ALGEBRAIC K-THEORY
 OVER THE INFINITE DIHEDRAL GROUP

JAMES F. DAVIS, QAYUM KHAN, ANDREW RANICKI

Abstract. We study the algebraic K-theory of $R[G]$, for any ring R and any group G with a surjection $p: G \rightarrow D_{\infty}$ onto the infinite dihedral group D_{∞}.

Introduction

For any ring R we establish isomorphisms between the codimension 1 splitting obstruction nilpotent class groups which arise in the decompositions of the algebraic K-theory of the R-coefficient group ring $R[G]$ of a group G with a surjection p : $G \rightarrow D_{\infty}$ onto the infinite dihedral group D_{∞} and the α-twisted polynomial ring $R[F]_{\alpha}[t]$, with $F=\operatorname{ker}(p)$ and $\alpha: F \rightarrow F$ the automorphism such that $F \times{ }_{\alpha} \mathbb{Z}=$ $\operatorname{ker}\left(G \rightarrow \mathbb{Z}_{2}\right)$.

The infinite dihedral group D_{∞} is such that:
(A) D_{∞} is the free product $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ of two cyclic groups of order 2 , whose generators will be denoted t_{1}, t_{2}.
(B) D_{∞} contains the infinite cyclic group $\mathbb{Z}=\langle t\rangle$ as a subgroup of index 2 with $t=t_{1} t_{2}$

$$
\{1\} \rightarrow \mathbb{Z} \rightarrow D_{\infty} \rightarrow \mathbb{Z}_{2} \rightarrow\{1\}
$$

More generally, if G is a group with a surjection $p: G \rightarrow D_{\infty}$ then:
(A) $G=G_{1} *_{F} G_{2}$ is a free product with amalgamation of two groups

$$
G_{1}=\operatorname{ker}\left(p_{1}: G \rightarrow \mathbb{Z}_{2}\right), G_{2}=\operatorname{ker}\left(p_{2}: G \rightarrow \mathbb{Z}_{2}\right) \subset G
$$

with a common subgroup $F=\operatorname{ker}(p)=G_{1} \cap G_{2}$ of index 2 in both G_{1} and G_{2}.
(B) G has a subgroup \bar{G} of index 2 which is an $H N N$ extension

$$
\{1\} \rightarrow F \rightarrow \bar{G}=F \times_{\alpha} \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow\{1\}
$$

for an automorphism $\alpha: F \rightarrow F$ such that $\alpha^{2}=1$.

By Waldhausen [Wal78] the algebraic K-theory of $\mathbb{Z}[G]$ for any amalgamated free product $G=G_{1} *_{F} G_{2}$ with $F \rightarrow G_{1}, F \rightarrow G_{2}$ injections decomposes as

$$
K_{*}(\mathbb{Z}[G])=K_{*}\left(\mathbb{Z}[F] \rightarrow \mathbb{Z}\left[G_{1}\right] \times \mathbb{Z}\left[G_{2}\right]\right) \oplus \widetilde{\operatorname{Nil}}_{*-1}\left(\mathbb{Z}[F] ; \mathbb{Z}\left[G_{1} \backslash F\right], \mathbb{Z}\left[G_{2} \backslash F\right]\right)
$$

By Bass [Bas68] and Farrell-Hsiang [FH73] the algebraic K-theory of $\mathbb{Z}[\bar{G}]$ for any $H N N$ extension of the type $\bar{G}=F \times_{\alpha} \mathbb{Z}$ decomposes as

$$
K_{*}(\mathbb{Z}[\bar{G}])=K_{*}(1-\alpha: \mathbb{Z}[F] \rightarrow \mathbb{Z}[F]) \oplus \widetilde{\mathrm{Ni}}_{*-1}(\mathbb{Z}[F], \alpha) \oplus \widetilde{\mathrm{Nil}_{*-1}}\left(\mathbb{Z}[F], \alpha^{-1}\right)
$$

Given a ring R and an R-bimodule \mathscr{B} let

$$
T_{R}(\mathscr{B})=R \oplus \mathscr{B} \oplus \mathscr{B} \otimes_{R} \mathscr{B} \oplus \ldots
$$

be the tensor algebra of \mathscr{B} over R. The $\operatorname{Nil}-\operatorname{groups}^{\operatorname{Nil}}(R, \mathscr{B})$ are defined to be the algebraic K-groups $K_{*}(\operatorname{Nil}(R, \mathscr{B}))$ of the exact category $\operatorname{Nil}(R, \mathscr{B})$ with objects pairs (P, ρ) with P a f.g. projective R-module and $\rho: P \rightarrow \mathscr{B} \otimes_{R} P$ a nilpotent R-module morphism. The reduced Nil-groups $\widetilde{\mathrm{Nil}}_{*}$ are such that

$$
\operatorname{Nil}_{*}(R, \mathscr{B})=K_{*}(R) \oplus \widetilde{\operatorname{Nil}_{*}}(R, \mathscr{B}) .
$$

Waldhausen [Wal78] proved that if \mathscr{B} is a f.g. projective R-module and free as a right R-module

$$
K_{*}\left(T_{R}(\mathscr{B})\right)=K_{*}(R) \oplus \widetilde{\operatorname{Nil}_{*-1}}(R, \mathscr{B})
$$

The Nil-groups of a ring automorphism $\alpha: R \rightarrow R$ are defined by

$$
\operatorname{Nil}_{*}(R, \alpha):=\operatorname{Nil}_{*}\left(R, R_{\alpha}\right)
$$

with R_{α} the R-bimodule defined by the additive group of R with

$$
R \times R_{\alpha} \times R \rightarrow R_{\alpha} ; \quad(r, x, s) \mapsto r . x . \alpha(s),
$$

and the reduced Nil-groups $\widetilde{\mathrm{Nil}_{*}}$ are such that

$$
\operatorname{Nil}_{*}(R, \alpha)=K_{*}(R) \oplus \widetilde{\operatorname{Nil}_{*}}(R, \alpha)
$$

The tensor algebra in this case is the α-twisted polynomial extension

$$
T_{R}\left(R_{\alpha}\right)=R_{\alpha}[t]
$$

with t an indeterminate over R such that $r t=t \alpha(r)(r \in R)$, and

$$
\begin{aligned}
& K_{*}\left(R_{\alpha}[t]\right)=K_{*}(R) \oplus \widetilde{\operatorname{Nil}}_{*-1}(R, \alpha) \\
& K_{*}\left(R_{\alpha}\left[t, t^{-1}\right]\right)=K_{*}(1-\alpha: R \rightarrow R) \oplus \widetilde{\operatorname{Nil}_{*-1}}(R, \alpha) \oplus \widetilde{\operatorname{Nil}}_{*-1}\left(R, \alpha^{-1}\right)
\end{aligned}
$$

The Nil-groups $\operatorname{Nil}_{*}\left(R, \mathscr{B}_{1}, \mathscr{B}_{2}\right)$ are defined for any ring R and R-bimodules $\mathscr{B}_{1}, \mathscr{B}_{2}$ to be the algebraic K-groups $K_{*}\left(\operatorname{Nil}\left(R, \mathscr{B}_{1}, \mathscr{B}_{2}\right)\right)$ of the exact category $\operatorname{Nil}\left(R, \mathscr{B}_{1}, \mathscr{B}_{2}\right)$ with objects quadruples $\left(P_{1}, P_{2}, \rho_{1}, \rho_{2}\right)$ with P_{1}, P_{2} f.g. projective R-modules and

$$
\rho_{1}: P_{1} \rightarrow \mathscr{B}_{1} \otimes_{R} P_{2}, \rho_{2}: P_{2} \rightarrow \mathscr{B}_{2} \otimes_{R} P_{1}
$$

