The signature of fibre-bundles
By M. F. ATiYAH

1. Introduction

For a compact oriented differentiable manifold X of dimension
4k the signature (or index) of X is defined as the signature of the
quadratic form in H*(X; R) given by the cup product. Thus

Sign (X) =p — ¢

where p is the number of + signs in a diagonalization of the
quadratic form and ¢ is the number of — signs. If dim X is not
divisible by 4 one defines Sign (X) to be zero. Then one has the
multiplicative formula

Sign (X x Y) = Sign (X)-Sign(Y) .

In |5] it was proved that this multiplicative formula continues to
hold when X x Y is replaced by a fibre bundle with base X and
fibre Y provided that the fundamental group of X acts trivially
on the cohomology of Y.

In this paper we exhibit examples which show that this
restriction on the action of 7 (X) is necessary, and that the signa-
ture 18 not multiplicative in general fibre-bundles, Our examples
are actually in the lowest possible dimension namely when dim X =
dim Y = 2. The total space Z of the bundle has dimension 4 and
non-zero signature, whereas Sign (X) = Sign(Y) = 0 (because
their dimensions are not divisible by 4). Of course if one wants an
example in which base and fibre have dimensions divisible by 4 it
suffices to take Z%, which is fibered over X? with fibre Y%; we have

Sign (Z?) = Sign (Z)* # 0
Sign (X?) == Sign (X)? = 0
Sign (Y?) =Sign(Y)*=0.
* Partially supported by AF-AFOSR-359-66.
Since this paper was submitted, my attention has been drawn to a very
similar paper of Kodaira J. Anal. Math. 19 (1967), 207-215. Although this

decreases the originality of the present paper, it enhances the appropriateness
of Lthe dedication,
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Our 4-manifold Z will actually arise as a complex algebraic
surface and the projection 7: Z— X will be holomorphic (for some
complex structure on X). The fibres Y, = 7~ (x) will therefore be
algebraic curves but the complex structure will vary with z, so
that Z is not a holomorphic fibre bundle, This is an essential
feature of the example as we shall explain in § 3.

If T, E denote the Todd genus and Euler characteristic respec-
tively, one has the following simple relations (for curves and
surfaces)

o2T(X) = E(X), 2T(Y) = E(Y)
AT(Z) = Sign (Z) + E(Z) .

Since F is always multiplicative for fibre bundles these relations
imply

T(Z) = T(X)T(Y) 4 711- Sign (Z) .

Thus the non-vanishing of Sign (Z) is equivalent to the non-multi-
plicativity

(1.1) T(Z) + T(X)T(Y)

of the Todd genus,

If d € H*Z) denotes the first Chern class of the tangent bundie
T. along the fibres of Z, the total Pontrjagin class p(Z) is given by

p(Z) = p(T,)-7*p(X)
=1+ d.
The Hirzebruch formula for the signature therefore gives

1.2) Sign (Z) = Eg [Z].

Thus the crucial property of our examples will be that
(1.3) d*+= 0.

In the next section we shall construct the surface Z and show
that (1.3) holds. In § 3 we shall explain the connection with moduli
of algebraic curves. Finally in § 4 we shall investigate in general
the effect of the fundamental group on the signature of a fibre-

bundle. We shall see that this is closely related to the homomor-
phism

H*(Bn; Q) —_— H*(BI‘; Q)
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induced by a homomorphism of the discrete group I' into the real
Lie group G.

2. Construction of the surface Z

We first choose a curve C with a fixed-point-free involution 7.
In other words C is a double covering of a curve C': these exist as
soon as the genus g’ = 1, but we shall take ¢’ = 2. Note that the
genus gof Cis 29’ — 1 and so ¢ = 3. We now take X to be the
covering of C given by the homomorphism

n(C)— H(C;Z)— H(C; Z,) = Z}° ,

where ¢ is the genus of C. It has the property that any double
covering of C becomes trivial when lifted to X. Thus, if f: X-—C
is the covering map, the induced homomorphism with mod 2 coef-
ficients

S HY(C; Z,) — HY(X; Z,)

is zero.
Consider now, in X x C, the graphs ', I',;

X
Our choice of f was to ensure the following property of these
graphs:

LEMMA 2.1. The homology class in H(X x C;Z) defined by
the curve I'; + I'., is even.
- PROOF. Let v,c H¥X x C; Z,) be the mod 2 reduction of the
class of I'y, We have to show
Tyt Vep = 0.

Now, if we use the Kiinneth formula and Poincaré duality (for
mod 2 coefficients) to identify
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H*(X x C) = Hom (H*(C), H*(X))
it is well known that
Vr=2_,1
where f} is the homomorphism induced by fin H?( ; Z,). By our
choice of f we have

Sf=20
s = deg f(mod 2) = 0
fr=1 (identifying H%(C) and H(X) with Z,) .
Similarly
@) =frcr =0
) =0
(zf) =1.

