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DIFFERENTIABLE S ACTIONS ON HOMOTOPY SPHERES

by G. Brumfiel

§1, Introduction

In this paper we study fixed point free, differentiable
actions of the circle on homotopy spheres, using machinery
developed by Sullivan. The paper is largely expository and,
in part, is devoted to expanding the remarks in [23] and [24]

. on free circle actions. In addition some new resul%g, compu-
tations, and examples are included. The author felt that

this longer, partially expository paper, detailing the appli-
cation of Sullivan's ideas, would be significantly more useful
to those interested in circle actions than would be a paper
which described only the rather technical, new results.

1 ent+l nt+l 2n+l

Denote an action T: S8 x = - Z by (=

en _ z2n+l/

;7).
It is well-known that the orbit space P T is a
aifferentiable manifold homotopy equivalent to complex pro-
Jective space [14]. 1In fact, the principal st bundle,
T: 22n+l ~eP2n, is clessified by a mep to the universal

bundle, H, over CP(n). That is, there is a commutative

diagram
senl g2n
i T l H
P2 I, gp(n)

with f a homotopy equivalence.
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Remark. If CP(n) 1is regarded as the space of lines

in ¢n+l then there is an obvious "canonical line bundle"

over CP(n). By H, or the Hopf bundle, we mean the dual
of this canonical bundle. With this notation the normal bundle
of €P(n) in CP(n + 1) is H. This will be convenient

later,

Let 2z = cl(H) € H2(®P(n),Z) be the first Chern class

* 2, 2n .
of H. Then f z € H(P“',Z) 1is the first Chern class of

1 T sentl —+P2n.

the S bundle Purther, (f z)® e HONP?,Z)

defines an orientation of P2n, and this, together with the

Sl action on 22n+l’ determines an orientation of 22n+1.

For instance, 22n+l is the boundary of an oriented D2

2n

bundle over the oriented manifold P When we write

(22n+l,T), it will be understood that the orientation on

2n+l

% is the group of oriented differentiable

€ Tonr1 (Tonaa
structures on the sphere) agrees with the orientation deter-
mined by the Sl action on the manifold 22n+l,

It is easy to see that two st actions, (Z§n+l,To)

and (Z§n+l,T1) are equivariantly diffeomorphic if and only
if there is a diffeomorphism h: Pgn,;,an such that the
diagram
P2n
o) f
0
P2n/f’




commutes up to homotopy. Here P?n is 22n+¥/T. and fj
is the classifying map for Tj: Z§n+l —»P?n, J =0,1. Since

CP(n) is a skeleton of K(Z,2), homotopy commutativity holds

¥ * *
if and only if h f,(z) = £ (z). It follows that if
f: Z§n+l 2>an+l is an equivariant diffeomorphism covering

h, then h preserves orientations.

Given a differentiable manifold Mk, Sullivan defines

a homotopy smoothing of Mk to be a homotopy equivalence of

kK +k kK K k

pairs, f: L,dL™ =M ,dM", where L™ is a smooth manifold.

Two homotopy smoothings (Lg,fo) and (Lngl) are called

equivalent if there is a diffeomorphism h: Lg 2>L§ such

that the diagram

k k
Lo’aLo fo
h le 1,
. 12771

commutes up to homotopy. The set of equivalence classes of

homotopy smoothings of M i denoted hS(Mk). From the

discussion above, we see that there is a natural 1-1 corres-

pondence between equivariant diffeomorphism classes of free

s!  actions on homotopy 2n+l - spheres and elements of hS(€P(n)).
We next outline briefly Sullivan's homotopy theoretic

description of hS(Mk). We assume that MY and Mt are

simply connected and that k > 5.

—

Let F/O Dbe the fibre of the natural map BO — BF,



A map g: X-—F/0O consists of a stable vector bundle % = £€(g)
over X (The composition X -£.> F/0 EEEN BO) together with
a fibre homotopy trivialization of the sphere bundle S(£)
associated to €, that is, a map G: S(§) —>SN, N = dim(%),
which is of deg;ee one on each fibre. Two F/O Dbundles
(5,,6,) and (%{,G;) are equivalent if there is an F/0
bundle (£,G) over X x I and bundle isomorphisms

£ & 3¢ i j = 0,1, such that Gf. ~ G,.
557 Maxge =001 su v

Suppose that X = M° is a manifold. By making

i B s 58 e

G: S(%&) ~+SN transverse regular to a point in SN, we may

j assume that there is a framed submenifold Lk

: such that G T AV - LI p = R' is projection onto
K N
LXR
the second factor and G(S(€) - Lk x RN) = p, and such that

the mep m: L¥ — M, induced by the projection m: S(£) — MY,

ils a man of degrce one. If Wk+l X BN.CZS(Q) x I 1is a

x RVC S(E)

fremed cobordism between the two ends L? x BRY -yt ¢ gY N S(t) x J.

Ve se),

i

j = 0,1, then the two F/O bundles given by L? x R

1

j = 0,1, are equivelent. Thus given L" x R’ C S(€) we

can do framed surgery on ¥ x ®Y in S(£) and try to make

e Lk ~aMk a hcwmotopy equivalence, without changing the

1r
associated F/0 bundle over M . There is a single obstruction

1~
to making T Lk-~->-M‘~ a homotopy equivalence, associated to

§ middle dimensional surgery,'in the group Pk = Z,O,ZQ,O for
k = 0,1,2,3 mod 4, respectively.
ConverSely,fgiven évhomdtopy equivalence £ LK 5>Mk;




cover I wup to homotopy by an embedding of Lk in the total

x*
space of the stable vector bundle £ = f'(TL) - Ty oOver Mk,
where 1, and Ty are the tangent bundles and f is a homo-
topy inverse of f£. One sees by an easy computation that

Lk

has a @rivial normal bundle in £. Choosing a framing
¥ x RYC ¢ determines a map 9(Lk,f): Mk-w-E/O. The .
notion of equivalence of F/O bundles guarantees that the
homotopy class of G(Lk,f) is independent of all choices

made. Thus we have constructed a sequence

ns(M®) 25 [ F/0] S P,

which is exact as a sequence of pointed sets.
There is an action of I, on hS(MY) defined as follows.

Given (Lk,f) € hS(Mk), we may assume that f maps a disc

k

in L™ to a point in MY. Then if =K € I . define

k,
(Lk_,f) %35F o be (Lk&f Zk,f *pt), where B x sk denotes

the connected sum.

Theorem 1.0. If oM~ £ @ then in the exact sequence

above s =0 and 6 1is an isomorphism. If BMK = @ and

k k k

oL ,£).= 0 then (1X,£) ~ (5,1d) %355 for some =X e bp

k+1”
the subgroup of exotic spheres which bound wT-manifolds. In

particular, € 1is a monomcrphism if k 1is even.

The surgery obstruction s need not be zero if BMK = ¢.

4n

If k = 4n then the surgery obstruction of a map f: M — F/0



is given by
s(f) = (é)(index(Lun) - index(Mun))

= (§)<L(TM)- (L(é) - 1), M) ez

hn N

where L'~ x R & S(£) defines f and L =1+4+L, + L, + ---

1 2
is the total Hirzebruch L-polynomial. This provides a

formula for s(f) in terms of the Pontryagin classes of

7y and . If k = Un + 2, the surgery obstruction is
much harder to compute in terms of invariants of M4n+2
and f: M4n+2-ﬂ-F/O.

We will study the exact sequence of sets

0 = ns(eP(n)) = [¢p(n),F/0] 2 P,

n> 2 TLet CP(n+ 1) be €P(n+ 1) with a dise DF2
(@]

2

removed, CP(n + l)o is the total space of the D~ bundle

H over CP(n). Thus there are maps

H

entl _ 3ep(n + 1) = ¢P(n + 1) &3 ¢B(n
o] O

S

which induce
¥ .
2 | 8
[¢P(n),F/0] — [CP(n + 1)_,F/0] —> hS(CP(n + 1))
L%
1
> F2n+l

*
where 1 is the map which assigns to a homotopy smoothing
of CP(n + 1)o its boundary, which is a homotopy sphere.

o . o . e L
Denote by ¢ the composite o =i €H : [€P(n),F/0] P

O




on

Proposition 1.1. Let f: P® —CP(n) in hS(CP(n))

correspond to the s action (22n+l,T). Then =20+ _ cB(Pen,f).

Proof. G(Pgn,f) = g: CP(n) —*370 corresponds to a
framing P2n pd RNC: S(8), where £ is a bundle over C€P(n).
Since H: CP(n + 1)o — CP(n) is a disc bundle, it is easy
to see that gH: CP(n + 1)o — F/0 corresponds to a framing
of the total space of the disc bundle f*H over Pen, in
the sphere bundle S(H §) over €P(n+ 1) . But £ H is
the disc bundle associated to the principal Sl bundle

nt1l _,Pzn, nence 22n+l

T: S =3 H = og.

The author is particularly interested in characterizing
those homotopy spheres which admit free Sl actions.
Proposition 1.1 gives us a homotopy theoretic hold on this
problem,

Summarizing, our approach to the problem of classifying
free circle actions on homotopy spheres will be to attempt
(i) computation of [CP(n),F/0] (ii) computation of the
surgery obstruction s: [CP(n),F/0] ~>P2n, hence also
G(hS(GP(h)))CZ[CP(n),F/O], and (iii) computation of the

"boundary" map o: [CP(n),F/0] - T A complete solution

ent+l”
of these three problems by homotopy theoretic methods is not
feasible. However, we do reduce (i), (ii) if n # 4k + 3,
and (iii) if n # 4k + 2, to much more familiar problems
in homotopy theory and we obtain complete solutions of (i),

(ii), (iii) for n < 5.



We also study maps of CP(n) into a number of other

useful spaces., There is a diagram with rows fibrations

PL — F = F/PL

1.2. | l I

PL/0 = F/0 ~ F/PL

F/PL plays the same role in the PL category that F/0 -

plays in the differentiable category. Namely, define a

homotopy triangulation of a PL manifold Mk

homotopy equivalence f: Lk,aLk ~»Mk,aMk, where LF is a

to be a

PL manifold. (Lz,fo) and (L?,fl) are equivalent if there
is a PL isomorphism h: LY S LY such that fih~ f_.
Denote the set of equivalence classes by hT(Mk). The following

is, of course, due to Sullivan.

1.3. There is an exact sequence of sets

0 -»hT(MK) LN [Mk,F/PL] S P

For a smooth manifold Mk, we have the following addi-
tional, well-known statements concerning maps of Mk into

the spaces in diagram 1.2.

1.4, [MK,PL/O] is isomorphic to the set of concordance

classes of smoothings of M5 [131, [17].

1.5. Image([Mk,PL] —»[Mk,PL/O]) consists of those

smoothings of Mk which preserve the stable tangent bundle.




1.6. [Mk,F] consists of equivalence classes of embeddings

k
Lk X RNCI Mk X SN such that w: Lk-ﬁ-M is a map of degree

one, where L? X RNCZ Mk X SN,. J = 0,1, are equivalent if

k+1 N k N

there is a framed cobordism W X R CM xS x I between

kK+1 N k

x B MM % s¥ x 5 = Lt

In particular, w is a tangential map, that is,

them, that is, W x RN, j =0,1.

W*TM = T . [MK,F] is thus useful for studying tangential

homotopy equivalences.

Finally, we use our homotopy theoretic methods to study
diffeomorphisms of CP(n) modulo pseudo-isotopy. Given a

diffeomorphism h: M 3 MX of a smooth manifold M*

and a
homotopy of h to the identity, there is an associated
element of [MK,Q(F/O)] which vanishes if the homotopy can
be deformed, rel ME % QI, to a pseudo-isotopy of h to
the identity [23], [24]. We give in §7 some non-trivial
examples of diffeomorphisms of CP(n). On the other hand
[€P(n),Q(F/PL)] = O and every PL isomorphism of CP(n)
homotopic to the identity is actually PL pseudo-isotopic
to the identity [24].

The paper is arranged as follows. In §2 we give some
general results on the structure of [€P(n),F/0], using
results of Adams on J(€P(n)). In §3 we study the maps s
and o. This section contains nearly all the new results of

the paper. In §4 we discuss conjugation", a natural invo-

lution defined on hS(€P(n)), which assigns to an s bundlie
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over & homotopy complex projective space its dual bundle. A
spectral sequence, useful for computing [CP(n),Y] for any
space Y, 1is constructed in §5. In §5 a geometric interpre-
tation of the differentials is given for Y = PL/O (or
essentially any of the other spaces in diagram 1.2). This
spectral sequence is used/%? to obtain much information on
the torsion subgroup of [CP(n),F/0] for small n. In §8
we determine [CP(n),F/0] and hS(CP(n)) for n < 56 and
give examples of various other geometric phenomena based on
our computations.

I am grateful to W. Browder, G. Cooke, D.}Montgomery,
D. Sullivan, and C.T. Yang for explaining many ﬁhings to

me and for clearing up a number of misconceptions which I

held.

§2. Structure of [CP(n),F/0]

In this section we study [CP(n),F/0] wusing the sequence

of fibrations
SO - SF — F/0 — BSO — BSF,

knowledge of KD*(GP(n)), and Adams' results on J(CP(n)).
All the results are implicit in the discussion in [24]. We
summarize the needed facts in the following Theorem [2]. Let
H be the dual of the canonical line bundle over €P(n) and

let ® = r(H - 1) be the realification of H - 1. We use




the notation. KOO(X) for the reduced K-theory group
Ko(X) = [X,BSo].

Theorem 2.0

(1) The ring KO°(CP(n)) is generated by the element w,

subject to the relations

w2t _ o if n = bk
P _ %K Lo ir ok + 1
k2 _ g if n = bk + 2, 4k + 3.
In particular, K0°(CP(n)) =@z if n=0,2,3 mod 4
=DZ + 7z if n=1 mod 4.

2
(2) k0™ (eP(n)) = [cP(n),S0] = O

(3) The "Adams conjecture" holds for CP(n). That is,
kernel(KOO(mP(n))-*_[GP(Q),BF]) is generated additively
by elements pe(wp(ﬁ) - €), where p and e are integers,
e sufficiently large, WP is the Adams operation, and

£ € K0°(¢P(n)).

