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Translator’s Preface

This book was written as a text for the learning of number theory, not as
a referente work, and we have attempted to preserve the informal, slow-
placed style of the original. The emphasis of the book is on number theory
as a living branch of modern mathematics, rather than as a collection of
miscellaneous results.

The book should prove accessible to any advanced undergraduate in
mathematics, or to any graduate student. The reader should be familiar with
the basic concepts of abstract algebra, and should have followed analysis
through a standard advanced calculus course. While some results from ele-
mentary number theory are occasionally used, a previous course in number
theory is certainly not necessary, though the reader without such a course
may have a few occasions for consulting a more elementary text,

Almost all of the notation and terminology is standard. The only difficulty
arose in the terminology for valuations. Since there does not seem to be any
universally adopted terminology in English, we have, after some hesitation,
followed that of the authors, which has the advantage of being clear and
simple in this context. Thus we reserve the term ‘‘valuation” for the case
when the value group is the integers. Mappings into the positive reals are
called “metrics.”

We would like to mention some additional references. The theory of
quadratic forms receives a systematic development in the book Introduction
to Quadratic Forms, by O. T. O’Meara (New York, 1963). In particular,
O’Meare presents a proof of the Hasse-Minkowski theorem which does not
use the Dirichlet theorem on primes in arithmetic progressions. In Chapter 7
of Commutative Algebre (Paris, 1965), Bourbaki gives a complete exposi-
tion of the theory of divisors, from a somewhat more abstract standpoint
than that found in Chapter 3.

NEwCOMB GREENLEAF

Rochester, New York



Foreword

This book is written for the student in mathematics. Its goal is to give a
view of the theory of numbers, of the problems with which this theory deals,
and of the methods that are used.

We have avoided that style which gives a systematic development of the
apparatus and have used instead a freer style, in which the problems and the
methods of solution are closely interwoven. We start from concrete prob-
lems in number theory. General theories arise as tools for solving these
problems. As a rule, these theories are developed sufficiently far so that the
reader can see for himself their strength and beauty, and so that he learns
to apply them.

Most of the questions that are examined in this book are connected with
the theory of diophantine equations — that is, with the theory of the solu-
tions in integers of equations in several variables. However, we also consider
questions of other types; for example, we derive the theorem of Dirichlet on
prime numbers in arithmetic progressions and investigate the growth of the
number of solutions of congruences.

The methods that we use are primarily algebraic. More precisely, we work
with finite field extensions and with metrics on them. However, analytic
methods have a considerable place. Chapter 5 is devoted to them, and p-adic
analytic functions are used in Chapter 4. Geometric concepts play a consid-
erable role in several spots.

The book does not presuppose a great deal of knowledge on the part of
the reader. For reading most of it, two university courses would be completely
satisfactory, Some facts on analytic functions are used in the last two
chapters.

The necessary prerequisites of an algebraic nature are given in the “Alge-
braic Supplement” at the end of the book. There the reader will find defini-
tions, results, and some proofs that are used in the book but might not
appear in a university course in higher algebra.

This book grew out of a course taught by one of the authors at Moscow
University. We would like to thank A. G. Postnikov, who allowed us the
use of his notes from this course.
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viii PREFACE

We are also extremely grateful to Dmitri Constantine Faddeev, who made
many contributions to this book. He should receive credit for some of the
proofs that appear in this book, for example, the new p-adic proof of the
theorem of Kummer on the second factor in the number of divisor classes of
a cyclotomic field.

Moscow THE AUTHORS
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CHAPTER 1

Congruences

This chapter is devoted to the theory of congruences and to its application
to equations in several variables. The connection between congruences and
equations is based on the simple remark that if the equation

F(x,, ..., x,) =0, 0.1

where F is a polynomial with integral coefficients, has a solution in integers,
then the congruence
F(x,, ..., x,) =0 (mod m) (0.2)

is solvable for any value of the modulus m. Since the question of the solva-
bility of a congruence can always be decided (if only by trial and error, as
there are only finitely many residue classes), we have a sequence of necessary
conditions for the solvability of (0.1) in integers.

The question of the sufficiency of these conditions is much more difficult.
The assertion that * an equation is solvable if and only if it is solvable as a
congruence modulo any integer’ is in general false (see, for example, Prob-
lem 4), but it is true for certain special classes of equations. In this chapter
we shall prove it in the case where F is a quadratic form which satisfies the
additional condition, clearly necessary, that (0.1) be solvable in real numbers.
(Note that if F is a form, then by the solvability of the equation F =0 we
shall understand the existence of a nonzero solution.)

The p-adic numbers, which we shall study and apply to the theory of con-
gruences and equations, will be our basic tool. We now indicate their role.
From the elementary theory of numbers it is known that if the congruences

F(x4, ..., x,) =0 (mod p})

1



2 CONGRUENCES [Chap. 1

are solvable for i =1, ..., r, where p,, ..., p, are distinct primes, then the
congruence (0.2) is solvable modulo m, where m = p,;*' ... p,**. Thus the solva-
bility of the congruence (0.2) for all m is equivalent to its solvability modulo
all powers of primes. We fix a prime p and ask whether the congruence

F(xy, ..., x,) = 0 (mod p*) 0.3)

is solvable for all natural numbers k. It was in connection with this problem
that Hensel constructed, for each prime p, a new kind of number, calling it
p-adic. He showed that the solvability of (0.3) for all £ was equivalent to the
solvability of (0.1) in p-adic numbers. Hence we may say that the solvability
of the congruence (0.2) for all m is equivalent to the solvability of (0.1) in
p-adic numbers for all prime numbers p.

Using p-adic numbers, our theorem on quadratic forms then receives the
following formulation (its proof will appear in Section 7): If F(x,, ..., x,)isa
quadratic form with integral coefficients, then (0.1) is solvable in integers if
and only if it is solvable in p-adic numbers for all p and also in real numbers.

In the formulation of this theorem, called the Hasse-Minkowski theorem,
and in many other instances, the p-adic numbers occur on equal terms with
the real numbers.

If the real numbers are necessary for the study of rational numbers from the
standpoint of their size, the p-adic numbers play a completely analogous role
in question connected with divisibility by powers of the prime number p.
The analogy between real and p-adic numbers can be developed in other ways.
It will be shown that the p-adic numbers can be constructed starting from the
rational numbers, in exactly the same way that the real numbers are construc-
ted—by adjoining the limits of Cauchy sequences. We shall arrive at different
types of numbers by giving different meanings to the notion of convergence.

We make one further remark. If F is a form, then the solvability of (0.1) in
integers is equivalent to its solvability in rational numbers. Thus one may
speak of rational solvability instead of integral solvability in the Hasse-
Minkowski theorem. This obvious remark becomes important when one
considers an arbitrary quadratic polynomial F, since the analogous theorem
then only holds when one speaks of rational solvability. Hence when we study
equations of the second degree, we shall consider not just integral, but also
rational solutions.

PROBLEMS

1. Show that the equation 15x% — 7y2 = 9 has no integral solution.

2. Show that the equation 5x> + 11y® -+ 1323 = 0 has no integral solution other than
x=y=2z=0,
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3. Show that an integer of the form 8n +7 cannot be represented as the sum of three
squares.

4. Using the properties of the Legendre symbol, show that the congruence
(x? — 13)(x* — 17)(x% — 221) = 0 (mod m)

is solvable for all m, 1t is clear that the equation (x* — 13}(x? — 17)}(x? — 221) =0 has no
integral solutions.

5. Show that the equation a,x, + :-- + a@.x, = b, where a, ..., a,, b are integers, is solv-
able in integers if and only if the corresponding congruence is solvable for all values of the
modulus m.

6. Prove the analogous assertion for systems of linear equations.
1. Congruences with Prime Modulus

1.1. Eguivalence of Polynomials

We first consider congruences with prime modulus p. The residue classes
modulo p form a finite field with p elements, and a congruence with modulus p
can be considered as an equation in this field. We shall denote the field of
residue classes modulo p by Z, . There exist finite fields other than the various
Z,. All considerations of the next two sections carry over word for word in
the general case of any finite field. To do this it is necessary only to replace the
number p by the number g = p™ of elements of this field. But we shall confine
our attention to the field Z, and shall use the notation of congruences rather
than equations. Only in the construction of the example following Theorem 3
will we need to employ other finite fields.

The field of residue classes modulo a prime (and more generally any finite
field) has several properties which distinguish it from the familiar fields of
elementary algebra, the fields of rational, real, and complex numbers. Most
important in our considerations is the fact that the well-known theorem that
polynomials which take equal values for all values of the variables must have
equal coefficients is no longer true for this field. For example, by the small
Fermat theorem, the polnomials x? and x take equal values in the field Z,
for all values of the variable x, but their coefficients are unequal. [The follow-
ing holds for any finite field: If ay, ..., o, are the elements of the field, then
the polynomial (x — a) --- (x — a,), which has nonzero coefficients, has value
zero for every value for x in the field.]

We write

F(xl’ AR xn) = G(xl’ teey xn) (mOdP)

and call the polynomials F and G congruent, if the coefficients of correspond-
ing terms on the right and left sides are congruent modulo p. If for any set
of values ¢, ..., ¢, we have



4 CONGRUENCES [Chap. 1

Fley, ..., ¢) =Gley, ..., c,) (mod p),

then we write F ~ G and call F and G equivalent. 1t is clear that if F= G,
then F ~ G, but the example of the polynomials x? and x shows that the con-
verse is, in general, false.

Since, if F ~ G, the congruences F = 0 (mod p) and G = 0 (mod p) have the
same solutions, it is natural that in the theory of congruences one needs to be
able to replace a polynomial F by a polynomial which is equivalent to it but
is possibly in a simpler form. We now return to this problem.

If any variable x; occurs in the polynomial F to a power not less than p,
then using the equivalence x? ~ x;, which follows from the small Fermat
theorem, we may replace x,7 in F by x;. Since equivalence is preserved under
addition and multiplication, we shall obtain a polynomial which is equivalent
to F but which contains x; to a lower degree. This process can be continued
until we arrive at an equivalent polynomial which is of degree less than p in
each variable x;. Such a polynomial we call reduced. It is clear that when x
is replaced by x;, the total degree of F (in all its variables) is not increased.
Hence we obtain the following result.

Theorem 1. Every polynomial F is equivalent to a reduced polynomial
F*, whose total degree is not greater than that of F.

We now show that the reduced polynomial equivalent to a given polynomial
is uniquely determined.

Theorem 2. If two reduced polynomials are equivalent, then they are
congruent.

This theorem is proved in precisely the same way as is the theorem men-
tioned above on the identity of polynomials, namely, by induction on the
number of variables. It clearly suffices to show that if the polynomial F is
reduced and F ~ 0, then F = 0 (mod p).

We consider first the case n = 1. If the degree of F(x) is less than p and
F(c) = 0 (mod p) for all ¢, then F has more roots than its degree, and this is
possible only if all coefficients of F are divisible by p, that is, F = 0 (mod p).
For arbitrary n > 2, we write F in the form

F(xl, ey x") = Ao(xl, ey x"_l) + Al(xl_, ceey xn—l)xn + ..
A, (Xgy o s X)X

Take an arbitrary set of values x; = ¢y, ..., X,—1 = C,_;, and set Ay(cy, ...,
Cno1) =Gos -oe s Ap-l(cl’ v Cpog) = ap-1- Then

. -1
F(Cys ooy Caogy Xp) = Qg + @y X, + - + Qp-1 xS

We have obtained a polynomial in one variable x,, which is equivalent to
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zero, since F ~ 0. But for polynomials in one variable the theorem has been
proved, and therefore the above polynomial must be congruent to zero. Thus

Aolcy, .oy €pey) = 0(mod p),

Ay (€1 €amg) =0 (mod p),

that is, 4o ~0, ..., 4,_, ~0 (since ¢, ..., ¢,—, were arbitrary). Since the
polynomials A; are clearly reduced and depend on n — 1 variables (and for
such polynomials the theorem is true by the induction hypothesis), then

Ay =0(mod p), ..., A,_, = 0 (mod p),
from which it follows that F ~ 0 (mod p).

1.2. Theorems on the Number of Solutions of Congruences

From Theorems 1 and 2 we can deduce some corollaries on the number of
solutions of congruences.

Theorem 3. If the congruence F(x,, ..., x,) = 0 (mod p) has at least one
solution, and the total degree of the polynomial F is less than the number of
variables, then the congruence has at least two solutions.

Proof. Assume that the polynomial F(x, ..., x,) with total degree r is such
that the congruence F(x,, ..., x,) =0 (mod p) has the unique solution

x; =a, {mod p), ..., x, = a, (mod p).

Set H(x,, ..., x,) = 1 — F(x,, ..., x,)?~'. By the small Fermat theorem and
the assumptions on F we have

_ 1 for x,=a,, ..., x, =a,(mod p),
Hxy, s xa) = 0  otherwise.

Denote by H* the reduced polynomial equivalent to H, by Theorem 1.
H* takes the same values as H. But, on the other hand, we can explicitly
construct a reduced polynomial taking the same values as H, namely, the
polynomial

(1 =Ci—a)y™h).

1

By Theorem 2 we have

H* = fll (1 = (x; — a)P~ ') (mod p). (1.1)
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From Theorem 1 it follows that the degree of H* is not greater than the degree
of H, that is, not greater than r(p — 1). Thus the degree of the left side of
(1.1) is not more than r(p — 1) and the degree of the right side equals n(p — 1).
Hence n(p — 1) < r(p — 1), and this proves the assertion for the case r < n.

Corollary (Chevalley’s Theorem). If F(x,, ..., x,) is a form of degree
less than n, then the congruence

F(xy, ..., x,) = 0 (mod p)
has a nonzero solution.

The existence of such a solution follows from Theorem 3, since one solution,
namely, zero, always exists in this case.

To complete the picture, we shall show that the inequality r < n cannot be
weakened if Chevalley’s theorem is to remain valid. We shall construct for
every n a form F(x,, ..., x,) of degree n, such that the congruence

F(x,, ..., x,) =0 (mod p) (1.2)

has only the zero solution.

We use the fact that for any »n > 1 there is a finite field £ with p” elements,
which contains Z, as a subfield (see the Supplement, Section 3, Theorem 2).
Let wy, ..., w, be a basis for the field £ over Z,. Consider the linear form
X0y + -+ + X,0,, in which x, ..., x, may take arbitrary values in Z,.
Its norm Ny ; (x,0; + - + X,0,) = @(xy, ..., X,) is clearly a form of degree
nin xy, ..., x, with coefficients in the field Z,. By the definition of the norm
N(a) (Supplement, Section 2.2) of the element & = x;0; + -+ + X0, (x; € Z,),
it follows that N(«) = 0 if and only if & = 0, that is, when x;, =0, ..., x, = 0.
Therefore the form ¢ has the property that the equation ¢(x,, ..., x,) =0
has only the zero solution in the field Z,. Now replace each coefficient of the
form ¢, which is a residue class modulo p, by any element of this class. We
obtain a form F(x,, ..., x,) with integer coefficients, of degree n in n variables,
and for this form F the congruence (1.2) clearly has only the zero solution.

Theorem 3 is a special case of the following fact.

Theorem 4 (Warning’s Theorem). The number of solutions of the
congruence F(xy, ..., x,) =0 (mod p) is divisible by p, provided that the de-
gree of the polynomial F(x,, ..., x,) is less than n.

Proof. Let the congruence have s solutions 4; = (a,?, ..., a, ") i=1, ...,s.
Again set H =1 — FP7! It is clear that

_t if X = A4; (mod p) (i=1,..,53),
H(x) = {0 otherwise
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where X stands for (xy, ..., x,). (Congruence of integer-valued vectors

means congruence of their respective components.) For any 4 = (ay, ..., a,)
we form the polynomial
Dy(xyy ooy x) =[] (1 = (x; —apr™). (1.3)
i=1

It is clear that

_ 1 for X = A (mod p),
D)= :O otherwise. (1.4)
Set
H*(xl’ sees xn) = DAl(xl’ ey xn) + et DA,(xl y reey xn)' (1-5)

The congruence (1.4) shows that H* takes the same values as does H for any
values of x,, ..., x,, that is, H ~ H*. Since each of the polynomials D,
is reduced, so is H*, and then by Theorems 1 and 2 the degree of H* does not
exceed the degree of H, which is less than n(p — 1). In each D,, there is just
one term of degree n(p — 1), namely, the term (—1)"(x,, ..., x,)*~*. Since the
degree of H* is strictly less than n(p — 1), the sum of all such terms must
vanish, which is possible only if s = 0 (mod p). This is precisely the assertion
of Theorem 4.

Theorem 3 follows from the theorem of Warning, since p > 2, and therefore
if s # 0 and s = 0 (mod p), then s > 2.

1.3. Quadratic Form Modulo a Prime
We now apply the above results to the case of quadratic forms. The follow-
ing fact is an immediate corollary of Chevalley’s theorem.

Theorem 5. Let f(x,, ..., x,) be a quadratic form with integer coefficients.
If n > 3, then the congruence
f(xh ey X,,) = 0 (mOdp)
has a nonzero solution.

The case of quadratic forms in one variable is trivial [if a # 0 (mod p), then
the congruence ax? = 0 (mod p) has zero as its only solution].

We shall consider the remaining case of binary quadratic forms. We shall
assume that p # 2 (in the case n = 2, p = 2, it is easy to examine directly all
possible quadratic forms). In this case the form can be written in the form

f(x, ) = ax* + 2bxy + cy*.

Its discriminant ac — b* we denote by d.
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Theorem 6. The congruence

f(x, ¥) = 0 (mod p) (p#2) (1.6)

has a nonzero solution if and only if —d is either divisible by p or is a quadratic
residue modulo p.

Proof. 1t is clear that if two forms f and f; are equivalent over the field Z,
(Supplement, Section 1.1), then if the congruence (1.6) has a nonzero solution
for one of the forms it has a nonzero solution for both of them. Moreover, in
passing from one form to an equivalent form, the discriminant changes by
a square nonzero factor from the field Z,. Hence for the proof of Theorem 6
we may replace the form f by any form equivalent to it. Since any form is
equivalent to a diagonal form (Supplement, Section 1, Theorem 3), we may
assume that
f=ax*+c¢y*, d=ac.

If a=0 or ¢ =0 (mod p), the theorem is clear. If ac # 0 (mod p) and (1.6)
has a nonzero solution (x,, y,), then from the congruence

axy® + cyo? =0 (mod p)
we obtain
2
—ac = (%) (mod p)
Xo

[the fraction w = u/v (mod p) denotes the result of division in the field Z,,
that is, w is a solution to the congruence vw = y (mod p)]. Thus (—d/p) = 1.
On the other hand, if (—d/p) = | and —ac = u* (mod p), then we set (x,, y,) =
(u, a).

PROBLEMS

1. Find the reduced polynomial, modulo p, which is equivalent to the monomial x*,
2. Construct a cubic form F(x,, x2, x3) for which the congruence

F(xy, x3, x3) =0 (mod 2)
has only the zero solution.
3. Under the assumptions of Warning’s theorem, show that the solutions 4, (i = 1, ..., 5)
satisfy the congruences

I M

a® = ... = ¥ a,» =0 (mod p),
=1

=1

provided that p =2,
4. Generalize Theorem 4 and Problem 3 to show that

S (0,0 = - = 3 (=03 (mod p)
=1 =1

fork=0,1,...,p—2.
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5. Show that if Fi(x1,..., X, ..., Fm(x1, ..., X,) are polynomials of degrees ry, ..., rm
with ry + --+ + rm <n, and the system of congruences

Fi(xq, ..., x5) =0 (mod p),
............... (1.7)
FolX1, ..., Xs) = 0 (mod p),

has at least one solution, then it has at least two solutions.

6. Show that if the conditions of Problem $ are fulfilled, then the number of solutions
of the system (1.7) is divisible by p.

7. Show that if fis a quadratic form of rank > 2 over the field Z, and a # 0 (mod p)
then the congruence

f=a (mod p)
has a solution.

8. Using Theorems 2 and 3 of Supplement, Section 1, prove that two nonsingular
quadratic forms of the same rank over the field Z, (p # 2) are equivalent if and only if
the product of their discriminants is a square.

9. Determine the Witt group of classes of quadratic forms over the field Z, (p # 2)
(see Problem 5 of Section 1 of the Supplement).

10. Show that the number of nonzero solutions of the congruence f(x, y) =0 (mod p),
where f(x, y) is a quadratic form with discriminant d= 0 (mod p), is equal to (p— 1)
A + (—d/p).

11. Using Theorem 7 of Supplement, Section 1, show that if f(x,, ..., x,) is a quadratic
form with discriminant d # 0 (mod p) and p # 2, then the number of nonzero solutions of
the congruence f(x,, ..., x,) =0 (mod p) is equal to

(-12d
1+(p_1)( ) ) (n/2) ~1 for n even,
p
-1 for n odd.
12. Under the assumptions of Problem 11, find the number of solutions to the

congruence
f(x4, ..., xp) = a (mod p).

2. Trigonometric Sums

2.1. Congruences and Trigonometric Sums

In this section (as in the preceding one) we shall consider congruences
modulo a prime p, but from a somewhat different point of view. In the
theorems of Section 1 we drew conclusions about the number of solutions
of congruences, depending on the degrees and the number of variables of the
polynomials involved. Here the principal role will be played by the value of
the prime modulus p.

We first note that for the equation F(x,, ..., x,) = 0 to have a solution, it
is necessary that for all m the congruence F = 0 (mod m) have a solution.
Even if we limit our considerations to prime values of m, we still have an
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infinite number of necessary conditions. Clearly, these conditions can be used
only if we have a finite method (a method involving a finite number of opera-
tions) for verifying them. It can be shown that for a very important class
of polynomials such a method (moreover, a very simple one) exists. Namely,
for a given polynomial F with integer coefficients from this class the congru-
ence F = 0 (mod p) has solutions for all values of p larger than some bound.
The polynomials of which we speak are described by the following definition.

Definition. A polynomial F(x,, ..., x,) with rational coefficients is called
absolutely irreducible if it cannot be factored in a nontrivial manner in any
extension of the field of rational numbers.

The following fundamental theorem holds.

Theorem A. If F(x,, ..., x,) is an absolutely irreducible polynomial
with integer coefficients, then the congruence

F(xy, ..., x,) = 0 (mod p) 2.1

is solvable for all prime numbers p, larger than some bound which depends
only on the polynomial F.

An analogous result holds for nonzero solutions when F is homogeneous,
and (when the definition of absolute irreducibility is suitably generalized) the
result generalizes to systems of congruences.

For n =1 Theorem A/is trivial (any polynomial of degree greater than 1
factors in the field of complex numbers and for polynomials of degree 1 the
assertion is obvious). But already in the case n = 2 its proof requires the use of
deep results from algebraic geometry. The first proof of Theorem A for n =2
was given by Weil (A. Weil, Sur les courbes algébriques et les variétés qui
s’en deduisent, Act. Sci. Ind. 1041, Paris, Hermann, 1948). The best versions
of the proof which have appeared are contained in S. Lang, “Abelian Var-
ieties,” Wiley (Interscience), New York, 1959; and A. Mattuck and J. Tate,
On an inequality of Castelnuevo-Severi, Abhandl. Math. Sem. Hamburg 22,
195-199 (1959). The transition from n = 2 to the general case proved to be
much easier. This was done in L. B. Nisnevich, On the number of points of an
algebraic variety in a finite prime field, Dokl. Akad. Nauk SSSR 99, No. 1,
17-20 (1954), and in S. Lang and A. Weil, Number of points of varieties in
finite fields, Am. J. Math. 76, No. 4, 819-827 (1954).

These last two papers actually contain a result considerably stronger than
the assertion of Theorem A. Namely, they show that if the form Fis fixed and
the prime modulus p varies, then the number N of solutions to the congruence
(2.1) becomes arbitrarily large as p increases, and they even give an estimate
for the rate of increase of N. Their result can be formulated precisely as follows,
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Theorem B. The number N(F, p) of solutions of the congruence (2.1)
satisfies the inequality

INCF, p) = p"~ 1| < C(F)p"~ 1712,
where the constant C(F) depends only on the polynomial F and not on p.

All known proofs of Theorem A go by way of Theorem B. But the proof
of Theorem B demands an algebraic apparatus much more complex than any
which we shall use in this book. Therefore we shall not give the proofs of
Theorems A and B but instead shall describe a method which can be used to
prove these theorems in certain cases, and we shall work out one of these
cases.

All our work will be based on the fact that the number of solutions to (2.1)
can be given in an explicit formula, or more precisely, can be represented as a
sum of certain pth roots of unity. Sums of this type are called trigonometric.

We set up the following notations. If f(x) or f(xi, ..., x,) are complex-
valued functions whose value depends only on the residue class of the integers
X, Xy, ... , X, modulo p, then by

Y. f(x) and Y f(xyy ey Xy)

we denote the sums where the values of x and of x,, ..., x, are taken from a
full system of residues modulo p, and by

g'f )

the sum where x takes all values from a reduced system of residues.
Let { be some fixed primitive pth root of 1. Then it is clear that

exy _ | P for y=0(mod p),
; = {0 for y #0(mod p). (2.2)

It is this equation which makes it possible to find an explicit formula for the
number of solutions of the congruence (2.1).
Consider the sum

S = #xF(x1,..., x,.).
2, k!

Xlyaery

If the values of x,, ... , x, give a solution of (2.1), then, by (2.2),
Z CxF(xl ..... Xn) — p.

The sum of all such terms entering into S is therefore equal to Np, where N is
the number of solutions to the congruence (2.1). If F(x, ..., x,) # 0 (mod p),
then again, by (2.2),
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The sum of all such terms in the formula for S is then zero and we have that
S = Np. We have thus proved

Theorem 1. The number N of solutions to the congruence (2.1) is given
by the formula

1
N=- Z CxF(xl ..... x,.). (2.3)

P X, X [yeans Xp
All terms in which x = 0 (mod p) enter into the sum (2.3). Since each such
term is equal to 1, and they are p" in number (each of the variables x, ..., x,
taking on p different values independently), then

1
N=p"l+=3 ) e, 24)

In this form of the formula for N we see a suggestion of Theorem B. The term

n—1

p"~ ! is already singled out. We must only show (but this is where all the diffi-
culties lie!) that as p increases the sum of all remaining terms increases in ab-
solute value more slowly than does the principal term p"~ 1.

2.2. Sums of Powers.

We now apply the general method of the preceding section to the case when
the polynomial F is equal to a sum of powers of the variables, i.e.,

F(xq, oo, Xp) =ax," + - + ax,, a; # 0 (mod p).

We shall assume that n > 3, since for n = 1 and » = 2 the number of solutions
of the congruence F = 0 (mod p) can be found by an elementary method.

By formula (2.4) the number N of solutions to the congruence a;x;"™ + ---
+a,x,” =0 (mod p) is given by the expression

N=p"t+=3"T] 3 o=, (2.5
x i X
Hence we must investigate sums of the form

2 {”(a # 0(mod p)).
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Clearly,
20 =% m(x)(™, (2.6)

y

where m(x) is the number of solutions to the congruence y* = x (mod p). It is
clear that m(0) = 1. We shall find an explicit formula for m(x) when x £ 0
(mod p).

If g is a primitive root modulo p, then

x = g* (mod p), .7

where the exponent & is uniquely determined modulo p — 1. Let y = g*
(mod p). The congruence y" = x (mod p) is then equivalent to the congruence

ru=k(modp—1). (2.8)

By the theory of congruences of the first degree, the congruence (2.8) has
d = (r,p — 1) solutions in u if d divides k, and otherwise has no solution.
Hence

d if k=0(modd),

mx) =iy k % 0 (mod d).

(2.9)

We shall find another, more convenient formula for m(x). Let ¢ be a primi-
tive dth root of 1, and for all integers x which are relatively prime to p, we
define the functions x, (s =0, 1, ..., d — 1), by setting

21:(x) = €, (2.10)

where k is determined by the congruence (2.7) (since ¢?~! =1 the value of
&** does not depend on the choice of k). If & = 0 (mod d), then &** = | for all
s=0,1,...,d—1 and hence the sum

d—1
X, 1:(x)
is equal to d. If k& # 0 (mod d), then & # 1, and therefore

kd _ 1
Za"’— 1—0.

Comparing with (2.9) we obtain (for x not divisible by p) the formula

d—1
mx) = 3 1.0,
Using this expression for m(x) we may write the equality (2.6) in the form

Z =1+ Z 1)L ™% @.11)

X s=Q
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The functions y,, which satisfy

xs(xy) = %) 1), (2.12)

are called multiplicative characters modulo p. We extend them to all values
of x by setting x(x) =0 if p divides x. The property (2.12) obviously still
holds after this extension. The character x,, which takes the value 1 whenever
p X x, is called the unit character.

We isolate in the sum (2.11) the term corresponding to the unit character.
Since

1+ Y=Y =0
we may write (2.11) in the form

ZC‘”’ Z Zxx(x)C‘”‘ (2.13)

[here we may assume that x runs through a full system of residues modulo p,
since x,(x) = 0 for x = 0 (mod p)].
Let y be one of the characters x, and a an integer. The expression

¥ ()=

is called a Gaussian sum and is denoted by 7,(x). Formulas (2.5) and (2.13)
allow us to formulate the following theorem.

Theorem 2. Let N be the number of solutions of the congruence

ax;""+ - +ax,"=0(mod p), a; # 0 (mod p). (2.14)
Then
n d;—1
N =p"" 1+pz 1—[ Z Taix(Xis)s (2.15)

where d; = (r;, p — 1) and the character y;  is defined by (2.10) with d = d;.

We note that if at least one of the d;is equal to 1, i.e,, r; is relatively prime
to p — 1, then the corresponding interior sum in (2.15) equals zero (as a
sumnmation over an empty set of quantities). Hence in this case N = p"~!,
This, however, was already clear without any computations, since for any
values of x, ..., x;_y, X;4+1, -.. » X, there is one and only one value for x;
which will satisfy the congruence (2.14).

Theorem 2 is valuable because the absolute value of a Gaussian sum can be
precisely computed. In the next section we shall show that

(0l =+/p for a#0(modp) and x+# x

(see also Problem 8).
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We now apply this fact to the result of Theorem 2.
From (2.15) it follows that

n di—1

Z H 2:,1 |Ta.-x(Xi,s)|

i=1

IN —

=3 "ul»—-
=

== (p -1) H (d;— Dp'? =(p— p™? 7 ] (d; — 1).
i=1
We thus obtain the following theorem.

Theorem 3. Let N denote the number of solutions to the congruence
a;x," + - + a,x,”™ = 0 (mod p).
Then for each prime number p which does not divide a, ..., a,,
IN = p" Y < C(p~ 1)p™»71, (2.16)
where C = (d, = 1) (d, — 1), di=(r;,p—1).
When 7 > 3 (and we have assumed that this is the case) Theorem 3 implies
Theorem B for polynomials of the above type. Indeed
IN — p*~ 1| C(p _ l)p(n/Z) 1 < Cpn 1- (1/2)

which is the assertion of Theorem B.
We note in passing that when n > 3 the inequality (2.16) is much stronger
than that of Theorem B.

Remark. For the proof of Theorem 3 it would suffice, by (2.5), to find a
bound for the absolute value of the sum 3, {**". Such a bound can be found,
moreover, by a shorter route, without the use of Gaussian sums (see Problems
9 to 12, for which the authors thank N. M. Korobov). We have chosen the
proof involving Gaussian sums because Gaussian sums have many other uses
in number theory.

2.3. The Absolute Value of Gaussian Sums

Consider the set § of all complex functions f(x), defined for rational
integers x, and satisfying the condition: f(x) = f(y) if x = y (mod p). Since
each function f(x) € §& is determined by its values on a full system of residues
modulo p, § is a p-dimensional linear space over the field of complex num-
bers. We introduce a Hermitian inner product on § by setting

1 o
(f,9)= - Y9  (fge®).
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It is easily checked that with respect to this inner product the p functions
fdx)=("% (a a residue (mod p)) (2.17)
form an orthonormal basis for §. Indeed, by (2.2),
R L T e
The functions (2.17), which satisfy
Jdx + ) =1ux) fu(»),

are called additive characters modulo p. We shall find the coordinates of a
multiplicative character y with respect to the basis (2.17). Let

L= % f, (2.18)
Then

1 1
o = (1 fa) = = 2 X(X){™ = = 1.(%). (2.19)
P = P

We thus see that the Gaussian sums 7,(y) appear (multiplied by 1/p) as the
coefficients of the multiplicative character y with respect to the basis of ad-
ditive characters f,.

To obtain an important relation between the coordinates «, [and thus
between the Gaussian sums 1,(y)], we multiply the equation

1) =} o, fi(x) (2.20)

a

by x(c), where ¢ # 0 (mod p), and change the index of summation from a
to ac

x(ex) = Y 1()taefaelx) = 3 2()tae ful€x).

Comparing this with (2.20), we obtain

o, = x(c)o,, . (2.21)
Setting a = 1 here and noting that |x(c)| = 1, we find
loee| = letq] for ¢ % 0(mod p). (2.22)

We now assume that the character y is not the unit character x,. Then the
number ¢ (relatively prime to p) can be chosen so that x(c) # 1, and in (2.21)
with @ = 0, we find that

oy =0. (2.23)

We now prove our principal result on the absolute value of Gaussian sums.
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Theorem 4. If y is a multiplicative character modulo p, distinct from the
unit character y,, and a is an integer relatively prime to yx, then

20l = /-

Proof. We evaluate the inner product (x, ) in the space §. Since [x(x)| =1
for x # 0 (mod p),

1 — p-—1
(60 =~ -
0 " Z: XN ==
On the other hand, using (2.18) and considering (2.22) and (2.23) we find
(1) = loal® = (p = Do |2

The two results combine to give us

1
|ac| =0 (C i 0 (mOd P)),

N

from which, by (2.19), the theorem follows.

PROBLEMS

1. Show that F= x2 + y2, Theorem A (with respect to nonzero solutions) does not
hold, and if F= x? — y? Theorem B does not hold. These polynomials, of course, are not
absolutely irreducible.

2, Let p(x) be a function, defined for integers x relatively prime to p, and taking non-
zero complex values. If @(x) = ¢(y) when x =y (mod p) and @(xy) = p(x)e(y) for all x
and y, show that this function is one of the functions xs(x) = £** where ¢ is a primitive
{(p — Dth root of 1 and & is determined by (7).

3. Show that any complex function f(x) which is nonzero, which depends only on the
residue class modulo p of the integer x, and which satisfies

Sfx+3)=ff D),

has the form f(x) = {**, where ¢ is an integer and { is a fixed pth root of 1.
4. Let p # 2. Show that the character x = x,, defined by (10) for d=2 (and s= 1),
coincides with the Legendre symbol
P
x(x) = (—)
14

(This character is called the quadratic character modulo p.)

5. Let ab# 0 (mod p) and let x be the quadratic character modulo p # 2. For the
Gaussian sums 7,(x) and 7,(x) prove the relation

2O = (_—“”) ».
P
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6. Under the same conditions show that
o =0.
7. Solve Problems 10, 11, and 12 of Section 1, using Theorem 2 and the results of
Problems 5 and 6.

8. Let x be an arbitrary multiplicative character modulo p, distinct from xo, and let
a # 0 (mod p). Show that

|7](x)p2 = Te(3)7a(x) = p.

and use this result to give a new proof of Theorem 4.
9. Let f(x) be a polynomial with integer coefficients and let { be a primitive mth root
of 1. Set S, = Xzmodm Caf(x). Show that

b |Sn12:m % N(C)zy

amodm cmodm

where N(c) denotes the number of solutions of the congruence f(x) = ¢ (mod m).
10. Denote by { a primitive pth root of 1, and set T, = £,{**r, Show that

2T =plp — 1d—1),

where d=(r,p—1).
11. Using the same notations, show that the sums 7,, a # 0 (mod p), fall into d sets,
each with (p — 1)/d equal sums, Using this and Problem 10, show that

|T.l <dVp, a#0(modp).
12. Using also the fact that 2,’ T, = 0, obtain the more precise estimate
IT.)<@d—1)+Vp, a=0(modp).

[By formula (2.5) this bound gives us another proof of Theorem 3.]
13. Show that the congruence

3x3 + 4y? + 523 =0 (mod p)

has a nonzero solution for every prime p.
3. p-Adic Numbers

3.1. p-Adic Integers

We now turn to congruences modulo a power of a prime. We start with an
example. Consider the congruence

x*=2(mod 7
modulo a power of the prime 7. For n = 1 the congruence has two solutions,

Xo = + 3 (mod 7). 3.1
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Now set n = 2. From
x? =2 (mod 7%) 3.2)

it follows that x*> = 2 (mod 7), and hence any solution of (3.2) must be of the
form x, + 7¢,, where x, is a number satisfying the congruence (3.1). We now
look for a solution in the form x; = 3 + 7¢,. (Solutions of the type —3 + 71,
are found in precisely the same way.) Substituting this expression for x,
in (3.2), we obtain

(3 + 7t))* = 2 (mod 7%),
9+ 6:7t, + 7%t,* = 2 (mod 7?),
1+ 6t =0(mod7),
t, =1 (mod 7).
We thus have the solution x, = 3 + 7-1 (mod 7?). Similarly, when n = 3 we
have x, = x, + 7*t, and from the congruence

B+ 74 7%,;)* =2 (mod 7°)
we find that ¢, = 2 (mod 7); that is,
x,=3+71+7%2(mod 7).

It is easily seen that this process can be continued indefinitely. We obtain a
sequence

X012 X1s cre s Xny ooe s 3.3)
satisfying the conditions
X = 3 (mod 7),
X, = X,-, (mod 77),
x,2 =2 (mod 7"*1).
The construction of the sequence (3.3) is reminiscent of the process for find-
ing the square root of 2. Indeed, the computation of /2 consists of finding a

sequence of rational numbers rg, 7y, ..., #,, ... , the squares of which con-
verge to 2, for example:

1
2
[r,2 =2l <—.
" 10"
In our case we construct a sequence of integers xg, Xy, ... , X,, ... , for which

x,2 — 2 is divisible by 7"**. This analogy becomes more precise if we say that
two integers are close (more precisely, p-close, where p is some prime), when
their difference is divisible by a sufficiently large power of p. With this concept
of closeness we can say that the squares of the numbers in the sequence (3.3)
become arbitrarily 7-close to 2 as n increases.
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By giving the sequence {r,} we determine the real number /2. One might
suppose that the sequence (3) also determines a number «, of a different type,
such that a? = 2.

We now note the following fact. If the sequence {r,’} of rational numbers
satisfies |r, — r,’| < 1/10" for all n, then its limit is also /2. One would
naturally assume that a sequence {x,’}, for which x, = x,” (mod 7°*1), would
determine the same new number o [the new sequence {x,’} clearly, also satis-
fies x,'2 = 2 (mod 7"*!) and x,’ = x,_,; (mod 7")].

These remarks lead to the following definition.

Definition. Let p be some prime number. A sequence of integers

{x,3 = {X0 X1» o » Xns -+ }»
satisfying
X, = X,_; (mod p") 3.4

for all n = 1, determines an object called a p-adic integer. Two sequences
{x,} and {x,’} determine the same p-adic integer if and only if

X, = X, (mod p"*1)

for all n = 0.

If the sequence {x,} determines the p-adic integer o, we shall write
{x,} =

The set of all p-adic integers will be denoted by O,,. To distinguish them from
p-adic integers, ordinary integers will be called rational integers.

Each rational integer x is associated with a p-adic integer, determined by
the sequence {x,x, ..., x,...}. The p-adic integer corresponding to the
rational integer x will also be denoted by x. Two distinct rational integers
x and y correspond to distinct p-adic integers. Indeed, if they are equal as
p-adic integers, then x = y (mod p") for all n, which is possible only if x = y.
Hence we may assume that the set Z of all rational integers is a subset of the
set O, of all p-adic integers.

To clarify the nature of the set O,, we shall describe a method for choosing,
from the set of all possible sequences which determine a given p-adic integer,
one standard sequence.

Let a p-adic integer be given by the sequence {x,}. Denote the smallest
nonnegative integer, congruent to x, modulo p"*! by %,

x, = X, (mod p"*1), (3.5

0 x, <p"th (3.6)
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The congruence (3.6) shows that
)Z‘" EXp=E X1 = 'fn—l (mOdp")’

so that the sequence {¥,} determines some p-adic integer, which by (3.5) is the
same as that determined by the sequence {x,}. A sequence, each term of which
satisfies conditions (3.4) and (3.6), will be called canonical. Hence we have
shown that every p-adic integer is determined by some canonical sequence.

It is easy to see that two distinct canonical sequences determine distinct
p-adic integers. If the canonical sequences {%,} and {y,} determine the same
p-adic integer, then from the congruence

X, = J, (mod p"**)

n+1 n+1

and the conditions 0 < %, <p"*!, 0 < y, <p"*', we obtain x, = j, for all
n > 0. Thus the p-adic integers are in one-to-one correspondence with the
canonical sequences. From (3.4) it follows that %,,,; = X, + a,.;p""*, and
since 0 < %4, <p"*?and 0 < %, < p"*', we have 0 < a,,, < p. Hence every
canonical sequence has the form

{ao, a0 + a\p, ag + a,p + a,p*, ... },

where 0 < a; < p. On the other hand, every sequence of this type is a canon-
ical sequence, which determines some p-adic integer. From this it follows that
the set of all canonical sequences, and also the set of all p-adic integers, have
the cardinality of the continuum.

3.2. The Ring of p-Adic Integers

Definition. Let the p-adic integers « and f be determined by the sequences
{x,} and {y,}. Then the sum (respectively, product) of « and B is the p-adic
integer determined by the sequence {x, + y,} (respectively, {x,y,}).

To verify that this definition makes sense, we must show that the sequences
{x, + y.} and {x,y,} do indeed determine some p-adic integer, and that this
integer depends only on « and § and not on the choice of the sequences which
determine them. Both of these assertions are easily verified, and we shall omit
the details.

Itis now obviousthat under these operations the set of p-adic integers becomes
a commutative ring, which contains the ring of rational integers as a subring.

Divisibility of p-adic integers is defined as in any commutative ring (see the
Supplement, Section 4.1); o divides § if there is a p-adic integer y such that
B = ay. To investigate the divisibility properties of p-adi¢ integers we must
know for which p-adic integers there exists a multiplicative inverse. Such
numbers, by Section 4.1 of the Supplement, are called divisors of unity or
units. We shall call them p-adic units.
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Theorem 1. A p-adic integer «, which is determined by a sequence
{xq. %15 ... » X, --- }, i @ unit if and only if x, # 0 (mod p).

Proof. Let « be a unit. Then there is a p-adic integer § such that «f = 1.
If B is determined by the sequence {y,}, then the fact that «f = 1 implies that

x,y, = 1 (mod p"*1). 3.7

In particular, xoyg =1 (mod p) and hence xy # 0 (mod p). Conversely, let
xo # 0 (mod p). From (3.4) it easily follows that

Xp = Xpoy = -+ = Xo (mod p),

so that x, # 0 (mod p). Consequently, for any n, we may find a y, such that
(3.7) holds. Since x, = x,_, (mod p") and x, _, = x,-;Y,-; (mod p"), then also
Yn = Yn-; (mod p"). This means that the sequence {y,} determines some p-adic
integer B. Equation (3.7) implies that 8 = 1, which means that « is a unit.

From this theorem it follows that a rational integer a, considered as an
element of O,, is a unit if and only if @ # 0 (mod p). If this condition holds,
then @' belongs to O, . Hence any rational integer b is divisible by such an a
in O,, that is, any rational number of the form b/a, where a and b are integers
and a # 0 (mod p), belongs to O,,. Rational numbers of this type are called
p-integers. They clearly form a ring. We can now formulate the above result
as follows:

Corollary. The ring O, of p-adic integers contains a subring isomorphic
to the ring of p-integral rational numbers.

Theorem 2. Every p-adic integer, distinct from zero, has a unique rep-
resentation in the form
a = pTe, (3.8)

where ¢ is a unit of the ring O.

Proof. If « is a unit, then (3.8) holds with m = 0. Let {x,} — «, where a is not
a unit, so that by Theorem 1, x, = 0 (mod p). Since a 3 0, the congruence
x, =0 (mod p"*?') does not hold for all n. Let m be the smallest index for
which
X, 20 (mod p™*1). 3.9
For any s > 0,
Xmts = Xm—1 =0 (mod p™).

and therefore the number y, = x, . /p™ is an integer. From the congruences
pmys - Pmys-l = Xpts T Kmts-1 = 0 (mOd Pm+s),

it follows that
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Y5 = ys—y (mod p*)
for all s > 0. Thus the sequence {y,} determines some ¢¢e 0O,. Since y, =
X,/p™ # 0 (mod p), ¢ is a unit by Theorem 1. Finally, from

s+l)

pmys = xm+s = xs (mOdp

it follows that p™¢ = «, which is the desired representation.
We assume now that « has another representation « = p*n, where &k > 0
and 7 is a unit, If {z,} - 5, then

Py, = p'z; (mod p°*?) (3.10)

for all s > 0, and, by Theorem 1, p never divides y, or z,, since ¢ and n are
units. Setting s = m in (3.10), we obtain

P"Vm =Pz, #0 (mod p™ ),
from which we deduce that & < m. By symmetry we also have m <k, i.e.,

k = m. Replacing s by s + m in (3.10) and dividing by p™ we find that

Ym+s = zm+s (mOd PSH)‘

Since by condition (3.4) y,.., =y, (mod p**') and z,., =z, (mod p**Y),
we obtain

¥y =z, (mod p**).

Since this congruence holds for all s = 0, ¢ = 5, and Theorem 2 is proved.

Corollary 1. The p-adic integer «, determined by the sequence {x,}, is
divisible by p* if and only if x, =0 (mod p"* ") foralln=0,1, ...,k — 1.

Indeed, we find the exponent m of expression (3.8) as the smallest index m
for which (3.9) holds.

Corollary 2. The ring O, does not have any zero divisors.

If a # 0 and § # 0, then we have the representations

a=pm,  B=rn

in which ¢ and # are units. (Thus ¢ and n have inverses ¢~' and ™! in the
ring 0 .) If we had «f = 0, then, multiplying the equation p™**en = 0 by
¢~ 'n~', we would obtain p™** = 0, which is impossible.

Definition. The number m in the representation (3.8) of a nonzero p-adic
integer « is called the p-adic value, or simply the p-value, of « and is denoted
by v (2).
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In case it is clear which prime p is intended, we shall speak simply of the
value, and write v(«). In order that the function v(x) be defined for all p-adic
integers, we set v(0) = co. (This convention is appropriate since O is divisible
by arbitrarily high powers of p.)

It is easy to verify the following properties of the value function:

v(@f) = v(«) + v(B); (3.11)
v(a + B) = min(v(a), v(B)); (3.12)
wa + ) = min(v(a), v(B)) if v(a) # v(B). (3.13)

The divisibility properties of p-adic integers are concisely expressed in
terms of the value function. From Theorem 2 we immediately deduce

Corollary 3. The p-adic integer o is divisible by f if and only if v(x) = v(B).

Thus the arithmetic of the ring O, is very simple. There is a unique (up to
associates) prime element, namely, p. Every nonzero element of O, is a product
of a power of p and a unit.

Finally, we turn to congruences in the ring O,. Congruence of elements is
defined here exactly as it is for rational integers, or, more generally, for ele-
ments of any ring (see the Supplement, Section 4.1): = § (mod y) means that
o — f3 is divisible by y. If y = p"¢, where € is a unit, then any congruence
modulo y is equivalent to a congruence modulo p". We thus confine our atten-
tion to congruences modulo p".

Theorem 3. Any p-adic integer is congruent to a rational integer modulo
p". Two rational integers are congruent modulo p" in the ring O, if and only
if they are congruent modulo p" in the ring Z.

Proof. To prove the first assertion we shall show that if « is a p-adic integer
and {x,} is a sequence of rational numbers determining o, then

o = X, (mod p). (3.14)

Since x,_; is determined by the sequence {x,.;, x,_q, ... }, the sequence
{xo — Xp—1» Xy — Xp—1» ... } determines the number o — x,_;. We apply
Corollary 1 of Theorem 2 to the p-adic integer « — x,-;. We see that the
congruence (3.14) is equivalent to the congruence

X = X,_y =0(mod p**Y)  (k=0,1,...,n-1),

which is in turn implied by condition (3.4) in the definition of p-adic integers.
We now show that for two rational integers x and y, congruence modulo p
in the ring O, is equivalent to congruence modulo p in the ring Z. Set

x—y=pra, a # 0 (mod p) (3.15)
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(we assume that x s y). The congruence
x =y (mod p") (3.16)

in the ring Z is equivalent to the condition n < m. On the other hand, (3.15)
is a representation of the type (3.8) for the number x —y, since a is a p-adic
unit. Consequently, v,(x — y) = m, and the condition n < m can be written
in the form v,(x — y) > n. But this is equivalent to the congruence (3.16) in
0,, since v(p") = n (see Corollary 3 of Theorem 2).

Corollary. There are p" residue classes in O, modulo p".

3.3. Fractional p-adic Numbers

Since the ring O, has no zero divisors (Corollary 2 of Theorem 2), it can
be embedded in a field, using the standard construction of a field from an
integral domain. Application of this construction to our situation leads to
consideration of fractions of the form a/p*, where a is some p-adic integer, and
k = 0. The fractions considered here could more suitably be written as pairs

(@, p).

Definition. A fraction of the form o/p*, ae 0,, k>0, determines a
fractional p-adic number, or, more simply, a p-adic number. Two fractions,
a/p* and B/p™, determine the same p-adic number if and only if ap™ = fp*
in 0,.

The set of all p-adic numbers will be denoted by R,.

A p-adic integer determines an element a/1 = «/p® in R,. It is clear that
distinct p-adic integers determine distinct elements of R,. Hence we shall
assume that O, is a subset of the set R,.

Addition and multiplication are defined in R, by the rules

o B _ o+ Bt

FrE T
o B _ o
F o

It is a simple exercise to verify that the result of these operations does not
depend on the choice of fractions to represent the elements of R,, and that
under these operations R, is turned into a field—the field of all p-adic num-
bers. It is clear that the field R, has characteristic zero and thus contains the
field of rational numbers.
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Theorem 4. Any nonzero p-adic number « is uniquely representable in the
form
& =pTe, (3.17)

where m is an integer and ¢ is a unit of O,.

Proof, Let & =ajp*, ac O,. By Theorem 2, « can be represented in the
form o = p'e, | >0, where ¢ is a unit of the ring O,. Thus & = p™¢, where m =
| — k. The uniqueness of the representation (3.17) follows from the corre-
sponding assertion for p-adic integers, proved in Theorem 2.

The concept of the value of an element, introduced in Section 2, easily
generalizes to any p-adic number. We set

v(&) =m,

where m is the exponent in (3.17). It is easily secen that properties (3.11),
(3.12), and (3.13) of the value automatically carry over to the field R,. The
p-adic number ¢ is a p-adic integer if and only if v, (¢) > 0.

3.4. Convergence in the Field of p-Adic Numbers

In Section 3.1 we noted the analogy between p-adic integers and real
numbers, in that both are determined by sequences of rational numbers.

Just as every real number is the limit of any sequence of rational numbers
which determines it, it would be natural to conjecture that the same fact
should hold for p-adic numbers, if the correct definition of the concept of
convergence is given. The definition of limit for real or rational numbers can
be based, for example, on the notion of nearness; two real or rational numbers
being near if the absolute value of their difference is small. For the definition
of convergence for p-adic numbers we thus must decide under what conditions
two p-adic numbers are to be considered close to one another.

In the example of the first section, we spoke of the p-nearness of two p-adic
integers x and y, meaning by this that the difference of x and y should be
divisible by a high power of p. It was under this definition of nearness that
the analogy between the definitions of real numbers and of p-adic integers
became apparent. If we use the concept of the p-value v,, then the p-nearness
of x and x will be characterized by the value of v,(x — y). Thus we may speak
of two p-adic numbers & and 5 (not necessarily integers) as being near when the
value of v, (¢ —n) is sufficiently large. Thus “small” p-adic numbers are
characterized by the large value of their p-value.

After these remarks we turn to precise definitions.

Definition. The sequence

{én} = {éO’ 517 AR ] én’ }
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of p-adic numbers converges to the p-adic number £ (we denote this by

lim,., & = ¢ or {&,} > &) if

limvy(¢, — &) = .

A singular feature of this definition (which distinguishes it from the usual
definition of convergence for real numbers) is that the convergence of {£,} to &
is determined by the sequence of rational integers v,(¢, — &), which must
converge to infinity. We can put the definition in a more familiar form if,
instead of v,, we consider another nonnegative real-valued function on the
field R,, which will converge to zero as v, goes to infinity. Namely, choose
some real number p, satisfying 0 < p < 1, and set

. vp($) for &#0,

0,0 = {0 o T (3.18)

Definition. The function ¢,(£), { € R,, defined by (3.18), is called a p-adic
metric. The number ¢ (&) is called the p-adic size of ¢.

As in the case of the value function, we shall sometimes simply call ¢,
a value and denote it by ¢.

Properties (3.11) and (3.12) of the value clearly imply the following prop-
erties of the metric:

o(&n) = o(&)p(n); (3.19)
@& + n) < max(e(8), o(n)). (3.20)

From the iast inequality we also obtain
@€ + 1) < @(&) + (). (3.21)

Properties (3.19) and (3.21) [and also the fact that @(&) > 0 for £ # 0] show
that the concept of metric for p-adic numbers is analogous to the concept of
absolute value in the field of real (or complex) numbers.

In terms of the vaiuation ¢, the defimtion of convergence in the field R,
takes the following form: The sequence {,}, £, € R,, converges to the p-adic
number & if

lim ¢,(§, — &) = 0.

We may formulate and prove, for the field R,, general theorems on the
limits of sequences, well known in analysis. As an example we shali show that
if {&,} = & and & # 0, then {1/&,} — 1/£. First, from some point on, that is,
for all n = ny, we have v(¢, — &) > v(£), from which, by (3.13), v(¢,) = min
(&, — &), (&) = v(&). In particular, w(&,) # oo, that is, &, # 0, so that 1/&,

Ii
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V(cl - %) = W& = &) — V(&) — &) = W& — &) — (&) - o

as n— oo, and our assertion is proved.

Theorem 5. If the p-adic integer « is determined by the sequence {x,}
of rational integers, then this sequence converges to «. An arbitrary p-adic
number ¢ is a limit of a sequence of rational numbers.

Proof. From the congruence (3.14) it follows that v, (x, —o)>n+ 1.
Consequently, v(x, —«) — o0 as n — c0, and this means that {x,} converges
to «. Consider now the fractional p-adic number ¢ = «/p*. Since

v(i;:—é)=v(x":a)=v(x,,—a)—k-»oo
p p

as n — oo, then ¢ is the limit of the rational sequence {x,/p*}. The theorem is
proved.

From any bounded sequence of real numbers it is possible to choose a
convergent subsequence. An analogous property also holds for p-adic
numbers.

Definition. The sequence {£,} of p-adic numbers is called bounded if the
numbers ¢,(¢,) are bounded from above, or equivalently, if the numbers v, (£,)
are bounded from below.

Theorem 6. From any bounded sequence of p-adic numbers (in particular,
from any sequence of p-adic integers) it is possible to choose a convergent
subsequence.

Proof. We first prove the theorem for a sequence {«,} of p-adic integers.
Since in the ring O, the number of residue classes modulo p is finite (corollary
of Theorem 3), there are an infinite number of terms in the sequence {a,}
which are congruent modulo p to some rational integer x,. Choosing all such
terms, we obtain a subsequence {a,!’}, all terms of which satisfy the congru--
ence

o,V = x4 (mod p).

Analogously, applying the corollary of Theorem 3 to the case n = 2, we choose
from the sequence {«,’} a subsequence with the condition

a,? = x, (mod p?)

where x, is some rational integer. Here, clearly, x; = x, (mod p). Continuing
this process indefinitely, we obtain for each k a sequence {«,}, which is a
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subsequence of the preceding sequence {«,* "} and for all terms of which
the congruence
o, = x,_; (mod p*),

holds for some rational integer x,_;. Since x;, = «,** " (mod p**!) and all
«,**V belong among the a,®,

Xi = Xy (mod p¥)

for all k > 1. Thus the sequence {x,} determines some p-adic integer «. We
now take the “ diagonal”” sequence {«,™}. It clearly is a subsequence of the
initial sequence {a,}. We claim that {«,} — «. Indeed, by (3.14) we have
« = x,_; (mod p"). But, on the other hand, «," = x,_, (mod p") and hence
a,™ = a(mod p"); that is, v(e,"™ — &) > n. From this it follows that v(a,™ — o)
—» 00 as n — o0, and thus {&,™} converges to .

We now turn to the proof of the theorem in the general case. If the sequence
{&,} of p-adic numbers satisfies v(¢,) > —k (k some rational integer), then for
a, = &,p* we have v(a,) > 0. By the above we may extract a convergent sub-
sequence {a, } from the sequence {a,} of p-adic integers. But then the sequence
{&,) = {o,,p~*} is a convergent subsequence of the sequence {£,}. Theorem 6
is completely proved.

The Cauchy convergence criterion also holds for p-adic numbers: The
sequence

{&}s  Cn€R,, (3.22)
converges if and only if
lim v(&, — &,) = . (3.23)

The necessity of the condition is clear. For the proof of sufficiency we first
note that (3.23) implies that the sequence (3.22) is bounded. Indeed, from
(3.23) it follows that there is an ny, such that v, — ¢, ) > 0 for all m > n,.
But then by (3.12) for all m = n,,

V() = V(€ — &np) + £4g) = min ((0, v(&,)),

and from this it follows that (3.22) is bounded. By Theorem 6 we may extract
from (3.22) a convergent subsequence with limit, say £&. We now show that the
sequence (3.22) converges to £. Let M be an arbitrarily large number. From
(3.23) and the definition of convergence we can find a natural number N so
that, first, v, —¢,) = M for m,n > N, and, second, v(&,, — &) = M for
n; = N. Then

v(ém - é) 2 min (v(ém - én.-)’ v(éni - é)) 2 M

for all m > N. Thus lim,,_,, w({, — &) = co, that is, the sequence (3.22)
converges.
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The principle of convergence proved above can be put in a stronger form.
If the sequence (3.22) satisfies (3.23), then it clearly also satisfies

lim v(&, 4y — ¢,) = 0. (3.24)
We shall show that, conversely, (3.24) implies (3.23). For if w(¢,,, — &) =2 M
for all » = N, then by (12) from the equation

m—1
ém_€n=.Z(§i+l_Ci)ﬂ m>nzN,
it follows that
Vim— &)z min v — &) 2 M,
i 1

that is, v(&,, — &£,) = o0 as m, n — oo. Thus we have

Theorem 7. For the convergence of the sequence {£,} of p-adic numbers,
it is necessary and sufficient that lim,_ , w(¢,,, — ¢,) = .

Having a concept of convergence in the field R,, we may speak of contin-
uous p-adic functions of p-adic variables. Their definition does not differ
at all from the usual one. That is, the function F(§) is called continuous at
¢ = &, if for any sequence {&,} which converges to &, , the sequence of values
{F(¢,)} converges to F(&y). A similar definition holds for functions of several
variables. Just as in real analysis it is easy to prove the usual theorems on
arithmetic operations with continuous p-adic functions. In particular, it is
easily verified that polynomials in any number of variables with p-adic
coeflicients are continuous p-adic functions. This simple fact will be used
(Section 5.1) in the future.

To conclude this section we make some remarks on series with p-adic
terms.

Definition. If the sequence of partial sums s, =Z;‘=O a; of the series
Yoy =og+a + o+ (3.25)
i=0

with p-adic terms converges to the p-adic number «, then we shall say that the
series converges and that its sum is «. From Theorem 7 we immediately
deduce the following convergence criterion for series.

Theorem 8. In order that the series (3.25) converge, it is necessary and
sufficient that the general term converge to zero, that is, that v(x,) —» o as
n— 0.
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Convergent p-adic series can clearly be termwise added and subtracted and
multiplied by a constant p-adic number. The associativity property of series
also holds for them.

Theorem 9. If the terms of a convergent p-adic series are rearranged, its
convergence is not affected and its sum does not change.

The simple proof of this theorem is left to the reader.

In analysis it is proved that the property described in Theorem 9, when
applied to real numbers, characterizes absolutely convergent series. Thus every
convergent p-adic series is *“ absolutely convergent.”” From this it follows that
convergent p-adic series can be multiplied in the usual manner.

If the p-adic integer o is defined by the canonical sequence {a,, ay +a, p,
ao + a;p + a,p?, ... } (Section 3.1), then, by the first assertion of Theorem 5,
it will equal the sum of the convergent series

ag+ap+apP+-+ap+-, 0<a,<p-1mn=01,..) (3.26)

Since distinct canonical sequences determine distinct p-adic integers, the
representation of « in the form of the series (3.26) is unique. Conversely, any
series of the form (3.26) converges to some p-adic integer,

The representation of p-adic integers in series (3.26) is reminiscent of the
expansion of real numbers as infinite decimals.

If we consider the series

b0+b1p+"'+b,,p"+"', (3.27)

in which the coefficients are arbitrary rational integers, then it clearly con-
verges [since w(b,p") = n], and its sum will equal some p-adic integer «. To
obtain the representation (3.26) for this number «, we must successively
replace each coefficient in (3.27) by its remainder after division by p, and
carry over the quotient at each step to the coefficient of the next term, This
observation can be used for computations in the ring O,. That is, after ad-
dition, subtraction, or multiplication of series of the form (3.26) according
to the rules for operating with series, we shall obtain a series in the form (3.27),
in which the coeflicients, in general, will not be the smallest nonnegative
residues modulo p. To transform this series into the form (3.26) we need only
apply the rule just mentioned. This method of carrying out operations with
p-adic integers is easily seen to be analogous to the usual method for operating
with real numbers which are expressed as infinite decimals.

From Theorem 1 it easily follows that a p-adic integer, represented in the
form of a series (3.26), is a unit in the ring O, if and only if a, # 0. Along with
Theorem 4 this gives us the following result.

Theorem 10. Every nonzero p-adic number & is uniquely representable
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in the form
E=p"@ +ap+-+ap +-), (3.28)
where m=v, (), 1 <a, <p—-1,0<a,<p-1(n=1,2,...).

PROBLEMS

1. Set x,=1-+p + --- - pr~1, Show that in the field of p-adic numbers the sequence
{xn} converges to 1/(1 — p).

2. Let p # 2 and let ¢ be a quadratic residue modulo p. Show that there exist two
(distinct) p-adic numbers whose squares equal c.

3. Let c be a rational integer not divisible by p. Show that the sequence {c?"} converges
in the field R,. Show, further, that the limit y of this sequence satisfies y = ¢ (mod p) and
YT =1

4. Using the previous problem, show that the polynomial ## ~! — 1 factors into linear
factors over the field R,.

5. Represent the number —1 in the field of p-adic numbers in a series of the form (3.26).
6. Represent the number — % in the form (3.26) in the field of 5-adic numbers.
7. Show that, if p#2, there is no pth root of 1 in the field R,, other than 1.

8. Show that the representation of any nonzero rational number in the form (3.28)
has periodic coefficients (from some point on). Conversely, show that any series of the
form (3.28), for which the coefficients satisfy a,,,, = ax, for all k= ko(m >0), represents a
rational number.

9. Prove the Eisenstein irreducibility criterion for polynomials over the field of p-adic
numbers: The polynomial f(x) = aox" + a;x"~! + --- - a, with p-adic integer coefficients
is irreducible over the field R,, if a, is not divisible by p, all other coefficients ay, ..., a, are
divisible by p, and the constant term a, is divisible by p but not by p2.

10. Show that over the field of p-adic numbers there exist finite extensions of arbitrary
degree.

11. Show that for distinct primes p and g the fields R, and R, are not isomorphic.
Further show that no field R, is isomorphic to the field of real numbers.

12. Show that the field of p-adic numbers has no automorphisms except the identity.
(An analogous assertion holds for the field of real numbers.)

4. An Axiomatic Characterization of the Field of p-Adic Numbers

The fields of p-adic numbers are among the basic tools in the theory of num-
bers. Section 5 will be devoted to applications to some number-theoretic
problems. First, we shall make a short detour to clarify the position of the
p-adic fields in the general theory of fields.

4.1. Metric Fields

We have already remarked several times on the analogy between p-adic
and real numbers. In this section we make this analogy precise. Namely, we
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give a general method for constructing fields, which has as special cases the
constructions of the real and p-adic numbers. In the case of real numbers, this
method coincides with the construction of Cantor by means of Cauchy
sequences of rational numbers.

The generalization of Cantor’s method to other fields is based on the follow-
ing idea. Every concept or construction used in this method can be defined in
terms of the concept of convergence of sequences of rational numbers. And
this concept is in turn based on that of absolute value. (We say that the
sequence {r,} of rational numbers converges to the rational number r if the
absolute value of the difference |r, — r| converges to zero.) Since only certain
properties of the absolute value are ever used, we might therefore suspect that,
if it is possible to define a function ¢ from an arbitrary field £ to the real
numbers which has the same properties as the absolute value function, then
the concept of convergence can be defined in &, and by using Cantor’s method
a new field can be constructed from k.

Definition. Let k be an arbitrary field. A function ¢ from the field £ to
the real numbers is called a metric of k, if it satisfies the following conditions:

1) e(x)>0 for o #£0, p(0) =0;
(@ o(a + B) < o) + 0(B);
(3) o(f) = e(De(B).

The field k along with the metric given on it is called a merric field [and
sometimes denoted by (k, ¢)]. The following properties of metrics easily
follow from the definition:

p(x)=1;

P(—a) = @(a);
o — B) < o(a) + 9(B);
pat B) 2 lo(@) — o(B);

The following are examples of metrics:

(1) Absolute value in the field of rational numbers.

(2) Absolute value in the field of real numbers.

(3) Modulus or absolute value in the field of complex numbers.

(4) The p-adic metric ¢, (defined in Section 3.4) in the field of p-adic
numbers R,.
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(5) The function ¢(«), defined by ©(0) =0, o(x) =1 for « #0, for £ an
arbitrary field. Such a metric is called trivial.

If the valuation g, of the field R, is considered only on the rational num-
bers, then another metric is obtained of the rational field R. This metric. also
denoted by ¢,, is called the p-adic metric of R. Its value on the nonzero
rational number x = p***(a/b) (with a2 and b integers not. divisible by p) is
clearly given by

@,(x) = p™, (4.1

where p is a fixed real number satisfying 0 < p < 1. We shall see below that if
Cantor’s construction is applied to the field of rational numbers with the
p-adic metric (instead of the usual absolute value), then the field R, will be
obtained.

In any field with valuation (k, ¢) we define the concept of convergence: the
sequence {«,} of elements of k is said to converge to the element « € k, if
o(a, — o) > 0 as n— co. In this case we shall say that « is the limit of the
sequence {«,}, and shall write {«,} - or « = lim,_, , «,.

Definition. A sequence {a,} of elements of a metric field with metric ¢
is called a Cauchy sequence if ¢(x, — o,,) > 0 as n, m — 0.

Obviously, any convergent seauence is a Cauchy sequence. For, if {«,} — «,
then by the ineauality

(P(O‘n - (Z,,,) = (P(Cx,, —a+a— am) < (P(O‘n — o)+ (P(am - (X),
o(a, — 2,,) > 0 [since (o, — ) =0 and  ofa,, — o) - 0].

The converse assertion is valid for some, but not for all, metric fields. It holds
for the real and for the p-adic numbers by the Cauchy convergence criterion
(see Section 3.4). But it does not hold for the field R of rational numbers,
either in the case of the absolute value or in the case of the p-adic metrics.

Definition. A metric field is called comnlete if every Cauchy seauence in
it converges.

Cantor’s method embeds the noncomplete field of rational numbers (with
absolute value as metric) in the comnlete field of real numbers. It will be shown
that such an embedding is possible for any metric field. and the proof of this
assertion will consist of an almost verbatim reoetition of Cantor’s method.

We introduce some terminology. If we say that the metric field (k, ¢) is a
subfield of the metric field (k,, ¢,), we mean not only that k < k,, but also
that the metric ¢, coincides with ¢ on the field k. Further, a subset of the
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metric field k will be called everywhere dense 1n k, it every ciwciitent of k is the
limit of some convergent sequence of elements of this suoset. Thea we nave

Theorem 1. For any metric field k there exists a complete metric hield k,
whicn comniains k as an everywhere-dense subset.

To formuiate the following theorem we need one more definition.

Definition. Let (k;, ¢,) aua (k,, ©,) be two isomorpiic metric lieids. 'The
isomorphism ¢ : kK, — k, 1s called bicontinuous, or topoiogical, it, tor any
sequence {a,} of elements of k;, which converges to the element o unaer the
metric ¢,, the sequence {6(a,)} converges to a(«) under the metric ¢,, aud
conversely.

Theorem 2. The field &, given by Theorem 1, is uniqueiy decermineda up
to a topological isomorphism which leaves fixed all elements of k.

Definition. The field 4, the existence and uniqueness of which is esiab-
lished by Theorems 1 and 2, is called the completion of the metric fieid k.

The field of real numbers is clearly the completion of the field of ranonal
numbers, with the crdinary absolute value as metric. If instead the p-adic
merric (4.1) is used with the rational field, then the completion is the tield R,
of p-adic numbers. For the second assertion of Theorem 5 of Section 3 shows
that R is everywhere dense in R,, and the Cauchy convergence criterion
(Theorem 7 of Section 3) states that R, is complete. We thus have a new
axiomauc description of the field of p-adic numbers: The held of p-adic
numbers is the completion of the field of rational numbers under the p-adic
metric (4.1).

We now turn to the proofs of Theorems 1 and 2. We shall oniy sketch the
prouts, skipping tnose parts wiich are verbatim repetitions of the corre-
sponding arguments in real anatysis,

Froof of Theorem 1. We call two Cauchy sequences {x,} and {y,} of
elemenis of the meiric field (k, @) equivaient if {x, — y,} = 0.

We denoie tne set of all equivaience classes of Caucny scquences by £.
In k we define the operations of addiuon and raultipiication as toilows: if
and f are any wo ciasses and {x,} € @ and {y,} € §§ are any Cauchy sequences
in these ciasses, then the sum (respectively product) ot these ciasses is the class
which coniains the sequence {x, + y,} (respecuvely {x,y,}). 1t is casuy seen
that the sequences {x, + y,} and {x,y,} are inaeea Cauchy scquences, and
that the ciasses in which they lie do not aepend on the choice ot sequences
{x,} and {y,} from the ciasses « and .
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It is easily verified that % is a ring with unit. Zero and one are the classes
containing the sequences {0, 0, ...} and {1, 1, ...}.

We now show that £ is a field. If a is a nonzero class, and {x,} is a Cauchy
sequence in this class, then, from some point on (say for n = ny), all x, are
different from zero.

Consider the sequence {y,}, defined by

1 for n<n,,
m=11

— for n=n,.

x"

It is easily shown that the sequence {y,} is a Cauchy sequence, and that its
class is the inverse of «.

We now introduce a metric on the field £. We first note that if {x,} is a
Cauchy sequence of elements of &, then {¢(x,)} is a Cauchy sequence of real
numbers. By the completeness of the real field, this sequence converges to a
real number, and the limit will not change if we replace the sequence {x,} by
an equivalent one. We set ¢(x) = lim,_, , @(x,), if « is the class containing the
sequence {x,}. It is easily shown that the function ¢(x) satisfies all conditions
of being a metric and hence turns £ into a metric field.

We associate any element a of the field & with that class which contains the
sequence {a, @, ...}. This sets up an embedding of metric fields, since, as is
easily seen, this isomorphism of k with a subfield of k preserves the metric.
Identifying each element of k with the corresponding element of &, we shall
consider k to be contained in &. It is clear that k is everywhere dense in £;
for if « is a class, containing the sequence {x,}, then {x,} —«.

We now need only show that £ is complete. Let {«,} be a Cauchy sequence
of elements of k. Since «a, is the limit of a sequence of elements of the field &,
there exists an element x, € k, such that ¢(a, — x,) < 1/n.

The fact that {a,} is a Cauchy sequence implies that the sequence {x,} of
elements of k is also a Cauchy sequence. Let a denote the class containing the
sequence {x,}. It is easily verified that {a,} — a, which completes the proof of
Theorem 1.

Proof of Theorem 2. Let k and k, be two complete fields containing & as a
dense subfield. We shall set up a one-to-one correspondence between &k and
k., leaving the verification that this is a topological isomorphism to the reader.

Let o be an element of £, and let {x,} be a sequence of elements of X which
converges to a. Since {x,} converges in k, it is a Cauchy sequence. It remains a
Cauchy sequence when regarded as a sequence of elements of k. Since £, is
complete, the sequence {x,} converges in k, to some limit, which we denote
by a,. Clearly, if {y,} is another sequence of elements of & which converges
to « in k, then the limit of {y,} in k, will again be ;. Thus the element o,
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of the field &, is uniquely determined by the element « of the field k. This cor-
respondence, taking « to a;, is the isomorphism which we need.

4.2. Metrics of the Field of Rational Numbers

It is natural to ask now if there exist any completions of the field of rational
numbers, other than the real numbers and the p-adic numbers (for all primes
p). The answer turns out to be negative; all completions of the rational num-
bers are of this type. Our immediate goal is the proof of this result.

We may clearly achieve this goal by enumerating all metrics of the rational
field R.

In the definition of the p-adic metric ¢, on the field R, we had to choose a
real number p, satisfying the condition 0 < p < 1 [see (3.1), (3.18)]. Hence we
have infinitely many metrics corresponding to the given prime integer p.
However, they all clearly give the same conditions for convergence in R, and
hence they all lead to the same completion, that is, to the field of p-adic
numbers.

We now show that every function of the form

o) =[x 4.2)

where « is a real number, 0 < « < 1, is also a metric of the field R. In the
definition of a metric, conditions (1) and (3) are clearly satisfied. Let [x]| > ||,
x # 0. Then

Ix + yI* = |xle 1+ 2 <|xl"(1+ X)
X X
<|x|"(1+ X)<|x|“(1+)z )=|x|"+|y|‘,
X X

that is, condition (2) is satisfied.

Convergence in R with respect to any metric of the form (4.2) clearly
coincides with convergence with respect to the ordinary absolute value, and
hence the process of completion under one of these valuations leads again to
the real numbers.

Theorem 3 (Ostrowski’'s Theorem). Every metric of the field of
rational numbers is either of the form (4.2), or is a p-adic metric (4.1) for
some prime p.

Proof. Let ¢ be an arbitrary nontrivial metric of the field R. Two cases are
possible: Either there is some natural number a > !, for which ¢(a) > 1,
or else ¢(n) < 1 for all natural numbers n. Consider the first case. Since

o) = o(1 + -+ + 1) < o(1) + -+ + o(1) =, @3)
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we may set
pa) = &, (4.4)

where « is real and satisfies 0 < o < 1.
Taking an arbitrary natural number N, we decompose it in powers of a

N=Xxq+ Xa+ - +x,8",

where 0<x;<a—-1 0<i<k-1), x,_, = 1. Hence N satisfies the in-
equality
& '<N<d.

By the properties of metrics, formulas (4.3) and (4.4) yield
o(N) < 0(X) + ¢(x1)0(a) + -+ + ¢(x,-1)p(a) ™"
S@=D1+a*+ - +a%1"

a“—1 a* (a — Da*

= -1 < -1 = *k-1)=

@-Dag<@-Da—="pm_714

-1 a

<@ DF e ong

a*—-1

that is,
o(N) < CN?,

where the constant C does not depend on N. Replacing N by N™ in this in-
equality, for m a natural number, we obtain

O(N)" = @(N™) < CN™,
whence B
o(N) <7/CN*.

Letting m tend to infinity, we arrive at

o(N) < N _ @4.5)
Now setting N = @* — b, where 0 < b < @* — &* ™', we obtain by condition (2),

o(N) = ¢(@) — ¢(b) = a™ — o(b).

But it is already known that

o(b) < b* < (& — a7V,
and thus

1 a
o(N) = a®* — (a* —a* ') = [1 - (1 - ;) ]a“" = C,a™ > C,N*,

where the constant C; does not depend on N. Let m again denote an arbitrary
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natural number. If N is replaced by N™ in the preceding inequality, then

O(N)" = o(N™) > C;N*",
from which

¢(N)>T/C\N°,

and as m — oo this yields
o(N) > N°. (4.6)

Comparing (4.5) and (4.6), we see that ¢(N) = N*®for any naturai number N.
Now let x = + N,/N, be an arbitrary rational number, different from zero
(N, and N, are natural numbers). Then

_ ﬂ _qo(Nl)_N]“_ «
o= o( ) = o = =T

We have shown that if ¢(a) > 1 for at ieast one natural number a, then the
metric ¢ is of the form (4.2).
We now turn to the case where

on) <1 4.7)

for all natural n. If for every prime p, we had ¢(p) = 1, then by condition (3)
we would also have ¢(n) = 1 for all natural n, and thus also ¢(x) = 1 for all
rational x # 0. But this would contradict the assumption that ¢ is nontrivial.
Thus for some prime p we have ¢(p) < 1. Assume that for some other prime
q # p we also had ¢(g) < 1. We take exponents k and / so that

o) <1 olg) <1

Since p* and ¢' are relatively prime, there are integers u and v such that
up* + vg' = 1. By (4.7) o(u) < 1 and ¢(v) < 1, so that

1= o(1) = o(up* + v9') < P)o(p)* + @(v)0(g)' <4 + 3.

This contradiction shows that there is only one prime p for which

e(p)=p <l

Since ¢(g) =1 for all other prime numoers, ¢(@) =1 for every inieger g
which is relatively prime to p. Let x = p™(a/b) be a nonzero rational number
(2 and b integers, relatively prime to p). Then

91a)
o(b)

Thus in this case the metric ¢ coincides with the p-adic metric (4.1).
The proof of Theorem 3 is complete.

o(x) = o(p™) = o(p") = p".
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PROBLEMS

1. Show that a finite field can have only the trivial metric.

2. Two metrics @ and ¢, defined on the same field , are called equivalent if they define
on k the same condition for convergence, that is, if ¢(x, — x) = 0 if and only if {x, —x) 0.
Show that for the equivalence of ¢ and ¥, it is necessary and sufficient that @(x) < 1 if
and only if {(x) <1 forall x € k.

3. Show that if g and ¢ are equivalent metrics on the field k, then there is a real number
8 such that @(x) = (H(x))° for all x € k.

4. The metric @, given on the field &, is called non-Archimedean if it satisfies not only
condition (2) but also the stronger condition

@la +8) < max (p(a), (). 29

(If this stronger condition fails to hold, then @ is called Archimedean.) Show that the
metric @ is non-Archimedean if and only if ¢(n) < 1 for every natural number » (that is,
for every multiple of the unit element of k by a natural number).

6. Show that any metric of a field of characteristic p is non-Archimedean.

6. Let ko be an arbitrary field, and let kK = ko(z) be the field of all rational functions
over ko. Every nonzero element u € k can be represented in the form

t
u= t"'& (f(0) # 0, g(0) # 0),
g()
where f and g are polynomials. Show that the function

elw)=p" (O<p<l), @0)=0, (4.8)

is a metric of the field k.

7. Show that the completion of the field k = k,(z) with respect to the metric (4.8) is
isomorphic to the field & {¢} of formal power series, which consists of all series of the form

5 ar”  (a,€ko)

under the usual operations on power series (the integer m may be positive, negative,
or zero).

5. Congruences and p-Adic Integers

5.1. Congruences and Equations in the Ring O,

At the beginning of Section 3 we considered the question of the solvability
of the congruence x* = 2 (mod 7") forn = 1, 2, ..., and this led us to the con-
cept of a p-adic integer. The close connection between p-adic integers and
congruences was already shown in their definition (Section 3.1). This con-
nection is described more fully in the following theorem.
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Theorem 1. Let F(x,, ..., x,) be a polynomial whose coefficients are
rational integers. The congruence

F(x,, ..., x,) =0 (mod p*) 5.1
is solvable for all £ > | if and only if the equation
F(x,...,x,)=0 5.2)
is solvable in p-adic integers.

Proof. Let (5.2) have the p-adic integral solution («,, ..., a,). For every k
there exist rational integers x;“, ..., x,*) such that

a, = x,% (mod pY, ..., a, = x,* (mod p*). (5.3)
From this we obtain
Fie,®, ..., x,% = F(ay, ..., 2,) = 0 (mod p*);

that is, (x,%, ..., x,®) is a solution of the congruence (5.1).

Now assume that (5.1) has the solution (x,%, ..., x,*) for each k. Select
from the sequence {x,’} of rational integers a p-adically converging sub-
sequence {x,*’} (Theorem 6, Section 3). From the sequence {x,*"} select
again a convergent subsequence. Repeating this process n times, we arrive at
a sequence of natural numbers {/}, /,, ... }, such that each of the sequences
{x ), x,U9, .} is p-adically convergent. Let

lim x;% =« .

m-— o
It will be shown that («y, ..., a,) is a solution of (5.2). Since the polynomial
F(x,, ..., x,) is a continuous function,

F(oy, ..., a,) = lim F(x,%, ..., x,("),

m-— oo

On the other hand, by the choice of the subsequence (x,{™, ... x, (),
F(x,*, ..., x,) = 0 (mod p'),

so that lim,_  F(x,;, ..., x,0")=0. Thus F(a,...,a,) =0, and the
theorem is proved.

Consider now the case when F(x,, ..., x,) is a form. Assume that the equa-
tion F(x,, ..., x,) =0 has a nonzero solution (&,, ..., &,) in p-adic integers.
Set m = min (v,(&,), ..., v,(&,)). Then each &, is represented in the form

&; = p"ua; i=1,..,n),

where all «; are integers and at least one of them is not divisible by p. Clearly,
(o4, ..., &) is also a solution of the equation F(x,, ..., x,) = 0. The numbers
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(x,®, ..., x,®), satisfying (5.3),then give,as we have seen,a solution of (5.1),
not all terms of which are divisible by p.

Conversely, assume that (5.1) with F homogeneous, has for each k a solu-
tion (x;*, ..., x,%) in which at least one of the numbers x;*’ is not divisible
by p. Clearly, for some index i = i, there will be an infinite number of values of
m for which x; ™ is not divisible by p. Therefore the sequence {/,, /,, ...} can
be chosen so that all x;,“~ are not divisible by p. But then from &, = lim x, ‘™
it follows that a; is not divisible by p, and a fortiori «;, # 0. Thus we have
proved the following theorem.

Theorem 2. Let F(xy, ..., x,) be a form whose coeflicients are rational
integers. The equation F(x,, ..., x,) = 0 has a nontrivial solution in the ring
O, if and only if for every m the congruence F(x,, ..., x,) = 0 (mod p™) has
a solution in which not all terms are divisible by p.

It is clear that in Theorems 1 and 2 F may be a polynomial whose coeflicients
are p-adic integers.

5.2. On the Solvability of Some Congruences

By Theorem 1, we can solve (5.2) in p-adic integers provided we can solve
an infinite sequence of congruences (5.1). It is generally difficult to tell when
we may limit our consideration to only a finite number of these. Here we shall
consider a special case.

Theorem 3. Let F(x,, ..., x,) be a polynomial whose coefficients are p-
adic integers. Let y,, ... , 7, be p-adic integers such that for some i (1 < i< n)
we have

F()’l’ cers y") = 0 (mOd p26+1)a

oF

'a';i (YIs sees )’n) =0 (mOd Pé),

oF
. (’YI’ sees )’n) $ 0 (mOd p6+1)

0x;
(4 is a nonnegative rational integer). Then there exist p-adic integers 8y, ... , 0,,
such that
F@,,..,6)=0

and

6+1) 45+1)
y .

BIE’YI (mOdP "'90nE‘y"(mOdp

Proof. Consider the polynomial f(x) = F(yy, ..., Yi—1> X, Yit1s -+ » Vu)- TO
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prove the theorem it suffices to find a p-adic integer «, for which f(«) = 0 and
a =y, (mod p®*1) (if such an « is found, then set ; = y; for j # i, and 6, = «).
Let y; = y. We construct a sequence

Oy Oy veey Lppy onn (5.3)
of p-adic integers, congruent to y modulo p°*?, such that
S (&) =0 (mod p***1*m) (5.4)

for all m = 0. For m = 0 set o, = y. Assume that for some m > 1 the p-adic
integers ay, ..., &,_;, satisfying the above requirements, have already been
found. In particular, «,_, =7y (modp’*!) and f(a,_,) =0 (mod p?**™).
Expand the polynomial f(x) in powers of x — a,,_;:

) = Bo + Bi(x — 0 y) + Bo(x — oy y)? + - (B € 0)).

By the induction assumption S, = f(%,_;) = p***™4, where 4 is a p-adic
integer. Further, since a,,_, =y (mod p°*?"), then B, = f(a,,—;) = p°B, where
B is not divisible by p in O,. Setting x = a,,_; + £p™*%, we obtain

Sy + EP™T?) = pP+ (A + BE) + Byp?PTImER + -

We now choose a value ¢ = ¢, € O, so that 4 + B, =0 (mod p) [this is
possible since B # 0 (mod p)]. Noting that k6 + km =225 + 1 + mfor k > 2,
we have

Sy + Eop™ %) = 0 (mod p**¥1*m),

Thus we may set o, =0,_4+Ep"*° Since m+626+1, a,=y

(mod p°*1). By our construction v,(o, — &t,_4) = m + 8, and thus the se-
quence (5.3) converges. Denote its limit by «. Clearly, « =7 (mod p®*").
From (5.4) it follows that lim,,_ ., f(2,) = 0; on the other hand, by the con-
tinuity of the polynomial £, lim,,. . f(«,) =f(a). Thus f(«) = 0.

Corollary. If the polynomial F(x, ..., x,) has p-adic integers as co-
efficients and for some i (1 £ i < n) the p-adic integers yy, ... , y, satisfy

F(’Y‘l, cers y}l) = 0 (mOd p)’
F,x.-()’b erey ‘Yn) i 0 (mOd P),
then there exist p-adic integers 6, ... , 8, such that

F(gl, sy 0,,) = 0
and
6; =y, (mod p), ..., 8, =7y, (mod p).

Thus a solution (cy, ..., ¢,) to the congruence F(x,, ..., x,) =0 (mod p)
can be extended to a solution of the equation F(x,, ..., x,) = 0in the ring O,,,
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provided that at least one of the following congruences does not hold:

F’xl(cla ] Cn) = 0 (mOd p)’

F', (¢y, ..., ;) =0(mod p).

This last assertion has an important application to the question which
we dealt with at the beginning of Section 2. There we noted that to show
directly that the congruence

F(xy, ..., x,) = 0 (mod m)

is solvable for all m involves the verification of an infinite number of con-
ditions. In the case where the modulus is prime, Theorems A and B of Section
2.1 allow the possibility of an effective verification, in that they show that a
direct verification is only necessary for a finite number of primes. Now we can
say something about the case of arbitrary moduli. As we have already noted,
it suffices to consider moduli which are powers of a prime, and for moduli
having the form p* (k = 1, 2, ...), the solvability of the congruence (5.1) is
equivalent to the solvability of the equation F =0 in the ring of p-adic
integers.

Using Theorems A and B of Section 2.1 (which we have not proved), and
also Theorem 3, we prove the following result.

Theorem C. If F(x, ..., x,) is an absolutely irreducible polynomial
with rational integer coefficients, then the equation F(x,, ..., x,) =0 is
solvable in the ring O, of p-adic integers for all prime numbers p greater than
some bound which depends only on the polynomial F.

Hence, for all but a finite number of primes p, the congruence

F(x,, ..., x,) = 0 (mod p*) (5.5
is solvable for all k.

Theorem C thus reduces the question of the solvability of the congruence
(5.5) for all p to the question of the solvability of the equation F =0 in the
ring O, for a finite number of primes p. We shall not deal here with the
question of the solvability of the equation F = 0 in the ring O, for these
finitely many p (for the case of quadratic polynomials this will be done in
Section 6).

The idea of the proof of Theorem C is very simple: Using the estimate of
Theorem B for the number of solutions of the congruence (2.1), we shall show
that the number of solutions to this congruence is greater, for sufficiently
large p, than the number of solutions to the system of congruences
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F(xl’ (] xn) = O (mOd P),

(5.6)
F', (xy, ..., x,) =0 (mod p).

To do this we need another estimate for the number of solutions of a
congruence.

Lemma. If not all coefficients of the polynomial F(x,, ..., x,) are divisible
by p, then the number N(p) of solutions to the congruence

F(x,, ..., x, =0(mod p) (5.7
satisfies the inequality
Np)<Lp"™!, (5.8)

in which the constant L is equal to the total degree of F.

We prove the lemma by induction on n. For n = 1 it follows from the fact
that the number of roots of a nonzero polynomial in the field Z, cannot
exceed its degree.

If n > 1, consider F(x, ..., x,) as a polynomial in x,, ..., x,_,, the coeffi-
cients of which are polynomials in x,. Denote by f(x,) the greatest common
divisor of these coefficients modulo p. Then

F(xl’ vy xn) Ef(xn)Fl(xla ey xn) (mOd p)a

where for any a the polynomial F,(x,, ..., x,_,, @) is not identically congruent
to zero modulo p. Let / and L, be the degrees of fand F,, respectively. It is
clear that fand F, can be chosen so that / + L; < L. We can now bound the
number of solutions (¢, ..., ¢,) to the congruence (5.7) by considering the
different values for x, in these solutions. Consider first those solutions for
which

f(c,) =0 (mod p). (5.9

If (5.9) is fulfilled, then for any choice of ¢y, ..., ¢,—, we obtain a solution of
(5.7). Since the numbers of values of ¢,, modulo p, is at most /, then the num-
ber of solutions of (5.7), for which (5.9) holds, is at most Ip"~!. Consider
now solutions for which f(c,) # 0 (mod p). All such solutions clearly satisfy

the congruence F(xy, ..., x,) = 0 (mod p). Since F(x,, ..., x,-q, ¢c,)} is not
identically congruent to zero modulo p, then by the induction hypothesis
the number N(p, c¢,) of solutions of the congruence F(xy, ..., x,_1,¢,) =0

(mod p) satisfies the inequality N(p, ¢,) < L,p"~ 2. Since ¢, takes not more than
p values, the total number of solutions of this type does not exceed L,p" .
Thus the total number of solutions of (5.7) does not exceed Ip" ! + L, p" "1 <
Lp"~!, which is what was to be proved.

Proof of Theorem C. We may, of course, assume that the polynomial F
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actually depends on the variable x,. Consider F as a polynomial in x, with
coeflicients which are polynomials in x,, ..., x,_;. Since F is absolutely
irreducible, it follows that the discriminant D, (x,, ..., x,_,) of the poly-
nomial F, considered as a polynomial in x,, is a2 polvnomial in x,, ..., x,_,
which is not identically zero. since otherwise F would be divisible by the square
of some polynomial. Consider a prime number p, which does not divide all

coefficients of D, (xi, ..., x,_1), and let N,(p) be the number of solutions of
(5.6). If (¢y, ..., c,) is a solution of (5.6), then ¢, is a common root, modulo p,
of the polynomials F(cy, ..., c,—y, X) and F’, (cy, ..., ¢, 1, X,) and therefore

Dx,,(cls (AR cn—l) = 0 (mOd p)'

By the lemma, the number of solutions to this congruence does not exceed
K, p"~ 2%, where K| is some constant which depends only on the polynomial F.
For given ¢y, ..., ¢,—, the values of c, are determined by the congruence

F(cy, ... 5 Cy-ys X,) = 0 (mod p)

and therefore there are at most m of them, where m is the degree of the poly-
nomial Fin x,. Thus the number N,(p) of solutions to system (5.6) does not
exceed Kp"~ 2, where K = mK,. We now show that for sufficiently large p, the
number N(p) solutions to the congruence (5.7) is larger than the number
Ni(p) of solutions to system (5.6). Indeed, by Theorem B,
N(p) > pn—l _ Cpn—l—(l/Z),
and we have just shown that N,(p) < Kp"~2. Thus
N(p) = Ni(p) > pr=! = Cp"™ 1702 — Kp" ™% = p"2(p - Cp'/? ~ K),

which means that N(p) > N,(p) for sufficiently large p. Thus, for sufficiently
large p, the congruence F = 0 (mod p) has a solution (y, ..., y,) for which

oF
0x,

(71, ++o» Y) # 0 (mod p).

By the corollary of Theorem 3, this proves that the equation F = 0 has a solu-
tion in the ring O, for all p, larger than some given constant.

¥

PROBLEMS

1. Show that if m and p are relatively prime, then any p-adic unit &, satisfying the
congruence € =1 (mod p), is an mth power in R,.

2. Let m=p’mq, (my, p) =1, and let € =1 (mod p2°*!). Show that the p-adic unit ¢
is an mth power in R,.
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3. If p # 2 and the p-adic integers « and f§ are not divisible by p, show that the soly-
ability of the congruence ax? = 8 (mod p?) implies the solvability of the equation ax? = f
in the field R,.

4. Assume that the coefficients ¢; in the torm G = ¢,x,? + --- + £,x,P are p-adic units
(p #2). Show that if the congruence G =0 {mod p*) has a solution in which at least one
of the variables is not divisible by p, then the equation G = 0 has a nonzero solution in
the field R,.

5. Let all coefficients of the form G = a,x,” + .-+ + o,x,” be p-adic integers which are
divisible at most by the (p — 1)th power of p. If the congruence G = 0 (mod p**?2) has a
solution in which not all variables are divisible by p, show that the equation G = 0 has a
nonzero solution in the field R,. [If p 5 2, it suffices to have a solution to the congruence
G =0 (mod p?*1).]

6. Let the quadratic form F= a;x,? + -+ + a,x,2 have coefficients which are p-adic
integers (p # 2) not divisible by p. Show that if the congruence F = 0 (mod p*) has a solution
in which not all values of the variables are divisible by p, then the equation F =0 has a
nonzero solution in the field R, .

7. If the form F= a,x," + -+ + a,x,” has coefncients which are nonzero p-adic
integers, set r = v,(m), s = max(vp(x,), ..., vp(a,)) and N =2(r 4 s)+ 1. Show that the
equation £ =0 has a nonzero solution in the field R, if and only if the congruence F =0
(mod p") has a solution in which not all values of the variables are divisible by p.

8. Show that the form 3x® + 4y® + 5z° represents zero in the field R, for all p (see
Problem 13, Section 2).

9. Let the polynomial F(x,, ..., X.) have coefficients in O, and, denote by ¢,, (m = 0)
the number of solutions to the congruence #(x,, ..., x,) = 0 (mod p™). Consider the series
@(t) =27 _o cut™ It has been conjectured that the series ¢(), called the Poincaré series of
the polynomial F, represents a rational function of 7. Find the Poincaré series for the
polynomial F= g,x,%2 4+ -+ + &,x,2, where ¢; is a p-adic unit, and check that the function
o(r) is rational.

10. Find the Poincaré series for a poiynomial ¥(x,, ..., x,) with p-adicintegral coefficients,
which satisfies the condition that for any solution of the congruence F==0 (mod p),
oF/éx,# 0 (mod p) forsome i=1, ..., n.

11. Compute the Poincaré series for the polynomial F(x, y) = x? — y3.

6. Quadratic Forms with p-Adic Coefficients

In this and the next section we shall apply tne theory of p-adic numbers
which we®*have deveioped to the investigation of the simpiest types of equa-
tions. We shall consider the problem of the representation of p-adic and
rational numbers by quadratic forms. The algebraic preliminaries that we
shall need on the properties of quadratic forms over arbitrary fields are given
in the Supplement, Section 1.

6.1. Squares in the Field of p- Adic Numbers

For the study of quadratic forms over a given field it is important to know
which of the elements of the field are squares. Therefore we first turn to the
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study of squares in the field R, of p-adic numbers. We know (Section 3,
Theorem 4) that every nonzero p-adic number o can be represented uniquely
in the form o = p™¢, where ¢ is a p-adic unit (that is, ¢ is a unit in the ring O, of
p-adic integers). If « is the square of the p-adic number y = p*e,, then m = 2k
and ¢ = g,°. To determine all squares of the field R,, we must thus determine
which units of O, are squares.

Theorem 1. Let p # 2. In order that the p-adic unit
e=co+cptepP+-- (0K ¢ <p,co#0) 6.1)

be a square, it is necessary and sufficient that the integer ¢, be a quadratic
residue modulo p.

Proof. If e=n* and n=>b(modp) (b a rational integer), then c, = b*
(mod p). Conversely, if ¢, = b? (mod p), let F(x) = x? — &. We have F(b) =0
(mod p) and F'(b) = 26 # 0 (mod p). By the corollary of Theorem 3 of Section
5 there is a n € O, such that F(n) = 0 and n = b (mod p). Thus ¢ = n?, and the
theorem is proved.

Corollary 1. If p # 2, any p-adic unit which is congruent to 1 modulo p
is a square in R,,.

Corollary 2. If p # 2, the index (R,* : R,*?) of the subgroup of squares
R,*? in the multiplicative group of the field R, is equal to 4.

For if ¢ is not a square, then the quotient of any pair of numbers from 1, ¢,
P, peis not a square in R, . But any nonzero p-adic number can be represented
as the product of one of the numbers 1, g, p, pe with some square.

If p # 2 and the unit ¢ is given by (6.1), set

(s)_{+1 if ¢ is a square in R,
4

By Theorem 1 we have

—1 otherwise.

G- (3)
o/ \p/
where (co/p) is the Legendre symbol. If ¢ is a rational integer relatively prime

to p, then the symbol (¢/p) which we have defined clearly coincides with the
Legendre symbol. It is easily seen that for p-adic units ¢ and # we have

-6

We turn to the case p = 2.

*
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Theorem 2. In order that the 2-adic unit ¢ be a square (in the field R,),
it is necessary and sufficient that ¢ = 1 (mod 8).

Proof. The necessity follows from the fact that the square of an odd integer
is always congruent to 1 modulo 8. To prove sufficiency, set F(x) = x2 — ¢
and apply Theorem 3 of Section 5, taking § =1 and y = 1. Since F(1) =0
(mod 8) and F'(1) =2 # 0 (mod 4), the theorem implies that there is an
n = 1 (mod 4), such that F(y) = 0; that is, ¢ = n°.

Corollary (R,*: R,*?) = 8, where R,*? is the subgroup of squares of the
multiplicative group R,* of the field of 2-adic numbers.

By the above theorem the reduced system of residues modulo 8, namely,
1, 3,5, 7, forms a system of coset representatives for the subgroup of squares
in the group of all 2-adic units. If we also take the products 2-1,2-3,2-5,2-7,
then we obtain a full system of coset representatives for the subgroup R,*?
of the group R,*.

6.2. Representation of Zero by p- Adic Quadratic Forms

As is the case in any field, a nonsingular quadratic form over the field R, can
be put in the form
a1x12+ o +anxn2 (al#o)

after a linear change of variables (see the Supplement, Section 1.1). If a; =
pig; or a; = p**i*le; (¢; a unit in O,), then after the substitution p*x; = y;
we obtain a form in which all coefficients are p-adic integers which are divisible
at most by the first power of p. Thus any nonsingular quadratic form over the
field R, is equivalent to a form

F = Fo + pFl = 81x12 + -+ 8,X,2 + p(8,+1x,+12 4+ e 4 Enxnz), (62)

where the g; are p-adic units.

While considering the question of the representation of zero, we may assume
that r > n — r. The form pF is clearly equivalent to the form F, + pF,. Since
F and pF simultaneously represent zero, we may take the form F; + pF,
instead of F, + pF;.

We first consider the case p # 2.

Theorem 3. Let p # 2 and 0 < r < n. The form (6.2) represents zero in the
field R, if and only if at least one of the forms Fy, or F; represents zero.
Proof. Let the form (6.2) represent zero:

81612 + -+ Srérz +p(8r+lér+12 + ot Snénz) = 0' (63)
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We may assume that all &; are integers and that at least one of them is not
divisible by p. If not all £,, ..., &, are divisible by p, say &; £ 0 (mod p), then,
considering (6.3) modulo p, we have

FO(él: LRR ] ér) = O(mOd P),

OF
= (&, ... &) = 26,&, # 0 (mod p).
X1

By the corollary of Theorem 3 of Section 5, the form Fj, represents zero.
Assume now that &, ..., &, are all divisible by p, so that §,&,2 + -+ + ¢,£,% =
(mod p?). We consider (6.3) modulo p*. Dividing this congruence by p, we
obtain

Fl(ér+1’ ey in) = O(mOdp)7

where at reast one of ¢4, ..., £, is not divisible by p. Again appiying the
corollary of Theorem 3 of Section 5, we conclude that in this case the form F,
represents zero. Since the sufficiency of the condition is obvious, Theorem 3
is proved. The foilowing coroliaries are immediate.

Corollary 1. If ¢, ..., ¢ are p-agic units and p # 2, then the form
f=ex® + - +gx? represenis zero in R, if and only it the congruence
Sf(xy, ..., x,) = 0(mod p) has a nontrviai solutionin O, .

Corollary 2. If we also assume that r > 3, then the form f(x, ..., x,)
always represents zero in R,.

For by Theorem 5 of Section i, the congruence f(xy, ..., x,) = 0 (mod p)
has a nontrivial solution.

In the proof of Theorem 3 the equality (6.3) was not actually used; we
used only the congruences ¥ = 0 (mod p) and F = 0 (mod p?). Thus the solva-
bility of the second of these congruences already implies that one of the forms
F, or F}, and hence F, represents zero. Hence we have

Coroliary 3. If p # 2 the form (6.2) represents zero if and only if the con-
gruence F = 0 (mod p?) has a solution in which not all variables are divisible

by p.

We now corisiaer quaaratic forms over the field of 2-adic numoers. In this
case Theorem 3 and all its coroliaries are false. For example, if f= x;* +
x,% + x3% + x,2, then tne equation f = 0 has no noniriviai solution (since the
congruence f = 0 (mod 8) has no soiution in integers, at ieast one of which is
odd). But we shall see that the form f+ 2xs* does represent zero in R,
(Theorem 35).
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Theorem 4. The form (6.2) (with p = 2) represents zero in the field of
2-adic numbers if and only if the congruence F = 0 (mod 16) has a solution
in which at least one of the variables is odd.

Proof. Let F(¢,, ..., &) =0 (mod 16), where not all of the 2-adic integers
¢, are divisible by 2. We first assume that &, # 0 (mod 2) for some i <r,
say &; # 0 (mod 2). Since F(&y, ..., &,) = 0 (mod 8) and (0F/dx,) (¢4, ..., &)
=2¢¢; # 0 (mod 4), by Theorem 3 of Section 5, the form F represents zero.
If &, ..., & are all divisible by 2, set &, = 25, (1 < i < r), where #; is a 2-adic
integer. Divide the congruence

4Y en?+2 Y ed?=0(mod 16)
i=1 i=r+1

by 2 to obtain
Y &&2+2Y en® =0(mod B),
i=rt+1 i=1
where at least one of &, 4, ..., &, is not divisible by 2. As above it follows
from this congruence that the form F; + 2F, represents zero. Since the forms
F and 2F represent zero simultaneously, the sufficiency of the condition is
proved. The converse is obvious.
In the course of the proof we have obtained the following result.

Corollary. If the congruence F = 0 (mod 8), where F is given by (2) with
p = 2, has a solution in which at least one of the variables x, ..., x, takes an
odd value, then this form reoresents zero in the field R, .

Theorem 5. Any quadratic form over the field R, of p-adic numbers in
five or more variables always representsi zero.

Proof. We may assume that our form‘ is (6.2) with r > n —r. Since n > 5,
then r > 3. Corollary 2 of Theorem 3 then implies that the form F,, and hence
also the form F, represents zero. The theorem is proved if p # 2.

Let p =2. If n — r> 0, consider the “partial” form f = &,x,;2 + £;x,% +
£3x3% + 2¢,x,2. We claim that such a form always represents zero in R;.
Since & + &, = 2a (x a 2-adic integer), then & + ¢, + 26,07 = 200 + 202 =
20(1 +2) =0 (mod 4), that is, & + &, + 2¢,0% = 48, where B is a 2-adic
integer. Setting x, = x, = 1, x; = 28, x, = a, we have

€12+ &, 12 + £5(28) + 2,02 = 4B + 4p% = 0 (mod 8).

By the corollary of Theorem 4 the form f represents zero. But then F also
represents zero. In the case n = r, we take as a partial form f = ¢,x, + &,x,°
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+ &3x37 + e4X47 + esx52. If &y + &, = &5 + &4 = 2 (mod 4) then set x; = x, =
x3 = x4 =1, and if, say, & + &, =0 (mod 4), set x; = x, =1, x3 =x,=0.
In general we get g.x,2 + £,x,2 + £3x3% + £4x,2 = 4y, where 7y is a 2-adic
integer. Set x, = 2y, and then

f=4y + 4y* = 0 (mod 8).

We complete the proof by applying the corollary of Theorem 4. Theorem 5 is
completely proved.

By Theorem 6 of Section 1 of the Supplement, Theorem 5 implies the fol-
lowing corollary.

Corollary 1. Any nonsingular quadratic form in four or more variables
over the field R, represents all p-adic numbers,

Corollary 2. Let F(x,, ... , x,) be a nonsingular quadratic form whose
coefficients are rational integers. If n = 5, then for any m the congruence
F(xy, ... , x,) = Q (mod m) has a nontrivial solution.

Indeed, since the form F represents zero in R,, then for any s > 1, the
congruence F =0 (mod p®) has a solution in which at least one variable is
not divisible by p.

6.3. Binary Forms

Binary quadratic forms form an important special case of the general
theory. We consider the question of the representation of numbers of the
field R, by the quadratic form

x2—ay?,  a#0, a€R,. (6.4)

(Any nonsingular binary form can be put in this form by a change of variables
and by multiplying the form by some p-adic number.)

Let H, denote the set of all nonzero p-adic numbers represented by the
form (6.4). This set has the surprising property of being a group under multi-
plication. Indeed, if f = x? — ay?, B; = x> — ay,?, then a simple computa-
tion shows that

BBy = (xx; + ayy,)? — a(xy, + yx,)?,

e oy
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Another proof of this fact can be given, using the quadratic extension Rp(\/ a)
of the field R, (assuming that o is not a square in R,). The equation § =
x2 — ay? simply says that B is the norm of the number & = x + y/a of the
field R,( Jo). But if f = N(¢) and B, = N(¢,), then BB, = N(&&,) and B~ =
N(ETH.