Putting these together we get
Yt Ver =22, (5 + (@)= 0.

Let us next recall that, if A is a non-singular curve on an
algebraic surface M, and if the homology class of Ain H*M; Z) is
even, then we can construct a double covering M of M ramified
along A. To see this' let L be the holomorphic line-bundle defined
by A. We shall first show that we can find a holomorphic line-
bundle [ with I.? = L. Consider the exact cohomology sequence

— HY(M; O) — H'(M; O%) LR H¥M; Z) — HXM; ) —

arising from the exact sequence of sheaves

exp 271

0 > Z > O > O >0

(O the sheaf of germs of holomorphic functions, ©* the multiplica-
tive sheaf of germs of non-zero holomorphic functions). Since
H(M; ©) and H¥M; O) are both complex vector spaces, it follows
easily from this exact sequence that, for k e Z,

o(l) divisible by % in H*(M; Z) == [ divisible by %k in H'(M; ©*) .

Taking ! to be the class of L and %k -= 2 we see that A being even

! The argument which follows applies quite generally to any complex
manifold M (not necessarily compact) with a non-singular divisor A defining
an even class in H¥M; Z).
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implies L is even, i.e. there exists a holomorphic line-bundle L with
I* = L. If sis now a section of L vanishing at A the ramified
covering M is just the inverse image of s(M) < L under the squar-
ing map L — L. It is clear that ¥ is algebraic.

If A c M is the branch curve (mapped isomorphically onto A
by M — M) we have

(2.2) A = AY2

for the self-intersection numbers. This follows from the fact that
the normal bundles of A, A in M, M are just the restrictions
L|A, L|A. If Bis any curve on M having no component in com-
mon with A, and if B is its inverse image in M, we have

(2.3) A-B=A.B.

If a, b denote the corresponding cohomology classes (2.3) follows
from the formulas
{T*@z* OGN M1 = 2(a-b)[M]
*(b) = b
T*(a) = 2a .
Returning now to the curve A = I'; + T',; on the surface M =
X x C we see from Lemma (2.1) that a ramified double cover M

exists. This is our surface Z referred toin § 1. It is clear that the
composite projection
Z— X xC— X
has as fibres the double coverings of C ramified at pairs of points
of our involution z. Thus the genus 4 of Y is given by
2 —-2h=2(2—29)—2
or
h = 2¢g.

It remains now to calculate the first Chern class d of the
tangent bundle T, along the fibres of Z and to show that d? = 0.

Let @ be a holomorphic differential on C, and let Q, O be its
lift to X x C, Z respectively. Then Q is a holomorphic section of
the dual T* of T, so that

d=—(Q)
where () denotes the class of the zeros of O. But clearly
(@) = p*(w) + (T)) + (T



T8 M. F. ATIYAH

where B: Z—C is the projection. Hence, computing self-intersec-
tion numbers, and using (2.2) and (2.3) we get

d[Z] = 2p*(w)+(T)) + 20*(@)-(T.,) + T/ + (T,
= 2p*(0)-(T,) + 20*(@)-(T')) + —;—(I‘f)z + %(r,f)z

— 2(2g — 2) deg f + 2(2g — 2) deg Tf + —3—(13)2 + %(r,f)ﬂ

= 8(g — 1) deg f + (T'y)*.
Here p denotes the projection X x C -» C and we used the involu-
tion 1 x 7 on X x C to take I', into I',; and so derive the equality
(I')* = (I'.,)%. Finally, if I denotes the identity map of C, we have
(I'y)* = deg f-(T))°
= deg f-(2 — 29) .
Putting this in the formula above for d*[Z] we therefore obtain

d’[Z] = 8(g — 1) deg f — 2(g — 1) deg f
= 6(g — 1)deg f
= 6(g — 1)-2% .,
Thus the signature of our surface 7 is given by
(2.4) Sign (Z) = (¢ — 1)2¥* = — E(X)
and (since g = 3) this is non-zero as required.

Remarks. (1) An alternative method of calculating Sign (Z)
has been pointed out to me by F. Hirzebruch. This is to use the
following general formula for the signature of a ramified double
covering M of M:

Sign (M) = 2 Sign (M) — Sign (§-5) .

Here S — M is the ramification submanifold (of codimension 2) and
S.§ denotes a “self-intersection manifold” of S in #. This formula
is an easy consequence of the general G-signature theorem of [1]
with G of order two (see [1; (6.15)]) and, applied in our case, it
gives
Sign Z = 0 — (I + %))
= -T2 = —E(X).

