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Preface to the English Edition

For the convenience of readers of this English edition I have replaced the
original Japanese references with the appropriate references in English or
French. I have also replaced some other references that are hard to obtain
with those that are more readily available.

I wish to sincerely thank Professors Kobayashi and Nomizu for their ad-
vice. I am very grateful to Dr. Kiki Hudson, who has provided an excellent
translation and pointed out misprints in the original edition.

Masahisa Adachi
October 28, 1992



Preface

Among closed surfaces the torus T = S xS' can be thought of as sitting
in three-dimensional Euclidean space R but the Klein bottle K? cannot
be realized there. This observation naturally leads us to the question ‘can a
general n-dimensional manifold A " be smoothly embedded in Euclidean
space R 7.

Further, it is p0551ble to embed the circle S' in three-dimensional Eu-
clidean space R’ , but there is more than one way to do so. For example, we
cannot move one of the two embeddings below to the other via an isotopy;

that is, we cannot undo the knot.

This is generalized to the problem ‘are two given embeddings f.g: M —
R? isotopic? Since the concept of topology was first established, these prob-
lems have been in its mainstream, and major contributions to solutions have
come from H. Whitney and A. Haefliger. Still further research and develop-
ment can be expected in this field.

In particular, the problem of class1fymg embeddings of the circle s! in
three-dimensional Euclidean space R’ or the three-dimensional sphere s?
through isotopies—a bit different from the isotopies mentioned in the previ-
ous paragraph —forms a field in topology called the theory of knots, which
even today generates many research activities.

The problem of classifying immersions by regular homotopies is slightly
easier than that of classifying embeddmgs by isotopies. Here is an example
In three-dimensional Euclidean space R is it possible to turn the sphere s?
inside out smoothly allowing self-intersectlons? Think about it for a minute.
It hardly seems likely, but a classification theorem for immersions shows that
it can be done.

This classification theorem, the so-called Smale-Hirsch theorem, has been
generalized step by step by A. Phillips, M. Gromov, A. Haefliger, and so
on to the present stage where it now offers us a tool for finding solutions
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(or their candidates) to partial differential inequalities or partial differential
equations of certain types. It also provides us with a method for eliminating
singularites of certain C* maps. There are further applications of these
methods as well.

The aim of this book is to give an introduction to this theory in modern
topology and its applications. In accordance with the principle of this series
we have tried to make the first three chapters easy enough to understand at
the level of lower-division mathematics.

In this book, unless otherwise stated, embeddings and immersions will be
viewed in the C™ category. We first explain in detail the classification of
regular closed curves in the plane by regular homotopies; this will serve as an
intuitive preparation for the contents of the book.

In Chapter I, we give a summary of basic concepts about C’ manifolds
and C" maps which will be used in Chapter II and beyond.

The discussions in Chapter II evolve around Whitney’s theorems. This
chapter also serves as a prelude to Chapter VII. We develop Chapter HI
around the Smale-Hirsch theorem which is generalized to Gromov’s theorem.

In Chapter IV we examine the convex integration theory due to Gromov
which is another application of the Smale-Hirsch theorem.

In Chapter V we discuss an application of Gromov’s theorem, namely, a
classification theorem for foliations of open manifolds. In Chapter VI we
study complex structures on open manifolds as an application of Gromov’s
theorem and Gromov’s convex integration theory.

We study Haefliger's embedding theorem in Chapter VII, which is a con-
tinuation of Chapter II.

Finally, as references we give a list of books and papers we have either
used, adapted, or quoted from directly, and also books and papers basic to
embeddings and immersions.

The author thanks Kazuhiko Fukui, Shigeo Kawai, and Goo Ishikawa for
their valuable help in writing this book.

We are deeply indebted to Professor Itiro Tamura who encouraged us to
write this book and gave us valuable advice concerning the first draft.

Last but not least our deepest gratitude goes to Mr. Hideo Arai of Iwanami
Shoten Publishers, without whose help this book would never have been re-
alized.

Masahisa Adachi
May 1983

CHAPTER 0

Regular Closed Curves in the Plane

In this chapter we consider closed curves in the plane R?, whose tangent
lines move continuously. To each closed curve we assign the “rotation num-
ber” 7, which is the angle the tangent line makes going around the curve
once (y = £2n for a closed curve). Our aim in this chapter is to show the
following:

Two closed curves with the same rotation number can be
deformed from one to the other.

This chapter is based on Whitney [C20].
§1. Regular closed curves

We first define closed regular curves.

Let I = [0, 1]. Consider f = (f,, f,), where f, and S, are C' func-
tions ( f iscalleda C ' map). We say that f is a parametrized regular closed
curve if it satisfies the following:

() f(0)=f(1), £(0)=f(1)

(ii) f(¢)#0, foreach tel.
The condition (i) shows that the curve is closed and (ii) says that f is regular
in some sense with respect to the parameter f. See Figure 0.1.

To the above f:I — R? there corresponds a C' function f
f: (—OO s OO) h— R )
such that
(i) f(0)=f), tel,
(iv) f(t+1)=f(1),
v) f(0)#0.
Conversely to such an f there corresponds an f as above. We say that

fisaliftof f.

DEerFNITION 0.1. Let f and g be parametrized regular closed curves. We
say that f and g are equivalent and write f ~ g if there exists a c'
function 7 : (—oc, 00) — (—o0, o) such that

n'(t)>0, foreachteR, nt+ 1) =nH)+1, gty = fon).

1



2 0. REGULAR CLOSED CURVES IN THE PLANE
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F0)=sQ), s O)=r0)

o| -

FiGURE 0.1

Clearly, ~ is an equivalence relation; hence, ~ divides parametrized
regular closed curves into equivalence classes which are called regular closed
curves or simply curves. If f ~ g, then we have f(I)=g(I).

ProrosiTioN 0.1. Let C be a regular closed curve. Then there exists an
element g in C such that ||g'(t)|| is constant, where || || is a norm on R*.

PrROOF. Let f € C and let f be a lift of f. Set
l ~
L(t) =f0 I eNds,  L=L).

Then L = L(C) is the length of the curve C. Since () #0, L) is of
class C' and monotone increasing. Hence, we can solve s =1/L-L() for
t,say t = n(s). n'(s) is continuous and positive. Since f is periodic we
have

t+1 (.
L(t+1) - L(t) = / 17 (5)l ds = /0 17 ()l ds.
Therefore, n(s + 1) = n(s) + 1. Thus, if we set
gt)y=fon(),

we see that £ is a lift of some element g of C. Further we have

! ~ L !
o = o plr el g - L
FO=7on) g, 1EW0I

So [lg'(t)ll is constant. O

ProrosITiON 0.2. Let C be a regular closed curve, and let g be an element
of C defined as above. Suppose h is an element of C such that | @) isa
constant k. Then

(i) k=L and

(i) h(t) = g(t + a) for some constant a.

In other words, two elements of C with each ||h'(t)|| constant differ by
some rotation of the circle S 1.

_ Proor. Since h ~ g there exists 7 : (—o0, ) — (—00, o0) such that
h(t) = g(n(1)). But o
h(t)=g m)n (1),

§1. REGULAR CLOSED CURVES 3
1
and so k= L-n(t). Hence,

1 1
1=n(1)—n(0)=/0 n'(t)dz:/o %dtz_g

Hence, we get k = L. It follows that () = 1 and that §(t) =t +a. O

DEFINITION 0.2. Let f; and f; be parametrised regular closed curves.
We say that f, is a deformation of f| or that f; and f, are regularly
homotopic, and write f, =~ f, if the following holds: For some continuous
map F:IxI — R’

(i) F(t,0) = fy, F(t,1)= f,(2), and
(ii) if weset f(t)=F(t,u),then f : 1 — R’ is a parametrized regular
curve for each u € I'. Here we say that F orthe {f} isa regular homotopy.
We see that the relation = of being regularly homotopic is an equivalence
relation. See Figure 0.2.

ProposiTION 0.3. Let C be a regular closed curve, and let f,, f, € C.
Then f; is a deformation of f, in C; that is, there exists a regular homo-
topy f,€C, uel, connecting f, and f|.

Proor. That f, and f, are equivalent implies that f,(f) = f, o #i(¢) for
some function # as in Definition 0.1.
Set
n,(t) = un(t) + (1 —u)t, O<u<l,
fO=Fyen t),  fyisaliftof f,.

£l

1 £O=5,01)
B S . A

F
L0)y=71)
0 i 1
L= LD
FiGure 0.2
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Here we have n,(t) = t, n,(t) = n(¢). Hence, f”l is a lift of f;, and we
have
n(t+ 1) =uln(®) + 11+ (1 —u)(t + 1)
=n,0+1,

dn,(t) _ 40 +(1-u)>0, O<u<l

dt Tdr

Therefore, each f, isa parametric regular closed curve, and so we have the
proposition. O

By virtue of Proposition 0.3 the expressmn “ a regular closed curve C is
a deformation of a regular closed curve C' ” makes sense.

§2. Regular homotopies
We have the following basic

LemMMA O.1. Let g: 1 — R’ be a continuous map and suppose g(t) # 0
foreach te€l. For peRz,

f=p+ [0 g(s)ds

is a parametrized regular curve if and only if

1
2(0) = g(1), /0 g(s)ds =0

The lemma is obvious.
DermiTION 0.3. For a parametrized closed regular curve f: [ — R’ we
define the rotation number y(f) € R of f as follows: the map

IS CR, FAGH
[il—=S R, LO= 1w

defines naturally the continuous map f.8 ', s'. Now define
p(f) = 27 - deg(f"),
where deg(f*) is the degree of f* Y.

( }In general the degree deg(h) of a continuous maph s' — 8! is an integer which
represents the number of the times h(S } wraps around S! inclusive of the sign of h(S )
The followmg is a more precise definition. Notice that the fundamental group of the circle S!

(S ), is isomorphic to Z. Let s be the generator of this group. On the other hand A defmes
the homomorphism
B, :m(Sh — m,(Sh
and the image of s by 4, is n-s, n € Z. We define the degree or the mapping degree deg(h)
of h tobethis n.

§2. REGULAR HOMOTOPIES 5

ProrosiTioN 0.4. Let [, g be parametrized regular closed curves. If f
and g are regularly homotopic then y(f) = y(g).

PRrOOF. -Let f,: 1 — R’ bea regular homotopy connecting f and g, say
ji) =f and f, =g. Then f* and g" are homotopic through f, and so
f* and 2" are homotopic through £ . Hence, deg(f*) =deg(z"). O

DerINITION 0.4. Let C be a regular closed curve. We define the rotation
number y(C) of C by y(CY=7y(f), feC.

By Proposition 0.3 the above definition does not depend on the choice of

f.

. THEOREM 0.1. Regular closed curves C, and C, are regularly homotopic
if and only if y(C;) = y(C,).

This theorem is known as the Whitney-Graustein theorem.

CorOLLARY 0.1. The family of the regular homotopy classes of regular
closed curves in the plane is in one-to-one correspondence with the set 1 of
the integers by the map C — y(C)/2x.

ProOF OF THEOREM 0.1. The ‘only if’ part is evident by Proposition 0.4.
To prove the ‘if* part set y(C,) = y(C,) = 7. Choose g, € C;, and f, € C;
such that

gl = L(C) =Ly, IIAMI=L(C) =
(cf. Proposition 0.1). Define g, by

2,(8) = go(0) + |u- f—; (1 - )] {g() — &(O).

Then the family {g,} is a homotopy connecting g, and g,. Further as
! .
g,(t) #0,foreach t € I', the {g,} is actually a regular homotopy connecting

g and g, . Set f, =g, . We then have | f5(t)ll = llg; (1)l =
We want to show that f, is regularly homotopic to f,. Let K be the

circle in R? centered at the origin of radius L, . Then O, f I-KCR.
If f f S' — K are the natural maps correspondmg to f and f,, we

have deg(f]) = deg(f]) = y/2n. Hence, f; and f| are homotopic. Now
define

6:R— K
by
0(t)y = (L, cost, L,sint).

(i) For y # 0 we have 6(0) = (L,, 0). Without loss of generality we
may assume that f;(0) = f{(0) = 8(0). As f;(t) € K, i =0, 1, denoting
by F,(f) the argument of ﬂ (t), we have the following

F,:1—R, i=0,1,

f()=00F (), F(0)=
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Then by the definition of and the assumption on y we see that
F)=v, i=0,1L
Now set

O<u<l.

F,(f) = uFy(2) + (1 —w)Fy(8),
h(1) =00 F,(0),

Then the {&,} is a homotopy connecting fg and fl' Set
1
0D =0 - [ h(5)ds,

£.8) = £,(0) + UL, (0) — £,O + /0 0.(5)ds.

Evidently fol p, ()dt =0, and so f,(0) = £,(1). Moreover, we have that
j;(t) = ¢, (t). Since F,(0)=0, F(1)=7, and y is an integral multiple of
27, we get
£1) = £0) =00 F,(1) - 6 F,(0)
=6(y) - 6(0) =0;
therefore, fi(1) = f,(0), for each u € I.
Next we show that f:,(t) #0, ue0,1]. We have

£(1) = hy(t) - /0 his)ds,  hnek.

If y # 0, then fol h,(s)ds lies in the interior of K, because by Schwarz’s

inequality \
1 1
/ h(s)ds|| < / 1A, ()1 ds.
0 0

But #,(s) isnota constant number, and hence the above inequality must be
a strict inequality. Moreover, Hhu(s)ll2 = L, implies that

/0 b (s)ds

Hence, f;(t) # 0. Thus, we have shown that f, is a regular closed curve,
and so the { fu} is a regular homotopy connecting f, and f|.

(ii) Case y = 0. Suppose we can change F,(¢) so that for each u €
[0, 1], F,(t) isnota constant map. Then f;(t) # 0 for each u and we
have the proof. To make such-a change take a point f; with F(t;) #0 and
deform Fy(t) to F/(t)ina sufficiently small neighborhood of t,. Denoting
by F, the newly obtained deformation of F, to F, we repeat the above
process. We then see that F, isnota constant map for each u. O

2
<L,

Lemma 0.1 suggests a later development of our subject.

CHAPTER 1

C’ Manifolds, C" Maps, and Fiber Bundles

In this chapter we shall collect together the fundamental facts about C”
manifolds, C" maps, and fiber bundles as well as other preparatory items
necessary in the later chapters.

§1. C* manifolds and C™ maps
Here we give a brief summary of C*° manifolds.

A. C™ manifolds. First we definea C* manifold. Let R” be n dimen-
sional Euclidean space with a fixed coordinate system. Then a point x of
R" is represented by the n-tuple

X=X, Xp5 00> x,)
Consider a function defined on an open subset U of R"
f:U— R

Let r be a natural number or oo. We say that f is differentiable of class
C’, f isof class C", or simply f is C" if at each point x of U all partial
derivatives of f of the form

__of

Ox; 0x; ...0x;

1 2

ilx

{1Si15-~'§i5Sn,
’ 1<s<r

exist and are continuous.

Consider a map f : U — R? from an open subset U of R” to R”.
Writing f(x) = (fi(x), .-, fp(x)) € R?, we say that f is differentiable of
class C ifforeach 1<i<p, f;:U—-R is a differentiable function of
class C . The definition of a C® map is similar. A real analytic map f is
sometimes called C*.

DEFINITION 1.1. A topological space M " is called an n-dimensional fopo-
logical manifold if it satisfies the following:

(i) M" is a Hausdorff space.
(ii) For each point x of M" there exists a neighborhood U(x) which
is homeomorphic to R".
(iii) M" satisfies the second axiom of countability.

7



8 I C" MANIFOLDS, C' MAPS, AND FIBER BUNDLES

Now we define a differentiable structure on a topological manifold.

Let M" be a topological manifold of dimension n. By a C* coordinate
systemoran C™ atlas for M" we mean a family & = {(V}, p)ljeJ} of
pairs (V;, ¢;) of open sets V; in M " and homeomorphisms ¢, : V, — R
of ¥, in R” satisfying the following:

@) M"=U,e, Y
() If V,nV, #9, then the map

-1
g0, 1o, (V;nV)— e, (V,NV))

from an open subset of R” to an open subset of R" is of class C*™ (Figure
L.1).

The pair (V;, ¢ j) is a chart or a system of local coordinates and V; isa
coordinate neighborhood.

Two C* atlases . = {(V;, ¢,)|j € J} and F = {(V, o)k e K}
are equivalent, & ~ % " if the combined family . U.% " of the two systems
is also a C™ atlas for M". Evidently the relation ~ is an equivalence
relation. An equivalence class & =[] in M " is a differentiable structure
ora C™ structure for M" , and the pair (M", &) is a differentiable or C*
manifold with the underlying topological manifold M" .

The above definition is known as Whitney’s definition. More generally if
the maps ¢; o q:i_l in the definition of a C* manifold are of class C ",
0 <r< w, we say that (M", ) is a C" manifold. A ¢° manifold
is a topological manifold. Often a differentiable manifold is understood to
be 2 C' manifold; however, in this book we agree for simplicity that a
differentiable manifold is a C™ manifold, which is also called a smooth
mapnifold.

Next we discuss orientations of a C*° manifold (M", ). Let Z =[],
S ={;, (aj)|j €J}. For xeV,nV, let a;,(x) be the Jacobian matrix

of q)jo(pi_l at ¢,(x):
—1
aji(x)zD(¢j°¢i )cr‘(x)’ xevnv.
Then it is easy to see that
akj(x) ca(x) = a,(x), xevV,nv,nlh.
If we set k = i, it follows that aﬁ(x) has an inverse. Hence aj,.(x) €
GL(n, R), where GL(n, R) denotes the general linear group of R" . Hence,
we have a continuous map
a;: v.n Vj — GL(n, R).

A differentiable atlas & = {(V}, o NieJ } is oriented if for all i, j
and all x € V,nV,, the determinant |a;;(x)| is positive.

§1. C*° MANIFOLDS AND C* MAPS 9

FIGURE 1.1

Let & ={(V,, ¢,)lj€J} and S = {(V, ¢)lk € K} beoriented C™
atlases for M™. Forall (j, k) € J xK andall x € V;nV, with VNV, #0
the determinants of the Jacobian matrices of ¢;( o ¢;1 at ¢ ; (x) are either all

positive or all negative, and we say that % and %' are positively related or
negatively related accordingly. The oriented C > atlases for M" are divided
into two classes according to the relation ‘positively related’.
DEFINITION 1.2. An equivalence class of an oriented C * atlas for M" is
called an orientation of M" .
A C* manifold (M", @) is said to be orientable if it admits an oriented
C™ atlas .% such that [¥]=9 .
We say that an orientable manifold is oriented when we specify its orien-
tation. The n dimensional sphere S", n>1, is orientable.
We list some examples of differentiable manifolds. They will remind the
reader that differentiable manifolds abound everywhere we look.
(1) n-dimensional Euclidian space is a C*° manifold.
(2) The n-dimensional sphere

n+1

n 2 2 2
S ={(x1,x2,,__,xn+l)ER |x1+x2+--~+xn+l=1}

with the relative topology as a subspace of R™! isa C* manifold.
(3) Open submanifolds. Let (M", 2) bea C manifold and let U be
an open subset of M". For an atlas & = {(V}, (aj)lj e},

Fy={¥;nU,pV,nU)lj€J}

becomes an atlas of U. Set &, = [*},] and say that (U, &y) is an open
submanifold of (M", Z). This definition does not depend on the choice of
a representative % .
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b a
a b
FIGURE 1.2

(4) Submanifolds. Let (M",Z) be a C” manifold, and let 4 be a
subset of M". Regard RY, 0 < k < n, as a subspace of R": R* =
{(x;, ..., x,) € R"I)c‘,Prl =...=x, =0}. Now assume that we can choose
a representative % = {(Vj, 0 j)l j € J} of & such that for each j with
V.NA#D

o V,n4:V,n4—R CR"
is a homeomorphism onto an open subset of R*. Then evidently A is a
topological manifold, and %, = {(V;N4, ¢ \VnA)ljed } defines an atlas
of A. We say that (4,7, isa submanifold of M" .

REMARK. A submanifold in Example 4 is different from a “submanifold”
as used in differential geometry. Our submanifolds are submanifolds in dif-
ferential geometry, but the converse is not true.

(5) Product manifolds. Let (M, ) and (M, Z") be C™ manifolds
of dimensions n and n' respectively. Set & = [¥], @' =[¥], & =
{(V,o)li€J}, S ={(V,, p)lk €K}. Clearly, M x M' isan n+n'
topological manifold. Further, the set

F xS ={(V;xV,, 9; x 0, k) €T x K}

turns out to be an atlas for M x M’ . We say that (M x M', [ x.5']) is the
product manifold of (M, ) and (M', 2'). When there is no confusion
we simply write M x M.

ExaMPLE. The torus T> = S' x S! is the product of two copies of the
circle S'.

(6) The Mobius strip. We obtain a Mdbius strip by twisting a strip of a
tape and pasting the edges as shown in Figure 1.2. More precisely the Mobius
strip M 2 is defined by

M2 =10, 1]x[0, 1]/ ~,
0,n~(,1-1), te[0, 1]

The interior M2 of the Mébius strip is a two-dimensional C* manifold.
This manifold is not orientable.

(7) Projective spaces. The n-dimensional real projective space P (R) =
S"/ ~, x ~ —x, is an n-dimensional C *° manifold. We shall give a proof
for the case n = 2. We may think of P,(R) as

P,(R) = {[x,, x;, x;]| not all x,, x,, X, are zero, x, €ER, i = 1,2,3}
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Set .
U, ={Ix, X, x;}|x; #0}, i=1,2,3,
where [x,, X,, X;] is the equivalence class containing (X, , x,, X;) (the con-
dition x; # 0 does not depend on the choice of a representative). Then
{U,, Uy, U} is an open cover of P,(R):

PR)=U UU,UU,.
In addition P,(R) evidently satisfies the axiom of second countability. Next
we define (oi:Ui—aRZ, i=1,2,3 by

¢[X » X ’x]:(_’—) y
2%, A0 A3 X, X,
(2 X
@3lx, X, %31 = (x3, x}).
Clearly the above definition does not depend on the choice of a representa-
tive (x,, X,, x;) of a point of F(R). It is also obvious that each ¢, isa
topological map of U, onto R?. Hence we see that P,(R) is a topological
manifold. Next for a point [x,, X,, X;] in the intersection U, = U NU,
of U, and U, put
(ol[xl » Xo s x3] - (ul > uz) ’
¢2[x1 s Xg5 x3] = (l_‘l » 122).

Then we have the expressions

_ u, _ 1
a, ==, a,=—,
u, u,

u, = L u—“1
l——_’ 2—1_-
U, U,

Since [x,, x,, x;} € U;,, we have x, # 0, x, # 0. Hence, u, # 0 and
a,#0. Therefore, #,, #, are C* functions of (u,, u,),and u,, u, are
C* functions of (&, , #,) . The same statement holds for points of U, N U;
and U, N U, . Hence the family

9={(Ui’¢i)|i=1:2’3}

defines a C* structure on P,(R). Hence, P)(R) is a C*° manifold. We
may consider a natural C* structure on P, (R) (verbatim as for the case
n =2 above) and thus conclude that P, (R) isa C® manifold.

B. Differentiable maps. Let (M, 2)) and (M,, 2,) be C*° manifolds
of dimensions m and n, respectively.

DerFINITION 1.3. Consider a map f: M, — M, of M, into M,. Fora
point x of M, choose a chart V; about x from a representative {(Vj, 7} j)l
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j€J} of | and a chart Vk' about f(x) from a representative {(Vk', ¢;()|
ke K} of &,. Then we have the map

Grofop; 10,(V) — e (f(¥)OV)

from R” onto an open subset of R”. We say that f is differentiable at x
if gok ofogp; is infinitely (continuously) differentiable at ¢ (x). The map
fis dlﬁ"erentzable if it is differentiable at each point of M, . We also say that
f isa C* map. Likewise we define a C" map for any natural number 7,
0<r<w.

From the definition of C® structures, it is easy to see that the above
definition is independent of the choice of representatives of &, and &, as
well as V; and V

Let M M, be C* manifolds, and let f : 4 — M, be a map of a
subset A4 of M We say that f is differentiable in A if we can extend f
toa C” map of an open neighborhood U of 4.

DEFINITION 1.4. Let M, and M, be C™ manifolds. We say that a
map f: M, — M, is a diffeomorphism if f satisfies the following:

(i) f is a homeomorphism of M, onto M, , and
(i) f, f~' are C* maps.
DEFINITION 1.5. Let M, and M, be C manifolds. We say that M,
and M, are diffeomorphic and write M, ~ M, if there exists a diffeomor-

phism f: M, - M,.
Evidently = ~ is an equivalence relation. In differential topology we iden-

tify two manifolds which are diffeomorphic. According to Klein, differential
topology is a field of mathematics where one studies properties of differ-
entiable manifolds invariant under diffeomorphisms; however, this is too
narrow a definition for contemporary differential topology.

We next define the ranks of differentiable maps, immersions, and embed-
dings of C*° manifolds.

DEFINITION 1.6. Let M, and M, be differentiable manifolds. Let f :
M, — M, be a differentiable map. For x in M, choose charts (U,, h))
and (U,, h2) about x and f(x). We define the rank of f at x tobe the
rank of the Jacobian matrix of the map

h, ofo hl_1 th (U, nf_l(Uz)) — 1, (U;)

at b (x).
Ev1dently Definition 1.6 does not depend on the chioce of charts.
DerFINITION 1.7. Let M" and V7 be differential manifolds of dimensions
n and p. A differentiable map f: M" — V? is an immersion if the rank
of f ateach point x of M" is n. An immersion f is an embedding if f
is a homeomorphism of M" in V¥ . We say that f is a submersion if the
rank of f at each point x of M" is p.
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FiGURE 1.3

If f: M" — V” is an embedding, the image f(M") is obviously a
submanifold of V7.

REMARK. An embedding f is an immersion but the converse is not true.
Even when f is an immersion which is one-to-one into ¥, it may fail to
be an embedding. Consider Figure 1.3.

DEFINITION 1.8. Let M" and V¥ be C™ manifolds of dimensions n
and p,andlet f: M" - VP bea C™ map. Apomt v of V? is a regular
value of f if the rank of f at each point x in f~ "(y) is p: otherwise, y
is a critical value.

According to the above definition points not in the image under f are
regular values.

PrOPOSITION 1.1. Let M" and V? be C™ manifolds of dimensions n
and p, andlet f: M" — VP bea C* map. If y is a regular value of
f, then either f =1 s the empty set or an n —p dimensional submanifold of
M".

The proposition follows easily from the definitions of submanifolds and
of regular values.

C. Tangent spaces and the differentials of C* maps.

DerFmniTioN 1.9, Let M" bea C™ manifold, and let x be a point of M"
A C* map c:(-¢,&) = M with ¢(0) = x of an open interval (—¢, s)
& > 0 (¢ is sufficiently small), into M" is called a curve at x . Suppose ¢,
and c2 are curves at x . For a chart (U_, ¢_) about x, ¢ oc, and ¢ oc,
are C* maps of (—¢, &) into R". We say that ¢, and c, are equivalent
and write ¢, ~ ¢, if

dw,oc)| _d(@a°6)
dt o dt g
(Figure 1.4).

By virtue of the definition of C *° structures the above definition does not
depend on the choice of a chart. It is also clear that ~ is an equnvalcnce
relation. Therefore, we can divide the set C, of curves at x in M" by ~.
We represent the class containing the curve ¢ by [c], -

DEFINITION 1.10. Let M" be a C* manifold and let x € M". We say
that the set of equivalence classes of curves at x in M "

T (M")=C [ ~={[c]|cisacurveat x}

is the tangent space of M" at x.
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FIGURE 1.4

w

We define the operation of addition on T (M ") as follows.

DermniTioN 1.11. Let [c,]. and [c,], be elements of T, (M"), where
C;,Cy : (—&,8) = M" are C* maps with ¢;(0) = ¢,(0) = x. For a
chart (U_, ¢,) about x with ¢_(x) =0, we define the sum ¢ _oc,+¢ oc,:
(—&, &) — R" of the maps ¢_oc,, ¢, 0¢,:(—¢, &) — R" by

((pa oc,+¢, O‘Cz)(t) =¢,° Cl(t) +@,0° Cz(t)-
Hence, choosing a small enough & we have
(Pa06 +0,00)(—¢ &) Co,(U,).
Now we define [c,], +[c,], by

[e], + 6], = [0, (9,00 + 0,06,

By the definition of C™ atlases, the above definition depends on neither
the choice of a chart (U,_, ¢,) nor the choice of ¢ > 0 for the domain of
the curve.

For an element [c], of T (M ") and a real number 1 we define the scalar
product A[c], in the natural manner.

LemMa 1.1. The space T,.(M ™) with the operations of sum and scalar mul-
tiplication as above is an n-dimensional vector space.

ProOOF. It is trivial that T (M "} is a vector space. Thus, we oniy need to
show that the dimension of T, (M ") is n. Choose a chart (U_, @) about
x and consider the following n curves at x:

u,: (e, e — M", i=1,2,...,n,
ul(ty=9,'(0,...,0,2,0,...,0),
PG
i—1 zeros
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where (0,...,0,¢,0,...,0) denotes an element of R" whose compo-
nents, except the ith one which is ¢, are zero. Then clearly the equivalence
class [c], of a curve at x is expressed as a linear combination of the [u ],
..., [u,], which are easily seen to be linearly independent. 0O

We next define the differential of a differentiable map.

LEMMA 1.2, Let M and N be C* manifolds, and let c|, c,: (¢, &) —
M be curves at x in M with ¢, ~¢,. Fora C* map f: M — N, then
the curves foc, and foc, at f(x) satisfy foc, ~ foc,.

ProoF. Let (U_, ¢, ) be a chart about x, and let (V;, y;) be a chart
about f(x). Then

WAOfOCiZ(WA°f°¢a)-lO(q’aoci)’ i=1,2.

Further, by assumption

d((l)a ° Cl) _ d((ﬂa ° Cz)
dt - dt -0
and hence we get
d(WA°f°Cl) =d(V/1°focz) O
dt =0 dt t=0.

DEFINITION 1.12. Let M and N be C* manifolds and let f: M — N
bea C* map. For x in M define a map (df), : T (M) — Tf(x)(N) by

(df),(lel) = [f o clyyy-

By Lemma 1.2 this definition does not depend on the choice of a repre-
sentative ¢ of [c],. We say that (df), is the differential of f at x.

LEMMA 1.3. Let M and N be C* manifolds, let f: M — N bea C*
map, and let x € M. Then

(1) The differential (df),: T (M) — Tf(x)(N) of [ at x is a linear
map.

(2) The rank of f at x equals the rank of (df), .

We leave the proof to the reader.
Thus, a C* map f: M — N is an immersion if and only if the map
df, T.(M) - Tf(x)(N) is injective at each point x of M.

§2. Fiber bundles

This section contains a summary of the facts about fiber bundles which are
needed throughout our book. The material presented here is based largely on
the work of Steenrod [A7].

A. Examples of fiber bundles. In order to enhance the reader’s understand-
ing of the subject we first give several examples.
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b [4

FIGURE 1.5

1. Product spaces Let X, Y be topological spaces, and set B = X x Y.
Define p: B — X by p(x,y) = x. Then p is a continuous map onto X
and for each x in X, p'l(x) =7, is homeomorphic to Y . Fix a point y,

of Y and define f: X — B by f(x) = (x,¥,); f is continuous and
pof(x)=x.

2. The Mébius strip Recall that the Mobius strip is defined as follows:

={0, 11 x [0, 1}/ ~,
©,0~(,1-1, tel0, 1]

Setting X = S' =[0, 1]/ ~, Y =[0, 1], and B=M" we define p: B — X
by p([(s, )]) = [s] € S'. Then p is a continuous map onto X, and for
a point x of X, p_l(x) =Y, is homeomorphic to Y. Further, there
exists a neighborhood V(x) of x such that p_l(V(x)) is homeomorphic to
V(x) x Y. In addition the map f:X — B defined by f(x)=1[(x, 1/2)] is
continuous and satisfies po f(x) = x.

3. The Klein bottle The Klein bottle is the surface K 2 which we obtain by
pasting one pair of facing edges of the rectangular I xJ, I =J =[0, 1], in
the same direction and the other pair in the opposite direction (Figure 1.5).
That is,

K:=IxJ/~, (0,0)~(,1-1t), telJ,
(s,0)~ (s, 1), sel.

Put B=K>, X=S'=1/~,and Y =S' =J/ ~. Define p: B~ X
by p(i(s, H)]) = [s] € X, which is continuous onto X . For each x of X
p'l(x) is homeomorphic to Y = S!. For a point x of X there exists a
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FIGURE 1.6

neighborhood V(x) of x with p~ "(¥(x)) homeomorphicto ¥(x)xY . The
map f: X — B defined by f(x) =[(x, 0)] is continuous, and pof(x)=x.

4. Covering spaces Suppose B is a covering space of X and p: B— X isits
covering map. Then p is evidently a continuous map onto X , and for each
x in X the set Y, p_ (x) is discrete. In the case where X is arcwise
connected, the Y are homeomorphic for all x in X . Further, for each x
of X, there exmts a neighborhood ¥ (x) of x and a homeomorphism be-
tween p (V(x)) and V(x)xY, (B isa covering space of X,or (B,p, X)
is a covering space, if (0) X is arcwise connected and 1ocally arcwise con-
nected, (i) p : B — X is a continuous surjection, (ii) for each x € X there
exists an arcwise connected nelghborhood I of x such that each connected
component V,1 is open in X and p]V V — ¥V is a homeomorphism onto
V).

5. The twisted torus Consider [0, 1] x S*, and paste {0} x S' and {1} x S
with a 180° twist. The resulting surface T, is the twisted torus:

y~(1,e

Define p: T, — S' =10, 11/ ~ by p(lt, ezmo]) [t]. Then p is a contin-
uous map onto X and for each point [f] of S' there is a nelghborhood |4
of [t] in S' such that p~ (x) is homeomorphic to V x s! (Figure 1.6).

B. The definition of a fiber bundle.
DEFINITION 1.13. Let G be a topological group, and let ¥ be a topological
space. Suppose there is a continuous map n:GxY — Y satisying:
(i) For the unit e of G n(e, y) =
(ii) Forall g, g, €G and y €Y, n(gg yy=n(g. ng,»).
Then we say that G is a topological transformation group of Y (with respect
to #) and that G acts or operates on Y .

2nif 2ni(0+7r))

L, =00,11xS'/~, (0,e



18 1. C" MANIFOLDS, C" MAPS, AND FIBER BUNDLES

We shall write g-y for n(g, y). By Definition 1.13 themap g:Y — Y
which associates to each element y of Y the element g-y is a homeomor-
phism of Y. Hence, the map n induces a homomorphism 7 : G — H(Y)
from G to the group H(Y) of homeomorphisms of Y.

DeriNiTION 1.14. Let G be a topological transformation group of Y. If
the homomorphism # above is injective, thatis, g-y =y forall y € Y
implies g = e, we say that G is effective .

For now unless otherwise stated our topological transformation groups are
assumed effective.

DEFINITION 1.15. A coordinate bundle & = {B,p, X, Y, G} isa collec-
tion of topological spaces and continuous maps with structures satisfying the
following:

(1) B and X are topological spaces; B is the bundle space or the total
space and X is the base space. p:B — X isa continuous map called the
projection map of F . ;

(2) Y too is a topological space; Y is the fiber of % . G isatopological
transformation group called the structural group of & .

(3) The base X has an open covering {V;|j € J }, and for each j € J
there is a homeomorphism

-1
¢;:V;xY —p (V));

the V.’s are coordinate neighborhoods and the ¢ ;s are coordinate functions.
(4) The coordinate functions satisfy the following:
(i) pod;(x,y)=x, xeV,,yeY, jeJ.
(i) Themap ¢; ,:Y — p_l(x) defined by

¢ V) =9,(x,7), yevy

gives a homeomorphism of Y,

—1
¢j,x°¢i,x:Y_’ Y

for xeV,n V} , which agrees with the action of an element gj,.(x) of G.
(iii) Define a map
8t vinv, — G
—1 . . .

by gji(x) = qu,x °od; - Then g;; is continuous; we say that the g, are
coordinate transformations or a transition functions of % .

Roughly speaking a coordinate bundle is a family {U ; Vj x Y} patched by
the {g;}.

We write Y, for p lx); Y, is the fiber over x .

LEMMA 1.4. Let & = {B,p, X, Y, G} be a coordinate bundle with co-
ordinate transformations {g;}. Then

(i) & ;(x)-g;;(%)=gu(x), xe¥,NV;N ¥,
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(i) g,(x)=e, x € V,, where e is the unit element of G, and
(iif) g (x) =g, D', xeV;nV,.

The lemma follows readily from the definition of coordinate bundles.
We next define an equivalence relation in the strict sense between two
coordinate bundles.

DEFINITION 1.16. We say that bundles & = {B,p, X, Y, G} and &' =
{(B',p', X', Y', G'} are equivalent in the strict sense and write & ~ &' if
they satisfy the following:

G) B=B,X=X,p=p".
(i) Y=Y,G=G.
(iii) Their coordinate functions {¢;}, {¢;(} satisfy the conditions that

_ 1 —1
B,(X)= (b ) 09, .  XEV,NV
coincides with the action of an element of G, and that the map
g, V,nV, —G
is continuous.
It is easy to see that = is an equivalence relation.
DEerFiNITION 1.17. An equivalence class of coordinate bundles is called a
Jfiber bundle.
DEFINITION 1.18. We say that G is a Lie group if
(i) G is a topological group,
(ii) G isa C* manifold, and
(iii) the group operations on G

9,:GxG— G, 9,:G— G,

p,(g,h) =gh, 0,(8) =8
are smooth.

ExaMmpLE. GL(n, R) and SO(n) are Lie groups. _

Here SO(n) is the group of n-dimensional orthogonal matrices whose
determinants are of the value one, which is called the n-dimensional rotation

2

group. There are natural inclusions SO(n) ¢ GL(n, R) C R" . With the
relative topology of GL(n, R), SO(#n) is a topological group.

DErFINITION 1.19. Consider a coordinate bundle & = {B,p, X, Y, G}
satisfying:

(i) B, X, Y are C* manifolds.

(ii) G is a Lie group and its actionon Y is C <.

(iii) The maps p, ¢, d);l, g,; areall c™.

We say that & is a smooth coordinate bundle and its equivalence class {#}
is a smooth fiber bundle.
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If X,Y are C * manifolds and if G is a Lie group acting smoothly on
Y, then we can make {(B}={B,p, X, Y, G} into a smooth fiber bundle
by introducing a suitable C*° structure on B.

REMARK. In the above definition we often take G to be a subgroup, not
necessarily finite dimensional, of the group DiffY of diffeomorphisms of
Y.

DerFmTION 1.20. Let Z ={B,p, X, Y, G} be a coordinate bundle. By
a cross section of 8 we mean a continuous map f : X — B with po f=1.
A smooth map f which is a cross section of a smooth coordinate bundle Z#
is called a smooth cross section.

ExaMmpPLE. The center line of the Mobius strip {B,p. X, 7Y, G} gives a
cross section. See Figure 1.7.

DerFiniTioN 1.21. Let & = {B,p, X,Y,G} bea coordinate bundle,
and let A be a subset of X . Then the restriction

plp ' (4):p” (4) — 4

inherits naturally a coordinate bundle structure from % , which is called the
restriction of % to the portion of A and denoted by F|4.

C. Bundle maps.

DEFINITION 1.22. Let &={B,p, X, Y, G} and # ={B,p, X, Y, G}
be coordinate bundles such that Y=Y and G= G' . A continuous map £ :
B — B' is called a bundle map and is denoted by h: & — &' if it satsfies
the following:

(i) h maps a fiber Y of B homeomorphically onto a fiber Y;, over
x' € X'; thus, putting A(x) = %' we have a continuous map h: B — B' and
the commutative diagram

B —— B

i I
X _Z‘_., X'
(ii) For a point x of anl_z_l(Vk') and the homeomorphism A Y, — Y,
defined by (i), the map
_ —1
gkj(x)=(¢;(,x’) Ohxo¢j’x
is a homeomorphism of Y, which coincides with the action of an element
of G.

L
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(iii) The above correspondence defines a continuous map

_ 71

&;: Vjﬂh V) — G.

We say that & is the map induced by h. :

Evidently the identity map 1, : B — B defines a bundle map & — &' .
Further the composition of bundle maps is also a bundie map.

The maps {g, j} defined in (iii) are called the mapping transformations of
h and satisfy the following:

(D

2, (0)8;:(%) = 8 (%), xev,nv,n EUAY
g (B2, (X) = 8, (), xeV;nhT 50V

These relations follow easily from Definition 1.22.

LeEmMA 1.5. Let & ={B,p,X,Y,G} and B' = (B',p,Xx',Y, G}
be coordinate bundles with ¥ =Y and G = G. Let h: X - X bea
continuous map. Suppose continuous maps

_ ————

gkj:Vjﬂh (V,)—G
satisfy the relations (1). Then there exists a unique bundle map h : % — B’
such that

(i) h induces h, and
(i) the g are the mapping transformations of h .

