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INTRODUCTION

The arithmetic theory of quadratic forms may be said
to have begun with Fermat in 1654 who showed, among
other things, that every prime of the form 8t + 1 is
representable in the form z* + 2y° for z and y integers.
Gauss was the first systematically to deal with quadratic
forms and from that time, names associated with quadratic
forms were most of the names in mathematics, with
Dirichlet playing a leading role. H. J. 8. Smith, in the
latter part of the nineteenth century and Minkowski,
in the first part of this, made notable and systematic
contributions to the theory. In modern times the theory
has been made much more elegant and complete by the
works of Hasse, who used p-adic numbers to derive and
express results of great generality, and Siegel whose
analytic methods superseded much of the laborious
classical theory. Contributors have been L. E. Dickson,
E. T. Bell, Gordon Pall, A. E, Ross, the author and
others, Exhaustive references up to 1921 are given in the
third volume of L. E. Dickson’s History of the Theory of
Numbers.

The purpose of this monograph is to present the central
ideas of the theory in self-contained form, assuming only
knowledge of the fundamentals of matric theory and the
theory of numbers. Pertinent conecepts of p-adic numbers
and quadratic ideals are introduced. It would have been
possible to avoid these concepts but, in the opinion of the
author, the theory gains elegance as well as breadth
by the introduction of such relationships. Some results
and many of the methods are here presented for the first
time. The development begins with the classical theory
in the field of reals from the point of view of representation
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viii INTRODUCTION

theory, for in these terms many of the later objectives
and methods may be revealed. The successive chapters
gradually narrow the fields and rings until one has the
tools at hand to deal with the classical problems in the
ring of rational integers.

The analytic theory of quadratic forms is not here
dealt with because of the delicate analysis involved—
in fact, the theory of the singular series of Hardy and
Littlewood plays such a role in this theory that muech of
analytic number theory would be a prerequisite for such
discussion. However, some of the more important results
are stated and references given.

In most cases no attempt is made to credit ideas to
their discoverers since, for the most part each idea is
partly the property of several persons. However, in some
clear cut cases, sources are acknowledged specifically.
The author owes many debts to Siegel and Pall, whose
works he has studied in detail. Much of the work on this
monograph was done while the author was on Sabbatic
Leave from Cornell University and with the help of a
grant from the Research Corporation; thus the author is
indebted’to both organizations.

The theory of quadratic forms is rather remarkable in
that, though much has been done, in some directions the
frontiers of knowledge are very near. It is hoped that this
book will not merely be read with interest but stimulate
explorations of the unknown.

. Burton W. JoNES

The University of Colorado
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CraprTER 1

FORMS WITH REAL COEFFICIENTS

1. Fundamental notions. Though in this chapter we
shall be dealing primarily with quadratic forms with real
coefficients, most of the definitions carry over into later
theory and, by way of introduction, the questions we
shall ask and answer will, for the most part, have their
analogues later in the book.

Of fundamental importance is the notion of congruence
which appears not only in this chapter but in our treatment
of forms with rational and p-adic coefficients and which is
closely allied to the notion of equivalence. Let

n n

f= a;z:;r; and g =
4y=1

=

b ys ys
%, 7=l
be two quadratic forms with real coefficients and a.; = a;;,
b;j = bj; for all 7 and j. If there are real numbers ¢;; such

that, when the values of z given by
(1) Ti = Eliiyiy 1=1,--,mn,
=1

are substituted in f, the form g results, we say that the
linear transformation (1) with real coefficients takes f
into g. This transformation is called non-singular if (1)
may be solved for ;. We call f and g congruent forms and
write f ~ g if there is a non-singular linear transformation
with real coefficients taking f into g. The importance of
this notion stems from the fact that two congruent forms
represent the same numbers (that is, take on the same
values as the variables take on all real values) since for
any number N, a set of values of y; making g = N will by
(1) yield a set of values of z making f = N and the trans-

1



2 FORMS WITH REAL COEFFICIENTS

formation (obtained by solving (1) for y;) taking g into f
will take a solution of f = N into one of g = N. Further-
more, there is a 1 — 1 correspondence between the sets of
values of z; making f = N and the sets of values of y;
making g = N, Thus, since we are concerned with the
numbers represented by the forms, out of a set of congruent
forms only one need be considered just as in geometry
all equilateral triangles of unit side are the same as far as
the properties we are interested in are concerned.

We define the matriz of a form to be the matrix A whose
elements in order are a;;, that is 4 = (a;;), and the
determinant of the form to be the determinant of A,
which we denote by | A |. If we denote the row matrix
(@1, Za, 23, +*+, %) by X" (we use the superscript T
to denote the “transpose” of a matrix) and the correspond-
ing column matrix by X, matric multiplication shows
that we may write

f= X"AX.

Then, since (1) may be written in matric notation in the
form X = TY where T is the matrix whose elements are
t:;, we recall that X” = Y"T" and see that the trans-
formation (1) takes f into

g = Y'TTATY = Y'(T"AT)Y

which shows that the matrix B of ¢ is equal to T"AT.
For example, if f is the form 22} + zw, + 8x3, its

matrix is
1]

e o[22 ¥[=]



CANONICAL FORM FOR CONGRUENCE 3

The transformation #; = 3y + ¥z, 22 = 2y — s takes f
into ¢ = 36y; — yws + 4y: since

[3 2][2 ;.][3- 1]_[ 36 —;]
1 -1 $ 3 2 =1} | -3 4 |
Notice that if (1) can be solved for y; we have in matrie
notation ¥ = 7"X and A = T™BT' where we denote the
inverse of a matrix by the superscript I.
If A is an n by n matrix and B an m by m matrix we
call C the direct sum of A and B if

e-[4 3]

where 0 stands for a zero matrix of appropriate size, and
use the notation C = A + B. Furthermore, if f, g and &
are the forms whose matrices are C, A and B respectively,
we write f = ¢ + h. In the direct sum of two or more
forms we omit the dot above the plus sign since we agree
to add two forms thus only if the variables in the one are
distinct from those in the other. In an analogous manner
we speak of the diréct sum of more than two matrices
or forms,

2. A canonical form for congruence. Since we need to
investigate only one of a set of congruent forms, it behooves
us to select as simple a form as possible from such a set.
This is done by means of the following theorem which,
with the exceptions noted, holds for forms with coefficients
in any field (for a definition of a field see section 7). Since
we shall need them later for more general fields, we shall
prove them in general form. The reader not at home with
more abstract fields may prefer first to consider the proofs



4 FORMS WITH REAL COEFFICIENTS

Tasorem 1. Every form f = ‘Z a;xx; with coefficients
WELS
in a field in which 2 7 0, may be taken inlo a form

g= b+ byi+ - + by

by a lnear transformation whose coefficients arg rational
functions of the coefficients of f and whose determinant 18 +1.

To prove this theorem we use two different kinds of
transformation. The first is of the type

T = Yi, i =%, T =Y, J# 14

This interchanges the ¢-th and first rows and columns
of 4, the matrix of f, and leaves unaltered any minor
determinant containing elements of the first and ¢-th
rows and columns of A. The second is of the type

zi =y + 195, Ty = Ys, k=1

This adds r times the 7-th row of A to the j-th and r times
the ¢-th ecolumn to the j-th, and leaves unaltered the value
of any minor determinant containing elements from the
i-th and j-th rows and columns of A. The transformations
of each type have determinant 1.

Now if a;; # 0 for some ¢, the first transformation takes f
into a form whose leading (that is, first) coefficient is not
zero. If a;; = O for all ¢ let a;; # O for some fixed 7 = j.
First interchange the first and Z-th rows and columns,

then ‘the second and j-th to have a form f/ = D af;z:z;
$i7=1

in which a2 ¥ 0. Then use the second type of transforma-
tion above with ¢ = 2,7 = 1, r = 1 which yields a form

7

h= Y covitts = (et 4 - 4+ e .Y en + g
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with ¢y # 0and gaformin yz, s, + -+ , ¥» . Then use the
transformation

= (cuth + cute + -+ + cn¥n)/cn
2 =Y, 1 > 1,

to take h into enzi + ¢’ where ¢’ is obtained from g by
replacing y by 2. This last transformation may be recog-
nized as the application of several transformations of
type two; i.e. adding ¢;;/en times the first row to the
j-th and similarly for columns.

Now ¢ is a form in n — 1 variables and we can deal
with it as with f. Since each of the transformations has
determinant 1 with elements rational functions of the
coefficients of f, the same is true of their product which is a
transformation taking f into the desired form. If the
transformation has determinant —1 we may change the
sign of one of the variables without altering g and have a
transformation of determinant 1.

The number r in the form ¢ of the theorem is equal
to the rank of the matrix of f since the transformation

taking f into ¢ is non-smgular and hence does not alter
the rank of 4.

If iow we permute the coeﬁiclents of ¢ if necessary so
that the first ¢ coefficients are positive and then use the
transformation

‘\/my:'=zis j=1)2:"'ar
we have proved
TaeoreM 2. Every quadratic form f with real coeﬁiczents
18 congruent to a form
h=d+d4 - +d—din—- —a.
CoroLLARY 2. Every form s comgruent to a form whose
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We call & the canonical form of f under a real trans-
formation. In theorem 2, ¢ is called the index of f and of its
matrix. The signature of fis 20 — r. These definitions are
justified by

TrarorEM 3. If the forms

f=aitaoi+ o tai -2 — o —af
and

g=wi+vi+-tyi—gia— o
are congruent, then i = jand r = s.

First r = 8 since the ranks of two congruent forms must
be equal. Then we suppose that ; > ¢ and arrive at a

contradiction. Let T be the transformation talnng g
into f, that i is

@) Yo = a2+ taza + -0 + .

In this set of r equations put 2, = 2o = -+« = z; = 0.
Then the equations ¥4y = 0, -+, ¥ = 0 become r — j
homogeneous equations in the r — ¢ variables 2,4y, -+« , %,

But, since r — j < r — 7, there are real values of x4, -- -,
2, not all zero satisfying these equations. Since these values
of the y’s and #’s satisfy (2), g = f, that is

~a— o=yt t o 4y

with 2441, + ; -z, not all zero. This is impossible for real
values of the z’s and y’s.

Similarly we can show a contradiction if j < 1 a.nd
establish our theorem.

Furthermore, if two forms f and F have the same index
and rank they will be congruent to the same canonical
form h of theorem 2."If transformations 7' and S take
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f and F respectively into h, then the transformation TS’
takes f into F and hence these two forms are congruent.
Thus we have

CoROLLARY 3. Two forms are congruent if and only if
thetr ranks and indices are equal.

If a form f in n variables has index n, it is called a
posilive definite form or merely a positive form. If £ = 0 and

= r it is called a negative definite form or merely a negative
Jorm. These two types of forms are included in the term
definite form. All other forms are called sndefinite.

3. The determination of the index of a form. While one
can get the index of a form by putting it into canonical
form, there are more elegant ways of finding the index.

Let D; be the ¢ by ¢ determinant in the upper left
hand corner of a symmetric matrix A, that is, the leading
i-rowed determinant of A. A matrix and its form are
said to be regular if no two successive D; are zero. We
shall show that every non-singular symmetric matrix is
congruent to a regular matrix and that the index of the
matrix A depends on the signs of the D; in the regula.r
matrix. We first need two lemmas oh matrices.

LemMA 1. Let A be an n by n. symmetric matriz and
A;j the matriz obtained by crossing out the i-th row and
J-th column of A. Then, defining D; as above,

l 4 l D,y = I An.ﬂ ” An—l.n—l l - | An.n—l I2

provided D, o = 0. This lemma holds for A a matriz with
elements in any field.

If K is the matrix consisting of the first n — 2 rows of 4,
the fact that D, ¢ 0 shows that the last two columns
of K are linear combinations of the first n» — 2 columns.

Honnos annranrata Iincar anmhinatinng nf tha frat 1 — 9
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columns of A may be added to the last two columns and
the same for rows to give a matrix

Ay N N
A =| N r s
NT s u

where N is a zero column matrix with n — 2 elements,
A, is the leadingn — 2by n — 2 minor of 4, | Ao | = Dp—s
and r, 8, u are numbers. Furthermore the process by
which we got A’ from A leaves unaltered D, and the
determinants of A;; for ¢, ;7 > n — 2. Our lemma then
results from the equations: |4 | = | 4’| = (ru — §*)D,—,
iAn—l.n—l l = an—~2 ) l An.n I = an—2 ’ (An.n—l | = "'SDn—2 .

The theory of determinants tells us that if D is a non-
singular r-rowed minor of a matrix and if every r 4+ 1-rowed
minor of the matrix is singular, then the rank of the
matrix is r. Lemma 1 yields the following result for
symmetric matrices

Lemma 2. If D is a non-singular r-rowed principal
minor of A and of every r + 1-rowed and r + 2-rowed
principal minor of A containing D is singular, A is of rank r
(A being symmetric). This lemma and the first part of ils
corollary hold for any field. )

From the result above quoted we need merely show
that every r + l-rowed minor containing D is singular
under the conditions of this lemma. Choose any pair
7, 7 > r and let B be the matrix obtained from A by
crossing out all its rows and columns except those of D
and the i-th and j-th. Then, using B in place of A in
lemma 1 we have

|B||D|=|Bi:||Bjj| — | Bij|*
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and |B|=|Bi:|=|B;;|= 0 implies | B:;|= 0,
which completes our proof.

This lemma shows that if A isof rank n, k < n — 2
and D, is non-singular, then by permuting the s + 1, - - -,
n rows and columns of 4 (the same permutation for rows
as for columns) we get a matrix whose D,y and Dy,
are not both zero. This yields the

CoroLLARY. Every symmetric matriz 18 congruent lo a
regular matriz. If the regular matriz is real and Dyyq = 0,
then

DyDyy2 < 0.

Now we can prove the following result about the index
of a form.

TrEOREM 4. The index of a regular symmetric matriz
with real elements and of rank n is the number of perma-
nences of sign in the sequence

I,DI)DZ: "'sDﬂ

where the D; are the leading i-rowed minor delerminanis of A
and any zero D; may be given arbitrary sign. (See the example
below.)

The theorem certainly holds for n = 1. We assume it
forn = r — 1 and prove it for n = r. Let f, and f,_; be the
forms whose matrices are the matrices of D, and D,
respectively, let ¢, and ¢, be their respective indices
and see that

fr=fa+2 ‘E Qir Ti Ty + a,-,xf.
<r

As we have seen in the proof of theorem 1, f,.—, can be put
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into the canonieal form of that theorem without a.ltenng
the determinant of f, . That is

r
2
for~ i)_.‘i giz; + 2 é; GnZ;Ts + 3, Q%
k>s

hi>s

- ;-21 91@i + Qi1 Zaia/g; + +++ + air2./9))’

’
+ 2 ayziz;,

hi>a
where 8 is the rank of f,; . First if DD.; 7 0 we see that
8 = r — 1 and Drsay, = D, . Thus if a,, > 0 the index of
f is 1 more than the index of f, and the pair D,,D,
gives a permanence of sign while if a, < 0 the indices
are the same and D,_D, is not a permanence. If D,; = 0
then D,.2D, < 0 from the corollary of lemma 2 and
s=r — 2. Let
h= 2. agziay

$if=r—1,r

and see that | h| D, = D, implies that |h| < 0 and
hence that if % is put into the canonical form of theorem 1
it has one positive and one negative term. Thus the index
of f, is 1 more than the index of f._» and the sequence
D,sD,,D, has one permanence of sign' whatever the
choice of sign of D,; may be. If D, = 0 = D, then
D,41 # 0 and we can carry through the above process for
r 4 1 in place of r. This completes the proof.

Let us use this method to find the index of the matrix

12 31
2 46 3
3690
1300

Here Dy = Dy = 0 showing that the matrix is not regular.
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D, = 0. Since there is one permanence of sign from 1 to
D, and one from D, to D;, the index of the matrix is 2
and its rank 3.

4, Representation of one form by another. We are now
in a position to state and solve the general problem of
representation for forms with real coefficients. (It is this
problem of representation with which we are primarily
concerned in this book.) Let f and g be two forms with
n and m variables respectively and respective matrices A
and B, n 2 m. We seek conditions under which there will
exist an n by m matrix T such that T"AT = B. In sucha
case we say that the form f represents the form g. Notice
that in determining the conditions for congruence we
have already solved the problem for n = m and that the
case m = 1 will tell us under what conditions f = N is
solvable for N, a real number.

A preliminary theorem is the following due to Gordon
Pall which, with an eye to future use, we prove for forms
in any field.

THEOREM 5. Let f and g be two forms with coefficients in a
field, with n and m variables, non-singular mairices A and B
respectively and n > m. Then there is a matriz T such that
TTAT = B if and only if there i3 a form h tn.Tmi1 , =+ * » ZTa
such that f is congruent to g + h.

First suppose f is congruent to ¢ + 4. Then there is a
transformation T such that TAT = B 4 C where C is
the matrix of h. Write T in the form (T,T,) where T, is
the matrix composed of the first m columns of T and T.
of the last » — m columns. Then

|‘T,"|ATT |‘T.’AT1 TfAT,‘l BlcC
mT (I1Ty) = mTam mTam =B+



12 FORMS WITH REAL COEFFICIENTS

On the other hand, suppose there is a matrix T, such
that T{AT, = B. Recall that the rank of a product of
matrices is not greater than the least of their ranks. Thus
the rank of B, namely m, is not greater than that of T .
But T, can have no greater rank than m since it has m
columns and hence its rank must be m. Then by the
lemma below we can find a matrix T, (with elements in
the field) having n» rows and » — m columns such that
T = (T, T.) is non-singular. Let S be thematrix

[11 —B'TTAT,
0 I

where I is the m-rowed identity matrix, I, is the n — m
rowed identity matrix. Then multiplication of matrices
shows that S takes T"AT into B 4 C, where C, is non-
singular since T and A are. Then if C, is the matrix of the
form A in Tmy1, *--, To we have f congruent to g -+ h.
Notice that TS = (T, — T\B'T1AT, + Tb) takes 4 into
B + C, and that the first m columns of T'S are T, .
We used in the proof .

Lemma 3. If T is an n by m matriz of rank m in o field,
and m < n, then there is an n by n — m matrixz To such that
(T To), the matrixz whose first m columns are T and whose
last n — m columns are Ty , s non-singular.

To prove this permute the rows of T to get a matrix 7
whose first m rows are linearly independent, that is,
which form a non-singular matrix. Then if T; is the n by
n — m matrix whose first m rows are all 0 and whose last
n — m rows form an identity matrix, the expansion of the
determinant of § = (7" T) shows that it is non-singular.
Then if the permutation of rows taking 7" into T is applied
to S we have a matrix with the desired properties.
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To return to the problem of this section suppose now
that f and ¢ are two forms with real coefficients and
respective indices 7 and j. Then there is a matrix taking
the matrix of f into that of g if and only if we can find a
form h such that f ~ g + h. This immediately leads to the
following theorem.

THEOREM 6. A form f of index ¢ and rank n represents a
form g of index j and rank m = n if and only if ¢ = j and
n—mzi— g thatis, ifandonlyifi =2 jandn — ¢ 2
m — j.

For the case m = 1 and ¢ = Nz* we have

CoroLLARY 6. A form f with real coefficients, index ¢ and
rank n represents a real number N except in the following
two cases:

l.2=mn, N <0.
2.1 =0, N > 0.

A form represents zero nmon-trivially if and only if it s
indefinite.

This last result can easily be derived independently
of the theorem. For generalizations of these results see
section 17.

5. Automorphs and the number of representations. For
real matrices the existence of a solution X of X"AX = B
implies the existence of an infinite number of solutions,
but there is a relationship among the different solutions
which it is worth while to develop. A transformation U
is said to be an aufomorph of a form or its matrix 4 if
U'AU = A. It is obvious that X"AX = Band X = UY
with U an automorph of A implies that Y"AY = B.
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That for any field, all the solutions of X"AX = B can be
derived from one in this fashion is shown by

TaEOREM 7. If A and B are two non-singular malrices in
n and m variables respectively with n 2 m, if their elements
lie in a field with 2 # 0 and if X"AX = Y'AY = B then
there 18 an auiomorph U of A such that X = UY.

First if n = m then X"AX = Y"AY = B implies that
X and Y are non-singular and thus X¥* = U is an auto-
morph of A and the theorem holds. .

Second if n > m we know that X"AX = B implies that
there exists a non-singular n — m by n — m matrix C and a
non-singular n by n matrix R such that R"AR = B 4 C.
Furthermore X“AX = B implies (R'X)"R"AR(R'X) = B.
Now by the remark at the close of the proof of theorem 5
there is a transformation (R'X, X,) whose first m columns
are R'X taking R"AR into B 4 C’ and similarly a trans-
formation (R'Y, ¥,) taking R"AR into B + C”. Now the
next corollary below and B 4 ¢ ~ B -+ (" shows that
there is an n — m by n — m transformation S taking
¢’ into C"'. Thus the transformation I J S (where I has

mrows and columns) takes B 4 C’into B 4- C” and
(R'X,Xo)(I + 8) = (R'X,X,S) takes R"AR into B - C".
Thus, by the first part of this proof there is an automorph
U’ of R"AR such that (R'X,XoS) = U’(R'Y,Y,). Thus
R'X = U'R'Y, X = RU'R'Y and RUR' = U is an
automorph of A.

The theorem on which the above proof depends is

TaEOREM 8. Let azi + f and azg + g be two congruent
forms in a field in which 2 5~ 0 where f and g are quadratic
formsinzy, -+ ,2.. Thenf ~ g.

To prove this theorem let

T 4]
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be a transformation taking azg + f into ax; + g, where T
is an n by n matrix, % is a number, is 1 by n and L isn
by 1. If A and B are the matrices of f and g, the matric

equation .
[b ts [a 0 [b t [a 0
o 15]lo 4fla 7] Lo B

is equivalent to the three equations
e + A =a
taty + AT, =0
tiah + TGATo = B.

Choose the sign of 1 -+ # so that it is not gero, write
% = (fo % 1) and define § = To — &tyu. Then

STAS = (T — utits)A(To — utsh)
= TTAT, — utit; ATy — uT5 Aty + Wit Abaly .
Using the three equations we have
STAS = TGATy + utiteat; + utlateh + v'ti (@ — Ba)ty
TeATo + utitafte + to + u(l — &)}
TsAT, + tita = B.

Hence A ~ B. _
Thig theorem with theorem 1 establishes the

CoROLLARY 8. If A, B and C are symmetric mairices in a
field in which 2 5 0, then C + A ~ C -} B implies A ~ B.

6. Summary. It is worth while to glance back over the
methods and results of this chapter, since, to a certain
extent, they set the pattern for later developments. Our
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of solutions X of X"AX = B where A and B are non-
singular symmetric matrices with real coefficients and =
and m variables respectively with n = m. With this
purpose in mind we defined congruence so that two
congruent forms have the same¢ essential properties and a
“simplest’’ form under congruence transformations which
we called canonical forms. By this means we were able to
establish criteria for the congruence of two forms which
did not necessitate reduction of the forms to canonical
form. These results enabled us to find conditions for the
solvability of the equation X"AX = B and we were able
further to show that X and Y are two solutions if and
only if there is an automorph U of 4 such that X = UY.
A by-product as well as a useful tool was the last theorem
and corollary due to Witt,



Craaprer II

FORMS WITH p-ADIC COEFFICIENTS

7. The definition and properties of p-adic numbers.
It turns out to be the case that the criteria for congruence
and representation of numbers by forms with rational
coefficients can be reduced to consideration of like problems
for forms with p-adic coefficients. As was stated in the
introduction, the results of this chapter could be stated
largely as Minkowski gave them in terms of congruences.
Pall has done just this. But since the gain in their intro-
duction seems to justify such treatment, we prove our
results in terms of p-adic numbers.

For p a prime number, we define a p-adic number
to be any formal series

a=a.,p + a_r+1p_r+l + -+ a'—lp_l

+ a0 + ap + ap® + - -

where each a; is an integer (positive, negative or zero).
We call two p-adic numbers «, 8 equal if there is an integer
K such that for every positive integer k = K, oy — B =
O(mod p*) where «; is the number obtained from the
expansion of a by deleting all terms in the expansion of &
after that involving p* and B is similarly defined. This
definition of equality has the usual characteristic properties
of equality: o« = a¢; ¢ = S implies 8 = a;a = (5,8 = v
implies & = ¥.

Any p-adic number may be put into so-called canonical
form, that is, written in the form (3) above where each
a; 18 a non-negative integer less than p. This is done as
follows. Let a_, = a’, + pw where 0 < a’, < p and
let «’ be the p-adic number obtained from « by replacing

17

®3)
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ap” + ap T by alpT + (0 + aL)pT
It is clear that & = o'. This process may be used to replace
a by an equal p-adic number in canonical form. Two
p-adic numbers in canonical form are equal if and only
if they have identical coefficients.

If B8 is a p-adic number with coefficients b;, define
a -+ B to be the p-adic number with coefficients a; + b; .
In fact, one may add two canonical forms to get a canonical
form in a manner entirely analogous to the way in which
we add decimals except that we add from left to right
instead of from right to left. For example we add the two
5-adic numbers below as follows:

a=35"4+45"+24+25+25+ .-
B=25405"4+2+254+25"+ .-

Carry _ 1 1 1 1
a+B=05"4+05"+0+0-5+0-5+ ---

The product of two p-adic numbers in form (3) is the
formal product:

a-b_p" + (a—rbrs + ba_p)p "
+ (6—rb—ris + Gptb—i1 + Gab)p T+ o

This, again may be reduced to canonical form.

Any p-adic number whose coefficients beyond a certain
point are all zero we write as a formal series with a finite
number of terms, for omitting such terms does not alter
the value of its sum or product with any other p-adic
number. Thus 1 + 0-p + 0-p* 4+ .- we write as 1
and notice that when this is multiplied by any p-adic
number, the number is unchanged. Similarly 0 = 0 +
0:p + 0-p* + --- has the property that 0 + a = «

Y T, 1., AT J . SEUTER JE SN
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prime p, any integer N may be written as a p-adic integer
whose coefficients from a certain point on are all zero.
For instance 36 is identified with the 5-adic integer
1425+ 1.5

If « is written in the form (3), —a is obtained by
changing the sign of all the coefficients and, from the
definition of equality, @ + v = 0 = a + ¥’ implies y = v,
that i8, —« is unique.

A p-adic number « is called a p-adic infeger if it is
equal to a p-adic number

a + ap + ap® + -

If, in this form, a ¥ O(mod p) the number is called a
p-adic unit. If a is a p-adic unit we can find in the following
manner a p-adic unit 8 such that o = 1. Write 8 =
bo + byp + by + - - - and multiplying « and 8 we have

af = adbo + (aoby + asbo)p
+ (aobs + asbs + abo)p” + -+ .

Since a is prime to » we can find a non-negative integer
by less than p such that abe = 1(mod p). (Notice that
it is at this point that the requirement that p be a prime is
necessary.) Make this choice for by and write aghy =
1 + tgp. Notice that by 5 0 and let by be that non-negative
integer less than p for which ach; 4 aibo + &% = 0(mod p)
and write acby + a1y + & = tip. Let be be that non-negative
integer less than p for which aobe 4 aib1 + a:bo + & = #p.
Continuing in this fashion we can develop the formal series
for B8, the unique p-adic number which is the reciprocal
of a. In fact, the reciprocal of every p-adic number v
not zero may be found since v may be written in the form
p"awhere « is a unit and therefore expressible in the form (3)
with r = 0 Then ~ ! mav be identified with the numher

)
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p *8 where 8 is a unit determined as above. For example,
to find the reciprocal of the particular p-adic number «
above, let o/ = 5°a wherea/ = 3 +4-5+2.5°+2.5° ...
Then aby = 3bp = 1 + 54 shows that by = 2, {, = 1;
3b1 + 4bo + b = 3b; + 8 + 1 = 54 shows that b = 2,
4 = 3. So continuing we find

B=2+425+05 435+ 2.5+ 4.5
+1-5°+ 25"+ 0-5° + .-

where the sequence 2, 0, 3, 2, 4, 1 of coefficients repeats
indefinitely. Then the reciprocal of « is 5°8.

Since ot = 1 is solvable in p-adic numbers for a a
non-zero p-adic number, so algo is at’ = 8 where B is a
p-adic number. In particular if « and B are integers, £ may
then be identified with the rational number 8/a. We
should notice that if ¢ and b are integers and a/b is in
lowest terms it is a p-adic integer if b is prime to p and a
p-adic unit if a and b are both prime to p. In fact, a p-adic
unit may be defined to be a p-adic integer whose reciprocal
is a p-adic integer.

We collect all the above results and a few others more
easily shown into the statement: for any prime p, the
p-adic numbers form a field, that is, they satisfy the
following requirements:

If @, B and v are p-adic numbers

l.a 4+ B and of are unique p-adic numbers (the
closure property).

2.a+ B8 =B + o and of = Ba (the commutative
property).

3. There exist numbers 0 and 1 such that ¢ 4+ 0 =
and a1 = « for every p-adic number c.

4. For every p-adic number « # 0, there is a p-adic
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5. For every p-adic number «, there is a p-adic number
B such that « + 8 = 0.

6. (@ + B)y = ay + By (the distributive property).

7.(a+B)+v=0a+ B+ and (aB)y = a(B)
(the associative property).

We denote the field of p-adic numbers by the symbol
F(p). Real numbers form a field which we denote by F()
or R(»). The rational numbers form a field which is
contained in every p-adic field. But the fourth requirement
above fails to hold for integers. Since the other six require-
ments hold for the set of integers as well as the set of p-adic
integers we say that each of these sets form a ring and
denote by R(p) the ring of p-adic integers. (Actually the
requirements for an abstract ring are less stringent in
that the commutative property for multiplication is not
agsumed.)

Using the usual number-theoretic notation we say that
a = f (mod v) for p-adic integers «, 3 and v if (¢ — 8) /v
is a p-adic integer, that is, if « — B8 is divisible by v. We
speak of a form (or matrix) as being “in R(p)” or “in F(p)”
’f its coeflicients (or elements) are in the ring or field.

8. Congruences and p-adic numbers. The connection
between p-adic numbers and congruences is shown by the
following useful theorem.

TareoreM 9a. If two quadratic forms

f=2 agmiz;, g= 2 BulYiyi
$yim=1 $,5=1

have matrices A and B respectively in R(p), if m S nandif T

is a matriz with rational integral elements such that T"AT =

B(mod p**) where p"* is the highest power of p.in | B| and
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matriz-in R(p) such that X"AX = Band X = T (mod p)
or (mod 4) according as p is odd or p = 2.

To prove this by induction let S{4S; — B = p'U
where { = u + w and S; and U are in R(p). This holds for
S;:= Twhent =u+ w.

Define

Sepr = 8¢ — 3p'S:(STAS:)'U.

If 8, is in R(p), then S.4; is also for S{AS; = B + p'U
implies that p* is the highest power of p in | S{AS,|;
furthermore, { = % -+ w implies S;1; = .S; (mod p) or
(mod 4) according as p is odd or p = 2. Then

S{ndSi — B
= [S: — $p'U(STAS)'S{1ALS: — $p'S«(STAS)'U] — B
= p'U — #p'U — ¥'U + *U(8/AS)'U
= "U(STAS,)'U = 0 (mod p*/4).
Nowif pisodd2t — u =t + lsincet = u + 1 and if
p=220—u—221t-+ 1lsincet = u + 3. Hence
8114844 = B (mod p*™)

and by this means our theorem is proved, for the successive
8S; generate X in R(p).
The following companion theorem is also useful

TraEOREM 9b. If f and g are defined as in theorem 9a
and if T i8 a matriz with rational integral elements such that
T"AT = B (mod p™™), not every m-rowed minor determi-
nant of T is divisible by p and p" is the highest power of p
dmdmy every m-rowed minor of 2T7A; then there is

o« wp N 7 2 T 2 w7 L= B rwr 7 1
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First we show that 4 < mk. Suppose every m by m
minor determinant of 2T"A = R is divisible by p™*.
Then T” = }RA’ and, since the highest power of p in the
denominators of the right side is p*, we have that every
m-rowed minor determinant of 7 is divisible by p, contrary
to.hypothesis.

Now, in order to establish an induction choose ¢ = 2u +1
and let S; be a matrix with integral elements such that
S: = T (mod p***) and S7AS; — B = p'U where U is in
R(p). Then if S;41 = S; + p" ™Y for Y later to be chosen
we have

S87ASi1 — B = p'U + p “Y"AS, + p"STAY
(mod pl+1).
The right side will be divisible by p*** if we can choose ¥
so that 2U + p“2Y"AS, + p "28{AY = 0 (mod 2p),
that is
U+ p“@28{A)Y = 0 (mod 2p).

Choose Ao to be a matrix with integral elements and
congruent to 4 (mod p™*'). Now, since the g.c.d. of the
m-rowed minors of 27”4 and hence of 2874, is p” we can,
from lemma 6 proved later in section 20 find ann — m
by n matrix M with p-adic integer elements such that

|:2S 1 Ao ]
=N
M .

has determinant p". Choose an arbitrary n — m by m
matrix Up with integer elements and let o

o _aat| U
= pN[Uo].
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p~*(287 A,)Y vanish. Thus we have shown the existence
of an S¢41 such that

8:1148:11 = B (mod p**"), St = S.(mod p"*).

In this fashion we may proceed from T"AT = B
(mod p™*") to the same congruence (mod p™*?), hence
to the next higher power of p and so forth. By this method
we can develop a matrix X in R(p) whose elements have
the series development obtained.

We shall have occasion to use the following special

cases of this theorem:

COROLLARY 9a. If aa® + 2by’ = N(mod 8) is solvable for
a, b and N odd integers, then az® + 2by* = N s solvable in
2-adic integers.

CoROLLARY 9b. If a form f in R(p) has unit determinant
and if f = a (mod p*) has a solution with z; a unit for
some 1, where w = 1 or 3 according as p is odd or even,
then f = a 18 solvable in R(p).

Theorems 9a and 9b can be somewhat loosely deseribed
by saying that T"AT = B (mod p‘) for a sufficiently
large value of ¢ implies that X"AX = B is solvable in
p-adic integers; the minimum value of ¢ depending on the
determinant of B or the g.c.d. of the minors of 2AT in the
respective cases. This statement is not quite accurate
since we must not only have the congruence solvable but
there must be a process, an algorithm, by which the
solutions in R(p) are developed.

On the other hand, if X"AX = B has a solution X
where X is in R(p), we can in the expansion of each
element of X delete the terms from p’ onward and have a
solution of the congruence X"AX = B (mod p°). This
result we state as
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having integer elements and if X"AX = B has a solution in
R(p), then for any positive integer t, the congruence X "AX =
B (mod p*) has a solution T, where T is a matriz with
integer elements for which T = X (mod p°).

Theorems 9 and 10 establish a 1 — 1 correspondence
between the solutions of X"AX = B in R(p) and the
solutions of X"AX = B (mod p°) for ¢ sufficiently large.

As an example of the application of these three theorems
let f be the quadratic form 52° and consider the solutions
of 52° = 2 in 3-adic, 5-adic and 2-adic integers. If p = 3,
the theorems show that the equation is solvable in R(3)
if and only if 52* = 2 (mod 3) is solvable. Now this congru-
ence has the solution £ = 1 and z = 2. The method of
proof of theorem 9b yields a solution as follows. Write

= 1 + 3z, and seek an z; so that 5(1 + 32,)* = 5(1 + 62,)
= 2 (mod 9),ie. a1 =2 + 8xs0orz = 7 + 9z, . Thus we
wish to choose an z» so that 5(7 + 9z,)° = 2(mod 81).
So proceeding we get

14+234+03+034+03+23+13+ ...
24+03+234+234+23+03+1.3+ ...

as the two solutions in R(3). (The second may be obtained
from the first by noting that their sum is zero.) Similarly
52 = 2 is solvable in R(5) if and only if 52° = 2 (mod 5)
is solvable; neither the congruence nor the equation
have solutions. Finally the insolubility of the congruence
527 = 2 (mod 8) shows that the equation is not solvable
in R(2).

9. Congruence of forms in F(p). In a manner analogous
to that in the previous chapter we say that two forms f
and g in F(p) are congruent in F(p) if there is a non-singular
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Theorem 1 for the field F(p) states that every form f with
p-adie coefficients may be taken into a form

9=51y1+52’y2+"'+ﬁ»y», B.inF(p) '

by a linear transformation Whose elements are p-adic
numbers.

It is possible to simplify further this canonical form
for p-adic numbers. To this end notice that if 8 is any
p-adic number, there is an integer ¢ such that p*8 = B
is a p-adic integer not divisible by p’. Then if b is the
integer obtained by deleting all after the term involving
p’ in the expansion of B, we have B, = b (mod p*) and
hence, by theorem 9a, there is a p-adic integer « such that

= b s 0 (mod p°). Hence for any p-adic number 8;
there is a p-adic integer a; such that oi8; = b;, an integer
not divisible by p’. Thus, using the transformation
¥; = a; on g we have

THEOREM 11. Every form f in F(p) is congruent in F(p) to
a form

= bl + bwza + -+ + bary

where the b, are integers not divisible by p°.

It is possible to carry the process further and obtain a
unique canonical form but this would be rather laborious
especially for p = 2. The main purpose in having a
unique form, namely testing two forms for congruence, is
better served for F(p) by means of invariants defined in
the next two sections.

10. The Hilbert symbol. Hilbert defined a symbol
which we shall find very useful in slightly modified form.
For o and 8 non-zero p-adic numbers we define the symbol



THE HILBERT SYMBOL 27

according as
azf + Brz = 1

has or has not a solution in F(p). Recall that we include as
values of p ndt only the prime numbers but the “infinite
prime” and that F(«) and R(«) both denote the field of
real numbers, Where no ambiguity results we often omit
the subscript on the parentheses.

