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A PROOF OF THE INVARIANCE OF CERTAIN CONSTANTS OF 

ANALYSIS SITUS* 

BY 

J. W. ALEXANDER, II 

1. Introduction. Every n-dimensional manifold may be partially char- 
acterized by means of two sets of topological invariants 

P1, P2 *** Pn _1 (P)t 
and 

R1nR2 *** Rn_l (R)t 
whose roles are analogous to that played by connectivity in the theory of 
surfaces. The numbers Pi and Ri are each greater by unity than the maxi- 
mum number of i-dimensional cycles (cf. § 4 below) which may be traced in 
the manifold, but in calculating the numbers Pi, certain conventions about 
sense are taken into account and the attention is confined to the sensed cycles. 

Now if a manifold be subdivided into a complex, or generalized polyhedron, 
then one plus the maximum number of independent i-dimensiorlal cycles of 
the polyhedron (i. e., cycles made up of cells of the polyhedron) is also equal 
to Riv or to Pi if the conventions about sense be adopted. This theorem, 
which is of considerable use in calculating the values of the numbers (P) 
and (R) v has been proved by Poincare on the assumption that the manifold, 
all the cycles of the manifold} and all the cells of the complex may be regarded 
as made up of a finite number of analytic pieces. But such an assumption 
opens the way to a theoretical objection in that the numbers (P) and (R) 
when calculated from the analytic cycles alone might conceivably fail to be 
topological invariants. To remove this objection, it would have to be shown 
that there never could exist a point-for-point continuous reciprocal corre- 
spondence between two manifolds possessing different numbers ( P ) and 
( R) n even if the correspondence were not required to be analytic. 

In the following discussion, we shall take into account not only non-analytic 
cycles but also cycles possessing singularities of however complicated a nature. 

* Presented to the Society, September 8, 1913. 
tPoincard, Journal de l'Ecole Po]ytechnique, vol. 2 (1895),p. 19; and 

Palermo :Rendiconti, vol. 13 (1899), p. 285. 
1: Veblen and Alexander, A n n a 1 s o f M a t h e m a t i c s, vol. 14 (1913), p. 168. 
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149 1915] INVARIANTS IN ANALYSIS SITUS 

The inclusion of the latter makes it possible to prove with ease the fundamental 
theorem about the numbers (P) and (R) as well as a similar theorem about 
the coefficients of torsion.* The discussion will very largely be limited to 3- 
dimensional manifolds, since the generalization affords no new difficulties and 
suggests itself at once. 

The author wishes to express his appreciation and thanks to Professor 0. 
Veblen for many valuable suggestions. 

2. Model of a 3-Dimensional Manifold. From a topological point of view, 
a simple closed surface may always be represented in a space of sufficiently 
many dimensions by a model consisting of a finite number of triangular 
regions. These regions will abut upon one another in such a way that a 
side of one always coincides with a side of one of the others. Similarly, a 3- 
dimensional manifold may be represented by a finite number of tetrahedral 
regions, and so on.t As we are only concerned with manifolds without 
singularities, the regions which cluster about a common vertex may be sup- 
posed to constitute a simply connected portion of the manifold, that is, one 
which can be mapped upon the interior of a tetrahedron. We can then sub- 
divide the manifold into smaller tetrahedral regions so as to assure ourselves 
that each region together with all the neighboring regions is contained within a 
simply connected portion. The model thus finally obtained will be used in 
place of the manifold itself in all of the discussion which follows. 

The vertices, edges, and triangular faces which bound the tetrahedral 
regions subdivide the manifold into a complex 7r, or generaltzed polyhedron, 
of three dimensions. They constitute the cells of the polyhedron of dimen- 
sionalities 0, 1, and 2 respectively, while the interiors of the tetrahedral 
regions themselves constitute the cells of dimensionality 3. The polyhedron 
gr is of a very restricted type; it can be assumed that all its edges are of equal 
length, for if its vertices are V in number, they may all be spaced at equal 
distances from one another in a space of V-1 dimensions. 

