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Preface 

.:. .. 

The guiding principle in this book is to \lSC differential forma as an aid in 
exploring some of the less digestible aspects of algebraic toJ)QlOlY. Accord
ingly, we move primarily in the realm of smooth manifolds' and use the 
de Rham theory as a prototype of an of cohomology. For applications to 
homotopy theory we also dilCUll by way of anaJolY cohomoloay with 
arbitrary coefficients. 

Although we have in mind an audience with prior exposure to algebraic 
or differential topology, for the most part a Sood knowledae or IiDcar 
algebra, advanced calculus, and point-act topology should suflicc. Some 
acq\J8intanc:e with manifolds, simplicial complexes, singular homololY and 
cohomology, and homotopy poups is bdpful, but not reaDy necessary. 
Within the text itself we have stated With care the more advanced results 
that are needed, so that a mathematically matu~ reader wbo aa:e))u these 
backaround materials OD faith should be able to read the entire book with 
the minimal prerequisites . 

. There are morc materials here than can be reasonably covered in a' 
one-semester course. Certain ICCtioDl may be omitted at first readin& with
out Iou or continuity. We haYe indicated these in tbe IChcma~ diqram 
that fonows. . 

This book is Dot intended to be foundatiooal; ratbCr, it is only mcaat to 
open some of the doors to the formidable edifice of modem alpbraic 

. topololY. We offer it in the hope that such an iDformal accoUDt of tbe 
subject at a semi-introductory level filii a pp iD the literature. 

It would be impossible to mention all the friends, coUceauea. and stu
dents whose ideas have contributed to tbit boot. But the ICftior author 
author wouJd like OD this occasion to express his deep gratitude. first 
of all to his primary topololY teacben E. Specker, N. Stec~od. and 
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K. Rcidemeistcr of thirty years ago, and secondly to H. SaJnelson. 'A. 
Sh.piro, I. Singer, J.-P. Serre, F. Hirzebruch, A. Borel, J. Milnor, M. 
Atiyah, 5 ... 1. Cbern, J. Mather, P. Baum, D. Sullivan. A. Haefiiger, and 
Graeme Segal, who, mostly in collaboration, have continued this word of 
mouth education to the present; the junior author is indebted to Allen 
Hatcher for having initiated him into algebraic topology. The reader will 
find their inftuence if not in all, then certainly in the more laudable aspects 
of this book.' We also owe thanks to the many other people who have 
helped with our project: to ROD Donagi, Zbig Fiedorowicz, Dan Freed, 
Nancy Hingston, and Deane Yang for their reading of various portions of 
the manuscript and for their critical comments, to Ruby Aguirre, Lu Ann 
Custer, Barbara Moody, and Car~line Underwood for typing services, and 
to the staff of Springer-Verlag for its patience, dedication, and skill. 

.,." . 

RAOUL Bon 

LoRING Tu 
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Introduction 

The most intuitively evident topological invariant of a space is the number 
of connected pieces into which it falls. Over the past one hundred years or 
so we have come to realize that this primitive notion admits in some sense 
two higher-dimensional analogues. These are the Iwmotopy and colaomology 
groups of the space in question. 

The evolution of the higher homotopy groups from the component COD-' 

cept is deceptively simple and essentially unique. To describe it, let -o(X) 
denote the set of path components of X and if p is a point of X, letao(X, p) 
denote the set ko(X) with the path component .of p singled out. AlIo, corre
sponding to such a point p. le~~ rote the space of maps (contiDlIOUI 
functions) of the unit circle {z e : % =- I} which send 1 to p, made ioto a 

. topological space via the~_me!ct ~~.~~gy. The path componeats of 
this so-called loop spGCe G, X are now taken t(1)ethc elemcots of K,(X, ,): . ---_.--.-

1tl(X, p) = notn,X, p). 
The composition of loopS irid"uces a group-siructure on "l(X, p) in whicb 
the constant map p of the circle ,to p plays tbe role of the identity; so 
endowed, 1t 1 (X, p) is called the famdamellt4l 9rouP or the firat Itomotopy 
group of X at p ... !!J!JJt&~!l~!.al_~.Q.t.A~ For instance, for a RicmauD 
surface of genus 3, as indicated in the tilure below: 

I 
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1r.(X, p) is generated by six elements {Xl' X2, XJ, Yl,. 12, )'3} subject to the 
single relation 

J 

n [Xi' Yi] = 1, 
i= 1 

where [x, • y;] denotes the commutator and 1 the identity_ The fundamental 
group is in fact sufficient to classify the closed oriented 2-dimensional sur
races, but is insuffident in higher dimensions. 

To return to the general case, a11 the higher homotopy groups 1tt(X, p) 
for k et 2 can now be defined through the inductive formula: 

1tt+l(Xt p) = 1tj:(npX, p). 
-.. ~-~------

By the way, if p and p' are two points in X in the same path component, 
then 

but the correspondence is not necessarily unique. For the, Riemann surfaces 
such as discus~d above, the l)igher 1tA;'S for k ~ 2 are ~n trivial, .and it is in 
part for this reason .that tt1 is sufficient to classify.them:. The &rOu~.!.1tk for 
k ~ 2 turn out to be Abelian and ther.efore do not seem to have beentaken 

< ~f1ous1Y"untirfheT§j(fsWhen ·W. Hurewicz defined' .them (in the manner 
above, am~ng others) ~nd. showed that, far from being triyi.l; they ~onstj ... 
tuted ~e basic ingredients needed to describe ,the hQmotopy .. theoretic 
properties of a space. ' 

. I 

The great 4rawback of fhese easily defined- invariants of a space i& that 
they.a,e very difficult to ~oIJlPute. To this day not all the homotopy groups 
of say the 2 .. sph~re, i.e., the space x2 + y2 + Zl = 1 in Rl, bave been ~
pu~td J Nonetheless, by now much is known concerning the general proper
ties. of the homotopy groups, largely due to the formidable algebraic tech
niques to which the 66 co homological extension" of the component concept 
lends itself, and the relations' between homotopy and cohomology which 
have been discovered over the years. , 

This cohomological extension starts with the dual point Qf view in which 
a component is. characterized by the property that on it every locally CQn .. 

slant function is globally constant. Such a component is sometimes cal~ed a 
connected component, to distinguish it from a path comp(JlJent. Thus, if we 
define HO(X) to be the vector space of real-valued locally constant functions 
on X, then"~im HO(X) t~ll~ .us.the .~~~~r ~.f c()!l~.~~~ .~~~~I!!S of_x:' . 

• Note that on reasonable spaces where path components and connected 
: components agree, we therefore have the formula 

cardinality xo(X).F.d.im H~XJ. 
"'- ----.... -- ~- ~. . 

StiU the two concepts are dual to each other, the first using maps of the unit 
interval into ..l{ to test for connectedness and the second using maps of X 
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into R for the same PU(pose. One further difference is that thecohoDJolOSY 
g~oup H()(X) has, by fiat, a natural IR-mod~le structure. 

Now what shoWd tpe pro~r hishcr-dime~iona1 analo&~e of HOCX) i)e? 
Unfortunately ~no decisive aDsw~~ ... ~~~e.. Many plausible de~ni~~~s 
of H~(X) for k > 0 h~ve ~n pfopo~'aU with slightly ~i~erent prQpertics 

. but all isomorphic on .. reasonable $pa~" _ ~urtlJermore., in th~ r~m of 
differen tiable manifolds,' all these theo~es coninc~de wit~ the t4e. Rhmn 
theory which.~kes .. its appeafan~ .tJJere ~ cO,nstitutes in ~~c sense'~e 
most perfect example of a CQ~omol~gy theory_ Tbc OC ~ham t1)eory ~,also 
unique in that it stands at,tbe ~ros~rQil4s of topoJogy~ an~y,sis, -.n~tpl1Y$i~ 
enriching all three disciplines, , .! .. ' '. .... . ., 

. The gist of, th~ '" de Iijlam· exteI)Sio~ ~ ~ CO;Illprehe~ded most easijy. when 
M is ClS:5umed to be an open set jn some Euclidean space~ .. wi~,cOQrdi
nates Xl, ... " ,x''" Then amongst the ,Coo fpQctio~ o~ M t1w.IP1);~~t 

. ones, are pre~isely :those who~ 8fadi~t, . . . .- ... ~ !' • 

of" . . .,f: 
d/= L -;- dXl . ,''x, 

vanishes identicaUy_ Thus here HO{M) appears as the sp8Qe .of solutions of 
the differential equation df;: o. This suggests that Hl(Al) should. also 
appear as the space 0( solutions of some natural. differential equations ,OD 

the manifold M. Now consider a I·form on M: ' ~ 

9 = La. dx., 

where the at's are COO functions on M. Such an expression can be integrated 
along a smooth path "I, so that we may think of 8 as'a fWlCtioD on paths y: 

It then suggests itself to seek those 9 which giv~ rise to locally constant 
func~ions of /" 'te., for which the integral I7 6 is left unalter~4 'unde~ small 
variations of y-but keeping the endpoints fixed! (Otherwise, only the zero 
I-form would be locally constant.) Stokes' theor~ tcaches us that lb_ 
line inte~als are ch~racterized b~ the ~li~erential equations: . " , 

oa, _ ~ _ 0 ,., 
- (~ritteq d8 = 0). 

ox) ox, 
On the other hand, the fundamental lheorem of calculus imp_ tJlat 
J" df = f(Q) - f(P), where P andQ are ·the endpoints'Of "I. so. tbat:tie 
gradients are tTivaJly l~ally constant. . i .. ,; 

One is here irresistibly led to the definition of Hl(M) ~ .the vector space 
of locally constant line· integrals. modulo the trivially constant o~s_; SimjlarJ)I 
the h~gher cohomology groups H"(M) are defined b) simply rcplaciol line 
~tegrals ~jtb their higb~i-dim~nsj~; ~&~ l.hcr. ~~"'. j1ltelP:~ 
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The Grassmann calculus of exterior differential forms facilitates these exten
sions quite magically. Moreover, the differential equations characterizing 
the locally constant k-integrals are seen to be C~ invariants and so extend 
naturally to the class of Coo manifolds. 

Chapter I starts with a rapid account of this whole development, as
suming little morc than the standard notions of advanced calculus, linear 
algebra and general topology. A nodding acquaintance with singular hom
ology or cobomology helps, but is not necessary. No real familiarity with 
differential geometry or manifold theory is required. After all, tbe concept of 
a manifold is really a very natural and simple extension of the calculus of 
severaJ variables, as our fathers well knew. Thus for us a manifold is essen
tially a space constructed from open sets in Ir by patching them togcther in 
a smooth way. This point of view goes hand in hand with the "com
putability" of the de Rham theory. Indeed, the decisive difference between 

· the a_'s and the Ht.s in this regard is that if a manifold X is tbe union of 
· two open submanifolds U and Y: 

X = U u V, 

· then the cohomology.gio.~ps of U, Y, U " Y, and X are linked by a much 
stronger relation tha'n. the homotopy groups are. The linkage is expr~ 
by tbe exactness of the following sequence of linear maps, the Mayer
Vietoris sequence: 

C W+l(X).... ~ 

C H'(X)--+H~U)~ H'(V) ->Hl(U () V\) 

. -+ Ht-l(U " V») 
0-+ HO(X)-+ ... 

i starting with k = 0 and extending up indefinitely. In this sequence every 
f arrow stands .~!'.~_Un~J[.Jl!.~ of the vector spaces and exactness asserts 
\, tha~ the!~m~. o.!~~~~!!1~~-!! pr~lt!he imge...QJ:Jhe-~ecedi~e."Tlie' 
: honzontal arrows ID our diagram are the more or Icss obVIOUS ones Induced 
, by restriction of functjons, but the coboundary operator d· is more subtle 
, and uses the existence 91.~_JHlT-tWo'L.oJ.JP.jit subordinate to the co r 
. ~fJ~~~~at-i~-~mooth (unctions Pu and Pv first has 
, support in U, the second has support in V, and Pv + p" = 1 on X. The 
~ simplest relation imaginable between the Hits of Ut Y, and U u Y would of 
course be that Hit behaves additively; the Maycr-Victoris sequence teaches 
us that this is indeed the case if U and V are disjoint. Otherwise, there is a 
acometric feedback from' H"(U n V) desaibed by d·, and one of the ball-

· marks or a toplologist is a sound intuition for this d·. 
The exactness of the Mayer-Vietoris sequence is our first goal once the 

baIica of the de Itbam theory are developed. Thereafter we establiab the 
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second essential property for the computability of the theory, ..namely that 
for a smoothly contractible manifold M, . 
~ -.----- .. -.•.. ~-

Hl(M) = {R . for k = 0, 
o . for k > o. 

This homotopy invariance of the de Rham theory can again be thought of as 
having evolved from the fundamental theorem ~f ~culus. Indeed, tbe for- . 

. mula 

f(x) dx - d r f(u) du 

shows that every line integral (i-form) on RI is a gradient, whence 
Hl(Rl) = o. The homotopy invariance is thus established for the reallinc~ 
This argument also paves the way for the general case. 

The two properties that we have just described CDDStitute a verifiCation 
of the Eilenberg-Steenrod axioms _.for the de Rham theory in the present 
context. COmDlnea-wftll-ii-UttlC-ieometry. they can be used in a standard 

" manner to compute the cobomology of simple manifolds. Thus, for spheres 
one finds 

Cor k = 0 or n 
otherwise. 

while Cor a Riemann surface X, with 9 holes, 

for k = 0 or 2 
for k == 1 
otherwise. 

·A more systematic treatment in Chapter I1 leads to the computability 
proPe~ .of the de Rham theory in the following sense. By a ~nite lood~r 
oLM we mean a covering U == {U.}:.! of M by a finite numbCi (if' open sets·· 
such that all intersections U _. ("\ ... nU. arc either vacUous or" CODtract-

j ible. ~c purely combinat?rial data that_ specif~ for· each subset 
;. {exb ... ,(ll} of {1, ...•. N} whteh of these t'#o alternaUves holds are called 
,the .incidence. th!tq, Q.C the cover. The computability of the theory is the 
(assertion that it can GeCOiiiPutcd purely from such incidencc data. Aloog 
lines established in a remarkable paper by Anctre· WciI [1], we show this to 

.. .-be' the case for the de Rham theory. Weil's point or view constitutes an 
alternate approach to the sheaf theory of Leray and was influential in 
Cartan·s thiorie des carapaces. The beauty of his argument is that it can be 
read both ways: either to prove the computability of de Rham or to prove 
the topological invariance of the combinatorial prescription. 

To digress for a moment, it is difficult not to speculate about what kept 
Poincarc from discovering this argument Corty yean earlier. One has the 
feeling tbat he already knew every ltep aloDI tbe way. After all, tbe homo
topy invariance of the de Rbam theory for r is blown .. the P0iacar6 
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lemma! Nevertheless, he veered sharply from this point of view, thinking 
predominantly in terms ~f triangulations, and so he in fact was never able 
to prove either the computability of de Rham or the invariance of the 
combinatorial definition. Quite possibly the explanation is that the whole 
C\O point of view and, in particular, the partitions of unity were alien to him 
and his contemporaries, s~eeped as they were in real or compl~~ analytic 
questions. " , 

De Rham was of course the 'first to prove the topological invariance o( 
, the theory that now bears his name. He showed that it was isomorphic to 

the singular cohomology, which is trivially-i.e., by definition-topologically 
invariant. On the other hand, Andre Weil's approach relates the de Rham 
~~eory to, ,the te,ch theory, which is again topologically invariant. 

But to return to the plan of our book, the bulk of Chapter I is actually 
devoted to explaining the fundamental symmetry in the cohomology of a 
~~_~~~_C!~if~~ ~n its most primitive form this,symmetrY,asserts 
tbat " . 

. • .?" ~ i dim Hq(M) = dim W-q(M). .V .' L . . ,1,. 

Poincare seems to have immediately realize,d this co~sequence of the locally 
Euclidean nature of a manifold. He saw it in terms of dual subdivisions-t 

I which turn the incidence relations upside down. In the de Rham theory the 

\
dualitY derives from the intrinsic pairing between differential forms of arbi· 
trary and compact support. Indeed consider the de Rham theory oCR l wi~h 
compactly supported forms. Clearly the only function with compact sup-
port on Rt is the zero function. As for I-forms, not every l·form 9 dx is 
now a gradient of a compactly supported function f; this happens if and 
only jf I~ <Xl 9 dx = o. Thus we see that the compactly supported de Rham 
theory C?f R 1 is given by 

. , 

, H~ (RI) = {: 
(Qr k ::;:: 0 

for k == 1, 

and is just the de Rham t~eory "upside down." This phenomenon now 
extends inductively to ~. and is finally propagated via the Mayer-Vietoris 
sequente to the cohomoJogy of any compact oriented, manifold. 

One virtue of the de Rham theory is that the essential mechanism of this 
, duality is via the familiar operation of int~gration, coupled with th~ natural 
. ring structure of tbe theory: a ".form 8 ~n be multiplied by a q-fonn 4> to 
produce a (p + q)-form 8/\,po This mu1tipli~tiol) ~s ... co~mu~tive, in .the 
gr~ded ~nse": ' 

81\t/> = (-1)"~1\6. 
(By the way, ,the commutativity of the de Rh~m, theory is another reason 
why it ~ more 66 perfect" than, its other more general ',rethren, which 

, become commutative only on the 'co homology level.) In particular, if ; has 
compact support and is of dimension It - p, where n = diJIl M, then inte-
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gration over M gives rise to a pairing 

(9, I/J)~ t 8 A I/J, 
. i . 

which desce~ds ~~ cohomology and induces a pairing 
• . . ~ It· ::. .' .. '. , 

.. H"(M).® H:-'(M)-+ R.·. ,:. i.. ·1 .. ,' , ' 

t. 1 j.' ':. : • If. .~. 

A mQre sophisticated versio.1J of Poinc~re duality is then' si~ply ~~ilat the 
pairinq ,above is dual; that is,: it establis~es the t Yfo .~paces 'a~: ~p~l,s' ~f' ~~h 
other. ' . " . ' , , 

~lthough we return to Poincare. duality over and over ag~n ~hrougho\lt 
the book, we have not attempted to give' 'an exhaustive treatm~t. ([here is, 
for instance, no mention of Alexander duality' or other he omena' eaPDg 
~ than absolute, try. nstead, we' chose' to' spen 
much time brin~ing Poincare--uU'ality to life by explicitly constructing the 
Poincare d~l of a submanifold N in M. The p.::oblem is f:he foU4?wing. 
Suppose dini N = k amd dim M :; n, bOth being cpmpact oriented. Inte
gration of a k-form w on M over N then defines a'linear functional from 
H"(M) to A, and so, by Poincare duality, must be represen.ted by a coho
mology class in H" -"(M). The question is now: how is one to constr\lct a 
representative of this Poincare dual for N t and,can'such a repr~ntative be 
made to have' support arbitrarily close to 'N? . , .. ," , ~ 

Wh~n N reduces to a point p iQ M, t~is question is easily answered: T'he 
dual of p i~ represented ,?y any ~-for~ ~ W!t~ 'sup~rt in t~ ~~~~,~~ M, 
of p and with total mass 1, that l~, with , ' ':: l. , 

r w = 1. . 
Iv" 

Note also that such an Q) can ,be·found with. support in an arbitrarily small 
neighborhood of p, by simply ~hoosing' eoordin&tes OD M .ccntered .at p, say 
Xl, .•• , x,,, and setting 

w = )'(X)dXl -1- tix" 

with A. a bump function of mass 1. (In the limit, thinking of Dirac~s .5-func
tion as the Poincare dual of p leads us to de' Rham·s'theory of currents.)"" 

: When the point p is replaced by' a more' general s(.bmanifold' N, if is easy 
to extend this argument, provided N has a product neighborhood D(N) in M 
in the sense that D(N) is diffeomorpbic to the product N x D" - 11, where 
[)!'-" is a disk of the dimension indicated_ However, this need not be the 
ca~! Just think of the center circle in a Mobi~sQand . .l~, 4eigbbor~oods 
are 'at best smaller Mobius bands. . 

.In the process of constructing the PoiDcare duat' we are -.huB 'comr:onted 
by the preliminary, question of ho~ to meas,ur~ the pouible twis~ngs ,of 
neigbborhoods of N in M and to correct fo~ the twist. This is a subject i~ its 
own right now~da)'s, b~t was ~itiated ,by tl.. W~tney and ~ H'?pf ip. just 
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the present context during the Thirties and Forties. Its trade name is fiber 
Inmdle theory and the cohomological measurements of the global twist in 
such "local prod~cts" as D(N) are referred to as characteristic classes. In the 
last forty years the theory of characteristic classes has grown to such an 
extent that we cannot do it justice in our book. Still, we hope to have 
covered it sufficiently so that the reader will be abl~ to see its ramifications 
in both differential geometry and topology. We also hope that our account 
could serve as a good introduction to the connection between characteristic 
classes and the global aspects of the gauge theories of modern physics. 

That'a connection between the equations of mathematical physics and 
topology might exist is not too surprising in view of the classical theory of 

(
electricity. Indeed, in a vacuum the el~tromagnetic field is represented· by a 
2-form in the (x, y, z, t)-space: . 

i . 

; ~ (EJC dx + E, dy + E. dz)dt + H~ dy dz - H, dx dz + H, dx dy, 

; and the form Cl) is locally constant in our sense, i.e., dw == O. Relative to the 
I Lorentz metric in R' the star of CD is defined to be 

) _~ = -(H% dx + H~)dt + E% dy dz - E, dx dz + E. dx dz, 

! and.M.u~ equat~~ simply assert that both (JJ and its star are closed: 
\ dw = 0 and d • CJJ =- • In particular, the cohomology class of * Cl) is a well 

i defined ~tand isoften of physical interest. 
To take the simplest example, consider the Coulomb potential of a point 

charge q at rest in the origin of our coordinate system. The field CJ) gener
ated by this charge then has the description 

~-<;.dt) 
I with r = (x2 + y1 + :2)1/3 ~ O. Thus Cl) is defined on r - R" where R, 
~,denotes the t-axis. The de Rham cohomology of this set is easily computed 
·.lobe 

for k :a 0, 2 

othcrwilc. 

The form CJJ is manifestly cobomoJogicaUy uninteresting, since it is d of a 
I .. form and so is trivially "closed", i.e., locally constant. On the other hand 
the. of Cl) is given by 

* q oX dy dz - y dx dz + z dx dy 
CJJ-- 3 , 

4rr r --
I ~hich turns out to generate H2. The cobomology class of *0) can thus be 

lnterpreted as the charge of our source.' . 
In seeking diJrerential equations for more sophisticated phenomena than 

electricity, the modem physicists were led to equations (the Yang-Mills) 
which fit perfectly into tbe framework of characteristic classes as developed 
by such masten as Ponttjagin and Chem during the Forties. 
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Having sung the praises of the de Rham theory~ it is now time to ad~it 

\ 

its limitations. The trouble with it, is that it only tells part of the cohomol
ogy story and from the point of view of the homotopy theorists, only the 

\ simplest part. The ~e Rhal!_!~~~~!~ores. ~onj.9.!LPb~.nome.oa. .To explain 
this in a little more detail, recall that iTtc homotopy grQUPS dO..no1_behave 
well under the union operation. However, they behave very weU-unaer 

, Cartesian producb.indiea; as Is qUite easily shown, 
. . 

1CJ.X X y) == fT,JX) (f) a;' Y). 

More generaUy, consider the situation of a fiber bundle (twisted product). 
Here we are dealing with a space E mapped onto a space X with the 
fibers-i.e., the inverse images of points -all homeomorphic in some uBi-

\ 

form sense to a fixed space Y. For fiber bundles, the additivity of n. is 
. stretched into an infinite exact sequence of, Mayer-Victoria ty~ h~w~er 

.', now goin~ in the opposite direction: . 

•.. -+ nJY}-+ nJE}-+ 1CJ.X)-+ ",-l(Y)-+ .... 

This phenomenon is of course fundamental in studying the twist we talked 
about earlier, but it also led the homotopy theorists to the conjecture that 

\
' i~ their mUCh. more flexible liomotop~ catego~~ where objects are con ... 
I sldered equal If they can be deronnedintO-elcli other, every space factors 
\ into a twisted product of irreducible prime factors. This turns out to be true 
f and is called the -!ostn~r: d~~~~~~~~ .. ~r.. ,t~e. s~. Furthermore, tbe 
t ··prime spaces" in thIS context all have nontrivial homotopy groups in only 
; one dimension. Now in the homotopy category such a prime space, say with 
; nontrivial homotopy group It in dimension ~ is determined uniquely by 1f 

and n and is denoted K(n, n). These K(n, n)-spaces or Eilenberg and Mac
Lane therefore play an absolutely fundamental role in homotopy theory. 

'i They behave well under the-standard group operations. In particular, corrc
{ sponding to the usual decomposition of a finitely generated Abelian group: 

It = ( ~nC~ ) El) zr 

: into p-primary parts and a free part (said to correspond to the p(i~ at 
\ infinity), the K(n, n) will fa~tor into a product,. · ~ '. .;, 

. . . . K.(It. n) = (I} K(It·'), n») 'K(Z, ny,·'" ' . 
I)It follows that in homotopy theory, just as in many questions of number 
theory, one can work one prime at a time. In this framework'it is now quite 
easy to explain the sh.)rtcomings of the de Rham theory: tbe theory 'js 
sensitive only to the prime at infinity! -----:----. :>, .~ 

After having ~crea the ~ theory in Chapter 11, we make in 
Chapter III the now hopefully easy transition to cohomo)ogy with coeffi
cients in an arbitrary Abelian group. This theo,ry, say with coefficients iD the . . 

...• .. • .J 
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integers, is then' sensiti ve to all the p-primary phenomena in homotopy 
theory. 

The development sketched here is discus~d in greater detail in Chapter 
Ill,' where we also apply the ideas to the computation of some relatively 
simple homotopy groups. All these computations in the final analysis derive 
from Serre9s brilliant idea of applying the spectral sequence of Leray to 
homotopy problems and from his coining of a sufficiently general definition 
of a twisted product, so that, as the reader will sec, the Postnikov decompo
sition in the form we described it, is a relatively simple matter. It remains 
therefore only to say a few words to the uninitiated about what this "spec-
ttal sequen~" is. . 

1 We (emarked earlier that homotopy behaves additively under products. 

] 
On the' other hand, cohomology does not. In fact, neglecting matters of 

-. torsio"" i.e., reverting to the de Rham theory, on~ has the Kunneth form,ula: 
• • ... -~+~ ...... _____ .~ .O' 

H"(X x y) = L H'(X) ® Hf(Y). 
,+f:al 

The next 'question is of course how cohomology behaves for twisted prod
ucts. It is here that Leray discovered some a priori bounds on the extent 

\ and manner in ~hich the Kiinneth formula can fail due to a twist. : For 
! instance, one of the corollaries of his spectral sequence is that if X and Y 
I have vanishing cohomology i.n posj~jve dimensions le~ than p and q re
, spectively, then however one twists X with:,Y, the·Kiinneth fonnula will 
) hold up to dimension d < min(p, q). . 
. Armed with this sort of information, one can first of all compute the 
early part of the cohomQ)ogy of the K(1t, n) inductively, and then ·deduce 
which K(1t, n) must occur in a Postnikov decomposition of X by comparing 
the cohomology on both sides. This procedure is of course ~t best ad hoc, 
and therefore gives us only fragmentary results. Still, the method points in 
the right direction and can be codified to prove the computability (in the 
logical sense) of any particular homotopy group, of a sphere, say. This 
theorem is due to E. Brown in full generality. Unfortunately, h9wevec, it is 
not directly applicable to explicit ca1culations--even with large computing 
machines. ? ~ 

So far this introduction has been written. with' a lay audience in mind. 
We hope that what they have read has made sense and has whetted their 
appetities. For the more expert, the following summary of the plan of our 
book might be helpful. -

In Chapter I we bring out from scratch Poincare duality and .it$ various 
extensions, such as the Thom isomorphism, all in the de Rh~m' ~tegory .. 
Along the way all the axioms of a cohomo]ogy theory are. encountered, b~t 
at first treat~ only in our restrict~ context. , , 

In Chapter Il we introdua: the techniques of spectral sequences as. an 
extension of the Mayer-Victoris principle and so are led to ~ .. Weil's. 
Cech-de R.ham theory. This theory is latcr used as a bridge to cohomology 
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in general and to integer cohomology in particular. We spend considerable 
time patching together the Euler class of a sphere bundle and exploring its 
relation to Poincare duality. We also very b~:fty present the sheaf-theoretic 
proof of this duality. 

In Chapter III we come to grips with spectral sequences in a more 
formal manner and describe some of their applications to homotopy theory, 
for example, to the computation of 1t 5(S3). This chapter is less self-contained 
than the others and is meant essentially as an introduction tQ homotopy 
theory proper. In the same spirit we close with a short account of Sullivan9s 
rational homotopy theory. 

Finally, in Chapter IV we use the Grothendieck approach towards char
acteristic classes to give a more or less self-contained treatment of Chem 
and Pontrjagin classes. We then relate them to the cohomology of the 
infinite Grassmannian. 

Unfortunately there was no time left within the scope of our book to 
explain the functorial approach to classifying spaces in general and to make 

" the connection with the Eilenberg-MacLane spaces. We had to relegate this 
material, which is most naturally explained in the framework of semi
simplicial theory, to a mythical second volume. The novice should also be 
warned that there are all too many other topics which we have n~t men
tioned. These include generalized cohomology theories, cohomology oper
ations, and the Adams and Eilenberg-Moore spectral sequences. Alas, there 
is also no mention of the truly geometric achievements of mOdem topology, 
that is, handlebody theory, surgery theory, and the structure theory or 
differentiable and piece wise linear manifolds. Still, we hope that our volume 
serves as an introduction to all this as well as to such topics in analysis as 
Hodge theory and the Atiyah-Singer index theorems for elliptic djiferenital 
operators. . 





CHAPTER I 

de Rham Theory 

, , 

§ I The de Rham Complex on R" 

• ... : 

•• { ,: ~ I. ..... • .' ~ 

-
, , . \ 

To start things off we define in this section the de Rham cohomology and 
compute a few examples. This will turn out to be the most important 
diffeomorphism invariant of a manifold. So let x it ••• , Xa be the linear 
coordinates on Ra. We define 0* to be the algebra over R pner.~ by 
dx 1, .•• , dx,. with the relations . 

{
(dXi)l == 0 . 

dx, dXJ == -dxJ dx" i :;:. j. 

As a vector space over R, _~~ .,~~ ~~is " 

1, dx., dx,dxJ' dx,dxJdx., ... ., dXl. "'. dx •. 
i<j i<j<k 

The C(X) differential fo~ms on R" are elements of 
... ~--------

O*(R") = {C(X) functioDSQD. R"} ® Q* . 
____ ~ . A 

Thus, if CC) is such a form, then (J) can be uniquely written as r 1.1 ... .. . 
dx •• ... dx .. whe~ the coe~nts I" ... It ~ C(IO funclions. W~ also write 
(J) = Lh dx,. The alscbra n·{~ =z m.=-~ O'(R") is na!lmJl..Y. ~ 
where (l4(R") consists of the C«>, 'q-forms on w. ThCre is a differential 
operator-~ .. --

defined as follows: -
.. ~ . " 

i) if! e nO(R"), then df = L apax, dX, 
ii) if CIJ ::a I:Ji dx

" 
the. dto =- L aj, dx,. " 

~! , ...... ,..; . , ~ 

13 
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E~MPLB 1.1. If lA) == X dy, then dw =- dx dye 

This 4, called the exterior differentiation, is the ultimate abstract exten
sion of the usual gradient, curl, and divergence of vector calculus on a3 

t as 
the example below partially illustrates. 

-. 

_ EMMPLLY .. On R3, QO(A3) and Q3(R3) are each I-dimensional and gl(R3) 

and Q3(R3) are each 3-dimensional over the Ca) functions, so the following 
identifications arc possible: 

{functions} ~ {O-forms} ~ {3 .. forms} 
f ~ I ..... f dx dy dz -and 

{v~tor fields} ~ {t-forms} {2 .. forms} 

x = (/.,/z,/3)'" /1 dx +/2 dy + 13 dz ... 11 dy dz - 11 dx dz +13 dx dYe 

On functions, 

. or of 0/ 
df 1:1& :::L d.x + - dy + - dz . ox oy oz 

OD I-forms, 

d(/l dx + 12 dy + /3 dz) 

:;: (a/3 _ all) 'dy dz _{Ofl _ Of3) dx dz + (oi2 _ of a) dx dYe 
~ & & h h ~ 

On 2-forms, 

d(/l dy dz -12 dx dz + 13 dx dy) = (~ + c:; + 0::) dx dy dz. 

In summary, 
" \ d(O-forms) == gradient,_ 
{ 

(
',. d( I·forms) =: curl, 

d(2-forms) == divergence. 

The wedge product ~o( two differential forms, written t A Cl) or f . (J), is 
defined as follows: ~ = "ifi dXI and Cl) = L gJ dXJ, then . 

t AOJ :;: rh 9J dXl dXJ • 
. "'- -----'" 

Note that !_':':._Cl) = (-l)dcP .... w" T. 

Proposition 1.3. d is an antiderivation, i.e., -
d(f . w) :Ill (dt) . (JJ + (_I)dCIt t . dw. -------------------
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PllOOf. By linearity it suffices to check on mODomial. 

t = 1, dx I, Cl) = 9,J dx J • 

d('r • Cl) = d(I,9J) dx, dXJ = (df,)gJ dx, dXJ + f, dgl dx, dx,l 

= (dt) . Cl) + (_1)4.1' t · dO) • 

15 

. On the level of functions d(fg) = (df)g + /(4g) is simply the ordinary prod-
~~ 0 

PropoBitiOD 14 al == O. 

PROOF. This is basically a consequence of the fact that the mixed pu1iala 
are equal. On functions, 

a2! == j L :/ 4X,) .. L iJ a2~ dxJ dx,." 
"\. "x, I. J xJ x, 

Here the factors 02//0XJox, are symmetric in i,J while dxJu, are stew-
symmetric in i, j; hence a2!:& o. On forms (Q -" dx" ... ~, I H< ~ 

d2
(tJ = d2(f, ax,)" ~d" dx,) == 0 

by the pr~vious computa~on and the antiderivatioD property of d. . . .0 

1 The complex O*(A") together with the dilrerential operator d is caUed tbe 
i de Rham comple:xon-R" .. The kernel oC 4 are the closed (Qrt.D.l.Nl<lthc image.. 

Or d, the ~~~t fO.nns. The de Rliiiifcomplei'may be'Viewed as a God-liven 
set of differenti8f~Cquations, wbose solutions are the closed forms. For 

! instance,~finding a closed t ... form! dx + 9 Ily on R2 is tantamount to solving 
\ the differential equation og/ox - aflay ~ o. By Proposition 1 .. 4 the exact 
forms are automatically .. dosed; these are the trivial or "unintercstina" 
solutions. A measure oC the size of the spate of "interesting" solutioDa is the 
definition of the de Rham cohomology. 

Deftaitioa. The q-th de Rham coltomology of RA· is the vector space "t __ 

Ht.(R') == {closed q-Corms} I {exact q - forms} . 

We sometimes suppress the subscript DR and write H'(R'). If there is a need 
to distinguish between a form Cl) aad its cohomology class. JIO dcoote tbc 
latter by [co]. . 

Note that all the definitions so far -work equally well for any open subset 
U of R-; for instance, 

O*(U) = {Ct'IJ functions on U} ® Q •. 
• 

So we may .also speak of the de Rham cohomoloaY Ha.(U) of U. 

-. '" "(" 
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EXAMPLES 1.5. 
(a) n == 0 

(b) n = 1 

) 

{
R q=O HI- o q > O. 

SiJM:e (ker d) n QO(R1) arc the conltant functions, 

~(Rl) == R. 

On gl(Rl), ker d are all the I .. forms. 
If w = g(x)dx is a 1 ... f9tm, then by taking 

/= r g(u) dUo 

we find that 

df= g(x) dx. 

Therefore every I·form on ~1 is exact and 

Hl(Rl) = O. 

(c) Let U be a disjoint union of m open intervals on RI. 
Then 

and 

(d) In general 

H.(R") = {RO in dimension 0, 
otherwise. ---------

de Itham Theory 

This'result is called the Poincare lemma and will be proved in Section 4. 

The de Rham complex is an example of a_dUl!rY!!igl£.ompl~~. For the 
convenience of the reader we recall here some basic definitions and results 
on diJferential complexes. A direct sum of vector spaces.C - Ea ,.z, C' in
dexed by the intclcrs.is called a~ential ~p~x if there are bomomor-

hisms p . 

such that d2 = O. d is the differential operator of the complex C. The COM

mology of C is the direct sum of vector spaces H( C) == Ea ,_z Ht( q, where 

Hf( q == (kef d. n f4)/(im d 0-Ct). ---
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f A map f: A --. B between two differential complexes is a chain ma, if, it 
f commutes with the differential operatoR of A and B :/ d ... == J.f. ' , -' 

A sequence oCvector spaces . ",' 
. , 

If " - 1 If " 1.1' - •. ---. '" -1 ~ '" --,-..-..+ "1+ 1 ----+ .•• ' .' I 

( is said to be _exact if for aU j, the kernel off, is equal to tbe image of its 
~ predecessor f, - 1- An exact sequence of the form 

o --+ A. ----. B -----. C ---.0 

l is called a.§hort e~,..H~!!fe- Given a short exact sequence of differential 
complexes 

I , o ----. A ----+ B ---+ C ---+ 0 . 
! in which the maps f and 9 are chain ma~ there is a long exact sequence or 
. cobo~ology groups , ." .. 

{ 
C H·+ 1(A) _... '" ;" 

C H4(A)....1:.H4(B)~H4(C») 
\ 
l 

In this sequence f* and g* are the naturally induced maps and d4'[c], 
C E CC, is obtained as follows: 

r J r 
0---:--+ A4+ 1 .--+ J1I+l 

r v -' d r 
o ---+ A" .-!..... f B' 

r L r 
• ---+ 

'f 
~ 

---.-.0, ... ~. , 

----+0 

By the surjectivity of 9 there is an element b in B' such that g{b) == c. 
Because g(db) =d(gb) ==dc:=O, db=f(a) for some a in Af+1. This a is 
easily checked to be closed. d*[c] is defiDed to be the cobomology class [a] 
in H",+ I(A). A simple diagram-chasins show- that this definition of d* ,is 
independent of the choices made. . , ;,~ ' .. ', 

'e!t 

'\ Exercise. Show that the long exact sequence of cohomology groups exists 
, arid is exact. (If you are stuck" sec, (or instance, MacLane [1, Ch. 11, Th. 4.1, 
p.45].) 

,! ~ .... ::... . ~ : 

Compact Supports 

A slight modification of the construction of the preceding section will Jive 
US anolher diffeomorphism invariant or a manifold. For now we apin 
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. restri~t our attention to R·, Recall that the~~~t of a continuous function 
f on a topological space X is the smallest closed set on which f is not zero, 
i.e., Suppf = {p E X I /(P) "I: O}. If in the definition of the de Rham complex 

. we use only the C«J functions with compact support, the resulting complex 
is called the .4~ P.ham comliex .O:j~ with compactu~ports: 

-... __ .... -. ~ -------.. - ..... --..." ... 

9:JR-") = {C«J functions on R" with compact support} ® 0*. 

The cohomology of this complex is denoted by ~:(R"t 

EXAMPLE 1.6. 

(a) H:(point) = {: in dimension 0, 

elsewhere. 

R 

(b) The compact cohomology of RI. Again the closed O-forms are the 
constant functions. Since there are no constant functions OD Al with com
pact support,. 

H~(Rl) = O. 

To compute H:(R1
), consider the integration map 

f. : O:(R1
) ---+ RI . 

RS 

This map is clearly surjective. It vanishes on the exact l .. forms df where f 
has compact support, for-if the support of/lies in the ~terior of [a,b], then 

i df dx = r" df dx =/(b) - !(a) = o. 
III dx J. dx 

If g(x) dx E n:(Sll) is in the kernel of the integration map, then the function 

f(x) = foo g(u)du 

will have compact support and df == g(x) dx. Hence the kernel of IRI are 
precisely the exact forms and 

H:(Rl) = a:(Rl) = RI . 
kef JRl 

1tEJ.IAn. If g(x) .dx e n:<Rl) does not have total integral 0, then 
l , 

f(x) = f..u<") dll 

will not have compact support and g(x) dx will not be exact. 



§2 The Mayer-Vietoris Sequence 

(c) More generally, 

, H:(R") = {~ , in dimension 11 

otherwise. 

) . 

-------_..--------_<>.---_ .. _ ............ , .. 

19 

This result is the Poi"ca~~"lemmafor £ohomology with compact support and 
will be proved in "SeCtion ~" \-: !, \.,:.: "'~. y'; , ~ :," R .. 

• ..1 --. ,. ,.,' J ~ " • ~ '..J 

Exercise 1.7. Compute H~R(Rl - P - Q) wBere P and Q are tvJiJ pointS i~ 
jRl. Find the closed forms that represent the cohomology classes. 

• t .', '. /; 

§2 The Mayer-Vietoris Sequence 

In this section we extend the definition of the de;Rbam cohomology from 
Rn to any differentiable manifold and introduce' a basic: technique for' ~.' 
pUling the de Rham cohomology, the Mayer-Vietoris sequellQe.;But ~,we 
have to discuss the functorial nature of the. de, Rham complex. ',,', 'il'~":' ;'r,:' 

The Functor O· 

i Let X h •.• , x,.. and y., ... , y" be the standard coordinates on R- and, It" ' 
;, respectively. A smooth map f: R- -fJ R" induces a puUback map Oft C~ 
, functionsf· : QO(H") -.. QO(R-) via 

.. 
f*(g) = g of. . "'. "." 

· \\ e would like to extend this puUback ~ap to all forms f* : Q.(R"} --+ 

· O*(R'") in such a way t,h~t iL~o~J1.1!l.!es with d. The commutativity with d ' 
definesj· uniquely: , ------......... - ~ ':1' ", 

\ f*ti 91 dYI .... · d~l) := "i(g, of) dh1 ••• . dft., . . " .' 
\whereJi = Yi 0 f is the i-th component of the fundion/. 'I " ~ ',:, • 

l ·~opositi~D 1.1. With the ~ove d~fnition o/the,pullbaok tnlJpf· fN'fQl'-:~':, ' 
; commute~ w1i1ll: j \ " , ,: - . '. ' ,~;,' : : 

· " ~. i 
~. ; ~ : .' .~: ....... 

PROOF. The proof is essentially ~ application of the chain rule. ,',:,',., 

.; ,1 . ~"'" 
.... , .. 

~ "~ .~"\ .. ~ •• ". •• i.. ~ : 

0t ; i . : 0.. " .. ; t; 

o 
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Let X h .•• , x .. be the standard coordinate system and "'h ••• u,. a new 
coordinate system on RIt

, i.e., there is a ditreomorphism f : R" -+ Rn such 
that Ut = Xi 0 f = f*(x;). By the chain rule, if g is a smooth function on R", 
ilien . 

~ og ~ og ~Ui og 
~ - dUi = t... - -- dXJ = L - dXJ. 
,ou; I.) OUi ox) J ox) 

, ~ 49 is independent of the ~oordinate system. 
. . 

(
I. ~ More generally show that if (J) = ~ 9, du" then dw = t dg, 

dU,-

! Thus the exterior derivative d is independent of the coordinate system on 
t Jr. 

f ·Recall that a category consists of a class of Qbject~ and for any two 
!objects It and B, a set ~m(A, B) ~ morg~~ from A to B, satisfying the 
jfollowing properties. If/is a morpnlSlilTrom A to Band g a morphism from 
J B to e, then the composite morph ism 9 0 f from A to C is defined; fur .. 
( thermore, the composition operation is required to be associative and to 
l have an identity 1 A in Hom(A,' A) for every object A. The class of all groups 
'. together with the group homomorphisms is an example of a category. 

A covariant unctor F from a category :K to a catefory !i' associates to 
\ every object A in an object F(A) in 2, and every morphismj: A .... Bin 
1 ~ amorphism F(f): F(A) .... F(B) in!i' such that F preserves composition 
\. and the identity: 

F(g 0 f) == F(g) 0 F(f> 

F(lA) == 1'(A)' 

\If F reverses the arrows, i.e., F(f) : F(B)-. F(A), it is said- to be a gmgjl.
!variant [unctQl~ 

:~.' In this fancier language the discussion above may be summarized as 
i follows: 0- is a contravarUmt Jtmetor from th4 category of Euclidean spaces 
l {R"} .. EZ and smooth nulpS: Rill -+ R" to the category oJ conunutative differ. 
: ential graded algebras and their· homomorphisms. 1 f is the unique such Junctor 
f that is the pullback of functions on nO(R-). Here the commutativity of the 
araded algebra refers to the fact that 

. to) = (_1)4e,fde.co an. 

The functor n* may be extended to the category of differentiable mani
folds. For the fundamentals of manifold theory we recommend de Rham 

. [1, Chap. 1]. Recall that a differen~~.t>.ktstt.llct!l.~s .. on a ~llojfo~~js given by 
an atla3, i.e., an open cOver tV:l~. A of M in whiCh each open set U« is 
bomcomorphlc to R- via a homcomorphism cP. : U. ~ R", and on the 
overla~ ~. ("\ U _ the transition functions 

g., = <P. 0 9, 1 : f,< U. ("\ u ,) -+ 4>,J. U. nU,) 



) 

'§2 The Mayer-Vietoria Sequence 21 

. '-
rare diifeomorphisms of open subsets of R'; furthennQre, thc...atlaa is re.... 
\ quired to be maximal with res~t to inclusions. All manifold,.. wiU be 
\ ~-- ------..~~ .. _~~.~ .. _--:'-.--. 

" assumed to be Hausdorlf and to have a countable basis. The collection 
{(V •• tPJ} •• A is called a ~~4~te _open cover of M and 4>. is the triv
ialization of V". Let Ul' ••• , u" be the standard coordinates on 11". We can 

" write 4>. = (x It •.• , x,.), where x, = u, 0 tP. are a coordinate system on U«. A 
; function f on Us is differentiable if f 0 4J; 1 is a differentiable function OD 

. R", If. f is a differentiable function' on U., the partial derivative a pox, is 
,I' defined to be the i-th partial of the puUback function I 0 q,;' on R": .' 

01 (P) == iJ(f 0 4>; 1) (q).(p». 
ox, OUI . 

The._,!!'lI.1l~~_~_ ~~e to M at p, written,I,M, is the vector space over R 
spanned by the operators O/iJX1(P), ••• , a/ox,,(p), and a smoo\h ·1Je@r.field 

~ on U. is a linear combination X. = L f, iJ/ox. where theh'~ are smooth 
Junctions on U«. Relative to another coordinate system (y l' ••. , y J, X. = 
L 9) a/ay, where a/ox, and a/ay} satisfy the chain rule: 

..£.. == L~..£... 
ox; ox, ay) 

A Cco vector field on M may be viewed as a collection of vector fieldsX. on 
U. which agree on the overlaps U. () U,. 

A differential form (J) on M is a collection of forms (J)v for U in the atlas 
.~____ __ 4 

defining M, whiCIlare compatible in the following sense: if i and j are the 
inclusions . , 

UnV .U· 
~.' 

Y 

then i*Cl)v = j*Wy in O*(U () '" By the functori.ality of 0*, the exterior 
derivative and the wedge product extend to . differential forms on a mani .. 
fold. Just as for R- a smooth map of differentiable manifolds f : M --+ N 
induces in a natural way a pulJback map on forms I· : O·(N) ~ O-<~. In 
this way O· becomes a contravariant functor on tbe category of differ-
entiable manifolds. >,' 

! A partition o/unity on a manifold M is a ~llecti~n of ~n.aeptive CCO I functio~ {iiX:;Such that . .' .. .•. ... '.' .... . 

I 
(a) Every point bas a·neighborbood in which I,P.' is a finite.~··· '," .. 

I (b) I.P. == 1. .: .. ~ '., . ~ 

", The basic techniCal tool in the theory of differentiable manifolds is the 
. : existence of a partition of unity. This result 'assumes two foJ"lllr. . 

~I (I) Given an open cover {U.}«. I of M, there is a partition of u. nity {P.} •• , 
- sucb that the support of p. is contained in U •. We say in thil.~ 'hfit 

:i {p.} is a partition o( unity .. ~_~.Qr1lmau lOJ~ _~~ co!.eF {U .l .. ' . . I • 

'- '..-
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(2) Given an open cover {UCI}alel of M, there is a partition of unity {P,},eJ 
with compact support, but possibly with an index set, J different from It 
such that the support of P, is contained in some U Cl • 

For a proof see Warner [1, p. 10] or de Rham [1, p. 3]. 
Note that in (1) the support of p. is not assumed to be compact and the 

index set of {PCl} i~ the same as that of {U Cl}, while in (2) the reverse is true. 
We usually cannot'demand simultaneously compact support and the same 
index set on a noncompact manifold M. For example, consider the open 
cover of Rl consisting of precisely one open sett namely Rl itself. This open 
cover clearly does not have a' partition of unity with compact support 
subordinate to it. 

. The Mayer-Vietoris Sequence 

The Mayer-Vietoris sequence allows one to compute the cohomology of the 
union of two open sets. Suppose M = U u V with U, Y open. Then there is 

, a sequence ofindusions 

wlaere (J U V is the disjoint union of U and V and ~ao and a 1 are the 
inclusiOns orii ('\ V in.V and in U res~tively. Applying-lhe coniravariant 
runctor 0*, we get a sequence oCrestrictions of forms 

a~ 
Q*( M) --. 0-( U) e 0*( V) =t 0*( U f'\ V), 

where 'by the restriclion of a' form. to a submanifold we mean its image 
under the pull back map induced by the inclusion. By taking the difference 
of the last two maps. we obtain the M ayer .. V ietoris sequence . . . . .. -- ...... 

(2.2) -0 -t O*(M) --. O*(U) Ef) O*(V) ---.; 0*«(' n V) -+ 0 
. :, " (co, T) H t' - Cl) 

" ~positioD 1.3. The Mayer-Vietoris sequence is, e~act. . --.-.- -. -, .. 
• ' PROOf. The' exactness is clear except at the last step. We first consider the 

case .of functions on M = RI. Let f be a C«J function on U " V as shown in 
Figure 21~ We must wrile f as the difference of a function on U and a 

- function on V. Lc!t {PUt Pr} be a partition of unity subordinate to the open 
cover {Ut V}. Note that p~/ is a function on U-to get a function on an' 
open set w.e must. multiply QY th~ partition function of the other o~n set. 
S· ,\ , 11lC'e .' • , ..... ' 

(Pu f)..:.. (-py f) =f, 
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'( ) 
Pu 

~ ~ u 

L Pv 

( 
V 

FipR 2.1 

we see that OO(U) El) OO(V) -+ aO(RI) --+ 0 is surjective. For a general·mani
fold M, if Cl) E ()4( U ~ Y), then ( - Pv w, Pv co) in Qt(U) 6) Qt(Y) maps onto 
~ 0 

. The Mayer .. Vietoris sequence 

o --+ O*(M) --+ O*(V) EB O*(V) -+ O*(U " V) ~ ,0 

induces a long exact sequence in cohomolol)'t also called a Mayer .. Vie~ris 
sequence: 

CH' +l(M) -+ HI+l( U) E& HI+l(Jf} -+ Hf+l(U ,.., V).'::> 
d* . ) 

C H4(M) --+ Hf(U) (B Ht( Y) --+ H"{ U '" JI) , 

(2.4) 

We recall again the definition of the coboundary operator d* in this explicit 
instance. The short exact sequence gives rise to a diagram with exact rowI . 

f t t 
0--+ QI+1(M) -+ Qt + 1 (U)$OC+ 1(Y) -+ " Q1+1(U f'\ Y) -.0 

df dt dl 
0-+ Qf(M) -+ O'(U)Q)Qf(J') -+ O'(u "', Y) ........ 0 

w '" , Cl) tieD =- 0 

Let (J) e 0'( U " J') be a closed form. By the exactness, of the rows, there is 
a , e Qf( U) e Qt(Y) which maps to w, oamely, , =- ( - Pv (.(), Pu c;u). By tbe 
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commutativity of the diagram and the fact that dw = 0, d, goes to 0 in 
nq + 1(V (l V), i.e., -d(pvw) andd(puw) agree on the overlap U (l V. Hence 
d~ is the image of an element in Q4 + l(M). This element is easily seen to be 
closed and represents d*[w]. As remarked earlier, it can be shown that 
d*[c.o] is independent of the choices in this construction. Explicitly we see 
that the coboundary operator is given by 

(2.5) d*[w] = {[ -d(pyw)] on U 
[d(pu (0)] on V. 

. We define the ,support of a form c.o on a manifold M to be the smallest 
! closed set Z so that w'restrjcted to Z is not O. Note that in the Mayer· 
; Vietoris sequence d*w E H*(M) has support in V (l V. 

EXAMPLE 2.6 (The coh~mology of the circle), Cover the circle with two 
open sets U and Vas, sb9wn in Figure 2.2. The Mayer-Vietoris sequence 
gives 

Si uUv Ui'\V 

H2 0 0 0 

rHl : 0 -----to 0 

d· 
REDR::J HO REBR 

6 
• -+ 

The difference map b sends (co, t) to (t - ro, t - w), so im b is 1-
dimensional.·1t 'follow$ tttafker' 6is·also·1..<Jimensional. Thereforet 

HO(SI) = ker lJ = R 

HI(SI) = coker b = IR. 

We now find an ex'plicit representative for the generator of Hl(Sll. If 
ex e go(U () V) is a closed O-form which is not the image under t5 of a closed 
form in nO(U) Et) aO(V), then d*(J. will represent a generator of H 1(SI). As a 
we may take the function which is 1 on the upper piece of. U ('\ V and 0 on 

-~ 
UtlV 

I ......... 

Figure 2.2 
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.. : 

o 

{1 v 

u v-

Figure 2.3 

the lower piece (see Figure 2.3). Now « is the image of ( - Pv «t Pu a). SiDa: 
- d(pv <X) and dpu Cl agree on U (') V, th.ey represent a global "form on SI; 
this form is d*a.. It. is a ~~~p.~ ~ .. form with .supPQrt iD. U " Y.. , . '. 

The Functor a: and the Mayer .. Vietoris Sequence' for' Com"Ct 
Supports 

Again, before taking up the Mayer-Vietoris sequence for ,compactly sup
ported cohomology, we need to discuss the functorial properties orO:(M), 
the algebra of forms with compact support on the manifold M. In acncraJ 
the pull back by a smooth map of a form with compact ~rt need Dot 
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have compact' support; for exampleiJ consider the puUback of functions 
under the projection M x IR -+ M. So n: is not a functar on the cate..89~Y of 
manifolds and _~th maps. However-iT we consider ·not all smooth maps, 
bui-onTy-anappropriate subset ·of smooth maps, then a: can be made into 
a functor. There are two ways in which this can be done. 

(~) 0: is a contravariant functor undcf .. pr,oper maps. (A map is proper if the 
inverse image of every compact set is compact.) -. 
. (~) n: is a covariant functor under incl~si~t.LS.or~~~ ~ets. 

If j : U -+ M is the inclusion of the open subset U in the manifold M, then 
i. :O:(U)-+ O:(M) is the map which extends a form on U by zero to a 
form on M. 

It is the covariant nature of n~ which we shall exploit to prove Poincare 
duality for noncompact manifolds. So from now on we assume that n~ 
refers to the covariant functor in (b). There is also a Mayer-Vietoris se
quence for this functor. As before, let M be covered by two open sets U and 
V. The sequence of inclusions 

M +- ullv t: u r. V 

gives rise to a sequence of forms with compact support 

G:(M) +-4 -- 0:( U) Ea n:( Y) t • 6 d n:( u ("'\ V) 
sum sllne 

inclusion 

Proposition 2.7. The Mayer·Yietoris sequence offorms with compact support 
'------ .... ". 

j is exact. 
i 

. . 

I PROOf. This time exactness is easy to check at every step. We do it for the 
last step. Let w be a fonn in a:(M). Then (JJ is the image of(pvOJ, Pv co) in 
a:(U}$o:(V). The form Pu(JJ has compact support because Supp Pv(J) 
C Supp Pv n Supp wand by a lemma· from general topology, a closed 
subset of a compact set in a Hausdorff space is compact. This shows· the 
surjectivity of the map n:(U)$~*(Y)-. n:(M)." Note that whereas in·the 
previous Mayer-Vietoris sequence we multiply by Pv to get a form on U, 
here Pv OJ is a form on U. . ., 0 

Again the Mayer-Vietoris sequence gives rise to a long exact sequence in 
cohomology: 

CH:+ 1(M)..- H:+l(V)f£)H~+l(V)ct- H:+l(U n V)~ 
(2.8) CH~(M) 4- H:<U)~H:<V) - H:<U n V) :> 
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" . u v unv 

../ 

FilUfC 2.4 

EXAMPLE 2.9 (The cohomology with compact support of the circle). Of 
course since SI is compact, the cohomology with compact support H~(S') 
should be the same as the ordinary de Rham cohomology H*(Sl)", Nonethe
less, as an illustration we will compute 11:(81

) from the Mayer-Vietoris 
sequence for compact supports: ; '. 

Si ullv UnV .' 

H2 0 o I 
C ) 

HI ( REaR .4 

, 
REl)R ::>. . c 

HO ( 0 0 c 

.1 

... ~~ ':..:. 

Here the map ~ sends (J) = (rub Cl)l) e H;(U n Y) to ( -"(iu ).w, (jy ).c.u}.e 
H;(U) E9 H;(V), whereju andjy are the ,i~ ... $ions of l) n .~.~ 11 .n~ ~~;r 

respectively. Since im lJ is I-dimensional, ' 

H~(Sl) == ker lJ = R , .. ; 

H;(SI) = coker lJ == R. 

§3 Orientation and Integration' 
i .' ~ .); I 4 

Orientation and the Integral of a Differential Form ' 

Let Xl' ••• , x" be the standard coordinates on R". Recall that ,he RiemaDn 
integral of a differentiable function/with compact support is 

f./' dx 1 ••• dx~ I = ~"'!e 'Lf tu 1 : •• tu.. . H.' 

We define the integral of an n-form with compact support Q) == f dX.l • ~. dx. 
to be the Riemann integral J Ir I1 dx 1 ••• dx.l. Note that co~trary to the 
usual calculus notation we put an absolute value sign· in : the Riemann 
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integral; this is to emphasize the distinction between the Ricmann integral 
of a function and the integral of a differential form. While the order of 
Xl, • ~ ., x. matters in a differential form, it does not in a Riemann integral; if 
7C is a perm~tation of {I, ... , n}, then 

f f dx"tI) ••• dxO(OI = (sgn It). f fI dx I ••• dx.l, 

but 

In a situation where there is no possibility of confusion, we may revert to 
the usual calculus notation .. 

So defined, the integral of an n .. form on R- depends on the coordinates 
x., ... , x •. From our point of view a change of coordinates is given by a 
diffeomorphism T : R" ~ R" with coordinates Y h ••• , y.. and x it .... , x. re .. 
spectively: 

Xi = x, 0 T(y" ... , Y.) = Tbh ... , y.). 

We now study how. the integral Jw transforms under such diffeomor .. 
phisms. 

£.x~c~ _ 3.1. Show that dT1 ••• dT. == J(T)dYt ... dy,., where J(T) == 
det(ox./oYJ) is the Jacobian determinant of T. 

Hence, 

Lr*oo = L (fo n dT1 ••• dT .... L (fo T)J<n dYI ... dy. 

relative to the coordinate system Yh ... , y". On the other hand, by the 
change of variables formula, 

. L 00= J,..f(Xl' ... , x.) dx1 ..• dx. = 1. (f 0 nIJ(T)ldYl ... dy .. 

Thus 

-- .-

depending on whether the Jacobian determinant is positive or negative. In 
general if T is a diffeomorphism of open subsets of R" and if the lacobian 
determinant J( T) is everywhere positive, then T is said to be orientation
preserving. The _ integral on R" is not invariant under the whole group of 
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diffeomorphisms of R", but only under the subgroup oC orientation-
preserving diffeomorphisms. ' 

Let M be a differentiabJe.-manifold with atlas {(U Cl' 4JJ}. We say that the 
atlas is. 9ri£llWfl. if all the transition functions g,., = 4>. 0 4>i 1 are 
orientation-preserving, and that the manifold i~ orientable if it has an orien ... 
ted atlas. .... '. -- . 

Pro~tion 3,2. A manifold M of dimension_I:'. (5. pcientable Ji and only if it has 
~a:·.q)~bal nowhere VQ.nishing n1f!~m. ," , ... ,- .. -. '~-- .. , ... -' --_. 

PROOF. Observe that T: R" -+ Hit is orientation-preserving if and only if 
T* dXl ••• dXII is a positive multiple of dXl ••• dx. at every point. . 

( <= ) Suppose M has a global nowhere-vanishing n-form w. Let 4>. : U. ~ 
R" be a coordinate map. Tnen 4>: dx 1 ••• dx" =!. w where f. is a nowhere
vanishing real .. valued function on U (1/' Thus h is either everywhere positive 
or everywhere negative. In the latter case interchange x 1 and Xl' Since 
4>: dX2 dX1 dX3'" dx" = -4>: dX 1 dX2 dx3 .. • dx. == (-/Jm, we may 
assume h to be positive for all IX. Hence: any transition function 4>,4>; 1 : R" 
-+ IR" will pull dx 1 ••• dx,. to a positive multiple of itself. So {( U., 4>J} is an 

oriented atlas. . 

(=» Conversely, suppose M has an oriented atlas {(U. t 4>J}. Then 

(4)~ 4>; I)_ (dx 1 ... dx,J = 1 dXl ..• dx. 

for some positive function 1. Thus 

4>1 dXl ... dx" == (~: ;"X4>: dXl ... dx-l. 

Denoting cp: dXl ••• dx. by 0)., we see that (J), ==/ru. where/::.: l-..A ~ 
4>« is a positive function on U. '"' U _. " . 

Let 0) == L P. (I). where PrA is a partition of unity subordinate to the open 
cover {U.}. At each point p in M, all the forms (J)., if defined, are positive 
multiples of one another. Since p. ~ 0 and Dot all P. can vanish at a point, 
0) is now here vanishing. 0 

Any two global nowhere vanishing n-forms (J) and w' on an oricntable 
manifold M of dimension n differ by a nowhere vanishing function: (J) - fal. 
If M is connected, then f is either everywhere positive or everywhere nep-

. tive. We say thatJJ) and w' are ~J1Wvalent if! ~-P.o.siti.Y~. Thus on a comicc
ted orientable manifold-- M- the nowhere vanishing n-forms fall into two 
equivalence classes. Either class is called an_grient~~.i~n on M,:writteD [M]. 
ror example, the standard orientation on1i" is given by'dx'~ ... dx •. 

Now choose an orientation [M] on M. Given a top form f iD O:<M), we 
define its integral by . 

i t ..:: L~ r P.'t 
(AI) •. Ju. 
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where Ju. p~ t means JAil (4); 1 )*(p« t) for some orientation-preserving triv

ialization 4>(1. : U ~ .:; IR"; as in Proposition 2.7, p(l. t has compact support. 
By the orientability assumption, the integral over a coordinate patch Iu. w 
is well defined. With a fixed orientation on M understood, we will often 
write JM r instead of JlM(r. Reversing the orientation results in the negative 
of the in tegral. . 

}.!roposition 3.3. T~~ dejiniti~~ .. of the integral J~.~. is independent of .~~e 
: orienteaciilaS""{(U(l' cI>(I}} andthe pariiiion o!u'iiity {p~}. '.. .... . .... --.~--

.. - .'.;>-

PROOF. Let {Vp} be another oriented atlas of M, and {Xp} a partition of 
unity subordinate to {Vp}. Since Lp XP = 1, 

L 1 PtI r = L 1 prz Xp t. 
iI Ua tI, /l v. 

Now P."I._ t has support in U. n V,., so 

Therefore 

o 

A manifold M of dimension n with boundary is given by an atlas {(Uti' <fJJ} 
where U. is homeomorp1i1c-to··'Ciiher--R" or the upper half space 

I .~" = {(Xh ... , xJI x,. ~ o}. The boundary aM, of M is an (n - 1)
dimensional manifold. An oriented alias for M induces in a natural way an 

'. oriented atlas for oM. This is a consequence of the following lemma. 

Lemma 3.4. Let T: HII ~ H" be a diffeomorphism of the upper half space 
w~rywhere positive Jacobian determinant. T induces a map T of the 
; boundary of H" to itself. The induced map T, as a diffeomorphism ·ojR"-l. 

also has positive Jacobian determinant everywhere. 

PROOF. By the inverse function theorem an interior point of ti" must be the 
image of an interior point. Hence T maps [he boundary to the boundary. 
We will check that f has positive Jacobian detenninant for n ::;;: 2; the 
general case is similar . 

. Let T be given by 

Then f is given by 

. Xl = T1(Yh Yl) 

Xl = T2(y it Y 2 ) • 
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By assumption 

aT, (y 0) a h Yl " 

iJT2 
-;- (YI, 0) 
UYl 

31 

Figure 3.1 

>0. 

Since 0 = 12 (YI' 0) for alJ Yt, iJT2/oYl (Ylt 0) =: 0; since T maps the upper 
half plane to itself, ' 

iJT2 
-0 (y" 0) > O. 

Y2 
Therefore 

iJ1j 
;- (y" 0)"> 0., " 
"'Yl " 

.0 

Let the upper half space H" = {XII ~ O} in R" be given the standard 
orientation dx 1 •• , dx,.. Then the J~414c.ed" "Qd~~,"atiQ,n on its boundary 

". oH" = {X,. = O} is by definition the equivalence class of( -1)" dXl ... dX.-l; 
this sign is needed to make Stokes' thc(lrcm sign-free. In general for M an 

Yoriented manifold with boundary, we define tbei~~~lp~i~~tat~E!!-[o~] 
9n aM by the following requirement: if <P is an orientation-preserving 
diffeomorphism of some open set U in M into the uppc;r half space H·, then 

cP-[iJHJI] = [aM] I ev, 

. where au = (oM) f1 U (see Figure 3.1). 
~ .. -- - -'" ....... - ._--- . 

Stokes'Theorem 

A basic result in the theory of integration is 

Theorem 3.5 (Stokes' Theorem). If CJ) is an (n - l)--/orm with compact support 
on ciii""oriented mtJnifold M of dimension PI and if oM is given the induced 
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. orientation, then 

L dro =' L ro. 
;>---- -...... --.' -~.' -' 

We first examine two special cases. 

SPECIAL CASE 1 (IR"). By the linearity of the integrand we may take w to be 
f dx 1 ••. dx" - l' Then dw = ± of/ox,. dx 1 ••• dx ... By Fubini's theorem, 

I ... dro =' ± I(r~ ;~. dX.) dXI ... dx._" 

But J~ co of lax,. dx,. = f(xl' ... , x .. _" (0) - f(x" ... , X,,_ h - (0) = 0 be-
cause/has compact support. Since R" has no boundary, this proves Stokes' 
theorem for R". 

SPECIAL CASE 2 (The upper half plane). In this case (see Figure 3.2) 

w.= f(x, y) dx + g(x, y) dy 

and 

( of 09) dOl = - - + - dx dy. ay ox 
Note that 

L :~ dx dy =' f'(t: :! dX) dy =' J g(eX), y) - g( - eX), y) dy =' 0, 

since 9 has compact support. Therefore, 

f (I) == - i of dx dy = - J«J ( C«J of d.,,) dx 
HI "~ oy - QC Jo ay 

=' - t ...... (f(x, eX» - I(x, 0» dx 

= JCO f(x, 0) dx::= r Cl) 

-co J~w 

Figure 3.2 
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where the last equality holds because the restriction of g(x, y)dy to OHl is o. 
So Stokes' theorem holds for ·the upper half plane. 

The case of the upper half space in R" is entirely analogous. 

Exercise 3.6. Prove Stokes' theorem for the upper half space. 

We now consider the general case of a manifold of dimension n. Let {U.l 
be an oriented atlas for M and {Par} a partition of unity subordinate to 
{U02}. Write W= L P« w. Since Stokes· theorem IM dw == IeMW is linear in (J)t 

we need to prove it only for P. W t wh~as the virtue that its support is 
contained entirely in U ar' Furthermore, p~ Cl) has compact sUP..POrt because 

Supp p« W C Supp P. r. Supp ar 

is a closed subset of a compact set. Since U /I is diffeomorphic to either R- or 
the upper half space H". by the computations above Stokes' theorem holds 
for U«. Consequently 

i d P«CJJ = r d P«CJJ = i PaW = i P«W. 
M J". ~V. tJltI 

This concludes the proof of Stokes' theorem in general. 

§4 Poincare Lemmas 

The Poincare Lemma for de Rham Cohomology 

In this section we compute the ordinary cohomoiogy and the compactly 
supported cohomology of R". Let 11: : R" x Rt --t W' be the p(ojection on 
the first factor and s : R" --fo R" X RI the zero section. • 

n(x, t) -= x 
s(x) == (x, 0) 

We will show that these maps induce inverse isomorphisms in cohomology 
and therefore H*CR" + 1) ~ H*(R"). As a matter of convention all maps are 
assumed to be Crx. unless otherwise specified. 

Since Tt ~ S = 1, we have trivially s* 0 x* == 1. However s 0 x F 1 and 
correspondingly n- 0 s* :F 1 on the level of forms. For example~ x* 0 s. 
sends the function/(x, t) to f(x, 0), a function .whiclt is constant along every. 
fiber. To show that n- 0 s* is the identity in cohomology, it is enough to 
find a map K on O*(R" x RI) such that 

1 - n* 0 s· = . ± (dK ± Kd), . 
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for dK ± Kd maps closed forms to exact forms and therefore induces zero 
;in cohomology. Such a K is called a homoloPY operator; if it exists, we say 
that x* 0 s* is cnaiir1iOriio-rojJ1c fotlietaenilly. ""Note "fIlat the homotopy 
operator K decreases the degree by 1. 

Every form on R" x R is uniquely a linear combination of the following 
two types of forms: 

(I) (n*</J)f(x, t), 
(11) (x*cP)f(x, t) dt, 

where q, is a form on" the base W. We define K : Q4(R- x IR)~ 
.0'-1(R" x R) by 

(I) (x*</J)!(x, t) ~ 0, 
(11) (x*</J)!(x, t) dt ...... (n*q,) J~ f 

Let's check that K is indeed a homotopy operator. We will use the 
simplified notation ofjox dx for L apax, dx., and Jg for fg(x, t) dt. On forms 
of type (I), 

w = (n*cp) . !(x, t), deg Cl) = q, 

(1 - n!s*)w = (x*</» . f(x, t) - x*4> . f(x, 0), 

(dK - Kd)w = -Kdw = -K(dX*I/M + (-l)4x·", (! dx +!dt)) 

= (-l)"-Ix·,,, f: ! = (-l),-Ix·"'[f(x. t) - f(x. 0)]. 