R-module morphisms such that $\rho_{2} \rho_{1}: P_{1} \rightarrow \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2} \otimes_{R} P_{1}$ is nilpotent. The reduced Nil-groups $\widetilde{N i l}_{*}$ are such that

$$
\operatorname{Nil}_{*}\left(R, \mathscr{B}_{1}, \mathscr{B}_{2}\right)=K_{*}(R) \oplus K_{*}(R) \oplus \widetilde{\operatorname{Nil}_{*}}\left(R, \mathscr{B}_{1}, \mathscr{B}_{2}\right) .
$$

Theorem 0.1. For any group G with a surjection $G \rightarrow D_{\infty}$ the $\widetilde{\text { Nil-groups associ- }}$ ated to the $H N N$ extension $\bar{G}=F \times_{\alpha} \mathbb{Z}$ are isomorphic to the $\widetilde{\text { Nil-groups associated }}$ to the amalgamated free product decomposition $G=G_{1} *_{F} G_{2}$

$$
\widetilde{i}: \widetilde{\mathrm{Nil}}_{*}(\mathbb{Z}[F], \alpha) \cong \widetilde{\mathrm{Nil}}_{*}\left(\mathbb{Z}[F] ; \mathbb{Z}\left[G_{1} \backslash F\right], \mathbb{Z}\left[G_{2} \backslash F\right]\right)
$$

Remark 0.2. The inclusion $\mathbb{Z}[F]_{\alpha}[t] \rightarrow \mathbb{Z}[G]$ sending t to $t_{1} t_{2}$ for any $t_{1} \in G_{1} \backslash F$, $t_{2} \in G_{2} \backslash F$ induces morphisms

$$
\begin{aligned}
& K_{*}\left(\mathbb{Z}[F]_{\alpha}[t]\right)=K_{*}(\mathbb{Z}[F]) \oplus \widetilde{\operatorname{Nil}}_{*-1}(\mathbb{Z}[F], \alpha) \\
& \quad \rightarrow K_{*}(\mathbb{Z}[G])=K_{*}\left(\mathbb{Z}[F] \rightarrow \mathbb{Z}\left[G_{1}\right] \times \mathbb{Z}\left[G_{2}\right]\right) \oplus \widetilde{\operatorname{Nil}_{*-1}}\left(\mathbb{Z}[F] ; \mathbb{Z}\left[G_{1} \backslash F\right], \mathbb{Z}\left[G_{2} \backslash F\right]\right)
\end{aligned}
$$

which are the isomorphisms \widetilde{i} of 0.1 on the $\widetilde{\text { Nil-groups. The transfer maps }}$

$$
\begin{aligned}
& K_{*}(\mathbb{Z}[G])=K_{*}\left(\mathbb{Z}[F] \rightarrow \mathbb{Z}\left[G_{1}\right] \times \mathbb{Z}\left[G_{2}\right]\right) \oplus \widetilde{\operatorname{Nil}_{*-1}}\left(\mathbb{Z}[F] ; \mathbb{Z}\left[G_{1} \backslash F\right], \mathbb{Z}\left[G_{2} \backslash F\right]\right) \\
& \quad \rightarrow K_{*}(\mathbb{Z}[\bar{G}])=K_{*}(1-\alpha: \mathbb{Z}[F] \rightarrow \mathbb{Z}[F]) \oplus \widetilde{\operatorname{Nil}_{*-1}}(\mathbb{Z}[F], \alpha) \oplus \widetilde{\operatorname{Nil}_{*-1}}(\mathbb{Z}[F], \alpha)
\end{aligned}
$$

are given by $\widetilde{i}^{-1} \oplus \widetilde{i}^{-1}$ on the $\widetilde{\text { Nil-groups. }}$

Remark 0.3. Lafont and Ortiz [LO07] proved that for a virtually cyclic group G with a surjection $G \rightarrow D_{\infty}$ and $*=0,1 \widetilde{\mathrm{Nil}_{*}}\left(\mathbb{Z}[F] ; \mathbb{Z}\left[G_{1} \backslash F\right], \mathbb{Z}\left[G_{2} \backslash F\right]\right)=0$ if and only if $\widetilde{\mathrm{Nil}_{*}}(\mathbb{Z}[F], \alpha)=0$.

In fact, Theorem 0.1 is the special case $R=\mathbb{Z}[F], \mathscr{B}_{1}=\mathbb{Z}\left[G_{1} \backslash F\right], \mathscr{B}_{2}=\mathbb{Z}\left[G_{2} \backslash F\right]$ of the following general result:

Theorem 0.4 (Algebraic semi-splitting). Let R be a ring and let $\mathscr{B}_{1}, \mathscr{B}_{2}$ be R bimodules such that \mathscr{B}_{2} is a f.g. projective left R-module. The Nil-groups of ($R, \mathscr{B}_{1}, \mathscr{B}_{2}$) are related to the Nil-groups of $\left(R, \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right)$ by isomorphisms

$$
\begin{aligned}
& \operatorname{Nil}_{*}\left(R, \mathscr{B}_{1}, \mathscr{B}_{2}\right) \cong \operatorname{Nil}_{*}\left(R, \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \oplus K_{*}(R), \\
& \widetilde{\operatorname{Nil}_{*}}\left(R, \mathscr{B}_{1}, \mathscr{B}_{2}\right) \cong \widetilde{\operatorname{Nil}_{*}}\left(R, \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right)
\end{aligned}
$$

In particular, for $*=0$ there are defined inverse isomorphisms

$$
\begin{aligned}
& i: \operatorname{Nil}_{0}\left(R, \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \oplus K_{0}(R) \rightarrow \operatorname{Nil}_{0}\left(R, \mathscr{B}_{1}, \mathscr{B}_{2}\right) ; \\
& \left(\left[P_{1}, \rho_{12}: P_{1} \rightarrow \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2} \otimes_{R} P_{1}\right],\left[P_{2}\right]\right) \mapsto\left[P_{1}, \mathscr{B}_{2} \otimes_{R} P_{1} \oplus P_{2},\binom{\rho_{12}}{0},\left(\begin{array}{ll}
1 & 0
\end{array}\right],\right. \\
& j: \operatorname{Nil}_{0}\left(R, \mathscr{B}_{1}, \mathscr{B}_{2}\right) \rightarrow \operatorname{Nil}_{0}\left(R, \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \oplus K_{0}(R) ; \\
& {\left[P_{1}, P_{2}, \rho_{1}: P_{1} \rightarrow \mathscr{B}_{1} \otimes_{R} P_{2}, \rho_{2}: P_{2} \rightarrow \mathscr{B}_{2} \otimes_{R} P_{1}\right] \mapsto\left(\left[P_{1}, \rho_{2} \circ \rho_{1}\right],\left[P_{2}\right]-\left[\mathscr{B}_{2} \otimes_{R} P_{1}\right]\right) .}
\end{aligned}
$$

