
HOMOTOPY THEORY AND BORDISM THEORY

MICHAEL WEISS

Warning

These notes are likely to contain many minor and major mistakes. Please
bring them to the attention of the author, gentle reader. In particular, prob-
lems may contain false claims, misprints, and so on.

1. Fiber Bundles

Let B be a space. The category SB of spaces over B is defined as follows.
Objects are continuous maps p : X → B with arbitrary X, and a morphism
from p : X → B to q : Y → B is a continuous map f : X → Y such that
qf = p.
A space over B is called trivial if it is isomorphic in the category SB to an
object of the form

F ×B
projection−−−−−−→ B

(projection from a product to the second factor). Note: It can be difficult
to decide whether or not a space over B is trivial. Try the following:

Exercise 1.1. Let GL(n,R) be the general linear group of Rn, consisting
of all n× n matrices with nonvanishing determinant. Let B be the space of
positive definite symmetric n× n matrices. Show that

GL(n,R) −→ B ; A 7→ AT A

is a trivial space over B.

A more subtle property that spaces over B may or may not have is local
triviality. Say that p : E → B is locally trivial if every b ∈ B has a neigh-
bourhood U ⊂ B such that

restriction of p : p−1(U) −→ U

is a trivial space over U .

Definition 1.2. A locally trivial space over B is also called a fiber bundle
over B (and B is the base space, whereas E is the total space).

Example 1.3. The Hopf fiber bundle is a fiber bundle with total space S3

and base space S2. Think of S3 as the unit sphere in C2, and use stereo-
graphic projection to identify S2 with C∪ {∞}, the one-point compactifica-
tion of C. Then define

p : S3 −→ C ∪ {∞} ; (z1, z2) 7→ z1/z2 .
1
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Here z1/z2 means ∞ if z2 = 0, because then z1 6= 0 since z1z̄1 + z2z̄2 = 1 for
all (z1, z2) ∈ S3.

We check that p is a fiber bundle: First let U = C ⊂ (C ∪ {∞}). Then
p−1(U) is the set of all (z1, z2) ∈ S3 such that z2 6= 0. The map

p−1(U) −→ S1 × U ; (z1, z2) 7→ (z2/|z2|, z1/z2)

is an isomorphism of spaces over U . (Think of S1 as the unit circle in C.)
The inverse isomorphism is given by

(w1, w2) 7→ (w1w2, w1)/‖(w1w2, w1)‖ .

We conclude that p is trivial over U . Next, let V = C ∪ {∞} r {0}. Then
we have a commutative diagram

p−1(U) −−−−→ p−1(V )yp

yp

U −−−−→ V

where the upper horizontal arrow is (z1, z2) 7→ (z2, z1) and the lower horizon-
tal arrow is z 7→ z−1. Both horizontal arrows are homeomorphisms, so if the
left-hand vertical arrow is a trivial space over U , then the right-hand arrow
must be a trivial space over V . In conclusion, p is trivial over U and over V ,
and this is enough since the union of U and V is all of C ∪ {∞} ∼= S2. ¤
Exercise 1.4. Is the Hopf fiber bundle trivial?

Exercise 1.5. Use Hamilton’s quaternions and Cayley’s octonions to pro-
duce fiber bundles

p : S7 → S4 , q : S15 → S8

analogous to the Hopf bundle. Info: The quaternions H form a real 4-
dimensional vector space with basis {1, i, j, k} and associative (bilinear) mul-
tiplication given by

ij = k = −ji, , jk = i = −kj, ki = j = −ik

(and 1 acts as two-sided unit). Note that every nonzero element in H is
invertible. The conjugate of a quaternion x = a + bi + cj + dk is x̄ :=
a − bi − cj − dk (where a, b, c, d are real). Using conjugation on H, define
the Cayley algebra K to be H2, with multiplication given by

(x, y)(u, v) = (xu− v̄y, vx + yū).

This is nonassociative (and noncommutative), but the essential thing here
is that every nonzero element is invertible.

Exercise 1.6. Let E be the Moebius strip, E = S1×R/ ∼, where ∼ means:
identify (z, r) with (−z,−r). As before, think of S1 as the unit circle in C.
Show that

p : E → S1 ; [(z, r)] 7→ z2

is a fiber bundle. Is it a trivial fiber bundle ? (And why z2 in the formula
for p ?)
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Exercise 1.7. Show that the “usual” map Sn → RPn is a fiber bundle. Is
it trivial ?

Exercise 1.8. Let GR2,2 be the space of 2-dimensional linear subspaces
of R4. (Topologize this by identifying it with the set of 4 × 4-matrices A
satisfying A2 = A, AT = A, tr(A) = 2.) Let O(4) be the orthogonal group
of R4, and define

p : O(4) → GR2,2

by sending C ∈ O(4) to the linear subspace spanned by the first two columns
of C. Show that p is a fiber bundle.

The fiber of a fiber bundle p : E → B over a point b ∈ B is the space p−1(b).
The examples above suggest that it is in some sense “independent” of b. (In
example 1.3, all fibers are homeomorphic to S1; in exercise 1.6, they are all
homeomorphic to R; what about exercise 1.7 and exercise 1.8 ?) In general,
suppose that B is path-connected and let b and c be arbitrary points in B.
Then:

Proposition 1.9. p−1(b) ∼= p−1(c).

Proof. Choose a path ω : [0, 1] → B with ω(0) = b and ω(1) = c. For
sufficiently large n, each ω([i/n, (i+1)/n]) (for 0 ≤ i < n) will be contained
in an open set Ui ⊂ B such that p is trivial over Ui. Then

p−1(ω(i/n)) ∼= p−1(ω((i + 1)/n)) 0 ≤ i < n. ¤
Exercise 1.10. Let E = C × S1/ ∼, where ∼ means: identify (z, w) with
(−z,−w). Define p : E → C by [(z, w)] 7→ z2. Is p a fiber bundle ? If so,
what are its fibers ?

Proposition 1.9 has a vast generalization, for which we need some more
language. Let p : E → B be a fiber bundle B, and let f : A → B be any
continuous map, with arbitrary A. We let

f∗E = {(a, e) ∈ A×E | f(a) = p(b)}
(a subspace of A × E, with the product topology). Now we have a space
over A, given by

f∗p : f∗E −→ A ; (a, e) 7→ a .

This is called the pullback (of p, under f).

Proposition 1.11. The map f∗p is also a fiber bundle (with base space A).

Proof. If p is trivial, then it is easy to see that f∗p is also trivial. If {Ui} is
an open cover of B such that p is trivial over each Ui, then one finds again
that f∗p is trivial over each open set f−1(Ui) ⊂ A. Since the f−1(Ui) cover
A, this completes the proof. ¤
Exercise 1.12. Let p be the fiber bundle in exercise 1.6. Let f : S1 → S1

be given by f(z) = zn for some fixed n ∈ Z. For which values of n is f∗p a
trivial fiber bundle?
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Exercise 1.13. Adopt the notation of proposition 1.11.
• Check that the fiber of f∗p over a ∈ A is homeomorphic (canonically)

to the fiber of p over f(a).
• Prove: If A = B and f = id, then f∗p and p are (canonically)

isomorphic as fiber bundles with base space B.
• Prove: For a continuous map g : A′ → A, arbitrary A′, the fiber

bundles g∗(f∗p) and (fg)∗p with base space A′ are (canonically)
isomorphic.

Theorem 1.14. Let p : E → B be a fiber bundle, where B is paracompact
(details below). Let f and g be continuous maps from A to B. If f and g
are homotopic, then f∗p and g∗p are isomorphic fiber bundles over A.

You can see from the technical assumption (B paracompact) that the proof is
going to be difficult. Let’s postpone it. If you don’t know what paracompact
means, please accept that any metrizable space is paracompact.

Corollary 1.15. Homotopy lifting property alias covering homotopy the-
orem: With p : E → B as in theorem 1.14, let f : X → E be any con-
tinuous map (arbitrary X). Let h : X × [0, 1] → B be continuous, and
suppose that h(x, 0) = pf(x) for all x ∈ X. Then there exists a continuous
h̄ : X × [0, 1] → E such that h̄(x, 0) = f(x) and ph̄(x, t) = h(x, t) for all
x ∈ X and t ∈ [0, 1]. Picture:

X × 0
f //

Ä _

²²

E

p

²²
X × [0, 1] h //

h̄

::u
u

u
u

u
u

B .

Proof. First, observe that the maps

(x, t) 7→ h(x, t) and (x, t) 7→ h(x, 0)

are homotopic. Call the second of these u. By theorem 1.14, the fiber
bundles h∗p and u∗p with base space X × [0, 1] are isomorphic. Translating
into “everyday” language what the existence of such an isomorphism means,
we find: there exists a family of homeomorphisms

Jx,t : fiber of p over h(x, t) −→ fiber of p over h(x, 0) ,

depending continuously on x ∈ X and t ∈ [0, 1]. (Make sense of that if you
feel it is necessary; in any case remember the first item of exercise 1.13.)
Now define h̄(x, t) to be J−1

x,t Jx,0f(x). Note that this belongs to the fiber of
p over h(x, t), as it should. ¤
Example 1.16. We shall show that the Hopf map p : S3 → S2 is not
nullhomotopic (i.e., not homotopic to a constant map). Suppose if possible
that it is nullhomotopic. Let h : S3× [0, 1] → S2 be a nullhomotopy (so that
h(x, 0) = p(x) and h(x, 1) = ∗, where ∗ is your favorite point in S2). Since p
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is a fiber bundle, corollary 1.15 tells us that there exists a “lifted homotopy”
h̄ : S3 × [0, 1] → S3 such that ph̄ = h and h(x, 0) = x for all x ∈ S3. Note
that h̄ is a homotopy from the identity map of S3 to a map whose image
is contained in a fiber of p. Thus the identity map of S3 is homotopic to a
non-surjective map; but this is nonsensical (why?). ¤
Exercise 1.17. Note that the graded homomorphism

p∗ : H∗(S3;Z) −→ H∗(S2;Z)

induced by p looks exactly like the graded homomorphism induced by a
constant map, because it has no other choice. This is one of the strange
things about the Hopf map: it is not nullhomotopic, but (co)homology does
not “detect” anything about it. And yet — it does. Recall that the mapping
cone of a continuous map f : A → X is the identification space

cone(f) = (A× [0, 1])qX/ ∼
where ∼ identifies (a, 1) with f(a) and (a, 0) with (b, 0) for all a, b ∈ A.
Prove the following:

• If f is nullhomotopic, then

Hk(cone(f);Z) ∼= Hk(X;Z)⊕Hk(ΣA;Z) k > 0

and the isomorphism is compatible with the cup product.
• For f = p =Hopf map, the mapping cone of p is homeomorphic

to the complex projective plane CP 2. There exists an element in
H∗(CP 2;Z) whose cup square is nonzero.

Exercise 1.18. Let p : M → N be a fiber bundle, where M and N are
compact manifolds (without boundary). Show that p is not nullhomotopic.

Exercise 1.19. Let p : S3 → S2 be the Hopf fiber bundle. Let f : S2 → S2

be any continuous map. Show: if the degree of f is nonzero, then f∗p is
a nontrivial fiber bundle; if the degree of f is 6= ±1, then f∗p and p are
non-isomorphic fiber bundles over S3.

2. Homotopy invariance of pullbacks of fiber bundles

This is about the proof of theorem 1.14 and there is a lot of do-it-yourself
to it. If you don’t like the do-it-yourself part, see Husemoller’s book Fibre
Bundles, §4.9.

Exercise 2.1. Let p : E → Y × [0, 1] be a trivial fiber bundle, with fibers
homeomorphic to some space F . Prove that any homeomorphism

ι0 : p−1(Y × {0}) → F × (Y × {0})
over (Y × {0}) extends to a homeomorphism

ι : E → F × (Y × [0, 1])

over Y × [0, 1].
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Exercise 2.2. Let p : E → Y × [0, 1] be any fiber bundle, and suppose there
exists an open cover {Ui} of [0, 1] such that p is trivial over each open set
Y × Ui. Show that p is trivial, using exercise 2.1.

Exercise 2.3. (Notation of theorem 1.14): Suppose that A in theorem 1.14
is compact Hausdorff, and let h : A × [0, 1] → B be a homotopy from f to
g. Prove: each x ∈ A has a neighbourhood U such that h∗p is trivial over
U × [0, 1]. (Use exercise 2.2.) Consequently, there exists a finite open cover
{U1, U2, . . . , Un} of A such that h∗p is trivial over Ui × [0, 1] for 1 ≤ i ≤ n.

Definition 2.4. A partition of unity on a space Y is a collection {φi | i ∈ J }
of functions φi : Y −→ [0, 1] such that

• each y ∈ Y has a neighbourhood in Y where all but finitely many φi

vanish;
• ∑

i φi ≡ 1.
The partition of unity is subordinate to an open cover U of Y if the carrier
of φi is contained in one of the open sets belonging to U , for each i ∈ J .
(The carrier of φi is the closure of the complement of φ−1

i (0) in Y .)

Exercise 2.5. Prove that for each open cover of a compact Hausdorff space,
there exists a partition of unity subordinate to the open cover. (You will
need Tietze-Urysohn or something equivalent.)

In the situation of exercise 2.3, choose a partition of unity on A subordinate
to the open cover {U1, U2, . . . , Un}. You can easily arrange it in such a way
that it takes the form {φ1, φ2, . . . , φn} where the carrier of φi is contained
in Ui. For 1 ≤ k ≤ n, define

fk : A → B ; a 7→ h

(
a ,

k∑

i=1

φi(a)

)
.

Notice that f1 = f and fn = g.

Exercise 2.6. Prove that f∗kp ∼= f∗k+1p for 1 ≤ k < n, and therefore f∗p ∼=
g∗p as required in theorem 1.14. (Do this first for k = 1.)

Unfortunately, when we replace the assumption: A is compact Hausdorff by
the assumption: B is paracompact, which we have not used so far but which
we should have used, then things are a little more unpleasant. We need
more vocabulary.

Definition 2.7. • An open cover of a space is numerable if there exists
a partition of unity subordinate to it.

• A Hausdorff space is paracompact if every open cover of the space is
numerable.

(This is not exactly the standard definition of paracompactness, but here
it is very useful.) In particular, we can choose an open cover {Ui | i ∈ J }
of B in theorem 1.14 such that p is trivial over each Ui. Then, since B is
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paracompact, the open cover is numerable. It follows easily that the open
cover {h−1(Ui)} of A×[0, 1], with h as in exercise 2.3, is numerable (although
A×[0, 1] need not be paracompact). Then you can use the proposition below
(quoted from Dold’s book, Lectures on Algebraic Topology), and exercise 2.2,
to produce a numerable open cover of A such that h∗p is trivial over Ui×[0, 1]
for each Ui in the open cover. This open cover may be incurably infinite,
but you can still use the idea of exercise 2.6 to complete the proof. Choose
a well-ordering on the indexing set for the open cover.

Proposition 2.8. If A is a space and W is a numerable open covering
of A × [0, 1], then there exist a numerable covering U of A and a function
r :U → Z, with values r(U) > 1, such that every set

U ×
[
i− 1
r(U)

,
i + 1
r(U)

]
where U ∈ U , i ∈ Z, 0 < i < r(U)

is contained in some W ∈ W.

3. Fibrations

Definition 3.1. A map p : E → B of spaces is a fibration if it has the homo-
topy lifting property (which we have already encountered in corollary 1.15):
given maps f : X → E and h : X × [0, 1] → B where h(x, 0) = pf(x) for
all x ∈ X, there exists a map h̄ : X × [0, 1] → E such that ph̄ = h and
h̄(x, 0) = f(x).

Informally: Think of h as a one-parameter family (alias homotopy) of con-
tinuous maps,

(ht)t∈[0,1].

The hypothesis is that such a homotopy can always be lifted to a homotopy
(h̄t) between maps from X to E (“lifted” means ph̄t = ht, ∀t), with an
“initial” lift h̄0 which can be prescribed arbitrarily and must be prescribed
somehow.
We have seen that fiber bundles with paracompact base space are fibrations.
Fibrations are more ubiquitous in homotopy theory than fiber bundles.

Example 3.2. For any B, let PB be the space of paths in B (the space of
continuous maps from [0, 1] to B, with the compact-open topology; details
below). For ω ∈ PB, let q(ω) = ω(1). Then q : PB → B is a fibration. To
see that q is a fibration, suppose given a homotopy (ht : X → B) and a lift
f : X → PB, so that qf = h0. For x ∈ X and t ∈ [0, 1], define h̄t(x) to be
the path

s 7→
{

f(x)(s + st) 0 ≤ s + st ≤ 1
hs+st−1(x) 1 ≤ s + st ≤ 1 + t .

Then h̄t lifts ht for all t ∈ [0, 1], and h̄0 agrees with f .
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Definition 3.3. (related to the example 3.2): Let X and Y be spaces,
where X is locally compact. It is customary to equip the space C(X,Y )
of continuous maps from X to Y with the compact-open topology, which
is generated by the following subsets WK,U where K ⊂ X is compact and
U ⊂ Y is open:

WK,U = {f : X → Y | f(K) ⊂ U}.
(“Generated” means: a subset of C(X, Y ) is open iff it is a union of finite
intersections of subsets of the form WK,U .)

Exercise 3.4. Imitating example 3.2, show that

PB −→ B ×B ; ω 7→ (ω(0), ω(1))

is a fibration.

Definition 3.5. The pullback of a fibration p : E → B under a continuous
map g : A → B is g∗p : g∗E −→ A , where

g∗E = {(a, e) ∈ A×E | g(a) = p(e)}
and g∗p is defined by (a, e) 7→ a.

Proposition 3.6. The pullback g∗p is also a fibration.

Proof. There is a commutative diagram

g∗E ĝ−−−−→ E

g∗p
y p

y
A

g−−−−→ B

where ĝ(a, e) := e. Now suppose that we have

(ht : X −→ A) (a homotopy)
f : X −→ g∗E (a lift of h0).

Then
(ght : X −→ B) is a homotopy
ĝf : X −→ E lifts gh0 .

Since p : E → B is a fibration, there exists a homotopy (wt : X → E) such
that wt lifts ght, for all t, and such that w0 = ĝf . Then (h̄t : X → g∗E)
given by

h̄t(x) := (ht(x), wt(x))
is the required homotopy lifting (ht) (and let’s not forget to check that
h̄0 = f). ¤

Corollary 3.7. Any (continuous) map f : A → B can be written as a
composition f = f ]ι,

A
ι−−−−→ A] f]

−−−−→ B ,

where ι is a homotopy equivalence and f ] is a fibration.
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Proof. We let A] be the pullback of

PB −→ B ×B

(as in exercise 3.4) under f × id : A × B → B × B. Then A] is the total
space of a fibration A] → A × B, and we compose this with the projection
A×B → B which is also a fibration. (Why?) This gives us

f ] : A] → B

which is a fibration because a composition of two fibrations is a fibration (see
exercise below). Now note that A] is the space of triples (ω, (a, b)) where
a ∈ A and b ∈ B and ω is a path in B starting at f(a) and ending at b.
Further, f ] sends this triple to b. We can define ι : A → A] by

a 7→ (ωf(a), (a, f(a)))

where ωf(a) denotes the constant path with constant value f(a). It is not
hard to show that ι is a homotopy equivalence (in fact, the inclusion of a
strong deformation retract). Also, f ]ι equals f . ¤
Exercise 3.8. Show that a composition of two fibrations is again a fibration.

Next, we want to investigate whether proposition 1.9 and the stronger the-
orem 1.14 have analogs for fibrations. We proceed in very small steps.

Exercise 3.9. Let E = {(x, y) ∈ [0, 1]2 | 0 ≤ y ≤ x ≤ 1}. Let p : E → [0, 1]
be the projection (x, y) 7→ x. Show that p is a fibration. (It is not a fiber
bundle—why not?)

Definition 3.10. (Informal) For a space B and subspace A, say that B
deforms into A if there exists a homotopy (ht : B → B), where 0 ≤ t ≤ 1,
such that h0 = idB, h1(B) ⊂ A, and ht(A) ⊂ A for all t. In this case, the
inclusion A ↪→ B is a homotopy equivalence. (Why?)

Example 3.11. Let p : E → B be a fibration. Let A be a subspace of
B such that B deforms into A. Then E = p−1(B) deforms into p−1(A).
Proof : Let h = (ht) be the deformation (of B into A). The homotopy
lifting property supplies a diagonal arrow h̄ in the commutative diagram

E × 0
∼= //

Ä _

²²

E

p

²²
E × [0, 1]

h·(p×id) //

h̄

77ooooooooo
B .

(where p × id is a map from E × [0, 1] to B × [0, 1].) Then h̄ = (h̄t) is the
required deformation. Note that h̄t “covers” ht in the sense that ph̄t = htp.
We will use this below.

Definition 3.12. Let p : X → B and q : Y → B be spaces over B, and let
f, g : X → Y be maps over B (i.e., qf = p, qg = p). Say that f and g are
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homotopic over B if there exists a homotopy (ht) from f to g such that each
ht is a map over B (i.e., qht = p for 0 ≤ t ≤ 1). A map e : X → Y over B is a
homotopy equivalence over B if there exists another map d : Y → X over B
such that both de and ed are homotopic over B to the appropriate identity
maps. If such a homotopy equivalence exists, we say that p : X → B and
q : Y → B are homotopy equivalent as spaces over B.

Lemma 3.13. Take a space over B, say X → B, and a subspace Y ⊂ X.
Suppose that X deforms into Y , and suppose the deformation {ht} can be
so chosen that each ht is a map over B. Then the inclusion Y ↪→ X is a
homotopy equivalence over B.

Proof. Easy. ¤
Lemma 3.14. Let q : D → A× [0, 1] be a fibration. Let D0 = q−1(A×{0}).
Then D and D0 are homotopy equivalent as spaces over A, where we use
the following reference maps to A:

D
q−−−−→ A× [0, 1]

projection−−−−−−−→ A

D0 −−−−→
q

A× {0} ∼= A .

Proof. First deform A × [0, 1] into A × {0} using the deformation given by
ht(a, s) = (a, ts). Then cover this by a deformation (h̄t) of D into D0, as in
the proof of example 3.11. Finally note that each h̄t is a map over A, and
apply lemma 3.13. ¤
Corollary 3.15. Let p : E → B be a fibration, and let f, g : A → B be
homotopic maps. Then

f∗p : f∗E → A , g∗p : g∗E → A

are homotopy equivalent as spaces over A.

Note: For comparison, in theorem 1.14, the conclusion was homeomorphic
as spaces over A.

Proof. Let h : A× [0, 1] → B be a homotopy from f to g. Let

ι0 : A → A× [0, 1] , ι1 : A → A× [0, 1]

be given by ι0(a) = (a, 0) and ι1(a) = (a, 1). With a view to lemma 3.14
write D := h∗E, and q = h∗p. Then D0, as a space over A, is canonically
isomorphic to f∗E with the reference map f∗p to A. By lemma 3.14, this is
homotopy equivalent over A to D. By symmetry, g∗E with reference map
g∗p to A is also homotopy equivalent over A to D. ¤
Corollary 3.16. Let p : E → B be a fibration, where B is path connected.
For arbitrary x, y ∈ B, we have

p−1(x) ' p−1(y)

(all fibers of p have the same homotopy type).
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Exercise 3.17. Explain why corollary 3.15 implies corollary 3.16.

Exercise 3.18. Let B be a connected CW -space with base point, and let
f : ∗ ↪→ B be the inclusion of the base point. This is usually not a fibration,
but we can convert it into a fibration using corollary 3.7. What we get is

p : E −→ B

where E is the space of paths ω : [0, 1] → B with ω(0) = ∗, and p is
the evaluation map sending ω to ω(1). It is easy to see directly that E is
contractible (and that p is a fibration). The fiber of p over a point b ∈ is
then the space of paths in B with initial point ∗ and endpoint b. Again,
it is easy to see directly that fibers at different points of B are homotopy
equivalent. The fiber over the base point is the space of all paths in B with
initial point ∗ and endpoint ∗. This is called the loop space of B, denoted
by ΩB.
Keeping this notation, specialize to B = Sn for some n > 0. Cover Sn by
two open sets U, V , where U is Sn minus the base point, and V is Sn minus
the antipode of the base point.