Thus, 

1 - 1t*s· = (_1)4-1(dK - Kd). 

On forms of type (11), 

w = (7t*q,)! dt, deg (JJ ::::z q, 

dO) = (n* dq,)! dt + (-1)4-1(n*t;) ~! dx dt. 
. ux 

(1 - n*s*)w = (J) because s*(dt) == d(s*t) z:: d(O) = O. 

Kdw = (x· d"'>ii + ( -l),-l(X*",) dx t ~. 
dKw -= (x* d"')fi + (-lrl(x*"'t ~: !) + f dt} 

Thus· 
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J n either case, 

1 - 11:* 0 s· == ( - 1)f - l(dK - Kd) 
. . on O'(R" x R).' 

This proves 

~ 

Proposition 4.1. The maps H*(R" x RI) 1::; H*(R") are isomorphisms." . " 
' •. , . -", .I-

By induction, we obtain the cohomology of R·. 

Corollary 4.1.1 (Poincare Lemma) . . ---------........ _-
{

R in dimensiolf 0 
H*(R") == H*(point) == 0 

elsewhere. 

Consider more generally 
. . \ 
M X RI 

1f 1 r s 
M. 

.' 
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If {U.} is an atlas for M, then {U. x RI} is an atlas for M x RI. Apin 
every form on M x RI is a linear combination of the two types of forms (I) 
and (11). We can define the bomotopy operator K 81 before and the proof 
carries over word for word to show that H·(M x RI) ~ H*(Af) is ao ~ 
morphism via 1C* and s*. 

\ (:cweIIary 4.1.2. (Homotopy Axiom for de Rham Cohomolo8Y). HOIII9.IPJIk 
, maps induce the same map in cohomalogy. , 

-- - ,--.-.-.-.- -- _____ .. _____ •• __ ... •• __ .0 ... ___ ,,_ ...... ___ ._-

~-'- \ 

PRooF. Recall tbat a homotopy between two maps f and 9 from A(. to N js a 
map F: M )( At -+ N such tbat· I.; 

{
F(X. t) == I(x) for t ~ 1 . 
F(x, t) = g(x). for t SO. 

Equivalently if So and SI :. M --+ M X RI are the O-section and I ... section 
respectively, i.e., SI(X) == (x. 1), then 

Thus 

f- F 0 s., 
9 - ~ 0 So-

f· ~ (F 0 s,)* - sf 0 F*, 

g. - (F 0 so)- - 4 0 F*_ . . . 

Since sf and s~ both invert 1(., they arc equal. Hence, 

f· .. , •.. o 
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Two manifolds M and N are said to have the same homotopy type In !h~ 
C" sense if there are COO maps f : M -. Nand 9 : N ..... M sucb that g.o f 

' and i 0 9 are C'" homotopic to the identity on M and N respectively.~· A 
manifold having the homolopy type of a point is said to be contractibl~. 

'~oIJary ~!';lJ'w()_/I!llnifolds with the same homotopy tyfHI. have t~e same 
' de Rnam cohomology. 

If i: A ~ Mis !he i~clusion and r: M -. A is a map which restricts to 
the ideniltyon A, then r is called a retraction of M onto A. Equivalently, 
r 0 i: A -> A is the identity. If in a<fditioll T:-r-;A-i ~M- is ho!!!E.tW.f 10 

the identity on M, then r is said 10 be a !!!!f!!.!'I_atio." rerrR£1iP1J ,g'[M 9.!!!.~LA._ 
In this case A and M have the same homotopy type. . 

· ~9roUary 4.1.2.2. If A is a deformation retract of M, then A and M have the 
s~~~ de Rham cohomology. __ .. , _'" 

Exercise 4.2.·Show that r: al 
- {O} ..... S' given by r(x) = xiII x 11 is a defor

mation retraction. 

/ Exercise 4.3. The cohomology of the n-sphere S·. Cover S· by two open sets 
U and V where U is slightly larger than the northern hemisphere and V. 
slightly larger than the southern hemispHere (Figure 4.1). Then U 1"\ V is 
dilfeomorphic to S" - J X R I where S· -, is the equator. Using the Mayer
Vietoris sequence, show that 

H.(S") = {R in dim~l)sions 0, n 
o otherWise. 

We saw previously that a generator of HI(SI) is a bump I-form on SI 
which gives the isomorphism Hl(SJ) ~ RI under integration (see Figure 

Figure 4.1 

.; In fact two manifolds have the same homotopy type in the C~ sense if and only if they haye 
the same homotopy type in the usual (colllin'K)us, sense. This is because every continuous 
map between two manifolds is COGtinuoualy bo~ 10 a C«I map (see Proposition 17~8). 
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Figure 4.2 

4.2). This bump I ... form propagates by the boundary map of the Mayer ... 
Vietoris sequence to a bump 2 .. fonn on S2, which represents a generator of 
H2(Sl). In general a generator of H"(S") can be taken to be a bump n-form 
onS". 

Exercise 4.3.1 Volume form on a sphere. Let 5"(r) be the sphere of radius r 

xf + ... + x~ + I = ,2 

in RIt+ 1, and let 

1 ,,+ 1 I ... 
Cl) = - L (-1),-. X, dXl ••• dx, . · . dx.+ I' 

~ ___ ._., ' 1-1 

(a) Write S" for the unit sphere S"(I). Compute the intcsral I .. co and 
conclude that (J) is not exact. . 

(b) Regaramg.....,-u 'a'funCtion on R"·' - 0, show that (dr) - (.a, • 01 ... 
dx.+ 1- Thus Cl) is the Euclidcan volume fonD on .tbe sphere s-(r). 

From (a) we obtain an explicit formula for the generator of the top 
co homology of ~ (although not 8:.. a bump form). For example, the gcocr-
ator of H2(S2) is represcnte\1 by .. 

1 
(1 :. 41£ (Xl dxJ dx3 - X2 dx, dx] + Xj tbc. dXl). . 

The Poincare Lemma for.Compactly Supported Cohom~~ogy 

The computation of ·tbe. ~mpacJJy supported (;OhomololY 1I:(R") is apiD 
by induction; we will show that there is an isomorp~m 

H: + l(R" X R1) ~ H:(R"). 

. Note that here, unlike the previous case~ the dimension is shifted by onc. 
More generally consider the projection n: : M x RI -+ M. Since the pull

back of a fonn on M to a form on M x A1 p.ecessarily has Doncompact 
support, the pullback map tr* d"oes Dot send. OcIl(M) to n:(M x RI). How ... 
ever, there is a ~~~dJDIU'_~ : O:(M x ,R1>-. 0: -I(M), c:a1Icd ~e:-
gration (110119 the ,) defined as fonows. FirSt Dete that a compactly ,----_ ..... -- ... ~."'~ ...... ,...... . 
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supported form on M x !RI is a linear combination of two types of forms: 

(I) n*cp . I(x, t), 
(11) n·cP . I(x, t) dt, 

where <P is a form on the base (not necessarily with compact support), and 
I(x, t) is a function with compact support. We define n. by 

(1) 1[~<p . f'~x, t) ...... 0, 
.; 

(4.4) 
(11) n:I/J . f(x, t) dt H r/I f./(X, t) dt. 

§.~ercise 4.5. Show that d1t. = n.d; in other words, 1t. : o.:(M x Ri)--+ 
n: -l{M) is a chain map~ .. .,..~,----.. --.-~-

By this exercise 1t. induces a map in cohomology 1t. : H: -+ H: -1. To 
produce a map in the reverse direction, let e = e(t) dtoeacompactlYs·up. 
ported I-form on R1 with total integral 1 and define 

e. : n:(M) -+ n: + l(M X RI) 

by 

4> ..... q,Ae. 

The map e. clearly commutes with d, so it also induces a map in cohomol
ogy. It follows directly from the definition that 1t. 0 e._-:", ...!..£D n:~R"). Al
though ~.!.~~ .. _!:} _ ,?n the level of forms, we Shall produce a homotopy 
operator K between 1 and e. 0 n. ; it will then follow that e. 0 7t. == 1 in 
cohomology. 

To streamline the· ~otation, write q,. f for n·~~f'<x, .0. and If for 
ff(x, t) dt. The homotopy operator K-:-n:(M .. x ... ·-R1) ~ O:-I(M x RI) is 
defined by . ' ~ '. -... . ~.. .. . 

(I) q, · f ..... 0, 

(11) ~ • idt .... ~ f./ -I/JA(t) 1: f where A(t) = t., e. 

Proposition 4.6. 1 ~ e. n. = ( __ 1)4-1(dK ~ Kd) on,H:(M'x RI). ----_ ......... ~-;..-...-..~~--- .. ~.'~ .... -..... ' -- ..... -... _----- .. _--_ ... . 
, PROOF. On forms of type (I), assuming deg tP -= q, we have 

(1 - e. n.}fP . f = •. I, . 

(dK - Kd)4> . f = -K(dI/J . f + (-l)qI/J of dx +~:"'lr .p of dt) . .' ~. ~ 

= (-1)'-1(4> I' of - CPA(t)IOO al\ <. 

_ QC ot -00 at) 

- (-lr- 1.pj. [Here r..,' ! -f(x, (0) - f(:x, -(0) ... 0.] 
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So 

1 - e.1t. := (- 1)4-1(dK - Kd). 

On forms of type (11). now assuming des ~ la; q - 1, we have . 

(1 - e. x.)c/I 1 dt = 1/11 dt - ~ L: 1 ) 11 e, 

(dKXI/II dt) = (dl/l) L/ + (-1)'-11/1 foo :~ dx dt + (-1)'-11/11 dt 

- (dl/l)A(t) foo 1 - (-1)9-
1

1/1 [e 100

.,,1+ A(t)(l
OO

oo :~dx ] 
(KdXI/II dt) = K(~I/I) . 1 dr + (-I)f-ItjI ;~ dx dt) 

= (dl/l) f./ -(dl/l)A(t) 1:1 

So 

+ (_1)'-1 [~foo ;~ dt -tjlA(t(L: ;~ ~x l . 

and the formula again holds. ~" o 

This concludes the proof of the followins 

Pr~positiOD 4.7. The maps 

are isomorphisms. ..,. :!. 

Corollary 4..7.1 (Poincare Lemma for Compact Supports). ---....... -

H*(R") == {R in d~nsiOll n- . 
c 0 otherwise. 

~ 

Here the isomorphiiDl H:tR") ~ R is given by iterated 1t* t i.e.. by inte-
gration .over W. 

To determine a generator for H:(R"), we start with the constant function 
1 on a point and iterate with e*. This gives e(Xl) dx. e(Xl) dXl ..• e(xJ th •. 
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So a generator for H;(R") is a bump n-form cc(x) dXl ... dXII with 

r «(x) dXl .. , dx .. = 1. . Jw I 

The support of cc can be made as small as we like . 
..•. _---..... 

~~A~K. this Poincare lemma shows that the compac~~pported_~Q.hQ.-~ .... _ 
~~I~!_ i$ .J~~t invari~~~._~~de!-.!t.~~otO.2l'.. _~q~l~!.l~~, although it is of. _.~ 
coprse invariant under. diffeomorphisms. 

'.- .--" • • ........ - ... _-.-...... _ •• 'A_~ _" • _~_ ............ "'_ 

Exercise 4.8. Compute the cohomology groups H·(M) and H:(M) of the 
open Mobius strip M, i.e., the Mobius strip without the bounding edge 
(Figure 4.3). [Hint: Apply the Mayer-Vietoris sequences.] 

rhe Degree of a Proper Map 

a\s an application of the Poincare lemma for compact supports we intro .. 
duce here a C(%) invariant of a proper map between two Euclidean spaces of 
the same dimension. Later, after Poincare duality, this will be generalized to 
a proper map between any two oriented manifolds; for compact manifolds 
the properness assumption is of course redundant. -., 

