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The definition of an H-space goes back to Serre, in his thesis [7]. The given 

structure of an H-space comprises three things: a topological space X, a base-point 

eE X, and a “product map” ,U : Xx X-A’. These, of course, may be required to 

satisfy various axioms. For present purposes vve don’t need to know the axioms; we 

do need to know some examples. 

In the first class of examples, the space X is a topological group G; the point e is 

the unit element in G; and the map p is given by the product in the group, b(g,h) 

=gh. The topological groups of most important to us here are the Lie groups. 

In the second class of examples, X is a loop-space QY. That is, one starts from a 

space Y with base-point yo; and one forms the space RY of continuous functions 

LL): [0, I], 0, l- Y,yo,yo. These functions are called loops, and one gives the set of 

loops the compact-open topology. The base-point e is the loop constant at ,VO; and 

one defines the product ,U (uJ,, 0’) of two loops in the usual way, that is, 

P(QJ, o?(t) = L ww (Osfr+), 

o’(2t- 1) (jlf< 1). 

Loop-spaces are of course the sort of function-space which Serre exploited with 

such success; and one may say that at this point he was proving some basic lemmas 

about their topology, by analogy with the known case of topological groups. 

It was realised quite early that the second class of examples essentially contains 

the first. More precisely, let G be a topological group; then under mild restrictions 

we can form its classifying space BG, and the loop-space RBG gives us back G up to 

equivalence. 

There are certainly H-spaces which are not loop-spaces; for example, let X be the 

unit sphere in the space of Cayley numbers, vvith ,U defined by the multiplication of 

Cayley numbers. However, we understand such phenomena well enough; in this 

lecture I mostly want to talk about H-spaces which are loop-spaces RY, or as we 

usually say, H-spaces with classifying spaces Y. 

Among such, it has always seemed that the Lie groups are distinguished by their 

finiteness properties. For example, a compact Lie group G is a finite complex, and a 

general loop-space RY is not even equivalent to a finite complex. In the theory of 

finite H-spaces, one tends to assume that X is an H-space which is equivalent to 

some finite complex. 



2 J. F. Adams 

In this subject, like any other, people prove theorems and construct counter- 

examples, The theorems tend to say that finite N-spaces behave in some way like Lie 

groups; the counter-examples show that there are finite H-spaces which are not Lie 

groups. 

In 1963 [ 111 I.M. James suggested that one should look for such counterexamples 

among sphere bundles over spheres. This suggestion was apparently forgotten for a 

time. However, the celebrated counterexample of Hilton and Roitberg [3] is of this 

nature. We now have a good understanding of the range of counterexamples which 

have been constructed, owing to the advent of the method of localisation [9]. 

As a representative theorem, I quote the fine result of Hubbuck [4] that a finite 

H-space which is homotopy-commutative is actually equivalent to a torus T”. I 

certainly do not want to disparage this result in any way when I say that unfortu- 

nately, as in other parts of group-theory, the general case is more difficult than the 
abelian case. 

We should therefore ask, what are the fundamental statements about the 
topology of Lie groups which we should try to carry over to finite H-spaces? 
To begin with, the Bore1 theorem carries over. If we exclude a finite number of 
primes p, then the mod p cohomology of the classifying space Y is a polynomial 
algebra, on generators whose number and degrees do not depend on p. More 

formally, there is an integer 1, the rank, and integers (2dl, Zd:, . . ..Zd/). the fype, so 

that for prpo( Y) we have 

H’(Y; F,)~F,[Yl,YZ, . . ..Yil 

with y; of degree 2d;. 
In the classical case, when we start from a compact connected Lie group G, iv2 

have a maximal torus T and a Weyl group I+‘. Then a classical result says that 

H’(BG; F,)-‘Hf(ET; F-J&’ 

is iso for prpl(G). Here H*(BT; fP)li- means the subalgebra of elements in 

H’(BT; fP) which are invariant under IV. 

A result of Adams and Wilkerson [2] carries this over to finite H-spaces, in the 

following way. Suppose that for a particular prime p we have an isomorphism 

H’(Y; Fp)=.&,y2, . . ..Yll. 

withy, of degree 2d;, as above; and suppose also that p does not divide dldz*..d/. It is 

not assumed that there is any particular geometric relation between RY and a torus. 