• Prove that

p−1(U) ' ΩSn ' p−1(V ) , p−1(U ∩ V ) ' Sn−1 × ΩSn.

(Construct these homotopy equivalences in such a way that the in-
clusion of p−1(U∩V ) in p−1(U) “corresponds” to the projection from
Sn−1 × ΩSn to ΩSn, if possible.)

• Prove that

Hi(Sn−1 × ΩSn) ∼= Hi(ΩSn)⊕Hi−n+1(ΩSn)

(homology with coefficients Z). Here you must use the Künneth
theorem.

• Use all this to calculate the homology groups of ΩSn. (Hint: E is a
union of two open subsets, E = p−1(U) ∪ p−1(V ). In this situation
you have a Mayer-Vietoris sequence.)

4. Spectral Sequences

Spectral sequences were invented by Jean Leray (late 1940’s), and it is said
that Jean-Pierre Serre made them prominent. They are not as bad as you
have been told. They usually arise in connection with a filtration of a space
by subspaces, or a filtration of a chain complex by chain subcomplexes. Let’s
focus on chain complexes (of abelian groups) for simplicity. A filtration of a
chain complex C is an ascending sequence of chain subcomplexes

. . . C(−2) ⊂ C(−1) ⊂ C(0) ⊂ C(1) ⊂ C(2) ⊂ C(3) ⊂ . . .

with the properties
⋃
s

C(s) = C , C(s) = 0 for some s
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(usually C(s) is zero for s < 0). The task is, roughly speaking, to express the
homology groups of C in terms of the homology groups of the subquotients
C(s)/C(s− 1). That is what spectral sequences are good for.

Notation 4.1. C(s, t) := C(s)/C(t) for t ≤ s.

More precisely, we are dealing with two families of abelian groups. The first
of these consists of the groups

E1
s,t := Hs+tC(s, s− 1) s, t ∈ Z

and we pretend that we know it. The second family consists of the groups

E∞s,t :=
im

(
Hs+tC(s) → Hs+tC

)

im
(
Hs+tC(s− 1) → Hs+tC

)

(where the arrows are induced by inclusion). These are subquotients of the
homology groups of C. We pretend that we want to know them. If we did,
we would know H∗C up to “extension problems”. To repeat—the task is

express (all) the groups E∞s,t in terms of (all) the groups E1
s,t .

We shall introduce further families of abelian groups denoted

E2
s,t , E3

s,t , E4
s,t , . . .

and depending on s, t ∈ Z. They will serve as stepping stones.

Notation 4.2. Er
s,t is the group of those elements in Hs+tC(s, s − 1) which

come from Hs+tC(s, s − r), modulo the group of those which go to zero in
Hs+tC(s + r − 1, s− 1).

Exercise 4.3. How do we know that elements in Hs+t(C(s, s− 1) which go
to zero in Hs+tC(s + r − 1, s− 1) come from Hs+tC(s, s− r) ?

Exercise 4.4. Write C(∞) := C, C(−∞) = 0. Prove that E∞s,t has a
description very similar to that of Er

s,t just given, namely: The group of all
elements in Hs+tC(s, s − 1) which come from Hs+tC(s,−∞), modulo the
subgroup of those which go to zero in Hs+tC(∞, s− 1).

Exercise 4.4 suggests that some kind of “convergence” takes place: Er
s,t goes

to E∞s,t as r →∞. We return to this point below.
Our problem right now is: How can we make the “step” from Er

s,t to Er+1
s,t ?

We can make it by introducing certain homomorphisms

d : Er
s,t −→ Er

s−r,t+r−1

(for all r > 0 and s, t ∈ Z) and verifying two facts:

• the composition Er
s+r, t−r+1

d−−−−→ Er
s,t

d−−−−→ Er
s−r, t+r−1

is zero ;
• the quotient group

ker
(
Er

s,t
d−−−−→ Er

s−r, t+r−1

)

im
(
Er

s+r, t−r+1
d−−−−→ Er

s,t

)
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is isomorphic to Er+1
s,t .

Briefly: each Er∗∗ comes equipped with a differential, and Er+1∗∗ is simply the
homology of the differential on Er∗∗. But this is too brief — one should also
know the “direction” of the differential. Picture:

E1
∗∗ : • •oo •oo •oo •oo •oo •oo •oo •oo •oo

• •oo •oo •oo •oo •oo •oo •oo •oo •oo

• •oo •oo •oo •oo •oo •oo •oo •oo •oo

• •oo •oo •oo •oo •oo •oo •oo •oo •oo

• •oo •oo •oo •oo •oo •oo •oo •oo •oo

• •oo •oo •oo •oo •oo •oo •oo •oo •oo

• •oo •oo •oo •oo •oo •oo •oo •oo •oo

• •oo •oo •oo •oo •oo •oo •oo •oo •oo

E2
∗∗ : • • • • • • • • • •

• • •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO

• • •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO

• • •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO

• • •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO

• • •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO

• • •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO

• • •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO •
ggOOOOOOOO •

ggOOOOOOOO

E3
∗∗ : • • • • • • • • • •

• • • • • • • • • •
• • • •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ

• • • •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ

• • • •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ

• • • •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ

• • • •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ

• • • •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ

• • • •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ •

eeJJJJJJJJJJJJJ
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E4
∗∗ : • • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • •

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH

• • • • •

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH

• • • • •

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH

• • • • •

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH

• • • • •

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH

• • • • •

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH
•

ccHHHHHHHHHHHHHHHHHHH

Definition 4.5. The differentials

d : Er
s,t −→ Er

s−r,t+r−1

are defined as follows. Each x ∈ Er
s,t is the image of some

x̄ ∈ Hs+tC(s, s− r) .

We have the boundary operator

∂ : Hs+tC(s, s− r) −→ Hs+t−1C(s− r) .

Let d(x) be the coset of ∂(x̄) in Er
s−r, t+r−1.

To check that this is well defined, we need to show that ∂(x̄) ≡ 0 in Er
s−r, t+r−1

if x = 0 in Er
s,t. If x = 0, then x̄ goes to 0 in the homology group

Hs+tC(s + r − 1, s− 1).

(Remember notation 4.2.) From the commutative diagram (horizontal ar-
rows induced by various inclusions)

Hs+tC(s, s− r) −−−−→ Hs+tC(s + r − 1, s− 1)

∂

y ∂

y
Hs+t−1C(s− r) −−−−→ Hs+t−1C(s− 1)

we conclude that ∂(x̄) goes to zero in Hs+t−1C(s − 1). Then it also goes
to zero in Hs+tC(s − 1, s − r − 1), and then ∂(x̄) ≡ 0 in in Er

s−r, t+r−1 by
notation 4.2, as required.

Verification 4.6. It is easy to verify the first of the two “facts”: dd = 0 (on
each Er∗∗). To describe the isomorphism

Er+1
s,t

∼= ker
(
d : Er

s,t → Er
s−r, t+r−1

)

im
(
d : Er

s+r, t−r+1 → Er
s,t

)
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we introduce some notation:

Zr
s,t : = im

(
Hs+tC(s, s− r) → Hs+tC(s, s− 1)

)
,

Br
s,t : = ker

(
Hs+tC(s, s− 1) → Hs+tC(s + r − 1, s− 1)

)
= im

(
∂ : Hs+t+1C(s + r − 1, s) → Hs+tC(s, s− 1)

)

for r > 0 (actually, allow r = ∞ also). Observe that

· · · ⊂ Br
s,t ⊂ Br+1

s,t · · · ⊂ B∞
s,t ⊂ Z∞s,t · · · ⊂ Zr+1

s,t ⊂ Zr
s,t ⊂ . . .

Er
s,t = Zr

s,t/Br
s,t , Er+1

s,t = Zr+1
s,t /Br+1

s,t .

We shall check that

ker
(
d : Er

s,t → Er
s−r, t+r−1

)
= Zr+1

s,t /Br
s,t ,

im
(
d : Er

s+r, t−r+1 → Er
s,t

)
= Br+1

s,t /Br
s,t.

(These are equalities, not random isomorphisms, between subgroups of Er
s,t.)

This is equivalent to saying that the map

u : Zr
s,t/Z

r+1
s,t −→ Br+1

s−r, t+r−1/Br
s−r, t+r−1

x + Zr+1
s,t 7→ ∂(x̄) + Br

s−r, t+r−1

(details as in definition 4.5) is well defined and isomorphic, for all s, t and
r > 0. (To show equivalent, use the commutative diagram

Zr
s,t/Br

s,t

p

²²

d // Zr+1
s−r,t+r−1/Br

s−r,t+r−1

Zr
s,t/Z

r+1
s,t

u // Br+1
s−r,t+r−1/Br

s−r,t+r−1

j

OO

where p is a surjection and j is an injection.) The proof of the claim con-
cerning u is a diagram chase: Use the diagram

Hs+tC(s, s− r − 1)
j1 //

²²

Hs+tC(s, s− 1)

Hs+tC(s− 1, s− r) //

∂1

²²

Hs+tC(s, s− r)
j2 //

∂2

²²

Hs+tC(s, s− 1)

Hs+t−1C(s− r, s− r − 1) Hs+t−1C(s− r, s− r − 1)

with exact middle row and middle column; note that

Zr
s,t = im(j2) , Zr+1

s,t = im(j1) ,

Br+1
s−r, t+r−1 = im(∂2) , Br

s−r, t+r−1 = im(∂1) . ¤
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Remark 4.7. The assumption C(s0) = 0 for some s0 implies that Zr
s,t be-

comes stationary for fixed s, t and r → ∞. Thus for sufficiently large r
(where “sufficient” depends on s, t) the group Er+1

s,t is a quotient of Er
s,t.

Therefore
E∞s,t ∼= colimrEr

s,t

(if colimits alias direct limits of systems of groups mean anything to you).

The following problem is important because it shows that what we have
seen so far in this section is an enhanced version of the long exact homology
sequence of a pair of chain complexes.

Exercise 4.8. Suppose that the filtration of C has only two stages; i.e.,
suppose C(−1) = 0 and C(s) = C(1) for all s ≥ 1. Then all we have
is a chain complex C(1) and a chain subcomplex C(0) ⊂ C(1). What is
E1∗∗, what is E∞∗∗ , what is the differential on E1∗∗, what is E2∗∗, what is the
differential on E2∗∗, etc. ?

Of course, when people write papers and books on spectral sequences, they
don’t write about enhanced versions of the long exact homology sequence of
a pair of chain complexes. What these people write about is

• cleverly designed filtrations of certain chain complexes (or similar
objects) of general interest ;

• the meaning, interpretation etc. of the first “terms” of the spec-
tral sequence (in practice E1∗∗ is very “big” and depends on certain
choices, whereas E2∗∗ is not and does not);

• their experiences with the differentials in the spectral sequence.
The last item is the depressing aspect of spectral sequence theory. Quite
often the differentials are kind enough to vanish on Er∗∗ for all r ≥ 2, but if
they do not the prospects are bleak.

The next example/exercise illustrates some of this (not the depressing as-
pect), and you should recognize it as something familiar.

Exercise 4.9. Let C be the singular chain complex of a CW -space X, and
let C(s) be the singular chain complex of the s-skeleton Xs. This defines a
filtration on C. Describe the resulting spectral sequence in detail.

We now come to the first (and, for this course, last) serious example of
a spectral sequence: the Leray-Serre spectral sequence of a fibration. Let
p : E → B be a fibration, and assume that B is a simply connected CW -
space. We make no special assumptions on the fibers. Let C be the singular
chain complex of the total space E, and let C(s) be the singular chain
complex of p−1(Bs), where Bs is the s-skeleton of the CW -space B. Then

0 = C(−1) ⊂ C(0) ⊂ C(1) ⊂ C(2) ⊂ C(3) ⊂ . . .

and C = ∪sC(s) (prove this). This looks like a cleverly designed filtration
of C. Let’s find out what the E1∗∗ term of the associated spectral sequence
is. This amounts to calculating the homology of C(s, s− 1) for all s.
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To this end, choose a point zi in each s-cell Vi ⊂ Bs. Let

U = Bs r {zi} , V =
⋃

Vi , Ū = p−1(U) , V̄i = p−1(Vi) , V̄ =
⋃

V̄i .

Then U∪V = Bs and Ū∪V̄ = p−1(Bs). Since Ū and V̄ are open in p−1(Bs),
we have excision:

H∗(V̄ , Ū ∩ V̄ )
∼=−−−−→ H∗(Ū ∪ V̄ , Ū) .

Further, U deforms into Bs−1 (see definition 3.10), and therefore Ū deforms
into p−1(Bs−1) according to example 3.11. Therefore

H∗C(s, s− 1) = H∗(p−1(Bs), p−1(Bs−1))
∼=−→ H∗(Ū ∪ V̄ , Ū) .

This shows

(a) H∗C(s, s− 1) ∼= H∗(V̄ , Ū ∩ V̄ ) .

Next, let Fi be the fiber of p over zi. We find

(b) H∗(V̄ , Ū ∩ V̄ ) ∼=
⊕

i

H∗(V̄i, V̄i r Fi) .

Now each Vi is a cell, hence contractible, and so by corollary 3.15, each
p : V̄i −→ Vi is homotopy equivalent over Vi to a trivial fibration. This gives
a (well defined) isomorphism

(c) H∗(V̄i, V̄i r Fi) ∼= H∗ (Vi × Fi, (Vi r {zi})× Fi) ∼= H∗−s(Fi)

(the last isomorphism is essentially the suspension isomorphism). Combin-
ing (a), (b) and (c), we see that

(d) Hs+tC(s, s− 1) ∼=
⊕

i

Ht(Fi)

where the direct sum is indexed by the set of s-cells of B. We can simplify
this further in two ways.
Firstly, any choice of path ω : [0, 1] → B from zi to zj determines inclusions

Fi ↪→ ω∗E ←↩ Fj

which are homotopy equivalences (say, by lemma 3.13). Then

H∗(Fi) ∼= H∗(ω∗E) ∼= H∗(Fj) .

The isomorphism seems to depend on the choice of ω. But we are assuming
that B is simply connected, so it does not. In more detail: if λ is another
path connecting zi with zj , then λ is homotopic to ω with endpoints fixed,
and by continuity, λ must give rise to the same isomorphism from H∗(Fi)
to H∗(Fj). We see that all the H∗(Fi) are canonically isomorphic, so we can
do away with the indices altogether and write H∗(F ) for all of them without
being too ambiguous.
Secondly, we obtain from (d) that

Hs+tC(s, s− 1) ∼=
⊕

i

Ht(Fi) ∼=
⊕

i

Ht(F ) ∼= Ws(B)⊗Ht(F ) ,
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where Wi(B) is the free abelian group generated by the s-cells of B. Note
that Ws(B) is the group of s-chains in the cellular chain complex of B.
Summarizing:

Proposition 4.10. The E1∗∗ term of the Leray-Serre spectral sequence is

E1
s,t
∼= Ws(B)⊗Ht(F ) .

This is not the final result yet. What do the differentials on E1∗∗ look like?
With the identifications of proposition 4.10, they take the form

d : Ws(B)⊗Ht(F ) −→ Ws−1(B)⊗Ht(F ) .

Going back to definition 4.5, you can easily see that they agree with

∂ ⊗ id : Ws(B)⊗Ht(F ) −→ Ws−1(B)⊗Ht(F )

where ∂ is the “usual” boundary operator in the cellular chain complex
W∗(B). Then the resulting homology groups must be the homology groups
of B with coefficients in the abelian group Ht(F ). This proves the main
theorem of this section:

Theorem 4.11. The E2∗∗ term of the Leray-Serre spectral sequence of the
fibration p : E → B is

E2
s,t
∼= Hs(B; Ht(F ))

and the spectral sequence converges to H∗(E).

The last statement about “convergence” just means that E∞∗∗ of the spectral
sequence is a piecemeal version of H∗(E), which we already know from the
abstract theory.

Exercise 4.12. Investigate the Leray-Serre spectral sequences of the fol-
lowing fibrations or fiber bundles:

• the Hopf fiber bundles S3 → S2, S7 → S4, S15 → S8 ;
• for n ≥ 2, the fibration p : E → Sn where E is the space of paths ω

in Sn such that ω(0) is the base point, and p(ω) = ω(1).
• for n ≥ 2, the fibration p : E −→ Sn ∨ Sn where E is the space of

paths ω in Sn∨Sn such that ω(0) is the base point, and p(ω) = ω(1).
You should be able to use the second of these items for a calculation of
H∗(ΩSn) which is more elegant than the one coming from exercise 3.18.
In the third item, you should also be able to calculate H∗(Ω(Sn ∨ Sn)).
Conclude that the obvious inclusion ΩSn ∨ ΩSn ↪→ Ω(Sn ∨ Sn) is not a
homotopy equivalence.

Example 4.13. (See also Fuks-Fomenko-Gutenmacher, Homotopic Topol-
ogy.) For n > 0, let’s try to calculate the homology of U(n) (the topological
group of complex linear automorphisms of Cn preserving the standard her-
mitian inner product). First observe that the determinant is a continuous
homomorphism

det : U(n) −→ S1
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with kernel SU(n) (that’s a definition). For n = 1 the determinant is also a
homeomorphism, U(1) ∼= S1, and for n > 1 the composition

U(1) ↪→ U(n) det−−−−→ S1

is an isomorphism of topological groups. Thus U(n) is a semidirect product,
U(n) ∼= SU(n)o S1, and therefore

U(n) ∼= SU(n)× S1 in the category of spaces

(but not in the category of topological groups). So it should be enough to
calculate the homology of SU(n) for n > 1. For this we observe that the
evaluation map

pn : SU(n) −→ S2n−1 ; p(A) = Ae1 ∈ S2n−1 ⊂ Cn

(where e1 is the well-known standard basis vector) is a fiber bundle with
fibers homeomorphic to SU(n−1). (Proving this is about as hard as solving
exercise 1.8. But it is clear that the fibers are as claimed: for v ∈ S2n−1, the
fiber p−1(v) consists of all unitary n× n matrices of determinant 1 sending
e1 to v.) We now try to use our spectral sequence and induction. The fibers
of the fibration p2 are homeomorphic to SU(1), which is a point, so

SU(2) ∼= S3

which in particular calculates the homology. Next we have

p3 : SU(3) −→ S5

with fibers homeomorphic to SU(2) ∼= S3. This means that the E2∗∗ term of
the Leray-Serre spectral sequence for this fibration looks like this:

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

with the nonzero terms in positions (0, 0), (0, 3), (5, 0), (5, 3). It follows
immediately that the differentials on E2∗∗ as well as those on E3∗∗, E4∗∗ etc. are
zero, so that

E2
∗∗ ∼= E∞∗∗

(the spectral sequence collapses). We conclude that

H∗(SU(3)) ∼= H∗(S3 × S5)

(but it is not claimed that SU(3) ' S3 × S5). Next we have

p4 : SU(4) −→ S7
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with fibers homeomorphic to SU(3). This means that the E2∗∗ term of the
Leray-Serre spectral sequence for this fibration looks like this:

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

with the nonzero terms in positions (0, 0), (0, 3), (0, 5), (0, 8), (7, 0), (7, 3),
(7, 5), (7, 8). Again you can easily convince yourself that none of the differ-
entials on E2∗∗, E3∗∗, E4∗∗ etc. has a chance to be nonzero. Therefore

H∗(SU(4)) ∼= H∗(SU(3)× S7) ∼= H∗(S3 × S5 × S7) .
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One might hope that this will go on forever. Let’s try one more time: The
E2∗∗ term of the spectral sequence for p5 looks like

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

and we have a problem. Namely, there are two differentials in the spectral
sequence which could be nonzero: they would be in the E9∗∗ term, from
position (9, 0) to position (0, 8) and from position (9, 7) to position (0, 15).
So our argument breaks down. All we know is that

H∗(U(n) ∼= H∗(S1 × S3 × · · · × S2n−1) for n ≤ 4 .

For the cases n > 4, we need better equipment.

Exercise 4.14. Let p : E → Sn be a fibration, where n > 1. Let F be the
fiber of p over the base point. Show that there exists a long exact sequence
of the form

· · · → Hk−n+1(F ) −→ Hk(F ) i−→ Hk(E) −→ Hk−n(F ) −→ Hk−1(F ) → . . . .

This is called the Wang sequence.

5. Naturality properties of the Leray-Serre Spectral
Sequence

In the previous section, we started with a filtered chain complex C = ∪sC(s),
where C(s) ⊂ C(s + 1) for all s, and C(s) = 0 for some s. Then we
constructed families of abelian groups E1∗∗, E2∗∗, E3∗∗ and differentials on each
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of these. (For more precision, I shall write Er∗∗(C) instead of just Er∗∗.) It is
obvious that all this depends functorially on the filtered chain complex C.
Although it is obvious, it may be worth saying it in detail: Let D = ∪sD(s)
be another filtered chain complex (so D(s) ⊂ D(s+1) for all s, and D(s) = 0
for some s). Let f : C → D be a chain map taking C(s) to D(s), for all s.
Then f induces maps

f r
∗ : Er

s,t(C) −→ Er
s,t(D) ∀s, t ∈ Z

for any r > 0, commuting with the differentials on Er∗∗(C) and Er∗∗(D).
Moreover, if we make the identifications

Er+1
∗∗ (C) = H(Er

∗∗(C)) , Er+1
∗∗ (D) = H(Er

∗∗(D))

where H means “homology”, then f r+1∗ is simply the map of homology
groups induced by f r, and this holds for all r > 0. Briefly: f induces a
morphism of spectral sequences.
Let’s apply this observation to the situation where we have a commutative
diagram of spaces and maps

E
ḡ−−−−→ E1

p

y p1

y
B

g−−−−→ B1

where p and p1 are fibrations, B and B1 are simply connected CW -spaces,
and g is cellular. We made the Leray-Serre spectral sequence of p using the
filtration of the singular chain complex C(E) by subcomplexes C(p−1(Bs)).
We would of course also make the Leray-Serre spectral sequence of p1 by
using the filtration of C(E1) by subcomplexes C(p−1

1 (Bs
1)). But ḡ takes

p−1(Bs) to p−1
1 (Bs

1), for all s, so induces a map C(E) → C(E1) respecting
the filtrations. By the previous observation, this will lead to a morphism of
spectral sequences. Call it (g, ḡ)∗. What does it do to the E1∗∗ terms? There
it will take the form

(g, ḡ)∗ : Ws(B)⊗Ht(F ) −→ Ws(B1)⊗Ht(F1) s, t ∈ Z
(use proposition 4.10, write F for the fiber of p over some x ∈ B, and write
F1 for the fiber of p1 over g(x) ∈ B1).

Proposition 5.1. On E1∗∗ terms, (g, ḡ)∗ is the tensor product of the chain
map

W∗(B) −→ W∗(B1)

induced by g with the homomorphism

H∗(F ) −→ H∗(F1)

induced by the restriction of ḡ to F .
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Corollary 5.2. On E2∗∗ terms,

(g, ḡ)∗ : Hs(B; Ht(F )) −→ Hs(B1; Ht(F1)) (s, t ∈ Z)

agrees with the homomorphism induced by g : B → B1 and the homomor-
phism of coefficient groups Ht(F ) → Ht(F1) induced by the restriction of ḡ
to F .

Corollary 5.3. If g : B → B1 is a homotopy equivalence, and the restriction
of ḡ to F is a homotopy equivalence F → F1, then (g, ḡ)∗ is an isomorphism
of the Er∗∗ terms for any r ≥ 2.

