THE ALGEBRAIC THEORY OF THE MASLOV INDEX

ANDREW RANICKI

November 21, 2016

Contents

1. Various functions 3
2. Group cohomology 11
3. Geometric cobordism constructions 21
3.1. Unions of cobordisms 21
3.2. The twisted double, mapping torus and cyclic unions 23
3.3. Thickened union 28
3.4. Relative cobordisms and k-cyclic unions 31
4. Forms, formations and triformations 37
4.1. Forms and formations 38
4.2. Algebraic surgery 42
4.3. Triformations 45
4.4. The algebraic mapping torus 48
4.5. The Laurent polynomial extension 53
5. Signatures 55
5.1. The triple signature in algebra 55
5.2. The triple signature in topology 60
6. The space of lagrangians $\Lambda(n) \quad 63$
7. Complex structures 87
8. Symplectic and hermitian automorphisms 90
9. Asymmetric forms 112
10. Knots 115

References 123

1. Various functions

Definition 1.1. (i) The jump of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at $x \in \mathbb{R}$ is

$$
j_{f}(x)=\underset{\epsilon}{\lim }(f(x+\epsilon)-f(x-\epsilon)) \in \mathbb{R} .
$$

(ii) Given a real number $x \in \mathbb{R}$ let $[x] \in \mathbb{Z}$ be the integral part and let $\{x\} \in[0,1)$ be the fractional part, so that

$$
x=[x]+\{x\} \in \mathbb{R} .
$$

(iii) The sawtooth function of $x \in \mathbb{R}$ is

$$
((x))=\left\{\begin{array}{ll}
\{x\}-1 / 2 & \text { if } x \in \mathbb{R} \backslash \mathbb{Z} \\
0 & \text { if } x \in \mathbb{Z}
\end{array} \in(-1 / 2,1 / 2) .\right.
$$

(iv) The reverse sawtooth function of $x \in \mathbb{R}$ is

$$
\mu(x)=1-2\{x\} \in(-1,1]
$$

Proposition 1.2. (I) The fractional function

$$
\}: \mathbb{R} \rightarrow[0,1) ; x \mapsto\{x\}=x-[x]
$$

has the following properties:
(i) $\}$ is continuous on $\mathbb{R} \backslash \mathbb{Z}$, with jump function

$$
j_{\{ \}}(x)= \begin{cases}-1 & \text { if } \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

(ii) $\{x\}+\{y\}-\{x+y\}=[x+y]-[x]-[y]= \begin{cases}0 & \text { if } 0 \leqslant\{x\}+\{y\}<1 \\ 1 & \text { if } 1 \leqslant\{x\}+\{y\}<2 .\end{cases}$
(iii) $\{x+1\}=\{x\}$.
(iv) $\{x\}+\{-x\}=\{x\}+\{1-x\}= \begin{cases}1 & \text { if } x \in \mathbb{R} \backslash \mathbb{Z} \\ 0 & \text { if } x \in \mathbb{Z}\end{cases}$
(v) $\{x+1 / 2\}-\{x\}= \begin{cases}1 / 2 & \text { if } 0 \leqslant\{x\}<1 / 2 \\ -1 / 2 & \text { if } 1 / 2 \leqslant\{x\}<1 .\end{cases}$
(vi) $n\{x\}-\{n x\}=[n x]-n[x] \in \mathbb{Z} \subset \mathbb{R}(n \in \mathbb{Z})$.
(II) The sawtooth function
$(()): \mathbb{R} \rightarrow(-1 / 2,1 / 2) ; x \mapsto((x))= \begin{cases}\{x\}-1 / 2 & \text { if } x \in \mathbb{R} \backslash \mathbb{Z} \\ 0 & \text { if } x \in \mathbb{Z}\end{cases}$
has the following properties:
(i) (()) is continuous on $\mathbb{R} \backslash \mathbb{Z}$, with jump function

$$
j_{(())}(x)= \begin{cases}-1 & \text { if } x \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

(ii) $((x+1))=((x)),((-x))=-((x))$.
(iii) $((0))=((1 / 2))=0,((1 / 4))=-1 / 4,((3 / 4))=1 / 4$.
(iv) $((x))=x+([-x]-[x]) / 2=(\{x\}-\{-x\}) / 2$.
(v) $((x+1 / 2))= \begin{cases}\{x\} & \text { if } 0 \leqslant\{x\}<1 / 2 \\ 0 & \text { if }\{x\}=1 / 2 \\ \{x\}-1 & \text { if } 1 / 2<\{x\}<1 .\end{cases}$
(vi)

$$
\begin{aligned}
2(((x))+((y))-((x+y))) & =-\operatorname{sgn}(\sin \pi x \sin \pi y \sin \pi(x+y)) \\
& = \begin{cases}0 & \text { if } x \in \mathbb{Z} \text { or } y \in \mathbb{Z} \text { or } x+y \in \mathbb{Z} \\
-1 & \text { if } 0<\{x\}+\{y\}<1 \\
1 & \text { if } 1<\{x\}+\{y\}<2\end{cases}
\end{aligned}
$$

In particular, for $x=y$

$$
2(2((x))-((2 x)))=-\operatorname{sgn}(\sin 2 \pi x) \in \mathbb{Z} \subset \mathbb{R} .
$$

(vii) For any $n \in \mathbb{Z}$

$$
2(n((x))-((n x)))=-\sum_{k=1}^{n-1} \operatorname{sgn}(\sin \pi x \sin k \pi x \sin (k+1) \pi x) \in \mathbb{Z} \subset \mathbb{R}
$$

(viii) For any $\theta_{1}, \theta_{2} \in \mathbb{R}$

$$
\begin{aligned}
& \operatorname{sgn}\left(\sin \theta_{1} \sin \theta_{2} \sin \left(\theta_{1}+\theta_{2}\right)\right)-2 \operatorname{sgn}\left(\left(\sin \theta_{1} / 2\right)\left(\sin \theta_{2} / 2\right)\left(\sin \left(\theta_{1}+\theta_{2}\right) / 2\right)\right) \\
& =2\left(2\left(\left(\theta_{1} / 2 \pi\right)\right)-\left(\left(\theta_{1} / \pi\right)\right)\right)+2\left(2\left(\left(\theta_{2} / 2 \pi\right)\right)-\left(\left(\theta_{2} / \pi\right)\right)\right) \\
& \quad-2\left(2\left(\left(\left(\theta_{1}+\theta_{2}\right) / 2 \pi\right)\right)-\left(\left(\left(\theta_{1}+\theta_{2}\right) / \pi\right)\right)\right) \\
& =-\operatorname{sgn}\left(\sin \theta_{1}\right)-\operatorname{sgn}\left(\sin \theta_{2}\right)+\operatorname{sgn}\left(\sin \left(\theta_{1}+\theta_{2}\right)\right) \in \mathbb{Z}
\end{aligned}
$$

(III) The reverse sawtooth function

$$
\mu: \mathbb{R} \rightarrow(-1,1] ; x \mapsto 1-2\{x\}
$$

has the following properties:
(i) $\mu(x)= \begin{cases}-2((x)) & \text { if } x \in \mathbb{R} \backslash \mathbb{Z} \\ 1 & \text { if } x \in \mathbb{Z} .\end{cases}$
(ii) μ is continuous at $x \in \mathbb{R} \backslash \mathbb{Z}$, with jump function

$$
j_{\mu}(x)= \begin{cases}2 & \text { if } x \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

(iii) $\mu(x)+\mu(y)-\mu(x+y)= \begin{cases}+1 & \text { if } 0 \leqslant\{x\}+\{y\}<1 \\ -1 & \text { if } 1 \leqslant\{x\}+\{y\}<2 .\end{cases}$
(iv) $\mu(0)=1, \mu(1 / 2)=0$.
(v) $\mu(x+1)=\mu(x)$ for $x \in \mathbb{R}$.
(vi) $\mu(x)+\mu(-x)= \begin{cases}0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Z} \\ 2 & \text { if } x \in \mathbb{Z} .\end{cases}$
(vii) $\mu(x)-\mu(x+1 / 2)=2 \mu(x)-\mu(2 x)= \begin{cases}+1 & \text { if } 0 \leqslant\{x\}<1 / 2 \\ -1 & \text { if } 1 / 2 \leqslant\{x\}<1 .\end{cases}$

Remark 1.3. (i) Fourier expansion of sawtooth function

$$
((x))=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\pi n} \sin (2 \pi n(x-1 / 2)) .
$$

(ii) Eisenstein's formula for $x=p / q \in \mathbb{Q}$

$$
((x))=\frac{i}{2 q} \sum_{j=1}^{q-1} \cot \frac{\pi j}{q} e^{2 \pi i j x} .
$$

Remark 1.4. The E-function of Barge and Ghys [5, p.239]

$$
\begin{aligned}
& E: \mathbb{R} \rightarrow \mathbb{Z}[1 / 2] \subset \mathbb{R} ; \\
& x \mapsto x-((x))=([x]-[-x]) / 2= \begin{cases}{[x]+1 / 2} & \text { if } x \in \mathbb{R} \backslash \mathbb{Z} \\
x & \text { if } x \in \mathbb{Z}\end{cases}
\end{aligned}
$$

is such that

$$
E(-x)=-E(x)(x \in \mathbb{R})
$$

and for any $x, y \in \mathbb{R}$

$$
\begin{aligned}
E(x+y)-E(x)-E(y) & =((x))+((y))-((x+y)) \\
& =-\operatorname{sgn}(\sin \pi x \sin \pi y \sin \pi(x+y)) / 2 \\
& = \begin{cases}0 & \text { if } x \in \mathbb{Z} \text { or } y \in \mathbb{Z} \text { or } x+y \in \mathbb{Z} \\
-1 / 2 & \text { if } 0<\{x\}+\{y\}<1 \\
1 / 2 & \text { if } 1<\{x\}+\{y\}<2\end{cases}
\end{aligned}
$$

Proposition 1.5. (Rademacher [45], Walsh [60], Paley [44])
(I) The Rademacher functions

$$
\phi_{n}: \mathbb{R} \rightarrow\{-1,0,1\} ; x \mapsto \operatorname{sgn}\left(\sin 2^{n+1} \pi x\right)(n \geqslant 0)
$$

are such that
(i) $\phi_{0}(x)=\operatorname{sgn}(\sin 2 \pi x)= \begin{cases}+1 & \text { if } 0<\{x\}<1 / 2 \\ -1 & \text { if } 1 / 2<\{x\}<1 \\ 0 & \text { if }\{x\}=0 \text { or } 1 / 2 \text {. }\end{cases}$
(ii) $\phi_{n}(x)=\phi_{0}\left(2^{n} x\right)=2\left(\left(2^{n+1} x\right)\right)-2^{n+2}((x))$.
(iii) $\phi_{n}(x+1)=\phi_{n}(x), \phi_{n}(x+1 / 2)=\phi_{n}(-x)=-\phi_{n}(x)$.
(iv) $\phi_{n}(0)=\phi_{n}(1 / 2)=0$.
(v) $\mu(x)-\mu(x+1 / 2)=2 \mu(x)-\mu(2 x)=\phi_{0}(x)$ for $2 x \in \mathbb{R} \backslash \mathbb{Z}$.
(II) The Walsh functions $\psi_{n}: \mathbb{R} \rightarrow\{-1,0,1\}(n \geqslant 0)$ are defined by

$$
\begin{aligned}
\psi_{0}(x)= & 1, \psi_{n}(x)=\phi_{n_{1}}(x) \phi_{n_{2}}(x) \ldots \phi_{n_{k}}(x) \\
& \left(n=2^{n_{1}}+2^{n_{2}}+\cdots+2^{n_{k}}\right) .
\end{aligned}
$$

In particular

$$
\psi_{2^{n}}(x)=\phi_{n}(x)=\phi_{0}\left(2^{n} x\right)=\operatorname{sgn}\left(\sin 2^{n+1} \pi x\right)
$$

The Walsh functions constitute a complete orthonormal set with respect to

$$
(f, g) \mapsto \int_{0}^{1} f(x) g(x) d x
$$

behaving like trigonometric series on I:

$$
\int_{0}^{1} \psi_{m}(x) \psi_{n}(x) d x= \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

Every Lebesgue integrable function $f: I \rightarrow \mathbb{R}$ has a Walsh-Fourier expansion

$$
F(x)=\sum_{n=0}^{\infty} c_{n} \psi_{n}(x) \text { with } c_{n}=\int_{0}^{1} f(x) \psi_{n}(x) d x \in \mathbb{R}
$$

with $F(x)=f(x)$ if f is continuous at $x \in(0,1)$.

Example 1.6. The Fourier-Walsh expansion of the reverse sawtooth function $\mu(x)$ is

$$
\mu(x)=\sum_{k=0}^{\infty} \psi_{2^{k}}(x) / 2^{k+1}=\sum_{k=0}^{\infty} \phi_{0}\left(2^{k} x\right) / 2^{k+1}
$$

with

$$
\int_{0}^{1} \mu(x) \psi_{n}(x) d x= \begin{cases}1 / 2^{k+1} & \text { if } n=2^{k} \\ 0 & \text { if } n \neq 2^{k}\end{cases}
$$

Definition 1.7. The η-invariant function is

$$
\begin{aligned}
& \eta: \mathbb{R} \rightarrow(-1,1] ; \\
& \theta \mapsto \eta(\theta)=-2((\theta / \pi))= \begin{cases}\mu(\theta / \pi)=1-2\{\theta / \pi\} & \text { if } \theta / \pi \in \mathbb{R} \backslash \mathbb{Z} \\
0 & \text { if } \theta / \pi \in \mathbb{Z}\end{cases}
\end{aligned}
$$

Proposition 1.8. The η-invariant function $\eta: \mathbb{R} \rightarrow(-1,1]$ has the following properties:
(i) η is continuous at $\theta \in \mathbb{R} \backslash \pi \mathbb{Z}$, jumping by 2 at $\theta \in \pi \mathbb{Z}$.
(ii) $\eta(\pi n / 2)=0(n \in \mathbb{Z})$.
(iii) $\eta(\theta+\pi)=\eta(\theta), \eta(-\theta)=-\eta(\theta)$,

$$
2 \eta(\theta)-\eta(2 \theta)=\eta(\theta)+\eta(\pi / 2-\theta)=\operatorname{sgn}(\sin 2 \theta)
$$

(iv)

$$
\begin{aligned}
\eta(\theta) & =-2((\theta / \pi))=-2 \theta / \pi+([\theta / \pi]-[-\theta / \pi]) \\
& =2 E(\theta / \pi)-2 \theta / \pi= \begin{cases}1-2\{\theta / \pi\} & \text { if } \theta / \pi \in \mathbb{R} \backslash \mathbb{Z} \\
0 & \text { if } \theta / \pi \in \mathbb{Z}\end{cases}
\end{aligned}
$$

(v)

$$
\begin{aligned}
& \eta(\theta)+\eta(\phi)-\eta(\theta+\phi) \\
& =2((((\theta+\phi) / \pi))-((\theta / \pi))-((\phi / \pi))) \\
& =-2(E((\theta+\phi) / \pi))-E(\theta / \pi)-E(\phi / \pi)) \\
& =\operatorname{sgn}(\sin (\theta) \sin (\phi) \sin (\theta+\phi)) \\
& = \begin{cases}1 & \text { if } \theta / \pi, \phi / \pi,(\theta+\phi) / \pi \in \mathbb{R} \backslash \mathbb{Z} \text { and } 0 \leqslant\{\theta / \pi\}+\{\phi / \pi\}<1, \\
-1 & \text { if } \theta / \pi, \phi / \pi,(\theta+\phi) / \pi \in \mathbb{R} \backslash \mathbb{Z} \text { and } 1 \leqslant\{\theta / \pi\}+\{\phi / \pi\}<2, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

In view of the identity

$$
\sin (2 \theta)+\sin (2 \phi)-\sin (2(\theta+\phi))=4 \sin (\theta) \sin (\phi) \sin (\theta+\phi)
$$

we also have

$$
\begin{aligned}
\eta(\theta)+\eta(\phi)-\eta(\theta+\phi) & =2((((\theta+\phi) / \pi))-((\theta / \pi))-((\phi / \pi))) \\
& =\operatorname{sgn}(\sin (2 \theta)+\sin (2 \phi)-\sin (2(\theta+\phi))) \\
& =\operatorname{sgn}(\sin (\theta) \sin (\phi) \sin (\theta+\phi)) \in\{-1,0,1\}
\end{aligned}
$$

The exponential function $e: \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$ is defined as usual by

$$
e^{z}=\sum_{j=0}^{\infty} \frac{z^{j}}{j!} \in \mathbb{C} \backslash\{0\}
$$

such that
(i) $z \mapsto e^{z}$ is continuous
(i) $e^{0}=1, e^{z+w}=e^{z} e^{w} \in \mathbb{C}$
(ii) $e^{z}=e^{w} \in \mathbb{C} \backslash\{0\}$ if and only if $z-w=2 \pi i k$ for some $k \in \mathbb{Z}$.

The principal logarithm function

$$
\log : \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}+i(-\pi, \pi] \subset \mathbb{C}
$$

is defined as usual by

$$
\log (z)=\log (|z|)+i \arg (z)(\arg (z) \in(-\pi, \pi])
$$

such that
(i) $z \mapsto \log (z)$ is continuous on $\mathbb{C} \backslash\{(-\infty, 0]\}$.
(ii) $\log (1)=0, \log (-1)=\pi i, \log (\pm i)= \pm \pi i / 2$.
(iii) If

$$
z=r e^{i \theta} \in \mathbb{C} \backslash\{0\}(r>0, \theta \in \mathbb{R})
$$

then

$$
\begin{aligned}
\log (z) & =\log (r)+\pi i \mu\left(\frac{\pi-\theta}{2 \pi}\right) \\
& =\log (r)+\pi i\left(1-2\left\{\frac{\pi-\theta}{2 \pi}\right\}\right) \\
& =\left\{\begin{array}{lr}
\log (r)+2 \pi i\left(\left(\frac{\theta+\pi}{2 \pi}\right)\right) & \text { for } \theta / \pi \in \mathbb{R} \backslash(2 \mathbb{Z}+1), \\
\log (r)+\pi i & \text { with } 2 \pi\left(\left(\frac{\theta+\pi}{2 \pi}\right)\right) \in(-\pi, \pi)
\end{array}\right. \\
& =\left\{\begin{array}{lr}
\log (r)-\pi i \eta\left(\frac{\theta+\pi}{2}\right) & \text { for } \theta / \pi \in \mathbb{R} \backslash(2 \mathbb{Z}+1), \\
\log (r)+\pi i & \text { for } \theta / \pi \in 2 \mathbb{Z}+1, \text { with } z=-r .
\end{array}\right.
\end{aligned}
$$

Proposition 1.9. The exponential and principal logarithm functions have the following properties:
(i) $e^{\log (z)}=z \in \mathbb{C} \backslash\{0\}$ for all $z \in \mathbb{C} \backslash\{0\}$.
(ii) For $z=x+i y \in \mathbb{C}$

$$
\log \left(e^{z}\right)=z-2 \pi i k \in \mathbb{C}((2 k-1) \pi<y \leqslant(2 k+1) \pi),
$$

that is

$$
\log \left(e^{x+i y}\right)=x+\pi i\left(1-2\left\{\frac{\pi-y}{2 \pi}\right\}\right) \in \mathbb{C} \backslash\{0\}
$$

(iii) If $z \in \mathbb{C} \backslash\{(-\infty, 0]\}$ then

$$
\log (z)=\int_{-\infty}^{0}\left(\frac{1}{x-z}-\frac{1}{x-1}\right) d x \in \mathbb{C}
$$

(iv) For $z_{1}, z_{2} \in \mathbb{C} \backslash\{0\}$
$\log \left(z_{1} z_{2}\right)-\log \left(z_{1}\right)-\log \left(z_{2}\right)=i\left(\arg \left(z_{1} z_{2}\right)-\arg \left(z_{1}\right)-\arg \left(z_{2}\right)\right)$

$$
= \begin{cases}2 \pi i & \text { if }-2 \pi<\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \leqslant-\pi \\ 0 & \text { if }-\pi<\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \leqslant \pi \\ -2 \pi i & \text { if } \pi<\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \leqslant 2 \pi\end{cases}
$$

(v) For $\theta_{1}, \theta_{2} \in \mathbb{R}$

$$
\begin{aligned}
\log \left(e^{i\left(\theta_{1}+\theta_{2}\right)}\right) & -\log \left(e^{i \theta_{1}}\right)-\log \left(e^{i \theta_{2}}\right) \\
= & \begin{cases}-2 \pi i & \text { if } 0 \leqslant\left\{\frac{\pi-\theta_{1}}{2 \pi}\right\}+\left\{\frac{\pi-\theta_{2}}{2 \pi}\right\}<1 / 2 \\
0 & \text { if } 1 / 2 \leqslant\left\{\frac{\pi-\theta_{1}}{2 \pi}\right\}+\left\{\frac{\pi-\theta_{2}}{2 \pi}\right\}<3 / 2 \\
2 \pi i & \text { if } 3 / 2 \leqslant\left\{\frac{\pi-\theta_{1}}{2 \pi}\right\}+\left\{\frac{\pi-\theta_{2}}{2 \pi}\right\}<2\end{cases}
\end{aligned}
$$

Example 1.10. For any $\theta \in \mathbb{R}$

$$
\begin{aligned}
\eta(\theta) & =-2((\theta / \pi)) \\
& = \begin{cases}\frac{1}{\pi i} \log \left(-e^{-2 i \theta}\right)=1-2\left\{\frac{\theta}{\pi}\right\} & \text { if } e^{i \theta} \neq \pm 1 \\
0 & \text { if } e^{i \theta}= \pm 1\end{cases}
\end{aligned}
$$

Given complex numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ let

$$
D\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right) \in M_{n}(\mathbb{C})
$$

be the diagonal $n \times n$ matrix.
The exponential of a complex $n \times n$ matrix $A \in M_{n}(\mathbb{C})$ is the invertible complex $n \times n$ matrix defined by

$$
\exp (A)=\sum_{j=0}^{\infty} \frac{A^{j}}{j^{!}} \in G L_{n}(\mathbb{C})
$$

and satisfies
(i) $\exp \left(D\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)\right)=D\left(e^{\lambda_{1}}, e^{\lambda_{2}}, \ldots, e^{\lambda_{n}}\right) \in G L_{n}(\mathbb{C})$ for any $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$. In particular, $\exp \left(0_{n}\right)=I_{n}$.
(ii) $\exp \left(A_{1}+A_{2}\right)=\exp \left(A_{1}\right) \exp \left(A_{2}\right) \in G L_{n}(\mathbb{C})$.
(iii) $\operatorname{det}\left(I_{n}-z A\right)=\exp \left(-\sum_{j=1}^{\infty} \frac{\operatorname{tr}\left(A^{j}\right)}{j} z^{j}\right) \in \mathbb{C}[z]$.

The eigenvalues of $A \in M_{n}(\mathbb{C})$ are the roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ of the characteristic polynomial

$$
\operatorname{ch}_{A}(z)=\operatorname{det}\left(z I_{n}-A: \mathbb{C}^{n}[z] \rightarrow \mathbb{C}^{n}[z]\right)=\prod_{j=1}^{n}\left(z-\lambda_{j}\right) \in \mathbb{C}[z]
$$

A is diagonalizable if and only if \mathbb{C}^{n} has a basis $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ consisting of eigenvectors of A, in which case $B=\left(b_{1} b_{2} \ldots b_{n}\right) \in G L_{n}(\mathbb{C})$ is such that

$$
A=B D\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) B^{-1} \in M_{n}(\mathbb{C})
$$

A is invertible if and only if each eigenvalue $\lambda_{j} \neq 0 \in \mathbb{C}$.

The logarithm of a diagonalizable $A \in G L_{n}(\mathbb{C})$ is the complex $n \times n$ matrix defined by

$$
\log (A)=B D\left(\log \left(\lambda_{1}\right), \log \left(\lambda_{2}\right), \ldots, \log \left(\lambda_{n}\right)\right) B^{-1} \in M_{n}(\mathbb{C})
$$

Proposition 1.11. The logarithm function satisfies:
(i) $\exp (\log (A))=A \in G L_{n}(\mathbb{C})$.
(ii) $\log \left(D\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)\right)=D\left(\log \left(\lambda_{1}\right), \log \left(\lambda_{2}\right), \ldots, \log \left(\lambda_{n}\right)\right) \in G L_{n}(\mathbb{C})$ ($\lambda_{j} \in \mathbb{C} \backslash\{0\}$).
(iii) $\exp (\operatorname{tr}(\log (A)))=\operatorname{det}(A)=\lambda_{1} \lambda_{2} \ldots \lambda_{n} \in \mathbb{C} \backslash\{0\}$.
(iv) For diagonalizable $A_{1}, A_{2}, A_{1} A_{2} \in G L_{n}(\mathbb{C})$

$$
\operatorname{tr}\left(\log \left(A_{1} A_{2}\right)\right)-\operatorname{tr}\left(\log \left(A_{1}\right)\right)-\operatorname{tr}\left(\log \left(A_{2}\right)\right) \in 2 \pi i \mathbb{Z} \subset \mathbb{C}
$$

(v) If $A \in G L_{n}(\mathbb{C})$ is diagonalizable and the eigenvalues are not in $(-\infty, 0]$ then

$$
\log (A)=\int_{-\infty}^{0}\left(\frac{1}{x-A}-\frac{1}{x-I_{n}}\right) d x \in G L_{n}(\mathbb{C})
$$

(vi) If $A: I \rightarrow G L_{n}(\mathbb{C})$ is a continuous function such that each $A(s) \in$ $G L_{n}(\mathbb{C})$ is diagonalizable and the eigenvalues are not in $(-\infty, 0]$ then

$$
\log (A): I \rightarrow G L_{n}(\mathbb{C}) ; s \mapsto \log (A(s))
$$

is a continuous function.

2. Group cohomology

The cohomology groups $H^{n}(G ; A)$ are abelian groups defined for any discrete groups G, A and $n \geqslant 0$. In terms of the classifying space $B G$

$$
H^{n}(G ; A)=H^{n}(B G ; A)(n \geqslant 0)
$$

We shall only be concerned with the cases $n=1,2$, with A abelian.
The first cohomology group of a discrete group G with coefficients in an abelian group A is

$$
H^{1}(G ; A)=\operatorname{Hom}(G, A)
$$

the abelian group of group morphisms $f: G \rightarrow A$. The function

$$
H^{1}(G ; A) \rightarrow H^{1}(B G ; A)=[B G, B A] ; f \mapsto B f
$$

is an isomorphism.

An A-valued cocycle on G is a function

$$
\tau: G \times G \rightarrow A
$$

such that

$$
\tau(x, y)+\tau(x y, z)=\tau(x, y z)+\tau(y, z) \in A(x, y, z \in G)
$$

The coboundary of a function $\alpha: G \rightarrow A$ is the cocycle

$$
\delta \alpha: G \times G \rightarrow A ;(x, y) \mapsto \delta \alpha(x, y)=\alpha(x)+\alpha(y)-\alpha(x y) .
$$

The second cohomology group is

$$
H^{2}(G ; A)=\{\text { cocycles } \tau\} /\{\text { coboundaries } \delta \alpha\}
$$

i.e. the abelian group of equivalences of cocycles τ, with the cocycles τ, τ^{\prime} equivalent if there exists a function $\alpha: G \rightarrow A$ such that

$$
\tau(x, y)-\tau^{\prime}(x, y)=\delta \alpha(x, y)=\alpha(x)+\alpha(y)-\alpha(x y) \in A
$$

and addition by

$$
\left(\tau_{1}+\tau_{2}\right)(x, y)=\tau_{1}(x, y)+\tau_{2}(x, y) \in A
$$

Proposition 2.1. $H^{2}(G ; A)$ classifies the central group extensions of G by A

$$
0 \longrightarrow A \xrightarrow{q} \widetilde{G} \xrightarrow{p} G \longrightarrow 0 .
$$

Proof. A cocycle τ determines the group extension

$$
0 \longrightarrow A \xrightarrow{q_{\tau}} G \times_{\tau} A \xrightarrow{p_{\tau}} G \longrightarrow 0
$$

where $G \times{ }_{\tau} A=G \times A$ (as sets) with group law

$$
(x, a)(y, b)=(x y, a+b+\tau(x, y)),
$$

and

$$
\begin{aligned}
p_{\tau} & : G \times_{\tau} A \rightarrow G ;(x, a) \mapsto x, \\
q_{\tau} & : A \rightarrow G \times_{\tau} A ; a \mapsto(1, a) .
\end{aligned}
$$

Conversely, given a central group extension

$$
0 \longrightarrow A \xrightarrow{q} \widetilde{G} \xrightarrow{p} G \longrightarrow 0
$$

and a section $s: G \rightarrow \widetilde{G}$ of p such that

$$
p(s(x))=x(x \in G)
$$

the function $\tau: G \times G \rightarrow A$ determined by the identity

$$
q \tau(x, y)=s(x) s(y) s(x y)^{-1} \in \operatorname{ker}(p: \widetilde{G} \rightarrow G)=\operatorname{im}(q: A \rightarrow \widetilde{G})
$$

is a cocycle such that there is defined an isomorphism of central group extensions

with

$$
\widetilde{G} \stackrel{\cong}{\cong} G \times_{\tau} A ; x \mapsto(p(x), a), q(a)=s(p(x)) x^{-1} .
$$

For any function $\alpha: G \rightarrow A$ the coboundary

$$
\delta \alpha: G \times G \rightarrow A ;(x, y) \mapsto \delta \alpha(x, y)=\alpha(x)+\alpha(y)-\alpha(x y)
$$

is such that there is defined an isomorphism of central group extensions

with

$$
G \times A \stackrel{\cong}{\cong} G \times_{\delta \alpha} A ;(x, a) \mapsto(x, a+\alpha(x))
$$

Remark 2.2. $H^{2}(G ; A)$ is isomorphic to $H^{2}(B G ; A)$.

A group morphism $f: G \rightarrow H$ induces group morphism

$$
f^{*}: H^{2}(H ; A) \rightarrow H^{2}(G ; A) ;[\tau] \mapsto\left[f^{*} \tau\right]
$$

by sending a cocycle $\tau: H \times H \rightarrow A$ to the cocycle

$$
f^{*} \tau: G \times G \rightarrow A ;(x, y) \mapsto \tau(f(x), f(y))
$$

with a morphism of central extensions

A short exact sequence of abelian groups

$$
0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0
$$

induces a long exact sequence of cohomology groups

$$
\left.\begin{array}{rl}
H^{1}(G ; A) & \rightarrow H^{1}(G ; B)
\end{array}\right) H^{1}(G ; C) \stackrel{\delta}{\longrightarrow}, ~ ل H^{2}(G ; B) \longrightarrow H^{2}(G ; C) .
$$

If $\sigma: C \rightarrow B$ is a section of $B \rightarrow C$ the connecting map

$$
\delta: H^{1}(G ; C) \rightarrow H^{2}(G ; A) ;[f] \mapsto[\tau]
$$

sends a group morphism $f: G \rightarrow C$ to the A-valued cocycle

$$
\begin{aligned}
\tau(x, y)=\sigma(f(x)) & +\sigma(f(y))-\sigma(f(x y)) \\
& \in \operatorname{ker}(B \rightarrow C)=\operatorname{im}(A \rightarrow B)
\end{aligned}
$$

For $G=C$ the connecting map sends $1 \in H^{1}(C ; C)=\operatorname{Hom}(C, C)$ to the class $\delta(1)=[\tau] \in H^{2}(C ; A)$ classifying the extension $0 \rightarrow A \rightarrow$ $B \rightarrow C \rightarrow 0$ itself. If $\sigma, \sigma^{\prime}: C \rightarrow B$ are two sections of $B \rightarrow C$ then

$$
\tau-\tau^{\prime}=\delta \alpha: C \times C \rightarrow A
$$

with

$$
\alpha: C \rightarrow A ; x \mapsto \sigma(x)-\sigma^{\prime}(x),
$$

and $\delta(1)=[\tau]=\left[\tau^{\prime}\right] \in H^{2}(C ; A)$.
The infinite cyclic covers of a space X

$$
\mathbb{Z} \longrightarrow \bar{X} \xrightarrow{p} X
$$

are classified by cohomology classes $f \in H^{1}(X)=[X, B \mathbb{Z}]=\left[X, S^{1}\right]$, with

$$
\bar{X}=f^{*} \mathbb{R}=\left\{(x, t) \in X \times \mathbb{R} \mid f(x)=e^{2 \pi i t} \in S^{1}\right\}
$$

the pullback of the universal cover $p: \mathbb{R} \rightarrow S^{1} ; t \mapsto e^{2 \pi i t}$

with $q: \mathbb{Z} \rightarrow \mathbb{R}$ the inclusion, and $\bar{f}: \bar{X} \rightarrow \mathbb{R} ;(x, t) \mapsto t$.
For any topological group G let G^{δ} denote the discrete group underlying G. The identity function $j: G^{\delta} \rightarrow G$ is continuous, so that it induces a map of classifying spaces $j: B G^{\delta} \rightarrow B G$ and hence morphisms

$$
j^{*}: H^{*}(B G) \rightarrow H^{*}\left(B G^{\delta}\right)=H^{*}\left(G^{\delta} ; \mathbb{Z}\right)
$$

For the classifying space $X=B G$ of a discrete group G the forgetful map $H^{2}(B G) \rightarrow H^{2}(G ; \mathbb{Z})$ is an isomorphism. For a topological group G with $\pi_{1}(G)=\mathbb{Z}$ and universal cover \widetilde{G} the morphism

$$
j^{*}: H^{2}(B G)=\mathbb{Z} \rightarrow H^{2}\left(B G^{\delta}\right)=H^{2}\left(G^{\delta} ; \mathbb{Z}\right)
$$

sends the generator $1 \in H^{2}(B G)=\mathbb{Z}$ to the central extension

$$
0 \rightarrow \mathbb{Z} \rightarrow \widetilde{G}^{\delta} \rightarrow G^{\delta} \rightarrow\{1\}
$$

(See Rawnsley [49] for the construction of \widetilde{G}).
The classifying space of S^{1} (regarded as a topological group) is the infinite-dimensional complex projective space

$$
B S^{1}=B U(1)=\mathbb{C P}^{\infty}
$$

For any space X the cohomology group $\left[X, \mathbb{C} \mathbb{P}^{\infty}\right]$ classifies \mathbb{C}-bundles over X

$$
\alpha: \mathbb{C} \rightarrow E(\alpha) \rightarrow X
$$

with the first Chern class defining an isomorphism

$$
\left[X, \mathbb{C P}^{\infty}\right] \rightarrow H^{2}(X) ; \alpha \mapsto c_{1}(\alpha) .
$$

The generator

$$
1 \in H^{2}\left(B S^{1}\right)=H^{2}\left(\mathbb{C P}^{\infty}\right)=\mathbb{Z}
$$

classifies the canonical \mathbb{C}-bundle

$$
\lambda: \mathbb{C} \rightarrow \text { Hopf bundle } \rightarrow \mathbb{C P}^{\infty}
$$

with $c_{1}(\lambda)=1 \in H^{2}\left(\mathbb{C P}^{\infty}\right)=\mathbb{Z}$.
Definition 2.3. The Chern cocycle is

$$
\begin{aligned}
& u: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto[x+y]-[x]-[y] \\
& =\{x\}+\{y\}-\{x+y\}= \begin{cases}0 & \text { if } 0 \leqslant\{x\}+\{y\}<1 \\
1 & \text { if } 1 \leqslant\{x\}+\{y\}<2 .\end{cases}
\end{aligned}
$$

Proposition 2.4. The Chern cocycle u corresponds to the central ex-

 tension$$
0 \longrightarrow \mathbb{Z} \xrightarrow{q} \mathbb{R}^{\delta} \xrightarrow{p} S^{1 \delta} \longrightarrow 0 .
$$

determined by the universal cover

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{q} \mathbb{R} \xrightarrow{p} S^{1} \longrightarrow 0
$$

with

$$
\begin{aligned}
& p: \mathbb{R} \rightarrow S^{1} ; x \mapsto e^{2 \pi i x} \\
& q: \mathbb{Z} \rightarrow \mathbb{R} ; 1 \mapsto 1
\end{aligned}
$$

The cohomology class

$$
[u]=B j^{*}(1)=j^{*} B(1)=c_{1}\left(j^{*} \lambda\right) \in H^{2}\left(B S^{1 \delta}\right)=H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)
$$

is the first Chern class of the pullback $j^{*} \lambda: B S^{1 \delta} \rightarrow B S^{1}$.

Proof. The projection p has section

$$
v: S^{1 \delta} \rightarrow \mathbb{R}^{\delta} ; z=e^{2 \pi i x} \mapsto\{x\}(0 \leqslant x<1)
$$

with corresponding cocycle

$$
\begin{aligned}
& u: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto \\
& u\left(e^{2 \pi i x}, e^{2 \pi i y}\right)=v(x)+v(y)-v(x+y) \\
& =\{x\}+\{y\}-\{x+y\}= \begin{cases}0 & \text { if } 0 \leqslant\{x\}+\{y\}<1 \\
1 & \text { if } 1 \leqslant\{x\}+\{y\}<2\end{cases}
\end{aligned}
$$

such that

$$
\begin{aligned}
{[u]=\delta(1) \in \operatorname{im}\left(\delta: H^{1}\left(S^{1 \delta} ;\right.\right.} & \left.\left.S^{1 \delta}\right) \rightarrow H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)\right) \\
& =\operatorname{ker}\left(H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right) \rightarrow H^{2}\left(S^{1 \delta} ; \mathbb{R}^{\delta}\right)\right)
\end{aligned}
$$

The function

$$
f: \mathbb{R}^{\delta} \rightarrow S^{1 \delta} \times_{u} \mathbb{Z} ; x \mapsto\left(e^{2 \pi i x},[x]\right)
$$

is an isomorphism of groups, with inverse

$$
f^{-1}: S^{1 \delta} \times_{u} \mathbb{Z} \rightarrow \mathbb{R}^{\delta} ;\left(e^{2 \pi i x}, m\right) \mapsto\{x\}+m
$$

The isomorphism f defines an isomorphism of central group extensions

Proposition 2.5. (i) For any $n \in \mathbb{Z}$ the cocycles

$$
\begin{aligned}
& n u: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ; \\
& \left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto n u\left(e^{2 \pi i x}, e^{2 \pi i y}\right)=n(\{x\}+\{y\}-\{x+y\}) \\
& u(n \times n): S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ; \\
& \left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto u\left(e^{2 \pi i n x}, e^{2 \pi i n y}\right)=\{n x\}+\{n y\}-\{n(x+y)\}
\end{aligned}
$$

are such that

$$
n u-u(n \times n)=\delta \alpha: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z}
$$

with

$$
\alpha: S^{1 \delta} \rightarrow \mathbb{Z} ; e^{2 \pi i x} \mapsto n\{x\}-\{n x\}=[n x]-n[x] .
$$

The group morphism $n: S^{1 \delta} \rightarrow S^{1 \delta} ; z \mapsto z^{n}$ is thus such that the cohomology class

$$
n^{*}[u]=[u(n \times n)]=[n u]=n[u] \in H^{1}\left(S^{1 \delta} ; \mathbb{Z}\right)
$$

corresponds to the central extension

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{q_{n}} \mathbb{R}^{\delta} \times \mathbb{Z}_{n} \xrightarrow{p_{n}} S^{1 \delta} \longrightarrow 0
$$

with

$$
\begin{aligned}
p_{n} & : \mathbb{R}^{\delta} \times \mathbb{Z}_{n} \rightarrow S^{1 \delta} ;(x, r) \mapsto e^{2 \pi i(x-r / n)} \\
q_{n} & : \mathbb{Z} \rightarrow \mathbb{R}^{\delta} \times \mathbb{Z}_{n} ; 1 \mapsto(1 / n, 1)
\end{aligned}
$$

(ii) For $p, q, r \in S^{1}$ define the cyclic order

$$
\begin{aligned}
\operatorname{ord}(p, q, r)= & \begin{cases}0 & \text { if two of } p, q, r \text { coincide } \\
1 & \text { if } q \in(r, p) \\
-1 & \text { if } q \in(p, r)\end{cases} \\
= & \left\{\begin{array}{l}
\text { area of the ideal triangle in the Poincaré disc } \\
\\
\text { with vertices at } p, q, r\} / \pi .
\end{array}\right.
\end{aligned}
$$

as in Barge and Ghys [5, p.238], such that for $x, y, z \in \mathbb{R}$

$$
\begin{aligned}
\operatorname{ord}\left(e^{2 \pi i x}, e^{2 \pi i y}, e^{2 \pi i z}\right) & =2(E(x-y)+E(y-z)+E(z-x)) \\
& =2(((y-x))+((z-y))+((x-z))) \\
& =\operatorname{sgn}(\sin \pi(x-y) \sin \pi(y-z) \sin \pi(z-x)) .
\end{aligned}
$$

The function

$$
\begin{aligned}
\epsilon: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto & \epsilon\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \\
& =\operatorname{ord}\left(1, e^{2 \pi i x}, e^{2 \pi i(x+y)}\right) \\
& =2(((x))+((y))-((x+y))) \\
& =-\operatorname{sgn}(\sin \pi x \sin \pi y \sin \pi(x+y))
\end{aligned}
$$

is the area cocycle of Kirby and Melvin [22] such that

$$
[\epsilon]=2[u] \in H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)
$$

and

$$
\begin{aligned}
& 2 u\left(e^{2 \pi i x}, e^{2 \pi i y}\right)-\epsilon\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \\
& \quad=2(\{x\}+\{y\}-\{x+y\})-2(((x))+((y))-((x+y))) \\
& \quad=\beta(x)+\beta(y)-\beta(x+y), \\
& \beta\left(e^{2 \pi i x}\right)=2\{x\}-2((x))=\{x\}+\{-x\}= \begin{cases}0 & \text { if } x \in \mathbb{Z} \\
1 & \text { if } x \notin \mathbb{Z} .\end{cases}
\end{aligned}
$$

Proof. (i) The section of p_{n}

$$
v_{n}: S^{1 \delta} \rightarrow \mathbb{R}^{\delta} \times \mathbb{Z}_{n} ; e^{2 \pi i x} \mapsto(\{x\}, 0)
$$

is such that

$$
v_{n}(g)+v_{n}(h)-v_{n}(g+h)=q_{n} u_{n}(g, h) \in \mathbb{R}^{\delta} \times \mathbb{Z}_{n}
$$

with cocycle

$$
n u: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto n(\{x\}+\{y\}-\{x+y\}) .
$$

The function

$$
f_{n}: \mathbb{R}^{\delta} \times \mathbb{Z}_{n} \rightarrow S^{1 \delta} \times n u \quad \mathbb{Z} ;(x, r) \mapsto\left(e^{2 \pi i x}, r+n[x-r / n]\right)
$$

is an isomorphism of groups, with inverse

$$
f_{n}^{-1}: S^{1 \delta} \times_{n u} \mathbb{Z} \rightarrow \mathbb{R}^{\delta} \times \mathbb{Z}_{n} ; \quad(z, m) \mapsto(x, m)
$$

with $x \in \mathbb{R}$ the unique real number such that $e^{2 \pi i\{x\}}=z \in S^{1}$ and

$$
[x]= \begin{cases}{[m / n]} & \text { if }\{m / n\} \leqslant\{x\} \\ {[m / n]+1} & \text { if }\{m / n\}>\{x\}\end{cases}
$$

The isomorphism f_{n} defines an isomorphism of central group extensions

(iii) By construction.