For easy reference let us first list the properties of the
Hilbert symbol which we shall find useful and then give
the proofs of those properties which do not directly follow
from the definition. Unless otherwise stated each property
holds for p = « as well as for p finite, but the statement
“p odd” of course restricts p to be finite. If « is a unit in
F(p) for p finite we understand («|p) to be the value
of the Legendre symbol (ao | p) where a, i the leading
term in the p-adic expansion of «. Below it is understood
that e, B3, v, p, ¢ are non-zero numbers in F(p).

1. (o, B)., = 1 unless a and 8 are both negative.

2. (a,B)y = 6, a)p .

3. (ap2, Baz)r = (a7 B)r .

4. (o, —a)y = 1.

5. f a = pad]_ ’ B = pbﬁ]_ with «; and 61 units, then

a. if pis odd, (@, B)y = (—1|p)* (1| p)’(B: ] P)*
b. if p = 2, (a, B): _
= (2] a)"(2 | B)*(—1) POV,

5. If p is prime to 2a8, (@, 8), = 1, for p finite, a and 8
in R(p).
(a: ﬂ)r(a; 'Y)r = (a, B’Y)P'
(‘1: a)y = (o, — l)r-
(ap, Bp)y = (e, B)s(p, — )y

If 8 is a non-gquare in F(p) and ¢ = 1 or —1, there

© XN
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If, further, b as defined in property 5 is odd, « may
be taken prime to p.
10. If a and b are non-zero rational numbers.

H (a, b)? = 1
the product extending over all primes p including

p= .

Properties 1, 2 and 3 are obvious from the definition
of the symbol. Property 4 holds since a(zi — z3) = 1 has a
solution z; = (1 + «)/2, 2, = (1 — a7 V)/2.

To prove property 5 notice that property 3 shows that
we need only consider a, b to be 0 or 1. Suppose (&, 1)
is a solution of azi + Bz; = 1 in F(p). We can, from the
definition of p-adic numbers, choose a positive integer
p' such that both #p‘ and np’ are p-adic integers and
one is a unit. Thus (o, 8), = 1 if and only if for some
positive integer t, azs + Bz; = p* has a solution (%, 10)
where & and ng are p-adic integers and one is a unit. Thus,
using theorems 9a and 10, we see that (o, ), = 1 if and
only if, for some non-negative integer ¢,

(5) azi + Brz = p*(mod p"*")

has an integral solution (r; , r2) with w = 1 or 3 according
as pis odd or p = 2 and one of ; and r, is prime to p.
First suppose ¢ = b = 0. If p = 2, see that (5) has a
solution with £ = 0 unless « = 8 = 3 (mod 4) in which
case (5) has no solution with ¢ = 0 while ¢ > 0 would
imply r, and r. both even, contrary to our assumption.
If p is odd, ox} and 1 — Bz; each take on (p + 1)/2
distinet values (mod p) as z: and z, range over the integers
0,1,---,(p—1)/2.8ince (p+1)/2+ (p+1)/2=p+1
there must be some value r of z; and r, of , such that
w2 =1 — RrE (mad »Y which shows that (5) e colvahle
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for { = 0. Thus for both these cases we have established
property 5.

Second, suppose a =
unit we must have ¢ =
only if 8 = B, = 1 (mo
(mod 8) in which cases

@2]B) = 1 = (—1)lrDE-DH
2[8) = (_1)(a1—1)12 with 8, = 3 (mod 4)

which establishes the result. If p is odd (5) is solvable if'
and only if (8| p) =

Finally if a = | = b, the equation az; + Bz; = p
becomes ayzi + Birs = p** ' and in place of (5) we have

(5') ot + Bxi = p poely

Ifp # 2 suppose (—afr|p) = —1; then 5" 1mp11es
mo=p 21, 2 = psz' and ayzi’ + leg = p (mod p)
which implies z; and z; prime to p and (—a;ﬂl [p) =
which is a contradiction. On the other hand, the la.st
congruence is solvable if (—a;8;|p) = 1; thus for p = 2
equation (5') is solvable if and only if (-—alﬁl [p) =
If p = 2, (') is solvable with 2;z, odd if and only if ¢ =
with oy 4+ 81 = 2 (mod 8) ort > 1 with o + 8; =
(mod 8). Let oy + B = 2k (mod 8). Then 1 + a8,
P (mod 8), (a1 - 1)(51 - 1) = alﬂ1 +1—0a — B]_
2kay — 2k (mod 8) and hence

2] o) (2] B)(—1)frPEmDM
= (2 l 2kct; — 1)(_1)k(a1_.1)/2.

. Since one of r,, r; is a
2, (5) is solvable if and
_I_

1,56 =
0.If p
d)O B=20’1+B151

2¢

2£—1

(inod p

I o~

Thisis +1if ¥ = Qor 1 and —1 if £ = 2 or 3 which shows
that (a, B): = 1 if and only if sz} + Bz = 2" (mod 8)
has g solution with 2,2, odd and ¢ = 1 or 2. But corollary
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9b shows that under these circumstances (5') is solvable
and our proof of property 5 is complete.

Property 5’ follows directly from property 5.

Property 6 for p = « follows directly from the defini-
tion. If p is odd, property 5 tells us that

(ay B)plet, ¥)p = (—1 | P)a(bﬂ) (o1 ' P)(bﬂ)(ﬂz‘w | )’

which implies property 6 since By = Bryp"™. If p = 2,
property 5 yields

(o, Bale, 72 = (2| )™ (2 | Bry)*(— )"

with ¢ = ((11— 1) (ﬂ]_'— 1+‘Y1— 1)/45 (a1 - 1)
(Brv1 — 1)/4 (mod 2).

Property 7 follows from properties 4 and 6; property 8
from properties 2, 6 and 7. To prove property 9 with
¢ = 1, choose a a square; if ¢ = —1 for p = « choose
a = —1, for p odd choose « = p or a non-residue of p
according as b is even or odd, for p = 2 and b odd take
a = ay odd so that

(2 l al)(_l)(dl—l)(h—l)ﬂ = —1,

for p = 2 and b even choose & = 2 and see that (o, 8); =
(2|B) = —1 unless §; = 7 (mod 8) when we choose
a = 6.

Finally, to prove property 10 we see from property 3
that « and B may be restricted to be p-adic integers and
hence, by property 5, to be rational square-free integers.
Hence we may write [a| = q1g2 «+* g¢, |B| =12 -+ 1y
where the ¢’s and r’s are primes, no two ¢’s equal and no
two r’s equal. If either « or 8 is +1 let it be «. Thus, by
property 6 we have
:‘[I(q; , T'j)p if neither & nor B is =1,

!

(a’ B)P = L
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where in the second product r;.is replaced by bif b = 1
or —1, the sign of « is included in ¢ and that of gin »,.
If either o or 8 is +1, the symbol has the value 1. Hence
we need prove property 10 only for the following values

of (a, B ). .
(_1: _l)r: (_1: f)r ’ (qy Q)'r ’ (q, 1'),, with g*r

and ¢ and r positive primes. The third reduces to the
second by property 7. The remainder of the proof follows
taking r and g odd primes:

II(-1, —=1), = (=1, —1)e(—-1, =1), =1
II(-1,2), = (1,22 =1

H(_]': 1'),, = (—1’ 7I)r(_]-, 1')2 =1

S

1;1(2: q)r = (2: 9)2(2, Q)q =
IlH(r: Q)r = (T, Q)G(T: q)'(ri q)2

)
= (g]n)(r| (=D
and the last is equal to 1 by the quadratic reciprocity law.

11. Hasse’s* symbol c,(f). Let f be a regular form
with coefficients in F(p) and non-gero determinant (see
section 3) and, using Pall’s generalization of Hasse’s
symbol, we define

n—1

cr(f) = (_1: _Dn)p 1I—Il (Di, _D{-l-l)p

where the D; are defined as in section 3, it being under-
stood that if D, = 0, the symbols (D;, — Diw), and
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(D1, F 1), respectively with the = sign chosen arbi-
trarily. (Note that lemmas 1 and 2 show that f may be
taken to be regular and that D; = 0 implies Dy41Di 1 5 0.)

The importance of this symbol is shown by

TaroreM 12. If f and f; are forms in F(p) of non-zero
determinants 8, and 8, having n, and ny variables respectively
and congruent in F(p), p finite or p = «, then
(6) =10, m=mn, cf)=cf)
for some element r of F(p). '

Since f; ~ f. implies that the number of variables
in each is the same and & = | T |* 6, where T is the trans-
formation taking f; into f; we see that the burden of the
proof is to prove that the Hasse symbols of the two forms
are equal.

First we show that there is a diagonal form fo = ; air:
-]

congruent to f and having ¢,(fo) = ¢»(f), a1 = Dy or ayay =
D, according as Dy # 0 or Dy = 0, where D, is the leading ¢
by 4 minor of f. If I, £ 0 we can add appropriate multiples
of the first column of 4, the matrix of f, to the other
columns and the same for the rows to take f into Dyt + f;

with fi = 2, a;@a;. This will not alter any principal
€,jm=2

minor determinant of f and hence does not alter c,(f).
If D; = 0, then by the regularity of f, D; # 0 and we may

take f into 0[1117? + 2a1921% + Olzzxg + fiwith f; = _z-:aaijxiwj
AT

without altering any D;. Now D. # 0 implies ays # 0
and the transformation
I: 1 —a22/2a12 —azz/zalz:l
1 1
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2oti®s + anti With cp(fn) = (=1, —Dp)y(D1, —Da)s
and ¢p(fo) = (=1, —D2)p(2a12, —Ds), . But —D; = afs
and hence both symbols are 41 regardless of the choice
of D, . This process may be carried through to produce our
result except that we must provide for the following
typical contingency. Suppose D; s 0 but the leading
coefficient of f; is 0. Then our transformation used above
to make the leading coefficient of f; not zero alters the
leading 2 by 2 minor of f, that is (D, —0),(0, —Dy), is
replaced by (D, — 2Diai),(+2Dyas2, —Ds),. Both
products are (—1, — Dy), since —DyD; is a square.

Second, for a diagonal form fo , ¢,(fs) remains unchanged
under any permutation of subscripts. To show this it is
sufficient to show that ¢,(fo) = c,(f1) where fo is obtained
from fo by interchanging the r-th and (r — 1)st subscripts.
Such an interchange leaves unaltered every D; except
D,_; which becomes D,_,, the minor obtained by inter-
changing the r-th and (r — 1)th rows and columns of D;
and then deleting the rth row 3nd column. Thus we need
to show

(Df—l ) '—D')(Df-% ’ —Dr—l)
= (D=1, =D,)(Dy=2, —Di).

But, using the properties of the Hilbert symbol, we see
that the left hand side of the equation is equal to
(Dr—1, —D,D,_3)(D,_y, —1). Thus we need to show
that (D,;, —D,D,_s) = (D,_,, —D,D,_,), that is

™ (D:D;_y, —D,D,_s) = 1.
Now lemma 1 tells us that D,D,_, = D,D,_, —Df.r-x

for some determinant D,,_; . But D,_,D;_yzi + (D} ;1 —

D,D;_)z3 = 1 has the solution z; = z» = Djs_ and
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of the Hilbert symbol shows (7) holds. The argument of
this paragraph need not have been confined to diagonal
forms except that we need to be assured that no D; is
zero. This assurance follows for diagonal forms from
| £| #£ 0 but does not follow for forms in general.

We have reduced our problem to showing that

f=Fant o= L ok

and |f|-|g] # O implies c,(f) = ¢,(g). The first column
of a transformation taking f into g is a solution (p1, p2, - * - ,
pn) of f = B, . Permuting the variables of f if necessary we
assume p; % 0. Then the transformation T whose first
row is p, 0, ---, 0, whose first column is p;, pa, -+, pn
and the rest of which is the identity matrix with n — 1
rows, takes f into a form f’ whose leading coefficient is £, .
Now T = T,T. --- T, where T; is the matrix obtained
from the identity transformation by replacing the ¢-th
element in its first column by p; . It is clear that T, replaces
every D; by piD; and hence does not alter the Hasse
invariant of f. The transformation 7T’ alters only D, which
it replaces by a1 + pscrs and (a1, — ane)p(n + praz, —
aias), = (ai + praien, — aien), = 1 since (af + paanas)rt —
aioo; = 1 has the solution z; = a7, 2, = peay’’. Thus
T. does not alter the Hasse invariant. Now T';, ¢ > 2, i
obtained from T, by a permutation of rows and columns
which is equivalent to a permutation of the variables
of the form and the application of T;. Neither of these
alters the Hasse invariant. Hence the transformation T
leaves unaltered the Hasse invariant. By the process of
the first portion of this proof we may take f’ into Bz} + f;

with f; = D, aii; without altering the Hasse invariant.
i,j=2
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from ¢ by deleting the first term. Hence we may assume by
induction that ¢,(f1) = ¢n(g1).
Finally, by the definition of the Hasse symbol, ¢,(8:z3 +

f)is
(=1, =B1 | fi )oBr, —BiD1)(B:D1, —BiD2)p - - -
BDn-2, —I31D;—1),
where the D; are the leading minor determinants of f; .
By property 8 of the Hilbert symbol, this is equal to
(—1, =D4)(1, =D1)(D1, —D3) ++- (Dus, —Drny)
+(=1,B)®:, D1)(Br, DiD3) -+ By, Dn-sDny)
= ¢,(f1) (B, —D:t—l) = ¢,(f)Br, | F1),

omitting the subscripts p on the Hilbert symbols. This
shows that ¢,(g) = ¢,(f) and our proof is complete.

The next few sections enable us to prove the converse of
this theorem (see theorem 15) for p finite.

However first let us see what ¢,(f) amounts to for

f= i + o + awi
where the coefficients are p-adic integers. Then

c?(f) = (_1’. _6)1'(0‘1 ’ _a1a2)p(ala2 ) —6)12
= (—ai0n, —aas),

where & is the determinant of f. If p = w, ¢(f) = 1
unless @y , a2, az are all of the same sign. If p is an odd
prime .not dividing 8, ¢,(f) = 1 from property 5’ of the
Hilbert symbol. We may without loss of generality
assume no two a; have a factor in common and that
no coefficient has a square fanctor; for property 3 of the
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(—aion, —asay/p’),. Then if p divides o3 but not aay
and if p* does not divide as , we have

1. If ¥4 is Odd, c,(f) = (—'Otlag I p).

2. If p = 2 and § is a unit, c:(f) = (—1)}, where

= (—awoy — 1)(—aas — 1)/4
= (a1as + aias + anas + 1)/4
= (& + az + a;: + 8)/4 (mod 2).

3. Ifp =2andé =2 (mod 4), (f) = 2| —aa))(—1)*
with¢ = (—aa — 1)(—1 — aza3/2)/4 and hence o,(f) = 1
if ayag = 7 (mod 8) or aqas = 1 (mod 4) with Qg =
aia; + 5 (mod 8); otherwise ca(f) = —1.

12. Some properties of ¢,(f) and k,(f). We now prove
some useful properties of Hasse’s symbol for a form f of
determinant & different from zero and having p-adic
coefficients. In no case but the first is p restricted to be
finite. The proofs follow the listing of the properties.

1. If f has coefficients in B(p), where p is a finite prime

not dividing 25, then ¢,(f) =

2. If f has rational coefficients, then for no primes p or

an even number of primes p (including p = =)
iscp(f) = —1.
3. If wis a number of F(p),

colwf) = (w, {=1}""")0,(f) if n is odd

en(wf) = (w, { —1}1™28),¢,(f) if n is even.
4. If f, and f, are two forms,

e(fi + f2) = ep(fdes(fo)(—1, —1)p(81, 82)»

where f, and f; have no variables in common and
have determinants 8, and 8, . A special case of this
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4. e(fi + axﬁ) = c’(.fl)(_li a)?(‘sl ’ @),
= cp(f) (=81, a)p = cp(f)(6, @)p
5. If we follow Pall and define for an n-ary form f with
n odd the invariant
ko(f) = ex(NG, {_1}(“.1)[2)9
it has the property
kao(wf) = ko(f),
for any non zero number w of F(p).

Considering property 1 notice that the restriction that
the coefficients of f be p-adic integers is necessary since,
for instance, ¢s(5z; + 2r3/5) = —1. Property 1 follows
immediately from the properties of the Hilbert symbol if
all D; are prime to p; this includes the case f diagonal.
But, by theorem 1, every form is congruent to a diagonal
form g and, by theorem 12, ¢,(f) = ¢»(g).

The second property above follows directly from
property 10 of the Hilbert symbol.

To prove property 3 write

n—1

cp(wf) =3 (—1, —w"ﬁ), ‘I-Il (wi D;‘, —wH'l Di+1)p

= (-1, —w"9),
n—1 n—1
« II (D, —wDi); I1 (@Di, —Diyi),
t even + odd
n—1

= (=1, —w"d), III (Di, =Dy, T

= (-1, “’n)p cp(f) T,
where

n==1 n-1 '
T = H (o, Di')p H ("” - Di-H)t
< even £ odd
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and ¢ = (n — 1)/2 or n/2 according as n is odd or even,
since the number of negative signs in the product is'
equal to the number of odd numbers not greater than
n — 1. But the product in the last equation is A* or A%
for some A in F(p) according as # is odd or even. Thus if n
is odd cp(wf) = (w, — 1)p(w, { —1}")pe,(f), while if n is even,
ex(wf) = (w0, {—1}'8)5e,(f). This completes the proof.

To prove property 4 use the same argument used in the
final part of the proof of theorem 12. Property 5 follows
from its definition and property 3.

13. Evaluation of the Hasse symbol. Theorem 11 shows
that every form in F(p) is congruent in F(p) to

F=h+ of

where fi and f, are forms with integer coefficients and
determinants prime to p. By properties 3 and 4 of the
Hasse symbol ¢,(f) can be evaluated in terms of c,(f))
and c,(f:) and the determinants of f; and f; . Then if p is
odd we have, using property 1 of the Hasse symbol, a
complete evaluation.

It remains then to evaluate ¢c,(f) for p = @ andp = 2
with |f| odd. A glance at property 5 of the Hilbert
symbol shows that the value of cx(f) for | f| odd depends
only on the value of the coefficients (mod 4). Thus if f is
taken to be diagonal (by theorem 11) and if ¢ of its co-
efficients are congruent to 1 (mod 4), ¢:(f) = ca(g) where

g=2i+m+ - +ai—ah— - — 2.

Now, properties 1 and 2 of the Hasse symbol show us that
c(g) = c¢,(g). Hence we need merely to find ¢ (g). In
order to make use of properties 3 and 4 of the Hasse
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squares and have
ceo(g) = cco(gl)ceo(_g=)(_1’ _l)n(]-’ {—1}”_‘)@
= (=1)(=1, W (-1)(-1),

where u = (—1)®FR o (_1)¥n-0n according as
n — 1 is odd or even. This reduces to
®) ag) = c,(g) = (=1 RNl

that i8, ca(g) = c,(9) = 1ifn — ¢ = 1 or 2 (mod 4) and
otherwise —1. Thus &:(f) and ¢, (f) may be evaluated by
(8) where for the former ¢ is the number of coefficients
congruent to 1 (mod 4) in the diagonal form congruent
to f in F(2) and for the latter ¢ is the index of the form.

Now we saw in section 3 that it was not necessary to
convert a form into canonical form in order to find its
index. In just the same way it may be shown that any
form with unit determinant in F(2) is congruent in F(2)
to a form in which no two successive D; are non-units.
The analogy for determination of the index breaks down
if one of the D’s is congruent to 2 (mod 4) but if it happens
that each D is congruent to 0, 1 or —1 (mod 4) and no two
successive D are divisible by 4, then the number 7 above
for F(2) is the number of permanencies of sign in the
sequence

1D, D, .- D, (mod 4)
where any D; = 0 (mod 4) may be given arbitrary sign.
Thus if
fi = 2z + 224 + - 4+ 2TenaTon

the number of permanences of sign in the sequence of D;
(mod 4) is » and hence
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On the other hand, ¢;(f.) cannot be so evaluated for
fo=222s+ -+ + 2Lon—sTan—2 + 273a1 + 2T sTan + 225,

However, the application of the above result and property
4 of the Hasse symbol yields

alf) = —clf).

Notice that c¢,(f) determines the index of f only to
within a multiple of 4. For instance

f = — —23 —x3 —21 +75
f = 43 +23 +23 +7i +23

have the same values for ¢, (f) but their indices are not
equal. Thus the converse of theorem 12 does not hold
for p = . However notice that if 7 is the index of the
form it must satisfy the conditions '

(9) d(=1)"" >0, culf) = (=D*PII

It may be seen that these two conditions may be expressed
as one in the form

(9b) n — i =c,(f) + #H1+ (—1,d).} (mod 4).

The value of 7 is determined (mod 4) by ¢, (f), » and the
sign of d.

14. Zero forms. Every form with zero determinant
represents zero non-trivially (that is, with not all the
variables zero) since if the form is canonical some of the
coefficients will be zero and the existence of a non-trivial
solution is obvious; moreover if a transformation T takes f
into canonical form it takes a non-trivial solution into a
non-trivial solution. However, there are forms of non-zero
determinant which represent zero non-trivially. Such
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Notice that a form may be a zero form in one field without
being a zero form in another. For instance 1 + 223 is a
3-adic zero form but not in the field of reals.

If f = », with » £ 0, then f — vzh4, is a zero form.
Conversely, if f — va541 = 0 has a solution with .y 5 0,
where the coefficients of f and the solution are in some
field F, then f = » has a solution in F. That the restriction
in italics may be removed is shown by the following
theorem.

TraEoREM 13. Let the quadratic form f be a zero form in a
Jield F with 2 5= 0 and v any number in F. Then f = v has
a solution in F.

We give Siegel’s™ elegant proof. By theorem 11 we
may take

f=azi+az:+ - + au1h

and call 7, 72, «--, 7o & solution of f = 0 with r, > 0.
Set r = v(dayy) ™" and see that 2 = (1 + 7)m, 2 =
(1 —2)r, k=2,---, n is a solution of f = 4ray} = ».

Note: if the coeflicients of f and v are p-adic integers,
the theorem would still hold provided p is odd, the r;
are in R(p) and ayn is a unit.

Thus if f — »2hs1 = O has a non-trivial solution with
ZTapr = 0, f is a zero form and hence represents ». This
yields

CoRoLLARY 13. In any field F,f = v has a non-trivial
solution if and only if f — vxs41 18 a zero form.

This shows that for a field the determination of condi-
tions that a form be a zero form is equivalent to finding
the numbers of the field represented by forms of one fewer
variables.

15. The solvability of f = ». We can now establish
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cients of f are in any p-adic field, p being finite. By theorem
11 we may assume without loss of generality that the
coefficients of f are rational integers and that » is a rational
integer which we therefore replace by N. These restrictions -
are assumed for this section, # is taken to be the number of
variables in f and d its non-zero determinant.

THEOREM 14a. If n = 2, then f is a zero form in F(p) if
and only if —d is a square number in F(p).

This is true since without altering d or the fact that f is a
zero form, we may, by theorem 11, take f into @27 + aaz3 .
If r,, 74 is & non-trivial solution of J = 0, neither r can be
zero and we have —d = —aa; = (a;r;/r1)’. Conversely if
—d is a square we have a non-trivial solution. Corollary 13
yields

CoROLLARY 14a. The equation ax’ = N 0 s solvable
if and only if aN is a square.

TrEOREM 14b. If n = 3, f 18 a zero form in F(p) if and
only if c(f) =

We may, without loss of generality write f = apaf +
asrs + asrs . To say that f = 0 has a non-trivial solution
L, 12, r3 with 2 # 0 is equivalent to saying that

(—a/an)(ru/rs) + (—aa/as)(rs/ra)* =
in other words that —a,ast7 — .53 = 1 has a solution.
Hence, by the definition of the Hasse symbol, f is a zero
form if and only if (—ai8s, —asas), = 1. The left side of
this equation was shown in section 11 to be equal to ¢,(f).

Using property 4’ of the Hasse symbol we have, for -
f a binary form

e(f — Nxz) = ¢(f)(—d, —N),.

Hence, using corollary 13 we have
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and leading coefficient an # 0, then f = N 1is solvable for
N = 0 if and only if

ey(f) = (—d, —N),,

that 1s, '

(—allt —d)y = (—N; —d)p-

TrHEOREM ldc. If n = 4, f 18 a 2zero form in F(p) if and
only if the following condition holds: ¢,(f) = 1 when d is a
square in F(p). .

First we take f into a simpler form f’ which is a zero
form if and only if f is, and which satisfies the condition
of the theorem if and only if f does. By theorem 11 we may
take f in the form airi + ast3 + asr3 + ai where the
coefficients are integers. Replacing a; by ap > does not
alter c,(f) or its being a zero form; hence we may assune
that no coefficient is divisible by p’. If every a; is divisible
by p, replace f by f/p, if all but the first coefficient is
divisible by p, replace z; by pz;, multiply a; by p* and
divide the form by p. These operations do not alter the
“zeroness” of the form and, since by property 3 of the
Hasse symbol, ¢,(pf) = (p, d)z¢c,(f) we see that f and f/p
both satisfy or both do not satisfy the condition of the
theorem. Thus we confine our attention to forms

f = axi + axi + asxy + agwi

where a,a, is prime to p, as and a, are not divisible by p*
and all coefficients are integers. For what follows write
f = g + aa&: = ax} + h and, using property 4’ of the
Hasse symbol see that

eo(f) = ¢x(9)(d, as)p = ¢»(h)(d, ar)s .

Below we omit the subseripts on the Hasse and Hilbert
symbols.
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of ¢ are prime to p and by theorem 14b and property 1
of the Hasse symbol ¢ and hence f is a zero form; further-
more elther d is prime to p in which case ¢(f) = 1 or

= pa; with a’ prime to p in Whlch case d i is a non-square.
It remains to consider a; = pas, a, = pas where asa, is
prime to p. Then (d, a;) = 1 and

c(f) = c(h) = (as, —asas) = (— a3a4 l p)-

Thus if ¢(f) = 1, then ¢(h) = 1 and h -and thus f-is a
zero form. If ¢(f) = —1 and d is a non-square, —1 =
(—aac|p) = (@10:30: | p)(—a10a|p) = —(—ama|D)
and by theorem 14a, a;r; + a3 is a zero form and hence f
is. Finally if ¢(f) = —1 and d is a square we have shown
that

~1 = (—ac| p) = (—maz| ).

But if f were a zero form then f = 0 would have a solution
1, P2, P3, ps With qne p; a unit. Hence f = 0 (mod p°)
would have a solution 7y, 72, 3, 74 in integers with at least
one r prime to p. But (—a0, | p) = —1 implies r, = pre,
prz a.nd d1v1dmg the congruence by p, we see that
= (—asa | p) would imply r; and r, divisible by p
contrary to our supposition about r;. This completes the
proof for p odd. .
Consider p = 2, First if all coefficients of f are odd
section 13 shows that ¢(f) = 1 or —1 according as 4 — i =
lor20r4 — i = 0, 3 or 4, where ¢ is the number of co-
efficients congruent to 1 (mod 4). Thus f satisfies the
condition of the theorem unless

4 = 0 = a3 = a, (mod 4), d = 1 (mnod 8).

On the other hand ¢(g) = c¢(h) = —1if and only if a; =
a; = a; = a, (mod 4), that is, f is a zero form unless the
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f = 0 (mod 8) is solvable with one variable odd and
hence f is a zero form by theorem 9b if and only if the
sum of the coefficients is divisible by 8, that is, if and
only if exactly three are congruent (mod 8), hence if and
only if d is not congruent to 1 (mod 8).

Second if a, = 2 (mod 4) and ma.a; is odd, d is a non-
square and f satisfies the condition of the theorem. We
must then prove f a zero form. This is done by observing
that f(1, 1, 0, 1), (1, 1, 2, 1), f(1, 1, 0, 0), f(1, 1, 2, 0)
are all even and no two congruent (mod 8). Hence one is
divisible by 8 which, by theorem 9b, shows that f is a
zero form.

Finally suppose a;a; odd and a; = a¢ = 2 (mod 4).
We first establish a duality between the first pair of
coefficients and the last pair by noting that the trans-
formation z, = 21 , s = 223 , ¥s = 3 , % = Z4 takes f into
of withf’ = 2a,z1° + 2asx; + as%s + aize . By theorem 12
and property 3 of the Hasse symbol ¢(f) = ¢(2f) =
(2, d)e(f’) and hence consideration of f' is equivalent to
consideration of f. If a;a = 1 (mod 4), the transformation

. ’ ’ -’ ’ ’ ’

T = —at1/1 + 2,32 = T1 + T2, Ty = T3, 24 = Ty takes 3f
into f” = kaa(as/a, + 121’ + $(ax + oo)vs + 6523 + airi
whose coefficients are odd numbers and, as above, ¢(f) =
(2, d)e(f”) shows that our proof reduces to a previous case.
If a0 = —1 (mod 8) azi + amx; = 0 (mod 8) has a
solution (1, 1) and hence f is a zero form; but ¢(f) =
c(g)(d, a) = (d, a)) and f satisfies the condition of the
theorem. By the duality it remains to consider a;a; =
asas = 3 (mod 8). Then f = 0 (mod 8) has no solution
with one of the variables a unit and d/4 = 1 (mod 8)
which implies ¢(f) = (2| —aa2) = —1. Hence f does not
satisfy the condition of the theorem and it is not a zero
form. This completes our proof.
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CoRroLLARY l4e. If f is a ternary form in F(p) of determa-
nant d and N a number in F(p), then f = N {s solvable if
and only if the following condsition holds:

es(f) = +(—d, —N), whenever —dN 78 a square.

Our discussion is completed by the proof of

TeEoREM 14d. If n = b, f 78 a zero form in F(p).

We need merely show this for n = 5. Then, by the
discussion of the first part of the proof of theorem 14¢
(omitting the portion involving c,(f)) we see that we
may write '

f = awl + au7i + as7s + 6t + awi

where the coefficients are integers none of which is divisible
by p* and no more than two of which are divisible by p.

If p is odd, f contains a ternary form g whose determinant
is prime to p. Thus g and therefore f is a zero form.

If p = 2, by theorem 14e¢, f will contain a quaternary
form which is a zero form except perhaps when every
quaternary form has a determinant which is a square.
This would require that the product of every pair of
coefficients of f be a square and that all five coefficients are
odd. Thus, by the discussion for the case p = 2 with all
coefficients odd in the proof of theorem 14¢, we reduce
consideration to

f=azi + 23 + 23 + i + 25) (mod 4).
Then one of (1, 1, 1, 1, 2), (1, 1, 1, 1, 0) is a solution of
f = 0 (mnod 8) and f is a zero form.

CoroLrARY 14d. If f s an n-ary form with coefficients
in F(p) and n = 4, then f = N 13 solvable in F(p) for any
number N in F(p).
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THEOREM 14. If f %8 an n-ary form with coefficients in
F(p), p finite, and non-zero determinant d, it is a zero form
if and only if

a) Forn =2, —disa square number.

b) Forn = 38, ¢,(f) =

c) Forn = 4,¢(f) = +1 whenever d i3 a square.

d) n= 5.

Furthermore for n > 2, f is a zero form in F(p) for all odd
primes p not dividing d. (For a generalization of this theorem
see corollary 18b.)

CoroLLARY 14. If f 78 an n-ary form with coefficients in
F(p), p finite, and non-zero determinant d then, for any
p-adic number N, f = N s solvable in F(p) if and only if

a) For n = 1, dN 7s a square. '

b) Forn = 2, ¢,(f) = (—d, —N), .

¢) Forn =38, ¢,(f) = (—d, —N), whenever —dN 18 a

square.

d)y n =4
Furthermore for n > 1, f = N 1is solvable in F(p) for every
prime p not dividing 2dN .

16. Congruence of forms. We showed in section 11 that
if two forms f; and f, are congruent in F(p) condition (6)
must hold. We can now easily prove the converse of this
statement for p a finite prime.

TueoreM 15. Let f; and f; be two forms with coefficients in
F(p) for p finite, whose determinants are d, and d» with
dide # 0 and containing ny and n, variables respectively;

then f1 18 congruent to fs ¢f
(10) d = 7'ds, m-=m and - ¢(fi) = cp(f),
where T 18 a p-adic number. (This 18 the converse of theorem

I
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to prove the theorem by induction we assume it true for
ny = ny = k = 1 and seek to prove it forny = ny = k + 1.

Let N be a non-zero number represented by f; . Then the
conditions of corollary 14 hold for f, and N and, in virtue
of (10), they then hold for f; and N, which shows that f;
also represents N. Let r,, 73, + -, w1 be a solution of
fi = N. By permuting variables we may assume r, % 0
and form a matrix whose first column is 71, 72, -+ , 741,
whose principal diagonal is 7, , 1, 1, - - - , 1 and whose other
elements are zero. This will take fi into a form whose
leading coefficient (that is, the coefficient of z{) is N. Then,
as in the proof of theorem 1 we may eliminate all other
terms containing z; . Thus we have transformations of
determinants 7, and 7, taking f; and f,, respectively, into

Nzi+ g and Nyi+ g,

where g, and g, are quadratic forms in k variables. But
d: = 7:°N | g: | and ¢,(f)) = c,(g:)(di , N), show, in virtue
of (10) that | gug. | is a square and c,(g1) = ¢,(gz). Thus, by
the hypothesis of our induction ¢; and g, are congruent.
Thus Nzi + ¢ and Ny} + g are congruent and hence
f1 and f; are congruent.

17. Representation of one form by another. In view of
theorem 5 we can solve the problem of determining the
forms in m variables represented in F(p), p finite, by
forms in n variables, n > m, if we can determine to what
extent forms can be constructed with given invariants.
(The special case m = 1 has already been investigated.)
This determination is supplied by the following theorem.

THEOREM 16. Given a posttive integer n, a p-adic non-zero
number d and a value +1 or —1, then there 1s a form f in

FinY m fmate nr m = oo  hamna v waranhlee  deotoranannmt
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1. Ifn = 1,¢,(f) = (-1, —d),.

2. If n = 2 and —d 18 a square, then c,(f) = 1.

To prove this notice that if n = 1, ¢,(f) must have the
value in restriction 1 above. If n = 2, ¢,(f) = (—a1, —d),
where @, is the leading coefficient of f. Then, by property 9
of the Hilbert symbol, if —d is not a square, we may
choose a; so that the symbol has the value +1 or —1 as we
please; then the form a2} + (d/a,)z; will have the required
invariants. If n = 3 take f = @} + axri + asrs and
e(f) = (—aas, —d)p(—aa2, @), . If —d is a square,
choose —a,8; a non-square and, by property 9 of the
Hilbert symbol a; so that (—aa:, a1), = c,(f) has the
required sign. If —d is a non-square, choose —a,a2 so that
(—aay, —d), = —1. This implies that —a;0 is a non-
square and a; may be chosen so that ¢,(f) has the required
sign. The cases n > 3 are taken care of by noting that
¢p(*7 +.g) = co(g) and the determinants of z; + g and g
are equal. This discussion applies equally to p finite or »
infinite.

Now, using theorem 5 we prove

Tarorem 17. If f and g are forms in F(p) with n; and n,
variables and non-zero determinanis d, and d, respectively,
with ny > n,; then f represenis g in F(p) with the following
resirictions (p being finite):

1. If ny — ny = 1, then cp(f)ep(g) = (—dy, ds)s .

2. If ny — n, = 2 and —d,d; 1s a square, then c,(f)c,(g) =

(=1, —dy)y .

If ny > n, we must show that there is a form h such that
f = g + h under the given restrictions. Using property 4
of the Hasse symbol we see that

(11) cs(h) = cx(Nea(g)(—1, —1)p(dy , dody)s -
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(=1, —ds)p = (—1, —dds), and substitution in (11)
gives us condition 1.

If ny — ny, = 2 and —d, is a square, that is, if —dsd, is a
square, then from (11), ¢,(h) = 1 if and only if

c(Neo(g) = (=1, —=1),(dy, —1)p = (=1, —=dg)p.

If n; — n, > 2, theorem 16 shows that 4 may always be
determined. ' '

This completes the proof of the theorem. The corre-
sponding result for the field of real numbers was proved
in chapter I. An immediate consequence of the theorem is

CoroLLARY 17. If p i8 an odd prime not dividing | f | nor
| g | and if ny > n, , then f represenis g in F(p).

Notice that theorem 7 regarding automorphs and
representations holds for F(p) and hence gives us a
relationship between any two representations.

A generalization of the notion of a zero form is the
following: An n-ary form is called an m-zero form in a
field F if its matrix A is non-singular and if there is an »
by m matrix T in F of rank m such that T7AT is the
zero m by m matrix. In this connection we prove

TurOREM 18. A non-stngular n by n matrix A in o field F
in which 2 #~ 0 8 the matrix of an m-zero form if and only
if A is congruent in F to a matriz A, + A, where A, is the
direct sum of m matrices of binary zero forms 2xy. Further-
more m < n/2.

First suppose there is a matrix T of the required char-
acteristics taking A into the zero matrix B. By lemma 3
we can find a matrix T such that (T T,) is non-singular.
Then (T T,) will take A into a non-singular matrix C
whose leading m by m minor is B. Now if n < 2m, the
first m rows of C are linearly dependent contrary to the
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¢i; # 0 with ¢ < m, j > m. Without loss of generality call
it c1m+1 . Make the cyclic permutation of columns and
rows (m + 1,2, 3, ---, m) and have as the leading 2 by

2 minor
[ 0 CI'MI | ]
Ci,mi1  Cmid,mil

which is non-singular and the matrix of a binary zero
form. Add appropriate multiples of the first column to the
other columns and of the first row to other rows to make
the second row and column of the leading m 4 1 by
m <+ 1 minor (¢1,m+1, Cmi1,m+1, 0, 0, +: -, 0). This will not
alter the rest of this principal minor, that is, the elements
in the 3, 4, ---, m 4+ 1 rows and columns are all zero.
Then we may add appropriate multiples of the first two
rows and columns to them + 2, .. -, n rows and columns
to make the first two rows and columns of C all zero except
for the leading 2 by 2 minor. Then the matrix C is the
direct sum of the 2 by 2 minor above and a matrix C’
whose leading m — 1 by m — 1 minor is a zero matrix.
So we may proceed to prove our theorem.