3. Invariants of a Polyhedron and of a Manifold. If a manifold be sub- 
divided into a polyhedron K, whether or not of the restricted type of 7r, it is a 
simple matter to calculate the greatest number of l-dimensional complexes 
cl, c2, * * * ck (closed curves) made up of cells of the polyhedron and such 
that there is no open 2-dimensional complex also made up of cells of the 
polyhedron and having for complete boundary one or more of the complexes 
cl, c2, * * * Ck. Taking into account the conventions on sense, this calcu- 
lation leads to an invariant P1-1, otherwise to an invariant R1-1. Simi- 
larly, the greatest number of independent closed 2-dimensional complexes is 
either Pz-1 or R2-1. The problem will be to identify these four invari- 

*Poincard, Proceedings of the London Mathematical Society, 
vol. 32 (1900), p. 301. 

t Veblen and Alexander, loc. cit., § 17. 
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160 J. W. ALEXANDER, II: 

[April 
ants with the corresponding invariants of the manifold itself, that is with 
P1-1, R1-1, P2-1, and R2-1. 

4. By a I- or 2-dimensional cycle c of the manifold will be meant a set of 
points of the manifold which may be regarded as the image of a closed com- 
plex X of one or two dimensions as the case may be. There must be a con- 
tinuous correspondence between the points of the complex and those of the 
cycle such that to every point of the complex there corresponds one and 
only one point of the cycle, but the correspondence need not be one-to-one 
in the inverse direction. Thus, the cycle may present singularities of any 
degree of complexity. Whenever two or more points of the complex X corre- 
spond to the same point of the cycle c, we shall say that they correspond in a 
one-to-one manner to as many coincident points of c. With this convention 
the correspondence between c and X becomes one-to-one in both directions 
and the internal structure of c becomes the same as that of W. If any length e 

be preassigned, it may be assumed that the cells of the cycle c (the images of 
the cells of the complex W) are so small that no two points of the same cell 
are at a distance of e or more apart. For if we subdivide the cells of the 
complex X into sufEciently small cells, the images of the latter will surely 
have the required property, owing to the uniform continuity of the corre- 
spondence between X and c. 

Before defining what is meant by an independent set of cycles, let us recall 
that the boundary of an open i + 1 dimensional complex K consists of one or 
more closed i-dimensional complexes W1, W2, * * * X, any two of which may 
have in common one or more cells of dimensionality less than i. If such a 
complex be mapped along with its boundary upon the manifold, the com- 
plexes A1, A2, * * * Ws will form a set of cycles c1, c2, * * * cs, two or more of 
which may coincide. When we disregard the conventions about sense, the 
cycle c1 is said to be dependent upon the cycles c2, *-* ci provided it occurs 
an odd number of times in the set, but when the conventions are made, it is 
dependent provided the diSerence between the number of times it appears in 
one sense and the number of times it appears in the other is not zero. A set 
of cycles is said to be independent when no cycle of the set is dependent upon 
other cycles of the set. A necessary but not sufficient condition for inde- 
pendence is that each cycle of the set be non-bounding, that is that no cycle 
be the boundary of the image of a complex K. 

R1-1 and R2-1 are respectively the greatest number of independent 
1- and 2-dimensions cycles which may be traced in the manifold; P1-1 and 
P2-1 are the corresponding numbers when conventions on sense are made. 

5. Lemma. No cycle Iying in a simply connected region can be non-bounding. 
This may be seen at once if the simply connected region be regarded as the 

inte rior of a tetrahedron, for if we then join each point of the cycle by a linear 
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segment to some point P of the region, the points of the segnwents will con- stitute the image of an open complex bounded by the cycle in question. The complex will have as cells a vertex corresponding to the point P, an arc 
corresponding to each line joining P to an arc of the cycle, a triangular region corresponding to each set of lines joining P to an arc of the cycle, and, if the cycle be 2-dimensional, a tetrahedral region corresponding to each set of lines joining P to a triangular region of the cycle. 