ProoF. Existence. Put p(b) = x € V;nA~'(¥;) and
hi;(b) = B (A(x) » & ;(x) - P;(b))-
Then &, ; is continuous in b. Here pj(b) = d>j,x—'(b), p(b)=x¢€V,;,and
pghkj(b) = h(p(b)) . Now suppose that
7—1 ' ’
xev,nV,nk” (V,n¥);

that is, b is contained in each of the domains of A, ; and h;,. Then by
Lemma 1.4,

hy;(0) = B (x5 (%) - £::(X) - Pi(D)) x' = h(x)
=g (X', g(x) - p;(B)) = Ay (B)
= ¢)(x", gp(x) - &i(x) - P(D))
= ¢y(x', g(x) - pi(B)) = Ay (D).
Hence, we have
B=UWw,nk' (%),

p
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B=XXY

X=V
FiGure 1.8
and the family {& jk} of continuous maps
hyop  VORTG))— B, jel. ke J,
which agree on the intersection on any two domains, defines a continuous

map B — B’ . Further by the definition of & i e have p' oh = hop, that
is, h induces A . We also note that
ppohod, (V) =po b (X, &;(x) P )
= gk j(x ) Y.
Hence, 4 is a bundle map and the {g, j} are its mapping transformations.
Here p,(b') = ¢;{)x:_l(b') and p'(B)=x"€V,.
Uniqueness. Suppose 2 : B — B' is a bundle map satisfing (i) and (ii).
Then if
p(by=x e V;nh™ (%),
we have
h(b) = ¢y (A(x), & ;(x)p;(B)),
and so the uniqueness follows. 0O

DEFINITION 1.23. Let Z={B, p, X, Y, G} and @ ={B,p, X, Y, G}
be coordinate bundles with X = X', ¥ = Y',and G =G . We say that &
and B’ are equivalent and write & ~ @' if there exists a bundle map & :
B — & suchthat h=1,.

The relation ~ is an equivalence relation. If & and %' are equivalent
in the strict sense they are also equivalent.

DEFINITION 1.24. Two fiber bundles {#} and (&'} are equivalent if
their representatives % and &' are equivalent; in this case we write {#} ~
{#'}.

That two coordinate bundles are equivalent corresponds to the fact that
they are “equal” with respect 10 their differential structures.

Let X and Y be topological space. The product bundle consists of the
total space B =X x Y, the projection p: B — X onto the first component,
G = {e}, and a single coordinate neighborhood V' = X . A coordinate bundle
equivalent to the product bundle is trivial. See Figure 1.8.

§2. FIBER BUNDLES 23

LEMMA 1.6. Let & ={B,p,X,Y,G} and B ={B' ,p, X', Y, G}
be coordinate bundles with X =X, Y=Y and G=G . Then B ~ &' if
and only if there exist continuous maps

g, VNV, —G
such that
2, (x) = g, (g, (x),  xeV.nV.nV,
. ’ ~ !/ 7
g ;(x) = g (x)8;(x), xeV,nynl,
where the primed terms belong to the bundle B’ .

(2)

Proor. To prove the jonly if’_part suppose & ~ %' . Then there exists a

bundle map h: % — & with h =1, so the maps g, ; defined by
gkj=¢;(,xohxo¢j,x’ XEV}ﬁVkI
satisfy the relations (1), and hence they satisfy the relations (2).

To prove the ‘if’ part suppose we have maps g ; satisfying condition (2).
This 1.'equ1rement is the same as condition (1) when 2=1. Hence, Lemma
1.5 will construct the desired bundle map 4 : % — F' . O

Lemma 1.7. Let £ ={B,p, X, Y, G} and &' ={B',p', X', Y, G}

i ; b * bl
wzt.h X=X ,Y=Y, G=CG'. Weassume in addition that their coordinate
neighborhood systems are equal, {V,|j € J}={V,|k€ J'}. Then & and

14 . “ .
B’ are equivalent if and only if there exists a family of continuous maps
AV, —G, jeJ
satisfying the relations:
’ -1
g(0) =4,(x) g (NA(x),  xe¥nV,. (3)
ProoOF. To prove the ‘only if’ part suppose & ~ ', then by Lemma 1.6
we have maps g, ; which satisfy requirement (2); therefore, we define con-
tinuous maps 4; .by A j(x) =(g; j(x))_1 , which satisfy requirement (3).
- To prove the ‘if’ part, assume conversely that there exists a family {4, :
j € J} of maps satisfying condition (3). Putting !
_ -1
8, () =40 g,;(x), xeV.n¥,
we get requirement (2) from (3). Hence, by Lemma 1.6 we get B ~%F . O

D. Steenrod’s structure theorem.

DEFINITON 1.25. Let X be a topological space and let G be a topological
group. By a system of coordinate transfomations in X with values in G we
mean a pair of families ({V}}, {g;;}) which satisfy the following:

(i) The { vV, | j€J} is an open covering of X .
(i) The maps g;; : Vv.n VJ — G are continuous and satisfy

gkj(x)gﬁ(x)=gki(x), X € V’ﬂVjﬂVk (4)
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It follows immediately that the pair ({V}}, {g;:}) of coordinate neighbor-
hoods and coordinate transformations of a coordmate bundle #Z is a system
of coordinate transformations in its base space with values in its structure
group. The converse also holds.

THEOREM 1.1 (STEENROD [A7]). Let X, Y be topological spaces, let G
be a topological transformation group of Y and let ({Vj}, { gﬁ}) be a system
of coordinate transformations of X with values in G. Then

(i) There exists a coordinate bundle & with base space X, fiber Y,
coordinate neighborhoods {V}, and coordinate transformations {g;;} -
(ii) Two coordinate bundles satisfying requirement (i) are equivalent.

ProoF. (i) Introduce the discrete topology on the index set J in {V; |je
J} and set
T={(x,y,/))eXxYxJ|lxeV;}
Then T is a topological space which is the union of pairwise disjoint open
sets Vj x Y x j. Define a relation ~ in T as follows:

(x,y,J)~ (x',y', k) if and only if x = x' and gkj(x)y =y,
(xy y; j)9 (xl:y/’ k)e T'
By (4), ~ is an equivalence relation. Let B denote the quotient space of T
by ~; B=T/~.Let g:T — B be the natural projection map; then q
is continuous (B is given the quotient topology: UcB isopenif g~ (U )

is open in T'). Define a map p: B — X by p({(x, ¥, H}) = x. Then the
following commutative diagram shows that p is continuous:

XxYxJOT —2— B=T/~

NS

X
where p, is the projection onto the first component.

We next define coordinate functions ¢ : ; V% Y —p (V) by ¢ (x,y)=
q(x,y,j). As g is continuous so is each d) Further, p oq(x v,j)=Xx
implies p o ¢;(x, y)=x,andso ¢, :V;x Y —-p (V) Further, each ¢;
maps V;xY onto D (V) forif b= {(x y,k)}ep (V) then x € V,n¥,
and (x v, k)~ (x, glk(x) y, j); hence, we can write b = d) (x, gjk(x) V).

To show that q& is one-to-one, suppose ¢> (x,y) = qS (x y'); that is,
(x,y,J0)~ (x ¥, J). Then x = x" and g,,(x) y=y . But g;(x)=e,
and so y = y' . Hence, d) 1s one-to-one.

We now prove that ¢ is continuous. Suppose that W is an open subset
of V% Y ; we want to show that ¢ (W) isopenin B. Todosoitis enough
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to show that q (qS (W)) isopenin T. But T is a pairwise disjoint union
of open sets V. x Y x k ; hence, it suffices to show that the intersection of

q'l(gbj(W)) and ¥, x Y x k is an open subset of V, x Y x k. Now the
set q_l(qu(W)) N(V, x Y x k) is contained in (V;NV;) xY x k, and so we
decompose ¢ as follows:

(VjﬂV}()xYkaTCXxYxJ
VORI

VoY -2 p!

xY—=p (V)CcB=T/~
U U
w ¢ (W)

Here r(x, 7, k) = (%, £(x)-7).
Since r is continuous, 7~ (W) is an open set. Thus, qS is continuous.
Now the map d’; xo¢1 <> XEVNV, is a homeomorphism of Y . Putting
y = ¢,x°¢,x(y) we get ¢(x y) = ¢,(x,»); that is, q(x v, i) =

q{x,y, i) or equivalently (x, y J) ~ {(x,y,1). Hence, y' = g (x)-y
and so

-1

¢ 00, W) =g,x)y, VeEY
We have constructed the desired coordinate bundle & = {B,p, X, Y, G}
whose coordinate transformations are the { 8; i1

(1) Putting 4,(x) =€, x € V, in Lemma 1.7, we see that two coordinate
bundles with equal coordinate transformatlons are equivalent. Thus, the
coordinate bundle constructed above is unique up to equivalence classes. O

E. Tangent bundles of differentiable manifolds. We take an n-dimensional
manifold M" for the X, Euclidean n-space R" for the Y, and the gen-
eral linear group GL(n, R) for the G in Steenrod’s structure theorem-
Theorem 1.1. In this case G acts smoothly on Y. Choose a C% at-
las & = {(U;, ¢)) |jeJ} on M" and consider the following system of
coordinate transformauons (U1, {a; ) of M" with values in GL(n, R):

a;:U;nU; — GL(n, R),
a,.j(x) = the Jacobian matrix of ¢ o (pl._l at ¢,(x).
The fiber bundle constructed from this system via Steenrod’s structure theo-
rem is called the tangent bundle of M" and is denoted by
yM"y={TM"),p, M" ,R", GL(n, R) }.
It turns out that
TM") = | T, (M")

xeM"
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with suitable differentiable structures.

DerFNTION 1.26. Let M” be a C manifold and let (M") be the tan-
gent bundle of M". A cross section of (M") is called a vector field on
M.

DEFINITION 1.27. Let M” bea C° manifold. We say that M" is paral-
lelizable if the tangent bundle (M ") is trivial.

ExAMPLE 1. A Lie group is parallelizable.

ExaMPLE 2. The n-sphere S" is parallelizable if and only ifn=1,2,
or 7 (cf. J. Adams, On the nonexistence of elements of Hopf invariant one,
Ann. of Math., 72 (1960)).

F. Reductions of structure groups.

DerFiniTION 1.28. Let G be a topological group, let H be a subgroup
of G, and let i : H — G be the inclusion map. Consider the coordinate
bundle & ={B,p,X,Y,H; {Vj}, {gij}} whose structural group, coor-
dinate neighborhoods, and coordinate transformations are H, {Vj}, and
{gij}. We assume that G acts on Y extending the given action of H on
Y. Using these Y, G, X, {V;}, and {icg; ;1> we construct a coordinate
bundle &' according to Theorem 1.1, which is called a G-image of % or
a coordinate bundle obtained by enlarging the structural group of & to G.
Conversely if coordinate bundlies % and @' are related as above we say
that % is a coordinate bundle whose structural group is a reduction of the
structural group G to H.

The structural group of the tangent bundle 7(M") ofa C* manifold M "
is GL(n, R); O(n) is a closed subgroup of GL(n, R).

DEFINITION 1.29. A reduction of the structural group of the tangent bun-
dle t(M") of a C* manifold M" to O(n) is called a Riemannian metric
on M".

When a Riemannian metric is defined on a C * manifold M” we may
assume a Euclidean metric { , ). on the fiber T, (M ") over each x € M",
of 7(M"™). Note that this metric varies smoothly in x . The converse is also
true.

THEOREM 1.2. A C* manifold M" admits a Riemannian metric.

PrROOF. Let M" = (M", ), Z =[], and F={U, ) a€Ad}.
Then the tangent bundle (M ™y of M" is trivial over each U, . Take a par-
tition of unity {4;} subordinate to {(U,,0,):ax€A}. Set V= /li_'(O, 1),
then {V;} is alocally finite refinement of {U_}. Since (M ")V, is a trivial
vector bundle, it gives rise to a Euclidean metric { , ), on T (M "y. In fact,
we may define (, ), , by

(,v), = (&7 ), o (), u,veT (M),

where ¢,: V; xR" — p~'(V), &; (v) = ¢(x,y),and (, ) on the right-
hand side of the equation is the usual inner product in R" . The desired
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Euclidean metric may be defined by
(u, v), =Y A4(x)u, ), ., u,veT (M.
i

We can readily check that {, ), is symmetric and positive definite. O
REMARK. We may also carry out our proof using the reducibility of the
quotient GL(n, R)/O(n).
The n-dimensional unitary group U(#n) sits naturally in the rotation group
SO(2n): consider the map p : U(n) — SO(2n) defined by

p(C) = (_AB ﬁ) , CeU(n),

C=(cij)’ cij=aij+\/—_lb,-j, A=(a,'j)> B:(b,'j)-
Then p is a continuous isomorphism of U(n) in SO(2n}.

DEFINITION 1.30. Let M*" be a 2n-dimensional C* manifold. By The-
orem 1.2 we may take O(2n) for the structural group of the tangent bun-
dle t(M") of M™. A reduction of the structural group O(2n) of M" to
U(n) is called an almost complex structure of M ". An almost complex
manifold M 21 is a manifold with an almost complex structure.

A complex manifold is almost complex. It is also evident that an almost
complex manifold is orientable.

Since SO(2) = U(1), a two-dimensional smooth orientable manifold has
an almost complex structure.

G. Induced bundles.

DEFINITION 1.31. Let &' = {B’,p’, X', Y, G} be a coordinate bundle.
Let X be atopological space, andlet 7: X — X ' be a continuous map. For a
system of coordinate neighborhoods { Vj' |j € J'}, the family {n_l(Vj') lje
J'} is an open cover of X . Setting

g(x)=g;(nx)), xeV,nV,
we obtain a system of coordinate transformations ({V}}, {g;:}) in X with
values in G. We define the pullback or the induced bundle n*(&') of &'
over X by 1 to be the coordinate bundle as constructed in Theorem 1.1
from {Y, G; X, {V}}, {g;}}-

The following is an alternative definition of an induced bundle over X.
Let &' = {B',p’, X, Y, G} be a coordinate bundle and let #: X — ) ¢
be a continuous map. Consider the following subspace B of X x B':

B={(x,b)eXxB nx)=p®)}
We then have the commutative diagram

B . B

"

x -1 ., x
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where 7, : X x B' > X and =, : X x B' — B’ are the projections onto X
and B’ respectively, p = 7,|B and h = n,|B.
Putting V, = n“l(V}') and defining ¢, : V; x ¥ — p’l(Vj) by

$;(x, ) = (x, ¢,(n(x), ),
we obtain the coordinate bundle {B, p, X,Y, G}, which is equivalent to
the pullback "% .
Induced bundles have the following properties.

ProposiTION 1.2. (i) Let |, B, be coordinate bundles over X', and
let n:X — X' be a continuous map. Then
B ~ By => 1" B ~ 1" B,.
(ii) For a coordinate bundle & over X we have 1 v B ~ F, where
1y : X — X is the identity map.
(m) For a coordinate bundle %' over X' and a constant map c¢: X — X,
the induced bundle ¢*B' is trivial.
(iv) For a coordinate bundle B" over X" and continuous maps n: X —
! [ "
X, q:x-x",
(11, ° ﬂ)*‘@” ~ n*(nl*%n)‘
(v) For continuous maps f,g: X — X ", which are homotopic,

& ~g%.
i) If B’ is trivial so is 0" B’ .

H. Associated bundles, principal bundles.

DEFINITION 1.32. A bundle {B, p, X, Y, G} is called a principal bundle
if Y =G and G acts on Y by left translations.

EXAMPLE. Suppose B is a Lie group and G is a closed subgroup of B.
Then the natural projection p : B — B/G is a principal bundle (cf. Steen-
rod[A7]).

DEFINITION 1.33. Let & = {B,p, X, Y, G} be a coordinate bundle with
coordinate neighborhoods {V;} and coordinate transformations {g;,}. The

associated principal bundle % of & is the bundle given by Theorem 1.1
using (G, G; X, {V} {gu}) where G acts on G by left translations.

In short, we obtain % from % by replacing Y by G.

DEFINITION 1.34. Suppose bundles & = {B,p, X, Y, G} and B’
{B .X,Y, G} have the same base space and the same structural group.
We say that % and B’ are associated if the associated principal bundles 9&
and &' of & and B’ respectively are equlvalent We also say that &’
the associated bundle of & with the fiber Y'.

In particular, a bundie % and its associated principal bundle # are
associated.
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In other words &' is associated with & if %' is a replacement of &
in which the new fiber is Y.
ExaMmPLE. The Mobius strip and the Kiein bottle are associated as bundles
1
over S .

I. Quotient spaces of Lie groups. An ordered k-tuple vh= (U, Uy, ty)
of linearly independent vectors in n-dimensional Euclidean space R" is
called an orthonormal k-frame. The set of all orthonormal k-frames is de-
noted by V, .. Since ¥, , is a subset of R" x---xR"  wegive V, , the

k
relative topology of R”" x --- x R" . We say that V, , is the Stiefel manifold
el — .

k
of orthonormal k-frames in n-dimensional Euclidean space R".
Evidently O(n) acts transitively on ¥, , . Now pick an orthonormal k-

frame 'Uo We may think of O(n —k) as the isotropy group of Uo Hence,
x = O(n)/O(n — k).

In particular, we have ¥, , =O(n) and V, | = st
The natural map

V, , =0n)/0(n—k)—V, ,,=0n)/On-k+1)

is a bundle whose fiber and structure group are S" “* and On-k+1),
respectively (cf. Steenrod [A7]); thus, we see that V, , isa C™ manifold.
Let R, , denote the set of n-dimensional subspaces of m+n-dimensional

Euclidean space R™*". Consider the map p: ¥, . — R,  which asso-

ciates to each element v” of the Stiefel manifold V), tn.n the n-dimensional
subspace spanned by v" in R™"". This map is clearly surjective We give
R, , the quotient topology; a subset U of R, , isopenif p~ (U } is open.
We say that R, is the Grassmann manzfold of n-dimensional subspaces
in R™" . The standard action of the orthogonal group O(m +n) on R
makes O(m + n) a transitive topological transformation group of Rm'n.
Denote by Rj the following subset of R

R0={(xl,..., JER

m-+n

lx an+2:”'=xm+n=0}'

m+n n+l

The isotropy group of R} is O(n) x O'(m), where O'(m) is a subspace of
O(m+n),

O'(m) = { (EO" 3) € O(m+n)|4 € O(m) ,

E, is the n-dimensional identity matrix}.

Hence,
o % O(m +n)[O(n) x O'(m).
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Further, the natural map
P:Vyy ,=0(m+ n)/0'(m) — O(m +n)/O(n) x O'(m) =R, ,

is a principal bundle whose structural group is O(#n) (cf. Steenrod [AT]).
Thus, we have the following

PROPOSITION 1.3. The Grassmann manifold R,  isa C* manifold of
dimension mn .

J. Classifying spaces. With a fixed n we have the following natural map
between Grassmann manifolds:

pm:Rm,n - Rm+l,n
I I
O(m +n)jO(n) x O'(m)  O(m + 1+ n)/O(n) x O'(m + 1)

which give us an inductive system {R, ,,p, :m € N}. The inductive
limit of this system denoted by Bo(n) s

Boy,y = limO(m + n)/O(n) x O'(m),

is called the classifying space for O(n).

In general we think of a compact Lie group G as a closed subgroup of
O(k) for sufficiently large k, and define the classifying space B, for G in
a similar manner as above.

If G and H are compact Lie groups it readily follows that a continuous
homomorphism p: G — H naturally induces a map p: B; — By .

K. Vector bundles.

DEFINITION 1.35. A bundle & = {B,p, X, Y, G} in which ¥ = R"
and G = GL(n, R) acts on Y by the usual linear transformations is called
an n-dimensional vector bundle.

ExaMpLE. The tangent bundle t(M") of a smooth n-manifold is an n-
dimensional vector bundle.

The natural map

D :Vin m=0(m+n)/O(m) — O(m +n)/O(n) x O'(m) =R, ,
is a principal bundle whose fiber is O(n), and we have the following com-
mutative diagram:

O(m+n)/O'(m) —Lo  O(m+1+n)/0 (m+1)

d /|

O(m + n)/O(n) x O'(m) —£2— O(m + 1+ n)/O(n) x O'(m + 1)
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FiGURE 1.9

whose inductive limit with respect to m

EO(n)

l

BO(n)

is also a principal bundle with fiber O(n). The latter is called the universal
bundle for O(n) and its associated bundle y, with the fiber R” is cailed the
universal vector bundle.

Now we define simplicial complexes and polyhedra. In what follows we
shall carry out our discussions in N-dimensional Euclidean space R" for

a sufficiently large natural number N. The points Fy, ..., P, in RY are
. > . ., . . —_— -
linearly independent or in general position if the vectors PyP,,---, PP, are

linearly independent. It is routine to see that this definition does not depend
on the order of the points P,,..., P, .

DEFINITION 1.36. Let Py, ..., P, be linearly independent points in rR".
We call the set

N
|P0P1---Pnl={XeR

— — —
OX = 4,0F, +---+1,0P,, }
Ag+-+A, =1, ;>0

an n-simplex. The n is the dimension of the simplex |FyP, - P|.

A zero-simplex |Py| is the point Fy,a one-simplex |P,P,| is the line PP,
a two-simplex |P P, P,| is the triangle with vertices Py, P, P, and a three-
simplex |P,P,P,P;| is the tetrahedron with vertices Py, P,, P,, and P;.
See Figure 1.9.

DEerINITION 1.37. Any set of g + | points P,.O, P, ,..., P, among the

i

vertices Py, Py,... , P, of an n-simplex o = |F,P, ~-PL, 0 % g < n,are
again linearly independent; hence, they define a g-simplex

T = lPiOPiI ...P’_q|’
called a g-face of o. If 7 is a face of o, we write

T<0 Or o>T1.
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DEeFINITION 1.38. A finite set K of simplices in N dimensional Euclidean
space RY is called a simplicial complex if it satisfies the following:
(i) f 6 €K and o » 7, then T€ K.
(i) If ,7€ K and oNT#Q,then N1t <0 and oNT<T.

The dimension of a simplicial complex K is the maximum value among the
dimensions of simplices belonging to K and is denoted by dimK .

DerINITION 1.39. Let K be a simplicial complex. The union of all sim-

plices belonging to K is a polyhedron of K denoted by |K|:
K| = |Jo cRY.
ek

TueoreM 1.3 (classification of vector bundles). Suppose that P is a poly-
hedron. Then there is a one-to-one correspondence between the set of equiva-
lence classes of n-dimensional vector bundles over P and the set [P, B ]
of homotopy classes of continuous maps from P to B, the correspondence
being {f}~ {f7,}-

AN OUTLINE OF THE PROOF. The classification of equivalence classes of
n-dimensional vector bundles over P reduces to the classification of equiv-
alence classes of principal O(n) bundles over P which is readily seen to be
in one-to-one correspondence with [P, Bo(n)] ; this follows from

By, = "%i_r’rgoO(n + m)/O(n) x O(m)

and

n,(O(n+m)/O(m)) =0, O<i<m,
where #,(X) is the homotopy group of X in dimension . For a more
detailed discussion see Steenrod [A7].

Let & ={E(), P,, X,R",0(n)} and n={E(n), £, ¥, R™, O(m)} be
vector bundles of respective dimensions n and m. Suppose that a continu-
ous map #: E(&) — E(n) maps each fiber R" of ¢, x € X, homomorphi-
cally into a fiber R of n. We then say that h is a homomorphism of £ in
n and write 4 :& — n. Such an h is called a vector bundle homomorphism.

ExamprLE. Let M", V? be smooth manifolds and let f: M=V’ bea
C* map. Then the dlfferentlal df of f defines a homomorphism of (M™)
in 7(VF).

§3. Jet bundles

A. Jets. Denote by C'(n, p) the set of all C’ maps from R” to R’
sending the origin 0 to the origin 0, r > 1. We introduce the following
relation in C'(n,p): f and g in C'(n, p) are r-equivalent at O if the
partial derivatives of f and g agree at O in each order up to r,

s=1,2,...,r,
8°f, B a'g;

= i=1,2,...,p,

dx,8x, ---9x, |y Ox;0x, ---3x; | b
i 2 5T 1<j. <--<j <n

<5< 2 S
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We write f ~ g if f and g are r-equivalent. It is clear that ~ is an
r r
equivalence relation.
DEFINITION 1.40. We denote by J'(n, p) the set of all equivalence classes
in C'(n, p) under ~. An element of J'(n, p) is called an r-jer. We write
r

JN, jNH,or f "} for the equivalence class which contains f € C'(n, p).

In the case where f isa C® map the r-jet J'(f) of f is just the trun-
cated Taylor expansion of order r. We notice, in particular, that J ! (n,p)=
M(p, n; R), where M(p, n) denotes the set of (p, n)- matnces over R.

The set J'(n, p) isin one-to -one correspondence with RY, where N =
(GH +-+ H) xp, H = n+s—1ls(n—1); we assoc1ate to each
element of J its partial denvanves of order up to r. This correspondence
defines a natural topology in J'(n, p).

Now consider C' maps

f:@®R", 00— R”,0, g:®,0— R, 0).
We define a map
TP, q)x ' (n,p)— J'(n.q)

by (g ﬂ Yo (gof )(') This definition is independent of the choice of
representatives. Further as any partial derivative of go f can be written as
a polynomial in partial derivatives of f and g, the above map is algebralc

In particular for n = p = g, the above map defines a product in J'(n, 1),
and the rjet (1 ..)(') of the identity map lg» of R” is both the right and
left unit of J'(n, n) with respect to this product. Denote by L'(n) a subset
of J'(n, n) consisting of all invertible elements.

For 1 <s <r, define a map

, :J (n,p) — J(n,p)
by m, (f)=r".
ProposiTion 1.4. (i) L'(n)=GL(n,R).
Qi) L'(n)=(m, )" (L'(n).
(iii) L'(n) is a Lie group for each r, 1 <r < oo.

(iv) L'(n) has the homotopy type of GL(n, R) (cf. Thom and Levine
[B11]).

B. Singular sets. We write L'(n, p) for L'(p) x L'(n) and define an
action of L'(n, p) on J'(n, p) as follows:

L'(n,p)xJ'(n,p)— J(n,p),
((a(’), b("))’ f(')) — (a_l OfOb)(r).

DEFINITION 1.41. A jet £ € J'(n, p) is regular if its representative [
in C'(n, p) has the maximal rank at 0. We shall denote by PJ (n, p) the
set of all regular jets in J'(n, p).
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Let ¢ = min(n, p). We identify Jl(n ,p) with M(p, n; R) and set
Sk(n,p)={AeM(p,n;R)IrankofAisq—k}, 0<k<gqg.
In what follows we simply write S, = S,(n, p).
ProposiTION 1.5. (0) ?J'(n, p) is dense in J'(n, p).
(@) Sy="J"'(n,p).
(ii) Jl(n ,P)=S,US uU---US,, pairwise disjoint union.
(iii) S, is the orbit space of Ll(n, D).
(iv) S, =S, US; U US,.
(v) S, isacodimension (n—q+ k)(p—q+k) submanifold of J'(n,p).
PRrOOF. (i), (ii), and (iii) are immediate.
We want to show (iv). We shall first prove S, C S, U---US, . Let A€ S, .
In an arbitrary neighborhood U(A4) of A thereisa B whose rank is g—k.
Hence, the rank of 4 must be less than or equalto ¢ — k.

Next show SkU---USqCS'k. Let Ae S U---US, . Then the rank of A4
is q—k—i, 0<i<gq-—k. Hence, we can transform A by an element of

L'(n, p) to
I ., . 0
Eq—k—-i= ( qéc i 0) ,
where I, _; stands for the (g —k — i) x (¢ — k — i) identity matrix. Hence,

it is enough to show that E__, _, is in .S, . But this is obvious.
(v) follows readily from the following

LemMA 1.8. Let M(n, p; R) be the set of (p, n)-matrices over R. Since
M(p, n; R) is in one-to-one correspondence with R, we give the usual topol-
ogy of R”" to M(p,n;R); thus M(p, n; R) becomes a smooth manifold.
Let M(p, n; k) be the set of all (p, n)-matrices of rank k.

If k <min(p, n), M(p,n; k) isa kip+n — k)-dimensional submanifold
of M(p,n; R).

PRrROOF. Let E; be an element of M(p, n; k). Without loss of generality
we may assume that E, = (gg gg), 4, is a (k, k)-matrix and |4l # 0.
Then there exists an & > 0 such that |4| # O if the absolute value of each
entry of 4 — A4, is less than &.

Now let U C M(p, n; R) consist of all (p, n)-matrices of the form E =
(g g) ,where A isa (k, k)-matrix such that the absolute value of each entry
of A— A is less than &.

Then we have

EeM(p,n;k) ifandonlyif D=CA'B,

because the rank of

I, 0\(4 BY_{( 4 B
X I_.J\C D) \X4+C XB+D
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is equal to the rank of E for an arbitrary (p—k, k)-matrix X . Now setting
X = —CA~! we see that the above matrix becomes

A B
0 -CA'B+D)"

The rank of this matrix is k if D=C A~'B. The converse also holds, since

if ~CA™'B+D # 0, then the rank of the above matrix becomes greater than
k

Let W be an open subset of pn—(p—k)(n—k) = k(p+n—k)-dimensional

Euclidean space:
A B
w={(2 §)eMo.nim|w)

() : the absolute value of each entry in A — 4, does not exceed &.

Then the correspondence

A B - A B
c 0 C c4™'B
defines a diffeomorphism between W and the neighborhood UNM(p, n; k)

of E, in M(p, n; k). Therefore, M(p, n; k) isa k(p+n—k)-submanifold
of M(p,n;R). O

C. Jet bundles. Let V" and M? be C° manifolds of respective dimen-
sions n and p, s>1.For xe V" and y e M", 1 <r<s, set
CL V" M) ={f:V" > M, C'map|f(x)=y}.
Elements f and g of C; y(V", MPF) are r-equivalent at x, f ~ g, if
’ X,r

the partial derivatives of f and g at x in some local coordinate system
agree up to order r. The relation ~ is well defined and is an equivalence
X,r

relation.
Set
It My =Cp (VT M) o~

We write J_(f) for the equivalence class containing f and we say that J(f)
is the r-jet of f at x. Set

Jor, M= U J;’y(V",M").
xeV" yeM?

Using the atlases of V" and M”, we turn J'(V", M”) into the total space
of a bundle over V" x M* with fiber J"(n, p) and structure group L'(n, p):

MY (v, MY — J'(n, p)

| l

(x,y) e V'x M’
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This is called a jet bundle.

An alternative definition of a jet bundle comes from the structure theorem
of Steenrod (Theorem 1.1). Set Y = J'(n, p) and G=L'(n, p); G actson
Y.Set X = V"xM? . Takea C" atlas . = {(U,, ¢,)|a€ A} of V" and
an atlas & = {(W,, v;)|A € A} of M”. Then with X, , = U, x W, , the
family { X, ;|la€4,4¢€ A} isan open cover of X. For X, ;nX, #,
we define a map

. r
8oy b Xaa N Xg , — L0, p)

by
San. (g0 V) = (B, ) € L'(p) x L'(n),
where ” \ " \
r r - r r _
o, = J%(X)((oa °95 ) biuw= Jw,.(y)(wl oY, )-
Thenthe { X ;, g(a,l),(ﬂ,#)la, BeA,i, ueA} isasystem of coordinate
transformations in V" x M? with values in G. Hence, we construct, by
Theorem 1.1, a fiber bundle, which turns out to be the above jet bundle.
The total space J'(V", M”) may be regarded asa C° ' manifold when
r<oo.
Let f: V" — M” bea C° map. Then we call the map
IV —=J ", M,
x — J(f) '
the r-extension of f. The r-extension J'(f) isa C' ' map making the
following diagram commute:

JW", M*) — J'(n, p)

In the following we take r = 1. The submanifold S,(n, p) C Jl(n, p) is
invariant under the action of Ll(n , p). Hence, we consider the associated
bundle (this is a subbundle) of the jet bundle (J'(V", M”), p, V" x M?),
whose fiber is S, (n, p):

JYV", MP) D S, (V", M") — Si(n, p)

| !

Vi x M? = V" x M?
Since S,(n,p) is a codimension (n —gq + k)(p — q + k) submanifold of
J'(n , D), the set Sk(V" , M”) is also a codimension (n—q +k)(p —q+ k)
submanifold of J'(V", M?).
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Let f: V" — M? bea C' map and set
S,(f)={xe V" rankof fatxisq—k}.
We have the following routine

PROPOSITION 1.6.
S.(f) = (T NS, M),

D. Mapping spaces. Let V" and M” be C’ manifolds of respective di-
mensions n and p. Let C*(V", M”) be the set of C° maps from V" to
M? | and introduce the C topology in C*(V", N¥), 1<r<s.

DEFINITION 1.42. Let f e C*(V", M*). Let K be a compact subset of
V" and let O be an open subset of M” such that f(K)c O. For pe V",
g = f(p) € M¥, choose a chart (U, ¢) about x such that K c U and
a chart (W, y) about g. Let ¢ > 0 and 0 < r < 5. Write ¢(p) =
(%4, ..., x,) and define the set N'(f;x,y; K, O;¢e) as follows:

N'(fix,y:K,058)={geC(V", M))|(),(i),(ii]) },
where
(_i) g(K)coO,
(i) lw, o f(P)~w;o8p)l<e, foreachpe K, 1 <i<n,
iy |27 Wi fo07 ) 9" (wiog o0 ()
aleasz---axjm axjiasz.--axjm
x=¢(p), foreachpe K, 1<m<r, 1<i<n, 1< <--<j, <

<ég,

n.
The C" topology of C*{(V", M?) has for its basis °(f) in the neigh-
borhood system of f € C*(V", M") the family of N'(f;x,y; K, O;¢)
where we fix f and let K, O, ¢, and charts about x, y move around.
That is, in this topology we consider two maps close if their partial deriva-
tives in each order up to r are close in some compact sets.

PROPOSITION 1.7. The C" topology of C" (V" , M¥) is the weakest topology
making the map

I, My — v (v, M)
continuous with respect to the compact-open topology in C°(V", J'(V", MP)).

§4. Morse functions

DEFINITION 1.43. Let M be an n-dimensional C™ manifold, and let
f:M — R bea C function. Further let p € M? be a critical point of
f. Choose a local coordinate system (U, ¢), ¢ : U — R", ¢(p) =0. The

square n-matrix
0*(fo9)
H = | ——1
(£ [Gxiaxj Y20
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is called the Hessian of f at the critical point p. If the Hessian H(f), is
a regular matrix we say that p is a nondegenerate critical point. If p is a
nondegenerate critical point we define the index of p to be the index (the
number of the negative eigenvalues) of H(f) -

It is readily seen that these definitions do not depend on the choice of local
coordinate systems.

THEOREM 1.4 (the lemma of Morse). Let M be an n dimensional C™
manifold and let f: M — R be a C™ function. Suppose py € M is a
nondegenerate critical point of f. Then there exists a chart (U, ¢) about p,
satisfying the following:

(i) opy) =0.
(it) If p(x)=(x,, ..., x,), x€U, then we have

n
2 2, 2 2
f)y=fpy)—x = =x, + X+ T X,
where r is the index of p,.

LEMMA 1.9. Let M be a C™ manifold and let (U, ¢) bea chart about
py € M, where p(p) = (X, ..., X%,), P € U. Let f:U —R bea C7
function. Then there exist a neighborhood W of p, in W and a family of
C™ functions hij . W — R such that on W, f has the following expression:

f = f(po) + Z g—){(po)(x,‘ - xi(po)) + Z h,’j : (x,' - xi(po))(xj - xj(po))-
i=1 1

i,j=1

We leave the proof to the reader. Hint: a Taylor expansion.

ProOF OoF THEOREM 1.4. Using f — f(p,) in place of f we may assume
without loss of generality that f(p,) = 0. Choose a chart (U, ¢) about pg
such that

p(py) =0 €R". (5)

By Lemma 1.9 there exists a sufficiently small neighborhood W of p,, on
which f has the following expression:

n Bf n
fzzg;(po)yi+ Z hijyiyj’
i=1 i i, j=1

where ¢(p) = (¥, .-+ Y,), PE U. Since p, is a critical point of f, that

18,
of
ay;

the expression for [ reduces to

n
f=232
i, j=}

() =0, i=1,....n,

§4. MORSE FUNCTIONS 39

Define q;;: W — Rbya;= 1/2(h; + h;;), then we have

n
a;=ay,  f=) a4y, (6)
i, j=1

The cofficient matrix 4 = (a; j) is regular at the point p,. In fact, by differ-
entiating (6), we obtain

af = da; .
— = —dyy +2 a,.y;,
ayk iZj;l Byk yzyj ; kjy]

o'f % 62‘1:‘1‘ " day; " da,,
= vo+235 —Hy 123 My 4 2g,;
0y9y, ,-;1 oy Y1t By ; By, Vi T
thus, by (5) at the point p, we have

3 f

a—yk—a;I(Po) = 2a;,(py)-

But p, is a nondegenerate critical point and so the matrix

is regular. Hence, the matrix A(p,) = (q; j(po)) is also regular. Now as the
functions a; ; are continuous, we can find a small enough neighborhood ¥V, of
p, on which the matrix 4 = (g, j) is regular. Hence, by selecting a sufficiently

small neighborhood U, C V] of the point p, we have the following;:
-1

"POADPE) = | oo ., peU,.

Denote by Q = (g, j) the inverse matrix of P, and define functions x,: U, —
R,i=1,...,n,by

n
X, =3 dyVis (7)
k=1
then (x,,...,x,) is local coordinates about py: (U; x,, ..., x,). In fact,
by differentiating (7), we get
9x. ", dq,
i . Z ik, —
= Ve =4y
v, o 9y Y
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which gives us 5
5;—;(1)0) =q;;(Py) >

and hence we have
D(x;,..., x,)
Dy,,...»V,)
Further, by (5) we have

ox.
— det (ﬁ@@) = det(q,(p,)) #O.

Py

xl(po) —_—... = xn(po) = 0’
and by (6), (7), we have

n
f= Z a;yy; = ‘ydy = 'xPAPx
i, j=t
-1

= (X, oee s Xp) i

0 ,,

= ...

2 2 2 2
T ®)

Finally we show that the index of f at p, is 7. By differentiating equa-
tion {8) twice, we obtain

f {—2, i=1,...,r,

ax,? 2, i=r+1,...,n,

8’ f .

Ix,0x; =0, i#J
Hence, the Hessian of f at p, is

-2
. 0 ,
-2
8 f B
H(f)po = (m(ﬂ@) = e 2 ........ s
0
2

and thus its index is r. We now have proved the theorem. 0
DEFINITION 1.44. Let M be a C* manifold. We say that a C* func-
tion f: M — R is a Morse function if it satisfies the following:
(1) The critical points of f are nondegenerate.
(2) If p and ¢ are critical points of f such that p # g, then fp) #

fla).

§4. MORSE FUNCTIONS - 41

M,
% Mi+1

FIGUrE 1.10

THEOREM 1.5. Let M be a C™ manifold. Then there exists a Morse
function f : M — R. Further, if M is open, we can choose f to be proper
with the index of each critical point less than n.

A continuous map f : X — Y from a topological space X to a topological
space Y is proper if for each compact set K in Y, f 'l(K ) is compact in
X.

The case of an open manifold is due to Phillips [C 14].

PrOOF OF THEOREM 1.5. We know that the set .# of Morse functions
defined on M is dense in the set C(M, R) of C™ functions of M (cf.
Milnor [A2] for a proof). Hence, a Morse function of M exists.

For the case of an open manifold M , first express M as a union of an
expanding sequence of compact manifolds with boundary:

i+t

M={JM, M cCintM,
i=1

(see Figure 1.10). Next we denote by Ml' the union of M, and compact
components of M —intM;. Then M is again a union of an expanding

sequence of compact manifolds with boundary:

o0
M=JM, M cintM,,.
i=1
To see this first notice that M, C intM, , C intM, ,' .1+ Next we note that
if A is a compact connected component of M —intM;, 34 is a union of
connected components of dM,. Hence, either A4 CintM, , or 4 contains
some connected component of M, , . In the second case A4— (ANint M, )
is a union of compact components of M —int M, ,. Hence, 4 C int Mi' e
Consider now the compact manifold with boundary M l’ Ly —int M: . Since
M. cintM], , d(M,, —int M) falls into two disjoint parts corresponding
to 6Mtl+x and c’)Mi’ (Figure 1.11). Then there exists a Morse function f :
M, —intM; — R such that
(0) the range of f; C [0, 1],
. 1 —1
@) f'O=0M, f'(1)=0M,,,and
(i) ' f, has no critical points in (M;,, — int M)
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My

Misy —intM;

FIGURE 1.11

(Milnor [A4], Theorem 2.5; this might be thought of as a relative case of
what is described above). Fitting the f; together we obtain a proper Morse
function f on M.

We next eliminate the critical points of index n. By the construction of
M, we have

Hy(M,,, —intM;,dM; ) =0.

i

In fact, if a connected component of le L —int M,' cannot be joined to
dM,,, by a curve, it must be a compact component of intM,,  —intM],
and hence it must be a compcact component of M — intM, ,' . But this is a
contradiction. Thus, we can remove critical points of index n (cf. Milnor

[A4], Theorem 8.1).