Example 2.6. Specialize to the case $n=2$, and consider the extension

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{q_{2}} \mathbb{R}^{\delta} \times \mathbb{Z}_{2} \xrightarrow{p_{2}} S^{1 \delta} \longrightarrow 0
$$

classified by $2 u \in H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)$, with

$$
\begin{aligned}
& p_{2}: \mathbb{R}^{\delta} \times \mathbb{Z}_{2} \rightarrow S^{1 \delta} ;(x, r) \mapsto e^{2 \pi i(x-r / 2)} \\
& q_{2}: \mathbb{Z}^{1} \rightarrow \mathbb{R}^{\delta} \times \mathbb{Z}_{2} ; n \mapsto(n / 2, n(\bmod 2)) .
\end{aligned}
$$

The two sections of p_{2}

$$
\begin{aligned}
& v_{2}: S^{1 \delta} \rightarrow \mathbb{R}^{\delta} \times \mathbb{Z}_{2} ; e^{2 \pi i x} \mapsto(\{x\}, 0), \\
& v_{2}^{\prime}: S^{1 \delta} \rightarrow \mathbb{R}^{\delta} \times \mathbb{Z}_{2} ; e^{2 \pi i x} \mapsto \begin{cases}(((x)), 0)=(0,0) & \text { if } e^{2 \pi i x}=1 \\
(((x)), 1)=(\{x\}-1 / 2,1) & \text { if } e^{2 \pi i x} \neq 1\end{cases}
\end{aligned}
$$

differ by

$$
v_{2}-v_{2}^{\prime}=q_{2} \alpha: S^{1 \delta} \rightarrow \mathbb{Z} \rightarrow \mathbb{R}^{\delta} \times \mathbb{Z}_{2}
$$

with

$$
\alpha: S^{1 \delta} \rightarrow \mathbb{Z} ; e^{2 \pi i x} \mapsto \begin{cases}0 & \text { if } e^{2 \pi i x}=1 \\ 1 & \text { if } e^{2 \pi i x} \neq 1\end{cases}
$$

The corresponding cocycles
differ by the coboundary

$$
v_{2}-v_{2}^{\prime}=\delta \alpha
$$

v_{2}^{\prime} is the signature cocycle τ of Atiyah [3, (2.7)] (= the area cocycle ϵ of Proposition $[2.5$ (iii))

$$
\begin{aligned}
v_{2}^{\prime}\left(e^{2 \pi i x}, e^{2 \pi i y}\right) & =v_{2}^{\prime}\left(e^{2 \pi i x}\right)+v_{2}^{\prime}\left(e^{2 \pi i y}\right)-v_{2}^{\prime}\left(e^{2 \pi i(x+y)}\right) \\
& =2(((x))+((y))-((x+y))) \\
& =\epsilon\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \\
& =-\operatorname{sgn}(\sin \pi x \sin \pi y \sin \pi(x+y)) \\
& =-2(E(x)+E(y)-E(x+y))
\end{aligned}
$$

$$
= \begin{cases}0 & \text { if } x \in \mathbb{Z} \text { or } y \in \mathbb{Z} \text { or } x+y \in \mathbb{Z} \\ -1 & \text { if } 0<\{x\}+\{y\}<1 \\ 1 & \text { if } 1<\{x\}+\{y\}<2\end{cases}
$$

Thus

$$
\begin{aligned}
{\left[v_{2}^{\prime}\right]=\left[v_{2}\right]=2[u]=\delta(2) \in } & \operatorname{ker}\left(H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right) \rightarrow H^{2}\left(S^{1 \delta} ; \mathbb{R}^{\delta}\right)\right) \\
& =\operatorname{im}\left(\delta: H^{1}\left(S^{1 \delta} ; S^{1 \delta}\right) \rightarrow H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& v_{2}: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} \\
& \left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto\left(q_{2}\right)^{-1}\left(v_{2}\left(e^{2 \pi i x}\right)+v_{2}\left(e^{2 \pi i y}\right)-v_{2}\left(e^{2 \pi i(x+y)}\right)\right) \\
& =2(\{x\}+\{y\}-\{x+y\}) \\
& v_{2}^{\prime}: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ; \\
& \left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto\left(q_{2}\right)^{-1}\left(v_{2}^{\prime}\left(e^{2 \pi i x}\right)+v_{2}^{\prime}\left(e^{2 \pi i y}\right)-v_{2}^{\prime}\left(e^{2 \pi i(x+y)}\right)\right) \\
& =2(((x))+((y))-((x+y)))
\end{aligned}
$$

Example 2.7. Specialize to the case $n=4$, and consider the extension

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{q_{4}} \mathbb{R}^{\delta} \times \mathbb{Z}_{4} \xrightarrow{p_{4}} S^{1 \delta} \longrightarrow 0
$$

classified by $4 u \in H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)$, corresponding to the extension

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{q_{4}} \mathbb{R}^{\delta} \times \mathbb{Z}_{4} \xrightarrow{p_{4}} S^{1 \delta} \longrightarrow 0
$$

with

$$
\begin{aligned}
& p_{4}: \mathbb{R}^{\delta} \times \mathbb{Z}_{4} \rightarrow S^{1 \delta} ;(x, r) \mapsto e^{2 \pi i(x-r / 4)} \\
& q_{4}: \mathbb{Z} \rightarrow \mathbb{R}^{\delta} \times \mathbb{Z}_{4} ; n \mapsto(n / 4, n(\bmod 4))
\end{aligned}
$$

The section of p_{4}

$$
v_{4}: S^{1 \delta} \rightarrow \mathbb{R}^{\delta} \times \mathbb{Z}_{4} ; e^{2 \pi i x} \mapsto(\{x\}, 0)
$$

is such that

$$
v_{4}(g)+v_{4}(h)-v_{4}(g+h)=q_{4} v_{4}(g, h) \in \mathbb{R}^{\delta} \times \mathbb{Z}_{4}
$$

with cocycle
$v_{4}=2 v_{2}: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto 4(\{x\}+\{y\}-\{x+y\})$.
The function

$$
f_{4}: \mathbb{R}^{\delta} \times \mathbb{Z}_{4} \rightarrow S^{1 \delta} \times_{v_{4}} \mathbb{Z} ;(x, r) \mapsto\left(e^{2 \pi i x}, r+4[x-r / 4]\right)
$$

is an isomorphism of groups, with inverse

$$
f_{4}^{-1}: S^{1 \delta} \times_{v_{4}} \mathbb{Z} \rightarrow \mathbb{R}^{\delta} \times \mathbb{Z}_{4} ;(z, m) \mapsto(x, m)
$$

with $x \in \mathbb{R}$ the unique real number such that $e^{2 \pi i\{x\}}=z \in S^{1}$ and

$$
[x]= \begin{cases}{[m / n]} & \text { if }\{m / 4\} \leqslant\{x\} \\ {[m / 4]+1} & \text { if }\{m / 4\}>\{x\}\end{cases}
$$

The isomorphism f_{4} defines an isomorphism of central group extensions

3. GEOMETRIC COBORDISM CONSTRUCTIONS

3.1. Unions of cobordisms. Manifolds M are oriented, and $-M$ will denote the same manifold with the opposite orientation. Isomorphisms $f: M \rightarrow M^{\prime}$ will be assumed to be orientation-preserving, unless stated otherwise.

The orientation convention for a cobordism $\left(W ; M, M^{\prime}\right)$ is

$$
\partial W=M \sqcup-M^{\prime} .
$$

As we shall be dealing with various ways of regarding the same closed manifold M as a boundary it is convenient to consider manifolds with boundary $(N, \partial N)$ and a particular isomorphism $i: M \cong \partial N$:

Definition 3.1. (i) An $(m+1)$-dimensional coboundary (N, M, i) consists of an $(m+1)$-dimensional manifold with boundary $(N, \partial N)$, a closed m-dimensional manifold M and an isomorphism $i: M \cong \partial N$. The cobooundary with the opposite orientation is

$$
-(N, M, i)=(-N,-M, i) .
$$

(ii) The union of ($m+1$)-dimensional coboundaries $\left(N_{0}, M, i_{0}\right),\left(N_{1}, M, i_{1}\right)$ is the closed $(m+1)$-dimensional manifold

$$
\left(N_{0}, M, i_{0}\right) \cup-\left(N_{1}, M, i_{1}\right)=\left(N_{0} \sqcup-N_{1}\right) /\left(i_{0}(x) \sim i_{1}(x) \text { for } x \in M\right) .
$$

with $M \subset\left(N_{0}, M, i_{0}\right) \cup-\left(N_{1}, M, i_{1}\right)$ a separating codimension 1 submanifold. When i_{0}, i_{1} are clear this is written as

$$
\left(N_{0}, M, i_{0}\right) \cup-\left(N_{1}, M, i_{1}\right)=N_{0} \cup_{M}-N_{1} .
$$

We shall make frequent use of the fact that boundaries of manifolds are collared:

Proposition 3.2. For any $(m+1)$-dimensional coboundary (N, M, i : $M \rightarrow \partial N)$ the isomorphism i extends to an embedding $e: M \times I \rightarrow N$ such that

$$
e(x, 0)=i(x) \in N(x \in M)
$$

The $(m+1)$-dimensional manifold with boundary

$$
\left(N^{\prime}, \partial N^{\prime}\right)=(\operatorname{cl} .(N \backslash e(M \times I)), e(M \times\{1\}))
$$

is such that there are defined isomorphisms

$$
\begin{aligned}
& i^{\prime}: M \rightarrow \partial N^{\prime} ; x \mapsto e(x, 1) \\
& (f, 1):\left(N^{\prime}, M, i^{\prime}\right) \rightarrow(N, M, i)
\end{aligned}
$$

with

$$
f(e(x, 1))=e(x, 0)=i(x) \in \partial N(x \in M)
$$

Definition 3.3. The collared union of two $(m+1)$-dimensional coboundaries $\left(N_{0}, M, i_{0}\right),\left(N_{1}, M, i_{1}\right)$ is the closed $(m+1)$-dimensional manifold

$$
\begin{gathered}
\left(N_{0}, M, i_{0}\right) \cup M \times I \cup-\left(N_{1}, M, i_{1}\right)=\left(N_{0} \sqcup M \times I \sqcup-N_{1}\right) / \sim, \\
i_{0}(x) \sim(x, 0), i_{1}(x) \sim(x, 1)(x \in M)
\end{gathered}
$$

with $N_{0},-N_{1} \subset\left(N_{0}, M, i_{0}\right) \cup M \times I \cup-\left(N_{1}, M, i_{1}\right)$ disjoint codimension 1 submanifolds. When i_{0}, i_{1} are clear this is written as

$$
\left(N_{0}, M, i_{0}\right) \cup M \times I \cup-\left(N_{1}, M, i_{1}\right)=N_{0} \cup M \times I \cup-N_{1} .
$$

Definition 3.4. Let M be an m-dimensional manifold. The data for a surgery on M is an embedding $A \times \partial B \subset M$ for some manifolds with boundary $(A, \partial A),(B, \partial B)$ with $m=\operatorname{dim}(A)+\operatorname{dim}(B)-1$. The effect of the surgery on $A \times \partial B \subset M$ is the m-dimensional manifold

$$
M^{\prime}=\operatorname{cl} .(M \backslash A \times \partial B) \cup \partial A \times B
$$

The trace of the surgery is the cobordism $\left(W ; M, M^{\prime}\right)$ with

$$
W=M \times I \cup A \times B, \partial W=M \cup-M^{\prime}
$$

Remark 3.5. The surgery in Definition [3.4 is an evident generalization of the usual case of surgery on an m-dimensional manifold with

$$
(A, \partial A)=\left(D^{p}, S^{p-1}\right),(B, \partial B)=\left(D^{q}, S^{q-1}\right)(p+q-1=m)
$$

3.2. The twisted double, mapping torus and cyclic unions. We consider geometric cobordism constructions related to the mapping torus and the twisted double, which will motivate the development of algebraic analogues.
Definition 3.6. (i) The twisted double of an $(m+1)$-dimensional manifold with boundary $(N, \partial N)$ and an automorphism $f: M=$ $\partial N \rightarrow M$ is the closed $(m+1)$-dimensional manifold

$$
U(f)=N \cup_{f}-N
$$

with Euler characteristic

$$
\chi(U(f))=2 \chi(N)-\chi(M)=\left(1+(-1)^{m+1}\right) \chi(N) .
$$

(ii) The mapping torus of an automorphism $f: M \rightarrow M$ of a closed m-dimensional manifold M is the closed $(m+1)$-dimensional manifold

$$
T(f)=M \times[0,1] /\{(x, 0) \sim(f(x), 1) \mid x \in M\}
$$

which is a fibre bundle over S^{1} with monodromy f

$$
M \rightarrow T(f) \rightarrow S^{1}
$$

and Euler characteristic $\chi(T(f))=0 \in \mathbb{Z}$.

Example 3.7. The mapping torus of $f: M \rightarrow M$ is a twisted double

$$
T(f)=U(1 \sqcup f: M \sqcup M \rightarrow M \sqcup M)
$$

Definition 3.8. Given an ($m+1$)-dimensional manifold with boundary $(N, \partial N)$ and an automorphism $f: M=\partial N \rightarrow M$ use a collaring of M in N to identify the twisted double $U(f)$ (3.6) with

$$
\begin{aligned}
U(f)=(N \times\{0\} \sqcup & M \times I \sqcup N \times\{1\}) / \\
& \{(x, 0) \sim(i(x), 0),(x, 1) \sim(i f(x), 1) \mid x \in M\}
\end{aligned}
$$

with $i: M \rightarrow N$ the inclusion. The twisted double cobordism $(V(f) ; U(f), T(f))$ is the trace of the surgery on $N \times\{0,1\} \subset U(f)$, with

$$
V(f)=U(f) \times I \cup_{N \times\{0,1\}} N \times I,
$$

noting that the effect of the surgery is
$\mathrm{cl} .(U(f) \backslash N \times\{0,1\}) \cup_{1 \sqcup f} M \times I=M \times I \cup_{1 \sqcup f} M \times I=T(f)($ B. 7$)$.
The Euler characteristic of $V(f)$ is
$\chi(V(f))=\chi(U(f))-\chi(N)=\chi(N)-\chi(M)=(-1)^{m+1} \chi(M) \in \mathbb{Z}$.

Remark 3.9. The twisted double cobordism $(V(f) ; U(f), T(f))$ of f : $M \rightarrow M$ can be expressed more concisely as

$$
\begin{aligned}
V(f) & =(N \times[-1,2]) /\{(x, t) \sim(f(x), 1-t) \mid x \in M, t \in[-1,0]\} \\
U(f) & =N \times\{-1,2\} /\{(x,-1) \sim(f(x), 2) \mid x \in M\} \\
T(f) & =M \times[0,1] /\{(x, 0) \sim(f(x), 1) \mid x \in M\}
\end{aligned}
$$

Proposition 3.10. (i) For any (orientation-preserving) automorphism $f: M \rightarrow M$ there is defined an orientation-reversing isomorphism of the mapping tori of f and $f^{-1}: M \rightarrow M$

$$
T(f) \rightarrow T\left(f^{-1}\right) ;[x, t] \mapsto[x, 1-t]
$$

giving an identification of (oriented) manifolds

$$
T\left(f^{-1}\right)=-T(f)
$$

(ii) For any automorphisms $f, g: M \rightarrow M$ there is defined an isomorphism

$$
T(g f) \rightarrow T(f g) ;[x, t] \mapsto[f(x), t]
$$

Definition 3.11. (i) Suppose that $\left(N_{j}, \partial N_{j}\right)(0 \leqslant j \leqslant k-1)$ are k ($m+1$)-dimensional manifolds with the same boundary

$$
M=\partial N_{0}=\partial N_{1}=\ldots=\partial N_{k-1}
$$

The $(m+2)$-dimensional manifold with boundary

$$
(P, \partial P)=\left(M \times D^{2} \cup \bigcup_{j=0}^{k-1} N_{j} \times I, \coprod_{j=0}^{k-1} N_{j} \cup_{M}-N_{j+1}\right)\left(N_{k}=N_{0}\right)
$$

is the thickened union of the stratified set

$$
\left(\coprod_{j=0}^{k-1} N_{j}\right) /\left\{M \sim \partial N_{0} \sim \partial N_{1} \sim \cdots \sim \partial N_{k-1}\right\}
$$

which is a deformation retract of P, with

$$
\begin{aligned}
& \chi(P)=\sum_{j=0}^{k-1} \chi\left(N_{j}\right)-(k-1) \chi(M), \\
& \chi(\partial P)=2 \sum_{j=0}^{k-1} \chi\left(N_{j}\right)-k \chi(M) .
\end{aligned}
$$

(ii) Given a closed m-dimensional manifold L and k automorphisms $f_{0}, f_{1}, \ldots, f_{k-1}: L \rightarrow L$ such that

$$
f_{k-1} f_{k-2} \ldots f_{1} f_{0}=1: L \rightarrow L
$$

define the cyclic union to be the thickened union $(m+2)$-dimensional manifold with boundary as in (i)

$$
(Q, \partial Q)=\left(\left(L \times\{0,1\} \times D^{2}\right) \cup \bigcup_{j=0}^{k-1} L \times I \times I, \coprod_{j=0}^{k-1} T\left(f_{j}\right)\right)
$$

of the k null-cobordisms $N_{j}=L \times I$ of $M=L \times\{0,1\}$ determined by $f_{0}, f_{1}, \ldots, f_{k-1}$, such that

$$
\chi(Q)=(2-k) \chi(L), \chi(\partial Q)=0
$$

The case $k=3$ is of particular interest:
Definition 3.12. Let $f, g: M \rightarrow M$ be two automorphisms of a closed m-dimensional manifold M.
(i) The double mapping torus cobordism $(T(f, g) ; T(f) \sqcup T(g), T(g f))$ is the cyclic union (B.TI (ii)) with $f_{0}=f, f_{1}=g, f_{2}=f^{-1} g^{-1}$ and

$$
\chi(T(f, g))=-\chi(M) .
$$

(ii) For $M=\partial N$ define the twisted double cobordism $(U(f, g) ; U(f) \sqcup$ $U(g), U(g f)$) is the thickened union (3.1] (i)) with $N_{0}=N_{1}=N_{2}=N$

$$
\chi(U(f, g))=3 \chi(N)-2 \chi(M)=\left(1+2(-1)^{m+1}\right) \chi(N) .
$$

Remark 3.13. Given an $(m+1)$-dimensional manifold with boundary (N, M) and two automorphisms $f, g: M \rightarrow M$ we have two cobordisms

$$
(T(f, g) ; T(f) \sqcup T(g), T(g f)), \quad\left(T^{\prime}(f, g) ; T(f) \sqcup T(g), T(g f)\right)
$$

with $T(f, g)$ as in 3.2 (i) and

$$
T^{\prime}(f, g)=(V(f) \sqcup V(g) \sqcup V(g f)) \cup_{U(f) \sqcup U(g) \sqcup U(g f)} U(f, g),
$$

with $U(f, g)$ as in $[]$.2 (ii), such that

$$
\begin{aligned}
\chi(T(f, g)) & =-\chi(M)=\left(-1+(-1)^{m+1}\right) \chi(N) \\
\chi\left(T^{\prime}(f, g)\right) & =\chi(U(f, g))-3 \chi(U(f))+3 \chi(V(f)) \\
& =-2 \chi(M)=2\left(-1+(-1)^{m+1}\right) \chi(N) .
\end{aligned}
$$

Let F_{k} be the free group on k generators $x_{0}, x_{1}, \ldots, x_{k-1}$.
Example 3.14. A pair of pants for a 3-dimensional animal with a total of k heads and legs is the 2 -dimensional manifold with boundary

$$
(P(k), \partial P(k))=\left(\operatorname{cl} .\left(S^{2} \backslash \coprod_{k} D^{2}\right), \coprod_{k} S^{1}\right)
$$

such that

$$
P(k) \simeq \bigvee_{k-1} S^{1}, \pi_{1}(P(k))=F_{k} /\left\langle x_{0} x_{1} \ldots x_{k-1}\right\rangle=F_{k-1}
$$

with $\chi(P(k))=2-k$, and $x_{j} \in \pi_{1}(P(k))$ represented by the j th boundary circle $S^{1} \subset \partial P(k)$.

Example 3.15. The human pair of pants $P(k)$ for $k=3$ is the double torus cobordism with

$$
\begin{aligned}
& (N, M)=\left(D^{1}, S^{0}\right), f=1: M \rightarrow M \\
& (V(f) ; U(f), T(f))=\left(P(3) ; S^{1}, S^{1} \sqcup S^{1}\right)
\end{aligned}
$$

It is also the thickened union (b) for $N_{0}=N_{1}=N_{2}=D^{1}$, with

$$
\begin{aligned}
(P, \partial P) & =\left(M \times D^{2} \cup \bigcup_{j=0}^{2} N_{j} \times I, \coprod_{j=0}^{k-1} N_{j} \cup_{M}-N_{j+1}\right) \\
& =\left(P(3), S^{1} \sqcup S^{1} \sqcup S^{1}\right) \\
P(3) \simeq & S^{1} \vee S^{1}, \chi(P(3))=-1 .
\end{aligned}
$$

This is also the cyclic union (3.Tl (ii)) for

$$
f_{0}=f_{1}=f_{2}=1: L=\{\text { pt. }\} \rightarrow L=\{\text { pt. }\}
$$

with
$(Q, \partial Q)=\left(\left(L \times\{0,1\} \times D^{2}\right) \cup \bigcup_{j=0}^{2} L \times I \times I, \coprod_{j=0}^{2} T\left(f_{j}\right)\right)=\left(P(3), S^{1} \sqcup S^{1} \sqcup S^{1}\right)$.

Definition 3.16. Let ($N, M, i: M \rightarrow \partial N$) be an n-dimensional coboundary, and let $f: M \rightarrow M$ be an automorphism. The collared twisted double is the collared union

$$
\begin{aligned}
& (N, M, i) \cup M \times I \cup-(N, M, i f)=((N \times\{0\} \cup-N \times\{1\}) \cup M \times I) / \sim \\
& (i(x), 0) \sim(x, 0), \quad(i f(x), 1) \sim(x, 1)(x \in M) .
\end{aligned}
$$

Again, in view of Proposition [3.2 the collared twisted double is isomorphic to the twisted double

$$
\begin{aligned}
& (N, M, i) \cup-(N, M, i f)=(N \times\{0\} \cup-N \times\{1\}) / \sim \\
& (i(x), 0) \sim(i f(x), 1)(x \in M) .
\end{aligned}
$$

In cases when $i: M \rightarrow \partial N$ is clear we shall write the twisted doubles as

$$
\begin{aligned}
& (N, M, i) \cup-(N, M, i f)=N \cup_{f}-N \\
& (N, M, i) \cup M \times I \cup-(N, M, i f)=N \cup M \times I \cup_{f}-N
\end{aligned}
$$

Also, in the untwisted case $f=1: M \rightarrow M$ write

$$
\begin{aligned}
& N \cup_{f}-N=N \cup_{M}-N \\
& (N, M, i) \cup M \times I \cup-(N, M, i)=N \times\{0\} \cup M \times I \cup-N \times\{1\}
\end{aligned}
$$

Example 3.17. For any n-dimensional coboundary ($N, M, i: M \rightarrow$ $\partial N)$ there is defined an n-dimensional relative cobordism

$$
(N \times I ; N \times\{0\}, N \times\{1\} ; M)
$$

with boundary the collared untwisted double of (N, M, i)

$$
\partial(N \times I)=N \times\{0\} \cup M \times I \cup-N \times\{1\}
$$

Proposition 3.18. (i) The mapping torus of an automorphism f : $M \rightarrow M$ is a twisted double

$$
T(f)=(M \times I) \cup_{f \cup 1}-(M \times I)
$$

with

$$
\begin{aligned}
& f \cup 1: \partial(M \times I)=M \times\{0,1\} \rightarrow M \times\{0,1\} \\
& (x, 0) \mapsto(f(x), 0),(x, 1) \mapsto(x, 1)
\end{aligned}
$$

and also a collared twisted double

$$
T(f)=(M \times I) \times\{0\} \cup M \times \partial I \times I \cup_{f \cup 1}-(M \times I) \times\{1\}
$$

(ii) Let (N, M, i) be a coboundary, and let $f: M \rightarrow M$ be an automorphism. The collared twisted double

$$
U(f)=(N \times\{0\}) \cup M \times I \cup_{f}-(N \times\{1\})
$$

is related to the mapping torus $T(f)$ by a canonical cobordism $(V(f) ; U(f), T(f))$ of collared twisted doubles

$$
V(f)=U(f) \times I \cup_{N \times\{0,1\} \times\{1\}}-N \times I
$$

the trace of the surgery on $U(f)$ replacing $N \times\{0,1\} \subset U(f)$ by $M \times I$. The disjoint submanifolds

$$
\begin{aligned}
V^{+}(f) & =N \times\{0\} \times I \cup_{N \times\{0\} \times\{1\}} N \times[0,1 / 3] \\
V^{-}(f) & =N \times\{1\} \times I \cup_{N \times\{1\} \times\{1\}} N \times[1 / 3,1] \subset V(f)
\end{aligned}
$$

are related by the evident isomorphism, and

$$
V(f)=V^{+}(f) \cup_{1}(M \times I \times I \sqcup N \times[1 / 3,2 / 3])_{(f \times 1) \sqcup 1} \cup V^{-}(f)
$$

is a collared twisted double.
(iii) The canonical cobordism of (ii) for the collared twisted double of (i)
$T(f)=U(f \cup 1)=(M \times I) \times\{0\} \cup M \times \partial I \times I \cup_{f \cup 1}-(M \times I) \times\{1\}$
is
$(V(f \cup 1) ; T(f), T(f \cup 1))$
$=\left(\operatorname{cl} .\left(T(f) \times I \backslash\left(M \times D^{2}\right)\right) ; T(f) \times\{0\}, T(f) \times\{1\} \cup\left(M \times S^{1}\right)\right)$.

3.3. Thickened union.

Definition 3.19. Given a closed m-dimensional manifold M and k $(m+1)$-dimensional manifolds $\left(N_{j}, \partial N_{j}\right)(j=0,1, \ldots, k-1)$ with

$$
\partial N_{0}=\partial N_{1}=\ldots=\partial N_{k-1}=M
$$

define the thickened union $(m+2)$-dimensional manifold with boundary

$$
(P, \partial P)=\left(M \times D^{2} \cup \bigcup_{j=0}^{k-1}\left(N_{j} \times I\right), \coprod_{j=0}^{k-1} N_{j} \cup_{M}-N_{j+1}\right)\left(N_{k}=N_{0}\right)
$$

The trace of the surgery on

$$
\coprod_{j=0}^{k-1} N_{j} \times \partial I \subset \partial P
$$

is the $(m+2)$-dimensional manifold with boundary

$$
\left(P^{\prime}, \partial P^{\prime}\right)=\left(\partial P \times I \cup\left(\coprod_{j=0}^{k-1} N_{j}\right) \times I, M \times S^{1}\right)
$$

such that

$$
P=M \times D^{2} \cup_{M \times S^{1}} P^{\prime}
$$

Let

$$
i_{j}=\text { inclusion }: M \rightarrow N_{j}(0 \leqslant j \leqslant k-1)
$$

and set

$$
i_{k}=i_{0}: M \rightarrow N_{k}=N_{0} .
$$

If $M, N_{0}, N_{1}, \ldots, N_{k-1}$ are connected then

$$
N_{0} \cup_{M}-N_{1}, N_{1} \cup_{M}-N_{2}, \ldots, N_{k-1} \cup_{M}-N_{0}, P
$$

are connected, with fundamental groups

$$
\begin{aligned}
& \pi_{1}\left(N_{j} \cup_{M}-N_{j+1}\right)=\pi_{1}\left(N_{j}\right) * \pi_{1}\left(N_{j+1}\right) /\left\{i_{j}(y)=i_{j+1}(y) \mid y \in \pi_{1}(M)\right\}, \\
& \pi_{1}(P)=\substack{k-1 \\
j=0} \\
& \psi_{1}\left(N_{j}\right) /\left\{i_{j}(y)=i_{j+1}(y) \mid y \in \pi_{1}(M)\right\} .
\end{aligned}
$$

Given a closed m-dimensional manifold L and k automorphisms $e_{0}, e_{1}, \ldots, e_{k-1}: L \rightarrow L$ write

$$
\begin{aligned}
& e_{k}=e_{0}: L \rightarrow L \\
& f_{j}=\left(e_{j+1}\right)^{-1} e_{j}: L \rightarrow L(0 \leqslant j \leqslant k-1), \\
& i_{j}=e_{j} \cup e_{j+1}: M=L \times \partial I \rightarrow N_{j}=L \times I,
\end{aligned}
$$

noting that $f_{k} f_{k-1} \ldots f_{1} f_{0}=1: L \rightarrow L$. The thickened union of the $(m+1)$-dimensional manifolds with boundary

$$
\left(N_{j}, \partial N_{j}\right)=\left(L \times I, i_{j}(M)\right)
$$

is the $(m+2)$-dimensional manifold with boundary

$$
(Q, \partial Q)=\left(M \times D^{2} \cup \bigcup_{j=0}^{k-1}\left(N_{j} \times I\right), \coprod_{j=0}^{k-1} N_{j} \cup_{M}-N_{j+1}\right)
$$

with j th boundary component the mapping torus of f_{j}

$$
\begin{aligned}
N_{j} \cup_{M}-N_{j+1} & =T\left(f_{j}: L \rightarrow L\right) \\
& =L \times I /\left\{(x, 0) \sim\left(f_{j}(x), 1\right) \mid x \in L\right\}
\end{aligned}
$$

If L is connected then so is Q, with fundamental group

$$
\pi_{1}(Q)=\pi_{1}(L) * F_{k-1} /\left\{x_{j} y=f_{j}(y) x_{j} \mid y \in \pi_{1}(L)\right\}
$$

and the inclusion $T\left(f_{j}\right) \rightarrow Q$ induces the evident morphism

$$
\pi_{1}\left(T\left(f_{j}\right)\right)=\pi_{1}(L) *\left\langle x_{j}\right\rangle /\left\{x_{j} y=f_{j}(y) x_{j} \mid y \in \pi_{1}(L)\right\} \rightarrow \pi_{1}(Q)
$$

The projections

$$
p_{j}: T\left(f_{j}\right) \rightarrow S^{1} ;[x, t] \mapsto e^{2 \pi i t}
$$

extend to a map $p: Q \rightarrow P(k)$ inducing the surjection

$$
p_{*}: \pi_{1}(Q) \rightarrow \pi_{1}(P(k))=F_{k-1} ; x_{j} \mapsto x_{j}, y \mapsto\{1\}
$$

which fits into an exact sequence

$$
\{1\} \longrightarrow \pi_{1}(L) \longrightarrow \pi_{1}(Q) \xrightarrow{p_{*}} F_{k-1} \longrightarrow\{1\} .
$$

As above, let $(K, \partial K=L)$ be an $(m+1)$-dimensional manifold with boundary, with k automorphisms $e_{0}, e_{1}, \ldots, e_{k-1}: L \rightarrow L$, and let $M=L \times\{0,1\}$. The $k(m+1)$-dimensional manifolds

$$
\left(N_{j}, \partial N_{j}\right)=\left(L \times I,\left(e_{j} \cup e_{j+1}\right)(M)\right)
$$

is an $(m+2)$-dimensional manifold with boundary

$$
(P, \partial P)=\left(M \times D^{2} \cup \bigcup_{j=0}^{k-1}\left(N_{j} \times I\right), \coprod_{j=0}^{k-1} N_{j} \cup_{M}-N_{j+1}\right)
$$

with

$$
N_{j} \cup_{M} N_{j+1}=T\left(f_{j}: L \rightarrow L\right)\left(f_{j}=\left(e_{j+1}\right)^{-1} e_{j}\right)
$$

In view of Proposition [5.2:
Proposition 3.20. (i) For any coboundary ($N, M, i: M \rightarrow \partial N$) there is defined an isomorphism of coboundaries

$$
\begin{gathered}
(g, \partial g):\left(\left(M \times I,-M \times\{1\}, i_{1}\right) \cup(N, M, i), M, i_{0}\right) \rightarrow(N, M, i) \\
i_{0}(x)=(x, 0), i_{1}(x)=(x, 1)(x \in M)
\end{gathered}
$$

such that

$$
\partial g(x, 0)=i(x) \in \partial N(x \in M) .
$$

(ii) The union and collared union of coboundaries $\left(N_{0}, M, i_{0}\right),\left(N_{1}, M, i_{1}\right)$ are related by an isomorphism
$f=f_{0} \cup f_{1}:\left(N_{0}, M, i_{0}\right) \cup\left(-N_{1}, M, i_{1}\right) \rightarrow\left(N_{0}, M, i_{0}\right) \cup M \times I \cup\left(-N_{1}, M, i_{1}\right)$ such that

$$
f(x)=(x, 1 / 2) \in\left(N_{0}, M, i_{0}\right) \cup M \times I \cup\left(-N_{1}, M, i_{1}\right)(x \in M)
$$

with the restrictions of f isomorphisms

$$
\begin{aligned}
f_{0}: & N_{0} \rightarrow N_{0} \cup_{M \times\{0\}} M \times[0,1 / 2], \\
f_{1}: & N_{1} \rightarrow M \times[1 / 2,1] \cup_{M \times\{1\}} N_{1} .
\end{aligned}
$$

3.4. Relative cobordisms and k-cyclic unions.

Definition 3.21. (i) An n-dimensional relative cobordism ($P ; N_{0}, N_{1}$; M, i_{0}, i_{1}) is an n-dimensional manifold P with boundary

$$
\partial P=\left(N_{0}, M, i_{0}\right) \cup M \times I \cup\left(-N_{1},-M, i_{1}\right)
$$

for given $(n-1)$-dimensional coboundaries $\left(N_{0}, M, i_{0}\right),\left(N_{1}, M, i_{1}\right)$.
(ii) The union of relative cobordisms $\left(P_{0} ; N_{0}, N_{1} ; M, i_{0}, i_{1}\right),\left(P_{1} ; N_{1}, N_{2}\right.$; $\left.M, i_{1}, i_{2}\right)$ is the relative cobordism

$$
\begin{aligned}
\left(P_{0} ; N_{0}, N_{1} ; M, i_{0}, i_{1}\right) & \cup\left(P_{1} ; N_{1}, N_{2} ; M, i_{1}, i_{2}\right) \\
= & \left(P_{0} \cup_{N_{1}}-P_{1} ; N_{1}, N_{2} ; M, i_{0}, i_{2}\right) .
\end{aligned}
$$

In view of Proposition [.20] there is no essential difference between a relative cobordism ($P ; N_{0}, N_{1} ; M, i_{0}, i_{1}$) as in $[2]$ and an n-dimensional manifold with boundary $(P, \partial P)$ together with a codimension 1 separating submanifold $M \subset \partial P=N_{0} \cup_{M}-N_{1}$.

For any relative cobordism $\left(P ; N_{0}, N_{1} ; M\right)$ there exists a real-valued Morse function $p: P \rightarrow I$ with

$$
p \mid=\text { projection }: M \times I \rightarrow I, p^{-1}(0)=N_{0}, p^{-1}(1)=N_{0} .
$$

If p has no critical values then

$$
\left(P ; N_{0}, N_{1} ; M\right)=\left(N_{0} \times I ; N_{0} \times\{0\},-N_{0} \times\{1\} ; M\right) .
$$

Definition 3.22. Let $k \geqslant 1$. The k-cyclic union of $k n$-dimensional relative cobordisms

$$
\left(P_{j} ; N_{j}, N_{j+1} ; M\right)(j=0,1, \ldots, k-1)
$$

along an isomorphism

$$
(f, \partial f):\left(N_{k}, \partial N_{k}=M\right) \rightarrow\left(N_{0}, \partial N_{0}=M\right)
$$

is the n-dimensional manifold with boundary

$$
(P, \partial P)=\left(\coprod_{j=0}^{k-1} P_{j} / \sim, T(\partial f)\right)
$$

with

$$
\begin{aligned}
& \left(x \in N_{j+1} \subset P_{j}\right) \sim\left(x \in N_{j+1} \subset P_{j+1}\right)(j=0,1, \ldots, k-2), \\
& \left(x \in N_{k} \subset P_{k-1}\right) \sim\left(f(x) \in N_{0} \subset P_{0}\right) .
\end{aligned}
$$

The union of real-valued Morse functions

$$
p_{j}: P_{j} \rightarrow\left[t_{j}, t_{j+1}\right]\left(t_{0}<t_{1}<\cdots<t_{k}=t_{0}+1\right)
$$

such that

$$
\begin{aligned}
& p_{j}^{-1}\left(t_{j}\right)=N_{j}, p_{j}^{-1}\left(t_{j+1}\right)=N_{j+1} \subset P_{j} \\
& p(x, s)=(1-s) t_{j}+s t_{j+1}(x \in M, s \in I)
\end{aligned}
$$

is a circle-valued Morse function

$$
p: P \rightarrow S^{1} ; x \mapsto e^{2 \pi i p_{j}(x)}\left(x \in P_{j}\right)
$$

such that

$$
\begin{aligned}
& p^{-1}\left(e^{2 \pi i t_{j}}\right)=N_{j} \subset P \\
& p\left([x, t]=e^{2 \pi i t}(x \in M, t \in I) .\right.
\end{aligned}
$$

Example 3.23. (i) The 1-cyclic union of an n-dimensional relative cobordism ($P_{0} ; N_{0}, N_{1} ; M$) along an isomorphism

$$
(f, \partial f):\left(N_{1}, \partial N_{1}=M\right) \rightarrow\left(N_{0}, \partial N_{0}=M\right)
$$

is an n-dimensional manifold with boundary

$$
(P, \partial P)=\left(P_{0} /(x \sim f(x)), T(\partial f)\right)\left(x \in N_{1}\right)
$$

A real-valued Morse function $p_{0}: P_{0} \rightarrow I$ such that

$$
\begin{aligned}
& p_{0}^{-1}(0)=N_{0}, p_{0}^{-1}(1)=N_{1} \subset P_{0} \\
& p(x, s)=s(x \in M, s \in I)
\end{aligned}
$$

determines a circle-valued Morse function

$$
p: P \rightarrow S^{1} ; x \mapsto e^{2 \pi i p_{0}(x)}\left(x \in P_{0}\right)
$$

such that

$$
p^{-1}(1)=N_{0} \subset P, p \mid=\text { projection }: \partial P=T(\partial f) \rightarrow S^{1} .
$$

(ii) Suppose given an $(n+1)$-dimensional manifold with boundary $(P, \partial P)$ and a map $(p, \partial p):(P, \partial P) \rightarrow S^{1}$ such that $\partial p: \partial P \rightarrow S^{1}$ is the projection of a fibre bundle, with $\partial P=T(f: M \rightarrow M)$. Assume p is transverse regular at $1 \in S^{1}$. Cutting $(P, \partial P)$ along the codimension 1 framed submanifold

$$
(p, \partial p)^{-1}=(N, M) \subset P
$$

there is obtained an n-dimensional relative cobordism $\left(P_{0} ; N_{0}, N_{1} ; M\right)$ with an isomorphism

$$
(f, \partial f):\left(N_{1}, \partial N_{1}=M\right) \rightarrow\left(N_{0}, \partial N_{0}=M\right)
$$

such that $(P, \partial P)$ is the 1-cyclic union.