On the other hand suppose 4 = A; -+ A; where A, is the
direct sum of matrices of binary zero forms. Each matrix
of a binary zero form may be assumed to be of the form

2]
C C |.
Permute the columns and rows of A, so that the third
column becomes the second, the fifth becomes the third,
.-+, the 2m — 1)th becomes the m-th and similarly
for the rows. The leading m by m minor of the result is the
Zero matrix.

It remains to show that every binary zero form is
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non-trivially it is congruent to 2cxy -+ ey’ for ¢ = 0.
The transformation 22’ = 2¢cx + cgy, ¥’ = y takes this
into 2z'y’.

If F is the field of real numbers, the index of the direct
sum of binary forms is m. Then theorem 6 gives us

CoROLLARY 18a. A form f of index 1 and rank n in the
Jield of reals is an m-zero form if and only if

n—mz=1tm

Now suppose F is the field of p-adic numbers. If n = 2m,
theorems 12 and 15 tell us that f is congruent to ¢, a sum
of binary zero forms if and only if c,(f) = c,(g) and
|f| ~]g]|- But since g may be taken to be the sum of
terms- 2zq;_,x5; we see that ¢,(g) = 1 for p odd or, using
section 13, ¢,(g) = (—1)™ "2 for p = 2. Forn > 2m,
use theorem 17 to prove

CoRroOLLARY 18b. An n-ary form with non-zero determinant
d in F(p) is an m-zero form if and only if n = 2m + 3 or
one of the following holds, p being finite,
1. Ifn=2m, | f| ~ (—1)" and c,(f) = wwherew = lor .
(—1)™ DR g oeording as p is odd or p = 2.
2. If n = 2m + 1, ¢,(f) = w({—1}"", d), where w has
the value just above.
3. If n = 2m + 2 and, whenever d(—1)™"" i3 a square,
then c,(f) = 1 or (=)™ ™% gecording as p is
odd or p = 2.

18. Universal forms. Though we have now solved the
principal problems for p-adic fields there is one by-product
of section 15 which we shall consider. We call a form
universal In a field if 1t represents all the non-zero numbers
of the field. In the field of reals, a form is universal if and
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be finite except where otherwise noted. (Notice that every
form represents 0 but some represent it only trivially.)
Theorem 13 shows that for F(p) any zero form is
universal. The converse of this statement follows with one
exception from corollary 14 as may be seen as follows. If
n = 1 there are no zero or universal forms. If n = 2,
(—d, —N), has, by property 9 of the Hilbert symbol, the
same value for all N if and only if —d is a square, that is,
using theorem 14, if and only if f i8 a zero form. If n = 3
take N = —d, see that —dN is a square and hence by
corollary 14, f = — N solvable implies ¢,(f) = (d, —d), = 1
and thus by theorem 14, fis a zero form. If n = 4 all forms
are universal in F(p) for p finite and all forms are zero
forms except for n = 4, ¢,(f) = —1 and d a square.
Thus we have

TueoreM 19. The totality of zero forms coincides with the
totality of universal forms in F(p) for p finite or p = =
except that under the following conditions a form f of deter-
minant d 18 universal bul not a zero form:

p finite, n = 4, () = —1, d a square.
An example of a universal form not a zero form is
o + 223 + 53 + 10z}

in F(5). (See theorem 84).

‘We have a generalization of the idea of a universal form
which is analogous to our generalization of a zero form.
If A is the matrix of an n-ary form f and if, for every m by
m symmetric matrix B of rank m there is a matrix T
such that T"AT = B we call f an m-universal form. We
prove the following

TrEOREM 20. If F i3 the field of real numbers, then a form f
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“only if” part of the theorem holds for F the field of p-adic
numbers.

First suppose f is an m-zero form. Then, by theorem 18,

it is congruent to fi + f: where f; has matrix C and is the
direct sum of m binary zero forms. Thus we wish to show
that ¢ = €, + Cy + -+ 4 O, represents an arbitrary
symmetric matrix B = (b;;) of m rows. Now each C; has
non-zero determinant and since it is the matrix of a
.universal binary form may be taken to have its leading
element b;;. From Theorem 1 there is a non-singular
smatrix T such that T"BT = B, is diagonal. Hence f rep-
resents B if and only if it represents B; and we may with-
out loss of generality, take B to be diagonal. Then, cross-
ing out the even numbered rows and columns of C leaves
the matrix B. This shows that C represents B.

Second, suppose F is the field of real numbers and fis an
m-universal form. Then theorem 6 tells us that ¢ = j and
n—i12m—jforallj < m.Hencet = mandn —72m
which is by corollary 18a the condition that f be an
m-zero form. '

1t is not hard to find the conditions that f be m-universal
in F(p). Theorem 17 shows us that f is m-universal if
n > m + 2. First if n = m + 2, the same theorem shows us
that the condition that f be universal is that

(12) () = (=1, —da)sts(g) = (=1, dp)scs(0),

for every g for which —d,dy is a square. Assume that d, is
chosen so that —d.d; is a square. If m = 1, theorem 16
shows that the choice of g implies (—1, —d;),c,(9) = 1. If
m = 2, g may be chosen to deny (12) unless —d, is a
square in which case d; i8 a square and ¢,(f) = ¢,(g) = 1.
If m > 2 the equality (12) may be denied.

Second if n = m + 1 theorem 14 suffices for m = 1 and
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choose c,(g) so that c,(f) = (—dy , ds)scs(g) and see thatf
is not m-universal.

Third if » = m we have the choice of either c,(g) or d,
for all values of m and hence no form is m-universal. These
resuits are included in the theorem below.

THEOREM 21. An n-ary form f in F(p) is m-universal if
n > m + 2 or if one of the following holds:

1.n =m+ 2 and either m = 1 = ¢,(f) or m = 2 with

d/ ~]1 = c,(f).

2.n=m+landm = 1with —d; ~ 1.

Superficially it may seem strange that theorem 20 does
not give a necessary and sufficient condition for F(p) as
well as for the field of reals. If we had defined an m-
universal form to be one for which T°AT = B has, for
every B, a solution T in R(p) where T has an m-rowed
minor which has unit determinant then theorem 9b would
show that 4 would be an m-zero form since we could make
the elements of B divisible by an arbitrarily high power of p.



CHAPTER III

FORMS WITH RATIONAL COEFFICIENTS

19. Congruence. When two forms with rational co-
efficients may be taken into each other by linear trans-
formations with rational elements, the forms are frequently
called rationally equivalent. But, to be consistent with
our terminology, we shall call two such forms rationally
congruent or congruent in the field of rational numbers and
reserve the term “equivalent” for transformations with
coefficients in a ring. We shall see that there is an intimate
connection between the fundamental results of this chapter
and those of the previous chapter.

Since the rational numbers form a field we have shown
in theorem 1 that every form is rationally congruent to a
diagonal form. As in the last chapter, we can specialize .
this still further; for (r/s)z’, where r and s are integers,
becomes rsy’ if z is replaced by sy and any square factor
of a coefficient may be absorbed into the variable. Hence
we have

THEOREM 22. Every form with ralional coefficients is
rationally congruent to a diagonal form whose coefficients
are square-free integers (that is, integers with no square
factors except 1),

20. Equivalence and reduced forms. So far in this book
we have considered transformations whose elements are
in the same field as the coefficients of the form. Here,
as is perhaps suggested by theorem 22, there is some
profit in considering & more restricted type of trans-
formation, namely one with integer elements. If such a
transformation is to have an inverse which also has integer

56
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elements its determinant must be =1 since 77" = 7,
the identity, implies that the product of the determinants
of T and 7" is 1, whereas | T'| and | T" | are both integers.
Thus we define a unimodular transformation to be one
which has integral elements and determinant =4-1. In
classical literature this term is frequently reserved for
transformations of determinant +1. However we shall
use the term properly unimodular for a transformation
with integer elements and determinant +1. In the case of
transformations with elements in a ring but not a field, it is
customary to replace the term congruence by equivalence
and hence we refer to two forms f and g as being equivalent
or in the same class if one may be taken into the other by a
unimodular transformation; we denote this by f =2 ¢g. On
occasion we find it convenient to write @ = b for two
numbers of F(p) which means that a/b is the square of a
unit. If the determinant of the transformation taking f into
g is +1 we say that the two forms are properly equivalent
and in the same proper class. If the determinant of the
transformation is —1 the term “improper” is used in place
of “proper”. Notice that two equivalent forms must have
the same number of variables and the same rank but need
not have non-zero determinant. However, for the most
part, we consider only formns with non-zero determinant.

The canonical form for an equivalence transformation is
called a reduced form. We give in the following theorem a
reduced form essentially due to Hermite.

TrEOREM 23. If g 18 a form in n variables with rational
coefficients and non-zero determinant d and if g is not a zero
Jorm, then g i3 equivalent to a form f = 2 a;xx; having the
following properties:

LO0<|an| S @3 V4],
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3. auf — (auz + 01'5'02 + e+ a;,a:..)’ =h

where f, 18 a form in n — 1 variables satisfying, with n
replaced by n — 1, the same conditions imposed on f. The
determinant of f, is dafy .

The theorem trivially holds for n = 1. Hence to prove
it by induction we assume it for n = k — 1 and show
it forn = k.

Let a;; = 0 be some number represented by g for
integral values of the variables and ¢;, ¢z, -+« , ¢z be a
solution of g = ay . If the g.c.d. of the ¢’s is w, then
(cr/w, ca/w, -+ , cx/w) is a solution of g = au/w’. Thus
we may replace aj by an/w’ and assume that the ¢’s
have 1 as their greatest common divisor. Then form a
matrix 7 of determinant 1 whose elements are integers
(see lemma 6 proved below) and whose first column is
¢, 0, *++, c. This takes g into a form f whose leading
coeﬂ‘icient is ay .

Consider the transformation

fr=y1+ cuya+-- + cupn
Ty = Calfp + + 0 + Cufe

S Cre¥e + ¢+ Cuyr .
This will take finto F = Z 4;yq; with Ay = an . Write-
anF — (auys + Ay + -+ + Aupp)' = F,

where F; is free of y,. Now, by the hypothesis of the
induction, we can choose c:;, 2,7 > 1, so that | ¢s;| = =1
and F, satisfies the conditions of the theorem since F;
is a form in k¥ — 1 variables. However, F, contains only
Yo, Ys, *** , Y Whose values in terms of 2y, 23, -+, 2%
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Ca, ***, Cu, that is, we are free to determine these ¢’s
as we please without altering F,. Now the only terms
containing y; come from apzi + 2aeZ%e + ¢ -+ + 20uLi;
which becomes

auyi + 2(aucs + = a1ici)yys
+ - 4+ 2(euen + = oy ca)yye +

terms free of y; . Thus the ¢;; may be determined so that
conditions 2 of the theorem hold for the coefficients of
ywWi, t > 1. Hence we may consider the coefficients of
fi = Fy to satisfy conditions 2 of the theorem.

Property 1 remains to be established. Again, it is trivial
for n = 1 and we assume it forn = k — 1, that is, that if b
1s the leading coefficient of f, , then

I b I = | anaz — agz l <@ /3)(1:—2)12 k—‘\l/l_d—ll

where d, is the determinant of f, . The determinant of
anf is a%d and hence da¥y, = ahd; . If az were zero, (0, 1,
0, - .-, 0) would be a non-trivial solution of f = 0 and it
would be a zero form. If | an | is gréater than | ax| we
interchange z; and z» in f and start over again to satisfy
condition 2 for the new coefficient. This process cannot
go on forever since all numbers represented by the form
with integer values of the variables are integers divided by
the l.c.m. of the denominators of the coefficients of the
form, that is, given any number M, there is only a finite
number of positive numbers less than M represented by
the form. Thus, after a finite number of back-trackings we
may take | ay | S | a= | and, by condition 2, | ay | 2 | 2a1 |
which imply ai, < ali/4 + b or

3ah/4 S |b| = @/3)7(| etV .
This implies the inequality in 1 and completes the proof.
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real coefficients but, though condition 2 could be made to
hold, the proof would fail at an essential point, namely
the finiteness of the number of back-trackings referred to.
Consider for instance the form 2* —+/" 2y*. The theory of
continued fractions can be used to show that this can be
made arbitrarily small for integer values of 2 and y. The
theorem can be modified to hold for real coeflicients but
it is not here worth our while.

As an application of this theorem, suppose d = =1,
n = 5 and the coefficients of the form are integers. Since,
for integer values of the variables, f represents only inte-
tegers, condition 1 shows that we may take a; = =1 and
from condition 2, a;; = 0, 7 = 2, 3, 4, 5. Thus f; has
determinant 41 and the same reasoning may be applied
to it. Thus f reduces to diagonal form with coefficients 1
and —1. If two coefficients were of different sign the form
would be a zero form which is excluded by the theorem.
Thus we might just as well restrict ourselves to positive
forms and have

CoroLLARY 23. If f is a positive form in fewer than six
variables and having integral coefficients and delerminant 1,
it 1s equivalent to

i N SRR

As a matter of fact, sharper inequalities than 1 imply the
same result forn = 6 andn = 7. It is not true forn = 8,

We shall prove later on in this chapter that every
indefinite form with more than four variables and rational
coefficients is a zero form. Thus our theorem applies
only to definite forms and to some indefinite forms of less
than five variables.

Before finding a canonical form for zero forms we need



EQUIVALENCE AND REDUCED FORMS 61

Lemma 4. Let T be an n by m matriz with “integer”
elements, where tn this lemma and its proof “integer” means
rational integer or inlegers in a p-adic field. There are
unimodular matrices P and Q (matrices with ‘“integer’
elements and unit determinant) such that

1. PTQ s a matriz (s;;) where 8;; = 0 4f © = j and
8i; divides 85,7 = 1.

2. P and Q are products of malrices of type E; obtained by
interchanging two rows or columns of the identity matriz and
of type E, oblained by adding an “‘integral” multiple of
one row (or column) to another row (or column) of the
identity matriz.

To prove this lemma we show that 7' may be reduced
to a diagonal form by a series of permutations of rows or
columns and adding integral multiples of a row (or column)
to another row (or column). Find the “smallest” element
of T where “smallest’”” means of least positive value for
rational integers and containing the least power of p for
p-adic integers; by a permutation of rows and columns
assume 1t to be t,; . Then, for each ¢;; , 7 > 1, we can find an
integral element r; such that ti; = tur; + &; is zero or a
smaller integer than &, and by adding r; times the first
column to the j-th we have all but the first element of the
first row zero or some element in the first row smaller
than ¢, . In the latter case permute columns to put the
smallest element in the #; position and repeat the proc-
ess. Thus eventually we will have t,,, 0, ---, 0 as the
first row. Then proceed similarly with the elements of the
first column to make the first row and column identical. If
now we carry through the same process for the matrix
obtained by deleting the first row and column we get a
matrix (s¢;) with s;; = 0 for 7 # j and s;; # 0 if 7 is not
greater than the rank of the matrix. If now s; does not
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ag above to replace 8y by a g.c.d. of s, and sz, and 8o the
proof may be completed.

If T is a unimodular matrix the resulting diagonal
maitrix must have all its elements units. Hence we have the

CoroLLARY 24. If T 48 a unimodular matriz it is ex-
pressible as a product of matrices of types E\ and E; with a
diagonal matriz whose elements are units. In other words,
any untmodular matric may be obtained from the identity
matriz by the multiplication of its rows by units followed by
multiplication by matrices of types B, and B, .

Lemma 5. Let T be an n by m matriz with “integer” -
elements in the sense of lemma 4 and let \(T) be the g.cd.
of its r-rowed minor determinants. Multiplying T by a
unimodular mairiz P leaves \(T) invariant for all r.

From the corollary above we need only show that \.(T")
18 left invariant by multiplication by matrices of the three
types: E,, E;, and multiplication of rows by units. It is

~ obvious that neither the first or the third type alters \.(T).
It remains to examine transformations of type E.. If A,
is any r-rowed minor determinant of T, adding an integral
multiple 7 of one row to another or one column to another
either leaves A, unaltered or replaces it by 4, + =B,
where B, is another r-rowed minor determinant. Hence
any number dividing all r-rowed minors before divides all
r-rowed minors after the transformation. That is, \.(7)
divides A(T") where E;T = T'. But T = E3T" shows that
A(T") divides A(T") and hence A (T") = A (T). '

Lemma 6. Let T be an n by m matriz with n > m and
having integral elements in the sense of lemma 4 such that g
i8 the g.c.d. of its m by m minors. There isan n by n — m
matriz To with integral elements such that the n by n matriz
(T T,) has determinant g. .
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lemma 4 shows the existence of a unimodular matrix P
such that PT = U = (uy;) with u;; = 0 for ¢ > 7. Since,
by lemma 5, this process does not alter the g.c.d. of the
m-rowed minor determinants of T, ¢ = Uples -+ - Umm .
Let J be an n by n — m matrix whose last n — m rows
constitute the identity matrix. Then the » by n matrix
(U J) has determinant g. Hence P'(U J) = (P'U P'J) =
(T P'J) has determinant g.

In order to make one direct application of this lemma -
suppose (ry, 72, -+ , s) i8 a solution in integers of f = N
and the g.c.d. of the r; is 1. Then by the lemma form a
unimodular matrix S whose first column is (r; , 72, -+ , #n).
This will take f into a form whose leading coefficient is N.
Hence we have the

Corollary. If f = N has a solution (ry,rs, «-- ,r,.) in
iniegers whose g.c.d. is 1, then f s equwalent to o form
whose leading coefficient is N. .

TBEOREM 23a. An n-ary zero form f with ratwnal co-
efficients i3 equivalent to o form g whose matriz (ai;) 18 of
the form

3 (% 5]

where N 1s an m by m zero matriz (that is, all its elements are
zero), B is an m by n — m matriz (bs,), with by; = O for
i 5 j and bj; 18 an integral multiple of by for § = 1, while C
isann — m by n — m matriz (c:;), tn which, for i £ m,
2 lewi| < |bii| when k 5 ¢ and ]c“l < lb‘,l The in-
equalzty n Z 2m holds. :

Since f represents zero non-trivially, there is a column
matrix whose elements are integers of g.c.d. 1 taking f into
0. Let T be an integral n by m matrix of maximum number
of colimng -the o.c.d of whose m-rowed minors is 1 and
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we can find a matrix Ty such that (7, To) is unimodular.
This will take the matrix f into a matrix (13) with B = (b;;)
and C = (¢;;). Let s be the Le.m. of the denominators of
the elements of B and C and write 8B = B, sC = C.
From lemma 4 we can find unimodular matrices P and @
such that PBQ = B, where the elements of B, satisfy
the conditions of our theorem imposed on B. Then

[ el 2lls o] -[5 okl

By adding appropriate multiples of the first m rows and
columns to the remaining rows and columns we can make
the elements of QCQ satisfy the requirements on C.
Dividing by s all elements of the resulting matrix yields a
matrix satisfying the conditions imposed. Since | f | < 0,
the first m rows of (13) must be linearly independent
and hencen — m 2 m.

Notice that if f is an integral form, the square of the
product bubes - -+ bum divides | | and if | f | is square free,
all non-diagonal elements of the leading m by m minor
of C may be taken to be zero and all diagonal elements of
absolute value 1.

There are three theorems which we include here because
of their later usefulness.

TrEOREM 24. If f i3 an n-ary form with integral co-
efficients which is a zero form in F(p), there is a trans-
formation of determinant p™ " and having integral elements
which takes f into pg where g 78 a form having inlegral
coefficients.

To prove this let 1, r2, - - , 4 be a non-trivial solu-
tion in integers of f = 0 (mod p). We may, without
loss of generality, take r, % 0 (mod p) and, dividing
through by ., have a solution 8, **+, 8,4.1 of f =
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81,8, " , 81, 1, whose principal diagonal consists of p’s
except for its last element and whose other elements are
zero, does what is required.

THEOREM 25. If f 18 a form with integral coefficients, p an
odd prime and k an arbitrary positive integer, then there is a
Jorm g equivalent to f such that

g = awi + as¥i + -+ + a.zh (mod p%),

where we say that one form is congruent to another mod p"* if
corresponding coefficients are congruent.

Let p* be the highest power of p dividing all the elements
of f. If a./p’ is prime to p for some 4, we may permute
variables so that ay;/p’ is prime to p. If as;-= 0 (mod p**")
for all 4, let a;;/p’ be prime to p and see that the trans-
formation z; = yi, k 7 ¢, x; = y: + y; yields a form in
which the coefficient of ¢} is b = ai;; + 2as; + aj; and
b/p’ is prime to p. Hence we may take a.,/p’ prime to p.

Then, since a,; are all divisible by p* we see that the
congruences (an)z + ai; = O (mod p*) have integral
golutions r2, 73, - -+, r». The transformation whose first
rowig 1, 72, +«+ , r,, whose diagonal elements are 1, and
whose other elements are zero takes f into a form the first
row and column of whose matrix is = (ay, 0, -<+, 0)
(mod p*). Then we proceed in like manner with that
portion of thé form free of z,. The theorem for p = 2
corresponding to theorem 25 is theorem 41.

TrEOREM 26. If f is an n-ary form with integral coefficients
and of determinant d, while m 18 a number such that c,(f) =
(d, m), for a preassigned value of the ambiguous sign and
for all primes p dividing 2d as well as for p = «, then, for
any modulus B whose prime factors are all factors of 2d,
there is an M = m (mod R) such that c,(f) = (F+d, M),
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Let g be the g.e.d. of m and R. Then by Dirichlet’s
theorem on the primes in an arithmetic progression we
know that there is a prime number P not dividing 2d such
that M = gP = m (mod R) where g is given the sign of m.
Then for R sufficiently large we have (+d, M), = (&d, m),
for all primes p dividing 2d. If p is a prime not dividing
2dP we havec,(f) = (xd, M), = 1. Thusec,(f) = (&d, M),
for all primes p except perhaps p = P. But, since 1 ig the
product over all primes p of the symbols on the opposite
sides of the last equation the equality holds also for p = P
and our theorem is proved.

If f is a binary form, the solvability of f = m in F(p) is
equivalent to the condition ¢,(f) = (—d, —m),. Hence
we have

CoroLrLarY 26. If f i3 a binary form with integral co-
efficients and of determinant d and m is a number such that
J = m 18 solvable in F(p) for all primes p dividing 2d and
p = =, then for any modulus R whose prime factors are
divisors of 2d, there isan M = m (mod R) such that f = M
i¢ solvable in F (p) for all primes p. (This 18 a special case of
theorem 40, part 3a.)

21. The fundamental theorem on zero forms. A zero
form in the field of rational numbers is a zero form in F(p)
for every prime p including p = «. The truth of the con-
verse of this statement, given in theorem 27, below is a
remarkable result first proved by Hasse. This statement
and others similar to it underly much of the remaxmng
theory of this book.

We shall see that for quaternary forms of determmant
whose absolute value is a square and for ternary forms, the
proof of theorem 27 ig independent of theorem 26 and
hence of Dirichlet’s theorem on primes in an arithmetic
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results from the composition of binary forms may be
used to avoid Dirichlet’s theorem altogether. We now
prove

TrEOREM 27. If f 8 a form of non-zero determinant and
with rational coeffictents, then it 18 a zero form if and only if it
18 a p-adic zero form for all primes p including p = .
(See remarks 1 and 2 after the first corollary.)

In accordance with the above remarks we need prove
only the “if”’ part of the theorem. Since f is a zero form
or a p-adic zero form if and only if any form rationally
congruent to it has the same property we may assume
from theorem 22 that f is a diagonal form with square-free
integral coefficients. '

First suppose n = 2. Then if f is to be a p-adic zero form
for all p, —d must be a square for every prime factor of d.
Hence d = 5" where 8 is an integer. Since —d is a square
in F(2) (or in F(«)) the ambiguous sign cannot be positive.
Thus f = @i + asz2 where —a0; = &’ and f = 0 has the
non-trivial solution z, = s, 2, = a, . Notice that we did
not need to use the fact that —d is'a square in the field of
reals nor in F(2) but that we needed one of these facts.
This is natural sinceIle,(f) = 1, the product being over all
P, and for n = 2, ¢,(f) determines the sign of d.

Second suppose n = 3 and f = awi + awz + a3,
where the coefficients are square-free integers. We may
agsume the g.c.d. of the coeflicients to be 1 since otherwise
we could divide by a common factor and have a form
which is a zero form if and only if fis. If p divides a. and
as,f = 0if and only if 2, = px: where 21 is an integer
and in that case we may consider instead of f, the form
aprs + (ao/p)zs + (as/p)zs . Thus we assume that no
two coefficients have a factor in common.

Sarnnnea » 1g an ndd nmme dAixvsdine a2 bt nat Ao
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(—aaz | p) = 1. Thus axi + asrs = 0 (mod p) has the
solution #, 1 and the transformation

pr O
010
0 01

takes f into pg where ¢ = awyi + 2aryw: + by: +
(as/pP)yi, b = (ar® + as)/p and the determinant of g is
prime to p. Now if ¢ = 0 has a non-trivial solution in
integers so has f and | g| = | f|/p. Suppose ¢ is an odd
prime dividing the determinant of g. We see that ¢ = p
and theorem 25 shows that g is congruent to a form

g’ = bixt + byrs + bexs (mod p°)

where the coefficients are integers and we proceed as
above to eliminate the factors of | ¢’ | involving ¢. So we
continue until we have a form % whose determinant is a
power of 2 contained in d, whose coeflicients are integers
and which is a zero form if and only if f is. Now by the
discussion at the beginning of this case, the determinant
of f is not divisible by 4. Hence the determinant of A is
+1 or =£2. Thus either % is a zero form or theorem 23
applies to show that we may take the leading coefficient of
h to be <(4/3) v/2, in absolute value, that is +1. Again
using theorem 23 we can show that +h = 2§ + ¢z} + er3
where¢ = lor —lande = 1, —1,2 or —2. Unlessc and ¢
are both positive, 4 ig clearly a zero form. If they are both
positive, % is not a zero form in the field of reals. Again,
examining b in only one of the fields F(2) and F(«) is
necessary as may be seen directly or by use of property 2
of the Hasse symbol.

Third, suppose n = 4. By the a.rgument at the begmnmg
of the last case we see that f may be considered to be in
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g.ed. of every three equal to 1. Thus d is divisible by no
cube except +1.

Suppose the last two coefficients of f are even; then the
transformation

takes f into a form 2g where g has integral coefficients and
odd determinant but is not in diagonal form. Thus in what
follows we assume the determinant of f not divisible by 4
and though the form is not necessarily in diagonal form it
may be assumed diagonal mod p® for any odd prime
considered.

If p is an odd prime whose square divides d either its
square divides one of the coefficients (mod p*) in which
case we may absorb it into the accompanying variable
and have a form of determinant prime to p, or p but not p?
divides just two coefficients. In the latter case assume
them the last two and see that ¢,(f) = (—asas | p) where
as = pa; and @, = pas. Thus one of two thmgs must
happen. First ¢,(f) = 1 which implies that asrs + ai} is a
zero form in F(p) and by theorem 24 may be ta.ken into a
form pf’ where f’ is a form by: + 2bwsy: + byi whose
coefficients are integers and whose determinant is asay .
Then pys = 2, Pys = 2z takes p’f’ into a form whose
determinant is asa: . Thus if these two transformations
are applied in order to asrs + awi , f becomes g where g has
integral coefficients and determinant d/p®, which is prime
to p. Second ¢,(f) = —1, in which case d i8 not a square
since f i8 a zero form in F(p) and hence (—asas | p) = —1
implies (—a02|p) = 1. Then take axi + asr: into pyg

wxvhatn tha Adotamvitrnandt ~Ff & o0 e and € ceans lwvda
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By the above process we can eliminate all square factors
of the determinant of f, thus getting a form d of square-free
determinant which is a zero form if and only if fis and a
p-adic zero form if and only if f is. If the absolute value
of the determinant is a square we may by this process
reduce it to a form of determinant =1 which may be dealt:
with as in the case n = 3, thus completing our proof.

It remains to consider forms of square-free determinants.
Now from property 9 of the Hilbert symbol together
with the fact that if d is a square in any F(p) then ¢,(f) = 1
for that p, we see that for every prime factor p of 2d and
p = = we can determine a w, so that c,(f) = (d, wy),
with w,, prime to p unless p = 2 and d is odd. Then choosing
an integer of the same sign as w,, , congruent to w, (mod p)
for p odd and congruent to w; (mod 16) we see that
¢o(f) = (d, w), for all primes p dividing 2d and for p = .
Then, by theorem 26 there is an integer W such that
¢o(f) = (d, W), for all primes p including p = ., For this
W it is true that c,(W)f) = (d, W)zc,(f) = 1 by property 3
of the Hasse symbol.

Consider the form g = Wf — zi . Then Pall’s invariant

ko(g) = eo(9)(—1, —Wd)p
= cp(Wf)(—1, =W'd),(—1, —W'd), = c,(f)d, W)y = 1

for all p. Furthermore g is indefinite for Wf a negative
form would imply d a square in F(«) and ¢ (Wf) =
c.(f) = —1 from section 13 and f would not be a zero
form in F(«)! Then, by the proof of the first part of case
n = § below (which is independent of this case) we see
that g is a zero form and hence W7 represents a square °
number N?. Hence Wf = M* has a solution in integers
whose g.c.d. is 1 and M is a divisor of N. Thus by the
corollary to lemma 6 W7 is equivalent to a form whose
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to a form #* + h where & is a ternary form. But 1 =
co(Wf) = cp(h) for all p and hence by the case n = 3,
h is a zero form and thus f is.

Fourth suppose n = 5. As above we may assume that f is
in diagonal form with 1 the g.c.d. of every three coeflicients
and each coefficient is square-free; hence d is not divisible
by any cube except 1. If two coefficients are even we can
show as in the previous case that f is rationally congruent
to a form whose determinant is d/4 and hence odd. If the
last coeficient only is even we use the transformation

21000
01000
00210
00010
00001

Though in the last two instances the resulting form is no
longer diagonal, by permuting the variables, we may
consider it the sum of a ternary form in z,, 22, 23 and a
binary form in z; and x5 . Moreover mod any power of an
odd prime it may be taken to be diagonal.

If an odd prime p but not p° divides d, write fin diagonal
form (mod p°) and assume the last coefficient divisible by p.
Then the first four terms constitute in F(p) a quaternary
zero form with determinant prime to p which can by
theorem 24 be taken into pg where g is a quaternary form of
determinant p*; hence f is so taken into p}’ where | f' | = pd.
Then one coefficient of f (mod p*) considered to be
diagonal, is divisible by p* which may be absorbed into the
variable or p divides two coefficients of f’ (mod p?). Thus
we reduce consideration to d in absolute value a perfect
square and odd.

k() = 1and f = ax? + asrs + aszs + aurs + asth
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(—awas/P’ | p) = 1 and by the same argument as in
the case n = 4 we take f into a form whose determinant is
prime to p. If k,(f) = 1 for all primes p dividing d we
can continue the procedure to reduce consideration to
d = =1 which is dealt with just as for n = 3. This com-
pletely disposes of the case n = 4.

Now we consider the general case of the quinary form.
By the first paragraph of this case, we may takef = g — &
where g is a ternary form and 4 a binary form. Multiplying
by —1 if necessary we may assume g and % represent a
positive number in the field of reals since f is a zero form
in that field. Moreover d may be considered odd and not
divisible by the cube of any prime. We seek a non-zero
number M represented by ¢ and h, for the existence of
such a number will prove our theorem. For any odd prime p
dividing d choose N as follows: if | g | is prime to p, take
N, any number represented by A and not divisible by p%;
if | g| and | k| are divisible by p but neither by p*, take
N, a number prime to p represented by A; if | h | is prime
to p and | ¢ | divisible by p, take N, a number prime to p
represented by g. In all cases, corollary 14 shows that
N, is represented by g and h in F(p). Since d is odd, ¢
represents at least three and & at least two incongruent
numbers (mod 8) and hence by corollary 9b there is an
odd number N, represented by g and kh in F(2). Now
choose N = N, modulo an arbitrary but fixed power of p
for all primes p dividing 2d with N > 0. We see that
cp(h) = (—|h|, —N), for all primes p dividing 2| A |
and p = . Hence by theorem 26 we may find an M = N
(mod 16d") such that ¢ (k) = (—|h], — M), for all primes
p. Hence M is represented by k in all F(p). Furthermore,
M = N (mod 16d*) implies ¢ = M is solvable in F(p) for
all primes » dividing 2d: moreover if » does not divide 2d.
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represented by g in F(p) for all primes. Then by corollary
27a below for n = 2, 3 (which depends only on the cases
n < 5) we see that M is represented rationally by g and h.
Hence our proof is complete.

In view of corollary 13 we have

CoroLLARY 27a. If f 18 a form with rational coefficients
and N a rational number, then f = N has a solution in
rational numbers if and only if it has a solution in F(p)
Jor every prime p.

From theorem 14 and its corollary we have

ReMARK 1. In theorem 27 and its corollary 27a only the
infinite prime and primes dividing 2d or 2dN, respectively,
need be considered.

From section 13, ¢ (f) and | f | determine the index of f
if it has less than four variables since the sign of |f|
determines the parity of ¢. Furthermore it may be seen
that for n < 4, theorem 14 and its corollary hold for
p = . Hence property 2 of the Hasse symbol and
property 10 of the Hilbert symbol with theorem 14 and its
corollary show

ReEMARK 2. Any form f in two or three variables with
rational coefficients is a zero form in all F(p) if it is for all
but one prime and any binary form with rational co-
efficients represents a rational number in all F(p) if it
represents it in F(p) for all but one prime p.

That the latter part of this remark fails for ternary
forms is shown by the fact that z; + 223 + 525 = 15 is
solvable in F(p) for all primes p including » = « except
the single prime p = 5.

In the consideration of zero forms there is no essential
restriction involved in restricting the coefficients and solu-
tions to be integers. Then, using corollary 14, we shall
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coefficients are square-free inlegers and prime in pairs, then
f = 0 has a non-trivial solution if and only if both of the
Jollowing conditions hold:

1. Not all coefficients have the same sign.

2. For every 1, j, k a permutation of 1, 2, 3 it vs true that

—@a40; 18 a quadralic residue of a .

For suppose an odd prime p divides a;, then c,(f) =
(—a:102, —0s03), = (—a0:|p) and f is a zero form in
F(p) if and only if (—mae.|p) = 1, that is, —a0, is a
quadratic residue of p. If a; iseven, then —a,a; must be a
quadratic residue of 2 since it is odd. These considerations
with the condition that not all the coefficients shall have
the same sign assures us that except perhaps for p = 2, f
is a zero form in all F(p). Then from remark 2 above it is
also a zero form in F(2) and theorem 27 establishes our
result.

We illustrate these two corollaries by the following
examples

ExawmpLe 1. To find the numbers represented rationally
by f = (5/3)xi — 2zx, + 7z3 . Now f is a positive form.
Hence a rational number N is represented by f if and only
if it is positive and, using remark 1, ¢,(f) = (—96, —N),
for p = 2, 3 and (—96, —N), = 1 for all prime factors
not 2 or 3 of the numerator and denominator of N. Now
e(f) = 1 = —e(f). Hence the requirement becomes
(—6, —N), = 1for p = 2 and all odd primes dividing the
numerator or denominator of N except that (—6, —N); =
—1. In particular if N is a positive integer prime to 6
this reduces to

N =1 (mod 3), = +1 (mod 8) and —6 a
quadratic residue of all prime factors of N occurring in
N to an odd power.
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that .(f) = —1, ¢,(f) = 1. Since the product of cp(f)
over all primes p is 1, we have ¢y(f) = —1. Hence, from
corollary 14, N is represented in all F(p) unless 31N is a
square in F(2) or F(31). Hence all rational numbers N
" are rationally represented except numbers of the forms 4"
with r = 7 (inod 8) and 31**s where (s | 31) = 1, k being
an integer positive, negative or zero and r and s are
rational numbers. Notice that N need not be positive.

Exampre 3. The form f = 3z} + 727 — 1923 is a zero
form since (—21 | 19). = (57|7) = (133|3) =
Theorems 14c and 27 may be shown to imply

CoroLLARY 27c. If f = awwi + aszi + 0ar + awi
where the coefficients are square-free nom-zero integers and
no three have a factor in common, then f 18 a zero form if and
only if the following three conditions hold

1. Not all coefficients have the same sign.

2. If p is an odd prime dividing two coefficients and
for which (d/p | p) = 1, then (—a.a;| p) = 1 where a;
a; are the coeflicients of f prime to p.

3. Ifd =1 (mod 8) ord/4 = 1 (mod 8) then (—ma:,
—ag)y = 1. (For d = 1 (mod 8) the condition
amounis o the requirement that exactly two of the
coefficients are congruent to 1 mod 4).

The last two corollaries are classical and could, by

means of theorem 14, be stated for forms with cross-
products. Another immediate consequence of theorem 27 is

CoroLrary 27d. Every indefinite form in & or more
variables (with non-zero determinant) 1s a zero form.

- Theorem 13 and the above shows that any zero form
in the field of rationals is a universal form. Theorem 19
implies
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n = 4 and, for some prime p, d 18 a square in F(p) and
&(f) = -1

The form zi + 2x3 + 523 — 10z} is universal in the field
of rational numbers but is not a zero form in that field.

22. The fundamental theorem on rational congruence.
We prove the following theorem on rational congruence
which is analogous to theorem 27.

TrEOREM 28. If f and g are two forms of non-zero determi-
nant and with rational coefficients then they are rationally
congruent if and only if they are congruent in F(p) for
every prime p including p = .

X f and g are rationally congruent they must be con-
gruent in F(p) for every p.