§5. The transversality theorem of Thom

This section presents the transversality theorem of Thom, one of the most
fundamental theorems in the theory of differential topology, which will be
used in Chapter VII.

DerFINITION 1.45. Let M", N be C*° manifolds of dimensions n and
p. Let f: M" — NP be a continuous map and let W?™% beap-g-
dimensional submanifold of N”. We say that f is t-regular on W"™% or
that f is transverse to W7 if for an arbitrary point y of WP and an
arbitrary point x of f —l(y) the composite map

(df), -
T (M") ZLs T (N") 2 T, (NPT, (W)
is a surjection, where 7 is the natural projection.
The concept of t-regularity was first established by R.Thom.

LemMA 1.10. Let M" and N° be C*° manifolds, and let f: M" — N°
be a smooth map. Let W*™% be a (p — q)-dimensional submanifold of NP
If f is t-regular on W79, WP is either an (n — q)-submanifold of
M" or the empty set.

The lemma routinely follows from the definition.

§5. THE TRANSVERSALITY THEOREM OF THOM 43

THEOREM 1.6 (the transversality theorem of Thom). Let M " be an n-
dimensional compact C™ manifold, let N° be a p-dimensional C * man-
ifold, and let W*™% be a (p — q)-dimensional submanifold of N*. Let
C'(M™, N?) be the space of C* maps from M" to N with the C" topol-
ogy, r > 1. Then the set

T, ={feC'(M",N")| f is t-regular on WPy
is open and dense in C'(M", N¥).

We omit the proof (cf. Thom and Levine [B11]).



CHAPTER 11

Embeddings of C°° Manifolds

Our discussions in the present chapter will revolve around theorems of
Whitney, which were later generalized by Haefliger. We shall save Haefliger’s
works for Chapter VIL.

The main problem here is the existence of embeddings of V in M and
their classification up to isotopy for a given pair of manifolds V' and M.

Throughout this chapter we shall work in the C™ category.

§1. Embeddings and isotopies

We first define isotopies of embeddings and then state the theorems of
Whitney and Haefliger.

Let V be an n-dimensional C* manifold and let M be an m-dimensional
manifold.

DEFINITION 2.2. Let f and g be embeddings. We say that f and g are
isotopic and write f =~ g if there existsa C° map

F:VxI—M, I=1{0,1]
which satisfies the following, with the notation f(x) = F(x,1):
i) fo=1, fi=¢-
(i) f,:V—>M isan embedding for each 1 €0, 1].

The map F or the family of maps {/;} is called an isotopy between f
and g.

It is a routine that ~ is an equivalence relation (the transitivity requires
a bit of thinking).

The basic problem concerning embeddings is whether given ¥V and M
there are embeddings of ¥ in M , and if so can we classify these embeddings
by isotopies?

We stated in Chapter I that if f:V — M is an embedding, then the
image f(V) of V under f is a submanifold of M (the converse is false).
Hence, when M is a Euclidean space of low dimension we can fairly readily
grasp the f(V) and so V. Hence, we always try to embed ¥ in Euclidean
space of the lowest possible dimension.

The question of isotopic classifications is called the Problem der lage;
that of classifying topological spaces, polyhedra, manifolds and so on by

45
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N

F(8Y g(sh)
FIGURE 2.1

homeomorphisms (or diffeomorphisms) is called the Problem der gestalt.
There has been considerable progress on the Problem der gestalt in the last
half century but progress on the Problem der lage seems 1o have stagnated
somewhat.

EXAMPLE. Con51der two embeddings f and g of the circle S' in Eu-
clidean space R’ as shown in Figure 2.1.

Here f (S ) and g(S ) are homeomorphic but not 1sotoplc

The problem of classifying embeddings of S' in R? is called knot theory
and forms one of many active fields of research in topology (for the mterested
reader we recommend Introduction to knot theory, by Crowell and Fox( )3
strictly speaking isotopies in knot theory differ slightly from our isotopies).

Another expression for isotopies comes in the following

THEOREM 2.1. Let V be a closed manifold and let f, gV - M be
embeddings. Then f and g are isotopic if and only if there exists a homo-
topy h,: M —- M, t€[0, 1] such that

(i) for each t€ (0,11, h, isa diffeomorphism of M , and
(i) hg=1,, g=hof.
As we have no occasion to use this theorem in our book we omit the proof

(cf. Thom [B10]).
In 1944 Whitney showed the following

THEOREM 2.2 (Whitney’s embedding theorem). Let V be an n-dimensional
C® manifold, n > 3. Then we can embed V" in R*, i.e. there exists an
embbedding V"

DEFINITION 2.2. We say that a topological space X is k-connected if it is
arcwise connected and
n,(X)=0, 0<i<k.
Later Haefliger discussed and honed Whitney’s work and in 1961 obtained
the following
THEOREM 2.3 (Haefliger’s embedding theorem). Let V" be an n-dimensional
C* manifold.

(l) Introduction to knot theory, Ginn, Needham Heights, MA, 1963; Springer-Verlag, New
York, 1977.
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Z(a)k Suppose V" is k connected, 2k +3 < n. Then we can embed V" in
RTF.

(b) Let V" be k-connected, 2k +2 < n. Then two embeddings of V"
n R* Y are isotopic.

Taking k& = 0 in Haefliger’s theorem we obtain the embedding theorem of
Whitney. In this chapter we discuss Whitney’s theorem and in Chapter VII
we will focus on Haefliger’s work.

§2. Two approximation theorems

In this section as well as in the next we follow closely Milnor’s lecture
notes [B6}.

We present two approximation theorems fundamental for the proof of
Whitney’s embedding theorem. First some preparations. -

DEFINITION 2.3. We say that a subset 4 of Euclidean rn-space R” has
measure zero if for an arbitrary € > 0 there exists an open cover of 4 such

that
AcUC(x,, r), dorl<e,
i=1

i=1

where C"(x;, r;) is the n-cube centered at x; in R", whose edges are each
of length 2r;, (Figure 2.2); when no confusion arises we might abbreviate
C*(x;, 1) by Clx;, r;).

PROPOSITION 2.1. Ifa subset A of R" has measure zero, then the comple-
ment R" — A of A is everywhere dense.

LEMMA 2.1. Let U be an open subset of R", and let f: U — R" be a
C* map. If a subset A of U has measure zero, so does f(A4).

PrOOF. Let C be an n-cube whose closure C is contained in U. Put
_{i
(3"1‘ ) x

then by the mean value theorem we get
f)y=fMI<b-n-lix—yl, x,yeC.

b= max
x€C,i,j

>




48 II. EMBEDDINGS OF C* MANIFOLDS

As A has measure zero by assumption, AN C also has measure zero, i.e.,
for an arbitrary € > 0, we can choose an open cover of ANC:

AncclC(x, m), dori<e.
i=1 i=1
But the above inequality implies that
f(C"(x;, 1)) C CM(f(xy), bary).
Hence, we get

fAnCyc f (U C"(x;, r,.)> =JAC (%, )
i=1

i=1

cJC"(f(xy), bnr)).
i=1
But the sum of volumes of cubes in the above open cover of ANC is

o0 oo

2
ZZ"bnr;’ =2"p"n" Zri < 2"p"n"e.
i=1 Py

Hence, f(AN C) has measure zero. Since we can cover 4 with a countable
number of such C we see that the measure of f(A) is also zero. O

COROLLARY 2.1. Let U be an open subset of R", and let f:U — R’ be
a C™ map, n <p. Then f(U) has measure zero.

PrROOF. We may think of U x R”~" as an open subset of R”. Hence, we

define g: UxRF™" R by g= fop,;:

g UxR "y LR,
where p, is the projection onto the first component. Then g is evidently a
C™ map. But U =U x0c U xR’™" has measure zero, and so f(U) =
g(U x 0) has measure zero in R”. O

We next define a concept of measure zero for a subset of a C ° manifold.

DEFINITION 2.4. Let (M", 2) be an n-dimensional manifold, and let A
be a subset of M". We say that A has measure zero if ¢ (UNA) C R" has
measure zero for an arbitrary chart (U_, ¢,) of <.

By Lemma 2.1 the above definition does not depend on the choice of a
chart. This definition agrees with the definition of measure zero for subsets
of R".

COROLLARY 2.2. Let V" and M™ be C™ manifolds of respective dimen-
sions n and m, n<m. Let f:V" = M" bea C° map. Then f(V")
has measure zero in M .

THEOREM 2.4. Let U be an open subset of R, and let f: U — R’ be
a C™ map, 2n < p. Then for an arbitrary € > 0 there exists an (p, n)-
matrix A= (a;;) such that

(i) |a,.j|<€, i=1,...,p, j=i,...,n,and
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(i) the map g:U — RY defined by g(x)= f(x)+ Ax is an immersion.

Proor. Notice that
. Dg(x)=Df(x)+ A4.

Hence, we need to choose a suitable A4 so that the rank of Dg(x) at each
point x of U is n, ie., A must be of the form Q — Df where Q is a
(p, n)-matrix of rank n.

Define maps F, : M(p, n; k) x U — M(p, n) by

F(Q,x)=0-Df(x).

Then Lemma 1.5 implies that M(p, n; k) x U is a differentiable manifold
of dimension k(p + n — k) + n and that the F, are C* maps. We note
further that as long as k < n, k{(p + n — k) + n is monotone increasing
with respect to k. Hence, the dimension of the domain of F, does not
exceed (n - DNp+n—-(n—1)+n=_2n—-p)+pn—1 when k < n.
Now our assumption that p > 2n implies that this dimension is less than
pn=dimM(p, n).

Hence, by Corollary 2.2 the image of M(p, n; k) x U under F, has
measure zero in M(p, n). Thus, we can find an element A sufficiently close
to the zero matrix in M(p, n), which is not contained in any of the F, ,
k=0,1,...,n—1. This is the desired A. O

§3. An immersion theorem

We show in the present section that we can immerse an n dimensional
C™ manifold in R”". Set R, = {x € Rlx >0}.

DEFINITION 2.5. Let f: X — Y, where X is a topological space and Y
is a metric space, and let J : X — R, be a continuous function. We say
that g is a d-approximation of f if d(f(x), g(x)) <d(x) forall x in X,
where d is the metricin Y.

THEOREM 2.5. Let M" be an n dimensional C* manifold, and let f :
M" S R? bea C™ map, 2n < p. Given a continuous function § : M" —
R, , there exists an immersion g : M" = R” whichisa 6 —approximation
of f.

In addition, if the rank of f on a closed subset N of M" is n, we may
choose g such that

(i) gIN=/fIN, and
(ii) g is homotopic to f relative to N .

Before proving the theorem we need the following

LEMMA 2.2. A4 locally compact topological space X with a countable basis
is paracompact.

PrROOF. By assumption we may take open sets

v,u,,...; U, compact, i=1,2,...,
i 2 i
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as a basis of X . We construct inductively a sequence of compact sets
o0
AL Ay, s X= UA,., A;cintd,,

Put 4, = U Assuming that the 4; up to i = j have been constructed,
we deﬁne Al iv1- Let k be the smallest natural number such that 4, C
vu---ul,, andput
=(U,U---u0)uT,,
Then the {4} obv1ous1y sausfy the above condmon
Let " = {W,} be an open covering of X . Since the set 4, —int4,;
is compact, it can be covered by finitely many W, , and we can find a ﬁmte
number of open sets V, satisfying:
’ s
A, —int4, c | Vi,
r=1
(1) V; C W; for some j,
(ii) V. cmtAl+2 Ay -
SettmgP—{V V}and5”=P0UP1U-~,weseethat9”isa
locally finite reﬁnement of Y. O
From Lemma 2.2 it follows that all our topological or differential mani-
folds are paracompact.

LemMA 2.3. Let {U_ } be an open covering ofa C* manifold M". Then

M" has an atlas {v, htjed } with the following properties:
(1) J has cardinality ¥.

(i) {V;ljeJ} isa locally finite refinement of {U_}.

(iii) A, (V) =C(3).

(iv) M =Ujes W) where W, =h; Ych)).

Here C"(ry=C"(0,r) stands Jor the n-cube centered at 0 with edges of
length 2r.

PrOOF. We select a sequence of compact sets as in the proof of Lemma 2.2,

i+1°?

o0
A, Ay, ...; M'={J4, 4,cint4

and construct a locally finite refinement of the {U,}; keeping in mind that
we must have (1) hj(Vj) =C"(3) and (2) 4,,, —int4, C Ujhj—l(C"(l)). ]

LEMMA 2.4. There exists a C function ¢ : R" — R satisfying the follow-
ing:
Q) p(x)=1, xe C*(1).
(i) 0<p(x) <1, xeC"(2)-C"(1).
(iii) ¢(x)=0, xe R"-C"(2).
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Proor. Define a function A: R — R by
—1/x
A(x) = e , x>0,
0, x <0,

and set
(x) = A2+ x)A(2 - X)
Vi) = v —x) + A — D+ A(—x— 1)

Now define ¢ by

¢(x1a L) x,,) = HW(X,‘)
i=1

(see Figure 2.3). O

We say that ¢ is a bell-shaped function.

ProOF OF THEOREM 2.5. Assume the rank of f is n on N, that is,
the rank of f is r on some open neighborhood U of N. Then the
family {U, M — N} is an open cover of M. We select an atlas %,
{v;, hj)lj € J} according to Lemma 2.3, which is a locally finite reﬁne-

ment of {U, M — N} with h,(W,)—C (1) and #,(V)) = C (3) (see Figure
2.4). We next set h,(U;) = C"(2) and reindex the {(V;, h;)|i € J} so that
i<0 ifandonlyif V,CU,
i>0 ifandonlyif V,Cc M- N.

Noticing that U, is compact, we set

= o
€; f:rélg/l (x).

Now we construct the desired g by induction. Put f, = f'; then the rank of
fois non U,andsoitis n on UJ.SOWJ,. Assume next that f, | : M" — R’
isa C* map having rank n on N, _, =U;, w ;- We now construct, as
a &/2"-approxination of fi_,»a C= map f, : M" — R’ whose rank is
n on N, as follows. Consider the map f,_, o B! C"(3) » R® and the

bell-shaped function ¢ : R* — R of Lemma 2.4 for C"(1) C C"(2). Choose
a (p, n)-matrix A4 in such a way that if we define F,: C"(3) —» R” by

F,(x) = fu_ o hg (%) +@(x)Ax,



52 1I. EMBEDDINGS OF C* MANIFOLDS

P

K

FIGURE 2.4

the following conditions (i), (ii), and (iii) are met.
(i) F, isofrank n on K =h (N,_ nU,). By assumption the rank
of f,_, oh,:l is n on K. The Jacobian matrix of F, gives

DF (x)=D(f,_;° h,:l(x)) + Do(x)Ax + p(x)A.

The map
D KxMp,n,R)— M(p,n;R)

which assigns DF,(x) to (x, 4) is continuous and the subset M(p, n;n)
consisting of matrices of rank n is open in M(p, n; R). But since @(K x
0) ¢ M(p, n;n) we have ®(K x A) C M(p, n; n) for a small enough A4
(for an A close enough to 0).

(ii) The desired A should also be sufficiently small that

I Ax]f < ;—k x e C"(3).

(ili) Finally, by Theorem 2.4 we may take A so small that f, _, ohk_1 (x)+
Ax has rank n on C"(2).
Having chosen the desired 4 as above, we define for each k a map fk :
M" - R? by
Seo1(xX) + o (x)AR(x),  x €V,

f"(x)z{fk_l(x), xeM-T,.

The map f, is well defined, i.e, for a point x of V, — _Uk R

Seoa (%) + (R (x) AR (X) = fr_(X)-
The rank of f, is by (i) n on N,_, and by (iii) n on U, ; therefore, the
rank of f, is n on N, = Uj<k+le' Further, by (ii) the map f, is a

d/ Zk-approximation of fi_,.
Define g: M" — R’ by g(x)=lim,_,__ f,(x). This means the following.
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Recall that

M" =W,
i
N,cN,cN,c..., N_ =UW,,
j<k
M"=|JN,.
k

Since the {V}} is locally finite, for an arbitrary point x of M" there exists
a neighborhood U(x) of x such that U(x)nV, # & for a finitely many
j’s, the largest among which we call & ; then

Clearly, the map g is C™ and of the rank n on M". Moreover, g is
a d-approximation of f. The construction of f, implies immediately that
f, is homotopic to f, _, while N is kept fixed. Hence, f is homotopic to
g with N fixed. O

§4 Whitney’s embedding theorem I: M" c R*"""

In this section we show that we can embed an n-dimensional C* mani-
fold M" in 2n + 1-dimensional Euclidean space R**"'.

DEFINITION 2.6. Amap f: M — N from a C*° manifold M to C%
manifold N is a one-to-one immersion if f is an immersion and a one-to-one
map.

A one-to-one immersion is not necessarily an embedding.

ExaMpLE. Reflect upon f: R — R? in Figure 2.5.

We define a regular homotopy of immersions as used in Chapter 0 and
which we shall discuss in detail in the next chapter.

DEFINITION 2.7. Let M" and V¥ be C* manifolds of dimensions 7
and p. The immersions f, g : M" — V? are regularly homotopic, f ~g,
if there exists 2 C®° map F : M" x I — V¥ which with f(x) = F(x, t)
satisfies the following:

i) K= fi=s8.

(i) f, is an immersion for € /.

We say that F or the {f;} is a regular homotopy connecting f and g.

Notice that the = is an equivalence relation.

R! f
RZ

FIGURE 2.5
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LEMMA 2.5. Let f: M" — R? be an immersion of a C* manifold M",
2n < p. Then for an arbitrary continuous function 6 : M " — R, , there exists
a one-to-one immersion g which is a d-approximation of f . Further, if f
is one-to-one in an open neighborhood U of a closed subset N of M", we
can choose g such that

(i) g|N = fIN, and
(ii) g is regularly homotopic to [ relative to N.

ProOOF. On one hand, because f is an immersion, there exists an open
covering {U,} of M" such that f|U_ is an embedding for each «, on the
other hand, the set {U, M" — N} is another covering of M ", and together
these coverings form a third covering with respect to which we consider an
atlas {(V;, h,)|i € J} as given in Lemma 2.3. Further, using the bell-shaped
function ¢ : R" — R of Lemma 2.4, we define ¢, : M" - R by

poh(y), YyeV,
(/’i(y )=

0, y¢v.
Then it follows immediately that ¢, isa C *® function. For the sake of
convenience we take

v.clU if and only if i <O0.
Now we define the desired g by induction. First put fy = /. Assuming
next that we have an immersion f, , : M" — R’ which is one-to-onc on
U, V; » we define f i M" >R by
Se(x) = Je () + ¢k(x)bk >
where b, isa point of R?, which we select as follows:
(i) b, is small enough to make f, an immersion.
(ii) b, isso small that f, isa ¢ /2k—approximation of f,_,-
(iii) Let N*" be asubset of M" x M",

N = {(x,y) e M" x M"|p,(x) # 9,(») }.

Evidently N*" is open in M" x M". Now consider the following smooth
map @ : N - R”:

ox, ) = et =L 0D
@, (x Yo,
By assumption 2n < p, and so the measure of @(N*") in R? is zero.
Hence, we want b, to be outside @ (N 2") (if b, is small enough to satisfy
the conditions (i) and (ii) it will work for the condition (iii)).
The map f, satisfies

P (x) =9, (¥)=0,

fi(x) = £ 1) =0 if and only if {f xX)—f._ (1) =0
k-1 k-1 -

The ‘if part’ is clear.
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To show the converse notice that
0= £,(x) = () = (o () = f_ ) + (9, (x) = 9, (V)b 5

hence, if ¢, (x) — 9, (y) #0, then b, € <D(N2") . But this is a contradiction.
Hence, we must have ¢, (x) - ¢, (y)=0. Therefore, we also get f,_,(x) ~
e () =0.

Define g: M" —R® by

gx) = lim f,(x).

This means the following. Since f,(x) = f,_,(x) + ¢, (x)b, we must have
LV = fi_|Ve . But the {¥}} is locally finite and so for some neighbor-
hood U(x) of x, U(x)nV, # @ for only finitely many j. Denoting by
Jo(x) the largest such j we get g(x) = f; ,(x).

The definition of g(x) readily implies that g isa C “° map which is an
immersion as well. It is also clear that g|N = f|N . It remains to show that
g is one-to-one. Suppose now g(x) = g(x,) and x # x,. Then from what
was discussed above we have f,_,(x) = fi_,(x)), ¢,(x) = 9, (x,) for all
integers k > 0. From the former equation we get f(x) = f(x). Therefore,
x and x, do not belong to the same V.. But from the latter equation we
see that if x € V, for k > 0, then x, must also be in V,, which cannot
happen; hence, both x and x; must be in U (the Vj were reindexed this
way). This is a contradiction, however, as f is one-to-one on U.

Finally, a close look at the definition of f, reveals that S, and f,_, are
regularly homotopic relative to N, and hence the same is true for f and
g. O

DEeFINITION 2.8. Let M" be an n-dimensional C* manifold and let f:
M" — R? be a continuous map. We say that the set

y =lim f(x,)
L(f) = { y € R? | for some sequence (X, X,, ...)
which has no limit point in M"

is the limit set of f .

LEMMA 2.6. Let M" be a C™ manifold, and let f : M" — R” be a
continuous map.
(i) f(M"y is a closed subset of R” if and only if L(f) C f(M™).
(i) f is a topological embedding, i.e., f is a topological map, if and only
if [ is one-to-one and L(f)n f(M") =@.

ProOOF. (i) Suppose f(M") is a closed subset of R’ . Let y€ Y. Then
y =lim f(x,). But f(x,) € f(M"), and as f(M") is closed, y € f(M").

Conversely suppose L(f) € f(M"). Let y be a point in the closure of
f(M™) . For each natural number 7 there exists a point f(x,) in C’(y,1/n).




56 II. EMBEDDINGS OF C® MANIFOLDS

Consider a sequence X, X,, ... in M". Set x = lim x, if lim x, exists.
Then
flx) = f(limx,) =lim f(x,) =¥,

and hence y € f(M"). If the sequence {x,} has no limit point, we have
y e L(f) C fIM").

(ii) Evidently a topological embedding f is one-to-one. If L(f)Nf(M i)
# @&, there exists a point y of L(f)N f(M™) with y = limx, , where the
sequence {x,, X,, ...} has no limit point. On the other hand, we can write
y = f(x). Since f is a topological map, f ~! is continuous, and hence the
{x;5 x,, ...} has limit point x. Thisis a contradiction.

Suppose now f were not a topological map, i.e, f My - M
were not continuous. Then there would exist a point x of M " such that
f(x) € L(f) . But this contradicts f(M")NL(f)=@. O

LeMMA 2.7. Let M" be an n-dimensional C* manifold. Then there
existsa C° map f:M" =R with L(f)=0.

ProoF. Let {(V;, h;)} bea C* atlas of Lemma 2.3 with respect to the
open covering {M"} of M", andlet ¢ bethe C * function of Lemma 2.5.
For each j >0 let ¢, : M" — R be the C* function given in the proof of
Lemma 2.5. Set

1) =Yg ).
j>0
The right-hand side of this equation makes sense because the {V} is locally
finite. It follows that f is continuous.

We want to show L(f) = . Let {x,, x,,...} be a sequence in M",
which has no limit point. Then for any integer m > 0 there exists an inte-
ger i >0 with x, ¢ W, U---UW,_, andso x; € W, for some j > m.
Hence, f(x;) > m; hence, the sequence {f(x)), f(x,), ...} has no limit
pomnt. OO

Now we are ready to prove

THEOREM 2.6 (Whitney’s embedding theorem). Let M" be an n-
dimensional C* manifold. Then we can embed M" in R as a closed
subset.

ProoOF. Let f: M" — R' c R”"*! be a C* map given in Lemma 2.7;

L(f)=@. Let 6 : M" — R_ be the constant map J(x) = ¢ > 0. Then

by Theorem 2.5 there exists an immersion g : M" — R which is a

J-approximation of /. Further, by Lemma 2.5 there exists a one-to-one
immersion % : M" — R*™' which is a d-approximation of g. We have
L(f) = @ if the € > 0 is small enough. Hence, Lemma 2.6 impies that 4 is
an embedding, and so A(M") is a closed subset of R*' . o

The embedding theorem of Whitney allows us to regard an n-dimensional
C* manifold as a submanifold of R”"*'.
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Whitney proved the above theorem in 1936.
In the following sections we shall show that we can actually embed an
n-dimensiqnal manifold in 2n dimensional Euclidean space R™ .

§5. The theorem of Sard

We prove Sard’s theorem which we will need for the proof of Whitney’s
theorem on completely regular immersions in the next section. Sard’s theo-
rem is one of the most fundamental in differential topology. In general the
set of critical values of a C° map is meager as we see in the following

THEOREM 2.7 (Sard’s theorem). Let U be an open subset of n-dimensional
Euclidean space, let f:U — R bea C™ map, and set

C={xeUlrankof f at x<p }.
Then f(U) has measure zero in R”.

We follow the proof in Milnor’s book [A3].

PrROOF. Our proof is given by induction on 7.

When # = 0 the theorem is obvious.

Let »n > 1 and assume that the theorem is true up to n — 1.
For i=1,2,... put

.: "p’
. akr.
= — | = 1
G xevu x 0x ---0x 0,

1,2..
k<i,
r, Y, e x 1<r < -

-<r.<n
Evidently we have
C>C, 2C,--2CDC D

We shall carry out our proof in three stages:

Step 1. The measure of f(C — C,) is zero.

Step 2. The measure of f(C,—C,, ) iszero, i=1,2,....

Step 3. For a sufficiently large k the measure of f(C,) is zero.

Combining these steps we obtain Sard’s theorem.

Proof of Step 1. If p = 1, we have C = C,. Hence, C-C =9, and
so the set f(C — C,) has measure zero. For p > 2 we will need Fubini’s
theorem.

FUBINI'S THEOREM (*). Let A be a measurable set in R = R' x R7'.
For any point t of R' if the measure of AN{t} x R’ iszeroin {1} xR""",
the measure of A is also zero in R”.

It is enough to show that for an arbitrary x in C — C, there exists a
neighborhood V(x) of x in U such that the measure of f(V(x)NC) is
zero. This is for the following reason. Since R" is locally compact and

(2) Sternberg [A8]; also consult any introductory book on real analysis.
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paracompact it is Lindelof ( any open cover of R" has a countable subcover).
Hence,

C_Cl UK f(V;n C) has measure zero.
i=1
Thus, C - C, =U2,[V;n(C-C)] and f(C~-C)) =Un, fIV,n(C-C)].
Therefore, f (C = C)) as a countable union of sets of measure zero has
measure Zero.

We continue our proof. For x € C — C, we may assume without loss

. ]
of generality that i #0. Defineamap A: U — R" by A(x) =
(fi(x), x5, ..., x,). Then h is regular at x since
8f10x,|, 04/0x,|, ... 0f/0x,,
0 1 0

(22()-
ij . . .
0 0 1
Hence, & maps some nelghborhood V of x diffeomorphically onto the
corresponding neighborhood ¥’ of h(x) The restriction of goh to V'

is a map from V' to R”, and the set C' of critical points of g is A(V NC)
(see Figure 2.6). Hence,

g(CY=goh(¥nC)=(foh Y oh(¥ nC)=f(V¥ NC).
On the other hand, for each point (¢, x,, ..., X,) of V', glt, Xysvve s Xp)
belongs to the hyperplane {7} x R°~' c R”. So we have the restriction of g

g xR AV — {1} xR
g'=gl{t} xR""
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(%) - (i 6g.'(}8x.>’

By the induction hypothesis the set of critical values g'(C") of g’ has mea-
sure zero in {t} x R~ ' (C' denotes the set of critical points of g in
{t} x R""). But we have

g(CYn{t} xR = g"(Ch.

Now

Hence, by Fubini’s theorem g(C') has measure zero. Thus, f(V' N C) has
measure zero. We have proved the first step.
Proof of Step 2. Pick x, € C, — C,, and assume

k+1
__i_i__. 95 0.
Bxsl -~-<9xsk+l .
Define w: U — R by
8" £,(x)
wh) = 5x, ox,_

Sk+1
Then w isa C™ map and dw/dx, | # 0. Here without loss of generality
we may assume that s, = 1. Define a map h:U —R" by

h(xl,...,xn)=(w(x),x2,...,xn).

Then h isa C~ map satisfying

dw/dx, dw/dx, ... dw/Ix,
(ah,.> o 1 0 _
dx; : ’
0 0 I

therefore, & is a homeomorphism of some neighborhood of x;. Hence, we
can show that f(C, — C,,) has measure zero following the procedure of
Step 1.

Proof of Step 3. We show that if k > n/p—1, the set f(C, N I") has
measure zero in R? . Here I" denotes an n-cube of edge J . Then as in the
first step we can write

oo
ficy=Urenn
i=1
to finish the proof.
Let x € C, and consider the Taylor expansion of f at x:

k+1
f(x+h)=f(x)+(kh+l) Dk+’f(x+6h) 0<b<l1

= f(x)+ R(x, h).
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Then for x € C, NI", x +h eI", there exists a constant C such that

IRGx, b)) < ClIAI<.

Subdivide the cube I” into r" n-cubes of edge &/r, and let I, be the
subcube which contains the point x . Then each point of I, can be expressed
as

x+h, uhnsﬁ(%).

Hence, from the above equation we get

1f(x + k) - (0]l = IR(x, W] < cflh]**"!
k+ k+1
ce(om(2)) " g

k-+1 k+1°
¥
k
a = c(vnd) .

-
Hence, we may cover f(C, NI ") by a family of small cubes whose volumes
add up to V' such that

2a \* .
v<r (—k+l> =24"r" p(kﬂ).
r

Recall however that k > n/p — 1 and so n — p(k + 1) < 0. Hence, we have
proved Step 3. O

REMARK. We may use Sard’s theorem to prove Theorem 2.4.

COROLLARY 2.3. Let M" and V? be C™ manifolds of respective dimen-
sions n and p, andlet f: M" — V¥ bea C™ map. Put
C={xeM"rankof [ at x<p}.
Then f(C) has measure zero in V" .
This follows routinely from Sard’s theorem.

§6. Whitney’s theorem on completely regular immersions

In this section we prove Whitney’s theorem on completely regular immer-
sions, which offers a stepping stone for the proof of Whitney’s embedding
theorem “an n-dimensional C> manifold can be embedded in R>”.

DEFINITION 2.9. Let M" be an n dimensional C® manifold and let
f: M" — R* be an immersion. We say that [ is completely regular if it
satisfies the following:

(i) f has no triple points.
(ii) For p, and p,, p; #p,, f(p,) = /() =4,

(@df), (T, (M") & (@), (T, (M") = T,(R™).

We say that f intersects transversely at g when [ satisfies (ii).
Here by “ f has no triple points” includes “ f has no quadraple points,
quintaple points, etc.”
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THEOREM 2.8. Let M" be an n-dimensional C™ manifold, and let f :
M" — R™ bea C° map. For any continuous function & : M" — R,
there exists a completely regular immersion g : M " R™ which is a -
approximation of f .

Further, if the restriction of f to some open neighborhood of a compact
set N is an completely regular immersion, we may choose g so that g|N =

fIN.
In addition if f is an immersion, then g may be chosen to be regularly
homotopic to [ relative to N .

PrOOF. By Theorem 2.5 there exists an immersion [ which is a d/2-
approximation of f with f|N = f|N. f is completely regular on some open
neighborhood of N. Select an atlas of R, ¥ ={ (CZ"(x,., D, w)li=
1,2,...}, where vy, : C(x,, 1) — C*(1). The family # = {U, (M" —
Nynf ¢ (x;, 1)]i =1,2,...} is an open covering of M". We take
an atlas {(V;, h;)|j€J} of M" given by Lemma 2.3 with respect to %,
such that for each V; the following conditions hold.

(%) fIV,:V, - R*" is an embedding.
(*+) For some /1]. such that f(Vj) cc™r (x, , 1), there exists a diffeo-
7
morphism ¢, : C*(1) — R with g 0y, of(V)C C*™(1)NR" . (We think
- J

of R* as R" = {(X,,...» %,,0,...,0) eR"} CR™")
Reindexing the {(V;, h;))|i € J}, as we did in the proof of Theorem 2.5,
we assume

i<0 if V,cU, i>0 iff M"-N.
We write ¢; = ¢, ° v, -
We shall construct g inductively. Put g, = f, and assume that we have
defined g; : M" — R™ with g;IN = fIN. ‘
(a) Replacing the ¢, we may assume that g; satisfies the conditions (*)
and (++) in place of f.
(b) We assume that if N; = NU (UI.SJWA) , then for any point p of

i
gj(Nj) the set (gj|Nj)'l(p) contains at most two points and in case it con-
tains two points gle f intersects transversely at p.

Now we construct g, : M " _, R* . Consider the map
- 2
0080 () CM(3) — CT(L).

Define a projection 7 : R” — R" by m(x,,...,X,,) = (X
Then by the choice of ¢/, , we have

n+l""’x2n)'

1

908 oh,) (€3 ca(0,0,...,0),
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and by Sard’s theorem the set of critical values of the C * map
-1
mog, 08 [UUWUWINgE; (U) — c"(1)cRr"

has measure zero. Hence, we may select a point ¢, € R" satisfying the
following:
@) ¢ is sufficiently close to (0,0, ...,0).

(i) ¢, is a regular value of 7o ¢;+1 °g;.

(iii) If the points p, and p,, p, #p, , satisfy gj(pl)zgj(pz)eCz"(xll , 1),
then

! 1 -1
(pj-H ° gj(pl) = ¢j+1 ° gj(pz) ¢ T (Cq)'

Using the ¢, we definea C* map g, :M" - R™ by

g(x), xeM"—h (C"(2),

C(x) =
£ ) { (0 0) {01 0 8X) + o, (D}, x€V,
where ¢ is our bell-shaped function. Then the conditions (i), (ii}, and (iii)
for ¢, guarantee that &1 is an immersion and that g, is a (5/2‘”1-
approximation of g;. Further setting NJ'. +1 = N;UW and noting N,
compact, we see that for any point p of g, (N}, ,), the set (gj+,lN;+l)"l(p)
contains at most two points, and if it contains two points, then g 41 intersects
transversely at p. It is also routine that g; al¥N = fIN. In addition, by
readjusting the ¢, we see that g, , replacing f satisfies the conditions (*)
and (x¥).

Finally, by examining the definition of 8&rt carefully we see that 841
and g; are regularly homotopic relative to N .

is

Now define a map g: M" — R™ by
g(x) = lim g;(x),
100
which is what we wanted. 0O
§7. Special self-intersections

Our aim is to prove that a compact C°° manifold M " of dimension n
can be embedded in R”" : to this end we construct a model of an immersion
with a self-intersection (double point which intersects transversely).

Consider n = 1. Define a map a: R' - R? by

y=x—x/(1+x7), z=1/1+x).

This is a C>° immersion as shown in Figure 2.7, with one self-intersection.
From this we get an immersion f§ : R! - R? with exactly one self-intersection
such that for a sufficiently large r > 0, B is the identity map outside
D'(0, r), the one-disk centered at 0 with radius r.
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More generally, for n, n> 2, definea C* map a:R" - R” by

n
a(X), Xysoee s X)) = (V15 Va5 o5 Vap)s (X1, X, ..., X, ) ER",
2x,
y1=x1_79
V=X, i=2,...,n,
i X, X
— — 17 P
yn+1_u! yn+i u > l“za >n,

where u = (1 +x12)(1 +x22)~~-(1 +x§). We show that the map « is an
immersion. The Jacobian matrix (Da)(x) of « is

) L2 -x})  4xx, 4x,x,
u(l+x12) u(1+x§) u(1+x3)
0 1 0 0
0 0 0
0 0 0
-2x, -2x, o -2x,
u(l + x}) u(1+x3) u(l + x7)
x(1-x)  x(1-x3) —2x,X,X,
u(1 +x12) u(l +x§) u(!l +xi)
x,(1 —xlz) —2X,X,X, x, (1 —x;‘)
u(l+x3)  u(l+x3) u(l+x2)

Notice that not all entries of the first column are zero, for if ‘2"12 J{u(l +
xf)} is zero then x; = 0 so that 1 — 2(1 — xlz)/{u(l +x12)} =1-2/u.
The last equation is zero when u = 2, and hence we have some numbers
different from zero among the x,, x;, ..., x, . Hence, at least one of the
x,(1 - xlz)/{u(l +x‘2)}, i=2,3,...,n,is different from zero. Therefore,
the rank of D(a)(x) is n, and so « is an immersion.

Now we look for double points of «; we want x = (x, X;, ..., x,) and
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. ’ 7
x' = (x|, x,,...,x,) in R" such that a(x) =a{x’) and x #x . Put

W = (14 )+ D (1+ (),

! ! ! ’
a(x):(ypyz’---ayz,,)» a(x):(ylayza---’yzn)~
Since y, = y;, i =2,3,..., n, we must have xi=x;,i=2,3,...,n.
L 72 :
Further, y,,, =¥,,, implies ¥ =u,andso (x])* =x;, thatis, x{ = =X, .
Hence, from y;ﬂ,:yn“, i=2,3,...,n,weget x, =0, i=2,3,....n.
Further, from y| =y, , we have
2x 2x 2
x, — = x4+ L U=1+x =2;
1T 1t 1

therefore, x; = +1. Hence, the only intersecting point in the image of « is

o(1,0,...,00=a(-1,0,..., 0).

The Jacobian matrix D(a)(x) at x = (+1,0,...,0) is
1 o ... ... 0
1 o ... O
0 0 1
/2 0 0
0 +£1/2 0 0
0 0 ... 0 =£1/2
The ith column represents the components of the vector (da)(@8/0x;) =
dafox; at (£1,0,...,0). We make an (2n, 2n)-matrix by combining the
above two (2n, n)-matrices:
1 Do
) .
1 1
—-1/2 P12 ’
1/2 : : -1/2
12 : —-1/2

which is evidently regular. Hence, the map « intersects transversely at
a(x1,0,...,0).
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From this we see that an immersion f : R” — R*" with exactly one self-
intersection exists and that f is the identity map outside D"(0,r) for a
sufficiently large r > 0.

§8. The intersection number of a completely regular immersion

In this section we define the intersection number I r of a completely reg-

ular immersion f of an n-dimensional manifold M" in R*, and using
the model constructed in the previous section we show the existence of a
completely regular immersion with arbitrary intersection number.

DEFINITION 2.10. Let f: M" — R?" be a completely regular immersion
of an n-dimensional compact C* manifold M" .

(i) The case where M" is orientable and n is even. Choose an orienta-
tion in M”". Suppose that f(p)= f(q), p#q. Let u,,...,u, € TP(M")
and v,,...,v, € Tq(M ") be ordered sets of linealy independent vectors,
which define the orientations of T (M ") and T (M "). We say that the self-
intersection at f(p) has positive type or negative type depending on whether
the ordered set of vectors

(@), 1) - s (@), (1) 2 (A )g(0)), - 5 (@F),(,) € Ty (R

defines the positive orientation or the negative orientation in R*" , and we de-
fine the intersection number of this self-intersection to be +1 or —1 accord-
ingly. The intersection number 1 ; of f is the sum of intersection numbers
of self-intersections of f: [ r€ Z.

(ii) The case where M" is nonorientable or n is odd.

In this case we define the intersection number [ r€ Z, in the same way as
above.

ReMARK. For n =1 compare the [ ; in this section with the [ ; defined
in Chapter 0.

THEOREM 2.9. Let M" be an n dimensional compact C* manifold.

(i) If M" is orientable and n is even, then for an arbitrary integer m there
exists a completely regular immersion f: M" — R with 1 p=m.

(ii) If M" is nonorientable or n is odd, then for any m € Z,, there exists
a completely regular immersion f: M" — R* with 1 p=m.

PrROOF. By Theorem 2.8 there exists a completely regular immersion S
of M" in R*™. Take a point x, of M" and some neighborhood U of
X, to replace f, by the map B with exactly one self-intersection defined
in §7 or by the composite of f with the map r: R — R” defined by
F(X,, Xgs oo s Xyp) = (=Xys Xy -nes Xy,) - The intersection number of the
new completely regular immersion f is [ Wt 1 or I " 1 . We repeat this
process till we get an immersion with intersection number m. 0O
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§9. Whitney’s embedding theorem II: M" C R”"

In this section we prove Whitney’s theorem “An n-dimensional compact
manifold M” can be embedded in R>" ™.

THEOREM 2.10. Let f M" — R?" be an immersion, n > 3. Then there
exists a regular homotopy { f,|t €0, 11} of f satisfying the following:

0 fo=r. fisa completely regular immersion.
(1) The number of self-intersections of f, is two more than that of f .

If (i) M" is orientable, n is even, and the number of self-intersections of
[ is greater than |1 fl, or (iiy M" is nonorientable or n is odd, and f has
at least one self-intersection, then there exists a regular homotopy {f,} of [
such that the number of self-intersections of f, is two less than thatof f=fy-

(For more on regular homotopies see §1, Chapter III).

PROOF OF THE FIRST HALF. Notice first that by Theorem 2.8 we may as-
sume f is a completely regular immersion. Take a sufficiently small #-
disk D" in f(M"), D" c f(M") C R*", and choose distinct points p and
g in D".