If o is a square in R, then the form (6.4) represents zero, and hence rep-
resents all numbers of R,. Hence in this case H_ coincides with the entire
multiplicative group R,* of the field R,.

Since the form (6.4) represents all squares of the field R, (set y = 0), then
R,*?* = H,. By the corollaries to Theorems 1 and 2 the index (R,* : R,*?)
is finite, so that the group H, has finite index in R *.

Theorem 6. If the number « € R,* is not a square, then (R,* : H,)) = 2.

Proof. First note that the form (6.4) represents the p-adic number g if
and only if the form

ax? + py? — z* (6.5)

represents zero (Theorem 6 of the Supplement, Section 1). The representability
of zero will not be changed if « and §§ are multiplied by squares. Hence we
may assume that ¢ and § are taken from some fixed system of coset represent-
atives of R,*? in R,*.

First, let p # 2. We claim that H, # R,**. This is clear if —a is not a square
(since —a € H,). If —a is a square, then the form x* — ay? is equivalent to the
form x? + y?, which represents all p-adic units (Corollary 2 of Theorem 3),
so that H, does not coincide with Rp*z. Further, we claim that H, does not
coincide with R,* (assuming, of course, that a ¢ R,*?). If ¢ is a nonsquare
p-adic unit, then we may assume that « is €, p, or pe. But by Theorem 3 (and
Theorem 10 of the Supplement, Section 1) the form (6.5) does not represent
zero if a = ¢, f=p, or when a = p or ps and f =e¢. Thus H, # R,*. Since
R,** = H, < R,*, the index (R,*: H,) must divide the index (R,*: R,*?)
= 4 (by Corollary 2 of Theorem 1). But we have shown that the index is
neither 4 nor 1, so that (R,*: H,) = 2 and Theorem 6 is proved in the case

p#2

Now let p = 2. In this case we have (R,* : R,*?) = 8, and as coset repre-
sentatives we may take the numbers 1, 3, 5, 7, 2-1, 2-3, 2-5, 2-7. We shall
therefore assume that « and B, in the form (6.5), are taken from this set, We
thus need to check which of these forms represents zero in R. The answer is
given in the following table, in which a ““ +°* sign denotes that for the corre-
sponding « and § the form (6.5) represents zero in R,-and an empty square
denotes that the form does not represent zero.
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N‘ 1 | 3 ; 5 | 7 {2-1i2-3i2~5‘2-7

i - N
1 1+‘+i+\+[+g+g+i+
3 R ;“‘+ §+
5 \+l‘+\+i+_i1 i | \

g E+\ ‘+‘ ‘+'w |+
2:1 |+ | +J+} ;r‘+
23 2+i+§ i \ i+1¢
IR E
2.7 ﬁ+i+? ;‘+f+[ !

[Since the form (6.5) is symmetric in o« and §8, the table is symmetric about
its main diagonal.] We see that in each row except the first one the “ +* occurs
in four columns. This means that for each nonsquare a € R,*, the form (6.4)
represents precisely four cosets of the subgroup R,*2. Thus (H, : R,*?) = 4
and since (R,* : R,*?) = 8 (corollary of Theorem 2), then (R,* : H,) = 2.

We use the results of Section 6.2 to verify the table. Let o = 2¢, B = 2y,
where ¢ and # are 2-adic units, and let

2ex? + 2t -2 =0. (6.6)

We may assume that x, y and z are integers, not all divisible by 2. It is clear
that z = 0 (mod 2), and that neither x nor y are divisible by 2 [otherwise the
left side of (6.6) would not be divisible by 4]. Setting z = 2¢, we put (6.6)
in the form

ex? +ny? -2t = 0.

This equation, by the corollary of Theorem 4, is equivalent to the corre-
sponding congruence modulo 8 (with x and y odd). Since x? = y* = 1(mod 8),
and either 2¢2 = 2 (mod 8) or 2¢* = 0 (mod 8), then (6.6) is solvable if and only
if one of the following holds:

e+ n =2 (mod 8); ¢+ 1 = 0(mod B).

Let now a = 2¢, 8 = 5. In the equation 2ex? + ny* — z? = 0 (with x, yand z
2-adic integers not all divisible by 2) we obtain, by similar reasoning, y # 0
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(mod 2) and z # 0 (mod 2). Hence (again by the corollary of Theorem 4),
this equation can be satisfied if and only if we have one of the congruences:

2e + 1 =1 (mod 8); n =1 (mod 8); 6.7)

which correspond to the cases 2 t x and 2| x.

Only the case a = ¢, f =  remains. If in the equation ex? + ny* —z> =0
the p-adic integers x, y, and z are not all divisible by 2, then precisely one of
them is divisible by 2 and the other two are not. If z = 0 (mod 2) then ex? +
ny? = ¢ +n =0 (mod 4), so that either ¢ = | (mod 4) or n =1 (mod 4). If
z #0 (mod 2), then ex? + ny? = 1 (mod 4), and since precisely one of the
numbers x and y is divisible by 2, we again find that at least one of the con-

gruences
e=1(mod4), 75=1(mod4) (6.8)

holds. Conversely, assume, say, that e =1 (mod 4). Then the congruence
ex? 4+ ny? — z2 = 0 (mod 8) is satisfied by x = 1,y =0,z = 1 if e = 1 (mod 8),
and by x=1,y=2,z=11if ¢ =5 (mod 8), and this means that the form
ex? + ny? — z% represents zero.

This ends the verification of the table and hence the proof of Theorem 6.

From Theorem 6 it follows that if « is 2 nonzero p-adic number which is not
a square, then the factor group R,*/H, is a cyclic group of order 2. We can
thus establish an isomorphism between this factor group and the group
{1, —1} of square roots of 1. The unique isomorphism between R,*/H, and
{1, —1} sends the subgroup H, to the number +1, and the coset iH,,
distinct from H,, to the number —1. It will be easier for us to deal with the
homomorphism of the group R,* onto the group {l, —1} with kernel H_,
since then we will have a function on R,* (and not on the factor group
R,*/H,).

Definition. For any pair a # 0, f§ # 0 of p-adic numbers, we define the
symbol (%, f) to be equal to +1 or to —1, depending on whether the form
ax? + py* — z? represents zero in the field R,* or not. The symbol (x, )
is called the Hilbert symbol.

It follows immediately from the definition that if « is a square, then («, ) =1
for all B. If x ¢ R,*?, then («, §) =1 if and only if e H,. Thus for any
a# 0,themapping f — (x, f) is a homomorphism of the group R,* to the group
{1, —1} with kernel H,. In other words,

(%, B182) = (2, B1)(2 f3). (6.9

Further, the definition of the symbol («, f) depends on the solvability of (6.5),
which is symmetric in x and f, so that

B @) = (, B), (6.10)
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from which, by (6.9),
(ayaz, B) = (g, B)0t, B). (6.11)
We note that
(a, —ax) =1 (6.12)

for any ae R,* (since the equation ax? —ay? — z =0 has the solution
x =y =1, z=0), and thus, by (6.9),

(CC, (1) = (CC, - 1) (613)

Using (6.9) to (6.13) the computation of («, ) in the general case is reduced
to the computation of (p, €) and (g, 1), where ¢ and 5 are p-adic units. Indeed,
if « = p*e, p = p'n, then from these formulas we obtain

(p*e, p'n) = (p, (e, P)'(p, MM, 1) = (p, e (— 1)) (e, 1)

We now compute (p, ¢) and (g, ). If p # 2, then by Theorem 3 the form
px* + ey? —z2 represents zero if and only if ey* — z? represents zero, that is,
if and only if the unit ¢ is a square. Thus (p, €) = (¢/p) for p # 2 (see Section
6.1). By Corollary 2 of Theorem 3, the form ex? + ny? — z? always represents
zero, and thus (e, ) = +1 for any p-adic units ¢ and 5 (p # 2).

If p = 2, the values of the symbols (2, €) and (g, 1) have already essentially
been found in the proof of Theorem 6. For by (6.7), with ¢ = 1, the form
2x% + ny* — z? represents zero if and only if n = + 1 (mod 8). Hence (2, ) =
(—1)"*~1/8 Further, the form ex? + #y® — z* represents zero if and only if
one of the congruences of (6.8) is fulfilled. Thus (¢, ) = (— 1)l D/20=1)/2]

Summing up, we have ‘

Theorem 7. The values of the Hilbert symbols (p, €) and (e, #) for p-adic
units ¢ and u are given by the forrpulas

\

(p,s):(;i), tm=1 for p#2,

(2, ¢) = (_1)(e2-1)/8’ (e, = (- 1)[(e—1)/2][(n-1)/2] for p = 2.
I

6.4. Egquivalence of Binary Forms

The Hilbert symbol allows us to give explicit conditions for the equivalence
of two binary quadratic forms over the field R,. Let f(x, y) and g(x, y) be
two binary nonsingular quadratic forms over R, with determinants é(f) and
d(g). For fand g to be equivalent, it is necessary that §(f) and &(g) differ by a
factor which lies in R,** (Theorem 1 of the Supplement, Section 1). To
formulate another necessary condition for equivalence, which, along with
the above one will be sufficient, we need the following fact.
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Theorem 8. Let the binary form f have determinant 6 # 0. Then the
Hilbert symbol («, — ) takes the same value for all nonzero p-adic numbers a
represented by f.

Proof. Let o and o' be two nonzero p-adic numbers represented by the form
/- By Theorem 2 of Section 1 of the Supplement the form f'is equivalent to a
form f, of the type ax? + By?. Since a' is also represented by f, then «’ =
axy? + Byot, so that aa’ — aBy,’ — (ax,)? = 0. Hence the form aa’x? —
afy? — z* represents zero, so that (xa’, —af) = 1. But af differs from & by a
square factor, so that (xa’, —9) = 1, and thus by (a, —9) = (¢', —9), which
proves the theorem.

Theorem 8 implies that the binary form f has a new invariant, and we set

e(f) = (a0, —0(f)),

where a is any nonzero p-adic number which is represented by f.

Theorem 9. Let fand g be two nonsingular binary quadratic forms over
the field R,. fand g are equivalent if and only if both of the following con-
ditions hold:

(1) 8(f) = d(gn?,  ye R,
(2) e(f) = e(g).
Proof. The necessity of both conditions is clear. To prove sufficiency we

first show that the two forms represent the same p-adic numbers. Let the
number y € R,* be represented by the form g. Letting f = ax? + By?, we have

(o, —af)) = e(f) =e(g) = (y, —8(9) = (3, —ap),
by which
(a7, —ap) = 1.

By the definition of the Hilbert symbol this means that we can solve the
equation
ya~lx? —afyt — 22 =0

in nonzero x, y, and z. But then
2 2
z o
X X

that is, y is represented by the form f. The equivalence of fand g now follows
from Theorem 11 of Section 1 of the Supplement.

6.5. Remarks on Forms of Higher Degree

Theorem 5 on quadratic forms over the field R, is one of a class of theorems
in number theory which run as follows: ““All is well as long as the number of
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variables is sufficiently large.” In this case “‘well” means that the quadratic
form represents zero over the field of p-adic numbers, and “sufficiently
large” means that the number of variables is at least five. It would be most
interesting to observe this phenomenon also in the case of forms of higher
degree over the field of p-adic numbers.

The precise formulation is this. For any natural number r there is a number
N(r) such that any form of degree r over the field R, represents zero, pro-
vided that the number of variables exceeds N(r). We note that there is no
reason to believe, a priori, that any such number N(r) exists, but Brauer
showed that it does. However, his bound is rather large [R. Brauer, “A note
on systems of homogeneous algebraic equations,” Bull. Am. Math. Soc. 51
(1945) pp. 749-755]. For r = 2, Theorem 5 shows that N(r) = r%. For
r = 3, Demyanov and Lewis showed that N(r) = r? also; that is, any cubic
form over the field of p-adic numbers in at least 10 variables represents zero
[V. B. Demyanov, “On cubic forms over discrete normed fields,” Dokl.
Akad. Nauk SSSR 74 (1950) pp. 889-891; D. J. Lewis, “Cubic homo-
geneous polynomials over p-adic fields,” Ann. Math. 56 (1952) pp. 473-
478]. It was believed for some time that N(r) = r? is true in general, but
recently, G. Terjanian found a counterexample.

One may also consider systems of equations

Fl(xl [ 5 xm) - 0
.......... (614)
Fk(xl ) 1’ xm) -
inwhich F, , . . ., F; are forms with p-adic coefficients of degrees ry , . . ., ry.

In the case of two quadratic forms, with m = 9, the solvability of the system
was shown by Demyanov [a 51mple proof of this result of Demyanov was
givenin B. J. Birch, D. J. Lewis, and T. G. Murphy, “Simultaneous quadratic
forms,” Am. J. Math. 84 (1962) pp. 110-115]. A general method is known
which shows how to get solutions for systems (6.14) when m is sufficiently
large compared to ry , . . ., r; provided one knows the function N(r) men-
tioned in the preceding paragraph [see, for instance, S. Lang, “On quasi-
algebraic closure,” Ann. Math. 55 (1952) pp. 373-390].

Finally, it is easily shown that the hypothesized value for N(r) is the best
possible, that is, for any r there is a form of degree r in r® variables which
does not represent zero over the field of p-adic numbers. We give an example
of such a form. Recall that in Section 2.1 we constructed a form F(xy, ..., x,)
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of degree n in n variables such that the congruence
F(x,, ..., x,) =0 (mod p)
had only the zero solution:
x; =0(mod p), ..., x, =0 (mod p). (6.15)
Set
(D(xl, caey X,,z) = F(x19 ey xn)
+ pF(X"+1, ey xZn) + -+ p"_lF(xnz—n+15 ey x,,z)

We shall show that the form ® does not represent zero in the field of p-adic
numbers. Assume the contrary, that is, assume that the equation

(D(xl,...,x"z)=0 (616)

has a nonzero solution. Since ® is homogeneous we may assume that all
variables are integers and that at least one of them is not divisible by p.
Considering as a congruence modulo p, we obtain that F(x,, ..., x,) =0
(mod p), from which it follows by (6.15) that x, =px,, ..., x, = px,’.
Equation (6.16) then takes the form

p"F(xII) "':xn,) + pF(xn+l9 (RN x2n) + + p"_lF(xnz-rH-l) ery x,,z) = 0
or, after dividing by p,
F(xn+1’ ceey x2n) + o+ p"—ZF(xn2—n+11 reey xn2) + p"_lF(xlra seey xn,) =0.

As in the previous step, we obtain here that x,.q, ... , X,, are divisible by p.
Repeating this process » times, we obtain that x,, ..., x,. are divisible by p,
which is a contradiction.

PROBLEMS

1. Verify the following properties of the Hilbert symbol:

@ (a,1 —a)=+1,a#1;
@ (@P=@, —af),y=af>+pn?#0;
3) (ey, By) = (o, By, —af).

2. Let f= oa;x,2 + - + apx,? (o, € Ry*) be a quadratic form, and define the Hasse
symbol by the formula

(N=(-1,~-1 ]‘[ (CTCD)

1<i<j<n
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Show that
cpax? + f) = c,(fNa, —9),

epax? + By? + ) = e N af, —8)(a, B)

(8 is the determinant of the form f).

3. Let the form f= o;x2 + ++- + a,x,> with p-adic coefficients represent the number
y #0 of R,. Show that there is a representation y = o,£,2 + -+ + axéa? (£i € R,) such
that all ““partial sums” y, = a,§,2 + -+ + wudi®(1 < k < n) are nonzero. (Use Theorems
5 and 8 of Section 1 of the Supplement.)

4. Using the same notation, show that the form f is equivalent to a diagonal form
g=yy1®+ Baya® +  + Buya?, for which c,(g) = c,(f). (First show that the form
ax? + By* is transformed by the substitution x = uX — vBY, y = vX + pa ¥ (ap? + P12 =
y # 0) into y X2 + afyY?, and (a, B) = (y, afy).)

5. Show, by induction on the number of variables, that equivalent diagonal nonsingular
quadratic forms over the field R, have the same Hasse symbol (use Theorem 4 of Section 1
of the Supplement). The Hasse symbol can thus be defined for arbitrary nonsingular
quadratic forms: If the form f is equivalent to the diagonal form f,, set ¢,(f) = ¢,(fo).

6. Let f; and f; be two quadratic forms over the field R, with determinants 8, 5 0 and
8; # 0. Show that

efi + f2) = c(f)ef)—1, —1)(8,, 82).

7. Let f be a nonsingular quadratic form over the field R,, with & its discriminant and
« a nonzero number from R, . Show that

elaf) — [ ep(f e, (—1)m+D12 if #is odd,

4 | e, (e, (—1)"/25), if n is even.

8. Show that a nonsingular quadratic form in three variables over the field R, repre-
sents zero if and only if ¢,(f) = +1.

9. Let f be a nonsingular quadratic form in four variables over the field R, with deter-
minant 8. Show that f does not represent zero in R if and only if 8 is a square in R, and
cv(f ) =—1.

10. Let f be a nonsingular quadratic form in » variables over R, with determinant &.
Show that f represents the nonzero p-adic number « if and only if one of the following
holds:

(a) n=1 and «f is a square in R,.

(b) n=2and c,(f) =(—a, —8).

(c) n=3, —ad is a square in R, and ¢,(f) = 1.

(d) =3 and —a«d is not a square in R,.

(e) n=4.

11. Give the conditions under which a nonsingular quadratic form over the field R,
does not represent zero (nontrivially), but otherwise does represent all p-adic numbers.

12. In which p-adic fields does the form 2x2 — 15y2 + 1422 fail to represent zero?

13. Which S-adic numbers are represented by the form 2x2 + 5y2?

14. Let f and f” be nonsingular quadratic forms in » variables over the field R, with
determinants 8 and &’. Show that f and f” are equivalent if and only if ¢,(f) = ¢,(f") and
§=08a?(z€R,).
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7. Rational Quadratic Forms

7.1. The Hasse-Minkowski Theorem

In this section we shall give the proof of one of the most important results
of number theory—the so-called Hasse—Minkowski theorem—of which we
have already spoken at the beginning of this chapter.

Theorem 1 (Hasse—Minkowski). A quadratic form with rational
coeficients represents zero in the field of rational numbers if and only if it
represents zero in the field of real numbers and in ali fields of p-adic numbers
(for all primes p).

The proof of this theorem depends essentially on the number » of variables
of the quadratic form. For n = 1 the assertion of the theorem is trivial. In the
case n = 2 the proof is very simple. If the binary rational quadratic form
f with discriminant d # O represents zero in the field of real numbers, then
—d > 0 (see Theorem 10 of Section 1 of the Supplement); hence —d = p,*' ---
pse, where the p; are distinct primes. If now f represents zero in the field R,
then since —d is a square in R, , the exponent k; must be even (i = 1, ... , 5).
But in this case —d is a square in the field of rational numbers and hence f
represents zero in R.

The proof of the theorem for n = 3 is rather difficult. The various cases
which occur will be analyzed in the following paragraphs. But first we make
some preliminary remarks.

We may assume that the coefficients of the quadratic form f(x,, ..., x,)
are rational integers (if not, multiply it by the least common multiple of the
denominators of the coefficients). It is clear that the equation

Slxgy oo x,) =0 7.1
can be solved in the field of rational numbers R (or in the field of p-adic
numbers R,) if and only if it can be solved in the ring Z of integers (respective-
ly, in the ring O, of p-adic integers). Further, (7.1) is solvable in real numbers
if and only if the form fis indefinite. Hence, by Theorem 2 of Section 5, we
may formulate the Hasse-Minkowski theorem as follows:

Equation (7.1) is solvable in rational integers if and only if the form fis
indefinite and for‘ any modulus p the congruence

f(x;, .., x,) =0 (mod p™)
has a solution in which at least one of the variables is not divisible by p.
By Theorem 5 of Section 6 any form in five or more variables represents
zero in the field of p-adic numbers. Hence, for such forms the Hasse-Min-
kowski theorem reads: In order that a nonsingular rational quadratic form in
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n = 5 variables represent zero in the field of rational numbers, it is necessary
and sufficient that it be indefinite.

Thus the conditions for solvability in p-adic fields actually need only be
verified for n =3 and n = 4. For these values of n the Hasse-Minkowski
theorem gives us an effective criterion for the solvability of (7.1). Indeed, if the
form f is given by f=Ya,x;?, then Corollary 2 of Theorem 3, Section 6,
implies that, for any odd prime p which does not provide any of the a;, the
form f with n > 3 always represents zero in R. Thus only a finite number of
primes p actually need be considered. For each of these p the theorems of
Section 6 decide the question of the representation of zero by fin R,,.

By Theorem 6, Section 1, of the Supplement, Theorem 1 implies the fol-
lowing.

Corollary. A nonsingular quadratic form with rational coefficients
represents the rational number a if and only if it represents a in the field of
real numbers and in the field of p-adic numbers for all primes p.

7.2. Forms with Three Variables

We now turn to the proof of the Hasse-Minkowski theorem, treating the
case n = 3 in this section. For forms in three variables Theorem 1 was proved
(in somewhat different terminology) by Legendre. The formulation of
Legendre is given in Problem 1.

Let the form be given as a,x? + a,y* + a,z°. Since the form is indefinite,
not all the coefficients a,, a, , a; have the same sign. Multiplying (if necessary)
the form by —1, we may assume that two coefficients are positive and one
negative. We may assume that a,, a,, a, are integers, square-free and rela-
tively prime (they can be divided by their greatest common divisor). Further,
if, say, @, and a, have a common prime factor p, then, multiplying the form
by p and taking px and py as new variables, we obtain a form with coefficients
a,|p, a,/p, pa,. Repeating this process as necessary, we arrive at a form

ax? + by? — cz?, (1.2)

whose coefficients are positive integers a, b, and ¢ which are pairwise relatively
prime (and square-free).

Let p be some odd prime divisor of the number ¢. Since by assumption the
form (7.2) represents zero in R,, by Theorem 3 of Section 6 and Corollary 1
of that theorem, the congruence ax? 4 by? = 0 (mod p) has a nontrivial
solution, say (xg, ¥o). Then the form ax? + by? factors, modulo p, into linear
factors:

ax® + by? = ay, " 2(xyo + yXo)xpo — yXo) (Mod p).
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The same also holds for the form (7.2}, so that we have
ax? + by?* — ¢z? = L'P(x, y, 2)MP(x, y, z) (mod p), (7.3)

where L® and M are integral linear forms. An analogous congruence also
holds for the odd prime divisors of the coefficients @ and b, and also for the
prime 2, since

ax? + by? — cz* = (ax + by — c2)? (mod 2).

We find linear forms L(x, y, z) and M(x, y, z) such that
L(x, y, z) = L'(x, y, z) (mod p),
M(x, y, 2) = MPX(x, y, z) (mod p)

for all prime divisors p of the coefficients a, b, and ¢. The congruence (7.3)
shows that
ax? + by? — cz? = L(x, y, z)M(x, y, z) (mod abc). (7.4)

We shall give integer values to the variables x, y, and z, satisfying the
inequalities - N o
0<x<\/bc, 0<y<\/ac, 0<z<\/ab. (7.9

If we exclude from consideration the case a = b = ¢ = 1 (the assertion of the
theorem is obvious for the form x? + y? — 22, since it represents zero in any
field), then, since a, b, ¢ are pairwise relatively prime, the numbers \/a_c,
be, and +/ab will not all be integers. Hence the number of triples (x, y, z)
satisfying (7.5) will be strictly greater than \/ab- \/bc - \/ac = abc. Since the
number of triples (x, y, z) is greater than the number of residues modulo abe,
there are two distinct triples (xy, ¥y, z;) and (x,, y,, z,) such that

L(xy, yy, zy) = L{x5, y,, z,) (mod abc).
The linearity of L implies that

L(XO > Voo ZO) = 0 (mOd abc)’
where

Xo=X1 —X2s Yo=V1~ V2, Zo= 2y Z2.
From (7.4) it follows that
axo® + byo* — czo* = 0 (mod abc). (7.6)
Since the triples (x, y;, z;) and (x,, y,, z,) satisfy (7.5),
Ixol < \/be. Iyol </ac, |zol < </ab,

so that
—abc < axy® + byo® — czo® < 2abc. (7.7
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The inequality (7.7) and the congruence (7.6) combine to give either

axy? + by — czot =0, (7.8)
or
axo® + byy? — czo? = abe. (7.9)

In the first case we have a nontrivial representation of zero by the form (7.2),
which is what was required. In the second case we rely on the following
lemma.

Lemma 1. If the form (7.2) represents abc, then it also represents zero.
Let x4, yo, 2o satisfy (7.9). It is easily seen that then
a(xoze + byo)? + b(yozo — axe)? — c(zo? + ab)? = 0. (7.10)

If 2z, + ab # 0, then this equality proves the lemma. If —ab = z,2, then the
form ax? + by? represents zero (Theorem 10 of Section 1 of the Supplement).
But then (7.2) also represents zero, so that the lemma is proved.

This proof is very short, but is based on the computation involved in (7.10).
We shall give another proof which uses more general methods. If bc is a square,
then the form by* — cz2, and hence also (7.2), represents zero. Assume that
bc is not a square. It will be shown that in this case the representability of zero
by (7.2) is equivalent to ac being the norm of some element from the field
RV b—c). Indeed, from (7.8) (where we may assume that x # 0) it follows that

ac= (g—z—o)z - bc("iq)2 = N(ﬂ + -y—o\/E')
Xo Xo Xo X
Conversely, if ac = N(u + v+/bc), then
ac® + b(cv)? — cu®* =0.
Assume now that (7.9) holds. Multiplying it by ¢, we obtain either

ac(xy® — be) = (cz4)* — beyy?
or
acN(a) = N(f),

where o = x4 + \/I;, B=czy + yo Jbe. But then
ac=N@y),y= B e R(\/bo),
a

and this, as we have seen, means that (7.2) represents zero in R.

We now note the following fact. In the proof of Theorem 1 for the case of
three variables we have never used the fact that the form (7.2) represents zero
over the field of 2-adic numbers. Hence, from the solvability of (7.2) in the field



Sec. 7] RATIONAL QUADRATIC FORMS 65

of real numbers and also in the field of p-adic numbers for all odd p it follows
that (7.2) is solvable in the field R, . It will be shown that an analogous result
holds also for any other field R,. Namely, if the rational quadratic form in
three variables represents zero in the field of real numbers and also in all fields
R,, with the possible exception of the field R,, then it represents zero in the
field R, (and hence, by what has been proved, also in the field R).

We shall try to explain the cause of this phenomenon. Consider the con-
ditions for the representability of zero by the form

ax* + by* — 7% 7.11)

in all fields R, and in the field of real numbers (here a and b are arbitrary
nonzero rational numbers; hence any nonsingular rational quadratic form
in three variables can, after change of variables and multiplication by some
rational number, be put into this form). By Section 3.6, the condition for
the representability of zero in the field of p-adic numbers can be expressed as

(“J‘pb) —1, (7.12)

where (a, b/p) is the Hilbert symbol in the field R, . For rational a and b we
use the notation (a, b/p) for the Hilbert symbol (a, b) to denote the field in
which it is being considered. This change in notation is necessary because we
will now be considering the Hilbert symbol simultaneously in different fields.

As for the real numbers, the form (7.11) clearly represents zero if and only
if at least one of the numbers a, b 1s positive. To write this condition in the
form (7.12), we carry over the results of Section 6.3 to the field of real num-
bers. We first agree on the following notation. All p-adic fields R, and the
field of real numbers together comprise all completions of the field R of
rational numbers (Section 4.2). The fields R, are in one-to-one correspondence
with the rational primes p. To extend this correspondence to the field of real
numbers, we introduce the symbol oo, which we call the infinite prime, and
we say that the real numbers are the completion of the field R with respect to
the infinite prime. An ordinary prime p, in contrast, is called a finite prime.
By analogy with the notation R, for the p-adic fields, we denote the field of
real numbers by R .

For any « from the multiplicative group R_* of the field R, we consider
the form

x? —ay? (7.13)
and by H, we denote the set of all fe R_*, represented by this form. If

a > 0, that is, « € R*?, then the form (7.13) represents all real numbers, and
thus H, = R *. If « <O, that is, « is not a square, then the form (7.13)

represents only positive numbers, and therefore as in Theorem 6 of Section 6,
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we have
(R *:H)=2. (7.14)

For a, fe R, * we set (o, B) equal to +1 or —1 depending on whether the
form represents § or not, and it follows from the above that the symbol (2, §)
will have all the properties (6.9) to (6.13). In analogy with Theorem 7 of
Section 6 by which the Hilbert symbol was computed for the p-adic fields, we
have here the much simpler relations

(a, By = +1, ifa>00r >0,
(7.15)
(2, )= —1, ifa<Oand § <O.

For rational @ and b we denote the value of the Hilbert symbol in the field
R, by (a, b/0).

Using the Hilbert symbols (a, b/p) we can now reformulate Theorem 1 for
forms in three variables as follows.

The form ax? + by? — z? with nonzero rational coefficients a and b repre-
sents zero in the field of rational numbers if and only if for all p (including

p = 0)
(‘ip_”) 1, (7.16)

For any nonzero rational numbers ¢ and b the symbol (a, b/p) differs from
+1 only for finitely many values of p. Indeed, if p is not equal to 2 or oo and
if p does not enter into the factorizations of @ and b into prime powers
(which means that @ and b are p-adic units), then, by Corollary 2 of Theorem 3
of Section 6, the form (7.11) represents zero in R, and thus for all such p the
symbol (a, b/p) equals -+ 1. Besides this, it will now be shown that the value of
the symbol (a, b/p) for fixed a and b is subject to one further condition.
Namely, the number of p (including p = o) for which (a, b/p) = — 1 is always
even. Another way of expressing this fact is to say that

I (ﬂ)) =1, (7.17)
P\ D

where p runs through all prime numbers and the symbol co. For the formal
infinite product on the left contains only a finite number of terms different
from 41, so the product will be | if and only if the number of p for which
(a, b/p) = —11is even,

We now prove (7.17). Factoring a and b into prime powers and using
formulas (6.9) to (6.13) (also valid, as mentioned, for p = o), we easily reduce
the proof of the general formula (7.17) to the proof of the following special
cases:
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Da=-1,b=-1.
(2) a=¢q, b= —1(q a prime).
(3) a=4q, b =¢q (g and ¢’ distinct primes).

By Theorem 7 of Section 6 and (7.15), we have

(=5=) - (=) (=) v en-n
() - BB -
M) = (7)) = (F)en™ =

19 - B9 - Bhor¥on
(52 - ()5 25 - ()(2) 55 -

These computations, in which ¢ and ¢’ denote distinct odd primes, prove the
relation (7.17).

Note that in the proof of (7.17) we have used the quadratic reciprocity law
of Gauss. On the other hand, knowing the explicit formulas for the Hilbert
symbol (Theorem 7, Section 6), we can deduce all parts of the law of quadratic
reciprocity from the formula (7.17). Thus (7.17) is equivalent to Gauss’
reciprocity law. i

Assume now that the form (7.11) represents zero in all fields R,, except
perhaps for R,. From the equality (7.17), along with the fact that (a, b/p) = 1
for all p # q, we deduce that (a, b/q) = 1. In other words we have the following
assertion.

Lemma 2. If a rational quadratic form in three variables represents zero
in all fields R, (p running through all prime numbers and the symbol o),
except possibly for R, then it also represents zero in R, .

7.3. Forms in Four Variables

We shall assume that our form is given by
ayx,? + axx? + asxy? + agx?, (7.18)

where all g; are square—free integers. Since the form is indefinite we may assume
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that @, > 0 and @, < 0. Along with the form (7.18) we consider the forms
g=a; x> +ax;?  and  h= —a;x;% — asx,’

The idea of the proof of the Hasse-Minkowski theorem is as follows. Using
the fact that the form (7.18) represents zero in the fields R, , we shall show that
there is a rational integer a # 0 which is simultaneously rationally represented
by the forms g and A. This immediately gives us a rational representation
of zero by the form (7.18).

Let py, ..., p, be all distinct odd primes dividing the coefficients a,, a,, a,,
a, . For each of the preceding primes and also for p = 2, choose a representa-
tion of zero,

a8+ a8, 4+ a8 +adt =0,

in the field R, for which all £; # 0 (see Theorem 8, Section 1, of the Sup-
plement) and set

bp = 01612 + 02622 = —03632 — a,é,t

Our representation can be chosen so that each b, is a nonzero p-adic integer
divisible at most by the first power of p (if b, =0, then the forms f and g
represent zero in R, and hence by Theorem 5 of Section 1 of the Supplement
they represent all numbers of R)).

Consider the system of congruences

a = b, (mod 16),
(mod p,?), (7.19)

A rational number a, satisfying these congruences, is uniquely determined
modulo m = 16p,* - p,2. Since b, is divisible by at most the first power of
Pi» bpa™" is a p-adic unit, and

b,a”! =1 (mod p).

By Corollary 1, Theorem 1, of Section 6 the quantity b,a ™! is a square in the
field R,. Analogously, since b, is not divisible by any higher power of 2 than
the first, b,a”! = 1 (mod 8), and therefore (Theorem 2 of Section 6) b,a™'is a
squate in R,.

From the fact that b, and a differ by a square factor in R,, it follows that
for all p =2, p,, ..., p, the forms

—ax,2>+g and —axy> + h (7.20)

represent zero in R,. If a is chosen to be positive, then since a; > 0 and
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—a, > 0 the forms (7.20) represent zero in the field of real numbers. Finally,
if p is different from 2, p,, ..., p, and does not divide a; that is, if p is odd and
does not divide the coefficients of the form (7.20), then, by Corollary 2 of
Theorem 3 of Section 6, these forms represent zero in R, . If, in addition to
2,p, ..., p, there were at most one more prime g dividing the integer a, then
we could apply Lemma 2 and conclude (using the Hasse-Minkowski theorem
for forms in three variables) that the forms (7.20) represent zero in the field
of rational numbers. In such a case we would have the representations

a=a;c;*+a,c,’, a= —ase;t—ac,t
with rational ¢;, from which
a,c;2 +azc;? + ases? +agc,’ =0,

and the Hasse-Minkowski theorem would be proved for forms in four
variables. We will now show that a number «, satisfying the congruence
(7.19) and possessing the desired additional property, always can be found.
To do this we shall have to apply the theorem of Dirichlet on prime numbers
in arithmetic progressions, which we shall prove in Chapter 5, Section 3.2.1
Dirichlet’s theorem asserts that if the increment and first term of an infinite
arithmetic progression are relatively prime, then the progression contains an
infinite number of primes. Let a* > 0 be any number satisfying (7.19). Let d
denote the greatest common divisor of ¢* and m. Since a*/d and m/d are
relatively prime, Dirichlet’s theorem implies that there isan integer & > 0 such
that a*/d + km/d = g is prime. As a we may then take

a=a*+ km=dq.

Since all the divisors of d are among 2, p, ..., p,, this choice of a allows us to
finish the proof of Theorem 1 for forms in four variables.

7.4. Forms in Five and More Variables
Let an indefinite rational quadratic form in five variables be given by
ayx 2+ ayx,t + ayxs? + agx,? + asxs?, (7.21)

where all a; are square-free integers. We can assume that a¢; > 0 and a5 < 0.
Set

g=a, x> +ax,%, h=—azx;? — agx,® — asxs.
Reasoning precisely as in the case n = 4, we use Dirichlet’s theorem to find a
rational integer a > 0 which is represented by the forms g and 4 in the field
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of real numbers and in ali the fields R,, with the possible exception of R,,
where ¢ is some prime number which does not divide the coefficients a;.
We claim that the forms g and 4 represent a in the field R,. For the form g
this is established exactly as before, using Lemma 2. The form k represents
zero in R (Corollary 2 of Theorem 3, Section 6), and thus represents all num-
bers in R, (Theorem 5 of Section 1 of the Supplement). By the Corollary tothe
Hasse-Minkowski theorem (see the end of Section 7.1), which has already
been proved for forms in two and three variables, we find that the forms g
and h represent a in the field of rational numbers. As before it easily follows
that the form (7.21) admits a rational representation of zero.

For the proof of Theorem 1 in the case n > 5, we simply note that any
indefinite quadratic form f, after being diagonalized, is easily represented as
f=fo +f1, where f; is an indefinite form in five variables. We have proved
that f, represents zero in the field of rational numbers, and hence so does f.
The Hasse-Minkowski theorem is completely proved.

7.5. Rationa!l Equivalence

The Hasse-Minkowski theorem allows us to solve another important
question on rational quadratic forms, the question of their equivalence.

Theorem 2. In order that two nonsingular quadratic forms with rational
coefficients be equivalent over the field of rational numbers, it is necessary
and sufficient that they be equivalent over the field of real numbers and over
all the p-adic fields R, .

Proof. The necessity of the condition is clear. The proof of sufficiency is
carried out by induction on the number of variables. Let n = 1. The forms ax?
and bx? are equivalent over any field provided only that a/b is a square in that
field. But, if a/b is a square in the real field and also in all p-adic fields, then as
we saw in Section 7.1, a/b is a square in the field R of rational numbers. Hence
for n = 1 Theorem 2 holds.

Now let n> 1. Let a # 0 be a rational number represented by the form f
(in the field R). Since equivalent forms represent the same numbers, the form
g represents g in the real field and also in all fields R, . By the corollary to the
Hasse-Minkowski theorem, the form g represents a in the field R. Applying
Theorem 2 of the Supplement, Section 1, we obtain

f~ax* +fi, g~ax®ig,

where f and g are quadratic forms in n — 1 variables over the field R (the sign
~ denotes equivalence over R). Since the forms f'and g are equivalent in the
fields R,,, it follows (Supplement, Section 1, Theorem 4) that the forms f; and
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g, are also equivalent in all these fields. By the induction hypothesis, f; and g,
are equivalent in the rational field R. Then fand g are also equivalent in R,
and Theorem 2 is proved.

As an example we consider the question of the equivalence of binary
quadratic forms.

The determinant d(f) of a nonsingular rational quadratic form has a
unique representation as

d(f) = do(f)c?,

where do(f) is a square-free integer. When we pass to an equivalent form the
value of dy(f) does not change (Supplement, Section 1, Theorem 1) and thus
it is an invariant of the equivalence class of rationally equivalent forms. Let a
be any nonzero rational number represented by the nonsingular binary form f.
For each prime p (including p = o) set

a, —pd(f)).

By Theorem 8 of Section 6 (which clearly also holds for the real field R,),
the value of e,(f) does not depend on the choice of a. It is consequently also
an invariant of f under rational equivalence.

Combining Theorem 2 with Theorem 9 of Section 6 (which also holds for
R,), we obtain the following criterion for rational equivalence of binary
quadratic forms.

e,,(f)=(

Theorem 3. Two binary quadratic forms fand g are rationally equivalent
if and only if

do(f) =d)(g) and e, (f)= e9) for all p.

Note that while, formally, an infinite number of invariants appear, their
number is actually finite, since e,(f) = +1 for all but a finite number of p.

7.6. Remarks on Forms of Higher Degree

As was done for forms with p-adic coefficients in relation to Theorem 5,
Section 6, it would be interesting to include the Hasse-Minkowski theorem,
or its corollary for n = 5, in a system of more general results, or at least
hypotheses, concerning forms of higher degree.

It is natural to ask first if the analog of the Hasse-Minkowski theorem for
forms of higher degree is true; that is, if a form represents zero in all p-adic
fields and in the real field, does it represent zero in the rationals? It is easy
to construct examples which disprove this hypothesis. For instance, if
g, 1, q’, I' are distinct primes such that (//g) = —1and (/'/q’) = —1 and the form
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x? 4 qy* — Iz? represents zero in the field R,, then the form in four variables
(2 + gy — I2H(x? + g'y? = I'2?) (7.22)

represents zero in all fields R, and in the field of real numbers, but fails to
represent zero in the field of rational numbers. Indeed, in the field R, the
first factor represents zero by hypothesis. If p is odd and different fromgand/,
then the first factor represents zero in R, by Corollary 2, Theorem 3, Section 6.
As for g and /, the second factor represents zero in R, and R, for the same
reason. However, neither factor represents zero in R, since the first factor fails
to represent zero in R, and the second in R, [since (//q) = —1 and (/'/q") =
—1]. As a numerical example of (7.22) consider

(x? 4 3y% = 172%)(x* + 5y — 72%).

This example may perhaps appear somewhat artificial, since the form (7.22)
is reducible, and the cause of this phenomenon may lie in its reducibility.
Selmer gave a simple example free from this deficiency [E. S. Selmer, The
diophantine equation ax® + by® + cz® = 0, Acta. Math. 85, 203-362 (1951)].
He showed that the form 3x® + 4y + 52> represents zero in every p-adic
field R, and in the real field, but does not represent zero in the field of rational
numbers. The fact that this form represents zero in all fields R, is easily
shown (see Problem 8, Section 5). But the nonrepresentability of zero over
the rational numbers is a more delicate question {see Problem 23, Section 7,
Chapter 3).

The analog of the Hasse-Minkowski theorem for forms of higher degree is
not even true when the number of variables is large. For example, the form

G e X7 =200 + e 4 )

with # > 5 represents zero in all p-adic fields and in the real field, but does not
represent zero in the field of rational numbers for any n. The same also holds
for the form

K A i ORI SR S M il CPR A o

which, unlike the previous example. is absolutely irreducible.

In the preceding examples both forms had even degree. Analogous exam-
ples for forms of odd degree have never been found. Hence it is possible that
the analog of the Hasse-Minkowski theorem holds for forms of odd degree in
sufficiently many variables. Since Brauer’s theorem says that forms in suffi-
ciently many variables represent zero in all p-adic fields (see Section 6.5),
we are led to the following hypothesis: A rational form of odd degree in
sufficiently many variables represents zero rationally.

This hypothesis was proved by Birch [B. J. Birch, “Homogeneous forms
of odd degree in a large number of variables,” Mathematika 4 (1957) pp.
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102-105], who showed that forms of odd degree represent zero in the field
of rational numbers provided that the number of variables is sufficiently
large compared to the degree.

PROBLEMS

1. Prove the following theorem of Legendre: If a, b, and ¢ are rational integers, pairwise
relatively prime, square-free, and not all of the same sign, then the equation

ax*+by? +¢cz2=0
is solvable in rational numbers if and only if the congruences
Xz = —bc (mOd a))
xz = —ca (mod b),
x2 = — ab (mod ¢),
are all solvable.
2. Do cither of the forms 3x? 4+ 5y — 722, 3x? — 5y — 722, represent zero in the field
of rational numbers?
3. Which prime integers are represented by the forms x2 + y?, x2 + 52, x? — 5y2?
4. Give a description of the set of all rational numbers represented by the form 2x2 — 52,

5. Which rational numbers are represented by the form 2x? — 6y + 15227

6. Let f be a nonsingular quadratic form over the field of rational numbers, with the
number of variables not equai to 4. Show that f represents zero if and only if it represents
all rational numbers.

7. For which rational integers a does the form x2 + 2y* — az2 represent zero rationally ?
8. Find all solutions of the equation x? + y* — 2z2 =0 in rational numbers.
9. Which of the forms

x2—2y*+ 522, x2—y?+ 1022, 3x2— y* 4 3022

are equivalent over the field of rational numbers ?

10. Leta and b be square-free rational integers with |a| > |b|. If the form ax? + by? — 22
represents zero in all p-adic fields, show that there are rational integers @ and ¢, such that

aa, =c*—b, l|al <|al.
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(The equation aa; + b — ¢ =0 shows that the form aa,x? + by? — z? represents zero
rationally.)

11. By consideration of forms ax? -+ by? — z?, where a and b are square-free integers,
prove the Hasse-Minkowski theorem for forms in three variables by induction on m =
max(|al, |b]) (use Problem 10 and Problem 3, Section 1, the Supplement).



CHAPTER 2

Representation of
Numbers by
Decomposable Forms

In Chapter 1 we considered questions dealing with the existence and deter-
mination of rational solutions to equations. This chapter deals with the same
questions, but only with respect to integral solutions. We consider a simple
example.

The problem consists in finding all integral solutions to the equation

x2 -2 =1. 0.1)

We may assume that x > 0, y > 0 (the remaining solutions are obtained by
change of sign). This equation has the solutions (3, 1) and (5, 3). From these
two solutions we can obtain an infinite number of others by the following
method: if (x, y) is a solution of (0.1), then (3x + 4y, 2x + 3y) is also a solu-
tion, as is shown by substitution. Starting from the solution (x,, yo) = (3, 1),
we thus obtain an infinite sequence of solutions (x,, y,), determined by the
recursion formula

x'l = 3x" + 4y'| b
” 0.2)
yn+1 = 2xn + 3yn

Starting from the solution (xy’, yo') = (5, 3) we use the same formula to
obtain another infinite sequence of solutions (x,’, y,'). It can be shown that
these two sequences exhaust all solutions to (0.1) with x > 0 and y > 0.

This completely elementary solution of (0.1) was obtained by computation.
We can connect it with some general concepts and lay the groundwork for
future generalizations.

75
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We note that the form x? — 2p? is irreducible over the field R of rational
numbers, but in the extension field R(4/2) it can be factored into linear
factors (x + y+/2)(x —yv/f). If we use the concept of the norm for the
extension R( V@)/R (Supplement, Section 2.2), then (0.1) can be written in the

form

N(E) = N(x + y/2) = 1. (0.3)

The problem then is to find in the field R(\/i) all numbers & = x + y\/f
where x and y are rational integers, whose norms are equal to 7. If the norm
of the number ¢ = u + v\/2_(u and v rational integers) equals 1, then by the
multiplicativity of the norm, if & is a solution of (0.3) so are all numbers of the
form &¢". Since N(3 + 24/2) = 1, we may take ¢ to be 3 + 2./2. The passage
from ¢ to &g corresponds to that from (x, y) to (3x + 4y, 2x + 3y). The two
infinite sequences given by (0.2) now take the form

X+ In/2 =0+ /2B + 22"
X, + Va2 =(5+3/2)03 +2/2r

The possibility of obtaining an infinite number of solutions of (0.1) from
one solution thus depends on the existence of a number & = u + v/2 with
integral u and v for which N(g) = 1. In turn, the question of the existence of
such numbers is connected to the basic concepts of the theory of algebraic
numbers. Consider the set of all numbers of the form x + y./2, where x
and y are rational integers. 1t is easily checked that this set, which we denote by
9, forms a ring. In the arithmetic of this ring a major role is naturally played
by the units, that is, those numbers « € © such that a ™! € O also. It is easily
shown that « is a unit in O if and only if N(«) = + 1. This indicates the deeper
significance of those numbers ¢ € O whose norm is 1; along with the numbers
of norm —1, they form all units of the ring O.

In this chapter we consider the general theory, of which (0.1) is one of the
simplest examples. Our success with the equation (0.1) was based on the fact
that the form x? — 2p? is irreducible over the rational numbers and factors
into linear factors over the field R(1/2), allowing the equation to be written
in the form (0.3). Our general theory will deal with forms which factor,
in some extension of the field of rational numbers, into a product of linear
forms.

Although our goal is the investigation of equations in which the coefficients
and values of the variables are integers, we shall find it necessary to consider
the more general case of forms with rational coefficients. The values of the
variables will always be assumed to be integers.



Sec. 1} DECOMPOSABLE FORMS 77

1. Decomposable Forms

1.1. Integral Equivalence of Forms

Definition. Two forms F(x,, ..., x,,) and G(y,, ... , y,) of the same degree
with rational coefficients are called integrally equivalent if each can be obtained
from the other by a linear change of variables with rational integer coefficients.

For example, the forms x? + 7y? + z2 — 6xy — 2xz + 6yz and 2u® — v? are
equivalent, since the linear substitutions

x = 3,
y=u+uv,
Z=—-Uu-++uv,

u=-—x+2y+z
v=xXx—y—zZ

take one into the other. In the case of forms which depend on the same
number of variables, this is equivalent to saying that one of the forms can be
transformed into the other by a linear change of variables with unimodular
matrix (that is, an integral square matrix with determinant equal to +1).

If the forms F and G are equivalent, then, knowing all integral solutions
of the equation F = a, we can obtain all integral solutions of the equation
G = a, and conversely. Hence if we are interested in integral solutions of an
equation of the form F = a, we may take instead of the form F any form
which is equivalent to it.

Lemma 1. Any form of degree n is equivalent to a form in which the nth
power of one of the variables occurs with nonzero coefficient.

Let F(x,, ..., x,) be a form of degree n. We shall show that there exist
rational integers a,, ... , a,,, so that

F1,a,,...,a,) #0.

The proof goes by induction on m. If m = 1, the form F is given by A4x,",
where 4 #0, so that F(1) # 0. Assume that the lemma has already been
proved for any form in m — 1 variables (m > 2). Write F as

F=Gox,"+Gx '+ - 4+ G,,

where G, (0 < k < n) is either zero or is a form of degree k in the variables
X1y -+ s Xm—y (We say that a form is of degree zero if it is a nonzero constant).
All the G, are not zero, since F, as a form of degree n, has at least one nonzero
coefficient. By the induction assumption there exist integers a,, ..., d,_;
such that G,(1,a,, ..., a,_;) #0 for at least one k. Since the polynomial
F(l,a,,...,a,_y, x,) in the single variable x,, is not identically zero, we may
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choose the value of a,, distinct from its roots and thus can obtain
F(,a,,.., a,)#0.
We now make the following change of variables:
Xy =Y,

Xy =a3Yy + Y33

Xm = amyl + Vm +
After this transformation the form F becomes
G(yl’ v ’ym) = F(yl’ aZyl + yZ L IEEREEY amyl + ym)

Since the matrix of the transformation is integral and has determinant 1,
the forms F and G are equivalent, and the coefficient of y," is

G(1,0,...,00=F(1,a,, ..., a,),

which is nonzero. Lemma 1 is proved.

1.2. Construction of Decomposable Forms

Definition. The form F(x,, ..., x,) with coefficients in the field of rational
numbers is called decomposable if it factors into linear factors in some exten-
sion Q/R.

An example of a decomposable form is the form
Fx,p) = apx" + a,x" 'y + - + a,"

in two variables (a, # 0). Indeed, if Q 1s a splitting field for the polynomial
F(x, 1)and a4, ..., a, are its roots, then in Q2 we have the factorization

F(x, ) = ao(x — 1) ... (x — 2,)).

Among the nonsingular quadratic forms considered in Chapter 1, the only
decomposable forms are those in one or two variables (Problem 1).

It is clear that if Fis decomposable, then so are all forms equivalent to F.

In the definition of decomposable forms no mention was made of the nature
of the field Q, in which the form factors into linear terms. We shall now show
that 2 may always be taken to be a finite extension of R. The basic tools here
are the results from the theory of finite extensions of fields. The results which
we shall need are collected in the Supplement, Section 2.

Definition. A finite extension field of the field of rational numbers is
called an algebraic number field, and its elements are called algebraic numbers.
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Theorem 1. Any rational decomposable form factors into linear terms in
some algebraic number field.

Proof. By Lemma 1 we may assume that we are given
F=(ayx; + -+ X)) o @y Xy + 000+ LX) (a;;€ ),

in which the coefficient of x," is nonzero. Since in this case the coefficients
o;; (1 < i< n) are all nonzero, we may set

F :A(xl + ﬁ12x2 + o+ /}lmxm)“'(xl + ﬁn2x2 + o+ ﬁnmxm)a (1'1)

where 4 =« ---a,, and B;; = a;2;; ~'. The number 4 is rational because it
is the ccefficient of x,". For some fixed j (2 < j < n) we set x; = 1, and we set
all remaining variables, except x,, equal to zero. Then

Flx,0,..., 1, .. ,0) = A(x; + By} (x1 + Bup)-

Since on the left there is a polynomial (of degree n) with rational coefficients,
it follows that the §;; are algebraic numbers. Let L denote the subfield of Q
generated over R by all §;;. The extension L/R is clearly finite (Supplement,
Section 2.1); that is, L is an algebraic number field.

From now on we shall consider only forms which are irreducible over the
field of rational numbers, since for such forms the question of integral repre-
sentation of rational numbers is of greatest interest. We now give a method
for constructing irreducible decomposable forms.

Let K be any algebraic number field of degree n, and let # be a primitive ele-
ment for K over R, so that K = R(f) (Supplement, Section 2.3). The minimum
polynomial ¢(¢) of the number 6 over the field R has degree n. Construct an
extension L over K in which ¢(¢) factors completely,

(P(t) =(t—0(1))---(t—0(")) (0(1) =0)

we may assume that L = R(H, ..., 0™). For any number a = f(#) e K
[f(¢) a polynomial with rational coefficients] we set

a® = f(09) e R(OD) < L.
Then the norm N(x) = Ny g(2) satisfies
N(o) = aMa@ ... g™

(Supplement, Section 2.3).

Now let u, ..., ., be any set of nonzero elements of K. These numbers
determine a form
F('xl* A xm) = l_[ (xl.ulu) + -+ xm.um(i))- (12)
i=1 .

Since 11,\? = £,(0”) [1 < k < m, fi(t) a polynomial with rational coefficients],
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the coefficients of the form (1.2) are symmetric functions in 8, ..., 0™,
which means that they are rational functions of the coefficients of the poly-
nomial ¢(t). Hence the form (1.2) has rational coefficients. If we substitute
arbitrary rational numbers for the variables x,, ..., x,, then, since

xlul(“ + -+ _xmum(i) = (xlul + - 4+ Xmum)(”,

the product (1.2) will be the norm of the number x,u; + --- + x,u,, (With
respect to the extension K/R). Hence (1.2) can more simply be written

F(xb LR xm) = N(xllul + -+ xmlum)- (13)

The foan (1.2) will not alivays be iLreducible. For example, if in the field
R(~/2, \/3) we take jt; = \/2, 4, =+/3, then the corresponding form will be
(2x,% - 3x,%)%. However, we have the following theorem.

Theorem 2. If the numbers y,, ..., u, generate the field K, ie., K=
R(u,, ..., u,,), then the form

F(xy, ...y X)) = NOxy + Xus + -+ + Xpu1,,) (1.4)

is irreducible (over the field of rational numbers). Conversely, every irreducible
decomposable form is equivalent to some constant multiple of a form of the

type (1.4).
Proof. Assume that
F=GH,

where the forms G and H have rational coefficients. Since factorization in
polynomial rings is unique (up to constant factors), each of the linear forms

Li=x; + x4+ -+ X,

must divide either G or H. Let L, = x; + X300, + -+ + x4, divide G;
that is,
G = LIM“.

In thisrlast equation, replace all coefficients by their images under the iso-
morphism a — ' of the field K = R(0) onto the field R(6‘?). Since the co-
efficients of the form G are rational, we obtain

G=LiMi7

which means that L; divides G for alli =1, ..., n [n = (K : R)]. Note that the
isomorphism o — o«'?, « € R(y,, ..., 4,,) is completely determined by the
images 1,9, ..., u? of the numbers y,, ..., u,,. From this it follows that
the sets of numbers x,'?, ..., 1,V (1 < i < n) are pairwise-distinct (since the
isomorphisms o — o2 are pairwise-distinct), which means that the forms
L,, ..., L, are pairwise-distinct. Since the coefficient of x, in each form L,
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is equal to 1, these forms are pairwise-nonproportional. Using again the
uniqueness of factorization, we conclude that G is divisible by the product
L, --- L, ; that is, G is divisible by F. Hence H is a constant and the first as-
sertion of the theorem is proved.

We prove now the second assertion. Let F*(x,, ..., X,,) be any irreducible
decomposable form of degree n. By Lemma 1 we may assume that the co-
efficient of x," is nonzero, so that F* willhave a factorization of thetype(1.1),
where f3,; are some algebraic numbers. Set B,; = u; (2 < j < m) and consider
the field K = R(u,, --., p), Whose degree we denote by r. By what has been
proved, the form

F=NXx{+ x30; + - + Xpthy)

is irreducible, and one of its linear factors, Ly = x; + X0, + -+ + Xyl
is a divisor of the form F*. Replacing all coefficients in the equation F* =
L, M, by their images under the isomorphism o — o (xeK, 1 <i<r),
we obtain F* = L;M;. We have already seen that the forms L,, ..., L, are
pairwise-nonproportional, so that F* is divisible by their product L, ---L,,
which coincides with F. Since Fis irreducible, F = AF, where A is a constant,
and Theorem 2 is proved. (In the process we have also proved that r = n.)

1.3. Modules

It is clear that the question of integral solutions to the equation
F(xy, ..., X,) = a, where F is given by (1.3), reduces to the determination of
all numbers ¢ in the field K which can be represented in the form

é =Xy + - + Xnbm (1'5)

with xq, ..., X,, rational integers, and for which N(¢) = a. It is thus natural
to study the set of all numbers of the form (1.5).

Definition. Let K be an algebraic number field, and let yy, ..., y4, be an
arbitrary finite set of elements of K. The set M of all linear combinations

Ciity + o+ Conlhm

with rational integer coefficients ¢; (1 < i< m) is called a module in K. The
numbers yu,, ... , i, are called generators for the module M.

A given module M can be generated by many different sets. If y, ..., ti,
is a set of generators for the module M, we write M = {y,, ..., @}

We consider how the form (1.3) changes if, instead of uy, ..., #, we take
another set of numbers p,, ..., p,, generating the same module M. We have

szkzlcjkllk 1<j<h



82 NUMBERS BY DECOMPOSABLE FORMS [Chap. 2

with rational integers c;, . Let

Gy, .., y) =Nypy + - + yipp).
Since

[ m 1
Z Yipj = Z (Z Cjk)’j)llk,
i=1 k=1 \j=1

j=

then the linear substitution

!
Xy =Y Cpyj (1<<k<sm
=1

takes the form Finto the form G. As the sets of generators g, and p; of the
module M play a symmetric role, there is also an integral linear change of
variables which takes G into F. This means that different systems of generators
for the same module M correspond to equivalent forms; that is, with each
module M of the field K is associated a uniquely determined class of equivalent
decomposable forms.

For each module M = {y,, ..., y,,} and each number « € K, we denote
by aM the set of all products a&, where & is any element of M. It is clear that
aM coincides with the set of all integral linear combinations of the numbers
Oy, ..oy Ay ; thatis, M = {ay,, ..., au,}.

Definition. Two modules M and M, in the algebraic number field K are
called similar if M, = aM for some o # 0 in K.

The forms associated to similar modules M and aM differ only by a constant
multiple, equal to N(x). Hence if we are considering forms only up to con-
stant multiples, we may replace the module M by any module similar to it,
and in particular we may assume that one of the generators of the module, say
Uy, equals 1.

We may now formulate our problem on the representation of numbers by
irreducible decomposable form as follows. If the form F is given by

F(xl’ very xm) = AN(xllul K xm#m)

(for suitable choice of the field K), then the finding of all integral solutions to
the equation F(x,, ..., X,) = a is equivalent to the finding in the module
M ={u,, ..., u,} of all numbers o, such that N(x) equals the rational num-
ber a/A. Hence in the future we shall start from the problem of finding in a
given module all numbers with given norm. We have seen that this is equiva-
lent to finding all numbers in the similar module M with norm N(u)a/A.
Hence we may replace the given module by any similar module whenever
such replacement is helpful.

If the degree of the algebraic number field X equals n, then any module M
of the field K contains at most » linearly independent numbers (over R).
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Definition. Let K be an algebraic number field of degree n; Let M be a
module in K. If M contains n linearly independent elements (over the field of
rational numbers), then it is called full, otherwise nonfull. The forms connected
with the module are correspondingly called full or nonfull.

For ixample, if the rational integer ﬁ’ is not a cube, then the numbers 1,
3/d, 3/d? form a basis for the field R(3/d) over R, and thus the form

N(x + yi/g+ zi/c?) =x*+dy* +d’z° - 3dxyz
is full. As an example of a nonfull form, take
N(x + y3/d) = x* + dy>.

If {1, 4y, ..., un} is a full module of the field K, then K = R(u,, ... , ).
By Theorem 1 it follows that any full form is irreducible.

The problem of the representation of numbers by nonfull irreducible forms
is very difficult, and at this time there is little satisfactory general theory. A
particular case will be considered in Chapter 4.

The problem of the representation of rational numbers by full forms is
much easier and is essentially solved. We shall deal with it in this chapter.
This problem, as we have noted, is equivalent to the problem of finding in a
fixed full module of an algebraic number field K all numbers with given norm,

PROBLEMS

1. Show that a rational quadratic form is decomposable if and only if its rank is <2.

2. Show that a form connected with an arbitrary module of an algebraic number field K
is a constant multiple of a power of an irreducible form.

3. Show that in the field of rational numbers R any module has the form aZ, where
a € R (Z is the ring of rational integers).

2. Full Modules and Their Rings of Coefficients

2.1. Bases of Modules

Definition. A system «, ..., a, of generators of the module M is called a
basis for M if it is linearly independent over the ring of integers, that is, if the
equation :

ayoy + o+ a,a, =0, (a, e 2),

occurs only when all g, are zero.
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Itis clear that if o, ..., a,, is a basis for the module M, then any a € M has
a unique representation in the form

o =10C10 + o+ Coullp > (c;e2). 2.1

We now show that any module has a basis. The proof of this does not de-
pend on the fact that the module consists of numbers from some algebraic
number field, but only on the fact that the module is a finitely generated
Abelian group under addition, containing no elements of finite order. There-
fore we shall prove the result we need in the theory of Abelian groups. We use
the following terminology. A system of elements ay, ..., «,, of an Abelian
group M (whose operation is written additively) is called a system of genera-
tors if every « € M can be represented in the form (2.1). In this case we write:
M ={a,, ..., a,}. If this system satisfies the above definition, it is called a
basis for M.

Theorem 1. If an Abelian group without elements >f finite order possesses
a finite system of generators, then it possesses a basis.

Proof. Let «,,...,a, be an arbitrary set of generators of the group M,
First, note that if any integral multiple of one generator is added to another.
the resulting system is also a system of generators. Let, for instance, «, ' =
oy + ka,. Then for any « € M we have

o= ¢ 0y + €0y + o+ ey =" + (3 — ke, + -+ + e,

where all coefficients are integers, which means that M = {a,’, a5, ... a}.
If the elements «,, ... , &, are linearly independent, they form a basis of M.
Assume that they are linearly dependent, that is, that

10y + 0y + - + ¢ty =0 2.2)

for some set of integers ¢, not all zero. Choose among the nonzero coefficients
¢ the smallest one in absolute value. Let it be ¢;. Assume that not all coeffi-
cients c; are divisible by ¢,, say, ¢, = ¢;g + ¢’, where 0 < ¢’ < |¢,]. If we pass
to the new set of generators

all =& +qa27 Xy ey Agy
then the relation (2.2) takes the form
oy + c'ay + 0 + ey =0,

and in this relation the coefficient ¢’ > 0 appears, which is less than ¢. Thus,
if for the generators «,, ... , , we have a nontrivial relation (2.2), in which the
nonzero coefficient of smallest absolute value does not divide all remaining
coefficients, then we can construct another system of generators for which we
also have a nontrivial relation with integer coefficients in which the nonzero
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coefficient of smallest absolute value is smaller (in absolute value) than the
analogous quantity in the first system. Hence after a finite number of such
transformations, we arrive at a new system of generators 8, ..., 8, for which
we have the dependence

kiBy + Koy + o + kfi =0 (23)

with integer coefficients k,, where one of the coefficients, say, k, is a divisor
of all the others. Dividing the relation (2.3) by k, (this can be done since we
have assumed that M contains no elements of finite order), we obtain

ﬁl + lZﬁZ + et lsﬁs = O (24)
with integers /,, ..., /,. From (2.4) it follows that 8, can be dropped from the
system of generators; that is, M = {f,, ..., B}

We have shown that if some system of generators of M is linearly dependent,
then we can construct a new system with fewer generators. After carrying out
this procedure several times, we must arrive at a system of generators which is
linearly independent, that is, a basis for the group M.

Corollary. Any module in an algebraic number field K has a basis.

The number of elements m in any basis of the module M is equal to the
maximal number of linearly independent (over R) elements in M. Hence this
number will be the same for all bases. It is called the rank of the module M.
The rank of the module consisting only of zero is set equal to zero.

Letw,, ... ,w,and w,’, ..., w,’ beany two bases of a module A of rank m.
It is clear that the matrix of transition C from the first to the second basis is
integral. By symmetry the transition matrix from the second basis to the first,
that is, C ™', is also integral. Consequently, det C = + 1, We thus obtain that
any transition matrix from one basis of a module of rank m to another is
unimodular of rank m.

If the degree of the field K over R is equal to », then the rank of any module
of K does not exceed n. It is clear that the rank of a module is equal to # if
and only if it is a full module. Nonfull modules are thus characterized by
having rank less than n, the degree of the the field.

Any system of generators of a module of rank m contains not less than m
elements. It follows that among the forms associated with a given module
there are forms in m variables and there are no forms in less than m variables.
A full form of degree n could thus be characterized as an irreducible decom-
posable form which is not equivalent to a form in less than n variables.

Theorem 2. Let M be a finitely generated Abelian group without elements
of finite order and let N be a subgroup. Then N has a finite set of generators
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and hence a basis. For any basis w,, ..., ®, of the group M (for some
ordering of this basis) there is a basis for N of the form

Hy =Cy Wy + €10, + o0 + Cpy + 0+ C Wy,

N = Cax@y + o + Oy,
where the c¢;; are integers with ¢;; > 0, k <m.

Proof. The theorem will be proved by induction on the rank m of the group
M, that is, on the number of elements of the basis of M. The case m =0 is
trivial. Let m = 1. If N consists only of zero, then k = 0 and the theorem is
valid. If x e N, a # 0, then

o=cw; + - + Cw,,, (2.5)

where at least one of the coefficients ¢; is not zero. By reordering the basis we
may assume that ¢, #0. If ¢, < 0 then the coefficient of w, in —a will be
positive. Among all elements of the subgroup N choose that element

N =Wy + €W + -0 + C s

in which the coefficient ¢;; > 0 of w, is smallest. We now claim that for any
a € N the coefficient ¢;, will be divisible by ¢,,. Indeed, if ¢, = ¢;,g + ¢/,
0 < ¢’ < ¢ (g an integer), then for the element « — g1, we have

a—gqnm =cw + 6’0, + -+ ¢ o,,

so by the minimality of ¢,, it follows that ¢’ = 0. Consider now in M the sub-
group M, = {w,, ..., w,}. Since the intersection N n M, is a subgroup of
the group M, , by the induction hypothesis N n M|, has a basis of the type

Ny = CaW) + Co3w3 + -+ + CpWy + -+ + CypWpy,

= Cr @y + 00+ CypWyy

where ¢;; are integers, ¢;; >0, k — 1 <m — 1 (for suitable ordering of the
basis elements w,, ..., w,). We assert that N consists of all integral linear
combinations of the elements n,, 5, ..., 1. Let « be an arbitrary element of
N. If we write « in the form (2.5), then since we have shown that ¢; = ¢;,4,,
with g, an integer,

a—gqty =¢cw; + -+ /0,

which lies in the intersection M, n N. By the induction assumption we have

o=y =420y + o+ Qs
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where the g, are integers, so that x = g,n, + ++» + g,n,. We have thus shown
that N = {5y, n,, ..., ;). The generators f, ..., n,, as is easily seen, are
linearly independent over Z, which means that they form a basis for N of the
required type.

The proof of Theorem 2 essentially reproduces Gauss’ method for elim-
inating variables in systems of linear equations. The only difference is that
in our case the coefficients lie not in a field but in the ring of integers.

Corollary. Any subgroup N of a module M in an algebraic number field
K is also a module (a submodule of the module Af).

2.2. Coefficient Rings

Definition. A number « of the algebraic number field K is called a
coefficient of the full module M of the field K if aM < M, that is, if for any
& € M the product «& also belongs to M.

The set O, of all coefficients of a module M forms a ring. For if « and
belong to O, , then for any £e M we have (¢ — )¢ =af — B¢ e M and
(B¢ = a(BE) e M; that is, x — f € O, and af € D). The ring O, is called
the ring of coefficients of the full module M. Since 1 € ©,,, O,,is a ring with unit.

To ascertain whether a given number « € K lies in the ring O, it is not
necessary to check for all £ € M whether the product «¢ lies in M or not. It
suffices to check this only for any basis yy, ..., g, of the module M. Indeed,
ifay,e M foralli=1,...,n, then for & = ¢ u, + - + c,ut,, € M we have

aé = Cl(a.ul) + -+ Cn(aun) eM.

We now show that the coefficient ring O, is a full module in K. Let y be
an arbitrary nonzero element of M. Since aye M for any a € O,,, then
Oy = M. The set of all numbers yO,, is clearly a group under addition and
thus by the Corollary of Theorem 2, yO, is a module. But then Oy = 77!
(7O, is also a module. We now need to show that this module is full. Let «
be any nonzero element of K and denote by ¢ a common denominator for all
rational numbers a;;, determined by

A=Y A (1 <ign). (2.6)
=1

Since the products ca;; are integers, cay; € M and thus cx € Oy . If we now
take an arbitrary basis «,, ... , a, for the field K, then by what has just been
proved for some rational integers ¢, ..., ¢,, the products ¢,a, ..., ¢,a, will
all belong to O, . We thus see that O, contains n linearly independent
numbers, and this means that O,, is a full module.
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Definition. A full module in the field of algebraic numbers K which con-
tains the number 1 and is a ring is called an order of the field K.

Using this definition we can formulate our result as follows.

Theorem 3. The coefficient ring for any full module of the algebraic
number field K is an order of this field.

The converse also holds: Any order © of the field K is the coefficient ring
for some full module, for example, for itself (since 1 € O, 0 = O, if and only
if « € D).

For any number y # 0 of K the condition «f € M is equivalent to the con-
dition a(y&) € yM (here & € M). Tt follows that the similar modules M and yM
have the same coefficient rings; that is,

O, = Oy .
Let py, ..., p, be a basis for the module M, and w,, ..., w, a basis for its
coefficient ring O,,. For each i =1, ... , n, we have
n
w= 2 b,
=1

where the b;; are rational numbers. If b is a common denominator for all the
coefficients b;;, then the number by; will be an integral linear combination
of the basis elements of O, ; that is, byu; will lie in ©,,. The module bM thus
satisfies bM < O,,.

We summarize these results.

Lemma 1. The coefficient rings of similar full modules coincide. Every full
module is similar to a module contained in its coefficient ring.

2.3. Units

Consider the problem of integral representation of rational numbers by
full decomposable forms. In Section 1.3 we saw that this problem reduces to
the determination in a full module M of all numbers g, for which

N) = a. Q.7

For any w of the coefficient ring © = ©,,, the product wy lies in M and by the
multiplicativity of the norm,

N(wy) = N(w)a.
If N(w) = 1, then (2.7) still holds, with y replaced by wpu. Thus the coefficients
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w of norm 1 allow us to obtain a whole class of new solutions of (2.7) from
one solution. This fact is the foundation of the method of solving (2.7) which
we are going to describe.

We shall show that the coefficients w € O, with N(w) = 1, are contained
in the set of elements ¢ of the ring O for which ¢! also belongs to . Such
numbers ¢ are called the units of the ring O (Supplement, Section 4.1). Since
the inclusions eM < M and ¢ 'M < M are equivalent to the equality
eM = M, the units of the ring ©,, can be characterized as being those ele-
ments « € K for which oM = M.

Lemma 2. If the number « belongs to the order O, then its characteristic
and minimum polynomials have integer coefficients. In particular, the norm
M) = Ny, r(2) and trace Sp(a) = Spg,p(e) are rational integers.

Proof. Let the order © be the coefficient ring of the module M = {y,, ..., 1}
(for example, we may take M = D). If « € O, then in (2.6) the coefficients
a;; are integers, from which it follows that the characteristic polynomial of
the number o (with respect to the extension K/R) has integer coefficients. The
remaining assertions of the lemma are now obvious.

Theorem 4. Let O be an arbitrary order of the algebraic number field X.
In order that the number ¢ € © be a unit of the ring O, it is necessary and
sufficient that N(g) = +1.

Proof. We first show that for any a # 0 of © the norm N(a) is divisible (in
the ring O) by «. By Lemma 2 the characteristic polynomial ¢(t) = t" +
"' + .- + ¢, of the number « has integer coefficients. Since ¢(x) =0,
then N(a)/a lies in O, which means that N(«) is divisible by «.

Now if N(«) = £ 1, then 1 is divisible by «; that is, « is a unit of the ring O.
Conversely, if ¢ is a unit of the ring O, so that e¢’ = 1 for some ¢’ € O, then
since N(e) and N(¢') are integers, the equation N(e)N(¢') = | implies that
N(e) = + 1. Theorem 4 is proved.

To find all coefficients w ¢ O with N(w) = 1, we thus must determine all
units of the ring O, and then isolate those units with norm + 1. Two numbers
i, and g, of the full module M are called associates if their quotient p,/u, = ¢
is a unit of the coeflicient ring O = ©,,. It is clear that if A = O, then this
concept coincides with the usual notion of associates in commutative rings
with unit (Supplement, Section 4.1). This relation induces an equivalence
relation on the set of all solutions to (2.7), and therefore the set of all solutions
to (2.7) is divided into equivalence classes of associate solutions. If u, and p,
are two associate solutions, then y; = u,¢, where ¢ is a unit of the ring O
with N(¢) = 1. Conversely, if ¢ is any unit of norm 1 and y is a solution of
(2.7), then pe is also a solution of (2.7) and x and pe are associates. Thus all



920 NUMBERS BY DECOMPOSABLE FORMS [Chap. 2

solutions from a given class of associate solutions are obtained by multiplying
one solution by all units with norm 1. We now show that the number of such
classes of solutions is finite.

Theorem 5. An order O contains only a finite number of nonassociate
elements of given norm.

Proof. Let w,, ..., w, be a basis of the order © and let ¢ > | be an arbitrary
natural number.

Using the general definition of the Supplement, Section 4.1, we say that two
numbers « and f of O are congruent modulo ¢ if their difference « — g is
divisible by ¢ (in the ring D). It is clear that any « € O is congruent to a unique
number of the form

xy0y + - Fxm,, 0<x,;<c  (I<ig<n).

Hence O contains ¢" congruence classes modulo c¢. Let the numbers « and
belong to the same congruence class and satisfy |N(a)} = |N(B)| = c. The
equation o — f=cy, ye€DO, implies that «/f =1+ [N(B)/flye O [since
N(B)/B € O; see the start of the proof of Theorem 4], and analogously
Blo =1 +[N(a)/a]y € O. Thus the numbers « and B divide one another,
which means that they are associates in the ring ©. This proves that © can
contain only a finite number (not greater than ¢”) of pairwise-nonassociate
elements whose norm in absolute value is equal to c.

Corollary. A full module M of the field K contains only a finite number of
pairwise-nonassociate elements with given norm.

Indeed, if O is the coefficient ring of the module M, then for some natural
number b the module bM is contained in O. If y,, ..., y, are pairwise-non-
associate elements of M with norm ¢, then the numbers by, ..., by, of O have
norm b"c and are pairwise-nonassociate in . Thus the number k cannot be
arbitrarily large.

Remark. The proof of Theorem 5 shows that in the ring O (and also in the
module M) there is a finite set of numbers with given norm ¢ such that any
number of O (or of M) with the same norm ¢ is associate with one of these.
However the proof is noneffective, that is, it does not allow us to find these
numbers, although it does give an effective bound on their number.

Qur basic problem of finding all solutions to (2.7) thus splits into the
following two problems:

(1) Find all units ¢ in the coefficient ring O, with norm N(g) = 1.
(2) Find numbers py, ... , i in M with norm a such that they are pairwise-
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nonassociate and such that any g € M with norm a is associative to one of
them, that is, y = u;e, where 1 € i< k and ¢ is a unit of the coefficient ring
Oy

If these two probiems are solved, then we will have solved the problem of
integral representation of rational numbers by full decomposable forms.

2.4. Maximal Orders

The concept of an order leads naturally to the question of the relationship
between different orders in a given algebraic number field K. In this section
we show that among the various orders of the field K there is one maximal
one which contains all other orders. Lemma 2 shows that the minimum
polynomial of any number in any order has integer coefficients. We shall see
below that the maximal order of an algebraic number field K coincides with
the set O of all numbers of K whose minimum polynomial has integer co-
efficients. We first prove the following lemmas.

Lemma 3. If a € O, that is, if the minimum polynomial ™ + ct™ ! 4o
+ ¢) of the number o has integer coefficients, then the module M = {1, «, ... ,
a™ '} is a ring.

Proof. It is clearly sufficient to show that any power a* (k = 0) of the number
« lies in M. For k < m — 1 this is true by the definition of M. Further,
o™ = —c,a™ "' — ... — ¢, with integers ¢;, so that a™e M. Let k > m, and
assume that it is already proved that «* "' e M; that is, &* ™! = ga™ ! 4 ...
+a,, with integers a;. Then

k~1

af = oot = g0 4 g™ e+ a

Since all terms on the right lie in M, a* also belongs to M. Lemma 3 is proved.

Lemma 4. If O is any order of the field K and « € £, then the ring O[«],
consisting of all polynomials in a with coefficients from O, also is an order
of the field K.

Proof. Since © < Dl«], the ring Of«] contains n = (K : R) linearly inde-
pendent numbers over R. We thus need only show that O«] is a module
(that is, that it is finitely generated). Let wy, ... , w, be a basis for the order O.
By Lemma 3, any power a* (k > 0) can be represented in the form a, + a,o +
-+ + a,_,a™ "' with integers a;, where m is the degree of the minimum poly-
nomial of the number «. From this it easily follows that any number of O[«]
can be represented as an integral linear combination of the products w,a’
(1<i<n 0<j<m~—1),and this means that Of«] is a module.
Repeated application of Lemma 4 gives us the following.
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Corollary. If Ois an order and «, ..., , are numbers of D, then the ring
Olay, ..., a,] of all polynomials in a,, ..., «, with coefficients in O is also an
order.

Theorem 6. The set of all numbers of the algebraic number field X whose

minimum polynomial has integer coeflicients is the maximal order of the
field K.
Proof. Let © be any order of the field K and let « and § be arbitrary
numbers of O. By the Corollary of Lemma 4 the ring O[«, ] is an order, and
hence it is contained in O (Lemma 2). But then the difference « — f and the
product «ff are also contained in O. This proves that D is a ring. Since
O < O, O contains » linearly independent numbers. We thus need only show
that 8 is a module.

Let w,, ..., w, be any basis of the order O, and let w, ¥, ..., w,* be the dual
basis to it in the field K (Supplement, Section 2.3). We shall show that the
ring O is contained in the module O* = {w, *, ..., ®,*}. Let a be any element
of the ring . Represent it in the form

a=cio ¥ + - + co,*
with rational ¢;. Multiplying by @, and taking the trace, we obtain
¢; = Sp aw; (I1<i<n)

(we are using here the fact that Sp w,w;* =1 and Sp w,w;* =0 for i # ).
All products aw; are contained in the order O[], and therefore by Lemma 2
all numbers c; are integers, and this means that « € O*. Thus © = ©*. By the
Corollary of Theorem 2 we now conclude that D is a module, and Theorem 6
is proved.

The proof which we have given that Disa ring is of very general character;
that is, it remains valid (with insignificant changes) also in the general theory
of commutative rings without zero divisors. The corresponding concepts in
the general case are given in Section 4 of the Supplement. Using the termin-
ology introduced there we can say that the maximal order of an algebraic
number field K is the integral closure of the ring Z of rational integers in the
field K. Here the maximal order © will frequently be called the ring of integers
of K, and any number in © will be called an integer of K.

The units of the maximal order © are also called the units of the algebraic

number field K.
2.5. The Discriminant of a Full Module

Let uy, ..., u, and py', ..., 1" be two bases for the full module M of the
algebraic number field K. We have seen (Section 2.1) that the transition
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matrix from one basis to the other is unimodular (that is, it is an integral
matrix with determinant +1). It follows that the discriminants D(y,, ..., ,)
and D(y,’, ..., u,’) are equal (Supplement, Eq. (2.12)]. All bases of the module
thus have the same discriminant. This common value is clearly a rational
number, and it is called the discriminant of the module M.

Every order of the field K is a full module in K. Hence we may speak of the
discriminant of an order. Since the trace of any number in an order is an
integer, the discriminant of an order will always be a rational integer (the
same holds for any full module contained in 9).

A basis of the maximal order & of the algebraic number field K is fre-
quently called a fundamental basis of K, and its discriminant is called the
discriminant of the field K. The discriminant of an algebraic number field is a
very important arithmetic invariant and will play a key role in many questions.

PROBLEMS

1. Letw,,w,,w; be linearly independent numbers of the algebraic number field K. Show
that the set of numbers of the form aw, + bw: + cw;, where the rational integers a, b, ¢
satisfy 2a + 3b + 5¢ = 0, forms a module in K, and find its basis.

2. Find the coefficient ring of the module {2, \/5/27} in the field R(\/i). Show that the
module {I, v'2} is the maximal order of the field R(v/2).

3. Show that the field of rational numbers contains only one order, the ring of rational
integers.

4. Show that in the order {1, &2, ¥4} of the field R(¥/2) every number with norm 2
is an associate of V2.

5. Show that the intersection of two full modules is again a full module.

6. Show that any module of an algebraic number field which is a ring is contained in
the maximal order.

7. Let M= {a), ..., a,} and N = {f, ..., Ba} be two full modules of the field K. The
module generated by the products «,8; (1 < i,j < n) does not depend on the choice of the
bases oy and f;. It is called the product of the modules M and N andis denoted by MN. Show
that the coefficient rings of the modules M and N are contained in the coefficient ring of their
product MN.

8. Let M be a full module contained in the maximal order D of the algebraic number
field K. Show that if the discriminant of the module M is not divisible by the square of any
integer other than 1, then M coincides with ©.

9. Letfbea primitiveelement of the algebraic number field K of degree n, with @ contained
in the maximal order. Show that if the discriminant of the minimum polynomial of the
number @ is not divisible by any square, then the numbers 1, 4, ..., " ~! form a fundamental
basis of the field K.

10. Find a fundamental basis and the discriminant of the field R(\J/i).

11. Find a fundamental basis and the discriminant of the field R(p), where p is a root of
the equation x> — x —1 =0.
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12. Let M be a full module of the algebraic number field XK. Show that the set M* of
all £ € K, for which Sp «f € Z for all « € M, is also a full module of the field K. The module
M* is called the dual of the module M. Show that if u,, ..., u, is a basis of M, then the dual
basis p.*, ... , us* of the field K (with respect to R) is a basis of M*.

13. Show that (M*)*= M, that is, the dual of the module M * coincides with M.

14. Show that the dual modules M and M * have the same coefficient ring.

15. Show that for full modules M, and M, the inclusions M, € M, and M,* > M,*
are equivalent.

16. Let & be a primitive element of the algebraic number field K of degree n, with 8
contained in the maximal order £, and let f(¢) be the minimum polynomial of # over R.
Show that for the module M = {1, 6, ..., 8"~} (which is clearly an order), the dual module
M * coincides with (1/f(0))M.

17. Let M be a full module in K with coefficient ring . Show that the product MM*
(see Problem 7) coincides with O*,

18. Let M = {4, 0, 8%} be a module in the field R(#), where §* = 2, Show that the co-
efficient ring of M is the order {1, 26, 26%}, while that of the module M2 = {2, 20, 62} is
the maximal order {1, 8, 8%}.

19. The polynomial " + g, ¢"~! + ... + a, with rational integer coefficients is called an
Eisenstein polynomial with respect to the prime number p if all the coefficients a, ..., a, are
divisible by p, and the constant term a,, while divisible by p, is not divisible by p*. Show
that if a primitive element € of an algebraic number field K of degree # is a root of an Eisen-
stein polynomial with respect to p, then

Nico+ .0+ - + ¢,_,0"1) = 0" (mod p)
for any rational integers ¢o, ¢y, ..., Ca—1.

20. If 6 is a primitive element of the algebraic number field X and @ lies in D, then the
index of the order {1,8, ..., 6*~'} in the maximal order is called the index of the number 0.

Show that if 8 is a root of an Eisenstein polynomial with respect to the prime p, then p does
not divide the index of 6.
21. Show that each of the three cubic fields

K,=R@®), 6>—-180— 6=0,

K,=R(8), 6*--360— 78=0,

K¥=R(@®), 6*—540—150=0,
have as a fundamental basis 1, 8, 2. Verify that all three fields have the same discriminant,
namely, 22356 = 23-22-35, (It follows from Problem 14, Section 7, Chapter 3, that the three
fields K, K,, K, are distinct.)

22, Show that a fundamental basis for the field R(6), 8> — 6 — 4 =0, is given by 1, 6,
@ + 6%)/2.

23. Let a and b be relatively prime natural numbers which are square-free. Set k = ab
if @ — b? =0 (mod 9), and & = 3ab if a®> — b* # 0 (mod 9). Show that the discriminant

of the field R(¥ ab?)is D = —3k2,
24, Show that the numbers 1,v6, {¥/6)? form a fundamental basis for the field R(¥'6).

3. Geometric Methods

Two problems were formulated at the end of Section 2.3 (to which we were
led by the question of the representation of numbers by full decomposable
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forms) whose solution requires the introduction of new concepts of a geometric
character. At the base of these concepts is a method of representing algebraic
numbers as points in n-dimensional space, analogous to the wcll-known
planar representation of the complex numbers.

3.1. Geometric Representation of Algebraic Numbers

If the algebraic number field K is of degree n over the rational numbers R,
then there are precisely n distinct isomorphisms of this field into the field C
of all complex numbers.

Definition. If the image of the field K under the isomorphism ¢ : K - C
is contained in the real numbers, then the isomorphism ¢ is called real, and,
if this does not hold, it is called complex.

Thus for the cubic field K = R(0), where 0° = 2, the isomorphism R(6) —
R(3/2), for which 8 — /2, is real (by /2 we understand here the real root).
The two other isomorphisms R(8) —» R(sy/2) and R(0) » R(€*3/2) [e =
cos(2n/3) + i sin(2n/3)] are complex. If d is a nonsquare rational number,
then for the field R(0), 0? = d, both isomorphisms are real if d > 0, and both
are complex if d < 0. In general, if § is a primitive element of the arbitrary
algebraic number field K, which is a root of the irreducible polynomial ¢(r)
over R, and if 0,, ..., 0, are the roots of ¢(¢) in the field C, then the iso-
morphism

K= R(0)—> R, = C, 6-0) 3.1

will be real if the root 0, is real, and complex otherwise.

If y = x + yiis any complex number (x and y real) we denote by y the com-
plex conjugate x — yi.

Let 6 : K— C be a complex isomorphism. The mapping ¢ : K — C, defined
by

5x) =o(x), (xeK),

is also a complex isomorphism of K into C. This isomorphism & is called
conjugate to o. Since & # ¢ and & = o, the set of all complex isomorphisms
of K into C is divided into pairs of conjugate isomorphisms. In particular, the
number of complex isomorphisms is always even. Two complex isomorphisms
of the form (3.1) are conjugate if and only if the corresponding roots 6, and
f; are complex-conjugate numbers.

Assume that among the isomorphisms of K into C there are s real ones
6y, ..., 0, and 2t complex ones, so that s + 2t =n=(K: R). From each
pair of complex-conjugate isomorphisms, choose one. Denote this set of
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isomorphisms by 6,4, ... , 6,4,. The set of all isomorphisms of K into C then
takes the form

01y ++-50550541505415 -+ 5 Os4¢5 054

In the future we shall always assume the isomorphisms to be enumerated in
this manner. Clearly there exist fields with no real isomorphisms (s = 0) or no
complex isomorphisms (¢ = 0).

Consider the set £* of all rows of the form

X = (X1, eur s Xg3 Xsi1 - s Xs 1) (3.2)
in which the first s components, x,, ..., x,, are real, and the remaining ones,
Xs41y --- » Xs4¢» are complex numbers. Addition and multiplication of these

rows, as well as scalar multiplication by a real number, are defined component-
wise. Under these operations £%° becomes a commutative ring with unit
(1, ..., 1) and at the same time a real linear space. The rows (3.2) will be
called vectors or points of the space 2.

As a basis of 2% (over the field of real numbers) we may clearly take the
vectors

{,...,0;0,...,0)
......... s,

©,...,1;0,...,0)

:1,...,0) (3.3)
i, ..., 0)

©,...,0;0,...,1)
,...,0;0, ..., 0

Thus the dimension of the space 2% over R equals n = s + 2¢. If we set

xs+j=yj+izi (j=l;~"’t)’

then the vector (3.2) will have coordinates

(xl,-“;xs;yl’zl '-'9yt’zt) (3'4)

with respect to the basis (3.3).

In cases where £%' is being considered as an n-dimensional real linear
space, we shall also denote it by R".

Fix some point x in £"'. The transformation x’ — xx’ (x’ € £, that is,
multiplication of an arbitrary point of £ by x, is clearly a linear trans-
formation of the real space £ = R In terms of the basis (3.3), the matrix
of this transformation is seen to be
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X

Yi— 24
2y N

Ve — 2,
2 W

where all other entries are zero. The determinant of this matrix is

X “‘xs(ylz + 212)"'(Y:2 + th) =Xpr xslxs+1|2"' lxs+t|2‘

This suggests the following definition. By the norm N(x) of any point
x = (X1, ..., X;4¢) € £, we shall understand the expression

N(x) = xl xslxs+l|2 o |xs+l|2'

Thus we have just shown that the norm N(x) of a point x can be defined
as the determinant of the matrix of the linear transformation x" —xx’.
The norm is clearly multiplicative:

N(xx') = N(x)N(x).

We now turn to the representation of numbers of the field K by points of
the space £>'. Each number « of K will be made to correspond to the point

x(@) = (01(%), ..., 6(0); 6541(%)s .-, T4 (@) (3.5)

of €%, This point is the geometric representation of the number o.

If « and B are different numbers of K, then for any k =1, ..., s + ¢, the
numbers a,(x) and o,(B) are distinct, and therefore x(«) # x(f). Thus the
embedding

o — x(a) (x€ K)

is one-to-one. (Of course it is not a mapping * onto”’; that is, not every point
of £ is the image of some number of the field K.)

Since ay(x + f) = 6,(x) + 0,(B) and o,(af) = g (@)a(B),
x(a + B) = x(a@) + x(B), (3.6)
x(af) = x(x)x(B); (3.7
that is, if numbers of K are added or multiplied, the corresponding points
are also added or multiplied. Further, if a is a rational number, then o,(ax) =
o (a)o, (o) = ao,(x), so that
x(aot) = ax(a). (3.8)
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Thus by Section 2.3 of the Supplement we have
N(a) = Ng;p(®)
= 01(0) - 004 1 ()54 1(0) -+ 0,4 (WG4 ()
=01(0) -+ 00,41 (N -+ |og4 (D)2,

so that the norm N(x()) of the point x(x) coincides with the norm N(x) of the
number a:
Nx(@) = N@), (xeK).

We consider two simple examples. If 4 is a positive rational number which
is not a square, then for the real quadratic field R(6), 8> = d, the geometric
representation of the number o = a + b6 (a and b rational) will be the point
x(@) = (@ + b\/d,a — b./d). In the case of the imaginary quadratic field
R(n), n* = —~d, the representation of the number « = g + by will be the point
in the complex plane with coordinates (a, b+/d) [the basis (3.3) in this case
consists of the numbers 1 and i].

We shall show that if «,, ..., @, is any basis of the field K (over R), then the
corresponding vectors x(xy), ... , x(«,) of €' =R" are linearly independent
(over the reals). For this set

o) = x, (I<kxys),
A CARS Yj(l) + izj(l) (I<j<o.
Since the vectors
x(e) = (x,Y, ..., x5y, O +iz, O, ., yP +izD)
with the basis (3.3) have the coordinates
@, ., x @y, @ 2,0, Ly ®, 2O,
then to prove our assertion we need only show that the determinant

I I C) BP0

1 1
x1( )'“xs( ) Y1

is nonzero. Consider instead the determinant

d* e
- ’
X, ®x® @y ® ey e

which can also be written in the form
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G1(aq) - o) O+ 1(ay) AT

0'1((1,.)"‘ as(an) as+1(an) 6s+1(an)

In the determinant 4 add to the column number s + 1 the succeeding column
and then take the 2 outside the determinant sign. Then subtract this new col-
umn from the succeeding one, and take the —i outside the determinant.
Performing this operation on each succeeding pair of columns, we wind up
with the equation

d*=(-2)'d. 3.9

In Section 2.3 of the Supplement it is shown that
d*? = D, (3.10)
where D = D(ay, ..., a,) is the discriminant of the basis a, ..., «, (with

respect to the extension K/R). Since D # 0, it follows from (3.9) and (3.10)
that the determinant d also is nonzero.

Assume now that a, ..., a, is a basis for the full module A of the field X.
From (3.6) and (3.8) it follows that if & = a,0; + -+~ + a,a, isin M (a, ..., 4,
rational integers), then the geometric representation of « in £%' will be the
vector x(a) = a;x(ot;) + -+ + a,x(a,). We thus have the following result.

Theorem 1. Let K be a number field of degree n =s + 2f, with M =
{ay, ..., a,} afull module in K. Under the geometric representation of numbers
of K by points of the space R", the numbers of M are represented by the set
of all integral linear combinations of the » linearly independent (in the space
R vectors x(ay), ..., x(a,).

3.2. Lartices

The geometric study of full modules is based on the fact established in
Theorem 1. We therefore consider sets of vectors in R" of the above type,
without necessarily assuming that they represent the numbers of some full
module.

Definition. Letey, ..., ¢,, m < n, be alinearly independent set of vectors
in R". The set M of all vectors of the form

ae; + - + aney,

where the a; independently take on all rational integral values, is called an
m-dimensional lattice in R”, and the vectors ey, ..., e,, are called a basis of this
lattice. If m = n, the lattice is called full; otherwise it is called nonfull.
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Theorem 1 thus states that the geometric representation of the numbers
of a full module is some full lattice.

It is easily seen that two linearly independent sets e;, ..., e, and f;, ..., fin
determine the same lattice if and only if they are connected by a unimodular
transformation, that is, if

Zc,” 1<igsm),

where (c;) is an integral matrix with determinant +1.

The more detailed study of lattices is based on the metric properties of the
space R". We introduce an inner product on £ = R" by taking the vectors
(3.3) to be an orthonormal basis. If the vectors x and x’ have the coordinates
(xi, ..., X,y and (x,’, ..., x,’) with respect to this basis, then the inner product
of x and x’, (x, x') is given by the formula

6 x) =% + -+ X%,

The length of a vector x will be denoted by |/x|.
Let r be a positive real number. The set of all points x with coordinates
(x4, ..., x,) [with respect to the basis (3.3)], for which

x|l = \/x1 c+xt<r,

will be denoted by U(r). The set U(r) is called the (open) ball of radius r with
center at the origin.
A set of points in R" is called bounded if it is contained in some ball U(r).
A set of points is called discrete if for every r > O there are only a finite
number of points of the set in the ball U(r).

Lemma 1. The set of points of any lattice 9% in R" is discrete.

Proof. Since any nonfull lattice can be embedded in a full lattice (in many
ways), it suffices only to consider a full lattice 9. Let e, ... , e, be any basis
for M. The conditions
(x,e,)=0,...,(x,¢e,)=0

give us a system of # — 1 homogeneous linear equations in # unknowns. Since
such a system has a nonzero solution, there is a nonzero vector x which is
orthogonal to the vectorse,, ..., e,. If we also had (x, ¢,) = 0, then the vector
x would be orthogonal to all vectors of the space R", which is impossible.
Hence (x, ¢;) # 0. The vector f; = [1/(x, e,)] x will also be orthogonal to all

the vectors e,, ... , €,, and (f;, e;) = 1. In this manner, for every i, 1 < i < n,
we can choose a vector f;, for which

(1 ifj =i,
(f"’ef)‘{o if j# i,
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Assume now that the vector z = aye, + --- + a,e, of M (g; rational integers)
lies in the ball U(r); that is, ||z]| < r. Since a, = (z,f;), by the Cauchy-
Schwartz inequality we have

laxl =1(z, SOl < llzll - LAl < rllfill,

where r| f;|| does not depend on z. Thus there are only a finite number of
possibilities for the integers a,, so that the set of all z € M for which |z|| < r
is finite. Lemma 1 is proved.

Let X be some set of points of the space R" and z a point of R". The set of
all points of the form x + z, where x is in X, is called the translate of the set X
by the vector z and is denoted by X + z.

Definition. Let ¢, ..., ¢,, be any basis for the lattice 9. The set T of
points of the form

o ey + -+ e,

where «y, ..., o, independently take on all real values satisfying 0 < o; < 1,
is called a fundamental parallelepiped of the lattice IN.

A fundamental paralielepiped is not uniquely determined by the lattice;
it depends on the choice of basis.

Lemma 2. If T is a fundamental parallelepiped of the full lattice I, then
the sets

T,=T+z,

where z runs through all peints of the lattice IR, are pairwise-disjoint and fill
the entire space R".

Proof. Let e, ..., e, be the basis of IM used to construct the parallelepiped
T. We must show that every point x = x,e; + -+ + x,e, of R" lies in one and
only one set T, . For each i write the real number x; in the form x; = k, + «;,
where k; is a rational integer and o, satisfies the condition 0 < «; < 1. Setting
z=ke, + -+ kye,and u = aje; +---+a,e,, we have

X=u+z (ueT,ze M),

which means that x€7,. Nowif xe T,., thatis,x=u'+2' (W eT, z' ¢ M),
then by comparing the coefficients of e; in the equation u + z =u’ + 2’ we
easily obtain z = z’. Lemma 2 is proved.

Lemma 3. For any real number r > 0 there are only a finite number of sets
T, (see the notation of Lemma 2) which intersect the ball U(r).

Proof. Let e, ...,e, be the basis of the lattice used to construct the
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parallelepiped 7. If we set d = |e;|| + - + |le,|l, then for any vector u =
e + - + ae, €T, we will have

lull < llegeddl + - + llaaeall =ayfienl + - +aullell < d.

Assume that the set T, (z € M) intersects U(r). This means that for some
vector x =u + z, Where ue T, z € MM, we have | x| < r. Since z = x — u,

Izl < x| + Il —ull <r + 4,

that is, the point z is contained i:l the ball U(r + d). By Lemma | there are
only finitely many such points, and Lemma 3 is proved.

It is clear that the vectors of a lattice form a group under the operation of
vector addition. In other words, every lattice is a subgroup of the additive
group R". Lemma 1 shows that all subgroups are not lattices. We now show
that the property of lattices which was established in that lemma charac-
terizes lattices among all subgroups of the group R".

Lemma 4. A subgroup M of the group R", the points of which are discrete,
is a lattice.

Proof. Denote by ® the smallest linear subspace of the space R" which
contains the set MM, and by m the dimension of . We can then choose m
vectors ey, ... , €, in M which form a basis for the subspace ®. Denote by I,
the lattice with basis ey, ..., e, . Clearly M, = M. We shall show that the
index (M : IM,) is finite. Indeed, we may represent any vector x of M (even any
vector of ®) in the form

X=u+z, 3.11)

where z € M, and u lies in the fundamental parallelepiped T of the lattice M, ,
constructed with the basise,, ... , e,,. Since x € M and z € M, = M, and since
Misa group, u € M. But T is a bounded set, and since M is discrete, T can
contain only a finite number of vectors of M. This shows that the number
of vectors u which occur in (3.11) for all x e M is finite, which means that
the index (M : M) is finite. Let (M : M,) =j. Since the order of any
element of the factor group MM, is a divisor of j, then jx € M, for all
x € M, which means that x is a linear combination, with integer coefficients,
of (1/)ey, ... , (1/j)e,,. The group M is thus contained in the lattice IM* with
basis (1/))ey, ..., (1/j)e,,. Applying Theorem 2 of Section 2, we see that the
subgroup M of the group IM* must possess a basis of / < m vectors f;, ... , f;.
To show that M is a lattice, we need only verify that the vectors fj, ... , f; are
linearly independent over the real numbers. But this follows from the fact that
the m linearly independent (over the reals) vectors ey, ..., e, are linear
combinations of the f; (since M, = M). Lemma 4 is proved.
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3.3. The Logarithmic Space

Along with the above geometric representation of the numbers of the field
K, in which the operation of multiplication of numbers was represented by
the operation of multiplication of vectors in R", we must consider another
geometric representation, in which the operation of multiplication also has a
simple interpretation.

Let there be s real and 2t complex isomorphisms of the algebraic number
field X into the field C of complex numbers. We shall assume that these iso-
morphisms are indexed as in Section 3.1.

Consider the real linear space R**' of dimension s + ¢, consisting of rows
(44, ..., A4,) with real components. If x € 2% is of the form (3.2), with all
components different from zero, set

L(x) = Inlx| fork=1,...,s5s,
Lyfx)=1In[xg | for j=1,..,t

(3.12)

We associate to each such point x of £** the vector

I(x) = (hi(x), ..., L4(x)) (3.13)

of the space R***. If xand x’ areany points of £*' with nonzero components,
then

xx) =L(x)+ L(x) (A<k<s+1),
so that

I(xx") = I(x) + I(x"). (3.14)

The collection of all points x € £** of the form (3.2) with nonzero compo-
nents [that is, for which N(x) # 0] form a group under componentwise multi-
plication. Equation (3.14) shows that the mapping x — /(x) is a homomor-
phism of this multiplicative group onto the additive group of the vector
space R

Comparing (3.12) with the definition of the norin N(x) of a point x € £,
we easily see that

s+t

Y L(x) =In|N(x)|. (3.15)
k=1
If o is a nonzero number from the field K, set

(@) = I(x()),

where x(o) is the representation of the number « in the space £ described in
Section 3.1. From (3.5), (3.12), and (3.13) we see that the vector /(«) has the
form

1(“) = (lnlal(a)" LR} lnlas(a”, lnlas+l(a)|29 RN ]nias+t(a)l2)'
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We call the vector /(x) € R** the logarithmic representation of the nonzero
number « € K, and call the space R*** the logarithmic space of the field K.
From (3.7) and (3.14) it follows that

lep)=Un +1B) (x#0,B+#0). (3.16)

The mapping o — /() is thus a homomorphism of the multiplicative group of
thefield K into the group of vectors of the space R***. In particular it follows
that

@™ = =Il(®), (x#0).

The sum of the components
() =l(x(@), (A<k<s+1),

of the vector /() is given by the formula

s+t

kzllk(a) = In|N(2)|. 3.17)
Indeed, the sum on the left is the logarithm of the absolute value of the product

0y ((1) T Us(a)as + 1((1)65 + 1((1) 054 t(a)as + t(a)’

and this product (Supplement, Section 2.3) equals the norm N(x) (with
respect to the extension K/R).

This proof of (3.17) [which does not rely on (3.15)] shows why the definition
(3.12) of the components /(x) of the vector /(x) distinguished between real
and complex isomorphisms. The component /, ;(x) corresponds not to one,
but to the two complex-conjugate isomorphisms o ; and &, ;.

3.4. Geometric Representation of Units

Let O be some fixed order of the field K. In the logarithmic space R*+*
consider the set of all vectors I(¢), where ¢ is a unit in the ring ©. The mapping
& — I(¢) is not one-to-one. For if the unit n € O is a root of 1, that is, if n™ = 1
for some natural number m, then |6, (n)| =1 for all k =1, ..., s + ¢, so that
I(n) is the zero vector, Thus all roots of 1 (and the order © contains at least
two: +1 and —1) are mapped to the zero vector. In order to use the mapping
& — I(e) to clarify the structure of the group of units, we must answer the fol-
lowing two questions:

(1) Which units ¢ € © are mapped to the zero vector?

(2) What is the form of the set of all vectors /(¢)?

We start with the first question. Denote by W the set of all numbers « € O
for which /() = 0. By (3.16) the product of any two numbers of W again lies
in W. Since the condition /(«) = 0 is equivalent to
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o) =1 (I<k<s+1),

the set of all points x(a) € R” = 2% for all « € W is bounded, that is, it is
contained in some ball U(r). Applying Lemma 1 we find that the set W is
finite. For an arbitrary number « € W consider its powers 1, a, ..., o, ... .
Since these powers are contained in W, there is some equality «* = o', / > k.
Setting m = [ — k, we obtain «™ = 1. Thus all numbers of W are roots of 1,
and this means that W is a finite group, contained in the group of units of the
ring O.

Since the group W contains a subgroup of order 2 (consisting of +1 and
—1), then it has even order. Further, all finite subgroups of the multiplicative
group of a field are cyclic (Supplement, Section 3), and therefore W is cyclic.

We therefore have the following answer to the first question.

Theorem 2. The units of the order O, for which /() is the zero vector,
form a finite cyclic group of even order. This group consists of all roots of 1
contained in O.

We therefore turn to the second question, that is, we shall seek to clarify
the structure of the set € in R*** which consists of all vectors /(¢), where ¢ is a
unit of the ring O.

By Theorem 4 of Section 2 the norm of any unit ¢ of O equals +1, and
therefore In|N(g)| = 0. By (3.17) we therefore have

s+t

k;m@:u (3.18)

This means that all points /(¢) belong to the subspace € = R***, consisting of
all points (4, ... , A4,) € R, for which A; + -+ + A, = 0. The dimension
of the subspace € clearly equals s + ¢ — 1.

We shall show that € is a lattice. Since € is a subgroup of the additive
group of the vector space R**’, by Lemma 4 it suffices to prove that the set €
is discrete. (As an orthonormal basis in R**! we take those vectors with one
component equal to 1 and the rest equal to 0.) Let r be any positive real num-
ber and let ||/(g)|| < r. Since

L&) < 1@l < @), then h(e)<r (1 <k<s+1),
which means that
low(e)l < e (k=1,...,5s),
lo,s O <e”  (j=1,..,0.

From this it follows that the set of points x(¢) in R", where ¢ runs through all
units of O for which ||/(¢)]| < r, is bounded. But since the vectors x(a) € R"
for all « € © form a lattice (Theorem 1), it follows from Lemma 1 that the
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number of such ¢ is finite. Thus the number of vectors /(&) such that ||i(e)]| < r
is also finite and this means that the setr € is discrete.

Since the lattice € is contained in the subspace €, its dimension does not
exceed s + ¢ — 1.

We have thus proved the following fact.

Theorem 3. The set of all points /(g), where ¢ is a unit of the order O,
forms a lattice € in the logarithmic space & of dimension r < s+ ¢ — 1.

