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Introduction

Commutative algebra is essentiaily the study of commutative rings. Roughly
speaking, it has developed from two sources: (1) algebraic geometry and (2)
algebraic number theory. In (1) the prototype of the rings studied is the ring
k[xy, ..., x,] of polynomials in several variables over a field k; in (2) it is the
ring Z of rational integers. Of these two the algebro-geometric case is the more
far-reaching and, in its modern development by Grothendieck, it embraces much
of algebraic number theory. Commutative algebra is now one of the foundation
stones of this new algebraic geometry. It provides the complete local tools
for the subject in much the same way as differential analysis provides the tools
for differential geometry.

This book grew out of a course of lectures given to third year under-
graduates at Oxford University and it has the modest aim of providing a rapid
introduction to the subject. It is designed to be read by students who have had a

first elementarv course in eeneral aloahra, On the other hanﬂ 1t i1s not inteanded
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as a substitute for the more voluminous tracts on commutatlve algebra such as
Zariski~-Samuel [4] or Bourbaki [1]. We have concentrated on certain central
topics, and large areas, such as field theory, are not touched. In content we
cover rather more ground than Northcott {3] and our treatment is substantially
different in that, following the modern trend, we put more emphasis on modules
and localization.

The central notion in commutative algebra is that of a prime ideal. This
provides a common generalization of the primes of arithmetic and the points of
geometry, The geometric notion of concentrating attention ‘‘near a point”
has as its algebraic analogue the important process of localizing a ring at a prime
ideal. It is not surprising, therefore, that results about localization can usefully
be thought of in geometric terms. This is done methodically in Grothendieck’s
theory of schemes and, partly as an introduction to Grothendieck’s work [2],
and partly because of the geometric insight it provides, we have added schematic
versions of many results in the form of exercises and remarks.

The lecture-note origin of this book accounts for the rather terse style, with
little general padding, and for the condensed account of many proofs. We have
resisted the temptation to expand it in the hope that the brevity of our presenta-
tion will make clearer the mathematical structure of what is by now an elegant

m
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vili INTRODUCTION

and attractive theory. Our philosophy has been to build up to the main theorems
in a succession of simple steps and to omit routine verifications.

Anyone writing now on commutative algebra faces a dilemma in connection
with homological algebra, which plays such an important part in modern
developments. A proper treatment of homological algebra is impossible within
the confines of a small book: on the other hand, it is hardly sensible to ignore it
completely. The compromise we have adopted is to use elementary homological
methods—exact sequences, diagrams, etc.—but to stop short of any results
requiring a deep study of homology. In this way we hope to prepare the ground
for a systematic course on homological algebra which the reader should under-
take if he wishes to pursue algebraic geometry in any depth.

We have provided a substantial number of exercises at the end of each
chapter. Some of them are easy and some of them are hard. Usually we have
provided hints, and sometimes complete solutions, to the hard ones. We are
indebted to Mr. R. Y. Sharp, who worked through them all and saved us from
error more than once.

We have made no attempt to describe the contributions of the many
mathematicians who have helped to develop the theory as expounded in this
book. We would, however, like to put on record our indebtedness to J.-P. Serre
and J. Tate from whom we learnt the subject, and whose influence was the
determining factor in our choice of material and mode of presentation.
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Notation and Terminology

Rings and modules are denoted by capital italic letters, elements of them by
small italic letters. A field is often denoted by k. Ideals are denoted by small
German characters. Z, Q, R, C denote respectively the ring of rational integers,
the field of rational numbers, the field of real numbers and the field of complex
numbers.

Mappings are consistently written on the Jef?, thus the image of an element x
under a mapping f is written f(x) and not (x)f- The composition of mappings
[: X— Y, g: Y— Zis therefore go f, not fo g.

A mapping f: X — Yis injective if f(x,) = f(x;) implies x, = xg; surjective
if f(X) = Y, bijective if both injective and surjective.

The end of a proof (or absence of proof) is marked thus m.

Inclusion of sets is denoted by the sign &. We reserve the sign < for strict
inclusion. Thus 4 < B means that 4 is contained in B and is not equal to B.

ix






Rings and Ideals

We shall begin by reviewing rapidly the definition and elementary properties of
rings. This will indicate how much we are going to assume of the reader and it
will also serve to fix notation and conventions. After this review we pass on
to a discussion of prime and maximal ideals. The remainder of the chapter is
devoted to explaining the various elementary operations which can be performed
on ideals. The Grothendieck language of schemes is dealt with in the exercises
at the end.

RINGS AND RING HOMOMORPHISMS

A ring A is a set with two binary operations-(addition and multiplication) such
that

1) A is an abelian group with respect to addition (so that 4 has a zero element,
denoted by 0, and every x € 4 has an (additive) inverse —x)

A A1t imlinntinm ta noamnind sof 132V nia A distributive over addition
L} l.Vl.I.l.ll.llJllWllUll 1 aaawxauvc \\Jr}'}é = J\yé}} GLIU WUID> uuv UYLl aUllliLuiuvil
(x(y + 2) = xy + xz, (y + 2)x = yx + zx).
We shall consider only rings which are commutative:
3) xy = yxforallx,ye 4,
and have an identity element (denoted by 1):

4) 31 € 4 such that x1 = 1x = x for all x € A.
The identity element is then unique.

Throughout this book the word ‘“‘ring” shall mean a commutative ring with an
identity element, that is, a ring satisfying axioms (1) to (4) above.

Remark. We do not exclude the possibility in (4) that 1 might be equal to 0.
If so, then for any x€ 4 we have

and so A4 has only one element, 0. In this case A is the zero ring, denoted by 0
(by abuse of notation).

[N



2 RINGS AND IDEALS

A ring homomorphism is a mapping f of a ring A into a ring B such that

i) fix + ) =f0)+ 1) (so that fis a homomorphism of abelian groups,
and therefore also f(x — ) = f(x) = f(), f(=%) = —f(x), f(0) = 0),
i) f(xy) = f)f ()
iil) f(1) =
In other words, f respects addition, multiplication and the identity element.

A subset S of a ring A is a subring of A if S is closed under addition and
multiplication and contains the identity element of 4. The identity mapping of
S into A is then a ring homomorphism.

Iff: A — B, g: B— Care ring homomorphisms then so is their composition
gofiA—C.

IDEALS. QUOTIENT RINGS

An ideal a of a ring A is a subset of A which is an additive subgroup and is such
that da < a (i.e., x6 4 and yea imply xy € a). The quotient group A/a
inherits a uniquely defined multiplication from A4 which makes it into a ring,
called the quotient ring (or residue-class ring) 4/a. The elements of 4/a are the
cosets of a in 4, and the mapping ¢: 4 — A/a which maps each x € 4 to its
coset x + ais a surjective ring homomorphism.

We shall frequently use the following fact:

Proposition 1.1. There is a one-to-one order-presefving. correspondence
between the ideals b of A which contain a, and the ideals b of A/a, given by
b =¢"%b). m

Iff: A — Bisany ring homomorphism, the kernel of f(=£-(0)) is an ideal
a of 4, and the image of f(=f(A4)) is a subring C of B; and f induces a ring
isomorphism Afa & C

We shall sometimes use the notation x = y (mod a); this means that
x— yea.

ZERO-DIVISORS. NILPOTENT ELEMENTS. UNITS

A zero-divisor in a ring A is an element x which “‘divides 0, i.e., for which there
exists y # 0 in A such that xy = 0. A ring with no zero-divisors #0 (and in
which 1 # 0) is called an integral domain. For example, Z and k[x,,..., X,
(k a field, x, indeterminates) are integral domains.

An element xe A is nilpotent if x* = 0 for some n > 0. A nilpotent
element is a zero-divisor (unless 4 = 0), but not conversely (in general).

A unit in A is an element x which “divides 1, i.e., an element x such that
xy = 1 for some y € A. The element y is then uniquely determined by x, and is
written x~. The units in 4 form a (multiplicative) abelian group,



PRIME IDEALS AND MAXIMAL IDEALS 3

The multiples ax of an element x € 4 form a principal ideal, denoted by (x)
or Ax. xisaunit < (x) = A4 = (1). The zero ideal (0) is usually denoted by 0.

A field is a ring A in which 1 # 0 and every non-zero element is a unit.
Every field is an integral domain (but not conversely: Z is not a field).

Proposition 1.2. Let A be a ring # 0. Then the following are equivalent:

i) A is a field;

ii) the only ideals in A are 0 and (1);

ili) every homomorphism of A into a non-zero ring B is injective.
Proof. i) = ii). Let a # 0 be an ideal in 4. Then a contains a non-zero
element x; x is a unit, hence a 2 (x) = (1), hence a = (1).

if) = iii). Let : 4 — B.be a ring homomorphism. Then Ker (¢) is an
ideal # (1) in A4, hence Ker (¢) = 0, hence ¢ is injective.

iif) = i). Let x be an element of 4 which is not a unit. Then (x) # (1),
hence B = AJ(x) is not the zero ring. Let ¢: 4 — B be the natural homo-
morphism of 4 onto B, with kernel (x). By hypothesis, ¢ is injective, hence
(x) =0,hencex =0. m

PRIME IDEALS AND MAXIMAL IDEALS

An ideal p in A is prime if p # (1) and if xyep = xep or yeyp.
An ideal m in A4 is maximal if m # (1) and if there is no ideal a such that
m < a < (1) (strict inclusions). Equivalently:

p is prime <> A/p is an integral domain;
m is maximal <> 4/m is a field (by (1.1) and (1.2)).

Hence a maximal ideal is prime (but not conversely, in general). The zero ideal
is prime <> A is an integral domain.

If f: A — B is a ring homomorphism and q is a prime ideal in B, then
S(q) is a prime ideal in A, for 4/f~*(q) is isomorphic to a subring of B/q and
hence has no zero-divisor # 0. Butif n is a maximal ideal of B it is not neces-
sarily true that f~*(n) is maximal in A; all we can say for sure is that it is prime.
(Example: 4 =Z,B=Q,n = 0.

Prime ideals are fundamental to the whole of commutative algebra. The
following theorem and its corollaries ensure that there is always a sufficient
supply of them.

Theorem 1.3. Everyring A # 0 has at least one maximal ideal. (Remember
that “ring” means commutative ring with 1.)
Proof. This is a standard application of Zorn’s lemma.* Let Z be the set of all
ideals # (1) in 4. Order ¥ by inclusion. ¥ is not empty, since 0 € Z. To apply

* Let S be a non-empty partially ordered set (i.e., we are given a relation x < y on S
which is reflexive and transitive and such that x < y and y < x together imply
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Zorn's lemma we must show that every chain in & has an upper bound in X;
let then (a.) be a chain of ideals in Z, so that for each pair of indices «, B we have
either a, € agora; < a,. Leta = {J, a,. Then a is an ideal (verify this) and
1 ¢ a because 1 ¢ a, forall «. Hence a € Z, and a is an upper bound of the chain.
Hence by Zorn’s lemma Z has a2 maximal element. =

Corollary 1.4. If a # (1) is an ideal of A, there exists a maximal ideal of A
containing a.

Proof. Apply (1.3) to A/a, bearing in mind (1.1). Alternatively, modify the
proof of (1.3). =

Corollary 1.5. Every non-unit of A is contained in a maximal ideal. w

Remarks. 1) If A is Noetherian (Chapter 7) we can avoid the use of Zorn’s
lemma: the set of all ideals # (1) has a maximal element.

2) There exist rings with exactly one maximal ideal, for example fields.
A ring A with exactly one maximal ideal m is called a local ring. The field
= A/m is called the residue field of A.

Proposition 1.6. i) Let A be a ring and m # (1) an ideal of A such that
everyxe A — misaunitin A. Then A is alocal ring and m its maximal ideal.

ii) Let A be a ring and m a maximal ideal of A, such that every element of
1 + m(ie., every ] + x, where x e m) is a unit in A. Then A is a local ring.
Proof. 1) Every ideal # (1) consists of non-units, hence is contained in m.

Hence m is the onlv maximal ideal of A,

dAVvILwW 3P L0 iV VA MIGALLAGL IRl W

ii) Let xe A — m. Since m is maximal, the ideal generated by x and m is
(1), hence there existye 4 and tem such that xy + ¢t = 1; hence xy = 1 — ¢
belongs to 1 + m and therefore is a unit. Now usei). =

A ring with only a finite number of maximal ideals is called semi-local.

Examples. 1) A = k[x,, ..., x,], k a field. Let f € A be an irreducible poly-
nomial. By unique factorization, the ideal (f) is prime.

2) A = Z. Everyideal in Z is of the form (m) for some m > 0. The ideal
(m) is prime <> m = O or a prime number. All the ideals (p), where p is a prime
number, are maximal: Z/(p) is the field of p elements.

The same holds in Example 1) for» = 1, but notforn > 1. The ideal nt of
all polynomials in 4 = k[x,, . . ., x,] with zero constant term is maximal (since

x = y). A subset Tof Sisa chainif eitherx < y or y < xfor every pair of elements
x,yin T. Then Zorn’s lemma may be stated as follows: if every chain T of .S has an
upper bound in § (i.e., if there exists x € § such that ¢+ < xfor all t € T) then S has
at least one maximal element.

For a proof of the equivalence of Zorn’s lemma with the axiom of choice, the
well-ordering principle, etc., see for example P, R. Halmos, Naive Set Theory,
Van Nostrand (1960).
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it is the kernel of the homomorphism 4 — k which maps fe 4 to £(0)). But if
n > 1, mis not a principal ideal: in fact it requires at least n generators.

3) A principal ideal domain is an integral domain in which every ideal is
principal. In such a ring every non-zero prime ideal is maximal. For if (x) # 0
is a prime ideal and () = (x), we have x € (), say x = yz, so that yz € (x) and
¥ ¢ (x), hence ze(x): say z = tx. Then x = yz = yix, so that yt = 1 and
therefore () = (1).

NILRADICAL AND JACOBSON RADICAL

Proposition 1.7. The set N of all nilpotent elements in a ring A is an ideal,

and A[R has no nilpotent element # 0.
Proof. If xe M, clearlyaxe N forallae 4. Letx,yeRN;sayx™ = 0, y* = 0,
By the binomial theorem (which is valid in any commutative ring), (x + y)"»**-!
is a sum of integer multiples of products xy*, where r + s = m + n - 1; we
cannot have both r < mand s < n, hence each of these products vanishes and
therefore (x + y)"*"~! = 0. Hence x + y € M and therefore N is an ideal.

Let X € A/R be represented by x € A. Then X™ is represented by x*, so that
"=0=2>x"cN=>x)Y =0forsomek >0=xeNR=>I=0 =

The ideal N is called the nilradical of A. The following proposition gives an
alternative definition of N:

Proposition 1.8. The nilradical of A is the intersection of all the prime ideals

of A.
Proof. Let 2 denote the intersection of all the prime ideals of 4. If fe 4 is
nilpotent and if p is a prime ideal, then f/* = O ep for some n > 0, hence
fe€ p (because p is prime). Hence fe N

Conversely, suppose that f is not nilpotent, Let X be the set of ideals a
with the property

n>0=f"¢a

Then I is not empty because 0 € . As in (1.3) Zorn’s lemma can be applied
to the set T, ordered by inclusion, and therefore ¥ has a maximal element. Let
p be a maximal element of =. We shall show that p is a prime ideal. Let
x,y¢p. Then the ideals p + (x), » + (») strictly contain p and therefore do
not belong to X; hence

frfep +(x), frep + ()
for some m, n. It follows that f®** e p + (xy), hence the ideal p + (x¥) is not
in T and therefore xy ¢ p. Hence we have a prime ideal p such that f ¢ p, so that
féeN. =
The Jacobson radical : of A is defined to be the intersection of all the maxi-
mal ideals of 4. It can be characterized as follows:
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Proposition 1.9. xe R < 1 — xyisaunitin A forall y € A.

Proof. =: Suppose 1 — xy is not a unit. By (1.5) it belongs to some maximal
ideal m; but x e R < m, hence xy € m and therefore 1 € m, which is absurd.

<: Suppose x ¢ m for some maximal ideal m. Then m and x generate the
unit ideal (1), so that we have u + xy = 1 for some e m and some y € 4.
Hence 1 — xy e m and is therefore not a unit. m

OPERATIONS ON IDEALS

If a, b are ideals in a ring A4, their sum a + bis theset of all x + y where x € a
and y € b. It is the smallest ideal containing a and b. More generally, we may
define the sum 3,.; q; of any family (possibly infinite) of ideals a; of A4; its ele-
ments are all sums 2 x;, where x; € q, for all { € I and almost all of the x, (i.e.,
all but a finite set) are zero. It is the smallest ideal of 4 which contains all the
ideals a;.

The intersection of any family (a,); of ideals is an ideal. Thus the ideals of A
form a complete lattice with respect to inclusion.

The product of two ideals a, b in A4 is the ideal ab generated by all products xy,
~ where x € a and y € b. It is the set of all finite sums > x;y, where each x; € a and

each y, € b. Similarly we define the product of any finite family of ideals. In

particular the powers a® (n > 0) of an ideal a are defined; conventionally,
a® = (1). Thus a® (n > 0) is the ideal generated by all products x;x;---x,
in which each factor x; belongs to a.

Examples. 1) If 4 = Z,a = (m), b = (n) then a + b is the ideal generated by
the h.c.f. of m and n; a N b is the ideal generated by their l.c.m.; and ab = (mn).
Thus (in this case) ab = a N b < m, n are coprime.

2D A =klxy,....,x), a = (xy,..., x,) = ideal generated by x,,..., x,.
Then a™ is the set of all polynomials with no terms of degree < m.

The three operations so far defined (sum, intersection, product) are all
commutative and associative. Also there is the distributive law

a(d + ¢) = ab + ac.

In the ring Z, N and + are distributive over each other. This is not the case
in general, and the best we have in this direction is the modular law

aNn®d+c)=anb+ancifa2boraec

Again, in Z, we have (a + b)(a N b) = ab; but in general we have only
(a+b)anb)cab (since (a+ b)YaNb) = a(a NB) + bla N b) < ab).
Clearly ab < a N b, hence

anb = ab provided a + b = (1).



OPERATIONS ON IDEALS 7

Two ideals a, b are said to be coprime (or comaximal) if a + b = (1). Thus
for coprime ideals we have a N b = ab. Clearly two ideals a, b are coprime if
and only if there exist x€a and y €b such that x + y = 1.

Let A4;,..., A, be rings. Their direct product

A=E1A,

is the set of all sequences x = (xy,..., X,) With x,€ 4,(1 € i € n) and com-
ponentwise addition and multiplication. A is a commutative ring with identity
element (1, 1,...,1). We have projections p;: A — A; defined by p(x) = x;;
they are ring homomorphisms.

Let 4 be a ring and aq, . . ., a, ideals of 4. Define a homomorphism

14T ] (4/a)

=1
by the rule ¢(x) = (x + a;,...,x + a,).

Proposition 1.10. i) If o, a; are coprime whenever i # j, then Ila, = N a,.
i) ¢ is surjective <> a;, a; are coprime whenever i # j.
iii) ¢ is injective < () a; = (0).
Proof. i) by induction on n. The case n = 2 is dealt with above. Suppose
n > 2and the resulttruefora,, ..., a,_;,andletdb = []i-}f a, = MPoE a,. Since
o + a, = (1)(1 € i< n — 1)we have equations x; + y, = 1 (x; € a, y,€a,)
and therefore :
n—-1 n=1
Hx, = ﬂ(i - y) =1 (mod a,).

t=1

Hence a, + 5 = (1) and so )

Haf=ban=bnan=ﬂm.
i=1 t=1
ii) =: Let us show for example that a,, a, are coprime. There exists x € 4
such that ¢(x) = (1,0,...,0); hence x = 1 (mod a;) and x = 0 (mod ay), s0
that
1= -x)+x€ea; + a,

< It is enough to show, for example, that there is an element x € 4 such that
#(x) = (1,0,...,0). Sincea, + aq; = (1) ({ > 1) we haveequations », + v, = 1
(4, € a1, v, € ). Take x = [[fag v, then x = II(1 — %) = 1 (mod qa;), and
x = 0(mod ay),7 > 1. Hence ¢(x) = (1,0,...,0) as required.

iii) Clear, since () g, is the kernel of ¢. =

The union a u b of ideals is not in general an ideal.
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Proposition 1.11. 1) Let p,,...,p, be prime ideals and let o be an ideal
contained in {J?-, v;. Then o < v, for some .

ii) Let ay, ..., a, be ideals and let b be a prime ideal containing M-, a,.
Then p = q, for somei. If p = () a, then p = a; for some |i.
Proof. 1) is proved by induction on n in the form

n

aEgp(l<is<n=ag L_j

It is certainly true forn = 1. If # > | and the result is true for n — 1, then for
each i there exists x; € a such that x; ¢ p;, whenever j # i. If for some i we have’
X; & p;, we are through. If not, then x; € p; for all /. Consider the element

Z X1 X« Xi_1Xi 41X 427 " Xn;

we have yeaandy¢p, (I <i<n). Hencea ¢ Uiy

ii) SupposePp :’k q; for all /. Then there exist x, € a;, x;¢ p (1 € i < n), and
therefore I1x, € Ila; = (M) a;; but Ilx, ¢ p (since v is prime). Hence p 2 Na,.
Finally, if p =M a, then < q; and hence = q; for some i.

€ 6 c( n ..
If a, b are ideals in a ring A%ﬁlr 1deal quotient 1s P Mxe /l& XtéP')
(a:8) = {xed:xb € a}

which is an ideal. In particular, (0:5) is called the annihilator of b and is also
denoted by Ann (b): it is the set of all x € 4 such that xb = 0. In this notation
the set of all zero-divisors in 4 is
= |J Ann (x).

x#0
If b is a principal ideal (x), we shall write (a : x) in place of (a : (x)).
Example. If 4 = Z, a = (m), b = (n), where say m = [ [, p*», n = [ ], p’»,
then (a:6) = (q) whereg = [ 1, p™ and

Y = max (lu’p = Vp O) = Hp — min (lu'p’ Vp)'

Hence g = m/(m, n), where (m, n) is the h.c.f. of m and ».

Exercise 1.12. 1) a < (a:b)

ii}) (a:6)b S a

iif) ((a:6):¢) = (a:be) = ((a:c):6)
iv) (M a:6) = M (a,:6)

v) (a:3;8) = N (a:by).

If a is any ideal of A4, the radical of a is
r(a) = {xe A:x" € a for some n > 0}.

If4: A — A/a is the standard homomorphism, then r(a) = ¢~ }(N,,.) and hence
r(a) is an ideal by (1.7).
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Exercise 1.13. i) r(a) @ a

if) r(r(a)) = r(a)

i) r(ab) = r(a N b)) = r(a) N r(d)

iv) r(a} = (1) < a = (1)

v) r(a + 0) = r(r(a) + r(0))

vi) if p is prime, r(p™) = p for alln > 0.

Proposition 1.14. The radical of an ideal o is the intersection of the prime
ideals which contain a.

Proof. Apply (1.8)to A/a. =

More generally, we may define the radical r(E) of any subset E of A in the
same way. It is not an ideal in general. We have r(\J, E,) = U r(E,), for any
family of subsets E, of 4.

Proposition 1.15. D = set of zero-divisors of A = \J, 40 r(Ann (x)).
Proof. D = (D) = r{Uss0 Ann(x)) = U,xo r(Ann (x)). =

Example. If 4 = Z, a = (m), let p, (1 < i < r) be the distinct prime divisors
of m. Thenr(a) = (p1---p,) = Ni=1(py).

Proposition 1.16. Let a,b be ideals in a ring A such that r(a), r(b) are
coprime. Then a,b are coprime.

Proof. r(a + B) = r(r(a) + r(8)) = r(1) = (1), hence a + b = (1) by (1.13),

EXTENSION AND CONTRACTION

Let f: A — B be a ring homomorphism. If a is an ideal in A4, the set f{a) is not
necessarily an ideal in B (e.g., let f be the embedding of Z in Q, the field of
rationals, and take a to be any non-zero ideal in Z.) We define the extension
a® of a to be the ideal Bf(a) generated by f(a) in B: explicitly, a® is the set of all
sums > p,f(x) where x,€ a, y, € B.

If b is an ideal of B, then f~1(b) is always an ideal of 4, called the contrac-
tion b¢ of b. 1f b is prime, then b° is prime. If ¢ is prime, a® need not be prime
(for example, /2 Z — Q, a # 0; then a® = Q, which is not a prime ideal).

We can factorize f as follows:

A5 fA) > B

where p is surjective and j is injective. For p the situation is very simple (1.1):
there is a one-to-one correspondence between ideals of f(4) and ideals of 4
which contain Ker (f), and prime ideals correspond to prime ideals. For j, on
the other hand, the general situation is very complicated. The classical example
is from ulgebraic number theory.
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Example. Consider Z — Z[i], where i = v —1. A prime ideal (p) of Z may or
may not stay prime when extended to Z[i]. In fact Z{i] is a principal ideal
domain (because it has a Euclidean algorithm) and the situation is as follows:

i) (2)* = ((1 + i)?), the square of a prime ideal in Z[i];

ii) If p = 1 (mod 4) then (p)* is the product of two distinct prime ideals

(for example, (5)° = (2 + i}2 — i));

ii) If p = 3 (mod 4) then (p)® is prime in Z[i].
Of these, ii) is not a trivial result. It is effectively equivalent to a theorem of
Fermat which says that a prime p = 1(mod 4) can be expressed, essentially
uniquely, as a sum of two integer squares (thus 5 = 2% + 13,97 = 9% 4 43
etc.).

In fact the behavior of prime ideals under extensions of this sort is one of the
central problems of algebraic number theory.

Let f: A — B, aand b be as before. Then
Proposition 1.17. 1) a < a*°, b 2 b,
ii) B¢ = b, a® = a°°¢;

i) If Cis the set of contracted ideals in A and if E is the set of extended ideals
in B, then C = {a|a* = a}, E = {b|b°* = b}, and a > o® is a bijective map
of C onto E, whose inverse is b — b°.

Proof. 1) is trivial, and ii) follows from i).

i) If a e C, then a = b°. = b°*° = a*¢; conversely if a = a°® then a is the
contraction of a®. Similarly for £. =

Exercise 1.18. If a,, a, are ideals of A and if b,, b, are ideals of B, then

(a1 + ag)‘ = ai + ag, (El + bg)c 2 bf + bc,

(M) < afnag, - (By N B = 65N b,
(a,85)* = ajag, (b1b2)° = bibE,
(0;:05) < (ai:az), (6,:0;)° < (b1:63),
r(a)® < r(a®), r(b)° = r(b°).

The set of ideals E is closed under sum and product, and C is closed under
the other three operations.

EXERCISES
1. Let x be a nilpotent element of a ring A. Show that1 + xisaunit of 4. Deduce
that the sum of a nilpotent element and a unit is a unit.

2. Let A be a ring and let 4[x] be the ring of polynomials in an indeterminate x,
with coefficients in 4. Let f = ao + a1x +--+ + a,x"€ A[x]. Prove that
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i) fis a unit in A[x] < ao is a unit in 4 and @&, ..., a, are nilpotent. {If
bo + byx + -+ + bnx™ is the inverse of f, prove by induction on r that

ATH1L = N Tlanna ak H
“n

- ia mileaméan

bm-r = 0. Hence show that a, is nHpotent, and then use Ex. i]

ii) fis nilpotent < 4o, 4, . . ., 4, are nilpotent.

iif) fis a zero-divisor < there exXists @ # 0 in A4 such that af = 0. [Choose a
polynomial g = bo + b1x + -- -+ bnx™ Of least degree m such that fz = 0.
Then anb, = 0, hence a.g = 0 (because a.g annihilates f and has degree
< m). Now show by induction that g,..g = 0{(0 < r < n).]

iv) fissaid to be primitiveif (ao, as, ..., @,) = (1). Provethatif f, g € A[x], then
Jfg is primitive <= fand g are primitive.

Generalize the results of Exercise 2 to a polynomial ring 4[x,, .. ., x,] in several

indeterminates.

4. In the ring A[x], the Jacobson radical is equal to the nilradical.

10.

11.

12.

13.

Let 4 be a ring and let A4[{x]] be the ring of formal power series f = 37 .o @ux"
with coefficients in A. Show that
i) fis a unit in A[[x]] = a, is a unit in A.

iiy If fis nilpotent, then a, is nilpotent for all n > 0. Is the converse tfue?
(See Chapter 7, Exercise 2.)

iii) f belongs to the Jacobson radical of A[[x]} < a, belongs to the Jacobson
radical of 4.

iv) The contraction of a maximal ideal m of 4[[x]] is a maximal ideal of 4, and
m is generated by m® and x.

v) Every prime ideal of A4 is the contraction of a prime ideal of A[[x]].

A ring A4 is such that every ideal not contained in the nilradical contains a non-
zero idempotent (that 1s, an element e such that ¢? = ¢ # 0). Prove that the
nilradical and Jacobson radical of 4 are equal.

Let A be a ring in which every element x satisfies x™ = x for some n > 1
(depending on x). Show that every prime ideal in 4 is maximal.

Let 4 be a ring # 0. Show that the set of prime ideals of 4 has minimal ele-
ments with respect to inclusion.

Let a be an ideal # (1) in a ring 4. Show that a = r(a) < a is an intersection
of prime ideals.
Let A be a ring, N its nilradical. Show that the following are equivalent:
i) A has exactly one prime ideal;
ii) every element of A4 is either a unit or nilpotent;
iiiy A/R is a field.

A ring A is Boolean if x* = x for all x € 4. In a Boolean ring 4, show that
i) 2x = Oforall xe A4;

ii) every prime ideal p is maximal, and A4/p is a field with two elements;

iii) every finitely generated ideal in A4 is principal.

A local ring contains no idempotent # 0, 1.

Construction of an algebraic closure of a field (E. Artin).
Let K be a field and let £ be the set of all irreducible monic polynomials fin one
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14.

15.

16.
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indeterminate with coefficients in X. Let 4 be the polynomial ring over XK
generated by indeterminates x,, one for each fe Z. Let a be the ideal of 4
generated by the polynomials f(x,) for all fe Z. Show that a # (1).

Let m be a maximal ideal of 4 containing a, and let X; = A/m. Then K; is
an extension field of K in which each fe X has a root. Repeat the construction
with X in place of X, obtaining a field K;, andsoon, Let L = Ur=1 Ka. Then
L is a field in which each f € Z splits completely into linear factors. Let X be the

set of all elements of L which are algebraic over X. Then K is an algebraic
closure of X.

In a ring A, let X be the set of all ideals in which every element is a zero-divisor.
Show that the set  has maximal elements and that every maximal element of Z is
a prime ideal. Hence the set of zero-divisors in 4 is a union of prime ideals.

The prime spectrum of a ring

Let 4 be a ring and let X be the set of all prime ideals of 4. For each subset

E of A, let V(E) denote the set of all prime ideals of 4 which contain E. Prove
that

i) if a is the ideal generated by E, then V(E) = F(a) = ¥V(r(a)).
i) ¥©0) = X, V(1) =
iii) if (E)¢; is any family of subsets of 4, then

V( tLE)I E,) = Q V(E).

iv) V(@ nb) = V(ab) = V(a) v V() for any ideals a, b of A.

These results show that the sets V(E) satisfy the axioms for closed sets
in a topological space. The resulting topology is called the Zariski topology
The topoiogical space X is calied the prime specirum of A, and is writien Spec {A4).

Draw pictures of Spec (Z), Spec (R), Spec (C[x]), Spec (R[x]), Spec (Z[x])

For each f€ A4, let X; denote the complement of V(fHin X = Snec (4). The

Iw W AVikY VL F \J J v AFR T RN wwW (Jage - sa'y

sets X, are open. Show that they form a basis of open sets for the Zariski
topology, and that

) Xp 0 Xy = X5

ii) X; = @ <= fis nilpotent;

ili) X; = X < fis a unit;

iv) X; = X, = r((N) = r((2));

v) X is quasi-compact (that is, every open covering of X has a finite sub-

covering).

vi) More generally, each X, is quasi-compact.

vii) An open subset of X is quasi-compact if and only if it is a finite union of
sets Xf.

The sets X; are called basic open sets of X = Spec (A4). ‘
[To prove (v), remark that it is enough to consider a covering of X by basic

open sets X, (i € I). Show that the f; generate the unit ideal and hence that there
is an equation of the form

1 = ;glﬁ (g:€ A)

where J is some finite subset of 1. Then the X;, (i € J) cover X.]
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For psychological reasons it is sometimes convenient to denote a prime ideal
of A by a letter such as x or y when thinking of it as a point of X = Spec (A4).

When thinking of x as a prime ideal of A we denote it bv . (logically. of saurea

TY AAWAR LeAiiRARAliEy WA #¥ P riiarw isiias wa Ja WWARW LY AV VT TX \AVDiwisaAy 9 Vi UL OV,

it is the same thing). Show that

i) the set {x} is closed (we say that x is a “closed point™) in Spec (4) <= p, is
maximal;

ii) {x} = V(p);

iii) y € {x} = p. S py;

iv) X is a Ty-space (this means that if x, y are distinct points of X, then either
there is a neighborhood of x which does not contain y, or else there is a
neighborhood of y which does not contain x).

A topological space X is said to be irreducible if X # 2 and if every pair of
non-empty open sets in X intersect, or equivalently if every non-empty open set
is dense in X. Show that Spec (A) is irreducible if and only if the nilradical of
A is a prime ideal.

Let X be a topological space.

i) If Y is an irreducible (Exercise 19) subspace of X, then the closure Yof ¥
in X is irreducible.

ii) Every irreducible subspace of X is contained in a maximal irreducible
subspace.

iii) The maximal irreducible subspaces of X are closed and cover X. They are
called the irreducible components of X, What are the irreducible components
of a Hausdorff space?

iv) If A is a ring and X = Spec (4), then the irreducible components of X are
the closed sets ¥(p), where p is a minimal prime ideal of 4 (Exercise 8).

Let ¢: A — Bbearing homomorphism Let X = Spec(A4) and ¥ = Spec (B).
if q € Y, then ¢~%{q) is a prime ideal of 4, i.e., a point of X. Hence ¢ induces a
mapping ¢*: ¥ — X. Show that

i) If fe A then ¢*~1(X,;) = Y41, and hence that ¢* is continuous.

ii) If a is an ideal of A4, then ¢*-(V(a)) = V(a°).

iii) If b is an ideal of B, then ¢*(V(6)) = V(b°).

iv) If ¢ is surjective, then ¢* is a homeomorphism of ¥ onto the closed subset
V(Ker (¢)) of X. (In particular, Spec (4) and Spec (4/9) (where R is the
nilradical of 4) are naturally homeomorphic.)

v) If ¢ is injective, then ¢*( Y) is dense in X. More precisely, $*(Y) is dense in
X <« Ker () = N

vi) Let ¢: B — C be another ring homomorphism. Then (4 o $)* = ¢* o ¢*.

vii) Let A4 be an integral domain with just one non-zero prime ideal p, and let X
be the field of fractions of 4. Let B = (4/p) x K. Define $: 4 — B by
$(x) = (X, x), where ¥ is the image of x in 4/p. Show that ¢* is bijective
but not a homeomorphism.

Let A = .1 4 be the direct product of rings 4,. Show that Spec (4) is the

disjoint union of open (and closed) subspaces .X;, where X, is canonically
homeomorphic with Spec (A4;).
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Conversely, let 4 be any ring. Show that the following statements are

equivalent:
i) X = Spec (A) is disconnected

Wprww \Fay Ao wAidwisiliivwewese

ii) A = A; x Az where neither of the rings A4,, 4, is the zero ring.
iii) A contains an idempotent # 0, 1,

In particular, the spectrum of a local ring is always connected (Exercise
12).

Let A be a Boolean ring (Exercise 11), and let X = Spec (A4).

i) For each fe A, the set X, (Exercise 17) is both open and closed in X.

ii) Let f;,...,fnc A. Show that X, V... U X, = X, for some fe A.

iii) The sets X, are the only subsets of X which are both open and closed.
[Let Y = X be both open and closed. Since Y is open, it is a union of basic
open sets X,. Since Y is closed and X is quasi-compact (Exercise 17), Y is
quasi-compact. Hence Y is a finite union of basic open sets; now use (ii)
above.]

iv) X is a compact Hausdorff space.

Let L be a lattice, in which the sup and inf of two elements a, b are denoted by

a Vv band a A brespectively. L is a Boolean lattice (or Boolean algebra) if
i) L has a least element and a greatest element (denoted by 0, 1 respectively).
ii) Each of v, A is distributive over the other.

iii) Each a € L has a unique ‘“‘complement” @' € L such that a v @’ = 1 and

ana=0
(For example, the set of all subsets of a set, ordered by inclusion, is a Boolean
lattice.)

Dt

rules
a+b=(@Ab)v (@ A b, ab = a A b.

Verify that in this way L becomes a Boolean ring, say A(L).

Conversely, starting from a Boolean ring A, define an ordering on A4 as
follows: @ < b means that a = ab. Show that, with respect to this ordering, A4
is a Boolean lattice. [The sup and inf are given by a v b = a + b + ab and
a A b = ab, and the complement by @ = 1 — a.] In this way we obtain a
one-to-one correspondence between (isomorphism classes of ) Boolean rings and
(isomorphism classes of) Boolean lattices.