(a) We try to grasp a whole picture with n = | . We take an embedding of
D! in R? as shown in Figure 2.8 and make two self-intersections by moving
the disk around by a regular homotopy, say, ¢ =0, p € D'cR'c R%.

(b) Suppose D" is embedded in R c R”. Let ¢ =0 and p be
points of D" with p # q. Assume p sits on the x,-axis. Pull up p to
the (x,, x, +1)-plane in the positive direction on the X, H-axis. We then
position some neighborhood of x parallel to the (x,, X, ;.- x,,)-plane.
Next we move this neighborhood in the (x,, Xy s oens X,,)-plane through the
origin O (at this point the disk crosses itself) making sure not to create any
other intersections (see Figure 2.9). The only intersections are on the x,-axis;
we have created two self-intersections.

Xo *2

D‘ )

. ~N LS

|0=q RES

FIGURE 2.8
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FIGURE 2.9

A sketch (of a portion) of the proof for the latter half. We show how to
eliminate two self-intersections in case (ii) where either M" is nonorientable
or n is odd, and how to eliminate two self-intersections of distinct types in
case (i) where M" is orientable and n is even, in each case through a regular
homotopy.

Let f(p,) = f(p,) = ¢ and f(p)) = f(p}) = ¢, and assume that these self-
intersections have opposite types. Let C,, C, be disjoint curves in M ", C ;
connecting p; and p; and not passing through any other self-intersections
of f, i =1,2. Then B, = f(C;) is a curve connecting ¢ and ¢, and
B = B, U B, is a simple closed curve in f(M"). Take a two-cell ¢’ with
boundary B such that F(M")n¢’ = B (Lemma 2.9).

We next deform f through ¢’ ina neighborhood of C, in M" so that
the new image of C, will not meet B,. In this way we will remove the two
self-intersections.

The detail of this proof appears later. For now, using Theorem 2.9, we
shall show the following

THEOREM 2.11 (Whitney’s embedding theorem). Let M " be a closed C*
manifold of dimension n. Then we can embed M" in R

ProoF. The theorem is routine for n =1 as M ' is a finite union of S'.
Case n = 2. We can embed the sphere S?, the projective space RP’
and the Klein bottle K> in R*. By the classification theorem for closed
surfaces, M 2 is a connected sum of a finite number of copies of the above
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surfaces. Hence, we can embed M 2 in R* (cf. any elementary text covering
the classification of surfaces.) (3)

Let n > 3. By Theorem 2.9 there exists a completely regular immer-
sions f,: M" — R> with I 4, = 0. By Theorem 2.10 we can remove all

self-intersections. Thus, we have obtained an embedding f, : M" — R”. O
In order to complete the proof of Theorem 2.10 we need the following
three lemmas.

LEMMA 2.8. Let & = {B,p,|K|;R",0(m)} be an m-vector bundle
over a polyhedron |K|. Let K' be a subcomplex of K. Assume that (i)
ST §;., are cross sections over |K| such that for each p € K|, ¢(p)s---»
;_(p) forman orthonormal system, and (ii) {; is a cross section of Z over
IK'| such that for each point p € |K'|, {,().....{;i_(p), {,(p) form an
orthonormal system. Then if dimK < m — i, we can extend {; over K| in
such a way that the {,(p)..... {i_;(p), {,(p) isan orthonormal system.

Proor. Fix a point p of [K| and let R;” denote the fiber over p. Then
the desired {;(p) may be a unit vector in the orthogonai complement of
the (i — 1)-subspace spanned by {,(p),-.., {;_,(p), ie, we want {i(p) €
S;"”' c {{¢, @), .., C,._l(p)}}l c R”, where S;"—' is the unit sphere in
the orthogonal complement of the space {{{,(p), ..., ¢ ._1(p)}} spanned by
¢,(p),..., &_y(p). Hence our problem reduces to the problem of extending
a cross section over |K'| to |K| in the (m — i)-sphere bundle over |K]|. But
the obstructions for this are in

H(K, K n,_ (S"7)

(see for instance Steenrod [A7]), which is empty since we have dimK <
m — i, and so we can extend our Cross section. O

In what follows assume n > 3. Let C,, i =1, 2, be the curves given in
(b) of the proof of Theorem 2.10 (Figure 2.10). Let M, and M, be suitable

(3) H. Seifert and W. Threlfall, A textbook of topology, Academic Press, San Diego, CA,
1980; S. Lefschetz, Introduction to topology, Princeton University Press, Princeton, NJ, 1949,
etc.
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FiGURE 2.11
neighborhoods in M" of C, and C,, respectively. Put

Ci={pn]O§t§1}, Dip =70 Pi1=P;-

We take the curves p, : [0, 1] — M, p;(t) = p;,, to be embeddings. Then
the curvesg; : [0, 1] — R™, q,(t) = g,,, where f(p,) = g, , are embeddings
as well.

LEMMA 2.9. Consider R> = {{x,Mx,y e R}. Set 4 = {(x,y) €
Rle < x <1,y =0}. Denote by A, the arc of the circle of radius one
centered at (1/2, —/3/2), connecting the endpoints r and ¥’ of A, in the
halfplane y > 0. Let A= A UA,. Let t' be a small neighborhood of A
in R, and let © be the union of T and the finite region " bounded by A
(Figure 2.11). Then there exists an embedding v : 1 — R*" satisfying the
Jfollowing :

i) wn=4q, w()=4d, y(4)=B;,, i=12.

(i) w(r)nf(M")=B.

(iii) T, (w(1) ¢ T,-(f(M"), forall " € B.

PrROOE. We first show that an embedding y as specified above exists with
respect to the set 7. Put

T = T,(f(M))), T, = T,(f(M,)),
T’ =T,(B,)®T,(B,) C T,[R™).
T? intersects Tl" and TZ" in straight lines:
T =T’nT}, T)=T'nT;.

Changing f slightly we may assume that f maps some neighborhood of p;
in M; onto the exponential image of some neighborhood of the origin of
Ti" in f(M;). We may assume further that f maps some neighborhood of
C, in M, onto the exponential image of some neighborhood of TiI in Tl."
(valid only very near ¢ ), i =1, 2.
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Now there exist a closed neighborhood ¥V(r) of r in 7 and a linear
map ¢ : V(r) — T° mapping V(r) to a closed neighborhood of the ori-
gin in T2 . 1t follows that the ¢, when restricted to 7(770 A; , maps a closed
neighborhood of r in 4, to a closed neighborhood of the origin in Ti1 .
Similarly, we define a linear map ¢ in some closed neighborhood of r'.

Let

r:i0,1]— 4, CR,  i=1,2
be a parametric representation of the curve A; such that d(r (1)) = q,(1)

wherever ¢ is defined.
For 1€ [0, 1] let u,(¢) bea smooth cross section in the restriction 7(7)[4,

of the tangent bundle T(t) of 7 to A,, subject 1o the following:
(0) exp(ut))cr, i=1,2.

() { u,(0) € T,(4,), u,(0)

u, (1) e T,(4,), ul)

is pointed forward along 4,,
is pointed backward along 4,,
{ u,(0) € T,(4)), u,(0) is pointed forward along 4,,
- u,(1) e T (A4)), u,(1) is pointed backward along 4,.

(i) u(f €T, (D), ui) ¢ T, 5(4), i=1,2.

(1ii) u,(¢) rotates counterclockwise as ¢ goes from 0 to 1; u,(f) rotates
clockwise as ¢ moves from 0 to 1 (Figure 2.12).

Denote by R,(¢) the line segment in the direction of u,(¢) centered at
r(t) of length p. Here we readjust V{r) and V'(r') so that each R,(1)
forms a part of their boundaries. We may also choose p small enough to
have R, (t,) N R,(t,) =< if ri(t), r(t) ¢ V(nu V'(r').

For r,(t) € [V u V' ("NIUA4,, set v (1) = (d), (o (:(1))- Then (1) is
a vector field in f(V(r) N V'(r")), which we want to extend to B, without
making it touch f(M™) at g,(¢). But this can be done by Lemma 2.8.

Since ¢ is linear on ¥ {(r)u V'(r'), we have

o(r(1) + au (1)) = q;(t) + av,(1), r( eV uv'(r), lel <p.
Using this identity we can extend ¢ to the closed neighborhood 7 of A.

Let ' be a continuous extension of ¢ over 7. By taking a smooth
approximation, we may assume that y' is a smooth map. Since 2n2>5, by
Theorem 2.6, there exists an embedding y which is a C’'-approximation of
y' . Hence, v is an embedding and for r* € A we have

T (W (D) & Ty (S (M)
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. because n +2 < 2n We may assume w(t) N f(M) = B. Hence,
(z) is the desired 2-cell. O

Ma 2.10. Suppose q and q' are self-intersections of f of opposite
Then there exist Cross Sections W, ..., W, in T(R*™)|, the restric-
of the tangent bundle T(R®™) of R*" to o, satisfying the following:

Q) For each g~ in o, 'wl(q*), ,wzH(q*) are linearly independent.
{i) For ¢ = w(r’), rreAd,

“ w(q") = (d¥),- (&),
) For q" € B,

Wwy(@"), oo s Wy (a7) € T (F(M)).

iii) For g €B,,
' W, (@) - W, (a7) € Ty (f(M)).

4

w,(q") = ([dy),-(&)-

s lemma clarifies how the o, the f(M,), and the f(M,) are positioned

ve to each other in R,
ooF. Since y is an embedding, w,(¢") and w,(g") are linearly inde-

t. Set
-1 -1
AU § NN AN S G )
{{---}} denotes the subspace of R*" spanned by {---}. For each
4 of B, put
V' g") = {v e T-(f(M))v L T,-(B)}-
B, = Uges, Vl"‘l(q'), we obtain an (n — 1)-dimensional vector
ﬁ, ={%,,x,. B,} over B, . As the base space B, is contractible,

dle 9, is trivial. Hence, there exist linearly independent vector fields,
Wy, oo s Wy s in 4B, , which define an orientation of f(M,) at

rly for ¢* € B, setting

V") = (v e T,-(f(M))lv LT, (By) ),

n an (n — 1)-dimensional vector bundle %, = {#,, n,, B,}, where
Uy es, Vz""(q*) . Again there exist linearly independent vector fields
, ., w,, in B,, which define an orientation of f(M,) at each
g of B,. Here we assume w)(q") to be an element of 7 .(B,),
points in the positive direction along B, .

& = {o xR, p,, 0} bean 2n-dimensional trivial bundle over
The restriction % |B, of & over B, has n+1 linearly independent
8 sections w,, W,, W,,,,---,W,,  Further, if g=qorqg =4,
{a’), ..., w,,(¢") are linearly independent. By Lemma 2.8 we can
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extend the w,,...,w, over B, and for each q" € B, the 2n -1 vec-
tors w,(q%), w,(q"), wsy(d"),..., w,(q"), w,,,(q"),... ,wy,(g") are lin-

early independent.

Recall that the self-intersections ¢ and ¢’ have opposite types. By suitable
choices of w, ,w;,... , W, in 15’,l and w;, Wy, yseee s Wy in B, we may
assume that for ¢* = ¢ or ¢" = ¢, the vectors

W, (%) W@ ) s ee s Wy (47, wy(a7), W, 0(@7), oo Wy (@)

define the orientation opposite from the preassigned orientation in R™".

Now we can deform w,(q) and w,(¢") to wy(g) and wy(q') keeping
them in T'(c) and out of T(B)); thus, these vectors remain linearly inde-
pendent of the above vectors. Hence, the vectors

n

wl(q*)’ wz(q*) LI ] wzn(q*)

define the positive orientation of R* at ¢* =q or q* = ¢ . Therefore, we
can extend the cross section w, , over B, while keeping its linear indepen-
dence with the other vectors.

Using Lemma 2.8 again we extend the sections ws,...,w,,, OVEr g SO
that w,,...,w,,  are linearly independent at each point of o .

Finally, we extend the cross sections w, ,,...,W,, defined over B, to
o while keeping their linear independence. This is possible since we may
think of B, as a smooth deformation retract of o. Hence, we have shown
the lemma is valid. O

The w,, as constructed above, have clarified the situation in a small neigh-
borhood of o in R™.

ProoF oF THEOREM 2.10. Consider 7 C R?> c R*". For each point r =
(a,,ay, ..., a,,) of R” set r* = (a,,a,,0,...,0) and

2n 2n
w) =w(r +Y ae)=w(r)+ > aw (w(r)).
i=3 i=3

For each point ¢* of &, the vectors w,(¢"),... ,w,,(¢q") are linearly inde-
pendent and they are C™ in g . Therefore, ¥ when considered as a map
from a neighborhood of o to R®" has the nonzero Jacobian matrix at each
point in its domain. Hence, we have the inverse t//_1 . Setting

No=vT (M), Ny=wT (f(My),

we see that N, and N, are contained in a neighborhood U of 7 in R,
If we can deform N, in U so N, does not intersect N, (ie, there exists an
isotopy {i,:t€[0, 1]} of the inclusion map i: N, — U such that i; = i,
i ((N,)N N, =), the family {w o} defines a deformation of f and the
number of self-intersections of f decreases by two. Hence, in this case the
proof will be complete. Set

n(xl,xz,...,x2n)=(x,,0,x3,‘..,x2n).
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By the conditions (i), (ii), and (iii) of Lemma 2.10 and the definition of
w(r) as given above for r" e A, T.(N)) is in the (x;, X3, ... X, 1)"
plane. Hence T.(n(N,)) is also in the (%, X35 -+ 5 X, 1)-Plane. Similarly
T.(m(Ny) isinthe (X, X, 55 --> X,,)-plane. Hence, n(N))Nn(N,) is on
the x,-axis.

Let u(x,) bea C* function whose graph x, = u(x,) is the union of the
set A, and the X,-axis minus the set 4, smoothed out at the points r and
' (Figure 2.13).

Take € > 0 such that the interior of N, consists of points whose distances
from the (x,, x,)-plane are each less than € . Consider a C™ function v :
R! = R as follows (Figure 2.14):

ba<l, vO)=1,
v(A)=0 if |4 >€.
Now define a map 9, : R - R™ by
o,(r)=r- tu(x§ +--- 4 xjn),u(xi)ez, r={(x,,...,X%y,) € R”.

By the definition of v, 6, is the identity map outside N, . Evidently the
{6, : R - RZ"} is a regular homotopy with 6, =1. When =1, #, maps
the portion of N, on 4, to the halfplane x, < 0. But =(6,(N,)) = n(N,)
and 7(N,)N=(N,) is on the x,-axis, and so NN 6,(N,) must be on the x,-
axis. However, 6,(N,) does not intersect the x;-axis, and so ¢,(N,) must
be empty.

Further, since w(t) N f(M) = B no new self-intersection will arise if we
take € sufficiently small. This concludes the proof for the case that M" is
orientable and n is even.

In other cases too we can remove pairs of self-intersections by regular
homotopies in just about the same way as above. To do this we only need
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to show that the C, and C, can be chosen so that ¢ and ¢ have opposite
types.

The case M is not orientable. If we can take C, and C, as above and ¢
and ¢’ are of opposing types we follow the previous argument. If ¢ and q'
is of the same type, we choose a curve C; from p, to p'2 so that C, U C;
reverses the orientation in M . Then g and ¢  are of opposing type with
respect to C, and C;.

The case n is odd and M is orientable. Suppose ¢ and ¢’ have the same
type for C; and C, . Then choose a curve C, from p, to p, and acurve C,
from p, to p; as follows. The curve C; agrees with C, near the starting
point and with C;, i # j, near the endpoint. The neighborhood A, ! of C;
is chosen in such a way that M, agrees with M; near the point p; and with
M]' near pj, j # i. Orient M, and M, with the preassigned orientations
near p; and p;. Then ¢ and ¢4’ have the opposing orientations with respect
to (M|, M,). O

CHAPTER 111

Immersions of C*° Manifolds

In this chapter we discuss classifications of immersions by regular homo-
topies, a weaker version of classifications of embeddings by isotopies (with
the Smale-Hirsch theorem as the central feature) which reduces the problem
of immersions to the homotopy theory.

§1. Immersions and regular homotopies

Let M" and V? be C™ manifolds of dimensions n and p respectively.
Denote by C*(M", V?) the set of C*° maps from M" to VP with the
C™ topology. Write Imm(M" , V'”) for the set of immersions of M "in VP.
Since Imm(M", V?) c C®°(M", V7, we give Imm(M", V*) the relative
topology.

DEFINITION 3.1. Let f and g be immersions of M" in V7. We say that
f and g are regularly homotopic and write f ~g if they belong to the same

arcwise connected component of Imm(M”", V7).
Evidently the ~ is an equivalence relation.
r

REMARK 1. Write Imm'(M", V?) for Imm(M", V'*) with the relative
C' topology of C®°(M", V?). Then the identity map
1:Imm(M, V) — Imm' (M, V)
is continuous and induces the bijection
1, : my(Imm(M, V) — mo(Imm' (M, V)
(the surjectivity is clear from the definition and the injectivity follows from
the approximation theorem). Hence, we may define f,gelmm(M, V) to
be homotopic if they can be connected by a curve in Imm' (M, V) ; this was

our definition in Chapter II.
REMARK 2. The approximation theorem in Remark 1 goes as follows.

THEOREM 3.1. Let M and V be C° manifolds, 1 < s < oo, and let
f:M—V bea C" map, 0<r<s. Suppose that f is of class C’on A,
AcC M (f is C° on some open neighborhood U of A). Then there exists
a C° map g: M — V which approximates f in the C" topology such that
giW=f, AcWwWcU.

75
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F(sh) g(sh) r(S")

FIGURE 3.1

We give our proof in the next section.

REMARK 3. To show 1, to be injective (Remark 1) we apply the ap-
proximation theorem with 4 = M x 81, I = [0, 1], to the regular ho-
motopy F: M xI—V inthe C ! topology .

From the above remarks we obtain the following

PROPOSITION 3.1. Let f and g be immersions of M" in V?. Then f
and g are regularly homotopic if and only if there exists a homotopy { £}
with f, = f and f, = g satisfying:

(i) Foreach t€[0,11, f,: M" — V? is an immersion.
(ii) Set F, = d(f)) : T(M) — T(M) and define a map F : T(M) x
[0, 11— T(M) by F(v, t)=F,(v). Then F is continuous.

ExaMPLE. Look at the three immersions f, g, 2: S ' SR? in Figure 3.1.
While f and £ are regularly homotopic, f and g are not.

PROPOSITION 3.2. Let f and g be embeddings of M" in VP . If f and
g are isotopic, they are regularly homotopic.

The proof is left to the reader.

The basic problem in the immersion theory is the following: Given C o
manifolds M and V, classify immersions of M in V by regular homo-
topies. A special case of this problem is the question of the immersibility of
M in V; in Chapter II we stated the Smale-Hirsch theorem which gives a
complete answer to this case in the language of the homotopy theory. In §3
we discuss the Smale-Hirsch theorem.

§2. Spaces of maps: The approximation theorem

Here we put together facts about spaces of maps and reformulate the ap-
proximation theorem.

Let M and N be C" manifolds, and let C'(M, N) bethe setof C’ maps
from M to N . In part D of §3 in Chapter I, we defined the C " topology in
C'(M, N), which is also called the weak C” topology or the compact-open
C" topology. We denote by Cy, (M, N) the space C'(M, N) with the weak
topology.
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The space C ;V (M, N) is a complete metric space and satisfies the second
axiom of countability. If M is compact, Cy,,(M, N) is locally contractible;
in particular, C ;V(M , R™) becomes a Banach space.

When M is not compact, the weak topology does not regulate the behavior
of maps “at a distance”. For this reason a stronger topology is sometimes
desired. We define a strong topology below which is also called the Whitney
topology or the fine topology. Let @ = {(U,, ¢,)|i € A} bealocally finite C”
atlas of M ; that is, for each point x in M there exists a neighborhood U(x)
such that only finitely many U, intersect U(x). Let K = {K,|iecA} bea
family of compact sets K, in M with K, C U;. Let Y={(V,w)lieA}
bea C" atlas of N, and let ¢ = {¢]i € A} be a set of positive numbers.
For f e C'(M, N) with f(K,)CV,,set

N0, ¥, K, 8)={geC (M, N3, ()},
(i) g(K)CV,, i€eA,
Gi) [1D*(w;0 fop])(x)— D(yog00] X <& Yx € (K), k=
0,1,...,r.
For a basis of the strong topology in C' (M, N) we take the family of sets of
the form #(f; ®,¥,K,¢) (moving f, @, ¥, K and ¢). Denote by
C;(M , N) the space C "(M, N) with the strong topology.

If M is compact, the spaces Cg(M, N) and C,,(M, N) are identical.
When M is not compact and dimN > 0, C;(M , N) does not satisty the
second axiom of countability.

These two topologies are induced on the space C (M, N) of smooth
maps by the inclusion maps C®(M, N) — C,,,(M, N) and C*(M, N) —
C g(M , NY).

The strong topology has the advantage that important subspaces in differ-
ential topology are often open with respect to this topology.

THEOREM 3.2. The set Imm’ (M, N) of C' immersions of M in N is
openin Cg(M, N), r>1.

PROOF. Since Imm' (M, N) = Imml(M, N)YNnC'(M, N), it suffices to
show thecase r=1.If f: M >N isa C ! immersion, we choose a neigh-
borhood N'(f; @, ¥, K, &) of f asfollows. Let ¥° = {(V;, w,)| B € B}
bea C’ atlas of N. Choose a C” atlas @ = {(U,, ¢;)li € A} of M sat-
isfying

(i) T, is compact.

(ii) For each i € N there exists (i) € B such that f(U;)) C V.

Set V, = Vﬂ(i)’ Vi = Vguy» Y ={(V,w)lieci}. Consider a compact
covering K = {K;|ie A} of M, with K;CU,.

Then for each i in A, the set

A, ={D(y,o fop, )(x)x € p,(K))}
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is compact in the space of the one-to-one linear maps from R™ to R". But
the set of one-to-one linear maps are open in the space L(R™, R") of linear
maps from R™ to R”. So there exists & > 0 such that T € L(R", R") is

one-to-one if ||T S|l <¢ for S €4d,. Set e ={¢lie A} Then each

element of N' (f;P,¥Y,K,¢)isa C' immersion. O
A similar proof applies to the following

THEOREM 3.3. The set Emb’ (M, N) of C' embeddings of M in N is
openin Cog(M,N), r>1.

Now we proceed to the following approximation

THEOREM 3.4. Let U C R™ and V c R" be open. Then C*(U, V) is
densein Co(U, V), 0<r<oc.

ProOF. Cg(U, V) is open in Cg(U, R"), so we need only to prove the
theorem for ¥V =R".

Let f € C'(U,R"). For a neighborhood basis of f in Cg(U,R"), we
may choose the following sets

N(f,K,s):{g:U-»R",C'map[llg—fl],’,(_<£i,VieA},

where K = {K,|i € A} is alocally finite family of compact sets covering U,
e ={gli € A} is a family of numbers. We must show that with the fixed
f, K and ¢,

C®(U,RYNNK, f,e) #D.
Let {A,]i € A} be a partition of unity of class C * on U such that
Supp(4,) is compact and K; C Supp(4;) .

Given a family {o;|i € A} of positive numbers, there exist C* maps
g : U, — R such that

g = 1, x, < o

Define g: U — R by g(x) =3 ,4,(x)g,{x). Then g is of class C™
evaluate ||Dkg(x) ——Dkf(x)ll we notcice thatif A: U - R and ¢: U - R
are C* functions and if we define a map ¥ by w(x) = A(x)p(x), then
D*y(x) is a linear function of D’A(x) and Dp(x), p,g=0,1,... ,k,
which does not depend on x, 4, or ¢. Hence for some constant 4, we
have

10" (Ap) ()l <4, [max IIDPA(X)I!- max lIDq (N)I-
Write
A =max{4,, s A,
and for each i in A set

A ={jeAK,NK,#D}.
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Then A, is a finite set, say A; has m, elements. Setting
i = max{ ”lj”r,Kilj € Ai } B
B,‘ = max{aj[j EAi},

we obtain the following inequalities for x € K;, 0 <k <r:

1D g(x) - D f0)ll = || 3 DM (4,8, — A,)(x)

JeA,
k
< Y1048, - D)
JEA,
S m,'A.u,'ﬁi-

Evidently we may choose a; so that

mApB; <g;.
With such a choice of a; we have

lg—fl, <&
foreach i in A;. O
From the above theorem it is not difficult to derive the following approxi-
mation

THEOREM 3.5. let M and N be C° manifolds, 1 < s < co. Then
C’(M, N) isdensein Cg(M,N), 0<r<s.

§3. Characteristic classes

This section is based on Wu [C23]. We discuss characteristic classes as a
preparation for the further developement of the text (see Milnor and Stasheff
[AS] for details).

A.Cell divisions of Grassmann manifolds. Let R be n+ m-dimensional
Euclidean space. Let R denote the set of m-dimensional subspaces of

m+n

n,m
R™" and let R, . denote the set of m-dimensional oriented subspaces of
the same. A sxmllar definition holds for C, m when we take C instead of
R for scalars.

DEeFINITION 3.2. Wecall R, f{" > and C,  Grassmann manifolds.

We topologize these sets as follows. We will do only but the rest
are similar.

Let V, ., ,, be the Stiefel manifold of orthonormal m-frames in R".

It is well known that

n,m?

Viem,m = O(n+ m)/O(n).

n+
We have a surjection
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which sends an element {p, ,...,9,,} of V,,, , tothesubspace Hoys---»

p,}} of R"™"™ spanned by {p,...,p,}. Wegive R,
topology of V, by m. Then it is easy to see that

» the quotient

+m,m
R, ,, ~O(n+m)/O(n) x O'(m),
where O'(m) is a subgroup of O(n+ m) of the form
. 0 0
o=119 ! € O(n—m)| 4 € O(m)

0 A

DeFINITION 3.3. For natural numbers m and »n, a map
w:{1,2,...,m} —{0,1,2, ..., n},
which is monotone increasing in weak sense,
0<o(l)<w(2) < - <wm),

is called an (m, n; w)-function or a Schubert function of type (m, n). The
set of (m, n; w)-functions is denoted by Q(m, n).

DEFINITION 3.4. Define the dimension d(w) of an element @ in Q(m, n)
by

m
d(w) =Y w(i).
i=1
Special attention should be paid to the following notation for Schubert

functions. We often write @ = (w(1), ®(2), ..., w(m)) for an element ©
in Q(m, n). We also write

w, =(0,0,...,0,1,..., 1), 0< k <m,
k
@, =(0,0,...,0,k), 0<k<n,
@ e =(0,...,0,2,....2), 0<2k<m,
2k
@y 5 =1(0,...,0,2k,2k), 0<2k<n.

Henceforth, we put w(0) =0, w(m+ 1) =n for convenience.
DEFINITION 3.5. Let w € Q(m, n). We say that the number [ is a jump
point if w(i) <w(i+1).
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Given an element @ of Q(m, n) we define the following new functions:

w(i)=(w(1),...,w(i—1),w(i)—1,w(i+l),...,w(m)),
(here i — 1 is a jump point of w),
o = (@), ..., 0i-1), 0@+ 1, 0(i+1),..., o@m),

(here i is a jump point of w),
w'=n-wm),n-om-1),..., n—om-i+1),...,n-w(l)),
thatis, 0"(i)=n—-om—-i+1). ~
Now we are ready to do cell division of the Grassmann manifold R, .
Let R® be the subspace of R*™™ = {(x,, ..., X,,,,)|x; € R},

n+m)
k
R ={xk«r-l =T Xm =0}
DEFINITION 3.6. For an element w of Q(n, m), set
U,={XeR,  |dmXnR*"™)>ii=1,2,...,m}
We say that Uw is the Schubert variety of w.
The interior U, of Uw is a d(w)-cell. For w € Q(n, m) set
{il@)}={o)+1,0(2)+2,..., w(m) +m},

that is, i(w) = w(i)+i. Put

X, = Heiw» 20> -+ €t} (1
Here {{---}} is the subspace of R"*" spanned by {---}. Further set
G}={1,...,00),01)+2,..., 0(l)+ m, 0(2) + 1, ©(2) + 3,
c,om+m+l, o, n+m},

that is,
{jw}={1,2,...,m+n}—{i(®)} (in this order).
Then X, is given by the equation
xj{w) =0, j=1,...,n

+
We denote by X, the space X, oriented with the basis ordered as in (1)

and by X, the X with the opposite orientation.
+ = .
Let N, be the set of all elements of R, , whose normal projections to

+ - > .
X, are nondegenerate and orientation preserving. The definition of N 1s
similar. Then we have d(w)-dimensional open cells

+ +

v,=N,nU,,

@

-l

Ww=N,0T,.
Further, we have
+ = —
(U, uu,) =17,
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+ -
Without orientation we can characterize N, or N, by

m
x;=2§ﬁx;, j=1,...,n,

j=j((0), i= Z((U), (2)

and we have
£;=0, Jj>ol), (3)

+ —
. for subsets of N, contained in U, . The above fact follows from (2) and
3).

. -
THEOREM 3.6 (Pontrjagin). The set {U,, U, |w € Q(n, m)} givesa cell
division of l’in’m. O

We denote this cell division by I?(x) .

Just as avove we obtain a cell division of R, by letting N, be the set
of all elements of R, whose normal projection to X is nondegenerate
and setting

U,=N,n U,;
we see that U, is an open d(w)-cell.

TuEOREM 3.6’ (Pontrjagin). The set {U,|w € Q(n, m)} gives a cell
division for R, .

We denote this cell division K(x) .

Henceforth, for simplicity we only discuss R, ., the case for C, being
similar. The case ﬁn is slightly more complicated with signs (for detail,

see Wu [C23]).

m

PROPOSITION 3.3. The coboundary 6U,, of the cell U, is given by

0+i 1
an = an,i(l + (‘l)w( yrrem )Uw(i) ’

where the sum runs through all i with w(i) € Q(n, m) and n, , is +1 or
—1 depending on w and i.

Now for @w with U, = 0 we denote by {w} the cohomology class of
K(x) represented by U, .
If 6U, = 0(2) we denote the mod 2 cohomology class represented by U,

{w},-

B. Characteristic classes. Here we define characteristic classes of vector
bundles and of C* manifolds. We shall first define characteristic classes of
Grassmann manifolds R”,m and Rn,m.

.
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DEFINITION 3.7. We call
w* = {0}, e H'R

n,m?
—k _ k kg5
W' ={o},eH (R, ,.Z,) or €¢H R, . 7)),
the k th Stiefel-Whitney class and the k th dual Stiefel-Whitney class respec-
tively. R

We call X" ={w}cH"(R, ,,Z) or H"(R, ,,Z,) the Euler-Poincaré
class. The cohomology classes

4k Ak 4k =
P¥={wy 4}eH" (R, ,,Z) or €eH (R, .Z),
P = (o, 4 eH R, ,.2) or ceH*®R ,7)

are called the 4k-th Pontrjagin class and 4k-th dual Pontrjagin class respec-
tively. Further C¥ = {o]'} € H*(C, , ,Z) is called the ith Chern class.

NoTEe. The above definitions agreé with their usual definitions such as
given in Milnor and Stasheff [A5], except Pontrjagin classes are off by two
components. For instance the Stiefel-Whitney classes defined here satisfy the
axioms for the Stiefel Whitney classes in the book of Milnor and Stasheff
and so they must be the same by the uniqueness axiom. The same goes for
our definition of Chern classes, and so our Pontrjagin classes agree essentially
with Milnor’s Pontrjagin classes.

Now we are ready to define characteristic classes of vector bundles. Before
doing so we need the following

z,) or €H'R, ,.Z,),

n,m? n,m?

PROPOSITION 3.4. Let K be a k-dimensional locally finite complex, and
let P = |K| be its polyhedron. Recall the natural map defined in Chapter 1,

n n,

i, iR, . — Bo,y = imO(n +m)/O(m) x o'(n),
n

which induces the map (i), : [P, R, .1 — [P, Byl If kK < n, the
map (i,), is a bijection.

Proo¥. This follows from the fact that the Stiefel manifold O(n+1)/0(n)
is homeomorphic to the n-sphere S”. O

COROLLARY 3.1. Let K be a locally finite k-complex, and let P = |K|
be its polyhedron. If k < n, there is a one-to-one correspondence between
equivalence classes of m-vector bundles & over P and [P, R, 1.

The above correspondence is given as follows. Recalling that R, , con-
sists of m dimensional subspaces of R™"™ , we define E, ,, by

E, »={(X,u)]X €R

and define p : E, , — R, by p(X,u) = X. We now have an m-
vector bundle which we will denote by y, . We then assign to each {f} €

[P, Rn,m] the equivalence class of f~ Yuim-

ue X}cR, xR,

n,m?’ n,m
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Let P = |K| where K is a locally finite k-complex, and let ¢ be an
m-dimensional vector bundle over P.

DEFINITION 3.8. By Corollary 3.1 the bundle & is induced by a map f :
P—R, for a sufficiently large n, Le., &~ f*yn,m. Put

Wk = FwWk e H P, 1), W@ =W eH (P, Ly,
X"@) = X" e P, L), PYO=rP cH P, D).
We call Wk(é) the kth Stiefel Whitney class, Wk(é) the dual kth Stiefel-
Whitney class, X™ (&) the Euler-Poincaré class and P4k(é) the 4kth Pontr-
jagin class of &. They are characteristic classes of the bundle £.

It is easy to see that these definitions do not depend on the choice of n.
If we consider for example the natural embedding

in,n+l :Rn,m - Rn+l,m’
. m
we have (i, ,.)" {w} }, ={@},-

We next define characteristic classes of C*° manifolds.

DEFINITION 3.9. Let M be an m-dimensional C® manifold. By a char-
acteristic class of M we mean a characteristic class of the tangent bun-
dle (M) of M:

=k —k
wh) = whn), WM =W (M),
k
X" (M) = X" (z(M)), P¥ (M) = P¥(z ().
These characteristic classes have the following properties.

PROPOSITION 3.5. Let K be a locally finite k-complex, and let P = K.
Let & and n be vector bundles over P .
1. If E ~ 1, then

wEE =Wy, W@ =W ),
P¥@E =P*m), X © =X
2. If ¢ is the trivial vector bundle, then
wie)=0, i>0,
P¥@E)=0, k>0,
X()=0, dime > 0.
3. For an m-bundle &, we have
wig =0, i>m,
P¥@E =0, 4k>m.

4. For an m-vector bundle &, define the total Stiefel-Whitney class W(&)
by
WE) =1+W' @+ +WE eH (P, Zy).

N ——
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Then
wWien =WQeEWm),
where & ® n is the Whitney sum of & and n. This is called the Whitney
duality theorem.
5. If a k-frame field exists for £, that is, & admits k linearly independent
cross sections at every point, then

Wm_k“(f) _ Wm—k+2(f) I Wm(f) - 0.

The proofs of 1-3 are immediate from the definitions. We omit the proofs
of 4 and 5. See, for example, Milnor and Stasheff [AS].

Property 5 represents a geometric significance of the Stiefel-Whitney class.
We may think of characteristic classes as algebraic expressions for the geo-
metric properties of C™ manifolds.

§4. Immersions and characteristic classes

In this section we give a necessary condition for the immersibility of an
m-dimensional C®° manifold M™ in Euclidean (m + k)-space R™* in
terms of characteristic classes.

THEOREM 3.7. If we can immerse an m-dimensional C* manifold M™
. m+k
in R™™", then we have

WM™y =0, i>k,
PYM™y =0, 2j>k.
PROOE. Suppose that M™ is immersed in R™* . Let f: M — BO(m)

denote the classifying map for the tangent bundle t(M™) of M™. Here
BO(m) is the classifying space for the orthogonal group O(m):

BO(m) = lim O(m + n)/O(m) x O(n),
(cf. §5, Chapter I). Consider R,  ,
sional subspaces in R™ . We may think of R, as

the Grassmann manifold of m-dimen-

R, ,, = O(m + k)/O(m) x O(k).
Let 1, be the natural map from R, , to BO(m). Let g: M™ - R,
be the map which assigns to each point x of M™ the tangent space T,(M")

to M™ at x. Then we get the following homotopy commutative diagram
(cf. Proposition 3.4):
M™ L. BO(m)
4 \ / U
Rk,m
and we have

Wi(Mm) = f{@:n}z, P4j(Mm) = f{a’g},zj}o’
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. . . m m
(see the previous section concerning {w;"},, {@,; 5;}o)- But for R, , we
have

_m .
{@;'}, =0, i>k,
_—.m _ .
{ij,Zj}O_'O’ 2j > k.

Hence, the theorem follows. 0O

COROLLARY 3.2. Let RP" be the n-dimensional real projective space. We
. . -2 .
cannot immerse RP" in RZ"72 if n=2".

ProoF. Suppose we immersed RP” in R*"2. Then by Theorem 3.7
W' (RP") =0, i > n—2. But we know that the Stiefel Whitney classes of
RP" are as follows:

H'(RP", Z,) = Z,[x], degx=1, x"
W(RP") = (1 +x)""
(see for example Milnor and Stasheff [A5]). So

1=0’

WERPY =(1+x)"".

Since n =2° we get W" ' (RP") # 0 which is a contradiction. O
The corollary is due to R. Thom and was incorporated in his thesis of 1952
(cf. [C18]). . N .
On the other hand, H. Whitney whose research in singularities of C
maps dates back to 1930, obtained the following

THEOREM 3.8. Let n‘z 2. Then we can immerse an n-dimensional C%
manifold M" in R,

The proof will be given in the next section. .

Combined with Corollary 3.2, Whitney’s theorem offers the best result in
a general setting.

§5. The Smale-Hirsch theorem and its applications

In this section we state the Smale-Hirsch theorem and its applications.
This is the most fundamental result in the theory of immersions. The proof
will be given in §9.

DEFINITION 3.10. Let X, Y be topological spaces and let f: X — Y be
a continuous map satisfying the following:

(i) f induces a one-to-one correspondence between the arcwise-
connected components of X and the arcwise-connected components of Y.
(ii) For each x, of X, the induced homomorphism

foim(X, xy) = (Y, S(x)

is an isomorphism for all i > 1.
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We then say that f is a weak homotopy equivalence—to be abbreviated
by w.h.e.

Let M and V be C*™ manifolds of dimension n and p respectively.
Let Imm(M, N) be the space of immersions of M in V with the C™
topology. Let Mon(T (M), T(V)) be the space of monomorphisms of the
tangent bundle T(M) of M into the tangent bundle T(V) of V with
the compact-open topology. Here by a monomorphism of vector bundles we
mean a bundle map whose restriction to each fiber 7, (M) is a vector space
monomorphism (see §2, Chapter 1).

THEOREM 3.9. Let M and V be as above with n < p. Then the map

d:Imm(M, V) — Mon(T (M), T(V)),
f—df
sendinga C™ map [ to its differential df is a weak homotopy equivalence.

This theorem which we will refer as the Smale-Hirsch Theorem was first
proved by S. Smale in 1959 for the case M = S", V = R”, and later in
1960 by M. Hirsch for the general case. Starting with Smale’s work, Hirsch
proved the theorem by induction on each simplex over each skeleton using
C™ triangulations (to be explained in the next section) of C™ manifolds.

We save the proof for §9. For now we discuss some applications and
corollaries of the theorem.

DEFINITION 3.11. Let M and ¥ be C* manifolds of dimensions n and
p,n<p.Let f: M — V bean immersion. By a normal r-frame field of f
or f(M) we mean a cross section of the bundle associated with the normal
bundle of f(M) in V', whose fiber is the Stiefel manifold V, , .

THEOREM 3.10. Let n<p.

(i) If we can immerse M" in R”*" with a normal r-frame field, then we
can immerse M" in R”.

(ii) Conversely, if we can immerse M" in R® then we can immerse M"

in R”*" with a normal r-frame field.

PrOOF. (ii) is clear.
(i) Suppose that f: M" — R’*" is an immersion of M" in R”*" which
admits a normal r-frame bundle. Then we have
TR ~TM" @ [V,
where vP*"™" is the normal bundle of f(M") in R’*". But the existence of
a normal r-frame field implies that
T ATV
where s}( »y denotes the r-dimensional trivial vector bundle over f(M). On
the other hand, since n < p the natural map
[M", BO(p)] — [M", BO(p + )]
is a bijection. Hence, we have
TM" e & ~¢)

M-
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Thus, Mon(T(M), T(R")) is not empty. Hence, the Smale-Hirsch theorem
implies that Imm(M”" , R?) is not empty. O

From these theorems we obtain various solid examples.

DEFINITION 3.12. We say that M" is parallelizable if its tangent bundle
T(M") is trivial.

CoROLLARY 3.3. If M" is parallelizable, it can be immersed in R™!.

This is obvious from Theorem 3.10.

COROLLARY 3.4. We can immerse a three dimensional closed manifold in
Euclidean four space R*.

