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Introduction 

This article contains lists of normal forms of functions in the neighbourhoods 
of critical points (the classification of all singularities with the number of 
modules m=0,  1 and 2 or with multiplicity p <  16 included) and the proofs of 
most of these classification theorems (the classification of unimodular singularities 
included). 

For instance, the number v of stable p-equivalence classes (see the definitions 
below), is given for # <  16 by the following table: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

v 1 1 1 2 2 3 3 4 4 7 11 15 14 17 22 32 

The motivations for and the applications of the classification of critical points 
of functions, and their relation to Coxeter groups, braids, automorphic functions, 
platonics, caustics, wavefronts and stationary phase method are discussed in [1]. 

The technical results are formulated in w167 1 and 2. We begin with some 
general remarks, arising from these empirical facts. 

I. Normal Forms 

For many classes of singularities there exist simple normal forms. 
The following definitions give an exact meaning to these words. 
The group of germs (or jets) of diffeomorphisms of •", leaving O invariant, 

acts on the space of germs (jets) of functions at O. A singularity class is a subset 
of the space of germs of functions, invariant under this action. Each orbit is 
such a class. Two germs (jets) belonging to the same orbit are equivalent. 

Another example of a class is the #-equivalence class. The multiplicity (or 
the Milnor number) p of a critical point OeC" of a function f is the Poincar6 
index of the vector field grad f at the singular point O. Germs of functions 
fo, f ,  at a critical point 0 are #-equivalent, if there exist a holomorphical familie 
of functions f with critical point 0 of constant multiplicity/~ (independent of t, 
0 < t < l ) .  
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To define the normal forms, let us consider the space of polinomials, 
M = C [x 1 . . . . .  x,], as a subset in the space of germs of functions f ( x l ,  ..., x,) at O. 

The normal form for a given class K of functions is a mapping ~: B--~ M from 
a finite dimensional linear "parameter space" B to the space of polynomials, 
satisfying three conditions: 

1. ~ (B) intersects all the orbits, belonging to K;  
2. the counterimage of every orbit in B is a finite set; 
3. the counterimage of the whole complement to K lies in some hypersurface 

in B. 
The normal form is polynomial (resp. affine) if �9 is a polynomial (resp. affine) 

mapping. An affine normal form is simple, if �9 is of the form: 

~(b~, ..., br) = (p + b I x =1 + -.- + b , x  =r, 

where ~o is a fixed polynomial, b i are complex numbers and x =' are monomials. 
In most applications the polynomial ~0 itself is "simple", that i s - a  sum of few 
monomials. 

The existence of a unique normal form (even a polynomial one) for the whole 
/~-equivalence class is by no mean evident a'priori. It is a rather surprising 
empirical fact, that such normal forms exist for all the singularities in the lists 
of w 1 (and hence for all the singularities with modules number m=0,  1 and 2). 

Most of our normal forms are simple; perhaps, all singularities of w 1 have 
simple normal forms. It is not known, how vast is the class of singularities, 
whose #-equivalence classes admit simple (or polynomial) normal forms (here 
it is natural to consider stable equivalence classes, see 5). 

2. The Series of Singularities 

All singularities in our lists are divided into some series, such a s  A k or Z k. We 
shall use light characters A, ..., Z to denote g-equivalence classes and bold 
characters A, ..., Z to denote singularity classes which contain more than one 
p-equivalence classes. 

While the series undoubtely exist, they have yet no formal definition. Let us 
consider, for instance, series A and D, formed by the orbits of germs 

Ak=Xk+l+y2(k>l ) ,  Dk=X2y+yk- t ( k>4) .  

The A k and D k classes adjacences are 

A 1 ~ A 2 ~--  A 3 <---- A 4 ~-- ... 
T T 
D 4 ~ - -D  5 ~--- .... 

[A class L of singularities is adjacent to class K, K ~--L, if every germ (suf- 
ficient jet ) o f f s L  can be deformed into a germ (sufficient jet) in K by an arbitrary 
small deformation.] 

It is clear, that A k and D k are two different series. What is, however, the exact 
meaning of this? 
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To define series A is to define such a rule of reversing adjacency arrows, that 
leads from A k to Ak+ 1 and not to Dk+ ~ . In the case of A singularities the rule is 
easy to find (A singularities have corank 1). In more complicated cases (see w167 1, 2) 
one can also find the rules of reversing arrows (different in different cases). So, 
series with one or more subscripts and parameters occur (e.g., Tk.~,m=axyz 
+ xk + yt + zm). 

In all these cases one can find the definition of the series after one have found 
the series, while no a'priori general definition is known. It is clear, however, that 
the series are connected with singularities of infinite multiplicity (e.g. D,-~ x 2 y, 
T ~ x y z). So the hierarchy of series reflects the hierarchy of nonisolated singu- 
larities. 

3. Periodicity 

The decomposition of many singularity classes into /~-equivalence classes is in 
some sence periodic. The whole decomposition (stratification) can be regarded 
as a chain of similar fragments ("animals"). Each animal is built of points 
(/~-equivalence classes), two of which are distinguished (the "head"  and the 
"tail"). An animal can also contain some classes whose adjacency arrows join 
the tail to the head and some "legs" (infinite series of classes). The tail of each 
animal in the chain is adjacent to the head of the following one. For example, 
the stratification of the corank 2 singularities with the 3-jet equal to x 3 is a chain 
of animals each consisting of 5 points and 1 infinite leg: 

O ~ , : ~ � 9  , r 1 4 9  ~ - - - � 9  ~ - - - O  

T 
�9 ~____~...  

(Jk in the list of w 1). 

The phenomenon of periodicity is only partialy explained and for quasi- 
homogenous singularities only (the explanation is based upon some root 
technique for the quasihomodenous Lie algebra, related to that of Enriques and 
Demazure [2], see w 3). However this periodicity arises in all the calculations, 
connected with our classification theorems (so that it is sufficient to consider only 
first animal from every animal chain). This empirical periodicity have at present 
no satisfactory explanation. Like the existence of series, it suggests some algebraic 
structure of the set of all #-equivalence classes. 

4. Small Modules Number Classes 

The main characteristic of a singularity class is from the point of view of applica- 
tions its codimension c in the space of germs of functions with critical point O 
and critical value 0. Indeed, a generic function has only nondegenerate singularities 
(singularities with codimension c = 0). Degenerate singularities appears inevitably 
only when families of functions depending upon parameters are considered. 
A class K of codimension c is unavoidable by small deformation if the number 
of parameters l is > c. 
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So in all the applicatious to l-parametrical problems we need classification 
of all singularities up to codimension l (that is, we need classify such a set of classes, 
that the complement to their union be of codimension larger than l). 

This problem is not to be confused with the classification of singularities with 
orbit codimension<= l (that is, with ~__< l+  1). The only value of the last problem 
for applications is its relation with the former one. 

From the topological point of view the main characteristic of a singularity 
is the multiplicity # of the critical point (equal to the number of nondegenerate 
critical points, to which a given point bifurcate after a small variation; not to be 
confused with the algebraico-geometrical multiplicity of the hypersurface f -  1 (0) 
at 0). 

An unexpected result of our calculation is the fact, that algebraically the 
most natural classification theorems are not those of singularities of small co- 
dimension c or of small multiplicity p, but the classification of singularities with 
small modules number, m. 

The modules number m of a germ of function f :  (q~", O)--~ (C, O) at critical 
point O is the minimal number M, such that some neighbourhood of a sufficient 
k-jet of the function f at O is covered by a finite number of no more than M-para- 
metrical families of the orbits of the group of diffeomorphisms germs 
(r O) --* (r O) acting on the space of functions with critical point O and critical 
value 0. 

The modules number m is equal to the dimension of the p = const stratum 
in the base space of the versal deformation minus 1 (see Gabrielov [3]). So the 
codimension c of this stratum in the space of germs of functious with critical 
value 0 at the critical point O, the multiplicity p and the modules number m are 
related by the formula 

p = c + m + l .  

At present, the complete classifications are known for: 

(i) all singularities with c <  10; 
(ii) all singularities with p <  16; 

(iii) all singularities with m < 2. 

The singularities with the modules number m = 0, 1 and 2 are called simple, 
unimodular and bimodular respectively. Lists of them are given in w 1. A study of 
these lists leads to the following 4 conclusions: 

1. The simple singularities are classified by the Coxeter groups A k, D k, E 6, 
E 7 , E 8 (that is, by the platonic in the usual 3-space, see [4]). 