The Adams operation 4P in K0°(C¢P(n)) 1is given by

WPiw) = Tp(w), where Tp is the polynomial such that
1) =z ~ 2+ 2P, 1n particular, it follows

that the torsion element w<r + e KO®(CP(4k + 1)) is non-zero

T -2+ z
p(z z

in J(CP(4k + 1)) = image(KO°(CP(4% + 1)) — [€P(4k + 1),BF]).

Corollary 2.1. There is an exact seQuence

0 — [¢P(n),F] — [CP(n).F/0] —~>@z -0,
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where @ ZC KOO((EP(n)) is a free subgroup of maximal rank
generated by elements p (¥P(4) - £).

Proof. There is an exact sequence

[€P(n),s0] = [¢P(n),F] — [CP(n),F/0] — [CP(n),BSO]
— [¢P(n),BF].

Since [CP(n),BF] is finite and since the only torsion in
[¢P(n),BS0] is non-zero in [CP(n),BF], the corollary
follows immediately from Theorem 2.0 (2) and (3).

Thus the torsion subgroup of [CP(n),F/0] is identified

with [CP(n),F]. Since F = lim Q"S™, we see that as a set
m->ee .

(the group structures are different) [CP(n),F] = ligfsm/\mP(n),Sm]
m
= vg(wP(n)), the OEE-stable cohomotopy group of €P(n).
Also, from the information in Theorem 2.0 the Pontryagin
classes of all F/0O bundles over GP(n) are theoretically
computable,.
The inclusion i: CP(n) — CP(n + 1) induces a map

i": [€P(n + 1),F/0] — [¢P(n),F/0].

Corollary 2.2. i : [€P(n + 1),F/0] — [€P(n),F/0]/(torsion)

is surjective.

Proof. This is immediate from Theorem 2.0 (1) and (3).

Corollary 2.%. There is a splitting

[cP(n),F/0] = [CP(n),F] +@® 2
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such that the subgroup @ Z 1is contained in i*([mP(n + 1),F/0])
clep(n),F/0].

Proof. This is immediate from Corollaries 2.1 and 2.2.

Next, we consider maps of CP(n) into the diagram

Q(F/PL)\\N

PL — PL/O

! ! ;::jsso
F — F/0

N e

F/PL

2,O for k = 0,1,2,3 mod 4,

respectively, it follows that [€P(n),Q(F/FL)] = O.

Since WK(F/PL) =P = Z,0,Z

Proposition 2.4,

(1) The map [€P(n),PL] = [€P(n),PL/0] is an isomorphism.
(2) The inclusion O — [€P(n),PL] — [€P(n),F] is an isomor-

phism on odd torsion components.

| Proof. The homotopy groups vk(PL/O) = I', are finite,
hence [@P(n),PL/0] 1is finite. Since the only torsion in
[¢P(n),BSO] is non-zero in [€P(n),BPL] (in fact, in
[eP(n),BF]), the map [CP(n),PL/0] — [CP(n),BSO] is zero.
Statement (1) follows from this and Theorem 2.0 (2). Statement
(2) follows from the fact that there is no odd torsion in

[eP(n),F/PL].
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Corcllary 2.5. The stable tangent bundle of a smoothing

of CP(n) 1is independent of the smoothing.

Proof. This follows from Proposition 2.4 (1) and 1.5 of

the introduction.

§3. The maps s and o

Recall from the introduction that hS(CP(n)) is
identified with kernel([CP(n),F/0] S P,). If n is odd,
Popy = Zé and s is actually a group homomorphism [25]. If
n 1is even, P =Z%Z. In this case s 1is not a homomorphism,

2n
but by kernel(s) we still mean s'l(O),
From Corollary 2.3 write [GP(n),F/C] =@®7Z + [¢P(n),F],
where the summand @®Z 1is contained in i*([mP(n + 1),F/01)
clepP(n),F/0]. We first recall the formula for the surgery

obstruction when n = 2k 1is even.

Proposition 3.1. Let g € [€P(2k),F/0]. Then

s(g) = (§)<L(CP(2k)) « (L(£) - 1),[CP(2k)]> € 2, where
£ = £(g) is the bundle given by CP(2k) £ F/0 _}_9 BSO.

In particular, s vanishes on [€P(n),F].

Since the Pontryagin classes of all such bundles £ are
computable (though the computation is not practical), this
determines the possible Pontryagin classes which can occur
for manifolds homotopy equivalent to €P(n), n even. For

2n

if f: P — C€P(n) in hnS(CP(n)) corresponds to




en

8(f) = g € [¢P(n),F/0] then P has a trivial normal bundle

»

in the total space of the bundle £ = ¢(g) over C€P(n). Thus
the Pontryagin classes of P zre given by pm(PEn)

o)
= 2 p(CR(n))p (8) € H(P2).
i+j=m

For n odd, the surgery obstruction is very difficult
to compute. Later in this section we give a KO-theory
formula for s when n = 4k + 1.

Next we consider the map o: [CP(n),F/0] — Typpy- Recall
from Proposition 1.1 that if g ¢ [CP(n),F/0] 1is in hS{(CP(n)),

corresponding to f: P2n

2n+1l

— CP(n), then o(g) € Topyy 1s

on which S1 acts freely over Pzn, that
en

the sphere 2

is, the total space of the Sl bundle over P induced by

f. Before stating our results we need to recall some facts

about the structure of T from [16] and [11], [12].

2n+l
First, T, ; =DbP, @ (7, ,/im J), where bP, =Z, ,
n

22n-2 on-1

6, = &, (2 - 1)num(B,/4n), a, =1 if n is even,

n
2 if n is odd, and B is the Bernoulli number (161, [11].

Remark. Strictly speaking, for very large even n, if

im J = szn, where iy = denom(an/4n), then qun = Zzen.

For neatness of exposition, we consider only those n for

which im J = Z. and hence qun = Ze . This is the case
n n

for n < 29 [18] and is presumably the case for all n.

There is an invariant f : T, - 7 defined as
¢’ Tin-l Qn/an
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hn-1

follows. Every 2 € FAn-l bounds a smooth manifold Mhn

with a complex structure on its stable tangent bundle such

that all Chern numbers of Mhn,

except possibly c¢,._, vanish.

2n

(More precisely, we should say Chern numbers of ﬁ&n = MLm LJ Dun.)
Zan-l
Set fc(Zun'l) = (%-)index(Mlm) € Z. This is well-defined, that
is, independent of Mun, modulo (en/an)25 hence we get a
homomorphism f : T - 7 . Moreovef, f : bP =2y =&
¢’ "4n-1 en/an c hn 6, en/an

is the natural projection. Thus for even n, kernel(fc)
~ vin_l/im J. For odd n, kernel(fc) ~Z,® (vzn_l/im J)
where 22(: bPun is the subgroup of order 2.

Secondly, Tgne1 =‘22(3'b Spin8n+2 where b sping .,

is the subgroup of exotic spheres which bound spin manifolds

[12]. There is a homomorphism fgp: b sping ., ~ Z, defined by

2
taking the Brown-Kervaire invariant [9] of a spin manifold

M8n+2 5M8n+2 - 28n+l

where €D sPin8n+2 and all Stiefel-

Whitney numbers and KO characteristic numbers of M8n+2
vanish. On the subgroup bP8n+2 =‘ZQCZ b spin8n+2, fR is
the identity. Thus b sping, .~ = b P8n+2(B‘kernel(fR)

S .
=2, ® (1 1/Z52,).

The following result was pointed out to me by Sullivan.

Proposition 3.2. Let £ ¢ @ 2 C [CP(n),F/0] with

' * N A
€ =1 (%), & e [CP(n+1),F/0]. Then o(%) ¢ PP, . o

Specifically o(£) = s(f) € Z mod 6, & if n =2k - 1 and

o(€) = s(€) € Z, if n =2k, k4 2d _ 1,
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Proof. There is the cofibration gl _H CP(n)
<% - +1
EEEN CP(n + 1). Since £ = i*(ﬁ), the composition gent+l

s
iz N ¢P(n) —§—> F/O is zero. Recall that Topey (F/0) = Toney/ 0 J.

: 5 . s .
Also recall the Kervaire-Milnor map [16], o T g1 = Tope1/im J,
defined by choosing framings of homotopy 2n+l-spheres embedded
in some high dimensional sphere. From the construction of

¢ given in the introduction, one can see that the composition

[¢P(n),F/0] L Tonpl 2 wzn+l/im J coincides with the

mep [€P(n),F/0] 2E (52 50 . 75 ,1/im I induced by
H: S2n+1

It

= €P(n). Thus O = £eH = @o(£). But kernel(o)

=bPy» S0 o(f) € DP

n+2°

Now o(€) € bP, 1o 1s the boundary of a homotopy CP(n +,l)0,
say L§n+2, obtained from a fibre homotopy trivialization of
the bundle H*Q, where H: €P(n + l)O -~ CP(n). £ e [eP(n + 1),F/0]

is constructed by extending the fibre homotopy trivialization

of H*ﬁ over a disc D2n+2. Thus & corres-

CP(nt1) =52+

ponds to a framing of a manifold yente _ pent2 Mant2 in
» Q U(E) o]

a bundle over CP(n + 1), where M§n+2 is a parallelizable

manifold with 3M°™"2 - o(€). If n =2k -1 is odd then

o(€) = (é&index(mik) (mod ek) = s(g) (mod ek). If n =2k

is even, k # 29 - 1, then a(€) e bP) o = Z, coincides

Yk+2

with the Kervaire invariant of Mo

which in turn gives

the surgery obstruction S(E). This completes the proof.

Proposition 3.3. Let g e [¢P(n),F]1C [e¢P(n),F/0],

n =2k -1. Then o(g) € kernel(fc).
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Proof. o(g) 1is the boundary of a tangential homotopy

CP(2k)_, say ng, associated to CP(2k), ——> CP(2k - 1)

£ 5 F. In particular, the Chern classes of ng coincide

with those of (DP(QK)O. Thus the decomposable Chern numbers
bk bk
Fo

of M = % (-CP(2k)) vanish. Since BMnkzo(g), we

see that f_(o(g)) = index(Muk) = 0,

Summarizing, we have shown the following. With respect
to the decompositions [CP(2k - 1),F/0] =® Z + [CP(2k - 1),F]
and Ty, , =DbPy, + (W‘Zk_l/im J), we have o(®Z) C P, .
Further, o(@® Z) is explicitly computable in terms of
Pontryagin classes, using the fomulas in Propositions 3.1
and 3.2. We also have o([¢P(2k - 1),F]) E.‘k.ernel(fc).
For k even, kernel(fc) = Trik_l/im J and thus o([CP(2k - 1),F])

is computable as the composition

oH 4k-1 S

[cP(2k - 1),F] > [87°70,F] = my q = T _y/im J.

Because of the identification [€P(n),F] = [s™AcP(n),s"],

m large, this reduces to the problem in stable homotopy

m
e STA
theory of computing the map [STA CP(2k - 1),s™ MENNAR:N

m+ik-1 m ' S .
(s ,8°]. For k odd, kernel(fc) =Z,® ('ITlLk_l/lm J),
where ’ZEC bPch'
to describe the map o: [CP(2k - 1),F] =Z, @ (7, ,/im J)

Later in this section we will show how

in terms of homotopy theory.
First, we show how o behaves on sums of elements in
the decomposition [€P(2k - 1),F/0] =@ Z + [CP(2k - 1),F].

¢ is not a homomorphism on the summand @ Z. However,
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Proposition 3.4. Let f: €P(2k - 1) - F/O be a map

which extends to ;: CP(2k) — F/O (for example,
fe®z C[ep(2k - 1),F/0]) and let g: CP(2k - 1) = F be
any map. Then o(f + g) = o(f) + ao(g).

EEQEE’, The map ;‘ corresponds to an embedding

e /e €N, where EN y large, is the bundle CP(2k)

Q,
~£~> F/0 TN BSO. By performing framed surgery, we may
assume that Q Mk %%) U where ng is a paralleli-

zable manifold with 1ndex(W ) = s(%) and the projection

Mgk-ﬁ-GP(ek) is a homotopy equivalence.
The composition CP(QK) ;SN CP(2k - 1) 85 F corres-
ponds to an embedding P4k X R - eN, where eN is the trivial

bk

bundle over @P(Qk)o and the projection P 'ﬁ—GP(Qk)O is

a tangential homotopy equivalence. Since ank = o(g),

hk-1 N

this gives an embedding o(g) x gY S X R".. This framed

exotic sphere corresponds to a unique PL N-bundle Eig)N

-N . bk
=0 € my, ,(PL) = T (BPL). Let j: CP(2k) — S be a

bk be the almost smooth manifold

*
e g e oy )

map of degree one and let P

; gk céé) ‘. Then there is ankembedding, P
H over CP(2k), extending the embedding P;k X RNC: eV over

mP(ek)o

The Pontryagin classes of PLLk coincide with those of

CP(2k). For the classes p, (P'K),

bi
o

i < k, this is so because

is a tangential homotopy @P(Ek)o. Since index(Puk)

= index(CP(2k)), we then see from the Hirzebruch index formula




that p,(P"%) = p (CP(2k)). It follows that p, (3') = O.

) A *
Now embed Q'F x RY x P*X x RN BN & (N 4 5% (F)
over €P(2k) x CP(2k) by the product map. By transversality,
we may assume that the intersection Quk X Puk X RBN r](gN X (eN

+ j*(“EN)))‘AGP(2k) is an embedded, framed submanifold

Nt x RN C EN oV & j*(-EN) over the diagonal ACP(2k) = CP(2k).

If we restrict to CP(2k) & CP(2k) we get an embedding
Ngk x RONC EN + 2N which represents the Whitney sum
eP(2k) -2 €P(2k - 1) -5 F/0.