Let f : RII ~ H" be a proper map. Then the pull back f* : H;(R") ~ 
H;(R") is defined. It carries a. ~~ra~o~_.~f ¥,;<R-~~ i.e., ~ compactly sup
ported closed form with ·total mtegral one, to some multIple of the gener
ator. This multiple is defined to be the degree of f. If IX is a generator of 
H;(R"), then - ..... - .. 

~~~_Lr(L __ 
A priori the degree of a proper map is a real number; surprisingly, iUuJJlS . 
o,.pt t9 be an intege~. To see this, we need Sard9s theorem. ~ecall that a 
-critical point of a sm'ooth map f: RM -+ R- is a point p where the differ
ential (f.)" : T" R- -+ T/(,)R" is not surjective, and a ~itical value is the 
image of a critical point. A point of R" which is not a critic8I value 'is called 
a regular f)al~. According to this definition any point of R" which i$ not in 
the image of/is a regular value so that the inverse image of a regular value 
may be empty. 

fill 1111 f 
Figure 4.3 . 
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Jbeorem 4.9 (Sard's, Theorem Jor, B"). The set of critical values of a smpDth 
map f -:-Riii':;'-Rii"has measure zero in R- for any integers m and 11. _' , ' ,':, ' " 

~ ... , . . ',. 

,This means that given any € > 0, the set of critical values can be covered 
by cubes 4\Vith total volume less than £. Important special cases Qf this 
theorem were first published by A. P. Morse [1]. Sard's proo( o.f \he:~r~ 
case ma¥ be found in Sard [1]. ' " ,,', ,:# 

. ' 

--f!opositiOD ~~~O. Let f: H" --. lA" be a proper map. If f is not surj"t~ 
it has'aegree O. 

' ..... _- -... - - .--"'~ , 

PROOF. Since the image of a proper map"'l5 closed (why?), if f misses a point 
q, it must miss some neighborhood U of q. Choose a bump n-form « whose 
support lies in U. Thenf·a a 0 so that degf - O. . -,' .,;, 0 

E~~r~ise 4.10./., Prove that the image of a proper map is closed. 

So to show that the degree is an integer wc only need to look at IUrjec

tive proper maps from R" to A". By Sard's theorem, almost all points in the 
image of such a map are regular values. Pick ODO regular value, say q. By 
hypothesis the inverse image of q is nonempty.' Since in our case the two 
Euclidean spaces have the same dimension, the differential f_ is surjectWe if 
and only if it is an isomorphism. So by die inverse function tbeo~ 
around any point in the pre-image of q, / is a ~ diffeomorphilm. It 
follows that f - l(q) is a discrete set of points. Since I'm proper, f ~ l(q) is in 
fact a finite set of points. Choose a generator ex of H:t.R") whose IUpporJ is 
localized near q. Then ,.a, is an ft-form whose support is localized DOaI' die 
points of f - l(q) (see Figure 4.4). As noted earlier, a difrcomorpbisaa. PI1=
serves an integral only up to sign. so the integral of ,-a. near each point of 
f - l(q) is ± 1. Thus 

" . 
,:. L .". .• ' , " : .t 

i I-a, =:& r ± 1.' '.' 
.... /- .... ) , 

This proves that the degree 0/ a proper map between two EucliUan spGUs of 
the same dimension is tilt inUger. Moro pr~y, it .bows that tu """""~of 

/ •• ~ 'i '1'\ ,-':\ 

,Fiprc4.4 , .. of • .. ..•..• 1>, :.# 
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points, cOUllted with multiplicity + 1, in the inverse image of any regular value 
is the same for all regul4r values and that this number is equal to the degree of .. 
the map. 

Sard's theorem for W, a key ingredient of this discussion, has a natural 
extension to manifolds. We take this opportunity to state Sard's"'theorem in 
general. A subset S of a manifold M is said to have measure zero if it can be 
covered by countably many "COo!-,dinate open sets U l such that tPAS " U J 
has measure zero in R-; here <P, is the trivialization on Ut- A critical point of 
a smooth map f : M -+ N between two manifolds is a point p in M where 
the differential (f.), : T,. M -+ T/(,.,N· is not surjective, and a critical value is 
the image of a critical point 

~.4.1i'{Sard's Theorem). The set of critical values of a smooth map 
f :~M~ -+ N has measure zero. 

Exercise 4.11.1. Prove Theorem 4.11 from Sard's theorem for R·. 

§5 The Mayer-Vietoris .Argument 

The Mayer-Vietoris sequence relates the co homology of a union to those of 
the subsets. Together with the Five Lemma, this aives a method of proof 
which proceeds by induction on the cardinality of an open cover, called the 
Mayer-Vietoris argument. As evidence of its power and versatility, wc derive 
from it the finite 'dimensionality of the de Rham cohomology, Poincare 
duality~ the K.iinneth formula, the Leray-Hirscb theorem, and tbe Thom 
isomorphism, all for manifolds with finite good covero 

Existence of a Good Cover 

Let M be a manifold of dimension n. An open cover U = {UGC} of M is 
called a good cover if all finite intersections U CIO r. '.. . nU., are' diffeo

.. morpbic ~iOiF.Amanjfold which has a finite good cover is. iaid to be. of 

. ftfttte type . 
. . ~ ... -'''''-, 

,J)eorem ~Every manifold has a good cover. If the manif<!ld is compact, 
tllen tlie cover may be chosen to befinite. . 

To prove this theorem we wiJl need a little differential geometry. A 
. Riemannian structure on a manifold M is a smoothly varying metric ( , ) 

on the tangent space of M at each point; it is smoothly varying in the 
followina" sense: if X and Y are two smooth vector fields on M, then 
(Xt Y)" is a smooth function on M. Every manifold can be given a 
"Riemannian structure by the foUowins splicins procedure. Let {U.} be a 
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coordinate open cover of M, < t )11 a Ricmanniao metric on U •• and {P.} a 
partition of unity subordinate to {U.}. Then < ,.) = t p~< t). is'. 
Riemannian metric on M. 

PROOF Of THEOREM 5.1. Endow M with a Riemannian structure. Now we 
quote the theorem in 'differential geometry that every point in a lliemannian 
ma!lifold has a geodesicaUy convex- neigbborhood (Spivak [1, Ex. 32(f), p. 
491]). The intersection of any two such neigbborhoods is again goodesiC411y 
convex. Since a geodesically convex neighborhood in a Riemannian mani
fold of dimension n is diffeomorphic to R", an open cover consisting of 
geodesicaUy convex neighborboods will be a good cover. 0 

Given two covers U = {U.}crel and" =' {Jj},.J, if every V, is contained 
! in some Uti; we say that !J is ~ refinement of U and write U > 8. To be 
more precise we specify a refinement by a map 41: J -. I such that 
VJ C U .(~). By a slight modification of 1be above proof we can .how that 

1 e,!~~y open cover on a manif~ld hasarefinernent which i3 a good cover: 'simply 
take- the ge'ooes.cany·convex neighborboodi arOUnd eacnpoin"lto-be inside 
some open set of the given cover. . 

\ 
A directed set is a set 1 with a partial order > such that for any two 

l eJem~ts aaiiablR /, there is an element c with a> c and b > c. The set ~f 
open covers on a manifold is a dirccted set.: since any two open covers 

: always have a common refinement. A subset J of a directed let I is ~ofiJUJl 
in 1 if for every i in I there is a j in J such that j > J. It is clear that· J lIilio 
a directed set. ' ·.f ", '. -' ',-

~~!!.llIrY ,~!~., The good covers are cofinal in the --Ill all COIJRI of a 
nwnifold M. ' " 

Finite Dimensionality of de Rham Cobomology · .; ' .. /. · .. ..' 

.'.~~~the ~~.t.!~ Qfi.M~c~r. tltelt ~~ . 
og Y IS nite dj!!J£1Y~Oiiiit-------- - , 

PROOf. From the Maycr-Vietoris sequence 

weFt " ~ . ; :.'" ~ .;.. :) 

H'(U v V) ~ ker rEeim , ~ im d·EBim r. 
Tb . us, • 

) (.) if the qth cohomology 01 U. Y, arul U n Y Q7,jinite dimelUioluJl, tlwn 10 

! is ,he qth cohomolollY of U y Y. -
For a manifold which is diffcomotphic to ~ t the ~te dimcDIioDality or 
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H*(M) follows from the Poincare lemma (41.1). We now proceed by induc .. 
tion on the cardinality of a good cover. Suppose the co homology of any 
manifold having a good cover with at most p open sets is finite dimensional. 
Consider a manifold having a good cover {u 0, ••. , U,} with p + 1 open 
sets. Now (Uo u '" u U ,-1) ('\ U, has a good cover with p open sets, 
namely {Vop, U1p , ••• , U,-le"}. By hypothesi$. the qth cohomo]ogy of 
U 0 v ... u U, - h U, and (U 0 u ... u U,..: 1) ("'\ U, are finite dimensional; 
fr~m Remark (-), so is the qth cohomololY of Vo U •.• U U,. This com
pletes the induction. 0 

Similarly, 

,':' 'Pi;p;it~ the manifold M has a finite good cover, then its compact 
cohomology is finite dimensional. 

Poin~re Duality on an Orienta~le Manifold 

A pairing between two finite .. dimensional vector spaces 

'(,):V®W-+R 

is said to be nondegenerate if (v, w) = 0 for all w implies v = 0; equiva .. 
lently, the mapv";":;-(v;") snould define an isomorphism V ~ W*. 

Because the wedge product is an antiderivation, it descends to cohomol .. 
ogy; by Stokes' theorem, integration also descends to cohomology. So for 
an oriented manifold M there is a pairing 

J: H,M)®H;-,(M)-+ R · ---,.,.,--- .. ----,.-------~.~. . . 

" given by the integral of the wedge product of two forms. Our first version of 

, Poincare duality asserts that ~hi.s J!5lirirJf!-_~ no~g~~~!~ _~~~~!~_"l~ 
~.fJ.!.ientable Dntl. ~ q.fini.t~IIDQJt{.o.~~.; equlvalCiiiry, . - . ' " 

\ (S.4) 

Note that by (5.3.1) and (5.3.2) both Hf(M) and H~-'(M) are finite .. 
dimensional. 

A couple of lemmas will be needed in the proof of Poincarc duality. 

Exercise 5.5. Prove the Five Lenuna: given a commutative diagr~ ,of 
Abelian groups ~ " .. ----"--... ., 

I. 12 13 I~ 
••• ----+ A ---+ B --+ C ---. D ----+ E---. ... 

a1 p1 11 ~l tl~ 
~ .. ~ A' ---+ B ~ C' ~ D' ----+ E' --...:.... ..... 

I~ I~ I, r. 
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in which the rows are exact, if the maps a. p, ~ and e art is4)morphi8JDl, ~ 
so is the middle one )1. 

, Lemma 5.6. The two Mayer-Vietoris sequences (2.4) tmd (2~) may be ptIIretl 
together-to form a sign-commutative diagram . '. 

R R R R 

Here~si.go .. commutativity means, for instaJice, that 

i (J)" d. t == ± i (d-w) A 1', 
Vf\V VuJ' 

\ for w e H4( U () V), l' E H: -, - l( U U V). This lemma is equivalent to 
saying that the pairing induces a map from the upper exact sequence to the 
dual of the lower exact sequence such that the following diasram is sian'" 

" commutative: . 

----+ HtI ----+ Hf $ HI ---+ HI ---+ 

1 l ! 
-+ (H~-·)· ---+ (H;-.,· E9(H;-~· -. (H:--)· .---+ 

PRooF. The first two squares are in fact commutative as is straightforward 
to check. We will show the sign-commutativity of the third square., . : . 

Recall Crom (2.5) and (2.7) that tJ·w is a form in ~.+ l(U U Y).s~ ~J, ,. 

d*colu = -d(pyw) " , .-

d*co Iy = d(pu ca), ',,--

and d. ~ is a form in H;-f{U n J') such that .. 

. ,( -(extension by 0 of d_ f to U). (cx~~ by 0 of d. t ~ ~ Y» ."; ~ 
- (d(pv f). tJ(py ~»). . ' 

Note that d(p., f) = ldPv)r beca~ 't is closed; similarly. tl(p., co) - (dpy}w. 

in /,)~d. T = in yCOA(dpy)t = (-Ira" i,)dPy)cuATo" 

Since d·w has support in U n V, 

i d-Cl) A f == - i (dp.,)cu A f. 
UVV UnV 

, , 
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Therefore, 

r wAd. f = (_1)dc,a)t1 r d*wA f. 
Jv,-,v Ju v y 

o 

By the Five Lemma if Poincare duality holds for U, V, and U n V, then 
it holds for U u V. We now proceed by induction on the cardinality of a 
good cover. For M diffeomorphic to R", Poincare duality follows from the 
two Poincare lemmas 

and 

{
R in dimension . 0 

H·(R") = 0 
elsewhere 

H*(R") = {R in dimension n 
c 0 elsewhere. 

Next suppose Poincare duality holds for any manifold having a good cover 
with at most p open sets, and consider a manifold having a good cover 
{Uo, ... , Up} with p + 1 open sets. Now (Uo u ... u Up-d n Up has a 
good cover with p open sets, namely {U 01" U 11" ••• , Up-I. p}. By hypothesis 
Poincare duality holds for Uo u ... V Up-I' Up' and (Uo u ... u U,-l) 
nUl" so it holds Cor U 0 u ... u Up _ 1 . U Up as well. This induction argu
ment proves Poincare duality for any orientable manifold having a finite 
good cover. 0 

REMAtuc 5.7. The. 1U\i~~ess assumption on the good cover is in fact not 
.J1~1. By a closer anaiysis -ofthe-ropofogy-of -a-manifold,--the Mayei~ -
Vietoris argument above can be extended to any orientable manifold 
(Grcub, Halperin, and Vanstone [1, p. 198 and p.' 14]). The statement is as 
follows: if M is an orientable manifold of dimension ft, whose cohomology is 
not neceSMITily finite dimensional, then 

H4(M) ~ (H:-,(M»* t for any integer q. 

However, the reverse implication H'1{M) ~ (H"-4(M»· is not always true. 
The asymmetry comes from the fact that the dual of a direct sum is a direct 

. product, but the dual of a direct product is not a direct sum. For example, 
consider ~he ~finite disjoint union 

where the M ,'s are all manifolds of finite type of the same dimension n. 
Then the de Rham cohomology is a direct product 

(5.7.1) Hf(M) = n H'{MJ, 
• 



§5 The Maycr-Victoris Argument 

f"-

. 
but the ~ompact cohomology is a direct sum 

(S.7.2) H:(M) == Ea H:<M,). , 

) 

Taking the dual of the compact cohomology H:(M) gives a dir~t product 

(5.7.3) (H~M»· = n H:(M,). 
t 

47 

S~by (5.7.1) and (5.7.3), it follows from Poincare duality for the m~ifolds 
of finite type M., that . , 

Hf(M) == (H;-4(M»·. 

Corollary 5.8. If M . is a connected oriented manifold of dimensu,,, n, then 
I ~ H:(M) ~ H. -"In particular if M is cOmpact oriented 'and connected. 

H"(M) ~ IR. ~ ". ' 

\ Let f : M -. N be a map between two compact oriented 'manifolds of 
\ dimension n. Then there is an induced map in cohomology : 
i 
I 

I 
.:The_degree ?!1 is defined to be J.v f·oo, where (0 is the generator of H"(N). 
By the same argument as for the degree of a proper map between two 

: 'Euclidean spaces, the degree oC a map between two compact oriented mani
I folds is an integer and is equal to . the number of points, counted with 
~. multiplicity ± 1, in the inverse image oCany regular point in N. :: ~J 

The Kiinneth Formula and the Leray-Hirsch'Theorem 
. . ",;.. 

The Kiinneth formula states that the cohomology of the product ,of two 
maniiOidS--Ai'a'n'd-'F is the tensor product' ' .. 

(5.9) I .:. 

This means 

H"(M x' F) == 6) H'(M) ® Hf(F) 'for ever,' ri") ~.I' , ___ .. _ "+9-. " ,_.- ; $' ' .. : ... y ",t· 

More generally we are ~;~~;t;i"i~"-7\ -C9bomology of a im.rfi': . ,/ . ~. "-7~J ) 
'. . /- '/ 

/ 

__ ~n_._Let G be a topological group which acts cffectiv"ty'oO a space F 
on the left. A surjection n: E ~ B between topologi~ SI** i;I a fiber 
bundle with fiber F and stnlCture group G if M has an open 00,,« {~} such 
that there are homcomorphisms' ',' ~ :" . 
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and the transitions functions are.conUnuous functions with values in G: 

gJ..x) == q,. 4>i 1 I,.x) JC,. e G. 

Sometimes the ~ota.l space E is referred to as the fiber bundle. A fiber bundle 
with structure group G·· is also called a ~~l~. If x F B, tbe set 
Ex = x-1(x) is called th~.fl..~r at x. 

Since we are working with de Rham theory, the spaces E, B, and F will 
be assumed to be c:.- ao ~anifo~ds and the maps C ao maps. We may also speak 
J>lJ~Ji_b.er bundle without mentiQning its structur~ group;· in· that case, the 

. group is -understoOd· to be the group of diffeomorphisms of .f', .. denoted 
!Dim~· . 
.......... -~ 

REMAR.K. The action of a group G· on a space F is said t() be effe~.tive if the 
only element of G which acts trivially on F is the identity, Le.: if 9 . Y = Y 
for all y in F, then (J = 1 e G. In the COO case, this is equivaleftt to saying 
that the kernel of the natural map G --+ Diff(F) is the identity or that G is a 
subgroup of DifllF), the group of diffeomorphisms of F. In the definition of 
a fiber bundle the action of G on F is required to be effective in order that 
the diifeomorphism 

41. <Pi 1 I(x} x F 

of F can be identified unambiguously with an element of G. 

The transition functions g., : U. (') U, ...... G satisfy the cocycle condi-
tion: - .. - .... _. 

9., . g'1 = g.y. 

Given a cocycle {g.,} with values in G we can construct a fiber bundle E 
having {g.,} as its transition functions by setting 

(5.10) E = ill U« X F}/(x, y)Iix, g.,(x)y) . 
/ -

for (x, y) in U, x F and (x, g.,(x)y) in U. x F . . ' .. -. } 

The following proof of the Kunneth formula assumes that M has-,_ finite 
good cover. This assumption is necessary for the In(fuction .rgument. ' .. __ . 
.. . The tw·o-natural projections 

give rise to a map on forms 

(J) ® q, ...... n*w 1\ p*q, 
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which induces a map in cohomology (exercise) 

t/I : H·(M) ® H·(F) --. H·(M x F). 

We will show that'" is an isomorphism. 
If M = R", this is simply the Poincare lemma. 
In the following we will regard M x F as a product bundle over M. Let 

U and V be open sets in M and n a fixed inteser. From the Mayer-Victoria 
sequence 

.:. -+ HP(U u V) --. H'(U) EFJ H."(y) -+ H'(U " JI) ••. 

we get an exact sequence by tensoring with H"-'(F) 

• 
since tensoring with a vector space preserves exactness. Summing over 
p == 0, ... , n, yields the exact sequence 

IS 

IS 

-+ Ea (H'(U) ® H"-'(F» E9 (H'(V) ® H"-'(F» 

,. 
--+ Ea H'( U " V) ® H" - P(F) -+ 

The ronowing diagram is commutative ' 

•• • 
e (H'(U u v,® H--'(F)-. $ (H'(U)® H--,(.f1)E&(H"(Y)eR'-'(F)-. Ea H'(U n V) ® H-1. ,-0 1. ,-0 1p 

H"«U v,v) x F)---. H,U x F) $ Jr(V x F) ----..' HII(P r) n x 

The commutativity is clear except possibly for the square 

~. e (HP( U () V) ® H"- '(F» • ff) HP~ l(U U V) ® H"- "(F) .. 

l·11, 
H"«U n V) x F) ___ 4-_,_.--.... H"«U U V) x F, 

which we now check. Let w ® <p be in H"(U n V) ® H--,(F). Then 

t/ld·(w ® <p) == n·(d·w) " p·tP 
d*ejJ(w ® ~) = d·(x*co A p.t/I). 
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Recall from (2.5) that if {Pv, Pv} is a partition of unity subordinate to 
{U, V} then 

d*w = {-d(py c.u) on U 
d(Puw) on V. 

Since the pull back functions {x* Pu, Jr. Pv} form a partition of unity ""on 
(U u V) x F subordinate to the cover {U x F, V x F}, on (U () Y) x F 

d·(1t*wAp·ljJ) = d«x·Pu)1c*wAp·f/» 
= (dx·(pu w» A P·cp since 4> is closed 
= 1C*(~.CJ.) 1\ p*t/>. 

So the diagram is commutative. 
By the Five Lemma if the theorem is true for Ut V, and U ~ V, then it is 

also true for U u V. The Kiinneth formula now follows by induction on 
the cardinality of a good cover, as in the proof of Poincare duality. 0 

Let 1t: E -. M be a fiber bundle with fiber F. Suppose there are coho
mology classes e it .•• , e, on E which restrict to a basis of the cohomology 
of each fiber. Then we can define a map 

'" : H*(M) ® R{eh ... , e,} -+ H*(E). 

The same argument as the Kiinneth formula gives 

Tbeorem 5.11 (Lera y-Hirsch). Let E be a fiber bundle over M with jiber F. 
:~ SuppOU"" M ""has a finite good cover. 1/ there are global coho~ogy classes 

et, ... , er on E which when restricted to eachfiber freely generate the cohomol
ogy of the jiber, then H*(E) is a free module over H·(M) with basis {e it ••• , 
e,}, i.e. 

H·(E) ~ H*(M)®R{eb ... , e,} ~ H·(M)®H·(F). 

Exercise 5.12 Kunnelh fl?rmula/or compact cohomology. The Kiinneth for
mula for compact cohomology states" thal-fol' -any manifolds M and N 
having a finite good cover. 

H:(M x N) = H:(M) ® H:(N). 

(a) In case M and N are orientable, show that this is a consequence of 
Poincare duality and tlie Kiinneth formula for de Rham cohomology. 

(b) Using the Mayer .. Vietoris argument prove the Kiinneth formula for 
compact cohomology for any M and N having a finite good cover. 

The Poincare Dual of a Closed Oriented Submanifold 

Let M be an oriented manifold of dimension nand S a closed oriented 
submanifold of dimension k; here by "closed" we mean as a subspace of M. 
Figure 5.1 is a closed submanifold of Rl - {O}, but Figure 5-2 is not. To 
every closed oriented submanifold i : Se. M of dimension k, one can associ .. 
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ate a unique cohomology class ['Is] in H"-"(M), called its POincare dlUll, as 
follows. Let {}}. be a ,closed k-form with..-compact support on M. Since S ~ is 

Figure 5.1 
: . 

closed in M, Supp(wls) is closed not only in S, but also in M. Now because 
Supp(wls) c (Supp w) () S is a closed subset of a compact set, i·Cl) also has 
compact support on S, so the integral Ss i·w is defined. By Stokes's theorem 
integration over S induces a linear functional 00' H!(M). It follows by 
Poincare duality: (H~(M»" ~ H"-"(M), that integration over S corresponds 
to a unique cohomo)ogy class ['1s] io H"-"(M). We will often call both the 
cohomology class [lis] and a form representing it the Poincare dual of S. By 
definition the Poincare dual "5 is the unique cohomoJogy class in H·-~M) 
satisfying , 

(5.13) Is i*w = L wA'Is 

for any Cl) in H!(M). 
Now suppose S ~s a compact oriented submanifold of dimeosioD k in M. 

Since a compact subset of a Hausdorff space is closed, S is also a closed 
oriented submanifold and hence has a Poincare dual '1$ E Hit --(M). This 'Is 
we will call the ('losed Poincare dual of S, to distinguish it frDm the compa~t 
Poincare dual to be defined below. Because S is compaclt ODe can in fact 
integrate over S nol only k-forms with compact support OD. AI, but any 
k-form on M. In this way S defines a linear functional on H~Ml and so by 
Poincare duality corresponds to a unique cohomology class ["s] in 
H~-k(M), the comput:1 Poincare dual of S. We must assume here that M has 
a finite good cover; otherwise, the duality (Hi(M»* ~ H;-"(M) does not 
hold. The compact Poincare dual ['Is] is uniquely characterized by 

(5.14) Is i*w = L wA'Is. 

for any (0 e Ht(M). If (5.14) holds for any closed k-form (0, then it certainly 
holds for any closed k-form (J) with compact support. So as a form, 'Is is also 
the closed Poincare dual of S, i.e., the natural map H~-"(M) --+ H--:--i(M) 
sends the compact Poincare dual to the closed Poincare dual. Therefore we 
can in fact demand the closed Poincare dual of a compact oriented su~ 
manifold to have compact support .. However, as cohomology classes, ['Is] E 

, H" -"(M) and [lis] E H;-"(M) could be quite different, as the fo!low.i!\S 
examples demonstrate. . 
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EXAMPLE 5.1 S (The Poincare duals of a point P on R"). Since HII(R") == 0, 
the closed Poincare dual "p is trivial and can be represented by any closed 
n-form on R", but the compact Poincare dual is the nontrivial class in 
H:(R") represented by a bump form with total integrall. 

EXAMPLE-EXERCISE 5.16 (The ray and the circle in IRl - {O}). Let x, y be the 
standard coordinates and r, 8 the polar coordinates on R2 - {O}. 

(a) Show that the Poincare dual of the ray {(x, 0) I x > O} in R2 - to} is 
d6/21! in Hl(R2 - to}). 

(b) Show that the closed Poincare dual of the unit circle in Hl(R2 - to}) 
is 0, but the compact Poincare dual is the nontrivial generator p(r)dr in 
H:(R2 

- to}) where p(r) is a bump function with total integral 1. (By a 
bump function we mean a smooth function whose support is contained in 
some disc and whose graph looks like a "bumpn.) 

Thus the generator of Hl(R2 - {O}) is represented by the ray and the 
generator .of H:(R2 

- {O}) by the circle (see Figure 5.3). 

~ 5.17. The two Poincare duals of a compact oriented submanifold 
correspond to the t~o homology theorie~losed homology and compact 
homology. Oosed homology has now fallen into disuse, while compact 
homology is known these days as the homology of singular chains. In 
Example-Exercise 5.16, the generator of H 1 c:losed (R2 

- {O}) is the ray, while 
the generator of H 1. compact (R2 - {O}) is th~ circle. (The circle is a boundary 
in closed homology since the punctured closed disk is a closed 2-chain in 
Rl - {O}.) In general Poincare duality sets up an isomorphism between 
closed homology and de Rham cohomo)ogy, and between compact homol
oaY and compact de Rham cohomology. 

Let S be a compact oriented submanifold of dimension k· in M. If 
Wc M is an open subset containing S, then the compact Poincare dual of 
Sin W, "s. w E H:-~W), extends py 0 to a form 'Is in H:-J:(M). 'Is is clearly 
the compact Poincare dual of S in M because 

f i~CJJ = i ClJ A rr's. IF = r ClJ A 'Is. J$ IF. JAI 

o 

Figure 5.3 
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I 
Thus, the support of the compact Poincare dual of S in M may be shrunk into 
any open neighborhood of s. This is called the localization principle. For a 
noncompact closed oriented submanifold S the localization principle also 
holds. We will take it up in Proposition f).2S. 

In this book we will mean by tbe !:,oincare dual the closed Poincare dual. 
However, as we have seen, if the submanifold is compact, we can demand 
that its closed Poincare dual ba.ve compact support, even as a cohomology 
class in H"-"(M). Of course, pn a compact manifold M, there is no dis
tinction between the closed and the compact Poincare duals. , 

§6 The Thorn Isomorphism 

So far we have encountered two kinds of Coo invariants of a manifol~ de 
Rham cohomology and compactly supported cohomology. For vector bUD

dies there is another invariant, namely, cohomology with compact support 
in the vertical direction. The Thom isomorphism is a statement about this 
last-named cohomology. In this section we use tbe Mayer-Vietoris argu
ment to prove the Thorn isomorphism for an orientable vector bundle. We 
-then explain why the Poincare dual and tfle Thom class are in fact onc and 
the same thing. I Using the interpretation of the Poincare dual of a sub
manifold as the Thorn class of th~ normal bundle, it is easy to write down 
explicitly the Poincare dual, at least when the normal bundle is trivial Next 
we give an explicit construction of the Thom class for an oriented rank 2 
bundle, introducing along the way the global angular form and the Ruler 
class. The higher-rank analogues will be taken up in Sections 11 and 12. We 
conclude this section with a brief discussion of the relative de Rham theory, 
citing the Thorn class as an example of a relative class. . ., 
Vector Bundles and the RedQction of Structure Groups 

Let 1t: E --+ M be a surjective map of manifolds whose fiber 1(-l(X) is a 
vector space for every x in M. The map 1t i§Ja coo real' vector bundle of rank 
n if there is an open cover {U «} of M and .fibCr-preserving diffeomorphisms 

4J.: Elu. = g-l(U.) ~ U. x R" 

~hich are linear isomorphisms on each liber. The maps 

4J fI. 0 q, i 1 : (U GI nU,) x R" --+ (U GI (') U,) x R" 

are vector-space automorphisms of R" in each fiber and hence give rise to 
maps 

g.,: UrA " U_ ~ GL(n, R) 

g~x) = 4JtJ q,1-11~))( A" • 

In the terminology of Section S a vector bundle of rank n is a fibcr bundle 
with fiber R- and structure group GL{n, R). If the fiber is e" and the 
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struct\:lre gro~p is G 4n, C), t~e vector ,bundle lS a complex vector bundle. 
Unless otherwise stated, by a vector bundle we mean a Ca;, real vector 
bundle. 

Let U be an open set in M. A map s : U -. E is a section of the vector 
bundle E over U if 'It v s is the identity on U. The space of all sections over 
U is written r( U, E). Note that every vector bundle has a well-defined 
global zero section. A collection of sections SI, ... , sIt over an open set U in 
(ti is a frame on U if for every point ~ in U, s 1 ~x), ... , S,.(x) form a basis of 
tbe vector space E)( = 1t - l(X). . 

The transition functions {g«~} .of a vector bundle satisfy the cocycle 
cond;tion 

gtlP c gpy = ga.y on U«nU/lnU y • 

The cocycle {ga./l} depends on the choice of the hivialization. 

Lemma 6.1. If the cocycle {Y~/l} come~ from another lrivialization {4>~}, then 
there exist maps ).« : U a. -+ GL(n, IR) such lhal . 

• ,--1 V U 
Y4/l = J.~ Y4/S J../J o.n GI (\ " . 

PROOF. The two trivializations differ by a nonsingular transformation of R" 

at each point: 

Therefore, 

o 

Two cocycles related in this way are said to be equivalent. 
"Given a cocycJe {gClJJ} with values in GL(n, R) we can construct a vector 

bundle E having {gGlJJ} as its cocyc1e as in (5.10). A homomorphism between 
two vector bundles, called a bundle map, is a fiber-preser~ing smooth map 
f : E ..... E' which is linear on corresponding fibers. 

Exercise 6.2. Show that two vcctor bundles on M are isomorphic if and 
only if their cocycles relative to some open cover are equivalent. 

Given a vector bundle with cocycle {9czl}' if it is possible to find an 
equivalent cocycle with values in a subgroup H of GL(n, A), we say that the 
structure group of E may be reduced to H. A vector bundle is orientable if its 
structure group may be reduced to GL+(n, IR), the linear transformations of 
R- with positive determinant. A trivialization {(Uc., 4>GI)} •• ,c on E is said to 
be oriented if for every IX and fJ in 1, the transition function gczlJ has positive 
determinant. Two oriented trivializations {( U 11' 4>,,)}, {( JIj" t/I,,)} are equival
ent if for every x in U Cl '"' Y

" 
4>4 0 (.p_) -lex) : R" ..... RIt has positive determi

nant. It is easily checked that this is an equivalence relation and that it 
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partitions all the oriented trivia)jzations of the vector bundle E into two 
equivalence classes. Either equivalence class is caIJed an orientatiqn on .the 
vector bundle E. 

, . 

EXAMPLE 6.3 (The tangent bundle). By attaching to each point x in a mani-
fold M, the tangent space to M at x, we obtain the tangent bundle of M: 

TM = U~M'. 
XE M 

Let {( U Cl' t/I Cl)} be an atlas for M. The diffeomorphism 

t/I", : U" ~ A" 

induces a map 

which gives a local trivialization of the tangent bundle TJI. Front this we 
see that the transition functions of TAl are the lacobians of the transition 
functions of M. Therefore M is orientable if and only if its tangent bundle is. 
If "'11 = (Xb ..• , x,J, then a/OX., ... , %x" is.a frame for TJI over U •. In the 
language of bundles a smooth vector field on U. is a smooth section of the 

• tangent bundle over U". . 

We now show that the structure group of every real vector bundle E m~y 
be reduced to the orthogonal group. First, we can endow E with a Rieman
nian structure-a smoothly varying positive definite· symmetric l?ilinear 
form on each fiber-as follows. Let {U III be an open cover of M which 
trivializes E. On each U·., choose a frame for E lu. and declare it to be 
orthonormal. This defines a Riemannian structure on E lUll' Let < ,.)" 
denote this inner product on E lu ... Now u~ a partition of unity {p.l ,to 
splice them together, i.e., form ... 

< , ) = L P. ( , >11' 

This will be an inner product over all of M. 
As trivializations of E, we take only those maps t/J. that send ortbonor

mal frames of E (relative to the global metric (. " » to ortbonormal frames 
of R". Then the transition functions gf1,~ will preserve orthononnal frames 
and hence take values in the orthogonal group O(n). If the determinant of 
g«~ is positive, gd will actually be in the special orthogonal group SO(n). 
Thus 

Proposition 6.4. The structure group of a real vector bundle of rank n can· 
always be reduced to O(n); it can be reduced to SO(n) if and only if the vector 
bundle is orientable. 
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Exercise 6.5. (a) Show that there is a direct product decomposition 

GL(n, IR) = O(n) x {positive definite symmetric matrices}. 

(b) Use (a) to show that the structure group of any real vector bundle 
may be reduced to O(n) by finding the l«'s of Lemma 6.1. 

Operations on Vector Bundles 

Apart from introducing the functorial operations on vector bundles, our 
main purpose here is to establish the triviality of a vector bundle over a 
contractible manifold, a fact needed in the proof of the Thorn isomorphism. 

Functorial operations on vector spaces carry over to vector bundles. For 
instance, if E and E' are vector bundles over M of rank n and m respect
ively, their direct sum E Ea E' is the vector bundle over M whose fiber at the 
point x in M is ExE9E~. The local trivializations {q,.} and {<p~} for E and E' 
induce a local trivialization for E Ea E': 

Hence the transitioll matrices for E Ea E' are 

( 9,,/1 ~ ) . 
o 9«/1 

Similarly we can define the tensor produot E ® E', the dual E*, and 
Holl,l(E, E'). Note that Hom(E, E') is isomorphic to E* ® E'. The tensor 
product E ® E' clearly has transition matrices Jg«1I ® g~/I}' but the tran
sition matrices for the dual E* are not so immediate. Recall that the dual 
V* of a real vector space V is the space of all linear functionals on V, i.e., 
V· ~ Hom( V, R), and that a linear map f: V -+ W induces a map f' : 
w· --+ v· represented by the transpose of the matrix of f If 

q,« : E lu. ~ U" x W 

is a trivialization for E, tben 

is a trivialization for E*. Therefore the transition functjons of E* are 

(6.6) 

Let "Y and N be manifolds and 1t : E -+ M a vector bundle over M. Any 
map f : N --+ M induces a vector bundle f - 1 E on N, called the pullback of 
"E by f This bundle! -1 E is defined to be the subset of N x E given by 

{(n, e) I f(n) == xfell 
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It is the unique maximal subset of N x E which makes the following di
agram commutative 

cNxE 
I-lE • E 

6 

1 In 
N • M. 

I 

The fiber of f - 1 E over a point y in N is isomorphic to E 1(,) • Since a 
product bundle pulls back to a product bundle we see that f - 1 E is locally 
trivial, and is therefore a vector bundle. Furthermore, if we have a com-
position . .. 

, .M' I M 
P --..... , 

then 

(f 0 g) - 1 E == 9 - 1(1 -1 E). 

Let VectJM) be the isomorphism classes of rank" real vector bundles 
over M. It is a pointed set with base point the iSomorphism class of the 
product bundle over M. If f : M -+ N is a ~ap between two manifolds, let 
VectJ.f) = f -1 be the puUback map on bundles. In this way, for each 
integer k, Vect~( ) becomes a functor Crom· the category of manifolds and 
smooth maps to the category of pointed sets and base point preserving 
maps. 

REMARK 6.7 Let {U .. } be a trivializing open cOver for E and g., the tran
sition functions. Then {I - 1 U .. } is a trivializing open cover for f -1 E over N 
and (/ -1 E) If-IV. ~ f - '(E Iv). Therefore the transition Cunctions for f - 1 E 
are the pullback functions f-{JrJ.#. 

, 
A basic property of the pull back is the following. 

Theorem 6.8 (Homotopy Property of Vector Bundles). Assume Y to be a 
compact manifold. If 10 and 11 are homotopic maps from Y to a mpnifold X 
and E is a vector bundle on X, then f 0 1 E is isomorphlc to f 11 £9 i.e., }J()~ 
IOeic ~{'~..induce isomorph!~ ~bun4!!s. . 

;:1 

. . 
PROOF. The problem of constructing an isomorphism between two vector 
bundles V and' W of rank k over a space B may be turned into a problem in 
cross~sectioning a fiber bundle over' B, as follows. Recall that 
Hom(V, W) = v· ® W is a vector bundle over B whose fiber at ~h point 
p consists of all the linear maps Crolr. Vp to W If. Define Iso( V, W? ~o ~ the 
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subset of Hom( V, W) whose flber at each point consists of al1 the isomor
phisms from Vp to W p' (This is like looking at the complement of the zero 
section of a line bundle.) Iso( V, W) inherits a topology from Hom(V, W), 
and is a fiber bundle with fiber GL(n, A). An isomorphism between V and 
W is simply a section of Iso( V, W). 

Let I: Y x J --+ X be a homotopy between 10 and I., and let 
Tt: Y x I --+ Y be the projection. Suppose for some t~ in 1, f t~ 1 E is isomor
phic to some vector bundle F on Y. We will show that for all r near to, 
f ,- 1 E ::::: F. By the compactness of the unit interval I it will then follow that 
ft- 1 E ~ F for all t in I. 

Over Y x J there are two pullback bundles, 1-1 E and n- 1 F. Since 
f,~ 1 E ~ F, ISO(f - 1 E, 1t - 1 F) has a section over Y x to, which a priori is 
also a section of Hom(f -1 E, n- 1 F). Since Y is compact, Y x to may be 
covered with a finite number of trivializing open sets for Hom(f - 1 E, "n - 1 F) 
(see Figure 6.1). As the fiber of Hom(f -1 E, 1t - 1 F) are Euclidean spaces, the 
section o\'er Y x to may be extended to a section of Hom(f - 1 Et n - 1 F) 
over the union of these open sets. Now any linear map near an isomor
phism remains an isomorphism; thus we can extend the given section of 
IsO(f -1 E, 1[-1 F) to a strip containing Y x to. This proves thatf,- 1 E ~ F 
for t near to. We now cover Y x I with a finite number of such strips. 
Hencefo lE ~ F ~f lIE. 0 

y 

Figure 6.1 

REMARK. If Y is not compact, we may not be able to find a strip of constant 
width over which Iso(f - 1 E, n - 1 F) has a section; for example the strip may 
look like Figure 6.2." . 

But the same argument can be refined to give the theorem for Y a paracom
pact space. See, for instance, Husemoller [1, Theorem 4.7, p. 29]. Recall that 
Y is said to be paracompact if every open cover U of Y has a locally finite 
open refinement U', that is, every point in Y has a neighborhood which 
meets only finitely many open sets in U'. A compact space or a discrete 
space are clearly paracompact. By a theorem of A. H. Stone, so is every 
metric space (Dugundji [1, p. 186]). More importantly for us, every mani
fold is paracompact (Spivak [1, Ch. 2, Tb. 13, p. 66]). Thus the homotopy 
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y 

Figure 6.2 

S9 

property of vector bundles (Theorem 6.8) actually holds over any' ~fold 
Y, compact or not. 

Corollary 6.9. A vector bundle over a contractible manifold is trivial. 

PROOF. Let E be a vector bundle over M and let f and g be maps 

J 
M +t point 

11 

such that 9 0 I is homotoflic to the identity 1 Ill. By the homotopy pr()pcrty 
of vector bundles .. ~ 

£ ~ (g 0/)-1£ ,:!:!/-l(g-lE). 

Since 9 - 1 E is a vector bundle on a ~int, it is trivial, hence so i~ f - l(g -1 E). 

o 
So for a contractib~e manifold M, Vectt(M) is a sin$Ie point. 

REMARK.. Although all the results in this subsection are stated in tbe differ
entiable category of manifolds and smooth maps, the corresponding state
ments with "manifold n replaced by "space" also hold in the continuouS 
category of topological spaces and continuous maps, the only exception. 
being Corollary 6.9, in whi~h the space should be ,assumed paracompact. , 

Exercise 6.10. Compute Vectl;(Sl). 

Compact Cohomology of a Vector Bundle 

The Poincare.lemmas 

H·(M x R") = H·(M) 

H:CM x R") = H:-"(M) 
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may be viewed as results on the cQhomology. of the trivial .bundle M x R" 
over M. More generally let E be a vector bundle of rank n over M. The zero 
section of E, s ; xt-+(x, 0), embeds M diffeomorphically in E. Since M x to} 
is a deformation retract of E, it follows from the homotopy axiom for de 
Rham cohomology (Corollary 4.1.2.2) that . I 

H*(E) ~ H*(M). 

For cohomology with compact support one may suspect that 

(6.11) 

This is in general not true; the oPen Mobius strip, considered as a vector 
bundle over S1, provides a counterexample, since the compact' cohomology 
of the Mobius strip is identically zero (Exercise 4.8). However, if E and M 
are orientable manifolds of finite type, then formula (6.11) holds. The proof 
is based on Poincare duality, as follows. Let m be the dimension of M. Then 

H:(E) ~ (H-+"-*(£»* by Poincare duality on E _ 
~ (H"'+"-*(M»* by the homotopy axiom for de Rham cohomology 
~ H:-,M) by Poincare duality on M. 

Lemma 6.12. An orientable vector bundle E over an orientable manifold M ;s 
an orient able manifold. 

PROOF. This follows from the fact that if.{ (U at' '" J} is an oriented atlas for 
M with transition functions h", = '" GI 0 '" i 1 and 

cjJtI : E ILIa ~ U Of X R" 

, is a local trivializatio~ for E with transition functions g." then the com
position 

El ~ U x R" ~ RM X R" V. GI 

• gives an atlas for E. The typical transition function of this atlas, 

(t/I. x 1) 0 tP«tiJi 1 
0 (I/Ii 1 

X 1): R'" x R" ~ R- x R" 

sends (x, y) to (h~x), gJif/; 1 (x»y) and has Jacobian matrix 

(
D(h.,) • ) (6.12.1) 1 , o g.,{t/!,,- (x» 

where D(h«,) is the lacobian matrix of h.,. The determinant of the matrix 
(6.12.1) is clearly positive. 0 

Thus, 

Proposition 6.13. If n : E --+ M is an orientable vector bundle and M is 
oriemable, then H:(E) ~ H: -"(M). 
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Rf:MARK 6.13.1. Actually the orientabiHty assumption on M is superfluous. 
See Exercise 6.20. 

REMARK 6.13.2. Let M be an oriented manifold with oriented atlas {( U Cl' 

t/I J} and 1t: E..... M an oriented vector bundle over M with orientation 
{(UGC' q,J}. Then E can be made into an oriented manifold with orientation 
given by the oriented atlas 

{n- 1(UJ, (.;" x 1) 0 Q>« : n- 1(U.) -+ U" x RIr -+ Rm x R"}. 

This is called the local product orientation on E. 

Compact Vertical Cohomology and Integration along the Fiber 

As mentioned earlier, for vector bundles there is a third kind. of cohomo
logy. Instead of a:(E), the complex of forms with compact support, we 
consider n:.,(E), the complex of foons with compact support in the vertical 
direction; in other words, a form in n:,,(E) need not have compact support 
in E but its restriction to each fiber has compact support. The cohomol08Y 
of this complex, denoted H~I1(E), is called the cohomology of E with compact 
support in the vertical direction, or compact vertical cohomology. 

Let E be oriented as a rank n vector bundle. The formulas in (4.4) extend 
to this situation to give integration along the fiber, ". : O!(E) --to ~-'M), 
as follows. First consider the case of a trivial bundle E = M )( A". Let 
t 1, ... , t. be the coordinates on the fiber R". A form on E is a real linear 

• combination of two types of forms: the type (I) forms are. those Which do 
not contain as a factor the ra-form dt 1 4-'. dt. and the type (11) forma are 
those which do. The map 1t. is defined by 

• 
(I) (n ·t/»f(x, t I' ••• , tJ dt,. ... dt4 t-+ 0, r < 11 

(11) (n*t/»/(x, tit ...• tJ dt l ••• dt. t-+ tP J .. j(x, 'I' ...• tJ dt1 ••• tb., 

where f has cOD!pact support for each fixed x in -M and tP is a form on M. 
Next suppose E is an arbitrary oriented vector bundle, with oriented triv· 
ialization {( U.I' q,j} GI. •. Let x It ••• , x. and Y it ••• , Y. be the coordinate 
functions on U. and U" and t h ••• , t. ~ "1, ... , ". the liber coordinates on 
Elv. and Elu_ given by q,. and cp, respectively. Because {(U., •• )} is an 
oriented trivialization for E, the two seta of fiber coordinates tit •.• , '. and 
u 1 ••• , u" are related -by an element of G L + (n, R) at each point oC U. " U •• 
Again a form Cl) in O!(E) is 'locally of type (I) or (11). The map 1t. is defined 
to be zero o~ type (I) forms. To defi.n~ K. o~_ type (11) forms, wri. cu. ~ 
Cl) I.-I(u..}. Then . . .. '. _, 

1 ~... .. . ~ -: • ..~ .. ~ ... 

and 



62 1 de &ham Theory 

Define 

Exercise 6.14. Show that if E is an oriented vector bundle, then n. w. = 
7t.wp. Hence {n.wtII}lIe. piece together to give a global form 1t*w on M. 
Furthermore, this definition is independent of the choice of the oriented 
trivialization for E. 

Proposition 6.14.1. Integral ion along the jiber 1t. commutes with exterior 
differentiation d. 

. 
PROOF. Let {( U Cl' tPJ} be a trivialization for -E, {p«} a· partition of unity 
subordinate to {V.}, and wa form inO:,,(E). Sincew = L P«W, and bothn. 
and .<J are linear. it suffices to prove the proposition for P. (J), that is. 
1[* d(p. (I) = dn.(p. m). Thus from the outset we may assume E to be the 
product bundle M x R". If co = (7t*4»f(x, t) dt 1 .•• dtll is a type (11) form, 

tht.w = d(t/> J f(x, I) dt 1 .•• dt.) 

= (dq,) J f(x, I) dtl '" dl. +( _l)dea 4> 4> ~ dx. J :~ (x. I) dtl'" dl. 

and 

. of 
it* dw = n.«1t*dcp) f dt i ... dtii + (_l)d ••• n·</> Y -;- dXi dt 1 ••• dtJ 

. ~Xi 

= (dt/» J f dt1 •• , dt. + (_l)d ... ~ t/J dX j J :~dtl ... dt •. 

So dtt* (l) = x. tlw for a type (11) form. Next let OJ = (n*q,)f(x, t) dt'l ... dt ... , 
r < n, be a type (I) form. Then 

and 

"~dw = (_1)4 ••• L 7t.«n*lj» ~f (x, t) dti dtlt ... dt.) 
I (It. . 

=- 0 if dt i !it,. ... dtJr·~ ± dt 1 ••• dt •.. 

If dt. dtl.1 ••• dt4 = ±dt1 ••• dt,., then J iJf/OfAx, t) dt, dt' l '" dt" is again 0: 
becausefhas compact support, 

JQ() of 
T (x, t) dt; = f( ... , 00, •.. ) - f( ... , - 00, •.• ) = o. 

- Q() uti 
o 

Note that integration along the fiber, n* : O-(E) -. O· -II(M) lowers the 
degree of a form by the fiber dimension. 
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Proposition 6.15 (Projection Formula). (a) Let 1t: E ~ M be an oriented 
rank n vector bundle, r a form on M and w a form on E with compoct support 
along thefiber. Then 

n.«n·f) . w) = t . 1t. w. 

(b) SuppQ.se in addition that M is oriented of dimension m, ClJ e n:t1(E), and 
t e Q~ +" - '( M), Then with the local product orientation on E 

1 (n·T)l\w = 1, T 1\ n. w. 

PROOF, (a) Since two forms are the same if and only if they are the same 
locally, we may assume that E is the product bundle M x RIf. If Cl) is a form 
of ty~ (I), say w == n*q, . f(x, t) dt, • ... dt", where r < n, then 

1t.«n*t) . wf == n.(n*(t 4» . f(x, t) dt'l ... dt,» = 0 = f . x.w. 

If w is a form of type (11), say w = x·4> . f(xt . t) dtl .•• dt., then 

1t.«n·f) . w) = f q, f. f(x, t) dtl .•. dt. =- ~ • n.O) • . : 
~ • I 
_- •• I. 

(b) Let {(V,., 4>J}II&J be an oriented trivialization for E and {P.}.eJ a 
partition of unity subordinate to {U <Ill. Writing w =- r P. w, where P. DJ has 
support in U., we have . 

f (n.f)A~ == L f (.~~)A(P.CO) 
JE • JEI.i. 

" 

and 

• 
'Here 'Cl\ n*(p. (1) h~ compact support because its support is a closed subset 
of the compact set ~upp f; similarly, (x·f)A(P.w) also has compacJ sup
port. Therefore, it is enough to prove the propo~ition for M :-.l!,. . andE ' 
trivial The rest of the proof proceeds as in (a). " '- -,; D 

The proof of the Poincare lemma for compact supports (4.7) cairies over 
verbatim to give .: 4 

PrOpositiOD 6.1' (Poincarc' Lemma for Compact Vertical Supports). I nu-. 
gration mong theftber defines an isomorphisnl . . .. .' .' , ... ; -.' ;. 

a. : H:'(M x R') -+ H- -'(M). 
... t ~ 

This is a special case of 

Theorem 6.17 (Thorn Isomorpbi$Dlj~ If the vector bundle 1t: E ....... · Id over!J 
manifold M o/finite type is orientable, then' . . 

H!(E) ~ H·-"(M) 

where n is the rank of E. 
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PROOF. Let U and V be open $ubsets of M. Using a partition of unity from 
the base M we see that 

o --. n: .. (E lu v y) --. n:'1I(E lu) E9 n:II(E Iv) --. n:,,(E lu n") --.0 
is exact, as in (2.3). So we have the diagram of Mayer-Vietoris scq uences 

The commutativity of this diagram is trivial for the ~rst two squares; we 
will check that of the third. Recal1~g from (2.5) the explicit formul~ for the 
coboundary operator d·, wc have by the projection formula (6.15) 

n* d·w = n.«n* dpv) . cu) = (dpv) . 1t. w = d·'It* ru. 

So the diagram in question is commutative. 
By (6.9) if U is diffeomorpbic to R", then E Iv is trivial, so that in this case 

the Thom isomorphism reduces to the Poincare lemma for compact vertical 
supports (6.16). Hence in the diagram above, n* is an isomorphism for 
contractible open sets. By the Five Lemma if the Thom isomorphism holds 
for U, V, and U " V, then it bolds for U v V. The proof now proceeds by 
induction on the cardinality of a good cover for tbe base, as in tbe proof of 
Poincare duality. This gives the Tbom isomorphism for any manifold M 
having a finite good cover. 0 

REMARK 6.17.1. Although the proof above works only for a manifold of 
finite type, the theorem is actually true for any base space. We will reprove 
the theorem for an arbi.trary manifold in ,( 12.2.2). 

Under the Thorn isomorphism ~ :'H*(M) ~ H:,,+"(E), the image of 1 in 
HO(M) determines a cohomology class ~ in H:.,(E), calIed the Thom class of 
t~ ori~nted vector bundle E. Because n. ~ = 1, b, the projection formula 
(~1~ . 

1t.(1t*w /\.) = (J) 1\ 'It •• = ro. 

So the Thom isomorphism, which is inverse to n., is given by 

:T( ) =-= n*( )/\ fI). 

Proposition 6.18. The Thom class -» on a rank n oriented vector bultdle E can 
be uniquely characterized as the co~mology class in H;,,(E} which restricts to 
the generator of H;(F) on eachfiber F. 

PROOF. Since 1t •• == I, .Iribcr is a bump form on the fiber with total in
tegral 1. Conversely if ~' in H:"(E) restricts to a generator on each fiber, 
then -

n.«1t·co) 1\ 4J)'} == Cl) 1\ 'It •• ' = w. 
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Hence n*( )I\cz,' must be the Thorn isomorphism ~ and ~' == r(l) is the 
Thorn class. 0 

Proposition 6.19. If E and F are two oriented vector bundles over a manifold 
M, and 7t 1 and 1t 2 are the projections 

EeF 
y ,\1 

E F , 

then the Thorn class of E $.F is ~E E9 F) = 1tr~E) A 1ttcz,(F). 

PROOF. Let m = rank E and n = rank F. Then 1tfcJ»(E) A nt4J)(F) is a class in 
H:+II(£ E9 F) whose restriction to each fiber is a . generator of the compact 
cohomology of the fiber~ since the isomorphism 

H': + ,,(R- x R") ~ H;'(R"') ® H:t,R") 

is given by the wedge product of the generators. o 
Exercise 6.20. Using a Mayer-Vietoris argument as in the proof of the 
Thorn isomorphism (Theorem 6.17), show that if 'It : E --+ M is ~. orient
able rank n bundle, then ' 

H:(E) ~ H-:-,,(M). 

Note that this is Proposition 6.13 with the orientability assumption on M 
removed. 

Poincare Duality and the Thorn Class 

Let S be a closed oriented submanifoJd of dimension k in aD oriented • manifold M of dimension n. Recall from (5.13) that the Poincare dual of S is 
the cohomology class of the closed (n - k)-form "S characterized by the 
property 

(6.21) 1 cu = L cuAlls 

for any closed k .. form with compact support on M. In this section we will 
explain how the Poincare dual of a submanifold relates to the Thom class 
of a bundle (Proposition 6.24). To this end we first introduce the notion of a: 
tubular neighborhood of S in M; this is, by definition an open neigbborbood 
of S in M diffeomorphic to a vector bundle of rank n-k over S. Now a 
sequence of vector bundles over M, 

0-+ E ~ E' --+ E" ---.0, 

is said to be exact if at each point p in M, the seq uencc of vector .paces 

0-+ E, ~ E~ --+ E;--+O 
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is exact, where E p is the fiber of E at p. If S is a submanifold in M, the 
normal bundle N = NSIM of S in M is the vector bundle on S defined by the 
exact sequence 

.(6.22) o ...... 15 --. T~ Is -+ N --+ 0, 

where TAIls is the restriction of the tangent bundle of M to S. The tubular 
neighborhood theorem states that every submanifold S in M has a tubular 
neighborhood T, and that in fact T is diffeomorphic to the normal bundle 
of S in M (see Spivak [1, p. 465] or Guillemin and Pollack [1, p. 76]). For 
example; if S is a curve in R3, then a tubular neighborhood of S may be 
constructed using the metric in R3 by attaching to each point of S an open 
disc of radius one perpendicular to S at the eenter. The union of all these 
discs is a tubular neighborhood of S (Figure 6.3(a». 

(b) 

Figure 6.3 

In general if A and B are two oriented 'V~ctor bundles with oriented 
trivializations {(U ~. <l>J} and {(U GI' t/lJ}. respectively, then the direct sum. 
orientation on A E& B is given by the oriented trivialization {(U., 4>. Ea t/lJ}. 
Returning to our submanifold S in M, we let j : T c. M be the inclusion of a 
tubular neighborhood T of S in M (see Figure 6.3(b». Since Sand ·M are 
orientable. the normal bundle N s, being the quotient of T Jlls by Ts, is also 
orientable. By convention it is Quented in such a way that 

NsED Ts" T..,ls 
has the direct swn orientation. So the Thom isomorphism theorem app~~ 
to the ~ bundle T s:;; Ns over S and we have the. scq~ of ~ps 

where ~ is the Thom class of the tube T andj. is extension by 0; here-i. is 
defined because we are only concerned with forms on the tubular neighbor
hood T which vanish near the boundary of T. Wc claim that the Poincar; 
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dual of S is the Thom class of the no~l bundle of S; more precisely 

(6.23) 'Is == j.(<J) A 1) = i. f) in'· H--"(M). 

To prove this we merely have to show thatj. <J) satisfies the defining prop
erty (5.13) of the Poincare dual "s. Let Cl) be any closed k-form' with 
compact support on M, and i: S -+ T the in~lusion, regarded as the zero 
section of the bundle 1t : T --t S. Since 1t is a deformation retraction of T 
onto S, 7[. and i· are inverse isomorphisms in cohomology. Therefore on 
the level of forms, ClJ and ft-i-ClJ differ by an exact ~orm: ClJ == x*i*co + d't. .. 

L wllj.41 

= 1 w 11 41 because i* Cl has support in T . 

.; . 

0" • 

= i (n*j*w + dT) 11 41 

= i (n*j·w) 11 Cl since r (dT)ACI r d(TJ\41) - 0 by ~~ok~' Jr ·.JT . 
theorem 

by the projection fo~ula.(6.1S) 

because x. ~ == 1. 

This concludes the proof of the claim. Note that if S is com~ then its 
Poincare dual 'Is = j _ <J) has compact support. 

Conversely, suppose E is an oriented vector bUDdle over an oriented 
manifold M. Then M is diffcomorphically em~ as the zero section in 
E and there is an exact sequence 

o -+ TM -+ (T,;) tM -+ E -+ 0, 

i.e. the normal bundle of M in E is E itself. By (6.23), tbe Poincarc dual of M 
in E is the Thorn class of E. 10 summary, . . 

."'1 I 

ProposJtioa 6.24. (a) The Poincare dual of a closed orlated sub1lltJllifolll S la 
an oriented manifold M and the Thom cw. of,., lI01'IItGJ.bwul.,. S CIIfl)le 
represented by the 8Q1IW fomu. " . '. 

(b) The Thom class" of all oriented oa:UW bundle·,,: E -. AI OIler· ... 

oriented manifold M and the Poincare dual of tile zero section of E am be 
represented by the same form. . \ . ""!J " . -.:: ; 

Because the normal bundlc·of the lubmanifold S in M is diffeomorp~. 
to any tubular neighborhood of S, we have·the following proposition.. . . 

ProposJtioa 6.l5 (LOcalization Princi,,). The 6Upport 01 tM Poiltalri d~ of 
a subnumifoltl S can be shnmk into any glvelt tfIIIular nrighborlaood of s.: ';. 
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FiSure 6.4 

EXAMPLE 6.26. 

(a) The Poincare dUDl of a point p in M. 
A tubular ncighborhood T of p is simply an open ball around p (Figure 6.4). 
A generator of H;.,(n is a bump n-form with total integral 1. So the 
Poincare dual of a point is a bump n-form on M. The form need not have 
support at p since all bump n-forms on a connected manifold arc cohomol
ogous. 

(b) The Poincare dual of M. 
Here the tubular neighborboo4 T is M itself, and H:'(T) == H*(M). So the 
Poincare dual of M is the constant function 1. 

(c) The Poincare dual of a circle on a torus. 

Fiprc 6.S 

The Poincare dual is a bump 1-form with support in a tubular· neighbor .. 
hood of the circle and with total integral 1 on each fiber of the tubular 
neighborhood (Figure 6.S~ In the usual represen14ti()D of the torus as a 
square, if the circle is a vertical segment, then its PoincarC .dual is p(x) dx 
where p is a bump function with total integral 1 (Fqurc 6.6~ 

Using the explicit construction of the Poincare dual 'Is == i. ~ as the 
Thom class of the normal bundle, we now prove two basic properties of 
Poincarc duality. Two.submanifolda R and S in M are said to intersect 
tr~S4lly if and only if 

(6.2"')" '. TaR + TaS =:I ~M 
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y ...... -..--...... ~--. 

.:;' 
x 

Figure 6.6 

at all points x in the intersection R n S (Guillemin and Pollack [1, pp. 
27-32]). For such a transversal intersection the oodimension in M is addi-, 
tive: 

(6.28) codim R " S = codim R + codim S. 

This implies that the normal bundle of R n S in M is 

(6.29) 

Assume M to be an oriented manifold, and Rand S to be closed oriented 
submanifolds. Denoting the Thom class of an oriented vector bundle E by 
4J)(E), we have by (6.19) 

(6.30) 4>(N le nS) = Cl>(N. Ea N s) =- Gt(N Jt ) A cp(N S ). 

Therefor~ 

(6.31) 

i.e., under Poincare duality the. transversal .;lIfer"ction of closed orlerated 
submanifolds co"esporuJs to the wedge product of forpu. 

If f: M' -+ M is an orientation-preserving map of oriented manifolds, T 
is a tubular neighborhood of the closed oriented submanifold S in M, aDd 
f(M'} is ~ransversal to Sand T, tben ,-IT is a tubular neighborhood 01 

- f - 1 S in M'. From t~e commutative diagram 

• ~T) 
H*(S) H:u·i(T) H·(M) 

1*1 
ev-1T) 

/-1 
H*(f- 1S) H!+"(f-1n 

/-1 
J. + 

--. H-<M'). 

we see that if CJ) is the cohomology class on M representing the submaoifold 
S in M, then f*w is the cohomology class on M' representing f - 1(S), i.e., 

. under Po;ncare duality the induced mop on coltomology corre&poItIb to ".. 
pre-image in geometry, i.e., "I-I(S) =- f*"8. 



) 
70 I d~ Rh~ Theory 

The Global Angular Form, the Euler Class, and the Thorn Class 

In this subsection we will construct explicitly the Thom class of an oriented 
rank 2 vector bundle 7t : E -+ M, using such data as a partition of unity on 
M and the transition functions of E. The higher ... rank case is similar but 
more involved, and will be taken up in (11.11) and (12.3). The construction 
is best understood as the vector-bundle analogue of the procedure for going 
from a generator of H"-'(S .. -l) :=·H"- l(R" - to}) to a generator of H:<lR"). 
So let us first try to understand the situation in R". 

We will call a top form on an oriented manifold M positive if it is in the 
orientation class of M. The standard orientation on the unit sphere S·-1 in 
R" is by convention the following one: if (J is a generator of H,,-1(S,.-1) and 
x : R" - {O} -. S- -1 is a deformation retraction, then (1 is positive on sit - J 

if and only if dr . 1t*0' is positive on .R" - to}. 

Exercise 6.32. (a) Show that if 8 is the standard angle function on R2, 
measured in the cO\lnterclockwise direction, then dO is positive on the circle 
Si. 

(b) Show that if 4> and 8 are the spherical coordinates on R3 as in Figure 
6.7;then.d<J>Ad8 is positive on the 2-sphere S~. 

Figure 6.7 

.'. 
• Let a be the positive generator of H .. - 1(S .. -1) and", ::m 'It*a the corre-

spondiftg generator of H·- 1(R- - to}); t/I is called the angu.lpr form on 
R" - {O}. If p(r) is the function of the radius shown in Figure 6.8, then 
dp == p'(r)dr is a bump fonn on Rt with total integral 1 (Figure 6.9). There
fore (dp) . t/I is 'a compactly supported form on R" with total integral 1, i.e., 
(dp) . t/I is the generator of H:(R"). Note that because '" is closed, we can 
write 

(6.33) (dp) . t/I =- d(p . tII). 
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----------~----------__ ~--------~r o 

J •• 

-1 ..... __ .-

Figure 6.8 

N.ow let E be an oriented rank n vector' bundle over M, and E' the 
complement of the zero section in E. Endow E with a ttiemaDQiall'~ure 
as in (6.4) so that the radius function, makes sense on E. We begin our 
construction of the Tbom class by finding a global form t/I on E' whose 
restriction to each fib« is the angular fonn OD 11". ~ to}. '" is called the 
global angular form. Once we have ~e angular form t/I, it is thca easy to 
check that ~ == d(p . f/I) is the Thom c1ass. . 

Now suppose the rank of E is 2, and {U.} is an open cover of M. Since 
E has a Riemannian structure, over each U. we can choose an orthooorma} 
frame. This defines on E> I (I. polar coordinates,. and 6.; if x it .' •• t x. arc 
coordinates on U., then x* x h ••• , x*x., r«, 8« are coordinates OD ~ I U .. 
On the overlap U« (') U" the radii r« and r, are equal but the angular 
coordinates (J« and 8, differ by a rotation. By the orientability 0{ E. it makes 
sense to ~peak of the M~untercloc~wisc dir~n" jn each fibc,r .. ll1is.aUowa 

: . ; 

... 

-----------+--~------------------~r 

. : ; 

Fipre6.9 ' .. 
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us to define unambiguously ({J", as the angle of rotation in the counterclock .. 
wise direction from the ex-coordinate system to the /l--coordinate system: 

(6.34) 

Although rotating from ex to fJ and then from fJ to y is the same as 
rotating from ex to ",/, it is not true that CP",I + CP,y - cpflY = 0; indeed all that 
one can say is 

lP., + CP,.., - CP • ., E 2nl. 

AsIDE. To each triple intersection we can associate an integer 

(6.35) 

The collection of integers {E.,.,} measures the extent to which { CPa,.} fails to 
be a cocyle. We will give another interpretation of {EGI#"} in Section 11. 

Unlike the functions {cp«l}' the 1-forms {dcp.,} satisfy the cocycle condi-
tion. '. 

Exercise 6.36. There exist I-forms~. on UCI such that 

, I 
2; dcp«l = ~IJ - ~a • 

[Hint: Take~. = Ly p~ dlpa'l' where {Py} is a partition of unity subordinate 
to {U .,}.]' . 

It foHows from Exercise 6.36 that d~. = d~,. on U Cl n U _. Hence the d~« 
piece together to' give a global 2 .. form e on M. This global form- e is clearly 
closed. It -is not necessarily exact since the ~. do not usually piece together 
to give a global I-form. The cohomology class of e in Hl(M) is called the 
Euler class of the oriented vector bundle E. We 'sometimes write e(E) instead 
of e. 

Claim. The co~omology class of e is independent of the choice of ~ in our 
construction. 

PROOF OF CLAIM. If {;CI} is a different ch,oi~ of I-forms such that 

then 

1 - '1 
-2 dqJ., = e, - fa. = ~, - ~., 

. 1t 

~I- ~,. = ~a - ell = ~ 

is a global form. So d~« and de_ differ by an exact global form. 0 
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By (6.,34) and (6.36), on EO Iv. nUl' 

d8f1. .~ _~' .~ - - n ~ - - 1C .. ,. 2n fI. 21r (6.36.1) 

These forms then piece together to give a s!oball-form t/I on~, the global 
angular form, whose restriction to each fiber is the angular form (1/2ft) d.8~ 
i.e., if Jp : R2 --+ E is the orthogonal inclusion of a fiber over ,. then ', •• = 
(1/21t) dB. The global angular form is not closed: 

d", = <~ -7(*'.) = -~·d'~ = -,,·d', . 
Therefore, 

(6.37) 

When E is a product, '" could be taken to be the pullbaek of (1/21t) dB 
under the projection E> = M X (Rl 

- 0) -. Rl - O. In this case ." is closed 
and e is O. The Euler class is in this sense a measure of the twisliaa of the 

. oriented vector bundle E. 
The Euler class of an oriented rank 2 vector bundle may be given in 

terms of the transition functions, as follows. Let g., : U fI. ('\ U, ..... 80(2) be 
the transition functions of E. By identifyin& S0(2) with the unit circle in the 
complex plane via (=: -c: :.) = e-, g., may be thought of 81 complex ... 
valued functions. In this context the angle from the p-coordioatc system to 
the (X-coordinate system is (l/i)log B.,. Thus 

8. - 8_ == "*(l/i)lol g." 

and 

n· dqJ., == - x·( 1/1)108 g.,. 
Since the projection 7t b~ maximal rank, 1£,* i$ injcctive, so that 

. . ", , ... 

dqJd - -(l/l)log B.,· 

Let {Pl'} be a partition of unity subordinate to tu,}. Then 

1 
21t dtp., - ,- - ~." 

where 

(6.37.1) 
1 1 

~ == - "p dlp ==,- -. " p d log 9 ;.:, 
Cl 2n /.. 7,. 2xI L, ., .,. ., , . 

Therefore, 

(6.38) 
1 

e(E) =- - -. "d(p d·JOS g.,.) 2n. i.- 7 
7 

on U •. 

I ~ . 
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Proposition 6.39. The Euler class is Junctorial, i.e., if J: N --. M is a Coo map 
and E is a rank 2 oriented vector bundle over M, then 

PROOF. Since the transition functions of 1-1 E are!*g"'I" the proposition is 
an immediate consequence of (6.38). 0 

We claim that just as in the untwisted C(\se (6.33), the Thorn class is the 
cohomology class of 

(6.40) (J) = d(p(r) . t/I) = dp(r) . t/I - p(r)x*e . 

Although '" is defined only outside the zero section of E, the form (J) is a 
global form on E since dp =: 0 near the zero section. (J) has the following 
properties : 

(a) compact support in the vertical direction; 
(b) closed: d~:;: - dp(r) . dt/l - dp(r) n*e = 0; 
(c) restriction to each fiber has total integral 1: 

IX> 2. 

7[.';'" = f f dp(r)' ~: = p(CX) - P(O) = 1 , 

o 0 

where lp: Ep --+ E is the inclusion of ~he fiber Ep into E; 
(d) the cohomology class of cP is independent of the choice of p(r). Sup

pose p(r) is another function of r which is -1 near 0 and 0 near infinity, and 
which defines ell. Then 

~ - cl = d{(p(r) -,1*»-t/i) 

where (p(r) - p(r» . '" is a global form on E because p(r) - p(r) vanishes 
near the zero section. 

Therefore ~ indeed defines the Thorn class. Furthermore, if s : M --. E is 
the zero section of E, then 

s·~ = d(P(O) • s*", - p(O)s· n· e = e . 

This proves 

PropositiOD 6.41. The pullback of the Thom class to M by the zero section is 
the Euler class. 

Let {U.} be a trivializing cover for E, {PGI} a partition of unity subordi
nate to {U.} t and gal the transition functions for E. Since 
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_ dO'A _1 • ~ 
- 2 + 2 .. re i.J P., d log 97«, 

1r tt, "I 

(cf. (6.36.1) and (6.37.1», we have by (6.40), 

(6.42) ~ = d(p(r) ~~) + 2~i d(P(r)n~ ~ p, d l~g g, •. 

This is the explicit formula for the Thom class. 

Exercise 6.43. Let 7t : E -+ M be an oriented rank 2 bundle. As' we saw in 
the proof of the Thorn isomorphism, wedging with the Thom class is an 
isomorphism 1\ ell : H*(M) ~ H:,,· 2 (E). Therefore every cohomology class 
on E is the wedge product of (J) with the pull back of a cohomology class on 
M. Find the class u on M such that 

~2 = cJ)" n·u in Ht., (E) ~ 

Exercise 6.44. The complex projective space CP" is the space of all lines 
through the origin in e" + 1, topologized as the quotient of C· + ~ by the 
equivalence relation 

z -- lz for z e e" + 1 * .~ a nonzero complex number. 

Let Zo, ... , z,. be the complex coordinates on" c-. '. These give a set of 
homogeneous coordinates [zo,'.' t z,,] on CP", determined up to multi
plication by a nonzero complex number l. Define U. to be the open subset 
of CP" given by z, :F O. {U 0, ... , U.} is call~ the standard ope,. cover of 
CP". ,. , 

(a) Show that CP" is a manifold. 
(b) Find the transition functions of the normal bundle NcPI/cI" relative 

to the standard open cover ofep1. 

EXAMPLE 6.44.1. (The Euler class of the normal bundle of Cpl in CP~). Let 
N = N CP',CPl be the normal bundle of Cpl in CP2. Since Cp· is a compact 
oriented manifold of real dimension 2, its top-dimensional cohomology is 
H2(Cpl) = R. We will find the EuJer class e(N) as a multiple of the gener .. 
ator in H2(Cpl). • 

By Exercise 6.44 the transition function of N rel.ative to the standard 
open cover is gOI = zo/zJ at the point [zo, Zl]. Let Z = ZO/Zl be the coordi
nate of U .. which we identify with the complex plane C. By (6.38) the Euler 
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class e(N) on U 1 is given by 

1 
e(N) = - -2 . dpo d log 901 ft. 

1 
= - -2 . dpo d log z, 

1t1 

I de R.ham Theory 

where Po is 1 in a neighborhood of the origin, and 0 in a ncighborhood of 
infinity. 

Fix a circle C in the complex plane with so large a radius that Supp Po is 
contained inside C. Let A,. be the- annulus centercd at the origin whose 
outer circle is C and whose inner circle B, has radius r (Figure 6.10). Note 
that as the boundary of A" the circle C is oriented counterc:lockwise while 
B is oriented clockwise. 

c 

Fiaure6.10 

Now 

L e(N) = - -2
1 

. r dpo d log z, 
1 nJ Jc 
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and 

1 d(Po dz/z) = lim 1 d(Po dz/z) 
, r-O AI' 

= Iim i Po dz/z + i Po dz/z 
r ... O C ~,. 

by Stokes' theorem 

= lim i dz/z 
r"'O Br 

-= -2nl, 

where the minus sign is due to the cJockw~ orientation on B,. Therefore, 

L e(N) == - ~ (-2fti) = 1. 
t 2nl ,. 

Exercise 6.45. On the complex projective space C]"I there is a tautological 
line bundle S, called the universal subbundle; it is the subbundlc of the 
product bundleCP" x (:-+1 given by 

S = {(I, %)Iz El}. 

Above each point ( in CP", the fiber of S is the line represented by I. Find 
the transition functions of the universal subbundle S ofep! relative to the 
standard open cover and compu~ its Ewer class. 

Exercise 6.46. Let S" be the unit spbere in R"+1 and i the antipodal map OD 

S": 

, 

The real projective space IR P" is the quo~t of S" by the equiv~ence 
relation . 

. x"- i(x), for 

(a) An invariant form on S" is a fonn (J) such that i*w == ro. The v~~r 
space of invariant forms on S", denoted 0*(5">', is a differential 'complex, 
and so the invariant cohomqio&y H*(S'1 of S" is defined. Show that 
H*(fRP") ~ H*(S,,)/. . 

(b) Show that the natural map H·(S"t -+ H·(8") is injective. [Hint: If Q) 

is an invariant form and -Cl) = dt for some form 't on 5", then Q)-= 

d(t + i*'t)/2.] .. .' . 

(c) Give SIt its standard orientation (p. 70). Show that the antipodal map 
i : S· --+ S" is orientation-preserving for n. o<ld and orientation-reversing for 
n even. Hence, if [a] is a generator of H"(S"), then [0'] is an invariant 
cohomology class if and only if n is odd. 
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(d) Show that the de Rham co homology of RP" is 

R for q = 0, 

0 for 0 < q < n~ 
H4(~P") = 

.R for q := n odd, 

0 for q = n even. 

Relative de Rham Theory 

The Thorn class of an oriented vector bundle may be viewed as a relative 
cohomology class, which we now define. Let f : S ~ M be a map between 
two manifolds. Define a complex 0-(/) = E9q~oO"(f) by 

(}4(f) = Qf(M) Ea Qf - I(S), 

d(w, 8) = (dCJJ,!*w - dO). 

It is easily verified that d1 = O. Note that a cohomology class in 0*(/) is 
represented by a closed form CJJ on M which becomes exact when pulled 
back to S. 

By definition we have the exact sequence 

with the obvious maps ex and p: «(8) = (0, 6) and fJ(w, 8) = w. Clearly fJ is a 
chain map but « is not quite a chain map; in fact it anticommutes with d 
cxd = -da.. In any case there is still a long exact sequence in cohomol~ 

(6.47) 

Claim 6.48. ~* = f*. 

PR~F OF CLAIM. Consider the di~.gram 

. 0--+ O'(S) --+ 0'+ l(f) --+ (}'+ l(M) --+ 0 

di 
--+ Q9( M) -+ 0 

(w, 8) 

Let Q) e Q4(M) be a closed form and (0),6) any element of 0'(/) which maps 
to w. Then d(w, 8) == (O,f*O) - dO). So o*[w] = [/*0) - d8] = [f*(O]. 0 
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Combining (6.47) and (6.48) we have 

Proposition 6.49. Let f : S -+ M be a differentiable map between two maini
folds. Then there is an exact sequence 

Exercise 6.50. If f, g: S -+ M are homotopic maps, show that H*(f) and 
H*(g) are isomorphic algebras. 

If S is a submanifold of M and i : S -+ M is the inclusion map, we define 
the relative de Rham cohomology H4(M, S) to be H/f(Jj. . 

We now turn to the Thom class. Recall that if 1t : E -+ M is a rank n 
oriented vector bundle and F:J is the complement of the zero seCtion, then 
there is a global angular fonn '" on E> such that dt/l = -1[* e, where e 
represents the Euler class of E (6.37). Furthermore, if s = M ~ E is the zero 
section, then e = s*4l (Proposition 6.41). Hence, (s 0 n)*cJ) == -dy" where 
s 0 7t : EO -+ E. This shows that (~, - t/I) is closed in the complex O$(s 0 x) 
and'so represents a class in Ha(s 0 n). Sjnce the map s 0 1t : EO -+·B is clearly 
homotopic to the inclusion i : E" --+ E, by Exercise 6.50, H"(s 0 x) = H"(i). 
Hence, «J), - t/I) represents a class in the relative cohomology H"(E, E'). 

§7 The Nonorientable Case 

Since the integral of a differential form· on A" is not invariant under the 
whole group of diffeomorphisms of R", but only under the subgroup of . 
orientation-preserving diffeomorphisms, a differential form cannot be irle