The reduced versions are the inverse isomorphisms

$$
\begin{aligned}
& \widetilde{i}: \widetilde{\operatorname{Nil}_{0}}\left(R, \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \rightarrow \widetilde{\operatorname{Nil}_{0}}\left(R, \mathscr{B}_{1}, \mathscr{B}_{2}\right) ;\left[P_{1}, \rho_{12}\right] \mapsto\left[P_{1}, \mathscr{B}_{2} \otimes_{R} P_{1}, \rho_{12}, 1\right], \\
& \widetilde{j}: \widetilde{\operatorname{Nil}}_{0}\left(R, \mathscr{B}_{1}, \mathscr{B}_{2}\right) \rightarrow \widetilde{\operatorname{Nil}_{0}}\left(R, \mathscr{B}_{1} \otimes_{S} \mathscr{B}_{2}\right) ;\left[P_{1}, P_{2}, \rho_{1}, \rho_{2}\right] \mapsto\left[P_{1}, \rho_{2} \circ \rho_{1}\right] .
\end{aligned}
$$

The proof of Theorem 0.4 is motivated by the obstruction theory of Waldhausen [Wal69] splitting homotopy equivalences of finite $C W$ complexes X along codimension 1 subcomplexes $Y \subset X$ with $\pi_{1}(Y) \rightarrow \pi_{1}(X)$ injective, and the subsequent algebraic K-theory decomposition theorems of Waldhausen [Wal78].

A codimension 1 pair $(X, Y \subset X)$ is a pair of spaces such that the inclusion $Y=Y \times\{0\} \subset X$ extends to an open embedding $Y \times \mathbb{R} \subset X$. A map of codimension 1 pairs $(f, g):(M, N) \rightarrow(X, Y)$ has $g=\left.f\right|_{N}: N=f^{-1}(Y) \rightarrow Y$.

Let (X, Y) be a codimension 1 finite $C W$ pair, A homotopy equivalence $f: M \rightarrow$ X from a finite $C W$ complex splits at $Y \subset X$ if f is simple homotopic to a map of pairs $(f, g):(M, N) \rightarrow(X, Y)$ such that $g: N \rightarrow Y$ is also a homotopy equivalence.

A codimension 1 pair (X, Y) is injective if X, Y are connected and $\pi_{1}(Y) \rightarrow$ $\pi_{1}(X)$ is injective. Let \widetilde{X} be the universal cover of X. The cover of X

$$
\bar{X}=\tilde{X} / \pi_{1}(Y)
$$

is such that (\bar{X}, Y) is a codimension 1 pair with

$$
\bar{X}=\bar{X}^{+} \cup_{Y} \bar{X}^{-}
$$

for connected subspaces $\bar{X}^{+}, \bar{X}^{-} \subset \bar{X}$ such that

$$
\pi_{1}(\bar{X})=\pi_{1}\left(\bar{X}^{+}\right)=\pi_{1}\left(\bar{X}^{-}\right)=\pi_{1}(Y)
$$

As usual, there are two cases:
(A) $X \backslash Y$ is disconnected, so

$$
X=X_{1} \cup_{Y} X_{2}
$$

with X_{1}, X_{2} connected. By the Seifert-van Kampen theorem

$$
\pi_{1}(X)=\pi_{1}\left(X_{1}\right) *_{\pi_{1}(Y)} \pi_{1}\left(X_{2}\right)
$$

is the amalgamated free product, with $\pi_{1}(Y) \rightarrow \pi_{1}\left(X_{1}\right), \pi_{1}(Y) \rightarrow \pi_{1}\left(X_{2}\right)$ injective. The labelling is to be chosen such that

$$
\bar{X}_{1}=\widetilde{X}_{1} / \pi_{1}(Y) \subset \bar{X}^{+}, \bar{X}_{2}=\widetilde{X}_{2} / \pi_{1}(Y) \subset \bar{X}^{-}
$$

(B) $X \backslash Y$ is connected, so

$$
X=X_{1} /\{y=t y \mid y \in Y\}
$$

for a connected space X_{1} (a deformation retract of $X \backslash Y$) which contains two disjoint copies $Y, t Y \subset X_{1}$ of Y. We shall only consider the case when $\pi_{1}(Y) \rightarrow \pi_{1}\left(X_{1}\right)$, $\pi_{1}(t Y) \rightarrow \pi_{1}\left(X_{1}\right)$ are isomorphisms, so that

$$
\pi_{1}(X)=\pi_{1}(Y) \times{ }_{\alpha} \mathbb{Z}
$$

for an automorphism $\alpha: \pi_{1}(Y) \rightarrow \pi_{1}(Y)$ and \bar{X} is an infinite cyclic cover of X with a generating covering translation $t: \bar{X} \rightarrow \bar{X}$. The labelling is to be chosen such that $\bar{X}_{1} \subset \bar{X}^{+}, t \bar{X}_{1} \subset \bar{X}^{-}$.

In both cases (\bar{X}, Y) is an injective codimension 1 pair of type (A).
The kernel $\mathbb{Z}\left[\pi_{1}(X)\right]$-modules of a map $f: M \rightarrow X$ are the relative homology $\mathbb{Z}\left[\pi_{1}(X)\right]$-modules

$$
K_{r}(M)=H_{r+1}(\tilde{f}: \widetilde{M} \rightarrow \widetilde{X})
$$

with \widetilde{X} the universal cover of $X, \widetilde{M}=f^{*} \widetilde{X}$ the pullback cover of M and $\widetilde{f}: \widetilde{M} \rightarrow \widetilde{X}$ a $\pi_{1}(X)$-equivariant lift of f. For a map of injective codimension $1 C W$ pairs $(f, g):(M, N) \rightarrow(X, Y)$ the kernel $\mathbb{Z}\left[\pi_{1}(Y)\right]$-modules fit into an exact sequence

$$
\cdots \rightarrow K_{r}(N) \rightarrow K_{r}(\bar{M}) \rightarrow K_{r}\left(\bar{M}^{+}, N\right) \oplus K_{r}\left(\bar{M}^{-}, N\right) \rightarrow K_{r-1}(N) \rightarrow \ldots
$$

If f is a homotopy equivalence and $g_{*}: \pi_{1}(N) \rightarrow \pi_{1}(Y)$ is an isomorphism then g is a homotopy equivalence if and only if $K_{*}(N)=0$, if and only if $K_{*}\left(\bar{M}^{+}, N\right)=$ $K_{*}\left(\bar{M}^{-}, N\right)=0$.