The framing N x ROV C EY + & + 5(-7) induces an

b

almost smooth structure on N for which the obstruction to

extending the smoothing is o(g). Moreover, the surgery

obstruction for the projection NLLk

Lk

— CP(2k) is clearly the

same as that of Q' — CP(2k) because of Proposition 3.1 and

~

the fact that the Pontryagin classes of QN are the same as

N ¥, N . .
+ j (-0). Again, by performing framed

surgery, we may assume that Nb’k = Eﬁk U th where Iﬁk

o(f) ©°
1s an almost smooth, homotopy GP(Qk)O and ng

zable manifold with index(W'™)

ik
o

those of EN + e

is a paralleli-
= s(f). Pushing the singular

point of out to afgk = o(f) gives a smooth manifold,

Lx
L,
bk

LO

with aLgk = o(f) + o(g), and a homotopy equivalence

— GP( 2k) Since this corresponds to the map

o
hx
o

er(2k) LN CP(2k - 1) wgi—g—--)F/O, we have . o(f + g) = JL

= o(f) + o(g) as desired.




We now return to the problem of describing the map

o: [CP(4k + 1),F] = kernel(f ) = Z,® (Wg’k_’_}/im J) C gy

The projection of o([CP(4k + 1),F]) onto the summand

S . . s
W8k+3/lm J 1is, of course, computed as the comp051tlon

[eR(4k + 1),F] 2H, [BK3

s s ) .
,F] = T8kt f>w8k+3/1m J, induced
8k+3

by the Hopf map H: S - CP(4k + 1).

We recall from [11] that the decomposition r8k+3‘
: S . . .
= bP8k+4(D (w8k+3/1m J) 1is established by means of an

invariant fR; P8k+3 —%Ze s Which splits off bP8k+ﬂ-§;F8k+3’-

2k+1
fR is defined using spin manifolds with boundary a given

exotic sphere, and improves fc by a factor of 2 in

dimensions 8k + 4. Thus we are interes}ed in computing the
. s o R .
composition [€P(4k + 1),F] —— T — Z . Since
’ 8k+3 0 er1

o({CP(k + 1),F]) C kernel(f ), we know that image(fpo) 1is
contained in the subgroup of order 2 in Ze . Let
2k+1

Z be the Adams invariant which spliﬁs off

s
eg: T -7 .
R* "8k+3 Joiea1

im(J) g;ﬂ§k+3 as a direct summand [1].

Proposition 3.5.

(1) The homomorphism eRH*: [ep(4k + 1),F] ~>ZJ , Where
2k+1

8k+3,F] = W§k+3 is induced by

H: [CP(4k + 1),F] — [S

*
the Hopf map, satisfies image(e H )CZ. T Z, , and,
RE2=720 g

¥*
with this identification of their images, ch = eRH .

(2) There is an element u € v8k+2(PL) of order 2, such
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that if gy o € [eP(4k + 1),F] denotes the composition

ep(lk + 1) —d sO%2 B 5 pr o, wnere j is of

degree one, then 0(“8k+2) € bPg, ., and fRU(”8k+2) # 0.

Proof. Let g ¢ [ep(4k + 1),F]. The composition

CP(lk + 2) =N ¢P(4k + 1) -&5 F corresponds to a framing

of a homotopy CP(u4k + 2)0 in the trivial bundle over
CP(4k + 2)0. Restricting to the boundary gives a framing
of the homotopy sphere o(g) in the trivial bundle over

S8k*3. This framed homotopy sphere corresponds to an element

— * —

a(g) € w8k+3(PL). Clearly, H (g) = JPL(G(g)) € w8k+3(F),

where Jpp: v8k+3(PL) ~>78K+B(F) is the PL J-homomorphism ,
induced by PL - F. It is shown in the proof of Proposition 3.4
that the Pontryagin class p2k+l(8(g)) = 0, hence To(g) is

a torsion element of W8k¢3(PL)' From [11, Theorem 4%.8] it

¥ —
follows that egH (g) = eRJPL(c(g)) g Z32k+l has the same

order as fnho(g) €% . This proves (1).
R 0 ey
ol

To establish (2), recall from [11] that the map PL —F
induces isomorphisms Tg, , ~(PL) = gy o(F)  and 2W8k+3(PL)
:’2W8R+B(F)' (For a finitely generated abelian group G and
a prime p, pG denotes the p-primary torsion summand of G.)
Adams has constructed an element WU € W§k+2 with 2u = 0,
ph € mn(I§;ﬂ§k+3; end uN £ 0, where Tl e wi =z, [1].
Denote also by p and ull the corresponding elements in

w8k+2(PL) and 2W8K+B(PL). Consider the composition

Bktd H CP(4k + 1) Ay B2 e Py opr/o. It is
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easy to prove that jH = T (See §5). Again from [11], the
injection B, : 2W8k+3(PL) —92w8k+3(PL/O) = 2F8k+3 satisfies
Bu(o(im J))C bPg y. Thus o(kgy,,) =BepejeH = B,(uN)

is non-zero in bP8k+4 as desired.

Remarks.

' : *
1. The relation image(eH )CZ,C Z. could be proved
RED=727 ok

by an elementary argument, using the cofibration seduence

S8k+3 88k+4

— CP(U4k + 1) = CP(l4k + 2) = , Theorem 2.0,

and the fact that [CP(n),F] is the torsion subgroup
of [CP(n),F/0]. Results of [11] would still be required
to show that ch = eRH*, hoWeﬁer.*

2. If we regard Mg, , as an element of fcp(4k + 1),F/0]
then gy ,, = i (Hgy,p), where fg . o e [€P(¥k + 2),F/0],
for o(bgy,p) € bPgy,y- Since olugy,,) = s(lgy,,) is
noh-zero; it follows that the Pontryagin class pak&l(a8k+2)

is non-zero. That is, is not a torsion element

H8k+2
(see Propositions 3.1 and 3.2). This also follows from

8k+3 H |

the fact that the composition § > CP(4k + 1)

1
~Bkt2 o g represents ull € W§k+3 and since uMl # O,
*

i

TP > [eP(4k + 1),F]).

3. Geometrically the homotopy CP(4k + 1) corresponding

¢ image([CP(Uk + 2),F]

t0 By, € [ep(4k + 1),F] 1is the connected sum

| CP(4k + 1) X Z8k+2, where $Bkr2 B, (1) € w8k+2(PL/O)

= Tgpso
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Propositions 3.1 through 3.5 reduce the determination of
the mep o: [CP(2k - 1),F/0] =T, , to computations with
Pontryagin classes and.study of the stable cohomotopy of
CP(2k - 1). However, since the surgery obstruction

s: [C¢P(2k -~ 1),F/0] = Z_, is difficult to compute, these

2
results only give partial information on o(hS(CP(2k - 1))),

the collection of homotopy (lk-1)-spheres which admit free

S1 actions. Our next goal in this section will be to derive

a KO-theory formula for s: [CP(2k - 1),F/0] —Z, when k

2
is odd. This then gives a complete reduction of the problem

of classifying free Sl actions on homotopy 8n+3-spheres
to more familiar problems in homotopy theory.

First, Brown has defined a homomorphism ‘¥: QSPin L g

8k+2 2

which extends the Kervaire invariant, Qgiiged ~>ZQ [9]. 1t
J I

follows from the main theorem of [3] that ¥ = Z asT o+ 2 BIW R
. . - J I
J J
w02re the WJ = vll cee Wrr are KO characteristic numbers
i i
and the wI = wil cee wrr are Stiefel-Whitney numbers of
8k + 2 spin menifolds, and og, By € Z, (see also [4]).

Since Y vanishes on Qgiiged [10], and since v(o) is the

only X0 characteristic number which is non-zero on Qgiiged
[3], it foilows that %oy = 0.

CP(4k + 1) is a spin manifold and if f e [CP(4k + 1),F/0]
corresponds toa framing ‘L8k+2 xIRNCZ-ﬁN in a fibre homoto-

~2cally trivial bundle eN over ¢P(4k + 1), then L8k+2 is




also a spin manifold. In fact, if m: LOK*2 m gp(bk + 1)

8k+2)

¥*
is the projection then wj(mP(Mk + 1)) = wj(L , Where

w, 1is the Stiefel-Whitney class. From [4], it follows

J
L8k+2

that the surgery obstruction to making w: - CP(4k + 1)

a homotopy equivalence is given by the formula

L8k+2

s(f) = ¥( ) - ¥(CP(4k + 1))

2 o (n(1B*2) | pI(ep(hk + 1)) € 2
J

it

}

o

The terms in Stiefel-Whitney numbers drop out because the

B8k+2

Stiefel-Whitney numbers of L and CP(4k + 1) coincide.

Recall that the KO characteristic number WJ(MBK*E) of

a spin manifold M8k+2 is computed as the composition
J
o, (T
gBOk+2 e o8N ) = spin(8N) —E "5 Bso
M
8N 8k+2

where V 8kto = Vv is the normal bundle of M embedded in
M

S8N’+8k+2
2

a sphere ¢ is the natural collapsing map, that

8N+8k+2 _

is, ¢ 1is the identity on VvV and collapses S v

to the point at infinity in T(V), and @K(WJ) is the image

under the KO-theory Thom isomorphism of the operation WJ

applied to the universal bundle over B spin. In the situa-
tion above we are interested in computing the characteristic

8k+2)

number WJ(L in terms of invariants of the map

£: CP(4k + 1) = F/O.



Lemma 3.5. There is an element v € KO(F/0) with
~ #
ph(v) = A € K (F/0,Q) = Qllp;p,-+-1], where ph is the

~

Pontryagin character and R=1+ Al + KQ + ++- 1is the total

A class of the universal bundle over F/O.

Proof. F/0O 1is the universal space for stable vector

bundles together with a fibre homotopy trivialization. Let

n8N be an 8N bundle representing the universal bundle

restricted to some skeleton of F/O and let t: T(n8N) ~*38N
be the universal fibre homotopy trivialization.
There are two natural KO-theory orientations for T(HSN).

First, there is the element t*(a) € KOO(T(n8N)), where
8N
)

a e k0°(s 'is a generator, and, secondiy, there is the

canonical orientation @K(l) € KOO(T(n8N)) of the spin bundle

nBN. (Since wz(ﬂ8N) = 0 and since F/0 is simply connected,

MY admits a unique spin structure.)
Define <Y € KO(F/0) to be the element satisfying the
formula t*(a) =v- @K(l). Then @H(l) = ph(t*(a)) = ph(y) - ph(@K(l}}
=2ph(v)®H(R"l(ﬂ8N)) hence ph(y) = K(ﬂ8N) = A as desired.
Strictly speaking, this defines Y only over a skeleton
of F/0. But it is easy to check that one obtains a well-defined

element v € KO(F/0O) by taking the limit over skeletons of

all dimensions.

Proposition 3.7. Let f € [CP(4k + 1),F/0] correspond
\j
8k+2 x m8Nc: 583’

to a framing L where ESN is a bundle over

CP(4k + 1). Then




(P2 . C;®K(WJ(VCP(4K+1) - &) £ (7))

T
15N+8k+2 1 16N
where S > T(VGP(4K+1)) is the collapsing map

. . . ~ e O 15N
and @, 1s the Thom isomorphism &, : KO(CP(4k+l)) = KO (T(va(4k+l))).
Proof. Write the stable normal bundle of €P(4k+l) as
16N _ 8N , 8N
a Whitney sum Vepiuks1) = (Vep(yrsr) - &) + &
T be the projection T €8N.—>GP(MK+1) (we also denote by
8k+2 PN

Let

7 the restriction of this projection to L and

L8k+2 = L8k+2 X 0) and let Vv gy Pe the normal bundle of

ILxR .
. . . 8k+2 8N 8N 15N
the composite inclusion L X RTTC 77 C VCP(4k+1)' If
(p,x) € L8k+2 X RSN then the fibre of Vv g, at the point

IxR
. - _ ¢
(p,x) is clearly the flbre (VGP(4k+1) °)v(p,x) of the

bundle Vep(bkt1) " € over CP(4k+l) at the point m(p,x).

. ~n ¥ £ 8N

IxR
phism, where 1: L8k+2

be a bundle isomor-

o ' 8N
— CP(4k+l) and = (”mp(uk+1) - €) xR

8k+2 N 8N

R . Let h(

is regarded as a bundle over L denote

D, X)
the induced isomorphism of fibres h(p x): (va(4k+l) - e)w(p x)
2 b

~ . £ 3 =
—+(V®P(4k+l) - °)w(p,0)' We may clearly assume that h(p,o) = Id.

Since the total space of Vv 8N is also the total space

LxR
' 8k+2
of the stable normal bundle of L s, we see that the normal
- 8k+2 . . ylON ~ %
bundle of L can be written as a sum h: V; _bv'(VCP(4k+l)

8N 8N

- E) + e, » Where e;” 1is the trivial bundle over L8k+2.
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8k+2 | BN = (8N

The framing L gives rise to a collapsing

map c, ’I‘(E8N) - T(eEN). Thus there is a diagram

T2 s T (Ygp(ypan) - 8 AT
c3 T A1d
S16N+8k+2 T(V¢P(4k+l) ; é)/\T(eEN)
¢y Id /\ce‘
T(Vég?uk+1)) = T(Yep(ue1) - é) AT(QSN)

where the three spaces on the right side of the diagram are

Thom spaces of bundles over the products CP(4k+1l) x CP(U4k+l),

8k+2, 8k+2 v L8k+2’

and L c

CP{4k+l) x L and ¢z are

collapsing maps, and A 1is the diagonal.

2’

This diagram commutes up to homotopy. For, first, if

15N+8k+2 V16N

z € 8 - it is easy to see that (wAId)ecAhec, (=)

L 5
and (IdAc,)eAecy(z) are both the point at infinity in
' 8N : 15N | .
?(VGP(M‘}(H‘J.) - §) AT(e; ). Secondly, if z € Vi - VLleSN is
described by coordinates (p,x,y), where p € L8k+2, x € [RBN,

and y € (V(EP(lLk+1) - e)v(p,x)’ then (IdAc,)°Accy(z) has

coordinates (m(p,x),p,¥,%x) in the bundle (V(IIP(l\Lk-Fl) - £) x er,

8k+2

over GP(4k+l) x L , and (mAId)e Ah 003(2) has coordinates

(m(p,0),p,h (y),x). A homotopy vetween (wAId)e bhec
(p,x) 3

. . -1
and (Id /\c2) =Aecy 1s thus given by (Tr(p,tx),p,h(p’tx)o h(p,x
0 <t<1l. The homotopy maps g16MH8k+2 v%6N to the point

at infinity.