(2) The formula (2.4) shows that there exist algebraic
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surfaces with arbitrarily large signature, contrary to a conjecture
of Zappa. In fact Borel in [3] produced counter-examples to this
conjecture which are somewhat similar to our examples. In both
cases the surfaces are classifying spaces for a discrete group I',
that is the universal covering surface is contractible. In Borel’s
example the universal covering is the unit ball B? in C?, but in our
examples the universal covering is definitely not B?. One way to
distinguish the two cases is to observe that the Bore! surfaces are
rigid [4] whereas our surface Z has moduli. In fact it is easy to
see (using the footnote in § 2) that, as we vary the original curve
C’ in a local family C;, we obtain a family Z, and that the moduli
of C! (i.e., the holomorphic periods) give rise to non-trivial moduli
for Z,. We may also note that the universal covering of Z cannot
be the product B' x B! of two unit discs because, if it were, the
argument of Borel [3] would imply Sign (Z)=0. Since B? and B' X
B! are the only homogeneous bounded domains in C? it follows that
the universal covering of Z is not a homogeneous bounded complex
domain. Note finally that the fundamental group 7,(%) is a split
extension with 7,(Y) as subgroup and 7,(X) as quotient.

(8) The smallest non-zero value of Sign (Z) in (2.4) occurs
when g = 3. This gives Sign (7) = 25,

(4) Since the fibre Y, of Zis, by construction, a double cover-
ing of C ramified at x and z(x) it is fairly clear that the “moduli”
of Y, vary non-trivially with x € X. In the next section we shall
in fact see that this is always the case for any family of curves
Z — X for which the total space 7 has non-vanishing signature.
Conversely, appealing to facts about the space of moduli of curves,
one could deduce the existence of families Z — X with Sign (Z) +#
0. This was my original approach to the problem. The specific
construction by ramified double coverings was suggested to me by
1. R. Safarevic,

(5) Despite the algebro-geometric aspect of the preceding
remark it should be emphasized that the complex structure of the
fibering Z — X is purely auxiliary. We could have constructed Z
as a ramified covering of X x C without using the complex strue-
ture.

3. Relation with moduli
If we apply the Grothendieck Riemann-Roch theorem to the

map 75 X we get
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d d?
1 1— ) = (1 °
(3.1) ch(l —30) =7, (1+ 2+ )
where J( is the vector bundle over X whose fibre J(, is H'(Y,, O, ):
its dual JC* is the bundle whose fibre J(* is the space of holomor-
phic differentials on Y,. Equating the two-dimensional terms in
(3.1) we get

(3.2) (TCH) = —e () = x*( fz) .

Thus the essential feature of our example is that ¢,(FC*) == 0.

The cohomology class ¢,(*) can also be interpreted as follows.
In the differentiable fibre bundle Z — X the fundamental group
7,(X) acts on the cohomology H'(Y; Z) preserving the symplectic
form given by the cup product. Thus we get a homomorphism

a: (X) — Sp(2h; Z)
and hence a homomorphism
B: (X)) >Sp(2h; R) .

This induces a homomorphism in the cohomology of the classifying
spaces

B*: H*(Bs; Q) — H*(X; Q)

where G = Sp (2h; R). Now the maximal compact subgroup of G is
isomorphic to the unitary group U(k) and so there is a universal
complex vector bundle V of dimension k over B,;. One can verify
that the bundle 8*(V) over X induced by 8 is isomorphic to JC*
(or JC, depending on how we choose V') and so

e(H*) = B*(CI(V)) .
Since ¢,(*) # 0 and since S8 factors through « it follows that the
inclusion
Sp (2h; Z) — Sp (2k; R)

induces @ non-zero homomorphism in the rational cohomology of
the classifying spaces (in dimension 2). Note that in our example
h = 2(29" — 1) where ¢’ = 2, so that the smallest value is 6.

Remark. For a discrete subgroup I' of a real Lie group G, one
might ask under what circumstances the homomorphism

H*B.; Q)— H*(B:; Q)
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is non-trivial., When G/T' is compact one can use the theory of
harmonic forms to investigate this question. Our example here,
with G = Sp (2h; R), T" = Sp(2h; Z) is of a different type since G/T"
has finite volume but is not compact.

Let D denote the Siegel upper half-plane Sp (2k; R)/U(h) and
let I'\D denote the space obtained by dividing by the action of the
discrete group I' = Sp(2h;Z). Then the holomorphic family of
curves Z — X defines a holomorphic map

p: X —>T\D .

Except for the presence of fixed points of I' on D the space I'\D
would be a classifying space for I'. In any case, for real cohomology,
the fixed points cause no trouble? and we can identify

o*: H*(I"\D; Q) — H*(X; Q)
with the homomorphism
a*: H*(B; Q) — H*(X; Q)
induced by a: 7,(X)— T, This shows that we cannot get examples

of families Z with ¢,(J(*) # 0 unless @ is non-trivial, that is unless
the holomorphic structure of the fibres varies.