Theorem 0.5. (Waldhausen [Wal69] for (A), Farrell-Hsiang [FH73] for (B))
Let (X, Y) be an injective codimension 1 finite $C W$ pair, and let $f: M \rightarrow X$ be a homotopy equivalence from a finite $C W$ complex.
(i) f is simple homotopic to a map of pairs $(f, g):(M, N) \rightarrow(X, Y)$ with g_{*} : $\pi_{1}(N) \rightarrow \pi_{1}(Y)$ an isomorphism and for some $n \geqslant 2$

$$
K_{r}(N)=0 \text { for } r \neq n
$$

so that $K_{n+1}\left(\bar{M}^{+}, N\right), K_{n+1}\left(\bar{M}^{-}, N\right)$ are f.g. projective $\mathbb{Z}\left[\pi_{1}(Y)\right]$-modules such that

$$
K_{n+1}\left(\bar{M}^{+}, N\right) \oplus K_{n+1}\left(\bar{M}^{-}, N\right)=K_{n}(N)
$$

is stably f.g. free and

$$
\left[K_{n+1}\left(\bar{M}^{+}, N\right)\right]=-\left[K_{n+1}\left(\bar{M}^{-}, N\right)\right] \in \widetilde{K}_{0}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) .
$$

(ii) In case (A) there is defined an exact sequence

$$
\begin{aligned}
\cdots \rightarrow \mathrm{Wh}\left(\pi_{1}\left(X_{1}\right)\right) \oplus & \mathrm{Wh}\left(\pi_{1}\left(X_{2}\right)\right) \rightarrow \mathrm{Wh}\left(\pi_{1}(X)\right) \\
& \rightarrow \widetilde{K}_{0}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \oplus \widetilde{\operatorname{Nil}}_{0}\left(\mathbb{Z}\left[\pi_{1}(Y)\right], \mathscr{B}_{1}, \mathscr{B}_{2}\right) \rightarrow \ldots .
\end{aligned}
$$

The Whitehead torsion $\tau(f) \in \mathrm{Wh}\left(\pi_{1}(X)\right)$ has image

$$
\begin{array}{r}
{[\tau(f)]=\left(\left[K_{n+1}\left(\bar{M}^{+}, N\right)\right],\left[K_{n+1}\left(\bar{M}^{+}, N\right), K_{n+1}\left(\bar{M}^{-}, N\right), \rho_{1}, \rho_{2}\right]\right)} \\
\\
\in \widetilde{K}_{0}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \oplus \widetilde{\operatorname{Nil}}_{0}\left(\mathbb{Z}\left[\pi_{1}(Y)\right], \mathscr{B}_{1}, \mathscr{B}_{2}\right)
\end{array}
$$

with

$$
\begin{aligned}
& \mathscr{B}_{1}=\mathbb{Z}\left[\pi_{1}\left(X_{1}\right) \backslash \pi_{1}(Y)\right], \mathscr{B}_{2}=\mathbb{Z}\left[\pi_{1}\left(X_{2}\right) \backslash \pi_{1}(Y)\right], \\
& \rho_{1}: K_{n+1}\left(\bar{M}^{+}, N\right) \rightarrow K_{n+1}\left(\bar{M}^{+}, \bar{M}_{1}\right)=\mathscr{B}_{1} \otimes_{\mathbb{Z}\left[\pi_{1}(Y)\right]} K_{n+1}\left(\bar{M}^{-}, N\right), \\
& \rho_{2}: K_{n+1}\left(\bar{M}^{-}, N\right) \rightarrow K_{n+1}\left(\bar{M}^{-}, \bar{M}_{2}\right)=\mathscr{B}_{2} \otimes_{\mathbb{Z}\left[\pi_{1}(Y)\right]} K_{n+1}\left(\bar{M}^{+}, N\right) .
\end{aligned}
$$

The homotopy equivalence f splits along $Y \subset X$ (up to simple homotopy) if and only if $[\tau(f)]=0$.
(iii) In case (B) there is defined an exact sequence

$$
\begin{aligned}
\cdots \rightarrow \mathrm{Wh}(& \left.\pi_{1}(Y)\right) \xrightarrow{1-\alpha} \mathrm{Wh}\left(\pi_{1}(Y)\right) \rightarrow \mathrm{Wh}\left(\pi_{1}(X)\right) \\
& \rightarrow \widetilde{K}_{0}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \oplus \widetilde{\operatorname{Nil}}_{0}\left(\mathbb{Z}\left[\pi_{1}(Y)\right], \alpha\right) \oplus \widetilde{\operatorname{Nil}}_{0}\left(\mathbb{Z}\left[\pi_{1}(Y)\right], \alpha^{-1}\right) \rightarrow \ldots
\end{aligned}
$$

The Whitehead torsion $\tau(f) \in \mathrm{Wh}\left(\pi_{1}(X)\right)$ has image

$$
\begin{aligned}
{[\tau(f)]=} & \left(\left[K_{n+1}\left(\bar{M}^{+}, N\right)\right],\left[K_{n+1}\left(\bar{M}^{+}, N\right), \rho_{1}\right],\left[K_{n+1}\left(\bar{M}^{-}, N\right), \rho_{2}\right]\right) \\
& \in \widetilde{K}_{0}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \oplus \widetilde{\operatorname{Nil}}_{0}\left(\mathbb{Z}\left[\pi_{1}(Y)\right], \alpha\right) \oplus \widetilde{\operatorname{Nil}}_{0}\left(\mathbb{Z}\left[\pi_{1}(Y)\right], \alpha^{-1}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& \rho_{1}: K_{n+1}\left(\bar{M}^{+}, N\right) \rightarrow K_{n+1}\left(\bar{M}^{+}, \bar{M}_{1}\right)=\alpha K_{n+1}\left(\bar{M}^{+}, N\right) \\
& \rho_{2}: K_{n+1}\left(\bar{M}^{-}, N\right) \rightarrow K_{n+1}\left(\bar{M}^{-}, t \bar{M}_{1}\right)=\alpha K_{n+1}\left(\bar{M}^{-}, N\right)
\end{aligned}
$$

The homotopy equivalence f splits along $Y \subset X$ (up to simple homotopy) if and only if $[\tau(f)]=0$.

Let (X, Y) be an injective type (A) codimension 1 finite $C W$ pair, so that $X=$ $X_{1} \cup_{Y} X_{2}$. A homotopy equivalence $f: M \rightarrow X$ from a finite $C W$ complex is semi-split at $Y \subset X$ if the restriction $N=f^{-1}(Y) \subset M$ is a subcomplex and $\left(f, g=\left.f\right|_{N}\right):(M, N) \rightarrow(X, Y)$ is a map of pairs such that $K_{*}\left(\bar{M}_{2}, N\right)=0$, or equivalently such that the $\mathbb{Z}\left[\pi_{1}(Y)\right]$-module morphism

$$
\rho_{2}: K_{*}\left(\bar{M}^{-}, N\right) \rightarrow K_{*}\left(\bar{M}^{-}, \bar{M}_{2}\right)=\mathscr{B}_{2} \otimes_{\mathbb{Z}\left[\pi_{1}(Y)\right]} K_{*}\left(\bar{M}^{+}, N\right)
$$

is an isomorphism.
The proof of Theorem 0.5 (i) in [Wal69] was based on a one-one correspondence between the elementary operations in the algebraic K-theory of the nilpotent categories and the elementary operations ('surgeries' or cell-exchanges) for maps of injective codimension 1 pairs. The proof of our Theorem 0.4 shows that there is no algebraic obstruction to making a homotopy equivalence semi-split by elementary operations, and hence there is no geometric obstruction:

Corollary 0.6 (Topological semi-splitting). If (X, Y) is an injective type (A) codimension 1 finite $C W$ pair such that $\pi_{1}(Y) \subset \pi_{1}\left(X_{2}\right)$ is a subgroup of finite index, then any homotopy equivalence $f: M \rightarrow X=X_{1} \cup_{Y} X_{2}$ from a finite $C W$ complex M is simple homotopic to a semi-split homotopy equivalence.