6. The Fundamental Theorem for Polyhedra of the Restricted Type. Let us first suppose that the manifold be subdivided into a polyhedron 7r of the type discussed in § 2. We shall first prove that every cycle of the manifold is dependent upon one or more cycles of 7r. 
As was shown in § 4, the cells of the cycle c may be supposed to lie in regions as small as we please; hence, in particular, they may be supposed to lie in such small regions that if every point on the interior and boundary of any one of the cells be joined to the nearest vertex of the polyhedron, or to one of the nearest if there are more than one, these points will all be joined to the same or to adjacent vertices. Now if c be a one-dimensional cycle, the ends A1 and A2 of each one-cell will be joined respectively to two vertices B1 and B2 of the polyhedron 7r which either coincide or bound an edge B1B2 of 7r . At all events, the circuit AlA2B2BlAl will bound the image s of some open complex since it lies in a simply connected region (§ 5). The totality of complexes s corresponding to the various circuits AlA2B2BlAl constitutes the image s of a complex bounded by the cycle c and, in general, one or more cycles of the polyhedron 7r composed of the arcs B1B2. It may happen that the circuit c constitutes by itself the complete boundary of S, as for instance in the case where the vertices B1 and B2 all coincide. In any case, the cycle c is dependent upon the cycles of the polyhedron 7r. 

When c is a 2-dimensional cycle, it may be regarded as composed of the images of triangular regions (§2). Each 2-cell will have three vertices A1, A2, and A3 which will be joined to three vertices B1, B2, and B3 of the poly- hedron 7r every two of which must either coincide or bound an arc of 7r. Now, by the lemma, the cycles AlA2B2BlAl, A2A3B3B2A2, and A3AlBlB3A3 bound three surfaces sl2, s23, and s34 respectively all of which are situated within the same simply connected portion of the manifold. More- over, the surfaces sl2, s23, and s3l, together with the cells A1A2A3 and B1B2B3 (the latter being of less than two dimensions if two or more of the vertices B1,B2, and B3 coincide) form a closed complex which bounds the image r of a 3-dimensional complex, again by the lemma. But the totality of regions r determines a region R which is bounded by the cycle c and, in general, one or more cycles c' of the polyhedron 7r made up of cells B1B2B3.* 
* The term regionis here used in a very broad sense to denote the image, with or without singularities, of a 3-dimensional complex. 
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Since every cycle of the manifold is dependent upon one or more cycles 

of the polyhedron x, we have the relations 

R1 R1 and R1 R1. 

Moreover, we also have 

PZ P1 and P: P2, 

since it is readily seen that the above argument holds equally well when the 

conventions about sense are introduced. 
On the other hand, if a set of cycles a made up of cells of the polyhedron 

fails to be independent with respect to the manifold, so also does it fail to be 

independent with respect to the complex. For if it is not independent with 

respect to the manifold, there exists an open complex X which may be so 

mapped upon the manifold that the boundary of its image c coincides with 

one or more of the cycles a. Let us first suppose that the cycles a are linear 

so that the complex X is 2-dimensional. Then, supposing as we may that the 

cells are sufficiently small and the images of triangles, we may find a cell 

B1 B2 B3 of the polyhedron 7r corresponding to every cell A1 A2 A3 of c, by 

the process indicated above. The cells B1 B2 B3, together with the cells of 

lower dimensionalities on their boundaries constitute one or more complexes 

ct of 7r bounded by cycles of the set a r therefore the cycles are not independent 

with respect to the polyhedron. It might be objected that the complex or 

complexes c' could fail to exist, as for instance if the vertices B1, B2, and B3 

always coincided. This can never be the case, however, for c and G' constitute 

the boundary of a certain open 3-dimensional region R,- by the argument 

made above. But the boundary of R must be a closed complex, whereas c 

by itself is open. Therefore c' must not only exist but must have the same 

boundary as c in order that c and c' together shall constitute a closed complex. 

