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Abstract. We study the algebraic K-theory of R[G], for any ring R and any

group G with a surjection p : G→ D∞ onto the infinite dihedral group D∞.

Introduction

For any ring R we establish isomorphisms between the codimension 1 splitting
obstruction nilpotent class groups which arise in the decompositions of the algebraic
K-theory of the R-coefficient group ring R[G] of a group G with a surjection p :
G → D∞ onto the infinite dihedral group D∞ and the α-twisted polynomial ring
R[F ]α[t], with F = ker(p) and α : F → F the automorphism such that F ×α Z =
ker(G → Z2).

The infinite dihedral group D∞ is such that:

(A) D∞ is the free product Z2 ∗ Z2 of two cyclic groups of order 2, whose gen-
erators will be denoted t1, t2.

(B) D∞ contains the infinite cyclic group Z = 〈t〉 as a subgroup of index 2 with
t = t1t2

{1} → Z → D∞ → Z2 → {1} .

More generally, if G is a group with a surjection p : G → D∞ then:

(A) G = G1 ∗F G2 is a free product with amalgamation of two groups

G1 = ker(p1 : G → Z2) , G2 = ker(p2 : G → Z2) ⊂ G

with a common subgroup F = ker(p) = G1 ∩G2 of index 2 in both G1 and
G2.

(B) G has a subgroup Ḡ of index 2 which is an HNN extension

{1} → F → Ḡ = F ×α Z → Z → {1}

for an automorphism α : F → F such that α2 = 1.
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By Waldhausen [Wal78] the algebraic K-theory of Z[G] for any amalgamated
free product G = G1 ∗F G2 with F → G1, F → G2 injections decomposes as

K∗(Z[G]) = K∗(Z[F ] → Z[G1]× Z[G2])⊕ Ñil∗−1(Z[F ]; Z[G1\F ], Z[G2\F ]) .

By Bass [Bas68] and Farrell-Hsiang [FH73] the algebraic K-theory of Z[Ḡ] for any
HNN extension of the type Ḡ = F ×α Z decomposes as

K∗(Z[Ḡ]) = K∗(1− α : Z[F ] → Z[F ])⊕ Ñil∗−1(Z[F ], α)⊕ Ñil∗−1(Z[F ], α−1) .

Given a ring R and an R-bimodule B let

TR(B) = R⊕B ⊕B ⊗R B ⊕ . . .

be the tensor algebra of B over R. The Nil-groups Nil∗(R,B) are defined to be
the algebraic K-groups K∗(Nil(R,B)) of the exact category Nil(R,B) with objects
pairs (P, ρ) with P a f.g. projective R-module and ρ : P → B ⊗R P a nilpotent
R-module morphism. The reduced Nil-groups Ñil∗ are such that

Nil∗(R,B) = K∗(R)⊕ Ñil∗(R,B) .

Waldhausen [Wal78] proved that if B is a f.g. projective R-module and free as a
right R-module

K∗(TR(B)) = K∗(R)⊕ Ñil∗−1(R,B) .

The Nil-groups of a ring automorphism α : R → R are defined by

Nil∗(R,α) := Nil∗(R,Rα)

with Rα the R-bimodule defined by the additive group of R with

R×Rα ×R → Rα ; (r, x, s) 7→ r.x.α(s) ,

and the reduced Nil-groups Ñil∗ are such that

Nil∗(R,α) = K∗(R)⊕ Ñil∗(R,α) .

The tensor algebra in this case is the α-twisted polynomial extension

TR(Rα) = Rα[t]

with t an indeterminate over R such that rt = tα(r) (r ∈ R), and

K∗(Rα[t]) = K∗(R)⊕ Ñil∗−1(R,α) ,

K∗(Rα[t, t−1]) = K∗(1− α : R → R)⊕ Ñil∗−1(R,α)⊕ Ñil∗−1(R,α−1) .