3.5. Partial Results on the Group of Units

Theorems 2 and 3, which were derived from very simple geometric con-
siderations, contain much important information on the structure of the
group of units of the order ©O. From these theorems it follows that in © there
exist units ¢, ... , &, r < § + t — 1, such that every unit ¢ is uniquely repre-
sentable in the form

e =1L g 3.19)

where a,, ..., a, are rational integers and ( is some root of 1 contained in O.
In other words, the group of units of the order © is the product of a finite
group and r infimte cyclic groups.

To prove this assertion we take any basis for the lattice €, say, /(g,), ...,
I(¢,), and will show that the urits ¢, ... , ¢, satisfy the desired properties. Let ¢
be an arbitrary unit of the ring O. Since /(¢) € €, then

le)=a,l(e,) + - + a,l(e),

where a, are rational integers. Consider the unit:

up ~ Gy

{=g8, "¢

By formula (3.16) we have I({) = l(¢) — a,/(¢;) — -+ — a,i(¢g,), and then by
Theorem 2 { is a root of 1. Hence ¢ has a representation (3.19). We now prove
that this representation is unique. Assume that we also have ¢ = {'g,®' --- ¢,
Since the vectors I(g), ... , /(g,) are linearly independent, it follows from
I(e) = bd(e;) + -+ + b,(g,) thata, = b,, ... ,a, = b,. But then also { = {', and
our assertion 1s comnpletely proved.

Therc remains the open question of the precise vaiue of tae number r,
since we have proved only that it does not exceed s + ¢ — 1. Using the methods
we have relied on so far, we cannot even guarantee that r > 0 (when s + ¢ —
I > 0). In Section 4 we shall show that actually r = s + ¢ — 1. But this will be
an existence theorem; it will establish the existence of s + 7 — 1 independent
units. It is therefore not surprising that its proof will require some new
concepts.
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By Theorem 3 the remaining assertion is equivalent to the fact that the
dimension of the lattice €. which represents the units of the order O in the
logarithmic space. is of dimension equal to s + ¢ — 1.

PROBIEMS

1. Show that the set of all images x(a) € " of numbers a of the algebraic number field K
of degree n is an everywhere-dense subset of the space R".

2. Assume that s # 0, that is. that there is an isomorphism of the field K into the field of
real numbers. Show that the group of roots of 1 contained in K consists only of two numbers:
+1and — 1. (This condition always holds when the degree of K is odd.)

3. Determine all roots of 1 which can be contained in an algebraic number field of
degree 4.

4. Find all units of the field R(1/3).
5. Show that in the field R(+¥2) any unit has the form +(1 4+ ¥2)~.

6. Let the algebraic number field K contain a complex root of 1. Show that then the
norm of any « # 0 of K is positive.

4. The Group of Units

4.1. A Criterion for the Fullness of a Lattice

In this section we finish our investigation of the structure of the group of
units of an order in an algebraic number field. The basic problem, which we
are going to solve, has already been considered at the end of the preceding
section. It is to prove that the lattice €, the vectors of which represent the
units of the order O in the logarithmic representation, has dimension s + ¢ — 1
(we preserve all notations from Section 3).

The lattice € lies in the space R°*’ and is contained in the subspace €,
which consists of all points (4, ..., 4,4, for which A, + .-+ 4 ,,=0.
Since the dimension of £ is equal to s + ¢t — 1, we need to show that € is a
full lattice in the space €. This will be proved in Section 4.3, using the follow-
ing criterion for the fullness of a lattice.

Theorem 1. A lattice M in a linear space L is full if and only if there exists
a bounded set U in £, such that the translates of U by all vectors of M occupy
the whole space € (they may intersect).

Proof. If the lattice 9M is full, then as U/ we may take any of its fundamental
parallelepipeds. Lemma 2 of Section 3 now implies that the translates of a
fundamental parallelepiped by all points of the lattice fill the entire space (it is
clear that a fundamental parallelepiped is bounded). Assume now that the
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lattice M is not full, and let U be an arbitrary bounded set in 2. We shall show
that in this case the translates of U by all vectors of M cannot fill the entire
space €. Since U is bounded, there exists a real number r > 0 such that
lull < r for all ue U. Let £ denote the subspace generated by the vectors of
M. Since the lattice M is not full, L’ is a proper subspace of L, and therefore
there exists in € vectors of arbitrary length which are orthogonal to the sub-
space €' (and hence to all vectors in ). We claim that any such vector y,
for which | y|| = r, cannot lie within a translate of U by a vector of M. For sup-
pose that such a y (orthogonal to £‘) is contained in some translate, say,
y=u+z, where ue U, ze M. By the Cauchy-Schwarz inequality

1 =0, ») = o, wy < Iyl lull < riyl,

so that | y|| < r. Theorem 1 is proved. (The geometric meaning of the proof
is that all translates of U by vectors of the nonfull lattice 9t lie in the strip
consisting of all points at distance less than r from the subspace ).

Remark. In topological terms, the fullness of the lattice 9t in the space €
is equivalent to the compactness of the factor group £/ (L being considered
as a topological group under addition).

4.2. Minkowski’s Lemma

Our proof of the existence of s + ¢ — 1 independent units will be based on a
simple geometric fact which has many applications in number theory. The
formulation and proof of this assertion (Theorem 3) use the concept of volume
in n-dimensional space and some of its properties.

The volume v(X) of the set X in the n-dimensional space R” can be defined
as the multiple integral

u(X) = J.---fdxl dx, -+ dx,,

(X)

carried out over the set X. [Here we sometimes deviate from (3.4) and denote
the coordinates of the point x in R” by (x,, ..., x,).] We shall not enter into
the question of conditions under which the volume exists. In the cases which
we shall consider, the set X will be given by some inequalities of a very simple
type, and the question of the existence of the volume can be decided by ele-
mentary considerations. We list some simple properties of volume, easily
verified from properties of the integral.(We assume that all volumes considered
exist.)

(1) If X is contained in X, then
(X) < v(X).
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(2) If the sets X and X’ do not intersect, then
(X U X)) = v(X) + v(X").
(3) Any translate of a set has the same volume; that is,
(X + 2) = v(X).

(4) Let « be a positive real number. Let « X denote the set of all points of
the form ax, where x runs through all points of X. (The set a X is called the
expansion of X by «.) Then

v(aX) = «"v(X).

We now compute the volume of a fundamental parallelepiped T of the full
lattice 9 in R", which is constructed from some basis ¢, ..., e,. Let

ej=(a1j""sanj) (1 <.}<n)'

We shall show that then
o(T) = |det(a;;)|. (4.1)

In the integral
oT) = [ [ dx, - dx,
(T)

we change variables by the formula
X =Y a;x; (1<gi<gn).
i=1

The Jacobian of this transformation is det(a;;), which is nonzero since the
vectors ey, ..., e, are linearly independent. Under this transformation the
set T is taken to the set T, , consisting of all points (x,’, ..., x,"), for which
0<x/<1(@G=1,...,n),so that

u(T) = ff |det(a; )| dx,’ -+ dx,’
(To) . .
= detCa,)] [ [ dxi' o dxy = dettay)
0 0

and (4.1) is proved.

Let the mapping x — x’ give a nonsingular linear transformation of the
space R" into itself. The lattice M is taken by this transformation into some
lattice M’ (clearly full), and its fundamental parallelepiped T is taken to a
fundamental parallelepiped T” of the lattice M. It is clear that the parallele-
piped T’ will be constructed from the images ¢,’, ..., e,” of the vectors of
basis e, ..., e,. If e/ =(b,;, ..., b,;) (1 <j < n), then the volume o(T") =
|det(b;;)|. Let C = (c;;) denote the matrix of the linear transformation x — x’



110 NUMBERS BY DECOMPOSABLE FORMS [Chap. 2
with respect to the basis e, ..., e,, so that
n
e/ =Y ce (I<j<gn).
i=1

It is easily seen that b;; = ) 7_  a;.,; ; that is, the matrix () is the product
of (a;;) and (c;;), which means that

oT") = (T)- |det C|. (4.2)

Now assume that e, ... ,e,and e,’, ... , e, are two bases of the same lattice
M. Since these bases are obtained from one another by unimodular trans-
formations (that is, C has integer entries and det C = + 1), it follows from
(4.2) that o(T”) = v(T). This shows that the volume of a fundamental parallel-
epiped of a lattice depends only on the lattice itself and not on the choice of
basis.

Combining (4.1) with (3.9) and (3.10) we obtain the following strengthening
of Theorem 1, Section 3.

Theorem 2. Let K be a number field of degree n = s + 27 and let M be a
full module with discriminant D. Under the geometric representation of
numbers of K by points of £ = R", the points which represent the numbers
of M form a full lattice with the volume of a fundamental parallelepiped
equal to 27'/|DI.

To formulate the basic proposition of this section we need two more
geometric concepts.

A set X < R" is called centrally symmetric if whenever x € X, then also
—-x€ X,

A set X is called convex if for any two points x € X and x’ € X, all points
of the form ax + (1 — a)x’, where a is a real number satisfying 0 < a < 1,
lie in X. In other words, X is convex if the entire line segment connecting
any two points of X lies in X.

Theorem 3 (Minkowski’'s Lemma on Convex Bodies). Let M be
a full lattice in the n-dimensional space R", with the volume of a fundamental
parallelepiped of M given by A, and let X be a bounded, centrally symmetric,
convex set with volume v(X). If v(X) > 2"A, then the set X contains at least
one nonzero point of the lattice M.

Proof. We base our proof on the following (intuitively obvious) assertion:
If a bounded set ¥ < R" has the property that its translates ¥, = Y + z by
vectors z € I are pairwise-nonintersecting, then (YY) < A. To prove this
assertion we consider some fundamental parallelepiped T of the lattice 9t and

look at the intersections ¥ n T_, of the set Y with all translates T_, =T — z
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of the parallelepiped T. It is clear that
o(Y)= Y o(Y nT_).

ze
(Although this sum is formally infinite, it contains only a finite number of
nonzero terms, since the set Y is bounded and thus intersects only a finite
number of the T__; see Lemma 3 of Section 3.) The translate of the set
Y n T, by the vector z is clearly equal to Y, n T, and therefore (Y n T ,)
=v(Y, n T), so that

WY)= Y o(Y,nT).

ze
If the translates Y, are pairwise-nonintersecting, then the intersections
Y, n T are also pairwise-nonintersecting, and since they are all contained in
T, the sum on the right of the above equation cannot be more than v(T).
Hence ¢(Y) < ©(T), and our assertion is proved.

Consider now the set 1 X (obtained from X by contracting by a factor of 2).
From the assumptions of the theorem it follows that »( X) = (1/2"v(X) > A.
If all translates 1 X + z by vectors ze I were pairwise-nonintersecting,
then we would necessarily have o(1X) < A, which is not the case. Hence for
two distinct vectors z; and z, of 9R, the sets $X + z; and 4X + z, have a
common point:

X' +zy=4x"+2, x', x" e X).
We write this in the form
Zy — 2z, = 1x" — 1x.
Since the set X is centrally symmetric, —x’ € X, and since it is convex,
Ix" =1y =Ix" + {(—x)e X.
Thus the nonzero point z; — z, of M lies in the set X and the theorem is
proved.

From the first part of the proof we may draw the following obvious
corollary (which will be used in Section 5).

Lemma 1. If the union of all translates of the set ¥ by vectors of the lattice
M completely fills the space R", then ¢(Y) = A.

For in this case the intersections Y. n T completely fill the fundamental
parallelepiped T (possibly overlapping) and therefore

o(Y)= Y o(Y,nT)>uT)=A.

zem

To investigate the group of units we shall apply Minkowski’s lemma to
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lattices in the space £, and as the set X we shall take all points x of the form
(3.2) for which

eyl <epyonn, X < g3 |x:+1|2 L Copyseens Ixs+:lz < Cstys

where ¢, ..., ¢,,, are positive real numbers. The convexity and central
symmetry of this set X are clear. We compute its volume. Using (3.4) for the
coordinates of x, we obtain

o(X) = J‘“ dx, - J‘:sdxs J'f dy,dz, -

—
vtz 2<coty
s+t

_Ast
J.f dy,dz, =27 [] ¢;.
i=1
Y2+ 22 <Csur

Applying Minkowski’s lemma to this set gives us the following result (to
which we shall refer in the future).

Theorem 4. If the volume of a fundamental parallelepiped of the full
lattice M in the space L' is A, and if the positive real numbers ¢y, ..., ¢,
satisfy []72{ ¢, > (4/n)'A, then there is a nonzero vector x = (xy, ..., X, ,)
in the lattice M for which

|xl| < Cl’ Tt |xs| < C:; |'xs+1|2 < C:+15 Ter |x:+1|2 < Cs+t' (43)

4.3. The Structure of the Group of Units

We can now completely solve the question of the structure of the group of
units of an arbitrary order.

Theorem 5 (Dirichlet’s Theorem). Let O be any order of the algebraic
number field K of degree rn = s+ 2t. Then there exist units &, ..., s,,
r=s5+t— 1, such that every unit ¢ € © has a unique representation in the
form

ar

£ = Cslal TR
where a, ..., a, are rational integers and { is some root of 1 contained in O.

Proof. We have already remarked that we need only prove that that lattice
€, which is the image of the units of O, is full in the space € (which is of
dimension s + ¢ — 1). From Theorem 1 we see that it will suffice to show that
there is a bounded set U/ in € such that the translates of U by all vectors of &
cover the entire space £. We rephrase this last assertion in terms of the space

ﬁs.l.



Sec. 4] THE GROUP OF UNITS 113

It is clear that any point (4, ..., 4;,,) of £ (and also of R**") is the image
of some point x of 2% under the mapping x — I(x). It follows immediately
from (3.15) that the image of a point x € €' (with nonzero components)
under the logarithmic mapping lies in the subspace € of R*** if and only if
IN(x)| = 1.

Denote by S the set of all x € 2% for which {N(x)| = 1. If X, is an arbitrary
bounded subset of S, then its image /(X,) is also bounded. For if the point
x =(xy, ..., Xs+,) has norm +1 and satisfies

I <C  (A<k<s), Ix,’<C  (A<j<gt);
then J(x) <In Cforallk =1, ..., s + ¢ and thus
L(x) = =Y l{x)> —(s + t = DC,
ik

so that /(X,) is bounded. Since the norm is multiplicative, if x e Sand X, = §,
then the product X,x is also contained in S. In particular, for any unit ¢ of
the order O, we have X x(¢) = S [since N(x(¢g)) = N(¢) = +1]. If the products
X,x(e) for all units ¢ completely cover S, then the translates I(X,) + /(e)
clearly cover the entire space £. We have thus shown that to prove Theorem 5
it suffices to find in § a bounded subset X, whose “multiplicative translates”
X,x(g) completely cover S.

Let y be any point of S and let M be the lattice of points in 2% correspond-
ing to the numbers of the order O. We map the space £ into itself by the
linear transformation x —yx (x € 2>%). In Section 3.1 we saw that the deter-
minant of the matrix of this transformation was equal to N(), that is, to +1.
Hence, by (4.2), the volumes of fundamental parallelepipeds for the lattices
M and yM are the same. Denote this volume by A.

Choose positive real numbers ¢, ..., ¢,,, so that

"\
Q =Cp Csyy > (—) A’
T

and denote by X the set of all points x € £ for which the inequality (4.3)
holds. Theorem 4 implies that there is a nonzero point x = yx(a) (x € O,
o # 0) contained in X. Since N(x) = N(»)N(x) = +N(«) and |[N(x)| < ¢; -
.= 0, IN®| < Q. By Theorem 5 of Section 2 there are only finitely many
pairwise-nonassociate numbers in the order © whose norms have absolute
value less than Q. Fix some set «, ... , ay of nonzero numbers of O such that
any nonzero number of O, whose norm has absolute value less than Q, is
associate with one of these. Then for some i (1 < i< N) we have ae = q;,
where ¢ is a unit in ©. Then y can be represented as

y = xx(o;” )x(e). (4.4)
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Set
N
Xo=5n (U Xx(a,-_l)). 4.5)
i=1

Since X is bounded, each of the sets Xx(x,”!) is also bounded and thus X,
is bounded. Further, the choice of the numbers ¢, ..., ¢,,, which determine
the set X and of the numbers a4, ..., ay did not depend on the point y, and
therefore the set (4.5) is completely determined by the order O. Since y and
x(e) lie in S, then by (4.4) the point xx(x,” ') also lies in S, which means that it
belongs to X, . Equation (4.4) thus shows that the point y of .S, which we
chose arbitrarily, is contained in the set X x(g). Thus S is completely covered
by all these sets (for all units ¢), and this proves Theorem 5.

As we remarked in Section 3.5, Dirichlet’s theorem implies that the group
of units in any order of an algebraic number field of degree n = 5 + 21 is the
product of a finite group with s + 7 — 1 infinite cyclic groups.

If s + t = 1 (and this is the case only for the field of rational numbers and
for imaginary quadratic fields), then r = 0. In this case the lattice € consists
only of the zero vector and the group of units of the order D is just the finite
group of roots of 1.

The units ¢4, ... , ¢,, whose existence :s established by Dirichlet’s theorem,
are called fundamental units of the order . From Section 3.5 it is clear that
a set of units ¢,, ... , &, is fundamental if and only if the vectors /(g,), ... , (e,
form a basis for the lattice €. From this it easily follows that the units

g = (g g0 (1<i<r)

(where {; is an arbitrary root of 1 contained in ) will be a fundamental set
of units if and only if the matrix (a,;) is unimodular.

Remark. The proof of Dirichlet’s theorem is not effective in that it does
not give an algorithm for finding some set of fundamental units for the order
©. This was caused by our use of the full system of nonassociate numbers
oy, ... , &y whose norm is iess than Q. The existence of such a system was
established in 2 noneffective manner. We return to the question of effective-
ness in Section 5.

Dirichlet’s theorem also holds (as does Theorem 2 of Section 3) for the

maximal order O of the field K. Fundamental units for the maximal order
are also called fundamental units for the algebraic number field K.

4.4. The Regulator

By the construction of Sections 3.3 and 3.4, there is associated to each
order © of an algebraic number field K of degree r = 5 + 2t a lattice € of
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dimension r = s + ¢t — | in the subspace £ = ®***. The volume v of a funda-
mental parallelepiped of this lattice does not depend on the choice of basis
and thus is completely determined by the lattice € We now compute this
volume. Let T, be a fundamental parallelepiped of the lattice € constructed
from the basis /(g,), ..., I(g,) (here ¢, ..., ¢ is a system of fundamental
units of the order ©). The vector I, = 1//s + ¢ (1, ..., 1) in R** is clearly
orthogonal to the subspace £ and has unit length, Then the r-dimensional
volume v = 1(T,) equals the (s + ¢)-dimensional volume of the parallelepiped
T determined by the vectors /, I(g,), ..., I(¢,). By (4.1) the volume v is equal
to the absolute value of the determinant of the matrix whose rows are the
components of these vectors. If we now add all other columns to the ith
column and use (3.18), we may expand the determinant by the ith column
and obtain

v= \/s/Tt R,
where R is the absolute value of any of the minors of order r of the matrix

1i(ey) -+ iy (ey)
........ _ (4.6)
11(8,.) tr ls +t(£r)
1t thus follows that all rth-order minors of (4.6) have the same absolute value,
which is, moreover, independent of the choice of the system of fundamental
units ey, ..., & . The number R (as well as v) thus depends only on the order O.
It is called the regulator of the order .
The regulator of the maximal order O is called the regulator of the algebraic
number field K. (For the field of rational numbers and for imaginary quadratic
fields the regulator is by definition equal to 1.)

PROBLEMS

1. Show that the inequality v{X) > 2"A in Minkowski’s lemma cannot be weakened. To
do this construct a convex bounded centrally symmetric set X with volume v(X)=2"A
which does not contain any nonzero point of the lattice.

2. Let a be a positive real number. Show that the volume of the set X < £, consisting
of all points x for which

[xy| =+ oo+ x| +2 Vit F 24 42yl r 2 <a
I

j— 5 Ll ! l n
v(X) =2 3 T!a.

Check that the set X is bounded, centrally symmetric, and convex.
3. Let @ and b be natural numbers \\ihich are not squares. Show that fundamental units
for the order {J, Via} of the field R(+/a) are also fundamental units for the order {1, Va,

v/ —b, v/ av —b} in the field R(Va, vV —b).

[in the coordinates (3.4)], equals
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4. Show that the group of units of an arbitrary order is a subgroup of finite index in the
group of units of the maximal order ©.

5. Let the units % 4, ..., %, (r=s+1—1) of the order © be such that the vectors
I(p1), ..., l(ns) are linearly independent. Show that the group of all units of the form
-,)‘Cx 7),," is a subgroup of finite index of the group of all units of the order ©.

6. Let cy, ..., ¢, be positive real numbers and let (a;;) be a nonsingular real matrix of
order n. Show that if ¢, --- ¢, >d = |det (a, )|, then there exist rational integers x,, ... , X,,
not all zero, such that

M:

ai x| < ¢ (i=1,..,n.

|
J=1

[Hint: Verify that the set of all points (x, ..., x») in ®" which satisfy the above inequality
is bounded, centrally symmetric, and convex, and has volume (1/d)2", --- ¢". Apply Min-
kowski’s lemma on convex bodies.]

7. Let a1 < i<k, 1 <j<n) be rational integers and let »; (1 < /< k) be natural
numbers. Show that the set of all integral points (xy, ..., x») in R" for which

% a;x, =0 (mod m,) a<gi<h),
J=1

forms a full lattice, with the volume of a fundamental parallelepiped < m; -+ m,.

8. Let a, b, c be nonzero rational integers, pairwise relatively prime, and square-free.
Then |abc| =2*p, --- ps (p; are odd primes,AisOor 1). Assume thatthe form ax? + by + cz?
represents zero in all p-adic fields. Show that there exist integral linear forms in three variables,
L,,...,Ls, L, L” such that whenever u, v, w are integers satisfying

L(u, v, w) =0 (mod p)), (1<i<gys),
L'(u, v, w) =0 (mod 21 +4), (*)
L7(u, v, w) =0 (mod 2),
then
au® + bv?r + ew? =0 (mod 4label).

9. Under the same assumptions as in Problem 8, let M denote the lattice of integral points
(u, v, w) € R which satisfy (+). By Problem 7 the volume of a fundamental parallelepiped
of the lattice M does not exceed 4|abe|. Let X denote the ellipsoid of points which satisfy

lalx? + [bly? + |c|z? < 8|abe|,

the volume of which is easily computed to be (32/3)rr|abe|. Apply the Minkowski lemma on
convex bodies to the lattice M and the ellipsoid X to prove that the form ax? 4 by? + cz?
has a rational zero. (In this proof of the Hasse-Minkowski theorem for forms in three
variables the fact that the form is indefinite is not used.)

5. The Solution of the Problem of the Representation of Rational
Numbers by Full Decomposable Forms

5.1. Units with Norm +1

In Section 2.3 we saw that to solve the problem of finding all numbers in a
given full module with certain norm it was necessary to find all units ¢ of
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the coefficient ring © for which N(g) = + 1. The set of all such units clearly
forms a group. We now study the structure of this group.

We first assume that the degree n of the field Kis odd. In this case the ring ©
only contains two roots of 1, namely, + 1 (Problem 2 of Section 3). If for some
unit ¢ € O we have N(¢) = —1, then

N(—g) = N(=D)N(e) = (= 1)(=1) = L.

Lete,, ..., & (r =5+t — 1) be any system of fundamental units of the ring O.
Suppose that among the ¢; there are some units with norm — 1. Replacing
each such unit by —¢;, we obtain a new system of fundamental units 5, ... , 7,
with N(n;) =1 for i =1, ..., r. The norm of an arbitrary unit ¢ = +#,%" --.
n, will then equal N(+1)=(21)"= +1. Hence all units ¢ € © for which
N(¢) = 1 have the form

e=n""-n" (a;€2).

Now let n be an even number. We shall show that in this case any root of 1
contained in K has norm +1. This certainly holds for the roots +1. If K
contains a complex root { of 1, then s = 0, and this means that the set of all
isomorphisms of K into the field of complex numbers is divided into pairs of
complex-conjugate isomorphisms. If ¢ and & are complex-conjugate iso-
morphisms, then o({)a({) = |a({)|*> = 1. By the results of Section 2.3 of the
Supplement, this means that N({) = 1, and our assertion is proved.

Again let ¢, ..., ¢, be any system of fundamental units of the ring O.
If N(e) =1 for i =1, ..., r, then the norm of any unit of the ring O is + 1.
Assume that

N(El) = 1’ ey N(sk)= ]’ N(Ek+l) = _']7 cery N(sr) = —1’
where k < r. Setting

Ny =&, s M =&, Mev1 = Ekv18rs o s Mot = € (&,

we obtain a new system of fundamental units #,, ... , 7,_,, €,, where N(n,) = 1
(1<i<r—1).Nowlete={{n"n= e’ (ay,...,a,_,,beZ) be any unit.
Since N(e) = (—1)%, then N(g) = +1 if and only if the exponent b is even,
that is, & = 2a. We thus find that if n is even, any unit ¢ € © with norm +1
has the form

e={n" - nrin’ (a;e2),

where 1, = ¢,%, and { is any root of 1 contained in O.
Hence if we have found a system of fundamental units in the order O, then
we can also find all units with norm + 1.
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5.2. The General Form for Solutions of the Equation N(u) = a

When we combine the results of Section 5.1 with the Corollary of Theorem
5 of Section 2, we obtain the following result, which gives a complete charac-
terization of the set of all solutions to (2.7).

Theorem 1. Let M be a full module in the algebraic number field X of
degree n = 5 + 21, let O be its coefficient ring, and let a be a nonzero rational
number. In the order O there exist units #,, ... , n, (r = s + t — 1) with norm
+1, and in the module M there is a finite set (possibly empty) of numbers
U1, ... , 4 With norm a, such that every solution y € M of the equation

Nup =a (5.1)
has a unique representation in the form
u=pm" 0>  for nodd,
u=uin"---n" for neven.

Here yu; is one of the numbers uy, ..., i, { is a root of 1, and ay, ..., a,
are rational integers.

In the case of even n, if we take as a new system of number g, the set of all
products u,, we obtain a representation which has the same form as that for
odd n.

In any order of an imaginary quadratic field there are only finitely many
units (since r = s + ¢t — 1 = 0). Hence in this case (5.1) has only a finite
number of solutions. If K is not an imaginary quadratic field (and, of course,
not the field of rational numbers), then r > 0 and hence (5.1) either has no
solution or has infinitely many.

Remark. Theorem [ shows us the structure of the set of all solutions of
(5.1), but it does not give an effective means for finding these solutions. For
the practical solution of (5.1) we must find an effective method for finding a
system of fundamental units for the order ©, and a method for finding a full
set of pairwise-nonassociate numbers y, ... , g, in the module M with given
norm. In the following parts of this section we shall show that both of these
problems can actually be solved in a finite number of steps. It must be said,
however, that the general effective methods to be described for finding funda-
mental units and numbers with given norm in a module are very ill-suited to
actual computation, in view of the very large amount of unnecessary compu-
tation. Our goal is only to show that in principle it is possible to carry out
these constructions in a finite number of steps. In any given case, by using
other considerations and examining the particular behavior of the special
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case, it is usually possible to find a much shorter route. In Section 5.3, by
way of example, we shall give a simple method for solving our problems in
the case of quadratic fields.

5.3. The Effective Construction of a System of Fundamental Units

Let o4, ..., 6, denote all isomorphisms of the algebraic number field K
into the field of complex numbers.

Lemma 1. Let ¢y, ..., ¢, be arbitrary positive real numbers. In any full
module M of the field K there exist only finitely many numbers o for which

lo(@)] < ey, s lon(D)] < ey, (5.2)
and all such numbers can be effectively located.

Proof. Take any basis a4, ..., o, in M (if the module M is given by a set of
generators which is not a basis, by following the proof of Theorem 1 of Sec-
tion 2 a basis may be constructed in a finite number of steps). Any number of
M can then be represented in the form

o=a,o + -+ aa, (5.3)

with rational integers a;. Let a,*, ..., a,* be the dual basis to ay, ..., «, in
the field K (see Section 2.3 of the Supplement) and take a real number 4 > 0
for which

]ai(aj*)l <A (5.4

for all i and j. Multiplying (5.3) by «;* and taking the trace, we obtain

n

a;=Spax;* =3 ofa)o(a*).

i=1

Now if « € M satisfies (5.2), then by (5.4) the coefficients a; satisfy
la;l < A Y loy) <A21c,-. (5.5)
i=1 i=

Hence there are only finitely many possibilities for the a;. By testing all such
numbers we easily find those which satisfy (5.2).

Until the end of this section we shall use all concepts and notations of the
preceding two sections.

The possibility of effectively finding a system of fundamental units for an
arbitrary order of an algebraic number field is based on the following theorem.

Theorem 2. Let O be any order of the algebraic number field K. A number
p > 0 can be found such that the ball of radius p in the logarithmic space
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R must contain a basis for the lattice € (which represents the units of the
order O).

We show that this theorem does actually give us a method for constructing
a system of fundamental units for the order ©. If for the unit e€ O, l(¢) is
contained in the ball of radius p, then

loe)l < e’ (1<k<s), o, (o)l <e” (1<j<. (5.6)

By Lemma 1 the number of units ¢ € © satisfying this condition is finite and
they can actually be found (to determine which numbers of the order O are
units, use Theorem 4 of Section 2). From this collection of units form all
possible systems ¢, ...,¢,, where r=s5+1—1, for which the vectors
I(e)), ..., i(g,) are linearly independent. By Theorem 2 at least one of these
systems will be a system of fundamental units of the order ©. For each such
system we compute the volume of the fundamental parallelepiped determined
by the vectors I(g,), ..., I(g,). Hence that system for which this volume is
smallest will be a system of fundamental units,

Theorem 2 will follow trivially from the following two lemmas, when
applied to the lattice €. Note that we can always enumerate all vectors of the
lattice € which lie in any bounded set. For if the coordinates of the point
1(¢) are bounded, then we have a bound of the type (5.6) on the unit ¢, and by
Lemma [ we may explicitly find all such units. In general, we shall say thata
lattice M is effectively given if ther~ is an algorithm for locating all points of
the lattice in any bounded set.

Lemma 2. Let 9 be a full lattice in R™ which is effectively given, and let A
be the volume of its fundamental parallelepiped. Then a number p can be
found such that the ball of radius p contains a basis for 9.

Proof. If m = 1, then we can set p = 2A. In general, we will prove the lemma
by induction on m. Take any bounded convex centrally symmetric set in R™
with volume greater than 2™A. By Minkowski’s lemma (Section 4.2) this set
will contain a nonzero vector of the lattice M. Let u be any such vector with
u # nx for x € M, with n > 1 an integer. Let £’ denote the subspace orthog-
onal to the vector » and let 9’ be the projection of the lattice M into €'.
If x' € M', then for some x € M we have x = &u + x’', where ¢ is a real number.
For any integer k the vector x — ku also belongs to 9, so we may choose the
vector x in M (with given projection x’) so that |&| < 4. For such an x we
shall have

Il = ull® + 11> < dlull® + 1x7)%

This inequality shows that the set of vectors x’ € M’ in some bounded region
are the projections of vectors x from some bounded region of R™, so that the
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lattice M’ is also effectively given. If u,, ..., u,, are vectors in M such that
the projections u,’, ... , 4, form a basis for M’, then the set u, u,, ..., u,
is easily seen to be a basis for M. Hence the volume of a fundamental parallel-
epiped of the lattice M’ is A/||ul{, which we can compute explicitly. By the
induction hypothesis we can find a number p’ such that I’ has a basis
uy', ..., u, for which |u/| < p’ (i=2, ..., m). But we have already shown
that then the vectors u,, ..., u, in M can be chosen so that

lush < Gllul® + p %2,

Thus in the ball of radius
p = max(jlu + 1, Glul)* + p'*)'/?)

there necessarily exists a basis u, u,, ..., u,, for the lattice 9, and this com-
pletes the proof of Lemma 2.

To complete the proof of Theorem 2 we now need only find a bound for the
volume of a fundamental parallelepiped of the lattice €.

Lemma 3. If v is the volume of a fundamental parallelepiped of the
lattice €, then

[2]
v S C(]n Q)s+l—1N S C(ln Q)s+l—1 Z an,
a=1

where Q = (2/n)'/|D| + 1 (D is the discriminant of the order O), N is the
number of pairwise-nonassociate numbers of © for which |N(«)| < Q,and C
is some constant which depends only on s + ¢.

Proof. We use the notations of the proof of Theorem 5 of Section 4. The
real numbers ¢, ..., ¢,,, are chosen so that

4\ N
cie=(3)a+ 1= () VBl + 1=,

Since the set of all translates of the set /(X,) by the vectors of the lattice €
completely covers €, by Lemma 1 of Section 4 we have

v < v(l(Xo)).
Let U, (i = 1, ..., N) denote the intersection of the set /(X) — I(«;) with the
subspace L. By (4.5) the sets U, cover I(X,), so that
N
v < Y o(U). (5.7

i=1

We now compute the volume v(U)). The intersection U of the set [(X) — I(«)
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with the subspace € consists of all points (14, ..., 4,,,) € R’ for which
’;‘1 + -+ ’ls+r = Os
A < In¢p — [ () (I<k<s+1).

Set [N(a)| = a (so that £/ (a) = In a) and translate the set U by the vector
(A%, ..., Ay, *) € € with components

(5.8)

1
A¥=—In ck+lk(a)+—lng‘
s+t a

Under this translation the set U is carried into a set U* with the same volume,
in which, by (5.8),
Q

1
Ah<——In= 1<k< t).
k<s+tna ( s+

Let U, denote the set of points in £ for which
A< 1 (I<k<s+r),

and let C, denote the volume of U, . The constant C, clearly depends only on
s + t. Since U* is obtained from U, by multiplying by the factor 1/(s + ) In
(Qla), then
1 Q s+e—1
U =|—In= Uy),

= (%) vy

so that
s+e—1

t In g) (5.9)

a

1
(U) = Co(s n

We now return to the inequality (5.7). For each i=1, ..., N we have
1 <|N(a))| < [Q]- Further, we saw in the proof of Theorem 5 of Section 2
that the ring O contains at most 4" pairwise-nonassociate numbers with norm
in absolute value a. Combining these facts with (5.7) and (5.8), we obtain
for v the estimate indicated in the lemma.

5.4. The Numbers in a Module with Given Norm

‘We now turn to the question of the construction in a module of a full set of
pairwise-nonassociate elements with given norm.

In the coefficient ring © of the full module M we fix some system of
fundamental units ¢,, ..., ¢,. The vectors /(g,), ..., I(¢,), along with the vector
I, =(,...,1), form a basis for the logarithmic space R**‘. Hence for any
e M, the vector /(i) can be represented in the form

) = €lo + Y. i) (5.10)
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with real coefficients &, &,, ..., &, . By formulas (3.17) and (3.18) the coefficient
¢ is given by
1
=——1n |N(p)|.

£ = — In NG|
Each real number &; can be represented in the form &; = k; + y;, where &;
is an integer and |y,| < 4. If p' = pg; ™% ... &%, then yu and g’ are associates,
and (5.10) takes the form

Ina
s+t

where a = |N(p)| = |N(y')|. We have thus found a bounded set in R***
such that for any pe M with |N(u)| = @, u has an associate u' with the log-
arithmic representation of y’ lying in the bounded set. We hence have a bound
of the type (5.2) for the number x’. By Lemma 1 we can enumerate all numbers
of M satisfying this bound. We now pick from this finite set all numbers with
the specified norm, and from this latter set pick one number in each equiva-
lence class of associates. In this way we obtain a set y,, ... , & of pairwise-
nonassociate numbers with given norm such that any number of M with this
norm is associate with one of the u;. The results of this section give us a
method for finding, in a finite number of steps, all numbers in a given full
module with specified norm (or of establishing the nonexistence of such num-
bers). This gives a final solution to the problem of integral representation of
rational numbers by full decomposable forms.

I(u') =

10 + Yll(el) + -+ ')7,1(8,),

PROBLEMS

1. Let d be a rational integer which is square-free and divisible by at least one prime of

the form 4k + 3. Show that any unit of the order I, v/d}in the field R(\/d) has norm + 1.
2. Show that 5 + 24/6 is a fundamental unit for the maximal order in the field R(1/6).
3. Find all integral solutions to the equation

3x2 -4y =11.

4. Show that in the cubic field R(f), 82 = 6, the number & = 1 — 60 4 362 is a funda-
mental unit.

6. Classes of Modules

In view of the role played by the concept of a full module, it is important to
investigate the structure of the set of all full modules of a given algebraic
number field K. The number of all such modules is clearly infinite. But mod-
ules which are similar (Section 1.3) have many properties in common. We
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have seen that similar modules have the same coefficient ring (Lemma 1 of
Section 2) and that the problems of finding numbers with given norm in
similar modules are equivalent (Section 1.3). In view of this it is natural to
collect similar modules in equivalence classes and to investigate the set of all
equivalence classes of similar modules. In this section we shall show that the
set of equivalence classes of similar modules with a given order O of the alge-
braic number field K as coefficient ring is a finite set. This result, along with
the theorem of Dirichlet on the group of units, is one of the most fundamental
results in the theory of algebraic numbers. Its proof depends, as does the
proof of the theorem on units, on the lemma of Minkowski on convex bodies.
Another very important tool will be the concept of the norm of a module.

6.1. The Norm of a Module

Let M be an arbitrary full module in the algebraic number field K of de-
gree n and let © denote its coefficient ring. Pick bases w,, ..., w, for © and
Uis - » Uy for M. The transition matrix 4 = (a;;) from the first basis to the
second, that is, the matrix defined by

‘u_]= _Zla,-jwi (1 Sjgn’ aijER)’ (61)

depends on the module M and the choice of the bases w; and y;. Let w,/, ...,
w,” and y,’, ..., p,” be other bases for the modules O and M and let u; =
Y"1 a;/w! (a;; € R). The matrix 4, = (a;;') is related to the matrix 4 by
the relation

A, = CAD, (6.2)

where C = (¢;;) and D = (d;;) are integral unimodular matrices satisfying

w; = izlcijwi’a u' = iZ1dij#i (¢ij,di;€R)
(we know that the transition matrix from one basis of a module to another is
unimodular). Thus the module M has as invariants any functions of the
matrix 4 which remain unchanged when A is replaced by A4, according to
(6.2). The collection of all such numbers is the set of “rational invariant
factors” of the matrix 4. We consider the simplest of these, the absolute
value of the determinant det 4. Its invariance is evident:

|det 4| = |det C|-|det A|-[det D| = |det A].

Definition. Let M be a full module in K with coefficient ring ©. The
absolute value of the determinant of the transition matrix from a basis of the
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ring O to a basis of the module M is called the norm of the module M and is
denoted by N(M).

By (2.12) of the Supplement, the discriminants D = D(u,, ..., u,) and
Dy = D(w,, ..., w,) of the bases u; and w; (that is, the discriminants of the
modules M and O, see Section 2.5) are connected by the relation D = D,
(det A)%. The concept of the norm allows us to write this formula

D = DyN(M)*. (6.3)

If a module is contained in its coefficient ring, then the matrix (a;;), de-
termined by (6.1), is integral, and therefore the norm of the module is an in-
teger. The value of this integer is clarified by the following theorem.

Theorem 1. If the full module M is contained in its coefficient ring O,
then its norm N(M) equals the index (O : M).

This theorem is an immediate corollary of the following lemma.

Lemma 1. If M, is a torsion-free Abelian group of rank », and M is a
subgroup which is also of rank », then the index (M, : M) is finite and equals

the absolute value of the determinant of the transition matrix from any basis
of M, to any basis of M.

Proof. Let w,, ..., w, be any basis of M . By Theorem 2 of Section 2 there
isa basis n,, ... , 11, for the subgroup M of the form

Ny = €Wy + €05 + -+ + ¢4,0,,

’1" = cnnwn ’

where the ¢,; are rational integers and ¢;; > 0 (1 <i<n). It is clear that
|det A| does not depend on the choice of the bases for M and M, and that

|det A| =C11€C22 " Cpy
We consider the elements
Xiw; + - + X0, , O0<x, <y (1<i<n (6.4)

and will show that they form a complete system of coset representatives
for the subgroup M of the group M,. Let a« = qyw, + -+ + a,w, be an
arbitrary element of M, . Dividing a, by ¢,, we get a;, = ¢;,q; + x;, 0 < x;
< ¢qy. Then

’ !
a—q M — Xy =a,w, + - +a,w,.
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Dividing a,’ by ¢, yields a,” = ¢;,g9, + x,, 0< x, < ¢;,, s0 that
&= iy — ol — X 0y — X0, = @3" w3 + -+ + @,
Continuing this process n times we arrive at
Xy — = Gully — X1 0y — - — X0, =0,

where g; and x; are rational integers with 0 < x; < ¢;;. Since ¢, + -+ + ¢,
belongs to M, « and the element x;w; + -+ + x,w, of the form (6.4) lies in
the same coset of the subgroup M. This means that every coset of M in M,
has a representative of the form (6.4). We now need to show that the various
clements of the form (6.4) lie in distinct cosets of M in M, . Asserting the
converse, we assume that the difference of two distinct elements x;w; + -
+x,0, and x;'®w; + --> + x,'m, of the form (6.4) lies in M. Letting s denote
the smallest index (1 < s < n) for which x # x’, we obtain

(xs - xs')ws + -+ (xn - xnl)wn = blrll + oot bnnn

with integral b, . Substituting their expressions in terms of the w, for 5, ... , 1,
and equating the coefficients of the various w; on both sides of the equation,
we easily find that b, =0, ..., b,_; =0, and that ¢, b, = x;, — x,". But the
latter equation is impossible for integral b,, since 0 < |x, — x,| < ;.
Thus the elements of the form (6.4) form a complete system of coset repre-
sentatives for M in M, . Since there are c¢;;c;; - C,, = |[det A| of them,
Lemma 1 and Theorem 1 are proved.

Theorem 2. The norms of the similar modules M and aM are connected
by the relation

N(aM) = [N(2)|[N(M).
In particular, if a module is similar to the order O, then
N(@D) = |N(a)|.

Proof. If u,, ..., u, is a basis for M, then we may take ay,, ..., au, as a
basis for aM. The norm N(«) of the number « is the determinant of the
transition matrix from the basis g, to the basis au; (see Section 2.2 of the
Supplement). By Lemma 1 of Section 2 the modules M and aM have the same
coefficient ring ©. Let 4 and 4, denote the transition matrices from some base
of the ring O to the bases p; and ayu;, respectively. Then 4; = AC and we
obtain

(NaM) = |det A,| = |det 4| -|det C| =N(M)|N(2)].

The second assertion of the theorem follows from the fact that N(O) = 1.
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6.2. Finiteness of the Number of Classes

We now turn to the proof of the basic theorem of this section. Its proof will
rely on two lemmas.

Lemma 2. If M, is a full module in the field K and M, is any full sub-
module of M, , then there are only finitely many intermediate submodules M
(that is, modules satisfying M, > M > M,).

Proof. Let &,, ..., &, s =(M, : M,), be any system of coset representatives
of M, in M,. If a,, ... , &, is a basis of M, , then every element 6 € M, has a
unique representation 0 = & + c,a; + -+ + ¢,,, where £, is one of these
representatives, and ¢, ... , ¢, are rational integers. Let 0, ..., 0, be a basis
of the intermediate module M. Then each 0; has a representation 0; = &; +
¢, 4 + -+« + c,;a, With integral ¢,;. Therefore,

M={0,,...,0,}={0y,....,0,, 0, ...} ={&, .-, &, ay, ooy )

Since there are only finitely many possibilities for the set &, , ..., &, there
are only finitely many possibilities for the intermediate module A.

Corollary. If M, is any full module in the field K and r is any natural
number, there are only finitely many full modules in K which contain M,
such that (M : M,) =r.

For by the finiteness of the factor group M/M, we have rM < M,, and
hence (1/r )M, > M > M,.

Lemma 3. Let K be an algebraic number field of degree n = s + 2¢ and
let M be a full module in K with discriminant D. Then there exists a nonzero
number « in M whose norm satisfies

AN Rp—
NGl < (2) iDL (65)
Proof. We take positive real numbers ¢y, ..., ¢, $0 that
2\ —
€ Cyyy = (;) JIDl +¢, (6.6)

where ¢ is an arbitrary positive real number. From Theorems 2 and 4 of
Section 4 it follows that there exists a number « # 0 in M satisfying

o < ¢ (1<k<s), oy P <y (1<,

The norm
N(@) = ay(a) -+ a@)|og, ()] -+ [0, ()]
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of such a number must have absolute value not exceeding (6.6). Since this is
true for arbitrarily small g, there must be a nonzero number of M which

satisfies the inequality (6.5).

Theorem 3. If O is any order of the algebraic number field K, there are

only finitely many equivalence classes of similar modules which have D as
their coefficient ring.
Proof. Let M be any module which has O as coefficient ring. Let D denote
the discriminant of the module M and D, the discriminant of the order O.
We take a nonzero number in M which satisfies (6.5). Using (6.3) we may write
(6.5) in the form

2\! I
N(2)| < (;) N(M) /D).

Since a0 = M, then © = (1/a)M. By Lemma | and the definition of the norm
of a module we have

1 i -1 lN(oz)l
-M:D)=N\-M D
(x ) (a ) CNO) ( ) VIl
This proves that every class of similar modules with coefficient ring O con-
tains a module M’ for which

M50, (M:0)< (%) J 1Dyl (6.7)

By the Corollary of Lemma 2 there are only finitely many such modules M’
satisfying (6.7). Hence the number of classes of modules with O as coefficient
ring is finite, and Theorem 3 is proved.

Remark. If M, and M, are any two full modules of the algebraic number
field K, we may effectively determine whether or not they are similar. To do
this we first determine their coefficient rings. If these are different, then M,
and M, are not similar. Suppose that M; and M, have the same coeflicient
ring ©. Replacing, if necessary, one of our modules by a module similar to it,
we may assume that M, > M,. We compute the index (M, : M,)=a. If
aM, = M, , then o € © and | N(«)| = a. Therefore we find a full set of pairwise-
nonassociate numbers ay, ..., o, in the ring © whose Jorms are equal in
absolute value to a (by Section 5.4 such a system can be effectively computed).
If « is any number of the ring © for which |N(«)| = a, then a is associate
with some «,, and a M, = o, M. We therefore compare the modules M, and
oM (1 €i< k). The modules M, and M, will be similar if and only if the
module M, coincides with one of the oM, .
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PROBLEMS

1. Show that any algebraic number field other than the field of rational numbers contains
an infinite number of orders. (Hence the number of equivalence classes of similar modules
corresponding to all possible orders is infinite.)

2. Use Problem 2 of Section 4 to show that in a full module M with discriminant D
there is a number « # 0 for which

ANtnt
IN()] < (—) — VD
7] n
(n =5+ 2t being the degree of the algebraic number field).
3. Use Stirling’s formula

nt =+ 3mn (:-:) o (0<f<1)

and Problem 2 to show that the discriminant D¢ of an algebraic number field K with degree
n= s -+ 2t satisfies

2
D> |7 1 o2n—-(1/6m)
Dol 41 2mn )

Thus as n increases, the discriminants of algebraic number fields of degree n converge to
infinity.

4. Show that the discriminant of any algebraic number field of degree » > 1 is not equal
to +1 (Minkowski's theorem).

5. Show that there exist only finitely many algebraic number fields with given dis-
criminant (Hermite’s theorem).

Remark. By Problem 3 it suffices to show that there exist only finitely many fields X
with fixed degree n = s + 2t whose discriminant is a given value D,. In the space ®"
[consisting of all points (x,,...,x,, ¥, Z;, ..., ¥, z,)] Consider the set X defined in
the case s > 0 by

[x, | <VDol +1, |xl<l Q@<k<ys),
yEzp <l (<j<t),
and in the case s = 0 by
il <3zl <VIDol +1, y2+z2<1 @Q<j<0).

Applying Minkowski’s lemma on convex bodies to the set X and to the lattice representing
the numbers of the maximal order ©, deduce that K contains a primitive element # €
whose minimum polynomial has bounded coefficients.

7. Representation of Numbers by Binary Quadratic Forms

In this section we make a more detailed study of the questions of this chapter
in the case of binary quadratic forms. Since any irreducible rational form
ax* + bxy + cy* decomposes into linear factors in some quadratic field, our
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problem is connected with the study of full modules and their coefficient rings
in quadratic fields.

7.1. Quadratic Fields

We call any extension of the rational field of degree 2 a quadratic field.
We first describe this simplest class of algebraic number fields.

Let d # 1 be a square-free rational integer (positive or negative). Since the
polynomial ¢? — d is irreducible over the rationals, the field R(6), obtained
from R by adjoining a root 6 of this polynomial, is of degree 2 over R; R(0)
is a quadratic field. We shall denote it R(\/ d).

It is easily seen that any quadratic field K is of this type. We prove this. If «
lies in K and is not rational, then clearly K = R(a). The minimum polynomial
for « over R will have degree 2, so for some rational p and g we have a? + pa +
g = 0.Set f = a + (p/2); then p? = (p?/4) — q. The rational number (p?/4) — q
can be represented in the form c¢2d, where d is a square-free integer. It is clear
that d # 1, since otherwise f and also « would be rational. If 8 = f/c, then
0% = d and K = R(0); that is, K = R(/d).

We now show that for distinct d (not equal to 1 and square-free), the fields
R/ d) are distinct. For if R(\/d") = R(\/d), then

Vd'=x+yJd
for some rational x and y, so that

d' = x*+ dy? + 2xyJd
and consequently
d = x* + dy?, 2xy = 0.

If y =0, then d’ = x?, which is impossible. If x = 0, then d’ = dy?*, which
means that 4" = d.

We have shown that there is a one-to-one correspondence between quad-
ratic fields and square-free rational integers d # 1.

7.2. Orders in Quadratic Fields
Any number of the field R(:/d) has the form
a=x+ y\/a,
where x and y are rational. Since the characteristic polynomial of « equals
t? — 2xt + x? — dy?,
then « will lie in the maximal order © of the field R(+/d) if and only if
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2x = Sp(a) and x? — dy* = N(«) are rational integers. Set 2x = m. Since
(m?*/4) — dy* will be an integer and d is square-free, the denominator of
the rational number p (in reduced form) must be 2; that is, y = n/2 with
integral n. Clearly, N(a) = (m?/4) — d(n*/4) will be integral only if

m? — dn? = 0 (mod 4). 7.1

The solvability of this congruence depends on the residue class of d modulo 4.
Since d is square-free, d # 0 (mod 4), and we have the three possibilities

d=1 (mod 4), d =2 (mod 4), d = 3 (mod 4).

If d = 1 (mod 4), then the congruence (7.1) takes the form m? = n? (mod 4),
which is equivalent to m = n (mod 2); that is, m = n + 2, and we obtain

m n - 1+ \/d
= +2\/d—l+n >
with integral / and n. Hence in this case, as a basis for the maximal order ")
(that 1s, as a fundamental basis for the field R( \/d), see the end of Section 2),
we may take the numbers 1 and w = (1 + /d)/2.

Now let d = 2 (mod 4) or d = 3 (mod 4). If the congruence (7.1) had a solu-
tion with n odd, then from d = m? (mod 4) it would follow that d = 0 (mod 4)
for meven and d = 1 (mod 4) for m odd. But this contradicts our assumptions.
If n is even, then from the congruence m?* = 0 (mod 4) we find that m is even.
Thus in these cases the number x + y+/d belongs to the maximal order ©
of the field R( \/3) only when x = m/2 and y = n/2 are integers. As a basis for
the order © we may thus take the numbers 1 and w = /d.

In the future, when we speak of a basis for the maximal order of the field
R(+/d), we shall always have in mind the basis 1, w, where w = (1 + \/d)/2
for d =1 (mod 4) and w = \/d for d = 2, 3 (mod 4).

Now consider an arbitrary order © of the field R(1/d). Since O is contained
in the maximal order © (see Section 2.4), then all numbers of © have the form
x + yw with integral x and y. We choose from these numbers one for which y
takes its smallest positive value, say, a + fw. Since a, being a rational integer,
is contained in £, then fw € O. It is then clear that for any x + yw € O, the
coeflicient y is divisible by f, and hence O = {l, fw}. Conversely, by Lemma 3
of Section 2, for any natural number f the module {1, fw} is a ring and hence
is an order in the field R(/d). Since for distinct natural numbers f the orders
{1, fw} are distinct, we obtain the following fact: The set of all orders of a
quadratic field is in one-to-one correspondence with the set of all natural
numbers.

In the future we shall denote the order {1, fw} by O,. It is easily seen that
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the number fequals the index of the order O, in the maximal order =0, =
{1, w}. Thus an order of a quadratic field is completely determined by its
index in the maximal order.

We now turn to the computation of the discriminant D of the order O,.

We first assume that 4 = 1 (mod 4). Since Sp+/d =0,

1+./d
Spw=Sp( Ty )=1,
2
S Z*S(d+1+\/a)_d+1
POT=ESIT T )T
and hence
Spl  Sp fo 2 S/
Pr=lspro sp | Tl p R T
Now if d = 2, 3 (mod 4), then
D, = Sp 1 B spfJ/d|_|2 0 _frad
Sp f\/d Sp fd 0 2fd

These formulas for D, show that each order of a quadratic field is uniquely
determined by its discriminant.
The results of this section are summarized in the following theorem.

Theorem 1. Let d be a square-free rational integer, d # 1. As a basis for
the maximal order O of the quadratic field R( \/ki’) we may take the numbers
1 and w, where w = (1 + \/(?)/2 when d =1 (mod 4) and w = \/Zz'for d=2,3
(mod 4). The discriminant D, of the maximal order D [that is, the discrim-
inant of the field R(\/d)] equals  in the first case and 4d in the second case.
Any order O of the field R(/d) is of the form O, = {1, fw}, where f is the
index (8 : ©). The discriminant of the order O, equals D, f2.

7.3. Units

Since any number of the order O/ is represented in the form x + yfw with
x and y rational integers, then by Theorem 4 of Section 2 we shall find all
units in D if we solve the equation

N(x + yfw) = + 1, 7.2)
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that is, the equation

1—d
2 2 2
X+ fxy+f - yo==+1 (1.3)

for d = 1 (mod 4) and the equation

xI—dfy?= + 1 (7.4)

for d = 2, 3 (mod 4).

For an imaginary quadratic field s =0, =1, r =s 4+ = 1 = 0, so that the
group of units of any order of such a field is finite and consists of roots of 1.
This fact also follows from a direct examination of (7.3) and (7.4), which only
have a finite number of integral solutions when d < 0. Whend = —1, f=1,
(7.4) has the four solutions: x = +1,y =0; x =0,y = + 1, which correspond
to the numbers +1, 44, which are the fourth roots of 1. When d = -3,
f=1,(7.3) hassix solutions: x = +1,y=0; x=0,y=+1;x=1,y = —1;
x = —1, y =1, which correspond to the numbers +1, +3 + (i\/§/2), which
are the sixth roots of 1. For all remaining orders of imaginary quadratic
number fields (7.3) or (7.4) have only two solutions: x = +1, y = 0; that is,
+1 are the only units.

The case of real quadratic fields is more complicated. For the field R(\/d)
with d > 0 we have s = 2, t = 0, and hence r = 1, so all units of the order O,
have the form #+¢", where ¢ is a fundamental unit of the order O, . Our prob-
lem is thus to determine the fundamental unit &. Along with ¢ the numbers
l/e, —e, and —1/e will also be fundamental units. We may thus assume that
¢ > 1. It is clear that the condition ¢ > 1 determines the fundamental unit ¢
uniquely.

Let 7> 1 be any unit of ©,. We shall show that in the representation
n = x + yfw the coefficients x and y are positive (ford = 5, f = 1, it is possible
that x = 0). For any « € F(/d) we denote by ' its conjugate, that is, the image
of o under the automorphism /d — — /d of the field R(/d). 1t is easy to
check that w — w’ > 0. Since N(n) = ny’ = +1, then 5’ equals either 1/ or
—1/n; and in both cases § — n’ > 0; that is, yf(w — w’) > 0, and hence y > 0.
Further, since |4'| =|x + yfw'| <1 and fw’ < —1 with the exception of
the case d =5, f=1, we have x>0 [if d=5, f=1, then ~1 <fw' =
(1 — /5)/2 < 0 and we obtain x > 0].

Let ¢ > 1 be a fundamental unit of the order O, . For the unit &" = x; +
y,fw with natural number » we have x; > x and y; > y. Hence to find the
fundamental unite > 1, we must find the integral solution of (7.2) with smallest
positive values for x and y. Using the results of Section 5.3 we may find an
upper bound C for the desired values of x and y and then find them after a
finite number of steps.
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We now show that the number of steps in the location of a fundamental
unit can be significantly reduced if a basic result from the theory of continued
fractions is employed. We speak of the theorem which asserts that if for the
real number £ > 0 as well as the relatively prime natural numbers x and y
we have

X
[ <—.,
y ¢ 2y*

‘ 1

then x/y is necessarily one of the convergents in the continued fraction
expansion of the number £.
By (7.2),

+fo'|=——
‘ ’ y(x + yfw)
If d = 1 (mod 4), then except in the case d = 5, f = 1, we have

- o)

2 2y

[since x/y >0 and f(/d+ 1)/2>2]. If d=2,3 (mod 4), then since x> =
fAy*+1>2dy* —1>y*d—1)and d > 2,
1

1
_—fJ‘ y(x+yf\/d) 2(¢ﬁ+\/2)<5?'

By the theorem mentioned above, the reduced fraction x/y is one of the con-
vergents in the continued fraction expansion of the number — fw’. To find the
smallest positive solution to (7.2) we therefore need only test those numbers
that occur as numerators and denominators of the convergents of the con-
tinued fraction expansion for —fw’ (and that do not exceed the previously
computed constant C). The practical computation is expediently carried out
as follows. Find the sequence of entries ¢, of the continued fraction expansion
of —fw’ and let P, and Q, denote the numerators and denominators of the
corresponding convergents. Continue the computations until a stage is
reached at which N(P, + fQ,) = +1. This must happen for P, < C. Then
the fundamental unit ¢ = P, + wfQ, is found. [In the exceptional case d = 5,
f =1, the fundamental unit will be @ = (1 + +/5)/2.] We now illustrate this by
two examples.

Example 1. In order to find the fundamental units of the order {1, 3.6}
of the field R(+/6), we must find the continued fraction expansion of — 3w’ =

3\/6:
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J54=7+(/54-7),

1 54—
1, 3
J54 -1 5
5 54 _
S5 . V54 6’
V54 -3 9
9 4 _
HPSRNAL 6
J54 -6
2 54 _
2 +\/54 3
V54— 6 9
We fill in the following table simultaneously:
k 0 1 2 3 4 5
4 7 2 1 6 1 2
P, 7 15 | 22 | 147 | 169 | 485
O 1| 2| 3 ]20(23 ) 66
) P2 —54Q,°2 —5 9 -2 9 —5( 1

1356

Hence 485 + 66°3/6 = 485 + 198./6 is a fundamental unit of the order

{1,3./6}.

Example 2. Computing a fundamental unit for the field R( J41) we have

Ja—-1 o Ja-5
2 _2+ 2 2
2 J41 -3
- =1 ,
Ja-s T3
8 =2+\/41—5,
J41 =3 4
4 =2+\/41_3,
NZSE 4
4 J41 =5

— =1
J41 -3

8
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k 0 1 2 3 4
Gk 2 1 2 2 1
P, 2 3 8 19 27
Ok 1 1 3 7 10
P2+ PO — 1002 —4 2 -2 4 ’ -1

As the fundamental unit for the maximal order of the field R(\/ 41) we
thus may take

27+10\ﬁ%+1 =32+ 5,/41.

7.4. Modules

We turn to the study of full modules in quadratic fields. Since any module
{a, B} is similar to the module {1, fi/a} without loss of generality, we may
study only modules of the form {1, y}.

Any irrational number y of R(+/d) is the root of some polynomial of the
form at? + bt + c with rational integer coefficients. If we require (a, b, ¢) = 1
and a > 0, then the polynomial at? + bt + cis uniquely determined. We denote
it by ¢, (t). If 7" is the conjugate of y, then we have ¢ (1) = ¢,(t), and if
@, () = @,(t), then either y, =y or y, =y’

Lemma 1. If y is an irrational number of R(/d) with @,(t) =at’ + bt + c,
then the coefficient ring of the module M = {1, y} is the order {l1, ay} with
discriminant D = % — 4ac.

Proof. Consider the number « = x + yy with rational x and y. Since the
inclusion M < M is equivalent to the assertions that «l = x + yye M and

c by
ay = ——%—}—(x—%)yeM,

then « belongs to the coefficient ring O if and only if the rational numbers

cy by
Yo — —

a a

are all integers. Since (a, b, ¢) = 1, this will occur only when x and y are in-
tegers and y is divisible by a. This shows that © = {l, ay}. To finish the proof
of the lemma we compute the discriminant of the order O:
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Sp1 Spay

D= =b?%— 4aqc.

Sp ay Sp a’y*

Corollary. Under the same notations as above, the norm of the module
{1, y} is equal to 1/a.

Indeed, the matrix of transition from the basis {1, ay} to the basis {1, y} is

1 0
1
O —
a

Lemma 2. In order that the modules {1, y,} and {1, y} be similar, it is
necessary and sufficient that the numbers y and y, be connected by a relation
of the form

ky +1
1= my +n ’ (75)
where k, I, m, n are rational integers such that
k1
=+1 (7.6)
m n

Proof. Since different bases of the same module are connected by unimodu-
lar transformations (see Section 2.1), then from the equation {«, ay,} = {1, 7}
it follows that

oy, = ky + 1,
oa=my+n,

where the rational integers k, I, m, n satisfy (7.6). Dividing the first equation
by the second, we obtain (7.5). Conversely, let y, and y be connected by rela-
tion (7.5). Then

1
{my+nky+1}=

1, =
) my + n my +n

{1, 7}

[{my + n,ky + 1} ={1,y} in view of (7.6)]. The proof of the lemma is
complete.

Consider the set of all modules in the field R(/d) which belong to some
fixed order © (that is, for which O is the coefficient ring). By Theorem 3
of Section 6, all such modules are divided into finitely many equivalence
classes of similar modules. We now introduce the operation of multiplication
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of classes and show that under this operation the set of classes belonging to a
given order becomes an Abelian group. If M = {«, f} and M, = {«,, §,},
then MM, denotes the module {a«,, aff;, fa, BB} (see Problem 7 of Section
2). It is clear that if A £ 0 and u # O, then

(AM)(uM,) = ip(MM,). (.7)

If M is any module, we denote by [M] the class of similar modules which
contains M. From (7.7) it follows that the class [M M,] depends only on the
classes [M] and [M,]. The class [MM,] is called the product of the classes
[M] and [M,]. Hence to multiply two classes we choose arbitrary representa-
tives of each class and multiply them. The class which contains this product
will be the product of the classes.

If M is any module, we denote by M’ the module consisting of all numbers
o, where « is any number of M. If M is a full module, then M’ is also a full
module. It is easily checked that if © is any order, then the conjugate module
O’ coincides with ©. From this it easily follows that conjugate modules have
the same coefficient rings.

We shall prove the formula

MM’ = N(M)DO, (7.8)

where © denotes the coefficient ring of M and N(M) the norm of M.
We first assume that the module M has the form {1, y}. In this case, using
the notation of Lemma 1,

MM’ = {1,yH{L,y} ={1, 77, y}

b c
:Il’y’_y—_’—_}
| a’ a

b el 1
=1 —_———— = -
{ s Vs a’ aJ a {a’ b’ c, a)’}

Since g, b, and c are relatively prime, every rational integer is a linear com-
bination of a, b, ¢ with integer coefficients and hence

1 1
MM’ =~ {1, ay} =~ 0 = N(M)D
a

(by the corollary of Lemma 1). If M is now an arbitrary module, it can be
represented in the form M = o« M|, where M, has the form {1, y}. By Theorem
2 of Section 6 we have

MM’ =ae’M M, = N(&)N(M)O
= [N(@)IN(M,)O = N(M)D,

and formula (7.8) is proved in general.
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Now let M and M, be two modules belonging to the same order O. If O is
the coefficient ring of the product MM,, then by formula (7.8),

MM, (MM,) = N(MM))O.

On the other hand, since multiplication of modules is clearly commutative and
associative, by use of MM’ = N(M)O and M, M," = N(M,)O, we obtain

MM' =NM)O  and  MM]=NM,DO,
MM (MM,) = N(M)N(M,)O.

Comparing this equation with the previous one and recalling that two dis-
tinct orders cannot be similar, we obtain that O =9. Incidentally, since the
equality a0 = bD for positive rational a and b is possible only when a = b,
we obtain

N(MM,) = N(M)N(M,).

Thus if the modules M and M, belong to the order O, then their product
MM, also belongs to O. Since for any module M with coefficient ring © we
have both MO = M and M[(1/N(M))M'] =0, then we obtain the following
result.

Theorem 2. The set of all modules of a quadratic field which belong to a
fixed order becomes an Abelian group under the operation of multiplication
of modules.

From this theorem and Theorem 3 of Section 6, we easily obtain

Theorem 3. The set of classes of similar modules in a quadratic field with
given coefficient ring forms a finite Abelian group.

Note that Theorems 2 and 3 hold only for quadratic fields and cease to be
true for modules which belong to nonmaximal orders in arbitrary algebraic
number fields (see Problem 18 of Section 2).

7.5. The Correspondence between Modules and Forms

As shown in Section 1.3, each basis «, § of the full module M = R( \/ d)
corresponds uniquely to the binary quadratic form N(xx + By) with rational
coefficients. Since for different bases of M the corresponding forms are
equivalent, the module M corresponds to a class of equivalent forms. If we
replace M by the similar module yM, then each corresponding form is multi-
plied by the constant factor N(y). Hence, considering forms only up to a
constant multiple, we may say that any class of similar modules corresponds
to a class of equivalent forms. But this correspondence is not one-to-one.
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Indeed, conjugate modules M and M’ are, in general, not similar, but their
corresponding forms coincide.

An analogous phenomenon clearly also holds for decomposable forms
of any degree. In general, there is no natural way to rectify this lack of corre-
spondence between modules and forms. But for quadratic fields we shall see
that it is possible to establish a one-to-one correspondence by slightly changing
the definitions of equivalence of forms and similarity of modules.

Definition. The binary quadratic form f(x,y)= Ax? + Bxy + Cy?
with rational integer coefficients is called primitive if the greatest common
divisor of the coefficients is 1. The integer B2 — 44C is called the discriminant
of the primitive form f.

The discriminant of a primitive form hence differs from its determinant
AC — (B*/4) by a factor of —4.

It is easily seen that any form equivalent to a primitive form is also primi-
tive. Under a linear change of variables with matrix C the determinant of a
quadratic form is multiplied by (det C)?, and hence does not change if
det C = +1. Hence equivalent primitive forms have the same discriminant.

Definition. Two primitive forms are called properly equivalent if one
can be obtained from the other by a linear change of variables with deter-
minant + 1.

The collection of all primitive binary quadratic forms is broken up into
classes of properly equivalent forms. For the rest of this section, when we speak
of equivalent forms, we shall always mean properly equivalent forms. It will
frequently happen that two forms which are nonproperly equivalent (that is,
carried into each other by linear substitutions with determinant — 1) will also
be properly equivalent.

We now give a new definition for similarity of modules.

Definition. Two modules M and M, in a quadratic field are called strictly
similar if M, = aM for some a with positive norm.

Since in imaginary quadratic fields the norm of any nonzero « is positive,
in such fields the concept of strict similarity does not differ from the usual
concept. The situation will be the same in real quadratic fields when the co-
efficient ring O of the module M contains a unit ¢ with N(g) = —I. Indeed, if
M, =aM and N(2) <O, then, since ¢eM = M, we have M, = (0g)M, with
N(xg) > 0. Conversely, suppose that the two concepts of similarity coincide.
Then if M, = aM, N(x) < 0, there exists a number f for which N(#) > 0 and
M, = BM. Setting ¢ =o', we have eM = M, and this means that ¢ is a
unit in the coeflicient ring © with N(g) = —1.
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Hence the concept of strict similarity differs from the usual concept of
similarity precisely for those modules in a real quadratic field whose coefficient
rings contain only units with norm + 1. It is clear that in this case every class
of modules, similar in the usual sense, breaks up into two classes of strictly
similar modules.

We now describe a correspondence between classes of modules and classes
of forms.

In each module M of the field R(+/d) we shall only consider those bases
a, f for which the determinant

« p
A= 7 B ‘ 7.9
satisfies
A>0 ford >0,
(7.10)

1
-A>0 ford <0,
i

As previously, o’ and f' here denote the conjugates of « and § in R(+/d).
[A basis in M which satisfies (7.10) can always be found; if any basis «,, «,
does not work, interchange «, and «, .]

We set each basis a, § of the module M which satisfies (7.10) in corre-
spondence with the form

f(x,y)=Ax*+ Bxy + Cy?

_ Nlax + By)  (ax + By)(a'x + §'y)
- NM) N(M)

(7.11)

[N(M) is the norm of the module M]. If for the number y = — f/a we consider
@(t) = at* + bt + ¢ (see Section 4), then we shall clearly have

N(a
N(ax + By) = %) (ax® + bxy + cy?).
On the other hand, by the Corollary of Lemma 1 and by Theorem 2 of Section
6 the module M = a{l, y} has norm |N(«)|/a. Hence the coefficients 4, B, C
differ from a, b, ¢ at most in sign. The form (7.11) is primitive and its dis-
criminant B? — 4A4C coincides with the discriminant 5% — 4ac of the co-

efficient ring of the module M (Lemma 1). Thus we have the mapping

{0, B} = f(x, ), (7.12)

which associates to each basis o, § of the field R(\/d) which satisfies con-
dition (7.10) the primitive form f(x, y) (if the field is real, the coefficient A may
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be negative). It is clear that if the field is imaginary quadratic, then the form
(7.11) will always be positive-definite, so negative-definite forms are not in-
cluded in the correspondence (7.12).

Theorem 4, Let IR be the set of all classes of strictly similar modules
similar in the narrow sense of the quadratic field R( \/ d). When d > 0, let §
be the set of all classes of properly equivalent binary quadratic forms which
split into linear factors in R(+/d). When d <0, we consider only positive-
definite forms. Then the mapping (7.12) establishes a one-to-one correspond-
ence between M and F. If some class of modules has a coefficient ring with
discriminant D, then the corresponding forms also have discriminant D.

Let a, f and a4, B, be two bases of the field R( \/ d) for which the deter-
minant (7.9) satisfies (7.10) and let these bases correspond to the forms fand
fi- To prove Theorem 4 we must show that the forms f and f; are properly
equivalent if and only if the modules {«, f} and {«,, B,} are strictly similar.
Further, we must show that for any irreducible primitive form g(x, y) [which
splits up into linear factors in R(/d), and is positive-definite in the case
d < 0] there is a basis a, § satisfying (7.10) for which the form (7.11) coincides
with g(x, y). We leave the simple details of this verification to the reader.

In Section 7.4 we defined the product of two classes of similar modules.
In precisely the same way one can define the product of two classes of strictly
similar modules. Since the mapping MM — § is one-to-one the multiplication
of classes of modules induces a multiplication on the set of classes of forms.
The operation of multiplication in & is called composition of classes of forms
(a term introduced by Gauss, who first studied this operation). Since the set
of all classes of modules with some fixed coefficient ring is a group, the set of
classes of primitive forms with fixed discriminant D (only positive-definite
forms for D < 0) also forms a group.

7.6. The Representation of Numbers by Binary Forms and Similarity of Modules

In this section we show that the problem of finding representations of in-
tegers by binary quadratic forms can be reduced to the problem of similarity
of modules in a quadratic field.

Let f(x, y) be a primitive binary quadratic form with discriminant D # 0,
which splits into linear factors in the field R(v/d) and let 2 be a natural num-
ber. In the case D < 0 we further assume that fis positive-definite. Our prob-
lem is to find all integral solutions of the equation

S, ) =m. (7.13)

(We only consider positive values for s, since in the case m <0, D > 0.
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we can replace f by the form —f.) By Theorem 4 we can represent f in the
form

_ N(ax + By)
f(xa ,V)— N(M) »

where the basis «, f of the module M satisfies (7.10). The mapping (x, y) —
¢ = ax + Py establishes a one-to-one correspondence between solutions to
(7.13) and numbers ¢ € M with norm N(&) = mN(M). Two solutions of (13)
are called associate if the corresponding numbers of M are associate. It is
easily verified that the concept of associate solutions does not depend on the
choice of the representation (7.14). We denote the coefficient ring of the mod-
ule M by O and denote the class of strictly similar modules which contains
M by C. By Theorem 4 C is uniquely determined by f.

Assume that we have a number £ € M with norm mN(M). Consider the
module A = EM ™. Since AM =M ™'M =D < M, the module A4 is con-
tained in ©. Its norm is N(E)N(M)~! = m. Also it is clear that A is contained
in the class C ™!, the inverse of the class of M.

Conversely, assume that in the class C™! there is a module A which is
contained in the ring O and has norm m. Then for some ¢ with positive norm
we have 4 = (M ™', so that £ e MA = M and N(§) = m. If A, is any other
module of the class C~! which is contained in O and has norm m, and if
A, = &M~ with N(&) > 0, then 4, = £,E"1A. Hence A coincides with 4,
if and only if ¢, is associate with £.

We have thus proved the following theorem.

(7.14)

Theorem 5. Let the form f(x, y) correspond to the class C of strictly
similar modules with coefficient ring ©. The set of classes of associate solu-
tions of (7.13) is in one-to-one correspondence with the set of modules A
which are in the class C ™!, are contained in the coefficient ring O, and have
norm m. The solutions (x, y) which correspond to the module 4 are given by
the numbers ¢ for which 4 = EM ™Y, N(¢) > 0, where M is 2 module of the
class C.

For any natural number m we can easily find the set of all modules 4 with
coefficient ring © which are contained in © and have norm m. Let A be such
a module, and let k be the smallest natural number contained in 4. The
module A can then be written in the form

A ={k, ky} = k{1, y).

The number y is determined except for sign and addition or subtraction of
integers. We may therefore choose y so that

Imy >0 ford <0,

Irry>0 ford >0 (7.13)
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(irr y denotes the irrational part of the number y), and also so that the rational
part of y is contained in the interval (—3, 4]. In the notation of Lemma 1
we may write

—b+./D

y=——r (7.16)

where
—a<b<a (7.17)

by our condition on the rational part of y. Since O = {1, ay} (see the proof
of Lemma 1) and 4 = O, we easily obtain that k is divisible by a; that is,
k = as with integral 5. Since m = N(A4) = k*(1/a) (corollary of Lemma 1),
then

m = as’. (7.18)

We shall show that the representation of the module A4 in the form
A =as{l,y}, (7.19)

where a, s, and y satisfy (7.18), (7.15) and (7.17), is unique. Indeed, if
as{l,y} = a;5,{1, y1}, where a,, 5,, and y, satisfy the same requirements,
then as = a,5, and hence {1, y} = {1, 7,}. By the corollary of Lemma 1 we
thus have a = a, and hence also s = s,. Further, since y in {1, y} satisfies
(7.15) and (7.17), it is uniquely determined; that is, y = y,.

Conversely, for given m choose a and s so that (7.18) holds. If b and ¢
satisfy the conditions

b2 —4dac = D’ (a, b, C) = 1, —a<sb< a, (720)

then, with y given by (7.16), the module 4 = as{1, y} will be contained in its
coefficient ring © = {1, @y} and its norm will be a*s*(1/a) = m.

Thus to obtain the module A we need to find all four numbers s > 0, a > 0,
b, ¢ satisfying conditions (7.18) and (7.20).

If we can devise an algorithm for solving the question of strict similarity
of modules of the field R( \/d), then, after listing all modules 4 c O with
norm m, we can determine those which are similar to the module M ™*,
By Theorem 5 this will yield all solutions of (7.13).

The following assertion easily follows from Theorem 5.

Theorem 6. Let m be a natural number. Then m is represented by some
primitive binary quadratic form with discriminant D if and only if there is
a module 4 with norm m contained in the order O with discriminant D, with
O the coefficient ring of 4. This is in turn equivalent to the existence of
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integers s > 0, a > 0, b, ¢ satisfying the conditions: m = as?, b> — 4ac = D,
(a,b,c)=1, —a<b<a

In case D is the discriminant of a maximal order £, the second assertion of
Theorem 6 is simplified. Namely, we have

Theorem 7. Let D be the discriminant of a quadratic field (that is, the
discriminant of a maximal order). In order that the natural number m = as?,
where a is square-free, be represented by some primitive binary form with
discriminant D, it is necessary and sufficient that the congruence

x% = D (mod 4a) (7.21)
be solvable.

The proof of Theorem / is left to the reader.

7.7. Similarity of Modules in Imaginary Quadratic Fields

In the case of an imaginary quadratic field R( \/ d), d < 0, there is a particu-
larly simple method for solving the problem of similarity of modules.

The geometric representation of a number « € R( \/ d) by a point in the space
R? (see Section 3.1) coincides with the usual representation of complex
numbers in the complex plane. The points of a full module M < R( \/i)
correspond to the points (or vectors) of some full lattice in R2. The lattice
which corresponds to the module M will also be denoted by M. The effect of
multiplying all points of the lattice M by the complex number & # 0 is to
rotate the lattice M by an angle arg ¢ and to expand it by a factor [&]|, so
similar lattices M and ¢M are also similar in the sense of elementary geom-
etry. All subsequent results will be based on this simple fact.

The question of similarity of lattices in the plane is solved by constructing
a special basis for each lattice, called a reduced basis. A reduced basis a, 8
consists of a shortest nonzero vector « and a shortest vector f which is not
collinear with it (and satisfies some further conditions). We now show that
in any lattice M such a pair of vectors « and § always forms a basis. For if this
were not the case, then M would contain a vector ¢ = ux +vff with the
real numbers 1 and v not both integers. Adding to this vector a certain integral
linear combination of a« and f, we may clearly assume that |u| <4 and
|v] < $. If v # 0, we must have |£| >|8]|, which contradicts the inequality

€1 < lual + [vB] < $lal + 4181 < IBI.

If v =0, then [¢| = |ux| < }|a| < |«|, which violates the choice of «. Our
assertion is proved.
If a is any shortest vector of M and f is any shortest vector among those not
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collinear with «, then the length of the projection of f# on « does not exceed
1]a|. For among the vectors of the form f + na (n an integer) there clearly is
one for which the length of the projection is <}|«|. On the other hand, the
vector of the form § + na with shortest length is also the one with shortest
projection.

We now consider the set of all nonzero vectors in M with shortest length,
and let w denote the number of such vectors. Since if « is in this set —« also is,
the number w is even. Further, the angle between two shortest vectors « and
o’ cannot be less than 7/3, since otherwise the vector « — o’ would be of shorter
length, Hence w < 6 and we have the following possible cases: w = 2, w = 4,
w =6.

FiG. 1 FiG. 2

We now construct a reduced basis for the lattice M. If w = 2 we take as «
either of the two shortest vectors. There may be two or four vectors in the set
of vectors, noncollinear with «, of shortest length (see Figures 1 and 2). As 8
we choose that one for which the angle ¢ between « and f in the positive
direction (counterclockwise) is smallest. If w = 4 or w = 6 we take as reduced

B B

Fic. 3 Fic. 4
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basis a pair of vectors of shortest length such that the angle between « and §
in the positive direction is as small as possible.

1t is easily seen that the reduced basis of a lattice is uniquely defined up to a
rotation which takes the lattice into itself. In the cases w = 2, and w = 4 and
n/3 < ¢ <nj2 (see Figure 3), there are two reduced bases, which are obtained
from each other by a rotation of angle n. For w = 4, ¢ = /2 (Figure 4) we are
dealing with a square lattice with four reduced bases, which can be obtained
from one another by rotations through angle /2. Finally in the case w =6,
we have six reduced bases, and they are transformed into each other by a
rotation through angle n/3 (Figure 5; the circle is divided into six equal parts,
since the angle between shortest vectors cannot be less than n/3). Using the
concept of a reduced basis, we can easily solve the question of similarity of
lattices in the plane.

FiG. 5

Theorem 8. The lattices M and M, in R? are similar if and only if their
reduced bases are similar (that is, are transformed into each other by a rota-
tion and an expansion).

Proof. Let o, f§ and «;, B, be reduced bases of the lattices M and M,. If
EM = M,, then &a, B clearly is a reduced basis for M,. As we have seen,
this basis can be obtained from the basis «,, §, by a rotation. Therefore there
is a number # (which is a root of unity of degree 1, 2, 3, 4, or 6) such that
néa = oy, nEP = f;. Hence the basis «;, f; is obtained from the basis «, f
by rotation through the angle arg(n¢) and expansion by a factor |5é|, so that
they are similar. The converse is clear.

We now turn to the description of the set of classes of similar modules of an
imaginary quadratic field. Let M be any module in R( \/3), d <0, and let
a,  be any reduced bases for M. We pass to the similar module (1/o)M =
{1, y}, where y = B/a. The basis {1, 7} here is also reduced. From the definition
of a reduced basis it easily follows that y satisfies
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Imy >0, (7.22)
-} <Rey<i, (7.23)
[y]>1 if —i<Rey<O,
(7.24)
ly| =1 if 0<Rey<i.

Definition. The number y of an imaginary quadratic field is called reduced
if it satisfies conditions (7.22), (7.23), and (7.24). The module {1,y} is called
reduced if y is reduced.

Geometrically, y is reduced if it lies in the region I" described in Figure 6
(the indicated part of the boundary, including the point i, is included in I';
the rest is not).

FIG. 6

Theorem 9. Each class of similar modules of the imaginary quadratic
number field R(v/d), d < 0, contains one and only one reduced module.

Proof. We have already shown that each class contains a reduced module.
We need only show now that distinct reduct modules cannot be similar. We
first show that if y = x + yi is reduced, then the numbers 1, y form a reduced
basis for the lattice {1, y}. We must show that y is the smallest of the vectors
of the lattice {1, y} which do'not lie on the real line, that is, that |k+/y| > ||
for any integers k and / # 0. Since |x| < 1,

k£ = £ 0% +y? = x* + y2 = yl%
If |/| = 2, then
Ik +Iy1? > 1Py > 2y% > x? + y2 =y,
which proves our assertion. Now let y and y; be two reduced numbers. If the
modules {1, y} and {1, y,;} are similar, then by Theorem 8 the bases {1, y}
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and {1, y,} are similar. But this is possible if and only if y = y,. Theorem 9
is completely proved.

To solve the question of the similarity of modules in an imaginary quadratic
field we must have an algorithm for finding the reduced module similar to a
given module. Such an algorithm is formulated in Problem 24. Two given
modules M, and M, are similar if and only if their reduced modules coincide.

Remark. In the proof of Theorem 9 we never actually used the fact that
the module under consideration was contained in some imaginary quadratic
field. The assertion of the theorem hence is true for any lattice in the plane:
any lattice in the complex plane is similar to one and only one lattice of the
form {1, y}, where y is some number of the domain I", which is described in
Figure 6. By Lemma 2, which is applicable to arbitrary lattices in the plane
without any changes, two lattices {1, y} and {1, A} are similar if and only if
A and y are connected by

k I
p=2r
mv + n

kn—ml=+1,

with rational integers k, /, m, n. Two such nonreal complex numbers are
called modularly equivalent. Hence we have shown that every nonreal complex
number is modularly equivalent to one and only one number of the region I'.
The region T itself is called the modular domain. Its points are in one-to-one
correspondence with the set of classes of similar lattices in the plane. The
question of similarity of planar lattices is connected with many important
questions in the theory of elliptic functions. A field of elliptic functions is
given by its period lattice, and two such fields are isomorphic if and only if
their corresponding period lattices are similar (see, for example, C. Chevalley,
“Introduction to the Theory of Algebraic Functions of One Variable,” 1951).
Hence the points of the modular domain T are in one-to-one correspondence
with isomorphism classes of fields of elliptic functions.

Consider now the classes of similar modules which belong to some fixed
order © with discriminant D < 0. Let the module {1, y}, y € I', belong to the
order O. If we use the notations of Lemma 1 and write y in the form
_—b+i/ID|

2a
then conditions (7.23) and (7.24) yield
—a<bx<a,
cza for b <0, (7.25)

c>a for b>0.
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Hence to find a full system of reduced modules of an imaginary quadratic
field which belong to the order with discriminant D, we need only find all
triples of integers a > 0, b, ¢ which satisfy (7.25) and also the condition

D=b*—4ac, (a,b,c)=1. (7.26)
By Theorem 3 of Section 6 the number of such triples is finite, a fact that can:
be directly verified from the inequalities

|D| = 4ac — b* > 4a* — a* = 3ad?,

|D|
bl < -,
|b] a<\/3

for given D, so that there are only finitely many possibilities for a and b and
hence also for c.

Example 1. We shall find the number of classes of modules which belong
to the maximal order of the field R(y/—47). Since here D = —47, then
|b] < a < /47/3. Since for odd D the number 4 is also odd, we have the fol-
lowing possibilities; b = +1, b = +3. In the second case we would have to
have b> — D = 56 = dac, ac = 14, 3 < a < ¢, which is impossible. If b = +1,
then 2 — D = 48 = 4ac, so that

a=1, ¢=12; a=2, ¢c=6; a=3, c=4.

Sinceillf case b = a = 1 must be excluded, the maximal order of the field
R(/ —47) has five classes of similar modules. Each class contains a reduced
module {1, y}, where y is one of the numbers

1 +iJ4T 1+ /4T £1+i /47
2 ’ 4 ’ 6 )

In the preceding section we remarked that the existence of an algorithm
for determining the similarity of modules in quadratic fields allows us to solve
equations of the form (7.13).

Example 2. We shall find all numbers in the module M = {13,1 + 5i}
with norm 650. In this case the coefficient ring is the order © = {l, 5i} with
discriminant D = —100. Since N(M) = 13, we must first enumerate the mod-
ules A « O, which belong to the order O and have norm m = 650/13 = 50.
From conditions (7.18) and (7.20) we have the following possibilities:

(1) s=35 a=2, b=-2, ¢=13;
2)s=1, a=50, b=10, c=1;
Bys=1, a=50, b=-10, c=1;
4 s=1, a=50, b=-50, c=13.
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For each of these four cases we form the module A4 of the type (7.19) and
find the reduced module similar to it:

10{1,1_+ﬂ},
2
50{1,- *'}:(—5+5i){1,5i},
10
14 o
50{1, T} = (5 + 5!){1, 51},

) {4 5i
50{1, ﬂ} - 101{1, +—5'}

10 2

We also compute the reduced module for M~ !:

ey [1‘1 -5,'}:1-5,'{1’1 +5i}'
13 13 2

We eliminate the module A in cases (2) and (3), since it is not similar to M ~!.
In cases (1) and (4) the equality 4 = EM ™! holds for ¢ =5 4+ 25/ and ¢ =
—25 + 5i. Since © contains only two units, +1, the module M has four
numbers with norm 650: +(5 + 25i) and +(—25 + 5i).

We have thus also established that the equation 13x? + 2xy + 2y? = 50
has four integral solutions:

x=0, y=35; x =0, y= =5
x=2, y=-1; x==2, y=1.

Example 3. Which natural numbers are represented by the form’x? + y??

The discriminant of the form is D = —4. Let © = {l, i} be the order with
discriminant —4, which is contained in the field R(y/—1). Since conditions
(7.25) and (7.26) are satisfied only by a=c =1, b =0, only one reduced
module belongs to the order ©. This means that all modules which belong to
the order © are similar, and hence every binary form with discriminant —4
is equivalent to the form x? + y*. But equivalent forms represent the same
numbers, and hence by Theorem 6 the form x? + »? represents the number m
if and only if there is a module 4 = © which belongs to the order O and has
norm m. If such a module exists, then for some s, a, b, ¢ we have

m=as’, D= —4=0b*—4ac, (a,b,c)=1.
Here the number b must be even, b = 2z, where z satisfies

z?2 = —1 (mod a). (7.27)
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Conversely, if (7.27) holds for some a = m/s?; that is, if z> = —1 + ac, then,
as is easily seen, (q, 2z, ¢) = 1, and hence there is a module 4 = O, belonging
to the order O, and with norm m; that is, m is represented by the form
x? + y2

It is well known that the congruence (7.27) is solvable if and only if a is not
divisible by 4 and not divisible by any prime number of the form 4k + 3.
Since @ must contain all prime factors which occur in m with even exponent,
we obtain that m is represented by the form x? + y? if and only if prime
numbers of the form 4k + 3 occur in it only with even exponent.

PROBLEMS

1. Find fundamental units for the fields R) \/lT)) and R( \/57_).

2. Show that if d =1 (mod 8) (positive and square-free), then a fundamental unit for
the order {1, v/ d} is also a fundamental unit for the maximal order of the field R(V d).

3. Show that if the discriminant of some order £ in a quadratic field is divisible by at
least one prime of the form 4rn + 3, then any unit of € has norm +1,

4, Let the rational integer m > | not be a perfect square. Show that in the continued
fraction expansion of V/m the sequence of entries has the form

qo,91, H-yqsazq(),ql’ o9 ls, 2q0’q1) we-

(hereqiyy =¢qs_y,i=0,...,5s—1).

5. Under the same assumptions, show that if P,/Q; is the convergent (s again denoting
the period), then P, -+ Q:\/Tn is a fundamental unit of the order {1, \/r_n} (in the field
R(V m)).

6. Let the modules M, and M, of a quadratic field have for coefficient rings the orders
£, and £y, (using the notation of Section 7.2). Show that the product M, M, belongs to
the order £, where fis the greatest common divisor of f; and f; .

7. For any natural number flet s, denote the group of modules in a given quadratic
field which belong to the order £, (see Section 7.4). Show that if 4 is a divisor of f, then the
mapping M > M, (M e $,) is a homomorphism from &, to the group &,.

8. Let £ be a number of the maximal order = {1, w} of a quadratic field which is
relatively prime to f. Show that the coefficient ring of the module M = {f, fw, £} is £, and
that M £ = . Further, show the converse, that is, that any module M which belongs to the

order £, and satisfies the property MT=C is of the form M — {f, fow, £} for some £ ¢ 9
which is relatively prime to f.

9. Let &, and &, be two numbers of € which are relatively prime to f. Show that
{f, fw, &Y= {f, fw, &) if and only if s¢, = £, (mod f) for some rational integer s.

10. Show that if M, and M, are any two full modules of a quadratic field (not neces-
sarily belonging to the same order), then

N(MM;) = N(M)N(M,).

11. Let h denote the number of classes of similar modules belonging to the maximal
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order © of a quadratic field, and let A, denote the number of classes of similar modules
belonging to the order O, (of index f). Show that
A (/)

e,p(f)’

where @(f) is the number of residue classes in © modulo f which consist of numbers rela-
tively prime to f(® is analogous to the Euler p-function), and e, is the index of the group

of units of the order £, in the group of units of the maximal order 9.

12. A number y of a real quadratic field is called reduced if it satisfies 0 < < 1 and its
conjugate satisfies y* << —1. If y is reduced the module {l, y} is also called reduced. Using
the notation of Lemma 1, show that the number 7y is reduced if and only if

0<b< VD, —b+AVD<2a<b+VD.

Deduce that the number of reduced modules which belong to a fixed order of a real quadratic
field is finite.

13. Let y be an irrational number of a real quadratic field such that 0 < y < 1. Set
(sen )~
Yi= —sgny)——n,
Y

where the rational integer # is chosen so that 0 < v, < 1. Show that after a finite number of
transformations {1, y}— {l,v,}, the module {1, ¢} is transformed into a similar module
which is reduced. Hence every class of similar modules (in the usual sense) of a real quadratic
field contains a reduced module,

14. Let y be a reduced number of a real quadratic field. Since sgn 3" = —1, the mapping
vy — vy, of the preceding problem takes the form

1 B
Yr=~-—n, n=|—|
Yy y

Show that the number v, is also reduced. It is called the right neighbor of the number y, and
v is called a left neighbor of y, . Show that any reduced number has one and only one left
neighbor .

15. Starting from a reduced number v, of a real quadratic field, we construct the sequence
of reduced numbers yo, Y1, y,, ..., in which each number is the right neighbor of the pre-
ceding one. Show that there exists a natural number m such that yo = y., that is, that the
sequence is periodic. If m is the smallest possible such integer, then the numbers y,, ¥4, ...,
vm-1 are distinct. Such a finite sequence of reduced numbers is called a period. Show that
two reduced modules {l,y} and {1, y*} are similar (in the usual sense) if and only if the
reduced numbers ¢ and y* belong to the same period.

16. Find the number of classes of similar modules belonging to the maximal order of
the field R(V'10),

17. Show that all integral solutions of the equation

17x2 + 32xy + 14y*=9
are given by B _ _
+(15+ 6V +2vV2)y = £[17x, + (16 + 3V2)y,]

(for all integers n).
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18. Which of the modules
{1, V1s5), {2,1+V15), 3,V15), {3520+ V15}

of the field R(\/ E) are similar to one another?

19. Find a full system of representatives for the classes of strictly equivalent primitive
forms with discriminant 252,

20. What is the number of classes of properly equivalent primitive forms with discriminant
3607 ;

21. Which prime numbers are represented by the forms x2 + 5y2 and 2x? + 2xy + 3y2?

22. Find the integral solutions of the equations:

5x2 -+ 2xy + 2y? = 26, 1)
S5x2—2y* =3, 2)
80x2 — y* = 16. (€)]
23. Show that the equations
13x2 + 34xy + 22y2 =23, 1)
5x% 4 16xy + 13y2 =23 )

have no integral solutions.

24, Let vy be a number of an imaginary quadratic field which satisfies Im y >0,
—+4 < Re y < §, but which is not reduced. Set y, = (1/y) + n, where the rational integer n
is chosen so that —3 < Rey, < }. If v, is not reduced, determine y, = —(1/y,) + n,
analogously, etc. Show that after a finite number of steps the module {1, y} is transformed
into a similar module {1, y,} which is reduced.

25. Determine the coefficient rings of the modules
(11,6 +2iv2), (2,1+iV2), {4,iV2), {2,iV2).

Which of these modules are similar?

26. Show that all modules which belong to the maximal order of the field R(v —43)
are similar.



CHAPTER 3

The Theory of
Divisibility

In Chapters 1 and 2 we saw how the solution of number-theoretic problems
led to the consideration of broader questions in the theory of algebraic num-
bers: Thus to find the integral representations of a rational number by a full
decomposable form, we had to study the theory of units in orders of algebraic
number fields. '

Many problems of number theory lead to another important question in
the arithmetic of algebraic number fields, the question of decomposition of
algebraic numbers into prime factors.

In this chapter we shall construct a general theory of the decomposition of
algebraic numbers into prime factors and will apply this theory to several
problems in number theory. The results which we shall need from the theory
of rings are given in the Supplement, Section 5. These results, along with the
theory of finite extensions of fields which has already been used in Chapter 2,
form the algebraic tools for this chapter.

The problems of factorization are very closely connected with Fermat’s
(last) theorem. Historically, it was precisely the problem of Fermat’s theorem
which led Kummer to his fundamental work on the arithmetic of algebraic
numbers.

Therefore we shall start with an exposition of the first results of Kummer
on Fermat’s theorem as an introduction to the general theory of decomposition
of algebraic numbers into prime factors.

1565
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1. Some Special Cases of Fermat's Theorem

1.1. The Connection between Fermat’s Theorem and Decomposition into Factors
The proposition, stated by Fermat, is that the equation
x’l + y'l — Z"
has no nonzero solutions in rational integers, x, y, z when n > 2.
It is clear that if Fermat’s theorem is proved for some exponent n, then it is
also automatically proved for all exponents which are multiples of n. Since
any integer n > 2 is either divisible by 4 or by some odd prime, we may limit

our consideration to the cases where n = 4 or n is an odd prime. For n = 4,
an elementary proof was given by Euler. We thus consider only

x'+yt=12, 1.1)

where the exponent / is an odd prime number. We may clearly assume that
the numbers x, y, z in (1.1) are relatively prime.

For those values of / for which a proof of Fermat’s theorem has been found,
the proof is usually divided into two parts: first, it is shown that (1.1) has no
solution in integers x, y, z, which are not divisible by /, and second, that (1.1)
has no solution in integers x, y, z precisely one of which is divisible by /. These
two are called the first and second cases of Fermat’s theorem. From the extant
proofs of various cases of Fermat’s theorem we can deduce that the principal
difficulties in the first and second cases of Fermat’s theorem are roughly the
same, although the techniques used in the first case are more simple. Here
we consider only the first case of Fermat’s theorem.

The connection between Fermat’s theorem and the problem of the decom-
position of algebraic numbers into prime factors is given in the following
simple observation. If { denotes a primitive /th root of 1, then (1.1) may be
written

kt[o(x + ) =2 (1.2)

If a product of pairwise relatively prime rational integers is an /th power, then
each of the factors is an /th power. The factors on the left side of (1.2) belong
to the algebraic field R({) of degree / — 1 over R. (It is easily seen that the
polynomial #/~' + 72 + ... + ¢t 4+ 1, / a prime, is irreducible over the field
of rational numbers; see Problem 6 or Theorem 1 of Section 2, Chapter 5.)
Consider in the field R({) the order © = {1, ¢, ..., {!"2} [by Theorem 1 of -
Section 5, Chapter 5, O is the maximal order of the field R({)]. Assume that
in the ring O factorization into primes is unique. Then for any « € O, o # 0,
we have a factorization

ar
r b

a=¢em* - m



Sec. 1] SOME SPECIAL CASES OF FERMAT'S THEOREM 167

where ¢ is a unit of the ring O, the prime numbers =, ..., n, are pairwise-
nonassociate, and the exponents &, ...,a, are uniquely determined (see
Section 2.2). Then every prime n which occurs in the factorization of z! occurs
with an exponent divisible by /. But we shall show below that when we are
dealing with the first case of Fermat’s theorem, the numbers x + *y (k = 0,
1, ..., I — 1) are pairwise relatively prime. Hence if we represent x + {*y asa
product of prime factors, each prime will occur with an exponent divisible
by I This means that, up to a unit factor, x + (*y is an /th power and, in
particular,

X+ {y=¢d, (1.3)

where ¢ is a unit of the ring O and « € O.
Since / is odd, we may also write (1.1) in the form

X'+ (=2) = (=),
and analogously we obtain
x —{z =g (1.39

Equations (1.3) and (1.3") lead, in a fairly easy manner, to a contradiction.
When this is done, we shall prove that (1.1) has no solution in integers x, y, z
not divisible by / (under the hypothesis made on the ring O).

After this introduction we now establish some auxiliary facts concerning
the ring O.

1.2. The Ring Z[{].

Lemma 1. In the ring © = Z[{] the number 1 — { is prime, and / has the
factorization
I=¢*(1 - (1.4)
where ¢* is a unit in O.

Proof. In the decomposition
LT e L= = O =) e (- T,
set ¢ equal to 1. Then
A= =00 =)= (1.5)

If « = r({) is any number of the field R({) [here r(¢) is a polynomial with
rational coefficients], then the numbers

o =r*) (Q<k<l-1) (1.6)

are the images of « under the isomorphisms of the field R(() into the field of
all complex numbers. In the terminology of Section 2.3 of the Supplement,
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the numbers (1.6) are the conjugates of «, and thus N(x) =][iZ! r(¢"). In
particular, for s # 0 (mod /), we have

-1 -1
N1 -0)= ,ﬂﬂ - = kUI(l —-{y=1

From this it follows that 1 —{,1—=2{¢2,...,1 —={¢'"! are primes in the
ring O. Indeed, if 1 — {* = aff, then N(«x)N(f) =/, and then either N(z) = 1
or N(f) = 1; that is, one of the factors is a unit (Theorem 4 of Section 2,
Chapter 2). Taking norms in the equation

A=-0)=A=-0A+{+ -+ ==k, (L7)

we obtain N(g,) = 1, and thus ¢, is a unit in O. Hence the numbers 1 — {°,
for s # 0 (mod /), are associate with 1 — {. The decomposition (1.4) now
follows from (1.5) and (1.7).

Lemma 2. If the rational integer « is divisible by 1 — { (in the ring D),
then it is also divisible by L

Proof. Let a = (1 — {)a, where a € ©. Taking the norm of both sides, we
obtain a'~! = IN(x), where N(«) is a rational integer. Since / is prime, then a
is divisible by /.

Lemma 3. The only roots of 1 contained in the field R({) are those whose
degree divides 2/.

Proof. Any root of 1 in R({) clearly lies in the maximal order. By Theorem 2
of Section 3, Chapter 2, the set of all roots of 1 in R({) forms a finite cyclic
group. Let m denote the order of this group and let n be any primitive mth
root of 1. Since — ¢ belongs to R({) and is a root of degree 2/ of 1, m is divisible
by 2/. In Section 2 of Chapter 5 (corollary of Theorem 1), it is proved that
the degree of the field R(n7) over R equals ¢(m), where @(m) is Euler’s function.
Set
m=1Imy, (my,l)=1 (r=1,m, 2 2).

Since R(n) is contained in R({), and the latter field has degree / — 1, then
em)=T""'1-De(my) <1 - 1.

From this inequality it follows that r = 1 and @(m,) = 1. Since ¢(m,) = 1 for
mg = 2 only when my =2, m = 2/, and Lemma 3 is proved.

Lemma 4 (Kummer’'s Lemma). Any unit of the ring O is a product ofa
power of { with a real unit.



Sec. 1] SOME SPECIAL CASES OF FERMAT'S THEOREM 159

Proof. Let
8=ao+alC+---+al-zC"2=r(C) (a;e2)

be any unit of O. It is clear that the complex conjugate & = r({™') = r({! ") is
also a unit of ©. Consider the unit u = ¢/¢ € ©. By (1.6) any conjugate of u
has the form

SIS
rCY T

Since r(¢*) and r({ ~*) are complex conjugate, then |o (u)| = 1 (k =1, ..., [ — 1).
By Theorem 2 of Section 3, Chapter 2, u is a root of 1, and then by Lemma 3,

u=x{

We shall now show that the plus sign always occurs on the right. For other-
wise we would have

o) =

e= —{".

‘Consider this equation as a congruence in the ring © modulo A =1 —¢.
Since { = 1 (mod 1), all powers of { are congruent to 1 modulo 4. and we have

E=E= dg +a1 + - +-a,_2 = M(mod l),
which means that M = — M (mod 1), or 2M = 0 (mod 1). By Lemma 2
2M =0 (mod /), M =0 (mod /), M =0 (mod A),

so that
£ =0 (mod A),

which contradicts the fact that ¢ is a unit of the ring ©O. Thus
e = (.

We now take an integer s so that 2s = a (mod /). Then {* = {** and the equation
¢ = {5 can be written in the form

This shows that the unit n = ¢/{° is real. Hence we have represented ¢ as the
product of {* and the real unit #, and the lemma is proved.

Lemma 5. Let x, y, m, n be rational integers, m # n (mod /). Then x + {™y
and x + {"y are relatively prime if and only if x and y are relatively prime and
x + y is not divisible by /.
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Proof. If x and y have a common divisor d > 1, then x + {™y and x + ("
are both divisible by d. If x + y is divisible by /, then x + {™y and x + "y
have a common divisor 1 — { (which is not a unit). Indeed,

x+{My=x+y+ (" -1y
=(x+y)— (1 —=0e,y=0(mod 1 — Q).

Thus the necessity of both conditions is proved. To prove their sufficiency we
shall show that there exist numbers ¢, and n, in O such that

x+ & + (x + 'y = 1.

Consider the set A4 of all numbers of the form

(x+")E+ (x+ Tym,

where ¢ and n independently run through all numbers of O. It is clear that
if « and j8 belong to A, then any linear combination a&’ + fn’ with coefficients
&', n’ € O also belongs to 4. We need to show that 1 belongs to 4. From

x+ ") = (x+ ) =01 ="My =", (1 = Dy,
(x+ " - (x+ TP = =01 = T)x = =", (1 = D,

we conclude that (1 — {)y and (1 — {)x belong to A4 (since {™¢,_,, is a unit in
the ring ©). Since x and y are relatively prime, there exist rational integers
a and b such that ax + by = 1, and therefore

(I=Dxa+ (1 -Oyb=1-{eA.
Further,

x+y=x+{+A -y =+ + 0= Dey,

and thus x + y € 4. Since [ is divisible by 1 — {, then /€ A. But we are also
assuming that x + y and / are relatively prime. Hence for some rational
integers v and v we have (x + y)u + [v = |, so that | € 4. Lemma 5 is proved.

1.3. Fermat's Theorem in the Case of Unique Factorization

Theorem 1. Let / be a prime integer and let { be a primitive /th root of 1.
If decomposition into prime factors is unique in the order © = Z[{] = {1, ¢,
., 071 of the field R(Y), then the equation

x4yt =2

has no solution in integers x, y, z not divisible by /.
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Proof. The prime 3 will play a special role in our proof, so we consider
the case/ = 3separately. We shall show that not only the equation x* + y3 = z3,
but also the congruence

x>+ y3=23(mod 9)

has no solution in integers not divisible by 3. For assume that there is such a
solution of this congruence. But from the congruence x + y* = z* (mod 3)
it easily follows (from the little Fermat theorem) that x + y = z (mod 3);
that is, z = x + y + 3u, and hence

X+ pP=(x+y+3u)=x>+y* +3x%y + 3xy? (mod 9),
and

0= x%y + xy? = xy(x + y) = xyz (mod 3).

Thus one of the numbers x, y, z is divisible by 3, and our assertion is proved.