1. Higher Nil-groups

Recall that D. Quillen defined the K-theory space $K \mathscr{E}:=\Omega B Q(\mathscr{E})$ of an exact category \mathscr{E} [Qui73]. The space $B Q(\mathscr{E})$ is the geometric realization of the simplicial set $N_{\bullet} Q(\mathscr{E})$, which is the nerve of a certain associated category $Q(\mathscr{E})$. Each of the two Nil-categories defined in the Introduction have the structure of exact categories.

We shall use the following short-hand notation. Let R be ring. For a right R module M and a left R-module N, write $M N:=M \otimes_{R} N$. For an R-bimodule \mathscr{B} and $n \in \mathbb{N}$, write $\mathscr{B}^{n}:=\underbrace{\mathscr{B} \otimes_{R} \cdots \otimes_{R} \mathscr{B}}_{r \text { copies }}$ with $\mathscr{B}^{0}:=R$.
Theorem 1.1. Let R be a ring. Let $\mathscr{B}_{1}, \mathscr{B}_{2}$ be R-bimodules. Suppose the left R module structure on \mathscr{B}_{2} is finitely generated and projective. Observe there is defined an exact functor i of exact categories of projective nil-objects:

$$
i: \operatorname{Nil}\left(R ; \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \longrightarrow \operatorname{Nil}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right) ; \quad(Q, \sigma) \longmapsto\left(Q, \mathscr{B}_{2} \otimes_{R} Q, \sigma, 1\right)
$$

Then the induced map of K-theory spaces is a homotopy equivalence:

$$
\bar{K} i: K \operatorname{Nil}\left(R ; \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \longrightarrow K \operatorname{Nil}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right) / 0 \times K(R) .
$$

In particular, for all $n \in \mathbb{N}$, there is an induced isomorphism of abelian groups:

$$
i_{*}: \operatorname{Nil}_{n}\left(R ; \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \times K_{n}(R) \longrightarrow \operatorname{Nil}_{n}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right)
$$

There exists an exact functor j such that $j \circ i=1$, defined by

$$
j: \operatorname{Nil}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right) \longrightarrow \operatorname{Nil}\left(R ; \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) ; \quad\left(P_{1}, P_{2}, \rho_{1}, \rho_{2}\right) \longmapsto\left(P_{1},\left(1_{\mathscr{B}_{1}} \otimes \rho_{2}\right) \circ \rho_{1}\right) .
$$

Proof. Our setting is the exact category $\operatorname{Nil}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right)$. Consider objects

$$
\begin{aligned}
& x=\left(P_{1}, P_{2}, \rho_{1}, \rho_{2}\right) \\
& x^{\prime}:=\left(P_{1}, \mathscr{B}_{2} P_{1} \oplus P_{2},\binom{0}{\rho_{1}},\left(\begin{array}{l}
\left.\left.1 \rho_{2}\right)\right) \\
x^{\prime \prime}
\end{array}\right.\right. \\
&:=\left(P_{1}, \mathscr{B}_{2} P_{1}, \rho_{2} \circ \rho_{1}, 1\right) \\
& a:=\left(0, P_{2}, 0,0\right) \\
& a^{\prime}:=\left(0, \mathscr{B}_{2} P_{1}, 0,0\right) .
\end{aligned}
$$

Define morphisms

$$
\begin{aligned}
f & :=\left(1,\binom{0}{1}\right): x \longrightarrow x^{\prime} \\
f^{\prime} & :=\left(1,\binom{1}{\rho_{2}}\right): x^{\prime} \longrightarrow x^{\prime \prime} \\
g & :=\left(0,\binom{\rho_{2}}{-1}\right): a \longrightarrow x^{\prime} \\
g^{\prime} & :=(0,(10)): x^{\prime} \longrightarrow a^{\prime} \\
h & :=\left(0, \rho_{2}\right): a \longrightarrow a^{\prime} .
\end{aligned}
$$

Observe the admissible exact sequences

$$
\begin{gathered}
0 \longrightarrow x \oplus a \xrightarrow{\left(\begin{array}{cc}
f & g \\
0 & 1
\end{array}\right)} x^{\prime} \oplus a \xrightarrow{\left(g^{\prime} h\right)} a^{\prime} \longrightarrow 0 \\
0 \longrightarrow x^{\prime} \longrightarrow f^{\prime} \longrightarrow
\end{gathered}
$$

Consider endofunctors

$$
\begin{aligned}
& F^{\prime}: x \longmapsto x^{\prime} \\
& F^{\prime \prime}: \\
& G \longmapsto x^{\prime \prime} \\
& G: x \longmapsto a \\
& G^{\prime}: x \longmapsto a^{\prime} .
\end{aligned}
$$

Recall $j \circ i=1$, and note $i \circ j=F^{\prime \prime}$. By Quillen's Additivity Theorem [Qui73, p. 98, Cor. 1], we obtain that $K F^{\prime} \simeq 1+K G^{\prime}$ and $K F^{\prime} \simeq K G+K F^{\prime \prime}$ are homotopic maps to infinite loop spaces. Then $K i \circ K j \simeq 1+\left(K G^{\prime}-K G\right)$. Observe $G, G^{\prime}: \operatorname{Nil}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right) \rightarrow 0 \times \operatorname{Proj}(R)$. Therefore the functor i induces a homotopy equivalence of K-theory spaces:

$$
\bar{K} i: K \operatorname{Nil}\left(R ; \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \longrightarrow K \operatorname{Nil}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right) / 0 \times K(R) .
$$

2. LOWER Nil-GROUPS

2.1. Cone and suspension rings. Let us recall some additional structures on the tensor product of modules.

Definition 2.1. Let S be a commutative ring. Let R_{1}, R_{2} be S-algebras, which means that R_{i} is a ring equipped with a ring map $S \rightarrow \operatorname{Center}\left(R_{i}\right)$. Then the tensor product $R_{1} \otimes_{S} R_{2}$ is an S-algebra, with multiplication given by

$$
\left(r_{1} \otimes r_{2}\right) \cdot\left(r_{1}^{\prime} \otimes r_{2}^{\prime}\right):=r_{1} r_{1}^{\prime} \otimes r_{2} r_{2}^{\prime}
$$

Let \mathscr{B}_{i} be an R_{i}-bimodule. Then the S-bimodule $\mathscr{B}_{1} \otimes_{S} \mathscr{B}_{2}$ has the structure of an $\left(R_{1} \otimes_{S} R_{2}\right)$-bimodule:

$$
\left(r_{1} \otimes r_{2}\right) \cdot\left(b_{1} \otimes b_{2}\right) \cdot\left(r_{1}^{\prime} \otimes r_{2}^{\prime}\right):=r_{1} b_{1} r_{1}^{\prime} \otimes r_{2} b_{2} r_{2}^{\prime}
$$

Originating from ideas of Karoubi and Villamayor [KV69], the following concept was studied independently by S.M. Gersten [Ger72] and J.B. Wagoner [Wag72] in the construction of the non-connective K-theory spectrum of a ring.
Definition 2.2 (Gersten, Wagoner). Let the cone ring $\Lambda \mathbb{Z}$ be the ring of ($\mathbb{N} \times \mathbb{N}$)matrices over \mathbb{Z} such that each row and column has only a finite number of non-zero entries. Let the suspension ring $\Sigma \mathbb{Z}$ be the quotient ring of $\Lambda \mathbb{Z}$ by the two-sided ideal of matrices with only a finite number of non-zero entries. For each $n \in \mathbb{N}$, write $\Sigma^{n} \mathbb{Z}:=\underbrace{\Sigma \mathbb{Z} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} \Sigma \mathbb{Z}}_{n \text { copies }}$ with $\Sigma^{0} \mathbb{Z}=\mathbb{Z}$.