The Nil-groups Nil∗(R,B1,B2) are defined for any ring R and R-bimodules
B1,B2 to be the algebraic K-groups K∗(Nil(R,B1,B2)) of the exact category
Nil(R,B1,B2) with objects quadruples (P1, P2, ρ1, ρ2) with P1, P2 f.g. projective
R-modules and

ρ1 : P1 → B1 ⊗R P2 , ρ2 : P2 → B2 ⊗R P1

R-module morphisms such that ρ2ρ1 : P1 → B1 ⊗R B2 ⊗R P1 is nilpotent. The
reduced Nil-groups Ñil∗ are such that

Nil∗(R,B1,B2) = K∗(R)⊕K∗(R)⊕ Ñil∗(R,B1,B2) .
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Theorem 0.1. For any group G with a surjection G → D∞ the Ñil-groups associ-
ated to the HNN extension G = F×αZ are isomorphic to the Ñil-groups associated
to the amalgamated free product decomposition G = G1 ∗F G2

ĩ : Ñil∗(Z[F ], α) ∼= Ñil∗(Z[F ]; Z[G1\F ], Z[G2\F ]) .

�

Remark 0.2. The inclusion Z[F ]α[t] → Z[G] sending t to t1t2 for any t1 ∈ G1\F ,
t2 ∈ G2\F induces morphisms

K∗(Z[F ]α[t]) = K∗(Z[F ])⊕ Ñil∗−1(Z[F ], α)

→ K∗(Z[G]) = K∗(Z[F ] → Z[G1]× Z[G2])⊕ Ñil∗−1(Z[F ]; Z[G1\F ], Z[G2\F ])

which are the isomorphisms ĩ of 0.1 on the Ñil-groups. The transfer maps

K∗(Z[G]) = K∗(Z[F ] → Z[G1]× Z[G2])⊕ Ñil∗−1(Z[F ]; Z[G1\F ], Z[G2\F ])

→ K∗(Z[Ḡ]) = K∗(1− α : Z[F ] → Z[F ])⊕ Ñil∗−1(Z[F ], α)⊕ Ñil∗−1(Z[F ], α)

are given by ĩ−1 ⊕ ĩ−1 on the Ñil-groups.
�

Remark 0.3. Lafont and Ortiz [LO07] proved that for a virtually cyclic group G

with a surjection G → D∞ and ∗ = 0, 1 Ñil∗(Z[F ]; Z[G1\F ], Z[G2\F ]) = 0 if and
only if Ñil∗(Z[F ], α) = 0.

�

In fact, Theorem 0.1 is the special case R = Z[F ], B1 = Z[G1\F ], B2 = Z[G2\F ]
of the following general result:

Theorem 0.4 (Algebraic semi-splitting). Let R be a ring and let B1,B2 be R-
bimodules such that B2 is a f.g. projective left R-module. The Nil-groups of
(R,B1,B2) are related to the Nil-groups of (R,B1 ⊗R B2) by isomorphisms

Nil∗(R,B1,B2) ∼= Nil∗(R,B1 ⊗R B2)⊕K∗(R) ,

Ñil∗(R,B1,B2) ∼= Ñil∗(R,B1 ⊗R B2) .

In particular, for ∗ = 0 there are defined inverse isomorphisms

i : Nil0(R,B1 ⊗R B2)⊕K0(R) → Nil0(R,B1,B2) ;

([P1, ρ12 : P1 → B1 ⊗R B2 ⊗R P1], [P2]) 7→ [P1,B2 ⊗R P1 ⊕ P2,

(
ρ12

0

)
, (1 0)] ,

j : Nil0(R,B1,B2) → Nil0(R,B1 ⊗R B2)⊕K0(R) ;

[P1, P2, ρ1 : P1 → B1 ⊗R P2, ρ2 : P2 → B2 ⊗R P1] 7→ ([P1, ρ2 ◦ ρ1], [P2]− [B2 ⊗R P1]) .

The reduced versions are the inverse isomorphisms

ĩ : Ñil0(R,B1 ⊗R B2) → Ñil0(R,B1,B2) ; [P1, ρ12] 7→ [P1,B2 ⊗R P1, ρ12, 1] ,

j̃ : Ñil0(R,B1,B2) → Ñil0(R,B1 ⊗S B2) ; [P1, P2, ρ1, ρ2] 7→ [P1, ρ2 ◦ ρ1] .