From the last two exercises deduce Stone’s theorem, that every Boolean lattice
is isomorphic to the lattice of open-and-closed subsets of some compact Haus-
dorff topological space.

Let A be a ring. The subspace of Spec (4) consisting of the maximal ideals of 4,
with the induced topology, is called the maximal spectrum of A and is denoted by
Max (A). For arbitrary commutative rings it does not have the nice functorial
properties of Spec (4) (see Exercise 21), because the inverse image of a maximal
ideal under a ring homomorphism need not be maximal.

Let X be a compact Hausdorff space and let C(X) denote the ring of all
real-valued continuous functions on X (add and multiply functions by adding
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and multiplying their values). For each x € X, let m, be the set of all fe C(X)
such that f(x) = 0. The ideal m, is maximal, because it is the kernel of the
(surjective) homomorphism C(X) — R which takes f to f(x). If X denotes
Max (C(X)), we have therefore defined a mapping u: X — X, namely x = m,,
We shall show that u is 2 homeomorphism of X onto X.
i) Let m be any maximal ideal of C(X), and let ¥ = V(m) be the set of com-
mon zeros of the functions in m: that is,

= {x € X:f(x) = 0 for all fe m}.

Suppose that V' is empty. Then for each x € X there exists f, € m such that
Sfx(x) # 0. Since f. is continuous, there is an open neighborhood U, of x
in X on which f. does not vanish. By compactness a finite number of the
neighborhoods, say U,,, ..., Ux,, cover X. Let

f=fE b SR

Then f does not vanish at any point of X, hence is a unit in C(X). But this
contradicts f € m, hence F is not empty.

Let x be a point of ¥. Then m & m,, hence m = m_ because m is
maximal. Hence u is surjective.

ii) By Urysohn’s lemma (this is the only non-trivial fact required in the argu-
ment) the continuous functions separate the points of X. Hence x # y =
m, # m,, and therefore u is injective.

iii) Let fe C(X); let

Uy ={xeX:f(x) # 0}

nd lat
“““ AWt
U, ={meX:f¢m}
Qhner that 7T = I"r Tha nman cate I/ (vracn ” N frarm a hacie Af tha tan,
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ology of X (resp. X) and therefore 1 is a homeomorphism.
Thus X can be reconstructed from the ring of functions C(X).

Affine algebraic varieties
Let k& be an algebraically closed field and let

fa(tl’ rery tn) = 0

be a set of polynomial equations in » variables with coefficients in k. The set X
of all points x = (x,,..., X.) € k* which satisfy these equations is an affine
algebraic variety.

Consider the set of all polynomials g € &[r,, . . ., #,] with the property that
g(x) = 0 for all xe X. This set is an ideal 7(X) in the polynomial ring, and is
called the ideal of the variety X. The quotient ring

P(X) = kln, ..., u)/1(X)

is the ring of polynomial functions on X, because two polynomials g, /# define the
same polynomial function on X if and only if ¢ — /i vanishes at every point of X,
that is, if and only if g — 1 € I(X).
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Let ¢ be the image of ¢, in P(X). The & (1 < i <€ n) are the coordinate
Sunctions on X:if x € X, then £,(x) is the ith coordinate of x. P(X) is generated

am oa b mlmale e L dhhm Al ndn Fivonnd?l oan el o o mnllad thhm o e Pl o e Mo

asdv a K'Clscul'ﬂ. Uj l..llG WUlulllﬂ.W lh!lhllullb, dll\.l 13 CallVU LIV COUTUinuEcC rulg ‘U[
affine algebra) of X.

As in Exercise 26, for each x € X let m, be the ideal of allfe P(X) such that
f(x) = 0; it is a maximal ideal of P(X). Hence, if ¥ = Max (P(X)), we
have defined a mapping »: X — X, namely x b m,.

It is easy to show that x is injective: if x # y, we must have x; # y, for
for some i(1 < i < n), and hence § — x; is in m, but not in m,, so that
m, ¥ m, Whatis less obvious (but still true) is that u is surjective. This is one
form of Hilbert’s Nullstellensatz (see Chapter 7).

Let fi, ..., fa be elements of k[#,, ..., t,]. They determine a polynomial mapping
$: k* — k™. if x € k", the coordinates of ¢(x) are fi(x), . . ., fm(x).

Let X, Y be affine algebraic varieties in k", k™ respectively. A mapping
¢: X — Yis said to be regular if ¢ is the restriction to X of a polynomial map-
ping from k" to k™.

If n is a polynomial function on Y, then 7 o ¢ is a polynomial function on X.
Hence ¢ induces a k-algebra homomorphism P(Y) — P(X), namely n & 5o ¢.
Show that in this way we obtain a one-to-one correspondence between the
regular mappings X — Y and the k-algebra homomorphisms P(¥) — P(X).



Modules

One of the things which distinguishes the modern approach to Commutative
Algebra is the greater emphasis on modules, rather than just on ideals. The
extra “elbow-room’ that this gives makes for greater clarity and simplicity. For
instance, an ideal a and its quotient ring 4/a are both examples of modules and
$0, to a certain extent, can be treated on an equal footing. In this chapter we give
the definition and elementary properties of modules. We also give a brief
treatment of tensor products, including a discussion of how they behave for
exact sequernces.

MODULES AND MODULE HOMOMORPHISMS

Let 4 be a ring (commutative, as always). An A-module is an abelian group M
(written additively) on which A4 acts linearly: more precisely, it is a pair (M,u),
where M is an abelian group and p is a mapping of A x M into M such that, if
we write ax for u(a, x)(a € 4, x € M), the following axioms are satisfied:

alx + y) = ax + ay,
{(a + b)x = ax + bx,
(ab)x = a(bx),
1x = x (a,be Ad; x,yeM)

(Equivalently, M is an abelian group together with a ring homomeorphism
A — E(M), where E(M) is the ring of endomorphisms of the abelian group M.)

The notion of a module is a common generalization of several familiar
concepts, as the following examples show:

Examples. 1) An ideal a of A4 is an 4-module. In particular A4 itself is an
A-module.

2) If A is a field k, then 4-module = k-vector space.

3) 4 = Z, then Z-module = abelian group (define nx to be x+ -+ - + x).

4) A = k[x] where k is a field; an A-module is a k-vector space with a linear
transformation.

5) G = finite group, 4 = k[G] = group-algebra of G over the field k (thus
A is not commutative, unless G is). Then 4-module = k-representation of G.

17
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Let M, N be A-modules. A mapping f: M — N is an A-module homo-
morphism (or is A-linear) if

f&x+y) =/x) +1(»)
flax) = a-f(x)

for all a€ 4 and all x,ye M. Thus fis a homomerphism of abelian groups
which commutes with the action of each ae 4. If 4 is a field, an 4-module
homomorphism is the same thing as a linear transformation of vector spaces.
The composition of 4-module homomorphisms is again an A-module
homomorphism.
The set of all 4-module homomorphisms from M to N can be turned into an
A-module as follows: we define f 4 g and af by the rules

(f + g)x) = f(x) + g(x),
(afXx) = a-f(x)
for all x € M. Itis a trivial matter to check that the axioms for an A-module are
satisfied. This 4-module is denoted by Hom, (M, N) (or just Hom (M, N) if
there is no ambiguity about the ring A4).
Homomorphisms u: M’ — M and v: N - N’ induce mappings

#: Hom (M, N) - Hom (M’, N) and #&: Hom (M, N) > Hom (M, N")
deﬁned as follows:
E(f) =fou’ ﬂ(f) = Uo_f,

These mappings are 4-module homoinorphisms.
For any module M there is a natural isomorphism Hom (4, M) & M: any

A-module homomorphism f: 4 — M is uniquely determined by f(i), which
can be any element of M.

SUBMODULES AND QUOTIENT MODULES

A submodule M’ of M is a subgroup of M which is closed under multiplication by
elements of 4. The abelian group M/M’ then inherits an 4-module structure
from M, defined by a(x + M") = ax + M’'. The A-module M/M’ is the
quotient of M by M'. The natural map of M onto M/M' is an A-module homo-
morphism. There is a one-to-one order-preserving correspondence between
submodules of M which contain M’, and submodules of M” (just as for ideals;
the statement for ideals is a special case).
Iff: M — Nisan A-module homomorphism, the kernel of fis the set

Ker(f) = {xeM.f(x) = 0}
and is a submodule of M. The image of fis the set

Im (f) = f(M)
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and is a submodule of N. The cokernel of fis
Coker (f) = N/Im (f)

which is a quotient module of N.

If M’ is a submodule of M such that M’ < Ker (f), then f gives rise to a
homomorphism f: M/M’ — N, defined as follows: if X € M/M’ is the image of
x € M, then f(X) = f(x). The kernel of fis Ker (f)/M’. The homomorphism f
is said to be induced by f. In particular, taking M’ = Ker (f), we have an
isomorphism of A-modules

M/Ker (f) = Im (f).

OPERATIONS ON SUBMODULES

Most of the operations on ideals considered in Chapter 1 have their counter-
parts for modules. Let M be an 4A-module and let (M,),; be a family of sub-
modules of M. Their sum > M, is the set of all (finite) sums 2 x;, where x; € M,
for all i e I, and almost all the x, (that is, all but a finite number) are zero.
> M, is the smallest submodule of M which contains all the M.

The intersection () M, is again a submodule of M. Thus the submodules of
M form a complete lattice with respect to inclusion.

Proposition 2.1. 1) If L 2 M 2 N are A-modules, then
(LIN(MIN) = LIM.
ii) If M,, M, are submodules of M, then
(M, + My)IM, = My{((M; N M)

Proof. i) Define 8. L/N — L/M by 6(x + N) = x + M. Then 8 is a well-
defined 4-module homomorphism of L/N onto L/M, and its kernel is M/N;
hence (i). ,

ii) The composite homomorphism M, — M, + M, — (M, + My)/M, is
surjective, and its kernel is M, N M,; hence (ii). =

We cannot in general define the product of two submodules, but we can
define the product aM, where a is an ideal and M an 4-module; it is the set of all
finite sums Y a,x; with g, € a, x; € M, and is a submodule of M.

If N, P are submodules of M, we define (NV: P) to be the sct of all a € A such
that aP < N; it is an ideal of A. In particular, (0: M) is the set of all 2 € 4 such
that aM = 0; this ideal is called the annihilator of M and is also denoted by
Ann (M). If ¢ © Ann (M), we may regard M as an 4/a-module, as follows:
if ¥ € A/a is represented by x € A, define ¥m to be xm(m € M): this is independ-
ent of the choice of the representative x of X, since aM = 0.
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An A-module is faithful if Ann (M)=0. If Ann(M) = a, then M is
faithful as an 4/a-module.

Exercise 2.2. i) Ann (M + N) = Ann (M) N Ann (N).
if) (N:P) = Ann ((N + P)/N).

If x is an element of M, the set of all multiples ax(a € 4) is a submodule of
M, denoted by Ax or (x). If M = 3, Ax;, the x, are said to be a set of gen-
erators of M; this means that every element of M can be expressed (not neces-
sarily uniquely) as a finite linear combination of the x; with coefficients in 4.
An A-module M is said to be finitely generated if it has a finite set of genera-
tors.

DIRECT SUM AND PRODUCT

If M, N are A-modules, their direct sum M @ N is the set of all pairs (x, y) with
xe M,ye N. This is an A-module if we define addition and scalar multiplica-
tion in the obvious way: 4

(X1, ¥1) + (xg, ¥2) = (x; + X2, ¥1 + y2)
a(x, y) = (ax, ay).

More generally, if (M), is any family of 4-modules, we can define their direct
sum @),; M;; its elements are families (x,)e; such that x; € M, for each { € I and
almost all x; are 0. If we drop the restriction on the number of non-zero x’s we

have the direct product [ [,e; M;. Direct sum and direct product are therefore the
same if the index set I is finite, but not otherwise, in general.
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Suppose that the ring A is-a direct product [ [}, 4, (Chapter 1). Then the
set of all elements of 4 of the form

(0:-"30’a£105"-50)

with @, € A, is an ideal a; of A (it is not a subring of A—except in trivial cases—
because it does not contain the identity element of 4). The ring 4, considered as
an A-module, is the direct sum of the ideals a;, ..., a,. Conversely, given a
module decomposition

A=0, @ @a,
of A as a direct sum of ideals, we have
A= n (4/5)
i=}

where b, = @m a,. Each ideal q, is a ring (iscmorphic to A/B,) The identity
element e; of a; is an idempotent in 4, and a; = (e).
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FINITELY GENERATED MODULES

A free A-module is one which is isomorphic to an 4-module of the form
@Pies M, where each M, =~ A (as an 4-module). The notation 4A? is sometimes
used. A finitely generated free 4-module is therefore isomorphicto 4 @-.-@® 4
(n summands), which is denoted by A", (Conventionally, 4° is the zero module,
denoted by 0.)

Proposz'tian 2.3. M is a finitely generated A-module <~ M is isomorphic to
a quotient of A" for some integer n > 0.

Proof. =: Letx,,..., x, generate M. Define ¢: 4" — M by ay, ..., a,) =
a;xy +---+ a,x,. Then ¢ is an A-module homomorphism onto M, and there-
fore M =~ A"/Ker (¢).

<: We have an 4-module homomorphism ¢ of 4" onto M. If ¢, =
©,...,0,1,0,...,0) (the 1 being in the ith place), then the ¢, (I < i< n)
generate A™, hence the ¢(e;) generate M. =

Proposition 2.4. Let M be a finitely generated A-module, let a be an ideal of
A, and let ¢ be an A-module endomorphism of M such that (M) = a M. Then
¢ satisfies an equation of the form

"+ @t e b a, =0

where the a; are in a.

Proof. Letx,,..., x,beaset of generators of M, Then each ¢(x;) € aM, so that
we have say ¢(x;) = 0., a,;x; (1 < i < n;a;€q),ie,

n
Z (0 —a)x; =0
f=1
where §;; is the Kronecker delta. By multiplying on the left by the adjoint of the
matrix (8,9 — a;;) it follows that det (8,6 — a,,) annihilates each x,, hence is the
zero endomorphism of M, Expanding out the determinant, we have an equation
of the required form. =

Corollary 2.5. Let M be a finitely generated A-module and let a be an ideal

of A such thataM = M. Then there exists x = 1(mod a) such that xM = 0.
Proof. Take ¢ = identity, x = 1 + a2, +---+ a,in (24). =

Proposition 2.6. (Nakayama’s lemma). Let M be a finitely generated

A-module and a an ideal of A contained in the Jacobson radical R of A. Then
aM = M implies M = 0.

First Proof. By (2.5) we have xM = Ofor some x = | (mod R). By (1.9) xisa
unit in 4, hence M = x-*xM =0. =
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Second Proof. Suppose M # 0, and let u,, ..., u, be a minimal set of gener
ators of M. Then u, € aM, hence we have an equation of the form u, = q,u, +
--- + a,u,, with the a, € a. Hence

(I — aun = ayuy + -+ Gpoqlip-1;

since a, € R, it follows from (1.9) that 1 — a4, is a unit in 4. Hence u, belongs tc
the submodule of M generated by u,, ..., u,_,: contradiction. =

Corollary 2.7, Let M be a finitely generated A-module, N a submodule of M
¢ g Ranideal. Then M = aM + N => M = N.

Proof. Apply (2.6) to M/N, observing that a(M/N) = (aM + N)/N. =

Let A be a local ring, w its maximal ideal, & = A4/m its residue field. Let M
be a finitely generated 4-module. M/mA/ is annihilated by m, hence is naturally
an A/m-module, i.e., a k-vector space, and as such is finite-dimensional.

Proposition 2.8. Let x,(1 < i < n) be elements of M whose images in
M{mM form a basis of this vector space. Then the x; generate M.,

Proof. Let N be the submodule of M generated by the x,. Then the composite
map N - M — M/mM maps N onto M/mM, hence N + mM = M, hence
N=MbyQ27). =

EXACT SEQUENCES

A sequence of 4-modules and 4-homomorphisms

Pt —> Mi_l-—ﬁ—)-Mgﬁ—)Mi.‘.l-——)"’ (0)

is said to be exact at M, if Im (f)) = Ker (f;.1). The sequence is exact if it is
exact at each M,. In particular:

0 — M’ L> M is exact <> fis injective; (1)
M 2> M”" — 0 is exact <> g is surjective; 2)

0> M > MZ- M” > 0is exact <> f is injective, g is surjective and g
induces an isomorphism of Coker (/) = M/f(M") onto M”, 3)

A sequence of type (3) is called a short exact sequence. Any long exact
sequence (0) can be split up into short exact sequences: if N, = Im (f)) =
Ker (f;.1), we have short exact sequences 0 — N, - M, — N,,, — 0 foreachi.

Proposition 2.9. 1) Let
ME3>M3>M -0 4)
v be a sequence of A-modules and homomorphisms. Then the sequence (4) is
exact <> for all A-modules N, the sequence

0 - Hom (M”, N) 2> Hom (M, N) > Hom (M’, N) @)

is exact.
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ii) Let

0—>N 3> N>N" (5
be a sequence of A-modules and homomorphisms. Then the sequence (5) is
exact < for all A-modules M, the sequence

0 — Hom (M, N') 2> Hom (M, N) %> Hom (M, N (5"

is exact.

All four parts of this proposition are easy exercises. For example, suppose
that (4') is exact for all N. First of all, since 7 is injective for all N it follows that
v is surjective. Next, we have o5 = 0,thatisvouof = Qforall f: M" — N.
Taking N to be M” and f to be the identity mapping, it follows that vou = 0,
hence Im (¥) < Ker (v). Next take N = M/Im (1) and let ¢: M — N be the
projection. Then ¢ € Ker (), hence there exists y: M” — Nsuchthat¢ = oo,
Consequently Im (1) = Ker (¢) 2 Ker(v). =

Proposition 2.10. Let
O M S5 MBS M =0

rl 7 -
0>N >Nz N >0

be a commutative diagram of A-modules and homomorphisms, with the rows
exact. Then there exists an exact sequence

0 — Ker (f) & Ker (f) > Ker () <>
Coker (f') &> Coker (f) T> Coker (f") — 0 (6)
in which i, D are restrictions of u, v, and @', ¥’ are induced by u', v'.

The boundary homomorphism d is defined as follows: if x* € Ker (f*), we have
x" = v(x) for some x € M, and v'(f(x)) = f"(v(x)) = 0, hence f(x) € Ker (v) =
Im ('), so that f(x) = '()’) for some y € N'. Then d(x") is defined to be the
image of ' in Coker (f'). The verification that d is well-defined, and that the
sequence (6) is exact, is a straightforward exercise in diagram-chasing which we
leave to the reader. m

Remark. (2.10) is a special case of the exact homology sequence of homological
algebra.

Let C be a class of 4-modules and let A be a function on C with values in Z
(or, more generally, with values in an abelian group G). The function A is
additive if, for each short exact sequence (3) in which all the terms belong to C,
we have A(M') — A(M) + A(M") = 0.

Example. Let 4 be a field &, and let C be the class of all finite-dimensional

k-vector spaces ¥. Then ¥ — dim ¥V is an additive function on C.
2+1.CA.
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Proposition 2.11. Let 0 > My - My - -— M, — 0 be an exact se-
quence of A-modules in which all the modules M, and the kernels of all the
homomorphisms belong to C. Then for any additive function X on C we have

> (=) = .

t=0
Proof. Split up the sequence into short exact sequences
0— Ni —)'.M'—) N{+1 —- 0

(No == Np,y = 0). Then we have A(M}) = AMN)) + A(N,,,). Now take the
alternating sum of the A(M}), and everything cancels out. m

TENSOR PRODUCT OF MODULES

Let M, N, P be three A-modules. A mapping f: M x N — P is said to be
A-bilinear if for each x € M the mapping y — f(x, y) of Ninto P is A-linear, and
for each y € N the mapping x +> f(x, y) of M into P is A-linear,

We shall construct an A-module T, called the rensor product of M and N,
with the property that the A-bilinear mappings M x N — P are in a natural
one-to-one correspondence with the A-linear mappings 7 — P, for all 4-
modules P. More precisely:

Proposition 2.12. Let M, N be A-modules. Then there exists a pair (T, g)
consisting of an A-module T and an A-bilinear mapping g: M x N — T, with
the following property:

Given any A-module P and any A-bilinear mapping f: M x N — P,
there exists a unique A-linear mapping f': T — P such that [ = [’ o g (in
other words, every bilinear function on M x N factors through T).

Moreover, if (T, g) and (T, g") are two pairs with this property, then there
exists a unique isomorphism j: T — T' such thatjo g = g'.

Proof. i) Uniqueness. Replacing (P, f) by (7", g') we get a unique j: T — T’
such that g’ = jo g. Interchanging the roles of Tand 7', we get j': T’ — T such
that g = j' o g’. Each of the compositions j = j', j’ o j must be the identity, and

therefore j is an isomorphism.

ii) Existence. Let C denote the free A-module A**¥. The elements of C
are formal linear combinations of elements of M x N with coefficients in 4,
i.e. they are expressions of the form 3 7., a,-(x;, y N € A, x, € M, y, € N).
Let D be the submodule of C generated by all elements of C of the follow-
ing types:
(x+x,p) =&y -,
(x:y + y') - (x’y) - (x’y’)
(ax,y) — a-(x, )
(x, ay) — a-(x, y).



TENSOR PRODUCT OF MODULES 25

Let T = C/D. For each basis element (x, y) of C, let x ® y denote its
image in 7. Then T is generated by the elements of the form x ® y, and from
our definitions we have

+x)YQy=xQy+xXQy, xQp +))=xQy+xQYy,
@)@y =xQ () = alx y)

Equivalently, the mapping g: M x N — T defined by g(x,y) = x ® y is
A-bilinear.

Any map fof M x N into an 4-module P extends by linearity to an A-
module homomorphism f: C — P. Suppose in particular that f is A-bilinear.
Then, from the definitions, / vanishes on all the generators of D, hence on the
whole of D, and therefore induces a well-defined 4-homomorphism f of
T = C/D into P such that f'(x ® y) = f(x,y). The mapping f’ is uniquely
defined by this condition, and therefore the pair (7, g) satisfy the conditions of
the proposition. =

Remarks. 1) The module T constructed above is called the tensor product of M
and ¥, and is denoted by M @, N, or just M @ N if there is no ambiguity
about the ring 4. Itis generated as an 4-module by the “products” x ® y. If
(X)ier> (¥5)se; are families of generators of M, N respectively, then the elements
x; @ y, generate M ® N. In particular, if M and N are finitely generated, so is
M ® N.

it) The notation x @ y is inherently ambiguous unless we specify the tensor
product to which it belongs. Let M’, N’ be submodules of M, N respectively,
and let xe M’ and ye N'. Then it can happen that x ® y as an element of
M ® N is zero whilst x ® y as an element of M ! ® N’ is non-zero. For

enlra . ZINT .11 m~drsla VT ~F T
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whilst N’ = N. Let x be the non-zero element of N and consider 2 ® x. Asan
element of M @ N, itiszerobecause2 @x =1 @ 2x =1 ® 0 = 0. Butas
an element of M’ @ N’ itis non-zero. See the example after (2.18).

However, there is the following result:

Corollary 2.13. Let x,€¢ M, y,€ N be such that 3 x, @y, = 0in M @ N.
Then there exist finitely generated submodules M, of M and N, of N such that
Sx, @y =0in My ® N,.
Proof. If 3 x, ® y, = 0in M @ N, then in the notation of the proof of (2.11)
we have 3 (x,, y,) € D, and therefore 3 (x,, y,) is a finite sum of generators of D.
Let M, be the submodule of M generated by the x, and all the elements of M
which occur as first coordinates in these generators of D, and define N, simi-
larly. Then X x; ® y, = 0 as an elementof M, ® N,. =

iii) We shall never again need to use the construction of the tensor product
given in (2.12), and the reader may safely forget it if he prefers. What is essential
to keep in mind is the defining property of the tensor product.
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iv) Instead of starting with bilinear mappings we could have started with
multilinear mappings f: M; x --- x M, — P defined in the same way (i.e.,
linear in each variable). Following through the proof of (2.12) we should end up
with a “multi-tensor product” T = M; ®- -+ ® M,, generated by all products
X, ®-+-® x,(x,e M,,1 € i < r). The details may safely be left to the reader;
the result corresponding to (2.12) is

Proposition 2.12*. Let M,, ..., M, be A-modules. Then there exists a pair
(T, g) consisting of an A-module T and an A-multilinear mapping g: M, x - --
x M, — T with the following property:
Given any A-module P and any A-multilinear mapping f: M, x - --
x M, — T, there exists a unique A-homomorphism f': T — P such that
Jeg =1
Moreover, if (T, g) and (T, g") are two pairs with this property, then there
exists a unique isomorphism j: T — T' such that jog = g'. =

There are various so-called “‘canonical isomorphisms”, some of which we
state here:

Proposition 2.14. Let M, N, P be A-modules. Then there exist unique
isomorphisms

VMOIN->-NRJIM
H(MOINNQRP-MQIINRQP)-M QINKQQP
i) MEN)QP>(MQOP)DN @ P)

v AQM—->M

such that, respectively,

AXQyr>yQx

D) *®y))Qz>xQ(YR®2)>xQy Qz
)Rz (xRz,y ®2)

d) a ® x> ax.

Proof. Ineach case the point is to show that the mappings so described are well
defined. The technique is to construct suitable bilinear or multilinear mappings,
and use the defining property (2.12) or (2.12*) to infer the existence of homo-
morphisms of tensor products. We shall prove half of ii) as an example of the
method, and leave the rest to the reader.

We shall construct homomorphisms

MOINRPLMINQPL(MQON)QP

suchthat f((x ®)) ®2) =x @y Qzandg(x @y ®2) = (x @ ) ® zfor
alxeM,yeN,zeP.

To construct f, fix the element ze P. The mapping (x,y)—>x @y Rz
(x€ M,y e N) is bilinear in x and y and therefore induces a homomorphism
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fiiM@N>MQ®N ® Psuch thatfy(x ® y) = x ® y ® z. Next, consider
the mapping (1, z) > f(t) of (M ® N) x Pinto M ® N ® P. This is bilinear
in ¢ and z and therefore induces a homomorphism

fMON)RP>MQONQP

such that f(x ®Y) ®2) = xRy R =

To construct g, consider the mapping (x, y,2) > (x @ y) @z of M x N
x Pinto (M ® N) ® P. Thisis linear in each variable and therefore induces a
homomorphism

EMINSP>(MRON)RQP

suchthatg(x Ry R 2)=(x ® ») ® =.
Clearly f o g and g o fare identity maps, hence fand g are isomorphisms. =

Exercise 2.15. Let A, B be rings, let M be an A-module, P a B-module and N an
(A, B)-bimodule (that is, N is simultaneously an A-module and a B-module and
the two structures are compatible in the sense that a(xb) = (ax)b forallac A,
beB,xeN). Then M ®, N is naturally a B-module, N @z P an A-module,
and we have

MR, N)RegPxM®R,(N Q;3P).

Let 1M —> M', g: N— N’ be homomorphisms of 4-modules. Define

w N - M' o N by hlv VY = ff+Y & of vY Tt 1e pacily r-hpr-lrnrl fhat h 1g
fhe i7E Ea) L 0 47 u] \A- ,} J \J'} N 6\,! AW AW v“ﬂ‘l Yol d A W W B

A-bilinear and therefore induces an 4-module homomorphism

ol

(' e AL £ AT _ AL & N7
J OB AT K iV 7 vk &Y Iy

such that
fRx®@y) =f(x)®g(y) (xeM, yeN).

Let f': M' > M" and g’: N' —> N" be homomorphisms of A4-modules.

Then clearly the homomorphisms (f'+f) ® (g'-g) and (f ® gV (f ® 2)
agree on all elements of the form x ® y in M ® N. Since these elements
generate M ® N, it follows that

fofNRE-=(®g)(fDg).

RESTRICTION AND EXTENSION OF SCALARS

Let f: A -~ B be a homomorphism of rings and let N be a B-module. Then N
has an 4-module structure defined as follows: if @ € 4 and x € N, then ax is de-
fined to be f(a)x. This A-module is said to be obtained from N by restriction
of scalars. In particular, f defines in this way an 4-module structure on B.
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Proposition 2.16. Suppose N is finitely generated as a B-module and that B is
finitely generated as an A-module. Then N is finitely generated as an A-module.

Proof. Let y,,...,y, generate N over B, and let x,,..., x, generate B as an
A-module. Then the mn products x,y, generate N over 4. =

Now let M be an 4-module. Since, as we have just seen, B can be regarded
as an A-module, we can form the 4-module M; = B ®, M. In fact M carries
a B-module structure such that (6’ ® x) = bb’ ® x for all b, b’ € B and all
x € M. The B-module My is said to be obtained from M by extension of scalars.

Proposition 2.17. If M is finitely generated as an A-module, then My is
finitely generated as a B-module.

Proof. Ifx,,...,x,generate M over A4, thenthe 1 ® x;generate Mzyover 5. =

EXACTNESS PROPERTIES OF THE TENSOR PRODUCT

Let /1 M x N — P be an A-bilinear mapping. For each x € M the mapping
y+> f(x,y) of N into P is A-linear, hence f gives rise to a mapping M —
Hom (¥, P) which is 4-linear because f'is linear in the variable x. Conversely
any A-homomorphism ¢: M — Hom, (N, P) defines a bilinear map, namely
(x, ¥) = #(x)(¥). Hence the set S of A-bilinear mappings M x N — P is in
natural one-to-one correspondence with Hom (M, Hom (¥, P)). On the other
hand § is in one-to-one correspondence with Hom (M & N, P), by the de-
fining property of the tensor product. Hence we have a canonical isomorphism

Hom (M ® N, P)  Hom (M, Hom (¥, P)). (1)
Proposition 2.18. Let
MLMSM 50 )

be an exact sequence of A-modules and homomorphisms, and let N be any
A-module. Then the sequence

M QNI MINLEL M QN0 3)
(where 1 denotes the identity mapping on N) is exact.

Progf. Let E denote the sequence (2), and let £ ® N denote the sequence (3).
Let P be any 4-module. Since (2) is exact, the sequence Hom (E, Hom (N, P))
is exact by (2.9); hence by (1) the sequence Hom (£ ® N, P) is exact. By (2.9)
again, it follows that E @ N is exact. =

Remarks. i) Let T(M) = M @ N and let U(P) = Hom (N, P). Then (1)
takes the form Hom (7(M), P) = Hom (M, U(P))for all 4-modules M and P.
In the language of abstract nonsense, the functor T'is the left adjoint of U, and U
is the right adjoint of 7. The proof of (2.18) shows that any functor which is a
left adjoint is right exact. Likewise any functor which is a right adjoint is left
exact. '
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ii) It is not in general true that, if M’ — M — M" is an exact sequence of
A-modules and homomorphisms, the sequence M’ Q N> M QN> M"Q N
obtained by tensoring with an arbitrary 4-module N is exact.

Example. Take 4 = Z and consider the exact sequence 0 — Z %> Z, where
-(x) = 2x for all xe Z. If we tensor with N = Z/2Z, the sequence 0 — Z ® I

181, 7 ® N is not exact, because forany x ® y € Z @ N we have
fFOIN®Y=2xQy=x@2Ly=xQ0=0,
so that f ® 1 is the zero mapping, whereas Z @ N # 0.

The functor Ty: M +—> M ®, N on the category of A-modules and homo-
morphisms is therefore not in general exact. If 7y is exact, that is to say if
tensoring with N transforms all exact sequences into exact sequences, then N is
said to be a flat A-module.

Proposition 2.19. The following are equivalent, for an A~module N:
i) N is flat.

DIO0—->M —>M-> M —0 is any exact sequence of A-modules, the

tensored sequence 0 > M’ Q N—->M Q N—> M" @ N— 0 is exact.

iii) If f: M’ — M is injective, thenf @ 1: M’ @ N —> M @ N is injective.

i) If f: M' — M is injective and M, M’ are finitely generated, then

fR1: M ® N> M @ N is injective.

Proof. 1) <= ii) by splitting up a long exact sequence into short exact sequences.

ii) <= iii) by (2.18).

iii)- = iv): clear.

iv) = iii). Letf: M’ - M beinjectiveandletu = 3 x; ® y;e Ker (f ® 1),
so that > f(x) @ ¥, = 0in M @ N. Let M; be the submodule of M’ generated
by the x; and let u, denote 3 x; ® y, as an element of My ® N. By (2.14) there
exists a finitely generated submodule M, of M containing f(M;) and such that
Sf(x) ® y; = 0as anelement of My @ N. If f3: Mg — M, is the restriction

of f, this means that (f, ® (u,) = 0. Since M, and M; are finitely generated,
£, ® 1 is injective and therefore u, = 0, hencew = 0. =

Exercise 2.20. If f: A — B is a ring homomorphism and M is aflat A-module,
then My = B ®, M is a flar B-module. (Use the canonical isomorphisms
(2.14), (2.15).) .

ALGEBRAS

Let f: A — B be a ring homomorphism. If 2 € 4 and b € B, define a product
ab = f(a)b.
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This definition of scalar multiplication makes the ring B into an 4-module (it is
a particular example of restriction of scalars). Thus B has an 4-module structure
as well as a ring structure, and these two structures are compatible in a sense
which the reader will be able to formulate for himself. The ring B, equipped with
this A-module structure, is said to be an A-algebra. Thus an A-algebra is, by
definition, a ring B together with a ring homomeorphism f: 4 — B.

Remarks. 1) In particular, if 4 is a field K (and B 5 0) then f is injective by
(1.2) and therefore K can be canonically identified with its image in B. Thus a
K-algebra (X a field) is effectively a ring containing X as a subring.

ii) Let A be any ring. Since A4 has an identity element there is a unique
homomorphism of the ring of integers Z into A4, namely n+> n.1. Thus every
ring is automatically a Z-algebra.

Let f:4 —> B,g: A— C be two ring homomorphisms. An A-algebra
homomorphism h: B— C is a ring homomorphism which is also an 4-module
homomorphism. The reader should verify that 4 is an A-algebra homomor-
phism if and only if Ao f = g.

A ring homomorphism f: 4 — B is finite, and B is a finite A-algebra, if B
is finitely generated as an 4-module. The homomorphism f'is of finite type, and
Bis a finitely-generated A-algebra, if there exists a finite set of elements x;, ... x,
in B such that every element of B can be written as a polynomial in x,,..., x,
with coefficients in f(A4); or equivalently if there is an 4-algebra homomorphism
from a polynomial ring A[z,, ..., t,] onto B.

A ring A is said to be finitely generated if it is finitely generated as a Z-
algebra. This means that there exist finitely many elements xl, fees Xn in A4 such
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integer coefficients.

TENSOR PRODUCT OF ALGEBRAS

Let B, C be two A-algebras, f: 4 — B, g: A — C the corresponding homo-
morphisms. Since B and C are 4-modules we may form their tensor product
D = B ®, C, which is an 4A-module. We shall now define a multiplication
on D.

Consider the mapping B x C x B x C — D defined by

(b,e, b, )+ bb' ® cc'.

This is A-linear in each factor and therefore, by (2.12*), induces an 4-module
homomorphism

BRCYBRXIC—> D,
hence by (2.14) an A-module homomorphism
D®D—->D
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and this in turn by (2.11) corresponds to an A4-bilinear mapping
u:D x D—> D
which is such that
Wb e, b ®c)=bb @ cc'.
Of course, we could have written down this formula directly, but without some

such argument as we have given there would be no guarantee that u was well-

defined.
We have therefore defined a multiplication on the tensor product D =

B ®, C: for elements of the form & ® ‘c it is given by
G RN ®c) = bb ® cc,
and in general by
(2 b ® a))( 2 6 ® <)) = > (bib; ® cc)).
i ¥ teS

The reader should check that with this multiplication D is a commutative ring,
with identity element 1 ® 1. Furthermore, D is an A-algebra: the mapping
a > f(a) ® g(a) is a ring homomorphism 4 — D.

In fact there is a commutative diagram of ring homomorphisms

B\

I

// N
{ ;L

AN /!
e\c/u

in which u, for example, is defined by u{b) = b ® 1.

A

EXERCISES
1. Show that (Z/mZ) ®.(Z/nZ) = 0 if m, n are coprime.

2. Let A be a ring, a an ideal, M an A-module. Show that (4/a) ®, M is isomor-
phic to M/aM.
[Tensor the exact sequence 0 — @ — 4 — A/a — 0 with M.]

3. Let 4 be a local ring, M and N finitely generated 4-modules. Prove that if
M®N=0,then M=00rN =0
[Let m be the maximal ideal, k¥ = A/m the residue field. Let My = k &4 M =
M/mM by Exercise 2. By Nakayama’s lemma, M, = 0 = M = 0. But
M@AN30=(M®AN);¢=O=>ME ®ka =0=>Mk=00l'Nu=0,
‘since My, N, are vector spaces over a field.]

4. Let M, (i € I) be any family of 4-modules, and let M be their direct sum. Prove
that M is flat < each M, is flat,

“a
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5.

10.

11.

12.

13.

14.

MODULES

Let A[x] be the ring of polynomials in one indeterminate over a ring 4. Prove
that A[x] is a flat A-algebra. [Use Exercise 4.]

. For any A4-module, let M[x] denote the set of all polynomials in x with co-

efficients in M, that is to say expressions of the form
me + myx + -+ mx" (m e M).