grated over a nonorientable manifold. However, by modifying a differential 
form we obtain something called a density, which can be integrated over 
any manifold, orientable or not. This will give US" a version of Poincare 
duality for nonorientable manifolds and of the Thom isomorphism for non .. 
orientable vector bundles. 

The Twisted de Rham Complex . 

• Let M be ~ ttanifold and E a vector space. The space of differential fo~ms on 
M with values in E, denoted n·(M, E), is by definition the vector space 
spanned by (J) ® v, where ~ E O*(M), v E E, and the tensor product is over 
R. This space can be made naturally into a differential complex if we "let the 
differential be . . 

d(w ® v) = (dcu) ® v . . 
So the cohomology H·(M, E) is defined. Indeed, if E is a vector space of 
dimension n, then H·(M, E) is isomorphic to n copies of HI.(M). 
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Now let E be a vector bundle. We define the space of E .. valued q-forms, 
fl4(M, E), to be the global sections of the vector bundle (AfT:') ® E. Lo
cally such a q-form can be written as L (I), ® e" where Wl are q-forms and et 
are sections of E over some open set U in M, and the tensor product is over 
the CCJ:l functions on U. For these vector-valued differential forms, no na
tural extension of the de Rham complex is possible, unless one is first given 
a way of differentiating the sections of E. 

Suppose the vector bundle E has a trivialization {(U«, 4>J} relative to 
which the transition functions are locally constant. Such a vector bundle is 
called a flat vector bundle and the trivialization a locally constant triv
ialization. For a fiat vector bundle E a'differential operator on O*(M, E) 
may be defined as follows. Let e!, ... , e: be the sections of E over U« 
corresponding to the standard basis under the trivialization 4>.: E Iv. ~ 
U (j x Hit. We declare these to be the standard locally constant sections, i.e., 
de~ = O. Over U« an E-valued q-form s in ~(M, E) can be written as 
L (J). ® e~, where the (J), are q-forms over U •. We define the exterior deriva
tive d3 over U. by linearity and the Leibnitz rule: 

d(L CtJ, ® e!) c: L (dro,) ® e~ . 
It is easy to show that, because the transition functions of E relative to 
{(U«,4>J} are locally constant, this definition of exterior differentiation is 
independent of the open sets U •. More precisely, on the overlap U (j () U I' 
if 

S = L Wi ® e~ = L Tj ® e~ 

and e~ = L cijeJ, where the c.) are locally constant Cunctions, then 

t J = L ciJWt 

and 

d(L tj ® e~} = L (dtJ) ® e~ 

- L (c,) dro,l ® e~ 

= L (dro;) ® e~ 

= d(L rot ® e~). 

Hence ds is globally defined and is an element ofQ4+1(M, E). Because dl is 
clearly zero, O-(M, E) is a differential complex and the cohomology 
H-(M, E) makes sense. As defined, d very definitely depends on the triv
ialization {( U «, q, J}, for it is through the trivialization that the locally 
constant sections are given. Hence, d, O*(M, E), and H-(M, E) are more 
properly denoted as d., n:(M, E), and H:(M, E). 

EXAMPLE 7.1 (Two trivializations of a vector bundle E w.hich give rise to 
distinct cohomoli>gy groups H*(M, E». 
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Let M be the circle Si and E the trivial line bundle SI x RI over the 
circle. If E is given the usual constant trivialization t/J: 

l/J(x" r) == r for x e Si and 

then the cohomology H:<SI, E) = R. 
However, we can define another locally constant trivialization '" for E as 

follows. Cover S' with two open sets U and V as indicated in Figure 7.1. 

",..--- .----... 2 

.~ 

1 1 

v 
) u 

( v 
Figure 7.1 

: .. , 

Let p(x) be the real .. valued function on V whose graph is as in Figure 7.2 
The trivialization '" is given by , 

",(x, r) ~ {~X)1 for x E U, re RI, 

for x e V, rE RI. 

The standard locally constant sections over U and V are ev<x) = (x, 1) and 
ey(x) = (x, 1/ p(x» respectively. Relative to the trivialization f/I, the cohomol .. 
ogy H~(S 1, E) = 0, sirce the locally constant sections over U and· V do not 
piece together to form a global ~tion (cx~Pt Cor the zero section). 

It is natural to ask:· to what extent is the twisted cobomology H:(M, E) 
independent of the trivialization 4> f9r E? 
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1 
2" ~------

v 
Figure 7.2 

Proposition 7.2. The twisted cohomology is invariant under the refinement 0/ 
open covers. More precisely, let {(U", 4>J}«el be a locally constant triv
ializalion for E. Suppose {VI}'" J is a refinement of {u.l«. 1 and the coordi
nates maps "'Ion V, c U 1& are the restrictions of <PfIl. Then the two twisted 
complexes n:(M, E) and n:(M, E) are identical and so are their cohomology: 

H:(M, E) = H:(M, E). 

PROOF. Since the definition of the differential operator on a twisted complex 
is local, and t/J and", agree on the open cover {v,}, we have d. = d •. 
Therefore the two complexes O:(M, E) and O:(M, E) are identical. 0 

Still assuming E to be a flat vector bundle, suppose {(U., tPJ} and 
{(UG!' y;J} are two locally constant trivializations which differ by a locally 
constant comparison O-cochain, i.e., if e~ and /! are the standard locally 
constant sections over U III relative to the trivializations q, and", respectively, 
then 

e' - ~ ail!) • - ~ • « 
J 

for some locally constant function 

a" = (a!l): U.-+ GL(n, R). 

In this case there is an obvious isomorphism 

F: ~(M, ~)-+ QJ(M, E) 

given by 

I e!t-+ L a~f~. 
J 

It is easily checked tha~ the diagra~ 

n:(M, E)~~+l(M, E) 

lF lF 
n;(M, E) ~C;+l(M, E) 
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commutes. Hence F induces an isomorphism in COholDo1ogy. Next, suppose 
we are given two locally constant trivializations {(Uat 4>J} and {(V" I/I,)} 
for E, with possibly different op,cn covers. By taking a common refinement, 
which does not affect the twisted cohomology (Proposition 7.2), we may 
assume that the two open covers are identical. The discussion above there
fore proves the following. 

Proposition 7.3. (a) Let E be aflat vector bundle o,er M~ and {(Uc , (j)J} and 
{( Vp, t/I (J)) two locally constant trivializations for E. Suppose after Q common 
refinement the two trivializations differ by a locally constant comparison 0-
cochain. Then there are isomorphisms 

n:(M, E) ~ n:(M, E) 

and 

H;<M, E) ~ H:(M, E). 

This proposition may also be stated in terms of the transition. fundions 
for E. . 

Proposition 7.3. (b) Let E be aflat vector bundle of rank nand {9d} and {hal} 
the 'transition functions for E relative to two locally constlmt trivializations t/J 
and t/I with the.same open cover. If there exist.loc~ll)' cO~fantfUll4,iq~.-, .. . '. 

,la: Ua.-+ GL(n, R) 

such that 

then there are isomorphis11U as in 7.3(a). 

Propositiou 7 A. If E is a trivial rank n vector bundle over a manifold M, with 
4> a trivialization of·£ given by n global ~ections, then , 

It 

H;(M, E) == H*(M, R") == $H*(M) . . ' '-I "I ... 

PROOF. Let el~ ••. , ere be the n global sections corresponding to the standard 
basis of R-. Then every" clement in O*(M, E) can be written uniquely as 
L (J), ® e" where co, e O*(M) and the tensor product is over the COO func... 
tions on M. The map 

L COl ® ei~(Wh ••• , wJ 
gives an isomorphism of the complexes n:(M., £) and O*(M, R"). 0 

Now let {(UGC' q,J} be a coordinate open cover for the manifold M, with 
transition functions 9e1 = 4>. 0 4>i 1. Define the sign/unction on RI to be 
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{

+l 
sgn(x) = 0 

-1 

for x positive 
for x = 0 
for x negative. 

I de Rham Theory 

The orientation bundle of M is the line bundle L on M given by transition 
functions sgn J(g«/J), where J(g~) is the Jacobian determinant of the matrix' 
of partial derivatives of g«/J' It follows directly from the definition that M is 
orient able if and only if its orientation bundle is trivial. 

Relative to the atlas" {(U 11' <PJ} for M with transition functions 94' the 
orientation bundle is by definition the quotient 

(U« X Rt )/(x, v) - (x, sgn J(g.,(x»v), 

where (x, v) e U. x RI and (x, sgn J(g«-<x»v) E U i X RI." By construction 
there is a natural trivialization <p' on L, 

tP~: Llu. ~ Uti. x Ri, 

which we call the trivialization induced from the atlas {(U 11' tl>J} on M. 
Because sgn JW.,) are locally constant functions on M, the locally constant 
sections of L relative to this trivialization are the "equivalence classes of 
{(x, v) I x e U.} for v fixed in RI. 

PrOpositioD 7.5. If <P' and y,' are two trivializations for L induced from two 
atlases tP and '" on M, then the two twisted complexes n:,(M, L) and n;,(M, 
L) are isomorphic and so are their cohomology H:,(M, L) and H:,(M, L~ 

PROOF. By going to a common refinement we may assume that the two 
atlases ~ and t/I have the same open cover. Thus on each U. there are two 
sets of coordinate functions, t;« and t/I. (Figure 7,3.~ 

,"" ;JJ 

Figure 1.3 
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The transition functions g(l,jJ and h(J6 for the two atlases 4J and '" respectively 
are related py 

gll~X) = 4J1I tPi I I'Xl )( Rt 

= 4>. t/I (J- 1",11. t/I i 1 '" ~ tPi 1 "oS})( Al 

= p.J.x)h,.,(x)p.'(x), 

where jJ(/,: U,. n U1 -+ 0L(1, R) is the funct.ion 

jJJ.x) = tP,. "'; I l{~J. RI. 

It follows that 

sgn J(glll) = sgn J(p.J . sgn J(h",) . sgn J(}JI) - I. 

Since sgn J(PJ = ± 1, by Proposition 7.3(b) 

O:,(M, L) ~ n:~M, L). o 
We define the twisted de Rham complex Q*(M, L) and the twisted de 

Rham cohomology H*(M, L) to be o;~M, L) and H:,(M, L) for any triv ... 
ialization lP' on L which is induced from M. Similarly one also has the 
twisted de Rham cohomology with compact support, H:'(M, L). 

REMARK. If a trivialization '" on L is not induced from M, then H:(M, L) 
may Dot be equal to the twisted de Rham <;obomology H*(M~ L). 

The following statement is an immediate consequence of Propoiition 7.4 
and the triviality of L on an orientable manifold. . 

Proposition 7.6. On an orientable manifold M the twisted de RhtIm cohotpol
ogy H*(M, L) is the same as the ordinary de Rham cohomology. 

Integration of Densities, Poincare Duality, and the 
Thom Isomorphism 

Let M be a manifold of dimension n with coordinate open cover {(U., q,J) 
and transition functions gill. A der.sity OD M is an element of n-(M, L), or 
equivalently, a section of the density bundle (A"Tf,)®L. One may think of a 
density as a top-dimensional differential form twisted by the orientation 
bundle. Since the transj~jon function for the exterior Power A-Tt. is l/J{JJ.,)' 
the transition function (or the density bundle is . 

1 1 
)(g.,) . sgn J(g.,) = I J(g",) I 
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Let e41 be the section of L lu. corresponding to 1 under the trivialization 
of L induced from the atlas {(U«, tj>J}. If l/J. = (Xh •.• , x,.) are the coordi
nates on VII' we define the density I dXl ••• dx,.l in r(v., (A"rf,)®L» to be 

I dx 1 • •. dx" I = ea. dx 1 ••• dx". 

Locally we may then write a density as g(x h •• , , x,,) I dx 1 ..• dx,,1 for some 
smooth function g. 

Let T : Rn - .. Ill" be a diffeomorphism of Ill" with coordinates Xl' ... , XII 

and Yl, .. " YII respectively, If w = gldYl ... dY .. 1 is a density on R", the 
pull back of w by T is 

T·(() = (g 0 T) I d(Yl 0 T) ... d(y,. 0 rH 

= (go T)IJ(T)lldxl ... dx"l. 

The density 9 I dYl ... dy,. I is said to have compact support on R" if 9 has 
compact support, and the integral of such a density over R" is defined to be 
the corresponding Riemann integral. Then 

L T*w = L (g. T)l1mlldx • ... dx.1 

= L gldy • ... dy.1 by the change ohariable formula 

= L 00. 

Thus the integration of a density is invariant under the group of all diffeo
morphisms on R". This means we can globalize the integration of a density 
to a manifold. If {p.} is a partition of unity subordinate to the open cover 
{(U«,4-J} and CJJ e·~M, L), define 

r W = L f. (4): 1)* (p«CJJ). JAI «R"' 

It is easy to check that this definition is independent of the choices involved. 
Just as for differential forms there is a Stokes' theorem for densities. We 

state below only the weak version that we need. 

11Ieorem 7.7 (Stokes' Theorem for Densities). On any manifold. M of dimen
sion n, orientab~ or not, if ()) e o;-l(M, L), then .. 

. Ldco=O. 
The proof is essentially the same as (3.5). 
It follows from this Stokes' theorem that the pairings 

nt(M) ®O:-f(M, L}.-. R 
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and 

given by 

wA t - f .... wAr 

descend to cohomology. 

Theorem 7.8 (Poincare Duality). On a manifold M of dimension n with afinite 
good cover, there ate nondegenerate pairings 

H4(AfJ ® H:-4(M, L) -+ R 
R 

and 

H:(M) ® H--f(M, L) --+ R. 
R 

hOOf. By tensoring the Maycr ... Vietoris sequences (2.2) and (27) with 
reM, L) we obtain the corresponding Maycr-Vietoris sequences for twisted 
cohomology. The Mayer ... Victoris argument for Poincare duality on an 
orientable manifold then carries over word for word. 0 

Corollary 7.8.1. Let M be a cOMected manifold of dimension n having a finite 
good cover. Then 

-_ H"(~:=: {R if M is.compact orientable 
. 0 otherwise. 

PROOF. By Poincare duality, H"(M) == H:(M, L). Let {U.} be a coordinate 
open cover for M. An clement of Jt1(Mt L) is given by a collection of 
constants!. on U. satisfying 

f. ::; (sgo J(g.,»jj. 

If f. = 0 for some Cl, then by tbe connectedness of M, we have f. == 0 for an 
a. It follows that a nonzcro clement of H:(M, L) is nowhere vanishinl
Thus, H~(M, L) "0 if and only if M is compact and L has a nowhere
vanishing section, Le., M is compact orientable. In that case, 

o 
Exercise 7.9. Let M be a manifold of dimension n. Compute the cohomol-
08Y goups H;(M), H"(M, L), and H;(M, L) for each of the foUowing four 
cases: M compact orientable~ noncompact oricntable, compact nODorient
able, noncompact Donorientable. 

Finally, we state but do not prove the Thom isomorphism theorem in all 
orientational generality. Let E b.e a rank la vector bundle over a manifold 
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M, and let {(U«, q,j} and gal be a trivialization and transition functions for 
E. Neither E nor M is assumed to be orientable. The orientation bundle of 
E, denoted o(E), is the line bundle over M with transition functions 
sgn J(g._). With this terminology, the orientation bundle of M is simply the 
orientation bundle of its tangent bundle TAl' It is easy to see that when E is 
not orientable, integration along the fiber of a form in O:.,(E) does not yield 
a global form on M, but an element of the twisted complex O*(M, o(E». 

Theorem 7.10 (Nonorientable Thorn Isomorphism). Under the hypothesis 
above, integration along the jiber gives an isomorphism 

1t* : H:II +'E) ~ H*(M, o(E». 

Exercise 7.1 I. Compute the twisted de Rham cohomology H*(RP", L). 
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" The Cech-de Rham Complex 

§8 The Generalized Mayer-Vietoris Pr.inciple 

Reformulation of the Mayer-Vietoris Sequence 

Let U and V be open sets on a manifold. In Section 2, we saw that the 
sequence of inclusions 

{J lJ V ~ u il V t:. U:' r. V 

gives rise to an exact sequence of differential complexes 

o -. O*(U u V) -. Q*(U) EB O·(V) ....... O*(U () V) -+ 0 
.:" .. l ... ~ 

caIJed the M uyer- Vietoris sequence. T}le-associated long exact sequence 

allows one to compute in many cases the cohomo)ogy of the union U u V 
from the cohomology of the open subsets U and V. In this section, the 
Mayer-Vietoris sequence win be generalized rrom two open sets to count .. 
ably many open sets. The main ideas here are due to Weil [1]. 

To make this generalization more transparent~ we first reformulate the 
Mayer-Vietoris sequence for two open sets as follows. Let U be the open 
cover { U, V}. Consider the double complex C*(U, 0*) = El) K'· f = 
El:) CP( U, 0') where 

K O.9 = CO(U, n") = Q9( U) Ea Q9( V), 

K 1.11 = C1(lI, 04) = Q4( U f"\ V), 

K p • .f = 0, p ~ 2. ' 
-

" 
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, " 

.... 

q 

3 
d.t 2 Q1(U) El) gl( It} Ql(U" V) 0 

1 nl([1) (f) 0'( V). 01(U fl V) 0 
0.· gO( fI) Ea n~,Oo( u "V) 0 

.;., " 0 1 2 

J " 

. , 
•• --4> 

'. -... 

p 

. '~:;~ble complex is equipPed with two differential operators, the . 
exterior derivative d in the'vertical ~on and the difference 'Q~ator 6 in 
idle horizOntal direction. Of·Courie, 6 is 0 after the first ~. Because d . 

:"~an~ 6 are independent operators, they commute. . '. . 
, . ID pnmd gi'lCD a doubly graded :comp1ex K .. ·. III with. COlDJlluUnl ditfer .. 
cutials'4 and'~, onc can form. singly graded complex K· by 'sWlUDiqg . 
alona.~: .... ti4iagona1lines . . . . " .. 

. " ". . 
" 

,..+, •• 

q 

2 

1 

o 

~I--I--~""-

.......... ~Ir-*-..J--

anc;I defining the differential operator to be 

. ,. 
D - D' +D- .with 1Y: -.-6~ lY" (-I,d ~n "'tf . 

• ••• 4' 

ltEMuK ON nIB DBPlNITtoN OF D.. . .': 
, . 

... .. ' - ... 
-.. ",:. . 

.. '~q. 

'. ' 

. . 
!-' -

.. - . 

; '. . . '., ~ ) 
.' . p , 

If D were naively defined as () -' d' + I, it would not bC a differential oper .. 
at("':·~ l)l == 2d6:;; ~ HO~1ICr, if we alternate the ·S;ign.of d from o~ 
~ to the next, t¥n~, ~,-,~~,~,~ ~~ ~ above,. . 
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Dl == dl + &1- d8'+ 62 == o. 
In the sequel we will use the same symbol C*(U, Q.) to denote, tbe 

double complex and its associated $ingJe compie~. In this setUP;,1he" ~yer. ' 
Vietoris principle assumes the followin, form. . , 

Deorem &,1. The tloubJe complex C~(U, Q.) COInpute3 IM de RhDm coltomol ... 
ogyofM: . ',' . 

HD{~(U, O*)} ~,I!L<M). , 
PROOF. In one direction tbere is the natural map :,', 

r: O·(M) -+ O*(U) E9 O*(y) ~ C~u, 0*) 

given by the restriction of forms. Our first observation is that ,. ~ a chain 
map, i.e., that the following diagram is CQmmtitative: 

This is because 

O*(M) ~ C*(U, 0·) , 

~f ID 
O·(M) --. C·(U~ 0·) . , 

Dr ;sa (6 + ( -1)' d)r (he" p -= 0] 

=dr 

3: td . 

Consequently, ioducci a map in cooomolosY 

. . :~. ': J 

, 

;". " ... 

A q-cochain ex in the double compiex ~ Q*) has ~~ com~ta . ',;' 
'.,. , 

ex -= (10 + Cl 1, «0 E' K~·lt ' Cll e K 1. f - • • 

By the exactness of the Mayer-Victoris sequeiM:e there e~ a , luch tbat ' 
~p == tI,., With -this choice of p, Cl - DfJ has only the (0, q)-compcmcnt.'1bUl,'· 
every cochain in C*(U, 0·) .is D-cohomol~ ~o a coc.#uU witll only tlw ''!Jp 
component. ' .' t, . , "'.; , ' 
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We now show r· to be an isomorphism. 

Step J. r* is sur.ject~ve. 
By the remark above we may assume that a given cohomology ,class in 

if D{ C*(U, n·)} is represented by a cocycle cP with only the top component. 
fu~~~~ . 

D</I =0 

So <P is a global closed form. 

Step 2. r· is injective. 

if and only if . d4> I: ~4> == o. 

Suppose r(w) = D<fJ for some cochain <P in' C*(U, 0·). Again by the 
remark above we may write 4> = <p' + Dq,", wher~ </I', has only the top 
component. Then . , 

r(co) = Dq,' = d<j>', dq,' = O. 

So co is the exterior derivative, of a global form on M. 

w --+ 

.1' 
I 

4>- ,... 

o 

Generalization to Countably Many. Open Sets and Applications 

Instead of a cover with two open sets as in the us'ual Mayer ... Vietoris se
quence, consider the open cover U = {Uac}«fJ of M, where the index set J is 
a countable ordered set. Of course J may be finite. Denote the pairwise 
intersections U« n U _ by U." triple intersections U. (') U, (') U., by U.,." 
etc. There is a sequen~ of inclusions of open sets 

where ~; !s th~ ~cl~on ~~ .. ignores It the ith open ~t; .f~~ e~p~J . 
00 : U ~ IIla --..U .1.2 • 

Th~ sequence pf .in~lusions of open sets induces ~" scque~ " ~.f re .... 
strlctions of fomis .. "- , 

,. .. , cS. 
--+. r 

n·(M) ~nn·(u.J ::t nn·(U4l~CII) ~ n O·(U.OCl,Cll) =t:·.~ 
110<.. ~~ ClO<<<1 <<<2 -.-. 

-+ 
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where 601 for ~tance, is induced fro~ ~e inclusion .' I 

00 : II U4'J.~~ U,.,· . 
and therefore is the restriction 

60 : 0*( U ,,) -+ lJ 0*( U .,,). 
• 

) 
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We define the difference operatorb: nO*(Uq .,)-+ na*(u •• 1.J to ~ ,the' 
alternating difference 60 - b1' + 62 • Thus '. " . 

',-: . 

(6')_.,.~ -= ' ••• 1 - ~q.2 + ~CO.I: 
More generally the dift'erence operator is define4 as fo~ows. 

DeftDitioa 8.1. If OJ e n{)f(U co •.•• ), then co has' "components" CD •• • ,~ .• ', . 

. Q4(U ..... ) and ~+ 1 

(&0>.0 ...• ,+1 := L (-1)'(0«0 ......... ,+1, 
' .. 0 

where on the right .. hand side the restriction oper~tion. to UtlO•· ••• ,.! baa beea 
suppressed and the caret denotes omission. 

~ ;. .. . '- 1. 

PRooF, Basically this is true because in ("lw1. .. · ... ~:& wc omit, two indioli': . 
tx" a; J twice with opWSite sips.. To be precise, . . 

(eJ2to) .... ~;a - L ( -lr(&.u)-o ........ ~+:l 

=: ~('-l* _luQ) ,... ~_ : ~ J \ !I «0 ••• :,I •• • ., ••• .,+ 2 

l<' . I ~ •. I 

+ ~ (~ 1 VI -1)1- 1 tu ' ~. .' £., ,\ T. .. ........ ~ •.••• +', 
»1 

=0. . .. . .. ;. .; W·'·, 
• • •• ;.~. ;'. ~.! "i -.. 

Convention. Up untiJ now the indices in ~co •••• p are aD in incr~1 ordc~ 
,Clo < : ., < a.,. Morc generally we wilt allow indices in any order. even with 
repetitions, subject to the convention that w~n two' indic:eaare iDter· ~ ... 
chang~ the form becomes its neptive:' . . 

CJJ ....... I ... == _·w ... , ...•.... ..~ ., . 1 

In particular a form. with repeated indices is 0. In thC following curcise the 
reader is asked to oheck that this coDvcDtiOll iJ consiatent with the defiDi-

. . l 

tion of the difference operator ~ abo.ve.· -, '. 

Exercise 8.4. Suppose tx < /l. Then (&0) ... , ...•... may be defined either .. 
-(bW) ...•... I ... or by the difference operator formula (8.2). Show that.~ 
two definitions agree. . . 

.... ,\:.''- 9 
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Proposition 8.5. (The Generalized Mayer-Vietoris Sequence). The lequence 

is exact; in other words, the 6-cohomology of this complex vanishes ident
ically. 

PROOF. Clearly n*(M) is the kernel of Li.e first b since an eleptent of 
nO*( u «0) is a global form on M if and only if its components agree on .the 
overlaps. 

Now let {p«} be _ a partition of unity subordinate to the open cover 
U = {UoJ. Suppose (J) E TIn*(Uczo ••. «) is a p .. cocycle. Define a (p - 1)
cochain f by 

Then 

fIZO ... lZp-l = L P:CJ)u.o ••. fI.,-l· 

• 

(~'[) = ~ (_I)'! 
? «0 ... «, i... «0· .. 44 .... , 

i 

- ~(_l)'p w - i... «"0 .... , ..• «, . 
i. « 

Because co is a cocycle, 

So 

( ~ .... ~) . ., + ~ ( 1)'+ I 0 . 
vw uo ... «, = (Oao .•.• " i... - w.-o. ....... «,,::: ;' . 

i . 

(~T)__ _ =) p_ ) (-l)icu __ A .... _ 

. au ..... , 4J '" _ , _. "_I" ._p 

« t 

= L P.CJJ«o .... , 
« 

This shows that every cocycle is a coboundary. The e~ess now follows 
from Proposition 8.3. 0 

In fact, the d~finition oft 'in this 'proof gives .a homotopy ~pcrator pn the 
complex. Write Kw ~or'f:' " ".' .. _ 

(8.6) 

Then 

.(KW)q ...• '_l == L P«(JJ.." .... '_l· 
« 

(lJKu)'· .' - ~ (- 1)'(' Kw) . 
• ~ 1«0 .. :_, - ~ «0 ......... Cl, 

~ 'r (-l)'PCl£Oao ......... , 

(K&o)«o ..... " ~ L.I!JbCJJ)ao ...• , 
-= a: P~tIO ... CI, + L (-l)·+lp.a> ..... I.4 .... , 

=- ~_ .... , - (dKru)q .... ,. 
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Therefore, K is an operator from nO*(UClo ... CI) to nO*(UdlO ... CI,-J) such that 

(8.7) t5K + Kt5 = 1. 

As in the proof of the Poincare lemma, the existence of a homotopy oper
ator on a differential complex implies that the cohomology of the complex 
vanishes. 

For future reference we note here that if 4> is a cocycle, then by (8.7), 
bK 4> = 4>. So on cocycles K is a right inverse to lJ. Given tP, the set of all 
solutions ~ of <5~ = cl> consists of K4> + o-coboundaries. 

The Mayer-Vietoris sequence may be arranged as an augmented double 
complex 

q 1 I I I 

KO. 2 K 1 .. l 

KO. t Kt, .. 
" , . 

: ;. -

KO. o KJ.·o : ;, 

p 

where KP' @ = C"(U, Q4) = 'nQ4(U CIO •••• ) ~oSist~ of ttU: "p-~~~\~~ ~~( ..t~e 
cover U with values in the q-forms." The horizontal maps of the dopb~e 
complex a're the difference operators 6 and the vertical ones the exterior 
derivatives d. As before, the double complex: may be made into a single 
complex with the differential operator given by 

D = D' + D" = ~ + ( - I)" d. . ,,';'.. : 

A D-cocycle is a string such as tP == 0 + b + c with ~ . 

do == 0, 

t5a == ±db 

6b = ±dc 

be == 0, 

q 
0 
+ 

k· ... 
T 

b- .. ' . 
t 
I .0 c~ 

P 
$.1 ;: ... _~ 

" . : ,.t .... r:!, 

. ~ ". 

. " .. ,\ t.. . ~ ;.'.~ ~ .. 

(To be precise we 'should w~it~ 6a, == ~~;~,~~ == - p"e.) S~~~.:~,-c<>CJ:~e 
may be pictured as a "zig-zag. M' , 
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A D-coboundary is a string suc~ as q, = a + b + c in tbe figure below, 
where a = ~al + D"al t etc. 

q 
0 ... , 
al~ f+a 

t 
I 

t+b al-
t 
I 

a3- ~c 
+ 
I 

t+O a.-
p 

The double complex 

Plt~O 

is called the Cech-de Rham complex, and an element of the Cecb-de Rh~ 
is called a Cech-de Rham cochain. We sometimes refer to a Cech-Qe Rham 
cochain more simply as a D.cochain . 

.. The fact that all the rows of tbe augmented complex are exac;t is the key 
~~gredient in the proof of the following. 

PropolitioD 8.8 (Generalized Mayer-Vietoris Principle). The double com
plex C-(U, 0-) computes the de Rham cohomology of M .. more precisely, the 
restrictio~ map. r : Cl*(M) -+ C·(.U, 0·) itidl:'Ces an isomorphis~. in cohomol
ogy." 

~. r~: H&.t(M) -+ I;ID {C-(u, a-)}. 

PROOf. Since Dr = (~ + d) r = dr = rd, r is a chain map, and so it induces a 
map" iD cohomology. 

Step 1. r· is surjective. ' 

q q 

• -• *-f-+O 

thina - o o 
p p 

Let q, be a cocycle relative to D. By b-exactness the lowest component of 
<p is 6 of something. By subtracting D(something) from q" we can remove 
the lowest component or "·and stiU stay in the same ~omololY ctaw. as <p. 
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After iterating this procedure enough times we can move 4> in its cohomol
ogy class to a coCycle 4>' with only the top component. 4>' d a closed alobal" 
form because d4>' = 0 and 64J' = O. - --

Step 2. r* is injective. 
. " 

q -~ 

0--+ O(M) ~ 
, , 
0-+ O(M)-+ 

.. ' 
o --+ Q(M) --+ * o -+ O(M) -+ q, 

• o . 
• o 

p p. 

If r(w) = Dq" we can shorten q, as before by subtracting boundaries until· 
it consists of only the top' Component. Then ~~. &/J is 0, it is ~tuaUy •.. 
global form on M. So w is exact. . . O. 

The proof of this propoSition is a very general argument fro~ which we ) 
may conclude: if all the rows of an augmented double complex lire exact. then 
the D-cohomology of the complex is isomorphic to the cohomology of tlte 
initial column. -

It is natural to augment each column by the kernel of the bottom d. 
denoted C*(U, A). The v~or space C,(U, A) consists of the locaUy CQDltaDt 
functions on the (p + I)-fold intersections U -' .. tt •• 

r
q 

0-+ a2(M)-+ 

0-+ Q.I(M)--+ 

0-+ aO(M)-+ 

The bottom row 

nOl(U.j 

nOl(U.J. 

. OnD(u.J 
it 

CO(U, R) 
f 
o 

CO(ll. R) ~ C1(U, R).!. CJ(U. R) 1. 
is a differential compicx, and the homology of this complex, H·(U, A), is 
called the Cech cohomology of the cover U. This is a purely combinatorial 
object. Note that the argument for the exactness of ,tbe generalized M.yer
Victoria sequence breaks down for the complex C·(U, A), becauae heM tile 
cochains arc locally coastant functions 10 that partitjons of uaity are DOt 
app~. , ' 

If the aUapDeDted colUJDl1l of the complex C·(U,. 0-) are eqct. tbea die 
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same argumen t as in (8.8) will yield an isomorphism between the eech 
cohomology and th~ cohomology of the dQuble complex.J. 

H*(U, R) ~ H {C*(U, O*)}, 

and consequently an isomorphism between de Rham cohomology and eech 
cohomology 

HbR(M) ~ H*(U, IR). ' 

Now the failure of the plh column to be exact is measured by the coho
mology groups 

n H4(U (10 •.• ~,). 
q~l 

(10<"'<", 

So if the· tovel' is such that all finite nonempty intersections are contractible, 
e.g., a 'ga.<i cover," then an augmented- columns 'will be exact. We have 

, 40" ... proven ... 

6i':orem i;)lf II is"a "go.od co.ver o! che manifold ~, then t~e de Rham 
cohomology of M ;s isomorphic to the tech coho~ology o/the good c~ver .. 

• ". ... '. ' ., ~ I } • • • • +. • \ .' ~. • 

H DR (M) ~. H(U, R). 

Let us recapitulat~ here what has transpired so far. First,' the basic 
sequence of inclusions . __ . 

gives rise to the diagram 

differential 
gcomet ry of 0 _ .• 0*( NI) -~-~ 

forms 
C*(U.O*) 

i 
C*(lC IR) 

1 
o 

combinatorics 
of the cover 

Along ~he left-hand side is the differential geometry of forms on M, along 
the bottom is the combinatorics of the .cover U = {U IZ}' and in the double 
complex itself the two ~re mixed. As the complex is the generalized Mayer
Vietoris sequence, the augmented rows are exact, for any cover. It follows 
that th.e de Rham cohomology of M is always isomorph~c to the cohomol-
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ogy of the double complex: 

HbR(M) ~ HD {C*(U, O·)} .. 

If in addition U is a good cover, then by the · Poincare lemma the 
augmented columns are exact. In that case the· Cech co homology of- the 
cover is also isomorphic to the co homology of the double complex: 

H·(U, R) ~ HD {C*(U, O*)}. 

Hen~e there is' an isomorphism between -de; Rham and eech. This result 
provides us with a way of computing the de Rham cohomology by means 
of combinatorics, since from Section 5 we know that every manifold has a 
good cover. All .three complexes here can be given product structures, in 
which case the isomorphisms between thero are 'actually isomorphisms'of 
algebras, as will be shown in (14.28). . ' . " . . .. , .. 

A priori there is no reason why different lovers of M should have ,the 
same Cech cohomology. Howevert it follows fro~ Theorem 8.9 that 

. i . 

Cco"r2UarY 8c9» The Cech cohomology H*(U, R) is the same for all good 
corers 11 of M. 

• :!' 

If a manifold is compact. then it has ajinitt goOd cover. For such a cover 
the Cech cohomology H*(U. IR) is dearly finite-dimensional. Thus, . 

f ", • ~ •• ~ '$' :to. . 

CoroUaty 8 .. 9.2. ,The de Rham ('ohomology HZR(M) of·a compact manifold is 
lil1ite~dinlensiolJal. 

In fact. 

Corollary 8.9.3. W henerer M has a finite goo.d c.ovfr, its de Rham cohomology 
H~R(M) is finite-dimensional.. .'. . .c' 

." .: 
t. T ; 

Both the proof here and the induction argument in Section 5 of the finite 
dimensionality of the de Rham -CObOm9u,gy rest on the Mayer-Vietoris 
sequence, but they are otherwise independent pr each other. 

, ~ 

§9 More Examples and Applications of the 
Maye~-Vietoris Principle .; . 

In the previous section we used the Mayer-Vietoris principle to show the 
isomorphism of the de Rham cohomology of a manifold and the Cech 
cohomology of a good cover; from this, various corollaries follow. In this 
section, after some examples in which the combinatorics of a good cover is 
used to compute the de Rham cohomology, we give an explicit isomor": 
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phism from Cech to de Rham: given a Cech cocyclc, wc ~nstruct the 
corresponding global closed differential form by means of a collating for
mula (9.S) based on the homotopy operator K of (8.6). To conclude the 
section, wc gi\'e as another application of tbe Mayer-Victoris principle a 
proof of thc Kiinnetb formula valid under the hypothesis tbat one of the 
f~on has finite-dimenaional .cohomology. . 

Examples: Computing tbe de Rham Cohomology from'tbe 
Combinatorics of a Good Cover 

Let U -= '{VJ be an ~pen cover of a manifold M'. The.ner~e_of U i$ a 
aimplicia1 (X)~ .. x CODStr,ucted as follows. To cvery open sctU., wc associ .. 
~ a vertex er. H·U c," U, is nonempty, we connect the -vertices tX and fJ 
with an edle. U U. nU, " U't is ··Ilonempty. we fill in tbe ~ of the 
triangle (Ill.,. Rcpoatina this procedure for all finite intersoctioos gives the 

- nerve ofU. denoted N(lI). For the basics ofsimplicial eomploxes, sce Croom 
[1]. 

".,. . 
• ~ It,. .... 

, 
ExAMPu 9.1 (The ~ Let U.::: tUG, U' l ; U 2 } be the good 'cover of tile 
circle as SbOWD in figUle. ~ .. 1~, the. ~ complex ha& ~wo ~: ' .. 

CO(u, R) = ~.$ R "e R ~ {(~~·,'(Oh (02)10>. is'~ cODsta~t OD(J.}~ 
Cl~ R) -: fI.~ IJ' ~ ~ ~ {("o'~:"Qa, "12)1" .. ~ .• coDStJDt on U.,} . 

.. 

. -.... 

, .. ~ .. 

u, 

~. ' . 

. . , . . .. " .. 

The co~6 : ~ ~ C~ is given by (&0)., ~ 0), - co •• ~ . 

. .. ' t.« '&. ~ {(CIJo. ,Wh (l)2)J COo = CD, ==: COl} ~. R ~ . 

'aa4 .. 
..': 8O(SI) == R. 

S~ im.6 - ftl" IlI(S'). ... ~ {1Dl 6 .z R. 
• • & • ~~ .. 

~ .. ~ " 
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~MP~ 9,,2 (A nont~vi~ l-cocycle on the circle). Ha l-cocyc1e" - ('1011 
"01' "12) is a coboundary, then '101 - '101 + "11 == o. So " == (1, 0, 0) is a 
non trivial l-cocycle OD the circle. . 

EXAMPLE 9.3 (The 2-sphere). Cover the lower hemisphere of Figure 9.2'witb 
three open sets as in Figure 9.3. Together with the upper hemispbere Uo , 

this gives a good cover of the entire sphere. The nerve of the cover is the 
surface of a tetrahedron as depicted in Figure 9.4. The Cech complex has 

FiauR 9.2 

Fiaure9.3 

,l 

o 
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three ternlS: 

~6G((f)~$R . UHf)REE)!I~e~(f)RE&N R El) R E9 III (t) R 
o . 2,) 01 02 03 11 13 2l 012 Ot3 023' 123 

, ker .so = {(w(), 0017 (1)2' Wl)l Wo == (t)1 = Wl = rol } == R 

So im ho = IRJ and HO(S2) == R. If " is in ker hi' then " is completely 
determined by '10., "02, and "03' Therefore ker h. = IRJ and 

H I(S2) = ker lJ l/im bo = O. 

Since im cS. == Cl/ker c5 J = RJ , 

H2(s2) = R"/irn ~l = R. 

Explicit Isomorphisms between the Double Complex and de Rham 
and Cech 

We saw in Proposition 8.8 that the Ccch-de Rham complex C*(U, 0*) 
and the de Rham complex O*(M) ha ve the same cohomology. Actually, 
what,is true is that these two complexes are chain homotopic. To be more 
precise, there is a chain map 

(9.4) 

such that .. 

(a)/':,r= l,and 

f: C*(U, 0*)-., Q*(M) 

(b) r 0 lis chain homotopic to the identity. 

We may think of f as a recipe for' collating together the components of a 
eech-de Rham cochain into a global for~. The not very intuitive formulas 
below were obtained, after repeated tries, by a careful bookkeeping of the 
inductive steps in the proof of Proposition 8.8. 

Proposition 9.5 (The Collating Formula). Let K be the homoropy operalO, 
defined in (8.6). If C( = L7"" ° Cli is an n ... c~('hain and D~ = P = L~': J Pi t (hen 

,. n -i 1 

I(a.) = L ( - D" K)i(X; - L K( - DfI Ki - 1 Pi E CO(U, 0") 
j :.0 

is a globalform satisfying th~,properties above. The homotopy operator 

L: C*( U, Q*J ~ C*(U, 0*) 

such that 1 - r (, f = DL + LD is yiven by 
11-1 

La. = L (L~)p, 
p..::.O 
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where 
It 

(L~)p = ~ K( - D" K)i - (p+ 1)0:; E CP(U, nit - 1 - P). 
t.., p+ 1 

Po 
Ilo PI 

0: 1 P2 
/33 ' : 

.. •• ; " • .; J .' f 
112 

R~MARK. To strip away some of the mysteries in the expression for /«(1.), it 
may be helpful to observe that the operator D" K sends an element of 
CP(~ nq) into .. Cp -

1(U, Qf+l), so that (D"K)'«, and K(D"K)i-.1Plare col .. 
lections of n-forms on the open sets U Cl' The collating 'formula says 'that a: 
suitable linear combination of these local n-forms, with ± 1 as coefficients, 
i~ the restriction of a global form, . ' .' 

. .' ,. ,I i1 ).: 

Th~ proof of Proposition 9:5 ~equires t~, fQlIowjijg technical ~m8Ul.. .. 

Lemma 9.6. 

" 

PROOF' Of LEMMA' 9.6. Since J aJ)ticommut~s ',witll,.D" .and.,.~iqqe. 
()K + K(i = I. ' . 

;)(D" KXD" K)i - 1 ;: - D" iiK(D" K)i - f .. 

= - D"(l - Kbxiy' K)/.-l 
, .. 

= (0" K ){j(D" K)i - I, 

SO we can commute D"K and b until we reach (D"K)i"'I~D"K). Then, '1 I .. 

. , ' . J'r.' } 

,,' , c5(D"K); == .(D"K)i~ l;;(D:~K) .-,:,', , 

== -(D"K)lT.1DII(l - K~) 

= -(D" K)I - ID" + (D" Ktb. 

" . 

o 

PROOF OF PROPOSITION 9.5. To show thatf(a) is a global form, we compute 
~f(Il). Using the lemma above and the .fact that 6«, + D"a. •• 1 = P,. It this is 
a straightforward exercise which we leave to the reader. 
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Exercise 9.7. Show that lJf(rx) = O. 
Next we check thatfis a chain map. 

,,+1 

"f(Da.) = f(fJ) == r ( - 1 )i(D" Kt Pi' 
4-0 

"+1 

df(a,) = D''f(a.) = Po + L (-I)i(D" KtP" 
l:lJ; 1 

So 

f(Da.) = df(fJ). 

The verification of Property (a) is easy, since if (% is a global form, then 
« =. «0 and 

f 0 r(<<) = i(<<) = «0 = IX. 

Property (b) follows from the fact that 

J -, 0 f = DL + LD. 

As its verification is straightforward and not very illuminating, we shall 
omit it. The skeptical reader may wish to carry it out for hillJself. Apart 
from the definitions, the only facts needed are Lemma 9.6 and the chain
homotopy formula (8.7). 0 

REMARK. Actually the existence of the chain-homotopy inverse f and the 
homotopy operator L is guaranteed by a general principle in the theory of 
chain complexes (See Spanier [1, Ch. 4, Sec. 2; in particular, Cor. j i, 
p. 167]). 

We can now give an explicit description of the Vari0US isomorphisms 
that follow from the generalized Mayer-Vietoris principle. For example, by 
applying the coUating formula (9.S), we get 

Propositioa 9.8 (Explicit Isomorphism between de Rham and tech). 1/" e 
C'(U, R) is a Cech cocycle, the,. the global closed form co"esponding to it is 
given by /(,,) == (-lr<D" KY' ". 

EXAMPLE 9.9. Let U be a .800d cover of the circle S1. We shaH construct 
'-from a generator of the Cech cohomology Hl(U, R) a differential form 

representing a generator of the de Rham cohomology H ~.(Sl). 
As we saw in Example 9.2, a nontriviaJ l-cocycle OD S1 is" .; 

" == ("01' '10%' 'h;,) == (1, 0, 0). 

If {p.} is a partition of unity, then 

K" == (-Ph Po, 0). 
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So the generator -D"K" of H1R (S') is r~presented by -d( -PI)' a bump 
form on U 0 nUL with total integral l. 

Exercise 9.10. The real projective plane tiPl is obtained by identifying the 
boundary of a disc as shown in Figure ~s. Fin~ a good cover (or Rpl alld 

~ 
: I 

Figure 9.S 

compute its de Rham cohomology from the combinatorics of tbO ~vcr. 
One possible good cQver has the nerve depicted in Figure 9.6. . ~ 

2 

2 
Figure 9.6 

.- . 

Exercise 9.1 I. Let Figure 9.7 be the nerve of a good cover U on tbe torus, 
where the arrows ,indicate how t~ vertices are ordered. Write down a 
nontrivial J-cocycle in C 1(U, A). 

The Tic-Tac-Toe Proof. 01 the Kiinneth Formula I , 
We now apply tbe main theorems oC the preceding section to give another 
proof of tile KUDncth formula. Tbis proof. admittedly more involved in ita . , 

- ~-
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Figure 9.7 

construction than the Mayer-Vietoris argument of Section 5. is a prototype 
for the s?ectral sequence argument or Chapter Ill. It will also allow us to 
replace the requirement that M has a finite good cover by the slightly 
weaker hypothesis that F has finite-dimensional cohomology. 

Before commencing the proof we make some general remarks about a 
technique for studying maps. Let 7t: E --. M be a map of manifolds. A 
cover U on M induces a cover 1t - 1 U on E, and we have the inclusions 

x r +- Ux -I U. ::: ilx -1 [; .d: ... 

M+-UV:I t:Uu«p E··· 
In general V« (') U, =F <P ~ not equivalent to 1t - 1 U GI (\ n - 1 Up#- <p. How
ever, if 1t is surjective, then the two statements are equivalent, so that in this 
case the combinatorics of the covers U and 7t - 1 U are the same. The double 
complex of the inverse· cover wmputes t~e co homology of. Et which can 
then be related to the cohoinology of M, because the inverse cover comes 
from a cover on M. This idea will be systematically exploited throughout 
this chapter and the next. 

A quick example of how the inverse cover tt- 1U may be used to study 
maps is the following. Note that although the inverse image of a good cover 
is usually not a good covert for a vector bundle tt : E --+ M the "goodness n 

of the cover is preserved. Since the de Rham cohomology is determined by 
the ~om~i~atqrics of a .good cover, this impli.e~ that· 

--
Of course, this also follows- from the homotopy axiom for the de Rham 
cohomology (Corollary 4.1.2.2). 

Proposition 9.12 (Kiinneth Formula). If M and ·F are two manifolds and F 
has . .fin~te-dim~nsi.qnal cohomology, t~n the de Rham c:')ho~l~~ 0/ the prod-
uct M x r i~ , ~ . '. 

~ I ' • .., r • • 
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PROOF. Let U = {Ua } be a good cover for M and 7t: M x F .. -+ M the pro
jectjon onto the first factor. Then n - I U = {n - 1 U eJ is some sort of a cover 
for E ;; M x F, though in general not a good .. cover. There is a natural map 

C*(n - 1 U, 0·) 
,f 

" I n* :'" 
.. ~. """." ": 

•· .. 2 .' l " 

C*(U, 0·) " " . 
which pulJ~ back differential forms on open sets. Choose a basis for H,·(F), 
say {[W;l]}' and choose differential forms WGC representing them. These may 
be used to define a ,map o~ double complex~s 

" C*( 1t - 1 U, Q!'I) • 
t 

In: 
, '\ ' 

H*(F) ® C*(U, 0*) 
; 1 J I·' 

lfiere p is 'the projectiOn on the fiber , ' 

E P .F 

f 
In 
~ 
M.~ " .'11" 

Since H*(F) is a vector space, H*(F) ® C*(U, 0*) is a number of copi~ or 
C·(U, Q.) and the differential operator D on the double complex C*<u, 0·) 
induces an operator on H*(F) ® C*(U. 0·) who~ ~~omology is • 

H*(F) ® H D {C*(U,O*)} = H*(F) ® H*(M). 
• I' ~ .....• 

Since the D-cobomology of C*(x- 1U, n·) is H.(E), if we can show that 

C*(n- 1U,0*) 

I tt~. -

H*(F) ® c·(U, ,0*) 

," . 

induces an isomorphism in D-cohomology, the Kiinnetbr~ .~ 
(ollow. 

The proof now div,ides into two steps: 

Step 1. ' ", ' 
For a good cover ,11. the I1UJp It: induus _ isQlJlOrplUsm ilJ l!~. cf'" 

complexes. . 
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~2 . 
Whenever a homomorphism f: K -+ K' of double complexe, i1J4uce~ 

Hrisomorphism, it also induces H D-isomorphism. (By a homomorphisl11 Qf 
double complexes, we mean a vector .. space homomorphism which prcsetvos 
bidegrees and commutes with d and cS.) 

PaOOF OF STEP 1. The pth column C'( 1t - 1 U, n*) consists of forms on the 
(p + I)-fold intersections U1t - 1 U 110 .• ,., and C"(U, 0-) consists 01 fo~ on 
U U 110 ••• «,' The d-cohomology of C'(n - 1 U, 0·) is 

(9.12.1) 

the isomorphism being given by the wedge product of puUbacks. So xl 
induces an isomorphism of the d-cohomology of C*(tr-1U, Q*) and 
H*(F) ® C*(l(, Q4'). 

u 
Exercise 9.13. Give a proof of Step 2. 

REMARK.. This argument for the Kiinncth fonnula a.1so proves the Leray
Hirsch theorem (5.11), but again instead of assuming that M has a finite 
good cover, we require the co homology of F to be finite-dimensional. If 
both M and F have infinite-dimensional cohomology, the isomo~m in 
(9.12.1) may not be valid. . . 

The following example shows that some sort of finiteness hypothesis is 
necessary for the Kiinneth formula or the Lcray-Hirsch theorem to.hold. 

EXAMPLE 9.14 (Counterexample to the K\inneth formula when both M and 
F have infinite-dimensional cobomology). Let OM and F each be the set Z+ 
of all positi~e integers. Then . 

HO(M ~ F) = {square matrices of real numbers (aij), i, j e Z + }. 

But HO(M) ® HO(F) consists of finite sums of matrices (alj) of rank 1. These' 
two vector spaces arc not equal, since a finite sum of matrices of rank 1 has 
finite rank, but Jrl(M x F) contains matrices or infinite rank. 

§lO Presheaves and Cech Cohomology 

Presheaves 

The functor Q*( ) which assigns to every open set U on a manifold the 
differential forms on U is an example of a presheaj. By definition a presheaf 
, O"ll.a topological spau X is a function that assigns to every open set U in 
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X an abelian group §(U) and to every inclusion of open sets 

;~: V ~ U 

a group homomorphism, called the restricOon,. 

§(i~) : ~(U) -+ :F( V) 

satisfying the following properties =.. .; 

(a) ~(i~) = identity map 
(b) transitivity: .F(i~) .F(i~) = ~(j~). 

109 

. : 

.. .... 

The restriction ~(i~) : F(U) -+ §,(V) is often denoted p~. A homomorphism 
of two presheaves, f:' -+ f§, is a collection of maps I" : .F(U) -.. ~(U) 
which commute with the restrictions: 

'. 

...... '. 

,.: J py .. 

.. 'J • .. 

Let Open(X) be the categorf whose objects are the open sets in X and. 
whose morphisms are inclusions of open sets. In functorial language: a 
presheaf is simply a contravariant funetor from the category Open(X) to the 
category of Abelian groups, and a homomorphism of two pr~sheaveS". 
f: iF ----to f§, is a natural transformation from the functor :JIi to the functor f§.'" 

The trivial presheaf with group G is the presheaf IF which associates to 
every connected open set the group G and to every inclusion V. e IJ. the 
identity map: '(U) --+ ~(V). We say that a presheaf is a constant presheaf 
if it is isomorphic to the trivial presheaf, and that it is a locally constant 
presheaf if it is locally isomorphlc to the trivial presheaf, .i~e., ever~ p')int. ~aSt 

. a neighborhood U so that 9' Iv is a constant presheaf. 

EXAMPLE 10.t. Let 1C: E --. M be a fiber bundle with fiber F. Define a 
presheaf ~4 on M by ~4( U) = H'(n - 'U). f,'or" U coDtractible, Hf(n - J U) .. ; 
H9(F) by the Kunneth formula, and if V c:. U with V connected, then the. 
r~striction p~ : Hf(rc - 1 U) -.. H4(n -1 V) is the identity. Therefore .JtNI is a 
locally constant preshc;af on M.. ';' ."', , ~ .. ) 

Now consider the trivial bundle E = M x F. Assume that F has finite ... ; 
di~ensional cohomology. Since Jt'4(M) = Ht(E) = (B,+j=f (l:I'(M) ® 
HJ( F») is not ;usually equal to H4(F), Q' locally OIPnstant presheaf on M need 

not ~ a constant presheaj", even if M is simply c01llll1eted.. . . .1. , 

• However, a locally cons tan. sheaf OD a simply connected space is constant. 
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C~h CohomololY 

Let U == {U.} •• J be an open cover of the topOlogical space X. The ().. 
cochains on U with values in the presheaf , are functions which assign to 
each open set U. an elemtnt of ,(UJ, i.e., CO(U, ') = D •• J :F(U.). Sim
ilarly the l-cocbaiDs are elements of 

C 1(U, I) == n I(U fI (\ U _) 
.<1 

and so on. 
The sequence of inclusions 

gives rise to a scquen<:c of group bomomorphisms 

n'{U.)::n"(U4)~ .... 

We define" : C,(u, 'l-+ C,+l(~,) to be the alternating difference of the 
'(fJ, )'s; for example, 

is given by 

In general 

is given by 
, ~ 

~ ;;r: #(00 ) - "(01) + ... + ( -1)"+ 1 ,(~,+ J). 

Explicitly 11 it: (JJ E C,(u, ,), then 

,+1 
(10.2) (fJcJJ\ = ~ (-1)'(1) '" ... a,. 1 ~ q ... ., ... ..,. a· . . . , "-0 .' 
where OD the rigllt .. ban'd side the restriction of Q}q ........ Cl,.. I to U q •••• ". I is 
suppressed. It follows from the transitivity of the restriction bomomorphism 
that {,1 == 0 (proof as in Proposition 8.3). Thus C*(lI, #) is a differential 
complex with differential operator 6. The coho.mology of this complex, 
denoted by H,C·(U,I) or H·(U, ,'), is called the tee" coltomology o/the 
cover U with wdua in '.' . . . .. 

R.EMA.u 10.3. If I is a covarlant functor from the category Open(X) to the 
category of Abelian groups. and U is ID open cover of X, one can define 
analogously a chain cOmple~ C.(U, I) 'and its homololY H .(u, '). Apart 
from tbe ~o~. of. the. arrows, tbe only differc~ .fr~~ tbe case of a 
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'presheaf is in the definition of the coboundary operator 6 : C. (U, #)-+ 
. ~P":i(Ut '), which'is now given by . 

(&.J)4!lO .0 •• ,-1 ~ L (I).., ••• ~-1· 
• 

One ve~ ea~y that this [, also satisfies ll' -= 0.' The fUhctor I: which 
associates to every open set U OD a manifold the compact cohomolol)' 
H:<U) is covariant . 

Because of the antisyhtmetry convention on the subacrip~ in this for
mula there is no sign in tbe sum. Of course, if we had written each term 
(UCIO ... -.-l with' the subscript ex inserted in the i-tb place, then there would be 
a sign: L (-l)'wq ...•...• ,,_ •• 

Returning to the discussion ~r the Cech cohomology of a presheaf , t 

recall that the cover !J = {V,},. J is a refinement of the cover U == {U.} •• , t 
written U > $, if there is a map ,; : J -to 1 such tbat lJ c U +(#). The refine
ment 4J induces a map 

in the obvious manner: 
/ 

LeIlllM 10.4.1. q," is a chai" map, i.e., it co11l1nlUs with lI. 

PROOF. (cS(q," (I»XV,o ... I. •• ) == L( _l)'(q, III w)( 1',.-1,-, ••• > 

== L( -l)ICll{UM)_~J_f(l •• ,) 
(q,"bwXv,O ... I.+l) = (6wXU~o) ... M.1J 

. -

- L(-ltru(Uwo; ... ~d' •• ~.IJ. 
o 

Lemma 10.4.2. Given U = {U.} •• 1 an open corJet' and IJ == {Y,}, • .1 . G re-' 
fineme_nt, if tP and '" are two refinemsnt. nuJpl; J ~ I. the" there is a homotopy 
operator between q," and y, .... " . 

. 
PROOf. Define K : c-(U, ,> -. C' -1(Il, ') by 

(KCl)(Yh .. ;,._.) == L( _l)Iw(UfUo)' .. ~I~" ... M_l,). 

Exercise 10.5. Show that .. , 

o 
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A direct system of grQUps is a collection of groups {Gi}1E I indexed by a 
directed set '/ such that for any pair a > b there is a group homomorphism 
f: : G 11 -+ G" satisfying . 

(1) f: = identity, . 
(2) f: = f: 0 I: . 

00 the disjoint union llG i we introduce an equivalence relation ...... by de
creeing two elements 9 in Go and h in Gb to be equivalent if there is some c 
in J such that f~(g) = f:(h) in Gc. The direct limit of the direct' system, 
denoted by limi E J G., is the quotient of UG i by the equivalence relation -- ; 
in other words, two elements of UGi represent the same element in the 
direct limit if they are "eventually equal u. 

It follows from the two lemmas above that if U > iJ, then there is a 
well-defined, map in cohomology 

H·{U, :F) -+ H*(iJ. !F.), 

making {H·(U, ')} u into a direct system of groups. The direct limit of this 
direct system. 

H·(X, F) = lim H*(U, ~) 
u 

is the Cech cohomology of X with values in the presheaf ,. 

Proposition 10.6. Let R be the constant presheaf on a manifold M. Then the 
Cech cohomology of M with values in R is isomorphic to the de Rham 
cohomology. 

PROOF. Since the good covers are cofinal in the set of all covers of M 
(Corollary 5.2)" we can u~ only good covers in the direct limit 

H*(M, R) = lim H*(U, R). 
u 

By Theorem 8~9, 

H·(U, R) ~ HbR(M) 

for any good cover of M. Therefore, there is an isomorphism 

H*(M, R) ~ H1>R(M). 

o 

Exercise 10..7 (Cohomology with Twisted Coefficients). 'Let !F be the presheaf 
on Si which associates to every open set the group l. We define the 
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• 
restriction homomorphism on the good cover U -= {U 0, U I, U 2} (Fip!C 
10.1) by' .. 

o _ 1 . J 
POl - POl == , 

Pi2 - Pf2 - 1, 

P~l - -1, P8l - 1, 

, .,. 

", where P:J is the restriction from Cl, to U f " U J. Compute H-(II,')' 

u. 

V1 ---.--

FiJW'C 10.1 
.." ~ ......... -

. ,. .. ;i . 

§ 11 Sphere Bundles 

Let n: E -+ M be a fibel' bundle with fibcr the sphere $'I. "2 1. As tbe 
structure group we ~ftonnally take the largest group possible,' namely the 
diffeomorphism group Dift'{s-), but IOmetimes we also con*ler ipbere bun
dles with structure aroup O(n + 1). These two ootioDl are not cquivaleut; 
there are examples of sphere bundles whose stl'UCiure groups' cannot ~ 
reduced to the orthogonaJ &roup'" Th~ . every vector bUDdle dcfiDca a 
sphere bundle, but DOt conversely. By the Leray-airsch theorem if there isa 
closed global n-form OD E whose restriction to ~ fibcr .,.a~,~ 
cohomology of the fiber, then the cobomolOl)' of E it 

. '. 

It is therefore of interest to'know when such a aJobal form exists. . 
In Section 6 we constructed the Jlobal 'angular form t/I OD'· a rank 2 

~tor bundle witb StructUN aroup 80(2). This' form p .... seeD to haw the 
foUowiaa two properties: .-

(a) t/I restricts to t)lc volume; rorm OD cacb ~ 
(b) dt/l == - x*e .... ' ... f .',. 

where e is the Euler class. Exactly tbe same procedure defines the Hgular 
form and the ~uJer cJau of • ~ ~ w!th ltrDcture poup' SO(~ 

. • ,. ... ~ ," • _. \.t· , . ~ t : 
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CoDICQucntly t for such a bundle also, if the Euler class vanishes, then .; is 
dOled and satisfies the condition of the Leray-Hirsch theorem. 

We now consider more generally a sphere bundle with structure group 
Diftls-) or 0(11 + l~ We wiU see that the existence of a global form as above 
entails ovcrcomina two obstructions: orieotability and the Euler class. 

Orientability 

In this section the base space of the bundle is assumed to be conn~ted. A 
sphere bundle with fiber S-, n ~ 1, is said to be orientable if for each fiber Fx 
it is possible to choose a generator [a J of H"(F J satisfying the local com
patibility condition: around any point there is a neighborhood U and a 
generator [O'v] of H"(E Iv) such that for any x in U, r 0',,1 restricted to the 
fiber FJC is the chosen generator raJ; equivalently, there is an open 
cover {U.} of M and acneraton [O'J of H,Elv) so that [aJ == [0'_] in 
H,,(E lu. nU). 

Since a generator of the top cohomoiogy of a tiber is an n-form with 
total integral 1, there are two possible generators, depending on the orienta
tion of the fiber. A priori all that one could say is that (ClJ = ±[O'I] on 
U. " U, . For an orientable sphere bundle either choice of a consistent 
system of generators is called an orientation of the sphere bundle. A· bundle 
with a given orientation is said to be oriented. An SO -bundle over a mani
fold M is a double cover of M; such a bundle over a C9nnected base space 
is said to be. ~ ij" and opty if the total s~ has two coll1lCded 
4;Omppnents. '" . 

CAVEAT. The fact that the cohomoiogy classes {[aJ} agree on overlaps 
does not mean that they piece together to form a global cohomology class. 
A global cohomology class must be represented by a global form; the 
equality of cohomology -classes [0' J =: [0'_] implies only that the forms 0' .. 

and (I, differ by an exact, form. .' 

Recall that in Section 7 we called a vector bundle of rank n + 1 orient
able if and only if it CfIl be given by transition functions with values in 
SO(Il + 1). Wc $lOW study the relation between the onentability. of a sphere 
bUDdle and the onentability' of a vector bundle. .. 

. Let E .be a vecwr ~ndle of rank n + 1 endQwed ~th a Ri~mannian 
metric so that its structure group is reduced to O(n+ 1). Itl. ,unit. apherc 
bUDdle S(E) is the fiber bundle whose fiber at x consists . of all the unit 
vectors in Ex and whose traosition functions are the same as those of E. 
S(E) is an S--bundle with structure group O(n + 1) . 

. Rmwuc 11.1.' Fix an' orientation on the sphere S". If the linear ~rans
formation 9 is in the special ortbol0nal . group SO(n + 1) and to'] is a 
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. , 

generator of H"(S") with 1,. tI - 1. then the iiuaae g(s-) is the spbere S" ~th 
the same orientation, 80 that 

L ,·17 - L,17 -L 17 - 1. . .... 

Thus for an ortltogonQl transformation g, g·a and tI re". ... tIN .". 
cohomology class if and only if (I Iw positive .termiruuat. 

Pr~OD It.1- A oector bundle E is orlellttJble if aII4 only If iU sphere 
6uladk S(E) is orientable. 

.' . 
PROOF. (-) Fix a generator (I on S" and fix a trivialization {(U •• ~J} for.S 
so that the transition functions g., auumc valuca in 50(11 + 1). Let 

P.: U. x 5"-+ gt 

be tbe projection and let 7t - 1(X) be the fiber of the sphtrc. ~ 
7t :S(£)-+, M at x. Define [aJ in H"(S(E)lu) by ·.~t ~""\. 

[aJ -.: p:[a]. 

To avoid cumbenome notations wc will write [aJ I. ~and •• 1; (or t~'re
strictioDS raJ I.-l~) and tP.I.-I(s, respectively. Then for c"!CFY x in U., .. , ;./ '1, 

[aJI. =.(tP.I~~~~l· : ~ ~ .... r 
It follows that if .x e U. " U" then 

[a,] la ;;;; (I/>, W·[~] .... . ~ , 
- (tP,IJ*«4>.IJ*)-l[aJ I. . 

'. Ill: ,..,(x).[crJ ~, . 

:. [aJ I., 

; ,"'. ," 

,0". ..\ •. 

since g.,(x) has positive determioant. Theref'orC, [a.1- [a.1' pJ1 U. t:". U, • ' 
and the spbere bundle S(E) is onentable. . . .: 
( .. ) Conversely, let {U., [aJ} be an orientation on the sphere bund1e S(E) 
and let (se, C1) be aD oriented .phere in R" + 1 f where a it a DODtrivial top 
form on 5". Choose the trivializations for S(B) -

•• : S(E)lu.'::" U. x.S" 

i~ such a way tbat t/I. preserves the metric ~.: p:[a] • [aJ. Then at any 
point x in U. t'"\ U" the traDSitiOD function g.,(x) p~ ('!] t~l" ~ 10 
g.,(x) must be in SO(n + 1). 0 

... '. 

REMA.u: 11.3. Sin<:e SO(l) - {I}, a line buodle L .~vcr a co~acctcd, base 
space is oricntable if. and only if it is trivial la tbia Case. the apbecc buodte 
S(L) ~.~ ~~o.coDDCf*CI ~tL .. "t " 'I . , .. 
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PropoeitiOD 11~4. A vector'bundle E is orientable if and only {(its deiermiraant 
bundle det Eis orientable. ,~ .' " . 

, PROOF. Let {g ... } be the transition functions of E. Then tbe transition func
tions of det E are {det g.,}. An orthogonal matrix g., assumes values in 
SO(n + 1) if and only if det 11., is positive,. $0 the proposition follQws. . 

o . 
. Whether E is orientablc'or 'oot, the Q..spbere bundle S(det E) is-always a 

2 .. sbeetcd covering of M. Combining Corollary 11.3 and Proposition 11.4, 
we sec that over a connected base space a vcctor bundle E is orientable if 
and-only if S(det E) is disconnected. Since a simply connected base space 
cannot have 'any connected covering space of more than one'sheet, we have 
proven the followina-

Propoeitiola 11.5. Every vector bulUlle over a simply connected. base space is 
orientable. . 

In particular, the tangent bundle of a simply connected manifold is 
orientable. 8ioce a manifold is orientable if and only if its tangent bundle is 
(Example 6.3), this ,gives . 

CoroIMry 11.6. Every simply COMeCtu manifold is orientGblc. 
.1 

The Eu1er Class of an Oriented Sphere Bundle 

We first consider the case of a circle bundle 1t : E -+ M with structure group 
. Dift{Sl). As stated in tbe introduction to this sectio~ our problem is to find 
a closed global l ... rorm on E which fe$tricts to a generator of the cohomol
ogy on each fiber. As a first approximation, in each U. of a good cover { U .} 
er M wc choose a generator [q-J or Hl(Elu). The collection {u.} is an 
~1emeDt (T0.t in t~ double ~m.,lex c-(X~l.~ 0-): ' : 

.. :.;. J • 

-£ 

From tbe isomorphism'between the cohomology of E'and the.cohomololY 
or this double complex.' . .,' 

.. ' " . 

HZaf.E) ~ H»{C-(,,-lU. Q.)} • .. 
we see that to find a global form which restricts to the d-cohomolOSY class 
Of'1I0 .. 1 .it su8ices to extend aO.1 to a D-cocycle. l'hc first step of the ~ten-
sion lGIluires that (cSa°.1>., - a_ - a. be exact, foe.. [crJ - [cr-l for all Cl, fJ. 
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This is precisely the orientability condition. Assume th~ bundle E to be 
oriented with orientation 0'0.1, so that 6(1°·1 = d,rJ) . for some 0'1.0. in 
C1(X- 1U, 0°). Then 0'0.1 + 0'1.0 is a D.cocycle if and only if ~tll.0 -= o. S~ 

d(tSO'l.0) _ 6(da1•O) _ d(6aO.1) _ O~ . 

bql.O actually comes from an element - e of the cochain group Cl(tt-'u, 
R). Now since the open covers U and 1t -1 U bave the same combinato~ 

. i.e., 1t -1 U GO •••• " is nonempty if and only if U -0 .... , is, C*(n - 1 U, R):::a: C-(u. R} 
and we may regard B as an element of C2(U, A). In fact, because 68 - 0, • 
defines a Cech cohomology class in H2(U, R). By the isomorphism between 
the eech cohomology of a good cover and de Rham cohomoiogy, B corre
sponds to a cohomology class e(E) in Hl(M) .. For a circle bUDdle with 
structure group SO(2), thi~ class turns out to be the Euler class of Section 6, 
as will be shown later. So for an oriented circle bundle E with. struc;turc 
group DiftlSi) we also call e(E) the Euler class. . 

The discus~ion above generalizes immediately to any sphere bundle witIJ 
flber Sit, n ~ 1. Such a sphere bundle is orientable if and only if it is possible 
to find an element (J0 •• in CO(1t- 1U, Q') which extends one step down 
toward being a D-oocycle: 

&1° .• = da1 •• -1 = _ D" tl 1.,,- a. 

. I 

There is no obstruction to extending al •• -1 one step further, since every 
closed (n - i)-form on E tv.o .• , . .: is exact In general, extension is possible 
until we hit a nontrivial cohomology of the fiber. Thus for an oriented 
sphere bundle E we can extend aD tbe way down to (1",.0 in such a maDDer 
that if . . 

then 

Since d(W't ~ = M.,do"· ~ == ± ~du"-l. I) == 0, 

DfI = 6u'" 0 = i( -:-.sl . 

to 
.1 ....... ' ... 

I .. 
for some 8 in c-+ 1(1(- lu, R) ~ 0'+ 1(U, R), where i is the inclusion 
~,. + l(U, R) -+ c· + 1 (U, nO). Clearly Da *11 0, so a defines a cohomoJOIJ dUI 
e(E) in H,,+l(u, R) ~ H·+1(M), the Euler cUm of the oriented as--buDdle.·E 
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with orientation 0°' ". The Euler class of an oriented SO .. bundle is defined to 
be O. Note that the Euler class depends on the orientatio~ {[oJ} of E; the 
opposite orientation would give - e(E) instead. 

If E is an oriented vector bundle, the complement EO of its zero section 
has the homotopy type of an oriented sphere bundle. The Euler class of Eis 
defined to be that of Fil. Equivalently, jf E is endowed with a Riemannian 
metric, then the unit sphere bundle S(E) of E makes sense and we may 
define the Euler class of E to be that of its unit sphere bundle. This latter 
definition is independent of the mettic and in fact agrees with the definition 
in terms of ~, since for any metric on E, the unit sphere bundle S(E) has 
the homotopy type of E>. 

In the next two propositions we show that the Euler class is well defined. 

PropesitioD 11.7. For a given orientation {[C1«]} the Euler class is independent 
of tM choice ~f aloft - J, i == I,: .. ! n. 

PltOOF.· 
... -

1 .-. 

t"-1 1 
t,,-2 

- ~t 

I 
. I i . i 

t -£ 

Let 0'0,. be another cochain in CO(n - 1 U, nil) which represents the orien .. 
tation {[aJ}. Then ijo •• - 0'0 •• = d-r"-l for some ,[,,-1 in CO(7t-1~ {},,-1). 
Since d(cSt"-I) and d«(jl. ,.-1 _ al • • -1) are equal, c5t"-1 and a1 .. '1-1 _ 0'1.11-1 

diffe~r by dt"-l for some t"-2 in C1(1t- 1U, 0"-2). Again, 

d(cSt" - 2) = _ d(a;~' It -2 _ (12 •• - 2), . . 

\ 
.\ so 

(W .... ..l) _'(82 •• -2 _'~1 •• -2) = d-c"-3 

for some t"-.3 in C1(n- 1U, ~-3). Eventually wc get 

.k0 
- «1"-° - ",.- 0) = i~, 't E C'(n - 1 U, R). 

\ 

Taking 6 of both sides, we have' 

i - e = In. 

So i and £ define the same Cech cohomology class. 
o. 

Proposidoa 11.8. The Euler class e(E) ~ independent o/tlle choice of the good 
CDIWr. 
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PROOf. Write £u for the cocycle in H" + J (U~ R) which defines the Euler .class 
in terms of the -good cover U. If a good cover '8 is a refincm4'Dt of U. lIien 
there is a commutative diagram 

' .. -. 

tu and 1:., give the same element in HD~ l(M~ because if we choose the (ID. • 

on n- 1m to be the restriction of the 0°·· OD x-IU, the cocyclea. in 0'+,1($, 
R) will be the restriction of the cocycle tu in C· + l(U, R), so tbat as elements 
of the Cech cohomology Hit + l(M, R) they are equal. Given two arbitrary 
good covers U and iJ, we can take a common refinement !D; then 8u
Ee = £ill in H"+,l(~, R). So the Euler cl~ is independent of the cover. 

o 
If the Euler class vanishes, then the D-cocycle (1 corresponds to a global 

form which restricts to the d-cohomology class of (10. ". In sum, then, there is 
a global form'that restricts to a generator on each fiber if and only if 

(a) E is orientable, and 
. (b) the Euter class e(E) vanishes. 

For E a product bundle, the extension stops at t~e (10.. stage so that 
t; = O. In this sense the Euler class is a measure of the twisting of It.1l 
oriented sphere bundle. However, as we will see in the proposition belo~!:E 
need not be a product bundle for its Eulcr class to vanish. 

Proposition 11.9. If the oriented sphere bundle E has a section, then #S. "flIer 
class vanishes. 

PRooP. Let s be a section of E. It Collows from Jt 0 s == 1 that s*~ ;: 1. We 
saw in the construCtion oC the Euter class that 

-",*£ lE D(1 

for some D-cocbain iT. Applying s* to both sides Jives 

-B = DS*(1. 

so e is a coboundary in H*(M). 
o 

The converse of this proposition is not true. In general a ~homololY 
class' is too -coarse" an invariant to yield information' on the existence of 
geometrical constructs. In (23.16) we will sbow 'the:existence of a Ipbefe 
bundle whole Euler dasa vanishes, but which doeS nOt admit"IJiy'aectiOL'l 
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We now show that for a circle bundle n: : E --. M with structure group 
S0(2) the definitions of the Euler class in Section 6 and in this section agree. 
We briefly recall here the earlier construction. If (JGI is the angular coordi
nate over U., tben [d8J2x] is a generator of H1(E Iv). Furthermore, 

d8, _ d8. == n* d4J", == ft*~, - ft*,_ for some I-form '41 over U 41' 

2ft 21t 2n . 

The Euler class of the circle bundle E was defined to be the cohomology 
class of the global form {d, .. }. 

In the present context these cochains fit into the double complex 
C*(n- 1U, 0*) of E as shown in the diagram below. 

I I 
O*(E) 

at/. x <Pill. 
21t 21t 

C*(n - 1 U, 0*) 

n:*4>., -n*t 
2n 

+ 
I 

-1[*6 

C*(n- 1U, R) 

By the explicit isomorphism between de Rham and Cech (Proposition 
9.8), the differential form on M corresponding to the Cech cocycle e is 
(-D"K)2e. Since e, - ,_ = (l/2n) d4>t4, be = (l/2n) dt/J, so by (8.7), we may 
take ~ to be (1/21t) KdtfJ. Also note that since 6(</J/21r.) == -6, 

Hence 

Here 

- Kt = t/J/2n (modulo a cS-ooboundary). 

( - D" K)le == - dKdKe 

== dKd«t/J/21C) + 6t) for some t 

.. dKd(t/J/21C) + dKdln 

== d~ + dKdcSt. 

dKd6t = dK&lt because d commutes with 6 

== d(l - 6K)d-r by (8.7) 

== -6dKd1:. 

Since Kd-r e Ql(M), dKd't is a global exact form, so odKdt == O. Hence 
. (-D" K)"e == d~, showing that the two definitions of the, Euler class could be 

made to. aP.'ee on the level of forms. '. ' 
• • .1 • • 
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The Global Angular Form 

In Section 6 we exhibited on an oriented circle bundle the global angular 
form '" which has the following properties: 

(a) its restriction to each fiber is a generator of the cohomology of the 
fiber; 

(b) dt/l == -It*e, where e represents the Euler class of the circle bundle. 

Using the collating formula (9.5) we will now construct such a form on any 
oriented S"-bundle. 

Let U = {U.} be an open cover of M. Recall that the Euler class of E is 
defined by the following diagram: 

«. -n*, 

where (Xo e CO(n- 1U, 0") is the orientation of E, 

i == 0, ••. , n - 1, 

and 

6«. == - 1(* B. 

Hence 

D(<<o + ... + ex.) == -1J,·s. 

Here a.i is what 'we formerly wrote as ct··-'. 
If {p.} is a partition of unity subordinate to the open cover U == {UJ,' 

then {1t*P.} is a partition of unity subordinate to the inverse cOver ,,-lU -
{n-1U.}. Using these data wc can define a bomotopy operator K 011 the 
double complex C-(U, 0-) and also onc on C-(K -l Ut C*) as in (8.6). Wc 
denote both operators by K. Both K satisfy 

6K + K6 -1. 

Since 

I 

K commutes with ,,*. 
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Exercise 11.10. If s : M -+ E is a section, show that Ks· ::: s.K. 

By.the collating formula (9.5), 
.. 

It 

(11.11) '" = 1: ( - 1 )~(DN K)Jrti 
1=0 

is a glo~a.l .form on E. Fu~thermore, 
6. ,... • 

d.p == (_1)11+ ~dK(D" K),,{ -n*t) 

== -1t*(-1),,+1(D"Kr+ 1e since x* commutes with D"K 

(11.12) == - x*e .. by Prqposition 9.~. 

In fonnula (11.11) since the restriction of te*« - 1 )".:t- 1 K(D" Kte) to a fiber 'is 
. 0, the restriction of the global form I/t to each fiber is d--cohomologous to 

CXo Inbert hence is a generator of the cohomology of the fiber. The gobal 
n·form '" on the sphere bundle E satisfies the properties (a) and (b) stated 
earlier. We call it the global angular form on the sphere bundle. . 

t" • 

Exercise 11.13. Use tbe existence ~f .t~e global angular form'" to prove 
Proposition 11.9. . 

• I 

Euler N umber and the . Isolated Singularities of a Section 
I 

Let 1t : E ~ M be an oriented (k .:.. I)-sphere bundle over a compact orien· 
led manifold of dimension k. Since lI,,{M) ~ IR, the Euler class of E may be 
identified with the number Jue(E), which is by definition the Euler number 
of E. The Euler Qumber of the manifold M is defi.ned to be that of its unit 
tangent bundle S(1:,,) relative to some Riemannian structure on M. While 
the Euler number of an orientable sphere bundle. is defined only up to sign, 
depending on the orienta\ioQ.s .o.f bQth E a~d M, the Eul~r ~u~ber. of. the 
orieptable ma~ifold M is ':lnambiguous, since reversing the orientation of M 
also r~.vers~s that ~f tb~ tanF,nt. bu~d~. . . 

. In general .th~ sphere bundle E will not have a global sec~ion; however, 
there may be a section s over the complement of a finite number of points 
Xl • ••• , x4 in M. In fact, as we wilJ show in Propositjon J L14, if the sphere 
bundle has structure group O(k), then such a .. partial" section s always 
exists. In this section we will explain how one may compute the Euler class 
of E in terms of the beha vior of the section s near the singularities 
Xl, ••• , X q • 

Proposition 11.14. Let 'It : E -+ M be a (k - 1 ).-sphere bundle over a compact 
Inanifold of dimension k. Suppose the· structure group of E can be reduced to 
O(k). Then E has a section over M - {Xl' ..• , X,} for s~me finite number of 
points in M. .. . . .... .. 
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PROOf, Since the structure group of E is O(k), we can form a' Riemannian 
vector bundle E' of rank k whose unit sphere bundle is E. A section' of E' 
over M gives rise to a partial section s of E : s(x) =: s'{x)/ 11 s'(x) 11 , where n 11 

denotes the length of a vector in E'. Let Z be the zero locus of t; s is only a 
partial section in the sense that it is not defined over Z. Thus to prove the 
proposition. we only have to show that the'vector bundle ~'bas a ,$eCtion 
that vanishes over a finite numbe~ of points~ " 

This is an easy consequence of the transversality'theorem wh,icJl states 
that given a submanifold Z in a manifold Y, every map f: X .-. Y becomes 
transversal to Z under a slight perturbation (GuiUemin and Pollack [1, p. 
68]). 'Furthermore, we may assume that a small perturbation of a section' or 
E is again a section, as follows. Suppose f is a perturbation of sand f is 
transversal to the zero section. Then 9 = 1t 0 f is a perturbation of 1t 0 s, 
which is the identity. Thus, for a sufficiently small perturbation, 9 will, be 
close to the identity and so must be a diffeom~rphism. For such an J, define 
s'(x) = I(g -l(X». Then 1t 0 s' = 1 and s' is transversal to the zero section so, 
i.e'9 S = s'(M) intersects So = so(M) transvC?rsally. Since ; 

,"' o· . 

dim S + dim So = dim E', 
, . 

S " So consists ,of. ~ discrete set .of points., By th~ com~ctnCS§.~ St),t,rnust 
be a finite set Q' ppints ... ,. . , ~ ".i " ;,.~, p. 

'".,.. . 

, 

REMARK 11.15. It follows from the rudiments of obstruction theory that thiS' 
proposition is true even if the structure group of the sphere bundle cannot 
be reduced to an orthogonaJ grol;lp. For a beautiful accouni of Qbsuu~tio1) 