�
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The proof of Theorem 0.4 is motivated by the obstruction theory of Waldhausen
[Wal69] splitting homotopy equivalences of finite CW complexes X along codimen-
sion 1 subcomplexes Y ⊂ X with π1(Y ) → π1(X) injective, and the subsequent
algebraic K-theory decomposition theorems of Waldhausen [Wal78].

A codimension 1 pair (X, Y ⊂ X) is a pair of spaces such that the inclusion
Y = Y ×{0} ⊂ X extends to an open embedding Y ×R ⊂ X. A map of codimension
1 pairs (f, g) : (M,N) → (X, Y ) has g = f |N : N = f−1(Y ) → Y .

Let (X, Y ) be a codimension 1 finite CW pair, A homotopy equivalence f : M →
X from a finite CW complex splits at Y ⊂ X if f is simple homotopic to a map of
pairs (f, g) : (M,N) → (X, Y ) such that g : N → Y is also a homotopy equivalence.

A codimension 1 pair (X, Y ) is injective if X, Y are connected and π1(Y ) →
π1(X) is injective. Let X̃ be the universal cover of X. The cover of X

X̄ = X̃/π1(Y )

is such that (X̄, Y ) is a codimension 1 pair with

X̄ = X̄+ ∪Y X̄−

for connected subspaces X̄+, X̄− ⊂ X̄ such that

π1(X̄) = π1(X̄+) = π1(X̄−) = π1(Y ) .

As usual, there are two cases:
(A) X\Y is disconnected, so

X = X1 ∪Y X2

with X1, X2 connected. By the Seifert-van Kampen theorem

π1(X) = π1(X1) ∗π1(Y ) π1(X2)

is the amalgamated free product, with π1(Y ) → π1(X1), π1(Y ) → π1(X2) injective.
The labelling is to be chosen such that

X̄1 = X̃1/π1(Y ) ⊂ X̄+ , X̄2 = X̃2/π1(Y ) ⊂ X̄− .

(B) X\Y is connected, so

X = X1/{y = ty|y ∈ Y }
for a connected space X1 (a deformation retract of X\Y ) which contains two disjoint
copies Y, tY ⊂ X1 of Y . We shall only consider the case when π1(Y ) → π1(X1),
π1(tY ) → π1(X1) are isomorphisms, so that

π1(X) = π1(Y )×α Z

for an automorphism α : π1(Y ) → π1(Y ) and X is an infinite cyclic cover of X
with a generating covering translation t : X → X. The labelling is to be chosen
such that X̄1 ⊂ X̄+, tX̄1 ⊂ X̄−.

In both cases (X,Y ) is an injective codimension 1 pair of type (A).

The kernel Z[π1(X)]-modules of a map f : M → X are the relative homology
Z[π1(X)]-modules

Kr(M) = Hr+1(f̃ : M̃ → X̃)
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with X̃ the universal cover of X, M̃ = f∗X̃ the pullback cover of M and f̃ : M̃ → X̃
a π1(X)-equivariant lift of f . For a map of injective codimension 1 CW pairs
(f, g) : (M,N) → (X, Y ) the kernel Z[π1(Y )]-modules fit into an exact sequence

· · · → Kr(N) → Kr(M̄) → Kr(M̄+, N)⊕Kr(M̄−, N) → Kr−1(N) → . . . .

If f is a homotopy equivalence and g∗ : π1(N) → π1(Y ) is an isomorphism then g
is a homotopy equivalence if and only if K∗(N) = 0, if and only if K∗(M̄+, N) =
K∗(M̄−, N) = 0.