2. The unimodular singularities form one infinite series Tk, l,,, and 14 "ex- 
ceptional" families, generated by 14 quasihomogenous singularities ([5]). 

All the quasihomogenous unimodular singularities can be constructed from 
14 remarkable Lobatchevski triangles and 3 remarkable Euclidean triangles like 
simple singularities are constructed from platonics (Dolgatchev [6]). 

3. The bimodular singularities form 8 infinite series and 14 "exceptional" 
families, generated by quasihomogenous singularities. 

All the quasihomogenous bimodular singularities can be constructed from 
6 Lobatchevski quadrangles and 14 Lobatchevski triangles. In the last case one 
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has to consider 2-, 3- and 5-fold coverings of the surface, constructed in the 
canonical way (Dolgatchev). 

4. All the singularities with the modules number m= 1 and 2 are classified 
by the degenerations of elliptic curves, studied by Kodaira (Koulikov [7]). The 
Koulikov construction begins with a blowing up of 1, 2 or 3 points of the surface 
on the minimal resolution of the degenerate fiber; then one has to blow down 
this (resolved) fiber. 

Unfortunately, all these coincidence of different classifications have only 
a' posteriori proofs and thus depend on our calculations. 

5. Stabilization 

Two germs f :  (C", O) --r (r 0) and g: (~ ' ,  O) --~ (~, 0) are stably equivalent, if they 
become equivalent after a direct addition to both of nondegenerate quadratic 
forms (e.g., f ( x ) = x  3 is stably equivalent to g(x ,y )=x3+y 2, but not to 
h(x, y)= x3). Two stably equivalent germs on equidimensional spaces are equiva- 
lent. In w 1 we shall not show explicitely the arguments of functions when all the 
arguments are presented in the formulae. 

The corank of a germ of a function at a critical point is the nullity of its second 
differential. Every germ of corank r is stably equivalent to a germ of a function 
in r variables. Classifying functions up to the stable equivalence one normally 
chooses a normal form with a minimal number of variables (equal to the corank). 

Our calculations show, however, that sometimes one can obtain more natural 
normal forms with more variables. 

The simplest case is the inclusion of the singularities xP+ax2y2+y q in the 
series T; series W ~ ~(x 2 _1_y3)2 provides more interesting examples. 

To formulate the general stabilisation problem we need some definitions. 
Let f~_ IE [[xl ,  ..., x,]]. The support o f f  is the set supp f c 7Z"c ~,." of all indexes m 
of the monomials x'* with nonzero coefficients in f The Newton polyhedron 
F = F ( f )  is the boundary of the convex hull of the union of all positive ortants 
m + N ~ ,  m~_ supp f. 

A function f is F-nondegenerate if the multiplicity kt of its critical point O has 
the minimal possible value v, for functions with a given Newton polyhedron F. 
An explicite formula for this Newton number v(F) is given by A. G. Kouchnirenko 
(see [1]). 

Most of our normal forms are F-nondegenerate functions. It is not known, 
how vast is the class of functions stably equivalent to F-nondegenerate ones. 
For F-nonedegenerate functions classification and reducing to normal forms can 
be done in a very explicit way: these problems are rather stereometrical (see 
[8]). 

Our lists of normal forms are given in w 1. They contain all the singularities 
with the modules number m--0, 1 and 2, all the singularities with p <  16, all the 
singularities of corank 2 with nonzero 4-jet, all the singularities of corank 3 with 
a 3-jet, which determine an irreducible cubic, and some other singularities. 

w 2 is an outline of the proofs of these results. It contains the statements of 
105 theorems. These theorems together with the lists of w 1 form a kind of singu- 
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larity determinator like plant determinators: an algorithm is described for finding 
every singularity's place in the lists of w 1. 

Most of the theorems of w 2 are proved in w 3. All these proofs depend heavily 
on the geometrical technique, described in [8]. From this geometrical point of 
view, the formulae of ~ 1 and 2 are to be considered as descriptions of supports 
and Newton polyhedrons, and to prove the theorems one has rather to manipu- 
late with these polyhedrons than to calculate. 

w 1. Lists of Normal Forms 

Letters A . . . . .  Z stand here for stable equivalence classes of function germs (or 
families of function germs). 

I. Singularities with Modules Number m = 0, 1 and 2 

1.0. Simple Singularities (m=0). There are 2 infinite series A, D, and 3 "ex- 

ceptional" singularities E6, E7, E8: 

A k x TM, k >  1 
D k x 2 y + y k - l , k > 4  

E6 X3 +y4 
E 7 x 3 + x y  3 

E8 x3 _[_y5 

The adjacency diagram 

A . -D . -E6~- -ET , -E  8 

(P) (X) (J) 

A = A  1 ~ - A  2 , ~ A  3 ~ - - A 4 , ~ -  . . .  

(D) 

D = D 4  ~--Ds~--D6~--.... 

(E) 

The definitions of P, X, J are to be found below (see II). 

1.1. Unimodular Singularities (m= 1). There are 3 families of parabolical 
singularities, one series of hyperbolical singularities (with 3 subscripts), and 
14 families of exceptional singularities. 

The parabolical singularities 

P8 x a +ya +z  ~ + a x y z  a 3 +27+0 
X9 x 4 + y4 + a x  2 y2 a 2 4=4 

J10 x3 +y6 +ax2y2 4a a +27+0 

The hyperbolical singularities 
1 1 1 

Tp, q,r: xP+yq+z'+axyz, a~0 ,  - + - + - < l .  
p q r 
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The 14 exceptional families 

El2 x 3 -t-y 7 + a x y  s E13 x 3 +xy  5 +ay  a 
Ex,, x a +ys q_axy6 Z11 x3y +y5 +axy'* 
Z12 x3y  +xY  4 +ax2y  3 ZI  3 xay  +y6 +axy5 
W12 x'* +yS +ax2y3 VIII 3 x 4 +xy4 +ay6 
Qlo x3 +Y'* +Y z2 + a x y  3 Q11 x3 +Y 2z +xz3 +az5 
Q12 x 3 +yS +yz  2 +axy4  $11 x a +y2 z + x z  2 +axaz  
Sl 2 xZy +y2 z + x z  3 +az  5 Ut 2 x3 +y3 +z 4 + a x y z  z 

Some of the adjacencies between the unimodular singularities 

J l o  = T2, 3, 6 --~ (g8)  

. . . .  T2,3,8 ~ T2, 3, 7 ~-- E l 2  ~-- E l 3  ~-- E14 ~- (J3) 

S 9 ~--- 

�9 - �9 --O. Z2, 4, 6 ---~ 

T �9 .. ---k 
. . .  __~ Z2, 5, 6 --> 

T2, 4, 4 --' (ET) 

T2,~,5 ' - -Zl l  ~-- Z ~  '-- Z13 ~-- (Zl) 
T T T 
T=, 5,~ ,-- W,2, - -  W13 , - (Wl ,0 ,  N)  

P8 = Z3, 3, 3 --~ (E6) 
T 

""--> T3,3,5 --~ T3,3,4~--- Qlo ~--- Qll  ~--Q12 ~---(Q2) 
1" T T . . .  ___~ 

. . . - . ~  T3,4, 5 ~ T3,4, 4 ~-- S l l  ~ S12 <--- (S1, O) 

. . . ~ T  1" T 
�9 - - ~  T4 4 5---' T~ 4 4 '-- Us= §  V) 

T 
(O) 

The singularity classes enclosed in brackets are not  unimodular .  

1.2. Bimodular Singularities (m = 2). There are 8 infinite series and 14 exeptional  
families. In all the formulae  of  this section a = a o + a~ y. 