Defining the product of an element of 4[x] and an element of M [x] i:r’l"'the obvious
way, show that M[x] is an A[x]-module.
Show that M[x] = Alx] ®. M.

Let » be a prime ideal in 4. Show that p[x] is a2 prime ideal in A[x]. Ifmis a
maximal ideal in A4, is m[x] a maximal ideal in A[x]?

i) If M and N are flat A-modules, then so is M ®, N.
ii) If Bis a flat A-algebra and N is a flat B-module, then N is flat as an 4-module.

Let0 - M’ - M — M” — 0 be an exact sequence of A-modules. If M’ and
M?” are finitely generated, then so is M.

Let A be aring, a an ideal contained in the Jacobson radical of 4; let M be an
A-module and N a finitely generated A-module, and let #: M — N be 2 homo-
morphism. If the induced homomorphism M/aM — N/aN is surjective, then
u is surjective.

Let Abearing # 0. Showthat A & 4" = m = n.
[Let m be a maximal ideal of 4 and let ¢: 4™ — A" be an isomorphism. Then
1 ®¢:(4/m) @ 4™ — (4/m) @ A" is an isomorphism between vector spaces
of dimensions m and n over the field £ = 4A/m. Hence m = n.] (Cf. Chapter 3,
Exercise 15.)

If $: A™ — A" is surjective, then m > n,

If ¢: A™ — A" is injective, is it always the case that m < n?

Let M be a finitely generated A-module and ¢: M — A" a surjective homo-
morphism. Show that Ker ($) is finitely generated.

[Let e1,...,e. be a basis of 4" and choose u,€ M such that ¢(u) = ¢
(1 € i < n). Show that M is the direct sum of Ker (¢) and the submodule
generated by uy, ..., Un.]

Let f: A — Bbe aring homomorphism, and let N be a B-module. Regarding N
as an A-module by restriction of scalars, form the B-module N; = B @, N.
Show that the homomorphism g: N — Nz which maps y to 1 ® y is injective
and that g(N) is a direct summand of Np.

[Define p: Ny —~ Nby p(b ® y) = by, and show that N; = Im (g) @ Ker (p).]

A ]

Direct limits
A partially ordered set 7 is said to be a directed set if for each pair i, j in 7/ there
exists kelsuchthati < kandj < k.

Let 4 be aring, let I be a directed set and let (M,),¢; be a family of 4-modules
indexed by'l. For each pair 7,7 in I such that i < j, let u;;: M; — M, be an
A-homomorphism, and suppose that the following axioms are satisfied:
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16.

17.

18.

19.

20.
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(1) py is the identity mapping of M|, for all i e [;
(2) puc = pge o s Wheneveri € j < k.
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M = (M, u;;) over the directed set I.

We shall construct an A-module M called the direct limit of the direct
system M. Let C be the direct sum of the M, and identify each module M, with
its canonical image in C. Let D be the submodule of C generated by all elements
of the form x; — py(x;) wherei € jand x,e M;. Let M = C/D,let u: C— M
be the projection and let u, be the restriction of x to M,.

The module M, or more correctly the pair consisting of M and the family of
homomorphisms p,: M; — M, is called the direct limit of the direct system M,
and is written lim M,. From the construction it is clear that u = w0,
whenever i < j.

rm a direct system

In the situation of Exercise 14, show that every element of M can be written in
the form u(x) for some i € [ and some x, € M,.

Show also that if u(x,) = O then there exists j = i such that w{x) = 0
in M,
Show that the direct limit is characterized (up to isomorphism) by the following
property. Let N be an A-module and for each ie 7 let «;: M, — N be an 4-
module homomorphism such that ; = «; o u;; wheneveri < j. Then there exists
a unique homomorphism «: M — Nsuchthat ¢ = copforallie [.

Let (M,)ie; be a family of submodules of an 4A-module, such that for each pair of
indices f,j in I there exists k € I such that M, + M, < M,. Definei < jto
mean M; € M, and let u;;: M; — M, be the embedding of M, in M,. Show that

l_ig;M.=ZM:=UM‘.

In particular, any 4-module is the direct limit of its finitely generated sub-
modules.

Let M = (M, u)), N = (N, vyy) be direct systems of A-modules over the same
directed set. Let M, N be the direct limits and p;: M; — M, v;: N, -+ N the
associated homomorphisms.

A homomorphism ¢: M — N is by definition a family of 4A-module homo-
morphisms ¢,: M, — N, such that ¢; o u,; = v;; o ¢, whenever i < j. Show that
¢ defines a unique homomorphism ¢ = Er_n) ¢ M — N such that dopy, =
vod¢ foralliel

A sequence of direct systems and homomorphisms

M—->N-—->P
is exact if the corresponding sequence of modules and module homomorphisms
is exact for each i€ I. Show that the sequence M N — P of direct limits is
then exact. [Use Exercise 15.]
Tensor products commute with direct limits

Keeping the same notation as in Exercise 14, let N be any A4-module. Then
(M, ® N, uy; ® 1)is a direct system; let P = l1_m> (M; ® N) be its direct limit.
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21,

25.
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For each i € I we have a homomorphism u; ® 1: M, @ N— M & N, hence by
Exercise 16 a homomorphism ¢: P — M @ N. Show that ¢ is an isomorphism,
so that

lim (M, ® N) g (lim M) ® N.

[For each ic ], let g,: M, x N — M, ® N be the canonical bilinear mapping.
Passing to the limit we obtain a mapping g: M x N — P. Show that g is
A-bilinear and hence define a homomorphism ¢: M ® N — P. Verify that
¢ o ¢ and ¢ - ¢ are identity mappings.]

Let (A):ez be a family of rings indexed by a directed set I, and for each pair i < j
in I let e;: A, — A; be a ring homomorphism, satisfying conditions (1) and (2)
of Exercise 14. Regarding each A4, as a Z-module we can then form the direct
limit 4 = lg A;. Show that A inherits a ring structure from the 4, so that the

mappings 4, — A are ring homomorphisms. The ring A is the direct limit of the
system (4, ).

If A = 0 prove that 4, = 0 for some i € I. [Remember that all rings have
identity elements!]

. Let (4,, a;) be a direct system of rings and let N, be the nilradical of 4,. Show

that lin R, is the nilradical of 1i_m>A,.
If each A, is an integral domain, then l_u_r)l A, is an integral domain.

. Let (B:)rea be a family of A-algebras. For each finite subset of A let B; denote

the tensor product (over A4) of the B, for AeJ. If J' is another finite subset of A
and J = J', there is a canonical A4-algebra homomorphism B; — B;.. Let B

denote the direct limit of the rings B; as J runs through all finite subsets of A.

The ring B has a natural A-algebra structure for which the homomorphisms
B; — B are A-algebra homomorphisms. The A4-algebra B is the tensor product
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Flatness and Tor
In these Exercises it will be assumed that the reader is familiar with the definition
and basic properties of the Tor functor.

. If M is an A-module, the following are equivalent:

i) M is flat;

i) Tord (M, N} = Ofor all n > 0 and all 4-modules N;
iii) Torf (M, N) = 0 for all A-modules ¥.
[To show that (i) = (ii), take a free resolution of ¥ and tensor it with M. Since
M is flat, the resulting sequence is exact and therefore its homology groups,
which are the Tor? (M, N), are zerofor n > 0. To show that (iii) = (i), let
00— N'— N—> N"— 0 be an exact sequence. Then, from the Tor exact
sequence,

Tory M NV > M OIN > MOIN--MIN -0
is exact, Since Tor; (M, N7) = 0 it follows that M is flat.]

Let 0 > N'— N > N” -~ 0 be an exact sequence, with N” flat. Then N’ is
flat < N is flat. [Use Exercise 24 and the Tor exact sequence.]
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Let N be an A-module. Then N is flat « Tor, (4/a, N) = 0 for all finitely
generated ideals a in A.

[Show first that Vis fiat if Tor; (M, N) = 0§ for all finitely generated A-moduies
M, by using (2.19). If M is finitely generated, let x,, . . ., x, be a set of generators
of M, and let M, be the submodule generated by x,,..., x.. By considering
the successive quotients M,/M,_, and using Exercise 25, deduce that N is fiat
if Tor, (M, N) = O for all cyclic A-modules M, i.e., all M generated by a single
element, and therefore of the form A/a for some ideal a. Finally use (2.19) again
to reduce to the case where a is a finitely generated ideal.]

A ring A is absolutely flat if every A-module is flat. Prove that the following are
equivalent:
i) A is absolutely flat,
it) Every principal ideal is idempotent.
iii) Every finitely generated ideal is a direct summand of A.
[i) = ii). Let x € 4. Then 4/(x) is a flat A-module, hence in the diagram

() ® A5 () ® 4/(x)
v e
4 — Al

the mapping « is injective. Hence Im (8) = 0, hence (x) = (x2). ii) = iii). Let
x € A. Then x = ax? for some a € A, hence e = ax is idempotent and we have
() = (x). Nowif e, fare idempotents, then (e, /) = (e + f — ef). Hence every
finitely generated ideal is principal, and generated by an idempotent e, henceisa

direct summand because 4 = (¢) @ (1 — ¢). iii) = i). Use the criterion of
Fyarnica 26 1
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A Boolean ring is absolutely flat. The ring of Chapter 1, Exercise 7 is absolutely
fiat. Every homomorphic image of an absolutely flat ring is absolutely flat. If a
local ring is absolutely flat, then it is a field.

If A is absolutely flat, every non-unit in A4 is a zero-divisor.



Rings and Modules of Fractions

The formation of rings of fractions and the associated process of localization
are perhaps the most important technical tools in commutative algebra. They
correspond in the algebro-geometric picture to concentrating attention on an
open set or near a point, and the importance of these notions should be self-
evident. This chapter gives the definitions and simple properties of the formation
of fractions.

The procedure by which one constructs the rational field Q from the ring
of integers Z (and embeds Z in Q) extends easily to any integral domain 4 and
produces the field of fractions of A. The construction consists in taking all
ordered pairs (a, s) where @, s€ 4 and s # 0, and setting up an equivalence
relation between such pairs:

lnn .
relation is transmve mvolves cancchng, ie. the fact that A has no zero-divisor
# 0. However, it can be generalized as follows:
Let A be any ring. A multiplicatively closed subset of A is a subset S of 4
such that 1 € S and S'is closed under multiplication: in other words S is a sub-

semigroup of the multiplicative semigroup of 4. Definearelation = on 4 x S
as follows:

(@, s5) = (b, t) = (ar — bs)u = 0 for some ue S.

Clearly this relation is reflexive and symmetric. To show that it is transitive,
suppose (4, s) = (b, t) and (b, ) = (c, u). Then there exist v, w in S such that
(@t = bs)v = 0 and (bu — ct)w = 0. Eliminate b from these two equations
and we have (au — cs)tow = 0. Since S is closed under multiplication, we have
tow € S, hence (@, s) = (¢, #). Thus we have an equivalence relation. Let a/fs
denote the equivalence class of (g, 5), and let $ ~*A4 denote the set of equivalence
classes. We put a ring structure on S -4 by defining addition and multiplication
of these “fractions” a/s in the same way as in elementary algebra: that is,

(a/s) + (b/t) = (at + bs)/st,
(a/s)(b/t) = ab/st.

36



RINGS AND MODULES OF FRACTIONS 37

Exercise. Verify that these definitions are independent of the choices of rep-
resentatives (a, s) and (b, t), and that S ~A4 satisfies the axioms of a com-
mutative ring with identity.

We also have a ring homomorphism f: 4 ~ §~'4 defined by f(x) = x/1.
This is not in general injective.

Remark. If 4 is an integral domain and $ = 4 — {0}, then S-24 is the field
of fractions of A.

The ring S =14 is called the ring of fractions of A with respect to S. It hasa
universal property:

Proposition 3.1. Let g: A — B be a ring homomorphism such that g(s)
is a unit in B for all s S. Then there exists a unique ring homomorphism
h: S 'A—> Bsuchthatg = hof.

Proof. i) Uniqueness. If h satisfies the conditions, then h(a/1) = hf(a) = g(a)
forall ae 4; hence, if s€ S,

h(1/s) = h((s/1)7*) = A(s/1)~* = g(s)~*

and therefore A(a/s) = h(a/1)-h(1/s) = g(@)g(s)~*, so that A is uniquely
determined by g.

ii) Existence. Let h(afs) = g(a)g(s)~*. Then h will clearly be a ring homo-
morphism provided that it is well-defined. Suppose then that a/s = a’/s’; then
there exists ¢ € S such that (as’ — a’s)t = 0, hence

(gl@)g(s) — g(@)g(s))s(t) = O;
now g() is a unit in B, hence g(a)g(s) ™! = g(aHg(s) . =

The ring S =24 and the homomorphism f: 4 — S~!4 have the following
properties:
1) se S = f(s)is aunitin $~14;
2) f(a) = 0 = as = O for some s€ S}
3) Every element of S !4 is of the form f(a)f(s) ! for some a € A and some
se S.

Conversely, these three conditions determine the ring S~!4 up to iso-
morphism. Precisely:

Corollary 3.2. Ifg: A — B is a ring homomorphism such that
1) s€8 = g(s) is a unit in B;
it) g(a) = 0 = as = 0 for some se S;
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iii) Every element of B is of the form g(a)g(s)~'. then there is a unigue
isomorphism h: S A — B such that g = ho f.

Proof. By (3.1) we have to show that h;: S~'4 — B, defined by

h(als) = g(@)g(s)™*
(this definition uses i)) is an isomorphism. By iii), k is surjective. To show & is
injective, look at the kernel of %: if h(a/s) = 0, then g(a) = 0, hence by ii) we
have at = 0 for some ¢t € S, hence (g, s) = (0, 1),ie.,a/s =0inS~%4. =

Examples, 1) Let p be a prime ideal of 4. Then S = A4 — p is multiplicatively
closed (in fact 4 — p is multiplicatively closed < p is prime). We write 4y for
S =14 in this case. The elements a/s with a € p form an ideal min A,. If b/t ¢ m,
then b ¢ p, hence b € S and therefore b/t is a unit in Ap. It follows that if a is an
ideal in 4y and a & m, then a contains a unit and is therefore the whole ring.
Hence m is the only maximal ideal in A4y; in other words, A4y is a local ring.

The process of passing from 4 to Ay is called localization at p.

2) S-'4 is the zero ring < 0 S.

3) LetfeAandlet § = {f"}.50. We write 4, for S~14 in this case.

4) Let a be any ideal in 4, and let S = 1 + a = set of all 1 + x where
x € a. Clearly S is multiplicatively closed.

5) Special cases of 1) and 3):

iy A =2,9 = (p), p a prime number; Ay = set of all rational numbers
m/n where n is prime to p; if f€ Z and f # 0, then A, is the set of all rational
numbers whose denominator is a power of f.

ii) A = k[ty,..-, t,], where k is a field and the ¢, are independent indeter-
minates, b a prime ideal in 4. Then Ay is the ring of all rational functions f/g,
where g ¢ p. If Vis the variety defined by the ideal p, that is to say the set of all
x = (x;,..., X,) € k" such that f(x) = 0 whenever fep, then (provided k is
infinite) Ay can be identified with the ring of all rational functions on k" which
are defined at almost all points of V; it is the local ring of k* along the variety V.
This is the prototype of the local rings which arise in algebraic geometry.

The construction of S 14 can be carried through with an 4A-module M in

place of the ring 4. Define a relation = on M x S as follows:
(m, s) = (m', s") < 3t € S such that t(sm’ — s'm) = 0.

As before, this is an equivalence relation. Let m/s denote the equivalence class
of the pair (m, s), let S ~'M denote the set of such fractions, and make S ~*M
into an S ~‘4-module with the obvious definitions of addition and scalar
multiplication. As in Examples 1) and 3) above, we write M, instead of §~M
when S = 4 -~ p (b prime) and M, when S = {f"},.,0.

Let u: M — N be an A-module homomorphism. Then it gives rise to an
S -*4-module homomorphism S ~!u: S ~!M —> S !N, namely S ~'u maps m/s
to u(m)/s. We have S~ }(vou) = (S~ '0) o (S~ u).
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Propaosition 3.3. The operation S~' is exact, i.e., if M’ Lo M2 MY i

exact at M, then S ~*M’ Z=Ls -2 %> S-1Mf" is exact at S ~*M.
Proof. Wehavegof = 0,hence S~!go S~ = §1(0) = 0, hence Im (S -%f)
< Ker (S ~*g). To prove the reverse inclusion, let mfs e Ker (S ~1g), then
g(m)/s = 0in S ~*M", hence there exists ¢ € S such that 1g(m) = 0in M”". But
tg(m) = g(tm) since g is an 4-module homomorphism, hence tm € Ker (g) =
Im (f) and therefore tm = f(m’) for some m’ € M’. Hence in S =M we have
mfs = f(m)/st = (S~ Y)(m’'[st) e Im (S ~f). Hence Ker (S ~'g) € Im (S ~¥).
|

In particular, it follows from (3.3) that if M" is a submodule of M, the map-
ping S ~'M' — S~*M is injective and therefore S~ !M’ can be regarded as a
submodule of S ~'M. With this convention,

Corollary 3.4. Formation of fractions commutes with formation of finite
sums, finite intersections and quotients. Precisely, if N, P are submodules
of an A-module M, then

DSYN+P)=S"YN) + S-Y(P)

iy S"(NNP)= S"}(Nyn S-YP)

iii) the S ~1A-modules S~*(M|N) and (S ~*M)/(S ~*N) are isomorphic.
Proof. i) follows readily from the definitions and ii) is easy to verify:
if y/s = zft(yeN,zeP,s,teS) then u(ty ~ sz) = 0 for some u € S, hence
w = uty = usz € NN Pand therefore y/s = w/stu € S~}(N N P). Consequently
SINNS-P < SN N P), and the reverse inclusion is obvious.

iii) Apply S ~! to the exact sequence0 > N> M > M/N—>0. =

Proposition 3.5. Let M be an A-module. Then the S ~*A modules S ~*M and

S-*4 ®, M are isomorphic; more precisely, there exists a unique iso-

morphism f: S 4 &, M — S ~*M for which

f((a)s) @ m) = am/sforallac A,me M,seS. 4))
Proof. The mapping S~ '4 x M — S~'M defined by
(a/s, m) — am/s
is A-bilinear, and therefore by the universal property (2.12) of the tensor product
induces an A-homomorphism
[:SM4AQ,M—>S M

satisfying (1). Clearly f is surjective, and is uniquely defined by (1).

Let 5, (a/s) ® m, be any element of S*A Q@M. If s =T[s€S,
f = HI#I Sy we have

a at l 1

Z-;: @ m; = 12-1-5 R m = Z;@a,t,m = ;@Za,t,m,

1 5
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so that every element of S 4 ® M is of the form (l/s) ® m. Suppose that
f((1/s) ® m) = 0. Then m/s = 0, hence tm = 0 for some ¢ € S, and therefore

i

1 ! 1 1
S@Mm==@m==Qm=_80=0

Hence f'is injective and therefore an isomorphism. =

Corollary 3.6. S~'A is a flat A-module.
Proof. (3.3),(3.5). m

Proposition 3.7. If M, N are A-modules, there is a unigue isomorphism of
S~Y4-modules f: S M Rs-1, SN > S~ M ®, N)such that

f((m)s) & (n/t)) = (m & n)/st.
In particular, if v is any prime ideal, then
My @ay Ny = (M @4 N)y
as Ay-modules.
Proof. Use (3.5) and the canonical isomorphisms of Chapter 2. =
LOCAL PROPERTIES

A property P of a ring 4 (or of an 4-module M) is said to be a local property
if the following is true:
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following propositions give examples of local properties

Proposition 3.8. Let M be an A-module. Then the following are equivalent

) M=0;
ii) My = O for all prime ideals p of A;
iily Mwm = 0 for all maximal ideals m of A.

Proof. Clearly i) = ii) = iil). Suppose iii) satisfied and M # 0. Let x be a
non-zero element of M, and let a = Ann (x); a is an ideal # (1), hence is
contained in a maximal ideal m by (1.4). Consider x/1 € My. Since My = O we
have x/1 = 0, hence x is killed by some element of 4 — m; but this is impossible
since Ann(x) € m. =

Proposition 3.9. Let ¢: M — N be an A-module homomorphism. Then the
following are equivalent: .
i) ¢ is injective;
- ii) ép: My — Ny is injective for each prime ideal p;
111) dm: Mm — Nu Is injective for each maximal ideal m.

Similarly with “injective” replaced by ‘“‘surjective” rhréughout.
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Proof. i) =1i). 0 > M — N is exact, hence 0 - My — N, is exact, ie.,
@y is injective.

i) = iii) because a maximal ideal is prime.

iii) = 1). Let M’ = Ker (¢), then the sequence 0 > M' - M — N is
exact, hence 0 - M'y, — My — Ny is exact by (3.3) and therefore M’y =
Ker (¢w) = 0 since én is injective. Hence M’ = 0 by (3.8), hence ¢ is injective.

For the other part of the proposition, just reverse all the arrows. =

Flatness is a local property:

Praposition 3.10. For any A-module M, the following statements are

equivalent :

i) M is a flat A-module:

it) My is a flat Ag-module for each prime ideal p;

iii) My is a flat An-module for each maximal ideal m.
Proof. i) = ii) by (3.5) and (2.20).

if) = iii) O.K.

iify = i). If N— P is a homomorphism of A4-modules, and m is any
maximal ideal of A4, then

N — P injective = Ny — Pn injective, by (3.9)
=> Nu Qay Mm —> Pn @apy Mm injective, by (2.19)
= (N @4 M)n — (P @4 M) injective, by (3.7)
> N ®, M - P &, M injective, by (3.9).

Hence M is flat by (2.19). m

EXTENDED AND CONTRACTED IDEALS IN RINGS OF FRACTIONS

Let A be a ring, S a multiplicatively closed subset of 4 and f: 4 — S~4 the
natural homomorphism, defined by f(@) = a/1. Let C be the set of contracted
ideals in 4, and let E be the set of extended ideals in S ~*4 (cf. (1.17)). I aisan
ideal in A, its extension a® in S ~14 is S ~a (for any y € of is of the form 3, ayfs,,
where g, € a and s, € S; bring this fraction to a common denominator).

Propasition 3.11. 1) Every ideal in S~*A is an extended ideal.

i) If a is an ideal in A, then a®® = J,es (a:5). Hence o = (1) if and only
if a meets S.

iii) a € C < no element of S is a zero-divisor in Afa.

iv) The prime ideals of S ~'A are in one-to-one correspondence (¥ «> S~'p)
with the prime ideals of A which don’t meet S.
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v) The operation S~ commutes with formation of finite sums, products,
intersections and radicals.

Proof. i) Let b be an ideal in S~4, and let x/seb. Then x/1 €b, hence
x € b° and therefore x/s € b°®. Since b 2 b°* in any case (1.17), it follows that
B — BCB.

ii) xea®™ = (§'a) < x/1 = a/s for some aca,s€S <= (xs — a)} =0
forsome f € S < xste a < x € |, (ars).

iii) aeC<0a* € a< (sxca for some se6S=>x€a)=no s€S5 is a
zero-divisor in A/a.

iv) If q is a prime ideal in S ~'4, then q° is a prime ideal in 4 (this much is
true for any ring homomorphism). Conversely, if p is a prime ideal in 4, then
A/fp is an integral domain; if S is the image of S in A/p, we have S ~14/S ~p &
S -1(A/p) which is either O or else is contained in the field of fractions of 4/p and
is therefore an integral domain, and therefore S ~1p is either prime or is the unit
ideal; by i) the latter possibility occurs if and only if p meets S.

v) For sums and products, this follows from (1.18); for intersections,
from (3.4). As to radicals, we have S ~!r(a) < r(S ~'a) from (1.18), and the

proof of the reverse inclusion is a routine verification which we leave to the
reader. ®

Remarks. 1) If a, b are ideals of A4, the formula
S~a:b) = (S~ 'a:5')
is true provided the ideal b is finitely generated: see (3.15).

2) The proof in (1.8) that if fe 4 is not nilpotent there is a prime ideal
of 4 which does not contain f ¢can be expressed more concisely in the language
of rings of fractions. Since the set S = (™). does not contain O, the ring
§-14 = A, is not the zero ring and therefore by (1.3) has a maximal ideal,

whose contraction in A4 is a prime ideal p which does not meet S by (3.11);
hence f ¢ p.

Corollary 3.12. IfRis the nilradical of A, the nilradical of S ~1Ais S~ 'N. m

Corollary 3.13. If p is a prime ideal of A, the prime ideals of the local ring
Ap are in one-to-one correspondence with the prime ideals of A contained in p.
Proof. Take S =A — pin 3.1 (iv). =

Remark. Thus the passage from A4 to Ay cuts out all prime ideals except those
contained in p. In the other direction, the passage from 4 to A4/p cuts out all
prime ideals except those containing . Hence if b, q are prime ideals such that
p 2 g, then by localizing with respect to p and taking the quotient mod q
(in either order: these two operations commute, by (3.4)), we restrict our atten-
tion to those prime ideals which lie between p and ¢. In particular, if p = q we
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end up with a field, called the residue field at p, which can be obtained either as
the field of fractions of the integral domain A/p or as the residue field of the
local ring Ap.

Proposition 3.14. Let M be a finitely generated A-module, S a multiplicatively
closed subset of A. Then S ~'(Ann (M)) = Ann (S ~M).

Proof. If this is true for two 4-modules, M, N, it is true for M + N:

S-1(Ann (M + N)) = S-*(Ann (M) N Ann (N)) by 2.2)
= S~!(Ann (M)) N S~*(Ann (N)) by (3.4)
= Ann (S ~*M) N Ann (S ~'N) by hypothesis
= Ann(S™!'M + S!N) = Amn (S-YM + N)).

Hence it is enough to prove (3.14) for M generated by a single element: then
M ~ Afa (as A-module), where a = Ann (M); S 'M = (S~14)/(S ~'a) by
(3.4), so that Ann (S~*M) = S~la = S-!(Ann (M)). =

Corollary 3.15, If N, P are submodules of an A-module M and if P is
Sinitely generated, then S ~Y(N:P) = (§~'N:S§S"P).
Proof. (N:P) = Ann ((N + P)/N)by (2.2); now apply (3.14). =

Proposition 3.16. Let A — B be a ring homomeorphism and let p be a prime
ideal of A. Then p is the contraction of a prime ideal of B if and only if
pee = p.
Proof. If p = q° then p* = p by (1.17). Conversely, if p** = p, let S be the
image of A — p in B. Then p® does not meet S, therefore by (3.11) its extension
inS '1B is a proper ideal and hence is contained in a maximal ideal m of S ~B.

}" ~ thn Amctmnatioe ~f 1ae D thoaem & 20 wmmasmssanzs & = Laf oom A o
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Hence g° = p. m

EXERCISES

1. Let S be a multiplicatively closed subset of a ring A, and let M be a finitely
generated 4-module. Prove that §~!M = 0 if and only if there exists s € § such
that sM = 0.

2. Letabeanidealof aring 4,andlet S = 1 + a. Show that § ~'a is contained
in the Jacobson radical of §?
Use this result and Nakayama’s lemma to give a proof of (2.5) which does
not depend on determinants. [If M = aM, then S~IM = (S~ a)(§ M),
hence by Nakayama we have $~*M = 0. Now use Exercise 1.]

3. Let A be a ring, let S and T be two multiplicatively closed subsets of A4, and let
U be the image of Tin S 1 4. Show that the rings (ST)~14 and U~ (S ~*A4) are
" isomorphic.
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Let f: A — B be a homomorphism of rings and let S be a multiplicatively
closed subset of 4. Let T = £(S), Show that §-'B and T-!B are isomorphic

PUPIE ol

1 4 . 1__1__
as o “A-INUJUG.

. Let A be a ring. Suppose that, for each prime ideal p, the local ring Ap has no

nilpotent element # 0. Show that 4 has no nilpotent element # 0. If each Ay
is an integral domain, is 4 necessarily an integral domain?

. Let 4 be aring # 0 and let Z be the set of all multiplicatively closed subsets S

of 4 such that 0¢ S. Show that £ has maximal elements, and that SeZX is
maximal if and only if 4 — S is a minimal prime ideal of 4.

A multiplicatively closed subset S of a ring A4 is said to be saturated if

xyeS<«xeSand yeS.

Prove that

i) S is saturated <= A — S is a union of prime ideals.

ii) If S is any multiplicatively closed subset of A, there is a unique smallest
saturated multiplicatively closed subset § containing S, and that 3 is the
complement in 4 of the union of the prime ideals which do not meet S.
(3 is called the saturation of S.)

If $ = 1 + a, where a is an ideal of 4, find §.

Let S, T be multiplicatively closed subsets of 4, suchthat S € 7. Let¢: 8§14
— T-14 be the homomorphism which maps each a/s € S ~*4 to a/s considered
as an element of 7~ '4. Show that the following statements are equivalent:
i) ¢ is bijective.
ii) Foreach te T, ¢t/1 is a unit in § 4.
iii) For each ¢ € T there exists x € A4 such that xz € §.
iv) T is contained in the saturation of § (Exercise 7).
v) Every prime ideal which meets 7 also meets S.

The set S, of all non-zero-divisors in A4 is a saturated multiplicatively closed

subset of 4. Hence the set D of zero-divisors in A is a union of prime ideals (see

Chapter 1, Exercise 14). Show that every minimal prime ideal of A is contained

in D. [Use Exercise 6.] :
The ring S5 ' A is called the total ring of fractions of A. Prove that

i) S, is the largest multiplicatively clpsed subset of A4 for which the homo-

morphism 4 — S5 A4 is injective.

i) Every element in Sq 14 is either a zero-divisor or a unit.

iif) Every ring in which every non-unit is a zero-divisor is equal to its total ring
of fractions (i.e., A — S5 *A is bijective).

Let 4 be a ring.
i) If A is absolutely flat (Chapter 2, Exercise 27) and § is any multiplicatively
closed subset of 4, then S A4 is absolutely flat.
ii) A is absolutely flat <> Am is a field for each maximal ideal m.

Let A be a ring. Prove that the following are equivalent:
i) A/ is absolutely flat (I being the nilradical of A).
ii) Every prime ideal of A is maximal.
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iii) Spec (4)is a T)-space (i.e., every subset consisting of a s'ngle point is closed).
iv) Spec (A) is Hausdorff.

.. ) “ o
If these conditions are satisfied, show t

disconnected (i.e. the only connected subset
single point).
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Let 4 be an integral domain and M an 4-module. An element x € M is a torsion

element of M if Ann (x) # 0, thatis if x is killed by some non-zero element of A.

Show that the torsion elements of M form a submodule of M. This submodule

is called the torsion submodule of M and is denoted by T(M). If T(M) = 0,

the module M is said to be torsion-free. Show that

i) If M is any A-module, then M/T(M) is torsion-free.

ii) If f: M — N is a module homomorphism, then f(T(M)) £ T(N).

iii) If 0 — M’ — M — M” is an exact sequence, then the sequence 0 — T(M’)
— T(M) — T(M") is exact.

iv) If M is any A-module, then T(M) is the kernel of the mapping x~» 1 ® x
of M into K ®, M, where X is the field of fractions of A.

[For iv), show that X may be regarded as the direct limit of its submodules

A€ (¢ € K); using Chapter 1, Exercise 15 and Exercise 20, show thatif1 @ x =0

inK ® Mthenl ® x = 0in A¢ ® Mforsome £ # 0. Deduce that £~ x = 0.]

Let S be a multiplicatively closed subset of an integral domain 4. Inthe notation
of Exercise 12, show that 7(S ~*M) = §~YTM). Deduce that the following are
equivalent:

i) M is torsion-free.

if) My is torsion-free for all prime ideals p.

1i1) My is torsion-free for all maximal ideals m.

Let M be an A-module and a an ideal of A. Suppose that My = 0 for all
maximal ideals m 2 a. Prove that M = aM. [Pass to the 4/a-module M/aM
and use (3.8).]

Let 4 be a ring, and let F be the A-module 4». Show that every set of 7 gen-
erators of Fis a basis of F. [Let x,,..., x, be a set of generators and e, ..., &,
the canonical basis of F. Define ¢: F — F by ¢(e;) = x;. Then ¢ is surjective
and we have to prove that it is an isomorphism. By (3.9) we may assume that A
isalocalring. Let N be the kernel of ¢ and let & = A/m be the residue field of 4.

Since F is a flat A-module, the exact sequence 0 — N — F — F — 0 gives an

exact sequence0—> k ® N—>k @ F.°J k @ F—>0. Nowk @ F = k"

is an n-dimensional vector space over k; 1 ® ¢ is surjective, hence bijective,
hence k ® N = 0,

Also N is finitely generated, by Chapter 2, Exercise 12, hence N = 0 by
Nakayama’s lemma. Hence ¢ is an isomorphism.]

Deduce that every set of generators of F has at least n elements.

Let B be a flat A-algebra. Then the following conditions are equivalent:
i) a*¢ = afor all ideals a of A.

if) Spec (B) — Spec (A4) is surjective.

iii) For every maximal ideal m of 4 we have m* # (1).
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iv) If M is any non-zero A-module, then Mz # 0.
v) For every A-module M, the mappmg xP 1 ® xof Minto Mj is mjectwe
u'or i) = ii), use (3.16). ii) = iii) is clear.

iii) = iv): Let x be a non-zero element of M and let M’ = Ax. Since B is flat
over A it is enough to show that Mz # 0. We have M’ = A/a for some ideal
a # (1), hence M; ~ B/a*. Now a & m for some maximal ideali m, hence
a® & m® # (1). Hence Mz # 0.

iv) = v): Let M’ be the kernel of M — M. Since B is flat over A, the sequence
0 — M; — My — (M3)z is exact. But (Chapter 2, Exercise 13, with N = Mj3)
the mapping M — (Mp)s is injective, hence A% = 0 and therefore M’ = 0.
v) = i): Take M = A/a.]

B is said to be faithfully flat over A.

Let AL B2 Che ring homomorphisms. If g o fis flat and g is faithfully fiat,
then fis fiat.

Let f: A — Bbe a flat homomorphism of rings, let q be a prime ideal of B and let
p = q°. Thenf*: Spec (Bg) — Spec (Ayp) is surjective. [For By is fiat over Ay by
(3.10), and B, is a local ring of By, hence is flat over By. Hence By is flat over 4p
and satisfies condition (3) of Exercise 16.]

Let A be a ring, M an A-module. The support of M is defined to be the set
Supp (M) of prime ideals p of A such that Afp # 0. Prove the following results:
i) M # 0 < Supp (M) # 2.
ii} ¥(a) = Supp (4/a).
iii) If 0 M —M— M"—0 is an exact sequence, then Supp (M) =
Qnﬂn ll/f’\ U q“nn (M’\

A g \ara

iv) If M Z M, then Supp (M) = {J Supp (M)).
v) If M is finitely generated, then Supp (M) = V(Ann (M)) (and is therefore

a closed subset of Spec (4)).

vi) If M, N are finitely generated, then Supp (M ®, N) = Supp (M) N
Supp (N). -[Use Chapter 2, Exercise 3.]

vii) If M is finitely generated and a is an ideal of A, then Supp (M/aM) =
V(a + Ann (M)).

viii) If f: A — B is a ring homomorphism and M is a finitely generated A4-
module, then Supp (B ®, M) = f*-1(Supp (M)).

Let f: A — Bbe a ring homomorphism, f*: Spec (B) — Spec (4) the associated
mapping. Show that

i) Every prime ideal of A is a contracted ideal <> f* is surjective.

ii) Every prime ideal of B is an extended ideal = f* is injective.
Is the converse of ii) true?

i) Let A4 be a ring, .S a multiplicatively closed subset of 4, and ¢: 4 — §-14
the canonical homomorphism. Show that ¢*: Spec (S ~14) — Spec(A) isa
homeomorphism of Spec (S ~14) onto its image in X = Spec (4). Let this
image be denoted by §~1X,

In particular, if f€ A4, the image of Spec (4,) in X is the basic open set X,
(Chapter 1, Exercise 17).
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ii) Let f: A — B be a ring homomorphism. Let X = Spec(4) and ¥ =
Spec (B), and let f*: Y — X be the mapping associated with £, Identifying
Spec (S ~'4) with its canonical image S~'X in X, and Spec(S-B)
(= Spec (f(S)~1B)) with its canonical image S ~'Y in ¥, show that S~ f*:
Spec (S~'B) — Spec (S~ 'A) is the restriction of f* to S-'¥, and that
S-1Y =f*"}(§X).

iii) Let a bean ideal of 4 andletb = a*® be its extension in B. Let f: 4/a — B/b
be the homomorphism induced by f. If Spec (4/a) is identified with its
canonical image V(a) in X, and Spec (B/b) with its image V(b) in ¥, show
that f* is the restriction of £* to V(b).

iv) Let p be a prime ideal of 4. Take S = 4 — p in ii) and then reduce
mod S ~*p as in iii). Deduce that the subspace /*~*(p) of Y is naturally
homeomorphic to Spec (Bp/pBy) = Spec (k(p) ®4 B), where k(p) is the
residue field of the local ring Ap.

Spec (k(p) ® 4 B) is called the fiber of f* over p.

Let 4 be aring and p a prime ideal of 4. Then the canonical image of Spec (4p)
in Spec (A) is equal to the intersection of all the open neighborhoods of p in
Spec (A4).

