wi} — {vz, w2},
then the path of subspaces (graphs)
(11.2) Ty = {0, plew) | v € B}

is a path of Lagrangian subspaces. This path of Lagrangians may be compared
with the constant path
Ty 0=t =7

We will call the associated Maslov index,

(11.3) AN Z ryev({Tyo, Tuw): 0=t = 7D,

the Maslov index oi: the path {¢()} of symplectic matrices. Note that
(11.4) | Ty N Ty = {v € R* | POy = ¢(e)v}

and note the similarity to m(x, y) of Section 9 and Z(:} of Section 10.
Now let ¢(s,1): 0 = s = 1,0 = t = 7 be a smooth parameter family of
symplectic automorphisms. This defines a smooth map

(11.5) _ w: [0,1] x [0, 7] — Sp(2n, R) .
For technical convenience we assume that
(11.6) gls, 0y =0, ) for0 = s =e; Pls,1) = p(l,r)forl —e=s=1

for some fixed € > 0,
In this section we will derive formulas for the difference

(11.7) pp(,1: 0=t =7} - p{yl0,1: 0=t = 7).

The main formula expresses this difference in terms of the index of an operator
F, on the cylinder {0, 1] X (R/7Z). This will recapitulate (and slightly extend)
a recent result of Salamon and Zehnder; see {27]. We refer to their paper for a
beautiful application of this general result. Let

0 I
n=(9 &)



176 S. E. CAPPELL, R. LEE, AND E. Y. MILLER
By (s, 1) symplectic, the matrix

(11.8) S(s, 1) = —Jo(Oy/ W™
is a real 2nX2n symmetric matrix. Conversely, (s, #) may be recovered by solving

Ojr(s, 1)

(11.9) Y

= JoS(s, 1) yels, 1)

with initial conditions (s, 0) given.
In particular, the real operator

(11.10) B, = Jgg + S(s, 1) LAR/7Z: R*) — LXR/7Z, R¥)

is real self-adjoint. (Note (Jo)7 = ~Jqo, (8/88)" = —8/6t.) Here

ker B, = {f(2) ] f(z) = y(s, r)v with £(0) = f(r)}
(11.11) = {v|y(s, Ov = (s, T)v}
= P00 N Dys,n)

depends only on the symplectic matrices i(s, 0}, (s, 1). Of course B, is a mild

generalization of —J g, considered above.
Following Salamon and Zehnder, [27], and Floer, [15], introduce the real, first-
order, elliptic operator »

0 9
11.12 Fp=_—+Jo-+
(11.12) b= o oo+ 5050

acting on functions [0, 1] X (R/7Z) — R?*. If $ = 0 this is the & operator regarded
as a real operator.

The methods of Atiyah-Patodi-Singer apply to F;, since F, is product-like near
{0, 1} X {R/77Z) by assumption (11.6).

The associated tangential operators at {0} X (IR/ 7Z) and {1} X (R/ TZ) are Bg,
respectively —Bj. Introducing the Sobolev space L0, 1] x(R/7Z);R**_ J), the L,
closure of the smooth functions f which satisfy the additional nonlocal boundary
conditions:

FHO} X (R/7Z) € {closure of eigensolutions of By = Ay, with A < 0}
(11.13)
FH1} X (R/7Z) € {closure of eigensolutions of B¢, = A, with A > 0},

the operator F,, yields a Fredholm map

(11.14) Fy: LY[0,1] x (R/7Z); R*, 8) - LX[0,1) x (R/7Z); R™) .




ON THE MASLOV INDEX 177

Moreover, from the work of Atiyah-Patodi-Singer the index of Fy is given by the
formula

(11.15) Index F, = {normalized spectral flow of B 0 = s =1} .

See the discussion in Section 7.

Additional formulas for the index of F, are given by the following result, in
which the equality of the first (Index F,) and the last, is a theorem of Salamon
and Zehnder in [27] (stated there under the assumptions that (s, 0) =1id, 0 =
s=T, Iyoy N Tyon = {0}, and Ty N Tyun = {0}). Moreover, they give an
alternative (but equivalent) definition of the Maslov index of {Y(s, 1 0=r =7}

THEOREM 11.1.