The 4 infinite series of bimodular singularities of corank 2 

Notation Normal form Restrictions Multiplicity # 

3"3,0 X3 +bxZy3 +y9 q_cxy7 4b 3 +27=1=0 16 
J3,p x 3 +x2y 3 q-ay 9+p p>0 ,  ao4:0 16 +p 
ZI, o y(x 3 +dx2y  z + c x y  5 -by 6) 4d 3 +27:~0 15 
ZI, p y(x 3 +x2y  z + a y  6+p) p>0 ,  ao4:0 t5 +p 
Wt,o x 4 +axZy3 +y6 a2:~4 15 
W1, p x 4 +x2y 3 +ay  6+p p>0 ,  ao4:0 15 +p 
Wl~2q_ 1 (X 2 +y3)2 +axy4+q q>0,  ao4:0 15 +2q- -1  
W1.,2 ~ (x 2 +y3)2 +ax2ya+q q>0,  ao#:0 15 +2q 
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The 4 infinite series of bimodular singularities of corank 3 
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Notation Normal form Restrictions Multiplicity p 

Q2,o x 3 +yg 2 +ax2y 2 +xy 4 a24:4 14 
Q2,v x 3 +yg 2 +x2y 2 +ag 6+v p>0, ao4:0 14 +p 
St,o x2z +yz2 q_y5 +azy3 a ~ 4  14 
$1, p x2z +yz 2 +x2y 2 +ay s+v p>0, ao4:0 14 +p 
S* xZz+yz2+zya+axy2+q q>0, ao~0 14 + 2 q - 1  1,21/-1 
S* xZz +yzZ +zya +axZy 2§ q>0, ao4:0 14+2q 1,2q 
Ul,o x 3 +xz 2 +xy 3 +ay3z ao(a ~ +1)4=0 14 
Ut,2a_ 1 x 3 +xz 2 +xy 3 +ayI +~z 2 q>O, ao:~O 14 + 2 q -  1 
Ux,2~ x 3 +xz 2 +xy 3 +ay3+qz q>O, ao:~O 14 +2q 

The 14 exceptional families 
E18 x 3 +ytO +axy7 E19 x 3 +xy7 +ayS 
E2 ~ x 3 +y8 +axy8 Z17 x3y +y8 +axy6 
Zl 8 xay +xy6 +ay9 Z19 x3y +y9 +axy7 
W17 x 4 +xy5 +fly7 Wl 8 x 4 +y7 +ax2y4 
Q16 x3 +yz2 +y7 +axy5 Q17 x3 +y zz +xy s +ay 8 
Qla x 3 +yz 2 +y8 +axy6 SI 6 X2Z +yz 2 +Xy4 +ay6 
Sl 7 X2Z, +yZ2 +y6 +azy4 U16 x 3 +xz 2 +y5 +ax2y2 

All the functions of all these families are bimodular (when the restrictions 
hold). 

Some of the adjacencies between the bimodular singularities 
']3,0 ~--- Ja,  1 ~--- E18 ~ - E 1 9  *---E20, Z l , o  ~--ZI ,1  ~---Z17 ~---Z18 ~---Z19, 

T T 

W I , 1  4--. . .  SI,1 4~ ... 

J \ ,/ \ 
W,,o WlT ~ W18 $1,0 $16 ~ S17 

\ l \ r 
l/E* S* 1,1 ~--- """ 1,1 4--. . .  

Q2,o *-Q2,1 ~-Q16 +-Q17 ~--Q,s, Ul,o *-Ul, ,  ~-U16. 
T T 

The pyramids of exceptional singularities with modules numbers m= 1 and 2 

_Zll z12 

Q~o ~ - -  Q,I 

St1 *----- ~1 e 

/ Z17 ~ Z :  8~ 

Q,i ~ Q~'  
S ~ - - S t ~  

219 

Q18 
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Each vertical joins the singularities of the same Kodai ra  class in the Koul ikov 's  
construct ion [7]. 

II. The Corank 2 Singularities with Nonzero 4-Jets 

Through  this section a = a 0 +  . . . + a k _ 2 Y  k-2  for k >  1 and a = 0  for k = l .  

I I r  The Corank 2 Singularities with Nonzero 3-Jets. These are the simple 
singularities A, D, E6, ET, E 8 and the singularities of the following infinite series 
o f  classes. 

J---J2 r ~ - - " ,  where Jk = ~ J k ,  o , - - J k ,  1 ~---E6k~---E6k+l~--E6k+2~---( 'Jk+l)  

T 
A, 2,--Jk. 3,--.... 

Notation Normal form Restrictions Multiplicity# Modules 
number m 

J k , o  x3+bx2yk+y3k+exy 2k+l k> 1,4b3 +274:0 6k-2  k-1  
Jk,i X3+x2yk+ay 3k+i k > l , i > O ,  ao#O 6k + i - 2  k-1  
E6 k x 3 +y3k+l +axy2k+l k> 1 6k k-1  
E6k+l x 3 + x y  2k+1 +ay 3~+2 k > 1 6k +1 k - 1 
E6k+ 2 x 3 +y3k+2 +axy2k+2 k> 1 6k +2 k -  1 

Here C = C 0 + . - - + C k _ 3 y  k - 3  for k > 2 ;  c = 0  for k = 2 .  

II  2. The Corank 2 Singularities with Zero 3-Jets and Nonzero 4-Jets. These 
singularities form one infinite series of classes 

X = X I ~ X 2 ~ - ' - "  

where 

Yk 
/ " ,  

* //Wk *-- ; X k  = Xk,  0 ~'~ X k  

Zk 
here 

X ~  = 4.-- X k  ' 1 4...- Xk" 2 4 - - . - .  Yk = r y k y k ' 1 , i  ( 2.1 ~E~ . . . ,  

Z k 4--  z k , t  Z l  k , , Z k ~__ k r 7 k  <_.__ 7 k  = " ' "  = Z l 2 k - 1  ~ ' 1 2 k  L"12k+ 1 ~ 

T 
,__ ~-k "-'~ * -  ( Z L , ) ,  / > 0  Z k = +-- zki, o +-- zki, 1 <.---- Z 1 2 k + 6 i _ l  / - ,12k+ 6,  +--- L 1 2 k + 6 i + l  

l 
zk, 2+--zk ,  3+---... 

W k =  4-- V~I2 k ~ W l 2 k +  1 4-- Wk, 0 W12K+ 5 4--- W 1 2 k +  6 4--- ( X k + l )  

W, , ~ ~*~ ~-... k,1 " 
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C l a s s e s  X and  Y 
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Notat ion Normal  Form Restrictions Multiplicity p Modules 
number  m 

Xk, 0 X 4 d-bx3y k d-ax2y 2k -bxy 3k z160, ao b o * 9  1 2 k - 3  3 k - 2  
k > l  

Xk, p X 4 dl-2x3y k "~x2y 2k q-by 4k+v aoZ 4:4, b o * 0  1 2 k - 3  +p 3 k - 2  
p>0 ,  k > l  

Y~s [(X q-ayk)2-kby2k+s](X2 d-y 2k+r) l < s < 7 ,  k > l  1 2 k - 3  +r +s 3 k - 2  

ao*O*bo 

The case k = 1 : 

Xl.o x 4 +aox2y2 +y4 a~*4 9 1 
XI, ~ x 4 + x 2 y  2 +ao y 4'+p ao :~O 9 +p 1 
y1 s x4+, +aoX2y2 +ya+S a04:0 9 +r  + s  1 

Of course, X1, o = g 9 ,  X1 , p=T2, 4, 4+v, yl,,~ =T2, 4~ r. 4+ ~" Here 

h 3 3 2 2 =4(ao +bo)-aobo-18aobo + 27, 

b=bo + ... + b2k_ 2Y 2k-2. 

Class Z 

For singularities Zk, o and Z k (k> l) normal forms are f=(x+ayk)f2,  where 
a o , 0  and f2 is given in the following table: 

Notat ion f2 Restrictions Multiplicity, p Modules 
number,  m 

Zik, O X 3 +dx2yk+l q_exy2k+2i+l +y3k+3i 4d 3 +27Je0 1 2 k - 3  +6i  3k + i - 2  
k>  1, i > 0  

X 3 _l_bxy2k+2i+l ~_y3k+3i+l k > l ,  i - 0  3k + i - 2  
X 3 "t-Xy 2k+2i+1 'q-by 3k+3i+2 k> 1, i>O 3k + i - 2  
x a +bxy2k+ 2i+2 _}_y3k+3i+2 k> 1, i>O 3k + i - 2  

Zk2k+6i_l 12k + 6 i -  1 
Z~2k+6i 12k +6 i  
zk2k+~i+t 12k +6 i  +1 

Singularity zikp (k> 1, i>0,  p>0)  admits the normal form 

( x 2 + a x y k + b y 2 k + i ) .  ( x 2 + y 2 k + Z i + P ) ,  a o : ~ 0  , bo4=0, 

its multiplicity is p = 12 k + 6 i + p -  3, the modules number m = 3 k + i -  2. 
For k = 1 one modifies the above formulae in the following way: 

1. One omits the index k = 1 in the notations. 
2. Singularities Zi, o, Z6i+ 11, Z6i+ t 2, Z6i+ 13 (i ~ 0) have normal forms f - -  Yf2, 

where f2 is given by the table above. 
3. Zi, p: y(x3+x2yi+l +byai+P+a), bo4=O, i>0,  p>0 .  