Proposition 3.24. Let $(P, \partial P)$ be a k-cyclic union as in [.2g, and fix a sequence

$$
t_{0}<t_{1}<\cdots<t_{k-1}<t_{k}=t_{0}+1 \in \mathbb{R}
$$

The projection $p: T(\partial f) \rightarrow S^{1}$ extends to a Morse function $\delta p: P \rightarrow$ S^{1} such that the restrictions $\delta p \mid: P_{j} \rightarrow S^{1}$ lift to Morse functions

$$
p_{j}:\left(P_{j} ; N_{j}, N_{j+1} ; M\right) \rightarrow\left[t_{j}, t_{j+1}\right](0 \leqslant j \leqslant k-1)
$$

and

$$
\begin{aligned}
& \delta p(x)=e^{2 \pi i p_{j}(x)} \in S^{1}\left(x \in P_{j}\right), \\
& p_{j}^{-1}\left(t_{j}\right)=N_{j}, p_{j}^{-1}\left(t_{j+1}\right)=N_{j+1}
\end{aligned}
$$

Definition 3.25. (i) A submanifold $M^{m} \subset P^{n}$ is framed if the normal bundle is trivialized, so that M has a neighbourhood $M \times D^{n-m} \subset P$. (ii) The exterior of a framed $M^{m} \subset P^{n}$ is the n-dimensional manifold with boundary

$$
\left(P_{M}, \partial P_{M}\right)=\left(\operatorname{cl} .\left(P \backslash M \times D^{n-m}\right), M \times S^{n-m-1}\right)
$$

such that

$$
P=M \times D^{n-m} \cup_{M \times S^{n-m-1}} P_{M}
$$

(iii) An ambient coboundary of a framed submanifold $M^{m} \subset P^{n}$ is a framed submanifold $N^{m+1} \subset P^{n}$ such that $\partial N=M$. (iv) A framed submanifold $M \subset P$ cobounds ambiently if there exists an ambient coboundary $N \subset P$.

We shall be mainly concerned with framed submanifolds $M^{m} \subset P^{n}$ with codimension $n-m=1$ or 2 .

Definition 3.26. (i) A codimension 2 framed submanifold $M^{n-2} \subset P^{n}$ is circular if the exterior

$$
\left(P_{M}, \partial P_{M}\right)=\left(\operatorname{cl} .\left(P \backslash M \times D^{2}\right), M \times S^{1}\right)
$$

is such that the projection $\partial p: \partial P_{M}=M \times S^{1} \rightarrow S^{1}$ extends to a map $p: P_{M} \rightarrow S^{1}$.
(ii) An ($n, n-1, n-2$)-dimensional manifold triple (P, N, M) is an n-dimensional manifold P^{n} together with a a codimension 2 framed submanifold $M^{n-2} \subset P$ and an ambient coboundary $N^{n-1} \subset P$.

Proposition 3.27. Let $M^{n-2} \subset P^{n}$ be a codimension 2 framed submanifold.
(i) The connecting map δ in the cohomology exact sequence

$$
\ldots \longrightarrow H^{1}\left(P_{M}\right) \longrightarrow H^{1}\left(M \times S^{1}\right) \xrightarrow{\delta} H^{2}\left(P_{M}, M \times S^{1}\right) \longrightarrow \ldots
$$

sends the class $\partial p \in H^{1}\left(M \times S^{1}\right)=\left[M \times S^{1}, S^{1}\right]$ to

$$
\delta(\partial p)=[M] \in H^{2}\left(P_{M}, M \times S^{1}\right)=H_{n-2}\left(P_{M}\right)
$$

(ii) The submanifold $M \subset P$ cobounds ambiently if and only if $M \subset P$ is circular.
(iii) For a circular $M \subset P$ it may be assumed that $p: P_{M} \rightarrow S^{1}$ is a Morse function, and:
(a) if $t \in \mathbb{R}$ is such that $e^{2 \pi i t} \in S^{1}$ is a regular value of δp then

$$
N^{n-1}=p^{-1}\left(e^{2 \pi i t}\right) \subset P_{M}
$$

is a codimension 1 framed submanifold ambiently cobounding $\partial N=M$, so that (P, N, M) is an ($n, n-1, n-2$)-dimensional manifold triple,
(b) if $e^{2 \pi i t_{j}} \in S^{1}(0 \leqslant j \leqslant k-1)$ are regular values of p with

$$
t_{0}<t_{1}<\cdots<t_{k-1}<t_{k}=t_{0}+1 \in \mathbb{R}
$$

then

$$
P_{j}=p^{-1} e^{2 \pi i\left(\left[t_{j}, t_{j+1}\right]\right)}, N_{j}=p^{-1} e^{2 \pi i t_{j}}
$$

define k relative cobordisms $\left(P_{j} ; N_{j}, N_{j+1} ; M\right)$ with $N_{k}=N_{0}$ and k-cyclic union

$$
\begin{aligned}
& \left(P_{M}, \partial P_{M}\right)=\left(\coprod_{j=0}^{k-1} P_{j} / \sim, M \times S^{1}\right) \\
& \left(x \in N_{j+1} \subset P_{j}\right) \sim\left(x \in N_{j+1} \subset P_{j+1}\right)\left(P_{k}=P_{0}\right)
\end{aligned}
$$

such that

$$
P=M \times D^{2} \cup_{M \times S^{1}} P_{M} .
$$

The restrictions $p \mid: P_{j} \rightarrow S^{1}$ lift to Morse functions

$$
p_{j}:\left(P_{j} ; N_{j}, N_{j+1} ; M\right) \rightarrow\left[t_{j}, t_{j+1}\right]
$$

such that

$$
\begin{aligned}
& p(x)=e^{2 \pi i p_{j}(x)} \in S^{1}\left(x \in P_{j}\right) \\
& p_{j}^{-1}\left(t_{j}\right)=N_{j}, p_{j}^{-1}\left(t_{j+1}\right)=N_{j+1}
\end{aligned}
$$

Example 3.28. An m-knot is a codimension 2 framed submanifold

$$
M=S^{m} \subset P=S^{m+2}
$$

which is circular, and cobounds ambiently. The exterior

$$
P_{M}=\operatorname{cl} .\left(S^{m+2} \backslash\left(S^{m} \times D^{2}\right)\right)
$$

is a (co)homology circle, and the generator $1 \in H^{1}\left(P_{M}\right)=\mathbb{Z}$ is represented by a Morse function $p: P_{M} \rightarrow S^{1}$ extending the projection

$$
\partial p: \partial P_{M}=S^{m} \times S^{1} \rightarrow S^{1}
$$

For any regular value $e^{2 \pi i t} \in S^{1}$ of p

$$
N^{m+1}=p^{-1}\left(e^{2 \pi i t}\right) \subset P_{M}
$$

is an ambient coboundary for $M \subset P$, i.e. a Seifert surface for the knot with $\partial N=M \subset P$, and there is defined an $(m+2, m+1, m)$ dimensional manifold triple (P, N, M).

Definition 3.29. Let $\left(N_{j}, M_{j}, i_{j}: M_{j} \rightarrow \partial N_{j}\right)(0 \leqslant j \leqslant k-1)$ be k n-dimensional coboundaries with common boundary

$$
M_{0}=M_{1}=\ldots=M_{k-1}=M
$$

Fix a sequence

$$
t_{0}<t_{1}<\cdots<t_{k}=t_{0}+1 \in \mathbb{R}
$$

and let

$$
\begin{aligned}
& A_{j}=\left\{r e^{2 \pi i t} \mid 1 \leqslant r \leqslant 2, t_{j} \leqslant t \leqslant t_{j+1}\right\} \\
& B_{j}^{-}=\left\{2 e^{2 \pi i t} \mid\left(t_{j-1}+2 t_{j}\right) / 3 \leqslant t \leqslant t_{j}\right\} \\
& B_{j}^{+}=\left\{2 e^{2 \pi i t} \mid t_{j} \leqslant t \leqslant\left(2 t_{j}+t_{j+1}\right) / 3\right\} \\
& B_{j}=B_{j}^{-} \cup B_{j}^{+}=\left\{2 e^{2 \pi i t} \mid\left(t_{j-1}+2 t_{j}\right) / 3 \leqslant t \leqslant\left(2 t_{j}+t_{j+1}\right) / 3\right\}, \\
& I_{j}=\left\{2 e^{2 \pi i t} \mid\left(2 t_{j}+t_{j+1}\right) / 3 \leqslant t \leqslant\left(t_{j}+2 t_{j+1}\right) / 3\right\}, \\
& P_{j}=N_{j} \times B_{j}^{+} \cup_{M \times A_{j} \cap B_{j}^{+}} M \times A_{j} \cup_{M \times A_{j} \cap B_{j+1}^{-}} N_{j+1} \times B_{j+1}^{-}\left(N_{k}=N_{0}\right) .
\end{aligned}
$$

The thickened union is the $(n+1, n, n-1)$-dimensional manifold triple $\left(P, N_{0}, M\right)$ defined by the k-cyclic union

$$
(P, \partial P)=\left(M \times D^{2} \cup \bigcup_{j=0}^{k-1} P_{j}, \coprod_{j=0}^{k-1} N_{j} \cup M \times I \cup N_{j+1}\right)
$$

where

$$
N_{j} \cup M \times I \cup N_{j+1}=N_{j} \times\left\{2 e^{2 \pi i\left(2 t_{j}+t_{j+1}\right) / 3}\right\} \cup M \times I_{j} \cup N_{j+1} \times\left\{2 e^{2 \pi i\left(t_{j}+2 t_{j+1}\right) / 3}\right\} .
$$

The exterior of $M \times D^{2} \subset P$

$$
\left(P_{M}, \partial P_{M}\right)=\left(\bigcup_{j=0}^{k-1} P_{j}, M \times S^{1} \sqcup \coprod_{j=0}^{k-1}\left(N_{j} \cup M \times I \cup N_{j+1}\right)\right)
$$

is equipped with a Morse function $p: P_{M} \rightarrow S^{1}$ such that

$$
p \mid=\text { projection }: M \times S^{1} \rightarrow S^{1}
$$

Proposition 3.30. Let $(N, M, i: M \rightarrow \partial N)$ be an $(m+1)$-dimensional coboundary. For any automorphisms $f, g: M \rightarrow M$ the thickened union of the coboundaries

$$
\begin{aligned}
& \left(N_{0}, M_{0}, i_{0}\right)=(N, M, i) \\
& \left(N_{1}, M_{1}, i_{1}\right)=(N, M, i f), \\
& \left(N_{2}, M_{2}, i_{2}\right)=(N, M, i g)
\end{aligned}
$$

is an $(m+2, m+1, m)$-dimensional manifold triple

$$
\bigcup_{j=0}^{2}\left(N_{j}, i_{j}\right) \times I=\left(P, N_{0}, M\right)
$$

with boundary the disjoint union of the twisted doubles

$$
\partial P=\left(N \cup_{f}-N\right) \sqcup\left(N \cup_{g}-N\right) \sqcup\left(N \cup_{g f}-N\right) .
$$

Definition 3.31. Let M be a closed m-dimensional manifold. The double mapping torus of automorphisms $f, g: M \rightarrow M$ is the cobordism $(T(f, g) ; T(f) \sqcup T(g), T(g f))$ with $T(f, g)$ the trace of the surgery on $T(f) \sqcup T(g)$ replacing $T_{-}(f) \sqcup T_{+}(g)=M \times I \times S^{0}$ by $M \times S^{0} \times I$, with

$$
\begin{aligned}
& T_{+}(f)=M \times[0,1 / 2], T_{-}(f)=M \times[1 / 2,1] \subset T(f) \\
& T(f)=T_{+}(f) \cup T_{-}(f), T_{+}(f) \cap T_{-}(f)=M \times S^{0}
\end{aligned}
$$

The Euler characteristic of $T(f, g)$ is

$$
\chi(T(f, g))=-\chi(M)
$$

Proposition 3.32. The double mapping torus $T(f, g)$ is the thickened union of the ??

4. Forms, Formations and triformations

We recall from [46] the basic definitions of forms and formations over a ring with involution.

In dealing with a noncommutative ring R we shall be working with left R-modules K, L, \ldots, writing $\operatorname{Hom}_{R}(K, L)$ for the additive group of R-module morphisms $K \rightarrow L$. However, most of the rings here will be commutative.

For $p, q \geqslant 1$ let $M_{p, q}(R)$ be the additive group of $p \times q$ matrices

$$
S=\left(s_{j k}\right)_{1 \leqslant j \leqslant p, 1 \leqslant j \leqslant q}
$$

with entries $s_{j k} \in R$. Use the isomorphism

$$
\begin{aligned}
& M_{p, q}(R) \rightarrow \operatorname{Hom}_{R}\left(R^{q}, R^{p}\right) ; S=\left(s_{j k}\right) \mapsto \\
& \left(R^{q} \rightarrow R^{p} ;\left(x_{1}, x_{2}, \ldots, x_{q}\right) \mapsto\left(\sum_{k=1}^{q} x_{k} s_{1 k}, \sum_{k=1}^{p} x_{k} s_{2 k}, \ldots, \sum_{k=1}^{q} x_{k} s_{p k}\right)\right)
\end{aligned}
$$

as an identification. The composition pairing

$$
\operatorname{Hom}_{R}\left(R^{q}, R^{p}\right) \times \operatorname{Hom}_{R}\left(R^{r}, R^{q}\right) \rightarrow \operatorname{Hom}_{R}\left(R^{r}, R^{p}\right) ;(f, g) \mapsto f g
$$

corresponds to the pairing given by matrix multiplication
$M_{p, q}(R) \times M_{q, r}(R) \rightarrow M_{p, r}(R) ; \quad(S, T) \mapsto S T=\left\{\sum_{j=1}^{q} s_{i j} t_{j k}\right\}_{1 \leqslant i \leqslant p, 1 \leqslant k \leqslant r}$
For $p=q$ write $M_{p, p}(R)=M_{p}(R)$.
Now suppose that R is equipped with an involution

$$
R \rightarrow R ; a \mapsto \bar{a} .
$$

Use the involution on R to define the dual of an R-module K to be the R-module

$$
K^{*}=\operatorname{Hom}_{R}(K, R), R \times K^{*} \rightarrow K^{*} ;(a, f) \mapsto(x \mapsto f(x) \bar{a})
$$

The dual of an R-module morphism $f: K \rightarrow L$ is the R-module morphism

$$
f^{*}: L^{*} \rightarrow K^{*} ; g \mapsto(x \mapsto g(f(x))) .
$$

The natural R-module morphism

$$
K \rightarrow K^{* *} ; x \mapsto(f \mapsto \overline{f(x)})
$$

is an isomorphism for f.g. free K, which will be used to identify $K=$ $K^{* *}$ for such K. For f.g. free K, L duality thus defines an isomorphism

$$
: \operatorname{Hom}_{R}(K, L) \rightarrow \operatorname{Hom}_{R}\left(L^{}, K^{*}\right) ; f \mapsto f^{*} .
$$

The duality isomorphism for $K=R^{p}, L=R^{q}$ corresponds to the conjugation isomorphism

$$
: M_{q, p}(R) \rightarrow M_{p, q}(R) ; S=\left(s_{j k}\right) \mapsto S^{}=\left(\bar{s}_{k j}\right),
$$

via the isomorphism

$$
R^{p} \rightarrow\left(R^{p}\right)^{*} ;\left(x_{1}, x_{2}, \ldots, x_{p}\right) \mapsto\left(\left(y_{1}, y_{2}, \ldots, y_{p}\right) \mapsto \sum_{i=1}^{p} y_{i} \bar{x}_{i}\right)
$$

4.1. Forms and formations.

Definition 4.1. Let $\epsilon=+1$ or -1 .
(i) An ϵ-symmetric form over $R(K, \phi)$ is defined by a f.g. free R module K and a function

$$
\phi: K \times K \rightarrow R ;(x, y) \mapsto \phi(x, y)
$$

such that

$$
\begin{aligned}
& \phi\left(x+x^{\prime}, y+y^{\prime}\right)=\phi(x, y)+\phi\left(x, y^{\prime}\right)+\phi\left(x^{\prime}, y\right)+\phi\left(x^{\prime}, y^{\prime}\right) \\
& \phi(a x, b y)=b \phi(x, y) \bar{a} \\
& \phi(y, x)=\overline{\epsilon \overline{\phi(x, y)} \in R\left(x, x^{\prime} \in K, y, y^{\prime} \in K^{\prime}, a, b \in R\right)} .
\end{aligned}
$$

The adjoint of ϕ is the R-module morphism

$$
\phi: K \rightarrow K^{*} ; x \mapsto(y \mapsto \phi(x, y))
$$

such that $\phi^{*}=\epsilon \phi$. There is virtually no difference between the form and the adjoint.
(ii) An ϵ-symmetric form (K, ϕ) is nonsingular if $\phi: K \rightarrow K^{*}$ is an isomorphism, or equivalently if $\phi^{*}: K \rightarrow K^{*}$ is an isomorphism.
(iii) A morphism of ϵ-symmetric forms over R

$$
f:(K, \phi) \rightarrow\left(K^{\prime}, \phi^{\prime}\right)
$$

is an R-module morphism $f: K \rightarrow K^{\prime}$ such that $f^{*} \phi^{\prime} f=\phi$, or equivalently such that

$$
\phi(x, y)=\phi^{\prime}(f(x), f(y)) \in R(x, y \in K)
$$

(iv) Given an ϵ-symmetric form (K, ϕ) over R and a submodule $L \subseteq K$ define the submodule

$$
L^{\perp}=\{x \in K \mid \phi(x, y)=0 \in R \text { for all } y \in L\} \subseteq K
$$

For $L=K$ this is the radical $K^{\perp}=\operatorname{ker}\left(\phi: K \rightarrow K^{*}\right)$ of (K, ϕ).
(v) A sublagrangian for a ϵ-symmetric form (K, ϕ) is a submodule $L \subseteq K$ such that $L \subseteq L^{\perp}$. If (K, ϕ) is nonsingular and $L \subseteq K$ is a direct summand there is induced a nonsingular ϵ-symmetric form $\left(L^{\perp} / L,[\phi]\right)$. A lagrangian is a sublagrangian L such that $L=L^{\perp}$. In particular, L is a lagrangian of $H_{\epsilon}(L)$.
(vi) A nonsingular ϵ-symmetric form is hyperbolic if it admits a lagrangian. The standard hyperbolic nonsingular ϵ-symmetric form is defined for any ϵ-symmetric form (K, ϕ)

$$
H_{\epsilon}(K, \phi)=\left(K^{*} \oplus K, \theta\right), \theta=\left(\begin{array}{ll}
0 & 1 \\
\epsilon & \phi
\end{array}\right)
$$

with

$$
\theta(f, x)(g, y)=f(y)+\epsilon \overline{g(x)}+\phi(x, y) \in R\left(x, y \in K, f, g \in K^{*}\right)
$$

The form $H_{\epsilon}(K, \phi)$ has lagrangian K^{*}.
(vii) An ϵ-symmetric automorphism (K, ϕ, A) is a nonsingular symplectic form (K, ϕ) over R with an automorphism $A:(K, \phi) \rightarrow(K, \phi)$.
(viii) An ϵ-symmetric formation $\left(K, \phi ; L_{1}, L_{2}\right)$ is a nonsingular ϵ symmetric form (K, ϕ) with two lagrangians L_{1}, L_{2}.
(ix) An isomorphism of formations

$$
f:\left(K, \phi ; L_{1}, L_{2}\right) \rightarrow\left(K^{\prime}, \phi^{\prime} ; L_{1}^{\prime}, L_{2}^{\prime}\right)
$$

is an isomorphism of forms $f:(K, \phi) \rightarrow\left(K^{\prime}, \phi\right)$ such that

$$
f\left(L_{1}\right)=L_{1}^{\prime}, f\left(L_{2}\right)=L_{2}^{\prime} .
$$

(x) A stable isomorphism of formations

$$
[f]:\left(K, \phi ; L_{1}, L_{2}\right) \rightarrow\left(K^{\prime}, \phi^{\prime} ; L_{1}^{\prime}, L_{2}^{\prime}\right)
$$

is an isomorphism of the type

$$
f:\left(K, \phi ; L_{1}, L_{2}\right) \oplus\left(H_{\epsilon}(M) ; M, M^{*}\right) \rightarrow\left(K^{\prime}, \phi^{\prime} ; L_{1}^{\prime}, L_{2}^{\prime}\right) \oplus\left(H_{\epsilon}\left(M^{\prime}\right) ; M^{\prime}, M^{\prime *}\right)
$$

for some f.g. free R-modules M, M^{\prime}.
(xi) The boundary of an ϵ-symmetric form (K, ϕ) over R is the $-\epsilon$ symmetric formation over R

$$
\partial(K, \phi)=\left(H_{-\epsilon}(K) ; K, \Gamma_{(K, \phi)}\right)
$$

with

$$
\Gamma_{(K, \phi)}=\left\{(x, \phi(x)) \in K \oplus K^{*} \mid x \in K\right\}
$$

the graph lagrangian.

Terminology For $\epsilon=1$ (resp. -1) an ϵ-symmetric form is called a symmetric (resp. symplectic) form. Similarly for formations.

Example 4.2. Given an ϵ-symmetric automorphism (K, ϕ, A) and a lagrangian L of (K, ϕ) there is defined an ϵ-symmetric formation $(K, \phi ; L, A(L))$.

Proposition 4.3. (i) The inclusion of a sublagrangian $j:(L, 0) \rightarrow$ (K, ϕ) in a nonsingular ϵ-symmetric form extends to an isomorphism of ϵ-symmetric forms over R

$$
\left(L^{\perp} / L,[\phi]\right) \oplus\left(L \oplus L^{*},\left(\begin{array}{ll}
0 & 1 \\
\epsilon & \nu
\end{array}\right)\right) \xrightarrow{\cong}(K, \phi)
$$

with $\left(L^{*}, \nu\right)$ an ϵ-symmetric form over R. In particular, the inclusion of a lagrangian $j:(L, 0) \rightarrow(K, \phi)$ extends to an isomorphism

$$
(j \widetilde{j}):\left(L \oplus L^{*},\left(\begin{array}{ll}
0 & 1 \\
\epsilon & \widetilde{j}^{*} \phi \widetilde{j}
\end{array}\right)\right) \rightarrow(K, \phi)
$$

for any morphism $\widetilde{j}: L^{*} \rightarrow K$ such that $j^{*} \phi \widetilde{j}=1: L^{*} \rightarrow L^{*}$.
(ii) If $\left(K, \phi ; L_{1}, L_{2}\right)$ is an ϵ-symmetric formation over R such that $L=$ $L_{1} \cap L_{2}$ is a direct summand of K (e.g. if R is a field) then L is a sublagrangian of (K, ϕ), and the inclusion $(L, 0) \rightarrow(K, \phi)$ extends to an isomorphism of ϵ-symmetric formations over R

$$
\left(L^{\perp} / L,[\phi] ; L_{1} / L, L_{2} / L\right) \oplus\left(L \oplus L^{*},\left(\begin{array}{cc}
0 & 1 \\
\epsilon & \nu
\end{array}\right) ; L, L\right) \cong\left(K, \phi ; L_{1}, L_{2}\right)
$$

(iii) If $1 / 2 \in R$ then for any ϵ-symmetric form $\left(L^{*}, \nu\right)$ over R there is defined an isomorphism of ϵ-symmetric forms over R

$$
\left(\begin{array}{cc}
1 & \nu^{*} / 2 \\
0 & 1
\end{array}\right):\left(L \oplus L^{*},\left(\begin{array}{ll}
0 & 1 \\
\epsilon & \nu
\end{array}\right)\right) \xrightarrow{\cong} H_{\epsilon}(L)=\left(L \oplus L^{*},\left(\begin{array}{ll}
0 & 1 \\
\epsilon & 0
\end{array}\right)\right)
$$

which is the identity on L.
(iv) If $1 / 2 \in R$ then for any ϵ-symmetric formation ($K, \phi ; L_{1}, L_{2}$) over R there exists an ϵ-symmetric automorphism (K, ϕ, A) with $A\left(L_{1}\right)=$ L_{2}.

Remark 4.4. The condition $1 / 2 \in R$ in Proposition 10.3 (iii),(iv) can be dropped for ϵ-symmetric formations ($K, \phi ; L_{1}, L_{2}$) such that

$$
\phi=\psi+\epsilon \psi^{*}: K \rightarrow K^{*}
$$

for some $\psi \in \operatorname{Hom}_{R}\left(K, K^{*}\right)$ such that

$$
\psi\left(x_{j}\right)\left(x_{j}\right) \in\{r-\epsilon \bar{r} \mid r \in R\} \quad\left(x_{j} \in L_{j}, j=1,2\right) .
$$

See Ranicki [46] for the theory of ϵ-quadratic forms and formations.

Definition 4.5. Let R be a ring with involution, $\epsilon= \pm 1$.
(i) The Witt group of ϵ-symmetric forms $L^{0}(R, \epsilon)$ is the abelian group with one generator for each isomorphism class of nonsingular ϵ-symmetric forms (K, ϕ) over R, with relations

$$
\begin{aligned}
& (K, \phi)+\left(K^{\prime}, \phi^{\prime}\right)=\left(K \oplus K^{\prime}, \phi \oplus \phi^{\prime}\right) \\
& (K, \phi)=0 \text { if }(K, \phi) \text { admits a lagrangian. }
\end{aligned}
$$

(ii) The Witt group of ϵ-symmetric formations $L^{1}(R, \epsilon)$ is the abelian group with one generator for each isomorphism class of nonsingular ϵ-symmetric formations ($K, \phi ; L_{1}, L_{2}$) over R, with relations

$$
\begin{aligned}
& \left(K, \phi ; L_{1}, L_{2}\right)+\left(K^{\prime}, \phi^{\prime} ; L_{1}^{\prime}, L_{2}^{\prime}\right)=\left(K \oplus K^{\prime}, \phi \oplus \phi^{\prime} ; L_{1} \oplus L_{1}^{\prime}, L_{2} \oplus L_{2}^{\prime}\right), \\
& \left(K, \phi ; L_{1}, L_{2}\right) \oplus\left(K, \phi ; L_{2}, L_{3}\right)=\left(K, \phi ; L_{1}, L_{3}\right) \\
& \left(K, \phi ; L_{1}, L_{2}\right)=0 \text { if } K=L_{1} \oplus L_{2} .
\end{aligned}
$$

(iii) The ϵ-symmetric automorphism Witt group LAut ${ }^{0}(R, \epsilon)$ is the abelian group with one generator for each isomorphism class of ϵ-symmetric automorphisms (K, ϕ, A) over R, with relations

$$
\begin{aligned}
& (K, \phi, A)+\left(K^{\prime}, \phi^{\prime}, A^{\prime}\right)=\left(K \oplus K^{\prime}, \phi \oplus \phi^{\prime}, A \oplus A^{\prime}\right) \\
& (K, \phi, A)=0 \in L \operatorname{Aut}^{0}(R, \epsilon) \\
& \quad \text { if }(K, \phi) \text { admits a lagrangian } L \text { such that } A(L)=L .
\end{aligned}
$$

Warning 4.6. In general

$$
(K, \phi, A)+(K, \phi, B) \neq(K, \phi, A B)+(K, \phi, 1) \in \operatorname{LAut}^{0}(R, \epsilon)
$$

Remark 4.7. (i) For any ($-\epsilon$)-symmetric form (K, ϕ) over R

$$
\partial(K, \phi)=0 \in L^{1}(R, \epsilon)
$$

since K^{*} is a lagrangian in $H_{\epsilon}(K)$ which is a direct complement to both the lagrangians $K, \Gamma_{(K, \phi)}$.
(ii) For any ϵ-symmetric automorphism (K, ϕ, A) the diagonal lagrangian of ($K \oplus K, \phi \oplus-\phi$)

$$
\Delta_{K}=\{(x, x) \mid x \in K\} \subset K \oplus K
$$

is such that

$$
(A \oplus A)\left(\Delta_{K}\right)=\Delta_{K} \subset K \oplus K
$$

so that

$$
-(K, \phi, A)=(K,-\phi, A) \in \operatorname{LAut}^{0}(R, \epsilon)
$$

(iii) The forgetful map
$L \operatorname{Aut}^{0}(R, \epsilon) \rightarrow L^{1}(R, \epsilon) ;(K, \phi, A) \mapsto\left(K \oplus K, \phi \oplus-\phi ; \Delta_{K},(A \oplus 1) \Delta_{K}\right)$
is onto, with kernel generated by the elements of type

$$
(K, \phi, A)+(K, \phi, B)-(K, \phi, A B)-(K, \phi, 1) \in \operatorname{LAut}^{0}(R, \epsilon) .
$$

4.2. Algebraic surgery.

Definition 4.8. (i) An ϵ-symmetric $n \times n$ matrix form over R is an $n \times n$ matrix $Z \in M_{n}(R)$ such that

$$
Z^{*}=\epsilon Z \in M_{n}(R)
$$

corresponding to the ϵ-symmetric form $\left(R^{n}, Z\right)$. The metabolic ϵ symmetric $2 n \times 2 n$ matrix form over R is

$$
H_{\epsilon}(Z)=\left(\begin{array}{ll}
0 & 1 \\
\epsilon & Z
\end{array}\right)
$$

(ii) An ϵ-symmetric $n \times n$ matrix formation over $R(X, Y, Z)$ is a triple of $n \times n$ matrices $X, Y, Z \in M_{n}(R)$ such that Z is ϵ-symmetric and

$$
\binom{X}{Y}:\left(R^{n}, 0\right) \rightarrow\left(R^{n} \oplus R^{n}, H_{\epsilon}(Z)\right)
$$

is the inclusion of a lagrangian

$$
L=\operatorname{im}\left(\binom{X}{Y}: R^{n} \rightarrow R^{n} \oplus R^{n}\right)
$$

i.e. such that

$$
X^{*} Y+\epsilon Y^{*} X+Y^{*} Z Y=0 \in M_{n}(R)
$$

and the sequence

$$
0 \longrightarrow R^{n} \xrightarrow{\binom{X}{Y}} R^{n} \oplus R^{n} \xrightarrow{\left(\epsilon Y^{*} X^{*}+Y^{*} Z\right)} R^{n} \longrightarrow 0
$$

is exact. Then $\left(R^{n} \oplus R^{n}, H_{\epsilon}\left(R^{n}\right) ; R^{n}, L\right)$ is an ϵ-symmetric formation over R, which is also denoted by (X, Y, Z).
(iii) An isomorphism of ϵ-symmetric $n \times n$ matrix formations over R

$$
(F, G, H):(X, Y, Z) \rightarrow\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)
$$

is given by $F, G, H \in G L_{n}(R)$ such that

$$
H+\epsilon H^{*}+F^{-1} Z\left(F^{*}\right)^{-1}=Z^{\prime} \in M_{n}(R)
$$

Then

$$
\left(\begin{array}{cc}
F & F H \\
0 & \left(F^{*}\right)^{-1}
\end{array}\right):\left(R^{n} \oplus R^{n}, H_{\epsilon}(Z)\right) \rightarrow\left(R^{n} \oplus R^{n}, H_{\epsilon}\left(Z^{\prime}\right)\right)
$$

is an isomorphism of ϵ-symmetric forms sending L to L^{\prime}, i.e. such that the diagram

$$
\begin{gathered}
R^{n} \xrightarrow{G} R^{n} \\
\binom{X}{Y} \left\lvert\, \begin{array}{l}
\downarrow \\
R^{n} \oplus R^{n} \xrightarrow{\left(\begin{array}{cc}
F & F H \\
0 & \left(F^{*}\right)^{-1}
\end{array}\right)} R^{n} \stackrel{\downarrow}{\oplus} R^{n}
\end{array}{ }^{\binom{X^{\prime}}{Y^{\prime}}}\right.
\end{gathered}
$$

commutes.
(iv) A stable isomorphism from an ϵ-symmetric $n \times n$ matrix formation over R to an $n^{\prime} \times n^{\prime}$ matrix formation over R

$$
[F, G, H]:(X, Y, Z) \rightarrow\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)
$$

is an isomorphism of the type

$$
(F, G, H):(X, Y, Z) \oplus\left(0_{n^{\prime}}, I_{n^{\prime}}, 0_{n^{\prime}}\right) \rightarrow\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right) \oplus\left(0_{n}, I_{n}, 0_{n}\right)
$$

(v) The boundary of an ϵ-symmetric $n \times n$ matrix form Z is the $(-\epsilon)$-symmetric $n \times n$ matrix formation

$$
\partial Z=\left(I_{n}, Z, 0\right)
$$

Proposition 4.9. (i) An ϵ-symmetric $n \times n$ matrix formation (X, Y, Z) is stably isomorphic to $(0,0)$ if and only if $Y \in M_{n}(R)$ is invertible. In particular, the boundary $\partial \Phi=(1, \Phi)$ of a matrix form Φ is stably isomorphic to $(0,0)$ if and only if Φ is invertible $\left(=\left(R^{n}, \Phi\right)\right.$ is nonsingular).
(ii) An ϵ-symmetric $n \times n$ matrix formation (X, Y, Z) is isomorphic to the boundary ∂Q of a $(-\epsilon)$-symmetric $n \times n$ matrix form Q if and only if $X \in M_{n}(R)$ is invertible, in which case there is defined an isomorphism

$$
\left(X^{-1}, 1,0\right):(X, Y, Z) \rightarrow \partial X^{*} Y
$$

Definition 4.10. There are three types of algebraic surgery on an ϵ symmetric $n \times n$ matrix formation (X, Y, Z) over R.
(i) (ii) The data (P, Q) for a type II algebraic surgery is an $m \times n$ matrix $P \in M_{m, n}(R)$ together with a $m \times m$ matrix form $Q \in M_{m}(R)$ such that

$$
\begin{aligned}
& P^{*} Z P=Q-\epsilon Q^{*} \in M_{m}(R) \\
& \operatorname{ker}\left(\left(\begin{array}{ll}
Y & P
\end{array}\right): R^{n} \oplus R^{m} \rightarrow R^{n}\right) \cong R^{k}
\end{aligned}
$$

for some $k \geqslant 0$. The effect of the type II algebraic surgery is the ϵ-symmetric $(m+n) \times(m+n)$ matrix formation $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$ with
$X^{\prime}=\left(\begin{array}{cc}X & 0 \\ 0 & I_{m}\end{array}\right), Y^{\prime}=\left(\begin{array}{cc}Y & -\epsilon P \\ P^{*} X & Q\end{array}\right), Z^{\prime}=\left(\begin{array}{cc}Z & 0 \\ 0 & 0\end{array}\right) \in M_{m+n}(R)$.
The trace of the type II algebraic surgery is the $(-\epsilon)$-symmetric $\kappa \times \kappa$ matrix form form over R defined by the

$$
\begin{aligned}
& U=\left(\begin{array}{cc}
0 & \left(X^{*}+Y^{*} Z^{*}\right) P \\
0 & Q
\end{array}\right)=-\epsilon U^{*}: \\
& \operatorname{ker}\left(\left(\begin{array}{ll}
Y & P
\end{array}\right): R^{n} \oplus R^{m} \rightarrow R^{n}\right)=R^{k} \rightarrow\left(R^{k}\right)^{*} \cong R^{k}
\end{aligned}
$$

with the boundary ∂U stably isomorphic to $(X, Y, Z) \oplus\left(-X^{\prime}, Y^{\prime}, Z^{\prime}\right)$.

Proposition 4.11. (i) For any ϵ-symmetric matrix formation (X, Y, Z) there is defined a stable isomorphism

$$
(X, Y, Z) \oplus(Y, X, Z) \rightarrow \partial\left(X^{*} Y\right)
$$

The effect of the algebraic surgery on (X, Y, Z) with data $\left(I_{n}, 0\right)$ and trace $X^{*} Y$ is an ϵ-symmetric matrix formation $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$ with stable isomorphisms

$$
\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right) \rightarrow(-Y, X, ?),(X, Y, Z) \oplus\left(-X^{\prime}, Y^{\prime}, ?\right) \rightarrow \partial\left(X^{*} Y\right)
$$

(ii) Two ϵ-symmetric matrix formations $(X, Y, Z),\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$ are such that $(X, Y, Z)=\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right) \in L^{1}(R, \epsilon)$ if and only if $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$ is stably isomorphic to the effect of a sequence of algebraic surgeries on (X, Y, Z).
(iii) An ϵ-symmetric matrix formation (X, Y, Z) is stably isomorphic to the boundary ∂Q of a $(-\epsilon)$-symmetric form Q, if and only if there exists a type II algebraic surgery on (X, Y, Z) with data (P, Q) such that

$$
Y^{\prime}=\left(\begin{array}{cc}
Y & -\epsilon P^{*} \\
P X & Q
\end{array}\right) \in M_{m+n}(R)
$$

is invertible.

4.3. Triformations.

Definition 4.12. (i) An ϵ-symmetric triformation ($K, \phi ; L_{1}, L_{2}, L_{3}$) over R is a nonsingular ϵ-symmetric form (K, ϕ) over R with three lagrangians $L_{1}, L_{2}, L_{3} \subset K$ such that the R-module

$$
\begin{aligned}
U & =\left\{\left(x_{1}, x_{2}, x_{3}\right) \in L_{1} \oplus L_{2} \oplus L_{3} \mid x_{1}+x_{2}+x_{3}=0 \in K\right\} \\
& =\operatorname{ker}\left(\left(j_{1} j_{2} j_{3}\right): L_{1} \oplus L_{2} \oplus L_{3} \rightarrow K\right)
\end{aligned}
$$

is f.g. free, with $j_{i}: L_{i} \rightarrow K(i=1,2,3)$ the inclusions.
(ii) The union of the triformation is the $(-\epsilon)$-symmetric form over R

$$
U\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)=(U, \psi)
$$

with

$$
\psi: U \rightarrow U^{*} ;\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\left(y_{1}, y_{2}, y_{3}\right) \mapsto \phi\left(j_{1}\left(x_{1}\right)\right)\left(j_{2}\left(y_{2}\right)\right)\right)
$$

Remark 4.13. (i) It follows from

$$
\begin{gathered}
\left(\begin{array}{ccc}
0 & j_{1}^{*} \phi j_{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & -j_{1}^{*} \phi j_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & j_{2}^{*} \phi j_{3} \\
0 & 0 & 0
\end{array}\right) \\
=\left(\begin{array}{ccc}
0 & 0 & 0 \\
-j_{2}^{*} \phi j_{1} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
j_{3}^{*} \phi j_{1} & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -j_{3}^{*} \phi j_{2} & 0
\end{array}\right) \\
: U \rightarrow U^{*}
\end{gathered}
$$

that $\psi^{*}=-\epsilon \psi: U \rightarrow U^{*}$. More directly, for any $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in$ U

$$
\begin{aligned}
& \psi\left(x_{1}, x_{2}, x_{3}\right)\left(y_{1}, y_{2}, y_{3}\right)+\epsilon \psi\left(y_{1}, y_{2}, y_{3}\right)\left(x_{1}, x_{2}, x_{3}\right) \\
& =\phi\left(j_{1}\left(x_{1}\right)\right)\left(j_{2}\left(y_{2}\right)\right)+\epsilon \phi\left(j_{1}\left(y_{1}\right)\right)\left(j_{2}\left(x_{2}\right)\right) \\
& =\phi\left(j_{1}\left(x_{1}\right)\right)\left(j_{2}\left(y_{2}\right)\right)+\phi\left(j_{2}\left(x_{2}\right)\right)\left(j_{1}\left(y_{1}\right)\right) \\
& =\phi\left(j_{1}\left(x_{1}\right)+j_{2}\left(x_{2}\right), j_{1}\left(y_{1}\right)+j_{2}\left(y_{2}\right)\right) \\
& \left.=\phi\left(j_{3}\left(x_{3}\right)\right)\left(j_{3}\left(y_{3}\right)\right)=0 \text { (since } j_{i}^{*} \phi j_{i}=0 \text { for } i=1,2,3\right) .
\end{aligned}
$$

(ii) The union construction of Definition $\sqrt{\boxed{L} .2}$ is a generalization to an arbitrary R of the constructions of Wall [57] and Kashiwara and Shapira [$[20]$ (for $R=\mathbb{Z}$ in the symplectic case $\epsilon=-1$).
(iii) If R is commutative and a principal ideal domain then every submodule of a f.g. free R-module is f.g. free, so that an ϵ-symmetric triformation ($K, \phi ; L_{1}, L_{2}, L_{3}$) over R is a nonsingular ϵ-symmetric form (K, ϕ) over R with three lagrangians $L_{1}, L_{2}, L_{3} \subset K$.