Nevertheless, the proof constructs something like a Weyl group, namely a finite 

subgroup W, of GL(I,Z,^) which is generated by generalised reflections; and since 

GL(I, Z,3 acts on H*(BT’; I$), of course the subgroup W,, does so. Then the result 

gives an isomorphism 

H’(Y; fp)--%P(BT’; FJ‘b, 
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and this isomorphism preserves Steenrod operations. The point of all this is that the 

p-adic reflection groups are classified by known results of algebra; so one comes 

down to a list of 37 cases, some of which are infinite families. 

We may accept this as reasonably satisfactory for the primes p which are suffi- 

ciently large, in the sense that prpo(Y) and p does not divide di&...d/. The next 

problem is, what further information can one get using the small primes? One can 

convince oneself that one cannot get a good answer using Steenrod operations, and 

one had better turn to K-theory. I will not offer reasons, since I think that you will 

believe it. In any case, we glimpse the prospect of running the Adams-Wilkerson 

programme over again, but using K-theory instead of ordinary cohomology 

H*( ; fp). The counterexamples still force us to work one prime at a time; you 

might think of using K*( ; Fp), but that seems to be a bad idea; it is probably best to 

use K’( ; Zp^). So when I write K’( ), I mean K’( ; Zi’,. 

In the classical case we have a result 

K(BC+ K(BT)U 

without any restriction on the prime p. So we glimpse the possibility of doing away 

with the condition prpo( Y) which was essential to the Bore1 theorem. 

We can now envisage a programme in two steps. The first step should belong to 

topology: we should assume given a finite H-space in the sense that X= QY and X is 

equivalent to a finite complex; and we should deduce that K(Y) has good algebraic 

properties. The second step should belong to algebra: we should assume given an 

algebraic object R with the same structure that K(Y) has, and with the good proper- 

ties proved for K(Y) in the first step; and we should deduce an isomorphism 

RA K(BT)“‘p. 

There is something known about the first step. Namely, if p>2 and n!(X) =O, 

then 

just as in the classical case. This follows from work of J.P. Lin [5, 61. I have the 

impression that there is a great deal of information implicit in this result; unfortu- 

nately, we don’t yet know how to get it out. 

Next we must face the question: how much structure must we consider on K(Y), 
and how many good properties of it must we prove and use? I take it as read that 

our algebraic objects R will be algebras over Z;, with operations I’, and complete 

for the topology defined by powers of the augmentation ideal. We have to deal with 

things a bit less obvious. 

When we were using H l ( Y; Fp), we made essential use of the grading and the 

“unstable axiom” on Steenrod operations. It is orthodox belief that when you use 

K-theory, you substitute the filtration on K(Y) for the grading on H*(Y; Fp). We 

believe that we have to use a filtration on K(Y); the only question is, which 
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filtration? A priori one can think of two which make sense to an algebraist: Atiyah’s 

y-filtration, and the rational filtration. Here I take Atiyah’s y-filtration as known, 

but I should say something about the rational filtration. To a topologist, I say that 

y E K( Y) has rational filtration z2n if ch, y =0 in ff”( Y; QJ for r< n; and then I 

tell you that you can make sense of it for an algebraist too. 

You might conjecture that the two filtrations are the same for good spaces like 

BG. They are not. Take p = 3 and take G to be the exceptional Lie group Fa. If you 

look in Tits’ tables [lo] you will find that the first two non-trivial irreducible repre- 

sentations are (say) (r of degree 26 and /3 of degree 52. /? is the adjoint repre- 

sentation, and CI is the one whose highest weight is a short root. Form 

Then y has rational filtration 8, and 3,v has y-filtration 8, but y has y-filtration 4. 

So we have to choose. To guide our choice, we recall that we are interested in 

embedding R = K( Y) in K(BT); so evidently the filtration we want is the one that 

comes by pulling back the unique filtration on K(B7), if such an embedding is 

possible. This describes the rational filtration; so we are committed to using the 

rational filtration. 

Next it should be reasonable to study the relation betvveen the operations J.‘or Y’:: 

and the rational filtration. After all, vve have one precedent to go on, and this is an 

unpublished proof by me that if 

then 

H’(Y; Z,“)=Z&J], YEW, 

K(Y) z K(BSU(2)) 

where the isomorphism preserves the operations. The nature of this proof is as 

follows. Let EO mean the associated graded, using the rational filtration. Then the 

hypothesis shows that there is an isomorphism 

EoK( Y)zEoK(BSU(Z)). 

But if there is one isomorphism then there is more than one: at least one which 

commutes with some operations and at least one which doesn’t. It is essential to pick 

an isomorphism which does commute with the operations before one tries to lift it to 

an isomorphism K(Y) = K(BSU(2)). 