2

8k+2)

Now the characteristic number (L is by definition

the element cj(Ah) (W'AId) (@K(v (VmP(4k+l) - 8)) - 0 (1))

L6N+8k+2

e K0°(s ) = Z (We use &, to denote the KO-theory

2’ K
Thom isomorphism of all the spin bundles occuring in the argu-
ment.) By homotopy commutativity of the diagram above, this

. * ¥ J * .

is equal to c A (o (7 (va(4k+l) - €)) e 2k(1)). Since F/0
is the universal space for fibre homotopy trivial bundles, the
framing p Skt+2 X BN €8N associated to f € [CP(4k+l),F/0]

is constructed by transverse regularity from the fibre homotopy
8N
E4

trivialization T(EBN) SN T(nBN) 25 s where, as in

8N

Lemma 3.5, T(nBN) s is the universal example over

F/0. It follows that the diagram

commutes up to homotopy, where p 1is the projection of the
trivial bundle eEN onto the fibre. Thus c¢ @K(l) = c2p (a)
L * *
=f t (a) =f (v- @K(l)) = & (f (v)), Dy naturality of the
Thom isomorphisms ®&p. Finally, then, N (@K(w (va(4k+l% - &))
* J k+
* o (f (v))) = (DK("T (V.(EP(4K+1) - £€)- f (Y)) hence o

= C @K(W (v CP(bk+1) - €) - f*(v)) as desired.



Proposition 3.8. Let f € [CP(4k+l),F/0]. Then

s(£) = 2 a;- C*QK(WJ(VmP(uk*l) S E) £ () - "J(Vmp(uk+1))) €z,

Further, s(f) depends only on the bundle %5 = £(f), which
represents the composition CP(4k+l) AN F/0 —> BSO. 1In
particular, if f e [€P(4k+l),F], then s(f) = 0.

Proof. The formula for s(f) is an immediate corollary
8k+2)

of Proposition 3.7 since by earlier remarks s(f) =2 aJ(rJ(L
- wI(ep(irt+1))).
~ ~ * *
By Lemma 3.5 ph(y) = A(M), hence ph(f (v)) = £ (ph(v))
% A ~ * A
=1 (A(M)) = A(f (M) = A(E). By Theorem 2.0(1),
f*(v) € KO(CP(4k+l)) is determined modulo the torsion element
o021 ¢ ko%(eP(Uk+1)) by ph(f (v)) = A(£). Thus, also by
J . *

Theorem 2.0(1), the product (VGP(4k+1) - €)- £ (v) depends
only on A(£). This proves that s(f) depends only on €.

The last statement is obvious from the formula for s(f).

Remarks.
1. This formula for s(f) is theoretically computable,

although the coefficients <« in the formula

J

J

Y =2 a1 + Z BIWI for the Brown-Kervaire invariant

J
have not yet been determined. In §8 we make the compu-

tation for k = 1,

2. Sullivan has shown that there is a cohomology class
K=k, + k6 + k such that if

bk+2
5 o+ "t €H (Fyb,zz)

*
£ MYEF2 — F/0 is a map then s(f) = <W(M4k+2)- f (K),

4k+2]> c 7 4k+2) -1 4 M4k+2 M4k+2)

(M where W(M w, ( ) +w R

244 2(
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k+2 is the total %Wu class. This formulsa

e H (M2 g,)
is hard to apply because there is no procedure for com-
puting the class f*(K).

3. It is obvious that if f ¢ [¢P(n),PL] C [€P(n),F] then
s(f) = 0. The quotient [CP(4k+1),F]/[CP(4k+1),PL] is
very small. In fact, thls quotient is Z2 for k=2
and it is reasonable to conjecture that it is O for
all other k > 1 (see §8 part (6)). Thus the last
statement of Proposition 3.8 is not very strong.

4. s([eP(4k-1),F]) is definitely non-zero for k = 1,2, and U
(and presumably for all k = 29 [6]). Thus

s: [CP(4k-1),F/0] — &, seems extremely difficult to

2
compute in terms of familiarkinvariants.
As another application of tre machinery used in the
proofs of Propositions 3.7 and 3.8, we describe the map

o: [CP(kk),F/0] — Tg, .-

| Proposition 3.9. o([¢P(4k),F/0])C Db sping, . »< Tgy.q-
Moreover, with respect to the direct sum decompositions

[ep(ux),F/0]

I

@z + [eP(4x),F] and b sping, .~ = bPgy . -
s \ .
+ kernel(fp) = Z, + (Tgy o/ Vs, Ve have o(@Z) C bPg .5
and o([CP(4k),F]) C kernel(fp). Finally, if f €@ Z and
g € [CP(4k),F], then o(f + g) = o(f) + o(g).
Proof. The first statement is obvious, since by definition

if f e [eP(4k),F/0] +then o(f) 4is the boundary of a homotopy

mP(4k+1)o, which is a spin manifold.



J2

The fact that o(@®Z) C bPg, ., Tollows from Proposition 3.2.
In fact, if f e ®2Z then o(f) = s(f), where % e [eP(4k+1),F/0]
extends f. Of course, s(f) is given by the KO-theory
formula of Proposition 3.8.

For f e [€P(4k),F/0], o(f) is the boundary of a homo-

topy CP(4k+l)_, say ng""g. In [12], the KO characteristic

8k+2

numbers of P are defined to be the KO numbers of the

o)
closed, almost smooth manifold P8k+2 = P§k+2 U DSK+2 with
o(f) ‘
respect to a KO orientation extending the canonical KO
orientation of P§k+2. The arguments of Propositions 3.7 and

3.8 show that these KO numbers depend only on the stable
P§k+2. It follows that if g € [CP(l4k),F]
P8k+2
o

tangent bundle of
then fR(c(g)) = 0, For the associated is tangentially
womotopy equivalent to CP(4k+l)o hence the KO numbers and

Stiefel-Whitney numbers of k2 _ §k+2 2 CP(4k+1) vanish.

Since aM8k+2 M8k+2>

= o(g), we have fp(o(g)) = ¥( - o,
where Y 1is the Brown-Kervaire invariant.

‘The argument in the paragraph above also shows that
fro(f + g) = fro(f) since the’homotopy EP(4k+l)o's corres-
- ponding to f + g and f ‘have the same tangent bundle. The
formula of(f + g) = o(f) + o(g) is a consequence of this, the
decomposition b sping, ., = bP8k+2<§>kernel(fR) =122<:>(v§k+1/z2+22)

and the fact that the composition [CP(4k),F/0] -2 b sping, . -

-
"o S ; e .
> W8k+l/22*22 coincides with the homomorphism

oH 8k+1 s .
[cP(4x),F/0] > [s ,F/01 = T8rr1/Zp = Tgy1/Zo e, induced




. aSk+1 s
by the Hopf map H: S ~ CP(4k). (The subgroup LT, C Moy

which occurs is im J = ZQ plus the subgroup Ze generated

by the Adams element p wused earlier.)

Summarizing, s: [CP(4k),F/0] —Z 1is computable in
terms of Pontryagin classes hence hS(CP(4k)) is computable
in terms of Pontryagin classes and stable homotopy theory.
o: [€P(k4k),F/0] - b sping, ., », & Tg, ., 1s also computable,
in terms of a KO-theory formula for s: [CP(4k+l),F/0] -
and more stable homotopy theory. These results reduce the
problem of classifying free Sl actions on homotopy 8k+l-spherex
to more familiar problems in homotopy theory.

The reduction of the classification of free S1 actions
on homotopy 8k+5 spheres to homotecpy theory is made difficult
by the problem of describing the group F8k+5 and the map

o: [CP(4k+2),F/0] For homotopy 8k+7 spheres, the

= Igkts:
difficulty is the computation of the surgery obstruction

s: [CP(4k+3),F/0] —Z,.

§4. Conjugation

Let T: g% x s2ntl L gentl ., free S action on a
homotopy 2n+l-sphere. Define another action T: st x g2ntl _ sentl

«en+l

by T(a,x) = T(a,x), where x € Z and o is the complex

1 -
conjugate of a € Sl. We call -(22n+*,T) the conjugate of

(22n+l,T). Clearly, the orbit spaces 22n+l/T and 22n+¥/T

2n

coincide. Call this space P However, the principal S
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on

entl _, pen - P have different

and T: 3 2nt+l

2n+1

bundles T: Z

Chern classes. That is, if (2
2n

,T) corresponds to

— CP(n) in hS(CP(n)) then (22n+1,T) corresponds

to T: P° - CP(n), where f*(z) = —f*(z), z € HQ(CP(n),Z).

f: P

Remark. 1In the paragraph above we have abused our conven-

tion with orientations discussed in the introduction. We should

write the conjugate of (2 ~,T) as For,

if n 1is even then (f (z))" = (F*(z)) and the orientation

2n 1

of P is unchanged. However, the orientation of the S

bundle, and hence of 22n+1, is reversed. If n 1s odd,

2n 1

and the S bundle are reversed

2n+l

both the orientations of P

by conjugation, hence the orientation of 2 is unchanged.

Let c¢: €P(n) = €P(n) Dbe the diffeomorphism defined by
conjugation of complex coordinates. Then c*(z) = -z. Thus
under our identification of equivariant diffeomorphism classes
of free S actions on homotopy spheres with hS(CP(n)),
conjugation is simply the involution c¢,: hS(CP(n)) = hS(CP(n))
defined by c*(P ,f) = (P scf).

Clearly, (22n+1

its conjugate if and only if the assoclated homotopy projective

,T) is equivariantly diffeomorphic to

space, P2n’ admits a diffeomorphism c: pel 5 pP guch that
¢ = -Ia: HQ(Pgn;Z) ~>H2(P2n,Z). A necessary condition is
that =2t o (_l)n+122n+l in T, .4+ In §8 we give examples

of free Sl actions on odd torsion elements of T n even

en+1’
(e.g. for n = 5), so certainly these are distinct from their
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conjugates. More interestingly, perhaps, we construct Sl

an+l which are distinct

actions on the standard sphere S
from their conjugates (e.g. for n =9, 10).
We next show how conjugation can be computed in terms

of homotopy theory.

Proposition 4.1. The following diagram commutes

hS(€P(n)) ——> [€P(n),F/0]

lc*f | <

hS(CP(n)) -2 [CP(n),F/0]

where c*(g) =gc if g € [CP(n),F/0] and 6 is the injection
constructed in §1.

Proof. First, we point out that it follows from Theorem 2.0
that c : KOO(CR(n)) — KO°(CP(n)) is the identity. For
clearly c*(m) = ®. Also, since c° = Id, we have c = e,

Let f: p° - CP(n) represent an element of hS(CP(n)).
Then c,(P2R,f) = (P?®,cf) and B¢, (P°7,f) = 6(P°%,cf) is

given by a framing

on _ N I Lg% N
P x R C (f Cc ) TP2n - T(EP(I’I) = (f ) TP2n - TCP(H) = g
such that the projection w: Pzn-ﬂ~®P(n) is homotopic to
cf: P™ = ¢P(n).

On the other hand, G(Pgn,

N

f) 1is given by a framing

2

n -1\* N ; . .
PP x R (£f77) TPQn = Tg¢p(n) = €% such that the projection

2n

™ P2n'—>®P(n) is homotopic to f: P — CP(n). From the diagram



o (amy & ¥

2t

¢P(n) 5 CP(n)

*
it follows that ¢ G(Pzn,f) is given by a framing

2n

PP BN " EN = £ such that the projection w: PR — €B(n)

1 2n

- R
is homotopic to c™'f = cf: P°® — @P(n). Thus c 6(P°%,f)

= Gc*(Pgn,f) as desired.

Sullivan has observed that c : [€P(n),F/PL]— [CP(n),F/PL]

is the identity [24]. Thus any PL homotopy €P(n), P2n,

2n ~ .2n

admits a PL isomorphism c: P =P such that

¢ = -1d: HP(P?M,Z) — HO(P°R,Z).

§5. A Spectral Sequence

There is a well-known spectral sequence, which is useful
for computing [CP(n),Y] for any space Y, constructed as

follows. First, there are the cofibration sequences

29+1 H 1 1

5.1. 8 H5 ep(q) L ep(qr1) I stagletl H

NS —> S

These fit together to give a diagram

-
\/(spf\wq)) 5 \/ (sPAep(arl))
p>0 p>0
q>1 a>1 |

\v/(Sp/\qu*l)
p>0

ACP(q)- -
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where
H _: sPAs®3 o sPAcp(q)
p,q
i, g sP Agp(q) — sP A CP(q+1)
Ed
Jp,qt SPACP(a+l) — gPHLA g2atl
2

and the sequence of maps - is

‘H i ; H oo
P, 'p,a’Jp,a’p+l,q
the cofibration sequence 5.1.
Mapping diagram 5.2 into a space Y (in our applications
Y will be an H-space) gives a bigraded exact couple

* ¥

[s*Aep(*),¥] <2 [s" Acp(*),¥]

*-)\‘ /**
5.3. H J

*
[S A 82*+1,Y]

There is an assoclated spectral seguence with

P,qd _ D 29+l _

and differentials

gPs4. gP>a _, gP-l,qtr
r r r

P,4 . y . P,q _
where Er’ is a sub-quotient group of El’ = Wp+2q+l(Y)'

The differentials are'computed as follows. Let

P,q _ . P 2q+1 _
e B’ = wp+2q+1(Y) be represented by a map a: SFAS > Y.
Consider the composition SP1A @p(qrl) —d5 sPAg2tl @, v

The differential dr(a) is defined if a e j extends to a map

a: Sp'l/\@P(q+r) =Y. The value d_(o) 1is the composition
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p-1,q+r

&c’H, which represents an element of T 1

p+2q+2r(Y) =E

~

P-laglarertl H o op-lagpqir) 25 v

fs e

Pt Agp(qi1) 4 gPtRatl

The indeterminacy in dr(a) results from different choices
of the extension a.