Proposition 4.14. Let $(U, \psi)=U\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)$ be the union of an ϵ-symmetric triformation, as in Definition 4.10.
(i) The R-module isomorphism

$$
\begin{aligned}
& \operatorname{ker}\left(\left(j_{3}^{*} \phi j_{1} j_{3}^{*} \phi j_{2}\right): L_{1} \oplus L_{2} \rightarrow L_{3}^{*}\right) \xrightarrow{\cong} \\
& U=\left(\operatorname{ker}\left(j_{1} j_{2} j_{3}\right): L_{1} \oplus L_{2} \oplus L_{3} \rightarrow K\right) ; \\
& \\
& \quad\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2},-j_{1}\left(x_{1}\right)-j_{2}\left(x_{2}\right)\right)
\end{aligned}
$$

defines an isomorphism of forms

$$
\left(\operatorname{ker}\left(\left(j_{3}^{*} \phi j_{1} j_{3}^{*} \phi j_{2}\right): L_{1} \oplus L_{2} \rightarrow L_{3}^{*}\right),\left(\begin{array}{cc}
0 & j_{1}^{*} \phi j_{2} \\
0 & 0
\end{array}\right)\right) \cong(U, \psi)
$$

If $j_{3}^{*} \phi j_{2}: L_{2} \rightarrow L_{3}^{*}$ is an isomorphism, there is defined an isomorphism of forms

$$
\begin{aligned}
& \binom{1}{-\left(j_{3}^{*} \phi j_{2}\right)^{-1}\left(j_{3}^{*} \phi j_{1}\right)}:\left(L_{1},-\left(j_{1}^{*} \phi j_{2}\right)\left(j_{3}^{*} \phi j_{2}\right)^{-1}\left(j_{3}^{*} \phi j_{1}\right)\right) \\
& \quad \rightarrow\left(\operatorname{ker}\left(\left(j_{3}^{*} \phi j_{1} j_{3}^{*} \phi j_{2}\right): L_{1} \oplus L_{2} \rightarrow L_{3}^{*}\right),\left(\begin{array}{cc}
0 & j_{1}^{*} \phi j_{2} \\
0 & 0
\end{array}\right)\right) .
\end{aligned}
$$

(ii) The radical of (U, ψ) is

$$
\begin{aligned}
(U, \psi)^{\perp}= & \left\{\left(x_{1}, x_{2}, x_{3}\right) \in U \mid \psi\left(x_{1}, x_{2}, x_{3}\right)=0 \in U^{*}\right\} \\
= & \operatorname{ker}\left(\left(j_{1} j_{2}\right): L_{1} \oplus L_{2} \rightarrow K\right)+\operatorname{ker}\left(\left(j_{2} j_{3}\right): L_{2} \oplus L_{3} \rightarrow K\right) \\
& \quad+\operatorname{ker}\left(\left(j_{1} j_{3}\right): L_{1} \oplus L_{3} \rightarrow K\right) \\
= & \left(\operatorname{ker}\left(\left(j_{1} j_{2}\right): L_{1} \oplus L_{2} \rightarrow K\right) \oplus \operatorname{ker}\left(\left(j_{2} j_{3}\right): L_{2} \oplus L_{3} \rightarrow K\right)\right. \\
& \left.\oplus \operatorname{ker}\left(\left(j_{1} j_{3}\right): L_{1} \oplus L_{3} \rightarrow K\right)\right) / \\
& \left.\operatorname{ker}\left(\begin{array}{l}
j_{1}^{*} \phi \\
j_{2}^{*} \phi \\
j_{3}^{*} \phi
\end{array}\right): K \rightarrow L_{1}^{*} \oplus L_{2}^{*} \oplus L_{3}^{*}\right) \\
= & \frac{\left(L_{1} \cap L_{2}\right) \oplus\left(L_{2} \cap L_{3}\right) \oplus\left(L_{3} \cap L_{1}\right)}{L_{1} \cap L_{2} \cap L_{3}} \subseteq U .
\end{aligned}
$$

(iii) If $L_{1}+L_{2}+L_{3}=K$ the form (U, ψ) is nonsingular if and only if L_{1}, L_{2}, L_{3} are pairwise complements in K, if and only if each of

$$
j_{1}^{*} \phi j_{2}: L_{2} \rightarrow L_{1}^{*}, j_{3}^{*} \phi j_{2}: L_{2} \rightarrow L_{3}^{*}, j_{3}^{*} \phi j_{1}: L_{1} \rightarrow L_{3}^{*}
$$

is an isomorphism.

Example 4.15. Let $R=\mathbb{R}, \epsilon=-1$. The lagrangians of the symplectic form $(K, \phi)=H_{-}(\mathbb{R})$ are the 1-dimensional subspaces $L \subset K$, with

$$
\begin{aligned}
& L=L(\theta)=\operatorname{im}(j(\theta)) \subset K(\theta \in \mathbb{R}) \\
& j(\theta)=\binom{\cos \theta}{\sin \theta}: \mathbb{R} \rightarrow K=\mathbb{R} \oplus \mathbb{R} \\
& j(\theta)^{*} \phi=\left(\begin{array}{ll}
-\sin \theta & \cos \theta
\end{array}\right): K=\mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R}
\end{aligned}
$$

For any $\theta_{1}, \theta_{2} \in \mathbb{R}$

$$
j\left(\theta_{2}\right)^{*} \phi j\left(\theta_{1}\right)=\sin \left(\theta_{1}-\theta_{2}\right): \mathbb{R} \rightarrow \mathbb{R}
$$

The following conditions are equivalent:
(1) $L\left(\theta_{1}\right)=L\left(\theta_{2}\right)$,
(2) $\theta_{1}-\theta_{2}=n \pi$ for some $n \in \mathbb{Z}$.
(3) $j\left(\theta_{2}\right)^{*} \phi j\left(\theta_{1}\right)=0$.

For any $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ the union of the symplectic triformation $(K, \phi$; $\left.L\left(\theta_{1}\right), L\left(\theta_{2}\right), L\left(\theta_{3}\right)\right)$ is the symmetric form

$$
(U, \psi)=U\left(K, \phi ; L\left(\theta_{1}\right), L\left(\theta_{2}\right), L\left(\theta_{3}\right)\right)
$$

given by Proposition 4.14 to be such that

$$
\begin{aligned}
& U= \operatorname{ker}\left(\left(\begin{array}{ccc}
\cos \theta_{1} & \cos \theta_{2} & \cos \theta_{3} \\
\sin \theta_{1} & \sin \theta_{2} & \sin \theta_{3}
\end{array}\right): \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R}\right) \\
& \cong \operatorname{ker}\left(\left(\sin \left(\theta_{1}-\theta_{3}\right)\right.\right. \\
&\left.\left.\sin \left(\theta_{2}-\theta_{3}\right)\right): \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R}\right) \\
& \psi: U \rightarrow U^{*} ;\left(x_{1}, x_{2}\right) \mapsto\left(\left(y_{1}, y_{2}\right) \mapsto \sin \left(\theta_{2}-\theta_{1}\right)\left(x_{1}\right)\left(y_{2}\right)\right) \\
& U^{\perp}=\left(\operatorname{ker}\left(\left(\begin{array}{ll}
\cos \theta_{1} & \cos \theta_{2} \\
\sin \theta_{1} & \sin \theta_{2}
\end{array}\right): \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R}\right)\right. \\
& \oplus \operatorname{ker}\left(\left(\begin{array}{ll}
\cos \theta_{2} & \cos \theta_{3} \\
\sin \theta_{2} & \sin \theta_{3}
\end{array}\right): \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R}\right) \\
&\left.\oplus \operatorname{ker}\left(\left(\begin{array}{ll}
\cos \theta_{3} & \cos \theta_{1} \\
\sin \theta_{3} & \sin \theta_{1}
\end{array}\right): \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R}\right)\right) / \\
& \operatorname{ker}\left(\left(\begin{array}{ll}
-\sin \theta_{1} & \cos \theta_{1} \\
-\sin \theta_{2} & \sin \theta_{2} \\
-\sin \theta_{3} & \sin \theta_{3}
\end{array}\right): \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}\right) .
\end{aligned}
$$

Thus
$(U, \psi) \cong \begin{cases}\left(\mathbb{R}, \sin \left(\theta_{1}-\theta_{2}\right) \sin \left(\theta_{2}-\theta_{3}\right) \sin \left(\theta_{3}-\theta_{1}\right)\right) & \text { if } \operatorname{dim}_{\mathbb{R}}(U)=1 \\ (\mathbb{R} \oplus \mathbb{R}, 0) & \text { if } \operatorname{dim}_{\mathbb{R}}(U)=2,\end{cases}$
noting that $\operatorname{dim}_{\mathbb{R}}(U)=2$ if and only if

$$
\sin \left(\theta_{1}-\theta_{2}\right)=\sin \left(\theta_{2}-\theta_{3}\right)=\sin \left(\theta_{3}-\theta_{1}\right)=0
$$

if and only if

$$
L\left(\theta_{1}\right)=L\left(\theta_{2}\right)=L\left(\theta_{3}\right) \subset \mathbb{R}^{2}
$$

Example 4.16. Let N_{1}, N_{2}, N_{3} be three $(k-1)$-connected $(2 k+1)$ dimensional manifolds with the same $(k-1)$-connected $2 k$-dimensional boundary

$$
M=\partial N_{1}=\partial N_{2}=\partial N_{3}
$$

and let

$$
(P, \partial P)=\left(M \times D^{2} \cup \bigcup_{j=1}^{3} N_{j} \times I, \coprod_{j=1}^{3} N_{j} \cup_{M} N_{j+1}\right)\left(N_{4}=N_{1}\right)
$$

be the thickened union, the k-connected $(2 k+2)$-dimensional manifold with boundary constructed in §3. Each of

$$
\begin{aligned}
& K=H_{k}(M), L_{i}=\operatorname{ker}\left(H_{k}(M) \rightarrow H_{k}\left(N_{i}\right)\right)(i=1,2,3), \\
& U=\operatorname{ker}\left(\left(j_{1} j_{2} j_{3}\right): L_{1} \oplus L_{2} \oplus L_{3} \rightarrow K\right)\left(j_{i}=\text { inclusion }\right)
\end{aligned}
$$

is f.g. free, so that there is defined a $(-1)^{k}$-symmetric triformation $\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)$ over \mathbb{Z} with ϕ the intersection form, such that the union $U\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)=(U, \psi)$ is the intersection form on

$$
\begin{aligned}
U=H_{k+1}(P) & =\operatorname{ker}\left(\left(j_{1} j_{2} j_{3}\right): L_{1} \oplus L_{2} \oplus L_{3} \rightarrow K\right) \\
& \cong \operatorname{ker}\left(\left(j_{3}^{*} \phi j_{1} j_{3}^{*} \phi j_{2}\right): L_{1} \oplus L_{2} \rightarrow L_{3}^{*}\right) .
\end{aligned}
$$

4.4. The algebraic mapping torus.

Definition 4.17. (i) An ϵ-symmetric automorphism (K, ϕ, A) determines the inclusion of a lagrangian

$$
j(A)=\binom{1}{A}:(K, 0) \rightarrow(K \oplus K, \phi \oplus-\phi) .
$$

(ii) The mapping torus of an ϵ-symmetric automorphism (K, ϕ, A) over R is the ϵ-symmetric formation over R

$$
\begin{aligned}
T(A) & =(K \oplus K, \phi \oplus-\phi ; j(1)(K), j(A)(K)) \\
& =\left(K \oplus K, \phi \oplus-\phi ; \Delta_{K},(1 \oplus A) \Delta_{K}\right)
\end{aligned}
$$

with $\Delta_{K}=\{(x, x) \mid x \in K\} \subset K \oplus K$.

Proposition 4.18. Let $\left(K, \phi, A_{1}\right),\left(K, \phi, A_{2}\right),\left(K, \phi, A_{3}\right)$ be ϵ-symmetric automorphisms over R.
(i) The isomorphism of ϵ-symmetric forms

$$
1 \oplus A_{1}:(K \oplus K, \phi \oplus-\phi) \rightarrow(K \oplus K, \phi \oplus-\phi)
$$

defines an isomorphism of ϵ-symmetric formations

$$
T\left(A_{2}^{-1} A_{1}\right) \cong\left(K \oplus K, \phi \oplus-\phi ; j\left(A_{1}\right)(K), j\left(A_{2}\right) K\right)
$$

(ii) The R-module morphism

$$
\begin{aligned}
j\left(A_{2}\right)^{*}(\phi \oplus-\phi) j\left(A_{1}\right) & =\left(\begin{array}{ll}
1 & A_{2}^{*}
\end{array}\right)\left(\begin{array}{cc}
\phi & 0 \\
0 & -\phi
\end{array}\right)\binom{1}{A_{1}} \\
& =\phi\left(1-A_{2}^{-1} A_{1}\right): K \rightarrow K^{*}
\end{aligned}
$$

is an isomorphism if and only if $1-A_{2}^{-1} A_{1}: K \rightarrow K$ is an automorphism.
(iii) The union of the ϵ-symmetric triformation

$$
\left(K \oplus K, \phi \oplus-\phi ; j\left(A_{1}\right)(K), j\left(A_{2}\right)(K), j\left(A_{3}\right)(K)\right)
$$

is (isomorphic to) the $(-\epsilon)$-symmetric form
$(U, \psi)=\left(\operatorname{ker}\left(\left(\left(A_{1}-A_{3}\right) \quad\left(A_{2}-A_{3}\right)\right): K \oplus K \rightarrow K\right),\left(\begin{array}{cc}0 & \phi\left(1-A_{2}^{-1} A_{1}\right) \\ 0 & 0\end{array}\right)\right)$.
The union is the trace of an algebraic surgery on $T\left(A_{3}^{-1} A_{1}\right) \oplus T\left(A_{2}^{-1} A_{3}\right)$ with effect $T\left(A_{2}^{-1} A_{1}\right)$, with a stable isomorphism

$$
\partial(U, \psi) \cong T\left(A_{3}^{-1} A_{1}\right) \oplus T\left(A_{2}^{-1} A_{3}\right) \oplus-T\left(A_{2}^{-1} A_{1}\right)
$$

so that

$$
T\left(A_{3}^{-1} A_{1}\right)+T\left(A_{2}^{-1} A_{3}\right)=T\left(A_{2}^{-1} A_{1}\right) \in L^{1}(R, \epsilon)
$$

(iv) If $A_{2}-A_{3}: K \rightarrow K$ is an automorphism the R-module isomorphism

$$
K \stackrel{\cong}{\cong} U ; x \mapsto\left(x,-\left(A_{2}-A_{3}\right)^{-1}\left(A_{1}-A_{3}\right)(x)\right)
$$

defines an isomorphism of forms

$$
(U, \psi) \cong\left(K, \phi\left(1-A_{2}^{-1} A_{1}\right)\left(1-A_{3}^{-1} A_{2}\right)^{-1}\left(1-A_{3}^{-1} A_{1}\right)\right) .
$$

(v) For $A_{3}=A_{1} A_{2}$ there is defined a commutative square
inducing an isomorphism of $(-\epsilon)$-symmetric forms
$(U, \psi) \cong\left(\operatorname{ker}\left(\left(1-A_{2} \quad 1-A_{1}\right): K \oplus K \rightarrow K\right),\left(\begin{array}{cc}0 & -\phi\left(1-A_{2}^{-1} A_{1}\right) \\ 0 & 0\end{array}\right)\right)$.
If $1-A_{1}: K \rightarrow K$ is an automorphism the R-module isomorphism

$$
K \xrightarrow{\cong} U ; x \mapsto\left(x,-\left(A_{2}-A_{1} A_{2}\right)^{-1}\left(A_{1}-A_{1} A_{2}\right)(x)\right)
$$

defines an isomorphism of forms

$$
(U, \psi) \cong\left(K, \phi\left(1-A_{2}^{-1} A_{1}\right)\left(1-A_{2}^{-1} A_{1}^{-1} A_{2}\right)^{-1}\left(1-A_{2}^{-1}\right)\right) .
$$

Proof. (i)-(iv) Apply Proposition 4.14.
(v) Apply (iii)+(iv).

Example 4.19. Let $R=\mathbb{R}, \epsilon=-1$. For $\theta \in \mathbb{R}$ define the rotation automorphism

$$
R(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right):(K, \phi)=H_{-}(\mathbb{R}) \rightarrow(K, \phi)
$$

corresponding to $e^{i \theta}=\cos \theta+i \sin \theta \in \mathbb{C}$, so that $R(\theta)=R\left(\theta^{\prime}\right)$ if and only if $\theta^{\prime}-\theta=2 n \pi$ for some $n \in \mathbb{Z}$. It is immediate from the identities

$$
\begin{aligned}
& e^{-i \theta}=\left(e^{i \theta}\right)^{-1}, e^{i \theta_{1}} e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)} \\
& e^{i \theta_{1}}-e^{i \theta_{2}}=\left(2 \sin \left(\theta_{1}-\theta_{2}\right) / 2\right) e^{i\left(\pi+\theta_{1}+\theta_{2}\right) / 2}
\end{aligned}
$$

that

$$
\begin{aligned}
& R(\theta)^{-1}=R(-\theta), R\left(\theta_{1}\right) R\left(\theta_{2}\right)=R\left(\theta_{1}+\theta_{2}\right) \\
& R\left(\theta_{1}\right)-R\left(\theta_{2}\right)=\left(2 \sin \left(\theta_{1}-\theta_{2}\right) / 2\right) R\left(\left(\pi+\theta_{1}+\theta_{2}\right) / 2\right) \\
& R(\theta)-1=2 \sin \theta / 2 R((\pi+\theta) / 2)
\end{aligned}
$$

As in Proposition 4.18 (iii) for any $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ there is defined a symplectic triformation over \mathbb{R}

$$
\left(K \oplus K, \phi \oplus-\phi ; L\left(\theta_{1}\right), L\left(\theta_{2}\right), L\left(\theta_{3}\right)\right)
$$

with the lagrangian of (K, ϕ)

$$
L\left(\theta_{i}\right)=j\left(R\left(\theta_{i}\right)\right)(K)=\left\{\left(x, R\left(\theta_{i}\right)(x)\right) \mid x \in K\right\}
$$

depending only on $2 \theta_{i} / \pi \in \mathbb{R} / \mathbb{Z}$. The union is the symmetric form over \mathbb{R}

$$
\begin{aligned}
(U, \psi) & =\left(\operatorname { k e r } \left(\left(\left(R\left(\theta_{1}\right)-R\left(\theta_{3}\right)\right) \quad\left(R\left(\theta_{2}\right)-R\left(\theta_{3}\right)\right): K \oplus K \rightarrow K\right)\right.\right. \\
& \left.\left(\begin{array}{cc}
0 & \phi\left(1-R\left(\theta_{2}\right)^{-1} R\left(\theta_{1}\right)\right) \\
0 & 0
\end{array}\right)\right) \\
& \cong\left\{\begin{array}{l}
(K \oplus K, 0) \text { if } R\left(\theta_{1}\right)=R\left(\theta_{2}\right)=R\left(\theta_{3}\right) \\
\left(K, \sin \left(\theta_{1}-\theta_{2}\right) / 2 \sin \left(\theta_{2}-\theta_{3}\right) / 2 \sin \left(\theta_{3}-\theta_{1}\right) / 2\right) \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

If $R\left(\theta_{1}\right)=R\left(\theta_{2}\right)=R\left(\theta_{3}\right)$ then

$$
(U, \psi)=(K \oplus K, 0), \sigma(U, \psi)=0
$$

If $R\left(\theta_{1}\right), R\left(\theta_{2}\right), R\left(\theta_{3}\right)$ are not all the same the \mathbb{R}-module isomorphism

$$
\left.f: K \rightarrow U ; x \mapsto\left(\left(R\left(\theta_{2}\right)-R\left(\theta_{3}\right)\right)(x),\left(R\left(\theta_{3}\right)-R\left(\theta_{1}\right)\right)(x)\right)\right)
$$

defines an isomorphism of symmetric forms over \mathbb{R}

$$
f:\left(K, \sin \left(\theta_{1}-\theta_{2}\right) / 2 \sin \left(\theta_{2}-\theta_{3}\right) / 2 \sin \left(\theta_{3}-\theta_{1}\right) / 2\right) \rightarrow(U, \psi)
$$

so that

$$
\left.\sigma(U, \psi)=2 \operatorname{sgn}\left(\sin \left(\theta_{1}-\theta_{2}\right) / 2 \sin \left(\theta_{2}-\theta_{3}\right) / 2 \sin \left(\theta_{3}-\theta_{1}\right) / 2\right)\right) \in \mathbb{Z}
$$

Proposition 4.20. (i) If (K, ϕ, A) is an ϵ-symmetric automorphism over R there is defined an isomorphism of ϵ-symmetric formations over R

$$
\left(\begin{array}{cc}
0 & \phi \\
-1 & 1
\end{array}\right): T(A) \rightarrow T^{\prime}(A)
$$

with

$$
T^{\prime}(A)=\left(K^{*} \oplus K,\left(\begin{array}{ll}
0 & 1 \\
\epsilon & \phi
\end{array}\right), K^{*}, \operatorname{im}\left(\binom{\phi A}{I-A}: K \rightarrow K^{*} \oplus K\right)\right),
$$

so that

$$
T(A)=T^{\prime}(A) \in L^{1}(R, \epsilon)
$$

(ii) If $1 / 2 \in R$ and $\left(K, \phi ; L_{1}, L_{2}\right)$ is an ϵ-symmetric formation over R there exists an automorphism $A:(K, \phi) \rightarrow(K, \phi)$ such that $A\left(L_{1}\right)=$ L_{2}, and for any such A

$$
T(A)=\left(K, \phi ; L_{1}, L_{2}\right) \in L^{1}(R, \epsilon)
$$

(iii) If $1 / 2 \in R,(K, \phi, A)$ is an ϵ-symmetric automorphism over R and L is a lagrangian of (K, ϕ) then

$$
T(A)=(K, \phi ; L, A(L)) \in L^{1}(R, \epsilon)
$$

Proof. (i) By construction.
(ii) The inclusions $L_{j} \rightarrow K(j=1,2)$ extend to isomorphisms of forms

$$
a_{j}: H_{\epsilon}\left(L_{j}\right) \rightarrow(K, \phi) .
$$

Now L_{1}, L_{2} are f.g. free R-modules with

$$
\operatorname{dim}_{R}\left(L_{1}\right)=\operatorname{dim}_{R}(K) / 2=\operatorname{dim}_{R}\left(L_{2}\right)
$$

so there exists an isomorphism $a_{3}: L_{1} \rightarrow L_{2}$. The automorphism

$$
A=a_{2}\left(\begin{array}{cc}
a_{3} & 0 \\
0 & \left(a_{3}^{*}\right)^{-1}
\end{array}\right)\left(a_{1}\right)^{-1}: \quad(K, \phi) \rightarrow(K, \phi)
$$

is such that $A\left(L_{1}\right)=L_{2}$.
Let L_{3} be a lagrangian of (K, ϕ) which is a direct complement of L_{1},
so that $L_{1} \oplus L_{3}$ is a lagrangian of $(K \oplus K, \phi \oplus-\phi)$ which is a direct complement of Δ_{K}. Then

$$
\begin{aligned}
T(A) & =\left(K \oplus K, \phi \oplus-\phi ; \Delta_{K},(A \oplus 1) \Delta_{K}\right) \\
& =\left(K \oplus K, \phi \oplus-\phi ; L_{1} \oplus L_{3},(A \oplus 1)\left(L_{1} \oplus L_{3}\right)\right) \\
& =\left(K \oplus K, \phi \oplus-\phi ; L_{1} \oplus L_{3}, L_{2} \oplus L_{3}\right) \\
& =\left(K, \phi ; L_{1}, L_{2}\right) \in L^{1}(R, \epsilon)
\end{aligned}
$$

(iii) Immediate from (ii).

Remark 4.21. The condition $1 / 2 \in R$ in Proposition 4.20 (ii) is not necessary, in the sense that for every ϵ-symmetric formation ($K, \phi ; L_{1}, L_{2}$) over any ring with involution R there exists an ϵ-symmetric automorphism ($K^{\prime}, \phi^{\prime}, A^{\prime}$) over R such that

$$
\left(K, \phi ; L_{1}, L_{2}\right)=T\left(A^{\prime}\right) \in L^{1}(R, \epsilon)
$$

by Ranicki [47, Remark 30.29].

Definition 4.22. Let (K, ϕ, A) be an ϵ-symmetric automorphism over R. As in Proposition 4.20 (i) if $K=R^{n}$ the algebraic mapping torus $T(A)$ is isomorphic to the ϵ-symmetric $n \times n$ matrix formation over R (Definition 4.8 (ii))

$$
T^{\prime}(A)=(X, Y, Z)=(\phi A, I-A, \phi) .
$$

Definition 4.23. Let (K, ϕ, A) be an ϵ-symmetric automorphism over R, with $K=R^{n}$. If coker $(I-A)$ is a f.g. free R-module there is ???

Definition 4.24. For ϵ-symmetric automorphisms $\left(K, \phi, A_{1}\right),\left(K, \phi, A_{2}\right)$ the canonical algebraic surgery on

$$
T^{\prime}\left(A_{1}\right) \oplus-T^{\prime}\left(A_{2}\right)=\left(\phi A_{1}, I-A_{1}, \phi\right) \oplus\left(-\phi A_{2}, I-A_{2},-\phi\right)
$$

has data, effect $T^{\prime}\left(A_{1} A_{2}\right)$ and trace (4.20 (vi))

$$
(P, Q)=? ?
$$

4.5. The Laurent polynomial extension.

Definition 4.25. (i) The Laurent polynomial extension $R\left[z, z^{-1}\right]$ of a ring with involution R is the ring of finite polynomials

$$
p(z)=\sum_{j=-N}^{N} a_{j} z^{j}\left(a_{j} \in R, N \geqslant 0\right)
$$

with involution by $\bar{z}=z^{-1}$, that is

$$
\overline{p(z)}=\sum_{j=-N}^{N} a_{j} z^{-j} \in R\left[z, z^{-1}\right]
$$

(ii) Let K, L be f.g. free R-modules. An $R\left[z, z^{-1}\right]$-module morphism $f: K\left[z, z^{-1}\right] \rightarrow L\left[z, z^{-1}\right]$ is Fredholm if f is injective and $\operatorname{coker}(f)$ is a f.g. free R-module.

Example 4.26. For any automorphism $A: K \rightarrow K$ of a f.g. free R-module the $R\left[z, z^{-1}\right]$-module morphism

$$
1-z A: K\left[z, z^{-1}\right] \rightarrow K\left[z, z^{-1}\right]
$$

is Fredholm, with

$$
\operatorname{coker}(1-z A) \rightarrow K ; \sum_{j=-\infty}^{\infty} z^{j} x_{j} \mapsto \sum_{j=-\infty}^{\infty} A^{-j}\left(x_{j}\right)
$$

an R-module isomorphism.

Definition 4.27. For an integral domain R let $R(z)$ be the quotient field of $R\left[z, z^{-1}\right]$, the localization of $R\left[z, z^{-1}\right]$ inverting all the polynomials $p(z) \neq 0 \in R\left[z, z^{-1}\right]$.

Proposition 4.28. Let R be an integral domain, and let $f: K\left[z, z^{-1}\right] \rightarrow$ $L\left[z, z^{-1}\right]$ be an $R\left[z, z^{-1}\right]$-module morphism, with K, L f.g. free R modules, and let

$$
p(z)=\operatorname{det}(f) \in R\left[z, z^{-1}\right]
$$

for any bases of K, L.
(i) The following conditions on f are equivalent:
(a) f is Fredholm,
(b) $p(z)=\sum_{j=M}^{N} a_{j} z^{j} \in R\left[z, z^{-1}\right]$ with $a_{M}, a_{N} \in R$ units and $M<N$,
(c) the induced $R(z)$-module morphism
$1 \otimes f: R(z) \otimes_{R\left[z, z^{-1}\right]} K\left[z, z^{-1}\right] \rightarrow R(z) \otimes_{R\left[z, z^{-1}\right]} L\left[z, z^{-1}\right]$
is an isomorphism.
(ii) If R is a field then f is Fredholm if and only if $p(z) \in R\left[z, z^{-1}\right]$ is not constant.

Proof. See Ranicki [47].
Definition 4.29. (i) An ϵ-symmetric form ($K\left[z, z^{-1}\right], \phi$) over $R\left[z, z^{-1}\right]$ is nondegenerate if the $R\left[z, z^{-1}\right]$-module morphism

$$
\phi: K\left[z, z^{-1}\right] \rightarrow K^{*}\left[z, z^{-1}\right]
$$

is Fredholm.
(ii) The boundary of a nondegenerate ϵ-symmetric form ($\left.K\left[z, z^{-1}\right], \phi\right)$ over $R\left[z, z^{-1}\right]$ is the nonsingular $(-\epsilon)$-symmetric form $(\partial K, \partial \phi)$ over R

$$
\begin{aligned}
& \partial K=\operatorname{coker}\left(\phi: K\left[z, z^{-1}\right] \rightarrow K^{*}\left[z, z^{-1}\right]\right) \\
& \partial \phi: \partial K \times \partial K \rightarrow R ;(x, y) \mapsto y\left(\phi^{-1}(x)\right)_{-1}
\end{aligned}
$$

with the automorphism

$$
A:(\partial K, \partial \phi) \rightarrow(\partial K, \partial \phi) ; x \mapsto z x .
$$

Proposition 4.30. (Ranicki [47]) Let R be an integral domain with involution.
(i) Every nonsingular ϵ-symmetric form over $R(z)$ is isomorphic to $R(z) \otimes_{R\left[z, z^{-1]}\right.}\left(K\left[z, z^{-1}\right], \phi\right)$ for some nondegenerate ϵ-symmetric form ($K\left[z, z^{-1}\right], \phi$) over $R\left[z, z^{-1}\right]$.
(ii) There is defined a long exact sequence

$$
\begin{aligned}
& \ldots \longrightarrow L^{0}\left(R\left[z, z^{-1}\right], \epsilon\right) \longrightarrow L^{0}(R(z), \epsilon) \xrightarrow{\partial} \\
& \operatorname{LAut}^{0}(R,-\epsilon) \xrightarrow{T} L^{1}\left(R\left[z, z^{-1}\right],-\epsilon\right) \longrightarrow L^{1}(R(z),-\epsilon) \longrightarrow \ldots
\end{aligned}
$$

with $L^{1}(R(z),-\epsilon)=0$ and

$$
\begin{aligned}
T: \operatorname{LAut}^{0}(R, \epsilon) \rightarrow & L^{1}\left(R\left[z, z^{-1}\right], \epsilon\right) ; \\
(K, \phi, A) \mapsto & \mapsto\left(z A:(K, \phi)\left[z, z^{-1}\right] \rightarrow(K, \phi)\left[z, z^{-1}\right]\right), \\
\partial: \quad L^{0}(R(z), \epsilon) \rightarrow & L \operatorname{Aut}^{0}(R,-\epsilon) ; \\
& R(z) \otimes_{R\left[z, z^{-1}\right]}\left(K\left[z, z^{-1}\right], \phi\right) \mapsto(\partial K, \partial \phi, A) .
\end{aligned}
$$

(iii) If R is a field then

$$
\begin{aligned}
& L^{1}(R, \epsilon)=0, \\
& L^{0}\left(R\left[z, z^{-1}\right], \epsilon\right)=L^{0}(R, \epsilon) \oplus L^{1}(R,-\epsilon)=L^{0}(R, \epsilon), \\
& L^{1}\left(R\left[z, z^{-1}\right], \epsilon\right)=L^{1}(R, \epsilon) \oplus L^{0}(R, \epsilon)=L^{0}(R, \epsilon) .
\end{aligned}
$$

(iii) If R is a field of characteristic of $\neq 2$ there is defined a long exact sequence

$$
\begin{aligned}
0 \longrightarrow & L^{0}(R, \epsilon) \longrightarrow
\end{aligned} L^{0}(R(z), \epsilon) \xrightarrow{\partial}, ~ L \operatorname{Aut}^{0}(R,-\epsilon) \xrightarrow{T} L^{0}(R,-\epsilon) \longrightarrow 0
$$

with

$$
L^{0}\left(R\left[z, z^{-1}\right], \epsilon\right)=L^{0}(R, \epsilon), L^{1}\left(R\left[z, z^{-1}\right],-\epsilon\right)=L^{0}(R,-\epsilon)
$$

5. Signatures

5.1. The triple signature in algebra. The Witt class of a symmetric form (K, ϕ) over \mathbb{R} is the signature of the nonsingular symmetric form $\left(K / K^{\perp},[\phi]\right)$

$$
\sigma(K, \phi)=\sigma\left(K / K^{\perp},[\phi]\right) \in L^{0}(\mathbb{R})=\mathbb{Z}
$$

If L is a sublagrangian of (K, ϕ) then

$$
(K, \phi)=\left(L^{\perp} / L,[\phi]\right) \in L^{0}(\mathbb{R})=\mathbb{Z}
$$

Definition 5.1. Let ($K, \phi ; L_{1}, L_{2}, L_{3}$) be a symplectic triformation over \mathbb{R}, as defined by a nonsingular symplectic form (K, ϕ) over \mathbb{R} and the inclusions of three lagrangians

$$
j_{i}:\left(L_{i}, 0\right) \rightarrow(K, \phi)(i=1,2,3) .
$$

(i) (Wall [57]) The Wall nonadditivity invariant of ($K, \phi ; L_{1}, L_{2}, L_{3}$) is the signature

$$
\sigma^{W}\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)=\sigma\left(U\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)\right) \in \mathbb{Z}
$$

of the union symmetric form over $\mathbb{R}\left(\mathbb{L}, \mathrm{I}_{2}\right)$

$$
\begin{aligned}
& U\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)=(U, \psi) \\
& =\left(\operatorname{ker}\left(\left(j_{1} j_{2} j_{3}\right): L_{1} \oplus L_{2} \oplus L_{3} \rightarrow K\right),\left(\begin{array}{ccc}
0 & j_{1}^{*} \phi j_{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right)
\end{aligned}
$$

(ii) (Kashiwara and Shapira [[20, p.486]) The Maslov index of (K, ϕ; $\left.L_{1}, L_{2}, L_{3}\right)$ is the signature

$$
\sigma^{M}\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)=\sigma\left(L_{1} \oplus L_{2} \oplus L_{3}, \Phi_{123}\right) \in \mathbb{Z}
$$

of the symmetric form $\left(L_{1} \oplus L_{2} \oplus L_{3}, \Phi_{123}\right)$ over \mathbb{R} defined by
$\Phi_{123}=\left(\begin{array}{ccc}0 & j_{1}^{*} \phi j_{2} & j_{1}^{*} \phi j_{3} \\ -j_{2}^{*} \phi j_{1} & 0 & j_{2}^{*} \phi j_{3} \\ -j_{3}^{*} \phi j_{1} & -j_{3}^{*} \phi j_{2} & 0\end{array}\right): L_{1} \oplus L_{2} \oplus L_{3} \rightarrow L_{1}^{*} \oplus L_{2}^{*} \oplus L_{3}^{*}$.

Proposition 5.2. $\sigma^{W}\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)=\sigma^{M}\left(K, \phi ; L_{1}, L_{2}, L_{3}\right) \in \mathbb{Z}$.

Proof. The sublagrangian $L_{1} \subset L_{1} \oplus L_{2} \oplus L_{3}$ of $\left(L_{1} \oplus L_{2} \oplus L_{3}, \Phi_{123}\right)$ is such that the linear map

$$
U \rightarrow L_{1} \oplus L_{2} \oplus L_{3} ;\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(0, x_{2}, x_{3}\right) / \sqrt{2}
$$

induces an isomorphism of symmetric forms over \mathbb{R}

$$
(U, \psi) \cong\left(L_{1}^{\perp} / L_{1},\left[\Phi_{123}\right]\right)
$$

so that

$$
\begin{aligned}
\sigma^{M}\left(K, \phi ; L_{1}, L_{2}, L_{3}\right) & =\sigma\left(L_{1} \oplus L_{2} \oplus L_{3}, \Phi_{123}\right) \\
& =\sigma\left(L_{1}^{\perp} / L_{1},\left[\Phi_{123}\right]\right)=\sigma(U, \psi) \\
& =\sigma^{W}\left(K, \phi ; L_{1}, L_{2}, L_{3}\right) \in \mathbb{Z}
\end{aligned}
$$

Definition 5.3. The triple signature of a symplectic triformation $\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)$ over \mathbb{R} is the signature of the union symmetric form over \mathbb{R}

$$
\begin{aligned}
\sigma\left(K, \phi ; L_{1}, L_{2}, L_{3}\right) & =\sigma\left(U\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)\right) \\
& =\sigma^{W}\left(K, \phi ; L_{1}, L_{2}, L_{3}\right) \\
& =\sigma^{M}\left(K, \phi ; L_{1}, L_{2}, L_{3}\right) \in \mathbb{Z} .
\end{aligned}
$$

Definition 5.4. Let $(K, \phi)=H_{-}(\mathbb{R})$.
(i) The triple signature of $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ is the triple signature 5.3

$$
\sigma\left(\theta_{1}, \theta_{2}, \theta_{2}\right)=\sigma\left(K, \phi ; L\left(\theta_{1}\right), L\left(\theta_{2}\right), L\left(\theta_{3}\right)\right) \in \mathbb{Z}
$$

of the symplectic triformation $\left(K, \phi ; L\left(\theta_{1}\right), L\left(\theta_{2}\right), L\left(\theta_{3}\right)\right)$, with $L\left(\theta_{i}\right) \subset$ K the lagrangians of (K, ϕ) given (as in Example 4.15) by

$$
L\left(\theta_{i}\right)=\operatorname{im}\left(\binom{\cos \theta_{i}}{\sin \theta_{i}}: \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R}\right)
$$

is the signature of the symplectic triformation over \mathbb{R}

$$
\left(K \oplus K, \phi \oplus-\phi ; j\left(R\left(\theta_{1}\right)\right)(K), j\left(R\left(\theta_{2}\right)\right)(K), j\left(R\left(\theta_{3}\right)\right)(K)\right)
$$

given (as in Example 4.15) by the images of the diagonal lagrangian $\Delta \subset K \oplus K$ of $(K \oplus K, \phi \oplus-\phi)$ under the automorphisms

$$
j\left(R\left(\theta_{i}\right)\right)=\binom{1}{R\left(\theta_{i}\right)}:(K, 0) \rightarrow(K \oplus K, \phi \oplus-\phi)(i=1,2,3)
$$

Proposition 5.5. (i) The triple signature of $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ is

$$
\begin{aligned}
\sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right) & =\sigma\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) ;\binom{\cos \theta_{1}}{\sin \theta_{1}},\binom{\cos \theta_{2}}{\sin \theta_{2}},\binom{\cos \theta_{3}}{\sin \theta_{3}}\right) \\
& =\operatorname{sgn}\left(\sin \left(\theta_{2}-\theta_{1}\right) \sin \left(\theta_{3}-\theta_{2}\right) \sin \left(\theta_{1}-\theta_{3}\right)\right) \\
& =-\operatorname{sgn}\left(\sin 2\left(\theta_{2}-\theta_{1}\right)+\sin 2\left(\theta_{3}-\theta_{2}\right)+\sin 2\left(\theta_{1}-\theta_{3}\right)\right) \\
& =2\left(\left(\left(\left(\theta_{2}-\theta_{1}\right) / \pi\right)\right)+\left(\left(\left(\theta_{3}-\theta_{2}\right) / \pi\right)\right)+\left(\left(\left(\theta_{1}-\theta_{3}\right) / \pi\right)\right)\right) \\
& =v_{2}^{\prime}\left(e^{2 i\left(\theta_{2}-\theta_{1}\right)}, e^{2 i\left(\theta_{3}-\theta_{2}\right)}\right)\left(v_{2}^{\prime}\right. \text { as in Example [2.6) } \\
& = \begin{cases}-\epsilon(i j k) \in\{ \pm 1\} & \text { if }\left\{\theta_{i} / 2 \pi\right\}<\left\{\theta_{j} / 2 \pi\right\}<\left\{\theta_{k} / 2 \pi\right\} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

with $\epsilon(i j k)$ the sign of the permutation $(123) \rightarrow(i j k)$.
(ii) The signature cocycle v_{2}^{\prime} of Example [.6 representing $v_{2}^{\prime}=2[u] \in$ $H^{1}\left(S^{1 \delta} ; \mathbb{Z}\right)$ is expressed in terms of the triple signature by

$$
\begin{aligned}
& v_{2}^{\prime}: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto \sigma(0, \pi x, \pi(x+y)) \\
& =\sigma\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) ;\binom{1}{0} \mathbb{R},\binom{\cos \pi x}{\sin \pi x} \mathbb{R},\binom{\cos \pi(x+y)}{\sin \pi(x+y)} \mathbb{R}\right) \\
& =-\operatorname{sign}(\sin \pi x \sin \pi y \sin \pi(x+y)) \\
& =2(((x))+((y))-((x+y))) .
\end{aligned}
$$

(iii) The mapping torus triple signature of $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ is expressed in terms of the triple signature by

$$
\begin{aligned}
& \sigma\left(K \oplus K, \phi \oplus-\phi ; j\left(R\left(\theta_{1}\right)\right)(K), j\left(R\left(\theta_{2}\right)\right)(K), j\left(R\left(\theta_{3}\right)\right)(K)\right) \\
& =2 \sigma\left(\theta_{1} / 2, \theta_{2} / 2, \theta_{3} / 2\right) \\
& =-2 \operatorname{sgn}\left(\sin \left(\theta_{2}-\theta_{1}\right) / 2 \sin \left(\theta_{3}-\theta_{2}\right) / 2 \sin \left(\theta_{1}-\theta_{3}\right) / 2\right) \in \mathbb{Z} .
\end{aligned}
$$