Therefore, it should be reasonable to consider associated operations on the 

associated graded-which comes back to the question of studying the relation 

between the operations 1.’ or Y” and the rational filtration. Investigation reveals the 

following situation. 

Suppose y E K( Y) and y is of rational fittration r 2n, so that ch,,, y = 0 for m 5 n. 

Set s= [r/(p - I)]. Then an old theorem of mine [l] says that pschn_r (Y) is integral, 

in the sense that it lies in the image of 

H2n-q y, zp_H?“-?‘(Y; 0,). 
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Now suppose that K(Y) is torsion free, as happens in our applications; and imagine 

that we don’t know about H*( Y; Z,), but we make a new definition: an element 
/, E H’” - lr (Y; QJ is integral if there exists y E K( Y) such that ch y = h + (higher 

terms). This will agree with the usual definition if H *( Y, ZJ is torsion-free - and we 

have to assume Y is innocent until it is proved guilty. With this new definition, we 

get a different theorem: if y is of rational filtration 22n, then s! pz ch,-, (_v) is 

integral in the new sense. This is different from the old result if sip, and apparently 

it cannot be improved without further assumptions. Let us therefore make a further 

definition, and say that K(Y) “has good integrality” if pr chn_r (y) is integral in the 

new sense (whenever y has rational filtration ~2n). If this -holds, then the relation 

between operations and rational filtration will be such as we are used to for torsion- 

free spaces. All torsion-free spaces have good integrality, but maybe some other 

spaces do also. 

For example, consider the exceptional Lie group G?; then BG: has good integra- 

lity (at the prime 2), although it has 2-torsion. Similarly, BPSb’@) has good integra- 

lity at the prime p, although it has p-torsion. I also checked on R(T)U for the first 

p-adic reflection group which is not a Weyl group and seemed interesting, namely 

type 12 of the list [S], with p=3. Finally, kvhile I was thinking of these things I 

received a letter to which I shall return at the end. 

Well, one might be ready to frame a conjecture that if G is a compact connected 

Lie group, then BG has good integrality. No such luck. Take p = 2 and consider the 

group G = Spin (8). The rational filtration on K(B Spin 8) coincides with the usual 

filtration of the Atiyah-Hirzebruch spectral sequence. Let y = d - - d - ; calculation 

shows that 
1 

chy=X+-&‘IX+... 

where x is the Euler class. This is just consistent with my old theorem, because p’= 4 

and +PIX lies in the image of 

H”(B Spin 8; Zi)-+H12(B Spin 8; Q;), 

with mod 2 reduction WIWS. However, it doesn’t survive the Atiyah-Hirzebruch 

spectral sequence (because Sq3 WIIV~ = w7u.y); so it is not integral in the new sense. 

The only way forward, alas, is to change the definition of integrality again for our 

limited purpose. We appeal to the same argument as for the filtration. That is, we 

seek an embedding in K(BT); so we pull back the definition of “integrality” from 

K(BT) under the putative embedding, although vve don’t yet know it exists. We see 

that we have to add the following to our list of good properties of R. 

“There exists a valuation v on EoR such that v(p) = 1 and v(y) 2 n if and only if 

there exist z E EoR and M such that xm =p”“‘z.” 

Clearly the second clause determines v uniquely if it exists at all, so this is indeed a 

property of the ring EoR. Moreover, it is a necessary condition for the existence of 

an embedding; to see this, you pull back the usual p-adic valuation on EoK(BT) 

= H*(BT; Z,). 
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Similarly, we see that we have to add the following to our list of good properties 
of R. 

“If y E R is of rational filtration h Zn, then v(ch, - r y) L - s where s = [r/@ - l)] .” 
This also is a necessary condition for the existence of an embedding; and so we 
cannot succeed unless we prove it for K(Y). But both conditions look inconvenient 
to verify. 

To begin with, let us try to define a valuation v on EoR by 

Vti)= sup {q/m j _v’“~p4E&). 

Then, setting aside the question of whether v has the properties of a valuation, it 
looks like a struggle to prove that v(v) is an integer. In fact, come to think of it, it 
looks like a struggle to prove that v(v) is even finite. Meditating upon this, we arrive 
at one more necessary condition. We ha\.-e to add the following to our list of good 
properties of R. 

“EoR is finitely generated as an algebra over Zp.” 
In fact, at this point it hits one that there are maybe half-a-dozen finiteness 

properties that one knows for the classifying space of a compact Lie group, but 
which one does not know for the classifying space of a finite H-space. This situation 
seems to call for further work. 