Thus dg’q is a higher order homotopy operation defined
on a subgroup of wp+2q+l(Y)
The universal example for computing dg’q

with values in a quotient group

of Wp+2q+2r(Y)’

is the space SPLACP(gir)/sP Lt AcP(q) = SP™H A (CP(q+r)/CP(q)),
where d?’q is defined on the element represented by the

bottom cell gPTedtl _, gP-1 ~N(CP(q+r)/CP(q)) and has value

represented by the suspension of the Hopf mep Sp—l,\82q+2r+l

— sP~L A (ep(g+r)/CP(a)).

of pafticular importance are the differentials di’q

and dg’q, for these determine [CP(n),Y] wup to group

extensions. Specifically, let pt- 4 =(§)image(di’q's) g;w2q+l(Y)
and let D°2¢ = image(dg’q“s) g;ﬂ2q+2(Y). Then the cofibration
S

2a+l _, ¢p(q) — CP(q+l) — S

2q+2

sequence S gives rise to an

exact sequence

0 =, . . (¥)/0%% ~ [eP(a+1),Y] = [€P(q),Y] = D% = 0.

2q+2

If Y = F = 1lim O™S™, there is a simplification. For,
e

as a set, [SPACP(q),F] = [S™PAcp(q),s™], m large. Thus
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. . : b,4, =
the problem of computing the differential dr’ : Wp+2q+l(F)

”ﬁﬁb+2q+2r(F) (The bars denote sub-quotient groups) as a

homotopy operation with universal space Sp'l/\(mP(q+r)/CP(q))

reduces to the problem of computing the differential

mp,q, — my _ — m s
a. = vm+p+2q+l(s ) >Wﬁ+p+2q+2r(s ) m large. This is

™21 A (ep(qtr)/CP(q)),

hence is purely a problem in stable homotopy theory. Denote

a homotopy operation with universal space S

by dg this stable homotopy operation of degree 2r-1. We
can thus regard the spectral sequence for [€P(n),F] as
having first term EPs9d _ 48

1 - Trp+2q+1
P,ad _ 54, =S =S .
dr’ = dr' Wp+2q+l ~>Wb+2q+2r independent of P.

and differentials

The space CP(g+r)/CP(q) is the Thém space of the bundle
(a+l)H over CP(r-1) [5]. Further, there is a least positive
integer, Mr’ computed by Adams [2], such that MrH i1s fibre
homotopically trivial over CP(r-1). It follows that for
fixed r the stable homotopy type of CP(g+r)/CP(q) is
periodic in g with period M_. Specifically, mP(q+Mr+r)/®P(q+Mr)
is the Thom space of (q+l+Mr)H, which is fibre homotopy

2M M

equivalent to (atl)H + e ¥, where e T 1is the trivial

bundle. Hence GP(q+Mr+r)/®P(q+Mr) is homotopy equivalent
M

to 8 TA(CP(g+r)/CP(q)). Thus the differentials in the

spectral sequence for [CP(n),F] satisfy the periodicity

relation

q _ r
5.4, dr = d .
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Since the stable homotopy groups of spheres are finite,
we can express the spectral sequence for [CP(n),F] as the
direct sum of its p-primary components. The differentials
in the p-primary component are determined by the p-primary
homotopy type of €P(g+r)/CP(q), q >> r, p. Imanishi has
shown the following for odd primes p [15].

Lemma 5.5
(1) For r < p2 - 2, €P(g+r)/CP(q-1) has the mod p homo-

p-2
\ _ elgt2i
topy type of a wedge ;26 Xq+i’ where Xq+i = S

U

o 2a+21+2(p-1) U --- UeQQ+21+2t(p'l), £ = [2215—25.] .

(2) The attaching map 52er2(P-1)-1 _, 524 ¢ tne second

cell of Xq has order

if ¢ Z0 mod p
if g =0 mod p.

(3) The attaching map s22"4(p-1)-1 _, g2a yedarale-1) e

the third cell of Xq has order

p° if q #0,1  modp

if g = -2pt+l mdd p2

p otherwise
As a corollary we deduce

Proposition 5.6

(1) For r < p2 ~ 2  the only possible non-zero differentials
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dg in the p-primary spectral sequence for [CP(n),F]
q
are ds(p-l)’ 1 <s < p-1.
(2) Up to multiplication by a unit in Zp we have

It

ad-1

p1 = © if q ZO0 mod p

1
=0 if g=0 mod p

. . .b g S .
where by al Wwe mean composition with al.e pvé(p-l)-lf‘ Zp.
(3) Up to multiplication by a unit, the differential

d%z;-l) is periodic in q with period p2 and is given by

q-1 .. .

d2(p-l) =< ,a,0> if g Z0,1 mod p
=0 if q = 0,-2p+l mod p°
= a2 otherwise

where < ,al,al> indicates the Toda bracket operation.

Proof.

(1) In the notation of Lemma 5.5(1) the Hopf map s2aver-1

— CP(g+r-1)/CP(q-1) 1is the attaching map of the top cell

of X where 1 = r mod(p-l), O < i < p-2. The only

q+i?
possible non-zero differentials correspond to non-trivial

attaching maps of X That is, we must have i = O.

q
q-1
Thus these c ly be the 4 .
e an only e s(p-1)
(2) This is obvious from Lemma 5.5(2).

(3) This follows from Lemma 5.5(3) and three additional facts.
. 2q
First, Tr2q+)+(p--l)-l(S é)eQQ+2(p“l)) =Z , with generator
1

<ieq,al,al>, where 1

D
. g% o quUeeq+2(p-1) is the
2q Y
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bottom cell [28], secondly, the bottom cell of the

skeleton 524 L)eEQ+2(p'l) U e2at4(p-1) ¢ Xq splits

off if and only if q = O mod p2 [2], and finally,

< ,0q,005D = O, [25].

If is to be understood that in the formulas for the dg
above (and below) the ranzge of definition of the operétions
on the right side is no less than that of dg and the émbiguity
is no greater.

More differentials could readily be computed from the

information on Xq given in [15]. We need only the following.

Proposition 5.7. Let q = -1 mod p. Then, up to multi-

plication by a unit, d?gﬁl)(p“l) is the p-fold Toda bracket
<t 0,000y,

For p = 2, the determination of differentials in the
spectral sequence for [CP(n),F] is more tedious. Computation
of the 2-primary homotopy groups and attaching maps of the
spaces CP(g+r)/CP(q-1) = 524 LJeQQ+2 U--- L)82q+2r requires
a hodge-padge of techniques (exact sequences, Toda bracket
computations, K-theory invariants, etc.) and does not seem
to be written up in the literature. We state without proof

the following results.

Proposition 5.8. Up to multiplication by a unit, the

first four 2-primary differentials are given by

(1). a3t =M ir q =1 mod 2

]

1
0 mod 2

il

O if g

it




]

(2) a3l v ir g

2,3,6,7 mod 8

5 =
=2v if g = 1,4 mod 8
=0 if .q = 0,5 mod 8
(3) | d%"l = vty if q = 2,6 mod 8
= <o LT,V if g = 5 mod 8
=< ,v, if q = 7 mod 8
=< T,y +<-,2v,> if g =1 mod 8
=< Mw2+ <¢<«,v,> if q = 3 mod 8
=0 if q = 0,4 mod 8
() d&“l is periodic in q with period 64. Partial
information is given by
al™t = o+ <o ov, W if g
= g if g
=g+ < ,Vﬂ“1V,ﬂ> if q
= 0+ < ,V,2v> if q
= QJOG if q
J1
=2 g+ <. ,2V,V> if q
- 2% 4 <o v,ov b <ol ie g
= 2330 if q

i il il i m
~N O v I

n

i

mod 8
mod 8
mod 8

mod 8
0 mod 8
1 mod 8
2 mod 8

3 mod 8

where jo, jl, jg, 33 are greater than zero and depend

on q modulo 64.



by

§6. The spectral sequence for [€P(n),PL/0]

In the spectral sequence for computing [¢P(n),PL/0],
defined in §5, the differentials d%’q and df’q have a

very nice geometric interpretation. First, we need the following.

Lenma 6.1. Let g € [CP(n),PL/0] correspond to the

2n

smoothing P of C€P(n). Then the composition

CP(n+l) LN ¢P(n) &5 PL/O corresponds to a smoothing of

GIP(n+1)o which coincides with the natural smooth structure,

say P§n+2, on the Hopf disc bundle over P2n.

Proof. This requires some knowledge of the details of
the identification of [€P(n),PL/0O] with the set of concordance
classes of smoothings of €P(n) [13], [17]. By Proposition 2.4(1),

the map g: CP(n) — PL/O corresponds to a map G: CP(n) — PL,

that is, to a PL bundle isomorphism G: CP(n) X RN-S-WP(n) X BN,

N large. G- is covered by a PL bundle isomorphism

N N

G (EP(n+l)O x R ~;-®P(n+1)o x R° such that the diagram

N Go N
CP(n+l)  x R —> CP(n+l) X R

l HxId ‘{Hkld

CP(n) x rY G CP(n) x RY

commutes. GO, regarded as a map GO: CP(n+l)o-ﬂ~PL, corresponds
by the isomorphism of Proposition 2.4(1) to the composition
gh € [CP(n+l) ,PL/O].

The standard smooth structure on €P(n) X RN and the PL
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isomorphism G give rise to another differentiable structure,
(CP(n) x RN)G, on CP(n) x RY. Local smooth coordinates
RN+2n(:'(®P(n) X RN)a are given by composing standard
coordinates RVIZPC ¢P(n) x R with G™Y. Similarly, the
PL isomorphism Go induces a differentiable structure,
(¢P(n+1) x R'),, on CP(n+l)_ x R'. Commutativity of the
diagram above implies that (CP(n+1)O X RN)a coincides with
the natural differentiable structure on the Hopf disc bundle

over (CP(n) x RN)a. But (CP(n) x RN)a is concordant to

P2n X RN. The Hopf bundle over a concordance between
(CP(n) x RN)a and PP x RV 1s clearly itself a concordance
between (GJP(n+l)o X RN)O and the Hopf bundle over P2 x RV,

2n+2 N

Since the latter is obviously PO X R, the lemma is proved.

2q+2

Now let 2 = 3 € F2q+2 = w2q+2(PL/O). Then

j*(Z) ¢ [¢P(g+l),PL/0], regarded as a smoothing of CP(g+l),

2q+2

is the connected sum CP(g+l) X3 The total space of

the Hopf disc bundle over GCP(q+l) 3§22q+2 is a smoothing

-~

which by Lemma 6.1 corresponds to the compo-

o’ *
sition EP(q+2)O N CP(g+1) ~Qi§l> PL/0. 1Its boundary, an

of CP(qg+2)

element of F2q+3, is clearly di’q(z) € W2q+3(PL/O). If
di’q(z) = 0, the smoothing of @P(q+2)o given by 5*(z)o H
extends to a smoothing of C€P(q+2) by gluing on a disc,

DQQ+4, along the boundary. This gluing is well-defined only
up to diffeomorphisms of SQQ+3, hence the resulting smoothing

of mP(q+2) is well-defined only up to connected sum with an



element of F2q+4. This is exactly the homotopy theoretic
ambiguity in extending j*(Z)o H: (DP(q+2)o - PL/O to a map
CP(q+2) — PL/0. For each of these smoothings of CP(q+2),

there is a Hopf disc bundle, which gives a smoothing of mP(q+3)O.
The boundaries of these smoothings of CP(q+3), form a
collection of elements dé’q(Z) g;w2q+5(PL/O) = F2q+5. More

: dl,q_+l
' . 1 . . ‘ 1
precisely, d2’q(2) is a coset of 1mage(w2Q+4(PL/O) —_——

W2q+5(PL/O)).

Continuing this argument gives the following.

Proposition 56.2. Let 2 = $2at2 ¢ r
2q+2r+1 € di"q(Z)

2q+2 = Tog+a(FL/0).
means that the smoothing

Then a relation 2

CP(qg+l) % 2202 o CP(g+l) extends to a smoothing of

2q9+2r+1

CP(q+r+l)o with boundary 2 Moreover, with this

smoothing, CP(q+j) C a}P(q+r+l)O is a smooth submanifold,

1 <jgr.

Next, we want to give a geometric interpretation of the

differentials df’q. Let 2 = ZZQ+3 € F2q+3. Then the composition
1 nglat2 2 | PL/O, where

st x ¢p(q+l) T st

Aep(gtl) I st

T 1s the natural map, corresponds to the smoothing
' 2q+3

(Sl x CP(qg+1)) &(22q+3. On the other hand,  Z corresponds
to a diffeomorphism, o, of qu-+2J which we may assume 1s
the identity on the lower hemisphere, D?q+2. Define a

diffeomorphism (o) of €P(g+l) by
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Y(o) = Id on CP(q+l)
= o on D% _ gp(qs1) - CP(q+l),.

Then by [7,Lemma 1], the differentiable manifold
(S:L x CP(q+l)) % 5293 can ve identified with the mapping
torous MW(O) = CP(q+l) x I/(x,0) = (¥(o)x,1).

The diffeomorphism ‘(o) 1s covered by a (fibre preserving)
diffeomorphism, 4?3), of the Hopf bundle (EP(q+2)o over
CP(q+l). The mapping torous Méra) is a D® bundle over
Mw(o) and, further, the argument of Lemma 5.1 shows that

1

M4?;) 1s the smoothing of S~ x (BP(q+2)o corresponding to

the composition S x ep(a+2) X, sl y ¢p(qa1) 25 prj0.
Restricting the diffeomorphism @?5) of €P(q+2)_  to the boundary
gives a diffeomorphism, &, of 5243 mpen 6M4T5) = My

= (Sl X qu+3)-&¥ZQQ+4, where 2% ¢ p corresponds to

2q+4
the diffeomorphism . It follows from these observations

that s29t4 _ a2:9z).