The proof of proposition 5.1 is by inspection, and the proof of corollary 5.3
is by induction on r starting with r = 2.
One consequence of corollary 5.3 that one should certainly be aware of is
that the Leray-Serre spectral sequence of a fibration, from the E2∗∗ term
onwards, does not depend on the CW -structure of the base space chosen.
In fact, it is enough to assume that the base space is homotopy equivalent
to a CW -space. To see why, let q : D → A be a fibration, where A is simply
connected and homotopy equivalent to a CW -space. How can we set up
a Leray-Serre spectral sequence for calculating H∗(D) ? We can choose a
homotopy equivalence e0 : A0 → A, where A0 is an honest CW -space. Then
we have the “usual” commutative square

e∗0D
ē0−−−−→ D

e∗0q

y q

y
A0

e0−−−−→ A

and it turns out that ē0 is also a homotopy equivalence, like e0 (exercises 5.4
and 5.5 below). Then

H∗(e∗0D) ∼= H∗(D)

and for H∗(e∗0D) we have the Leray-Serre spectral of the fibration e∗0q. For-
getting about its E1∗∗ term, we declare this to be the Leray-Serre spectral
sequence of the fibration q also. It certainly converges to the right thing.
We need to check that it is sufficiently well defined. Before we do so, let’s
observe that the E2∗∗ term is

E2
s,t
∼= Hs(A0; Ht(F )) ∼= Hs(A; Ht(F ))

where F is any fiber of e∗0q (homeomorphic to some fiber of q, automatically).
It follows that the E2∗∗ term at least is well defined (independent of the choices
A0 and e0). Suppose now that e1 : A1 → A is another homotopy equivalence
from a CW -space to A. Then we can find a third homotopy equivalence
eI : AI → A from a CW -space to A, and cellular maps j0 : A0 → AI ,
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j1 : A1 → AI making the diagram
A0 −−−−→ AI ←−−−− A1

e0

y eI

y e1

y
A

=−−−−→ A
=−−−−→ A

commutative (exercise 5.6 below). As above, the map j0 gives rise to a
morphism from the spectral sequence of e∗0q to the spectral sequence of e∗1q
which is an isomorphism on E2∗∗ terms. The same can be said of j1. It follows
that the spectral sequences of e∗0q and e∗1q are isomorphic from the E2∗∗ term
onwards. The isomorphism that we constructed extends the identification
of E2∗∗ terms that we found previously: all E2∗∗ terms in sight look like

E2
s,t
∼= Hs(A; Ht(F )) .

(It follows that the isomorphism we constructed is unique: it does not de-
pend on the choice of AI , eI , j0, j1, because it does not depend on anything
as far as E2∗∗ terms go.)

Exercise 5.4. The mapping cylinder of a continuous map f : A → B is the
space

Z =
(
A× [0, 1]

)qB
/∼

where ∼ identifies (a, 1) with f(a) for all a ∈ A. Prove that Z deforms into
the subspace B (see definition 3.10). Prove that Z also deforms into the
subspace A ∼= A× {0} if f is a homotopy equivalence.

Exercise 5.5. Let q : D → A be a fibration, and let e0 : A0 → A be
a homotopy equivalence. Prove that the projection map (x, y) 7→ y from
e∗0D ⊂ A0 × D to D is a homotopy equivalence. (You may want to use
exercise 5.4. Try to reduce to the situation where e0 is the inclusion of a
subspace A0 such that A deforms into A0.)

Exercise 5.6. Let e0 : A0 → A and e1 : A1 → A be homotopy equivalences,
where A0 and A1 are CW -spaces. Show that there exists another homotopy
equivalence eI : AI → A, and maps j0 : A0 → A, j1 : A1 → A, such that
AI is a CW -space, j0, j1 are cellular, and eIj0 = e0, eIj1 = e1. (See the
commutative diagram just above).

Back to filtrations and spectral sequences: Let C be a chain complex with
filtration

. . . C(−2) ⊂ C(−1) ⊂ C(0) ⊂ C(1) ⊂ C(2) ⊂ C(3) ⊂ . . .

such that C = ∪sC(s). This time asssume

C(s) = 0 for some s , C(t) = C for some t ,

and this time let’s see what the filtration tells us about the cohomology
of C. This will only require minor changes. Thus let D = hom(C,Z), and
grade it by giving degree −n to the elements in hom(Cn,Z). This is unusual,
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but it means that the differential in D lowers degree by one as usual. Let
D(s) := hom(C/C(−s− 1),Z) (same grading conventions). Then

. . . D(−2) ⊂ D(−1) ⊂ D(0) ⊂ D(1) ⊂ D(2) ⊂ D(3) ⊂ . . .

and D(s) = D for some s, D(t) = 0 for some t. So we are in the same
situation as before, and we can make a spectral sequence converging to
H∗(D) = H−∗(C), with E1∗∗ term

E1
s,t = Hs+tD(s, s− 1) .

Now throw in another assumption, namely: the inclusion homomorphisms
from C(s)n to C(s+1)n are split injective in each degree n (for all s). Then
there is a short exact sequence of chain complexes

D(s− 1) −→ D(s) −→ hom(C(−s,−s− 1),Z) ,

the second arrow given by evaluation of homomorphisms to Z on C(−s).
Therefore

E1
s,t = H−s−tC(−s,−s− 1).

Example 5.7. Let p : E → B be a fibration and assume that B is a simply
connected compact CW -space. Let C be the singular chain complex of E
and let C(s) be the singular chain complex of p−1(Bs), where Bs is the
s-skeleton. Then the cohomology Leray-Serre spectral sequence has

E1
s,t
∼= H−s−tC(−s,−s− 1) ∼=

∏

s−cells

H−t(F ) ∼= hom
(
Ws, H

−t(F )
)

(notation and proof as for proposition 4.10). The E2∗∗ term then becomes

E2
s,t
∼= H−s(B; H−t(F ) .

Here is some disturbing news: it is customary to switch the top and bottom
indices as well as some of the signs, so that

Es,t
r := Er

−s,−t

which for the Leray-Serre cohomology spectral sequence means

Es,t
2
∼= Hs(B; Ht(F )) .

This is nice because it means that the nonzero terms of the spectral sequence
are all in the first quadrant (s, t ≥ 0), but of course it also means that all
the differentials go in the wrong direction. For example, in E∗∗1 , differentials
move one to the right and zero down, in E∗∗2 they move two to the right and
one down, in E∗∗r they move r to the right and r − 1 down.
The spectral sequence converges to H∗(E), of course, but to be more precise
we would have to say that the E∗∗∞ term is as follows:
Es,t∞ is a subquotient of Hs+t(E), namely,

kernel of restriction from Hs+t(E) to Hs+t(p−1(Bs−1))
kernel of restriction from Hs+t(E) to Hs+t(p−1(Bs))

.
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At this point we can see the possibility of introducing products. For example,
on the E∗∗∞ term just described, we can use the cup product to get a bilinear
map

Es,t
∞ × Em,n

∞ −→ Es+m,t+n
∞ .

For this we only have to verify that the ordinary cup product x ∪ y of two
elements in H∗(E) restricts to 0 in H∗(p−1(Bs+m)) provided x restricts to
0 in H∗(p−1(Bs)) and y restricts to zero in H∗(p−1(Bm)). (Verify this.) We
can also very easily define products

Es,t
2 × Em,n

2 −→ Es+m,t+n
2 .

This amounts to specifying bilinear maps

Hs(B;Ht(F ))×Hm(B; Hn(F )) −→ Hs+m(B;Ht+n(F ) .

We take the “usual” cup product from Hs(B;Ht(F )) × Hm(B; Hn(F )) to
Hs+m(B;Ht(F ) ⊗Hn(F )), and then apply the other “usual” cup product
Ht(F ) ⊗Hn(F ) → Ht+n(F ) to the coefficients.— The cup product on E∗∗2

is bilinear, associative, and commutative in the graded sense: α ∪ β =
(−1)|α||β|(β ∪ α) where |α| = s + t if α ∈ E2

s,t. The cup product on E∗∗∞ is
also bilinear, associative, and commutative in the graded sense.
Summarizing, we have a cup product on the E∗∗∞ term which is a piecemeal
version of the honest cup product on the total space E of our fibration ; and
we have another cup product on the E∗∗2 term. How are these two related ?
The answer is easy. The differential d on E∗∗2 is compatible with the cup
product, which means that d(α ∪ β) equals d(α) ∪ β + (−1)|α|α ∪ d(β) for
all α and β. Using this fact, you can define a cup product on E∗∗3 by choos-
ing representatives and multiplying them as you would in E∗∗2 . Again, the
differential on E∗∗3 is compatible with the cup product on E∗∗3 ; you can use
this fact to define a cup product on E∗∗4 , and so on. You end up with a cup
product in E∗∗∞ . But now E∗∗∞ already has a cup product, as we saw. Now,
as you might guess, agreement is supposed to take place. . .

Exercise 5.8. Write an essay about products in the cohomology Leray-Serre
spectral sequence.

6. Homotopy Groups

Let X be a pointed space, i.e., a space with a distinguished point ∗ ∈ X
which we will call the base point. For instance, in Sn the standard choice
of base point is the north pole (1, 0, 0, . . . , 0). (For simplicity base points
are generally denoted by ∗, even if they belong to different spaces.) A map
between pointed spaces is a pointed map if it sends the base point to the
base point. A homotopy (ht) between pointed maps is a pointed homotopy
if each ht is a pointed map.

Definition 6.1. The n-th homotopy set πn(X, ∗) of a pointed space (X, ∗)
is the set of pointed homotopy classes of pointed maps

(Sn, ∗) −→ (X, ∗) .
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Clearly π0(X, ∗) is in bijection with the set of path components of X. There
is a distinguished element in π0(X, ∗), that which is represented by the
unique constant (and pointed) map from S0 to X. So the most elaborate
structure we can put on π0(X, ∗) is the structure of a pointed set. On the
other hand, you know already that π1(X, ∗) has a canonical group structure.
It is not difficult to generalize this to all n ≥ 1. To this end, let us think of Sn

as something homeomorphic to the quotient space In/∂In (where I = [0, 1]
and ∂In consists of all points (x1, x2, . . . , xn) in the cube In for which at
least one coordinate equals 0 or 1. Then we can also think of a pointed map
from Sn to X as a map from In to X sending ∂In to the base point. If

f, g : In −→ X

are two such (continuous) maps, then we can define the concatenation f ~ g
of f and g as follows. Let A,B : In → In be the maps given by

(x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1, 2−1xn)
(x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1, 2−1 + 2−1xn)

respectively. Then im(A) ∪ im(B) = In. We define

(f ~ g)(A(x)) = g(x), (f ~ g)(B(x)) = f(x)

for x = (x1, . . . , xn) in In. This is well defined and continuous. Clearly the
(pointed) homotopy class of f ~ g depends only on the (pointed) homotopy
classes of f and g, and we can therefore define a multiplication on πn(X) by

[f ][g] := [f ~ g]

(square brackets for homotopy classes of pointed maps from In/∂In to X).
This is seen to be associative. There is a neutral element given by the class
of the (unique) constant pointed map, and each [f ] has an inverse given by

(x1, x2, . . . , xn) 7→ f(x1, x2, . . . , xn−1, 1− xn).

Thus πn(X, ∗) is a group for n ≥ 1.

Proposition 6.2. The group πn(X, ∗) is commutative for n ≥ 2.

Proof. If n > 2 it is easy to construct embeddings At, Bt : In → In depending
continuously on t ∈ [0, 1] such that the following are satisfied:

• A0 = A and B0 = B
• A1 = B and B1 = A
• if At(x) = Bt(y), then x and y are boundary points of In.

Let f ~t g be defined by At(x)) 7→ g(x) and Bt(x) 7→ f(x) and (f ~t g)(y) =
base point if y /∈ im(At) ∪ im(Bt). Then the family (f ~t g) is a homotopy
from f ~0 g = f ~ g to f ~1 g = g ~ f . ¤
Occasionally one wants to know how πn(X, ∗) depends on the base point
∗. Suppose therefore that ∗0 and ∗1 are two points in X. Are the groups
πn(X, ∗0) and πn(X, ∗1) isomorphic for all n ? The answer is yes if ∗0 and
∗1 belong to the same path component of X. In fact, let ω : I → X be
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a path such that ω(0) = ∗0 and ω(1) = ∗1. We shall use this to define a
homomorphism

ιω : πn(X, ∗0) −→ πn(X, ∗1)
for any n ≥ 0. To do so, let’s think of πn(X, ∗0) as the set of homotopy
classes of maps of pairs

(Dn, Sn−1) −→ (X, ∗0).

For such a map f : Dn → X (sending Sn−1 to ∗0), we let ιω(f) be the map
from Dn to X given by

z 7→
{

f(2z) |z| < 1/2
ω(2|z| − 1) 1/2 ≤ |z| ≤ 1

where |z| is the norm of z ∈ Dn ⊂ Rn. This is a continuous map from Dn to
X sending Sn−1 to ∗1 (the “other” basepoint). Passing to homotopy classes,
we let

ιω([f ]) = [ιω(f)] .
In the lemma which follows, we assume that λ is another path in X, from
∗1 to another point ∗2. Write ωλ for the concatenated path, from ∗0 to ∗2.

Lemma 6.3. The homomorphism ιω depends only on the homotopy class
(with endpoints ∗0 and ∗1 fixed) of ω. Furthermore, ιωλ = ιλιω . If ∗0 = ∗1

and ω is the constant path, then ιω is the identity homomorphism. Conse-
quently ιω is an isomorphism for arbitrary ω (with arbitrary endpoints). ¤
Summarizing, we can say that πn(X, ∗0) and πn(X, ∗1) are isomorphic if
∗0 and ∗1 can be connected by a path ω in X, but the isomorphism may
depend on the path. In particular, we could take ∗0 = ∗1(= ∗) and define
a homomorphism from π1(X, ∗) to the automorphism group Aut(πn(X, ∗))
by

[ω] 7→ ιω .

(A homomorphism from one group to the automorphism group of another
group is also called an action.) Of course, you know this action for n = 1: it
is the conjugation action of π1(X, ∗) on itself. But for n > 1 it is something
new and interesting.

Exercise 6.4. • Choose any base point ∗ in RPn, where n ≥ 2 is even.
Show that the action of π1(RPn, ∗) on πn(RPn, ∗) is nontrivial.

• Let X be a path-connected topological group with neutral element ∗.
Show that the action of π1(X, ∗) on πn(X, ∗) is trivial for all n ≥ 1.
In particular, this is true for n = 1, which means that π1(X, ∗) is
commutative.

Exercise 6.5. The Hopf invariant of a map f from S2n−1 to Sn, where n > 1,
is defined as follows. Form the mapping cone, cone(f), as in exercise 1.17
Excision shows that

Hk(cone(f)) ∼=
{
Z if k = 0, n, 2n
0 else
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(canonical isomorphisms can be chosen). Thus we have standard generators
α, β for Hn(cone(f)) and H2n(cone(f)), respectively. Then

α ∪ α = µβ

for some integer µ depending on f . This µ is the Hopf invariant of f .
• Show that the Hopf invariant is zero if n is odd.
• Show that the Hopf invariant is a homomorphism from π2n−1(Sn) to
Z.

• Show that the Hopf maps S3 → S2, S7 → S4, S15 → S8 have Hopf
invariant ±1. (Compare exercise 1.17.)

• Show that there exists an element of Hopf invariant 2 in π2n−1(Sn)
for any even n > 1. (This is the difficult part of the exercise. Notice
that you are asked to produce a CW -space X with only three cells,
one in dimension 0 and one in dimension n and one in dimension 2n,
such that the cup square of the generator of Hn(X) ∼= Z is ±twice
the generator of H2n(X) ∼= Z. You should experiment with Sn×Sn.
This has a CW -structure with 4 cells.)

For each n ≥ 0 we may regard πn as a functor from the category of pointed
spaces and pointed maps to the category of pointed sets (if n = 0) or to the
category of groups (n = 1) or to the category of abelian groups (n ≥ 2).
For a pointed map f : X → Y , the induced pointed map (homomorphism if
n ≥ 1)

f∗ : πn(X, ∗) −→ πn(Y, ∗)
is given by composition with f . That is, f∗([g]) = [fg]. Then the following
is of interest.

Proposition 6.6. Let f : X → Y be a pointed map, and assume that f
is an ordinary homotopy equivalence (not necessarily in the pointed sense).
Then f∗ : πn(X, ∗) −→ πn(Y, ∗) is a bijection for all n ≥ 0.

Proof. Let e : Y → X be homotopy inverse to f , and let {ht} be a homotopy
from ef to idX . Let ∗1 = ef(∗) and let ω be the path t 7→ ht(∗) from ∗1 to
∗. We now have a diagram

πn(X, ∗) f∗−−−−→ πn(Y, ∗) e∗−−−−→ πn(X, ∗1) −−−−→ πn(X, ∗)
where the last arrow is the bijection ιω. Inspection shows that the composite
map from πn(X, ∗) to itself is the identity. It follows that f∗ is injective. By
symmetry, e∗ (the middle arrow in the diagram) is also injective. But the
last arrow in the diagram is a bijection, so all arrows in the diagram must
be bijections. In particular, f∗ is a bijection. ¤
For a pair of spaces A ⊂ X with base point ∗ ∈ A and any n ≥ 0, there
is a relative homotopy set πn(X, A, ∗). It is defined as the set of (pointed)
homotopy classes of maps of pairs

(Dn, Sn−1) −→ (X,A) .
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Often it is better to think of it as the set of homotopy classes of maps

In −→ X

taking all points of the form (0, x2, x3, . . . , xn) to A and taking the rest of
∂In to the base point. (Homotopies {ht} are only allowed if each ht has
these properties.) Then concatenation, defined using the same formula as
before, leads to a group structure on πn(X, A, ∗) for n ≥ 2:

[f ][g] := [f ~ g] .

(Why does this fail for n = 1 ?) For n = 1, we only have a pointed set
π1(X, A, ∗), and π0(X, A, ∗) = π0(X, ∗).
Just for the record, note that there is a restriction map

πn(X,A, ∗) −→ πn−1(A, ∗)
(restrict from Dn to Sn if you use the disk definition) and there is another
forgetful map

πn(X, ∗) −→ πn(X, A, ∗) .

For the second of these, represent elements in πn(X, ∗) by maps from Dn

to X taking Sn−1 to the base point. Such a map also represents an ele-
ment in πn(X, A, ∗). Both the restriction map and the forgetful map are
homomorphisms when n ≥ 2.

The relative homotopy groups are very useful in the study of homotopy
properties of CW -spaces. Here is a technical notion.

Definition 6.7. A pair of spaces (X, A) has the homotopy extension prop-
erty if the following holds. Given any map f : X → Y , where Y is any other
space, and given a homotopy {ht : A → Y } such that h0 is the restriction of
f to A, there exists a homotopy {h̄t : X → Y } such that h̄0 = f and each
h̄t restricts to ht on A.

Proposition 6.8. The following are equivalent:
(1) (X,A) has the HEP (homotopy extension property) ;
(2) Z := X × {0} ∪A× I is a retract of X × I, where I = [0, 1] ;
(3) Z is a strong deformation retract of X × I (details below).

Proof. (1)⇒(2): Let f from X ∼= X × {0} to Z be the inclusion, and define
ht : A → Z by ht(a) = (a, t) ∈ Z. Use the HEP to construct a homotopy
{h̄t : X → Z} extending {ht} and such that h̄0 = f . This homotopy is the
desired retraction: in other words, the map

r : X × I −→ Z ⊂ X : (x, t) 7→ h̄t(x)

is a retraction (it equals the identity on Z).
(2)⇒(1): Let r : X × I → Z be a retraction onto Z. For f : X → Y and
a homotopy {ht : A → Y } such that h0 = f|A, let f̄ : Z → Y be given by
f̄(x, 0) = f(x) and f̄(a, t) = ht(a). Then f̄ is continuous and so is

f̄ r : X × I −→ Y .
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In fact, f̄ r is the required homotopy extending {ht}.
(2)⇒(3): Let r : X × I → Z be the retraction onto Z. We can write

r(x, t) = (r1(x, t), r2(x, t)) ∈ X × I .

For the strong deformation retraction we need, for every (x, t) ∈ X × I, a
path ωx,t in X × I connecting (x, t) with r(x, t). We want ωx,t to depend
continuously on (x, t), and we want it to be a constant path if (x, t) ∈ Z.
Noting that x = r1(x, 0) for all x ∈ X, we see that

ωx,t(s) := (r1(x, st), (1− s)t + sr2(x, t))

is a solution. ¤
Exercise 6.9. Show that A is closed in X if (X, A) has the HEP and X is
Hausdorff.

Corollary 6.10. Let f : (X, A) → (Y,B) be a map of pairs, homotopic (as
a map of pairs) to a map with image contained in B. If (X, A) has the HEP,
then f is homotopic rel A to a map whose image is contained in B.

Proof. Choose a strong deformation retraction

{ρt : X × I −→ X × I}
where t ∈ I, each ρt is the identity on Z ⊂ X × I, and ρ0 is the identity
whereas ρ1 is a retraction onto Z. Using the assumption on f , let h from
X × I to Y be a map such that h(x, 1) = f(x), h(a, t) ∈ B for all a ∈ A and
all t, and h(x, 0) ∈ B for all x. Note that h(Z) ⊂ B. Define

{kt : (X,A) −→ (Y,B)}
by kt(x) = h(ρt(x, 1)). Then kt(a) = h(a, 1) = f(a), independent of t. This
is what rel A means. Further,

k0(x) = h(ρ0(x, 1)) = h(x, 1) = f(x) ,
k1(x) = h(ρ1(x, 1)) ∈ h(Z) ⊂ B . ¤

Example 6.11. The pair (Dn, Sn−1) has the HEP. This follows easily from
proposition 6.8. Applying corollary 6.10, we find: A map f from (Dn, Sn−1)
to a pair (Y, B) represents the zero class in πn(Y, B, ∗) if and only if it is
homotopic rel Sn−1 to a map with image in B. Of course, the base point in
B ⊂ Y is understood to be f(north pole).

Recall that the pushout X qA Y of a diagram of spaces and maps

X
i←−−−− A

g−−−−→ Y

is the identification space obtained from the disjoint union XqY by making
the identifications i(a) ∼ g(a) for all a ∈ A. There are canonical and obvious
maps

X −→ X qA Y , Y −→ X qA Y .

If i is the inclusion of a closed subspace A ⊂ X, then

Y −→ X qA Y
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is also an inclusion of a closed subspace. (More correctly, it is a homeomor-
phism onto its image, and the image is closed; but we will think of it as an
inclusion map.)

Lemma 6.12. If (X, A) has the HEP and g : A → Y is any map, then the
pair (X qA Y, Y ) has the HEP.

Proof. Let f : X qA Y → W be any map, and let {ht : Y → W} be a
homotopy such that h0 agrees with f|Y . Then the composition

X −→ X qA Y
f−−−−→ W

is a map f [ : X → W , and the compositions

A
g−−−−→ Y

ht−−−−→ W

make up a homotopy {h[
t : A → W} such that h[

0 agrees with f [ on A. Since
(X, A) has the HEP, we can find a homotopy {h̄[

t : X → W} extending {h[
t},

and such that h̄[
0 = f [. Finally we let

h̄t(x) = h̄[
t(x) ∈ W for x ∈ X rA ⊂ X qA Y

h̄t(y) = ht(y) ∈ W for y ∈ Y ⊂ X qA Y .

Then {h̄t} is the required homotopy extending {ht}. ¤
Corollary 6.13. Any CW -pair (X, A) has the HEP. (In detail: X is a
CW -space, and A is a closed union of cells in X. Then A is a CW -space
in its own right.)