Now let / > 5. We prove the theorem by contradiction, assuming that for
some rational integers, x, y, z, pairwise relatively prime and not divisible
by I/, we have x'+ y'=z', which we also write in the form (1.2). Since
x+y=x'+y'=z'#0 (mod /), and x and y are relatively prime, then by
Lemma 5, all the numbers x + ¢y (k =0, 1, ..., 7 — 1) are pairwise relatively
prime. Then, as has already been shown in Section 1.1, from the unique
factorization of the numbers appearing in (1.2) it follows that

X+ {y = e, (1.3)
x —{z = e, (1.3)

where ¢ and ¢, are units in the ring ©O. We have already remarked that (1.3)
and (1.3') lead to a contradiction. We now show that this contradiction even
arises from the corresponding congruences modulo / in the ring O.
Letoa =ay + a,{ + - +a;_,{'"* with ay, ..., a,_, rational integers. Then
d=a+a '+ +aj_,{'" P =M (mod 1),

where M =a, +a; + -+ a;_,. By Kummer’s lemma the unit ¢ can be
represented in the form ¢ = {*n, where n is a real unit. Hence from (1.3) we
obtain the congruence

x + 0y =M= ¢ (mod /)
with the real number & € ©. We may also write this congruence in the form
{T(x + {y) =& (mod ). (1.8)

We now note that for any « € O the complex conjugate & also belongs to O,
If we have the congruence o = f§ (mod /), thena — f =ly, so that & — B = /5
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and hence & = B (mod /). Passing now from the congruence (1.8) to its complex
conjugate, we obtain

(x + {7 'y) =& (mod )). (1.9)
But & = £, and therefore from (1.8) and (1.9) it follows that

{5 + ) =8+ ¢ y) (mod D),
or
X+ 0 — x5 =y =0 (mod /). (1.10)

It is clear that a number of O, represented in the canonical form
ap +a,{ + - +a,_,{'"?, is divisible by I if and only if all coefficients
dg, ..., a,_, are divisible by /. If the exponents

s, s—1, -, 1—3s (1.11)

are pairwise-noncongruent modulo / and also noncongruent to / — 1, then
the number on the left side of the congruence (1.10) is in canonical form and
hence all its coefficients are divisible by /. Thus in this case x = 0 (mod /) and
y = 0 (mod /), which is impossible, since x and y are relatively prime (and also
not divisible by /).

Consider the case when the left side of (1.10) is not in canonical form, that
is, when one of the integers (1.11) is congruent to / — 1 modulo /, or two of
them are congruent modulo /. One of the exponents (1.11) will be congruent
to / — 1 modulo / only in the following cases:

We see that in each of these cases only one of the exponents is congruent to
I — 1 (since / = 5). To write the left side of (1.10) in canonical form, we must
use the equation

R e
Substituting this expression in the left side of (1.10), we replace the term with
exponent / — | by a sum of the monomials 1, ¢, ..., {'” % each with coefficient

+x or +y. Since the number of these terms is equal to/ — 1 = 4 (since / = 5),
after we combine terms in which the exponent of { is the same, there will be
at least one term in which the coefficient is +x or +y. But this again would
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imply that x = 0 (mod /) or y = 0 (mod /), which is impossible, since we have
assumed that x and y are not divisible by /.

We now need only consider the case when two of the exponents in (1.11)
are congruent modulo /. The congruences s=s— 1 (mod/)and —s=1~-3s
(mod /) are clearly impossible. If s= —s (mod /) or s— 1 =1 — s (mod /),
then we have s =0 (mod /) or s = 1.(mod /), and we have again the cases
considered above where s — 1 =/— 1 (mod /) or —s =/— 1 (mod /). In the
remaining (equivalent) possibilitiess = 1 — s(mod /)and s — 1 = —s (mod /),
we have s = (/ + 1)/2 (mod /). In this case the congruence (1.10) takes the form

(x = Y2 4 (y — )" D2= 0 (mod I).

Since the left side of this congruenceisin the canonical form [the exponents
(I + 1)/2 and ({ — 1)/2 are neither congruent to each other nor to / — 1], it
follows that
x =y (mod!).

Analogously, we deduce from (1.3") that
= —z (mod /).

Then from the congruences x + y = x' + y' = z' = z (mod /) it follows that
2x = —x(mod /) or 3x = 0 (mod /). Since [ # 3, x = 0 (mod /) and we again
have a contradiction. This completes the proof of Theorem 1.

By using more subtle arguments involving the integers of the field R({),
Kummer showed that if the prime / satisfies the conditions of Theorem 1,
then the second case of Fermat’s theorem also holds for the prime /.

We shall generalize Theorem 1 to a wider class of exponents in Section 7.3.
For this wider class of exponents we shall prove the second case of Fermat’s
theorem in Section 7.1 of Chapter 5.

We make some remarks about Theorem 1.

Remark 1. The main part of the proof of the theorem is the verification
of the impossibility of certain congruences modulo /. Of course it does not
follow from this that the congruence x' + y' = z' (mod /) is impossible, since
this congruence is equivalent to x + y = z (mod /), which always has solutions
in integers not divisible by /. Moreover, it can be shown that, for example,
when / = 7, the equation x' + y' = z!, when considered as a congruence, has,
for any modulus, solutions not divisible by 7.

Thus the proof of the unsolvability of (1.1) is achieved first by using unique
factorization in the ring Z[{] to obtain Equations (1.3) and (1.3’), and then
by applying the theory of congruences to these latter equations.
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Remark 2. It is clear that the methods which we have applied in this
section to the solution of Fermat’s theorem can also be applied to analogous
problems, by using other algebraic number fields instead of the field R({)
(Problem 2).

Remark 3. If we wish to apply the theorem to some particular prime /,
we discover that this cannot be done, since we have no means for determining
whether factorization into primes is unique for the field R({).

Hence we come to the following two basic problems of number theory:

(1) In which algebraic number fields K is decomposition into prime factors
unique?

(2) What are the arithmetic properties of those fields K in which decom-
position into prime factors is not unique?

PROBLEMS

1. Show that the congruence x* + y* = z® (mod 52) has no solution in rational integers
x, ¥, z not divisible by 5.

Let w be a primitive cube root of 1. Assume it known that decomposition into prime
factors is unique in the field R(w). Show that the equation x® 4+ y* = 5z3 has no solution in
rational integers x, y, z not divisible by 3.

3. Let / be a prime number, { a primitive /th root of 1, x and y rational integers, and d
the greatest common divisor of x and y. f x + y# 0 (mod ) set 8 =d, and if x+ y =0
(mod /) set & = d(1 — {). Show that & is a common divisor of the numbers x + {™y and
x + {"y which is divisible by all other common divisors of these numbers.

4. Show that in the order {1,{, ..., '~ ? of the field R({) a product of is divisible by
1 — { if and only if « or 8 is divisible by 1 — .

5. Using the concept of congruence of integral polynomials (Section 1.1 of Chapter 1),
show that

T 1= — 1D (mod D).

6. Show that the polynomial #!~' + .-- + ¢+ 1 is irreducible over the field of rational

numbers by considering congruence of integral polynomials modulo /2.

2. Decomposition into Factors

2.1. Prime Factors

In Section 1 we saw how a problem of number theory can reduce to a question
of decomposition into prime factors in some order of an algebraic number
field. We shall see other such examples later. We now consider the general
problem of decomposition into prime factors.

In order to speak of decomposition into primes, we must be dealing with a
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fixed ring O, the elements of which we are decomposing into factors. We
formulate our problem in the general case where D is any commutative ring
without divisors of zero and possessing a unit element. In the future these
conditions will be assumed without special mention.

Definition. An element = of the ring O, nonzero and not a unit, is called
prime if it cannot be decomposed into factors n = «f}, neither of which is a
unit in O.

Thus an element is prime if it is divisible only by units and associates.

In some rings there are no prime elements and hence not every element of a
ring can be represented as a product of primes. For example, let O be the
ring of all algebraic integers. Any a s 0, which is not a unit, has the factori-
zation o = /a-+/a, in which both factors lie in O and are nonunits. Thus
every nonunit of © has nontrivial factorizations and there are no prime elements
in O.

For examples of rings in which decomposition into prime factors is always
possible, consider orders in algebraic number fields (it is these rings which
will interest us most). We shall call prime elements in orders prime numbers.

Theorem 1. In any order © of an algebraic number field K, every nonzero
element which is not a unit can be represented as a product of prime numbers.

Proof. By Theorem 4 of Section 2 of Chapter 2, the units of © are charac-
terized by having norm + 1. We prove the theorem by induction on the absolute
value |N(2)| of the number o € O. If the number « is itself prime, there is
nothing to prove. Otherwise a = fiy, where § and y are numbers of O which
are not units, so that

L<|N@) <IN@)I, 1 <|Ny) < |N@)I.

By the induction assumption, f and y are products of prime numbers of the
ring O. But then since « = fy, the number « is also a product of prime numbers
of the ring ©. Hence Theorem 1 is proved.

2.2. Uniqueness of Factorization
We assume now that in the ring O decomposition into prime factors is
possible, and we turn to the question of the uniqueness of such factorizations.

Definition. We shall say that decomposition into prime factors in the
ring O is unique if for any two decompositions
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the number of factors is always the same (r = s) and for suitable indexing of
the factors, the prime elements n; and =;" are associate (i = 1, ..., r).

In the decomposition a = &, --- m,, associate prime elements can be made
equal by multiplying by a suitable unit. We may then group equal factors
into powers and obtain a factorization

a=en X - mhm,
in which the prime elements =, ..., 7, are pairwise-nonassociate and ¢ is a
unit of the ring O. In case factorization is unique, the prime elements n,, ..., n,,
are determined up to associates and the exponents &y, ..., k,, are uniquely
determined.

The classical example of a ring with unique factorization is the ring of
rational integers. It is far froin true that decomposition into prime factors is
unique in all rings. Thus the result of Problem 1 shows that among orders in
algebraic number fields, unique factorization can occur only for maximal
orders.

Unique factorization for the ring Z of rational integers follows from the
theorem on division with remainder, which asserts that for any g and b # 0
of Z there exist integers g and r, such that @ = bg + rand r < |b|. If inaring £
there is an analog of division with remainder, then we can prove uniqueness
of factorization in O just as in Z.

Definition. We say that the ring © has the division with remainder prop-
erty if there is a function ||| on nonzero elements « € © which takes non-
negative integral values and is such that the following conditions hold:

(1) If « # 0 is divisible by S, then |la) > ||B].

(2) For any elements « and f #0 of O, there exist y and p such that
o = By + p, where either p = 0, or | pl| < ||B]l. The ring O itself is then called
Euclidean.

Consider the proof of unique factorization in the ring of rational integers.
It uses, in addition to the general properties of rings, only the theorem on
division with remainder. Therefore, by translating this proof, we obtain the
following result.

Theorem 2. In every Euclidean ring, factorization into primes is
unique.

Consider as an example the maximal order O of the quadratic field R(x/ —1).
We shall show that O has the division with remainder property with || =
N(2). Let a and 8 # O be arbitrary numbers of O. Then

%=u+v\/T'l,
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where v and v are rational numbers and we choose rational integers x and y
so that

lu—xI<4,  lo—-yl<3
If we now sety=x+y\/——l,p=a—ﬂy, then from

2 a2 < 1 1
N(ﬂ y)—(u x) + (- p7°< 4+4<1

we obtain
N(p) = N(E = 7)NB) < NGB,

and this proves our assertion.

From Theorem 2 we conclude that in the maximal order of the field R(x/ = 1)
factorization into primes is unique.

In the same fashion we can prove uniqueness of factorization for certain
other rings (see Problems 3, 4, and 7). It must be noted that there are rings in
which factorization is unique which are not Euclidean. An example is the
maximal order of the field R(+/—19). It follows from Problem 6 that this
ring does not have the division with remainder property. But it will follow
from Problem 11 of Section 7 that factorization is unique in this ring.

Consider the maximal order of the real quadratic field R(/d). We obtain
a division algorithm with remainder by using the absolute value of the norm
only when d is one of the following sixteen numbers:

2, 3, 5 6 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

2.3. Examples of Nonunique Factorization

It is not difficult to construct examples in which the maximal order of an
algebraic number field will not have unique factorization. Consider, for
example, the field R(y/—5). As was shown in Section 7.2 of Chapter 2, the
numbers of the maximal order of this field are of the form o=x +y\/ 5,
where x and y are rational integers, and then N(a) = x? + 5y In the ring O
the number 21 has the factorizations

(1 21=3-7,

2 21=(1+2/-5)(1-2/-5)

We claim that all terms on the right in (1) and (2) are prime. Suppose, for
example, that 3 = aff, where « and f are nonunits. Then since 9 = N(af)
= N(a2)N(f), we must have N(x) = 3. But this is impossible since the equation
x? + 5p% = 3 has no integral solutions. In precisely the same manner we
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could prove that the numbers 7, 1 4+ 2/ —5, 1 — 2/ —5 are also prime. Since
the quantities

1+2/ -5 1+2/-5
3 ’ 7

are not contained in the ring O, the numbers 3 and 7 are not associated with
1 +2—=5and 1 —2/—5. Hence we see that the ring O contains numbers
which allow essentially different decompositions into prime factors.

The example of nonunique factorization in the maximal order of the field
R(+/=5) is not an unusual exception. Many such examples are easily found
(see Problems 10 and 11).

It might be thought that the phenomenon of nonunique factorization which
we have discovered in algebraic number fields would make it impossible to
construct a complete theory of the arithmetic of these fields, and that this
would dash our hopes for deeper applications to the problems of number
theory. But this not the case. In the middle of the last century, Kummer showed
that, although the arithmetic of algebraic numbers was radically different from
the arithmetic of the rational numbers, it could be developed in great depth,
allowing strong applications to number-theoretic problems.

The basic idea of Kummer is that if the maximal order © does not possess
unique factorization, then the nonzero elements of © can be mapped into
some new set, in which multiplication is defined and in which factorization
into primes is unique. If o is any nonzero element of O, then its image (x)
under this mapping will factor uniquely into a product of primes, but these
primes will lie not in the ring but in the new set. Unique factorization, in the
sense of Kummer, is restored by virtue of the fact that some prime numbers
(perhaps even all of them) are mapped onto nonprime elements of the new
set, and therefore their images factor in a nontrivial fashion. Thus, in the
example of the maximal order of the field R(\/ —5), there must exist objects

Pi1, P2, P3, Ps such that

3=pp2, T=psps, 1+2/-5=pP;, 1—2\/—5=p2p4

(in these equations we do not distinguish between numbers and the new
objects which correspond to them). The decompositions (1) and (2) now
reduce to the decompositions

21 = pyp2 " P3Ps = P1P3* P2Pa>

which differ only in the order of the factors.

Kummer himself called these new objects ideal numbers. Now they are
called divisors. In Section 3 we give a systematic exposition of the theory of
divisors.
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PROBLEMS

1. Show that if in the order © of the algebraic number field X decomposition into prime
factors is unique, then O is the maximal order of thefield K. And show, in general, that if ©
is a ring in which factorization into primes is unique, then O is integrally closed in its field
of fractions.

2. Show that if an element « # 0 of a Euclidean ring is divisible by B, and « and S are
not associate, then [l«|| > (|81

3. Let M be a lattice in the complex plane, the points of which represent the numbers of
the maximal order © of an imaginary quadratic field. Show that we obtain an algorithm for
division with remainder in © by using the norm N(«) if and only if the translates of the unit
disc (without boundary) by all vectors of the lattice M completely cover the plane.

4. Show that in the maximal order of the imaginary quadraticfield R(Vd),an algorithm
for division with remainder is obtained by using the norm if and only if d is one of the values
-1, =2, =3, -7, —11.

5. Let d < 0 be square-free and not equal to — 1, —2, —3, —7, —11.Show that the norm
of any integer of R(vd), except 0 and + 1, is greater than 3.

6. Show that, except for the five fields indicated in Problem 4, the maximal order of an
imaginary quadratic number field is never a Euclidean ring.

(Hint: Carry out the proof by contradiction. Assume that there is a function ||«|| on the
elements of the maximal order © which satisfies the conditions given in Section 2.2. Among
the numbers of 0 which are not units, choose y so that |ly | is as small as possible. Then any
a € © will be congruent modulo y to one of the numbers 0, 1, —1.)

7. Show that there exists an algorithm for division with remainder in the maximal order
of the field R(V'2).

8. Show that in the maximal order of the field R(+/ —1) every odd rational prime p of
the form 4k + 3 remains prime, while every odd rational prime p of the form 4k + 1 factors
into p = 7w’, wherew and " are nonassociate primes. Find the decomposition of the number
2 into prime factors.

9. Let © be a ring with unique factorization. Show that for any two numbers o« and
of © (not both equal to zero), there is a common divisor 8 which is divisible by all common
divisors of o and 8 (8 is called the greatest common divisor of o and B).

10. Show that in the maximal order of the field R(v —6) the following are essentially
different prime factorizations:

55=5-11=(7+v—6)(7— vV —6),

6=2-3= —(vV=6)

11. Show that in the maximal order of the field R(V —23) the following are essentially
different prime factorizations:

1+ V=231-v-23

6=2-3 R
2 2

27=3-33=02+v—23)2 — v—23),

Find all possible factorizations of the number 8 in this ring.
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3. Divisors

3.1. An Axiomatic Description of Divisors

We consider an arbitrary commutative ring © (with unit element and
without divisors of zero), and we shall try to clarify the idea mentioned in
Section 2.3 of mapping the nonzero elements of the ring O into some new
domain, in which decomposition into prime factors is unique. Our theory
must clearly consist of two parts: the construction of some set 2 of new
objects in which decomposition into prime factors in unique, and the deter-
mination of the mapping of the nonzero elements of the ring O into the set 2.
We start with the first part. In order to be able to speak of decomposition into
prime factors in 2, we must have an operation of multiplication defined in 2;
that is, we must associate to each pair of elements of & a third element, their
product. We shall require that this operation be associative and commutative.
A set with such an operation is called a commutative semigroup. We shall
further require that the set 2 contain a unit element, that is, an element e
such that ca = a for all a € 2.

In a commutative semigroup & with unit ¢ we may speak of divisibility of
elements; an element a € & is divisible by b e 2 if there exists a ¢ € 2 such
that a = be (we also say that b divides a).

An element p € 2, distinct from e, is called prime if it is divisible only by
itself and by the unit e. We further say that the semigroup £ has unique fac-
torization into prime elements if every element a € & can be represented as a
product of prime elements

a=p;-p, (r=0),

and this decomposition is unique up to the order of the factors (for r =0
this product is set equal to ¢). Thus uniqueness of factorization implies that e
is the only invertible element (divisor of e) in the semigroup 2. It is clear that
a semigroup with unique factorization is completely determined by its set of
prime elements (essentially by the cardinality of this set). As a simple example
of a semigroup with unique factorization we may take the set of all natural
numbers under the operation of multiplication.

In a semigroup with unique factorization, any two elements have a greatest
common divisor (a common divisor which 1s divisible by all common divisors
of the two elements), and also a least common multiple. Two elements of &
are called relatively prime if their greatest common divisor is equal to ¢. We
note some elementary properties of divisibility in 2 If a product ab is divisible
by ¢ and a is relatively prime to ¢, then b is divisible by ¢; if ¢ is divisible by
the relatively prime elements a and b, then ¢ is divisible by their product ab;
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if a product ab is divisible by a prime element p, then at least one of the factors
is divisible by p.

We now pass to the second part of the theory, the conditions which must be
satisfied by the mapping from the ring © to the semigroup 2.

Let O* denote the set of all nonzero elements of the ring . Since we have
assumed that © does not have divisors of zero, the set O* is a semigroup
under the operation of multiplication.

Suppose that we have a mapping of the semigroup O* into the semigroup &
which has unique factorization. We denote the image of an element « € O*
by (). 1t is clear that we can use the semigroup 2 to study the multiplicative
structure of the ring © only if under the mapping o — (), the product of two
elements in O¥ is mapped onto the product of their images in 2, that is, only
if (2ff) = («)(B) for all x and B in O*. Hence we must assume that the mapping
o — (2) is a homomorphism of the semigroup O* into the semigroup 2. If «
is divisible by B in the ring D, it will then follow that («) is divisible by (8) in
the semigroup 2. In order that divisibility in © should closely correspond to
divisibility in 2, we shall also demand the converse: If («) is divisible by (f)
in 2, then « is divisible by f in O.

We shall also say that the element a # 0 of O is divisible by the element
a € 9, and shall write a|a, if («) is divisible by a in the semigroup 2. We shall
suppose 0 to be divisible by all elements of 2.

If « € O%, the set of all elements of O which are divisible by « is closed
under addition and subtraction. It is natural to assume that this property is
preserved for divisors a of the semigroup 2.

Our last requirement is that 2 not contain any * unnecessary” elements.
By this we shall mean that distinct elements of 2 must not divide precisely
the same elements of O*.

We thus give the following definition.

Definition. By a theory of divisors for the ring © we shall mean the giving
of some semigroup £ with unique factorization, along with a homomorphism
o — (@) of the semigroup O* into 2, satisfying the following conditions:

(1) An element o € O* is divisible by f € ©O* in the ring © if and only if
(2) is divisible by (f) in the semigroup 2.

(2) If x and f of O are divisible by a € 2, then « + f are also divisible by a.

(3) If a and b are two elements of &2 and the set of all elements « € © which
are divisible by a coincides with the set of all elements § € O which are divisible
by b, then a =b.

The elements of the semigroup 2 are called divisors of the ring O, and
divisors of the form (&), « € O*, are called principal divisors. The unit element
¢ of the semigroup is called the unit divisor.
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Condition (1) in the definition of a theory of divisors clearly implies the
following assertion: The equality () = (f) holds if and only if « and f§ are
associate in the ring O. In particular, units ¢ of the ring O are characterized
by (¢) = e.

We shall denote a theory of divisors for the ring © by O* - 2.

Our definition of a theory of divisors only fixed what we shall mean by such
a theory. It does not at all guarantee the existence or uniqueness of the homo-
morphism O — 2.

In the next section we consider the question of the uniqueness of a theory
of divisors, assuming that one exists, and in Section 3.3 we indicate an im-
portant necessary (but not sufficient) condition for existence.

The existence of a theory of divisors for maximal orders in algebraic number
fields will be proved in Section 5 (Theorem 3 implies that such a theory does
not exist for nonmaximal orders).

3.2. Uniqueness

Theorem 1. If a ring O has a theory of divisors, then it has only one. More
precisely, if we have two homomorphisms O* - 2 and DO* — 2, satisfying
all requirements of the definition, then there is an isomorphism 2 =~ 2’ under
which the principal divisors in £ and 2’ which correspond to a given element
o € O* are identified.

Proof. Let O* - 9 and O* - 2’ be two theories of divisors for the ring O.
Let p € 2 and p’ € 2’ be prime divisors. Denote by pand p’ the sets of elements
of the ring which are divisible by p and by p’(with respect to the theory
0¥ - 9 for p, and with respect to O* —» 2’ for p’). We now show that for
any prime divisor p’ € @’ there is a prime divisor p € & such that p < p".
Assume that this is not the case, that is, that p ¢ p’ for all prime divisors
p €%2. From condition (3) it easily follows that any divisor must divide a
nonzero element of the ring O. Choose in O an element f 5 0 which is divisible
by p’, and decompose the divisor (f) € 2 into prime factors:

(B)y=pi" - p

(py, ..., p, are prime divisors of the semigroup 2). Since we have assumed
that P, & p’, then for each i =1, ..., r there is an element y;, € © which is
divisible by p; but not divisible by p’. The product y = y,** --- y,* is divisible
by p,** --- p,*, and this means, by condition (1), that y is divisible by f in the
ring O. But then y must be divisible by p’. Thus we have a contradiction, since
the product y,** -+ 7,% cannot be divisible by p’, since p’ is prime and does
not divide any of the y;.

Hence for any prime divisor p’ € 2’ there is a prime divisor p € 2 such that
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p < p’. By symmetry, there is a prime divisor q’ € 2’ for which §' < p . We shall
show that q" = p’, and hence §' = p = p’. Indeed, by condition (3) there is
an element £ in O which is divisible by g’ and not divisible by ¢'p’. If we
assume that q" # p’, then the element ¢ will not be divisible by p’, which is
impossible since g’ <= p'.

Since (for given p’ € 2’) there is one and only one prime divisor p € 2
such that p =P  [condition (3)], we obtain a one-to-one correspondence
p—p’ between prime divisors of & and prime divisors of 2’. This corre-
spondence can clearly be extended (in. a unique manner) to an isomorphism
2 ~ 2'. Namely, if p, ~p,’, ..., p, & p,, then

kl.-t k

1k 1k,
prrepy e p

P1

We now need only show that under this isomorphism, the divisors () € 2
and ()" € 2’ (for given o € O*) correspond to one another. Let p €2 and
p’ €2’ be corresponding prime divisors, and assume that they occur in the
factorizations of (x) and («)’ with exponents k& and /, respectively. From
condition (3) it follows that there is an element 7 € © which is divisible by p
and not divisible by p?. Since p = p’, the element = is also divisible by p’.
The principal divisor () hence has the form (z) = pb, where b is not divisible
by p. Now choose in O an element w which is divisible by b* and not divisible
by b*p. Since p does not divide b, then w is not divisible by p or by p’. Consider
the product aw. Since « is divisible by p*, and w is divisible by b*, then aw is
divisible by p“b* = (n*), and by condition (1) we have aw = n*n, n € O. But
p'|n, and hence aw is divisible by p’*, and since p’ ¥ w, then p™*|a. This means
that in the factorization of the divisor («) € 2’, the prime divisor p’ occurs
with exponent not less than k; that is, / = k. But by symmetry also k >/,
and thus k = L.

We have thus shown that if («) = p,* ---p* and p;—p,,...,p,<p,/,
then () = p,* --- p,* and this means that under the above isomorphism
2 =~ ', the principal divisors (¢) € 2 and (a) € 2’ correspond to each other.

If the ring © has unique factorization, then we can easily construct a theory
of divisors ©* — 2, and in this theory all divisors will be principal. Indeed,
break up the set of all nonzero elements of © into classes of associate elements,
and consider the set 2 of all such classes. For o € O*, denote by («) the class
of elements associate with a. It is easily seen that under the operation of multi-
plication («)(8) = («f}), the set 2 becomes a semigroup with unique factori-
zation, and that the mapping o — (2), « € O*, defines a theory of divisors
for the ring ©. [The prime divisors in this theory are just the divisors of the
form (m), where n is a prime element of ©.] By Theorem 1 any theory of
divisors for this ring coincides with the one just constructed.

Assume now the converse, that we have for some ring O a theory of divisors
O* > 2, in which all divisors of 2 are principal. We now show that an element
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n # 0 of the ring © will be prime if and only if the corresponding divisor (r)
is prime. Indeed, if (7) = p is a prime divisor and y divides # in the ring O,
then the divisor (y) must divide p (in the semigroup 2) and then, since p is
prime, either (y) is equal to p or to the unit divisor e. In the first case y is
associate with n, and in the second case y is a unit in O, and this means that
is a prime element of the ring ©. Now let («) be neither prime nor the unit
divisor. Then (x) is divisible by some prime divisor p = (r), and « is divisible
by the prime element n and is not associate with it. Hence « cannot be prime.

We have shown that if every divisor is principal, then the element r is prime
if and only if the divisor (n) is prime.

Let o be any element of O*. If we have the factorization

(@D)=vpy-p, 3.1

in @ (the prime divisors p, are not necessarily distinct), and if p, = (m), ...,
p, = (n,), then in the ring O we have the factorization

o =¢gmy W, (3.2)

where ¢ is a unit of the ring ©. Since any factorization of the form (3.2) induces
a factorization of the form (3.1), we must have unique factorization in the
ring O.

We have obtained the following result.

Theorem 2. In order that the ring © have unique factorization, it is
necessary and sufficient that © have a theory of divisors O* — 2 in which
every divisor of 2 is principal.

3.3. Divisors and Integrally Closed Rings

We have already noted that not every ring has a theory of divisors. The
existence of a homomorphism « — («) which satisfies the requirements of a
theory of divisors imposes strong restrictions on a ring. One such restriction
is given in the following theorem.

Theorem 3. If the ring © has a theory of divisors, then D is integrally
closed in its quotient field K.
Proof. Assume that the element & of K satisfies an equation
6n+a16"_1+"'+an—16+an=0 (al,“-,aneD):

but does not belong to ©. We represent it in the form & = «/f, where « € ©
and § € D, and decompose the principal divisors () and () into prime factors.
Since a is not divisible by B in the ring © (we have assumed that £ ¢ D), («) is
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not divisible by () [by condition (1)]. This means that some prime divisor p
occurs in (f) with greater exponent than in (). Let p occur in () with exponent
k > 0. Since () is divisible by p**!, we deduce by condition (2) that the right
side of

n

o = —afa"t — e — g

is divisible by p*"*!. But p occurs in (") = («)” with exponent kn, and thus «”
is not divisible by p*"*!. This contradiction shows that £ € O, and Theorem 3
is proved.

Another necessary condition for the existence of a theory of divisors is
given in Problem 1.

Since the only orders in algebraic number fields which are integrally closed
are the maximal orders, only maximal orders can possibly have a theory of
divisors.

3.4. The Theory of Divisors and Valuations

We now turn to the question of the practical construction of theories of
divisors. We first assume that a theory of divisors ©* — 2 exists for the ring O,
and then proceed to clarify how this theory could be constructed.

Taking an arbitrary prime divisor p, we can construct with it a function
v,(), which is similar to the p-adic valuation with respect to a prime p which
was constructed in Chapter 1. Namely, for any a # 0 of O, by v,(a) we denote
the power to which p enters in the factorization of the prmc1pal divisor ()
into prime factors. Clearly, v («) is characterized by

p*@a and  p*@*lya.

Since zero is divisible by arbitrarily large powers of p, it is natural to set

v,(0) =
It easily follows from the definition that
vo(@f) = v, (2) + v, (D), (3.3)
vo(@ + B) = min (v,(), v,(B)) (3.4

[for the proof of (3.4) we must use condition (2)].
The function v (2) can be extended to the quotient field K of the ring O
in such a way that (3.3) and (3.4) still hold. Forany £ = «/f € K (a, € D) set

Vp(8) = vp(@) — V().

The value of v,(£) ciearly does not depend on the choice of the representation
of & in the form & = «/p. It is now easily verified that (3.3) and (3.4) still hold
for the extended function v, .

We shall now see what values the function v («) takes as « ranges through K.
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Since the divisors p and p? are distinct, by condition (3) there is an element
7 € © which is divisible by p but not by p?. For this element we have v,(y) = 1.
But then v,(y*) = k for any integer k. Hence the function v,(«) takes on all
rational integral values.

Definition. Let X be any field. A function w(«), defined for a € K, is called
a valuation of the field K, if it satisfies the following conditions:

(1) v(x) takes on all rational integral values as a ranges through the nonzero
elements of K; v(0) = o0 ;

(2) v(@p) = ) + v(B);

(3) v(a + B) = min (v(a), ¥(h)).

We can now say that every prime divisor p of the ring O determines a
valuation v,(a) of the quotient field K. It is easily seen that distinct prime
divisors determine different valuations. For if p and q are distinct prime
divisors, then by condition (3) the ring © contains an element y divisible by
p and not divisible by g. But then v (y) > 1 and v (y) = 0, and hence v, #v,.

All valuations of the field K of the form v, clearly satisfy

v(@ >0 forall «eD. ' 3.5

In terms of valuations we can give a simple expression for the factorization
of the principal divisor («), « € O*. The prime divisors which enter into this
decomposition are characterized by v, («) > 0. Then we have

(@) = [T p>, (3.6)

where p; runs through all prime divisors for which v () > 0.

We thus see that the semigroup & of divisors and the homomorphism O — 2
are completely determined by the set of all valuations v, of the field K which
correspond to prime divisors p. For the set of all divisors and the operation of
multiplication are determined as soon as the set of all prime divisors is known
(each divisor is a product of prime divisors with nonnegative exponents, and
when divisors are multiplied the corresponding exponents are added). But the
prime divisors are in one-to-one correspondence with the valuations v, .
Finally, the homomorphism O* — & is determined from (3.6).

This means that the concept of a valuation can be used as a foundation for
the construction of a theory of divisors. We shall proceed to develop this idea.

We must first answer the following important question: How can we
characterize the set M of valuations of the field K which must be taken to
construct a theory of divisors for the ring O?

The product (3.6) can contain only a finite number of factors. Hence, for
any fixed a € O*, the condition v () = 0 must hold for almost all valuations
of the set M (by ““ almost all” is meant * for all but a finite number ).
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From (3.5) we see that for all v e ! we must have v(«) > 0 if « € O. Con-
versely, assume that for some & # 0 of K we have v(&) > 0 for all ve N. If we
represent ¢ in the form & = a/f (a, f € O), then we have v(a) = w(B) for all
v € M. But this means that the principal divisor (o) is divisible by the principal
divisor (). Condition (1) now implies that « is divisible by § in the ring O;
that is, £ € ©. We hence have a second necessary condition: The set of valua-
tions M must be such that v(a) > O for all v € N if and only if « is an element
of the ring O.

We now give another necessary condition for R. Take any finite set of
valuations v, ..., v,, of R which correspond to the prime divisors py, ..., P, -
If ki, ..., k, are fixed nonnegative integers, we consider the divisor a =
p*t .- p P From condition (3) it follows that the ring O contains an
element «; which is divisible by a; = ap; - p,_; P;+1 - P and not divisible
by a;p; (1 < i < m). Consider the sum

=0y + ot a,.

Using condition (2), we easily find that « is divisible by p;* and not divisible
by p/*'. Hence the set 9t must satisfy the following condition: For any
valuations vy, ..., v,, of i and for any nonnegative integers k,, ..., k,, there
exists an element « in the ring O for which v(a) = k; (1 < i < m).

The necessary conditions which we have found on :t will now be shown
sufficient to construct a theory of divisors for the ring O. To prove this, take a
semigroup 2 with unique factorization, with the prime elements in one-to-one
correspondence with the valuations of the set . The valuation v € N, which
corresponds to the prime element p € 9, will again be denoted by v,. By the
first and second conditions, for any « € O* the product (3.6) will make sense
[the exponents v, () are nonnegative and almost all of them are zero]. Since
v(af) = v(a) + v(f) the mapping o — («) will be a homomorphism from O*
to 2. From the second condition it easily follows that o is divisible by § in
the ring O if and only if v(a) = v(f) forall v € M. Hence condition (1) is satisfied.
Condition (2) is implied by the inequality v(o¢ £+ ) = min (v(x), v(8)). If a
and b are two different elements of 92, then some prime element p occurs in
their factorizations with different exponents, say, k¥ and /. Let k < /. By the
third of the above conditions there is in © an element « which is divisible
by a and for which v,(a) = k. But then « is not divisible by b. This shows that
condition (3) is also satisfied. Hence the homomorphism O* — & gives us a
theory of divisors for the ring O.

We formulate the results which we have obtained.

Theorem 4. Let O be a ring with quotient field K, and let 9 be a set of
valuations of K. In order that the valuations of 9 induce a theory of divisors
on D it is necessary and sufficient that the following conditions hold:
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(1) For any a # 0 of O, v(«) = 0 for almost all valuations v € R.

(2) An element o of K belongs to © if and only if v(«) > 0 for all ve .

(3) For any finite set of distinct valuations vy, ..., v, of 9 and for any set
of nonnegative integers ki, ..., k,,, there is an element « € O for which

vl(a) = k19 ers vm(a) = km'

Hence the construction of a theory of divisors for the ring O is reduced to
the construction of the corresponding set 9t of valuations of its quotient
field K.

We shall not enter here into the determination of those integrally closed
rings for which a theory of divisors can be constructed (see, for example, the
book ‘“Modern Algebra” by van der Waerden, Section 105, Ungar, New
York, 1950). In Section 4 we show that if o is a ring with quotient field k&
and O is the integral closure of o in some finite extension field X of k, then if o
has a theory of divisors, so does ©. Since the ring Z has a theory of divisors
(being a ring with unique factorization), then we will have proved that there
is a theory of divisors for the maximal order of any algebraic number field.

The set of valuations 3t of the field K which must be taken to construct a
theory of divisors depends essentially on the ring O, and, in general, this set
will not consist of all valuations of the field K (Problem 6). It can even happen
(Problem 7) that condition (1) of Theorem 4 will not hold for the set of all
valuations of the field K. We now show, however, that in the case of the ring Z
of rational integers, we must take all valuations of the field R of rational
numbers (we shall see in the future that this is also true for maximal orders of
algebraic number fields).

To each prime number p € Z (that is, the prime divisor of the ring Z) there
corresponds the valuation v, of the field R, the value of which is given for the
nonzero rational number

na

xX=p 5 3.7
(a and b integers not divisible by p) by

v(x) = m. (3.8)

This valuation v, is called the p-adic valuation of the field R [it is clear that
the valuation (3.8) coincides with the p-adic valuation of the field R of p-adic
numbers; see Section 3.2 of Chapter 1].

Theorem 5. Every valuation of the field of rational numbers is of the form
v, for some prime p.
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Proof. Let v be any valuation of the field R. Since
v(l + -+ + 1) = min (v(1), ..., (1)) =0,

then v(n) = O for all natural numbers n. If v(p) = O for all primes p, then we
would also have v(a) = O for all @ # 0 of R, which is impossible by condition (1)
of the definition of a valuation. Hence for some prime p we must have
v(p) = e > 0. Suppose that for the prime g # p we also had v(g) > 0. Then
from the equation pu + gv = | (v and v rational integers) we obtain

0 = v(pu + qu) Z min (v(pu), v(qv)) = min (v(p), v(9)) > 0.

This contradiction shows that v(¢) = 0 for all primes ¢ except p. Hence v(@) = 0
for all integers a not divisible by p. For the rational number (3.7) we thus have

v(x) = mv(p) + v(a) — v(b) = me = ev,(x).

Since the valuation v must take on all integral values, e = 1 and hence v = v,.
Theorem S is proved.

Note that Theorem 5 could easily have been deduced from Theorem 3 of
Section 4, Chapter 1, the second part of the proof of which we have essentially
repeated above.

We conclude this section by considering another special case.

Assume that for some ring © we have a theory of divisors O* —» & with
only finitely many prime divisors py, ..., p,,. Denote by v,, ..., v,, the corre-
sponding valuations of the quotient field K. By condition (3) of Theorem 4
for any divisor a = p;** --- p,*~ (k; = 0), there is an element « € O for which
v (@) = ky, ..., vu() = k,,. But this means that the divisor a coincides with
the principal divisor («). Thus all divisors of & are principal, and the ring ©
has unique factorization (Theorem 2). If p, = (7)), ..., pn, = (%), then the
elements 7, ..., 7, constitute a complete set of pairwise-nonassociate prime
elements of the ring © and every element « € ©* has a unique representation
in the form

o =em % -om

where ¢ is a unit of the ring ©. The prime elements «,, ..., &, are clearly

characterized by
viny=1, v{(n)=0 forj #1.

We have obtained the following result.

Theorem 6. If for some ring O we have a theory of divisors with only a
finite number of prime divisors, then © has unique factorization into primes.
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PROBLEMS

1. If the ring © has a theory of divisors, show that every element of £ has only a finite
number of (nonassociate) factors.

2. Show that in any theory of divisors any divisor is the greatest common divisor of
two principal divisors.

3. Let K= k(x) be the field of rational functions over a field & and let @ be some irre-
ducible polynomial in k[x]. Every nonzero rational function « of K can be written in the
formu = @*(f/g), where fand g are polynomials in &{x] which are not divisible by . Show
that the function v,,, given by v,(u) = &, is a valuation of the field K.

4. If fand g are nonzero polynomials of k{x] of degrees n and m, and u = f/g € k(x),
set v*(u) = m — n. Show that the function »* is a valuation of the field K = k(x).

5. Let v be a valuation of the field k(x) such that v(a) = O for all nonzero a in k. Show
that v is either of the form v, (for some irreducible polynomial @ € k[x]) or else v = v*
(see Problems 3 and 4).

6. If weset © = k[x],determine the set M of valuations of the ficld K = k(x) which satisfies
the conditions of Theorem 4. Further, determine the set R for the ring £ = k[1/x].

7. Let K = k(x, y) be a field of rational functions in two variables over the field k. For
any natural number » set x, = x/)". A nonzero rational function = u(x, y) € K can be
represented in the form

Sy y)

u=u(xy", y) =y e

where the polynomials fand g are not divisible by y. If we set v,(«) = k, show that the function
v, Is a valuation of the field K. Further, show that the valuations v, (n > 1) are all distinct,
and that for all of them v,(x) > 0.

8. Formulate and prove an “ Eisenstein irreducibility criterion” for polynomials over
any ring ® with a theory of divisors.

9. Show that if a ring O has a theory of divisors, then its quotient field K has algebraic
extensions of all degrees.

10. Let f be a nonzero polynomial in the ring © = k[x, y] of polynomials in two variables
over the field k. Denote by (¥ f) the smallest degree of a monomial which appears in f with
nonzero coefficient. Show that the function ¥ can be extended to a valuation of the field of
rational functions A(x, y). Denote by % the set of all valuations of the field k(x, y) which
correspond to irreducible polynomials of the ring £, and let R, be obtained from % by
adjoining 7. Which of the conditions of Theorem 4 are not fulfilled for the ring © and the
set N, of valuations?

4. Valuations

Theorem 4 of Section 3 reduces the problem of constructing a theory of
divisors for an integrally closed ring O to the determination of a set of valua-
tions of the quotient field K which satisfy the conditions of the theorem. We
turn to a systematic study of valuations.
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4.1. Simple Properties of Valuations

From the definition of a valuation of a field K (Section 3.4) we immediately
obtain

v(+1)=0
V(—a) = va)
(5) =@ —vm. @20,
v(o") = nv(a) neZz,
v(a, + -+ + a,) = min(W(ay), ..., W)
Now assume that v(a) # v(B). If v(a) > v(B), then v(a + B) = v(f). On the

other hand, since f=(x+ f)—a, v(f) > min (v(z + f), v(x)), so that
v(B) = v(x + B). Hence

Wa + B) = min (v(@), ) if v(x) # v(p). @.1)
By induction we obtain
vy + - + a,) = min (W(ay), ..., Wa,)),

provided that the minimum value of v(o,), ..., v(a,) occurs only once.

Definition. Let v be a valuation of the field K. The subring O, of the
field K consisting of all elements « € K for which v(a) > 0 is called the ring of
the valuation v. The elements of O, are called integral with respect to the
valuation v.

It is clear that all three conditions of Theorem 4 of Section 3 are fulfilled
for the ring O, and the set N consisting of the single valuation v. Hence the
ring O, has a theory of divisors with a single prime divisor. From Theorems 3
and 6 of Section 3 we obtain the following results.

Theorem 1. The ring O, of the valuation v of the field K is integrally
closed in K. °

Theorem 2. The ring O, has (up to associates) a single prime element =,
and any element o # 0 of O, has a unique (for fixed n) representation in the
form a = ¢n™, where ¢ is a unit in O, (m > 0).

The prime element rn is clearly characterized by v(n) = 1.
In the ring O, , as in any ring, we can consider congruences with respect to
the elements of O, (see the Supplement, Section 4.1). Since congruences
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modulo associate elements are equivalent, the ring of residue classes modulo
the prime element © does not depend on the choice of © but is completely
determined by the ring ©O,. We denote this ring of residue classes by X, and
will now show that it is a field. For if « € O, and a # 0 (mod =), then v(a) =0
and this means that o is a unit in ©,. Then « has an inverse ¢ and af =
1 (mod =), since af = 1.

The field Z, is called the residue class field of the valuation v.

4.2. Independence of Valuations

Let the ring © have a theory of divisors O* - 2, and let p,, ..., p,, be
distinct prime divisors of 2. By Theorem 4 of Section 3 there correspond to
these prime divisors valuations v,, ..., v, of the quotient field K, and these
valuations are independent in the sense that there exist elements in K on which
they take on any given set of values k,, ..., k,,. For if we set k;/ = max (9, k)),
i=1,..,m, and k;" = min (0, k), then by condition (3) of Theorem 4 of
Section 3 we can find elements « and g in © for which v (a) =k, and
v{B) = —k,”, and then for the quotient ¢ = a/f we will have v,(&) =k;
a<ism).

We now show that this property of independence does not depend on the
fact that the valuations v; corresponded to prime divisors in some theory of
divisors, but is true for any finite set of valuations.

Theorem 3. If v, ..., v,, are distinct valuations of the field K, then for any

rational integers &y, ..., k,, there exists an element ¢ € K for which
vi(&) =ky, ..., vi(E) = k.

Let O, ..., 0, denote the rings of the valuations v;, ..., v, and set
O =", O;. Conditions (1) and (2) of Theorem 4 of Section 3 are clearly
fulfilled for the ring © and the set M consisting of the valuation sv,, ..., v,.
From the formulation of Theorem 3 we see that condition (3) also holds, and
hence the ring O has a theory of divisors with a finite number of prime divisors.
Thus Theorem 3 implies that for any finite set of valuations v,, ..., v, of the
field K we have a theory of divisors for the ring © = N/~ ,; O. From Theorem 6
of Section 3 we then derive the following result.

Corollary. If v, ..., v, are distinct valuations of the field K with rings
D, ..., O, then the intersection O = N, O; is a ring with unique factoriza-
tion. Further, each nonzero element of © has a unique representation in the
form a = en*' - m,*, where ¢ is a unit in O, and =,, ..., 7,, are fixed prime
elements of O characterized by

vi(ny) = 1, vj(ni) =0 (j#9).
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Proof of Theorem 3. For m = 1, the assertion of the theorem is contained
in the definition of a valuation. Assume that m > 2 and that the case of m — 1
valuations has already been proved. We show that then there do not exist
rational integers ¢, ..., ¢,,, not all zero, for which

(O + -+ (&) =0 4.2)

for all nonzero £ € K. Assume the contrary, that is, that (4.2) does hold.
Among the coefficients at least two must be nonzero and have the same sign
[otherwise there would be only two nonzero coefficients, say, ¢, and ¢, , with
¢; >0 and ¢, <0, and then from ¢;v (&) + ¢,v,(&) =0 we would obtain
v, (&) = ev,(&) with positive e, and this is possible only for e = 1 and v; = v,].
Changing the numeration, if necessary, we can write (4.2) in the form

vi(€) = @vy(d) + -+ + aaval(d), (4.3)

where at least one of the rational coefficients a; is negative. By the induction .
hypothesis there exist elements § and f’ in the field X such that

vi =0, v(p)=1 if a; >0,
viBy=1, v(f)=0 if a; <0,

foralli=2,...,m. Then
v(B) <0, v(f)=0. (4.4)

Consider the sum § + f'. Since one of the numbers v(f)and v()(i = 2, ..., m)
equals 0 and the other equals 1, then v(g + ') = min (v/(f), v(8")) = 0. From
the relation (4.3) we therefore obtain v,(f + ") = 0. On the other hand, from
(4.4) we obtain

vi(f + B) = min (v{(B), () <O.

This contradiction proves that (4.2) is impossible.

Let © now denote the intersection of the rings of the valuations v,, ..., v,,,
and let E denote the group of units of this ring. Let n,, ..., n,, denote prime
elements of O, numbered so that v(z;)) =1 (i = 2, ..., m) (recall that for the
case of m — 1 valuations, Theorem 3, and hence also its corollary, are assumed).
We now show that the valuation v; cannot be identically zero on the group E.
Any element £ € K* can be written in the form

Emen e m b, (4.5)
where c€ E, k; = v{(&) 2 <i< m). If vi(e) = 0 for all ¢ € E, then from (4.5)

we would obtain
vl(é) = kzvl(nl) + -+ kmvl(nm)’

which can also be written in the form

Vl(é) = aZVZ(é) + ot amvm(é)’
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where the rational integers a; = v,(n;) do not depend on &, and this contradicts
the fact that a relation of the form (4.2) is impossible. Hence the group E
contains elements on which the valuation v, is nonzero.

Choose an element y in the group E on which the valuation v, takes its
smallest positive value /. It is clear that all values of v, on E are divisible by /.
We shall show that / = 1. If all the values a, = v,(n,), ..., a,, = v,(%,,) were
divisible by /, then we would deduce from (4.5) that all values v,(¢) of the
valuation v, are divisible by /, which is possible only for / = 1. Consider the
case where not all a, are divisible by /, say, a, is not divisible by /. Consider
the element

a=my(ny - nm)’}’s,

where s is an integer chosen so that the number .
02 + I(a3 + -+ am) + SI = 11

satisfies the inequality O </, < /. It is clear that v,(a) =/, and v (a) > 0 for
i=2,..,m Set
=7+

Since v(&) = min (v{y), v{(®)) =0 for all i =2, ..., m, then ¢ € E. But at the
same time,
vi(e)=min(/, ) =1,

which contradicts the choice of y. This shows that the case when not all g;
are divisible by / is impossible, and hence [/ = 1.

We may now assume that the prime elements n; (2 < i < m) of the ring O
are chosen so that v(n;) = a; = 0. For each &; can be replaced by n;/ = n;y ™%,
for which v,(n)) = a; — ayv(y) =0.

Setting n; =y, we have obtained a system of elements n,, n,, ..., n,,, for
which v(n;) =1 and v,(n;) = 0 for j #i. If now ki, ..., k,, are any integers,
for the element & = ,** .- 1, *~ we have

vl(é) = kl’ ey vm(é) = km'
Theorem 3 is proved.

From Theorem 3 we easily deduce the following stronger result.

Theorem 4 (Approximation Theorem). If v,, ..., v,, are distinct valu-
ations of the field K, then for any elements £,, ..., &, of K and any integer N,
there exists an element ¢ € K for which

vl(é - él) 2 N’ LARR vm(é - ém) = N.
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Proof. Choose in K elements a, ..., «, such that v{a;) = —1, vj(x) =1
(j # i) and set
k k
L -
5—1+a1k§1+ +1+amk§m-

Since v;(a*) # 0 = v(1) for all natural numbers k, then by (4.1) the value of
vi(1 + «*) equals O for i # j and equals —k for i = j, so that

o ., ~1
vj 5 ok =k for i#j and v; ey = k.

Hence

V(E—-E) > m.in (k + v;(&)).

It is clear that ¢ will satisfy the theorem provided

k> N —min v(¢).
i.j

4.3. Extension of Valuations

Let k be a field and X a finite extension of k. If v is some valuation of the
field K, then by restricting v to the field & we obtain a function which clearly
satisfies conditions (2) and (3) in the definition of a valuation (Section 3.4).
The first condition may not be satisfied ; that is, the values of v on the elements
of kK may not exhaust the group Z. But v cannot be identically zero on k. If
this were the case, then the field £ would be contained in the ring of the valua-
tion v, and since that ring is integrally closed (Theorem 1), then K would also
be contained in it, and this is impossible. Thus v(a), a € k*, takes on both
negative and positive values [if v(a) < 0, then v(a™!) > 0].

Let p denote any element of k& on which v takes its least positive value
v(p) = e. Then for any a e k* the value v(ad) = m is divisible by e. For if
m=es+r, 0<r<e, then v(ap™%) = m — se = r, so by the minimality of e
we have r = 0. Now setting

vo(a) = %a) , (aek®), vy(0)= oo, (4.6)
we obtain on k a function v, , which takes all integral values and which con-
sequently is a valuation of the field k.

Definition. Let X be a finite extension of the field k. If the valuation v,
of the field k is related to the valuation v of the field K by (4.6), then we say
that v, is induced on k by the valuation v, and v is an extension of v, to the
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field K. The uniquely determined integer e which appears in (4.6) is called
the ramification index of v with respect to v, (or with respect to the subfield k).

Note that in this definition when e > 1, the term extension of a valuation
does not correspond to the usual concept of the extension of functions to
larger domains of definition.

It follows from the above that every valuation v of K is induced by a unique
valuation v, of k. The converse assertion is also valid, that is, for any valuation
vy of k there exists an extension to K (which is, in general, not unique). The
proof of this fact is fairly difficult, and we shall give it in the next section. First,
we consider some properties of extensions of a given v, , assuming that such
extensions exist.

Let k = K = K’ be a tower of finite extensions, and let vy, v, v be valuations
of the fields k, K, K’. It is clear that if v is an extension of v, with ramification
index e, and v’ an extension of v with ramification index ¢’, then v’ is an ex-
tension of v, to the field X’, and the ramification index of v' with respect to v,
is equal to ee’. It is also easy to see that if v and v, are induced by the valuation
v/, then v is an extension of v,.

Lemma 1. If K is a finite extension of the field k of degree n, then any
valuation v, of the field k has at most » extensions to the field K.

Proof. Let v, ..., v,, be distinct extensions of v, to the field K. By Theorem 3
we can find elements &,, ..., &, for which v(£;) =0 and v/(&;) = 1 for j # 4.
We shall show that these elements are linearly independent over k. Consider
the linear combination

? =al§1 + o+ amém

with coefficients a; of k, not all zero. Set k = min (vy(a,), ..., vo(a,,)), and let
i be such that vy(a;,) = k. Denoting by e the ramification index of v; with
respect to k, we have

Viol@i,Cip) = evolay,) + v (&) = ek,
vila;g) =evola) +vi(E) = ek + 1 (J #ip),
and therefore
vi,(y) = min (vi(a,&)), ..., vi(anén) = ek,

so that y # 0, which proves our assertion. From the linear independence of
the elements &, ..., &, over the field k, it follows that m < (K : k), and this
means that the number of extensions v; is not greater than »n. Lemma 1 is
proved.
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Assume now that v, ..., v, are all extensions of a fixed valuation v, of a
field k to a finite extension K. Let o denote the ring of the valuation v, and D
its integral closure in the field K, and let O, ..., O,, denote the rings of the
valuations vy, ..., v, . Since o < D;, and the ring O; is integrally closed in K,
then © <« O; fori=1, ..., m, and hence

D=N9Y,.
i=1

Later we shall see that equality actually occurs here. If this is so, then by
the corollary of Theorem 3, © has unique factorization with a finite number
of nonassociate prime elements. Since the nonassociate prime elements
7y, ... s M, Of the ring O are in one-to-one correspondence with the valuations
Vis ...y Vn, We Obtain a method for constructing valuations of K which are
extensions of the valuation v, .

So assume that we know that the ring O, the integral closure of the ring
of the valuation v, in the field K, has unique factorization with a finite number
of nonassociate prime elements. From Theorem 6 of Section 3, this assumption
is equivalent to the existence in O of a theory of divisors with a finite set of
prime divisors py, ..., p,. We shall show that then the valuation v, has pre-
cisely m extensions to the field K, these being the valuations vy, ..., v, of the
field K which correspond to the prime divisors py, ..., P,.

Let p be any prime element of the ring o of the valuation v, [that is, any
element of k such that vo(p) = 1], and let =y, ..., 7, be a complete set of non-
associate prime elements of the ring © [numbered so that v(=n;) = 1]. Since
o <O, the element p has a factorization

p=en W, 4.7)

in the ring O, with nonnegative exponents e; (¢ a unit in O). Now if 4 is any
element of k* and vy(a) = s, that is, @ = p*u, where u is a unit in o, then in O
we have

v{a) = e;s = evola). (4.8)

If e; = 0, then v; would be identically zero on £*, and we saw at the start of
this section that this is impossible. Hence e; > 0. Formula (4.8) now implies
that each of the valuations v; (i = 1, ..., m) is an extension of v, to the field K.
We also obtain that e;, the ramification index of v; with respect to v, , is given
by (4.7)

Assume now that v is an extension of the valuation v, to the field K. Since o
is contained in the ring of the valuation v, so is its integral closure O, that is,
v(a) = 0 for all « € O, and this means that v(¢) = 0 for all units¢ € ©. If v were
distinct from v, ..., v,,, then by Theorem 3 there would be a unit ¢ of the ring
O such that v(¢) # 0. Hence v must be one of the v;.
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Hence every extension of the valuation v, to the field K is one of the valua-
tions vy, ..., v,,. By condition (2) of Theorem 4 of Section 3 we also obtain
that the integral closure O of the ring o in the field K consists of all elements
a € K for which v (a) > 0 for all extensions v;. If we again denote the ring of
the valuation v; by ©;, we can state this last result as

OD=N5,. 4.9)
i=1
We have shown that to guarantee the existence of extensions of the valuation
v, to the field K and to give a complete description of all extensions, it suffices
to verify that the ring © has unique factorization (with a finite number of
nonassociate prime elements).

4.4 Existence of Extensions

Let, as before, k be a field with a valuation vy, o the ring of the valuation v,
and p a prime element of the ring o. We denote the residue class field of the
valuation v, by Z,. For each element a € o we denote the corresponding
residue class modulo p by a. We then have a = b in the field £, if and only if
a = b (mod p) in the ring o.

Now let K be a finite extension of k& and let © be the integral closure of v
in K.

Lemma 2. If the number of elements of the residue class field £, of the
valuation v, is not less than the degree of the extension K/k (in particular, if
the field X, is infinite), then the ring © is Euclidean and hence has unique
factorization. The ring O then contains only a finite number of pairwise-
nonassociate prime elements.

Proof. We define o € K* a function |a|, by setting

“ o “ = 2VO(NK/k¢).

It is clear that this function satisfies ||af| = [l«| - 8] (x, B € K*). If a € O,
then |«f is clearly a natural number. We must show that for any pair of
elements o and f # 0 of D there exist £, p € O, such that

o« = B¢+ p, (4.10)

where p is either zero or else | pl| < |B].

If « is divisible by f in the ring O, that is, « = fy, where y € O, then (4.10)
holds with £ =y and p = 0. Assume that « is not divisible by f, that is, that
the element y = i~ does not belong to O. Let f() = 1"+ ;" ' + - + ¢,
(c; € k) be the characteristic polynomial of the element y with respect to the
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extension K/k. Since y ¢ O, not all the coefficients ¢; belong to o. If min, ¢;<,
vo(e;) = —r < 0, then all coefficients of the polynomial ¢(t) = p”f(¢) will belong
to the ring o, and at least one of them will be a unit in 0. We now replace all
coeflicients of ¢(t) by the corresponding residue classes modulo p. Since the
leading coefficient of ¢(¢) is p", which is divisible by p, we obtain a polynomial
@(t) of the ring Z,[t] of degree <n — 1, where not all coefficients are zero.
Since we have assumed that the field X, contains at least # elements, there is
an element « € o for which the residue class a is not a root of @(t). This means
that ¢(a) # 0 (mod p); that is, ¢(a) is a unit in the ring 0. We now compute
lly — all. The characteristic polynomial of y — a equals /(¢ + a), and therefore

Ngply —a)=(—1)'f(@)=(—1)"p(a)p™",
so that
ly —all =27"<1, [o—apl <I|Bl]-

Hence (4.10) is satisfied if we set ¢ =a, p = a — af.

We have shown that © is a Euclidean ring, and thus by Theorem 2 of
Section 2 it has unique factorization.

Let n be any prime element of the ring . Since for any a € O*, its norm
Ng(@) is always divisible by «, then Ny, () = p’u is divisible by n (u is a
unit of o, f = 1). But since = is prime and factorization into primes is unique,
the element p is also divisible by 7. Hence, if p has the factorization

— e e,
p_gnll...n—m"l

in the ring O (¢ a unit in D), then the prime elements =,, ..., ©,, form a com-
plete set of nonassociate primes of O.
The proof of Lemma 2 is complete.

We now turn to the proof of the basic results of this section.

Theorem 5. Any valuation v, of the field & can be extended to any finite
extension K of k.

Theorem 6. Let o be the ring of the valuation v, , and let O be its integral
closure in the field K. If v, ..., v, are all extensions of the valuation v to the
field X, and Oy, ..., O,, are their rings, then

D = nDi'
i=1

1

Theorem 7. Under the same notations, the ring O has unique factorization,
and the set of valuations of K which correspond to prime elements of O is
precisely the set of all extensions vy, ..., v,, of the valuation v, to the field K.
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If the prime elements =y, ..., m,, of the ring © are ordered so that v(r,) = 1,
and if the prime element p of the ring o has the factorization

p=¢en,° - m°" (¢ a unit in D),
then e, is the ramification index of the valuation v; with respect to v, .

Proof. If we assume that Theorems 5 and 6 have already been proved, then
by the corollary of Theorem 3 the ring has unique factorization (with a finite
number of nonassociate prime elements), and hence all results obtained in the
second half of Section 4.3 are valid. But these results are precisely the contents
of Theorem 7.

Theorems 5 and 6 will be proved by induction on the degree n of the exten-
sion K/k. For n = 1, there is nothing to prove. Let n > 1 and assume that
Theorems 5 and 6 have already been proved for all extensions of degree <n
for any ground field &.

If the residue class field Z,, of the valuation v, contains at least n elements,
then by Lemma 2 the ring © has unique factorization, and hence the theorems
are valid by what was proved in Section 4.3 [see (4.9)].

Hence we need only consider the case when the number g of elements of
the residue class field X, is finite and less than #n. We reduce this case to ones
already considered by extending the ground field & to a field k', so that, first,
the degree (k': k) = n — 1 (by the induction hypothesis there is then an exten-
sion of the valuation v, to a valuation v,” of the field k'), and, second, the
residue class field X' of the valuation v, already contains not less than n
elements. If we then denote by K’ the smallest field containing both k" and K,
the conditions of Lemma 2 will be fulfilled for the extension K’/k’ and the
valuation v,". We carry out this plan as follows.

We know (Supplement, Section 3) that over any finite field there are irre-
ducible polynomials of all degrees. Let §(¢) be an irreducible polynomial of
degree n — 1 with coefficients in the field Z, , and leading coefficient equal to 1.
Each of its coefficients is a residue class of the ring o modulo p. Replacing
each class by one of its elements (and taking the leading coefficient to be 1),
we obtain a polynomial ¢(¢) of the ring o[¢], which is irreducible over the
field k. Indeed, if ¢(r) were reducible over the field k, then it could be factored
as a product of polynomials with coeflicients in o, and after passing to the
residue class field we would obtain a factorization for ¢(t), which contradicts
the choice @(t). We now construct the extension field K’ = K(#), where 8 is a
root of the polynomial ¢(¢). The degree of the extension K'/K does not exceed
n — 1 [the polynomial ¢(#) may be reducible over the field K]. In K’ we consider
the subfield &’ = k(6). Since ¢(t) is irreducible over k, we have (k':k) =n — 1.
Let vy’ be any valuation of the field k" which is an extension of the valuation v,
(the existence of v, is guaranteed by the induction hypothesis). Let o', p’, and
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¥’ denote the ring of the valuation vy, a prime element of the ring o', and the
residue class field of o’ modulo p’. Two elements a and b of o are congruent
modulo p’ (in the ring o') if and only if they are congruent modulo p in the
ring o. Hence those residue classes of o’ modulo p’ which contain an element
of o form a subfield of ¥’ isomorphic to X,. Having in mind this uniquely
defined isomorphism Z,— X', we shall assume that £, < X'. Since the
element 8 is the root of a polynomial with coefficients in b and with leading
coefficient 1, then 0 € o’ (since o' is integrally closed). Let § denote its residue
class in X'. The equation ¢(6) = 0 can be reduced modulo p’ and gives us
@(0) = 0. Since § was chosen to be irreducible over the field £, , the powers
1, 8,...,8 % are linearly independent over I,. This means that the field
I’ contains ¢" ! elements (g is the number of elements of the field X,). But
now

(K': K)(K:k) (n—1)n

< =n

KK =— o S

Since ¢ > 2 and n = 2, we have

Since the number of elements in the residue class field Z’ of the valuation vy’
is not less than (K':k’), v," extends to a valuation v’ of the field K’. Since v’
is an extension of v, to K’, the valuation v, induced by v’ on the field X, is also
an extension of the valuation v, (see Section 4.3). Theorem 5 is proved.

To complete the proof of Theorem 6 we first show that vy’ is the only
extension of v, to a valuation of the field k’. Assume that vy is another extension
of the valuation v, to the field k. By Theorem 3 the field k' contains an element
y such that vy'(y) = 0, v4"(y) > 0. Since the powers 1, 8, ...,8" "2 form a basis
for k' over k, the element y can be represented in the form

y=pco + 10 + - + ¢, 077 %) = pa,

where all coefficients ¢; belong to o and at least one of them is a unit in 0. We
saw above that 0 € o’ and the classes 1, 6, ..., 8"~ 2 of ¥’ are linearly inde-
pendent over X, . Hence the residue class
q=7Co+ &40+ - + 50" 2

is nonzero (since at least one of the coefficients c; is nonzero). This means
that o is not divisible by p' (in the ring o’); that is, v,'(2) = 0. Analogously
we obtain v,"(a) = 0. Comparing the conditions vy'(y) = 0 and v,'(a) = 0 with
y = p*a, we see that k = 0, and hence v,"(y) = v,"(2) = 0. But this contradicts
the choice of y. Thus the valuation v, has only one extension to the field k.

Since Theorem 6 is assumed valid by induction for the extension k'/k, the
ring o’ of the valuation v," coincides with the integral closure of the ring o
in the field k’. Let O’ denote the integral closure of the ring o in the field K"
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Since o’ = O’ and the ring D' is integrally closed in K’ {(Supplement, Section
4.3), then O’ is also the integral closure of the ring o’ in the field X'. Let
v,y ..., v,/ be all extensions of the valuation v, to the field K’, and let
0, ..., D, be their rings. Since Theorem 6 holds for the extension K'/k’ (by
Lemma 2), then

O=N9Y,. (4.11)

The set of valuations v, is also the set of all extensions of the valuation v, to
the field K’. Equation (4.11) thus can be considered a proof of Theorem 6 for
the extension K'/k and the valuation v, .

Let v, ..., v, denote all valuations of the field K which are induced by one
of the valuations v;’, and let O, ..., O,, denote their rings. If v’ is an extension
of v;, thenclearly O, » K = D;. Noting that the intersection O’ n K coincides
with the integral closure © of the ring o in the field K, we have

m

D=0nK=A®;nK=ND,. .12)

j=1 i=1

Suppose now that there is an extension v of the valuation v, to K different
from v,, ..., v,,. Then by Theorem 3 there would be an element « in K for
which vi(a) = 0, ..., v,(@) = 0 (and hence « € D)and v(«) < 0. But this would
contradict the fact that © must be contained in the ring O, of the valuation v.
Thus v, ..., v, are the only extensions of the valuation v, to the field K.
Formula (4.12) coincides with the assertion of Theorem 6.

PROBLEMS

1. Show that an algebraically closed field has no valuations.

2. Let K = k(x) be a field of rational functions over the field k and let v be the valuation
of K corresponding to the polynomial x — a (a € k). Show that the residue class field =,
of the valuation v is isomorphic to k. Show further that two elements f(x) and g(x) of the
ring lie in the same residue class if and only if f(a) = g(a).

3. Let K = k(x) be a field of rational functions over the field k of real numbers, and let »
be the valuation of K corresponding to the irreducible polynomial x2 + 1. Find the residue
classfield ¥, of the valuation .

4. Let £, and D, be the rings of the valuations v, and v, of some field K. Show that if
D, < £,,then v; =v,.

5. Find the integral closure of the ring of 3-integral rational numbers in the field R(\/Ts)
and determine all extensions of the 3-adic valuation v; to this field.

6. For all prime numbers p find all extensions of the p-adic valuation v, to the field
R(V —1) and determine the corresponding ramification indices.
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7. Let K/k be a normal extension and v, a valuation of the field k. Show that if v is any
extension of v, to the field K, then all extensions have the form

V() =v(o(a)) (x€K),

where o runs through all automorphisms of K/k.

8. Let 4 be a field of characteristic p. Let K/k be a purely inseparable extension. Show
that a valuation v, of the field & has only one extension to the field K. [The extension K/k
is called purely inseparable if every element of K is a root of degree p* (s = 0) of some element
of k.]

9. Let & = ko(x, y) be a field of rational functions in x and y over some field ko . In the
field of formal power series ko {¢} (see Problem 7 of Section 4, Chapter 1, or Section 1.5 of
Chapter 4) choose a series &(t) = > =, cat" (¢, € ko) which is transcendental over the field
of rational functions kq(¢) [the existence of such series follows from the fact that the field
ko {t} has higher cardinality than the field k¢(¢), and hence higher cardinality than the set
of elements of kofr} which are algebraic over ko(#)]. For a nonzero polynomial f = f(x, y)€
kolx, y], the series f(¢, £(¢)) will be nonzero by choice of £.If #"is the smallest power of ¢ which
occurs in this series with nonzero coefficient, set vo(f) = n. Show that the function v, (after
suitable extension) is a valuation of the field k and that the residue class field of the valuation
is isomorphic to the field 4.

5. Theories of Divisors for Finite Extensions

5.1.  Existence

Theorem 1. Let the ring o with quotient field k& have a theory of divisors
o* — 2 which is determined by the set i, of valuations. If K is a finite extension
of the field &, then the set M of all valuations of K which are extensions of
valuations of M, determines a theory of divisors for the integral closure O
of the ring o in the field K.

Proof. By Theorem 4 of Section 3 we need only verify that the set R satisfies
all conditions of that theorem. We first verify the second condition. For any
valuation v € 9t and any a € o we clearly have v(a) = 0. This means that o is
contained in the ring of the valuation v. But then by Theorem 1 of Section 4
the integral closure of the ring o in the field K is also contained in the ring of
the valuation v. In other words, v(a) > O for all x € O. Conversely, let a € K
be an element such that wa) > Oforall ve M. Lett" + a,¢" ' + - +a,denote
the minimal polynomial of « with respect to k. Let v, be any valuation of k
belonging to the set N,, and let v,, ..., v, be its extensions to the field K.
Since v,(a) = 0, ..., v,(«) = 0, then by Theorem 6 of Section 4 the element «
lies in the integral closure in K of the ring of the valuation v, . But in this case
all the coefficients q,, ..., a, must lie in the ring of the valuation v, (see the
Supplement, Section 4.3); that is, vo(a,) 2 0, ..., vo(a,) = 0. Since this holds
for all vy € M, , the coefficients ay, ..., a, belong to o, and hence o € O.
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We now turn to the first condition. Let a € O, a« # 0, aad let a, be deter-
mined as above. Then for all but a finite number of valuations v, of N, we
have vy(a,) = 0. Hence for all but a finite number of valuations v of i we
have v(a™) =q, '@ "' 4+ - +a,_,)) >0, and this means that v(a) = 0.
Hence v(x) = 0 for almost all v e R.

Only the third condition now remains to be verified. Let vy, ..., v,, be distinct
valuations of M and k,, ..., k,, be nonnegative integers. Let v, ..., v, De
the corresponding valuations of M, (the v,; are not necessarily all distinct).
Expand the original set of valuations to the set vy, ..., v,,, Vjuiq, ---, V5, CON=
sisting of all extensions of the valuations v, to the field K. By Theorem 3 of
Section 4 there is an element y in the field X for which

vl(?) = kl’ ERRE vm(?) = km’ Vm+1(}’) = O’ (ARR vs(?) =0.

If this element y belongs to the ring O, just set « = y. Assume that y does not
belong to . In this case denote by v/, ..., v, the valuations of i which take
negative values on y:

vli('Y) = —'11’ e vr’('Y) = _lr,

and by vy, ..., v, the corresponding valuations of 9, (various v, ;" also may
be equal). Since each of the valuations v’ is different from each of the valua-
tions vy;, in o there is an element a such that

vOi(a) = O (1 S i S m)’ vOjl(a) = l (1 <j S r),
where / is taken equal to max (/,, ..., ). Set o = ya. Since
vi@=v;/®) +v/@= -+ v@=~-1;+1>0,

then a € ©. Thus in any case we have in the ring © an element o such that
vi(@) = ky, ..., vu(a) = k,,, so that condition (3) of Theorem 4 of Section 3
also holds for the set N of valuations. The proof of Theorem 1 is complete.

We apply Theorem 1 to the case of algebraic number fields.

The maximal order O of the algebraic number field K is, as we have seen,
the integral closure in K of the ring Z of rational integers. Since Z has a theory
of divisors (since it has unique factorization), then by Theorem 1 O also has
a theory of divisors. By Theorem 5 of Section 3 the theory of divisors for Z is
induced by the set of all valuations of the field R of rational numbers, and
since every valuation of the field K is an extension of some valuation of the
field R we find that the theory of divisors for the ring O is induced by the set
of all valuations of the field K. We hence have the following theorem.

Theorem 2. If O is the maximal order of the algebraic number field X,
there exists a theory of divisors O* — 2, and this theory is induced by the
set of all valuations of the field K.
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5.2. Norms of Divisors

Let o be a ring with theory of divisors 0* - 2, and with quotient field k;
let K be a finite extension of &, with © the integral closure of v in K, and let
D* > P be a theory of divisors for the ring ©. In this paragraph we establish
a connection between the semigroups of divisors 2, and 2.

Since o € O, elements of o* correspond to principal divisors both in 2,
and in 2. To distinguish these principal divisors, if g € p*, we denote the
corresponding principal divisor in 2, by (a),, and for any « € O* we denote
the corresponding principal divisor by («) .

We have an inclusion isomorphism of semigroups o* — O¥*. Since any unit
of the ring O which is contained in o is a unit of the ring o, this inclusion induces
an isomorphism (@), — (@), for a € o*, of the semigroup of principal divisors
of the ring ©. We now show that this isomorphism can be extended to an
isomorphism 2, —» 2 (which will not be onto).

Theorem 3. There is an isomorphism of the semigroup %, into the
semigroup £, which on principal divisors coincides with the isomorphism
(@), — (@)g, ae o™

The isomorphism 2, —» 9 is clearly characterized by the commutativity of
the diagram

o¥ - OF

Lo
Dy > D

that is, by the fact that the two composite homomorphisms o* - O* - 2
and o* - 9, » 2 coincide (the vertical homomorphisms denote the homo-
morphisms of the multiplicative semigroups of the rings onto the semigroups
of principal divisors).

Let p be any prime divisor of the ring o, v, the corresponding valuation of
the field k, and vg,, ..., v, all extensions of v, to thefield K (B, ..., P, arethe
corresponding prime divisors of the ring O). Let e, ..., e, denote the respective
ramification indices of the valuations vy, ..., vy, with respect to v, . Since
vg (@) = e (a) for all a € o*, then the factor p*»@ of the principal divisor
(@) € 2, will become (B, -+ B,>)»@ in the principal divisor (@)x € 2.
This means that the isomorphism from @, to 2 defined by the mapping

PPyt By CRY)

(for all p) satisfies the requirements of Theorem 3.
It is easily seen that the isomorphism 2, — 2, satisfying the requirements
of Theorem 3, is unique (Problem 5),
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By means of the isomorphism 2, —» 2 we can identify the semigroup 2,
with its image in 2. But prime divisors in %, will not, in general, remain prime
in &. For by (5.1) each prime p has the decomposition

p=P, B0 (5.2)

in the semigroup 2.

Using the embedding 2, — 2 we may speak of the divisibility of divisors
of o by divisors of . From (5.2) we see that a prime divisor p of the ring o is
divisible by a prime divisor 9 of the ring O if and only if the valuation vy is an
extension of the valuation v, . It is further clear that relatively prime divisors
in 9, remain relatively prime in 2.

Definition. Let P|p. The ramification index e = ey of the valuation vy
with respect to the valuation v, is also called the ramification index of the
prime ¥ relative to p (or relative to k).

The ramification index is thus the largest natural number e such that §3¢[p.

If « is any element of O, its norm N(a) = Ny, () lies in o. The mapping
o = N(x), « € O*, is a homomorphism from the multiplicative semigroup O*
to the semigroup o. Since the norm of any unit of the ring ©O* is a unit in o,
this homomorphism induces a homomorphism () — (N(a)), of the semi-
group of principal divisors of the ring © to the semigroup of principal divisors
of the ring 0. We shall show that this homomorphism can be extended to a
homomorphism of the entire semigroup 2 to 2.

Theorem 4. There is a homomorphism from the semigroup of divisors 2
to %y, N:2 - 9,, such that

N((“)x) = (NK/k(a))k (5.3)
for any « € O*.
We can express (5.3) by saying that the diagram
D* N D*
2 59,

is commutative.

For a fixed prime divisor p € 2, we denote the ring of the valuation v, by o,
and its integral closure in the field K by ©,. By Theorem 7 of Section 4 the
prime divisors P, ..., B, of the ring O which divide p correspond uniquely
to a complete set of pairwise-nonassociate prime elements ny, ..., #,, of the
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ring O, . The correspondence P, «»> 7; has the property that for any nonzero
element a € K, if
a=ent -om (5.4)

where ¢ is a unit of the ring O, , then
ki = vg (o). (5.5)

Let ¢ be one of the prime divisors B; which divides p, and let © be the
corresponding prime element of the ring O, . Set

dgy = v, (Ngu(m)). (5.6)

It is clear that dy, does not depend on the choice of 7. Taking the norm in (4)
and comparing with (5) and (6) we obtain the relation

Vo(Ngu()) = *DZI: dgve(a) (5.7

(P runs through all prime divisors of the ring O which divide p).
We can now construct the desired homomorphism N: 2 - 2,,.
A divisor A = P, -+ P, of the semigroup 2 can be conveniently written
as an infinite product
9N = n q3A(°D)
9

over all prime divisors P of 2, in which, however, only a finite number of the
exponents A(*B) are nonzero. [A(R) equals A4;, if B = V,, and equals zero if
the divisor B is not one of Py, ..., PB,.] We can write divisors of the ring o
in an analogous fashion.

If («) is the principal divisor corresponding to a nonzero element a of O,
then we have the representation

()x = 1;[ Pro@, (5.8)
From (5.7) we see that if

(N@)) =TT »°®, (5.9)
then ¢(p) must satisfy '

c(p) = %dmvm(a). (5.10)

This suggests the following definition.

Definition. Let A = [[;B“™® be a divisor of the ring ©. For any prime
divisor p of the ring v, set

a(p) = gl:d‘nA(‘B)'
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The divisor [ |, p*® of the ring o is called the norm of the divisor U with respect
to the extension K/k and is denoted by Ny, (), or simply by N().

Since A(P) equals zero for almost all B (that is, all but a finite number of
B), then a(p) also equals zero for almost all p, and hence the expression
[T, p*® actually is a divisor of the ring o.

From the definition it is clear that

N(UB) = NAN(B)

for any two divisors & and B of ©. The mapping A - N(A) is thus a homo-
morphism of the semigroup O to the semigroup 2, .
In the case of a prime divisor U = ‘P we clearly have

N(P) = p?(Blp). (5.11)

In view of (5.10), the norm of the divisor (5.8) equals the divisor (5.9) and
hence we have proved the existence of a homomorphism N:2 — 2, , which
satisfies the requirements of Theorem 3.

As in the case of the isomorphism 24 — 2, it can be shown (Problem 4)
that the homomorphism N: 2 — 2, is uniquely determined by condition (5.3).

One of the central problems of the theory of divisors is to determine a rule
for the decomposition of the prime divisor p of the ring o into prime divisors
of the integral closure O of o in some finite extension field. In the general case
this problem is still unsolved (however, see the end of Section 8.2). Each
decomposition (5.2) is characterized by the number m of prime divisors and
by the various ramification indices e; = eg,. The natural numbers e;, how-
ever, cannot be taken arbitrarily (for a given extension K/k). For they are
related to the numbers dy, [see (5.6)] by the formula

Y dgey = n =(K:k), (5.12)
) Blp
for the proof of which it suffices to apply formula (5.7) to the case of a prime
element p of the ring o, [recall that vy (p) = €;].

5.3. The Degree of Inertia

The definition of the homomorphism N: 2 — 2, depended on the numbers
dy, which were defined in a rather formal manner in (5.6). We now clarify
the deep arithmetical significance of these numbers.

Let Blp. Let o, and Oy, denote the rings of the valuations v, and vg, and
p and n the prime elements in these rings. Since for elements a and b of o,
the congruences a = b (mod p) in the ring o,) and a = b (mod =) in the ring
Dg are equivalent, each residue class in o, modulo p is contained in a single
residue class modulo n in Oy . This determines an isomorphic embedding of
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the residue class field £, = o,/(p) of the valuation v, into the residue class
field Ly = Ogy/(n) of the valuation vg. Using this isomorphism we assume
that £, < Zy. For any ¢ € Oy we denote the residue class modulo n which
contains ¢ by &. The subfield I, of the field Zq then consists of those residue
classes of the form @, where ac o, .

Let the residue classes @, ..., @, of Zy (w; € Og) be linearly independent
over the field X . We now show that then the representatives wy, ..., @, of
these classes are linearly independent over the field k. Assume that this is not
so, that is, that for some coefficients ag; € k, not all zero, we have

aw, + -+ + a,», =0.

Multiplying this relation by a suitable power of p, we may assume that all g,
lie in the ring o, and that at least one of them is not divisible by p. Passing
now to the residue class field Iy, we obtain

@By + o+ iy =D,
in which not all coefficients a; € £, are zero. This contradiction proves our
assertion.

From the linear independence of w,, ..., w, over the field k it follows that
m < n=(K:k). Thus the residue class field Xy is a finite extension of the
field X, for which

(Zg:Z,) < (K:k).

Definition. Let the prime divisor P of the ring O divide the prime divisor
p of the ring v. The degree /= f; = (£4:X,) of the residue class field of the
valuation vg over the residue class field of the valuation v, is called the degree
of inertia of the prime divisor P relative to p (or relative to k).

As in Section 5.2 we denote by O, the integral closure of the ring o, in the
field K. In analogy with the definition of a fundamental basis of an algebraic
number field, we make the following definition.

Definition. A basis w,, ..., w, of the extension K/k iscalled a fundamental
basis for the ring O, relative to o, if all its elements lic in O, and every element
a e D, is represented by a linear combination

o =aw + -+ a,w, (5.13)
with coefficients a; in o, .

We shall see below that in the case of a separable extension K/k, a funda-
mental basis for the ring O, (for any p) always exists. On the other hand, by
Problems 11 and 12, for nonseparable extensions K/k it may occur that the
ring O, has no fundamental basis relative to o, .
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The value of the concept of a fundamental basis is indicated in the following
theorem.

Theorem 5. Let ¢ be a prime divisor of the ring O which divides p, and
let = be a prime element of the ring O, which corresponds to it. If the ring O,
has a fundamental basis relative to o, , then

fm = dm = vp(NK/k(n))‘

Proof. The prime element 7 € D, is clearly also a prime element of the ring
Oy . We shall show that each residue class & of the ring Oy, modulo 7 contains
a representative in O,; that is, for any ¢ e Dy there is an element a € O,
such that

¢ = a (mod n).

Let B = Py, Bj, ..., By, be all prime divisors of the ring O which divide p.
By Theorem 6 of Section 4, y € O, if and only if vy (y) = Oforalli =1, ..., m.
Hence the element a must satisfy

v‘n(é - a) = 1,
g @ =0 (i=2,...m),

and the proof of its existence is given by Theorem 4 of Section 4.

Now let oy, ..., o, be a fundamental basis of the ring O, relative to o, .
By the above, every element of X4 can be represented in the form a; @, +
-+ + &,m,, where a;epn,, and hence g, €X,. This means that the residue
classes @y, ..., @, generate Iy, as a vector space over X, . If f = (Z4: X)) = 15,
then we can choose from among them f elements which are linearly indepen-
dent over X,. Let these be @, ..., @;. It is clear that the congruence

awy + -+ + a;o, = 0 (mod n),

with @; € o, , holds in the ring O, if and only if ¢; = 0 (mod p), p being a prime
element of the ring o, .

Since each of the residue classes @; € Ly forj = f + 1, ..., ncan be expressed
in terms of @y, ..., @,, then

f
ijstbjsws(mOdn) (=f+1,...,n

for some b;, from o, . Set
0, = w; fori=1,...,f,

S
0j=_zbjsws+wj forj=f+1,...,n.
s=1
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It is clear that §,, ..., 0, also form a fundamental basis of O, relative to o,
(since all w; can be expressed in terms of 6, with coefficients in o,). Each
element 0, ,, ..., 8, is divisible in the ring O, by =, and therefore the con-
gruence
a0, + -+ + a,0, = 0 (mod 7)
holds if and only if
a, =+ =a; =0 (mod p).

Consider the set M of all elements of the ring O, which are divisible by 7.
By what was just proved, the set M consists of all linear combinations of the
elements

POy, o.s POy, 04y, ..., 6, (5.18)

with coefficients in o, . On the other hand, it is clear that 9 also coincides
with the set of all linear combinations of the elements

n0,, ..., n0, (5.15)

with coefficients in o, . Let C denote the transition matrix from the basis (5.14)
to the basis (5.15). Since every element n0; can be expressed in terms of the
basis (5.14) with coefficients from o,, then det C is an element of o,. By
symmetry this also holds for det C™'. Hence det C is a unit in the ring o,;
that is, v, (det C) = 0. If we multiply the first f columns of the matrix C by p,
then we clearly obtain a matrix 4 = (g;;), for which

n

Therefore,
Ngp(m) =det A = p/ det C,
so that
vo(Nxu(m) = f,
and Theorem 5 is proved.
Theorem 6. If the extension K/k is separable, then D, always has a funda-
mental basis relative to o, .

Before starting the proof of this theorem we note that it is analogous to
the proof of Theorem 6 of Section 2, Chapter 2.

Since every element of X, after multiplication by a suitable power of a prime
element of the ring o, , becomes integral with respect to o, , the extension K/k
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has a basis, ay, ..., a,, all elements of which lie in D, . Consider the dual basis
a*, ..., a,* (see the Supplement, Section 2.3; here we have already assumed
that Kk is separable). If « € O, and

o =ca,* 4+ o+ o0k, (5.16)

where c¢; € k, then ¢; = Sp (ax;), and this means that c; € o, (since ax; € O,).
For each s = 1, ..., n we consider in the ring O, those elements which when
expressed in terms of the basis a,*, ..., a,* have the form

¥ + -+ o, (cie0,), (5.17)
and we choose among these an element
W, = cs.*sas‘.= + o+ C_,,,a,,* (Csj € Dn)

such that v,(c,) > v,(c,,) for all coefficients ¢, of elements of the form (5.17)
of ©,. It is clear that ¢, # O for all s, so that the elements w,, ..., w, of O,
are linearly independent over k. Let a be any element of O, . If we represent
it in the form (5.16), then ¢; = ¢,a,, where g, € o, , by choice of , . For the
difference o — a,w; we have the expansion

o —aw; =cy'o*+ - 4 ¢,k (c/ €0,),

and here ¢,” = ¢,,a,, where a, € o, by choice of w, . Continuing this process n
times we finally arrive at the expansion (5.13), in which all coefficients a;
belong to o,. The basis w; is hence a fundamental basis relative to o,, and
Theorem 6 is proved.

From Theorems 5 and 6 and formula (5.12) we easily obtain the following
assertion.

Theorem 7. If the extension K/k is separable and p is a fixed prime divisor
of the ring o, then the ramification indices e and degrees of inertia fi of the
prime divisors B of the ring © which divide p are connected by the relation

Y egfe=n=(K:k).
Bip

Hence for separable extensions K/k formula (5.7) can be written in the
form

V(N (@) = q;fmvm(a)- (5.18)

Remark. For nonseparable extensions, Theorem 7 is no longer necessarily
valid. However, the inequality ) o, ey fq < n always holds (see Problem 13).
It can further be shown that, in general, fi; < dy.
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5.4. Finiteness of the Number of Ramified Prime Divisors

Definition. The prime divisor p of the ring o is called ramified in the ring
D if it is divisible by the square of some prime divisor of the ring O, and is
called unramified otherwise.

Hence p is unramified if and only if all e; in (5.2) are equal to 1.

Under the assumption that the extension K/k is separable, we shall obtain
an important condition for p to be unramified.

Assume that the ring O, contains some primitive element 8 for the extension
Kk, such that the discriminant D(f) of its minimum polynomial f(¢) is a
unit in o,. We now show that in this case the powers 1,0, ..., 6", where
n = (K:k) form a fundamental basis for the ring O, over o,. Let oy, ..., o,
be any fundamantal basis for ©,, and let C be the matrix of transition from
the basis w; to the basis 6;. Then

D(f)=D(1,0, ...,00 ") = (det C)*D(w;, ..., ,)

[see the Supplement, formula (2.12)]. Since D(f) is a unit in o,, and both
terms on the right belong to o,, then det C is a unit in o,, and hence
1,0, ...,0" ! is also a fundamental basis.

Let p be a prime element of the ring o, and X, the tesidue class field of the
valuation v, . For any polynomial g(t) with coefficients in o, we denote by
g(t) the polynomial obtained by replacing all coefficients of g(t) by their
residue classes modulo p. Since the discriminant D(f) € T, of the polynomial
f(t) e Z,[t]is equal to the residue class modulo p of the discriminant D(f) € o,,
then by our assumption the discriminant D(f) is nonzero. Hence, all factors
in the decomposition

f@O =01 - 3.(0) (5.19)

into irreducible factors in the ring X_[t] are distinct (here @; is some poly-
nomial of o,[t]). If we denote the degree of @; by d;, then we clearly have

dy+ - +d,=n=(K:k). (5.20)

Theorem 8. If the discriminant of the minimum polynomial f(¢) of a
primitive element § € O, is a unit in o, , then the prime divisor p is unramified
in © and the prime divisors B; of the decomposition

p=g/B1 ‘/Bm

can be put in one-to-one correspondence with the irreducible polynomials
@, € Z,[t] of the decomposition (5.19) in such a way that the degree of inertia
f; of the prime divisor P; coincides with the degree d; of the corresponding
polynomial @ (t).
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Proof. Let g(¢) be any polynomial of o,[t]. We shall show that if the poly-
nomials g and @; are relatively prime in the ring X,[¢], then the elements g(6)
and @(0) are relatively prime in the ring O, . For then there exist polynomials
u(t), v(t), and /(¢) in the ring o,[¢] such that

9@Ou(t) + @i(u(r) = 1 + pl(r).

If g(0) and ¢ (0) were divisible in the ring O, by some prime element 7, then
since rt|p (Theorem 7 of Section 4), from the preceding equation (for ¢ = 8),
it would follow that =|1. This contradiction proves our assertion.

Since the irreducible polynomials {; are distinct, then the elements
©1(0), ..., 0,(0) are pairwise relatively prime.

Assume that ¢,(0) is a unit in D,, that is, that ¢,(0)¢ =1, £ € O, . Since
1,0, ...,0" ! form a fundamental basis for O, over o,, then & = h(6), where
h(t)e o,[t]. The equation @ (0)h(6) =1 implies that @ ()A(t) = 1 + f()q(t),
where g(¢) € o,[t] [since the leading coefficient of f(¢) equals 1]. Passing to the
residue class field £, we obtain ¢;h =1+ @, --- §,g, and we again have a
contradiction. Hence none of the elements ¢,(0), ..., ¢.(6) are units in O, .

For each i choose in D, a prime element 7, (0). Since we have proved that
the @,(0) are pairwise relatively prime, the prime elements =, ..., x,, are
pairwise-nonassociate. Let B, ..., B, denote the corresponding prime
divisors of the ring O, and fi, ..., f,. denote the degrees of inertia of these
divisors. In the residue class field Iy, of the valuation vy, , the residue classes
1,0, ...,6% ! are linearly independent over X, (d; is the degree of @;). For
if there is a polynomial g(z) € o,[t] of degree <d, for which g(f) = 0, then the
element g(0) is divisible by =; in the ring O, and hence g(0) and ¢ (6) are not
relatively prime. But we saw at the beginning of the proof that then g(z) must
be divisible by @(¢), and this can happen only if all coefficients of g(¢) are zero.

We have shown that

Comparing this inequality with (5.20) and considering Theorem 7, we see that
By, ..., B,, are the only prime divisors which divide p, that their ramification
indices e; all equal 1, and that d; = f;. This proves Theorem 8. Finally, we
note that since ¢8) is divisible by n; but not divisible by any other prime
element 7;, then 7; can be determined as the greatest common divisor in the
ring O, of the elements ¢,(0) and p.

Corollary. If the extension K/k is separable, then there are only finitely
many prime divisors p of the ring o which are ramified in O.

Let 6 be any primitive element of the extension K/k which is contained
in O. The discriminant D = D(1, 0, ..., 0""') is an element of o*. If p ¥ D,



Sec. 5] THEORIES OF DIVISORS FOR FINITE EXTENSIONS 205

then by the theorem p is not ramified in ©. Thus only those prime divisors of
the ring o which divide D can be ramified in O.

PROBLEMS

1. Let o be a ring with a theory of divisors, k its quotient field,and & © K © K’ atowerof
finite extensions. Let £ and £’ denote the integral closure of the ring o in the fields Kand K’.
If P’ is any prime divisor of the ring £, denote the prime divisor of the ring © which is
divisible by %’ by %, and the prime divisor of the ring o which is divisible by %’ by p. Show
that the degree of inertia of B’ relative to k equals the product of the degree of inertia of $’
relative to K and the degree of inertia of % relative to k. Formulate and prove an analogous
assertion for the index of ramification.

2. Let the ring o with quotient field k have a theory of divisors with only a finite number
of prime divisors, and let the prime divisor v correspond to the prime element p of the ring o.
Show that the residue class ring o/(p) is isomorphic to the residue class field Zp of the
valuation v, .

3. Letw, be a valuation of the field £, o, its ring, K/k a finite separable extension, O, the
integral closure of the ring o in the field K, and w,, ..., w, a basis for the field K over £, all
elements of which lie in the ring O, . Show that if the discriminant D(w, ..., w,) is a unit in
the ring o, then wy, ..., w, is a fundamental basis for the ring L, over o, .

4. Show that the homomorphism N : 2 —+ 2, satisfying the conditions of Theorem 4,
is unique.

5. Show that the isomorphic embedding 2, —» 2, satisfying the conditions of Theorem 3,
is unique.

6. Let a be a divisor of the ring 0. Considering it as a divisor of the ring © (using the
embedding 2 — %) show that

Nyula) = a” (n= (K:K)).

7. Let K/k be a separable extension of degree n. Show that if the divisor a of the ring o
becomes a principal divisor of the ring ©, then a™ is a principal divisor of o.

8. Let K/k be separable. Show that the norm Ny, (a) of a divisor a of the ring O is the
greatest common divisor of the principal divisors (Ngu(a)), where « runs through all
elements of £ divisible by a.

9. The polynomial f(t) = t"+ a;t"~' + --- + a, with coefficients in the ring o is called
an Eisenstein polynomial relative to the prime divisor y, if a,, ..., a, are all divisible by p,
and a,, while divisible by p, is not divisible by p2, If the ring © contains a primitive element 8
for the extension K/k of degree n, with the minimum polynomial of # an Eisenstein poly-
nomial relative to p, show that p is divisible by only one prime divisor % of the ring £ and
that

p=2"

(the degree of inertia of B relative to p hence equals 1).

10. Under the same hypotheses show that the basis 1, 8, ..., 8! is a fundamental basis
of the ring £, relative to o,.

11. Let k¢ be any field of characteristic p and k = kq(x, y) a field of rational functions in
x and y over the field ko . Consider the valuation v, of k, which was defined in Problem 9
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of Section 4, where for the series £(t) € ko {t} [transcendental over ko(¢)] we take a series
of the form

t0=n0r= (3 ar) =S ol (@eko.

By Problem 8 of Section 4 there is a unique extension of the valuation v to the purely insepar-
able extension K = k(\p/ }) of degree p over k. Show that the ramification index of v relative
to vo equals 1, and that the residue class field of the valuation v coincides with the residue
class field of the valuation yo (under the inclusion isomorphism). It now follows from
Theorem § and (5.12) that the ring © of the valuation v, which is the integral closure in K
of the ring o of the valuation v, , does not have a fundamental basis relative to o,

12. Under the same assumptions as in the preceding problem, give a direct proof (without
involving Theorem 5) that © has no fundamental basis over o.

13. Let o be a ring with a theory of divisors, k its quotient field, K/k a finite extension
of degree n, O the integral closure of o in K, p a prime divisor of the ring o, By, ..., B, the
prime divisors of the ring © which divide p,e,, ..., e, their ramification indices, and
fis ...+ Jm their degrees of inertia relative to p., For any s =1, ..., m we denote by a®: the
residue class in the field Zq, which contains « € Og, . Choose elements w,, € O, (1 € i < f;)
so that the classes @&,%s form a basis for Zg,/Z, and also so that vy (w) = e for j# s,

1 € j € m. Prime elements of the ring O, corresponding to the divisors By, ..., B, are
denoted by 7, ..., 7. Show that the system of elements
Wy, s=1,....mi=1,...,f;j=0,1,...,e,— 1) ™)

is linearly independent over £.
Hint: Consider linear combinations

J
=2 Cy Wy T s

with coefficients from o, at least one of which is a unit in o, . Let v,(csgi19s0) = 0, Where j,
is chosen so that vy(csqiy) > O for all j < jo and all i. Then

Vo) = jo.

14. Show that if the extension K/k is separable, then the system (*) forms a fundamental
basis for ©, over 0,.
15. Show that if the extension K/k is separable, then for any a € £, we have

Spxs(e)? :,E:,e’SpE‘n,/En(&m’)'

16. Let f(r) be the characteristic polynomial of the element « € O, relative to K/k.
Taking the corresponding residue classes in X, , we obtain a polynomial f(t) € 2, [t]. For
s =1, ..., mlet p,(t) denote the characteristic polynomial of the element a%s € Xq, relative
to the extension Zg,/2,. Generalizing the preceding problem (for separable K/k), show
that

SO = @i - @ut)™
17. Let K/k be separable. For each p choose in the ring o a fundamental basis «;, ..., a,

over o,. Set
dyp=vp(D(ey, ..., an)).
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Show that the integer d,, = 0 is almost always zero. The integral divisor

[P —Hb P

of the ring o is called the discriminant of the extension K/k (relative to the ring o).

18. Show that the prime divisor p of the ring o does not occur in the discriminant by,
(that is, d, = 0) if and only if p is unramified in © and the extensions Zq./Z, (s =1, ..., m)
are all separable.

19. Let the ring O have a fundamental basis w,, ..., w, over 0. Show that the discriminant
by coincides with the principal divisor (D{w;, ..., wy)).

6. Dedekind Rings

6.1. Congruences Modulo Divisors

We consider a ring O with quotient field K for which there exists a theory
of divisors O* —» 9.

Definition. We say that the elements « and f of the ring © are congruent
modulo the divisor a € 2, and write

= f (mod a),
if the difference « — B is divisible by a.

In the case of a principal divisor (u) the congruence « = B (mod (y)) is
clearly equivalent to the congruence a = § (mod g) in the sense of the definition
of Section 4.1 of the Supplement.

We indicate some elementary properties of congruences which easily follow
from the definition.

(1) Congruences modulo a can be added and multiplied termwise.

(2) If a congruence holds modulo a, then it also holds modulo b for any
divisor b dividing a.

(3) Ifacongruence holds modulo a and modulo b, then it also holds modulo
their least common multiple.

(4) If an element a € O is relatively prime to a [that is, if the divisors (&)
and a are relatively prime], then from the congruence ¢ = 0 (mod a) it follows
that § = 0 (mod a).

(5) If o divides both sides of a congruence modulo a, and « is relatively
prime to a, then we may cancel o from the congruence.

(6) If p is a prime divisor and «ff = 0 (mod p) then either « = 0 (mod p)
or f =0 (mod p).
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It follows from property (1) that the residue classes of the ring © modulo
a given divisor a can be added and multiplied. It is easily verified that under
these operations the set of residue classes becomes a ring. It is called the ring
of residue classes modulo the divisor a and is denoted by O/a.

Property (6) can then be interpreted as saying that for a prime divisor p
the ring O/p has no divisors of zero.

Assume now that O is the maximal order of an algebraic number field K.
The divisors of the ring O we call in this case the divisors of the field K.

Since every divisor a of the field K divides some nonzero number a € O,
and the number « in its turn divides some natural number a [for example,
|N(2)| is divisible by a], then for each divisor a there is a natural number a
which is divisible by a. By property (2) numbers in distinct residue classes
modulo a remain in distinct classes modulo a. Recalling now that in the order
O the number of residue classes modulo a is finite (actually equal to ¢", where
nis the degree of the field K; see the proof of Theorem 5 of Section 2, Chapter 2),
we obtain the following theorem.

Theorem 1. For any divisor a of the algebraic number field K, the residue
class ring O/a is finite.

Let p be any prime divisor of the field K. The corresponding valuation v,
induces on R the p-adic valuation v, for some prime p. Since v,(p) = 1, then
v,(p) > 0; that is, p = 0 (mod p). If the prime number g is different from p,
then v,(g) = 0, and therefore v,(g) = 0; that is, g # 0 (mod p).

The residue class ring O/p, being finite and without divisors of zero, is a
finite field (Supplement, Section 3). Since for any o € O we have pa = 0 (mod p),
then the characteristic of this field is p. Hence we have

Theorem 2. Any prime divisor p of an algebraic number field divides one
and only one rational prime p. The residue class ring O/p is a finite field of
characteristic p.

A theory of divisors for an algebraic number field hence has the property
that the residue class ring modulo a prime divisor is a field. In general, this is
not the case. For example, in the ring of polynomials k[x, y] in two variables
over a field k the residue class ring of the prime divisor (x) is isomorphic to
the ring of polynomials k[y] and hence is not a field.

The residue class ring O/p is a field if and only if the congruence aé = 1
(mod p) is always solvable when o # 0 (mod p). Hence only under this assump-
tion can we expect to construct a completely adequate theory of congruences
in the ring O.
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6.2. Congruences in Dedekind Rings

Definition. A ring O is called a Dedekind ring if it has a theory of divisors
£* - 2 and for every prime divisor p € & the residue class ring O/p is a field.

Examples of Dedekind rings, other than the maximal orders of algebraic
number fields, can be obtained by taking the integral closure of the polynomial
ring k[x] in a single variable in a finite extension of the field of rational func-
tions f(x) (Problems 1 and 2). The valuation ring O, of any valuation v is also
a Dedekind ring (see Section 4.1), as is any ring which has a theory of divisors
with only a finite number of prime divisors (Problem 3).

Lemma 1. If O is a Dedekind ring and « € © is not divisible by the prime
divisor p, then the congruence af = 1 (mod p™) is solvable in © for any natural
number m.

Proof. For m = 1 the congruence is solvable by the definition of a Dedekind
ring. The lemma will be proved by induction on m. Suppose that for some
¢y € O we have aé; = 1 (mod p™). Choose an element  in the ring O for which
v,(w) = m. The principal divisor () has the form (w) = p™a, where a is not
divisible by p. Choose an element y € O for which v (y) = 0and y = 0 (mod a).
The product y(a&, — 1) will be divisible by p™a = (w), and hence y(aé, — 1)
= oy with y € O. We now try to solve the congruence af =1 (mod p™*!),
taking as ¢ an element in the form & = &, + w4, where A is to be chosen suit-
ably in O. Since

Pl = 1) = 9@y — 1) + yewd = w(p + yad)

and o =0 (mod p™), then we shall achieve our goal if A satisfies the con-
gruence Aoy = — u (mod p). But since ay is not divisible by p, this congruence
is solvable. Hence there is an element & € O for which y(aé —1) = 0 (mod p™*1)
and since v,(y) = 0, dividing by 7, we obtain « — 1 = 0 (mod p™**'). Lemma 1
is proved.

Theorem 3. If p,, ..., p,, are distinct prime divisors of the Dedekind ring O,
and B, ..., f,, are any elements of O, then there is an element £ in O which
satisfies

¢ = B, (mod p,"),
¢ = B (mod p,, ™)
(ky, -.., k,, are any natural numbers).

Proof. For each divisor

k Ky ok k .
G=P1 " PP P (i=1,...,m)
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we can find an element o; € O which is divisible by a, but not divisible by p;.
Lemma 1 guarantees that we can solve the congruence a,é; = B; (mod p;*)
in &, € ©. It is easily seen that the element

é = alél + - amém

satisfies the requirements of the theorem.

Theorem 4. If « # 0 and B are elements of a Dedekind ring O, then the
congruence

aé = B (mod a) (6.1)

is solvable if and only if f is divisible by the greatest common divisor of the
divisors («) and a.

Proof. We first assume that the divisors («) and a are relatively prime, and
will show that in this case the congruence (6.1) is solvable for any 8. Let
a=p* - p,m =pta;, where p,, ..., p, are distinct prime divisors. By
Lemma 1 for each i = 1, ..., m in the ring O there is an element £;’ such that
aé;/ = p (mod p;¥). By Theorem 3 we can find for each i an element ¢, for
which &; = ¢, (mod p*) and ¢, = 0 (mod a,). It is now clear that the sum
&+ - 4 &, = E will satisfy the congruences aé = g(mod p*)fori =1, ..., m,
and hence will also satisfy (6.1).

We now prove the theorem in general. Let d = p,’* --- p,_ '™ be the greatest
common divisor of the divisors (a) and a. If (6.1) holds modulo a, then it
also holds modulo b, and since « = 0 (mod d), then we must also have 8 =0
(mod D). This proves the necessity of this condition.

Assume now that g is divisible by d. By Theorem 3 of Section 4, there is
an element p € K for which

Vo) = — I (i=1,...,m). (6.2)

We shall show that we can choose pu so that also
v(W) > 0 (6.3)

for all prime divisors q, distinct from py, ..., p, . Suppose that u does not
satisfy condition (6.3), and let q,, ..., q, be the prime divisors, different from
Pis - P, for which v, (u) = —r; < 0. Choose in O an element y such that
vo,(») =r; (1 <j<s)and v, (y) =0 (1 <i<m). Itis clear that the element
u' = py satisfies both conditions (6.2) and (6.3), and our assertion is proved.
Let the divisor b be determined by a = db. If 4 satisfies conditions (6.2) and
(6.3), then the element oy belongs to © and is relatively prime to b. Since we
have assumed g divisible by d, then Su also belongs to O. We have already
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proved that then there exists an element £ in the ring O such that aué = gu
(mod b). Fori=1, ..., m we have

(=P =v (- +Lz2k~L+1L=k,
and this means that ¢ satisfies (6.1).

6.3. Divisors and Ideals

In this section we show that there is a one-to-one correspondence between
divisors and nonzero ideals in a Dedekind ring.

For each divisor a denote by @ the set of all elements of the ring © which
are divisible by a. It is clear that @ is a nonzero ideal of the ring O.

Theorem 5. In a Dedekind ring © the mapping a —»a (ae &) is an iso-
morphism of the semigroup of divisors 2 onto the semigroup of all nonzero
ideals of the ring .

We first verify the following lemma.

Lemma 2. If «,, ..., a, are any nonzero elements of the Dedekind ring ©
and D is the greatest common divisor of the principal divisors (a,), ..., (&),
thén any element « € O which is divisible by d can be written in the form

a=CEo + -+ £ (&€ D).

The proof »f the lemma is by induction on s. For s = 1 the lemma is obvious.
Let s = 2. Let d; denote the greatest common divisor of the divisors (a,), ...,
(o;,_)- Then d is the greatest common divisor of the divisors d, and (o). Let
o be divisible by d. By Theorem 4 the congruence o, £ = « (mod d,) has a
solution £ € ©. By the induction hypothesis there are elements &, ..., & _, in
the ring © such that a — o, = &0y + - + &_ja,_; . Lemma 2 is proved.