Through this section 

b = b o +  ...-bb2k+i_2Y 2k+i-2 ' 

C = C o - -  l- ....-[- C 2 k + i _ 3 y  2 k + i - 3  
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Notation Normal form Restriction Multiplicity # Modules 
number rn 

W12k 
Wl2k+l 
WR,0 
l'Vk, ~ 
W,* k,2q--1 
W,* k,2q 

Wl2k+ 5 
W12k+ 6 

x 4 +yr +axy3k+l q_CX2y2k+l k>  1 12k 3 k - 2  
X 4 3cxy3k+l -~'ax2y 2k+1 -l-ey 4k+2 k>  1 12k +1 3 k - 2  
x4+bx2y 2k+l +axy3k+Z+y 4 k + 2  k>=l,b~4:4 12k+3 3 k - 1  
x 4 +ax3y k+l +x2y 2k+1 +by 4k+2+i i>0,  bo+0 12k +3 +i 3 k -  1 
(x z +y2k+l)2 +bxy3k+l+q +ay4k+Z+q q>0,  bo4:0 12k +2 +2q 3 k -  1 
(xZ+y2k+l)2+bx2y2~+x+q+axy3k+2+q q>0,  bo4=0 12k +3 +2q 3 k - 1  
x 4 +xy 3k+2 +ax2y 2k+2 +by  '*k+3 k>  1 12k +5 3 k -  1 
X4 q_y4k+ 3 _baxy3k+3 _t_bx2y2k+2 k>  1 12k +6 3 k -  1 

Here b = b o q - . . . + b 2 k _ l Y  2k-l ,  C--~Co-Jr-'"-~-C2k_2y2k-2; as always, a=  
aoq-...-}-ak_2Y k-E, for k > l  and a=0  for k = l .  

IlL The Corank 3 Singularities with Reduced 3-Jets 

Besides the unimodular singularities T (see It), there are 3 infinite series of 
classes Q, S, u of such singularities. 

III t. Series Q. The singularities with the 3-jet x 3 + y z  2 form one infinite 
series of classes: 

Q =  ,---Q1,--Q2 ~ - . . . ,  where Q I =  '-Qto~--Qtl'--Q12, 

Q k  = ~---Qk, O~--Qk, 1 4--Q6k + 4~--Q6k,  5 ~----Q6k' 6 ~--- (Qk* 1) 
T 

k > l  Qk, 2 ~--Qk, 3 ~---.... 

Notation Normal form Restrictions Multipli- Modules  
city # number m 

Qk, o tpq"bx2ykWxy2k k> 1, boZ 4:4 6 k + 2  k 
Q k , i  r 3k+i k> 1, bo4:0 6k +2 +i k 
Q6k+4 ~p+ y3k+l +bxy2k+l k>=l 6k +4 k 
Q6k+5 q~ q-xy 2k+l +by 3k+2 k_>_ 1 6k +5 k 
Q6k+6 tO +y3k+ 2 _bbxy2k+2k> = 1 6k +6 k 

Here q)=X3-k-y2 2, b=bo+ . . .+b k _ly k-1. 

III~. Series S. The singularities with the 3-jet X2Z4:-yz 2 form one infinite 
series of classes: 

S =  *-- S t  *-- S2  ~-- "" ,  

where 
Sk, 1 ~--.. .  

S~=~S12k 1~-S12k* Sko ~ ~"S12k~4 12~+5 k+t (k+O , ~ S  ~-S*  ~ S 

"".st J... 
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Notat ion Normal  form Restrictions Multiplicity # Modules 
number  m 

$12k-~ 9 +y4k +axy3k +ezyZk+l _ 1 2 k -  1 3 k - 2  
$12k r +xy 3k +ey *k+l + a z y  2k+1 - 12k 3 k - 2  
Sk.o ~0 +y4k+l +axy3k+l  +bzyZk+l b2o4:4 12k +2 3 k -  1 
St~,i ~o +x2y  2k +ax3y k +by ak+l +i i>0 ,  b o ~ 0  12k +2 +i  3 k -  1 
S* qJ+zyZk+l+bxyak+r q>0 ,  bo ae0 12k +2q  +1 3 k - 1  k ,2q - I  
S~,2 ,~  r q>0 ,  bo4:0 12k +2q +2 3 k - 1  
S12k+4. fp +xy 3k+l + a z y  2k+2 +by  4k§ - t2k +4 3 k -  1 
S12k+5 fp +y4k+2 +axyak+2 +bzy2k+2 _ 12k +5 3 k -  1 

Here t p = x 2 z +  yz2;  

a=ao+- . -+ak_2y  k-2 for k > l ,  a = 0  for k = l ;  

b = b 0 + . . .  + b2k_ 1 y2k-  1 ; 

C=CO + . - ,  +C2k_2Y  2 k - 2 .  

The S t (k> 1) singularities are: 

S k - - *  - -  ~ -  S~', o <-- S P k  (Sk) 

#(S~' o)= 12k-4 ,  m(Sk, o, . . . ,  S R k ) = 3 k - 2  , codlin S~ = 9 k - 3 .  

lII 3. Series U. The singularities with the 3-jet x 3 + x z  2 form one infinite 
series of classes 

U= ~ U I  ~- Uz ~-"" ,  

where 
qr Uk= ~ U 1 2 ~  Uko'- U~I ' -  Ul~k+4'- Uk+l ' (Uk+0 

T 
Uk, 2~, --- . - .  

Notat ion Normal  form Restrictions Multiplicity # Modules 
number  m 

v12~ tp +y3k+l +axy2k+l +bgy2k+l +dx2yk+l _ 12k 4 k - 3  
~+xy2k+l+ax2yk+l'+by3k+2+~l"Fe;~y2k+l+qq>=O;Co~O 12k +2 +2q  4 k - 2  
q~+xy2k+l+ax2yk+l+bzyZk+l+'~+cz2yk+'~ q > 0 ;  C0~0 12k +1 +2q  4 k - 2  
q3+y3~+Z+axy2k+2+bzy2k+2+Cx2yk+l  _ 1 2 k + 4  4 k - 2  

Here q ~ = x a + x z 2 ;  c02+ 1 4:0 for q=0;  and trough the table 

a = a o + - . . + a k _ 2 y  k-2 for k > l ,  a = 0  for k = l ,  

b = b o + . . . + b k _ 2 Y  k-2 for k > l ,  b = 0  for k = l ,  
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C____-Co-~--... -~- C2k_ l Y 2k - l ,  

d = d o + . . . + d 2 k _ 2 Y  2k-2. 

The U~ singularities (k > 1) are 

" k _ _  
U k - , - - U , ~ o  ,--- U p  k ~ U R ~ , - - U T  k 

T T T 
U Q k  ~ U S k ~-- ( U k ) ,  

~(Uk*,O)= 1 2 k - 4 ,  m(U~,,o . . . .  , U T k ) = 4 k -  3, codim ( U ~ ) = 8 k - 2 .  

IV. Series V. The corank 3 singularities with the 3-jet x 2 y  belong to the classes 

• l , 1  ~ - -  ~ 1 , 2  ~ - -  . . .  / \ 
, V *  V = V l o  / 

/ 

1 , 1  4- - -  - . . .  

Notat ion Normal  form Restrictions Multiplicity # Modules 
number  m 

V1, o x2y "4-z 4 "]-azay +bz2y  2 +2y  3 d (a, bo) 4:0 15 3 
VI, p x2y +z 4 +bzay +z2y 2 + a y  4+p b2 4:4, ao4:0 15 +p  3 
1~,* x2y +z3y +ay2z2 +y4 +bxz2+~ 4a a +274:0,  b o ~ 0  15 + 2 q -  1 3 1 , 2 q - 1  
E* x2y +z3y +ay2z2 +y4 +bz4+~ 4a 3 +274:0,  bo4:0 15 +2q  3 1 , 2 q  

Here p > 0,  q > 0 ,  a = a o + a 1 y ,  b = b o + b 1 z. For the V* singularities/~ (V*) > 17, 
re(V*)>3, c(V*)= 13. 