theory, see Steenrod [1, Part 111).-: 1 • ' I ;'. " >,) . " 

Suppose s is a section over a punctured neighborhood of a point x in M. 
Choose this neighborhood sufficiently small so that it is diffeomorphic ('6 'a 
punctured disc, in ~" and ,~ is trivjal, over it. Let D, be the open neigbbor
hood of x corresponding to the ball of ra~us r in R' under the qiffeomor
phism above. As an open subset of the' oriented manifold M,'I!, is aJso 
oriented. Choose the orientation on the sphere S"-1 in such a way thafthe 
isomorphism E IDr ~ D, X Sit. - 1 is orientation-preserving, where D,. x st - 1 

is given the product / orientation. (If A and 'B' are two oriented manifolds 
with orientation forms (J) A and w., then ~he product orienta'tion on A x B is 
given by (PTw If) A (Pt (.Osh where PI and Pl' are 'the projectionS of A 'x B 
onto A and B respectively.) The local degree of the section s at x is defined 
to be -the degree or,the Composite map . ~~ :,; . ! ' : 

where p is the projection and Dr is the closure of D, . 
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TIIeorem 11.16. Let n: E --+ M be an oriented (k - I)-sphere bundle over 
a compact oriented manifold of dimension k. If E has a section over M - {x It 
... , .x,}, then the Euler number of E is the sum of the local degrees of s at 
Xl' ••• , oX,. 

PROOF. Let M, be M minus the balls of radius r around the points Xh ••• , 

x,. (By the radius, we mean the radius in R" under some fixed diffeomor
phisms of the neighborhoods of the singular points Xh ••• , x, as above.) 
The Euler number of E is 

(11.16.1) r e '= lim r e =c lim r S·7[* e J., , .. 0 Jlfp r ... 0 J"r since s is a global section 

over M, 

_ - lim r s*dt/l 
, ... 0 JJl, because n*e == -dt/l 

_ - tim r s.'" , ... 0 JUl. by Stokes' theorem. 

For each i, choose an open ball D, around the singularity Xi as before. 
(To keep the notation simple, we write D, rather than Dr, I.) Let (I the 
generator of st- 1• Then P*(J restricts to the generator OD each fiber of E IDp. 
So p·a and the angular form '" define the same cohomology class in 
H*(EI»r)' i.e., 

'" - p·u == df 

fQr some (k - 2)-form t on E iD,. By shrinking r slightly, we may assume 
that t is defined over a neighborhood oftbe closed ball D,. Then 

s*'; - s*p*a = s·dr: 
and . 

r s." _ r ~p.(/ = r ds*t = 0 J,lt. .leA J.,IJ, 
by Stokes' theorem. 

Therefore, 

r s.'" == local dcp of tbe section s at x,. 
l~ . 

Since oDr has the Joppo~te orientation as aMpt 
. . . 

- Iim r s·'" == lim r. r s· '" = L (local degree of s .at x,). 
, ... 0 Ja.,p r ... 0 x, Je.D.. I 

Together with (11.16.1), this gives 

r e = L (local degree of s at x:). JJI , o 
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This theorem can also be phrased in terms of vector bundles. ~t 
n : E -to M be an oriented rank k vector bundle over a manifold of dimen
sion k and s a section of E with a finite number of zeros. The multiplicity of 
a zero x of s is defined to be the local degree of x as a singularity of the 
section sill s 11 of the unit sphere bundle of E relative to some RiemannjaD 
structure on E. (This definition of the index is independent of the Rieman
nian structure because the local degree is a homotopy invariant.) SiDce Ute 
Euler class e(E) of E is a k-form on M, it is Poincare dual to raP, where· 
n = JAle(E) and P is a point on M. Thus we have the following. 

Theorem 11.17. Let 1t : E-+ M be an oriented rank " vector bundle over q 
compact oriented manifold of dimension le. Let $ be a section of E with a fi'"" 
number of zeros. The Euler class of E is Poincare dual to tIN zero. of .. 
counted with the appropriate multiplicities. 

EXAMPLE 11.18 (The Euler- class of the unit tangent bundle to S2). Let~(Ts2) 
be the unit tangent bundle to S2. It is a circle bundle over S2 : 

Si -+ S(Tsz) 

1 

Fix a unit tangent vector v at the north pole. We can define a smooth 
vector field on Sl .. { south pole} by parallel trans1atinl v alona the p-eat 
circles from the north pole to the south pole (see Figure 11.1). (Par.1 
translation along a great circle on S1. is prescribed by the foUowinl'two 
conditions : 

(a) the tangent field to the great circle is parallel; 
: ~ ,. i 

(b) the angles arc preserved under parallel tranalation.) 

' .. 

Fiaure 11.1 
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Figure 11.2 

This gives a section s of S(TS1 ) over S2-{south pole}. On a small circle 
around the south pole, the vector field looks like Figure 11.2, i.e., as we 80 
around the circle 90", the vectors rotate through 1800

; therefore, the loc~1 
degree of s at the south pole is 2. By Theorem 11.16, the Euler class of the 
unit tangent bundle to S2 is 2. . 

I 

Exercise 11.19. Show that the Euler class of an oriented sphere bundle with 
even-dimensional fibets is' zero, at least when the sphere bundle comes from 
a vector bundle. '. . '.' . '- ' .; . . .' .:' ." . 

Since the Euler class is the obstruction to finding a closed global angular 
form on an oriented sphere bundle, by the Leray-Hirsch theorem we have 
the following corollary of Exercise 11.14. 

Proposition 11.20. If n : E ~ M is an orientable S2"-bundle, then 

H·(~) ~ H~(AI) ~ H·(S211). 

Exercise 11.2 r' Compute the' Euler class of the unit tangent' bundle of the 
sp~ere 's" by finding a voct~r 'field on SIt 'and computing its local degrees. 

• ..: ~ ",. 9 • .- • • • ... J 

Euler Characteristic andJhe Hopf Index T~eo~em 

In this section we show that the Euler number JAt e(T",) is 'the same as the 
Euler cha~acteristic X(AI) = L( - 1 )qdim Hq(M) and deduce as a corollary 
the Hopf index theorem. The manifold' M is assumed to be compact and 
oriented. 

Let {Wi} be a basis of the vector sPflce H*(M), {t J} be the dual basis 
under Poincare duality~' i.e., S", w, A tj = {)ij t and let 1t and p be the two 
projections of M x M to M: . 
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By the Kiinneth formula, H*(M x M) = H*(M) ® H*(M) with {1t*Wi· A 
P*1'J} as an additive basis. So the Poincare dual '141 of the diagonal ~ ~n 
M x M is some linear combination '14 = L cij 1[*w, "P*fj. . 

Lemma 11.~2. '141 ,= L( - l)cSel ~'lI*(I)I." P*ti' 

PROOF. We compute SA 1[*ft 1\ P*(J), in two ways. On the one hand, we can 
pull this integral back to M via the diagonal map I : M ~ A c: M x M: 

1 rr·rl Ap·w, = fAt ,·rr·'lA ,·p·w, = fAt •• Aw, = (-I)'d .... )(d···"'bll . 

On the other hand, by the definition of the Poincare dual of a closed 
oriented submanifold (5.13), 

J' 1[$" i\ p*w, = [ 1[$'1 i\ p·w, i\ '1A 
11 JMXM 

Therefore 

.. ~ L clj i n*'C1 A p*w, A ~*~i A p*tJ .! 

i. J AI x III .' • , . ~ . 

= L c" ( -~ ),d .... +d •• "')(d'~'~, i' . n·(w, AT ')P·(~' ~ 'J ~ 
I, J III x AI . 

. if k =1= 1 

if k = I. 

o 

Lemma 11.23. The normal bundle I!l A of the diagonal 4 in M x M is isomor-
phic to the tangent bundle TA' . -

.. 
PROOF. Since the diagonal map' : M x M sends M diffeomorphically onto 
A, ,*TA = TAl' It follows from the commutative diagram 

(v, v) ~ (v, v) 
, 

o -+ TA -r T.v)( AI 141 -+ N A -+ 0 

11 . •. I~ 
:- .. " 't ~ 

o -+ T/tI -+ TAl EB TAl -+ TAl -+ 0 

V t-+ (v, v) 

o 
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Recall that the Poincare dual of a closed oriented submanifold S is 
represented by the same form as the Thorn class of a tubular neighborhood 
of S (see (6.23». Thus 

= 1 e(NJ 

= i e(TJ 

.. L e(T,,). 

where tJ)(NJ is the Thorn class of the normal 
bundle N A regarded as a tubular neighborhood 
ofAinMxM 

since the Thorn class restricted to the zero 
section of the bundle is the Euler class 

So the self .. intersec.tion number of the diagonal A in M x M is the Euler 
number of M. (By Poincare duality, SA 'lA == fM x., 'lA A 'lA is the self
intersection number of A in M x M.) 

Now the right-hand side of Lemma 11.22 evaluated on the diagonal A is 

== L< -1)4 dim H'(M) 
4 

;IK x(M). 
! 

I 

Therefore, 
'. 

Pro";'tioa 11.14. The Euler number of a compact oriented manifold I"e(TM ) 

is equal to its Euler characteristic x< M) = L( - 1)' dim Ht. 

It is now a simple matter to derive the Hopf index theorem. Let V be a 
vector field with isolated zeros on M. The index of Y at a zero u is defined 
to be the local degree at u of V / 11 V 11 as a section·.of the unit tangent bundle 
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of M relative to some Riemannian metric on M. By Theorem 11.16 the sum 
of the indices of V is the Euler number of M. The equality of the Euler 
number and the Euler c~aracteristic then yields the fonowing. 

Theorem 11.25 (Hopf Index Theorem). The sum of the indices of a vector 
field on a compact oriented manifold M is the &ler characteristic of M. 

Exercise 11.26 (Lefschelz fixed-point formula). Let f: M --+ M be a smooth 
map of a compact oriented manifold into itself. Denote by H,,{/) the in
duced map on the cohomology H'(M). The Lefschetz number of f is defined 
to be 

L(f) = L ( - 1)' tr~ce H'(/). 
. f 

Let r be the graph of f in A1 x l~l. 

(a) Show that 

i 'Ir = 4/)· 

(b) Show that if f has no fixed points, then 4f) is zero. 
(c) At a fixed pojnt P of f the derivative (Df)p is an endomorphism of the 

tangent space TpM. We define the multiplicity, of the fixed point P to be 

Gp = sgn det«D/)p - 1). 

Show that if the graph r is transversal to the diagonal A in M x M, then 

U.I> ~ r. (I" r . 
where P ranges over the fixed points of f. (For an explanation of the 
meaning of the multiplicity G" see Guillemin and PoUack [1, p. 121].) 

§ 12 Thorn Isomorphism' and Poincare Duality 
Revisited 

In this section we study the Thom isomorphism and Poincare duality from 
the tic-tac .. toe point of view. The rcsulta obtained here are moro general 
than those of Sections 5 and 6 in two ways: 

(a) M need not have a finite good cover, 
and 

(b) t~e orientability assumption on the vector bundle E has been 
dropped. 
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The Thom Isomorphism 

Let 1t : E -+ M be a rank n vector bundle. E is not a~umed to be orient
able. We are interested in the cohomology of E with compact support in the 
vertical direction, Hiu(E) = H*{ n:.,(E)}. Recall that 

(a) H*(R") = {R in dim~nsion n 
c 0 otherwise. 

(b) (Poincare lemma) H:,,(M x R") = H* -II(M). 

Let U be a good cover of the base manifold M. We augment the double 
complex C*(x -1U, n:CI ) by adding a column consisting of the kernels of the 
first lJ: 

o -> n;.(E) -> I I I I I 
~ = ~~: = _I __ I __ I _I ----....-1 

Using a partition of unity from the base, it can be shown that all the rows 
of this agumented double complex are exact. The proof is identical to that 
of the generalized Mayer-Vietoris sequence in (8.5) and will not be (epeated 
here. From the exactness of the rows of the augmented complex, it follows 
as in (8.8) that the cohomology of the jnitial column is the total cohomol
ogy of the double complex, i.e., 

H:.(E) ~ HJ){C·(1t.-1U, n:,)}. 
On the other ban4, 

HSof{C·(n- 1U, O!)} = H:,,(l1n- 1 UIlO •••• ,) 

= n H:.,(n-1Uq .... ) 

= C'(U, I:"), 

where ~ is the presbeaf given by 

. Jr':.,( U) - 1J:'(n ~ 1 U). 

By the Poincare lemma for compactly supported co homology, if U is con
tractible, then 

~f U):s {R. if q = n -' I . J 

~.,( 0 otherwise. 

Therefore H~ a-nd also HS·fH4 = HS{C*(U, .K:.)} = H'(U, Jt':.) .have entries 
only in the nth row. 

ProposiOOD 12.1. Given any double complex K, if H, H ~K) has entries only in 
one row, then II.H4 is isomorphic to H D • 
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This proposition will be substantially generalized in Seclion 14. for it is 
simply an example of a degenerate spectral sequence. Its proof is a technical 
exercise which we defer to the end of this section. Combined with the 
preceding discussion, it gives . 

H:v(E) = Hr, = Ea H'(U, ~~.J = H* -"(U, Jf'~.,). 
p+q=. 

This is the Thorn isomorphism for a not" necessarily orientable vector 
bundle. 

Theorem 12.2 (Thorn Isomorphism). For 1t : E -+ M any vector bundle of 
rank n over M and U a good cQver 0/ M, 

H:,,(E) ~ H* -IJ(U, Jt'~.J, 

where Je~v is the presheaf .JtP:I1 ( V) = H:v(n - 1 U). 

We now deduce the orientable version of the Thom isomorphism from 
this. So suppose 7[ : E -+ M is an orientable vector bundle of rank n over M. 
This means there exist forms (lar on the sphere bundles S(E) lu. which restrict 
to a generator on each fiber and such that on overlaps U« nU, . their 
cohomo}ogy classes agree: [O'J = [(lp]. Now choose a Rieman~ian metric 
on E so that the "radius" r is well-defined on each fiber and any function of 
the radius r is a global function on E. Let p(r) be the. function. shown in 
Figure 12.1. Then (dP)O'ar is a fonn on E lu., where we rcg~lrd 0'. as a form OD 

the complement of the zero section. Furthermore, [(dp)o'J E H:"(E Iv.) res
tricts to a generator of the compactly supported cohomology of the liber 
and [(dp)qJ = [(dp)o',] on V. f" U,. Since the fiber has no cohomololY iD 
dimensions less than n, qO." = {O' Cl} can be extended to a D-cocycle. This 
D-cocycle corresponds to a global closed fo~m cz. o~ E, the Thom c. 0( 4 
which. rest,ricts to a generator on each fiber. Now Jr:.(U) is generated by 
<1>1(1 and for V .. c U the restriction ~ap fr~ .Jf'':.(lf) fA Jf:'(y) .~·C)l'" 

------~--------------~----~r o 

-1 .... ----

Fi,urc 12.1 
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to ~ Iy. Hence, via the map which sends ~ lu, for every open set U, to the 
generator 1 of the trivial presheaf R, the presheaf 1~f1 is isomorphic to R. 
The Thom isomorphism theorem then assumes the form 

(12.2.1) 

for an orientable rank n vector bundle E. This agrees with Proposition 6.17. 
It holds in particular when M is simply connected, since by (11.5), every 
vector bundle over a sjIJlply connected manifold is orientable. 

From the explicit formula (11.11) for the global angular form on an 
oriented sphere bundle, we can derive a formula for the Thorn class of an 
oriented vector bundle. Letf: EO -+ S(E) be a deformation retraction of the 
complement of the zero section in E onto the unit sphere bundle. Ifl/ls is the 
global angular form on S(£), then'" = j*",s e H,,-I(£O) is the global angu
lar form on EO. It has the property that 

where e represents the Euler class of the bundle E. 

Proposition 11.3. The cohomology class of 

c» = d(p(r) . "') E 0:.,(£) 

is the Thom class o/the oriented vector bundle E. 

P1t.ooF. Note that 

(123.1) • = dp(r) . 1/1 - p(r)x·e. 

For the same reasons as in the discussion following (6.40), ~ is a closed 
global form on E with compact support in the vertical direction. Its re
striction to the liber at p is dp(r) .• :.;, where Jp : E,,-+ E is the inclusion 
and ': t/I gives a generator of H" - 1 (R" - {O}) = Hit - 1(S" - 1). Since 

i dp(r) .,. t/I = r dp(r) i J. y, = 1. • , J.1 'S.-1 , 

by (6.18),. is the Thom ~l~ss of E. o 

If s is the zero section of E, then s·dp = 0 and s·p = -1. By (12.3.1), 

Thus, 

Propositioa 11.4.. The pullback of the Thorn class of an oriented rank n vector 
bundle via the zero section to the base numifold is the Euler class. 
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REMARK 12.4.1. From the fonnula for the Thom class (12.3), it is clear that 
by making the support of p(r) sufficiently close to 0, the Thom class fI) can 
be made to have support arbitrarily close to the zero section of the vector 
bundle. 

REMARK 12.4.2. In fact, in Proposition 12.4 any section will puU the Thom 
class back to the Euler class. Let s be a section of the oriented vector bundle 
E and s·: H:.(E)--. H·(M) the induced map in cohomology. Note that s· 
can be written as the composition of the natural maps j : H!(E) -+ H·(E) 
and s· :H·(E)--' H·(M~ As a map from M into E, the section s is homo
topic to the zero section so. By the homotopy axiom for de Rham cohomol .. 
08Y (Cor. 4.1.2), i* = S:. Hence, s· = s~. 

lit 

Using the description of the Euler class as the pullback of tbe Thom 
class, it is easy to prove the Whitncy product formula. 

TIIeorem 12.5 (Wbitney Product Formula for the Euler Cass).l[ ~ and F 
are two oriented ·vector lnmdles, then e(E Ea 1).- e(.If:)e(~ '. . 

PRooF .. By Proposition 6.19, the Thom class of E E9 F is 

,,<E· El} F) =- al-.cE) A "fCll(F) 

where a. and 713 are tb~ projections of E Ea F onto E tild F respectively. 
Let s be the zero section of E (f) F. Then Xl 0' aDd X3 0 s are the zero 
sections of E and F. By Proposition 124,. . 

e(E $ F) - '~E EB F) - S-af (E) A 8*,,!cD(F) - e(E)e(F). 

o 
. 

Exercise 12.6. Let a : E~ M.be an orient~. vector bundle. 
(a) Show that x*e -. u· cohomolop d· ... · iD, H·(E), • not· _ iD 

H!(E). ,'. 
(b) Prove that ./\. - ./\"e i" H!(E). 

, I 

Eoler Class and the Zero Locus of a Section 

Let " : E -. M be a vector bundle aDd So tbe imap of tile zero lOCdou iD E. 
J\ ~OD , 01 E iJ transversal if ita ima&e S - J(M) intcnecta So traJII.. 
vei-sany. The p~ of this section is to derive an interpretation of tbe 
Eu1er class of an oriented vector buDdle u the Poi0car6 dual of the zero 
locus of a transversr.l 1OCtion. This is an aDaIope of nv..m 11.17. 
which is more special in that rank E ~ dim· M. but more JCDCral iD that the 
ecctioD is not assumed to be transversal. . 

.. • • I' 

PropoIIdoD 12.7. Let K : E.-. M be tIIIy vector blllllll"and Z tIN zero Iocu8 of 
a tralUl1ersal .ctkna. TIte" Z U IJ aubmanlfoltl i1/ M and b1lDf7fllll ".",.. lit 
M u Nz,,, ~ EIz. . ..';.. . 
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EIZ 

s 
So 

Fiprc 12.2 

PROOF. Write S = s(M) for the image of the section s (see Figure 12.2). 
Because S intersects So transversally, S f"\ So is a submanifold of S by th~ 
traosversality theorem (GuiUemin and Pollack [1, p. 28]). Under the 
ditreomofPhism s : M -+ S, Z is mapped homeomorphica11y to S n So .. So 
Z can be made into a submanifold of M. 

To compute the normal bundle of Z, we first note that because E is 
locally trivial, its tangent bundle on So .. has the. following canonical de
composition 

. r.lso == Elso Ea 'ISo· 

By the transversality of S " So, 

Ts + TSc, = T. = E Ea ISo on S n So. 

Hence the projection Ts -+ E over S " So is surjcctive with kernel 'IS n Tao .. 

Again by the traosversality of S " So, Ts n 'ISo =-= Ts n 10 ~ So we have an 
exact sequence over Z ~ S " So: 

o -+ Tz -+ 1$ ~ --. B la -+ o. 
Hen<:e N ZIIII Qt: £ 1% . o 

In the proposition above, if E and M are both oriented, then the zero 
locus Z.of a transversal teCtion is naturally an orlated manifold, oriented 
in such a way that- .~ \ . 

.• t ( t 

has the direct sum orientation. 

PropoIitioD 11.8. Let Jt : E -+ M be an oriented vector bundle over an orUnted 
manifold M. Then. the Euler class e(E) is Po;~are dual to the ~ero.~ of. 
tl'Qlt8DerMJ,l section. 
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E 

Supp+ M~So 

Fiaure 12.3 

PROOf. We will identify M with the image So of the zero section. If S is the 
image in E of the transversal section s : M -+ E, then the zero locus or , is 
Z c: S " So. Z is a closed oriented submanifold of M and by Proposition 
12.7, its normal bundle in M is NZ/M == Elz. Since S is diifeomorphic to M. 
the normal bundle N ZIS of Z in S is also E Iz & The normal bundles N %/11 and 
N Z/S wi,1l be identified with the tubular neighborboods of Z in M and in S 
respectiv~ly, as in Figure 12.3. 

Choose the Thom class cz, of E to have $Upport so close to the zero 
section (Remark 12.4.1) that cz, restricted to the tubular neighborhood Nz/s 
in S has compact support in the vertical direction. In Figure 123 tbe 
support of ., is in the shaded region. We will now show that ... is the 
Thom class of the tubular ocighborhood N %111 in M. 

Let Ez , S., and M. be the fibers of E Iz ~ N 7./' ~ N Z/JI respectively above 
the point z in Z. Because • has compact support in S ... s*. hai. compact 
support in M •• Furthermore, . 

i ,*$ - i·~ by the invariance of the intqral under the 
11. . s. oriemation-prcserving diftComorpliiam,: M •. --.. s. 

.. 

== r cz, because E. is homotopic to S. modulo the re~o~ .; ..... 
JB. iD E where 4» is zero 

Aa 1 by the dcftnitiOD of the Thom. cl .... 

So s·. is the Thom class of NZ/M. By Proposition 124, ,.4» - e(E). SiDcc 
by (6.24) the Thom class of N Z'II is Poincar6 dual to Z in M, the EuIor dUI 
e(E) is Poincue dual to Z in /4.. . ··1 

o 

A Tic-Tac-Toe Lemma 

In this section we will prove the technica11emma (Proposition 121) that if 
H,H~ of a .double c;omplex K has entries in only ODe mw, tbeD.R,B. ja 

isomorphic to. the total cohomoJogy HJ.K). With thia tic-fac.toe Ianma we 
will r4HJ,8miac the Maycr-Vietoril principle d. ~a 8. , : '" ' ;'" ,; 



136 11 The Q:ch-de Rham Complex 

PROOF Of PROPOSITION 12.1. 

We first define a map h : H.H~-+ HD • Recall that D =D' +D" =~+( -l")d. 
An element [4>] in H~·4H .. may be represented by a D--cochain 4> of degree 
(p, q) such that 

D"q, = 0 

~q, = -D"tP! for· some ~l. 

This is summarized by the diagram 

b 
Dill, 

</I.!. 1,q, + D" 4> 1 = 0 

t D" 

4>1 . 

SiJM:e Hr+l •• -1H~ = 0, ~i = -D"4J2 for some t;zo Continuinl" in. this 
maDner, wc see that ., can be extended downward to a D<OCycle • + 
f1 + ... + t/J •• The map h is defined by sending [tII] to [.+~l +- .. +~Jo 

Next we define the inverse map 9 :. H D -+ H, H.. ;Let Q) be a cocycle in 
H D. As the image of co we cannot simply take the component of Q) in the 
Donzero row because d of it may not be zero. Suppose 0) .. a + b + c + .. · 
as shown. 

a • 

.; . 

• : • ~ .J' ~ . 

J , ••• 

Wc will move co iD ita D-cobomology class so that it has DotbiDl above the 
DODZelO row. Since dtJ - 0 and 8a - - /rb, a fCprelCDts a cocyde in H. H •. 
But H, H. - 0 at the poIition 01 a, 10 (I is 0 iD H, H.; thiI impIieI that . 
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a =: DNa, for some al- Then (J) - Dal has DO components in the first col
umn. Thus we may assume Cl) = b + c + .. '. Again b is 0 in H, H ~, so that 
b =: t5b1 + DNbl , where LYb1 :lE O. Then Cl) - D(b. + bl ) - (c - cSb1) + . --
starts at the nonzcro row. 

o 
i 

i 
b2 -+ c 

Thus given [w] E H D , we may pick co to have no components above the 
nonzero row of H,H~, say Ol SE C + . -'. Then de == 0 and the mapfl: HD -+ 

H,H1 is defined by sending [Ol] to [cl. 
Provided thcy are well-defined, hand 9 are clearly inverse to each other.' 

Exercise 12.9. Show that h and 9 arc well-defined. 
o 

Using Proposition 12.1 we can give more sUccinct proofs of the main 
results of Section 8. Let U -= {U.} be an open cover of the manifold M and 
C'(U, Of) == IIa«( U cao .... ~ By the exactness of the· Mayer-Victoria sequence, 
H, of the Cech-de Rh~ complex C*(U, C·) is 

q T 

gl(M) 

Ol(M) 

OO(M) 

0 1 2 p 

so that H~H, is 

q 

Hl(M) 

Hl(M) 

JIO(M) 

0 1 2 p 
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Since H" H, has only one nonzero column, we conclude from Proposition 
12.1 that 

for any cover U. This is the generalized Mayer-Vietoris principle (Prop
osition 8.8). 

Now if U is a good cover, Hd of the Cech-de Rham complex is 

q 

o .: 1 2 

Again because H, H4 has only one nonzero row, 

H~{ C*(ll, O·)} ~ H·(U, R). 

p 

p 

This gives the isomorphism between de Rham cohomology and the Cech 
co homology of a good c~ver with coefficients in the constant presbeaf R. 

Exercise 12.10. Let CP" have homogeneous coo~9inates %0' ••• , z ... Define 
Ui = {Zi =F O}. Then U = {VOt ••• , V.} is an open cover of CP", although 
not a good cover. Compute H*(CP") from the double complex C·(U, a·) .. 
Find elements in C*(U, 0*) which represent the g~rators of H*(CP"). 

Exercise 12.11. Apply the Tbom iso~orphism (122) to compute the coho .. 
mology with compact support of tbe open Mobius strip (cf. Exercise 4.8). . 
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Poincare Duality 

In the same spirit as above, we now give a version of PoincarC duality, in 
terms of the Ccch-de Rham complex, for a not necessarily orientable mani
fold. Let M be a manifold of dimension n and U == {U.} any open cover of 
M. Define the coboundary operator 

lJ: Er> O:(U 41() ••• IX) --+ Ea O:(U jI() •••• ,_,) 

by the formula 

. . 
where on the right-hand side we mean the extension by zero of (() ...... '-1 to 
a form on U.o ...• ,-l' To ensure that each COD!ponent of 60J has compact 
support, the groups here are direct sums rather than direct products~ so that 
w t: 63 n (U «0 •.•• ,) by definition has only a finite number of.laonzero com-
ponents. ' i . 

Proposition 12.12 (Generalized Mayer-Victoris Sequence for Compact Sup
ports). The sequence 

O...-a:(M) ~ Ea n:(U~o)+- $ O:(U.O«I) 
.. , .. 

+-- •.. +- a:.. n.( U \ .-- ... , . 
W·~ N ••• ." . 

is exact. 

PROOF. We first show b1 = O. Let CJ) be in e 0:( U av .c •• ,)- Then 

(c5
2

w):zo ," ~p-2 == ~)&:.u)ao , .. «,-1 = L L W'ao .... ,-1 
« " , 

= 0, since (JJ", ... = - (J)~ •••• 

Now suppose £Sw = O. We wilJ show that co is a.o-coboundary. 1&t {P.} be. a 
partition of unity subordinate to the cover U. Define. 

,,+1 

t = ~ (- 1)' n (J).e. • ~ ... «,+1 L "~410 .......... ,+,1, 
;-0 . .'. :. 

Note that f ao ...• , .... has compact support. Then 

(6f)ao ....• , = L 't'aao ..• a" 
. , 

• t 

~.'. (.: j 

- w' + 1'+1 W ( , . ) 
- LP. 110 .... , L( - ) . PII4 ......... __ ., 

Cl ., • . 

o 
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Exercise 12.12.1. Show that the definition of t in the proof above providC'!s a 
homotopy operator for the compact Mayer-Vietoris sequence (12.12). More 
precisely, if w is in EBO:(Uq ... .,) and 

then 

[)K + Kb == 1. 

Consider the double complex CP(U,o:): 

n I I 
.~ I El) ~(U.J ±EB n!'(U .... ± 

o 1 2 p 

In this double complex the 6-operator goes in the. wrong direction, so we 
define a new complex 

K - p. 4 == C'(U, 0:>. 

q t 

-2 -1 o p 

By the exactness of the row~ HiK) is 

q 

n:(M) 

O:(M> 
~(M) 

-2 -1 0 p 
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Since II,} lid has oniy one nonzcro column. it follows from Proposition 
j 2.1 (hat 

(12.13) 

On lh~ otht!f hand. jf 11 is a good cover~ then H d (K) is 

I I q I 

t· Et; J;i I 
ffi R EBIR 

_ .. 'r :rll ............ %" ~o < XI .lo 

-I p 

wh~rc·K~ is th~ covar'lant fun..:tcr whkh associates to every open set U the 
(;ompact cohomoJogy H~( U) and to every inclusion i, the extension by zero, 

..... -
H d' P. q( K) = 0 for q ~ n. 

Agajn by Proposition 12.1, 

(12.14) 

Here Hn .• (1(, x:) is the (n - _~}-th Cech homology of the cover U with 
cocfticients in the covariant functor X: (cf. Remark 10.3). CO!Qpatina 
(12.13) and (12.14) gi yes .... ' .... - '-

Theorem 12.15 (Poincare Duality). Let M be a manifoLd of dimension n Qfld U 
any good cover ofM. Here lw i~ not assumed to .be orienlable. 1nen 

. Ili(NI) ~ H,,_.(U, .Jt':}, 

"'here .K: is the cot'ariantjunctor JY~(U) = H~(U). " 

Exercise 12.16. By applying Poincare duality (12.15), compute the compact 
cohomology of the open Mobius strip (d. Exercise 4.8). 

§13 Monodromy 

When Is a Locally Constant Presheaf Constant? 

I n the preceding section we saw that the compact vertical cohomology 
H~.(E) of a vector bundle E may ·be computed as the cohomology of the 
base with coefficients in a locally constant presheaf. When this locally con
stant preshcaf is the constant presheaf R", H:

l1
(E) is expressible in terms or 
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the de Rham cobomology of the base manifold (Proposition 10.6). In this 
case the problem of computing H:"(E) is greatly simplified. It is therefore 
important to determine the conditions under which a locally constant pre ... 
sheaf is constant. . 

First we need to review some basic definitions from the theory of sim
plicia1 complexes (see, for instance, Croom [1]). Recall that if an n-simplex 
in an Euclidean space has vertices vo, ... , VII' then its barycenter is the point 
(vo + ... + v,J/(n + 1). For example, the barycenter of an edge is its mid ... 
point and the barycenter of a triangle (a 2-simplex) is its eenter. The first 
barycentric subdivision of a simplex (J is the simplicial complex· having all 
the barycenters of (J as vertices. By applying the barycentric subdivision to 
each simplex of a simplical complex K, we obtain a new simplicial complex 
K', called tbe first barycentric subdivision of K. The support of K, denoted 
I K I, is the underlying topological space of K, and thY-skeleton of K is the 
subcomplex consisting of all the simpiices oi dimension less than or eq ual to 
k. The complex K and its barycentric subdivision K' have the same support. 
The."" of a yerts' d' in _. denoted st(v)~ is the union of all the closed 
simplices in K having v as a vertex. 

Next we introduce the-notion of a presheaf on an open cover. Let X be a 
topological space and U = {U GI} an open cover of X. The presheaf fF on U 
is defined to be a functor , on the subcategory of Open(X) consisting of all 
~ite intersections U GO ••• Glp of open sets in U. Equivalently, if N(U) is the 
nerve of U, the presheaf' on U is the assignment of an appropriate group 
to·the barycenter of each simplex ·in N(U); for example, the group attached 
to the barycenter of the 2-simplex representing U ("\ V ('\ W is 
,(U" V '"' W). Each inclusion, say U () V ~ U, becomes an arrow in the 
picture, ,(U) --+ :F(U .f') V), and the transitivity of the arrows says that 
Figure 13.1 is a commutative diagtam. 

~/(U) 

.I(W) 

Figure 13.1 
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Two presheaves :F and C§ are isonwrphic relative to an open cover U = 
{ U «} if for each W = U «0 .. ,(I, there is an isomorphism 

hw : I(W) -+ f#(W) 

compatible with all arrows. In other words, there is a natural equivalence of 
functors !F ~ ~ where' and ~ are regarded as functors on the subcate
gory of Open(X) consisting of all fin.ite intersections U «0 ... ~p of open sets in 
U. The trivial presheaf and the constant presheaf on.an open cover U are 
defined as in Section 10. However, the definition of a locally constant 
presheaf on U requires some care, since the notion of ~·local" does not make 
sense on a cover. We say that a presheaf 9F is locally constant on U if all the 
groups .F( U GEO ." 11) are isomorphic and all the arrows are isomorphisms. 
Note that a locally constant presheaf on a space X is locally constant. on 
some open cover, and conversely. 

Of course, if two preshca yes fF and ~ are isomorphic on an OpeD ,cgver. 
U, then the cohomology groups H*(U, ') and H·(U, ~) are isomorphic. 

UI 

Figure 11.2 
\ 

\ 
EXAMPLE 13.1 (A locally constant preshcaf on U which is not constant~ Let 
U = {uo, U'lt U~} be a good ~ver of the rude S1 (see Figure 13.2). Define 
a presheaf' by I' 

'(U) == Z for all open sets U, 

Po - p'~ - p.l - pl == 1 01 - ('1 - ·12 - 12 , 

P~l = -i,.pgl, = 1. 

, is locally constant but not constant ~D U ~use ~2 ~ not the ideDtity. 

Let , be a locally constant presheaf with group G on an open cover 
U ~ {U GE}' Fix isomorphisms . . 
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If U tJ and U ~ intersect, then from the diagram 

4>a. 
§(Ua) 

.... 
- ... G 

p:..l 
I 
I 
I 

:F(U tJ ("\ Up) I 
p~p 1 I 

4>/1 ! 
:.F (V 11) ---:. G 

we obtain an automorphism of G, namely cP(J (p~p) - 1 P:llcP(J- 1, Write Pp : 
,-(, U l!.) -t '( U,) for the isomorphism (~fJ) - lop:" Choose some vertex U 0 
as the base point of the nerve N(U). For U 0 U 1 ••• U, U 0 a loop based at U 0 

we get an automorphism of G by following along the edges 

4>0 
Jt(Uo) - G - I 

1 I 
cPl 1 

~(U.) --+ G 

1 
I 
i 
l 

1 4>0 1 .... 
.F(U 0) 

.... 
G. . .. 

This gives a map from {loops at U o} to Aut G. We claim that if a loop 
bounds a 2-chain, then the assOciated automorphism of G is the identity. 
Consider the exampJe of the 2-simplex as shown in Figure 13.3. 

Figure 13.3 
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( a) (b) 

P3(pj2)-' (pAtl)-l p&12P81 

(c) (d) 

(e) (0 
Figure 13.4 

The associated automorphism of the loop U 0 U 1 U 2 is tj)o<P~plp<[)<Po 1 SO it 
is a matter of showing that p~p~p? is the identity. This is clear from the 
sequence of pictures in Figure 13.4, where we use heavy solid lines to 
i{ldicate maps which, by the commutativity of the arrows, are all equal to 

2 1 0 
POP2Pl' 
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More generally, the same procedure shows that the map p~ ... p~ around 
any bounding loop is the identity. Hence there is a homomorphism 

{loops} . 

Theorem 13~ Let U be an open cover on a connected topological space X 
and N(U) its nerve. Ij1tl(N(U» = 0, then every locally constant presheaj on U 
is constant. 

PROOF. Suppose 7tl(N(U» = 0, i.e., every loop bounds some 2-chain. For 
each open set V a , choose a path from Vo to V"" say Vo VClI ••• U«r V cx ' and 
deft - - .1. ~, _!L -« 1 - 0 \ - 1 . at: I r, ~ . r 

un:;; "Cl = <PO \1'«' '" l'«iJlCl.J • oF \ v ~ ~ v. 

<Po 
Y(Vo)~ G 

! 
~(V«) 

.p« is well-defined independent of the chosen path, because as we have seen, 
around a bounding loop the map Po ... p~ is the identity. 

Now carry out the barycentric subdivision of the nerve N(U) to get a 
new simplicjal complex K so that every open set V ClO ••• CI, corresponds to a 
VCitcx of K. Clcaily itl(l\f(U» = it 1(K). By the same procedure as in the 
preceding paragraph we can define isomorphisms 

.1. : !F(U \ ---. G 
~ «0 '" «p «0 ••• a." 

for all nonempty U ~o ... «,' The maps t/I «0 ... (I." give an isomorphism of the 
presheaf!F to the constant presheaf G on the cover U. 0 

REMARK 13.2.1. If the group G of a locally constant presheaf has 1)0 auto
morphisms except the identity, then there is no monodromy. In particular, 
every locally constant presheaf with group 7L2 is constant. 

REMARK 13.3. Recall that a simplicial map between two simplicial complexes 
K and L is a map f from the vertices of K to the vertices of L such that if 
Vo ~ ... , VII span a simplex in K, thenf(vo), ... ,f(vJ span a simplex in L. A 
simplicial map f from K to·L induces a map f: I K 1-:+ , L I by linearity: 

f(L 1, VI) = r Ai f,(v.). 

By abuse of language we refer to either of these maps as a simplicial map. 
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For the proof of the next theorem we assemble bere some standard facts 
from the theory of simplicial complexes. 

(a) The edge path group of a ~implicial complex is the same as that of its 
2-skeleton (Seifert and Threlfa11 [1, §44, p. 167]). 

(b) The edge path group of a simplicial complex is the same as the 
topological fundamental group of its support (Seifert and Threlfall [1, 144, 
p. 165]). 

(c) (The Simplicial Approximation Theorem). Let K and L be two sim
plicial complexes. Then every map f: I K 1--+ 1 L I is homotopic to a sim .. 
plicial map g: I K(l) 1-.. I L I for some integer k, where K(") is the k-th bary
centric subdivision of K(Croom [1, p. 49]). 

Because of (b) we also refer to the edge path group of a simplicial complex 
as its fundamental group. 

None of these facts arc difficult to prove. They all depend OD the foHow
ing very intuitive principle from obstruction theory. 

The Extension Principle. A map from the union of all the faces of" cube into a 
contractible space can be extended to the entire cube. 

ASID.E. With a little homotopy theory the extension principle can be refined 
as follows. Let X be a topological space and 11: the unit k-dimensional cube. 
If 1tq (X) = 0 for all q ~ k - 1, then any maps from the boundary of I" into 
X can be extended to the entire cu~ I". 

In section 5 we defined a good cover on a manifold to be an open cover 
{U aJ for which all finite intersections U -0 fi ... () U _, are difi"eomorpbic to 
a Euclidean space. By a good cover on a topological splJCe we sbeJJ mean an 
open cover for which all finite intersections are coQtractible. 

REMARK. Thus, on a manifold there are two notions of a good cover. We do 
not know if they are equivalent in all dimensions. It appears to be a difficult 
question whether every contractible manifold of dimension n is diffeomor
phic to R", for an affirmative answer would imply the generalized Poincare 
conjecture (which states that a compact manifold of dimension n having the 
homotopy type of the n-spbere ~ is homeomorphic to S"). The generalized 

. Poincare conjecture is still open for n == 3 and n = 4, the case where n > 4 
having been proved by Smale [1]. For a good cover on a manifol~ we will 
always stick to the more restrictive hypothesis that the finite intersections 
are diffeomorphic to R". This is because in order ~o prove Poincare duality. 
whether by the Mayer-Vietoris argument of Section S or by the tic-tac-toe 
game of Section 12, we need the compact Poincare lemma (Corollary 4.7). 
which is not always true for an open set with merely the homotopy type of 
RII .. 
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Theorem 13.4. Suppose the topological space X has a good cover U. Then the 
fundamental group oJ X is isomorphic to che fundamental group 1tl(N(U» oJ 
the nerve of the good cover. 

PROOF. Write N 2 (U) for the 2-skeleton of the nerve N(U). Let Vi' Ui)' and 
Uiji be the barycenters of the vertices, edges, and faces of N 2 (U) and let 
N 2(U) be its barycentric subdivision. As the first step in the proof of the 
theorem we will define a map f from I N2(l1) I to X. We will then show that 
this map induces an isomorphism of fundalnental groups. 

To this end choose a point Pi in each o~n set U. in U, a point Pi) in each 
nonempty pairwise intersection V'i' and a point Pijk in each nonempty 
triple intersection Vi}.' Also, fix a contraction Ci of li, to Pi and a contrac
tion cij of uij to Pij. These contractions exist because U is a good cover. By 
decree the map f s~nds U i, U ij' and U ijt to Pi' Pij' and PUt respectively. 

Figure 13.5 

Next we define f on the edges of I N 2(U) I. The contraction Cl takes Pi) to 
Pi and gives a well=defined path between Pi and Pij' Similarly, the contrac
tion Cj gives a well-defined path between Pj and Plj (see Figure 13.5). 
Furthermore, for each point Pij' the six contractions Ch Cj' Cl' Cij, Cil" and 
C jt produce six paths in X JOIning Pij" tq Pi, P j' Plc, Pij' Pii, and P ilt respect
ively (see Figure 13.6). 

Plk. 

Figure 13.6 
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The map f shall send the edges of I Ni(U) I to the paths just defined; for 
example, the edge U. U I}It is sent to the path joining P. and Pi)'" 

Finally we define f on the faces of I N1(U) I. Since each ., triangle" PI PI} PI)" 

lies entirely inside the open set U I (such a triangle may be degeMrate; ~e., it 
may only be a point or a segment), the triangle may be W filled in" in a 
well-defined manner: to fill in the triangle Pi Pi) Pill' use the contraction C, to 
contract tbe edge Pi) PUle to Pi (see Figure 13.6). This 66 filled-in" triangle will 
be the image of the triangle U i U J U I)" under f. In summary, with the choice 
of the points Pi, Pi), Pijle and the contractions Ci' CiJ fixed, we have defined a 
map/: I N1(U)I-. X. We will now show that the induced ~ap of funda
mental groups, f.: 1tl( I ,,\11(U) 1)-. 1tl(X) is an isomorphism. 

STEP 1 (Surjectivity of f.). Take Po in Vo to be the base point of X. Let 
y: Sl-+ X be a loop in X based at Po. We would like to deform ., to a map 
oi the iormj.(j), where j: Si -+ iN 1 (U) i is a loop in iN 2 (U) i based at U o. 

Regard Si as the unit interval I with its endpoints identified. To define 1, 
we first subdivide the unit interval into equal pieces, so that it becomes a 
simplicial complex K with vertices qo, ... , q. (Figure 13.7). 

• I • • • • 
Figure 13.7 . 

By making the pieces sufficiently small, we can ensure that the star of qi in 
the barycentric subdivision K' of K is mapped entirely into 'an open set 
Vdi): 

1(st(qJ) C V.(I). 

To simplify the notation, write j instead oC i + 1, so that qjqj is a 1-
simplex in K. Let qij be the midpoint of qill.J. Define j: S· --+ IN 2 (u) I by 
sending the segment q, q) to the segment U «(I) U .n; it foUows that ~qJ = 
Udi) andf.(j)(q,) = Pc(i)' . 

Next define a map F on the sides oftbe square]l by (see Figure 13.8). 

FlboUomlide= F(x,O) = y(x), 

. F I lOll- = F(x. 1) =-=f.~.x). 

and 

FI ........ == F(O, t) -= F(l, t) Ill!: Po. 

The problem now is to extend F: 012-+ X to the entire square. Subdivide 
the square by joining with vertical segments tbe vertices (q;, 0), (qu, 0) on 
the bottom edge to the corresponding vertices OD the top edge. Since 
F(q., 0) = y(q,) and F(q, , 1) = f.j(qJ = Pc(I)' they both lie in U .. ". Since 
U dl) is contractible, by the extension principle F can be extended to the 
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Po Po 

'Y 

Figure 13.8 

vertical segment {q.} x 1. Similarly, F can be extended to the vertical seg
ment {q'J} x I. Thus in Figure 13.8, F is defined on the boundary of each 
rectangle and maps that boundary entirely into a contractible open set U /I • 
By the extension principie again, F can be extended over each rectangle. In 
this way F is extended to the entire square /2. 

STEP 2 (lnjectivity off.~ Suppose y: J-+ IN2 (U)1 is a loop such that!.(y) is 
null .. homotopic in X. This means there is a map H from the square /2 to X 
as in Figure 13.9. 

H 0,.. 
.. u Po 

Po . 

Figure 13.9 

By the simplicial approximation theorem we may assume that "I is a 
simplicial map from some subdivision L of the top edge of the square to 
I N 2 (u) I. Now subdivide the square ]2 repeatedly to get a triangulation K 
with the property that if qi is a .vertex of K and st(q,) is the star of q, in the 
barycentric subdivision K', then 

H(st(q;» c U /1(0 

for some opc!n set U «(i) in U. In the process of the subdivision new vertices 
are introduced on the top edge only by repeated bisection of the edge; 
furthermore, the function Cl on the vertices of the top edge may be chosen as 
follows. Consider for example the l-simplex qlq2. H q" is a new vertex 
to the left of the midpoint Q12, choose q(k) = tX(1); otherwise, choose 
q(k) = «(2). 
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Define 

R: /2 -IK'I-+IN2(u)1 

to be the simplicial map with 

lI(qJ .: U"I). 

1St 

The restriction fJ of Ii to the top edge of the square agrees with "I OD the 
vertices of L. Furthermore, by construction JJ is homotopic to y in I N 2 (U) I, 
and R is a null-homotopy for /l. Therefore,!.: 1tl(lN2(U)I)~ 1tl{X) is in
jective. Since the nerve N(U) and its 2-skeletoD N 1 (U) have the same funda
mental group (Remark 13.3 (a», the theorem is proved. 0 

Examples of Monodromy 

EXAMPLE 13.5. Let SI be the unit circle in the complex plane with good 
cover U = {U 0, U 1'1 U l} as in Figure 13.10. The map 1t : z --t Zl defines a 
fiber bundle 1t : S1--+ Sl each of whose fibers consists of two distinct points. 
Let F = {A, B} be the fiber above the point 1. The cohomology H·(F) 
consists of all fUDctions on {A, B}, i.e.., H*(F) = {(a, b) e Rl}. 

Fix ~n isomorphism H*(n -1 U 0) ~ H*(F). We have the diagram. 

H*(n -1 U 0) ~ H*(F) 
r 

j 

'j 

H*(1t- 1U02 ) 

T 

r 
t . 
I 
r 
1 
I 
I 

r 
I 
t 
I 
I 
I 

. ·f 
I 
I 
I 
I , 
I 
t 
t 
I 
I 
I 
I 
I 
I 
I 

" H*(1t- 1 UO) .;:;" H·(F). 

If we start with a generator, say (1, 0), of H·(F) and follow it around the 
diagram, we do not end up with the same generator; in fact, we get (0, 1). In 
general (a, b) goes to (b, a). Therefore the presheaf A"*(U) == H·(n-JU) is 
not a constant presheaf. 
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e eA 

• ea 
VI ~~ 

irr U U0 .0 ) ( e 
0 I 

C ~ ( Ut ) 
( U1 ) 

Figure 13.10 

Exercise 13.6. Since H d of the double complex C*(n - 1 U, 0*1 in Example 
.13.5 has only one nonzero row~ we see by the generalized Mayer-Vietoris 
principie and Proposition 12.1 that 

H*(Sl) = H!{C*(1l- 1U, O.)} = H,H .. = H.(U, .)('0). 

Compute the eech cohomology H(U, Jfo) directly. 

EXAMPLE 13.7. The universal covering 7t : 1R1--+ S1 given by n(x) = el.b~ is a 
fiber bundle with fiber a countable set of points. The action of the ]QoP 
downstairs on the homology H o{fiber) is translation by 1 : x ~ x + 1. In 
cohomology a loop downstairs sends the function on the fiber with support 
at x to the function with support at x + 1. (See Figure 13.1 1.) 

, 

Figure 13.11 

Exercise J 3.8. As in Example 13.5, with U being the usuaJ good cover of SI, 

H*(R 1
) == HZ{ C*(n:- 1U, O*)} = H, H" == H-(U, ~~. 

Compute H*(U, KO) directly. 
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EXAMPLE 13.9. In the previous two examples, the fundamental group of the 
base acts on Ho of the fiber. We now give an example in which it.acts on 
H2 • 

The wedge S'" V S" of two spheres S'" and Sit is the union of S" and S· 
with one point identified. Let X be S 1 V S2 as shown in Figure 13.12 and 
let g be the universal covering of X. Note that although H·(X)~is finite, 
H*(X) is infinite. We define a fiber bundle over the circle Si with fiber X by 
setting. 

E = X x l/(x, 0) - (s(x), 1) 

where s is the deck transformation of the universal cover X which shifts 
everything one unit up. The projection 1[ : E -+ Si is given by 1t(x, c) = t. 
The fundamental group of the ba~ 1t 1(SI) acts on H2(fiber) by shifting each 
sphere one up. 

Exercise 13.10. Find the homotopy type of the space E. 

! '-

X= o • • 

Figure 13.12 



CHAPTER III 

Spectral Sequences and Applications 

This chapter begins with the abstract properties ~f spectral sequences and 
their relation to the double complexes encountered earlier. Then in Section 
15 comes the crucial transition to integer coefficients. Many, but not all, of 
the constructions for the de Rham theory carry over to the singular theory. 
We point out the similarities and the differences whcocver appropriate. In 
particular, there is a very brief discussion of the Kiinneth formula and tbe 
universal coefficient theorems in this new settiD~ Thereafter we apply the 
spectral sequences to the path ftbration of Scere and CQmpute the cohomol
ogy of the loop space of a sphere. The short review of homotopy theory. 
that follows includes a digression into Morse theory, where we sketch a 
proof that compact maaifolds are CW complexes. In cormection with the 
computation of 7t3 (S2), we also discuss the Hope invariant and the linking 
number and explore the rather subtle aspects o( PoincarC duality concerned 
wjth the boundary of a submanifold. Returning to the spectral sequences. 
we compute the cobomology of 'fCrWn Bilenberg-MacLaDe spaces. The 
Eilenberg-MacLaDe spaces may be pieced together into a twisted product 
that approximates a given space. They arc in this SCDSe the basic building 
blocks of bomotopy theory. As an application, we show that Xs (Sl) == Z2 . 
We conclude with a very brief iatroduction to the rational homotopy 
theory of Dennis Sulliv8D. A more ddailod overview of this c;hap~cr may be 
obtained by reading the introductions to tbe various sections. Onc word 
about the notation: for aUnp1icity we often omit the coefficients from the 
cohomology groups. lbia should not cause any confusion, as H*(X) always 
denotes the de Rham cohomology except in Sections 15 through 18, where 
in ~ context of the lingular thcory it stands for the singular ~homology. 



§14 The Spectral Sequence of a Filtered Complex lSS 

§ 14 The Spectral Sequence of a Filtered Complex 

By considering the double complex C(U, 0*) of differential forms on an 
open cover, we generalized in Chapter JI the key theorems of Chapter I. 
This double complex is a very degenerate case of an algebraic construction 
called the spectral sequence, a powerful tool in the computation of homo)· 
ogy, cohomology aDd even homotopy groups. In this chapter we construct 
the spectral sequence of a filtered complex and apply it to a variety of 

\ situations, generalizing and reproving many previous results. Among the 
various approaches to the construction oC a spectral sequence, perhaps the 
simplest is through exact couples, due to Massey [1]. 

l 

Exact Couples 

An exact couple is an exact sequence oC Abelian groups of the form 

A l • A' 

4\} 
B 

where i, j, and k are group bomomorpbisms. Define d : B -+ B by d == j 0 k. 
Then d1 = j(kj)k = 0, so the homology group H(B)::: (ker d)/(im d) is de
tined. Here A and B are assumed to be Abelian so that the quotient H(B) is 
a group. 

Out of a given exact couple we can construct a new exact couple, caUod 
the derived couple, 

A' (, A' 

(14.1) ~/ 
B' 

by making tbe following definitions. 

(a) . .04' ::: i(A); B' = H(B). 
(b) , is induced from i; to be precise, 

i'(ia) = i(ia). . 

(c) If.a' = ia is in A'~ with a in A, thenj'a' :I: [ja], where [ ] denotes the 
homology class in H(B)., To show. that l is W~ll-defincd we have to cbcck 
two things; 

(i) ja is a cycle. This follows Crom deja) - j(lej)a = O. 
(ii) The homology class [ja] iJ indepcDdcot 01 the choice of G. 

i ' 
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Suppose a' = id for some other ii in A. Then because 0 = i(a - a), we have 
a - a = kb for some b in B. Thus 

ja - ja =jkb = db, 

so 

[ja] = [ja]. 

(d) k' is induced from k. Let [b) be a homology class in H(B). Then 
jkb = 0 so that kb = ia for some a in A. Define 

• 
k'[b] = kb E i(A). 

It is straightforward to check that with these definitions, (14.1) is an 
exact couple. We will check the exactness at B' and leave the other steps to 
the reader. 
(i) im j' c: ker k' : 

k'j'(a') = k'j'(ia) = k'j(a) = kj(a) = O. 
(ii) ker k' c imj': 

Since k'(b) = k(b) = Ot it follows that b = j(a) = j'(ia) E im j'. 

The Spectral Sequence of a Filtered Complex 

Let K be a differential complex with differential operator D; i.e., K is an 
Abelian group and D: K -+ K is a group homomorphism such that Dl = O. 
Usually K comes with a grading K = Efj I: £ Z Cl: and D: Ct 

--io et + 1 increases 
the degree by 1, but the grading is not absolutely indispensable. A subcom
plex K' of K is a graded subgroup such that 1?K' _c; K' . . Asequence of 
subcomplexes -

K = Ko·::> K 1 ::> K 2 ::> K 3 :::> ••• 

is c~lIed a filtration on K. This makes K into a filtered complex, with 
associated graded complex 

F~r notational reasons we usually extend the filtration to negative indices 
bt defining K" = K for p < O. 

EXAMPLE 14.2. If K = E9 K"" is a double complex with horizontal oper-
I 

ator {) and vertical operator d, we can form a single complex out of it in the 
usual way, by letting K = ® C, where Cl = Ea p+q .. Je K"', and defining 
the differential operator D: C ~ C" + 1 to be D = b + ( - 1 Y d. Then the 
sequence of subcomplexes indicated below is a filtration on K: 

K, = E9 Ea K i
., 

,~, ,~o 
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q .. 

o 1 p 

A •. ·•· . 

K1 -------

. lto-. --- K" ----

Returnins to the general filtered complex K, let A be the group 

A == EB K,. 
".z 

A is again a differential complex with operator D. Define I: A -+ .4 to be the 
inclusion K,+l .'+ K" and define B to be the quotient 

(14.3) 
I I 

O-+A"':'A~B-+O. 

Then B is the auociated &rued complox. GK or K. In the short exact 
sequence (14.3) each group is a complex with operator ind~ from D. 
From this short exact sequence we act a 1001 esact sequence of cohomol
oIY goups 

which we may write u 

11 

8(A) • H(A) 

~ !. del -
H(B) 

where the map I is DO loupr an iDcluaion. We IUpprcas the subscript of j 1 to 
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avoid cumbersome notation later. Since this is an exact couple, it gives rise 
as in (14.1) to a sequence of exact couples: 

B,. 

each being the derived couple of its predecessor. 
For the sake of the exposition consider now the case where the filtered 

complex terminates after K 3 : 

... = K -1 = Ko :::> K 1 :::> K2 :::> K3 :J o. 
Then Al is the direct sum of all tbe terms in the following sequence 

... ~ H(K) ~ H(K) ~ H(Kd:- H(K 2 ) ~ fl(K) +- O. 

This is of course not an exact sequence. Next, A 2 by definition is the image 
of Al under i in A1 and so is the direct sum of the groups in the sequence 

••• +=:: H(K) ~ H(K) :J iH(K.> +- iH(K 1 ) +- iH(K) +- O. 

Note that here the map iH(Kl) c H(K) is an inclusion. Similarly AJ is the 
sumoi 

... ~ H(K) ~ H(K):J iH(K 1) :::> iiH(K l) +- iiH(K 3) +- 0 

and A. is the sum of 

~ H(K) ~ H(K)::> iH(K 1) :J iiH(K 1) ::> iiiH(K l) ::> o. 

Since all the maps become inclusions in A 4 , all the A's are stationary after 
the fourth derived couple: 

A .. = As = A6 = ... = A ao • 

Furthermore, since 

A. · A4 

~/ 
B. 

is exact and i : A. -+ A. is the inclusion, the map k. : B. -+ j«. mU:St be the 
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zero map. Therefore, after the fourth stage all the differentials of the exact 
couples are zero and the B~s also become stationary, 

B4 = Bs = B6 = ... = B ~ . 

In the exact coupl,e 

A co is the direct sum of the groups 

(14.4) ... = H(K) = H(K) =? iH(K 1) ::> iiH(K2) ::) iiiH(K3) ::) 0 
... 

and the inclusion ioo is as in (14.4). Since Bco is the quotient of it».t it is the 
direct sum of the successive quotients in i oo • If we let (14.4) be the filtration 
on H(K), then Br is the associated graded complex of the filtered complex 
H(K). . 

We now return to the general case. The sequence of subcomplex~ 

. .. = K = K ~ K. 1 :::> K2 :::" K3 ::) · .. 

induces a sequence in cohomology 

.. 
where the maps i aiC~ of COUi5e no longer inclusions. Let F 11 be the image of 
H(K p) in H(K). Then there is a sequence of inclusions 

(14.5) H(K) = F 0 => F J => F 1 :J F'J::> .... , . . '.; .. 
making H{K) into ,8 filtered complex; this filtration ls,uUed· the induced 
filtration on H(K). 

A filtration K, OD the filtered complex K is said to have length ( if' 
Kp = 0 for p > f. By tbe same argument as the special case above. wc .. · 
that whenever the filtration OD K has finite length, then A, aad Br are 
eventually stationary and the stationary value Bex) is the associated graded 
complex EBF ,IF,. 1 of the filtered complex H(K) with filtration siftIl by' 
(14.5). 

It is customary to write Er for Br. Hence, 

El = H(B) with differential d 1 == j 1 0 kit 

El = H(E 1) with differential d2 , 
. . . 

E3 == H(Ez.)' etc. i., 

'" ....... , '''l~t 

A sequence of differential groups {E" d,} in which each Er is the homology 
of its predecessor E, _ 1 is called a spectral leqtM!nce. If E, eVeDtually be-
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comes stationary, we denote the stationary value. by Et%), and if Et%) is equal 
to the associated graded group of some filtered group H, then we say that 
the spectral sequence converges to H. 

Now suppose the filtered complex K comes with a grading: K = 
Ea •• I Kit. To distinguish the grading degree n from the filtration degree p, 
we win often call n the dime,asion. The filtration {K,,} on K induces a 
filtration in each dimension: if K; = Kit f"\ K" then {K;} is a filtration on 
K". 

For the applications we have in mind, the filtration on K need not have 
finite length. However, we can prove the following. 

Theorem 14.6. Let K =" Ea". 1. Kit be a graded filtered complex with filtration 
{K,} and let H1,(K) be the cohomology 0/ K with filtration given by (14.5). 
Suppose for each dimension n the filtration {K;l has finite length. Then the 
short exact sequence 

0-+ EaK,+l-+ $K, ...... EBK"IK,+l-+ 0 

induces a spectral sequence which converges to HZ(K). 

PROOF. By treating the convergence question one aimension at a time, this 
proof reduces to lhe ungraded situation. To be absolutely sure, we will write 
out the details. As before, 

A,. == e ,-1 H(K,,); ,.z 
if, ~ p + 1, then i'H(K,J == F, and 

i: ;rH(K,+l)-+ j'H(K,J 

is an ~lusion. With a grading on each derived couple. i andj preserve the 
dimeDaiOD, but le increases the dimension by 1. GivCD n, let I(n) be the 
Ienath or {K;} , .. 1 and let, ~.(n + 1) + 1. Then for any inteaer P. 

'PUII+ l(K ) F!+ 1 
, 0 ,+1 == ,+1 

i: i'Er+ l(K,+ 1)-+ I'H"+ l(K,) 

is an Qdusion. It follows that 

is an inclusion and 

k,: JJ:-+ 14:+ 1 

is the zero map. Therefore, as r-+ co, the group r, becomes stationary and 
wc caD define B'ao to be tbia ItatiOnary value. Noto that 

A:O == Ea P, 
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and that i«> sends 1;+1 into.r: for every n. Because iCD: El) F,+l ~ (BF" is 
an inclusion, B CD is the associated graded complex El) F ,IF ,,+ I QC Hl(K). 0 

. 
The Spectral Sequence of a Double Complex' 

Now let K = EBKP" be a double complex with the filtration of Example 
14.2. We will obtain a refinement of Theorem 14.6 for this special case by 
taking into account not only the particular filtration in question but also 
the bigrading and the presence of the two differential operators lJ and 4. 
The direct sum A = e K p' is also a double complex. Here, as always, we 
form a single complex A = (B A~ out of tbis double complex by summing 
the bidegrees: At consists of all elements in A whose total degree ~ k. There 
is an inclusion i : A1 

...... A1 given by 

\ 
The single complex A inherits the differential operator D = lJ + (-l)'d 
from K. 

Similarly, B = $K/K,+l can be made into a single complex with oper
ator D. Note that the di~erential operator D on Jl is( -l)Pd; therefore, 

;. !. 

(14.7) El - HD (B);;;1 H,(K). 
. , 

Recall that the coboundary operator -". : H(B) --+ !I(A) is the .coboun-
dary operator of the short exact sequence (14.3) and ~~ is ~ ))1 ~ 
following diagram: ., ' . 

(14.8) ID" 

1 . J 

.. " ".!; r . I D~. , 
:' , 

... ,: 

4 .:...:; £; • ~ ~ 

-""!"+ d'r'\ K,JK,,+ 1 -+ 0 
(1) 

r 
Let b in At " K" represent a cocycle Cb] in r n K,/K,+l" Tbia corre
sponds to Step (1) in the diagram. To set kl([b]),we 

(2) compute Db and 
(3) take itl inverse under I. 

Since b represents an element 01 El - BrAB) -H4I (K), db - 0 and 
Db =- bb + ( -1)'db - 6b. Tbua ".[b] - [Ib]; 10 the dift"crcotiaJ 11. - Jl". 
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. 
on El is given by lJ (in fact by D, but P == lJ 9Jl El). Consequently 

(14.9) E2 = H,HtI(K). 

We now compute ihe ditrerenti~ d2 on El' As noted in the proof of 
Proposition 12.1, an element of El 1;1: H,H4(K) is represented by an element 
b in K such that . ' ., 

db == 0 

o 
~--+- r -+-.--+--+--

b---
~~-+~~r~~---

Db = -lYe for some c in K, c 

where D" == ( -1 yd. We will denote the class of b ... E., if it is defined, by 
[b],~ Fro~ the definition of the detived couple (14."1),. . . \ 

d2 [b]l ::i il k2 [b]z = i2 kl[b] 1" 

To compute i2 k1[b]., we must find an IJ such that k1[b]1 = i[O]I. Then 
i1k:z[b]l = U,a]2. Since k,b is in At + 1 n K,+b a is mAl + l n K,+2o To 
find a we use Dot b but b + c in Ai tl K, to represent Cb]] in Step Cl); this 
is possible since b an4 b + c have the same image under the projection 
K; -+ K,IK,+!. Then' " .. ; 

k1(b + c} = D(b + c) == 6c. 

So 

. (14.10) 

Thus the differential d2 is given by the d of the tailor the DS-zag which 
extends b. It is easy to show that 6c reprac~ts an element ofH,H4(K) and 
that the definiti()n of d2 [b]2 is independent of the choice of c. 

~ 
k-~t 

I 
c- .-.. 
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.. ":..' 

", 

Exercise 14.11. Show that if d2 [b]2 =:; O~ then there exist CJ and~2 so that b 
. can be extended to a zig-zag as shown: .. · .. 

.. 
~ 

.. 

D"b = 0 
b- r-+

f 
I . 
Cl- f-+ 

t 
I 

Cl 

t 

We say that an element b in K lives to Er if it represents a cobOmolOlY 
class in Er; equivalently, b is a cocyclc in Elt Ez , ••• , E,-lo Fr. the 
discussion above we see that b lives to El if it can be extended to a zia-zaa 
of length 2, the length of a zig-zag being the Dumber or ~rms iD it, 

6b :r;& -/Y' c :. J" ..... 

~ !.:. : ~ 

.. ' 
t ..... 

c 

10..-' 

,," J 

r... '..: 

and d1 [b],a - [&]2; it Rv •. ~ E. jf.it~ caD be: exteaded to a zia-ma 01 
length 3: . . 

db-O 
. . . . ~ '. : 

\ " t" 
'? .' c·.: ~ I 
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To compute d3 [b]), we use b + Cl + Cl in At " K, to represcJ)t [c] e 
11 ('\ (K,JK,,-l) in Step (l) of (14.8), so that k3 [b]3 is given by D(b + 
Cl + C2) = dCl and d3 Cb]] = [bC2]3' In general, parallel to the discussion 
above, an element b in K~'" lives to E, if it can be extended to a zig-zag of 
length r: 

0 
1 
b-

~T 
C1 - ---'j 

C1-~ I . 
f 

C,-l --'f 
. 

C,-l 

and the differential d, on E, is givCll by 6 of the tail of the zig-zag: 

(14.12) t4 ~b], = [6c, _ I], · 

Thus tbe bidegrees (p, q) ·of &he double. complex K a: (B K"" ~rsist in the 
spectral sequence ·.l 

• 

and d,. shifts tbo bideareca by (r, - r + J): 

d . E" of -+ E,+r.t- r + 1 r' , , • 

The filtration on H(K) :a: (Blr(K): 

H(K) - F 0 :,:) F 1 => F 2 :::> 

induces a filtration on each component H-,K), the su<:eessive quotients of 
. the filtration being ~., E~ .-1, ... , E-~ 0: 

h4.13) H"(K) = (F o"W) :::) (F 1 ()H,,) ::> (F zr.H") ::> 
Y' I ~ 

~ .. 
GO 

This is best seen pictorially 

::; (F ."H") :::> 0 
~ 

E"'o GC) 
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-eo .• 
El, ,,-1 

EQO == 

. 

FI 
F:l, 

165 

E"" 0 

In summary, we have proved the following refinement olTheoJ"em 14.6. . 

Theorem 14.14. Given a double complex K = EDP.9~O K'·' there.., IJ spectrtJI 
sequence {Er' d,} converging to the total cohomology H JJ.K) such tlult ed B, 
has a bigra4ing with . 

d · E"« -. E'+'· .-r. 1 r·, r 

Ef'« - HI· '(K), 

E~'f == Hlo'H4(K); 

furthermore, the associated graded complex of the total cohODlOIoI)' is 
given by 

GH"J.K) = Ea E~ f(K). 
'+f-· 

R.EMAJUC 14.15. Of course, instead of the filtration in Example 14.2, we coulcl 
just as well have given K the fouowiDa mlr.liolL 

q r---~---+--~~--~---+-

1(2 
4 

1 
3 --Kl 

1 
2 

1 

0 

, 
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This gives a second spectral sequence {E~, d~} converging to the total 
cohomology H D (K), but with 

and 

E'l =- H,(K), 

Ei. == H .. H ,(K), 

d' . E"" E'P-'+ 1.4+' ,. , .-. , . 

EXAMPLE 14.16 (The Mayer·Vietoris principle and the isomorphism be
tween de Rham and Cech). Let M be a manifold and U a good cover on M. 
Consider the double complex K ::; $ K"', 

K'·4 ~ C'(U, Q4) = n Q4(U.o ••.• ) 

IiO<'" """11 
Since the rows of K are the Mayer-Vietoris sequences, the El term of the 
second spectral sequence is 

El = H.,H, == 

(ll(M) 

Q!(M) I 
nO(M> 

Hi.(M) 

H~a<M) 

H1.(M) 

~'<M) 

o 
1\ 
U 

o 

. ' 

0 

0 

0 

0 

In gelleral a spectral sequence is said to degenerate at the E, I.,.". if dr == 
dr + 1 = ... = O. For such a spectral.8CqUCDQe Er == Er+ 1 =: • : • = £«)' The 
degencration of the second spectral ~uence of the double complex 
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CIII(U, 0 111
) at the E" term proves once ag~D the Mayer-Vietoris. prinpipJe 

(Proposition 8.8): . . , '.' . . 

(14.16.1) 

Now consider the first spectral sequence of CIII(U, 0-). Its El tcrm is 

Pt 4 _ " _ {O if q > 0 
El - n H (UIIO ., •• ,) - C"(U 1111) if = 0 

(110<"'<<<, , '" q · 

So the E 1. term is 

000 
CO(U, R) C1(U, A) C1(U, R) 

~----~------~------~ 

The degeneration of this spectral sequence pves 

: r 01 ",' .. I 

HA(U, R):t' Ea ES,f,.·'·e· 'E~f == ~{C.(u, Olll)}. 
,,+,-A "+f-.· 

Together with (14.16.1) we get 

H~.(M) ZK ~~U, R) for all intesers k ~ o. 

\., s', 

.1 " 

This is the spectral sequence pr~f of the isomorpbiSDi,. between de Rbam 
and Cech (Theorem 8.9). . . ,d I '. 

REMARK 14.17. The extension problem.. BecaUIC the dimension is the ollly 
invariant of a vector space, the associated graded vector space GY of a . 
filtered vector space V is isomorpbM: to Y itseH: In particular, if the double 
complex K is a vector space, then 

H'D(K) ~ GH",J,K) ~ El) E~ f ,+'.-. .. j . t 
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However, in the realm of Abelian groups a knowledge of the associated 
graded group does not determine the gro~p itself. For example, the two., 
groups Z2 E9 Zl and 4 filtered by 

Zl c: .Z'1. Ea Z" 
and 

z,. c: Z. 

have isomorphic associated graded groups, but Zl Ea Zl is not isomorphic 
to 4- Put another way, in a short exact sequence of Abclian groups 

0-... A-... B ..... C--. 0, 

A and C do not determine B uniquely. The ambiguity is called the extension 
problem and lies at the heart of the subj~t known as homological algebra. 
For our purpose it suffices to be familiar with the fonowing elementary facts 
from extension ~heory_ 

PropositioD 14.17.1.111 a short exact sequence of Abelkm groups 
J , 

0-+ A -+ B -+ C -+ 0, 

if A and C are free, tMn ~re exists a homomorphism s: C-+ B such that 
9 0 s is the identity on C. 

PROOF. Define s appropriately on t~e generators of C and extend linearly. 0 

Corollary 14.17.1. Under the hypothesis of the proposition, 
<a> the map (/, s): A. Ea C -+ B is an isomorphism; 
(~) for any Abelian group G the induced sequence 

0 ...... Hom(C, G)-. Hom(B, G)-+ Hom(A, G)-+ r 

is exact; 
(c) for any A.belian group G the sequence 

. 0-+ A ® G-1>B_® G--.C ® G-+O 

is exact. 

The pro.of is left to the reader. 

£~rc~ 14.17.3. Show ~at if 

.s an exact sequence QC free Abelian groups and if G is any Abelian group, 
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then the two seq uences 

o 4- Hom(A It G) +- Hom(A l , G) +- Hom(AJ' G) +- • • • 

and 

are both exact. 

Exercise 14.17.4. Show that if ....... 

0-+ A-+B-+ C-+O' . . 

is a short exact sequence of AbcliaD groups (which arc not Dcccstarily."") 
and G is any Abelian group, then the two scq~' ' 

0-+ Hom(C, G)-+ Hom(B, G)-+ Hom(A, G) 

and 
A ® G+-B ® G ..... C ® G .... O 

are both exact. 

The Spectral Sequence of a Fiber Bundle 

Let 1t; E -+ M be a fibcr bundle with filler F over a manifold M. ApplyiDa 
Theorem 14.14 here gives a general method for computing the cobomolOl)'. 
of E from that of F and M. Indeed, given a good cover U of M, .-tu is a 
cover on E and we can form the double complex , ' . ' 

'<.) " 

K'" t == C'(1t -tu, 0') Q: n a,1f- 1 U., .•.• ,), 
~< ••• <~ '., # ... 'lI: 

whose El term is 

Er" == HS·~ = n' Hf(1C~lU_ ...• );' C'(ll. ~ 
co< ... <a, 

where If is the presheaf Jf''( U) == Ht( 7t - 1 U) on M. For emphasis we some
times write the prcsbeaf It as JtP'(F). Since U is a good co,er, ~ is a 
locally constant presheaf on U with aroup Hf(F) (Example to.l~ SiJMZ 
dJ == b on El' the El term is ; ',' . 

E!'·= Hf(U, ~ 
. , .... 

By Theorem 14.14 tbe spectral sequence of K coDverses to H1J.K). which by 
the Mayer-Vietoris principle is equal to H4t(E), because x- 1U is la CXlWU' OD 

E. 
In case the base M is simply connected and H4(F) is' finite-dimeosio_ 

Theorems 13.2 and 13.4 imply that J'f' is tbe constan~ preshcal R $ ... , 
~ ~ on U, consistina oC IJ4(F) copies of R where hf(F) ;la dim Hf(F). So the 
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E~' IJ term is isomorphic as a vector space to the tensor product HP{M) ® 
Ht(F), since 

. E~·f = H"(U, REa·'· Ea R) == H'(U, R) ® Hf(F) 

== H"{M) ® H4(F), 

where the last equality follows from Theorem 8.9. 
We have proven the following. 

Theorem 14.18 (Leray's Theorem for de Rham Cohomology). Given a jiber 
bundle 1t : E -+ M with jiber F over a manifold M and a good cover U of M, 
there is a spectral sequence {Er} converging to the cohomology of the total 
space H·(E) with E2 term 

E~·4 = H"(U, 8 4), 

where :1ft is the locally constant presheaf 14(U) = H4(n- t U) on U. If M is 
simply connected and H4(F) isjinite-dimensional, then 

E~· f = H'{M) ® H4(F). 

Some Applications 

EXAMPLE 14.19 (The Kiinneth formula and the Leray-Hirsch theorem). We 
now sive a spectral sequence proof-of the Kiinneth formula (5.9). Let M and 
F be two manifolds and U a gQod cover of M. Suppose F has finite ... 
dimensional cohomology. By Leray's theorem (14.18), the spectral sequence 
of the trivial bunale 

. . . 

bas.E~ term 

F --. M·?< F 
! 

M 
, .... 

; , 

Beca~ M x F is a trivial bund,le over M, the presheaf Jr4(F) is constant, 
so that 

E~" = H'{tr, R) ® H4(F) = H'(M) ® H'(F). 
. . 

By (14.12) the differential d, measures the extent to which an element of 
C"(x - 1 U, 0·) that lives to E, fails to ~ extended one step further to a 
D-.cocycle. Since every e~ement of the El term is already a global f9rm on 

, . 
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M x F, dl == d3 = ... == O. So El = El1O ,. which by Theorem '14.18 is 
H*(M x F). Therefore we have the Kiinneth formula 

H·CM x F) - H·(M) ® H·(F). 

The proof of the Leray-Hirsch theorem is analogous. 

REMARK 14.20 (Orientability and the Euler class of a sphere bundle). Let 
Tt : E -. M be an Sit-bundle over a manifold M and let U be a good cover of 
M. The spectral seq uence of this fiber qundlo has 

n 

o 
o 1 2 

Let t1 be the element of E~' It = CO(U, -*,"(S")) corresponding to the local 
angular forms on the sphere bundle E. Fr"om the description of the differ
ential d, as the 0 of the tail of a zig-zag, we see" that E is o~entablc it" and 
only if d1t1 = 0 (compare with pp. 11~118): For~ an orientablc·S"-bundle 
then, such a a liveS to E" : .;, ,::J; 'rio. '!. 

n 

".f, 

f " o. 
012 

Up to a sign d"o in H"+ l(U, 1°(5"» :;:: H"+ 1(M) is the Euler class of the 
sphere bundle. It measures the extent to Which (1 fails to be extended to a 
D-cocycle, i.e., a global closed n-form on the sphere bundle. 

EXAMPLE 14.21 (Orientabilitr of a simply connected manifold). Let M be a 
simply connecte~ manifold of dimension n· and S(T..,) its unit tangent 
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bundle. The spectral sequence of the fiber bundle 

S· -I --+ S(TJI) 

has E2 term 

n-l 

o 

l 
M 

This shows that there is an element in CO(n-1U, Jr-- 1) which can be 
extended one step down toward being a D-cocycle. Therefore S(TJI) and also 
M are orientable. This gives an alternative proof of the orientability of a 
simply connected manifold (Corollary 11.6). 

EXAMPLE 14.22 (The cohomology of the complex projective space). Consider 
the sphere 

S2.+1 = {(zo, ... , z.)ll zoI2 + ... + Iz.12 == I} 

in C·+ 1• Let Si act on Sl,,+1 by 

(zo, ... , z.>"...... (1:0' ... , AzJ, 

where 1 in SI' is a complex number of absolute value 1. The quotient of 
S2.+ 1 by this action is the complex projective space CP". This gives S2.+ 1 

the structure of a circle bundle over CP" 

! 
CP". 

As we will see from the homotopy exact sequence (17.4) to be discussed 
later, Cl'" is simply connected. Thus 

ES·· = H"(CP") ® H'(SI). 

So El has only two noozero rows, q = 0, 1, and the two rows are identical. 
both being H·(CP"). 

Let 11 == 2. Then 

R .. ~ B ... ~ D ,0 

R A ~B C .....D 0 
-o 1 2 3 4 S 
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where the bottom row is the cobomolo&y of the base, H·(Cpl), and the O-tb 
column is the cohomology of the fiber. H'(C~) == 0 for p ~ S because Cp~ 
has dimension 4. Since d3 moves down two steps, d3 == O. Similarly. 

d ... == d, ::cl': ~. • - o. 
. . 

So the spectral sequence degenerates at the E3 term and E3 = E. = ... == 
E«) == H*(S'). Therefore 

0 0 0 0 R 0 

R 0 0 0 0 0 

o 1 2 3 4 5 

This means 

d'l : R ......... B, B -+ D, . 

0..-. A, A--. e, . c ..... 0 

must all be isomorphisms. It foUows that 

Therefol'C, 

E2 == R 0 R 0 .R 0 

R 0 R 0 R 0 

o 1 2 3 ~ 5 

H*(C .. p2) z:::. {oR in dimeDSioDJ 0, 2, 4 . 
otherwise. 

Exercise 14.22.1. Show that 

H*(CP") := {OR in dimensions 0, 2, 4, •.• , 2n 
otherwis.e . . . 

, , . \ 

\. 

, .' .\ 

. .. . . ,. ~ . 

t, , 

Exercise 14.23 (Algebraic Kunneth Formula). Let E and F be graded differ