Proof. It suffices to prove that the pair (Xk ∪ A,Xk−1 ∪ A) has the HEP
for every k ≥ 0 (where, as usual, X−1 := ∅). Reason for “suffices”: Let
f : X → Y be a map and let {ht : A → Y } be a homotopy such that
h0 = f|A. If (Xk ∪ A,Xk−1 ∪ A) has the HEP for all k ≥ 0, then the
homotopy can be extended step by step from A = X−1 ∪ A to X0 ∪ A,
X1 ∪ A, X2 ∪ A, and finally to all of X. Make sure at each step that the
homotopy starts with the appropriate restriction of f .
Now for the proof that (Xk ∪A,Xk−1 ∪A) has the HEP: We can write

Xk ∪A = K q∂K L

where L = Xk−1∪A, and K is a disjoint union of copies of Dk (and ∂K is the
union of the boundary (k-1)-spheres). Apply example 6.11 and lemma 6.12.

¤
Proposition 6.14. Let (X, A) be a CW -pair. Suppose that πn(X, A, ∗) is
zero for all n ≥ 0 (where ∗ is some base point in A). Then A is a strong
deformation retract of X.

Proof. Note that πn(X,A, ∗) is only a pointed set for n = 0, 1; we regard it
as “zero” if it has only one element.
Note also that X is connected because π0(X,A, ∗) = π0(X, ∗) is zero. Note
furthermore that A is connected, because any point in A can be joined to the
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base point by a path in X; this path can then be homotoped rel endpoints
into A, because π1(X, A, ∗) is zero. (Here we use example 6.11.) This implies
that πn(X, A, ∗1) ∼= πn(X, A, ∗) for any “other” base point ∗1 ∈ A (proof:
method of lemma 6.3). Hence πn(X,A, ∗1) is zero for any ∗1 ∈ A, and we
conclude from example 6.11: (z) Any map of pairs (Dn, Sn−1) → (X, A),
where n ≥ 0, is homotopic rel Sn−1 to a map with image contained in A.
Now we construct a sequence of maps fi : X → X, where i ≥ −1, with the
following properties:

• f−1 is the identity ;
• fi(Xi ∪A) ⊂ A ;
• fi is homotopic rel Xi ∪A to fi+1, for all i ≥ 0.

Suppose that fi has been constructed; then (z) shows that the restriction
of fi to Xi+1 ∪ A is homotopic rel Xi ∪ A to a map taking Xi+1 ∪ A to A.
Let {ht} be such a homotopy; using the HEP for the pair (X, Xi+1 ∪ A),
extend it to a homotopy {h̄t : X → X} such that h̄0 = fi. Since h̄t extends
ht, it is rel Xi ∪A. So the induction step is complete if we let fi+1 = h̄1.
Of course, the (unlabelled) homotopies above from fi to fi+1 are much more
important than the maps fi themselves. We can piece them together to get
the required strong deformation retraction. In detail: Choose a homotopy
rel Xi ∪A from fi to fi+1 ; reparametrize so that the parameter interval is

[1− 2−i−1, 1− 2−i−2].

Then the union of these homotopies is the required strong deformation re-
traction, with deformation parameter interval [0, 1]. Note that continuity
problems do not seriously arise because of the “weakness” axiom which is
part of the definition of a CW -space. ¤
Actually, the proof of proposition 6.14 also establishes the following:

Proposition 6.15. Let (X, A) be a CW -pair such that πk(X,A, ∗) is zero
for 0 ≤ k ≤ n (where ∗ ∈ A is some base point). Then there exists a
homotopy {ht : X → X}, rel A, such that h0 = idX and h1(Xn∪A) ⊂ A. ¤
We finish the section with the most elementary calculations one can do in
homotopy theory.

Proposition 6.16. πk(Sn, ∗) is zero for 0 ≤ k < n.

Proof. Represent an element in πk(Sn, ∗) by a map

f : Dk → Sn ⊂ Rn+1

taking the boundary Sk−1 to the base point. Use Stone-Weierstrass or other
means to show that there exists a smooth map

f1 : Dk → Sn ⊂ Rn+1

taking the boundary Sk−1 to the base point, and such that the distance
between f(x) and f1(x) in Rn+1 is less than some small number ε, for all
x ∈ Dk. Then f and f1 are homotopic rel Sk−1 (why ?), and Sard’s theorem
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tells us that f1 is not onto (since it is smooth). Let y ∈ Sn be a point not in
the image of f1. Then y 6= ∗ and the class [f1] = [f ] is in the image of the
map induced by inclusion,

πk(Sn r {y}, ∗) −→ πk(Sn, ∗) .

But Sn r {y} is contractible, so πk of it is zero. ¤

Proposition 6.17. πn(Sn, ∗) ∼= Z for n > 0. The class [id] is a generator.

Proof. Here it may be best to represent elements in πn(Sn, ∗) by smooth
maps f : Dn → Dn/Sn−1 taking Sn−1 to the base point (which is the former
boundary of the disk). We can then use euclidean coordinates to describe
points in Dn/Sn−1 other than the base point. By Sard’s theorem we can
find p ∈ Dn arbitrarily close to the origin such that f is transverse to p.
Performing a small homotopy if necessary, we may in fact assume that p is
the origin. Then the inverse image f−1(p) is a finite subset {x1, x2, . . . , xr}
of the interior of Dn. For each of the xi, the differential of f at xi is an
invertible n× n matrix Ai. By the inverse function theorem, f is invertible
in a suitable neighbourhood of each xi. Performing another small homotopy
if necessary, we can assume that f agrees with the linear map corresponding
to Ai on a small open disk Ui with center xi and radius ε independent of
i, for 1 ≤ i ≤ r. Using exercise 6.18 below, we can also arrange that Ai is
an n × n identity matrix or a diagonal matrix with top left entry −1 and
all other diagonal entries equal to 1. At this point it is easy to see that
it is irrelevant what f looks like on the complement of the union of the Ui

(as long as that complement is mapped to the complement of the origin).
Therefore

[f ] =
r∑

i=1

si[id] , where si =

{
1 if det(Ai) > 0

−1 if det(Ai) < 0 .

(We should really use a
∏

symbol instead of a
∑

when n = 1.) We see that
[id] does generate πn(Sn, ∗). Now the degree of a map from Sn to itself is a
homotopy invariant, and

degree : πn(Sn, ∗) −→ Z

is a homomorphism. Since it maps the generator [id] to 1, it must be an
isomorphism. ¤

Exercise 6.18. Show that the topological group GL(n,R) has exactly two
connected components for n > 0. (Two n × n matrices are in the same
component if their determinant has the same sign.)
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7. Long exact sequences of homotopy groups

For a pair of spaces (Y,A) (not necessarily CW ) with base point ∗ ∈ A we
have the following maps between homotopy sets, for all n ≥ 0:

i∗ : πn(A, ∗) −→ πn(Y, ∗) , (induced by inclusion)
j∗ : πn(Y, ∗) = πn(Y, {∗}, ∗) −→ πn(Y,A, ∗) , (ditto)

∂ : πn+1(Y, A, ∗) −→ πn(A, ∗) , (restriction to Sn).

These are homomorphisms of groups for n > 0; for n = 0, they are still
pointed maps between pointed sets.

Theorem 7.1. The sequence of pointed sets and maps

. . . // πn+1(Y, A, ∗) ∂ // πn(A, ∗) i∗ // πn(Y, ∗) j∗ // πn(Y, A, ∗) ∂ // . . .

is exact.

Note: Exactness means that the image of each map in the sequence is the
inverse image of the base point under the next map. (In the sequel, we write
ker for the inverse image of the base point.)

Proof. (1) ker(i∗) = im(∂) ⊂ πn(A, ∗): Easy—think of Dn+1 as a quo-
tient of Sn × I.
(2) im(i∗) ⊂ ker(j∗) ⊂ πn(Y, ∗): obvious.
(3) im(i∗) ⊃ ker(j∗) ⊂ πn(Y, ∗): We think of πn(Y, ∗) as πn(Y, {∗}, ∗), so
we represent an element in it by a map of pairs f : (Dn,Sn − 1) → (Y, {∗}).
Applying j∗ means composing with the inclusion (Y, {∗}) → (Y, A). From
corollary 6.10 we know that if j∗[f ] is zero, then f is homotopy rel Sn−1 to
a map with image contained in A. That is all we need.
(4) im(j∗) ⊂ ker(∂) ⊂ πn(Y, A, ∗): obvious.
(5) im(j∗) ⊃ ker(∂) ⊂ πn(Y, A, ∗): Use the homotopy extension prop-
erty for the pair (Dn,Sn−1). ¤
Theorem 7.2. (J.H.C. Whitehead) Let f : X → Y be a map betwen con-
nected CW -spaces. If f∗ : πn(X, ∗) → πn(Y, f(∗)) is an isomorphism for all
n > 0 (for some base point ∗ ∈ X) then f is a homotopy equivalence.

Proof. We can assume that f is cellular, i.e., f(Xk) ⊂ Y k for all k > 0. (By
the cellular approximation theorem, f is homotopic to a cellular map.) Let
Z be the mapping cylinder of f ; this is the identification space

(X × I)q Y
/ ∼

where x ∼ f(x) for x ∈ X. Since f is cellular, Z has a canonical CW -
structure. The composition

X ∼= X × {0} incl.−−−−→ Z
proj.−−−−→ Y

equals f , and since the mapping cylinder projection (second arrow) is a
homotopy equivalence, we are reduced to proving: The inclusion X ↪→ Z
is a homotopy equivalence. By assumption and by theorem 7.1, the relative
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homotopy groups πn(Z, X, ∗) vanish for all n ≥ 0. By proposition 6.14, X
is a strong deformation retract of Z. ¤
Exercise 7.3. (This is a preparation for the next exercise, not directly
related to theorem 7.2.) Let X and Y be pointed spaces ; let ηX , ηY be the
inclusions x 7→ (x, ∗), y 7→ (∗, y) of X and Y into the product X × Y . Show
that the maps

([f ], [g]) 7→ [(f, g)]
([f ], [g]) 7→ [ηXf ] + [ηY g]

from πn(X, ∗)×πn(Y, ∗) to πn(X×Y, (∗, ∗)) agree for n > 0. (Here + denotes
the addition in πn ; of course this is not quite right if n = 1, and should be
replaced by a multiplication dot.)

Exercise 7.4. (Stasheff) An H-space is a connected CW -space Y with base
point ∗ and a map µ : Y × Y → Y for which the base point is a two-sided
identity: µ(y, ∗) = µ(∗, y) = y, for all y ∈ Y . Prove that any H-space has a
left inversion map up to homotopy, which is a map ρ : Y → Y such that

y 7→ µ(ρ(y), y)

is homotopic to a constant map. (Hint: Experiment with self-maps of Y×Y .)

Exercise 7.5. Show that S2k for k > 0 does not admit an H-space struc-
ture. (Hint: Suppose it does—what does this mean for the cohomology ring
H∗(S2k) ?) J.F.Adams showed (1959) that among spheres only S1, S3 and
S7 admit H-space structures.

Definition 7.6. A map f : X → Y is n-connected if, for any base point
∗ ∈ X, the map f∗ : πk(X, ∗) → πk(Y, f(∗)) is a bijection provided k < n,
and a surjection provided k = n. (It is sufficient to check this for just one
base point in each path component of X.)

Proposition 7.7. Let f : X → Y be an n-connected map. Then for any
CW -space B,

f∗ : [B, X] −→ [B, Y ] ( [ , ] for sets of homotopy classes)

is a bijection if dim(B) < n, and a surjection if dim(B) = n.

Proof. Replacing Y by the mapping cylinder of f if necessary, we can assume
that f is the inclusion of a subspace: X ⊂ Y . Then our assumption on f
means that πk(Y,X, ∗) is zero for 0 ≤ k ≤ n and any ∗ ∈ X. Given a
CW -pair (L,K) and a map g : (L,K) → (Y,X), construct inductively
maps g−1, g0, g1, g2, . . . , gn from L to Y such that g = g−1, gi(Li) ⊂ X, and
gi ' gi+1 rel Li∪K. (For the induction step, use the vanishing of πi(Y, X, ∗)
and corollary 6.10, example 6.11. Take L = B and K = ∅ for surjectivity of
f∗ . Take L = B × I and K = B × {0, 1} for injectivity. ¤
Theorem 7.8. Let p : E → B be a pointed map and a fibration. Let
F = p−1(∗) be the fiber over the base point. Then

p∗ : πn(E, F, ∗) −→ πn(B, ∗)
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is a bijection for n > 0.

Proof. Surjectivity: Writing Sn as a quotient of Sn−1× I, think of a pointed
map g from Sn to B as a pointed homotopy {ht} from the constant pointed
map Sn−1 → B to itself. Using the homotopy lifting property for p, we can
find a homotopy {h̄t Sn−1 → E} such that h̄0 is the constant pointed map
and ph̄t = ht for t ∈ I. Then h̄1 has image contained in F = p−1(∗). We
can think of {h̄t} as a map ḡ from the pair((

Sn−1×I
/
Sn−1×{0}), Sn−1×{1}) ∼= (Dn, Sn−1)

to (E, F ). It is not hard to see that p∗[ḡ] = [g]. Unfortunately, ḡ need not
be a pointed map. It does however take the base point in Sn−1 ⊂ Dn to
some point ∗1 ∈ F which is in the same path component as ∗ ∈ F . (This
is clear from the construction.) If ω is a path in F connecting ∗1 to ∗, then
ιω[ḡ] belongs to πn(E,F, ∗) (compare lemma 6.3), and p∗ of it is [g].
Injectivity: Suppose first that n > 1 and that e : (Dn, Sn−1) → (E, F ) is a
pointed map of pairs such that pe is nullhomotopic rel Sn−1. Lifting such
a nullhomotopy to E, we find that e is homotopic as a map of pairs to a
map with image in F . By corollary 6.10, the map e is homotopic rel Sn−1

to a map with image in F . Then clearly [e] = 0 in πn(E,F, ∗). When n = 1
we have to argue more carefully, because injectivity of p∗ is not equivalent
to triviality of the kernel of p∗. Here is a sketch: Let e[, e] be two pointed
maps (D1, S0) → (E,F ). Suppose that [pe[] = [pe]] in π1(B, ∗). We want
to show that [e[] = [e]] in π1(E,F ). Now it is not hard to see that this is
equivalent to: The path in E obtained by running backwards through e[ and
then through e] is homotopic (as a map of pairs (D1,S0) → (E, F ), without
base points) to a map with image in F . Such a homotopy can be obtained
from the homotopy lifting property, using the hypothesis [pe[] = [pe]]. ¤
Corollary 7.9. (Notation of theorem 7.8.) There is a long exact sequence

. . . // πn+1(B, ∗) ∂ // πn(F, ∗) i∗ // πn(E, ∗) p∗ // πn(B, ∗) ∂ // . . .

where i∗ is induced by the inclusion of the fiber and p∗ is induced by the
bundle projection.

Exercise 7.10. Show that πn(S3, ∗) ∼= πn(S2) for n > 2. Show that
π3(S2) ∼= Z. Assuming n ≥ 0, show that

πn(S4, ∗) ∼= πn(S7, ∗)⊕πn−1(S3, ∗) , πn(S8, ∗) ∼= πn(S15, ∗)⊕πn−1(S7, ∗) .

8. The Hurewicz theorems

Definition 8.1. A space X with base point is n-connected if the inclusion
of the base point is an n-connected map. (Equivalently: πk(X, ∗) is zero for
0 ≤ k ≤ n.)

Now let X be any pointed space. The Hurewicz homomorphism

z : πk(X, ∗) −→ Hk(X)
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(homology with integer coefficients) is defined by z[f ] := f∗[α] where [α] ∈
Hk(Sk) ∼= Z is the standard generator.

Theorem 8.2. For a (k − 1)-connected CW -space X (where k > 1) the
Hurewicz homomorphism z : πk(X, ∗) −→ Hk(X) is an isomorphism. For a
connected CW -space, the Hurewicz homomorphism from π1(X, ∗) to H1(X)
is onto, and its kernel is the commutator subgroup.

Proof. Note first that the theorem is true for X = Sk ; this follows easily
from proposition 6.17. By a mild extension of proposition 6.17, it is also
true for a wedge of spheres ∨

γ

Sk

(indexed by the elements γ of some indexing set) ; use the same transversal-
ity argument, but pick one point distinct from the base point in each wedge
summand. (Note: Here we use k > 1. What happens when k = 1 ?)
Another case we can handle is the case where X has exactly one 0-cell (the
base point) and no cells of dimension i for 0 < i < k. We will use the
commutative diagram

πk(Xk, ∗) (a)−−−−→ πk(Xk+1, ∗) (b)−−−−→ πk(X, ∗)
(c)

y (d)

y (e)

y

Hk(Xk)
(f)−−−−→ Hk(Xk+1)

(g)−−−−→ Hk(X)

where all vertical arrows are Hurewicz homomorphisms and all horizontal
arrows are induced by inclusion. By cellular approximation, (a) is onto and
(b) is iso. Looking at cellular chain complexes, we find that (f) is onto and
(g) is iso. Since Xk is a wedge of k-spheres, (c) is iso. It follows that (d) is
onto, hence (e) is onto. Next, it is easy to see that the kernel of (a) contains
all the classes homotopic to an attaching map for one of the (k + 1)-cells.
Hence (d) is injective. Therefore (e) is iso. (Again, we have assumed k > 1.
What happens when k = 1 ?)
For the general case, we can use proposition 6.15 which tells us that there
exists a homotopy {ht : X → X} rel ∗ such that h0 = idX and h1(Xk−1) ⊂
{∗}. Then we can write h1 as a composition of pointed maps

X
q−−−−→ X/Xk−1 g−−−−→ X

and it is still homotopic to the identity. Let Y = X/Xk−1. From the
commutative diagram

πk(X, ∗) q∗−−−−→ πk(Y, ∗) g∗−−−−→ πk(X, ∗)y
y

y
Hk(X)

q∗−−−−→ Hk(Y )
g∗−−−−→ Hk(X)
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where both compositions g∗q∗ are identity maps and the middle vertical
(Hurewicz) homomorphism is iso (if k > 1), we see that all vertical arrows
must be iso. (What happens when k = 1 ?) ¤
There is a relative Hurewicz theorem (which contains the absolute version
as a special case). For this we need the relative Hurewicz homomorphism.
For a pair of spaces (Y, A) with base point ∗ ∈ A it takes the form

z : πn(Y, A, ∗) −→ Hn(Y,A) ; z[f ] = f∗[β] ,

where [β] is the standard generator of Hn(Dn,Sn−1) ∼= Z. Slightly more
generally: It is convenient to define the relative homotopy sets πn(f) of a
pointed map f : X → Y as πn(Z, X, ∗) where Z is the mapping cylinder
of f and X ∼= X × {0} is regarded as a subspace of Z. (Check that this is
isomorphic to πn of the pair (Y,X) if f happens to be an inclusion map.)
Similarly, the homology groups Hn(f) of f : X → Y are defined as Hn(Z, X).
One can also use notation like Hn(X → Y ). Then we still have a Hurewicz
homomorphism z : πn(f) → Hn(f) for n ≥ 0.

Exercise 8.3. Let f : X → Y be a pointed map.
• Give another description of πn(f) in terms of pairs of maps g1, g2 as

in the following commutative diagram:

Sn−1 g1−−−−→ X

⊂
y

yf

Dn g2−−−−→ Y .
• Suppose in addition that f is a fibration. Let Φ be the fiber over the

base point. Establish an isomorphism for n > 1 (bijection for n = 1)

πn(f) ∼= πn−1(Φ, ∗) .

(Hint: there is an obvious map from right-hand side to left-hand
side. Use theorem 7.1 and theorem 7.8.)

We will also need the Leray-Serre spectral sequence (with a “remark”) in the
proof of the relative Hurewicz theorem. The remark concerns the so-called
edge homomorphisms. Let f : X → Y be a fibration (where Y is simply
connected). Let Φ be the fiber over the base point, assuming that Y is
pointed. Then we have another fibration Φ → {∗}, which maps by inclusion
to the first fibration f : X → Y . In this case we can apply our naturality
results from the section on naturality, especially corollary 5.2. Therefore we
can describe the homomorphism H∗(Φ) → H∗(X) induced by inclusion as
follows:

Ht(Φ) ∼= E∞0,t of the spectral sequence made from Φ → {∗}
maps by naturality to

E∞0,t of the spectral sequence made from f : X → Y

which is a subgroup of Ht(X). (Why is it a subgroup ?)



40 MICHAEL WEISS

Similarly, we could compare the fibration f : X → Y with the identity
fibration Y → Y , and in this way interpret f∗ : H∗(X) → H∗(Y ) as an edge
homomorphism. (Do it.)
Actually, we need a Leray-Serre spectral sequence for pairs of fibrations.
Let p1 : E1 → B and p2 : E2 → B be fibrations over tha same base CW -
space B, and let g : E1 → E2 be a map over B. Assume that B is simply
connected, with base point, and let F1 = p−1

1 (∗), F2 = p−1
2 (∗). Then there

is a Leray-Serre spectral sequence with

E2
s,t = Hs(B; Ht(F1 → F2))

converging to the (relative) homology H∗(E1 → E2). (The map from F1

to F2 to be used is of course the restriction of g.) One way to obtain this
spectral sequence is to reduce to the case where g is an inclusion map (using
mapping cylinders). Assuming this has been arranged, consider the singular
chain complex C(E2)/C(E1) of the pair (E2, E1). Much as in the absolute
case, the skeleton filtration of B gives rise to a filtration of C(E1)/C(E2),
which then gives rise to a spectral sequence in the usual way.
Finally, it is possible to combine the two remarks, the one on edge homomor-
phisms and the one on pairs of fibrations. Rather than making it explicit,
let’s allow it to happen.

Theorem 8.4. Let f : X → Y be a (k − 1)-connected map between pointed
spaces, where k > 1. Suppose also that X is simply connected. Then the
Hurewicz homomorphism from πk(f) to Hk(f) is an isomorphism.

Proof. We can assume that f is a fibration. Let Φ be the fiber over the base
point. Let f[ : Φ → ∗ be the restriction of f . Then we have a commutative
diagram

πk(f[)
z−−−−→ Hk(f[)y

y
πk(f) z−−−−→ Hk(f)

where the vertical arrows are induced by inclusion. We want to prove that
the lower z is iso. From exercise 8.3, the left vertical arrow is iso, not just
on πk, but on all πt for t > 0. It follows that we can apply the absolute
Hurewicz theorem to the upper z ; note incidentally that

πt(f[) ∼= πt−1(Φ, ∗) , Ht(f[) ∼= H̃t−1(Φ)

where the tilde means reduced homology. We see that the upper z is also
iso, and moreover

(♣) Ht(f[) = 0 for t < k .

(To make this argument work in the case k = 2, observe first that π1(Φ, ∗)
is abelian: the long exact homotopy sequence of the fibration f shows that
it is a quotient of the abelian group π2(Y, ∗). Then the absolute Hurewicz
applies.)
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We can now complete the proof by showing that the right-hand vertical
arrow in our square is iso. This is where a spectral sequence argument works
wonders. The pair of fibrations that we apply it to consists of f : X → Y
and the identity fibration id : Y → Y . Then f is a map over Y , from the
total space of the first fibration to the total space of the second fibration,
and by the above remarks we have a spectral sequence with

E2
s,t = Hs(Y ; Ht(f[))

converging to H∗(f). By the above remarks again, the homomorphism from
Hk(f[) to Hk(f) induced by inclusion can be identified with the edge homo-
morphism

Hk(f[) ∼= H0(Y ;Hk(f[)) ∼= E2
0,t ³ E∞0,k ⊂ Hk(f) .

But now this edge homomorphism is easily seen to be an isomorphism, due
to the fact that all horizontal lines E2∗,t are zero for t < k (use (♣)) and all
vertical lines E2

s,∗ are zero for s < 0. ¤

Corollary 8.5. (G. Whitehead) Let f : X → Y be a map between simply
connected CW -spaces.