ProoF. Let M’ be a closed three manifold. By Whitney’s embedding
theorem, we can imbed M 3in R®. Itis enough to show that this embedding
has a normal two-frame field. But the obstructions to the existence of a
normal two-frame field lie in H'(M 3, n,_ (V3 ,)). The first obstruction is

the dual Stiefel-Whitney class WZ(M 3), which is known to be zero (see
Remark 1). The second obstruction is also zero since =,(V; ,) = O (see
Remark 2). Thus, there is a normal two-frame field. O

REMARK 1. The two dimensional dual Stiefel Whitney class _WZ(M 3) of
a three dimensional closed manifold is zero; we can show this as follows.
Imbed M* in R® with the normal bundle » . Then

(M 3) ov~ e
By the Whitney duality theorem we have W(r(M3)) W) = W(s(’) =1. But
W) =W (M.
Therefore,
=2, . 3 2.3 L a 302
W (M)=W (M)+ (W (M)).
But (W')? = W? holds for any three-manifold. Hence, we get WZ(M H=0.
REMARK 2. V, , ~ S0(3) ~ RP’ implies 7,(V; ,) = 0.
REMARK 3. A three-dimensional open manifold can be immersed in r* (l).
This fact follows easily from a theorem of Phillips which we shall state in
§8.

DEeFINITION 3.13. A manifold M is open if each of its connected compo-
nent is noncompact.

COROLLARY 3.5. Let M" be an n-dimensional closed manifold. Assume
that n = 1(4). Then we can immerse M" in R*""2.

(l)J. H. C. Whitehead, The immersion of an open 3-manifold in Euclidean 3-space, Proc.
London Math Soc., 11(1960), 81-90.
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. 2 . .
Proof. Immerse M”" in R™ and consider constructing a normal two-

frame field. The first obstruction to do so is W' (M"), which turns out
to be zero by Remark 1. We also have =, _ (¥, ,) =0 for n = 1(4) (see
Remark below). Hence, the second obstruction is also zero, and so we can
construct a normal two-frame field. O

REMARK. We see this by considering the homotopy exact sequence of the
bundle p : O(n)/O(n—-2) - O(n)/O(n - 1) = st

Now let us prove the theorem of H. Whitney which was stated in the
previous section.

PrROOF OF THEOREM 3.8. (1) The case where M” is open. By the Smale-
Hirsch theorem it is enough to show that Mon(T(M"), T(R*"™')) £ @ . To
do this we only need to show that the associated bundle of 7T(M"), whose
fiber is V, admits a cross section (see the remark below). Now the

2n—-1,n
obstructions to do so sit in

H'(M", T\ (Vanet )
But n,_,(V,,_, ,) =0, i <n. Hence, we obtain the desired cross section.

(2) The case where M" is compact and n is odd. As before we can
immerse M" in R*. Then the normal Stiefel-Whitney class W' (M") of
M" is zero. Hence, by Theorem 3.10 we can immerse M" in R*""'.

(3) The case where M" is compact and 7 is even. In this case also we
can immerse M" in R*" so that the normal Stiefel-Whitney class is zero
(see Theorem 8.2, Hirsch [C12]). Thus, we can immerse M” in R*"™'. 0O

REMARK. O(n) actson V, , = as follows. For g = (a;;) € O(n) and
X, s X} eV 0o

g {X,, ... X}={Y,,.... Y},

n

n
lezaleJ’ l=1,...,n.
=1

ADDENDUM. A. Phillips in his paper “Turning a sphere inside out” turns
S? inside outin R? through smooth deformations allowing self-intersections
(see A. Phillips [C14]).

This fact was also made into a movie(z). The article of Phillips together
with the movie give a concrete demonstration for one particular case of the
statement “immersions of S° in R’ are all regularly homotopic”. The quo-
tation follows from the Smale-Hirsch theorem and the equalities

7,(¥; ) = 1,(SO(3)) = 0.

§6. C" triangulations of a C" manifold

In this section we discuss C’ triangulations of C’” manifolds, a tool with
which Hirsch generalized Smale’s theorem on immersions of the sphere.

(Z)N. L. Max, Turning a sphere inside out, International Film Bureau Inc., Chicago.
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DEFINITION 3.14. Let K be a locally finite simplicial complex, and let |K|
be the polyhedron of K. Let X be a topological space. We say that (K, f)
is a triangulation of X if f:|K|— X is a homeomorphism.

Let (K, f), (K,, f,) be triangulations of X . We say that (K, f}) isa
subdivision of (K, f) if the map

e f K — K]
sends each simplex of |K,| linearly into a simplex of |K|. We may also say
that the triangulated space (X ; K,, f,) is a subdivision of the triangulated
space (X; K, f).

DEeFINITION 3.15. If simplicial complexes K, and K, are isomorphic, we
say that the triangulated spaces (X,; K|, f}) and (X,; K,, f,) are isomor-
phic, and write (X,; K|, f;) = (X,; K,, f;) (cf. Spanier(3)).

We say (X;; K,, f;) and (X,; K;, f,) are combinatorially equivalent
when each has a subdivision isomorphic to a subdivision of the other.

DEFINITION 3.16. A triangulated space (X ; K, f) is called a combinato-
rial n-cell if it is combinatorially equivalent to an n-simplex.

DEFINITION 3.17. A triangulated space (X; K, f) is an n-dimensional
combinatorial manifold if the star at each vertex of K is a combinatorial
n-cell.

We are now ready to define C’ triangulations.

DEFINITION 3.18. Let M" be an n-dimensional C’ manifold and let
(K, f) be a triangulation of M". We say that (K, f) isa C" triangu-
lation of M" if for each n-simplex ¢, flo : 0 — M" isa C" map (this
means that with K considered as a simplicial complex in Euclidian space
RY of a high enough dimension we can extend f toa C" map in some
neighborhood U(s) of o in R" ), and the degree of f at each point of K
isn.If (K, f)isa C" triangulation of M" = (M", ), the C’ structure
9 is compatible with the tringulation (K, f).

In 1940 J. H. C. Whitehead proved the following(4)

THEOREM 3.11. Assume 1 < r < oo. Then:

(i) A closed C" manifold admits a C" triangulation (K, f).
(i) If (K, f) isa C triangulation of a C" manifold M", the triangu-
lated space (M"; K, f) is a combinatorial n-manifold.
(iii) Let (K,, f,) and (K,, /) be triangulations of a C’" manifold M" .
Then the triangulated manifolds (M"; K,, f,) and (M"; K,, f,) are com-
binatorially equivalent.

We omit the proof(j).

(3)E. H. Spanier, digebraic topology, MacGraw-Hill, New York, 1966.
()1 H. C. Whitehead, On C'-complexes, Ann. of Math. 41 (1940), 809-824.

(S)Sec for instance Munkres, Elementary differential topology, Ann. of Math. Stud., Prince-
ton Univ. Press, revised ed., Princeton, NI, 1966.

o
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§7. Gromov’s theorem

The thesis of Gromov,(*) 1969, established a generalization encompassing
the Smale-Hirsch theorem and the Phillips submersion theorem. The idea of
the proof is essentially similar to the method Poénaru exploited in his proof of
the Smale-Hirsch theorem(6), that is, the idea of handiebody decompositions.

In this section we first state Gromov’s theorem. In §8, we shall cite some
corollaries of Gromov’s theorem: the Phillips theorem, the Gromov-Phillips
theorem, and others. In §9 we prove Gromov’s theorem.

Let M be a C*® manifold. We define a local diffeomorphism of M to
be a diffeomorphism f:U — V, where U and V are open subsets of M.
We may compose two local diffeormorphisms f: U — W and g . W —>T
only when f(U) ¢ W. The set Z (M) of local diffeormophisms of M is
a pseudogroup, which we shall call the pseudogroup of local diffeomorphisms
of M (see Chapter IV for the definition of pseudogroups).

DEFINITION 3.19. Let (E, p, M) be a smooth fiber bundle. We say that a
map @ : Z(M) — D(E) is an extension of (M) to Z(E) if it satisfies:

(1) For f€ D (M), f:U — V, the map O(f) p Uy - p V) s
a diffeomorphism and the following diagram commutes:

p~' ) 2 p7 )

d Js

—— V

(2) P(1y) =1, -
(3) D(fog)=P(f)P(g), whenever fog is defined.

ExampLE 1. For (E,p, M)=(T(M),p, M), @ : (M) — D(T(M))
defined by @(f) = df is an extension.

ExampLE 2. For a smooth fiber bundle (E, p, M), let (E",p", M) be
the r-jet bundle of germs of local cross sections of E. Define amap @' :
DM) — DE) by S (NILE) = Tjy(fogef), feDM), [:
U—-V,and x € U. Here f is the induced bundle map by f:

L) 2L oy ) Loy —L— ')

. o, , !
Jg yp lp g4
\ \
~U BEERE % v Ly
Then @’ is an extension.
(*)Editor’s note. For Gromov's thesis see M. L. Gromov, Smaduuskoe ormodrazhelukh

seoekut v ukoioodrayukh. Uzv. Akad. Nauk serukh Mam, T. 33. H-4, 1969, pp. 707-734.
(6)V. Poénaru, Regular homotopy and isotopy, mimeographed, Harvard Univ., 1964.
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DerFiNiTION 3.20. Let (E, p, M) be a smooth fiber bundle. For an open
set U in M let Diff °(U) be the set of diffeomorphisms of U onto itself.
We give Diff (U) the compact-open topology. An extension @ of Z'(M)
to Z(E) is continuous if for an arbitrary open set U of X the map

@ : Diff *(U) — Diff ©(p~ " (U))

is continuous with respect to the compact-open topology.

In each of the above examples we have a continuous extension. In what
follows, all our extensions will be continuous. Let (E, p, M) be a smooth
fiber bundle, and denote by I'(p) (or I°(E) ) the set of C™ cross sections
in (E,p, M). Let E_ be asubbundle of the r-jet bundle (E", p, M) and
write p, = p'|E, . Denote by I',,(p) (or T (E)) the set of elements f
of I'(p) with the property that J'f(x) € E, for each x € M. We give
I'(p) the C* topology and T, (p) the relative topology. Then the map

I T2(p) —T°%))

is continuous, where Fo(p;) (also written FO(E;)) is the set of C° cross
sections of (E, , p, , M) with the compact-open topolgy.

THEOREM 3.12 (GRoMOV’s THEOREM). Let (E, p, M) be a smooth fiber
bundle and let (E", p", M) be the r-jet bundle of germs of C™ cross sections
of E. Assume

(a) M is open,
(b) E, is an open subset of E', and
(c) E,, is invariant under the action of & (M) by the extension o
that is, for f € (M) we have ®"(f)(E.) C E,,.
Then the map
r 00 0, r
J T, () —T"(p,)
is a weak homotopy equivalence.

REMARK. This theorem does not work in general if M is a closed mani-
fold.

For example, consider M = S' and E = T(Sl) =S'xR'. Then E' =
J'(S',R"), and the fiber is J'(1,1) = M(1, 1;R) = R. Let E, be the
associated bundle of E', whose fiber is GL(1,R); E(; is open in F ! and
is invariant under the action of & (Sl) .

Now [°(E) = Imm(S", R') = @ but T%(E,) # 0.

§8. Submersions: The Phillips theorem

This section features the Phillips theorem. Let M and V be C* man-
ifolds of dimensions n and p respectively. Denote by Sub{M, V) the
subspace of C°°(M, V) consisting of all submersions of M in V. Denote
by Epi(T(M), T(V)) the set of epimorphisms of the tangent bundle T(M)
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of M in the tangent bundle T(V) with the compact open topology. Here
¢ : T(M) - T(V) is an epimorphism if ¢ is a homomorphism of vector
bundles, which is surjective on each fiber 7, (M) (see §2, Chapter II). If
f: M — V is a submersion, its differential df : T(M) — T(V) of f isan
epimorphism.

THEOREM 3.13 (PHILLIPS). Let M be an open manifold. Then the map
d:Sub(M,V)— Epi(T(M), T(V})),
fr—df
is a weak homotopy equivalence.

PROOF. Let n and p be the respective dimensions of M and V' with
n>p. Set E=MxV, n=p . Then we get the one-jet bundle E'=
JY (M, V) whose fiberis J'(n, p)xV = M(p, n; R)x V. Denote by X the
subspace of all matrices in M(p, n; R) each having rank less than or equal
to p— 1. Then X is closed in M(p, n; R). Put

Q=M(p,n;R)—X.

The subbundle E(l) of E! corresponding to Q x V is invariant under the
action of F (M) by the extension @' : F(M) — F(E') definedby @'(f) =
df . Hence by Gromov’s theorem,

J U TR(E) — T(E)

is a weak homotopy equivalence. A careful reflection on this fact yields
natural isomorphisms ¢, ¥ making the following diagram commute:

reE) - rE)

¢ l: =3 lw
Sub(M, V) —4— Epi(T(M), T(V)).
The theorem is obvious for n<p. O
§9. Proof of the Smale-Hirsch theorem

The proof given here is due to Phillips [C14]. Let M be an n-dimensional
C* manifold and let V be a p-dimensional C™ manifold. Assume n < p.
To an immersion f : M — V, there corresponds a normal bundie v. The
normal bundles v, and v, corresponding to immersions f;, M-V
are equivalent if f, and f, are regularly homotopic. We consider a fixed
p — n dimensional vector bundle v over M, and let Imm,_ (A, N) be the
space of immersions whose normal bundles are equivalent to v . Denote by
Mon, (T(M), T(N)) the set of monomorphisms ¢ of T(M) in T(V) such
that @*(T(V)|$(M)/¢{T(M))) is equivalent to v. Here ¢ is induced by
¢.
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Letting E(v) be the total space of v we obtain the following commutative
diagram

Sub(E(v), V) —2— Epi(T(M) @ v, T(V))

| |

Imm, (M, V) —%— Mon,(T(M), T(V))

where the vertical maps are naturally induced. The first line is a weak homo-
topy equivalence by the Phillips theorem. Each vertical line is a homotopy
equivalence. Thus, the second line is also a homotopy equivalence.

Since the above statement is valid for every v, we have proved the Smale-
Hirsch theorem. 0O

In Chapter IV we shall give another proof of the Smale-Hirsch theorem
without using the Phillips theorem.

§10. The Gromov-Phillips theorem

Now we examine the Gromov-Phillips theorem which was independently
proved by Gromov and Phillips at about the same time, and which later
attracted much attention when used by Haefliger in the proof of his classifi-
cation theorem for foliations of open manifolds.

Let M be an m-dimensional and N an n-dimensional C™ manifolds.
Consider a k-plane field on N, that is, a k-dimensional subbundle # of the
tangent bundle T(N) of N. Let v be the quotient bundle T(N)/#n, and
let # be the natural projection

n:T(N)—v.

Denote by Epi(T(M), v) the space of the epimorphisms between 7(M)
and v with the compact-open topology, and denote by Tr(M, ) the space
(with C ' topology) of all C ! maps f: M — N each nodf belonging to
Epi(T(M), v). Then we have the following

THEOREM 3.14 (GROMOV AND PHILLIPS). Let M be an open manifold.
Then the map

nodf :Tr(M, n) — Epi(T(M), v),
fromodf

is a weak homotopy equivalence.

PROOF. Set E =M x N and = = p, (the projection onto the first factor).
Then we have E' = J l(M , N). Let E(; be the subbundie of one-jets which
are transverse to the given k-plane field n. Then E(; is an open subbundle
invariant under the action of (M) by @', where @' : (M) —» D (E")
was defined in Example 2 in §4. The FO(Eé) corresponds to Epi(T(M), v).

§11. HANDLEBODY DECOMPOSITIONS OF C * MANIFOLDS 95

This is shown in the diagram below

d

C=(M, N) > Hom (T(M), T(N))
TeM, ) =% Epi(T(M), v)

wip HI 1 IR Wit
T~(E) L >TYED
2 ‘1

Q
(E) J TOED.

Hence, the theorem follows from Gromov’s theorem. O

§11. Handlebody decompositions of C* manifolds

In preparation for proving Gromov’s theorem, this section offers a brief
discussion of handlebody decompositions of C* manifolds (for further de-
tails, see Smale {C17a]).

Let M be an n-dimensional compact C™ manifold, and let Q be a
connected component of the boundary dM of M . Consider embeddings

f:9D;x D] —Q, i=1,....k, 0<s<n,

whose images are mutually disjoint. Introduce an n-dimensional compact
C® manifold V = x(M, Q; f,, ..., fi.5 5) as follows: the underlying man-

ifold of V is
k
M"u (UDf x D".'_s) /~,

i=1
x, )~ f(x,y), (x,meaDixD]™, flx,y)eQcM",

which has the usual smooth structure everywhere outside D] x D . By

“smoothing out” the “corners” along 9D} x D} ° we will have the C ° man-
ifold V (Figure 3.2).

We often write V = x(M; f;, ..., S5 5) in case OM" = Q. The embed-
ded D} x D!™* in V are called s-handles.

DEeFINITION 3.21. Let V = x(M, Q; f;, -+, f3s). We say that o =
(M, Qs fy, ..., fiss) isthe presentation of V . A manifold with a presenta-
tion (D"; fiseos fi3§) iscalleda handlebody. We obtain the manifold V =
x(M, Q; f,,..., s s) by attaching s-handles D} x D{™°, ..., D, x D™’
to M.

More generally, we say that V = x(M, Q5 f,, ..., f;55) isa handlebody

if M is a handlebody.

THEOREM 3.15. Let W be a compact manifold and let f: W — R' bea
C™ function such that the only singularities in [ - (—¢, &) are nondegenerate
of index 2 lying in f~Y0). Further assume that NNOW = & and that
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P Drs

o

[\

FIGURE 3.2

f _l(—e) is connected. Then f _1[—00, ¢] has a presentation of the form

—1 —_
(f Mmoo, —eds £ (=8)3 frs e Sis A).
OUTLINE OF THE PROOF. Let B, ..., B, be the singularities of f in

f _1(0) , and choose neighborhoods V; of 8,, i=1,..., k , which are mu-
tually disjoint. Then in V;, f can be written

A n
f==3 %+ 3 %,
i=1 i=i+1

with respect to the local coordinates x = (x;, ..., x,), x|l < é, 0 >0.
Denote by E, the (x, ..., X;)-plane and by E, the (x; ,,..., x,)-plane
in V;. Then for a sufficiently small &, > 0, E, ﬂf“l[—s, , &} and D are
diffeomorphic (Figure 3.3). There exists a diffeomorphism

6:T =Tnf '[-¢,e]— D xD"",

HT N (~e))=aD" x D",

where T is some small enough tubular neighborhood of E, .

Now comparing F o0, —g,] and -0, g,] we see -0, —¢,]
with a A-handle attatched to it for each / agrees with f - [-oc, ,]. Hence,
we have proven the theorem. O

DEFINITION 3.22. Let M" be an n-dimensional manifold and let f :
M" R bea C* function. We say that f is a nice function if every critical
point # of f is nondegenerate and the index of £ is equal to f(B).

THEOREM 3.16. Let M" be an n-dimensional C™ manifold. Then M"
admits a nice function.

We omit the proof.
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FIGURE 3.3

From Theorems 3.15 and 3.16 we see that an n-dimensional C *° mani-
fold without boundary is obtained by attaching handles to the n-dimensional
disk D" one by one.

§12. Proof of Gromov’s Theorem

In this section, following Haefliger [B3], we prove Gromov’s theorem(7).
The basic tool is handlebody decompositions of C*° manifolds.

Let M be an m-dimensional C™ manifold. If M is open, there exists a
unique Morse function f: M — [0, co) such that the index of each critical
point of f is less than m (see Chapter I). We arrange the critical points of
f as follows (Figure 3.4):

a,, ay, .-
c,=fla), i=1,2,...
¢;» C,» - .- are monotone increasing.

(7)See also V. Poénaru, Homotopy theory and differentiable singularities, Lecture Notes in
Mathematics, vol. 197, Springer-Verlag, Berlin and New York, 1970.
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Rl
M
FIGURE 3.4
There exist local coordinates (x;, ..., x,,) about each a; (there is a local
chart (U, ¢,) with a, € U, ¢ (x) = (x|, ..., x,) for x € U, and
9. (a;) =0) in which f has the form
2 2,2 2
f=ci=Xx] ==X+ X X,

where k is the index of a; (in other words, for each x in ¢ _(U, ), f o(p;l(x)
has the above form). We often adopt the above expression. Notice that
k < m (see §4, Chapter I).

For each 7, put M, = 4o, c;+¢]l), where 0 < ¢ < ¢, —c and
€. is sufficiently small. Take a neighborhood U(ag;) c U, of g, and for a

i
sufficiently small §; > 0 set

d.
W, = {xeU(ai)lq)a(x):(x‘,...,xm),x12+---+x,f<7’}.

Put M, = M;— W, In Figure 3.5 we identify U(a;) with ¢ (U(a;)) C R".
Now M,”, is a manifold with boundary with an edge diffeomorphic to
§7' x §™%7!  We obtain M, by attaching a collarlike neighborhood
to M, _, along its boundary oM, | = f_l(ci_I +¢,_,) (Figure 3.5); by a
collarlike neighborhood we mean a subset of dM,_, x [0, 1] of the form

{(x,nlt<gx)},

for some C™ function g;:8M,_, — (0, 1]. Hence M, is diffeomorphic to

the union of M , and A, , where A4, is diffeomorphic to DX x D™ ! and

M., nA, is diffeomorphic to a collarlike neighborhood B of aDF x pm*
(cf. Figure 3.5).

We say that M, is obtained by attaching a k-handle to M, , (see Fig-
ures 3.5 and 3.6).

Now M is the union of the following expanding sequence of compact
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FIGURE 3.6

-manifolds with boundary:

M cC--CM_,cM_ cM,CcM C--. (0)

The three propositions below will yield Gromov’s theorem.

In what follows we write (E(M), p, M) for (E,p, M), (E'(M),p", M)
for (E", p’, M), and a similar adaptation applies for (E_ (M), p", M) . For
AcC M, (E(4),p, A) is the restriction of (E(M), p, M) to A. Similarly
E’(A) is the restriction of E'(M) to 4.

PROPOSITION 3.6. Gromov’s theorem is true if M is the m-dimensional
disk D™ ; that is
. 00 O, yr
J T (E(D™)) — T (E,(D™)
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is a weak homotopy equivalence.

DEFINITION 3.23. Let E and B be topological spaces, and let p: E — B
be a continuous map of E onto B. We say that (E, p, B) is a fibration
or a fiber space if for any finite polyhedron P and continuous maps F :
Px[0,11 - B and f: P — E with po f(x) = F(x), there exists a
continuous map F : P x [0, 1] = E satisfying

(i) poF(x,t)=F(x,1),
(i) F(x,0) = f(x).
p I
oA
F
Pl
“ F
PxI —— B
We also say that (E, p, B) has the covering homotopy property (CHP).
Evidently a fiber bundle is a fibration (cf. Steenrod [AT7}).

PROPOSITION 3.7. Suppose that a C* manifold M~ is diffeomorphic to
a C™ manifold M with a collarlike neighborhood attached along its bound-
ary 8 M . Then the restriction maps
P  To (E(M™)) — T (E(M)),
r - 0, ~r
p:TU(EL(M7) — T (E,(M))
are both homotopy equivalences and define fibrations.

PROPOSITION 3.8. Let k <m. Set A=D"xD"* B= D'l‘/2 x D"K,

where
k

/2
Then the restriction maps
(@) p,:T5(E(A) — T3 (E(B)),
(i) p:TEL(A) — T(EL(B))

are fibrations.

DY ={xeD|1)2< x| <1}

Let (E,p, B) and (E', p’, B') be fibrations. A continuous map g : £ —
E' mapping each fiber of E into some fiber of E' is called a fiber map. In
this case, the corresponding map g : B — B' between the base spaces is
continuous and the following diagram commutes.

E -2 L F
’| >
B —% . B
LeMMa 3.1. Consider fibrations (E,p, B) and (E',p', B'), a fiber map
g E — E', and the corresponding map g : B — B' of base spaces. Assume

§
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that g is a weak homotopy equivalence. Then the following statements are
true.

(a) If g is a weak homotopy equivalence, then the restriction of g to each

fiber

gx:Fx——»F;( xeB,

x)?

is a weak homotopy equivavence. Here F_= p”l(x), F;(x) = p'_l(g(x)).
(b) Conversely, if for each x € B the map g : F, — Fg’,(x) is a weak
homotopy equivalence, then g too is a weak homotopy equivalence.

ProoF. We consider the homotopy exact sequences of fibrations:
.. P, £3
— n(F) = m(E) = n(B) — n,_(F) =5 m,_(E) — -
S Y
— i (F) = n(E") L= n(B) — m_(F') = n,_[(E') — -

This diagram is commutative (Steenrod {A7]). Hence, the proposition
follows from the “five-lemma”. O

THE FIVE-LEMMA. Suppose two exact sequences of abelian groups give the
following commutative diagram:

4, A4, 4, 4, Ay
m n| m| n| n|
Bl BZ B3 B4 BS

If h, hy, h,, and hg are isomorphism, then so is h,.

We leave the proof to the reader.

ProOF oF GROMOV’s THEOREM. The proof is by induction. Assume first
that the theorem is true for a compact manifold M which consists of handles
of indices less than k ; that is, Proposition 3.6 is the starting point of our
induction.

Step 1. Let dimM = m, and construct a manifold M " by attaching a
handle of index k& to M, k < m. Assuming that the theorem holds for
M , we shall prove that it is also true for M' . As before we let M~ be
the manifold obtained from M by attaching a collarlike neighborhood along
OM , that is,

M=MUA, A7DkxDm_k,

M NA=B8, B7D’,‘/2xp’""‘c1)"xu’"‘k.
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Consider the following commutative diagram:

I(E(4)) —L— TE(4)

p,,,l Pl (1)

I(E(B)) —— T°(E(B))

By Proposition 3.8, p, and p are fibrations. By Propositions 3.6 and 3.7,
the maps J' : I, (E(4)) — I%(E’ (4)) and J': T (E(B)) — I°(EX(B))
are weak homotopy equivalences, for we may think of B as the union of
a O-handle and a (k — 1)-handle. Thus by Proposition 3.1, J is a weak
homotopy equivalence on each fiber.

Look at the following commutative diagram.

roEM)) —L— TEMY)

p,,,l pl \ (2)
IoEMT)) —L— TELM )

By restriction to A and B we geta morphism from diagram (2) to dia-
gram (1).

T ~EM)) — TYUE, M)
PN Jrip NP
pwl © T, =(EM j))——i——> I'Y%E,/M™) 3)

ey, 1

A))
\l"w“’(E(B)) L I TrE,(B)).

In (2) p, and p are fibrations (cf. Proposition 3.7), so we have the hro-
motopy exact sequences of fibrations. But by the induction hypothesis J :
(EMY)) — I'O(E;(M 7)) is a weak homotopy equivalence. On the other
hand the restriction of J : T°(E(M")) — I°(E. (M) to each fiber can be
thought of via (3) as the restriction of the map J i TO(E(A4)) — I“O(EZf’(A))
in (1) to each fiber. The latter was a weak homotopy equivalence. Hence,
it follows from Lemma 3.1 that J' : T(E(M')) — IY(EL (M) is a weak
homotopy equivalence.

Step 2. Since M is an open manifold, it has in general infinitely many
handles. Decompose M into the sequence (0),

Mlc...CMi_ICM:_lCMicM:C--~, (0)
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which gives the following sequences of restriction maps
TO(E(M,)) « - T (E(M))) «— T3 (E(M))) — TJ(E(M])) « -+
T (EL(M,)) « - = TU(EL(M] ) — T (EL(M)) = T(EL(M])) -+
whose projective limits are
M5 (E(M,)) = T (E(M))

s

. r 0 r
limI(E,,(M,)) = T'(E(,(M).
Hence, the theorem follows from Step 1 and the following lemma. 0O

LEMMA 3.2. We consider the following commutative diagram for projective
systems of topological spaces:

Ce—— Ay —— A — A 4,
ji+ll j.j' ji—ll ljl
+—— B, — B, — B, B,

where each vertical map j, : A, — B; is a fibration. If each j; is a weak
homotopy equivalence, then the projective limit

j=lim j;: lim 4, — lim B,
is also a weak homotopy equivalence.

We leave the proof to the reader (cf. Phillips {C 14]).

It remains to prove the above three propositions.

PrOOF OF PROPOSITION 3.6. The fiber bundle E(D™) is the product bun-
dle D™ x F because D™ is contractible; therefore, we identify cross sections
in this bundle with maps from D™ to F and the fiber of E"(D™) over
0 e D™ with

: L™, Fy=J J (D", F).
yeF
Evidently the restriction map

p i T*(E(D™) — T*(E,,(0))

over the center 0 of D™ is a weak homotopy equivalence. Hence, it is

enough to show that
poj :TX(ED™) — T(EL0)
is a weak homotopy equivalence.
To show that
.r 00 0
(pof)),  m(Ty (E(D™)) — m(T"(E,(0)))
is surjective, we think of the fiber F of E as a closed submanifold of Eu-

clidean space RY (Whitney’s embedding theorem). Let = : W — F be a
retraction, where W is a tubular neighborhood of F in RY . Let

f:8 — T™(EL(0)) c J; (D™, F)c J;(D", R")
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be a continuous map. We represent each jet of Jg(D™, F) by a polynomial
of degree r and obtain a continuous map

F:SxDp™ —R",

where for each s € s' ,themap F;: D™ — R" defined by F(x)= F(s, x)
is C" differentiable, j'(F,) is continuous in s, and J(EN0) = f(s).

Since F is continuous, there exists a neighborhood V' (0) of 0 € D™ such
that F(S' x V(0)) C W . Set F, =m0 F|V(0).

Since E. (D™) is an open subbundle, there exists a neighborhood U(0)
of 0 in V(0) such that F;\U(O) € I‘O(E;(U(O))). Let & : D™ — U(0)
be an embedding which is the identity map in some neighborhood of 0.
Define a map g: S — [°(EL(D™)) by g(s) = h™' o F/oh. Then we have
j(g)0) = f. Here % is the induced map of k. Thus, we have shown that
(poj), is a surjection.

The proof of injectivity is similar. O

The proof of Theorem 3.7 is not very hard and is left to the reader. Hint:
One can extend a cross section of M to a neighborhood U of M in M.
There exists an isotopy {f,} of the identity map 1~ of M ~ satisfying the
following:

@) fo=1a>
f;: M~ — U is an embedding;

(ii) there exists a neighborhood V' of M in M such that |
fix)=x, xevV, tel.
ProoF OF ProposITION 3.8. In the following we simply write FO(M ) for

I" (E(M)) and T(M) for T°(E,,(M)). Set

Dt ={xeRY|a<|x|<b},

la,b
Dk = {x eR|Ix| <a},
Sf— ={x€Rk|1x|=a}.

RO D

Further, set 4 =D\ x D", B=D , xD"™".

The fiber bundle E(R™) is the product bundle R™ x F (however, the
action of the pseudogroup D(R™) of local diffeomorphisms of R” is not
necessarily trivial). Cross sections in this bundle are identified with maps
from R™ to F.

Let P be a polyhedron, and let U be a subspace of R" x P. We say that
amap f:U — F is admissible if

(a) f isofclass C" on UN(R™ x{p}),Vp€ P,
(b) Jj'(f) is continuous, and
(¢) J"(NWU) C E,(U).
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PROOF OF (ii). To show that I'(4) — I'(B) isa fibration, follow the argu-
ment that a fiber bundle has the covering homotopy property, CHP (Defini-
tion 3.23).

PrOOF OF (i). The statement that I'o(4) — I'y(B) is a fibration means the
following. Given a polyhedron P and continuous maps

f1PxT—TyDf y x D™ 5y,
k m—k
gQ:Px(O)—-—»l"O(szD ),
f(x,0)=poglx,0),

there exists a continuous map

m—k

g: P xI— Ty(DsxD"™),

which extends g, with pog = [}

Px0 —— ;’FO(D’Z‘ x D™ %)

g .7 l »
P P
- f k m—k
PxI —— T(Dp 5 % D"
Equivalently we can say that: given two admissible maps
i k —k
fiDy yx D" x Px[0,1] — F,
gy: Di x D" x Px {0} — F,
which agree on their common domains, there exists an admissible map
g: D x D" xPx[0, 1] —F

which extends both f and g,.

We shall construct g in three stages.

(a) We first extend f just a bit; that is, we construct an admissible
map [ as follows.

fJ:D{;l]xDm_kxPx[O,l]-—»F, a<l,
fJIDﬁ,zlxDm_k x Px[0,1]=f,
jJ|Dk><Dm_k><Px 0} =g,
2 0

(b) We can find an increasing sequence O=t, <t <<t = 1 such
that for each n, 0 < n < s, there is an admissible map u, defined in some
neighborhood of D:‘a‘Z] x D" Fx Pxt,,t,,,] satisfying

G) m,(x,y,p,0) = fx,y,p, 1), t =1, 0r X€ U(Df‘,,z]), where
U (D:‘1 ,2]) is some neighborhood of Dﬁ -
Qi) #,(6,¥, P> )=y (x, 9.0, 1,), X€UST),
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Ry DAxD**x PXI
P=1x|

I1=10,1] 1

FIGURE 3.7

where U (S:_’) is some neighborhood of S:.

If we do not require admissibility, such a map y, can be uniformly con-
structed for each ¢. Since admissibility is an open condition, u, is also
admissible for a sufficiently small change in ¢. Using the compactness of
[0, 1], we may choose f; to construct the desued U, - (See Figure 3.7. )

Using the above u,, we can extend g to D x D" F x P x [0,4] as
follows.

Ko(x,y,D,1), xeD[a,zl,

k
g&lx,y,p, 0), x¢D[a,2]-

(c) Now we shall extend g, to g, inductively. Assume that we have
constructed the admissible map

g(x,y,p,t)={

g, :DExD"FxPx[0,1,] —F,
g IDE x D" x P x [0, 1] = g,
gn|U(D[ﬂ XDV xPx0, ) =f, a<p<l,

where U(D ﬂ Re .-) is some neighborhood of D[p 2 x D" x P x [0, ¢ ]

Suppose x, and f are defined on some nelghborhood Uc D x D™
of Dy, z x {0}, and suppose UN (D[1 2 % D" Ry =
Since k < m (this is becase M is an open mamfold see §4, Chapter I),
m —k > 0, there is an isotopy 4, of D2 x D" 0<t< t,, such that
(1) 4, is the identity outside U, in some neighborhoods of .S 5 % 0 and
S, x0 respectively, and for all ¢, ¢ <1¢,/2;
(2) A,n(Sy x 0) =S, x0 for y satisfying B <y<1.

We first construct g,., in a sufficiently small neighborhood of the core

C = [(Df x 0)U (D 5,y x D" ) x Px[1,1,,]
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D~*

$,%0

4

FIGURE 3.8

as follows.
In region I (|lxl| < #, 0<<1,), &, =
InregionII (B <|x]|<2,0<1<t,),

8y

8 (X, ¥, 0,0 = ()7 f(4(x.¥),p, 0.

Inregion I (y < ||x|| <2, ¢, <t <, ),

+ y—1
g,,+1(x,y,P,t)=(A,n) .un(A[n(xay)’p:t)’

where 4, and 4, represent the actions of @(4,) and ®(4, ) on the fiber F;
d(4,) and (D(A ) are extensions of the diffeomorphisms A and A
In region IV (x|l < 7, 1, <t <t,),
1

g,,+1(x’y’P,t)zg,,ﬂ(x,}’ap,t,,)-

In a small enough neighborhood V of the core C, the g, , agree in the
intersection of their domains. (See Figure 3.8.) Let &, be an isotopy of

D’Z‘ x D™ ¥ such that
(i) hy=1,
(ii) A, =1on U(D[1 2]><D )
(iii) A (D xD"*yc Vv, t>1,/2, where U(D[l 2 ¥) denotes some
neighborhood of D[l 2% D™ % Thenitis enough to define the desired g,
by

(X, y,p,0)= (ﬁ,)_lg,m(h,(x, y),p.t),
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where A, is the action of the extension @ (k) of the diffeomorphism A, on
the fiber F. O

§13. Further applications of Gromov’s theorem

(A) Symplectic structures. Let M be an 2n-dimensional C™ manifold.
DEFINITION 3.24. We say that a closed differential two-form @ on M 1s
a symplectic structure when " #0. Here o= wA--ANo.

n
A symplectic structure on M defines naturally an almost complex struc-
ture. In the following we shall explain this concept.
Let Sp(2n, R) bean 2n-dimensional real symplectic group. Then we have

o(2n)NSp(2n, R) = Sp(2n, R)NGL(#n, C)
= GL(n, C)nO(2n) = U(n).

DEeFINITION 3.25. Let M 2" be an 2n-dimensional C™ manifold. An
almost symplectic structure (or an almost Hamiltonian structure) on M
is a reduction of the structural group of the tangent bundle (M 2") to
Sp(2n, R).

DEFINITION 3.26. We say that a nondegenarate skew-symmetric bilinear
two-form [, ]: R” xR* — R on R*" is a linear symplectic structure and
that [ , ) is its skew scalar product.

Here [ , ] is nondegenerate means that if [€,n}1 =0, Vn € R, then
E=0.

EXAMPLE. Set R = {(p, .. » P> dy» -+ > d)}> and define @ by

2
w =p, Ag +-+D, Ny

Then w® is a nondegenerate skew symmetric two-form; so the scalar product

[, ] definedby [, 7] = w* (&, n) is skew. The two-form w? is thezstandard
symplectic structure on R™ , which henceforth we will assume on R™" unless

otherwise stated. on - o
DEFINITION 3.27. A linear transformation S : R™ — R is symplectic if
the skew scalar product is invariant under S; that is

(S@), Sl =1, 11, V&, neR™.

The set of all symplectic transformations on R form a group, the 2n
dimensional real symplectic group. ' .
If M?" has a symplectic structure @, then for each point x of M
the tangent space 1, (M 2") enjoys a symplectic structure, and the structural
group for the tangent bundle 7(M M of M 2 ceduces to Sp(2n, R); that is,

M?* has an almost symplectic structure.

On the other hand, since the above symplectic structure @ on M?*" defines
a symplectic structure on each tangent space T, (M 2") ,themap I: T, (M) —
T (M) defined on each Tx(Mz") by
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£, n=Ue, n,

where ( , ) is the inner product of T, (M), satisfies [ 2= 1. Hence, T (M)
has a complex structure, which implies that we can reduce the structural group
for the tangent bundle t(M 2") of M*" to GL(n, C). This also follows from
the fact that U(n) and Sp(2n, R) have the same homotopy type.

EXAMPLE. Let V be an n-dimensional C* manifold. The cotangent
bundle T*(V) = Hom(T(V), R) of V isa 2n-dimensional manifold which
admits a symplectic structure. Taking local coordinates (x, ..., x,) ateach
point x in V', we use the local coordinates (X, ..., X,,dx, ..., dx,) at
each point of T*(V), and setting (X,,..., X, dX,-...dX,) = (Dp>--->Pp»
q,---»>4,) we define

w:dpAdq:dpl/\dql+-~-+dpn/\a'qn.

THEOREM 3.17. Let M be an 2n-dimensional open manifold. Then M
has a symplectic structure if and only if M has an almost complex structure.

ProoF. Put E = T"(M) = Hom(T (M), R). Let Eclo be the subbundie of
E! consisting of one-jets of one-forms o with (da)" # 0. Then E ; is an
open subbundle invariant under the natural action of Z(M). Now Fj(E )
is the space of one-forms with (da)" # 0. We may regard FD(E(L) as the
space of two-forms g with " #0.

On the other hand, we saw earlier that the set of two-forms B with g" £0
corresponds to an almost complex structure on M. Hence, the theorem
follows from Gromov’s theorem. O

Note. This proposition is not valid if M is a closed manifold. One can
define an almost complex structure on $% which has no symplectic structures.

(B) Contact structures. Let M be a (2n+ 1)-dimensional C °° manifold.
DEFINITION 3.28. A one-form @ on M is a contact form if

w A (dw)" #0.
A one-form a is a contact structure on M if o A (de)” is an volume
element.
A reduction of the structural group GL(2n + 1, R) of the tangent bun-
dle T(M) of M to U(n) is an almost contact structure.
In the manner of (A) we can show the following

THEOREM 3.18. Let M be a (2n + 1)-dimensional open manifold. A nec-
essary and sufficient condition for M to have a contact structure is that M
admit an almost contact structure.

NoTE. Martinet showed that the theorem is true for three-dimensional
closed manifolds(s).

(s)J . Martinet, Formes de contact sur variétés de dimension 3, Lecture Notes in Math., vol.
209, Springer-Verlag, Berlin and New York, 1971, 142-163.
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The theorem leads to a natural consideration: Is the same statement valid
for almost complex structures and complex’ structures on open manifolds?
We deal with this question in Chapter VL

We discuss applications of the Gromov-Phillips theorem in foliation theory
in Chapter IV.

ADDENDUM. In an historical perspective, Gromov’s theorem and its ap-
plications are based on the covering homotopy method of Smale [17].

CHAPTER 1V

The Gromov Convex Integration Theory

This chapter is based on Gromov’s work [C5]. We discuss a natural gener-
alization of the Smale-Hirsch theory, which we shall refer to as the Gromov
convex integration theory. We feel that there are various applications of this
theory; in Chapter VI we will discuss one of them.

§1. Fundamental theorem

Let X and B be n and g dimensional C™ manifolds. Let p: X =V

be a smooth fiber bundle. Let

pr ) (I
be the fiber bundle formed by the r-jets of germs of smooth cross sections in
(X, p, V). We say that a subset Q of X isa dzﬂerentzal relation of order
r or a differential equation of order r. If the r-jet J(f ) V — X ofa
smooth cross section f:V — X of (X, p, V) satisfies JHIV)CQ, we
say that f is a solution of the differential relation Q.