ential algebras over R with differential operators lJ and' d r~~ve1y. 
Define a dijferential.opcrator D OR the tcnsor,pr~u~t E ® F by .. ' • 

, D(e ®f)-=(6e) ®1+(-l) ... ~e,® df. 

Prov~. by a spectral sequence argumeut that. 

HD(E ® F) == H,(E) ® H,,(F). 
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Product Structures 

In this section we define product structures on the Cecb-de Rham complex 
C*(U, 0·), the de Rham cohomoJogy, and the Cech cohomology, and show 
that the isomorphism between de Rham and Cech is an isomorphism of 
graded algebras. We also discuss the product structures on a spectral se· 
quence. 

Let Z be the closed forms and B the exact forms on a manifold M. From 
the antiderivation property of the exterior derivative 

d(w . ,,) = (dw) . '1 + (_l)dC'W W • d", 

it follows that Z is a subring of O*(M) and B is an ideal in Z. Hence the 
wedge product makes the de Rham cohomology Ht,It(M) = Z/ B into a 
graded algebra. 

On the double complex C*(U, 0*), where U is any open cover of M, a 
natural product 

u : C'(U, (4) ® C'(U, QJ)--+ CP+'(U, Q'l+') 

can be defined as follows. If w is in CP(U, Q'i) and" is in C'{U, 0"), then 

(14.24) 
, 

where on the right-hand side both forms are understood to be restricted to 
U~ ... (I,+,' 

REMARK 14.25. The sign ( - 1 )41' is needed to make the differential operator 
D into an antiderivation reialive to the product structure. It makes sense 
that this should be the sign) for in defining the product, p and r are brought 
together, and so are C/ and s, so the order of q and r in CP(U, ~ ® C"(U, 
OS) are interchanged. It is a useful principle that whenever two symbols of 
degrees m and n are interchanged in a graded algebra, there should be the 
sign (_1)II1II, 

Exercise 14.26. Let W E KP' q and PI E K'·'. Show that 

1) b(w u '1) = (bw) u '1 + (_l)de,w W u.<5" 
2) D"(w u ,,) = (D"w) u " + (_t)dcaco Cl) U D"" 
3) D(w u ,,) = (Dw) u 11 + (- l)dcl W (J) U D"", . 
where deg Cl) = P + q. 

We will often \yrite (J) • '1 or even W'7 for w u '1. . ., 
The inclusion of the eech complex C*(U, R) i(l the Cech~e Rham 

complex induces a product structure OIl C·AU, R)~ if w is a p-cochain and" 
an r-cochain, then 

(14.27) (w . ,,) - w . n 
(10 •.• (I,., - 410 .•• GIp 'IGl, ... ta,+r' 
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By Exercise 14.26, b is an antiderivation relative to this product. So just as 
in the case of de Rham cohomoJogy this makes the Cech cohomology 
H*(U, R) into a graded algebra. If ~ is a refinement o( U, then the res
triction map H*(U, IR) -+ H*(2J, R) is a homomorphism of aJgebras. Hence 
the direct limit H-(M, R) is also a graded algebra. Note that (14.27) also 
makes sense for the eech complex C·(U, R) on a topological space X; this 
gives a product $tructure on the Cech cohomology H*(X, R) of any topo
logical space X. 

With the product structures just defined, both inclusions 

r: O·(M) --+ C*(U, 0*) 

and 01· 

i : C*(U, R) -f! C*(U.O*) 

are algebra homo',lorphisms. Since as we saw in Proposition 8.8, for 18 I good 
cover these homomorpbisms inducebijcctive maps ip cohomology ~:I.. . • 

Ht,.(M) ~ HD'{C*(U, O*)} 

H*(U, R) ~ H D {C·(U. O*)}, 

the isomorphism between HZ .. (M) and H*(U, R) is an algebra isomorphism. 
Because H·(M, R) = H*(U, R) for a good cover U, 'we have the f~lIowin.~ > 

Theorem 14.l8. The isomorphism between de Rham and Cech 

HZ'(M> ~ H*(M • . R} 

is an isomorphism of graded algebras. 

If a double complex K has a product structur~ relative to which ita 
differential D is an antiderivation, the same is true of aU the groups Er and 
their operators dr , since Er is the homology of E,_ ~ and d, is induced from 
D. With product structures, Theorem 14.1~ becolJles- . 

1 

Theorem 14.29 Let K be a double complex with a product structure relative 
to which D is an ~ti4erivation. There exists a spectral sequence 

, ~" • I ~ ... • :. ", • 

{E d· E'" t --. E'·'" -,.+ l} 
"~. , t,r .. ' .. ~! 

converging to H J.K) with the following properties: 
1',; I • • " 

1) The E~' If term is HI' IfHJ.K). 
2) Each Er, being the .homology of its predeceslor. Er _ l, inherits a product 
structure from E,_ l' Relative to this product, d, is an antiderivation. 

WARNING. Although both E 00 and H D (K) inherit \heir ring structures from 
K, they are generally not isomorphic as rings. . 
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Exercise 14.30 The product structure on the, tensor product..4 ® B of two 
graded rings A and B is given by 

(a ® b)(c ® d) == (-1)('" ~)( ... d(ac ® bd), a, c e..4, b, d e B. 

Show that if 1t : E -+ M is a fiber bundle with fiber F over a simply connec
ted manifold M, then the isomorphism of tbe El tcrm of 
the spectral sequence with H·(M) ® H·(F) is an isomorphism of graded 
algebras. . 

REMAJUC 14.31. Thus in Leray's theorem (Theorem 14 .. 18) each group Er is 
an algebra relative to which d, is an antiderivation; furthermore, if M is 
simply connected,. El is isomorphic to H·(M) ® H*(F) as a graded 
algebra. 

ExAMPLE 14.32 (The ring structure of H·(CP"». Assume for now that n ;: 2. 
In example 14.22, by applying the spectral sequence of the fiher bundle 

Si -+ s' 
! 

Cpl, 

we computed the additive structure of the graded algebra H·(Cpl~ We' 
found that the Elterm is 

qf 

1 R 

o R 
R 

R 

0,1 ·2' 3 '4 s p 

The two dl's shown are isomorphisms. Let a be a generator of 

~.l ~ HO(CP1) ® Hl(Sl) ~ Hl(Sl). 

Then d2 a = x is a generator of 

. Ei' 0 ~ Hl(CP1) ® HO(Sl) ~ Hl(Cpl). 

and .x • a is a generator of 

E~' 1 == H2(CP1) ® Hl(Sl). 
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q 

1 a 
o x 

o 1 2 3 4 s p 

Because d2 : E~·l --+ E~' 0 is an isomorphism, a generator of E;'o .. 
H4(Cp2) is 

So as a ring, 

H*(Cpl) = R(x]/(x3). 

In general, the same argument yields the ring structure of CP" as 

H*(CP") == R[x]l(X-+ 1). 

where x is an element in dimension 2. 

The Gysin Sequence 

The spectral sequence of a fiber'bundle is essentially a way of describing the 
complicated algebraic relations among the cohomology or the baac spa&:e, 
the tiber, and the total .sp~ of the bundle. In certain special situations the 
spectral sequence simplifies 'to a long exact sequence. Onc, such special case 
is the cohomology of a sphere bundle. The raulting sequence is' called the 
Gysin sequence. which we now derive. ';'-':'; 

Let lE: E ~ M be an oriented sphere bundle with fibet st. By the orien
tability ass\lmption, for any good cover U on M. the locally constant pro
sheaf If has no monodromy aDd is the constant preshea( R. Therefore the 
El term oC the spectral sequence is . 

I 

Let n be any nonJegative integer. Since nothin8 in ~-I:.t can Ft killed 
, (that is, nothing there lies in the imase of 4,. fDr.,. :2: 2). £:,-1:.1: is the sub-
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'\ .'. 

group of Ri- t •
t consisting of those elements with d) = d. = ... = O. Hence 

there is an inclusion 

This can be extended to an exact sequence ., 
(*) 0 -+ E!,-t.t -+ E~-t.t -+ E~+1.0 -+ E'!,+1.0 -+ 0, 

11 I1 

H--a:(M) H-+ 1(M) 

where the last map, called aD edge homomorphism, exists and is surjective 
because every element of El+ I, 0 survives to E

ClO
• 

Because of the shape of the El term, the filtration (14.13) on H"(E) 
becomes 

H"(E) :;j E'!o 0 
::l 0; 

"--v--' 
E'!-t.l 

co 

in other words, there is an exact sequence 

The two scq~aa~ (*) and (*.) may be combined into a single .long exact 
sequence . . . _. . 

.... 0"'" H"(E) -+ H,,-t(M) --+ H-+ 1(M) -+ H·+ 1(E) --+ •••• 

This is the Gys;n sequence of the sphere bundle. 
It remainS to identify the I:D8PS in the Gy$in ~uence. Let U be a good 

co\ICr on M. The map IX is the composition ,of . 

. . == 11" -~M) ® I!'(s") .:J H- -'(M). 

In this sequence of maps the first three are the identity on the level of forms 
and the last one sends a generator of Ht(S,> to 1 by intearation. Therefore ex 
is integration along the fibet. 

Next consider dt . Rcptesenting an elemeot of 

. E;-t.1; == H--'(M) ® W(~ 

by (1t*ru) . (-.,,), where Q) is a dosed form on M and tit is the anlular form 
on E, we see that 

d.«1t*wX -.;» == d~{1t·Q)X -.;» == (-lr-'(.*c;u) tlJ. -,) 
.. == (-l)"-*("O)X"e~ 
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I,: , 

Hence, up to a sign die : H"-"(M)-+ H"+ l(M) is ,multiplication by.the Euler 
class e. 

Finally the map fJ is the composition 

. == El + 1,0 proJeclloa • E':.t 1. 0 c H" + l(E). 
I 

So fJ: H,,+l(M) ~ H"+l(E) is the natural pullback'map x-. 
We summarize this discussion as follows. 

Proposition 14.33. Let x: E ~ M be an oriented sphere bundle withjibB st. 
Then there is a long exact sequence 

'.' .~, t , 

in which the maps x.' A e, and x* are· integration along the fiber, multi .. 
plication by the Euler class, and the natural pullback, respectively. 

~\ • • s • 

Exercise 14.33.1. Show that if the. sphere bundle CODles from ra" vector 
bundle 1t : V -+ !tI, then the long exact sequence in the proposition may be 
identified with the relative exact sequence of the inclusion i: YO -+ Y, 
where VO is the complement of tbe zero section in· Y. (Compare with 
Proposition 6.49.) . . '" . ; ;,:,' 

t • .... ,! .! ... , 

Leray's Construction 
. ~ . . \. ~ 

We consider now more generally not a .fiber bundle but· any ;map 
1t: X ~ Y from one manifold to another, and study how the cohomololY 
groups of X relate to those of r. Let U be any cover for Y, not necessarily a 
good cover. Then x-IU is .8 cover for X. By the Mayer-Vietoris principle 
(Propositio., 8.8 or 14.16) . 

H*(X) = HD{C*(n-Ju, Q*)}. 

By Theorem 14.14, if K is the double~complex C*(x-1U, 0*) OD X, then the 
spectral sequence of K has . 

Eoo == HD {C*(x- 1u, Q*)} 

and 
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Here 

K= " 
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n Qf+l(X- 1Uq .••• ,) 

n" {}f(n- 1Uao ...• ,) 
CICO < ••• <., 

H~' 4(K) = n H'(1t -1 Uq .... ) = C"(U, Jrf) 
qt< ... <., 

"where.1f4 is the presheaf·o .. Y defined by If(U) = H4(1t- 1U). In summary, 
there is a spectral sequence a)nverging to H*(X) with Ez term 

. . Et' 4 = H"(U, Jft). 

The main difference between this situation and that of a fiber bundle 
(Theorem 14.18) is that tl)e presheaf ~4 is no longer locaUy constant on U; 
indeed the groups H~(1t-iU) will in generai be different' for different ~n
tractible open sets U. 

EXAMPLE 14.34. Consider the vertical projection of a circle Si onto a seg
ment I. Cover I with three open sets U 0, U 1, U 2 as shown in Figure 14.1. 

. Uo ! Uz 
( • ) E· • ) 

( ) 
U. 

Figure 14.1 
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The presheaf .T('0 attaches a group to ~ach vertex and each edge of the 
nerve N(U) in the way indicated below . 

• • • 

H" of the double complex C*(n- 1U, 0*) is 

with ~ given by (b, (Ch C2), d) -4 «(Cl - b, C2 - b), (d - Cl, d - Cl»). Thus 
ker b = {Cb, (b, b), b)} and H~' oH" == .R. Since im 6 is 3-dimensional, 
Hl' OH" = R. So H,H., is 

.. 

I J 
. t 

~ , ... ~ 

I I 

~ . 
R R 

In this case, then, E2 == Eao and we get the cobomology of SI. 
Let us find a Dontrivial l-cochain in C1(U, JrO) that represents a gener

ator of H 1(Sl). A 1 ~ochain in C'(U, ~ is given by a 4-tuple «r, s), (t, u»). 
Such a 4-tuple is exact if and only if r - s == u - t. Therefore as a generator 
of H1(Sl) we may take «1, 0), (0, 0», i.e., the l-cocbain t (see Figure 14.2) 

... ~ •• f .':. • 

... f: 

( ) '( ) 
I' UOl Uu 

·Fi.~e 14.1 
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t(U 0.) = (1, O} 

t(U 11) = (0, O)~ 

Exer.cise 14.35. Project the sphere Sl to a disc D (F~gure 14.3) and compute 
H*(S2) by Leray's method. " 

! 
• Figure 14.3 " 

Exercise 14.36. Let Y be a manifold "and U a good cover of Y. Denote by /Jp 
the number of nonempty (p + I)-fold inter~tions U 110 •• ~.,,' Show that 
x(Y) ::: I:( -1),1l,. . 

Exercise 14.37. Let 1t: X -+ Y be any map and U a good cover of Y. Show 
that 

x(X) = L L (-1)'+' dim Hf(n- 1UIlO •••• ). 

, .• "<"'<-, 
Deduce that if" : X --. Y is a fiber bundle with liber F. then" 

§ 15 Cohomology with Integer Coefficients 

An element in a Z -module is said to be torsion if some integral multiple of it 
is zero. Since the de Rbam theory is a cohC'~ology theory with real coeffi ... 
cients, it necessarily overlooks the torsion phenomena. For applications to 
homotopy theory, however, it is essential to investigate the torsion. The 
goal of this section is to replace tbe differential form (unctor O· with the 
singular cochain functor $", define the singular cohomolo8Y, and show that 
the preceding results on spectral sequences carry over to integer coeffi
cients. The key as before is the Mayer-Vietoris sequence for countably 
many open sets. The natural setting for the singular theory is the category 
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of topological spaces and continuous maps, rather than the morc restrictive 
category of differentiable manifolds and C«) maps of de Rham theory. 
Unless otherwise indicated, from here till the end of Section 18 wc will 
work in the continuous category. Wc begin with a review of the basic 
definitions of singular homology. . 

Singular Homology 

Via them~p 

ix" ... , xJ ...... (Xit .•• , x •• 0) 

each Euclidean space R" is naturally included in R-· 1• Viewing each r as a 
subspace ofR"+' in this way we consider the union 

RclO - U r . 
• -'0 

Denote by P, the i-th standard basis vector in AGO; it is the vector whose 
i-tb component is 1 and whose other components are all o. Let Po be the 
origin. We define the standard q-simplex At to be the set 

At Ill: {t t J PJ I t t J la I}. 
J~O J-O 

If X is a topological spacc~ a singu.lar q-simplex in X is a continuous map 
s: A4 -. X and a singular q-chain in X is a fi.nite linear combination with 
integer coefficients of singular q-simplicc& CoDectively these q-chain' form 
an Abelian group Sf(X). We define the f-t,h iaee IMp of the staodaRl q-
simplex to be the function . 

~: A.-,-' A. 
aiven by (sce Figure IS.I) 

Po . ~. 
PI . 

FiJire .$.1 
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The graded group of singular chains, 

S .(X) == ES s,. (X) 
,~O 

can be made into a differential complex with boundary operator 

" iJs = L (_I)IS 0 o~. 
i-O 

It is easily checked that iJ2 = O. The homology of this complex is the 
singular homology with integer coefficients of X t denoted H .(X) or 
H .(X; l). By taking the linear combination of simplices to be with coeffi
cients in an Abelian group G, we obtain similarly singular homology with 
coefficients in G, H .(X; G). 

The degree of a O.oChain L nE Pi is by definition L nl' Suppose X is path 
connected. If - P and Q are in a (khain on X, then any path from P to Q 
is a I-simplex with boundary Q - P. Hence a ().chain on a path-connected 
space is the boundary of a l-chain if and only if it has degree O. This gives 
rise to a short exact sequence 

from which it follows that if X is path connect~d, H o(X) ::; l. In general, 

dim Ho(X) == the number of path components of X .. 
~ , .. . ., , .. 

The Cone Construction 

The goal of this section is to compute the singular homology oear. If sin 
Sf{W} is a q-simplex in R", we define the cOtlll over s to be the (q + 1)
simplex Ks in S,+l(W) given by 

This is the cone in W with vertex the origin and base the simplex s. To 
make sense of the formula, we view the last coordinate t,+ 1 as "time"; as 
time goes from 0 to 1, the cone Ks moves from s to tbe origin. For the 
singular simplex s pictured in Figure 15.2, the cone Ks is the "tetrahedron" 
and . 

oKs:= Oth face - 1st face + 2nd face - ~ 

Kas = Oth f~ce - 1 st face + 2nd face. 
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+ 

J:iaiiiiiiWiiililillllli~S(P2) 

p) = Origin 

FigUIC 15.2 

In general we have the fOllowing. 

PropositioD 15.1. Let.K: S.(R-)-+ S. + ,(Ra) be the cone construction. TIwn 

oK - Ko = (-1)4+1 

185 

PROOF. The geometrical idea is clear from Figure 15.2. The proof itself is a 
routine matter of unravelling the definitions. We leave it to the reader. 0 

In other words, the cone construction K is a homotopy operator between 
the identity map and the zero map on S.(R"), q ~ 1. C~ns.equently, 

Hf(R") = {zO q ~ 1 
q=O. 

The Mayer-Vietoris Sequence for Singular C~ns 

Let U = {U Cl} •• J be an open cover of the topological space X. Just as for 
differential forms on a manifold. the sequence. of inclusions . t '.' 

x +- U U.o U ~ u ~.'. E ... 
Go . ~<4. 

induces a Mayer-Vietoris sequenc~. However, for technical reasons which 
will become apparent in the proof of Proposition 15.2 (to show the surjec
tivity at one end of the Mayer-Vietoris sequence), we must consider here the 
group S:(X) of U-small. choins in X; these are chains made up of simpliccs 
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each of which lies in some open set of th,e cover U. The inclusion 

i: S!(X).-. S.(X) 

is clearly a chain map~ i.e., it commutes with the boundary operator o. 
Indeed, it is a chain equivalence. The proof of this (act is tedious and ·we 
will omit it (Vick Et, Appendix I, p. 207]), but the idea behind it is quite 
intuitive: to get an inverse chain map, subdivide each chain in X until it 
becomes U .. small. In any case the upshot is that to compute the singular 
cohomology of X it suffices to use U-small chains: H(S.(X» = H(S:(X». 

Define the Cech boundary operator 

b: Ea S.(Uao ··· II)-' EB S,(UQlo···/I,._l) 
«0 < ... < 11, .. < . ,. < 11,- I 

by the" alternating sum formula» 

(OC)IIO ... «,-I = LC««o ... 11,.- I 

• 
Here, as always, we adopt the convention that interchanging two indices in 
c 110 .•• «, introduces a minus sign. The fact that b2 = 0 is proved as in Prop
osition 12.12. The boundary operator ~ on Ea S,(UClJ --. S.(X) is simply 
the sum; we denote this by 8. 

Proposition 15.2 (The Mayer-Vietoris Sequence for Singular Chains). The 
following sequence is exact 

u ' ffi ( 6 £I':-. 6 o t- S.{X) t- W Sf Uar.) +- Q:7 S.(U ... .> +- ••.• 
.. ,,<Gll 

Although this sequence bears a formal resemblance to the generalized 
Mayer-Vietoris sequence for compact supports (Proposition t 2.12), because 
we do not have partitions of unity at our disposal no,!, the second half of 
the proof of (12.12) does not apply. 

Lemma 15.3. Let 

O-+A~B.-.C-+O 

be a short exac.t sequence of differential complexes. If two out of the three 
cQnlplexes have zero homology, so does the third. 

hOOf. Consider the long exact sequence in homology 

.•• -+ H .(A) -+ H.<B) -+ H.(C) -+ H.-l(A)--. o 
PaOOF OF PROPOSITION 15.2. For two open sets the Mayer .. Vietoris sequence 
is 
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The exactness of this sequence foDows directly from the definitiolL For 
three open sets the sequence is 

The Mayer-Vietoris sequence for two open sets injects into the one for three 
open sets, giving rise to the following commutative diagram with exact 
columns 

000 

! 1 ! 
o - S'{u 0 u u.J • S(l!oHB S(u.) • S(U 01) I 0 

~ 1 L ! 
0 ... s-tuou Ut U U.1)......-S(Vo)Ef)S(U1H'SCUJl-S(Uo.H&SCUOl)$S(UU)-$(Uo.J- 0 

l 1 1 ! 
s-tuov Ut v Ual _ , 

0- • S(vJ • S(u.veS(u.z} • S1uo.J - 0 
S"(vo u u.) " 

l ! 1 . 1 
o 0 0 0 

Thc·U in S·( U 0 v U 1) is the open cover {U 0, u tl, while tbe U in s-( U 0 u 
" U 1 U U 2) is the open cover {U 0, U it U l}. So tbe group 

is generated by tbe simpOOes in U 2 which do Dot lie entirely iD U 0 or U I 
(sce Figure 1 S.3~ . 

Il of this is not O. 

11 of this is o. 
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We now prove the exactness of the rows of the commutative diagram~ 
The bottom row is almost the Mayer-Vietoris sequence for 'the- open tover 
{ U 02, U 12} ; it is exact except possibly at S( U 2)' Clearly (j 0 6 = O. Now if c 
is in S(U 2) and (J(c) = 0, then c is a chain in U 2 whose simplices lie either in 
U 0 or in U It i.e., c is in the image of S(U 02) Ea S(U 12)' Therefore the 
bottom row is exact. Note that each row of the commutative diagram is a 
differential complex and the commutative diagram may be regarded as a 
short exact sequence of differential complexes. Since the top and bottom 
complexes have zero co homology, by Lemma 15.3 so does t.he middle one; 
in ·other words, the middle row is exact. This proves the exactness of the 
Mayer ... Yietoris sequence for a cover consisting of three open sets. In gen
eral the Mayer-Vietoris sequence for r open sets injects into the one for 
r + 1 open sets. By the above technique and induction, one proves the 
Mayer-Vietoris sequence for any finite cover. 

Now consider a countable cover U = {U OI}' By the definition of the direct 
sum, an element c of EB S(U 110 ... Cl,) has only finitely many nonzero com
ponents. These components can involve only finitely many open sets. There
fore if ~c =- 0, by the Mayer-Vietoris sequencc for a finite cover, we know 
that c := ~b for some b hi EB S(U 110 ••• «,+ J This proves the exactness of the 
Mayer-Vietoris sequence for countably many op:n sets. 0 

REMARK 15.4. If the coefficients are in an arbitrary Abelian group G, the 
same proof holds word for word. 

Now suppose the open cover U consists of two open sets U and V. By 
Proposition 15.2, there is a short exact sequence of singular chains 

(15.5) 0 -. Sq(U ("\ Y) -+ Sq(U) Ea S.(Y) -. S:<X) -. O. 

The associated long exact seque~~ in homology is the usual homology 
Mayer-Yietoris sequence. 

Corollary 15.6 (The Homology Mayer .. Vietoris Sequence for Two Open 
Sets). Let X := U U V be the union of two open sets. Then there is a long 
exact sequence in homology 

I , 
.•. -+ HJ.U nV) -. H,(U) Ea Ht (V) -. Ht (X) -:+ Hf - 1(U n V) -+ ... 

Here/is the map induced by the signed inclusion aH ( -a, a) tmd 9 is the sum 
(a, b)HQ + b. .. 

Singular Cohomology 

A singular q-cochain on a topological space X is a linear functional on the 
Z-module S,(X) of singular q-chains. Thus the group of singular q-cochains 
is St(X):= Hom (Sf (X), Z). With the coboundary operator d defined by 
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(dwXc) = w(oc), th.e graded group of singular cochains S-(X) == Et> S'(X) 
becomes a differential complex; the homology of this complex is the singu
lar cohomology of X with integer coefficients. Replacing l with an Abelian 
group G we obtain the singular cohomology with coefficients in G, denote 
H*(X: G). For the rest of this chapter' we will reserve H*(X) for the singular 
cohomology with integer coefficients and write Hr,~X) for the de RUm 
cohomology. 

A function Cl) on X is a ()..cocycle if and only if w(ac) = 0 for all paths c in 
X. It follows that such an (J) is constant on each path component of X. 
Therefore, HO(X) = SO(X) == Z El) Z $ ... Ea Z where there ~re as many 
copies of l as there are path components of X. 

€~The singular cohomology ,does not a.lways agree with the Cech 
cohomology. For i~stance, ". 

dim H~n.(X) = # pa~h components of X, 

but 

dim Htcch(X) = # connected components of X. 

We now compute the singular cohomology of R-. Define the operator 
L : S4(RII).--. S4- 1(RII) to be the adjoint of the cone construction K : if t1 E 
Sf(R") and c e Sf _,(R"), . 

(LtJ)(c) = a(Kc). . 

Then for a e S'(Jr') and c e S.(R,,}, 

Hence 

«(dL - Ld)a)c == (d(La»c - (L(dG)Xc) 

== (La)(oc) - (daXKc) 

= a(Koc) - u(oKc) 

== <T«Ko - oK)c) 

== « -If+ lq)c by Proposition IS.1. 

I = (-1)9+ '(dL - Ltl) on S'(R"), q ~ 1, 

i.e., L is a homotopy' operator between the identity map and the zero map 
on the q-cochains, q ~ 1. It follows that . . . 

Hf(R") = {Z' q == 0 
O. q.> O. 

Applying the funcloe Hom( • 1) to the Mayer-Vietoris sequence for 
singular chains we obtain lite Mayer- ViI!tpris SUJuence/l!r singular. C()C~aj1lS 

(15.7) 
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Since the functor Hom( , Z) preserves the exactness of a sequence of free 
Z-modules (see Exercise 14.17.3), the Mayer.Vietoris sequence for singulaf_ 
cochains is exact. 

Exercise /5.7.1. Show that £* is the restriction map and b* is the alternating 
difference ~ 

1'+1 

(~·W)ao ... cr,H = L (_1)1 wClo •.. ci, •.• II, •• 
i=O 

Once we have the Mayer-Vietoris sequence we can set up the double 
complex C$(U, S*). Just as in. the de Rham theory the double complex 
C*(U, S4I) computes the singular co homology of ,X. This is because by the 
exactness of the Mayer-Vietoris sequence, H6 of this complex has a single 
zero column . 

f 
Sl(X) 0 

i 
H~= Sl(X) 0 

r 
I SO(X) I 0 

0 1 

• so that the s~tral sequence degenerates at the El term anf 

H{~(U, S*)} = H"H, ~ H*(X). 

To complete the analogy we will need the existence of a good cover on 
the topological space X. This presents no problem if X admits a triangu
lation, i.e., a bomeomorphism with the support of a simplicial complex, 
since the open star of the triangulation is a good cover.·By taking barycen .... 
tric subdivisions of the triangulation we can refine its star ad infinitum.· 
Hence just as in the case of manifolds, the good covers on a triangularizable 
space X are cofillDl in the set of all covers of X. We note in passing that this 
gives an alternative proof of the existence of a good cover on a manifold 
since it is known that every manifold admits a triangulation (due to Cairns 
and Whitney, see Whitney [2, pp. 124-135]) . 

• 
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If U is a good cover of a topological space. X, then H tI of the double 
complex C*(U, S*) is 

o o o 

and H.)HtI = H*(U, Z) = H{C*(U, S*}}. So there is an isomorphism between 
the singular cohomology and the Cech cohomology of a good cover with . 
coefficients in the constant presheaf Z: 

H*(X) ~ H*(U, Z). 

Suppose X triangularizable. Since the good covers arc cofinal in the set or 
all covers of X, 

H*(X, Z) == H*(U, Z) 

where H*(X, l) is the Cech cohomology of X with coefficients in the 
constant presheaf l. Therefore, . .' . 

~ ~ The singul~ cohomology of Q tritmgultlrlztJble s~e x·· U 
isomorphic to its Cech cohomology with coeffICients in the constant presheof 
l. IfU is a good cover of X, then . -. 

H*(X) ~ H*(X, Z) ~ H*(U, Z). 

Let 1t: E -+ X be a fiber bundle with fiber F over a triangularizable 
topological space X. Just as in Theorem 14.18, from the double complex 
C(n - 1 U, S*) on E we obtain a spectral sequence converging to the sinauJar 
cohomology H*(E) whose E2· term is ' 

E~· f == H'(U, """F», 
where Jt'4{F) is the locally constant presbcaC 14(U) = H4(n- 1U). If"""F) 
happens to be the constant presheaf Z Ea . • . $. Z OD U, then 

E~· f == H"(U, Z) Ea ... $ H'(U, Z) == H'(X) E9 .... Ea H '(X) 

.. ",1')-- == H,(x) ® Hf(F). 

The singular cohomology group H-(X; Z) can be given a product struc
ture as.follows. If(Jio ... A.) is a q-simp1~ in X, wc say that(Ao ..• Ar) is ita 
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front r-face and (At _, ' .. A,) its back r-face. Let w be a p-cocbain and fI a 
q-cochain; by definition their cup product is given by 

(IS.9) (0) u ,,)(Ao ..• A,+.,) = oo(Ao ... A,> " (A, ... .4,+.,). 

Exercise 15.10. Sh~w that the coboundary operator d is an antiderivation 
relative to the cup product: 

d(co u ,,) = (dw) v " + ( - 1 )de. co ro u d". 

By arguments analogous to (15.2) and (15.7) there is also a Mayer
Vietoris sequence for Singular cochains with coefficients in a commutative 
ring A. Using the cup product (15.9) in place of the wedge product, the 
spectral sequence of the Cech-singular complex C*(U, S*) can be given a 
product structure just as in (14.24). The arguments in Section 14 carry over 
mutatis mutandis. Hence the results on spectral sequences remain true for 
singular cohomology with coefficients in A. Note however in (14.18) and 
(14.30) the El term of a liber bundle 1t: E -+ M with fiber F over a simply 
connected base space M is the tensor product H*(M; A) ® H*(F; Al qJlly 
if the cohomology of F is afree A-module. In summary we have the follow
ing. 

11aeorem IS.11 (Lerayts Theorem for Singular Cohomology with Coeffi
cients in a Commutative Ring A). Let 1t: E -+ X be afiber bundle withfiber . 
F over a topological space X and U an open co"r of X. Then there is a 
spectral sequence converging to H*(E; A) with El term . 

E~' t == H'(U, I'(F; A». 

Each Er in the spectral sequence can be given a product structure relative to 
which the differential d, is an antiderivation. If X is simply connected and has 
a good cover, then 

E~" == H'(X, H'(F; A). 

lfin addition H*(F; A) u afinitely generated/Tee A-module, then 

E2 = H*(X; A) ® H·(F~ A) 

algebras over A. 
. . . 

Exercise /5.12 (Kunneth Formula/or Singular Cohomology). Ir X is a space 
baving a good cover, e.g., a triangularizable space, and Y is any topological 
space. prove using the spectral sequence of the fiber buDdle 1t : X x Y -+ X 
that 

H,,(X x y) - Ea H'(X, Ht(Y). 
'·4.-" 



,tS CohomoloU with Ialepr CoeIicieetl 193 

We examine briefly here how some of the theorems in de llham theory· 
carry over to the singular theory. Both the Mayer.Vietoris argument of 
Section 5 and the tic .. tac ... toe proof of Section 9 for the Leray-Hirscb the
orem go through for integer coemcien~ with the singular complex C*(ll, 
S*) in place of C*(U, a-). However, since there ~ay be torsion in H*(F), the 
Kiinneth formula in the form H*(M x F) = H*(M) ® H*(F) is not true 
with integer coefficients; the Mayer-Vietoris argument fails because ten
soring with H*(F) need not preserve exactness, and the ti~tac-toe proof 
fails because H*(F) ® C*(U, S*) may not be simply a finite number of 
copies of C*(U, S*). These difficulties do not arise in the case oC the Leray
Hirsch theorem, since in its hypothesis the cohomology of the fiber H·(F} is 
assumed to be a free Z .. module. . 

ReMARK IS.13. Given any Abelian group A, let F be tbe free Abclian group 
generated by a set or generators for A and ... R be the kernel of the natural 
map p: F -+ A. Then . ;.".. . 

(1S.13.1) 
. f, 

O-+R ..... F ..... A-+O 

is a short exact sequenc:e of Abelian gouPl- As a IUbp'oup of a free &roup. 
R is also free (Jacobson [1, §3.6]). An exact IOqUCJlCX' such as (15.13.1). iD 
which F and R are free, is called a free relOlMtlolJ of A .. Let G be aD AbeIiaa 
&roup. By ExerciIe 14.17.4, the two 1DqueDC* 

(15.13.2) . 

and 

(1S.13.3) 

are exact. 

,. 
0--+ Hom(A, G)-+ Hom(F, G)-+ Hom(R, G) 

R®G 18· ,F®G--... ,A®G--... O 

Ext(A, G) - cater ,. - Hom(R,. G)f1lD ~ · 

TOr(A, G) .. kee i ,®. 1. . ., 

Thus Ext and Tor measure the failure of the two exact lOqueocea 
(1 5.13.2) ~nd (15.13.3) to be short exact. It is Dot bard to show that the 
definition of Ext and Tor is independent or the choice or the free rcaoJutioa. 
For, the elementary properties of tbaC two funccon sec. for iDllance.. 
Switzer [1, Chap. 13]. 

Exerciu 15.13.4. If IN and 11 aR positive iDtqcn, wc denote their areatat 
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common divisor by (m, n). Verify the tables 

Ext Z Z. Tor Z 

Z 0 0 Z 0 0 

l". Z". Z(". .• ) Z. 0 Z("..II) 

For example, 

Ext(l"., 1) == 1 •. 

In terms of these completely algebraic functors, one finds the following 
description of the dependence of the singular theory on its coefficient group. 
For a proof see Spanier [1, pp. 222 and 243]. 

Theorem 15.14 (Universal Coefficient Theorems). For any space X and 
Abelian group G, 

(a) the homology of X with coeDkients in G has Cl splittmg; 

HJ.X; G) ~ H.<X) ® G.ES Tor(Hf - 1(X), G); 

(b) the cohomology of X with coefficients in G also has" splitting: 

H4(X; G) ~ Hom(HJ,X), G) EB Ext(Hq _ 1(X), G). 

Applying Part (b) with G = Z yields the following formula for the integer 
co homology in terms of the integer homology. . 

Corollary t!.14.1. For any sp~e X for which HJ-X) and H,,-l(X) arefinitely 
generated Z-modules, 

Hf(X) ~ F. Ea 7;- h 

where Ft is thefree part of HJ,X) and 'Tq-l is the torsion part of H,-l(X). 

REMAIuc. The splittings given by the universal coefficient theorems cannot 
be arranged to be compatible with the induced bomomorphisms of ·maps. 
They are therefore often said to be unnatural splittings. 

.. .. . . 

EXAMPLE 15.15 (The cobomology of the unit tangent bundle of a sphere). 
The u~it ta~gent bundle S('Tsl) to t.he 2-spbere .in 1R3 is.a fiber bundle with 
fiber 51: . . 
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By (15. t 1) the E 2 term of the spectral sequence is 

E~'" = HP(S2) ® H"(SI) 

q 

7L........ " l. 

id'~ 
7L 2 1L 

1 

o 

o 2 

) 
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p 

For dimensional reasons dJ ::= d4 == ... = 0, so E3 = Eoc,. By Remark 14.20 
the differential d2 in the diagram defines the Euler class of the circle bundle 
S(151). Since the Euler class of S(1S2) is twice the generator of Hl(S1.) (Exam-
ple 11.18), this dl, is multiplication by 2. Thus ': .. " " 

{ 

l in dimensions 0 and 3 

H·S(1$2) = Z2 in dimension 2 

o otherwise. 

Exercise /5./5.1. Compute the cohomology of the unit tangent bundle 
S(TSl)· 

A point in S( 15z) is specified by a unit vector in RJ and another unit 
vector orthogonal to it. This can be completed to a unique orthonormal 
basis with positive determinant. Therefore S(Tsz):::a S0(3) and we have com
puted above the cohomology of S0(3). 

REMARK 15.15.2. The special orthogonal group S0(3) comes in a different 
guise as Rp3 t as follows. We can think of S0(3) as the group of all rotations 
about the origin in R3. Each such rotation is determined by its axis and an 
angle -1t ~ (J S; ft. In this way 80(3) is parametrized by the solid J.ball D~ 
of radius 1t in Rl: a point in this 3-ball determines a unique axil and a 
unique angle of rotation, the axis being the line through the point and the 
origin, and the angle being the distance of the point from the origin. Since 
rotating through. the angle -1[ has the same effect as through 1(, any pair of 
antipodal points on the boundary of D3 parametrize the same rotation. So 
SO(3) is homeomorphic to Rp3, 

, 

Exercise /5./6 (The Cohomology of SO(4». The special orthogonal group 
SO(n) acts transitively on the unit sphere S .. -l in Ir' with stabilizer 
SO(n - I). Therefore SO(n)/SO(n - 1) =- 5"-1. A group with a differentiable 
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structure relative to which the group operations, namely multiplication and 
inverse, are smooth is called a Lie group. GUn, R) and SO(n) are examples 
of Lie groups (see Spivak [1, Ex. 33, p. 83]). It is a fact from the theory of 
Lie groups that if H is a closed subgroup of a Lie group 0, i.e., H is a Lie 
subgroup and a closed subset of G, then 'It : G ..... Gf H is a fiber bundle with 
fiber H (Warner [1, Th. 3.58, p. 120]). Apply the spectral sequence of the 
fiber bundle 

S0(3)--+ 50(4) 

! 
S3 

to compute the cohomology of SO(4). 

~xercise 15.11 (The Cohomology of the Vnitary Group). The unitary group 
U(n) a;~s transitively on the unit sphere S:1..-1 in ell with stabilizer 
U(n - 1). Hence U(n)/ V(n - I) = S211 - 1. Apply the spectral sequence of the 
fir~~ bundle 

V(n - 1)-+ U(n) 

! 

to compute the co homology of U(n). 

The Homology Spectral Sequence 

Although in this book we are primarily concerned with co homology, for 
applications to homotopy theory it is frequently advantageous to use the 
homology spectral sequence of. a fibering. Since the construction of such a 
spectral sequence is analogous to that for cohomology, the discussion will 
be brief. . 

Using the singular chain functor S. in place of the differential form 
functor O· we get a double complex C.(U, S.) with differential operators a 
ilod b. Define D to be 6 + (-1)"0. 

q 

p 
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As in Section 14 this double complex gives rise to a spectral sequence {EF} 
which converges to the total homology HD{e.(ll, S.)}. Because of the di
rections of the arrows 0 and 6, the differential iT· goes in the opposite 
direction as the differential of a cohomology spectral sequence; more pTC-· 

. cisely, 

d' : E". f'~ K,,-r. f+,-I· 

By the exactness of the Mayer-Vietoris sequence (15.2) the spectral sequence 
is degenerate at the El term and 

E2 = H~ H, == H .(X). 

Hence we have the following. 

Proposition 15.18. For any cover U of X the double complex C.(U, S.) 
computes the singular homology of X: 

HD{C.(U, S.)} = H.(X). 

To ayoid confusion with the cohomology spectral sequence,)Ve write r as . 
a superscript and p and q as subscripts in the homology spectral sequence: 

~.4· 
Now suppose U is a 800d cover of X. Interchanging the rolcs or a and 6 

gives another spectral sequence which also converges to HD{C.(U, SJ}. 
This time . 

(15.19) E«J == El :.= H,He = H.(U, Z) 

. where Z is the constant preshea( with group Z. Comparing (IS.IS) with 
(15.19) gives the isomorphism of the singular homology to the ~h homol
ogy H.(U, Z) of a good cover. Along the line of Theorem 14.18. if 
1t :.f; --+ X is a fiber bundle with liber F, and X is a simply connected space 
with a good cover" then there is a spectral sequence converging to the 
singular homology H.(E) with E! .• = H.(X, HJF».lfin addition HJF) is .. ·o. 

free Z -module, the E2 term is isomorphic to tbe tensor" product 
H ,(X) ® H JF) as l-modules. Unlik.e the cobomology spectral sequence, 
there is in general no product structure in bOmoloU. . 

~. 

~-§16 The Path Fibration 

Recall again that through §18 wc work in the eatclory oftopolopspacel 
and continuous maps. Unless otherwise DOted an cohomology groups will 
be assumed to have integer coefficients.. Let .. : E-+ X be a fibcr bundle 
with liber F over a topological space X that has a good cover U. Wc have 
shown that there is a spectral sequence conwrJinl to the cohomoloaY 
H*(E) of the total space, with E2 term··' . 

Et;« -= H"u. ~F». 
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where .1f1l(F) is the presheaf that associates to every open set U in U the 
group HIl(X- 1 U) ~ H4(F). Now suppose 'Tt: E -+ X is simply a map, not 
necessarily locally trivial. One can still obtain a spectral sequence by con
sidering the double complex of singular cochains K = C*(n - 1 U, S*) on E. 
As long as the map 1t : E -+ X has the property that 

(16.1) H4(1t - 1 U) ~ HIl(£) for some fixed space F and for any contractible 
open set U, 

then E2 = 11., HiK) will be the same as for a fiber bundle. Since the spectral 
sequence is a purely algebraic way of going from H, H tl to H D, which is 
isomorphic to H*(E), the spectral sequence of this double complex will 
again converge to H*(E). An example of such a map is the palhfibration. As 
will be seen in the next few sections, Serre's application of the spectral 
sequence in this unexpected setting has far-reaching consequences in homo-
topy theory. . 

The Path Fibration 

Let X be a topological space with a base point. and [0, 1] the unit interval 
with base point O. The path space of X is defined to be the space P(X) 
consisting of all the paths in X with initial point .: 

P(X) = {maps JJ: [0, 1] ~ X I 140) = .}. 

We give this space the compact open lopology; i.e., a basic open set in P(X) 
consists of all base~point preserving maps ;.:: [0, 1] - -t X such that 
jJ{ K) c: U for a fixed compact set K in [0, 1] and a fixed open set U in X. 
There is a natural projection n : P(X)~ X given by the endpoint of a path: 
n(p) = p( I). The fiber at p of this projection consists of all ~e path from. to 
p (see Figur .. e 16.1). 

/ 
• 

Figure 16.1 

We now show that the .map 7t : P(X)~ X has the property (16.1). Let U 
be a contractible open set containing p. There is a natural inclusion 

i : 7t - 1(p) -+ 1t - l( U). 
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Figure 16.2 

(See Figure 16.2.) Using a contraction of U to p, we can get a map 

4J : 1t - l(U) -+ n- l(p). 

It is readily checked that 4> and i are homotopy in verses. Furthermo:e, if p 
and q are two points in the same path component of M, then a fixed path 
from p to q induces a homotopy equivalence 1[- !(p) ~ 1t -l(q). Thus all 
fibers have the hvrnotopy type of n -1(*), which is the loop space nx of X: 

nx = {Jl : [0, 1] -+ X IP(O) == P(l) = *}. 

So the map n: P(X)-t X has the property H*(n-1U) ~ H*(OX) for any 
contractible U in X. 

A more general class of maps satisfying (16.1) are thefiberings or jibra-

lions. A map 1[ : E -+ X is called a fibering or a fibration if it satisfies the 
covering homotopy property: 

(16.2) given a map f: Y ~ E from any topological space Y into E and a 
homotopy /, of 1= 1t 0 f in X, there is a homotopy /, of f ~ E which 
covers J,; that is, 1t 0 f, = it .: ~ , , " ,.~ > 

The covering homotopy property may be expressed in terms of th~ diagram 

f r //~~~//~j 
(y, 0) Y)( 1 I, .x. 

. ~ .,. 

Such a fibering is sometimes called a fibering in the sense 0/ Hurewicz, as 
opposed to a fibering in the sense of Serre which requires only 'that 'the 
covering homotopy property be satisfied for finite polyhedra Y. If X is a 
pointed space with base point ., we calix - 1(.) the jiber of the fibering. and 
for any x in X" we call F" = n- 1(x) theJiber over x. As a convention we will 
assume the base space X of a fibering to be connected. It is clear that the 
map n : P X --. X is a fibering with filler OX, for a homotopy in X naturally 
induces a covering homotopy in PX. This fibering, called the pathfibration 
of X, is fundamental in the computation of .the cohomology of the loop 
spaces. Its total space PX can be contracted to the constant path: 
[0, 1] -+ *. 
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We prove below two basic properties of a fibering, from which it will 
follow that (16.1) holds for a fibering. 

Propositioa 16.3.(a) Any two fibers of a fiber;ng over an arcwise-connected 
space have the same homotopy type. 

(b) For every contractible open set U, tlw inverse image ,,-tu has the 
homotopy type oftlwftber F", where Cl is any PC?'nt in U. 

PROOf. (a) A path 1(t) from a to b in x may be- regarded as a homotopy of 
the point a. Let g : F" x 1-+ X be given by (y, t) ..... y(t), where I is tbe unit 
interval [0, 1]. So we have the situation depicted in Figure 1~.3. By the 

y 

T 
(y,O) 

F.c • E ! ///~//~ !-
F. X I. ~ X 

g 

(y, t»)1------I~ .. 1(t) 

Figure 16.3 

F. 

~~b 
. 11 

')'(0) 1(1) 

covering homotopy property, there is a map 9 which coven g. The re
striction't = '''.)(-tu is then a map from F. to F". Thus a path from a to b 
induces a map from the fiber F. to the fiber F". 

We will show that homotopic paths from a to b in X induce homotopic 
maps from F" to F •. Let P. be a path from a to b which is bomotopic to "it 
h a covering homotopy of Jl, and hi the induced map from F. to F •. Define 
Z by (see Figure 16.4) 

Z == F.·x I x to} u F. x J x 1 

and! : Z --. E by 

/1,.)( I x (O)(y, s, 0) == Y 

11,. x (0) )(,(y, 0, t) = g(y, c) 

fl,. le U) x J(7,), t) == #(y, r~ 
~ 

We regard the homotopy between y and p in X as a homotopy G of n 0 J. 
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f 

z 

Figure 16.4 

By the covering homotopy P10perty there is a covering map G from 
F. x I x"/, which is homotopic to Z x I, into E. The restriction of G to 
F. x 1 x {I} has image in F •. Since G 1, •• co).tU =-111 and G 1, •• ,1J-U}

h., GI,.x,x{1} is a homotopy in F" between gl and hi-
Given two points a and b in X and a path y from Cl to />, let,,: F. -+ F. 

be a map induced by "1 and v: FII ...... FIJ a map induced by 1- 1
• Then v 0 u: 

FIJ--+ Fb is a map induced by ,,-11_ Sincey-ly "is homotopic to the constant 
map to a, the composition v 0 u is homotopic to the identity on F.. There
fore, F. and F" have the same homotopy type. 

(b) Let" 1 : U x 1-+ U be a deformatioi) retraction of U to the point Cl. By " 
the covering homotopy" property, there is a map 9 : 7t -1 U x 1-+ 1t -1 U sucb" 
that the following diagram is commutative. 

We will show that 9 gives a deformati~n' retraction of X-I U onto the fiber 
F. _ Let gr be the restriction of 9 to n - 1 U X {t}. By identifying 1t - 1 U with 
x-IU x {t}, we may regard 9 as a family of maps g, : x-tu -+ ,,-1U vary-
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ing with t in .the unit iotervall. At t = 0, 

90 : 1t -1 U X {O} ~ It - 1 U 
. 

is the identity and at t = 1, 

gl: x- 1V x {1}-+x- 1U 

has image in the fiber F •. Hence, gl may be factored as (/1 == i 0 4>: 

So via g the composition i 0 <p is homotopic to the identity. To show that 
<p 0 i: F.-+ F. is homotopic to the identity, consider the following diagram 

Note that q, 0 i = 9 <? j 1,.)( {l} is induced from the constant p~th 
1-+ {a} e X, since y 0 1t 0 j(y, t) = a for all t. (The deformation retraction "I 
fixes a at all times.) By the prooi of (a), q, 0 j is homotopic to the identity. 0 

REMARK 16.4. If we replace F. with any space Y, the argument in (a) proves 
that in the covering homotopy property (16.2~ homotopic maps in X 
induce homotopic covering maps in E. 

Generalizing the Cact that a simply connected space cannot have a con
nected covering space of more than one sheets, we have the following. 

Propoeidoa 16.5. Let 1t: E-+ X be ajiberirag. If X is simply connected and E 
is path connected, then the jibers are path connected. 

PR~. Trivially the E~'o term oC the fibering survives to Eec. Hence 

~.o == E~o == HO(E) = Z, 

since E is path connected. On the other hand, 

~.o = HO(X, HO(F» = HO(F) .. 

o 
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The Cohomology of the Loop Space of a Sphere 

As an application of the spectral sequence of the path fibration, we compute 
here the integer cohomology groups of the loop space OS-, n ~ 2. 

EXAMPLE 16.6 (The 2 .. sphere). Since S2 is simply connected, the spectral 
sequence of the path fibration 

has E2 term 

E~·f = H'(S2, Hf(ClS1». 
So t~e zeroth column E~'f := HO(Sl, H4(ns1» = Hf(QS1) is the cohomololY 
of the fiber. By Proposition 16.5, HO(OSl) == z, so the bottom row HS'o ~ " 
H'(S2, HO(OSl» == H'(S2, Z) is the cohomololY of the base. 

q 

z z 
O· 1 2 p 

By the universal coefficient theorcm (15.14), all columns in"E2 except p - 0 " 
and p = 2 are zero. Hence all the differentials d3 , d., ... are zero and 
ES" - E~f. Because the path space PS2 is contractible, 

Ep •• == {Z 
OD" 0 

(p, q) == (0, 0) 
otherwile. 

Thus d2 : E~·l-+ E~'o' must be an isomorphism. It follows that Hl(1JS2) =- z. 
But then • 

· El' 1 == H2(s2, Hl(OS2» == H2(S2, Z) == z . . 
Since d2 : ~. 1-+ E~' I is an isomorphism, H2(08l) = Z. Workina our way 
up, we find Hf(ClS2

) = Z in every dimension q. 
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EXAMPLE 16.7 (The 3-sphere). In the El term of the fil?ering 

q 

z 

z l 

l z , 

o 1 2 3 p 

the n~~ro columns are p = 0 and p = 3. For dimension reasons d l = 0 
and d4 = p, == ••• == O. Because the total space is contractible, d3 is an 
isomorphism except at E~' o. Therefore, 

in even dime~sions 

otherwise. 

Similarly we find that in general 

H·(05") = {~ in dimensions O. n - 1, 2(n - 1), •.. 
otherwise; 

Next we examine tbe ring structure of H*(OS"). We st~rt with OSl. Let 
u be a generator of E1· 0 = H~(Sl) and let x be the generator of Hl(ns1

) 

which is mapped to " by d l . For simplicity we occasionally write d for d l . 

By ~xample 16.6, the differFJltial d2 is an isomorphism. Note that x com .. 
mutes with ". because El is the tensor produet H*(OSl) ® H*(S"). (x is 
actually x ® t and u is 1 ® u.) 

e" 
4 2 

3 . ex exu 

2 e eu 

. 1 x xu 

0 1 u 
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Since dl(X1
) = (d1 x) . X - X • d1 X = ux - xu = 0, we have x2 == O. Thus 

t.he generator e in H 1(QS1.) which mal'§ to XII is algebraically independent of 
x. Since d(ex) = eu, the product ex is a generator in dimension 3. Similarly, 
d(e l

) = 2exu so that e2j2 is a generator in dimension 4; d({e1/2)x) == (e2/2)u. 
so that (e2/2) . x is a generator in dimension S. By induction we shall prove 

and 

~ 
is a generator in dimension 2k 

k! 

ell. 

k! x is a generator in dimension 2k + 1. 

PR.ooF. Suppose the claim is true for k - 1. Since 

e* ~-1 ~-1 

d k! = (k _ I)! de = (k _ I)! XU, 

which is a generator of Ei' lA; -1, the element ,t Ik ! is a ,enerator of 
Hl"(OSl). Similarly, since 

j~) e"-l e' e"· 
"\k! x = (k _ I)! xu . x + k! U = k! U, 

which is a generator of E~·l., the element (e'lk !)x is a Bmerator of 
H1A;+1(OSl). 0 

By definition the exterior algebra E(x) is the ring Z[x J/(Xl) and the 
divided polynomial algebra Z,.{e) with generator e \s the Z-a1gebra with 
additive basis {I, e, e1/2!, e3/3!, .,. }. Hence 

H*(OSl) :;: E(x) ® Z~e)t 

where dim x = 1 and dim e == 2. 
Now consider H·(nS") for n odd. Let u be a generator of H"(8") and e 

the generator of H"- 1(05") which maps to u under the isomorp~sDl d". 
Since' d,,(e2

) = 2e", e2j2, is a generator iD dimension 2(n - 1). In general jf 
~/k! is a generator in dimension ~n - 1), then d,,(e"+ l/(k + 1)1) = .(~/Jr,l)u 
so that;e"+l(k. + 1)1 is a ge~rator in ~ension (k + lXn - 1) .. '. . . ! 
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This shows that for 11 odd, 

dime=n-l. 

By a co~putatiOD similar to tbat of H*(QS1), we sce that for" even, 

dim x =- It - 1, dim e - 2(n - 1~ 

§17 Review of Homotopy Theory 
oP 

To pave the way for later applications of the spectral sequence, wc give in 
this section a brief account of homotopy theory. Following the definitions 
and basic properties of the homotopy groups, we compute some low
dimensional homotopy groups of the spheres. The geometrical ideas in this 
computation lead to the homotopy properties of attaching <:ells. A space 
built up from a collection of points by attaching cells is called a CW 
complex. To show that every manifold has the homotopy type of a CW 
complex, we make a digression into Mbrse theory. Returning to the main 
topic, we next Qiscuss the relation between homotopy and homology, and 
indicate a proof of the Hurewicz isomorphism theorem usina the homology 
spectral sequence. The homotopy groups of the sphere, nJ9'}, q S 11, are 
immediate corollaries. Finally, venturing into the next non trivial homotopy 
group, Jt3(Sl), we discuss the Hopf invariant in terms of differential fOrn1S. 
Some of the general references for homotopy theory arc Hu(I]t Stcenrod 
[1], and Whitehead [1]. 

, 
Homotopy Groups 

Let X be a topological spice with a base point *. For q ~ 1 the qth 
homotopy group 1tf (X) of X is defined to be the homotopy classes of maps 
from the q-cube I' to X .. which send the faces JI. to l' to the base point of X. 
Equivalently tt.(X) may be regarded as the homotopy classes of base-point 
preserving maps from the q-sphere $I to X. The group operation on 1CJ.X) 
is d~fined as follows (sce Figure 17.1). If ex and JJ are maPs from Jf to X, 
representing [(X] and [JI] in 1C.(X), then the product [«][6] is the homotopy 
class of the map 

We recall here some basic properties of the bomotopy groupl. 
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a 

pinch .. 
, /3 

Fi,urc 17.1 

Proposition 17.1. (a) n,(X x y) - 1t,(X) )( 1t,(J'). 
(b) 1Cf (X) is Abelianfor q > 1. 

PllOOF. (a) is clear since every map from 19 into X x Y is of the form 
(/,,/2) where 11 is a map into X and 12 is a map into Y. Furthermore, since 
<!hfl)(g" g,.> == (flg.,i2gl), the bijection in <a> is actually a group is0-
morphism. To prove (b),. let (er] and [11] be two elements of -J,.}{). We 
represent «/I by 

erp is homotopic to the map 0 from I' to X given by 

~ 
~ 

tx(2", 212 - I. 13' .•• , I~, 

o S Is S; i, i:s; 12 s; It 

cl(t a, .•• t t~ -= D(21. - I, 212, •••• tJ, 

~~tl:Sl, O:s;t2 Si, 
• otherwise. 
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lJ is in turn homotopic to 

and finally to 
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IT] 
Lill· 

o 

Propositiou 17.2. 1t4-,(nx) = n,,(X), q ~ 2. 

SKETCH OF PROOF. Elements of 1t2(X) are given by maps of the square [2 

into X which send the boundary jl to the base point •. Such a map may be 
viewed as a pencil of loops in X, i.e., a map from the unit interval into OX. 
Therefore, 1t2(X) = 1tl(nx). The general case is similar; we view a map 
from l' to X as a map from 1'-1 to OX. 0 

It is often useful to introduce 1to(X), which is defined to be the set of all 
path components of X. It has a distinguished element, namely the path 
component containing the base point of X. This component is the base 
point of 1to(.X). For a manifold the path components are the same as the 
connected components (Dugundji [1, Theorem IV.S.S, p. 116]). 

Recall that a Lie group is a manifold endowed with a group structure 
such that the group operations-multiplication and the inverse operation
are smooth functions. Although 1to(X) is in general not a group, if G is 
a Lie group, then Jto(G) is a group. This follows from the following 
proposition. 

Proposition 17.3. The identity component H of a Lie group G is a normal 
subgroup of G. There/ore. no( G) = G / H is a group. 

PROOF. Let a, b be in H. Since the conti~uous image of a connected set is 
connected, bH is a connected set having a nonempty intersection with H. 



117 Review of Homotopy Theory , '209 

,Hence bH c: H: It follows that abH c aH c:: H, so ab is in H.:·Similarly 
a-1H is a connected set baving a' Dooempty"intersectioD with 'H, sincef·l~is 
in a- 1H; so a- 1H c H an4 a- 1 is also in H.' This shows that 'H'is a 
subgroup of G. ' I ,'-> • 

Let 9 be an element of G. Since gHg- 1
, is a connected set containing 1, 

by the same reasoriing as above, gHg- 1 cH. Thus H is normal. ' 
Because multiplicaJion by 9 is a homeomorphism, the cosct 98' is 

co~nected. Since Oistin<;t ~9sets are disjoint, G / H consists oC precisely the 
connected components of G. ThereCo~e, no(G) ~ G/H. 0 

Let 7t: E -+ B be.a (base-point pre~ng) fibcring with fihcr F. Then 
there is an exact sequence of homotopy groups, called the homotopy se
quence of the fibering (Steenrod [It'p. 91]): 

, I. -. ) e (F) (17.4) ... -.a,(F) ~ nJ.E) ~ nJ..B , ~ n,_1 ~ . · ., 

· · · --+" o(E) --+ noCB) -..~. ' 

In this exact sequence the last three maps are not group bomomor
phisms, but only set maps. The kernel of a set map between pointed ~I~ 
by definition the in\!,erse image of the Pase point Exactness in tbis context is . 
given by the same P,Oodition:as before: "tbe image equals the kernel" The 
maps i. and n. are the maps induced by the inclusion i : F -+ E and the 
projection 1t: E -+ ~' rcspectivc;ly. Here w~. ~prd F as the fiber over the , 
base point of B. To dCSl:ribcfo wc '* the c:Ov~g homotopy property :::.:/ 
fibering. For simplicity cOllSider f\rst q == 1. A loo.p (I: ]1-+ B from the , t 
interval to B, representing an eleme;nt of 1t1(B), may be lifted to a path i in 
E with ci{O) being t~ b,ase point Of, F" TIleD O[.]·is siven by ci(l) in 1Io(F). 
More generally let 14- 1 c /f be the inclusi9D 

.' I ~/ 
(fit ... , ' • .:..1) ...... (1., •.• , '.- h O)~ -

, , 

A map ex : 14 -+ B representing an .,clement or nJ.11J may be regarded as a 
homotopy of 1l1.,.-1 in B. Let the constant map • : If-I ..... E from If- 1 to 
the base point of F be the map that covers Cl (,.-. : (th .•• , t._ It 0)-+ B. By : 
the covering homotopy property, there is a homotopy u.,.tain ci : It -+ E 
which covers (J and such tbat a 1,,-. = •. Then '0[,,] is the bomotopy clau or 
the map«: (t., ... , t.- It 1)-+ F. By ~ar~ 16.4.0[(1] is weU-defined . 

. EXAMPLE 17.5. A covering space 1t : E -+ B is a fi.berins with ~, ~ 
By the homotopy sequence of the fibcrin& "'., _ . 

" 1CJ..E) == 7CJ.B) '. for q~ 2 ,.~~; : .... & ,~ 
, . ~.. (.4 4 ' 

and 
J 

." '7C1(E) '+ "l(B~ 
, / .. 

·L 
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WAaNDKJ 17.6 (Dependence on base points~ Couaider the homotopy 
Ifoupl x. (X t x) and Kt (X J y) of a patb-connected space X, computed rela
tivo to two different points x and y. A path ., from x to y induces by 
conjuptioD a map &om the loop space QzX to the loop space n,~: 

1 ..... 1):1-1 for 'any 1 ia DaX. 

This. iD turn induces a map of homotopy groups 
4 

l'.: x.-a(O.-X, i)--+ X,-l(O,Xt j), 

I . . . I 

-.(Xt x) -.(Xt Y) 

where :i and j are the constant maps to x and y. The map 1. is clearly an 
isomorpbism, with inverse given by (1' - J). : 

We can describe ,1. explicitly as follows. Let [(X] be an clement of 
_.(X, x). Defiqe a map F to be Cl OD the bottom face of the tube 1'+ 1 and 1 
on the vertical faces (Filure 17.2 (a»); more precisely. if (14 t) E l' x 1~~ 
1'+ 1 t"'--'" ,. . . ' 

t IJIWII . 

,. 

F(u, 0) - cz(u) for all u in Jf 

F~ t) - J(t) for all u in OJf. 

x" , , , , 

, 
, , 
, 

x 

y 

y 

I 

I X )------

Figure 1'.2(a) 

By the box principle from obstruction theory (which states that a ~p from 
the union of all but onc face of a cube into any space 'can be extended to 
the wbole cube), the map F can be extended to tbe entire 1.+ 1• Ita re
striction to the top faQC repreaeots 1.[«]. 

One checks easily that 1. is independent of the homotopy class of 1 
aUlODpt the paths from x to 't 10 that when we take oX :. Yt the assipmcnt 
,. ..... .,. may be thought of as an action of 'll(X, ~) OD "J~, x). Only if this 
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action is trivial, can one speak waambipoualy ofa.{X) without nieleaco to 
a base point. In tbat case one can also identify the free homotopy de ... of 
maps [St, X] with a,(X); here by a free homotopy we mean a bomot0PJ 
that does not necessarily preserve the bale points. In aenenJ. however, 
[St, X] is Dot a JfOUP and its relation to -.(X) is Jiven by the rollowiq. 

Propolidoa 17.6.1. Let X be a pGth-cOllMCt. IpGCe. TIw iIIc .... tf btIN
point preserving maps into the set of all map' iIIIhIca a blj.afoll 

x.(X, X)/1C,(X, x) -=. [Sf. X], . 

where the MUllion on tM left in4ictJta tile equiNlellce ,elatiM [11] ,." 7.[11] 
for [1] ill "1(X, ~). 

PROOf. Let h: n.{X, x)-+ [Sf, X] be iDduced by the iDdUlioD 01 hue 
point preserving maps into the set of all maps. If [Cl] E x.{X, x) and 
[1] e 1( 1{X, x), it is laborious but not difIicult to write down an explicit flee 
homotopy between (I and 1.(1 (see Fipre 17.2 (b) for the ca. 4 - I and 
q == 2). Hence h facton tbrou... the action of ~ iex., x). OD K. (X. x) and 

er '. 

i.·~ . .... . 

Fiaurc 11.2(b) 
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Figure 17.2(c) 

Since X is path connected, any map in [S·, X] can be deformed to a 
base"'point preserving map. So H is surjtCtive. To show injectivity, suppose 
[«] in 1t~(X, x) is null-homotopic in [8', X]. This means there is a map 
F; 14 + 1 -+ X such that: . '. 

Fltoplla = ex, 

F I bottom face == i,. 

and F is constant on the boundary of each horizontal slice {Figure 17.2 (c». 
Let "I be the restriction of F to a vertical segment. Then « = y .(x). There
fore, H is injective. . 0 

The Relative Homotopy Sequence 

Let X be a space with ,base point ., and A a subset of X (See Figure 17.3). 
Denote by n: the ,~ of all paths from • to A. The end point map 
e : ~ -+ A. gives a fibering 

nx-+.O! 
l 
A. 

The homotopy sequence of this fibering is 

••• --+ n.(A) --.1t,-·1(QX) --+ n.-l(O:) --.n. -l(A) --+ ••• 

. .., --+1ro<D!> -t> xo(A) --+0. 
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x 

Figure ,17.3 

We define the r,elative homotopy group 1£I..X, A) to be 1£.-1(0:). Then the 
sequence above ~omes the relative homDtopy sequence of A in X: , 

(17.7) ... -+ xJA) --+ nJ.X) --+ nJ.X, A) --+ n._I(A) --+ •.. 

• • • --+ K leX, A) --+ 1toCA) --+ o. 
Observe that 1tJ.X, A) is an Abelian sroup for q ~ 3, "2(X, A) is a &roup 
but in gcncral Dot Abelian, while "l(X, A) is only a set. 

t 

Some Homotopy Groups of the Spheres 

In this section we will compute K~s-) for q :os; IL . Although thcae homotopy 
groups are immediate from the Hui'ewicz itolJl~rpbism theorem (17~1), the. 
geometric proof presented here is important ill being the pattern for ~ 
discussions :of the homotopy properties of a.ttaclli~, cens (17.11). 

PropolitioD 17.8 Every continuous map f: M -+ N between two llllllli/oIb is 
continuously homotopic to a differe,.,iable mDp. 

PROOF. We first note that if f: M -+ R is a continuous function and a a 
positive number, then there is a differentiable real .. valucd function" OD AI 
with If - hi < t. This is more or less clear from the fact that via ita araph,1 
may be .regarded as a continuous section of the trivial bundle M x. Rover 
M; in any t-neighborbood or/there is a diJrerentiablc section h aod becaue 
the s-neighborhood of / may be continuously deformed onto f, la is COD- 1 

tinuously homotopic to f (see Figure 17.4). Indeed, to be more explicit, this 
differentiable section h can be given by successi~ely averagins the Yaluea ofl 
over small disks. . . 

Next consider a continuous map f : M -+ N of mani'lds. By the Whit
ney embedding theorem (sce, for instance, de Rham [1, p. 12]~ there is a 
differentiable em bedding 9 : N -+ 11". If . . 

9 0 f: M -+ g(N) c: R" 

.is homotopic to a differentiable map. then so it 

/ = 9 -1 .0 (g 9 f) : M -. N •. 
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t MXR 
i 

--------------------------------------M 
Figure 17.4 

So we may assume at the outset that N is a submanifold of an Euclidean 
space R". Then the map f is given by continuous real-valued functions (fh 
... , fft). As noted above, each coordinate functionJi can be approximated by 
a differe!ltiable function hi to within £, and fi is continuously homotopic to 
hi' Thus we get a differentiable map h : M -+ R· whose' image is in some 
tubular neighborhood Tor N. But every tubular neighborhood of N can be 
deformed to N via a differentiable "map k : T ~ N (Figure 17.S). This gives 
a differentiable map k ., h : M -+ N which is homotopic to f 0 

j. 
;'t' . 

Figure 17.5 

Corollary 17.8.1. Let M be a manifold. Then the homotop)' IITOUpS of M in the 
Coo sense are the same as the homotopy groups of M in the continuous sense. 

Proposition 17.9. 1t.(S") = 0, for q < n. 

PROOF. Let f be a continuous map from I' to S", representing an element of 
7tJS"). By the lemma above, we may assume f differentiable. Hence Sard's 
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theorem applies. Because q is strictly less than n, the image. of f are all 
critical values. By Sard's theorem f cannot be surjective. Choose' a point P 
not in the image off and let cbe. a contraction of SIt - {p} to the antipodal 
point Q of P (Figure 17.6): , . 

/ , 

c, :f - {P} -. SIt - {P}, t e [0,1] 

c(= identi}¥ 

/t = con~rhnt map Q. 
Then Ct 0 f is a hfmotopy 1)etween f and the constant map Q. Therefore, 
1t,,(S") = 0 for q < n. . 0 

Figure 17.6 

~ropositioD 17.10. 1tJ,S·) = Z.. · 

We will indicate here the main ideas in -tbe geometrical' proof of this 
statement, omitting some tcchnical details.' <. . • (.; 

Recall that' to every map from S· to S· one can associate an; integer 
called its degree. Since the degree is a homoto~r invariant, it .~ .. '8.:.~p 
deg: 1C,.(~ -. Z. There are·two key lemmas. '.' "",~ : t d~ . JI 

• , , ."! ,'. 

Lemma 17.10.1. The map deg : nJ..S") -+ Z is a group homomorplain; that· ~ 

. deg(/g] == deg[f] +-deg[9]. . ' ." 

Lelllllbl 17.10.2 Two maps from S- to S" of the same degr. c_ ". dlfqrwM 
into each other. ,"' 

The surjectivity ~f deg foUows-inUnedia~y hom Lemma 17.10.19 ~ if 
f is the identity map, then deS (f~ .;. k, for any ~tc&er k; the in~yj~ 
follows from (17.10.2). . . ." . i 

To prove these lemmas we will' deform any map I : S" --,;' S" into • 
normal form as follows. By the.inverse function theoremfis a local diiteo
morphism around a regular point. By Satd's theorem regular values exisL 
Let U be an open set around a regular value so thatf-l(U) consists of 
finitely many disjoint open sets, U h •.. , U r' each of which f maps ditfeo-
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f 

n = 1 

f 

n=2 

Figure 17.7 

u 

morphicallyonto U (Figure 17.7). Choose the base point. ofS" to be not in 
U. We deform the map f by deforming U in such a way that the com
plement of U goes in~o •. The deformed f then maps the complement of 
U~ >= 1 U i to •. Each U, comes with a multiplicity of ± 1 depending on 
whether f is orientation preserving or reversing on U •. The degree off is the 
sum of these multiplicities. Given two maps f and 9 from Sit to S", we 
defonn .each as above, choosing U to be a neighborhood of a regular value 
of both f and g. By summing the multiplicities of the inverse images of U, 
we see that deg(fg)=degf + deg 9 (Figure 17.8). This proves Lemma 
17.10.1. 

To bring a map f: S" -.. S". into what we consider its normal form 
requires one more step. If Ui and VJ have multiplicities + 1 and --Lre-: 
spectively, we join U, to UJ with a path. It is plausible that / can be '
deformed further so that it maps U, u U J to the base point ., since f wraps 
U i around tbe sphere one way and U J the reverse way. For S1 this is clear. 

Figure 17.8 
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The general case is where we wave our hands. The dctaiIJ are quite involved 
and can be found in Whitney [1 l. In this way pairs of open sets with 
opposite multiplicities are cancelled out. In tbe normal form, if f has desrec 
± le, then there arc exactly k open sets, U it •.• t U le' with all + 1 multi
plicities or all -1 multiplicities. Hence two maps from S" to S" of the same 
degree can be deformed into each other . 

• , 

Attaching Cells 

Let e" be the closed n-disk and S" - 1 its boundary. Given a space X and a 
map f : S" - 1 -+ X t the space Y obtained from X by attaching the n-cell e" 
via f is by de~tion (see Figure 17.9) 

Y -= X U I e" == X U e" / f(u) - u, for U E S" - 1 • 

x 
Fi,ure 17.9 

For example, the l-sphere is obtained from a point by attachina a 2..ceU 
(Figure 17.10): 

! 

Fiaurc 17.10 

It ~ easy to show that if f and , are homotopic maps from 9"-1 to X. 
then X v.l ~ and X u. et' have the same bomotopy type (lee Bott and 
Mather [1, Prop. 1, p. 466] for an explicit bomotopy). The mOll fund'", 
tal ~omotopy propetty of attacbiDlUl It-Cell is the followma. 

PropGlidoll 17.11. AttQCh~ till ,,<eU to 11 SINI" X tlou not alur ,. .... 
tOP1 ill dimeruiou strictly.,., tltillJ 11 - 1, "." lIMY "ill e'-'enu iII_.-1(X); 
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mo,.e precisely, the inclusion X c.. X· u fI1 induces isomorphisms 

for q < n ~ 1 

aM. a surjection 

PROOF. Assume q ~ n - 1 and let f: Sf -f' X u e" be a continuous base
point preserving map. We would like first of all to show that! is homotopic 
to some map whose image does not contain all of e". If f is differentiable 
a~d X ~ f e" is a manifold, this fol~ows immediately from Sard's theorem. In 
fact, as long as f is differentiable on some submanifold of Sll that maps into 
e", the same conclusion holds. As in the proof of ProP9sition 17.8 this can 
always be arranged by moving the given f in its homotopy class. So we may 
assume that f does not surject onto e". Choose a point p not in the image 
and fix a retraction C, of (e" - {p}) to the boundary of e!'. This gives a 
retraction C, of X u (e- - {p}) to x. Via C, 0 f, the map f is homotopic in 
X u et' to a map from S' to X (Figure 17.11). Hence 1tJ,X) --. x,(X v. e") is 
surjective for q.~ n - 1. : . 

x 
Figure 17.11 

Now assume q S n - 2. To show injectivity let f and 9 be two maps 
representing elements of 1CJ..X) which have the same image in 1C,,(X u e"). 
Let F : Sf x I -+ X u e" be a homotopy in X u e" between f and g. Since 
the dimension of ~ x I is 1~ than ft, agaip we can deform F so tha~ its • 

The homotopy F The homotopy Cl 0 F 

Figure 17.12 
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image does not contain all of e". Reasoning as before, wc find maps 

Ct 0 F : S" x I -. X u e" 

such that Cl 0 F : Sf x {I} -+ X is a homotopy between f and 9 which lies in 
X (Figure 17.12). Therefore [f] = [g] as elements of nJ.X}. . . 0 

As for homology we have the following: .. 
; . 

PropositioD 17.12. Attaching an n-cell to a space X via a tnaP. f 'does npt ~lter 
the homology except possibly' in dimensions n - 1 and n. Writing ~I for 
X u I e", there is an exact sequence 

where f. : H,._I(S,.-1)-+ H,._l(X) is the induced map. So the ilu:lMsion.X c:. 
X I induces a surjectlon. in dimension n - 1 and;Q/J injection in dime~ora ~ , 

. ..:.. 

PROOF. Let U be X I - {p} where p is the origin of ell, and let V be {x f:"tt' l 
IIxll < !}. Then U' is homotopic to X, V is contractible, and {U, V} is an 
open cover of X,. By the Mayer-Vietoris ~na;( (15.6), the foll9wina is 
exact. 

L .... o; • 

. . . -. H ,(S,,-I)-+ HJ.X) e H.(v)":" HJX ,)-+- H~~~'(S"-l)-+ .•.. 

So for q + n - 1 or n, HJ,X ,) = HJ.X). For q == n, we have 

0-+ H,,(X)-+ H,J.X,)-+ H,,_1(5"-1) ~H"-l(X)-=+ H.-J(X,)-.O. ·0 

A ·CW complex is a space Y built up from a rollecrlon of points by the 
successive att~hiDg ·of cells;' the topology of Y ~ required to be the so
called weak topology: a set in Y is closed if and only jf i~ intersection .with 
every cell is closed. (8y a cell we mean a closed cell.) The cells of dimension 
at most n in a C W complex Y togetl)er comprise the n-skeleton of Y. 
Clearly every triangularizable·space. is a CW complex. Every manifold is 
also a C W complex; this is most readily seen in the framework of Morse. 
theory, as we will show in the next subsection. .; . ':. ': ·~~.c' 

For us the importan~ of ~~CW compJexes comes from the following 
proposition. 

. 
Propositioa 17 .. 13. Every CW complex is homotopy equivalent to a space with 
a good cover. . '. < : . . . :' '. ".~ 

Hence the entire' machinery of the spectral seqqence that we have developed 
applies to 'CW complexes .. This proposition follows from the nontrivial fact 
that every CW complex has the homotopy type of a !impllcUJI ccimpl~x (Gray 
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[1, Cor. 16.44, p. ·149, aDd Cor~ 21 .. 15, p. 206] or Lundell and Wcingram [1, 
Cor. 4.7, p. 131]), for the open star of the simplicial complex is a good 
cover. 

Digression on Morse Theory 

Usini Mol'$e theory, it can be shown that every dift'erentiable manifold has 
the homotopy type of a CW complex (see Milnor [2, p. 36]). The goal of 
this section is to prove this for the simpler case of a compact ditrerentiable 
manifold. 

Let/be a smooth real-valued function on ,manifold M. A critical point 
of f is a point p where df = 0; in terms of local coordinates Xl' ••. , x. 
centered at p, the co~dition df(P) = I (of/oxlXP) dx, = 0 is equivalent to the 
vanishing of all the partial derivatives (Of/OXIXP), The imagef(p) of a critical 
point is called a critical value. Note that the definition of a critical point 
given here is a sped.a1 case of the more general definition preceding Theo
rem 4.11 for a map between manifolds. A critical point is nondegenerate if 
for some coordinate system Xl, ••• , x. centered at p, the matrix 'of second 
partials, «o'ilox,oxJXP»' is nonsingular; this matrix is called the Hessian of 
f relative to thc'coordinate system x I, ••• , x. at p. The notion of a nondegc-
ncrate critical point is independent of the choice of coordinate systems, for 
if YIt ••• t Y. is another coordinate system centcrcd at Pt then 

of -L of~ 
ay, J dXJ oy, 

olf -= L 0
2
/ ox, ~ + L!L OlXJ 

ay" ay, 1.1 ox, aXJ ay" ay, J ox) oy" ay, · 
At p, Of/OXj ~ 0, so that 

In matrix notation 

H{J) - l' H(x)J 

where H(x) is the Hessian of/relative to the coordinate system Xb ••• t x." 
aod J is the Jacobian (oxJ8y.). Since the Jacobian is nonainJUlar, 