(1) If f∗ : H∗(X) → H∗(Y ) is iso, then f is a homotopy equivalence.
(2) If f∗ : H∗(X) → H∗(Y ) is iso for ∗ < k and onto for ∗ = k, then f

is n-connected (see definition 7.6).

Proof. The assumption in (1) means that H∗(f) is zero. Therefore π∗(f) is
zero—otherwise there exists a least integer k for which πk(f) is nontrivial,
and this one will be isomorphic to Hk(f), which is therefore also nontrivial.
(Contradiction.)
The assumption in (2) means that H∗(f) is zero for ∗ ≤ k, and it follows as
before that π∗(f) is zero for ∗ ≤ k. ¤

Exercise 8.6. (Freudenthal’s theorem—this is a rather long exercise). For a
CW -space Y with base point ∗ let ΣY be the reduced suspension of Y . (You
can also use the unreduced suspension instead, which is the usual quotient
space of Y × I ; the reduced suspension of Y is the unreduced suspension
of Y quotiented out by the unreduced suspension of {∗}. It is homotopy
equivalent to the unreduced suspension of Y .) There is a very interesting
map

α : Y → ΩΣY

which sends y ∈ Y to the loop ωy : I → ΣY such that ωy(t) = (y, t).
(a) Show that α : Sn → ΩΣSn induces an isomorphism on πn.
(b) Conclude from (a) that α : Sn → ΩΣSn is (2n− 1)-connected.

Notice also that ΣSn ∼= Sn+1. For any map f : Sk → Sn, we get another map
Σf from ΣSk to ΣSn which simplifies to Σf : Sk+1 → Sn+1. This defines a
homomorphism

πk(Sn, ∗) → πk+1(Sn+1, ∗) ; [f ] 7→ [Σf ] ,
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the suspension homomorphism. Freudenthal’s theorem states that it is an
isomorphism for k < 2n− 1 and onto for k = 2n− 1. Explain why Freuden-
thal’s theorem is equivalent to (b).
An interesting consequence is that the group πk(Sn, ∗) depends only (up to
isomorphism) on the difference k − n as long as k < 2n − 1. To express
this fact, one writes πs

k−n. For example, πs
0
∼= Z because πn(Sn, ∗) ∼= Z for

n > 0. In the next exercise, we shall see that πs
1
∼= Z/2, which means that

π4(S3), π5(S4) and π6(S5) etc. are all isomorphic to Z/2. Of course, you
know already that these groups must be cyclic. . .

Exercise 8.7. (a) Calculate the cohomology ring H∗(ΩSn) where n is odd,
n ≥ 3. (Use the method of exercise 4.12, but this time use the cohomology
version of the spectral sequence, with products.)
(b) Assuming n > 2 (even n permitted), show that ΩSn is homotopy equiv-
alent to a CW -space with one cell in each dimension of the form k(n − 1),
where k ≥ 0. In particular, ΩS3 is homotopy equivalent to a CW -space
with one cell in each even dimension. The attaching map for the 4-cell cor-
responds to an element in π3(S2, ∗), which we know is isomorphic to Z via
the Hopf invariant. What is the Hopf invariant of the attaching map ? Use
your answer to (a).
(c) Use (b) and Freudenthal to show that the suspension homomorphism
from π3(S2) to π4(S3) is onto, and that its kernel consists of all elements
having even Hopf invariant. Conclude that πs

1
∼= Z/2.

9. Some stable homotopy theory

An excellent reference for the foundations of stable homotopy theory is Part
III of the book by J.F.Adams, “Stable Homotopy and Generalised Homology”,
University of Chicago Press 1974.

Stable homotopy theory is the part of homotopy theory concerned with
homotopy invariants which are not affected by suspension. For example,
H̃n(X) ∼= H̃n+1(ΣX) for a pointed CW-space X. Reduced homology groups
are therefore stable invariants. For homotopy groups we also have a suspen-
sion homomorphism from πn(X, ∗) to πn+1(ΣX) (say n > 0) ; but it is
not always an isomorphism. (Take n = 3 and X = S2.) Therefore homo-
topy groups are not stable invariants in general. But we can define stable
homotopy groups πs

n(X) by

πs
n(X) := colimk→∞πn+k(ΣkX, ∗) ;

these would clearly be stable invariants. In this sense, π4(S3, ∗) belongs to
stable homotopy theory, but π3(S2, ∗) does not. Freudenthal’s theorem tells
us something about the frontier between the unstable and the stable world.
There is a more general theorem in this direction (the homotopy excision
theorem due to Blakers-Massey, below).
Informally, a stable map between pointed CW -spaces X and Y is a pointed
map f from ΣnX to ΣnY , for some n ≥ 0. Assuming that X and Y are
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compact, we would call f a stable homotopy equivalence if, for some k ≥ 0,
the map Σkf from Σn+kX to Σn+kY is a homotopy equivalence. (It is not
a good idea to use this definition when X and Y are noncompact—we shall
see why later.)

Exercise 9.1. Give an example of two compact pointed CW -spaces which
are stably homotopy equivalent without being homotopy equivalent. Can
you find a pointed compact CW -space which is stably homotopy equivalent
to a point without being contractible ?

It would clearly be good to have a category of “generalized” spaces (or
generalized CW -spaces) in which stable maps are permitted as morphisms.
One can be more radical and allow “generalized” CW -spaces in which the
attaching maps for the cells are stable maps. This is roughly what we will
do. The generalized pointed spaces are called spectra ; the generalized CW -
spaces are called CW -spectra. For the following definition, note that the
(reduced) suspension of a pointed CW -space X (where the base point is a
0-cell) has a canonical CW -structure, with one cell of dimension n + 1 for
each n-cell in X.

Definition 9.2. (1) A spectrum is a sequence of pointed spaces Xn to-
gether with maps εn : ΣXn → Xn+1, one for each n.

(2) A spectrum as above is a CW -spectrum if each Xn is a CW -space
(with base point equal to a 0-cell) and each εn is an isomorphism
from ΣXn to a CW -subspace of Xn+1.

We will usually work with CW -spectra. As a rule, the more general spectra
in (1) are alright as “targets” (of maps whose source is a CW -spectrum),
but hard to manage when they wnat to be “sources” of maps. At any
rate, defining spectra and CW -spectra did not cost us much, but defining
maps between spectra is more tricky. We will only define maps from a
CW -spectrum to a spectrum.
First let X = {Xn, εn} be a CW -spectrum. For every cell e ⊂ Xn distinct
from the base point 0-cell, we let σe ⊂ Xn+1 be the image of e×(0, 1) ⊂ ΣXn

under εn. If e has dimension i, the σe has dimension i + 1, and it is a cell
in Xn+1.
A CW -subspectrum X′ of X is a collection of CW -subspaces X ′

n ⊂ Xn such
that εn(ΣX ′

n) ⊂ X ′
n+1. Such a subspectrum is cofinal if, for every n and

every cell e ⊂ Xn (distinct from the base point 0-cell), there exists k ≥ 0
such that the cell σke ⊂ Xn+k belongs to X ′

n+k. Note: The intersection of
two cofinal subspectra is again cofinal.
Next, let X = {Xn, εn} be a CW -spectrum and let Y = {Yn, ρn} be any
spectrum. A function f from X to Y is a collection of pointed maps

fn : Xn → Yn
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making the diagrams
ΣXn

εn−−−−→ Xn+1yΣfn

yfn+1

ΣYn
ρn−−−−→ Yn+1

commutative. By a map from X to Y, we shall mean a function from some
cofinal subspectrum of X to Y. To be more precise, two such maps will be
considered equal if they agree on the intersection of their domains (which
is still a cofinal subspectrum of X). To be perfectly precise, we would have
to say: A map from X to Y is an equivalence class of pairs (X′, f), where
X′ is cofinal in X and f is a function from X′ to Y ; two such pairs are
equivalent. . . I shall use boldface letters such as f for maps and/or functions
indiscriminately. Little exercise: Let f : X → Y and g : Y → W be maps
between spectra, assuming that X and Y are CW -spectra ; how would you
define gf ? As you can see, CW -spectra and the maps between them form
a category.

Example 9.3. From any pointed space X we can make a spectrum {Xn, εn}
by taking Xn = ΣnX and

εn = standard identification : Σ(ΣnX) ∼= Σn+1X .

This is the suspension spectrum of the pointed space X. Three-star exercise:
Find a good label for it. (In the literature, you will often see Σ∞X ; this is
obviously loathsome.)
When X = Sk, with the usual cell decomposition, I shall write Sk for the
suspension spectrum. Here k = 0 is definitely allowed. Think of Sk as the
stable version of Sk. Another little exercise: What are the functions from
S1 to S0 ? What are the maps from S1 to S0 ? It is quite easy to see that
there is only one function from S1 to S0, and that one is uninteresting. But
there are many interesting maps: For k ≥ 2 let

pk : ΣkS1 → ΣkS0

be the (k − 2)-fold suspension of the Hopf map from Σ2S1 to Σ2S0. Then
we can think of the collection {pk} as a map from S1 to S0 ; it is defined on
the cofinal subspectrum of S1 obtained by deleting all nontrivial cells in the
zero-th term and the first term, and keeping all other cells.

Notation 9.4. Given two spaces with base point, say X and Y , let X ∧ Y
be the quotient (X×Y )/(X ∨ Y ). Examples: S0 ∧X ∼= X for any pointed
space X, and more generally Sn ∧X ∼= ΣnX.
Given a space W without base point, let W+ be the space obtained from W
by adding a disjoint base point: W+ = W q {∗}.
Given a pointed space X and a spectrum Y = {Yn, εn}, we can make a new
spectrum X ∧Y from the spaces X ∧ Yn and the maps idX ∧ εn.
Given two spectra X = {Xn, εn} and Y = {Yn, µn}, we can make another
spectrum X ∨Y from the spaces Xn ∨ Yn and the maps εn ∨ µn ; we can
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make yet another spectrum X×Y from the spaces Xn × Yn and the maps
εn × µn. You can easily see that X ∨Y is the categorical coproduct of X
and Y, and X×Y is the categorical product of X and Y.
Given a CW -spectrum X = {Xn, εn} and a CW -subspectrum A ⊂ X, we
would like to define the quotient X/A. Little exercise: Explain why it is
not a good idea to use the spaces Xn/An. In fact, we should first replace
A by its saturation A], the largest CW -subspectrum of X such that A is
cofinal in A]. Then we define X/A as the spectrum made from the spaces
Xn/A]

n.
Given a CW -spectrum X with CW -subspectrum A and a map f : A → Y to
another spectrum Y, we can form the pushout (or amalgamation) XqA Y.
This is quite tricky ! Idea: Find cofinal subspectra X[ ⊂ X and A[ ⊂ A
such that A[ is saturated in X[ and f is defined on A[ as a function. Then
define XqA Y as X[ qA[ Y (and that is easy). Details left to you.
Two maps f ,g : X → Y from a CW -spectrum to another spectrum are
homotopic if there exists a map h : I+ ∧ X → Y such that hι0 = f and
hι1 = g. Here ι0, ι1 are the inclusions

X ∼= {0}+ ∧X ⊂ I+ ∧X , X ∼= {1}+ ∧X ⊂ I+ ∧X .

Homotopy is an equivalence relation, and the set of homotopy classes of
maps from X to Y is denoted by [X,Y].

Remark 9.5. Every CW -spectrum X has a skeleton filtration, as follows.
For k ∈ Z, let Xk be the subspectrum of X whose n-th term is the (n + k)-
skeleton of the CW -space Xn. We call this the k-skeleton of X. Then
Xk+1 is isomorphic as a CW -spectrum to the pushout (amalgamation) of a
diagram

Xk f←−−−− ∨
γ Sk ↪→ ∨

γ Dk+1

where Dk+1 is the suspension spectrum of the disk Dk+1 (with a base point
in the boundary Sk). This is not quite trivial—try it.
Let X be a CW -spectrum and let A ⊂ X be a CW -subspectrum. Then
the pair (X,A) has the homotopy extension property. This follows from
the corresponding statement for CW -pairs. However, be careful not to do
an induction over skeletons, because the skeletons Xk may be nontrivial
for arbitrary negative k. Sketch: Let f : X → Y and h : I+ ∧ A → Y
be given such that hι0 agrees with f on A. Without loss of generality,
f and h are functions defined on X and I+ ∧ A, respectively, and A is
saturated in X. (If A is not saturated, you must replace X by a smaller but
cofinal subspectrum.) Now use the HEP for the CW -pair (X0, A0). Then
you will find an extension of h, with the required initial condition, to the
subspectrum made from the space X0 and its suspensions. Then apply the
HEP for the CW -pair (X1,ΣX0) to extend the homotopy further to the
subspectrum made from X1 and its supensions. And so on.
The same strategy will give you the proof of the cellular approximation
theorem: Given a pair of CW -spectra (X,A) and a CW -spectrum Y and a
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map f : X → Y which is cellular when restricted to A, there exists a cellular
map g : X → Y which is homotopic to f rel A. Of course, a map between
CW -spectra is cellular if it takes k-skeleton to k-skeleton for all k ∈ Z.

Example 9.6. This was historically the first “genuine” example of a spec-
trum (around 1954) and it is the one which we shall study. Let Gp,q be the
space of p-dimensional linear subspaces of Rp ⊕ Rq. This is compact. The
tautological vector bundle over Gp,q is the vector bundle

γp,q : Ep,q −→ Gp,q

such that Ep,q = {(V, x) | x ∈ V ∈ Gp,q} and the bundle projection is given
by (V, x) 7→ V . (If you are not too familar with vector bundles, then you
can at least admit that γp,q is a fiber bundle and that each fiber has the
structure of a real vector space of dimension p.) The space Ep,q is locally
compact ; let ThEp,q be its one-point compactification. Use the point ∞ as
base point.
Now let’s vary q. This is not difficult: we get Gp,q ⊂ Gp,q+1 using the
standard inclusion Rq ⊂ Rq+1 ; similarly Ep,q ⊂ Ep,q+1 and ThEp,q ⊂
TEp,q+1. Then we take unions as q → ∞, and denote the resulting spaces
by Gp, Ep and Th Ep. Caution: ThEp is not the one-point compactification
of ThEp for p > 0 (it is not compact).
Next let’s vary p. This is more difficult. Using the standard inclusion
Rp ⊂ Rp+1, we can define maps

Gp,q −→ Gp+1,q ; V 7→ V ⊕ 〈bp+1〉
where bp+1 ∈ Rp+1 is the “last” standard basis vector in the direct summand
Rp+1. Think of these maps as inclusion maps. What does γp+1,q look like
when we restrict it to Gp,q ? It looks like the Whitney sum (fiberwise direct
sum) of γp,q with a trivial line bundle (vector bundle with one-dimensional
fibers). Therefore the one-point compactification of its total space looks like
the reduced suspension of the one-point compactification of the total space
of γp,q. Result: ΣThEp,q ⊂ ThEp+1,q. All this is in some sense independent
of q, so by the same reasoning:

ΣThEp ⊂ ThEp+1.

So we have a spectrum made from the pointed spaces ThEp, for p ≥ 0, and
the inclusion maps ΣThEp ↪→ TEp+1. This spectrum is denoted by MO
(for various reasons difficult to explain. For example, the M in MO is in
honor of Milnor, but Thom had a lot to do with that, too.)

Exercise 9.7. Let X be a compact CW -space, γ a vector bundle over X
with total space E. Let ThE be the one-point compactification of E. How
would you make ThE into a CW -space ? It can be done in such a way
that ThE has exactly as many cells as X, plus the 0-cell at infinity which
usually serves as base point. (Think of the special case where γ is a trivial
vector bundle.)
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The Grassmannians Gp,q have canonical and very pretty CW -structures (see
page 75 of Characteristic Classes by Milnor and Stasheff, Princeton Univer-
sity Press 1974). It follows that the spaces ThEp,q above have canonical
CW -structures. These are compatible with the various inclusions ; so MO
is actually a CW -spectrum.

We have already defined spectra Sk for k ≥ 0. An isomorphic definition
which works for all k ∈ Z is as follows: Let Sk be the spectrum whose n-th
term is Sn+k if n + k ≥ 0, and {∗} if not. Now we can define the homotopy
groups of an arbitrary spectrum by

πk(X) = [Sk,X] for k ∈ Z .

Exercise 9.8. Show that πk(X) is isomorphic to the direct limit of the
homotopy groups πk+n(Xn, ∗) as n →∞. Conclude that πk(X) is indeed an
abelian group. Conclude also that πk(Sn) is zero if k < n and isomorphic
to Z if k = n. Also, if X is a wedge of i copies of Sn, then πn(X) ∼= Zi.

Remark 9.9. If you don’t know about direct limits alias colimits: The direct
limit of a system of sets and maps

· · · → A−1 → A0 → A1 → A2 → A3 → A4 → . . .

is the set of equivalence classes of pairs (n, a) where a ∈ An. Two such pairs
(n, a), (m, b) are equivalent if there exists k ≥ m,n such that a and b have
the same image in Ak under the appropriate maps in the system. If all the
sets are groups and all the maps are homomorphisms, then the direct limit
is also a group.

The homology group Hk(X) of a spectrum X = {Xn, εn} can be defined as
the direct limit of the (ordinary, reduced) homology groups H̃k+n(Xn) as
n → ∞. There is a Hurewicz homomorphism from π∗(X) to H∗(X) ; note
(for later use) that it is iso if X is a wedge of copies of Sk and ∗ ≤ k.

If X = {Xn, εn} is a CW -spectrum, then we can also define the cellular
chain complex W (X) of X. (Let’s agree on notation: The suspension ΣC of
a chain complex C is the same chain complex shifted one degree upwards.)
The suspension ΣW (Xn, {∗}) of the reduced cellular chain complex of Xn is
canonically isomorphic to W (ΣXn, {∗}) which is contained in W (Xn+1, {∗}).
Therefore we can define W (X) to be the direct limit of the system of chain
complexes

. . . ↪→ ΣW (X−1) ↪→ W (X0) ↪→ Σ−1W (X1) ↪→ Σ−2W (X2) ↪→ . . . .

Another definition of W (X) which is also useful: Let Wn(X) be the n-th
homology of (Xn/Xn−1), where Xn is the n-skeleton (a CW -subspectrum)
defined earlier. Define the boundary operator from Wn(X) to Wn−1(X) in
the usual way.
The homology of X is, of course, isomorphic to the homology of the cellular
chain complex W (X). We define the cohomology of X as the homology of
hom(W (X),Z).
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A spectrum X is n-connected if πk(X) = 0 for all integers k ≤ n. For
example, MO is (−1)-connected; Sk is (k − 1)-connected, for all k ∈ Z. A
map f : X → Y between spectra is n-connected if f∗ : πk(X) → πk(Y) is
iso for k < n and onto for k = n. Equivalently, f is n-connected if πk(f) is
zero for k ≤ n; the definition of π∗(f) is left to you. For example, if X is
CW -spectrum, then the inclusion Xn ↪→ X of the n-skeleton is n-connected.

Theorem 9.10. For a (k − 1)-connected CW -spectrum X, the Hurewicz
homomorphism πk(X) → Hk(X) is an isomorphism.

Proof. Almost identical with that of theorem 8.2. Notice that k can be any
integer, positive or negative. ¤

A relative Hurewicz theorem for spectra does exist, but we will see that it is
a corollary of a more surprising theorem. To state and prove this, let’s return
to the setting of unstable homotopy theory for a while. The following theo-
rem is a special case of the homotopy excision theorem (Blakers-Massey).

Theorem 9.11. Let (Y, X) be an n-connected CW -pair with m-connected
X, base point in X, and m,n ≥ 1. Then q∗ : πk(Y,X, ∗) → πk(Y/X)
(induced by the quotient map q from Y to Y/X) is iso for 0 ≤ k ≤ m + n
and onto for k = m + n + 1.

Proof. Write Z = Y/X. The first step is to replace q : Y → Z by a fibration
q] : Y ] → Z (where Y ] is homotopy equivalent to Y , and so on). Let Ψ
be the fiber of q] over the base point. We have the usual spectral sequence
with E2∗∗ term

E2
s,t
∼= Hs(Z; Ht(Ψ → ∗)) ∼= Hs(Z; H̃t−1(Ψ))

converging to H∗(q]) ∼= H∗(q) ∼= H̃∗−1(X) . (See the proof of the relative
Hurewicz theorem.) Since (Y, X) is n-connected, E2

s,t is zero for 0 < s ≤ n
(and for s < 0). Since X is m-connected, and

H̃∗−1(X) ∼= H∗(q) ,

the map q is (m + 1)-connected ; this means that Ψ is m-connected (from
the long exact homotopy sequence of the fibration q]). Therefore E2

s,t is zero
for t ≤ m + 1. So the E2 term looks like this:

...
...

...
...

...
Hm+3Ψ 0 . . . 0 Hn+1(Z;Hm+3Ψ) Hn+2(Z; Hm+3Ψ) . . .
Hm+2Ψ 0 . . . 0 Hn+1(Z;Hm+2Ψ) Hn+2(Z; Hm+2Ψ) . . .

m+2 Hm+1Ψ 0 . . . 0 Hn+1(Z;Hm+1Ψ) Hn+2(Z; Hm+1Ψ) . . .
0 0 . . . 0 0 0 . . .
...

...
...

...
...

0 n + 1
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The differentials on Er∗∗ still go r units to the left and r−1 units upwards. It
follows easily that the edge homomorphisms of the spectral sequence, from
E2

0,t to Ht(q]), are isomorphisms for t ≤ m + n and onto for t = m + n + 1.
These edge homomorphisms are of course the homomorphisms

Ht(Ψ → ∗) et−−−−→ Ht

(
q] : Y ] → Z

)

induced by the inclusion Ψ ↪→ Y ].
At this point we can abandon the spectral sequence, and try to make sense
of the result. Note that Ψ is the space of pairs (y, ω), where y ∈ Y and ω
is a path in Z such that ω(0) = q(y). Any x ∈ X determines a pair (x, µ)
in Ψ, where µ is the constant path with constant value ∗. So X ⊂ Ψ. The
composition

Ht(X → ∗) jt−−−−→ Ht(Ψ → ∗) et−−−−→ Ht

(
q] : Y ] → Z)

) ∼= H̃t−1(X)

is an isomorphism for all t (see exercise cor-spectrquotient below). Since et

is iso for t ≤ m + n and onto for t = m + n + 1, the same must be true for
jt, in other words: the homomorphisms

Ht(X) −→ Ht(Ψ)

induced by inclusion are isomorphisms for t < m + n and onto for t =
m+n. Therefore the inclusion X ↪→ Ψ is (m+n)-connected, by the absolute
Hurewicz theorem. (Here we seem to be using the fact that Ψ is homotopy
equivalent to a CW -space; this is Milnor’s result. Also, one must check
that Ψ is simply connected. To prove this, use the G. Whitehead theorem,
corollary cor-GWhitehead, to see that q and q] are 2-connected maps, and
then use the long exact sequence of the fibration q].)
Finally we use the Five lemma and the commutative diagram with exact
rows

. . . // πt(X, ∗) //

²²

πt(Y, ∗) //

²²

πt(Y, X, ∗) //

²²

πt−1(X, ∗) //

²²

. . .

. . . // πt(Ψ, ∗) // πt(Y ], ∗) // πt(Y ],Ψ, ∗) // πt−1(Ψ, ∗) // . . .

(vertical arrows induced by inclusion) to conclude that the homomorphisms
from πt(Y, X, ∗) to πt(Y ],Ψ, ∗) induced by inclusion are iso for t ≤ m + n
and onto for t = m + n + 1. Note also that q] induces an isomorphism
πt(Y ],Ψ, ∗) ∼= πt(Z) by theorem 7.8, for all t > 0. Putting this together, we
see that

q∗ : πt(Y, X, ∗) −→ πt(Z, ∗)
is iso for t ≤ m + n and onto for t = m + n + 1. ¤

Corollary 9.12. For any pair of CW -spectra (Y,X) and any n ∈ Z, the
homomorphism q∗ : πn(Y,X) → πn(Y/X) induced by the quotient map q is
an isomorphism.