(iv) The triple signature determines the mapping torus signature cocycle

$$
\begin{aligned}
& 2 \sigma=-2 v_{2}^{\prime}: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto \\
& \sigma(K \oplus K, \phi \oplus-\phi ; j(R(0))(K), j(R(2 \pi x))(K), j(R(2 \pi(x+y)))(K)) \\
& \quad=2 \operatorname{sgn}(\sin \pi x \sin \pi y \sin \pi(x+y))
\end{aligned}
$$

with cohomology class

$$
[2 \sigma]=-4[u] \in H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)
$$

Proof. (i) As in Definition 5.]

$$
\sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\sigma\left(\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}, \Phi_{123}\right) \in \mathbb{Z}
$$

The symmetric matrix

$$
\Phi_{123}=\left(\begin{array}{ccc}
0 & \sin \left(\theta_{2}-\theta_{1}\right) & -\sin \left(\theta_{1}-\theta_{3}\right) \\
\sin \left(\theta_{2}-\theta_{1}\right) & 0 & \sin \left(\theta_{3}-\theta_{2}\right) \\
-\sin \left(\theta_{1}-\theta_{3}\right) & \sin \left(\theta_{3}-\theta_{2}\right) & 0
\end{array}\right)
$$

has principal minors

$$
0,-\sin ^{2}\left(\theta_{2}-\theta_{1}\right),-2 \sin \left(\theta_{2}-\theta_{1}\right) \sin \left(\theta_{3}-\theta_{2}\right) \sin \left(\theta_{1}-\theta_{3}\right)
$$

and the signature is

$$
\begin{aligned}
& \sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \\
& =3-2 \text { variation of } \operatorname{signs}\left(1,0,-\sin ^{2}\left(\theta_{2}-\theta_{1}\right)\right. \\
& \left.\qquad-2 \sin \left(\theta_{2}-\theta_{1}\right) \sin \left(\theta_{3}-\theta_{2}\right) \sin \left(\theta_{1}-\theta_{3}\right)\right) \\
& = \begin{cases}\operatorname{sgn}\left(\sin \left(\theta_{2}-\theta_{1}\right) \sin \left(\theta_{3}-\theta_{2}\right) \sin \left(\theta_{1}-\theta_{3}\right)\right) & \text { if } \sin \left(\theta_{2}-\theta_{1}\right) \neq 0 \\
0 & \text { if } \sin \left(\theta_{2}-\theta_{1}\right)=0\end{cases}
\end{aligned}
$$

The other expressions are immediate from the identity

$$
\begin{aligned}
& \sin \left(\theta_{2}-\theta_{1}\right) \sin \left(\theta_{3}-\theta_{2}\right) \sin \left(\theta_{1}-\theta_{3}\right) \\
& \quad=-\left(\sin 2\left(\theta_{2}-\theta_{1}\right)+\sin 2\left(\theta_{3}-\theta_{2}\right)+\sin 2\left(\theta_{1}-\theta_{3}\right)\right) / 4
\end{aligned}
$$

(ii) By Proposition 2.5 (i) the function

$$
\epsilon: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto 2(((x))+((y))-((x+y)))
$$

is a cocycle representing $2[u] \in H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)$. The group morphism

$$
2: S^{1 \delta} \rightarrow S^{1 \delta} ; e^{i \theta} \mapsto e^{2 i \theta}
$$

induces

$$
2^{*}=2: H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right) \rightarrow H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)
$$

so that
$\sigma=2^{*} \epsilon: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto 2(((2 x))+((2 y))-((2(x+y))))$
is a cocycle representing $4[u] \in H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)$.
(iii) By Example 4.19.
(iv) By Example [2.6]

Summary: the image of $1 \in H^{2}\left(B S^{1} ; \mathbb{Z}\right)=\mathbb{Z}$ is the cohomology class $[u] \in H^{2}\left(B S^{1 \delta} ; \mathbb{Z}\right)$ represented by the cocycle

$$
u: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto\{x\}+\{y\}-\{x+y\}
$$

The area cocycle

$$
\epsilon: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto-\operatorname{sgn}(\sin \pi x \sin \pi y \sin \pi(x+y))
$$

represents

$$
[\epsilon]=2[u] \in H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)
$$

The mapping torus signature cocycle

$$
\sigma: S^{1 \delta} \times S^{1 \delta} \rightarrow \mathbb{Z} ;\left(e^{2 \pi i x}, e^{2 \pi i y}\right) \mapsto 2 \operatorname{sgn}(\sin \pi x \sin \pi y \sin \pi(x+y))
$$

represents

$$
[\sigma]=-4[u] \in H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)
$$

5.2. The triple signature in topology. The signature of $4 k$-dimensional manifold with boundary $(W, \partial W)$ is the signature of the symmetric intersection form ϕ_{W} on $H^{2 k}(W, \partial W ; \mathbb{R})$

$$
\sigma(W)=\sigma\left(H^{2 k}(W, \partial W ; \mathbb{R}), \phi_{W}\right) \in \mathbb{Z}
$$

Novikov [40] proved that if $\left(W_{1}, \partial W_{1}\right),\left(W_{2}, \partial W_{2}\right)$ are cobordisms with $\partial W_{1}=-\partial W_{2}$ then

$$
\sigma\left(W_{1} \cup_{\partial} W_{2}\right)=\sigma\left(W_{1}\right)+\sigma\left(W_{2}\right) \in \mathbb{Z}
$$

Definition 5.6. (i) The signature of a $4 k$-dimensional relative cobor$\operatorname{dism}\left(W ; N_{1}, N_{2} ; M\right)$ is

$$
\sigma\left(W ; N_{1}, N_{2} ; M\right)=\sigma(W) \in \mathbb{Z}
$$

(ii) The triple signature of a closed $(4 k-2)$-dimensional manifold M with three null-cobordisms N_{1}, N_{2}, N_{3} is

$$
\sigma\left(M ; N_{1}, N_{2}, N_{3}\right)=\sigma\left(K, \phi ; L_{1}, L_{2}, L_{3}\right) \in \mathbb{Z}
$$

with $(K, \phi)=\left(H_{2 k-1}(M ; \mathbb{R}), \phi_{M}\right)$ the nonsingular intersection symplectic form over \mathbb{R}, and $L_{j}=\operatorname{ker}\left(H_{2 k-1}(M ; \mathbb{R}) \rightarrow H_{2 k-1}\left(N_{j} ; \mathbb{R}\right)\right)$ the three lagrangians.

Proposition 5.7. (Wall [57]) The signature of a union of $4 k$-dimensional relative cobordisms is

$$
\begin{aligned}
& \sigma\left(\left(W ; N_{1}, N_{2} ; M\right) \cup\left(W^{\prime} ; N_{2}, N_{3} ; M\right)\right) \\
& =\sigma\left(W ; N_{1}, N_{2} ; M\right)+\sigma\left(W^{\prime} ; N_{2}, N_{3} ; M\right)+\sigma\left(M ; N_{1}, N_{2}, N_{3}\right) \in \mathbb{Z}
\end{aligned}
$$

If $\left(W^{4 k}, \partial W\right)$ is a $4 k$-dimensional manifold with boundary and $M^{4 k-2} \subset$ $W \backslash \partial W$ is a codimension 2 framed submanifold with $\delta(p)=0 \in H^{2}(W, M)$ then for any codimension 1 framed submanifold $N^{4 k-1} \subset W \backslash \partial W$ the $4 k$-dimensional manifold with boundary

$$
\left(W^{\prime}, \partial W^{\prime}\right)=\left(P \cup_{\partial P} N \times S^{1}, \partial W\right)
$$

is cobordant rel ∂ to $(W, \partial W)$ and

$$
\sigma(W)=\sigma\left(W^{\prime}\right) \in \mathbb{Z}
$$

Remark 5.8. For $R=\mathbb{R}$ there is defined a split exact sequence

$$
\begin{aligned}
0 \longrightarrow L^{0}(\mathbb{R})=\mathbb{Z} \longrightarrow & L^{0}(\mathbb{R}(z))=\bigoplus_{\infty} \mathbb{Z} \xrightarrow{\partial} \\
& L \operatorname{Aut}^{0}(\mathbb{R},-1)=\bigoplus_{\infty-1} \mathbb{Z} \longrightarrow 0
\end{aligned}
$$

Let ($W^{4 k}, \partial W$) be a $4 k$-dimensional manifold with boundary, and let $\left(M^{4 k-2}, \partial M\right) \subset(W, \partial W)$ be a codimension 2 framed submanifold with neighbourhood

$$
\left(M^{4 k-2}, \partial M\right) \times D^{2} \subset(W, \partial W)
$$

The projection $M \times S^{1} \rightarrow S^{1}$ extends on the exterior

$$
(P, \partial P)=\left(\operatorname{cl} .\left(W \backslash M \times D^{2}\right), M \times S^{1} \cup \operatorname{cl} .\left(\partial W \backslash \partial M \times D^{2}\right)\right)
$$

to a map $(p, \partial p):(P, \partial P) \rightarrow S^{1}$. Let $\bar{P}=p^{*} \mathbb{R}$ be the pullback infinite cyclic cover of P, with generating covering translation $\zeta: \bar{P} \rightarrow \bar{P}$. If $\overline{\partial P}=(\partial p)^{*} \mathbb{R}$ of ∂P has finite-dimensional homology $H_{*}(\overline{\partial P} ; \mathbb{R})$ there is defined an element

$$
\sigma^{*}(P, p) \in L^{0}(\mathbb{R}(z))
$$

with images

$$
\begin{aligned}
& \sigma(P)=\sigma(W) \in L^{0}(\mathbb{R})=\mathbb{Z} \\
& \partial \sigma^{*}(P, p)=\left(H_{2 k-1}(\overline{\partial P} ; \mathbb{R}), \zeta \mid\right) \in \operatorname{LAut}^{0}(\mathbb{R},-1)
\end{aligned}
$$

Three important special cases:
(i) If $W=D^{4 k}$ and

$$
\partial M=S^{4 k-3} \subset \partial W=S^{4 k-1}
$$

is a knot with $M^{4 k-2} \subset W$ a pushed in Seifert surface, then $\sigma_{*}(P, p) \in$ $L^{0}(\mathbb{R}(z))$ is the high-dimensional knot cobordism class.
(ii) If

$$
\partial M=\emptyset, \partial W=\emptyset
$$

then $\partial P=M \times S^{1}$ and

$$
\partial \sigma^{*}(P, p)=\left(H_{2 k-1}(M ; \mathbb{R}), 1\right)=0 \in L \operatorname{Aut}^{0}(\mathbb{R},-1)
$$

(iii) Let M be a closed $(4 k-2)$-dimensional manifold. The double mapping torus (Definiton [J]2 (i)) of automorphisms $A, B: M \rightarrow M$ is a $4 k$-dimensional manifold

$$
T(A, B)=M \times I \times I \cup M \times I \times I \cup M \times I \times I
$$

with boundary

$$
\partial T(A, B)=T(A) \sqcup T(B) \sqcup T(A B)
$$

Let

$$
(P(A, B), \partial P(A, B))=\left(\operatorname{cl} .\left(T(A, B) \backslash M \times D^{2}\right), M \times S^{1} \cup \partial T(A, B)\right)
$$ be the exterior of the codimension 2 framed submanifold $M \times D^{2} \subset$ $T(A, B)$. The projection $M \times S^{1} \rightarrow S^{1}$ extends to $(P(A, B), \partial P(A, B)) \rightarrow$ S^{1} and

$$
\begin{aligned}
& \sigma(P(A, B))=\sigma(T(A, B)) \\
& =\text { triple signature } \sigma(M \cup M ; M \times I, M \times I, M \times I) \in L^{0}(\mathbb{R})=\mathbb{Z}, \\
& \partial \sigma^{*}(P(A, B), p) \\
& =(M, A) \oplus(M, B) \oplus(M,-A B) \oplus(M,-1) \in \operatorname{LAut}^{0}(\mathbb{R},-1)
\end{aligned}
$$

Proposition 5.9. Given ϵ-symmetric automorphisms $(K, \phi, A),(K, \phi, B)$

 there is an algebraic surgery on $T(z A) \oplus T(z B)$ over $R\left[z, z^{-1}\right]$ with effect $T\left(z^{2} A B\right)$. The trace is the nondegenerate $(-\epsilon)$-symmetric form over $R\left[z, z^{-1}\right]$$$
\begin{aligned}
& T_{z}(A, B) \\
& =\left(\operatorname{ker}\left(\left((I-A z I-B z): K\left[z, z^{-1}\right] \oplus K\left[z, z^{-1}\right] \rightarrow K\left[z, z^{-1}\right]\right), \phi_{A, B}\right)\right. \\
& \phi_{A, B}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\phi\left(x_{1}, y_{2}\right)
\end{aligned}
$$

with a stable isomorphism

$$
\partial T_{z}(A, B) \cong T(z A) \oplus T(z B) \oplus-T\left(z^{2} A B\right)
$$

so that

$$
\begin{aligned}
& (K, \phi, A)+(K, \phi, B)-(K, \phi, A B)-(K, \phi, 1)=\partial T_{z}(A, B)-\partial T_{z}(A B, 1) \\
& \quad \in \operatorname{im}\left(\partial: L^{0}(R(z),-\epsilon) \rightarrow L \operatorname{Aut}^{0}(R, \epsilon)\right) \\
& \quad=\operatorname{ker}\left(T: L \operatorname{Aut}^{0}(R, \epsilon) \rightarrow L^{1}\left(R\left[z, z^{-1}\right], \epsilon\right)\right) .
\end{aligned}
$$

Proof. ???
Definition 5.10. The double algebraic mapping torus $T(A, B)$ of ϵ-symmetric automorphisms $(K, \phi, A),(K, \phi, B)$ is the trace of the algebraic surgery on $T(A) \oplus T(B)$ with effect $T(A B)$, i.e. the nondegenerate $(-\epsilon)$-symmetric form over R

$$
\begin{aligned}
& T(A, B)=\left(\operatorname{ker}\left(((I-A I-B): K \oplus K \rightarrow K), \phi_{A, B}\right)\right. \\
& \phi_{A, B}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\phi\left(x_{1}, y_{2}\right)
\end{aligned}
$$

(assuming $\operatorname{ker}((I-A)(I-B))$ is a f.g. free R-module) with a stable isomorphism

$$
\partial T(A, B) \cong T(A) \oplus T(B) \oplus-T(A B)
$$

Definition 5.11. (Meyer [32]) Let $R=\mathbb{R},(K, \phi)=H_{-}\left(\mathbb{R}^{g}\right)$, so that $\operatorname{Aut}_{\mathbb{R}}(K, \phi)=\operatorname{Sp}(2 g, \mathbb{R})$ is the discrete symplectic group. The Meyer cocycle is given by

$$
\tau: \operatorname{Sp}(2 g, \mathbb{R}) \times \operatorname{Sp}(2 g, \mathbb{R}) \rightarrow \mathbb{Z} ;(A, B) \mapsto \sigma\left(T\left(A, B^{-1}\right)\right)
$$

with

$$
\begin{gathered}
\tau(A, B)=\sigma\left(\left\{(x, y) \in \mathbb{R}^{2 g} \oplus \mathbb{R}^{2 g} \mid\left(A^{-1}-1\right)(x)+(B-1)(y)=0\right\}\right. \\
\left.\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \mapsto \phi\left(x_{1}+y_{2},(B-1)\left(y_{2}\right)\right)\right)
\end{gathered}
$$

Proposition 5.12. The Meyer cocycle satisfies

$$
\begin{aligned}
& \tau(x, y)=\tau(y, z)=\tau(z, x)(\text { if } x y z=1) \\
& \tau(x, 1)=\tau\left(x, x^{-1}\right)=0 \\
& \tau(x, y)=\tau(y, x) \\
& \tau\left(x^{-1}, y^{-1}\right)=-\tau(x, y) \\
& \tau\left(w x w^{-1}, w y w^{-1}\right)=\tau(x, y) \in \mathbb{Z}
\end{aligned}
$$

Example 5.13. The case $g=1$: the isomorphism

$$
S^{1 \delta} \rightarrow \operatorname{Sp}(2, \mathbb{R}) ; e^{i \theta} \mapsto R(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

induces an isomorphism

$$
H^{2}(\operatorname{Sp}(2, \mathbb{R}) ; \mathbb{Z}) \cong H^{2}\left(S^{1 \delta} ; \mathbb{Z}\right)
$$

By Example

$$
\tau\left(R\left(\theta_{1}\right), R\left(\theta_{2}\right)\right)=2 \operatorname{sgn}\left(\sin \theta_{1} / 2 \sin \theta_{2} / 2 \sin \left(\theta_{1}-\theta_{2}\right) / 2\right) \in \mathbb{Z}
$$

so that by Definition 5.4 and Proposition 5.5 the cocycle

$$
\tau=2 v_{2}^{\prime}=4 u \in H^{2}(\operatorname{Sp}(2 g, \mathbb{R}) ; \mathbb{Z})=H^{2}\left(S^{1} \delta ; \mathbb{Z}\right)
$$

6. The space of lagrangians $\Lambda(n)$

Definition 6.1. Let $\Lambda(n)$ be the space of lagrangians in the standard hyperbolic symplectic form over \mathbb{R}

$$
H_{-}\left(\mathbb{R}^{n}\right)=\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right)
$$

and let $q: \widetilde{\Lambda}(n) \rightarrow \Lambda(n)$ be the universal cover.

It is known from the work of Arnold [1], [2], Leray [25], Lion and Vergne [28], Souriau [54], Turaev [56], deGosson [14, 15], Cappell, Lee and Miller [[0]], Bunke [8], ... that there are unique functions

$$
\begin{aligned}
\widetilde{m} & : \widetilde{\Lambda}(n) \times \widetilde{\Lambda}(n) \rightarrow \mathbb{Z} \\
m & : \Lambda(n) \times \Lambda(n) \rightarrow \mathbb{R}
\end{aligned}
$$

such that

$$
\begin{aligned}
& \widetilde{m}\left(\widetilde{L}_{1}, \widetilde{L}_{2}\right)+\widetilde{m}\left(\widetilde{L}_{2}, \widetilde{L}_{3}\right)+\widetilde{m}\left(\widetilde{L}_{3}, \widetilde{L}_{1}\right)=\sigma\left(q\left(\widetilde{L}_{1}\right), q\left(\widetilde{L}_{2}\right), q\left(\widetilde{L}_{3}\right)\right) \\
& m\left(L_{1}, L_{2}\right)+m\left(L_{2}, L_{3}\right)+m\left(L_{3}, L_{1}\right)=\sigma\left(L_{1}, L_{2}, L_{3}\right) \\
& m\left(A\left(L_{1}\right), A\left(L_{2}\right)\right)=m\left(L_{1}, L_{2}\right) \in \mathbb{Z} \subset \mathbb{R}(A \in S p(2 n))
\end{aligned}
$$

In the first instance, consider the case $n=1$. The function

$$
S^{1} \rightarrow \Lambda(1) ; z=e^{i \psi} \mapsto \sqrt{z}=L(\psi / 2)
$$

is a diffeomorphism.
Example 6.2. By Example 2.6 and Proposition 5.5 the triple signature of lagrangians $L\left(\theta_{1}\right), L\left(\theta_{2}\right), L\left(\theta_{3}\right) \in \Lambda(1)$ is

$$
\begin{aligned}
\sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right) & =\sigma\left(H_{-}(\mathbb{R}) ; L\left(\theta_{1}\right), L\left(\theta_{2}\right), L\left(\theta_{3}\right)\right) \\
& =\operatorname{sgn}\left(\sin \left(\theta_{2}-\theta_{1}\right) \sin \left(\theta_{3}-\theta_{2}\right) \sin \left(\theta_{3}-\theta_{1}\right)\right) \in \mathbb{Z}
\end{aligned}
$$

Proposition 6.3. The triple signature function

$$
\begin{aligned}
& \sigma: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow\{-1,0,1\} \\
& \left(\theta_{1}, \theta_{2}, \theta_{3}\right) \mapsto \sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\operatorname{sgn}\left(\sin \left(\theta_{2}-\theta_{1}\right) \sin \left(\theta_{3}-\theta_{2}\right) \sin \left(\theta_{3}-\theta_{1}\right)\right)
\end{aligned}
$$

has the following properties.
(i) $\sigma(0, \theta, \pi / 2)=\operatorname{sgn}(\sin \theta \cos \theta)=\operatorname{sgn}(\sin 2 \theta)$.
(ii) The η-function is the average triple signature

$$
\begin{aligned}
\eta(\theta) & =\int_{\ell \in \Lambda(1)} \sigma(\ell, L(0), L(\theta)) d \ell \\
& =\int_{z \in S^{1}} \sigma(\sqrt{z}, L(0), L(\theta)) d z \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sigma(\psi / 2,0, \theta) d \psi \in \mathbb{R} .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right) & =\sigma\left(\theta_{1}+\psi, \theta_{2}+\psi, \theta_{3}+\psi\right) \\
& =\eta\left(\theta_{2}-\theta_{1}\right)+\eta\left(\theta_{3}-\theta_{2}\right)+\eta\left(\theta_{1}-\theta_{3}\right) \\
& =2\left(E\left(\left(\theta_{1}-\theta_{2}\right) / \pi\right)+E\left(\left(\theta_{2}-\theta_{3}\right) / \pi\right)+E\left(\left(\theta_{3}-\theta_{1}\right) / \pi\right)\right) \\
& =-2\left(\left(\left(\left(\theta_{1}-\theta_{2}\right) / \pi\right)\right)+\left(\left(\left(\theta_{2}-\theta_{3}\right) / \pi\right)\right)+\left(\left(\left(\theta_{3}-\theta_{1}\right) / \pi\right)\right)\right) \\
& \in\{-1,0,1\} \subset \mathbb{R}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \eta\left(\theta_{1}\right)+\eta\left(\theta_{2}\right)-\eta\left(\theta_{1}+\theta_{2}\right)=\sigma\left(0, \theta_{1},-\theta_{2}\right)=\sigma\left(0, \theta_{2},-\theta_{1}\right) \\
& = \begin{cases}+1 & \text { if } 0<\left\{\theta_{1} / \pi\right\}+\left\{\theta_{2} / \pi\right\}<1, \theta_{1} / \pi, \theta_{2} / \pi \in \mathbb{R} \backslash \mathbb{Z} \\
-1 & \text { if } 1<\left\{\theta_{1} / \pi\right\}+\left\{\theta_{2} / \pi\right\}<2, \theta_{1} / \pi, \theta_{2} / \pi \in \mathbb{R} \backslash \mathbb{Z} \in\{-1,0,1\} \subset \mathbb{R} . \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

For $\theta_{1}=\theta_{2}=\theta$

$$
\begin{aligned}
& 2 \eta(\theta)-\eta(2 \theta)=\sigma(0, \theta,-\theta)=\phi_{0}(\theta / \pi) \\
& =\operatorname{sign}(\sin 2 \theta)= \begin{cases}+1 & \text { if } 0<\{\theta / \pi\}<1 / 2 \\
-1 & \text { if } 1 / 2<\{\theta / \pi\}<1 \in\{-1,0,1\} \subset \mathbb{R} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{align*}
& \sigma\left(\theta_{1}, \theta_{2}, \theta_{1}+\theta_{2}\right)=\eta\left(\theta_{1}\right)-\eta\left(\theta_{2}\right)+\eta\left(\theta_{2}-\theta_{1}\right)=\sigma\left(0, \theta_{2}-\theta_{1}, \theta_{2}\right) \tag{v}\\
& = \begin{cases}+1 & \text { if } 0<\left\{\left(\theta_{2}-\theta_{1}\right) / \pi\right\}+\left\{-\theta_{2} / \pi\right\}<1,\left(\theta_{2}-\theta_{1}\right) / \pi, \theta_{2} / \pi \in \mathbb{R} \backslash \mathbb{Z} \\
-1 & \text { if } 1<\left\{\left(\theta_{2}-\theta_{1}\right) / \pi\right\}+\left\{-\theta_{2} / \pi\right\}<2,\left(\theta_{2}-\theta_{1}\right) / \pi, \theta_{2} / \pi \in \mathbb{R} \backslash \mathbb{Z} \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

(vi) $\sigma\left(\theta_{\pi(1)}, \theta_{\pi(2)}, \theta_{\pi(3)}\right)=\operatorname{sgn}(\pi) \sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ for any $\pi \in \Sigma_{3}$.
(vii) $\sigma\left(-\theta_{1},-\theta_{2},-\theta_{3}\right)=-\sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$.
(viii) $\sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=0$ if $\theta_{1}=\theta_{2}$.
(ix) $\sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\sigma\left(0, \theta_{2}-\theta_{1}, \theta_{3}-\theta_{1}\right)$.
(x) For any $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ define a loop in $\Lambda(1)$ from $L(0)=\mathbb{R} \oplus 0$ through $L\left(\pi \eta\left(\theta_{2}-\theta_{1}\right)\right)$ and $L\left(\pi \eta\left(\theta_{2}-\theta_{1}\right)+\pi \eta\left(\theta_{3}-\theta_{2}\right)\right)$ and then back to $L(0)$

$$
\begin{aligned}
& \omega\left(\theta_{1}, \theta_{2}, \theta_{3}\right): S^{1} \rightarrow \Lambda(1) ; \\
& e^{2 \pi i t} \mapsto \begin{cases}L\left(3 \pi t \eta\left(\theta_{2}-\theta_{1}\right)\right) & \text { if } 0 \leqslant t \leqslant 1 / 3 \\
L\left(\pi \eta\left(\theta_{2}-\theta_{1}\right)+(3 t-1) \pi \eta\left(\theta_{3}-\theta_{2}\right)\right) & \text { if } 1 / 3 \leqslant t \leqslant 2 / 3 \\
L\left(\pi \eta\left(\theta_{2}-\theta_{1}\right)+\pi \eta\left(\theta_{3}-\theta_{2}\right)+(3 t-2) \pi \eta\left(\theta_{1}-\theta_{3}\right)\right) & \text { if } 2 / 3 \leqslant t \leqslant 1\end{cases}
\end{aligned}
$$

with lift

$$
\begin{aligned}
& \widetilde{\omega}\left(\theta_{1}, \theta_{2}, \theta_{3}\right): I \rightarrow \widetilde{\Lambda(1)}=\mathbb{R} ; \\
& e^{2 \pi i t} \mapsto \begin{cases}3 t \eta\left(\theta_{2}-\theta_{1}\right) & \text { if } 0 \leqslant t \leqslant 1 / 3 \\
\eta\left(\theta_{2}-\theta_{1}\right)+(3 t-1) \eta\left(\theta_{3}-\theta_{2}\right) & \text { if } 1 / 3 \leqslant t \leqslant 2 / 3 \\
\eta\left(\theta_{2}-\theta_{1}\right)+\eta\left(\theta_{3}-\theta_{2}\right)+(3 t-2) \eta\left(\theta_{1}-\theta_{3}\right) & \text { if } 2 / 3 \leqslant t \leqslant 1\end{cases}
\end{aligned}
$$

The Maslov index ($=$ degree) of $\omega\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ is the triple signature

$$
\begin{aligned}
\operatorname{Mas}\left(\omega\left(\theta_{1}, \theta_{2}, \theta_{3}\right)\right) & =\eta\left(\theta_{2}-\theta_{1}\right)+\eta\left(\theta_{3}-\theta_{2}\right)+\eta\left(\theta_{1}-\theta_{3}\right) \\
& =\sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \in \mathbb{Z}
\end{aligned}
$$

(xi) $\sigma\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\sigma\left(L\left(\theta_{1}\right), L\left(\theta_{2}\right), L\left(\theta_{3}\right)\right)$.
(xii) (Bunke [${ }^{8}$, p.404])

$$
\frac{1}{\pi} \int_{\theta_{1}=0}^{\pi} \sigma\left(L\left(\theta_{1}\right), L\left(\theta_{2}\right), L\left(\theta_{3}\right)\right) d \theta_{1}=\mu\left(\frac{\theta_{3}-\theta_{2}}{\pi}\right) \text { if } 0<\theta_{2}, \theta_{3}<\pi
$$

(xiii) (Meyer [32], Atiyah [3]) The surface with 3 boundary components

$$
(X, \partial X)=\left(\mathrm{cl} .\left(S^{2} \backslash \cup_{3} D^{2}\right), \cup_{3} S^{1}\right)
$$

has $\pi_{1}(X)=F_{2}=\left\{g_{1}, g_{2}\right\}$ the free group on 2 generators g_{1}, g_{2}. Let E be the local coefficient system over X of flat hermitian vector spaces classified by the group morphism

$$
\pi_{1}(X)=F_{2} \rightarrow U(1)=S^{1} ; g_{j} \mapsto e^{i \theta_{j}}(j=1,2)
$$

The index of a first-order elliptic operator $\bar{\partial}$ coupled to E is the signature of $(\mathbb{C}, i \phi)$, with $\left(H^{1}(X, \partial X ; E)=\mathbb{C}, \phi\right)$ the skew-hermitian form
over \mathbb{C} defined by the cup-product and the hermitian form on E, and

$$
\begin{aligned}
\sigma(\mathbb{C}, i \phi) & =2\left(\left(\left(\theta_{1} / 2 \pi\right)\right)+\left(\left(\theta_{2} / 2 \pi\right)\right)-\left(\left(\left(\theta_{1}+\theta_{2}\right) / 2 \pi\right)\right)\right) \\
& =\eta\left(\left(\theta_{1}+\theta_{2}\right) / 2\right)-\eta\left(\theta_{1} / 2\right)-\eta\left(\theta_{2} / 2\right) \\
& =-\sigma\left(0, \theta_{1} / 2,-\theta_{2} / 2\right) \\
& = \begin{cases}-1 & \text { if } 0<\left\{\theta_{1} / 2 \pi\right\}+\left\{\theta_{2} / 2 \pi\right\}<1 \\
+1 & \text { if } 1<\left\{\theta_{1} / 2 \pi\right\}+\left\{\theta_{2} / 2 \pi\right\}<2 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

The discontinuous measurable function

$$
\begin{aligned}
& U(1) \times U(1) \rightarrow \mathbb{R} ; \\
& \left(e^{i \theta_{1}}, e^{i \theta_{2}}\right) \mapsto \sigma(\mathbb{C}, i \phi) / 2=\left(\left(\theta_{1} / 2 \pi\right)\right)+\left(\left(\theta_{2} / 2 \pi\right)\right)-\left(\left(\left(\theta_{1}+\theta_{2}\right) / 2 \pi\right)\right)
\end{aligned}
$$

is a cocycle representing a generator of $H^{2}(U(1))=\mathbb{Z}$, corresponding to the universal cover regarded as a central group extension

$$
\mathbb{Z} \rightarrow \mathbb{R} \rightarrow U(1)=S^{1}
$$

Now for $n \geqslant 1$.
Let $\left(\mathbb{C}^{n},\langle\rangle,\right)$ be the standard positive definite hermitian form over \mathbb{C}, with

$$
\begin{aligned}
& \langle,\rangle: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C} ; \\
& \quad(z, w)=\left(\left(z_{1}, z_{2}, \ldots, z_{n}\right),\left(w_{1}, w_{2}, \ldots, w_{n}\right)\right) \mapsto\langle z, w\rangle=\sum_{j=1}^{n} \bar{z}_{j} w_{j}
\end{aligned}
$$

Given a complex $n \times n$ matrix $A=\left(a_{j k}\right) \in M_{n}(\mathbb{C})$ let

$$
A^{t}=\left(a_{k j}\right), A^{*}=\left(\bar{a}_{k j}\right) \in M_{n}(\mathbb{C})
$$

Definition 6.4. (i) A unitary matrix is a complex $n \times n$ matrix

$$
A=\left(a_{j k}\right) \in M_{n}(\mathbb{C})
$$

such that $A A^{*}=I$, corresponding to an automorphism

$$
A:\left(\mathbb{C}^{n},\langle,\rangle\right) \rightarrow\left(\mathbb{C}^{n},\langle,\rangle\right)
$$

(ii) The unitary group $U(n)$ is the group of $n \times n$ unitary matrices.

Let $\left(\mathbb{R}^{n},\langle\rangle,\right)$ be the standard positive definite symmetric form over \mathbb{R}, with

$$
\begin{aligned}
& \langle,\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} ; \\
& \quad(x, y)=\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \mapsto\langle x, y\rangle=\sum_{j=1}^{n} x_{j} y_{j} .
\end{aligned}
$$

Definition 6.5. (i) An orthogonal matrix is a real $n \times n$ matrix

$$
A=\left(a_{j k}\right) \in M_{n}(\mathbb{R})
$$

such that $A A^{t}=I$, corresponding to an automorphism

$$
A:\left(\mathbb{R}^{n},\langle,\rangle\right) \rightarrow\left(\mathbb{R}^{n},\langle,\rangle\right)
$$

(ii) The orthogonal group $O(n)$ is the group of orthogonal $n \times n$ matrices.

Use the isomorphism of real vector spaces

$$
\mathbb{R}^{n} \oplus \mathbb{R}^{n} \rightarrow \mathbb{C}^{n} ;(x, y) \mapsto x+i y
$$

to identify $\left(\mathbb{C}^{n}, \phi\right)$ over \mathbb{R} with $H_{-}\left(\mathbb{R}^{n}\right)$, where

$$
\phi: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{R} ;(w, z) \mapsto \operatorname{Im}(\langle z, w\rangle) .
$$

Definition 6.6. (i) A symplectic matrix is a real $2 n \times 2 n$ matrix

$$
\begin{gathered}
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2 n}(\mathbb{R}) \\
\left(a^{t} c=c^{t} a, b^{t} d=d^{t} b, a^{t} d-c^{t} b=I \in M_{n}(\mathbb{R})\right)
\end{gathered}
$$

such that $A^{t} \phi A=\phi$, corresponding to an automorphism

$$
A: H_{-}\left(\mathbb{R}^{n}\right) \rightarrow H_{-}\left(\mathbb{R}^{n}\right)
$$

(ii) The symplectic group $S p(2 n)$ is the group of symplectic $2 n \times 2 n$ matrices.
(iii) Let $E S p(2 n) \subset S p(2 n)$ be the subgroup

$$
\begin{aligned}
E S p(2 n) & =\left\{A \in S p(2 n) \mid A\left(\mathbb{R}^{n} \oplus\{0\}\right)=\mathbb{R}^{n} \oplus\{0\} \in \Lambda(n)\right\} \\
& =\left\{A \in S p(2 n) \mid c=0 \in M_{n}(\mathbb{R})\right\} \\
& =\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & \left(a^{-1}\right)^{t}
\end{array}\right) \right\rvert\, a \in G L_{n}(\mathbb{R}), b \in M_{n}(\mathbb{R}), a b^{t}=b a^{t}\right\} .
\end{aligned}
$$

Proposition 6.7. (i) A symplectic matrix $A \in S p(2 n)$ is an invertible $2 n \times 2 n$ matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2 n}(\mathbb{R})
$$

such that

$$
a^{t} c=c^{t} a, b^{t} d=d^{t} b, a^{t} d-c^{t} b=1 \in M_{n}(\mathbb{R})
$$

with

$$
A\left(\mathbb{R}^{n} \oplus\{0\}\right)=\operatorname{im}\left(\binom{a}{c}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \oplus \mathbb{R}^{n}\right) \in \Lambda(n)
$$

The linear map

$$
i: \operatorname{ker}\left(c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} ; x \mapsto a(x)
$$

is an injection, with

$$
M=\operatorname{ker}\left(i^{*}: \mathbb{R}^{n} \rightarrow \operatorname{ker}(c)^{*}\right) \subset \mathbb{R}^{n}
$$

a direct complement of the image

$$
i(\operatorname{ker}(c)) \oplus M=\mathbb{R}^{n}
$$

Likewise, the linear map

$$
j: \operatorname{ker}\left(b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} ; x \mapsto d(x)
$$

is an injection, with

$$
N=\operatorname{ker}\left(j^{*}: \mathbb{R}^{n} \rightarrow \operatorname{ker}(b)^{*}\right) \subset \mathbb{R}^{n}
$$

a direct complement of the image

$$
j(\operatorname{ker}(b)) \oplus N=\mathbb{R}^{n}
$$

The linear map

$$
M \rightarrow N^{*} ; i^{*}(x) \mapsto\left(j^{*}(y) \mapsto\langle x, y\rangle\right)
$$

is an isomorphism. The sublagrangian of $H_{-}\left(\mathbb{R}^{n}\right)=\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \phi\right)$

$$
L=A\left(\mathbb{R}^{n} \oplus\{0\}\right) \cap\left(\mathbb{R}^{n} \oplus\{0\}\right)=i(\operatorname{ker}(c)) \oplus\{0\} \subset \mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

is such that

$$
\begin{aligned}
& L^{\perp}=L \oplus M \oplus M^{*},\left(L^{\perp} / L,[\phi]\right)=H_{-}(M) \\
& H_{-}\left(\mathbb{R}^{n}\right)=H_{-}(L) \oplus H_{-}(M)
\end{aligned}
$$

(ii) A symplectic matrix $A \in S p(2 n)$ is such that $A J=J A$ for the standard complex structure

$$
J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right): \mathbb{R}^{n} \oplus \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

if and only if and only if $A \in U(n) \subset S p(2 n)$, with

$$
\begin{aligned}
U(n) & =\left\{\left.\left(\begin{array}{cc}
a & -c \\
c & a
\end{array}\right) \in G L_{2 n}(\mathbb{R}) \right\rvert\, a^{t} c=c^{t} a, a^{t} a+c^{t} c=1\right\} \\
& =S p(2 n) \cap O(2 n) \subset S p(2 n)
\end{aligned}
$$

Furthermore, the image of the injection

$$
O(n) \rightarrow U(n) ; a \mapsto\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right) \quad\left(a^{t} a=1\right)
$$

is

$$
O(n)=U(n) \cap E S p(2 n) \subset S p(2 n)
$$

(iii) For every $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S p(2 n)$ there exists $U_{A} \in U(n)$ such that

$$
A\left(\mathbb{R}^{n} \oplus\{0\}\right)=U_{A}\left(\mathbb{R}^{n} \oplus\{0\}\right) \in \Lambda(n)
$$

with $\left(U_{A}\right)^{-1} A \in \operatorname{ESp}(2 n)$. The symmetric form $\left(\mathbb{R}^{n}, a^{t} a+c^{t} c\right)$ is positive definite, and

$$
U_{A}=\left((a+i c) e^{-1}\right) \in U(n)
$$

is such a unitary matrix for any $e \in G L_{n}(\mathbb{R})$ such that

$$
a^{t} a+c^{t} c=e^{t} e \in G L_{n}(\mathbb{R})
$$

If $A \in U(n) \subset S p(2 n)$ then $e=1$ will do, with $U_{A}=A$.
(iv) The inclusion $U(n)=S p(2 n) \cap O(2 n) \rightarrow S p(2 n)$ induces a diffeomorphism

$$
U(n) / O(n) \cong S p(2 n) / E S p(2 n)
$$

to the set $\operatorname{Sp}(2 n) / E S p(2 n)$ of left cosets $A \cdot E S p(2 n) \subset S p(2 n)$, with inverse $A \mapsto U_{A}$. The function

$$
S p(2 n) / E S p(2 n) \rightarrow \Lambda(n) ; A \cdot E S p(2 n) \mapsto A\left(\mathbb{R}^{n} \oplus\{0\}\right)
$$

is a diffeomorphism, with

$$
S p(2 n) / E S p(2 n) \rightarrow S^{1} ; A \cdot E S p(2 n) \mapsto \operatorname{det}(A)^{2}
$$

inducing the Maslov index isomorphism

$$
\pi_{1}(S p(2 n) / E S p(2 n)) \stackrel{\cong}{\cong} \pi_{1}\left(S^{1}\right)=\mathbb{Z}
$$

Proposition 6.8. (Arnold [[])
(i) Every lagrangian $L \in \Lambda(n)$ is the image

$$
L=A\left(\mathbb{R}^{n} \oplus 0\right) \subset \mathbb{C}^{n}
$$

for some $A \in U(n)$. The function

$$
U(n) / O(n) \rightarrow \Lambda(n) ; A \mapsto A\left(\mathbb{R}^{n} \oplus 0\right)
$$

is a diffeomorphism.
(ii) The function

Mas : $\Lambda(n) \rightarrow S^{1} ; L=A\left(\mathbb{R}^{n} \oplus 0\right) \mapsto \operatorname{det}\left(A A^{t}\right)=\operatorname{det}(A)^{2}$ induces the Maslov index isomorphism

$$
\operatorname{Mas}_{*}: \pi_{1}(\Lambda(n)) \xrightarrow{\cong} \pi_{1}\left(S^{1}\right)=\mathbb{Z}
$$

The pullback of the universal cover

$$
\mathbb{R} \rightarrow S^{1} ; x \mapsto e^{2 \pi i x}
$$

is the universal cover of $\Lambda(n)$

$$
\begin{gathered}
q: \widetilde{\Lambda}(n)=\operatorname{Mas}^{*} \mathbb{R}=\left\{(L, x) \in \Lambda(n) \times \mathbb{R} \mid \operatorname{det}\left(A A^{t}\right)=e^{2 \pi i x}\right\} \\
\rightarrow \Lambda(n) ;(L, x) \mapsto L
\end{gathered}
$$