dct(iPnayt. aY/) ;. 0 if &Dd only if det(Q2pax, ox}) + o. The index of a DOndo

..,ate critical point is the Dumber of negative eipnvalues in the Hessian 
off. By Sylvcater'!. tbeorem &om 1iDcar .bra, the index it indepeGdcnt of 
die coordiDate .yatema. It may be iotcrprcted as tbe Dumber of iDdepeDdent 
cJirectiou aloq which! iI cIecrcaIina-
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EXAMPLE 17.14. Consider a torus in 3-space sittina on a plane as shown in 
Figure 17.13. Letf(P) be the height of the point p above the plane. Then .. 
a function on the torus f has four critical points A, B. e, and D, or ~ 0, 
1, 1, an~ 2 respectively. . 

Figure 17.13 

We outline below the proofs of the two main theorems of Mone theory. 
For details the reader is referred to Milnor [2, 13] or Bott and Mather [1, 
pp. 468-472]. . 

neon. 17.15. ut f be a dffferelUlIIb,. function 011 tIN lllllllifolll M t I11III M. 
the set f -1([ - 00, a]). 1/ f -: l([a, b]) is COIfIpGCt aNI .cOllttlbu lID critical 
points, then M. Iuu the SQ1M homotopy type GI M •. 

OUTLINE Of PROOF. Choose a Riemanniao structure <, ) on M. Then 
away from the critical points of It, the gradient VII of a differentiable fu~ 
tion f is defined: it is the unique vector &cid on M such that for all vector 
fields Y OD M, . 

<Vh" Y,> = dh,(Y.). 

Let X be the unit vector field -VDU V/I- Because/has DO critical ~tI OD 

Filure 17.14 
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f·- 1([ a, b]), X is defined on 1- l([a, b ]). As in vector calculus on R" the 
gradient of a function points in tbe direction of the fastest increase, so X 
points in tbe direction of the fastest decrease. Extend X to a vector field on 
M. The flow lines of X give a deformation retraction of M" onto Ma (Figure 
11.14). 

o 
TIaeorem 17 .. 16. Suppose f- 1([a, b]) is compact and contains precisely one 
critical point in its interior, which is nondegenerate and of index le. Then Mb 
has the homotopy type of M" u ~. 

To prove this theorem we need the following. 

Morse lelllDlL If P is a nondegenerate critical point off of index k, then there 
is a coordinate system Xl, ••• , XII near p such that 

f = f(P) - xl - ... - x: + x:+ 1 + ... + x! . 

The Morse lemma may be proved by the method used to diagonalize 
quadratic forms (see'Milnor [2, p. 6]). . 

OuTuNE OF A. PROOF· Of THEOREM 17.16. Let C '= f(P) be the critical value 
and ~ a small positive' number. BY"Theorem 17.15, M" has the homotopy 
type of Mc + e , and M" that of Mc - a ; so it suffices to show that Mc +, has the 
homotopy type of Mc u e*. . 

. ; 

Figure 17.1S 
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On a neighbofhood U of p where the Morse lemma.holds, 

M t +c () U = { - x~ - ... - x; + x~ + 1 + ... + x: :5: £} 

M c -. n U = {-xi - ... - xl + Xl+ 1 + ... + x! s; -e} 

These regions are illustrated in Figure 17.1 S for k- c. 1 and n .. 2. The set 
Mc+a is the shaded portion. (We choose t. small enough so that U meets- tbe 
level sets f - 1(C + e) and f - I(C - c).) 

Let C be the subset of U defined by 

C = {f ~ C + t, xi + ' .. + xf ~ «S}, 

where b is a small positive number, say smaller than £2. Note that C is 
homotopically equivalent to the cell tt. Set B = M c +& - C. B is the shaded 
region in the pic~ure in Figure 17.16. From the picture it is plau~ible that B 
can be contracted onto Mc-, by moving along the vector field - VI- Since 
Mc+. is obtained from B by attaching C, up to bomotopy . 

. ;,., .'" 

~. . . . 

! ....... . 

,,' 

" 

Figure 11.16 

A smooth real-valued function on a manifold all of whose critical Jaoints 
are nondegenerate is called: a Morae functiqn. It follows from 'the two' pre
ceding theorems that there is a very close· relation between the topology of 
a manifold and the critical points' of a Morse fUDction. We next show"tliat 
there are' many Morse functions 'On any nianifold~ Our' proof i~ taken frmn 
Guillemin and Pollack [1: pp. 43-45]. '. . .'. .1 !' ., .. 

Lemma 17.17~ Let U be an open subset of R" and f any smooth real-valued 
function on U. Then/or almost all a ~'(ab ... , aJ in R", thefunctionlJ..x)b~ 
f(x) + a1x 1 + ... + a~ x,. is a Mo.rse function.. ~.' " . ~ .:" 

PROOF. Recall that we denote the Jacobian matrix oC a function h byD(h). 
Define g(x) = (of/ox!, ... , ofloxJ .. Notc that the Hessian oC/is precisely the 



224 III Spectral Sequences and Applications 

Jacobian of g, and x is a nondegenerate critical point of f if and only if 
g(x) = 0 and D(g)(x) is nonsingular. Let (I.(x) = (OfJiJXh ... , ofJox,J. Then 
gJ.x) = g(x) + a and D«(I.) = D(g). In, this setup x is a critical point of f. if 
and only if lAx) = -a; it is nondegenerate if and only if in addition D(g)(x) 
is nonsingular, i.e., a is a regular value of (I. By Sard's theorem almost all a 
in Ir are regular values of g. For any such a, the function f. will be a Morse 
function on U. 0 

Proposition 17.18. Let M be a manifold of dimension n in W. For almost all 
D = (a" ... , a,.) in R", the/unction f(x) = D1Xl + ... + Drxris a Morae/unc
tion on M. 

PROOF. Let Xl, ••• , X,. be the coordinate functions on W. Every point x in M 
has a neighborhood U in M on which some n of Xl, ••• , Xr form a coordi
nate system. (Proof: Since ~ M -+ ~ R' is injective, T:W -+ T! M is surjec
tive, so dx h ••• , dx, restrict to a spanning set in the cotangent space T: M. 
If dx,., ... , dxJ" is a basis for r:M, then x,.' "', x,. is a set of local coordi
nates around x.) Because a manifold is by definition second countable, M 
can be covered by a countable number of such open sets, M == U~ 1 U i' 
Suppose Xh ... , x. form a local coordinate system on U,. Fix (a.+h ... Dr) 
and define f(x) = D.tlX.+l + ... + a,x, on U,. By Lemma 17.17, for 
almost all (Cl., ... , a,.), tbe function f(x) + (J1X 1 + .. · + a. x" is a Mone 
function on U ,. It follows that for almost all Cl =- (a" ... , a,) in R", the 
functionf,<x):Ia a.xl + ... + a, x, is a Mone function on Ut. Let 

A, - {a e WlfJ.x) is not a Morae function OD U,}. 

If a e W - u~ 1 \ A" tben f"(x) is a Mone function on M. Since U~ 1 A, 
has measure zero, tbe proposition is proved. 0 

( 

TIIeoreaa 17.19. Every compact ln4IIifold M Iuu the homotopy type of a finite 
CW cOIfIpkx. . 

PaooP. By Whitoey's embeddina theorem (sce de Rham [1, p. 12]), wc may 
assume that M is a s~bmauifold of some Euclidcan spac:e. Let f be a Morae 
fUDCtion OD M (the existence off iJ guaranteed by Proposition 17.18~ By 
the Mone lemma. the critical points off arc isolated. Since M is compact, / 
can bave only finitely many critical points on M. Furthermore, for any real 
number a, the set M. _/-1([ -CX), a]) is compact, as it is a closed subset of 
a compact sel Let "h .. ', Pr be the critical points of index o. By the two 
main theorems of Mone theory (Theorems 17.15 and 17.16), up to homo
topy M is constructed from PI, •.. , Pr by attaching ceUs, a cell of ' dimension 
k for each critical point of index" > O. Hence M has the homotopy type of 
a finite CW complex. 
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The Relation between Homotopy and Homology 

The relation between the homotopy and the homology functors is a very 
subtle one. There is of course a natural homomorphism 

i : 1C.{X) -+ H J-X), 
defined as follows: fix a generat.,r ., for HJ.Sf) and send [f] in 1C,J,X) to 
f.(u). In general i is neither injectivc nor surjectivc. Wc have seen that He is 
relatively computable. On the other band, ". is not; tbe~ is no analogue of 
the Mayer-Vietoris principle for 1(,0 For this reaso~ the following theorems 
are a cornerstone of homotopy theory. 

Theorem 17.10. Let X be a path-connected space. Then H I (X) is the 
Abelianization of 1t1(X), i.e., if [7tl(X)~ 1tl(X)] is the commutator subgroup of 
1tt(X), then H l{X) = 1tl(X)/[nt(X), ",(X)]. 

We will assume this theorem as kno'llD. Its proof. may be found in, for 
instance, Grecnbcrg [1, p. 48]. The bigher-dimensional analogue is 

. , 

Theorem 17:1.1 (Hurewicz ISOblOrphism Theorem~ Let X be a simply con
nected path-connected CW complex. -Then ths first nolltri"i4' homotopy and 
homology occur in the· same dimension and are eqval, i.e., given a positive 
integer n ~ 2, if nJ.X) - 0 f~'" J s q'< 11, the" HJ.X) - 0 for 1 S; q <. ,.GIId 
H .(X) == 1t,.{X). . . '-'_ 

. r 

I 

PROOF. To start the inductioa, consider the ~ n ~ 2 The El term of the 
homology spectral sequence ·of the path fibration , 

is 

Thus 

q 

1 

o 
H 1({LY) 

l 

o 

QX-+PX 
! 
X 

1 2 

H 2(X) == H 1{QX) 

:= 1tl(~ 

~ "2(X). 

because P X has no homology 

because 1tl(nx) ~ "1(X) is Abelian 
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Now let n be any positive integer greater than 2. By the induction 
hypothesis applied to OX, 

H4(OX) = 0 for q < n - 1 

and 

H,. -l{OX) ::= 1t1l _l(nx) = 7t,,(X). 

The E2 term of the homology spectral sequence of the path fibration is 

n - 1 

o 
o 
z 

Since PX has trivial homology, 

HJ,X) ::: Hf-1(OX) = 0 for 1 ~ q < n 

and 

. 

H.(X) 

n 

I 

o 

~RK 17.21.1. A careful reader should have noticed that there is a sleight 
of hand in this deceptively simple proof: because we developed the Leray 
spectral sequence for spaces with a good cover (Theorem 15.11 and its 
homology analogue), to be strictly correct, we must show that both X and 
nx have good covers. By (17.13), the CW complex X has ~ good cover. 
Next we quote the theorem of Milnor that the loop space of a CW complex 
is again a CW complex (Milnor [1, Cor. 3, p. 276]). So, at least up to 
homotopy, OX also has a good cover. 

Actually the Hurewicz theorem is true for any path-connected topologi
cal space. This is a consequence of the CW-approximation theorem which, 
in the form that we need, states that given any topological space X there is a 
CW complex K, unique up to homotopy, such that X and K have the same 
homotopy and homology group$ (Whitehead [1, Ch. V, Section 3, p. 219]). In 
its more general form, tbe CW"'approximation theorem implies that in 
homotopy theory every space may be assumed to be a CW complex. In any 
case, in the Hurewicz isomorphism theorem, we may drop the requirement 
that X be a CW complex. 
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The spectral sequence proof of the Hurewicz isomorphism. theorem is 
due to Serre [2, pp. 271-274]. Actually, Serre's approach is slightly differ
ent; by developing a s~tral sequence which is valid in much gr~ter 
generality than ours, Serr; c~9k1 bypass the 9uestion of the existence of a 
gQod cover on a topological space. Of course, a price has to be paid for this 
greater generality; one has to work much harder to establish Serre's spec
tral sequence. 

As a first and very important example, consider S" again. It follows from 
the Hurewicz theorem and the homology of S" that the homotopy groups of 
S" in low dimensions are 

and 

1[,.(S") == l. 

" 

Now that we have computed 7tq{S") for q ~ n, the first nontrivial com-
putation of the homotopy of a sphere is n,'<Sl). This can be done using the 
homotopy exact sequence of the Hopffibration, as follows. I 

Let S3 be the unit sphere {(zo, z 1) I I Zo 12 + I Z d2 - I} in Cl. Define an 
equivalence relation on S3 by 

(zo, ~l) '" (wo, Wl) if and only if (zo, zd = (AWo, AWl) 

for some complex number A. of absolute value l.:lThe quotient. S3/,...., is the 
complex projective space Cp1 and the fibering 

SI--+ S3 

t. 
S2 == Cp1 

is the Hopffibration. From the exact homotopy sequence 

... ~ nJ,Sl)--+ 'nJ,S3)-+ 1iJ.~'J,)--+ 1t"f_ 1(Sl)-+ ... 

and the fact that 1tJ,S1) == 0 for q ~ 2, we get nJ,S') =- "'J..S2
) for q ;:: 3.' In 

particular 1t3(S2) == Z. . 
This homotopy group 7tJ(Sl) was first computed by H. Hopf in 1931 

using a linking number argument which associates to each homotopy class 
of maps from S3 to Sl an integer now called the Hop! invariant. We give 
here an account of the H9pf invariant first in. the dual language of differ
ential forms and then in terms of the linkiDg number. Thus the settinl for 
this section is the differentiable category. . 

Let f: S3 -+ S2 be a differentiable map and let (I be a generator of 
HAR(Sl). Since H~ .. (S3) == 0, there exista a I-form m on S3 such tbat 
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I*a, = dw. As will be shown below, the expression 

HU):::& i ruAdaJ 
\SI 

is independent of the choice of co. We define H(!) to be the HopfinWJl'ilmt 
off. _ 

More generally the same procedure defines the Hopf invariant for any 
differentiable map f : Slll-1 -. S". If IX is a generator of HDR(S" then 
I·a, -= dw for some (n ~'"1)--form Q) on Sl.-1 and the Hopfinvariant of/is 

H(f) == i (J) A dw. 
~la-I 

Proposition 17.21. (a) The definition 0/ the Hop! invariant is indepeltdent of 
the choice of 00. 

(b) For odd n the Hop/invariant is O. 
(c) Homotopic maps have the same Hop/ invariant. 

PROOF. <a> Let ... w' be another (n - I)-form on SMe-l such thatf·cx == dal. 
Then 0 == d(w - wl Hence -

i wAdw - f (0' AdOJ' = r (w - al)A~ 
S2ll-1 Jsz.-, JS~-1 

= r d(w - (U') A co) . Jsh-l 
- 0 by Stokes' theorem. 

(b) Since (J) is even-dimensional, . 

w A dw == !d(w A (0). 

By Stokes' theore~ !SlII-. w" dc.o == O. 
(c) By (b) wc may assume 11 even. Let F : Sl" - 1 X 1--+ S- be a homotopy 

between the two maps/o and/! from S2.-1 to S·, where 1 -= [0, 1]. Hio is 
the inclusion 

io: Sl.-l ..... So == Sl.-1 X to} C S1ll-1 X i 
and similarly for i it then 

F 0 io =/0. 

Foil =/1' 
Let a, be a generator of H'b.(S"}. Then F*a -= dco for some (n - l)-form co on 
Sl,,-1 x 1. Define i3c.u = (00 and ifc.o =: cal' Then 

./3a. == dCIJo and ita. :-= d£Ul' 

Note that 
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Hence, 

, ::: f,' , (J) /\ dw 
J&(S2e - 1 )C I) 

== i dro 1\ dw . by Stokes' theol cm 
SZ.-l )( I) 

= i F*(rx/\ ex) 
52.-lxl 

= 0 because ex /\ Cl ,~ n2,,(s,,). 

o 

Since homotopy groups can' be . computed using' only smooll:l mallS 
(Proposition 17.8.1~ it 'follows from Proposition 17.22(c) that' the Hop{ 
• •• .• . ~ 4,1 . . s , ... ;:". 

Invanant gives a map ',. . ~ , . 
•• '1 ~ £,.J . • , ... ' ..... ~ ... 

H.,: ~l,,-l(S") ........ R. 

We leave , .• t as .n· excrci~ to the r*cr to. prQ~e, tba~ H is ill. , f~t • 
homomorphism. , . . .. ' ~. :. 

Actually the Hopf invariant is always an integer and is geometrically 
given by the linking number of the pre-imalcs A - f -1(P) and B == f -l(q) of 
any two distinct regular values off. In tbe classical case where n - 2, these 
two submanifolds are two "circles" cmbcddC.Ci \DS3 •. T~ ~,~c ideas, WQ will 
first explain the linking ~JlCCpt for tlU$ case. . '" . . 

The linking Dumber of two disjoint, oriented, .aedes A ~ B iQ. $3~.~ be 
defined in ~~~r~l quite diff~cnt(~ut cquiV.DtcW.Y~. ,,"$:, 

1/.'." • J 

The Intersection-Theory Definition. 

Choose a smooth surface D in 83 with boUDdaQ' A such that D intenecta B 
transversally (Figure 17 .17). ~t .. the link:ina .. um~r t~ be 

Iink(A. B):- }:. ± 1. , D,.... 
Here the sum is extended over the points in the intersection of D with' B and 
the sign is giv~n ~Y the usual ~Dv.eJ\1ioD: at 11 ~in~,~, in \!! n B, the lip it 
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A B A B 

Fiaure t 7.17 

+ 1 or -1 accordiDI to whether the tangent space T", S3 has or does not 
have the dircd sum orientation of 'fsD ~ T.B (Guillemin and Pollack 
[1, p. 108]) .. 

It of course has to be shown that the linking number as defined is 
independent or the choice of D. This is a c6nsequen<:e of the discussion to 
follow. 

The DifferentilU-F orm Definition.. 

Choose disjoint open neighborhoods WA and W. of if and B and choose 
representatives 'lA and 'I. of the compact Poincare duals of A and B in 
H:(WJ and H:(W.). Because Hl.<s3) =- 0, the extensions of"A and". by 
zero to an of S3, also denoted 'lA and 'I., are exact. Thus there are I-forms 
(0.04 and Cd. OD S3 such tbat 

dWA = 'lA and dcu.:& " •• 
In terms of these forms one would expect, naively, that the dual to the 
iD~D-tbeory definition is the expression 

.. 1.O)AA" •• 

for if A -= aD and ".04" tiaJ4h then in some sense D should correspond to 
(J) A. So let this integral be the difl'erential-form definition of the linking 
number or -A and B. Wc ha~ to check that it is independent of all the 
choices involved. Let co:' be some other form withdoJA - "A- Theoo1A - (QA 
is closed. So . . 

f (co:' - wJA". =- ± r d[(WA - w.JAw.] 
JSJ 1" 

=0. 

On the other hand, if". is another repraeDtative 01'[".1, then 

'I. - 'I. :a dl' 

for IOIQe I' in n:(W.). HeDCC, 

L O)AA(". ~",.> - - L d(O)AA,,) + L "AA" .. 
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Both terms Oil the riabt vanish: the first by Stokes9 tbeoraD, and the ~ 
because the supports of"". and p are disjoint 1 

The differential-form definition is quite dOle ~o the Hop invariant To 
bring one into the other, we first cbooec diajoiat DCiPborhooda U. aad U, 
of the regular :values' p &od q offaocllOt WA _f-l(U~ aod W. -1- 1(UJ. 

. We next cIl00ae forma 11, and.a, in O:(U~ aad Oc2(U,,) repraeatiDa the 
PoiDcar6 cl~ of , and q and act 'i .. -,-a., and". -.: ,-tl,. Accordiaa to 
the ditfaential-form defiDitiOD the linkinl Dumber of f -1(p) - A aad 
,- '(q) - B is tbeD ,ven by ,.\ 

L (O,.tH" •. 

where (0 ... is a form on S' ttith dto ... -= 'I .... OD·the other band, u Cl, ~ .. 
ates H1.<s1), the Hopfjnvariant it liVCD by .' . 

B(f) -1 (0,."'1,.-
Beca~ «; and·~ ~ -both ~p~tatives for the ..... tor of H~Sa~ , 
there is a form _ in Ql(Sl) such tbat 

Cl, - tI, = tfIJ • 
Hencc, 

(O ... A.(" ... -'la> - DJ ... "I- 4/l 
- -d(OJA A f-f1) + (4mAJA/,*fl. 

The last term on the ript equals 

,'lA A,·/l = f·(a.,Afl). 

But «,f\IJ e Q3(S2) and hence vanishes! By Stokcs' theorem it folio.,. tbat 
• 

L (0,."". -L (0,.",,: -B(f), 

as was to be sbown. 
Finally we prove the compatibility of the two dcfiDitiODS of the linkiDI 

number. This will _D ~ cxplaio why the Hopf invariant is always aD 

inteser. 
To start oft' ODe needs certain plausible coDltructions or differential ~ 

ology. The first of these is that a surface such as D, which has bouocIuy d. 
can always be ex-tended by a small ribboo ditJeomorpllk to A. )( [0. 1]. 
More precisely, there exists an cmbeddi"l 

,;: A. x [-1, 1] c+ S' 

such that • maps if x [ -1, 0] diffeomorphicaUy onto a dosed neipbar
hood of A - 6D in D, with A )( {O} loina to A, and such that 

Dl - D u t-(A )( [0, 1]) 
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I' 

(1) lA == 0 near aD!, and 
(2) lA == 1 on a neighborhood of D _ 1 in D l-

It follows that dXA. is a I-f9rm with compact support on the open collar 
DJ. - D _ h where Dl is the interior of D1• Furthermore, dXA represents the 
compact Poincar~ dual of A in ~(Di - D - 1~ 

Next we choose a neighborhood of ,D1 in Sl, say W, small enough to 
admit a retraction 

r:W-+Dl· 

(For t: small enough an £-neighborhood of D1 relative to some Riemannian 
structure on S3 will do.) Let T be a tubular neigbborhood of D1 - oD. in 
W - 001 difJeomorphic to the unit disk: bundle in the normal bundle of 
Dl - oD. in W - oD, 'and let (i)A represent the Thom class of T in n:.,(T). 
See Figure 17.18. 

•• ,J , ~ • t w 

T 
, collar collar .... 

1. 

an \ I aD r5 
\.. -1 ./ ... 

D ~ 

01 

Figure 17.18 
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Now consider the I·form 

CJ) A = (r·XA)co~ . 
It has many virtues. First of all it has compact support in Wand so can be 
extended by zero to all of S3. This comes about because w~ has compact 
support normal to Dl and r*lA vanishes identically near oD,. Secondly, wc 
see that if we set 

./ WA == ,-l(D~ - D_ 1), 

then dWA E n:(WA) and represents the compact Pomcare dual of A there. 
We will use this WA in the integral JSl w,. A". to complete the argument 

that 

r WA /\". = L ± 1. 
JSl Dna 

First choose a small enough neighborhood W. of B. a small eDOU8h collar 
. for D, and a small enough tubular neigbborbood T for Di 10 that (see 
Figure 17.19) 

T 

Fisure 17.19 

Onc:c this is done Q) A will equal Q)~ in the support of". since OD r -l(D -1) 
the function r*IA is identically 1. Therefore, our intcaral am be rewritten iD 
the form 

(*) '., 
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But now (L)~ represents the Poincare dual of D~ in nl(Sl - oD l ) and liB the 
compact Poinca.re dual of B in O:(S3 - aDd. In Section 6 we discussed the 
relation between the Thorn isomorphism , Poincare duality, and the trans
versal intersections of ~losed oriented submanifolds. Although (6.24). and 
(6.31) were stated for the closed Poincare duals, the same discussion applies 
to the compact Poincare duals, provided the relevant submanifolds are 
compact. Hence the integral (*) just ~ounts the transversal intersection 
number of Dl with B. Thus 

r w .. "'I.= L ±l= L +1, 
JS3 Dl (\ BD" B 

the last being valid because the extension Dl intersects B no mare often 
than D did. 0 

REMARK. The arguments of this section of course extend to the bigher
dimensional examples. In particular the two definitions of the linking 
number make sense and are equivalent whenevor A. and B are compact 
oriented submanifolds of an oriented manifold M satisfying the following 
conditions: 

(1) A and B are disjoint; 
(2) dim A + dim B = dim M -- 1; 
(3) both A and B are bounding in the sense that their fundamental classes 

are homologous to zero in H.(M). 

Linking is therefore not a purely. homological concept. . 
We cannot ·resist mentioning at this point that there is. yet a third defini

tion of the linking number of two disjoint oriented circles A and B in S3. 

The Degree Definition. . 

Remove a point p ~rom S3 not on A or B and identify S3 - {P} with R3. Let 

..L: it .x B-+ Sl 

be the map to the unit sphere in R3 given by 

. . x-y 
u.x, y) -llx _ yll ' 

where 11 11 denotcs the Euclidcan length in R3. Give A x B the product 
orientation and S2 the standard orientation. Then 

link(A, B) - deg L. 

We close this sectioD with two explicit computations of the Hop( in ... 
v~t-. in the classical case, o~ using the differential-geometric and the 
other the intenection poiDt of view. Just to be lure, if you will. 
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EXAMPLE 17.23 (The Hopf invariant of the Hopf fibration). Let.s3 . be the 
unit sphere in Cl and f: S3 ..... Cpl the natural map 

f:' (zo, %1)-' [zo, Z1] I . . ... 

where we write [zo, z 1] for the homogeneous coordinates on Cpl. If Cpl is 
identified with the unit sphere S2 in R3~ say via the stereographic projection, 
tben the map f: S3 -. S'1. is the Hopf fibration. To compute its Hopf in~ 
variant, we proceed in five steps: 

(a) Find a volume form (1 on the 2-sphere. 
(b) Write down a diffeomorphism g: Cpl ~ S'1.. 
(c) Pull the generator (1 of H'1(S2) via (J back to a generator a of H1(CP," 
(d) Pull (J back to S3 viafand find a I-form Gf) such thatf-a = dw on S . 
(e) Compute SS) CJJ 1\ dw.· 

(a) A Volume Form on the 2-Sphere. 

Let "h "1, and "3 be the standard ~ordinaics of R3. By Exercise 4.3.1 a 
generator of H2(Sl) is . 

-'\ .", 
Since (dr) . (I :c (rJ41t) dU1 dUl dU3, which. is the standard orientatioft...dn 
1l3, the form (I represents ·the" po.uvve··lenerator ·on S2 (see thc"Cliscusaibn 
preceding Exercise 6.32). 

Over the open set in S2 where UJ + 0, the form (I has a simpler ex
pression. For if 

then· 

1 2 1 . 't . .• '~ ... ~ 

Ul + "l + 113 == 1, 
". . t.· "," ... : •. 

. 
111 dill + Ul dUl + "3 dill aI 0, 

. 
~ " . " 

so that we can eliminate dU3 rr~ (I. to get 

1 dUI dill " 
(I ==-

41t "3 . 
(17.23.1) 

(b) Stereographk Projection OfSl ont~~P~." 
~. .... fa.' .:. ~ I It 

,<' '. f) .. i.. ~. t,.; 

,,' . ,', -
• ~ ,,'. to " ,! • 

- . "{ _.; .~ ,ta..., ..... ~.~ 

; ... -. 

4 .; 

In the homogeneous coordinates [zo, % 1] on Cp·, the single point [zo. 0] it 
called the point at inftnlty. On tbe open let'z, "0, we may·UIC.z - zolzl U 
the coordinate and identify the point z -x + " in CP' - {[I, 0l} with the 
point (x, y, 0) of the (u" "2)-pIanc in A'. Tbea the ltereoarapbic projcctioD 
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from the north pole (0,0, 1) maps S2 onto Cpl, sendinl the north pole to 
the point at infinity (Figure 17.20). To find the inverse map g: Cpl...,. S2, 
note that the line through (0, 0, 1) and (x, y, 0) has parametric equation 
(0,0, 1) + t(x, y, -1), which intersects tbe unit sphe~ when 

t1 x2 + cl y2 + (1 - t)l == 1, 

that is, 

t=O 
2 

or 

Hence the inverse map g: Cp1 --+ S2 C Rl is given by 

. (2x 2y -1 + Xl + y1) 
(17.23.2) % == x + 'YI-+, 1 + .x2 + y2 ' 1 + Xl + yl' 1 + Xl + y1 • 

(0,0,1) 

(x.y,O) 

Fipre 17.20 

By pulling the generator (1 in H~S2) back to Cp' we obtain a generator (1·11 

in H1(C~). It fonows from (17~23.1) aod (17:23.2) that in the appropriate 
coordinate patch, 

where 

In terms of z == x + il, the form ,.(1 can be writteD as 

.(1 == _! th ay _ _ 2- tlz dZ 
9 " (1 + r + ;)1 21£ (1 + I Z J2)2 . 
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By convention the standard orientation on CP' is aiven loadly by *- fly .. 
Therefore the positive generator in. H2(Cpl) is 

__ '. := 1. dz dz 
(X- gt! 2n(1+lzI2r~. 

Since Z = zolz1J in terms of the homogeneous coordinates, 

(17.23.3) 

REMARK. If S2 and Cp· are given their respective standard oricnt.ations, 
then the stereographic projection from S2 to Cp! is orientation-reversing. 

(d) Finding an co such that I·a,:= d()) on.sl. 

Let Zo = Xl + iX2 and ZI = X3 + iX4 be the coordinates on Cl. Then the 
unit 3-sphere S3 is defined by 

I Zo 12 + I z 1 ,2 = x~ + xi + x~ + x~ = 1 . 

Hence Lt •• Xi dxi == 0 on S'. By a s~raishtforw~d computatioo, rcpIadns 
Zo and Zl in (17.23.3) by the x;'s, we find' ," 

l' . 1 ' 
f·a. = - (dXl dXl + dX3 dX4) == - d(Xl dXl + X3 dX4). '. ,~, n n, 

Therefore, we may take (JJ to be 

1 
co SIll - (Xl dx1 +;X3 dX4). " , 

(c) Computing the Integral. 

The Hopf invariant of the Hop( 6bration is " 

H(f) == i Cl) " dcu 
~3 
.' . 

1 i ' = 2E~. I'J.,x1 ,dxz dX3 dX4 + x~ dXl 4,xl dX4 

. .- ~ 

.... ~ 1. Xl dxz dx3dx~ -b~ ';mmetry. 

.~ •. ".' .... 

: < 
• If. & •• " 

- 4 

..:. 
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Vain. spberical coordinates, 

x. - sin ~ sin ., COl 8, 

X2 - sill ~ sin • sin 6, 

x, - sin ~ COl .t 
%. - COI~, 

wbetc 0 S ~ S '" 0 S • S x, and 0 S 8 S 2-, the integral becomes 

L Xl dX1 dXl dx .... f r fa sin4 ~ sin3 
• cos1 B dB d. d~ 

== a l /2. 
Therefore, tbe Hopfinvariant off~ 1.. 

This Hop( invariant may also be found gcometrically, for by identifying 
S3 - {north pole} with Rl via the stereoaraphic projection, it. is possible to 
visualize the fibers of the Hop( fibration 

Sl-+S' 

1 
S2 = Cp' 

and to compute the linking number of two fibers. We let Zo == Xl + a2, 
%1 :lE X3 + ix._ Then the stereographic projection 

p : S3 - {(O, 0, 0, I)} ~ R3 - {x ... O} 

I is given by 

This wc see as fonows. The line through the north pole (0, 0, 0, 1) and the 
point (Xl' Xl' Xl, X.) has parametric equation (0,0,0, 1)+ e(Xb X2' X" 

%. - 1). It intersects R3 =- {x.'- O} at t - 1/(1 - x.), 10 the intersection 
point is . 

( 
Xl Xl X3 0) 

1 '1 ' ,. - x. - 3c. x - X. 

See Figure t 7.21. 

Note that the fiber SIX) of the Hopf fibration over [1,0] e CP' is {(zo, 
0) e C111 Zo I == I} and the fiber So 'over [0, 1] is {(O, 0, cos 8, sin 8) e R4, 
o S 8 S; 21t}, both oriented counterclockwise in their planes. So via the 
stercographic projection Soo corresponds to the unit cir~le in the (Xh 

xl)-plane while So corresponds to {(O, 0, cos 8/1 - sin 8), 0 S 8 S; 2n}, 
which is the x3-axis with its usual orientation. Therefore the linking number 
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Fipre 17.21 

of Soo and So is 1. By the Fometric interpretation of the HopfiDvariant ... 
linking number, the Hopfinvariant of the Hopffibratioo it 1. 

Eurcise 17.24. (a) GivCD an intcaer q, show that for ,. ~ 4 + 2, the aatunl 
indusioD 0(11) C. 0(11 + 1) iDduca aD isomorpbiam "JO(n)!¥ .JO(n + 1»). 
For 11 lullicieady Iarp, the bomotopy &roup "J,O(a» is therefore iDdopeD
dent of ,. aad wc am write .JO). This is ~ q-tb 1UJb. 1IomotD" ",., at 
the ortboloaal &rOUp. . 

(b) Given intepn le and q, show that for 11 ~ k + q + 2, 

7CJO(n)lO(n - It»~ - 0. 

(c) Similarly, use the fiber bundle of 82.+1 - U(n + l)1U(II) to Ibow that 
for 2n ~ q + 1, the meluaioD U(n) c. U(n + 1) iadUCCI aD isomorpbiD . 

1CJ,U(II» ~ "JU(" + 1». 
Deduce that for 11 ~ (lk + q + 1)/2, 

1CJ U{n)/U(fI - t» - 0. 

§18 Applications to Homotopy Theory 

The Leray spectral sequenc:e is basically a tool for computinl the bomolOl)' 
or cohomoloay or a fibratiolL However,'liDce by the Hmewicz isomorphism 
theorem, the first DODtrivial homology of the Eilenberl-MacLane ..-ce 
K(xJX), n) is 1CJ.X), if one can 6t the Eilenberl-MacLane spacea K(_J,X). JI) 
into a fiberiD& it may be po .. iblc to apply the apoctralleqUCDCe to compute 
the homotopy lI'0ups. Such fiberiDp arc provided by the P"ItDikov ap
proximation and tbe Whitehead tower. two twitted products of ~bora-
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.. 
MacLane spaces which in some way approximate a given spaw in 
homotopy. As examples of bow tbis works, we cotllPute in this section 
x.{S31Aald 1t5,Sl). ,~ . .... I. ' .. 

Eilenberg-MacLane Spaces 
. 

Let A be a group. A path-connected space Y is an Eilenberg-MacLane space 
K(A, n) if 

7tJ Y) : {A' . 'jn dim~nsion n 
o otherwise. 

(We do not consider 7to unless otherwise indicated.) For any group A and 
any integer n ~ 1 (with the obvious restriction that A be Abelian if n > 1), it 
cap be shown that in the category of CW complex<!s. such a space exists and 
is unique up to homotopy equivalence (Spanier [1, Chap. 8, Sec. 1, Cor. 5, 
p.426] and Mosher and Tangora [1, Cor. 2, p. 3]). So provided we consider 
only ~W complexes, the symbol K(A, n) is. unambiguous. 

EXAMPLE 18.1. (a) Since n : RI -+ Sf given by 

n(x) = e2 ,u1O 

is a covering ~oace, nJSl) = nJR1
) = 0 for q ~ 2 by (17.5). Therefore the 

circle is a K(l, I).' '. . 
(b) If F is a free group, then ~(F, 1) is a bouquet of circles, onc for each 

generator (Figure 18.1). 

,Figure IS.1 . 

(c) The fundamental group of a Riemann surface S of g~nus 9 ~ 1 
(Figure 18.2) is a group 1t with genera,tors ab b1, ••• , a., ~~ a~d 'a single 

, relation.. ' . . . 
. . 

b -lb"'l b -lb- 1 1 . a1 1 all ~ ... a, ,a., • -= . 
'By the' uniformization theorem of complex function theory the' universal 
'cover of a Riemann surface or genus g ~ 1 is contractiblt. Hence the -Rie ... 
·'D8DD surface Sis the Eilenberg .. MacLane space K(i, 1):' ..... ~h. ' •. ~. : .. ~ 
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........... ~' ".', .. 

Figure 18.2 . -~ , 

(d) By Proposition 17.2, we ~ that OK(A, 'n) = K(A, n - I). 
(e) The Eilenberg-MacLane s~ K(Z, n) may be constructed from the 

sphere SIt by killiQg all1tJ,S.") for q > n., The p(~ur.e fOJ: killin.,t\O~'!topy 
groups is discussed in the sectipn on Postnikov approximation. 

(1) By (17.1.a) if A and B-are two groups, the~. , 

K(A, n} x K(B, n) == K(A x B, n). . 

'. 

The Telescoping Construction 
~ . ... ... . ..,'" ... . .. ........ ~ .. ...: .. ~, .... ~.. ; ~ 

In 'this section we give· a technique (or . constructing ~ai~ "Eilen1?ert 
MacLane spaces, called the telescoping co~tio,.. It 'is best illuStrated 
with ex~ples. :' 

•.. ~ =~''''Hi...l 

EXAMPLE.IS.2 (The infinite.real projectfve space). ~The real projective space 
RP' is defined as the quotient of the sphere S" under the equivalence 
relation which identifies the antipodal points o( S·. There is a natural 
sequence of inclusions ~. . 

We define the infinite real projective space RPGO by gluing together via the 
natural inclusions all the finite real projective spaces ~ ~ "~ :; I: 

Rpoo == U RP' x I /(x, 1) ~ (i(x), 0) . .. 
..... . ... 

Pictorially RPCD·looks like an infinite telescope (Figure 18.3). '. :.ki 

S~nce S·~ RP- is a double cov~r, by (17 .. 5) 7tJRP') = ,xJs-)" O·:for 
1 < q < n. W~ now show that RpGO has DO higher homotopy, i.e., 
1tJRpGO) = 0 for q > 1. Ta:ke 1tls{RpGD) for example. Suppose! :SlS -+ RPGO 
represents ~n element of 1tl,{RpGO). Since the image !(SI') is compact, it 
must lie in a finite union of the RP' x rs above. Wc can slidef(SlS)'into. 
high RP" x 1. If n > IS, then I(SI') wiU be contractible. Therefore 
1tl,(RpCO) == O. Thus by sliding the image 01 a sphero into a· bigh enousb 
projective space, wc sec that this te1acope ~ all hiper, bomotopy 1I"0u.,.. 
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RP" 

o I 

o 
o 1 

Fipre 18.3 

Applyiq the telclcopinl coaatruction to the sequence of Ipheres 

{poiDt} C. ••• 4 sw 4. ~+ 1 c.. 00 • 

.. obtain the iDfiDite Iphere 

s· - U r )( I /(x, 1),.., (I(x), 0). 
• 

It is • double cover 01 RP-. By the same reuonina u above, S· has DO 

bomotopy in any dimcDsion. Therefore K,(RPCID) - Zzo This proves tbat 
RP- .it a K(Z2 t 1). 

EXAMPLE 18..3. (The infinite complex projective l.,.co). Applyina the te1e
ICOpiDa eoDStruction to the ICQUCDCeI 

· · · c: S2ll+ 1 c: sa+:S c··· 

S11 l 
... c: Cl'" c: Cp-· 1 c: • •• I 

we obtain the fibering 

(18.3.1) 

CP«) 

where Cp· is Botten by aluins tOlctber the CP" '. as in the previous exam
ple. Since S«) has no bomotopy in &Dy dimension, it foRowl from the 
bomotopy sequence of the fibcriDl that 

'lZ when k - 2 1I.(CpCID) - 0 otherwise. 

Therefore CPCI) is a K(Z, 2). 

Exercise 18.4. By thc Hurewicz isomorphism theorem HJ.SfIO) - 0 except in 
dimcDsioD O. Apply the apectra1 seqUCDCC of the fiberina (1,8.3.1) to sbo" 
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that the cohomolOlY rinl of CpfIO is a polynomial alpbra willa ........ 
in diJneDsioo 2: . 

H*(Cp fIO
} - Z[x]. 

ExAMPLE 18.S (Lens spaces). Let S2';+1 be the unit sphere in C-+ 1• SiDceS1 

acts freely OD Sl_+I, 10 does any lubJl'oup or S1. For .cumaJe, Z, MU OD 
sa. + 1 by . 

e2.t15 : (z 0' ••• , zJ .... (e2 all 5 %0 t ••• , e'-fIIIS zJ. 

The quotient space of Sl.+1 by the actioD of Z, is the LMu 'pGa L(II, 5). 
Applyina the telescoping construction . 

Si c ... c sa + I C S2a + 3 c" . 

L(O, S) c··· c: L(n, S) c: L(n + 1, S) c··· •. 

we obtain a five-Ihccted covering 

Hence 

{
Z' if k - 1 

-.(L( 00, S» - 0 if k. > .I~ 

So the infinite Lens space L(oo, S) is a K(Zst 1~ In exactly tbe aame JOIn"". 

we can construct L( 00, q) :11: K(Z., I) for any positive iDtcpr 4. 

'REMARK 18.5.1. The Lens apace L(,., 2) is the'real projective apace ~+I, 
and the infinite Lens space L( 00, 2) is RpGD

• 

Next we shall compute the cobomololY of a Lens apace, aay ~n, 5). 
Since the Lens space L(n, 5) is not simply connected. the defiDina fibration 
Z, -+ S2_+ 1-. 411, S) is of little use in tbe computatiOD of the cobomoloU. 
Instead, note that the free action of Si OD S2a+l ~I to an actioa OD' 
L(,., 5): . 

(zo •... , zJ ..... (lzo •.. 0t lz.J, A cs Si cC·, 

with quotient CP", so that there is a fiber bundle 

Si .... L(,.,' S) 

KLl 
epe. 
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The E l ~QB of tAis liber bundle is 

(18.5.2) 

... , : ".t.. 

x" 

o 1 2 3 4 2n 

.' To decide what the differential d2 is, we compare with· the spectral se ... 
quence of the flber bundle Si -. S211+ 1 ~ ep". The' hundle map . p : 
S21t + 1 -. L(n, 5) over CP" induces a chain map on the double complexes 

p. : C*(1ti 'u, 0*)-. C*(1ti IU, 0·), 

where U is a good cover of CP". Let aL and as be the generators of Ei' 1 for 
these two complexes, and x a generator of H*(CP"). J)ecause p is a .map of 
degree 5, p*aL = Sas. Hence, 

,p·(d2 aJ = d1P*aL = dl5aS = 5x. 

So d1"L = Sx in (18.5.2). The cohomology of the Lens space L(n, 5) is 
therefore ' 

Z in dimension 0 

H·(L(n, 5» ;,. 
Z, . in dimensions 2, 4, ... , 2n 

Z in dimension 2n + 1 
, . 

0 otherwise. 
1 '" 

,REMARK 18.5.3. Another way of determining the differential in (tS.S.2) is to 
compute Hl(L(n, 5» first by the universal coefficient theorem (15 .. 14). Since 
1t,(L(n, 5» = Z5, H 1(Un, 5» = Z, and Hl = Z, Ea free part. Therefore d2 a 
must 'be, 5x and Hl = Z, . 

In exactly. the same way we see that thecohomology of the Lens space 
u.~ q) is 

(18.6) 

Z in dimension 0 

, Z.. in dimensions 2, 4, ... , 2n 
H*(L(n, q» = 

Z in dimension 2n + 1 

o otherwise. 

Exercise J 8.7. Prove that the Lens space L(n, q) is an orientable manifold. 
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-Exercise 18.8. Let q be a positive in'teger greater'than one; 
(a) Show that the integer cohomology of K(Z4' 1) is, 

. { Z in diruension 0 " 
H*(K(Z" 1); zf= lq . iD. ever~~itiveeven dimension 

~. otherwISe." ,~~ . : 

245 

(b) Using the flbering Sl,-. ~(Z4'~ l)~ CPC:-, Compute H*(K(Z#l' 1); Z,J 
where p is a prime~ , . _ . 

Exercise 18.9. Let nand q be positive integers. Show that .' 
. - . . ..". .. ,' . - . .. . .... 

H*(K(Z4' ~); Q) = {Q A.

in dim~ns!on 0 
. 0 otherwIse. .: 

Therefore, by the structure theorem for finitely generated Abelian groups, 
the rational cohomology of K(A, n) is trivial for a finitely generated torsion 
Abelian group. -: . '. ~. '.. ' .. 

." • 'It : i . ... ~ '": 

. Exercise 18.10. IJetem;line the product structures of p*(L(n, .q),.H~(K(~., 
1», ~nd H·(K(~t' ,1)!'.~) .. ~n ~~rtic~lar, ~~~:~~~~~ ..... · '. ~ .. ;' :,'~:: ". ,::: 

H*(RPrD
) =.Z(a]/(2a, 2a2~ 2a~" .•. ),: dim al,. 2, .~"., " 

and 
. ... . ..... :~ .. '" : ~ . .' .. ., .. .; . :...~~ .. ' .. ~ .. ' . 

TheCohomology of K(l, '3) ~ , ' 

.. . " : ..... , "?' ..... ! . r "' •• ,;' ." 

Si~ce 1tq(S3) ::s 0 for q < 3- and 1I3(Sl) = Z, one may woa1er if the IpbareS.~ 
i~ ;i K(Z, 3)~ One way ,of deciding this is,!t~omput~ the cob.omology~ 'er 
K(Z, 3). We first ob&enc"tw.t , ,~ .. ;"; .: I;' : .• (; ~ 

, ' 'CK{l, 3) ~,K(Z, 2r~' CplD~' :" ... ' t.~ ~~" "i 
• .... .. • l, ~,,,'~ - • 

whose cohomology we kDow to be Z[x] , fi:om .Exercise 18.4. 8inoc 'by 
Remark 17.13, every CW complex h8§_a~AiQod ,a;)vor,· wc C8Cl apply tbe 
spectral sequen~ of the path fibration ,.' , . :;, J '.' ~:: .... 

K(Z,' 2) -+ 'P K(Z, 3) . . ' ~'; .. '. 
~ .. , .• i'I" f· 

K(Z, 3) 

to compute the co homology of K(l, 3). 
By Leray's theorem with integer coefficients (lS.11), the El term of the 

spectral sequence is ' 

E~'" = HP(K(Z, 3» ® Ht(CfOO) 
, ; 
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and its product structure is that of tbe teDsor product 0( ~~K(Z, 3» and 
H~CPCO). . . . . ~ 

6 (I~ 
~ 

$ ~ ~ / .. (11 
~ . 

1 
I ..... ~ Go{.", 

3 """ 
it 

~, , 
£2 - E,- 2 (I ...... 

...... Ia 
~ asl AI ...... 

~ 

1 ~ '"' 
-.............. '" ~ ~ ~ 

0 1 0 0 .... s 0 0 r-y ""-~t 

01234 S 6 78 

Since the total space PK(Z, 3) is contractible, the Eoo term is 0 except for 
~o. The plan now is to -create" elements in the bottom row of the E2 
picture which would SOODCr or later -kill off" all the DODZCJ'O elements oC 
the spectral lCqueIKC. There can be DO DODZero elements in the bottom row 
0( columns 1 and 2. for aDy such element would IUrvive to Boo. However 
there mUlt be an clemeat , in column 3 to kill oft" G. TbUl 

113«(12) :. 24tl3 Cl == las. 

There must be an element y in column 6 to kill off as for otherwise as would 
sunive to £ 00 • Therefore W(K(Z, 3» + o. This proves that S3 is not a 
K(l, 3). Equivalendy, it shows the existence of nontrivial bigher homotopy 
lI'oups Cor S3. Later in this section wc will compute 1t .. and '" of S3. 

As for the cobomololY rinl of K(l, 3), wc can be more precise. First, 
Dote that Y la tl(as) -= (441) • , =- .12

• From the picture of El. it is clear that 
Jr(K(Z, 3») - Z2. Therefore, 2r - O. Now a nonzcro clement in El· 0 -= 
H'(K(Z, 3» can be killod only by 0

3 under d,. Since 113(03) .. ]a", + 0, 0
3 

does Dot even live to E .. o So H"'(K(~ 3» == O. Since "3(a2.s) - 241&2 - 0, a2
, 

would· live to EGO unless d5(a
2$) == t :/= O. In £. = E" a2s generates the cyclic 

group Z,. Since t is the element that kiDs a2s in £,. t is of order 3. In 
S'lJq~ary the first few cohomolol)' aroups of K(l, 3) arc 

q 0 1 2 3 4 S 6 7 8 

(18.11) Ht Z 0 0 Z 0 0 Z2 0 Z3 

genera ton 1 .I ," t 

/ 
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ExBaCISB 18.12. Show that H-(K(Z, n); Q) is aD exterior .... bra OD 081 

aeuerator or dimeDsiOD It if .. is odd aod a polynomial alae" OD ODe 
aenerator or dimension n if ,. is even. In either cue .. aay that the cobo
moloay of K(l,,.) iljrIe 011 OM,..,-GIor <_ Scctiora 19 for tbc dcfiaitioD 
or a free alaebra). \ .' 

The Transpasion 

Let 1t: E -. X be a fibration witb connected ftbel' F over a 11*'1 witb a 
lood cover U. In compuq ·the differentiala or tbt-Jpectral lOqueDCe of E' 
using wbat we have developed 10 fart ODe oftft eacounton ambipitiel 
which cannot be I'CIOlvod without further dueL ODe such due it bowled. 
of the tl'Gnsgreutoe elements. AD element 0) in 

Ht(F) c. E1" - HO{U, Jrf(F» 

is called trtIMgressiue if it IivCl ~ E.+ 1; that is, 

tl2 Q) - tl,co - .•• - d,lI) - o. 
AD alternative characterization of a traaapeuive element is liven in the 

followinl proposition, which we phrue iD tbo;lanpaae of difrcnatial fonU. 
Of course by repIacin, forma with aiDplat cocba;oa, the propoRtion is 
equally true in the linplar ICttial with arbitrary codkieDta. 

PropoIidoa 18.13. Let • : E -+ M . be tI fibrtltlDft wit" fiber F Ut dw 4iJfer
entiable cate(Jory_ An element co ill H'(F) Is trllllSflra&iN r it la Ut. ~ 
of Q globtJI form '" Oil E &lICit t#uU d; - .·t for IOfIW 10,.". 'f on tlte "". Id. 

~ 18.13.1. Because .. is iDjcctive and 

.. tit: == tlIb/I la 0, 
we actually have 

tI't - 0, 

so the form t defines a oohomolol)' class OD M. 

PROOF OF PIl0PQSl110N 18.13. Let U be a good cover of M. If (C) is traDI
gressive~ then by (14.12) it can be extended to a cocbain ex - «0 + ... + ex, 
iD the double complex C~x - tu, Q*) .uch that DtI. - .. fJ for aome Qdi 
cocycle fl OQ M. 
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By the collating formula (9.S), 

4 

'" = L (-l)t(D"Kt«, + (-1)9+ lK(D"Iq'n*,r 
1-0 

is a global fonn on E corresponding to ex. From (*) we see that· 

dl/l = (-1)4+ l(D" K)f+ In;*fJ = 1t*t, . 

where 't = ( - D" K)4 + 1 fJ is by (9.8) a closed global form on M.', t • 

Conversely suppose '" is a global form on E with dt/l := n-t. Then by 
restriction '" defines a cochain in CO(n - 1 U, '0*) such that Dt/I ...:;, n*t. 

i, 

It is a simple exercise (analogous to Prop. 8.8) to show that. t/I is. D
'cohomologous .to a cochaiJ} tx in C*(1t"': IU, 0-) such- that' Dri = ~.p for 
some Cech CocYcle fJ in C·(U, ~). . ~. ',' .... '. . . ........ "" .. 

• .... .,.:., - • .,a \- _IfI. 

Exercise 18.13.2. Prove this assertion. ' I • 

'. Let ~ be the .global··fonn corresponding to Cl given by- the, eolIating 
ConnuJa.(.).,Then,~ I, = tltl,. e Re(F) is transgressive. . .' . . 0 

.. 
We will now apply the singular analogue of Proposition 18.13 to obtain 

one of the most useful vanishing criteria for the ditfeteDtials of a spectral 
• sequence. 

Propositioa 18.14. In mod 2 cohomology, ijex is ~ transgressive, so is «2. 

PROOf. Let t/I be the singular cochain on E given by Prop. 18.13. Since t/I 
restricts to ex on a tiber, .;2 restricts to (Xl, With Z~ coefficients~ . , 

d{I/I") = 21/1 dl/l" ~ O. 

Therefore, by. Prop. 18.13 again, (11 is transgressive. o 
Exercise 18./5. Compute H·(K(l;z, 2); ll) and H*(K(Z2, 2); Z) up to di
mension 6. 

Exercise 18.16. Compute H*(K(l", 3); Il) and H·(K(Z2' 3); Z) up to 
dimension 6. 

Exercise 18.16.1. Compute the homology H.(K(Z2, 4); Z) up to dimen
sion 6. 
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Basic Tricks of the Trad.e . . . .:. 

In homotopy theory every map f : A -+ B from a space A to a path
conne~tcd ~pace)~ .may ,be ,!ie\ll~d as either ,¥.l ~h.l~i~p .. or ~;.~rio& We 
can See this as follows. . ';.' .. _ . 

( 18.17) Inclusion 
Applying the telescoping idea just once, wc construct the mapping cylin-

der off(see Figure 18.4): . 

M J = (A x I) u B / (a, 1) ,..", !(a). 

Figure 18.4 ff • 

It is cle~tbat the mapping cylinder M J has the same bomotopy type as, B 
and that A is inc~Q.dcd in M /. I,nd~ tbe foUowlng 4iagran, i$ ~~-
mutative: ~" . "', ,. ..' . I .: • ';.' ~ •. 

, .' . ..~ ,\, .. 

A f . .. B' 

11 !aomOIOPY equiv~lence 
A ~ Mr. . 

(18.18) Fibering 
Let f: A-+ B be ·any map, with B path connected. By (18.7) we may 

assume that/is an inclU8io~ i.e., A is a subspace of B (Figure 18.S). Define 
L to be tbe space of all paths in B with initial point in A. By sbrink*ng every 

• . • . \- l a ,'It- ...... 

.; 

A( "'i' 

, . 

.' . 

.-
Figure 18.S 

, 



/' 

LacA. 

OD the otIIer bud by projectiq fI'Iory path to. ita eadpoiDt, wc ... 
fiberiDl 

O:-+L~A 
___ l 

B 

whOle fiher it 0:, the apace of all paths &om a point • in B to .A. So up to' 
bomotopy cquivaleoce,/ : If -+ B is a fibcrin .. 

Postnikov ApproximatioD 

Let X be a CW complex with bomotopy groups 1CJX) - 'I,. Although X 
has tbe same h~otopy tp'oups as the product space n K(a., q), in general. 
it will Dot have the same bomotopy type as n K(x,,' 4~ However, up to 
homotopy every CW complex can be thoupt of u a Mtwiated product" of 
Eilenber.-MacLane spaces iD the fonowing SCDIC. 

~ 11.19 (POltDikov Approximation). Every COllUCtM CW complex 
ca be "pproxbrNJU4 by G twUud ".odJ,cr of EUaberg-MIICi.AJM sptJaS: 

IIIDN precUel,,/or each ... tltere la G.qwnce ofjibratfou Ye'" Ye-I witll'" 
K( ••• q)'1 Glfibers a1UI commutiIttIlItIJPa X -+ Y. 

suelt tluit the map X -+ r. induca an Uomor",..,. of ltoMotop, groups Ua 
dimeIuions ~ q - 1. 

Such a sequence of fibrations is called a Postnilco" tower of X. In view of 
(18.18) that every map in bomotopy theory it • fibratiou. this proposition is 
perhaps not so surprising. . 

We first explain a procedure for killing the ·bomotdpy lI'0upI of X above 
a Jiven dimension. For example, to construct K(-It 1) we kill offtbe homo
topy lfoupI of X in dimensioDl 2: 2 u rouows. If Cl : 82 -+ X J:epleleDtI a 
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nontrivial clement in K2(X), we attach a 3-CeU to X ~ «: 

X u .3 -X lJ r Ix ~ 4I(x), x E ~J. . . 

This procedure does not cban. the fuad.meatal pup of the lpace by 
.Proposition 17.11 attacbina an n-ccll to X could kiIl_ elemeDt of_.-a(X) 
but does not affect the homotopy of X iD dimeDIioDl ~,. - 2. For ada 
generator or 1C2(X) we attach a 3-geIJ to X u above. la tbia way we create • 
DeW space Xl with the same fundamental p'oup U X but with DO "2. 

lteratioa tbia procedure wc caD kiD all. hi .... b~py lfOupI. TbiI 
pves ll. ,; 

PROOF OF PIlOPOSlTION 18.19. To construct y. wc kill off all homotop), of X 
in dimensions ~ It + 1 by attaching cells of dimensions ~ It + 2. Then 

-.<YJ _ {o, " ~ 11 + 1 
x. t k - 1, 2. .•. t n. 

Haviog constructed Y. t the IPI" Y. -1 is obtained from Y,. by killin. tbc 
homotopy of Y. in ~iOD ,. and above. By (18.18), the iDcluaioDl . 

~ c Y,. c: Y.-. c: · .• c: 1'1 

may be converted to fiberiDp. From the eDCt homotopy acqueDCc or. 
ftbcrina we ICe that the ftbel' 01 r.~ Y.-a is the Eiloaber.-...cLaDe.,..· 
K(xct q). . . . 0 

Computation of -.(S3) 

This computation of _. - • .(S') it baled Oil the fact that tbe bOlDOtopJ 
group .4 appean u tbo first DOntrivial bomololY FOUP of the EileDbora
MacLane spaa: K(x. t 4). If this Eilenberl-MacLaue ipace can be fittod ~to 
some fibering. its homology may be fo\lDd from the apectrallOCJUOIICC Sucb 
a fiberiog is provided by the POItDikov approximation. 

Let 14 be a space whose homotopy ..... with sJ up to aDd iDdudiq 
dimeJis~oo 4 and vanishes in higher dimensions. To pt such a apace wo kill 
ofi' all homotopy pupa of S3 iD dimensioDl ~ 5 by attacbiDI ccUa of 
dimensions ~ 6. So ,. . ,. f. : . ~ 

., . 
y. - SJ u e6 ~ •••• 

By Proposition 17.12, H.(1':.) =- H ,(Y...) - 0. The POItaikOY approxima" 
theorem gives us a fiberina ... 

K(X4, 4)-.. ~ 

1 
K(Z. 3). 
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The E2 term of the h9m.~lo.8Y spec~ral ~quence .of this fibering is 

5 
4 

K(14, 4) ... 3 
2 
1 
o 

n., 
~ 
~ 
~ 

'" l 7L 7L2 

o 1 2 "3 4 5 '6 

K(l,3) 

where the homology of K(l, 3) is obtained from (18.11) and the universal 
coefficient theorem (15.14). Since H4(Y4) = H ~(Y4) = 0, the arrow shown 
must be an isomorphism. Hence 1t4(S3) = l2 . 

More generally since y. == S3 u et+ 2 u ... t by (17.12), 

HJ,y') = H.+ 1<Y.> ==. O. 

Hence from tbe homology E2 term of the fibration 

q 

Ye-I 

q+l 

we get· 

(18.~O) 

The W1)jtehead Tower 

The Whitehead tower is a sequ~nce of. fibrations, dual to the Postnikov 
approximation in a certain sense,. which generalizes the universal covering 
of a space. Unlike the Postnikov construction, where we kill successively 
the homotopy groups above a given dimension, here the idea is to kill at 
cacb stage all the homotopy groups below a given dimension. 

Up to homotopy the universal covering of a space X may be constructed 
as fonows. Write ftt = 1tJ-X). By attaching cells to X we can kill aUn4 for 
q ~ 2 as in (18.19)_ Let Y == X u e3 u ... be the space so obtained; Y is a 
K(1tlt 1) ~ntaining X as a subspace. Consider the space O! of an paths in 
Y from a base point. to X (~iaure 18.6). The endpoint map: O!~ X .is a 
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y 

Figure 18.6 

fibration with fiber gy == OK(Xb 1):a; K(Jtb O~ From the homotopy eud 
sequence of the fibering 

K(1Ch 0) -+ O! 
! 
X 

we see that Xl(O!> - 0. Hence Xl - O! is the universal coverin. of X up to 
homotopy. . 

We will now generalize this procedure to obtain • IIqUCllCe of fibratioDl 

1 • 
K(z., ft - 1) -+X. 

1 
X.- 1 

l 

! 

K(-" 0) -+X, 

! 
X 

such that 

<a) X. is n-conne<:ted, i.e., 1t.J.XJ =-= 0 for all q ~ It; 
(b) above dimension 11 the bomotopy groups of X. and X agree; 
(c) the fiber of X.-+ X.- 1 is K(K •• ,. - 1). 

This is the Whitehead tower of X. To construct X. from X .-1' we fint till 
allteJX.- 1}, q ~ n + 1, by attacbioa cdIa to X.-to This lives a 

K( .. , 11) - X.- 1 U e-+ 2 
U .0 •. 
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Next let X" = O!--l be tne space of all paths in K(n", n) from a base point 
• to XII-I. The endpoint map: XII ....... X.- 1 has fiberOK(n., n)=K(1t", n-l). 
From the homotopy exact sequc;nce of the fibering 

K(1fIl' n - 1) ...... X" 

1 

it is readily checked that nJ-X,J = nJ-X"-l} for q ~ n + 1; and nJ-X,J = 0 
for q :S n - 2; furthermore, 

(18.21) 0-+ n,,(X,,)-+ 1t,,(X"_l)~ 1t,._l(OK(1t", n»--. 1t,.-l(X J--. 0 

is exact. Here 1t,,(X 11_ 1) = nil by the indudiun 'hypothesis, and the problem 
is to show that 0 : 1t1l(X" _ 1) -. x" _ 1 (OK(1tIl , n» is an isomorphism. Now the 
inclusion X .. - 1 c K(n:II'~) = X.- 1 U e'*+2 U ... induces by (17.11) an iso-
morphism . 

n,,(X,. -1) ~ 1t1l(K(n,., n». 

Moreover, the definition of the boundary map 

0: 1t.(X,,-1)-+ 1t,._l(OK(1t,., n» 
• 

(see (17.4» is precisely how x,,(K(n,., n)) was identified 'with n,,_l(OK(nllt n» 
in Proposition 17.2. Therefore 0 is an isomorphism and 1t,.( X It) = nit - 1 (X.) = 
o in (18.21). This completes th~ construction of the Whitehead tower. 

As a first application of·. the Whitehead tower we will prove Serre's 
theorem on the homotopy groups of the spheres. We caU a sphereS" odd or 
even according to whether ~'is ocid or even. 

TIIeorem 18.l1 (Serre). The homotopy groups of an odd sphere S" are torsion 
except in dimension n;. those of an even sphere S· are torsion except in 
dimensions n and 2n - 1. 

PRooF. The essential facts to.~ used in this proof are the following: 

(a) in the Whitehead tower of any space X, 1t.+ 1(X) = Ht+ l(X.); hence, 

1tf + l(X) ® Q == "4+ 1(Xt ; Q); 

(b) the rational cohomology ring of ~(7t, n) is trivial for a torsion finitely 
generated Abelian group Jt and is free on one. generator of diJQension n for 
1t = Z (Exercises 18.9 and 18.12). .~. 

Since S" is (n - l)--connccted and _.(S") == Z, the· Whitehead tower bcains 
with 

(18.22.1) 

KCZ, n - 1) ..... X. 

~ 

S". 
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For the rest of this pro,of we write Jt.. for 1tJSlt). First consider t~e . .case 
where n is odd. We will assume n ~ 3. Then the rational cohomology of 
K(Z, n - 1) is a polynomial algebra on one generator of dimension n - 1 
and the cohomology spectral sequence of the fibration (18.22.1) has El term 

2(n - 1) 0 Q 

n-,l ,0 

o 
n 

(Here we are using the cohomology spectral sequence to take advantage of 
the product structure.) The bottom arrow is an isomorphism because 
H .. _1(X n; 0) = 0; the other arrows are isomorphisms by the prod~ct struc
ture. From the spectral sequence we see that X" has trivial rational coho
mology, hence trivial rationat ho~olQgy. By Remark (a) above, 1t.+·1 is 
torsion. Now consider the next step of the Whitehead tower: 

x •. 
Since both X,. and K(n.+l' 11) have trivial rational homology, so doesX.+ 1-

By Remark (a) &[4lin, ".+2 == H.+z(X.+ I) is to.,sion. By induction for all 
.q ~ n + 1, X f has trivial ration&lo homology. and ft. is torston. 

NO\!( suppose 11 is evep. Then the rational cohomology of K(Z, n - 1) is 
an exterior algebra and the E2 term of the rational homology sequen~ of 
the fibration (18.22.1) has only,four nonzero boxes: 

~ 

o. 

n-l Q .. Q 
~ i'-. 

0 ........... Q o 
o 11 

The arrow shown is an isomorphisI!t. because X. ~ II-connected. So 

H (X . Q) -= {Q in d~ioDl 0, 2n "T 1 
• .'. 0 otherwtsC.· . . ... ", 

~ .. ; -; .. 
l; ., ' 

Suppose n > 2 TheD n + 1 < 2n - 1. By Remark (a), ".+1 - H.+ 1(XJ ia 
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tonion. Since H.(K(1Ca +h It); Q) is trivial, from the fibratioD 

x. 
we conclude that X.+ 1 has the same rational homology as X •. This sets the 
indudiOD loina &pin, sbowinl that ". is torsion, until we hit "la - 1 == 
H la-I (X Z. - 2), which is not torsion. In fact, n 2. _ I has on~ infinite cyclic 
geoerator and possibly some torsion generators. At this point we may 
assume It ~ 2 By Remark (b), the rational cohomology ring 

H·(K(1tl.-lt 2n - 2); Q) 

is a polynomial alpbra on one generator, so the cohomology E2 term of 
the &bralion 

,! 
X la - l 

is 

411-4 Q Q 

211-2 

2ft -1 

Siuce H la - 1(X2.-1) - 0, the arrowl shown mUlt all be isomorphisms. It 
follows that the rational cohomology groups of X« are trivial for all 
q > 2n - 1 aDd the homotopy lfoupI "'J,S") are tonion for all q > 2ft - 1. 

o 

Exercise 18.23. Give a proof of Theorem 18.22 based on ~ Postnikov . 
approximation. 

If wc try to compute X,(S3) using the Postnikov approximation, we very 
quickly run up apinst an ambiguity in the spectral scqUCD<:e. For by 
(18.20). XS<S3) .. H~Y'>' but to compute H,(YJ from the homoioay spectral 
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seql'ence of the fibering 

6 Z" 

5 "-"-4 Zl 'z" 
K(Zl, 4)--. y. 

3 
! 

2 
K(Z, 3) 

1 

0 l Z Zl 0 

0 1 2 3 4 S 6 

we will have to decide whether the arrow shown is the zero map or an 
isomorphism. With the tools at our disposal, this cannot be done. (For the 
homology of K(Zl, 4) and K(Z, 3) see (18.16.1) and (18.11).) 

In this case the Whitehead tower is more useful. Sin~ S3 is 2-connected, 
the Whitehead tower up to X. is 

K(n4, 3)--. X. 

! 
K(Z,2) ...... X3 

l 
S3. 

From the construction of the Whitehead tower and the Hurewicz isomor
phism, ",(S3) - n,(X.) - H,(X.). So we can gct "5 by computinl the bom
ology of X •. This method also gives 2(.(S3), which is H.(X ,). 

The cohomology of X 3 may be computed from tbe spectral aequeace of 
the fibration K(Z, 2) ..... X 3--. S3, whose E~ term is 

4 Xl 

3 

Cpoo 2 x 

1 

0 1 u 

0 1 2 3 

. S3 
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Since d1 is clearly zero, El = El- Next dl : E~·l-+ E~' 0 is an isomorphism 
because X 3 is 3~nDected. By the antiderivation property of tbe differential 
d3 , which we will write as d bere, 

d(.x") = n.x" - 1 dx = n.x" - 1 u. 

Hence the integral cohOlllology and homology of X 3 are 

q 0 1 2 3 4 5 6 7 8 9 10 11 

Hf(X3 ) Z 0 0 0 0 Z2 0 Z] 0 Z4 0 Z, 

HJX3} Z 0 0 0 Zl 0 Z3 0 Z. 0 Z, 0 

~"',. 
where the homology IS obtained from the cohomology by the universal 
coefficient theorem (15.14.1). 

The homology spectral sequence of the fibratioD K(7t4' 3) --- X 4 -+ X 3 

has El term 

5 

·4 

3 

2 
. , 1 

0 Z 0 0 0 Z2 0 Z3 

0 1 2 3 4 S 6 

which shows that "4 == Z2, ~ X. is 4-connccted. 
By ExerciBc 18 .. 16s HJ.K(Zl, 3» - 0 and H,(K(Zl' 3») - Z2" Since the 

only homomorphism from Z, to Z" is the zero map. 416 iD the diaanun 
abole _zero. HCDQC H,(X.) - z, aDd X~S3) = .s(X.) =: H~(X4) == Z2.. 

Ex.cise 18.24 .. Given a prime Pt find the least q such that the homotopy 
&roup XJ..S3) has ,..torsion. 

§19 Rational Homot~py Theory 

By some divine justice the homotopy sroups of a finite polyhedron or a 
manifold seem as ~t to compute u they are easy to define. For a 
sim.,le spta: like S • airc8dy. the homotopy Jl'ouPI appear to be completely 
irregular. The oomputatio.. of X.(S3) and .,(S') in the preceding section 
should have given the reader some idea or the complexity that is involved. 
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However, if one is willing to forego the torsiOD information, by COIIIidcriD& 
for instance, the rational homotopy groups 1CJ.X) ® Q. then sOme paeral 
theorems arc possible. Onc such result is Scrre'. thcorom OD the bomotopJ 
groups of the spheres (Th. 18.22). In the late sixties Deanit SuIIiYaD Ibcd 
new light on the computation of ratioual homotopy by the .. tJl ctitru ... 
ential forms. 1bis section is a brief introdUdioD to SulIiVUl" wad.. AI
thoup SuUivao'. theory, with an appropriate definition 01· the iatioaaJ 
differential fonns, is applicable to CW complexes, we will coasider ooIy 
differentiable manifolds. At. applications we derive again Scrre'. tbeoIem 
and also compute some low-dimeDsioDaJ homotopy lI'0ups or the wed., 
S2 V Sl. 

Minimal Models 

Let A = El' i ~ 0 A' be a differential graded commutative algebra over R; 
here the differential is an antidcrivaUon of depee 1: 

d(a • b) == (dD) . b + (-1) ... ·41 • db; 

and the commulativity is in the graded ICIIIC: 

a· b == (-l)~··"·b· G-

" f i. ... 
;. 

In this section we will coosider only finitely J8DCdUd difl'ercatial araded 
commutative algcbras. Such an algebra is ftw if it .. tisfiea ao· reJatioaa 
other than tbose of associativity and graded commutativity. We writeA(Xl, 
... , xJ for tbe free algebra geuerated by·x 1 ••• ~,Xl; this aI"", ia .... 

tensor product of the polynomial alFbra OD its c:vcn-dimeaIio.d .... ~ 
ators and the exterior a1aebra OD its odd-dimensional ......... Aa eI ... 
ement iD A is said to be ~ if it is a sum of producu 01 poIitive 
elements in tt, i.e., " e A + • A +, where k+ == ED,>o A'. A dif(erentiallfMled 
algebra ..It is called a IItiIIinIIIl IIIOU' for A if:' .•.. ~; , . ,~. _r~" '.t"i: 

... 9. 

(a) JI is free; 
(b) there is a chain map f : ..11-+ A which indlWCS an isomorpbiIm ia 

·cohomology; . 
(c) the differential of a FJlCfttor is either zero or dccompoeable (a dUfer ... 

CDtiaI· araded alFbra satisfyiq tbiJ oonditioa is said to be ~ 

A minimal model of a manifold M is by ~ a miaimal . ..ocw of its 
algebra of forms O*(M). . :. .~... . . ~. ',.. ~ ~ 

Examples of Minimal Models 't 

; .,." 

ElwiPU! 19 .. 1. The de Rham wbomolOU or the odd apbcre S2a-l iI aa
oxterior aJpbra OD ODe ..... tor. Heacc a mjnjmel model for sJa-l .~). 
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dim x := 2n - 1. with 

f : X H volume form on S'1." - 1 • 

EXAMPLE 19.2. The de Rham cohomology of the eVCD sphere sla is 
R[a]/(a2

), dim a = 2n. To construct a minimal model, wc need a generator 
x in dimension 2n to map onto a and a generator y in dimension 4ft - 1 to 
kill off' Xl. Since dim y is odd, y2 = o. So the complex A(x, y). dx. - 0, 
dy == x2 can be visuaJjzed as the array 

4n-l 

o 2ft 411 611 

which shows that the cobomology of A(x, y) is R[x]f(x2). The minimal 
model of S2. is A(x, y}, and the map f : A(x, y) ~ 0·(S2") is given by 

f : x ...... volume form Q) on Slla 

. yHO. 
t 

EXAMPU! 19.3. Since the de Rham cohomology of the complex projectivc 
space Cl'" is R[x]/(.x"+ 1), dim x == 2, by reasoning similar to tbe preceding 
example, a minimal model is A(x, y), dim y == 2ft + 1, dx = 0, ay = X-+ 1. 

A differential graded algebra A is said to be l-co1lll«Uil if HO(A):a R 
and Hl(A) == o. 

PrOpositioD 19.4.lf the different"" graded algebra A is l-connected tUIIlluu 
fill~e~1UJl cohomology, then i~ has a mininuJl model. 

hOOf. Let ab •.• , al: be the 2-dimensional cycles in A which represent a 
basis of ~e ·second cohomology H'(A~ Define Ji2 - A(al, ... , a~ 
where dim a. == 2 and da, = 0, and set 

f: .61 -+..4 

a ...... 4,. 

At thiS stage f induces an isomorphism in cohomtSlogy in dimensions lese 
than 3 and an injection in dimeosion 3, bealusc A(a., ... , caa) has nothing in 
~on 3. We will prove inductively tlult for aay ,. there is a minima' free 
alpbra ~. toaethCr with a chain map f : A. -+ A such that . 

<a> the algebra JI" haa DO elcmcuq in dimension 1 and.no pnerators in. 
dimeDaioDS greater than 11; . 

(b) the map f inducei an isomorphism in cohomoiolY in dimeusioDl1eu 
tbaQ ~.7. ,1 and an injection in dimcoaion la + 1. 



\ 

§ 19 Rational Homotopy Theory 261 

So suppose this is true for n == 11 - 1. By hypothesis there are exact ~ .. 
quences 

and 
0--. ker Ht+ 1(1)-1> Ht. I(JI._ 1)--. HI+ I(A). 

Let {[ba}'., be a basis of coker R'(f) and {[x)]} a basis ofker H,+I(/). 
with bi in AI and xJ in ..6:~~, where ..K:~ ~ denotcs the elements of degree 
q + 1 in JI.- 1• The xls arc decomposable because the generators of ..11.- 1 

are all of dimension ~ q - 1. The idea is to introduce ¥w ~~ts in 
..114- 1 to kill both coker RV) and ker H4+ 1(f}. Define . 

.,.11, == ..11,-1 ® A(bh 'i)' dim b, == dim ~J == q • 

..11, is again a free minimal algebra, with difJereoUai 

d(m ® 1) == (dm) ® 1, 

d(l ®bJ = 0, 

d(1 ® ,~ = xJ ® 1. 

We extendf: ..N,-I-+ A tof: Jlf -+ A by 

f(m ® 1) == f(m~ 

/(1 ®b.) == bit 

1(1 ® ~j) == rJ.j, 

.. ; J 

where (1.) is an element of A such thatf(xJ} :: dClJ. It is easy to cJ;leck that 
this new f is again a cbaio map. 

We now show tbat HV): H,(..11 J-+ H'(A) is an isom0fl:lhis~. ~up~se . 

Z -= L .vJ"" ® 1) + r ).,(1 ® b,) + ~ pJ(l ® 'J) .. 
is a cocycle in ..11 •• Then ,. 

L "l t:lmt + r /lJxJ = O. 

Since the classes [xJl ate linearly independent, an p} ~ o. If iD addition 
z e ker H'(f), tbco . . '. '; \ 

. " 

Since the [bJ Corm a basis of the cokemel of HV): H«(..II.- 1)-+ H~A), all 
1, == O. Therefore, all the cocyclcs in .I. that map to zero·come fromJl._1.J 
By the inductioD hypothesis these cocyclcs are exact. -This proves, tJae. injoo. 
tivity. The surjectivity follows directly from the dcfiniti~ of the bi ., . 

Finally, bccapsc ..6.- 1 has nothing.in dimeDsiOD 1, tbe claDaats of di~ 
mension q + 1 in JI.- 1 ® A(b;, ~J all come from ..... -1; ie.., 



262 III Spectral Sequenccs and Applications 

..N:+ 1 = ...N:~~ ® 1. Hence ker H9+
1(f) is spanned by Xj® 1. Since all of 

these elements are exact in ..11, (they are the differentials of 1 ® ej ), Hq+.l(f) 
is injective. 0 

The Milin Theorem and Applications 

We will not prove the main theorem stated below. For a discussion of the 
proof, see Sullivan [1] and [2] and Deligne, Griffiths, Morgan and Sullivan 
[1]. 

Theorem 19.5. Let M be a simply connected manifold and J( its minimal 
model. Then the dimension of the vector space 1[4(M) ® 0 is the number of 
generators of the minimal model JI in dimension q. 

To make this theorem plausible, we will say a few words about the 
computation of the rational cohomology of M. The idea is to compute it 
from the Postnikov towers of M, whose tibers are the Eilenberg ... MacLane 
spaces K(1t., q). Now there are two things to remember about the rational 
cohomology of K( 1t" q): 

(a) a free summand Z in 1t. contributes a senerator of dimension q to the 
rational cohomology H*(K(n., q); Q); 

(b) a finite summand in 1[, contributes nothing. 

In other words, the rational cohomology of K(1tq , q) is a free algebra with 
as many generators as the rank of 1[., (see 18.9 and 18.12). As far as the 
rational C<?homology is concerned, then, the finite homotopy groups in the 
Postnikov .towers have no effect. If the minimal model of M is to be built 
step by step out of its Postnikov towers, it makes sense that a generator 
appears in the model precisely when a rational homotopy element is in
volved Hence -it is not unreasonable that the dimension of the rational 
homotopy group nJM) ® Q is equal to the number of generators of the 
minimal model in dimension q. However, to make these arguments precise, 
considerable technical details remain to be resolved. In fact, at this writing 
there is no truly satisfactory exposition of rational homotopy theory avail ... 
able. 

From this theorem and Examples 19.1 and 19.2 wc have again Scrre's 
-result (18.22) that the homotopy groups of an odd sphere S- are torsion except 

in dimension n, where it is infinite cycUe; for an even sphere S-, the excep
tional dimensions are n and 2n - 1 • . 
EXAMPLE 19.6. The wedge of the spheres S" and S- is the union of S" and S" 
with one point in common, written S·V S-. As an application of Sullivan's 
theory we will compute the ranks of the first few homotopy groups of 
S2 V S2. SiJKe S2 V S2 has the same h~motopy type as R3 - P - Q, where P 
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and Q are two distinct points oCR3
, it suffices to construct a minimal model 

JI for O*(R3 
- P - Q). 

At ,this stage we exploit the geometry of the situation to COT'",ruct two 
closed 2-Corms x and j on R3 - P - Q that generate the cohomology, 
HZJl(Rl 

- f - Q) and that satisfy . 

x2 ~ xy = y2 = o. 
. . 

For this purpose choose small spheres SI' and Sa about P and Q respec-
tively. Let Wp be a bump form of mass 1 concentrated near the north pole of 
S p and let wa be a similar form about the sOQth pole of Sa. The projection' 
from P defines a natural map 

ftp : Rl - P - Q -. Sp'; 

similarly the projection fro~ Q defines a map 

7ta: R3 - P - Q -+ Sa. 

Then 

x = nl Wp and y = "3 Wo 

are easily seen to have the desired propenies. 
The minimal model is now constructed in a completely alaebraic way as 

follows, First of all, the prinimai model .,If must have two gcneraton x and 
y in dimension 2 mapping to x and j. To kill x 2, xy, and yl, we need three 
generators a, b, c in dimension 3 with (see Figure 19.1) 

dD =x~ 

db=xy 

de = y2. 

The map f : J( -+ n·(R3 
- P - (2) up to this point is given by x ...... x, y ..... y, 

~ b, c ...... O. 

The differentials of the elements in di1nension S are 

d(ax) = Xl 

d(ay) - x2y 

d(bx) = xJy 

d(by) = xy'l 

d(cx) a: xy 
d(cy) = y'. 

Hence d(ay - bx) = 0 and d(by - ex) =- O. To.kill these two closed forms, 
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7 

ab 
6 be 

ac 

5 p,q,r 

ex,ey 
4 e.a p,gy 

ax.ay ax2.axy,ayl 
j a,b,e bx,by bx 1 ,bxy .byl 

cX,cy l;x 2 ,cxy,cyl 

:! 

o 

o 1 2 3 4 5 6 7 

Figure 19.1 

there must be two elements e aDd 9 in dimension 4 such that 
u ==ay - bx 

41 = by - ex. 

8 

To find the aeoerators in dimension 5 we need to know tbe closed forms 
in dimension 6. By looking at the differentials of all the elements in dimen
sion 6: 

~ex) = axy - bx1 

"ey) == ayl - bx y 

d(gx) == bxy - cx l 

d(gy) z: byl - exy 

tl(ab) = bx1 
- axy 

d(bc) == exy - byl 

d(QC) == cx2 
- ayl, 

tt it r.diIy cICta:.liirV:d that ex + ab, gy + bc, and ey + fiX + QC arc closed. 
fiDCI the existina elements of dimCnsion S do not map to thcae, we need 
'tine geoeratoD P. 'I, r iD diJ"ClMion S with 

i¥=ex+ab 

tit == flY + be 

dr == ey + gx + QC • .. 
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The reader is invited to continue this process one step further and show 
that in dimension 6 there are six generators. • 

In summary the generators in dimcnsioDJ S 6 are 

dim 2 3 4 S 6 

generators X,Y a, b, c e, 9 p, q, r S, I, U, v, W, % 

By Sullivan's theorem the rank of X,J..Sl V S1) is 

q 1 2 3 4 S 6 

dim 7['<S2 V S1) ® 0 0 2 3 2 3 6 

This agrees with Hilton's result on the homotopy sroups of a wedF of 
spheres (Hilton [1]), since by Hilton's theorem 

reJ.Sl V S2) = 1CJ.S2) + ",/..S2) + "JS3
) + 7CJ.r) + 7C;,.r) 

+ L 1CJS5) + ~ 7CJst') + 'It of spheres of djJJ)C'!Nion ~7. 
3~ 6~ . 



CHAPTER IV. 

Characteristic Classes 

After the excursion into homotopy theory in the previous chapter, we 
return now to the differentiable category. Thus in this chapter, in the ab
sence of explicit qualifications, all spaces are smooth manifolds, all maps 
are smooth maps, and H*(X) denotes the de Rham cohomology. 

In Section 6 we first encountered the Euler class of a Ca> oriented rank 2 
vector bundle. It is but one of the many characteristic classes-that is, 
cohomology classes intrisically associated to a vector bundle. In its modern 
form the theory of characteristic classes originated with Hopf. Stiefel, Whit
ney, Chern, and Pontrjagin. It has since found many applications to topol
ogy, differential geometry, and algebraic geometry. 

In its most rudimentary form the point of view towards the Chern classes 
really goes back to the old Italian algebraic geometers, but in Section 20 we 
recast it along the ideas of Grothendieck. We introduce in Section 21 the 
computational and proof technique known as the splitting principle. This is 
followed by the Pontrjagin classes, which may be considered tbe real ana
logue of the Chern classes. We also include an application to the embedding 
of manifolds. 

In the final section the Chern classes are shown to be the only complex 
characteristic classes in the following sense: any natural transformation 
from the complex vector bundles to the cohomology ring is a polynomial in 
the Chern classes. An added dividend is a classification theorem for com
plex vector bundles. With its aid we fulfill an earlier promise (see ·tbe 
remark following Prop. 11.9) to show that the vanishing of the Euler class 
of an oriented spbere bundle does not imply the existence of a section. 

For the Euler class of a rank 2 bundle we had in (6.38) an explicit 
formula in terms of the patching data OD the base manifold M. Elegant as 
the Grothendieck approach to the Chern classes is, it is not directly linked 
to the geometry of M, for it gives no such patching formulas. In the COD

eluding remarks to this chapter we describe without proof a recipe for 
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constructing the Chern classes of a complex vector bundle 'It: E -+ M out of 
the transition functions of E and a partition of unity on M relative to some 
trivializing good cover for E. 

§20 Chern Classes of a Complex Vector Bundle 

In this section we will study the characteristic classes of a complex vector 
bundle. To begin with we define the first Chern class of a complex line 
bundle as the Euler class of its underlying rea) bundle. Applying the Leray .. 
Hirsch theorem, we then compute the cohomology ring of the projectiviza ... 
tion P(J:,) of a complex vector bundle E and define the Chern classes of E in 
tenns of the ring structure of H·(P(E». We conclude with a list of the main 
properties of the Chern classes. 

l"he First Chern Class of a Complex Line.Bundle 

Recall that a complex vector bundle of rank n is a fiber bundle wi~h liber 
CIa and structure group GL(n. C). A complex vector- bundle of rank 1 is also 