Theorem 0.5. (Waldhausen [Wal69] for (A), Farrell-Hsiang [FH73] for (B))
Let (X, Y ) be an injective codimension 1 finite CW pair, and let f : M → X be a
homotopy equivalence from a finite CW complex.
(i) f is simple homotopic to a map of pairs (f, g) : (M,N) → (X, Y ) with g∗ :
π1(N) → π1(Y ) an isomorphism and for some n > 2

Kr(N) = 0 for r 6= n ,

so that Kn+1(M̄+, N), Kn+1(M̄−, N) are f.g. projective Z[π1(Y )]-modules such
that

Kn+1(M̄+, N)⊕Kn+1(M̄−, N) = Kn(N)
is stably f.g. free and

[Kn+1(M̄+, N)] = −[Kn+1(M̄−, N)] ∈ K̃0(Z[π1(Y )]) .

(ii) In case (A) there is defined an exact sequence

· · · → Wh(π1(X1))⊕Wh(π1(X2)) → Wh(π1(X))

→ K̃0(Z[π1(Y )])⊕ Ñil0(Z[π1(Y )],B1,B2) → . . . .

The Whitehead torsion τ(f) ∈ Wh(π1(X)) has image

[τ(f)] = ([Kn+1(M̄+, N)], [Kn+1(M̄+, N),Kn+1(M̄−, N), ρ1, ρ2])

∈ K̃0(Z[π1(Y )])⊕ Ñil0(Z[π1(Y )],B1,B2)

with
B1 = Z[π1(X1)\π1(Y )] , B2 = Z[π1(X2)\π1(Y )] ,

ρ1 : Kn+1(M̄+, N) → Kn+1(M̄+, M̄1) = B1 ⊗Z[π1(Y )] Kn+1(M̄−, N) ,

ρ2 : Kn+1(M̄−, N) → Kn+1(M̄−, M̄2) = B2 ⊗Z[π1(Y )] Kn+1(M̄+, N) .

The homotopy equivalence f splits along Y ⊂ X (up to simple homotopy) if and
only if [τ(f)] = 0.
(iii) In case (B) there is defined an exact sequence

· · · → Wh(π1(Y ))
1−α // Wh(π1(Y )) → Wh(π1(X))

→ K̃0(Z[π1(Y )])⊕ Ñil0(Z[π1(Y )], α)⊕ Ñil0(Z[π1(Y )], α−1) → . . . .

The Whitehead torsion τ(f) ∈ Wh(π1(X)) has image

[τ(f)] = ([Kn+1(M̄+, N)], [Kn+1(M̄+, N), ρ1], [Kn+1(M̄−, N), ρ2])

∈ K̃0(Z[π1(Y )])⊕ Ñil0(Z[π1(Y )], α)⊕ Ñil0(Z[π1(Y )], α−1) ,

with
ρ1 : Kn+1(M̄+, N) → Kn+1(M̄+, M̄1) = αKn+1(M̄+, N) ,

ρ2 : Kn+1(M̄−, N) → Kn+1(M̄−, tM̄1) = αKn+1(M̄−, N) .
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The homotopy equivalence f splits along Y ⊂ X (up to simple homotopy) if and
only if [τ(f)] = 0.

�

Let (X, Y ) be an injective type (A) codimension 1 finite CW pair, so that X =
X1 ∪Y X2. A homotopy equivalence f : M → X from a finite CW complex is
semi-split at Y ⊂ X if the restriction N = f−1(Y ) ⊂ M is a subcomplex and
(f, g = f |N ) : (M,N) → (X, Y ) is a map of pairs such that K∗(M̄2, N) = 0, or
equivalently such that the Z[π1(Y )]-module morphism

ρ2 : K∗(M̄−, N) → K∗(M̄−, M̄2) = B2 ⊗Z[π1(Y )] K∗(M̄+, N)

is an isomorphism.

The proof of Theorem 0.5 (i) in [Wal69] was based on a one-one correspondence
between the elementary operations in the algebraic K-theory of the nilpotent cat-
egories and the elementary operations (‘surgeries’ or cell-exchanges) for maps of
injective codimension 1 pairs. The proof of our Theorem 0.4 shows that there is no
algebraic obstruction to making a homotopy equivalence semi-split by elementary
operations, and hence there is no geometric obstruction:

Corollary 0.6 (Topological semi-splitting). If (X, Y ) is an injective type (A) codi-
mension 1 finite CW pair such that π1(Y ) ⊂ π1(X2) is a subgroup of finite index,
then any homotopy equivalence f : M → X = X1 ∪Y X2 from a finite CW complex
M is simple homotopic to a semi-split homotopy equivalence.