Let A bearing, let X = Spec (4) and let U be a basic opensetin X (i.e.,, U = X,
for some fe A: Chapter 1, Exercise 17).
i) If U = X, show that the ring A(U) = A, depends only on U and not on f.

ii) Let U’ = X, be another basic open set such that U” < U. Show that there
is an equation of the form g" = uf for some integer n > 0 and some u € A,
and use this to define a homomorphism p: A(U) — A(U’) (.e., Ay — A,;) by
mapping a/f™ to au™/g™™. Show that p depends only on U and U’. This
homomorphism is called the restriction homomorphism.

ili) If U = U’, then p is the identity map.

iv) If U 2 U’ = U~ are basic open sets in X, show that the diagram

AU) ———> AU
™~ /
AU
(in which the arrows are restriction homomorphisms) is commutative.
v) Let x (= p) be a point of X. Show that

lim A(U) = Ap.
i ) p
The assignment of the ring A(U) to each basic open set U of X, and the
restriction homomorphisms p, satisfying the conditions iii) and iv) above,
constitutes a presheaf of rings on the basis of open sets (X;),es. V) says that the
stalk of this presheaf at x € X is the corresponding local ring Ap.

Show that the presheaf of Exercise 23 has the following property. Let (Uiker bea
covering of X by basic open sets. For each i € I let 5, € A(U;) be such that, for
each pair of indices i, j, the images of s, and s, in A(U, N U)) are equal. Then
there exists a unique s € 4 (= A(X)) whose image in A(U) is s, for all ie L
(This essentially implies that the presheaf is a sheaf.)
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Let f: 4 — B, g: A— C be ring homomorphisms and let h: 4 — B ®,C be
defined by h(x) = f(x) ® g(x). Let X, Y, Z, T be the prime spectra of 4, B, C,
B ®4 C respectively. Then A*(T) = f*Y N g*(Z).

[Let p € X, and let &k = k() be the residue field at p. By Exercise 21, the fiber
h*~1(p) is the spectrum of (B ®,C) @,k 2 (B ®,k) & (C ®,k). Hence
peh*(T) < (BR,Kk) @ (C®,k) # 0B Q,k#0and C®,k #0 =

pefX(Y)NngX2)]

Let (B., £45) be a direct system of rings and B the direct limit. For each «, let
Jfat A — B, be a ring homomorphism such that gqz ¢ /o = fz whenever « < g
(i.e. the B, form a direct system of A4-algebras). The f, induce f: A ~ B. Show
that

F*(Spec (B)) = N f&(Spec (By).
[Let p € Spec (4). Then f*~1(p) is the spectrum of
B @4 k(p) = lim (B, ®4 &(p))
—.}

(since tensor products commute with direct limits: Chapter 2, Exercise 20).
By Exercise 21 of Chapter 2 it follows that f*-(p) = ¢ if and only if
B, ®4 k(p) = 0for some «, i.c., if and only if /& -*(p) = 2.]

i) Let f,: A — B, be any family of A-algebras and let f: 4 - B be their
tensor product over 4 (Chapter 2, Exercise 23). Then

f*(Spec (B)) = Qf.;“(Spec (Bo).

[Use Examples 25 and 26.]

ii) Let fo: A — B, be any finite family of A-algebras and let B = [ B,.
Define f: A — Bby f(x) = (fo(x)). Then f*(Spec (B)) = Uq f*(Spec(B,)).

iif) Hence the subsets of X’ = Spec (4) of the form f*(Spec (B)), where f: 4 — B
is a ring homomorphism, satisfy the axioms for closed sets in a topological
space. The associated topology is the constructible topology on X, It is finer
than the Zariski topology (i.c., there arc more open sets, or equivalently more
closed sets).

iv) Let X¢ denote the set X endowed with the constructible topology. Show that
Xc is quasi-compact.

(Continuation of Exercise 27.)

i) For each g € 4, the set X, (Chapter 1, Exercise 17) is both open and closed
in the constructible topology.

ii) Let C’ denote the smallest topology on X for which the sets X, are both open
and closed, and let X denote the set X endowed with this topology. Show
that X.. is Hausdorff.

iii) Deduce that the identity mapping X. — X, is a homeomorphism. Hence a
subset E of X is of the form f*(Spec (B)) for some f: 4 — Bif and only if it
is closed in the topology C’.

iv) The topological space X is compact, Hausdorff and totally disconnected.
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29. Let f: A — B be a ring homomorphism. Show that f*: Spec (B) — Spec (4) is
a continuous closed mapping (i.c., maps closed sets to closed sets) for the con-

atevrabilela $omala
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30. Show that the Zariski topology and the constructible topology on Spec (A) are
the same if and only if A/ is absolutely flat (where R is the nilradical of A).
[Use Exercise 11.]



Primary Decomposition

The decomposition of an ideal into primary ideals is a traditional pillar of ideal
theory. It provides the algebraic foundation for decomposing an algebraic
variety into its irreducible components—although it is only fair to point out
that the algebraic picture is more complicated than naive geometry would
suggest. From another point of view primary decomposition provides a gen-
eralization of the factorization of an integer as a product of prime-powers. In
the modern treatment, with its emphasis on localization, primary decomposition
is no longer such a central tool in the theory. It is still, however, of interest in
itself and in this chapter we establish the classical uniqueness theorems.

The prototypes of commutative rings are Z and the ring of polynomials
k[xy, ..., X,] where k is a field; both these are unique factorization domains.
This is not true of arbitrary commutative rings, even if they are integral domains
(the classical example is the ring Z[V'=5], in which the element 6 has two
essentially distinct factorizations, 2-3 and (I + vV =5Y1 — V'=3)). However,
there is a generalized form of “unique factorization™ of ideals (not of elements)
in a wide class of rings (the Noetherian rings).

A prime ideal in a ring A is in some sense a generalization of a prime num-
ber. The corresponding generalization of a power of a prime number is a
primary ideal. Anideal q in a ring A is primary if ¢ # A and if

Xy € q = either xe q or y" € q for somen > 0.
In other words,
q is primary < A/q # 0 and every zero-divisor in 4/q is nilpotent.

Clearly every prime ideal is primary. Also the contraction of a primary
ideal is primary, for if f: 4 — B and if q is a primary ideal in B, then A/q° is
isomorphic to a subring of B/q.

Proposition 4.1. Let q be a primary ideal in a ring A. Then r(q) is the smallest
prime ideal containing q.
Proof. By (1.8)itis enough to show that p = r(q) is prime. Let xy € r(q), then
(xy)" e q for some m > 0, and therefore either x™ e q or y™* € q for some
n>¥%; i.e,eitherxer(q)or yer(q). =

50
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If p = r(q), then q is said to be p-primary.

Examples. 1) The primary ideals in Z are (0) and (p*), where p is prime. For
these are the only ideals in Z with prime rad1ca1 and it is immediately checked
that they are primary.

2) Let 4 = k[x, y), a = (x, y*). Then 4/q =~ k[y)/(»®), in which the zero-
divisors are all the multiples of y, hence are nilpotent. Hence g is primary, and
its radical p is (x, y). We have p? < g < p (strict inclusions), so that a primary

ideal is not necessarily a prime-power.

3) Conversely, a prime power p" is not necessarily primary, although its
radical is the prime ideal p. For example, let A = k[x, y, z)/(xy — 2z%) and let
X, 7, Z denote the images of x, y, z respectively in 4. Then p = (%, ) is prime
(since A/p = k[y], an integral domain); we have Xy = 72 ¢ p? but X ¢ p? and
7 ¢ r(® = p; hence p? is not primary. However, there is the following result:

Proposition 4.2. If r(a) is maximal, then a is primary. In particular, the
powers of a maximal ideal m are m-primary.
Proof. Let r(a) = m. The image of nt in A/a is the nilradical of A/a, hence 4/a
has only one prime ideal, by (1.8). Hence every element of A/a is either a unit or
nilpotent, and so every zero-divisor in 4/a is nilpotent. =

We are going to study presentations of an ideal as an intersection of primary
ideals. First, a couple of lemmas:

| ) A4 2 Ifa il < i< ta_maetene mraes .-l. 2o ba_syeadmes ey
LBTTTNG #.7. ij i\l X I X u}u yepriimary, irié nGg = | “..1 G; is Lprunary.

Proof. r(q) = r(N{.1a) = N r(a) =». Let xye q, y¢q. Then for some i
we have xy € q; and y ¢ q;, hence x € p, since g, is primary. =

Lemma 4.4. Let q be a p-primary ideal, x an element of A. Then
i) if x € q then (q:x) = (1);

ii) if x ¢ q then (q.x) is p-primary, and therefore r(q:x) =

iii) if x ¢ p then (q:x) =
Proof. 1) and iii) follow immediately from the definitions.

ii): if y € (q:x) then xy € q, hence (as x# q) we have yep. Hence g £
(q:x) = p; taking radicals, we get r(q:x) = p. Let yz e (q:x) with y € b; then
xyzeq, hence xzeq, henceze (q:x). =

A primary decomposition of an ideal a in 4 is an expression of a as a finite
intersection of primary ideals, say

o= q. (1)

iml

(In general such a primary decomposition need not exist; in this chapter we shall
restrict our attention to ideals which have a primary decomposition.) If more-
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over (i) the r(q,) are all distinct, and (ii) we have q; 2 (4,9, (1 € i < n) the
primary decomposition (1) is said to be minimal (or irredundant, or reduced, or
normal, . ..). By (4.3) we can achieve (i) and then we can omit any superfluous
terms to achieve (ii); thus any primary decomposition can be reduced to a
minimal one. We shall say that a is decomposable if it has a primary decomposi-
tion.

Theorem 4.5. (1st uniqueness theorem). Let a be a decomposable ideal and
let a = (=1 a0 be @ minimal primary decomposition of a. Let p, = r(q;)
(1 < i € n). Then the p, are precisely the prime ideals which occur in the set
of ideals r(a:x) (x € A), and hence are independent of the particular de-
composition of .
Proof. For any x€ A we have (a:x) = (N q;:x) = () (a;:X), hence r(a:x) =
Y1 7(05:%) = MNyea, Ps by (4.4). Suppose r(a:x) is prime; then by (1.11) we
have r(a:x) = p,forsomej. Hence every prime ideal of the form »(:x) is one of
the p,. Conversely, for each i there exists x; & qi, x: €[ )y 95 Since the de-
composition is minimal; and we have r(a:x,) = p,. =

Remarks. 1) The above proof, coupled with the last part of (4.4), shows that
for each i there exists x; in A such that (a:x;) is p-primary.

2) Considering A/a as an A-module, (4.5) is equivalent to saying that the ,
are precisely the prime ideals which occur as radicals of annihilators of elements
of A/a.

Fyarnmla Teata — (¥2 y1in 4 = klx vl Thena = p. N b3 whera
umr‘ e ’ ALK ¥ e J- & LA AR r‘

a 1 where p; \n),
p2 = (x,y). The ideal p3 is primary by (4.2). So the prime ideals are p,, p,.
In this example p; < p,; we have r(a) = p, N p2 = p,, but a is not a primary
ideal. )

The prime ideals b, in (4.5) are said to belong to a, or to be associated with a.
The ideal a is primary if and only if it has only one associated prime ideal. The
minimal elements of the set {p,, . .., p,} are called the minimal or isolated prime
ideals belonging to a. The others are called embedded prime ideals. In the
example above, p; = (x, ) is embedded.

Proposition 4.6. Let a be a decomposable ideal. Then any prime ideal
p 2 a contains @ minimal prime ideal belonging to a, and thus the minimal
prime ideals of a are precisely the minimal elements in the set of all prime
ideals containing a.
Proof. If p 2 a = (Va1 4, then p = r(p) 2 N r(@) = M p. Hence by
(1.11) we havep = p, for some i; hence p contains a minimal prime ideal of a. =

Remarks. 1) The names isolated and embedded come from geometry. Thus if
A = k[x,,..., x,] where k is a field, the ideal a gives rise to a variety X < k*
(see Chapter 1, Exercise 25). The minimal primes p, correspond to the irre-
ducible components of X, and the embedded primes correspond to subvarieties
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of these, i.e., varieties embedded in the irreducible components. Thus in the
example before (4.6) the variety defined by a is the line x = 0, and the embedded
ideal p3 = (x, y) corresponds to the origin {0, 0).

2) It is not true that all the primary components are independent of the
decomposition. For example (x2, xp) = (x) N (x, ¥)* = (x) O (x3, y) are two
distinct minimal primary decompositions. However, there are some uniqueness
properties: see (4.10).

Proposition 4.7. Let a be a decomposable ideal, let « = M., q, be a
minimal primary decomposition, and let r(q,) = ;. Then

g)l o ={xed:(a:x) # a}.

In particular, if the zero ideal is decomposable, the set D of zero-divisors of A
is the union of the prime ideals belonging to 0.
Proof. If a is decomposable, then 0 is decomposable in A/a: namely 0 = M g,
where g, is the image of q; in 4/a, and is primary. Hence it is enough to prove the
last statement of (4.7). By (1.15) we have D = (.4, 7(0:x); from the proof of
(4.5), we have r(0:x) = (Nxeq, P; S p; for some j, hence D = U, p,. But
also from (4.5) each p, is of the form r(0: x) forsome xe A, hence U p, € D. =

Thus (the zero ideal being decomposable)
D = set of zero-divisors
= |J of all prime ideals belonging to 0;
R = set of nilpotent elements
= () of all minimal primes belonging to O.

Next we investigate the behavior of primary ideals under localization.

Proposition 4.8. Let S be a multiplicatively closed subset of A, and let q

be a p-primary ideal.

D)IfSNp # @, then S~ g = §~14.

i) If SN p = @, then S~q is S ~p-primary and its contraction in A is q.
Hence primary ideals correspond to primary ideals in the correspondence

(3.11) between ideals in S ~1A and contracted ideals in A.

Proof. i) If se SNy, then s" €SN q for some n > 0; hence S ~1q contains
s*/1, which is a unit in § 4.

ii) If SN p = o, then s € Sand as € g imply a € q, hence ¢*° = q by (3.11).
Also from (3.11) we have r(q®) = r(S~*q) = S~r(q) = S ~*p. The verification
that S ~q is primary is straightforward. Finally, the contraction of a primary
ideal is primary. =

For any ideal aand any multiplicatively closed subset S in 4, the contraction
in 4 of the ideal S ~'a is denoted by S(a).
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Proposition 4.9. Let S be a multiplicatively closed subset of A and let a be a
decomposable ideal. Let a = (., 6, be a minimal primary decomposition of
a. Let v, = r(q,) and suppose the q, numbered so that S meets Pp41y. . s Pa
but not p,,..., pm. Then

S-1a = f)l S-la,  S@= () o

and these are minimal primary decompositions.
Proof. S7'a = (a1 S % by 3.11) = N, S by (4.8), and S~1q, is
S ~1p.primary for i = 1,..., m. Since the p, are distinct, so are the §~1p,
(1 € i € m), hence we have a minimal primary decomposition. Contracting
both sides, we get

m

S@ = (SiaF = A (S = () o

im]
by (4.8) again. =

A set T of prime ideals belonging to « is said to be isolated if it satisfies the
following condition: if p’ is a prime ideal belonging to a and p’ < p for some
p € X, then p’' € Z.

Let X be an isolated set of prime ideals belonging to a, and let S = 4 —
(Upez b. Then S is multiplicatively closed and, for any prime ideal p’ belonging
to a, we have

pPel=>pNS=a;
p¢Zl =p & ..Le) p(by (1.11)) = p'NS # 2.

Hence, from (4.9), we deduce

Theorem 4.10. (2nd uniqueness theorem). Let a be a decomposable ideal, let
a = (a1 q: be a minimal primary decomposition of a, and let {p,,, ..., bs,}
be an isolated set of prime ideals of a. Then q,, NN q,, is independent of
the decomposition.

In particular:

Corollary 4.11. The isolated primary components (i.e., the primary com-
ponents q, corresponding to minimal prime ideals p,) are uniquely determined
by a.
Proof of (4.10). We have q;,, N---N gy, = S(a) whereS =4 — p,, U---Up,,
hence depends only on a (since the p, depend only on a),, =

Remark. On the other hand, the embedded primary components ate in general
not uniquely determined by a. If 4 is a Noetherian ring, there are in fact
infinitely many choices for each embedded component (see Chapter 8, Exercise 1).
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EXERCISES

1.

]0!

If an ideal a has a primary decom

a fRai ANdWERL W R jraaliaia

irreducible components.

. If @ = r(a), then a has no embedded prime ideals.
. If A is absolutely flat, every primary ideal is maximal.
. In the polynomial ring Z[t], the ideal m = (2. ¢) is maximal and the idea]

q = (4, t) is m-primary, but is not a power of m.

. In the polynomial ring KX[x, y, z] where X is a field and x, y, z are independent

indeterminates, let p; = (x, y), p2 = (x,2), m = (x, y, 2); p, and p, are prime,
and m is maximal, Let a = p,p;. Show that a = p, N p, " m? is a reduced
primary decomposition of a. Which components are isolated and which are
embedded?

. Let X be an infinite compact Hausdorff space, C(X) the ring of real-valued

continuous functions on X (Chapter 1, Exercise 26). Is the zero ideal de-
composable in this ring?

. Let 4 be a ring and let A{x] denote the ring of polynomials in one indeterminate

over A. For each ideal a of 4, let a[x] denote the set of all polynomials in 4[x]
with coefficients in a.
i) a[x] is the extension of a to 4[x].

i) If p is a prime ideal in A, then p[x] is a prime ideal in A[x].

ii) If q is a p-primary ideal in 4, then q[x] is a p[x]-primary ideal in A4[x].
{Use Chapter 1, Exercise 2.]

iv) If a = M{.: 4, is 2 minimal primary decomposition in A4, then alx] =
Mi=1 §:fx] is a minimal primary decomposition in A[x}.

v) If b is a minimal prime ideal of a, then p[x] is a minimal prime ideal of a[x].

Let k be a field. Show that in the polynomial ring k{x,,..., x,] the ideals
P = (x1,...,x)(1 <i< n) are prime and all their powers are primary.
[Use Exercise 7.]
In a ring A, let D(A4) denote the set of prime ideals p which satisfy the following
condition: there exists a € 4 such that p is minimal in the set of prime ideals
containing (0:a4). Show that x € A is a zero divisor <= x € p for some p € D(A).
Let S be a multiplicatively closed subset of A4, and identify Spec (§~4)
with its image in Spec (4) (Chapter 3, Exercise 21). Show that

D(S~'4) = D(A) N Spec (S ~1A4).

If the zero ideal has a primary decomposition, show that D(A) is the set of
associated prime ideals of 0.

For any prime ideal p in a ring A, let Sp(0) denote the kernel of the homo-
morphism A4 — A4p. Prove that
i) Sp(0) = p.
ii) r(Sp(0)) = p < p is a minimal prime ideal of A.
iii) If p 2 p’, then Sp(0) € Sy, (0).
iv) Mpepw Sp(0) = 0, where D(A4) is defined in Exercise 9.

J+I1.C.A.



56

11,

12,

13.

14.

15.

16.

17.

PRIMARY DECOMPOSITION

If p is a minimal prime ideal of a ring A, show that Sy(0) (Exercise 10) is the
smallest p-primary ideal.

Let a be the intersection of the ideals Sy(0) as p runs through the minimal
prime ideals of 4. Show that a is contained in the nilradical of A.

Suppose that the zero ideal is decomposable. Prove thata = 0 if and only if
every prime ideal of 0 is isolated.

Let A be a ring, S a multiplicatively closed subset of 4. For any ideal a, let S(a)
denote the contraction of S ~*ain 4. The ideal S(a) is called the saruration of a
with respect to S. Prove that

i) S@n SO = S(anb)

i) S(r(@) = r(S@))
iii) S(a) = (1) < a meets S
iv) Si(Sz(a)) = (5152)(a).
If a has a primary decomposition, prove that the set of ideals .S(a) (where S runs
through all multiplicatively closed subsets of A) is finite.

Let A be a ring and p a prime ideal of A. The nth symbolic power of p is defined
to be the ideal (in the notation of Exercise 12)

p™ = Sp(p™)
where Sp = 4 — p. Show that
i) ™ jis a p-primary ideal;
i) if p" has a primary decomposition, then p™ is its p-primary component;
iii) if p™p‘™ has a primary decomposition, then p™*™ is its p-primary compo-
nent;
iv) p™ = p* « p™ is p-primary.
Let a be a decomposable ideal in a ring 4 and let p be a maximal element of the
set of ideals (a:x), where x € A and x ¢ a. Show that p is a prime ideal belonging

F Y, S

v u.

Let a be a decomposable ideal in a ring A, let Z be an isolated set of prime ideals
belonging to a, and let qz be the intersection of the corresponding primary
components. Let fbe an element of 4 such that, for each prime ideal p belonging
to a, we have fep < p ¢ Z, and let S; be the set of all powers of /. Show that
gz = Sya) = (a:f™) for all large n.

If A is a ring in which every ideal has a primary decomposition, show that every
ring of fractions S ~'A4 has the same property.

Let A be a ring with the following property.
(L1) Foreveryideala # (1)in A4 and every prime ideal p, there exists x ¢ p such
that Sp(a) = (a:x), where Sy = 4 — p.

Then every ideal in A is an intersection of (possibly infinitely many) primary
ideals.
[Let a be anideal # (1) in A4, and let p, be a minimal element of the set of prime
ideals containing a. Then q: = Sp,(a) is p;-primary (by Exercise 11), and g, =
(a:x) for some x ¢ p,. Show thata = g, N (a + (x)).

Now let a; be a maximal element of the set of ideals b 2 a such that
q, Nb = q, and choose a, so that x € a;, and therefore a, & p;. Repeat the
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construction starting with a;, and so on. At the nth stage we havea = q, ...
N q, N a, where the q; are primary ideals, a, is maximal among the ideals b con-
taining @n-1 = G, N q, such thata = q, M-+ g, N Db, and a, £ p,. Ifatany
stage we have a, = (1), the process stops, and a is a finite intersection of
primary ideals. If not, continue by transfinite induction, observing that each a,
strictly contains a, - ;.]

Consider the following condition on a ring 4:

(L2) Given an ideal a and a descending chain S, 2 5 2-..2 S, 2...
of multiplicatively closed subsets of A, there exists an integer n such that S,(a) =
S.+1(a) =---. Prove that the following are equivalent:

i) Every ideal in 4 has a primary decomposition;

it) A satisfies (LL1) and (L2).

[For i) = 11), use Exercises 12 and 5. For ii} = i) show, with the notation of
the proof of Exercise 17, that if S, = Sy, N---N Sp, then S, meets a,, hence
S.(a,) = (1), and therefore S.(a}) = q; N---MN g,. Now use (L2) to show that
the construction must terminate after a finite number of steps.]

Let A be a ring and p a prime ideal of 4. Show that every p-primary ideal
contains Sp(0), the kernel of the canonical homomeorphism 4 — Ajp.

Suppose that A satisfies the following condition: for every prime ideal p, the
intersection of all p-primary ideals of A4 is equal to Sp(0). (Noetherian rings
satisfy this condition: see Chapter 10.) Let p,, ..., P, be distinct prime ideals,
none of which is a minimal prime ideal of 4. Then there exists an ideal a in 4

whose associated prime ideals are p,, .. ., P,.
[Proof by induction on n. The case n = 1 is trivial (take a = p;). Suppose
n > 1 and let p, be maximal in the set {p,, ..., .}. By the inductive hypothesis

there exists an ideal b and a minimal primary decomposition b = q; N---
N qn-1, where each q, is p,-primary. If b < Sy (0), let p be a minimal prime
ideal of 4 contained in p,. Then Sy (0) & Sp(0), hence b = Sy(0). Taking
radicals and using Exercise 10, we have p, n---Np,_, € p, hence some
Py < p, hence p, = p since p is minimal. This is a contradiction since no p; is
minimal. Hence b & Sp (0) and therefore there exists a p,-primary ideal q-
such that b & q,. Show thata = q; N---M q, has the required properties.]

Primary decomposition of modules
Practically the whole of this chapter can be transposed to the context of
modules over a ring 4. The following exercises indicate how this is done.

Let M be a fixed A-module, N a submodule of M. The radical of N in M is
defined to be

ru(N) = {xe A:x*M < N for some ¢4 > 0}.

Show that ry(N) = r(N:M) = r(Ann (M/N)). In particular, ry(N) is an
ideal.
State and prove the formulas for ry analogous to (1.13).

An element x € 4 defines an endomorphism ¢, of M, namely m+~ xm. The
element x is said to be a zero-divisor (resp. nilpotent) in M if ¢, is not injective
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(resp. i$ nilpotent). A submodule Q of M is primary in M if Q # M and every
zero-divisor in M/Q is nilpotent.

Show that if Q is primary in M, then {Q: M) is a primary ideai and hence
ry(Q) is a prime ideal p. We say that Q is p-primary (in M).

Prove the analogues of (4.3) and (4.4).

A primary decomposition of N in M is a representation of N as an intersection
N=01Nn:--NQ,

of primary submodules of M; it is a minimal primary decomposition if the ideals
P = ru(Qy) are all distinct and if none of the components Q, can be omitted
from the intersection, that is if @y 2 (N;#1 @; (1 € i < n).

Prove the analogue of (4.5), that the prime ideals p, depend only on N
(and M). They are called the prime ideals belonging to N in M. Show that they
are also the prime ideals belonging to 0 in M/N.

State and prove the analogues of (4.6)«(4.11) inclusive. (There is no loss of
generality in taking N = 0.)



Integral Dependence and
Valuations

In classical algebraic geometry curves were frequently studied by projecting
them onto a line and regarding the curve as a (ramified) covering of the line.
This is quite analogous to the relationship between a number field and the
rational field—or rather between their rings of integers—and the common
algebraic feature is the notion of integral dependence. In this chapter we prove a
number of results about integral dependence. In particular we prove the theo-
rems of Cohen-Seidenberg (the “‘going-up” and “going-down’ theorems)
concerning prime ideals in an integral extension. In the exercises at the end we
discuss the algebro-geometric situation and in particular the Normalization
Lemma.
We also give a brief treatment of valuations.

INTEGRAL DEPENDENCE

Let B be a ring, 4 a subring of B (so that 1 € 4). An element x of B is said to
be integral over A if x is a root of a monic polynomial with coefficients in 4, that
is if x satisfies an equation of the form

xX*+ ax*"1+.- 4+ 4ag,=0 ()
where the a; are elements of 4. Clearly every element of 4 is integral over A.

Example 5.0. 4 = Z, B = Q. If a rational number x = r/sis integral over Z,
where r, s have no common factor, we have from (D

rrtartTis + o 4 ast =0
the g, being rational integers. Hence s divides r*, hence s = +1, hence xe Z.

Proposition 5.1. The following are equivalent:
1) x € B is integral over A;
il) A[x] is a finitely generated A-module;

i) A[x] is contained in a subring C of B such that C is a ﬁmtely generated
A-module;

59
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iv) There exists a faithful A[x}-module M which is finitely generated as an
A-module.

Proof, i) = ii). From (1) we have
X" = = (@x™t T 4 a,X)

for all r > 0; hence, by induction, all positive powers of x lie in the 4-module
generated by I, x,..., x"~1. Hence A[x] is generated (as an A-module) by
Lx,...,x*" 1

ii) = iii). Take C = A[x].

iti) = iv). Take M = C, which is a faithful A[x]-module (since yC = 0 =
y-1 = 0).

iv) = i). This follows from (2.4): take ¢ to be multiplication by x, and

a = A (we have xM = M since M is an A[x]-module); since M is faithful, we
have x* + a,x" ! +---+ a, = 0 for suitable g, € 4. =

Corollary 5.2. Let x,(1 < i < n) be elements of B, each integral over A.
Then the ring A[X,, . . ., X,] is a finitely-generated A-module.

Proof. By induction on n. The case n = 1 is part of (5.1). Assume n > 1, let
A, = A[x,, ..., x]; then by the inductive hypothesis 4, _; is a finitely generated
A~module. A, = A,_i[x,] is a finitely generated A,.,-module (by the case
n = 1, since x, is integral over 4,_,). Hence by (2.16) 4, is finitely generated
as an A-module. =

Corollary 5.3. The set C of elements of B which are inte
subring of B containing A.
Proof. If x, y € C then A[x, y] is a finitely generated 4-module by (5.2). Hence
x + y and xy are integral over A4, by iii) of (5.1). =

The ring Cin (5.3) is called the integral closure of Ain B. If C = A4, then 4
is said to be integrally closed in B. 1If C = B, the ring B is said to be integral
over A.

JU R . —
ral over A is a

Remark. Let f: A — B be a ring homomorphism, so that B is an A-algebra.
Then f is said to be integral, and B 1s said to be an integral A-algebra, if B is
integral over its subring f(A4). In this terminology, the above results show that

finite type + integral = finite.

Corollary 54. If A = B < C are rings and if B is integral over A, and C is
integral over B, then C is integral over A (transitivity of integral dependence).

Proof. Let x € C, then we have an equation
x4+ byx" 1 -4+ b, =0 (bi € B).

The ring B’ = Afby,..., b,] is a finitely generated 4-module by (5.2), and B’[x]
is a finitely generated B’-module (since x is integral over B’). Hence B’[x]is a



THE GOING-UP THEOREM 61

finitely generated 4-module by (2.16) and therefore x is integral over A4 by iii)
of (5.1). =

Corollary 5.5. Let A < B be rings and let C be the integral closure of A
in B. Then C is integrally closed in B.
Proof. Let xe B be integral over C. By (5.4) x is integral over A, hence
xeC. =

The next proposition shows that integral dependence 1s preserved on passing
to quotients and to rings of fractions:
Proposition 5.6. Let A = B be rings, B integral over A.
1) Ifb is an ideal of Band a = b° = A N b, then BJb is integral over Afa.
i) If S is a multiplicatively closed subset of A, then S~'B is integral over
S-14.
Proof. i) If xe B we have, say, x" + a;x*"! +---+ a, = 0, with g, € A.
Reduce this equation mod. b.

ii) Let x/se S ~'B(x € B, s €.S). Then the equation above gives
(x/s) + (ayfs)(x/s)*~ 2 +---+ a,/s" =0

which shows that x/s is integral over S"'4. =

THE GOING-UP THEOREM
Proposition 5.7. Let A = B be integral domains, B integral over A. Then B

IDFOUJ. SUppose Aisa fiel
Vt+ayt+eo+a,=0  (aed)

be an equation of integral dependence for y of smallest possible degree. Since B
is an integral domain we have a, # O,hencey ! = —a; 2 (3" ! + ay"~2% +- ..
+ a,_,) € B. Hence B is a field.

Conversely, suppose B is a field; let xe 4, x # 0. Then x~! € B, hence is
integral over A, so that we have an equation

X" 4+ax " 4+...4+a,=0 (a; € A).

it follows that x> = —(a] + a3x +--- + apx™" ') € 4, hence 4 is a field. =

Corollary 5.8. Let A = B be rings, B integral vver A; let q be a prime ideal

of Bandlety = q° = q N A. Then q is maximal if and only if p is maximal.
Proof. By (5.6), B/q is integral over A/p, and both these rings are integral
domains. Now use (5.7). =

Corollary 5.9. Let A <= B be rings, B integral over A; let q, a’ be prime
ideals of B suchthat qa < q' and q° = o' = psay. Thenq = o'
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Proof. By (5.6), Byis integral over Ay. Let m be the extension of p in Ay and let
n, i’ be the extensions of q, q’ respectively in By. Then m is the maximal ideal
of Ap; n = n’; and n® = n’c = m. By (5.8) it follows that n, n’ are maximal,
hence 1 = n’, hence by 3.11)(iv) g = ¢’. m

Theorem 5.10. Let A = B be rings, B integral over A, and let p be a prime
ideal of A. Then there exists a prime ideal q of B such that q N A = p.

Proof. By (5.6), By is integral over 4y, and the diagram

A—> B

o s
Ap-)Bp

(in which the horizontal arrows are injections) is commutative. Let n be a maxi-
mal ideal of By; then m = n N A4, is maxnnal by (5.8), hence is the unique
maximal ideal of the local rmg Ap. If ¢ = B~1(n), then g is prime and we have
INA=cl(m=p =

Theorem 5.11. (“Going-up theorem™). Let A = B be rings, B integral
over A; let p, &---< p, be a chain of prime ideals of Aand q<---<q,
(m < n) a chain of prime ideals of B such that g, "N A=19p,(1 € i< m).
Then the chainq, < - - - < qn can be extended to a chain 9, <+ -- < q, such
thatqif'\A = piforl €£ign
Proof. By induction we reduce immediately to the case m = 1, n = 2. Let
A = Afp,, B = B/q,; then 4 < B, and Bis integral over 4 by (5.6). Hence, by

(5.10), there exists a prime ideal §, of B such that §, N 4 = B, the image of p,

in 4. Lift back &, to B and we have a prime ideal g, with the required pro-
perties. =

INTEGRALLY CLOSED INTEGRAL DOMAINS.
THE GOING-DOWN THEOREM

Proposition (5.6)ii) can be sharpened:

Proposition 5.12. Let A < B be rings, C the integral closure of A in B. Let S
be a multiplicatively closed subset of A. Then S ~1C is the integral closure of
S~4in S-'B.
Proof. By (5.6), S-'C is integral over S~14. Conversely, if b/se S8 is
integral over S ~!4, then we have an equation of the form

(Bfs)" + (@y/s))(Bis)*™! +---+ a,/s, =0

where g, € 4, 5;€ S(1 < i < n). Lett = s5;- - -5, and multiply this equation by
(st)* throughout. Then it becomes an equation of integral dependence for bz
over A. Hence bt € C and therefore b/s = bt/ste S~!C. =

An integral domain is said to be integrally closed (without qualification)
if it is integrally closed in its field of fractions. For example, Z is integrally
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closed (see (5.0)). The same argument shows that any unique factorization
domain is integrally closed. In particular, a polynomial ring k[x,, . . ., x,] over
a field is integrally closed.

Integral closure is a local property:

Proposition 5.13. Let A be an integral domain. Then the following are
equivalent:

1) A is integrally closed,
ii) Ay is integrally closed, for each prime ideal p,
iii) Am is integrally closed, for each maximal ideal m.

Proof. Let K be the field of fractions of A, let C be the integral closure of 4 in X,
and let f: A — C be the identity mapping of 4 into C. Then A4 is integrally
closed < f is surjective, and by (5.12) A4, (resp. Am) is integrally closed < f;
(resp. fm) is surjective. Now use (3.9). =

Let 4 = Bberings and let a be an ideal of 4. An element of B is said to be
integral over a if it satisfies an equation of integral dependence over 4 in which
all the coefficients lie in a. The integral closure of a in B is the set of all elements
of B which are integral over a.

Lemma 5.14. Let C be the integral closure of A in B and let a® denote the
extension of a in C. Then the integral closure of a in B is the radical of a®
(and is therefore closed under addition and multiplication).
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X"+ ax" 4+ 4+a, =0

with a,, ..., @, in a. Hence x € C and x" € a®, that is x € r(a®). Conversely, if
x € r(a®) then x® = 3 a,x, for some n > 0, where the g, are elements of a and the
x; are elements of C. Since each x; is integral over 4 it follows from (5.2) that
M = A[x,, ..., x,] is a finitely generated 4-module, and we have x"M < aM.
Hence by (2.4) (taking ¢ there to be multiplication by x™) we see that x" is
integral over a, hence x is integral over a. =

Proposition 5.15. Let A <= B be integral domains, A integrally closed, and
let x € B be integral over an ideal a of A. Then x is algebraic over the field of
fractions K of A, and if its minimal polynomial over K is t™ + a,t*~1 +---
+ a,, then a,, . .., a, lie in r(a).
Proof. Clearly x is algebraic over K. Let L be an extension field of K which
contains all the conjugates x, ..., x, of x. Each x, satisfies the same equation
of integral dependence as x does, hence each x, is integral over a. The co-
efficients of the minimal polynomial of x over K are polynomials in the x,, hence
by (5.14) are integral over a. Since A is integrally closed, they must lie in r(a), by
(5.14) again. =
3* '
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Theorem 5.16. (“Going-down theorem™). Let A < B be integral domains,
A integrally closed, B integral over A. Let p, 2.2 p, be a chain of prime
ideals of A, and let q; 2---2 q, (m < n) be a chain of prime ideals of B
such that N A = p, (1 < i< m). Then the chain g, 2---2 g, can be
extended to a chain q, 2 -+-2 q, such that N4 = p, (1 < i € n).

Proof. Asin (5.11) we reduce immediately to the case m = 1, n = 2. Then we
have to show that p, is the contraction of a prime ideal in the ring B,,, or
equivalently (3.16) that By p, N 4 = p,.

Every x € By, p, is of the form y/s, where y € Bp, and se B — g;. By (5.14),
y 18 integral over p,, and hence by (5.15) its minimal equation over K, the field of
fractions of A4, is of the form

Y+ uwmy 4o+ u=0 (D

with uy, ..., 4, in p,.