50 MICHAEL WEISS

Proof. We write (Y,X) = {(Yn, Xn), εn}. Surjectivity : Any element in
πn(Y/X) can be represented by a pointed map

f : Sn+k −→ Yk/Xk

since πn(Y/X) is the direct limit of the groups πn+k(Yk/Xk, ∗) as k → ∞.
The same element is then also represented by

Sn+k+r ∼= ΣrSn+k Σrf−−−−−−→ Σr(Yk/Xk) ∼= ΣrYk/ΣrXk ⊂ Yk+r/Xk+r

where r can be as large as we please. In particular, we can take r so large
that 2(r − 1) > n + k + r. Since (ΣrYk, ΣrXk) and ΣrXk are both (r − 1)-
connected, the homotopy excision theorem 9.11 tells us that the class of Σrf
in πn+k+r(ΣrYk+r/ΣrXk+r, ∗) comes from a class in πn+k+r(ΣrYk+r, ΣrXk+r, ∗).
Going backwards through the definitions, we find that this new class repre-
sents something in πn(Y,X) which maps to the class in πn(Y/X) we started
with.
Injectivity : Suppose that [f ], [g] ∈ πn(Y,X) map to the same class in
πn(Y/X) under q∗. Arguing as above, we find that [f ] and [g] can be
represented by classes in πn+k+r(ΣrYk+r,ΣrXk+r), still with the same im-
age in πn+k+r(ΣrYk+r/ΣrXk+r). Of course, k is large and r is very large.
Applying theorem 9.11 once more, this time the injectivity part, we see that
the two classes in πn+k+r(ΣrYk+r,ΣrXk+r) must be identical ; therefore
[f ] = [g]. ¤

Exercise 9.13. Show that the inclusion X∨Y ↪→ X×Y (where X and Y
are CW -spectra) is a homotopy equivalence. (Hint: Use corollary 9.12 to
express π∗(X ∨Y) in terms of π∗(X) and π∗(Y).)

Exercise 9.14. Let T 2 be the 2-dimensional torus. Show that the suspen-
sion spectrum of T 2

+ is homotopy equivalent to S0 ∨ S1 ∨ S1 ∨ S2.

10. Steenrod Operations

In this section, all homology groups and cohomology groups are taken with
coefficients Z/2, unless otherwise stated.

A cohomology operation θ is a natural transformation

θY : Hr(Y ) −→ Hs(Y )

between contravariant functors from CW -spaces to abelian groups. Here
the CW -space Y is regarded as a variable, whereas r and s are fixed.
In more detail: For each CW -space Y , we are given a map θY from Hr(Y )
to Hs(Y ) ; and for each continuous f : X → Y , the diagram

Hr(Y )
f∗−−−−→ Hr(X)

θY

y θX

y
Hs(Y )

f∗−−−−→ Hs(X)
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commutes. Example: Choose your favorite r > 0, and choose another integer
p > 0. For each Y , define θY from Hr(Y ) to Hpr(Y ) by θY (z) := zp (the
p-th cup product power).
A cohomology operation θ, as above, has a unique extension to CW -pairs.
(“Extension” is meaningful because every space Y can be regarded as a pair
(Y, ∅).) Uniqueness of the extension follows from the commutativity of the
diagram

Hr(Y/A) ←−−−− Hr(Y/A, ∗) −−−−→ Hr(Y, A)

θY/A

y θY/A,∗
y θY,A

y
Hs(Y/A) ←−−−− Hr(Y/A, ∗) −−−−→ Hs(Y, A)

in which the horizontal arrows are induced by certain maps of pairs. (The
left-hand horizontal arrows are injective, the right-hand ones are iso.) The
same diagram can be used to define the extension.
A stable cohomology operation λ of degree s is a natural transformation

λY : H∗(Y ) −→ H∗+s(Y )

(Y variable, ∗ variable, but s fixed) with the following additional property:
for every CW -pair (Y, A), the square

H∗(A) δ−−−−→ H∗+1(Y, A)

λA

y λY,A

y
H∗+s(A) δ−−−−→ H∗+s+1(Y, A)

commutes. (Note that we have used the automatic extension from spaces to
pairs.)

Exercise 10.1. Show that any stable cohomology operation is additive,
in other words λY (w + z) = λY (w) + λY (z) whenever these expressions are
meaningful. (Hint: Show first that a stable cohomology operation commutes
with the suspension isomorphisms. Then search for unusual definitions of
the addition in H∗(ΣY ).) Compare this with the example above, where
θY (z) = zp. For which values of p is θ additive ?

Examples of stable cohomology operations are not so easy to find. Steenrod
found many. The following theorem is mostly due to him except for the
Cartan formula, which is presumably due to H. Cartan.

Theorem 10.2. There exist stable cohomology operations

Sqi : H∗(Y ) −→ H∗+i(Y ) (i = 0, 1, 2, 3, . . . )

(variable Y ) with the following properties.
• Sq0 is the identity.
• Sqi(z) = z∪z for any cohomology class z of degree i, and Sqi(z) = 0

if z has degree < i.
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• (Cartan formula) Sqk(v∪w) =
∑

i+j=k Sqi(v)∪Sqj(w) for arbitrary
cohomology classes v and w in H∗(Y ) (any Y ).

These operations are called Steenrod operations or Steenrod squares. Even-
tually we shall see that the properties in theorem 10.2 characterize them,
but right now existence seems more important.
There is a very pretty geometric idea behind theorem 10.2. Let S∞ be the
set of vectors of unit length in R∞ =

⋃
nRn. We make this into a CW -space

in such a way that the n-skeleton is exactly Sn = S∞ ∩Rn+1. Note that S∞
has two cells in each dimension ≥ 0. For a CW -space Y , we then form

(S∞ × Y × Y )
/ ∼

where the equivalence relation identifies points which correspond to one
another under the involution (z, y1, y2) 7→ (−z, y2, y1). Since the involution
is cellular and has no fixed points, the space (S∞ × Y × Y )/ ∼ inherits a
CW -structure from the product S∞ × Y × Y . It is easy to describe the
cellular chain complex of (S∞ × Y × Y )/ ∼ in terms of the cellular chain
complex of X, and this will give us a way to construct interesting classes in
the cohomology of (S∞ × Y × Y )/ ∼. Then we note that (S∞ × Y × Y )/ ∼
contains RP∞ × ∆Y where ∆Y is the diagonal in Y × Y . By restriction,
the interesting cohomology classes in (S∞ × Y × Y )/ ∼ will give us classes
in

H∗(RP∞ ×∆Y ) ∼=
⊕

i

H∗−i(Y ) .

(The isomorphism uses the Künneth theorem ; note that the coefficient
group is still Z/2.)

We start with some chain complex algebra, however. Let G = {1, T} be the
cyclic group of order 2. (We must distinguish between the group G, which
acts on spaces like S∞ × Y × Y , and the field Z/2 which we need in order
to define cohomology rings.) Let R = Z/2[G] be the group algebra. So
elements in R are formal linear combinations

∑
g∈G agg, with ag ∈ Z/2 for

all g ∈ G, and multiplication in R is defined in such a way that it satisfies
the distributive law and extends the multiplication in G. In particular, we
think of G as a subset of R (a subgroup of the group of units of R, to be
more precise). Every vector space over Z/2 with an action of G (by linear
maps) is automatically an R-module: extend the action from G to R by
distributivity.
Example: G acts on the CW -space S∞ by the antipodal action, and the
action is by cellular maps. So the cellular chain complex of S∞, with Z/2
coefficients, is a chain complex on which G acts ; so it is a chain complex
of R-modules. Call it W . Since there are two cells in each dimension, and
G permutes these, we find that Wn

∼= R as an R-module. (Choose the
isomorphism in such a way that 1 ∈ R corresponds to the “northern” n-cell
in S∞, the one containing points whose (n + 1)-st coordinate is positive.)
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With these identifications, W has the following appearance. (Note that +
and − is the same thing.)

W : R
1+T←−−−− R

1+T←−−−− R
1+T←−−−− R

1+T←−−−− R
1+T←−−−− R

1+T←−−−− . . .

Each of the boundary maps is multiplication by (1 + T ), and of course W
starts in degree 0. Write α : W0 → Z/2 for the augmentation.

Exercise 10.3. Show that, up to chain homotopy, there is only one R-
module chain map e from W to W ⊗ W inducing an isomorphism on H0.
(Here you should equip W ⊗W with the “diagonal” G-action, and extend
to R as usual). Give an explicit description of e. What does this tell you
about the cup product in H∗(RP∞) ? (Note that the cellular chain complex
of RP∞, with coefficients Z/2, is isomorphic to W ⊗R Z/2.) Your answer
should be: Everything.

More example: Let C be the cellular chain complex with Z/2 coefficients of
some CW -space Y . Then C⊗C is isomorphic to the cellular chain complex
of Y ×Y (not by the Künneth theorem, but because you can see it). G acts
on Y ×Y by permuting factors, and the corresponding action of G on C⊗C
also permutes the (tensor) factors. It follows easily that the cellular chain
complex of (S∞ × Y × Y )/ ∼ is isomorphic to

(
W ⊗ C ⊗ C

)⊗R Z/2

where G, or R, acts diagonally on W ⊗ C ⊗ C. Notation: We will regard
this cellular chain complex as a quotient of W ⊗ C ⊗ C (which it is), so we
write elements as sums of terms of the form w ⊗ c1 ⊗ c2.
Now suppose that v : C → Z/2 is a cocycle of dimension k, with class
[v] ∈ Hk(C). Then we define a cocycle

v♦ :
(
W ⊗ C ⊗ C

)⊗R Z/2 −→ Z/2

of dimension 2k by v♦(w ⊗ c1 ⊗ c2) := α(w) · v(c1) · v(c2) . This is in fact
a cocycle (check !), and its class [v♦] depends only on the class [v] (ditto).
We may write

[v] ∈ Hk(Y ) , [v♦] ∈ H2k
(
(S∞ ⊗ Y ⊗ Y )/ ∼)

.

Finally we apply the “enhanced” diagonal map

N : RP∞ × Y −→ (S∞ ⊗ Y ⊗ Y )/ ∼
which gives us (together with the Künneth theorem)

N∗[v♦] ∈ H2k(RP∞ × Y ) ∼=
⊕

0≤j≤2k

Hj(Y ) .

The component of N∗[v♦] in Hk+i(Y ) is what we call Sqi[v]. For i > k, we
define Sqi[v] = 0. Notice that we have inadvertently defined Sqi[v] for some
negative values of i, namely, −k ≤ i < 0. It will turn out that Sqi[v] = 0
for i < 0.
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Now we have to check that the properties in theorem 10.2 are satisfied. We
start with naturality: Given a map of CW -spaces f : X → Y , and integers
i and k ≥ 0, we want to know whether

Hk(Y )
f∗−−−−→ Hk(X)

Sqi

y Sqi

y
Hk+i(Y )

f∗−−−−→ Hk+i(X)

commutes. It does of course because f is homotopic to a cellular map.
Next, we can use the naturality of Sqi to show that Sqi is zero for i < 0.
In fact, let θ : Hk(X) → Hs(X) be any cohomology operation (variable X)
where s < k. Let q : X → X/Xq−1 be the quotient map. Then the upper
horizontal arrow in the commutative diagram

Hk(X/Xk−1)
q∗−−−−→ Hk(X)

θ

y θ

y
Hs(X/Xk−1)

q∗−−−−→ Hs(X)

is onto, and the lower left corner is zero. Conclusion: θ = 0.
For the second property in theorem 10.2, suppose that [v] ∈ H i(Y ). Then
Sqi[v] (same i) is the image of [v♦] under the map in cohomology induced
by

Y
⊂−−−−→ RP∞ × Y

N−−−−→ (S∞ × Y × Y )
/ ∼ .

But now we have a commutative diagram

Y
⊂−−−−→ RP∞ × Y

∆

y N
y

Y × Y
⊂−−−−→ (S∞ × Y × Y )

/ ∼ .

The lower horizontal arrow sends (y1, y2) to the equivalence class of (∗, y1, y2),
where ∗ = (1, 0, 0, . . . ) ∈ S∞. By inspection, the induced map in cohomol-
ogy sends [v♦] to the external product v × v ∈ H2k(Y × Y ), which goes to
v ∪ v under ∆∗.
To prove the Cartan relations, the third item in theorem 10.2, let us find out
what the construction [v] 7→ [v♦] does to external products in cohomology.
(The point is that external products in cohomology are defined at the chain
complex level, whereas internal cup products are not.) Let e : W → W ⊗W
be an R-module chain map as in exercise 10.3.
Let B and C be chain complexes of vector spaces over Z/2. Let u :B → Z/2
and v : C → Z/2 be cocycles of dimensions j and k, respectively. (Later, but
not now, we will assume that B and C are the cellular chain complexes of
CW -spaces X and Y , respectively.) Notation: W ∫ C means

(W ⊗ C ⊗ C)⊗R Z/2 ,
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and elements in this chain complex will be written as sums of terms

w ⊗ c1 ⊗ c2 .

We can use e to produce a chain map

(z) W ∫(B ⊗ C) −→ (W ∫ B)⊗ (W ∫ C)

(provisionally send w ⊗ (b1 ⊗ c1)⊗ (b2 ⊗ c2) to e(w)⊗ (b1 ⊗ b2)⊗ (c1 ⊗ c2),
then note that e(w) is a sum of terms w′⊗w′′, then push the w′′ terms past
the terms b1 and b2 to have it all in the right order). It is easy to see that
the cocycle u♦×v♦ (external product) of dimension 2j +2k goes to (u×v)♦
under (z).
The geometric meaning of this is as follows. Let η : RP∞ → RP∞ × RP∞
be a cellular approximation to the diagonal. Lifting this to universal covers
gives a cellular map η̃ : S∞ → S∞ × S∞, and passage to cellular chain
complexes gives a chain map W → W ⊗W . This is now an R-module chain
map (why ?), so we may call it e. Further, suppose that B and C are the
cellular chain complexes of CW -spaces X and Y . We can use η̃ to produce
a cellular approximation of the map

∇ :
S∞× (X × Y )× (X × Y )

∼ −→ S∞×X ×X

∼ × S
∞× Y × Y

∼
(z, x1, y1, x2, y2) 7→ (z, x1, x2, z, y1, y2) .

The map of cellular chain complexes induced by this cellular approximation
of ∇ will then simply be (z). So now we know that

∇∗([u♦]× [v♦]) = [(u× v)♦] .

Then we can use the commutative diagram

RP∞ × (X × Y )
ζ−−−−→ (RP∞ ×X)× (RP∞ × Y )

N
y N×N

y
S∞× (X × Y )× (X × Y )

∼
∇−−−−→ S∞×X ×X

∼ × S
∞× Y × Y

∼
(where ζ(p, x, y) = (p, x, p, y)) to conclude that

N∗[(u× v)♦] = N∗∇∗([u♦]× [v♦])
= ζ∗(N× N)∗([u♦]× [v♦]) = ζ∗

(
N∗[u♦]× N∗[v♦]

)
.

This is an equation in H2j+2k(RP∞×(X×Y ), which we think of as a direct
sum of cohomology groups of X × Y . Comparing coefficients, we see that

Sqi([u]× [v]) =
∑

s+t=i

(Sqs[u])× (Sqt[v]) .

This is the external product version of the Cartan formula, and you can
easily deduce the internal version, item 3 in theorem 10.2, from it. (Actually,
the external version is equivalent to the internal version—why ?)
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Last not least, we have to prove that Sq0 is the identity. This is harder
to prove than the other properties. Note first that if we want to define or
caculate Sqi[w] for some [w] ∈ Hk(Y ), some Y , then it is enough to regard
or define [w♦] as a class in H2k

(
(Si+k × Y × Y )/ ∼)

, and to pull it back
using an enhanced diagonal of the form

N : RP i+k × Y −→ (Si+k × Y × Y )/ ∼ .

To simplify further, suppose that k > 0, and that Y is pointed. Then [w]
comes from Hk(Y, ∗) and it follows easily that [w♦] comes from H2k of a
quotient space of (Si+k × Y × Y )/ ∼, namely, (Si+k × (Y ∧ Y ))/ ∼. Saving
symbols, we may write

N : RP i+k × Y −→ (Si+k × (Y ∧ Y ))/ ∼ ,

[w♦] ∈ H2k
(
(Si+k × (Y ∧ Y ))/ ∼)

.

We apply these observations in a very special case: Y = S1, and [w] ∈ H1(S1)
is the nonzero class. We want to prove that Sq0[v] is still nonzero. So we
examine

(!) N : RP 1 × S1 −→ (S1 × (S1 ∧ S1))/ ∼
and ask what this does to [w♦]. Now the domain in (!) is a 2-dimensional
torus, and the codomain has the same (co)-homology as a product S1 × S2

(coefficients Z/2), and [w♦] is the only nonzero class in H2 of the codomain.
We still have to check that (!) is nonzero on H2, or on H2. Changing
CW -structures, we can say that (!) is the inclusion of a CW -subspace, and
then we have a long exact homology sequence involving the homology of the
supspace, homology of the ambient space, and homology of the quotient.
Showing that (!) is nonzero on H2 is therefore equivalent to showing that
H3 of the quotient has dimension < 2. But the quotient is homeomorphic to
(S1 × S2)/(S1 × ∗). We conclude that Sq0 acts like the identity on H1(S1).
Now the general case follows easily: The Cartan formula (external version)
tells us that Sq0 acts like the identity on Hn((S1)n). Naturality of Sq0 and
the fact that we have a map from (S1)n to Sn inducing an isomorphism on
Hn then implies that Sq0 acts like the identity on Hn(Sn). If X is a wedge
of n-spheres, then we have an injection

Hn(X) −→
∏
α

Hn(Sn)

induced by the inclusions of the various wedge summands, and again natu-
rality shows that Sq0 acts like the identity on Hn(X). If X is an arbitrary
CW -space, then we have homomorphisms

Hn(X) ←− Hn(X/Xn−1) −→ Hn(Xn/Xn−1)

induced by quotient map and inclusion, respectively. The first of these is
surjective, the second is injective. Of course, Xn/Xn−1 is a wedge of spheres.
Again, naturality implies that Sq0 is the identity on Hn(X). ¤
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Exercise 10.4. Explain why stability in theorem 10.2 follows from the prop-
erties 1 and 2 of the Steenrod operations. (Hint: Show first that the Steenrod
operations commute with the suspension isomorphism. For a pair (Y, A),
note that H̃∗(cone) ∼= H∗(Y, A), where “cone” is the mapping cone of the
inclusion map A → Y . Then note that the quotient of the cone by Y is
homeomorphic to the unreduced suspension of A.)

Exercise 10.5. (1) Let X be a CW -space, and let α : E → X be a vector
bundle over X, of fiber dimension n. When X is compact, we define the
Thom space ThE to be the one-point compactification E ∪ ∞ of E, and
we use ∞ as the base point. Then ThE is a pointed CW -space; apart
from the 0-cell {∞} it has one cell of dimension n + k for every k-cell in
X. In more detail, if e is a k-cell in X, then α−1(e) ⊂ E ⊂ ThE is the
corresponding n + k-cell. Show that the reduced cellular chain complex of
ThE is isomorphic to the cellular chain complex of X, up to a degree shift
by n units. Here you have to use coefficients in Z/2, otherwise it’s not quite
true. Even if you do use coefficients in Z/2, it is a little tricky. You will
need a practical definition of the degree of a map from Sk to itself. Try
transversality.
The resulting isomorphism Hk(X) ∼= H̃n+k(ThE) is the Thom isomor-
phism. The image of the class 1 ∈ H0(X) under the Thom isomorphism is
the Thom class Uα ∈ Hn(ThE). All this works equally well when X is non-
compact, but you must not define ThE as the one-point compactification.
Instead, note as before that ThE has a nice cell decomposition, and give it
the CW -topology.
(2) Let β : E′ → Y be another vector bundle, of fiber dimension m. Then
α × β : E × E′ → X × Y is a vector bundle over X × Y of fiber dimension
m + n, and its Thom space is homeomorphic to ThE ∧ Th E′. Using this
identification, show that

Uα×β = Uα × Uη

(the Thom class of the external product α×β is the external product of the
Thom classes).
(3) In general, the Thom isomorphism fails to commute with the action of
the Steenrod operations (incidentally, also with cup products). This makes
the following definition reasonable and interesting: For k > 0, the k-th
Stiefel Whitney class of the vector bundle α : E → X is the class

wk(α) ∈ Hk(X)

which corresponds to Sqk(Uα) under the Thom isomorphism. Show that
w0(α) = 1, and wk(α) = 0 if k is greater than the fiber dimension of α.
(4) Show that for an external product α × β : E × E′ → X × Y of vector
bundles, the following holds:

wk(α× β) =
∑

i+j=k

wi(α)× wj(β) .
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If X = Y , then we can also define the Whitney sum α⊕β, which is a vector
bundle on X, and then

wk(α ∪ β) =
∑

i+j=k

wi(α) ∪ wj(β) .

(5) Show that the Stiefel-Whitney classes are characteristic classes in the
following sense: Let α : E → X be a vector bundle as usual, and let f :
V → X be a map. Then wk(f∗α) = f∗(wk(α), where f∗α is the induced
vector bundle over V .
(6) Show that w1 of the nontrivial one-dimensional vector bundle over S1 is
nonzero. (Hint: the Thom space is homeomorphic to RP 2.)
(7) Suppose that α and β are vector bundles over X such that the Whitney
sum α⊕β is a trivial vector bundle. Explain how the Stiefel-Whitney classes
of α determine those of β.
(8) Let τ be the tangent bundle of RPn, and let η be the canonical or
tautological line bundle. (Line bundle always means: vector bundle of fiber
dimension 1. We have a tautological line bundle over RPn because RPn is
also the Grassmannian of 1-dimensional linear susbspaces of Rn+1.) Finally
let ε be the trivial line bundle over RPn, with total space R × RPn. Show
that

τ ⊕ ε ∼= (n + 1)η
where (n + 1)η means a Whitney sum of n + 1 copies of η.
(9) Let f : RPn → Rn+k be a smooth immersion, iė,̇ every point x ∈ RPn

has a neighbourhood W such that f|W is a smooth embedding. (For example,
there is the “figure 8” immersion of RP 1 in R2.) The existence of such an f
implies the existence of a vector bundle β over RPn, of fiber dimension k,
such that τ ⊕ β is a trivial vector bundle. Why ?
(10) Show that RP 4 cannot be immersed in R6, and more generally that
RP k cannot be immersed in R2k−2 if k is a power of 2. (Use (9), (7) and
the last part of (3).)
(11) Let ℘ = ℘(w1, w2, w3, . . . ) be a monomial in finitely many of the sym-
bols w1, w2, etc,̇ of total degree n. (For example, the total degree of
w3

1w
5
2w4w

2
6 is 3 · 1 + 5 · 2 + 1 · 4 + 2 · 6.) If γ is a vector bundle over X,

we can substitute wi(γ) for wi in the monomial ℘, and interpret the prod-
uct as a cup product, so that ℘(w1(γ), w2(γ), . . . ) becomes an element in
Hn(X). If X = M happens to be a closed connected smooth n-manifold,
and γ = τ is the tangent bundle, then Hn(M) ∼= Z/2, so the element which
we have constructed from ℘ is a “number” (in Z/2). It depends only on
M , since τ is determined by M . If M is not connected (but still closed
and smooth) we can sum over all components, or better: we can evaluate
℘(w1(γ), w2(γ), . . . ) on the fundamental class (scalar product of a homology
class with a cohomology class). This type of number (in Z/2) associated
with M is called a characteristic number. Show that characteristic numbers
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are bordism invariants. In other words: If Mn as above, with tangent bundle
τ , is the boundary of a compact smooth (n + 1)-manifold with boundary,
and if ℘ is a polynomial as above of total degree n, then ℘(w1(τ), w2(τ), . . . )
evaluated on the fundamental class of M gives 0. (This has a lot to do with
Stokes theorem, although you should not use Stokes theorem to prove it.)
(12) Using (11), show that RP 2, RP 4 and RP 2 × RP 2 are not bordant to
zero, and that RP 4 is not bordant to RP 2 × RP 2. (We say that two closed
smooth manifolds of the same dimension are bordant if their disjoint union
is the boundary of a compact smooth manifold, of one dimension higher.)