�

1. Higher Nil-groups

Recall that D. Quillen defined the K-theory space KE := ΩBQ(E ) of an exact
category E [Qui73]. The space BQ(E ) is the geometric realization of the simplicial
set N•Q(E ), which is the nerve of a certain associated category Q(E ). Each of the
two Nil-categories defined in the Introduction have the structure of exact categories.

We shall use the following short-hand notation. Let R be ring. For a right R-
module M and a left R-module N , write MN := M ⊗R N . For an R-bimodule B
and n ∈ N, write Bn := B ⊗R · · · ⊗R B︸ ︷︷ ︸

r copies

with B0 := R.

Theorem 1.1. Let R be a ring. Let B1,B2 be R-bimodules. Suppose the left R-
module structure on B2 is finitely generated and projective. Observe there is defined
an exact functor i of exact categories of projective nil-objects:

i : Nil(R;B1 ⊗R B2) −→ Nil(R;B1,B2); (Q, σ) 7−→ (Q,B2 ⊗R Q, σ, 1).

Then the induced map of K-theory spaces is a homotopy equivalence:

K̄i : KNil(R;B1 ⊗R B2) −→ KNil(R;B1,B2)/0×K(R).

In particular, for all n ∈ N, there is an induced isomorphism of abelian groups:

i∗ : Niln(R;B1 ⊗R B2)×Kn(R) −→ Niln(R;B1,B2).
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There exists an exact functor j such that j ◦ i = 1, defined by

j : Nil(R;B1,B2) −→ Nil(R;B1⊗R B2); (P1, P2, ρ1, ρ2) 7−→ (P1, (1B1⊗ρ2)◦ρ1).

Proof. Our setting is the exact category Nil(R;B1,B2). Consider objects

x = (P1, P2, ρ1, ρ2)
x′ := (P1,B2P1 ⊕ P2,

(
0
ρ1

)
, ( 1 ρ2 ))

x′′ := (P1,B2P1, ρ2 ◦ ρ1, 1)
a := (0, P2, 0, 0)
a′ := (0,B2P1, 0, 0).

Define morphisms

f := (1, ( 0
1 )) : x −→ x′

f ′ := (1, ( 1 ρ2 )) : x′ −→ x′′

g := (0,
( ρ2
−1

)
) : a −→ x′

g′ := (0, ( 1 0 )) : x′ −→ a′

h := (0, ρ2) : a −→ a′.

Observe the admissible exact sequences

0 −−−−→ x⊕ a

(
f g
0 1

)
−−−−→ x′ ⊕ a

( g′ h )−−−−→ a′ −−−−→ 0

0 −−−−→ a
g−−−−→ x′

f ′−−−−→ x′′ −−−−→ 0.

Consider endofunctors

F ′ : x 7−→ x′

F ′′ : x 7−→ x′′

G : x 7−→ a

G′ : x 7−→ a′.

Recall j ◦ i = 1, and note i ◦ j = F ′′. By Quillen’s Additivity Theorem [Qui73,
p. 98, Cor. 1], we obtain that KF ′ ' 1 + KG′ and KF ′ ' KG + KF ′′ are
homotopic maps to infinite loop spaces. Then Ki◦Kj ' 1+(KG′−KG). Observe
G, G′ : Nil(R;B1,B2) → 0×Proj(R). Therefore the functor i induces a homotopy
equivalence of K-theory spaces:

K̄i : KNil(R;B1 ⊗R B2) −→ KNil(R;B1,B2)/0×K(R).