Let R be a ring. Let \mathscr{B} be an R-bimodule. Consider the additional structures in Definition 2.1. Then, for each $n \in \mathbb{N}$, we obtain $\Sigma^{n} R:=\Sigma^{n} \mathbb{Z} \otimes_{\mathbb{Z}} R$ is a ring and $\Sigma^{n} \mathscr{B}:=\Sigma^{n} \mathbb{Z} \otimes_{\mathbb{Z}} \mathscr{B}$ is a $\Sigma^{n} R$-bimodule. Roughly speaking, the suspension should be regarded as the ring of "bounded modulo compact operators." Gersten and Wagoner showed that $K_{i}\left(\Sigma^{n} R\right)$ is naturally isomorphic to $K_{i-n}(R)$ for all $i, n \in \mathbb{N}$, in the sense of Quillen when the subscript is positive, in the sense of Grothendieck when the subscript is zero, and in the sense of Bass when the subscript is negative.
Lemma 2.3. Let R be a ring. Let $\mathscr{B}_{1}, \mathscr{B}_{2}$ be R-bimodules. Then, for each $n \in \mathbb{N}$, there is a natural isomorphism of $\Sigma^{n} R$-bimodules:
$t_{n}: \Sigma^{n}\left(\mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \longrightarrow \Sigma^{n} \mathscr{B}_{1} \otimes \Sigma^{n} R \Sigma^{n} \mathscr{B}_{2} ; \quad s \otimes\left(b_{1} \otimes b_{2}\right) \longmapsto\left(s \otimes b_{1}\right) \otimes\left(1_{\Sigma^{n} R} \otimes b_{2}\right)$.

Proof. By transposition of the middle two factors, note that

$$
\Sigma^{n} \mathscr{B}_{1} \otimes_{\Sigma^{n} R} \Sigma^{n} \mathscr{B}_{2}=\left(\Sigma^{n} \mathbb{Z} \otimes_{\mathbb{Z}} \mathscr{B}_{1}\right) \otimes_{\left(\Sigma^{n} \mathbb{Z} \otimes_{\mathbb{Z}} R\right)}\left(\Sigma^{n} \mathbb{Z} \otimes_{\mathbb{Z}} \mathscr{B}_{2}\right)
$$

is isomorphic to
$\left(\Sigma^{n} \mathbb{Z} \otimes_{\Sigma^{n} \mathbb{Z}} \Sigma^{n} \mathbb{Z}\right) \otimes_{\mathbb{Z}}\left(\mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right)=\Sigma^{n} \mathbb{Z} \otimes_{\mathbb{Z}}\left(\mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right)=\Sigma^{n}\left(\mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right)$.
2.2. Definition of lower Nil-groups. Associated to the generalized polynomial extension $T_{R}(\mathscr{B})$, we define the lower K-groups of the Nil-category of the pair ($R ; B$), as follows.
Definition 2.4. Let R be a ring. Let \mathscr{B} be an R-bimodule. For all $n \in \mathbb{N}$, define

$$
\begin{aligned}
\Sigma^{n}(R ; \mathscr{B}) & :=\left(\Sigma^{n} R ; \Sigma^{n} \mathscr{B}\right) \\
\operatorname{Nil}_{-n}(R ; \mathscr{B}) & :=\operatorname{Nil}_{0} \Sigma^{n}(R ; \mathscr{B}) \\
& =K_{-n}(R) \times \widetilde{\operatorname{Nil}_{-n}}(R ; \mathscr{B}) .
\end{aligned}
$$

Associated to a pure amalgamated product $A_{1} *_{R} A_{2}$ of rings, A. Bartels and W. Lück defined the non-connective K-theory Nil-spectrum of the triple (R; $\mathscr{B}_{1}, \mathscr{B}_{2}$) [BL06, Defn. 9.4]. Their negative homotopy groups are given as follows.

Definition 2.5 (Bartels-Lück). Let R be a ring. Let $\mathscr{B}_{1}, \mathscr{B}_{2}$ be R-bimodules. For all $n \in \mathbb{N}$, define

$$
\begin{aligned}
\Sigma^{n}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right) & :=\left(\Sigma^{n} R ; \Sigma^{n} \mathscr{B}_{1}, \Sigma^{n} \mathscr{B}_{2}\right) \\
\operatorname{Nil}_{-n}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right) & :=\operatorname{Nil}_{0} \Sigma^{n}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right) \\
& =K_{-n}(R) \times K_{-n}(R) \times \widetilde{\operatorname{Nil}_{-n}}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right) .
\end{aligned}
$$

The next two propositions follow from the definitions and [Wal78, Theorems 1,3].
Proposition 2.6. (Waldhausen) Let R be a ring and \mathscr{B} an R-bimodule. Consider the tensor ring

$$
A=T_{R}(\mathscr{B})=R \oplus \mathscr{B} \oplus \mathscr{B} \mathscr{B} \oplus \mathscr{B} \mathscr{B} \mathscr{B} \oplus \cdots .
$$

Suppose \mathscr{B} is finitely generated projective as a left R-module and free as a right R-module. Then, for all $n \in \mathbb{N}$, there is a split monomorphism

$$
\widetilde{\mathrm{Nil}_{-n}}(R ; \mathscr{B}) \longrightarrow K_{1-n}(A) ; \quad[Q, \nu] \longmapsto\left[A \otimes_{R} Q, 1+\nu\right] .
$$

Furthermore, there is a natural decomposition

$$
K_{1-n}(A)=K_{1-n}(R) \oplus \widetilde{\mathrm{Nil}_{-n}}(R ; \mathscr{B})
$$

Proposition 2.7. (Waldhausen) Let R, A_{1}, A_{2} be rings. Let $R \rightarrow A_{i}$ be ring monomorphisms such that $A_{i}=R \oplus \mathscr{B}_{i}$ for some R-bimodule \mathscr{B}_{i}. Consider the pure pushout of rings
$A=A_{1} *_{R} A_{2}=R \oplus\left(\mathscr{B}_{1} \oplus \mathscr{B}_{2}\right) \oplus\left(\mathscr{B}_{1} \mathscr{B}_{2} \oplus \mathscr{B}_{2} \mathscr{B}_{1}\right) \oplus\left(\mathscr{B}_{1} \mathscr{B}_{2} \mathscr{B}_{1} \oplus \mathscr{B}_{2} \mathscr{B}_{1} \mathscr{B}_{2}\right) \oplus \cdots$. Suppose each \mathscr{B}_{i} is free as a right R-module. Then, for all $n \in \mathbb{N}$, there is a split monomorphism

$$
\widetilde{\operatorname{Nil}_{-n}}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right) \longrightarrow K_{1-n}(A) ; \quad\left[P_{1}, P_{2}, \rho_{1}, \rho_{2}\right] \longmapsto\left[A \otimes_{R}\left(P_{1} \oplus P_{2}\right),\left(\begin{array}{cc}
1 & \rho_{2} \\
\rho_{1} & 1
\end{array}\right)\right] .
$$