Now suppose that x € By, pa N 4. Then s = yx~! with x~! € X, so that the
minimal equation for s over X is obtained by dividing (1) by x", and is therefore,
say,

ST+ s+ 40, =0 (2)
where v, = u/x!. Consequently
X o=wep, (1<i<r). )

But s is integral over A4, hence by (5.15) (with a = (1)) each v, is in 4.
Suppose x ¢ p;. Then (3) shows that each v, € p,, hence (2) shows that s" e Bp,
< By, < 9,, and therefore s € q,, which is a contradiction. Hence x € p; and
therefore By, ps N A = p, as required. =u

The proof of the next proposition assumes some standard facts from field
theory.

Proposition 5.17. Let A be anintegrally closed domain, K its field of fractions,

L a finite separable algebraic extension of K, B the integral closure of A in L.

Then there exists a basis v, . . ., v, of L over K such that B < 37%., Av,.

Proof. If vis any element of L, then v is algebraic over K and therefore satisfies
an equation of the form

a’ + a0t + .-+ a, = 0(aq € 4).

Multiplying this equation by aj~!, we see that @,v = u is integral over 4, and
hence is in B. Thus, given any basis of L over K we may multiply the basis ele-
ments by suitable elements of A4 to get a basis u,, . . ., u, such that each w, € B.

Let T denote trace (from L to K). Since L/K is separable, the bilinear form
(x, y) = T(xy) on L (considered as a vector space over K) is non-degenerate,
and hence we have a dual basis vy, . .., v, of L over X, defined by T'(up,) = 8y,
Let x € B, say x = 2, x;v,(x; € K). We have xu; € B(since u, € B) and therefore
T(xw;) € 4 by (5.15) (for the trace of an element is a multiple of one of the co-
efficients in the minimal polynomial). But T(xw) = 3, T(xuw;) = 3, %,T(uw,)
= 3,X;8; = X, hence x, € 4. Consequently B = >, Av,, m
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for each x ;é 0, either x € B or x~! € B (or both).

Proposition 5.18. i) B is a local ring.

il) If B’ is a ring such that B = B’ < K, then B’ is a valuation ring of K.

iii) B is integrally closed (in K).
Proof. i) Let m be the set of non-units of B, so that xem < either x = 0 or

x~'¢ B. If ae Band x em we have ax em, for otherwise (ax)~* € B and therefore

x'l = g-(ax)~' € B. Next let x, y be non-zero elements of m. Then either xy~-1e B
or x"'yeB. If xy'e B then x + y = (1 + xy~)yeBm s m, and similarly
if x~*y € B. Hence m is an ideal and therefore B is a local ring by (1.6).

ii) Clear from the definitions.

iiif} Let x € K be integral over B. Then we have, say,

X" 4+ bix* "t -4 by =0

with the b;e B. If x € B there is nothing to prove. If not, then x~! e B, hence
X = —(by + byx~! +---+ bx' ™ e€B. n

Let K be a field, Q an algebraically closed field. Let X be the set of all pairs
(A, /), where A is a subring of X and fis a homomorphism of 4 into Q. We partially
order the set Z as follows:

AN<A,fl)esAdc Aandf|4 = f
The conditions of Zorn’s lemma are clearly satisfied and therefore the set Z has at
least one maximal element.
Let (B, g) be a maximal element of Z. We want to prove that B is a valuation
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Lemma 5.19. B is a local ring and m = Ker (g) is its maximal ideal.
Proof. Since g(B) is a subring of a field and therefore an integral domain, the ideal
= Ker (g)is prime. We can extend g to a homomorphism #: B — Q by putting
g(b/s) = g(b)/g(s) forall be B and all se B — m, since g(s) will not be zero. Since
the pair (B, g) is maximal it follows that B = Bm, hence B is a local ring and m is its
maximal ideal. =

Lemma 5.20. Let x be a non-zero element of K. Let B[x} be the subring of K
generated by x over B, and let m[x] be the extension of m in B[x). Then either
mfx] # B[x] or m[x~'] # B[x~!].
Proof. Suppose that m[x] = B[x] and m[x~!] = B[x~!]. Then we shall have
equations
g + hhx + 0+ Upx™ = 1 (u, em) (1)

vo + le‘l +cd Ut = | (v,em) (2)

in which we may assume that the degrees m, n are as small as possible. Suppose that
m > n, and multiply (2) through by x":

(1 — vo)x™ = 03x* 1 + -« + v, 3)
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Since vy € M, it follows from (5.19) that 1 — wveis a unit in B, and (3) may therefore
be written in the form

x* = wx* 44wy, (w; € m).

Hence we can replace x™ in (1) by wyx™~ ! 4+ ...+ w,x™~" and this contradicts
the minimality of the exponent m. =

Theorem 5.21. Let (B, g) be a maximal element of Z. Then B is a valuation

ring of the field K.
Proof. We have to show that if x # 0 is an element of K, then either x€ B or
x~1e B. By (5.20) we may as well assume that m[x] is not the unit ideal of the ring
B’ = Blx]. Then m[x] is contained in a maximal ideal m’ of B’, and we have
m’ N B = m (because m’ N B is a proper ideal of B and contains m). Hence the
embedding of B in B’ induces an embedding of the field ¥ = B/m in the field £’ =
B’/m’; also k* = k[x] where ¥ is the image of x in k’, hence ¥ is algebraic over k, and
therefore &’ is a finite algebraic extension of k.

Now the homomorphism g induces an embedding # of k in Q, since by (5.19)
m is the kernel of g. Since Q is algebraically closed, Z can be extended to an em-
bedding 2’ of £’ into Q. Composing &’ with the natural homomorphism B’ — k', we
have, say, g’: B’ — Q which extends g. Since the pair (B, g) is maximal, it follows
that B’ = B and therefore x€ B. ®

Corollary 5.22. Let A be a subring of a field K. Then the integral closure A of A
in K is the intersection of all the valuation rings of K which contain A.

Proof. Let B be a valuation ring of X'such that 4 & B. Since B is integrally closed,
by (5.18) iii), it follows that 4 < B.

Th : : : " = -11 Hancs x-1 i
Conversely, let x¢ 4. Then x is not in the ring 4" = 4[x~1]. Hence x~lisa

non-unit in 4’ and is therefore contained in a maximal ideal m’ of 4”. Let Q be an
algebraic closure of the field &* = A’/m’. Then the restriction to 4 of the natural
homomorphism 4’ — k' defines a homomorphism of A into Q. By (5.21) this can
be extended to some valuation ring B = 4. Since x~! maps to zero, it follows that
x¢B 1

Proposition 5.23. Let A = B be integral domains, B finitely generated over A.

Let v be a non-zero element of B. Then there exists u # 0in A with the following

property: any homomorphism f of A into an algebraically closed field Q such that

f(W) # O can be extended to a homomorphism g of B into Q such that g(v) # 0.
Proof. By induction on the number of generators of B over A we reduce immediately
to the case where B is generated over A by a single element x.

i) Suppose x is transcendental over A, i.e., that no non-zero polynomial with
coefficients in A4 has x as a root. Let v = @ox™ + a;x*~! + ..+ + a,, and take
u = ao. Then if f: A — Q is such that f(¥) # 0, there exists £ € Q such that f{a,)£"
+ fla))é"* +---+ f(a,) # 0, because Q is infinite. Define g: B — Q extending f
by putting g(x) = £ Then g(v) # 0, as required.

if) Now suppose x is algebraic over A (i.e. over the field of fractions of 4). Then
so is v~1, because vis a polynomial in x. Hence we have equations of the form

Ax™ + @1x™ ' + -+ an =0 (1€ A) 4]
Gt + apt~" 4 -+ ap =0 (aj € A). (2)
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Let u = apay, and let 2 A — Q be such that f(4) # 0. Then fcan be extended, first
toa homomorphismﬁ Alu=t] — Q (with A=Yy = f(#)~1), and then by (5.21) to
a homomorphism 4: C — Q, where C is a valuation ring containing A{u~]. From
(1), x is integral over A[u~1], hence by (5.22) x € C, so that C contains B, and in
particular v € C. On the other hand, from (2), v~! is integral over A[u~1], and there-
fore by (5.22) again isin C. Therefore v is a unit in C, and hence A(v) # 0. Now take

g to be the restriction of hito B. =

Corollary 5.24. Let k be a field and B a finitely generated k-algebra IfBisa
field then it is a finite algebraic extension of k.

Proof. Take A = k, v = 1 and Q = algebraic closure of k. ®
(5.24) is one form of Hilbert’s Nullstellensatz. For another proof, see (7.9).

EXERCISES

1. Let f: A — Bbe an integral homomorphism of rings. Show that f*: Spec (B) —
Spec.(A) is a closed mapping, i.e. that it maps closed sets to closed sets. (Thisisa
geometrical equivalent of (5.10).)

2. Let A be a subring of a ring B such that B is integral over 4, and let f: 4 — Q
be a homomorphism of A into an algebraically closed field Q. Show that fcan
be extended to a homomorphism of Binto Q. [Use (5.10).]

3. Let f; B — B’ be a homomorphism of 4-algebras, and let C be an A-algebra.
If fis integral, prove that f ® 1: B ® , C — B’ @, Cisintegral. (This includes
(5.6) ii) as a special case.)

4. Let A be a subring of a ring B such that B is integral over A. Let 1 be a maximal
ideal of B and let m = n M A be the corresponding maximal ideal of 4. Is By
necessarily integral over A, ?

[Consider the subring £[x? — 1] of k[x], where k is a field, and letn = (x — 1).
Can the element 1/(x + 1) be integral?}

5. Let A < B berings, B integral over A.
i) If x € A is a unit in B then it is a unit in A.
ii) The Jacobson radical of 4 is the contraction of the Jacobson radical of B.

6. Let B,, ..., B, be integral A-algebras. Show that [[f., B, is an integral A-
algebra.

7. Let A be a subring of a ring B, such that the set B ~ A is closed under multi-
plication. Show that A is integrally closed in B.

8. i) Let 4 be a subring of an integral domain B, and let C be the integral closure
of A in B. Let f, g be monic polynomials in B[x] such that fg € C[x]. Then
f, 2 are in C[x]. [Take a field containing B in which the polynomials f, g
split into linear factors: say f = Il (x ~ ¢), g = Il (x — =;). Each § and
each 7, is a root of fz, hence is integral over C. Hence the coefficients of f
and g are integral over C.] '
ii) Prove the same result without assuming that B (or A4) is an integral domain.



68

9.

10.

11.

12.

13.

INTEGRAL DEPENDENCE AND VALUATIONS

Let A be a subring of a ring B and let C be the integral closure of 4 in B. Prove
that C[x] is the integral closure of A[x] in B[x]. [If fe Blx] is integral over
A[x], then

fraffM o+ gn=0 (g€ ARXD.

Let r be an integer larger than m and the degrees of g1,...,2m, and let f; =
f — x7, so that

i+ X+ alf+ x4+ 4+ gn=0
PN+ 4 by =0,

where hp = (x) + g1(xD)™ ! +--- + gn € A[x]. Now apply Exercise 8 to the
polynomials —f; and "~ + M fP"2% + -+ + hpoyl]

or say

A ring homomorphism f: A — B is said to have the going-up property (resp. the
going-down preperty) if the conclusion of the going-up theorem (5.11) (resp. the
going-down theorem (5.16)) holds for B and its subring f(A).
Let /*: Spec (B) — Spec (A) be the mapping associated with f.

i) Consider the following three statements:

(a) f*is a closed mapping.

(b) f has the going-up property.

(¢) Let q be any prime ideal of B and let p = q°. Then f*: Spec (B/q) —

Spec (A/p) is surjective.

Prove that (a) = (b) = (¢). (See also Chapter 6, Exercise 11.)
ii) Consider the following three statements:

(a’) f* is an open mapping.

(b fhac the soine-down nrone rty
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(¢) For any prime ideal q of B, i p = ¢, then f*: Spec (Bg) — Spec (Ap) is
surjective.

frove that (&; = (b)) = ). (See also C hapter 7, Exercise 23.) .)
[To prove that (a) = (¢), observe that Bq is the direct limit of the rings B,
where t € B — q; hence, by Chapter 3, Exercise 26, we have f*(Spec (By)) =
Mef*(Spec (B)) = Mef*(Y)). Since Y, is an open neighborhood of g in ¥, and
since f* is open, it follows that f*(Y)) is an open neighborhood of p in X and
therefore contains Spec (Ap).]

Let f: A — B be a flat homomorphism of rings. Then f has the going-down
property. [Chapter 3, Exercise 18.]

Let G be a finite group of automorphisms of a ring A, and let A% denote the
subring of G-invariants, that is of all x € 4 such that ¢(x) = x for all ¢ € G.
Prove that A is integral over A°. [If x € 4, observe that x is a root of the poly-
nomial I,¢ (¢ ~ o(x)).]

Let S be a multiplicatively closed subset of 4 such that a(S) S for all
o€ G, and let S¢ = § N A% Show that the action of G on A extends to an
action on § 4, and that (§%)~14° & (§-14)%.

In the situation of Exercise 12, let p be a prime ideal of A4S, and let P be the set
of prime ideals of 4 whose contraction is p. Show that G acts transitively on P.
In particular, P is finire.
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[Let p1ps e Pandlet x € p,. Then II, o(x) € py N A% = p € p,, hence o(x)ep,
for some ¢ € G. Deduce that p, is contained in {J,es o(ps), and then apply

11 Y -2 A
(1.11) and (5.9).]

Let A be an integrally closed domain, K its field of fractions and L a finite
normal separable extension of K. Let G be the Galois group of L over X and Jet
B be the integral closure of A in L. Show that o(B) = B for all ¢ € G, and that
A = BS.

Let A, K be as in Exercise 14, let L be any finite extension field of X, and let B
be the integral closure of A in L. Show that, if p is any prime ideal of A, then the
set of prime ideals g of B which contract to p is finite (in other words, that
Spec (B) —> Spec (A) has finite fibers).

[Reduce to the two cases (a) L separable over K and (b) L purely inseparable
over K. In case (a), embed L in a finite normal separable extension of K, and use
Exercises 13 and 14. In case (b), if q is a prime ideal of Bsuch thatq " 4 = p,
show that q is the set of all x € B such that x*" € p for some m > 0, where p is the
characteristic of K, and hence that Spec (B) — Spec (A4) is bijective in this case.]

Noether’s normalization lemma

Let k be a field and let 4 # 0 be a finitely generated k-algebra. Then there exist
elements yi, ..., yr € A which are algebraically independent over k£ and such that
A is integral over k[y,, ..., y:l.

We shall assume that k is infinite. (The result is still true if k is finite, but a
different proof is needed.) Let x,,..., x, generate A as a k-algebra. We can
renumber the x, so that x,, . .., x, are algebraically independent over k and each
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If n = r there is nothing to do, so suppose n > r and the result true forn — 1
generators. The generator x, is algebraic over k[x,,..., X,-1], hence there
exists a polynomial f # 0 in n variables such that f{(x;,..., Xp-1, X») = 0. Let
F be the homogeneous part of highest degree in f. Since k is infinite, there exist
A, ..., An-y €k such that F(A,..., -1, 1) # 0. Put xi = x; — AXa
(1 < i< n - 1). Show that x, is integral over the ring 4" = k[xi, ..., xa-1)
and hence that A is integral over A". Then apply the inductive hypothesis to A4
to complete the proof.

From the proof it follows that y,, ..., y, may be chosen to be linear com-
binations of x3, . . ., x,. This has the following geometrical interpretation: if k is
algebraically closed and X is an affine algebraic variety in A* with coordinate
ring A # 0, then there exists a linear subspace L of dimension r in k* and a linear
mapping of k™ onto L which maps X onto L. [Use Exercise 2.]

Nullstellensatz (weak form).

Let X be an affine algebraic variety in £*, where k is an algebraically closed field,
and let I(X) be the ideal of X in the polynomial ring k[, ..., ta] (Chapter 1,
Exercise 27). If I(X) # (1) then X is not empty. [Let A = k[f1, ..., t)/I(X)
be the coordinate ring of X. Then A4 # 0, hence by Exercise 16 there exists a
linear subspace L of dimension > 0 in k" and a mapping of X onto L. Hence
X # @.]
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Deduce that every maximal ideal in the ring &[z, ..., t,] is of the form
(t1 - ar,...,t, — ay) where g;c k.

Let k be a field and let B be a finitely generated k-algebra. Suppose that B
is a field. Then B is a finite algebraic extension of k. (This is another version
of Hilbert’s Nulistellensatz. The following proof is due to Zariski. For other
proofs, see (5.24), (7.9).)

Let x;,..., x, generate B as a k-algebra. The proof is by induction on ».
If n = 1 the result is clearly true, so assume n > 1. Let 4 = k[x,] and let
K = k(x,) be the field of fractions of 4. By the inductive hypothesis, B is a
finite algebraic extension of K, hence each of xs, ..., x, satisfies a monic poly-
nomial equation with coefficients in K, i.e. coefficients of the form a/b where a
and b are in 4. If fis the product of the denominators of all these coefficients,
then each of xa,.. ., x, is integral over 4;. Hence B and therefore KX is integral
over A;.

Suppose x; is transcendental over k. Then 4 is integrally closed, because it is
a unique factorization domain. Hence A, is integrally closed (5.12), and there-
fore A, = K, which is clearly absurd. Hence x; is algebraic over k, hence K
(and therefore B)is a finite extension of k.

Deduce the result of Exercise 17 from Exercise 18.

Let A be a subring of an integral domain B such that B is finitely generated over
A. Show that there exists 5§ # 0in 4 and elements yy, ..., ya in B, algebraically
independent over 4 and swch that B, is integral over B;, where B’ =
Alyi, ..., ) [Let S = A — {0} and let X = §~14, the field of fractions of A.
Then S 1B is a finitely generated K-algebra and therefore by the normalization
lemma (Exercise 16) there exist xy,..., x, in § ~1B, algebraically independent
over K and such that $~'B is integral over K[xi,..., x,.]. Let z, ..., 2Zn
generate B as an A-algebra. Then each z; (regarded as an element of §~1B) is
integral over K[xi, ..., x,]. By writing an equation of integral dependence
for each z;, show that there exists s € § such that x, = y/s (1 < i € n) with
yi € B, and such that each sz, is integral over B’. Deduce that this s satisfies the
conditions stated.]

Let A, B be as in Exercise 20. Show that there exists s # 0 in A such that,
if Q is an algebraically closed field and /: A — Q is a homomorphism for which
f(s) # 0, then f can be extended to a homomorphism B — Q. [With the
notation of Exercise 20, f can be extended first of all to B’, for example by
mapping each y to 0; then to B; (because f(s) # 0), and finally to B, (by
Exercise 2, because B, is integral over B)).]

Let 4, B be as in Exercise 20. If the Jacobson radical of A4 is zero, then so is the
Jacobson radical of B.

[Ley v # O be an element of B. We have to show that there is a maximal ideal
of B which does not contain ». By applying Exercise 21 to the ring B, and its
subring A, we obtain an element s # 0 in 4. . Let m be a maximal ideal of 4
such that s ¢ m, and let & = A/m. Then the canonical mapping 4 — k extends
to a homomorphism g of B, into an algebraic closure Q of k. Show thatg(v) # 0
and that Ker (g) N B is a maximal ideal of B.]
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Let A be a ring. Show that the following are equivalent:
i) Every prime ideal in A is an intersection of maximal ideals.

i) In every homomorphic image of A the nilradical is equal to the Jacobson

radical.
iii) Every prime ideal in A which is not maximal is equal to the intersection

of the prime ideals which contain it strictly.
[The only hard part is iii) = ii). Suppose ii) false, then there is a prime ideal
which is not an intersection of maximal ideals. Passing to the quotient ring,
we may assume that A is an integral domain whose Jacobson radical &R is not
zero, Let fbe a non-zero element of R, Then A4, # 0, hence 4, has a maximal
ideal, whose contraction in A is a prime ideal p such that f¢ p, and which is
maximal with respect to this property. Then p is not maximal and is not equal
to the intersection of the prime ideals strictly containing p.]

A ring A with the three equivalent properties above is called a Jacobson
ring.

Let A be a Jacobson ring (Exercise 23) and B an A4-algebra. Show that if B is
cither (i) integral over A or (i) finitely generated as an A4-algebra, then B is
Jacobson. [Use Exercise 22 for (ii).]

In particular, every finitely generated ring, and every finitely generated
algebra over a field, is a Jacobson ring.

Let A4 be a ring. Show that the following are equivalent:

i) A is a Jacobson ring;

ii) Every finitely generated A-algebra B which is a field is finite over A4.

[i) = ii). Reduce to the case where 4 is a subring of B, and use Exercise 21.
If s € A is as in Exercise 21, then there exists a maximal ideal 11t of 4 not con-
taining 5, and the homomorphism 4 — 4/m = k extends to a homomorphism
£ of B into the algebraic closure of k. Since B is a field, g is injective, and g(B)
is algebraic over k, hence finite aigebraic over 4.

if) = i). Use criterion iii) of Exercise 23. Let p be a prime ideal of 4 which is
not maximal, and let B = A/p. Let fbe a non-zero element of B. Then B,is a
finitely generated A-algebra. If it is a field it is finite over B, hence integral
over B and therefore B is a field by (5.7). Hence B, is not a field and therefore
has a non-zero prime ideal, whose contraction in B is a non-zero ideal p’ such

that f¢ p’.]

Let X be a topological space. A subset of X is locally closed if it is the inter-

section of an open set and a closed set, or equivalently if it is open in its closure.
The following conditions on a subset X, of X are equivalent:

(1) Every non-empty locally closed subset of X meets Xo;

(2) For every closed set E in X we have EN X, = E;
(3) The mapping U U N X, of the collection of open sets of X onto the col-
lection of open sets of X, is bijective.
A subset X, satisfying these conditions is said to be very dense in X,
If A is a ring, show that the following are equivalent:
i} A is a Jacobson ring;
il) The set of maximal ideals of A4 is very dense in Spec (4);
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iii) Every locally closed subset of Spec (A4) consisting of a single point is closed.
{i)) and iii) are geometrical formulations of conditions ii) and iii) of Exercise 23.]

Valuation rings and valuations

Let A, B be two local rings. B is said to dominate A if A is a subring of B and
the maximal ideal m of A is contained in the maximal ideal n of B (or, equiva-
lently, if m = n N A4). Let X be a field and let T be the set of all local subrings
of X, If Z is ordered by the relation of domination, show that £ has maximal
elements and that 4 € £ is maximal if and only if A4 is a valuation ring of X.

[Use (5.21).]

Let A be an integral domain, X its field of fractions. Show that the following are
equivalent:
(1) A is a valuation ring of K;
(2) If a, b are any two ideals of A4, then eithera € borb < a

Deduce that if A is a valuation ring and p is a prime ideal of A, then Ay and
A/p are valuation rings of their fields of fractions.

Let A be a valuation ring of a field K. Show that every subring of K which
contains A is a local ring of A.

Let A be a valuation ring of a field K. The group U of units of A4 is a subgroup
of the multiplicative group K* of X.

Let T = K*/U. If ¢ neT are represented by x,y € K, define ¢ = n to
mean xy~! € A. Show that this defines a total ordering on T" which is compatible
with the group structure (i.e., { = n = fw 2 nw for all w € I'). In other words,
T is a totaily ordered abelian group. It is called the value group of A,

Let v: K* — T be the canonical homomorphism. Show that v(x + y)>
min (v(x), o(»)) for all x, y € K*.

Conversaelv let T be a totally ordered a eL oup (written additively), and le
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K be a field. A valuation of K withvaluesinT is a
(1 vlxy) = v(x) + v(»),
@) v(x + y) = min (v(x), v(»)),
for all x, y e K*. Show that the set of elements x € K* such that v(x) = Oisa
valuation ring of K. This ring is called the valuation ring of v, and the subgroup
o(K*) of T is the value group of v.

Thus the concepts of valuation ring and valuation are essentially equivalent.

-

Let T" be a totally ordered abelian group. A subgroup A of T is isolated in T if,
whenever 0 < 8 < ¢ and a €A, we have B A. Let A be a valuation ring of a
field K, with value group I' (Exercise 31). If p is a prime ideal of A4, show that
v(A — p) is the set of elements > 0in an isolated subgroup A of T', and that the
mapping so defined of Spec (A) into the set of isolated subgroups of I' i i‘bl-
jective.

If b is a prime ideal of A4, what are the value groups of the valuation rings
Alp, Ap?

Let I' bea totally ordered abelian group. We shall show how to construct a field
K and a valuation v of K with I’ as value group. Let k be any field and let
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A = k[I'] be the group algebra of I" over k. By definition, A is freely generated as
a k-vector space by elements x, (« € ') such that x,x; = Xz4+5. Show that 4
is an integral domain.

If u = Mxg, +---+ Auxg, is any non-zero element of 4, where the A are
all # 0 and a; << «,, define vo(w) to be ;. Show that the mapping
ve: A — {0} — T satisfies conditions (1) and (2) of Exercise 31.

Let X be the field of fractions of 4. Show that v, can be uniquely extended

to a valuation v of K, and that the value group of v is precisely T'.

Let A be a valuation ring and X its field of fractions. Let f: A — B be a ring
homomorphism such that f*: Spec (B) — Spec (A4) is a closed mapping. Then if

_g: B— K is any A-algebra homomorphism (i.e., if g f is the embedding of

A in K) we have g(B) = A.

[Let C = g(B); obviously C = 4. Let n be a maximal ideal of C. Since f* is
closed, m = n N A is the maximal ideal of 4, whence An = A. Also the local
ring Cn dominates Am. Hence by Exercise 27 we have Cn = A4 and therefore
Cc Al]

From Exercises | and 3 it follows that, if f/* 4 — B is integral and C is any
A-algebra, then the mapping (f ® 1)*: Spec (B ®, C) — Spec (C) is a closed
map.

Conversely, suppose that f: 4 — B has this property and that B is an in-
tegral domain. Then fis integral. [Replacing A by its image in B, reduce to
the case where 4 = B and f is the injection. Let K be the field of fractions of
B and let A" be a valuation ring of K containing A. By (5.22) it is enough to show
that A" contains B. By hypothesis Spec (B ®, A") — Spec (A’) is a closed
map. Apply the resuit of Exercise 34 (o the homomorphism B ®, A" —> K
defined by b ® a’+ ba’. 1t follows that ba’ e A’ for all be B and all s’ € 4';
taking a° = 1, we have what we want.]

Show that the result just proved remains valid if B is a ring with only
finitely many minimal prime ideals (e.g., if B is Noetherian). [Let p, be the
minimal prime ideals. Then each composite homomorphism 4 — B — B/,
is integral, hence 4 — II (B/p)) is integral, hence 4 —> B/R is integral (where
M is the nilradical of B), hence finally 4 — B is integral.]
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So far we have considered quite arbitrary commutative rings (with identity).
To go further, however, and obtain deeper theorems we need to impose some
finiteness conditions. The most convenient way is in the form of “chain con-
ditions”. These apply both to rings and modules, and in this chapter we
consider the case of modules. Most of the arguments are of a rather formal kind
and because of this there is a symmetry between the ascending and descending
chains—a symmetry which disappears in the case of rings as we shall see in
subsequent chapters.

Let X be a set partially ordered by a relation < (i.e.,, < is reflexive and
transitive and is such that x < y and y € x together imply x = y).

Proposition 6.1. The following conditions on Z are equivalent:

i) Every increasing sequence x; € xg < --- in 2 is stationary (i.e., there
existsnsuch that x, = Xp41 =)

ii) Every non-empty subset of = has a maximal element.

Proof. i) == ii). Ifii)is false there is a non-empty subset T of 2 with no maximal
element, and we can construct inductively a non-terminating strictly increasing
sequence in 7.

ii) = i). The set (Xp)n=1 has a maximal element, say x,. =

If Z is the set of submodules of 2 module M, ordered by the relation <, then
i) is called the ascending chain condition (a.c.c. for short) and ii) the maximal
condition. A module M satisfying either of these equivalent conditions is said
to be Noetherian (after Emmy Noether). If Z is ordered by =, then i) is the
descending chain condition (d.c.c. for short) and ii) the minimal condition. A
module M satisfying these is said to be Artinian (after Emil Artin).

Examples. 1) A finite abelian group (as Z-module) satisfies both a.c.c. and

d.c.c.
2) The ring Z (as Z-module) satisfies a.c.c. but not d.c.c. ForifaeZ and
a # 0 we have (@) @ (@%) >---> (@®) ... (strict inclusions).

3) Let G be the subgroup of Q/Z consisting of all elements whose order is a
power of p, where p is a fixed prime. Then G has exactly one subgroup G, of
T4
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order p* for eachn > 0, and G, < G, -+ < G, <--- (strict inclusions) so
that G does not satisfy the a.c.c. On the other hand the only proper subgroups
of G are the G,, so that G does satisfy d.c.c.

4) The group H of all rational numbers of the form m/p* (im,ne Z, n > 0)
satisfies neither chain condition. For we have an exact sequence0 — Z — H —
G — 0, so that H doesn’t satisfy d.c.c. because Z doesn’t; and H doesn’t
satisfy a.c.c. because G doesn’t.

5) The ring k[x] (k a field, x an indeterminate) satisfies a.c.c. but not d.c.c.
on ideals.

6) The polynomial ring k[x,, X, ...]in an infinite number of indeterminates
x, satisfies nmeither chain condition on ideals: for the sequence (x;) < (x;, x,)
<..- is strictly increasing, and the sequence (x;) @ (x}) > (x}) >--- is
strictly decreasing.

7) We shall see later that a ring which satisfies d.c.c. on ideals must also

satisfy a.c.c. on ideals. (This is not true in general for modules: see Examples
2, 3 above.)

Proposition 6.2. M is a Noetherian A-module <> every submodule of M is
finitely generated.

Proof. =: Let N be a submodule of M, and let Z be the set of all finitely
generated submodules of N. Then Z is not empty (since 0 €Z) and therefore
has a maximal element, say Ny. If N, # N, consider the submodule N, 4+ Ax
where x € N, x ¢ N,; this 1s finitely generated and strictly contains N,, so we
have a contradiction. Hence N = N, and therefore N is finitely generated.

= T at A — M ... ha cw sgpandiae ahaotoe AF artheandizlas ~F ASF
. LUV ) = g =t DO all adlClldillg Lllaili O suoinouuics o1 1.

Then N = Urw; M, is a submodule of M, hence is finitely generated, say by
X1y---s Xy Say x,€M, and let n = max{.; n;; then each x,€ M,, hence
M, = M and therefore the chain is stationary. =

Because of (6.2), Noetherian modules are more important than Artinian
modules: the Noetherian condition is just the right finiteness condition to make
a lot of theorems work. However, many of the elementary formal properties
apply equally to Noetherian and Artinian modules.

Proposition 6.3. Let 0~ M' % MEZ. M" — 0 be an exact sequence of
A-modules, Then

1) M is Noetherian <~ M' and M " are Noetherian;
1) M is Artinian <~ M’ and M" are Artinian.
Proof. We shall prove i); the proof of ii) is similar.

=: An ascending chain of submodules of M’ (or M”) gives rise to a chain
in M, hence is stationary.
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<: Let (L,)x>1 be an ascending chain of submodules of M; then («~*(L,))
is a chain in M’, and (B(L,)) is a chain in M”. For large enough 7 both these
chains are stationary, and it follows that the chain (L,) is stationary. ®

Corollary 64. If M, (1 < i < n)are Noetherian (resp. Artinian) A-modules,
50 Is Py M,

Proof. Apply induction and (6.3) to the exact sequence

n n-1
O->M, -~ P M~ M—->0 n
f=] im]
A ring A is said to be Noetherian (tesp. Artinian) if it is so as an 4-module,
i.e., if it satisfies a.c.c. (resp. d.c.c.) on ideals.

Examples. 1) Any field is both Artinian and Noetherian; so is the ring Z/(n)
(n % 0). The ring Z is Noetherian, but not Artinian (Exercise 2 before (6.2)).

2) Any principal ideal domain is Noetherian (by (6.2): every ideal is finitely
generated).

3) The ring k[x,, x5, . . .] is not Noetherian (Exercise 6 above). But it is
an integral domain, hence has a field of fractions. Thus a subring of a Noetherian
ring need not be Noetherian.

4) Let X be a compact infinite Hausdorff space, C(X) the ring of real-
valued continuous functions on X. Take a strictly decreasing sequence F, =
F; ... of closed sets in X, and let a, = {fe C(X):f(F,) = 0}. Then the

a, form a strictly increasing sequence of ideals in C(X): so C(X) is not a
Noetherian ring.

Proposition 6.5. Let A be a Noetherian (resp. Artinian) ring, M a finitely-
generated A-module. Then M is Noetherian (resp. Artinian).

Proof. M is a quotient of A™ for some n: apply (6.4) and (6.3). =

Proposition 6.6. Let A be Noetherian (resp. Artinian), a an ideal of A.
Then A/a is a Noetherian (resp. Artinian) ring.

Proof. By (6.3) A/a is Noetherian (resp. Artinian) as an 4-module, hence also
as an A/a-module. =

A chain of submodules of 2 module M is a sequence (M) (0 < i < n) of
submodules of M such that

M=M,> M 2--.2 M, = 0 (strict inclusions).

The length of the chain is » (the number of “links™). A composition series of M
is a maximal chain, that is one in which no extra submodules can be inserted:
this is equivalent to saying that each quotient M,_,/M, (1 < i < n) is simple
(that is, has no submodules except 0 and itself). ' '
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Proposition 6.7. Suppose that M has a compaosition series of length n. Then
every composition series of M has length n, and every chain in M can be
extended to a composition series.

Proof. Let I(M) denote the least length of a composition series of a module M.
(I(M) = +oo if M has no composition series.)

i)y N M= I(N) < I(M). Let (M,) be a composition series of M of
minimum length, and consider the submodules ¥, = NN M, of N. Since
N._1/N; & M,_,/M,and the latter is a simple module, we have either N,_,/N, =
M, /M, orelse N._, = N,; hence, removing repeated terms, we have a com-
position series of &, so that (V) < I(M). IfI(N) = I(M) = n, then N,_,/N, =
M, /M, for each i =1,2,...,n; hence M,_; = N,_,, hence M,_, =
N,_3,...,and finally M = N.

ii)) Any chain in M has length < I(M). Let M = M, > M, >... be a
chain of length k. Then by i) we have I(M) > I(M)) >---> I(M,) = 0,
hence I(M) > k.

iii) Consider any composition series of M. If it has length &, then k < I(M)
by ii), hence k = /(M) by the definition of /(M). Hence all composition series
have the same length. Finally, consider any chain. Ifits length is /(M) it must be
a composition series, by i1); if its length is < /(M) it is not a composition series,
hence not maximal, and therefore new terms can be inserted until the length is
M) m

Proposition 6.8. M has a composition series <= M satisfies both chain
conditions.
Proof. =: All chains in M are of bounded length, hence both a.c.c. and d.c.c.
hold.

<=: Construct a composition series of M as follows. Since M = M,
satisfies the maximum condition by (6.1), it has a maximal submodule M, < M,
Similarly M, has a maximal submodule M, < M,, and so on. Thus we have a
strictly descending chain M, > M; 2 ... which by d.c.c. must be finite, and
hence is a composition series of M. ®

A module satisfying both a.c.c. and d.c.c. is therefore called a module of
finite length. By (6.7) all composition series of M have the same length /(M),
called the length of M. The Jordan-Hélder theorem applies to modules of finite
length: if (M ))o<.<a and (M)y< <» are any two composition series of M, there
is a one-to-one correspondence between the set of quotients (M. ,/M\); ¢<i<» and
the set of quotients (M;_;/M)1 << such that corresponding quotients are
isomorphic. The proof is the same as for finite groups.

Proposition 6.9, The length I(M) is an additive function on the class of all
A-modules of finite length.
Proof. We have to show thatif 0 —> M’ 5 M 2, M” - 0is an exact sequence,
then /(M) = I(M’) + I(M"). Take the image under « of any composition



78 CHAIN CONDITIONS

series of M’ and the inverse image under 8 of any composition series of M”;
these fit together to give a composition series of M, hence the result. =

Consider the particular case of modules over a field %, i.e., k-vector spaces:

Proposition 6.10. For k-vector spaces V the following conditions are equiva-
lent:
i) finite dimension;

ii) finite length;

iil) a.c.c.;

iv) d.c.c.

Moreover, if these conditions are satisfied, length = dimension.
Proof. i) = ii) is elementary; ii) = iii), if} = iv) from (6.8). Remains to prove
iii) = i) and iv)} = 1). Suppose i) is false, then there exists an infinite sequence
(Xa)n>1 Of linearly independent elements of V. Let U, (resp. ¥,) be the vector

space spanned by x;,..., x, (résp., X1, Xnsa,-..). Then the chain (V)51
(resp. (Vw)a51) is infinite and strictly ascending (resp. strictly descending).

Corollary 6.11. Let A be aring in which the zero ideal is a product m, - - - m, of
(not necessarily distinct) maximal ideals. Then A is Noetherian if and only if A
is Artinian.

Proof. Consider the chain of ideals 4 > my, 2 mym, 2---2 my-+-m, =0,

Each factor m;...m,_,/m, - .m, is a vector space over the field 4/m,. Hence
a.c.c. < d.c.c. for each factor. But a.c.c. (resp. d.c.c.) for each factor < a.c.c.
(resp. d.c.c.) for 4, by repeated application of (6.3). Hence a.c.c. < d.c.c.
ford. =

EXERCISES

1. i) Let M be a Noetherian A-module and u: M — M a module homomorphism.
If u is surjective, then u is an isomorphism.
if) If M is Artinian and u is injective, then again u is an isomorphism.
[For (i), consider the submodules Ker (¥*); for (ii), the quotient modules
Coker (u).]