V. Other Singularities. All the singularities, which normal forms are not 
given in this article, belong to the following 7 classes: 

Notat ion Corank Adjacency Definition c > # > m > Theorem 

N 2 N ~ W 1 3  j 4 = 0  12 16 3 47-49 
S* 3 S~ ---~ $12k_ 9 th. 77 15 20 4 77-81 
U* 3 U [  -~ U12 k_ 8 th. 90 14 20 5 90-96 
V* 3 V* -~ V 1 a t3 E * th. 98 13 17 3 97-102 , 1,1 

V' 3 V ' ~ V  j3=x 3 13 18 4 103 
V" 3 V" ~ V '  j 3 = 0  16 27 10 104 
O >3  O~T4,4, 4 c o r a n k > 4  10 16 5 105 

Here k>  1. 

Remark. For every arrow K * - L  in w 1 (say, J2 ~-Ja), every singularity in 
class K has a neighbourhood which does not intersect L (e.g there is no adjacency 
J2, i-* J3, o for any i). 
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w Singularity Determinator 
Notations 

f 

f,.~g 

~ f  
A, ..., Z 

re(f) 
c(f) 

c(K) 

j{xm'}f  

j {x'n'} f ,,~g 

j*, tp 

a germ of a holomorphic function at an isolated critical point O, 
with finite multiplicity #; its Taylor series at O; a formal series in 
x, y or in x, y, z, with multiplicity/~. 
germs (or series) f and g at 0 are equivalent (there exists a germ of 
a diffeomorphism h (or a formal series h) such that f = g o h. 

"implies" 

"see" (references ~ i are not parts of the theorem statements; they 
give the number of the theorem containing the classification of the 
given singularity classes). 

k-jet o f f  at 0 (or the Taylor k-polynomial). 

stable equivalence classes defined in w 1. 

modules number of the germ of f at O. 

codimension of the # = const stratum of a function germ f in the 
space of germs of functions having critical value 0 at the critical 
point O. 

codimension of the singularity class K in the same space. 

quasijet (or quasi Taylor polynomial of f at O determined by the 
monomials x m', see the explanation below). 

quasihomogenous equivalence of two quasijets or of two quasi 
Taylor polynomials, see the explanation below. 

abbreviations used in theorems 58-65, 66-81, 82-89, 98-102; their 
meaning is to be found above the first theorem of each group. 

discriminant. In theorems 36, 37, 47, 48, 98, 99, d=4(a3+b3)+ 
2 7 -  a2 b 2 - 18ab. 

Explanation. A system {x m'} of n monomials in n variables x 1 . . . . .  x, with 
linearly independent exponents mi~Z"c lR"  defines an hyperplane Fc lR" ,  
F =  {m: (~t, m)=  1}. If all the components ati of the vector at are positive, at is called 
the quasihomogenity type. The number (at, m) is then called the order of the mono- 
mial x ~'. 

A polynomial f=~ f ,~x  ~ is quasihomogenous, of degree d and of type at if 
(at, m) = d for all m with f~ 4: 0. 

The type at defines a graded ring structure in C [ [ x  1 . . . .  , x ,]]  and a ring 
filtration or0 ~ .... ova= {f:  (at, m)_>_dVm: fm~0}. 

The factor space go/Sa, d > 1 is by definition the quasijet space defined by the 
monomials {x m'} (or by the type at). For a fixed coordinate system one can in- 
dentify quasijets with the polynomials having only monomials of order __< 1 (that 
is, their exponents lie on F or the same side of F as 0). 

Quasihomogenous diffeomorphisms are diffomorphisms of C" which preserve 
the degrees in the graded ring C [[x 1 . . . .  , x,]]. The Lie group of the quasi- 
homogenous diffeomorphisms acts on the space of quasijets and on the space of 
quasihomogenous polynomials. Two quasijets (or two polynomials) are quasi- 
homogenously equivalent if they belong to the same orbit of this action. 
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Determinator 

1. / ~ ( f ) <  o o ~  one of the four possibilities holds:  
co rank  f <__ 1 ~ 2, 

=2~::-3, 
= 3 ~ 5 0 ,  
> 3 ~ 105. 

2. corank f < l ~ [ ' ~ . 4 ~  ( k > l t .  

Th rough  theorems 3-49, J ~  ~ [[x, y]] .  

3. j 2 f = O : *  one of the four possibilities holds:  
j 3 f  , ~ x 2 y +  y3~*4, 

~, x2 y e=~5, 
,~,x 3 1::~61 , 
= 0  ~=~ 13. 

4. j 3 f = x 2 y + y 3 ~ f e D , .  

5. j 3 f = x 2 y ~ f e D k ( k > 4 ) .  

Through  theorems 6-9,  k >= 1. 

6k. j x 3 , / , , f ( x ,  y ) = X  3 =~ one of the four possibilities holds:  
jx3,y3k+,f ~ x a + y  3k+1 ~ 7  k, 
jx3, xyZk + l f ,~ x3 + x y 2k + l ~=::" 8k, 
jx3, yak+2f ~ x 3 + y  3k+2 t=:~9k ' 
Jx~,/~ § ~f = x3 r l O k + l  �9 

7k" jx3,y3~,+ l f = x  3 + y3k+ 1 => f~_E6k " 

8k" J~,xy . . . .  f = x  3 +xy2k+ 1 =:>f~ E6k + 1" 

9 k. jx3,y3k+2f=xa+y3k+2=>f~-E6k+2. 

Through  theorems 10-12, k >  1. 

10 k. j ~  y~_ ~ f =  x a :~ one of  the three possibilities holds:  
jxa. y 3 k f , , ~ x a + a x 2 y k + y  3k , 4a3 + 2 7  4:0~=:- l l k ;  

,~X3 + xEy k ~=:- 12k; 
~ X  3 I=:> 6k. 

I1 k. j x 3 , / , , f = x 3 + a x 2 y k + y  3k, 4a3+274=O=~feJk,  o . 

12 k. Jxa, y3k f=x3+x2yk=: ' f~-Jk ,"  (p>0) .  

Series X 

13. j 3 f ( x ,  y) = 0 ~ one of the six possibilities holds:  

14. 

15. 

j 4 ~ x 4 + a x 2 y 2 + y  4, a2:k:4t:~14; 
,~,x4 + x2 y 2 ~::- 15; 
,~0 x 2 y2 ~ 16; 

,~xa y ~ 1 7 ;  
~ x  4 ~ - 2 5 ;  
= 0  ~::-47; 

j 4 f = x 4 + a x 2 y 2 + y  4, a E 4 : 4 ~ f ~ X 9  = X l , o = T 2 , 4 ,  4. 

j , f  = x 4 + x 2 y2 ~ f~-X1, p = T2, 4, 4+ p (P > 0). 
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16. j 4 f = x 2 y  2 ~f~ylp,  q = T2,4+p,,+q ( p > 0 ,  q>0 ) .  

17. j4 f=xay=~jx3y ,# f=x3y t=~ 181. 

Through  theorems 18-21, p > 1. 

18p. jx3 y, : .  +~ f = x 3 y =~ one of  the four  possibilities holds:  
jx3y, y3p+2f ~ x a y + y  3p§ ~:::'19p, 
jxar, xy2p+ 2 f ,~ x3 y + x yEp+ 2~:" 2Op, 
jx3y, y3p+3f ~ ,x3y+ y 3p+ 3 ~=~21p, 
jx3y, y3p+ 3 f = x3 y ~ = > 2 2 p +  t . 

19p. jx3y, y3p§ = x 3 y + y  3p+2 =vfEZ6p+ 5. 

200" Jx~y,x:p + 2f  = x a y + xy2p+ 2 =>fEZ6p+ 6" 

21~. j,:r, #p+ ~f  = x3  y"l- y 3p+3 :::~ f ~ Z6p+ 7 . 

Through  theorems 22-24, p > 1. 

22p. jx~ r, r3 ~ f =  x 3 y =:" one of the three possibilities holds:  
jx3y, y3p+~f=y(x3+bx2yP+y3p),  4b3 + 27 4:0~=~ 23p; 

y (x 3 + x 2 yP) ~=> 24 o; 
x 3 y ~ 18~. 

23p. jx~r, r3p+~f=y(x3+bxZyP+y3p),  4b3+27:~O=:,f~Zp_LO . 