�

2. Lower Nil-groups

2.1. Cone and suspension rings. Let us recall some additional structures on the
tensor product of modules.
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Definition 2.1. Let S be a commutative ring. Let R1, R2 be S-algebras, which
means that Ri is a ring equipped with a ring map S → Center(Ri). Then the tensor
product R1 ⊗S R2 is an S-algebra, with multiplication given by

(r1 ⊗ r2) · (r′1 ⊗ r′2) := r1r
′
1 ⊗ r2r

′
2.

Let Bi be an Ri-bimodule. Then the S-bimodule B1 ⊗S B2 has the structure of
an (R1 ⊗S R2)-bimodule:

(r1 ⊗ r2) · (b1 ⊗ b2) · (r′1 ⊗ r′2) := r1b1r
′
1 ⊗ r2b2r

′
2.

Originating from ideas of Karoubi and Villamayor [KV69], the following concept
was studied independently by S.M. Gersten [Ger72] and J.B. Wagoner [Wag72] in
the construction of the non-connective K-theory spectrum of a ring.

Definition 2.2 (Gersten, Wagoner). Let the cone ring ΛZ be the ring of (N×N)-
matrices over Z such that each row and column has only a finite number of non-zero
entries. Let the suspension ring ΣZ be the quotient ring of ΛZ by the two-sided
ideal of matrices with only a finite number of non-zero entries. For each n ∈ N,
write ΣnZ := ΣZ⊗Z · · · ⊗Z ΣZ︸ ︷︷ ︸

n copies

with Σ0Z = Z.

Let R be a ring. Let B be an R-bimodule. Consider the additional structures
in Definition 2.1. Then, for each n ∈ N, we obtain ΣnR := ΣnZ⊗Z R is a ring and
ΣnB := ΣnZ ⊗Z B is a ΣnR-bimodule. Roughly speaking, the suspension should
be regarded as the ring of “bounded modulo compact operators.” Gersten and
Wagoner showed that Ki(ΣnR) is naturally isomorphic to Ki−n(R) for all i, n ∈ N,
in the sense of Quillen when the subscript is positive, in the sense of Grothendieck
when the subscript is zero, and in the sense of Bass when the subscript is negative.

Lemma 2.3. Let R be a ring. Let B1,B2 be R-bimodules. Then, for each n ∈ N,
there is a natural isomorphism of ΣnR-bimodules:

tn : Σn(B1⊗R B2) −→ ΣnB1⊗ΣnR ΣnB2; s⊗(b1⊗b2) 7−→ (s⊗b1)⊗(1ΣnR⊗b2).

Proof. By transposition of the middle two factors, note that

ΣnB1 ⊗ΣnR ΣnB2 = (ΣnZ⊗Z B1)⊗(ΣnZ⊗ZR) (ΣnZ⊗Z B2)

is isomorphic to

(ΣnZ⊗ΣnZ ΣnZ)⊗Z (B1 ⊗R B2) = ΣnZ⊗Z (B1 ⊗R B2) = Σn(B1 ⊗R B2).

�

2.2. Definition of lower Nil-groups. Associated to the generalized polynomial
extension TR(B), we define the lower K-groups of the Nil-category of the pair
(R;B), as follows.

Definition 2.4. Let R be a ring. Let B be an R-bimodule. For all n ∈ N, define

Σn(R;B) := (ΣnR; ΣnB)
Nil−n(R;B) := Nil0Σn(R;B)

= K−n(R)× Ñil−n(R;B).
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Associated to a pure amalgamated product A1 ∗R A2 of rings, A. Bartels and W.
Lück defined the non-connective K-theory Nil-spectrum of the triple (R;B1,B2)
[BL06, Defn. 9.4]. Their negative homotopy groups are given as follows.

Definition 2.5 (Bartels-Lück). Let R be a ring. Let B1,B2 be R-bimodules. For
all n ∈ N, define

Σn(R;B1,B2) := (ΣnR; ΣnB1,ΣnB2)
Nil−n(R;B1,B2) := Nil0Σn(R;B1,B2)

= K−n(R)×K−n(R)× Ñil−n(R;B1,B2).

The next two propositions follow from the definitions and [Wal78, Theorems 1,3].