11. H∗(MO) and H∗(MO)

We continue to use Z/2 coefficients for homology and cohomology groups.
Recall (from example 9.6) that Gp is the Grassmannian of p-dimensional
linear subspaces of Rp⊕R∞, that ThEp is the Thom space of the tautological
vector bundle of fiber dimension p over Gp, and that we made the spectrum
MO from the spaces ThEp and certain inclusion maps ΣThEp ↪→ Th Ep+1.
Calculating the homology or cohomology of MO is much the same then
as calculating the homology or cohomology of the spaces ThEp. By the
Thom isomorphism, this is again the same as calculating the homology or
cohomology of Gp. So this is where we start.
Before we really start, remember that what we are after is π∗(MO). In
fact, πn(MO) is isomorphic to the bordism group of n-dimensional closed
smooth manifolds. This is the content of the Thom-Pontryagin construc-
tion, expounded in a talk. As a first step towards calculating π∗(MO), we
might try to calculate H∗(MO). We may hope, quite unreasonably, that
the Hurewicz homomorphism from π∗(MO) to H∗(MO) is injective.
For the calculation of H∗(Gp), we proceed by induction on p. So we should
start by understanding the relationship between Gp and Gp+1. Of course, we
have the embedding Gp ↪→ Gp+1. We can convert it into a fibration, and ask
what the fibers are ; if we can see what they are, then the spectral sequence
machinery can be applied. There is a standard procedure for converting
maps into fibrations, but if we use it here we might not be able to see what
the fibers are ; so we have to be more inventive.
Let G]

p be the space of all pairs (V, z) where V is a (p+1)-dimensional linear
subspace of Rp+1⊕R∞ and z ∈ V is a unit vector. Forgetting z gives a map

φ : G]
p −→ Gp+1

which is seen to be a fiber bundle with fibers homeomorphic to Sp. For-
getting V gives a map ψ from G]

p to the unit sphere in Rp+1 ⊕ R∞ ; this
is also a fibration, this time with contractible base space. The fiber over
the unit vector bp+1 (standard basis vector in the direct summand Rp+1) is
exactly the image of the embedding Gp → Gp+1. So we have factorized the
embedding as

Gp
e−−−−→ G]

p
φ−−−−→ Gp+1
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where e is a homotopy equivalence (the inclusion of a fiber of ψ) and φ is a
fibration with fibers homeomorphic to Sp.

Exercise 11.1. (1) Let q : D → Y be a fibration with simply connected
base space Y , and assume the fibers are homotopy equivalent to Sn for some
n > 0. Show that there exist long exact sequences

. . . // Hn(D)
q∗ // Hn(Y ) // Hn−k−1(Y ) // Hn−1(D)

q∗ // Hn−1(Y ) // . . .

. . . // Hn−1(Y )
q∗ // Hn−1(D) // Hn−k−1(Y ) // Hn(Y )

q∗ // Hn(D) // . . . .

These are called the Gysin sequences, and they are obviously very similar to
the Wang sequence, exercise 4.14. Instead of the spectral sequence method,
which is the obvious choice, you could also use a Thom space argument.
Namely, the exact sequences suggest that the mapping cone of q has the
same (co-)homology as Y except for a dimension shift. Can you indicate
why ? Incidentally, all this is true if (co-)homology with coefficients Z is
used.
(2) Explain why the assumption on π1(Y ) is superfluous if we use coefficients
Z/2 (which we do). In general, the asssumption “simply connected base
space” which we tend to make when using Leray-Serre spectral sequences is
too strong—how would you weaken it ?

Let Z/2[w1, w2, . . . , wp] be the ring of polynomials in the variables w1, w2,
. . . , wp , with coefficients in Z/2. Define the degree of wk to be k; this makes
the polynomial ring into a graded ring. Then we have a homomorphism of
graded rings

Θp : Z/2[w1, w2, . . . , wp] −→ H∗(Gp) ; wk 7→ wk(γp)

i.e., we send the variable wk to the k-th Stiefel-Whitney class of the tauto-
logical bundle γp . (Strictly speaking, γp was not defined in example 9.6. It
is the vector bundle over Gp whose fiber over V ∈ Gp is the vector space V .)

Theorem 11.2. For all p, the homomorphism Θp is an isomorphism.

Proof. We first prove injectivity. To do so, we define a map

f : (G1)p → Gp

(where (G1)p = G1×G1×· · ·×G1) as follows. A point in (G1)p is a collection
(L1, L2, . . . Lp) of lines (through 0) in R1 ⊕ R∞. Rearranging coordinates,
we can regard the direct sum of these lines Li as a p-dimensional linear
subspace of

Rp × (R∞)p.

Choosing a vector space isomorphism from (R∞)p to R∞, we can the regard
the direct sum of the Li as a p-dimensional linear subspace of Rp ⊕ R∞, or
as a point f(L1, . . . , Lp) in Gp.
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The important thing is that the vector bundle f∗(γp) on (G1)p is isomorphic
to what we should call the tautological bundle over (G1)p, namely,

γ1 × γ1 × · · · × γ1 .

Note also that G1 is really infinite projective space RP∞, and γ1 is the
usual tautological line bundle over RP∞. We know that the Stiefel-Whitney
classes of γ1 are given by w0 = 1 (as always), w1 is the nonzero element which
we may call v, all other wi equal to 0. (Why ?) We know from the Künneth
formula that H∗((G1)p) is a polynomial ring in generators v1, v2, . . . vp, all in
degree 1. We know from the formula for Stiefel-Whitney classes of external
products that the k-th Stiefel-Whitney classes of γ1×· · ·×γ1 is σk(v1, . . . , vp),
the k-th elementary polynomial in the variables v1, . . . vp. The composite
homomorphism

Z/2[w1, w2, . . . , wp]
Θp−−−−→ H∗(Gp)

f∗−−−−→ H∗((G1)p)

is injective, since it sends wk to σk(v1, . . . vk). This proves injectivity of Θp.
We use induction on p to complete the proof. The square

Z/2[w1, w2, . . . , wp]
Θp−−−−→ H∗(Gp)x

x

Z/2[w1, w2, . . . , wp, wp+1]
Θp+1−−−−→ H∗(Gp+1)

commutes (left vertical arrow: send wp+1 to zero, right vertical arrow: in-
duced by embedding). Suppose that Θp is iso. Then the right-hand vertical
arrow in the square is onto (because the left-hand vertical arrow is onto),
and then we get an upper bound on the size of H∗(Gp+1) from the Gysin
sequence of the fibration

φ : G]
p → Gp+1.

(Details left to you.) As a consequence, it is enough to know that Θp+1 is
injective, which we do know. ¤
Let G∞ be the union of the Gp (not the disjoint union ; use the embeddings
Gp ↪→ Gp+1). It follows from theorem 11.2 that

H∗(G∞) ∼= Z/2[w1, w2, w3 . . . ] .

(Sketch: The universal coefficient theorem tells you that H∗(Gp) is the dual
of H∗(Gp) ; then a direct limit argument tells you what H∗(G∞) is ; then
another application of the universal coefficient theorem gives you H∗(G∞).)
Here we can no longer define the isomorphism by sending wk to the k-th
Stiefel-Whitney class of some vector bundle over G∞, unless we are willing
to allow certain types of infinite dimensional vector bundles (it would not
be absurd). Let us just say that the isomorphism sends wk to the class in
H∗(G∞) which maps to wk(γp) ∈ H∗(Gp) under the homomorphism induced
by inclusion, for all p.
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The homology H∗(G∞), which is the dual of H∗(G∞), seems less interesting
than the cohomology since it has no cup product. But it has another product
which will turn out to be rather more important. To define this, we think
of H∗(G∞) as the direct limit of the graded groups H∗(Gp). Given classes
v, w in H∗(G∞, we can therefore assume that v ∈ Hm(Gp) and w ∈ Hn(Gq)
(large p and q). Then we define the product

v · w ∈ Hm+n(Gp+q) ⊂ Hm+n(G∞)

as µ(v × w), where µ is the following map:

µ : Gp ×Gq −→ Gp+q ; (V1, V2) 7→ V1 ⊕ V2 .

In more detail: V1 is a p-dimensional linear subspace of Rp ⊕ R∞, and V2

is a q-dimensional linear subspace of Rq ⊕ R∞, and therefore V1 ⊕ V2 is a
(p+q)-dimensional linear subspace of Rp+q⊕R∞⊕R∞. Now choose a linear
isomorphism of R∞ × R∞ with R∞, as in the proof of theorem 11.2.
The product on H∗(G∞) is called Pontryagin product. It is commutative and
associative. (Why ?) Something similar can be defined on the homology of
any H-space. We did not show that G∞ is an H-space, but in defining µ
above (for arbitrarily large p and q) we came close to it.
Now let’s see what H∗(G∞) looks like as a ring (with the Pontryagin prod-
uct). We have the embedding G1 ↪→ G∞, and G1 is still the same as RP∞.
Denote by ak the nonzero element in Hk(G1), assuming k > 0. Use the same
letter for its image in Hk(G∞).

Theorem 11.3. H∗(G∞) is a polynomial ring generated by the ai :

H∗(G∞) ∼= Z/2[a1, a2, a3, . . . ] .

Proof. This is surprisingly easy. Earlier (in the proof of theorem 11.2) we
defined a map

f : (G1)p −→ Gp

(take p “large”) which turned out to induce an injection in cohomology
and therefore a surjection in homology. Compose this with the inclusion
Gp ↪→ G∞ ; the composition

f̄ : (G1)p −→ G∞
will still induce a surjection in H∗ for ∗ ≤ p. By the Künneth theorem, every
element in H∗((G1)p) is a sum of terms of the form

z1 × z2 × z3 · · · × zp

(external homology product) with zi ∈ H∗(G1). By definition of the Pon-
tryagin product, the image of such an element under f̄∗ takes the form∏

1≤i≤p

(f̄αi)∗(zi)

where αi : G1 → (G1)p is the inclusion of the i-th axis. But f̄αi : G1 → G∞
is clearly homotopic to the standard embedding, so (f̄αi)∗(zi) must be equal
to some ak in H∗(G∞), or to 0. We see that the image of f̄∗ is contained in



HOMOTOPY AND BORDISM 63

the subring of H∗(G∞) generated by the elements ak. But we also know that
it is surjective in dimensions ≤ p. Moreover, p was arbitrary, so we must
conclude: H∗(G∞) is generated (as a ring) by the elements ak for k > 0.
The question is now whether it is freely generated by the ak. If not, then
for some n > 0, the dimension of Hn(G∞) must be < the dimension of the
degree n part of the polynomial ring Z/2[a1, a2, . . . ]. Fortunately we know
from theorem 11.2 that this is not the case: the dimensions are equal. ¤

Let’s interpret all this. Here are a few challenging hypotheses:

• By dint of exercise 10.5 part (1), we should expect “Thom isomor-
phisms”:

H∗(G∞) ∼= H∗(MO) , H∗(G∞) ∼= H∗(MO) .

• There is no reasonable cup product in the cohomology of an arbitrary
spectrum. Therefore, although H∗(G∞) appears to be isomorphic
to H∗(MO) as a graded abelian group, we may not be able to make
any use of the cup product in H∗(G∞).

• The Pontryagin product in H∗(G∞) may well be relevant to our
problem (which is to determine π∗(MO)). Following Thom, we make
the identification N∗ ∼= π∗(MO), where Nk is the abelian group of
bordism classes of closed smooth k-manifolds. Then N∗ is a graded
abelian group, but in fact it is a graded ring: Given [M1] ∈ Ns and
[M2] ∈ Nt, their (well defined) product in Ns+t is the bordism class
of M1 ×M2. Is it possible that the Hurewicz homomorphism

N∗ ∼= π∗(MO) −→ H∗(MO) ∼= H∗(G∞)

is a ring homomorphism (Pontryagin product on H∗(G∞)) ?

Item (1): By general nonsense or by the calculation we did earlier in this
section, the obvious homomorphism

colimpH∗(Gp) −→ H∗(G∞)

(remember remark 9.9) is an isomorphism. By definition,

H∗(MO) = colimpH∗+p(ThEp)

where ThEp is the p-th space in the spectrum MO, namely, the Thom
space of the vector bundle γp on Gp. Then by exercise 10.5 part (1), there
is a Thom isomorphism from H∗(Gp) to H∗+p(ThEp), for every p. These
Thom isomorphisms are compatible (for variable p), so they do lead to an
isomorphism H∗(G∞) ∼= H∗(MO).
Item (2): If you think there is a reasonable cup product in the cohomology
of an arbitrary spectrum, define it.
Item (3): We defined the Pontryagin product in H∗(G∞) using certain maps

µ : Gp ×Gq −→ Gp+q ⊂ G∞ .
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Without changing too much, we can replace the infinite Grassmannians by
the appropriate Thom spaces (and products by smash products) to get

µ̂ : ThEp ∧ ThEq −→ Th Ep+q .

In detail: Recall that ThEp = Ep ∪ {∞}, and Ep consists of all pairs (U, y)
such that y ∈ U ∈ Gp. For (U, y) in Ep and (V, z) in Eq, let

µ̂((U, y), (V, z)) := (µ(U, V ), y ⊕ z)

(and µ(U, V ) is identified with U ⊕ V as a vector space, so that y ⊕ z
is in it). We could use µ̂ instead of µ to define products in H∗(MO):
Given classes x ∈ Hm(MO) and y ∈ Hn(MO), we may suppose they
come from Hn+p(ThEp) and Hm+q(ThEq), respectively, for sufficiently
large p and q. Then their external product can be regarded as a class in
Hm+n+p+q(ThEp+q), which in turn determines a class in Hm+n(MO). The
following diagram is commutative:

Hm(Gp)×Hn(Gq) −−−−→ Hm+n(Gp+q)y
y

H̃m+p(ThEp)× H̃n+q(ThEq) −−−−→ Hm+n+p+q(ThEp+q)

(the vertical arrows are Thom isomorphisms, the horizontal ones are given
by external product and applying µ or µ̂ as appropriate). As a consequence,
it does not really matter whether we use µ or µ̂ to define the multiplication
in H∗(MO). But for geometric purposes and interpretations, µ̂ is better.
For example, we can also use µ̂ (but not µ) to define a product on π∗(MO)
(please try to forget that we already have one): Suppose [f ] ∈ πm(MO) and
[g] ∈ πn(MO) are represented by pointed maps

f : Sm+p −→ Th Ep , g : Sn+q −→ Th Eq

for some large p and q. Then the composite

Sm+n+p+q ∼= Sm+p ∧ Sn+q f∧g−−−−→ Th Ep ∧ Th Eq
bµ−−−−→ ThEp+q

represents an element in πm+n+p+q(ThEp+q), or if we prefer in πm+n(MO).
This is the product [f ] · [g]. It makes π∗(MO) into a graded ring. Further-
more, the Hurewicz homomorphism from π∗(MO) to H∗(MO) becomes a
ring homomorphism if we use this product on π∗(MO) and the Pontryagin
product on H∗(MO).
Now please do remember that we already had a product on π∗(MO). To
be more precise, we had a product on N∗, defined geometrically by taking
products of representing manifolds. To complete this discussion, we need
to check that it agrees (under the isomorphism N∗ ∼= π∗(MO)) with the
Pontryagin-type product just defined on π∗(MO). To this end, recall how
the isomorphism is defined: Given [f ] ∈ πm(MO), we choose a representa-
tive f : Sm+p → ThEp which is smooth on the complement of f−1(∞) and
transverse to the zero section of Ep. (This makes sense because the image
of f , being compact, will be contained in ThEp,q ⊂ Th Ep for some large q,
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and ThEp,q without the base point is certainly a smooth manifold. See ex-
ample 9.6 for notation.) Then the inverse image of the zero section under f
is a closed smooth manifold. Its bordism class is what we map [f ] to. Having
recalled all this, we only need to check the following: If f : Sm+p → ThEp

and g : Sn+q → Th Eq are smooth (where possible) and transverse to the
zero sections, then so is the composition

Sm+n+p+q ∼= Sm+p ∧ Sn+q f∧g−−−−→ ThEp ∧ ThEq
bµ−−−−→ Th Ep+q .

This is (almost) obvious. Moreover, (µ̂(f ∧ g))−1(zero section) is clearly the
product of f−1(zero section) and g−1(zero section).

Summary 11.4. The Hurewicz homomorphism

N∗ ∼= π∗(MO) −→ H∗(MO)

is a ring homomorphism (no ambiguity) and the ring H∗(MO) is isomorphic
to the ring H∗(G∞) (described in theorem 11.3) by a Thom isomorphism.
The image under this isomorphism of ak ∈ Hk(G∞) will be denoted by αk, so
that H∗(MO) is a polynomial algebra over Z/2 with polynomial generators
α1, α2, α3, . . . .

Finally we activate the Steenrod operations. Two remarks are in order.

First remark : Suppose that X is a space such that Hn(X) is finite dimen-
sional for all n. Then, by the universal coefficient theorem, Hn(X) is the
dual space of Hn(X) and Hn(X) is the dual of Hn(X). We may define

Sqi : Hn+i(X) −→ Hn(X)

as the dual (better transpose) of Sqi : Hn(X) → Hn+i(X), so that

〈x, Sqi(y)〉 = 〈Sqi(x), y〉
for x ∈ Hn(X) and y ∈ Hn+i(X). Note that Sqi lowers degrees by i. We
have a Cartan formula for external products in homology, which looks just
like the one in cohomology:

Sqk(v × w) =
∑

i+j=k

Sqi(v)× Sqj(w) .

Second remark: Let X = {Xk, εk} be a spectrum such that Hn(Xk) is finite
dimensional for all k and n. Then we can define Sqi : Hn+i(X) → Hn(X)
in the most obvious way, by using representatives: If v ∈ Hn+i(X) is repre-
sented by some element in Hn+i+k(Xk), then apply Sqi, which gives some-
thing in Hn+k(Xk), which represents something in Hn(X). The stability
property of the Steenrod operations shows that this is well defined. (As a
matter of fact, the technical assumption that Hn(Xk) be finite dimensional,
∀n, k, is superfluous. There are more systematic ways to define Sqi. See for
instance Adams’ Chicago Lecture Notes.)
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So now let’s find out how the operations Sqi act on H∗(MO). You may
wonder why this is necessary. It is necessary because it will help us to deter-
mine the image of the Hurewicz homomorphism from π∗(MO) to H∗(MO).
Namely, suppose that y ∈ Hn(MO) belongs to the image of the Hurewicz
homomorphism. Then Sqi(y) = 0 for all i > 0. Proof: By assumption
there exists a map of spectra f from Sn → MO such that f∗(x) = y, where
x ∈ Hn(Sn) is the nonzero element. Then Sqi(y) = Sqi(f∗(x)) = f∗(Sqi(x)),
which is zero because Sqi(x) ∈ Hn−i(Sn) = 0. (No special properties of MO
were used in this argument—it works just as well for any other spectrum.)

Lemma 11.5. For v, w ∈ H∗(MO) and k ≥ 0:

Sqk(v · w) =
∑

i+j=k

Sqi(v) · Sqj(w)

where · is the Pontryagin product.

Proof. Represent v and w by some v′ ∈ Hm+p(ThEp) and w′ ∈ Hn+q(ThEq).
Then v·w is represented by µ̂∗(v′×w′), which belongs to Hm+n+p+q(ThEp+q).
Then Sqk(v × w) is represented by Sqk(µ̂∗(v′ × w′)) which equals

µ̂∗(Sqk(v′ × w′)).

Now use the Cartan formula for external products in homology to write
Sqi(v′ × w′) as a sum

∑
Sqi(v′)× Sqj(w′). ¤

The lemma, together with summary 11.4, means that we only have to cal-
culate Sqi(αk) for all k > 0. We have the following commutative diagram:

Hk(G1) −−−−→ Hk(G∞) ∼= colimpHk(Gp)

Thom

y Thom

y
H̃k+1(ThE1) −−−−→ Hk(MO) = colimpH̃k+p(ThEp)

where the vertical arrows are Thom isomorphisms. By construction, the
class αk comes from Hk(G1), and we normally go from there to Hk(MO)
via Hk(G∞), but now we choose the other path via H̃k+1(ThE1). The
point is that the (co-)homology of ThE1, including action of the Steenrod
operations, is easy to understand. Moreover the homomorphisms in the
direct system

H̃k+1(ThE1) → H̃k+2(ThE2) → H̃k+3(ThE3) → H̃k+4(ThE4) → . . .

(which “approaches” Hk(MO)) are all induced by genuine maps, e.g., from
ΣThEp to ThEp+1, so they commute with the Steenrod operations. In
short, we have to understand how Sqi acts on H̃∗(ThE1). Recall that ThE1

is the Thom space of the tautological line bundle on G1
∼= RP∞. Surpris-

ingly, this Thom space is again homeomorphic to RP∞ (more suggestive, to
RP∞+1). More generally:

Lemma 11.6. The Thom space of the tautological line bundle on RPn

(where n = ∞ is allowed) is homeomorphic to RPn+1.
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Proof. The Thom space in question consists of the point ∞ and all pairs
(L, z) where L is a line through 0 in Rn+1, and z ∈ L. Map ∞ to the line
through 0 in Rn+2 spanned by the last standard basis vector bn+2. Map a
pair (L, z) to the line through 0 in Rn+2 spanned by v + 〈v, z〉bn+2, where v
can be any nonzero vector in L. ¤
So now we have to know how the Steenrod operations act on H∗(RP∞)
or on H∗(RP∞). You are expected to know that H∗(RP∞) is a (graded)
polynomial ring on one generator e ∈ H1(RP∞):

H∗(RP∞) ∼= Z/2[e] .

Then Sq0(e) = e by property 1 in theorem 10.2, and Sq1(e) = e2 6= 0 by
property 2 in the same theorem, and finally

Sqi(ek+1) =





0 if i > k + 1,(
k + 1

i

)
ek+1+i if i ≤ k + 1

by those same properties. Dualizing this result, and noting that the dual
of ek+1 in H̃k+1(RP∞) ∼= H̃k+1(ThE1) maps to what we called αk in
Hk(MO) ∼= colimpH̃k+p(ThEp), we get:

Proposition 11.7. In H∗(MO),

Sqi(αk+i) =





(
k + 1

i

)
αk i ≤ k + 1

0 i > k + 1 .

(where α0 = 1 by definition).

Together with lemma 11.5 and summary 11.4, this gives us a complete de-
scription of H∗(MO) with the action of the operations Sqi.

12. The action of the Steenrod algebra on H∗(MO)

Suppose that HZ/2 is a CW -spectrum such that π0(HZ/2) ∼= Z/2 and
πk(HZ/2) = 0 for all k 6= 0. (Existence of such an HZ/2 will be proved
later.) By definition, HZ/2 is (−1)-connected ; therefore the Hurewicz ho-
momorphism from π0(HZ/2) to H0(HZ/2) is an isomorphism, and then
the universal coefficient theorem shows that H0(HZ/2) ∼= Z/2. (The uni-
versal coefficient theorem is a theorem about chain complexes, not about
spaces. You can apply it to the cellular chain complex of a CW -space, or
to the cellular chain complex of a CW -spectrum.) We now define a natural
transformation

ρ : [X,HZ/2] −→ H0(X)
(where X is a “variable” CW -spectrum) by the formula

ρ([f ]) := f∗(u) ; 0 6= u ∈ H0(HZ/2) .