2. Let M be an 4-module. If every non-empty set of finitely generated submodules
of M has a maximal element, then M is Noetherian.

3. Let M be an A-module and let N;, N; be submodules of M. If M/N, and
M]|N, are Noetherian, so is M/(N; n N;). Similarly with Artinian in place of
Noetherian.

4. Let M be a Noetherian A-module and let a be the annihilator of M in A. Prove
that 4/a is a Noetherian ring.
If we replace “Noetherian™ by “Artinian’ in this result, is it still true?
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A topological space X is said to be Noetherian if the open subsets of X satisfy
the ascending chain condition (or, equivalently, the maximal condition). Since
closed subsets are complemcnts of Oopen suosets, it comes to the same tmng
to say that the closed subsets of X satisfy the descending chain condition (or,
equivalently, the minimal condition). Show that, if X is Noetherian, then every

subspace of X is Noetherian, and that X is quasi-compact.

Prove that the following are equivalent:

i) X is Noetherian.

iil) Every open subspace of X is quasi-compact.
iii) Every subspace of X is quasi-compact.

A Noetherian space is a finite union of irreducible closed subspaces. [Consider
the set Z of closed subsets of X which are not finite unions of irreducible closed
subspaces.] Hence the set of irreducible components of a Noetherian space is
finite.

If A is a Noetherian ring then Spec (A4) is a Noetherian topological space. Is the
converse true?

Deduce from Exercise 8 that the set of minimal prime ideals in a Noetherian ring
is finite.

If M is a Noetherian module {over an arbitrary ring A) then Supp (M) is a closed
Noetherian subspace of Spec (A).

Let f1 A — Bbearing homomorphism and suppose that Spec (B) is a Noetherian
space (Exercise 5). Prove that f*: Spec (B) — Spec (A) is a closed mapping if
and only if fhas the going-up property (Chapter 5, Exercise 10).

A be a ring such that Spec (4) is a Noetherian space. Show that the set f

an a iAo £ 4 sicfy tha o Aoy alan Az o th te
priitic ideals of A satisfies the ascending ¢ chain condition. Is the converse true

-1



Noetherian Rings

We recall that a ring A is said to be Noetherian if it satisfies the following three
equivalent conditions: :

1) Every non-empty set of ideals in 4 has a maximal element.
2) Every ascending chain of ideals in A is stationary.
3) Every ideal in A is finitely generated.

(The equivalence of these conditions was proved in (6.1) and (6.2).)
Noetherian rings are by far the most important class of rings in commutative
algebra: we have seen some examples already in Chapter 6. In this chapter we
shall first show that Noetherian rings reproduce themselves under various
familiar operations—in particular we prove the famous basis theorem of Hilbert.
We then proceed to make a number of important deductions from the
Noetherian condition, including the existence of primary decompositions.
Proposition 7.1. If A is Noetherian and ¢ is a homomorphism of A onto a
ring B, then B is Noetherian.
Proof. This follows from (6.6), since B =~ Afa, where a = Ker(¢). =

Proposition 7.2. Let A be a subring of B; suppose that A is Noetherian and
that B is finitely generated as an A-module. Then B is Noetherian (as a ring).

Proof. By (6.5) B is Noetherian as an 4-module, hence also as a B-module. =

Example. B = Z[i], the ring of Gaussian integers. By (7.2) B is Noetherian.
More generally, the ring of integers in any algebraic.-number field is Noetherian.

Proposition 7.3. If A is Noetherian and S is any multiplicatively closed
subset of A, then S~*A is Noetherian.
Proof. By (3.11—i) and (1.17—iii) the ideals of S~'4 are in one-to-one order-
preserving correspondence with the contracted ideals of 4, hence satisfy the max-
imal condition. (Alternative proof: if a is any ideal of 4, then a has a finite set
of generators, say Xi, ..., Xy, and it is clear that S~ 1a is generated by x,/1, ...,

x,/1.) =

Corollary 7.4. If A is Noetherian and v is a prime ideal of A, then Ay is
Noetherian. m

on
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Theorem 7.5. (Hilbert’s Basis Theorem). If A is Noetherian, then the
polynomial ring A[x] is Noetherian.
Proof. Let a be an ideal in A[x]. The leading coefficients of the polynomials in
a form an ideal Iin 4. Since 4 is Noetherian, [ is finitely generated, say by
a,...,a,. Foreachi = 1,..., nthereis a polynomial f; € A[x] of the form
fi = ax™ + (lower terms). Let r = maxl.,r. The f; generate an ideal
a' € ain A[x].

Let f = ax™ + (lower terms) be any element of a; we haveael. Ifm > r,
write @ = J7a; wa, where ;€ A; then f — J u,fix™ " is in a and has degree
< m. Proceeding in this way, we can go on subtracting elements of a’ from f
until we get a polynomial g, say, of degree < r; that is, we have f = g + A,
where he a’.

Let M be the A-module generated by I, x,..., x"~!; then what we have
“proved is that a = (aN M) + a’. Now M is a finitely generated 4-module,
hence is Noetherian by (6.5), hence a N M is finitely generated (as an 4-module)
by (6.2). If g,, ..., g generate a N M it is clear that the f; and the g, generate a.
Hence a is finitely generated and so A4[x] is Noetherian. m

Remark. 1t is also true that 4 Noetherian = A[[x]] Noetherian (4[[x]] being
the ring of formal power series in x with coefficients in 4). The proof runs
almost parallel to that of (7.5) except that one starts with the terms of lowest
degree in the power series belonging to a. See also (10.27).

Corollary 7.6. If A is Noetherian so is A[x,, . . ., x,].
Proof. By induction on n from (7.5). =
Corollary 7.7. Let B be a finitely-generated A-algebra. If A is Noetherian,
then so is B.
In particular, every finitely-generated ring, and every finitely generated
algebra over a field, is Noetherian,
Proof. B is a homomorphic image of a polynomial ring A[x, .. ., x,), which is
Noetherian by (7.6). =

Proposition 7.8. Let A = B < (C be rings. Suppose that A is Noetherian,
that C is finitely generated as an A-algebra and that C is either (i) finitely
generated as a B-module or (ii) integral over B. Then B is finitely generated
as an A-algebra.
Proof. 1t follows from (5.1) and (5.2) that the conditions (i) and (ii) are equiva-
lent in this situation. So we may concentrate on (i).
Let x,, ..., X, generate C as an 4-algebra, and let y,, . . ., y, generate Cas a
B-module. Then there exist expressions of the form

X, = Z by,  (by€B) )

Wy = Z biyx  (byi € B). @
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Let B, be the algebra generated over 4 by the b, and the b,;. Since A is
Noetherian, so is B, by (7.7), and 4 € B, < B.

Any element of C is a polynomial in the x; with coefficients in 4. Sub-
stituting (1) and making repeated use of (2) shows that each element of Cis a
linear combination of the y, with coefficients in By, and hence C is finitely
generated as a B,-module. Since B, is Noetherian, and B is a submodule of C,
it follows (by (6.5) and (6.2)) that B is finitely generated as a By-module. Since
B, is finitely generated as an A-algebra, it follows that B is finitely-generated as
an A-algebra. =

Proposition 7.9. Let k be a field, E a finitely generated k-algebra. If E is a

field then it is a finite algebraic extension of k.

Proof. Let E = k{x,,...,x,]. If E is not algebraic over k then we can re-
number the x; so that x,, ..., x, are algebraically independent over k, where
r = 1, and each of x,,4,..., X, is algebraic over the field F = k(xy,..., x,).
Hence E is a finite algebraic extension of F and therefore finitely generated as an
F-module. Applying (7.8)to k < F < E, it follows that Fis a finitely generated
k-algebra, say F = k[y1,..., y;]. Each y, is of the form f,/g,, where f; and g;
are polynomials in x,.. ., X,

Now there are infinitely many irreducible polynomials in the ring
kix,, ..., x,] (adapt Euclid’s proof of the existence of infinitely many prime
numbers). Hence there is an irreducible polynomial A which is prime to each
of the g, (for example, h = g.g8,- - -g. + 1 would do) and the element A~ of F
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braic over k, and therefore finite algebraic. =

Corollary 7.10. Let k be a field, A a finitely generated k-algebra. Let m bea
maximal ideal of A. Then the field Ajm is a finite algebraic extension of k.
In particular, if k is algebraically closed then A/m =~ k.

Proof. Take E = Afmin (7.9). =m

(7.10) is the so-called ‘‘weak” version of Hilbert’s Nullstellensatz
(= theorem of the zeros). The proof given here is due to Artin and Tate. For
its geometrical meaning, and the “strong” form of the theorem, see the Exercises
at the end of this chapter.

PRIMARY DECOMPOSITION IN NOETHERIAN RINGS

The next two lemmas show that every ideal # (1) in a Noetherian ring has a
primary decomposition.
An ideal a is said to be irreducible if

a=bNe¢=(a=D0bbora =)
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Lemma 7.11. In a Noetherian ring A every ideal is a finite intersection of
irreducible ideals.

Proof. Suppose not; then the set of ideals in 4 for which the lemma is false is
not empty, hence has a maximal element a. Since a is reducible, we have
a =bNcwhereb > aand ¢ > a. Hence each of b, c is a finite intersection of
irreducible ideals and therefore so is a: contradiction. =

Lemma 7.12. In a Noetherian ring every irreducible ideal is primary.

Proof. By passing to the quotient ring, it is enough to show that if the zero ideal
is irreducible then it is primary. Let xy = 0 with y # 0, and consider the chain
of ideals Ann(x) & Ann(x?) < - .. By thea.c.c,, this chain is stationary, i.e., we
have Ann(x") = Ann(x**!) =... for some n. It follows that (x*) N (») = 0;
forif a € (y) then ax = 0, and if @ € (x*) then @ = bx™, hence bx"*! = 0, hence
b e Ann(x**1) = Ann(x"), hence bx" = 0; thatis, @ = 0. Since (0) is irreducible
and (y) # O we must therefore have x* = 0, and this shows that (0) is primary. @

From these two lemmas we have at once

Theorem 7.13. Ina Noetherian ring A every ideal has a primary decomposi-
tion. ®

Hence all the resuits of Chapter 4 apply to Noetherian rings.

Proposition 7.14. In a Noetherian ring A, every ideal o contains a power of
its radical.

Proof. Let xi,...,x, generate r(a): say xPhrea(l €i<k) Let m=
>¢.i(m ~ 1) + 1. Then r(a)™ is generated by the products xi!---xf* with
> ri = m; from the definition of m we must have r, > n, for at least one index i,
hence each such monomial lies in a, and therefore r(@a)* < a. =

Corollary 7.15. In a Noetherian ring the nilradical is nilpotent.
Proof. Takea = (0)in (7.14). =

Corollary 7.16. Let A be a Noetherian ring, w a maximal ideal of A, q any
ideal of A. Then the following are equivalent:
1) q is m-primary;
ii) r(g) = m;
it) m* € q € m for somen > 0.
Proof. 1) = ii) is clear; ii) = i) from (4.2); ii) = iii) from (7.14); iii) = ii) by
taking radicals: m = r(m") € r(g) < r(m) = m. ®
Proposition 7.17. Let a # (1) be an ideal in a Noetherian ring. Then the
prime ideals which belong to a are precisely the prime ideals which occur in the
set of ideals (a:x) (x € A).
Proof. By passing to 4/a we may assume that @ = 0. Let (Nf-; 9, =0 be a
minimal primary decomposition of the zero ideal, and let p, be the radical of g



84 NOETHERIAN RINGS

Let a; = (N);#¢9; # 0. Then from the proof of (4.5) we have r(Ann(x)) =
for any x # 0in qa, so that Ann(x) <

Since g, is p,-primary, by (7.14) there exists an integer /» such that p7* < g,
and therefore ap S a,Npt S a,Ng, =0. Let m > 1 be the smallest
integer such that qpl® = 0, and let x be a non-zero element in a;p* . Then
p;x = 0, therefore for such an x we have Ann(x) 2 p,, and hence Ann(x) = p..

Conversely, if Ann(x) is a prime ideal p, then r(Ann(x)) = pand so by (4.5)
p 1s a prime ideal belonging to 0. m

EXERCISES

1. Let 4 be a non-Noetherian ring and let £ be the set of ideals in 4 which are not
finitely generated. Show that = has maximal elements and that the maximal
elements of % are prime ideals.

[Let a be a maximal element of Z, and suppose that there exist x, y € A such that
x¢a and yéa and xyea. Show that there exists a finitely generated ideal
Gy = a such that a9 + (x) = a + (x), and that a = a, + x-(a:x). Since
(a:x) strictly contains a, it is finitely generated and therefore so is a.]

Hence a ring in which every prime ideal is finitely generated is Noetherian
(I. S. Cohen).

2. Let A be a Noetherian ring and let f = 2. a.x" € A[[x]]. Prove that f is
nilpotent if and only if each a, is nilpotent.

3. Let a be an irreducible ideal in a ring 4. Then the following are equivalent:
i) ais primary;
i) for every multiplicatively closed subset S of 4 we have (S ~1a)* = (a:x) for
some x€ S
iii) the sequence (a:x") is stationary, for every x € A.

4. Which of the following rings are Noetherian ?

i) The ring of rational functions of z having no pole on the circle |z] =

ii) The ring of power series in z with a positive radius of convergence.

iii) The ring of power series in z with an infinite radius of convergence.

iv) The ring of polynomials in z whose first k& derivatives vanish at the origin
(k being a fixed integer).

v) The ring of polynomials in z, w all of whose partial derivatives with respect
to w vanish for z = 0.
In all cases the coefficients are complex numbers.

5. Let A be a Noetherian ring, B a finitely generated A4-algebra, G a finite group of
A-automorphisms of B, and B¢ the set of all elements of B which are left fixed
by every element of G. Show that B is a finitely generated A4-algebra.

6. If a finitely generated ring K is a field, it is a finite field.
[If K has characteristic 0, we have Z © Q = K. Since K is finitely generated
over Z it is finitely generated over Q, hence by (7.9) is a finitely generated Q-
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. o
module. Now apply (7.8) to obtain a contradiction. Hence K is of characteristic
p > 0, hence is finitely generated as a Z/(p)-algebra. Use (7.9) to complete the
proof.]

Let X be an affine algebraic variety given by a family of equations fo(1,, . . ., t)
= 0 (« € I) (Chapter 1, Exercise 27). Show that there exists a finite subset /, of /
such that X is given by the equations fi(f1,..., ») = O for a € Iy,

. If A[x] is Noetherian, is 4 necessarily Noetherian?

. Let 4 be a ring such that

(1) for each maximal ideal m of A, the local ring Am is Noetherian;

(2) for each x # 0 in A, the set of maximal ideals of 4 which contain x is
finite.

Show that A4 is Noetherian.

[Let a # 0 be an ideal in 4. Let m,,..., m, be the maximal ideals which

contain a. Choose x; # 0 in a and let m,, ..., m,,, be the maximal ideals

which contain xo. Since m,.,,..., m,,s do not contain a there exist x, € a such

that x; ¢ m,.;(1 € j < 5). Since each Am, (1 < i < r) is Noetherian, the ex-

tension of a in Am, is finitely generated. Hence there exist x,43,...,X; in a

whose images in Am, generate Ama for i = 1,...,r. Let g = (xo,..., X0

Show that a, and a have the same extension in 4w for every maximal idealnt, and

deduce by (3.9) that a, = a.]

Let M be a Noetherian 4-module. Show that M [x] (Chapter 2, Exercise 6) is a
Noetherian A[x]-module.

Let A4 be a ring such that each local ring Ay is Noetherian. Is A necessarily
Noetherian?

Let A be a ring and B a faithfully flat 4-algebra (Chapter 3, Exercise 16). If B
is Noetherian, show that 4 is Noetherian. [Use the ascending chain condition.]

Let f: A — B be a ring homomorphism of finite type and let f*: Spec (B) —
Spec (4) be the mapping associated with f. Show that the fibers of f* are
Noetherian subspaces of B.

Nullstellensatz, strong form

Let &k be an algebraically closed field, let 4 denote the polynomial ring
k[ti, . ., ta] and let a be an ideal in A. Let V be the variety in &" defined by the
ideal a, so that Vis the set of all x = (x3, ..., x») € k™ such that f(x) = 0 for all
fea. Let I(V) be the ideal of V, i.e. the ideal of all polynomials g € 4 such that
g(x) = Ofor all xe V. Then I(V) = r(a).

[Itis clear that r(a) = I(¥). Conversely, let £ ¢ r(a), then there is a prime ideal p
containing a such that f¢ p. Let fbe the image of fin B = A/p,let C = B, =
B[1/f], and let m be a maximal ideal of C. Since C is a finitely generated -
algebra we have C/m = k, by (7.9). The images x; in C/m of the generators #
of 4 thus define a point x = (x,, ..., x,) € k", and the construction shows that
xe Vand f(x) # 0.]
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Let A be a Noetherian local ring, m its maximal ideal and k its residue field, and
let M be a finitely generated 4-module. Then the following are equivalent:

i) M is free;

ii) M is flat;
iii) the mapping of m @ M into 4 @ M is injective;
iv) Tord (k, M) = 0.
[To show that iv) = i), let x,, ..., x, be elements of M whose images in M/mM
form a k-basis of this vector space. By (2.8), the x, generate M. Let F be a free
A-module withbasis ey, . . ., e, and define ¢: F— M by ¢(e)) = x;. Let E = Ker
(). Then the exact sequence 0 — E — F — M — 0 gives us an exact sequence

0—> k @, E—> k@, F 2% ko, M—s 0.

Since k ® F and k ® M are vector spaces of the same dimension over k, it
follows that 1 ® ¢ is an isomorphism, hence ¥k @ E = 0, hence E = 0 by
Nakayama’s Lemma (E is finitely generated because it is a submodule of F, and 4
is Noetherian).]

Let A be a Noetherian ring, M a finitely generated 4-module. Then the following
are equivalent:
i) M is a flat 4-module;
ii) My is a free Ap-module, for all prime ideals p;
iil) Mm is a free Am-module, for all maximal ideals m.
In other words, flat = locally free. [Use Exercise 15.]

Let 4 be a ring and M a Noetherian A-module. Show (by imitating the proofs
of (7.11) and (7.12)) that every submodule N of M has a primary decomposition
(Chapter 4, Exercises 20-23).
Let 4 be a Noetherian ring, p a prime ideal of 4, and A a finitely generated
A-moduie. Show that the following are equivalent:

i) p belongs to 0 in M;

fi) there exists x € M such that Ann (x) = p;
iii) there exists a submodule of M isomorphic to A/p.

Deduce that there exists a chain of submodules
0=M0CM1C"'CM'=M

such that each quotient M,/M,_, is of the form A/p,, where v, is a prime ideal
of A.

Let a be an ideal in a Noetherian ring 4. Let

a = hb( =jr:1cf

i=]

be two minimal decompositions of a as intersections of irreducible ideals. Prove
that r = s and that (possible after re-indexing the ¢;) r(,) = r(c;) for all i
[Show that foreach i = 1, ..., r there exists j such that

a=biN---NB_yNegNBy NN D)

State and prove an analogous result for modules.



20.

21.

22.

23.

24.

25,

EXERCISES 87

Let X be a topological space and let & be the smallest collection of subsets of X

which contains all open subsets of X and is closed with respect to the formation

of finite intersections and complements.

i} Show that a subset E of X belongs to # if and only if Eis a finite union of sets
of the form U n C, where U is open and C is closed.

ii) Suppose that X is irreducible and let £¢ . %#. Show that E is dense in X

(i.e., that £ = X) if and only if £ contains a non-empty open set in X.

Let X be a Noetherian topological space (Chapter 6, Exercise 5) and let E € X.
Show that E € & if and only if, for each irreducible closed set X, & X, either

EnN X, # X,orelse EN X, contains a non-empty open subset of X,. [Suppose
E ¢ % . Then the collection of closed sets X’ & X such that En X’ ¢ % is not
empty and therefore has a minimal element X,. Show that X is irreducible and
then that each of the alternatives above leads to the conclusion that E N X% ]
The sets belonging to & are called the constructible subsets of X.

Let X be a Noetherian topological space and let E be a subset of X. Show that E
is open in X if and only if, for each irreducible closed subset X, in X, either
ENn X, = @ orelse EN X, contains a non-empty open subset of X,. [The
proof is similar to that of Exercise 21.]

Let 4 be a Noetherian ring, f: A — B a ring homomorphism of finite type (so
that B is Noetherian). Let X = Spec(A4), ¥ = Spec(B)and let f*: Y — X be
the mapping associated with f. Then the image under f* of a constructible
subset E of Y is a constructible subset of X.

[By Exercise 20 it is enough to take £ = U N C where Uis open and C is closed
in Y; then, replacing B by a homomorphic image, we reduce to the case where E
is open in Y. Since Y is Noetherian, E is quasi-compact and therefore a finite
union of open sets of the form Spec (8,). Hence reduce to the case E = Y. To
show that f*(7Y) is constructible, use the criterion of Exercise 21. Let X, be an
irreducible closed subset of X such that f*(Y) N X, is dense in X,. We have
YY) Xo = f*(f*~1(Xo)), and f*-1(X;) = Spec ((4/p) ®4 B), where X, =
Spec (A/p). Hence reduce to the case where A4 is an integral domain and f'is injec-
tive. If Y,,..., Y, are the irreducible components of Y, it is enough to show that
some f*( Y;) contains a non-empty open setin X. So finally we are brought down
to the situation in which A4, B are integral domains and f is injective (and still
of finite type); now use Chapter 5, Exercise 21 to complete the proof.]

With the notation and hypotheses of Exercise 23, f* is an open mapping <
f has the going-down property (Chapter 5, Exercise 10). [Suppose f has the
going-down property. As in Exercise 23, reduce to proving that E = f*(Y) is
open in X. The going-down property asserts that if p € E and p’ < p, then
p’ € E: in other words, that if X, is an irreducible closed subset of X and X,
meets E, then E N X, is dense in X,. By Exercises 20 and 22, Eis open in X.]

Let A be Noetherian, f: A — B of finite type and flar (i.e., B is flat as an A-
module). Then f*: Spec (B) — Spec (4) is an open mapping. {Exercise 24 and
Chapter 5, Exercise 11.]

44+1.CA.
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Grothendieck groups

Let 4 be a Noetherian ring and let F(4) denote the set of all isomorphism classes
of finitely generated 4-modules. Let C be the free abelian group generated by
F(A). With each short exact sequence 0 > M~ — M — M”" — 0 of finitely
generated A-modules we associate the element (M) — (M) + (M”) of C,
where (M) is the isomorphism class of M, etc. Let D be the subgroup of C
generated by these elements, for all short exact sequences. The quotient group
C/D is called the Grothendieck group of A, and is denoted by K(A4). If Misa
finitely generated 4-module, let (M), or y4(M), denote the image of (M) in
K(A). ‘

i) Show that K(A) has the following universal property: for each additive
function A on the class of finitely generated 4-modules, with values in an
abelian group G, there exists a unique homomorphism Aq: K(A4) — G such
that (M) = A(y(M)) for all M.

ii) Show that K(A) is generated by the elements y(A/p), where p is a prime ideal
of A. [Use Exercise 18.]

iii) If 4 is a field, or more generally if 4 is a principal ideal domain, then
KAz Z

iv) Let f: 4 — B be a finite ring homomorphism. Show that restriction of
scalars gives rise to a homomorphism f;: K(B) — K(A) such that f,(yB(N))
= y4N) for a B-module N. If g: B— C is another finite ring homo-
morphism, show that (g f) = fie g

Let A be a Noetherian ring and let F1(4) be the set of all isomorphism classes of

finitely generated flat A-modules. Repeating the construction of Exercise 26 we
nhfnlr} a group Y(A\ Leat . ( A denote the |mam= nf (M\ in K., fA\

WAIRALLL Wk £wINA SeWE FI\4Te J mwiivve saav =iy
i) Show that tensor product of modules over 4 mduces a commutative ring
structure on K;(A), such that y;(M)-vi(N) = yv,(M ® N). The identity

maavt af this mirie 1a o

element of this nng is ;"1\11/

ii) Show that tensor product induces a K,(A)-module structure on the group
K(A), such that yy(M)-y(N) = »(M ® N).

iii) If A is a (Noetherian) local ring, then Ky(A4) = Z

iv) Let f: A — B be a ring homomorphism, B being Noetherian. Show that
extension of scalars gives rise to a ring homomorphism f': K;(A) — K,(B)
such that f!(y.(M)) = »1(B @4 M). [If M is flat and finitely generated
over A, then B ® 4 M is flat and finitely generated over B.] If g: B— Cis
another ring homomorphism (with C Noetherian), then (fo g)! = flo gl

v) If f: A — Bis a finite ring homomorphism then

A ) = xAi(») -

for x € Ky(A), y € K(B). In other words, regarding K(B) as a K;(A4)-module
by restriction of scalars, the homomorphism f! is a K;(4)-module homo-
morphism.
Remark. Since Fi(A) is a subset of F(A4) we have a group homomorphism
¢: Ki(4) — K(A), given by e(y1(M)) = y(M). If the ring A is finite-dimensional
and regular, i.e.’if all its local rings Ap are regular (Chapter t1) it can be shown
that e is an isomorphism.



Artin Rings

An Artin ring is one which satisfies the d.c.c. (or equivalently the minimal
condition) on ideals.

The apparent symmetry with Noetherian rings is however misleading. In
fact we will show that an Artin ring is necessarily Noetherian and of a very
special kind. In a sense an Artin ring is the simplest kind of ring after a field, and
we study them not becausc of their generality but because of their simplicity.,

Proposition 8.1. In an Artin ring A cvery prime ideal is maximal.
Proof. Let p be a prime ideal of 4. Then B = A/p is an Artinian integral
domain. Let x€ B, x # 0. By the d.c.c. we have (x*) = (x**!) for some n,
hence x® = x"*!y for some y € B. Since B is an integral domain and x # 0, it
follows that we may cancel x*, hence xy = 1. Hence x hias an inverse in B, and
therefore B is a field, so that » is a maximal ideal. =

Corollary 8.2. In an Artin ring the nilradical is equal to the Jacobson
radical. =

Proposition 8.3. An Artin ring has only a finite number of maximal ideals.

Proof. Consider the set of all finite intersections nt; N---MN m,, where the m,
are maximal ideals. This set has a minimal element, say m, M- - .M m,; hence
for any maximal ideal m we have mAm; N-..Nnm, = my N-.-N m,, and
therefore m 2 m; N---Nm,. By (1.11) m = m; for some /, hence m = m,
since m; is maximal. =

Proposition 8.4. In an Artin ring the nilradical t is nilpotent.

Proof. By d.c.c. we have ¥ = ¥+ =...= asay, for some k > 0. Suppose
a # 0, and let T denote the set of all ideals b such that ab # 0. Then 2 is not
empty, since a € £. Let ¢ be a minimal element of £; then there exists x € ¢ such
that xa # 0; we have (x) € ¢, hence (x) = ¢ by the minimality of ¢. But
(xa)a = xa? == xa # 0, and xa < (x), hence xa = (x) (again by minimality).
Hence x = xy for some y € q, and therefore x = xy = )2 =+ .= xy* =-+-
But yea = ®* 2 R, hence y is nilpotent and therefore x = xy™ = 0. This
contradicts the choice of x, thereforea = 0. =

By a chain of prime ideals of a ring 4 we mean a finite strictly increasing
sequence o < p; <--- < p,; the length of the chain is n. We define the

89
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dimension of A to be the supremum of the lengths of all chains of prime ideals
in A:itis an integer 20, or +oo (assuming A # 0). A field has dimension 0; the
ring Z has dimension 1.

Theorem 8.5. Aring A is Artin < A is Noetherian and dim 4 = 0.

Proof. =: By (8.1) we have dim 4 = 0. Let ny, (1 < i < n) be the distinct
maximal ideals of 4 (8.3). Then [}, mf € (M., m)* = N* = 0. Hence by
(6.11) A4 is Noetherian.

< Since the zero ideal has a primary decomposition (7.13), 4 has only a
finite number of minimal prime ideals, and these are all maximal since dim A =0.
Hence ! = (M., m; say; we have B* = 0 by (7.15), hence [ [}, m¥f = 0 as in
the previous part of the proof. Hence by (6.11) 4 is an Artinring. =

If A is an Artin local ring with maximal ideal m, then m is the only prime
ideal of 4 and therefore m is the nilradical of 4. Hence every element of m is
nilpotent, and m itself is nilpotent. Every element of A is either a unit or is
nilpotent. An example of such a ring is Z/(p"), where p is prime and n > I.

Proposition 8.6. Let A be a Noetherian local ring, m its maximal ideal. Then
exactly one of the following two statements is true:

i) m* # m**? forall n;

ii) m® = O for some n, in which case A is an Artin local ring.

Proof. Suppose m* = m"*! for some n. By Nakayama’s lemma (2.6) we have
m® = 0. Let p be any prime ideal of 4. Then m® < p, hence (taking radicals)
m = p. Hence m s the only prime ideal of 4 and therefore 4 is Artinian. =

Theorem 8.7. (structure theorem for Artin rings). An Artin ring A is
uniquely (up to isomorphism) a finite direct product of Artin local rings.

Proof. Let m; (1 € i < n) be the distinct maximal ideals of 4. From the proof
of (8.5) we have [[f., mf = O for some k > 0. By (1.16) the ideals m} arc
coprime in pairs, hence (M) mf = [] m¥ by (1.10). Consequently by (1.10) again
the natural mapping 4 — [ =, (A4/m¥) is an isomorphism. Each A/mf is an
Artin local ring, hence 4 is a direct product of Artin local rings.

Conversely, suppose A ~ [[i%, 4,, where the A4, are Artin local rings.
Then for each i we have a natural surjective homomorphism (projection on the
ith factor) ¢,: A — A,. Let a; = Ker (¢,). By (1.10) the q, are pairwise coprime,
and (M) a; = 0. Let q; be the unique prime idea! of 4,, and let p; be its contraction
éi"}(n;). The ideal p, is prime and therefore maximal by (8.1). Since g; is nil-
potent it follows that a; is p-primary, and hence () a, = (0) is a primary de-
composition of the zero ideal in 4. Since the a; are pairwise coprime, so are the
p;, and they are therefore isolated prime ideals of (0). Hence all the primary
components g, are isolated, and therefore uniquely determined by A, by the 2nd
uniqueness theorem (4.11). Hence the rings 4; = A/q, are uniquely determined
by4d. = :
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- Example. A ring with only one prime ideal need not be Noetherian (and hence
not an Artin ring). Let 4 = k[x,, x,,...] be the polynomial ring in a countably
infinite set of indeterminates x, over a field k, and let a be the ideal (x,, x2,. . .,
Xy, ...). The ring B = A/a has only one prime ideal (namely the image of
(X1, X2, -« . Xns...)), hence B is a local ring of dimension 0. But B is not
Noetherian, for it is not difficult to see that its prime ideal is not finitely gen-
erated.

If 4 is a local ring, m its maximal ideal, ¥ = A4/m its residue field, the
A-module mt/m? is annihilated by m and therefore has the structure of a k-vector
space. If m is finitely generated (e.g., if 4 is Noetherian), the images in m/m2 of
a set of generators of m will span m/m? as a vector space, and therefore
dim, (mt/m?) is finite. (See (2.8).)

Proposition 8.8. Let A be an Artin local ring. Then the following are

equivalent:

i) every ideal in A is principal;

il) the maximal ideal w is principal;

iii) dim, (m/m?) < 1.
Proof. 1) = ii) = iii) is clear.

iii) = i): If dim, (m/m?) = 0, then m = m?, hence m = 0 by Nakayama’s
lemma (2.6), and therefore A is a field and there is nothing to prove.

If dim, (m/m?) = 1, then m is a principal ideal by (2.8) (take M = m

) Tat 0 ha an 1danl Af 4 Athar than MO\ Ae (1) Wa hava
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m = R, hence m is nilpotent by (8.4) and therefore there exists an integer r
such that a € m", a &€ m’*1; hence there exists yca such that y = ax',
y € (x"*1); consequently @ ¢ (x) and a is a unit in 4. Hence x" € a, therefore
m' = (x"). < aand hence a = m" = (x"). Hence a is principal. =

Example. The rings Z/(p™) (p prime), k[x]/(f™) (f irreducible) satisfy the
conditions of (8.7). On the other hand, the Artin local ring k[x2, x®]/(x*) does
not: here m is generated by x2 and x® (mod x*), so that m? = 0 and
dim (m/m?) = 2. .

EXERCISES

1. Let g, N---N g, = 0 be a minimal primary decomposition of the zero ideal
in a Noetherian ring, and let q; be p-primary. Let p{” be the rth symbolic power
of p, (Chapter 4, Exercise 13). Show that for eachi = |,..., n there exists an
integer r; such that p{™ < q;.

* Suppose q; is an isolated primary component. Then Ap, is an Artin local
ring, hence if m, is its maximal ideal we have m} = 0 for all sufficiently large r,
hence g, = p§? for all large r.

4*
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2.

ARTIN RINGS

If g, is an embedded primary component, then Ay, is not Artinian, hence the
powers m] are all distinct, and so the p{” are all distinct. Hence in the given
primary decomposition we can replace q; by any of the infinite set of p,-primary
ideals p{” where r > r;,, and so there are infinitely many minimal primary
decompositions of 0 which differ only in the p,-component.

Let A4 be a Noetherian ring. Prove that the following are equivalent:
i) A is Artinian;

ii) Spec (A) is discrete and finite;

iii) Spec (A) is discrete.

Let &k be a field and A a finitely generated k-algebra. Prove that the following are
equivalent:

i) A 1is Artinian;

ii) A is a finite k-algebra.

[To prove that i) = ii), use (8.7) to reduce to the case where A4 is an Artin local
ring. By the Nullstellensatz, the residue field of A is a finite extension of k. Now
use the fact that 4 is of finite length as an 4-module. To prove ii) = i), observe
that the ideals of A4 are k-vector subspaces and therefore satisfy d.c.c.]

Let f: A — B be a ring homomorphism of finite type. Consider the following
statements:
i) fis finite;

ii) the fibres of f* are discrete subspaces of Spec (B);

iii) for each prime ideal p of A4, the ring B ®, k(p) is a finite k(p)-algebra
(k(p) is the residue field of Ay);

iv) the fibres of f* are finite.

Prove that i) = ii) < iii) = iv). [Use Exercises 2 and 3.]
If fis integral and the fibres of /* are finite, is f necessarily finite ?

. In Chapter 5, Exercise 16, show that X is a finite covering of L (i.e., the number

of points of X lying over a given point of L is finite and bounded).

. Let 4 be a Noetherian ring and g a p-primary ideal in 4. Consider chains of

primary ideals from g to p. Show that all such chains are of finite bounded
length, and that all maximal chains have the same length.



Discrete Valuation Rings and
Dedekind Domains

As we have indicated before, algebraic number theory is one of the historical
sources of commutative algebra. In this chapter we specialize down to the case
of interest in number theory, namely to Dedekind domains. We deduce the
unique factorization of ideals in Dedekind domains from the general primary
decomposition theorems. Although a direct approach is of course possible one
obtains more insight our way into the precise context of number theory in
commutative algebra. Another important class of Dedekind domains occurs
in connection with non-singular algebraic curves. In fact the geometrical
picture of the Dedekind condition is: non-singular of dimension one.

The last chapter dealt with Noetherian rings of dimension 0. Here we start
by considering the next simplest case, namely Noetherian integral domains of
dimension one: i.e.,, Noetherian domains in which every non-zero prime ideal is
maximal. The first result is that in such a ring we have a unique factorization
theorem for ideals:

Proposition 9.1. Let A be a Noetherian domain of dimension 1. Then every

non-zero ideal a in A can be uniquely expressed as a product of primary ideals

whose radicals are all distinct.
Proof. Since A is Noetherian, a has a minimal primary decomposition
a = (a1 q; by (7.13), where each q, is say p-primary. Since dim A = 1and 4
is an integral domain, each non-zero prime ideal of A4 is maximal, hence the p,
are distinct maximal ideals (since p; 2 9, = a # 0), and are therefore pairwise
coprime. Hence by (1.16) the q, are pairwise coprime and therefore by (1.10) we
have [Tq; = () a. Hence a = []aq.

Conversely, if @ = [] q,, the same argument shows that ¢ = (") q;; thisisa
minimal primary decomposition of a, in which each q, is an isolated primary
component, and is therefore unique by (4.11). m

Let A be a Noetherian domain of dimension one in which every primary
ideal is a prime power. By (9.1), in such a ring we shall have unique factorization
of non-zero ideals into products of prime ideals. If we localize 4 with respect
to a non-zero prime ideal p we get a local ring A4, satisfying the same conditions
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as A4, and therefore in Ay every non-zero ideal is a power of the maximal ideal.
Such local rings can be characterized in other ways.

DISCRETE YALUATION RINGS

Let K be a field. A discrete valuation on K is a mapping v of K* onto Z (where
K* = K — {0} is the multiplicative group of K) such that

1) v(xy) = v(x) + v(y), i.e., v is a homomorphism;
2) v(x + y) = min (u(x), v(»)).