caned a complex line bundle. Just as the structure group of a real vector 
bundle can be reduced to the orthogonal group O(n), so by the Hermitian 
analogue of (6.4~ the structure group of a rank n complex vector bundle can 
be reduced to the unitary group U(n). Every complex vector bundle E of 
rank n has an underlying real vector bundle ER of rank 2n, obtained by . 
discarding the complex structure on each fib«. By the isomorphism of U(l) 
with 80(2), this sets up a one-to-one correspondence between the complex 
line bundles and the oriented rank 2 real bundles. We define thefirst Che", 
class of a complex line bundle L over a manifold M to be the EuIer class of 
its underlying real bundle L.: cl(L) == e(La) e Hl(M~ . 

If Land r, are complex line buDdles with transition functions {g.,} and 
{g~}, 

then their tensor product L ® L is the complex line bundle with transition 
functions {g.1 . g~II}· By the formula (6.38) which gives the Euler class in 
terms of the transition functions, we have 

(20.1) 

Let L* be the dual of L. Since the line bundle L ® I! =- Hom(L, L) haJ a 
nowhere vanishing section given by the identity map, L ® L* is a trivial 
bundle, By (20.1), cl(L) + cl(L*) = cl(L ® L*) == O. Therefore, 

(20.2) 
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EXAMPLE 20.3 (Tautological bundles on a projective space). Let V be a 
complex vector space of dimension nand P( V) its projectivization: 

P(V) ~ {l-dimensional subspa~ of V}. 

On P(V) there are several God .. given vector bundles: the product bundle 
V == P( V) x V t the universal subbundle S, which is the subbundle of ~ de
fined by 

s = {(t, v) e P(V) x Vlv e I}, 

and the universal quotient bundle Q, defined by the exact sequence 

(20.4) 0 -+ S ...... V --.. Q --+ O. 

The flber of S above each point t in p(Y) consists of all the points in I, 
where t is viewed as a line in the vector space V. The sequence (20.4) is 
called the tautological exact sequence over p( V), and S* the hyperpJane 
bundle. 

Consider the composition 

0': S c:. P(V) x v ...... V 

of the inclusion foUe,wed by the projection. The inverse image of any point v 
is 

...... . 
O'-l(V) = {(t, v)( v E (}. 

If v =1= 0, 0' - l(V) consists of precisely one point (I, v) where t is the line 
through the origin and v; if v = 0, then.u-1(O) is isomorphic to p(Y). Thus S 
may be obiained from V by separating all the lines through the origin in V. 
This map t1 : S --+ V is caUed the blow-up or the quadratic transformation of 
of V at the origin. Over the real numbers the blow-up of a plane may be 
pictured as the portion of a helicoid in Figure 20.1 with its top and bottom 
edges identified Indeed, we may view the (x, y)..plaoe as being traced out by 
a horizontal line rotating about the origin. In order to separate these lines 
at the origin, we let the gtalCl'ating line move with constant velocity along 
the z .. axis while it is rotating horizontally. The resulting surface in R3 is a 
helicoid. 

We now compute tbe cohomolosy of P(V). Endow V with a Hermitian 
metric and let E be the unit sphere bundle of the universal subbundle S: 

E = {(t, v)1 v El, 11 vII = I}. 

Note that u- 1(O) is the zero section of the universal subbundle S. Since 
S - a- 1(0) is diffeomorphic to V - {O}, we see that E.is diffeomorphic to 
the sphere S2. - 1 in V and that the map 1t : E -+ P( V) gives a fibering 

SI-+ S2.-1 

! 
P(V). 
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Fisure 20.1 

By a computation similar to (14.32), the cohomology ring H*(P(Y) is seen 
to be generated by the EuIer class of the cUde bundle E, Le., the fint Chcm 
class of the universal subbundlc S. It is customary to take x == Cl(~) == 
-c 1(S) to be the generator and write . 

(20.5) H~P(V)) - R[xl/(x-), where .. - climc y. 

Wc dcfioc the Poiltctri seria or a manifold AI to be 
Cl) 

P AM):;:: L dim H(M) f. 
1-0 

By (20.5) the ·PoincarC series of the projective space P(JI) is 

l-ra 
P.(P(Y» -= 1 + t2 + ... + ,2«11-1) == 1 _ ~ . 

The Proj~ivization of a Vector Bundle 

Let p : E -+ M be a complex vector bUDdle with tnmaition fuDctioos ,., : 
U. ("\ U,-+ GL(1I., Cl. We write E, for the Abet over p aad PG4n, C) for the 
projective general linear group GL(1I., C)/{1CaIar matricc:s}. Tbc projecIirUIJ
tion of E, ,,:P(E)-+ M, is by definition the fiber buncIIe whole ._ at a 
point p in M is the projective space P(B,.) aDd .boae tnmaitioD fuactioDI 
gal : U. nU, -+ PGL(n, C) are iaduced from (J",. Thus • poiDt 01 P(B) it • 
line , , in the fiber E,. • 

As on the projectivizatioD or • 'VIKtor space. OD P(B) there me •••• 
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tautological bundles: the pull back 1t - 1 E, the universal subbundle S, and the 
universal quotient bundle Q. . 

0-+ S-. 1t-1E~ Q~ 0 

1 
P(E) 

E 

1 · 
M 

The puUback bundle 1t - 1 E is the vector bundle over P(E) whose flber at I p 

is E,. When restricted to the fiber n -l(p) it becor..es the trivial bundle, 

1t - 1 E Ip(E), = P(E), x E", 

since p : Ep~ {p} is a trivial bundle. The universal subbundle S over P(E) is 
defined by 

S = {(lp, v) E n- 1Elv E t p} . 

. Its fiber at t p consists of all the points in (p' The universal quotient bundle 
Q is determined by the tautological exact sequence 

0--. S ~ 1t - 1 E -. Q -+ O. 

Set x = Cl(S·), Then X is a cohomology class in H 2(P(E)). Since the 
restriction of the universal subbundle S on P(E) to a fiber P(E,,> is the 
universal subbundle S of the projective space P(E,,), by the naturality pro
perty of the first Chern class (6.39), it follows that Cl (S) is the restriction of x 
to P(E,). Hence the cohomology classes 1, x, ... , rs- 1 are global classes on 
P(E) whose restrictions to each fiber P(E,) fr"!ely generate the cohomology 
of the fiber. By the Leray-HirSch theorem (5.11) the c"homology H·(P(E» is 
a free module over H·(M) with basis {1, x,. ... , X,.-l}. So x· can be written 
uniquely as a li~ear combination of 1, x~ ... , x" - 1 with coefficients in 
H·(M); these coefficients are by definition the Chern classes of the complex 
vector bundle E: 

(20.6) x" + cl(E)x,,-l + ... + c,,(E) = O~ 

In this equation by Cl (E) we really me~n n*cj (E). We call Cl (E) the ith Chern 
class of E and . 

c(E) = 1 + cl(E) + ... + c,,(E) E H*(M) 

its total Chern class. With this definition of the Chern classes, we see that 
the ring structure of the cohomology of P(£) is given by 

(20.7) H·(P(E» = H*(M)[x]/(x" + cl(E)x .. - 1 + ... + c,.(E», 

where x = cl(S·) and n is the rank of E. Since additively 

H.(P(E» = H*{M) ® H*(P" - 1), 
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the Poincare series of P(E) is 

(20.8) 
1 - (211 

P JP(E» = P,(M) 1 2· 
-t 

We now have two definitions of the first Chern class of a line bundle L: 
as the Euler class of LA' and as a coefficient in (20.6). To check that these 
two definitions agree we will temporarily reserve the notation c 1( ) for the 
second definition. ·What must be shown is that e(L.J = cl(L). 

(20.9) 

L 

1 
M 

F or a line bundle L, P(L) = M, 1t - 1 L == L and the universal subbundle S on 
P(L) is L itself. Therefore, x = e(S&) == - e(S..} == - e(1;a>. So the relation . 
(20.6) is x + e(La) = 0, which proves that cl(L) == e(L.J. 

If E is the trivial bundle M x V over M, then P(E) == M x P(V), so 
x" = O. Hence all the Chern classes of a irivial bundle are zero. In this seDIC 

the Chern classes measure the twisting of a ~mplex vector bundle. 

Main Properties of the Chern Qasses 

In this section we collect together some basic properties of the Chem 
classes. . 

(20.10.1) (Naturality) If f is a map from Y to X and E is a complex vector 
bundle ~ver X, then c(f -1 E) = f·c(E). 

f-IE E 

1 1 
y--..... x 

I 

PROOF. Basically this property follows from the functoriaIity of all the con ... 
structions in the definition of the Chem class. To be precise, by (6.39) the 
first Chern class of a line bundle is functo~. Write SE for the universal 
subbundle over PE. Now f - 1 PE == P(f -1 El and f - 1 SI = S'-IJ:. so if 
oX £ :a: Cl (S), then 
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Applyingf· to 

we get 

Henc:e 

o 

It follows Crom the naturality of the Chem class that if E and Fare 
isomorphic vector bundles over X t then c(E) = c( F). 

(20.10.2) Let Y be a complex vector space. IfS· is the hyperplane bundle over 
p(JI), then Cl(S*) generates t~ algebra H*(P(V». 

This was proved earlier (20.5). 

(20.10.3) (Wbitoey Product Formula) c(E' EB E") = c(E')c(E"). 

The proof will be pven in the next section. 

In fact, these thn:e properties uniquely characterize the Chem class 
(Hirzcbruch· [1, pp. 58-60]). For future reference we list below three more 
useful properties. 

(20.10.4) If E Juu rank" as a complex vector bundle, then c,(E) == Of or j > IL 

This is really a definition. 

(20.10.5) If E Iuu a nDIIVtJIIishing sectiort, the" the top Cbe", class cJ.E) is 
zero. 

PROOF. Such a section s induces a section i of P(E) as Collows. At a point p 
in X, the value oC..Qs the line in E, through the origin and s(p). 

P(E) 

ir Jx 
X 

Then r 1 S. is a line bundle over X whose fiber at p is the line in E, 
spanned by s(p). Since every line bundle with a Donvanisbing section is 
isomorphic to the trivial bundle, we have the tautology 

r 1 S. ~ the trivial line bundle. , 
It fonows from the naturality oC the Chem class that 

i'Cl(S.) = 0, 
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which implies that 

~x=O .. 

Applying ~ to 

we get 

S-c. = o. 
By our abuse of notation this really mea~ sen·c. == O. 'Therefore c. == o. 

o 
(20.10.6) The top Chun clau of a complex vector bundle E is tM Elder cltw 
of its realization: . 

c.(E) = e(E.), where n = rank E. 

This proposition will be proved in the next section after wc have es
tablished the splitting principle. 

§21 The Splitting Principle and Flag M3nifolds 

In this ICdion we prove the Whitney product formula and compute a few 
Cbem classes. The proof and the computations are based OD the splittinl 
principle, which, roughly speaking, states that if a polynomial identity in the 
Chem classes holds for direct sums of line bundles, then it holds for poeral 
vector bundles. In the course of establiShing the splittina principle we intro
duce tbe flag manifolds. We conclude by computina the cohomolosy riD, of 
a 8ag manifold. 

The Splitting Principle 

Let ~ : E --+ M be a Coo complex vector bundle of rank ,. over a manifold M. 
Our goal ~ to construct a space F(E) and a map (1 : F(E) --+ M sjlCb tbat: 

(1) the puUback of E to F(E) splits into a direct sum .of liDc bundlea: 
a-lE == L, E9' •. Ea L.; 

(2) ~ embeds H~M) io H-(F(E). 

Such a space F(E). which is in fact a ma.Difold by cooatructioo,' is caUcd a 
,pUt MQftijolll 01 E. . . 

If E has rut 1, there is Dothing to prove. 
If E baa rank 2, we can take as a split ma.Difold F(E) the projective 
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bundle P(E), for on P(E) there is the exact sequence 

0---. S,-+ (1-1£ -+ QE -+ 0; 

by the exercise below, (1- 1 £ = SI: Ea QE t which is a direct sum of line bun
dles. 

Exercise 21.1. Let 0.-. A -+ B -:-+ C -+ 0 be a snort exact sequence of Ca;) 
complex vector bundles. Then B is isomorphic to A Ea C as CIX) a bundle. 

Now suppose E has rank 3. Over P(E) the line bundle SE splits off as 
before. The quotient bundle QE over P(E) has rank 2 and so can be split 
into a direct sum of line bundles when pulled back to P(QE)' 

E P(E) 

~/ 

p-l SE e SOl: E9 QQ,; 

l 
P(Q,) 

Thus we may take P(QB) to be a split manifold F(E). Let Xl = P*Cl(SJ) and 
Xl = Cl(SQ.). By the result OD the cohomology of a projective bundle (20.7), 

H*(F(E» = H·(M)[Xh X2]/(X~ + c1(E)xf + Cl(£)xl + c3(E), 

xi + Cl(Q,)Xl + C2(QE»' 

The pattern is now clear; we split off one subbundlc at a time by pulling 
back to the projectivization 0' a quotient bundle. ' . 

(21.2) SI E9'" El) 5.- 2 EB S.-1 EB Q.-l 
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So for a bundle E of any rank n, a split manifold F(E) exists and is given 
explicitly by (21.2). Its cohomology H·(F(E») is a free H·(M)-module baving 
as a basis all monomials of the form 

(21.3) ~14:l ... x:-..:-l, a1 ~ n - 1, Ql S n - 2., ••• , Q .. -l ~ 1, 

a 1, ..• , a" - 1 nonnegative, 

where Xl = Cl(Sr) in the notation of the diagram. 
More generaily, by iterating the construction above we see that given 

any number of vector bundles El' ... , E, over M, tbere is a manifold N and 
a map (1 : N -+ M such that the pull backs of El' ... , Er to N are all direct 
sums of line bundles and that H-(M) inject' i~to H·(N) under a·. The 
manifold N is a split manifold for El, ... , E,.. 

Because of the existence of the split manifolds we can formulate the 
following general principl~ 

The Splitting Principle. To prove a polynomial identity in the Chern classes of 
complex vector bundles. it suffICes to prove it under the IUsaunption that ,~ 
vector bun4les are direct sums of line bundles .. 

For example, suppose we want to prove a certain polynomial relation 
P(c(E), c(F), c(E ® F» = 0 for vector bundles £ and F over a manifold M. 
Let a : N -+ M be a split manifold for the pair E, F. By the naturality of the 
Chern classes 

(I. P(c(E), c(F), c(E ® F» ;: p(c(a -1 E), c(0'-1 F), c«0'-1 Er® (a- 1 F»), 

where (J - 1 E and (1- 1 F are direct sums of. line bundles. Sri' if the iden~ty 
holds for direct sums of line bundles, then . -

0'* P(c(E), c(F), c(E ® F». == O. 

By the injectivity of cr· : H*(M) -+ H*(N), 

p(c(E), c(F), c(E ® F» :Ill: O. 

In the next two subsections we give some illustrations oftbis priDciple. 

Proof of the Whitney Product Formula and the Equality of the Top 
Chern Class and the Euler Class 

We consider first the case of a direct sum of line bundl~s: 

E =: Ll E9 • .. EB L •• 

By abuse of notation we write 1t - 1 E - Ll E9 ... $ L,. for the pull back of E 
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to the projectivization P(E). Over P(E), the universal subbundle S splits off 
from x-lE. 

! 

E /p(E) 

!/-
M 

Let s, be the projection of S onto L,. Then S, is a ~tion of Hom(S, L i ) = 
S· ® L.. Since at every point y of P(A1, the fiber S, is a t -dimensional 
subspace of (X-l E)" tbe projections SI' """' s. cannot be simultaneously 
zero. It follows tba~ the open sets 

U i == {ye P(E)I s,(y) :1= O} 

form an open cover of P(E). Over each U I the bundle CS· ® L.) lu. has a 
nowhere-vanishing sectio~ namely Si; so (S· ® LJ lu. is trivial. Let .:. be a 
closed global ,2.form on P(E) representing catS· ® Li). Then "Ju. == ~(}.)I for 
some I-fonn tu, OD U,. The crux of tbe proof is to find a global form on 
P(E) that represents cl(S*®L,) and that vanishes on U,; becauscw, is Bot 
a global form OD p(£), (, - dw, won't do.J:lowcvcr, by shrinking the open 
COW'Z {U.} slightly we can extend ,. - dro, to a global form. To be precise 
we win occd the following lemmas. 

Exercise 21.4 (Tile SIarWdng Lemma). Let X be a normal topological space 
and {U.} •• , a finite open cover of X. Then there is an open cover {Y.h.l 
with 

Y, c U •. 

ExercUe 21.5. Let M be a manifold, U an open subset, and A a closed 
subset contained in U. Then there is a C«> function/which is identically 1 
OD A. and is 0 oQtsidc U. 

It follows &om tbeae two lemmas that on P(E) there exits an open cover 
{Y,} aad CfIO ~oDS P, sat.isfyioa 

(a> V. c U. 
(b) P. is 1 on V, and is 0 outside U •. 

Now p, CD, is a alobal form which agrees with (I), OD V, so that 

~. - d(pi (I). ) 

ia a aIoI* fonii.tcplC8CDtiDg Cl(8- ® LJ and vanishing on v,. In summary, 
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there is an open cover {Y,} of P(E) such that C1(S· ® L.) ""'1 be repreunted 
by a globalJorm wlUCh vanishes on v,. 

Since {Y,} covers P(E). ni.1 C1(S· ® LJ == O. Writing x = Cl(S*), this 
gives by (20.1) 

• 
n(x + c1(L,».== x· + 0'1x"-1 + '.0 + 0'. == 0 
'-1 

where Cl. is the itb elementary symmet~ polynomial of cl(L1), ••• , cl(L.). 
But this equation is precisely the defining equation of c(E). Thus 

D'. -= c.(~ 

and 

c(E) == n (1 + cl(Le» == n c(LJ. 

SO the Wbitney product formula holds for a direct ,um of line bundles. By 
the splitting principle it holds for any complex vector bundle. As an illustra
tion of the splitting principle we win go through the argument in detail Let 
E and E' be two complex vector bundles of rank n and m respectively and 
let 1t: F(£)-+ M and f(: F(",-1 E')-+ F(£) be the splitting constructions. 
Both bundles split completely when pulled back to F(.-IE') as indicated in 
the diagram below. 

Lt ED ••• ED L. eL, E& • • • ED L:' 
Ll E9'" Ea L. Q)n-lE' 1 

E(J)E 1 --=--- F(it-1E) 

1 ~F(E}· . 

M"-----' . 
Let (/ == 'It 0 n. Then 

a*c(E Ea E') 11: c(a- 1(E El) E'» == c(LI €a'" 6) L" El) Li e··· $ L:J 

== n c(L,)c(Ll) 

== .a*c(E)c'*(E') == t1~c(E)c(E'). 

Since 0'* is injective, c(E ED E') CD c(E)c(E'). This cp~udea the proof of the 
Whitney product formula.. . 

itBMARlC 21.6. By Exercise (21.1) and the WhitDcy product formula, wbeD
ever we have an exact aeq~ of COO complex vector bUndlei . 

. O'-+A-+B-+C-+O, /' 

then c(B) -= c(A)c(C). 
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As an application of the existence of the split manifold and the Whitney 
product formula, we will prove DOW the relation (20.10.6) between the top 
Cbern class and die Euler class. Let E be a rank ,. complex vector bundle 
and (I: F(E)~ E its split manifold Write (I-lE == L, EB'" E9L,., where the 
L"s are line bundles on the split manifold F(£). 

... 
~cJ.E) = C,J.(I-l E) by the naturality of c. 

== c,(L.)· .. c .(L.) .. 

;;: e«LJ}.) • • • e«LJ.) 

== e«L.>' (B • • • El) (LJ.) 

== e«(I-l E).) 

- a-e(E.). 

by the Whitney product formula 
(20.10.3) 
by the definition of the first Chem 
class of a complex line bundle 
by the Wbitney product formula for 
the Eulcr class (12.5) 

By the injectivity of a* on cohomology, eJ.£) == e(E.). 

Computation of Some Ch~m Classes 

Given a rank n complex vector bundle E we may write formally 

• 
c(E) = n(1 + xJ, 

'-I 
where the x,'s may be thought of as the first Chem class of the line bundles 
into which E splits when pulled back to the splitting manifold F(E). Since 
the Cbern dBPC' Ct(E), ... , cJ.E) arc the elementary symmetric functions of 
x" ... , x., by the symmcbic functiOll theorem (van der Waerden [1, p. 99]) 
any symmetric polynomial in x., ... , x. is a polynomial in c,(E), ... , c,,(E); 
a similar result holds for poWCl' series. 

ExAKPu! 21.7 (Extcrior po~. JJIIIIIldric powers, and tensor products). 
R.ecaJ! that if Y is a ~ apace with basis {Pt, .... , v.}, then the exterior 
power A' Y is the vector apace with basis {ViI A ... A Vi,,}l4it'a < •.• <i, __ •• So 
)1..£ is the direct sum or tiDe buDdIes E - LJ El) ••• (B L., then 

• 
A·S - Ea (Lt1 ® -.. ~® L,). 

lels < ••• < .. c. 
Heace 

qA'E) =- n (1 + c.(L,. ~ · .. Q) L,) by the Whitne)'. pr:od~ formula 

-n (1 + x,. + .... + xl) by (lQ.l), with x, = c1(L,), 

where the product is OlCf all multi-iDdia:s 1 < it < ... < i, ~ IL Sicco" 
riJbt-band side is IJIIIIII*ic iD x" ... _, x., it ia GpnlllbIe as a ~ 
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Q in Cl(E), ••• , c.(E). 80 

c(A'E) = Q(Cl(E), .•• , cJE». 
By the splitting principle this formula holds for every rank n vector buIldle. 
whether it is a direct sum or nol It should be pointed -out that the poly· 
nomial Q depends only on n and Pt not ~D B; le •• Imple, the Cbem class 
of Al E, where rank E - 3, is given b, ~ .. .~; 

c(A2E) == Q(Cb C2, c,) Im' (1 + Cl - x.XI + Cl - x2l(l + Cl - x,) 
..-.-.-. ....... 

== (1 + Cl)' - Cl(l + c.t + cl(l + Cl) - Cs· 
,. -

Similarly, if Y and W are vector spaces with buea {Ob •.• , ".} and {Wb •.• t 
w.} respectively, then the ptb symmetric power $IV of Y is the 'Vector 

space with basis {V'l®···®V,J'C'IC ... Ca..r. aod the tcDIOr prf;Jduct 
V ® W is the vector space with basis {v, ® WJ}l.r,.r-.l"JCl •• By tile IIIDC 
discussion as above, if E is a rank,. vector bUDdJe witbc:(E) - ID. 1 (1 +:ell 
and F is a rank m vector bundle with c(F) - fL--l (1 + 1~ then ° 

(21.S) c:(S"E) la n (1 + X,1 + · o· · + x.) 
l .... .r·.·.rt,c. . 

and 

(21.9) c(E ® F) == . n (1 + X, + y.,). 
l.r.ca. ' 
lCJC •. : t I '~:"" ~. • ( " 

In paI1icuJar if L is a compIGliDe buIld1c with fiat Cbc:m ~ y~otbm . 

• • ... ! *'r!:: 

(21.10) c:(E ® L) - n (1 + 1 + .x,) -. r c,(E)(l + ir-', I • j' 

'-1. .-0 . ; 
whereby convention we .. CfA.E) - 1 •. 0

,. 0 • • ~.' ,,' < .. 0' 

Bx.uIPu 21.11 (The Ldasa and the Todd class). In the DOtatioD m the 
precediaa example the power ~ 0 0 

'O' ."' 

. Ii ,& .,." 
1-' taDh ~ ., 

. is symmetric in x.,. ... ~ x., ~ is some power Series L in c,(E). .. ~., cJ.E). 
1bjs power series L(E) = L(Cl(E), ••• , cJE» is called the L-dasa 01 E. By the 
splittina principle the L-dasa automatically .. ~ ~ pI'Oduct fonQ1JIa 

• '..1"' •• I. . . ~ 

L(E (& F) - L(B)l.(I). 

S~IYJ 
~ ° i :.0 

• ·,f 
;. .'. 01 ... &. 

cIc:fint3 the ToM cIAv of E. By the spJittiDa principle the T odd class alto 
automatically satisfies the product formula. The L-class and th.e. Todd 

- • • '. • ~ 4 • • ~.. : _. :. 
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class turn out to be of fundamental importance in the Hirzebruch signature 
formula (see Remark 22.9) and the Riemann-Roch theorem (sce Hirzebruch 
[l]~ . . 

EXAMPLE '1.12 (The dual bundle). Let L be a compl~x line bundle~ By (20.2), 

cl(L·) == -c1(L). 

Nex~ coDlidc~ a direct sum of line bundles 

E = L1 fa .& • Ea Lit' 

B~: t1eWhI .lCY product formula 

c~E) -- rl L1) •• ·c(L.) = (1 + c,(Lt }) . • . (1.+ c ,(LJ). 

On· the other haud 

apld 

Therefore 
. cJE·) = ( - PfcJ.E). 

By the split~Dg principle this result holds for all complex vector bundles E. 

EXAMPLE 21.13 (The Cbcrn classes of the complex projective space~ By 
analogy with the definition of a differentiable manifold, we say that a 
second countable, Hausdorff space M is a complex mtIIIi/old of dimension IS 

if every point has a neighborhood U. homeomorphic to some open ball in 
C., f.: U.-+· C·, such that the transition functioDB 

C" 
f/ 

g., -= 4>. 0 tPi 1 : 4J,(U. " U ,)--+ c· 
are holomorphic. Smooth maps and smooth vector bundles have obvious 
analogues in the holomorphic catesory. If U It ••• ,". are thc' coordinate 
functions on C·, then z, = '" 0 4J .. , j == 1, ... , PI, arc the coordinate functions 
on U •. At each Point p in U. the vectors O/OZh .•. , a/oz. span over C the 
holomorphic tangent bundle of M. It.is a complex vector bundle of rank n. 
The Chem class of a complex manifold is defined to be the Chem class of 
its holomorpbic tangent bundle. 

The coinplex projective space CP" is an example of a complex manifold, 
since. as in Exercise 6.44, tbe transition functions 9 j' relative to the standard 
open cOver are given by multiplication by zJzj , which are holomorphic 
functions from .,(U, n Uj) to 4>j(U, " U ~ Recall ~t there is a tauto-. 
logical exact sequcno:: OD Cl'" . 

(. O~S~C·+l-'Q-+O, 

whac c·+ I denotes ·tbe trivial b~le of rank IS + 1. over CP". A t.aqent 
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Fisure 21.1 

vector to CP" at a line ( in C·· 1 may be regarded .. aD iDfini~mM 
motion of the line ( (Figure 21.1). Such a mot~D corresponds to a ..., . 
map from ( to the quotient space C·+ 1/1, which may be represented by the 
complementary subspace of I in Ce + 1 (relative to some metric). ~ ... 
noting the holomorphic ~angent bundle by T, we have 

T ~ Hom(S, Q) - Q®sr-. 

We will compute the Chem class of T in two ways. 

(1) Tensoring the tautological sequence with S-, we act 

0-+ C ..... S· ® C·+ 1
-. S- ® Q ..... O. 

By the Whitney product formula 

C(n := c(S· ® Q) :;: c(S· ® C·+ 1) ::z C(S* (B .. • EB 8*) - (1 + x)e. t. 

1 1 
t(Q) - - - - - 1 + .x + · · · + x·, C(S) 1 - x 

IirMz x". 1 - 0 in H-(CP"). By (21.10) 

• • 
c(CP") =- c(Q ® S-) - L clQXl + xr-' - L x'(t + xr-' 

'.0 .-0' 
• ( x )' -(I +,xrr -, ,... +~ 

_ (1 + xr+ 1 _ ~.l 

- (1 + xr" 1
• 
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Exercise 21.14. Che,n classes of a hypersurface in a complex projective space. 
Let H be the hyperplane bundle over the projective space CP" (see (20.3», 
and H fU the tensor product of k copies of H. The line bundle H is in fact 
more than a C«' complex line bundle; because its transition functions are 
holomorphic, it is a holomorphic line bundle. The total space of a holomorp
hic bundle over a complex manifold is again a compla manifold, so that 
the notion of a holomorphk section makes sense. The zero locus of a holo
morphic section of HOIIt. is called a hypersurface of degree k in CP". If the 
section is transversal to the zero section, then the hypersurface is a smooth 
complex manifold. Compute the Chern classes of a smooth hypersurface of 
degree k in CP". (Hint: apply Prop. 12.1 to get the normal bundle of the 
hypcrsurface.) 

Flag Manifolds 

Given a complex vector space V of dimension tI, a flag in V is a sequence of 
subspaces Ai c: Az C •.• C A. = V~ dime A = i. Let f'1(V) be the collection 
of all Hags in V. Clearly any flag can be carried into any other flag in V by 
an element of the general linear group G L(n, C), and the stabilizer at a flag 
is the group H of the upper triangular matrices. So as a set Fl( V) is isomor
phic to the coset space GL(n, Cl/H. Since the quotient of a Lie group by a 
closed subgroup is a inanifold (Warner [1, p. 120]), F/(VJ can be made into 
a manifold. It is called the flag manifold of V. 

Given a vector bundle E~ just as one can form its projectivization P(E), 
so one can fonn its associated flag bundle Fl(E). The bundle FI(E) is ob
tained from E by replacing each fiber E" by the flag manifold FI(Ep); the 
local trivialization 4>«: E Iv. 4 U 11 X e" induces a natural trivialization 
Fl(£) lu. ~ U« X Fl(C"). Since GL(n~ C) acts on F/(C"), we may take the 
transition functions of Fl(E) to be those of E. but note that FI(E) is not a 
vector bundle. 

PropolitiOD 21.15. The associaled flag bundle FI(E) of a vector bundle ;s the 
split mtmifold F(E) constructed earlier. 

PROOF. We first show this for E = V a vector space of dimension 3, viewed 
as a rank 3 vector bundle over a point. 

S .. (f) SQ •. EB Qat' 

S" Et) Qv 1 
V 1 _______ P(Qv) = F(V) 

.1 ___ P(V) 

point ..--------
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In what follows all lines and planes go through the origin. A poiDt 
in P( V) is a line L in V. A point of P(Qy) is a line L in V and a line 1:, in 
V/LA f may be regarded as a 2-plane in V containing L. Thus FI(y) == 
P(Qv) = {AI C Al C V, dim Ai ~ i} == F(V). 

Now let E be a vector bundle of rank n over M. The split manifold F(E) 
is obtained ~y a sequence of n - 1 projectivizations as in (21.2). A point of 
P(E) is a pair (p, (), where p is in M and ( is a line in E,. By introducing a 
Hermitian metric on E, we may regard all the quotient bundles Ql' ... , 
Q" - 1 in (21.2) as subbundles of E. Then a point of P( Ql) over (p, t 1) in P(E) 

is a triple (p, (1, (2) where (l is a line in the orthogonal complement of ( 1 

in Ep. A point of P(Q2) over (p, (it t 2) in P(Q1) is a 4-tuple (P, 'b (2, (3) 

where (3 is a line in the orthogonal complement of' 1 and (1 in El'. Thus, 
more generally, a point in the split manifold ·F(£) - P(Cl.-l) may be ideot-

. ified with the flag 

(p, (1 C {/h III c {It, la, I l } c: ... c: Ej. 

This proves the equality of,the split manifold F(E) and the ftag bundle FI(E). 
From now on the notations F(E) and FI(E) will be uaed interchanaeably. 
The formula (21.3) gives one description of the vector space structure of 

the cobomology of a ftag bundle. To compute its ring structure wc first . 
recall from (20.7) that if E is a rank n complex vector bundle over M, then 
the cohomology ring of its projectivizatioD is 

H·(P(E») .. H·(M)[xll(x" + Cl(E).x"-1 + · .« + cJ.£», where .x - CI(S-). 

NOTATION. If A is a polynomial ring, and a, b. c,/e A, then (a, b, c) deD~ 
the ideal generated by a. b, and c, while (f -= 0) the ideal Fncrated by the 
homogeneous components off. 

There is an alternate description of the rina structure which is sometimes 
very useful. We write H·(M)[c(S" c(Q)] for H·(M)[Cl(S), Cl(Q~ •••• c,,_ .(0), 
where S and Q are tbe universal subbundle and. quotient bundle OD p(E). 

0 .... S--. n·E-+ Q-+ 0 

1 E 

P(£)~1 
M 

PropolitioD ll.l6. H·(P(E» - H·(M)[c(S), L"(Q)1I(4:(S)c(0 - .-~E)), 

PItooP. The idea is to eliminate tbe ..,ators c.(Q). .•. , C.-l(Q) by UIiD& 
tbe relation c(S)c(Q) - a*c(E). Let .x - CI(S", 1. - c"fA and c, - "c~B). 
SqualiD8 the terms of equal degrees iD ' · 

(1 - xXI + Y1 + .. ~ + Y.~.) ~ ~r-t .. ,. + .. ~ + CIf' 
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we get 

Y.-I - XY,.-l = C,._ it 

- XY .. _I = C,.. 

By the first n - 1 equations, YJ' ... , Y,. -1 can be expressed in terms of x 
and elements of H*(M), and so can be eliminated as generators of 
H*(M)[c(S), c(Q)]/(c(S)c(Q) = 1f*c(E». The last equation -XY .. -l = c,. trans
lates into 

x" + Cl x" - 1 + ... + c .. = O. 

Hence H*(M)[c(S), c(Q)]/(c(S)c(Q) == x*c(E» is isomorphic to the poly
nomial rinl over H·(M) with the single generator x and the siDSle relation 
~ 0 

By (21.2) and (21.15) the flag bundle Fl(E) is obtained from a sequence 0( 

n - lwojectivizations. Applyina Proposition 21.16 to (2t'.2), we have 

H*(P(Q,» 

= H*(P(E»[c(S2)' c(Q2)]/(c(Sl)c(QZ) = c(Ql») 

== H*(M)[C<S,), c(Ql). c(S2), c(Qz)]/(c(S.)c(QI) == c(E), c(Sl)c(Q2) = c(Ql)) 
./ 

== H*(M)[c(Sl), c(Sl). c(Q2)]/(c(Sl)c(Sl)c(Ql) == c(E)~ 

By induction 

H*(P(Q .. -l» 
== H*(M)[c(Sl)' ... ; c(S.-l), c(Q.-l)]/(c(Sl)· .. c(S.-I)c({l,.-l) == c(E». 

Writing Xi = Cl(SJ, i == 1, ... , n - 1. and x. == c(Q.-l), the cohomology ring 
of the flag bundle FI(E) is 

H*«FI(E» - H*(M)[x" ... , xJ/CQ(l + xJ.., c(E»). 
Specializing this theorem to a complex vector space V, considered as the 
trivial bundle over a point, we obtain the cohomology ring of the flag 
manifold 

H~(FI(JI) = R(x., ... , XJ /CU(1 + x,) - 1). 
As for the Poincare polynomial of tbe Bag manifold we note again that ~ 

tbe flag manifold is obtained by a sequcnc:e of n - 1 projectivizations (21.2). 
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By (20.8) each time we projectivize a rank k vector bundle, the Poincarc 
polynomial is multiplied by (1 - tlk)/(l - Cl), So the Poincare polynomial 
of the flag manifold FI(V) is 

1 - f211 1 - t lll - l 1 - Cl 
P,(FI( V» = I. _ t l ' 1 _ t l •• •. . 1 _ t l 0 

This discussion may be summarized in the following proposition. 

Proposition 21.17. Let V be a complex vector space of dimension n. The 
cohomology ring of the flag manifold FI(V) is 

H·(FI(~» = R[Xl'···' XJ/CfJ(l + Xd = 1). 
It has Poincare polynomial 

REMAR.K 21.18. Similarly, if E is .. rank n complex vector bundle over a 
manifold M, then the cohomology ring of the Bag bunclle F-'E> is 

• I. 

and the Poiocare series is 

(1 - rx 1 - t4
) • •• (1 - t ~ 

p ~FI(Ej) == P ~M) (1 lXl 2) (1 2) • -t -t '0. -t 

REMARK 21.19. Since projectivization does not introduce any torsion 01-
ement in integer cohomology, the integer cobomology ring or the ., mani
fold Fl(V) is torsion-free and is given by the same formula as (21.17) with Z 
in place of R. The integer cohomology ring of a fla, bunclle is giVeD by the 
same formula as (21.18). In fact, with a little care, the entire discussion can 
be translatcdinto the Q:cb theory. 

. .' 

§22 Pontrjagin Classes 

Although the Chem classes are invariants or a complex bundle, they can be 
used to define invariants of a real vector bunclle, called the POntrjllllin 
classes. I~ this section we define the Pontrjagin classes, compute a few 
examples, and as an application obtain an emheddin, criterion for dift"er
cntiable manifolds. 
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Conjugate Bundles 

Let V be a complex vector space. If z e C and ve V, the formula 

z • v = iv 

defines an action of C on V. The underlying additive group of V with this 
action as scalar multiplication is Called the conjugate vector space of V, 
denoted V. The conjugate space ji may be thought of as V with the o~ 
posite complex structure; as a vector space, V is anti-isomorphic to V. A 
linear map f: V -+ W of two complex vector spaces V and W is also a linear 
map of the conjugate vector spaces!: ji ...... W; we denote both by f as they' 
are represented by the same matrix. 

Given a complex vector bundle E with trivialization 

lP. : El v. ~ U", x e", 

we construct the conjugate vector bundle E by replacing each fiber of E by 
its conjugate. The trivializatioD of £ is given by 

(J. : £ I u. ~ U", x e", 

which is the composition 

-J.' coaj .... 'loa 
E v. ~ U. x C" ~ U", x e". 

In terms of transition functioDSt if the cocycle {g.,} defines E, then its 
conju&ate {9d} defines E. 

As in (6.4), by endowing a complex vector bundle on a manifold with a 
Hermitian metric, we can reduce its structure group to the unitary group. 
Since unitary matrices g., satisfy g., = (del) -1, we see that the conjugate 
bundle E and the dual bundle E* have the same transition functions and 
hence are isomorphic. So by Example 21.12, if c(E) == n (1 + xJ, then 
c(E) = n (1 - xJ. . 

Realization and Complexification 

By simply forgetting the complex structure, we can regard a linear map of 
complex vector spaces L: C·-+ C" with coordinates ZI' ••• , z. as a linear 
map of the under1yll.~ real vector spaces LR : R211 -+ R2

- with coordinates 
Xh •.. , X2,. where z" = X21-1 + iXl'" Conversely, via the natural embedding 
of R" in C", a linear map of real vector spaces L: R--+ R" gives rise to a 
map L ® C : C,. -.- e". The first operation is called realization and the 
second, complexifjcation. The complexification of a real matrix is the matrix 
itself, but with the entries viewed as complex numbers. The realization of a 
complex matrix is described in Examples 22.2 and 22.3 below. In terms of 
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matrices these t\\ 0 operations give a sequence of embeddings 

U(n) c. O(2n) c. U(2n) 

(22.1) GL(n, C) c. GL{2n, R) c. GL(2n, C) 

A~ A ....... A.®C. 

EXAMPLE 22.2. Let L: C -+ C be given by multiplication by ~ complex 
number A. = a + ;p. Since 

(ex + iPXx1 + iXl) == (axl - {JX1) + i(fJXl + «Xl), 

as a linear map from Rl to'R2, LA is given by 

Thus 

. (<< -fl) (Cl + JfJ).:= fJ tx· 

EXAMPLE 22.3 Let L: Cl ..... Ca be Jiven by the complex matrix (f~ ~ 
where At == elA; + ip". A little computation shows that La : ~ --. If' is given 
by 

(~~)H 
Cll -p, «1 

(~~) Pt tll /Jl 
tll. -/13 «4 
iJ3 . Cl3 fJ4 

Thus el lZ) .: «11). (lz~ 
A3 A4. (A.3>. {Ar4 

It is clear Crom these two examplea what the realization of an ,. by n 
complex matrix should be. . 

Lemma l2.4. Let A be an n by "complex matrix. There is a 2n by 2ft IfIIItrix. 
B, independent of A, such that A. ® C u .similar to (~ ~ via B .. 

PROOF. ID the 1 by 1 case, this is a matter of dia,ooa1jzjo, 

. (a. -11) 
(<< + ill>. ® C .: \JJ a.. 
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Corresponding to the eigenvalues ex + i/J and a; - i/J are the eigenvector$ 
( ~ i) and (l). Therefore, B = (! I 1). 

Now consider the 2 by 2 ca~: 

A -= e: j . l. = rl. + ip. 

A.® C = e: ~:) where A ... (;: -~). 
Note that 

Al) (-~ 
0 1 

~)-( -~ 
0 1 0)(1 II 

(AI 0 i 0 i o 13 l" 
A3 A" 0 1 0 1 - 0 1 0 1 11 Xl) 

0 -i 0 i· 0 -; 0 i 13 I" 
So 

(1 0 1 

~) -i 0 i 
B= ~ 1 0 , -i 0 

For the n by n case, we can take B to be . 

1 1 
-i 

1 1 
• -i 

1 1 
-I 

, . 

o 
If E is a complex vector bundle of rank n with transition functions {g.,} , 

then E. ® C is the cOllJ.plex vector bundle oC rank 2n with transition func
tions {(g.,>, ® Cl. By Lemma 22.4, 

(22.S) E. ® C ~ E Ea E. 
" 
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This result may be seen alternatively as follows. On the complex vector 
space ER ® C, multiplication by i is a linear transformation J satisfying 
J 2 = - 1. Therefore, the eigenvalues of J are ± i and ER ® C accordingly 
decomposes into a direct sum 

ER ® C = (;-eigcnspacc) Q) « - ;)-cigenspace). 

On the i-eigenspace, J acts as multiplication by i, hence 

(i-eigcnspace) :::> E. 
Similarly, 

(( - ;).eigenspace) ::> E. 

It follows by reasons of dimension that 

E.®C = EEBE. 

The Pontrjagin Classes of a Real Vector Bundle 

By their naturality property the Chern classes of a Coo complex vector 
bundle are COO invariants of the bundle. For a rea) vector bundle E similar 
invariants may be obtained. by considerina the Cbem cJaascs of its COlD

plexification E ® RC; these arc the Pomrjagin claaa of E. More precilely. 
if E is a rank n real vector bundle over M, then ita tt;Jt4J POfttrjagln claa.ia 

P(E) == 1 + Pl(£) + ... + pJ.E) 

= 1 + cl(E ® C) + ... + c,,(E ® C) e H*(M). 

It follows from the corresponding properties of the total Chem clasa that 
the Pontrjagin class is fUDRorial and satisfies tbo-lVhitncy product formula 

P(E Ea £') == P(E)P(E'). 

The Pontrjagin class of a manifold is defined to be that of its tauaeDt 
bundle. . 
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EXAMPLE 22.7. (The Pontrjagin class of the sphere). Since the sphere S" is 
orientable, its normal bundle N in R" + 1 is trivial. From the exact sequence 

0-+ Ts.-+ T"'.lls,,--+ N ~ 0, 

we see by the Whitney product formula that 

P(S")P(N) == P(TR •• 1 Is.). 
Therefore, 

P(S") = 1. 

EXAMPLE 22.8 (The Pontrjagin class of a complex manifold). The Pontrjagin 
class of a complex manifold M is defined to be that of the underlying real 
manifold MR. Let T be the holomorphic tangent bundle to M. Then the 
tangent bundle to M R is the realization of T and 

P(M) = P(Ta) = c(TA ® C) = c(T Ea T1 = c(T)c(t). 

So if the total Chern class of the complex manifold M isc(M) = n (1 + Xi), 
then the Pontrjagin class is P(M) = n (1 - xt). 

REMARK 22.8.1. If we had followed the usual sign convention for the Pontr
jagin classes (see Remark. 22.6), the Pontrjagin class of a complex manifold 
would be P(M) == n (1 + xl), where the Xi'S are defined as above. To have 
only positive terms in this formula is one of the reasons for the sign in 
(-1)IC21(E ® C) in the usual definition of the Pontrjagin class. 

REMAllK 22.9. Let M be a compact oriented manifold of dimension 4n. By 
Poincare duality the wedge product" : H211(M) ® HZ"(M)-.... R is a nonde
generate symmetric bilinear form and hence has a signature; this is called 
the sigllllture of M. Recall that the signature of a symmetric matrix is the 
number of positive eigcnvalues minus the number of negative eigenvalues. 
Hirzebruch proved that the signature is expressible in terms of the Pontrja .. 
gin classes. 

H irzebruch sigMture fonrudG : 

signature of M = t L(pl (M), ., .• P4a(M». 
where L is the polynomial defined in Example 21.11. For a proof of the 
signature formula, see MilDor and Stasheff [1, p. 224]. 

Application to the Embedding of a Manifold 
in a Euclidean Space 

Using the Pontrjagin class onc can sometimes decide if a conjectured em .. 
btddioa is possible. Wc illustrate this with the following example. 
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EXAMPLE 22.10. Decide if er can be differentiabl y embedded in R9. 

By (22.8) and (21.13) the P~ntrjagin class of er is 

P{CP") == c(Tcp.)c(Tc,.) = (1 + xf'(l - x)' :z (1 - Xl)'. 

If er ca(1 be differentiably embedded in R9
, then there is an exact se

quence 

0--+ (TcP4),. -+ TR9Ic1'4 -+ N --. 0, 

where (TCP.)A is the realization of the holomorpbic tangent bundle TCP4 and 
N is the normal bundle of cl'" in R9. By the Whitney product fonnula 

(22.11) 

Since the restriction TR9 1cP4 is the pull back of TA9 to er under the em
bedding i : Cp4 -+ 1R 9

, by the functoriality of the Pontrjagin class 

P(T,.9IcP4) == i*P(TR9) ~ 1. 

Therefore, by (22.11) 

(22.12) 

Since N is a real line bundle, the top component of P(N) should be· in 
H2(cp4). This contradicts the fact that 5xl and lSx4 are nonzcro classes in 
H4(CP') and H 8(cp4). Thus er cannot be embedded in R~. 

From (22.12), ifCr can be embedded in ir, then the normal bundle has 
rank at least 4, since the top-degree term. of the Pontrjagin class· ofa rank k 
real bundle is in dimension 2Ic. It follows that er cannot be embedded in a 
Euclidean space of dimension 11 or less. 

. '/ 

§23 The Search for the Universal Bundle .\ ,." 

Let f : M ~ N be a complex map between two manifolds and E a complex 
bundle over N. The puUback f -1 E is a bundle over M. if the Cbe.~ ~lasSes 
of E vanish, by the naturality property (20.10.1), SQ dQ those' of I-lE. 
Taking the Chem classes to be a measure oC the twisting of a bundle, we 
may assert that pulling back "dilutes" a bundle, Le., makes it lea twisted. 
One exttOeme example is when f is coustant; in this case f - 18 is trivial. 
Another example is the dag construction of Seetion 21; pulling E back to 
the split manifold F(E) splits E into a direct sum of line ~undles. Onc may 
wonder if there exists a bundle whlch is so twis~ that eVfry bundle is· a 
pullback of this universal bundle. Such a bundle indeed exists, at least for 
manifolds of finite type; it is the Wuvcrsal quotient bundle on the Grass
mannian Gt<C,,} for n sufficiently large. We will prove this result and con
clude from it that every natural transfo~D from the comolcx vector 
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bundles to the cohomblogy clas~s is expressible in terms of the Cbern 
classes, all for manifolds of finite type. We also indicate how the theorems 
generalize to an arbitrary manifold. 

The Grassmanniad' 

Let Y be a comple~ vector space of dimension n. The complex Grassman
nian GA;(V) is the set.of all subspaces of complex codimension k in V. We 
sometimes call such a subspace an (n - k}-plane in Y. Given a Hermitian 
metric on V, the unitary group U(n) is the group of all metric-preserving 
endomorphisms of V. Clearly U(n) acts transitively on the collection of all 
(n - k)-planes in V. Since a unitary matrix which sends an (n - k)-plane to 
itself must also fix the complementary orthogonal k-plane, the stabilizer of 
an (n - k)-plane in V is U(n - k) x U(k). Thus the Grassmannian can be 
represented as a homogeneous space 

U{n) 
GJ V) = U(k) x~'U(n - k) . 

As the eoset space of a Lie group by a closed subgroup, GJV) is a differ
entiable manifold (Warner [1, p. 120]). Note that G.- 1(V) is the projective 
space P(V). 

Just as in the case of the projective space, over the Grassmannian Gt<V) 
there are three tautological bundles: the universal subbundle S .. whose fiber 
at each point A of GJV) is the (n - k)-plane A itself; the product bundle 
V = Gt { V) )( Y; and the universQl quotient bundle Q defined by 

0--+ S --+ V --+ Q--+ O. 

'. This exact sequence is called the tautological sequence on Gt(V). Over G,,(V> 
the universal subbundle S has rank n - k and the universal quotient bundle 
has rank k. 

Similarly, if V is a real vector space, one can define the real Grassman
nian Gt< V) of codimension k real subspaces of V, and the analogous real 
universal bundles. The real Grassmannian caB also be represe~ted as a 
homogeneous space 

ft ()(n) 
GJR ) = O(k) x O(n - k) • 

Pnpositioa 23.1. The cohomology of the complex Grassmannian Gt<Y) has 
Pohtcare polynomial . 
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PROOf. The flag manifold F(V) may be obtained from the Grassmannian 
GtC V) by a series of flag constructions as fonows. Let Q be the pullback of Q 
to the flag bundle F(S). 

\ 

A point of F(S) is a pair (A, L 1 c··· c A) consisting of an (n - k)-plane A 
in V together with a Hag in A. Therefore a point in F(a> consists of a point, 
in F(S), (A, Ll c ... c: A), together with a flag iq V/A, i.e., a point in F(Q) is 
given by (A, Ll c··· c L,,-t-l cA c: L .. _I:+l'C··· c:: V). So F(Q) is the 
flag manifold F(V), and F(V) is obtained from the Grassmannian GJV) by 
two flag constructions. By (21.18); tbe Poincare polynomials of F( Y) and 
GJ V) satisfy the relation 

(I - t 2
) • • • (1 - t2"'-A:~1 - tl

) • • • (1 - t 2
' 

P ,(F(V» = P ~GtCv» (1 _ t l) ... (i - tlXI - ,2) ... (1 7" t 2) • 

From (21.17) it follows that 

(1 - t 2) • •• (1 - ,2") 
P,(Ga(V» = (1 _ t l ) ... (1 _ ,2(11-1'<1 _ ,2) ..• (1 _ t~ • D 

As fOf, the ring structure of the cohomology of the Grassmannian GJ. JI). 
we have tbe fonowing. 

ProposidOD ~ Let V be a complex vector space of dimension fa. 

(a) As a ring 

H.(G.(JI) = R[Cl(S), ..• , c.-t!S), Cl(Q), ..• , ctCQ)] 
(c(S)c(Q) - 1) 

(b) The Chern classes Cl(Q), ... , ct<Q) of the quotient bundk generate the 
cohomology ring H·(G,(V». 

(c) For a fixed k and afixed i there are no polynomial relatiou of degree j 

among Cl(Q), •.. , c.(Q) if the dimension of V is large enough. 

PROOF. In the proof of PrOpolitiOD 23.1, we saw that the flag manifold F(V) 
is obtained from the Grassmannjan by two flag constructions 

Q 

S E9 Q 1 F(O) ... F(V) 

1 F(S)/ 

G.(V)/ 



294 IV Characteristic Classes 

By (21.18) the cohomology ring of the flag manifold is 

H*(F(V» = H*(Gt(V))[Xh .. " Xn-A, y., ... , Y.] . 
(0·(.1 + xJ = c(S), n (1 + YJ) = c(Q») 

On the other hand, we've computed the cohomology of F( V) in (21.17) to ~ 

(*) H*(F(V» =' R[x., ... , x,._" Yl' ... , Y,J/(n (1 + Xi) n (I + YJ) = 1). 

Thus in H*(G.;(V)) the Chern classes of Sand Q can satisfy no relation other 
than c(S)c(Q) = 1, for any relation among them would appear as a relation 
among the x/s and y/s in (*). It follows that there is an injection of algebras 

(23.2.1) lR[c(S), c(Q)] H*(G (V». 
(c(S)c( Q) = 1) c. " 

From the digression following this proof, the Poincare senes of 
R[c1(S), ... , c".-t($), c1(Q), ... , c.{Q)]/(c(S)c(Q} = 1) is 

p (R[c(S), c(Q)]) = (1 - 12) ... (l ,- (211) . 

f (c(S)c(Q) = 1) (1 - t 2) ., '(I - ,2(11-1»(1 - t 2) ... (1 - tU) . 

But this is also the Poincare series. of H*(G.(V). Thus the injection (23.2.1) 
is an isomorphism. This proves (a). 

Writing c(S) = l/c(Q), we see from the description of the ring structure in 
(a) that Cl(Q), ... , Cl(Q) generate the cohomology ring of GJV). 

The equation c(S) = 1/c(Q) not only allows one to eliminate Cl(S), ... , 
clI-t<S) in terms of c l(Q~ ... , c.(Q), but also gives polynomial relations of 
degrees 2(11 - k + 1), ... , 2n among Cl(Q), ... , Ct(Q). Thus for a given degree 
i, if the dimension 11 of the vector space V is so large that 2(n - k -t- 1) > i, 
then there are no polynomial relations of degree i among the Cher~ classes 
~~ 0 

Digression on the Poincare Series 
of a Graded Algebra 

Let k be a field and A = (f>;o.1 A. a graded algebra. over k. The Poincme . 
series of A is· defined to be 

00 

P ,(A) = L (dim. AJtl. 
. L-O 

If A is a graded Z -module, its Poincare series is defined· to be that of the 
Q-algebra A ®z o. 

EXAMPLE. Let A be the polynomial ring R[x], where x is an element of 
degree n. Then 
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EXAMPLE. Let A and B be two graded algebras. Suppose a basis fo{ A as a 
vector space is {xd; E I and a basis for 8 is {y J} J. J. Then a vector space 
basis for A ® B is {Xl ® YJ}hl,J&J. Therefore 

P,(A ® B) == P ,(A)P ,(8). 

EXAMPLE. Let A = R[x, y], with deg x = m and deg Y = n. Then since 
R[x, y] ::; H[x] ® R[y],' ., 

. 1 1 
P,(A) == P,(R[x])P,(R[y]) == 1 _ t IR • ~. 

We next investigate the effect of a relation on the Poincare series of a 
graded algebra. 

Proposition 23.3. Let A = Ea ~ 0 A; be a graded algebra over a field le, and x a 
homogeneous element. of degree ~ in A.. If x·is not a zero-divisor, thelt 

J. 

P ,(A/xA) = P ,(A~l - r'). 

PROOF. Because X is not a zero-divisor, multiplication by x is an injection. 
Hence ·fot ·each integer j there is aD. exact sequence of vector SpIWCI 

0-+ A,~ A.+.-. (A/xA),+ .. -+ O •. 
. ' 

By the additivity of the dimension, 

dUn AI,+. = dim A, + dim(A/xA), ••. 

Summing over all i, 
I ; 

00 CIO 00 

L (dim A,+.)t'+a =- L (dim A,)t'+· -+ L dUn(A/xA),+.t'+a, 
'''-.a I--a 1--11' .. 

where we set A, == to} if j is negative. Hence 

P ,(A) = P ,(A)t" + P ,(A/XA). o 
EXAMPLE. If x, y, and z are elements of dearec 1, then the PoincarC series of 
A = R[x, y, z]/(x3y + y1z1 + xy1Z) is 

P ,(A) == P ,(R[x, y, z]Xl - t4
) 

== (1 - ,4)/(1 - ,3). 

To generalize Proposition 23.3, we ~ need the notion of a r~gular 
sequence. 

DefiDitioD. Let A be a ring. A sequence of elements ai' ... , ar in A is a 
regular sequence if a1 is not a zero-divisor in A and for each i ~ ~ the image 
of a, in A/(ah ••• , a,-I) is not a zero-divisor. 
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Proposition 23.4. Let A be a graded algebra over a field k and aI' ... , a,. a 
regular sequence of homogeneous elements of degre,s n., ... , nr • Then 

p I..A/(a" ... , a,)} == P ,(AXl - ~1) .. • (1 - tllp). 

PROOF. This is an immediate consequence of Proposition 23.3 and induction 
onr. 0 

Let 1 be the ideal in R[ x h ••• , X J, Y h .•• t yJ generated by the homogcn. 
eous terms of (1 + Xl + ... + xJXl + Yl + ... + yt> - 1. We will now com-

. pute the Poincare series of R[Xh ... , xb Yh ... , yJlI. 

Lem.... 23.5. Let A be a graded algebra over a field k. If a1' ..• , a, is a 
regular sequence of homogeMous elements of positive degrees in A, 10 is tIIIy 
permutation of a 1, .•• , a,.. 

PROOF. Since any permutation is a product of transpositions of adjacent 
elements, it suffices t~ show that all ... , a, -1, a,. 1, Q" ... , Qr is a regular 
sequence. F pr this it is enough to show that in the ring A/(a h ... , Q,- 1), the 
images of a,+b a, fo~ ~~.regular sequence. In this way the lemma is reduced 
to the case of two elements: if a, b is a regular sequence of elements of 
positive degrees in the graded algebra A, so is h, a. 

If x is an element of A, we write i for the image of x in whatever 
quotient ring of A being discussed. Assume that a, b is a fCgular sequence in 
A. 

(1) Suppose bx = 0 in A. Then bi = 0 in A/(a). Since b is not a zero-divisor 
in A/(a), x = aXI for some Xl in A. Therefore, abXI == 0 in A. Since Q is 
not a zero divisor, bXl == O. Repeating the argument, wc get Xl = ax2, 
Xl = 4X3. and so on. Thus x = aXl = a2xl = a 3

x,3 = ... , showing that 
X is divisible by all the powers of a. Since a has positive degree, this is 
possible only if x == O. Therefore b is not a zero-divisor in A. 

(2) Next we show that a is not a zero-divisor in A/(b). Suppose ai == 0 in 
A/(b). Then ~ = by for some y in A. It follows tbat by == 0 in A/(a). 
Since ,; is not a zero..<fivisor in A/(a), y == az for some z. Therefore, 
ax = ab:. Since a is not a zero-divisor in A, x == bz; hence. i == 0 in 
A/(b). , 0 

Lemma 13.6.1/ Q" ••• , ar , b and ab ... , art c are regular sequences in a ring 
At then so is ah ..• , tlr, be. 

hOOF. It suffices to check that be is not a zero-divisor in A/(alt ... ; ~). This. 
is clear since by hypothesis neither b nor c is a zero-divisor in A/(a" .,., a..). 

o 
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PropositiOD 23.7. The homogeneous terms of 

(1 + Xl + . #' + xjXl + 11 + ... + yJ - 1 

form a reQular sequence in A = H[X1, ..• , Xj, Yl, •.. , yAl . 
. / 
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PROOF. The proof proceeds by induction on j and k. Suppose j:& 1 and 
k = 1. Then R(Xb Yl]/(Xl + Yl) = R[Xl] and the imaae of x,y, iD A[Xl' 
Yl]/(XI + Yl) is -x~, which is not a zero divisor. So Xl + Yh XIYl is a 

regular sequence in R[x., YI]. For a gencraJj and k, let}; be the homopn-
eaus term of degree i in (1 + Xl + ... + xJX1 + 11 + ... + yJ - 1. We first 
show that f1' .•. ,.h + 1 - 1, x J and /1, ... , Jj + k - l' Y. are regular sequeoces. By 
Lemma 23.5'!1' ... ,jj+l-h xJ is a regular sequence if and only ilxJ,/" ...• 
fi+l-l is. Letlt be the image oC}; in A/(xJ). Si~ xJ is not a zer~v~r in 
A, it suffices to show that!h '" '~+1-1 is a regular sequence in A./(x~ This 
is true by the induction hypothesis, since 

A/(x) = R[Xb ... , xJ- It YIt ..• , yJ 

and 

1 +h + ... +h+i-l =(1 +Xl + ... +XI-IX1 +11 + ... +yj. 

. Therefore, fh ... ,jj+t- It xJ is a regular sequence in A. Similarly, lit ... , 
jj+t-It y" is also a reaular scqucoa: in A. By Lemma 23.6, so -/1, ... , 
jj+"-b XIY"· 0 

By Propositions 23.4 and 23.7, if 1 is the j~ in 

generated by the homogeneous terms of 

(1 + Xl + .. · + x.-tXl + y, + ... + yJ - 1, 

where deg X, = 2; and deg Y. = 2i, then the P.Qiocate series of A/I is 

The Classification of Vector Bundles 

We now show that the vector bundles over a manifold M may be classified 
up to isomorphism by the homotopy classes of maps from M into a Grass
mannian. We will first discuss this in the complex case and then extend jt by 
analogy to the real case. . 
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Lemma 23.8. Let E be a rank k complex vector bundle over a dUferentiable 
manifold M of finite type. There exist 'on M finitely many smooth sections of 
E which span thefiber at every point. 

PROOF. Let {U i} i & I be a finite good cover for M. Since U i is contractible, 
E IUi is trivial and so we can find k sections Si. it •.• , Si. lover U i which form 
a basis of the fiber above any point in U i • By the Shrinking Lemma (see 
(21.4) and (21.5), there is an open cover {)fJ}, E I wi th P, c U. and smooth 
functions Ji such that h is identically 1 on )fJ and identically 0 outside U,. 
Then {/; Si, h ... , It S,, Ir} i It I are global sections of E which' span the fiber at 
every point. .. , 0 

ProposidOD 23.9. Let E be a rank k complex vector bundle over a differ
entiable manifold M 01 finite type. Suppose there are n global sections of E 
which span the jiber at every point. Then there is a map f from' M' to some 
Grassmannian Gt(C") such that E is the pullback under f o! the universal 
quotient bundle Q; that is, E ~ I·· IQ. 

PROOF. Let Sh ... , s" be n spanning sections of E and let V be the complex 
vector space with basis SI' ... , s". Since SI' ... , s,. are spanning sections, for 
each point p i~ M the eval~ation ~ap 

ev p: V --. E p ~ 0 

is surjective. Hence ker ev p is a codimension k subspa~ of V, and the fiber 
of the universal quotient bundle Q at the point ker.cv p of ~be 9r~manDian 
G,J. V) is V /ker ev p = E p' If the map I: M -+ Gt ( V) is defined by . 

!: p ..... ker evp~ 

then the quotient bundle Q pulls back to E. We can identify V with e", and 
G,J.V) with Gt(e"). 0 

This map! : M -+ Gt(C") is called a classifyiny map for the bundle E. 
In the proposition above, if {Si" ... , s~} is another choice of global sec

tions which span the fiber at every point, and V' the vector space with basis 
s'1' ... , s~, then there is a natural isomorphism of V with V', and of Gt ( V) 
with GJV'). Therefore the classifying map! : M.-+ GtCC") is well--detined up 
to the identification of V with C·, independent of the choice of the n 
spanning sections. More precisely, any two such maps f and I' from M to 
GttC·) differ by the action of an element 'B of GL(n, C) on G.(C"); that is, 

f' = B 0 f, where B: Ga:(C") ..... G,J.C"). 

Since G4n, C) is connected, there is·a path y(t) joining the identity element 
1 and B in GU,n, C). Then /, = ')'(t) 0 f is a homotopy between I and I'. 
Therefore we may refine Proposition 23.9 to include the following state
ment. 
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'(23.9.1) The homotopy class 01 the classifying map I: M -.. GJC·) 0/ t~ 
vector bundle E is uniquely determined by E. . . . 

In fact, if 9 : E -. E' is an isomorphism of vector bundles over M, then 9 . 
gives a one .. to-one correspondence between the sections of E and the sec
tions of E'. So by the'same reasoning as in (23.9.1), we see that E and E' 
determine homotopic classifying maps / and f' from M to the Grassman .. 
nian GJC"). Writing Vect.<M; C) for the isomorphism classes of 01e ra~k k 
complex vector bundles over M and [X, YJ' for the set of all homotopy 
classes of maps from X to Yt we ha·ve the following. 

(23.9.2) For.n ~JCiently large. ~r~ is·a well-defined map . . :. 

given by the classifying map of a vector b~le. ' 

REMARK 23.9.3. Fr~m t~e proof of Lemma 2~.8, if M has a good cover with 
r open sets, then every rank' k' bundle over M has a set of rk spanning 
sections. Thus in (23.9) given the lU"njfold M of finite type and tPe b;l~Cler 
k, if n i.s an integer ~ rlc, ~en' the Grass~~ Gt<C"). cl~ifics, ~ v.ector.·-
bundles of rank k over M. . '" ...... 

Theorem 23 .. 10. Let M be a manifold having a gootl cover consisting ofr ope,,-_' 
seis and let k be' a positive integer: Fot; ev'e;ry integer n ~ la,. ,lwJe ¥ Q . 

one-to-one co"espondence . ~.: '.. '. 

Vect.(M; C) ~ [M; Gate-)l . 

between the iSOnJC?rphis~ classes of rank k complex. vector bu.ndles over M tUJd 
the. homotopy classes of maps fro,!, M into the~",ple.x GrlUsmanni",..(I.(C"). 

PROOF. By the homotopy property of vector bundles (Theorem 6.8), there is 
a map 

ex ; [M, Gl(C")]-+ VectJM; C) 

given by the pullback of the universal quotient bundle over Gl(e"): 

I~f-l~. 

By (23.9), (23.9.2), and (23.9.3), for any integer n ~ r~ the map · / 

fJ: Vecta(M; C) ...... [M,.G-<C")], . 
gi ven by the homotopy class of the classifying map of a vector bundle, is 
inve~ to (l. 0 

As a corollary of the existence of the universal bundle (23.9), wc now 
show that in a precise sense the Chem classes are the only cobo~~gical 
invariants of a smooth complex vector bundle." ., ' .. ,. ~-
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Propositioa 23.11. Every natural transformation fro'm the isomorphism classes 
of complex vector bundles over a manifold of finite type to the th Rham 
cohomology can be given as a polynomial in the Chern classes. 

PROOF. Let T be a natural transformation from the functor VectJ. ; C) to 
the functor H·( ) in the category of manifolds of finite type. By Proposition 
23.9 and the naturality of T, if E is any rank k complex vector bundle over 
M and!: M -+ GJ.C·) a classifying map for E, then 

T(£) == T(, -IQ) == ,.T(Q). 

Because the cohomology of the Grassmannian G.(C·)' is generated by the 
Chern classes of Q (Prop. 23.2(b», T(Q) can be written as 

T(Q) == Pr(Cl(Q), ... , Cl(Q» 

for some polynomial PT depending on T. Therefore 

T(E) .: f"T(Q) == P"'(f*Cl(Q)' .•• ,/*c"'{Q» = Pr(Cl(E), ... , cJ.E». 0 

Of course there is an analogue of Theorem 23.10 for real vector bundles. 
Recall that we write V ectt(M) for the isomorphism classes of the rank k real 
vector bundles OVcf M. 

TIaeorem 13.1~ Let M be a manifold having a good cover consisting of r open 
sets and k a positive integer. For every integer fa ~ rk, there is a one-to-one 
co"espondence 

VectJM)""'; [M, GJR")]. 

The proof is completely analogous to that of Theorem 23.10. 
We now classify the vector bundles over ~pheres and relate them to the 

homotopy groups of the orthogonal and unitary groups. 

Exercise 23.13. (a) Use Exercise 17.24 and the homotopy exact sequence of 
the fibration 

to show that 

O(k)-+O(n)/O(n - k} 

1 
GJR") 

1tJGt;{R"» = 1I:,.-1(O(k» if n ~ k + q + 2. 

(b) Similarly show that 

1tJGJ.C"» = 1t,._l(U(k» if 11 ~ (2k + q + 1)/2. 

CQt'bbining these formulas with Proposition 17.6.1 concerning the re
lation of free versus base-point persernng homotopies we find that for n 
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sufflCiently large, 

VectJS,) = [5', G~R")] 

:c 1ft< GJR,,»/n 1 (GJW» 

= n.,_l(O(k»/noCO(k». 
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Exactly the same computation works for the complex vector bundles over 
Sf. We summarize tbe results in the following. 

I 

Proposition l3.14. The isomorphism classes of tlw differentiable rank k real 
vector bundles over the sphere S" are given by 

Vectt<S4) ~ K.,-l(O(k»/Zl ; 

the isomorphism classes of the complex vector bundles are given by 

Vect.(S4; C) ~ 1t.,-l(U(k». 

REMAllK 23.14.1 If G is a Lie group and a E G, then conjugation by a defines 
an automorphism h" ofG: . 

h.(g) == aga- 1 

Let m be any integer. The map h. induces a map of homotopy groups: 

(h.). : n...{G)-. n.l..G). 

If two elements a and b in G can be joined by a path }'(t) in G, then h. is· 
homotopic to hb via the homotopy h"t). Consequcntly (hJ. == (h.> • •. In this 
way conjugation. induces. an action of no(G) 00 "-'~ called the adjoint 
action. 

We know from (17.6) that for any space X with base point x, conjugation 
on the loop space Q%X induces an action of 1tl(X) on "'JX). With a little 
more classifying space theory, it can be shown that the action of.Zo(O(k» on 
1tq - 1(O(k» corresponding to the action of 7tl(Gt<w) on nJGl(R"» under the 
identification of 1t,-1(O(k») with 1t~GJ.R~» is p~e<;i~ly ~e adjoint action. 

REMARK 23.14.2. It is in fact possible to explain the correspondence (23.14) 
directly_ Let'E be a rank k vector bundle Over S- with structure.&r0up O(k),
and let U 0 and U 1 be small open neighborhoods of the upper and lower 
hemispheres. Because U 0 . and U 1 are contractible, E is trivial over them. 
Hence E is completely determined by the traQSitiOD (unction 

901 : Uo n U 1-+ O(k). 

go 1 is called a clutching function for E. Then Proposition 23.14 may be 
interp~eted as a correspondence between the isomorphism classes of vector 
bundles over a sphere and the free homotopy classes of the cl~t~~na func
tions. 
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Exercise 23.15. Compute VectaJS1
), VectA;(S2), and Vect,,(S3). 

EXAMPLE 23.16 (An orientable sphere bundle with zero Euler class but no 
section). Because S4 is simply connected, every vector bundle over S4 is 
orientable (Proposition 11.5). For a line bundle orientability implies triv
iality. Therefore, 

By (23.14), 

Vect1(S4) = 1t3(SO(2»/l2 = 1t3(Sl)flL2 = 0, 

Vect3(~) == 1t3(SO(3»/l;z = 7t3(Rp3)/ll 

= 1t3(S3)/Z2 = l/l2 . 

Consequently there is a nontrivial rank 3 vector bundle E over S4. The 
Euler class of E vanishes trivially, since e(E) is in H3(S4) = 0. If E has a 
nonzero global section, it would split into a direct sum E == LEaF of a line 
bundle and 11' rank 2 bundle. Since Vectl(~) = Vect2(S4) = 0, this would 
imply that E i~ trivial, a contradiction. Therefore the unit sphere bundle of 
E relative to some Riemannian metric is an orientable S2-bundle over S4 
with zero EuIer class but no section. This example shows that the converse 
of Proposition 11.9 is not true. 

REMARK 23.16.1 Actually Vect3(~) ~ I, because the action of Zl on 
1t3(S0(3» is trivial. Indeed, by Remark 23.14.1 this action is induced by the 
action of -1 E 0(3) under cOnjugation on S0(3). But, conjugating by - 1 
clearly gives the identity map. 

In ge!leral, by the same reasoning, if k is odd, then the action of 1to(O(k» 
on 1tJ.O(k» is trivial for an q. 

The Infinite Grassmannian 

We will now say a few words about vector bundles over manifolds not 
having a finite good cover. For Theorem 23.10 to hold here the analogue. of 
the finite Grassmannian is the irifinite GrtUsmannian. Given a ~uence of 
complex vector spaces· . 

. .. c: V, C v,+ 1 c: V,+2 c: ... . 
there is a naturaUy induced sequence of Grassmannians 

... c GA;(V,) c Gt (¥,+ 1) c: GJ v,. + 2) c .... 

The infinite Grassmannian Gt { V 00) is tlie telescope aonstructed from this 
sequence. Over each GJv,) there are the universal quotient ~undles Qr and 
there are maps . 

. .. c Q, c:: Q, + 1 c: Qr + le' . .. . 
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By the telescoping construction again there is a bundle Q of rank k over 
Gt(Vcx,). A point of Gt(Voo) is a subspace A of codimension k in V and the 
fiber of Q over A is the k-dimensional quotient space Voo/A. 

Unfortunately the infinite Grassmannian is infinite-dimensional and so is 
not a manifold in our sense of the. word. Since to discuss infinite'" 
dimensional manifolds would take us too far afield, we will merely indicate 
how our theorems may be extended. By the countable analogue of the 
Shrinking Lemma (Ex. 21.4), with the finite cover replaced by a countable 
locally finite cover, one can show just as in Lemma 23.8 that every vector 
bundle over an arbitrary manifold M has a collection of countably many 
spanning sections S1' S2' •••• If Vex> is the infinite--dimensional vector space 
with basis Sit S2, •.. , there is again a surjective evaluation map at each 
point p in M: .. 

ev,,: Vex> ~ El' -+ O. 

The kernel of ev" is a codimension k subspace of V IX)' So the function 
!(P) = ker ev" sends M into the infinite Grassmannian Gt{VIX»' This mapfis 
a classifying map for the vector bundle E and there is again a one-to-one 
correspondence 

Vectt<M; C) ~ [M, Gt<CCO)]. 

All this can be proved in the same way as for manifolds of finite type. From 
Proposition 23.2, it is reasonable to conjecture that the cohomology ring of 
the infinite Grassmannian GJCCO) is the free polynomial algebra 

R[Cl(Q), ... , ctCQ)]. 

This is indeed the case .. (For a proof see Milnor and Stasheff [1, p. 161] or 
Hu,semoller [1, Ch. 18, Tb. 3.2, p. 269].) Hence Proposition 23.11 eXl:Cnds to 
a general manifold. ..' . ' .' , . .- . 

" '/'(" ..... ~' ~ , .,'. 

Exercise 23.17. Let Y be a vector space over R a~d ·f· = J:lom(V. R) its 
dual. .,' . ,~~ .. ~ 

(a) Show that P( V*) may be interpreted as thc~set of all hyperplanes in Y. 
(b) Let Y c: p(Y) X P(V*) be defined 'by 

y = {([v], [H])IH(v) = 0, ve V, H eV*}. 

In other words, Y is the incidence correspondence of pairs (line in Y', 
hyperplanc in Y) such that the line is coo&ained in the hyperplu.. Compute 
H*(Y). " " " . • . 

Concluding Remarks 

In the preceding sections the Chern classes of a vector bunciic E over M' 
were first defiD~d by studying the ,relations ,in tbe cohomQlogy ring H.(PE) 
of ~he projective bundle, where the ring was considered as an algebra over 
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H·(M). This somewhat ad hoc procedure turned out to yield all characteris
tic classes of E only after we learned that all bundles of a given rank were 
pull backs of a universal bundle and that the cohomology ring of the uni
versal base space (the Classifying space) was generated by the Chem classes 
of the universal bundle. 

From a purely topological point of view one could therefore dispense 
with the original defjnition, for by designating a set of generators of the 
cohomology ring of the classifying space as the universal Chem classes, 'one 
can define the Chern classes of any vector bundle simply as the puUbacks 
via the classifying map of the universal Chem classes. On the other hand, 
from the differential-geometric point of view the projective-bundle defini .. · 
tion is more appealing, starting as it does, with c 1 (S~), a class tbat we 
understand rather thoroughly and that furnishes us with a canonical gener
ator for H*(PE) over H*(M). However, this Ct is taken on the space P(E) 
rather than on M and is therefore not directly linked to the geometry of M. 
The question arises whether ~ne can write down .a form representing ct<E) 
in terms of the following data: 

(1) a good cover U·=: {U.} of M which trivializes E; 
(2) the transition functions . 

g.,: U. r'\ U,-+ GL(n, C) 

for E relative to such a trivialization; 
(3) a partition of unity subordinate to the open cover U. 

The answer to this question is yes and the reader is referred to Bott [2] 
for a thoroughgoiVg discussion. Here we will describe only the final recipe, 
for to understand it properly, we would have to explore the concepts of 
connections and curvature, which are beyond the scope of this book. 

Observe first that we are already in possession of the desired formula for 
:he first Chem class of a complex line bundle L (see (6.38». Indeed, if g~ is 
:be transition function for L, the ele~ent 

i 
Cl. 1 .. 2n d log gd 

in the Cech--de Rham complex C· (U, 0·) is both d- and ~-closed. By the 
collating formula (9.5), once a partition of unity is selected, this cocycle 
yields a global form. The cohomology class of this global form is cl(L). 

In the general case one can construct a cocyle L::A tf-·· t + f , with 
~- •. l+. in ct-f{U, a +4), that represents the k-th Chem class c-<E) by the 
following unfortunately rather formidable" averaging" procedure. 

Let 1 == (io, ... t i.) correspond to a nonvacuous intersection, set 

U1 == l!io " ... ("\ U fe' 

and let 
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be the pertinent transition matrix function for E. Consider the expression 

as a matrix of I-fonns on U I X Rt + 1, the t's being linear coordinates in 
Rfi 1. From 8 one can construct the matrix of2-forms 

K, == d8, + i 91 
on UJ x Rt+ 1 and set 

i 
c,(E) = det(l + 2n K,). 

Our recipe is qow completed by the foUowing ansatz. ut 

A. == {(tl' .. ', ',+1)1 IJ ~ 0, 1: tJ - I} 

be the standard q-simpl~x in R'+1. The 2k .. form 4(E) restricted to U, . x A" 
and integrated over the "fiber A." yields the desired form on U, : 

et -,.H 9(E) = 1.4<E). 

In other words, ctCE) is represented by the chain 
t-l 

L tt-,·t .... e C·(U, 0·). 
,-0 . 

Note that for dimensional reasons this chain has no component below tbe 
diagonal and also no compoDcn~ in ..the zero-tb column. This fact has 
interesting applications in foliation theory (Bott [1]). In any case, the col
lating procedure (9.S) now completes the CODStruCtiOD of the forms c..(E) in 
~nns of the s~ficd data. 
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Paracompact space S8 
Parallel translation 12S 
Partition of unity 4, 21 
Path compooew 1, 189, 208 

and connected COmpoOCDb 208 
Path fibration 199, 225 
Padl space 198 

327 

Physics 8 
Poincare coojecture ·147 
Poincare dual SI, 230 (See also Closed -

Poincare dual; CompIICt Poiocar6 
dual) 
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over a projective bundle 270 
over a projecti~e ~ 268 

Universal subbundle' 17, 270 
over a Grassmannian 292 
over a projective bundle 270 
over a projective space 268 

Upper half space 30 
n -small chain 185 

Vector bundles (See also oriented vector 
bundle) 

classification 299 
cohomology 60 
compact cohomology 60 t 65 
compact venical cohomology 61, 63 
complex vector bundle 54 
Euler class 72, 118 
exact sequence of 6S 
flat 80 

·331 

", ~ t '. • J , 
, f 

I, • . .~ , ~ ... , , & ., 

God-given 26~ 
isomorphic <===;> cocy'cles are . 

equivalent 54 
orientability of 54 
orientable ~ a:tsociated sphere 

bundles are 115 
orientable ~ determinant bundles 

are 116 
over a contractible manifold 59· 
over a ~imply connected manifold 116 
over a sphere 302 
rt!al ~~tor bundle 53 
reduction of the structure group S4, 261 
splitting of 274 
to Udilute" a vector bundle 291 
unit ~phere bundle of 114 

Vector field 21 
Hopf index theorem 129 
index of a zero 128' 
on a sphere 125 

Volume iiltegral 3 
Volume form 

on a sphere 27' 
on the 2-sphere 235 

Wedge of spheres IS3, 262 
minimal model 263 
ranks of the homotopy groups 265 

Wedge product of differential forms 14 
. is Poincare dual to a transversal 

intersection 69 
• Weil. Andre S, 10. 89 
Whitehead tower 252, 253, 257 
Wbitaey embedding theorem 213 

. Wbitliey t Hasslet 7. 217. 266 
Whitney product fonnula 

for the Chem class 272, 275 
. for the Euler class 133 

for the L-class 279 
for the PODtrjagin class 289 
for:the Todd class 219 

'1' ang.- Mills 8 

Zero locus of a section 
nonnal bundle of 133 
orientation on 134 
Poincare dual of 134 

Zig-zag 95 
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