Lemma 12.1. ρ is an isomorphism (for all spectra X).
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Proof. Fix X, and let W be the cellular chain complex of X (with coefficients
Z/2). Let Xn be the n-skeleton, and remember that this can be nontrivial
for negative n. Think of H0(X) ∼= H0(W ) as the set of homotopy classes
of chain maps W → Z/2 (here Z/2 means a chain complex concentrated in
dimension 0). If f : X → HZ/2 is a cellular map, then we have an “induced”
chain map f : W → Z/2 which is defined as follows (on W0):

W0 = H0(X0/X−1) → H0(X/X−1) f∗−−−−→ H0(HZ/2) ∼= Z/2 .

Terminology: f is a realization of f .
Now let’s prove two things: firstly, any f : W → Z/2 has a realization.
Secondly, if A ⊂ X is a CW -subspectrum with corresponding chain sub-
complex V ⊂ W , then any realization A → HZ/2 of f|V can be extended
to a realization of f .
None of this is difficult. We start by constructing a cellular map

X0/X−1 → HZ/2

such that the induced map

W0 = H0(X0/X1) → H0(HZ/2) ∼= Z/2

agrees with f . Since X0/X−1 is a wedge of spheres, this is easy. We can of
course regard the map constructed so far as a map f0 from X0 to HZ/2. The
fact that f is a chain map means that, for any attaching map g : S0 → X0

of a 1-cell of X, the induced map

H0(S0)
g∗−−−−→ H0(X)

f0∗−−−−→ H0(HZ/2)

is zero—which means that f0g represents the zero class in π0(HZ/2), which
means that f0g is nullhomotopic. Choosing explicit nullhomotopies means
choosing an extension of f0 to a cellular map f1 from X1 to HZ/2. Next,
we extend this to X2, using the fact that π1(HZ/2) = 0 ; and so on, until
we have a map defined on all of X. This proves the first claim: existence of
a realization. The second part (existence of “relative” realizations) is very
similar and left to you.
The existence claim means that ρ : [X,HZ/2] → H0(X) is onto. The relative
existence claim proves injectivity, as follows: Suppose that f : X → HZ/2
and f ′ : X → HZ/2 are such that ρ(f) = ρ(f ′). We must show that f ' f ′.
We can assume that f and f ′ are cellular, and then we know at least that
the corresponding chain maps f, f ′ : W → Z/2 are homotopic. Now let W̄
be the cellular chain complex of X ∧ I+, where I is the unit interval with
the usual CW -structure. Note that W̄ contains a copy of W ⊕W , as the
cellular chain complex of X ∧ (∂I)+. Since f and f ′ are homotopic chain
maps, their direct sum f ⊕ f ′ : W ⊕ W → Z/2 extends to a chain map
f̄ : W̄ → Z/2. By the relative existence claim, there exists a realization of
f̄ which extends the map given by f and f ′ on X ∧ (∂I)+. This shows that
f and f ′ are homotopic. ¤
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Here is a construction of HZ/2. We construct inductively pointed spaces
Kn for n > 0 such that πn(Kn) ∼= Z/2 and πi(Kn) = 0 for i 6= n. For
K1 we take the space RP∞ (with some base point). Suppose that Kn

has already been constructed ; we try to make Kn+1 by starting with the
space Y (0) := ΣKn and improving where necessary. Clearly Y (0) has the
correct homotopy groups in degrees ≤ n + 1, by the absolute Hurewicz
theorem. If πn+2(Y (0)) is nonzero, choose cellular maps fj : Sn+2 → Y(0)
whose homotopy classes generate all of πn+2(Y (0)). Let Y (1) be the space
obtained from Y (0) by attaching (n+3)-cells with attaching maps fj . Then
the inclusion Y (0) ⊂ Y (1) is (n+2)-connected, so the induced map on πn+2

must be onto ; but it is also zero by construction, so πn+2(Y (1)) = 0, and
πi(Y (1)) is still “correct” for i < n + 2. Next, if πn+3(Y (1)) 6= 0, choose
cellular maps from Sn+3 to Y (1) whose classes generate πn+3(Y (1)). Form
Y (2) by attaching (n + 4)-cells to Y (1) using these attaching maps. Then
πn+3(Y (2)) = 0 ; and so on. Finally let Kn+1 be the union of the Y (i).
By construction, Kn+1 contains ΣKn for all n > 0. If we call the inclusion
εn, then we have a spectrum {Kn, εn : ΣKn ↪→ Kn+1} which we may call
HZ/2 because it has the required properties.

Recall that, in the category of spectra, we have suspension isomorphisms for
homotopy groups (easy consequence of corollary 9.12). Therefore

πi(Sk ∧HZ/2) =
{
Z/2 i = k
0 i 6= k

Essentially repeating the proof of lemma 12.1, we get:

Lemma 12.2. There are natural isomorphisms

[X, Sn ∧HZ/2] ∼= Hn(X)

where X can be any CW -spectrum.

This has two surprising corollaries. Firstly, we can interpret elements in the
cohomology Hn(HZ/2) as stable cohomology operations of degree n. Sec-
ondly, we can make H∗(HZ/2) into a graded ring so that the multiplication
corresponds to composition of stable cohomology operations. Let’s start
with the ring structure: Given x ∈ Hm(HZ/2) and y ∈ Hn(HZ/2). We can
assume m, n ≥ 0 because HZ/2 is (−1)-connected. Now

Hm(HZ/2) ∼= [HZ/2,Sm ∧HZ/2] , Hn(HZ/2) ∼= [HZ/2, Sn ∧HZ/2]

by lemma 12.2 (take X = HZ/2). Let

x̄ : HZ/2 → Sm ∧HZ/2 , ȳ : HZ/2 → Sn ∧HZ/2

be the maps corresponding to x and y (better: homotopy classes of maps).
Then the composition

HZ/2 x̄−−−−→ Sm ∧HZ/2
id∧ȳ−−−−→ Sm ∧ Sn ∧HZ/2
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is an element in [HZ/2, Sm+nHZ/2] ∼= Hm+n(HZ/2). We call it y · x (the
order is important). This multiplication is bilinear (over Z/2), so it makes
H∗(HZ/2) into a graded (associative) algebra.
Given x ∈ Hm(HZ/2), let x̄ be the corresponding map

HZ/2 → Sm ∧HZ/2 .

Let θx be the stable cohomology operation defined like this:

H i(X) ∼= [X, Si ∧HZ/2] −→ [X, Si ∧ Sm ∧HZ/2] ∼= H i+n(X)

where the middle arrow is composition with

id ∧ x̄ : Si ∧HZ/2 −→ Si ∧ Sm ∧HZ/2] .

This is in fact easily seen to be stable. It works for spectra X. If you want
it to operate on the cohomology of a space Y , use the suspension spectrum
of Y+ (which has the same cohomology as Y .)

Definition 12.3. The algebra H∗(HZ/2) is called the Steenrod algebra,
abbreviated A∗.
In the following, we assume that X is a (−1)-connected spectrum, that
Hm(X) is finite dimensonal for all m, and that there is no odd torsion in
π∗(X). (These assumptions are of the “not really necessary” type, but in
any case the spectrum MO qualifies. Remember that every nonzero element
in π∗(MO) ∼= N∗ has order two.) Note that H∗(X) is a graded module over
A∗: Given

x ∈ Hm(X) ∼= [X, Sm ∧HZ/2] , a ∈ An ∼= [HZ/2,Sn ∧HZ/2] ,

define ax ∈ Hm+n(X) ∼= [X, Sm+n ∧HZ/2] as the composition

X x−−−−→ Sm ∧HZ/2 id∧a−−−−→ Sn ∧ Sm ∧HZ/2 .

Theorem 12.4. Suppose that H∗(X) is free as an A∗-module (explanation
follows). Then the Hurewicz homomorphism

π∗(X) −→ H∗(X) ∼= hom(H∗(X),Z/2)

is injective, and its image consists of all f : H∗(X) → Z/2 such that f(ax) =
0 for arbitrary x ∈ H∗−i(X) and a ∈ Ai, where i > 0.

Proof. Say that H∗(X) is free if there exist elements x1, x2, . . . in H∗(X)
such that every element of H∗(X) can be written in a unique way as a linear
combination of the xi with coefficients in A∗. Suppose now that this is the
case, and that the degree of xi is mi. Each xi is or corresponds to a map
from X to Smi ∧HZ/2. Then we have a map of spectra

(!)
∏

i

xi : X −→
∏

i

Smi ∧HZ/2 .

We also have the inclusion map of the wedge into the product,

(!!)
∨

i

Smi ∧HZ/2 ↪→
∏

i

Smi ∧HZ/2 .
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By exercise 9.13, (!!) is a homotopy equivalence. (Actually, it is a little more
difficult because there can be infinitely many wedge summands. However, for
every N > 0, only finitely many of the positive integers mi will be less than
N , and using this you can still verify that (!!) is iso on homotopy groups.)
Given that (!!) is a homotopy equivalence, we know what the cohomology
of the target spectrum in (!) is: it is isomorphic as an A∗-module to

⊕

i

ΣmiA∗

where Σ means a shift in grading as usual. To put it differently: it is
free, with one basis element ui of degree mi for each i. The map (!!) in-
duces a homomorphism in cohomology which sends ui to xi. Since it is a
homomorphism of A∗-modules, and since the xi form a basis, it must be
an isomorphism. Equivalently, the map in homology induced by (!) is an
isomorphism. Of course, this is still homology with Z/2 coefficients.
Now let’s prove that (!) induces an isomorphism in homology with integer
coefficients. Suppose not; let p ≥ 0 be the least integer such that Hp((!) ;Z),
the p-th homology of the map (!), is nonzero. By the Hurewicz theorem, this
will be isomorphic to πp((!)), and by our assumption on X (and a certain
long exact homotopy sequence) it will be an abelian group without odd
torsion. Then the universal coefficient theorem tells us that Hp((!) ;Z/2) is
still nonzero—contradicting what we know already.
So now we know, from the J.H.C. Whitehead theorem for spectra, that (!) is
a homotopy equivalence. Since (!!) is also a homotopy equivalence, we have
reduced the proof to the case where X is a wedge sum of spectra of the form
Sm

i ∧HZ/2. It is easy to reduce further to the case where the wedge sum
has only one summand, and this case is obvious. ¤
This is where the general nonsense ends ; now we want to apply theorem 12.4
to MO. At this stage we need some explicit information about the Steenrod
algebra A∗. Here I have to quote from other sources. The cohomology
(coefficients Z/2 again) of the spaces Km defined earlier in this section can
be calculated by induction on m. In more detail, H∗(K1) = H∗(RP∞) and
H∗(Km+1) can be calculated from H∗(Km) using the Leray-Serre spectral
sequence and the “Borel theorem”. The result is as follows:

Theorem 12.5. (Quotation:) For all m > 0, the ring H∗(Km) is a poly-
nomial algebra on generators

Sqi1Sqi2 . . . Sqis(um)

where um is the unique nonzero element in Hm(Km), and
(a) i1 ≥ 2i2, i2 ≥ 2i3, . . . , is−1 ≥ 2is, is ≥ 1 ;
(b) (i1 − 2i2) + (i2 − 2i3) + · · ·+ (is−1 − 2is) + is < m.

Terminology : (i1, i2, . . . , is) is an admissible sequence if it satisfies property
(a). In that case its excess is the left-hand side of (b). The excess is also
equal to i1 − i2 − · · · − is.



72 MICHAEL WEISS

It is an easy consequence of theorem 12.5 that the inclusion ΣKm ↪→ Km+1

induces an isomorphism in cohomology in dimensions < 2m + 1 (since it
sends um+1 to the suspension of um). In particular,

H i(HZ/2) ∼= Hm+i(Km) for large m

which means (1) that we know H∗(HZ/2), and (2) that the Steenrod oper-
ations act on H∗(HZ/2) (cf. the two remarks after summary 11.4).

Corollary 12.6. H∗(HZ/2) is a graded vector space with a graded basis
consisting of all elements of the form

Sqi1Sqi2 . . . Sqis(u)

where u ∈ H0(HZ/2) is the unique nonzero element and (i1, i2, . . . , is) is
admissible. ¤

Note that this does not tell us anything about the (composition) product
in H∗(HZ/2). (The composition product is not closely related to the cup
product mentioned in theorem 12.5.)
Earlier in this section we saw that an element in Hm(HZ/2) determines a
stable cohomology operation of degree m. It is utterly plausible that the co-
homology operation determined by Sqi1Sqi2 . . . Sqis(u) is Sqi1Sqi2 . . . Sqis .
Nevertheless, it requires proof. This is left to you as an exercise. Granting
this, we know in principle what H∗(MO) looks like as a module over A∗,
because we know how the Steenrod operations Sqi act on it (summary 11.4,
lemma lem-Cartaninhomol, proposition 11.7, dualized). Now we have to
make it more explicit, in order to show that H∗(MO) is free over A∗. It is
convenient to work with H∗(MO) and H∗(MO) simultaneously. Write

H∗(MO) ∼= Z/2[α1, α2, α3, . . . ] ∼= B∗ ⊗ C∗

where B∗ is the polynomial algebra generated by those αk for which k+1 is a
power of 2, and Ck is the polynomial algebra generated by the remaining αk.
Both of these can be regarded as subrings of H∗(MO), and the isomorphism
of B∗ ⊗ C∗ is then given by replacing tensor products x ⊗ y by Pontryagin
products x · y. Dualizing (which means taking hom(—,Z/2)) and writing
B∗, C∗ for the duals of B∗ and C∗, respectively, we have

H∗(MO) ∼= B∗ ⊗ C∗ .

Here B∗ ∼= B∗⊗1̄ and C∗ ∼= 1̄⊗C∗ should be considered as graded subgroups
of H∗(MO) (and 1̄ is the nonzero element in C0 or B0, as appropriate.)

Lemma 12.7. • B∗ ⊂ H∗(MO) is an A∗-submodule, and as such it
is free on one generator (the nonzero element in degree 0).

• C∗ ⊂ H∗(MO) is closed under the operations S̄qi for all i.

Proof. The first thing to note is that(
k + 1

i

)
≡ 0 mod 2 if k + 1 = 2p and i 6= 0, i 6= k + 1 .
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Together with proposition 11.7 this shows that C∗ is stable under S̄qi for
all i. The same argument shows that the ideal I (not subring) in H∗(MO)
generated by the αk, where k+1 is not a power of 2, is closed under the oper-
ations S̄qi. Noting that the dual of H∗(MO)/I is exactly B∗ ⊂ H∗(MO)/I,
we conclude that B∗ is closed under the operations Sqi for all i. Since these
operations generate A∗ as an algebra, B∗ is an A∗-submodule. It remains
to be shown that B∗ is free on one generator. To start somewhere, let us
show that dimBn = dimAn ; this will make the rest of the proof easier.
Remember that A∗ has a graded vector space basis consisting of the admis-
sible monomials in the Sqi. On the other hand, B∗ is dual to H∗(MO),
which is a graded ring isomorphic to

Z/2[α1, α3, α7, α15, . . . ] , degree(αk) = k .

This has a vector space basis consisting of the monomials in the generators.
We now set up a bijection between these bases by

Sqi1Sqi2 . . . Sqis 7→ αn1
1 αn2

3 αn3
7 αn4

15 . . .
(n1, n2, n3, . . . ns) = (i1 − 2i2, i2 − 2i3, . . . , is) .

You can easily see that it is a bijection, and that it preserves degree:

i1 + i2 + · · ·+ is = 1n1 + 3n2 + 7n3 + · · ·+ 2s−1ns .

So the dimensions are correct. Notation: In the situation above write
(i1, i2, i3, . . . , is) = I, (n1, n2, n3, . . . ns) = N

Sqi1Sqi2 . . . Sqis = SqI , αn1
1 αn2

3 αn3
7 αn4

15 · · · = αN

N = ε(I).

To proceed further, let 0 6= θ ∈ A∗ and write

θ = SqI + other admissible monomials in the Sqi

where I = (i1, i2, . . . , is) has been selected to be minimal in the lexico-
graphic ordering. That is, among all admissible monomials which appear
with nonzero coefficient in the expansion of θ there is none having a smaller
i1 ; among those having the same i1, there is none having a smaller i2 ; and
so on. Let 1̄ be the nonzero element in B0, as usual. We shall verify that

〈θ(1̄), αN 〉 = 〈SqI(1̄), αN 〉 = 1 (N = ε(I)).

(Here 〈 , 〉 is the scalar product relating B∗ to its dual, and αN lives in
the dual.) This will complete the proof, since it shows that θ 7→ θ(1̄) is an
injection and therefore a bijection (by the dimension count).
Note that

〈θ(1̄), αN 〉 = 〈1̄, θ̄(αN )〉 = θ̄(αN ) ∈ H0(MO) ∼= Z/2

where θ̄ is the transpose (better: adjoint) of θ, operating on the homology
H∗(MO), and lowering degrees. Then

θ̄ = S̄qI + adjoints of other admissible monomials in the Sqi

S̄qI = S̄qis . . . S̄qi2S̄qi1 .
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(Note that the order of composition is reversed ; transposition has this
property.) Recall from proposition 11.7 and the Pascal triangle modulo 2
that if k + 1 is a power of 2, then

(*) S̄qj(αk+j) =
{

αk j = 0, j = k + 1
0 0 6= j 6= k + 1

where α0 should be read as 1. Note also that I = (i1, i2, . . . , is) can be
recovered from N = ε(I) = (n1, n2, . . . , ns) by

(**) i1 = n1+2n2+4n3+· · ·+2s−1ns, i2 = n2+2n3+4n4+· · ·+2s−2ns ,

and so on. Using this and the Cartan formula, you will see that

S̄qi1αN = αN ′
N ′ = (n2, n3, n4, . . . , ns)

and then by induction, noting that N ′ = ε(I ′) where I ′ = (i2, . . . , is):

S̄qI(αN ) = 1 .

(If you need help: write αN = αk1αk2 . . . αkn , n = n1+n2+ · · ·+ns. Then
use the Cartan formula as in lemma 11.5, and you will find that S̄qi1αN is
a sum of many terms of the form

S̄qj1αk1S̄qj2αk2 . . . S̄qjnαkn , j1 + j2 + · · ·+ jn = i1 .

But (*) and (**) imply that the sum has only one nonzero term—the term
which you get by taking ji = (ki + 1)/2.)
The same reasoning shows that S̄qi(αN ) = 0 if i > i1. By the minimality of
I, and by induction, this shows that S̄qJ(αN ) = 0 if SqJ is any other ad-
missible monomial which appears with nonzero coefficient in the expansion
of θ. ¤
Now we can show that H∗(MO) is a free A∗-module. Recall:

H∗(MO) ∼= B∗ ⊗ C∗ .

Theorem 12.8. Any (graded) vector space basis of

C∗ ∼= 1̄⊗ C∗ ⊂ B∗ ⊗ C∗ ∼= H∗(MO)

is an A∗-basis of H∗(MO).

Proof. Let C≤n be the n-skeleton of the graded vector space C∗. We shall
prove, by induction on n, that the composition

A∗ ⊗ C≤n µ−−−−→ B∗ ⊗ C∗ projection−−−−−−−→ B∗ ⊗ C≤n

is an isomorphism of graded vector spaces. Here

µ(θ ⊗ c) := θ(1̄⊗ c) .

Suppose that this has been shown for a particular n. Then µ(A∗ ⊗ C≤n)
has trivial intersection with 1̄ ⊗ Cn+1, because the latter is contained in
the kernel of the projection to B∗ ⊗ C≤n. Choose a vector space basis
{c1, c2, . . . , cr} for Cn+1. Let D∗ be the graded sub-vector space of H∗(MO)
dual to H∗(MO)/µ(A∗⊗C≤n) (a graded quotient vector space of H∗(MO)).



HOMOTOPY AND BORDISM 75

Then D∗ is closed under all operations θ̄ for θ ∈ A∗. Since 1̄⊗ c1, . . . , 1̄⊗ cr

are linearly independent in the quotient H∗(MO)/µ(A∗⊗C≤n), we can find
d1, . . . , dr in Dn+1 such that 〈1̄⊗ ci, dj〉 = δij (Kronecker delta).
Suppose now that the composition

A∗ ⊗ C≤n+1 µ−−−−→ B∗ ⊗ C∗ projection−−−−−−−→ B∗ ⊗ C≤n+1

is not an isomorphism. Then it is not injective (dimension counting) and we
conclude that there exist θ1, . . . , θr in Ak (some k ≥ 0), not all zero, such
that

(*)
∑

i

θi(1̄⊗ ci) ∈ µ(A∗ ⊗ C≤n).

Without loss of generality, θ1 6= 0. Choose b ∈ Bk such that θ̄1(b) = 1 (we
know from lemma 12.7 that it can be done). Then

〈∑i θi(1̄⊗ ci), b · d1〉 =
∑

i〈1̄⊗ ci, θ̄i(b · d1)〉
!=

∑〈1̄⊗ ci, θ̄i(b) · d1〉 =
∑

i θi(b)〈1̄⊗ ci, d1〉 = 1.

(For the equation labelled !, write θ̄ as a composition of operations S̄qi,
where i > 0, use the formula of proposition 11.7, and note that S̄qi(d1) = 0
since D∗ is zero for ∗ ≤ n.) But if we use (*) to write

∑
i θi(1̄⊗ c1) as a sum

of elements of the form θ′(1̄⊗ c′) with c′ ∈ C≤n, and repeat the calculation,
we find

〈
∑

i

θi(1̄⊗ ci), b · d1〉 = · · · = 0. ¤

Corollary 12.9. The composition

1̄⊗ C∗ ↪→ H∗(MO)
projection−−−−−−−→ Z/2⊗A∗ H∗(MO)

is an isomorphism. ¤
(If the tensor product over A∗ makes you feel uncomfortable, a simpler
description of the right-hand term is as follows: it is what you get by intro-
ducing relations θ(x) = 0 for any x ∈ H∗(MO) and any θ ∈ An, any n > 0,
but not n = 0. If you want to understand the tensor product notation:
Think of Z/2 as a graded vector space concentrated in dimension 0, and
make it into a graded module over A∗ in the only possible way. If you think
of H∗(MO) as a left module over A∗, then you should think of Z/2 as a
right module over A∗.)
Corollary 12.10. The composition

π∗(MO) ↪→ H∗(MO)
projection−−−−−−−→ C∗

is an isomorphism.

Proof. Modulo theorem 12.4, this is simply the dualized version of corol-
lary 12.8. Note that C∗ is a polynomial ring over Z/2 with one generator αk

in degree k for each k not of the form 2p − 1. The projection map from

H∗(MO) ∼= Z/2[α1, α2, α3, . . . ]
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is a ring homomorphism (but it is not “compatible” in any sense with the
action of the operations S̄qi). It takes αk to 0 if k = 2p − 1, and to αk if k
does not have this form. The Hurewicz homomorphism is also a ring homo-
morphism by summary 11.4, and moreover the ring structure on π∗(MO)
is “equal” to the geometrically defined ring structure on N∗ ∼= π∗(MO).
Summarizing, the isomorphism in corollary 12.10 is a ring isomorphism. ¤
Theorem 12.11. The bordism ring N∗ is isomorphic to a graded polynomial
ring Z/2[α2, α4, α5, α6, α8, . . . ], with one polynomial generator αk in degree
k for each k not of the form 2p − 1.

For example: dim(N0) = 1, dim(N1) = 0, dim(N2) = 1, dim(N3) = 0,
dim(N4) = 2, dim(N5) = 1, dim(N6) = 3, dim(N7) = 1, dim(N8) = 5,
dim(N9) = 3, dim(N10) = 8, and so on.