(iii) The function

$$
\Lambda(n)=U(n) / O(n) \rightarrow U(n) ; A=\left(a_{j k}\right) \mapsto A A^{t}=\left(\sum_{\ell=1}^{n} a_{j \ell} a_{k \ell}\right)
$$

is an embedding, with image the symmetric unitary $n \times n$ matrices. The composite

$$
\Lambda(n)=U(n) / O(n) \longrightarrow U(n) \xrightarrow{\text { det }} S^{1}
$$

induces

$$
2: \pi_{1}(\Lambda(n))=\mathbb{Z} \rightarrow \pi_{1}(U(n)) \cong \pi_{1}\left(S^{1}\right)=\mathbb{Z}
$$

Definition 6.9. (i) The Maslov index of a path $\alpha: I \rightarrow \Lambda(n)$ is

$$
\operatorname{Mas}_{*}(\alpha)=p_{2} \widetilde{\alpha}(1)-p_{2} \widetilde{\alpha}(0) \in \mathbb{R}
$$

for any lift $\widetilde{\alpha}: I \rightarrow \widetilde{\Lambda}(n)$ with

$$
\begin{aligned}
& p_{2}: \widetilde{\Lambda}(n) \rightarrow \mathbb{R} ;(L, x) \mapsto x \\
& \operatorname{Mas} \alpha(x)=L(\pi \widetilde{\alpha}(x)) \in S^{1}=\Lambda(1)
\end{aligned}
$$

(ii) The Maslov index of a loop $\omega: S^{1} \rightarrow \Lambda(n)$ is the integer-valued Maslov index of the closed path

$$
\alpha: I \rightarrow \Lambda(n) ; x \mapsto \omega\left(e^{2 \pi i x}\right),
$$

that is

$$
\operatorname{Mas}_{*}(\omega)=\operatorname{Mas}_{*}(\alpha)=\widetilde{\alpha}(1)-\widetilde{\alpha}(0) \in \mathbb{Z} \subset \mathbb{R}
$$

for any lift $\widetilde{\alpha}: I \rightarrow \mathbb{R}$ of α with

$$
\operatorname{Mas} \omega\left(e^{2 \pi i x}\right)=\operatorname{Mas} \alpha(x)=L(\pi \widetilde{\alpha}(x)) \in S^{1}=\Lambda(1)
$$

Example 6.10. For $n=1$

$$
U(1)=\{A(\theta)\} \subset O(2)
$$

with

$$
A(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \in O(2)(0 \leqslant \theta<2 \pi)
$$

such that

$$
A(\theta)(\mathbb{R} \oplus\{0\})=L(\theta)=\{(x \cos \theta, x \sin \theta) \mid x \in \mathbb{R}\} \subset \mathbb{R} \oplus \mathbb{R}
$$

a lagrangian of $H_{-}(\mathbb{R})$, and

$$
O(1)=\left\{ \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

The function

$$
U(1) / O(1) \rightarrow \Lambda(1) ; A(\theta) \mapsto L(\theta)
$$

is a diffeomorphism.
(i) The function

$$
S p(2) \rightarrow U(1) \times \mathbb{R}^{2} ;\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left(\left(\begin{array}{ll}
a / \sqrt{a^{2}+c^{2}} & b / \sqrt{b^{2}+d^{2}} \\
c / \sqrt{a^{2}+c^{2}} & d / \sqrt{b^{2}+d^{2}}
\end{array}\right),\left(\sqrt{a^{2}+c^{2}}, \sqrt{b^{2}+d^{2}}\right)\right)
$$

is a diffeomorphism.
(ii) The functions

$$
\begin{aligned}
& \lambda: S^{1} \rightarrow \Lambda(1) ; e^{2 \pi i x} \mapsto L(\pi x) \\
& \text { Mas }: \Lambda(1) \rightarrow S^{1} ; L(\theta) \mapsto e^{2 i \theta}
\end{aligned}
$$

are inverse diffeomorphisms, with

$$
\operatorname{Mas}_{*}: \pi_{1}(\Lambda(1)) \xrightarrow{\cong} \pi_{1}\left(S^{1}\right)=\mathbb{Z}
$$

In other words, every 1-dimensional subspace of $H_{-}(\mathbb{R})$ is a lagrangian, and $\Lambda(1)=\mathbb{R} \mathbb{P}^{1}$.
(iii) The pullback along Mas: $\Lambda(1) \rightarrow S^{1}$ of the universal cover of S^{1}

$$
\mathbb{R} \rightarrow S^{1} ; x \mapsto e^{2 \pi i x}
$$

is the universal cover of $\Lambda(1)$

$$
\begin{aligned}
\widetilde{\Lambda}(1)=\{(L, x) \in \Lambda(1) \times \mathbb{R} \mid & L=L(\pi x) \in \Lambda(1)\} \\
& \rightarrow \Lambda(1) ;(L, x) \mapsto L(\pi x)
\end{aligned}
$$

The projection

$$
p_{2}: \widetilde{\Lambda}(1) \rightarrow \mathbb{R} ;(L, x) \mapsto x
$$

is a diffeomorphism with inverse

$$
\left(p_{2}\right)^{-1}: \mathbb{R} \rightarrow \widetilde{\Lambda}(1) ; x \mapsto(L(\pi x), x)
$$

and there is defined a commutative square

(iii) The Maslov index of a path $\alpha: I \rightarrow \Lambda(1)$ is

$$
\operatorname{Mas}_{*}(\alpha)=\widetilde{\alpha}(1)-\widetilde{\alpha}(0) \in \mathbb{R}
$$

for any lift $\widetilde{\alpha}: I \rightarrow \mathbb{R}$ with

$$
\alpha(x)=L(\pi \widetilde{\alpha}(x)) \in \Lambda(1) .
$$

(iv) The Maslov index of a loop $\omega: S^{1} \rightarrow \Lambda(1)$ is the integer-valued Maslov index of the closed path

$$
\alpha: I \rightarrow \Lambda(1) ; x \mapsto \omega\left(e^{2 \pi i x}\right),
$$

that is

$$
\operatorname{Mas}_{*}(\omega)=\operatorname{Mas}_{*}(\alpha)=\widetilde{\alpha}(1)-\widetilde{\alpha}(0) \in \mathbb{Z} \subset \mathbb{R}
$$

for any lift $\widetilde{\alpha}: I \rightarrow \mathbb{R}$ of α with

$$
\omega\left(e^{2 \pi i x}\right)=\alpha(x)=L(\pi \widetilde{\alpha}(x)) \in \Lambda(1) .
$$

(v) The loop of (i)

$$
\lambda: S^{1} \rightarrow \Lambda(1) ; e^{2 \pi i x} \mapsto L(\pi x)
$$

has lift

$$
\widetilde{\lambda}:[0,1] \rightarrow \mathbb{R} ; x \mapsto x
$$

and Maslov index

$$
\operatorname{Mas}_{*}(\lambda)=1 \in \mathbb{Z}
$$

(vi) For any $x_{0}, x_{1} \in \mathbb{R}$ the path from $L\left(x_{0}\right)$ to $L\left(x_{1}\right) \in \Lambda(1)$ defined by

$$
\alpha: I \rightarrow \Lambda(1) ; t \mapsto L\left((1-t) \pi x_{0}+t \pi x_{1}\right)
$$

has Maslov index

$$
\operatorname{Mas}_{*}(\alpha)=x_{1}-x_{0} \in \mathbb{R}
$$

The symplectic group $S p(2 n)$ is a closed subgroup of $G L(2 n, \mathbb{R})$. The unitary group is a maximal compact subgroup $U(n) \subset S p(2 n)$ such that

$$
S p(2 n)=U(n) \times \mathbb{R}^{n(n+1)},
$$

with the inclusion $U(n) \rightarrow S p(2 n)$ inducing a homotopy equivalence $B U(n) \rightarrow B S p(2 n)$. The generator

$$
1=c_{1}\left(\lambda_{n}\right) \in H^{2}(B S p(2 n))=H^{2}(B U(n))=\mathbb{Z}
$$

is the first Chern class of the canonical \mathbb{C}^{n}-bundle

$$
\mathbb{C}^{n} \rightarrow \lambda_{n}=\mathbb{C}^{n} \times_{U(n)} E U(n) \rightarrow B U(n)=E U(n) U(n) .
$$

The pullback under the identity $j: S p(2 n)^{\delta} \rightarrow S p(2 n)$

$$
u=j^{*}(1) \in H^{2}\left(B S p(2 n)^{\delta}\right)
$$

is the first Chern class of the pullback \mathbb{C}^{n}-bundle

$$
\mathbb{C}^{n} \rightarrow j^{*} \lambda_{n}=\mathbb{C}^{n} \times_{S p(2 n)^{\delta}} E S p(2 n)^{\delta} \rightarrow B S p(2 n)^{\delta}=E S p(2 n)^{\delta} / S p(2 n)^{\delta},
$$

corresponding to the universal central group extension

$$
0 \rightarrow \mathbb{Z} \rightarrow \widetilde{S p(2 n)}^{\delta} \rightarrow S p(2 n)^{\delta} \rightarrow\{1\}
$$

determined by the universal cover

$$
\mathbb{Z} \longrightarrow \widetilde{S p(2 n)} \xrightarrow{q} S p(2 n),
$$

with

$$
\widetilde{S p(2 n)}=\left\{(A, \theta) \in S p(2 n) \times \mathbb{R} \mid \operatorname{det}(A)=e^{i \theta} \in S^{1}\right\} .
$$

BUT $S p(2 n)$ IS PERFECT, SO $\operatorname{det}_{\mathbb{R}}: S p(2 n) \rightarrow\{+1\} \subset \mathbb{Z}$.
HOWEVER, $U(n)$ IS NOT PERFECT (E.G. $U(1)=S^{1}$ IS ABELIAN), AND $\operatorname{det}_{\mathbb{C}}: U(n) \rightarrow S^{1}$ IS ONTO.

Remark 6.11. (i) The form $T(A, B)$ in Proposition 4.18 was first obtained by Meyer [32, $B 33$], with the signature function

$$
\sigma: S p(2 n)^{\delta} \times S p(2 n)^{\delta} \rightarrow \mathbb{Z} ;(A, B) \mapsto \sigma\left(T\left(A, B^{-1}\right)\right)
$$

a cocycle for a cohomology class $\sigma \in H^{2}\left(B S p(2 n)^{\delta}\right)$ with $S p(2 n)^{\delta}=$ Aut $H_{-}\left(\mathbb{R}^{n}\right)$. The signature of an orientable surface bundle

$$
F^{2} \rightarrow E^{4} \rightarrow B^{2}
$$

is given by

$$
\sigma(E)=\left\langle\sigma, \rho_{*}[B]\right\rangle \in L^{4}(\mathbb{Z})=\mathbb{Z}
$$

with $[B] \in H_{2}(B)$ the fundamental class and $\rho: B \rightarrow B \operatorname{Aut}(F) \rightarrow B \operatorname{Aut}\left(H^{1}(F ; \mathbb{R}), \phi\right)=B S p(2 n)^{\delta}\left(n=\operatorname{dim}_{\mathbb{R}} H^{1}(F ; \mathbb{R}) / 2\right)$.
(ii) Turaev [56] identified

$$
\begin{aligned}
\sigma=4 u \in \operatorname{im}\left(H^{2}(\right. & \left.B S p(2 n)) \rightarrow H^{2}\left(B S p(2 n)^{\delta}\right)\right) \\
& \cap \operatorname{ker}\left(q^{*}: H^{2}\left(B S p(2 n)^{\delta}\right) \rightarrow H^{2}\left(B \widetilde{S p(2 n)}^{\delta}\right)\right)
\end{aligned}
$$

with the Maslov class $\left.u \in H^{2}\left(B S p(2 n)^{\delta}\right)\right)$ the image of the generator $1 \in H^{2}(B S p(2 n))=\mathbb{Z}$, and constructed a function

$$
\Phi: \widetilde{\widehat{S p(2 n)}} \rightarrow \mathbb{Z}
$$

such that

$$
\sigma(q(\widetilde{A}), q(\widetilde{B}))=\Phi(\widetilde{A})+\Phi(\widetilde{B})-\Phi(\widetilde{A} \widetilde{B}) \in \mathbb{Z}
$$

The signature of an orientable surface bundle $F^{2} \rightarrow E^{4} \rightarrow B^{2}$ is thus

$$
\sigma(E) \equiv 0 \bmod 4
$$

a special case of the mod 4 multiplicativity of the signature of fibre bundles obtained (much later) by Hambleton, Korzeniewski and Ranicki [18]. The universal cover

$$
\mathbb{Z} \longrightarrow \widetilde{U(n)} \longrightarrow U(n)
$$

is given by

$$
\widetilde{U(n)}=\left\{(A, \theta) \in U(n) \times \mathbb{R} \mid \operatorname{det}(A)=e^{i \theta} \in S^{1}\right\}
$$

The composite

$$
\widetilde{U(n)} \longrightarrow \widetilde{S p(2 n)} \xrightarrow{\Phi} \mathbb{Z}
$$

is given by

$$
\begin{aligned}
\Phi(A, \theta) & =4 \sum_{j=1}^{n}\left(\theta_{j} / 2 \pi-\left(\left(\theta_{j} / 2 \pi\right)\right)\right) \\
& =4 \sum_{j=1}^{n} E\left(\theta_{j} / 2 \pi\right) \in \mathbb{Z} \subset \mathbb{R}
\end{aligned}
$$

with $e^{i \theta_{j}} \in S^{1}$ the eigenvalues of A, θ_{j} chosen so that

$$
\theta=\sum_{j=1}^{n} \theta_{j} \in \mathbb{R}
$$

and E as in Barge and Ghys [5, 3.8] (cf. Remark [.4). In particular, for $n=1$

$$
\begin{aligned}
\Phi\left(e^{i \theta}, \theta\right) & =4 E(\theta / 2 \pi) \\
& =2 \theta / \pi-4((\theta / 2 \pi)) \\
& = \begin{cases}4[\theta / 2 \pi]+2 & \text { if } \theta / 2 \pi \in \mathbb{R} \backslash \mathbb{Z} \\
2 \theta / \pi & \text { if } \theta / 2 \pi \in \mathbb{Z}\end{cases}
\end{aligned}
$$

Remark 6.12. (i) The classical Dedekind sum is defined for a coprime pair of integers (a, c) with $c \neq 0$ to be

$$
\begin{aligned}
s(a, c) & =\frac{1}{4|c|} \sum_{k=1}^{|c|-1} \cot \left(\frac{k \pi}{c}\right) \cot \left(\frac{k a \pi}{c}\right) \\
& =\sum_{k=1}^{|c|-1}\left(\left(\frac{k}{c}\right)\right)\left(\left(\frac{k a}{c}\right)\right) \in \mathbb{Q} .
\end{aligned}
$$

(ii) The Rademacher ϕ-function is defined by

$$
\begin{aligned}
& \phi: S p(2, \mathbb{Z})=S L(2, \mathbb{Z}) \rightarrow \mathbb{Z} \\
& A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \begin{cases}\frac{b}{d} & \text { if } c=0 \\
\frac{a+d}{c}-12 \operatorname{sgn}(c) s(a, c) & \text { if } c \neq 0\end{cases}
\end{aligned}
$$

Define also

$$
\begin{aligned}
& \nu: S L(2, \mathbb{Z}) \rightarrow \mathbb{Z} ; \\
& A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \begin{cases}\operatorname{sgn}(b) & \text { if } c=0 \text { and } a=1 \\
\operatorname{sgn}(c(a+d-2)) & \text { otherwise } .\end{cases}
\end{aligned}
$$

The function

$$
\varphi: S L(2, \mathbb{Z}) \rightarrow \mathbb{Q} ; A \mapsto-\phi(A) / 3+\nu(A)
$$

is then such that

$$
\begin{aligned}
\sigma(U(A, B)) & =\varphi(A)+\varphi(B)+\varphi\left((A B)^{-1}\right) \\
& =\nu(A)+\nu(B)-\nu(A B)-\operatorname{sgn}\left(c_{A} c_{B} c_{A B}\right) \in \mathbb{Z} \subset \mathbb{Q}
\end{aligned}
$$

(Meyer [33], Kirby and Melvin [22], Barge and Ghys [5]).
Proposition 6.13. (i) For any $A \in U(n)$ the image

$$
L=A\left(\mathbb{R}^{n} \oplus\{0\}\right) \subset \mathbb{R}^{n} \oplus i \mathbb{R}^{n}=\mathbb{C}^{n}
$$

is a lagrangian of $H_{-}\left(\mathbb{R}^{n}\right)$ and
$\operatorname{ker}\left(I_{n}-A A^{t}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right)=\left(L \cap\left(\mathbb{R}^{n} \oplus\{0\}\right)\right) \oplus i\left(L \cap\left(\mathbb{R}^{n} \oplus\{0\}\right)\right) \subseteq \mathbb{C}^{n}$, so that

$$
\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(I_{n}-A A^{t}\right)\right)=\operatorname{dim}_{\mathbb{R}}\left(L \cap\left(\mathbb{R}^{n} \oplus\{0\}\right)\right)
$$

The lagrangian L is such that $L \cap\left(\mathbb{R}^{n} \oplus\{0\}\right)=\{0\}$ if and only if $I_{n}-A A^{t}$ is invertible.
(ii) For any $A, A^{\prime} \in U(n)$ let

$$
L=A\left(\mathbb{R}^{n} \oplus\{0\}\right), L^{\prime}=A^{\prime}\left(\mathbb{R}^{n} \oplus\{0\}\right) \subset \mathbb{R}^{n} \oplus i \mathbb{R}^{n}=\mathbb{C}^{n}
$$

The linear map
$\operatorname{ker}\left(A^{\prime}\left(A^{\prime}\right)^{t}-A A^{t}\right) \rightarrow\left(L \cap L^{\prime}\right) \oplus i\left(L \cap L^{\prime}\right) ; x \mapsto A A^{t}(x)=A^{\prime}\left(A^{\prime}\right)^{t}(x)$
is an isomorphism of complex vector spaces, so that

$$
\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(A^{\prime}\left(A^{\prime}\right)^{t}-A A^{t}\right)\right)=\operatorname{dim}_{\mathbb{R}}\left(L \cap L^{\prime}\right)
$$

The lagrangians L, L^{\prime} are such that $L \cap L^{\prime}=\{0\}$ if and only if $A^{\prime}\left(A^{\prime}\right)^{t}-$ $A A^{t}$ is invertible.
(iii) The eigenvalues of $A \in U(n)$ are on the unit circle S^{1}

$$
e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}} \in S^{1} \subset \mathbb{C}
$$

A is invertible, with

$$
\operatorname{det}(A)=e^{i\left(\sum_{j=1}^{n} \theta_{j}\right)} \in S^{1}
$$

(iv) A is diagonalizable: there exists a unitary matrix $B \in U(n)$ with columns an orthonormal basis for \mathbb{C}^{n} consisting of eigenvectors for A, and

$$
A=B D\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}\right) B^{-1} \in U(n)
$$

with

$$
\begin{aligned}
L \cap\left(\mathbb{R}^{n} \oplus\{0\}\right) \cong \sum_{j=1}^{n} & \left(\mathbb{R}\left(\cos \left(\theta_{j}\right), \sin \left(\theta_{j}\right)\right) \cap(\mathbb{R} \oplus\{0\})\right), \\
\operatorname{dim}_{\mathbb{R}}\left(L \cap\left(\mathbb{R}^{n} \oplus\{0\}\right)\right) & =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(I_{n}-A A^{t}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right)\right) \\
& =\left(\text { no. of } \theta_{j}^{\prime} \text { 's with } e^{i \theta_{j}}= \pm 1\right) .
\end{aligned}
$$

(v) The logarithm of $A \in U(n)$

$$
\log (A)=B D\left(\log \left(e^{i \theta_{1}}\right), \log \left(e^{i \theta_{2}}\right), \ldots, \log \left(e^{i \theta_{n}}\right)\right) B^{-1} \in M_{n}(\mathbb{C})
$$

has trace

$$
\operatorname{tr}(\log (A))=\sum_{j=1}^{n} \log \left(e^{i \theta_{j}}\right)=\pi i \sum_{j=1}^{n}\left(1-2\left\{\frac{\pi-\theta_{j}}{2 \pi}\right\}\right) \in \mathbb{C} .
$$

(vi) $A^{2} \in U(n)$ has

$$
\begin{aligned}
& A^{2}=B D\left(e^{2 i \theta_{1}}, e^{2 i \theta_{2}}, \ldots, e^{2 i \theta_{n}}\right) B^{-1} \\
& I_{n}-A^{2}=B D\left(1-e^{2 i \theta_{1}}, 1-e^{2 i \theta_{2}}, \ldots, 1-e^{2 i \theta_{n}}\right) B^{-1} \in U(n), \\
& \operatorname{det}\left(A^{2}\right)=\operatorname{det}(A)^{2}=e^{2 i\left(\sum_{j=1}^{n} \theta_{j}\right)} \in S^{1} \\
& \operatorname{tr}\left(\log \left(A^{2}\right)\right)=\sum_{j=1}^{n} \log \left(e^{2 i \theta_{j}}\right)=\pi i \sum_{j=1}^{n}\left(1-2\left\{\frac{\pi-2 \theta_{j}}{2 \pi}\right\}\right) \in \mathbb{C}
\end{aligned}
$$

(vii) A^{2} and $A A^{t} \in U(n)$ are such that

$$
\begin{aligned}
& \operatorname{det}\left(A A^{t}\right)=\operatorname{det}\left(A^{2}\right)=e^{2 i\left(\sum_{j=1}^{n} \theta_{j}\right)} \in S^{1}, \\
& \begin{aligned}
& \operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(I_{n}-A A^{t}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right)\right)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(I_{n}-A^{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right)\right) \\
&=\left(\text { no. of } \theta_{j}^{\prime} \text { 's with } e^{i \theta_{j}}= \pm 1\right) \in \mathbb{Z}, \\
& \operatorname{tr}\left(\log \left(A A^{t}\right)\right)=\operatorname{tr}\left(\log \left(A^{2}\right)\right)=\pi i \sum_{j=1}^{n}\left(1-2\left\{\frac{\pi-2 \theta_{j}}{2 \pi}\right\}\right) \in \mathbb{C} .
\end{aligned}
\end{aligned}
$$

Proof. (i) Write $A=X+i Y$ with $X, Y \in M_{n}(\mathbb{R})$, so that

$$
\begin{aligned}
& A^{-1}=A^{*}=X^{t}-i Y^{t}, A^{t}=X^{t}+i Y^{t} \\
& \quad \bar{A}=\left(A^{t}\right)^{-1}=X-i Y \in U(n), \\
& I_{n}-A A^{t}=A\left(A^{*}-A^{t}\right)=-2 i A Y^{t} \in M_{n}(\mathbb{C}) .
\end{aligned}
$$

It follows from
$\operatorname{ker}(X) \cap \operatorname{ker}(Y)=\{0\}, Y^{t} X=-X^{t} Y, \operatorname{dim}_{\mathbb{R}} \operatorname{ker}(Y)=\operatorname{dim}_{\mathbb{R}} \operatorname{ker}\left(Y^{t}\right)$ that the linear map of real vector spaces

$$
\operatorname{ker}(Y) \rightarrow \operatorname{ker}\left(Y^{t}\right) ; w \mapsto X(w)
$$

is an isomorphism. Thus

$$
\begin{aligned}
& L=A\left(\mathbb{R}^{n} \oplus\{0\}\right)=\left\{X(w)+i Y(w) \mid w \in \mathbb{R}^{n}\right\} \subset \mathbb{C}^{n}=\mathbb{R}^{n} \oplus i \mathbb{R}^{n} \\
& L \cap\left(\mathbb{R}^{n} \oplus\{0\}\right)=X(\operatorname{ker}(Y))=\operatorname{ker}\left(Y^{t}\right) \subset \mathbb{C}^{n} \\
& \operatorname{ker}\left(I_{n}-A A^{t}\right)=\operatorname{ker}\left(Y^{t}\right) \oplus i \operatorname{ker}\left(Y^{t}\right) \subset \mathbb{C}^{n}
\end{aligned}
$$

(ii) Let

$$
A^{\prime \prime}=\left(A^{\prime}\right)^{-1} A \in U(n), L^{\prime \prime}=A^{\prime \prime}\left(\mathbb{R}^{n} \oplus\{0\}\right)
$$

The linear map

$$
L \cap L^{\prime} \rightarrow L^{\prime \prime} \cap\left(\mathbb{R}^{n} \oplus\{0\}\right) ; x \mapsto\left(A^{\prime}\right)^{-1}(x)
$$

is an isomorphism of real vector spaces, and by (i)
$\operatorname{ker}\left(I_{n}-A^{\prime \prime}\left(A^{\prime \prime}\right)^{t}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right)=\left(L^{\prime \prime} \cap\left(\mathbb{R}^{n} \oplus\{0\}\right) \oplus i\left(L^{\prime \prime} \cap\left(\mathbb{R}^{n} \oplus\{0\}\right) \subseteq \mathbb{C}^{n}\right.\right.$.
It follows from the identity

$$
I_{n}-A^{\prime \prime}\left(A^{\prime \prime}\right)^{t}=\left(A^{\prime}\right)^{-1}\left(A^{\prime}\left(A^{\prime}\right)^{t}-A A^{t}\right)\left(\left(A^{\prime}\right)^{t}\right)^{-1}
$$

that the linear map

$$
\begin{aligned}
\left(L^{\prime \prime} \cap\left(\mathbb{R}^{n} \oplus\{0\}\right)\right) \oplus & i\left(L^{\prime \prime} \cap\left(\mathbb{R}^{n} \oplus\{0\}\right)=\operatorname{ker}\left(I_{n}-A^{\prime \prime}\left(A^{\prime \prime}\right)^{t}\right)\right. \\
& \rightarrow \operatorname{ker}\left(A^{\prime}\left(A^{\prime}\right)^{t}-A A^{t}\right) ; x \mapsto\left(\left(A^{\prime}\right)^{t}\right)^{-1}(x)
\end{aligned}
$$

is an isomorphism of complex vector spaces.
(iii) For any $z, w \in \mathbb{C}^{n}$

$$
\langle A(z), A(w)\rangle=\langle z, w\rangle \in \mathbb{C}
$$

If $z \neq 0 \in \mathbb{C}^{n}$ is an eigenvector with eigenvalue $\lambda \in \mathbb{C}$ then $A(z)=\lambda z$ and

$$
\langle A(z), A(z)\rangle=\lambda \bar{\lambda}\langle z, z\rangle=\langle z, z\rangle \in \mathbb{C}
$$

so that $\lambda \bar{\lambda}=1 \in \mathbb{C}$.
(iv) Choose an eigenvector $b_{1} \neq 0 \in \mathbb{C}^{n}$, so that A is an automorphism of the positive definite hermitian form

$$
\left(\mathbb{C}^{n},\langle,\rangle\right)=\left(\mathbb{C} b_{1},\langle,\rangle\right) \oplus\left(\left(\mathbb{C} b_{1}\right)^{\perp},\langle,\rangle\right)
$$

with

$$
\left(\mathbb{C} b_{1}\right)^{\perp}=\left\{z \in \mathbb{C}^{n} \mid\left\langle z, b_{1}\right\rangle=0\right\}
$$

Now proceed by induction, obtaining an orthonormal basis $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ for \mathbb{C}^{n} consisting of eigenvectors of A, and $B=\left(\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right) \in U(n)$ such that

$$
B^{-1} A B=D\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}\right) \in U(n) .
$$

(v) Immediate from (iv).
(vi) Immediate from $A^{2}=B D\left(e^{2 i \theta_{1}}, e^{2 i \theta_{2}}, \ldots, e^{2 i \theta_{n}}\right) B^{-1}$ and (iv).
(vii) It follows from

$$
e^{\operatorname{tr}\left(\log \left(A A^{t}\right)\right)}=\operatorname{det}\left(A A^{t}\right)=\operatorname{det}\left(A^{2}\right)=e^{\operatorname{tr}\left(\log \left(A^{2}\right)\right)} \in \mathbb{C} \backslash\{0\}
$$

that

$$
\operatorname{tr}\left(\log \left(A A^{t}\right)\right)-\operatorname{tr}\left(\log \left(A^{2}\right)\right) \in 2 \pi i \mathbb{Z} \subset \mathbb{C}
$$

As in [III, Proposition 6.3] choose a path

$$
B: I \rightarrow U(n) ; s \mapsto B(s)
$$

from $B(0)=I_{n}$ to $B(1)=B$, so that

$$
A: I \rightarrow U(n) ; s \mapsto B(s) D\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}\right) B(s)^{-1}
$$

is a path from $A(0)=D\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}\right)$ to the given $A(1)=A \in$ $U(n)$. For $s \in I$ let

$$
\begin{aligned}
& \Sigma_{1}(s)=\operatorname{spectrum}\left(A(s) A(s)^{t}\right) \\
& \Sigma_{2}(s)=\operatorname{spectrum}\left(A(s)^{2}\right)=\left\{e^{2 i \theta_{1}}, e^{2 i \theta_{2}}, \ldots, e^{2 i \theta_{n}}\right\} \subset S^{1}
\end{aligned}
$$

By (vi)

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(I_{n}-A(s) A(s)^{t}\right)\right) & =\left|\Sigma_{1}(s) \cap\{1\}\right| \\
& =\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(I_{n}-A(s)^{2}\right)\right)=\left|\Sigma_{2}(s) \cap\{1\}\right|
\end{aligned}
$$

Since $\Sigma_{1}(s), \Sigma_{2}(s)$ vary continuously with s the function

$$
h: I \rightarrow 2 \pi i \mathbb{Z} \subset \mathbb{C} ; s \mapsto \operatorname{tr}\left(\log \left(A(s) A(s)^{t}\right)\right)-\operatorname{tr}\left(\log \left(A(s)^{2}\right)\right)
$$

is continuous, and hence constant with

$$
\operatorname{tr}\left(\log \left(A A^{t}\right)\right)-\operatorname{tr}\left(\log \left(A^{2}\right)\right)=h(1)=h(0)=0 \in 2 \pi i \mathbb{Z}
$$

Definition 6.14. (i) The η-invariant function is

$$
\begin{aligned}
& \eta: U(n) \rightarrow \mathbb{R} ; A \mapsto \\
& \eta(A)=\frac{1}{\pi i}\left(\operatorname{tr}\left(\log \left(-A^{-2}\right)\right)\right)-\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(I_{n}-A^{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right)\right)
\end{aligned}
$$

If $e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}$ are eigenvalues of A then

$$
\eta(A)=\sum_{j=1}^{n} \eta\left(\theta_{j}\right)=\sum_{j=1}^{n}\left(-2 \theta_{j} / \pi+\left[\theta_{j} / \pi\right]-\left[-\theta_{j} / \pi\right]\right) \in \mathbb{R} .
$$

(ii) The $\widetilde{\eta}$-invariant function is

$$
\begin{aligned}
& \widetilde{\eta}: \widetilde{U(n)} \rightarrow \mathbb{Z} ;(A, \theta) \mapsto \\
& \widetilde{\eta}(A, \theta) ? ? ?=\frac{1}{\pi i}\left(\operatorname{tr}\left(\log \left(-A^{-2}\right)\right)\right)-\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(I_{n}-A^{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right)\right)\left(\operatorname{det}(A)=e^{i \theta}\right)
\end{aligned}
$$

$$
\text { If } e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}} \text { are eigenvalues of } A \text { and }
$$

$$
\sum_{j=1}^{n} \theta_{j}=\theta \in \mathbb{R}
$$

then

$$
\widetilde{\eta}(A, \theta)=2 \sum_{j=1}^{n} E\left(\theta_{j} / \pi\right)=\sum_{j=1}^{n}\left(\left[\theta_{j} / \pi\right]-\left[-\theta_{j} / \pi\right]\right) \in \mathbb{Z} .
$$

Example 6.15. For any $\theta \in \mathbb{R}$ the 1 -dimensional lagrangian

$$
L(\theta)=\mathbb{R}(\cos (\theta), \sin (\theta)) \in \Lambda(1)
$$

is such that $L(\theta)=A(\mathbb{R} \oplus\{0\})$ with $A=\left(e^{i \theta}\right) \in U(1)$. The η-invariant is

$$
\begin{aligned}
\eta(L(\theta)) & =\eta(A) \\
& = \begin{cases}\frac{1}{\pi i}\left(\log \left(-e^{-2 i \theta}\right)\right)=1-2\{\theta / \pi\} & \text { if } \theta / \pi \in \mathbb{R} \backslash \mathbb{Z} \\
0 & \text { if } \theta / \pi \in \mathbb{Z}\end{cases} \\
& =-2((\theta / \pi))=\eta(\theta) \in \mathbb{R}
\end{aligned}
$$

Remark 6.16. (Atiyah, Patodi and Singer [4, p. 411])
The ρ-invariant of S^{1} with respect to the 1-dimensional unitary representation

$$
\alpha: \pi_{1}\left(S^{1}\right)=\mathbb{Z} \rightarrow U(1)=S^{1} ; 1 \mapsto e^{i \theta}
$$

is

$$
\rho_{\alpha}\left(S^{1}\right)=\eta(\theta / 2)=\left\{\begin{array}{ll}
1-2\{\theta / 2 \pi\} & \text { if } \theta / 2 \pi \in \mathbb{R} \backslash \mathbb{Z} \\
0 & \text { if } \theta / 2 \pi \in \mathbb{Z}
\end{array} \in \mathbb{R}\right.
$$

Let $\nabla_{\theta}(0 \leqslant \theta<2 \pi)$ be an analytic family of flat connections on the trivial line bundle over S^{1}, such that the induced family of monodromy representations is given by α. The η-invariant of the corresponding operator of [G]

$$
-i * \nabla_{\theta}: C^{\infty} \rightarrow C^{\infty}
$$

is also given by

$$
\eta\left(-i * \nabla_{\theta}\right)=\eta(\theta / 2) \in \mathbb{R}
$$

(See also Farber and Levine [16, §8]).

Proposition 6.17. (i) If $A \in U(n)$ has eigenvalues $e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}} \in$ S^{1} then

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(I_{n}-A^{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right)\right) \\
&=\text { no. of eigenvalues with } e^{i \theta_{j}}= \pm 1 \\
& \eta(A)=\sum_{j=1}^{n} \eta\left(\theta_{j}\right) \in \mathbb{R}
\end{aligned}
$$

Define

$$
\theta_{j}^{\prime}= \begin{cases}\theta_{j} & \text { if } 0<\theta_{j}<\pi \\ \pi+\theta_{j} & \text { if }-\pi<\theta_{j}<0 \\ \pi / 2 & \text { if } \theta_{j}=0 \text { or } \pi\end{cases}
$$

so that $0 \leqslant \theta_{j}^{\prime}<\pi$ and

$$
\begin{aligned}
& \eta\left(\theta_{j}\right)=1-2\left\{\frac{\theta_{j}}{\pi}\right\}=\eta\left(\theta_{j}^{\prime}\right)=1-\frac{2 \theta_{j}^{\prime}}{\pi} \\
& \eta(A)=\sum_{j=1}^{n} \eta\left(\theta_{j}^{\prime}\right)=\sum_{j=1}^{n}\left(1-\frac{2 \theta_{j}^{\prime}}{\pi}\right) \in \mathbb{R}
\end{aligned}
$$

(ii) The eigenvalues $e^{i \theta_{j}}= \pm 1, \pm i$ contribute $\eta\left(\theta_{j}\right)=0$ to $\eta(A)$.
(iii) A complex conjugate pair $\left\{e^{i \theta}, e^{-i \theta}\right\}$ of eigenvalues contributes $\eta(\theta)+\eta(-\theta)=0 \in \mathbb{R}$ to $\eta(A)$. Thus $\eta(A)=0$ for $A \in O(n) \subset U(n)$.
(iv) The inverse $A^{-1}=A^{*} \in U(n)$ has eigenvalues $e^{-i \theta_{j}}$, so

$$
\eta\left(A^{-1}\right)=\eta\left(A^{*}\right)=\sum_{j=1}^{n} \eta\left(-\theta_{j}\right)=\sum_{j=1}^{n}-\eta\left(\theta_{j}\right)=-\eta(A) \in \mathbb{R}
$$

(v) The η-invariant of $A \in U(n)$ depends only on the lagrangian $L=$ $A\left(\mathbb{R}^{n} \oplus\{0\}\right) \in \Lambda(n)$, allowing the definition

$$
\eta: U(n) / O(n)=\Lambda(n) \rightarrow \mathbb{R} ; L=A\left(\mathbb{R}^{n} \oplus\{0\}\right) \mapsto \eta(L)=\eta(A)
$$

(vi) The η-invariant is such that

$$
\eta(L)=\eta(A)=\frac{1}{\pi i}\left(\operatorname{tr}\left(\log \left(-\left(A^{t} A\right)^{-1}\right)\right)-\operatorname{dim}_{\mathbb{R}}\left(L \cap\left(\mathbb{R}^{n} \oplus\{0\}\right)\right)\right.
$$

for any $L \in \Lambda(n), A \in U(n)$ with $L=A\left(\mathbb{R}^{n} \oplus 0\right)$.
(vii) For any $A_{1}, A_{2} \in U(n)$

$$
\eta\left(A_{1}\right)+\eta\left(A_{2}\right)-\eta\left(A_{1} A_{2}\right)=\sigma\left(L_{0}, L_{1}, L_{2}\right) \in \mathbb{Z} \subset \mathbb{R}
$$

is the triple signature of the lagrangians

$$
L_{0}=\mathbb{R}^{n} \oplus 0, L_{1}=A_{1}\left(\mathbb{R}^{n} \oplus 0\right), L_{2}=A_{1} A_{2}\left(\mathbb{R}^{n} \oplus 0\right) \in \Lambda(n)
$$

(viii) For any $A \in U(n)$

$$
2 \eta(A)-\eta\left(A^{2}\right)=\sum_{j=1}^{n} \operatorname{sign}\left(\sin 2 \theta_{j}\right) \in \mathbb{Z} \subset \mathbb{R}
$$

with $e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}$ the eigenvalues of A.