249. j ~ , : ~  + , f =  y(x  3 + xZ f l  ') =~ f ~ Z p _ l ,  ~ ( r >  0). 

Series W 

25. j4 f (x ,y )=x4=~jx4  r 4 f = x 4 ~ 2 6  I. 

Through  theorems 26-34, k >__ 1. 

26k- ix4, r~kf= x 4 =~ one of the three possibilities holds:  
j~*, r4k + , f ,~ X4"l- y 4k + l ~=:'27 k, 
jx4 xy3k+, f .~xg + x y3k+1e::, 28k, 
jx4, xy3k§ l f = x* ~=>29 k. 

27 k. jx4r~k+lf = x * + y  4k+t =~f~-W12 k. 

28k. j ~ , x r 3 k §  3k+1 = f ~ -  W12k+ 1. 

29k. ix4, ~r3k§ f =  X*=~ one of  the four possibilities holds:  
jx4, y4k+2f ,~xg+bX2y2k+l+y 4"k+2 , b2 =[= 4t=~ 30k; 

"~X4 + X2y 2k+1 t=~ 31k; 
~,~, (X2 + y2k+ 1) 2 ~ 3 2 k ;  

= x  4 ~ 3 3 k .  

30 k. jx4, y4k+2f=x*+bx2yEk+t+y 4k+2, b2.4~f~_[ ,Vk,  O . 

31 k. j x4r~k+2f=x ' t+x2y  2k§ ~f~_ Wk, i, ti> o ) �9 
32k. j ~ 4 : k + 2 f = ( x  2 + .  2k§ _ ,~_ T~,* y J =~jt'= VVk, i,(i>O ). 
33 k. j~ ,  v,~ + : f =  x* =~ one of  the three possibilities holds:  

jx4,xy3k+2f ~ x4 + x y3k+ 2t=~ 34k ; 
jx4, y4k§ ~ x 4 + y  *k§ ~:~35a; 
j~ ,y ,k§  = x  4 ~=~36k+ , �9 

34k. J,,,,x:~+ ~ f =x'* + X YZk+ z ~ f z  W12k+s. 



Local Normal  Forms  of Funct ions  103 

3 5 k .  j~,,y,,,+~f=x,*+y,*k+ 3 =:>fEW12k+ 6. 

Through theorems 36-46, k>  1. 

Series X k 

36 k. jx,,r,,,-,f=x'*=~ one of the five possibilities holds: 
jx4,r4~,f ,~x'* +bx3y~ +ax2y2k + xy 3k, 

,~x 2 (x 2 +axyl'+y2k), 
x ~ (x + ~)~ 

~ ( x + y  ~) 
~,~ x 4 

j~,,, r,~, f = x4 + b xa y~ + a x2 yZk + x y3k, 3 7  k �9 

3 8  k �9 

3 9  k �9 

4 0  k �9 

A:#0, ab :4: 9~:~ 37k; 
a 2:4= 4 ~:~ 3 8 k ,  

t::~ 39k; 
40 k; 

~=~ 26 k. 

d+O~f~-Xk.o. 
jx,,r4kf =xZ(xZ+axyk+y2k), aZ+4=~f~_Xk, p(p>O). 
Jx", y4kf = x 2 (X 2 -~- yk)2 =~f~_ y,,, (1 __< s < r). 

L,y, k f=(x+f l )xS=f=f l f  2, where jx, y~ft~x+yk; 
jx3,y3k f2 =x3~:~41k. 

Through theorems 41-44, i >  0, p > 0. 

41 k. jx3,r3kf2=X 3 ::~ one of the five possibilities holds: 
fz~-E6(k+i) ~=>42k, i; 

fE~-E6(k+i)+ 1 ~:~ 43k, i;  

f2~-g6(k+i)+ 2~=:~44k, l; 
f2~-Jk+i+l,O ~=> 45k, t+1 ; 

f2~dk+i+l ,p  ~=> 46k, t+ 1, p.  

Through theorems 42-46, f(x,  Y)=f~f2, where 
j x , y k f a ~ x + y  k, J x3yakA~ 'X  3 . 

k 42k, l. f2~-E6(k+i) f~-Z12k+6i_ l �9 
43k, i. A~-E6~k+,)+ 1 ~ f~-Z~2k+ 6,. 

44k,  1. f2~-g6(k+i)+ 2=~ f~Zk2k+6i+  1 �9 
Through theorems 45-46, i>= 1, p>0 .  

4Sk, i .  f2~-Jk+i,o:==~ f~-zki, o . 

46k,  i,O. f2~-Jk+i ,p=~fEzkp .  
47. j 4 f = O ~  one of the two possibilities holds: 

js f~x4y+axay2+bx2ya+xy4,  d + 0 ,  
Jsf is degenerate 

48. 

49. 

a b ~ 9 ~ - 4 8 ;  
~ 4 9 .  

j s f=xgy+ax3y2+bx2y3+xy 4, A @0~f~_N16, i.e. 
f"~x4y+axay2+bxEy3+xy4+cx3y 3, abe:9, A(a,b)~:O; 
#(/')=16, m ( f ) = 3 ,  c ( f ) = 1 2 .  

J5f is degenerate ~ / ~ ( f ) >  16, r e ( f )>2 ,  c ( f ) >  12. 

Corank 3 Singularities 

Through theorems 50-104, f~_C [[X, y, z]]. 
50. j2f(x, y, z ) = O ~  one of the ten possibilities holds. 

jaf ,~x3+y3+za+axyz,  a3 +27#=0~-51;  
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X3 + y3 + X y Z ~ 52 (series P); 
~ X 3 + x y 2  1~54 (series R = T3,~,~); 

x y z r 56 (series T), 
~ x 3 + y z  2 r (series Q); 
~ x 2 z + y z  2 ~:r (series S); 
~ x 3 + x z  2 ~ , 8 2  (series U); 

X 2 y ~ 97 (class V); 
~,  X 3 I::> 103; 
=0  ~- 104. 

Series T 

51. 
52. 
53. 
54. 
55. 
56. 

57. 

j3f=x3+ya-l-ga-t-axyz,  aa+27#O=~f~_Ps=T3,3,3 . 
j a f = x 3 + y a - k - x y z ~ f ~ x a W y a + x y z + o ~ ( z ) ,  j3o~=0, 

f=xa+ya+xyz+o:(z ) ,  j3~=O~f~-P~+5=T3, a,p(p>3). 
j a f = x a + x y z ~ f = x a + x y z + o ~ ( y ) + f l ( z ) ,  j3ot=jafl=O, 
f=x3+xyz+~(y )+f l ( z ) ,  j3(a, fl)=O~f~-Rv, a=T3,v,~ 
j a f = x y z ~ f " ~ x y z + o ~ ( x ) + f l ( y ) + ? ( z ) ,  j3(~, fl, T)=0, 
f=xyz+~(x)+~(y)+y(z ) ,  j3(~,fl, y)=O=~f~_T~,~,, 

~:~ 53. 

55. 

( q > p > 3 ) .  

~- 57. 

(r>q>p> 3). 

Series Q 
Through  theorems 58-65 cp=x 3 + y z  2, j*---jyz2.x3,~ (2 is a monomial) .  

58. j3f=tp~f, ,~p+o~(y)+xfl(y) ,  j3(~,xfl)=O, ~=~591 . 

Through  theorems 59-62, k__> 1. 

59 k. f=~p+~(y)+xfl(y), j ~ f = ~ p ~ o n e  of the four possibilities holds: 
jr*k+,f ~ 0 + y  3k+l ~=~60k; 
j *  ~C~ ~n • ~ �9 2 k + l  
xy2k+lJ~,J',ffW.~V ~:~ 61k; 

j~ak+2f ~,~+y3k+2 ~:~62k; 
J*'k§ = ~  t=:" 63k+, �9 

6Ok. "* + y3k + 1 => f ~_ )r,k+,f=~p Q6k+4" 
61k" J*r2k+l f =qg+ xY 2k+l ~ f~-Q6k+ 5" 
62~. j*a~+~f =cp+ y3k+ 2 ~ f~_Q6k+ 6. 

Through  theorems 63-65, k > 1. 