4, General remarks

We shall now discuss in general the effect of the fundamental
group of the base on the signature of a fibre bundle. When our
manifolds are not complex we cannot use holomorphic differentials
as in § 3 but, choosing a riemannian metric, we can use harmonic
forms. With this modification we shall see that the discussion of
§ 3 can be paralleled in the general case.

Let m: Z— X be a differentiable fibre bundle with fibre Y. We
assume X, Y, 7 are compact oriented and that X, Y have even®
dimension. We fix riemannian metrics on the fibres, for example
by taking a riemannian metric on Z and giving Y, the induced
metric.

Let dimY = 2k and consider the bundle H* over X given by
the real cohomology of the fibres in dimension k. This is the bundle
associated to the action of I' = 7 (X) on H*(Y; R). This action

= We can replace I' by a subgroup I'c of finite index acting freely on D.
3 When the dimensions are odd one always has

Sign (X)) — Sign(Y) - Sign{(Z)=10.
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preserves the bilinear form given by the cup product. Thus for %k
odd we have a homomorphism

B:T —— Sp(2n; R)
and for k£ even we have
B:I' —> O(p, q; R) .

Here 2n = dim H*(Y; R) for k odd, and 3 72} — 3 7 a% is the diag-
onalization of the quadratic form on H*(Y:; R) for k even.

If we identify H*(Y,; R) with the space of harmonic %k-forms
on Y, we get an inner product in the bundle H* and so a reduction
of its structure group to a maximal compact subgroup. For k odd
this is U(n) and for % even it is O(p) x O(q). For %k odd we thus
have an associated n-dimensional complex vector bundle V over X,
and for & even we have two real vector bundles W+, W~ of
dimensions p, q respectively. These can be defined directly in terms
of the inner product on H*(Y,; R) as follows. The x-operator on
the harmonic k-forms satisfies «* = (—1)*. Thus for k odd it defines
a complex structure on the bundle H* — thisis ¥V — and for % even
it defines a decomposition H* = H* ¢ H* into the 3-1-eigenspaces
— these are W+, W~, We now define the signature of the map =
to be

Sign(7) = V* — Ve K(X) (k odd)
=W'"— W-e KO(X) (k even) .

From the classifying space description of the bundles
V, W+, W~ it is clear that! ch (Sign (7)) is induced from a universal
characteristic class

ch (Sign) e H*(B,; Q) = H*(B;; Q)
by the composite map
X — B, —— B,

where G = Sp (2n; R) or O(p, ¢; R) according as %k is odd or even
and K is a maximal compact subgroup. The map X — B, is the
classifying map of the universal covering of X and B, — B, is
induced by the homomorphism 8:T" — G.

On the other hand from the harmonic form description of
V, W+, W~ one can show that

4+ For a real bundle ¢k is defined as the Chern character of the complex-
ification.
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V* — V = index D* ¢ K(X) k odd
W+ — W- = index D* e KO(X) k even

where D+ is a family of elliptic operators along the fibres of 7.
For xe X the operator D} is the signature operator defined in
[1; §6]. The vector space Ker D} has a constant dimension and is
the fibre of a bundle Ker D+ over X (complex for &k odd, real for &
even). Similarly for Coker D+ and the index of the family D' is
defined to be the element of K(X) or KO(X) (as k is odd or even)
given by

(4.1)

index Dt = Ker Dt — Coker D+ .

Note that (for k even say) Ker D* contains W as a sub-bundle and
similarly Coker D+ contains W—. The equality (4.1) holds because
the remaining parts cancel, that is
Ker D+t/W* =~ Coker D*/ W~ .
The index theorem for families of elliptic operators [2] applied
to D+ gives
{4.2) ch (index D*) = 7,(8T.) e H*(X; Q)

where, for any real vector bundle E of dimension 2k, $(E) is that
function of the Pontrjagin classes of E defined by

SE =1 — & _.
(&) = 11, ' tanh z,/2
{As usual the Pontrjagin classes of £ are interpreted as the ele-
mentary symmetric functions in «3, ---, 2%.) Combined with (4.1)
we therefore obtain
(4.3) ch (Sign (7)) = x*(gi’(E)) .

For the special case considered in §3 formula (4.3) coincides
essentially with (3.2) which was derived from the Grothendieck
Riemann-Roch theorem.

The Hirzebruch index theorem gives the signature of 7 in

terms of £(Z); i.e., € of the tangent bundle of Z,

Sign (Z) = £(2)[Z]
= {&(T)- =& X)}[Z]
= {7, &(T.)- SX)HX]
= {ch (Sign (7)) $X)) X by (4.3) .
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This last expression for Sign (Z) shows clearly why the signature
is not multiplicative in general. The deviation from multiplicativity
is in a sense measured by the (positive-dimensional components of)
the cohomology class ch (Sign (7)). As we have seen this is induced
from a universal characteristic class in B; via the fundamental
group of X.
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