If Q is an open set we are considering a family of partial differential
inequalities of order r, and if Q is a closed set we will be thinking of a
family of partial differential equations of order r.

We denote the set of cross sections in (X, p, V') by Sect(X) ( ). We give
Sect(X) the relative topology of C™(V, X). We write Sect(X") for the set
of cross sections of (X", p", V), with the relative topology of c? v, xN.

Then the map
J" s Sect(X) — Sect(X"),

r
f=J 0
assigning to each section its r-jet becomes continuous.
Set

Sect(X", Q) = { o € Sect(X)|o(V) C Q},
Sect(X, Q) = (J) ' (Sect(X", Q).
Then Sect(X, ) is the solution space of Q.

(‘) We wrote T(X) in Chapter III; however, we will use this for something else in Chapter
V. Thus, this new notation.

il
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Conv(Q)

FIGURE 4.1

DEFINITION 4.1. We say that the w.h.e-principle holds for a differential
relation © if the map J' : Sect(X, Q) — Sect(X ", Q) is a weak homotopy
equivalence, in which case

(i) J" induces a bijection between arcwise connected components,

(i) J' induces an isomorphism of homotopy groups

(JN), : m(Sect(X , Q)) = 7, (Sect(X", Q)), foreach i, i>1.

The fundamental theorem of Gromov gives a sufficient condition for the
relation © to satisfy the w.h.e.-principle. For the moment we shall establish
some notation for stating this fundamental theorem.

DEFINITION 4.2. Let L be an affine space and Q C L. We say that Q
envelopes an element x of L if there exists a neighborhood U(x) of x,
which is contained in the convex hull Conv(Q) of Q.

Here the convex hull of Q is the smallest convex set containing Q (Figure
4.1).

If L is a Banach space and Q C , the closure of the convex hull of Q
is the smallest closed convex set containing Q.

DErFINITION 4.3. Q is ample if each arcwise-connected component of @
envelopes every point of L.

We agree that the empty set is ample.

Exampie. (i) Let L =R", R*' = {(x,...,x,) € R'|x, = 0}.
Then Q defined by Q =R" —R"" is not ample.
(i) Let L =R", R"? = {(x,,...,x,) € Ri|x,_, = x, =0}. Let

Q =R" —R"7?; then Q is ample.
Let 4, be an affine transformation group of R”. A fiber bundle whose
fiber is R" with the structural group A4, is called an affine bundie.
DEFINITION 4.4. Let (Z, p, K) be an affine bundle. Suppose that the
structual group A4, is reducible to A, _ g % A g Further, we decompose the
fiber Z, at each point k € K into

Z, =R xRl = |J {}} xR}
ieRry !
Henceforth we shall write R} , = {4} x RY. A reduction of 4 to 4, , x4,

together with a decomposition of each fiber as above is called a direction of
dimension q of (Z,p, K).
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DEFINITION 4.5. Let (Z, p, K) be an affine bundle. By an affine embed-
ding o : R - Z we mean a linear embedding of R? in the corresponding
fiber. Further, suppose (Z , p, K) has a direction of dimension g. We then
say that an affine embedding o : R? — Z is parallel to the given direction if
o embeds R? in one of the R} ;.

DEerFINITION 4.6. Let (Z, p,K) be an affine bundle with an ¢ dimen-
sional direction and Q c Z, K; C K. We say that Q is ample over K if
for any affine embedding « : R - Z, CZ, kek,, parallel to the given
direction, o '(Q) c R? is ample.

Let (X, p, V) be a smooth fiber bundle whose base space and fiber are
n- and g-dimensional C* manifolds. Let (X ! R pl , V) be the fiber bundle
of one-jets of germs of sections of the bundle (X, p, V), andlet (X ' po, X)
be the natural fiber bundle associated with (X',p', V). The bundle
(X ! R p0 , X) is affine. We have the following commutative diagram:

DEFINITION 4.7. Let ¥}, be a codimension one submanifold of V. The
submanifold ¥, defines a g-dimensional direction as follows. Consider the
fiber (po)—l(x) c X! overa point x € X, p(x) € V, c V. We say Jl(ﬁ))
and Jl(fl) € (PO)'I(x) are equivalent if fj|V; and f|V; define the same
one-jet at p(x). This equivalence relation decomposes the fiber (po)‘l(x)
into equivalences classes, which define a g-dimensional direction called a
principal direction. We say that an affine embedding o : R? — X parallel to
a principal direction is principal.

DEFINITION 4.8. Let (X, p, V) be a smooth fiber bundle as above. Let
(U,@) beachartof V, ¢ : U = R", p(x) = (4, ..., 4,). Set V; =
Une™! {u; =0}. Then V] is a codimension one submanifold which defines a
g dimensional principal direction called a coordinate direction for the natural
affine bundle over p_lU, i=1,2,...,n.

Now we are ready to state the fundamental

THEOREM 4.1 (Gromov’s fundamental theorem). Let (X, p, V) bea fiber
bundle, and let Q c X' be an open set. Assume that for each x in X there
exist a coordinate neighborhood N of x and a chart (U, ¢) of p(x) € V
such that

(i) p(N)cCU,
(ii) Q is ample in every coordinate direction for (U, 9).

Then the w.h.e.-principle holds for .
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We postpone the proof of the theorem and present some simple conse-
quences. Notice that we do not assume V to be open, whereas Gromov’s
theorem in Chapter 3 required that ¥ be open; however, the condition on
Q was weaker in Chapter 3 than it is in the fundamental theorem in this
section. .

COROLLARY 4.1. Let (X, p, V) be a smooth fiber bundle, and let Q be
an open subset of X ' If for an arbitrary principal affine embedding o : R? —
X', o Q) is ample in R?, then the w.h.e.-principle holds for Q.

This corollary is immediate from Gromov’s fundamental theorem.

COROLLARY 4.2. Let (X,p,V) be a smooth fiber bundle and let ¥ be a
closed subset of X v Suppose for an arbitrary principal affine embedding o :
RY = X' either o~ '(Z) CRY coincides with R, or it is nowhere dense and
its compliment is connected. Then the w.h.e.-principle holds for Q = .

Corollary 4.2 follows immediately from Corollary 4.1.

DEFINITION 4.9. Let (X Y p1 , V) be the bundle of one-jets of germs of
smooth sections of (X, p, V). The fiber of this bundle is J'(n,q) x Y.
Consider a closed subset £x Y of J l(n , @) invariant under L'(n, q), and
let J; be the associated bundle of (X ! p1 , V) whose fiberis Zx Y. Such
a closed subset Jy; of X ! is called a typical singularity.

COROLLARY 4.3. Let (X, p, V) bea smooth fiber bundle in which the base
space V and the fiber are C*® manifolds of dimensions n and q, n < 4.
Let T be a typical singularity of codimension greater than or equal to two in
X' Set Q =X°. Then the w.h.e.-principle holds for Q.

This corollary follows from Corollary 4.2.

§2. Proofs of the Smale-Hirsch theorem and Feit’s thorem

In this section we prove the Smale-Hirsch theorem and the Feit theorem.
A. The Smale-Hirsch theorem.

THEOREM 4.2. (the Smale-Hirsch theorem). Let V and W be C= man-
ifolds of dimensions n and q respectively, n < q. Then the map assigning
to each immersion of V in W its differential

d : Imm(V , W) — Mon(T(V), T(W)),
fdf
is a weak homotopy equivalence.
PROOF. Set X = V x W and consideramap p: X — V which is the pro-

jection of X onto its first component. The bundle (X, p, V) is smooth and
there exist natural isomorphisms ¢ and y making the following diagram
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commute:
CoW, W) —2— Hom(T(V), T(W))

(Vlz v/lz
1
Sect(X) AN Sect(X l)
The bundle (X Y pl , V) is equal to the following jet bundle.
xX'=J'w,wy—J'(n,a

p'] =

X=VxW
l lpl
V=V

where J'(n,q) = M(q,n;R) = {(q, n)-matrices over R} . Further, the
structural group of (Jl(V, WY, n,VxW)is L'n,q) = LYg) x LYn) =
GL(g,R) x GL(n,R). Let M, denote the set of (g, n)-matrices whose
ranks are n. Then M, is an open subset of M(q, n; R), which is invariant -

under the action of L'(n, g). Hence, we may consider the subbundle whose
fiber is M, as follows:
Q — M,

!

VxW

Now Q is an open subset of X ! and by definition we obtain a subcommu-
tative diagram of the above commutative diagram:

Imm(V , W) —— Mon(T(V), T(W))

le le
Sect(X , Q) AN Sect(X', Q).

Letting 2=Q°Cc X ! we see that T satisfies the hypothesis of Corollary 4.2,
because if £, =My C M(q, n; R), then

codim):0=q—n+122.
Hence the theorem follows from Corollary 4.3. O

B. The Theorem of Feit. An analogous proof using Gromov’s fundamen-
tal theorem works for the theorem of Feit.

Let ¥ and W be C™ manifolds whose respective dimensions are n and
g. Let f:V — W bean C*™ map. For the natural number k and for
each point x of V,if the rank of f at x is greater than or equal to 0, we
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ay that f is a k-mersion. Let k-mer(V , W) denote the topological space
vhose underlying set is the set of all k-mersions of V' in W, with the relative
opology of C®(V, W). Let k-mor(T(V), T(W)) be the space of homo-
norphisms of T(V) in T(W), whose restrictions to each fiber are of rank
reater than or equal to k , with the relative topology of Hom(T'(V'), T(W))
the compact-open topology).

THEOREM 4.3 (the theorem of Feit). Let k < q. Then the map
d: k-mer(V, W) — k-mor(T(V), T(W)),
fedf
s a weak homotopy equivalence.
REMARK. We cannot prove Phillips’s theorem of Chapter 3 in this way.
§3. Convex hulls in Banach spaces

In this section we discuss convex hulls in certain Banach spaces as a
yreparatory step in proving Gromov’s fundamental theorem.

1. Let P={p,,...,p,} beasetof nonnegative real numbers satisfying

n
dop=1
i=1
‘or P and a number €, 0 < € < 1, define a weakly monotone increasing
riecewise-linear function
0=06:10,11— [0, 1]
s follows. Let

! ’ 7
O<t, <li<t,<t,<---<t, <1, <1,
!
t,—t,=(1-€)p,,
’ 1 ’ €
tlztz_tlz"'ztm_ti:l_tn:m-

Chen 6 takes on the value i/(n + 1) in the interval {z;, t:.] and 6(0) =0,
J(1) = 1 (see Figure 4.2).

2. Let B be a Banach space with the norm | ||. Let T’ be the set of
sontinuous curves y :[0, 1] — B, and define 1 :I"— B by

1
1) =/0 y(ydt,  yeT.

For results on the integration and differentiation of functions with values
n a Banach space consult, for example, Riess & Sz.-Nagy (2) .

In the following, Conn(Q, b) denotes the arcwise connected component
n a topological space @, which contains b € Q.

(2) F. Riess & B. Sz.-Nagy, Lecons d’analyse fonctionnelle, Akadémai Kiado, 1952.
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LA
a+l

" & £
/ A+l nt1
[ KN I ! 1
0] i b il b t, 1 t
]
(3
=+1
FIGURE 4.2

3. Let B> Q, andlet y;: [0,1] — Q be a continuous map. We
consider some fixed @ for now. Define I'y C I" as follows:

Iy ={7:10, 1] - Q| (i) y continuous, (ii) 7(0) = 7,(0), y(1) = »,(1),
(iii) y =~ y,, rel{0, 1}, in Q}.
LeEMMA 4.1. The set I(T)) C B has the following properties:
(a) I(T'y) is convex.
(b) I(T,) is contained in the closure of the convex hull of Conn(Q, 7,(0)).
(c) I(Ly) is dense in the closure of the convex hull of Conn(Q, y,(0)).
(d) If Q isopenin B, sois I{I'y).

PRrOOF OF (a). It is enough to show that for y,, 7, €Iy, p >0, ¢ > 0,
p+4q =1, there exists a y € I', such that

i 1 |
/Oy(t)dtzp/o y‘(t)dt+q/0 7,(6)de.

Setting u = pt we get
1 /] u
/ pyl(t)dtzf 7 (—) du.
0 0 14

Setting v =gt + 1 — g we get

1 1
v+g-1
[ qyz(t)dtz/ 72 (———q—> dv.
0 P q
Hence, we get

t 1 p ; | O
p_/ n(0) dt+q/ Vz(t)dt:/ 7 (") dt+/ s <£.L_> di.
’ 0 0 p p q

On the other hand, we have

p t p/2 2t P 2t
— dt:/ (—) dt+f (2——) dt.
/0 ¢ (17> 0 h 14 p/2y‘ 14
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%7,(1)

FIGURE 4.3

This is because, setting 2s/p = 2 — 2t/p, we have

4 2 0 (25 iz (25
/p/z yl (2 P) p/2 yl p ( ) 0 1 p

and setting w/p = 2t/p we get

/2 2t P w) 1 1 7 (w)
- = —f = = — —\)dw.
/o y‘<p)dt /()y‘(p)Zdw 2l "'\»

Hence, we have

1 1
p/o yl(t)dt+q/0 7,(t)dt

P2 (2t p 22t Uoft4q—1
= = dt+/ (-——) dt+/ y (—————) dt.
/o yl(!’) p/zyl p p 2 q

Therefore, if we set

7,(2t/p), 0<r<p/2,
YO =1 n(2-2t/p), p/2<t<p,
P(t+g-1)/q), p<t<l,
we get y ~ 7,, rel{0, 1} in Q (Figure 4.3), and because y € I'y, the proof
of (a) is complete.
PRrOOF OF (b). Approximate the integral by a Riemann sum (cf. the proof
of Proposition 4.2).
PrOOF OF (c). The point b=3Y";_,p;b; of Conv(Conn(Q,7,(0))), Yp=
1, b, € Conn(Q, 70(0)) can be estimated as follows. Choose y € I'j such

that )
i .
=0D. =1,...,n,
y(n+l) bis !

and put ye.:yoef, P={p,,....P,}- Then we have

/l y(dt—b (€= 0).
0

The proof of (d) is evident. O
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4. We have the following well-known

LEmMA 4.2. Let B be a Banach space, and let Q, and Q, be convex open
sets in B. If the closures of Q, and Q, agree, then Q, = Q,.

HiNT. This follows from the separability of convex sets in a vector space.
See Riesz & Sz.-Nagy (3) .

The lemma also follows from For an open convex set ( in a Banach
space B, we have (Q)0 =0 (4).

From Lemmas 4.1 and 4.2 we get the following

ProrosITION 4.1. Let B be a Banach space and let Q be an open subset
of B. Then I(T,)) agrees with the convex hull of Conn(Q, 7,(0)).

5. Now we want to present a basic lemma in Gromov’s convex integration
theory.

Let Q be an open subset of [0, 1] x B. For ¢ € [0, 1] we denote by Q,
the set QN ({t} xB); Q,C B.

LEMMa 4.3 (One-dimensional Lemma). Let ¢, :[0, 1] — B be a contin-

uous map whose graph is contained in Q. Let f,:[0,1]1— B bea C ' map
such that
dfo

. d
@ Z2(0)= 950, Zo1) = (1), and

(ii) for t,€(0, 1], Conn(Qto, 9,(t,)) envelopes %j%(to).

Then for an arbitrary € > O there exists a C "“map f:10,1]1 - B
satisfying the following:

(@) f(0)=£0), Sf(1)=Lf1),

df . dfy, . df,.. _df,
T =520, S =2,

®) If = fll e

(¢) The graph of %J; 1[0, 11— B is contained in Q.

(d) There exists a homotopy { vy, :10, 11— B|t € [0, 1]} such that
() ¥y=94, W]zdf/dt’

(B)  w.(0) = py0), w. (1) = gy(1), and
(y) the graph of y, is contained in Q.

Proor. (I) Case Q = [0, 11x @, Q is bounded open in B. Here we
divide [0, 1] uniformly into n + 1 intervals, apply Proposition 4.1 to each
interval [i/(n+ 1), (i + 1)/(n + 1)], and construct a path ¢, : [0, 1] — Q
such that

(3) Riess & Sz,-Nagy, Lecons d’analyse fonctionelle, Akadémai Kiadé, 1952.
(4) H. Eggleston, “Convexity”, Cambridge Univ. Press, London and New York, 1958, Chap-
I

ter
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(n ¢, =@y 1In a,

i i .
(2) (0l(m>—¢0(m) l—O,l,...,n,

3)/ 0, (0)dt = fo(;:ll) fo(n+1> i=0,1,....n.

Sublemma. Let B be a Banach space and let Q be a convex open subset
of B. Let f:I— Q be a continuous map, where I = [0, 1]. Then

/OlfdteQ.

By assumption (ii) we may consider

dfy [ i i+1 i
- [m nT 1} — Conv (C"““ (Q> % (m)))

Hence, by the sublemma we have

w(i5r) -4 ()
:/:‘ dfO(z)dteConv(Conn(Q (”0( :_1)>>

n+1

On the other hand, since (Proposition 4.1)

Conv (Conn (Q, P (F-IF_T))) =I{Ty),

there exists some ¢, € I'y such that

(52 4kr) = [ e

i i+1
n+1’ n+1

Notice that we have taken [
1“0. Now set

} in place of {0, 1] for defining

Sf(t) = £,(0) +/0 9,(0)d6.

Then [ satisfies (a), (c), and (d). We see that f will satisfy (b) for a large
enough 7.
(I1) General case. We estimate Q from inside; that is,

Q= U{i ’“]inch[o,uxB,

Q,CB, Q, is as in (I).

Then by (1) the lemma is true for Q' , and so it is enough to consider Q-Q,
i.e. we take Q' so that 0,10, 1) CQ cB. O
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6. ProPOSITION4.2. Let Q be an open subset of R? , let K be a compact
space, and let F be the space of continuous maps from KtoQ. IfQis
arcwise connected, then the convex hull of F in c’ (K, R agrees with the
space of continuous maps from K to the convex hull Conv(Q) of Q in R?:
Conv(C’(K , Q) = C*(K, Conv(Q)).

PROOE. (i) We show Conv(C’(K, Q)) C C°(K, Conv(Q)). Suppose we
have f e Conv(C°(K, Q). Then f=pfi+qf,, p+qa=1,0<p,q<1,
Sl L€ CO(K, Q). Here we have

fir i K— 0,

f:K-—R,
but for x e K, f(x) = pfl(x)+qf2(x)eConv(Q) SO feC (K, Conv(Q)).
(i1)) To show that c’ (K, Conv(Q)) C Conv(C (K,Q)), let ¢ €

CO(K , Conv(Q)). For the map ¢ : K — Conv(Q) it suffices to construct
a family of maps ¥, : K x [0, 1] — Q such thatas ¢ = 0

1
[ wetie, ar— o,

The argument for this goes as follows. Since K is compact, B = C %K, R%)
is a Banach space and C O(K , Q) is openin B. For the y, as above, define
¢, :10, 11— C"(K, Q) C B by

p.()k)y =y, (k,1), kekK, tel0,1],
and define A_: K — B by

1
,le(k)=/ v.(k.0di, €>0, keK.
0

Then we get

I(p (k) = 2 (k).
Hence, as € — 0 we have A, — ¢ and so I(¢,) — ¢ . Thus, by Lemma 4.1
we have ¢ € I(T) (for some 7). But

¢ € I(T,) = Conv(Conn C*(K , Q), ¢,) € Conv(C*(K , Q).

Hence, CO(K, Conv(Q)) C Conv(CO(K, Q)). and so by Lemma 4.2 we get
C°(K , Conv(Q)) C Conv(CY(K, Q)).

Now let us construct y, . First choose x,, ..., x, € Q such that ¢(K) C
Conv{x,, ..., x,}. Thenusinga partition of unity, we construct continuous
functions p,, ..., p,: K — {0, 1} satisfying:

n n
p,20,  >.p=1, Y plx,=ek), kek
i=1 i=1
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Conv{xy, - xa}

o|

FIGURE 4.4

(visualize the situation with a two-dimensional picture, Figure 4.4).

We then choose a path y : [0, 1] — Q such that y(i/(n + 1)) = x;,
i=1,...,n,and put

203
v =070,

where P(k) = {p,(k),...,p,(k)} and 6 is the function defined in §3.1.
Now by following the proof of Lemma 4.1, (c) we can show that the {y.} is
the desired family . 0

7.  Consider a g-dimensional vector bundie (Z, 7, K). Assume K
to be compact. We write n—l(k) =2Z,. let QCZ be open, and let
¢, : K — Z be a cross section of (Z, 7, K) such that ¢ (K) C Q. Put
Q, =QNZ,. In each fiber Z, we consider the convex hull of the connected
component Conn(Q, , ¢,(k)) of Q, containing @,(k), which we shall de-
note by Qg. Set

Q"= o cz
keK

Fix a closed subset K, of K for the moment, and let T, be the following
space of sections of (Z, z, K):

1"0={¢:K——>Z|no¢= i, ¢1K0=¢01K , o(KYCQ, o~9, rel K, }.

Then we have the following

LEMMA 4.4. The convex hull of T, in the space of sections of (Z,n,K)
agrees with

0
{9: K- Q |nop= L, ¢|Ko=¢o‘Ko}'

PROOF. We show that our set is contained in the convex hull of I'y. Let
¢p:K— Q° be a given section with ¢|K, = ¢|K . Just as in Proposition 4.2
in subsection 6 we start with sections x;: K — Q homotopic to ¢, relative

to K, and continuous maps p;: K — [0, 1], Yrp=1, Y X =9.
Choose a path y(t), ¢ € [0, 1], in the space of cross sections K — Q which
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agree with ¢, on K, with the property y(i/(n + 1)) = x;. Now define
y, K x1— Q by y(k, )=k, 67®)(1)). Then letting € — 0 we get

1
| etk ndt— .
0

The reverse inclusion is obvious. 0O
§4. Proof of the fuandamental theorem

In this section we prove the fundamental theorem of Gromov’s convex
integration theory.

1. Let ¥, be a compact C™ manifold and let V = ¥, x [0, 1]. Let
Y = ¥ xR? > V be the product bundle. Cover ¥ with finitely many charts.
We represent a chart by (#,, ..., u n,tef0, 1].

Fora C' map f:V — R, set
1= max {1sl |
veV
1<i<n—1
where max is the maximum with respect to all v in V', all charts about v,
and i =1,...,n—1. In other words || | differs from the C' norm in
that one disregards 8 f/9t for the former.

n—17’

af

5 ()

2. Main lemma.
LEMMA 4.5. Let Q be an open subset of Y and consider
q
0=u0, ©=0n@xR)CK
Suppose that C* maps fy, 94V — RY satisfy the following:
(i) The graph of ¢, is contained in Q.

d
(ii) 79@ BV = gylaV .

(iii) Conn(Q, , po(v)) C RY envelopes %{9('0).

Then for an arbitrary € > 0 there existsa C U map f:V — R? such

that
(a) flav = flav,
ﬂ (‘)V:éj—r‘l ov, i=1,...,n—-1,
aui aui
af Ay
1 aV—Ft_ ov,
®) If - fll" <e,

(c) the graph of 8 f/01 is contained in Q, and
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(d) @, has a deformation {y, : © € [0, 1]} which satisfies the
following:
of
(a) VI()=¢0’ Wl = Er

(ﬁ) W1|6V = (00|6V, S [0’ 1]5
(7) the graph of w, is contained in Q, T €10, I].

ProoF. There is no loss of generality in assuming that f,(8V) = 0 and
@(0V) =0. (5) Let B be the space of all C' maps g: W — R? such that

) .
g(@v,) =0, ;;5(5"0)=0, i=1,...,n-1
H

Then we may think of C ' maps ¥ — R? as continuous maps [0, 1] — B.
Let
Q= J Qclo,1]x8B,
1€[0.1]
Q={g: V- R?| g continuous, the graph of g € Q N (¥, x {t} x RY)}.
Now the lemma follows from Lemma 4.4 about convex hulls together with
One-dimensional Lemma. 0O

3. Singularities in cubes. Let V' be an n-dimensional C* manifold
andlet p: X — V bea C™ fiber bundle whose fiber is of dimension ¢ .
Let p' : X' = V be the fiber bundle of one-jets of germs of C* sections
in (X,p,V). Let p0 : X! = X be the fiber bundle naturally defined by
pl : X! = V. In this case (Xl . po, X) is an affine bundle making the

following diagram commute.
x'
\
p‘l X
v 7

Now we assume that the base space V' can be written as the product
Vs x V,, where V] is a one-dimensional manifold. Then the fiber bundle
(X ! s po, X) has the direct sum decomposition X - X(; o X 11 , where p, :
X(; — X and p, : X 11 —» X are affine bundles of dimensions g(n—1) and ¢
respectively.

Let m : X s X(; denote the natural projection. Then (X ! , Ty XOI) is
evidently an affine bundle whose fiber is of dimension g.

PROPOSITION 4.3. Let V be the n dimensional cube 1" with coordinates
(uy,...,u,). Let X =V xRT =V be the trivial bundle. Let Q be open in

(5) Actually we should define B = {g : ¥, — RY| gAVy) = fo(@V), 9g/ou,(0Vy) =
9,(8V,) } ; however the proof will remain the same if we assume this.
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X' and ample in each coordinate direction. Let forV—=Xand ¢5:V - Q
be C* sections and assume J'(f,) = ¢, on OI".
Then for any € > 0, there existsa C U section f:V — X which satisfies
the following :
(@) J'(f) and p, agree on dI".
®) IIf = foll <e.
© J'(HMcQ.
(d) There exists a deformation {y |t€[0,1]} of sections in (X L' v)
such that
(@ W=0y. ¥, =J(N)
B) wv.(V)cQ,
() woI" = gyldI",
@) 1’ ow, —fl<e.

ProoFr. We might construct the desired section [ as follows. In the i th
step we consider the / th coordinate of V' =1 " and represent V as the
product V' = ¥;x{0, 1] with coordinates u,, ..., U, U\, ..o Uy U=

t, i =1,...,n. Then for the fiber bundle X = V' x R? — V consider
the decomposition of X - Xé e X 1’ as discussed above. The bundle X —

V is identified with the subbundle of the bundle X ' X(; , whose fibers

intersect g (V) C X ' Wethenlet Q C ¥ xR? correspond to Q under this
identification. By the assumption on Q, the set Q satisfies the hypothesis
of the main lemma .

By the above method we first construct f;, — X, ¢, : V' — Q from the
given f;, ¢,. Next from f;, ¢,,construct f,:V — X, ¢,: V-Q, ...,
and eventually we will come to f,, ¢, . Then we have

||fi—f[_ll|'<ei, i=1,2,...,n
Further ¢, is obtained from ¢, , through a deformation leaving 7, o 9,_,
unchanged (recall =, : X - X(; ). So setting f = f, we have the desired
section. O

4. Restatement of the assumptions of the fundamental theorem.
We may assume

x=Up™'a)),
J

with the following.
(i) There exists a chart (U, ¢) of V such that I} is contained in-U
and ¢(I}) is a cube in RY.
(ii) U is contained in some chart of (X, p, V).

By assumption Q is ample with respect to each coordinate direction of
I;’ in the fiber Y.
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5. Proof of the fandamental theorem. Now the fundamental theorem fol-
lows from Proposition 4.3. We perform cubic subdivisions on the C* man-
ifolds X and V as we do triangulation. We apply Proposition 4.3 to each
cube in each skeleton to obtain the fundamental theorem. See § 6, Chapter 3,
about C™ triangulations.

REMARK. We can do without cubic subdivisions in step 5. This is done by
using the theorem in Gromov-Eliashberg, Removal of singularities of smooth
mappings, Izv. Akad. Nauk SSSR. 35 (1971), 600-627.

CHAPTER V

Foliations of Open Manifolds

As an application of the Gromov-Phillips transversality theorem as dis-
cussed in Chater III we present in this chapter Haefliger’s classification the-
orem for foliations of open manifolds, which brought the limelight back to
the Smale-Hirsch theorem.

We will follow closely Haefliger’s papers [B2, C10].

A detailed discussion of foliations is found in The Topology of Foliations
[A9]. Research in the field of foliations continues to be active at present.

§1. Topological groupoids

In this section we define the classifying space By of a groupoid I.
DEFINITION 5.1. Suppose that a set M is divided into the cosets M,;, i
j=1,2,... and satisfies the following:

i) If aeM; and be M, , ab e M, is defined.

(ii) If ae M,; and b € M , a”'be M, is defined and a(a”'b) =

(iii) If ae M,; and be M,;, ab”' € M, is defined and (ab™"Vb=a.

(iv) For a € M ,be Mk , and ceM, , we have ab(c) = a{(bc).

We then say that M is a groupoid.

DEFINITION 5.2. Suppose that a topological space I' has a groupoid struc-
ture. We say that T is a topological groupoid if the groupoid operations (i),
(ii), and (iii) are continuous.

EXAMPLE. A topological group G is a groupoid.

DerFINITION 5.3. Let X be a topological space. Let I' = {(U s !, Vf)} be
a set of triples (U, i Vf) of homeomorphisms f between open subsets U,
and V, of X. We say that I' = {(U f, )} is a pseudogroup (of local
homeomorphlsms) of X if it satisfies the followmg

(1) (X,1,,X)eTl.

(2) 1f (U, s V)el" and U is open in U, , then (U, f|U, f(U))erl.

(3)(Uf,fV)eF( g,V)eF Vv, cU, = (U,,gof,g80
fWeET.

4) (U, f.V)el= (¥, [, U)eTl.
Similarly, we define a pseudogroup of local diffeomorphisms of a C* man-
ifold X .

127
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Let B be a topological space, and let & = {(U > f, Vf)} be a pseu-
iogroup of local homeomorphisms of B. Denote by I', the set of germs
f fe€ & at b, and write T = U,gT,. We topologize I' as follows
‘recall the sheaf topology): A basis for the open sets in I' may consist of
he sets {[f].|x € U}, where each [f]  is the germ of f at x e U,
‘U, f,V)e¥&,and U runs through open subsets of B. Then I' becomes
1 topological groupoid; we say that T' is the topological groupoid (or simply
sroupoid) associated with & .

Denote by I B the groupoid associated with the pseudogroup of local dif-
feomorphisms of R? and by I";: the groupoid associated with the pseu-
ogroup of analytic automorphisms of C?.

Assigning each element [f], of Fq to the differential of [ at x, we
sbtain a homomorphism of topological groupoids, v : Fq —s GL(q, R).
We also have the verbatim definition of the homomorphism v : FqC —
GL(g, C).

§2. TI'-structures

Let T be a topological groupoid. Suppose X is a topological space with
an open covering % = {U,|i € J}. We define a one-cocycle to be a sys-
tem {U;, 7, jI i, j € J} of open sets and continuous maps with the property
that to each pair i and j in J, there corresponds a continuous map

Vit unu L T
such that for each x e U, nU; N U, 7, (x)= yij(x)yjk(x).
Two one-cocycles { U, y;,|i, j € J} and { U, 7 |k, 1 € K} are equiv-
alent if there is a family of continuous maps 6, : U; N U,i — T satisfying:
'3 !
S ()7 (x) =6,y(x),  xeUnUNU,
1
yji(x)éik(x) = éjk(x) , xeynun U,.
This is obviously an equivalence relation.

An equivalence class of one-cocycles is a T-structure on X . We denote
the set of T-structures on X by I'(X) or H "(x,T). When T is a topolog-
ical group, each I'-structure on X corresponds to an equivalence class ofa
principal G-bundle over X (cf. §2, Chapter I).

Let f:Y — X be a continuous map, and let 0 = {U,, yijli, jedJ} be
a D-structure on X . Then f induces a I'-structure on Y;

fo={f ), vofMi,jel}

§3. Vector bundles associated with r ,-Structures

Let l"q be the groupoid associated with the pseudogroup & of local dif-
feomorphisms of R? as defined in §1.
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The following is another interpretation of a T’ ,-structure on a topological
space X . We consider the collection & of systems & = {(U,, f,)la€ 4}
of open sets and continuous maps satisfying:

(i) {U,|a € 4} is an open covering of X .
(i) Bach f,:U, — R? is continuous, € 4.

(iii) If U,NUg # O, there exists a continuous map f ,: U, NU, — T,

such that for x e U N Uﬂ, fx)= faﬁ -fﬂ(x).

We say families & and & " in @ are equivalent and write & ~ F'
if U belongs to Z. Evidently ~ is an equivalence relation. An
equivalence class under ~ is nothing but a Fq-stmcture on X.

In §1 we introduced the homomorphism v : T’ e GL(q, R) of groupoids
by associating the germ of f at x to the differential of f at x. Hence,
through the map v we obtain a natural correspondence between T’ ,-structures
on X and g-dimensional vector bundles over X (cf. §4, Chapter I). When
the image V(Fq) is contained in a subgroup G of GL(g, R), the structural
group of the corresponding vector bundle can be reduced to G.

§ 4. Homotopies of I'-structures

Suppose we have two I'-structures o, and o, ona topological space X .
DEFINITION 5.4. We say g, and o, are homotopic and write ¢, ~ g, if

ok

there exists a I-structure ¢ on X x [ such that iga =a,, {|,0=0, where
iO:X—>Xx0CXxI,
il:X—aXxchxI

are inclusion maps. The relation =~ is an equivalence relation.

The set of all equivalence classes under homotopies of I'-structures on X
is denoted by I'(X), I'(X) =T(X)/ ~.

According to the definition of I'(X), T is a homotopy functor in the sense
of Brown from the categoty of CW-complexes and continuous maps to the
category of sets and maps. By the “representability theorem” of E. Brown,
there exists a CW-complex BT with a I-structure @ such that the func-
tors X — I'(X) and X — [X, BT] are equivalent (cf. E. Brown M).

This BT is difficult to understand in concrete terms and so in the following
sectic;n we shall construct BI" according to Buffet and Lor (cf. Buffet and
Lor (%) ).

§ 5. The construction of the classifying space for I'-structures

Now we define the classifying space for I'-structures.
Let T be a topological groupoid, and let B be the set of units of T".
Let 8 : ' — B be a map which sends each element y of T to its left

(’) Abstract homotopy theory, Trans. Amer. Math. Soc., 119 (1965), 79-85.

(2) Une construction d’un universal pour classe assez large de T-structures, C.R. Acad. Sci.
Paris, 270 (1970), 640-642.
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unit B(y). We define ET to be the set of equivalence classes of infinite
sequences (to,xo,tl,xl,...,tn,xn,...),

t,€l0,1], i=1,2,...,

;=0 for all but finitely many 7,

Y=L

{xiel", i=0,1,...,

Blx)=Bx), i=1,2,...,

as follows:
! i ’ !
(to,xo,tl,xl,...,tn,xn,...)~(t0,x0,t1,xl, e )

t:t’, i=0,1,...,
St ,
t; #0 implies x; = x;.
Henceforth we shall denote the equivalence class of (ty, Xg, 8> %1» el

by (fyxg» 1% » cel)

We define maps ¢, : ET — [0, 1] by (f5X,, 1%y ...)—t,, and maps
x; 16710, 11— T by (f%g, %, ) ¥ X .

These maps are well defined by the above definition of equivalence classes.
We give ET the weakest topology making the ¢, and the X, continuous.

Consider the natural action of I' on ET", and denote by BT the quotient
space of ET by this action. More precisely we have the following:

BTl = ET/ ~;
7
(LgXps L%y s o)™ (tgx('), 0Xyse--)
iff
. 7 .
(}) L=, z=9, 1., 2,
(i) B(x;)=Bx;), i=0,1,2,.... o
(iti) There exists y € I' such that for all i with ¢, # 0 we have
x; = yx,'..
Sometimes we simply write (x, 1) ~ (x', ) iff (x, 1) = (yx',1). We give
BT the quotient topology and denote the natural projection by
p: ET — BT.
We call BT the classifying space for T-structures
The projection ¢, : ET — [0, 1] maps the equivalent elements under ~
to the same element; hence, it defines the projection u, : BT — [0, 11, and
we have u,op=1;.
The classifying space BT has a natural I'-structure as foliows: Set

v.=u;'0,11, i=0,1,2,...,
y,.j:V,.an—+l',

—1
(LgXp» LX) s -0 ) = XX -
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Then w = {V,, yij|i, j=0,1,2,...} is a I'structure on BT, called the
universal T-structure.

§ 6. Numerable I'-structures

DEFINITION 5.5. An open covering {U;|j e J } of a topological space X
is numerable if there exists a locally finite partition of unity {u,|i €I} with
u (0,11 U,.

Any open covering of a paracompact space is numerable.

DEFINITION 5.6. A T-structure [¢] on X, 0 ={U,, yijl i,jeJ},is nu-
merable if its representative ¢ can be chosen so that the {U;} is numerable.

We say that two numerable I'-structures are numerably homotopic if they
are connected by a numerable homotopy.

PROPOSITION 5.1. Let BT be the classifying space and let w be its T-
structure as defined in §5. Then

(a) @ is numerable,

(b) for a numerable T-structure ¢ on a topological space X, there exists
a continuous map f:X — BT such that {*w =0, and

(c) two continuous maps f, and f; of X to BU are homotopic if and
only if the T-structures f{; w and f[*a) are numerably homotopic.

PrOOF. (a) We cite Milnor’s proof verbatim (J. Milnor (3) . We construct
a locally finite partition of unity {v;} on BI as follows. Define a map
w,: B — [0, 1] by

w,(b) = max {0, u,(b) - Zuj(b)} ,

Jj<i
then we have wi—l(O, 11c V,. For b € BT, let m be the smallest i such
that u,(b) # 0. We then have
S ub)=1, u, (b)=w,(b),
m<i<n

and BT has an open covering BI' = Uwi_l(O, 1]. Since u,(b) = 0 for
n < i, we have l

3 u(®')>1/2 implies w,(b')=0.

0<i<n

Therefore,

! !
N, (B)=14 b'| > ub)>1/2
0<i<n
(3) Construction of universal bundles 11, Ann. of Math., 63 (1956), 430-436. One will also
find the proof on p. 54 in the book of Husemoller, Fiber bundles, McGraw Hill, New York,
1966.
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is a neighborhood of b, and N,(b) N wi_l(O, 11=@ if n < i. Hence, the
open covering {wi_l(O, 1]} of BT is locally finite, and so if we set

V.= N
YL
the {v;} is the desired partition of unity.
(b) We need the following

LemMa 5.1. Let {U|ce J} bea numerable covering of X . Then there

exists a locally finite countable partition of unity {1,|n € N} such that each
open set V, = t;l(O, 1] is a union of mutually disjoint open subsets V,; of
U,.
Again the verbatim proof is in the book Fiber bundles by D. Husemoller.
Proor. Let {v,]i € T} be a locally finite patrtion of unity on X with
vi"l(O, 11 c U,. Then for each b e X, the set S(b)={ieT|v,(b)>0} is
finite. Further, for each finite subset S of T,

W(S):{belei(b)>vj(b), vieS,VjeT—-S}
is an open subset of X . The map ug:B — [0, 1] defined by

uy(b) = max {0, iesl:r}ienT_S(vi(b) - vj(b))}

is continuous, and we have W (S) = u;‘(O, 11.

Let CardS denote the cardinality of S. We claim that if CardS =
CardS’ and S # S, then W(S)nW(S") =@. Let ieS-S,jeS-S.
Then v,(b) > ’Uj(b) for b € W(S), and v;(b) > v,(b) for b e w(S"). But
these two relations cannot occur at the same time, so the claim is true. Now
put

w.= |J W, w, (b)= Y, ugb).

Card S=m Card S=m
Then w},'(0, 11=W,,. Set
w,,(b)
Y nso Wa(b)
Then t;l(O, 11=W,;so the {1} is the desired partition of unity. O

To complete the proof of (b), let ¢ be a numerable I'-structure on X .
By Lemma 5.1 we may assume that ¢ is defined by one-cocycles y,,  ona

t,,(b) =

countable open covering { U;|n=10,1,...}. Here U,= t;l(O, 1], and the
{z,} is a partion of unity. The desired map f: X — B[ may be defined by

LX) = [(1(X)7,0(X) 5 8,007y (X) 5 )] X €U,

where [(to(x)ymo(x), ..)] denotes the equivalence class of (tO(x)ymO(x), L)
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Proof of (c). Denote by BI'® a subset of BT, which is the image under
p: ET — BT of the points (1,X;, ;x,,...) in ET" with ¢, =0 for n odd.
Similarly we define BT'® (replacing ‘odd’ by ‘even’ in the above notation).
We define 1°*, h% : BT — BT by

d
B (tgxgs 1%, 5 -1 = [{teXgs 0, 11X, 05 .. )],
K™ (8% s 1% > -- ) =100, 15X, 0,4,x,, 0, ..)]:

LEMMA 5.2. The maps h°® and h® are homotopic to the identity map.
Further, we have (h°*)*w = (F")'w=0.

PrOOF. Define a linear function «a, : [1—(1/2)", 1 - (1721 —10, 1]
by a,(f) =2""'t— 2" + 2. Clearly we have

a,(1-(1/2)=0,  a,(1-(1/2")=1
Define a homotopy h;’d 1 ET — ET as follows:
od
hs (.X, t) = (tOXO’ et tnxn ? an(s)tn+lxn+l > (1 - an(s))tn+lxn+l ’
o‘n(s)trm-2xn+2 s (1= an(s))tn+2xn+2 seer)s
1-(1/2)" <s<1—(1/2"",

B (x, 1) = (x, 0).