Then we suppose f and g have determinants d; and d,
and are congruent in every F(p). This implies that they
have the same number of variables which we call n. If
n=1d; = t:d,, for every p, where ¢, is a p-adic number,
implies that d;/d, is a square in all F(p) and in particular
for all prime factors of the numerators and denominators
of d; and d, . Thus d;/d, = =& for s a rational number
while congruence in the field of reals requires the ambigu-
ous sign to be +. Then x = sy takes f into ¢ and the
forms are congruent.

Now assume the theorem for n = k& — 1 and, by induc-
tion, prove it for n = k. Let N be some non-zero number
represented by f. It must satisfy for f the conditions of
corollary 14 for every prime p. Since the determinants of
f and g differ only by a square factor in F(p) and the
Hasse invariants are the same for both forms it follows
that g represents N in F(p) for every p. Hence, by theorem
27, g represents N. By the corollary of lemma 6, f and g are

aranreriiant fa farma S .. and S h.arar. where 4., ==
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z1 — (a1s/N)22 — (a1s/N)2s — -+ - — (@1n/N)7a

and making a similar replacement for y; , we take f and ¢
into forms

N+fi and N+ g

where fi and g, arc forms in z3, -+, z, and y2, <+, ¥a
respectively. Now N | f, | ~ d;and N | g, | ~ d, and prop-
erty 4 of the Hasse symbol shows that the Hasse invariants
of f; and g, are the same while the quotient of their deter-
minants is a square in F(p) for every p. Thus f, and g, are
congruent, in F(p) for every p and are, by the hypothesis
of our induction, rationally congruent. Thus f and g are
rationally congruent.

23. Representation of one form by another. This follows
much the same lines as section 17 in the previous chapter.
We first need the theorem corresponding to theorem 16,
which is

THEOREM 29. Given a positive inleger n, a non-zero inleger
d, a set of values +1 or —1 for co(f) for all primes including
p = o« and a non-negative integer 1 not greater thoan n,
there 18 a form with n vartables, indeger coefficients, deter-
minant d, Hasse invariants of the given values and index 1 if
and only if the following conditions hold:

1. ¢p(f) = +1 for finite primes p not dividing 2d.

2. e, (f) = 1, the product extending over all primes

ncluding p = o,
3. If n = 1, ¢,(f) = (=1, —d), for all p including
p= .

4. If n = 2, then c,(f) = 1 for every prime p, including
p = o, for which —d is a square.
5.n—¢t=c.(f)+ 14+ (~1,d).} (mod 4).
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properties 1 and 2 of the Hasse symbol that conditions 1
and 2 are necessary and (9b) of section 13 that condition 5
is necessary. If n < 4 condition 5 determines the index
and hence for such values of n we need not consider
the index.

If n = 1, d determines c,(f) by condition 3 and the
form dz’ has the required invariants.

If n = 2 we may, by property 9 of the Hilbert symbol,
choose a square-free integer a such that (—a, —d), has
the required value for c,(f) for p = « and every prime p
dividing 2d. Furthermore if w is the g.c.d. of ¢ and 2d we
may assume that each prime factor of w and hence w
itself occurs in d to an even power. Hence if we write d
in the form dys® where d is square-free, w divides 22 and
is prime to do . Then, by Dirichlet’s theorem on the primes
in an arithmetic progression (which can be avoided by
composition of binary forms) there is a prime P = a/w
(mod 84®) since a/w is prime to 2d. Then (—wP, —d), =
(—a, —d), for all primes p dividing 2d and, giving P the
gign of a, we have lI(—wP, —d), = 1 the product being
over all primes except P. Hence (—wP, —d)s = 1 =
(—wP, —dy)p, that is, (—do|P) = 1 which implies
that the equation —dy = 4> — Py issolvable for integersu
and ». Then the form

f = Pwz’ — 2suxy + (s'v/w)y’

has determinant d and the required values for its in-
variants.

If n = 8, let w be the product of primes dividing 2d for
which ¢p(f) = —1, determine by Dirichlet’s theorem a
prime @ not dividing 2d such that (—w@, d), = 1 for
all prime factors p of 2d not in w. Then find a binary
form a = azrs 4+ Qry 4 bt of determinant +wQ such
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dividing 2dQ. This is possible by the argument in the
previous paragraph since —w@ a square in RE(p) for some p
implies that p divides neither w nor @ and p finite; but
for such primes ¢,(f) = 1 = ¢,(g). Sincea = b = 0 (mod Q)
would deny | g | = —wQ, a may be taken prime to Q. Then
sincea is prime to @ and co(f) = 1, co(g) = (—a, —wQ)q =
(—wQ, d)ece(f) which implies that (—ad, —w@)q = 1
and (—ad | @) = 1. Hence —d = aa’ (mod Q) is solvable,
—d/w = awz’ (mod Q) is solvable, —d = az’ (mod wQ) is
solvable and hence there are integers ¢ and r such that
d = cw@ — ar’. Then the integral form

f = a2’ + 2txy + by + ¢ + 2ry2

has the required invariants by the properties of the Hasse
invariants.

If n > 3 we consider two cases. If 7 > 0 we may by
induction find an integral form f' of determinant d, index
¢ — 1, having n — 1 variables (since the satisfaction of
condition 5 for » and ¢ is equivalent to its satisfaction
forn — 1 and ¢ — 1) such that c,(;’) has the chosen value
of ¢,(f) for all primes p including p = . Then ' + 2’ has
the required invariants. If + = 0 there is, by induction, an
integral form f’ in n — 1 variables such that c,(f' — z°)
has the given values for all p including p = «. To show
that the index of f' may be taken to be 0 we use the fact
that condition 5 holds for f with ¢ = 0. An equivalent
form of this condition is, by section 13,

(14) d("‘l)” > 0, c”(f) = (_1)(1&—-1)(1»—‘2)/2.

But, by property 4’ of the Hasse symbol, ¢ (f’ — 2°) =
c.(f) (d, —1),. Hence (14) implies

- 171(=D"* >0,
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since2n + n — 1) (n —2)=(n — 2) (n — 3) (mod 4)
and condition 5 holds for f* with ¢ = 0.

An immediate consequence of this theorem is

CoroLLARY 29. If f 48 an n-ary quadralic form with
integral coefficients and index 1, then for any non-negative
integer 1’ not greater than n and congruent to i (mod 4) there
18 an n-ary quadratic form [ with integral coefficients and
tndex 1’ such that [f'| = |f|and c,(f) = co(f*) for all
primes p including p = .

X fis a form with rational coefficients the l.c.m. of
whose denominators is 8, we may consider the form sf in
place of f and apply the above theorem.

As in the previous chapter, this theorem could be used to
construct a unique canonical form, but it seems scarcely
worth doing.

We can now prove

TaeoreM 30. If f and g are forms with rational coefficients
n ny and n, variables, having indices iy and i, and deter-
minants d; and d, , where ny > n, > 0, then f represents g
in the field of rational numbers if and only if the followmg
conditions hold:

iy Zt,n —tr2ny — 2. _

2. If ny — my = 1, then c,(fles(g) = (—dy, dy)p for

all primes p.

3. If ny — my = 2, then cp(f)co(g) = (—1, —d,), for

every prime p for which —d,d, 18 a square.

Theorem 5 applies to prove that f represents g if and
only if there is a form % such that f is rationally congruent
to ¢ + h. Now property 4 of the Hasse symbol and the-
orems 12, 15 and 28 show that f is rationally congruent to
g + h if and only if d; ~ dud, and

4 MmN\ s Y .9 2 N7 -t <N 723 - N "~ 71
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Hence we determine the conditions that such an A will
exist. The conditions of this theorem are necessary from
theorem 6 and conditions 4 and 3 of theorem 29. To prove
the conditions sufficient let ¢ be an integer such that
cdys/d, is an integer. If each variable of f is multiplied by ¢, f
is replaced by a form f’ congruent to it and | f’ |/d, is an
integer. Hence we may take d;/d, to be an integer. Thus
our theorem will be proved if we can find a form A in
ns — m, variables, having integer coefficients, the integral
determinant d;/d, and ¢,(h) determined by (16). But (16)
and properties 1 and 2 of the Hasse symbol assure the
satisfaction of conditions 1 and 2 of theorem 29; conditions
2 and 3 of this theorem with (16) assure the satisfaction of
conditions 3 and 4 of theorem 29; condition 5 of theorem 29
need not be considered since the index of & is not pre-
assigned. Hence our proof is complete.
Then theorems 6, 17, 28, 30 imply

Tarorem 31. If f and g are two forms with rational
coefficients and if the number of variables in f is not less than
the number of variables in g, then f represenis g rationally
if and only if it represents g in F(p) for every prime p.

Notice that theorem 7 holds for rational congruence.
Theorem 31 taken with theorems 18 and 21 give conditions
that a form be an m-zero or m-universal form in the field
of rational numbers.



CHaPTER IV
FORMS WITH COEFFICIENTS IN R(p)

24. Equivalence. We further restrict our forms in this
chapter by requiring that their coefficients be p-adic inte-
gers, that is, in R(p). As the theory for F(p) led to results
for forms with rational coefficients, so the theory for E(p)
leads to results for forms with integer coefficients though,
as we shall see, there is here an intermediate case which
hag no previous analogy. Suppose a transformation T with
elements in RB(p) takes a form f into a form g where both
forms are in R(p) and have non-zero determinants d;
and d,, respectively, and a transformation S in R(p)
takes g into f. Then

| T*|-d; = d, and |S*|-d = d;

imply that | T [*| S|* = 1. Since the determinants of T
and S are p-adic integers, they must be units. Thus,
following section 20, we call a transformation unimodular
in R(p) or p-adically unimodular if its elements are in R(p)
and its determinant a p-adic unit. Two forms are equivalent
in R(p) or p-adically equivalent if one may be taken into
the other by a unimodular transformation in R(p). Two
p-adically equivalent forms represent the same p-adic
integers for values of the variables in R(p). In this chapter,
unless it is stated to the contrary, equivalence means p-adic
equivalence and we denote it by the sign 2. Two forms
equivalent in R(p) are said to be in the same p-adic class.

25. Canonical forms. Here we begin to have trouble
for the prime 2. (The reason for this trouble is not any
fundamental perversity of the prime 2 but is due .to

82
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the fact that quadratic forms are the subject of our
study. If it were cubic forms, 3 would be the onerous
prime.) But for odd primes we use the proof of theorem 25
with the following alteration: in the second paragraph
we can choose the 7’s to be p-adic integers satisfying the
equation (au)r + a1 = 0. Thus, using the argument of
section 9, we have

TerorREM 32. If f i8 a form with coefficients in R(p)
where p 18 an odd prime, then f is (p-adically) equivalent
{o a jorm

g =ai+ aws + - + aza
where the coefficients are integers.

That this theorem does.not hold for p = 2 is shown by
taking as f the form 2z} + 2z, + 223 . If g = a7} + ase2
were equivalent to f its determinant would have to be a
unit and hence a; and a, would be units. Then g would
represent g unit while f represents no units. Thus g cannot
be p-adically equivalent to f. To distinguish between two
such forms the following terminology is useful. The form
f = Zaiwz; in R(Q) is called properly primitive if some
a:: is a unit and improperly primitive if no ay is a unit but
some a;;, t ¥ jis a unit. Notice that any improperly
primitive form f may be written in the form f = 2g where g
has coefficients in R(2). In this case the matrix of g will
contain at least one element not on the principal diagonal
which is half a unit though all its elements on the principal
diagonal are 2-adic integers. Such a form ¢ is called
non-classic, that is, g is non-classic if 2g is improperly
primitive. Forms whose matrices are in R(2) are classic.
In R(p), however, for p odd all forms are classic and none
are improperly primitive. For p odd or p = 2 a form is
called primastive if 1 is the g.c.d. of the elements of its
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deal only with classic forms. There is no loss of generality
in so doing.

Theorem 32 implies the following theorem for p odd.
For p = 2 we give the proof.

‘TuEOREM 33. If f i3 a form with coefficients in R(p), it
18 (p-adically) equivalent to a form

g=7p"n+ 0"+ - + "

where 0 £ 4 < 4 < - -+ < t, and the g; are classic forms of
unit determinani tn R(p). Furthermore, each g; may be
considered to be diagonal or, when p = 2, the sum of im-
properly primitive binary forms.

Let 2 be the greatest power of 2 dividing all the elements
of the matrix of g and write ¢ = g,2° where g, is a classic
form having at least one unit element it its matrix. If some
element in the principal diagonal of the matrix of g is a
unit, permute variables to make it the leading coefficient
and add appropriate multiples of the first column of the
matrix to the other columns and similarly for the rows to
make the first row and column ¢y, 0, 0, ---, 0. If all
diagonal elements of the matrix are non-units we may
without loss of generality take a;; & unit and see that
@z — Gz iS 8 unit and appropriate multiples of the first
two columns of the matrix may be added to the other
columns and similarly to the rows to make all the elements
in the first two rows and columns 0 except the leading two
by two principal minor. This process may be continued to
show that g is expressible in the given form where each
g¢: is & sum of unary and improperly primitive binary forms.

It remains to show that if g is & form in R(2) of unit
determinant it is equivalent to a diagonal form or a sum of
improperly primitive binary forms, that is, if g is properly

nmmitivrae and hao 11t dotarminant 4+ 1c antivralant 44 o
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of its matrix must be a unit if g represents a unit and the

transformation
111
1 10
1 01

takes ayzi + Gvs + 2axT; + au; into
h = xg(au + an + 20, + asa)
+ z3(an + o) + zi(an + ax) (mod 4)

if @y, and az; are non-units and ay; a unit. Then by adding
event multiples of the first two columns of & to the other
columns and similarly for the rows, we can reduce k to
diagonal form with units along the diagonal. Continuing
this process we can get the desired result.

This completes the proof of theorem 33 and proves
part of

TaroreM 33a. Every form in R(2) with unit determinant
18 equwalent to one of the followmg

1. e} + aar3 + -+ + auzh , a; odd integers.

2. A sum of binary forms of the two types: f = 2zi +

22xs + 223, g = 2m;y%; .
Furthermore in the second case one may ot will choose one
of the types f and g and require that all but at most one of the
binary forms be of that chosen type. This we call a canomcal
form for forms of unit determinant.

From the previous theory we need only consider the
improperly primitive case. Now if a;; and @ are even
and ay is odd b = auzi + 2ap2:% + anrs = 0 (mod 8)
has a solution 71, 7, at least one of which is odd unless
an = ax = 2 (mod 4). Thus, barring the exception,
corollary 9b and the corollary of lemma 6 show that
h = 2alstixs + asrs with as even which is taken into
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In the exceptional case one of ay :l: 2012 + o is =2
(mod 8) showing that h = 271 + 2aistizs + asers , where
a2 = 2 (mod 4). Then if we let « be that 2-adic integer
for which 3 = (2a2; — au)a we gee that the transformation
1= 9 + 31 — aap)ys, 22 = of, takes the last form
into 2y1 + 2yws + 23 .

The last part of the theorem is shown by the fact that
the transformation

1 1 1 0
1 1 0 1
1 0 1 1

0 -1 —-1 -1

takes iy + sz4 into 2§ + 73 + Tk — T3 — T§ — Tadi .
Hence, since we have shown above that — (z3 + 4 + zss)
= 23 + 21 + wata , we have 2(zis + ware) = 22] + 2mizs +
223 + 273 + 228 + 2xars . This means that we can, in the
canonical form, replace any two of one of the types of
binary improperly primitive forms by two of the other

type.

26. Representation of numbers by forms. While a zero
form in F(p) is a zero form in R(p), the solvability of
f = N in F(p) does not imply its solvability in R(p)
as is shown by the fact that 2f + 9«3 represents 2 in F(3)
but not in R(3). In general the best method for testing
for the solvability of f = N in R(p) is by use of theorem
9a or 9b. However, under certain restrictions we can
obtain more specific results.

Then suppose p is an odd prime and f is a form with
coefficients in B(p) and of unit determinant. Then f = N
solvable in F(p) is equivalent to saying that, for some
k, f = Np* is solvable in R(p). Let r,, r», -+ ,r, be a
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and the right side of the equation by p and p’ respectively
to have a “primitive” solution of f = Np* where N is not
divisible by p°’. (By a solution being “primitive” we mean
that not all the 7’s are divisible by p.) If ¢ = 0 we have a
solution of f = N in R(p). If ¢ > 0, corollary 9b shows
that f = 0 has a non-trivial solution in R(p) and hence by
theorem 13 and the note thereafter, f is a universal form
in R(p) and hence represents N. Thus we have

TeEOREM 34. If f i8 a form of unit deferminant in R(p)
where p 18 odd and N a number in R(p), then f represenis N
i R(p) if and only.if it represents N in F(p).

Remark. It may similarly be shown that the theorem
holds if f = f; + pf: where f, and f; are forms in R(p) of
unit determinant.

This theorem with corollary 14 gives us the following
interesting results.

CoroLLARY 34a. If f 48 a binary form in R(p) of non-zero
determinant and p does not divide 2d, then f = N 18 solvable
in R(p) if and only if either p occurs to an even power in N or
P occurs to an odd power with (—d | p) = 1.

CoRrOLLARY 34b. If f 18 a ternary form in R(p) of non-zero
determinant d and p does not divide 2d, then f = N is
solvable in R(p).

The theorem does not hold in R(2) as is shown by the
fact that zi + 73 represents 2 in F(2) but not in R(2).
However we now show that the theorem holds even for
this case with essentially two exceptions. Then let f be a
properly primitive form of unit determinant in R(2). As
in the proof for p odd we see that f = N is solvable in
F(2) if and only if, for some integer k, f = 4*N is solvable
in R(2) where N is an integer not divisible by 4. We may
assume the solution iIn R(2) to be primitive, that is, that
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corollary 9b shows that f = 0 has a non-trivial solution in
R(2) and hence by the proof of theorem 13, f = 4N has a
solution in R(2). If the solution is non-primitive, then
f = N is solvable and our result follows. Furthermore,
trial shows that f = a (mod 8) is solvable primitively for
all @ # 0 (mod 4) and hence by corollary 9b f is universal
unless f is a ternary form with all coefficients congruent
(mod 4) or f is a binary form. In the former exceptional
case f = 4N has no primitive solution. In the latter it has
no primitive solution unless f = airs + aws with aiae = 3
(mod 4). If N is odd it is then represented by f in R(2).
If N = 2 (mod 4), f = 4N solvable primitively implies
ma; = —1 in F(2) and N is then not represented by
fin R(2).

If f is improperly primitive, notice that 2z;x, is universal
in F(2) and represents all non-units in R(2). Hence theorem
33a shows that all improperly primitive forms are universal
in F(2) except f = 2r: + 2riws + 223 which in F(2) and
R(2) represents all numbers not a unit multiple of a power
of 4. Hence we have

TureoreM 34a. If f s a form of unit determinant in R(2)
and N a number in R(2), then f = N 1s solvable in R(2)
if and only if it is solvable in F(2) with the following ex-
ceptions:

1. N a unit and f an tmproperly primitive form ¢

228 + 2zua0 + 273 .
2. N twice a unit and f = ayr: + anrs with ma, = —1.

27. Equivalence of forms in R(p). Since for p-adic
integerswe have nosuch clear-cutcriteria for representation
of a number by a form as in the previous chapters, our
task of finding conditions for equivalence is more complex
though our criteria for equivalence turn out to be relatively
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to those involved in F(p) and it will be in terms of these
new invariants with the old ones that the criteria for
equivalence will be phrased.

We first prove that, among other things, the exponents
in each g; in the form of theorem 33 are invariants under
unimodular transformations.

TaroreMm 35. If f and g are p-adically equivalent forms
with coeffictents in R(p) and are written

f=p" + " + - + »'f;,
g=0"0+ 0"+ --- + 2%q,

witht; < tiy10ond 8; < 8441 for every 1 and all f; and g; of unit
determinant then k = § and, for every i, 8; = t; , the number of
variables in f; 18 the same as the number of variables in g; and,
for p = 2, f; and g; are both improperly primitive or both
properly primitive.

Before proving this theorem we need a lemma analogous
to lemmas 5.

LemMa 7. Let A be a symmetric matriz (o;;) with elements
in R(2) and T a unimodular mairiz in R(2). Let p(A)
be the g.c.d. of the following set of minor delerminanis
of A: r-rowed principal minors, the doubles of the r-rowed
non-principal minors. Then u(A) = u(T"AT).

As in the proof of lemma 5, we need consider T' of one of
three types. If T permutes the columns of A or multiplies
the columns by units it is clear that u(4) = u(TAT).
Let T be a transformation E; which adds an integral
multiple of one row to another row of the identity matrix.
Then, if A, is some r-rowed principal minor E3A.E, is
obtained from A, by performing that operation on the
columns and rows of A,. If the operation described is
within A. . its determinant is left unaltered. It then remains
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principal r-rowed minor in the upper left hand corner of A
and let E; have the effect of adding « times the » 4 1 row
and column to the r-th row and column of D,, where a
is in R(2). Then let o; and a; be the row matrices:

(arl s Or2y "0, dm-l), (ar+1.1 y Qr41,2y ° " ar+1.r—1)

respectively and D,_; the matrix (ag;) with ¢, 7 < r — 1.
Then

D,_ ol + aas
EID.E, = [ 1 1+ aa 2
a+ ay @ + 200041 + @i

whose determinant is

T T
ay D, as

| Dy | + 2 + o?

a2 Qpetl Qg Oppl,rl

Since the first and third determinants of this sum are
r-rowed prineipal minors of A this shows that u.(4) divides
u(E3AEs). Similarly, the latter divides the former and
hence they are equal.

Now, reverting to the proof of the theorem and noticing
lemma 5 we have, using the notation of that lemma,
M(4) = M(B) where A and B are the matrices of f and g.
Hence p" = p" which implies 4, = & ; furthermore
m; = m; where m; and n; are the number of variables in f;
and g; respectively, since Am,(4/9") = Am,(B/p"") implies
that both are units. Then

Amr (A/p") = p"7, My a(B/p") = p'™"
implies that s, = £ while
)\M1+mz(A/p") = p(tz—h)'rnz = )\,..H.,..,(B/p")

implies that ms = 7, . This argument can be continued to
showthat s; = ¢; and m; = n; for all - and hence that k = j.
If p = 2, use lemma 7 to see that uy(4) = 2% or 297
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improperly primitive. Then pm,4+1(4/2") = 2'*- um,(4/2")
or 2™, (4 /2") according as f is properly or improperly
primitive. This shows that f. and g, are both properly or
both improperly primitive. So we may proceed to prove
the theorem.

It is not hard to prove

TarorEM 36. If f and g are two forms of unit determinant
in R(p) they are equivalent in R(p) if and only if they are
congruent in F(p) unless p = 2, one form 1is properly
primitive and the other tmproperly primitive. Furthermore
if p = 2 and f and g are tmproperly primitive they are
equivalent if and only f their determinants are equivalent and
they have the same number of variables.

The last sentence ot our theorem follows directly from
theorem 33a. It therefore remains to consider f and g
diagonal forms = az; and = Byt .

The truth of the theorem is obvious if n = 1. Assume it
holds for n < k. Now f ~ g in F(p) implies that f = 8, is
solvable in F(p) and hence, since §; is prime to p, is
solvable in R(p). Then, by permuting variables we may
assume that r,, 2, +-+, 7% is such a solution with » a
unit. Let T be the transformation whose first column is the
solution, whose first row is zero except for the first element
and the rest of which is the ¥ — 1 rowed identity matrix.
Then T takes f into a form fo in z;,- - -, #, whose leading
coefficient is 8, and for which the coefficient of 3 is prime
to p. In fact

k k :
fo= Bzt + > 2airimz: + PP
=2

t=2

k 2 &
=pf (-’61 + Bt Z; a; Tixi) + ‘Z_; (as — B i ri)a}

'
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for certain v,; in R(p). Now if p = 2, i will represent a
unit unless all »; are units. Postponing this exceptional
case, we have g ~ Bz1 + £, implies, by theorem 8, that
fi ~ g in F(p) where g; = Bz + -+ + Buwi . Since f;
and g, represent units, our induction hypothesis shows that
f1 = g1 inR(p), hence fi21 + f = g and f = g. To eliminate
the exceptional case notice that n < 3, 8; = —a; (mod 4)
for all 7, j would make |f|2¢|g| or e(f) ¥ ci(g) and
hence would deny f ~ g in F(2); hence- the congruence
f = 61 (mod 4) and hence f = 8; (mod 8) has a solution
with one variable a non-unit and by theorem 9a we may
choose r; in R(2) such that one is a non-unit and f ~ gyz; +
/1 where f; has a unit coefficient.

If p is odd we know that the Hasse invariant of a form
of unit determinant in R(p) is 1. If p = 2, the Hasse
invariant of such a form depends on the canonical form
(mod 4) and the determinant depends on the form (mod 8).
Thus theorems 12, 15 and 36 imply the following corollaries

CoRroLLARY 306a. If f and g are two forms of unit determs-
nant in R(p) they are equivalent in R(p) if f = g (mod 4p).
(The congruence of forms means congruence of corresponding
coefficients. It includes the condition that the number of
variables in each be the same.)

CoRoOLLARY 36b. If p s odd, two forms of unit determinant
in R(p) are congruent if and only if they have the same
number of variobles and |f| | gl Every form f of unat
determinant is'equivalent to 73 + z3 + + -+ + | f| % .

CoroLLARY 36¢. Two properly primitive forms of unit
determinant in R(2) are equivalent if they are congruent
(mod 4) and their determinants are congruent (mod 8).
Two improperly primitive forms of unit determinant in
R(2) are equivaleni if they are congrueni (mod 4), their
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In order to establish criteria for equivalence in the
general case we need the following theorem proved by the
author and W. H. Durfee. In the interests of brevity we
state it for all primes p though much of the proof is con-
cerned only with p = 2. Notice that some of the conditions
are vacuous if p is odd.

THBOREM 37. Let f; and f; be two equivalent forms of unit
determinant in R(p) with variables x, , x2, *++ , Tn , g G form
M Tpi1, "y Tugm Gnd h @ form in Topr, - ) Tnya, all
forms being in R(p); then if fi + 2g represenis fo + 2h in
R(p), it follows that g represents h in R(p). If m = s, the
word “represents”’ may be replaced by ““is equivalent to”.

Notice first that 8 < m and that f; 22 f; and the condi-
tions of the theorem imply that f; + 2¢ represents or is
equivalent to f. + 2h. Thus we set f; = f» = f. By theorems
32 and 33a f is equivalent to either a diagonal form or,
when p = 2, a sum of binary forms. If the latter is the
case, then 2° + f will be equivalent to a diagonal form
and since #° + f -+ 2g represents or is equivalent to
#* 4+ f + 2h we may assume that f is a diagonal form of
unit determinant. Let f, g and h have respectively F, G
and H as their matrices and let @ be the matrix taking
F 1 2G into F 4+ 2H. Write

T8
Q_[Sa 34]
where T is an n by n matrix, S;is n by 8, S; is m by » and

84 is m by s. Then Q(F 4 2G)Q = F + 2H yields the
following equations:

(17) T'FT + S832GS; = F,
(18) T'FSs + 832G8, = 0,
710\ A'ra . QTonQ. — or1
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(17) implies T"FT = T (mod 2), there is an automorph
D of F over R(p) such that 2(T + D) is in R(p). Further-
more, equation (18) and the fact that, for p = 2, | T°F |
is a unit implies S; = 0 (mod 2) and hence that
S = 8 — Si(T + D)'8: is in R(p). We shall show that
8™2GS = 2H. Now

872GS = [ST — S5 (T + D)™ 8312G[S: — Ss(T + D)'S,)
= 8i2G8, — Si(T + D)™ 852GS,
— 872GS8«(T + DY'S, + S3(T + D)™
-812G8y(T + D)'S,.
Using (17) we have
ST(T + D)™ 8;2GS«(T + D)'S,
= 83(T + D)™{F — T"FT}(T + D)'S:.

SinceF — T"FT =D+ T)'FD+T)—-TFD+T) —
(T + D)'FT, the right side of (20) is equal to

S:FSy — S;(T + DYTFS: — SiFT(T + D)'S,,
which, using (18), becomes
8:F8: + 8:(T + D)"852G8: + Si2GSy(T + D)'S, .

Hence 8"2GS = 8i2G8: + S:FS, = 2H from equation
(19). Thus we have shown that g represents k in R(p).
It remains to prove the lemma.

(20)

Levwma 8. If F 18 a diagonal matriz of unit determinant
in R(p) and T a matriz in R(p) such that T"FT = F
(mod 2), then there is an automorph D of F in R(p) such
that 2(T + D) is in R(p). (Notice that the congruence
condition 18 vacuous unless p = 2.)

Let T = (t:),4,ij=1,2,---,nand F=ay fazs f - - -
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T and F does not alter the properties we desire, we shall do
this at will. Note that 7T = I (mod 2).

First suppose that p is odd or that p = 2 with ¢; a
non-unit for some g. Permute rows and columns, if neces-
sary, to make ¢y a non-unit when p = 2. Then choose
D = +1 4 D, and p = #y; =+ 1 where the sign is so chosen
that u is a unit. If we set

|1 -0y | tu T
P—[O 7 ] and T_[Ts T4]

where Tyisa 1 by n — 1 matrix, T3is» — 1 by 1 and T,
ism —~ 1byn — 1, we have

[tmx1 0
(21) (T-I—D)P—[ 7, T1+Dl]

where Ty = T, — Tau"sz and D, is to be chosen an
automorph of F; = ay 4 - -- + an. By adding appropriate
multiples of the first row of (21) to the later rows we can
replace T'; by 0 without altering T, + D, . Referring now
to the proof of the theorem and there replacing T, S,
S:, 8¢ by tu, T., Tz, T., respectively, we see that
T'T = I (mod 2) implies that T1 T, = I (mod 2). If p is
odd, this process may be continued to prove the lemma.
For p = 2 other cases need to be considered. In what
follows we agsume p = 2.

Secondly, suppose that t; is a unit for every ¢ and
liit; is a unit for some 7 and j, ¢z # j. Permute rows and
columns, if necessary, to make f1s , a unit, and choose D =
I, + D., where I, is the 2-rowed identity matrix, and let

=[t11+1 l1s ]
K tn  ta+ 1]

Then we notice that u is unimodular and set
. r Tn —U.—ITJ)-I - _— r Tﬂ T')-‘
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where T’ is a2 by 2 matrix, T, is2by n — 2, etc., Then

| To+ 1, 0
(T+D)P—[ T, T1+Dz]'

where T1 = T4 - Tay,_sz and Dz is to be chosen an
automorph of F = a3 + a4+ - - + a. . Asin the preceding
case we can replace T; by 0 and have T1 Ty = I (mod 2).

Third, suppose T has the property that t; is & unit for
every 1, t;; is a unit for some ¢ # j and, for every 7 = j,
t;t; is & non-unit. Now 77T = I (mod 2) implies that
each row and column of T' contains an odd number of
units and that for each ¢ and j, ¢  j, there is an even
number of values of k¥ such that tuts = 1 (mod 2). Thus,
by a permutation of rows and columns we may assume
that the leading 3 by 3 minor of 7 is congruent to

111
01 1| (mod2).
001

Furthermore, two of the first three diagonal elements of
F are congruent (mod 4) and by a permutation of rows
and columns of F and T we may assume that a; and a; are
congruent (mod 4), that fitists is a unit and &z a non-unit.
We can: complete the proof along the lines of the previous
case if we can find an automorph D, of axs + asxs where

Dy = [‘1’ (1)] (mod 2),

- ln th
M—Do+l:tz1 tzz]

will be unimodular. Suitable matrices D, are
Fo 17 o a9.-17

since then
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according as a; = a3 (mod 8) or —3a; = a; (mod 8),
where ¢ and 7 are p-adic units satisfying the equations
& = ad’, —3a; = +as7.

Finally suppose T = I (mod 2). Choose the ambiguous
sign so that #;; == 1 is twice a unit and D = +1 4 D;.
By adding appropriate multiples of the first column of
T + D to the other columns and then similarly for rows
we can reduce the first row and column of 77 + D to
(tu = 1,0, 0, -, 0). The remaining elements still will

have the property that those on the diagonal are units
" and the non-diagonal elements are non-units.

By continuing the above reductive processes we can
reduce T + D to a direct sum of matrices T; 4+ D; where
each T; + D;is of one of three types: a unit, twice a unit, a
2 by 2 unimodular matrix. Hence 2(T + D)’ will be in R(2).

Theorem 37 implies the following theorem for p odd.
Further proof is necessary if p = 2.

TrEOREM 38. If the form f represenis (is equivaleni to) the
form gin B(p), f = fo+ fi + pfs, g = fo + g1 + pg> where
fo, J1y g1 have unit determinants, g, and f, having the same
number of variables, then f, + pfa represents (18 equivalent to)
o1 + pge in R(p) provided that for p = 2, f and g, are both
properly primitive or both tmproperly primstive.

First we may assume for p = 2, fo, f1, g1 to be in the
canonical forms of theorem 33a. Let r be the number of
variables in f; and ¢, . If » = 0, theorem 37 implies our
result. Suppose f, and g; are the properly primitive forms

iz_;a.a:g, ‘z_;ﬁs‘ﬁ-

If r > 3, theorem 17 shows that f; represents 8, in RE(2)
and hence by the proof of theorem 36 is equivalent to a
form 8.2 4 f where 7/ represents 2 unit. This reduces
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g1+ 202 = Buyi + g1 + 2gs and the By} may be considered
part of o, while if fi + 2f; represents g1 + 2g2, fi + 2f;
will represent gy + 2¢g.. If r = 2, f; = B, or B; (mod 8) is
solvable unless oy = a; # 8 = 8; (mod 4). In the former
case fi = B is solvable in R(2) and we may proceed as
above. In the latter case, suppose 2f, = 2 (mod 4) solvable;
then fi + 2f, = 6, or 8; (mod 8) is solvable and we reduce
to the former case; similarly if 2g, = 2 (mod 4) solvable.
It remains to consider 2g; = 2f = 0 (mod 4). Then f =g
and an equation similar to (17) shows that fo + fi =2
fo+ fi = fo + g1 (mod 4) which implies |f;| = |g |
(mod 4) and ex(fo + 1) = a(fo + f1) = a(fo + g1) which
implies ¢:(fi) = cy(g1); these deny a1 = a3 &£ 81 = B
(mod 4). If r = 3 or r = 1 we similarly may dispose of
all cases.

Second if p = 2, and f; and g, are improperly primitive,
take f; and g, in canonical form and see that either 2f, =
2g. = 0 (mod 4) in which case f; = g, (mod 4) and corollary
36¢ applies or 2f, = 2 (mod 4) is solvable and f; may be
utilized as above to make |fi| = | g1 | (mod 4) and corol-
lary 36¢ applicable.

As a matter of fact, in proving this theorem we have
laid the basis for the proof of

TueorEM 38a. If f1, fo, 01, g: are forms of unit deter-
minant n ny, Ny, my, My variables respectively, then f =
N+ 2/ 22 g = g1 + 29, 2f and only if the following conditions
hold. .

lL.f~gandn, =m;, 1= 1,2

2. f: and g; both properly or both improperly primitive,

i=12.

3. If g, and f; are improperly primitive, c(f1) = ca(gn).

The necessity follows from theorem 36. To see the

il ntanntyr natins that +ha anrndittnarne ahrsra and $ha maonanf ~F
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fi + 2fs with fi = g, . Then fi + 21 ~ g1 + 2¢» implies
f2 ~ g and by theorem 36 f; = g, which shows fi +
2f: = gy + 2¢2 and f 2 g.

For an odd prime, the matter of equivalence is com-
pletely taken care of by the following theorem.

TeEOREM 39. If p ¢s an odd prime and f and g are two
forms in R(p) written in the form of theorem 35, then f = g
if and only if fi ~ g; in R(p) for all 1, that is, if and only
flfel~1g:l

The sufficiency condition follows since f; ~ g; implies,
by theorem 36 that f; =2 ¢; . Then suppose f =2 g. Equation
(17) with 2 replaced by p shows that a unimodular trans-
formation takes f; into a form fi = g; (mod p) and hence
by corollary 36a, f1 = g; which implies f; = g, . Theorem 37
then applies to show that f — fi=2 g — ¢ and the same
process may be applied to prove f; =2 g, . A continuation
of this process proves the theorem.

Though the criteria for equivalence in R(2) are not as
simple as for R(p) if p is odd, the above results can be
used rather expeditiously in testing for equivalence as we
show by the following example:

Letf=fi+2h+4fi, ¢g=g + 20+ 4gs, where
fi = 621 + 22ums + 203 + 6aazs
g1 = lywe + 10y,
fo = 172 + 2mgve + 623, g0 = 4 + 5y,
fs = 2a7 + 6wmws + 623 + 102570,
gs = 27 + Byws + 295 + 105 + Gyoyn + 145

First we show that f ~ g. From corollary 36a any unit
coeflicient of f or ¢ may be replaced by one congruent to it
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5z3 = go. The determinants of f; + f; and ¢ + g; are
congruent (mod 8) showing that fi + fa ~ g1 + ¢: and
I~y

Now | fi| 2¢ | g1 | and hence f, 2¢ ¢: . But we shall show
that fi + 2f; = f1 + 2f; where | fi| = | g1| (mod 8) and
hence f1 &2 g, . If we let fy = 623 + 212y + 273 + 273 and
g = l4yw, + 10y we see that cs(fo) = 1 = ex(go) and
| fo] = 22 = | go | (mod 16) showing that f, ~ g, and hence,
by theorem 38a, fo = g, . Hence f =2 go +-62524 + 10z =
fi + 2fs + 4fs where fi = 1427, + 6z X g1 and fr =
523 + 5xs . Hence f2 + 2f; ~ g2 + 2¢ from corollary 8 and,
from theorem 38a, fz + 2fs = ¢» + 2gs. But fi = ¢ .

Thus we have shown that f = g in R(2).