Now df’q(Z) = 0 1if and only if the map st

Z°H 5 b0 extends to a map SYA CP(qt2) ~ PL/0. Equivalently,

A (EP(q+2)O

a2 %=) = 0 if and only if § is isotopic to the identity,
that is, if the diffeomorphism {G) of (BP(q+2)O extends

to a diffeomorphism of @P(q+2). Of course, such an extension
is not unique, but is well-defined only up to diffeomorphisms

)
of S2q+L

» that is, up to elements of P2q+5. Each such
extension of @TE) irduces a diffeomorphism of the Hopf bundle

CP(g+3)  over €P(q+2). Restricting these diffeomorphisms



to the boundary, gives a collection of elements

SQQ+5,
2,9 . - .
as’ (2) < F2q+6’ which is a ccset of 1mage(w2q+5(PL/O)

42, avl

> Togug(FL/0))-

Continuing this argument leads to the following.

Proposition 5.3. Let 2 = 524t ¢ F2q+3. Then a relation

seqter+e di’q(Z) means that the diffeomorphism (o) of

¢P(g+l) constructed above extends to a diffeomorphism, @?E),
of (I:P(q+r+l)o such that the induced diffeomorphism G of
2q+2r+1 o 29+2r+2

= oG:P(q+r+l)O corresponds to Z € F2q+2r+2'
Moreover, 4?3) may be chosen so that it maps GP(q+j)C:.®P(q+r+l)o

S

onto itself, 1 < j<r.

1f Y = ¥, F/0, or F/PL, we can describe the spectral
sequence for [CP(n),Y] in an analogous geometric fashion.
The details are somewhat more complicated because of the
surgery obstruction to associating a homotopy CP(n) to a
map of @P(n) into one of these spaces. However, the homotopy
‘theory remains unchanged if €P(n) is replaced everywhere
by CP(n+l)O, and for (EP(n+1)O the surgery obstruction always
vanishes. Thus, computation with the spectral sequence for F,
F/0, or TF/PL can be interpreted as an investigation of the
inclusion relations between tangential, smooth, or PL homo-

topy @P(q)o's, respectively.




§7. Computation of [CP(n),F]

In this section we use the spectral sequence of §5 to
obtain much information on [€P(n),F], +the torsion subgroup
of [€P(n),F/0], sSpecifically, up to group extensions, we
compute the p-primary component of [CP(n),F] for
n 5_(p2 + 2)(p - 1) -3, p odd, and the 2-primary compo-
nent of [CP(n),F] for n < 11.

Of course, we are primarily interested in [€P(n),F/0].
The map F — F/O induces a map of the (stable) spectral
sequence for [CP(n),F] to the spectral sequence for [€P(n),F/0].
Since on homotopy vﬁ = Wk(F) —>vk(F/O) is a surjection onto
the torsion subgroup 'WZ/im(J) of vk(F/O), we can compute
differentials in the spectral sequence for [CP(n),F/0] by
naturality.

We begin by stating results of Toda on the p-primary

stable homotopy groups of spheres, p odd [27].

Lemma 7.1.

(1) For k < 2(p®+ 2p)(p - 1) -k, _(75/in(J)) = p"(F/0)

is given by the following:

r
pTr(2p(p-1)-2)(F/0) =2, = (8]], 1 <r < p+3

i
Q
ual
=
p
‘o
!
)
)1
A
e

(F/0) =%

i

T .
P deg(B))+2p-3 Pl

T (FO) =2_=1{8TB ), 0<¢cr, 2<s<p
p deg(6§)+2(sp+s_l)(p_1)_2 p 17s 2T <

T (F/0) =2_ = (a.BlB 1}, r+s < pt2
P deg(B B )+2p-3 P ts
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T (F/0y =2z_ = (BB ;)
°'o(p-1)(pP+ep-1)-k P 2p-

pvdeg(826p_l)+2p_3(F/o) =Z, = [alBQBp-l}
" (F/0) =2 = (e}, 1¢i<p
P 2(p%i)(p-1)-2 p - i =

pTaeg(e, )+op-3(7/0) = Fp = logey ), 1 <1 <p-2

=7 = (et
Do) (p-1)3 R T

pvdeg(e')+2p(p-1)_2(F/o) = Zp = [518'}

F/0) =% ., = (o]
pw2(p2+p)(p-l)—3( /) p? ¥

All other groups are zero.

(2) The following primary and secondary relations hold.

alep”l = po
a,e! = BLL if = 3
1 1 p =

=0 if p> 3

€441 € <si,p,al>, 1 <i<p-1

p € <8p-2’al’al>

Propeosition 7.2. All non-zero differentials, dz’q, in

the p-primary torsion of the spectral sequence for [ep(n),F/0],
in the range n _<_‘(p2 + 2p)(p - 1) -3, 1<t<3, aregliven
by (up to a unit)

r

1,%, .1

dl’*(RTB ) = aBXB , r+s £ p

p-14"1"g) = %1P1Pgo '
*

ayy(eg) =apeg, 1 CE<p-2




i

1,* p+l, _
1,% -
d2(p~l)(ep-2) = PO

2,* .5 . ~
dpil(Ble') =87 if p=73
=0 if p> 3

a2s* pP-1y _ gP
) = B3

(p 1)(p-1)(*1"1

¥ r- 1 r
(p l)(p l)(a A .s) = ‘BlBS’ r+s = P

r
dg’l(al) = 3P, 1<r<p-l
dB’ 1(8T8.) = a,8Ts ris+l £
= 1878 P
d3’l(sp 1) = po

Glp-1) (D) = &

it

Ulp-1) T

§ s =
Ble if p = 3
=0 if p> 3

Proof. This is proved by combining Lemma 7.1 and

Propositions 5.6 and 5.7. For example, by Proposition 5.7,
2,% p-1 - «gP-1 e p-1 .. = aP
Up-1)(p-1)(P1 "01) = By7To,0  ray> DB Ay -y > = BT

[28,Lemma 4.10]. We leave the other proofs to the reader.

Remark. It is not quite correct to speak of a spectral
sequence for p[@P(n),F/O] since [CP(n),F/0)] has infinite
summands and the differentials might relate these to the

torsion. However, the results of §2 and §3 can be used to

51

show that the infinite summands tie in only with the 2-torsion
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(precisely how will be clarified below). Hence, for odd p,

we can speak of a spectral sequence for p[G}P(n),F/O].

Table 7.4 below illustrates the spectral sequence in
the range above for p = 3. An arrow indicates a non-zero
differential.

For p = 2 the spectral sequence is studied by combining
results of Toda [26], May [20], and Mahowald [19] on Qw; with
Proposition 5.8. We summarize our results in the following

Proposition and Table 7.5.

.

Proposition 7.3. In the spectral sequence for 2[OJP(n),F/O]

the following differentials occur.
a3*%(k) = M
a2+ 30(1%%) = W' = hvi
1,14 "
(h2) =

d;’ M),

dé’g(ve) - v

dé:g(‘lg) =

a210(¢o,2,65) = Mo, 2,e>
2,10 2

d;? " (vk) = vk




a?28(e) = Me = v’
a2-8(n") =

a2:8(x) =M%

dZ’s(K)

vK

a2:8(2F) = Wi

dZ’B(oe) =

{
Q

Further, we may choose generators Lgs L0 and Yoy of

the summands Z C WBJ(F/O), j=1,2,3, such that

3,43-2 -
43?7 (vg5) = Mgy

In Table 7.5 all other differentials in the range k < 10
are zero. Thus the first unsettled questions are whether
dé’B(s) =0 or <62,2,€> and whether dg’l(vz) =0 or 2vk.

In addition to the last statement of Proposition 7.3,
the infinite summands of [CP(n),F/0] are related to the
2-torsion in the spectral sequence in the following manner.
There is the element pg ., € [CP(4n+1),F/0], defined in
Proposition 3.5(2), which has order 2 but which 1ifts to
an element of infinite order in [CP(4n+2),F/0). This shows
up in the formula in the second column of Table 7.5 for order
(,[CP(k),F/0]) in that the cofibration sequence

2k+1 2k+2

S — CP(k) = CP(k+1l) — S does not induce an exact

sequence of torsion groups, 2[' ,F/0].



7.4

Table
= 27| 25 = (alﬁg]‘\\BQ 0 '3 0
= 26 0 52‘*--23 = (32) 3 0
- 25 0 2y = {ei},«\\f z, = (0,838 )
= 24| 2, = (oy8%8,)] 3° 0 322, = (8,61
= 23|25 = (Bret) | P TE, = (838, |3 | 2g = SN
= 22| zg = (o] \\33 0 0 0
- 21 0 \ 33\ 25 = (e} |0 0
= 20 0 \ 3\\23 = (871 |0 |25 = (a;8,8,)
=19 Z, = [alelﬁg} 3 ‘ZB = {sl] 0 |2, = [E'L
=181 2z, = (') 0 |Z5 = {Blﬁz}r\ 3 Y \
= 17 0 0 0 \< 0 \
= 16 0 0 0 3 0 \
- 15 0 0 lzg = (82) | 37|25 = (a8,
= 14| Z, = {“152}‘\\2\ 0 N3 0
= 1% 0 3 TZ5 = (8,] 3\ 0
=12 0 0 0 5 M2, = (a,85)
=11 25 = {alﬁf};\\i 0 0 0
= 10 0 3 = (82} 1o 0
-9 0 0 0 0 0
- 8 0 0 0 0 0
=7 0 0 0 0| Z, = {al'Bl}N
=6 |7, = {alal}\,\i 0 0 0
=5 0 3 T2 = (8,1 0 0
<4 0 0 0 0 0
3T o1 (F/0) 5T oy (F/0) 3T oy..1 (F/0)
;'tBICE(’mZd}'i | 5{8 A CP(x-1),F/0]]

54
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I

T

Table 7.5
2 2 2
k=15|2; = [n,ﬂhu}; Z, = {hq] 0
=14 0 Z, = (k%) 0
2 o
= 13 0 ZQ = {V K,U-es}\ ZQ = {uzs}f"—"———'———r
=122, = [“25] Z, = (N<o?, 2,5.;)]\\‘28-!-22:(\'73,<02,2,s>,]\
= 11 | 2gH2 =(vE, <0%, 2,65 )¢22-82125 = (v5,n%) |27 zg = (&P, M j—}
= 10 Zg = {O'B,nz} 24 . 82\7.'8 = [k—] 2- ZQ = ['5}
_ - — l|_ . _ * 3 _ *
=9 |Z, = {T) \2 8 Zgtl, = {v ’“18} 2 123 = {nm ,wc,p.:w}§
- 3 . (mmt 3 _ -
=8 |27 = (MM ,wc,ulT} 2 \Ze = {N) 2 |2, = (T}
=7 |2, = (M)e 20— 22 = () 0 0
=6 0 2 0 0 o)
_ 2 2 .3
=5 0 2 Z, = {p.lo} o0 |25 = (v ,ug}t-::::::
_ 2 _¢.,0 2 -
=4 127 = (v :“9]\> 2 z, = (e} 0 0
-3 0 2 Tz, = (V8 0 0
= 2 0 0 0 0 0
e = 1 0 2 z, = (17) 0 0
0,k _ 1,k-1 _ 2,k-2 _
E{'" = E] = EJ -
2" ox+1 (F/0) order |2"2k(7/0)  Graer [pTe-1(F/0)
,[CP(k),F/0] 2[sl/\a::e(k.l),F/o]
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§8. Examples

(1) Computation of [CP(n),F/0], s: [GP(n),F/O]-M-Pzn, and

o: [CP(n),F/0] =T for n < 6.

an+l =

First, using results of §2, §5, and §7, the spectral
sequence for [CP(n),F/0], n <6, is given by the following
table.

3 | _
kK =6 23 = {alsl] 27+ 2, + Z3 Z = {le}
= 5 0 z° + Zg + 25 | Ty + By = {“10’51]
2 3 2, ,2 _
= U Zg..{v,u9) z° + Zg Z+2Z,={g,¢€]
=3 0 zZ +Z, z, = (v2)
= D 0 Z 7z = (Lu}
2
k =1 0 Z, zZ, = {n<}
T o1 (F/0) [¢P(k),F/0] T (F/0)
Table 8.1

The only non-zero differentials are dé’z(vg) - v’ and

1,k
dg? (By) = ay8y.

The following will be crucial in our computations.

Lemma 8.2. image([CP(6),F/0] — [CP(6),BS0]) =27 has

generators &, = 2o + 980% + 11107, ¢, = 24007 + 38007, and

2
63 ='504m3. Thus, the summand .ZQ<I?[CP(5),F/O] is generated

2

by £ =2k + 9807 + o’ and €, = 2400?, 22 [CR(4),F/0]
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is generated by £, =.2Wn + 98w® and 62 = 24@&?, and
z < [¢p(3),F/0], [€P(2),F/0] is generated by £, = 24o.
Proof. This follows from Theorem 2.0 and computation
of the Adams operations ¥ in the ring KO(CP(6)) = Z[m]/(wu),

and some arithmetic.

We next recall that there is a cohomology formula for

s: [cP(2n-1),F/0) — Z_ due to Sullivan. (See Remark 2

2
following Proposition 3.8.)

Lemma 8.3. There is a class K = kg + k6 + Kyg + .
c H4*+2

0
(F/0,Z,) such that if f: CP(2n-1) = F/0, then

s(f)

i

H(TP(2n-1)) - £ (K),[CP(2n-1)1>

il

<«(1+2)2°¢" (), [eP(2n-1)]> € 2,

where z € HE(GP(n),Zg) is the generator.
It is further the case that for the maps ne: s2 - F/0

*
and v°: st - F/0, (ﬂz)*(kg) and (v2) (k6) are non-zero.

On the other hand, k.. =0 in HO(F/0,Z

10 2)'

Proof. See [24].

Proposition 8.4%. hS(CP(3)) = kernel([CP(3),F/0] 2»22) = Z.
The homotopy C€P(3) corresponding to the integer J, say P?’
has trivial normal bundle in the stable‘vector bundle
Tmp(j) + (24j)w = (4 + 24j)w over €P(3), hence is characterized

by its Pontryagin class pl(Pg) = (4 +'243)22 € Hu(Pg,Z) =Z.