The set consisting of 0 and all x € K* such that v(x) = 0 is a ring, called the
valuation ring of v. Itis a valuation ring of the field K. It is sometimes convenient

to extend v to the whole of K by putting ¥(0) = +oco0.
Examples. The two standard exampies are:

1) K = Q. Take a fixed prime p, then any non zero x € Q can be written
uniquely in the form p®y, where @ € Z and both numerator and denominator of y
are prime to p. Define v,(x) to be a. The valuation ring of v, is the local ring
z(p)-

2) K = k(x), where k is a field and x an indeterminate. Take a fixed
irreducible polynomial f € k[x] and define v, just as in 1). The valuation ring of
v, is then the local ring of k[x] with respect to the prime ideal (/).

Femtaganl Aot 4 Ad ot s s alesraddmas wdine £ ¢hhowa 1o o Aigrmata snle
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tion v of its field of fractions K such that A4 is the valuation ring of v. By (5.18),
A is alocal ring, and its maximal ideal m is the set of all x € K'such that v(x) > 0.

If two elements x, y of A have the same value, that is if v(x) = v(y), then
v(xy~') = 0 and therefore ¥ = xy~*is a unit in 4. Hence (x) = (¥).

If a # 0 is an ideal in A, there is a least integer k such that v(x) = k for
some x € a. It follows that a contains every y € 4 with (y) > k, and therefore
the only ideals # 0 in A are the ideals m, = {y € A:v(y) > k}. These form a
single chain m > m, @ m3 = -.-, and therefore A is Noetherian.

Moreover, since v: K* — Z is surjective, there exists x € m such that
v(x) = 1, and then m = (x), and m, = (x*) (k = 1). Hence m is the only
non-zero prime ideal of 4, and A is thus a Noetherian local domain of dimension
one in which every non-zero ideal is a power of the maximal ideal. In fact many
of these properties are characteristic of discrete valuation rings.

Proposition 9.2, Let A be a Noetherian local domain of dimension one, m its

maximal ideal, k = A/w its residue field. Then the following are equivalent:
i) A is a discrete valuation ring;

i) A is integrally closed;

1ii} m is a principal ideal;
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iv) dimy (m/m?) = 1,

v) Every non-zero ideal is a power of m;

vi) There exists x € A such that every non-zero ideal is of the form (x*),

k=2 0.

Proof. Before we start going the rounds, we make two remarks:

(A) If a is an ideal # 0, (1), then a is m-primary and a 2 m” for some ».
For r(a}) = m, since m is the only non-zero prime ideal; now use (7.16).

(B) m™ 2 m**! foralln > 0. This follows from (8.6).

1) = ii) by (5.18).

i) = iii). Let aem and a # 0. By remark (A) there exists an integer »n
such that m® < (@), m"~! & (a). Choose be m*~! and b ¢ (a), and let x =
alb € K, the field of fractions of 4. We have x~* ¢ A (since b ¢ (a)), hence x~1is
notintegral over A4, and therefore by (5.1) we have x " 'm & m(forif x~'m < m,
m would be a faithful A[x~!]-module, finitely generated as an A-module). But
x~'m < A by construction of x, hence x"'m = 4 and therefore m = Ax = (x).

i1} = iv). By (2.8) we have dim, (m/m?) < 1, and by remark (B) m/m? # 0.

iv) = v). Let a be an ideal # (0), (1). By remark (A) we have a = m" for
some n; from (8.8) (applied to 4/m™) it follows that a is a power of m. ~

v) = vi). By remark (B), m # m? hence there exists x € m, x ¢ m2, But
(x) = m” by hypothesis, hence r = 1, (x) = m, (x¥) = mk,

vi} = i). Clearly (x) = m, hence (x*¥) # (x**1) by remark (B). Hence if 2
is any non-zero element of 4, we have (a) = (x*) for exactly one value of k.
Define v(a) = k and extend v to K* by defining v(ab ') = v(a) — v(b). Check
that v is well-defined and is a discrete valuation, and that A4 s the valuation ring
Oorv. M

DEDEKIND DOMAINS

Theorem 9.3. Let A be a Noetherian domain of dimension one. Then the
Jollowing are equivalent:
1} A is integrally closed;
i) Every primary ideal in A is a prime power;
iii) Every local ring Ay (b # 0) is a discrete valuation ring.
Proof. i) < iii) by (9.2) and (5.13).
ii) < iii). Use (9.2) and the fact that primary ideals and powers of ideals
behave well under localization: (4.8), (3.11). =

A ring satisfying the conditions of (9.3) is called a Dedekind domain.

Corollary 9.4. In a Dedekind domain every non-zero ideal has a unique
factorization as a product of prime ideals.

Proof. (9.1)and (9.3). m
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Examples. 1) Any principal ideal domain A. For A4 is Noetherian (sincc every
ideal is finitely generated) and of dimension one (Example 3 after (1.6)). Also
every local ring Ay(p # 0) is a principal ideal domain, hence by (9.2) a discretc
valuation ring; hence 4 is a Dedekind domain by (9.3).

2) Let K be an algebraic number field (a finite algebraic extension of Q).
Its ring of integers A is the integral closure of Z in X. (For example, if K = Q(i).
then A = Z[i], the ring of Gaussian integers.) Then A is a Dedekind domain:

Theorem 9.5. The ring of integers in an algebraic number ficld K is a

Dedekind domain.
Progf. K is a separable extension of Q (because the characteristic is zero),
hence by (5.17) there is a basis v,,..., v, of K over Q such that 4 € > Zr,.
Hence A is finitely generated as a Z-module and therefore Noetherian. Also A
is integrally closed by (5.5). To complete the proof we must show that every non-
zero prime ideal p of 4 is maximal, and this follows from (5.8) and (5.9):
(5.9) shows that p N Z # 0, hence p N Z is a maximal ideal of Z and therefore
p is maximal in 4 by (5.8). m

Remark. The unique factorization theorem (9.4) was originally proved for
rings of integers in algebraic number fields. The uniqueness theorems of Chapter
4 may be regarded as generalizations of this result: prime powers have to be
replaced by primary ideals, and products by intersections.

FRACTIONAL IDEALS
Let 4 be an integral domain, K its field of fractions. An A-submodule A7 of K
is a fractional ideal of A if xM < A for some x # 0 in 4. In particular, the
“ordinary”’ ideals (now called integral ideals) are fractional ideals (take x = 1).
Any element u € K generates a fractional ideal, denoted by () or Au, and called
principal. If M is a fractional ideal, the set of all x € K'such that x M < A is de-
noted by (4: M).

Every finitely generated 4-submodule M of K is a fractional ideal. For if M
is generated by x,..., x, € K, we can write x; = y;z~! (1 < i < n) where y;
and z are in 4, and then zM < A. Conversely, if A is Noetherian, every fractional
ideal is finitely generated, for it is of the form x ~'a for some integral ideal a.

An A-submodule M of K is an invertible ideal if there exists a submodule
N of K such that MN = A. The module N is then unique and equal to (4: M),
for we have N <€ (A:M) = (A:MYMN < AN = N. It follows that M is
finitely generated, and therefore a fractional ideal: for since M-(4: M) = A
there exist x, e M and y, e (4: M) (1 < i € n) such that } x;y; = 1, and hence
for any x € M we have x = 3 (y,x)x;: each y.x € A, so that M is generated by
Xiyeouy Xne

Clearly every non-zero principal fractional ideal (u) is invertible, its inverse
being (#~1). The invertible ideals form a group with respect to multiplication,
whose identity element is 4 = (1).
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Invertibility is a Jocal property:

1) M Is invertible;

ii) M is finitely generated and, for each prime ideal p, My is invertible:

iil) M is finitely generated and, for each maximal ideal m, My is

invertible. .
Proof. i) = ii): dp = (M-(4:M)), = My-(dp: M;) by (3.11) and (3.15) (for
M is finitely generated, because invertible).

ii) = 1iii) as usual.

iii = i): Leta = M-(A: M), which is an integral ideal. For each maximal
ideal m we have am = Mum-(Am:Mu) (by (3.11) and (3.15)) = An because
My is invertible. Hence a &€ m. Consequently a = 4 and therefore M is
invertible. m

Proposition 9.7. Let A be a local domain. Then A is a discrete valuation
ring <> every non-zero fractional ideal of A is invertible.
Proof. =. Let x be a generator of the maxima!l ideal m of 4, and let M # 0
be a fractional ideal. Then there exists y € 4 such that yM < A4: thus yMis an
integral ideal, say (x"), and therefore M = (x"~*%) where s = v(y).

<: Every non-zero integral ideal is invertible and therefore finitely gen-
erated, so that A4 is Noetherian. It is therefore enough to prove that every non-
zero integral ideal is a power of m. Suppose this is false; let Z be the set of non-
zero ideals which are not powers of m, and let a be a maximal element of Z.
Then ¢ # m, hence ¢ < m; hence m~'a < m~!m = A4 is a proper (integral)
ideal, and m~q 2 a. If m~!a = a, then ¢ = ma and therefore a = 0 by
Nakayama’s lemma (2.6); hence m~'a @ e and hence m~!a is a power of m
(by the maximality of a). Hence a is a power of m: contradiction. m

The “global” counterpart of (9.7) is

Theorem 9.8, Let A be an integral domain, Then A is a Dedekind domain <

every non-zero fractional ideal of A is invertible.
Proof. =: Let M # 0 be a fractional ideal. Since A is Noetherian, M is
finitely generated. For each prime ideal p # 0, My is a fractional ideal # 0
of the discrete valuation ring Ay, hence is invertible by (9.7). Hence M is
invertible, by (9.6).

<=: Every non-zero integral ideal is invertible, hence finitely generated,
hence 4 is Noetherian. We shall show that each 4y (p # 0) is a discrete valua-
tion ring. For this it is enough to show that each integral ideal # 0 in A4y is
invertible, and then use (9.7). Let b # 0 be an (integral) ideal in A4y, and let
a = b = b N A. Then a is invertible, hence b = ay is invertible by (9.7). =m

-
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Corollary 9.9. If A is a Dedekind domain, the non-zero fractional ideals of A
form a group with respect to multiplication. ®

This group is called the group of ideals of A; we denote it by I. In this
terminology (9.4) says that [ is a free (abelian) group, generated by the non-zero
prime ideals of A.

Let K* denote the multiplicative group of the field of fractions K of A.
Each u € K* defines a fractional ideal (1), and the mapping u — (u) is a homo-
morphism ¢: K* —> I. The image P of ¢ is the group of principal fractional
ideals: the quotient group H = I/P is called the ideal class group of A. The
kernel U of ¢ is the set of all ¥ € K* such that (¥) = (1), so that it is the group of
units of A. We have an exact sequence

l>U—->K*>IT—>H-—>1.

Remark. For the Dedekind domains that arise in number theory, there are
classical theorems relating to the groups Hand U. Let K be an algebraic number
field and let A be its ring of integers, which is a Dedekind domain by (9.5). In
this case:

1} His a finite group.’ Its order A is the class number of the field K. The fol-
lowing are equivalent: (i) A = 1; (i) I = P; (iii) 4 is a principal ideal domain;
(iv) A is a unique factorization domain.

2) U is a finitely-generated abelian group. More precisely, we can specify
the number of generators of U, First, the elements of finite order in U are just
the roots of unity which lie in X, and they form a finite cyclic group W'; U/ W is
torsion-free. The number of generators of U/ W is given as follows: if (K: Q) = n
there are n distinct embeddings K — C (the field of complex numbers). Of
these, say r, map Kinto R, and the rest pair off (if « is one, then w  « is another,
where o is the automorphism of C defined by w(z) = Z) into say r, pairs: thus
r1 + 2r, = n. The number of generators of U/W is then r, + r, — 1.

The proofs of these results belong to algebraic number theory and not to
commutative algebra: they require techniques of a different nature from those
used in this book.

Examples. ) K=QWV —-1);n=2,r,=0,r,=1,r, + 1, —-1=0. The
only units in Z[i] = A are the four roots of unity +1, +i.

DK=QW2;n=2r=2r=0,r+r—-1=1 W=/{+1},
and U/W is infinite cyclic. In fact the units in 4 = Z[V2] are +(1 + V2),
where n is any rational integer.
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EXERCISES

1.

Let A be a Dedekind domain, .S a multiplicatively closed subset of 4. Show that
S 1A is either a Dedekind domain or the field of fractions of 4.

Suppose that S # 4 — {0}, and let H, H’ be the ideal class groups of 4 and
S ~1A respectively. Show that extension of ideals induces a surjective homo-
morphism H — H'.

Let A be a Dedekind domain, If f = ao + a;x +--- + a,x* is a polynomial
with coefficients in A4, the content of f is the ideal ¢(f) = (ao, ..., ay) in A.
Prove Gauss’s lemma that c(fg) = c(f)c(g).

[Localize at each maximal ideal.]

A valuation ring (other than a field) is Noetherian if and only if it is a discrete
valuation ring.

Let A be a local domain which is not a field and in which the maximal ideal m is
principal and My, m" = 0. Prove that A4 is a discrete valuation ring.

Let M be a finitely-generated module over a Dedekind domain. Prove that M is
flat < M is torsion-free.

[Use Chapter 3, Exercise 13 and Chapter 7, Exercise 16.]

Let M be a finitely-generated torsion module (7(M) = M) over a Dedekind
domain A. Prove that M is uniquely representable as a finite direct sum of mod-
ules A/pf, where p; are non-zero prime ideals of 4. [For each p # 0, Myisa
torsion Ap-module; use the structure theorem for modules over a principal ideal
domain.]

. Let A be a Dedekind domain and a # 0 an ideal in 4. Show that every ideal in

Afa is principal.
Deduce that every ideal in 4 can be generated by at most 2 elements.

Let a, b, ¢ be three ideals in a Dedekind domain. Prove that

an® +¢ =@nb) + (@nc)
a+ baeg)y=(>@+ 5 na +c).
[Localize.]

(Chinese Remainder Theorem). Let q,, ..., a, be ideals and let x;,..., x, be
elements in a Dedekind domain 4. Then the system of congruences x =

x;(mod a) (1 € i < n) has a solution x in 4 < x, = x,(mod a, + a;) when-
ever i #* J.

[This is equivalent to saying that the sequence of A-modules

A2 @ Al L @ Aja, + ay)

is exact, where ¢ and ¢ are defined as follows:

dx) =(x +@a,...,x +0a,); ¥(x; + a,, ..., xn + a,) has (7, j)-component
Xy — x; + a; + a,. To show that this sequence is exact it is enough to show that
it is exact when localized at any p # 0: in other words we may assume that 4 is
a discrete valuation ring, and then it is easy.]

S+1.C.A.



10

Completions

In classical algebraic geometry (i.e. over the field of complex numbers) we can
use transcendental methods. This means that we regard a rational function as an
analytic function (of one or more complex variables) and consider its power
series expansion about a point. In abstract algebraic geometry the best we can
do is to consider the corresponding formal power series. This is not so powerful
as in the holomorphic case but it can be a very useful tool. The process of
replacing polynomials by formal power series is an example of a general device
known as completion. Another important instance of completion occurs in
number theory in the formation of p-adic numbers. If pis a prime number in Z
we can work in the various quotient rings Z/p*Z: in other words, we can try
and solve congruences modulo p* for higher and higher values of n. This is
analogous to the successive approximations given by the terms of a Taylor
expansion and, just as it is convenient to introduce formal power series, so it is
convenient to introduce the p-adic numbers, these being the limit in a certain
sense of pr"Z asn—co. In one respect, however, the p-adm numbers are more
complicated than formal power series (in, say, one variable x). Whereas the
polynomials of degree n are naturally embedded in the power series, the group
Z/p*Z cannot be embedded in Z. Although a p-adic integer can be thought
of as a power series 2, a,p” (0 € a, < p) this representation does not behave
well under the ring operations.

In this chapter we shall describe the general process of “adic” completion—
the prime p being replaced by a general ideal. It is most conveniently expressed
in topological terms but the reader should beware of using the topology of.the
real numbers as an intuitive guide. Instead he should think of the power series
topology in which a power series is “small” if it has only terms of high order.
Alternatively he can think of the p-adic topology on Z, in which an integer is
“small” if it is divisible by a high power of p.

Completion, like localization, is a method of simplifying things by con-
centrating attention near a point (or prime). It is, however, a more drastic
simplification than localization. For example, in algebraic geometry the local
ring of a non-singular point on a variety of dimension n always has for ity
completion the ring of formal power series in n variables (this will essentially be
proved in Chapter 11). On the other haand the local rings of two such points
cannot be isomorphic unless the varieties on which they lie are birationally

1AN
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equivalent (this means that the fields of fractions of the two local rings are
isomorphic).

Two of the important properties of localization are that it preserves exact-
ness and the Noetherian property. The same is true for completion—when we
restrict to finitely-generated modules—but the proofs are much harder and take
up most of this chapter. Another important result is the theorem of Krull
which identifies the part of a ring which is “killed” by completion. Roughly
speaking, Krull’s Theorem is the analogue of the fact that an analytic function is
determined by the coefficients of its Taylor expansion. This analogy is clearest
for a Noetherian local ring in which case the theorem just asserts that (Y m® = 0
where m is the maximal ideal. Both Krull’s Theorem and the exactness of com-
pletion are easy consequences of the well-known ““Artin~Rees Lemma”’, and we
accord this lemma a central place in our treatment.

For the study of completions we shall find it necessary to introduce graded
rings. The prototype of a graded ring is the ring of polynomials k{x,, ..., x,],
the grading being the usual one obtained by taking the degree of each variable
to be 1. Just as ungraded rings are the foundation for affine algebraic geometry,
so graded rings are the foundation for projective algebraic geometry. They are
therefore of considerable geometric importance. The important construction of
the associated graded ring G«(A) of an ideal a of 4, which we shall meet, has a
very definite geometrical interpretation. For example, if 4 is the local ring of a
point P on a variety V with a as maximal ideal, then Gg(4) corresponds to the
projective tangent cone at P, i.e. all the lines through P which are tangent to ¥
at P. This geometrical picture should help to explain the significance of Ga(A4)
in connection with the properties of ¥ near P and in particular in connection
with the study of the completion A.

TOPOLOGIES AND COMPLETIONS

Let G be a topological abelian group (written additively), not necessarily
Hausdorff: thus G is both a topological space and an abelian group, and the two
structures on G are compatible in the sense that the mappings G x G — G and
G — G, defined by (x, ) = x + y and x — — X respectively, are continuous.
If {0} is closed in G, then the diagonal is closed in G x G (being the inverse
image of {0} under the mapping (x, y)> x—y) and so G is Hausdorff. If @ is
a fixed element of G the translation T, defined by T,(x) = x + a is a homeo-
morphism of G onto G (for T, is continuous, and its inverse is T_,); hence
if Uis any neighborhood of 0 in G, then U + a is a neighborhood of a in G, and
conversely every neighborhood of a appears in this form. Thus the topology
of G is uniquely determined by the neighborhoods of 0 in G.

Lemma 10.1. Let H be the intersection of all neighborhoods of 0 in G. Then
i) H is a subgroup.
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il) H is the closure of {0}.
iii) G/H is Hausdorff-
iv) G is Hausdorff <~ H = 0.
Proof. i) follows from the continuity of the group operations. For ii) we have:

xe H< 0ex — U for all neighborhoods U of 0
< x € {O}.

ii) implies that the cosets of H are all closed; thus points are closed in G/H
and so G/H is Hausdorff. Thus H = 0 = G is Hausdorff, and the converse
is trivial. =

Assume for simplicity that O € G has a countable fundamental system of
neighborhoods. Then the completion G of G may be defined in the usual way by
means of Cauchy sequences. A Cauchy sequence in G is defined to be a sequence
(x,) of elements of G such that, for any neighborhood U of 0, there exists an
integer s(U) with the property that

x, — x,eUforall u,v > s(U).

Two Cauchy sequences are equivalent if x, — y, — 0 in G. The set of all
equivalence classes of Cauchy sequences is denoted by G. If (x,), (»,) are
Cauchy sequences, so is (x, + ¥,), and its class in G depends only on the classes
of (x,) and (»,). Hence we have an addition in G with respect to which G is an
abelian group. For each x € G the class of the constant sequence (x) is an
element $(x) of G, and é: G — G is a homomorphism of abelian groups. Note
that ¢ is not in general injective. In fact we have

Ker¢g = NU
where U runs through all neighborhoods of 0 in G, and so by (10.1) ¢ is injective
if and only if G is Hausdorff.
If H is another abelian topological group and f: G — H a continuous

homomorphism, then the image under f of a Cauchy sequence in G is a Cauchy
sequence in H, and therefore f induces a homomorphistn f: G — H, which is

continuous. If we have G I» H 2> K, then g/ﬁ' =gof.

So far we have been quite general and G could for instance have been the
additive group of rationals with the usual topology, so that G would be the real
numbers. Now, however, we restrict ourselves to the special kind of topologies
occurring in commutative algebra, namely we assume that 0 € G has a funda-
mental system of neighborhoods consisting of subgroups. Thus we have a
sequence of subgroups

G = GO =2 Gl ;-..2 G“ 2.
and U € G is a neighborhood of 0 if and only if it contains some G,. A typical

example is the p-adic topology on Z, in which G, = p*Z. Note that in such
topologies the subgroups G, of G are both open and closed. In fact if ge G,
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then g + G, is a neighborhood of g; since g + G, £ G, this shows G, is
open. Hence for any h the coset & + G, is open and therefore | nee, (8 + G
is open; since this is the complement of G, in G it follows that G, is closed.

For topologies given by sequences of subgroups there is an alternative purely
algebraic definition of the completion which is often convenient. Suppose (x,)
is a Cauchy sequence in G. Then the image of x, in G/G, is ultimately constant,
equal say to £,. If we pass fromn + 1 to nit is clear that £,,, > £, under the
projection

G/Gn+ 1 -m G/Gn

Thus a Cauchy sequence (x,) in G defines a coherent sequence (£,) in the sense
that

Ons1nsr = €a foralln

Moreover it is clear that equivalent Cauchy sequences define the same sequence
(£,). Finally, given any coherent sequence (£,), we can construct a Cauchy
sequence (x,) giving rise to it by taking x, to be any element in the coset £, (so
that x,,., — x, € G,). Thus G can equally well be deﬁnea as the set of coherent
sequences (£,) with the obvious group structure.

We have now arrived at a special case of inverse limits. More generally,
consider any sequence of groups {4,} and homomorphisms

9n+1: An+1 el An'

We call this an inverse system, and the group of all coherent sequences (a,)
(i.e., an € A, and 0, ,,a,,1 = a,) is called the inverse limit of the system. It is
usually written 11<£1 A,, the homomorphisms 8, being understood. With this

notation we have
G = lim G/G,.
‘-

The inverse limit definition of G has many advantages. Its main drawback
is that it presupposes a fixed choice of the subgroups G,. Now we can have
different sequences of G, defining the same topology and hence the same com-
pletion. Of course we could define notions of “equivalent” inverse systems but
the merit of the topological language is precisely that such notions are already
- built into it.

The exactness properties of completions are best studied by inverse limits.
First let us observe that the inverse system {G/G,} has the special property that
8,., is always surjective. Any inverse system with this property we shall call a
surjective system. Suppose now that {4,}, {B,}, {C.} are three inverse systems
and that we have commutative diagrams of exact sequences

0> Aysy = Bay1 = Cpy1 —0

v ¥ y

0—>4, —+8B, —-»C, -0
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We shall then say that we have an exact sequence of inverse systems, The
diagram certainly induces homomorphisms

O0—>limAd,—»1limB,—-»>1lmC,—0
- «— -—

but this sequence is not always exact. However, we have

Proposition 10.2. If 0 — {A,} - {B,} — {C,} — 0 is an exact sequence of
inverse systems then

0 — lim 4, — lim B, — lim C,
< -~ B

is always exact. If, moreover, {A,} is a surjective system then
0 —lim 4, —lim B, > limC, — 0
<« <~ <«

is exact.
Proof. Let A = []x=; Anand defined4: 4 — Abyd#a,) = a, — 0,,1(an+ 1)
Then Ker d4 o~ il_]il A,. Define B, C and d?, d° similarly. The exact sequence

of inverse systems then defines a commutative diagram of exact sequences

0—>A4—->B—>C—>0
) e
0>A4A—>B—>C—>0

and hence by (2.10) an exact sequence .
0 —» Kerd4 — Ker d? — Ker d° — Coker d4 — Coker d? — Coker d¢ — 0.
To complete the proof we have only to prove that

{A4,} surjective = d4 surjective,

but this is clear because to show d4 surjective we have only to solve inductively

the equations -
Xp — 6n+1(xn+1) = 4,
for x, € 4, givena, € A,. =

Remark. The group Coker d# is usually denoted by l(i__rg1 A,, since it is a derived
functor in the sense of homological algebra.
Corollary 10.3. Let 0 > G > G2 G" — 0 be an exact sequence of
groups. Let G have the topology defined by a sequence {G,} of subgroups, and

give G', G" the induced topologies, i.e. by the sequences {G, N G,}, {PG,}.
Then

0—>G >G> G" >0
is exact.
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Proof. Apply (10.2) to the exact sequences
" G’ G G” _

U— m —> E; — E >0 =
In particular we can a_pply (10.3) with G’ = G,, then G" = G/G, has the
discrete topology so that G = G". Hence we deduce

Corollary 10.4. G, is a subgroup of G and
G/G, = G/G,. m

Taking inverse limits in (10.4) we deduce

Proposition 10.5. G~ G. n

If ¢: G — G is an isomorphism we shall say that G is complete. Thus (10.5)
asserts that the completion of G is complete. Note that our definition of com-
plete includes Hausdorff (by (10.1)).

The most important class of examples of topological groups of the kind
we are considering are given by taking G = 4, G, = a", where ais an ideal in a
ring A. The topology so defined on A is called the a-adic topology, or just the
a-fopology. Since the a® are ideals, it is not hard to check that with this topology
A is a topological ring, i.c. that the ring operations are continuous. By (10.1) the
topology is Hausdorff < (M) a® = (0). The completion A of A is again a topo-
logical ring; ¢: 4 — 4 is a continuous ring homomorphism, whose kernel is
M a™

Likewise for an A-module M: take G = M, G, = a*M. This defines the

a-topology on M, and the completion M of M is a topological A-module (i.e.
Ax M- Mis continuous), If /1 M — N is any 4-module homomorphism,

then f(a®*M) = a*f (M) = a"N and therefore f is continuous (with respect to
the a-topologies on M and N) and so defines /: A — N.

Examples. 1) 4 = k[x], where k is a field and x an indeterminate; a = (x).
Then A = k[[x]], the ring of formal power series.

2) A =1Z, a=(p),pprime. Then A4 is the ring of p-adic integers. Its
elements are infinite series Y 2.0 a,p", 0 < a, < p — 1. We have p* — 0 as
n —> 0.

FILTRATIONS

The a-topology of an 4-module M was defined by taking the submodules a*M/
as basic neighborhoods of 0, but there are other ways of defining the same
topology. An (infinite) chain M = M, 2 M, 2---2 M, 2---, where the M,
are submodules of M, is called a filtration of M, and denoted by (M,,). Itisan
a-filtration if aM, = M, ., for all n, and a stable a-filtration if aM, = M, ,, for
all sufficiently large n. Thus (a®M) is a stable a-filtration.
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Lemma 10.6. If (M,), (M,) are stable a-filtrations of M, then they have
bounded difference: that is, there exists an integer ny such that M., .., = M,
and My .oy S M, for all n > 0. Hence all stable a-filtrations determine the
same topology on M, namely the a-topology.
Proof. Enough to take M, = a*M. Since aM, = M, for all n, we have
a"M = M,; also aM, = M, ., for all n > n, say, hence M,,,, = a"M,,
caM =

GRADED RINGS AND MODULES

A graded ring is a ring A together with a family (4,),,, of subgroups of the
additive group of 4, such that 4 = @7 4, and A4, € A, ,,forall m,n> 0.
Thus A4, is a subring of 4, and each 4, is an 4,-module.

Example. 4 = k[xl,...,x,],‘ A, = set of all homogeneous polynomials of
degree n.

If A is a graded ring, a graded A-module is an A-module M together with a
family (M), o of subgroups of Msuchthat M = P2, M, and 4. M, = M, ;..
for all m, n > 0. Thus each M, is an A,-module. An element x of Af is homo-
geneous if x € M, for some n (n = degree of x). Any element ye M can be
written uniquely as a finite sum >, y,, where y, € M, foralln > 0, and all but a
finite number of the y, are 0. The non-zero components y, are called the
homogeneous components of y.

If M, N are graded 4-modules, a homomorphism of graded A-modules is an
A-module homomorphism f: M — N such that f(M,) = N, foralln > 0.

If Ais a graded ring, let 4, = @,>0 4, 4, is an ideal of 4.

Proposition 10.7. The following are equivalent, for a graded ring A:
1) A is a Noetherian ring;

ii) Ao is Noetherian and A is finitely generated as an Ay-algebra.

Proof. 1) = ii). Ay & A/A., henceis Noetherian. A, is an ideal in A4, hence is
finitely generated, say by x,,..., x,, which we may take to be homogeneous
elements of A4, of degrees k,,.. ., ky say (all > 0). Let 4’ be the subring of 4
generated by xi,..., X, over 4,. We shall show that 4, = 4’ for all n > 0,
by induction on n. This is certainly true forn = 0. Letn > 0 and let y € 4,.
Since y € 4., y is a linear combination of the x,, say y = Ji., a,x;, where
a, € A, -, (conventionally 4, = 0if m < 0). Since each k; > 0, the inductive
hypothesis shows that each a; is a polynomial in the x’s with coefficients in A,,.
Hence the same is true of y, and therefore y € A’. Hence 4, < A4’ and therefore
A=4. 1 g

ii) = i): by Hilbert's basis theorem (7.6). m -
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Let A4 be a ring (not graded), a an ideal of 4. Then we can form a graded
ring A* = @, a". Similarly, if M is an A-module and A, is an a-filtration of
M, then M* = @, M, is a graded A%-module, since a™M, = M,,,,.

If A is Noetherian, a is finitely generated, say by x,,..., x,; then A* =
A[x,, ..., x,} and is Noetherian by (7.6).

Lemma 10.8. Let A be a Noetherian ring, M a finitely-generated A-module,
(M) an ao-filtration of M. Then the following are equivalent:

i)y M* is q finitely-generated A*-module;
il The filtration (M,) is stable.

Proof. Each M, is finitely generated, hence so is each Q, = ., M,: thisis a
subgroup of M* but not (in general) an A*-submodule. However, it generates
one, namely

M¥ = Mo®---@® My ® aM, @ M, @@ M, @- - -

Since Q, is finitely generated as an A-module, M¥ is finitely generated as an
A*-module. The M¥ form an ascending chain, whose union is M*. Since 4*is
Noetherian, M* is finitely generated as an 4A*-module < the chain stops, i.e.,
M* = M¥ for some ny < M,,., = a'M,, for all r > 0 <> the filtration is
stable, m

Proposition 10.9. (Artin-Rees lemma). Let A be a Noetherian ring, a
an ideal in A, M a finitely-generated A-module, (M) a stable a-filtration
of M. If M’ is a submodule of M, then (M’ N\ M,) is a stable a-filtration
of M'.
Proof. We havea(M' N M,) < aM NnaM, € M’ N M,,,, hence (M’ N M,)
is an a-filtration. Hence it defines a graded A*-module which is a submodule of
M* and therefore finitely generated (since A* is Noetherian). Now use (10.8). =

Taking M, = a"M we obtain what is usually known as the Artin-Rees
lemma:

Corollary 10.10. There exists an integer k such that
(@M)N M = a"*((a*M) " M")
foralln =z k. m

On the other hand, combining (10.9) with the elementary lemma (10.6)
we obtain the really significant version:

Theorem 10.11. Let A be a Noetherian ring, a an ideal, M a finitely-generated
A-module and M’ a submodule of M. Then the filtrations a"M' and
(a*M) N M’ have bounded difference. In particular the a-topology of M’

coincides with the topology induced by the a-topology of M. ®m
5‘
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Remark. In this chapter we shall apply the last part of (10.11) concerning
topologies. However, in the next chapter the stronger result about bounded
differences will be needed.

As a first application of (10.11) we combine it with (10.3) to get the im-
portant exactness property of completion:

Proposition 10.12, Let
OoM SsM--M -0

be an exact sequence of finitely-generated modules over a Noetherian ring A.
Let a be an ideal of A, then the sequence of a-adic completions

0>M >M->M -0
Is exact. 1

Since we have a natural homomorphism 4 — 4 we can regard 4 as an
A-algebra and so for any 4-module M we can form an 4-module 4 ®, M. It
is natural to ask how this compares with the A-module M. Now the 4-module
homomorphism M — M defines an 4-module homomorphism

A M—>AQM—>A Q0 M=M.

In general, for arbitrary 4 and M, this is neither injective nor surjective, but we
do have:

Proposition 10.13. For any ring A, if M is finitely-generated, 4 @, M — M
is surjective. lf, moreover, A is Noetherian then 4 ® 4 M — M is an iso-
morphism,
Proof. Using (10.3) or otherwise it is clear that a-adic completion commutes
with finite direct sums. Hence if F ~ A"wehave 4 ®, F >~ F. Now assume M
is finitely generated so that we have an exact sequence

0 >N—>F—>M-—0.
This gives rise to the commutative diagram

AQUN>AQQUF>AQ, M0
v v* e
0N - F 5 M0

in which the top line is exact (by (2.18)). By (10.3) & is surjective. Since 8 is an
isomorphism this implies that « is surjective, proving the first part of the pro-
position. Assume now that 4 is Noetherian, then N is also finitely generated
so that y is surjective and, by (10.12), the bottom line is exact. A little diagram
chasing now proves that « is injective and so an isomorphism. ®
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Propositions (10.12) and (10.13) together assert that the functor M
A ®, M is exact on the category of finitely-generated 4-modules (when 4 is
Noetherian). As shown in Chapter 2 this proves:

Proposition 10.14. If A is a Noetherian ring, a an ideal, A the a-adic com-
pletion of A, then A is a flat A-algebra. =

Remark. For non-finitely-generated modules the functor M — M is not exact:
the good functor, which is exact, is M — 4 ®, M and the two functors coincide
on finitely-generated modules.

We proceed now to study the ring 4 in more detail. First some elementary
propositions:

Proposition 10.15. If A is Noetherian, 4 its a-adic completion, then

a=AdazAdR,a;

i) (@")"™ = (@)";

lli) an/an+1 ~ an/au+1;

iv) @ is contained in the Jacobson radical of A.
Proof. Since A is Noetherian, a is finitely-generated. (10.13) implies that the
map

A®,a—a,

whose image is Aq, is an isomorphism. This proves i). Now apply i) to a* and
we deduce that

o @) = da* = (day" by (1.18)
= (&) by i).
Applying (10.4) we now deduce
Ajar & Ajar

from which iii) follows by taking quotients. By ii) and (10.5) we see that 4
is complete for its G-topology. Hence for any x € a

I -x)t=14+x+ x4+

converges in 4, so that 1 — x is a unit. By (1.9) this implies that @ is contained
in the Jacobson radicalof 4. =

Proposition 10.16. Let A be a Noetherian local ring, m its maximal ideal.
Then the m-adic completion A of A is a local ring with maximal ideal ¥
Proof. By (10.15)iii) we have A/t = 4/m, hence A/1 is a field and so th isa
maximal ideal. By (10.15) iv) it follows that 1% is the Jacobson radical of 4 and

so is the unique maximal ideal, Thus 4 is a local ring. ®

The important question of how much we lose on completion is answered by
Krull’s Theorem:
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Theorem 10.17. Let A be a Noetherian ring, a an ideal, M a finitely-generated

A-module and M the a-completion of M. Then the kernel E = (., a®M of

M — M consists of those x € M annihilated by some element of 1 + a.
Proof. Since E is the intersection of all neighborhoods of 0 € M, the topology
induced on it is trivial, i.e., E is the only neighborhood of 0 € E. By (10.11) the
induced topology on E coincides with its a-topology. Since aE is a neighborhood
in the a-topology it follows that aE = E. Since M is finitely-generated and A4 is
Noetherian, E is also finitely-generated and so we can apply (2.5) and deduce
from aE = E that (I — «)E = 0 for some « € a. The converse is obvious: if
(1 — &)x = 0, then

X = ax = o?x =--oeﬁla“M =FE =

Remarks. 1) If S is the multiplicatively closed set 1 + a, then (10.17) asserts

that
A—> Adand 4 — 5S4

have the same kernel. Moreover for any « € @
(1—0’.)-1=1+0'.+a2+...

converges in 4, so that every element of § becomes a unitin 4. By the universal
property of S~14 this means that there is a natural homomorphism S-34 — 4
and (10.17) implies that this is injective. Thus S~'A4 can be identified with a
subring of A.