28. Representation of one form by another and the
existence of forms with given invariants. Some of the
theoremsin the previous section give partial criteria for the
representation of one form by another. But it would seem
that complete criteria are too complex to be included here.
It is not true even for odd primes p that if f represents a
form g there is a form h such that f 2 g + & in R(p). For.
instance f = 27 + 273 represents 3yi in R(3) but it is not
equivalent to a form 3y} + ay; for any a in R(3). However
if p is prime to 2 | f|| g |, corollary 17 shows that f repre-
sents ¢ in F(p) if the latter has fewer variables than the
former. Hence f represents the leading coefficient of g
in F(p) and therefore in R(p). Thus f = azi + f and
g = ay} + ¢ in R(p). Then, by theorem 37, f’ repre-
sents ¢’ in R(p) and so we continue. Hence in corollary
17, F(p) can be replaced by R(p) if pis prime o 2 | f|| g |

However, criteria for the existence of forms of given
invariants are not hard to find. If p is odd, suppose the
invariants ¢; , f; and m; are given as in theorem 35, where

‘- -wy s
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Suppose p = 2 and we have a set of quantities t;, m., | f; ],
¢x(f:) as in theorem 35 and specify that certain f; shall be
properly primitive and certain f; improperly primitive.
Notice that theorem 35 shows that t; , m; and the properly
or improperly primitive conditions are invariants under
unimodular transformations in EB(2); the other two quanti-
ties are not invariants. The existence of a form having the
given values for the above quantities depends (see section
13) on the satisfaction of the following relationships:

1) For every ¢ for which m; = 1 or 2, the conditions of
theorem 16 must be satisfied.

ii) If f;is an improperly primitive form of determma.nt d;
in m; variables, then m; = 2w, and either d; = (—1)""
with es(f;) = kcord; = 3(— 1) with eo(fs) = — ks,
where

= (_1)(we—¢)(w—1)/!'

If all relationships i) and ii) hold, the form exists in R(2).
(See section 34.)

29. Zero forms and universal forms. If f is a form in
R(p) and if f = 0 has a non-trivial solution in F(p) then,
by multiplying this solution by a power of p, we get a
non-trivial solution of f = 0 in RB(p). Thus the conditions
that f be a zero form or, in fact, that it be an m-zero
form, are exactly the same as for F(p).

As to the universality of zero forms, consider first p odd
and f written inthe form f = fi + p'*2 + - - - + pi*fs where
each f; has unit determinant. Let (ri, 72, ---, ra) be a
primative solution of f = 0, that is one in which 1 is the
g.c.d. of the r; . If the first m; numbers r; are divisible by p,
then f/ = 0 has a non-trivial solution (r/p, re/p, - -,
P/ Dy Posas® -+, 1) where ' = ofy + 2y +- -+ + p*7Y,.
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with not all of %, -+, u, divisible by p, n, being the
number of variables in fi . Then the proof of theorem 13
shows that fo is universal. We cannot, however, be sure
that f is universal unless f; = 0 (mod p) has a non-trivial
solution. For example f = 7 + 23 + 923 + 921 is a zero
form in R(3) but it is not universal since it does not
represent 6 in R(3); but f = z1 + 2 + 2} + 1 is universal
in R(3). On the other hand, f = zi + 3 + 323 — 32} is
universal even though f = 0 has no solution with z; or 23
prime to 3. Along these lines one could formulate general
criteria. _

For p = 2, the same process as that above may be
carried through until we have f, having the above proper-
ties. Then the proof of theorem 13 tells us that fo = 4N
is solvable for all N and the same process may be continued
to get an f; representing all N.

Similar conditions hold for m-universality.

30. Automorphs and representations. If X; and X; are
two unimodular transformations taking A into B we can
see exactly as in the proof of theorem 7 that there is an
automorph U of A such that UX; = X, .If pis odd, X; and
X, are two n by m matrices, n > m, such that X{AX; = .
X3iAX, = B, if X; and X, each have an m-rowed unit
minor determinant and if B has unit determinant, the
proof of theorem 7 carries through to prove a similar
result since theorem 37 implies the result corresponding to
corollary 8. That both conditions p odd and B of unit
determinant are necessary is shown by the following
examples.

ExawmpLE 1. Notice that v = (1,0,0) and w = (1, —=1,0)
are two solutions of f = 1in R(2) where f = zi + 2xazs . If

TT — Zae \ wwvrnres 63 cavdtrmrm rsrmbh AL £ civnlh dhnd T1T — anT
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U is an automorph implies that uis and uy; are both even
and Ugtigs — UsUse 18 odd. Substitution shows that there is
no such automorph.

ExawmpLE 2. Herev = (1, 1, 0) and w = (0,0, 1) are solu-
tions of f = 3 in R(3) where f = 21 + 223 + 323. Then
Uv® = w” impliesuy + ths = 0 = ta1 + Uss, Uzt + uss =1.
Then U an automorph implies ul; — 43 = 1 (mod 3) on the
one hand and ui; — u3; = 2 (mod 3) on the other. Thus
there is no such automorph.

31. Binary Forms. In this section we particularize our
results on equivalence in R(p) to the binary case. These
results could be shown, of course, without the general
theory but with much more labor. We may assume the
form written: f = az® + 2bzy + ¢y’ where a, b, ¢ are
integers. Furthermore f may be taken to be primitive since
its p-adic class is determined by g, the g.cd. of &, b, ¢, and
the class of f/g. Write | f | = d.

If p does not divide 2d, corollary 36b shows that the
class is determined by (d | p).

If p is an odd prime dividing d, we may assume f to be
of the form az® + p'cqy® by theorem 32 and, using theorem
39, d and (a | p) determine the class of f.

If p = 2 and the form is improperly primitive, d = 3
(mod 4) and the 2-adic class is determined by d (mod 8).
If the form is properly primitive it may by theorem 33a
be taken into a form az® + 2%cw’. If k¥ < 2, use theorem
38a, if ¥ = 2 use theorem 9b or other considerations to
show that d and the following determine the class:

1. If d = 3 (mod 4), no other condition.
2. If d = 1 (mod 4) :a (mod 4).
8. Ifd=2(mod 8):(—2]a).
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5. If d = 4 (mod 8) :a (mod 4).
6. If d = 0 (mod 8) :a (mod 8).

Notice that the number of classes of given determinant
in R(p) is 1 if p is odd and prime to the determinant or
p = 2 andd = 3 (mod 4) with f properly primitive or f
improperly primitive; 2 if p is odd and divides the deter-
minant or p = 2 and d = 1, 2 (mod 4) or = 4 (mod 8);
4 if p = 2 and d = 0 (mod 8). Furthermore in all cases the
clags in R(p) is determined by any number prime to p
represented by the form.



CrarTER V _
GENERA AND SEMI-EQUIVALENCE

32. Definitions. Reasoning by analogy from the results
of chapter III one might deduce that the function of this
chapter would be to prove that if a form f with integral
coefficients represents a number N in R(p) for all p and in
the field of reals, then there would be integer values of the
variables of f for which f = N. One might also suppose
that a similar result would hold for equivalence in R(p)
and in the ring of integers. But, while it is true that
equivalence (or representation) in the ring of integers
implies equivalence in R(p) for all p, yet the converse
statement iz not true as is shown, for instance, by the
fact that 8/5, 1/5 is a solution of f = 2* + 113 = 3 in the
field of reals, in B(2), R(3) and R(11). Thus f represents 3
in all R(p), from corollary 14 and theorem 34, but f = 3
has no solution for integer values of = and y. However,
two things do follow from the fact that f represents 3
in all R(p). First, for any integer g, there is a solution of
f = 38 in rational numbers with denominators prime to g.
Second, there is a form g with integer coefficients such that
g = 3 has an integral solution and such that for every
integer ¢ there is a transformation which takes f into g and
whose elements are rational numbers with denominators
prime to ¢. Here g = 32° + 2y + 44° and, for instance,
if ¢ is prime to 5, the transformation

[8/5 —1/5]
1/5 3/6
takes f into g¢. '

Using a term of Siegel’s we say that an n-ary form f with
matrix A represents an m-ary form g (n 2 m) of matrix B

1056
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rattonally without essential denominator if, for every positive
integer g, there is a matrix 7 such that T"AT = B, T is of
rank m and has rational elements with denominators prime
to ¢. If 1 is the g.c.d. of the m-rowed minor determinants
of T, we call the representation préimstive. If n = m and
each form represents the other rationally without essential
denominator we call the two forms rationally equivalent
without essential denominator or, more briefly, semi-equiva-
lent and say that f and g are in the same genus, writing
f v g. Two forms in the same genus must have equal
determinants. In this chapter the terms equivalent and
represents unadorned are understood to refer to equivalence
and repregentation in the ring of integers. All forms are
assumed to be “integral forms” that is, having matrices
with integral elements, except where something is said to
the contrary. We call a matrix g-rational if its elements are
rational numbers with denominators prime to ¢. Similarly
we speak of g-rational representation.

Using the above terminology we may consider this
chapter devoted chiefly to proving that if f represents ¢
in R(p) for all p including p = <, then first, f represents g
rationally without essential denominator and, second, there
is a form f; in the genus of f which represents g in the ring of
integers.

33. Representation without essential denominator. There
are three ways in which semi-equivalence may be defined
and each definition has its importance. (As a matter of
fact the first definition of semi-equivalence was different
from these three. But for forms of more than three variables
it is very cumbersome and we here omit it.) Hence we
devote this section chiefly to proving the logical equlva-\
lence of the statements embodied in
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m variables respectively, any one of the following statements
tmplies all the others where, if m = n, the word “represents”
18 to be replaced by “is equivalent t0”. Furthermore if in 2b
and 3b “represents” is replaced by “primitively represents”
the two statements are logically equivalent.

la. Form f represents g rationally without essential de-

nomsnator.

1b. Form f represents g g-rationally with g = 2| f|| g |.

2a. Form f represents g in R(p) for all p including p = .

2b. Form f represents g in R(p) for oll primes p dmdmg

2|fllglandp = .
3a. For q an arbitrary integer, f represents g, = g (mod q),
S represents g in R(=) and, if m = n, | f| = | g|.
3b. Form f represents go = g (mod 8| g | P) where P is
the product of the distinct odd primes in |fl|g|, f
represents g in R() and,if m = n, || = [g|.

To prove the logical equivalence of the first four state-
ments it is sufficient to show that 1a implies 1b implies 2b
implies 2a implies la. Now 1b is a special case of la.
Furthermore, 1b implies 2b since if f represents g »-
rationally, the elements of the transformation are integers
in R(p) and hence f represents g in R(p). If m = n, state-
ment 2b implies | f | = | g | in R(p) for all primes p dividing
2|fllg| and for p = o; hence |f|=|g| and, from
theorem 36, statement 2a holds; while if n > m, section
28 has the same effect. The fact that 2a implies 1a is the
important result contained in theorem 42 below.

The proof of our theorem will now be complete if we
establish the following chain of implication: 2a implies 3a
implies 3b implies 2b. By lopping off, after a finite number
of terms, the p-adic expansion of any representation of g
by f given by statement 2a, we see that if T', is a repre-
sentation in R(p) of g by f, then for ¢ arbitrary there is a
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In fact, by the Chinese remainder theorem, there is a
matrix T, with integer elements which is congruent to
T, (mod ¢) for every prime factor p of g. Furthermore if
T, is a primitive solution for all p dividing g or if m = n,
lemma 9 below shows that 7'y may be chosen to have 1 as
the g.c.d. of its m-rowed minor determinants. Then T,
takes f into a form go = g (mod g). Since 2a implies that
|f] = |g]if m = n we have completed the proof that 2a
implies 3a. Furthermore a primitive representation in 2b
implies that in 3b by the above proof. Statement 3b is a
special case of 3a.

It remains to prove that statement 3b implies 2b. To
this end let p be a prime dividing 2 | f || g |. Then statement
3b implies that there is an integral matrix T taking f
into go = g (mod p***) where p" is the highest power of p
in |g| and w is 1 or 3 according as p is odd or p = 2.
Hence theorem 9a shows that f represents g in R(p).

In the above proof we used the following lemma."

LemMa 9. If g s a positive integer, if T s an n by m
mairiz, n = m, with tnteger elements and if the g.c.d. of the
m-rowed minor determinants of T is congruent to g (mod ¢)
where g is an integer prime to q, then there is a matriz S
with integer elements congruent to T (mod g) such that g
18 the g.c.d. of its m-rowed minor determinants. If m = n,
the g.c.d. s understood to be the value of the determinant.

To prove this first notice that by lemma 4, there are
unimodular matrices P and @ such that PTQ = R = (r;;)
has ri; = r;, r; = 0for ¢ # j and, by lemma 5, the product
of the r; congruent to g (mod ¢). Now r»— may be chosen
(mod ¢) prime tO 7'm ; m—2 chosen prime to 7 and e,

-, and r, prime to v, 13, - -+ , 7 and so that

m
72 YT w . .y 27
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define integers 4 and L; this may be done since the product
of the r; is prime to ¢. Thus we assume that the r; are
relatively prime in pairs and their product equal to g + ¢’L.
Then in R replace all but the first element in the first row
by q and make the first m elements of the first column:
vy, kg, -+, kmg, the k; integers later to be chosen. This
yields a matrix B’ = R (mod ¢), the determinant of whose
first m rows is

h-¢ ék;_h/r.-n =g+ (L - :Zs k.-h/m'.-) .

Now for any s and j, s # 7, a common factor of h/rs; and
h/ra, is & factor of h/ra s, . Hence any common factor of
the product of m — 20f 73,73, +++ , 7w i8 a common factor
of all products of m — 3 of the same set of r; . Continuing
in this fashion we see that, since the r; are prime in pairs,
the g.c.d. of the coefficients of %; in the sum above have 1
a8 their g.c.d. Hence the k; may be chosen so that the
sum is L. Then the determinant of the first m rows of B’
is g and thus, by lemma 5, the g.c.d. of the m-rowed minor
determinants of § = P'R'Q' is g, while R’ = R (mod ¢)
implies 8§ = T (mod g¢).

This lemma is also of use in proving a result correspond-
ing for p = 2 to that of theorem 25 for p odd. From
theorem 33 there is a transformation unimodular in R(2)
taking any form f into a form

fo= 2"91 + 2"92 + 4 o' r

where each g; is a form with unit determinant in R(2) and
hence, by theorem 33a is of one of the types there de-
scribed. Suppose f has integer coefficients and T is a
transformation unimodular in R(2) taking f into fo. Let
| TI™ = u, u being a unit in R(2). If we multiply the
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by the unit u. After this change g will still have unit.
determinant and be of the type described in theorem 33a.
Thus we may assume that the transformation 7' in R(2)
taking f into f, has determinant 1. Then for any positive
integer k¥ we may consider each 2-adic element of T
expanded into a series and, deleting the portion of each
geries after the term containing 2* we have a matrix T}
with integral elements and congruent to T (mod 2%).
Then, by lemma 9, there is a unimodular transformation
Ty congruent to T and T' (mod 2*). This will take f into an
integral form f’ congruent to fo (mod 2*) and proves the
theorem below for p = 2. For p an odd prime a similar
proof may be used or theorem 25. We have then

TeEOREM 41. Any form f with integral coefficients s, for
an arbitrary positive integer k and prime p, congruent (mod
") to an integral form :

f=0"n+ 2"+ - + 2"g

where each g; 18 an integral form with determinant prime to p
and diagonal unless p = 2 in which case it may be assumed
to be one of the types described in theorem 33a.

We must prove

. TaEoRrEM 42. If an n-ary integral form f represents an
m-ary integral form g (n 2 m) in RB(p) for all p including
p = =, then f represents g rationally without essential
denominator. In particular if n = m and ‘“‘represents” s
replaced by ““is equivalent to” we can conclude that f v g.

We need the following two lemmas for this theorem.

LemMa 10. Let F be any field, A and B two symmetric
mairices in F with n and m rows respectively, n = m, and
T, an n by m matriz in F such that ToATy = B. Then for
any matriz T in F satisfying the equation TTAT = B, and
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matriz Q in F and a matriz P such that
(22) T =MT,, M =1I+ 2P(Q — P"AP)YP"A.

If, conversely, Q is any skew symmetric matriz in F and P
an arbitrary matriz in F for which (Q — PTAP)" exists,
then (22) defines a matriz T satisfying the equation T*AT =
B. The matriz M 13 an automorph of A.

Let X be defined by the equation T = To + X. Then
TTAT = B becomes

XTAT, + TAX = —X"AX.

Replacing X by PY’, multiplying on the right by ¥ and on
the left by Y” converts this equation into

PTAT.Y + Y*TTAP = —P"AP.
Hence the matrix
(23) Q = 2PTAT,Y + P"AP

is skew symmetric. Since (T5 AT — B) exists by hypothesis
and T{AT — B = ToAX = T{APY’, we see tht PTAT,Y
is non-singular and hence @ — PTAP is also. Then notice
that

(Q — PTAP)"2P"AT.Y = I,

multiply on the right by Y and on the left by P and see
that X = PY’ implies (22).

Conversely if (Q — PTAP)" exists, multiplication shows
that M is an automorph of A and henece that (22) defines a
matrix T for which T"AT = B. (This lemma and proof
are Siegel’s).” '

Lemma 11. Let R be an n by n matriz in F(p) for some
prime p, B a non-singular n by n symmelric matriz in
R(p). There is an automorph D of B in R(p) such that
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To prove this notice from theorems 33 and 33a that B
is equivalent in R(p) to a diagonal form if p is odd or,
when p = 2, to a direct sum of matrices of the three
following types:

a 2 1 2 5
11 2 ’ 5 12
since
1 2 01 . 2 5
[1 3:| takes [1 0] into [5 12].

These three types have the respective automorphs:

10 11 10 1 5
d:l’j:l:o 1]’*[0 —1]’*[0 1]’*[0 —1].

Let D;,7 =1, ---, s be the matrices obtained from B
by replacing each component of B by one of its auto-
morphs listed above. We see that the D; form a group
under multiplication that is, satisfy for multiplication
properties 1, 3, 4, 7 listed in section 7, and that s = 2",
Let K be that diagonal matrix whose elements are the
indeterminates Ay, A2, - - - , A\, and consider the sum

8

L =Y |RKD: — B|.
=1
This is a linear function of each of the A; and is left un-
altered if each D; is replaced by —D;. Thus L is an even
function of each A; and hence is independent of A;. Thus
taking K = I and K = 0, we have

L= |RD;—B|=s|—-B %0
i=1

which shows that one of the determinants in the sum is
non-singular. (The methods of this proof are extensions of
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Now we proceed to prove theorem 42. The hypothesis
of our theorem and theorem 31 shows us that there is a
transformation T, with rational elements taking A into B
where A and B are the matrices of f and ¢ respectively.
There is also a matrix T, in R(p) taking 4 into B. Taking
R in lemma 11 to be T3 AT, we see that, by replacing T,
by T,D for some automorph D of B we may assume that
| TéAT, — B | # 0. This replacement does not alter the
fact that T34T, = B.

Let ¢ be any given positive rational integer and p a
prime factor of ¢. Then lemma 10 shows that there is a
skew-symmetric matrix @, in F(p) and a matrix P, in
F(p) such that

v Ty =To+ 2Px(Q, — PzAPp)IP:'ATO .

If b is an arbitrarily large rational integer, by the Chinese
remainder theorem we can find matrices P and @, the latter
being skew-symmetric and both having rational elements,
satisfying the congruences P = P, (mod p°), @ = Q,
(mod p°) for all prime factors p of ¢. Now | T AT, — B
# 0 implies | @, — P3AP, | #= 0. Hence, for b sufficiently
large | @ — P"AP | = | Q, — P3AP, | # 0 (mod p*) for
all p dividing q. Hence | Q — PTAP | 5 0. Then define the
matrix T with rational elements by the following equation

T = T, + 2P(Q — PTAP)'PTAT,.

Since 7', has p-adic integers as elements and T = T,
(mod p°) for b arbitrarily large, T has p-adic integers as
elements for all primes p dividing ¢ and hence the de-
nominators of its elements are prime to ¢. This completes
the proof of theorems 40 and 42.

The following theorem has important consequences.

MTarorweM 42 T.24 A4 and B he cammmoetren amtorral mom-
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and S an n by m malrix of rank m with rational elements
such that s s the l.c.m. of the denominators and STAS = B.
Then there is an n by n matriz T with rational elements the
prime factors of whose denominators all divide s, whose
determinant s 1 and which takes A tnto an integral matriz A,
which represents B integrally, that is, U"AoU = B for some
integral matriz U.

To prove this we first, for brevity’s sake, define an
s-matriz or s-transformation to be one with rational ele-
ments the prime factors of whose denominators all divide
8. Then write B = sS and, by lemma 4 determine uni-
modular matrices P and Q such that

PRQ =|:0Rl]= s[gl] = g8’

where R, is the diagonal matrix ry 72 + -+ + rm, 75
divides r¢4y fort = 1,2, ---, m — 1 and 8’ and 8, are
defined by the equations. Write ri/s = wu./s; where the
latter fraction is in lowest terms and s; > 0. Then s; is
divisible by s;.1 and hence $; is prime to u;forj < i.

If we write A’ = P'"AP' and B’ = Q"BQ, the equality
STAS = B becomes 8'"A’S’ = B’ which, with A’ = (as;)
and B’ = (b;;) implies
24) airri/s = aiums/ss; = by, 5,5 = 1,2, -, m.
Suppose s; = 1 = |u;|fors = 1,2, ..., h — 1 but not for
t = h. Then (24) and B’ integral implies that s, divides
aa for 1 < ¢ < h and s} divides ax . Moreover uj divides
bafor 1 £ 1 < m and v divides bas . Write A’ in the form

Ay Ay

A ]1.'2 A22
where Ay is an A by h matrix. Let D; be the matrix obtained
from the h-rowed identity matrix by replacing its last
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the m-rowed identity matrix by replacing its k-th diagonal
element by u,. Write F, = D' 4 K, where Kj is an
integral n — h rowed square matrix of determinant s,
later to be determined. We then have

DiAuDy  DiAwnK» ] =4
KFALDL KidwKy]) ™ “"

Then 8, defined by the equation Sy = FiS'Ui, is the
direct sum of the integral matrix u; 4 us 4 + - - 4 waey 4 1,
whose elements have absolute value 1 and an n — &
by m — h s-matrix. Furthermore 8’74’8’ = B’ becomes
ShAwSy = Bi where the equality UiB'Ui = B, defines
B;, . Now B, is integral since, as shown above, us divides
ba for 1 £ ¢ < m and u} divides bas . Furthermore By
represents B’ integrally. Similarly DiA;D; is integral.

Next we determine K, consistent with the above condi-
tions so that A, is integral, that is, so that DiA; K, is
integral. In fact, in view of the definition of D, , we need
only make aKj divisible by s, where « is the h-th row of
Ays . This is easily done by finding a unimodular matrix W
5o that oW = (w, 0, --- , 0) (mod s;) and choosing WK
to be the diagonal matrix ss 4 1 § - -- 41 of determinant
8 .

If now we diagonalize the last n — k rows of S; replacing
A and By by equivalent matrices we may continue along
the above lines induectively to derive a sequence of integral
matrices Ap obtained from A by s-transformations of
determinant 1 and taken by transformations S; having
the properties described above into integral matrices Bj
which, in turn, represent B’ integrally. Then take A,, = A,,
B, = B, and see that A, is obtained from 4 by an s-
transformation of determinant 1, represents B, integrally
and hence B integrally.

FrA'Fy, = [
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importance is in its application. Suppose now f represents g
rationally without essential denominator. That means that
there is a matrix with rational elements, the l.c.m. of
whose denominators is 8, an integer prime to 2 | f || g |
taking f into g. Then, by theorem 43 there is a transforma-
tion 7 whose elements are rational numbers the prime
factors of whose denominators divide s, whose deter-
minant is 1 and which takes f into an integral form fy
which represents g integrally. Hence by theorem 40 and
the definition of semi-equivalence we have

THEOREM 44. If an integral form f represents an integral
form (or integer) g in fewer variables rationally without
essential denominator, there is an integral form fo which is
semi-equivalent to f and which represents g integrally. Also
if f represents g, there is an integral form fo, with f, = f,
which represents g integrally.

The fact that statement 3b in theorem 40 implies 1a
and the truth of theorem 44 yields

COROLLARY 44a. If f represenis integrally a form g = g,
(mod g) where ¢ = 0 (mod 8p | g|) and if f represents g,
in the field of reals, then there is an f, semi-equivalent to f
and representing g integrally. P is the product of the odd
prime factors of | f || g |.

Similarly we have

COROLLARY 44b. If f represenis a form g in R(p) for all
primes p dividing 2 |f|| g | and p = o there i3 a form f,
semi-equivalent to f and representing g integrally.

Now let us apply theorem 44 to a particular example.
Suppose f = x; + x5 + 323 . First we show that every form
in the genus of f is equivalent to it. This may be done most
expeditiously by reference to a table®® of reduced positive
ternary quadratic forms but, since it is not very tedious to



WITHOUT ESSENTIAL DENOMINATOR 117

without use of such a table. Theorem 23 tells us that any
positive integral form f of determinant 3 is equivalent to a
form whose leading coefficient is < (4/3)V/3, that is < 2.
Hence by the same theorem, fy = z} + f; where f; is a
positive binary form of determinant 3. By the same theo-
rem f; represents 1 or 2; in the former case we have our
given form, in the latter case b = zi + 2z3 + 23 + 22475 .
Now f == 6 (mod 9) is not solvable whereas 2, 1, 0 is a
golution of A = 6. Thus & is equivalent to a form ks whose
leading coefficient is 6 and f = hy (mod 9) is not solvable.
This shows from theorem 40 that f is not in the genus of A.

Since we have just shown that any form semi-equivalent
to f is equivalent to f, corollary 44b shows that f represents
a number a if and only if f represents a in the field of reals,
that is, if and only if @ is non-negative and f represents a in
R(p) for all primes p dividing 6a. Corollary 34b shows that
only p = 2 and p = 3 need be considered. If p = 2,
theorem 34a shows that we need merely show that f = a is
solvable in F(2); but by section 13 c;(f) = 1 and hence, by
corollary 14, f represents ¢ in F(2). Furthermore ¢;(f) = —1
and corollary 14 shows that f represents ¢ in F(3) if and
only if —3a is a non-square in F(3), that is @ is not of the
form 9*(9N + 6). But f = a solvable in F(3) implies that
for some integer k, f = 9*a is solvable in R(3). However
f = 9% implies that z; = z» = z; = 0 (mod 3*) and f
represents a; that is, f = a is solvable in F(3) if and only
if it is solvable in R(3). Thus we have shown that f repre-
sents all positive integers except those of the form

9*(ON + 6)

and f represents none of this form.
Notice that if, in corollary 44a and 44b, all forms in the
genus of f are equivalent. the statements made about 7,
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34. Existence of forms with integral coefficients and
having given invariants. In proving the main theorem of
this section we shall need a lemma and an auxiliary
theorem, First we prove

Levmma 12, If f i3 an n-ary form with tnteger weﬁmmts
and g a form in R(p) such that f ~ g in F(p) and |f|/| g |
18 @ unit in F(p), there is an integer K such that for every
k = K there 1s a transformation T whose determinant is 1,
whose elements are integers divided by powers of p and which
iakes f tnto an integral form fo = g’ (mod p*) where g’ is
obtained from g by replacing one of the variables x of g by uz,
u being an inleger prime fo p.

Let 8 be the transformation in F(p) which takes f into g.
Let K be an integer greater than the highest power of p in
the denominators of the elements of S and greater than the
highest power of p in |f| and in |g|. Take ¥ = K and
deleting all terms after p* in the expansion of the elements
of S, we have a transformation 8’ = S (mod p*) which
takes f into a form g; = ¢ (mod p*). Since g is in R(p) and
all denominators of §' divide p*™, g has integral co-
efficients. Then, applying theorem 43 we can obtain a
transformation 7" whose elements are integers divided by
powers of p, whose determinant is 1 and which takes f into
an integral form f’ which represents ¢, integrally. Let U be
the transformatlon taking f' into ¢1. Now [f| =] f’ |,
g1 = g (mod p*) and |f|/|g| a unit implies | U |
congruent to « (mod p*), u being an integer prime to p
Then replacing the leading variable z by ux in g, and g to
get g1 and ¢’ respectively, we see that f is taken into g; by a
transformation U’ obtained from U by multiplying the
first column by u. Now | U’ | = 1 (mod p*) and hence, by
lemma 9, there is an integral matrix U’ of determinant 1

o nrrrertiornd 4 T (oo Y Mhan and T — TVTIT? and onn



INTEGRAL COEFFICIENTS 119

has determinant 1 and elements which are integers divided
by powers of p. This completes the proof.
Next we need the following extension of theorem 29.

TueoreM 45. If, in addition lo the condilions of theorem
29, n 18 even and d = (—1)"* (mod 4), there is a properly
primitive form and an improperly primitive form in n
variables, having determinant d, index i and given Hasse
tnvariants c,(f).

The conditions of theorem 29 assure us of the existence
of a form f having the invariants of that theorem. Then
use theorem 41 to see that f is equivalent to one of the
following:
fi = a@i + oy + - + auza (mod4), a;=1lor -1

n/2
f2 = é Qg1 xii—l + 2%ai-1 22 + G2i1 Z;; (mod 4)

where az;1i8 2 or 0.
First.suppose f =2 f; . Then

o=[1 7]

takes 2zy into 2(z* — 3°) and 22* + 2zy + 2y’ into 622 +
2y*. Thus the direct sum of n/2 transformations @ takes
f: into a form 2f; where f; is properly primitive. Since
this transformation is in R(p) for all odd p it leaves
unaltered ¢,(f) for all p except 2 and hence e;(f) = c(f)
shows that f; has the required invariants.

Second suppose f =< f, . Inn > 6, four of the coefficients
of fi must be congruent (mod 4). Then the transformation

1 1 1 1
1 -1 1 1

1 1 -11 |
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of determinant —8 takes fo = 21 + z3 + z3 + 2] into 2¢
where ¢ is improperly primitive and has the same invari-
ants as fo . Then by a permutation of variables if necessary
we may take f;into a form congruent to fo + foo + - - +fm
(mod 4) where all but at most the last fo; is congruent to
+ (@} + 23 + 23 + z1) (mod 4) and hence by the above
transformation may be taken into a form 2go; where gy, is
improperly primitive. If fi has four variables, | f | =
(—1)™* (mod 4) implies fu = =1 (mod 4) or fu = z3 —
3 + 3 — i which is taken by the transformation 2(Q" 4-
Q") into twice an improperly primitive form. If f,, has two
variables | fu. | = (—1)"* (mod 4) implies fu = zi — zi
(mod 4) and 2@ applies. Thus in all cases we may replace
fi by 2f, where f; has the same invariants as f. This
completes the proof of the theorem.

Now theorems 28 and 15 show that two forms f and
g of equal determinant are rationally congruent if the
indices and number of variables of f and g are equal and
¢o(f) = cy(g) for all p dividing 2 | f|. Hence we call | f|
except for a square unit factor, ¢,(f), 7 and n, the number of
variables of f, its field invariants. Furthermore for any
prime p and k arbitrary, theorem 41 implies

T2 =g+ W1p+17292p+ R (modpk)

where g,, has n, variables and unit determinant in R(p).
We call gi, (except for a square unit factor), 7, cp(gep)
and, when p = 2 the properly primitiveness or improperly
primitiveness of g, , the ring tnvariants. If for a particular
prime p the field and ring invariants are equal, theorem 36
shows that the two forms are equivalent in R(p). (For
p = 2 this condition is not necessary.) We now state
and prove

Myronntnm AR (Laon rn eof ntf fiold smaneenmie entrefamma tho
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Jor each gi, the conditions 3 and 4 of theorem 29 and consistent
with the field tnvariants, there is a form with integral co-
efficients having the given ring and field invariants. By
“consistency’ of the field and ring invariants is meant the
satisfaction of the following conditions for all p:

N + My + -+ + By = 0

2 =1 t1ip = n, , the highest power of p in d.

. Mimo | gop | 2 d/p™ in R(p).

. €o(f) = cp(gor + PG, + -+ + Pgrw)-

. If for any 1, g2 18 tmproperly primitive, n,; 18 even
and | g | = (—1)"*" (mod 4).

To prove our theorem we first from theorem 29 construct
a form f with integral coefficients and having the given
field invariants. Then, for some prime p dividing d, by
theorem 29, construct an integral form h;, in n,, variables
such that | hip | = | gip |, eo(hin) = cy(gip) and for p =
2, hyy properly or improperly primitive as desired. Then,
since the ring invariants are consistent

U W N

f~ g+ pg1p + -+ + D'grp in F(p).

Hence by the lemma there is a transformation T of
determinant 1, with rational elements whose denominators
are powers of p, taking f into an integral form f, = g, +
Phy + -+ + P'grp (mod p*) for a preassigned arbitrary k
and where go, has the same field and ring invariants as
gop - This transformation 7 is in R(g) for all primes ¢
different from p and hence alters no ring or field invariants
for any prime ¢ different from p. This process may be
cairied through for all primes p dividing 2d to give the
desired result.



CuaartEr VI
REPRESENTATIONS BY FORMS

35. Introduction. If f and g are forms with integer
coefficients and n and m variables respectively (n > m)
the results of the last chapter give us methods of finding
whether or not some form in the genus of f represents g
integrally. Corollary 44a or 44b may be used to show that
the existence of such a representation depends on the
solvability of the congruence f = ¢ (mod 8 | ¢ | P) where P
is the product of the odd primes in | g|-|f|, or on the
existence of representations in R(p) for all p dividing
2 |f|| g |- When there is only one class in the genus of f,
the same criteria serve to determine the existence of repre-
sentations of g by the form f. However, when there is
more than one class in the genus except for certain very
special cases and agymptotic results there are no known
criteria for existence of representations.

When it comes to determining the number of repre-
sentations of ¢ by f, known results, except for those in
section 38 below, depend on analytic theory which is
beyond the scope of this book. However we shall deseribe
such conclusions.

For the case m = 7 two fundamental problems arise.
First, the question of equivalence cannot in general be
elegantly resolved in the ring of rational integers. Faced
with such a problem one would first test for semi-equiva-
lence by methods of the previous chapter; then employ a
reduced form such as is deseribed in theorem 23. Except for
binary and ternary forms where unique reduced forms have
been found (see the following chapters) luck and per-
severance seem to be the best tools beyond those mentioned

122
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in the previous sentence. Second, finding the number of
transformations taking a form into an equivalent form is
equivalent (see section 30) to finding the number of
automorphs of a form. Unless the form is definite, the
number of automorphs is infinite. For positive forms
general results are in terms of the so-called mass function
described in the next section which involves all classes
in the genus.

36. Siegel’s representation function. In view of the
remarks of the previous section it is natural to suppose
that any expression for the number of representations
should involve all forms of the genus f and would depend
on the number of solutions of certain congruences. This
is in accord with Siegel’s results (see references 10, 11)
which we first describe for f and ¢ positive forms. Let S
and T be the matrices of f and g respectively and E(S)
the number of automorphs of S, that is, the number of
integral matrices taking S into itself. We denote by
A(S, T) the number of representations of 7' by S and
write
A(Sy, T) 1

E (Sk) ’ E(Slc)
where the sums are over all classes in the genus of f.
Aq(S, T) stands for the number of distinet solutions .
(mod ¢) of X"SX = T (mod g). Then Siegel’s result
is the formula

M@, T) =2 M) ==

M(S, T)
M(S)
where v = m(m 4 1)/2 — mn and 7 is a constant depend-
ingonlyonm,n,| S|, | T . Siegel, and others, showed that

(25) A8, T) = = 7 lim A48, T)¢’
q—ro
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g = p" a value independent of a for all @ > 2b. Hence
in the right side of equation (25) the limit may be dis-
regarded if ¢ is taken sufficiently large; in fact, see below,
it may be replaced by a product over all primes p. Notice
that in cases of genera of one class, the left side of (25)
reduces to A(S, T), the number of representations of
g by f. The expression M(S) is called the mass of the
genus. Minkowski found its value except for an error of a
power of 2. Siegel’s formula is

2r(1/2)r(2/2) - -- r(n/2) et

M(S) = AT (S, S) ’ n> 1
where I' denotes the gamma function and a,(8, S) =
4¢°A,(8, S) with w = —(n — 1)n/2 and ¢ = p° for

sufficiently large e as above.
If f is a positive form and g is the number N, Siegel’s
formula reduces to the following

N in—1 gnl2
(26) Ao(S,N) = T2)- \/_ q(:q_lN )

where d is the determinant of S, 7 is 1 or 1/2 according as
n > 2 or n = 2 and the product ranges over all ¢ = p°,
where p is a prime and, as above, @ > 2b with b the highest
power of p dividing 2d.

Since an indefinite form has an infinite number of
automorphs the number of representations is infinite if not
zero. Hence the left side of (25) is replaced by a certain
limiting quotient of volumes while the right remains un-
altered. Extensions of these results are possible even for
forms with algebraic coefficients.”®

37. Asymptotic results. Known asymptotic results have
so far been confined to representations of numbers by
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(mod M) is solvable for an arbitrary M, that is, if f
represents N in R(p) for all p, there is a constant G depend-
ing on n such that N > @ implies that f represents N
provided f has more than four variables and is a positive
form. For quaternary and ternary forms certain other
restrictions must be imposed on N (cf. the examples in the
next section).

Kloosterman (reference 6) proved a result for forms
without cross products which Ross and Pall (references
7, 9) extended to all other forms and which, in Siegel’s
notation, is the following:

A(S,N) — W < B.N"-i-titbte

for some number B independent of n and N, where W is
the quantity on the right side of equation (26) and e is an
arbitrary positive number, while f is a positive n-ary form
with n 2 4 and having integer coefficients while N is a
positive integer (S being the matrix of f).