Furthermore, there is a natural Mayer-Vietoris type exact sequence

$$
\cdots \xrightarrow{\cdots} \begin{array}{ccc}
K_{1-n}(R) \\
& \begin{array}{l}
K_{1-n}(A) \\
\widetilde{\operatorname{Nil}_{-n}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right)} \\
\\
\\
\\
\end{array} \quad K_{1-n}\left(A_{1}\right) \oplus K_{1-n}\left(A_{2}\right) \\
K_{-n}(R) & \longrightarrow \cdots .
\end{array}
$$

2.3. The isomorphism for lower Nil-groups.

Theorem 2.8. Let R be a ring. Let $\mathscr{B}_{1}, \mathscr{B}_{2}$ be R-bimodules. Suppose the left R module structure on \mathscr{B}_{2} is finitely generated and projective. Then, for all $n \in \mathbb{N}$, there is an induced isomorphism of abelian groups:

$$
i_{*} \circ t_{*}: \operatorname{Nil}_{-n}\left(R ; \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \times K_{-n}(R) \longrightarrow \operatorname{Nil}_{-n}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right)
$$

Proof. Let $n \in \mathbb{N}$. By Lemma 2.3 and Theorem 1.1, the composite $i_{*} \circ t_{*}$ consists of induced isomorphisms:

$$
\begin{aligned}
& \operatorname{Nil}_{-n}\left(R ; \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \times K_{-n}(R)=\operatorname{Nil}_{0} \Sigma^{n}\left(R ; \mathscr{B}_{1} \otimes_{R} \mathscr{B}_{2}\right) \times K_{0} \Sigma^{n}(R) \\
& \begin{array}{l}
\operatorname{Nil}_{0}\left(\mathbf{1}_{\Sigma^{n} R} ; t_{n}\right) \\
\end{array}{\operatorname{Nil} l_{0}\left(\Sigma^{n} R ; \Sigma^{n} \mathscr{B}_{1} \otimes_{\Sigma^{n} R} \Sigma^{n} \mathscr{B}_{2}\right) \times K_{0} \Sigma^{n}(R)}^{\operatorname{Nil}_{0}\left(i \circ \Sigma^{n}\right)} \operatorname{Nil}_{0} \Sigma^{n}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right)=\operatorname{Nil}_{-n}\left(R ; \mathscr{B}_{1}, \mathscr{B}_{2}\right) .
\end{aligned}
$$

3. Applications to injective amalgams of groups

Natural examples of such bimodules originate from certain ring decompositions.
Corollary 3.1. Let $A=A_{-} *_{A_{0}} A_{+}$be a pure pushout of rings. Write $A_{ \pm}=$ $A_{0} \oplus \mathscr{B}_{ \pm}$for some A_{0}-bimodules $\mathscr{B}_{ \pm}$. Suppose the left A_{0}-module structure on \mathscr{B}_{-}is finitely generated and projective. Then, for all $n \in \mathbb{Z}$, there is a natural isomorphism of abelian groups:

$$
\operatorname{Nil}_{n}\left(A_{0} ; \mathscr{B}_{-} \otimes_{A_{0}} \mathscr{B}_{+}\right) \times K_{n}\left(A_{0}\right) \longrightarrow \operatorname{Nil}_{n}\left(A_{0} ; \mathscr{B}_{-}, \mathscr{B}_{+}\right) .
$$

Here is our reduction for a certain class of group rings.
Corollary 3.2. Let R be a ring. Suppose $G=G_{-} *_{G_{0}} G_{+}$is an injective amalgam of groups such that $\left[G_{-}: G_{0}\right]$ is finite. Write $\mathscr{B}_{ \pm}:=R\left[G_{ \pm}-G_{0}\right]$. Then, for all $n \in \mathbb{Z}$, there is a natural isomorphism of abelian groups:

$$
\widetilde{\mathrm{Nil}_{n}}\left(R\left[G_{0}\right] ; \mathscr{B}_{-}, \mathscr{B}_{+}\right) \longrightarrow N K_{n+1}\left(R\left[G_{0}\right] ; \mathscr{B}_{-} \otimes_{R\left[G_{0}\right]} \mathscr{B}_{+}\right)
$$

The case of $G=D_{\infty}=\mathbb{Z}_{2} *_{1} \mathbb{Z}_{2}$ has a particularly simple form.
Corollary 3.3. Let R be a ring. Then, for all $n \in \mathbb{Z}$, there is a natural isomorphism of abelian groups:

$$
\widetilde{\mathrm{Nil}_{n}}(R ; R, R) \longrightarrow N K_{n+1}(R)
$$

Our main application is the class of virtually cyclic groups of infinite dihedral type. Their K-theory is conjectured to be the one of the three building blocks of the K-theory of arbitrary groups [FJ93].

Corollary 3.4. Let R be a ring. Consider any group extension

$$
1 \longrightarrow F \longrightarrow G \longrightarrow D_{\infty} \longrightarrow 1
$$

where F is finite. There is an induced decomposition $G=G_{-} *_{F} G_{+}$where $\left[G_{ \pm}: F\right]=2$. Uniquely up to inner automorphisms, there are induced group automorphisms $\alpha, \beta: F \rightarrow F$ such that as $R[F]$-bimodules:

$$
R\left[G_{-}\right]=R[F] \oplus_{\alpha} R[F] \quad \text { and } \quad R\left[G_{+}\right]=R[F] \oplus R[F]_{\beta} .
$$

Then, for all $n \in \mathbb{Z}$, there is an isomorphism of abelian groups:

$$
H_{n}^{G}\left(E_{\mathrm{vc}}(G), E_{\mathrm{fin}}(G) ; \mathbf{K}_{R}\right) \longrightarrow N K_{n}\left({ }_{\alpha} R[F]_{\beta}\right)
$$

3.1. Jim's application. Let $\Gamma=\mathbb{Z}_{2} * \mathbb{Z}_{3}=P S L_{2}(\mathbb{Z})$. The following theorem follows from applying our main theorem and the recent proof [BLR] of the K theoretic Farrell-Jones conjecture in K-theory for word hyperbolic groups.
Theorem 3.5. For any ring R and integer q,

$$
K_{q}(R \Gamma)=K_{q} R \oplus \widetilde{K}_{q}\left(R \mathbb{Z}_{2}\right) \oplus \widetilde{K}_{q}\left(R \mathbb{Z}_{3}\right) \oplus \bigoplus_{\mathcal{M}} \widetilde{\mathrm{Nil}}_{q-1}(R)
$$

where the sum is over all the conjugacy classes of maximal infinite dihedral subgroups.