Proof. From Table 8.1, [CP(3),F/0] =2Z + Z,. By

Lemma 8.3, s(v2) # 0 and the first statement follows. The

second statement is clear from Lemma 8.2.

This result is, of course, well-known [14], [21].

Next, we have from Proposition 3.1 that s: [CP(4),F/0] —Z
is given by the formula s(f) = (F)<L(CP(3))(L(§)-1),[cB(4)]> € &,
where £ 1is the composition CP(}) L5 50 1 Bso. By
Lemma 8.2, € = mﬁl + nﬁg for some integers m, n, where
€, = 2o + 98w° and €, = 240w®. Since p, (@) = z2, po(@) =0
and pl(ge) = 0, pg(we) = --6z4 we have p,(€) = (24m)22 .
end pdﬁ) ((MMM2Mnl)6@&M2mnnz Thus

4 E E
(§0<O.+ pl(ag( )))(plé ), el i 58 )) [mP(4)]>

Il

s(f)

]

I

(%J(32m2 - 80m - 7:32n) = 4m® - 10m - 28n € Z.

This computation, together with Proposition 3.2, proves

the following, which is also well-known [22].

Proposition 8.5. Let f e [CP(3),F/0] correspond to a
fibre homotopy trivialization of the bundle m&l = (2km)w
over GP(3). Then o(f) = s(méy) = 4n° - 10m € Z mod 28Z.

In particular, B(Pi)o = (4m2 --10m) - ZT, where 3! is the

: ~ 8, .
-Milnor generator of FT “‘Z28 and (Pm)O is the Hopf bundle

over Pg. Thus the only homotopy 7-spheres which admit free




s' actions are {k- 27| k = 0,-4,%6,+8,10,14 mod 28]}.

We can also easily describe hS(CP(4)), wusing the
computation of s: [CP(L4),F/0] - Z above.

Proposition 8.6. hS(€P(4)) = kernel([CP(%4),F/0] -5 z)

i

(m&y + n€2 + 4m® - 10m - 28n = 0 and 7 € ZS]CZ [cp(4),Fr/0]

2 2
=Z° + ZQ.
Next, we want to compute s: [CP(5),F/0] —~Z, and
a: [CP(4),F/0] = Db spin), & Tg.
Lemma 8.7. The Brown-Kervaire homomorphism W¥: Qigin‘-»zg
is given by ¥ = 2 aJwJ + 2 BIwI = 7° + = BIWI.
J I I

Proof. We have already observed in §3 that a(o) = 0.

In dimension 10 it only remains to compute a(g) and a(s).

But v3 has filtration 10, hence as a characteristic number

of 10-manifolds it coincides with some Stiefel-Whitney number.

Thus we may assume that o ) = 0. Finally, if Q@QP(2) is

2

(3

the quaterhionic projective plane and T is the torous with
exotic spin structure, then W(QP(2) x T2) = 1. Since

QP(2) x T2 bounds as an ordinary manifold, its Stiefel-Whitney
numbers vanish. Thus a(e) = 1. (I am grateful to Professor

F.P. Peterson for this argument.)

Proposition 8.8. If f e [CP(5),F/0] corresponds to a

fibre homotopy trivialization of £ = mil + nﬁe over €P(5),

where 61 and E2 are as in Lemma 8.2, then s(f) = m mod 2.



Remark. By Lemma 8.3, that is, Sullivan's cohomology
formula, s(f) = <(1+z)6(f*(k2) + f*(k6)),[mp(5)]> € Z,.
It is clear from Table 8.1 and Lemma 8.3 that f*(ké) = mz mod 2.
Thus s(f) = <(mz)z4 + (f*(k6))zg,[®P(5)]> and Proposition 8.8
is equivalent to the assertion that f*(k6) = 0. It may be
possible to prove that f*(k6) = 0 by simply studying the
homotopy type of F/0 in low dimensions. However, the
author did not succeed using that approach, hence we rely

instead on the KO-theory formula for s: [CP(5),F/0] —QZQ

given in Proposition 3.8.

Proof of 8.8, By Proposition 3.8 and Lemma 8.7 we have

* D ot 2
s(f) = c &7 (VGP(S) - 8)- £ (v) -7 (VeP(52)) where
v € K0°(F/0) is the element with ph(y) = A. In particular,
2

~ *
since A, = *pl/24 it follows that f (v) =1 - mn mod

in XO(CP(5)).
Now, if we set 7, (M) = Z wj(ﬂ)tj and T = r(3 L;)
¢ >0 it
is the realification of a sum of complex line bundles, then

Wt(n) = I(1 + r(Li - 1)t). Moreover, for any bundles ﬂl
i

and ﬂg, Wt(ﬂl + ﬂ2) = wt(nl)- Wt(ﬂg) and vt(n) =1 1if
n is the trivial bundle of dimension n.
We can apply these facts to compute We(va(B) - £)
- 72(-((6+2km)w + (98m+24On)w® + mo”)) and wQ(VCP(5))
- 72(-6m). For o = r(H-1), o° = r(H° - ¥H + 3) and
w3 = r(H3 --'6H2 + 15H - lQ), hence by an elementary, but long,
computation Wt(V@P(S) -£€) = (1+wt)a(l+(m2-4m)t)b(1+(m§+692+9w)t)"m




where a = 353m + 960n - 6 and b = -(92m + 240On). By another

computation, evaluating the coefficient of t2

- E) = (a(aé-l) + 8lm(2m+l) + 16b(2b+1)

in this product,

- 4ab - 9am + 36mb)w2.

Wz(v
CP(5)
. . 2 2 2

By an easier computation, T (V®P<5)) = T(-6w) = 2lw°,

Let the integer coefficient of w2, in the expression
for WZ(VCP(5) - £) above, be denoted by c. From the
definitions of a and b 1in terms of m and n, one can

¥
easily show that ¢ 1is always odd. Then WQ(VmP(S) -£)-f (v)
- 72(Vmp<5)) = cw2(1 - mw) - 21w° = (c-el)w2 + mo”. But
c-21 1is even and from known results about evaluating XO
*

characteristic numbers [3], it follows that ¢ @((c-zl)we + mwB)
= m mod 2. (I am grateful to Professor D.W. Anderson for

this argument. )

As our first corollary of Proposition 8.8, we describe

10 =%, + 2, = {29,v3], where 30

is the Kervaire 9-sphere. Then {29} = Z2 = bP,,. From

Propositions 3.2 and 3.9 and the fact that s: [CP(5),F/0] —Z

o: [CP(4),F/0] — b spin

2
is a group homomorphism, it follows that ¢: [CP(4),F/0]
= ZQ + Zg — b spinlo is a homomorphism. From Table 8.1, the
torsion subgroup of [CP(4),F/0] can be expressed as

2 2 s
Z, = (v),e),), vhere if a € 7, (F/0) then o ¢ [CP(n),F/0],
n > k, denotes an extension of the composition

cp(x) S s%F 25 F/0 to €P(n) — F/O.

Proposition 8.9. g¢: [CP(4),F/0] - b spin,, 1is given by

o(mEl + nﬁg) = ng, G(VE) - v and 0(84) = 0. Further,



o(hS(CP(4))) = {o,vB}, where, of course, o(hS(CP(4))) is
the set of homotopy 9-spheres which admit free Sl actions.

Proof. The first statement follows from Propositions 3.2,

1,2
2

For the second statement, note that m%l + nge + T € hS(CP{4)),
g, implies that m 1is even. For s(m€l + né

- 4m® - 10m - 2Bn Z O mod 4 if m is odd.

3.9, and 8.8 and the differential d (vg) = v2 in Table 8.1.

T € Z 2)

€
Remark. Consider the composition RP(9) ——> CP(4) LI F/0,

where T 1is the natural map with fibre Sl. By results of
Wall [29], one can obtain by surgery a homotopy equivalence

p — RP(9) from the element &

qem=1fc¢€ [RP(9),F/0]. The
homotopy real projective space P9 corresponds to a free ZQ
action on the Kervaire sphere, 29. To see this, note that

gl: CP(4) -QF/O extends to &l:.@P(5) - F/0, hence

€l° T: RP(9) — F/O extends to EI:\% - f: RP(10) = F/0 (for
example, by RP(11) —I> €P(5) BN F/0). As in Proposition 3.2,
the homotopy sphere which covers P9 is given by

s(?) = <W(RP(10)) - £ (K),[RP(10)1> = <(mx)™t + 2, [RP(10) 1>

=1 ez, where x ¢ H'(RP(10),Z,) 1is the generator. On

the other hand, the Browder-Livesay obstruction to constructing

a Zz-invariant 88(: 29 is given by the formula

S(flgp(gy) = <HER(8)) - £ (K), [RR(8)]> = <(1%)° - x°, [RP(8) 1>

= 0.

This provides a counterexample, suggested to me by

Sullivan, to the recent conjecture that the Browder-Livesay
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invariant of a free 22 action on an 8x+l sphere in bP8k+2

was zero if and only 1f the sphsrz was diffeomorphic to 88k+l.

As a second corollary of Pripossition 2.8, we have

Proposition 8.10. hS(CP(5): = kernel([CP(5),F/0] -5 Z

2 ly 2_/ — ,'
=22 + 2 +/22+23Cz +Z+ 2 Zs = [c2(5),F/0].

o)

A computation similar to, t::i longer than, that preceding

Proposition 8.11. Let f ¢ [CP(6),F 0] correspond to

a fibre homotopy trivialization == £ = n

S(£) = (g)<L(CR(6))(L(£)-1),[0p(5)]> = BEZZEOL) _ gun _ ooy

+ 384n + 496q € Z. Thus hS(CP(7)) = {m;l + nj2 + q€ + 1|
s(mé + n,2 + qé ) =0 and v € £. + 23} {¢2(6),r/0]
_ gD
=7 + 22 + Z3'
Proposition 8.12. o: [CP(=z.,7/0] — Iy =bP, = 2992
o ‘ -2
is given by (m€ + nf 5) = (= (22 “3+301) - 84m° - 224mn + 384n)-211,
o(ulo) = 496'211, and o(s ) = o (31):) = 0, where = s
the Milnor genesrator of bPlg' -nus the set of homotopy

1l-spheres which admit free S zc¢

(@]
ct
’J
O
i3
]
14
wn

s given by o(hS(CP(5)))

| 2
) {(m(32m3+30.1) - 84m° - 2ohmn + 32

(%)

4n + 496q)-211|m,n,q € Z,
m=0mod 2} C Z mod 992Z. 1In particular, such a sphere is
an even multiple of le.

Proof. This follows easily “rom Propositions 3.3, 8.10,

and 8.11 and the fact that §3 € €2(6),F/C] may be chosen
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such that €3|®P(5) = W4 € [CP(5),F].

. _ .8 . _ _
Finally, bPy, = O hence Ty = Wl3/1m J = Z3 = [alal}.
Thus by Proposition 3.2, and because of the differential

1,4 .
dy’ ' (8,) = @,8, 1in Table 8.1, we have
Proposition 8.13. o: [CP(6),F/0] — ry3 is given by

o(6) =0 if & ez’ o(e) =0, end o((By)g) = @;8;. In

1

particular, all homotopy 13-spheres admit free Sl actions.

S /imJCT

.(2) Spheres in Tonel ) PNET

which admit free Sl actions.

Recall from §3 that there are direct sum decompositions

Toppl = PPopn @ (v2n+l/im J), at least if n #£ 4k + 2, and

[CP(n),F/0] =® 2z + [¢P(n),F], with o(@ Z) C bP, ., and

o([eP(n),F]) S mop,y/im T (o([€P(n),F]) C £, ® (75, /in J)

if n=4k+l).

To compute which spheres in bP, ., admit free S©

actions involves evaluating certain surgery obstructions and
lengthy computations with Pontryagin classes, which is not
practical outside the range n < 6 considered above. On the

other hand, if n = 4k or 4k + 1 then the spheres in

S
2

1 . 1,n-s s .
po([CP(n),F]) = D% = gjlmage(ds ) C T3 (F/0) = W2n+l/1m J,

s n+1/im J which admit free S; actions are given by

where the dé,n—s are differentials in the spectral sequence

’ . s .
for [€P(n),F/0] constructed in §5 and o: F2n+1'ﬁ'v2n+l/lm J

is the Kervaire-Milnor map. If n = 4k + 2 +this still holds




05
. . . S
on p-torsion components, p o0dd, since pr8k+5 :-pv8k+5'
If n =4k + 3, one must restrict o to hS(CP(n)) NI[cP(n),F]
= kernel([€P(n),F] = ZE)' This restriction also involves
only the 2-torsion components.

The differentials di’n"s

are computed in §7 in a big
range. Specifically, for odd p the following is a direct

consequence of Proposition 7.2.

Proposition 8.14. For n < (p2 + 2p)(p - 1) - 2, the

. . 8 . .
subgroup of exotic spheres in p(Trzm_l/lm J)§;1r2n+l which

admit free Sl actions is given by

{(1 Br} =& CT . r<p
171 P deg(alB{),

(858 ) =z_CT r+s £ p
171%s p deg(ulsiﬁc),

(o e} = Z,< rdeg(alsi), 1 <1i<p-2

(Ble'} =Z_ CT .
deg(Bls')
(po) = 2, C Tyeq(o)

.and is zero in all other dimensions. Thus the lowest dimen-
. . S S .
sional sphere in p(7r2n+l/1m J) C Iyppq Which does not

admit a free S1 action is et € T 5 .
2(p“+1)(p-1)-3

Similarly, for p = 2 we have

Proposition 8.15. For n < 1&, the following spheres

. s . . 1 .
in 2(7r2n+l/1m J) C Ty @dmit free 87 actions

3y
{v}_zgcrg
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(M} = Z,C r15
>

{6’} = Z,C Ty

{vc) = zscr23

Proof. This follows from Table 7.5 and Proposition 7.3

and the following remarks. The exact sequence O —rZQ

S 2 . X
22-%'P21 =Ty = Zz - O splits, hence it makes sense

to speak of WZlC: F21 in the third statement of the

= bP

Proposition, For there are elements o € Iy = vlu(PL/O)

— s 2 2 -
and K € T'py = Ty0(PL/0), hame7bl=z2={dc)JKU}Cﬂbl

= 75 (PL/0). Also, for a suitable choice of ¥, € [ep(11),F/0],

we have S(Eil) = 0, hence Eil € hS(CP(11)) and the fourth
statement of the Proposition is valid. For we may factor
%y, as CP(11) — €P(11)/cp(9) = 8%0v 5% Evpt o g0,
Then s(%y;) = <W(EP(11)) - (¥y;) (X),[€P(11)]> = 0 (or,
since Ky € image([€P(11),PL/0] — [€P(11),F/0]), clearly
s(ky7) = 0).