Then we have | )
O [¢]
h(x, )y =h; (xy,1).

The maps h;’d are continuous because they are continuous on a locally finite
open covering of v, 1(0, 1}, where the {v;} is a partition of unity. The
corresponding maps gfd - BI" — BT of the base space define a homotopy

connecting #°® and the identity map. The proof for 4%’ follows verbatim
the case for £°¢. O

Now back to the proof of (c). Suppose that f, f, : X — BI' are con-
tinuous and that the I'-structures jg w and fl*w are numerably homotopic.
We want to show that in this case f, and f| are homotopic. By (b) we
may assume fy@ = f;@. By Lemma 5.2 we may assume fy(X) C B
and f,(X) c BT If i is odd, the set 7'V = fy (w0, 11) is empty.
Therefore, we may consider the pullback by f; of the cocycle defining w as
defined on the covering

{ U, is an even natural number, U; = fo_l(Vi) }.

Similarly, fl"w is defined by a cocycle on the covering
{U,|i is an odd natural number, U; = f]_l(V,.) 3

Let s,: ¥, — ET be the continuous map defined by

-1 ~1
si[toxo,tlxl,...]z(toxi Xg LX) X(s el )3
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then we can write

5;0 fo(x) = (8(X)76:(%)» 0, £5(x)7,,(x), 0, ...), x €U, ieven,
5,0 fi(x) = (0, t;(x)y;(x), 0, ¢ 3(X)73(x) 5 20D, x € U;, iodd.

Since fow fiw, if i # j(mod 2) there exists a family of continuous
maps 7, U U - T such that the {y i, j > 0} is a cocycle on the
{Uliz 0}

Now a homotopy connecting f; and f| may be given by the following
maps:
5,£,(X) = [(1 = ) 15(x)70,(x) » 52, (x)7;;(x) 5 (1 = $)t(X)7,,(x) ,

sty(x)y3,(x), -1, xeU.

i

The proof of Proposition 1 is now complete. O
§7. I'-foliations

Let 1"; be the topological pseudogroup of germs of local C" diffeomor-
phisms of R?, where r isone of 0,1,2, ..., oo, w. Let I" be an open
pseudosubgroup of 1";.

DEFINITION 5.7. Let X be a C” manifold. By a I'-foliation of X we
mean a [-structure on X represented by & = {(U,, f)), v,li,J € J},
such that each f: U, — R? isa C" submersion.

In other words, a I'-foliation F is a system {(U,, f){i € J} of open
sets and C maps satisfying:

(i) {U;|i e J} is an open covering of X .
(i) f,:U,—»R? isa C" submersion.

(i) ¥ UNU; #9, then for every point x of U;NU;, there existsa C’
dlffeomorphlsm g of some neighborhood of f;(x) onto the corresponding
neighborhood of f (x) such that

(a) the germ of 8ji at f;(x) belongsto I',
(b) f =g;° f. in some neighborhood of x.

DEFINITION 5.8. Let X bea C’ manifold and let s Z be I'-foliations
of X . We say that %, and %] are integrably homotopic and write 7, =~ F
3
if there exists a I'-foliation & of X x [0, 1] such that the maps i,: X —
X x [0, 1] defined by i,(x) = (x, ) satisfy the following:
() ¥ ~F, 0F ~9.
(ii) Foreach f€ (0, 1], i, is transverse to % .

Here the map i,: X — X x [0, 1] is transverse to & if for any point x
of X, the composite

@n;
7o (df), s T(X) D Ty (X x 10, 11) = Ty (X [0, 1)/ Ty (L)
is a surjection, where L., is the leaf of & passing through f(x), and #
is the natural projection.
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Evidently the relation ~ is an equivalence relation.

. 1
If X is a closed manifold, the I-foliations .%; and &, of X areintegrably
homotopic if and only if there exists a C’ diffeomorphism f of X such
that
i) fF~5F,
(i) f 1s isotopic to 1,
We omit the proof (cf. Tamura [A9]).

§ 8. The graphs of I'-structures
Let I" be a subset of I"q.
DEFINITION 5.9. By a g-dimensional I'-foliated microbundle over X we
mean an ordered triple (E, &, &) such that

(1) ¢ consists of topological spaces and continuous maps,
& X —ELx, poi=1,

(i) & isa I'structureon E, & = {(U,, f )la € A}, such that for
each a € 4, themap (p|U)x f :U — X x R? is a homeomorphism of
U, onto the corresponding open subset of X x R?.

Fora C” manifold X , we may take the total space E tobea C" manifold

and the maps i and p to be of class C". Further, £ may be thought of as
a I'-foliation.

PROPOSITION 5.2. Let X be locally compact and paracompact. Then for
a T-structure & on X, there exists a q dimensional T-foliated microbun-
dle (E, ¢, &),

E:X-HSEZ X
suc.h that F ~ i'&. Further the germ of this microbundle (E,¢&, &) is
unique up to isomorphisms. In other words, if we have two such microbun-
c{les (Ey> &y, &) and (E|, &, &), there exist neighborhoods U, and U, of
io(X) and i,(X) together with a homeomorphism h: Uy — U, such that
(1) the diagram

i UO
X/ hw)x
X /w'

1 1
1
commutes, and
(ii) h*g’l ~ &lU, .-

We call the microbundle (F, &, &) as constructed above the graph of a
I'-structure .# . This idea was formulated by Haefliger.

PROOF OF PROPOSITION 5.2. Suppose we have a I'-structure’ ¥ repre-
sented by & = {(U,, ¢,), 8.pla, B € A}. Consider the graph G(g,) C
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R'l

Uz

FIGURE 5.1

U xR of ¢, :U, _» R? . Choose a neighborhood T, of G(p,) in U, xR’
(Flgure 5.1). We construct E by pasting T together

E:UT0/~;UanUﬂ7é®, (x,y)eT,, x,y)eT,,

x=x,
Y =g,00.

Define i : X — E by i(x) = [(x, ¢, (x))], x € U,. The construction of
E implies the map i is well defined. Define p : E — X by p(x,y)=x.
Notice that poi = 1. To define a I'-structure on E, set W = n(T,),
where n : U, T, — E is a natural projection. Define ¢, W — R7 by
o, (x,y)=y. Then the system g={(W,¢)aed} isa F—structure on
E,and itisaroutinetosee i & ~% . O

6, 9) ~ (X, ) iff {

§9. The Gromov-Phillips transversality theorem

We mentioned in Chapter ITI that the Gromov-Phillips transversality the-
orem is a major tool for the classification of I'- foliations of open manifolds.

Let X be a C’ manifold and let F = {(U;, f). &;li, jeJ} bea
I'foliation of M.

Denote by vF the normal bundle of & ; thatis, if f: M — BT is
the classifying map of &%, - BT — BGL(q, R) is the map as defined
in § 1, and 7, is the umversal g-vector bundle, then v.# ~ (v o Ny P
Another mterpretatlon goes as follows. vF|U; = A (T(R%)) and if U, nU; #
a, U, x R? and U x R? are pasted by dgU along U, N Uj (x, y)
(x',y)iff X" =x, y —(dg,,) ).

Let X and M be C" manifolds, r > 1. Let & be a I'-foliation of M,
F={U;, fliel}.

DEFINITION 5.10. Wesay thata C" map f: X - M is transverse to the
[-foliation & if for each i € J the composite f;o f: f UARS R? isa
submersion.
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Denote by Tr(X , ¥) the set of C' maps from X to M which are trans-
verse to F . We give Tr(X, ¥ ) the C' topology. Let 7(X) be the tangent
bundle of X, and v.# the normal bundle of # . Denote by Epi(t(X), vF)
be the set of bundle maps of t{X) into »¥ whose restrictions to each fiber
are each surjective (such a map is called an epimorphism of vector bundles).
We give Epi(1(X), v.¥) the compact-open topology. Let 7(M) be the tan-
gent bundle of M and let #: (M) — v¥ be the natural epimorphism.

THEOREM 5.1 (Gromov and Phillips). Let X be an open C" manifold,
r=1,2,...,00, w. Let M bea C" manifold and let ¥ be a T-foliation
of M . Then the map

& :Tr(X,F) — Epi(t(X), v5)
defined by ®(f) = n(df) is a weak homotopy equivalence. O

Theorem 5.1 follows routinely from Theorem 3.13 (the Gromov-Phillips
theorem). As we remarked earlier the assumption that X is open is essential.

§10. The classification theorem for T-foliations of open manifolds

Let w be the universal I'-structure of the classifing space BI' for I-
structures. Suppose I' C 1"; , r>1. Let vw be the ¢ dimensional vector
bundle associated with w.

THEOREM 5.2 (the classification theorem for foliations of open mani-
folds). Let X be an open C" manifold, r = 1,2, ...,00, w. Then there
exists a one-to-one correspondence between integrable homotopy classes of T-
foliations of X and homotopy classes of the epimorphisms of 1(X) onto the
normal bundle vow of w.

ProoF. The desired correspondence may be given as follows. Let . bea
I-foliation of X . Let 7 : 7(X) — v be a natural epimorphism. A priori,
the foliation & is a I'-structure, and so % is induced from the universal
[-structure @: f*w ~ & by some continuous map f : X — BI'. This
defines a bundle map ¢ : v.¥ — vw, and themap ¥ =gon:7(X) —vw
is a bundle epimorphism. We assign to the integrable homotopy class of %
the homotoppy class of ¥ . This correspondence is well defined. We want
to show that this is a surjection.

Let y : 7(X) — v be an epimorphism of vector bundles, and let ¥ =
f: X — BT be the corresponding map of the base spaces. Let o = ffw; o
is a I-structure on X . Let (E, C &) be the T'-foliated microbundle over
X corresponding to o, £: X — E 2, x, where E is a C' manifold,
& is a Ifoliation of E, and i€ ~ ¢. Then i"v& ~ f'vw. Here v&
is the normal bundle of & . Hence, the given epimorphism y defines an
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epimorphism ¢, : t(X) — #v& and hence an epimorphism ¢ : t{X) - v&,

bt(X) —2s g B g, =600,

| | l

X ', x —— E.

Therefore, by the Gromov-Phillips transversality theorem there exists a C’
map j: X — E homotopicto i : X — E such that j is transverse to &
and modj:1(X)— v& is homotopic to ¢. Thus, F = j & is the desired
I-foliation, {F} — {y}. Similarly we can show that the correspondence is
injective. O

We restate the above classification theorem in such a way that one can
actually calculate. Recall I' C 1"; . Also recall the differential maps

v:T, — GL(g, R)
v: BT, — BGL(g, R).

Now assume that v(I') ¢ G for some subset of GL(q, R). Then we have
the induced map v : BT — BG and the following commutative diagram

BI'x BGL(n—-4q,R)

N\, vxi
BG x BGL(n - ¢, R)
[ lpxl
BGL(q,R)x BGL(n —q,R)
V:

BGL(n, R)

where @ represents the Whitney sum and p is the induced map of G C
GL(4,R).

COROLLARY 5.1. Let X be an open C" manifold of dimension n, r> 1,
and let T: X — BGL(n, R) be the classifying map for the tangent bun-
dle ©(X) of X . Then there is a one-to-one correspondence between integrable
homotopy classes of T-foliations of X and homotopy classes of lifts of 7 in
BT x BGL(n—gq,R):

BF}x BGL(n—q,R)
o
X = BGL.
Here by a lift of 7 in B[ x BGL(n — ¢, R) we mean a coninuous map

X — BT x BGL(n — q, R) making the above diagram commute.
ProoF. There is a one-to-one correspondence between homotopy classes
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of lifts of 7 in BI'x BGL(n —q, R) and the triples (f, n, ¢) consisting of
f: X — BT, acontinuous map,
n, an (n — g) dimensional vector bundle over X,
é: fflvoen— 1(X), an isomorphism of vector bundles.

But there is a one-to-one correspondence between the set of triples as specified
above and the set of homotopy classes of epimorphisms of 7(X) onto vw.
Hence, the corollary follows from Theorem 5.2. O

Because of Corollary 5.1, it becomes necessary to investigate topological
properties of the classifying space BT in order to classify I'-foliations of
open manifolds. See Bott (4) concerning this subject.

Notk. Thurston showed that a similar classification holds for the folia-
tions of closed manifolds (5) .

(4) R. Bott, Lectures on characteristic classes and foliations, Lecture Notes in Math., Vol.
279 (1972), Springer-Verlag, Berlin and New York, pp. 1-94.
(5) W. Thurston, The theory of foliations of codimension greater than one, Comment. Math.

Helv. 49 (1974) 214-231; Existence of codimension one foliations, Ann. of Math. 104 (1976),
249-268.
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CHAPTER VI

Complex Structures on Open Manifolds

In this chapter we discuss complex structures of open manifolds as ap-
plications of the Gromov-Phillips theorem of Chapter III and the Gromov
convex integration theory of Chapter IV.

§1. Almost complex structures and complex structures

Let X bea 2g-dimensional C™° manifold. We may think of the structural
group of the tangent bundle 7(X) of X, as the orthogonal group O(2g). We
may regard the n-dimensional unitary group U(g) as a subgroup of O(2g)
as follows:

p:U(g) — O(2q),
A= (aij) e U(n),
aijzbij+\/—lc,.j, b.., ¢c..eR,

ij?* ~ij
s=(5 5) B=ty. c=.

DEFINITION 6.1. By an almost complex structure on a 2g-dimensional C™
manifold X we mean a reduction of the structural group O(2q) of the
tangent bundle 7(X) to U(n). The manifold X together with an almost
complex structure is called an almost complex marifold.

REMARK 1. Here is another way to define an almost complex structure.
Consider the following diagram:

,BU(CI)
: /
/ l"
/ T
X —* BO(2q)

where BO(2q) and BU(gq) denote the classifying spaces of compact Lie
groups O(2g) and U(q), respectively, and 7 is the classifying map of the
tangent bundle 7(X). Further, p is the continuous map naturally induced by
the standard homomorphism p : U(g) — O(2g). Then an almost complex
structure on X is a lift of ¢ to BU(g) in the above diagram, that is a
continuous map ¥ : X — BU(q) such that po ¥ = 7. This definition
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an easy consequence of the classification theorem for fiber bundles (cf.
rapter I).

REMARK 2. Another interpretation. A vector bundle homomorphism J :
X) — 7(X) with J 2 — _1 of the tangent bundle 7(X) ofa 2g-dimensional
anifold X is an almost complex structure on X . The works by W. Wu
23], A. Borel, F. Hirzebruch, T. Heaps, and so on include problems con-
rning the existence as well as the classification of almost complex structures
¢ 2¢g-manifolds.

DEFINITION 6.2. Let X be a 2g-dimensional topological space. Suppose
T 1A€A} is an open coverof X and {¢,: U, — C?| i1 e A} is the family
‘homeomorphisms between the U, and the corresponding open subsets of
' such that for U;nU, # 3,

9,00, 10,(U,nU,) — 0, (U;NU,)

holomorphic. Then the family & = {(U,, ¢;)|A € A} iscalleda complex
eucture of X . The pair (X, %) is a complex manifold.

A complex structure # on X defines naturally an almost complex struc-
re on X , which is called the underlying almost complex structure of & .
DEFINITION 6.3. We say that an almost complex structure & of a 2¢g-
mensional manifold X is integrable if it is the underlying almost complex
ructure of some complex structure on X .

The question ‘Is the given almost complex structure integrable?” was in-
sstigated in the case of open manifolds by Grauert, Brender, etc. mainly
rough functional analytic methods; however, recently P. Landweber made
uch progress in this area using a geometric approach via the Gromov-
sillips theorem stated in Chapter III. M. Adachi also made some contri-
jtions towards the solution of this problem using the convex integration
ieory of Chapter IV. We shall discuss these in the following sections.

§2. Complex structures on open manifolds

Let X be a g-dimensional C*° manifold.

DEFINITION 6.4. Two almost complex structures ¢, o, on X are homo-
wpic if they are homotopic in the sense of Remark 1 or Remark 2, and in
1is case we write g, =~ 0, .

Evidently ~ is an equivalence relation; we call an equivalence class by =~
homotopy class.

DEFINITION 6.5. Suppose that X has two complex structures %, and %,
‘hich induce the integrable almost complex structures o, and o, respec-
vely. We say that %, and &, are integrably homotopic if o, and o, are
omotopic, and if {g, |t € [0, I]} is the homotopy connecting them, then
sreach ¢ €[0, 1] o, is integrable.

This is an equivalence relation.
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THEOREM 6.1. Let X be a 2q-dimensional open manifold. If
H'(X,Z)=0, i>q+1,
then every almost complex structure of X is homotopic to an integrable almost
complex structure.
THEOREM 6.2. Let X be a 2g-dimensional open manifold. If
H'(X,Z)=0, i>q+1,

then there is a natural one-to-one correspondence between integrable homotopy
classes of complex structures of X and homotopy classes of almost complex
structures of X .

Let P be a polyhedron and let e;', be the trivial r-vector bundle over P.
Let &, &, be vector bundles over P. We say that &, and ¢, are stably
equivalent and write ¢, ~ ¢, if there exist natural numbers r, s, such that

S@ep~E Bep
Clearly ~ is an equivalence relation. We let [£] denote the equivalence
class containing &.
We consider the inductive limits of the following classifying spaces:
By = lim By, By = lim By,
To a homotopy class [¢] corresponds the homotopy class of some contin-
uous map
f:P— B,
On the other hand, we can define a continuous map
p:By, — By
as the inductive limit of p: BU(n) — BO(:,_”) . Thus, we call the lift f of f in
the following diagram the complex structure of a stably equivalent class {£].

B
AU

s
AL
i
P —— B,
THEOREM 6.3. Let n > 2. Let M" be an n-dimensional C~ manifold
and assume that the stably equivalence class {t(M")] of the tangent bun-

dle ©(M") admits a complex structure. Then M" x R"2 admits a complex
structure.

COROLLARY 6.1. Let M" be an n-dimensional orientable C* manifold,
3<n<6. Assume that umod 2 = WZ(M ") for some integral cohomology
class u € H* (M", Z), where WZ(M "y is the two-dimensional Stiefel-Whitney
class of M". Then M" x R"™2 has a complex structure.

The corollary follows routinely from Theorem 6.3 and the following
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PROPOSITION 6.1. Let K be an n-dimensional polyhedron, 3 <n<6.
The stable equivalence class [£] of a vector bundle ¢ over K has a com-
plex structure if and only if umod 2 = Wz(f ) Jor some integral cohomology
class u € HZ(K , Z). Here Wz(é) is the Stiefel-Whitney class in dimension
two.

See Milnor [A5] for the proof of this proposition.

Now we shall give outlines of proofs of the theorems. To this end we first
recall topological groupoids as discussed in Chapter V.

Let l"qC be the groupoid of germs of local analytic isomorphisms of 7,
and let BIf be the classifying space of I‘f -structures. Taking differentials
yields a homomorphism of topological groupoids

v:T — GL(g, C).
Further, we have the continuous map between classifying spaces,
v: BTy — BGL(g, C),

induced by the first . We are using the same symbol for both of the maps.
We regard the second v as a fibration (moving it through homotopies), and
denote by F If its homotopy fiber.

The following construction in a more general setting may simplify our
discussion. Given topological spaces X and Y and a continuous map f :
X — Y, there exist a fibration (E, p, B) and homotopy equivalences @
Y- E and y :Y — B such that the diagram

Xz_"__,E

7| |»

Yy Y . B

s homotopy commutative. The homotopy type of the fiber F of the fibra-
ion (E, p, B) is well defined. The construction is as follows. We may
ssume f to be the inclusion map X ¢ Y by passing to the mapping cylin-
er C, of f. Then for (E, p, B) we take the fibration (QX,Y(Y), Py, Y),
there Q X.¥ is the path space

Qp y(Y)={u:[0, 1] - Y|u is continuous, u@eX, u(l)ev}

ith the compact-open topology and p,y(u) = u(1) (cf. Spanier [A6]). Now
iking this construction back to the realm of groupoids and classifying spaces,
e obtain the fibration v : Brf — BGL(q, C) whose fiber is denoted by
re

’lghe groups GL(g, C) and GL(2q, R) have the following Iwasawa de-
ympositions:

' 2
GL(¢,C)~U(q) xR",  GL(2¢, R) ~ O(2g) x R%***"),
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which commute with the standard homomorphism p.

Ulg) —2— 0(9)

GL(g, C) —— GL(2q, R)
So we use the same letter p 1o represent the induced map
p:BGL(q, C) — BGL(2q, R).

Let X be a 2g-dimensional open manifold and consider the diagram be-
low
BT, —— FT{
Ve

L
/
/. BGL(q, C)
;s
9 lﬂ

‘,
X —— BGL(2q, R)

where 7 is the classifying map of the tangent bundle 7(X) of X . By defini-
tion there is a one-to-one correspondence between homotopy classes of lifts
of 7 in BGL(q, C) and homotopy classes of almost complex structures on
X. A Fqc -foliation of the 2g-manifold X is nothing but a complex struc-
ture on X . By Haefliger’s classification theorem, as discussed in Chapter v,
there is a one-to-one correspondence between homotopy classes of lifts of 1
in BFqC and integrable homotopy classes of complex structures on X (the
assumption ‘X is open’ is necessary for Haefliger’s classification). Hence,
the study of the fiber F 1"5 becomes vital for the investigation of complex
structures on open manifolds as well as their integrable homotopy classes.

THEOREM 6.4. 7,(FIS)=0, 0<i<q.

We assume Theorem 6.4 for the moment and prove Theorems 6.1, 6.2,
and 6.3.

PROOF OF THEOREM 6.1. Consider the above diagram. An almost complex
structure on X isalift # of ¢ in BGL(q, C). We want to lift the # to BT .

Notice that BGL(q, C) is simply connected. Considera C' triangulation K
of X and try to construct # skeletonwise. The obstructions in doing so lie
in

H‘(X,n,._,(Frf)), i=1,2,...

{cf. Spanier [A6], Steenrod [AT7]). Hence, Theorem 6.4 together with the
hypothesis of Theorem 6.1 completes our proof. 0O
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PROOF OF THEOREM 6.2. The proof proceeds in the same way as the proof
Theorem 6.1; however, here the obstructions for %, and 7, to be homo-
yic as lifts lie in

H'(X,n(FT3),  i=1,2,....

Theorem 6.2 follows. O

PrOOF OF THEOREM 6.3. Set X = M" x R"_?. Then because n > 2, X
1 2(n— 1)-dimensional open manifold, and H "X,2Z)=0, i>n.Butby
r assumption, the stable equivalence class of the tangent bundle (M ") of
" has a complex structure; hence, n—2 > 0 implies that M" x R"? hasan
nost complex structure. To see this we turn to the following commutative
igram:

n,(BU(n — 1)) —IL» n,(BU)

lp. lp. i<n.

7,(BO(2n - 2)) —=— ,(BO)

:nce, the theorem follows from Theorem 6.1. O
We shall prove Theorem 6.4. in the following three sections.

3. Holomorphic foliations of complexifications of real analytic manifolds

In this section we consider holomorphic foliations of complexifications of
 analytic manifolds. Let M be a real analytic manifold.

DEFINITION 6.6. By a complexification of the real analytic manifold M
. mean a pair (i, CM) of a complex manifold CM and a real analytic
bedding i : M — CM , with a complex structure & = {(U,, ¢,)|a € A}

CM satisfying ¢, (i(M)NU,) = ¢,(U,)N R".

In other words, the pair (CM, M) is locally the pair (C", R"). We state
me facts about complexifications of a real analytic manifold in the follow-

o g
>

THEOREM 6.5. Let M be a real analytic manifold.

(1) M has a complexification (i, CM).

(2) Let f: M — W be a real analytic map from M to a complex man-
Jd W . Then we can extend f to a holomorphic map Cf:CM — W of
me complexification CM of M into W .

(3) Let (i,CM) and (i’ , C'M) be complexifications of M. Then there
ists an analytic isomophism h between an open neighborhood U in i(M)
d the corresponding open neighborhood U "in i’ (M) such that the following
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diagram commutes.

UcCM

i/"
M hl
U ccMm

(4) For a complexification (i, CM) of M we have an isomorphism of
complex vector bundles

T(CM)|M ~ T(M) & C.

We omit the proof.

The above theorem implies that the germ of a complexification of a real
analytic manifold is well defined. Henceforth, CA denotes either a com-
plexification of M or its germ.

DEFINITION 6.7. Let M be a C™ manifold, let W be a complex mani-
fold, and let f: M — W bea C™ map. We say that f is a C-submersion
if the differential of f, df : T(M) — T(W), induces an epimorphism of
vector bundles

Cdf): TM)®C — T(W).

REMARK 1. Let E be areal vector bundle and F a complex vector bundle.
Let ¢ : E — F be a homomorphism of real vector bundles. Then there is a
naturally induced complex vector bundle

C¢): E®C— F.

REMARK 2. Let M be a real analytic manifold, W a complex manifold,
and f: M — W a real analytic map. If f is a C-submersion, then the
extension of f, Cf : CM — W, is a holomorphic submersion, that is,
Cf is a holomorphic map of the maximal rank at each point of CM .

DEFINITION 6.8. Let W be a complex manifold. By a codimension ¢
holomorphic foliation of W , we mean a family & = {(U_, f,), f, 5 la, B €
A} of pairs (U, f,), where {U, |a € A} is an open covering of W and
the j; U, — C? are holomorphic submersions, and the

. c
£, s U, N Ug — r,
are continuous maps satisfying

fo(x) = fop0 f5(5 x), x€U,NU,.

The definition of the equivalence of codimension ¢ holomorphic foliations
%, and , is verbatim that of the equivalence of foliations in Chapter V.
Further, let M be a real analytic manifold and CM a complexification
of M. Let ¥ and &, be codimension ¢ foliations of CM . Suppose that
there exists a neighborhood U of M in CM such that Z|U and #|U are
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juivalent. Then we say % and % are germ-wise equivalent in M and
rite F| ;% Clearly, this is an equivalence relation.

DEFINITION 6.9. Let M be a2 C™ manifold. By a codimension g C-
liation is meant a family & = {(V}, g;), &, |4, # € A}, where {Vild €
} is an open cover of M and the maps g, :V, — C? are C-submersions
gether with continuous maps

C
&yt V.n V# —_— Fq
tisfying
8(x) = g;,°8,(x), xeUnlU,

In particular, if M is a real analytic manifold and for each 4, g; isa C¢
ap, we call & an analytic C-foliation. The ‘equivalence’ of C-foliations
1d the equivalence of analytic C-foliations are defined much the same way
the equivalence of foliations.

Let M bea C® manifold, and let F be a codimension g holomorphic
lation of CM . Then F|M is a codimension g analytic C-foliation of

r

LEMMA 6.1. Let M be a C® manifold. The map which assigns to each
slomorphic foliation F of CM the restriction F|M defines a one-to-one
rrespondence between germ-wise equivalence classes in M of codimension q
lomorphic foliations of CM and equivalence classes of codimension q an-
ytic C-foliations of M .

PrOOF. (i) Injectivity. Suppose we have two holomorphic codimension ¢
liations %, and %, of CM with F|M ~ F|M . Then by the uniqueness
“analytic contmuauons &, and , are germ-wise equivalent in M.
(ii) Surjectivity. Let & be a codlmensmn g real analytic foliation of M ;
={(V,, 8,) 8,pl, B € A}. We want to extend £ to a holomorphic
liation of CM . Take a C“ atlas {(V,, ¢,)|a € A} in M (we can use
ordinate neighborhoods of ). If n = dlmM we think of ¢_:V — R"
oV, - C" and obtain the C* map

(bﬂxga:VQ———»C'l x C.

_the same way as we constructed the graph of a I'-structure in Chapter V, we
1ste tubular neighborhoods of the (¢ x g )(V,) in C"xC? together to get an
' +¢q)-dimensional complex manifold W"“’ the holomorphic foliation F'

W defined by the projection onto C?, and a C” embedding j: M —
’"+q defined by ¢_ x g, . Let Cj:CM — W™ be a complexification of
. Since g, is a C-submersion we may assume Cj to be transverse to F'.
hen the pullback (Cj)*F ' is the desired extention of & . O

By virtue of Lemma 6.1 we may identify a codimension ¢ holomorphic
liation of CM with its restriction to M .
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DEFINITION 6.10. Let %, and # be codimension ¢ holomorphic fo-
liations of CM . We say that %, and & are integrably homotopic and
write 9* ~ & if there exists a codlmensxon g holomorphic foliation & of

C(M x [O 1]) satisfying the following:
() FICM x0)~F, FICM x1)~F
(ii) For each t€ [0, 1], & is transverse to C(M x 1).

REMARK. A C® manifold with boundary M x [0, 1] has a complexifica-
tion C(M x [0, 1]) which contains C(M x ) as a complex submanifold for
each ¢.

Evidently, ~ is an equivalence relation; we call an equivalence class of

I

this relation an integrable homotopy class.

THEOREM 6.6 (classification theorem for foliations of CM ). Let M " be
an n-dimensional open C® manifold. Consider the following diagram

rBFf; x BGL(n — g, C)

/
// luxl
7/
,/ BGL(q, C) x BGL(n — ¢, C) (6.1)

/s
[
J &
M" =%, BGL(#n,C)

where t1®C is the classifying map of the complexification 1(M)®C of the tan-
gent bundle t©(M). There is a one-to-one correspondence-between homotopy
classes of lifts of T®C in Bl"f; x BGL(n — q, C) and integrable homotopies
of codimension q holomorphic foliations of CM .

THEOREM 6.7. Let M be an n-dimensional compact C* manifold, and
consider the following diagram

LBTS  —— FT,
P l" (6.2)
M 2, BGL(n, C)

where 1 ® C is the classifying map of the complexification (M) ® C of the
tangent bundle t(M) of M . Then there exists a map from the set of integrable
homotopy classes of holomorphic codimension n foliations of CM onto the
set of homotopy classes of lifts of T®C to Blf

We postpone the proofs of the two theorems above and prove Theorem 6.4.
ProOF OF THEOREM 6.4. (i) First we show =#,(F I"qc) =0, i<gq. Set

M=S xR As i<gq, M isa g dimensional open manifold. We have
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= ¢ ; so the commutative diagram (6.2) becomes:
R

”~
e
'
rd

M=5 xR~ 2, BGL(q, C)
ince ¢—1i >0, M is parallelizable; hence, we can take 7® C as a constant
iap. Therefore each lift of 7® C in BI‘S corresponds to some map of
i R? into FTC. On the other hand, CM have only one codimension ¢
olomorphopic foliation, and it comes from the complex structure. Hence
heorem 6.6 implies that continuous functions from S’ to F 1"5 has only

ne homotopy class, and so 7, (F l'f) =0,i<gqg.

(ii) To show = (F l'f) = 0, we utilise Theorem 6.7. Let M = S". Then
f is a compact C” manifold. We consider the following commutative
iagram:

{1} € 7,(BO(n)) —— n,(BU(n))

i_l :li.
z,(BO)  —— m,(BU),
here i, is the homomorphism induced by i : U(n) — U and o, is the
omomorphism induced by the natural map ¢ : O(n) — U(n). Here the
wap i, on the right is an isomorphism. Let t be the classifying map of the
ingent bundle (M) of M. Since S" is parallelizable, i _{r} = 0. Hence,
-om the commutativity of the above diagram we have

{t®C}=o0,{1}=0.
‘herefore, we may take 7 ® C to be a constant map. So there corresponds
yalift of T®C in Bl'f a continuous map S” — F If On the other
and, CM has only one holomorphic codimension n foliation, namely the
omplex structure, and so by Theorem 6.7, we get #, (F I"f) =0,n>1. 0

§4. The C-transversality theorem

Let M, W be C°° manifolds and let F bea Fqc-foliation of W. Then
he normal bundle vF of F is a complex vector bundle. Let C_ :7(W)®
" v be the natural projection. Let E and F be vector bundles. Given
vector bundle homomorphism ¢ : E — F , denote by C(¢) : E®C — F®C
ts complexification.

DEFINITION 6.11. A C® map f : M — W is C-transversal to F if
he composite (M) ® C cap 1(W)®C — vF of complex vector bundle
omomorphisms is a surjection.

We denote by CTr(M, %) the space of C* maps f: M — W which

re C-transversal to & with C ! topology.
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Let CEpi(t(M), v¥) together with the compact-open topology be the
space of vector bundle homomorphisms ¢ : 1(M) — v# whose complexifi-
.canons C(¢) are surjective. For an element f of CTr(M , #), the compos-
1te

M) Ly S v
sits in CEpi(7(M), v.#). Here n is the natural projection.

THEOREM 6.8. If M is an open manifold, the map

¢:CTr(M, %) — CEpi(t(M), vF)
sending f to modf is a weak homotopy equivalence.

This theorem follows from Theorem 3.14. We leave the details of the
proof to the reader. See Theorem 6.9 to fill the gap between C "'and C°.

Theorem 6.8 implies Theorem 6.6. The proof is verbatim the proof of the
classification theorem for foliations of open manifolds in Chapter V.

We proceed to the proof of Theorem 6.7, which is slightly more cum-
bersome. Here we apply Theorem 4.1 of Chapter IV. Let M be an n-
dimensional C” manifold. Let (E,&, &) bea rf-foliated microbundle
over M . Then we may think of E as a 3n-dimensional C* manifold and
& as an analytic C-foliation of E. Let = : 7(E) — v& be the natural
projection.

Denote by CTr”(M , &) the space, with the C' topology, of C* maps f :
M — E such that the composite of complex vector bundle homomorphisms

(M)e C L8 y(Bye c W ve

is surjective. If f € CTr*(M, &), then f*& is a codimension n holomor-
phic foliation of CM .

Let CEpi(z(M), v&) be the space, with the compact-open topology, of
vector bundle homomorphisms ¢ : (M) — v& whose complexifications
C(¢): T(M)®C — v& are each surjections of complex vector bundles.

THEOREM 6.9 (the C-transversality theorem). Let M bea C* manifold.
The the map which associates to each [ the composite wodf,

nod:CTt”(M, &) — CEpi(1(M), v&),
induces the following surjection
n,(CTr” (M, &)) — ny(CEpi(x(M), v&)).

Let CTrll(M , &) be the space of C ' maps /M — E transverse to &,
with the C' topology. Then CTr® (M, &) is a subspace of cTr'(M, &).
By the approximation theorem (cf. §2, Chapter III) we have the following
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PROPOSITION 6.2. Let M be a compact C* manifold. Then the inclusion
map i:CT*(M, &) — CTr (M, &) induces the surjection:

i,: no(CTrw(M, &) — nO(CTr1 (M, &)).
We omit the proof. See the approximation theorem in Chapter IIL.
Now Theorem 6.9 results from Proposition 6.2 and the following

THEOREM 6.10 ( C-transversality theorem). Let M be a compact C” man-
ifold. Then the map

mod:CTr' (M, &) — CEpi(z(M), v&),
sending f to modf induces a surjection
7,(CTr' (M, &)) — mo(CEpi(t(M), &)).

PrROOF. Set X = M x E, and let p : X — E be the projection onto the
first factor. Then (X, p, M) is a smooth fiber bundle.

Denote by Sect(X) the space of C ! sections in (X, p, M) with c!
topology. Let (X Y p1 , M) be the one-jet bundle of germs of C ' sections
in (X,p, M). Let S(X l) be the space with the compact-open topology
of continuous sections in (X h pl , M). Then taking one-jets we get the
continuous map J' : Sect(X) — Sect(X h.

Let C](M,E) be the space of C' maps from M to E with the c'
topology, and let Hom(t(M), 1(E)) be the space of homomorphisms of the
tangent bundle (M) of M into the tangent bundle 7(E) of E with the

compact-open topology. Likewise we consider Hom(z(M), 7(&)). Then we
have the commutative diagram

c'(M, E) —%— Hom(t(M), 1(E)) —— Hom(t(M), v&)

o]= v]= u

Sect(X) —X—  Sect(X') CEpi(<(M), v&)

where d associates to a map S its differential df, 7 associates to ¢ the
composite mo¢,and ¢ and y are natural isomorphisms.

Put © = n~ ' (CEpi(t(M), v&)). Then we have the following commuta-
tive diagram

cY(M, E) —4_, Hom(t(M), ©(E)) —— Hom(t(M), v&)
UI UI u]
cri'iM, &) —— v "9, CEpi(t(M), v&)
where 7|9 is a surjection. Hence, the map

7, my(Q) — mo(CEpi(t(M), v&))
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is onto. Thus, to prove the theorem it is enough to show that the map
1
d, :ny(CTr (M, &)) — n,(V)

is a surjection. Now choose an open subset Q of X ! which gives the corre-
spondence by the isomorphism  as follows

Hom(z(M), «(E))>  ©

V’Tz wI
Sect(X')>  Sect(X', Q)

We then get the following commutative diagram:

C\(M, E) d Hom (1(M), 7(E))

N\ e

cTim, ) -5 ©

olu ‘PI 7 IW u
Sect (X, 2) —>Sect (X!, Q)
S
&) y \
Sect (X) > Sect (X1)

where Sect(X, Q) = (J 1)_’(Sect(X t ©Q)). Hence, it suffices to show that
Gromov’s ltheorem of Chapter IV is applicable to our Q.
Now X is a jet bundle as shown below

X'=J(M,E)— J'(n,3n)=M3n, n;R)

]

X=MxE
pl l”l
M=M

Here M(3n, n; R) consists of the (3n, n)-matrices over R, whose struc-
tural group is L'(n, 3n) = L'(3n) x L'(n) = GL(3n, R) x GL(n, R) . How-
ever, since M x E is locally compact and paracompact, we may assume its
structural group to be O(3n) x O(n).

Further, because (E,¢, &) is a I‘(q:-foliated microbundle over the C¢
manifold M , we can choose a C® atlas in E as follows: set

{(U, )12 €A},
miUl———»R}":R"@Rz",
o0, (x,y)=(",y) if UnU, #0
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so that ,
{X =glu(x)’ x=p(x),

V' =g, (x)y,
where & = {(U,, ¥,), gl#M, u € A}, and the maps
gw:UAnUﬂ———»If;
gg,, :p(Ul) ﬂp(Uﬂ) — GL(n, R)

take on values in the Jacobian matrices of coordinate transformations of M .
Let F be a subgroup of O(3n) consisting of elements of the following

form:
(A 0_)1" {AeO(n),
\B C/p, C € p(U(n)) C O(2n),

—
n. 2n

where p : U(n) — O(2n) is the standard map. Then we can reduce the
structural group of the above jet bundle to F x O(n) . Now we define a closed
subset £ of M(3n, n; R) as follows. Consider the natural correspondence:

$:MQ2n,n;R) — M(n, n;C)
A ,
2{(B> —— (A + iB).
Set X, = M(n, n; C)—-GL(n,C). Then X, isa closed subset of real codi-

mension two. Write X, = ¢'l(21). The set X, is also a closed subset of
M(2n, n; R) of real codimension two. Put

M(3n,n;R)DE=M(n,n;R)e)22.

Then T is a closed set of codimension two. Further X is invariant under
the action of F x O(n). Hence, we may consider a sub-jet bundle J; of the
jet bundle J 1(M , E), whose fiber is . Then J; is also a closed codimen-
sion two subset of J l(M , E). Put

1
Q=J'(M,E)-J,.

The definition of Q implies that Sect(X ', Q) corresponds to @ under ¥ .
Therefore, Sect(X , Q) corresponds to cTr! (M, &) under ¢.
Now Theorem 4.1 applied for Q confirms that

J':Sect(X, Q) — Sect X', Q)

is a weak homotopy equivalence. Hence, we have proved the theorem. 0O
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§5. Notes

1. Almost complex structures on closed manifolds are not in general inte-
grable; Frohlicher showed the existence of an nonintegrable almost complex
structure on S° . See A. Frohlicher, Zur Differentialgeometrie der komplexen
Structuren, Math. Ann. 129 (1955), 50-95.

Later Van de Ven showed that there exists an almost complex structure
which is not integrable on a four-dimensional manifold. See A. Van de Ven,
On the Chern numbers of certain complex and almost complex manifolds,
Proc. Nat. Acad. Sci. USA. 55 (1966), 1624-1627.

Recently S. T. Yau showed the existence of a four-dimensional closed par-
allelizable manifold (hence, an almost complex manifold) without complex
structure. Also N. Brotherton constructed an example similar but different
from the Yau’s. See S. T. Yau, Parellelizable manifolds without complex struc-
ture, Topology 15 (1976), 51-53, and N. Brotherton, Some parallelizable four
manifolds not admitting almost complex structure, Bull. London Math. Soc.
10 (1978), 303-304.

The above works by Van de Ven, Yau, and Brotherton are all based on
Kodaira’s work (1) .

2. Almost complex structures of open manifolds of dimensions less than
or equal to six, on the other hand, can be made integrable through homotopies
by Theorem 6.1 (Adachi [C1, C2]).

So far no examples of open manifolds with almost complex structures not
admitting complex structures are known.