Proof of Theorem 5. By condition (3) of the definition of a theory of
divisors the mapping a — @ takes distinct divisors to distinct ideals.
Let A be any nonzero ideal of the ring ©. For each prime divisor p set

a(p) = min v,(a).

It is clear that a(p) will be nonzero for only a finite number of prime divisors p.
Hence the prodpct a = [], p*®, in which p runs through all prime divisors
for which a(p) # 0, is a divisor. We shall show that @ = A4. Let « be any element
of a. It is clear that we can find a finite set of elements a, ..., a, in 4 such that
a(p) = min (v («y), ..., v,(,) for all p. This means that the divisor a is the
greates* common divisor of the principal divisors (), ..., (a,). By Lemma 2
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the element « can be represented in the form « = £,a, + --- + £, with co-
efficients &; € O. It follows that « € 4, and hence that @ = 4. Since it is clear
that A = @, we obtain 4 = a@. We have thus proved that a — a is a one-to-one
mapping of the set of all divisors of the ring O onto the set of all nonzero
ideals of O.

We shall now show that this mapping is an isomorphism, that is, that for
any two divisors a and b we have

ab = ab. 6.4)

Denote the product ab by C. Since C is a nonzero ideal of O, there is a divisor
¢ such that ¢ = C. We must prove that ¢ = ab. Let the prime divisor p enter
into the divisors a and b with exponents g and b. Then

min v(y) = min v, («f) = min v,(«) + min v,(8) = a + b.

yeC aea,feb aca peb
Since this is true for all prime divisors p, then ¢ = ab and (6.4) is proved.

From the fact that the mapping a — @ is an isomorphism, it follows, in

particular, that the set of all nonzero ideals of the Dedekind ring © form a
semigroup with unique factorization under the operation of multiplication. To
construct a theory of divisors in Dedekind rings (in particular, in the maximal
order of an algebraic number field), we could take the semigroup of nonzero
ideals for the semigroup 2. The image of the element « under the homo-
‘morphism O* — 2 would then be the principal ideal () generated by this
element. This construction of a theory of divisors is due to Dedekind.

6.4. Fractional Divisors

If we construct a theory of divisors O* — 2 for the ring O, then we obtain
some information on the structure of the semigroup O*. It is natural to try
an analogous procedure with the multiplicative group K* of the quotient
field K. To do this we need to extend the concept of a divisor.

Following an established tradition, we shall reserve the term “‘ divisor” for

this broader concept, and will call divisors in the earlier sense ‘‘integral
divisors.”

Definition. Let © be a ring with a theory of divisors, with quotient field K|
and let py, ..., p,, be a finite system of prime divisors. An expression
a=pfop,tm (6.5)

with integer exponents k, ..., k,, (not necessarily positive) is called a divisor
of the field K. If all the exponents k; are nonnegative, then the divisor is called
integral (or a divisor of the ring ©). Otherwise it is called fractional.
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It is sometimes convenient to write a divisor (6.5) as a formal infinite

product
a=[]p"®, (6.6)
P

over all prime divisors p, in which almost all exponents a(p) are zero.
Multiplication of divisors is determined by the formula

(1:[ pa(D)) (1;1 pb(n)) — 1:[ pa(p)+b(p).

For integral divisors this definition coincides with the definition of multipli-
cation in the semigroup 2. It is easily seen that under this operation the set of
all divisors of the field K is an Abelian group, which we shall denote by 9.
The unit element of this group is the divisor e for which all exponents a(p)
in (6.6) are zero.

Since every nonzero element ¢ € K is the quotient of two elements of D,
it follows from condition (1) of Theorem 4 of Section 3 that for all but a
finite number of the valuations v, , which correspond to the prime divisors p,
we have v,(£) = 0. We denote this finite set by v, , ..., v, . The divisor

m
vpi(§) — vp (&)
p o =1lv
Ler=1]

is called the principal divisor corresponding to the element ¢ € K*, and is
denoted by (£). When applied to elements of the ring O, the new concept of a
principal divisor coincides with the previous one (Section 3.4). By condition (2)
of Theorem 4 of Section 3 the principal divisor (£) will be integral if and only
if £ belongs to O.

From the definition of a valuation (Section 3.4) it easily follows that the
mapping ¢ — (&), & € K*, is a homomorphism K* - & of the multiplicative
group of the field K to the group of divisors 9. By Theorem 2 of Section 3
this homomorphism maps onto the entire group & (that is, is an epimorphism)
if and only if © has unique factorization. The kernel of this map clearly is
the group of units of the ring O, and this means that for elements &, n of K*
we have (&) = () if and only if & = ne, where ¢ is a unit of the ring O.

We now define a concept of divisibility for arbitrary divisors. Leta = [ [,p“®
and b =[], p*® be two divisors (not necessarily integral). We say that a is
divisible by b if there is an integral divisor ¢ such that a = bc. In other words,
a is divisible by b if and only if a(p) = b(p) for all p.

For any a and b set d(p) = min (a(p), b(p)). Since the rational integer d(p)
is equal to zero for almost all p, then the product d =[], p*® is a divisor.
The divisor b is called the grearest common divisor of the divisors a and b
(a and b are both divisible by d and d is divisible by every common divisor of
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a and b). The least common multiple of the divisors a and b is defined analo-
gously.

The element « € K is called divisible by the divisor a =[], P, ifa =0 or
the principal divisor (a) is divisible by a. In terms of valuations this is charac-
terized by v,(x) > a(p) for all p.

The correspondence of the preceding section between integral divisors and
ideals of a Dedekind ring can be extended to fractional divisors, providing
the proper generalization of the concept of ideal is used.

As in Section 6.3, we denote the set of all elements of the field X which are
divisible by the divisor a by a (these elements may now be nonintegral). From
condition (3) in the definition of a valuation (Section 3.4) it follows that if
o and B are divisible by a, then « + f are also divisible by a. This means that
the set a is a group under addition. Further, if « € @ and ¢ € D, then the product
Ea also belongs to @. We now verify the following formula:

(yﬁ =ya (ye K*, ac D). 6.7)

For the element £ is divisible by (y)a if and only if any of the following hold:
vo(&) = vi(y) + alp) for all p; v,(¢/y) > alp) for all p; {fyea; £ €ya [here
a(p) denotes the power to which p appears in the divisor a]. It is clear that
for any divisor we can find an element y € O* such that the divisor (y)a is
integral. Formula (6.7) shows that for such a y we will have ya < O.

Definition. Let O be a Dedekind ring with quotient field K. A’ subset
A c K, containing at least one nonzero element, is called an ideal of the
field KX (relative io D), if it satisfies:

(1) A is a group under the operation of addition.

(2) For any a € 4 and any & € O, the product &« lies in 4.

(3) There is a nonzero element y of the field X such that y4 < O.

The ideal A is called integral if it is contained in © and otherwise is called
Jfractional.

An integral ideal in K is clearly just a nonzero ideal in O.

If A and B are two ideals of the field X, then by their product A B we mean
the set of all elements y € K which can be represented in the form

y=o,p + -+ o, (m=1) wa,€4,p,eB (1<ism).

It is clear that the product of two ideals of a field K is again an ideal of the
field K. (When the ideals are integral, the definition of product coincides with
the usual notion of the product of two ideals in a commutative ring.)

We have already verified that for any divisor a of K, the set @ is an ideal in K.
Assume that for two divisors a and b we have @ = b. Choose a nonzero element
y so that the divisors (y)a and (y)b are both integral. From formula 6.7) we
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have (y)a = (y)b, so that (y)a = (y)b and hence a =b. Hence the mapping
a — a is a monomorphism. Now let A be any ideal of the field K. If the element
y # 01is chosen so that y4 = D, then yA will be a nonzero ideal of the ring O,
and hence by Theorem 5 there exists an integral divisor ¢ such that ¢ = yA.

Set a = ¢(y)”!. Then y4 = (y)a = ya, so that 4 =a. Thus each ideal of the
field K is the image of some divisor under the mapping a —» a. If a and b are
two divisors, then, taking elements y 3 0 and y” # 0 so that (y)a and (y")b are
integral divisors, we have [from Theorem 5 and formula (6.7)]

y7'ab = ()a- ()b = (ya- ()b = ya-y’b = yy’ab,

so that ab = ab. The mapping a — a hence is an isomorphism. It follows that
the set of all ideals of the field K is a group under multiplication. The unit
element in this group is the ring © = ¢. The inverse of the ideal @ will be the

ideal a™1.

We formulate this generalization of Theorem 3.

Theorem 6. Let O be a Dedekind ring with quotient field K. For every
divisor a, denote by a the set of all elements of K which are divisible by a.
The mapping a — a is an isomorphism of the group of all divisors of the field K
onto the group of all ideals of the field K. This mapping takes integral divisors
to integral ideals and conversely.

PROBLEMS

1. Show that the ring 4[x] of polynomials in one variable over a field k is Dedekind.

2. Let o be a Dedekind ring with quotient field k. Show that the integral closure £ of
the ring o in any finite extension of the field & is also Dedekind.

3. Show that any ring which has a theory of divisors with a finite number of prime
divisors is Dedekind.

4. Show that a system of congruences

£ =o; (mod ay),

¢ =a, (mod a,)

in a Dedekind ring is solvable if and only if &¢; = or; (mod ay), { # J, where b, is the greatest
common divisor of the divisors a;, and ay.

5. Let £ be a Dedekind ring and a a divisor of £. Show that the set of those residue
classes in £/a which consist of elements relatively prime to a is a group under the operation
of multiplication.

6. Let f(x) be a polynomial of degree m with coefficients in the Dedekind ring D, with
not all coefficients divisible by a prime divisor p. Show that the congruence f(x) = 0 (mod p)
has at most m solutions (noncongruent modulo ), in £,
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7. Let £ be a Dedekind ring, p a prime divisor of ©, and f(x) a polynomial with co-
efficients in ©. If for some element o € © we have

f(@)=0(@mod y), [f(x)# 0 (mody),
show that for every m > 2 there exists an element £ in the ring O such that
fE=0(mod p™), {=o(mod p).

8. Show that in a Dedekind ring every ideal is either principal or is generated by two
elements.

9. Let € be a Dedekind ring with quotient field XK. Show that under the isomorphism
a— a of the group of divisors of the field X onto the group of ideals of the field X, the
greatest common divisor of divisors corresponds to the sum of the corresponding ideals,
and the least common multiple of divisors corresponds to the intersection of the correspond-
ing ideals, (By the sum A + B of the ideals 4 and B we mean the set of allsums o + 8, where
xedandBeB)

10. The ring © = k[x, y] of polynomials in two variables over the field £ has unique
factorization and hence has a theory of divisors. Show that the ideal 4 = (x, y) of the ring
£ which is generated by the elements x and y does not correspond to any divisor.

11. Show that if O is a ring with a theory of divisors ©* - 2 in which every nonzero
ideal of © is of the form a (where a € 2), then © is Dedekind.

12. Let £ bearing in which the nonzero ideals form a semigroup withunique factorization
under multiplication. Show that © is Dedekind.

13. Let £ be a Dedekind ring with quotient field K. If 4 and B are ideals of the field K
(relative to ), we say that A is divisible by B if there is an integral ideal C such that 4 = BC.
Show that A is divisible by B if and only if 4 < B.

14. Let O be any ring with a theory of divisors and let p be a prime divisor. Show that
the set p of all elements x € € which are divisible by v is a minimal prime ideal of the ring O.
(An ideal Pin a ring O is called prime if the quotient ring /P has no divisors of zero, that
is, if the product of any two elements of ©, which do not lie in P, does not lie in P. The
prime ideal P is called minimal if it does not contain any other prime ideal except the zero
ideal.)

15. If T is a ring with a theory of divisors, show that any nonzero prime ideal P of ©
contains a prime ideal of the form p, where p is some prime divisor of the ring ©.

7. Divisors in Algebraic Number Fields

7.1. The Absolute Norm of a Divisor

By Theorem 2 of Section 5 the maximal order O of any algebraic number
field K is a ring with a theory of divisors. Further, we saw in Section 6.1 that
the residue class ring O/p modulo a prime divisor p is a finite field, and hence
that the ring O is Dedekind.

Consider the algebraic number field K as an extension of the field of rational
numbers R (of finite degree). Since the divisors of the ring Z are in one-to-one
correspondence with the natural numbers, we can assume that the group of
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all divisors (integral and fractional) of the field R coincides with the multipli-
cative group of positive rational numbers. In Section 5.2 we defined the concept
of the norm of a divisor of the ring O relative to a given extension K/k. If a
is a divisor of the order O of the algebraic number field K, then we call the
norm N(a) = N g(a) the absolute norm of a. We extend the concept of
absolute norm to fractional divisors by setting

(m) N(m)
Nl=) ===,
y/ N(y)
where m and vy are integral divisors. The mapping a — N(a) will then be a
homomorphism from the group of all divisors of the field K to the multipli-
cative group of positive rational numbers.

The absolute norm of a principal divisor (£), £ € K*, equals the absolute
value of the norm of the number ¢&:

N({(&) = IN)I. (7.1
Indeed, if ¢ is integral this is just (5.3). If £ = o/ with integral « and f, then

N(@) _ IN@)| _
N(®) " IN®)

The degree of inertia f of a prime divisor p of the field K relative to R is
called the absolute degree of inertia of p (or simply the degree of p). The rami-
fication index e of the divisor p relative to R is called the absolute ramification
index of p.

If p divides the rational prime p and if p has degree f, then by (5.11),

Np)=p" (1.2

Let py, ..., P, be all prime divisors of the field X which divide p, and let
€1, ..., €, be their ramification indices. Then in the field K we have the decom-
position

N((©) =

IN(E)I.

p=p P

By Theorem 7 of Section 5 the ramification indices e; and degrees f; of the
divisors p; are connected by the relation

fieg + o+ frem=n=(K:R). (7.3)

Theorem 1. The absolute norm of an integral divisor a of the algebraic
number field K is equal to the number of residue classes in the maximal order
O modulo a.

Proof. We first prove the theorem for a prime divisor p. Let p be the rational
prime which is divisible by p. The degree of inertia f of the divisor p (by the
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definition of Section 5.3) equals the degree of the residue class field Z, of the
valuation v, over the residue class field Z, of the valuation v, . Since X, clearly
consists of p elements, I, is a finite field with p/ elements. Hence it suffices to
show that the fields £, and O/p are isomorphic, that is, that the inclusion
isomorphism O/p —» Z_ maps the field O/p onto the entire field Z,. To do this
it suffices to show that for any ¢ € K for which v ({) > 0, there exists an
element « € O such that v ({ — @) > 1. We denote by qy, ..., q,all those prime
divisors of the field X for which v,,(¢) = —k; < 0. By Theorem 3 of Section 6
there is an element y in the order © such that

y = 1 (mod p),
y=0(mod ¢/*), (i=1,...,5).

It is clear that « = y¢ € O and v (« — &) = 1. Hence Theorem 1 is proved in
the case of prime divisors.

To prove the theorem in general it suffices to prove that if it holds for
integral divisors a and b, then it also holds for their product ab. By condition (3)
of Theorem 4 of Section 3 there is an element y # 0 in the maximal order ©
such that aly and the divisor (y)a™? is relatively prime to b. Let «;, ..., a,
[r = Na)] be a complete set of residue-class representatives of © modulo the
divisor a, and B, ..., B, [s = N(b)] be a complete set for b. We shall show
that then the rs numbers

a; + By (7.9

form a complete system of residue-class representatives modulo ab. Let « be
any number of O. For some i (1 <i<r)

o = a; (mod a).
Consider the congruence
y& = o — a; (mod ab). (7.5)

Since by choice of y the greatest common divisor of the divisors (y) and ab
equals a, and « — «; is divisible by a, then by Theorem 4 of Section 6 this
congruence has a solution £ e 0. If £ = §; (mod b) for some j (1 <j < s),
then y¢ = yB; (mod ab). Along with (7.5) this shows that

a = o; + yf; (mod ab).

We have proved that every residue class modulo ab has a representative of
the form (7.4). We now must show that the numbers (7.4) are pairwise-non-
congruent modulo ab. Let

a; + yB; = a, + B, (mod ab).
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Since this congruence also holds modulo a, and y =0 (mod a), we obtain
a; = o, (mod a), and this means that / = k, and we obtain

y(B; — ;) = 0 (mod ab). (7.6)

Let the prime divisor p occur in the divisors a and b with exponents a and
b > 0. Since v,(y) = a, it follows from (7.6) that v,(8; — B,) = b. Since this is
true for all prime divisors p which occur in b with positive exponent, then
B; = B; (mod b), so that j = L.

Hence the numbers (7.4) for a complete set of residue representatives
modulo ab. The number of residue classes of the ring © modulo ab hence
equals rs = N(a)N(b) = N(ab).

Theorem 1 is proved.

If a is any divisor of the field K (integral or fractional) as in Section 6.3,
we denote by a the ideal of the field K, consisting of all « € K which are divisible
by a. Let the number y be chosen so that ya < ©. By the corollary of Theorem 2
of Section 2, Chapter 2, the set ya is a module of the field K (a submodule of
the ring ). But then the ideal a also is a module of the field K. If x € @, « # 0,
and wy, ..., w, is a basis for the ring O, then all the products aw,, ..., aw, lie
in @, and hence a contains n = (K : R) linearly independent (over R) numbers
of the field K. Hence, for any divisor q, the ideal a is a full module of the field K.
Its coefficient ring will clearly be the maximal order ©. Conversely, if 4 is a
full module of the field K, whose coefficient ring is the maximal order O,
then A fulfills all the conditions of being an ideal (Section 6.4). Thus the set
of all ideals a coincides with the set of all full modules of the field K which
belong to the maximal order O.

In Section 6.1 of Chapter 2 we introduced the concept of the norm of a full
module of an algebraic number field. We can therefore speak of the norm of
the ideal a. We shall show that the norm of any divisor coincides with the
norm of its ideal:

N(a) = N@). 1.7

For integral divisors this follows from Theorem 1 of this section and Theorem 1
of Section 6, Chapter 2. If the divisor a is fractional, then we can find a y € K*
such that the divisor (y~!)a = b is integral. Then by Theorem 2 of Section 6,
Chapter 2, we have

N(a) = N®)ING)| = NBING)| = NGb) = N(yb) = N @),

and (7.7) is proved for all a.
As a simple application of the concept of norm we give a more precise
estimate for the number w(a) of nonassociate numbers in the maximal order
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whose norm has absolute value equal to @ (in the proof of Theorem 5 of
Section 2, Chapter 2, we showed that w(a) < a").

Let y(a) denote the number of integral divisors with norm a. Since the
numbers « and B are associate if and only if the principal divisors («) and ()
are equal, then from (7.1) we have

w(a) < Y(a).
We will find an estimate for (@). Let

ke

k
a=pll.“ps E]

where the p; are distinct primes. If N(a) =a, then a = q, ... a,;, where q;
consists of those prime divisors p which divide p;. By formula (7.2) and the
multiplicativity of the norm, we have N(a;) = p;*, and this means that
(@) = y(p}) - (p*e). It therefore suffices to obtain an estimate for y(p").
Let py, ..., P, be the distinct prime divisors which divide p, and let £}, ..., f,.
be their degrees. Since

N(plxl pmxm) — pf1x1+ o F S mXm
the problem reduces to the determination of all solutions of the equation
Sixg + o+ foXm =k

in nonnegative x,. Since 0 < x; < k, then the number of solutions cannot
exceed (k + 1)™. But m < n = (K: R), and thus

Y@ < ((ky + 1) - (kg + D)

The expression in parentheses on the right equals, as is well known, the
number 7(a) of all divisors of a. We have hence obtained the estimate

w(@) < Y(a) < (@) (7.8)

To compare our estimate (7.8) with the previous estimate w(a) < 4", we note
that for any ¢ > 0, the quantity 7(a)/a® converges to zero as a— 0.

7.2. Divisor Classes

Definition. Two divisors a and b of the algebraic number field K are
called equivalent, and we write a ~ b, if they differ by a factor which is a
principal divisor: a =b(«), o € K*. The set of all divisors of K which are
equivalent to a given divisor a, is called a divisor class and denoted by [a].

In the terminology of group theory, the equivalence a ~ b denotes that the
divisors a and b belong to the same coset of the subgroup of all principal
divisors, and the divisor class [a] can be defined as the coset of the subgroup
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of all principal divisors which contains the divisor a. We clearly have [a] = [b]
if and only if a ~ b.
For any two divisor classes [a] and [b] set

[a]-[b] = [ab].

It is easily verified that this definition is independent of the choice of a and b
in these divisor classes, and that under this operation the set of all divisor
classes becomes a group, the divisor class group of the field K. The unit
element is the class [e], consisting of all principal divisors. The inverse of the
class [a] is the class [a™!].

In the terminology of group theory the divisor-class group is the factor
group of the group of all divisors by the subgroup of principal divisors.

The divisor-class group, and particularly its order, is an important arith-
metic invariant of the algebraic number field K. If the number of divisor classes
equals 1, then this means that every divisor is principal, which is equivalent
to the maximal order of the field K having unique factorization (Theorem 2
of Section 3). The question of whether the algebraic integers of the number
field K have unique factorization is hence a part of the problem of determining
the number of divisor classes of this field. We shall now show that this number
is always finite.

Theorem 2. The divisor class group of an algebraic number field is a
finite group.

Proof. From the definition of equivalence of divisors it easily follows that
the divisors a and b are equivalent if and only if the corresponding ideals @
and b are similar (in the sense of similarity of modules; Section 1.3 of Chap-
ter 2). The partitioning of divisors into classes of equivalent divisors hence
corresponds to the partitioning of ideals of the field K (that is, of full modules
whose coefficient ring is the maximal order of the field K) into classes of
similar ideals. By Theorem 3 of Section 6, Chapter 2, the number of classes
of similar modules with given coefficient ring is finite. Thus the number of
classes of similar ideals, and the number of classes of equivalent divisors, are
also finite.

Remark 1. Theorem 2 was obtained as a simple corollary of Theorem 3
of Section 6, Chapter 2. The proof of the latter theorem was based on geo-
metric considerations, in particular, on Minkowski’s lemma on convex bodies.
Hence, the proof of Theorem 2 is also based on Minkowski’s lemma.

Remark 2. From the proof of Theorem 3 of Section 6, Chapter 2,
we can deduce the following strengthening of Theorem 2. In each divisor class
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of an algebraic number field K of degree n = s + 2t, there exists an integral

divisor with norm (2/n)" \/rlﬂ, where D is the discriminant of the field K (that
is, the discriminant of the ring of integers of the field K). Let [b] be any divisor

class. Then there is an ideal 4 = ab™1, similar to the ideal b~!, for which
A>D and (4:0) < (2/7r)‘\/|D| (see the proof of Theorem 3 of Section 6,

Chapter 2). Since the ideal 4 contains D, its inverse will be integral: 4 = a™*

with integral a. From a ' =ab 1 it follows that a(x) = b, that is, that the
integral divisor a is contained in the class [b], and here (Problem 2)

N — _ 2\¢
N(a):%:(a'l:e)=(A:D)<(;) \/ﬁ

Theorem 3. If the divisor-class group of the field K has order A, then the
hth power of any divisor is principal.

Proof. The assertion of the theorem is a simple corollary of elementary
group theory. The order of every element of a finite group divides the order
of the group. Let a be any divisor. Since [a]" is the unit element of the divisor-
class group, then [a"] = [¢], and this means that the divisor a” is principal.

Corollary. If the number 4 of divisor classes of the field K is not divisible
by the prime number /, and if the divisor a' is principal, then a is also principal.

Since / and 4 are relatively prime, we can find rational integers u and v
such that /u 4+ hv = 1. Since the divisors a’ and a” are principal (the first by
assumption, and the second by Theorem 3), it follows that a’ and o™ are
also principal. But then so is the product a** = a,

By Problem 20, every algebraic number field K can be embedded in a larger
algebraic number field K, so that every divisor of the field K will be principal
in K. We cannot, however, assert that every divisor of the field K is principal.
Moreover, it has recently been shown (by Golod and Shafarevich) that there
exist algebraic number fields, for example, K = R(y/—=3-5-7-11:13-17-19),
which are not contained in any extension field with 4 = 1.

The following question is still open: Are there infinitely many algebraic
number fields with 4 = 1? Examination of tables show that such fields occur
rather frequently (see the tables of /4 for real quadratic fields and totally real
cubic fields).

For certain classes of fields (for example, for quadratic and cyclotomic
fields, see Chapter 5) formulas for the number of divisor classes have been
found, but in the general case little is known about /4 and the divisor-class
group. Among the few general theorems about the number / is the theorem
of Siegel and Brauer, which asserts that for all fields with a fixed degree n,
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the number 4 of divisor classes, the regulator R, and the discriminant D are
related by the following asymptotic formula:

In (hR) N

In /|D|

[R. Brauer, On the zeta functions of algebraic number fields, Am. J. Math, 69,
No. 2, 243-250 (1947)]. Since for imaginary quadratic fields the regulator of
the field is equal to 1, then it follows from (*) that as | D| — c0, so does & — 0.
In particular, we may deduce that there are only a finite number of imaginary
quadratic fields with 2 = 1. In tables we see nine imaginary quadratic fields
with h = 1 (their discriminants are —3, —4, —7, —8, —11, —19, —43, —67,
—163). It is known that there is at most one more imaginary quadratic field
with / = 1. It is not known whether or not it exists,

In the general case we can say almost nothing from (*) about the behavior
of the number A, since we know very little about the value of the regulator R.

1 for |D| » ™)

7.3. Applications to Fermat's Theorem

The results of the preceding section allow us to prove the validity of
Theorem 1 of Section 1 for a much wider class of exponents /.

Theorem 4. Let / be an odd prime and let { be a primitive /th root of 1.
If the number of divisor classes of the field R({) is not divisible by /, then the
first case of Fermat’s theorem holds for the exponent /.

Proof. Assume that, contrary to the theorem, there exist rational integers
x, ¥, and z, not divisible by /, and satisfying the equation

xt+yt=2L
We may further assume that x, y, and z are pairwise relatively prime. In the

ring of integers of the field R({) our equation can be written in the form
I—-1

[1(x+¢y) =2

k=0
Since x + y = x' + y' = z' = z(mod /) and z is not divisible by /, then x + y
is also not divisible by /. Then, as we proved in Lemma 5 of Section 1, for
m # n (mod /) there are numbers &, and n, in the ring Z[{] such that

(x + ") + (x + ™o = 1.

Hence the principal divisors (x + {*y) (k =0, 1, ...,/ — 1) are pairwise rela-
tively prime. Since their product is an /th power [of the divisor (z)], then
each of them separately must be an /th power. In particular,

(x + ) =a,
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where a is an integral divisor of the field R({). Since we have assumed that
the number of divisor classes of the field R({) is not divisible by /, it follows
from the corollary to Theorem 3 that the divisor a is principal; that is, a = («),
where o belongs to the maximal order © = Z[({] of the field R({). From the
equality

(x +{p) = ()

it now follows that
x4+ {y = e,

where ¢ is a unit of the ring ©. Analogously we obtain
x —{z=¢'

(2, € O, & a unit in D). We have reached equations which, as was shown in
Section 1.3, lead to a contradiction (in that part of the proof of Theorem 1
of Section 1 unique factorization was not used). Hence Theorem 4 is proved.

Those odd primes / for which the number of divisor classes of the field
R, ¢* =1, is not divisible by /, are called regular primes, and all others are
called irregular. By very beautiful number-theoretic and analytic arguments
Kummer obtained a fairly simple criterion (which we shall present in Section
6.4 of Chapter 5), which allows one to check easily whether a given prime / is
regular or not. Using this method it can be verified that among the prime
numbers <100 only three, 37, 59, and 67, are irregular, and all the rest are
regular. To show how much broader the class of exponents for which Theorem 4
holds is than the class for which Theorem 1 of Section 1 holds, we note that
among the prime numbers < 100, only for the first seven, 3, 5,7, 11, 13,17, 19,
do we have unique factorization in the ring © = Z[{] where {' =1, °

In his first paper Kummer stated the hypothesis that the number of irregular
primes was finite. He later retracted this and hypothesized that regular primes
occur twice as frequently as irregular ones. With the aid of electronic com-
puters, it has been shown that of the 550 odd primes < 4001, there are 334
regular ones and 216 irregular ones. A table of all irregular primes < 4001 is
given at the end of the book. Jensen (see Section 7.2 of Chapter 5) showed
that the number of irregular primes is infinite. It is not known whether there
are infinitely many regular primes; there are no indications that there are
only finitely many.

The first case of Fermat’s theorem for the exponent / is also connected with
the number A, of divisor classes of the field R({ + (') = R[2 cos (2n/])]. It is
easily seen that R({ + {~!) consists of all real numbers of the field R({).
Vandiver showed that if the number A, of divisor classes of the field R({ + ¢~ 1)
is not divisible by /, then the first case of Fermat’s theorem is valid for the
exponent / [H. S. Vandiver, Fermat’s last theorem and the second factor in
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the cyclotomic class number, Bull. Am. Math. Soc. 40, No. 2, 118-126 (1934)].
It is not known if there exist prime numbers / for which the number A, is
divisible by /. It has only been verified that there are none among numbers
< 4001.

We note here some other results which bear on the first case of Fermat’s
theorem. Wieferich showed that the first case of Fermat’s theorem is valid
for all primes / such that 2'~! # 1 (mod /%) [A. Wieferich, Zum letzen Fermat-
schen Theorem, J. Math. 136, 293-302 (1909)]. To indicate the strength of this
result we note that only two prime numbers / < 200, 183, namely, 1093 and
3511, satisfy the condition 2! ™! = 1 (mod /?) [Erna H. Pearson, Math. Comp.
17, No. 82, 194-195 (1963)]. However, it is not known whether there are
infinitely many such /. Several other authors have shown that the first case of
Fermat’s theorem holds for all / such that g'~! # 1 (mod /?) for some prime
number g < 43 (D. Mirimanoff, H. S. Vandiver, G. Frobenius, F. Pollaczek,
T. Morishima, J. B. Rosser). This has made it possible to verify the first case
of Fermat’s theorem for all prime numbers <253, 747, 889 [D. H. Lehmer
and Emma Lehmer, On the first case of Fermat’s last theorem, Bull. Am.
Math. Soc. 47, No. 2, 139-142 (1941)].

7.4. The Question of Effectiveness

Up to this time we have avoided the question of the practical construction
of a theory of divisors for a given algebraic number field K. Since all divisors
are determined once we know all prime divisors, and the prime divisors are
determined by the valuations of the field K, our question reduces to the
effective construction of all extensions to the field K of the valuation v, of
the field R for any fixed p. In addition to enumerating the prime divisors, it is
important to have a finite algorithm for computing the number 4 of divisor
classes of the field K. For only then will the results of the preceding section
concerning Fermat’s theorem have any real value.

In this section we shall show how to construct all extensions of the valuation
v, and how to compute the number 4, both in a finite number of steps.

Let o, be the ring of the valuation v, of the field R (that is, the ring of p-
integral rational numbers, see Section 3.2 of Chapter 1) and O, its integral
closure in the field K. Every number ¢ € O, is the root of a polynomial
t* + a;t*"! 4 ... + g, with p-integral coefficients a,. If m is a common de-
nominator for all a;, then the number m¢ = « will be a root of the polynomial
t* + ma;t*~! + --- + mka, with coefficients in Z; that is, it will lie in the ring
of integers O of the field K (the maximal order). The converse assertion also
holds: If « € © and if the rational integer m is not divisible by p, thena/m € O, .
Thus the ring O, consists of all numbers of the form a/m, where « € O and
the rational integer m is not divisible by p. Choose some fundamental basis
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@y, ..., w, of the field K (that is, a basis for the ring © over Z). Then we have
shown that the number & € K, which has the representation

é =aqw + -+ + a,0, (ai € R)5

will lie in the ring O, if and only if all @, are p-integers.

By Theorem 7 of Section 4 our first problem (that is, the construction of all
extensions of the valuation v,) reduces to the determination of a complete
system of pairwise-nonassociate prime elements n,, ..., nr,, of the ring O,.
Once the elements 7; have been found, then for any ¢ e O,* we can easily
obtain the factorization

&= nmt e mym, (7.9)

where 7 is a unit in O, . To do this we divide successively by each of the =,
until the quotient would not lie in the ring ©,; at some stage we obtain a
quotient n which cannot be divided by any of the ; and hence is a unitin O,.
Since each element of K is the quotient of two elements of O, (even of D),
the representation (7.9) can also be found for any ¢ € K*. But this determines
the valuations vy, ..., v,, of K which are extensions of v,. The ramification
indices of these valuations are found in the factorization p = en,*' --- 7,
(¢ a unit in D).

Let n be any prime element of the ring D, . Since rational integers which are
not divisible by p are units in O,, we may assume that n € ©. For any a € ©
the number 7 + p%a = n [l + (p?/n)a] is associate with =, since the factor
1 + (p*/m)aliesin O, and is not divisible by any of the prime elements,, ..., 7,
Thus a complete set of pairwise-nonassociate prime elements in O, can be
chosen from the system of numbers

X1y + e+ Xn@p »

where 0 < x; < p? (i = 1, ..., n). Since the set of all such numbers is finite, the
set of prime elements can be found, and the valuations v,, ..., v,, determined,
in a finite number of steps.

To find the degrees f;, ..., f,, of the prime divisors py, ..., p,,,corresponding
to the valuations v, ..., v, , we can use Theorem 5 of Section 5. By this theorem
for each prime element n; € © of the ring O, we have

N(ni) = pfia’

where the rational integer a is not divisible by p. Hence the degree f; of the
prime divisor p; is just the exponent with which p occurs in the rational integer
N(=m)).

We now turn to our second question, the effective computation of 4, the
number of divisor classes.
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In a remark after Theorem 2 it was noted that every divisor class contains
a divisor a for which

N@) < (%)t\/IDI (7.10)

(see also Problem 9). Let
Ay, ..., Qy (71.11)

be all integral divisors of the field K which satisfy (7.10). The number of such
divisors is finite, since there are only finitely many divisors with given norm
in K [for fixed a, from N(p,*' --- p,*) = a we easily deduce bounds on the
prime numbers p which are divisible by the p,, and on the exponents k,].
To determine the number of divisor classes we must find in the set (7.11) a
maximal set of pairwise-nonequivalent divisors. To make this effective, we
must have a practical method for determining whether or not two given
divisors are equivalent. Let a and b be two integral divisors. Choose in K a
number B # 0, which is divisible by b, and consider the divisor ab~!(8). The
divisors a and b are equivalent if and only if the divisor ab™!(p) is principal.
Hence we need to be able to determine whether or not a given integral divisor
is principal.

Denote the norm of such a divisor by a. In Section 5.4 of Chapter 2 we
showed that we could find, in a finite number of steps, a finite set of numbers

%, s, (1.12)

with norm +a, such that any « € © with norm +a is associate with a number
of (7.12). If the divisor a is principal; that is, if a = (¢) with « € O*, then
IN(2)| = a, and hence for some i (1 < i < r) we shall have a = («;). Hence if
we have already found the system (7.12), then to determine if the given divisor
is principal, we need only compare it with each of the principal divisors
(@), -, ().

Hence we have shown that the number A can be computed for the field K
in a finite number of steps.

The determination of the decomposition of the rational prime p into a
product of prime divisors is often more easily done by considering the norms
of k-nomials of numbers (k = 2). To describe this method we need some
auxiliary results.

Let 6 be an integral primitive element of the algebraic number field K of
degree n. Then the index of the order ©' = {1, 6, ..., 0"~} in the maximal
order O is called the index of the number 0.

Lemma. If the prime divisor p does not divide the index k of the number 0,
then any number o € O is congruent modulo p to some number of the order
O ={1,0,..,0" .
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Since p .t k, then kx = | (mod p) for some integer x. Set y = kxa. Since
ko€ 07, then also y € ©', and a = y (mod p).

Corollary. If p does not divide the discriminant D' = D(1, 6, ..., 8" "),
then any integer « € O is congruent modulo p to some number of the order
o' ={l1,0,..,00"1}.

From the formula D' = Dk?, where D is the discriminant of the field X
[Lemma I of Section 6, Chapter 2, and (2.12) of the Supplement], it follows
that if p does not divide D’, then also p does not divide k.

Assume now that the rational prime p does not divide the index of the
integer 0 € K. Let p be a prime divisor with degree f which divides p, and let 0
be the residue class of # modulo p. By the lemma the residue-class field O/p
is generated by the residue class 8 containing 6. If x,, ..., x; independently
run through a full system of residues modulo p (in the ring Z), then among
the numbers

y=x,+ X0+ -+ x,007" + 6/

there will be one and only one which is divisible by p. Computing the norms
N(y), we can easily determine which y are divisible by some prime divisor
which divides p. If, for example, for f= 1, we find s numbers y whose norms
are divisible precisely by the first power of p, then we have found s prime
divisors of the first degree which divide p. Assume now that all prime divisors
of first degree which occur in p have been found (so we have a set of numbers
By, ..., B, with norms pa,, p ¥ a;). Now setting f = 2, we isolate those numbers
y whose norm is divisible by p?. Dividing by the numbers g, already found, we
can eliminate those y which arose from prime divisors of degree 1, and if
after this N(y) = p*(b/c) (bc, p) = 1, then y is divisible by a prime divisor of
degree 2. If by this method we can find all prime divisors of degree 2 which
divide p, then we take f = 3, and so on. Of course, for large n the computations
will generally be large; for n = 3 and n = 4 we can often achieve our goal
quite quickly. Some refinements of this method are given in Problems 25 to 27,

Example 1. We shall factor the numbers 2, 3, 5, and 7 into prime divisors
in the field of fifth degree R(0), where §° = 2. The discriminant D(1, 8, 62, 6%, 0%)
equals 2*5°, and hence only the primes 2 and 5 can divide the index of 0. By
Problem 15, the number 2 does not occur in the index. Since 6% = 2, then
p, = (0) is a prime divisor of the first degree, and we have
2 = pzs.

From

NO)=2, NO+1)=3 NO-1)=1 (7.13)
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it follows that only one prime divisor of first degree divides the number 3,
namely, p, = (0 + 1), and p,> ¥ 3 by Theorem 8 of Section 5. Further,

NO+2)=2-17, N(O-2)=—2-35. (7.14)

The second of these equations shows that the number 5 has a prime divisor p;
of degree 1, and since # —2 =(0+ 1) —3 is divisible by p,, we have
(0 — 2) = p,p;3p5 . The number 0 — 2 satisfies the equation

(0 —2)° + 10(0 — 2)* + 40(0 — 2)> + 80(0 — 2)* + 80(0 — 2) + 30 = 0.
By Problem 9 of Section 5 we have
5=rps.
The result of Problem 15 also shows that 5 does not divide the index of the
number 6, and this means that the ring of all integers of the field R() coincides

with the order {1, 0, 62, 6°, 6*}.
Combining (7.13) and (7.14) with

N(O +3) =57 N —3)= —241,

we see that there are two possibilities. Either the number 0 + 3 is divisible
by the square of a prime divisor (which divides 7) of first degree, or it is divisible
by a prime divisor of second degree (which divides 7). But for the number
0 —4=(0+3)—7we have N(§ — 4) = —2:7-73, and hence the first possi-
bility holds. This means that 7 has one (and only one) prime divisor of first
degree p,, where p,2|7.

To determine whether 3 and 7 have prime divisors of second degree, we
consider trinomials of the form 62 + 6x + y. We have

N0 + x0 + ») = 2x> +.y° — 10x3y + 10xy? + 4. (7.15)
Substituting for x and y the values 0, 1, — 1, we obtain nine numbers, none of
which is divisible by 9. This means that no prime divisor of degree 2 divides 3.
By formula (7.3) there is now only one possibility for the decomposition of
the number 3:

3=1psps,
where p,’ is a prime divisor of fourth degree. Now if x and y take the values
0, +1, +2, +3in(7.15), then of the 49 numbers which arise only one is divisible
by 72:
N(O* +20-3)=5-7%

But 6% + 20 — 3 = (6 + 3)(8 — 1), and therefore we have only the square of
the divisor p,, so that also for 7 we have the factorization

T=p.p,,
where p,’ is a prime divisor of fourth degree.
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Example 2. Consider the cubic field R(0), 6> —90 —6=0. Since
D(1, 6, 6%) = 3°-23, by Problem 15 only 2 can divide the index of (it can
be shown that the order {1, 0, 6%} is maximal, but we shall not need this).
By Problem 9 of Section 5 we have the decomposition

3=1p,%
From
N@) =6, NO+1)=—4, N@O-1)=14, (7.16)
we conclude that the number 2 has at least two prime divisors of first degree,

p; and p,’:
©) =paps (O —1)=p,'ps (7.17)

(that there are only two would follow from the maximality of the order
{1, 0, 62}, for then 2 would not divide the index of the number 0). But from

the equation
@-1P+36-1)*—-6(0—-1)—14=0

we see that 2 is divisible by p,’2, and hence

2=p,0,%, (04 1)=p,% (7.18)
The norms (7.16) and also
NG + 2) = —4, N@O - 2)=16 (7.19)

are not divisible by 5. This means that 5 has no prime divisor of first degree.
Since the field is cubic, it follows that the principal divisor 5 is prime. To
decompose the number 7, we must also consider the norms

NO+3)=6, NO-3)=6.

Since there is only one norm divisible by 7, then 7 has only one prime divisor
of first degree. Since p,2 47, we must have 7 = p,p,’, where p, is a prime
divisor of second degree.

In the process of decomposing rational primes into the products of prime
divisors by our method of examining the values of the norms of integers, we
have also obtained a series of equivalences among divisors. These equivalences
allow us to reduce the number of divisors of the system (7.11) from which we
must choose a maximal set of pairwise-nonequivalent divisors to determine
the number 4. Thus, in Example 2, by Problem 9 the system (7.11) consists
of integral divisors with norm <(3!/3%)+/3%-2% < 10, that is, of the divisors

1,92, P2, Ps, Pzz’ lez, P2P2’s P2P3, P2'P3, Py, st, Pzzpzl, 2, 92’3’ Psz'
(7.20)
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It follows from (7.18) that p,’> ~ 1 and p, ~ 1 (1 being the unit divisor), and
then from (7.17) and (@ + 3) = p,'p, that p; ~ 1, p," ~ 1, p;, ~ 1. Hence all
divisors of the system (7.20) are principal and we have 4 = 1 for the field
R(D), 0* =90 — 6 =0.

Sometimes (for small discriminants) the system of divisors (7.11) consists
only of the unit divisor. In these cases we obtain A = 1 without further com-
putations. For example, for the field R(0), 0° — 6 — 1 = 1, the discriminant
of the basis, 1, 0, 6% equals —23, so by Problem 8 of Section 2, Chapter 2, this
basis is fundamental and —23 is the discriminant of the field. By Problem 9
there is an integral divisor in each divisor class of the field R(0) with norm

431
<;3—3\/23< 2,

and this means that in the field R(0) every divisor is principal.

For quadratic fields the number of divisor classes can also be computed
by the theory of reduction, considered in Problems 12 to 15 and 24 of Section 7
of Chapter 2.

PROBLEMS

1. Showthat in an algebraic numberfield of degree n the number () of integral divisors
with given norm a does not exceed the number 7,(a) of all solutions to the equation
XiX3 -+ Xy = a (X4, ..., x, independently taking all natural values).

2. Let g and b be two divisors of an algebraic number field (integral or fractional), with
‘a and b the corresponding ideals. Show that if a is divisible by b, then
(b:@) = (Nab™Y),
3. Show that in any two distinct divisor classes there exist relatively prime integral
divisors.

4. If ais an integral divisor of an algebraic number field, let @(a) denote the number
of residue classes modulo a which consist of numbers relatively prime to a (this generalizes
Euler’s function). Show that if the integral divisors a and b are relatively prime, then

g(ab) = @(a)p(b).
5. Prove the formula

1
=N 1 - —
¢(a) (a) I,I ( N(p))’

in which p runs through all prime divisors which divide the integral divisor a.
6. Show that for any integer « which is relatively prime to the integral divisor a, we have
o®@ =1 (mod a)

(this generalizes Euler’s theorem). Further, show that for any integer « and prime divisor p
of an algebraic number field,
o¥P = o (mod p)

(this generalizes the small Fermat theorem).
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7. Prove the formula

Z g(c) = N(a),

where the sum is taken over all divisors ¢ which divide the integral divisor a (including e
and a),
8. Let £, ..., & (s=N(p)— 1) be a system of residues for the prime divisor p, not
divisible by p. Show that then
& ... & =—1(mod p)

(Wilson’s theorem).

9. Let K be an algebraic number field of degree n = s + 2r and discriminant D. Use
Problem 2 of Section 6, Chapter 2, to show that in every divisor class of X there is an integral
divisor a with

N(a) < (‘1) "—' V' |D|.
s n

10. Show that for the quadratic fields with discriminants 5, 8, 12, 13, —3, —4, —7, —38,
—11 the number of divisor classes is 1.

11. Show that the number of divisor classes of the field R(v —19) equals 1.

12. Show that the ring of integers of the field R({), where { is a primitive fifth root of 1,
has unique factorization.

13. Show that the number of divisor classes in the field R(v/ —23) is equal to 3.

14. Let K;, K3, and K, be the three cubic fields described in Problem 21 of Section 2,
Chapter 2. Show that the number 5 remains a prime divisor in the fields X; and X,, and
in the field K it factors as a product of three distinct prime divisors of first degree: 5 = pp’p”.
Further, show that the number 11 factors as a product of three distinct prime divisors in
the field K,, 11 =qa’q”, and that 11 remains prime in K, . (It follows that the fields X,, K;,
and K; are distinct.)

15. Let the primitive element 6 € K be the root of an Eisenstein polynomial relative to
the prime number p. Use Problem 9 of Section 5 to show that p does not divide the index
of the number 8.

16. Let the prime number p be less than the degree n of the algebraic number field X.
If there is an integral primitive element in X whose index is not divisible by p, show that p
cannot factor in K as the product of n distinct prime divisors of first degree.

17. Use Problems 18 and 19 of Section 5 to show that a rational prime number is ramified
in the algebraic number field K (that is, is divisible by the square of a prime divisor) if and
only if it divides the discriminant of the field K.

18. Let f(xy, ..., X,) be a quadratic form whose coefficients are integers in the algebraic
number field X, and let § be its determinant. Let p be a prime divisor which does not divide
2 or 8. If « is an integer of K not divisible by y, set (a/p) = +1 if the congruence £2 =«
(mod p) is solvable, and (a/p)= —1 otherwise. If N is the number of solutions of the
congruence

f(xly ey X,,) EO (mOd p)

show that
N=N@)r-, if nis odd,

o {a—yrs . o
N=N@)r—!'+ — N(p)T 22 (N(p)— 1) if nis even.

AL

ey ==
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19. Let a be a divisor of the algebraic number field K, such that a™ = (a) is a principal
divisor. Show that the divisor a becomes principal in the field K(m"\y;).

20. Show that for any algebraic number field K there is a finite extension K/K such that
every divisor a of the field K becomes principal in the field K.

21. Let K be a cubic field and p a prime which factors as a product of three distinct prime
divisors in K: p = pp’p”. If « is an integer in K with Sp(a) =0 and pp’|e, show that p”|a
and hence p|a.

22. Show that the field R(f), 8> = 6, has only one divisor class. [By Problem 24 of Sec-
tion 2, Chapter 2, the numbers 1, 8, 8 form a fundamental basis for the field R(6).]

23. Let X be the cubic field X = R(f), 62 = 6. Show that there is no number o # 0 of X
of the form @ = x + y#, x and y relatively prime rational integers, for which N(a) = 10z3
(z a rational integer). Deduce that the equation x* + 6y* = 10z3 (and hence also the equation
3x3 4+ 4y% 4+ 5z = 0) has no nontrivial solution in rational integers.

Hint: Assume that the number « exists and show that it must have the form a = oo£3,
where £ is an integer of the field K and «, is one of the following six numbers:

Ap, Aue, Aue?, Av, Ave, Ave?.

Here A=2—0 [NQ)=2]; p=0—1 [N(w)=5]; v=00>+6+1)>=13 + 80 + 36
[N() = 5-5%]; and £ =1 — 66 + 362 is a fundamental unit of the field X (Problem 4 of
Section 5, Chapter 2). For the proof use Problem 21, applied to the number a6, Problems
17 and 22, and also prime factorizations in the field X of the numbers 2, 3, and 5. Further,
setting £ = u + vf + wh?, write

w=oof?= @ +V0+ Q62

where @, ¥, and Q are integral cubic forms in the variables «, v, and w. Show that for any
of the six values of xo the equation Q(u, v, w) = 0 has only the trivial solution in rational
(and in 3-adic) numbers.]

24. Let a and b be natural numbers which are square-free and relatively prime, and let

d=ab*> 1. Show that in the field R(Vd) the number 3 factors into prime divisors as

follows:
3=yp3 if d# +1 (mod9),

3=pZa(w#9), if d==x1(modI).
Hint: In the case d = 41 (mod 9) consider the norms N(w — 1), N(w), N(w + 1),where

1 — —
w=3(+0 Vab* + 1 ¥ a?b),

o=41, r=41, ca=7b=1 (mod 3).

25. Letf be an integral primitive element of the algebraic number field K, with minimum
polynomial (7), and let p be a rational prime which does not divide the index of 6. Suppose
that, modulo p, we have the factorization

@) = @i()" - @m()™ (mod p),

where @y, ..., ¢, are distinct irreducible polynomials modulo p with degrees fi, ..., fa.
Show that the decomposition of the number p in the field K takes the form

P=p:"t - P,
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where the distinct prime divisors py, ..., v have degrees fi, ..., fi and where @(6) =0
(mod p) fori=1,...,m.

Hint: Use the fact that every integer of K is congruent modulo p, to a linear combination
(with rational integer coefficients) of the powers 6° (s = 0).

26. Let 6 be an integral primitive element of the field X, and p a prime number which
does not divide the index of 6. For any rational integer x, show that the number 8 + x is
not divisible by any prime divisor which divides p and is of degree greater than 1. Further,
show that 6 + x is not divisible by the product of any two distinct prime divisors which
divide p.

27. Under the same assumptions, let p, ..., p, be distinct prime divisors which divide p,

with degrees f;, ..., fs, and let r<fy + --- +£.1f xo, ..., X,y are any rational integers,
show that the number 8" + x,_,67" + .- + x, is not divisible by the product p; --- p,.

8. Quadratic Fields

In this section we consider the somewhat simpler theory of divisors for the
case of quadratic fields. We start with a description of the prime divisors.

8.1. Prime Divisors

Since every prime divisor divides one and only one rational prime, to give
a complete description of the set of all prime divisors it suffices to show how
each rational prime p factors as a product of prime divisors. For quadratic
fields it follows from (7.3) that there are only three possibilities for the numbers
m, f;, e;:

(D)m=2, fi=fr=1, e=e=1;

Qm=1, f=2, e=1;

Bym=1, f=1, e=2.

Corresponding to these we have the following types of decomposition:

(D) p=pp’, NEP)=NE)=p, p#p;

Q@ p=v», N(p) = p*;

G pr=+, N =p

Our problem is to discover what determines the type of factorization for
any prime p. The answer will be easily derived from Theorem 8 of Section 5.

In Section 7.1 of Chapter 2 we showed that every quadratic field has a
unique representation in the form R(+/d), where d is a square-free rational
integer.

First, let p be an odd prime. If p does not divide d, then it also does not
divide the discriminant of the polynomial x? — d, a root of which generates
the field. We then deduce from Theorem 8 of Section 5 that p has a decom-
position of either the first or the second type, depending on whether the
polynomial x* — d is reducible modulo p or not. This in turn depends on
whether d is a quadratic residue modulo p or not.
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If p|d, then d = pd, , where d, is not divisible by p, since d is square-free.
It follows from

pdl = (\/3)2’ (dI’ P) = 1,

that all prime divisors which divide p occur with an even exponent in its
factorization, which is possible only for the third type of decomposition.
Thus for odd p we have the first, second, or third type of decomposition in the
following three cases, respectively: () pt¥d, (dp)=1; Q) ptd,(dp)= —1;
(3) pld. Note that since the discriminant D of the field R(~/d) is either d or 4d
(Theorem 1 of Section 7, Chapter 2), then in each of these conditions we could
replace d by D.

The case p = 2 remains. Assume first that 2 ¥ D. By Theorem 1 of Section 7,
Chapter 2, this means that D = d = 1 (mod 4). It is clear that R(/ d) = R(w),
where 0 = (=1 + 4/ D)/2. The minimum polynomial of @ is

1-D
x2+x+—4—. (81)

Since the discriminant of the basis 1, @ is odd, we obtain from Theorem 8
of Section 5 that the number 2 will have either the first or the second type of
decomposition, depending on whether the polynomial (8.1) is reducible or
not. But the polynomial x*> + x + a is reducible modulo 2 if and only if 2]a.
Thus for 2 4 D we obtain the first and the second types of decomposition in
the respective cases D = 1 (mod 8) and D =5 (mod 8).

We now show that if 2] D,then 2 always has the third type of decomposition.
If 2|d, then d = 24’, 2 y d’', and from

2d' = (Jd)?, 2kd,

just as in the case of odd p, we see that 2 has the third type of decomposition.
If 2.t d, then d =3 (mod 4) (Theorem 1 of Section 7 of Chapter 2) and we
have

(I + JdP =20
with the integer o« = (1 + d)/2 + /d relatively prime to 2, since its norm

N(a)=(1 J;ar)2 e (1 - d)z

2

is not divisible by 2. Thus we again obtain the third type of decomposition
for 2.
We have obtained the following theorem.
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Theorem 1. In a quadratic field with discriminant D the prime number
p has the decomposition

p=v> N@)=p,
if and only if p divides D. If p is odd and does not divide D, then

D
p=vpp, p#p, NpE)=N@E)=p for (;) =1;

D
p=p, N(p)=p? for (;) =~ 1.

If 2 does not divide D [and hence D =1 (mod 4)], then
2=pp,, p#p, Np)=~N@)=2 for D=1 (mod 8);
2=p, N(p)=4 for D =5 (mod 8).

8.2. Rules of Decomposition

Theorem 1 tells us that the type of decomposition of the odd prime pis deter-
mined by the residue of D (or d) modulo p, and even by the Legendre symbol
(D/p) = (d|p) as a function of p. It is natural to ask if the theorem can be
reformulated so that the decomposition depends on the residue of p with
respect to some modulus (the modulus depending only on the field). To
achieve such a formulation, we use the reciprocity law for the Jacobi symbol.

It is well known that the Jacobi symbol (¢/b) is defined for odd ¢ and positive
odd b, relatively prime to c¢. The reciprocity law for this symbol states that

(—) = (= DI(b — D/2]-[(c ~ 1)/21(I |)

(the proof for ¢ < 0 is easily reduced to the positive case).
Let p be any odd prime. If d = D = 1 (mod 4), then

(g) - (—) — (= DI(p - D21 [(d— 1)/21(I dl) () @2
since (d — 1)/2 is even. If d = 3 (mod 4), then

(15) =(g) = (= )= 1/21E- 1)/2](|Z|)=( 1)- ”/2(|5|) (8.3)

since (d — 1)/2 is odd. Finally, for d = 2d’, 2 ¥ d’, we have

(2) = (é) = (g) (ij_) = (= DU~ DB+ Lp- V2 —1>/2]( P ) (8.4)
p p/ \p/\p ']



Sec. 8] QUADRATIC FIELDS 237

The value of the Jacobi symbol (p/|d|) [or (p/|d’|)] depends only on the
residue of p modulo |d]| (or |d’|). If d =1 (mod 4), so that d = D, then (D/p)
depends only on the residue of p modulo |d| = | D|. If d = 3 (mod 4), so that
D = 4d, then (D/p) depends not only on the residue of p modulo |d|, but also
on the number (— 1)~ 12 that is, on the residue of p modulo 4; hence (D/p)
depends onthe residue of pmodulo 4|d| = | D}.Finally,ifd = 2d’,D = 4d=8d’,
then (D/p) depends on the residue of p modulo |d’|, (—1)?~ "2 depends on
the residue of p modulo 4, and (—1)®*~ /8 depends on the residue of p modulo
8. Hence in this case the value of (D/p) depends on the residue of p modulo
8]d’| = | D|. Thus in all cases the type of decomposition of the prime number p
depends only on its residue modulo | D|, so that all prime numbers having the
same residue have the same decomposition. This conclusion, which is com-
pletely nonobvious a priori, is the most important property of the decom-
position rules for prime numbers in quadratic fields.

To make this new form of the decomposition rule more clear, we introduce
a new function. For all x relatively prime to the discriminant D, we set

x
— for d = 1 (mod 4),
(|d|) (mod 4)

2(x) = (- 1)<*-”/2(%) ford = 3 (mod 4), (8.5)
x
||
[in case d =2, 3 (mod 4) the expressions (—1)*~1”2 and (—1)** 718 make
sense since the discriminant D = 4d is even and so x is odd].

In the arguments above which showed that for odd p the value of (D/p)
depends only on the residue of p modulo | D|, we never used the fact that p
was prime. Hence by the same arguments it follows that yx(x) depends only
on the residue of x modulo | D|. Further, it is easily verified that if (x, D) =1
and (x’, D) = 1, then y(xx") = y(x)x(x"). This means that the function y can
be considered as a homomorphism of the multiplicative group of residue
classes modulo | D|, relatively prime to | D|, to the group of order 2 consisting
of +1 and — 1. If we extend such a function by giving it to the value 0 on all
numbers not relatively prime to D, it is called a numerical character.

(- 1)[(x2—1)/81+[(x—1>/2]-[(d'—l)m( ) for d = 2d’

Definition. The numerical character y with modulus | D|, where the value
of x(x) for x relatively prime to D is given by (8.5), is called the character of
the field R(+/d).

Returning to (8.2), (8.3) and (8.4), we see that the decomposition of an odd
prime p which does not divide D will be of the first type if y(p) = + 1 and of
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the second type if y(p) = — 1. This result remains true for p = 2. Forif 2 ¥ D,
then D =1 (mod 4) and this means that x(2) = (2/| D|), which equals +1 for
D =1 (mod 8) and —1 for D=5 (mod 8).

Hence we have the following new formulation of the rule for decomposition
in quadratic fields.

Theorem 2. If g is the character of the quadratic field R( Jd), then the
decomposition of a prime p in R(+/d) is given by the conditions:

’

p=pp, P#p, NP)=Np)=p ifxp)=1;

p=p, Np)=p’ if y(p)= —1;

p=v* Np)=p, if x(p) = 0.

All rational integers are partitioned into three sets, depending on the value
of 3. Each of these sets consists of certain residue classes modulo | D|. By
Theorem 2 the type of decomposition of p depends only on which of the three
sets contains p.

A law of decomposition like that in quadratic fields, where -the type of |
decomposition depends only on the residue of the prime p with respect to a
certain fixed modulus, also occurs for certain other fields. This is the case,
for example, for cyclotomic fields (see Section 2.2. of Chapter 5). But it is far
from being the case in general. Since the knowledge of such a law of decom-
position allows us to solve many number-theoretic problems (see, for example,
the following section and Section 2 of Chapter 5), it would be interesting to
know for precisely which fields we have such a simple law of decomposition.
The answer to this question leads into class field theory. It can be shown that
any such field is a normal extension of the field of rational numbers, the Galois
group of which is Abelian. Among such fields lie, of course, quadratic fields,
which have a cyclic group of order 2 as Galois group. The simplest examples of
non-Abelian fields are cubic fields whose discriminant is not a perfect square.
An example is the field R(0), where 6> — 0 — 1 = 0. Hence for this field there
does not exist any integer M such that the type of decomposition into prime
divisors of the prime number p depends only on the residue of p modulo M.

Class field theory solves much more general problems than those we have
mentioned. It allows one to describe the law of decomposition for prime
divisors of an arbitrary algebraic number field & in some extension Kjk,
provided that the Galois group of this extension is Abelian (we spoke above
of the special case when k = R). Class field theory has many number-theoretic
applications. It allows us to carry over the theorem on quadratic forms with
rational coefficients, proved in Chapter 1, to the case of quadratic forms with
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of strict divisor classes Is also finite, and is related to the number / of divisor
classes in the usual sense by

h=h ford < 0;
h=h ford >0, N@E) = —1;
h=2h ford >0, N(e) = +1.

Theorem 4 of Section 7 of Chapter 2, when applied to modules which belong
to the maximal order of the field R( \/ d) with discriminant D, can be reformu-
lated as follows: the strict divisor classes of the quadratic field R(/d) are in
one-to-one correspondence with the classes of properly equivalent primitive
binary quadratic forms of discriminant D (which are positive definite if D < 0).

We shall try to apply the results of Sections 8.1 and 8.2 to the question of
the representation of numbers by binary forms.

By Theorem 6 of Section 7 of Chapter 2 the natural number a is represented
by some form of discriminant D if and only if there is an integral divisor of
the field R(+/d) with norm a (the norm of a divisor coincides with the norm
of the corresponding module). Now we can use Theorem 2 to characterize all
numbers which are norms of divisors. By this theorem the norm N(p) of a
prime divisor p equals the prime number p if (p) = Oor if (p) = 1, and equals
p? if x(p) = —1. Hence the number a is representable in the form N(a) for
some integral divisor a = [] p*® of the field R(,/d) if and only if all prime

P

factors p, for which y(p) = — 1, occur in a with even exponent.

By using the Hilbert symbol (Section 6.3 of Chapter 1) we can put this
result in somewhat different form. We compute (a, D/p) for all primes which
do not divide D. Let a = p*b, where b is not divisible by p. From the properties
of the Hilbert symbol we obtain

B2 EC) = G -nor wrmszmeo,

as D — . - - 2~
(T) = (= -2 1)/21+ k(D2 1)/8] _ (- D2 1781 — X(Z)k

forp=2,24D

[for p = 2, 2 ¥ D, we have used the fact that D = I (mod 4)]. This formula
proves the second part of the following theorem.

Theorem 3. A natural number a is represented by some binary form of
discriminant D if and only if every prime p, for which y(p) = —1, occurs with
even exponent in the prime factorization of a. This in turn occurs if and only if

D
(%—) =+1 forall p ¥ D.
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Since the integers @ and ab?® are either both represented or both not repre-
sented by forms of discriminant D, we may limit our consideration to square-
free numbers a.

If p#£2, p¥ D, and pta, then we know that (a, D/p) = +1. Hence
Theorem 3 only imposes a finite number of conditions on the number a, and
these conditions only involve the residues modulo | D] of the prime divisors
of the square-free number a.

Theorem 3 could have been deduced easily from Theorem 7 of Section 7 of
Chapter 2. We gave a proof based on Theorem 2 to point out the connection
between the question of the representation of numbers by forms of dis-
criminant D and the question of the decomposition into factors in the cor-
responding quadratic field.

This result is not all that we might wish to obtain. We would like to have a
criterion for the representation of the number a by forms from a given class
of properly equivalent forms, and Theorem 3 only gives us a condition for
the representability of a by forms from some class. The following question
then arises: Can we partition the classes of forms into nonintersecting col-
lections, so that, for any a, all forms which represent the number a (if any
exist) are contained in the same collection? Such a partition was found by
Gauss. It is connected with rational equivalence of quadratic forms.

Definition. We say that two primitive binary quadratic forms with dis-
criminant D belong to the same genus if they are rationally equivalent.

Since integrally equivalent forms are certainly rationally equivalent, all
forms of the same class lie in the same genus. Hence each genus is the union
of certain classes. It follows that the number of genera of forms (for given
discriminant D) is finite.

In Section 7.5 of Chapter 1 we defined the invariant e (f) for a nonsingular
binary rational form f, where p is a prime number or the symbol oo. In the
case of a primitive form f with discriminant D, the determinant equals — 4D,

and therefore
a,D
o= (=2),
p

where a # 0 is any number which is rationally represented by the form f.
Let G be any genus of forms. Since all forms of G have the same invariant,
we can set

e,(G) = e,(f),

where fis any form of G.
Let a be any nonzero number represented by the form f. By the second
assertion of Theorem 3 we have e, (f) = (g, D/p) = 1 for all primes p which
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do not divide D. Further e (f) = 1, since in the case D < 0 we are considering
only positive-definite forms. Hence for any genus G of forms with discriminant
D we have

e,(G) =1 for pt D and p = . (8.6)

Hence each genus G is uniquely determined by the invariants e,(G), where p
runs through all prime divisors of the discriminant D.

We can now give conditions for a number to be represented by some form
of a fixed genus.

Theorem 4. Let a be a natural number and G be a genus of forms with
discriminant D. In order that a be integrally represented by some form of G,
it is necessary and sufficient that

()40

for all primes p.

Proof. The condition is clearly necessary. If for some a we have (a, D/p)
= ¢,(G) for all p, then by (8.6) [(a, D)/p] =1 for all p}y D. Theorem 3
implies that a is represented by some form f of discriminant D, and since
e,(f) = [(a, D)/p] = €,(G), then f belongs to the genus G. The theorem is
proved.

The assertion of Theorem 4 is interesting in that the condition for the
representability of a by some form of the genus G only involves the residue
of amodulo | D| [assuming that ais represented by some form of discriminant D,
that is, that [(a, D)/p] = | for all p 4 D]. In the case when each genus consists
of one and only one class, Theorem 4 gives us an ideal answer to the question
of the representation of numbets by binary forms.

In the general case this result cannot be improved, in the following sense.
Suppose we take a set S of classes of forms, which is not the union of some
genera. Then there does not exist any modulus m such that the representation
of a number a by some form of our set S depends only on the residue of a
modulo m. In particular, if a genus consists of several classes, then it is not
possible to characterize the numbers represented by forms of one of those
classes in terms of the residues of the numbers for some modulus. These facts
can be proved by class field theory. The proof has the following flavor. The
representation of a prime number p by some form from our set of classes S
can be interpreted in terms of the type of splitting of this prime into prime
divisors in some field L. The field L will have an Abelian Galois group over
the rational field if and only if our set S is a union of genera [H. Hasse, Zur
Geschlechtertheorie in quadratischen Zahlkorpern, J. Marh. Japan 3, No. 1,
45-51 (1951)].
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We now investigate the question of the number of genera. Let p,, ..., p, be
all prime divisors of the discriminant D. By (8.6) every genus is uniquely
determined by the invariants e; = e, (G). These invariants cannot be arbitrary,
since, if f€ G and the number a # 0 is represented by f, we have

a, D
e, e=[]eG)=]] (——) =1
2 »\ P
[see (7.17) of Chapter 1; the product is taken over all prime numbers p and
the symbol «].
We now show that the relation

e, e, =1 (8.7)

between the numbers ¢; = +1 is not only necessary, but also sufficient, in
order that these numbers be the invariants of some genus G.

Denote by k; the power tc which p divides D (k, equals 1 for all p; # 2 and
equals 2 or 3 for p; =2). For i = 1, ..., t choose an integer a;, not divisible
by p;, such that (a;, D/p;) = e;, and then determine a by the system of con-
gruences

a=a;(mod pf)y (I1<i<y).

For any a which satisfies these congruences we have (by the properties of the

Hilbert symbol)
(50)-(57)
— = =e.
Di D:

Our problem is then to find, among all such values of a, one for which
(a, Djp) =1 for all p ¥ D. We use here the theorem of Dirichlet on prime
numbers in arithmetic progressions (Section 3 of Chapter 5). Since the set of
all such values of a is a residue classmodulo | D| = [ | p;* consisting of numbers
relatively prime to D, we may choose among them a prime valueg, by Dirichlet’s

theorem. We then have
()= (%)
—|=|l—]=e
Pi Di

q. D
(— =1 forp¥D,p#2 and p+#gq;
p

(Q_E_D) =(- 1)[(4—1)/2][(0—1)/2] =1 for 2 4 D.

The relation [],(g, D/p) =1 then yields e, --- (g, D/q) = 1, so it follows
from (8.7) that the value of the symbol (¢, D/q) is also 1.
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Thus there exists a natural number a (which is also prime) such that

, D , D
(a )=e,~(1<i<t) and (f___)=1 for p ¥ D.
i P

By Theorem 3, a is represented by some form f with discriminant D. If this
form belongs to the genus G, then

e,(G) = (“—’2

) = e,- (1 S i S t)-
This proves our assertion on the existence of a genus with given invariants
[satisfying, of course, (8.7)]. Since there are 2'~! possible choices of e; = +1
which satisfy (8.7), the number of genera of forms of discriminant D also
equals 2! 71,

Theorem 5. Let p,, ..., p, be the distinct prime divisors of the discriminant
D of the quadratic field R(\/d). For any choice of the valuese; = +1
(1 i< )suchthate, - - ¢, = 1, there is a genus G of forms of discriminant D
for which e, (G) = e;. Hence there are 2~ ! genera of forms of discriminant D.

Remark 1. The theory of genera of forms, given in this section when
the discriminant coincides with the discriminant of the maximal order of a
quadratic field, can also be developed for forms with discriminant Df?2.

Remark 2. If every genus of forms with negative discriminant Df? con-
sists of a single class, then there is a simple formula (Problem 18) for the
number of representations of an integer relatively prime to f by a fixed form
of discriminant Df2. A table of the known values for the discriminant Df? < 0
with each genus consisting of a single class is given at the end of the book. It
is not known if this table is complete. It has been proved that the number of
such discriminants is finite. For the even numbers Df? in this table the numbers
— 1 Df? were found by Euler, who called them convenient numbers. They were
used by Euler to find large prime numbers because of the following property:
If @ and b are relatively prime numbers whose product ab is a convenient
number and if the form ax? + by? represents the number ¢ in essentially only
one way (with relatively prime x and y), then the number g is prime (see
Problem 19). For example, the difference 3049 — 120y? is a square only when
y =25, and this means that the number 3049 is represented by the form
x? + 120y? in only one way: 3049 = 7% 4 120- 5%, and hence is prime. By this
method Euler found many primes which were very large for those times. It is
clear that for larger convenient numbers, the work involved in proving unique-
ness is less.
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8.4. Genera of Divisors

The results on genera of forms obtained in Section 8.3 allow us to draw
some conclusions on the structure of the group of divisor classes (in the strict
sense) of a quadratic field. We carry over the concept of genus to divisors.

By Theorem 6 of Section 6 every divisor a (integral or fractional) corre-
sponds to a unique ideal a, which consists of all numbers of the field which
are divisible by a. For a quadratic field every basis {«, 8} of the module a,
which satisfies condition (7.10) of Chapter 2, corresponds to a primitive form

N(ax + By)

13 = = ®.8)
If we pass to another basis of the module a [which also satisfies (7.10) of
Chapter 2], the form f will be taken to a strictly equivalent form. Hence by
(8.8) the divisor is associated with a whole class of strictly equivalent forms.
This mapping sets up a one-to-one correspondence between classes of divisors
in the narrow sense and classes of strictly equivalent forms of discriminant D,
which was already remarked at the beginning of Section 8.3.

Definition. Two divisors of a quadratic field are in the same genus if
their corresponding classes of forms are contained in the same genus of forms
(that is, are rationally equivalent).

Since divisors which are strictly equivalent correspond to the same class
of forms, then each genus of divisors is a union of classes (in the strict sense)
of divisors.

A genus of divisors, corresponding to the genus of forms G, will also be
denoted by G. By the invariants e,(G) of a genus G of divisors, we mean the
analogous invariants for the corresponding genus of forms. We then have
the formula

e (G) = ( (8.9)

N(a), D)

» )
where ais any divisor of the genus G. For by definition wehave e, (G) = (a, D/p),
where a is some nonzero rational number which is represented by the form
f(x,y) given by (8.8). But the form N(ax 4 By) represents all squares of
rational numbers, so in particular it represents N(a)?. Hence, f(x, y) represents
N(a), which proves (8.9).

The genus of divisors G,, all invariants of which equal 1, is called the
principal genus. The divisors of the principal genus are characterized by the
condition (N(a), D/p) = 1 for all p. Hence the principal genus is a subgroup
(with respect to the operation of multiplication of divisors) of the group of
all divisors. Further, any genus G of divisors is a coset of aG,, of the subgroup



246 THEORY OF DIVISIBILITY {Chap. 3

G, , where a is any divisor of the genus G. The set of all cosets of the subgroup
G, is a group, the factor group of the group of all divisors modulo the sub-
group G, . Hence we can consider the set of all genera as a group. It is called
the group of genera. By Theorem 5 the order of the group of genera is 2° 7!,
where ¢ is the number of distinct prime divisors of the discriminant D.

We now characterize the genera of divisors in terms of divisors, without
mentioning forms.

Theorem 6. Two divisors a and a, of a quadratic field belong to the same
genus if and only if there is an element of positive norm in the field such that

N(a;) = N(Q)N(y).

Proof. Choose bases {a, B} and {«,, B,} for the ideals @ and &, which satisfy
(7.10) of Chapter 2. Then the forms

N(ax + By) oy N(yx + B,y)
f(/\,}’)——TVW, fl('X,y)—Tal)a
correspond to the divisors a and a,. By Theorem 11 of Section 1 of the Supple-
ment, the forms fand f| are rationally equivalent if and only if there is a non-
zero rational number which is represented by both of these forms. But this
would mean that

N(©E)  N(Ey)
N(a)  N(ay)

(. & #0),

and the assertion of the theorem follows.
Divisors of the principal genus have the following important characteri-
zation.

Theorem 7. The divisor a belongs to the principal genus if and only if it
is strictly equivalent to the square of some divisor.

Proof. Suppose that the divisor a belongs to the principal genus. Since the
unit divisor belongs to the principal genus, it follows from Theorem 6 that
there is a number y for which N(a) = N(y). Replacing a by the equivalent
divisor a(y"!), we may assume that N(a) = 1. Now write a as a product of
prime divisors. Here we distinguish between those prime divisors p, for which
their exists another prime divisor p, with the same norm (the first type
of decomposition in the terminology of Section 8.1), and all other prime

divisors g; -
a=[]p"" ] q,%
e o
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Since N(p;) = N(p;) = p; and N(q;) = ¢, (where r; equals 1 or 2), then we
have

[Tp* g/ =1

i J

[since N(a) = 1]. Since the primes p; and g¢; are all distinct, b; = —a, and
¢; =0, so that
a= n PP T

But p;p,/ = p;, so that p;/ ! ~ p;, from which it follows that

e~ (110)

(here the sign ~ denotes strict equivalence of divisors).

Conversely, if a ~ b?, that is, a = b?(«), with N(x) > 0, then N(a) = N(B),
where 8 = N(b)a, and then, by Theorem 6, a belongs to the principal genus.

Theorem 7 is proved.

Let € denote the group of classes of strictly equivalent divisors. If we map
each class Ce ¢ to that genus G which contains the class C, we obtain a
homomorphism of the group of classes onto the group of genera. Its kernel
is the set of all classes which are contained in the principal genus. By Theorem 7
the class C’ is contained in the principal genus if and only if it is the square
of some class of €. Hence the kernel of the homomorphism of the group €
onto the group of genera is the subgroup €? which consists of all squares C?
of classes C € €. Using an elementary theorem on homomorphisms in group
theory and the fact that the group of genera has order 2°~!, we arrive at the
following result.

Theorem 8. The factor group §€/G? of the group of classes of strictly
equivalent divisors by the subgroup of squares has order 2' !, where 1 is the
number of distinct prime numbers which divide the discriminant D of the
quadratic field.

The value of Theorem 8 lies in the information which it gives on the structure
of the group €. By Theorem | of Section 5 of the Supplement, the group €
can be decomposed into the direct product of cyclic subgroups. From
Theorem 8 it easily follows that precisely # — 1 of these subgroups have even
order. In particular, we obtain the following fact.

Corollary. The number of classes of strictly equivalent divisors of a
quadratic field is odd if and only if the discriminant of the field is only divisible
by one prime.
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Such fields are R(+/—1), R(+y/2), R(~ =2, R(/p), with p of the form
4n + 1, and R(\/—q) with g of the form 4n + 3.

This fact is the basis for the little we know about the structure of the divisor
class group.

PROBLEMS

1. Let y be the character of the quadratic field with discriminant D. Show that x can be
expressed in terms of the Hilbert symbol by the formula

x@=T1 (Q) (a,D)=1.
piD P

2. If y is any integer of a quadratic field which is relatively prime to the discriminant D,

show that the congruence
x2 = N(y) (mod |DJ)
is always solvable.

3. Let G be the group of residue classes of rational integers (mod | D|) which are relatively
prime to D, and let H be the subgroup of those classes which contain the norm of some
integer of the quadratic field with discriminant D. Show that the index (G : H) is equal to 2',
where ¢ is the number of distinct primes which divide D.

4. Under the same notations as Problem 3, let H* denote the subgroup of G consisting
of all residue classes which contain the norm of some integral divisor of the quadratic field
with discriminant D. Show that (G : H*) = 2,

5. If y is any number with positive norm of the quadratic field with discriminant D,

show that for all p,
(N(y), D) _
p

6. Let a and b be integral ideals which are relatively prime to D. Show that a and b
belong to the same genus if and only if for some integer v we have

N(a) = N(y)N(8) (mod | D).

7. If the discriminant of a real quadratic field is divisible by only one prime, show that
the norm of a fundamental unit is —1.

8. Show that the automorphism o : @ — & of the quadratic field R(Vd) (not the identity
automorphism) induces an automorphism a-—> a® of the group of divisors for which
(a®) = (0)” for all « # 0. What is the behavior of this automorphism on prime divisors?

9. The automorphism o of the group of divisors (Problem 8) induces an automorphism
¢ : C— C° of the group of classes of strictly equivalent divisors. Namely, if a € C, then C°
is that class which contains a°. The class C is called invariant if C° = C. Show that a class C
is invariant if and only if C? is the principal class.

10. Show that the subgroup of the group of classes of strictly equivalent divisors which
consists of all invariant classes is of order 2°™* (¢ is the number of distinct primes which
divide the discriminant).
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11. If B is an element of a quadratic field with N(8) =1, show that there exists an «
such that

N)>0, f=+ —.
a

12. Show that every invariant class C contains a divisor a for which a” = a.

13. Let py, ..., p, be the distinct prime divisors which divide the discriminant D. Show
that each invariant class C contains precisely two divisors of the type

Pig oo Vi, 1S < e <<t k=0,1,...,1).

14. The subgroup of all invariant classes contained in the principal genus is a direct
product of cyclic subgroups of order 2. Let € be the group of classes of strictly equivalent
divisors, and recall the definition of the invariants of a finite Abelian group (Supplement,
Section 5.1). Show that the number of cyclic components of the above subgroup equals the
number of invariants of € which are divisible by 4.

15. Show that the number of positive integers r which divide the discriminant D are

square-free, and satisfy
, D
(r_) =1 for all p,
p

is a number of the form 2“. Show further that the number of invariants of the group € which
are divisible by 4 equals « — 1.

16. Let m be a natural number which is relatively prime to the index f of the order ©,
in the maximal order of the quadratic field R(v/d). Show that the number of modules in
R(\/J) which have coefficient ring ©,, are contained in ©,, and have norm m, equals the
number of integral divisors of the field R(\/d_) with norm m.

17. Show that the number of integral divisors of the quadratic field R(1/d) with norm m

equals
2. x(),

rpm

where y is the character of the field R(v/d) and r runs through all natural numbers which
divide m.

18. Let gi(x, »), ..., gs(x, ) be a full system of pairwise nonequivalent positive primitive
quadratic forms _with discriminant Df2 < O [D being the discriminant of the maximal order
of the field R(Vd)}], and let m be a natural number which is relatively prime to f. Show that
the number N of all representatiohs of the number m by all the forms g4, ..., g, is given by

N=x IZ X,
where
6 forD=-3f=1;

x={4 forD=—4/f=1;
2 for Dff< —4.

19. Let g(x, y) be a positive form with discriminant Df? < —4 and let ¢ be a natural
number relatively prime to Df?. Assume that every genus of forms with discriminant Df?
consists of a single class. If g(x, y) = ¢ has precisely four solutions in integral, relatively
prime x and y, show that ¢ is a prime.
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20. Let /i, be the number of classes of similar (in the usual sense) modules of a quadratic
field which belong to the order ©, (Problem 11 of Section 7, Chapter 2). Show that

€ropls p

where y is the character of the quadratic field and p runs through all primes which divide f.

21. Show that a prime number is represented by the form x2 + 3y? if and only if it has
the form 3n + 1.

22. Show that the form x2 — 5y? represents all prime numbers of the form 10n + 1 and
does not represent any primes of the form 10n# + 3.

23. Show that the natural number m is represented by the form x2 + 2y2 with relatively
prime x and y if and only if in the representation

m=2p*" - p,*,
« is either 0 or 1, and each odd prime p;, is of the form 87+ 1 or 82+ 3.
24. Show that there exist quadratic fields (both real and imaginary) with arbitrarily
large numbers of divisor classes.
25. Let py, ..., ps be the distinct prime numbers which divide the discriminant D of the
quadratic field R(\/ d). From

(”‘—”3) (=™ (<ij<s)
py

we obtain a matrix (a;;) whose elements lie in the field of residue classes modulo 2. Let p denote
the rank of this matrix [over the field GF(2)]. Show that the number of invariants of the
group of classes of strictly equivalent divisors, which are divisible by 4, equals s — p — 1.

26. Let p and g be prime integers, with p # 2 and g # p (mod 4). Show that the number
of divisor classes of the field R(V —pq) is divisible by 4 if and only if (¢/p) = 1.

27. Let py, ..., ps be distinct prime numbers of the form4n + 1,and letd=p, --- p, =1
(mod 8). Show that every genus of divisors of the field R(\/—_d) consists of an even number
of classes.

28. Let £ be a fundamental unit of the real quadratic field RV z?), whose discriminant
is not divisible by any prime number of the form 4n + 3. Show that if the principal genus of
divisors of the field R(V d) consists of an odd number of classes of strictly equivalent divisors,
then N(g) = — 1.

29. Let p be a prime number of the form 8n + 1. Show that the number of divisor classes
of the field R\(\/ —p) is divisible by 4.




CHAPTER 4

Local Methods

In Section 7 of Chapter 1 we gave a proof of the Hasse-Minkowski theorem
on the representation of zero by rational quadratic forms. Both in the formu-
lation and in the proof of this theorem we had to embed the field R in the
p-adic fields R,, and in the real field R, that is, in all completions of the
field R. A method of solving problems in number theory by use of the em-
beddings of the ground field in its completions is called a local method. Such
methods have important number-theoretic consequences, not only when ap-
plied to tue field of rational numbers, but also when applied to algebraic
number fields. Local methods are also instrumental in the study of algebraic
function fields.

In this chapter we describe the basic facts that hold for local methods forany
ground field, and then make an intense application to prove some deep
results on the representation of numbers by nonfull decomposable forms
(Section 1.3 of Chapter 2). We refer particularly to the theorem of Thue,
which states that the equation f(x, y) = ¢, where f(x, y) is an integral homo-
geneous irreducible polynomial of degree > 3, has only a finite number of
solutions in integers. Thue himself proved this theorem by using the theory of
rational approximations to algebraic numbers. A proof based on local
methods was given by Skolem. Actually Skolem’s proof involves putting a
small restriction on the polynomial f(x, y). On the other hand, his proof has
the advantage of allowing a general approach to the problem of the repre-
sentation of numbers by a fairly wide class of nonfull decomposable forms.
We return to this point in Section 6.4.

The basic idea in Skolem’s method can be clarified in the following simple
example. We shall try to establish the finiteness of the number of solutions in

251
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integers to the equation
X+ =c, 0.1)

where ¢ and d are integers, and d is not a cube. Consider the cubic field
R(0), where 0 = 3/ d. We can now write (0.1) in the form

Nx+ y0) =c. (0.2)

Hence the problem reduces to finding all numbers in the nonfull module
{1, 0} of the field R(f) with given norm. We embed the module {1, 6} in the
full module {1, 6, #%}, which coincides in this case with its coefficient ring O.
The solutions of (0.2) are hence numbers o € O with norm ¢, for which in the
representation a = x + y6 + z0? the coefficient z equals 0. But we have already
solved the problem of finding all numbers with given norm in a full module
(Theorem 1 of Section 5, Chapter 2). In this case we have s = 1, = 1 (since
the polynomial x> — d has one real root and two complex roots). Hence there
is a unit ¢ € O with norm + 1, and a finite set of numbers yu,, ..., g, each with
norm ¢, so that every a € © with norm ¢ has a unique representation in the
form u.e* for some i =1, ..., k and some rational integer u. To prove that
(0.1) has only a finite number of solutions, it will suffice to show that only a
finite number of the numbers y;e* have the form x + y0.

Along with the field R() consider its conjugate fields R(6") and R(8") and,
for every a« € R(f), denote by o’ € R(¢") and a" € R(8") the corresponding
conjugates. If we set

ue' = x + y0 + z0%,

then, taking conjugates, we shall also have
we' = x4+ yo' + 202,
We"™=x+ y0" + z0"%

From these three equations we can find an expression for z. It will have the
form
z = ype" + 718" + 7,8,
where 74, Y1, 72 are certain (nonzero) numbers of the field K = R(0, ¢', 6”).
Solutions of (0.1) hence lead to solutions of the equation
Vo€ + 718" + 726™ =0 0.3)

in the rational integer u. Since this equation contains only one unknown,
it is natural to expect that it will have only a finite number of solutions. But
it is not at all simple to give a proof.

Skolem’s method is based on the consideration of the left side of (0.3)
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as an analytic function F(u) in the p-adic domain. If (0.1) has an infinite num-
ber of integral solutions, then F(x) has an infinite number of integral zeros.
In Section 3.4 of Chapter 1 we saw that the collection of p-adic integers is a
compact set, and hence the function F(u) would vanish at an infinite sequence
of points which converge to a limit point (in its domain of definition). In the
theory of analytic functions of a complex variable it follows from the unique-
ness theorem that such a function is identically zero. The proof of this fact
translates word-for-word to the case of p-adic analytic functions. Hence the
function F(u) must be identically zero and we obtain a contradiction.

Already in this example the p-adic numbers introduced in Chapter 1 are
insufficient. Since the numbers yq, 7,, 72, & €', £” in (0.3) are algebraic num-
bers, we must develop a theory, analogous to the theory of p-adic numbers,
with the rational field R replaced by an arbitrary algebraic number field &
and the prime number p replaced by a prime divisor p. This leads us to
Section 1.

1. Fields Complete with Respect to a Valuation

1.1. The Completion of a Field with Respect to a Valuation

In Section 4 of Chapter 1 we showed that to every prime number p, that is,
every prime divisor of the rational field R, corresponds the p-adic metric ¢,
of the field R, the completion of which is the field R, of p-adic numbers. The
definition of the metric used no properties of the field R other than the exist-
ence of the p-adic valuation v, [see formula (4.1) of Chapter 1]. Therefore, the
construction of analogous completions can be carried out for any field k,
provided we have a theory of divisors in it. If p is any prime divisor of the
field k, and v = v, is the corresponding valuation, then by taking any real
number p with 0 < p < 1, we can define a metric ¢ = ¢, on k by setting

o(x) = p*®  (xek). (1.1)

Then, following the construction of Section 4.1 of Chapter 1, we may form the
completion k = k, of the field k with respect to this metric. [The fact that the
function (1.1) is a metric is easily verified.] The field k, is called the p-adic
completion of the field k. The completion k = k, clearly does not depend on
what theory of divisors we have in mind for the field k. It is completely
determined by the single valuation v = v, . Hence we shall also call it the com-
pletion of & with respect to the valuation v. In this section we study such
completions and their finite extensions.

Let k be the completion of the field & with respect to the valuation v. We now
show that the valuation v can be extended in a unique fashion to a valuation
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7 of the field k. In Section 4.1 of Chapter 1 we saw that the metric ¢
of the field k [see (1.1)] can be extended to a metric @ of the field k, so that if
a €k and a = lim,_,  a,, where a, € k, then @(x) = lim,_, ,, ¢(a,). But in this
case zero is the only [imit point of the set of numbers ¢(a), a € £, and hence
the sequence {¢(a,)} must either converge to zero (if a = 0), or it must remain
constant from some point on (if « # 0). Hence the sequence {v(a,)} converges
to infinity if « = 0 and eventually becomes constant if « # 0. We can therefore

set
¥(a) = lim v(a,).

n—+ow

It is now easily verified that the function (@) (whose value clearly does not
depend on the choice of the sequence {a,}) is a valuation of the field k, with
#(a) = v(a) forallae k. It is also clear that the metric @ of the field kisrelated

to the valuation v by
) =p'®@, (aek).

It will be convenient later to express convergence in the field k in terms of
the valuation ¥ instead of the metric @ (just as was done for the p-adic num-

bers in Section 3.4 of Chapter 1).
Let o be the ring of the valuation v, that is, the ring of all @ € k£ such that

va) = 0 (Section 4.1 of Chapter 3). We now show that the closure 5 of the
ring o in the field k coincides with the ring of the valuation v (if 4 = k is any
set, by the closure A of A we mean the set of all elements of k which are limits
of sequences of elements of A). If a €5, then « =lim,_, ,a,, where g, €,
so that ¥(a) = lim,_, ,, W(a,)=> 0. Assume, conversely, that #(x)> 0. Since « is
the limit of a sequence of elements of k, then for any natural number n we
can find an element a €k such that #a —a,) = n. Then « =lim,_, , a,,

where
v(an) = ‘-}(a - (a - an)) 2 min (V(a), (\-’(a -— a,,)) = 0,

that is, a, € 0. Our assertion is proved.

By Theorem 2 of Section 4, Chapter 4, the ring o has, up to associates,
only one prime element 7z, which is characterized by v(x) = 1. It thus remains a
prime element in the ring 5 [since ¥(7) = 1]. Let £, and ¥, denote the residue
class fields of the valuations v and ¥ (see Section 4.1 of Chapter 3). Since
elements of o are congruent modulo = in o if and only if they are congruent
modulo 7 in 5, we have an isomorphism from the field I, to the field ;.
On the other hand, for any « € o there is an element a € o such that ¥#(a — a)
>1; that is, « = a(mod 7). This means that the mapping £, - X is an iso-
morphism onto the entire field ;. Because of this isomorphism we shall
frequently identify the field X; with X, .

— [
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1.2. Representation of Elements by Series

In this section we assume that k is complete with respect to the valuation v
[that is, that it is complete under the metric (1.1)].

We shall call the ring o of the valuation v the ring of integral elements
(or integers) of the field k. We denote some fixed prime element of the ring o
by 7.

The residue class field T of the valuation v will also be called the residue
class field of the field k.

Everything that was said about p-adic series in Section 3.4 of Chapter |
clearly remains true for series in the field k. In particular, Theorem 8 of
Section 3, Chapter 1, is valid.

Taking arbitrary integers a,(m < n < o), we consider the series

i %,m". (1.2)

Since v(a,n") = v(a,) + n = n, then a,7" -0 as n - oo; that is, the general
term of the series (1.2) converges to zero. Hence the series (1.2) converges and
its sum is some element of the field k. It is now natural to ask if every element
of k has a representation in the form (1.2), and, if so, if there is a canonical
representation such as that obtained for p-adic numbers (Theorem 10 of
Section 3, Chapter 1). The answer will be affirmative.

We choose in the ring o some complete system of residues modulo n. We
assume that 0 € S, that is, that the class of elements of the ring o which are
divisible by = is represented by 0.

Theorem 1. Let & be a complete field under the valuation v, with o the
ring of integers of &, 7 a prime element of o, and S a complete system of resi-
dues (containing 0) of the ring o modulo 7. Then every element « € & has a
unique representation as the sum of a series

a= ) am, (1.3)

where ;€ S (m < i < ©).

Proof. For o =0 we have the representation 0 = ) 2,0-7'. Let « #0. If
v(2) = m, then v(an ™ ™) = 0. The element an™ " is congruent modulo = to some
nonzero element of S, say, to a,,. Since an™™ — a,, =n&, where £ € o, then

o =a,n™ + Enm L,
Assume that for some n > m we have found the representation

a=a,m" 4 - +a,_n""t + 1"
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where g, € S (m<i<n-—1), n,€0. Choose g, € S, so that 5, = a, (mod n).
Since #, = a, + 1, +.7, Where #,., € o, then we have the representation

_ m n n+1
U= " + o+ A T

for «. We continue this process indefinitely. Since v(y,7") 2 n, then 5,7" -0
as n— oo, and hence & =Y 2 a;n’.

If not all coefficients a; in (1.3) are zero, then we may assume that g, # 0.
In this case v(a,) = 0, since all elements of o which are not divisible by = are
units. Then

v(i a}ni) =v(a,n")=m.

From this it follows that the representation for o = 0 is unique. Assume that
for some a # 0 we have two representations:

@ @
a=Yar =) a'n (a;,a'€Sl).
. e

If a,,#0 and g, # 0 in these representations, then it follows that m = m’.
Suppose we have already established that a; =4, for m<i<n (n > m).
Multiply the equation Y 2, a;n' =3 2 ,a,/n' by n~". Turning to congruences
modulo 7 we find that g, = a,” (mod =n), and since both g, and a,’ lie in S,
then a, = a,’. This proves Theorem 1.

Note that in the case when k=R,, n=p, and S=(0,1,...,p — 1),
Theorem 1 reduces to Theorem 10 of Section 3 of Chapter 1.

Corollary. Using the notations of Theorem 1, every integral element « € k
has a unique representation in the form

a=ay+ @+ +an 4 (a, € S). (1.4

It is easily seen that Theorem 9 of Section 3 of Chapter | is valid for series
in the field k. Hence convergent series in k can be multiplied by the usual
method in analysis. In particular, we can treat series of the form (1.3) as a
power series in . But when we operate with series of the form (1.2) using the
rules for power series we must keep in mind that we will obtain series of the
form (1.2), in which the coefficients a, do not belong to the system S. We can
translate the obtained series into the form (1.3) by replacing in turn each
coefficient a, by its residue g, € S, where a, = a, +ny,, adding at each stage
the element y, € o to the following coefficient.

Remark 1. The representation (1.3) clearly depends on the choice of
the system S. Among all such systems there is, in many important cases, a
“best” system which has the property of multiplicative closure, or even is a
subfield of the field k (see Problems 7 to 11).
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Remark 2. These results generalize the analogous facts for p-adic
fields (Section 3.4 of Chapter 1). We must warn that Theorem 6 of Section 3,
Chapter 1, is no longer valid for arbitrary fields complete with respect to
a valuation. It holds only for those fields k where the residue class field X
has a finite number of elements. The same is the case for Theorems 1 and 2
of Section 5, Chapter | (when F is a form with coefficients in the ring o). But
Theorem 3 of Section 5, Chapter 1, carries over word-for-word to the case of
an arbitrary field k which is complete with respect to a valuation. In the future
we shall use the corollary to this theorem in the following form: If F(x) is a
polynomial with integral coefficients in k and there is an integer £ € k for
which F(£) =0 (mod =) and F'(¢) 0 (mod n), then there is an integral
element 0 € k for which £ = 8 (mod n) and F(#) = 0.

1.3. Finite Extensions of a Field Complete with Respect to a Valuation

Let k be complete under the valuation v, . Then k has algebraic extensions
of all degrees (Problem 9 of Section 3, Chapter 3). Let K be an extension of k
of degree n. By Theorem 5 of Section 4, Chapter 3, there is a valuation v of K
which is an extension of v,. Our goal is to show that in this case v is unique
and that K is complete under v.

Let L be a subspace of K, considered as a vector space over the field k,
and let w,, ..., @, be a basis for L over k. Each element « of L has a unique
representation in the form

& =a,w; + - + a,w, (a; e k). (1.5)
If voa) = N (i =1, ..., ), then, by the properties of valuations,
v(a) = min v(a,0;) = eN + min Ww,),

where e denotes the ramification index of v relative to v, (see Section 4.3 of
Chapter 3). Conversely, we shall show that if the element « € L is very small
under the valuation v (recall that ““small”’ elements are characterized by large
values of the valuation), then all the coefficients g; in (1.5) will be small under
the valuation v, . More precisely, this means that for any N we can find an M
such that whenever v(a) > M, then vy(a)) = N (i=1,...,s). For s =1 the
assertion is clear. We prove the general case by induction on s. Let s > 2, and
assume that the assertion is false, that is, that there exists a number N and
elements o € L so that the value of v(«) can be made arbitrarily large, but for
which there is at least one coefficient a; with vy(a;) < N. We may clearly
assume that this inequality always holds for the first coefficient a,. Hence for
each natural number k we choose an element «, € L for whichvw(a,) = k + eN
and the coefficient g, in the decomposition

k
dk = al(k)(ﬂl + .0 + as(k)ws, (a,( )Ek),
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satisfies vo(a,®) < N. Consider the sequence {8,}, where

ﬂk = akal(k)—l = CUI + bz(k)a)z 4 oo+ bs(k)a)s. (16)
Since v(8,) = v(o) — evo(a, V), then
v(B,) > k.

The differences
Bri1 — B = Z (bi(k+ D bi(k))wi
i=2

all lie in the subspace of dimension s — [ which is spanned by the elements
w,, ..., ©, and they satisfy

V(Bis1 — Bi) = min (V(B . o), v(B) > k;

that is, v(B,., — ) = © as k— oo. Then by the induction hypothesis we
also have (fori=2, ..., %)

vb* Y — b5 00 for k — oo.

Hence since the field k is complete (see Theorem 7 of Section 3, Chapter 1)
the sequence {b;}2 , converges to some element b; € k. Passing to the limit
in (1.6) as k — o0 and noting that §, — 0, we obtain

w, + byw, + - + b, =0,

which contradicts the linear independence of the elements w,, ... , @, over the
field k. This contradiction proves our assertion.

We now take for L the whole field K. If the sequence {a,} of elements of K
is a Cauchy sequence, that is, if v(oy ., — o) = 00 as k — oo, then by what
we have just shown, the sequences {a,*}2, which arise from the decompo-
sitions

o =a,%0, + - +a,%0, (a®ek) (L.7)

(here w,, ... , w, is a basis for K over k), will converge in the field k. Then the
sequence {a,} will also converge. This shows that K is complete with respect
to the valuation v. In addition, we see that convergence in K, relative to the
valuation v, is completely determined by convergence in k (relative to the
valuation v).

From this fact it easily follows that there is only one extension of the valua-
tion v, to the field K. For suppose that v and v are two different extensions.
By the independence of valuations, there is an element o € K, for which
v(2) > 0 and v'(x) = 0. The sequence {¢*} converges to zero relative to the
valuation v, but does not converge relative to v [since v(d**! — o) =
v'(a — 1) does not converge to infinity]. This contradicts the fact that con-
vergence in K is determined by the valuation v, .

We have hence obtained the following theorem.
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Theorem 2. Let k be complete with respect to the valuation vy, and let K
be a finite extension field. The valuation v, has a unique extension v to the
field K. K is complete with respect to v. If ,, ..., o, is any basis for K over
k, then a sequence {x,} of elements of K is convergent if and only if each of the
sequences {a,®’} (1 < i < n), which are determined by (1.7), converges in k.

1.4. Integral Elements

We now study the relationship between the ring o of integral elements of the
field k, complete under the valuation v, , and the ring O of integral elements of
the finite extension K of k. Since the valuation v, has only one extension v to
the field K, then by Theorem 6 of Section 4, Chapter 3, the ring O (the ring
of the valuation v) is the integral closure of the ring o in the field K. Hence
for any « € O the norm N(x) = Ng,(x) belongs to o, and then the norm N(g)
of any unit ¢ of the ring O will be a unit in the ring 0. Now let « ¢ . Since
"' e O and is not a unit, then N(x~') = N(x)~ ! belongs to o and is not a
unit in o. But in this case N(x) = (N(2)" ")~ ' does not belong to 0. We have
proved the following theorem.

Theorem 3. Let « be an element of the finite extension K of the field k,
complete with respect to a valuation. Then « is an integral element if and only
if Ng, () is integral in k.

Corollary. An element ¢ € K is a unit in the ring O if and only if its norm
N(g) is a unit in the ring o.

The rings o and © can be considered as rings with a theory of divisors. Let
p and B denote the (only) prime divisors of these rings. The degree of inertia
f of the divisor P relative to p, that is, the degree of the extension (Z : Z,)
of the residue class field I of the field K over the residue class field X, of the
field k, is also called in this case the degree of inertia of the extension K/k.
Analogously, the ramification index e of the divisor P relative to p is called
the ramification index of the extension K/k. If 7, and 7 are prime elements in
o and O, then we know that

o = 1, (1.8)

where ¢ is a unit of O.

Let S, be a complete system of residues in the ring o0 modulo 7,. As
before, we assume that 0 e S, . It is easily seen that if the residue classes
@,, ... , w; of X form a basis over L,, then the set S which consists of the
linear combinations

ao+ -+ awp, (1.9)
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where gy, ... , a, independently run through all elements of S, , is a complete
system of residues in the ring O modulo =.

Definition. A basis 6, ..., 6, for the field K over k is called a fundamental
basis if all 9, are integral and for any integral « € K all coefficients q; in

a=a0, + - +ap, (a;e k)

are integral in k.

Theorem 4. Let k be complete with respect to the valuation v, and let X
be a finite extension with ramification index e and degree of inertia /. Let T,
and I be the residue class fields of k and K, and let 7 be a prime element of the
ring of integers of the field K. If @,, ..., @, are residue classes of the field T
which form a basis over the field Z,, then the system of elements

w;m?, (i=1,....f; j=0, l..,e—1), (1.10)
is a fundamental basis for the extension Kjk.

Proof. We first show that the elements (1.10) are linearly independent over
k. Assume, on the contrary, that we have

f e—-1

Y Y awn’ =0,

i=1 j=0
where ai; are elements of k, not all equal to zero. We may assume that all g;;
are integers and that at least one of them in a unit in o (if this‘is not so, multi-
ply by a suitable power of the prime element 7, € 0). Let j, (0 <j, < e—~1)
be the smallest index for which there exists an iy (1 <ip <f) with a, ;
a unitin o. Hence if j < ji, , then vy(a;;) > 1foralli. Since Y /_, @,;,@; # &, 0 the
sum Y /_, a;;,w; is not divisible by m, and hence for the element

L .
Y= ) a0
i=1

we have

. f a

v(y) = jo + "(,Zlaijowi) =Jo-
fe

On the other hand,

If j < j,, then
v(aijwinj) =j + wa;;) = evela;;) = e > .
Ifj > j,, then
v(aijwinj) =j+vay) = j > Jo.
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Hence
v(y) = min v(a;;0;1') > jo.
j*Jjo
This contradiction shows the linear independence of the elements (1.10) over
the field k.
Now let « be any element of . By the corollary of Theorem 1 we have

a=fp+ &4 -+ & m*”! (mod 1),

where &; are elements of some fixed system S of residues, which we may take
to consist of numbers of the form (1.9). Since n, and 7€ are associate in O
[see (1.8)], then congruences in O modulo n, and modulo n® are equivalent.
Hence we have

e—1
Z Z aPomn (mod ny),  (alf’ € Sy),
i=1 j=0
and this means that
S oe-1
a=Y Y aPon’ +npt;, (2, € D).
i=1 j=0

Analogously,
o = Z 2 afon’ + may, (2, €90, af’€S,).
i=1 j=0
Continuing this process indefinitely, we obtain a sequence of equations

e—1

Z Y aPon’ + nody s 1, (%4, €D, aPesS,).
i=1j=0

For fixed / and j we have an infinite sequence {a;;}. Consider the series

2 a(n)

Since the af) are integers, this series converges and its sum g;; is an integral
element of k that is, a;; € . We shall show that

e—1

o= Z Za,lwn (1.11)
i=1j=0
By the construction of the elements «,, «,, ... we have
n—1 e— 1
=Y (Z Z alYon )no" + 7o,
k=0\i=1 j=0
from which it follows that the difference

(i eila,la) Yy )

i=1 j=0
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is divisible by 7" (in the ring ). Since this holds for all », this difference must
be zero and (1.11) is valid.

If B is any element of X, then for some m, the element f7,™ will be integral.
Representing it in the form (1.11), we see that § is a linear combination of the
elements (1.10) with coeflicients in k. Hence the system (1.10) is a basis for K
over k, and since for integral « € K all coefficients a;; in (1.11) lie in o, this
basis is fundamental. Theorem 4 is proved.

Since there are fe elements in the basis (1.10), we also have the following
result.

Theorem 5. The product of the ramification index and the degree of
inertia is equal to the degree n = (K : k); that is,

fe=n.

Set Ny, (m) = my™u, where u is a unit of the ring o. Taking the norm of
(1.8), we obtain

Nx/k(”o) =7y = Nx/k(”?s) = ”ome“eNx/k(E) =7y,

where v is also a unit in p. It follows that n = me (and v = 1), and hence m = f.
Hence the degree of inertia f of the extension K/k could also be defined by

S = vo(Ngp(m)), (1.12)

where n is a prime element of the ring of integral elements of K. From this
it easily follows that for any « of the field K we have

Vo(N (@) = fu(@). (1.13)

Note that Theorem 5 and (1.12) are both immediate corollaries of Theorem
5 and (5.12) of Section 5, Chapter 3.

Definition. If e = 1, the extension K/k is called unramified. If e = n, then
Kk is called totally ramified.

It follows from Theorem 5 that for unramified extensions the degree of in-
ertia coincides with the degree of the extension. For totally ramified extensions
the residue class fields T and X, coincide; that is, every integral element of K
is congruent modulo = with an integral element of k.

It can be shown (Problem 12) that if the residue class field T of the field K
is separable over the residue class field X, of the field k, then there is a uniquely
determined intermediate field 7, such that the extension T/k is unramified
and K/T is totally ramified. The field T'is called the inertia field of the extension
Klk.
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1.5. Fields of Formal Power Series

Fields of formal power series are fields, complete with respect to a valua-
tion. These fields are constructed in the following manner.
Let k, be any field. The set o of all formal power series of the type

Gy + @yt + axt’ + - +at"+ - (a,€kg) (1.14)

becomes a commutative ring with unit when the operations of addition and
multiplication are defined as is usual for power series. This ring has no
divisors of zero, and the units are precisely those series (1.14) in which g, # 0.
The quotient field of o is called the field of formal power series in t over the
field k, . It is denoted by k,{t}. Just as for the field of p-adic numbers (Section
3.3 of Chapter 1), every nonzero element ¢ of the field ky{t} has a unique
representation in the form

E=1"co+cit+ - +ct"+ ), (c,€ky,co #£0),

where m is some integer (positive, negative, or zero). Setting v(£) = m for
£ %0 and v(0) = o0, we obtain a valuation v, and the field k,{¢} is easily
shown to be complete under v. The ring of the valuation v coincides with the
ring o of series of the type (1.14). As prime element in o we may take ¢. Since
two series of the form (1.14) are congruent modulo ¢ if and only if their initial
terms coincide, then each residue class of modulo 7 contains a unique element
of k,. Hence the residue class field X, of the field k,{t} is canonically iso-
morphic to the field k.