Proof. By Waldhausen's theorem (see also Davis [Dav]), the homology exact sequence of the pair ($E_{\text {all }} \Gamma, E_{\text {fin }} \Gamma$)

$$
H_{q}^{\Gamma}\left(E_{\mathrm{fin}} \Gamma ; \mathbf{K}_{R}\right) \rightarrow H_{q}^{\Gamma}\left(E_{\mathrm{all}} \Gamma ; \mathbf{K}_{R}\right) \rightarrow H_{q}^{\Gamma}\left(E_{\mathrm{all}} \Gamma, E_{\mathrm{fin}} \Gamma ; \mathbf{K}_{R}\right)
$$

is short exact and split. Hence

$$
\begin{equation*}
K_{q}(R \Gamma)=H_{q}^{\Gamma}\left(E_{\mathrm{fin}} \Gamma ; \mathbf{K}_{R}\right) \oplus H_{q}^{\Gamma}\left(E_{\mathrm{all}} \Gamma, E_{\mathrm{fin}} \Gamma ; \mathbf{K}_{R}\right) \tag{3.5.1}
\end{equation*}
$$

Note that $E_{\mathrm{fin}} \Gamma$ is constructed as a pullback of Γ-spaces

Then $E_{\text {fin }} \Gamma$ is simply the Bass-Serre tree for $\Gamma=\mathbb{Z}_{2} * \mathbb{Z}_{3}$. Note that $H_{*}^{\Gamma}\left(\Gamma / H ; \mathbf{K}_{R}\right)=$ $K_{*}(R H)$. Hence there is a long exact sequence

$$
\cdots \rightarrow K_{q}(R) \rightarrow K_{q}\left(R \mathbb{Z}_{2}\right) \oplus K_{q}\left(R \mathbb{Z}_{3}\right) \rightarrow H_{q}^{\Gamma}\left(E_{\mathrm{fin}} \Gamma ; \mathbf{K}_{R}\right) \rightarrow K_{q-1}(R) \rightarrow \cdots
$$

Thus

$$
H_{q}^{\Gamma}\left(E_{\mathrm{fin}} \Gamma ; \mathbf{K}_{R}\right)=K_{q} R \oplus \widetilde{K}_{q}\left(R \mathbb{Z}_{2}\right) \oplus \widetilde{K}_{q}\left(R \mathbb{Z}_{3}\right)
$$

Since Γ is a word hyperbolic group, the K-theoretic Farrell-Jones conjecture holds. By the reformulation of this conjecture by Davis-Lück, this means

$$
H_{q}^{\Gamma}\left(E_{\mathrm{all}} \Gamma ; \mathbf{K}_{R}\right) \cong H_{q}^{\Gamma}\left(E_{\mathrm{vc}} \Gamma ; \mathbf{K}_{R}\right)
$$

Thus

$$
H_{q}^{\Gamma}\left(E_{\mathrm{all}} \Gamma, E_{\mathrm{fin}} \Gamma ; \mathbf{K}_{R}\right)=H_{q}^{\Gamma}\left(E_{\mathrm{vc}} \Gamma, E_{\mathrm{fin}} \Gamma ; \mathbf{K}_{R}\right)
$$

By Lück-Weiermann [LW07] (if one insists),

$$
H_{q}^{\Gamma}\left(E_{\mathrm{vc}} \Gamma, E_{\mathrm{fin}} \Gamma ; \mathbf{K}_{R}\right) \cong \bigoplus_{\mathcal{M}} H_{q}^{D_{\infty}}\left(E_{\mathrm{vc}} D_{\infty}, E_{\mathrm{fin}} D_{\infty} ; \mathbf{K}_{R}\right)
$$

By Waldhausen again, ${ }^{1}$

$$
H_{q}^{D \infty}\left(E_{\mathrm{vc}} D_{\infty}, E_{\mathrm{fin}} D_{\infty} ; \mathbf{K}_{R}\right)=\widetilde{\mathrm{Nil}_{q-1}}(R ; R, R) .
$$

[^0]Finally, by our main theorem

$$
\widetilde{\operatorname{Nil}}_{q-1}(R ; R, R) \cong \widetilde{\mathrm{Nil}}_{q-1}(R)
$$

Remark 3.6. It is not difficult to show that \mathcal{M} is countably infinite.

One then applies vanishing and non-vanishing results to show compute $K_{q}(R \Gamma)$ for some R and Γ. For example, even from Waldhausen's result one knows $\widetilde{\mathrm{Nil}_{*}}(R)=$ 0 for R regular coherent. For a finite group G, Bass showed that $N K_{-q}(\mathbb{Z} G)=0$ for $q>0$. For G finite of square-free order, Harmon [Har87] showed that $N K_{0}(\mathbb{Z} G)=$ 0 . For finite abelian group G which is not of square-free order, Bass showed that $N K_{0}(\mathbb{Z} G)$ is infinitely generated torsion. Finally, a ring R is quasi-regular if there is a two-sided ideal I so that R / I is regular. Bass showed that $N K_{q}(R)=0$ for $q \leq 0$.

References

[Bas68] H. Bass. Algebraic K-theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968.
[BL06] Arthur Bartels and Wolfgang Lück. Isomorphism conjecture for homotopy K-theory and groups acting on trees. J. Pure Appl. Algebra, 205(3):660-696, 2006.
[BLR] Arthur Bartels, Wolfgang Lück, and Holger Reich. The K-theoretic Farrell-Jones Conjecture for hyperbolic groups., . http://www.arxiv.org/math.KT/0701434.
[Dav] James F. Davis. Some remarks on Nil groups in algebraic K-theory. , .
[FH73] F. T. Farrell and W. C. Hsiang. Manifolds with $\pi_{1}=G \times_{\alpha}$ T. Amer. J. Math., 95:813848, 1973.
[FJ93] F. T. Farrell and L. E. Jones. Isomorphism conjectures in algebraic K-theory. J. Amer. Math. Soc., 6(2):249-297, 1993.
[Ger72] S. M. Gersten. On the spectrum of algebraic K-theory. Bull. Amer. Math. Soc., 78:216219, 1972.
[Har87] Dennis R. Harmon. $N K_{1}$ of finite groups. Proc. Amer. Math. Soc., 100(2):229-232, 1987.
[KV69] Max Karoubi and Orlando Villamayor. Foncteurs K^{n} en algèbre et en topologie. C. R. Acad. Sci. Paris Sér. A-B, 269:A416-A419, 1969.
[LO07] J.-F. Lafont and I.J. Ortiz. Relating the Farrell Nil-groups to the Waldhausen Nil-groups. Forum Mathematicum, 2007. http://www.arxiv.org/math.KT/0609711.
[LW07] W. Lück and M. Weiermann. On the classifying space of the family of virtually cyclic subgroups., 2007. http://www.arxiv.org/math.AT/0702646.
[Qui73] Daniel Quillen. Higher algebraic K-theory. I. In Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 85-147. Lecture Notes in Math., Vol. 341. Springer, Berlin, 1973.
[Wag72] J. B. Wagoner. Delooping classifying spaces in algebraic K-theory. Topology, 11:349-370, 1972.
[Wal69] Friedhelm Waldhausen. Whitehead groups of generalized free products. Unpublished paper, 1969. http://www.maths.ed.ac.uk/~aar/surgery/whgen.pdf.
[Wal78] Friedhelm Waldhausen. Algebraic K-theory of generalized free products. Ann. of Math. (2), 108(1):135-256, 1978.

Department of Mathematics, Indiana University, Bloomington, IN 47405 U.S.A. Department of Mathematics, Vanderbilt University, Nashville, TN 37240 U.S.A. School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, SCOTLAND, U.K.

[^1]
[^0]: ${ }^{1}$ Consider using Corollary 3.4.

[^1]: E-mail address: jfdavis@indiana.edu, qayum.khan@vanderbilt.edu, a.ranicki@ed.ac.uk