2) Krull’s Theorem (10.17) may be false if 4 is not Noethertan. Let A be the
ring of all C*® functions on the real line, and let a be the ideal of all f which van-
ish at the origin (a is maximal since A/a = R). In fact a is generated by the
identity function x, and (M7=, a® is the set of all f€ 4, all of whose derivatives
vanish at the origin. On the other hand fis annihilated by some element 1 + «
(e € a) if and only if f vanishes identically in some neighborhood of 0. The well-
known function e~***, which is not identically zero near 0, but has vanishing

derivatives at 0, then shows that the kernels of
A—>Aand 44— S-'4 (S=1+a)
do not coincide. Thus 4 is not Noetherian.
Krull’'s Theorem has many corollaries:

Corollary 10.18. Let A be a Noetherian domain, a # (1) an ideal of A.
Then () a* = 0.
Proof. 1 + a contains no zero-divisors. =

Corollary 10.19. Let A be a Noetherian ring, a an ideal of A contained in the
Jacobson radical and let M be a finitely-generated A-module. Then the
a-topology of M is Hausdorff, i.e.:(\ a*M = 0.
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Proof. By (1.9) every element of 1 + aisa unit. m
As a particularly important special case of (10.19) we have:

Corollary 10.20. Let A be a Noetherian local ring, m its maximal ideal, M a
Sinitely-generated A-module. Then the wm-topology of M is Hausdorff. In
particular the m-topology of A is Hausdorff. m

We can restate (10.20) slightly differently if we recall that an m-primary
ideal of 4 is just any ideal contained between m and some power m* (use (4.2)
and (7.14)). Thus (10.20) implies that the intersection of all m-primary ideals
of 41s zero. If now 4 is any Noetherian ring, p a prime ideal, we can apply this
version of (10.20) to the local ring Ap. Lifting back to 4 and using the one-to-one
correspondence (4.8) between p-primary ideals of 4 and m-primary ideals of 4,
(where m = pAy) we deduce:

Corollary 10.21. LetA be a Noetherian ring, p a prime ideal of A. Then the
intersection of all p-primary ideals of A is the kernel of 4 — Ay. =

THE ASSOCIATED GRADED RING
Let 4 be a ring and a an ideal of 4. Define

G(4) (= Gu(4)) = éo Flatt (@ = A).

This is a graded ring, in which the muitiplication is defined as foliows:
For each x, € a*, let X, denote the image of x, in a®/a"*?!; define X,X, to be

et——

on the particular representatives chosen.
Similarly, if M is an A-module and (M,) is an a-filtration of M, define

G(M) = @ Mo/ M.,

n=0
which is a graded G(4)-module in a natural way. Let G,(M) denote M,/M,, ..

Proposition 10.22. Let A be a Noetherian ring, a an ideal of A. Then
i) Ga(A) is Noetherian,
i1} Go(A) and Gi(A) are isomorphic as graded rings;
iiiy if M is a finitely-generated A-module and (M) is a stable a-filtration of M,
then G(M) is a finitely-generated graded Gi(A)-module.

Proof. i) Since A is Noetherian, a is finitely generated, say by x,, ..., x,. Let
X, be the image of x, in a/a3, then G(A) = (4/d)[%y,..., Xs]. Since Afa is
Noetherian, G(4) is Noetherian by the Hilbert basis theorem.

i) a®/a"*! ~ Gn/g"+! by (10.15) iii).
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iii) There exists n, such that M, ., = a’M,, for all r > 0, hence G(M) is
generated by Pncn, Go(M). Each G (M) = M,/M,,, is Noetherian and
annihilated by a, hence is a finitely-generated A4/a-module, hence P, <ny Ga(M)

is generated by a finite number of elements (as an A/a-module), hence G(M) is
finitely generated as a G(4)-module. m

The last main result of this chapter is that the a-adic completion of a
Noetherian ring is Noetherian. Before we can proceed to the proof we need a

simple lemma connecting the completion of any filtered group and the associ-
ated graded group.

Lemma 10.23. Let ¢: A — B be a homomorphism of filtered groups, i.e.
#An) S B, and let G($): G(4) — G(B), $: A — B be the induced homo-
morphisms of the associated graded and completed groups. Then
i) G(¢) injective = ¢ injective;
ii) G($) surjective = $ surjective.

Proof. Consider the commutative diagram of exact sequences

0 — ApfApsr — AfAysy - A[4, -0
¢Gn(¢) \L¢n+1 ¢¢n
0 — B,/B,,, — B/B,,, - B/B, — 0.
This gives the exact sequence

0 — Ker G, (¢) — Ker «, ,; — Ker «, — Coker G,(¢) — Coker «,, ,
~> Coker «, — 0.

From this we see, by induction on #, that Ker «, = 0 (case i)) or Coker o, = 0
(case ii)). Moreover in case ii) we aiso have Ker «,,,; — Ker «, surjective.
Taking the inverse limit of the homomorphisms «, and applying (10.2) the lemma
follows. m '

We can now form a result which is a partial converse of (10.22) iii) and is the
main step in showing that 4 is Noetherian.

Proposition 10.24. Let A be aring, a an ideal of A, M an A-module, (M,) an
a-filtration of M. Suppose that A is complete in the a-topology and that M is
Hausdorff in its filtration topology (i.e. that (", M, = 0). Suppose also that
G(M) is a finitely-generated G(A)-module, Then M is a finitely-generated
A-module.
Proof. Pick a finite set of generators of G(M), and split them up into their
homogeneous components, say & (1 € i < v) where ¢ has degree say n(i), and is
therefore the image of say x; € M,,. Let F' be the module A with the stable
a-filtration given by Fi{ = a**™® and put F = (P}, F'. Then mapping the
generator 1 of each F* to x; defines a homomorphism

¢.F—> M
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of filtered groups, and G(¢): G(F) - G(M) is a hornomorphxsm of G(A)
modules. By construction it is surjective. Hence by (10.23) ii) ¢ is surjective.

- Consider now the cuagram

FiM
“ ., 4°
FXm
Since F is free and 4 = A4 it follows that « is an isomorphism. Since M is

Hausdorff B is injective. The surjectivity of ¢ thus implies the surjectivity of ¢,
and this means that x,, ..., x, generate M as an 4-module. m

Corollary 10.25. With the hypotheses of (10.24), if G(M) is a Noetherian
G(A)-module, then M is a Noetherian A-module.

Proof. We have to show that evéry submodule M’ of M is finitely generated
(6.2). Let M, = M'n M,; then (M,) is an a-filtration of M’, and the em-
bedding M; — M, gives rise to an injective homomorphism M,/M,,, -
M,/M, ., hence to an embedding of G(M") in G(M). Since G(M) is Noetherian,
G(M') is finitely generated by (6.2); also M’ is Hausdorff, since M\ M, <
( M, = 0; hence by (10.24) M’ is finitely generated. =

We can now deduce the result we are after:

Theorem 10.26. If A is a Noetherian ring, a an ideal of A, then the a-
completion A of A is Noetherian.
Prnm‘: Rv (10.22) we know that

\( LV 3RS v williA v

Ga(A) = G&(fi- )

is Noetherian. Now apply (10.25) to the complete ring 4, taking M = A4
(filtered by a*, and so Hausdorff). =

Corollary 10.27. If A is a Noetherian ring, the power series ring B =
A[[xy, ..., x,]] in n variables is Noetherian. In particular k[[x4, ..., X,]]
(k a field) is Noetherian.

Proof. A[x,,...,x,] is Noetherian by the Hilbert basis theorem, and B is its
completion for the (x,, ..., x,)-adic topology. =

EXERCISES

1. Let «,: Z/pZ — Z/p"Z be the injection of abelian groups given by (1) = p*-3,
and let «: 4 — B be the direct sum of all the «, (where A is a countable direct
sum of copies of Z/pZ, and B is the direct sum of the Z/p®Z). Show that the
p-adic completion of A is just 4 but that the completion of A4 for the topology
induced from the p-adic topology on B is the direct product of the Z/pZ. Deduce
that p-adic completion is #not a right-exact functor on the category of all Z-
modules.
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2.

COMPLETIONS

In Exercise 1, let 4, = «~*(p"B), and consider the exact sequence
0— A,—>A— AlA, — 0.
Show that lim is not right exact, and compute lim? A,.
< <

Let A be a Noetherian ring, a an ideal and M a finitely-generated 4-module.
Using Krull’s Theorem and Exercise 14 of Chapter 3, prove that

Fﬁ a*M = (N Ker (M — Mn),
n=l mad
where m runs over all maximal ideals containing a.
Deduce that
M=0<Supp M)N V(@) = & (in Spec (4)).

[The reader should think of Af as the “Taylor expansion” of M transversal to
the subscheme ¥(a): the above result then shows that M is determined in a
neighborhood of ¥(a) by its Taylor expansion.]

Let A be a Noetherian ring, a an ideal in 4, and A the a-adic completion. For
any x € A4, let £ be the image of x in 4. Show that

x not a zero-divisor in 4 = £ not a zero-divisor in 4.
Does this imply that

A is an integral domain = A4 is an integral domain?

PRSI DS S — 4ln camizAmAaa n_. 4% 41
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Let A be a Noetherian ring and let a, b be ideals in 4. If M is any A-module, let
M9, M?® denote its a-adic and b-adic completions respectively. If M is finitely

generated, prove that (M%)b >~ Afa+b,
[Take the a-adic completion of the exact sequence

0—6"M — M/PH"M — 0
and apply (10.13). Then use the isomorphism
lim (lim M/(@"M + b™M)) = lim M/(a"M + b"M)
- “

and the inclusions (@ + )" € a™ + b* € (a + b)".]

Let A be a Noetherian ring and a an ideal in A. Prove that a is contained in the
Jacobson radical of A4 if and only if every maximal ideal of A is closed for the
a-topology. (A Noetherian topological ring in which the topology is defined by
an ideal contained in the Jacobson radical is called a Zariski ring. Examples are
local rings and (by (10.15)(iv)) a-adic completions.)

Let A be a Noetherian ring, a an ideal of 4, and A the a-adic completion. Prove
that A is faithfully flat over A (Chapter 3, Exercise 16) if and only if 4 is a Zariski
ring (for the a-topology).



[y
(]
)

11.

12.

EXERCISES 115

[Since A is flat over 4, it is enough to show that
M — M injective for all finitely generated M <> A is Zariski:

now use (10.19) and Exercise 6.]

. Let A be the local ring of the origin in C* (i.e., the ring of all rational functions

flg e C(zy, . .., z,) with g(0) # 0), let B be the ring of power series in zy,.. ., z,
which converge in some neighborhood of the origin, and let C be the ring of
formal power series in z,,..., z,, 50 that A < B < C. Show that B is a local
ring and that its completion for the maximal ideal topology is C. Assuming that
B is Noetherian, prove that B is A-flat. [Use Chapter 3, Exercise 17, and
Exercise 7 above.]

. Let 4 be a local ring, m its maximal ideal. Assume that 4 is m-adically complete.

For any polynomial f(x) € A[x], let f(x) € (4/m)[x] denote its reduction mod. m.
Prove Hensel's lemma: if f(x) is monic of degree n and if there exist coprime
monic polynomials #(x), A(x) € (4/m)[x] of degrees r,n — r with f(x) =
Z(x)h(x), then we can lift #(x), A(x) back to monic polynomials g(x), A(x) € A[x]
such that f(x) = g(x)h(x).

[Assume inductively that we have constructed gi(x), A(x) € A[x] such that
&x(h(x) — f(x) em*A4A[x). Then use the fact that since #(x) and A(x) are
coprime we can find 4,(x), 6,(x), of degrees < n - r, r respectively, such that
x? = G,(xX)Z(x) + b,(x)h(x), where p is any integer such that 1 < p € n.
Finally, use the completeness of 4 to show that the sequences gi(x), h.(x)
converge to the required g(x), h(x).]

i) With the notation of Exercise 9. ded

s a%as Sas AAVRERITLL RR AL RlaT A5 -

has a simple root « € 4/m, then (

e = g modm.
1) Shaw that 2 ic a

a
Al WAV TT LAAGL & 1o & O

M e Lilig
iii) Let f(x, y) € k[x, y], where k is a field, and assume that (0, ¥) has y = ao
as a simple root. Prove that there exists a formal power series y(x) =
Znmo0 @nx™ such that f(x, ¥(x)) = 0.
(This gives the “analytic branch” of the curve f = 0 through the point (0, a,).)

VI_

i intacarc
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Show that the converse of (10.26) is false, even if we assume that A4 is local and
that 4 is a finitely-generated 4-module.

[Take A4 to be the ring of germs of C*® functions of x at x = 0, and use Borel’s
Theorem that every power series occurs as the Taylor expansion of some C®
function.]

If A is Noetherian, then A{[xy,..., x,]] is a faithfully flat 4-algebra. [Express
A — A[[xy,. .., x,]] as a composition of flat extensions, and use Exercise 5(v)
of Chapter 1.]
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Dimension Theory

One of the basic notions in algebraic geometry is that of the dimension of a
variety. This is essentially a local notion, and, as we shall show in this chapter,
there is a very satisfactory theory of dimension for general Noetherian local
rings. The main theorem asserts the equivalence of three different definitions of
dimension. Two of these definitions have a fairly obvious geometrical content,
but the third involving the Hilbert function is less conceptual. 1t has, however,
many technical advantages and the whole theory becomes more streamlined if
one brings it in at an early stage.

After dealing with dimension we give a brief account of regular local rings,
which correspond to the notion of non-singularity in algebraic geometry. We
establish the equivalence of three definitions of regularity.

Finally we indicate how, in the case of algebraic varieties over a field, the
local dimensions we have defined coincide with the transcendence degree of the
function field

ARALINWLIV LY dAwiNde

HITRERT FIINCTIONS
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Let A = (7.0 A, be a Noetherian graded ring. By (10.7) 4, is a Noetherian
ring, and A is generated (as an A,y-algebra) by say x;, . .., x;, which we may take
to be homogeneous, of degrees k., ..., k; (all > 0).

Let M be a finitely-generated graded A-module. Then M is generated by a
finite number of homogeneous elements, say m; (1 < j < 1); let r, = deg m,.
Every element of M, the homogeneous component of M of degree n, is thus of
the form 2; fi(x)m;, where f,(x) € A is homogeneous of degree n — r, (and
therefore zero if n < r,). It follows that M, is finitely generated as an A, -
module, namely it is generated by all g;(x)m, where g,(x) is @ monomial in the
x; of total degree n — r,. i

Let A be an additive function (with values in Z) on the class of all finitely-
generated 4,-modules (Chapter 2). The Poincaré series of M (with respect to A)
is the generating function of A(M,), i.e., it is the power series

P(M,t) = i AM )" e Z[[]]).

11z
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Theorem 11.1. (Hilbert, Serre). P(M, t) is a rational function in t of the form

S@/TTi=1 (1 = ™), where f(t) e Z[t].

Proof. By induction on s, the number of generators of 4 over 4,. Start with
s = 0; this means that 4, = Oforalln > 0, so that 4 = 4;and M is a finitely-
generated 4, module, hence M, = Ofor all large n. Thus P(M, t) is a polynomial
in this case.

Now suppose s > 0 and the theorem true for s — 1. Multiplication by x,
is an A4-module homomorphism of M, into M,,,, hence it gives an exact
sequence, say

0> Ky, > M, = M, ., >L,., >0 6))
Let K= P, K,, L =D,L,; these are both finitely-generated A-modules
(because K is a submodule and L a quotient module of M), and both are anni-
hilated by x,, hence they are A44[x,, ..., x,-1]-modules. Applying A to (1) we
have, by (2.11)
A(I<ﬂ) - A('t‘ln) + A(Alvu-k,) - f\(Lru-k,) = 0;

multiplying by 7" *+*s and summing with respect to n we get
(L — t*)P(M, t) = P(L, 1) — t"P(K, 1) + g(1) @

where g(t) is a polynomial. Applying the inductive hypothesis the result now
follows. m

The order of the pole of P(M, t) at t = 1 we shall denote by d(M). It
provides a measure of the ‘“‘size” of M (relative to A). In particular d(A) is
defined. The case when all k; = 1 is specially simple:

Corollary 11.2. If each k; = 1, then for all sufficiently large n, \(M,) is a
polynomial in n (with rational coefficients) of degree* d — 1.
Proof. By (11.1) we have A(M,) = coefficient of ¢ in f(¢)-(1 — ¢)~* Cancel-
ing powers of (1 — ) we may assume s = 4 and f(1) # 0. Suppose f(t) =
S¥.o @ tk; since

(A = ¢ = Z(d:li;l) e

1 k=0
we have
N
d+n—k—
AM,) = za,‘ ( -Hcll—l l) foralln > N.
k=0

and the sum on the right-hand side is a polynomial in n with leading term

Cami-tjd-1DI#0. =

Remarks. 1) For a polynomial f(x) to be such that f(n) is an integer for all

integers n, it is not necessary for f to have integer coefficients: e.g., 3x(x + 1).

* We adopt the convention here that the degree of the zero polynomial is —1: also
that the binomial coefficient (:l) =0forn=0,and = 1forn= —1.
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2) The polynomial in (11.2) is usually called the Hilbert function (or poly-
nomial) of M (with respect to A).

Returning now to the sequence (1) let us replace x, by any element x € 4,
which is not a zero-divisor in M (i.e., xm = 0 with me M = m = Q). Then
K = 0 and equation (2) shows that

d(L) = d(M) — 1.
Thus we have proved
Proposition 11.3. If xe A, is not a zero-divisor in M then d(M[xM) =
dM) - 1. =

We shall use (11.1) in the case where 4, is an Artin ring (in particular, a
field) and A(M) is the length (M) of a finitely-generated 4,-module M. By
(6.9) I(M) is additive.

Example. Let 4 = Ay[x,, ..., x,], where 4, is an Artin ring and the x, are
independent indeterminates. Then A4, is a free 4,-module generated by the

monomials x71-.-xT where > m; = n; there are (s+n
P4, t) = (1 — )2

We shall now consider the Hilbert functions obtained from a local ring by
passing to the associated graded rings as in Chapter 10.

) of these, hence

D e order 77 A T n A ho 7 Nasthoaws
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q an m-primary ideal, M a finitely-generate
filtration of M. Then
i) M/M, is of finite length, for eachn 2> 0;

ii) for all sufficiently large n this length is a polynomial g(n) of degree < s
in n, where s is the least number of generators of q,

] wimo vt ite sm1avimmal sAsAl
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A-module, (M,) a stable q-

,

iii) the degree and leading coefficient of g(n) depend only on M and q, not on
the filtration chosen.
Proof. i) Let G(4) = @, q*/a"*1, G(M) = P, M, /M, .. Go(4) = Afq is an
Artin local ring, say by (8.5); G(4) is Noetherian, and G(M) is a finitely-
generated graded G(A4)-module (10.22). Each G,(M) = M,/M,,, 15 a
Noetherian 4-module annihilated by g, hence a Noetherian 4/g-module, and
therefore of finite length (since A/q is Artin). Hence M/M, is of finite length,
and ’
= I(MIM,) = ZII(M,_I/M,). m
rm
i) If xq, ..., x, generate g, the images X, of the x, in q/g® generate G(A)
asan A/g-algebra, and each %, has degree 1, Hence by (11.2) we have I(M,/M,.,)
= f(n) say, where f(n) is a polynomial in n of degree < s — 1 for all large ».
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Since from (1) we have /,,, — 1, = f(n), it follows that /, is a polynomial g(n)
of degree < s, for all large n.

" iii) Let (#,) be another stable g-filtration of M, and let g(n) = /(M/A1,).
By (10.6) the two filtrations have bounded difference, i.e., there exists an integer
no such that M,., < M,, ﬂ,.+,.o < M, for all n > 0; consequently we have
gn + ny) = g(n), &(n + ny) = g(n). Since g and & are polynomials for all
large n, we have lim,_, », g(n)/g(n) = 1, and therefore g, & have the same degree
and leading coefficient. m

The polynomial g(n) corresponding to the filtration (q*M) is denoted by
M .
xa'(n):
xa(n) = I(M[{q"M)  (for all large n).
If M = A, we write xo(n) for x4(n) and call it the characteristic polynomial
of the m-primary ideal g. In this case (11.4) gives

Corollary 11.5. For all large n, the length 1(A/q") is a polynomial x4(n)
of degree < s, where s is the least number of generators of q. m

The polynomials yq(n) for different choices of the m-primary ideal g all have
the same degree, as the next proposition shows:

Proposition 11.6. If A, m, q are as above
deg xo(n) = deg xm(n).

Proof. We have m 2 q 2 m' for some r by (7.16), hence m* =2 g* = m™ and

therefore
xm(n) € xq(n) < xm(rn) for all large n.

Now let n — oo, remembering that the y’s are polynomials inn. m

The common degree of the x,(n) will be denoted by d(A4): in view of (11.2)
this means we are putting d(4) = d(Gm(A)) where d(Gn(4)) is the integer
defined earlier as the pole at ¢ = 1 of the Hilbert function of Gn(A4).

DIMENSION THEORY OF NOETHERIAN LOCAL RINGS

Let 4 be a Noetherian local ring, m its maximal ideal.

Let 8(A4) = least number of generators of an m-primary ideal of 4.
Our ambition is to prove that 8§(4) = d(4) = dim 4. Weshall achieve this by
proving 8(4) = d(4) > dim A > 3(4). (11.5) and (11.6) together provide the
first link in this chain:

Proposition 11.7. 3(A) = d(4). m

Next we shall prove the analogue for local rings of (11.3). Note that this
proof uses the strong version of the Artin-Rees lemma (not just the topological

part).
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Proposition 11.8. Let A, m, q be as before. Let M be a finitely-generated
A-module, x € A a non-zero-divisor in M and M’ = M[xM. Then

deg x¥ < degxd' — 1.

Proof. Let N = xM; then N =~ M as A-modules, by virtue of the assumption
onx. Let N, = NN g"M. Then we have exact sequences

0— N/N, > M[q"M - M'[q"M' — 0.
Hence, if g(n) = /(N/N,), we have

g(n) — x¥(m + x3(m) = 0

for all large n. Now by Artin-Rees (10.9), (¥,) is a stable g-filtration of N.
Since N & M, (11.4) iii then implies that g(n) and x}(n) have the same leading
term; hence the result. m

Corollary 11.9. If A is a Noetherian local ring, x a non-zero-divisor in A, then
d(A4/)(x)) < d(4) — 1.
Proof. Put M = Ain (11.8). m

We can now prove the crucial result:

Proposition 11.10. d(A) > dim A.
Proof. By induction on d = d(A4). If d = 0 then /(4/m") is constant for all

large n, hence m* = m**? for some n, hence m® = 0 by Nakayama’s lemma
(2.6). Thus A4 is an Artin ring and dim 4 = 0.

Suppose d > 0 and let po < p; <--- < p, be any chain of prime ideals in
A. Let x € p;, x ¢ po; let A" = Afp,, and let x" be the image of x in A’. Then
x' # 0, and A4’ is an integral domain, hence by (11.9) we have

d(A'[(x)) < d(4') — 1.

Also, if m’ iéthe maximal ideal of 4, A’/m'* is a homomorphic image of 4/m",
hence /(4/m") > I(4'/m'™) and therefore d(4) > d(4'). Consequently

d(A')(x) < dA) -1 =d -1,

Hence, by the inductive hypothesis, the length of any chain of prime ideals in
A'j(x)is € d -~ 1. But the images of p,,..., p, in 4’/(x") form a chain of
length r — 1, hence r — 1 £ d— 1 and consequently r < 4  Hence
dim A < d m Y

Corollary 11.11. If A is a Noetherian local ring, dim A4 is finite. m

If A is any ring, p a prime ideal in 4, then the height of p is defined to be the
supremum of chains of prime ideals po < p; =--.-< p, = p which end at p:
by (3.13), height p = dim Ap. Hence, from (11.11):
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Corollary 11.12. In a Noetherian ring every prime ideal has finite height, and
therefore the set of prime ideals in a Noetherian ring satisfies the descending
chain condition. m

Remark. Likewise we may define the depth of p, by considering chains of prime
ideals which start at p: clearly depth p = dim 4/p. But the depth of a prime
ideal, even in a Noetherian ring, may be infinite (unless the ring is local).
See Exercise 4.

Proposition 11.13. Let A be a Noetherian local ring of dimension d. Then

there exists an m-primary ideal in A generated by d elements x,, ..., x4,

and therefore dim A > 8(A).
Proof. Construct xy, ..., x; inductively in such a way that every prime ideal
containing (x, . . ., x;) has height > i, foreach i. Supposei > Oand x,,...,%_;
constructed. Let p,(1 < j < s) be the minimal prime ideals (if any) of
(X1 . - .5 X;—1) Which have height exactly i — 1. Since i — 1 < d=dimA4 =
height m, we have m # p,(l <j< s), hence m # Uj.,p;, by (L.I1).
Choose x, € m, x; ¢ | p;, and let q be any prime containing (x,, ..., x;). Thenq
contains some minimal prime‘ideal p of (xy,..., x;-1). If p = p, for some j,
we have x;€0q, x;¢p, hence g © p and therefore height q > i; if p # p,
(1 <j € 5), then height p > i, hence height q > i Thus every prime ideal
containing (xy, ..., x;) has height > I,

Consider then (xy, ..., x4). If p is a prime ideal of this ideal, p has height
> d, hence p = m (for p < m = height p < height m = d). Hence the
ideal (x,, . . ., X4) is m-primary. W

Theorem 11.14. (Dimension theorem.) For any Noetherian local ring A the

following three integers are equal:

i) the maximum length of chains of prime ideals in A;

ii) the degree of the characteristic polynomial ym(n) = I(Ajm™);

iii) the least number of generators of an m-primary ideal of A.
Proof. (11.7), (11.10), (11.13). m

Example. Let A4 be the polynomial ring k[xy, .. ., ¥a] localized at the maximal
ideal m = (x,..., X,). Then Gm(A4) is a polynomial ring in n indeterminates
and so its Poincaré series is (1 — ¢)~". Hence, using the equivalence of (i) and
(ii) in (11.14), we deduce that dim An = n.

Corollary 11.15. dim A4 < dim, (m/m?).
Proof. If x;e m (1 < i < s) are such that their images in m/m? form a basis
of this vector space, then the x; generate m by (2.8); hence dim, (m/m?) =
s = dim 4 by (Il.lz). |

Corollary 11.16. Let A be a Noetherian ring, x,,..., % € A. Then every
minimal ideal v belonging to (xy,..., X;) has height < r.
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Proof. In Ay the ideal (x,, ..., x,) becomes p*-primary, hence » > dim 4y =
height p. =

Corollary 11.17. (Krull’s principal ideal theorem). Let 4 be a Noetherian
ring and let x be an element of A which is neither a zero-divisor nor a unit.
Then every minimal prime ideal p of (x) has height 1.
Proof. By (11.16), height p < 1. If height p = 0, then p is a prime ideal
belonging to 0, hence every element of p is a zero-divisor by (4.7): contra-
diction, since xep. =

Corollary 11.18. Let A be a Noetherian local ring, x an element of m which
is not a zero-divisor. Then dim A/(x) = dim A4 — 1,
Proof. Let d = dim A/(x). By (11.9) and (11.14) we have d < dim 4 — 1.
On the other hand, let x; (1 < i < d) be elements of m whose images in A4/(x)
generate an m/(x)-primary ideal. Then the ideal (x, x3,...,Xg) in A4 is m-
primary, henced + 1 > dimA4. =

Corollary 11.19. Let A be the m-adic completion of A. Then dim A =
dim 4.
Proof. Aj/m" ~ A/&" from (10.15), hence ym(n) = xa(n). =

If x4, . . ., x4 generate an m-primary ideal, and d = dim A, wecall x,,..., X,
a system of parameters. They have a certain independence property described in
the following proposition.

Proposition 11.20. Let xi, ..., X, be a system of parameters for A and let
q = (X1, - - ., Xg) be the m-primary ideal generated by them. Let f(t,, .. ., t;)
be a homogeneous polynomial of degree s with coefficients in A, and assume
that

FACITNG M-I LA
Then all the coefficients of f lie in m.
Proof. Consider the epimorphism of graded rings

a: (AfQ)ty, ..., ta] = Go(4)

given by t; — X, where ¢, are indeterminates and X, is x; mod q. The hypothesis
on f implies that f(t,, ..., #5) (the reduction of fmod q) is in the kernel of .
Assume if possible that some coefficient of fis a unit, then fis not a zero-divisor
(cf. Chapter 1, Exercise 3). Then we have

d(Gy(A)) < d((4/9)ts, - - -, ta)/(f)) because fe Ker ()
= d((4/a)lts, -, ta]) = 1 by (11.3)
= d - 1 by the example following (11.3).

But d(Gy(4)) = d by the main theorem (11.14). This gives the required con-
tradiction. =
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This proposition takes a simple form if 4 contains a field £ mapping iso-
morphically onto the residue field A/m:

Corollary 11.21. If k < A is a field mapping isomorphically onto Afm and
if X1,..., X4 is a system of parameters, then xi,...,x, are algebraically
independent over k.
Proof. Assume f(xy,..., xs) = 0 where fis a polynomial with coefficients in k.
If f # 0 we can write f = f, + higher terms, where f; is homogeneous of degree
sand f; # 0. Apply (11.20) to f; and we deduce that f, has all its coefficients
in m. Since f; has coefficients in k this implies f, = 0, a contradiction. Hence
Xy, ..., Xq are algebraically independent over k. =

REGULAR LOCAL RINGS

In algebraic geometry there is an important distinction between singular and
non-singular points (see Exercise 1). The local rings of non-singular points
have as their generalization (to the non-geometric case) what are called regular
local rings: these are rings satisfying any of the (equivalent) conditions i)-iii)
of the next theorem.

Theorem 11.22. Let A be a Noetherian local ring of dimension d, m its
maximal ideal, k = A[m. Then the following are equivalent:

1) Gm(d) = k[t1, ..., ts) where the t; are independent indeterminates;

i) dim, (m/m?) = d;

ves
1Y m ran he oomorated by d elomente
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Proof. 1) = ii)isclear, ii) = iii} by (2.8): see the proof of (11.15). iii) = i):
let m == (x3,...,xy), then by (11.20) the map «: k[x;, ..., Xs5] = Gu(A) is an
isomorphism of graded rings. =

A regular local ring is necessarily an integral domain: this is a consequence of
the following more general result.

Lemma 11.23. Let A be a ring, a an ideal of A such that (), a* = 0.
Suppose that Gu(A) is an integral domain. Then A is an integral domain.

Proof. Let x, y be non-zero elements of 4. Then since () a® = 0 there exist
integers 7, s = Osuch that xea”, x¢ a'*}, yea®, y¢a**’. Let X, y denote the
images of x, y in G(A), G,(A) respectively. Then ¥ # 0, y # 0, hence Xy =
X7 # 0,hencexy # 0. =

Hence by (9.2) the regular local rings of dimension 1 are precisely the dis-
crete valuation rings.

It can also be shown that if 4 is a local ring and Gr(4) is an integrally closed
integral domain, then A is integrally closed. It follows that a regular local ring
is integrally closed; but there are integrally closed local domains of dimension
> 1 which are not regular.
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Proposition 11.24. Let A be a Noetherian local ring. Then A is regular if and
only if A is regular.
Proof. By (10.16), (10.26) and (11.19) we know that A is a Noetherian local ring
of the same dimension as 4 and with #t as maximal ideal. Now use (10.22)
which asserts that Gu(4) ~ Gau(A) and the result follows. =

Remarks. 1) It follows from what we have said above that A4 is also an integral
domain. Geometrically speaking this means that (locally)

non-singularity = analytic irreducibility

or that, at a non-singular point, there is only one analytic “branch”.

2) If A4 contains-a field £ mapping isomorphically onto 4/m (the geometric
case) then (11.22) implies that 4 is a formal power series ring over k in d in-
determinates. Thus the completions of local rings of non-singular points on
d-dimensional varieties over k are all isomorphic.

Example. Let 4 = k[x,, ..., x,] (k any field, x; independent indeterminates);
let m = (x,...,x,). Then An (the local ring of affine space k™ at the origin)
is a regular local ring: for Gn(A4) is a polynomial ring in n variables.

TRANSCENDENTAL DIMENSION

£
Pt
o
=
€l
o
[Z,
s
<
|
j
C
-
-
g
-
-
j
N
[/
¢
<
ot
o
¢
C
-
o
[«
"C
3
-
£
=
-
[
=

classically in terms of the function field.
Assume for simplicity that k is an algebraically closed field and let ¥ be an
irreducible affine variety over k. Thus the coordinate ring A(¥) is of the form

AWV) = klxy, ..., %a)/p

where p is a prime ideal. The field of fractions of the integral domain A(V) is
called the field of rational functions on ¥ and is denoted by &(F"). Itis a finitely-
generated extension of k and so has a finite transcendence degree over k—the
maximum number of algebraically independent elements. This number is
defined to be the dimension of V. Now recall that, by the Nullstellensatz, the
points of V correspond bijectively with the maximal ideals of A(V). If Pisa
point with maximal ideal m we shall call dim 4(V)m the local dimension of V
at P. We propose to prove

Theorem 11.25. For any irreducible variety V over k the local dimension of V
at any point is equql to dim V.

Remark. We already know by (11.21) that dim ¥V > dim A for all m. The

problem is to prove the opposite inequality, and for this purpose the main
lemma is:



EXERCISES 125

Lemma 11.26. Let B = A be integral domains with B integrally closed and A
integral over B. Let m be a maximal ideal of A, andletn = m N B. Thenn
is maximal and dim A,y, = dim B,.
Proof. This is an easy consequence of the results of Chapter 5. First n is
maximal by (5.8). Next if

m=>20q, 222 gy (D

is a strict chain of primes in 4, its intersection with B is by (5.9) a strict chain of
primes

nDp; 2P 2D p, )

This proves dim By > dim 4n. Conversely given the strict chain (2) we can, by
(5.16), lift this to a chain (1) (necessarily strict): thus dim Ay > dim By,. =m

We can now proceed to:

Proof of (11.25). By the Normalization Lemma (Chapter 5, Exercise 16), we can
find a polynomial ring B = k[x,, ..., x;] contained in A(V) such that d =
dim ¥ and A(V)isintegral over B. Since B is integrally closed (remark following
(5.12)) we can apply (11.26) and this reduces our task to proving (11.25) for
the ring B, i.e. for affine space. But any point of affine space can be taken as
the origin of coordinates and, as we have already seen, k[x,, ..., x,] localized
at the maximal ideal (x,, ..., x,) is a local ring of dimensiond. m

Corollary 11.27. For every maximal ideal m of A(V) we have
dim A(V) = dim A(V)m.

Proof. By definition we have dim A(V) = supg dim 4(V)z. But by (11.2

~—aall =2222 Ly -3 - ey

all A(¥)w have the same dimension. =

EXERCISES

1. Let fe€ k[x,, ..., x,] be an irreducible polynomial over an algebraically closed
field k. A point P on the variety f(x) = 0 is non-singular < not all the partial
derivatives 9f/ox, vanish at P. Let 4 = k[x,,..., x,]/(f), and let m be the
maximal ideal of A corresponding to the point P. Prove that P is non-singular
<> Am is a regular local ring.

[By (11.18) we have dim A = n — 1. Now

mim? = (X, ..., X)Xy, - - -, Xa)® + ()
and has dimension n — 1 if and only if f¢ (x,, ..., xa)%]

2. In (11.21) assume that A is complete. Prove that the homomorphism
k[lts, ..., 2s]]1 — A given by t,» x, (1 € i < d) is injective and that 4 is a
finitely-generated module over k[[ty, ..., ta]]. [Use (10.24).]
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3.

4.

DIMENSION THEORY

Extend (11.25) to non-algebraically-closed fields. [If &k is the algebraic closure
of k, then k[xy, .. ., x.] is integral over k[xy, ..., x,].]

An example of a Noetherian domain of infinite dimension (Nagata). Let k be a
field and let A = k[xy, x3, ..., xn, ...] be a polynomial ring over &k in a countably
infinite set of indeterminates. Let m,, m,, ... be an increasing sequence of
positive integers such that m,; — m > my — m_; foralli > 1. Letp; =
(Xmg+15 - - -5 ¥m,,,) and let S be the complement in A of the union of the ideals p,.

Each p, is a prime ideal and therefore the set S is multiplicatively closed.
The ring S ~1A4 is Noetherian by Chapter 7, Exercise 9. Each S ~!p, has height
equal to m,,, — my, hence dim S "4 = <.

Reformulate (11.1) in terms of the Grothendieck group K(A,) (Chapter 7,
Exercise 26).

Let A be a ring (not necessarily Noetherian). Prove that
| + dimAdA <€ dimA[x] < | + 2dim A4.

[Let f: A — A[x] be the embedding and consider the fiber of f*: Spec (A[x]) —
Spec (A) over a prime ideal p of A. This fiber can be identified with the spectrum
of k ® 4A[x] = k[x], where k is the residue field at p (Chapter 3, Exercise 21),
and dim k[x] = 1. Now use Exercise 7(ii) of Chapter 4.]

Let A be a Noetherian ring. Then
dim 4A[x] = 1 + dim 4,
and hence, by induction on n,
dim A[x;,..., xx] = n + dim A.

[Let p be a prime ideal of height min A. Then there exista, . . ., a, € p such that
p is a minimal prime ideal belonging to the ideal ¢ = (a,..., a,). By Exercise 7
of Chapter 4, p[x] is a minimal prime ideal of a[x] and therefore height p[x] < m.
On the other hand, a chain of prime ideals py < 9, <--- < p, = p gives rise
to a chain po[x] =- .- < bu[x] = p[x], hence height p[x] = m. Hence height
p[x] = height p. Now use the argument of Exercise 6.]
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