63 k. f=~p+~(y)+xfl(y), j * ~ _ , f = ~ 0 ~  one of  the three possibilities holds: 
j*3kf, ,~tp+ax2yk+xy 2k , a2 :::[= 4~=~ 64~; 

,-~ (p "~ X2  y k ~ 6 5 k ;  
=tp 

64 k. jr* k f =  tp + a x 2 yk + X y2k, 

651,. j*akf =tp+ x2 yk ~ f~-Qk,~ 

Series S 

66. 

59~. 

aZ # 4 ~  f~-Qk, o . 
(i>0). 

Through  theorems 66-81 ~p = X 2 Z - ] -  y z 2, j'* =j~2~,rz2,x" (2 is .a monomial) .  

j a f  =~p~f=q~+ot(y)+xfl(y)+z?(y), ja(cqxfl, z?)=O, ~:~67 ! . 
Th rough  theorems 67-76,  k > 1. 
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67 k. 

6 8 k ,  

69 k �9 

70~. 
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f =~o+~(y)+ xfl(y)+ zT(y), 
jy*~ , f = q 9  =>one  of  the  th ree  poss ib i l i t i e s  h o l d s :  
j%, f  ~ , q o + y  4 t  ~::~68k;  

j* ~ f .~q9 + xy3kl:*69k; 
j*y3,.f  = ~P ~r 7Ok. 

j ~  f =~p+ y4k=~ f~-S~zk_ ~ . 

j*~,~ ~ f = :p + x y3~ => f~_ S~ 2t" 
f - -  q~ + c~ (y) + x fl (y) + z 7 (Y), fir3 k f  = q~ ~ one  of  the four  poss ib i l i t i es  h o l d s :  
jy*~+~f~qg+y'*t+l + b z y  z~+x, b 2 4 : 4 ~ . 7 1 ~ ;  

~:,~ ~0 -~- X2 y 2k r 72k; 
~.(#  + z y 2k+ l ~,. 73k; 

=~p ~ - 7 4  k. 

"* " + 4 k + l + b z Y  2k+1 b 2 ~ 4 : : ~ f ~ - S k  o. 7 1  k.  J y 4 ~ , + l J = ( / 9  Y , , 
�9 , 2 2 k ~  ( i >  0). 72 k. j~, . . . .  f = q ~ + x  y f eS t ,  i 
�9 , 2k+ 1 # 73 k. jya~§ ~ f e S t a  ( i > 0 ) .  

74 k. f=~p+~(y)+xf l (y)+zT(y) ,  

7 5  k . 

76 k �9 

7 7  k . 

)~ ,k+ , f  =~o => one  of  the  th ree  poss ib i l i t i e s  h o l d s :  
j*r3k + ~ f ,~ qg + x y3k + l ~::. 75k ; 
jy*,,+2f , . ~ p + y 4 k + 2  ~r ; 

Jy*" + a f  = q~ ~r 77k + l" 

J*xy3k~-tf = ( p +  x y 3k+l  =::> f ~ - S 1 2 k +  4 . 

j*,~+ 2 f =  qo + y 4 t +  2 : :~fE S12k+ 5" 

T h r o u g h  t h e o r e m s  77-81 ,  k >  1. 

f = q0 + • (y) + x fl (y) + z Y (Y), J*, ~- ~ f  = q~ ~ one  of  the five poss ib i l i t i es  h o l d s :  
j % _ , f ~ w + a x 2 y t - l  + b x y % + x y  3k-1, A 4 : 0 ~ 7 8  t .  

.~qg+x)Pz+axSy k-l, a24=a ~ 7 9 k .  
~,~._, (O + x 3 y k - I 

,~ qg + x yk  z 

= q~ 
j*,k_l f =ax2 y k-1 + bx ykz + x y 3k-1, 
m ( f )  = 3 k - 2, c (Sk* o) = 9 k -  3. 

8 0  k . 

~ - 8 1  k. 

67 k . 

A :t: 0 ~ f e  S~k. 0, 78k. 

79 k. j*~ l f = ( p + x y k z + a x 3 y  k-l ,  a2~:a~f~_SPk, 
m ( f ) = 3 k - 2 ,  c (SPk) = 9 k -  2. 

80 k. j *~-~ f=(p+x3yk -X=f~-SQ k, # ( f ) >  1 2 k - 2 ,  
c ( S Q k )  = 9 k -  1. 

81 t .  j*,~-~f=q~+xykz=>f~_SRk, # ( f )  _>-12 k - 2, 
c (S  R k) = 9 k - 1. 

# ( f ) =  1 2 k - 4 ,  

# ( f ) = >  1 2 k - 3 ,  

m ( f ) = 3 k - 2 ,  

m ( f ) = 3 k - 2 ,  

S e r i e s  U 

T h r o u g h  t h e o r e m s  82-89 ,  ~p=x3+xz z, j*=j~3.z3a (~ is a m o n o m i a l ) .  

82. j3f=q~=~f..~tp+ct(y)+xfl(y)+zy(y)+xZ6(y), j3(ct, xfl, zy, x2(~)=O~:~831 . 
T h r o u g h  t h e o r e m s  83-89 ,  k >  1. 



106 V.I.  Arno ld  

83k. f =tp+o:(y)+ x f l ( y )+  zT(y )+ x2 6(y), 
holds: 
j .  ,, '~..• ' y3 k + 1 j ,~. ,  t/~ ~- y 

= (p ~ 8 5  k . 

84k. j ~ +  J = ~ o +  y ~§  ~ ~ f~_ VI~.  

85 k. f =  ~0 + ct (y) + x[3(y)+ zy (y )+ x z 6(y), 
sibilities holds: 
j*r2k+lf~qg+xy 2k+l + c z y  2 k + l  , 

,~q)+ xy  2k+1 
= q~ 

86 k. j*y2k + l f = qg + x y 2k + l + c z y 2k +1, 

87 k. j*xy2~,+tf =qg+ x y  2k+1 :=> f~Uk, p 

88 k. f=qg+o~(y )+x f l ( y )+zy (y )+x2~(y ) ,  
sibilities holds: 
"* ~ 8 9 k ,  jr3k§ ,,.~qg+ y3k+ Zl=r �9 

= t p  I=~ 9 0 k  + 1 . 

89k. j*3~+ ~f=  ~0 + y3k+ 2 =~f~_ Ulik+ ,- 
Through theorems 90-96, k ~ 2; 
~p = x 2 z + x z 2 ; j *  = j ~ ,  ~ ~ (2 is a monomial). 

90 k. f = x 3 + x z 2 + o~ (y) + x fl (y) + z ~ (y) + x 2 6(y), 
seven possibilities holds: 

Jr3~f~'* "~q~ + a x 2 y k + b x y k z + y k z 2 + c x y  2k, 
"~q~+ax2yk+bxykz+ykzZ,  4a@b 2, 
~ x 3 + a x 2 z + x z 2 + z Z y k ,  a24:4 
..~ q) w xZ yk w a x yk z, a~ 4: a 
..~q9 +x2y  k 

= q~ 

91~. j~kf =~o+~x2y~ +b~y~z + y~a +cxy 2~, 
# ( f ) =  12k-4 ,  m ( f ) = 4 k - 3 ,  

92~. j*,,f =~o+a~y* +b~y~ ~ + y~z 2, 
p ( f ) >  12k -3 ,  m ( f ) = 4 k - 3 ,  

93t. j * ~ f  =x3 + a x Z z  + xz2 + z2y k, 
m ( f ) = 4 k - 3 ,  c ( U Q k ) = 8 k .  

94 k. j ~ * k f = r p + x 2 y k + a x p a z ,  aZ:~a=c.f~_URk, 
m ( f ) = 4 k - 3 ,  c(URk)=8k. 

9 5  k .  j*3kf=qg+x2yk=~f~-USk, # ( f ) >  1 2 k -  1, 
c ( U S k )  = 8 k + 1. 

96 k. j *~ f=qg+xykz=~f~_UTk ,  / ~ ( f ) > 1 2 k - 1 ,  
c(UT~,)=Sk+ 1. 

j*~k f = ~p =~ one of the two possibilities 

jr, k+,f=q~=:-one of the three pos- 

c(c z + 1)4=0~:- 86k; 

I==e, 8 7  k ; 

I=~ 8 8  k . 

c(c2 + l)~=O=~ f~-Uk, o . 