Remark 6.18. (i) The expression of $\eta(A)$ as an integral goes back to the construction due to Souriau [54, p.126] and Lion-Vergne [[28, p.96] of the Maslov index of $(L, \theta) \in \widetilde{\Lambda}(n)$ with $L \cap\left(\mathbb{R}^{n} \oplus\{0\}\right)=\{0\}$ as

$$
\operatorname{Mas}(L, \theta)=\frac{1}{2 \pi}\left(\theta+i \operatorname{tr}\left(\log \left(-A A^{t}\right)\right)\right) \in\{m / 2 \mid m \in \mathbb{Z}\} \subset \mathbb{R}
$$

for $A \in U(n)$ such that $L=A\left(\mathbb{R}^{n} \oplus\{0\}\right)$.
(ii) The definition of $\eta: \Lambda(n) \rightarrow \mathbb{R}$ is motivated by the η-invariant of Atiyah-Patodi-Singer [4, p.411]. See Neumann [38, p.150], Atiyah [3, 5.12], Turaev [56, Thm. 5], Cappell-Lee-Miller [i], p.152], Bunke [8 , p.420], Lesch and Wojciechowski [266, Theorem 2.1], Kirk and Lesch [233, Theorem 4.4] and Müller [36, Theorem 2.21] etc.
(iii) ([4], [[1], pp. 134-135, 151-154]) For any lagrangians $L_{1}, L_{2} \in$ $\Lambda(n)$ there is defined a first-order real self-adjoint elliptic operator $D\left(L_{1}, L_{2}\right)=-J \frac{d}{d t}$ on the Sobolev completion of the smooth functions $f:[0,1] \rightarrow \mathbb{R}^{2 n}$ satisfying the boundary conditions $f(0) \in L_{1}$, $f(1) \in L_{2}$ with

$$
J: \mathbb{R}^{2 n}=\mathbb{R}^{n} \oplus \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \oplus \mathbb{R}^{n} ;(x, y) \mapsto(-y, x)
$$

the standard complex structure. Without loss of generality can take

$$
L_{1}=\mathbb{R}^{n} \oplus\{0\}, L_{2}=\sum_{j=1}^{n} \mathbb{R} e^{i \theta_{j}} \in \Lambda(n)
$$

for some $\theta_{1}, \theta_{2}, \ldots, \theta_{n} \in[0, \pi)$. The eigenvectors of $D\left(L_{1}, L_{2}\right)$ are
$f_{j, m_{j}}(t)=e^{i\left(\pi m_{j}+\theta_{j}\right) t}\left(0, \ldots, 0, x_{j}, 0, \ldots, 0\right)\left(1 \leqslant j \leqslant n, m_{j} \in \mathbb{Z}, x_{j} \neq 0 \in \mathbb{R}\right)$
with eigenvalues $\lambda_{j, m_{j}}=\pi m_{j}+\theta_{j}$. The generalized ζ-function $\zeta(s, x)$ is defined for $x \in(0,1]$ by

$$
\zeta(s, x)=\sum_{k=0}^{\infty}(x+k)^{-s}
$$

with a unique meromorphic extension to $s=0$ with

$$
\zeta(0, x)=1 / 2-x= \begin{cases}-((x)) & \text { if } x \in(0,1) \\ -1 / 2 & \text { if } x=1\end{cases}
$$

In terms of $\zeta(s, x)$ the η-invariant of $D\left(L_{1}, L_{2}\right)$ is determined by

$$
\begin{aligned}
\eta_{D\left(L_{1}, L_{2}\right)}(s) & =\sum_{\lambda_{j, m_{j}} \neq 0} \frac{\operatorname{sgn}\left(\lambda_{j, m_{j}}\right)}{\left|\lambda_{j, m_{j}}\right|^{s}} \\
& =\sum_{m_{j}>0} \frac{1}{\left(\pi m_{j}+\theta_{j}\right)^{s}}-\sum_{m_{j}<0} \frac{1}{\left(\pi m_{j}+\theta_{j}\right)^{s}}\left(0 \leqslant \theta_{j}<\pi\right) \\
& =\frac{1}{\pi^{s}} \sum_{j=1}^{n}\left(\zeta\left(s, \theta_{j} / \pi\right)-\zeta\left(s,-\theta_{j} / \pi\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\eta\left(D\left(L_{1}, L_{2}\right)\right) & =\eta_{D\left(L_{1}, L_{2}\right)}(0) \\
& =-2 \sum_{\theta_{j}}\left(\left(\frac{\theta_{j}}{\pi}\right)\right) \\
& =\sum_{\theta_{j} \neq 0}\left(1-\frac{2 \theta_{j}}{\pi}\right)=\eta(A) \in \mathbb{R} .
\end{aligned}
$$

More generally, for any lagrangians L_{1}, L_{2} in a symplectic form (K, ϕ) over \mathbb{R} a choice of complex structure J on (K, ϕ) determines a unitary matrix $A \in U(n)\left(n=\operatorname{dim}_{\mathbb{R}}(K) / 2\right)$ such that $A\left(L_{1}\right)=L_{2}$, and if A has eigenvalues $\pm e^{i \theta_{1}}, \pm e^{i \theta_{2}}, \ldots, \pm e^{i \theta_{n}}$ then

$$
\begin{aligned}
\eta\left(D\left(L_{1}, L_{2}\right)\right) & =\eta(0)=\sum_{\theta_{j} \neq 0}\left(1-\frac{2 \theta_{j}}{\pi}\right) \\
& =\frac{1}{\pi i}\left(\operatorname{tr}\left(\log \left(-A^{-2}\right)\right)\right)-\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(I_{n}-A^{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right)\right) \\
& =\eta(A) \in \mathbb{R}
\end{aligned}
$$

(iv) For any $A \in U(n)$ there is also defined a complex self-adjoint operator $D^{\sharp}\left(A A^{t}\right)=-i \frac{d}{d t}$ on the complex vector space of functions $\psi:[0,1] \rightarrow \mathbb{C}^{n}$ satisfying

$$
\psi(1)=A A^{t} \psi(0) \in \mathbb{C}^{n}
$$

with the same η-invariant as in A

$$
\begin{aligned}
\eta\left(-i \frac{d}{d t}\right) & =\frac{1}{\pi i}\left(\operatorname{tr}\left(\log \left(-\left(A A^{t}\right)^{-1}\right)\right)-\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(I_{n}-A A^{t}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right)\right)\right. \\
& =\eta(A) \in \mathbb{R}
\end{aligned}
$$

The η-invariant $\eta(N) \in \mathbb{R}$ was defined by Atiyah, Patodi and Singer [4] for a 3-dimensional Riemannian manifold N. If $N=\partial P$ is the
boundary of a 4-dimensional Riemanninan manifold P with a product metric near ∂P then

$$
\eta(N)=\frac{1}{3} \int_{N} p_{1}-\sigma(P) .
$$

Example 6.19. (Atiyah, Patodi, Singer [4], Morifuji [35]) The η invariant of the 3 -dimensional lens space $L(p, q)$ with respect to the standard metric is

$$
\eta(L(p, q))=-\frac{1}{p} \sum_{k=1}^{p-1} \cot \left(\frac{\pi k}{p}\right) \cot \left(\frac{\pi q k}{p}\right)=-4 s(q, p) \in \mathbb{R}
$$

with $s(x, y)$ the Dedekind sum defined for coprime integers x, y by

$$
s(x, y)=\sum_{j=1}^{y}\left(\left(\frac{x j}{y}\right)\right)\left(\left(\frac{j}{y}\right)\right) \in \mathbb{R} .
$$

Example 6.20. (Atiyah [3, p.172]) Let Σ_{n} be a closed surface of genus n, with symplectic intersection pairing $\left(H^{1}\left(\Sigma_{n} ; \mathbb{R}\right), \phi\right)$. The total space of a fibre bundle

$$
\Sigma_{n} \rightarrow T^{3} \rightarrow S^{1}
$$

is the mapping torus of the monodromy automorphism $A: \Sigma_{n} \rightarrow \Sigma_{n}$

$$
T=T(A)=\left\{\Sigma_{n} \times I \mid(x, 0)=(A(x), 1)\right\}
$$

The η-invariant of $T(A)$ is

$$
\eta(T(A))=\eta\left(A^{*}:\left(H^{1}\left(\Sigma_{n} ; \mathbb{R}\right), \phi\right) \rightarrow\left(H^{1}\left(\Sigma_{n} ; \mathbb{R}\right), \phi\right)\right) \in \mathbb{R}
$$

with

$$
A^{*}: H^{1}\left(\Sigma_{n} ; \mathbb{R}\right) \rightarrow H^{1}\left(\Sigma_{n} ; \mathbb{R}\right)
$$

PROBLEM: Suppose given a 3 -dimensional Riemannian manifold N with a decomposition $N=N_{1} \cup_{M} N_{2}$ for a separating hypersurface $M \subset N$, such that the metric on N is a product in a neighbourhood of M. Given a complex structure J on the intersection form $\left(H^{1}(M), \phi\right)$ over \mathbb{R} have lagrangians

$$
L_{j}=\operatorname{im}\left(H^{1}(N) \rightarrow H^{1}(M)\right)(j=1,2)
$$

Explain the Lesch and Wojciechowski [26, Theorem 2.1], Bunke [8] Bunke [8 , p.420] glueing formula

$$
\eta(N)=\eta\left(N_{1}, M\right)+\eta\left(N_{2}, M\right)+\eta\left(H^{1}(M), \phi, J ; L_{1}, L_{2}\right) \in \mathbb{R} ? ?
$$

If $N=T\left(A: \Sigma_{n} \rightarrow \Sigma_{n}\right)$ take

$$
M=\Sigma_{n} \cup \Sigma_{n}, N_{1}=\Sigma_{n} \times I, N_{2}=\Sigma_{n} \times I
$$

A point $\widetilde{L}=(L, x) \in \widetilde{\Lambda}(n)$ of the universal cover of the space $\Lambda(n)$ consists of a lagrangian $L \in \Lambda(n)$ and a real number $x \in \mathbb{R}$ such that

$$
\operatorname{det} A^{2}=e^{2 i x} \in S^{1}
$$

for any $A \in U(n)$ with $L=A\left(\mathbb{R}^{n} \oplus\{0\}\right)$.
Remark 6.21. Souriau [54], Leray [25.5], Arnold [2]], Turaev [55] and de Gosson [14, [15] proved that there is a unique locally constant function

$$
m: \widetilde{\Lambda}(n) \times \widetilde{\Lambda}(n) \rightarrow \mathbb{Z}
$$

such that

$$
m\left(\widetilde{L}_{1}, \widetilde{L}_{2}\right)+m\left(\widetilde{L}_{2}, \widetilde{L}_{3}\right)+m\left(\widetilde{L}_{3}, \widetilde{L}_{1}\right)=\sigma\left(L_{1}, L_{2}, L_{3}\right) \in \mathbb{Z} .
$$

In the terminology of Remark [.]

$$
\begin{aligned}
m\left(\left(L_{1}, x_{1}\right),\left(L_{2}, x_{2}\right)\right) & =\Phi\left(A^{2}, 2\left(x_{1}-x_{2}\right)\right) \\
& =4 \sum_{j=1}^{n} E\left(2 \theta_{j}\right) \\
& =4 \sum_{j=1}^{n}\left(\theta_{j} / \pi-\left(\left(\theta_{j} / \pi\right)\right)\right) \in \mathbb{Z} \subset \mathbb{R}
\end{aligned}
$$

with $e^{i \theta_{j}} \in S^{1}$ the eigenvalues of $A \in U(n)$ such that $A\left(L_{2}\right)=L_{1}$, and θ_{j} chosen so that

$$
x_{1}-x_{2}=\sum_{j=1}^{n} \theta_{j} \in \mathbb{R} .
$$

For $n=1$

$$
\begin{aligned}
m\left((L(x), x),\left(L\left(x^{\prime}\right), x^{\prime}\right)\right) & =\Phi\left(e^{2 i\left(x-x^{\prime}\right)}, x-x^{\prime}\right) \\
& =E\left(x-x^{\prime}\right) \\
& =\left(\left(x-x^{\prime}\right) / \pi-\left(\left(\left(x-x^{\prime}\right) / \pi\right)\right)\right) \\
& =\left[\left(x-x^{\prime}\right) / \pi\right] \in \mathbb{Z}
\end{aligned}
$$

?????

$$
E: \mathbb{R} \rightarrow \mathbb{R} ; x \mapsto \begin{cases}{[x]+1 / 2} & \text { if } x \in \mathbb{R} \backslash \mathbb{Z} \\ x & \text { if } x \in \mathbb{Z}\end{cases}
$$

Definition 6.22. The lagrangians $L_{1}, L_{2} \in \Lambda(n)$ are transverse if

$$
L_{1} \cap L_{2}=\{0\} \subset \mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

i.e. if L_{1}, L_{2} are direct complements in $\mathbb{R}^{n} \oplus \mathbb{R}^{n}$.

For transverse $L_{1}, L_{2} \in \Lambda(n)$ there is defined a nonsingular symmetric form $\left(L_{1}, \phi_{1}\right)$ over \mathbb{R} such that

$$
\sigma\left(\mathbb{R}^{n} \oplus\{0\}, L_{1}, L_{2}\right)=\sigma\left(L_{1}, \phi_{1}\right) \in \mathbb{Z}
$$

and for $\widetilde{L}_{1}=\left(L_{1}, x_{1}\right), \widetilde{L}_{2}=\left(L_{2}, x_{2}\right) \in \widetilde{\Lambda}(n)$

$$
m\left(\widetilde{L}_{1}, \widetilde{L}_{2}\right)=\sigma\left(L_{1}, \phi_{1}\right)+\left(x_{1}-x_{2}\right) / 2 \pi \in \mathbb{Z}+1 / 2
$$

such that for any $\widetilde{L}_{1}, \widetilde{L}_{2}, \widetilde{L}_{3} \in \widetilde{\Lambda}(n)$

7. Complex structures

Definition 7.1. A complex structure on a real vector space K is an automorphism $J: K \rightarrow K$ such that

$$
J^{2}=-1: K \rightarrow K
$$

Let (K, J) denote the corresponding complex vector space, with underlying real vector space K and $i=J: K \rightarrow K$.

Proposition 7.2. The functor
\{real vector spaces with a complex structure\}

$$
\rightarrow\{\text { complex vector spaces }\} ;(K, J) \mapsto(K, J)
$$

is an equivalence of categories, with $\operatorname{dim}_{\mathbb{C}}(K, J)=\operatorname{dim}_{\mathbb{R}}(K) / 2$.

Definition 7.3. A compatible complex structure on a nonsingular symplectic form (K, ϕ) over \mathbb{R} is a complex structure $J: K \rightarrow K$ such that
(i) $J^{*} \phi J=\phi: K \rightarrow K^{*}$,
(ii) $\phi J=(\phi J)^{*}: K \rightarrow K^{*}$ is a positive definite symmetric form over \mathbb{R}, with $\phi(x, J x)>0$ for all $x \neq 0 \in K$.

A compatible complex structure on (K, ϕ) is a positive definite symmetric form (K, c) such that $J=c^{-1} \phi: K \rightarrow K$ is a complex structure on K.

Proposition 7.4. The functor
$\{$ nonsingular symplectic forms over \mathbb{R}
with a compatible complex structure $\}$
$\rightarrow\{$ positive definite hermitian forms over $\mathbb{C}\}$;
$(K, \phi, J) \mapsto((K, J),(\phi, J)),(\phi, J)(x, y)=\phi(x, J y)+i \phi(x, y)$
is an equivalence of categories.

Example 7.5. (i) The standard complex structure

$$
J_{0}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right): K=\mathbb{R}^{n} \oplus \mathbb{R}^{n} \rightarrow K=\mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

is compatible with the standard symplectic form

$$
(K, \phi)=H_{-}\left(\mathbb{R}^{n}\right)=\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n},\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)
$$

corresponding to the positive definite hermitian form $\left(\mathbb{C}^{n},\langle\rangle,\right)$.
(ii) If $J: K \rightarrow K$ is a complex structure compatible with (K, ϕ) then $-J_{0} J: K \rightarrow K$ is an automorphism with a symmetric positive definite symplectic matrix.

Proposition 7.6. (McDuff and Salamon [37, Prop. 2.48])
For a fixed nonsingular symplectic form (K, ϕ) the space of compatible complex structures J is contractible, and is homeomorphic to the space of symmetric positive definite symplectic $2 n \times 2 n$ matrices.

Proposition 7.7. If J is a compatible complex structure on a nonsingular symplectic form (K, ϕ) over \mathbb{R} and L is a lagrangian of (K, ϕ) then $J L$ is a lagrangian complement of L, with an isomorphism of real vector spaces

$$
\phi^{\prime}: J L \rightarrow L^{*} ; J x \mapsto(y \mapsto \phi(x, J y))
$$

and a positive definite symmetric form

$$
\lambda=\left.\phi J\right|_{L}: L \rightarrow L^{*} ; x \mapsto(y \mapsto \phi(x, J y))
$$

such that

$$
\begin{aligned}
& J=\left(\begin{array}{cc}
0 & -\lambda^{-1} \phi^{\prime} \\
\phi^{\prime-1} \lambda & 0
\end{array}\right): K=L \oplus J L \rightarrow K=L \oplus J L \\
& \phi=\left(\begin{array}{cc}
0 & \phi^{\prime} \\
-\left(\phi^{\prime}\right)^{*} & 0
\end{array}\right): K=L \oplus J L \rightarrow K^{*}=L^{*} \oplus J L^{*} \\
& \phi J=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \left(\phi^{\prime}\right)^{*} \lambda^{-1} \phi^{\prime}
\end{array}\right): K=L \oplus J L \rightarrow K^{*}=L^{*} \oplus J L^{*} .
\end{aligned}
$$

The isomorphism of real vector spaces

$$
\alpha_{L}: L \oplus L^{*} \rightarrow K=L \oplus J L ;(x, y) \mapsto\left(x, \phi^{\prime-1}(y)\right)
$$

defines an isomorphism of nonsingular symplectic forms over \mathbb{R} with compatible complex structure

$$
\alpha_{L}:\left(H_{-}(L),\left(\begin{array}{cc}
0 & -\lambda^{-1} \\
\lambda & 0
\end{array}\right)\right) \rightarrow(K, \phi, J)
$$

such that

$$
\alpha_{L}(L)=L, \alpha_{L}\left(L^{*}\right)=J L .
$$

A λ-orthonormal basis $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ for L extends to a ϕJ-orthonormal basis $\left\{b_{1}, b_{2}, \ldots, b_{n}, J b_{1}, b_{2}, \ldots, J b_{n}\right\}$ for K, corresponding to an isomorphism of positive definite symmetric forms over \mathbb{R}

$$
\beta:\left(\mathbb{R}^{n},\langle,\rangle\right) \rightarrow(L, \lambda)
$$

and an extension of β to an isomorphism of positive definite hermitian forms over \mathbb{C}

$$
\begin{aligned}
& \alpha_{(L, \beta)}=\alpha_{L}\left(\begin{array}{cc}
\beta & 0 \\
0 & \left(\beta^{*}\right)^{-1}
\end{array}\right): \\
& \left(\mathbb{C}^{n},\langle,\rangle\right)=\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) \rightarrow((K, J),(\phi, J))
\end{aligned}
$$

such that

$$
\alpha_{(L, \beta)}\left(\mathbb{R}^{n} \oplus 0\right)=L, \alpha_{(L, \beta)}\left(0 \oplus \mathbb{R}^{n}\right)=J L \subset K
$$

(iii) Let (K, ϕ) be a nonsingular symplectic form over \mathbb{R}, and let L be a lagrangian in (K, ϕ). The compatible complex structures J on (K, ϕ) are in one-one correspondence with positive definite symmetric forms $\left(L^{\prime}, \lambda^{\prime}\right)$ over \mathbb{R} on lagrangians L^{\prime} complementary to L. Given J let

$$
\left(L^{\prime}, \lambda^{\prime}\right)=\left(J L,\left.(\phi J)\right|_{J L}\right)
$$

Conversely, given $\left(L^{\prime}, \lambda^{\prime}\right)$ note that the restriction of ϕ is an isomorphism

$$
\phi^{\prime}=\phi \mid: L^{\prime} \rightarrow L^{*}
$$

such that

$$
\phi=\left(\begin{array}{cc}
0 & \phi^{\prime} \\
-\phi^{\prime *} & 0
\end{array}\right): K^{*}=L \oplus L^{\prime} \rightarrow K^{*}=L^{*} \oplus L^{\prime *}
$$

and

$$
J=\left(\begin{array}{cc}
0 & \left(-\phi^{\prime *}\right)^{-1}\left(\lambda^{\prime}\right)^{-1} \\
\lambda^{\prime} \phi^{\prime *} & 0
\end{array}\right): K=L \oplus L^{\prime} \rightarrow K=L \oplus L^{\prime}
$$

defines a compatible complex structure on (K, ϕ) such that

$$
\phi J=\left(\begin{array}{cc}
\phi^{\prime}\left(\lambda^{\prime}\right)^{-1} \phi^{\prime *} & 0 \\
0 & \lambda^{\prime}
\end{array}\right): K=L \oplus L^{\prime} \rightarrow K^{*}=L^{*} \oplus L^{\prime *}
$$

In particular, (K, ϕ) admits a compatible complex structure J.

8. Symplectic and hermitian automorphisms

Definition 8.1. (i) A symplectic automorphism (K, ϕ, A) is an automorphism $A:(K, \phi) \rightarrow(K, \phi)$ of a nonsingular symplectic form over \mathbb{R}, with

$$
A^{*} \phi A=\phi: K \rightarrow K^{*}
$$

or equivalently

$$
\phi(A x, A y)=\phi(x, y) \in \mathbb{R}(x, y \in K)
$$

(ii) A hermitian automorphism (K, ϕ, J, A) is a symplectic automorphism (K, ϕ, A) with a compatible complex structure $J: K \rightarrow K$ such that $A J=J A: K \rightarrow K$.

Remark 8.2. (i) The symplectic group

$$
S p(2 n)=\left\{A \in G L_{2 n}(\mathbb{R}) \mid A^{t} \phi A=\phi\right\}
$$

is the group of symplectic automorphisms $\left(H_{-}\left(\mathbb{R}^{n}\right), A\right)$.
(ii) Given a nonsingular symplectic form (K, ϕ) over \mathbb{R} choose complementary lagrangians L, L^{*} for (K, ϕ). Extend a basis $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ for L to a basis $\left\{b_{1}, b_{2}, \ldots, b_{2 n}\right\}$ for K with $b_{n+i}=b_{i}^{*}$ and

$$
\phi\left(b_{i}, b_{j}\right)= \begin{cases}1 & \text { if } j=i+n \\ -1 & \text { if } i=j+n \\ 0 & \text { otherwise }\end{cases}
$$

so that $(K, \phi)=H_{-}\left(\mathbb{R}^{n}\right)$ (up to isomorphism). The matrix of a symplectic automorphism (K, ϕ, A) with respect to such a basis $\left\{b_{1}, b_{2}, \ldots, b_{2 n}\right\}$
for K is a symplectic matrix $A \in S p(2 n)$.
(iii) The unitary group $U(n)$ for $n \geqslant 1$ is the group of hermitian automorphisms $\left(\mathbb{C}^{n},\langle\rangle, A,\right)$, that is

$$
U(n)=\left\{A \in G L_{n}(\mathbb{C}) \mid A^{*} A=I\right\}
$$

(iv) For any $A \in S p(2 n)$ there is defined a symplectic formation

$$
\left(H_{-}\left(\mathbb{R}^{n}\right) ; \mathbb{R}^{n} \oplus\{0\}, A\left(\mathbb{R}^{n} \oplus\{0\}\right)\right)
$$

As in Proposition [6.6 let $E S p(2 n) \subset S p(2 n)$ be the subgroup of the symplectic $2 n \times 2 n$ matrices A such that $A\left(\mathbb{R}^{n} \oplus\{0\}\right)=\mathbb{R}^{n} \oplus\{0\}$. The forgetful map

$$
\begin{aligned}
U(n) \rightarrow S p(2 n) ; U=X+i Y \mapsto A & =\left(\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right) \\
\left(X^{t} Y=Y^{t} X, X^{t} X+Y^{t} Y\right. & =I)
\end{aligned}
$$

induces a homeomorphism

$$
U(n) / O(n) \rightarrow S p(2 n) / E S p(2 n) ; U \mapsto A
$$

namely the composite of the homeomorphism

$$
U(n) / O(n) \rightarrow \Lambda(n) ; U \mapsto U\left(\mathbb{R}^{n} \oplus\{0\}\right)
$$

and the inverse of the homeomorphism

$$
S p(2 n) / E S p(2 n) \rightarrow \Lambda(n) ; A \mapsto A\left(\mathbb{R}^{n} \oplus\{0\}\right)
$$

Proposition 8.3. (i) For any symplectic automorphism (K, ϕ, A) there is defined a symplectic formation over \mathbb{R}

$$
\left(K \oplus K, \phi \oplus-\phi ; \Delta_{K},(A \oplus 1) \Delta_{K}\right)
$$

(ii) If L is any lagrangian of (K, ϕ) there is defined a symplectic formation ($K, \phi ; L, A(L)$).
(iii) For any two lagrangians L_{1}, L_{2} of a nonsingular symplectic form (K, ϕ) over \mathbb{R} and any complex structure $J: K \rightarrow K$ compatible with (K, ϕ) there exists a hermitian automorphism (K, ϕ, J, A) such that $A\left(L_{1}\right)=L_{2}$.

Proof. (i)+(ii) Standard.
(iii) As in Proposition $\mathbb{\square} .7$ (ii) choose ϕJ-orthonormal bases

$$
\left\{b_{1}, \ldots, b_{n}, J b_{1}, \ldots, J b_{n}\right\},\left\{b_{1}^{\prime}, \ldots, b_{n}^{\prime}, J b_{1}^{\prime}, \ldots, J b_{n}^{\prime}\right\}
$$

for K such that

$$
\mathbb{R} b_{1} \oplus \cdots \oplus \mathbb{R} b_{n}=L, \mathbb{R} b_{1}^{\prime} \oplus \cdots \oplus \mathbb{R} b_{n}^{\prime}=L^{\prime}
$$

The isomorphisms of $\mathbb{T . 7}$ (ii)

$$
\alpha_{(L, \beta)}, \alpha_{\left(L^{\prime}, \beta^{\prime}\right)}:\left(\mathbb{C}^{n},\langle,\rangle\right) \rightarrow(K, \phi, J)
$$

are such that

$$
\alpha_{(L, \beta)}\left(\mathbb{R}^{n} \oplus 0\right)=L, \alpha_{\left(L^{\prime}, \beta^{\prime}\right)}\left(\mathbb{R}^{n} \oplus 0\right)=L^{\prime} \subset K
$$

The coefficients $x_{j k}, y_{j k} \in \mathbb{R}$ in the linear combinations

$$
b_{j}^{\prime}=\sum_{k=1}^{n} x_{j k} b_{k}+\sum_{k=1}^{n} y_{j k} J b_{k} \in K
$$

are the real and complex parts of a unitary matrix

$$
U=\left(x_{j k}+i y_{j k}\right) \in U(n),
$$

namely the matrix of

$$
U=\alpha_{\left(L^{\prime}, \beta^{\prime}\right)}^{-1} \alpha_{(L, \beta)}:\left(\mathbb{C}^{n},\langle,\rangle\right) \rightarrow\left(\mathbb{C}^{n},\langle,\rangle\right)
$$

with respect to the \mathbb{C}-basis $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$.
Proposition 8.4. Let (K, ϕ, A) be a symplectic automorphism. (i) The characteristic polynomial

$$
\operatorname{ch}_{A}(z)=\operatorname{det}(z I-A: K[z] \rightarrow K[z]) \in \mathbb{R}[z]
$$

is a monic polynomial such that

$$
\begin{aligned}
& \text { degree }\left(\operatorname{ch}_{A}(z)\right)=\operatorname{dim}_{\mathbb{R}}(K)=2 n \\
& \operatorname{ch}_{A}(0)=\operatorname{det}(-A: K \rightarrow K)=\operatorname{det}(A: K \rightarrow K) \neq 0 \in \mathbb{R} \\
& \operatorname{ch}_{A}(z)=z^{2 n} \operatorname{det}(A) \operatorname{ch}_{A}\left(z^{-1}\right) \in \mathbb{R}\left[z, z^{-1}\right]
\end{aligned}
$$

with roots $\lambda \in \mathbb{C} \backslash\{0\}$ the eigenvalues of A.
(ii) If $x, y \in K$ are eigenvectors of A with eigenvalues $\lambda, \mu \in \mathbb{R}$ then

$$
\phi(A x, A y)=\lambda \mu \phi(x, y)=\phi(x, y) \in \mathbb{R},
$$

so if $\lambda \mu \neq 1$ then $\phi(x, y)=0 \in \mathbb{R}$.
(iii) If $\lambda \in \mathbb{C}$ is an eigenvalue of A then $\lambda \neq 0$ and $\bar{\lambda}, \lambda^{-1} \in \mathbb{C} \backslash\{0\}$ are also eigenvalues. The characteristic polynomial of A factors as $\operatorname{ch}_{A}(z)$

$$
=(z-1)^{2 p}(z+1)^{2 q}\left(\prod_{j=1}^{n}\left(z^{2}+a_{j} z+1\right)^{r_{j}}\right)\left(\prod_{k=1}^{m}\left(z^{2}+b_{k} z+1\right)^{s_{k}}\right) \in \mathbb{R}[z]
$$

$$
\left(p, q \geqslant 0,\left|a_{j}\right|<2,\left|b_{k}\right|>2, r_{j}, s_{k} \geqslant 1\right)
$$

with distinct $a_{j} \in(-2,2), b_{k} \in(-\infty,-2) \cup(2, \infty)$. There are three types of eigenvalue :
(a) the $2(p+q)$ parabolic eigenvalues in $\{1,-1\}$,
(b) the $2 \sum_{j=1}^{n} r_{j}$ elliptic eigenvalues
$\lambda_{j}^{+}=\frac{-a_{j}+i \sqrt{4-\left(a_{j}\right)^{2}}}{2}, \lambda_{j}^{-}=\frac{-a_{j}-i \sqrt{4-\left(a_{j}\right)^{2}}}{2} \in S^{1} \backslash\{-1,+1\}$
with $\lambda_{j}^{+}=\left(\lambda_{j}^{-}\right)^{-1}=\bar{\lambda}_{j}^{-} \neq \lambda_{j}^{-}$.
(c) the $2 \sum_{k=1}^{m} s_{k}$ hyperbolic eigenvalues

$$
\begin{aligned}
\mu_{k}^{+}= & \frac{-b_{k}+\sqrt{\left(b_{k}\right)^{2}-4}}{2}, \mu_{k}^{-}=\frac{-b_{k}-\sqrt{\left(b_{k}\right)^{2}-4}}{2} \in \mathbb{R} \backslash\{-1,+1\} \\
& \text { with } \mu_{k}^{+}=\left(\mu_{k}^{-}\right)^{-1} \neq \mu_{k}^{-}
\end{aligned}
$$

Proof. (i) It follows from

$$
z I-A=-z A \phi^{-1}\left(z^{-1} I-A^{*}\right) \phi: K \rightarrow K^{*}
$$

that

$$
\begin{aligned}
\operatorname{ch}_{A}(z) & =\operatorname{det}(-z A) \operatorname{det}\left(z^{-1} I-A^{t}\right) \\
& =z^{2 n} \operatorname{det}(A) \operatorname{ch}_{A}\left(z^{-1}\right) \in \mathbb{R}\left[z, z^{-1}\right]
\end{aligned}
$$

(ii) Standard.
(iii) Immediate from (i).

Definition 8.5. Let (K, ϕ, A) be a symplectic automorphism.
(i) (K, ϕ, A) is parabolic if $K=K_{p a r}$, i.e. if every eigenvalue of A is parabolic, so that

$$
\operatorname{ch}_{A}(z)=(z-1)^{2 p}(z+1)^{2 q}(p, q \geqslant 0) .
$$

(iii) (K, ϕ, A) is elliptic if $K=K_{\text {ell }}$, i.e. if every eigenvalue of A is elliptic, so that

$$
\operatorname{ch}_{A}(z)=\prod_{j=1}^{n}\left(z^{2}+a_{j} z+1\right)^{r_{j}}\left(a_{j} \in \mathbb{R},\left|a_{j}\right|<2, r_{j} \geqslant 1\right)
$$

(ii) (K, ϕ, A) is hyperbolic if $K=K_{\text {hyp }}$, i.e. if every eigenvalue of A is hyperbolic, so that

$$
\operatorname{ch}_{A}(z)=\prod_{k=1}^{m}\left(z^{2}+b_{k} z+1\right)^{s_{k}}\left(b_{k} \in \mathbb{R},\left|b_{k}\right|>2, s_{k} \geqslant 1\right)
$$

Proposition 8.6. Every symplectic automorphism (K, ϕ, A) has a canonical splitting as a sum of a parabolic, a hyperbolic and an elliptic automorphism

$$
(K, \phi, A)=\left(K_{\text {par }}, \phi_{\text {par }}, A_{\text {par }}\right) \oplus\left(K_{\text {ell }}, \phi_{\text {ell }}, A_{\text {ell }}\right) \oplus\left(K_{\text {hyp }}, \phi_{\text {hyp }}, A_{\text {hyp }}\right)
$$

with

$$
\begin{aligned}
& \operatorname{ch}_{A_{p a r}}(z)=(z-1)^{2 p}(z+1)^{2 q}(p, q \geqslant 0), \\
& \operatorname{ch}_{A_{\text {ell }}}(z)=\prod_{j=1}^{n}\left(z^{2}+a_{j} z+1\right)^{r_{j}}\left(a_{j} \in \mathbb{R},\left|a_{j}\right|<2, r_{j} \geqslant 1\right), \\
& \operatorname{ch}_{A_{h y p}}(z)=\prod_{k=1}^{m}\left(z^{2}+b_{k} z+1\right)^{s_{k}}\left(b_{k} \in \mathbb{R},\left|b_{k}\right|>2, s_{k} \geqslant 1\right) .
\end{aligned}
$$

The subspaces

$$
\begin{aligned}
& L^{+}=\sum_{k=1}^{m} \operatorname{ker}\left(\left(\mu_{k}^{+} I-A\right)^{s_{k}}: K \rightarrow K\right) \\
& L^{-}=\sum_{k=1}^{m} \operatorname{ker}\left(\left(\mu_{k}^{-} I-A\right)^{s_{k}}: K \rightarrow K\right) \subset K_{h y p}
\end{aligned}
$$

are complementary lagrangians in $\left(K_{\text {hyp }}, \phi_{\text {hyp }}\right)$.

Proof. Factorize the characteristic polynomial of (K, ϕ, A) as

$$
\operatorname{ch}_{A}(z)=\operatorname{ch}_{A_{p a r}}(z) \operatorname{ch}_{A_{\text {hyp }}}(z) \operatorname{ch}_{A_{\text {ell }}}(z)
$$

and let

$$
K_{\#}=\operatorname{ker}\left(\operatorname{ch}_{A_{\#}}(A): K \rightarrow K\right)(\#=\text { par, ell, hyp }) .
$$

Definition 8.7. Let (K, ϕ, A) be symplectic automorphism.
(i) For $\omega \in S^{1}$ define the ω-signature of (K, ϕ, A) to be the signature

$$
\sigma_{\omega}(K, \phi, A)=\sigma\left(\mathbb{C} \otimes_{\mathbb{R}} K,(\phi, A, \omega)\right)
$$

of the hermitian form over \mathbb{C} given by

$$
(\phi, A, \omega)=(1-\omega)\left(I-A^{*}\right) \phi+(1-\bar{\omega}) \phi^{*}(I-A): \mathbb{C} \otimes_{\mathbb{R}} K \rightarrow \mathbb{C} \otimes_{\mathbb{R}} K^{*} .
$$

If $\omega=1$ then $\sigma_{\omega}(K, \phi, A)=0$.
(ii) The signature of (K, ϕ, A) is the signature

$$
\sigma(K, \phi, A)=\sigma_{-1}(K, \phi, A)=\sigma(K,(\phi, A,-1) / 2) \in \mathbb{Z}
$$

of the symmetric form over \mathbb{R} given by

$$
(\phi, A,-1) / 2=\left(I-A^{*}\right) \phi+\phi^{*}(I-A)=\phi\left(A-A^{-1}\right): K \rightarrow K^{*}
$$

(iii) The $L^{(2)}$-signature of (K, ϕ, A) is

$$
\rho(K, \phi, A)=\int_{\omega} \sigma_{\omega}(K, \phi, A) \in \mathbb{R}
$$

(iv) The η-invariant of (K, ϕ, A) is

$$
\eta(K, \phi, A)=\sum_{j=1}^{n} \sigma\left(K_{j}, \phi_{j}\left(A_{j}-A_{j}^{-1}\right)\right) \eta\left(\theta_{j}\right) \in \mathbb{R}
$$

with

$$
\begin{aligned}
& \operatorname{ch}_{z}\left(A_{\text {ell }}\right)=\prod_{j=1}^{n}\left(z^{2}-2 \cos \left(\theta_{j}\right) z+1\right)^{r_{j}}\left(\theta_{j} \in(0, \pi)\right) \\
& \left(K_{j}, \phi_{j}, A_{j}\right) \stackrel{=}{=}\left(\left\{x \in K \mid\left(A^{2}-2 A \cos \left(\theta_{j}\right)+1\right)^{r_{j}}(x)=0\right\}, \phi|, A|\right) .
\end{aligned}
$$

Remark 8.8. (i) The parabolic and hyperbolic components of (K, ϕ, A) make zero contribution to the signature, $L^{(2)}$-signature and η-invariant:

$$
\begin{aligned}
\sigma(K, \phi, A) & =\sigma\left(K_{\text {ell }}, \phi_{\text {ell }}, A_{\text {ell }}\right) \in \mathbb{R}, \\
\rho(K, \phi, A) & =\rho\left(K_{\text {ell }}, \phi_{\text {ell }}, A_{\text {ell }}\right) \in \mathbb{R}, \\
\eta(K, \phi, A) & =\eta\left(K_{\text {ell }}, \phi_{\text {ell }}, A_{\text {ell }}\right) \in \mathbb{R} .
\end{aligned}
$$

(ii) The η-invariant is a function

$$
\eta: \Lambda(n)=U(n) / O(n)=S p(2 n) / E S p(2 n) \rightarrow \mathbb{R}
$$

Proposition 8.9. (i) If (K, ϕ, A) is a symplectic automorphism such that $A(L)=L$ for a lagrangian L of (K, ϕ) then

$$
\eta(K, \phi, A)=0 \in \mathbb{R}
$$

(ii) The triple signature of lagrangians L_{1}, L_{2}, L_{3} of (K, ϕ) is $\sigma\left(K, \phi ; L_{1}, L_{2}, L_{3}\right)=\eta\left(K, \phi, A_{12}\right)+\eta\left(K, \phi, A_{23}\right)+\eta\left(K, \phi, A_{31}\right) \in \mathbb{Z} \subset \mathbb{R}$ for any symplectic automorphisms $A_{12}, A_{23}, A_{31}:(K, \phi) \rightarrow(K, \phi)$ such that

$$
A_{12}\left(L_{1}\right)=L_{2}, A_{23}\left(L_{2}\right)=L_{3}, A_{31}\left(L_{3}\right)=L_{1}
$$

with $A_{31} A_{23} A_{12}=1: L_{1} \rightarrow L_{1}$.
(iv) For any symplectic automorphisms $A, B:(K, \phi) \rightarrow(K, \phi)$

$$
\begin{aligned}
& \eta(K,-\phi, A)=\eta(K, \phi, A) \\
& \eta\left(K, \phi, A^{-1}\right)=-\eta(K, \phi, A) \\
& \eta(K \oplus K, \phi \oplus \phi, A \oplus B)=\eta(K, \phi, A)+\eta(K, \phi, B) \in \mathbb{R}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sigma\left(K \oplus K, \phi \oplus-\phi ; \Delta_{K},(1 \oplus B) \Delta_{K},(1 \oplus A B) \Delta_{K}\right) \\
& =\eta(K, \phi, A)+\eta(K, \phi, B)+\eta\left(K, \phi,(A B)^{-1}\right) \\
& =\eta(K, \phi, A)+\eta(K, \phi, B)-\eta(K, \phi, A B) \in \mathbb{Z} \subset \mathbb{R}
\end{aligned}
$$

Definition 8.10. An automorphism $A: K \rightarrow K$ of a finite-dimensional real vector space is fibred if it satisfies any one of the following equivalent conditions:
(i) $A-A^{-1}: K \rightarrow K$ is an automorphism,
(ii) $1-A, 1+A: K \rightarrow K$ are automorphisms,
(iii) the characteristic polynomial

$$
\operatorname{ch}_{A}(z)=\operatorname{det}(z I-A: K[z] \rightarrow K[z]) \in \mathbb{R}[z]
$$

takes non-zero values for $z= \pm 1$.

Proposition 8.11. (i) A symplectic automorphism (K, ϕ, A) is fibred if and only if A only has hyperbolic and elliptic eigenvalues, so that $K_{\text {par }}=0, K=K_{\text {hyp }} \oplus K_{\text {ell }}$.
(ii) A symplectic automorphism (K, ϕ, A) is such that there exists complex structure $J: K \rightarrow K$ compatible with (K, ϕ) and $A J=J A$ if and only if (K, ϕ, A) is fibred and the minimal polynomial of A is of the form

$$
\prod_{j=1}^{n}\left(z^{2}+a_{j} z+1\right)\left(a_{j} \in \mathbb{R},\left|a_{j}\right|<2\right)
$$

for distinct a_{j} 's. Such (K, ϕ, A) is elliptic and

$$
\eta(A)=\eta\left(U_{A}\right) \in \mathbb{R}
$$

with U_{A} a unitary matrix of the hermitian automorphism (K, ϕ, A, J) for any such J.