It is easily seen that the field of formal power series k,{t} is a completion
of the field of rational functions k(¢), under the valuation corresponding to
the irreducible polynomial ¢ of the ring ky[t] (see Problem 7 of Section 4
of Chapter 1).

Since ko < ko{t} and ko ~ X,, the characteristic of a field of formal power
series coincides with the characteristic of its residue class field. It can be
shown that this property characterizes formal power series fields among all
fields which are complete under a valuation. Namely, if k£ is complete under
a valuation and its characteristic equals the characteristic of its residue class
field, then k contains a subfield k,, where the elements of k, form a complete
system of residues modulo the prime element n. But for such a system of resi-
dues, the operations with series (1.3) reduce to the usual operations with
power series, and hence k will be a field of formal power series in © with
coefficients from k, . The proof of the existence of the subfield k, in the general
case is rather difficult, and we shall not give it. (Two special cases, for which
the proof is relatively easy, are indicated in Problems 7 and 11.)

If k,' is an extension of k,, then k,'{¢} is an extension of ky{¢}, and if
ko' [k, is finite, then k,'{¢}/k,{¢} is also finite and has the same degree. Another
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method for constructing finite extensions of the field ky{¢} is to map it iso-
morphically into the field kq{u}, with t > «" (n a natural number). If we
identify ky{¢} with its image under this mapping, that is, if we set 1 = «”, then
ko{u} will be a finite extension of ky{¢} of degree ». It is clear that k,{u} is
obtained from k,{¢} by adjoining an nth root of ¢.

For fields of characteristic zero, all finite extensions can be reduced to these
two types.

Theorem 6. Let &, be a field of characteristic zero. If K is a finite extension
of the field k = ko{t}, with ramification index e, then K is a subfield of an
extension of the form k,'{u}, where k,’ is a finite extension of k, and v = .

Proof. Let ¥, and X denote the residue class fields of k and K, let f denote
the degree of inertia of K/k, let  be a prime element of K, and for any £ € K
let & be its residue class in £. The elements of the field k,, as we have seen,
form a natural system of representatives for the residue classes of L,. We
first show that there is a subfield S of K which contains k, and is a complete
system of representatives for the residue classes of X. Since any finite exten-
sion of a field of characteristic zero is simple, then ¥ = X(), where & is some
residue class of X. Let F be the minimum polynomial of & over %,. If we
replace all coefficients of F (which are residue classes of X,) by the corre-
sponding elements of k,, we obtain an irreducible polynomial F over k, of
degree f, for which

F(&) = 0 (mod n) and F'(&) # 0 (mod 7).

By the second remark at the end of Section 1.2, there is an element 8 in the
field K with 0 =& and F(6) = 0. Consider the subfield S = k,(6) of the field K.
Since @ is a root of an irreducible polynomial over k, of degree f, then (S : kg)
=/, and every element of S has a unique representation in the form

ap+ a0+ +a,_ 07! (a; € ko).

Since 8 = &, the corresponding residue classes modulo = are given by a, +
G+ +a; &7 Since T = Xy(f) and (X : Xy) = f, these linear com-
binations run without repetition through all residue classes of . This shows
that the elements of the subfield S (which is a finite extension of the field k)
form a complete system of representatives for the residue classes of X.

By Theorem 1 the field K is the field of formal power series in = with
coefficients in S; that is, K = S{z}. Theorem 6 would be proved (in a stronger
form) if we could show that = can be chosen so that it is an eth root of ¢.
However, it is not always possible to choose # in this way, and therefore we
must pass to some finite extension k,’ of the field of coefficients S.

By (1.8) we have

1 = ', (1.15)
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where ¢ is a unit in the ring of integral elements of K. Let « denote that
element of S for which a = ¢ (mod 7) and denote by k,’ the field S(i/ )
(if « = y° for some y € S, then k," = 5). The field of formal power series
K' = ky'{n} clearly contains K as a subfield and is a finite extension of k.
We show that it can be represented in the form k,'{u}, where u¢ = ¢. Consider
the polynomial G(X) = X° — ¢. Since in K’ we have

G(y) = 0 (mod 7) and G'(y) # 0 (mod r),

where by y we denote the root i/ a, then in K’ there exists a unit # with n =y
(mod 7) and #° = ¢ (here we again apply the remark at the end of Section 2.2).
Now replace the prime element 7 of the field K’ by the element u = ny. Then
K’ can also be considered as the field of formal power series in U over the
field k,’, that is, K’ = k,'{u}, where u® = ¢ by (1.15). The proof of Theorem 6
is complete.

Remark. Theorem 6 is no longer valid for arbitrary finite extensions of
formal power series fields k = k,{t} of characteristic p # 0. However, it is
easily seen that it remains true in the case of extensions K/k, for which the
residue class field X is separable over ¥, and the ramification index e is not
divisible by p.

PROBLEMS

1. A nontrivial metric @ of a field k is called discrete if the only limit point for the set
of values @(x), x € k, is zero. Show that any discrete metric is induced by some valuation
v of k by (1.1).

2. Let k be complete under a valuation and let K/k be a finite extension with a funda-
mental basis 8y, ..., 8,. Show that the elements

0= Saf,, (@eh
=1

also form a fundamental basis for K over & if and only if all a;; are integral and the deter-
minant det(a,,) is a unit in £.

S e—

1
3. Using the notations of Theorem 4, let = > aywy (ay € k) be any element
(=1 j=o

of K. Set m = min vo(a;;). Show that if j, is the smallest value of the index j for which there
exists i = io with Vo(alolo) =m, then

V((X) =j0 + em,

where v is the valuation of the field K.

4. Show that every element of the field of formal power series k¢ {t}, not lying in ko,
is transcendental over ko .
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5. Under the assumptions of Theorem 6, show that the subfield S < K, which contains
ko and is a complete set of representatives for the residue class field of K, is uniquely
determined.

6. Let & be algebraically closed and of characteristic zero, and let k = ko {t}. Show
that & has one and only one extension of degree n, for all natural numbers n, namely,
k(V;) (that is, show that any two extensions of degree » are isomorphic under an iso-
morphism which is the identity on k).

7. Let K be complete under a valuation with residue class field X of characteristic zero.
Show that K contains a subfield S which is a full system of representatives for the residue
classes of X, and hence that K = S{m}, where 7 is a prime element of K. (Use the fact that
any field can be obtained from the prime field by a pure transcendental extension followed
by an algebraic extension.)

8. Under the assumptions of Problem 7, assume also that th~ residue class field X is
algebraic over the prime field. Show that the subfield S is then unique.

9. Let X be complete under a valuation with residue class field 2. If £ is a perfect
field of characteristic p (which means that every element is a pth power, and the map
which takes every element to its pth power is an automorphism), show that there is a
unique *‘multiplicatively closed” system S of representatives of the residue classes of X,
so that if x €S and B€ S, then ¢ € S. (Determine « € S, representing the class £ € X,
by o = lim e,?", where «, belongs to the class £7 )

n— o0
10. Under the same notations, assume that X is a finite field with p’ elements. Show
that in the field K the polynomial r*” — ¢ factors into linear factors and that the set of its
roots is a multiplicatively closed system S of representatives of the residue classes of 2.

11. Assume that the field K of Problem 9 also has characteristic p, and that its residue
class field X is perfect. Show that then the multiplicatively closed system S will also be
additively closed, so that it will be a subfield of K, and K= S{m}, where 7 is a prime
element of K.

12. Let & be complete under a valuation and let X be a finite extension. Assume that
the residue class field X of K is separable over the residue class field X, of k. Show that
among the intermediate fields L, k < L < K, which are unramified over &, there is a largest
such field T (which contains all other intermediate fields which are unramified over k).
Verify that the residue class field of T coincides with X, and that the degree (T : k) equals
(Z H Zo).

13. Let f(X)= X"+ a X" '+ --- 4+ a,, be an irreducible polynomial over a field
complete with respect to a valuation. If the constant term a,, is integral, show that all
other coefficients a, ..., a,_, are also integral.

14. Let { be a primitive root of degree p* of 1 (s = 1). Show that the degree of the field
R,(0) over the field R, of p-adic numbers is (p — 1)p* ~!, and that the extension R, ({)/R,
is totally ramified.

p-1

15. Let { be a primitive root of degree p of 1. Show that R,({) = R(V —p).

16. Let k be complete under a valuation, K/k a finite extension, and £ and X, the
residue class fields of K and k. Show that if 3/X, is separable, then K/k has a funda-
mental basis consisting of powers of a single element (that is, O =90[f], 8 € ©, where D
and o are the rings of integral_elements of X and k).

Hint: Show that if X = X4(6), then a representative § € ©_can be chosen so that f(f)
is a prime element in ©. Here f(r) € o(r) is chosen so that f(r) € Xy(r) is the minimum
polynomial of the element 8 € 2.
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17. In a field complete under a valuation, show that the infinite product IT (1 4 a,),
n=1
a, # —1, converges if and only if a, >0 as n—co.

2. Finite Extensions of Fields with Valuations

Let k be a field with a valuation v, and let K/k be a finite extension. The ring
» = v, can be considered as a ring in which we have a theory of divisors with
a unique prime divisor p. By Theorem 1 of Section 5, Chapter 3, if O is the
integral closure of the ring v in the field K, then O has a theory of divisors with
a finite number of prime divisors B, ... , PB,, (all of which divide p).

Let B be a prime divisor of the ring O and let Ky be the completion of the
field K with respect to the valuation vg. Those elements of Ky which are
limits of elements of k form a subfield, which is topologically isomorphic
to the completion k, of the field k with respect to the valuation v, . Using the
embedding k, — Ky we may assume that k, is a subfield of the field Ky .
Let K = k(ay, ... , o,). The elements «; € K also belong to Ky, and since they
are algebraic over k, they are also algebraic over k,. Hence the extension
k(2 ..., o)k, is finite (with degree not exceeding the degree of K/k), and
then by Theorem 2 of Section 1 the field k (2, ..., a,) is complete. Every
element of K is the limit of a sequence of elements of K, and since
K< k(uy,...,9,) and k2, ..., ) is complete, then Ky <k (ay, ..., @)
Since the reverse inclusion also holds, we have Ky =k (o, ..., 2,). We
have proved that the extension Ky/k, is finite and that

(Ky: k) < (K: k).

Since the residue class fields of the valuations v, and vq coincide with the
residue class fields of the completions k, and Ky (see Section 1.1), then the
degree of inertia fy of the divisor B relative to p coincides with the degree of
inertia of the extension Kgy/k, . It is also clear that the ramification index ey
of the divisor B relative to p coincides with the ramification index of Ky/k, .
By Theorem 5 of Section 1 the numbers f;, and ey are related to the degree
ny = (Kg: k,) by

Seeg =ng.

For the rest of this section we shall assume that the extension K/k is sep-
arable, and we will study the relations between the various completions
Ky , ..., Ky, of the field K under all extensions of the valuation v, .

Let w,, ..., , be a basis for the extension K/k. If for some « € K, all the
coefficients g; in the representation

o= aywy + - + a,w, (a;ek) 2.1
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are small relative to p (that is, small relative to the valuation v,), then the
element o will clearly be small relative to each of the prime divisors ;. The
following converse also holds.

Lemma 1. For any integer N there exist an M such that whenever vg ()
> Mforalls =1, ..., m, then all coefficients a; in (2.1) satisfy v (a;) > N.

Proof. Let w,*, ..., w,* be the dual basis of the basis vy, ..., w, (here we
are already using separability; see Section 2.3 of the Supplement). Then

a; = Spxu(aw;*) = Sp aw;*.

Let ¢, be the ramification index of B, relative to p and p be a prime element
in the ring v, of the valuation v, so that e; = vg_(p). Set

M = max (e,N — vg (0*)).
s

If vy (2) > M for all s, then for fixed j we have
V‘Bs(awj*) =>eN = Vm,(PN),
and this means that aw * = p™y, where vg (y) = 0 (1 < s < m). By Theorem 6

of Section 4 of Chapter 3, the element y belongs to the integral closure of the
ring o, in the field K, and therefore Sp y € v, , that is, v,(Sp 7) > 0, so that

vp(a;) = v,(Sp(ew;*)) = v,(p" Spy) = N,

and Lemma 1 is proved.

Corollary. If a sequence {o} of elements from the field K is a Cauchy
sequence relative to each of the prime divisors P, (s = 1, ... , m), then all the
sequences {a,},, defined by

(k)

k
o =a,P0, + ...+ a,P0, (a;¥ e k),

are Cauchy sequences relative to p.

Now consider the completions Kg,, .. » Ky, of the field K with respect to
each of the prime divisors By, ..., P, and form the direct sum Ky @ -+
@ Ky, which we denote by K, . The elements of this direct sum are sequences
E=(, ..., Em), Where &, € Ky, ..., £, € Ky . We define addition and multi-
plication in K, component-wise, so that K, becomes a ring. For any ye k,,
set

y(él’ LRI Y ém) = (751, sevy yém)

The ring K, then becomes a vector space over the field k. If we denote the
degree of Ky over k, by n,, then the dimension of K, over k, is given by

Ny + e+ . (2.2)
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There is a natural way of defining convergence in the ring K, . We say that
the sequence {(¢,®, ..., &M%, &¥ e Ky,, converges to the element
(&4, ..., &) if for each s the sequence {£,} converges to &, relative to con-
vergence in the field Ky . It is easily seen that, under this definition of con-
vergence, the operation of multiplication of elements of K, by elements of
k, is continuous. In other words, if y =lim,,y®, yY ek,, and &=
lim,, , ¢®, E&® e K, then

lim y®E® =y, 2.3

k— o

We now define an imbedding K — K, , setting
a=(,..,0)ekK,, (x € K).

Since K < Kg, for all s, the sequence (a, ... , @) is an element of K| . It is clear
that the mapping « — & defines an isomorphism of the field K into the ring
K, . We denote the image of K under this isomorphism by K.

To avoid confusion we note that the components of the product

=0 ...,y ek,
which in this representation look identical, actually may be different, since

the product yx depends on the field Ky_ in which it is taken, even when
yaek,.

Theorem 1. If w,, ..., w, is a basis for the separable extension K/k, then
®y, ... , O, is a basis for the ring K, as a vector space over k,,.

Proof. We first show that K is everywhere dense in K, that is, that every
element of K, is the limit of a sequence of elements from K. Let¢é= (TP
¢,) be anyelementof K, £, € Ky (s =1, ..., m). Since K is dense in Ky_, then
for any natural number k there exists an element (2,*’) € K for which vg, (&, —
a*) > k. By Theorem 4 of Section 4, Chapter 3, there is an element «® in
the field K for which vg (@ — «,®’) > k for s =1, ..., m. The element a¥)
satisfies
vo.lbs—a®) 2k (s=1,..,m),

and this means that the sequence {4V};2; of elements of K, converges in the

ring K, to the element ¢.
Represent each element ™ in the form

o® = al(h)w1 4o+ a,,"‘)cu,,, (aj(k) e k).
Since the sequence {¢™} is a Cauchy sequence relative to each prime
divisor P, then by the corollary of Lemma 1 the sequences {a;V’} are all

Cauchy sequences relative to p, and hence they converge in k,. Set y; =
lim,,, a® (j=1,...,n). Since for any ae k c k, and any { € K,

al = ag, 24
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then

S Y.V SR J N
a;"a; a;’o;
Z _’Zl
Passing to the limit as kK — co and considering (2.3), we obtain

é—kllmak Zyl ;.
This proves that the elements @; generate the vector space K,. We still need
to show that they are linearly independent over k. Let

Nndy + o+ 9B, =0,  (y;€k).
Since k is dense in k,, then y; = lim,_ ,, a;*¥), where a;® € k. Set

«® =a,Wo, + - + q,Y0, € K.

Then

lim &% = lim Y a,Y®; = Z y;d; =0.

k— o k—=wo j
This means that the sequence {«'¥'} is a null sequence in K relative to all the
prime divisors P, (s = 1, ..., m). Then by the corollary of Lemma 1 all the
sequences {a;®} in k are null sequences relative to p, and this means that
=0, ...,7,=0.

The proof of Theorem 1 is complete.

Remark. In terms of the tensor products of algebras, Theorem 1 shows
that the algebra K, over the field k_ is isomorphic to the tensor product
K®,k,, that is, that it can be obtained from K (regarded as an algebra over
k), by extending the ground field from k to k.

We have shown that the dimension of the vector space K, over k, equals
n = (K:k). On the other hand, this dimension is given by the sum (2.2).
Since n, = ny, = eg_fy,, We arrive at

%:e.nf.;,:n

(‘B running through all prime divisors of the ring ©). Hence we have obtained
another proof of Theorem 7 of Section 5, Chapter 3.

Theorem 2. Let ¢(X) denote the characteristic polynomial of the element

a € K, relative to the separable extension K/k, and let @g(X) denote the char-
acteristic polynomial of « relative to Ky/k,. Then

o(X) = l;[ Pg(X).
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Proof. Consider the linear mapping & — &£ of the vector space K, to itself.
If awy =Y [_y aw,, a, € k, then by (2.4),

&(Dk = Z gy .
1

This means that the characteristic polynomial of our transformation coincides
with the characteristic polynomial of the matrix (a), that is, coincides
with ¢(X). We now take another basis for K, over k. Let B, (j=1, ... ,n,)
be any basis for the extension Ky [k, (s = 1, ..., m). If we denote by f,; that
element of K, which is zero in all components except the sth one, and whose
sth component equals f;;, then the set of all elements

st (S=1,..., m;j=15~--ans) (2-5)
is a basis for the ring K, over k. Let

af; = 'Z,I Y}f)ﬁsz , (}'ﬁ) € k,),

so that @q (X) is the characteristic polynomial of the matrix (y}). It is now
easily seen that the matrix of the linear mapping & — &¢ with the basis (2.5)
will be a block-diagonal matrix with the blocks (y})) on the main diagonal.
Theorem 2 follows immediately.
For elements « € K we introduce the concepts of local norm Ny(a) and local
trace Spg(a):
Ng(@) = N xqup(®), Spg(e) = Spgqyup(®).

From Theorem 2 we deduce that

Nypla) = l_[ Ng(a), Spxu(®) = Z Spg(). (2.6)
. B/ L UL
From the first of these formulas and (1.13) we deduce

V(N (@) = ‘I;fmvw(“), 2.7

which we proved by other methods in Section 5 of Chapter 3.

Theorem 3. Let K/k be a separable extension with primitive element 6,
so that K = k(6), and let @(X) be the minimum polynomial of @ over k. Let p
be a prime divisor of &, and let

o(X) = ¢,(X) - 9u(X)

by the factorization into irreducible polynomials in k,[X]. Let B,, ..., B,
be the prime divisors of the field K which divide p. There is a one-to-one
correspondence between the divisors P, and the factors ¢(X), such that the
polynomial ¢(X) which corresponds to B, coincides with the minimum
polynomial of the element 6 € Ky, over the field k.
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Proof. Since ¢(X) is the characteristic polynomial of 6 relative to K/k, by
Theorem 2 we have the factorization @,(X)--- @.(X), where ¢, (X) is the
characteristic polynomial for 6 relative to Ky /k,. Hence the factors ¢ (X)
correspond to the prime divisors 9}, . But we saw in the preceding section that
Ky, =k, (0), 6 K< Ky, and therefore each of the polynomials ¢(X) is
irreducible over k,, and Theorem 3 is proved.

Remark. Let v be any ring with a theory of divisors (and quotient field k)
and let p be a prime divisor in v. If K/k is a finite separable extension, then
Theorem 3 gives a description of all prime divisors of the integral closure O
of v in K which divide p (at least it gives their number m and the products

egfy)-

3. Factorization of Polynomials in a Field Complete with Respect
to a Valuation

In view of Theorem 3 of Section 2 it is important to have a method for
factoring polynomials into irreducible factors in a field complete under a
valuation. In this section we shall show that in such fields the decomposition
of a polynomial with integral coefficients is completely determined by its
decomposition modulo some power of the prime element.

Lemma. Let v be a subring of the field k, and let g(X) and A(X) be poly-
nomials of degree m and n with coefficients in v. If the resultant p = R(f, g)
of the polynomials f and g is nonzero, then for any polynomial /(X)e o[ X]
of degree <m + n — 1 there exist polynomials ¢(X) and Y(X) in o[X] of
degrees <n — 1 and <m — 1 such that
Yau+ Y buv=pc (i=0,1,...,m+n—1). 3.1

r+s=i

rt+s=i

Proof. Set

min—1

g(X)= Y aX", hX)= 3 bX", UX)= 3 X"
i=0 i=0

n—1 m—1

o0 = T uX"17 Y(X)= Foxn o

i= i=

To determine the m + n unknowns ug, ... , 4,_1; Vg, ... , Um—y1, WE €quate the
coefficients of like powers of X in (3.1), obtaining a system of m + n equations

Y au,+ Y bo=pe; (i=0,1,...,m+n-1).

rts=i r+s=i
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The determinant of this system equals

ap bo
a, aq b, b,
ag . b, (3.2)
n An-1 a, bn bn—l bl
am b'l
a, bn
n m

(with zeros everywhere else); that is, it equals the resultant p = R(g, h).
Since p # 0, this system has a unique solution, and since all the constant
terms pc; are divisible by p, then the values of u; and v; will belong to the ring
p. The lemma is proved.

Now let k& be complete under the valuation v, with v the ring of integral
elements of k and = a prime element of v. Two polynomials f(X) and f{(X) of
o[X] are called congruent modulo n*, and we write f(X) = f,(X) (mod =*),
if this congruence holds for the coefficient of each power of X.

Theorem 1. Let f(X) e o[ X] have degree m + n. Suppose that there exist
polynomials go(X) and ho(X) in [ X] of degrees m and n such that (1) f and
goho have the same leading coefficients; (2) the resultant R(g, , 4,) is nonzero;
and (3) if r = v(R(gy » o)), then

(X)) = go(X0ho(X)  (mod oY), (3.3)

Then there are polynomials g(X) and A(X) in o[X] of degrees m and n, for
which

J(X) = g(XOh(X),
9(X) = go(X), h(X) = ho(X) (mod n"*7)

and the leading coefficients of g(X) and A(X) coincide with those of go(X)
and hy(X), respectively.

Proof. For each k> 1 we construct by induction polynomials ¢, € o[X]
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of degree <m — 1 and ¥, € p[X] of degree <n — 1 so that the polynomials

G=go+ o + -+ e,

hy=ho + " Wy + -+ 2 Y,
will satisfy
f= gy (mod m2 e+, 3.9

Assume that we have constructed the polynomials ¢,, ..., ¢,-; and ¥, ...,
Y, -1 with the required properties, so that

= guory—y + 1, (3.5)

where /(X) e v[X]. The polynomials g, and g,_,, as well as h, and h,_,,
have the same leading coefficient, so /(X) has degree <m+m+n— 1.
Further, g, _; = go, f_1 = ho(mod 7" ') and therefore

R(gi-1, Px—y) = R(goy, ho) (mod &' 1),

which means that v(R(g,-, #x-;)) = r. By the lemma there exist polynomials
¢, and ¥, in o[ X] with degrees <m — | and <n — 1, for which

=g Vi + heo 11 (3.6)
We shall show that ¢, and ¥, satisfy our requirements. Since
G =Gi-1 + 7 o, By + 7MY,
then by (3.5) and (3.6)
f— gy = — nr+k(gk—1¢/k + hi-104) — n2r+2k¢k¢/k = - 712’+2k¢’k¢’ka

so (3.4) also holds (since 2k > k + 1).
Now consider the polynomials

g(X) =go + kzln’+kqok, h(X) = ho + kz,lﬂfr“‘l’k,

whose coefficients (except the leading ones) are defined as the sums of con-
vergent power series. Since g = g, and h = A, (mod n**"*!), then

r+k+1)
H

gh = gh, (mod =
so that by (3.4)
f=gh (mod n"T¥*1),

Since this holds for all k, then f = gh, and Theorem 1 is proved.

Remark. From the proof of Theorem 1 it easily follows that if g, and A,
satisfy the condition f = gohy (mod n¥), s 2 2r + 1, instead of (3.3), then ¢
and 4 can be chosen so that

g=4go, h=hy(mod=zn™).
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We consider an important special case of Theorem 1.

The polynomial f(X) e o[X] will be called primitive if at least one of its
coefficients is a unit in v. Let Z be the residue class field of the ring » modulo
the prime element 7. If we replace the coefficients of f by the corresponding
residue classes in X, we obtain a polynomial f with coefficients in the field Z.
Assume that in the ring X[ X] the polynomial fhas a decomposition

F=3oho, 3.7

in which the factors g, and h, are relatively prime. We may choose poly-
nomials g, and A, in the ring [ X] so that the degree of g, coincides with the
degree of g, and the degree and leading coefficient of the polynomials f and
goho coincide. Consider the resultant R(g,, ko) of the polynomials g, and
hy , that is, the determinant of (3.2). If we replace each entry in this determin-
ant by the corresponding residue class modulo =, we obtain the resultant
-R(Go , ho) of the polynomials g, and h, (here the leading coefficient of h,
may be zero). The resultant R(g,, ho) is nonzero, since by choice of g, the
leading coefficient of g, is nonzero, and the polynomials g, and h, are as-
sumed relatively prime. (Recall that the resultant of two polynomials is zero
if and only if the two polynomials have a common divisor, or both of them
have leading coefficient zero.) Hence R(gy, ho) # 0 (mod =), that is, v(R(g,,
hy)) = r = 0. Equation (3.7) means that f = goh, (mod 7). Thus we see that
go and hy fulfill all the conditions of Theorem 1 (with r = 0), and we have the
following result.

Theorem 2 (Hensel’'s Lemma). Let f(X) be a primitive polynomial
with coefficients in the ring v of integral elements of a field complete under a
valuation. If in the residue class field T the polynomial fe Z[X] has a factori-
zation

F=23doho (90> ho € P[X])

with g, and ki, relatively prime, then there exist polynomials g, and A, in
p[X] such that

F(X) = g(X)h(X),
with § = §,, h = F,, and the degree of g equal to the degree of g, .

With the aid of Theorem 1 we can solve the problem of the factorization
of polynomials over a field complete under a valuation. We need consider
only polynomials with integral coefficients and leading coefficient 1 (if the
leading coefficient of a polynomial of degree n in v[X]is 4, then we can multi-
ply the polynomial by a"~! and take aX as a new variable). Since Gauss’s
lemma on the factorization of polynomials with integer coefficients also
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holds for the ring o[X], then every irreducible factor of f(X) with leading
coefficient 1 will lie in o [X].

If the polynomial f(X) does not have multiple roots (in any finite extension
of the field k), then its discriminant D(f) = + R(f, f*) is nonzero. Letd =
v(D(f)), and consider any factorization

f=010; - @n(mod n*Y), (3.8)

in which the leading coefficient of each ¢, (as well as of f) equals 1. Set
hy = @, -+ @,,. Since for the discriminant of the product of two polynomials
we have the formula

D(gy) = D(@) D) R(e, ¥)*,

and D(f) = D(¢,h,;) (mod n**1), so that w(D(¢h,)) = d, then d > 2r, where
r = v(R(¢,, h;)). By Theorem | (see the remark at the end of its proof) there
exist polynomials g,(X) and f;(X) in the ring o[ X], with g =g,f, and f} =
@2 @ (mod "t Y), But d — r > d — 2r > d; = W(D(f)), so that for the
polynomial f; we have the analogous factorization f; = g, f,, etc. We finally
arrive at the decomposition

S(X) = g,(X) - gul(X), (3.9)
in which the polynomial g, € o[ X] has the same degree as ¢, .

If the factorization (3.8) is chosen with mas large as possible, then all the poly-
noinials g, will be irreducible over the field k, and we have the following result.

Theorem 3. If the factorization (3.8) of the polynomial f(X) is taken with
m as large as possible, then f has a factorization of the form (3.9), in which
each g, is irreducible and has the same degree as the corresponding ¢,.

We also note the special case of Theorem 3 when d = 0, that is, when D (f)
is a unit in o. In this case the factorization (3.8) coincides (after passage to the
residue class field) with the factorization

=01 0n (3.10)
into irreducible polynomials in the ring [ X]. Therefore we have the following

Corollary. Let f(X)e o[X] have discriminant D(f) which is a unit in v,

and let the decomposition of f into irreducible polynomials in I[X] be given
by (3.10). Then there exist polynomials g,, ... , g,, in o[ X] such that f=g, ---

Im and gl =(51’ e ’gm =¢m'

PROBLEMS

1. Let k be complete under a valuation, K/k a finite separable extension with ramifi-
cation index e, o and O the rings of integral elements of k and K, and me and 7 prime



Sec. 4] METRICS ON ALGEBRAIC NUMBER FIELDS 277

elements in these rings. Show that if « € O is divisible by 7, then Spg «(«) is divisible by 7q.
Deduce from this that Spx (7' ~°L) < 0. Apply Problems 12 and 16 of Section 2, Chapter 2,
to this case to show that, if e > 1, then for any 8 € © with characteristic polynomial f(¢),
f(6) is divisible by .

2. Let k be a finite extension of the field of p-adic numbers, with ramification index ¢
over R, and let 7 be a prime element of k. Assume that k contains a primitive pth root
of 1, and that e is divisible by p — 1 (Problem 14 of Section 1). Show that any integral
a € k, for which @ =1 (mod #™*+!), where m = pe/(p — 1) = ps = e + s, is a pth power of
some element of k. [Use the fact that if 8 =1+ 7°**y (y integral), k > s, p = 7°¢ 7%, then
B = + 7*ye)* (mod #°+*+!). Then apply Problem 17 of Section 1.}

3. Under the conditions of Problem 2 assume that « is congruent to 1 modulo 7™ but
is not a pth power in k. Show that k(’{/cx)/k is an unramified extension of degree p. [Find
the characteristic polynomial f(t) of the element y = w"({’/ « — 1) and verify that f(y)
is a unit; now apply the last assertion of Problem 1.]

4. Retaining the conditions of Problem 2, assume that « € k is integral and satisfies
the conditions: @ =1 (mod #"), ¢ =1 (mod #***, (h, p)=1, h < m=ep/(p — 1). Show
that « is not a pth power in k and that the extension k('{/-cz)/k is totally ramified. (Con-
sider the exponent with which the prime element of the field k({’/a?) occursin 1 — a = I1§Z3
a-¢ i{’/cx), where { is a primitive pth root of 1.)

4. Metrics on Algebraic Number Fields

4.1. Description of Metrics

In Section 4.2 of Chapter 1 we gave a description of all possible completions
of the field R of rational numbers, these being the p-adic fields R, and the real
field R, . We now do the same for any algebraic number field k. As we saw
in Section 1, each prime divisor p of the field k corresponds to the p-adic
completion k, that is, to the completion under the metric ¢, (x) = p*®,
xek (0 < p < 1). We call the metric ¢, the p-adic metric of the field k. To
classify all possible completions of k, we must find all metrics of the field &
other than the p-adic metrics.

Let ¢ be any nontrivial metric of the algebraic number field k. Considering
the restriction of ¢ to the rational numbers, we obtain a metric ¢, of the field
R. We first show that the metric ¢, is also nontrivial. Take any basis w,, ...,
w, of k over R. For any ¢ = a0, + -+ + a,0, (a; € R), we have

@(0) < 9ol@)e(wy) + - + @ola)p(w,).
If the metric ¢, were trivial, then, since @gy(a;) < 1, we would have the
inequality
o(f) < ‘ZI(P((U;')

for all £ € k. But this is impossible, since a nontrivial metric never takes
bounded values.
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By Theorem 3 of Section 4 of Chapter 1, the metric ¢, coincides either with
a p-adic metric @ (x) = p*»'®, 0 < p < 1, or with a metric x|, 0 < p < 1
(x € R). Consider the first alternative. Let o, denote the ring of the valuation
v, (the ring of p-integral rational numbers), and let O, be its integral closure
in k. If wy, ..., w, is a fundamental basis of the field k, then every a € O,
is represented in the form « = a,0, + -+ + a,0, with the coefficients g, 0.
Since ¢, (a;) < 1, then

o) < 3. o)),

and since all powers o (k > 0) of « also lie in D,, we must have o) < 1.
It then follows easily that ¢(e) = 1 for all units of the ring O, . By Theorem 7
of Section 4 of Chapter 3 each nonzero £ € k has a unique representation
in the form

E=cem M ooq b, 4.1)

where ¢ is a unit in ©,, and n,, ..., 7, is a fixed system of pairwise-non-
associate prime elements. (The number ¢ belongs to O, if and only if
k; = 0) If o(n;,) = 1 for all i, then ¢(¢) would equal 1 for all £ # 0 of k. But
this would contradict the nontriviality of ¢. Suppose that we had ¢(n,) < 1
and ¢(n;) <1 for two distinct primes n; and n;. Choose natural numbers
k and / so that ¢(n,)* + ¢(n;)' < 1. The numbers n* and =, are relatively
prime in the ring ©,, so by Lemma 2 of Section 6, Chapter 3, there exist
elements o and f# in O, such that

| =an* + pn}.
But then

1= o(1) < p(o(n)* + p(Po(n) < o(n) + o(n) < 1,

and we have a contradiction. Hence there is only one prime element =;, for
which ¢(n;) < 1. Denote by p and v, the corresponding prime divisor and
valuation. Since in (4.1) the exponent k; equals v (£), if we denote the value of
o(m;) by p,, we have

@) = p, . (4.2)

Taking ¢ = p, we find that p = p,®, where e is the ramification index of the
prime divisor p. The formula (4.2) shows that the metric ¢ coincides with the
p-adic metric ¢, corresponding to the prime divisor p.

We now consider the case when @y(x) =|x]?, 0 < p <1 (xe R).

The completion of the field R under the metric |x|” is the field of real
numbers (and does not depend on p). As in Section 7.2 of Chapter 1 we denote
it by R, . The extension of the metric |x|, x € R, to the field R, will clearly
be the metric |a|’, « € R,, . Adjoining to the field R, the root i = \/—1, we
obtain the field C of complex numbers. We shall show that the metric |x|”
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on the field R can be extended to the field C in only one way, namely, as the
metric |£]?, where |£| denotes the absolute value (modulus) of the complex
number £. Let i be some extension. Then we claim that /(&) = 1 forall é e C
with [£] = 1. Otherwise we would have some £ € C with ¢(¢) > 1 and |¢| = 1.
Taking a natural number n and setting " = o + i (¢, f € R,,), we obtain

Y& < Yl@) + YW < 1 + y),

since Y(a) = |«|” < 1, and analogously ¥(f) < 1. But this is impossible,
since Y(&)" > 1 + Y(i), if n is sufficiently large. Now let £ be any nonzero
complex number. We have just shown that (£/|€]) = 1. Hence

W) = wlIEh = 11,

which is what was to be shown.

Every algebraic number field & of degree n = s + 2t (see Section 3.1 of
Chapter 2) has n different embeddings in the field C of complex numbers (s
real, and ¢ pairs of complex conjugates). Let ¢ be any such embedding. If for
any & € k we set

?,(8) = la(O)I",

then the function ¢, is clearly a metric of the field k, and ¢,(x) = |x|” for

x € R. If o and ¢ are conjugate embeddings, then |6(¢)| = |o(&)| = |a(&)|, and
this means that the metrics ¢, and @; are the same. Hence we have s +
metrics on k, which coincide on R with the metric |x|*.

Now let ¢ be any metric of the field k which coincides with |x|” on R. On
the completion k,, of the field k& under this metric we have the metric @ which
is the only continuous extension of ¢ to k. The closure R of the field of rational
numbers in k, is topologically isomorphic to the real field R, . If we denote by
o the (unique) topological isomorphism of R to R, then for any y € R we
shall have @(y) = |o(y)|*. Take in k a primitive element 6, so that k = R(9),
and let £(X) be its minimum polynomial over R. Then f(X) factors over the
real field into s linear and t quadratic terms. Hence in the field R we have the
decomposition

JX)=(X =0,) - (X = 0)(X* + pr X + q1) - (X* + pX +q,).

Since f(0) = 0, then ) must be a root of one of these polynomials.

Assume first that § = 0,. Since 0 € R and thus K = R(0) = R, then the
isomorphism ¢ : R = R_ induces a real embedding ¢ : k - C, such that if
¢ e k, then

@(&) = (S) = |a(d)”.

Hence the metric ¢ coincides with ¢,. Also we see that in this case k¢ = R;
that is, the completion k, is topologically isomorphic to the real field.



280 LOCAL METHODS [Chap. 4

Now let 8 be a root of one of the quadratic terms. In this case (R(f) : R) = 2,
and hence the isomorphism ¢ : R » R can be extended in two ways to an
isomorphism o : R(f) - C. The induced mapping ¢ : k — C is clearly a com-
plex embedding of k in the complex field C. We have shown that there is only
one metric on C which coincides with the metric |x|” on R, namely, the
metric |5|?, n € C. Hence for any £ € k, we have

@(&) = @(&) = |a(O)I;

that is, ¢ = ¢, for the complex embedding o. The field k, [which coincides
with R(8)] is topologically isomorphic to the field of complex numbers.
Hence we have proved the following theorem.

Theorem 1. Any nontrivial metric ¢ of the algebraic number field k of
degree n = 5 + 2t coincides either with a p-adic metric

P (&) =p»®  (O<p<l,iek),

corresponding to a prime divisor p, or with one of the s + ¢ metrics of the
form

(&) =o(&)) (O<p<gl,iek),

where ¢ is an isomorphism of the field k into the field C of complex numbers.

Definition. The completion k, of the algebraic number field & under the
metric ¢, is called the field of p-adic numbers.

From Theorem 1 it follows that every completion of an algebraic number
field is either a p-adic field, the field of real numbers (for s > 0), or the field
of complex numbers (for ¢ > 0).

To emphasize the analogy between the metrics ¢, and ¢, of the algebraic
number field k of degree n =5+ 21, we introduce s + ¢t = r new objects
Pi.ws - » Py o » Called infinite prime divisors, which correspond to the metrics
¢, . Ordinary prime divisors, distinct from the infinite ones, are then called
finite prime divisors. The infinite prime divisor p = p; , is called real if it
corresponds to a metric ¢, with a real embedding o, and is called complex if
the corresponding metric ¢, = ¢, comes from a pair of complex-conjugate
embeddings ¢ and &.

In the case of the rational field R there is a unique infinite (real) prime
divisor p ., which we introduced in Section 7.2 of Chapter 1 and denoted by
the symbol oo Those prime divisorsp,, ..., p,, of the field k, which correspond
to extensions of the p-adic valuation v, to k, are the divisors of the number p
(considered as a divisor of the field R). In an analogous manner, we call the

divisors py ., ..., Pm.o divisors of p_, since the corresponding metrics are
extensions of the metric |x|” on the rational field.
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The ring K, which we considered in Section 2, when specialized to the case
of an extension k/R and a rational prime p, is denoted by k, and consists
of all m-tuples ({;, ..., ¢,), where ¢; ek, . The dimension of the ring k,
as a vector space over the p-adic field R is equal to n = (k : R) (Theorem 1
of Section 2). In an analogous fashion we can construct the ring k,_, con-
sisting of all (s + ¢)-tuples (&, ..., &, & 41y v s Egip), Where &; (1 i< s)
belongs to the field of real numbers, and &,,, (1 </ < t) to the field of com-
plex numbers. The ring k,_, being a vector space of dimension n = (k : R)
over the real field R, clearly coincides with the ring 2, which we con-
sidered in Chapter 2, which was of such great interest in the study of the
group of units and classes of modules of the algebraic number field k. The
ring k,  will again play a large role in Section 1 of Chapter 5.

4.2. Relations between Metrics

For any prime divisor p of the field k (finite or infinite) we introduce the
normed metric ¢, , determined by special choice of p. If p is a finite prime
divisor, then the normed metric ¢, is determined by

1

040 = (W)W (Eeh),

where N(p) is the norm of the divisor p. For an infinite real prime p, which
corresponds to the real embedding ¢ : &k — C, set

e, =1a(®)l, (Eek).

Finally, if p is an infinite complex prime divisor, corresponding to the pair
of complex embeddings ¢ and &, then the normed metric ¢, is given by

?,(&) = 16@)I* = 16> = a($)a(?)-

Note that the last function |o(&)|?, is not, strictly speaking, a metric in the
sense of the definition of Section 4.1 of Chapter 1 since the triangle inequality
(4.2) does not hold. However, since |6(¢)|? is the square of a metric, it can also
be used to define convergence in the field k, and therefore we shall consider it
a metric.

For any ¢ # 0 of k& we clearly have only a finite number of prime divisors p,
for which ¢,(¢) # 1. Therefore, the formally infinite product [ [, ¢,(£) makes
sense.

Theorem 2. For any ¢ # 0 of the algebraic number field &, the values of
the normed metrics satisfy

[Te) =1 (4.3)

(p runs through all prime divisors of the field &, finite as well as infinite).
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Proof. Let P and P’ denote the products of all ¢ (&), taken over the infinite
and the finite primes, respectively, so that the left side of (4.3) equals PP’.
From the definition of the normed metric for infinite p, we have

[Ta(®)

g

P=[]lo(®)| = = [N(9)|

(here 6 runs through all n = s + 2r embeddings of k in the field C). On the
other hand, by formula (7.1) of Chapter 3, the norm of the principal divisor
(&) = [1, »»® (here p runs through all finite prime divisors) equals

1
IN(E)| = N(l_[ pvpm) = T] NGpy»® = =

which proves the theorem.

PROBLEMS

1. Let @y, ..., @, (r =5+ 1) be the metrics of the algebraic number field &, of degree
n=s -+ 2t, which correspond to the infinite prime divisors. Show that for anyi=1,...,r
there exists a number £ in & for which

&) >1, elé) <1, G#D.

Show that the metrics ¢, ..., @, define different notions of convergence on k.
2. Show that every relation of the form

[Tol&re=1, (£ck®)
»

between the normed metrics g, of an algebraic number field & is a consequence of the
relation (4.3), that is, show that this will hold for all £ € k* only if there is some integer m
with my, = m for all p.

5. Analytic Functions in Complete Fields

5.1. Power Series

Let k be a.complete field with valuation v. We have already studied some
properties of series in k (see Section 1.2 of this chapter and Section 3.4 of
Chapter 1). We know that the series Y 2., a, converges in the field & if and only
if a,—0, as n— oo; that for convergent series the operations of addition,
subtraction, and multiplication by a constant can be carried out termwise;
and that the order of terms in a convergent series may be changed and the
sum remains the same. From this it easily follows that if we take all products
a;b; of terms of the two convergent series » 2, a; =s and ) %, b; = ¢, and
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write them in any order, then the resulting series will converge and its sum
will be st.

We note, for future use, a simple theorem on double series. Recall that the
double series

.MS

a;; (5.1)

1

]

is said to converge to the sum s, if ) /_,3"7_, a;; — s as m, n — co. The series

are called the repeated series of the double series (5.1).

Theorem 1. If, for any N, for all but a finite number of pairs (i, j) we have
v(a;;) > N, then the double series (5.1) converges and its sum equals the sum
of each of the repeated series, which also converge. If we form a simple series
of all the terms of the double series (5.1) in any way, then the simple series will
also converge, and to the same sum.

The proof of this theorem is completely elementary, and is left to the reader.
Any series in k of the form

f(x)= Za,,x"=ao+alx+-~-‘+ ax"+ -, (5.2)

n=0
with a, € k is called a power series. If (5.2) converges for x = x, € k, then we
claim that it converges for all x € k with v(x) = v(x,). For any such x we have

V(a,,.X)') 2 V(anxo"),

and therefore the terms a,x" also converge to zero as n — oo. Thus if we set
1 = min v(x), where x runs through all values of k for which (5.2) converges,
then the region of convergence will consist of all x for which v(x) = u [or (5.2)
will converge for all x].

If we have two power series fi(x) =Y 2o a,x" and f,(x) =Y =, b,X", then
by their product we mean the power series obtained by formal multiplication,
that is, the series h(x)=) Loc,X", where ¢, =) ;,;-,ab;. Let the series
f1(x) and f,(x) converge for v(x) = u, and v(x) = u, . It is then clear that the
series hA(x) will converge for v(x) = max(y,, u,), and that its sum will equal
SHi()fo(x).

A power series f(x) is a continuous function of x in its region of con-
vergence. Indeed, all terms a,x” for n = 1 can be made as small as desired by
taking x to be sufficiently small. Hence f(x) — a, = f(0) as x — 0; that is, the
function f(x) is continuous at the point x = 0. Now let ¢ be any value in
the region of convergence of the series f(x). Replacing each term q,x" by the
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expression a,(c + )", expanding each term and taking the sum, we obtain a
power series f.(y). For all values of y from the domain of convergence of
f(x), we have

fle+y) =1 (5.3)

It now follows that f.(3) = f.(0) as y — 0, and hence f(x) - f(c) as x >,
so f(x) is continuous at x = c.

A function f(x), defined on some domain in a complete field with valuation,
and represented on this domain by a convergent power series, is called an
analytic function.

Consider a power series

I =by+ -+ by + -
without constant term. We claim that it is possible to substitute g(y) for x
in a power series f(x), and obtain a series F(y) in y. For if
an(g(y))nzcrmy"+cn,n+1y"+1 + ooy (54)
then

F(y)=ag+cyyy +(cra+ )y + -+ (Cpt+ o+ o + )0 + o

Theorem 2. (On Substitution of Series in Series). Let the series f(x)
converge for v(x) = u. If the above series g(y) converges for some y € k and
wb,y") = u for all m = 1, then the series F(y) also converges (for this value
of y) and

F(y) = f(9()).
Proof. Consider the double series
)
From (5.4) we have
cnmym = Z anbalya1 ba,.yan‘
AL, e, An

ay+---ta,=m
Let N = min w(b,y™). Then

WCmy™ Z min (0(ab, y™ ... byy™) > 0(a,)+nN.
Since N = v(x,) for some x, and for x = x,, the series f(x) converges; then
v(a,) + nN = v(a,x,") - o0, and this means that v(c,,)™) = © as n— ®
uniformly for all m. Further, for fixed » the series (5.4) converges (being the
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product of convergent series), and therefore v(c,,y™) — o0 as m — oo. This
proves that the double series (4.5) satisfies the conditions of Theorem 1. By
this theorem both repeated series for (4.5) converge and have the same sum.
We now need only note that

F(y)=ao+;(g cijyf) and f(g(y))=ao+;(; ci,-yf),

and Theorem 2 is proved.
In the next two sections we shall also consider analytic functions of n
variables, that is, functions which can be represented as power series,

f(xl""’xn)= Z aal...a"xlal ---x,,"".
@ty ., 2nz0
Suppose that the series f(xy, ..., x,) converges in the region in n-dimensional

space over k consisting of all points with v(x) =N (i=1,...,n). If ¢ =
(¢y, ... , ¢,) is a point of this region, then, just as in the case of one variable, we
easily obtain

f(xl + Crseeir Xy + Cn) :fc(xl’ [ERE) xn)a

for all points of the region v(x;) = N [f. also converges for v(x,) = N].

5.2. Exponential and Logarithmic Functions

In this section we assume that & is a finite extension of the p-adic field R,.
We denote by the valuation of k by v, the ramification index over R, by e, and
a prime element of the ring of integral elements of k by 7.

Consider in k the power series

2 xn

x X
expx—l+ +—+ =+, (5.6)
2! n!
x? x"
log(1+x) = x =2+ -+ (= 1y 71—+ .. .7

We shall find the region of convergence of the series (5.6). Since the prime
number p occurs in n! with exponent [n/p] + [#/p*] + ---, then

=g 3]+ <o £ i

v(%) = nv(x) — v(n!) > n(v(x) . p%) (5.8)

and hence

1
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If v(x) > e/(p — 1), then v(x"/n!) — oo, and the series (5.6) converges. On the
other hand, if w(x) < e/(p — 1), we have for n = p°,

V(:_') =nv(x)—e(p’l + -+ p+ 1)

n—1 e e e

= -— = —_ S .
nv(x) ep—l n(v(x) p—l)+p—l P =1

and hence for such x the general term in (5.6) does not converge to zero. This

shows that the series (5.6) converges precisely for those x for which vw(x) = «,

where
e
K= [—] + 1.
p—1

Formal multiplication of the power series exp x and exp y is easily seen to
give the series exp(x + y), and hence for v(x) = x and W) = x we have the
formula

exp (x + y) = exp x-exp y. 5.9

We now turn to the series (5.7). If v(x) £ 0, then v(x"/n) does not converge to
infinity as n — oo, and hence for such x the series (5.7) does not converge.
Now let wx) =2 1. If n=p°,, (n,p)=1, then p*<n and v(n) =ea <
e(In n/ln p), so that

v(x—) = nv(x) — v(n) 2 nv(x) — e]lﬁ ,
n Inp

and this means that v(x"/n) — o0 as n — c0. Hence the series (5.7) converges
if and only if v(x) = 1.

If v(x) = 1, then the element ¢ = 1 + x is a unit in the ring o of integral
elements of the field k, with £ = 1 (mod n). Conversely, if a unit ¢ satisfies
this congruence, then it has the form ¢ = 1 + x, where v(x) > 1. We call such
a unit of the ring o a principal unit of the field k. The series (5.7) hence defines
a function log ¢ on the multiplicative group of all principal units of the field k.
We shall show that for any two principal units ¢ and ¢, , we have the formula

log (,6,) = log e, + loge,. (5.10)

Leteg =1+ x, &5 =1+ y, and let W(y) = (x), so that y = tx with ¢ integral
and

A+x)A+y)=1+ 4+ Dx+ x2

We shall consider the expression (7 + 1)x + tx?as a power series in x, for which
all terms lie in the region of convergence of the series log(l + z). Since the
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formal substitution of this expression in the series log(l + z) gives log(l + x)
+ log(1 + x), then by Theorem 2

log(1 + (t + Dx + tx?) = log(1 + x) + log(1 + tx),

which proves (5.10).
The formal substitution of the series (5.7) in (5.6) and of the series
exp(x — 1) in (5.7) give us the following formal identities:

explog(l +x)=1+ x; (5.11)
log exp x = x. (5.12)

Since these are formal identities, to verify them we can assume that x is a
complex variable and use the theorem on substitution of series in series for
complex power series (see, for example, K. Knopp, ‘“Elements of The
Theory of Functions,” Sections 41 and 45, Dover (New York, 1952). To see
under what conditions the formal identities (5.11) and (5.12) can be considered
as equations in k, we turn to Theorem 2. By this theorem (5.11) will hold
provided the terms of the series log(l +x) satisfy v(x"/n) = x. For n =1
this gives us v(x) > x. Butif v(x) = x, thenv(x"/n) 2 nk 2 kforl < n<p -1
and

(x" e In n
WW—}—x=
n) p—1 In p
=e(n—-l)(lnp _ lnn)>0
Inp \p—1 n-1

for n = p = 2 [here we are using the fact that the function In #/(z — 1) for ¢ > 2
is monotone decreasing]. Hence (5.11) is valid under the condition v(x) =
Further, under this condition, v(log(l + x)) = x. We turn to formula (5.12).
It follows from (5.8) that if v(x) = «, then every term of the series exp(x — 1)
is contained in the region of convergence of the series log(l + x), and this
means that (5.12) holds for all x for which exp x is defined.

We denote by A4 the additive group of all x € k for which v(x) > x, and by M
the multiplicative group of units of the form ¢ = | + x, x € 4. We have shown
that the mapping ¢ — log ¢ (¢ € M) is a homomorphism from the group M to
the group 4. We now show that the mapping x — exp x is a homomorphism
from A to M. In view of (5.9) we need only show that v(x"/n!) = n for all
xedandallnz 1. Let p* < n< p**!. Then

o) =z ool ]+ + 3]

>(n—])e enp’ — 1
p—1 pPp—1

=0

’
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which is what is required. Formulas (5.11) and (5.12) now show that the
mappings log: M — A and exp: 4 — M are both one-to-one and are inverses
of each other. Hence we have the following result.

Theorem 3. The mapping x — exp xisanisomorphism of the additive group
of all numbers of the field k& which are divisible by 7~ (x = [e/(p — 1)] +1)
onto the multiplicative group of all principal units ¢ which are congruent
to 1 modulo #n*. The inverse isomorphism is given by ¢ —loge [for e = 1
(mod 7*)].

The mapping ¢ — log¢ is, in general, not an isomorphism on the whole
group of principal units (Problem 5). Also, the value of log ¢ is not necessarily
integral.

In real analysis one also considers the exponential function a* = &* ¢,
Its analog in the field & is the function

. ° = exp(x log n), (5.13)

where 7 is a principal unit of the field k. This function is defined provided that
v(x) 2k — v(log ). Therefore if n = | (mod =*), then #* will make sense for
all integral x of k, and the value of n* will satisfy n”* =1 (mod #n*). ff n =1
(mod 7*) and x and y are any integral elements, then we have the formulas

7 =,
() =n.
PROBLEMS

1. Let f(x) be an analytic function in the region v(x)= u (in a complete field with
valuation v). If f has an infinite number of zeros in the region v(x)= u, show that fis
identically zero.

2. Let k be a field of characteristic zero, complete under a non-Archimedean metric ¢
(Problem 4 of Section 4, Chapter 1). Assume that the metric ¢ satisfies (p) < 1 for some
rational prime p. Show that the region of convergence of the series log(l + x) is the set
of all x for which @(x) < 1, and the region of convergence of the series exp x is given by
p(x) <? _\1/(p(p).

3. Under the same conditions, determine the regions of convergence of the series

2n ~1 2n

X

@em!’

sinx=Z(=1)"! ————, cosx=Z (—D"
n=1( ) 2n—1)! n=0( )

4. Find the error in the following proof of the irrationality of the number#. The number

7 is the smallest positive number for which sin = = 0. Let = be rational. Since m > 3, the
numerator of 77 must be divisible either by an odd prime p, or by 22 (in the latter case set
p=2). From this it follows that the series sin x and cos x converge in the p-adic field R,
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for x = 7. But in view of the formula
sin (x + y) = sin x cos y + cos x sin y
it follows from sin = = 0 that
sinnr=0

for all natural n. The function sin x thus has an infinite number of zeros in its region of
convergence. But then, by Problem 1, it would be identically zero, which is a contradiction.

5. Let k be a finite extension of the p-adic field R,, and let ¢ be a principal unit of k.
Show that log £ = 0 if and only if ¢ is a root of degree p* (s=0) of 1.

6. Keep all notations of Section 5.2. The principal units g, for which £ =1 (mod 7*),
form a multiplicative group, which we call M,. The integers of k& which are divisible by
7* form an additive group A.. Show that for k= « the mapping € — log ¢ is an isomor-
phism of the group M, onto the group A; (the inverse mapping being x — exp x, x € A,).

7. In any complete field with valuation, show that the region of convergence of a power
series f(x) = Z,‘:‘;o a,x" is contained in the region of convergence of its derivative
S ()= >r_,na,x""'. Give an example in which f and f” have different regions of con-
vergence (with the field &k of characteristic zero).

8. Show that in the ring of 2-integral rational numbers the sum

22 2 2"
24T
can be made divisible by any given power of 2, by taking n large enough.
9. Show that all coefficients a, of the series

P p2

X o
E,,(x):exp(x+ -+ =+ ) = Z a.x"
p P n=0

are p-integral rational numbers.
(Hint: Show that the number
n!

Tn=an! = Z

521 p"l+---+p"=n5!17
a120,..,as20

%1

p‘lz p’s

equals the number of elements in the symmetric group of nth degree which have order a
power of p. Use the theorem which says that if d divides the order of the finite group G,
then the number of elements u € G which satisfy the equation u* = 1 is divisible by d.)

10. Show that
E,,(X) — 1—[ (1 _ xm)—l‘(m)/m

(m,p)=1

(m runs through all natural numbers relatively prime to p; p(m) is the Mébius function).

11. Let 7 be a principal unit in a finite extension field of the field R,, and let x be a
p-adic integer. Choose a sequence of natural numbers {a,} which converges to x. Show that
lim,_ , 7™ exists and that it is independent of the choice of {a,). Further, show that the
function

7*=lim ™"

nswo

of the p-adic integer x coincides with the function (5.13).
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6. Skolem’s Method

In this section we study the application of Skolem’s method to equations
of the form

F(xy, ..., xp)=c¢, 6.1)

where F is an irreducible, decomposable, nonfull form (Section 1.3 of Chap-
ter 2), and c is a rational number. This method is based on some simple prop-
erties of local analytic manifolds over p-adic fields, which will be proved in
the next section. An example which illustrates the idea of Skolem’s method
was given at the beginning of this chapter.

6.1. Representation of Numbers by Nonfull Decomposable Forms

In Section 1.3 of Chapter 2 we saw that (6.1) can be written in the form

Ny + -+ Xpptm) = a 6.2)

or
N(x) = a, (x e M), 6.3)
where pu,, ..., 1, are numbers of some algebraic number field k, and M =

{uy, ... » U} is the module generated by these numbers (4 is a rational num-
ber). Replacing, if necessary, the form F by a form integrally equivalent to it,
we may assume that the numbers y,, ..., u, of the module M are linearly
independent over the field R of rational numbers. Since M is nonfull, m < n =
k: R).

In Chapter 2 we saw how to find all solutions to (6.3) when M is a full
module of k. It is thus natural to embed M in a full module M, and to use the
methods of Chapter 2 to find all solutions of the equation N(x) = a, x e M,
and then to pick out those solutions which lie in M.

It is clear that any module of k£ can be embedded in a full module. To do
this it suffices to extend the linearly independent set u,, ..., u,, to a basis
Uy, --- » 1y OF the field k and to set M = {y, ..., p,}.

If all xe M for which N(x) = a have already been found, then we shall
obtain all solutions of (6.3) if we can isolate those solutions for which in the
representation

A =Xy + -+ Xpldy

the coefficients x,,,4, ..., X, are equal to zero. To express the conditions
Xm+3 = -+ = x, = 0 directly in terms of a, it is convenient to use the dual basis
w*, ..., u,* (see Section 2.3 of the Supplement). Since the trace Sp p;u;* is 0
for i #j and | for i =, then x; = Spau* (1 < i< n). It follows that the
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numbers a € M which lie in the submodule M are characterized by the
conditions

Spoau*=0 G=m+1,..,n). (6.4)

By Theorem 1 of Section 5, Chapter 2, all solutions of the equation
N(a) = a, x e M, can be written in the form

a=y" gt (1<j<k), (6.5)
where y,, ..., 7, is a finite set of numbers of the module M with norm a;
€1, ... » & is a system of independent units of the field k; and u, ..., u, are

arbitrary rational integers. From (6.4) we see that every solution to (6.3) cor-
responds to a solution in one of the & systems of equations

Sp(yp*e, - &) =0 (i=m+1,...,n) (6.6)

in rational integers uy, ... , u, (here y is one of the y)).

Let K be an algebraic number field which contains all fields conjugate with
k,and let 6., ..., o, be all isomorphisms of k into XK. Since Sp ¢ = 4,(&¢) + -
+ o,(¢) for any & € k, then the system (6.6) can be written

n

Y o (yu*)o (e,) -+ o (e)" =0 (i=m+1,...,n). (6.7)

ji=1
It is clear that to prove the finiteness of the number of solutions to the equa-

tion (6.3) it suffices to show that each system of the form (6.7) has only a finite
number of solutions in rational integers uy, ..., u_.

Remark. The set of all numbers of the field k of the form ¢ - ¢, %,
where uy, ..., u, run through all rational integers, is a multiplicative subgroup
of k which we shall denote by U. The solutions of (6.3) then coincide with

numbers of the intersections
Mny;U (=1, ..,k). (6.8)

Instead of the set (6.8) we may also consider the similar set y;”'M ~ U. Then
the problem of finding all solutions to (6.1) is reduced to the problem of
finding the intersection of a module and a multiplicative subgroup of the
field k. We note also that we may replace the module M by the vector space L
(over R) which is spanned by py, ..., p,. For y,UcMand L n M = M, so
Lny,U=MnyU

6.2. The Relation to Local Analytic Manifolds

The idea of Skolem’s method is that in some cases we can prove the finite-
ness of the number of solutions of (6.1) by proving that the system (6.7)
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has only a finite number of solutions even when the variables u,, ..., u, take
on P-adic integral values (that is, they take integral values in the completion
Kg), where P is any prime divisor of the field K. After such an extension of the
domain of possible values for the variables, we may consider the set of all
solutions of the system (6.7) as a local analytic manifold in r-dimensional
space, and then apply properties of such manifolds.

When we allow that variables uy, ... , 4, in (6.7) to take B-adic values, we
encounter the obstacle that the exponential function &* = exp(u log ) is only
defined for all integral $B-adic ¥ when ¢ = 1 (mod PB*) (k is an integer which
depends only on the field Kg; see the end of Section 5). We avoid this
difficulty in the following manner. By Problem 6 of Section 7, Chapter 3,
there exists a natural number ¢ such that any integer « € K which is not
divisible by B satisfies

af = 1 (mod P*). 6.9)
Each exponent u; in (6.5) can be written
u; = p; +qu,, O<pi<g, v,€Z),
and hence the unit ¢ = ¢*' --- ¢, has the representation
e =0, .- g, (I=1,..,q9",
where 8, is one of the ¢’ numbers
g e ", 0O<p <9

Hence we obtain a new representation for numbers o of the form (6.5),
in which ¢; is replaced by ¢/, and the finite set of numbers y; by the set of
numbers y;,. Since the ; are units, then the congruence (6.9) holds for all of
the numbers o (¢;), and hence the functions o (¢;")" are defined for all PB-adic
integers u € Ki. We have proved the following result.

Lemma 1. After making new choices, if necessary, for the numbers
y; and ¢; in (6.5), the functions o (¢;)" are defined for all integers of the field
Kg .

In the future we shall assume that this condition holds without special
mention.

We turn to the system (6.7). In view of (5.9) and (5.13), we can put this
system in the form

Y Ajjexp Li(uy, ..., u,)=0 (i=m+1,..,n), (6.10)
j=1
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where
Lj(ula SRR ] ur) = kzluk IOg aj(ek)y
A= Uj()’#i*)-
Since the left side of (6.10) consists of power series which converge for all
P-adic integral u,, ..., u,, and hence represent analytic functions, then the

set of all solutions to (6.10) can be interpreted as a local analytic manifold
(in a neighborhood of any solution) in the sense of the definition of Section 7.

The system (6.10) consists of n — m equations in r variables. It is natural to
expect that the manifold defined by this system will consist of only a finite
number of points, provided that n — m > r. Recall that the number r comes
from the Dirichlet theorem on units, and r = s + ¢ — 1, where s is the number
of real, and r the number of pairs, of complex embeddings of the field & in the
field of complex numbers. Since n =5 + 2¢, then n — m = r if and only if
t = m — 1. In the simplest interesting case m = 2, and the condition reduces to
t > 1. This means that there should be at least one pair of complex embed-
dings of k. This case leads to Thue’s theorem, and will be considered in the
next sections.

Assume that the system (6.10) has an infinite number of solutions (i, ...,
u,), s =1, 2, .... Since the ring of P-adic integers is compact (see Theorem 6
of Section 3, Chapter 1, and the second remark at the end of Section 1.2 of
this chapter), we can choose from this sequence a convergent subsequence,
the limit of which we denote by (u,*, ..., ,*). It is clear that the point
(u,*, ..., u,*) is also a solution of (6.10), that is, that it lies on the manifold
determined by this system, and that in any neighborhood of this point there
are an infinite number of points of the manifold. We now change variables by
the formula

U, =u*+v; (A<i<r).

The system (7.10) then becomes
Y AfexpLjvy, ...,0)=0 (i=m+1,...,n), 6.11)
j=1

where
A.-j* = AU exp Lj(ul*, cen s u,*).

The constant terms of the series on the left of (6.11) are all zero. We denote by
V the local analytic manifold (see Section 7) determined by (6.11) [in the
neighborhood of the point (0, ..., 0)]. Since this manifold does not consist
of a single point (any neighborhood of the origin contains an infinite number
of points of the manifold), then by Theorem 2 of Section 7 the manifold V
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contains an analytic curve; that is, there is a system of formal power series

wy(1), ..., w,(1)

(not identically zero and without constant terms) with coefficients from a
finite extension of Ky, such that the series

P1) = Liw(1), ... , 0 (1)) (6.12)

identically satisfy the relations

_ZIAE'} exp P()=0 (i=m+1,..,n),

j=

Hence we have the following result.

Theorem 1. If the equation (6.1) has an infinite number of solutions, then
at least one local analytic manifold of the type (6.11) [for some y = y; and
some point (4, *, ... , 4,*)] contains an analytic curve.

This theorem is the heart of Skolem’s method. It reduces the question of the
finiteness of the number of solutions to (6.1) to the proof that the systems
(6.11) do not have solutions in formal power series, that is, that the corre-
sponding local analytic manifolds do not contain analytic curves.

Note that there are n — r linear relations on the n series Pj(¢) defined by
(6.12):

2. B, P(t) =0. 1<i<n—r),
i=1

since they are linear combinations of the r series w,(7). Thus the existence of an
analytic curve on ¥V implies the solvability [in power series P,(t) without
constant term] of the system

Y ALexpP(D=0 (m+1<i<n),
Jj=1

. (6.13)
YBP()=0 (A<i<n—r=t+1),
j=1

in which both groups of equations are linearly independent. [The linear
independence of the equations of the first group follows from the fact that
the determinant det o (yu;*), whose square is the discriminant of the basis
yu;*, is nonzero, and hence the rank of the matrix (4;) (m+1<i<n,
1 €j < n), and, consequently, of the matrix (4;;*), isn — m.]If we assume that
n — m > r, then the total number of equations in (6.13) will be =na.
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6.3. Thue’s Theorem

Thue’s theorem states that if the form f(x, y) = aox + @, x" "'y + - + a,)"
in two variables with rational integral coefficients is irreducible and has degree
n = 3, then the equation

S(x,y)=¢ (6.14)

has only a finite number of solutions in integers. Since forms in two variables
are always decomposable, and when » > 2 they are nonfull, then the equation
(6.14) is a special case of (6.1). Here m = 2, so to apply Skolem’s method
we must have ¢ > 1; that is, the equation f(x, 1) = 0 must have at least one
complex root. In such a case we shall say that the form f(x, y) has complex
roots. We shall prove Thue’s theorem by Skolem’s method under this assump-
tion. In other words, we shall prove the following assertion.

Theorem 2. If the form f(x, y) has integral coefficients, is irreducible, has
degree >3, and has at least one complex root, then the equation

S, y)=c
has only a finite number of solutions in integers.

Proof. We assume that the coefficient a, of x" equals 1 [otherwise we can
multiply (6.14) by a,"~ ! and replace a,x by x]. Setk = R(6), K = R(0,, ... ,0,),
where 8 = 6,, 0,, ..., 0, are determined by the decomposition

S D =(x+6)(x +6,).

For eachj =1, ..., n we denote by ¢; the isomorphism of k¥ to K which takes
6 to 0;. Since f(x, y) = N(x + yb) (N denoting the norm of k/R), then (6.14)
can be written in the form (6.3), where by M we mean the module {1, 6}.
Hence in this case y; = 1, y, =0 (m =2).

Assume that the equation (6.3) has an infinite number of solutions a =
X + yfinthe module M = {1, 0}. Then for some y = y; € k, an infinite number
of these solutions will be of the form (6.5), where the independent units
€1, .. » & Of k satisfy Lemma 1. The exponents u, ... , 4, in (6.5), correspond-
ing to each solution «, will satisfy the system (6.10). We choose among the
solutions « a sequence «;, a5, ... so that the corresponding points

(e oy ty)  (5=1,2,..) (6.15)

converge to some point (u,*, ..., #,*). In Section 6.2 we saw that the local
analytic manifold V, defined by (6.11), contains an analytic curve w,(¢), ...,
(1), and for any such curve on V the series (6.12) satisfy some system of the
form (6.13).

The rest of the proof of Theorem 2 is based on the following important
auxiliary result.
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Lemma 2. Let there be given a system of equations

YajexpPy=0  (i=1,..,n),

i (6.16)
ZlePJ=0 (i=19""n2),

in which each group of equations is linearly independent. If n, =n — 2,n, > 2
and if the system has a solution in formal power series P,(¢), ... , P,(¢) without
constant term, then P,(f) = P;(¢) for at least two distinct indices k& and j.
[The coefficients a,; and b,;, as well as the coefficients of the series P(t), lie
in some fixsd field of characteristic zero.]

We give the proof of this lemma below, but now we show how the lemma
implies Theorem 2.

By Lemma 2, for any curve w,(?), ... , w(t) on V, P,(t) = P,(¢) for at least
two distinct indices j and k; that is,

Li(w4(2), ..., 0(1)) = L (?), ... , 0(1)). (6.17)

In r-dimensional space consider the points (v, ..., v,) of the manifold W
which are determined by
(Li(vy, ..., v,) — Livy, ..., 1)) = 0.
1<k<j<n

It follows from (6.17) that any curve which lies on the local analytic manifold
V also lies on W. But then by Theorem 3 of Section 7, ¥V = W, that is, all
points of the manifold ¥, contained is some sufficiently small neighborhood
of the origin, also belong to W.

But on the other hand, we shall now show that among the points (v,,, ...,
v,s) € V¥, which are obtained from the points (6.15) by u#;, = #;* + v,, and which
converge to the origin, only a finite number lie on the manifold W. This
contradiction will prove Theorem 2.

Let « = x + y0 and o' = x’ + »'0 be two points of the sequence {«,}, for
which the corresponding points of V lie in the manifold determined by
Ly=L;. If « = yg,"* ---¢," and u; = u;* + v, then

u,=u*+v;,
0,(®) = a(y)o &) -+ 6(e)" 0 ,(e,)" - 0,(e,)"
=c;exp Ly(vy, ..., v,)
(with ¢; independent of «) and analogously

ak(a) = ¢y €Xp Lk (Uh ) D,),
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so that

o (o) - oy (o)
¢; c
In precisely the same fashion we find that
o) _ o)
¢ e
From the last two equations we obtain
X+ yo; _ X+ ybi
x'+y0;, x'+y6,’

so that
(xy" = x'y) (0 — 0)) =0,
and since 0; # 0, then
xy —xy=0,

This means that x + y8 = d(x’ + y'0) for some rational d. Taking norms and
using the fact that N(x) = N(«'), we obtain d" =1, so that d = +1, and
a = +o.

Thus each of the n(n — 1)/2 manifolds given by L, = L;, whose union is W,
contains not more than two points of ¥ which correspond to numbers of the
sequence {o}. Then W contains at most n(n — 1) such points. Thus any
neighborhood of the origin contains points of ¥ not lying on W, so V (as
a local analytic manifold) is not contained in W, which contradicts our
earlier conclusion that ¥ < W. As we have noted, this contradiction proves
Theorem 2.

Proof of Lemma 2. Since the first group of equations linearly independent
(and n; = n — 2), we can, after changing the numbering if necessary, express
expP;(i=1,...,n—2)in terms of exp P,_, and exp P, :

expP,=a,expP,_, + b;exp P,. (6.18)

If a; = 0, then from the absence of constant terms and the equation exp P, =
b, exp P,, we deduce that ; = 1 and P; = P,. Hence we may assume that all
a, are nonzero. Set

P,—P,=0; (i=1..,n=-1
and assume that all Q, are nonzero. By (6.18) we have

exp O, =a,exp @,y + by, (6.19)
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so that by differentiation with respect to ¢ (Problem 10) we obtain

Qi'expQi=a,Q0,_,expQ,_;. (6.20)
From (6.19) and (6.20) we deduce
1 .
Q' =0 eXan—lciJerQ"_l (i=1,...,n=2), (6.21)

where ¢; = b,a,”!

We now use the second group of equations of (6.16). By assumption there
are at least two linearly independent equations in this group. Hence we can
find a nontrivial relation among the Q; :

n—1
Y dQ;=0.
i=1

Differentiating this identity and replacing Q," by (6.21), we obtain

n—2 di dn—l )
L ex n— + =0,
Qr-1exp Q 1(2‘1‘2 +expQ,-, expQ,_,

and since Q;_, # 0 and exp Q,-, # 0, then

- d;
_ =0 6.22
Z‘c+epr,, 1 ( )

(here we take ¢,_; = 0).
We claim that (6.22) can hold only if the rational function
n—1 d.

2z J; - (6.23)

is identically zero. Assume that it is not, that is, assume that (6.23) equals
e(2)/Y(z), where @(z) 0. Then since ¢@(exp Q,_,) =0, the nonconstant
formal power series exp 0, _, is the root of a polynomial, which contradicts
the assertion of Problem 4 of Section 1. It is clear that the function (6.4) can
vanish identically only when ¢, = ¢; for at least two distinct indices j and k.
Since ¢ = ba, we then find from (6.19) that

exp P, = ﬂexp P;,
aj

from which it easily follows that P, = P;. Lemma 2 is proved. -

Remark. Skolem’s method allows us to prove that (6.14) has only a finite
number of integral solutions. But it does not give an algorithm for finding
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these solutions. The reason is as follows. After proving that the system (6.7)
has only a finite number of P-adic solutions, it is easy to find an algorithm
for the computation of the coefficients in the expansions of these solutions
in power series of the prime element. However, there is no algorithm which
allows us to judge from a finite number of coeflicients whether or not we are
dealing with a rational solution.

This defect is shared by all known proofs of Thue’s theorem. Even when
the equation (6.14) is of third degree, there is no known algorithm for finding
all integral solutions, or even for determining if there exist any solutions.

6.4. Remarks on Forms in More Variables

The following question now arises: Under what conditions does an equa-
tion of the type (6.1) with a nonfull decomposable form have only a finite
number of solutions in integers? Such equations sometimes have an infinite
number of solutions. As an example consider the equation

x* 4yt +92% — 4x2y? — 6x722 — 12y%22 = N(x + y/2 + 2/3) =1

[the norm is taken in the extension R(/2, +/3)/R]. This equation has two
infinite sets of solutions, given by the formulas

X+yJ2=2(1+J2y (z=0),
x+z/3=+Q2+J3" (=0.

The reason for this is that, setting z = 0 or y = 0, we obtain from our form the
square of a full form: (x* — 2y?)? or (x? — 3z2)%. This occurs because the
module {1, v/2, /3}, which corresponds to our form, contains full modules of
smaller fields, namely, {1, /2} = R(/2) and {1, \/3} = R({/3).

We describe a general class of forms with analogous properties. We write
(6.1) in the form (6.3) and consider the vector space L (over R) which is
generated by the numbers of the module M. The module M is called degener-
ate if the corresponding space L contains a subspace L' which is similar to
some subfield k" < k, where k' is neither the field of rational numbers nor an
imaginary quadratic field.

We show that for a degenerate module the equation (6.3) has an infinite
number of solutions (at least for some a). For if L' = yk’ (ye k) and M’ =
L' n M, theny™'M’is a full module of the field k’. By the assumptions on the
field &’ the number of fundamental units in any order is nonzero, and there-
fore the equation

Nyr(§) = a, (Cey M) (6.24)

has an infinite number of solutions (provided it has at least one solution). Set
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a, = Nyr(y)a’, where r = (k : k). Since

Nk/R(é)’) = (Nk'/k(é))rNk/R()’) =a

and éye M' < M [for any ¢ which satisfies (6.24)], then the equation
Ny z(n) = a;, n € M, has an infinite number of solutions.

The basic conjecture on equations of the form (6.1) is that any such equa-
tion has only a finite number of integral solutions, provided that the associated
module is not degenerate.

Apparently the only known approach to this hypothesis lies in Skolem’s
method (application of which, as we have seen, requires the additional
restriction that ¢t > m — 1).

The basic stage at which the condition m = 2 was used in the proof of
Theorem 2 was Lemma 2. The generalization of Lemma 2 to the case
ny +n, = n (instead of ny =n — 2 and n, > 2) is apparently the principal
obstacle to a proof of the above hypothesis (in the case ¢ = m — 1). Skolem
proved this generalization in the case n = 5, ny = 2, n, = 3 and thus deduced
that the number of solutions to (6.1) is finite when n=5, m=3, t=2
[T. Skolem, Einige Satze uber p-adische Potenzreihen mit Anwendung auf
gewisse exponentielle Gleichungen, Math. Ann. 111, No. 3, 399/424 (1935)].
This indicates the validity of our hypothesis in the case n = 5 (under the con-
dition ¢ > m — 1; the nondegeneracy of the module does not arise here since
the field k has prime degree and hence has no subfields).

The validity of the hypothesis was proved for m = 3 (and hence under the
restriction that ¢ > 2) by Chabauty [C. Chabauty, Sur les equations diophan-
tiennes liees aux unites d’un corps de nombres algebriques fini, Ann. Mat.
Pura Appl. 17, 127/168 (1938)]. His method, however, avoids consideration
of the system (6.16) by introducing other more refined techniques. Hence the
generalization of Lemma 2 remains unproved even in the case ny =n — 3
(except for the case n = 5 considered by Skolem).

PROBLEMS

1. Let the series f(tf) = ao + a;t + a,t? + --- with p-adic integral coefficients converge
for all p-adic integral values of ¢ If

Vp(al) < Vp(al)r (k = 2, 3, ),

show that the equation f(¢) = 0 has precisely one solution in p-adic integers if v,(ao) = v,(a,),
and has no solution in p-adic integers if v,(a0) < vy(ay).

2. Let d> 1 be a square-free natural number, and let (a, b) and (a, b) be two nontrivial
(distinct from (1, 0)) integral solutions of the equation

x34+dyd=1.
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Set e=a+bVd and & =a,+b,Vd in the cubic field K= R(Vd). Show that then
Eu — Elv
for rational integers « and v, at least one of which is not divisible by 3.

3. Keeping the notations of the preceding problem, assume that d 41 (mod 9).
Then in K we have the decomposition 3 = p3 (Problem 24 of Section 7, Chapter 3), and
hence the completion K, of the field X is of degree 3 over the field R; of 3-adic numbers.
Assuming that v 0 (mod 3), set = u/v. Show that the number ¢, considered as a 3-adic
integer, is a root of the equation

S ayn=0, *)
="

where a, = (1/n!) Sp((log 7)"), n = €. (Here Sp denotes the trace for the extension X,,/R;.)
Show that the series in (*) converges when ¢ is any 3-adic integer.
(Hint: Show that Sp(log n) =0 and Sp », =3, 7, = £,3.)
4. Show that the coefficients a, in (*) satisfy
vi(@) =vi(@)=pu+3, vil@a)>p+3 for n>3,
where pu = v3(a®b°d) (v; being the 3-adic valuation).
[Hint: Use the fact that if p =14 3x, x = abVd g, then

9
log p=3x— §x2+9x3 (mod 3*+%),

and also the fact that the trace of any element of the ring Os[V d] is divisible by 3 (Os is
the ring of 3-adic integers).]

5. Using Problems 1 to 4, show that the equation x3 + dy* = 1, withd # +1 (mod 9).
has at most one nontrivial solution in rational integers.

6. Prove the assertion of the preceding problem in the case d = +1 (mod 9).

[Hint: Recall that the number 3 factors in K = R(\:'/E) in the form 3 = p?q (Problem 24
of Section 7, Chapter 3), and carry over the considerations of Problems 3 and 4 to the
direct sum K; = K, @ K, (see Section 2). The logarithmic function on Kj is defined just
as on a field; the series converges for all £ = (a, ) € K5, where « and B are principal
units in K, and K, . The trace Sp(£) is defined as the trace of the matrix of the linear mapping
& — ££ (& € Ky), and therefore for any elements of K (Section 2) it coincides with the
trace of the corresponding number of K.]

7. Let the series f(t) = ao + ayt + a,t? + --- have p-adic integral coefficients, and con-
verge for all p-adic integral values of ¢. If a, is a p-adic unit and 4, =0 (mod p) for all
s > n, show that the equation f(r) = 0 has at most n solutions in p-adic integers.

8. Let the sequence of integers

Uo, Uyy ooy U,y ... **

satisfy the recurrence relation u, = a,u,_; + *-» + Guitn_m (am#0) with rational integer
coefficients a,, ..., @, . Assume that the polynomial ¢(x) = x™ — g;x™ ! — ... — a,, has no
multiple roots. Show that there exists a natural number M with the following property:
For each residue class modulo M, either all u, (with » in that class) are equal, or no number
occurs infinitely often among the u, (that is, show that the sequence (**) is either periodic
or else assumes any given value only a finite number of times).

[Hint: Use the formula u, = A1t," + -+« + Amaw” [, are the roots of (¢p(x)] and the
fact that for any prime p and natural number M the function «,™* = exp (x log ;™) will
be an analytic function for all p-adic integral values of x.]
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a function on the points of ¥ lying in some e-neighborhood of the origin (the
neighborhood depending on the function). Hence we call the factor ring ©
the ring of analytic functions on V.

Definition. The local manifold V is called irreducible if the ring of func-
tions /A, on V¥ has no divisors of zero. Otherwise it is called reducible.

The investigation of local analytic manifolds is based on three simple facts,
one from algebra and two dealing with the properties of power series. We
state them without proof, giving references.

Lemma 1. Let g,(?), ..., g,(t) be polynomials of k[r] with leading co-
efficient 1. There is a system 4, ... , A, of polynomials in several variables, one
for each coefficient of the g;, and with integer coefficients, such that if the
coefficients of g,(¢), ... , g.,(¢) are substituted for the corresponding variables
inhy,...,h,,then by = .- = h,=0if and only if g, ... , g,, have a common
root in some extension of k.

If m = 2, then r = 1 and A, is the resultant of the polynomials g, and g, .
The general case is easily reduced to this case. The proof is given in “ Modern
Algebra” by B. L. van der Waerden, Vol. II, Section 77, Ungur, New York,
1950.

Lemma 2. Suppose that the power series f(xy, ..., x,) is such that all
terms of degree <k have zero coefficient, and the coefficient of x,* is nonzero.
Then there is a power series e(x, ..., X,) in O with nonzero constant term
such that

f(X)e(X) = xnk+ §01(x1, e xn—l)xnk_1 + o+ (Pk(xu ey xn-—l);

where ¢,, ..., ¢, are power series in x,, ... , X,_,; with zero constant term.

This corollary to the Weierstrass preparation theorem is proved by O.
Zariski and P. Samuel, in * Commutative Algebra,” Vol. II, p. 145, Princeton
University Press, Princeton, N.J., 1960.

Note that the condition that the coefficient of x,* be nonzero always can be
obtained after a linear change of variables. Further, it is easily checked that if
‘we have a finite set f}, ... , f,, of power series, then a linear change of variables
can be found so that they all satisfy this condition simultaneously.

Lemma 3. Any ideal 2 of the ring O has a finite set of generators; that is
there exist power series A, ... , i in A such that any # € A can be represented
in the form

h= glhl + e+ gshsa

for some g4, ... , g, of O.
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The proof of this lemma can also be found in “ Commutative Algebra,”
Vol. II, p. 148. »
We need Lemma 3 for the proof of the following theoreii.

Theorem 1. Every local manifold is a finite union of irreducible manifolds.

Proof. Let the manifold ¥ be determined by (7.1). If ¥V is reducible, then
there exist power series f'and g in O, which do not vanish on the points of ¥
in any neighborhood of the origin, but such that fz is identically zero on ¥V in
some neighborhood of the origin. Let ¥, and ¥,’ be the manifolds obtained
by adjoining to the system (7.1) the equations f(X) = 0 and g(X) = 0, respec-
tively. It is clear that ¥, and V,’ are submanifolds of ¥V and that

V=V,uvy.

If the manifolds ¥, and V,’ are irreducible, then the theorem is proved. If one
of them is reducible, then we can, in the same way, represent it as the union
of two proper submanifolds. Continuing this process, we either represent V
as a finite union of irreducible submanifolds, or we obtain an infinite sequence
of manifolds

VeVo2Vi2 Va2 (7.2)

We show that the second case is impossible. Let 2, be the ideal of the variety
V;. From (7.2) it follows that

9‘[V ; 9IV1 ; QIV: ; U (73)

Denote by U the union of the ideals A, . By Lemma 3 the ideal U is generated
by a finite system of series 4y, ..., h,. Since each series of U is contained in
some ideal 2, , then there is an integer k such that all the series &y, ..., h; are
contained in A, . But then A < Ay, and hence A, =Ny, ., = -+, which
contradicts (7.3). Theorem 1 is proved.

We now describe a general method for studying local manifolds, based on a
reduction to manifolds in spaces of lowest possible dimension.

Let the manifold ¥ in the space k" be defined by the equations (7.1). Assume
that ¥ is different from k", so that the series f;, ..., f,, (m = 1) are not identi-
cally zero. Also assume that we have made a linear change of variables so that
the polynomials f; all satisfy the conditions of Lemma 2. Then, by this lemma,
we can find power series ,(X), ..., e,(X) in O with nonzero constant term,
such that

fer=gi=x"+ @ux, "1+ - + Pix, » (7.4)

where ¢; = @;(xy, ..., X,~) are power series in n — 1 variables with zero
constant term. Since e, (X) # 0 in some g-neighborhood of the origin, then the
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local manifold ¥ is also given by the system of equations

gl(X) = Oa 9gm(X) = 0’ (75)

where each g; is a polynomial in x, with leading coefficient 1. We now apply
Lemma 1 to these polynomials. The corresponding polynomials 4, ..., A,
in the coefficients of the polynomials g,, ..., g, will be power series in
X1, .- » Xy Without constant term, and since all the ¢,; converge in some
e-neighborhood of the origin, then the series 4, ..., 4, will converge in
the same neighborhood.

Consider now the local manifold W in the space k"~! defined by the
equations

A (xg, oo s Xy 1) =0, oo, A Xy, oo, X)) =0.

It is clear that a point («;, ... , &,_;) € k"~ ! belongs to W if and only if there
exists an «, such that («,, ..., o,_;, %) € V. Thus W is a projection of the
manifold ¥ into the hyperplane x, = 0. Here each point («,;, ..., ®,_;) e W
is the projection of a finite set of points («y, ... , &,—y, &,) € ¥, since «, is a
common root of the polynomials g,(«,, ..., &,_4, x,). The passage from the
manifold ¥ to its projection W gives us a method for investigating local
manifolds.

Definition. By a curve in the space k" we mean a system of # integral
formal power series w,(?), ... , w,(t) which have zero constant term and have
coefficients in k or in some finite extension of k (and are not all identically
Zero).

For our purposes it is not necessary to assume that the series w,(t) =
a;,t + a;,t? + --- converge, and it is simpler not to do so. Thus a curve does
not consist of a set of points, but only of a collection of series w(¢).

Definition. We shall say that the curve w,(t), ..., @ (¢) lies on the
manifold V if for any series f(x;, ..., x,) of the ideal 2, the power series
flwo(@), ..., w,(t)) is identically zero.

Our basic result on local analytic manifolds is the following.

Theorem 2. Any local manifold either coincides with the origin or con-
tains some curve.

The proof will be given by induction on the dimension #.

By Lemma 3 the ideal 2, has a finite set of generators. Hence we may as-
sume that the system (7.1), which defines the variety ¥, consists of a set of
generators for the ideal 2, . For n = 1 the variety ¥ consists only of the origin
if at least one of the series f; is not identically zero, and coincides with k!



306 LOCAL METHODS [Chap. 4

if all f; are identically zero. In the second case any series w(t) satisfies the sys-
tem (7.1).

Now let n > 1. The assertion of the theorem is clear if all f; are identically
zero (or if m = 0). Therefore we assume that none of the series £, ..., f,,
(m > 0) are equal to zero. Further, assume that these series are in the form
given by Lemma 2, so that instead of the equations (7.1) we have V given by
(7.5), where g, is determined by (7.4). Let W be the projection of ¥ in k"~ 1,
By induction, we assume the theorem valid for W. If W coincides with the
origin, then the local manifold V will be defined by the equations

gi(O’”"O’xn):O (lslsm)’

and it will also coincide with the origin. If W is different from the origin, then
W contains a curve w,(t), ... , w,_,(t). Let k, denote a finite extension of the
field k which contains all coefficients of the power series w;, ... , ,_;. From
the definition of W it follows that if we substitute the series w,(¢), ... , w,_,(t)
in the series g4, ..., g. for x, ..., x,_, then we obtain m polynomials in x,,

gi(wl(t)’ rey wn-l(t)’ .X,,) (1 < l < m)’ (76)

whose coeflicients lie in the field k;{¢t} of formal power series in ¢ over k; .
Further, these polynomials have a common root x, = ¢ in some finite ex-
tension Q of the field k,{¢}. By Theorem 6 of Section 1 the field Q is contained
in the field of formal power series k'{u}, where u* =t for some natural
number e, and k' is a finite extension of k,. Hence the element & can be repre-
sented as a power series & = w(u) with coefficients in &’. Since £ is a root of
the polynomials (7.6), which have leading coefficient 1 and integral coefficients
in the field £,{t}, then the series w(u) is an integral element of the field k' {u},
that is, it does not contain any term with negative exponent. In the representa-
tion (7.4) all the series @;; have zero constant term. Substituting the series
w, (), ..., w,_(°) for xy, ..., x,_, in (7.4), and substituting w(u) for x,,
we see that the series w(u) has zero constant term and that

gi(wl(ue)’ ot wn—l(ue)s w(u)) = 0 (1 < l < m)

Since the series @y, ..., ®,_, are not all zero, then the set of series w,(u°), ...,
w, (), w(u) is a curve in k". By assumption the series f;, ... , f,,, and thus
also the series g4, ... , g,, generate the ideal 2, . Hence for any series f(xy, ...,
x,) of A, we have

f(wl(ue)’ s Wy l(ue)a w(u)) = 07

and this means that the curve w,(¥°), ... , w,_,(¥°), w(u) lies on the manifold
V. Theorem 2 is proved.
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Theorem 3. If ¥ and V' are two local manifolds in k", where ¥ is not
contained in ¥, then there is a curve in " which lies on ¥ and does not lie
on V',

Proof. We can assume that the manifold V is irreducible, since otherwise
we may replace ¥ by one of its irreducible components.
Let the manifold ¥’ be defined by the equations

F(X)=0, ..., F(X) =0,

where F; is a series of the ring O. Since ¥'¢ V7, then at least one of the series
F; does not vanish on the points of ¥ (in any neighborhood of the origin).
We denote this series by F(X) and will show that there is a curve w,(?), ...,
w,(t) on V¥ for which

F(w (1), ..., w,(1)) #0.

The proof will proceed by induction on ».

We can clearly assume that the series F(X) satisfies the conditions of
Lemma 2, so that there exists a series e( X) = e(x,, ..., X,) € O with nonzero
constant term so that

e(X)F(X) = G(xy, ..., X)) = X5 + . "+ o 14, 1.7

where ¢, ..., ¥, are series in x,, ..., X,-,.

In the case ¥ = k" (in particular, if » = 1) Theorem 3 is proved, for ex-
ample, by taking w,(t) = -+ = w,_,(t) = 0, w,(t) = t. If V # k", then we con-
sider the projection W < k"' of the manifold ¥ (here we assume that the
series fi, ..., f,., as well as F(X), satisfy the conditions of Lemma 2; as we
have seen, this can be achieved by a linear change of variables). The manifold
W is also irreducible, since the ring of functions on it, that is, the factor ring
On_1/Ay = O,_,, is a subring of the ring of functions O/A, = O on V (as
0,1 <O and A, = A,). For each series f€ O we denote by [ the corre-
sponding function of O. It follows fror (7.4) that

f:i + (‘ﬁilf’,ki—l 4+ q_)ik.- =0,

and this means that the function X, of the ring O is integral over the subring
O, -,;. It follows that the functions

G=fnk+‘plf"k_l+"'+lpk (‘pieﬁn-l)

also are integral over O,_;.
We take an equation

G+LG '+ +L;=0 (L;eD,-) (7.8)
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with smallest possible s. It is clear that f, # 0, since then we could obtain an
equation for G with smaller s. Hence the series L, € O,_, does not vanish on
the points of W (in any neighborhood of the origin). By the induction hypo-
thesis there exists a curve w,(2), ... , w,-;(¢) in the space k"~ ! which lies on W
and is such that L(w,(¢), ... , w,-(t)) # 0. In the proof of Theorem 2 we saw
that there exist curves of the form w, (), ... , w,_,u°), w(u) which lie on the
manifold V. We shall show that for such a curve

G, (1), ..., 0,y (@) (w(w)) #0)

and hence that this curve does not lie on the manifold ¥’. For if the series on
the left were identically zero, then by (7.8) we would have

L{w,u), ..., 0.~ ,(u%)) =0,
and after replacing u° by ¢,
Ls(wl(t)’ ey (D,,_ 1(0) = 0,

which is impossible by choice of the curve w,(¢), ..., @,_(t). Theorem 3
is proved.



CHAPTER B

Analytic Methods

In Chapter 3 we saw how important a role the number 4 of divisor classes
of an algebraic number field played in the arithmetic of the field. Thus one
would like to have an explicit formula for the number 4, in terms of simpler
values which depend on the field K. Although this has not been accomplished
for arbitrary algebraic number fields, for certain fields of great interest (such
as quadratic fields and cyclotomic fields) such formulas have been found.

The number of divisor classes is a characteristic of the set of all divisors of
the field K. Since all divisors are products of prime divisors and the num-
ber of prime divisors is infinite, then to compute the number 4 in a finite
number of steps we must use some infinite processes. This is why, in the deter-
mination of 4, we shall have to consider infinite products, series, and other
analytic concepts. The apparatus of mathematical analysis can be applied
to solve many problems of the theory of numbers. In this chapter we give
an example of the application of this apparatus by using it to compute the
number of divisor classes.

1. Analytic Formulas for the Number of Divisor Classes

1.1. The Dedekind Zeta Function

The determination of the number 4 of divisor classes of the algebraic num-
ber field K is based on consideration of the Dedekind zeta function {4(s),
defined by

{k(s) = Z

1
Ny (-1

309
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where a runs through all integral divisors of the field K, and N(a) denotes the
norm of the divisor a. We shall show that the series on the left side of (1.1)
converges for 1 < s < o0, and is a continuous function of the real variable s
on this interval. Further, we shall obtain the formula
lim (s — 1){x(s) = hk, (1.2)
s—1+0

where « is a constant which depends on the field K in a simple manner, and
which will be computed in the course of the proof.

Formula (1.2) becomes valuable because the function {4(s) also has a rep-
resentation as an infinite product

1
ORI (1.3)

w L =[N’
carried out over all prime divisors p of the field K| this representation being
called Euler’s identity. If for the field K we have a good knowledge of the prime
divisors (that is, if we know how rational primes factor into prime divisors in
K), then we can obtain an explicit expression for 4 from formulas (1.2) and
(1.3). By this route we shall obtain formulas for 4 in later sections when K
is a quadratic or a cyclotomic field.
We break the series (1.2) into the sum of 4 series

((s) = z(z ﬁ)

C \aeC

where a runs through all integral divisors of the given divisor class C, and the
exterior summation is taken over all 4 classes C. To prove that the series (1.1)
converges, it suffices to show that each of the series

§)= ) —
Je(s) ;C NGy
converges for s > 1. Further, if we show that for each class C the limit

lim (s — 1) fc(s)

s=1+0

(1.4)

exists and has the same value x for each divisor class C, then we will have
obtained formula (1.2).

We now transform the series (1.4) into a series over certain integers of the
field K. In the inverse divisor class C ™! we choose an integral divisor a’. Then
for any a € C the product aa’ will be a principal divisor:

aa’ = (a), (x e K).

It is clear that the mapping
a— (%) (ae Q)
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establishes (for fixed a') a one-to-one correspondence between integral
divisors a of the class C and principal divisors () divisible by a’. Using the
equality

N(@)N(a') = |N(@)|,

we obtain

S =N@y ¥ (1.5)

@ IN@JP’
a=0(moda’)

where the summation is taken over all principal divisors of the field K which

are divisible by a! Since two principal divisors (a,) and («,) are equal if and

only if the numbers «, and a, are associate, then we may consider that the

summation in (1.5) is taken over a complete set of nonzero pairwise-non-

associate numbers of the field K which are divisible by a'.

To put the series (1.5) in a still more convenient form, we use the geometric
representation of points of the field K by points in the n-dimensional space
R" = €' and in the logarithmic space R*** [here n = s + 2t is the degree of
the field K; see Section (3.3), Chapter 2]. We shall determine a cone X in R"
such that in each class of associate numbers of the field X there is one and
only one whose geometric representation lies in X (by a cone we mean a
subset of R” which, whenever it contains any nonzero point x, also contains
the whole ray £x, 0 < £ < o0).

In Section 3 of Chapter 2 (all notations of which we preserve), we defined a
homomorphism x — /(x) of the multiplicative group of points x € R" with
nonzero norm N(x) to the additive group of vectors of the logarithmic space
R=** by formula (3.13). If ¢, ..., &, is some system of fundamental units of
the field K, then we showed that the vectors I(g,), ... , I(g,) formed a basis for
the subspace of dimension r = s + ¢ — 1 consisting of all points (4, ..., 4,,)
e R°*Y, for which 4, + - + A, = 0. Since the vector

*=(,..,1;2,..,2)

g e
s t

does not lie in this subspace, then the set of vectors
1*3 l(sl)s et 1(8,) (1.6)

is a basis for R**'. Any vector /(x) e R*** [x e R", N(x) # 0] can be repre-
sented in the form

l(x) = él* + 511(81) + e+ érl(er)7 (17)

where &, &,, ..., &, are real numbers.
Let m denote the order of the group of roots of 1 contained in the field K.
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Definition. A subset X of the space R" is called a fundamental domain
for the field X if it consists of all points x which satisfy the following con-
ditions:

(1) N(x) #0.

(2) In the representation (1.7) the coefficients &; (i = 1, ..., r) satisfy the
inequality 0 € ¢, < 1.

(3) 0 < arg x, < 2n/m, where x, is the first component of the point x.

Note that for s = 1 the number m equals 2, so that condition (3) in this case
simply means that x, > O.

In the next section we shall see that the fundamental domain X is a cone in
R", and we shall use this fact to prove the following theorem.

Theorem 1. In every class of associate numbers (# 0) of the field K there
is one and only one number whose geometric representation in the space R"
lies in the fundamental domain X.

We turn to the series (1.5). If we denote by I the n-dimensional lattice in
R" which consists of all images x(«), where a is an integer of K divisible by a’,
then since |N(a)| = |[N(x(a))| we can write (1.5) in the form

fcls) =N@'y ¥ L (1.8)

xeMnX |N(x)|s ’
where the summation is taken over all points x = x(«) in the lattice 9t which
are contained in X.

In Section 1.4 we shall prove a general result on series, in which the sum-
mation is carried out over all points of a lattice which lie in some cone (Theor-
em 3). Applying this result to our case, we find that the series (1.8) converges
for s > 1 and

lim ( 1 Z 1 v
im (s — —_——
s=+1+0 xeMnX |N(x)|s A
where A is the volume of a fundamental parallelepiped of the lattice M and v
is the volume of the set T which consists of all points x of the fundamental
domain X for which |N(x)] < 1.
By Theorem 2 of Section 4, Chapter 2, and (6.3), Chapter 2, A is given by

(1.9)

A= 21 N(@a')/ID|, (1.10)

where D is the discriminant of the field K. We shall compute the volume v
of T in Section 1.3, where we will show that
_2'n'R

v — (1.11)
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where R is the regulator of the field K. From (1.9), (1.10), and (1.11) it easily
follows that
25+ttR
lim (s — 1)f(s) =
m/1D}’

s=+1+0

and since {g(s) = Y ¢ fc(s), we have established the following basic result.

Theorem 2. If K is an algebraic number field of degree n = s 4+ 2¢, the
series
(s = ¥ =
S) = —_—
2 Ny

converges for all s > 1. Further, we have the formula

2s+t IR
lim (s — 1){k(s) = \/|D| h,

s+1+0

where h, D, and R denote the number of divisor classes, the discriminant, and
the regulator of the field K, and m is the number of roots of 1 contained in K,

We now turn to the verification of those assertions used in the derivation
of Theorem 2.

1.2. Fundamental Domains

If £ is a positive real number, we shall compute /(£x) € £%', where x € R",
N(x) #0. From (3.12) of Chapter 2 we have

L(&x) = In & + I)(x) (I<kxy),
Lo f€x)=2Inl+ L4 (x) (1<j<).
It follows that
Kéx)=1n & 1* + Kx),
and this means that the vectors I(x) and I(£x) will have the same coefficients
for I(e,), ... , I(¢,) in terms of the basis (1.6). Since N(£x) = E"N(x) # 0 and
arg(éx) = arg x, then if x lies in the fundamental domain X, so does ¢x;

that is, the domain X is a cone in R" [X is nonempty, since it contains the
point x(1), the image of the number 1 € X].

Lemma 1. If y € R" and N(y) # 0, then y has a unique representation in
the form

y = xx(g), (1.12)

where x is a point of the fundamental domain X and ¢ is a unit of the field K.
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Proof. We represent the vector /(y) in terms of the basis (1.6):
y) = yI* +y,0(e)) + - + ¥,1(e),
and forj=1, ..., r we set
vi=k;+¢&;,

where k; is a rational integer and 0 < £; < 1. We set n = g%t ---g,* and con-
sider the point z = yx(n~!). We have

Wz)=1y) + 1™ ") = Iy) = kl(ey) — - — k(&)
=yI* + &,l(ey) + - + £ (e
Now let arg z, = ¢. For some integer k,
2rk  2m
—_——<—.
m m

0<o

Under the isomorphism a —+ ¢,(«) (« € K), the mth roots of 1 in K are mapped
to the mth roots of 1 in the field C of complex numbers. Denote by { that
mth root of 1 (which must be primitive) for which a,({) = cos(2n/m) +
i sin(2n/m).

We shall show that the point x = zx({™*) belongs to the fundamental
domain X. We have

I(x) = U(z) + UL = 1(z) = yI* + &\ Mey) + -+ + E(e),
where 0 < ¢&; <1, so that conditions (1) and (2) are fulfilled. Further,
Xy = Z1x(C_k)1 = 210'1(0_1‘, so that
2n 2k

argx, =argz, —k—=¢
m m

and hence

2n
O<argx, < —.
‘ m

\
Thus x € X. Now note that x(a)™! = x(a~1), so that
y = zx(n) = xx({")x(n) = xx(e),

where ¢ = {*5. Hence we have represented y in the form (1.12). We now must
show the uniqueness of this representation. Assume that also y = x'x(g"),
where x" € X and ¢’ is a unit in K. Since xx(g) = x'x(¢"), then

I(x) + I(e) = I(x") + I(€").

The vectors /(e) and I/(¢) are integral linear combinations of the vectors
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I(gy), ... , I(g,). The coefficients of the vectors I(¢;) in the expansions in the
basis (1.6) of /(x) and /(x') are nonnegative and less than 1 [by condition (2)].
Hence I(¢’) = I(¢) and this means that &’ = g{,, where {, is an mth root of 1
(see Section 3.4 of Chapter 2). From the equation x(&") = x(e)x({,) it follows
that x = x'x({,), and hence

xy = x1'05(8o)-
By condition (3) we have

2n , 2m
O<argx, <—, O<argx," <—,
m m

and hence 0 < |arg ,({,)| < 2n/m, and since ¢,({,) is an mth root of 1, this
is possible only when arg ¢,({y) = 0, so that ¢,({,) =1 and {, = 1. Hence
x'=xand ¢ =¢. Lemma 1 is proved.

Proof of Theorem 1. Let B be any nonzero number of K. By Lemma 1 we
can write x(f) = xx(e), where x € X and ¢ is a unit. The number & = fe~! is
associate with f, and its geometric image x(x) (coinciding with the point x)
lies in the domain X. Since the decomposition (1.12) is unique, the number «
which satisfies § = a¢ and x(2) € X is uniquely determined, and this proves
Theorem 1.

As an example we shall find the fundamental domains for quadratic
fields.

First, we take the case where K is a real quadratic field, so that n = 5 = 2,
t=0,r=s5+t—1=1. We shall assume that X is a subfield of the field C of
complex numbers, and that the first isomorphism ¢, : K — C is the inclusion
mapping (see Section 3.1 of Chapter 2). If ¢ is a fundamental unit of the field
K, then —g, 1/e, —1/e are also fundamental units, so we may assume that
e> 1. If x = (x;, x;) € R?, with N(x) = x;x, #0, then I(x) = (In|x,], In|x,|).
The decomposition (1.7) then has the form

l(x) = 5(15 1) + él(]n €, —In 8).
The fundamental domain X is determined by the conditions

x>0, x,#0, O<géE <.
It is easily seen that
In|x,| = In|x,| + 2¢; Ine,
and hence

|x] = |x2|825‘.

The condition 0 € &, < | then leads to

x
1>u>e'2

{4
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The fundamental domain X hence consists of the points indicated in Figure 7
(the boundary rays which lie closest to the positive x-axis are not included

in X).

Fic. 8

Now let K be an imaginary quadratic field. Since here s =0, t = 1, then
r=s5+t—1=0., Hence the fundamental domain X consists of all points
x = y + iz for which

2
N(x)=y* + 2% #0, (Osargx<—n)
m

[see Figure 8 for the case K = R( \/?3), with m = 6].

1.3. Computation of the Volume

We now turn to the computation of the #n-dimensional volume of the set T,
which consists of all points of the fundamental domain X for which |N(x)| < 1.
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It will be shown in the course of the computations that the volume exists
and is nonzero. (For quadratic fields, the set T is indicated in Figures 7 and 8.)

We first show that the set 7 is bounded. In every ray which is contained in
the cone X, there is one and only one point x for which [N(x)| = 1. Denote
the set of all such points by S. It is clear that T consists of all points éx
(0 < £ < 1), where x runs through all points of S.