After this unsatisfactory report, I imagine that you might like some entertain- 
ment. I recall a famous reference (It]. This purports to be a letter from a mathema- 
tician long since dead, saying how glad he is to see his results rediscovered indepen- 
dently after such a lapse of time, and giving some explicit formulae which his 
successors had not found. I have received a letter of a similar nature; let it speak for 
itself. 

“Gentlemen, 

Mathematicians may be divided into two Llasses; those who know and love Lie groups, and 

those who do not. Among the latter, one may observe and regret the prevalence of the following 

opinions concerning the compact exceptional simple Lie group of rank 8 and dimension 248, 

commonly called Es. 

(1) That he is remote and unapproachable. so that those who desire to make his acquaintance 

are well advised to undertake an arduous course of preparation with E,5 and E-. 

(2) That he is secretive; so that any useful fact about him is to be found, if at all, only at the end 

of a long, dark tunnel. 

(3) That he holds world records for torsion. 

Point (1) deserves the following comment. Any right-thinking mathematician who wishes to 

construct the root-system of Eg does so as follows: first he constructs the root-system Of Es. and 

then inside it he locates the root-system of E,+ In this way he benefits from the great symmetry of 

the root-system of Es. and its perspicuous nature. If this good precedent is not followed in other 

researches, one should consider whether to infer a lack of boldness in the investigator rather than 

a lack of cooperation from the subject-matter. 

Since point (2) is equivalent to point (I), ue may pass to point (3). And here we should first 

reject the defences offered by some who might otherwise pass as well-informed. For they appear 

to regard it as a venial blemish on an otherwise worthy character, comparable to holding world 

records for the drinking of beer. This will not do. Let us first consider the riotous profusion of 
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torston displayed by such groups as PSU(n). It then becomes clear that one can auard a title to E.: 

only by restricting the competition to simply-connected groups. This is as if one mere to award a 

title for drinking beer, having first fixed the rules so as to exclude all citizens of Heidelberg, 

Llunich, Burtott-on-Trent. and any other place uhere they actually brew or drink much of the 

stuff. In other nerds, it is contrary to natural justice. 

In the second place, to consider the question at all reveals a certain preoccupation with ordinary 

cohomology. Any impartial observer must marvel at your obsession with this obscure and unhelp- 

ful invariant. The author. like all respectable Lie groups, is much concerned to present a decorous 

and seemly appearance to the eyes of K-theory; and taken in conjunction with other general 

theorems, this forces him to have a modest amount of torsion in ordinary cohomology. I shall 

seek some suitable person IO inform you in an Appendix. 

As a further argument against points (I) and (2). it is natural to release some small scrap of 

information which you would not otherwise possess. And this may also serve to guarantee the 

authenticity of this letter; for you must at least believe that it comes via some mathematician who 

would not mislead you about my views. You may then be expecting me to reveal, for example, 

H’(BE8; Fs). I shall not oblige you. That could only encourage you in the low tastes that I have 

already condemned. Instead, I shall note the following possibility. It may happen that a space Y 

has its K-theory K’(Y) torsion-free and zero in odd degrees, but nevertheless a careful study of 

K’(Y) will reveal that Y must have torsion in its ordinary cohomology. Again, 1 shall seek some 

suitable person to inform you in an Appendix. 

Be it therefore known and proclaimed among you, that my K-theory K(Es) and that of my 

classifying space K(BEs) cannot be criticised in this respect, at least at the prime 5. Their conduct 

is such as would be blameless and above reproach in the K-theory of a space without j-torsion in 

its ordinary cohomology. 

Given at our palace, etc. etc, 

and signed 

Appendix 1. We have n3(Eg) = Z. The generator is represented by a homomorphism 

0: S3+Es. Using the Hurewicz theorem, and so on, the induced map 

(Be)*: H”(BS3; z)-IP(BE& Z) 

must be iso. On the other hand, the representation rings R(S3) and R(Es) restrict so 

differently on their respective tori that the induced map of their associated graded 

objects can’t be iso in degree 4; its image can be identified with 60 H’(BS3; Z). 

Therefore, in the Atiyah-Hirzebruch spectral sequence for BEs, the permanent 

cycles in degree 4 are 60 H’(BEg; Z). So this Atiyah-Hirzebruch spectral sequence 

has non-zero differentials, and this can only happen if BE8 has 2, 3 and 5-torsion in 

its ordinary cohomology. 

Appendix 2. The discussion of “good integrality” in the body of the paper covers 

this point. 
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