(l) K. Kodaira, On the structures of compsct complex analytic surfaces 1, Amer. J. Math. 86

(1964), 751-793; 11, Amer. J. Math. 88 (1966), 687-721; 111, Amer. J. Math. 90 (1968), 55-83;
IV, Amer. J. Math. 90 (1968), 1048-1066.



CHAPTER VII

Embeddings of C*° Manifolds (continued)

In this chapter we discuss embeddings centered around Haefliger’s theo-
rem which is the most fundamental in the theory of embeddings. Haefliger’s
theorem contains the classical theorem of Whitney given in Chapter II as a
special case. Haefliger gave two proofs for his theorem. Here we take up the
second proof and introduce briefly a generalization of Whitney’s method of
eliminating double points of completely regular immersions given in Chap-
ter I and the works on embeddings of complexes by van Kampen (l) , Wu
[C24], Shapiro [C16], etc.

§1. Embeddings in Euclidean spaces

Let V be an n dimensional C* manifold and let 4, be the diagonal
set of V' x V', that is,

VxVod,={(x,x)|xeV}.
DEFINITION 7.1. We say that a continuous map
F:VxV—4,—8""
is equivariant or Z,-equivariant if F satisfies the relation
F(x,y)=-F(y, x), x,yeV, x#y.

A homotopy {F,}, F,: V xV —A, — S"" is equivariant if for each
t € [0, 1], F, is an equivariant map. Two equivariant maps F and G
are equivariantly homotopic if there is an equivariant homotopy connecting

F and G; in this case we write F ~ G or F ~ G. Evidently = is an
€ 2
equivalence relation.

Let f: ¥V — R” be an embedding, and define the associated map f as
follows:
Fivxv-4,—s"",
7 fx)—fO)
X,y) =
oI = 170 = F )

(1) E. van Kampen, Komplexe in euklidischen Raumen, Hamburg Abh. 9 (1933), 72-78.
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n f is clearly an equivariant map. Further, iftwomaps f,g:V — R"

isotopic, their associated equivariant maps f and g are equivariantly
10topic.

‘HEOREM 7.1. Let V bean n-dimensional C™ manifold. The assignment
ach embbedding f : V — R™ to its associated equivariant map f:
V-4, - S™! gives rise to a map @ of equivalence classes:

f: V — Rm , embeddmg}/g
L {F:V V-4, ™", equivariant map}/ =.

"map @ enjoys the following properties:
(@) If 3(n+1) <2m, @ is a surjection.
(b) If 3(n+1) <2m, @ is a bijection.

fenceforth the range for (n, m) with 3(n +1) < 2m will be referred
s the stable range. We postpone the proof of this theorem till in a later
ion; here we state some facts which follow routinely from the theorem.

YEFINITION 7.2. We define an equivalence relation ~ in V' x V — 4, by

x,»)~@,x), x,yeV, x#y,
_denote by V" the quotient space of V' x V' — 4,, under ~. We say that
is the reduced symmetric square of V.
~onsider the following relation in (V' x V —4,) x smh

m—1

(x,y;8)~,x;-s), Xx,yeV,x#y, seS
E be the quotient space of (V' xV —4)x S™ ! Define p: E— V" by
p(lx,y;sD) =[x,y
n (E,p, V") is a fiber bundle whose fiber is $"™! with the structural
up Z,, which is an associated bundie of the double covering space V' x
-4, — V*.
he following lemma is trivial.
“EMMa 7.1. There is a one-to-one correspondence between equivariant ho-
topy classes of equivariant maps of V. xV —V, into S™! and homotopy
sses of sections in the fiber bundle (E, p, VY.

This lemma together with Theorem 7.1 reduces the question of the exis-
ce of embeddings of an n-dimensional C™ manifold ¥ in R” and their
ssification by isotopies within the stable range, to the question of the exis-
ce of cross sections of the fiber bundle (E, p, V") and their classification
homotopies.

CoROLLARY 7.1. Within the stable range the classification of the embed-
gs of an n-dimensional C* manifold V in Euclidean space R"™ does not
vend on the C™° structure of V.

This is evident from the above comment.
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COROLLARY 7.2. Within the stable range any two embeddings of the n-
dimensional sphere S" in Euclidean space R are isotopic.

LEMMA 7.2. The reduced symmetric space (S")" of the n-dimensional
sphere S" has the homotopy type of the real projective space RP".
Proor. Consider the following commutative diagram. 0O
xe 8§ — 8§"x8" -4 35 (x,-x)

I L1

[x] eRP" —— (") > [(x,-x)]
PROOF OF COROLLARY 7.2. We show that if ¥ = S” any pair of cross

sections s, and s, of (E,p, V") are homotopic in the stable range. The
obstructions for this homotopy are in the cohomology groups

H'W', &™), i=1,2,...,
") = 28" @ Zp)
with local coefficients associated with the covering V' xV -4, — V" (Steen-
rod [A7]). We have n <m — 1 in the stable range 3(n + 1) < 2m; hence,
by Lemma 7.2 H'(V", 17[(5’"'—1)) =0 forall i > 0. Now Corollary 7.2

follows from Theorem 7.1 and Lemma 7.1. O
PROOF OF THEOREM 2.3.

LEMMA 7.3. If V is k-connected, the cohomology groups with local coef-
ficients associated with the double covering V x V — 4, — V™ satisfy the
Sollowing :

HY" , O_(&" =0,

ReMARK. Note that the lemma is independent of the choice of m.

PrOOF. Let Z' be one of Z and Z, , the twisted integer system associated
with the double cover ¥ x ¥V — 4, — V", and let Z be the other. Since
n j(S"'_l) is a finitely generated Abelian group it is a direct sum of cyclic
groups. Hence, it suffices to show Hi(V', 7 ® Zp) =0, i>2n~-k, for
every prime number p. Looking at the cohomology exact sequence whose
coefficients are the exact sequence

o—az’—az’—.z’®zp—»0,

H WV, (&™) =0,
v M) } > 20k

we see that it is sufficient to show H'(V*,Z)=0, i>2n—k.
Consider the Thom-Gysin exact sequence for V' x V -4, — V" regarded
as a sphere bundle (cf. Spanier {A6], Steenrod [A7])

s HW xV-4)—HY Vy—HY"V",Z"
S HYM WV xV -4y — .
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1e proof will be complete when we show H Y xV-4)=0, i>2n- k,
\ce in this case we have by the exactness H'(V*,Z) = H*'(v*,2"),
> 2n — k , and these groups are 0 for i > 2n, where dim V" =2n.
However, by the Lefschetz duality theorem (Spanier [A6]) we have

H'VxV-4,)=H, (VxV,4,).

sing the Kiinneth formula and the fact that V' is k-connected, we see that
> right-hand side is zero for 2n—k <i<2n. O

PROOF OF (a). We assume that V' is a closed n-manifold which is k-
nnected. If m = 2n — k then by the assumption 2k + 3 < n, the
ir (n, m) satisfies the inequality 3(n + 1) < 2m. The obstructions to
2 existence of cross sections of (E, p, V™) lie in the cohomology groups

HY , O_&" ", i=1,2,..
th local coefficients associated with the covering V x V — 4, — V" (cf.
senrod[A7]). But by Lemma 7.3 we have
Hy , _&"")=0, jz2-k

snce, the above cohomology groups are 0 for all i > 0, and so we have
oved part (a) of the theorem.

PRrOOF OF (b). The obstructions for cross sections s, and s, of (E, p, 1288]
be homotopic lie in the cohomology groups

HE &™),  i=1,2..

th local cofficients associated with the covering space V x.V — 4, — |2
it by Lemma 7.3 these groups are zero for all [ > 0. Hence, we have
oved part (b) of the theorem. O

$2. Embeddings in manifolds

In the remaining sections of this chapter, we follow Haefliger’s paper [C9l.
DEFINITION 7.3. Let X and Y be topological spaces, and let F : X x X —
x Y be a continuous map. We say that F is equivariant or Z,-equivariant
for each point (x,, x,) of X x X, we have

F(xl,xz)z(yl,yz)er Y,
F(XZ, xl) = (yza yl)'
e say that F is an isovariant map if F is equivariant and satisfies
—1
F{4,) =4y,

here 4, and 4, are the diagonal sets of X and Y respectively. A ho-
otopy F,: X x X - Y xY is equivariant if for each ¢ € [0, 1], F,
an equivariant map. Two equivariant maps F and G are equivariantly
wmotopic, F =~ G, if there is an equivariant homotopy connecting them.
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A homotopy F,: X x X — Y xY is isovariant, if F, is isovariant for
each t € [0, 1]. Two isovariant maps F and G are isovariantly homotopic,
F ~ G, if there is an isovariant homotopy between them. Evidently the ~

e

1
and the =~ are equivalence relations.

1
DEFINITION 7.4. Let f, g : X — Y be continuous maps, and suppose
there are two homotopies {#.} and {h;} between them. By a homotopy
connecting these two homotopies we mean a continuous map

H:XxIxI—Y, I1=1{0,1],

such that if 4_ (x) = H(x,1,1), we have the following
@) heo=hes by =hy,
. !
(ii) h0’1=ho=hg=f, huzh1 =h =g

When such a homotopy exists we say that the homotopies {4 } and {h'T}
are homotopic and write {h_} =~ {h;} . Clearly this is an equivalence relation.

THEOREM 7.2. Let V be an n-dimensional closed C* manifold, and let
M be an m-dimensional C* manifold.

(a) Suppose 3(n+1) < 2m. Then a continous map f:V — M is homo-
topic to an embedding g if and only if there exists an equivariant homotopy
H:VxV—MxM,

satisfying the following:
(i) Hy=fxr.
(ii) H, is an isovariant map.

Further, we can choose g so that g x g is isovariantly homotopic to H, .

(b) Suppose 3(n+1)<2m. Let f,8:V - M be embeddings. Then
a homotopy {f,} between f and g is homotopic to an isotopy if and only if
there exists an equivariant homotopy

tht:VxV—>MxM, 7,t€[0, 1]

such that

(i) H o=/fx1

ii) H. , is an isovariant homotopy.
1,1

The proof of Theorem 7.2 shall be given in the next section; here we state
one of its easy consequences in the following

COROLLARY 7.3. The classification of the embeddings of V in M in the
stable range does not depend on the C* structures of V and M.

The corollary is obvious by Theorem 7.2.
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Ax)

1 O

ol 1 £
FiGure 7.1
PrOOF OF THEOREM 7.1. We look at the following diagram; M = R™:

{f:V - R", embedding}/ =¥ (H:V xV - R" xR", isovariant}/ =
’
/
@ 4
v
{¢:V xV—4,— 8", equivariant}/ =

Here we defined @ in Theorem 7.1, and we define ¥ via Theorem 7.2:
Y(f)=fxf. Define 4 by AH)=H;

) _ (e xp) = byl %)
H(xl ’ x2) B |h1(x1 s x2) - hz(xl > x2)| ,

where H(x, , x,) = (h,(x;, X;), hy(xy 5 X3)) -

Then H is an equivariant map. Further, the above diagram commutes.
Hence, if 4 is a bijection, Theorem 7.1 follows from Theorem 7.2.

We show that A is surjective. Consider an equivariant map

m—1

p:VxV-—-4,—S )
and define
H¢:V><V-—>Rm><Rm

as follows. Choose a sufficiently small tubular neighborhood Ul of the di-
agonal set 4, in V' xV, 4, cUcCVxV. Let A:R' >R bea C¥
function such that

(i) A is monotone increasing,
(i) Ax)=0, x<0, Ax)=1, x>1,
(ili) 0<A(x)<1, xR
(Figure 7.1).
Define a C™ function g on U, u:U — R, by

u(x, y) =Ap((x,¥), 4y)),
where p is a Riemannian metric in U. Now set

u(x » X )(¢(x s x2)7 _¢(x1 s xz))’ Xl 7é Xy
H¢(xl,x2)= { (O’lo)’Z ! x‘ =)C2.
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Then H, is an equivariant map which satisfies H; 1(AR”.) = 4,. Set
A(Hy) = H¢ ; we then have

B(x,, %) + 605, %) _
[60x, > ) + (x5 %,)]

In a similar manner we can show that A is injective. 0O

FI¢(x1 . X2) = ¢(x1 > -xz)-

§3. The proof of Theorem 7.2

As in Chapter 2, for the proof of Theorem 7.2 we first consider immersions
and then go on to embeddings.

Let ¥V and M be manifolds of respective dimensions n and m, and let
Jo, f1:V — M be embeddings. It is evident that if f;, and f, are isotopic,
then they are regularly homotopic. We have the following routine

LEMMA 7.4. Let f:V — M be an immersion. For fx f:V xV —
M x M, the set A, is open in (f x f)—'(AM).

THEOREM 7.3. Let V be an n-dimensional compact C™ manifold, and
let M be an m-dimensional C™ manifold.

(a) Assume 3(n+ 1) < 2m. An immersion f:V — M s regularly
homotopic to an embedding f, if and only if there exists an equivariant ho-
motopy H,:V xV — M x M such that

(i) Hy=fxf, H, isisovariant, and

(ii) forall t in [0, 1], 4, is an open subset of Ht—!(AM).

Further, we can take f, x f, to be isovariantly homotopic to H, .

(b) Assume 3(n+1) < 2m. Let f,, f; : V — M be embeddings. A
regular homotopy {f,} connecting f, and f is regularly homotopic to an
isotopy { f:’} between f, and f, if and only if there exists an equivariant
homotopy H, ,:V xV — M x M satisfying the following:

() H,,=/fx f.» H,  is an isovariant homotopy.
(i) Hy,=toxfo, H  =fixf.
(iii) Forall t and t© in [0, 1], 4, is an open subset of H;:(AM).

Here by a regular homotopy connecting {f,} and { ﬂ} we mean a homo-
topy {F, ,} satisfying

(1) Ft,():fr’ Ft,l =f41’ FO,t=j(‘)’ Fl,t =f1'
(i) Foreach 7 and ¢ in [0, 1], F, , isan immersion.
We shall prove Theorem 7.2 assuming Theorem 7.3. But first we give a
preparatory discussion on the Haefliger-Hirsch theorem.
Denote by Mon(T(V), T(M)) the set of all bundle monomorphisms of
T(V) in T(M) with the compact-open topology. We say that a continuous
map ¢ : T(V) — T(M) sending a fiber to the corresponding fiber is isovariant



164 VIL. EMBEDDINGS OF C*™ MANIFOLDS (CONTINUED)

if for each x € V the restriction of ¢ to T, (V) satisfies

o(=&)=—p©&), ¢ (0)=0.

Denote the set of all isovariant maps from T(V) to T(M) by I(T(v),T(M N-
This set is also given the compact-open topology.

Let f, and f; be equivariant maps from neighborhoods U, and U, of
4, in VxV to MxM:

fO:UO———>M><M,
f‘2U1—+M><M.

We say that f, and f; are equivalent if there exists a neighborhood U of
4, , 4, c U cUynU,, such that fIU = f1U. Let I(4,,, 4,/) denote the
set of equivalence classes of isovariant maps from neighborhoods of 4, to
M x M. We give I(4,,, 4,,) the compact-open topology.

Let Imm(V , M) be the set of all immersions of V' in M endowed with
the C'-topology. Denote the set of topological immersions of ¥V in M by
TOP-Imm(V , M); this set too is given the compact-open topology.

We consider the following diagram:

Imm(V, M) —%— Mon(T(V), T(M))._;

| o| I(T(V), T(M))
TOPImm(V, M) —>—  I(4,, 4,,) 5

Here d is a continuous map which assigns to an immersion f its differen-
tial df; & assigns to f the germ of fxf:VxV—o>MxMin 4,; i
and j are inclusion maps. We define € as follows. Give V and M each
a complete Riemannian metric. (2) Then we have the map exp: T(V) =V
sending X € T (V) to the end point of the geodesic starting at x of length
| Xli. Define e, : T(V)—V x V by

ey (X) = (exp X, exp(—X)).

The restriction of the map ¢,, to some neighborhood U of the zero section V'
of T(V) defines a diffeomorphism between U and some neighborhood of
4, . We have a parallel situation for e, : T(M) - M x M. Now define &
on I(T(V), T(M)) by

Oy)=e,owoe, . yelT(V), T(M)),
and let 0 be the the restriction of & to Mon(T(V), T(M)).

(2) We can always do this. See Nomizu and Ozeki, The existence of complete Riemannian
metrics, Proc. Amer. Math. Soc. 12 (1961), 889-891.
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THEOREM 7.4. (i) The diagram above induces the following commutative
diagram:
(Imm(V, M)  —=— ,(Mon(T(V), T(M)) __ ;.
|- |e- T e, Tony
7,(TOPImm(V , M)) —=—  w(I(dy, 4y)) /

(ii) 6, o1, isa bijection for 3n+1<2m,
8,01, is a surjection for 3n+1<2m.

PrOOF. (i) The commtativity in the triangle is obvious by definition.
The commutativity in the rectangle on the left follows from the fact that
the tangent bundle of V' is equivalent to the normal bundle of 4, in V' xV

TWV) 25 UcVxV

l !

V_d__, 4,

.where 4(x) = (x,x). (6 assignsto amap f: M — V its topological

differential df . (3)
(ii) This follows from the three facts.

(a) 6 isa bijection.
(b) j* is a surjection when 3n+ 1 < 2m, and it is a bijection when
3n+1<2m.

(Haefliger and Hirsch [C11]; this is profoundly related to the homotopy
groups of Stiefel manifolds).

(c) d, issurjective when n < m; this was the Smale-Hirsch theorem (cf.
Chapter III).

ProOF oF THEOREM 7.2. (a) the if part is obvious. We want to show the
converse. Give each of ¥V and M a Riemannian metric, and consider the
product metricon V' xV and MxM.Let §:4, - R bea positive-valued
C* function.

The hypothesis 3(n + 1) < 2m implies 3n + 1 < 2m; therefore, by The-
orem 7.4, f is an immersion and further we may assume that when we
restrict f to some J-tubular neighborhood U; (for a very small ¢) of 4,
there exists an isovariant homotopy Hf : Uy — M x M between fxf and
H, .

The J-tubular neighborhood Uy of 4, is the set of endpoints of geodesics
in ¥ x V, starting at points (x, x) of 4, orthogonal to 4,,, and of length

(3) Milnor, Microbundles 1, Topology 3 Suppl. (1964), 53-80.
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FIGURE 7.3

ss than or equal to 6(x). If we take & small enough, these geodesics
arting at different points of 4,, do not intersect.

Let ¢ be sufficiently small so that we may assume our isovariant homotopy
itisfies the following:

a) Hf=H,|U5 near t=0,t=1.
b) Hf=Ht on 4,.
et A:[0,1]— R bea C™ function (Figure 7.2) such that
i) A0)=1,i1)=1,
(i) 0O<A(t)y<1,0<t<1.

We now define a new equivariant homotopy H, by

[ Hon ()
"1 H on U
t 16"
On U,-U,, we define H,' as follows. Suppose that a point z of U;—U,
on a geodesic starting at (x, x) in 4, and orthogonal to 4, . Suppose
irther that this geodesic intersects 8U,; and 38U, at z; and z,, respec-

vely. Then Ht' (z) is defined to be the point on the geodesic (unique if )

§4. PROOF OF THEOREM 7.3 167

is small enough) connecting Hf (z,) and H/(z,) in M x M such that
z,2: 22, = H (2,)H.(2) : H(2)H/(z,)

(see Figure 7.3). The map Hl' is an equivariant homotopy which is equal to

fxf for t=0 and to H, for ¢ = 1. Further, 4, is open in H'—I(AM).

t
Hence we have shown part (a) of Theorem 7.2. The proof of (b) is similar. O

§4. Proof of Theorem 7.3

Now we shall outline the proof of Theorem 7.3; the method we use here
is a generalization of the way we eliminated double points of a completely
regular immersion.

A. Construction of a standard model for a deformation eliminating double
points. We construct a model having the following properties: L, L' are
C* manifolds, @ : L — L' is an immersion and &, : L — L’ is a regular
homotopy with @, = ® such that

(1) @, is an embedding.
(2) @,|K° = Dy|K°, K a compact subset of L.
We start with the following three objects (Figure 7.4):
(i) A compact manifold D with a fixed-point free involution J : D —
D,J*=1 J(x)#x forall xeD.
(ii) A C* function A:D — [—1, 1) such that
(a) AoJ =24;
(b) A7'(-1)=0D,
(c) di#0 on A7Y0).
(iii) A vector bundle £ = (L, p, D).
Consider I =[—~1, +1] and let D' = D x I/ ~, where
d,t) ~(J(d), -1), deD,tel.
Then D’ is a fiber bundle with the base space D/J and fiber I.

We construct a vector bundle L’ over D’ as follows. Let a : DxI — DxD

be-a map defined by o(d, t) = (d, J(d)), and let
E=(L,p,DxD), <=a'Ex0);
thatis, L = {(,, Liay> Ol € Ly, Liay€Lygy-tel, de D}, where L,
denotes the fiber over d. Define L' by L' =L/ ~,

(Id’ lJ(d) y 1)~ (_l_](d) ’ -ld , —t).

We denote the elements of D’ and L’ containing (d, ) and (/;, 4, 0),
respectively, by {d, ¢] and [/, ! 7]+ Then

LI———+DI,
[ldal_](d)at]H[d7t]
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FIGURE 7.4

is the desired vector bundle. Define an immersion ¢ : D — D' by (p(d)
[d, A(d)]. dentifying D and D' with the zero-sections of L and L', we
extend ¢ to an immersion .
®:L— L,
¢(ld) = [l > Oa l(d)]'
The set of pairs of double points of @ is {(d, J(d))|d € Dy} where

Dy, =4 "y (0) c D c L. Since A has no critical points in D, two local
components of @ (L) are in general position and their intersection is ¢(D0)

Now to construct a regular homotopy &, : L — L' we first consider a C™
function u: D — R satisfying

0<u(d)<id)+1,
u(d) + u(J(d)) > 2A(d),
w(d)=0if Ad)<-1/2.
A function u satisfying the above specifications exists. For instance consider
a C* function g :D — R such that
0< B <L,
B(d)=0 if Ad)<-1/2,
pdy=1 if Ad)>0,
and define u by [t(d) (Ad)+1/2)p(d).
Define ¢,: D — D' by

p(d)=1d, Ad) —tu(d)},  te€l0, 1]
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Then the @, constitute a regular homotopy such that ¢, = ¢ and ¢, is an
embeddlng If [d A(d) wd)] =1[d, rd) - u(d)], we have (d, A(d) —
w(d)) ~ (d', Md") — u(d')) . Hence, by definition d = d' or

d=Jd), Ad)-pud)=-d)-ud)

Since A(d') = A(d), we must have 24(d) = u(d) + u(J(d)), and hence,
d=d'.

We assume the structural group of the vector bundle L is an orthogonal
group, i.e., we think of L as a Euclidean vector bundle so that each fiber of
L has a Euclidean metric. We denote by ||/,]| the length of an element l,
of the fiber L; over d. Let o : R — R be a bell-shaped function (Flgure
7.5):

(i) «(R) =10, 1].
(i) a(0)=1, a(x)=0, |x|>€, €>0.

Now define @,: L — L' by

D,(1,) =1y, 0, Md) — a(ll;)tu(d)]-

Then the {®} is a regular homotopy such that ¢, = @ and @, is an
embedding. Further, @, does not move outside some compact set.

B. Selection of a model. In the hypothesis of Theorem 7.3 (a) we may
assume that f : V — M is in general position, that is, the map fxf:
V xV — M xM istransverse to 4,, at each pointof V' xV —4,. This fact
follows from the Thom transversality theorem (cf. §5, Chapter I). We may
also assume that no triple points exist since 3n < 2m . This can be shown in
a similar way as in the proof of Theorem 2.8.

We may assume that an equivariant homotopy H, is defined for ¢ €
[-1, 1] = I and satisfies the following:

(1) The C* map
H:VxVxI—>MxM,
H(v,, v,, ty=H,(v,, v,)
is transverse to 4,, outside 4, x I in which case 4 = H_'(AM) -4, x1Iis
a closed submanifold of V' x V' xI.

(2) Let p,, p, : V x V x I be the projections to the first and second
components. Then p, =p,|4:4 — V is an embedding.
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(3) Let t: V xV xI—V bethe projection onto the third component.
Then O is not a critical value of ?|4:4 — 1.

The conditions (1) and (3) are satisfied by Thom’s transversality theorem
(§5, Chapter I). Here we do not require any restrictions on dimensions.

As for condition (2) notice that 3(n+1) < 2m implies 2dim4 < dim/V,
and hence, we may use Whitney’s embedding theorem (§4, Chapter II) (we
can redefine H, so that p|4 is an embedding). Now to construct the
model &,: L — L’ suggested in A we take for (i), (ii), and (iii) the following:

@) D=p,(d)=p,(4), J=pyo0;
(i) A:D—1, A=top]'.

(iii) The normal bundle of D in V' for the &= (L,p,D). We have

p(4)=p,(4) and JoJ =1 since the H, are equivariant.

C. Application of the model. We shall construct diffeomorphisms
w.L,—V, ¥:L —M,
where L, ( respectively, L; )is an e-neighborhood (respectively, ¢'-neighbor-
hood) of D (respectively, D')in L (respectively, L) such that
(@) fo¥=Y¥oo,
() [HELY) = P(L,)-
Next we set
Fw) = { Yo oV '(v), ve¥(L),
SR B OF v ¢ P(L,)

Then the {f,} is a regular homotopy such that f = f and f| isan embed-
ding. This shows the “sufficiency” part of Theorem 7.3 (a). The “necessity”
part is obvious.

Constructing these ¥ and ¥' constitutes the hardest part of the proof.
We shall accomplish this in three steps.

Step 1. We construct embeddings

' v:D—V, v :D—M
such that

(@) fow=v'op,

—1 7

(b)) [ oy (D) =w(D),

(c,) V(D) is transverse to f(V) along f(y(D)), i.e., for each point d
in D, (df)w(d')(Tw(.d)(V)) and (d‘/’,)w(d)(Tw(d)(Dl)) intersect transversely in
the commutative diagram

'
Tya(V) Troya)(V)
(dw),,T T("“")wu)

(do) )
T, (D) ——% T,,(D"

@n wid)

§4. PROOF OF THEOREM 7.3 171

and f(V)ny'(D') = f(w(D)).
As before welet p,, p,: V' x ¥V x I — V be the projections onto the first
and second components. Similarly, we define p; and py: M x M — M .
The map y shall be the inclusion of D in V. As for the w' the restric-
tion v’ = y'|g(D) is defined by the condition (a, ). Set

A={[d,feD0<t<id)},

and

god, fl=p o H(d, J(d), (d) 1),  1d,t]l€4
Then l/_/(l) is a continuous extension of n//(; over A. Since A is a deformation
retract of D', we get an extension ' : D' — M of ;.

On the other hand, we have dimD < m — n, and so, we can extend
!//(; : p(D) = M to an embedding y/{ of a small neighborhood U of ¢(D)
in D' such that

W;(U) and f(V) are transveral along f(D),
y(U)N f(V) = f(D)
(this follows from Lemma 5.2 .in Shapiro [C 16]). Finally, applying the
Whitney embedding theorem with 2 dim D' < dim M we obtain an embed-
ding y': D' — M satisfying

(@ v~y

(B) w'|U(D) = w||U(D), where U(D) is some neighborhood of D.

() SV —wD)ny'(D)=p.

The condition (y) follows from dim D' +dimV < dimM . The con-
dition (B) implies the condition (c,), and the condition (y) implies the
condition (b ).

Step 2. We construct vector bundle monomorphisms

y: L — T(V), y' L' — T(M)
such that
() wiD=w, ¥'ID' =y,

(i) (@dN)oy=y'o®,

(iii) (L) (respectively, y'(L")) is the normal bundle of T(D) (respec-
tively, T(¥'(D'))) in T(V)|D (respectively, T(M)|y'(D")).

Recalling that L is the normal bundle of D in V' we simply take the
inclusion map for ¢ .

To construct ' we first define a C® map & : D — M by &(d) =
w'[d, 0]. The map satisfies o J =&

LEMMA 7.5. Denote by N(V , D) the normal bundle of D in V. Then
there exists a vector bundle monomorphism

E:N(V,D)o, NV, D) — T(M)
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such that
(V)] & induces &,
(1) f(l > lj(d)) = _é(lj(d) ’ ld):
@) &y, L) = (@)Uy) — (@f Wy, d€Dy=47'(0).

Here N(V, D)@, N(V, D) means (1 x JY(N(V,D)x NV, D)).
PrROOF. Let m; and =, be the restrictions of p, and p, to 4. Since =,
is an embbedding of 4 in V, the normal bundle N(V x V' x I, 4) is the
Whitney sum of T(V)|D(D = p,(4)), N(V, D)(D = p,(4)), and the trivial
bundle €:
NV xVxI,d)~aNV,D)en,"N(V,D)&n,T(D)®e.
Hence, we get a vector bundle isomorphism
NV xVxI,4) —— NV ,D)o,NV,D)yoT(D)®c .

l l

L)

A4 —_ D
On the other hand, H is tranverse to 4,, on 4, therefore,

NV xVxI,4)~ (HA)NMxM, 4,,).
But we have

1\ *
N(M x M, 4,,) ~ (p,) T(M).
From these bundle isomorphisms we get a bundle monomorphism
E:NWV,D)o,NV,D)oT(D)de — T(M)

l !

D p:oHonl_‘ M
Define amap ¢ : N(V,D)®, N(V,D)® T(D)®e « by
(lys Lyays tas © = Uyay Lo tyay» €)s
where [, (respectively, / 1) ) is a vector normal to D at d (respectively,
J(d)); t; € T/(D) and t;, = (dJ),(t,;). Then o is a vector-bundle invo-
lution and satisfies = o 0 = —Z because H, is equivariant.

Finally, =, restricted to the portion over D, in N(V, D)&, N(V, D)&0
reduces to (df) &, (—df) 0.

The construction of ¥’ in the first step implies the existence of a homotopy
connecting p; oHo nl_l and & : D — M, which is invariant under J and
which is left fixed in D, . Therefore, Z is homotopic to a monomorphism & !
satisfying:

(ia) E' induces &.
(iig) Eooc=-Z.
wes — —
(iiiy) E'|Dy=E|D,.
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Now we want to construct the desired £. Before doing so we need the
following

SusLEMMA. Let B be a complex, and let A be a subcomplex of B. Let
E=E ®E, and E' = E, ® E, be Whitney sums of vector bundles over B.
Suppose that ¢ : E — E' is a bundle isomorphism whose restriction over A
is the direct sum a:) ® 0'3 of bundle isomorphisms

o E|A— E||4, 0 :E,|4 — EjA.

We assume that o-? can be extended to an isomorphism o, : E, — E| and
that
dim B < dim(the fiber of E, ).
Then there exists a bundle homomorphism o, : E, — E; such that
(i) o, is an extension of ag , and

(i) there exists a homotopy connecting ¢ and 6, ® a,, which is left fixed
on A.

We leave the proof to the reader.
Now back to the proof of Lemma 7.5. In the sublemma we take

E =T(D)®e/~,  (1;,€) ~(~lyq,—€),
E,=N(V,D)®,N(V,D)/~, (Uys Lyay) ~ (=Lyays =1y)-

Then E| and E, are fiber bundles over D/J. Denote by &/J : D/J —
@' (D) ¢ M the induced map of &:D — M . Set

E, = (/D) TW'(D),
Ey=(/J)NM, ¢' (D).

Then as dimD < 2(n — dimD) we may apply the sublemma to obtain
Lemma 7.5. O
We next construct ' : L' — T(M). Recall that L' is the quotient of the
bundle
(Le,L)x[0,1]—Dx[0, 1]

by the equivalence relation (/_, lj(d), t) ~ (—lj(d), —1,, —t). Hence, it suf-
fices to construct a bundle monomorphism

x:(Le,L)x[0,1]— N(M, y'(D)

satisfying the following:
(1) x induces ¥ :Dx[0,1]=D', x'(d,0)=y'ld, 1.
(2) xl(Leo, L)yx0=¢.
(3) (a) x(,;,0,A4d)=df(l,), Ald)=0.
() x(0, —l;, =A(d)) =df(l;), A(d)<0.
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We first construct the restriction Xy of x to (Le,0)x[0,1]. By the
requirements (2) and (3a) X,; has already been defined on Dx {0} and on the
set (d, A(d)), A(d) > 0. The obstructions to extending x, over D x [0, 1]
are in the homotopy groups

TV m—gim D', n—dimp) » i<dimD,
where Vp, 7 is the Stiefel manifold of g-frames in R’ . But we know
ni(Vp,q)zO, i<p-gq.

In our present case these homotopy groups all vanish if

dimD < m —dim D' - (n — dim D),
O<m-—n—-dimD,
that is, if 3n+ 1 < 2m since dimD' = dimD+1 = 21— m + 1. But
3n + 2 < 2m by our hypothesis. Thus, the above homotopy groups are zero
for i <dimD = 2n — m . Hence, we can extend x; over Dx [0, 1].

We next extend X, ' x so that the requirements (2) and (3)(b) will be
satisfied. This is not difficult because the set D x [0, 1] is a deformation
retract of the set

D x{0}u{(d, A(d))[A(d) < 0}.
Now define
, XUy, s t), >0,
V/’[ld B lj(d) 8] = 42 )
x(—lj(d)’ _ld’ “t)a 150-

Constructions of ¥ and V' . First, we construct ¥ in L, for a sufficiently
small € > 0 such that

@P) (T (L)) = ¥(T(L,)), xeD

(consider the exponential map exp )- On the other hand, for ¢(x) = x" ¢ D'
there exists a map y, from some neighborhood U, of x' in L' to M such
that
(dy,) (T (U)) = V(T (UL,

foW= y/; o®
(we can do this by choosing a suitable chart to apply the implicit function
theorem). From this we constructa C*° map ¥’ of some neighborhood U’
of D' in L' into M such that

'

@) (T, (U = ¢ (T(U),  x'eD,
fo¥=¥00.
We can choose € so small that ¥'[L] is a diffeomorphism of L in U'.
Thus, we have shown the sufficiency of (a) in Theorem 7.3. We leave the

"est of the proof for the reader to continue in the original paper of Haefliger
9.
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THE PROOF OF THEOREM 7.3 (b). The method of proof is identical to
that of the above. Replace V by V x [0,1], M by M x [0, I], and f
by F:V x]|0, 11 - M x [0, 1] defined by F(v,t) = f(v). Then the
condition 3(n +2) < 2(m+ 1) becomes 3n+1)<2m. o




Afterword

Chapter 0 featured Whitney [C20] as a means for giving the reader an
intuitive preview of the book.

In Chapter I we dealt with the fundamentals of differential topology— C”
manifolds, C" maps, fiber bundles, and other related concepts; we limited
our discussion both in selection and scope to the parts essential for this book.
For more in-depth information on the subject, we recommend Differentiable
manifolds by Y. Matsushima.( )

In Chapter II we discussed embeddings of manifolds, our focal point being
Whitney’s embedding theorems [C19], [C21]. Here we used, among other
references, the book of Tamura.( 2 ) Our topics in this chapter included a
method for eliminating double points in completely regular immersions. We
saved Haefliger’s generalization of this method for Chapter VIL

The theme of Chapter III was immersions of C* manifolds. Here our
discussion centered around the Smale-Hirsch theory—a natural generaliza-
tion of (the topic in) Chapter 0—and included the theorems of Phillips and
Gromov. The theorem of Gromov encompasses the submersion theorem of
Phillips and is a generalization of the Smale-Hirsch theorem. Consequently,
we presented the proofs of these theorems as corollaries of Gromov’s theo-
rem. For the proof of Gromov’s theorem we followed Haefliger’s presentation
of the subject [B3]. We also mentioned that Gromov founded his theorem
on Smale’s “homotopy covering technique” [C17], “taking an idea out of an
old wise man’s paper”.(")

In Chapter IV we introduced yet another generalization of the Smale-
Hirsch theory. Gromov’s integration theory [C5], unlike his theorem in
Chapter III, does not require openness for the base spaces of jet bundles.
This constitutes an essential difference between these two works. Here we
used a report paper of Shigeo Kawai. In our opinion this chapter points to a
_ promising future direction for the subject of this book.

We presented in Chapter V an application—Haefliger’s classification the-

( ! } Y. Matsushima, Differentiable manifolds, Marcel Dekker, New York, 1972.
(2 ) L. Tamura, Differential topology, Iwanami Shoten, Tokyo, 1978. (Japanese)
(*) Editor’s note. The phrase in quotes was added in translation by the author.
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orem for foliations of open manifolds—of the theorem of Gromov in Chap-
ter ITl. We recommend Tamura [A9] for the fundamentals of foliation theory.

We devoted Chapter VI to complex structures on open manifolds as an ap-
plication of the theorems of Gromov in Chapters Il and IV. The integrability
of almost complex structures on open manifolds of arbitrary dimensions re-
mains unsolved to date.

We gave an outline of a proof of Haefliger’s embedding theorem in Chap-
ter VII. As we mentioned above, we had wished to shed some light on the
fact that Haefliger’s proof is a natural extension of Whitney’s method as
used in eliminating double points of immersions; we are somewhat dubious
as to what extent we succeeded in doing so. We feel that finding a sufficient
condition, independent of connectivity, for the existence of embeddings of
manifolds is a major open problem in this field.

We did not mention Haefliger’s alternative proof for his embedding the-
orem [C8]. This is based on the so-called Whitney-Thom theory concerning
singular sets of differentiable maps.

We also omitted any solid application of the Smale-Hirsch theory to man-
ifolds; for this we refer the reader to Smale {B9] and James [B4].

From the historical perspective we marvel at the evolution of the simple
sroblem of Chapter 0 as developed throughout our book to its present stage,
ind we expect further progress in the future.

Adc}lendum. A videotaped version of the main topic of Chapter 0 is avail-
ble.(7)

3 o
(") Regular homotopies in the plane, International Film Bureau Inc., Chicago, Illinois.
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Isovariantly homotopic (isovariant maps),
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Jet bundle, 36
Jump point, 80

k-connected space, 46
Klein bottle, 16
k-mersion, 116
Knot theory, 46

Lie group, 19
Limit set of a map, 55
Linearly independent points, 31

Mobius strip, 10, 16
Manifold
almost complex, 27
8
differentiable, 8
orientation of, 9
parallelizable, 26
presentation of, 95
smooth, 8
Mapping transformations, 21
Measure zero, 47, 48
Monomorphism of vector bundies, 87
Morse function, 40

Nice function, 96
Nondegenerate critical point, 38
Normal r-framefield, 87
n-simplex, 31

Numerable open covering, 131
Numerably homotopic, 131

One-cocycle, 128
One-to-one immersion, 53
Open manifold, 88

Open submanifold, 9
Orthonormal k-frame, 29

Parallelizable manifold, 88
Polyhedron, 32

Pontryagin class, 83

Principal affine embedding, 113
Principal direction, 113
Problem der gestalt, 46
Problem der lage, 45

Product bundie, 22

Product manifold, 10

Proper map, 41

Pseudogroup, 127

Pseudogroup of local diffeomorphisms, 91
Puliback, 27

Rank
of a differentiable map, 12
Reduction, 26
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Regular closed curve
lift of, {
Regular closed curves
deformation of, 3
equivalence of, 1
regularly homotopic, 3
Regular homotopy, 3, 53 .
Regular homotopy (between homotopies),
163
Regular value, 13
Regularly homotopic immersions, 53, 75
r-equivalent
jets, 35
maps, 32
r-extension of a map, 36
Riemannian metric, 26
r-jet, 33
of f at x, 35
regular, 33
Rotation number, 4

Sard’s theorem, 57
Schubert
function, 80
variety, 81
Self-Intersection, 62
of negative type, 65
of positive type, 65
s-handles, 95
Simplicial complex, 32
Skew scalar product, 108
Smale-Hirsch theorem, 87, 114
Stable range, 158
Stably equivalent, 143
Stiefel manifold, 29
Stiefel-Whitney class, 83
Structural group, 18
enlargement of, 26
Subdivision of a triangulation, 90
Submanifold, 10
Submersion, 12
Symplectic transformation, 108
Symplectic structure, 108
linear, 108
standard, 108
System of local coordinates, 8

Tangent bundle, 25

Tangent space, 13
The transversality theorem of Gromov and
Phillips, 137
Theorem of Feit, 116
Thom transversality theorem, 42 )
Topological groupoid associated with Z,128
Topological manifold, 7
Topological transformation group, 17
Topology
fine, 77
strong, 77
Whitney, 77
Torus, 10
Total space, 18
Total Stiefel-Whitney class, 84
Transition functions, 18
Transverse intersection, 60
Transverse map, 42

Transverse to.7 , 134

Transverse to the [-foliation F 136

t-regular map, 42

Triangulated spaces
combinatorially equivalent, 90
isomorphic, 90

Triangulation, 90

Twisted torus, 17

Typical singularity, 114

Underlying almost complex structure, 142
Universal vector bundle, 31

Vector bundle, 30
homomorphism of, 32
Vector field, 26

Weak C' topology, 76
Weak homotopy equivalence, 87
w.h.e-principle, 112
Whitney

duality theorem, 85

topology, 77
Whit:ey’ngmbedding theorem, 46, 56, 67
Whitney’s theorem on completely regular

immersions, 60

Whitney-Graustein theorem, 5

Z;-equivariant, 157, 160