Consider the formula (1.7) for any point x € R" with nonzero norm. We
compute the sum of the components of this vector. By (3.15) of Chapter 2
the sum on the left equals In|N(x)|. By (3.18) of Chapter 2 the sum on the right
is &(s + 2t) = né. This means that £ = (1/n) In|N(x)|, and (1.7) can be written
in the form

I(x) = % InIN()| - 1* + & l(e)) + -+ + EI(e,). (1.13)

Now if x €S, then In|N(x)| =0, and hence the point /(x) = (/;(x), ...,
L, (x)) € R*is represented in the form /(x) = &,/(g,) + --- + £,I(¢,), where
0 < &; < 1. It follows that there is a constant p such that /(x) < p, and then
Ix,| < e for 1 <k <sand|x, | <e”?for1<j<tforall xeS [see (3.13)
and (3.12) of Chapter 2). This shows that the set S, and hence also the set 7,
is bounded.

We shall replace the set T by another set which is easily obtained from T,
and which has the advantage that it is defined by a simpler set of conditions.
We first note the following almost obvious lemma.

Lemma 2. If ¢ is a unit of the field K| then the linear transformation of the
space R" given by x — xx(g) is volume-preserving.

Under any nonsingular linear transformation the volume of a set is muiti-
plied by the absolute value of the determinant of the matrix of the transforma-
tion [see (4.2) of Chapter 2]. We showed in Section 3.1 of Chapter 2 that the
determinant of the transformation x -+ xx(g) equals N(x(g)), that is, equals
N() = +1.

As before, let { denote that mth root of 1 for which ¢,({) = cos(2rn/m) + i
sin(2n/m). Consider the sets T, (k =0, 1, ... , m — 1), obtained from T by the
linear transformation x — xx({*) (T, = T). By Lemma 2 we have o(7}) = o(T)
(provided the volume of one of the sets exists). Since

INGex(EN] = INGON(E] = IN(x)),
I(xx(¢) = I(x) + I(C*) = I(x),

2
arg (xx({9), = arg x, + ;’5 k,

then (by the definition of the fundamental domain X) the set 7) consists of all
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points x € R" for which:

(1) 0 < NI < 1.

(2) The coefficients in (1.13) satisfy 0 < &; < 1.

(3) 2nk/m < arg x; < 2nfk)(k + 1).

Thus 7,,7Ty,...,T,_, are pairwise-nonintersecting and their union

n=d T, is defined by conditions (1) and (2) [without condition (3)].

Let T denote the set of all points x € \ 7' Ty, for which x;, >0, ..., x, >0
[see (3.2) of Chapter 2]. We fix a set of s signs d, ..., 6,(6; = +1). If we multi-
ply all points in R" by the point (§;, ..., ;5 1, ..., 1) € 2% =R", we obtain
a volume-preserving linear transformation of R". If we apply all 2° such linear
transformations to T, we obtain 2° pairwise-nonintersecting sets whose union
coincides with |J7=' 7. If we can show that T has nonzero volume 7, then it
will follow that T has a well-defined volume, which is given by

s

o(T) = 2; B. (1.14)

(For real quadratic fields T is that part of 7 which is contained in the first
quadrant, and for imaginary quadratic fields T coincides with the unit disc
minus the origin, see Figures 7 and 8.)

The vector equation (1.13) yields the following system:

1,(x) =%jln|N(x)| + kz;g,‘tj(s,‘) G=1,...5+1),

wheree; = 1if | <j<s,ande; =2ifs + 1 <j< s+ 7. We change variables
by the formulas
X = Pk (k=1,..,5s),

Vi = Ps+;COS Q; .
] (j=1,...,0.
Zj=Ps+;SM Q;

(Here the real numbers y; and z; are given by x,,; = y; + iz;, 1 <j < ¢, see
Section 3.1 of Chapter 2.) The Jacobian of this transformation is easily
computed to be p .y -+ pg,,. Since I(x) =1In p;¥/ and N(x) = [ [}, p;* (we
assume that x; > 0, ..., x; > 0), then in terms of the variables p,, ..., ps+;,

@y, ..., @,, the set Tis given by the conditions:

(1) pr>0, ..., p+, >0, l_[j'+=rl P L
(2) In the equations

e. s+t ) r
in gy =2 TTpe) + 3 &dta
n i=1 k=1

(j=1,..., x + 1) the coefficients &, satisfy 0 & <1 (k=1,...,r).
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Since these conditions do not impose any restrictions on the variables
@y, ..., @,, then they independently take on all values in [0, 2n). We now

replace py, ..., p,+, by the new variables &, &, ..., £, by the formulas
e. r
1np;’f=n—’1nc+ Yeale) (=1,..,s+0). (1.15)
k=1

Adding these equations and noting that

s+t s+t
Z€j=n, Z lj(sk)=0) (1'16)
i=1 Jj=1
we obtain
s+t
E=11p (1.17)
j=

The set T is determined by the conditions
0<é<1, 0<&<1  (k=1,....r)

It is now clear that the volume & = v(T) exists. Since

op; Py Op; P
38 T nE 35 e N

the Jacobian of the transformation (1.17) equals

P1 P1 P
an LBy
né e, 11(51) el (&)

s+t(€1) te g‘_ﬂ ls+r(£r)

né s+t s+t

ey L(e) -+ 1i(e)

Ps+: ps_ﬂ l

In the last determinant we add all rows to the first row. Considering (1.16)
and (1.17) and recalling the definition of the regulator R of the field K (see
Section 4.4 of Chapter 2), we obtain

R

V=7 .
2ty Pasa
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It is now easy to compute the volume b:

v =f~~fdx1 - dxdy,dz, - dydz,

f fpm “Psse APy dpgy Aoy - do,

=f do, - fd%f fpm “Psrr Apy - dpgyy

- 'n'f---f|1|ps+1---ps+,dc d, .- de,

1 1 1 .
=7T'Rfo dﬁfodél -'-fodé,=7rR

Substituting this value of & in (1.14) we finally obtain,
2’7'R

(T) =

1.4. Dirichlet’s Principle

We first consider the function {(s) when K is the rational field R. Since
integral divisors in R can be identified with natural numbers and N(n) = n,
then

® 1
(r(s) = ;1 el (1.18)

Hence the Dedekind {-function for R coincides with the Riemann {-function
{(s). We shall show that the series (1.18) converges for s > 1. Since the func-
tion 1/x° is decreasing for X > 0O, then

J"'“ dx 1 J"' dx
—< =< —,
n x* n n-1 xs

where the inequality on the left holds for n > 1, and that on the right for
n > 2. Hence for any natural number N > | we have

NMrlgx N1 N dx
f <y =<1+ =.
1 X n=1 N 1 X

Since the integral ﬁ"(dx/x‘) converges for s > 1, the inequality on the right
shows that the series (1.18) converges. Further, for s > 1, we have

ood 0
[[S<w <1+ [,
1 X 1 X
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or
% <{S)<1+ .& .
Multiplying this inequality by s — 1 and letting s tend to 1, we obtain
lim (s — 1){(s) =1, (1.19)

s~+1+0
which indicates the order of growth of the function {(s) as s — 1.

We now turn to the proof of a general theorem of Dirichlet on series.

Let X be a cone in the space R", and let F(x) be a positive real-valued
function on X. (We assume that the origin is not contained in X.) The function
F on X is assumed to satisfy the following conditions:

(1) For any x € X and any real number ¢ > 0, the equation F(éx) = E"F(x)
holds.

(2) The set T, which consists of all points of X for which F(x)< 1, is
bounded and has nonzero n-dimensional volume v = v(T).

The points of the cone at which F(x) =1 form a surface which intersects
each ray of the cone in precisely one point, and which separates from the rest
of the cone a bounded subset with nonzero volume. It is clear that the giving
of such a surface in X is equivalent to the definition of such a function F(x).

Let M be an n-dimensional lattice in R” with the volume of a fundamental
parallelepiped denoted by A. Consider the series

- 1
C(S) =xe‘.!lenX ITX)S

taken over all points x of the lattice M which are contained in the cone X.
This series depends on the cone X, the function F, and the lattice 9.

(s>1), (1.20)

Theorem 3. Under the assumptions given above, the series (1.20) con-
verges for all s > 1 and

lim (s — D{(s) = — (1.21)
s=»1+0
Proof. For any real r > 0 we denote by M, the lattice which is obtained by
contracting MM by a factor of r. The volume of a fundamental parallelepiped
of M is then given by A/r". If N(r) is the number of points of the lattice M,
which are contained in the set 7, then by the definition of volume we have

v = o(T) = lim N(r)— —Alim Y (’) (1.22)

r-+ o r-*oc

Consider the set r7, obtained by expanding T by a factor of r. It is clear that
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N(r) also equals the number of points of the lattice M contained in r7, and
that this is equal to the number of points x € M ~ X, for which F(x) < r".
The points of M ~ X can be arranged in a sequence {x,} so that
0<F(x) < F(x;) < < F(x) <
Set
/F(xg) = ry.
The points x, ..., x, belong to the set .7, so N(r,) = k. But for any ¢ > 0,
the point x, does not belong to the set (r, — ¢)T, so N(r, — &) < k. Thus
N(r,—e) <k < N(r).
so that

N —e)fri—e\" k  N(r

e e

Taking the limit as k — oo, that is, as r, = 00, and considering (1.22), we obtain
lim —— = . (1.23)
- F(x) A

We compare the series {(s) =Y, 1/F(x,)* with the series (1.18). Since
lim,, , [K*/F(x,)’] = (v/A)’ # 0, then along with the series (1.18) the series
(1.20) also converges (if, of course, s > 1). Let ¢ be any positive number. By

(1.23) we have
C BRI
A S ey S \E Tk

for all k greater than some sufficiently large ko . Hence

v S 0 0 0
(Z B 8) Z <&, F(xk)s (' ) & ks
for all s > 1. We multiply this 1nequa11ty by s — 1 and let s ten 1 to 1 from the
right. Since lim,_ (s — 1)Y327"(1/k%) =0, then by (1.19), Limy, (s — 1)
Y, (1/k%) = 1. Since also hmﬁl(s — )Y %" [1/F(x,)’] = 0, we obtain the
inequality

Y _e< lim (s = DEs) < Tim (s — DI6) <

A s3TT0 s+ 140
and since ¢ was arbitrary, this proves Theorem 3.
Remark. There is a certain similarity between (1.21) and (1.22). To make

this similarity more precise, we assume that the volume A of a fundamental
parallelepiped of the lattice M is equal to 1, and we write them in the form
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lim (s — D{(s) = v, (1.21")

s+1+0

lim 1—"N(r) =7, (1.22)
Both limits have the same value, the volume of the set 7. The volume is de-
termined in (1.22’) in the following way. The lattice IR is shrunk by a factor
of r, and the number N(r) of points of M, which are contained in 7 is deter-
mined. Then the number N(r) is multiplied by the volume 1/r" of a fundamen-
tal parallelepiped of the lattice MM, , and finally we pass to the limit as r — c0.
The same idea is involved in (1.21’). Here the sum {(s) plays the role of the
number N(r), and the factor (s — 1) corresponds to the factor 1/r". We take the
limit as s — 1 from the right instead of as r — 0.

Turning to the fundamental domain X of an algebraic number field K,
we see that the function F(x) = |N(x)| satisfies conditions (1) and (2). Hence
we may apply Theorem 3 to the series (1.8), and this means that it converges
for s > 1 and that relation (1.9) holds.

We have now proved all assertions which were used in the first paragraph,
and hence have completed the proof of Theorem 2.

1.5. Euler’s Identity

To use the formula (1.2) to compute the number 4, we must have some other
method for determining the limit limg_, (s — 1){x(s). In some cases this can
be done by using the representation of {(s) as an infinite product, known as
Euler’s identity.

Theorem 4. For s > 1, the function {g(s) can be represented as a conver-
gent infinite product

1
R RO

where p runs through all prime divisors of the field K.

Proof. For every prime divisor p we have

1 1 1
—— — =14 g, + . (1.24)
1 —[1/N(p)] N(py * N(p)®
Let N be any natural number, and py, ..., p, all prime divisors with norms not

exceeding N. Multiplying the absolutely convergent series (1.24) for p =
P1s .-+ » P, We Obtain

1 -1 o 1 , 1
- = = = 50
N(l:[slv( N(P)’) k,,...,zl:c,=o N(p§' - pf) zc-: N(a)
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where in the sum Y ', a runs through all integral divisors of the field K which
are not divisible by a prime divisor with norm exceeding N. Comparing the
_series Y/ with the series {x(s) =  1/N(a)’, we obtain

N(g[@(l—mlﬁ)_l—gx(s) <y

na@>nN N(a)’
since the series Y’ contains all terms corresponding to integral divisors with
norm < N. Since for s > 1 the series (1.1) converges, then

1,
N>~ N(a)

as N — o0, and this proves the theorem.

Theorem 4 will be valuable because, along with Theorem 2, it establishes
a connection between the number # and prime divisors of the field K. As we
remarked in Section 1.1, if we know all prime divisors of the field K, then
using Theorem 4, the left side of (1.2) can be computed, and this allows us to
obtain a formula for 4. On the other hand, since xh 5 0, Theorem 4 gives an
important property of prime divisors in a field K. For example, we shall use
it in Section 3 to obtain the celebrated theorem of Dirichlet on the distribu-
tion of rational prime numbers in arithmetic progressions.

PROBLEMS

1. Use the convergence of the series ;> , (1/#°) (s > 1) to show that when s > 1, the
series
1
2 vy
where p runs through all prime divisors of the field K, also converges.
2. Use Problem 1 to prove the convergence of the product

1

Ui—maen =Y

Deduce that the series

Z 1
a N(a)'
converges.

3. Let ax and b, (kK = 1) be positive real numbers with lim,_, , &c/a; = c. Show that if
the series X%, a" converges for s> 1 and lim,,,,, (s — 1), @ = 4, then the series
2r, by also converges for s> 1 and

lim (s —1) Z b = cA.
P

5+14+0
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4. Let C be any divisor class of the algebraic number field X. Denote by Z(£, C) the
number of integral divisors a of the class C for which MN(a) < . Show that
i Z(, 0) 2°*'n'R
m ==,
tew € mV | D]
5. Let y(a) denote the number of integral divisors of the algebraic number field X
with norm a, Show that

SO _ g G
C(S) o ’
where
n
Cn= .”z wldl (;)

[u(a) is the Mobius function].

2. The Number of Divisor Classes of Cyclotomic Fields

Let m be a natural number, and let { be a primitive mth root of . Since the
mth roots of 1 in the complex plane divide the unit circle into m equal parts,
the field R({) is called the mth cyclotomic (circle-dividing) field. In this section
we shall use Theorems 2 and 4 of Section 1 to find a formula for A, the number
of divisor classes in a cyclotomic field. To do this we must determine the
factorization of rational primes into prime divisors in such fields. We first
determine the degree of the field R({).

2.1. Irreducibility of the Cyclotomic Polynomial

The degree of the field R({) equals the degree of the minimum polynomial
of the number { over the rational field R. In this section we shall show that the
minimum polynomial of { is the polynomial

Qm = (pm(t) = l_l (t - Ck)
(k,m)=1
(the product is taken over the indicated residue classes modulo m), which has
as roots all primitive mth roots of 1. Since the degree of ®,, equals the value of
the Euler function ¢(m), it will follow that (R({) : R) = ¢(m).

The polynomial ®,(¢) is called the mth cyclotomic polynomial.

We first show that the coefficients of ®,(¢) are rational integers. Form =1,
this is clear (®, = ¢ — 1). We proceed by induction on m. Since every mth root
of 1 is a primitive root of some degree d|m, then

m—-1=[],,
d

where d runs through all divisors of the number m. By the induction assump-
tion the polynomial F = [],,.®, has rational integral coefficients and its
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leading coefficient is 1. Hence the coefficients of &, = (" — 1)/F are also
rational integers.

As usual, Z denotes the ring of rational integers, Z, the field of residue
classes modulo the prime number p, and for a € Z we denote the corre-
sponding residue class in Z, by a.1If f(t) is a polynomial with rational integer
coefficients, we denote by f(¢) the polynomial obtained from f by replacing
all coefficients by their residue classes modulo p. It is clear that the mapping
S~ fis a homomorphism of the ring Z[t] onto the ring Z,[¢]. Since (f + g§)* =
f? + g%, and @” = a, then in the ring Z,[t] we have the formula

(J@)r = f (). 2.1)

Set 4 =™ — 1. If p does not divide m, then the polynomial h of Z,[t] is
relatively prime to its derivative and hence has distinct roots. Noting that
®,, divides h, we have the following assertion.

Lemma 1. If the prime number p does not divide m, then the polynomial
® € Z,[t] has no multiple roots.

If f(z) is the minimum polynomial of {, then ®,, = fG, where G and f both
belong to the ring Z[¢]. If p is any prime not dividing m, then {? is a primitive
mth root of 1; that is, ®,,({?) = 0. We shall show that {? is a root of /. Other-
wise we would have G({?) = 0. Then consider the polynomial H(t) = G(t*).
Since H({) = G({*) =0, then H is divisible by f, that is, H = fQ, where
Q € Z[t]. Passing to Z, we obtain H = fQ. But by (2.1), H(t) = G(t*) = (G(1))*,
so that

G’ =J0.
Let  be any irreducible factor of f (in the ring Z,[t]). It follows from the last
equation that G is divisible by . But then it follows from &,, = fG that &,
is divisible by ?, contradicting Lemma 1. Thus {? cannot be a root of G(t),
and hence is a root of f(t).

If {’ is any root of ®,,, then {' = {*, where k is relatively prime to m. Let
k =pp,---p,. We have just shown that {?' is a root of f(r). Analogously,
replacing { by {#*, we find that {*'?* is a root of f(¢). Continuing this process,
we find that {* is a root of f(¢).

We have shown that any root of ®,, is also a root of f, and hence ®,, = /.
We formulate this result in the following theorem.

Theorem 1. For any natural number m, the cyclotomic polynomial
®,, is irreducible over the field of rational numbers.

Corollary. The degree of the mth cyclotomic field is ¢(m) [where @(m) is
Euler’s function].
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2.2. Decomposition of Primes in Cyclotomic Fields
Since the mth cyclotomic field R({) has degree @(m), then the numbers
L,¢g, ..., pemt (2.2)

form a basis for R({) over R.

Lemma 2. If the prime number p does not divide m, then it does not divide
the discriminant D = D(1, {, ..., {?™ ™1} of the basis (2.2).

Proof. The discriminant D equals the discriminant D(®,,) of the cyclotomic
polynomial ®,,. The residue class D(®,,) € Z, of the number D(®,) clearly
coincides with the discriminant D(®,,) of the polynomial ®, € Z,[t). But
®,,(¢) has no multiple roots (Lemma 1), and hence D(()Tm) # 0, which means
that D = D(®,,) is not divisible by p.

Lemma 3. If the algebraic number field K contains a primitive mth root
of 1 and p is any prime divisor of K which is relatively prime to m, then

N(p) = 1 (mod m).

Proof. Let O be the ring of integers of K, p the rational prime which is
divisible by p, and { a primitive mth root of 1 ({ € D). In Section 2.1 we saw
that the polynomial " — 1 has no multiple roots in the extension field O/p
of Z, (since p ¥ m). Hence the residue classes 1, {,..., ™! of O/p are pair-
wise-distinct. These classes form a group under multiplication, a subgroup of
the multiplicative group of the field O/p. But the order of this group is
N(p) — 1, and since the order of a subgroup divides the order of the group,
m divides N(p) — 1. The lemma is proved.

Theorem 2. If p is a prime number not dividing m, let f be the smallest
natural number such that p/ =1 (mod m), and set g = @(m)/f. Then the
prime p has the factorization

P=P "'pg’ (2~3)

in the mth cyclotomic field, where the prime divisors py, ... , p, are distinct
and N(p;) = p’.

Proof. Since (p, m) =1, then by Lemma 2, p does not divide the dis-
criminant of the basis (2.2). It now follows from Theorem 8 of Section 5,
Chapter 3, that p has a decomposition of the type (2.3). We need only deter-
mine the degree of each prime divisor p;, and show that there are ¢(m)/f of
them.

Let p be any of the prime divisors p; and let s be its degree, so that N(p) =
p*. By Lemma p° 3, =1 (mod m), and hence s > f. To prove the opposite
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inequality, we consider the residue class field O/p, where O is the ring of

integers of the field R({). By the corollary of the lemma in Section 7.4 of

Chapter 3 every residue class of O/p contains a representative of the form
o(m)—1

E= Y ai’, 2.4)

=0
where a; are rational integers. We raise (2.4) to the p’th power. Since p/ =1
(mod m), then (* = {. But also (x + B)* = «?’ + p?’(mod p) for any « and
B in O, and thus @” = a (mod p) for any rational integer a. Hence from (2.4)
we obtain the congruence
& = ¢ (mod p).

Thus any residue class & € O/p is a root of the polynomial #** — ¢. But in any
field the number of roots of a polynomial does not exceed its degree, so
P* < p’, and s < f. Hence we have s = f.

We have shown that all prime divisors p in (2.3) have the same degree f,
which is equal to the order of the number p modulo m. Now applying Theorem
8 of Section 5 of Chapter 3, we see that the number of prime divisors p;
equals @(m)/f. Theorem 2 is proved.

2.3. The Expression of h in Terms of L-Series

Let {x(s) be the {-function of the mth cyclotomic field K = R({), {™ = 1.
If we group together those terms in Euler’s identity which involve the prime
divisors p of each rational prime p, we obtain

Cx(s) = H H !

» »ip 1 — [1/N(p)]
(the product being taken over all rational primes p). Only a finite number of
terms correspond to prime divisors p which divide m. We denote the product
of these terms by

(2.5)

6 =11 (i- ﬁ%) 26)

If (p, m) = 1 and p is any prime divisor of p, then N(p) = p/», where f, is the
order of the number p modulo m. Since the number of distinct p dividing p is
¢(m)/f, (Theorem 2), then

—o(m)/fp
) =66) ] (1 1) 2.7

(r,m)=1 p’e

Each factor in this product can be put in more convenient form. We use the

expansion
1 1)fp fp—1 P
=) = 1-—=), 2.8
(Ps kE[(, ( Ps) 28)
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where ¢ = ¢, = cos(2n/f,) + i sin(2n/f,). Then the product

f,,—l( g\ —elm)fp
i A
kl=—[0 PS)

has ¢(m) terms, and the number of terms is independent of p. We shall show
that the products, corresponding to different p, can be associated in such a
fashion that the infinite product (2.7) will factor into ¢(m) products, each
having a simple form. We use here the concept of a character modulo m, and
the results on characters obtained in Section 5 of the Supplement.

Let G,, denote the group of residue classes of rational integers modulo m,
which consists of all classes of numbers relatively prime to m. The class
p € G,, which contains p has order f,. Hence, if y is any character of the group
G, , the value of x(p), which is an f,th root of 1, must coincide with some &*.
Conversely, if we take any root £, then there is one and only one character
x1 of the cyclic subgroup {p} of G,, such that x,(p) = £*. By Theorem 3 of
Section 5 of the Supplement this character can be extended in ¢ (m)/ f, ways
to a character of the group G,,. Thus as y runs through all characters of the
group G,,, x(p) takes on each value & (k = 0,1, ... , f, — 1) precisely o(m)/f,
times. Now we may substitute (2.8) in (2.7) and obtain

() =G(s) [] ﬂﬁ(l _x;;g))‘ (2.9)

(pym)=1

(the second product being over all characters y of the group G).

In the place of characters of the group G,,, we may consider numerical
characters modulo m (see Section 5.3 of the Supplement). If y is a numerical
character modulo m, and p is a prime which divides m, then y(p) = 0, and
hence (2.9) takes the form

9 = GO T] 1;[(1 - ";’j )

(here p runs through all prime numbers and y runs through all numerical
characters modulo m). Reversing the order of multiplication, we arrive at the
formula

{k(s) = G(s) [ Ls, »), (2.10)

where

1
L. ) = 1;[ 1 - [x(p)/PT

Note that all the products converge for s > 1, and hence all the operations
made on infinite products are easily justified.

(2.11)
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Remark. In formula (2.10) the term G(s) can be dropped if we let ¥ run
through all primitive characters modulo d, for all d which divide m; see Prob-
lems 13 to 16.

The term L(s, o) in the product (2.10), which corresponds to the unit
character y,, differs only slightly from the Riemann {-function {(s). Since
Xo(p) = 1 for (p, m) = 1 and yx4(p) = 0 for (p, m) > 1, then

1
Lo = 11 =05

On the other hand, applying Theorem 4 of Section 1 to the rational field R,
we obtain

(s> 1.

1
W=l

Thus

1 -

L, 1) = (1] ) o).

pim 1 — (1/p%)
Substituting this expression in (2.10), we obtain the following formula for
{x(s):

{k(s)=F (S)C(S)IQOL(S, 0 (>0, (2.12)

where [see (2.6)]

1 \7! 1
F(s) = (1——5) . (1 ———S).
:lv_l-'[" N(p) LL P
We now simplify the functions L(s, x). Since the series 3 x(n)/n* converges
absolutely for s > 1, we obtain, as in (1.24), the equation

—

1= p/pr] S\ 7P

By an almost verbatim repetition of the proof of Theorem 4 of Section 1
(using only the multiplicative property of the character y), we easily find that

L(s, x) = 2 @ (s > 1). (2.13)

The series on the right in (2.13) is called the L-series or the Diricklet series
for the numerical character y. Our first goal is now to show that the L-series
of a nonunit character converges not only for s> 1, but even for s> 0
(however, convergence in the interval 0 < s < 1 will be nonabsolute). For this
we prove the following lemma.
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Lemma 4. Let the sequence of complex numbers {g,} (n=1,2,...) be
such that the sums A, =Y ;. a, are bounded; that is, |[4,| < Cfor alln > I.
Then the series

> a
§) = -
S =3, =
converges for all real s > 0. For any ¢ > 0, convergence is uniform in the
interval [, 0c0), so that the sum f(s) is continuous in s.

Proof. Fix ¢ > 0. For any ¢ > 0 we can pick n, so that 1/n° <¢ for all
n>ny. For all such n > n,, we also have l/n* <¢, provided that s> 0.
Let M > N > ny. Then

M M M M-1
a Ak_Ak—l Ak Ak
_s— Z s = Z _;_ Z 5
k=N k k=N k k=N =N-—-1 (k + 1)
An_ M-1 1 1 A
= — N51+ Ak(_s_ s) _h_z’
N K=h K (k+1) M

so that

Mak

_C ., noit 1 c 2c
cy (= - L e
Ll SwTer, (k‘ &+ 1)5) YW

for all s in the interval [s, c0). Lemma 4 is proved.

Corollary. If y is a nonunit character, the series L(s, x) converges for
s > 0 and represents a continuous function on the interval (0, c0).

For if yx # xo, then Y x(k) = 0, where k runs through a complete set of
residues modulo m. Representing the natural number n in the formn = mg + r,
0<r<m,wefind 4, =37_{x(k) =Yr_1x(k), so that [4,] <r < m.

Turning to the function {(s), we multiply (2.12) by s — 1 and take the
limit as s —» | from above. By (1.19) we find that

lim (s — 1){x(s) = F(1) H LA, ), (2.14)

s—1+0 x#xo
where

L(1, ) = 2 %”) 2.15)

Note that since the series (2.15) does not converge absolutely, we must keep
in mind that its terms appear in order of increasing n. Comparing (2.14)
with Theorem 2 of Section 1, we obtain the following formula:

_wJ/IDI NI TT L, ) (2.16)

s+t
- 2T'w'R x#xo
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(here w denotes the number of roots of 1 contained in K). The expression (2.16)
for the number of divisor classes of a cyclotomic field is not definitive, since
it still contains the infinite series L(1, x). The summation of these series will
be carried out in the next section.

2.4. Summation of the Series L(1, x).

Assuming that y is a nonunit character modulo m, we turn to the series
(2.13). Omitting those summands which are zero and noting that if n, = n,
(mod m), then y(n,) = x(n,), we arrive at the following form (valid for
s> 1)

Lep= Y x® Y =

(x,m)=1 n=x(modm) N

The inner series can be written in the form

:[“

where
[1 for n = x (mod m),
cp =

0 for n # x (mod m).

To find a convenient way of writing the coefficients ¢, , we consider the follow-
ing formula:
for r = 0 (mod m),

for r # 0 (mod m),

mot rk _ m
kzoc B 0

where

2 . . 2w
{ =cos — + isin—
m m

is a primitive mth root of 1. We stress that when considering the algebraic
properties of a cyclotomic field, it does not matter which primitive mth root
of 1 is denoted by {, but for analytic computations we must fix a definite
complex root. Hence we have

1 m—1 ; "
Cc. = — x—n
mk;oc
Thus

L5, ) 03 L5 o]
S, = X — 5
* (xm)=1x n=1M k=0 h
m-—1 C—nk
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‘We have already encountered the expression in parentheses in the case
m = p in Section 2 of Chapter 1, where it was called a Gaussian sum. We now
define Gaussian sums for arbitrary m.

Definition. Let { be a fixed primitive mth root of 1, and let ¥ be a numeri-
cal character modulo m. The expression
()= ) (),
xmod m
where x runs through a full (or a reduced) system of residues modulo m,
is called the Gaussian sum corresponding to the character y and the rational
integer a.

The Gaussian sum t,(x) depends not only on x and the residue of a modulo
m, but also on the choice of the root {. In the future we shall always assume
that { is cos(2n/m) + i sin(2n/m). The Gaussian sum with this choice of { is
called normed.

The sum t,(y) will also be denoted by (y).

If x is not the unit character, then

0= ) xx)=0.

(x,m)=1
Hence our expression for L(s, x) can be written in the form

—nk

1 m—1 ©

L(s, x) =— .
(s, 0=— kzZl tk(x)’;1 e
We can apply Lemma 4 to the series Z;":l((, IS * #£1 for kK #£0, so
mr  {~™ = 0). By this lemma our series converges for 0 < s < o0 and repre-
sents a continuous function of s. Hence we may set s = 1 in this last equation

and obtain
-1

1m w
L, p= ;kzlrk(x)z:l

C—nk

n

To find the sum of the inner series, we turn to the power series Y 2.,(z"/n).
It is well known that it converges for |z| < 1 and represents there that branch
of the function —In(l — z), the imaginary part of which (that is, the co-
efficient of i) is contained in the interval (—=/2, n/2). Since this series also
converges at the point z = { ¥ (on the unit circle), then by Abel’s theorem

© C——nk

Y = —1In(1 — {79,

n=1

n

and hence

1 m-1
LA, = -~ k;lfk(x)ln(l - {7, (2.17)
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Hence we have obtained a finite expression for the series L(1, x). Substituting
it in (2.16), we obtain a formula for the number of divisor classes of a cyclo-
tomic field which does not contain any infinite series.

The formula (2.17) can be further investigated and considerably simplified.
In the next section we shall do this, but only for the case when y is a primitive
character. In Section 5 we shall apply these results to the further study of the
formula for 4 in the case of the /th cyclotomic field, with / a prime. In this
case the formula has particularly important applications.

2.5. The Series L(1, y) for Primitive Characters

We shall show that if y is a primitive character modulo m and (a, m) =
r > 1, then

Tﬂ(l) = 0.

Set m = rd. It is clear that {? is a primitive dth root of 1, and therefore
{* = (% provided that z =1 (mod d). We take as z a number for which
(z, m) =1, z=1 (mod d) and x(z) # 1 (the existence of such a d is guaranteed
by Theorem 4 of Section 5 of the Supplement). As x runs through a complete
system of residues modulo m so does zx, so that
(=Y Mz =x2) Y x() = p(2)nly).
xmod m X mod m
Since x(z) # 1, it follows that 7,(y) = 0.
Further, if (@, m) = 1, then

1,(0) = x(a) ™ '1(p).

Indeed, as x runs through a complete system of residues modulo m, so does
ax and thus

w0 =Y  xax)(™=1,(x) =1(y).

xmod m ‘\\

Hence if y is a primitive character we can write (2.17) in the form

L1, )= — 1) Y qn(t = ¢7h. (2.18)

m (x,my=1
We turn to the study of the sum
Sy= 2 xhln(1 =79 (2.19)

(k,m)=1
(k running through a reduced system of residues modulo m). The study of the
sum S, leads to two essentially different types of behavior. To distinguish
these cases we need the following definition.
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Definition. The numerical character y is called even if y(—1) =1 [and
hence y(—x) = y(x) for all integers x], and is called odd if y(—1)= —1
fand x(—x) = —x(x)}

Since

(=D =x((~ D) =x1) =1,

then x(—1) = +1, and thus every character y is either even or odd.
The number 1 — (™% (for 0 < k < m) can be represented as

- . mk n 7k . {n  wk
1—-{(*=2sin—|cos|z —— +tsm———-),
m 2 m 2 m

where —n/2 < n/2 — nk/m < r/2; therefore

In(1 =™ =Injtl =74+ in(l—k).
2 m

Further, since 1 — {™* and 1 — {* are conjugate, then

1k
lnﬂ-—d>=lnu-ﬁ|—f”("”‘)
2 m
(Note that the last two formulas are valid only when & lies between 0 and m.)
Now assume that the character x (and hence also ¥) is even. Interchanging
k and —k in (2.19), we obtain
S, = 7(0)In(1 — %),
(k,m)=1
and with (2.19) this yields
25,= Y, R =™ +1n(1 — )]

(km)=1

]

. . mk
=2 Yy gl - =2 3% gkIn2sin =
m

(k,m)=1

—~
=
3

=

If the character x is odd, then when we interchange k and —k in (2.19)
we obtain

S,=— 3 #on(l —1"),

(k,m)=1
so that
28, = () In(l —¢™% — In(1 — 5]

tk,my=

1 k&
=2 y(kmil= — —1|.
gk,(%=IX() (2 m)
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Since Y m= 1y X(k) = 0 (¥ is not the unit character), then we obtain the follow-
ing result from (2.18).

Theorem 3. Let y be a primitive character with modulus m > 1. If y is
even, then

L, p=-"2 5 sugmit ¢

m (my=1

=-—2 ¥ jkInsin %‘ (2.20)

If x is odd, then

L, =""2 3 ok (221)

{k,m)=1
O<k<m

PROBLEMS

1. If x is a primitive character modulo m, show that
()l =Vm.

2. Let p be an odd prime and set p* = (—1)*~"/?p, Show that the quadratic field
R(\/p—") is contained in the pth cyclotomic field (use Problem 5 of Section 2, Chapter 1,
witha=b=1).

3. Show that every quadratic field is contained in some cyclotomic field.

4. Using the notation of Problem 6 of Section 5 of the Supplement, show that

'Ta(X) = Ta(xl) 'Ta(Xk)Xl (mﬂ) B (] (ﬂ)

1 nmy

[assume that the m;th root of 1 used to define the Gaussian sum 7,(x,) is {™™, where {
is the primitive mth root of 1 which is used to define the sum 7,(x)].

5. Let p be a prime number which does not divide m, and let f be the smallest natural
number such that p¥ =1 (mod m). Show that the polynomial ®,(¢) with coefficients in Z,
(see Section 2.1) factors in Z,[t] as a product of ¢(m)/f irreducible polynomials, each of
degree f. (In view of Theorem 8 of Section 5, Chapter 3, this gives another proof of
Theorem 2.)

6. Let p be an odd prime. By applying Theorem 1 of Section 8, Chapter 3, and

Theorem 2 to the field R(Y —1), show that

(__1) —_ (_ 1)(7—1)12
p

(this is the first supplement to the law of quadratic reciprocity).
7. Let p and g # 2 be distinct primes, let K be the gth cyclotomic field, and let g be the
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number of distinct prime divisors of K which divide p. Using the Euler criterion
(a/q) =a“*~""* (mod gq), show that

-

q

8. Using the same notations, consider the quadratic subfield k = R(Vg*) of the field X,
where g* = (— 1) Y'%g, and set f= (g — 1)/g. If p factors as the product of two prime
divisors in k, show that g is even, and if p remains prime in k, show that fis even. If p # 2,
use Theorem 1 of Section 8, Chapter 3, to show that

£
p

Thus p factors in k if and only if g is even.
[Hint: If ¢ = 1 (mod 4), use Problem 7 and show that from (p/q) = (p*/q) = 1 it follows
that (g/p) = (g*/p) = 1.]

9. Use the preceding two problems to prove the law of quadratic reciprocity:

(1_)) g) — (_1)[(?-1)/2][(4- 1)/2]'
q; \P

10. Let g be a prime which factors as the product of two distinct prime divisors in the
field R(+/2), and let ¢ =1 (mod 4). Show that g =1 (mod 8), [Consider the factorization

of ¢ in the field R(V2, V —1), the 8th cyclotomic field.)

11. Using the notations of Problems 7 and 8, show that the prime p = 2 factors into
two distinct prime divisors in the field & if and only if g is even.

12. Comparing the result of the preceding problem with Theorem 1 of Section 8,
Chapter 3, show that (2/q) = +1 if and only if g* =1 (mod 8); that is, show that

(2) =(— 1)(42— 1)/8
q .

(this is the second supplement to the law of quadratic reciprocity).
13. Show that the prime number p has the factorization
p=v, g=@@)=p"'0~1), N =p,
in the pth cyclotomic field.

14. Let m=p*'m’, (p, m)=1, and let f be the smallest natural number for which
p’ =1 (mod m’). Show that the prime number p has the factorization

p=(py 1), Np)=p’,

in the mth cyclotomic field, where e = @(p*), fg = @(m’) (@ is Euler’s function).
15. If G(s) is the function determined by (2.6), show that

GeH=1 1 (—’ﬁf’—))_,

pimyxymodm’ P

where p runs through all prime divisors of m, and y (for given p) runs through all numerical
characters modulo m’, where m = p*m’, p Y m’.
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16. Using Problem 9 of Section § of the Supplement, formula (2.10), and the preceding
problem, show that the {-function {x(s) of the mth cyclotomic field has the representation

)= H 11 L, y,

d)m y modd
xprim

where d runs through all divisors of m (including 1 and m), and y (for given 4) runs through
all primitive characters modulo 4. Deduce that

lim s— Dix(s)= I II LQ, ).
FI R A

3. Dirichlet’s Theorem on Prime Numbers in Arithmetic
Progressions

In Section 2 we used Theorems 2 and 4 of Section 1 to compute the number
of divisor classes of a cyclotomic field. In this section we shall show that
from the existence of formula (1.2), with a nonzero constant on the right, we
can deduce important results on prime divisors of first degree and prime
numbers in arithmetic progressions.

3.1. Prime Divisors of First Degree

Theorem 1. Any algebraic number field K has an infinite number of
prime divisors of first degree.
Proof. By Theorem 4 of Section | the function {(s) has the expansion
1 -1
{x(s) = (1 - S) . (3.1
=1~ 75 .

Since convergent infinite products are nonzero, {(s) # 0 for s > 1. Taking
logarithms in (3.1), we obtain

e 1
]l’lCK(S) = Z ;1 WS . (32)

We isolate the following summands:

1
P(s)=) ——, 33
2 N 33)
the summation being taken over all prime divisors p, of K of first degree. If
we denote the sum of all remaining terms by G(s), then (3.2) can be put in the
form

Ingk(s) = P(s) + G(s). 3.4)
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Let f denote the degree of the prime divisor p, so that N(p) =p’. If f > 2,

then
o 1 1 1 2

< = - < = .
2 N Pl prm p¥—1 " p*

If f=1, then
® & 1 2

=— < —
mzz mN(p)ms mzz P s(p _ 1) p2s
For each rational prime p there are at most n = (K : R) prime divisors of the
field X which divide p, so we have the following estimate for G(s):

2n |
G(s) < ; ez <2n ,,.Z 5
1t follows that the function G(s) is bounded as s — 1 + 0. But since xh # 0
in (1.2), both {x(s) and In {x(s) must go to infinity as s — 1 + 0. We have seen
that G(s) is bounded, and hence by (3.4) the sum (3.3) must contain an infinite
number of terms. Theorem 1 is proved.
We note that this proof uses the idea of one of the proofs of the existence
of infinitely many prime numbers (see Problem 1).

3.2. Dirichlet’s Theorem

Theorem 2 (Dirichlet’'s Theorem). Every residue class modulo m
which consists of numbers relatively prime to m contains an infinite number of
prime numbers.

Proof. The proof of Section 3.1 was based on the nonvanishing of the limit
(1.2). Analogously, the proof of Dirichlet’s theorem uses the fact that L(1, x)
# 0 for any nonunit character y modulo m, which is an immediate conse-

quence of (2.16).
Consider the representation of L(s, x) as an infinite product,

L(s, 1) = H(l - x;{’))_l. (3.5)

p

From the convergence of this infinite product it follows that L(s, x) is nonzero
for all s > 1. (Here y may be any numerical character modulo m, including the
unit character y,.) Therefore we can consider the complex function In L(s, ¥)
on the interval (1, c0). We choose a fixed branch of the logarithm function as
follows. In each factor of the infinite product (3.5) we choose the value of the

logarithm so that
~1In (1 —"—@) ; Ky (3.6)
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Summing the series (3.6) over all p, we obtain

1P\ _ ¢+ x(p)
Z_ln(l_ ps)—z ps +R(S’X)

I4 I4

where

(1 () 1 )

R(s, 1) = =
(S, X) Z 2 p25 +3 p3s

4
(it is clear that all series involved are absolutely convergent for s > 1). The
value for In L(s, x) is now chosen so that

InL(s, x) =) x;I:) + R(s, x) 3.7

4

for all s > 1. Note that the values of In L(s, xo) will be real for the unit
character y, .
We estimate the function R(s, x):
1 i 1

©
IR(S,X)I<§";2'pﬁ<§p(p_1)<,.; e

Thus |R(s, x)| < 1 for all s > 1.

Along with the numerical character y we consider the corresponding
character of the group G,, (which consists of all residue classes modulo m
which consist of numbers relatively prime to m), which we also denote by y.
Let C run through all classes of the group G,,. Since x(p) = x(C) for p € C,
then

5 xp) _ T 4(O)Y 1S
C peC D

r
[recall that x(p) = 0 if p divides m]. Setting
1
f(sa C) = R
peC P

we can put (3.7) in the form

In L(s, y) = ; x(C)f(s, C) + R(s, ). (3.8)

Since there are ¢(m) characters modulo m, we may regard the equations of the
form (3.8) as a system of ¢(m) linear equations in the ¢(m) variables f(x, C)
[the constant terms are In L(s, x) — R(s, x)]. To use this system to find
f(s, AX(4 € G,,), multiply (3.8) by x(4™"), and then sum over all characters y.
We obtain

2 147 Hln L(s, y) = ZC: 2 (CATHf(s, C) + R4(5), (3.9)



Sec. 3} DIRICHLET'S THEOREM ON PRIME NUMBERS 341

where we have the estimate |R(s)| =|Y, x(4~ " )R(s, )| < @(m) for all s > 1.
By formula (5.6) of the Supplement the sum ), x(CA™") equals ¢(m) for
C = A4 and equals zero for C # A. Therefore (3.9) takes the form

In L(s, xo) + ; (A~ YHIn L(s, x) = o(m)f(s, A) + R(s). (3.10)
X¥F Xo
This gives the value of f(s, A) in terms of the system (3.8).

Now we let s approach 1 from the right. If y # x,, then L(s, x) — L(1, x),
with L(1, x) # 0, as was noted at the beginning of the proof. Hence the sum
on the left in (3.10) (over all nonunit characters) has a finite limit. Taking this
sum to the right side and combining it with R ,(s), we obtain

In L(s, o) = @(m)f (s, A) + Ty(s), (3.11)

where T, remains bounded as s —» 1 + 0.

Now we assume that the number of primes in the class A is finite. Then the
function f(s, A) =3 ,., 1/p* will have a finite limit as s > 1, and therefore
the right side of (3.11) will remain bounded as s — 1 + 0. But this is impossible,
since

lim L(s, xo) = 0,

s~+1+4+0
since

L(s, x0) = ((5) ‘l:ll(l - #)

This contradiction proves Theorem 2.
Dirichlet’s theorem can be strengthened as follows. Set
1
f&=YfsH= Y =.
4 (pm)=1p

Dividing (3.11) by ¢(m) and summing over all 4 € G,,, we obtain

In L(s, xo) = f(s) + T(s), (3.12)

where T(s) is bounded as s — 1 + 0. Comparing the right sides of (3.11) and
(3.12) and taking the limit as s — 1 + 0, we arrive at the formula

1 1 1
im (51/ 5 L)L
s=1+0\ped P/ (pm)=1 P o(m)
This formula says that, in a certain sense, the prime numbers which are

relatively prime to m are uniformly distributed in the residue classes of
G

me



342 ANALYTIC METHODS [Chap. 5

PROBLEMS

1. Show that the difference between the functions In {(s) and g(s) = Z,, 1/p* (p running
through all rational primes) remains bounded as s - 1 + 0.

2. Let P(s) be the function determined by (3.3). Show that the difference

P(s)— In

s—1

remains bounded as s—> 1+ 0.

3. The rational integer a is called an nth power residue modulo the prime p, if the con-
gruence x" =a (mod p) is solvable. For any a and any n, show that there are infinitely
many p such that a is an nth power residue.

4. Let the integers a,, ..., a, be such that a,** --- a,*" is a square if and only if all x, are
even. For any choice of ¢y, ..., &, (¢, = £ 1), show that there exist infinitely many primes p
(not dividing ay, ..., a,) for which

() e )

Hint: Consider the sum

4. The Number of Divisor Classes of Quadratic Fields

4.1. A Formula for the Number of Divisor Classes

Let K = R(+/d) be a quadratic field (4 a square-free rational integer). By
Theorem 2 of Section 8, Chapter 3, a rational prime p has the following
factorization into prime divisors in K:

(D) p=pp, p#v, NP)=Np)=p, ifx(p=1,
(2 p=v, N(p) = p?, ify(p)=—1;
(3) p=7p? N(p) = p, if x(p) = 0;

where y is the character of the quadratic field K (see the definition of Section
8.2 of Chapter 3). Hence in the product

gx(s)=H(l - )

» Ny
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the factor corresponding to p will be one of the following:
1! !
A
p p
1 -1 1 -1 1 -1
o (3 6
p 14 p

3) l—l.

S

P

In all three cases this can be written

-5 02

Since [],(1 — 1/p*)~" = {(s) (Theorem 4 of Section 1), then {x(s) has the
representation

N -1
o =1 -42) @1

The infinite product on the right is the L-series L(s, x) for the character y (with
modulus |D|, where D is the discriminant of the field K), and since this
character is not the unit character, then L(s, ) is a continuous function on
the interval 0 < s < oo (corollary of Lemma 4 of Section 2). Multiplying (4.1)
by s — 1 and taking the limit as s » 1 + 0, we obtain [by (1.19)]
lim (s — 1)¢x(s) = L(1, x).
s—=1+0

Now we use Theorem 2 of Section 1. For real quadratic fields s = 2, t = 0,
m=2,and R=In¢ (¢ > 1 a fundamental unit of the field); for imaginary
quadratic fields s =0, r = 1, and R = 1, and hence

D
—~—L(1, ) ford >0,
2lneg
h= .
D
Myl 1,y ford<o.
2n

[By Section 7.3 of Chapter 2 the number m of roots of 1 contained in K equals
4 for K = R(+/—1), equals 6 for K = R( J =3), and equals 2 for all other
imaginary quadratic fields.]

In the next section we shall show that the character of a quadratic field with
discriminant D is a primitive character modulo | D| (see the definition of Sec-
tion 5.3 of the Supplement), and also that it is even for real fields and odd for
imaginary fields. Therefore we can use formulas (2.20) and (2.21) to find
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L(1, x). To find a closed formula for / we must still find the value of the normed
Gaussian sum 1t(x) = 7,(x). In Section 4.3 we shall see that the sum ()
equals /D for real fields and equals i /[ D| for imaginary fields. Noting also
that for real fields (D — x) = x(x), we can formulate the following theorem
[to simplify the formulas we eliminate the fields R(\/—1) and R(\/—3),
which have discriminants —4 and — 3, and for which m equals 4 and 6; for
these fields # = 1].

Theorem 1. The number of divisor classes of a real quadratic field with
discriminant D is given by
1 X
h = - 1 in — 3
s w;ﬂ x(x) In sin = (4.2)
O<x<D/2
where ¢ > | is a fundamental unit of the field; for an imaginary quadratic
field with discriminant D < —4 we have the formula

1

h=—— % x(x)x. 4.3)
ID| (x.0y=1
O<x<|D|

In both cases y denotes the character of the given field, defined in Section
8.2 of Chapter 3 [formula (8.5)].

We note some number-theoretic consequences of Theorem 1. We begin
with formula (4.2). Consider the number

b
n:[Jsin%/[Jsin%’, (4.4)

where a and b run through all natural numbers in (0, D/2) which are relatively
prime to D and satisfy y(a) = +1, y(b) = — 1. Then formula (4.2) can be
written in the form &" = 5. Hence 7 is a unit of the quadratic field in question,
with 7 > 1 (since ¢ > 1). Hence we have the following theorem.

Theorem 2. Let K be a real quadratic field with discriminant D and
character . The number 5 given by (4.4) is a unit in K, and is related to the
fundamental unit ¢ > 1 by

e =n,
where h is the number of divisor classes of K.

In spite of its simple formulation, there has never been an elementary
proof of Theorem 2. Further, it has not been proved by purely arithmetic
methods even that n > 1. From the inequality n > 1 we can deduce some
consequences on the distribution of quadratic residues modulo a prime
p =1 (mod 4).
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The quadratic field R(+/p) has discriminant p and its character x(x) coin-
cides with the Legendre symbol (x/p). Therefore we have the inequality

. mb . Tma
sin— > [ [ sin—,
[lsin=>>Ilsin=2

where a and b run through the quadratic residues and nonresidues, respec-
tively, in the interval (0, p/2). Since the function sin x is monotone on the in-
terval (0, n/2), it follows from this inequality that the values of the nb/p are
“on the average” greater than the values ma/p, that is, that the quadratic
residues modulo p “cluster” at the beginning of the interval (0, p/2), and
the nonresidues at the end [when p = | (mod 4) precisely half of the numbers
in the interval (0, p/2) are quadratic residues].

For prime numbers p = 3 (mod 4) we can obtain information on the distri-
bution of residues and nonresidues by considering formula (4.3) for the field
R(y/=P)-

First, we put formula (4.3)in simpler form in the general case. We denote
| D| by m.

First, assume that m is even. It is easily verified (Problem 9) that in this case
x(x +mf2) = —x(x) and formula (4.3) gives us

m=— Y yxx- ¥ x(’”%)(wr%)

O<x<m/2 O0<x<m/2

= Y xox+ Y x(x)(x+'§)

O0<x<m/2 0<x<m/2
so that

Note that since m is even, (2) = 0.

Now let m be odd. Since the character y of an imaginary quadratic field
is odd, that is, y(—1) = —1 (we have already noted that this will be proved
in the following section in Theorem 6), then it follows from (4.3) that

m=— Y y(x)x— Y xm—x)(m-x)

O<x<m/2 0<x<m/2

= -2 Z x(x)x + m Z x(x).

0<x<m/2 O0<x<m/2

(4.5)
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On the other hand,
hm=— ¥ yx)x— Y gm—x)(m—x)

O0<x<m 0<x<m
X even xeven

= — Yo ox2xx+m Y, x(2%),

O<x<m/2 O<x<m/2

hmy(2)= —4 Z x(X)x + m Z y(x). (4.6)

O0<x<m/2 0<x<m/2

so that

Equating the sums ) y(x)x in (4.5) and (4.6), we obtain the equation
h2—x@)= 3 x(x.

O<x<m/2

Since this equation also holds for even m [when 2 | m, then ¥(2) = 0], we have
the following theorem.

Theorem 3. For an imaginary quadratic field with discriminant D < — 4
and character y we have the following formula:

hee Y . 4.7)

2 — 4(2) o<x<Ip|s2
x,Dy=1

We now apply Theorem 3 to the case of the field R(y/—p), where p is a
prime of the form 4n + 3. Since —p =1 (mod 4), in this case D = —p and
the value of the character y(x) coincides with that of the Legendre symbol
(x/p). The number of summands in Y o ., _,/2(x/p)is odd [(p — 1)/2 = 2n + 1],
and hence the sum itself is odd. Further, y(2) = +1 if p =7 (mod 8), and
1(2) = —1if p = 3 (mod 8), so that we deduce from Theorem 3 the following
result.

Theorem 4. Let p be a prime number of the form 4n + 3 and let ¥ and N
denote the number of quadratic residues and nonresidues in the interval
(0, p/2). The number of divisor classes of the field R(y/—p) is odd and is
given by

h=V —-N for p = 7 (mod 8),

1
h=§(V—N) for p = 3 (mod 8).

It clearly follows from Theorem 4 that ¥ > N. Thus if p is a prime of the
form 4n + 3, then the quadratic residues outnumber the nonresidues on the
interval (0, p/2) [by a number divisible by 3 if p = 3 (mod 8) and p # 3].

This assertion, despite its simplicity, lies among some very deep results of
number theory. It was obtained by us as a simple corollary of the fact that the
number A, and hence the expression on the right in (4.7) is positive. However,
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the sign of this expression depends on knowledge of the value of the Gaussian
sum 7,(x), and we shall see in Section 4.3 that the determination of the sign
7,(x) is a very difficult problem.

If D =1 (mod 8), the formula for the number 4 for an imaginary quadratic
field can be proved by purely arithmetic methods. This was done by B. A.
Venkov. His proof was based on the theory of the representation of binary
forms by sums of squares of linear forms and on some delicate properties of
continued fractions [B. A. Venkov, On the number of classes of binary quad-
ratic forms with negative determinant. I and II, Izv. dkad. Nauk SSSR
Ser. VII, No. 4-5, 375-392 (1928); No. 6-7, 455480 (1928)]. In the case
D =1 (mod 8), as in the case of real quadratic fields, a purely arithmetic
derivation of the formula for 4 has never been obtained. Also there is no
known elementary proof of the fact that for a prime p of the form 8x + 7 the
interval (0, p/2) contains more quadratic residues than nonresidues.

Remark. Let p be a prime of the form 8n + 7. It can be shown by elemen-
tary means (Problem 7) that the interval (0, p/2) contains just as many odd
quadratic residues as odd nonresidues. Hence the number # for the field

R(\/=p), p =17 (mod 8), is also given by
h=V* — N*,

where V'* and N* denote the number of quadratic residues and nonresidues
among the even integers in the interval (0, p/2).

4.2. The Character of a Quadratic Field

We shall prove those assertions about the character of a quadratic field
which were used in Section 4.1.

Theorem 5. The character y of a quadratic field with discriminant D is
primitive (with modulus | DJ).

Proof. By Theorem 4 of Section 5 of the Supplement it suffices to show that
for any prime number p which divides D there is an x such that (x, D) =1,
x = 1(mod | D|/p) and x(x) = —1.First, consider the case p # 2. Choose any
quadratic nonresidue s modulo p and pick x as a solution to the system of
congruences

x = s (mod p),

2|D|
x=1 (mod —1).
p
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Using formula (8.5) of Chapter 3 it is easily checked that y(x) = (x/p) =

(slp) = -1
Now let p = 2. If d = 3 (mod 4), D = 44, then, solving the congruences

x = 3 (mod 4),
x =1 (mod 2|d|),

we shall also have y(x) = (—=1)*" VD2 = —1,. If d = 2d’, D = 4d = 8d’, then
for the number x, given by

x =5 (mod 8),
x =1 (mod 4|d’)),
we shall have y(x) = (= 1)@~ V/8 = 1,
We have shown that y is primitive.
Theorem 6. The characters of real quadratic fields are even and the char-

acters of imaginary quadratic fields are odd.

Proof. Let x be the character of the quadratic field R(+/d). We compute
x(—1), using (8.5) of Chapter 3. If d =1 (mod 4), then

(=1 = (__1 = (= 1)MI=1/2 = (Z pyl@= D721+ 1ddl = 1/2]
|d|

If d = 3 (mod 4), then
W=1)= - (I_Tll) = — (= DMI=1/2 ()@= 121+ 1dl = 121,
Finally, if d = 2d’, then
(= 1)=(=1e&-n2 (ﬁ) = (= D@ -1/’ - D21

But if @ is odd, then

a—1 Jaj-1 [a—1=0(mod?2) fora >0,
2 T2 T

-1 fora < 0.

Hence in all cases
1 ford > 0,

- =
d [—1 ford < 0.

Theorem 6 is proved.



Sec. 4] DIVISOR CLASSES OF QUADRATIC FIELDS 348

4.3. Gaussian Sums for Quadratic Characters

In deriving formulas for the number of divisor classes of a quadratic field,
we used a formula for the value of the normed Gaussian sum 1(x). Recall that
the Gaussian sum 71,(x) of the character y modulo m is called normed if
{ =cos2n/m + isin2n/m is taken as the primitive mth root of 1 in its
definition (see Section 2.4). We now consider the computation of the value
of 1(x).

By Theorem 5 the character y of the quadratic field R(+/d) with discriminant
D is a primitive numerical character modulo | D|. Also it satisfies the condition
¥% = xo, Where y, is the unit character. This simply means that the character
x takes the values +1 (and, of course, zero).

Definition. A nonunit numerical character y is called quadratic if y*> = y,.

We shall show that every primitive quadratic character is the character of a
quadratic field. By Problem 8, primitive quadratic characters occur only for
moduli of the form r and 4r (one character for each) and 8r (two characters),
where r is an odd square-free natural number. The set of these moduli hence
coincides with the set of numbers of the form | D|, where D is the discriminant
of a quadratic field. We note that when |D| = 8r there are two quadratic
fields; R( \/ 2r) and R( \/ 'E), which have distinct characters, since one is
even and the other odd. Hence each primitive quadratic character is the
character of a quadratic field.

The value of the Gaussian sum for primitive quadratic characters is deter-
mined by the following theorem.

Theorem 7. Let y be a primitive quadratic character modulo m. Then the
normed Gaussian sum 1,(y) = 7(y) satisfies

Jm o ifx(=1)=1,
(0 = _
i/m (= 1)=-1
Proof. We shall give the full proof of Theorem 7 only in the case of odd
prime modulus p, since this case contains most of the essential difficulties.
The transition to'the general case is relatively easy. At the end of the proof we
sketch this transition.

Hence let p be an odd prime and set { = cos 2n/p + isin 2n/p. Since the
nonunit quadratic character y modulo p coincides with the Legendre symbol
(x/p) (Problem 4 of Section 2 of Chapter 1), then the normed Gaussian sum
7(x) is given by

? X X
() =3, (p)C

X
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(the prime on the summation sign indicates that x runs through a reduced

residue system modulo p). We find the complex conjugate 7(x). Since £ = {~*,
then

— x —x -1
W)= 1=K =) "1—|=|— (). 4.8
D=Ll =T(F)e - (G0 e
On the other hand, by Theorem 4 of Section 2 of Chapter 1,

(0(x) = p- (4.9)
From (4.8) and (4.9) it follows that

0 = (=)o = (= o013,
and hence
i\/i if p= 1 (mod 4),
+i/p  if p=3(mod4).
To complete the proof of Theorem 7 (for m = p) we need only determine the

signs of /p and i/ p. But it is precisely here that the principal difficulty of

the proof lies.
We represent the sum 1(y) in another form. Let @ run through all quadratic
residues modulo p, and let b run through all nonresidues. Then

=2 —Xb:C"-

(p) = [ (4.10)

But
1+ZC"+ZC”=0,
a b

so that
) =1+23 "

If x takes the values 0, 1, ..., p — 1, then, modulo p, x? takes the value O once
and each quadratic residue twice. Hence we can write 1(x) in the form

=% = @i
Now consider the matrix e
1 1 1 1
I ¢ g2 wegpd
A=ocxycp-1= |1 ¢ D

1 Cp—l CZ(P‘” C(p—l)z
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By (4.11) the Gaussian sum 7(x) coincides with the trace of the matrix A.
Hence if we denote the characteristic roots of 4 by 4;, ..., 4,, then we will
have

() =4 + -+ 4,. 4.12)

The computation of 7(y) hence reduces to the finding of the characteristic
roots of the matrix 4.

We square the matrix 4. Since
Pil oo = pix e _ p for x + y = 0 (mod p),
=0 1=0 0 for x + y # 0 (mod p),

then

O p - 0
As is well known, the characteristic roots of the matrix 42 coincide with the
squares

Y ,,lpz “4.13)

of the characteristic roots of A. But the characteristic polynomial of 42 is
easily computed. It equals

(t — )P+t 4 p)P= 12,
Hence the sequence (4.13) contains (p + 1)/2 numbers equal to p, and

(p — 1)/2 numbers equal to —p. Hence each 4, is one of the numbers + \/p,
+i \/ p, and if g, b, ¢, and d denote the multiplicities of the characteristic roots

Jp, = b, i/p, and —i/p, then

p+1 p—1
b:—— d=——. .
a+ > c+ 5 4.149)

The sum (4.12) can be represented in the form
1(x) = (@ — b + (c — d)i) \/p. (4.15)
Comparing with (4.10), we find that
a—-b==x1, c=d for p = 1 (mod 4),

(4.16)
a=b, c—d=+1 for p = 3 (mod 4).
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To determine the multiplicities a, b, ¢, and d, we must find another relation
among them. We compute the determinant of the matrix 4. Since det(42) =
pp(_ l)p(p—l)/Z, then

det A = + PP~ 12pPi2, 417

The determinant det A4 is a Vandermonde determinant, Introducing the nota-
tion n = cos nt/p + i sin n/p, we have

det A = H ¢ -= Hnr+s(nr—s _ r'—(r—s))

p—12r>s20 r>s
... (r—sn
=[]n* T[] (2! sin )
r>s r>s p

(r—sm

— ip(p—l)/Zzp(p—l)/Z H sin
r>s 14
since

oo g R0 Lt -]

is divisible by 2p. We compare this expression for det 4 with (4.17). Since
sin(r — s)n/p > 0 for 0 < 5s < r € p — 1, we must have the plus sign in (4.17).
Thus

det A = ip(p—l)/pr/Z_

On the other hand, we have
det A= H'lk (_ l)b c( l)dpp/Z = i2b+c—dpp/2.

This yields the congruence

-1
2b+c—dEpP—2-—(m0d4),

from which, in view of (4.14) and (4.16), we deduce

p+1
—b=—=-2p)
a—> >
p+1 p-—1 _
= T — T =1 ([l[Od 4) for P= 1 (mod 4),
p—1
c—d 5 +

=_p%+_71_=1(mod4) for p = 3 (mod 4).
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These congruences show that the differences @ — b and ¢ — 4 in (4.16) both
equal +1, and by (4.10) this finally yields

W Jp  for p=1(mod 4),
T =
* i\/}; for p = 3 (mod 4).

This completes the proof of Theorem 7 for the case of a prime modulus
m=p.

To prove the theorem in the general case, use the result of Problem 4 of
Section 2. If x is a primitive quadratic character modulo m, this problem
shows that the normed Gaussian sum 1(x) can easily be expressed in terms of
the normed Gaussian sums for the nonunit modulo 4, the two primitive
characters modulo 8, and quadratic characters of odd primes p. Since we
know all these Gaussian sums (see Problems 10 and 11 for the moduli 4 and
8), then the formula of Problem 4 of Section 2 allows us to give an explicit
expression for 7(x). Suppose, for example, that we have the character

2(x) = (— l)t(xZ—l)/alﬂ(x—l)/ZJ(f
-

), (x,2r)=1

modulo m = 8r, where r is an odd square-free natural number. If r = p, --- p,,
then y has the representation

(0= (e e X) ()
D1 Ds
Let « be the number of primes among p,, ..., p, which are congruent to 3
modulo 4. Then

. /a - 2 2 Dk

T(X) =2i/2i%/r(—~1 [(r2=1)/8]+[(r—1)/2] (_) (_)
V2i%/r(=1) ILG

= ia+1 m(_1)[(r-1)/2]+C'1 - \/’_r;ia+1 +2a+a(a—-1)

e VD=
i/m (1) =(=1F"= -1
The Gaussian sums for the other primitive quadratic characters are treated
analogously.
This proof of Theorem 7 (for prime moduli) is due to Shur. Another proof,
found by Kronecker, is given in Problems 13 to 16.

PROBLEMS

1. Knowing that (I +4/5)/2 =2 cos /5 is a fundamental unit for the field R(V'5),
use formula (4.2) to compute the number 4 for this field,
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2. Compute the number # for the fields R(n/—5) and R(\/—23).

3. Show that a quadratic field with discriminant D is a subfield of the mth cyclotomic
field, where m = | D|.

4. Let p be an odd prime, and let { be a primitive pth root of 1. Show that the cyclo-
tomic field R({) contains one and only one quadratic subfield. This subfield is R(\/p) if
p=1 (mod 4), and R(/=p) if p=3 (mod 4). (To solve this and succeeding problems,
use the fundamental theorem of Galois theory.)

5. Let p =1 (mod 4) be a prime, and define the number
. mh . ma
sin — sin —
l:[ p / l:[ p’

where a and b run through the quadratic residues and nonresidues modulo p in the interval
(0, p/2). Without using Theorem 2 show that this number is a unit of the quadratic field
R(7/p), and that its norm is —1.

6. Using the second assertion of Problem 5, show that the number of divisor classes
in the field R(7/p), p a prime, p =1 (mod 4), is odd and that the norm of a fundamental
unit of this field is —1.

7. Let p be a prime number of the form 8n + 7. Show that precisely half of the even
numbers in the interval (0, p/2) are quadratic residues modulo p.

8. If there is a primitive quadratic character with modulus m, show that m is of the
form r, 4r, or 8r, where r is an odd square-free natural number. Further, show that every
primitive quadratic character is of the form

x(x) = (f) , (=1 for the modulus r,
r
X)) = (=1&-v2 (fr) ,(x,2r) =1 for the modulus 4r,

X(X) = (—1)(:2—1)/3(;),

(x,2r)=1 for the modulus 8r.
X(0) = (— 1yie? - 18ere- 1)/:1({

r

9. If x is a primitive quadratic character with even modulus m (m = 4r or 8r with odd r),
show that

x(x + '—:-)= — x(x).

10. Let x be the character modulo 4 given by x(x) = (—1)* 172 (x, 2) = 1. Show that
the normed Gaussian sum 7,(x) equals 2.

11. Consider the primitive characters
x'x) = (—1=2-1/8 and xX'(x) = (— )2~ 181+ - 15/2] (2 } x) modulo 8.

Verify that the normed Gaussian sums are 7,(x") = 24/ 2_, and 7,(x") = 2V 2.
12. Give the proof of Theorem 7 for arbitrary moduli,
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13. Let p be an odd prime and set { = cos 27r/p + i sin 27/p. Let
(p—-1)/2

8= II &—-¢.

x=1
Show that
82 — (_ 1)(p —1)/2p.

Thus 82 coincides with the square 72 of the Gaussian sum 7 = > 421 (x/p)(*.
14. Using the same notations, show that

(_—2)8— {\/;) for p =1 (mod 4),
p ip for p =3 (mod 4).
Further, setting A = 1 — {, show that the congruence
—_2 S = p;l_ ' pUZSVEH (mod /\(p+1)/z)'
P 2 )¢

holds in the order Z[{].
15. Verify the congruence

pg (f) F=r= (”_—_1) | Xo-012 (mod A@+112),
x=1 \p 2

in the ring Z[{].

Hint: Decompose the sum D721 x? =12 (1 — A)* into powers of A, using the fact that
P-1 0 (mod p) forO<m<p—1,
x" =
E —1 (mod p) form=p—1.

16. Use the two preceding problems to show that

{\/1; for p =1 (mod 4),
r={ 7
i/p for p =3 (mod 4).

5. The Number of Divisor Classes of Prime Cyclotomic Fields

5.1. The Decomposition of the Number h into Two Factors

The formulas (2.16) and (2.17) for the number of divisor classes of the mth
cyclotomic field do not contain any infinite series or products. But they are
somewhat unsatisfactory in that they express the number A of classes, which
is of course a natural number, in terms of irrational and complex numbers.
In this section we shall put these formulas for 4 in a more complete form,
limiting ourselves to the case of prime cyclotomic fields.

Hence let /=2m + 1 be a prime number, and let K = K({) be the /th
cyclotomic field. For ease of computation we shall assume that K is a subfield
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of the field of complex numbers, and that { = cos 2=/ + i sin 2x// (the value
of { needs to be precisely fixed for analytic computations). We compute for K
the terms in the product in (2.16). Since the degree (K : R)is I — 1(corollary of
Theorem 1 of Section 2) and all isomorphisms of K into the complex field are
complex (they are simply automorphisms of K), then s =0 and t = (I — 1)/2
= m. By Lemma 3 of Section 1, Chapter 3, the number w, the number of
roots in 1 in K, equals 2/. The norm of the principal divisor [ = (1 — {) equals
N = N(1 — {) = I[see (1.5) of Chapter 3], so that the divisor I is prime, and
by Lemma 1 of Section 1, Chapter 3, the number / has the factorization
[ =1'"1, Hence the factor F(s) in (2.12) equals

F(s) = (1 ‘ﬁl)s)_l(l —11) =1.

We turn to the computation of the discriminant of the field X.

Theorem 1. The numbers
Lg, .02
form a fundamental basis for the /th cyclotomic field K = R(().

Proof. If s# 0 (mod /) the characteristic polynomial of the number {* is
X4 X244+ XM+ 1, so that
-1 if s # 0 (mod 1),

Spl= (5.1
P I-1 ifs=0(modl. )

Let

a=ao+ay{+ - +a-0'"? (a;e R)
be any integer of the field K. We must show that all the coefficients a; are
rational integers. Since a{ ~* — af is an integer, then the trace

1-2 1-2
Sp(a{™* —al)=1la,— Y a;+ Y a;=la,
i=0 i=0

is a rational integer (0 < k </ —2). We set la, = b,, 1 — { = 1 and consider
the number

lo=bo+bl+ - +b_{'"" =cotcih+ - +c472,

where the b, and ¢, are all rational integers. We shall show that all the co-
efficients ¢, are divisible by /. Suppose this has been established for ¢y, ..., ¢, _;
(0 < k <! -2). Consider the last equation as a congruence modulo A**1!
(in the ring of integers of the field K). Since / =0 (mod A**!) (Lemma 1 of
Section 1, Chapter 3), then this congruence yields

cAf =0 (mod 1*+1),
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so that ¢, is divisible by A and hence also divisible by / (Lemma 2 of Section 1,
Chapter 3). But then all the coefficients b, must also be divisible by /, so that
all g, are integers. Theorem 1 is proved.

Corollary. The discriminant of the /th cyclotomic field (/ > 2) equals
(_1)(1—1)/211—2.

For by formula (5.1) the discriminant of K equals the determinant

det(Sp ')y <, jei-1 =
1 l=1 e —1

(instead of the basis of Theorem 1, we take here the basis {, {2, ..., ('),
Formula (2.16) for the case of the /th cyclotomic field can now be written

K

ITLa,p, (5.2)

Am—1_mp m
2 Rz*zo

where R is the regulator of the field K, m = (/ — 1)/2 and y runs through all
numerical characters modulo /, except the unit character y, .

Since all terms in the formula (5.2) outside the product sign are real and
positive, the formula will remain valid if each term L(l, y) is replaced by
|L(L, 0l

For a prime modulus all nonunit numerical characters are primitive.
Therefore we can apply Theorem 3 of Section 2. To do this we must sep-
arate the even and the odd characters. Let g be a fixed primitive root modulo /
(that is, g generates the cyclic group G, of residue classes modulo /), and let 8
be a primitive (/ — 1)th root of 1. The group of numerical characters modulo /
is cyclic and has order / — 1. If we denote by yx that character modulo / for
which

x(g) =

then its powers y, x2, ..., x' ' = xo will comprise the entire group of charac-

ters modulo /. Since
XS( _ ]) — X(g(l~l)/2)s - 0—(!—1)/2: — ( _ l)s

then each character of the form y**~! will be odd, and each of the form y2*
will be even.
Using formula (2.20) and Theorem 4 of Section 2 of Chapter 1, we obtain
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for the even characters y** [! < k < (I — 3)/2]:

I (xz")l

IL(1, )| = Z PghHn|1 - (7|

-2
Y 0% Injt — 7.

,-_

\/1
Setting r = [(/ — 1)/2] + s, where 0 < s < [(/ — 1)/2] = m, and using the re-
lation
1= =107 (5.3)
we obtain
OHm*) n|L — 7777 = 0% In|1 — {7,
and thus

2 02 1n(1 — ]| .

r=0

2
IL(1, 2?91 = N

We can apply formula (2.21) to the odd character ¥**~! in an analogous

manner. Let g, denote the smallest positive residue of g°* modulo /. Then
-1 -2 2k 1-2 3
T Or= TN g = T 0 = FOMY,
where F denotes the polynomial
-2
F(X)= Y g.X°
5=0

Hence

IL(L, 7Y = */ LFO* ).

Substituting these values for |L(1, xz")|, l<k<m—1, and (L, ¥**" V),
1 € k € m, in (5.2), we obtain

h = hoh*, (5.9

where
l_:[ mi 0% In|1 - {7, (5.5)
h* = :, ——— |F(0)F(0°) --- F(6'"?)|. (5.6)

(2n

In the following sections we shall show that both A, and A* are natural
numbers. Hence formula (5.4) gives us a representation of the number s as a
product of two natural numbers.
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Remark 1. Sometimes 4* is denoted by 4,, and A, by h,, and they are
called the first and second factors of h.

Remark 2. The factor h, equals the number of divisor classes of the
subfield R({ + ') of degree (/ — 1)/2, which consists of all real numbers
of the field R({) (see Problems 1 to 4).

5.2. The Factor hy
To shorten our formulas, we set
a,=In|l1 = {7 (r <0).

From (5.3) we see that g, ,, = a,. This means that the value of a4, depends
only the residue of r modulo m = (I — 1)/2. If we set

m—1/m—1
A= 1_[ ( Z 92’"0,),
k=1\r=0
then (5.5) can be written in the form
zm— 1

ho= R

We shall show that the product

|Al. (5.7

(@+a+-+a,)A

equals, up to sign, the determinant

o a, - Qm—

a, a, ' Qg
A = det(a;s Jo<i, jem—1 =

Apn-1 do = Qm-2

Consider the cyclic group G or order m, generated by 62, which is a primi-
tive mth root of 1. For 0 < k < m — 1, set x(0*) = 0**. The function yx,
is clearly a character of the group G. We also define a function f on G, by
setting f(6*") = a,. By Problem 13 of Section 5 of the Supplement, our
product takes the form

T1 (g oa) = T (T, o)

E=0\r=0 k=0\r=0
= det(f(6*¢~9)) = det(a;- Do<s, jem—1-

Since the matrices (a;-;) and (a;, ;) differ only in the order of the columns,
we have shown the desired result.
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The sum a4 + a; + -+ + a,_, is nonzero, since

m—1 -

[Ta - =i (5.8)
r=0

by (1.5) of Chapter 3 and (5.3). Hence we can divide the determinant A by
(5.8) to obtain a new expression for A. If we add every column in A to some
fixed column, we obtain a column in which every entry is equal to (5.8).
Hence, up to sign, 4 equals the determinant A’, obtained from A by replacing
every element in one column by 1. If we now subtract the first row from all
other rows, we see that |4| equals the absolute value of any minor of order
m — 1 of the matrix

a+a;+-+a, =In

(ai+j —aj) (5.9)

Consider the number

n ...
n=— (e =cos +isin 5

which is a primitive root of degree 2/ of 1. Since n% = {, then
1= ont=n"*  _ sin(kn/l)
¢ T 5=t SinGn
For k # 0 (mod /) the number on the left is a unit of the field X (see the proof
of Lemma | of Section 1, Chapter 3); hence the numbers
0. = sin(kn/l)
‘7 sin(w/l)
are also units of the field X for all k # 0 (mod /). These units clearly are real
and positive.
There are m = (I — 1)/2 pairs of conjugate isomorphism of the field X into

the field of complex numbers. Since the numbers ¢, {9, ..., ("' are all non-
conjugate, then the isomorphisms

aj:C—vC“j (j=0,1,....,.m~-1)

(5.10)

are pairwise-nonconjugate (each ¢, is conjugate to the isomorphism { - { ¢
=),
Let 7 denote the absolute value of the smallest residue of g" in absolute
value, modulo /. Then
17
1=
Applying the automorphism ¢; to this identity, we obtain

1 _ Cgr+j -
T = + (o7 "o (0;),

I 18_

=x7 ;e
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and after taking the logarithm of the absolute value we find that
a,.; —a;=In|o(6;)|. (5.11)

We shall show that when r takes the values 1, ..., m — 1, then F runs
through 2, ..., m. For if g'= +g' (mod /), with 1 <i<j<m—1, then
g = +1 (mod l) and 0<j— i< (/- 3)/2, which is possible only for
j—i= 0 Hence the values of F are pairwise-distinct, and since they satisfy

2<r = (I — 1)/2 and there are m — 1 of them, then each of the numbers
2,...,mis some F.
It follows from (5.11) that the matrix (5.9) differs from the matrix
(In|o; (Bk)|)2<k5m ) (5.12)
0<j<m~

only in the order of the rows, and hence the absolute value |4| equals the
absolute value of any (m — 1)th minor of the matrix (5.12).

We now turn to a system of fundamental units of the field K. By Lemma 4
of Section 1, Chapter 3, any unit of the field K is the product of a power of {
with a real unit. Hence the fundamental units &, ..., &,_, can be chosen real
and positive. Then any positive real unit can be represented in the form
g€ - 5™ ! with the ¢; rational integers. In this case the functions /(a),
defined in Section 3.3 of Chapter 2, have the form /(x) =In o j(a)lz =2In
lo (@), 0 <j < m— 1. With the fundamental units ¢, ... , &,_, we form the
matrix

(ln|aj(8i)|)1<i<m—1~ (5.13)

o<jsm—-1

Since the matrix (4.6) of Chapter 2 is obtained from (5.13) by multiplying all
rows by 2, it follows from the definition of the regulator R that the absolute
value of any (m — 1)th minor of the matrix (5.13) equals R/2™~ !,

The units 6, of the form (5.10) for k = 2, ..., m are real and positive, and
they can be expressed as

0, = ""1_:[:8,.% (=2, .., m),
with ¢, rational integers. Since
Injo (60| = ?g:c,“. Injo (&)
the matrix (5.12) is the product of the matrix (c;;) and the matrix (5.13). It

follows that each (rm — 1)th minor of the matrix (5.12) equals the product of
det(c,;) with the corresponding minor of the matrix (5.13), and this means that

R
|A] = Idet(ckj)l 2,,._—T .
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Comparing with (5.7) we obtain
ho = Idet(ij)i.

Since all ¢,; are rational integers and h, # 0, we have shown that A is a natural
number. Further, by Lemma 1 of Section 6 of Chapter 2, we have the follow-
ing result.

Theorem 2. The factor h, in the number of divisor classes of the Ith
cyclotomic field equals the index (E : E,) of the group E,, generated by the

units
__ sin(kn/l) B -1
~ sin(n/l) (k‘z"”’ 2 )

of the field K, in the group E of all positive real units of the field K.
In view of Remark 2 at the end of Section 5.1 it is interesting to compare this
result with Theorem 2 of Section 4.

5.3. The Factor h*

We shall show that the number A*, defined by (5.6), also is a natural
number.
The product
B = F(O)F(0*) --- F(6'"?%)

is an integer of the algebraic number field R(6), where 0 is a primitive (/ — 1)th
root of 1. Since the complex conjugate of 8% is 8'~!~* then Bis left fixed when
0 is replaced by #, and hence is a real number. Finally, we note that |B| =
(h/he)2D™ ! is a rational number [see (5.4) and (5.6)]. It follows from these
three facts that B is a rational integer. We now show that B is divisible by
2m~1and /™1 (here I #2).

As in Section 5.1 we let g, denote the least positive residue of g* modulo /,
where g is a fixed primitive root modulo /. Since

Gmrs + s =97+ ¢° = g%(¢" " P"? + 1) =0 (mod I),
then
gm+s + gs = l

It follows that g,,.,, and g, differ by an even number. We shall now consider
congruences modulo 2 in the ring of integers of the algebraic number field
R(6). Since 0™ = —1, we have for odd k,
m—1
F(0) = Y (9.6 + gms 8"")
s=0

m—1 m-1
= zo(gs - gm+s)0ks = Z Bks (mOd 2)’
s= s=0
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so that
F(0" (1 - 6 =0 (mod 2).

This shows that the product
Bl —0)(1—-6%-.(1—6'"2

is divisible by 2™, On the other hand, since # and 6? are primitive roots of
degrees / — 1 and (/ — 1)/2, then
-2 l —_ 1 m—1
I-1=J[01-69 ——=T][0-0%),
k=1 2 s=1
so that
A-01-0%-(1-6"3=2.

This shows that B is divisible by 2"~ *,

To show that B is divisible by /™!, we first find the decomposition of the
number / into prime divisors in the field R(8). Since / is relatively prime to
/—1and /=1 (mod /- 1), then by Theorem 2 of Section 2, the number /
is the product of ¢(/ — 1) distinct prime divisors, where the norm of each
prime divisor equals /. Let q be one of these prime divisors. The numbers
0, 1, 0, ...,0'"? are pairwise-noncongruent modulo q (see the proof of
Lemma 3 of Section 2), so they form a complete set of residues modulo q.
Since

gt = kﬁz(l — 0*) = 0(mod ) (5.14)

then q must divide one of the differences 1 — 0%g. If 1 — 6*%g =0 (mod q)
and 1 — 6°g = 0 (mod q), then ¢ = 6 (mod q), and this means that 6 = 6.
Thus q divides one and only one of the differences 1 — 6%g in (5.14). We shall
show that k is relatively prime to / — 1. If (k, / — 1) = d, then by raising the
congruence 1 = #*g (mod q) to the power (I — 1)/d, we see that g!~ /4 — 1
is divisible by q, and hence also divisible by /. But this is possible only if
d=1.

Since there are @(/ — 1) prime divisors q of /, and @(/ — 1) numbers 1 — 6%
in (5.14) with (k, [ — 1) = 1, each of the numbers 1 — g*g is divisible by one
and only one q. Denoting this prime divisor of / by g, , we have

1 — 6%g = 0 (mod q,), (5.15)

and we note that if s is not relatively prime to/ — 1, then 1 — (*g is not divisible
by any q,. Hence / can be represented as

I= ].—[ Qi »
kI-1)=1

where k runs through a reduced system of residues modulo / — 1.



364 ANALYTIC METHODS [Chap. b

We shall now show that B is divisible by /™. In the ring of integers of the
field R(6), we have the congruence

FOY1 = g0) = T (00)(1 - g0%)

=1—(g6"1=1-g""'=0(mod ),

so F(8Y(1 — gB%) is divisible by /. From the above results we see that F(6%)
is divisible by /if (k, [ — 1) > 1, and by lq,~ " if (k, [ — 1) = L If (k, I — 1) > 1,
let g, denote the unit divisor. Then F(6*) is divisible by lq,~* for all k. Hence
the product B = F(O)F(0%) --- F(0'~?) is divisible by
lm l_[ qk—1=lm l_[ qk—l=lm—l,
2

k=1,3,.., - (kl-1)=1

which completes the proof that h* is an integer.

5.4. The Relative Primality of h* and |

In Section 7.3 of Chapter 3 we saw how important it is to have criteria for
determining whether 4 and / are relatively prime, that is, for determining
whether the prime / is regular. Since h = hoh™, then / will be a regular
prime if and only if neither of the factors h,, A* is divisible by [ In
this section we shall find a condition which is necessary and sufficient for /
not to divide A*. In the next section we shall show that if 7 does not divide A*,
then it also does not divide Aq , so our condition will turn out to be a criterion
for the regularity of /.

Preserving the notations of Section 5.3, consider the expression

k
% = ]l FOa, (5.16)
l k=1,3.0-2 |
[here we identify the principal divisor («) with the number «]. In view of (5.6)
the number A* is divisible by / if and only if the rational integer (5.16) is
divisible by all prime divisors q,, with (s,/ — 1) = 1. In particular, the
number (5.16) will be divisible by q'_, = q_,, so that at least one of the inte-
gral divisors F(8%)ql™" (k =1,3,...,1 - 2) is divisible by q_,. For this to
happen it is necessary and sufficient that the divisor F(6%)q, be divisible by
q2 ;. We shall show that this cannot happen for k =/—2 = —1 (mod / — 1).
By (5.15), 67 'g = 1 (mod q-,), so that

F(6~hH = liz(()_lg)’ =l-1=—1(mod q_,),
r=0

that is, F(0~"') is not divisible by q_;, and this means that F(0~!)q_, is not
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divisible by q% ;. Thus for A* to be divisible by /it is necessary and sufficient
that F(0%) be divisible by q%; for some k = 1,3, ...,/ —4.

Up to this time we have not imposed any restrictions on the choice of the
primitive root ¢ modulo /. Now we assume that g satisfies the congruence

g'"' =1 (mod %

(if g does not satisfy this congruence, replace g by ¢ + x/ with suitable x).
Since the congruence (5.14) will now hold modulo /2, then 1 — @*g will be
divisible by q,2 for any k relatively prime to / — 1. In particular,

6 =g (mod ¢2)).

With this choice of g the condition for g% ; to divide F(6*) can easily be found.

Indeed, since
!

1-2 -2
F(6%) = _Zogﬁ‘" = Z‘ogSQSk (mod q2,),
then the number F(6%) is divisible by q2, if and only if
-2
Y. g:¢” =0 (mod /?). (5.17)
s=0

In order to put (5.17) in more convenient form, consider the congruence.

g, =g° + la, (mod I?) 0<s<gil-2), (5.18)
where a; is an integer. If we raise both sides of (5.18) to the power k + 1
(k=1,3,...,1—4), then we find that

gsk+1 = gs(k+1) + (k + l)gs"las

= g*** Y 4 (k + 1)g*(g, — ¢°) (mod /?);
that is,
g5t = (k + g g™ — kg"** P (mod 1?). (5.19)
Summing (5.19) for s =0, 1, ...,/ — 2 and noting that g**! # 1 (mod /) for
k+1<!—3and ¢~ ' =1 (mod /?), we obtain

-2 gl DeHD
Ygtrv=2 "~ =0(mod %)
s=0 g -1

and hence
1-2 1-2
Z gs“" =k+1) Z gsg“" (mod 12).
s=0 s=0

But k + 1 # 0 (mod /), and therefore (5.17) is equivalent to
1-2

-1
Seer= T gt = Lt =0 (mod ),

Hence we have proved the following theorem.
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Theorem 3. In order that the number A* not be divisible by /, it is neces-
sary and sufficient that none of the numbers

-1
Se= Y n  (k=2,4,..,1-3) (5.20)
n=1

be divisible by /2.

Note that each of the numbers S, [k # 0 (mod [/ — 1)] is divisible by /
[see (8.10)].

We reformulate Theorem 3 in terms of Bernoulli numbers (Bernoulli
numbers will be defined and studied in Section 8). Since the numbers 2, 4, ...,
! — 3 are not divisible by / — 1, then by the theorem of von Staudt (Theo-
rem 4 of Section 8) the Bernoulli numbers B,, B,, ..., B,_; are l-integers
(I does not appear in their denominators). Further, we have the congruence

S,=BJ(mod?) (k=2,4,..,1-3) (5.21)

[in the ring of l-integral numbers; see (8.11)]. Hence the following theorem is
valid.

Theorem 4. In order that A* not be divisible by /, it is necessary and suffi-
cient that the numerators of the Bernoulli numbers B,, B,, ..., B,_; not be
divisible by /.

For example, since the numerators of the numbers B,, B,, By, By, Byo,
B,,, By, are not divisible by 17, then / = 17 is regular.

Remark. To determine whether A* and [/ are relatively prime, it is not
necessary to find the precise value of the Bernoulli numbers. It suffices to
consider the recurrence relation (8.2) as a congruence modulo / and to use
these congruences to compute the sequence B,, B,, ..., B,_;. The number
h* will be relatively prime to /if and only if none of these numbers is divisible
by /.

PROBLEMS

1. Let K, be the subfield of the /th cyclotomic field R({) which consists of all real
numbers in R({). Show that K, = R({ + { ') and is of degree (! — 1)/2. Further, show
that the field K, has discriminant /=372 and that its regulator R, is related to the regulator
R of the field R({) by R=2V-312R,,

2. Let p be a prime different from /, and let f be the smallest natural number for which
p’ =1 (mod /). Show that the number p factors in the field K, as the product of (/ — 1)/2f
prime divisors of degree f when fis odd, and as the product of (/ — 1)/f prime divisors of
degree f/2 when fis even.
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3. Show that the {-function {xq(s) of the field K, satisfies
lim (s —Dlky® = T1 L1, ),
s—+1+

x*xqg
x(~-1)=1
where x runs through all even numerical characters modulo /, except the unit character yo .

4. Show that the real subfield R({ + {~!) of the /th cyclotomic field has A, divisor
classes, where A, is the factor of the number of divisor classes of the field R({).

5. Show that 2* is given by

*= Wm_l det(gm 14y — gl+!)0§l, JjEm-1D

where g, is the smallest positive residue of the number g* modulo / = 2m + 1 (g is a primitive
root modulo /).

6. Compute the factor A* for I=17.
7. Show that the prime number 37 is irregular.

6. A Criterion for Regularity

Our goal in this section is to show that when the factor A* of the number
of divisor classes of the /th cyclotomic field is not divisible by /, then the
factor A, is also not divisible by /, and hence the prime / is regular. En route
we shall also show that when / is regular, every unit of the field K = R({)
which is congruent modulo / to a rational integer is an /th power. On this
assertion, known as Kummer’s lemma, is based the proof of the second case
of Fermat’s theorem for regular primes. Both the regularity criterion and
Kummer’s lemma will be found as simple corollaries of the following result.
If / k h* and K| is the [-adic completion of the field K = R({) where | = (1 — {),
then the numbers log 6, ! [k = 2, 3, ..., (I — 1)/2] form a basis for the set of
all ““real”” I-adic integers with zero trace [the units 6, are defined by (5.10)].

6.1. The Field of 1-adic Numbers

We know that the cyclotomic field K = R({), { = cos 2n/l -+ i sin 2n/l,
! > 3 a prime, has degree / — 1 and that the number / has the factorization
=11 where | = (1 = {) is a prime divisor of first degree.

We consider the [-adic completion K| of the field K. The elements of this
completion are called [-adic numbers. The complete field K| contains a sub-
field which is canonically isomorphic to the field R, of /-adic numbers (this
subfield coincides with the completion of the field R in K,). Using this canon-
ical isomorphism we shall assume that R, < K.

Since [ is the only prime divisor which divides /, then by Theorem 1 of
Section 2, Chapter 4, the degree of the extension K,;/R, equals/ — 1 = (K : R).
Hence [see (2.6) of Chapter 4] for any « € K we have

NK/R(O‘) = NKI/R,(O‘)- 6.1)
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Lemma 1. There is an element A in the ring of [-adic integers such that:
() A"ty i=0,
Q) A={—1 (mod A?).

The element A is uniquely determined by (1) and (2).
In view of (1.5) of Chapter 3 we have
l
T =(1+DA+C+P) A ++-+072.
We now consider congruences modulo the prime element 1 — { of the field
K [recall that v(1 —{)=1]. Since {=1 (mod1—-¢) and (- )! +1 =
0 (mod /) (Wilson’s theorem), then )

We shall show that the [-adic unit
_ —1
=ty

which is congruent to 1 modulo 1 — £, can be represented in the form « = 9~ 1.
Consider the polynomial F(X) = X'"! — a. Since F(1) =0 (mod 1 —{) and
F'(1) #0 (mod 1 — (), then there is a unit y in K for which F(y) = 0 (see
Section 1.2 of Chapter 4). Hence « = y' ™, aswasclaimed. Setting A = ({ — 1)y,
we obtain a prime element A with the desired properties. Any other number
Ay, satisfying the first condition of the lemma, has the form A8, where 0 is a
(! = Dthroot of 1. From A0 = A (mod A?) it follows that # = 1 (mod A). If the
root 0 were different from 1, then / — 1 would be divisible by A, which is
impossible. Hence 0 = 1 and 1; = A. Lemma 1 is proved.

From now on A will denote that prime element of the field K which is
uniquely determined by the conditions of Lemma 1.

For each k which is relatively prime to / the correspondence { — {* deter-
mines an automorphism o, of the extension K/R. If ¢ is any of these automor-
phisms, then the function v'(a) = v,(6(2)), a € K, is a valuation of the field X,
and is an extension of the /-adic valuation v, of the field R. But there is only
one extension of v, to the field K, namely v, . Hence v’ = v, and this means that
v{o(a)) = v(o) for all « € K. 1t follows from this that the automorphism ¢
takes any Cauchy sequence of elements of K (relative to the metric which
corresponds to the prime divisor [) to another Cauchy sequence in K. This
allows us to extend the automorphism ¢ = o, to the field K;. Namely, if
¢ = lim,_, .o, (o, € K), then we can set

o(§) = lima(x,)

n— oo

o
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[it is easily verified that ¢(£) does not depend on the choice of the sequence
{a,}, and also that the mapping & — 6(&) is an automorphism of the extension
Ki/R,].

Since the extension K|/R, has degree of inertia 1 and ramification index
! — 1, then by Theorem 4 of Section 1, Chapter 4, all [-adic integers can be
uniquely represented in the form

ao+all+ tee +a,_2},l_2 (6.2)

where the a; are /-adic integers.

The subfield of real numbers of the field K consists of all « € K which are
left fixed by the automorphism o_, :{ —{"'. We shall determine which
l-adic numbers are invariant under the automorphism ¢_, . Since 4! "! = —|,
then also (o_,(1))'"! = —/, and this means that ¢_,(1) = A6, where 6 is an
(I — Dth root of 1. By Problem 4 of Section 3, Chapter 1, the root 8 is con-
tained in R,, so that

0-1*(A) = 0-1(0-1() = 0_4(62) = b5 _,(2) = 674,

and since also o_,;%(A) = A, then § = +1. If 6 = 1, then any [-adic number
which can be represented in the form (6.2) with l-adic coefficients a;, would be

left fixed by the automorphism o _,, and this is not the case. Hence 8 = —1,
and o_,(1) = — 1. Hence when the automorphism o _; acts on the field K,
the [-adic numbers which are left fixed are those of the form
ol I-1
Z bl}. ! (bl € Rl’ m = _2‘) (6.3)
i=0

The set of all such numbers is a subfield of K| of degree m = (I — 1)/2 over
R, . Tt will be convenient to call them * real” l-adic numbers.

We compute the trace of the [-adic number (6.2) (relative to the extension
K,/R). For any i=1, ...,/ -2, the matrix of the linear transformation
& — A (& € K,) with respect to the basis 1, 4, ..., A' "2 will have zeros on the
main diagonal (since 2'~! = —/), and therefore Spg, 5, (4) =0 (fori=1, ...,
1 —-2). It follows that the trace of the number (6.2) equals ay(/ — 1). The
[-adic numbers with trace (over R)) equal to zero are thus characterized by
having the coefficient a, equal to zero in (6.2).

We shall be interested in the set M of all ““real” IT-adic integers with zero
trace. It is clear from the above remarks that 9 coincides with the set of all
linear combinations of the form

m—1
Y b (6.4)
i=1

where the b; are /-adic integers.
We consider the functions log ¢ and exp a over the field K|, which are
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defined by power series (see Section 5.2 of Chapter 4). Since the ramification
index e of the extension K/R, equals / — 1, then the number [e¢/(/ — 1)] + 1
equals 2, and this means that the series exp a converges for all integers
a € K, divisible by A%2. As we know, the function log ¢ is defined for all
principal units of the field K| .

If ¢ is a principal unit of the field K, that is, ¢ = 1 (mod 1), then for any
automorphism ¢, we again have g,(¢) =1 (mod 1), and this means that
log o,(¢) is defined. But then (Corollary 1 of Theorem 11, Section 2 of the
Supplement),

1—-1

SPkyr, log e = z o(loge) = ; log (ay(¢))

k=1

= log (l:[ O'k(e)) = IOE(NK,/R.G)-

Now assume that ¢ is a unit of the field K. It is clear that ¢ is also a unit in
the field K, but log ¢ is not necessarily defined, since ¢ will not, in general,
be a principal unit. But for some rational integer a which is not divisible by /
we shall have ¢ = a (mod A). From a'~! = | (mod ) it follows that ¢'~! =
(mod A); that is, ¢'~* is a principal unit in K;. The logarithm log ¢! ! is thus
defined, and by formula (6.1)

SPK;/R,(IOE el = IOE(NK,/R,GI_I) = IOE(NK/RGI_I) = 0;

that is, the [-adic integer log ¢' ~! has zero trace. If ¢ is a real unit of the field
K, then it is clear that log ¢' ~! will be * real.”

Hence for any real unit ¢ of the field K the [-adic number log &' ™! belongs
to the set 9 ; that is, it can be represented in the form (6.4). In particular, this
holds for the units 0, (k =2,3, ..., m = (I — 1)/2) defined by (5.10). Thus
we have

m-—1
log 0/~ = Y bA*  (2<k<m) (6.5)
i=1

where the coefficients b,; are /-adic integers.

Our problem is now to show that when / does not divide 4* (the factor of
the number of divisor classes cf the field K), then the [-adic numbers log 6, ~*
form a basis for M over the ring of /-adic integers in the sense that any £ € M
has a unique tepresentation as a linear combination of the log 6,'~! with
l-adic integer coefficients. To do this it clearly suffices to show that det(b,,)
is an /-adic unit, that is, that det(b,;) # 0 (mod /).

6.2. Some Congruences

The series for exp x in the field K; converges only for those integers x
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which are divisible by A2, We also consider the polynomial
x  x2 -1
=1 — A
E(x)=1+— +2'+ (1_1)!,

obtained from the series for exp x by deleting all terms with degrees >/. Since
the coefficients 1/k! for k < / — 1 are /-adic integers, then E(x) will be a prin-
cipal unit of the field X, for all integral x = 0 (mod 1).

We know that the formal product of the series exp x and exp y equals the
series exp(x + y). It follows that

E(x)E(y) = E(x + y) + F(x, ), (6.6)
where F(x, y) is a polynomial with /-adic integral coefficients in which all

terms have degree >/.

Lemma 2. The congruence
E(A)' =1 (mod 22'™Y)

holds in the ring of I-adic integers.

Set

E(x) =1 + xg(x),
where g(x) =1+ x/2! + .- + x'"2/(I = 1)! is a polynomial with l-adic
integer coefficients. Then
E(x) =1+ C'xg(x) + -« + /7 (xg(x))' "1 + x'g(x)!
=1+ Ih(x) + x'g(x),

where A(x) is also polynomial with -adic integer coefficients. On the other
hand, by (6.6) we see that

E(x)' = E(Ix) + x'M(x),
and this means that

2 -1
e )_ Ix (lx) (Ix)

I
Dt T oy Y E, 6.7)

where H(x) = M(x) — g(x)'. Looking at the coefficients for the various
powers of x in this equation, we see that all coefficients of H(x) are /-adic
integers divisible by /. Dividing (6.7) by /, we arrive at

2 -2 1-1

Ix .
h(X)—X+—2!—+"'+m+XG(x)a
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where G(x) has [-adic integer coefficients. If we set x = A, we obtain the
equation

h(2) = A (mod Y,
and this means that

Ih(2) = 14 (mod 2271, (6.8)
Further, since g(1) = 1 (mod 1), then g()! = 1 (mod A}) so that
290 = A} (mod 221, (6.9)

From (6.8) and (6.9) we obtain
EQ=1+1hQA)+1gA) =1+ 14+ =1(mod A*7Y)

(since /A + A! = 0), which proves the lemma.

Lemma 3. The following congruence holds for any natural number &:

E(k2) = {* (mod Y.

It follows from formula (5.6) that
E(k2) = E(A)* (mod A,

so it suffices to prove the lemma for the case k = 1.
By the definition of the prime element 4 we have { = 1 + A (mod A?). On
the other hand, E(1) = 1 + 4 (mod 4?), and therefore

{7 E() =1 (mod A2).
Set
(TUE(D) =1+ A%y,

where y is an l-adic integer. Raising this equation to the /th power and using
Lemma 2, we obtain the congruence

y(llz + l(l; 1) pA 4t y’_ll”) = 0 (mod A2~ 1),

The expression in parentheses is divisible by A'*! (and by no higher power
of %), so y =0 (mod 4'~2), and

{7YE(A) =1 (mod A,
which proves the lemma.
We also consider the polynomial

2

L(1+x)=x—%+... (=12

-

x-

) (6.9

—
—

obtained from the series log(l + x) by deleting terms of degree > 1.
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Lemma 4. If the [-adic integer « is divisible by A%, then
L(1 + o) = log(1l + &) (mod A').

Indeed, for n > / we have

n 1
v,(“—) >—vmzn—(l—)or>
n In!

(I=Dn/Inl lnn)
Zltn=D+—m (1—1 n—1

(see Section 5.2 of Chapter 4).

Lemma 5. Let ¢, and ¢, be principal [-adic units. Then
L(e,e,) = L(g;) + L(e,) (mod AY).

Since the series log(l + x + y + xy) equals the sum of the series log(1 + x)
and log(1 + y), then

Ll +x+y+xy)=L1 + x)+ LA + y) + G(x, p),

where the polynomial G(x, y) contains only terms of degree >1 and has
l-adic integer coefficients. The assertion of Lemma 5 follows from the fact
that G(x, y) = 0 (mod A') if x and y are divisible by A.

Lemma 6. The congruence
L() = A (mod 1)
holds in the ring of I-adic integers.

To prove this we use the formal equality log exp x = x. From this it follows
easily that

L{(E(x)) = x + H(x),

where H(x) is a polynomial in which all terms have degree > /, and which has
l-adic integer coefficients, Setting x = A and using Lemma 3 for k=1 we
obtain the desired congruence.

Remark. Let U be the multiplicative group of cosets modulo A! in the
group of all principal I-adic units, and let X be the additive group of cosets
modulo A' in the group of all /-adic integers which are divisible by A. It is
now easily seen that the mapping & — L(¢) induces an isomorphism of the
group U onto the group X. The inverse isomorphism X — U is induced by the
mapping a — E(a) [x = 0 (mod 2)].
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6.3. A Basis for the Real - Adic Integers in the Case (h*,) =1

We return to the question which was raised at the end of Section 6.1.
To determine whether the determinant det(b,;) is divisible by /, it is only
necessary to consider the coefficients b,; modulo /. It is clear that two [-adic
integers of the form (6.2) are congruent modulo / if and only if their corre-
sponding coefficients in the expansion (6.2) are congruent modulo / (in the ring
of l-adic integers). Hence to find the &,; modulo / we may replace the numbers
log 6,'~! by any I-adic integers congruent to them modulo / (that is, modulo
A’ - 1).

We use the notations of Section 5.2. The principal unit 6,'~! is real, hence
congruent to 1 modulo A2, so that, by Lemma 4,

log 0,)~! = L(8,'~ ") (mod 1Y). (6.10)

We now compute L(,'!). Since

then
Ol =+ + -+ (=D~
But { = 1 (mod 1), so that
L+ + -+ 1=k (mod 2),

and hence
M+ ¢+ + Y =Kk (mod 1.

Since k' = k (mod A'™"), then also
A+{+ -+ Y =k(mod A1),

Thus

[—1

-1

0. 1=0,"k(—1) =k (=)' (mod A1),

or

o ==\ .
6, 15——( ) (k= DI+ /2] (qod AI-1,
A kA

By Lemma 5 we have

(-1 k-1 I+ 1
L)Y = L(QT-) _ L(‘T) +(k — 1)_;_ L(Z) (mod A1),

But by Lemma 3,

{“—1=E(k/1)—1

al—1
¥ g (med 470,
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and, therefore, using Lemma 6, we obtain

EA) -1 E(kA) —1 k
Lo/ H= L(___(A) ) A L(—( ”), ) + 4 (mod A'"1).
A kA 2
We now show that
Ex)—1y x m! By x* -y
L( " )_5_k21(2k)!2k+x R(x), 6.11)

where the polynomial R(x) has /-adic integer coefficients and B,, are the
Bernoulli numbers (see Section 8). We use the identity

x * B, ,
= — x".
e -1 n=0 n!
Since B, = —1, and all remaining Bernoulli numbers with odd index equal
zero, then our identity can be written in the form
e” 1 1 g

After integrating we obtain

e —1 2 By 2k
=1 (2k)! 2k

(the constant term of the series equals zero, since for x = 0 the function on the

left vanishes). The formula (6.11) now follows from (6.12). If we substitute
the value k4 for x in (6.11), we find that

In (6.12)

x-—
x 2

E(kA) — 1\ kA m=1 B, k*)\* _
[|l— ] - —= e dAI 1 ,
( k2 ) 5 = 2 Gz M4
and hence
m-1p .(1 _ kZi)AZi
-1 2i -1 ,
= - d . .
L6, ) .'; 20120 {mod A'77) (6.12")
This shows that the coefficients b,; in (6.5) satisfy
By(1 — k%) I-1 .
b,“.zz(ziT(modl) (2<k<m=T, 1<1<m—1).
But then det(b,,) is congruent modulo / to the determinant
221 2% =1 .. 2731
mot(_qyn=ig, | 3P -1 3*—1 .. 373
=1 (2012

m—1 m*—-1 .. m3I-1
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We easily evaluate this determinant by reducing it to the Vandermonde
determinant. It equals the product

IT ¢*=sH =TI+ s)r -9,

1€s<r<m s<r

in which no factor is divisible by /. If 2* # 0 (mod /), then the numerators
of the Bernoulli numbers B,, ..., B,_; are not divisible by /, and we find that

det(b,;) # 0 (mod I).

We have proved the following theorem.

Theorem 1. If h* # 0 (mod /), then the “real” I-adic integers with zero
trace are uniquely represented as linear combinations

Y alog 6,}1 (6.13)
K=2

with [-adic integer coefficients.

6.4. A Criterion for Regularity and Kummer’s Lemma

Theorem 1 allows us to prove easily the following theorem.

Theorem 2. If the factor A* of the number of divisor classes of the /th
cyclotomic field R({) is not divisible by /, then the factor A, is also not divisible
by L.