Proposition 2.6. (Waldhausen) Let R be a ring and B an R-bimodule. Consider
the tensor ring

A = TR(B) = R⊕B ⊕BB ⊕BBB ⊕ · · · .

Suppose B is finitely generated projective as a left R-module and free as a right
R-module. Then, for all n ∈ N, there is a split monomorphism

Ñil−n(R;B) −→ K1−n(A); [Q, ν] 7−→ [A⊗R Q, 1 + ν].

Furthermore, there is a natural decomposition

K1−n(A) = K1−n(R)⊕ Ñil−n(R;B).

�

Proposition 2.7. (Waldhausen) Let R,A1, A2 be rings. Let R → Ai be ring
monomorphisms such that Ai = R ⊕ Bi for some R-bimodule Bi. Consider the
pure pushout of rings

A = A1 ∗R A2 = R⊕ (B1⊕B2)⊕ (B1B2⊕B2B1)⊕ (B1B2B1⊕B2B1B2)⊕· · · .

Suppose each Bi is free as a right R-module. Then, for all n ∈ N, there is a split
monomorphism

Ñil−n(R;B1,B2) −→ K1−n(A); [P1, P2, ρ1, ρ2] 7−→ [A⊗R (P1 ⊕ P2),
( 1 ρ2

ρ1 1

)
].

Furthermore, there is a natural Mayer-Vietoris type exact sequence

· · · ∂−−−−→ K1−n(R) −−−−→ K1−n(A1)⊕K1−n(A2)

−−−−→ K1−n(A)

Ñil−n(R;B1,B2)
∂−−−−→ K−n(R) −−−−→ · · · .

�

2.3. The isomorphism for lower Nil-groups.

Theorem 2.8. Let R be a ring. Let B1,B2 be R-bimodules. Suppose the left R-
module structure on B2 is finitely generated and projective. Then, for all n ∈ N,
there is an induced isomorphism of abelian groups:

i∗ ◦ t∗ : Nil−n(R;B1 ⊗R B2)×K−n(R) −→ Nil−n(R;B1,B2).
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Proof. Let n ∈ N. By Lemma 2.3 and Theorem 1.1, the composite i∗ ◦ t∗ consists
of induced isomorphisms:

Nil−n(R;B1 ⊗R B2)×K−n(R) = Nil0Σn(R;B1 ⊗R B2)×K0Σn(R)
Nil0(1ΣnR;tn)−−−−−−−−−−−→ Nil0(ΣnR; ΣnB1 ⊗ΣnR ΣnB2)×K0Σn(R)

Nil0(i◦Σn)−−−−−−−−→ Nil0Σn(R;B1,B2) = Nil−n(R;B1,B2).

�

3. Applications to injective amalgams of groups

Natural examples of such bimodules originate from certain ring decompositions.

Corollary 3.1. Let A = A− ∗A0 A+ be a pure pushout of rings. Write A± =
A0 ⊕ B± for some A0-bimodules B±. Suppose the left A0-module structure on
B− is finitely generated and projective. Then, for all n ∈ Z, there is a natural
isomorphism of abelian groups:

Niln(A0;B− ⊗A0 B+)×Kn(A0) −→ Niln(A0;B−,B+).

�

Here is our reduction for a certain class of group rings.

Corollary 3.2. Let R be a ring. Suppose G = G− ∗G0 G+ is an injective amalgam
of groups such that [G− : G0] is finite. Write B± := R[G± − G0]. Then, for all
n ∈ Z, there is a natural isomorphism of abelian groups:

Ñiln(R[G0];B−,B+) −→ NKn+1(R[G0];B− ⊗R[G0] B+).

�

The case of G = D∞ = Z2 ∗1 Z2 has a particularly simple form.

Corollary 3.3. Let R be a ring. Then, for all n ∈ Z, there is a natural isomorphism
of abelian groups:

Ñiln(R;R,R) −→ NKn+1(R).
�

Our main application is the class of virtually cyclic groups of infinite dihedral
type. Their K-theory is conjectured to be the one of the three building blocks of
the K-theory of arbitrary groups [FJ93].

