which completes the induction for this case. In the remaining case where
the point \(Q \) is on the curve \(k_0 \), the only difference is that an arc, \(l_1 \), of a curve
of intersection in \(\alpha_1 \), and not necessarily an entire curve, approaches the
curve \(k_0 \) as \(\alpha_1 \) approaches \(\alpha_0 \). The necessary deformation of \(\alpha_1 \) is one such
that the arc (or curve) \(l_1 \) shrinks to the point \(Q \) as \(\alpha_1 \) approaches \(\alpha_0 \). We
perform a similarly modified deformation on \(\sigma_2 \) and complete the argument
just as before, thereby proving the theorem.

A similar reduction may be applied for the case \(p = 1 \), but at some stage
of the process the curve \(k_0 \) will be non-bounding. The side of \(\sigma \) containing
the plane surface \(C \) bounded by \(k_0 \) will thus have to be tubular, that is to
say, homeomorphic with the interior of an anchor ring. This is the the-
orem predicted by Tietze. For a general value of \(p \), it is easy to show that
the linear connectivity of either region bounded by \(\sigma \) is \((P_1 - 1) = P\), but
the group of the region may be very complicated.

AN EXAMPLE OF A SIMPLY CONNECTED SURFACE BOUND-
ING A REGION WHICH IS NOT SIMPLY CONNECTED

BY J. W. ALEXANDER

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY

Communicated, November 19, 1923

The following construction leads to a simplified example of a surface \(\Sigma \)
of genus zero situated in spherical 3-space and such that its exterior is
not a simply connected region. The surface \(\Sigma \) is obtained directly without
the help of Antoine's inner limiting set.

The surface \(\Sigma \) will be the combination, modulo 2, of a denumerable
infinity of simply connected surfaces \(S_i \) (\(i = 1, 2, \ldots \)), all precisely similar
in shape, though their dimensions diminish to zero as \(i \) increases without
bound. The shape of the surface \(S_i \) may perhaps be described most readily
by referring to the accompanying figure in which the surfaces \(S_2 \) and \(S_3 \)
are represented. By comparison with \(S_2 \) to which, by hypothesis, all the
other surfaces \(S_i \) are similar, we see that the general surface \(S_i \) is roughly
like a tube twisted into the shape of the letter \(C \) and terminating in a pair
of circular 2-cells, \(\beta_i \) and \(\gamma_i \). There is, however, a slight protuberance in
the side of the tube terminating in a 2-cell \(\alpha_i \).

The position of the surfaces \(S_1 \), \(S_2 \), and \(S_3 \) with respect to one another
is indicated in the figure, though only the two ends of \(S_1 \) terminating in
\(\alpha_1 \) and \(\beta_1 \) are shown. It will be noticed that the faces \(\alpha_2 \) of \(S_3 \) and \(\alpha_3 \) of \(S_3 \)
are subfaces of the faces \(\beta_1 \) and \(\gamma_1 \) of \(S_1 \), respectively, and that the surfaces
S_2 and S_3 are hooked around one another, so to speak. When S_2 and S_3 are added modulo 2 to S_1 (which means that the points of α_2 and α_3 must be deleted from the combined surfaces), a simple closed surface, Σ_1, is obtained. The surface Σ_1 will be regarded as the first approximation of the desired surface Σ. The next approximating surface, Σ_2, is obtained by adjoining to Σ_1, modulo 2, the next four surfaces, S_4, S_5, S_6, S_7. The first two of these will be related to S_2 and the last two to S_3 in exactly the same way that the surfaces S_2 and S_3 are related to S_1; that is to say, a similarity transformation of the 3-space carrying S_1 into S_3 would carry S_2 and S_3 into S_4 and S_5, respectively, while one carrying S_1 into S_3 would carry S_2 and S_3 into S_6 and S_7, respectively. The third approximation Σ_3 is obtained by adjoining the next eight surfaces S_8, ..., S_{15} in a similar manner, so that the pair S_8 and S_9 are attached to S_4 just as the pair S_2 and S_3 are attached to S_1, and so on. The surface Σ is the limiting surface approached by the sequence Σ_1, Σ_2, Σ_3, ... It will be seen without difficulty that the interior of the limiting surface Σ is simply connected, and that the surface itself is of genus zero and without singularities, though a hasty glance at the surface might lead one to doubt this last statement. The exterior R of Σ is not simply connected, however, for a simple closed curve in R differing but little from the boundary of one of the cells γ_i cannot be deformed to a point within R. It is easily shown, in fact, that the group of R requires an infinite number of generators.

The points K of Σ which are not points of the approximating surfaces Σ_i form an inner limiting set of a much simpler type than the inner limiting set of Antoine, as was pointed out to me by Professor Veblen. For we
may close down upon the points K by a system of spheres rather than by a complicated system of linking anchor rings.

This example shows that a proof of the generalized Schönflieess theorem announced by me two years ago, but never published, is erroneous.

REMARKS ON A POINT SET CONSTRUCTED BY ANTOINE

By J. W. ALEXANDER,

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY

Communicated, November 16, 1923

From the consideration of a remarkable point set discovered by Antoine, the following two theorems may be derived:

Theorem 1. There exists a simple closed surface of genus 0 in 3-space such that the interior of the surface is not simply connected but has, on the contrary, an infinite group.

Theorem 2. There exists a simple closed curve in 3-space which is not knotted, inasmuch as it bounds a 2-cell without singularities, and yet such that its group (as defined by Dehn) is not the same as the group of a circle in 3-space.

It follows without difficulty from the second theorem that if an isotopic deformation be defined in the customary manner (cf. for example, Veblen's Cambridge Colloquium Lectures), the group of a curve in 3-space is not an isotopic invariant. This suggests that a modified definition of isotopy might be advisable.

Antoine's point set is obtainable as follows. Within an anchor ring π in 3-space, we first construct a chain C or anchor rings π_i ($i = 1, 2, \ldots, s$) such that each ring π_i is linked with its immediate predecessor and immediate successor, after the manner of links in an ordinary chain, and such, also, that the last ring π_s is linked with the first π_1, thereby making the chain closed. We further suppose that the chain C is constructed in such a way that it winds once around the axis of the ring π. Secondly, we make a similar construction within each of the anchor rings π_i, thereby obtaining chains C_i made up of rings π_{ij} ($j = 1, 2, \ldots, s$), and repeat the process indefinitely, obtaining chains C_{ij} within π_{ij}, C_{ijk} within π_{ijk}, and so on. If we think of the system of rings within one of the rings π_i as the image of the system of rings within the ring π under a similarity transformation carrying the interior and boundary of π into the interior and boundary of π_i, it is clear that the diameters of the rings $\pi_{ijk} \ldots$ decrease towards zero as the number of subscripts to their symbols increases. The inner limiting set Σ determined by the infinite sequences of rings $\pi^i, \pi_{ii}, \pi_{ijk}, \ldots$ is the