The first unsettled question is whether <O2,2,a> € FEB

admits a free S1 action. The answer would be yes if

d%’j(s) = <02,2,€> and s(gll) = 0.
(3) Inertia groups.

Let I(CP(n))C T be the group of exotic spheres,

2n

zen such that the smoothing CP(n) &;Een is concordant to

3

CP(n). Note that this coincides with the inertia group of




iy e

s

CP(n), that is, the group of exotic spheres, ,. such

that CP(n) %:zen is diffeomorphic to CP(n). For given

n = ¢P(n), we may assume

a diffeomorphism f: CP(n) % =
that f 1is homotopic to Id. For either f or cf,

where c: CP(n) = €P(n) is conjugation, is homotopic to

Id. But as observed in the introduction, [€P(n),Q(F/PL)] =
hence every PL self-isomorphism of C€P(n) homotopic to

Id is PL pseudo-isotopic to Id [24]. Then choosing a

PL pseudo-visotopy of f: CP(n) 53520 % CP(n) to 14

induces a concordance between CP(n) %351 ang CP(n).

Now =0 ¢ I(C¢P(n)) if and only if the composition
3 on zen : i s
CP(n) - S > PL/0 is null-homotopic. This is
equivalent to a factoring of son through Sl/\mP(n—l),
2n 1

that is 8" = S"ACP(n-1) — PL/0, which exists if and only
ir 327 ¢ p2i0- l(PL/O) _.Ulmage(d2 n-1- S)g;'vgn(PL/C),
where dg,n-l-s are diff:rentlals in the spectral sequence
of §5 and §6 for [CP(m),PL/0]. We have computed the
differentials in the spectral sequence for [CP(n),F/0]

for a range in §7. These results can be used for PL/O
because the map PL/0 — F/O induces a map from the spectral

sequence for [€P(n),PL/0] to the spectral sequence for

[¢P(n),F/0], and we have

Lemma 8.16. With respect to the inclusion 750 (PL/O)

c:vg (F/O), induced by PL/O — F/0, we have D2*P~1(pL/0)
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Proof. The inclusion D27 1(PL/0) c D2 P 1(F/0) is

obvious by naturality. The inclusion DZ™ (®/0) 2 1(pL/0)

holds because the fibration PL/O — F/O — F/PL and the fact

that [Sl/\GJP(n-l),F/PL] = 0 implies that [sll\a:P(n-:L),PL/o]

—»[Sl/\mP(n-l),F/O] is surjective. Thus any composition
gen ~v81/\CP(n—l) — F/0 factors through PL/O, that is,

2n 1

S — 8~ A¢P(n-1) — PL/O — F/O,

From Propositions 7.2 and 7.3 we then have

Proposition 8.17. For n < (p2 + 2p)(p - 1) - 3, p odd,

pI(@P(n)) is given by

Py _
(81} = &5 © Top(p(p-1)-1)

(piB) =z _CT ", Tr+s =p
bs P aeg(B]B,)

and in addition

5

and is zero in all other dimensions.

if p:3

If p=2, n<13, then 2I(@P(n)) is given by
2
{(Mko,2,e>) =2, T,

o
{(veK} = ZQC F26

and is zero in all other dimensions.
(4) Diffeomorphisms of CP(n).

Given a diffeomorphism f: CP(n) = €P(n) and a homotopy




ft of £ = fo to 1Id = fl, we can associate an element

of [SlA\GP(n),F/O]. Namely, the homotopy £, induces a
homotopy equivalence h: st x CP(n) — My, where M. is
1

the mapping torous of f. The associated map 6(h): S° x CP(n)
- F/O0 factors through SlA»CP(n) because h'lx@P(n) is

the identity, hence e(hllXGP(n)): 1 x ¢P(n) - F/0 is null-
homotopic. Further, by Theorem 1.0 8(h) € [STACB(n),F/0]

is éero if and only if h 1is homotopic, rel 1 x €P(n), to

a diffeomorphism (S° x CP(n)) ¥2® 1 2 M . vwhere

f’
2n+l

bH € bP2n+2<: F2n+1' This is equivalent to deforming the

homotopy £, to a pseudo-isotopy of f = fo to ¥(y) =f
2n

1°
2n::,s

where vy: S corresponds to =2l o Y(v) 1is

the diffeomorphism of CP(n) defined in §5.

Remarks.

1. st x CP(n) 1is not simply connected but for manifolds
with e Z the methods of Sullivan outlined in the
introduction go through [8].

2. Given a diffeomorphism f: CP(n) = CP(n) and a PL

pseudo-isotopy f of f = fo to Id = fl, we can

1

t
associate an element of [S
1

ACP(n),PL/0]. For the

homotopy equivalence h: S~ x €P(n) = M. induced by f

t
is then a PL isomorphism. This element of [Sl/\GP(n),PL/O]
is zero if and only if ft deforms through PL pseudo-

isotopies to a smooth isotopy of £ to 1Id.
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Also, given a PL isomorphism f: CP(n) = ¢P(n) and

a homotopy ft of f to Id, we can associate an element
of [Sl/\CP(n),F/PL]. Since this last group is zero, every

homotopy of f to 1Id deforms to a PL pseudo-isotopy of

f to Id.

Let = = s ¢ 7 = w2n+l(PL/O) correspond to the

1

on+1
diffeomorphism ¢ of Sgn. Then the composition S

.y gentl 2 PL/O corresponds to the diffeomorphism ¥ o)

ACP(n)

of €P(n), together with the PL isotopy W, of v(o) to

Id given by the "Alexander trick". That is, we have

en CP(n) - &P(n)o. Embed cone(DEn)CZ CP(n) x I as the

+
join of Dfn X 0C €P(n) x O with a point p € Dfn x 1

D

C CP(n) x 1. Then define ¥y : CP(n) x I =CP(n) x I by

Y

It

Id on CP(n) x I - cone(Dfn)

cone(g) on cone(Dfn).

The computations of §7 give information on [Sll\GP(n),E/O]

for a range. For example, we have the following.

Proposition 8.18. For n < 5, [Slf\GP(n),F/O] = 0.

Thus every diffeomorphism of CP(n), n < 5, homotopic to

Id is isotopic to “(y) for some 7Y € bP [Sl/\mP(Y),F/O}

2nt+2”

= 22 with generator corresponding to the diffeomorphism

Y(Mk) of CP(7).
For p odd, p[Sl/\GP(n),F/O] =0 for n 5_p(p~l)2~2.




p[Slf\CP(p(p—l)g-l),E/O] = Zp with gzenerator W(alﬁg—l).

From the discussion above we see that the group

n-1 . n-l-s ;
D> =t§)1mage(d2’ ) C Tops1 (PL/0)  can be characterized

22n+l

as the group of exotic spheres eT such that the

en+l
homotopy, ‘., of the diffeomorphism W(22n+l) of €P(n)
to the identity deforms to an isotopy of W(Z2n+l) to ¥(v),

Y € bP From Propositions 7.2 and 7.3 many non-zero

ent 2’
elements in Do2n-1 can be read off. For instance, for

P = 2, the diffeomorphisms W(VB) and W(ug) of CP(#)

are isotopic to diffeomorphisms W(v), ¥ € bP,,. For p
odd, the diffeomorphisms ,W(alﬁi), l<r<p-1, of

CP((rp+1)(p-1)-(r+l)) are isotopic to w(y), v e bPE(rp+l)(p-l)-2r'

(5) Sl actions not equivariantly diffeomorphic to their

conjugate.
Given a free ST action on a homotopy sphere, (22n+l,T),
we defined in §4% the conjugate action ((-l)n+122n+l,T), and

promised some examples for which (22n+l,

T) was not equi-
kvariantly diffeomorphic to ((—1)n+122n+l,T). By Proposition
%.1 this is equivalent to constructing elements f € [¢P(n),F/0]
with s(f) = O such that c (f) £ f where c: CP(n) = CB(n)
is conjugation.

2n+l

Irf = € pr2n+l is non-zero, p odd, and n even,

then =20 4 ()PPl yonce (221 1) cannot be

equivariantly diffeomorphic to its conjugate. Such examples
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can be found in Table 7.4. For instance, (Bl)6 € 3[a:P(G),F/o}
corresponds to an st action on c((61)6) = B, € Ty3e

(Recall s: p[@P(n),F/O] - P is always zero if p 1is odd.)

2n
Similarly (B,)y, © 3[<.",P(14),F/o] and (gl)22 € 3[mP(ze),E/o}

1

correspond to S~ actions on 0((52)14) = a8, € F29 and

G((el)QE) = 3p € F45, respectively, Similar examples for
other odd primes can be read off from Proposition 7.2.

From Table 7.5 we can give examples of Sl actions on

2n+1

the standard sphere S which are distinct from their

conjugate. Consider the element v; € 2[@?(9),E/0]. Since

*
the map Zg + Z, = (v ]+ (gl = 2v18(F/0)-q-Q[mP(9),E/o},
induced by j: CP(9) = S1°, is injective, we see that

*
vg € [€P(9),F/0] has order 8. We are interested in the
*

18 v

composition CP(9) < ¢p(9) L s > F/O. Since

¢ has degree -1 on the top cell of C€CP(9) it follows

* * * *).._.Ob
t:at Vgt = -V # Vg - s(v9 = ecause
v € image(vlS(PL/O) —»wi8(F/O)) hence -
_v; ¢ image([CP(9),PL/0] — [CP(9),F/0]). (Alternatively,

* *

s(v;) = 0 by Proposition 3,8,) Since o(v;) =T =0, vy
corresponds to an Sl action on 819 distinct from its
conjugate. Further, v; 1ifts to an element V:O e [¢P(10),F/0]
and an argument similar to the above shows that V;OC # v;O‘
since o(vy,) = 2vv’ = 0 € 7, (FL/0) = Z2, it follows that

*

Y10 gives an S1 action on 821 not equivariantly diffeo-

morphic to its conjugate.




./

We recall that the problem of constructing an equivariant

2n+l,T), and its

diffeomorphism between an st action, (=
conjugate is equivalent to constructing a diffeomorphism

c: PP PP of the orbit space PR 22n+¥/T such that
c*(z) = -2, 2z € H2(P2n,z). The above examples thus provide
examples of homotopy C€P(n) which do not admit such diffeo-
morphisms. On the other hand, since ¢ {¢p(n),F/PL]

- [€¢P(n),F/PL] is the identity [24], there is always a

PL isomorphism c: PR 3 p21 yygp c*(z) = -2,
(6) The diagram

PL ~— PL/O

-

F — F/0

In §2 we showed that mapping C€P(n) into the diagram
above induces isomorphisms on p-primary torsion components,

p odd. That is,

_p[mP(n),PL] ::'p[(DP(n),PL/O]

b X

p[a:P(n),F] -“»p[cnp(n),F/o].

Thus the homotopy projective spaces corresponding to elements
of p[@P(n),F/O] are all given by smoothings of €P{(n). 1In

particular, the orbit spaces of the Sl actions on spheres

2n+l

s . N - .
3 € p(w2n+1/1m-J)q; Topep CoOnstructed in (2) of this section
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(these include the homotopy projective spaces P2n which do

not admit diffeomorphisms homotopic to conjugation constructed
in (5)) are all PL isomorphic to C€P(n).

For p = 2, the maps ,[CP(n),PL] 3~2[mP(h),PL/o] and
Q[GP(n),Flzi o[CP(n),F/0] are also isomorphisms. The map

2[®P(n),PL] —»2[cp(n),F] is injective but is definitely

2

not surjective. Using the fact that N2 ¢ WQ(F), v€ e vs(F),
2

o° € "14(F) and h?_ em . (F), 1> 5, do not belong to

17 otp

image(w, (PL) — m,(F)), one can see from Table 7.5 that the
elements ﬂf € 2[GP(1),F], v§ e [eP(3),F] J = 3,4,

Ze jlep(k),Fl, k =7,8,9,10 and (hf)zi .
i > 4%, do not belong to 1mage([mP(n),Pt]‘—»{mp(n),F]).

o c Q[mp(ei-l);F],

Further, s(vﬁ) = s(o§) = s(cg) = s(cﬁo) = 0, hence these

16 18 20

elements correspond to manifolds P8, P, P, P which

are tangentially homotopy equiValent to, but not PL isomorphic
to @P(4%), CP(8), €P(9), and CP(10), respectively.

Since cokernel(m,(PL) — m,(F)) 1is generated by the

elements ﬂz, »v2, 02, hi, i> 4 [6], it is natural to

conjecture that cokernel([CP(n),PL] — [CP(n),F]) is generated
by the elements named above not in image([CP(n),PL] — [CP(n),F]).

(We point out that if h° . € 7 . (F) is non-zero then
i-1 o1 o

The . e, (F) is also non-zero, 1 > 5. Thus
i-1 14

(h?) ; : ep(2'-1) = F does not extend to ep(2Y) »F, 1> 4.)
ot =
Since s(v%) = s(c?)

2 .
= S((hi)gi-]_) =1 € ZQ: i> 4:
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these elements do not correspond to homotopy complex projective
spaces. If the conjecture above were true, it would thus
follow that every manifold, Pzn, tangentially homotopy
equivalent to €P(n), n > 11, was in fact PL isomorphic

to CP(n).
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