When a is a set of 2-dimensional cycles, c is the image of a comples of 

three dimensions. We may therefore regard its cells as the images of tetra- 

hedra, besides which we may suppose them as small as we please. If we join 

the vertices A1 A2 A3 and A4 of each cell to the four nearest arertices B1 B2 B3 

and B4 of gr respectively, the cells B1 B2 B3 Bo will determine the complex 

ct The details of the argument in this and in the previous case are similar. 

Thus, we also have 

R1 _ R1, R2 c R2, pl c P1, P2 _ Pa, 

and therefore, 

R1 =R1, R2 -R2, P1 -P1, P2 -P2 

which establishes the theorem for the case where vr is a polyhedron of the 

restricted type. 
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Evidently, all that has been said up to this point may be generalized at 
once to manifolds of more than three dimensions. The polyhedron 7r will 
then consist of simplexes, or generalized tetrahedra, together with the sim- 
plexes of lower dimensionalities on their boundaries. 

7. Corollary. If a manifold be topologically equivalen! to the boundary of 
an n-dimensional simplex, or generalized tetrahedron, its invariants ( P) and 
( R) are all equal to unity. 

For the cells on the boundary of the simplex determine a polyhedron of 
the restricted type gr. Moreover, if we remove from one of the n-cells of the 
polyhedron a small n-dimensional simplex, there will be left a simply con- 
nected region containing all the cycles of the polyhedrorl. But, by the the- 
orem, these cycles are the only ones which need be considered and, by the 
lemma, they all bound. 

8. The Fundamental Theorem for a General Polyhedron. A polyhedron 
of the most general type may be transformed into one of the restricted type 1r 
by means of a series of regular subdivisions.* It merely remains to be shown, 
therefore, that a regular subdivision does not alter the number of independent 
cycles of the complex. Let Kt be the complex before the subdivision and let K 

be the complex after the subdivision of a cell E of Kt. Then every i-dimen- 
sional cycle cs of K which was not a cycle of Kt previous to the subdivision 
must necessarily pass through the new vertex V of K. Now the bases of the 
(pyramidal) cells of-cX which have for common apex the point V constitute 
one or more cycles ds_l of dimensionality i-1, except for the case i= 1 
when they are a set of points, even in number. In either case, since the 
boundary of a cell is in point-for-point correspondence with the boundary 
of a simplex, the cycles or points ds_1 are the complete boundary of an open 
complex ds made up of cells on the boundary of E (§ 7). But the complex d; 
together with the cells of cs which abut upon V constitutes a closed complex es 
which may be shown to bound by exactly the same argument as was used in 
proving the lemma. If we addt the complex es to the complex cs, the latter is 
transformed into one which no longer passes through the vertex V and which 
therefore belonged to Kt previous to the subdivision.: Hence, 

P, _ P and Rt - RX . 
Moreover, every cycle of Kt which bounds in K also bounds in Kt. For 

either the bounded complex belonged to Kt or else it now passes through the 
* A regular subdivision is made by partitioning one of the cells E of the complex into a 

set of "pyramidal " cells whose bases are the cells on the boundary of E and whose apexes 
coincide at a point V of E. For details,' see Veblen and Alexander, loc. cit. 

t Veblen and Alexander, loc. cit., p. 169. 
1: When the dimensionality of the cycle ci is equal to or greater than that of the cell E, 

the cycle ct includes all the sub-cells of E, therefore it is the same cycle as the cycle of Kt ob- 
tained by replacing the sub-cells of E by E itself. 
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vertex V. In the latter case, it can be replaced by one which does not pass 
through V by an argument like the one just made. Therefore, 

Px = P, and Rt = R, . 

9. When the conventions on sense are introduced, it sometimes happens 
that a cycle is non-bounding when counted only once, though bounding 
when counted a sufficient number of times. From a consideration of such 
cycles are derived the coefficients of torsion of the manifold. An argument 
like the one made in this paper shows that a cycle having the above property 
may be replaced first by one of the same kind belonging to a polyhedron of 
type 7r, then by one of the same kind belonging to any polyhedron into which 
the manifold may be subdivided. The invariance of the coefficients of torsion 
therefore also follows at once. 

PRINCETON, N. J., 
September, >9>3. 
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