Suppose
n n

f=2 aazi, k = 2 |a:|z}, a; non-gero integers.
=] ™

Siegel then dealt with the expression
A(e) = = exp (—weh)

the sum being extended over all integral solutions of
f = N. Using the deep analytical methods of Siegel,
Mary Dolciani® proved the following results: '

Let f be an n-ary form and N an integer such that
f = N is solvable in R(p) for all prime divisors of 24, with
d = | f|, and for the infinite prime. Then

1. If f is indefinite and n > 4,

e M1 4, N _ v 2. v _wge
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2. If f is indefinite and n = 4,

linl eA (€) exists and is positive,
e—0

unless N = 0 and d is a square in which case
lim+ (¢/log € ) A(e) exists and is positive.
€0

3. If fis positive and n > 4
lim N*""2A(N™) is positive.
N—®

4. If f is positive and n = 4, then

. logN
N
provided, for each prime dividing 2d, one of the
following conditions holds:

a) f represents N primitively in R(p).
b) There is a number B independent of N such
that the power of p in every N of the limit is

less than B.
¢) frepresents zero in R(p).

These results carry over to forms with cross products. They
give an estimate of the number of representations. Notice
that in each case the existence of the limit implies that f
represents N since for N = 0, A(¢) > 0 if and only if f
represents N, while for N = 0, A(¢) > 1 if and only if fisa
zero form. In other words, if N is a number represented
by fin R(p) for p = « and all primes dividing 2d, f = N is
solvable if f is indefinite with n = 4 or if N and f are
positive, n > 4 and N “sufficiently large”. If f is positive,
n = 4 and N > 0 the same result holds if the power of p
dividing N is bounded for every p in 2d. Kloosterman’s
results give the same implications for positive forms. All

A(N™) is positive
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One of the outstanding problems in the theory of quad-
ratic forms is the extension of such results as the above to
ternary forms. For instance, the following example shows
that the above result for positive quaternary forms does not
hold for positive ternary forms. It can be shown that the
formsf = z? + 7} + 1623 and g = 22} 4 2x3 + 527 — 27573 —
2x,x3 are representatives of the only classes in the genus of f.
Pall and the author (see reference 8) have shown that the
number of representations by f of any number N = 1 (mod
8) is the same as the number of representations by ¢ except
that g represents no odd perfect square, all of whose factors
are = 3 (mod 4). A few other like results hold.

38. A representation function. The representation fune-
tion ‘developed in the remainder of this chapter does
not depend on complex analysis. Furthermore it is equally
valid in the major part of the theory for definite or indefi-
nite forms, On the other hand its results are not very
specific except for the cases m = n — 1 and m = 1,
where f and ¢ have n and m variables, respectively.
We say that X is a primitive representation of B by A
if X*AX = B with 1 the g.c.d. of the m-rowed minors
of X and deal primarily with primitive representations.
We assume throughout this section that A and B are
non-singular.

We have seen that the number of representations is
intimately connected with the automorphs of a form since
if T is a-solution of X"AX = B, then PT is also a solution
for P any automorph of A. In the remainder of this
chapter we conform to classical practice and consider a
transformation to be an automorph if it takes the form into
ttself, has inlegral elemenis and determinant 41, though
such conformity is not reallv necessarv. Also in this section.
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We then call two solutions 7; and T of X"AX = B
essentially distinct if there is no automorph P (in the above
sense) of A such that T, = PT,. If such an automorph
exists, we call the solutions essentially equal. Not only does
this seem a natural definition but it has the advantage of
allowing us to deal simultaneously with positive and in-
definite forms, for though the number of automorphs of
the latter is infinite, the number of essentially distinet
solutions of X"AX = B we show to be finite. If then we let
N (A, B) denote the number of essentially distinet primi-
tive solutions of X"AX = B, noting that multiplication -
by an automorph takes a primitive solution into a primitive
solution, we define our number of representations functions
to be

M(d,B) = ZN(4:,B), G(4,B)=ZN(4,B)

where the first sum is over a set of forms A4; of determinant

d, the second is over a set of forms of the genus of A, and

in both cases each class of forms has one and only one

representative. It is this function which we seek toevaluate.
We shall find useful the following

Lemwma 13, If T is a primitive n by m matriz (n > m) with
integral elements and Ty and T are two n. by n — m matrices
with integral elements such that the matrices (T To) and
(T Ts) are unimodular, then there exists an m by n — m
matric B with integer elements and a unimodular matriz S
with n — m rows such that To = TR =+ T,S. Conversely,
for any integral B and unimodular S, (T T,) unimodular
implice that (T TR 4+ T8S) i2 unimodular.

To prove this first write

(T To)(T To) = [{;1‘; ’;;3]
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modular. Then multiplication of the above equation on the
left by (T To) yields TR 4+ TS = To . Furthermore S is
unimodular since if we let

3] - rn

it follows that T-T = I, Ty To = I, T-To = (0), To- T =
(0) and hence

——— _[T] TT,}_I:TT TT{.]_[I ’_PT{.]
VAT =1 p |TT= | pop pry |~ Lo 7o

where I is used to stand for identity matrices of the
proper sizes and 0 for zero matrices. Hence S = T,Ts and
has determinant +1.

The converse statement is shown by the fact that

[T TR + ToS) [g ‘g,sl ] = [T To].

If now T is a primitive solution of X"AX = B, we can
by lemma 6 find an #n by n — m matrix T such that

(T Ty) is unimodular and takes A into [gr g] where

C =T"AT,and D = T;AT,.

It is useful also to consider the adjoint matrices. If X
is a submatrix of A we denote by X that matrix obtained
from X by replacing each element by its cofactor in A
and by the same token A is the transpose of the adjoint of A.
Hence if A is symmetric, 4 is its adjoint. Then

4" = [g" IC;] implies 4’ = l:gT g]

and if | A’| = d, then the equation A’A = dI implies
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If we solve the last equation for € and substitute in the
second, we get

27 (—=C™B'C 4+ D)D = dI.
Hence |D| = d*™|D — C"B'C|™. But the trans-

formation
I —-B'C
0 I

of determinant 1 takes A’ into B + (D — €"B'C), where +
denotes direct sum. This shows that | D — C"B'C | ¢ = d,
where ¢ = | B | and

lD| = Qd”—m—l.

Furthermore if we define E to be the integral matrix
g(D —10’3’0) = gD — C"(Adj B)C, we have | E | =
dq”“ﬂl— .

Then, continuing the above notation, we have (T Ty)" =
(T To)" and (T To)"A(T To) = A’ implies (T To)' A(T To)'"
= A’, that is, (T To)"A(T To) = A’ and hence T, takes
A into D.

The lemma above shows that if (T' To) and (T' Ty) are
unimodular then Ty = TR 4 TS for properly chosen
integral matrices B and S with the latter unimodular.
We now show that replacing Ty by TR 4+ TS replaces C
by BR + CS8, D by S’DS’" and hence E by S“ES. The
equations T"AT; = T"ATR 4 T"AT.S = BR + CS
establish the first part of the statement. The second part
follows from the fact that

(7 Tl [{) g] — [T TR + TuS) = [T T})

which implies that
/i _ fI _R‘.Sl-hrn ¥ f’ _RSI-IF?:-LFZ’:-'
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Now let @ be a set of forms in » — m variables of
determinant dg" ™" and having the following properties:

1) No two forms of @ are equivalent,

2) If E is a form of ® there are integral matrics D and C

such that B = ¢D — C*(Adj B)C,

3) There is no larger set having properties 1 and 2.

Then from the above we see that if 7' is a primitive
representation of B by A and T is so chosen that (T T) is
unimodular we can choose a unimodular matrix S such
that E= gD — C"(Adj B)C is the matrix of a form of
set @ where C = T"AT,S and D = S"T3 AT,S. Further-
more (T Ty) and (T BR + T,S) yield the same E if and
only if S is an automorph of E. Hence we see that if
C, and C; are two matrices T"AT, and T"ATq for Ty and
T, yielding the same chosen E in ®, then the equation
C: = BR 4 C,Q holds for some automorph Q of E and
matrix B (with integral elements).

Given any E of the set @ and C; and C, two solutions of
the congruence E = —C"(Adj B)C (mod ¢), we call C,
and C; essentially equal if there is an integral matrix B and
an automorph @y of F such that C; = BR + C.Qz. If
C and C; are not essentially equal we call them essentially
distinct. (Notice that if ¢ = =+1, all C are essentially
equal.) Thus we have shown that to any primitive repre-
sentation T of B by A corresponds a unigue form E of ® and
an essentially unique matriz C such that

[& %]

has determinant d and E = ¢D — C"(Adj B)C. Since,
if we replace T by PT for any automorph P of A, we leave
B, C, D and E unaltered and the above italicized statement
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On the other hand we can now show that if (T'; Ta)
take A into

) ERd

where E = ¢D; — Ci(Adj B)C;fori = 1,2 and C; =
BR + C:Q: for some integral matrix B and automorph Qg
of E, then there isan automorph P of 4 such that T, = PT,,
Note that the relationship between C; and C; shows that

the transformation
[ &.]
0 Q=

B C| . B C,
[C H Dl] into [02’ L ]
where L = R"BR + Q2C:R + R"C\Qxs + QzD:Qx . Then,

using the facts that R = B'(C, — C:Qs) and Qz(Dy —
CTB'C))Qx = D, — C;B'Cy, we find that L = D, . Hence

(7, Tl [I R] [T) Txf = P*

takes

0 Qs

which is an automorph of A and Ts = PT,.

Thus we have shown that two representations of B by A
yteld the same class E of ® and two essentially equal matrices
C; if and only if the two represenialions are themselves
essentially equal: Since, for each E of @, every solution of
(29) = —X"(Adj B)X (mod g)
yields a matrix

[B. ¢
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with E = ¢D — C"(Adj B)C and determinant d, we have
proved

THEOREM 47a. The function
M@, B) = Z P@, B, E))

where the sum is over all forms E; of ® and P(d, B, E)
denotes the number of essentially distinct solutions C of
(29).Ifq = 1, P(d, B, E;) = 1.

If ¢ i8 prime to 2d (this includes ¢ = +1), if E; v E, and
C; are any solutions of E; = —X"(Adj B)X (mod g) with
E; = ¢D; — C7(Adj B)C;and | E; | = dg"~™ " then we can
show that the matrices A; of form (28) for + = 1, 2, are
semi-equivalent. For let W be a transformation with
rational elements whose denominators are prime to 2¢gd and
taking E, into E; . Then the transformation

b 70 wlo 7%

takes A, into A; and has denominators prime to 2d where
d = | A; |. Furthermore theorem 40 shows that E, v E,
implies that for an arbitrary integer V, there is a form Ej
equivalent to E; such that E{ = E, (mod V); hence if (29)
is solvable for one form E it is solvable for every form
in ity genus. On the other hand as we shall see later,
A1 v A, does not imply that E, v E, .
Thus we have

TrEOREM 47b. If q is prime to 2d (including ¢ = +1)
then

G4, B) = 2P, B, E))

where the sum 18 over all forms E; in & such that for some
solution C; of (29) with E = E;, the matriz (28) ts tn the
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Furthermore, if P(d, B, E;) does not vanish for one value of i,
it 18 different from zero for all forms E; of the same genus.
Also, in virtue of the result cited above, the number of solutions
(mod q) of (29) is the same for all forms in the genus of E.

However, P(d, B, E;) may be different from P(d, B, E,)
since the automorphs of E; and E. are also involved
and may be different (mod ¢). For ¢ = =1 the argument
used for m = 1 below shows that Aiv A, implies E\v E,
unless one of the E; represents a unit and the other does not;
furthermore at most two genera of E; can occur.

We now proceed to make our results more specific for
the casesm = n — land m = 1,

The case m = n — 1.

Here there is just one form E, namely E = d. It has
one automorph, the number 1. Hence M(d, B) = P(d, B, d)
which is the number of matrices C distinct (mod B)
such that

(30) d + C"(Adj B)C = 0 (mod g).

We may find as follows the number of incongruent (mod
q) matrices BR as R ranges over all matrices (ry, rz, * -,
1)’ (mod g). There exist unimodular matrices U and V
such that UBV = B =b; + b + -+ + baey (mod ¢?).
Then, letting B’ = V'R we seek the number of incongruent
matrices B'R’ = (byusri, batiara , -+ + , ba—1Un_1rn) Where
R = (ri,rs, -, rn) andb; = bju; withIlb; = ¢ and
ITu; = 1 (mod g). Then bius; takes on g/b; distinct values
(mod ¢) as r: ranges over a complete set of residues
(mod ¢). Hence B'R’ takes on ¢"* distinct values. Thus
we have

TuaEorEM 48. The function M (d, B) 78 equal to the product
of & " and the number of mairices C distinct (mod ¢q)
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If, in particular, ¢ is prime to 2d, M(d, B) = G(4, B)
for all matrices A representing B are of the same genus
since

_[I BC-0y
V= [o I

is a matrix taking A, into A, where A; have the form (28)
and V has rational elements with denominators prime to
2d. Furthermore if ¢ = 1, G(4, B) = 1. )

In the next chapter we shall consider in more detail the
casen = 2,m = 1.

The case m = 1.
Here B = ¢, E = gD — C"C and, from theorem 47a,

M(d) Q) =2 P(d, q E‘)

where the sum is over all forms E; of ® and P, q, E.)
denotes the number of essentially distinct solutions C of

(31) E; = —X"X (mod g).

Considerable simplification occurs when we impose the
condition that ¢ shall be prime to d. The case of ¢ = =1
is included almost trivially in what follows. Then if C is
any matrix C; in (28) we see that the g.c.d. of its elements
is prime to g since otherwise the determinant of A would be
divisible by a factor of ¢q. Hence, since C may be replaced
by any matrix congruent to it (mod ¢), we may assume 1
to be the g.c.d. of its elements and hence the existence of a
unimodular matrix U such that CU = C, = (1,0, ---, 0).
Thus if C is a solution of (31), U"E;U = —C;C, (mod g)
for all E; in ® and we may consider the E; replaced by
U'E;U. Hence P(d, q, E;) is the number of essentially
distinet matrices C such that C*C = C3C, (mod ¢).
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there is no automorph @z of £ and integral matrix R such
that C» = qR + CiQs, that is, if there is no automorph
Qz of E such that C. = Qs (mod ¢). Hence to simplify
our expression for M(d, ¢) we need more information
about the automorphs (mod ¢) of E.

Notice that E = —C3Cy (mod ¢) which implies that
QTCiCiQ = CiCy (mod ¢) for any automorph Q of E.
Hence the first row of @ is congruent to (w, 0, ---, 0)
(mod ¢) with w* = 1 (mod g). On the other hand, any
solution C = (¢, €2, -+, €aa) of X'X = C7C, (mod ¢)
must have elements satisfying the conditions ¢f = 1,
¢i =0 (modg)fori = 2,3, --- ,n — 1and the number of
such distinet € (mod ¢) is 2*° where u(q) is the number of
distinct prime factors of ¢ increased by 1 if ¢ = 0 (mod 8)
or decreased by 1 if ¢ = 2 (mod 4). Thus, if A\s is the
number of distinct values (mod ¢) of the leading elements
(that is, elements in the upper left corners) of the auto-
morphs of E = —C5C, (mod g) we see that the number of
essentially distinct C satisfying (31) is 2*° /A and hence
we have

THEOREM 49a. If q s prime to d
M@, q) = 29z

wherethesumrwesoverallclassesEofdetemzmm
dg"® such that E = —C5Co (mod q) and p(q) is the number
of distinct prime factors of g tncreased by 1 ¢f ¢ = 0 (mod 8)
or decreased by 1 if ¢ = 2 (mod 4).

The results of the first part of this section show the
truth of the first sentence of the theorem below and the
remaining discussion of this section suffices to prove the
rest of

THEOREM 49b. If ¢ 18 prime io 2d
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where the sum is over those classes of malrices E tn genera
corresponding to the genus of A. At most two genera of
matrices E occur (for more details see below) and, if a class E
occurs, all classes in the genus occur.

In both theorems Ay = 2 if q i8 a prime and Ay = 1 if
g = =1

We can show that if ¢ is prime to 2d and A, written in
form (28), are in the same genus, then the corresponding E;
are equivalent in the ring R(p) of p-adic integers for all odd
primes p and p = «; furthermore E, 2 E, in B(2) if and
only if the forms having matrices £, and E, both represent
odd numbers or neither represent odd numbers. In other
words, from theorem 40 we must show that A; and A4,
equivalent in R(p) implies E, and E, are equivalent in
R(p) for all B(p) except B(2) and that A, and A, equivalent
in R(2) implies E, and E, are equivalent in R(2) if their
forms both represent odd numbers or neither represent
odd numbers. The chapter on ternary forms shows that
there are cases in which for a given genus of A, there is an
E, representing a unit and an E, which does not; hence
this exception cannot be avoided.

First suppose p is not a divisor of 2¢. Then the trans-

formations

have elements in B(p) and take A;into ¢ + (D; — Ci{Cig™)
= ¢ + E.q . Hence theorem 37 shows that E; = E, in
R(p). The same argument can be used for p = «,

Second if p = 2, theorem 38 shows that ¢ odd and
¢ + By’ = ¢ + By in R(2) implies E, = E, in R(2) if
and only if both forms represent odd numbers or both
represent only even numbers.
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unimodular matrix U; such that C;U; = C; where C, =
(1,0, +--, 0) and ¢ = 1, 2. Then the transformation
1 4 U; takes

g Cif . g Co
[0.-’ D.-] mto [co’ Dé]

where D; = UTD;U; . We need to show that D — CCog™
o D; — C3Cg ™ in R(p). Let Dy = (dij) and Dy = (es)).
If we multiply the first column of the matrix gD; — C7Co
by —qdii/(gdu — 1), add it to the i-th for ¢ = 2, 3, .

n — 1 and do the same for the rows we get ¢D; — C5Cy =
(gdu — 1) + gDoin R(p) where Dyis a matrlx in R(p) with
determinant d(gdy — 1) Slmﬂa.rly gD: — C1C, is equiva-
lent in R(p) to {(geu — 1) 4 g¢Eo. But the congruence
gdu — 1 = gey — 1 (mod p) implies that there is an
element % of R(p) such that gdu — 1 = u’(gen — 1).
Also ]Dol = d(qdu - 1)_‘1 = —glEoI withuprimetop
implies from corollary 36b that Dy = E, in R(p). Hence
(geu — 1) 4 qEo = (gdu — 1) 4 ¢Ds in R(p) and we have
proved our result.

It perhaps should be remarked that the restriction that
representations be primitive may. be removed if we replace
M(d, g) by = M(d, ¢/r*) the sum being over all integers r
whose squares divide ¢. A similar remark may be made
about G(4, q).

In the chapter on ternary forms we shall make special
applications of these results.



CrarrER VII
BINARY FORMS

39. Introduction. Most of the results in this chapter are
classical—some dating back to the time of Gauss and
earlier—and can be derived independently of the previous
general theory. But viewing the binary forms as special
cases of our previous results illuminates the general theory
on the one hand and economizeslaboron the other. Further-
more certain problems, such as the determination of all
automorphs, inaccessible in the general case, can be com-
pletely solved for binary forms.

Since much of the theory of binary forms was developed
in advance of the general theory there is a wide divergence
in the use of the term “determinant’’ as applied to a form.
Gauss wrote the binary form as f = az® + 2bzy + ¢y’ and
defined the determinant of f to be B — ac. Kronecker
preferred f = az® + bzy + cy’ and called b* — 4ac its
determinant. These expressions or their negatives have
been variously referred to as the “discriminant” of the
form. The confusion of terminology is so great that, in
reading the literature, one must take great care to inform
himself of the meaning of the author. We shall in this book
make a clean break with tradition and define the deter-
minant of a binary form just as it was defined for forms in
more variables. That is, the determinant of az® 4 2bexy +
¢y’ shall be ac — b; and that of ax® + bxy + cy’ shall
be ac — b*/4.

In this chapter we shall confine attention to forms
f = az® + bzy + cy’ where a, b and ¢ are integers and
shall reserve the letters a, b, ¢ for the coefficients, denoting
on occasion half the middle coefficient by b, . It will be

139



140 BINARY FORMS

taken for granted that the determinant of the form is not
zero. Notice that it may be one-fourth of an odd integer
if the middle coefficient is odd.

40. Automorphs. We have seen that the automorphs
of a form provide the key to many problems. Our first
concern then is to find the automorphs of binary forms,
that is, the transformations with integral elements taking
forms into themselves. The determinant of such a trans-
formation must be 1. In classical literature automorphs
are usually required to have determinant 4+ 1. When we
wish to make such a restriction we shall call it a proper
automorph. Since —I is an automorph of any form, the
distinction between proper automorphs and unrestricted
automorphs is important only for forms with an even
number of variables.

If f = az® + bzy + cy’ there is no loss of generality in
considering f to be primstive, that is, 1 to be the g.c.d. of its
coefficients since for any integer r the automorphs of f and
rf are identical. Furthermore we may say a # 0 since f
represents some non-zero number. Make these restrictions
and see that af = X* + dy® where d = ac — b*/4, being
the determinant of f, and X = axr 1 3by. Hence the

transformation
e
T= [0 1]

takes F into af where F = X* + dy’. Thus if P is an
automorph of f, the transformation TPT' takes F into
itself and we shall find the automorphs of f by means of
this relationship. Letting P = (p;;) and writing Q =
TPT', multiplying matrices shows that

33)
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If P is a proper automorph of f, we have the three
equations
(34) ap:l + bpupn + CP§1 =
(35)  2apupiz + b(pups + Pupn) + 2cpupn =
(36)  PuPn — pupn = 1.
Substituting (36) into (35) we get

(37) apuprz + bpupn + cpupn = 0.

But (34) shows that a divides pu(bpu + ¢pu) and (37)
that a divides pu(dp2 + ¢p»). Then (36) and the fact
that no factor of a divides both b and ¢ shows that a
divides pn and enables us to write pn = aps where pa
is an integer. This shows that in @, above, all the elements
are integers except that when b is odd some denominators
may contain the number 2 or 4.

If we find all the automorphs of F where now we allow
some of the elements to be halves and quarters of integers
we can obtain by means of (33) the a.utomorphs of f.

To this end let
|t v
o[, ]

be a transformation with rational elements and deter-
minant =1 taking F into itself. Then

£ +di=1
o+ dw =4
tw—uw = +£l1.

1f u 7= 0 solve the third equation for v and substitute in the
gecond to wet w2 + du®) F 2w 4+ 1 = dil. Use the first
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—1, tw = =1 and hence v’ = 1and v = 0. Thus in all
cases we see that if @ is a transformation with rational
elements and determinant 1 taking F into itself

(38) w= =t v= Fdu,

where the sign is the sign of the determinant of Q.
Then if P = (pij) is an automorph of f, equations (33)
and (38) imply

Pu-tbpn/2 =1t pu=u,

where £, u is a solution of 2* + dy* = 1. This shows that ¢
and u are integers unless b is odd (that is when 4d is an odd
integer) in which case 2¢t and u are integers of the same
parity. Such a solution we call a semz-mtegral solution.
Furthermore (38) imply pu + bpa/2 = —bps/2 + pa.

Hence pu = t — }bu, pa = au, pn = ¢ + 3bu and (33)
with (38) imply p12 = —cu. Hence we have almost proved

TugoreM 50. If f = ax® + bay + ¢ is a primitive
form with a # O all proper automorphs of f are expressible

in the form
_t—3%u  —cu
Py = [ au L+ %bu]

where 1, u 18 a semi-integral solution of z* + dy* = 1 and
d = ac — b*/4.
Now

|t —du
rrir = [1 ]

which takes F into itself. Hence P, takes f into itself. Its
determinant is 41. If b is even the elements of P, must be
integers. If b is odd (2t)* + (4d)u® = 4 and the fact that
2% and u are of the same parity implies that the elements of
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If f is a positive form, d > 0 and the only semi-integral
solutions of z* + dy* = 1 (with 4d an integer congruent to
—1 or 0 (mod 4)) aret = 1, v = 0 except that when
d = 1wehavealsot = 0, = +1 and whend = 3/4 we
havet = +4%, 4 = 1 or —1. Hence we have

THEOREM 5la. If f = az” + by + cy’ 18 a primative
positive form the only proper automorphs of f are I and
1. If d = 1 the transformations

[?%b Fe ]
+a +3b|°
2. If d = 3/4, I and — I multiplied by the following

R

Notice that if d = 1, theorem 23 shows that f = z* 4+ y*
andifd = 3/4, f= 2" + 2y + ¥

If —d is a square f is & zero form and £ + du® = 1 with
t, u semi-integral implies that ¢ 4+ 4/ —d-u is integral
hencet —\/—d-u =t ++/—d-u = £1,that ist = =1,
% = 0 and we have

TareoreM 51b. If f = az® + by 4 ¢y’ is a zero form the
only proper automorphs of f are £1. (The restrictions a % 0
and | primitive are here not necessary.)

Notice that in theorems 51a and 51b the number of
proper automorphs depends only on the determinant of
the form. In fact, the number of proper automorphs is 2
except ford == 1 and d = 3/4 in which cases it is 4 and 6
respectively.

In order to deal with indefinite non-zero forms, which
have infinitely many automorphs, we must consider the
semi-integral solutions of the equation
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This we call the Pell equation even though in classical
literature the name is usually applied only if —d is a
positive non-square integer. We have found that there is a
1 — 1 correspondence between the semi-integral solutions
of the Pell equation and the proper automorphs of forms
of determinant d.

Call ¢, u a positive solution of (39) if £ and u are positive.
The positive semi-integral solution T, U is called the
fundamental solution if T + UN/—d < t + u\/—d for
every positive semi-integral solution ¢, u. It is interesting
to notice that finding the solutions of the Pell equation
above is equivalent to finding the units ¢t + u+/—d in the
quadratic field (see section 42) obtained by adjoining
v/=4d to the field of rational numbers, a unit being
defined as a number ¢ 4 u+/—d such that (¢ + u\/—d)
(t — u\/—d) = 1; 1, u being semi-integral. The numerical
computation of the fundamental solution is best accom-
plished by means of the continued fraction expansion of
4/ —d. We next prove

Lemma 14. If —4d is a positive non-square integer con-
gruent to 1 or 0 (mod 4) then every semi-integral positive
solution t, u of the Pell equation (39) satisfies the equation

t+uv—d = (T+ UvV=ad)"

for a properly chosen positive integer n, where T, U 1s the
SJundamental solution.

First we show that if ¢, , u; are semi-integral solutions of
the Pell equation for 7 = 1, 2, then #; , u; is a semi-integral
solution when f; and u; are defined by the equation

(40) &+ uev/—d = (b + wV —=d)(t2 + vV —0d).

It is obvious that £ and u; are integers if 4 is an integer.
Y 4d = —1 (mnd 4\ snnatian (40) imnlies fo == .l —
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2, and ug are integers. If i and ¢; are halves of odd integers,
u; and 4, must be odd and again 2f; and u; are integers.
Furthermore (40) implies the same equality with u, , us, us
replaced by their negatives; multiplying the two equations
shows that &; -+ du; = 1 and 2¢; and u; are of the same
parity, if 4d = —1 (mod 4).

Next let T, U be the fundamental solution of (39).
Then, from the above,

(41) tw + UnV—d = (T + UV=-)"

defines a semi-integral solution ¢m , um for every positive
integer m. Now let r, s be any positive semi-integral
solution. Since T + U+/—d > 1 there is a non-negative
integer m such that

(42)
(T 4+ UV —-ad)"<r+ 8\/_—_d§(T + U\/:i)mﬂ

If one of the equalities holds our theorem follows. In the
contrary case

r+ sv—d
| 1<t...+'u...\/:ﬁ<T+ U —d
where ., , U are defined by (41). The fraction is equal to
r + 81V —d where 11 = rln + SUnmd, 81 = lm8 — Unr and
from the first part of this proof =, s; is a semi-integral
solution of the Pell equation. If we can show it is a positive
solution our theorem will be established by the denial of
our assertion that T, U is the fundamental solution. Now

(43) 4d=1 and & +dud =1

imply r > s\/—d, tm > um\/ —d and hencer; > 0. Also 8,
has the same sign as £hs® — uir® which, using (43), on the
one hand is equal to & — w42 and on the other hand is
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< r + 8n/—d and hence & > 2 or * > &, which shows
that s; > 0 and completes our proof.

We can extend this result of the lemma by noting that
any semi-integral non-trivial solution of the Pell equation
may be made a positive solution by changing the sign of
one or more of ¢t and u. Hence for every semi-integral
solution we can choose a positive integer n,v = 1 or.—1,
w = 1or —1 so that ot + wur/—d =(T + U/=d)",
the trivial solution being given by n = 0. Hence we have
the corollary below.

CoroLLARY. Every semi-integral solution of the Pell equa-
tion is expressible in the form

+(T + Uv/=d)"
where n 18 an integer (postlive, negative or zero) and T, U s
the fundamental solution.

Now turn to the discussion of proper automorphs of
non-zero indefinite primitive forms. Let P:, P; and P,
be any proper automorphs of such a form with P\Py; = P;.
There is by theorem 50 a 1 — 1 correspondence between
the automorphs of f and the semi-integral solutions of the
Pell equation. If ¢; , u; are the semi-integral solutions of the
Pell equation corresponding to the proper automorphs
P; (i = 1,2, 3) we have, multiplying the matrices P; and P,
and equating the diagonal elements of the product to the
corresponding elements of Py , the equations

ity — 3b(usts + ush) — duste = 3 — $bu,
tify + $b(uats + ust) — dugus = t; + 3bus.

Hence t; = tits — duus , us = ity + st . In other words,
t; and u; are defined by the equation

@44) &+ uv/=d = (b + wV—=a) ( + wV—0d).
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under multiplication. Then the corollary of the lemma
gives us

THEOREM 5lc. If f = ax’ + bxy + cy’ is an indefinite
non-zero primitive form oll its proper automorphs are in-
cluded in the formula

N [T —3U —-cU "
alU T + $U

where T, U 18 the fundamental solution of the Pell equation
z* + dyt = 1 and n is an integer.

In this connection attention should be called to a result
of Siegel (see reference 13) that for any indefinite form f
in n variables there is a finite number of automorphs

P;, i =1, .-+, k such that every automorph of f is
expressible in the form
P‘ilP;’ R P:h

for integer values of a;. We have just shown that for

= 2, k has the value 2.

So far we have considered only proper automorphs. A
form which may be taken into itself by an integral trans-
formation of determinant —1 is called ambiguous. If P is
such a transformation equations (33) and (38) with the
ambiguous gign negative show that pn = —pa. Now we
prove

TeEOREM 52. If f = ax’ + bxy + ¢y is an ambiguous
form there is in the same proper class as f a form f' = a'z® +
a'wzy + ¢'y’ withw = 0 or 1 and having the automorph

) [6 =]

NOW Dix = —Don ANA DiiDos — DoiDie = — 1 IMDlIee
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Postpone the case when pis = p;1 — 1 = 0. Let » be the
g.c.d. of P12 and P — 1 and let —P12 = U811, Pu — 1= ¥U8g
define integers si; and sy . Since the latter are relatively
prime we can determine integers s;, and 832 80 that

<[z 2]

821 82
has determinant +1. Then (45) implies pn = v'sy,
pu + 1 = o8y for a properly chosen integer »' and we have

1 r
PS=;S|:0 s]

for integers rand 8. If p1z = pu — 1 =0, pu + 1 # 0,
choose ¢’ to be the g.c.d. of p12 and pyy + 1 and similarly
determine S. Furthermore | P | = —1and | S| = 1 implies
s = —1. If then we take w = 1 or 0 according as r is
odd or even and

r-[p 377 p-[p 2

we see that
1 r ,
[0 _I:IR—-RP.

Thus P’ = (SR)Y'P(SR) and if 4 is the matrix of f, P"AP
= A becomes P'"A'P’ = A’ where A’ = (SR)TA(SR).
Thus A’ is the matrix of a form f' =2 f properly which
has P’ as an automorph. I f’ = a'z* + b2y + 'y’ is the
form whose matrix is A’, the fact that P’ is an automorph
shows us that f' = a'(z + wy)’ + b'(z + wy)(—y) + ¢’
and thus b’ = 2a’w — b’ which shows that b’ = a’ or 0
according as w = 1 or 0. This proves our theorem.

Then all the automorphs of an ambiguous form may be
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proper automorphs by I and the automorph of theorem 52.
Notice that the forms withd = 1 and d = 3/4 in theorem
51a are both ambiguous.

41. Representations by binary forms. In this section we
consider forms f = az® + bzy + ¢y’ where b is an even
integer and a and ¢ are integers and the solutions of f = ¢,
where ¢ is a non-zero integer. Such forms have integral
matrices. From theorem 48 immediately follows

THEOREM 53. The value of M (d, q) is the number of distinct
solutions (mod q) of the congruence

(46) z' = —d (mod ¢)

where, M(d, q) = Z N(A, q) with N(A, q) the number of
essentially distinct primitive representaiions of q by A and
the sum is over all classes A of determinant d, the classes
not being restricted to be primitive.

Suppose the square of a prime p divides d and ¢. Then
from theorem 41 we may write f in the form f, = awi +
axzs (mod p%). If @1 = a3 = 0 (mod p) there is & 1-1
correspondence between the solutions of f = ¢ and f/ =
f/p = ¢/p; if a1 % 0 (mod p), f = ¢ implies 7 = pai
where z; is integral and, substituting this value for z;
we have a 1-1 correspondence between the solutions of
f = qand f' = ¢/p. In both cases | f'| = d/p’. By this
process we may reduce consideration to the case when ¢
and d have no square factor in common except 1. Now,
though theorem 53 seems to give the simplest general
result, we can, assuming this reduction to be made, express
the results of the above theorem in somewhat more definite
form by investigating the number of solutions of (46).

If p* divides ¢ but not d and d is divisible by p, there
te nn anhidinn Af 1 = —Ad (rand 8 arnd hanea of AR\
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solution of 2* = —d (mod p). I p is an odd prime not
dividing d, the number of solutions of (46) for ¢ = p°,
a = 1lis1 4+ (—d|p) as may be seen from the theory of
numbers; if ¢ = 2 and d odd the number of solutions is
¢ where qpis4if @ = 3 with —d = 1 (mod 8),2ifa = 2
with —d = 1 (mod 4), 1 if @ = 1 or 0, 0 otherwise. Thus if
a1 , the g.c.d. of ¢ and d, is square-free (46) has no solutions
when ¢/g; has a factor in common with d while if ¢/g, is
prime to d, (46) has

cll{l + (—d|p)}

solutions where the product is over all odd prime factors of
¢/¢: - Thus we have

THEOREM 54. If ¢ = q1gs where g1 15 the g.c.d. of g and d
and gy 18 square-free, then

M@, ¢) = Ledi{l + (—d|p)}

where the product s over all odd prime faclors of ¢, L=20
or 1 according as q: has or has not a preme factor in common
with d and ¢ has the value O except for the following cir-
cumstances:

i) e = 11if ¢ # 0 (mmod 4),
il) &0 = 24f ¢ = 4 (mod 8) and —d = 1 (mod 4),
iii) ¢o = 44f ¢ = 0 (mod 8) and —d = 1 (mod 8).

The above product can be written as a sum and in-
corporated into the following

CoroLLARY 54. M(d, q) = LeZ(—d | u), the sum being
over all square-free odd divisors, u, of ¢z, and L and ¢y having
the values above.

When the g.c.d. of ¢ and 4d is square-free we can find
expeditiously the value of the representations expression
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restricted to be primitive. To this end let No(4, ¢) stand
for the number of essentially distinct representations of
g by 4 and M(d, ¢) the sum of Ny(4, ¢) over all classes of
determinant d. Then

Mi(d, q) = 2, M(d,¢/r") = L3 2u(=d|w)

the second sum being over all odd divisors u of g/r*. In
the double sum any (—d | u) occurs to the number of
times equal to the number of different values of r such
that wr® divides ge .. Then, since (—d|u) = (—d|ur?)
we have :

TursoreM 55. If q has no square factor greater than 1 in
common with 4d and ¢ = q.g, where ¢ is the g.c.d. of ¢
and d,

M@, q) = LZ(—d | »)

where L 1s defined in theorem 54, My(d, q) is the sum of the
essentially distinct representations of q by the classes of
forms of determinant d and the sum is over all odd divisors
of qz. Not all the classes need be primitive. (See the note
below.) -

Nore. If ¢ is prime to d the only forms representing ¢
are properly primitive if d is even, d = 1 (mod 4) or
d = 3 (mod 4) with ¢ odd; improperly primitive if d = 3
(mod 4) and ¢ = 2 (mod 4). If ¢ is prime to 2d the remarks
after theorem 48 show that all the classes in Mo(d, ¢)
are of the same genus.

Notice that in the last theorem we required that not
only should ¢ have no square factor greater then 1 in
common with d but that ¢ should not be divisible by 4.
It is possible to reduce the general case to this case by
somewhat similar methods to those used to eliminate
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especially inspiring. The following two examples will
suffice.

ExampLe 1. Suppose d = 28, ¢ = 22. The form f
may be congidered tobe = az} + asr3 (mod 4) and either
o and ap are both even in which case consideration of
f = 22reduces to that of f//2 = 11, 0r @, is odd and f =
22 implies , = 2z; and f = 22 is not solvable.

ExamrLE 2. Suppose d = 7, ¢ = 44. Then either f is
properly primitive and may be taken = a2 + a3
(mod 8) in which case f = 44 implies z; and z; are even
and consideration is reduced to f = 11, or ) is improperly
primitive and may be taken to be = 2x,zs (mod 8) when
f = 44 implies that x, or z; is even and consideration is
reduced to f = 22.