Corollary 3.4. Let R be a ring. Consider any group extension

1 −→ F −→ G −→ D∞ −→ 1

where F is finite. There is an induced decomposition G = G− ∗F G+ where
[G± : F ] = 2. Uniquely up to inner automorphisms, there are induced group auto-
morphisms α, β : F → F such that as R[F ]-bimodules:

R[G−] = R[F ]⊕ αR[F ] and R[G+] = R[F ]⊕R[F ]β .
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Then, for all n ∈ Z, there is an isomorphism of abelian groups:

HG
n (Evc(G), Efin(G);KR) −→ NKn(αR[F ]β).

�

3.1. Jim’s application. Let Γ = Z2 ∗ Z3 = PSL2(Z). The following theorem
follows from applying our main theorem and the recent proof [BLR ] of the K-
theoretic Farrell-Jones conjecture in K-theory for word hyperbolic groups.

Theorem 3.5. For any ring R and integer q,

Kq(RΓ) = KqR⊕ K̃q(RZ2)⊕ K̃q(RZ3)⊕
⊕
M

Ñilq−1(R)

where the sum is over all the conjugacy classes of maximal infinite dihedral sub-
groups.

Proof. By Waldhausen’s theorem (see also Davis [Dav ]), the homology exact se-
quence of the pair (EallΓ, EfinΓ)

HΓ
q (EfinΓ;KR) → HΓ

q (EallΓ;KR) → HΓ
q (EallΓ, EfinΓ;KR)

is short exact and split. Hence

(3.5.1) Kq(RΓ) = HΓ
q (EfinΓ;KR)⊕HΓ

q (EallΓ, EfinΓ;KR)

Note that EfinΓ is constructed as a pullback of Γ-spaces
Γ t Γ −−−−→ Γ/Z2 t Γ/Z3y y

Γ×D1 −−−−→ EfinΓ

Then EfinΓ is simply the Bass-Serre tree for Γ = Z2∗Z3. Note that HΓ
∗ (Γ/H;KR) =

K∗(RH). Hence there is a long exact sequence

· · · → Kq(R) → Kq(RZ2)⊕Kq(RZ3) → HΓ
q (EfinΓ;KR) → Kq−1(R) → · · ·

Thus
HΓ

q (EfinΓ;KR) = KqR⊕ K̃q(RZ2)⊕ K̃q(RZ3)
Since Γ is a word hyperbolic group, the K-theoretic Farrell-Jones conjecture holds.
By the reformulation of this conjecture by Davis-Lück, this means

HΓ
q (EallΓ;KR) ∼= HΓ

q (EvcΓ;KR).

Thus
HΓ

q (EallΓ, EfinΓ;KR) = HΓ
q (EvcΓ, EfinΓ;KR)

By Lück-Weiermann [LW07] (if one insists),

HΓ
q (EvcΓ, EfinΓ;KR) ∼=

⊕
M

HD∞
q (EvcD∞, EfinD∞;KR)

By Waldhausen again,1

HD∞
q (EvcD∞, EfinD∞;KR) = Ñilq−1(R;R,R).

1Consider using Corollary 3.4.
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Finally, by our main theorem

Ñilq−1(R;R,R) ∼= Ñilq−1(R).

Remark 3.6. It is not difficult to show that M is countably infinite.

One then applies vanishing and non-vanishing results to show compute Kq(RΓ)
for some R and Γ. For example, even from Waldhausen’s result one knows Ñil∗(R) =
0 for R regular coherent. For a finite group G, Bass showed that NK−q(ZG) = 0 for
q > 0. For G finite of square-free order, Harmon [Har87] showed that NK0(ZG) =
0. For finite abelian group G which is not of square-free order, Bass showed that
NK0(ZG) is infinitely generated torsion. Finally, a ring R is quasi-regular if there
is a two-sided ideal I so that R/I is regular. Bass showed that NKq(R) = 0 for
q ≤ 0. �
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