Index F,
= {normalized spectral flow of B;: 0 = s = 7} (1)
= #V@V({rw(s,O), F,J,(S,T)}) + dim r,‘(,(o‘o) N ]"d’(oﬂ_)} (2)
=y, 0=t =7} - pY(0,0: 0 =1 =7}
+dim (Ty0 N Tyon)} (3)

= {Maslov index of {4(1,1)}-Maslov index of {$(0,8)} (4)
+dim (1_‘.’;,(0’0) N F,,,(O_T))}.

Proof of Theor®m 11.15: Equality (1) is (11.15) above.
Equality (2} is quite reasonable since

tty ev{Tyts.00 Tyt ) + Aim(Ty,9 N Tyo.n)

(by Section 8) equals the normalized spectral flow of the operators

D(rdl(s,{))’ rw(s,r)) or D#(rw(s,O)a» F!J'!(S,T)) .
The proof that

_ [ normalized SF of

11.16 = { }
( ) D’1 (rw(s,Ols rc.b(s.r))

{ normalized SF }
of By 0=s=r

is apparent since by (11.11)
ker By = Ly(s0) N Tyior) = ker Dy(s0 Tyisry) -

A simple computation shows that these zero modes {which can be assumed to
cross O transversely) cross with the same sign. This shows equality (2). (The -
sign in #iad—t of D(, } is cancelled by the choice {(+, —) in (11.1).)
As for (3), we deform the path Ty 0 = s = ¢ (via 4) to the composite path
y1 % y2 * y3 with
2 1 < 1 Tyen
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v, tracing along {[yon: 0 = ¢ = 7} backwards, y; tracing {Tyes: 0 = 5 = 1},
and y3 tracing {Tyqt,p: 0 = ¢ < 7}. We may replace {T'y(0: 0 = 5 = 1} = y2 by
the path that stays at T'ygg) a while, then traces 72, then stays at T'yq,0). By the
path additivity property and reversal property, we conclude

#V&)V({(sz(s.())a F!,ﬁ(s,‘r)): 0=s= 1) = _';‘J:Vq;v({(l—"p((),()), I",p(o',)): O0=s= 'r})
+ yev{(Tyeo Ty 0 S s = 1))
+ #VQV({(FMI,()),FQ',(]J)I 0=r=1}.

Since the middle term equals 0 by nullity, we have shown (3) and hence (4).

12. A Geometric Interpretation of the Maslov
Triple Index (Following Wall) and Hérmander’s Fourfold Index

For an oriented 4k-dimensional manifold L which is cut into two pieces L'
and L" by a closed (4k — 1)-dimensional submanifold, Novikov showed that the
signature is additive,

o(L) = all) + o(L") .

When, more generally, the (4k — 1)-dimensional submanifold M, along which L
is cut is not necessarily closed, but is properly embedded (so that 9M> C L) and
separating, Wall found a nonadditivity signature correction. Here we redo Wall’s
argument by identifying the signature of a “three prong manifeld” with a Maslov
triple index and then apply standard Novikov additivity to get his general result.
We then consider the index of n-prong manifolds, and for n = 4 compare that
with Hérmander’s index.

Let C*%**2 be a (4k + 2)-dimensional oriented closed manifold. Then the inter-
section pairing in the middle dimensional homology V = Ho.1(C;R) induces a
nondegenerate pairing

{,h VXV —-R

which is skew symmetric (by (2k + 1) odd). If C is identified with the boundary
&B; of a closed oriented manifold B;, then a standard observation {due to Thom)
is that the kernel

(12.1) L; = ker{Hz41(0B;R) — Hyu+1(C;R)}
is a Lagrangian subspace of V = Hy,1(0B;, R).
In particular, if C = 8B, = 8B; = 0B for three such (4k + 3)-manifolds we get

three Lagrangians in V. We may identify Tv(Ly, L, L3) with the signature a(As)
of an oriented (4k + 4)-manifold A,

(12.2) Tvil, Ly, L3) = o(A) .

B R T S SO S-S PN SRS S
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The construction of A is made by forming the disjoint pieces
CxD?, By x|-1,+1}, By x[-1,+1], B3 X |-, +1]

(D?* = 2— disk) and gluing them together via the prescription suggested by Di-
agram 12. That is, 8By X [—1, +1], 8By X [-1, +1], B3 x [-1, +1] with a part
of C x §' (by using C = OB, = 0B, = dB3 and an identification of the three
segments [—1, +1])

By x[—1, +1]

B, X [—l,+1]

Diagram 12.