(p>0). 

j * r 2 k + , f = q ~ o n e  of the two pos- 

�9 , 3 Jy3k- l f=x -[-XZ2=:> o n e  o f  t h e  

A 4= 0~:~ 91k; ~:~ 91k; 
a(a+ 1 -- b) 4:%=~ 92k; 

~:~ 93 k; 
~:~ 94 k; 

9 5  k ; 

~-96k; 
~83k .  

A:~O=~f~-Uk* o, 
c ( U ~ , o ) = 8 k - 2 .  

4a4:b  2, a (a+ l - b ) + O = ~  f~_UPk, 
c(UPk)= 8 k -  1. 

a2 4:4 ~f~_UQk,  #(f)=> 12k-2 ,  

/~(f)> 12k-2 ,  

m ( f ) = 4 k - 3 ,  

m ( f ) = 4 k - 3 ,  



Local Normal Forms of Functions 107 

Class V 

97. j3f(x,  y, z)=x2y===> f ~ xZy+~(y, z)+ xfl(z)~=>98. 
In theorems 98 and 102 ~0 is one of the 10 polynomials: 
Z4+Z3y, z3y+z2y2, Z2y2+zy3, Z4+z2y2, Z4, g3y, 2.2y2, 2323, y4, O. 

98. f=x2y+ot(y,z)+xfl(z), j 3 f = x Z y ~ o n e  of the four possibilities holds: 
jx2y, y4.z4f'~xZy+z4+az3y+bz2y2+zy 3 , A4=O, ab 4=9~=:, 99; 

, .~x2y+z4+bz3y+z2y 2 , b24=4 ~=> 100; 
..~xZy+z3y+azZyZ+y 4 , 4 a 3 + 2 7 + 0  ~=:- 101; 
~x2y+(p t=> 102. 

99. j~2y, y4,~4f=x2y+z4+az3y+bz2y2+zy 3, A 4:0=:-f~ Vt, o. 

100. jx2y, y4, z4f=x2y+z'*+bz3y+z2y 2, b24:4~f~-Vl,p, p>0. 

101. Jx2y.y4,z4f=x2y+z3y+az2y2+y '*, 4a3+27+O~f~_Vl*p, p>O. 

102. jx~y,y%z4f=x2y+~o=~#(f)>=17, re(f)>=3, c ( f ) >  13. 

103. j3f(x,y,z)=x3~l~(f)>=18, re(f)=>4, c(f)_> 13. 

104. j3f(x,y,z)=O~#(f)>=27, re(f)_> 10, c ( f ) >  16. 

105. Corank f > 3 ~ / ~ ( f ) > 1 6 ,  re(f)>5,  c( f )>lO.  

w 3. The Proofs 

Theorems 1, 17 and 25 are obvious. Theorems 121, 15, 16 are proved in [8-]. 
The proofs of theorems 12 k (k> l), 24, 31, 32, 38-46, 65, 72, 73, 79, 80, 81, 87, 92-96, 
100, 101 are based on new techniques as compared with [8] (some spectral 
sequence) and are not given here. 

The proofs of the classification theorems for unimodular singularities do not 
depend on these theorems. 

The classification of unimodular singularities is obtained from the following 
theorems: 

1-5, 6,,z-9t, z, 102, l lz ,  13-17, 18,-21,, 222, 232, 25, 261-301, 361, 371, 
47, 48, 50-58, 59,-621 , 63 z, 64 z, 66, 67,-71,, 82, 831-861 , 97, 98, 105. 

Here one needs only the simplest cases (the first one) of theorems 10z, 222, 
291, 36, 47, 63 z, 70,, 85,, 98. 

To classify all bimodular singularities one needs in addition theorems: 
63-113, 122, 182-21z, 223, 233, 24z, 311-35,, 36z, 372, 592-622,633, 643, 

65 z, 721-761 , 77 z , 782 , 87,-891 , 90 z, 912, 99. 
(In fact, only the simplest cases of theorems 103,223, 36z, 633, 77 z, 90 z are 

needed.) 
Theorems 6, 18, 26, 33, 59, 67, 74, 83, 88 are proved by the Newton method [9] 

of a moving ruler (line, plane). This method reduces the proof to the counting 
of the integer points in triangles resp. polyhedrones on the exponent plane (resp. 
in the space). 

The proofs of theorems 3, 10, 13, 22, 29, 36, 47, 50, 52, 54, 56, 58, 63, 66, 70, 
77, 82, 85, 90, 97, 98 can be reduced to the classifications of orbits of the actions 
of some quasihomogenous diffeomorphism groups on the spaces of quasi- 
homenous polynomials. 
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Some quasihomogenous Lie algebra "roots" technique reduces all these 
classification problems to geometrical problems as shown in the table below. 

Theorem Series Geometrical problem 

3 D 
10, 22 J,  Z 
13 X 
29 W 
36 X 
47 N 
50 P 
63 Q 
70 S 
77 S* 
85 U 

90 U* 
98 V 

Linear classification of the 3-forms in IE 2. 
Affine classifications of the triples of points in C 1. 
Linear classification of the 4-forms in r 
Linear classification of the couples of points in C 1. 
Affine classification of the quadruples of points in C 1. 
Linear classification of the 5-forms in r 
Linear classification of the 3-forms in r 
Affine classification of the cubics with a finite cusp point in r 
Affine classification of the cubics with at least 2 finite nodes in ~ 2  
Affine classification of the cubics in C 2, having the infinity line a simple tangent. 
Affine classification of the cubics in II~ 2, admitting a centre of symmetry and having 
exactly 3 points at infinity. 
Affine classification of the cubics in C 2, having exactly 3 points at infinity. 
Affine classification of the polynomials of degree < 4 in 1 variable in C 1. 

Theorems on the normal forms of the semiquasihomogenous functions 
(theorems 2, 4, 5, 7, 8, 9, 11, 14, 19, 20, 21, 23, 27, 28, 30, 34, 35, 37, 48, 51, 60, 61, 
62, 64, 68, 69, 71, 75, 78, 84, 86, 89, 91, 99) and theorems 52, 54, 56, 58, 66, 82, 97 
follow from section 7.3 in [8]. Theorems 49 and 102 are corollaries of 48 and 
100, 101. 

To prove theorems 53, 55, 57 we use the following lemmata (the terminology 
is that of [8]). 

l_emma 1. Let f o  = a X l  X2X3  W XPl-{- x~2 + x p3' where 3<pl  ~p2  <=P3 >3, a~0 .  
Then 

1) at 0 fo has an isolated critical point with # = P l  +P2 + P a -  1; 
2) monomials 1, x t x 2 x 3 ,  x~' (0<si<pl  , i=  1, 2, 3) define a regular basis of the 

local ring; 

3) condition A holds for the Newton filtration, defined by the 4 monomials o f f  o . 

To prove this lemma we use the crossword technique (see [8], section 9.7). 
We find the following 2 geometrical facts: 

Lemma 2. All the cycles formed by the admissible segments for  fo, are trivial. 

This follows from the linear independence of the 3 main segments; this in- 
dependence holds when Pi satisfies the above stated restrictions. 

Lemma 3. The maximal admissible chains are: 
~' (0_-< s i < P i - 2 )  is a trivial chain formed by this point; 1) every point x~ 

2) there exist 4 finite maximal chains x I x 2 - xg 3 - 1, x2 x3 - ~1"vl - 1, Xa Xl _ x~2 - 1, 
X 1 X 2 X 3 - -  xPi;  

3) all other points have infinite admissible chains. 

Lemma 1 is an easy corollary of lemmata 2 and 3. 

The proofs of  theorems 53, 55, 57. 
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These theorems can be stated as follows. 

Theorem. Let f have a critical point 0 of finite multiplicity and 

f=xyz+~(x)+fl(y)+y(z), j2 (c~, fl)~-0, ja(y)=0. 

Then in some neighbourhood of 0 

f ~ f o = a x y z + x P + y q + z  r, a#:0, 3<p<q<r>3.  

Proof Let the first nonzero terms of the Taylor series for ct, fl, y have exponents 
p, q, r. By changing if nesseserly the notations, we obtain 3 <p<q<r> 3. By 
dilatations of coordinates we reduce f to the form fo +f l ,  where all the exponents 
of the monomials of f~ are above the Newton polyhedron of f0. 

According to lemma 1, all the monomials of f~ belong to the ideal (Ofo/OXi), 
and f0 satisfies the condition A of [8]. 

By theorem 9.5 of [8] we have f ~ fo ;  theorems 53, 55, 57 are thus proved. 
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