Suppose for some integer g, o , 7o is a solution of f = ¢.
From the definition of essentially equal solutions and
theorem 50 all solutions essentially equal to z,, y are
obtained from this by multiplying the matrix (zo )" on
the left by the matrix

_ [t —3bu  —cu ]

Q= au t 4+ 3bu
If Q took %o, o into itself we would have Q(— I)(zoy0)" = 0
andhence|Q — I| =0, thatis (¢ — 3bu— 1)(t + 3bu—1) +
acu’ = 0 which reduces to ¢ = 1,% = 0 in virtue of the
equation £ + du’ = 1. Hence the identity is the only

proper automorph taking the solution zg, 7 into itself.
We have

TaroreM 56. The number of representations of any number
by an indefinite non-zero form is infinite. The number of
representations of any number by a positive form or a zero
form 1e the number of essentially distinet solutions multinlied
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according as d = 3 and the form is improperly primitive,
d = 1 or d neither 3 nor 1.

Though zero forms are included in the above theory
they can be dealt with so simply and completely in the
general case that they are worth special consideration.
According to theorem 23a any binary zero form is equiva-
lent to 2bzy -+ ¢y’ where —b* = d. Then ¢ = y(2bx + cy)
is solvable for y = w if and only if w divides ¢ and ¢/w =
cw (mod 2b) is solvable. Hence we have

THEOREM 57. If f v8 a binary zero form of determinant
d = —b%, the number of solutions of f = q is the number of
divisors w of ¢ such that ¢/w = cw (mod 2b).

42. Ideals in a quadratic field. Several important results
in the theory of binary quadratic forms are obtained by a
process called composition of forms. This, in turn, is closely
connected with the theory of ideals in a quadratic field.
Accordingly, in this section we develop some pertinent
facts about quadratic ideals.

Let F be a field obtained by adjoining /A to the field of
rational numbers, where A is a non-square integer con-
gruent to 1 or 0 (mod 4); that is, F' consists of all numbers
of the form a + b+/A where ¢ and b are rational numbers.
Let ¢ = 3(v/A + 1) or /A according as A = 1 or
0 (mod 4) and call quadratic integers those numbers ex-
pressible in the form z 4+ yo where z and y are rational
integers. (We reserve the name “integer” for rational
integers.) The set of all quadratic integers in F' we denote
by J(A) or J. It is easy to see that J is closed under
addition, subtraction and multiplication; that is, the sum,
difference and product of any two quadratic integers are
quadratic integers. If « is an element of J we call the
armher ahtained fram ~ hyv renlacinos A by — /A 1t
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N(a), the norm of a, and see that N(«)N(8) = N(af).
If « is a quadratic integer, N(a) is an integer.

If now o, a2, *-+, as is a set of numbers of J, we
call all numbers ma1 + mas + +++ 4+ 7,a. wWhere the 7;
range over all numbers of J, the ideal I = (a1, a3, * -+ , o).
If the «; are such that every number in I is expressible
uniquely in the form zay 4+ Zsas + -+ + Znon where the
z;are integers, wecall a; , @2,  * * , s a basis of I and write
I = [, a, -+, a,) with brackets instead of parentheses.
Two ideals are said to be equal if they contain the same
numbers. An ideal consisting of all numbers ap, where
is a fixed number of J and p ranges over all numbers of J is
called a principal ideal and written (o). If I = [a;, )
we call I° the ideal [o1 , a3] and «I the ideal [ua; , uas).

The first classical result we need is

TaeorEM 58. Every ideal I of J has a basis [r, s + wo]
wherer, 3, u are integers, r and u both being positive. Further-
more, r 18 the g.c.d. of the integers in I and u s the g.c.d.
of the coefficients of o in the quadratic integers of I. (Hence
r and u are uniquely determined by I).

To prove this first notice that I contains an integer
since if « 18 a quadratic integer in I, then N («) is also in I.
If then we let r be the least positive integer in I we see
that it must divide all integers in I since if it does not
divide an integer b in I, then b = ¢gr + 7’ where 7’ is a
positive integer less than r; b and ¢r being in I implies
that 7 is in I contrary to the supposition that r has least
positive value. By the same reasoning we can show that »
has the properties desired.

It remains to show that every number of I is a unique
linear combination of r and 8 + 4o with integer coefficients. -
To this end let @ + bs be a number of I. Then b =

Aotoarmines an nfoecer » oand 7 L hr — afe L arm) =
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integer y; thus ¢ + bo = yr + z(s 4+ uo). Furthermore
yr + z(8 + uo) = y'r + 2’(s + wo) implies that z = 2/,
y = ¥y’ and the representation in terms of the basis is
unique. This completes the proof of the theorem.

There are certain restrictions on r, s and % of the theorem
above if r, s + uo are to form a basis for an ideal. For
instance, 3 and 1 + 24/3 do not form a basis of an ideal
since the equation (1 — 24/3) (1 + 24/3) = —11 shows
that —11 is in the ideal (3, 1 + 24/3) while —11 is not
expressible in the form 3z + (1 4+ 21/3)y for integers
z and y. We now .find necessary and sufficient conditions
on integers r, s and u with ru > 0 that (r, s + uo¢) issuch a
basis. Suppose (r, s + uo) is a basis with ru £ 0. Then all
numbers of the ideal are of the form

t = r(@ + o) + (8 + uo)(@ + ye0)

for integers z;, %2, #1, 2. The coefficient of ¢ in ¢ is
191 + uz, — sys and since, from the theory of numbers,
%1, 22 and ys can be chosen so that this coefficient is the
g.cd. of r, u and s, we see that «, being by theorem 58 a
divisor of all coefficients of numbers of I, must divide
the g.c.d. of 7, u and s; hence the equations r = au, s = eu
determine integers a and e. If, on the other hand, we choose
#, s and ys so that ry, + uxs — sy: = 0, that is, ayr +
T — eys = 0,and let ¢ 4 ¢° = ¢ where ¢is 1 or 0 according
as A = 1 or 0 (mod 4) we have

t=rz; — (rs/udy + yok/u

47
) k=& + sue + ulos® = N(s + wo).

Since ¢ is an integer in I it must, by theorem 58, be divisible
by r for all values of #; , 7 and y, ; hence k¥ = 0 (mod ru).
Thus we have shown that if (. s + us) i8 2 basis under the
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and N(s + wo) is divisible by ru. Conversely if these
conditions hold we see that « divides all coefficients of o
for numbers of I and that, since all integers in I are
expressible in the form of ¢ in (47), r divides all integers
in I. Hence we have proved

TraEOREM 59. I = [r, 8 + wo] for r, s and u integral and
ru 5% 0 if and only if r = ua, s = ue delermine inlegers a
and ¢ and N(s + us) = 0 (mod ru). That is, we can wrile
I = [au, euw + uo] = ula, ¢ + o] with N(¢e + ¢) = 0
(mod a).

We call a basis [r, s + uoc] of an ideal a reduced basis
if r, s and u are integers, r and » both being positive.
Theorem 59 gives an alternative way of writing a reduced
basis.

Suppose [en, o] and (B, , B:] are two equal or distinct
ideals for which the following equations hold:

ay = Bty + Bein
oy = Bl + Batas .

Then we may say that the basis [a; , o] is taken into the
basis [8), Bs] by the linear transformation T = ({;). In
matrix notation (48) is

(o1, @) = (81, BIT.
Next we prove

TaeorREM 60. Two ideals [a1 , o) and [B, , B2) are equal if
and only if there 1s a unimodular transformation taking one
basig into the other.

If there is a unimodular transformation taking one into
the other, the numbers in the ideals are the same since (48)
and T unimodular implies that za; + yaz = (zt + ytu)s +

Yy [ T Y- s LY R Y « SNy Sy S [

(48)
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other hand, that the ideals are equal. Then there are
matrices 7 and T with integer elements such that the
matric equations (a1, as) = (81, B2)T and (81, Bs) =
(1, a2)T" hold. Then (a1, a3) = (a1, o) T'T and since the
representation of ey and as by o and . is unique we have
T'T = I, the identity matrix, which shows that | 77 || T | =
1 and hence | T | = 1. Thus the theorem is proved.

If I has the reduced basis [ua, ue + ucs] we define the
norm of I, denoted by N(I), to be ur and see that N(I) =
w'a.If I, and I; are two ideals in J, their product, I.J. = I,
is defined to be that ideal consisting of all numbers in J
expressible in the form =p;;0.3; where the a; are in I, , the
B; are in I, and the p;; are quadratic integers. Since the set
of numbers expressible in the form Zp;;a{g; coincides
with the conjugates of the set of numbers expressible in
the form Zp;jai3; we see that I1]; = I; implies I1l; = I5 .
Multiplication of ideals is associative and commutative
since quadratic integers have these properties. We call an
ideal I = [ua, ue + uo] primstive if 1 is the g.c.d. of g,
2¢ + o + ¢° and ¢ where ¢ = N(e + o)/a. The following
important result holds even if the ideals concerned are
neither primitive nor principal but the general proof is
much more difficult and the more restricted result is
sufficient for our purposes here.

TasorEM 61. If each of the ideals I, , Is is either primative
wn J or prmczpal, then N(I],Iz) = N(I1)N(Ia).

We prove this theorem by showing that it follows from
lemma 15 below. This consequence is direct since, using the
lemma, (N(I)(N(1)) = LI = LI = (N(I;)), where
L = I]_Ig ’ and hence N(I])N(Iz) = N(Is). It remains
to show

LemMma 15. If the ideal I is primitive or principal, then
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To prove this first for I primitive, write I = [ua, ue + us]
and see that all elements of I-I° are linear combinations of
wa’, Wale + o), w'ale + o°), walN(e + o)/a = w'ac, with
integer coefficients. Thus all numbers of I-I° are divisible
by u’a. Furthermore, addition of the second and third
numbers above, shows that I-I° contains u’ag where g is
the g.c.d. of a, 2¢ 4 ¢ + ¢° and ¢ which, by the primitive-
ness of I, is equal to 1. This shows that I - I i the principal
ideal (v’a).

If, on the other hand, I is principal it may be wntten in
the form u(v + wo) where v and w are relatively prime.
Then I-I° = (W’N(v + we)) and it remains to show that
N{I) = ¥’'N(v + ws). We do this by finding a reduced
basis for I, = (v + wes). Now every number of I, is ex-
pressible in the form L = (v 4 wo)(z + y0°) for integers
zand y. But L = vz + wyN(e) + (o + o*)yv + (wz — yv)o
shows that x and y may be chosen so that the coefficient of
o is 1. All values of z and y which make wz — yv = 0 are
integral multiples of £ = v and y = w. Hence all integers
in I, are integral multiplies of v* + w’N(¢) + (o + o")ow =
N (v 4+ we) which is therefore the norm of I, .

It is convenient to call d(I), the expression — (ajaz —
ascn)’/4, the determinant of an ideal [y , as). To justify
this definition by showing that its value is independent of
the particular basis chosen let (a1 , a2) = (a1, a2)T where
T is unimodular. Then
a{ a;

re Ie
[+4% [52]

a1 aa
Ol1 Ota

| T

which implies that the two determinants are equal except
perhaps in sign, and hence that the change of basis does
not alter d(I). Furthermore, if I = [r, s 4+ uo], wheré r, s
and « have the properties imposed in theorem 59, we have

27 TN 9 9, e\ 72 2v2 9\ » e\ 72
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43. A correspondence between ideal classes and classes
of quadratic forms. Suppose I = [ua, ue + uo]. Then
Nz + ule + o)y) = w'N(a + (¢ + o)y)
Ww'a (az’ + bzy + cy’) where

(49) b=2+ o+ o, ac = N(e + o).

Furthermore ac — b*/4 = —1(¢ — ¢°)® = —1A. Moreover,
we have seen that any basis of I may be obtained from its
reduced basis by a unimodular transformation. This trans-
formation will leave unaltered the norm and determinant
of the ideal and takes f into an equivalent form. Thus
we have proved

TrEOREM 62. If I = [ay, o] 48 in J(A), then
(50) - Nlaz + ag) = N(Df(z, 1)

where f(z, y) = az’ + bry + cy’ and d(f) = —1A, that is,
d(I) = N*(D)d(f). If the basis is reduced, the relationship
between the basis and the coefficients of f is given by equations
(49).

The following theorem establishes the correspondence
in the other direction.

TraeoREM 63. With a class of forms there is assoctated by
(51) below an ideal I in J(A), where b — 4ac = A and for
some basis of I and some form f of the class, equation (50)
holds with f = az’ + bxy + cy'.

To prove this suppose that m is an integer least in
absolute value represented by the class of forms. Then
there must be a solution in integers zo , yo of the equation
f = m. Now x, and g, must be relatively prime since the
square of any common factor would divide m, denying the
SllppOSlthn that m is least We may then by a ummodular

VY Y LT T, ey ) . . D, Y . L L T e
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non-zero integer least in absolute value of all the numbers
represented by f. Then with f we associate the ideal
2

(51) I= (a,b-"‘————— Vg““c) = (o1, cn)
in J(A) where A = b’ — 4ac, and see that N(z + asy) =
af. It remains to show that ¢ = N(I) and hence (o, )
is a basis. If A = 1 (mod 4) we may take r = q, s =
(b — 1)/2,w = 1 and, since ¢ = 3(1 + V/1* — dac) =
3(1 + /A), we have N(s + us) = ac = 0 (mod a) and
the conditions of theorem 59 are satisfied. If A $# 1 (mod 4),
b is even and we may take s = 3b, u = 1, ¢ = 31/A and
again N(s + uwe) = ac = 0 (mod a). Furthermore the
correspondence between the coefficients and basis is the
same as in (49).

Notice that the form which we have made correspond to
I depends on the particular basis but that the class of
that form is independent of the basis. In both cases the
ideal I = [ay, ay] and the form f satisfy condition (50).
However, though all forms associated with any ideal by
the above means are properly or improperly equivalent
to one another, there may be several ideals associated
with one form; for instance I and pI, with p a quadratic
integer, are associated with the same class of forms, To
obtain uniqueness of correspondence we say that two
ideals I, and I, are in the same class (or 7deal class) if
there exist quadratic integers p; and ps such that p.Jy = pole.
Let = denote an ideal class (that is, the set of all ideals in a
given class) and T the set of all forms (properly or im-
properly) equivalent to a given form. As-above, =° denotes
the class of ideals obtained from Z by replacing each
number by its conjugate. We prove

TuEOREM 64. Two primative ideals I, and Is in J(A) are
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To prove this let I; = [a;, 8] and N{az; + B =
NI )f(zi,y) fori = 1,2 and fi(z: , 1) =2 fa(ze, y:). If T'is
a unimodular transformation taking f; into f; we have the
equations (z:, 1) = (z2, ¥2)T and (21, 1) = f2§$h ;h)
identically in z; and ys. Now (a1, B1)" = T(en, B1)"
defines a new basis [a1, 8i] of I, and we have (z1, %)
(@, B)T = (22, y)(ei, B1)". Thus Nz, + By) =
N(I)fa(w2 , y2) implies N(aiz: + Bign) = N(IDh(s, y2)
and replacing o , 81 by 1, f we have

(52) N(aas + Ba2) = NI falze, ), ¢ =1,2,

identically in z, and s . If @ and ¢ are the coefficients of 3
and y3 (they must be different from zero) respectively in
fa(xa , ¥2) we have, taking the pairs of values (1,0) and (0, 1)

(83) N(w) = N(Ida, N(@B) = N{.e,
and hence
N(e1)N(Is) = N(ea)N(Iv),
N(B)IN(Is) = N(B)N ().

Then the ideals I, = auls and I; = al; have equal
norms by (54) and theorem 61 and are associated with
the same class T of forms. Furthermore, I, and I; are in the
same ideal class as I3 and I, respectively. Thus, multiplying
(52) by N(cz) and N(e;) respectively we have, equating
coefficients of 3 , zws , y2 on the left side

ouod = gy,  aufi + iy = asfs + aifs,
BiBi = B3
where I, = [oy, 84 and Iy = [az , 83]. But the determinants
of I, and I; are equal since they depend only on A and

+he norme Henco

(54)

(55)
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If the positive sign holds we have, adding (56) to the
second equation of (55), a8i = @383 which, with 8,8 =
8503 , implies aa/Bs = a3/Bs and hence I, and I; are in the
same ideal class. If the negative sign holds, aui = «a3B;
which, with 8,81 = 883 , gives au/Bs = a3/83 and I, and I}
are in the same class. This completes the proof that
f1 = f, implies that the corresponding ideal classes are
equal or conjugate.

On the other hand, if 2, = 2 we may choose [a;, as)
and [o] , o] as bases and N(ax + ayy) = N(aiz + agy)
shows that the forms are equal.

Notice that since we call a form primitive when 1 is'the
g.c.d. of its coefficients, the definition of a primitive ideal
and equations (49) show that a form is primitive if and
only if the corresponding ideal class is primitive. Then our
correspondence will be completed by the following result.

TaeEOREM 65. The primitive ideal classes = and Z° are
equal if and only <f each corresponding class T' is improperly
equivalent to itself.

To prove this we may take [a, ¢ + o] as the representa-
tive of Z and [a, ¢ + ¢°) as its conjugate. Suppose they are
in the same class, that is, there exist quadratic integers
a and 8 such . that ol = gI°. Then N(a)I = o°8I° and,
gince the coefficient of ¢ in every number of the ideal
on the left is divisible by N(a) we see that N(a) divides
o’ and that I = yI° for some quadratic integer v. Taking
the norm of both sides we find that N(y) is 1 and. hence
that the ideal (y) is the ideal (1). Thus I = I° which
implies that there exist integers ¢ and » such that ta +
v(e + o) = e + o°. Equating coefficients of the rational
and irrational parts wehavevy = —landta = 2¢ + o + ¢
which must be solvable for an integer ¢{. Thus from (49)

tha farm anrracrnanding +n +he sdeal je amd L hrrr L mof2 — £
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in which b = 0 (mod a). Then f may be taken into itself
by the product of two transformations: first

2-[s 1]

where h is chosen so that 2ah + b is 0 or a, and second

1 0 4 1 1 T
[0 _I]H or [0 _1]11

in the respective cases. Thus f is improperly equivalent to
itself and the same will be true of every form in the
class of f.

‘We have shown in theorem 52 that if f can be taken into
itself by a transformation of determinant —1, there is
in the same proper class as f a form f; which is taken into
itself by the transformation

D=[<1) —wl]

with w = 1 or0. Write f; = ax? 4 bzy + ¢y’ and see that D
takes f, into a(z + wy)® + bz + wy)(~y) + & =
az® + zy(2aw — b) + (aw’ — bw + ¢)y’. Thusb = 2aw — b
and b = 0 (mod a). Then, retracing our argument in
the first part of this theorem we see that the corresponding
ideal I has the property that I° = I. This completes the
proof and permits us to make the definition: an ideal
class 2 is called ambiguous if it is equal to its conjugate =°.
A class of quadratic forms is ambiguous if any (and hence
every) form in the class may be taken into itself by a
transformation of determinant —1. Hence we have just
shown that there is a 1-1 correspondence between
ambiguous classes of primitive ideals and ambiguous classes
of primitive forms while the correspondence for non-
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ambiguous classes is 2-2. We therefore understand
that in any correspondence between = and T classes, if =
corresponds to I' then =° corresponds to I'Y. It is this
correspondence which enables us to prove expeditiously
several important properties of binary quadratic forms.

44. Composition of ideal classes and classes of forms.
If T; and I'; are classes of forms associated with the ideal
classes =; and 2, in J(A) we define the class associated
with 2,2, in J(A) to be the class I''\I'; and this class is said
to be derived from I'y and I'; by composition. Since A
determines the determinant of the forms, their deter-
minants are all equal. Furthermore, composition is com-
mutative and associative since the product of ideals has
these properties. If I; = |a, , 8i] we have, from equations
(50) that N'(a;) = N(I:)a; where a; is the leading coefficient
of the form f; associated with I;. If the ideals I; are
primitive, N(I})N(l;) = N(I,I,) implies N(ma;) =
N(II,)a1a;. Thus ayae will be the leading coefficient of
some form in T',T; . Hence we have proved the following
important theorem:

THEOREM 66. If a, and a, are represented by primitive
forms of classes Ty and T's then a,as 18 represented by forms
of the class T'\T; .

We need the following two theorems.

TeEOREM 67. A form f is primitive if and only ’Lf it
represents a number prime to 8d(f).

For f primitive let p; bé any prime factor of 8d(f) where
f = ax’ + bry + c’. If p;is prime to @, let z; = 1, y; = 0;
if p; is a divisor of @ and not of clet z; = 0, y; = 1; if p;
divides both @ and ¢, it does not divide b and we let
z¢ = y; = 1; for these cases the value of f will be prime to

m: Rv the Chinege remainder thearem we can chonge
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z = z; (mod p;), ¥ = y; (mod p;) for all prime divisors p; of
8d(f) and, for such an z and y, f will be prime to 84(f). On
the other hand, if g is the g.c.d. of the coefficients of f,
it is a divisor of 84(f) and divides all numbers represented
by f. Though we have proved this theorem for binary
forms a proof along the same lines would establish the
same result for any n-ary primitive form.

TeEOREM 68. Two primitive binary forms f and g with
integral coefficients are in the same genus if and only if their
determinants are equal and there are integers a and w prime to
8d(f) such that f = a and g = w'a are solvable in integers.
(This theorem s peculiar to binary forms.)

We know by theorem 67 that f represents a number a
prime to 84(f) and hence we may take f to be az’ + bay -+
cy’. If f and g are of the same genus we know from the
definition of genus that there is a transformation

tn e 1
[tzl tn] v
taking g into f where the ¢;; are integers and w is an integer
prime to 8d(f). Then (ti/w, ta/w) i8 & solution of ¢ = a
and hence g = aw’ is solvable in integers.

Conversely suppose ¢ = w’a has a solution ¢y, & in
integers. Then there are integers « and » such that tyv —
tuu = q where g is the g.c.d. of &, and &y and hence ¢’
divides w’a. Then the transformation

[ o] - 2

has determinant 1 and takes g into ¢’ = ax’ + b'zy + ¢’y
where b’ and ¢’ need not be integers but ¢gb’ = b (mod 2).
Since ¢° divides wa, the denominators of the elements of
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T and of b’ and ¢’ are prime to 8d(f). Then the trans-

formation
T1 (- b)/2%
8= [0 1 ]

takes ¢’ into g = az’ + bry + ¢y, Since d(g”) =
d(g) = d(f) we have ¢’” = cand ¢" = f. Hence T'S takes ¢
into f and T'S is a transformation with rational elements
whose denominators are prime to 84(f). This shows that
f and g are in the same genus.

Since the genus of a form is determined by any odd
integer prime to the determinant and represented by the
form we have

TrroreM 69. If Ty v Ty and T v I's , then TyTs v I'1T; .

If a form represents 1 we say that it is in the principal
class and call the corresponding ideal class the principal
ideal class Z,. The genus containing the principal class is
called the principal genus. Notice that the principal ideal
class contains the ideal (1) = J. We now prove

TarorEM 70. The primitive ideal classes of a given J(A)
and hence the primitive classes of forms, form a multiplicative
group. Also Z2° = Zy and TT° = T, for primitive classes
Z and T and their conjugates.

First we see that I'; and T'; primitive imply that T',I'; is
primitive since theorem 67 shows that forms f; and f» of
I'; and I'; respectively represent numbers a; and as prime
to 8d(f) and hence, by theorem 66, forms of I',I'; represent a
number @a; prime to 84(f) which shows by theorem 67
that I',I'; is primitive.

Now lemma, 15 shows that if  is a primitive ideal, I-I° is
the principal ideal (N(I)) = N()-(1) and hence I.I°
is in the principal ideal class.
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‘We have shown the existence of the inverse and the closure
property. Furthermore the associative property holds from
the same property for quadratic integers. Hence we have
shown that the primitive ideal classes form a group and,
if we choose our correspondence so that I'y' = T for
every I' we have the group properties for the classes of
primitive forms under composition.

45. Consequences of the composition of forms, We first
prove the rather startling result embodied in

THEOREM 71. If h is the number of proper classes of forms
in the principal genus for a given determinant, then the
number of proper classes in each genus of primitive forms is h.

Let Ty, I'y, - -+, I's be the classes in the principal genus
and let I' be a representative of any other genus. Then
T'ly, I'Ty, ---, I'Ty are all in the genus of I' by theorem

69. No two are in the same class since I'T'; = I'T'; would
imply, by multiplication by T*, that I'; = T;.
Next we have Gauss’s celebrated theorem on duplication.

TaroreM 72. If T' is any class in the principal genus of
primative forms there is a class Ty such that T7 = T.

If g is a form in the principal class it represents 1 and
f v g implies, by theorem 68, that f = w” has a solution in
integers where w is some integer prime to 8d(f). Hence
we may consider f to be w’z’ + b'zy + 'y’ where b’ and ¢’
are integers. Then we may call I = [w’, ¢ + o] an ideal
associated with f.

Our proof will be complete if we can show that I = I
where I; = [w, e + o). Since w is prime to 24, it is also
prime to b’ = 2 + o <+ ¢° and hence there are integers
z and y such that wz + (2¢ + ¢ + ¢’)y = 1. Now I; =
(®, w(e + o), (e + &)%) and hence I: contains zw(e + o) <+
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(mod w*) from theorem 59 and hence ¢ 4 ¢ is in I3 which
shows that I = [w’, e + ¢] and completes the proof.
Finally we prove

TaEOREM 73. The number of primitive ambiguous classes
of given determinant ts equal lo the number of genera of
primative forms.

Since class I' is ambiguous if and only if I = T'y we see
that the ambiguous classes form a subgroup of the group of
classes of all primitive forms of the given determinant.
Also I'! = I's implies I'y = I',I', where I', is ambiguous.
Let g be the number of ambiguous classes, g the number of
genera and h the number of classes in each genus. Then
gh/q is the number of distinct squares of classes. This,
from theorem 72, is equal to h and hence g = gq. N

Notice that if there are ¢’ ambiguous classes in the principal
genus, each genus has ¢’ or 0 ambiguous classes.

46. Genera. We saw at the end of the previous chapter
that each genus has associated with it certain field and
ring invariants. In dealing with binary forms these in-
variants may be expressed in terms of so-called characters
which we now define. A

Given an integer d and a non-zero integer ¢ prime to 2d,
we say that ¢ has the following set of characters relative
to d for each prime p:

1. For p an odd prime factor of d: (a | p).

2. For p = oo the sign of a when d > 0.

3. Forp = 2:

a) @ (mod 4) if d = 1 (mod 4) or d = 4 (mod 8),
b) (—a, —d): if d = 2 (mod 4),
¢) a (mod 8) if d = 0 (mod 8).

If a is a number prime to 8¢ and represented by a binary
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called the characters of the form. Reference to section 31
shows that two properly primitive or two improperly
primitive forms of given determinant are equivalent in
R(p) for all primes p dividing 8d if and only if they have
the same characters. If p does not divide 2d, the equality of
determinants shows that the forms are equivalent in RB(p).
In R(x) either d is negative and both forms have the
same index or d is positive and the index is determined by
the sign of a. Hence we have

TeEOREM 74. If f and f' are two properly primitive or two
improperly primitive forms of determinant d, they are in the
same genus if and only if their corresponding characters,
listed above, are all equal.

We are now in a position to determine the number of
genera of primitive forms of given determinant d. Observe
that theorem 46 shows us that a primitive form having
any set of characters exists provided only that they are
consistent with the condition

(67 1= IpI cp(f) = IpI (—a, —d),

the product being taken over all primes p dividing 84 and
p = o« and also consistent with conditions 4 and 5 of
theorem 29. Now the choice of @ prime to p determines the
character of the form; furthermore it affects the value of
(—a, —d), and hence is restricted by (57) only under the
following conditions:

1. The prime p occurs in d to an odd power.

2. If p = = withd > 0.

3.If p=2,d = 4%, do = 1 (mod 4) with ¥ a non-

negative integer.

Condition 4 of theorem 29 automatically holds. Condition
5 becomes
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We may restrict consideration to finite primes by specify-
ing that if d > 0, f shall be positive definite and hence
that a is positive. Then if one of these conditions holds,
the condition (57) has the effect of dividing by 2 the
number of possible sets of characters of a. If none of these
conditions occur, that is if —d is a square, any possible
set of characters of @ is permissible. Notice that for each
character listed above there are two possible values except
that when d = 0 (mod 8) there are four. Hence we have

THEOREM 75. Let s be the number of distinct prime faciors
of d (or 4d if 4d is an odd integer). The number of distinct
genera of primitive forms f of determinant d, f being positive
definite if d > 0, 18

2:—-!.
except that when d = 1 (mod 4) or d = 0 (mod 8), s s

increased by 1. If —d is a square the number of genera in the
respective cases is doubled.

47. Reduction of positive definite and zero binary forms.
In chapter III we considered the general reduced form of
Hermite. There we showed that every form is equivalent
to a reduced form; but two reduced forms might be
equivalent. For definite and zero binary forms we can
sharpen the inequalities so that the reduced form is unique,
that is, so that no two reduced forms are equivalent.

As in the previous section we write f = az® + bay + ¢,
a, b, ¢ being integers, and d = ac — b°/4. When the form is
definite, we shall, without loss of generality, take it to be
positive definite.

For f positive definite we now prove

THEOREM 76. Any posilive definite binary form with
integral coefficients of determinant d is properly equivalent
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to a reduced form f = ax® + bry + ¢y’ whose coe_ﬂ'icv,ents
satisfy the following inequalities:

(58) ~a<b<a<xc ifa=c¢c thend=>0.

It follows that a < 2+/d/3, no two reduced formsare properly
equivalent, and a 18 the least positive integer represented
by the form.

Since the reduced form of this theorem is reduced
according to theorem 23, ¢ < 24/d/8 from that theorem.
First we show that every form is properly equivalent to a
form satisfying conditions (58). By replacing z by —y
and y by z in f, if necessary, we may make a < ¢. The

transformation
1 u
¢= [0 1]

takes f into a form whose middle coefficient is 2au + b = b’
which, by proper integral choice of ¥ may be made not
greater in absolute value than a. By consecutive use of
these two transformations we can make |b| < a < ¢.
If a = —b, the transformation @ with v = 1 takes
azr’ — axy + ¢’ into az® + azy + ¢y’. I @ = ¢ and
b < 0, replace 2 by —y, ¥ by z, which changes the
sign of the middle coefficient and leaves unaltered the
other two.
Next we show that if conditions (58) hold and

(59) as® + bst + cf* = e < a, with s and ¢ integral

then one of the following holds:
1.t =0, & =1,a=e,
2.t = %1, a—e—c,s—O,
3.t=%l,a=¢e=c8 =1,a = Fbs.
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Now (59) implies
(as + 3bt)* + d* = ae < 4d/3.

If t = 0, this implies as® < a and hence & = 1. Otherwise
t=xlande = as’ - bs + ¢ < a witha > | b | implies
condition 2 or 3. This also shows that a is the least positive
integer represented by the form.

To show that two equivalent forms f and f* whose
coefficients satisfy (58) must be identical notice first that
their leading coeflicients must be equal since they represent
the same numbers. Let

r-[; 1]

be a properly unimodular transformation taking f into f’.
Then as® + bst + ¢f' = a and, by the previous paragraph
we have one of the three conditions holding, If ¢ = 0,
8= 9= 1, thend’ = +2au+ bwhich implies |d' — b| =
2a | w|. But (58) gives w = 0 or 4’ = 1. In the former
case b = b’ and in the latter case |b| = | b’ | = @ when
(58) shows that b and b’ are positive and hence equal. But
|f]=1f]and b = b’ implies ¢ = ¢’ and the forms are
identical. On the other hand if ¢ = 41 and 8* = 1 we may
multiply T' by the automorph —1I if necessary to make
s = 1,t = £1, a = Fb which, from (58), implies a = b,
t=—1.Henceu+v=—1andd = alp — u) =
a(— 1 — 2u) which impliesu = — 1, = qandf = f'.
Condition 2 is similarly disposed of.

CoroLLARY 76. There ts a fintte number of classes of
integral binary forms of given determinant.

This corollary follows from theorem 76 since a is bounded
by d and b by a. As a matter of fact, the theorem can

nacilvy he ghnwn f +he enaffRcionte are rational oand +tha
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corollary if the coefficients are rational with bounded
denominators.
For zero forms we have the following

THEOREM 77. If f s a zero form of determinant d = —7*,
where r is a posttive integer, it ts properly equivalent to a
reduced form fo = 2rxy + ey’ with|e| < rore = r. No two
reduced forms are equivalent. See theorem 23a.

First see that since f represents 0 with the variables not
both zero it is equivalent to a form 2rzy + ey’ where
® = —d. If r < 0, the coefficient of zy may be made
positive by use of a properly unimodular transformation
whose first column is ¢/g, —2r/g with ¢ = (e, 2r). Then,
replacing = by & + uy takes 2rzy + ey into 2rzy -+
(¢ + 2ru)y’ and an integral 4 may be chosen so that
le +2ru | < ror e + 2ru = r. This shows that every
zero form is equivalent to a reduced form.

Now suppose fo and fo = 2rzy + ¢'y® are equivalent
and |e¢' | <rore =r.If

r-[0 ]

takes f, into fo we have #(2rs + ef) = 0. If ¢ = 0 we can,
along the lines of the proof of theorem 76 show that
e = ¢'.If t ¢ 0, the first column of T is e/g, —2r/g which,
by the previous paragraph is seen to change the sign of r.

CoroLLARY 77. The number of classes of integral zero
forms of determinant —r° is 2r.

48. Reduction of indefinite, non-zero, binary forms. Let
the form f and its determinant d be determined as in the
previous section with —d a non-square. We have seen
from theorem 23 that every non-zero form is equivalent
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to a form whose coefficients satisfy the following in-
equalities:

(60) ol <lal< el

Notice that this with d negative implies that —ac > 0.

We shall call such & form semi-reduced. Even if we used
the sharper inequalities of the previous section a form
would not necessarily be unique in its class. For example
f=2"— 2 and g = 22° + 2zy — 11y’ satisfy the
sharper inequalities but the transformation

2 9

1 5
takes g into f. This section is devoted to the development
of a method of finding whether or not two semi-reduced
indefinite non-zero binary forms are equivalent.

Our methods depend on the use of continued fractions
defined as follows. If
1
0=a +

“t ko
then 0 is said to be expanded into a continued fraction
and is written more compactly as

0={a1:a2’aﬂ)"'} :
\

where the a; may be finite or infinite in number. If the a;
are all positive integers except for the first which may also
be zero it is called a stmple continued fraction. Since this is
the only type we shall consider here, we omit the adjective
“simple”. The first k¥ terms of any expansion constitute a
rational number 2./4. in lowest terms which is called the
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elementary continued fraction theory we now state without
proof.

Lemma 16. If | 0 — p/q | < 1/24" then p/q is a convergent
in the expansion of 0 as a conitnued fraction, p and q being
posttive inlegers.

LEMMmA 17. If 0 is a root of a quadratic equation with
integral coefficients, its continued fraction expansion is peri-
odic, that is, there are integers k and r and a real number
v > 1 (¢ is actually a root of a quadratic equation with
tntegral coefficients) such that

0= {01,02,"',0k,(p} = {alya2,"',ak+r,¢}

r being the length of the period.

Suppose f and f' are two semi-reduced equivalent forms.
Now, the equivalence of any of the following pairs implies
the equivalence of any other:

az’® + bay + of, a's’ + bzy + ¢y
az® — bay + o, o — bzy + 'y’
—a2’ —bry — ff, —a'7’ — by — 'y
Hence we may assume without loss of generality
(61) 0<b<q, a2|d)|

Suppose there is a transformation whose first column is
(p, ¢) with p > 0 < ¢ and which takes f into f'. Then

(62) ap'+bpgtof =
and hence '

(p/q — 0)(p/qg + &) = a’/ag’ < 1 in absolute value,
where 0 = (v/=d — b/2)/aand & = (\/=d + b/2)/a.
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2v/'—d/a 2> 2 and from lemma 16 p/q is a convergent in
the expansion of the quadratic surd 4.
Second if a’ < 0, we obtain from (62)

(g/p — 1/6)(g/p + 1/8') = a’/cp’ > 0.

Hence ¢/p > 6" and ¢/p + 1/0 > 24/=d/—c. Then
(2v/—=d/—c)(c/a’) > 2 shows that ¢/p is a convergent
of 6. Hence p/q is a convergent of 9 as may be seen by
comparing the expansions of § and 6 as follows: If
0=1{a,a, -},a1>0,thend™ = {0,a1, 0, ---}.If
a; = 0, reverse the argument. Thus we have proved

TaroreM 78. If p, g is the first column of a properly
unimodular transformation taking f into f' = a's’ + b'zy +
¢y with p and q positive and

0<b<a>|a|

and f is semi-reduced as well as f', then p/q is a convergent
of the continued fraction expansion of

6 = (v/=d — b/2) /a.
To complete our theory we shall prove two theorems:

TureoreM 79. If f = f, there is a unimodular trans-
formation whose first column consists of positive integers
and which takes f into f'.

TaeoreM 80. If 6 defined in theorem 78 is expressible in
the forms of lemma 17, where p/q = {a1, G2, -+ , ax} and
p'/¢ = {a, @, -+, Gryr} then there is an automorph P

of f such that
71-+[] |

Both of these theorems are proved using results on the
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automorphs of the binary form. We know from theorem 50

that
p= [t —3bu  —cu :|
au t 4+ dbu

is an automorph of f for ¢, u any semi-integral solution of

£ 4+ du’ = 1. Let
- [1 ]
qg 8

be a properly unimodular transformation taking f into f’.
Then 7" = PT takes f into f’ and, letting p'q’ be the first
column of 7Y we have

p' = (t — 3bu)p — cug,
¢ = aup + (t+ bu)q

and p'¢’ = uap'(t — $bu) + pg — cug’(t + 4bw). Now
£ + du® = 1 implies (¢t — bu)(t 4+ 3bu) = 1 — acu® > 0.
Hence if we make ¢ positive one of the terms of the product
is positive and hence the other. Thus choose the sign of u
so that ue is positive which implies —cu is positive.
Then % and ¢ may be chosen so large that p’ ¢’ is positive.
If »’ and ¢’ are both negative replace 7' by —7’ and
prove the theorem.
To prove theorem 80, we need the following

LemMa 18. If 0 = {a1, a2, - -+ , &, @}, then

g=Petr
go + 8

B R R

where
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and p/q, r/s are the k-th and (k — 1)st convergents in the
expansion of 6.