(with [—n/4, 7/4), [37/4,57/4), [Tn/4,97/4] in the circle). A is to be given the
orientation which agrees with that of C X D? with standard orientation on D?.

Since the cycles of A which are in the image of JA are in the radical of the
intersection pairing (we may just push them off of each other), we immediately see
that the signature of C is computed via considering the cycles z of C which are a
sum z; + 22 +z3 +w when z; is a chain on B; X{-1, +1] with dz; in 8B; X[ 1, +1]},
j=1,2,3, and wis a chain on C X D* with 8w = —(dz; + dz3 + 0z3). That s, the
relevant cycles of A determine elements x; € Lj, j = 1,2,3withx; +x, +x3 =0
in V. Setting

VL1, Lz, L) = {(x1,x2,%3) € Ly X Ly X L3 | x1 + x2 + x3 = 0}
we see that the bilinear mapping of cycles (via intersection)
Zaxs2(A) X Zy12(A) — R
factors through V(L;, Ly, L3) and induces
V(Ly, Ly, L3) X VL1, L2, L3) — R .

A simple check shows that the associated quadratic pairing is given by {up to a
positive multiple)

—3{x;, x2} = —=Q'{x1, x3,x3) of Section 8 .

By Section 8 which identifies the signature of —Q'(x1,x2,x3) on V{Ly, Ly, L3) with
the Kashiwara index 7v(L;, Lz, L3), we hence obtain (12.2).
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Note that the special case of (12.2) combined with the Novikov additivity of the
signature {(cutting along closed submanifolds) yields Wall’s general nonadditivity
theorem as follows. Consider a compact oriented 4k + 4 manifold Z*** which
is split into two pieces L', L' by a codimension one submanifold M3 with
boundary M3 "> = N%*2 in 9L. Then AL is the union of two pieces, M; =

(BLYNL and Mz = (BL)N L", so
oMy = OMy = M3 = NH+2

as in Diagram 13.

— -

Diagram 13. L=L"UAUL’.

(Here N is oriented by [N] = {M,] and {M ] oriented as in [M, U M3] = [9L] =
B{L].) If we form the closed manifolds M, U M>, M, UM3 and push them into the
interior of L as indicated in Diagram 13 (two dashed lines), we may cut along these
closed submanifolds yielding three pieces. Two of these are homeomorphic to L',
L", the remaining central one A is obtained by the above construction applied to
N = 8M, = M, = 8M3. Thus by Novikov additivity and (12.2), we get

a(L) = a(L'} + (L") + o(A)
= oL’} + o(L") + 7v(L1, Lz, L3) .

This is Wall’s formula for the nonadditivity of the signature.
Of course, we may apply the same discussion to the case of four orientable

manifolds By, By, B3, Bs with dB; = C, j = 1,2,3,4, dim C = 4k +2 and oriented.
In this case, we get four Lagrangians L;, j = 1,2, 3,4 and using Novikov additivity
the resulting “4-prong” may be decomposed in either of two ways yielding two

“3-prongs.” See Diagram 14.

/ﬁ!

EANeie

T A S e
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/ \. / \‘ i le

3 1 = 3 1 OR 1
-4’

Diagram 14. Cutting along closed manifolds.

“’\

a>w'

3

/

The resulting equality of signatures, from Novikov additivity,
o(4) = o(A1) + 0(Az) = (43) + 0(Ay)
is familiar to us as the basic cocycle condition on the Maslov triple index

a(A) = Ty(Ly, Lo, L3) + Tv(Ls, L4, L)
= ty(ly, L3, Lg) + v(Lg, Ly, Lp) .

This combination of two triple Maslov indices equals the Hérmander four-fold
index 7(Ly, 1, La, L) (see [19]) and so provides a geometrical interpretation of it.

Similarly, we may consider “n-prongs.” If C = OB;, j = 1,...,n, set L;=
ker Hz;11(C,R) = Hyey (B R).

The resulting 4k + 4-manifold A, may be decomposed into (n — 2) “three
prongs” in many ways. One such diagram is (n = 6):

4% n==6

cut into (6-2)

5 D “3-prongs”

Diagram 15.