Proof. Assuming that h, = (E: E,) is divisible by / (see the notations of
Theorem 2 of Section 5), we can find a positive real unit ¢ € E, which is not
contained in E,, but for which &' € E. Then

8’ = n Bkck (614)
k=2

where the rational integers ¢, are not all divisible by / (otherwise ¢ would
belong to E,). Raising (6.14) to the power / — 1 and taking the logarithm (in
the field X), we obtain

lloge™'= Y ¢ log 6", (6.15)
k=2

Since the number log &' ~! belongs to 9N, it has a representation in the form
(6.13). Comparing this representation with (6.15), we conclude that all the
expressions ¢,/l are l-adic integers. But this is impossible, since not all ¢, are
divisible by /. This contradiction proves Theorem 2.
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Corollary. The prime number / > 3 is regular if and only if the numera-
tors of the Bernoulli numbers B,, B,, ..., B;_, are not divisible by /.

Theorem 3 (Kummer’s Lemma). Let / be a regular prime number. If a
unit of the /th cyclotomic field R({) is congruent modulo / to a rational integer,
then the unit is the /th power of another unit.

Proof. Let ¢ = a (mod [). We first show that ¢ is a real unit. If ¢ = *¢,, with
¢, a real unit, then ¢, = b (mod A2) with b a rational integer, and {* = 1 + kA
(mod A2). From a = b(1 + kA)(mod A?) it follows that k = 0 (mod /), which
proves our assertion. Since — 1 = (—1)/, then we can assume that ¢ > 0; that
is, ¢ € E. From the congruence ¢! ! = @'~ ! = | (mod /) it follows that log ¢' !
= 0 (mod /), and therefore by Theorem 1,

loge'™t= Y Ic, log 6", (6.16)
k=2

with [-adic integral ¢, . On the other hand, since the subgroup E, is of finite
index in E, then & € E, for some natural number a, and hence

m

g=Y 6% (6.17)

K=2

with rational integers d,, . We can assume that the set of numbers a, d,, ..., d,
has greatest common divisor 1 (since the group E has no elements of finite
order). Raising (6.17) to the power / — 1 and taking the logarithm (in the
field K,), we obtain

aloge™'= Y d.log 6, ".
k=2

Comparing with (6.16), we arrive at
d, = lac, k=2,...,m).

Since the numbers ac, are l-adic integers, then it follows that all 4, are divisible
by I, and this means that ¢ is an /th power: & =¢,', where ¢, € E,. Since
(a,d,, ..., d,) =1, then a is relatively prime to /, and by picking rational
integers v and v such that 1 = au + I, we find

£ = (sa)u(sv)l — (slusu)l’

which proves the theorem.

PROBLEMS

1. Let p be a prime number of the form 4n+4 1, { = cos 2w/p + isin 2w/p, A={ — 1,
m=(p—1)/2. Set

- T,
k=1
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where 6, = sin (k7/p) [sin (7r/p)] ~*, 1 € k < p — 1. Show that the congruence

B,

LYy = 2—," A" = —2B,4/p (mod A"*1),

m:

holds in the pth cyclotomic field. Here L denotes the function defined by (6.9") and B,
the Bernoulli number. [Use (6.12") and Problem 14, Section 4.]

2. Let e =T+ U+/p>1 be a fundamental unit in the quadratic field R(1/p), where
p =1 (mod 4), and let 4 be the number of divisor classes of this field. Using the preceding
problem and Theorem 2 of Section 4, show that

—1
hU =TB,, (mod p) (m - 5’—2—)

(in the ring of p-integral rational numbers).

7. The Second Case of Fermat’s Theorem for Regular Exponents

7.1. Fermat’s Theorem

Theorem 1. If the prime number / > 3 is regular, then the equation
x4 yt=2 .1
has no solution in nonzero rational numbers x, y, z.

Proof. Assume that x, y, z are relatively prime (nonzero) integers which
satisfy (7.1). Since the first case of Fermat’s theorem has already been treated
in Section 7.3 of Chapter 3, we may assume that one (and only one) of these
numbers is divisible by /. We shall let / divide z [if, for example, y is divisible
by /, then we can write (7.1) in the form x! + (—2)! = (—=)]. Let z = l*z,,
where (z4,/) = 1, k = 1. In the /th cyclotomic field R({), the number / has the
factorization / = (1 — {)! "¢, where ¢ is a unit in R({) (Lemma 1 of Section 1,
Chapter 3). Hence we can put (7.1) in the form

x4yt =l = )"z, (7.2)

where m = k(I — 1) > 0. To prove the theorem it suffices to show that an
equation of the form (7.2) is impossible. We shall actually show somewhat
more. Not only will we show that an equation of the form (7.2) is impossible
in rational integers x, y, and z, relatively prime to /, but even that it is im-
possible in integers of the field R({) which are relatively prime to 1 —¢.
Assuming the converse, we take that solution of (7.2) in which the exponent
m > 1 is smallest. To avoid introducing new notation, we shall assume this
solution to be given by (7.2). Hence x, y, and z, denote integers of R({) which
are relatively prime to 1 — {, and ¢ is some unit of the field R({).
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As in Section 6, | denotes the prime divisor (1 — {) of the field R({). We
factor the left side of (7.2) into linear terms and then pass to the corresponding
equation in divisors. We obtain

-1
k __qim_ 1
kIJO(x+C,V)—I a’, (1.3)

where the divisor a = (z,) is relatively prime to [. Since /m > I > 0, it follows
from (7.3) that at least one of the terms on the left is divisible by 1. But since

x+ 0y =x+y =1 -0y,
then all the numbers
x + Cy 0gsk<gl-1) (7.4)
are divisible by [. If forsome 0 <k <ig/—1,
x + {*y = x + 'y (mod 17),

then also {*y(1 —{*"*) =0 (mod 12), and this is impossible, since (*y is
relatively prime to [, and 1 — {*~* is associate with 1 — {. Hence the numbers
(7.4) are pairwise-noncongruent modulo [2, so the expressions
x + 'y
1-7
are pairwise-noncongruent modulo [. Since N(I) =/, these expressions form
a complete set of residues modulo I, and hence one of them is divisible by 1.
It follows that one (and only one) of the numbers (7.4) is divisible by I2.
Since we may replace y by any of the numbers {*y in (7.2), we may assume that
x + y is divisible by 12, and that all the other numbers x + {*y are divisible
by [ but not divisible by 12. Then the left side of (7.3) is divisible at least by
712 = ['*!, so that m > 1.
Now let m denote the greatest common divisor of the divisors (x) and ().
Since x and y are not divisible by [, then m is not divisible by [. Then it is clear
that (x + *y) is divisible by Im, and (x + y) is divisible by "™~ D* 1y We set

(k=0,1,...,1-1)

(x +y)=1""D%me,,
x+y)=Img  (k=1,..,1-1),

and we shall show that the divisors ¢g, ¢y, ..., ¢;~, are pairwise relatively
prime. Indeed, if ¢; and ¢, (0 < i< k </— 1) had common divisor p, then
x +{'y and x + {*y would be divisible by Imp, so that {'y(1 — {*™%) and
x(1 — £*7%) would also be divisible by lmp. But this would imply that x and y
were divisible by mp, contradicting the choice of m.

Writing (7.3) in the form

m'"ege, - ¢y = [,
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we deduce (since the ¢, are pairwise relatively prime), that
Ck=akl (nggl_l)’

and this means that

(x +y) =1 D* gl (7.5)
(x + 0 = Ima}  (A<k<l—1). (7.6)

Solving (7.5) for m and substituting in (7.6), we obtain
(x 4+ D = (x + y) (a0~ Y, (7.7

from which it follows that the divisors [(aza,!)! are principal (since [ =
(1 = {)]. Now we use the regularity of /. Since the number of classes of divisors
of the field R({) is not divisible by /, then by the corollary to Theorem 3 of
Section 7, Chapter 3, the divisors a,a, ' are also principal; that is,

oyt = (%’:) A<k<l—1), (1.8)

where o, and S, are integers of the field R({). The divisors a, (1 <k </ —1)
and a, are relatively prime to [, so we may assume that «, and 8, are not
divisible by L. Principal divisors are equal if and only if the corresponding
numbers differ only by a unit factor. Therefore by (7.7) and (7.8) we have

(x + C)(L = OWIL4x+w@) (A<k<i=1), (19)

where ¢, is a unit of the field R({).
Now consider the following obvious equation:

G+ + 0 = (x+ Py)=Ux + ).
If we multiply it by (1 — {)'™~ " and use (7.9) with k = 1 and k = 2, we obtain

u+»@)qu+o—u+n@)@—u+»w e,

so that

¢ _ r\lm—1) I
(a,8,)' — 0l +C)( ) = el +C)(1 9] (B182)".
Hence we have shown that
o+ gff = &'(1 =)'y, (7.10)

where a, 8, and y are integers of R({), not divisible by [, and g4 and ¢ are units
of the field R({). We shall transform (7.10) to the form (7.2).
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We have seen that m > 1, so that m — 1 >0 and /(m — 1) > /, and this
means that

o' + gof =0 (mod I).

Since B is relatively prime to [, there is a number 8’ such that 8’ = 1 (mod I").
Multiplying the last congruence by !, we obtain

g = o' (mod I),

where w = —af’ is an integer of the field R({). Since N(I) = /, then any integer
of R({) is congruent modulo | to a rational integer. If w = a (mod 1), then
o' = a' (mod /1), and this means that the unit &, is congruent modulo I’ to a
rational integer. By Kummer’s lemma (Theorem 3 of Section 6; here we again
use the fact that the prime / is regular) the unit g, is an /th power in R({),
that is, &, = n', where 7 is another unit of the field R({). The equation (7.10)
then takes the form

o + (nB) = (1 = {)lm =Dy

We have obtained an equation of the same type as (7.2), but the exponent m
has here been replaced by m — 1. But this is impossible, since we chose m to
be as small as possible. This contradiction shows that the equation (7.1) has
no solution in nonzero rational integers x, y, and z, one of which is divisible
by /, that is, that the second case of Fermat’s theorem holds for regular
primes. Theorem 1 is proved.

7.2. The Infinitude of the Number of Irregular Primes

In all existing tables the irregular primes are outnumbered by the regular
ones. However, it is not known whether this is true for all intervals (1, N).
Further, the infinitude of the set of regular primes is still an open question.
Hence the following theorem is of considerable interest.

Theorem 2. There are infinitely many irregular prime numbers.

The proof of Theorem 2 is based on some properties of Bernoulli numbers,
These properties are formulated and proved in the following section.

Let p,, ... , ps be any finite set of irregular prime numbers. Theorem 2 will
be proved if we can find an irregular prime number p, different fromp,, ..., p,.
Set

n=r(py—1) - (p;— 1.

Since the Bernoulli numbers B,, have the property

By

2k

— 00 as k — o0




382 ANALYTIC METHODS [Chap. 5

(see the end of Section 8), then we can choose r large enough so that B,/n
has absolute value greater than 1. Let p be any prime number which divides
the numerator of this number (in lowest terms). If (p — 1)|n, then by von
Staudt’s theorem (Theorem 4 of Section 8), p would divide the denominator
of B,, and this is not the case by choice of p. Hence (p — 1)|n, and p is
different from p,, ..., p, (and different from 2). Let n = m + a(p — 1), with
2<m<p—3 (note that m is even). We now use Kummer’s congruence
(Theorem 5 of Section 8), and obtain the congruence

B B
— = —(mod p)
m n

in the ring of p-integral rational numbers. But B,/n = 0 (mod p), so B,,/m =
0 (mod p) and B,, = 0 (mod p). Since m is one of the numbers 2, 4, ... , p — 3,
it follows from the corollary of Theorem 2 of Section 6 that the number p
is irregular. Theorem 2 is proved.

PROBLEMS

1. Show that the equation x* + y3 = 5z3 has no solution in rational integers with

z#0.
2. Show that there are infinitely many irregular primes of the form 4n + 3 (use P-~hlems
9 and 10 of Section 8).

8. Bernoulli Numbers

In this section we shall prove those properties of Bernoulli numbers which
have been used in the preceding sections.

All the power series to be considered converge in some neighborhood of the
origin, but their radii of convergence could easily be computed. But we shall
not worry about questions of convergence, since for our purposes it suffices
to consider all series formally (except in the proof of Theorem 6).

Definition. The rational numbers B,, (m > 1), defined by

t L)

e_

(8.1)

ilf’

1
are called Bernoulli numbers.

We use the following notations. If f(x) = a + ax + -+ + ax is a polynomial,
then by f(B) we mean the number a, + a,B; + --- + a,B,. Analogously, if
(x, 1) is a power series of the form ), f,(x)t", where f,(x) is a polynomial,



Sec. 8] BERNOULLI NUMBERS 383

then by f(B, t) we mean the series Y =, f,(B)t". Using this notation, the ex-
pansion (8.1), which defines the Bernoulli numbers, can be written in the form

It is easily seen that for any number a
eareBl — e(a+ Bt

(to prove this it suffices to multiply the series on the left).

Theorem 1. The Bernoulli numbers satisfy the recurrence relation
(1+B)™"-B"=0 form =2, 8.2)

which in expanded form becomes
m—1
1+ Y CtB,=0 (m=2)
k=1

(the C,* are the binomial coefficients).
To prove this theorem we write (8.1) in the form
f= eI +BN _ B

Comparing the coefficients of the terms t™/m! (m > 2), we obtain the relation
(8.2).
For m = 2 formula (8.2) gives us 1 + 2B, =0, and this means that

B = -4

Theorem 2. All Bernoulli numbers with odd index, except B,, equal zero:
BZM+1 =0 fOrm? 1. (8.3)

The equality (8.3) is clearly equivalent to the fact that the function

t t i B,
e —1 2 m=2m!
is even, and this is easily verified.
We give the values of the first 12 Bernoulli numbers with even index:

gl g__L p_ L p__ L1 g _3
e Y 300 T4 P 300 ' 66’
691 7 3617 43 867
12=“m, Bl4='6‘a Bl(::—m, Bls=?,8;
174 611 854 513 236 364 091

Bro=—-—=377 Pu2=T3 PuT T 7o
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Bernoulli numbers are connected with the sums of series of natural numbers.
Set
Sy =1+ 2"+ .. +(n— DX
Theorem 3. The sums S,(n) satisfy the formula
(m+ DS (ny=m+B"*'—B™"! m>1, (8.4)
or in expanded form

(m+DS,(n)=Y Ci, Bn™ "% m>1 (By=1). (8.5)
k=0

In fact, the expression on the right in (8.4) equals the coefficient of ™ *1]
(m + 1)! in the series e *®* — e, On the other hand,

(n+ B)t __ Bt _ LBt (y _ em—l_ LS
e el =e(" - 1)=1t— =t) €
[4 —1 r=0
© -l \gmtl © (m+ DS, (me™*!
=nt+ r"') =nt+ “ ,
mz‘l (rgl m! mgl (m + 1)!

which proves the formula (8.4).
Note that for n = 1 the formula (8.4) coincides with (8.2).

Theorem 4 (von Staudt’s Theorem). Let p be a prime and m and even
integer. If (p — 1) ¥ m, then B,, is p-integral (that is, p does not appear in the
denominator of B,,). If (p — 1)|m, then pB,, is p-integral, and

pB, =1 (mod p).
We prove Theorem 4 by induction on m, using the relation
m—1
(m+ 1)S,(p)=(m+ DB,p+ Y CrpiBup" ' 7%,
k=0

which is obtained from (8.5) by substituting p for n. We write this in the form

m—1 1
me = Sm(p) - kZO _rn__*_—i Cfn#—lpm—kkas (8‘6)

and we shall show that all terms under the summation sign are p-integers
which are divisible by p (in the ring of p-integral numbers). The term pB, for
k < m is a p-integer by the induction assumption. We consider the terms

1

el Charp™ ™ (8.7)
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If p = 2, then since m + | is odd, this number is a 2-integer and is divisible by
2 (since k < m). If p # 2, we write (8.7) in the form

m+1—k _m-—k — m(m - 1) Tt (k’ + 1) m-—k

m+1 m P (m—k+ 1!

The number p occurs in (m — k + 1)! = r! with exponent

r r r r r r
- +[—]+---<—+—+---= <Ilgr—1=m—k
[p] p® p P p—1 2

and hence [1/(m — k + 1)!]p™ * is a p-integer and is divisible by p.
Hence we have shown that pB,, is p-integral and that

PB, = S,(p) (mod p) (8.8)

in the ring of p-integral numbers.
On the other hand, we have the congruences
Sw(p) = ~1(mod p) if (p—1)[m, (8.9)
S.(p) =0 (mod p) if(p—1) fm. (8.10)
Indeed, if (p — 1) | m, then x™ =1 (mod p), for 1 £ x < p — 1, and hence

Sm(p) = Zx"’s Zl=p—15 —1 (mod p).
x=1 x=1

If (p — 1) ¥ m, then, taking g to be a primitive root modulo p, we shall have

p-1 g(p L |
Sa(p) = Z x™ Z g = TT = 0 (mod p),

since g ! = 1 (mod p) and g™ # 1 (mod p).

Comparing (8.8) and (8.10), we see that if (p — 1) y m, then pB,, =0
(mod 0), and this means that B,, is p-integral. The second assertion of Theorem
4 follows from (8.8) and (8.9).

In the case m < p — 1 the number p — 1 does not divide any number k < m,
so that all B, for k < m are p-integral. Hence every term on the right in (8.6)
is divisible by p%, and we have the following assertion.

Corollary. If p £ 2 and m < p — 1 (m even), then
pB, = S,(p) (mod p*). (8.11)

Theorem 5 (Kummer’s Congruence). If p is prime and (p— 1) f m
(m positive and even), then the number B,,/m is a p-integer, and

Bm+p—1

B,,
=— d 8.1
e = 22 (mod p). (8.12)
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In other words, the expression B,/m (for (p — 1) ¥ m) has period p — 1
modulo p.

Proof. Consider the function

gt t & B.J9g"—-1)
e -1 -1 —,,.;1 m! " (8.13)

F(1) =

where g is a primitive root modulo p, 1 < g < p. We set ¢’ — 1 = u. Then

gt t
F(t)y = ——— — — =tG(u),
® AQ4+u)yf—-1 u )
where
g 1 g L&
G =— == .
@) A+uw)yf—-1 u gu+--+u u kgoc,‘u

It is clear that the numbers ¢, are p-integral.
We shall show that in the expansion of the function G(u) in powers of ¢:

G =G~ =3 ale— 1= 3 Zmpm 8.14)
k=0 m=0 M.

all the coefficients A4,, are p-integral, and that they have period p — 1 modulo p
(for m > 0). It is clear that if this latter property holds for some collection
of series, then it also holds for any linear combination of these series with
p-integral coefficients. Hence it suffices to verify it for the functions (e’ — 1)%.
But these functions are in turn linear combinations of the functions ¢"* with
r =0, and

so by the small Fermat theorem
Pl =" (mod p)  (n>0).

Hence the functions ¢"* have the desired property, and our assertion about the

coefficients A,, is proved.
Comparing the coefficients in (8.13) and (8.14), we see that

Bm(gm - ]) — Am—l
m! (m-1n!’

so that

B, .
— ("= ) =An_;.
m

Since g" — 1 #0 (mod p) (because (p — 1)} m), then the sequence of
numbers g™ — 1 also has period p — 1 modulo p, by the small Fermat theorem.
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It now follows from what we have proved about the numbers A4, that the
numbers B, /m, when (p — 1) ¥ m, are p-integral and have period p — 1
modulo p. Theorem 5 is proved.

Theorem 6. The Bernoulli number B,,, is given by the formula

2(2m)!
(27!)2'"

By, =(-1)""! {(2m), (8.15)
where {(2m) is the value of the Riemann {-function {(s) for s = 2m.

To prove this we use the expansion of the function 1/(¢' — 1) into partial
fractions

1 1+ to 1
-1 2 =, t-2znin
1 1 @ 2t
= ——+- -—. 8.16
2_*_1_*-,.=112—f-(27zn)2 (8.16)

This expansion can be derived from the familiar expansion for the cotangent

cotz=ly § %
z=- —_—,
z 5122 = (nn)?

by using the fact that
. iz + e-—iz ) 2i
cotz=1-— - =1+ =

e — e i® e _1'

It follows from (8.16) that
(2

_1__ ,
e’—l * ,.th 2 + (2nn)?

and since
t2 2m
5 —s _1 m—1 ) s
12 + (27nn)? ,,.Z (=D ( nn
then
t . 2m
=1—-=+2 —-D""
e'—l 2t ,Zl ,,Z 0"
@ 2
=1 —§t+ Y (-t (2m) .
m=1

(27[)2"'

Comparing this equation with (8.1) and equating the coefficients of the various
powers of t, we obtain (8.15).
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From the formula (8.15) we obtain an estimate for the growth of the
numbers |B;,,| with increasing m. Since {(2m) > 1 and (2m)! > (2m/e)*™ (by
Stirling’s formula), then

m 2m
Banl > 2( )
ne

In particular, we find that

BZm

- 00 as m— o0.
2m

PROBLEMS

1. Show that
x+B"=(x—1—B)y", m=1.

oo~

3. Let p be an odd prime number. Show that

)2 2
xP-1iz2 =2 ; -2 B(p+”/2 (mod p)_

1

2. Show that

[

(62

I

x

4. Let p> 3 be a prime number of the forﬂ4k + 3. If h denotes the number of divisor
classes of the imaginary quadratic field R(y/— p), show that h satisfies the congruence

h=—2B,,,,, (mod p).
5. If p> 3 is a prime number, show that
1+1+1+ ! =0 (mod p?)
273 p—1_ - umeary
6. Prove the formula
k—-1 m
(kx+ Byr=km=t'S (x+£+ B)
5=0
(k and m are natural numbers).
7. The function tan x has the expansion
x2n -1

tanx= 2> TG

where

Tn — 22n(22n —_ 1) @ .
2n

Show that all the coefficients 7, are natural numbers.
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8. If m> 1, show that
2B, =1 (mod 4).

9. Let g be a prime number such that 2¢ + 1 is composite {for instance, g = 1 (mod 3)].
Show that the numerator of the Bernoulli number B, is divisible by a prime of the form
4n + 3.

10. Let py, ..., p, be prime numbers greater than 3, and let ¢ be a natural number such
that ¢ = 1 (mod M), where M = (p, — 1) --- (p, — 1). Show that none of the prime numbers
Pis ..., P, divide the numerator of the fraction B,/2qg.



Algebraic Supplement

1. Quadratic Forms over Arbitrary Fields of Characteristic # 2

In this section we describe some of the general properties of quadratic forms
over arbitrary fields. We shall state some well-known results without proof.
Throughout, K will denote an arbitrary field whose characteristic is not 2.
For any matrix 4, we shall denote the transpose by A4'.

1.1. Equivalence of Quadratic Forms

By a quadratic form over the field K we mean a homogeneous polynomial
of degree 2 with coefficients in K. Any quadratic form f can be written

n
f= Z a;jXiX;,
L=t
where a;; = a;;. The symmetric matrix
A =(ay)

is called the matrix of the quadratic form f. If the matrix is given, the quadratic
form is completely determined (except for the names of the variables). The
determinant d = det 4 is called the determinant of the quadratic form £.If d = 0,
the form f'is called singular, and otherwise it is called nonsingular. If we let
X denote the column vector of the variables x,, x,, ..., x,, then the quadratic
form can be written

f=XA4X.

390



Sec. 1] QUADRATIC FORMS OVER ARBITRARY FIELDS 391

Suppose we replace the variables x,, ..., x, by the new variables y, ..., y,
according to the formula

L
X, = Zcij)’j (I1<ig<nc;ekK).
i=1

In matrix form this linear substitution becomes
X=C_Y,

where Y is the column vector of the variables y,, ..., y,, and C is the matrix
(cij). If we replace the variables x,, ..., x, in f by the corresponding expressions
iny,, ..., y., then (after carrying out the indicated operations) we shall obtain
a quadratic form g (also over the field K) in the variables y,, ..., y,. The
matrix A, of the quadratic form g equals

A, = C'AC. (1.1)

Two quadratic forms f and g are called equivalent, and we write f ~ g, if
there is a nonsingular change of variables which takes one form to the other.
From formula (1.1) we obtain

Theorem 1. If two quadratic forms are equivalent, then their determinants
differ by a nonzero factor which is a square in K.

Let y be an element of K. If there exist elements «,, ..., &, in K for which

f(al, R an) =7

then we say that the form f represents y. In other words, a number is repre-
sented by a quadratic form if it is the value of the form for some values of the
variables. It is easily seen that equivalent quadratic forms represent the same
elements of the field K.

We shall further say that the form f represents zero in the field K if there
exist values a; € K, not all zero, such that f(«,, ..., a,) = 0. The property of
representing zero is clearly preserved if we pass to an equivalent form.

Theorem 2. If a quadratic form f in n variables represents an element
o # 0, then it is equivalent to a form of the type

ax,? + g(xy, ..., x,),
where g is a quadratic form in n — 1 variables.
Regarding the proof of this theorem we note only the following. If
f(ay, ..., &,) = o, then not all a; are equal to zero, so we can find a nonsingular
matrix C, whose first row is «,, ..., «,. If we apply to f the linear substitution

whose matrix is C, we obtain a form in which the coefficient of the square of
the first variable is a. The rest of the proof is carried out as usual.



392 ALGEBRAIC SUPPLEMENT

If the matrix of a quadratic form is diagonal (that is, if the coefficient of
every product of distinct variables equals zero), then we say that the form is
diagonal. Theorem 2 now implies

Theorem 3. Any quadratic form over K can be put in diagonal form by
some nonsingular linear substitution. In other words, every form is equivalent
to a diagonal form.

In terms of matrices, Theorem 3 shows that for any symmetric matrix A4
there exists a nonsingular matrix C such that the matrix C'AC is diagonal.

1.2. The Direct Sum of Quadratic Forms

Since the names of the variables are not of any significance, we can assume
that two given quadratic forms f and g have different variables. In this case
the form f + g is called the direct sum of f and g, and is denoted by f 4 g
(this must not be confused with the usual addition of quadratic forms when
the forms have the same variables). It is clear thatif g ~ A, then f £ g ~ f i A.
We shall now show that the following converse holds.

Theorem 4 (Witt's Theorem). Let f, g, and h be nonsingular quadratic
forms over the field K. If the forms f4 g and f 4 h are equivalent, then the
forms g and A are also equivalent.

Proof. Let f, be a diagonal form equivalent to f. Then, as noted above,
f4+g~fodgand f+h~fy+h so that f, + g ~ f, 4+ h. Hence we may
assume that fis a diagonal form. It is now easily seen that to prove the theorem
it suffices to consider the case f = ax?, a # 0. Let 4 and B denote the matrices
of g and h. Since the forms ax? 4 g and ax? - h are equivalent, there exists

a matrix
_(r S
c=(r o

y TYfa Oy(y Sy _(a O

s @J\o 4J)\T @) \o B)
(Here S is a row matrix and T is a column matrix.) From this equation we
obtain

such that

y2a + T'AT = a, (1.2)
yaS + T'AQ = 0, (1.3)
S'aS + Q'AQ = B. (1.4)
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We must show that there exists a nonsingular matrix Cy such that C,’4AC, = B.
The matrix C, will be found in the form

Co =0 + TS,
where the element & must be suitably chosen. By (1.2) and (1.3) we have
Co'AC, =(Q" + ESTHA(Q + ETS)
=QAQ +EST AQ + EQ'ATS + E2S'T'ATS
= Q'AQ +a[(1 —y*)&* — 2¢¢]S'S.

In view of (1.4) the last expression will equal the matrix B, provided that
(1 — y?)&? — 2y¢ = 1. This equation, which can also be written in the form
E— (¢ + 1)? = 0, always has a solution &, € K for any y € K (recall that the
characteristic of K is not 2). Hence we have found a matrix Cy = Q +&,TS,
for which C,’AC, = B. Since the matrix B is nonsingular, then C, is also
nonsingular. Theorem 4 is proved.

1.3. Representation of Field Elements

Theorem 5. If a nonsingular quadratic form represents zero in the field X,
then it also represents all elements of K.

Proof. Since equivalent forms represent the same field elements, it suffices
to prove the theorem for a diagonal form f=a;x,® + - +a,x,% Let
a;0,2 + - + a,,2 = 0 be a representation of zero, and let y be any element
of K. We can assume that a, # 0. We express the variables x,, ..., x, in
terms of a new variable ¢:

xi=0(1+1), x=0(l—-1) k=2,..,n).
Substituting in the form f we obtain
f* = f*(@t) = 2a,0,*t — 2a,0,%t — -+ — 2a,0,%t = 4a,0,%t.

If we now set ¢ = y/4a,a,%, we obtain f* = y.

Theorem 6. A nonsingular quadratic form f represents the element y # 0
in K if and only if the form —yx,? | f represents zero.
Proof. The necessity of the condition is clear. Assume that

—vyao + f(ay, v, ) =0,

where not all a; equal zero. If gy # 0, then y = f(ot;/at5, ..., 0, /25). If oty =0,
then the form f represents zero, and hence by Theorem 5 it represents all

elements of the field K.
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Remark. From the proof of Theorem 6 it is clear that if we determine all
representations of zero by the form —yx,® & f (only those in which x, # 0
are relevant), then we have also determined all representations of y by the
form f. Hence the question of the representability of an element of the field K
by a nonsingular form can be reduced to the question of the representability
of zero by a nonsingular form in one more variable.

Theorem 7. If a nonsingular form f represents zero, then it is equivalent
to a form of the following type:

Y1)z +g(}’3, --"yn)'

Proof. Using Theorem 5, we first find a,, ..., a, such that f(«,, ..., o) = L. By
Theorem 2 we can now put f in the form x,? + f,(x;, ..., x,). Since the form
x;2 + f, represents zero, we can find #,, ..., f, such that £,(8,, ... ,) = — L.
Again applying Theorem 2, we can put f; in the form —x,% + g(ys, ..., Vn).
Setting x; — x, =y, and x; + x, = y,, we obtain the desired result.

Remark. If we know some representation of zero by the form £, then all
the operations described in the proof of Theorem 7 can be carried out explicitly,
and the form g(y;,..., y,) can be determined. Now assume that for any
quadratic form which represents zero over the field K, an actual represen-
tation of zero can be found. Then any nonsingular form can be transformed
to a form of the type

Y1Y2 + o+ Va1V + h(y2s+1’ ---’yn)’ (15)

where the form / does not represent zero. In any representation of zero by
the form (1.5), at least one of the variables y,, y,, ..., Y5511, ¥2s Mmust be
nonzero. To determine all representations of zero in which, say, y; = «; # 0,
we note that we can give y;, ..., ¥, arbitrary values a5, ..., &, and then deter-
mine y, by the condition

)2 + O30y + - +g(a2s+15 LR} an) =0.
This gives us an effective method for finding all representations of zero by a
nonsingular quadratic form over the field K, provided that we have a method

for determining whether or not a given form represents zero, and, in case it
does, an algorithm for finding some specific representation of zero.

Theorem 8. Let the field K contain more than five elements. If the diagonal
form
ax 2+ +ax?  (g;€K)
represents zero in the field K, then there is a representation of zero in which
all the variables take nonzero values.
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Proof. We first show that if aé2 =1 #£0, then for any b #0 there exist
nonzero elements « and f such that ax? + B> = 1. To prove this fact we
consider the identity

t—1)? 4t

(-2 @

(t+1)" @+1)

Multiplying this identity by aé? = 4, we obtain

t—1\2 28 \2

Choose a nonzero y in K so that the value of ¢ = t, = by*/ais not 1. This
can be done because each of the equations bx*> — @ = 0 and bx? + a = 0 has
at most two solutions for x in K, and the field X has more than five elements.
Setting ¢ = t, in (1.6), we obtain

to — 1\? 28y )2 ,
b =4,
a(€t0+1) * (t0+1 .

and our assertion is proved. We can now easily complete the proof of the
theorem. If the representation @,&,2 + -+ + a,&,2 = O is such that &, #0, ...,
£, #£0,&, ., =--=¢&,=0, where r> 2, then we have shown that we can find
a #0 and § #0 such that ¢,£,2 = a,a* + a,,,8%, and this yields a represen-
tation of zero in which the number of nonzero variables is increased by one.
Repeating this process, we arrive at a representation in which all the variables
have nonzero value.

1.4. Binary Quadratic Forms
A quadratic form in two variables is called a binary quadratic form.
Theorem 9. All nonsingular binary quadratic forms which represent zero
in K are equivalent.
Indeed, by Theorem 7, any such form is equivalent to the form y,y,.
Theorem 10. In order that the binary quadratic form f with determinant

d # 0 represents zero in K, it is necessary and sufficient that the element —d
be a square in K (that is, —d = o?, x € K).

Proof. The necessity of the condition follows from Theorems 1 and 7. Con-
versely, if f=ax? + by? and —d = —ab = o?, then f(a, a) = aa® + ba® = 0.

Theorem 11. Let f and g be two nonsingular binary quadratic forms over
the field K. In order that f and g be equivalent, it is necessary and sufficient
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that their determinants differ by a factor which is a square in K, and that
there exist some nonzero element of K which is represented by both fand g.

Proof. Both conditions are clearly necessary. To prove sufficiency, let
o # 0 be an element of K which is represented by both f and g. By Theorem 2
fand g are equivalent to the forms f; = ax? + fy* and g, = ax? + f’y?. Since
af and of’ differ by a square factor, then §’ = By2, y € K, and this means that
fi~giandf~g.

PROBLEMS

1. Show that a singular quadratic form always represents zero.
2. Show that Theorem 5 does not hold for singular quadratic forms.

3. If the binary form x* — ay? represents the elements y, and v, of X, show that it
also represents their product.

4, Show that Theorem 8 is not valid for fields with not more than five elements.

6. We shall decompose the set of all nonsingular quadratic forms over Kinn=0,1,2, ...
variables into the so-called Witt classes. (We treat the zero form as a nonsingular form on
the empty set of variables, and consider it to represent zero.) Two forms f; and f; belong
to the same Witt class [fi] =[/f2], if the corresponding forms A in (1.5) have the same
number of variables and are equivalent. We add Witt classes by the formula [f;] 4 [f2] =
[f1 & f2]. Show that these definitions make sense and that under this operation the set of
Witt classes becomes a group.

6. Determine the group of Witt classes for the real and complex fields.

7. Show that a quadratic form over a finite field (characteristic # 2) in three or more
variables represents zero.

2. Algebraic Extensions

Many theorems of this section are given without proof. For the proofs the
reader may consult, for example, ‘“Modern Algebra,” by B. L. van der
Waerden, Vol. 1, Chap. 5, Ungar, New York, 1950.

2.1. Finite Extensions

If the field Q contains the field k¥ as a subfield, then we say that Q is an
extension of the field k. To denote that Q is being considered as an extension
field of k, we write Q/k. If K is a subfield of Q which contains k, that is,
k =K < Q, then K is called an intermediate field for the extension Q/k.

For any extension Q/k, we may consider Q as a vector space over k.

Definition. The extension K/k is called finite if K, considered as a vector
space over k, is finite-dimensional. This dimension is called the degree of the
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extension and is denoted by (K : k). Any basis for K as a vector space over k
is called a basis for the extension K/k.

If the extension K/k is finite, then for any intermediate field K|, the exten-
sions K,/k and K/ K, are clearly both finite. The following converse also holds.

Theorem 1. Let K, be an intermediate field for the extension Kjk. If the
extensions K/K, and K,/k are finite, then K/k is also finite, and its degree
equals the products of the degrees of the extensions K/K, and Ky/k:

(K:k)=(K: K XKy : k).

Proof. Let 6, ... 0,,, be a basis for K/K,, and @, ..., w, be a basis for
K, /k. Then every element of K can be represented as a linear combination
(over k) of the products w.8;, so the extension K/k is finite. Further, it is
easily checked that these products are linearly independent over k, so
(K:k) =mn,

For any field k£ we denote the ring of polynomials in the variable ¢ with
coefficients in k by k[t].

Let Q/k be an extension of the field k. An element o € Q is called algebraic
over k; it is the root of some nonzero polynomial f(¢) of k[t]. Among all such
polynomials we take that polynomial ¢(t) # 0 which is of lowest degree and
has leading coefficient 1. Since all polynomials f(¢) which have o as a root are
divisible by ¢(¢) (otherwise the remainder after division of f by ¢ would be a
polynomial of lower degree with o as a root), then the polynomial ¢(¢) is
uniquely determined. It is called the minimum polynomial of the algebraic
element o over the field k. The minimum polynomial ¢ € k[t] is always irre-
ducible, since from ¢ = gh it follows that « is either a root of g(¢) or of A(z).
Any element a € k is algebraic over k, and its minimum polynomial is ¢ — a.
An element € € Q which is not algebraic over k is called transcendental over k.

The extension Q/k is called algebraic if every o € Q is algebraic over k.

Theorem 2. Any finite extension is algebraic.

Theorem 3. Let the element o of the extension Q/k be algebraic over k,
and let its minimum polynomial ¢(¢) € k[t] have degree m. Then the elements
l,a,...,a" ! are linearly independent over k and the set of all linear com-
binations

ap+ a0+ -+ @y, 0m .n

with coefficients g; in k is an intermediate field, denoted by k(«). The extension
k(a)/k is finite of degree m.

To add two elements of the field k(«), written in the form (2.1), we simply
add the corresponding coefficients. To put the product of the elements
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& = g(x) and n = h(z) (g and h are polynomials in k[¢] of degree < m — 1) in
the form (2.1), we must divide gh by ¢ with remainder:

g(Oh(t) = @(t)q(t) + r(1),

where the degree of r(¢) does not exceed m — 1; since ¢(a) = 0, then &n = r(a).
Hence the operation of multiplication in the field k(«) is determined by the
minimum polynomial ¢(t) of the element a.

Let a4, ..., o, be a finite set of elements of Q, which are algebraic over the
field k, and let m, ..., m, be the degrees of their minimum polynomials over k.
The set of all linear combinations of the elements

aftecak (0O<k,<m,...,0<k, <m)
with coefficients in k is an intermediate field. It is denoted by k(«,, ..., ;) and
is called the field generated by the elements «,, ..., a,. Its degree over k does
not exceed the product m, --- my.
Any finite extension K/k, contained in Q, can be represented in the form
k(ay, ..., o) for some oy, ..., o.

Definition. A finite extension K/k is called simple if there is an element 6
such that K = k(6). Any element 6 € X, for which K = k(9), is called a primitive
element of the extension K/k.

The primitive elements of K over k are those elements whose minimum
polynomial has degree equal to the degree of K/k.

Theorem 4. Let Q/k and Q'/k be two extensions of the field k, and let
8 € Q and 0’ € Q' be algebraic elements over k£ with the same minimum poly-
nomial ¢@(¢). Then there is a unique isomorphism of the field k(8) onto the
field k(6’) for which 8 —» 0" and a — a for all a € k.

Let m be the degree of the polynomial ¢(t). The isomorphism k(8) — k(")
of Theorem 4 coincides with the mapping

ag+ a0+ +a, 0" oay+a0 + - +a,, 0™ 2.2

(ay, ..., a,_, are arbitrary elements of the field k).

So far we have considered finite extensions K/k which are contained in a
given extension Q/k. We now turn to the question of the construction of finite
extensions over a fixed field k.

Theorem 5. Let k be a field, and let ¢(¢) be an irreducible polynomial of
k[t] of degree n. Then there exists a finite extension K/k of degree n in which
the polynomial ¢ has a root. The extension K/k is unique (up to an isomor-
phism which is the identity map on k). If ¢(6) = 0, 6 € K, then K = k(6).
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The field X (in the case n > 1) is constructed in the following manner. We
choose some new object # and consider the set K of all formal linear com-
binations

ao+ a0+ +a, 0" 2.3)

with coefficients in k. If we denote the polynomial g, + a;¢ + -+ + a,_ "~}
by g(¢), then the expression (2.3) can be written g(8). Let £ = g(6) and n = h(6)
be two linear combinations of the type (2.3) (¢ and 4 are polynomials in k[¢]
of degree < n — 1). Let s(¢) denote the sum g(¢) + h(¢) and let r(¢) denote the
remainder after division of the product g(¢)A(t) by ¢(t). Set

¢+ n=s(0),
én = r(0).

It is easily verified that under these operations K is a field with the desired
properties.

Corollary. For any polynomial f(¢) € k[¢] there is a finite extension K[k
in which f(¢) factors into linear factors.

If k is a field such that the only algebraic extension of k is k itself, then k is
called algebraically closed. 1t is clear that k is algebraically closed if and only
if every polynomial in k[¢] factors into linear factors.

2.2. Norm and Trace

Let K/k be a finite extension of degree n. For any « € K the mapping £ —» af
(¢ € K) is a linear transformation of K (considered as a vector space over k).
The characteristic polynomial f(#) of this transformation is also called the
characteristic polynomial of the element o € K| relative to the extension K/k.
If w,, ..., @, is a basis for the extension K/k and

a(l)i = Z aij(l)j (a,-j € k), (2.4)
j=1
then
fa(t) = det(tE - (aij))5
where E is the n by » identity matrix.
Theorem 6. The characteristic polynomial f,(¢) of an element « € K relative
to the extension K/k is a power of its minimum polynomial ¢,(¢) over k.

Proof. Let
d O =1"+c ™ty
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By Theorem 3 the powers, 1,a, ...,a™ ' form a basis for the extension
k(a)/k. If 6, ..., 6, is a basis for K/k(x), then we can take for a basis of K/k
the products

0,00, ...,a™" 0, ...;6,, ab,, ..., a""10,.

The matrix of the linear transformation & — «f in this basis will clearly be a
block-diagonal matrix, with s blocks down the main diagonal, each block
being equal to

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
—Cm —cm—l _Cm..z A —02 _Cl

The characteristic polynomial of each block is easily computed to be
"4 ot™ 4+ 4 ¢, = @ (t). Hence £, = ¢,°, and Theorem 6 is proved.

Since when we pass from one basis to another the matrix of a linear trans-
formation is replaced by a similar matrix, then the determinant and trace of
the matrix (a;;), defined by (2.4), do not depend on the choice of the basis
Wy ooey Oy

Definition. The determinant det(a;;) of the matrix (a;;) of (2.4) is called
the norm, and its trace Sp(a;;)= Y 7., a;; is called the trace of the element
o € K relative to the extension K/k. The norm and trace are denoted by
N (@) and Spy,(a), or, more briefly, by N(a) and Sp(a).

If a € k the matrix of the linear transformation ¢ — a¢ (€ € K) will be the
diagonal matrix aE. Therefore for every element of k we have
N K/k(a) =a",
Spx(a) = na.

When linear transformations are added or composed, their matrices are added
or multiplied (for a fixed basis), and hence for any elements o and j of K we
have the formulas

NK/k(aﬂ) = NK/k(a)NK/k(ﬂ)v (2.5)
Spl + B) = Spyula) + Spx(B). (2.6)

The matrix of the linear transformation & —» axé (aek, £ € K) is obtained
from the matrix of the transformation ¢ — o by multiplying all entries by a.
Hence we also have the formula

Spxi(an) = a Spgu(a) (a ek, aeK). 2.7
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If o # 0, then the transformation & — & is nonsingular, and hence the norm
N (@) is also nonzero. Hence we see by (2.5) that the mapping a — Ny, («)
is a homomorphism of the multiplicative group K* of the field K to the multi-
plicative group k* of the field k. As for the mapping o — Spg,(«), by @.6)
and (.7) it is a linear function on K with values in the field k.

Theorem 7. Let a € K have characteristic polynomial f,(¢) relative to the
extension K/k, and let Q/k be an extension in which f(¢) factors into linear
factors:

J) =@ —ay) - (t — o).

Then
NK/k(a) = alaz a",
Spxu(®) =0y +o5 + - + a.
Proof. If
J(t) = det(tE — (aij)) =1"4 altn—l +o+a,,
then

a = _Sp(aij)’ a,= (-1 det(aij)-
On the other hand, it is easily checked that
o + oyt o, = —y, o0, - a, = (—1)"a,,

and this proves the theorem.

Theorem 8. We keep the notations of Theorem 7. If y =g(e) e K
(g(t) € [t]), then the characteristic polynomial f(¢) has the following fac-
torization in

(t = gla)Xt = g(2)) -+ (t — glat,))- 2.8)

Proof. We first note that the coefficients of the polynomial (2.8), being
symmetric expressions in «y, ..., a,, belong to the field k. Let ¢,(t) be the
minimum polynomial of y over k. If we apply the isomorphism k(&) — k(et;)
(in which ¢ — «; and @ — a for a € k) to the equation ¢(g(x)) = 0, we obtain
o(g(;)) = 0. Hence every root of the polynomial (2.8) is a root of the poly-
nomial ¢ (t), which is irreducible over k. This is possible only if the polynomial
(2.8) is a power of ¢ (t). Thus, we can see that the theorem now follows
from Theorem 6.

Let k « K < L be a tower of finite extensions. We choose bases w,, ..., o,
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and 9, ..., 8, for the extensions K/k and L/K. For any y e L set

0, =Y 0,0, (a;,€K),
ajswi = z ajsirwr (ajsir € k)
1
Since

‘))(D,-Oj = z ajsirwres ’
5,r

then Spy k(y) =Y i @i;;;- On the other hand, we also have

Spx/(Sprx(¥)) = pr/k(z O‘jj) = Z ajjii -
J L
Hence for any ye L,
SPL/k(Y) = pr/k(SPL/x(Y))~ (2.9)

An analogous formula holds for the norm (Problem 2).

2.3. Separable Extensions

Definition. A finite extension K/k is called separable if the linear mapping
& — Spxu(&), £ € K, is not identically zero.

Since Spg (1) = n = (K:k), every finite extension over a field of charac-
teristic zero is separable. The same holds for every extension over a field of
characteristic p for which the degree of the extension is not divisible by p.

For a finite separable extension K/k we choose a basis v, ..., w, and
consider the matrix

(Sp(w0 )1 <i,j<n - (2.10)

If the determinant of this matrix were zero, then we could find elements
¢y, ---» €y in k, not all zero, for which

Zxcj Splww)) =0 (i=1,..,n).
I=

Setting y = c,@, + -+ + c,w,, we can write this last equation
Splwy) =0  (G=1,...,n). (2.11)

Let & be any element of K. Since y # 0, then £ can be represented in the form
¢ =aquwy + -+ a0,y aek, and by (2.6), (2.7), and (2.11) we have
Sp & = 0. But this would contradict the separability of K/k. Thus for separable
extensions the matrix (2.10) is always nonsingular.
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Definition. The determinant det(Sp(w,w;)) is called the discriminant of
the basis wy, ..., ®, of the finite separable extension K/k and is denoted by
D(wy, ..., ®,).

We have shown that the discriminant of any basis of a finite separable
extension is a nonzero element of the ground field.
Let @y, ..., @, be any other basis of the extension K/k, and let

(Di,=zcijwj (l=1,,n)

Since the matrix (Sp(w;'®;")) equals the product (c;;)(Sp(ww;))(c;;)’, then
D((Dll, ey (D",) = (det(cij))zD((Dl, cee s (D"). (2.12)

Thus the discriminants of two different bases differ by a factor which is a
square in the ground field.

We fix a basis w,, ..., w, for the extension Kj/k. Then for any elements
¢ys .. €, Of k there exists a unique element « € K such that

Splwm) = ¢; i=1,..,n). (2.13)

(indeed, representing « in the form a = x 0 + -+ + x,0, (x; € k) and sub-
stituting in (2.13), we obtain a system of n linear equations in the n unknowns
x; with nonzero determinant)In particular, we can find elements 0, *, ..., w,*
in the field K such that
1 fori=j,
Sp(ww;*) = (2.14)
0 fori #j.

These n elements are linearly independent over k, since if cjw* + -+ +
c,w,* =0 (c; € k), then, multiplying by w; and taking the trace we obtain
¢, =0.

Definition. The basis o *, ..., ©,* of the separable extension K/k, which
is determined by (2.14), is called the dual basis to the basis wy, ..., @, .
The dual basis allows us to express the coefficients in
o= aw + - + a,w,
explicitly in terms of «. Indeed, taking the trace of the product aw ;*, we obtain
a; = Sp(aw,;*) (i=1,..,n).

Assume that the minimum polynomial ¢(#) of the element « of the separable
extension K/k factors completely into linear factors in the extension Q/k:

() =(t — o) - (¢ — ).
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It follows easily from (2.9) that the extension k(a)/k is also separable. Since
the minimum polynomial ¢ is also the characteristic polynomial for « relative
to the extension k(a)/k, then by Theorems 7 and 8

m
k k
SPr@u® = Zl %
£

and hence we have the following expression for the discriminant D(l, a, ...,
«" ") = D of the basis 1, a, ...,a™ ! of the extension k(a)/k:

m
) =det( Zas'”)
s=1 0<i,j<m—1

= det(a,) - det(a)) = T —ap)

0<i<j€m—1

Since D # 0, o; # o;, and we have proved the following fact.

Theorem 9. The minimum polynomial of any element of a separable
extension has no multiple roots (in that field in which it factors into linear
factors).

Theorem 10. Any finite separable extension K/k is simple; that is, there
exists an element a such that K = k(x).

Theorem 11. Let K/k be a finite separable extension of degree n. There is
an extension Q/k such that there are precisely » isomorphisms of K into Q
which are the identity map on k. Denote these isomorphisms by o, ..., g,.
If o is any element of K, then the characteristic polynomial f(¢) has the fac-
torization

(D) = (t — 0, (D))t ~ g ()~ (t — 7,())
in the field Q.

The elements a,(c), ..., 0,(2) (Which lie in the field Q) are called the con-
Jjugates of the element « € K. The images 0,(K), ..., 0,(K) of the field X under
the isomorphisms o; are called the conjugate fields of the field K. If 6 is a
primitive element of the field K over k, then it is clear that o (K) = k(o (6)).

Coroliary 1. Using the above notations we have
NK/k(a) = 0(2)a;3(a) -+ a,(2),
Spxu(@) = 01(2) + 05(0) + -+ + g,().

Corollary 2. There are precisely n isomorphisms of any finite extension
of the rational numbers of degree » into the field of complex numbers.
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Let oy, ..., ®, be a basis for K/k. Since Sp(w,w)) = Y 1., a(w)o(w;), then
the matrix (Sp(w;w);)) is the product of the matrices (o,(w;))’ and (o4(w))).
Hence we have the following formula for the discriminant of the basis w;:

D(wy, ..., ®,) = (det(o (@))))>. (2.15)

PROBLEMS

1. Let Q = k(x) be the field of rational functions in x with coefficients from k. Show
that any element of { which does not lie in & is transcendental over k.
2. Let k< K< L be a tower of finite extensions. If § is any element of L, prove the

formula
NK/t(NL/K(e)) = NL/K(G)-

[First assume that L = K(8), and consider the basis w8’ for L/k, where w; is a basis
for K/k.]

3. Find a primitive element for the extension R(V/2,4/3) of the field R of rational
numbers, and express it in terms of v/2 and v/3,

4. Show that a finite extension K/k is simple if and only if there are only a finite number
of intermediate fields.

5. Let k be any field of characteristic p # 0. Show that the polynomial f(t)=¢*— 1t —a
(a € k) is either irreducible or factors completely into linear factors in k[¢]. Further, in the
former case show that the extension k(8)/k, where f(8) = 0, is separable.

6. Let ko be a field of characteristic p # 0, and let k = ko(x) be the field of rational
functions in x with coefficients from ko. Show that the polynomial f(t) = r* — x is irre-
ducible in k{r]. Further, show that the extension k(8)/k, where f(#) = 0, is inseparable.

7. Let K/k be a finite extension of degree n. If there exists some extension Q/k for
which there are n isomorphisms of K into ) which leave every element of & fixed, show
that the extension K/k is separable.

8. Let & be a field of characteristic # p which contains a primitive pth root of 1 (that
is, an element & with &” = 1 and &* # 1 for 0 < k < p). If the element « € & is not the pth

power of some element of &, show that (k({’/&) 1k)=p.

9. Let K/k be a finite separable extension and let ¢ be a linear mapping from X (con-
sidered as a vector space over k) to k. Show that there is a unique element « in the field K

such that
q>(§) = Spx/(f) (£ € K).

3. Finite Fields

A field X is called finite if it has only a finite number of elements. The field Z,
of residue classes in the ring Z of integers modulo a prime number p is an
example of a finite field. Every finite field is of finite characteristic and, if the
characteristic of the finite field X equals p, then this field contains a prime
subfield (a subfield not containing any proper subfield) which is isomorphic
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to Z,. Hence we may assume that Z, = X. The extension X/Z, is clearly
finite. Ifitis of degree mand if w,, ..., w,, is a basis for ):/Z',Ithen every element
£ e X has a unique representation in the form & = ¢, + -+ + ¢,w,,, where
c; € Z,. Since there are p™ such linear combinations, we have proved that the
number of elements of any finite field is a power of its characteristic.

The multiplicative group T* of a finite field T is a finite Abelian group.
We consider its structure.

Lemma 1. A finite subgroup G of the multiplicative group K* of any field K
is always cyclic.

Proof. We first show that if an Abelian group G contains elements of
orders m and n, then it contains an element whose order equals the least
common multiple » of m and n. Let the elements x and y of G have orders m
and n, respectively. If (m, n) = 1, then it is easily seen that the product xy has
order r = mn. In general, by considering the prirae factorizations of the
numbers m and n, we can find factorizations

m=mgm,, n=ngng,

so that (mg, ny) = 1 and r = myn, . The elements x™ and y"* have orders m,
and ng, and their product x™y" has order r = myn, .

Now let G be a finite subgroup of order g of the multiplicative group of
the field K. If m is the maximum of the orders of the elements of G, then clearly
m < g. On the other hand, it follows from what we have just shown that the
order of every element divides m; that is, every element of the group G is a
root of the polynomial :™ — 1. Since a polynomial of degree m can have at
most m roots, g < m. Hence g = m, and this means that G is cyclic.

Applying this lemma to the case of finite fields, we obtain the following

fact.

Theorem 1. The multiplicative group of a finite field which has p™ elements
is a cyclic group of order p™ — 1.

Corollary. Any finite extension of a finite field is simple.

Indeed, if 0 is a generating element of the group I*, then it is clear that
Z(6) = X. Hence for any intermediate field £, we have Zy(6) = Z.

It also follows from Theorem 1 that all elements of X are roots of the poly-
nomial 7" — ¢, and since the degree of this polynomial equals the number of
elements in X, then in the ring I[¢] we have the factorization

= t=T10 =9
ek

(£ runs through all elements of the field X).
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Theorem 2. For any prime number p and any natural number m there
exists one and only one (up to isomorphism) finite field with p™ elements.

Proof. By the corollary to Theorem 5 of Section 2 there is an extension
Q/Z, in which the polynomial 17" — ¢ factors into linear factors. Let = del}ot.e
the set of all roots of this polynomial (in Q). Since in any field of characteristic
p the formula
(x £ 9" =x" 1y

holds, then the sum and difference of any two elements of ¥ also belongs to X.
It is clear that the set ¥ is closed under the operations of multiplication and
division (except division by zero). Hence I is a subfield of the field Q. The
polynomial £ — f has no multiple roots (sinceits derivative Pl 1= —1
never vanishes) and hence I consists of p™ elements. The existence of a finite

field with p™ elements is proved.
Let £ and I’ be two extensions of Z, of degree m. Choose a primitive

element 6 in T (corollary of Theorem 1) and denote its minimum polynomial
by (1). Since ¢(t) divides the polynomial t*” — ¢, and the latter polynomial
splits into linear factors over X', then ¢(¢) has a root 8’ € X’. The degree of
the extension Z,(6')/Z, equals the degree of the polynomial ¢(t), that is, m,
and therefore Z,(0') =X'. The existence of an isomorphism of X onto X’
now follows from Theorem 4 of Section 2.

The finite field with p™ elements is often denoted by GF(p™) (and finite fields

are often called Galois fields).

Corollary. For every natural number » there is an irreducible polynomial
of degree n over the finite field X, = GF(p").

Indeed, p” — 1 divides p™ — 1, so that the set of all roots of the polynomial
t —t in the field ¥ = GF(p™) forms a subfield which is isomorphic to the
field ,. Hence we can assume that 2, X. If 6 € X is a primitive element
for the extension L/X,, then the minimum polynomial of 8 will be an irre-
ducible polynomial in X,[¢] of degree n, since

) _(Z:Zp)__r_n_
(Z'Zo)_(__):ozzp)_ - =n.

In conclusion we note that in order to show that a given finite commutative
ring is a field, it suffices to show that it has no divisors of zero. Indeed, let O
be a finite ring without zero divisors, and let 2 be a nonzero element of O. If
ax, = ax,, then a(x; — x,) =0, and x; = x,. Thus as x runs through all
elements of the (finite) ring O, ax also takes on every value in ©. Then for
any b in O the equation ax = b is solvable in O, and this means that O is a

field.
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PROBLEMS

1. Let r(m) denote the number of distinct irreducible polynomials of degree m with
leading coefficient 1 in the ring Z,[¢]. Show that

1 my\ ,
r(m) = — d% #(g)p
(d runs through all divisors of m, and p denotes the Mobius function).

2. Find all irreducible polynomials of degree 2 over the field Z, = GF(5).

3. Show that the field GF(p™) is contained in the field GF(p™) (up to isomorphism) if
and only if m|n.

4. What is the degree over Z, of the splitting field of the polynomial " — 1?

5. Let T = GF(p™). Show that each mapping 0,:£ > £",£e X (i=0,1,...,m— 1) is
an automorphism of the field X and show that every automorphism of % coincides with
one and only one of the a,.

6. Let £, = GF(p") and let Z be a finite extension of X, of degree n. Show that each
mapping £ >£°! (i=0,1,...,n—1) is an automorphism of the field = which leaves
every element of X, fixed. Further, show that these » automorphisms are distinct and that
every automorphism of 2 which is the identity on X, coincides with one of them. Let
f(t) be the characteristic polynomial of the element £ € X relative to the extension X/Z,.
Show that we have the factorization

O == —£) - =",

in the field Z, where ¢ = p" (use Theorem 8 of Section 2). Deduce that

SPrso@ = £+ £+ o+ 7, Ny, (€)= €110,

7. Show that a finite extension of a finite field is always separable.

8. Using the above notations, show that every element of the field X, is the norm of
some element of Z.

8. Let X = GF(g"), where p™ =g, and let « € X, Show that the equation &% — £ = «
is solvable in I if and only if & + o« + -+ +a¥ ' =0,

10. Let ¢ be a primitive pth root of 1 (over the field of rational numbers). Let X, = GF(p)
and X = GF(p™). Since the elements of the field Z, can be considered as residue classes
of integers modulo the prime p, then the expression £5*” makes sense for any y € X (the
trace is taken relative to the extension X/X,). Show that

0 for a #£ 0,

Z ESD Sa

it " for a = 0.

11. Let x be a character of the multiplicative group of the field 2 = GF(p™), and set
p™ = q (for the definition of a character, see Section 5). Extend y to the whole field ¥ by
setting x(0) = 0. The expression

Tx) = CZE x(©e®*  (xe D),
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which is a complex number, is called the Gaussian sum of the finite field . Assuming that
the character x is not the unit character, prove the formulas

Ta(x) = x() 771 () o #0,
)| =vV4q «#0,
Z 700 =0.

z#£0

12. Let p# 2. Then the set of all squares in the multiplicative group X* of the field
X = GF(p™) is a subgroup of index 2. If we set ()= +1 if «#0 is a square, and
Y(a) = —1 otherwise, we obtain a character of the group X*. Show that if af# 0, then

T 5(f) = Y(—aB)p™.
13. Show that for « # 0

She-a=—1.

14, Let f(xy, ..., x») be a nonsingular quadratic form with determinant é and with
coefficients in X = GF(p™), where p # 2 and we set p™ = q. Let « be any element of X and
let N denote the number of solutions in X of the equation

Flxay ooy xa) = .
Show that N satisfies the formulas
N=g¢¥ +qP(—1yad) ifn=2r+1,
N=g¥" "'+ wf WY(—1)8 ifn=2r,

where w = —1lifa#0and w=qg—1if a=0.

15. Let p and g be distinct odd primes. If x is an integer, we shall also use the letter x
to denote the corresponding residue classes in the fields GF(p) and GF(q). Let A be an
extension of GF(g) in which the polynomial ¢# — 1 splits into linear factors, and let £ denote
a primitive pth root of 1 contained in A. The Legendre symbol (x/p) clearly coincides
with the character ¢(x) of the field GF(p) which was defined in Problem 12. Since it takes
the values 41, we may assume that (x/p) € A. Show that the * Gaussian sum”’

T= Z (f)sxeA
xeGF()\ P

of the field GF(p) satisfies the equations

73 = (— 1)V, &)

g = (1) 7. @
P

16. Use the representation of the Legendre symbol (p/q) = p**~ "2 in the field GF(q)
and formulas (1) and (2) to prove the Gaussian reciprocity law:

(—=1)~te-vr2 m—l)/zl(g) _ (‘i)
q p
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4. Some Results on Commutative Rings

Throughout this section the word ring will mean a commutative ring with
unit element 1 and without divisors of zero (that is, an integral domain).

4.1. Divisibility in Rings

Let O be a ring, and let « and 8 # 0 be two elements of O. If there exists an
element £ € O such that §¢ = «, then we say that « is divisible by g (or that g
divides «), and we write fla. Since O contains no divisors of zero, there is at
most one element & such that « = f&. The concept of divisibility in an arbitrary
ring clearly possesses all the usual properties of divisibility in the ring of
rational integers. For example, if y|8 and Sla, then y|e.

An element £ € © which divides the unit element 1, is called a unit of the
ring O (or an invertible element).

Theorem 1. The units of the ring © form a group under multiplication.

Proof. Let E be the set of all units of the ring ©. If ee E and € E, then
eg’ =1 and en =1 for some ¢ and n' of O. But then en(e'n’) = 1, and this
means that ene E. Since 1 € E, and if ¢ € E, then ¢’ € E, where ¢&’ = 1, we
have verified that E is a group under multiplication, and this proves the
theorem.

Elements « # 0 and § # 0 of the ring O are called associate if they divide
each other. From oo = ¢ and ff = on (£ € O, n € D) it follows that o = aly
and hence 1 = &n. Thus two nonzero elements of O are associate if one is a
unit multiple of the other.

Let u be a nonzero element of the ring O which is not a unit, We shall say
that the elements e and § of © are congruent modulo zand write o« = S (mod p),
if the difference « — f is divisible by u. All the usual properties of congruences
in the ring of integers also hold for congruences in the ring O. Forany a € O
we denote by & the set of all elements of O which are congruentto « modulo p.
The set & is called a residue class modulo u. We clearly have & = B if and only
if « = p (mod ). We can define the sum and product of two residue classes
modulo p by setting

F+B=a+p af=ap.

1t is easily checked that these definitions do not depend on the choice of the
representatives (residues) o« and f. It is also easily verified that under these
operations the set of all residue classes modulo p becomes a commutative
ring with unit element 1 (but possibly with divisors of zero). It is called the
ring of residue classes modulo p.
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If in each residue class modulo y we choose a representative, then the set §
of all representatives is called a complete system of residues modulo pu. A
complete system S of residues is clearly characterized by the property that
every element of O is congruent modulo  to one and only one element of S.

4.2. Ideals

A subset A4 of the ring O is called an ideal if it is a subgroup of the additive
group of O, and if for any « € 4 and any £ € O the product ¢a lies in 4. The
subset consisting only of zero and the entire ring are trivially examples of
ideals. The first of these ideals is called the zero ideal, the second the unit ideal.

Let oy, ..., a,, be any elements of the ring O. It is clear that the set 4 of all
linear combinations &0, + --- + £, of these elements with coefficients ¢;
in D is an ideal in O. It is called the ideal generated by the elementsa,, ..., tty,,
andisdenoted by 4 = (a4, ..., a,,). The elements «, ..., a,, arecalled generators
of the ideal A. In general, not every ideal has a finite system of generators. An
ideal A is called principal if it has a system of generators consisting of a single
element, that is, if it has the form 4 = («). A nonzero principal ideal (&) consists
of all elements of 4 which are divisible by a. The zero and unit ideals are both
principal. The zero ideal is generated by the zero element, and the unit ideal
is generated by any unit ¢ of the ring ©. Two principal ideals («) and (f) are
equal if and only if the elements « and f are associate.

Let 4 and B be two ideals of the ring ©. The set of all elements & € O which
can be represented in the form

é = dlﬁl + e+ stﬁs,

where «; € 4 and ;€ B (s = 1), is also an ideal in D. This ideal is called the
product of the ideals 4 and B, and is denoted by 4B. Since multiplication of
ideals is commutative and associative, then the set of all ideals of the ring ©
is a commutative semigroup under the operation of multiplication.

Two elements o and § of O are said to be congruent modulo the ideal 4,
and we write o« = f§ (mod A), if their difference « — § lies in A, that is, if «
and B belong to the same coset of the additive group 4. If y denotes the coset
of A which contains y, then we have & = B if and only if « = § (mod A). For
the principal ideal (), the concept of congruence modulo (i) coincides with
that modulo the element u. Consider the factor group O/A4 of the additive
group of the ring ©. When the subgroup A is an ideal, then we can define
multiplication in ©/A4. Namely, for & and J in D/4 we set

4B = ap.

If & = & and B = B, then since o, ; — aff = o, (B, — B) + P(x;, — &), we have
of = a,f; (mod A4). This means that the product &f does not depend on the
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choice of the representatives « and f (it is essential here that A4 is an ideal).
It is easily verified that under this definition the factor group ©/A4 becomes a
ring. The ring O/ A4 is called the factor ring of the ring O by the ideal 4. For a
principal ideal (i) the factor ring D/(i) coincides with the ring of residue
classes modulo p.

4.3. Integral Elements

Any ring o (commutative and without zero divisors) can be embedded in a
field. To show this we consider the set of all formal fractions a/b, where aand b
are elements of o and b # 0. Two fractions a/b and c/d are called equal if and
only if ad = bc. Addition and multiplication are defined by the formulas

a+c_ad+bc
b d  bd ’
ac_ac
bd bd

Tt is easily verified that these operations are compatible with the notion of
equality, and that with these operations the set of all fractions a/b becomes a
field. We denote this field by &, . If we identify each fraction a/1 = ac/c (¢ # 0)
with the element a € o, then o will be a subring of the field k,. Hence every
element of &, is the quotient of two elements of o.

Now let Q be any field which contains o as a subring. Let k be the set of
all quotients a/b, where @ and b lie in o (b # 0). Clearly, k is a subfield of the
field Q. This subfield is called the guotient field of v. 1t is easily checked that
the field k is isomorphic to the field k, constructed above, and hence that it
is uniquely determined by the ring o (up to isomorphism).

Definition. Let the ring o be contained in the field Q. An element a € Q
is called integral over o, if it is the root of a polynomial with coefficients in o
and with leading coefficient 1.

Since any element a € o is the root of the polynomial ¢ — a, then every
element of o is integral over o.

Let wy, ..., @, be arbitrary element of Q. The set M of all linear combinations
a0, + - + a,w, with coefficients g, € o is called a finitely generated o-module
in Q, and the elements w,, ..., @, are called generators of the p-module M,
Since 1 € o, then all the w, are contained in M.

Lemma 1. If the finitely generated o-module M is a ring, then all its
elements are integral over o.
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Proof. We can of course assume that not all w; are zero. Let « be any
element of M. Since for any i the product aw; belongs to M, then
aw; = Za,-jwj, aijED (l=1’)m)
j=1
It follows that det(«E — (a;;)) = 0 (E is the unit matrix). Hence the element «
is a root of the polynomial f(z) = det(tE — (a;;)) which has all coefficients
in o and has leading coefficient 1, and this proves the lemma.

Theorem 2. The set of all elements of Q which are integral over o is a
ring.

Proof. We must verify that the sum, difference, and product of two integral
elements of the field Q are again integral over o. If  and f are the roots of the
polynomials

t"—a "= —ay, t"=byt" = — b,
where a; and b; are elements of o, then
o=yt apt b+ aa”t, f=by=byf + - + b,

It easily follows that the o-module which consists of all linear combinations of
the products

apf 0<i<m0<j<n) “@.n

with coefficients in o, is a ring (since any product with k > 0 and / > 0 can
be expressed as a linear combination of the elements o' with coefficients in
0). By Lemma 1 all elements of this ring are integral over o; in particular,
this will hold for « & 8 and «f. Theorem 2 is proved.

Definition. Let o be a subring of the field Q, and let O be the set (which
is a ring by Theorem 2) of all elements of Q which are integral over o. The
ring O is called the integral closure of the ring o in the field Q.

Definition. A subring O, of a field K is called integrally closed in K if its
integral closure in K coincides with O, .

Definition. A ring O is called integrally closed if it is integrally closed in
its quotient field &.

Theorem 3. Let o be a subring of the field €, and let O be the integral
closure of p in Q. Then the ring O is integrally closed in Q.
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Proof. Let 8 be any element of Q which is integral over D, so that

0” = a1 + azo + -+ d,ﬂ"—l, (4.2)
where all «; lie in ©. We must show that 8 € O. For each i = 1, ..., n thereis
an integer m for which

o™ = Z: aijaij—l (aij €0) 4.3)
j=1

(since «; is integral over o). Consider the o-module M which is generated by
the products

faa kg (0<k,<m,0<k<n). (44)

&

It easily follows from (4.2) and (4.3) that any product &, " --- ,""8' with non-
negative exponents can be expressed as a linear combination of the elements
(4.4) with coefficients in o, and this means that the module M is a ring. By
Lemma 1 every element of M is integral over o. In particular, @ is integral
over o and this proves the theorem.

Lemma 2. Let o be an integrally closed ring with quotient field &, and let
f()eo[t] be a polynomial with leading coefficient 1. If the polynomial
@(t) € o[t] divides f(¢t) and has leading coefficient 1, then @(t) € 9[¢].

Proof. Let QJk be an extension in which the polynomial f(¢) factors into
linear factors. If O is the integral closure of o in Q, then every root of f(t)
clearly lies in O, and this will also be true for all roots of ¢(¢). From the identity
o) = (@ —y,) - (t —v,), it follows that all coefficients of ¢(¢) also lie in O,
and since © Nk = o (as o is integrally closed), then these coefficients lie in o,
which proves the lemma.

The following fact is an obvious consequence of Lemma 2.

Theorem 4. Let o be an integrally closed ring with quotient field k, and
let Q/k be an algebraic extension of the field k. In order that the element o € Q
be integral over o, it is necessary and sufficient that all coefficients of its
minimum polynomial lie in o.

PROBLEMS

1. An ideal A4 of the ring © is called maximal if A # D and the only ideal of © which
properly contains A4 is the unit ideal ©. Show that the ideal A4 is maximal if and only if
the factor ring ©/A4 is a field.

2. If o is an integrally closed ring, show that the polynomial ring o[¢] is also integrally
closed.
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5. Characters

In this section we describe some properties of characters of finite Abelian
groups and numerical characters.

5.1. The Structure of Finite Abelian Groups

The structure of finite Abelian groups is determined by the following
theorem (see, for instance, M. Hall, “The Theory of Groups,” Macmillan,
New York, (1959)).

Theorem 1. Every finite Abelian group can be represented as the direct
product of cyclic subgroups.

By Problems 1 and 2 a finite cyclic group cannot be represented as the direct
product of proper subgroups if and only if its order is a power of a prime.
Therefore a finite Abelian group G can be represented as a direct product
G = A4, x --- x A, of cyclic subgroups A; of prime power order. This repre-
sentation is not, in general, unique. But the orders of the cyclic subgroups of
prime power order are uniquely determined by G. These orders (which are
powers of prime numbers) are called the invariants of the finite Abelian
group G. The product of all invariants of G clearly equals the order of G.

5.2. Characters of Finite Abelian Groups

Definition. A homomorphism of the finite Abelian group G into the multi-
plicative group of the field of complex numbers is called a character of the
group G.

In other words, a character of G is a nonzero complex-valued function y
on G for which

x(xy) = x(x)x(y) (5.1)

for any x and y of G.
Since any homomorphism of groups takes the unit onto the unit, then
x(1) = 1, If the element x € G has order k, then

) = 2 = x() = 1 (5.2)

thatis, y(x)is a kth root of 1. 1f mis the maximum of the orders of the elements
of G, then by Problem 3 the order of every element of G divides m. Hence
z(x) is an mth root of 1 for all x € g, and this means that a character could also
be defined as a homomorphism from G to the group of all mth roots of 1.
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We represent G as a direct product of cyclic groups:
G ={a,} x - x{ag.
Since every element x € G can be represented in the form

X = al b ask,, (5.3)

then by (5.1),
2(x) = xla)* - xlay),

so the character y is completely determined by the values x(a,), ..., x(a;). If
a;has order m, then by (5.2) x(a,) is an m;throot of 1. Conversely, fori = 1, ..., s
let ¢; be any m;th root of 1, and for any x € G of the form (5.3) set

X(x) = 81"l 8sk" (54)

It is easily seen that the value of (5.4) is independent of the choice of the
exponents k; (which are only defined modulo m,), and that this function is a
character of the group G. Each root ¢; can be chosen in m; ways, so there are
my --- my distinct functions of the type (5.4). Hence we have the following
theorem.

Theorem 2. The number of characters of a finite Abelian group equals
the order of the group.

We shall define a multiplication for characters. If y and x’ are characters
of the group G, set

O )x) = x('(x)  (xeG).

It is clear that the function y also is a character of the group G. The character
X0, for which yq(x) =1 for all x € G, is called the unit character. 1t is clear
that yy, = x for any character y. If for a character y of the group G we set

) =xx) (xe0),

where x(x) is the complex conjugate of the number x(x), then the function ¥
also will be a character of the group G, and y¥ = y, . Since multiplication of
characters is clearly associative, then the set of all characters of a finite Abelian
group is a group under the operation of multiplication.

Let G = {a} be a cyclic group of order m and let ¢ be a fixed primitive mth
root of 1. Let x be that character of the group G for which y(a) = ¢ (and hence
x(@) = &*). Since x'(a) = ¢, then the characters y, = x™, x, x>, ..., x™ ! are
pairwise-distinct, and hence exhaust the characters of the group G. Hence we
have shown that the character group of a cyclic group is cyclic. In the general
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case it is easy to prove the following theorem: Any finite Abelian group is
isomorphic to its character group.

Let G be an Abelian group of order n and let H be a subgroup of order m.
If we restrict a character of G to H, we clearly obtain a character of the group H.
We denote this character by . It is clear that the mapping y — £ is a homo-
morphism from the character group X of G to the character group Y of H.
Let 4 be the kernel of this map. The characters of 4 are characterized by
having x(z) =1 forall ze H. If y € A and x and x’ lie in the same coset of
H in G, then y{x) = x(x'). Setting ¥(X) = x(x), where y € 4 and X is the coset
of H in G which contains x, we obtain a function ¥ on the factor group G/H,
which is a character of this group. Conversely, if i is any character of the
factor group G/H, then by setting

W)=y  (xe0),

we obtain a character y € 4, for which £ = . Since under the mapping y — ¥
distinct characters in 4 go to distinct characters of the group G/H, we have
shown that the number of characters contained in 4 equals the number of
characters of the factor group G/H, that is, equals n/m (Theorem 2). Hence
the image of the group X under the homomorphism y — § must have order
n/(n/m) = m, and since by Theorem 2 the group Y has order m, then the image
coincides with Y. This means that every character of the group H is of the
form g for some character y of the group G. It is clear that the number of
characters y € X which induce a given character of H equals njm = (G: H).
We have proved the following theorem.

Theorem 3. If G is a finite Abelian group and H is a subgroup, then any
character of the group H can be extended to a character of the group G, and
the number of such extensions equals the index (G : H).

Corollary 1. If x is any nonunit element of the group G, then there
exists a character y of the group G for which x(x) # 1.

Indeed, consider the cyclic group {x} = H. Since H has order greater than 1,
there is a nonunit character x’ of H, and x'(x) # 1. Extending ' to a character
of the group G, we obtain the desired character y.

Corollary 2. If the element x of the group G is not contained in the
subgroup H, then there is a character y of the group G such that y(x) # 1
and x(z) =1 for all ze H.

Indeed, the unit character of the group H can be extended to a nonunit
character of the subgroup {x, H}, which in turn can be extended to a character
of the group G.
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We now consider some relations between the values of characters. If y, is
the unit character, then y,(x) =1 for all x € G, and hence Y , . ¢ xo(x) = 1,
where n is the order of the group G. Assume that the character y is not the
unit character, so that y(z) # 1 for some z € G. If x runs through all elements
of the group G, then zx also runs through all elements of G. Setting s =

Y c e x(x), we have
S= ZGX(ZX) = x(2)S.

Since x(z) # 1, we must have S = 0. Thus we have the formula

n if ¥y =0,
Y 7(x) = ET (5.5)
xeG 0 ity +#xo.

The value of any character y on the unit element of the group equals 1,
hence 21 z(1) = n (here y runs through all characters of the group G). We set
T =Y, x(x). By the first corollary to Theorem 3 there is a character x’ for
which y'(x) # 1 (if x #1). As x runs through the character group of G, so
does xy’. Therefore,

T=Y WX =Y 1&Xxx)=x®T,

and since y'(x) # 1, then T = 0. We have proved the formula

n ifx=1,

= 5.6
;X(X) 0 if x # 1. (56)

5.3. Numerical Characters

For any natural number m let G,, denote the group under multiplication of
all residue classes modulo m which consists of all residue classes of numbers
relatively prime to m. The residue class modulo m which contains a will be
denoted by a.

Every character y of the group G,, can be associated to a function y* on
rational integers relatively prime to m by setting

1*a) = x(a).

We extend this function to all rational integers by setting y*(a) = 0 if 2 and m
are not relatively prime. Such a function x* (defined on all rational integers)
is called a numerical character modulo m. In the future we shall denote x*
by the same symbol, %, as used for the corresponding character of the group
G,,. It is clear that distinct characters of the group G,, correspond to distinct
numerical characters modulo m, and that the number of numerical characters
modulo m equal @(m).



Sec. 5] CHARACTERS 419

The following properties of numerical characters easily follow from the
definition.

(1) For any rational integer a the value of y(a) is a complex number which
is zero if and only if @ and m are not relatively prime.

(2) If a = &’ (mod m), then x(a) = x(a').

(3) For any rational integers @ and b we have y(ab) = y(a)x(b).

We shall show that numerical characters are completely characterized by
these three properties. Let n be a function which satisfies (1) to (3). For any
class a € G,,, (a, m) = 1, we set y(a) = n(a). By (2) the value of y(a) does not
depend on the choice of a, and by (1) it is nonzero. Also, if (@, m) = 1 and
(b, m) = 1, then by condition (3)

(@ B) = y(ab) = n(ab) = n(@n(b) = x@)x(b).

Hence y is a character of the group G,,, and the corresponding numerical
character coincides with the function #.

Let m’ be a natural number which is divisible by m. From any character y
modulo m we can form a character y’ modulo m’. Namely, if a is relatively
prime to m’ (and hence also to m), set y'(a) = x(a); if (a, m’) > 1,set x’(a) = 0.
The function y’ satisfies conditions (1) to (3), and hence is a numerical character
modulo m’. We shall say that y’ is induced by the character y.

Definition. Let x be a numerical character modulo m. If there is a proper
divisor d of the number m and a character y; modulo d such that y, induces ¥,
then the character is called nonprimitive; otherwise it is called primitive.

Theorem 4. In order that the character y modulo m be primitive, it is
necessary and sufficient that for any proper divisor 4 of the number m, there
be a number x which is congruent to 1 modulo 4 and relatively prime to m,
such that y(x) # 1.

Proof. If the character y is nonprimitive, then it is induced by some character
¥y modulo d, where d is a proper divisor of m. This means that for any x
which is relatively prime to m we have y(x) = x,(x). If x =1 (mod d), then
x(x) = x(x) = x,(1) = 1. Conversely, assume that for some proper divisor d
of the number m we have y(x) = 1 for any x which is relatively prime to m
and congruent to 1 modulo d. For any a which is relatively prime to d, we can
find a number &', for which (a’, m) = 1 and @’ = g (mod d). Set

x1(a) = x(@).

We claim that the value of y,(a) does not depend on the choice of @’. Indeed,
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if a’ = a" (mod d), where a” is also relatively prime to m, then a” = xa’ (mod m)
for some x relatively prime to m (since @’ and @” are both relatively prime to m).
Since x = 1 (mod d), by the conditions of the theorem we have y(x) = 1, and
then y(a@") = y(x)x(a") = x(a’). By setting y,(a) = O when (a, d) # 1, we obtain
a function y, which is easily seen to be a numerical character modulo d. Since
x(a@) = x,(a) for (a, m) = 1, then y is induced by the character y, . The theorem
is proved.

PROBLEMS

1. If a finite cyclic group has prime power order, show that it is not the direct product
of proper subgroups.

2. Let G be a finite cyclic group whose order is the product of the relatively prime
numbers &k and /. Show that G is the direct product of two subgroups of orders & and /.

3. Let a be an element of maximum order in the finite Abelian group G. Show that
the cyclic subgroup {a} is a direct factor of G. )

4. Let k be a natural number. Show that the element x of the finite-Abelian group G
is a kth power in G if and only if x¥(x) =1 for all characters x of the group G for which
X =Xo-

5. Let G be a finite Abelian group of order n, Write in any order the elements x;, ..., x,
and the characters x, ..., x». Show that the matrix

1
— X (XJ))
(" ‘ 1
is unitary.

6. Let my, ..., m be pairwise relatively prime natural numbers and let m=m, --- my.
Show that any numerical character modulo m has a unique representation as a product
of characters y, modulo m, (i = 1, ..., k), that is, that

x(a) = x1(a) -+ xx(a)

for any rational integer a. [For any 7 the character y;, is defined by y.(@) = x(a’), where a’
is determined by the congruences a’ =a (mod m)), @’ =1 (mod m/m,).]

7. If the character x of Problem 6 is primitive, show that the characters x1, ..., xs are
also primitive.

8. Let d; and d, be divisors of the natural number m and letd = (d,,d;).If thecharacter
x modulo m is induced by some character modulo 4 and also induced by some character
modulo d, show that it is induced by some character modulo 4.

9. Show that every character modulo m is induced by a unique primitive character.
The modulus f of this primitive character is called the fundamental modulus of the
character y.

10. Show that the number of primitive characters modulo m equals

m
Z udy (z)
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(d runs through all divisors of the number m; u is the Mobius function; ¢ is Euler’s
function).

11. Show that there exist primitive characters modulo m if and only if m is either odd
or is divisible by 4.

12. Let § be the vector space over the complex numbers which consists of all complex-
valued functions on the finite Abelian group G. For each element w €G let T, denote the
shift operator, defined by the formula (T, f)(0) = f(wo). Show that every character of the
group G is an eigenvector of the operator T,,. What are the corresponding eigenvalues?

13. We keep the notations of the preceding problem and consider, for some fixed
fe §, the square matrix

A=(floT e,

where o and 7 run through all elements of the group G, arranged in some order. Show
that the determinant of this matrix is

I1 (Z S (o)x(O))

(o runs through all elements and y through all characters of the group G).
[Hint: The matrix A is the matrix of the operator T= 3, f(w)T, in the basis which

consists of the functions /,, where
1 for o=,
1(7) =
0 for o # 1.

Find the eigenvalues of the operator 7.}

14. Prove the assertion of Problem 13 by considering the determinant of the product
of the matrices (x(0)),,, and 4.
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TABLE 1

h, THE NUMBER OF DIVISOR CLASSES, AND £, THE FUNDAMENTAL UNIT GREATER THAN 1, FOR
THE ReEAL QUADRATIC FIELDS R(\/d), WHERE d IS A SQUARE-FREE INTEGER, 2 < d < 101.

THE NorM N(g) 1s ALSO GIVEN. HERE w=(1+ Vv 17)/2 WHEN d=1 (MoD 4), AND w=\/2
WHEN d=22, 3 (MoD 4)

d h £ N(e) d h € N(e)
2 1 1 +w —1 53 1 J+tw -1
3 1 2+ w +1 55 2 89 + 12w +1
5 1 w —1 57 1 131 + 40w +1
6 1 5+ 2w +1 58 2 99 + 13w -1
7 1 8 + 3w +1 59 1 530 + 69w +1
10 2 3+w -1 61 1 17 + Sew —1
11 1 10 + 3w +1 62 1 63 + 8w +1
13 1 l+w -1 65 2 7+ 2w -1
14 1 15+ 4w +1 66 2 65 + 8w +1
15 2 4+ w +1 67 1 48842 4+ 5967w +1
17 1 3+ 2w —1 69 1 11 + 3w +1
19 1 170 + 39w +1 70 2 251 + 0w +1
21 1 2+ w +1 71 1 3480 + 413 w +1
22 1 197 + 42w +1 73 1 943 + 250w -1
23 1 24+ Sw +1 74 2 43 + Sw -1
26 2 S+w -1 77 1 4+w +1
29 1 24w —1 78 2 53 + 6w +1
30 2 11 + 2w +1 79 3 80 + 9w +1
31 1 1520 + 273w +1 82 4 9+w -1
33 1 19 + 8w +1 83 1 82 + 9w +1
34 2 35+ 6w +1 85 2 4+w —1
35 2 6+w +1 86 1 10405 + 1122w +1
37 1 5+ 2w -1 87 2 28 + 3w +1
38 1 37 + 6w +1 89 1 447 + 106w -1
39 2 25 + 4w +1 91 2 1574 + 165w +1
41 1 27 + 10w —1 93 1 13+ 3w +1
42 2 13 + 2w +1 94 1 2143295 + 221064w +1
43 1 3482 + S3lw +1 95 2 39+ 4w +1
46 1 24335 + 3588w +1 97 1 5035 + 1138w —1
47 1 48 + Tw +1 101 1 9+ 2w -1
51 2 S0+ 7w +1

422
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TABLE 2

423

h, THE NUMBER OF DIVISOR CLASSES, AND N(£), THE NORM OF A FUNDAMENTAL UNIT, FOR
THE REAL QUADRATIC FIELDS R(\/d), WHERE d 15 A SQUARE-FREE INTEGER, 101 < d < 500

d h N@ d h Ne d h Ne d h Ne
o1 1 —1 66 1 +1 | 29 3 -1 298 2 -1
102 2 41 167 1 +1 | 230 2  +1 299 2 +1
103 1 +1 170 4 -1 | 231 4 +1 301 1 +1
105 2 +1 17 1 -1 | 23 1 -1 302 1 +1
106 2 -1 174 2 +1 | 235 6 +1 303 2 +1
107 1 +1 177 1 +1 | 27 1 +1 305 2 +1
09 1 -1 178 2 +1 | 238 2 +1 | 307 1 +1
110 2 +1 179 1 +1 | 239 1 +1 309 1 +1
m 2 +1 188 1 —1 [ 241 1 -1 30 2 +1
m 1 -1 1822 2 41 | 246 2 +1 311 +1
114 2 41 183 2 +1 | 247 2+t I3 1 -1
1s 2 +1 185 2 —1 | 249 1 41 314 2 —1
g 1 +1 18 2 +1 | 251 1 41 371 —1
119 2 +1 187 2 41 | 253 1 +1 318 2 - +1
122 2 -1 190 2 +1 254 3 +1 319 2 +1
123 2 41 199 1 41 | 255 4 41 21 3 +1
127 1 +1 193 1 —1 | 257 3 -1 322 4 +1
129 1 +1 194 2 +1 | 258 2 41 323 4 +1
130 4 —1 195 4 +1 | 259 2 41 326 3 +1
131 1 +1 197 1 —1 | 262 1 +1 327 2 +1
133 1 41 199 1 +1 | 263 1 41 329 1 +1
134 1 +1 | 200 1 41 | 265 2 -1 330 4 +1
137 1 —1 | 202 2 —1 | 266 2 +1 31 41
138 2 +1 | 203 2 1 267 2 +1 34 1 41
139 1 +1 | 205 2 +1 | 290 1 -1 35 2 41
141 1 +1 | 206 1 41 | 21m 1 +1 337 1 —1
142 3 41 | 209 1 +1 | 273 2 41 339 2 41
143 2 +1 | 200 4 41 | 274 4 —1 41 1 +1
145 4  —1 | 211 1  +1 | 277 1 -1 45 2 +1
46 2 +1 | 213 1 41 | 21 1 41 46 6 —1
1“9 1 -1 | 214 1 1 281 1 -1 347 1 +1
151 1 +1 215 2 41 | 282 2 41 9 1 —1
154 2 41 | 217 1 41 | 283 1 41 53 1 -1
155 2 +1 | 218 2 -1 | 285 2 41 354 2 +1
157 1 —1 | 219 4 +1 | 286 2  +1 55 2 41
158 1 +1 | 221 2 41 | 287 2 +1 57 2 +1
159 2 41 | 222 2 41 | 290 4 -1 38 1 +1
161 1 41 | 73 3 41 | 291 4 41 359 3 41
163 1 +1 26 8 —1 | 293 1 -1 362 2 -1
165 2 +1 27 1 +1 | 295 2 +1 65 2 —1
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TABLE 3

h, THE NUMBER OF DIVISOR CLASSES, FOR THE REAL QUADRATIC FIELD R(\/p), WHERE p
1S A PRIME AND p <2000*°

d h  N(e) d h  N(e) | d h  N(e) d h  N(e)
366 2 +1 401 5 -1 435 4 +1 469 3 +1
367 1 +1 402 2 +1 437 1 +1 470 2 +1
370 4 -1 403 2 +1 438 4 +1 471 2 +1
371 2 +1 406 2 +1 439 5 +1 473 3 +1
373 1 —1 407 2 +1 442 8 —1 474 2 +1
374 2 +1 409 1 -1 443 3 +1 478 1 +1
37 2 +1 410 4 +1 445 4 -1 479 1 +1
379 1 +1 411 2 +1 446 1 +1 481 2 —1
381 1 +1 413 1 +1 447 2 +1 482 2 +1
382 1 +1 415 2 +1 449 1 -1 483 4 +1
383 1 +1 417 1 +1 451 2 +1 485 2 -1
385 2 +1 418 2 +1 453 1 +1 487 1 +1
386 2 +1 419 1 +1 454 1 +1 489 1 +1
389 1 —1 421 1 -1 455 4 +1 491 1 +1
390 4 +1 422 1 +1 457 1 -1 493 2 —1
391 2 +1 426 2 +1 458 2 —1 494 2 +1
393 1 +1 427 6 +1 461 1 -1 497 1 +1
394 2 —1 429 2 +1 462 4 +1 498 2 +1
395 2 +1 430 2 +1 463 1 +1 499 5 +1
397 1 -1 431 1 +1 465 2 +1
398 1 +1 433 1 -1 466 2 +1
399 8 +1 434 4 +1 467 1 +1

*E. L. Ince, Cycles of reduced ideals in quadratic fields, in ‘“Mathematical Tables,”
Vol. 1V, British Association for the Advancement of Science, London 1934,

® There are 303 prime numbers p less than 2000 (including p =2).

For 26 of these primes k=3 for R(\/p). They are: p =79, 223, 229, 257, 359, 443, 659,
733, 761, 839, 1091, 1171, 1223, 1229, 1367, 1373, 1489, 1523, 1567, 1627, 1787, 1811, 1847,
1901, 1907, 1987. For 7 primes & =5. They are: p=401, 439, 499, 727, 1093, 1327, 1429.
For 4 primes h=7. They are: p=7577, 1009, 1087, 1601. For p=1129 we have h=9 (and
the group of divisor classes is cyclic), and for p =1297 we have k= 11. For the remaining
264 prime numbers p < 2000, the field R(A/p) has only one divisor class (that is, every divisor
is principal).
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TABLE 4
h, THE NUMBER OF DIVISOR CLASSES, FOR THE IMAGINARY QUADRATIC FIELDS RV :;),
WHERE @ IS SQUARE-FREE AND 1 € a < 500

a h a a h a h a h
1 1 67 1 134 14 202 6 267 2
2 1 69 8 137 8 203 4 269 22
3 1 70 4 138 8 205 8 271 11
5 2 71 7 139 3 206 20 273 8
6 2 73 4 141 8 209 20 274 12
7 1 74 10 142 4 210 8 277 6
10 2 717 8 143 10 211 3 278 14
11 1 78 4 145 8 213 8 281 20
13 2 79 S 146 16 214 6 282 8
14 4 82 4 149 14 215 14 283 3
15 2 83 3 151 7 217 8 285 16
17 4 85 4 154 8 218 10 286 12
19 1 86 10 155 4 219 4 287 14
21 4 87 6 157 6 221 16 290 20
22 2 89 12 158 8 222 12 291 4
23 3 91 2 159 10 223 7 293 18
26 6 93 4 161 16 226 8 295 8
29 6 94 8 163 1 227 5 298 6
30 4 95 8 165 8 229 10 299 8
31 3 97 4 166 10 230 20 301 8
33 4 101 14 167 11 231 12 302 12
34 4 102 4 170 12 233 12 303 10
35 2 103 5 173 14 235 2 305 16
37 2 105 8 174 12 237 12 307 3
38 6 106 6 177 4 238 8 309 12
39 4 107 3 178 8 239 15 310 8
41 8 109 6 179 5 241 12 311 19
42 4 110 12 181 10 246 12 313 8
43 1 111 8 182 12 247 6 314 26
46 4 113 8 183 8 249 12 317 10
47 5 114 8 185 16 251 7 318 12
51 2 115 2 186 12 253 4 319 10
53 6 118 6 187 2 254 16 321 20
55 4 119 10 190 4 255 12 322 8
57 4 122 10 191 13 257 16 323 4
58 2 123 2 193 4 258 8 326 22
59 3 127 5 194 20 259 4 327 12
61 6 129 12 195 4 262 6 329 24
62 8 130 4 197 10 263 13 330 8
65 8 131 5 199 9 265 8 331 3
66 8 133 4 201 12 266 20 334 12
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TABLE 5

THE DISCRIMINANTS OF ALL KNOWN ORDERS OF IMAGINARY QUADRATIC FIELDS FOR WHICH
EVERY GENUS OF MODULES BELONGING TO THE ORDER CONSISTS OF A SINGLE CLASS*®

a h a h a h a h a h
335 18 374 28 406 16 437 20 467 7
337 8 377 16 407 16 438 8 469 16
339 6 379 3 409 16 439 15 470 20
341 28 381 20 410 16 442 8 471 16
345 8 382 8 411 6 443 5 473 12
346 10 383 17 413 20 445 8 474 20
347 5 385 8 415 10 446 32 478 8
349 14 386 20 417 12 447 14 479 25
353 16 389 22 418 8 449 20 481 16
354 16 390 16 419 9 451 6 482 20
355 4 391 14 421 10 453 12 483 4
357 8 393 12 422 10 454 14 485 16
358 6 394 10 426 24 455 20 487 7
359 19 395 8 427 2 457 8 489 20
362 18 397 6 429 16 458 26 491 9
365 20 398 20 430 12 461 30 493 12
366 12 399 16 431 21 462 8 494 28
367 9 401 20 433 12 463 7 497 24
370 12 402 16 434 24 465 16 498 8
371 8 403 2 435 4 466 8 499 3
373 10

* L. E. Dickson, ‘“‘Introduction to the Theory of Numbers,” Dover, New York, 1929,

®]. The discriminants of maximal orders (65 values):

-3 — 43 —148 —340 — 595 —1320
— 4 -~ 51 —163 —372 — 627 —1380
-7 — 52 —168 —403 — 660 —1428
— 8 — 67 —187 —408 — 708 —1435
—11 — 84 —195 —420 — 115 —1540
—15 — 88 —228 —427 — 760 — 1848
—19 — 91 —232 —435 - 795 —1995
—20 —115 —235 —483 — 840 —3003
—24 —120 —267 —520 —1012 —3315
—35 —123 —280 —532 —1092 —5460

—40 —132 —312 —555 —1155
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2. The discriminants of nonmaximal orders (36 values):

—3-22 —422 —7-82 —15-42 —88-22 —408-22
—332 —4-32 —~822 —15-82 —120-22 —520-22
—342 —4-42 —832 —20-32 —168-22 —760-22
—3-52 — 45?2 —8-62 —24-22 —232-22 —840-22
—3-72 —722 —11:32 —3532 —280-22 —1320:22
—3-82 —7-4% —15-22 —40-22 —31222 —1848-22

The suitable numbers of Euler: 1,2, 3,4, 5,6,7, 8,9, 10, 12, 13, 15, 16, 18, 21, 22, 24,
25, 28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130,
133, 165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462, 520,
760, 840, 1320, 1365, 1848.

TABLE 6

h, THE NUMBER OF DIVISOR CLASSES, FOR CERTAIN CUBIC FIELDS R(\/Jm)

m n m n m n
2 1 22 3 43 12
3 1 23 1 44 1
5 1 26 3 45 1
6 1 28 3 46 1
7 3 29 1 47 2
10 1 30 3 63 6
11 2 31 3 65 18
12 1 33 1 91 9
13 3 34 3 124 9
14 3 35 3 126 9
15 2 37 3 182 27
17 1 38 3 215 21
19 3 39 6 217 27
20 3 41 1 342 27
21 3 42 3 422 21
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TABLE 7

h, THE NUMBER OF DIVISOR CLASSES, FOR ALL TOTALLY REAL CuBiC
FIELDS WITH DISCRIMINANT < 20,000%:®

Bounds for the Number of Bounds for the Number of
discriminants fields discriminants fields
1- 1,000 22 11,001-12,000 52

1,001~ 2,000 32 12,001-13,000 37
2,001- 3,000 35 13,001-14,000 43
3,001- 4,000 39 14,001-15,000 42
4,001- 5,000 34 15,001-16,000 46
5,001- 6,000 41 16,001-17,000 52
6,001- 7,000 37 17,001-18,000 39
7,001- 8,000 47 18,001-19,000 39
8,001- 9,000 40 19,001-20,000 48
9,001-10,000 39

10,001-11,000 42 Total 806

® H.J. Godwin and P. A. Samet, J. London Math. Soc. 34, 108-110 (1959); H.J. Godwin,
Proc. Cambridge Phil. Soc. 57, 728-730 (1961).

% The cubic field R(6) is called totally real if s =3, ¢ =0, that is, if all its isomorphisms
into the complex numbers are real. If the minimum polynomial of @ factors into linear
factors in R(6), then the field R(H) is called cyclic. Cyclic cubic fields are characterized by
the fact that their discriminant is the square of a rational integer.

There are 830 totally real cubic fields with discriminant < 20,000. Of these 24 are cyclic.
For 16 cyclic cubic fields A=1. These fields have discriminants 72, 92, 132, 192, 312, 372,
432, 612, 672, 732, 792, 972, 1032, 1092, 1272, 1392,

For each of the discriminants 632, 912, 1172, 1332, there are precisely two cyclic cubic
fields, and for all of these fields, A=3.

The noncyclic totally real cubic fields with discriminant < 20,000 are distributed as
follows (for each value of the discriminant there is only one field:

Among these fields there are 748 with A =1, There are 29 fields with A=2. Their dis-
criminants are 1,957, 2,777, 3,981, 6,809, 7,053, 7,537, 8,468, 8,789, 9,301, 10,273, 10,889,
11,197, 1,324, 11,348, 12,197, 13,676, 13,768, 14,013, 14,197, 15,188, 15,529, 16,609, 16,997,
17,417, 17,428, 17,609, 17,989, 18,097, 19,429, Fields with A =3 (there are 26 of them),
have discriminants 2,597, 4,212, 4,312, 5,684, 6,885, 7,220, 8,829, 9,653, 9,800, 9,996,
10,309, 11,417, 13,916, 13,932, 14,661, 14,945, 15,141, 15,884, 16,660, 16,905, 18,228,
18,252, 18,792, 19,220, 19,604, 19,764. The three fields with discriminants 8,069, 16,357,
19,821 have h = 4, There are no fields with A= 5 (among the totally real cubic fields with
discriminant < 20,000).

Remark: Within the limits of the table there is one and only one noncyclic totally real
cubic field for each value of the discriminant. However, this is not always true. Thus, for
example, there are at least three fields with discriminant 22,356 (Problem 21 of Section 2,
Chapter 2).



TABLES 429

TABLE 8

THE FACTOR h* =h*(I) oF THE NUMBER OF DIVISOR CLASSES
FOR THE /th CycLoToMIC FIELD FOR PRIME NUMBERS / < 100

l h* l h*
3 1 43 211
5 1 47 5-139
7 1 53 4,889
11 1 59 3-59-233
13 1 61 41-1,861
17 1 67 67-12,739
19 1 71 72-79,241
23 3 73 89-134,353
29 23 79 5-53-377,911
31 9 83 3-279,405,653
37 37 89 113-118,401,449
41 112 97 577-3,457- 206,209
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TABLE 9

ALL IRREGULAR PRIME NUMBERS < 4001. ALONG WITH THE PRIME / ARE LISTED THOSE
NUMBERS 2¢a (2<2a <I—3) FOR WHICH THE NUMERATOR OF THE BERNOULLI NUMBER B,, IS
DivisiBLE BY /. THERE ARE 219 IRREGULAR PRIME NUMBERS < 4001. ALL ODD PRIMES
<< 4000 WHICH DO NOT APPEAR IN THE TABLE ARE REGULAR (THERE ARE 331 OF THEM)2D

! 2a ) 2a ! 2a
37 32 647 236,242,554 1307 382, 852
59 44 653 48 1319 304

67 58 659 224 1327 466

101 68 673 408,502 1367 234

103 24 677 628 1381 266

131 22 683 32 1409 358

149 130 691 12, 200 1429 996

157 62,110 727 378 1439 574

233 84 751 290 1483 224

257 164 757 514 1499 94

263 100 761 260 1523 1310

271 84 773 732 1559 862

283 20 797 220 1597 842

293 156 809 330, 628 1609 1356

307 88 811 544 1613 172

311 292 821 744 1619 560

347 280 827 102 1621 980

353 186, 300 839 66 1637 718

379 100, 174 877 868 1663 270, 1508

389 200 881 162 1669 388, 1086

401 382 887 418 1721 30

409 126 929 520, 820 1733 810, 942

421 240 953 156 1753 712

433 366 971 166 1759 1520

461 196 1061 474 1777 1192

463 130 1091 888 1787 1606

467 94,194 1117 794 1789 848, 1442

491 292, 336, 338 1129 348 1811 550, 698, 1520

523 400 1151 534, 784, 968 1831 1274

541 86 1153 802 1847 954,1016, 1558

547 270, 486 1193 262 1871 1794

557 222 1201 676 1877 1026

577 52 1217 784,866, 1118 1879 1260

587 90, 92 1229 784 1889 242

593 22 1237 874 1901 1722

607 592 1279 518 1933 1058, 1320

613 522 1283 510 1951 1656

617 20, 174, 338 1291 206, 824 1979 148

619 428 1297 202, 220 1987 510

631 80, 226 1301 176 1993 912
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! 2a ! 2a ) 2a
1997 772, 1888 2663 1244 3491 2544
2003 60, 600 2671 404, 2394 3511 1416, 1724
2017 1204 2689 926 3517 1836, 2586
2039 1300 2753 482 3529 3490
2053 1932 2767 2528 3533 2314,3136
2087 376, 1298 2777 16006 3539 2082,2130
2099 1230 2789 1984, 2154 3559 344, 1592
2111 1038 2791 2554 3581 1466
2137 1624 2833 1832 3583 1922
2143 1916 2857 98 3593 360, 642
2153 1832 2861 352 3607 1976
2213 154 2909 400, 950 3613 2082
2239 1826 2927 242 3617 16, 2856
2267 2234 2939 332,1102, 2748 3631 1104
2273 876, 2166 2957 138,788 3637 2526, 3202
2293 2040 2999 776 3671 1580
2309 1660,1772 3011 1496 3677 2238
2357 2204 3023 2020 3697 1884
2371 242,2274 3049 700 3779 2362
2377 1226 3061 2522 3797 1256
2381 2060 3083 1450 3821 3296
2383 842, 2278 3089 1706 3833 1840, 1998, 3286
2389 776 3119 1704 3851 216,404
2411 2126 3181 3142 3853 748
2423 290, 884 3203 2368 3881 1686,2138
2441 366, 1750 3221 98 3917 1490
2503 1044 3229 1634 3967 106
2543 2374 3257 922 3989 1936
2557 1464 3313 2222 4001 534
2579 1730 3323 3292
2591 854, 2574 3329 1378
2621 1772 3391 2232,2534
2633 1416 3407 2076, 2558
2647 1172 3433 1300
2657 710 3469 1174

3 D. H. Lehmer, Emma Lehmer, H. S. Vandiver, J. L. Selfridge, and C. A. Nicol, Proc.
Natl. Acad. Sci. U.S. 40, No. 1, 25-33. (1954); No. 8, 732-735 (1954); 41, No. 11.
970—-973 (1955).

b Table 9 was corrected in the second printing to include four additional pairs as noted
in Wells Johnson, Math. Cémp. 27 (1973), 387-396 and in V.V. Kobelev, Soviet Math.
Dokl. 11 (1970), 188-189. See also J.L. Selfridge and R. Pollack, Notices Amer. Math.
Soc. 11 (1964), 97.



Index

A

Absolute index of ramification of di-
visor, 217
Absolute norm of divisor, 216
degree of inertia, 217
Absolutely irreducible polynomial, 10
Algebraic element
extension, 396
number, 78
Algebraic integer, 92
Algebraic number field, 78
Analytic curve, 305
function, 284
Associate numbers of module, 89

B

Basis,

of field extension, 397

of lattice, 99

of module, 83
Bernoulli number, 382
Binary quadratic form, 395
Bounded p-adic sequence, 28
Bounded set of points, 100

C

Centrally symmetric set, 110
Character of Abelian group, 415
Character of quadratic field, 238
Characteristic polynomial, 399
Class of divisors, 220
Coefficient ring, 87
Complete field under valuation, 255
Complete metric field, 35
Completion of field, under metric, 35
under valuation, 253
Congruence,
of elements of ring modulo g divi-
sor, 207
of polynomials, 3
Conjugate fields, 404
elements, 404

433

Convex set, 110
Cyclotomic field, 325
Cyclotomic polynomial, 325

D
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Reduced number
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of imaginary quadratic field, 148
module of real quadratic field, 153
of imaginary quadratic field, 148
of real quadratic field, 153
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of algebraic number field, 115
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208
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S

Separable extension, 402

Similar modules, 82
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ratic field, 239
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T
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Trace of element, 400
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Unique factorization, 166
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of algebraic number field, 93
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p-adic, 21
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Valuation, 175
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