To prove this by induction first notice that it holds for
k = 1. Let ax + ¢! = ¢ . Then, by the hypothesis of our
induction

g = Dt n
Qi1+ 81

I:pl 1 I:ak 1l _ I:p r

¢ sl O g 8]’

Then, substituting the resulting values of p,, r, ¢, &
and ¢, , we get the desired expression for 6. The rest of the
lemma is proved by letting ¢ become infinite and approach

Z€ro.
Then, returning to the proof of the theorem, we have

where

_Potr _petr
g0 +s8 o+ &

Hence, for properly chosen constants p and p’
0 _ _PT_'P:,P'T' 14
[1] ~ "’ lg 8} _1] g [q’ s ] L1
which shows that
-, -
A P[p r]
L § ] q s
for some properly unimodular transformation P having

the property that
Pl_o—l o n”l_e-l.
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Hence, if P = (p;;) we have

0 = p110 + D1
P10 + Pae

which implies pué® + (P22 — pu)0 — pr = 0. But a6® +
b6 + ¢ = 0, which, since f is primitive, implies for some
integer u,

Pn = us, Pn— Ppu=ub, —pu= ue

Let ¢t = 4bu 4+ pu and see that p» = t + 3bu. Hence
1 = pupu — pupz = £ + du’, which shows that P is an
automorph of f.

Thus we have shown

THEOREM 81. If there 1s a transformation laking f into f'
there is one whose first column appears as a convergent in the
portion of the continued fraction expansion of 6, as defined in
theorem 78, through the repeating part, where f and f' are
semi-reduced and satisfy (61).

Of course the first column does not determine the
transformation but if 7, and T. are two unimodular
transformations whose first columns are the same, the
following relationship exists between them:

1
T‘=T’[o t1:|

for an integer ¢, as may be seen by computing T3T; . The
value of ¢ is determined with a choice of at most two values
by the requirement that the forms be semi-reduced,

We illustrate the process by considering f = 22* +
2zy — 11y and finding all semi-reduced forms equivalent
to it whose leading coefficient is not more than 2 in
absolute value. Here d = —23 and

—
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The expansion of ¢ as a continued fraction is
{1,1,8,1,3,1,8,1,3, ---}

where the line is drawn over the repeating part. Hence the
possible first columns of transformations taking f into
equivalent semi-reduced forms are obtained from the first
five convergents. Writing f = f(z, ¥) and computing the
convergents with the aid of lemma 18, we have

Convergent
1/1 f(1, 1) = =7
2/1 2, )= 1
17/9 fa7, 9) = =7
19/10 f(19,10) = 2
74/39 (74, 39) = —17

All but the second and fourth are excluded since the value
of the form is greater in absolute value than 2, For 2/1,
use the transformation

2 1

1 1

which takes f into #* — 8zy — 7y’ which is equivalent to
«* — 23y°. For 19/10 use

[19 —2]
10 —1

which takes f into ¢ = 22* — 10zy + 3°. Then

[0 1]

will take g into a semi-reduced form for ¢ = 2, 3. Thus the
only semi-reduced forms equivalent to f and whose
leading coefficients are less than 3 in absolute value are:
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49. Class number. One of the most important functions
connected with binary forms is the class number, that is,
the number of proper classes of forms of given determinant.
We showed in section 45 that for primitive forms this is a
multiple of the number of genera. The class number of
forms of determinant d can be expressed as a multiple
of the Dirichlet series

2(—d | n)n?

the sum being over all positive integers n prime to 2d.
It can also be expressed in finite terms. We have not space
for this development here but the reader is referred to a
self-contained account in Mathews’ “Theory of Numbers”,
chapter VIII.

However, there is an interesting relationship discovered
by Dirichlet, between the class numbers of improperly
primitive forms and properly primitive forms of given
determinant. Since we shall find this of use in the next
chapter, we derive this relationship.

Let

fi = aix® + 2bxy + ¢, 12 = 2a5” + 2bawy + 20/

where a; or ¢; is odd, aiey — bf = 4dases — b3 = d = 3
(mod 4). Since f represents an odd integer we may assume
a1 to be odd and by replacing x by * + y if necessary
assume ¢; is even. Similarly a, may be taken to be odd.
Thus we assume

(63) a; odd, ¢ even, a2 odd.

This implies that b, and b, are odd and ¢; = 0 (mod 4).
Take

~ [2 07
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and see that T takes fi/2 into 2a2’ + 2by + 3ew’
which is a form f, having the properties (63) and deter-
minant d. On the other hand 7" takes 2f, into ax® +
2bsry + 4cy which is a form f; having properties (63)
and determinant d.

‘Thus we have a 1-1 correspondence between forms
f1 and f,. We wish to show that under certain circum-
stances this establishes a 1-1 correspondence between
classes and to determine the correspondence in all circum-

stances. Suppose
S, = @
! 1 8

takes f; into f1 , S, being properly unimodular. If T takes
fi/2 into s , then T"8,T takes f; into f; . We need to show
that the latter transformation has integral elements and
hence f; = f2 . Now f and f1 having properties (63) imply
¢1 18 even,

T I A %91
PST = [271 N ]

and our equivalence is shown.

Suppose
3, = [pz 2
? T2 82

takes f, into f2 , S; being properly unimodular. If 7" takes
f2into fi , then T'S,T” takes f, into f; . But

TSzTI = I: P 2q2 :I

%”‘2 8a
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This will have integer elements if and only if . is even.
Since 8. takes f. into another form having property (63)
we have

a:ps + baperat car3 = 1 (mod 2).
Thus (2aeps + bare)® + dri = 4 (mod 8) and
(64) reis even if d = 7 (mod 8).

Furthermore, there will be a properly unimodular trans-
formation taking f; into fy if there is an automorph P of
J2 such that, in the matrix PS,, the element in the lower
left corner is eveh. Theorem 50 gives us

_|t—dbw  —cw || @

P8 = [ au, t+ %biu][h 8:]

where ¢, u is a semi-integral solution of £ + (d/4)u’ = 1.
Then we wish to make r; = aspu + (¢ + 3bu)-r; even.
If ¢ is half an odd number we may, by changing the sign
of u, make t + %bsu odd or even at pleasure and hence
rs even. If ¢ is an integer, this cannot be done. Hence
we have a 1-1 correspondence between classes if d =
7 (mod 8) or if

(65) there is a solution of * + dy* = 4 with z odd.

If then d is positive we see that (65) holds only if d = 3.
Hence in what follows we consider only

d = 3 (mod 8) and either
1) d > 3, or
2) d < 0and all solutions of 2* + dy’ =
4 have z even.

Now d = 3 (mod 8) implies that ¢; is odd. We shall show
that under this condition, there is a 3-1 correspondence

(66)
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between the classes of forms f; and the classes of forms
fo. Let

me[y 8] m-[04] me[0 1]

TR: = Ts,i=1,2,8.

If T,‘ takes fl into 2f2.' then TfT, = RfR i takes f 2; into fz,‘
and R; being unimodular shows that fo; =2 f;; ; fo: may be
seen to have property (63) for: = 1,2,3.

On the other hand, suppose T§ takes 2f; into fi; . Then
f1: satisfy conditions (63) and we wish to show fi; 2¢ fi;
for ©+ £ j. If a properly unimodular transformation R
took fi; into fi;, then TiRT; would take f, into itself.
Since TiRT; takes f, into itself if and only if (TiRT,)
does, we have only 7 < j to consider. We have to show that
such automorphs cannot exist without denying conditions

(66).
TiRT, = [ —ira ’“]

7o 27‘21

where R = (r;). The fact that it is an automorph of f2
implies that ry2 is even, hence 5 odd and, using theorem
50, rs2 = —a.u implies that « is odd contrary to condition
(66). Next

T;RT; - [ Ty —2rg — o :I

=32 o+ e

and as above, ry; is even. Hence r; and ry are odd. But
7y 0dd and —2ry — 7 = —cou implies u is odd. Finally

TIRT, = [ —~4re ra+t %”'n:l

—ty 2rn 4+ ra

which is dealt with as in the first case.
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TrauorREM 82. Let h(d) be the number of classes of properly
primitive integral formsof determinantd with d = 3 (mod 4)
and h'(d) the number of classes of improperly primitive
forms of the same determinant. Then h(d) = h’(d) except
when d = 3 (mod 8) and one of the following conditions hold:

1) d > 3,

2) d < 0 and all integral solutions of z* + dy’ = 4

have x even.
In the exceptional cases, h(d) = 3h’(d).



CuaprER VIII

TERNARY QUADRATIC FORMS

50. Numbers represented by ternary genera. In this
chapter we shall consider only forms whose matrices have
integral elements. We have seen in theorem 40 that the
genus of a form is characterized by the forms to which
it is congruent for an arbitrary modulus. In the previous
chapter we showed that the genus of a primitive binary
form could be characterized by the quadratic character of
numbers represented by the form, where the characters
were taken with respect to the prime factors of twice
the determinant. For ternary forms (but not for forms
in more than three variables) the genus may also be
characterized by the numbers represented by the forms
but in a slightly different sense.

From theorem 36 and corollary 14, any ternary form f
represents any number N in R(p) for any prime p not
dividing 2d with d = | f|. Hence f = N (mod p*) is solvable
for k& arbitrary if p does not divide 2d. Thus from corollary
449 we know that N will be represented by some form
in the genus of f if it is so represented in the field of reals
and if

(67) f = N (mod p™™)

is solvable for every prime p dividing 2d, where p" is the
highest power of p dividing N or 4N according as p is odd
or even. Conversely if (67) is not solvable for some such p,
no form in the genus of f represents any number in the
arithmetic progression

np™™ + N, n=0, =+l =2, ...
186
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Thus there will be a finite number of arithmetic progres-
sions of this type which have the following properties:
1. No number in any such progression is represented
by a form in the genus of 1.
2. Every number not in any of these progressions and
of the proper sign if f is definite, will be represented
by a form in the genus of f.
Such a set of progressions then characterize any genus of
ternary forms. We give two examples. See also the dlSCllS
sion at the close of section 33.

Exampi 1. Let f = 2° + 3 + 2% The only progres-
sions of the genus involve powers of 2. If Nisodd, f = N
(mod 8) is solvable except for N = 7 (mod 8);if N = 2
(mod 4), f = N (mod 16) is solvable; if N = 0 (mod 4),
f = N (mod 4) implies z, y, z are even and f represents N if
and only if it represents N /4. Hence a form in the genus
of f will represent N if and only if N = 4*(8n + 7). Since,
from corollary 23, all forms of determinant 1 are equivalent
to f, it represents exclusively those positive integers not
of the form 4*(8n + 7).

Exampre 2. Let f = 2° + ¢ + 102°, g = 22 + 2" +
32" — 2x2. It may be shown (see section 51) that every
form in the genus of f is equivalent to f or to ¢g. As in
example 1 we can show that the progressions excluded are

4*(16n + 6),

Hence all positive numbers not in either of these progres-
sions are represented by f or ¢.

51, Numbers represented by forms. If a genus of forms
contains only one class we know definitely that every
number not excluded for congruential reasons, that is, not

Ixvrimo N nortaln amthmotin Mrnoradoinrne 1o ranrogontoad
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by the form. For positive forms, the number of such
genera is apparently limited. At any rate there are less than
100 such primitive classes® of the form az® + by® + ¢2*.

Of numbers represented by forms in genera of more than
one class there is little known. In some cases it has been
shown that every number represented by forms of the
genus is represented by a particular form. For instance,
in the genus of f = 2° + 3y + 362" there are two classes
represented by f and ¢ = 32° + 43 + 92% It has been
shown? that f and ¢ represent the same numbers except
that g represents primitively no m? with m = 1 (mod 3).

From these results it may be seen that it is of importance
to determine whether or not two given forms are equiva-
lent. For positive forms there are several definitions of a
reduced form which insure uniqueness. The most used is
that of Eisenstein which defines

f= ax’ + by2 + e + 2ryz + 2sxz + 2ixy
to be reduced under the following conditions:

1. r, s, t are all positive or all non-negative.

2.a<b<Lcat+tb+2r+2s4+2t>0.

3.a>|2l,ea>|2t|,b>]|2r].

4. Ifa=0b,|r| <|s|;ifb=0c|s| <|t|;ifa+ b+
2r4+2s4+2t=0,a+2s 4+t <0.

5. Forr,s,t < O:ifa = —2t,s =0;ifa = —25,t = 0;
ifb=—2rt=0.

6. Forr,s,t > 0:ifa = 2t,8 £ 2r;if a = 25, ¢t < 2r;
ifb=2rt<2s '

The proof of this result is very tedious but its application is
simple. One can quickly find the reduced form equivalent
to any given one and to find whether or not two forms are
equivalent one need merely compare their reduced forms.
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minant less than 200°. In such a table it may be seen for
instance, that the only reduced forms of determinant 10 are

o+ + 108, 257+ 20 + 327 — 2z,
‘ 2+ 2 + 52.

For indefinite forms there seems to be no practicable
method of defining a unique reduced form. This is hardly
surprising since such a situation exists even for binary
forms.

Asymptotic results for ternary forms are very obscure.

There is a remarkable result of Meyer which we must
mention even though its proof is too long to be included
here. Let @ be the g.c.d. of the two rowed minors of 4,
the matrix of f. Now, by lemmas 4, there are unimodular
matrices P and @ such that PAQ is a diagonal matrix.
By lemma 5, Q is the g.c.d. of the 2 rowed minors of PAQ
and hence divides two diagonal elements of PAQ; thus
@ divides | PAQ| = | A| and we can write d = A
where A is an integer. We call the integral form whose
matrix is A’d/Q the reciprocal form of f. Meyer’s theorem is

TaeoREM 83. A genus of indefinite ternary forms f has
but one class if the following conditions hold:

1. The form f and its reciprocal form are both properly

primitive or f is improperly primitive.

2. The numbers Q and \ are relatively prime and netther ts

divisible by 4.

It is not known whether or not every genus of indefinite
forms has but one class.

Making use of previous theory we can easily investigate
zero and universal ternary forms, keeping in mind that
here we are concerned with integral representations and
forms whose matrices are integral. From theorem 19, any
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P = = is a universal form in F(p) and conversely (as a
matter of fact, this may be also said of any n-ary forms if
n # 4). Hence if f is universal in the ring of integers,
it is universal in F(p) for all p, hence is a zero form in the
field of rationals from theorem 27, and thus is a zero form
in the ring of rational integers. This proves

THEOREM 84. Any umiversal ternary form (in fact every
universal form in n variables, n = 4) is a zero form.

The converse of this theorem is not true as shown by the
fact that #* + y* — 492°, which is a zero form, does not
represent 7.

52. The number of representations by ternary genera.
If we specialize to ternary forms our general results of
section 38 we obtain an interesting connection with the
class number function. We confine ourselves in this section
to the representations of an integer g prime to twice the
determinant of the form. (We could similarly apply the
methods of section 38 to find the number of representations
of binary forms by ternary forms.) From theorem 49b
we have

(4, q) = 2292273

where A is the matrix of f, G(4, ¢) is the number of
essentially distinet primitive representations of ¢ by the
classes of the genus of f, u(g) is the number of distinct
prime factors of ¢ increased by 1 if ¢ = 0 (mod 8) and
decreased by 1 if ¢ = 2 (mod 4); neither of these special
cases occur for the ¢ considered in this section. Also Az
has to do with the automorphs of forms E of determinant
dg and d is the determinant of f. Furthermore, all F belong
to one or at most two genera and if one class of the genus
of B 18 inelided all elasses in the cenns also ocenur.
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can occur for any genus of forms of matrix 4. Recall that
with every representation of ¢ by A is associated a trans-
formation taking A into

=g €
Ao—[CT D]

and that E is the 2 by 2 matrix gD — C"C. Let Q be the
g.c.d. of the two-rowed minor determinants of A. We
showed before theorem 83 that ©* divides d and hence is
prime to ¢. Since the transformation

[s 7]

has rational elements with denominators prime to 2d and
takes Ay into ¢ + Eq ™", we see that Q is the g.c.d. of the
elements of E. Hence E/Q = E’ is the matrix of a properly
or improperly primitive form g = az® + 2bay + ¢
whose determinant is A = gd/@*. We shall prove
TaEOREM 85. The following characterize the classes g.
1. If A = 0, 1 or 2 (mod 4) all classes g aré properly
primitive.
2. If A = 3 (mod 8) all classes g are properly primitive
or all are improperly primitive according as c2(A)(—1)"
18 1 or —1 where r 18 the highest power of 2 in Q and
c2(A) is the Hasse invariant.
3. If A = 7 (mod 8) and Q is even, all classes g are
properly primitive or all are improperly primitive.
4. If A = 7 (mod 8) and Q 18 odd, properly primitive and
improperly primitive classes occur.
Except in case 4, all forms g associated with the genus
of A are in the same genus.
We showed in theorem 82 that if A = 7 (mod 8), the
number of properly primitive classes is equal to the number
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It is apparent that the determinant of any improperly
primitive form is congruent to 3 (mod 4); this establishes
1. If A = 3 (mod 8) the value of the Hasse invariant
¢2(g) is equal to the value of the Hilbert symbol (—a, — A),.
Since @ may be taken odd or double an odd according as ¢
is properly primitive or improperly primitive we see that
¢2(g) = 1 or —1 in the respective cases a.nd o) =
cx(Qg) = (@ —A)er(g) But A =g | Eg' = ¢ 4 Eg
in B(2) and hence ¢:(4) = (g, 1):x(1 4 E) = &(E) =
(Q, —A)cz(g). But (@, —A), = 1 or —1 according as r
is even or odd and condition 2. is established.

From theorem 37 we see that in 3. above, 4; =X 4; in
R(2) implies E; = E; in R(2). Thus in cases 1., 2. and 3.
above only one genus of forms g may occur for all forms
of the genus of 4.

It remains to consider A = 7 (mod 8) with 2 odd. We
have shown in the proof of 2. that e(4) = efg) =
(—a, —A):. But A = 7 (mod 8) implies that (—a, —A); =
whether or not a is odd or even. We need to show that a
properly primitive form occurs if and only if an improperly
primitive form occurs. Suppose ¢ = az’® + 2bay + ¢ is
improperly primitive. We may take a to be double an odd
integer and use the transformation

1 3
P = *[:l:l 1 ]
to take g into ¢ = 3(a'2* + 2b'zy + ¢'y’) witha’ = a =
20+ ¢, b = F3a —2b +¢, ¢ =9 F 6b + c. Now
a = 2 (mod 4) and ac — b* = 7 (mod 8) implies b odd and
¢ divisible by 4; hencea + 2b + ¢ — (6 — 2b + ¢) =
4b = 4 (mod 8) with ¢ =+ 2b + ¢ divisible by 4. Thus,
for the ambiguous sign properly chosen, a’ = 4 (mod 8)
and g is properly primitive. If on the other hand ¢ is
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replacing « by x + y if necessary make the coefficient of v
also odd; hence assume ac odd. Then the transformation
P above with = = + yields a form ¢’. But ac — b* =

7 (mod 8) and ac odd implies b even and ¢ = 7a + ab® or
at+c—b=a+ 2+ c=0(mod8). Hencea' =¢' =
0 (mod 8) and ¢ is improperly primitive. The transforma-
tion P has denominator prime to p for all odd primes p
and hence c,(g) = c,(g’) in both cases for all primes
but p = 2. Furthermore cs(g) = ¢:(g’) = 1 and hence
ea(f;) = lforfy = 1 4 gand fs = 1 4 ¢'. This shows that
fi & f; in R(2) from theorem 36. Thus 4, v A: and our
proof is complete.

Recall from section 38 that Ax is the number of distinet
values mod ¢ of the leading elements in the automorphs
of E. First suppose E’ is definite or a zero form. Then,
from theorems 51a and 51b, the only automorphs are 1,
where I is the identity matrix, except for ¢d/@* = 1 or 3
But unless ¢ = =1 only the exception d/2* =
g = =3 need be considered and any automorph

= [:f 0] (mod 3)

for integers w, u and v must have w = =1 (mod 3). (The _
zero element occurs since we may consider g = —2'
(mod ¢)). Hence Ay = 2 unless ¢ = =1 in which case

= 1 and we have
@) G(4,q) = 2*O7'h(E")  forgq # %1
= h(E') for g = %1

for gd > 0 or —qd a square, where h(E’) is the number of
classes in the genus of B’ except that when ¢gd = 7 (mod 8)
we replace 2(E') by the sum of the number of classes in
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Second, if E' is indefinite and non-zero, that is, if
—qd > 0 and is not a perfect square, all automorphs of g
are I multiplied by powers of

Q- [t - bu —cu ]
- au t-+ bu
where ¢, u is the fundamental solution of the Pell equation
' + Ay* = 1and A = ac — b*; that is, of all the solutions
of the Pell equation except the trivial one, ¢-is positive
and has the least absolute value. Since we showed in
section 38 that we may consider ¢ = —z* (mod g¢), the
first row of Q is congruent to ({ 0) (mod ¢) and the first
row of @* is congruent to (£ 0) = (1 0) (mod ¢). Hence
Az = 2 or 4 according ag the fundamental solution (¢, )

of 2* + Ay® = 1 has or has not t = =1 (mod g¢). In the
respective cases

(69) G(4,q) = 2*h(E') or 2"OR(E), ¢ # 1
= h(E') for ¢ = =1

except that when dg = 7 (mod 8) and Q is odd two genera
of B’ must be included.

Now let {(w) denote the number of odd prime factors of
w and see that t(A) = i(g) + ¢(d/@"). Combining the
results of theorems 75, 82, 85, (68) and (69) we have

ToeoREM 86. For d = | A |, @ the g.c.d. of the 2-rowed
ménor determinanis of A and A = ¢d /@, with q prime to 2d
and different from x1,

G(4, q) = 27“R(A)p or0

where t(w) 18 defined above, h(A) is the number of properly
primitive classes of positive or indefinite binary forms
ar® + 2bzy + ¢y’ of determinant A = ac — b and
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1.IfA=1o0r2 (mod 4) or = 4 (mod 8), thenp = }.

2. If A = 7 (mod 8) with Q odd, then p = 2.

3. If A = 7 (mod 8) with Q even, then p = 1.

4, If A = 3 (mod 8), p = 1/3 unless one of the following
holds, in which case p = 1:

i) ea(4)(—1)" = 1, where r is the highest power of
2in Q.
i) A = 3.
iil) ea(4)(—1)" = —1, A < 0, and, for the funda-
mental solution t, u of £ + AW’ = 4, tu is odd.

5. If A == 0 (mod 8), then p = %.

6. If A < 0 and the fundamental solution of £ + Av’ = 1
has a value of t not congruent to =1 (mod ¢), divide
the value of p given above by 2.

7. If —qd is a square, halve the value of p

Furthermore

G(4, £1) = 27 4d/0%2p

where p has the same values as above except thai condition 6
is here vacuous and if Fd is a square, halve the value of p.

In fact, if +d is a square, we know from corollary 77
that h(2=d/9") = 24/F 4/ and

G4, +1) = 27@WH /= Tg,

Notice also that if A is a positive matrix, A must be
positive and that A may be positive even if A is indefinite.

Now if we let Ny(4, ¢) be the number of essentially
distinet representations of ¢ by A (primitive or not) and
Go(4, ¢) the sum of Ny(A, ¢) over all classes in the genus
of A, we see that

(70)

GO(A’ 9) = ’g;q G(A’ Q/Xz)-
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With reference to theorem 86 notice that dividing ¢
by an odd square does not alter A (mod 8) nor does it
alter c:(4), r nor #(d/9?). Hence, except for cases 4 iii)
and 6 which involve the Pell equation, p is the same for
each @ in (72). That the former exception cannot be
eliminated is shown by the fact that the fundamental
solution of ## — 21u® = 4is¢ = 5, = 1 while the funda-
mental solution of £ — 189w’ = 4 is t = 110, u = 8.
The second exception must be reckoned with in view of the
example: £ — 3u® = 1 whose fundamental solution is
t =2 u=1;f — 750 = 1 whose fundamental solution
ist = 26,u = 3 and for ¢ = 3 or 75 in the respective cases
2 = +1 (mod ¢q) but 26 # 41 (mod ¢). However, neither
exception occurs if A is positive and in that case we have

Go(4, ¢) = 2""‘"“’)p§:h(A/>\2) or 0
A/g

and hence if d is square-free
G4, q) = 27" F(A)p or0

where F(A) is the number of classes of forms of determinant
A with one odd coefficient and middle coefficient even, this
to be multiplied by 2 if ¢ = =+1.
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PROBLEMS

Chapter I 1-8
1. By substitution find the form g into which

f = 8at + 3x3 + 625 — 6mu@s — 120305 + 297
is taken by the transformation:

=—n+w+yp, = —h+y, $a=“—y1+yz.

Check your result by matric multiplication.

2. Using the methods of the proof of theorem 1, reduce
the form f above to the form g of theorem 1 and hence find
the canonical form of f under a real transformation.

3. Transform the following into a regular form:

2m:1%3 + 4%ami + 23 + zi

and find its index using theorem 4.

4. Does the form in problem 3 represent the form in
problem 1 in the field of real numbers?

5. Find a non-singular 3 by 3 matrix whose first two
rows are (312) and (623).

6. Where, in the proof of theorem 8 is the condition
2 7 0 used?

7. What is a necessary and sufficient condition that two
forms with complex coefficients be congruent under a com-
plex transformation?

8. What is a condition that one form will represent
another form in the field of complex numbers?

Chapter II 9-30
9. Find 3-adic numbers which satisfy the following equa-
tions:
52+ 1=0, 22=17, 45z = 1.
198
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10. It is known that the decimal expansion of any ra-
tional number repeats and that any repeating decimal rep-
resents a rational number. State and prove the analogous
theorem for any p-adic expansion; what can be said about
the maximum length of the repeating part?

11. Prove the associative property of the multiplication
of p-adic numbers.

12. Find the first three terms in a solution in 5-adie
integers of z2 + 6y% = 5.

13. For what values of a and b is the equation ar® +
by? = 6 solvable in 2-adic integers?

14. For what values of a is 522 = a solvable in 7-adic in-
tegers?

15. Prove that if b is an integer not divisible by p2 and ¢
i an integer congruent to b (mod p%) then ex? = b for some
p-adic integer x.

16. If pis an odd prime and n a non-square unit in B(p),
show that for every non-square unit »’ in F(p), the equa-
tion 220’ = n is solvable. What is the corresponding result
forp = 2?

17. Find ¢,(f) for f = asri + sz where a; , a3 are
p-adic integers.

18. Find ¢,(f) for f = oz + azs + asrs + i where

are p-adic integers. Compare section 11 for ternary
forms,

19. Prove property 4 of the Hasse symbol and property
5 of kp(f).

20. Find k,(f) for f = az1 + ou + i .

21. Find an explicit formula for ¢,(fi + pfs) in terms of
the Hasse invariants and determinants of f; and f; and the
number of variables in the two forms.

22. If f = 3x; — 223 — x5, it is & zero form in the field
of rational numbers. Find a rational solution of f = 5. For
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23. In what p-adic fields are the following forms zero
forms?

fi =521 — 23 — 323, fo= a1+ 22+ 75+ 5ai.

24. In what p-adic fields are the following solvable:
321 — 2t = 5, f1 = 3, f» = 4 where the latter two forms are
defined in the previous problem.

25, If f is a ternary form for which ¢,(f) = 1 show that
f represents all numbers N in F(p).

26. Show that for n < 4, theorem 14 and corollary 14
hold for p =

27. In what p—a,dic fields are the following pairs of forms
congruent:

a) fi = 323 + 7z; and f, = ai + 84z . :
b) g1 = a1 — 3x3 + 1543 and g, = 37 — 523 + 35 .
e) b= 2 — 5ak + 32: — Triand by = 21 — 73 + 2% — 725,

28. For what primes p does g, represent f, , by represent
f1, using the notations of the previous problem?

29. Why does theorem 17 fail to hold for p = «? Give
an example.

30. For what primes p are h; and hy in problem 27,
2-zero forms? For what p are they universal?

Chapter IIT 3148

31. Find the Hermite reduced positive ternary forms
with integral coefficients of determinants 2 and 3. Find
the Hermite reduced binary forms with integral coefficients
and determinant —2, _

32. How many reduced binary forms are there of de-
terminant 1 whose coefficients are rational numbers whose
denominators divide 12?
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33. If T is the matrix

31 2
4 0 6
1 2 3

reduce it by matrices of type E; and E; in lemma 4 to the
diagonal form of the lemma.

34. Show how the result of the previous problem may
be achieved by use of lemma § without actually carrying
through the reduction.

35. Find a column matrix 7 such that the matrix
(T T, is unimodular where T consists of the first two
columns of problem 33.

36. If f is an integral zero form of square-free determi-
nant prove that it is equivalent to a form whose matrix is

N I. M
L. D N
NN C

where I, is the m-rowed identity matrix, Ny is the zero
matrix with n — 2m columns and m rows, C is the matrix
of a non-zero form and D is a diagonal matrix each of whose
elements is either 1 or 0.

37. Given f = 3z? 4 2zy + 4y find a form equivalent
to f and congruent to @z® + agy? (mod 25) for properly
chosen integers a, and a, .

38. Prove that if f is a binary form with integral coeffi-
cients and determinant d and if for some prime ¢, f = ¢ is
solvable in F(p) for p = « and all p dividing 2d, then
f = qis solvable in F(p) for all primes p.

39. Show that z2 + 3y? = 55 is solvable in F(2), F(3),
F(«) but not in F(5) nor F(11). Find a number M = 55
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(mod 72) such that the equation is solvable in F(p) for all
primes p.

40. Prove that every binary zero form in the field of
rationals is the product of two linear forms.

41. Which of the following are zero forms in the field
of rationals:

3x2 4 5y? — 722, 2% — 3y? + 1122, 2x2 — 3y? + 522 + Vi3,
x? + 3y? — 722 + 51

Where the answer is ‘“yes”, find values of the variables not

all zero making the form zero.

42. What numbers are represented rationally by the
forms in the previous problem?

43. Prove: if p = 3 (mod 4) and is a prime, while M is
a rational number in lowest terms, then

2+pM2=x?.+y2_pz2
is solvable for rational numbers x, y and z if and only if
the denominator of M is prime to 2p.

44. Prove: if p and g are odd primes with p = 1 (mod 4)
and (g | p) = —1, while M is a rational number in lowest
terms, then

2+ pgM* = 2* + gy — p2’
is solvable for rational numbers z, y, z if and only if the
denominator of M is prime to pq.

45. Fill in the details of the proof of Corollary 27c¢.

46. Find a form, different from that given at the close
of section 21, which is universal in the field of rational
numbers but is not a zero form in that field.

47, Show that the following two forms are rationally
congruent:
yi + y: + 1643 and 201 + 277 + 53 — 2mexs — 2mazs .

48. Construct an integral ternary form f of determinant
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Chapter IV  49-57

49. Find a diagonal form with integral coefficients equiv-
alent in R(5) to 32 4+ 2xy + 5y%. Can this be done in
R(2)?

50. Find a form of the type of theorem 33a equivalent
to
z: + 223 + 6z + 623 ; to 221 + 6mzz + 627 + 6azy .

51. Given an improperly primitive form f of unit de-
terminant. To what forms of the types in theorem 33a
may it be equivalent? How may one determine for a given
form to which type of form it will reduce?

52. Establish the statement made in the remark after
theorem 34.

538. If fis a ternary form in R(p) of non-zero determinant
d and p is an odd prime factor of d, while p? does not divide
d, what numbers N are represented by fin R(p)?

54. What odd numbers are represented in B(2) by the
forms in problem 50 above?

55. In what rings E(p) are the following two forms
equivalent?
z1 + 203 + 62i + 623, 221 + 6o + 623 + 7.

56. Fill in the details of the proof of theorem 38 for
r=3andr =1,

57. Are the following two forms equivalent in R(2)?

f = 6zym; + 223 + 624 + 8z + Sxszs + 1623,
g = 2z + 22123 + 203 + 4dagrs + 423 + 62% + 122475 +
14x; + 8z + 82: .

Chapter V. 58-64

58. Given the matrix T =1 0 3
2 4 0
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whose determinant is congruent to —1 (mod 3). Find a
matrix 8 = T (mod 3) whose determinant is —1.

59. The matrices T1 = (1,2,0)and T; = (1, 1, 1) are
solutions of TTAT = 5 where A is the matrix of the form
z? + y® + 3z Use lemma 10 to find an automorph M of
A with rational elements such that 7, = M7, .

60. Find the numbers represented by z2 4 2y* 4 322,

61. Meyer’s theorem (theorem 83) shows that the form
x? 4+ 2y? — 622 is in a genus of one class. What numbers
does it represent?

62. Let f have F asitsmatrix and adj f be the form whose
matrix is F-!|f|. Prove that f primitively represents a
binary form of determinant g, where f is a ternary form,
if and only if adj f represents g primitively.

63. What binary forms are represented by z? + 2y2 +
322? What by 2?2 + 2y? — 62%?

64. Find a properly primitive positive ternary form f
with integral coefficients and of determinant 15 such
that ¢;(f) = cs(f) =

Chapter VI 65, 66

65. Letn =3, m =1,4 =1, B = 5. Find a set of
forms © as described in section 38.

66. If m = 2 it is shown in theorem 51a that if dg"~* >
1, the only automorphs of E; are =1. What simplification
does this introduce into theorem 47b?

Chapter VII 67-92

67. Prove that if p is an odd prime and a transformation
T of determinant congruent to 1 (mod p) takes f into a
form congruent to f (mod p) then T is expressible in the
form P, of the theorem 50 where {, # is a solution of
22 + dy? = 1 (mod p). Would the same result hold if p

wara a nawar of a nrima or mora canarallvy a aamnnaita
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68. What modification of theorem 51a and 51c¢c would
be necessary if the restriction that the form be primitive
were -omitted?

69. Find the fundamental solutions of the Pell equa-
tions:

2t —3yt=1, 2?—2 =1

70. Find all the automorphs (proper and improper) for
the following forms:

a) 22 4+ dy? where d is an integer (positive, negative),
b) 3z* + 3zy + 5y,
c) 3x? 4 3zy — 5%

71. Find M(d, q) and M,(d, g) for all values of q and
binary forms having the following values of d: 1, —1, 2,
-2,3, —3.

72. Why, in the beginning of the proof of theorem 53
may f be written in the form given for f, even when p = 2?

73. Find the number of solutions of 3z% 4 16xy + 542 =
2*%q for ¢ odd and various positive integer values of k. Find
the number of solutions of 3z% 4+ 13zy + 10y2 = 130.

74. Prove that the roots of the equation 22 + rz 4 s =
0, where r and s are integers, are in J(A) as defined in
section 42 with A = r? — 4s. Conversely every quadratic
integer « is a root of an equation z2 4+ rz + 8 = 0 where
r and s are integers, s being the norm of a.

75. Prove that J(A) is closed under addition, subtrac-
tion and multiplication. Is it closed under division?

76. A quadratic integer whose reciprocal is a quadratic
integer is called a unit. Prove that a quadratic integer is a
unit if and only if its norm is 2=1. Show that the number
of units for every A is finite if A < 0 and infinite if A > 0,
where A is a non-square integer.

77 Qhow that if A = 5 evervy number In .J(A) is in the
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78. Find a basis of the ideal (6, 1 4+ 24/7). What is its
normp

79. Find a basis for the product of the ideal in the previ-
ous problem and (9, —1 + 2+/7). Show that theorem 61
holds for these two ideals.

80. Find a quadratic form associated with the ideal
2,1 + V5.

. 81. Find an ideal associated with the quadratic form
222 + 3zy + Ty }

82. Given the forms f = 2z 4+ 15y and g = 622 + 52,
find a form obtained from them by composition.

83. Prove theorem 67 for any n-ary primitive form.

84. Show by an example that theorem 68 does not apply
to ternary forms. '

85. Why is it necessary in theorem 71 to specify
“proper”’ classes?

86. If I' is the class of 222 4 15y find I'%.

87. Let I be the principal class represented by 4x2 4+ 9y2.
Find a class Ty such that T§ = I'.

88. If p/q is the fraction in lowest terms equal to
{a:, a2, -+, ax} prove that p = pi,0r + Pr2 and
g = qr10x + qi-2 where pi1/qr and pis/qr s are the
k—1st and k— 2nd convergents, respectively, of p/g. Notice
that this result does not follow immediately from lemma, 18.

89. Using theorem 76 find all positive definite reduced
binary forms of determinants 23/4 and 11. Arrange them
according to genera and find the number of classes in each
genus, thus checking theorems 75 and 71.

90. Justify the remarks in the paragraph after corol-
lary 76.

91. Complete the detail for ¢ = 0 in the second para-
graph of the proof of theorem 77.

92. Find all the classes of indefinite binary forms of
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determinant —23, of determinant —15. Is there more than
one class in any genus for either of these determinants?

Chapter VIII 93-95

93. Find the progressions associated with the genus of
the form f = z? 4 y? 4+ 322 Show by theorem 23 that
there is only one class in the genus of f.

94. Find the progressions associated with the genus of
f = 2x* 4+ 6y 4+ 922

95. Each form below is in a genus of one class. Verify
the results of theorem 86 for the following forms and
integers q.

a) f=2*4+ y*+ 2%q=25,3,11
b)f=2+ y*+ 2,¢=035.
) f=2"4+ y*+ 4% q=35
d)f=x24+2y2+ 22,q=1.
ey f=x24 Y24+ 324,9=5,9,17.

f) f=224+ ¥+ 82 Q—5
g f=24+ y*+ b2%,¢q=1T.
h) f=224 42+ 1222, ¢q = 5.
To aid in the computations involved we append the follow-
ing table of class numbers
n 3 5 10 11 15 20 35 40 51

h(n) 1 2 2 3 2 4 6 4 4
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