The resulting 4k + 4-manifold has signature

o(Ay) = {7(Ly, L, L3) + 7(Ly, L3, L4) + 7(Ly, L4, Ls)
+eeet T(LIQLH*IQLI!)} -
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All of the standard formulas about 7(Ly, Ly, L3} (see [24]) may be illustrated
this way. They are most easily proved, however, by using Proposition 8.3 above,
1e.,

(L1, Lp, L3) = {n(D(L1, L)) + n(D(La, L3)) + n(D(L3, L1))} -

As in the above analysis of the case n = 3, the signature of A, may be directly
computed by considering cycles in A,. In this way, we may easily prove

U(An) = ‘_O'(V, LlsLZa e 9Ln) . -

Here o(V:L,,...,Ly) is the signature of the quadratic form
n-1

Qx1s... %) = D _{xjxj1} + {xnxt}
=1

on the subspace V(Li,... ,Ly) of Li®L; ®- - .@ L, consisting of n-tuples {xy,... .Xx)
with Zx ji= 0.

With some additional effort we can prove that for any n-Lagrangians L,...,
L, in a symplectic space V there is an equality

n—1
Tv(L],Lj,Lj+1) = —J(V;Ll,... ,Ln) .
j=2

(When the L;’s arise geometrically as above, this formula is proved by observing
that both sides equal a(A,).)

Of course, in the context of manifolds equipped with finite’ group actions, the
discussion in this section of signature invariants and signature additivity apply
equally well to equivariant signatures in all even dimensions.

13. puy(f) as the Maslov Index of Closed Loops a la Floer and Walker

For f(t) = (L;(r), L2()} @ = t = b a smooth path of pairs of Lagrangians, let
(L{D), (L2(1)) be the paths of individual Lagrangians ¢ = ¢t = b. Let —{1,(2)) be
the path (Lx(—#): —b =1 = —a), that is, L,{¢) traversed in the opposite direction.
Once we have chosen smooth paths of Lagranigan va(t), vp(1),0 = t = 1, such
that

vp(0) = Li(1),vp(1) = La(1)
(13.1 { val0) = L2(0), va(1) = Ly(0),
then the composition of paths -
(13.2) Fwp,va) = UL * vp * (L] * va

is a closed loop of Lagrangians. Here we traverse (Li(1)) first, then vy, then
—(L,(1)) (or Ly(*) backwards), then v,.

_—
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Now following Floer, [16], or Walker, [30], there are two natural choices for
each of the paths vy, v, up to homotopy rel. end points. These are described as
follows:

Let A, B be arbitrary Lagrangians in V. Choose a complex structure J and
Hermitian inner product {, ) on V compatible with the symplectic product {, }.
Such choices form a contractible cell; see [18]. By Lemma 2, the path

(13.3) A@) = (AN B)e (AN B N A]

is a family of Lagrangians such that A(§) N A = AN B for 0 < § < #/4. Since
Alr/HNA =ANBA(-x/4NA = AN B and the space of Lagrangians €
with €N A = AN B is a cell and so contractible (see [18]), there are unique paths
C@t),Dit):n/4=t=lupto homotopy rel. end points with C(0) = A(r/4),e(1) =
B,e(r)ﬂA ANE and DO) = A(-n/4),D(1) = B,Di)NA=ANE.

We set

A :0=1 = (/1)
CH):(n/d)st=1"
A-1:0=r=n/4
Di):n/d=1=1

v (4 B)Y) ={
(13.4)
v (ABYO) :{

Here v, (A, B), v_(A, B) are paths of Lagrangians starting at A and ending at B.
Up to homotopy rel. epd points, v, v are uniquely specified by A, B independent
of the choices of J,{, ), e()-, D (r). Thus v, rotates “positively” and then connects
to B, while v_ rotates “negatively” and then connects to B.

For f(t) = (Li(5),La(1)) : @ = t = b, let vpe = vo(L(b), Ly(b)) which inter-
polates from L;(b) to Ly{b) and per = v+(Ls(a), Ll(a)), which interpolates from
L;(a) to Li(a). Defining with o, 8 = *

(13.5) Fag = [WLAED] * vge * [—(La()] * ug

yields four closed paths Fae.

By definition the closed paths f++ depend up to homotopy only on the path
8(t) = (Ly{1), L2(£)) : a = t = b, Indeed, the homotopy class [ f++] in m(Lag(V))
depends only on the homotopy class of 4(¢) rel. end points.

Recall from [18], and as discussed above, that a Maslov index

i m(Lag)—~Z
can be defined using
[6t):a=1t=b, ta) = b)] - ul{v,€@), a=t=b

for any smooth loop of Lagrangians. Here v is any fixed Lagrangian. It is not
surprising that the Maslov index 4[f f«] is intimately related to the Maslov index

of (L (1), Lo()).
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PROPOSITION 13.1.  Ler 8(t) = (Li(1), Lo(#)) : @ = t = b be a smooth path of
pairs of Lagrangians, then with the closed loop 6=+ defined by (13.5), the Maslov
indices fi{f ++] are given by:

(13.6) Alf -] = mALal), Li®) ca = t = b)
(13.7) alfe ] = plfy 1+ (= dim Ly(a) N Lyfa))
(13.8) Alf—_1 = alf+] = (n — dim L;(b) N Ly(b))

(13.9) Alf-+1 = {plf+-1+ (n — dim Ly(a} N Ly(a)) — (n — dim Ly(b) 0 Ly(b) }

Note that the right-hand side of (13.6) is uv((L2(7), (1)) and this is
{+py (L1 (e), La(®)) + dim Li(a) N Lo(a) — dim Ly(b) N Ly(b)}

by Property XI {Symmetry).

Proof of Proposition 13.1: The path »,(A,B) * v_(B,A) from A to A is
homotopic rel. end points to the constant path, as is v_(B, A) *v (A, B). Also via the
Normalization Property IV, the closed paths v (A, B) * v (B, A), v_(A, B} *v_(B, A)
have Maslov indices

ﬁ(y+(A, B) * v (A,B) = [n —dim(A N B)],

f(v_(A,B) * v_{A,B)) = —[n — dim{A N B)] .

Consequently, Af ++] = Alf+_]+ Alv+ (A, BY % v, (B, A)] = il f+_] +[n—dim(AN
B)] with A = Ly(a), B = Li{(a). This reduces the proof of (13.7) to (13.6). Similarly,
(13.8), (13.9) follow from (13.6).

In order to prove (13.6) we need but prove that [f..] satisfies the axioms
I-VI characterizing the Maslov index py({L(¢), Li{2).

In view of the fact that the homotopy class of [ /,_]in 7 (Lag) depends only on
the path fa, = (L2(#), Li(¢)) : @ = ¢ = b up to homotopy rel. end points, Properties
I, 11, and V are apparent. Symplectic Additivity IV is true by construction and
the commutative diagram

m1{LagV) X 7;(LagW) — = |(LagV & W)
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That this diagram commutes is easily checked by direct computation on the gen-
erators of 7 {LagV) = 7, m,(LagW) = Z.
If a = ¢ = b with f(t) = (L1(t), L,(t)) : a = t = b, then we have

(Flla, b+ - = (L1 ()lla, b)) * vps * La(=0)I[~b.1 = al) * va-
Now L;(t))la, b] is homotopic rel. end points to
(LiD)la, c]) * v (Ly(e), Lole)) * villale), Li(e)) * (Li(D)][c, b))
and L,(—1)|[—b, —a] is homotopic rel. end points to
(La(=D)|[+b, —c]) * v_{Lalc), Li(e)) * v1(Li(c), Ly * Lp(=1)|[—c, —al .

Inserting these expressions into (f{[a,b]);. above and using the path additivity
of uy([y],—) with (y) the constant path, shows that a[( flla,b])+-] is the sum
of eight terms of the form uy({y],—). The sum of four of these terms gives

w(Pla, Dy = wlly} (Fla, cl), ), the other four give j (f|[b, c])+-). This proves
the Path Additivity Property III.

The Normalization Property IV is simply checked. For g = (Li{f), Lx(t)) =
(R{e"},R) in R?, so gpip = (R, R{e"}), we have by VI

“Rz(ghipl[oa ﬂ-/4)) = 1! pRz(gﬂipl[_ﬂ/4’ 0]) =0

The corresponding loops (2|0, 7/4])+-,(&/|—n/4,0]),- are easily drawn. This
proves Proposition 13.1.
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