Definition 8.12. For any symplectic formation ($K, \phi ; L_{1}, L_{2}$) the intersection $L_{1} \cap L_{2}$ is a sublagrangian of (K, ϕ), with

$$
L_{1} \cap L_{2} \subseteq\left(L_{1} \cap L_{2}\right)^{\perp}
$$

The symplectic reduction of $\left(K, \phi ; L_{1}, L_{2}\right)$ is the symplectic formation $\left([K],[\phi] ;\left[L_{1}\right],\left[L_{2}\right]\right)$ with

$$
\begin{aligned}
& {[K]=\frac{\left(L_{1} \cap L_{2}\right)^{\perp}}{L_{1} \cap L_{2}},\left[L_{i}\right]=\frac{L_{i}}{L_{1} \cap L_{2}},\left[L_{1}\right] \oplus\left[L_{2}\right]=[K],} \\
& \left(K, \phi ; L_{1}, L_{2}\right)=\left([K],[\phi] ;\left[L_{1}\right],\left[L_{2}\right]\right) \oplus\left(H_{-}\left(L_{1} \cap L_{2}\right) ; L_{1} \cap L_{2}, L_{1} \cap L_{2}\right) .
\end{aligned}
$$

Proposition 8.13. For any symplectic automorphism (K, ϕ, A) and lagrangian L of (K, ϕ) the symplectic reduction of $(K, \phi ; L, A(L))$ is a symplectic formation $([K],[\phi] ;[L],[A(L)])$. The induced symplectic automorphism $([K],[\phi],[A])$ is fibred and elliptic, with

$$
\begin{aligned}
& {[A][L]=[A(L)],[L] \oplus[A(L)]=[K]} \\
& \eta(K, \phi, A)=\eta([K],[\phi],[A]) \in \mathbb{R}
\end{aligned}
$$

Proposition 8.14. Let (K, ϕ, A) be a fibred symplectic automorphism over \mathbb{R}.
(i) The direct sum splitting

$$
(K, \phi, A)=\left(K_{\text {ell }}, \phi_{\text {ell }}, A_{\text {ell }}\right) \oplus\left(K_{\text {hyp }}, \phi_{\text {hyp }}, A_{\text {hyp }}\right)
$$

determines a factorization of the characteristic polynomial

$$
\operatorname{ch}_{A}(z)=\operatorname{ch}_{A_{\text {ell }}}(z) \operatorname{ch}_{A_{h y p}}(z)
$$

with

$$
\begin{aligned}
& \operatorname{ch}_{A_{\text {ell }}}(z)=\prod_{j=1}^{n}\left(z^{2}+a_{j} z+1\right)^{r_{j}}\left(\left|a_{j}\right|<2\right) \\
& \operatorname{ch}_{A_{\text {hyp }}}(z)=z^{\operatorname{deg}(p(z))} \operatorname{det}\left(A_{\text {hyp }}\right) p(z) p\left(z^{-1}\right) \\
& (p(z) \in \mathbb{R}[z] \text { with } p(1), p(-1) \neq 0)
\end{aligned}
$$

for distinct $a_{1}, a_{2}, \ldots, a_{n} \in(-2,2)$.
(ii) The elliptic component splits as

$$
\left(K_{\text {ell }}, \phi_{\text {ell }}, A_{\text {ell }}\right)=\sum_{j=1}^{n}\left(K_{j}, \phi_{j}, A_{j}\right)
$$

with

$$
\left(K_{j}, \phi_{j}, A_{j}\right)=\left(\left\{x \in K \mid\left(A^{2}+a_{j} A+1\right)^{r_{j}}(x)=0\right\}, \phi|, A|\right) .
$$

The symmetric forms $\left(K_{j}, \phi_{j}\left(A_{j}-A_{j}^{-1}\right)\right)$ over \mathbb{R} are nonsingular and

$$
\sigma(K, \phi, A)=\sum_{j=1}^{n} \sigma\left(K_{j}, \phi_{j}\left(A_{j}-A_{j}^{-1}\right)\right) \in \mathbb{Z}
$$

(iii) (Levine [[27], Matumoto [30]) $\operatorname{Let}\left\{e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}\right\} \subset S^{1} \backslash\{-1,1\}$ be the eigenvalues of A. The function

$$
S^{1} \rightarrow \mathbb{Z} ; \omega \mapsto \sigma_{\omega}(K, \phi, A)
$$

is locally constant on each component of $S^{1} \backslash\left\{e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right\}$ with jumps

$$
\begin{aligned}
& \lim _{\rightarrow \epsilon}\left(\sigma_{e^{i\left(\theta_{j}+\epsilon\right)}}(K, \phi, A)-\sigma_{e^{i\left(\theta_{j}-\epsilon\right)}}(K, \phi, A)\right) \\
& \quad=2 \sigma\left(K_{j}, \phi_{j}\left(A_{j}-A_{j}^{-1}\right)\right) \text { for } j=1,2, \ldots, n .
\end{aligned}
$$

(iv) Suppose that the minimal polynomial of A_{j} is $z^{2}-2 z \cos \left(\theta_{j}\right)+1$, so that $\left(K_{j}, \phi_{j}, A_{j}\right)$ is a sum of 2-dimensional symplectic automorphisms, with signature ± 2. Without loss of generality it may be assumed that $\operatorname{dim}_{\mathbb{R}}\left(K_{j}\right)=2$ for each j. Choose θ_{j} such that

$$
\operatorname{sgn}\left(\sin \theta_{j}\right)=\sigma\left(K_{j}, \phi_{j}\left(A_{j}-A_{j}^{-1}\right)\right) / 2 \in\{-1,1\}
$$

The canonical complex structure on $K_{\text {ell }}$

$$
J=\sum_{j=1}^{n} \frac{\left(A_{j}-\left(A_{j}\right)^{-1}\right)}{2 \sin \left(\theta_{j}\right)}: K_{\text {ell }}=\sum_{j=1}^{n} K_{j} \rightarrow K_{\text {ell }}
$$

is compatible with $\left(K_{\text {ell }}, \phi_{\text {ell }}\right)$, with $\phi_{\text {ell }} J: K_{\text {ell }} \rightarrow K_{\text {ell }}^{*}$ a positive definite symmetric form over \mathbb{R}, and $A_{\text {ell }} J=J A_{\text {ell }}: K_{\text {ell }} \rightarrow K_{\text {ell }}$. For any $x \in K_{j}$

$$
\begin{aligned}
A_{\text {ell }}(x) & =\cos \left(\theta_{j}\right)(x)+\left(\left(A_{j}-A_{j}^{-1}\right) / 2\right)(x) \\
& =\cos \left(\theta_{j}\right)(x)+\sin \left(\theta_{j}\right)(J x) \\
& =\cos \left(\theta_{j}\right)(x)+\sin \left(\theta_{j}\right)(J x) \in K_{j}
\end{aligned}
$$

and the unitary matrix of $A_{\text {ell }}$ is diagonal

$$
U_{A_{e l l}}=D\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}\right) \in U(n)
$$

The η-invariant is

$$
\eta(K, \phi, A)=\eta\left(U_{A_{e l l}}\right)=\sum_{j=1}^{n} \eta\left(\theta_{j}\right) \in \mathbb{R},
$$

Proposition 8.15. (i) The hermitian automorphism defined for any $\theta \in \mathbb{R} \backslash \pi \mathbb{Z}$ by

$$
(K, \phi, J, A)=\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\right)
$$

is such that

$$
\begin{aligned}
& \left(K, \phi\left(A-A^{-1}\right)\right)=\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
2 \sin \theta & 0 \\
0 & 2 \sin \theta
\end{array}\right)\right) \\
& \alpha=\sigma\left(K, \phi\left(A-A^{-1}\right)\right) / 2=\operatorname{sgn}(\sin \theta) \\
& J=\frac{A-A^{-1}}{2 \sin \theta}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& \eta(K, \phi, A)=\eta(\theta) \in \mathbb{R}
\end{aligned}
$$

(ii) For any hermitian automorphism (K, ϕ, J, A) there exists a (ϕ, J) orthonormal basis for K consisting of eigenvectors of A. Any such basis determines an isomorphism

$$
(K, \phi, J, A) \cong \sum_{j=1}^{n}\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
\cos \theta_{j} & -\sin \theta_{j} \\
\sin \theta_{j} & \cos \theta_{j}
\end{array}\right)\right)
$$

with

$$
\operatorname{ch}_{A}(z)=\prod_{j=1}^{n}\left(z^{2}-2 \cos \theta_{j} z+1\right) \in \mathbb{R}[z]
$$

The matrix of A with respect to such a basis is a diagonal unitary matrix

$$
U_{A}=D\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}\right) \in U(n)
$$

and

$$
\eta(K, \phi, A)=\sum_{j=1}^{n} \eta\left(\theta_{j}\right) \in \mathbb{R}
$$

Remark 8.16. (i) Let

$$
S=S^{*}=\left(\begin{array}{ll}
p & r \\
r & q
\end{array}\right) \in G L_{2}(\mathbb{R})
$$

be an invertible symmetric 2×2 matrix. The signature of the nonsingular symmetric form $(\mathbb{R} \oplus \mathbb{R}, S)$ over \mathbb{R} is

$$
\sigma(\mathbb{R} \oplus \mathbb{R}, S)= \begin{cases}2 \operatorname{sgn}(p) & \text { if } p \neq 0 \text { and } p q-r^{2}>0 \\ 0 & \text { if } p=0 \text { or if } p q-r^{2}<0\end{cases}
$$

(ii) Let

$$
S=S^{*}=\left(\begin{array}{cc}
p=\bar{p} & r \\
\bar{r} & q=\bar{q}
\end{array}\right) \in G L_{2}(\mathbb{C})
$$

be an invertible hermitian 2×2 matrix. The signature of the nonsingular hermitian form $(\mathbb{C} \oplus \mathbb{C}, S)$ over \mathbb{C} is

$$
\sigma(\mathbb{C} \oplus \mathbb{C}, S)= \begin{cases}2 \operatorname{sgn}(p) & \text { if } p \neq 0 \text { and } p q-r \bar{r}>0 \\ 0 & \text { if } p=0 \text { or if } p q-r \bar{r}<0\end{cases}
$$

Example 8.17. Let $(K, \phi)=H_{-}(\mathbb{R})$.
(i) The symplectic automorphisms (K, ϕ, A) are in one-one correspondence with 2×2 matrices

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}(\mathbb{R})
$$

such that

$$
a d-b c=1 \in \mathbb{R},
$$

i.e. $A \in S p(2)=S L_{2}(\mathbb{R})$. The trace of A is

$$
\operatorname{tr}(A)=a+d
$$

The characteristic polynomial is

$$
\operatorname{ch}_{A}(z)=\left|\begin{array}{cc}
z-a & -b \\
-c & z-d
\end{array}\right|=z^{2}-\operatorname{tr}(A) z+1 \in \mathbb{R}[z]
$$

with roots the eigenvalues

$$
\lambda_{1}, \lambda_{2}=\frac{\operatorname{tr}(A) \pm \sqrt{\operatorname{tr}(A)^{2}-4}}{2} .
$$

A is $\left\{\begin{array}{l}\text { parabolic } \\ \text { hyperbolic } \\ \text { elliptic } \\ \text { fibred }\end{array}\right.$ if and only if $\left\{\begin{array}{l}|\operatorname{tr}(A)|=2 \\ |\operatorname{tr}(A)|>2 \\ |\operatorname{tr}(A)|<2 \\ |\operatorname{tr}(A)| \neq 2 .\end{array}\right.$
(ii) Suppose that A is elliptic, so that

$$
|a+d|<2, c \neq 0 .
$$

Let $\theta \neq \pi \in(0,2 \pi)$ be such that

$$
\cos \theta=\frac{a+d}{2}, \operatorname{sgn}(\sin \theta)=\operatorname{sgn}(c)
$$

so that

$$
\begin{aligned}
& \left\{\lambda_{1}, \lambda_{2}\right\}=\left\{e^{i \theta}, e^{-i \theta}\right\} \subset S^{1} \backslash\{-1,1\}, \\
& \operatorname{ch}_{A}(z)=z^{2}-2 z \cos \theta+1 \in \mathbb{R}[z]
\end{aligned}
$$

The signature of (K, ϕ, A) is the signature of the symmetric form $\left(K, \phi\left(A-A^{-1}\right)\right)$ over \mathbb{R}

$$
\sigma(K, \phi, A)=\sigma\left(K, \phi\left(A-A^{-1}\right)\right) \in\{-2,0,2\}
$$

The symmetric form has determinant

$$
\operatorname{det}\left(\phi\left(A-A^{-1}\right)\right)=\left|\begin{array}{cc}
2 c & d-a \\
d-a & -2 b
\end{array}\right|=4-(a+d)^{2}>0
$$

By Remark 8.16 (i)

$$
\begin{aligned}
\sigma(K, \phi, A) & =\sigma\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
2 c & d-a \\
d-a & -2 b
\end{array}\right)\right) \\
& =2 \operatorname{sgn}(c)=2 \operatorname{sgn}(\sin \theta) \in\{-2,2\}
\end{aligned}
$$

The canonical complex structure

$$
J=\frac{A-A^{-1}}{2 \sin \theta}=\frac{1}{2 \sin \theta}\left(\begin{array}{cc}
a-d & 2 b \\
2 c & d-a
\end{array}\right): K \rightarrow K
$$

is compatible with (K, ϕ), and such that $A J=J A$. For any $x \in K$

$$
\left(A^{2}-2 A \cos \theta+1\right)(x)=0 \in K,
$$

so that

$$
\begin{aligned}
A(x) & =\cos (\theta)(x)+\left(\left(A-A^{-1}\right) / 2\right)(x) \\
& =\cos (\theta)(x)+\sin (\theta)(J x) \\
& =\cos (\theta)(x)+\sin (\theta)(J x) \in K .
\end{aligned}
$$

The hermitian automorphism $A:(K, \phi, J) \rightarrow(K, \phi, J)$ has the unitary matrix

$$
U_{A}=\left(e^{i \theta}\right) \in U(1),
$$

so that the η-invariant is

$$
\eta(K, \phi, A)=\eta(\theta)=1-2\{\theta / \pi\} \in \mathbb{R} .
$$

Let $\omega=e^{i \psi} \in S^{1} \backslash\{1\}$. The ω-signature of (K, ϕ, A) is the signature of the hermitian form $\left(\mathbb{C} \otimes_{\mathbb{R}} K,(\phi, A, \omega)\right)$ over \mathbb{C} with

$$
(\phi, A, \omega)=(1-\omega)\left(I-A^{*}\right) \phi+(1-\bar{\omega}) \phi^{*}(I-A): \mathbb{C} \otimes_{\mathbb{R}} K \rightarrow \mathbb{C} \otimes_{\mathbb{R}} K^{*},
$$

so that

$$
\begin{aligned}
& \sigma_{\omega}(K, \phi, A)=\sigma\left(\mathbb{C} \otimes_{\mathbb{R}} K,(\phi, A, \omega)\right) \\
& =\sigma\left(\mathbb{C} \oplus \mathbb{C},(1-\omega)\left(\begin{array}{cc}
c & 1-a \\
d-1 & -b
\end{array}\right)+(1-\bar{\omega})\left(\begin{array}{cc}
c & d-1 \\
1-a & -b
\end{array}\right)\right) \in\{-2,0,2\}
\end{aligned}
$$

The hermitian form has determinant

$$
\begin{aligned}
\operatorname{det}(\phi, A, \omega) & =\operatorname{det}\left((1-\omega) \phi\left(I-A^{-1}\right)(I-\bar{\omega} A)\right) \\
& \left.=(1-\omega)^{2}\left|\begin{array}{cc}
c & 1-a \\
d-1 & -b
\end{array}\right| \begin{array}{cc}
1-\bar{\omega} a & -\bar{\omega} b \\
-\bar{\omega} c & 1-\bar{\omega} d
\end{array} \right\rvert\, \\
& =(1-\omega)^{2}(2-(a+d))\left(\bar{\omega}^{2}-(a+d) \bar{\omega}+1\right) \\
& =(1-\omega)(1-\bar{\omega})(2-(a+d))((a+d)-(\omega+\bar{\omega})) \in \mathbb{R}
\end{aligned}
$$

with

$$
\operatorname{sgn}(\operatorname{det}(\phi, A, \omega))=\operatorname{sgn}(a+d-(\omega+\bar{\omega})) \in\{-1,0,1\} .
$$

By Remark 8.16 (ii)

$$
\begin{aligned}
\sigma_{\omega}(K, \phi, A) & = \begin{cases}2 \operatorname{sgn}(c) & \text { if } a+d>\omega+\bar{\omega} \\
0 & \text { if } a+d<\omega+\bar{\omega}\end{cases} \\
& = \begin{cases}2 \operatorname{sgn}(\sin \theta) & \text { if } \cos \theta>\cos \psi \\
0 & \text { if } \cos \theta<\cos \psi .\end{cases}
\end{aligned}
$$

The $L^{(2)}$-signature is

$$
\begin{aligned}
\rho(K, \phi, A) & =\frac{1}{2 \pi} \int_{\psi=0}^{2 \pi} \sigma_{e^{\pi i \psi}}(K, \phi, A) d \psi \\
& = \begin{cases}2 \operatorname{sgn}(\sin \theta)(2 \pi-2 \theta) / 2 \pi & \text { if } 0<\theta<\pi \\
2 \operatorname{sgn}(\sin \theta)(2 \pi-2(2 \pi-\theta)) / 2 \pi & \text { if } \pi<\theta<2 \pi\end{cases} \\
& =2(1-2\{\theta / 2 \pi\}) \\
& =2 \eta(\theta / 2) \in \mathbb{R} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\rho(K, \phi, A)-\eta(K, \phi, A) & =2 \eta(\theta / 2)-\eta(\theta) \\
& =\operatorname{sgn}(\sin \theta) \\
& =\sigma(K, \phi, A) / 2 \in\{-1,1\} \subset \mathbb{R}
\end{aligned}
$$

Proposition 8.18. The signature, ρ - and η-invariants of a fibred symplectic automorphism (K, ϕ, A) are invariants of the Witt group of $f i-$ bred symplectic automorphisms, which are related by

$$
\rho(K, \phi, A)-\eta(K, \phi, A)=\sigma(K, \phi, A) / 2 \in \mathbb{Z} \subset \mathbb{R} .
$$

Proof. There is no loss of generality in assuming that

$$
\begin{aligned}
(K, \phi, A) & =\sum_{j=1}^{n}\left(K_{j}, \phi_{j}, A_{j}\right) \\
& =\sum_{j=1}^{n}\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
\cos \alpha_{j} \theta_{j} & -\sin \alpha_{j} \theta_{j} \\
\sin \alpha_{j} \theta_{j} & \cos \alpha_{j} \theta_{j}
\end{array}\right)\right)
\end{aligned}
$$

with

$$
\alpha_{j}=\sigma\left(K_{j}, \phi_{j}\left(A_{j}-A_{j}^{-1}\right)\right) / 2 \in\{-1,1\}, \theta_{j} \in(0, \pi) .
$$

By Example .17 applied to each component $\left(K_{j}, \phi_{j}, A_{j}\right)$

$$
\begin{aligned}
\sigma(K, \phi, A) & =\sum_{j=1}^{n} \sigma\left(K_{j}, \phi_{j}, A_{j}\right)=2 \sum_{j=1}^{n} \alpha_{j} \\
\rho(K, \phi, A) & =\sum_{j=1}^{n} \rho\left(K_{j}, \phi_{j}, A_{j}\right)=2 \sum_{j=1}^{n} \alpha_{j}\left(1-\frac{\theta_{j}}{\pi}\right), \\
\eta(K, \phi, A) & =\sum_{j=1}^{n} \eta\left(K_{j}, \phi_{j}, A_{j}\right)=\sum_{j=1}^{n} \alpha_{j}\left(1-\frac{2 \theta_{j}}{\pi}\right) .
\end{aligned}
$$

Proposition 8.19. Let (K, ϕ, A) be a symplectic automorphism, with $\operatorname{dim}_{\mathbb{R}} K=2 n$.
(i) If there exists a complex structure $J: K \rightarrow K$ which is compatible with (K, ϕ) and such that $A J=J A: K \rightarrow K$ then

$$
(K, \phi, A)=\left(K_{\text {par }}, \phi_{\text {par }}, A_{\text {par }}\right) \oplus\left(K_{\text {ell }}, \phi_{\text {ell }}, A_{\text {ell }}\right)
$$

is a sum of a parabolic and an elliptic symplectic automorphism. The eigenvalues of A are all of the form $e^{ \pm i \theta_{j}} \in S^{1}$ for $j=1,2, \ldots, n$ (meaning a complex conjugate pair $\left\{e^{i \theta_{j}}, e^{-i \theta_{j}}\right\}$ if $e^{i \theta_{j}} \in S^{1} \backslash\{1,-1\}$, and $e^{i \theta_{j}}$ with multiplicity 2 if $\left.e^{i \theta_{j}} \in\{1,-1\}\right)$. A has a unitary matrix $U_{A} \in U(n)$ with respect to any ϕJ-orthonormal basis for $((K, J),(\phi, J))$. There exists such a basis consisting of eigenvectors of A, in which case

$$
U_{A}=D\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}\right) \in U(n)
$$

is a diagonal matrix, and

$$
\eta(K, \phi, A)=\eta\left(U_{A}\right)=\sum_{j=1}^{n} \eta\left(\theta_{j}\right) \in \mathbb{R}\left(\theta_{j} \in[0,2 \pi)\right)
$$

(ii) There exists a complex structure J as in (i) if and only if the following conditions are satisfied:
(a) A has no hyperbolic eigenvalues, i.e.

$$
\operatorname{ch}_{A}(z)=\prod_{j=1}^{n}\left(z^{2}-2 \cos \theta_{j} z+1\right)^{r_{j}}
$$

for some $\theta_{j} \in[0, \pi]$, so that the eigenvalues $e^{ \pm i \theta_{j}}$ are either parabolic $\left(\theta_{j}=0\right.$ or $\left.\pi\right)$ or elliptic $\left(0<\theta_{j}<\pi\right)$,
(b) the minimal polynomial of A is $\prod_{j=1}^{n}\left(z^{2}-2 \cos \theta_{j} z+1\right)$,
(c) $\operatorname{ker}(A-I: K \rightarrow K)=\operatorname{ker}\left((A-I)^{2}: K \rightarrow K\right)$,
(d) $\operatorname{ker}(A+I: K \rightarrow K)=\operatorname{ker}\left((A+I)^{2}: K \rightarrow K\right)$.

Proof. (i) By construction.
(ii) If $J: K \rightarrow K$ is a complex structure which is compatible with (K, ϕ) and such that $A J=J A: K \rightarrow K$ then A is an automorphism of the positive definition hermitian form $((K, J),(\phi, J))$. Such automorphisms can be diagonalized so that

$$
(K, \phi, A, J)=\sum_{j=1}^{n}\left(K_{j}, \phi_{j}, A_{j}, J_{j}\right)
$$

with $\operatorname{dim}_{\mathbb{R}}\left(K_{j}\right)=2$, and the minimal polynomial is $\prod_{j=1}^{n}\left(z^{2}-2 \cos \theta_{j} z+\right.$ $1)$. There is no loss of generality in only considering the 2-dimensional case, with

$$
(K, \phi, J)=(\mathbb{C},\langle,\rangle), A=\left(e^{i \theta}\right) \in U(1)
$$

for some $\theta \in[0,2 \pi)$. The characteristic polynomial of

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \in U(1) \subset S L_{2}(\mathbb{R})
$$

is

$$
\operatorname{ch}_{A}(z)=\left(z-e^{i \theta}\right)\left(z-e^{-i \theta}\right)=z^{2}-2 \cos \theta z+1
$$

with roots $e^{ \pm i \theta} \in S^{1}$, so (a) and (b) are satisfied. It is immediate from the identities

$$
\begin{aligned}
& A-I=e^{i \theta}-1=2 i e^{i \theta / 2} \sin \theta / 2 \\
& A+I=e^{i \theta}+1=2 e^{i \theta / 2} \cos \theta / 2
\end{aligned}
$$

that

$$
\begin{aligned}
& \operatorname{ker}(A-I)=\operatorname{ker}(A-I)^{2}= \begin{cases}\mathbb{C} & \text { if } \theta=0 \\
\{0\} & \text { otherwise }\end{cases} \\
& \operatorname{ker}(A+I)=\operatorname{ker}(A+I)^{2}= \begin{cases}\mathbb{C} & \text { if } \theta=\pi \\
\{0\} & \text { otherwise }\end{cases}
\end{aligned}
$$

so (c) and (d) are satisfied.
Conversely, suppose (a) and (b) is satisfied, so that by Proposition区.6]

$$
(K, \phi, A)=\left(K_{\text {par }}, \phi_{\text {par }}, A_{\text {par }}\right) \oplus\left(K_{\text {ell }}, \phi_{\text {ell }}, A_{\text {ell }}\right)
$$

with

$$
\begin{aligned}
& \operatorname{ch}_{A_{p a r}}(z)=(z-1)^{2 p}(z+1)^{2 q}(p, q \geqslant 0) \\
& \operatorname{ch}_{A_{\text {ell }}}(z)=\prod_{j=1}^{n}\left(z^{2}+a_{j} z+1\right)\left(a_{j} \in \mathbb{R},\left|a_{j}\right|<2\right) .
\end{aligned}
$$

with $\left(K_{\text {ell }}, \phi_{\text {ell }}, A_{\text {ell }}\right)$ a sum of n 2-dimensional symplectic automorphisms. If (c) and (d) are satisfied then ($K_{p a r}, \phi_{p a r}, A_{p a r}$) is also a sum of 2-dimensional automorphisms. Again, there is no loss in assuming $\operatorname{dim}_{\mathbb{R}}(K)=2$, with $(K, \phi)=H_{-}(\mathbb{R})$. If A is parabolic then either $A=I$ or $A=-I$, and the standard complex structure $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ will do. If A is elliptic then

$$
\operatorname{ch}_{A}(z)=z^{2}-2 \cos \theta z+1 \in \mathbb{R}[z]
$$

with $\theta \in(0, \pi)$, and by the Cayley-Hamilton theorem

$$
A^{2}-2 \cos \theta A+I=0: K \rightarrow K
$$

The complex structure

$$
J=\frac{\left(A-A^{-1}\right)}{2 \sin \theta}: K \rightarrow K
$$

is such that $A J=J A$, and

$$
J^{\prime}=\operatorname{sgn}(\sigma(K, \phi J)) J: K \rightarrow K
$$

is a complex structure which is compatible with (K, ϕ) and such that $A J^{\prime}=J^{\prime} A$.

Example 8.20. Given

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S p(21)=S L_{2}(\mathbb{R})(a d-b c=1)
$$

let

$$
L_{1}=\mathbb{R}(1,0), L_{2}=A(\mathbb{R}(1,0))=\mathbb{R}(a, c) \in \Lambda(1)
$$

Let $\theta \in[0, \pi]$ be such that

$$
\cos \theta=\frac{a}{\sqrt{a^{2}+c^{2}}}, \sin \theta=\frac{c}{\sqrt{a^{2}+c^{2}}},
$$

Then

$$
U_{A}=\left(e^{i \theta}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \in U(1) \subset S p(21)
$$

is such that $U_{A}\left(L_{1}\right)=L_{2}$ and

$$
\eta\left(H_{-}(\mathbb{R}), J ; L_{1}, L_{2}\right)=\eta(\theta)=\left\{\begin{array}{ll}
1-\frac{2 \theta}{\pi} & \text { if } 0<\theta<\pi \\
0 & \text { if } \theta=0
\end{array} \in \mathbb{R}\right.
$$

with $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ the standard complex structure on $H_{-}(\mathbb{R})$. If A is parabolic $(|a+d|=2)$ or elliptic $(|a+d|<2)$ let $\theta^{\prime} \in[0, \pi]$ be such that

$$
\cos \theta^{\prime}=(a+d) / 2
$$

so that

$$
\eta\left(H_{-}(\mathbb{R}), A\right)=\eta\left(\theta^{\prime}\right) \in \mathbb{R}
$$

If A is hyperbolic $(|a+d|>2)$ then

$$
\eta\left(H_{-}(\mathbb{R}), A\right)=0 \in \mathbb{R}
$$

If $A J=J A$ then $A=U_{A}$ is parabolic or elliptic, $\theta=\theta^{\prime}$, and

$$
\eta\left(H_{-}(\mathbb{R}), J ; L_{1}, L_{2}\right)=\eta\left(H_{-}(\mathbb{R}), A\right) \in \mathbb{R}
$$

However, in general $A J \neq J A$ and

$$
\eta\left(H_{-}(\mathbb{R}), J ; L_{1}, L_{2}\right) \neq \eta\left(H_{-}(\mathbb{R}), A\right) \in \mathbb{R}
$$

For example

$$
\eta\left(H_{-}(\mathbb{R}), J ; \mathbb{R}(1,0), \mathbb{R}(1,1)\right)=1 / 2 \neq \eta\left(H_{-}(\mathbb{R}) ;\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\right)=0
$$

Remark 8.21. The η-invariant $\eta\left(K, \phi, J ; L_{1}, L_{2}\right) \in \mathbb{R}$ depends on the compatible complex structure J. For example, let
$(K, \phi)=H_{-}(\mathbb{R}), L_{1}=\mathbb{R}(1,0), L_{2}=\mathbb{R}(\cos \theta, \sin \theta)(0<\theta<\pi)$.
A compatible complex structure on $H_{-}(\mathbb{R})$

$$
J=\left(\begin{array}{cc}
-\nu & -\mu \\
\lambda & \nu
\end{array}\right): \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R}
$$

is defined by $\lambda, \mu, \nu \in \mathbb{R}$ satisfying

$$
\nu^{2}=\lambda \mu-1 \text { and } \lambda, \mu>0
$$

and

$$
\phi=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \phi J=\left(\begin{array}{ll}
\lambda & \nu \\
\nu & \mu
\end{array}\right) .
$$

Note that J is conjugate to the standard compatible complex structure $J_{0}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, with

$$
A=\left(\begin{array}{cc}
1 & \nu \lambda^{-1} \\
0 & \lambda^{-1}
\end{array}\right) \in G L_{2}(\mathbb{R})
$$

such that

$$
J=A^{-1} J_{0} A
$$

As in Proposition $[\mathbf{6} 6$ (i) the 2×2 matrix

$$
-J_{0} J=\left(\begin{array}{ll}
\lambda & \nu \\
\nu & \mu
\end{array}\right)
$$

is positive definite symmetric and symplectic. The bases $\left\{b_{1}, J b_{1}\right\}$, $\left\{b_{1}^{\prime}, J b_{1}^{\prime}\right\}$ for (K, ϕ) given by

$$
\begin{aligned}
& b_{1}=\frac{(1,0)}{\sqrt{\lambda}} \in L, J b_{1}=\frac{(-\nu, \lambda)}{\sqrt{\lambda}} \in J L \\
& b_{1}^{\prime}=\frac{(\cos \theta, \sin \theta)}{\sqrt{\lambda \cos ^{2} \theta+\mu \sin ^{2} \theta+2 \nu \sin \theta \cos \theta}} \in L^{\prime}, \\
& J b_{1}^{\prime}=\frac{(-(\nu \cos \theta+\mu \sin \theta), \lambda \cos \theta+\nu \sin \theta)}{\sqrt{\lambda \cos ^{2} \theta+\mu \sin ^{2} \theta+2 \nu \sin \theta \cos \theta}} \in J L^{\prime}
\end{aligned}
$$

are such that

$$
\begin{aligned}
& (\phi+i \phi J)\left(b_{1}\right)\left(b_{1}\right)=(\phi+i \phi J)\left(b_{1}^{\prime}\right)\left(b_{1}^{\prime}\right)=i \in \mathbb{C} \\
& b_{1}^{\prime}=\cos \theta^{\prime} b_{1}+\sin \theta^{\prime} J b_{1} \in K
\end{aligned}
$$

with

$$
\tan \theta^{\prime}=\frac{\tan \theta}{\lambda+\nu \tan \theta},
$$

so that in this case

$$
A=\left(e^{i \theta^{\prime}}\right) \in U(1), \eta\left(K, \phi, J ; L_{1}, L_{2}\right)=1-\frac{2 \theta^{\prime}}{\pi} \in \mathbb{R}
$$

Proposition 8.22. (i) If L_{1}, L_{2}, L_{3} are three lagrangians in (K, ϕ) then

$$
\begin{array}{r}
\eta\left(K, \phi, J ; L_{1}, L_{2}\right)+\eta\left(K, \phi, J ; L_{2}, L_{3}\right)+\eta\left(K, \phi, J ; L_{3}, L_{1}\right) \\
=\sigma\left(L_{1}, L_{2}, L_{3}\right) \in \mathbb{Z} \subset \mathbb{R}
\end{array}
$$

is the triple signature (which is independent of J).
(ii) Let $(K, \phi)=H_{-}\left(\mathbb{R}^{n}\right)$ with the standard compatible complex structure $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. The η-invariant of a lagrangian $L \in \Lambda(n)$ is such that

$$
\eta(L)=\eta\left(H_{-}\left(\mathbb{R}^{n}\right), J ; \mathbb{R}^{n} \oplus 0, L\right) \in \mathbb{R} .
$$

Example 8.23. Let

$$
(K, \phi)=H_{-}\left(\mathbb{R}^{n}\right), J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

A lagrangian $L \subset H_{-}\left(\mathbb{R}^{n}\right)$ is the image

$$
L=\operatorname{im}\left(\binom{X}{Y}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)
$$

with $X, Y \in M_{n}(\mathbb{R})$ such that

$$
X^{t} Y=Y^{t} X \in M_{n}(\mathbb{R}), \operatorname{rank}\binom{X}{Y}=n
$$

Since the symmetric form $\left(\mathbb{R}^{n}, X^{t} X+Y^{t} Y\right)$ is positive definite there exists an orthonormal basis; the matrix $U \in G L_{n}(\mathbb{R})$ with columns such a basis is such that

$$
U^{t}\left(X^{t} X+Y^{t} Y\right) U=1 \in M_{n}(\mathbb{R})
$$

and the unitary matrix

$$
A=(X+i Y) U \in U(n)
$$

is such that $A\left(\mathbb{R}^{n} \oplus 0\right)=L$, and

$$
\eta\left(K, \phi, J ; \mathbb{R}^{n} \oplus 0, L\right)=\eta(A) \in \mathbb{R}
$$

Example 8.24. For any $\theta \in \mathbb{R}$ the lagrangian in $H_{-}(\mathbb{R})$

$$
L(\theta)=\operatorname{im}\left(\binom{\cos \theta}{\sin \theta}: \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R}\right) \subset \mathbb{R} \oplus \mathbb{R}
$$

has

$$
X=\cos \theta, Y=\sin \theta, U=1, A=\left(e^{i \theta}\right) \in U(1)
$$

so the η-invariant is

$$
\eta\left(H_{-}(\mathbb{R}), J ; \mathbb{R} \oplus 0, L(\theta)\right)=\eta(\theta) \in \mathbb{R}
$$

Example 8.25. The boundary of a symmetric form $\left(\mathbb{R}^{n}, Y=Y^{t}\right)$ over \mathbb{R} is the lagrangian in $H_{-}\left(\mathbb{R}^{n}\right)$

$$
\partial\left(\mathbb{R}^{n}, Y\right)=\operatorname{im}\left(\binom{1}{Y}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)
$$

The eigenvalues of Y are the roots $\tan \theta_{j} \in \mathbb{R}\left(1 \leqslant j \leqslant n, 0 \leqslant \theta_{j}<\pi\right)$ of the characteristic polynomial

$$
\operatorname{ch}_{z}(Y)=\operatorname{det}(z-Y: K[z] \rightarrow K[z])=\prod_{j=1}^{n}\left(z-\tan \theta_{j}\right) \in \mathbb{R}[z]
$$

The signature of Y is

$$
\sigma\left(\mathbb{R}^{n}, Y\right)=\sum_{j=1}^{n} \operatorname{sgn}\left(\tan \theta_{j}\right) \in \mathbb{Z}
$$

The symmetric form $\left(\mathbb{R}^{n}, 1+Y^{t} Y\right)$ is positive definite (with $1+Y^{t} Y=$ $\left.1+Y^{2}\right)$, so there exists $U \in G L_{n}(\mathbb{R})$ with

$$
U^{t}\left(1+Y^{t} Y\right) U=1 \in G L_{n}(\mathbb{R})
$$

(If $\left(\mathbb{R}^{n}, Y\right)$ is nonsingular let $V \in O_{n}(\mathbb{R})$ be such that $V^{t} Y^{t} Y V=1$, and set $U=V / \sqrt{2}$.) The unitary matrix $A=(1+i Y) U \in U(n)$ is such that $A\left(\mathbb{R}^{n} \oplus 0\right)=\partial\left(\mathbb{R}^{n}, Y\right)$, with characteristic polynomial

$$
\operatorname{ch}_{A}(z)=\operatorname{det}\left(z I_{n}-A: \mathbb{C}^{n}[z] \rightarrow \mathbb{C}^{n}[z]\right)=\prod_{j=1}^{n}\left(z-e^{i \theta_{j}}\right) \in \mathbb{C}[z]
$$

Thus A has eigenvalues $e^{i \theta_{j}}$, and the η-invariant is

$$
\eta\left(H_{-}\left(\mathbb{R}^{n}\right), J ; \mathbb{R}^{n} \oplus 0, \partial\left(\mathbb{R}^{n}, Y\right)\right)=\eta(A)=\sum_{j=1}^{n} \eta\left(\theta_{j}\right) \in \mathbb{R}
$$

Definition 8.26. (i) The ω-signature of $\theta \in \mathbb{R}$ is defined for $\omega \in S^{1}$ to be

$$
\sigma_{\omega}(\theta)=\sigma\left(\mathbb{C},(1-\omega) e^{i \theta}+(1-\bar{\omega}) e^{-i \theta}\right) \in \mathbb{Z}
$$

(ii) The signature of $\theta \in \mathbb{R}$ is

$$
\sigma(\theta)=\sigma_{-1}(\theta)=\sigma\left(\mathbb{C}, e^{i \theta}+e^{-i \theta}\right)=\operatorname{sgn}(\cos \theta) \in\{-1,0,1\}
$$

Proposition 8.27. The ω-signature function $\sigma_{\omega}: \mathbb{R} \rightarrow\{-1,0,1\}$ has the following properties:
(i) For $\omega=e^{i \psi} \in S^{1}$ it follows from

$$
1-\omega=1-\cos \psi-i \sin \psi=2 \sin (\psi / 2) e^{i(\psi-\pi) / 2} \in \mathbb{C}
$$

that

$$
\begin{aligned}
\sigma_{\omega}(\theta) & =\operatorname{sgn}\left(\operatorname{Re}\left((1-\omega) e^{i \theta}\right)\right) \\
& =\operatorname{sgn}(\sin \psi / 2 \sin (\psi+2 \theta) / 2) \\
& =\sigma(L(0), L(\psi / 2), L(\pi-\theta)) \in\{-1,0,1\}
\end{aligned}
$$

(ii) $\sigma_{\omega}(\theta+\pi / 2)=\operatorname{sgn}(\sin (\psi+2 \theta)) \sigma_{\omega}(\theta)$

$$
\sigma_{\omega}(\theta+\pi)=-\sigma_{\omega}(\theta), \sigma_{\omega}(-\theta)=\sigma_{\bar{\omega}}(\theta) \in \mathbb{R} .
$$

(iii) If $0<\theta<\pi$ and $0 \leqslant \psi<2 \pi$

$$
\sigma_{\omega}(\theta)=\left\{\begin{array}{ll}
+1 & \text { if } 0<\psi<2 \pi-2 \theta \\
-1 & \text { if } 2 \pi-2 \theta<\psi<2 \pi \\
0 & \text { if } \psi=0,2 \pi-2 \theta
\end{array}, \sigma_{\omega}(-\theta)= \begin{cases}-1 & \text { if } 0<\psi<2 \theta \\
1 & \text { if } 2 \theta<\psi<2 \pi \\
0 & \text { if } \psi=0,2 \theta\end{cases}\right.
$$

(iv) The function

$$
S^{1} \rightarrow\{-1,0,1\} ; \omega \mapsto \sigma_{\omega}(\theta)
$$

is locally constant, with jumps

$$
\underset{\epsilon}{\lim _{\rightarrow}}\left(\sigma_{\omega e^{i \epsilon}}(\theta)-\sigma_{\omega e^{-i \epsilon}}(\theta)\right)= \begin{cases}2 \operatorname{sgn} \cos \theta & \text { if } \omega=1 \\ -2 \operatorname{sgn} \cos \theta & \text { if } \omega=e^{(2 \pi-2 \theta) i} \\ 0 & \text { if } \omega \neq 1, e^{(2 \pi-2 \theta) i}\end{cases}
$$

Definition 8.28. The $L^{(2)}$-signature of $\theta \in \mathbb{R}$ is defined by

$$
\sigma^{(2)}(\theta)=\int_{\omega \in S^{1}} \sigma_{\omega}(\theta)=\frac{1}{2 \pi} \int_{\psi=0}^{2 \pi} \sigma_{e^{i \psi}}(\theta) d \psi \in[-1,1]
$$

normalized so that $\sigma^{(2)}(0)=1$.

Proposition 8.29. The $L^{(2)}$-signature function $\sigma^{(2)}: \mathbb{R} \rightarrow[-1,1]$ has the following properties:
(i) $\sigma^{(2)}(\theta)=\frac{1}{2 \pi} \int_{\psi=0}^{2 \pi} \operatorname{sgn}(\sin \psi / 2 \sin (\psi / 2+\theta)) d \psi\left(\omega=e^{i \psi}\right)$

$$
=(-)^{[\theta / \pi]} \mu(\theta / \pi)= \begin{cases}(-1)^{k} \eta(\theta) & \text { if } \pi k<\theta<\pi(k+1) \\ (-1)^{k} & \text { if } \theta=\pi k .\end{cases}
$$

(ii) For $\theta \notin \pi \mathbb{Z}$

$$
(-)^{[\theta / \pi]} \sigma^{(2)}(\theta)=\eta(\theta)=\mu(\theta / \pi)=1-2\{\theta / \pi\} \in \mathbb{R} .
$$

(iii) The $L^{(2)}$-signature function $\sigma^{(2)}: \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
\sigma^{(2)}(\theta+\pi)=-\sigma^{(2)}(\theta), \sigma^{(2)}(-\theta)=\sigma^{(2)}(\theta), \rho(0)=1 .
$$

Proposition 8.30. (Bunke [$\mathbb{\Delta}$, Prop. 1.7]) Let (K, ϕ) be a nonsingular symplectic form over \mathbb{R}, with a compatible complex structure $J: K \rightarrow$ K, and let G be the maximal compact subgroup of the automorphism group (K, ϕ) fixing J. If L_{1}, L_{2} are lagrangians of (K, ϕ) and A : $(K, \phi, J) \rightarrow(K, \phi, J)$ is an automorphism such that $A\left(L_{1}\right)=L_{2}$ then

$$
\eta(A)=\int_{G} \sigma\left(g L, L_{1}, L_{2}\right) d g
$$

where $L \subset(K, \phi)$ is an arbitrary lagrangian. The function

$$
m:\left(L_{1}, L_{2}\right) \mapsto \eta\left(L_{1}, L_{2}\right)=\eta(A) \in \mathbb{R}
$$

is the unique function on pairs of lagrangians, which is invariant under G with respect to the diagonal action

$$
g\left(L_{1} L_{2}\right)=\left(g L_{1}, g L_{2}\right)(g \in G)
$$

and such that

$$
m\left(L_{1}, L_{2}\right)+m\left(L_{2}, L_{3}\right)+m\left(L_{3}, L_{1}\right)=\sigma\left(L_{1}, L_{2}, L_{3}\right) \in \mathbb{Z} \subset \mathbb{R}
$$

Let K be a real vector space with a complex structure $J: K \rightarrow K$. The induced complex linear map $1 \otimes J: \mathbb{C} \otimes_{\mathbb{R}} K \rightarrow \mathbb{C} \otimes_{\mathbb{R}} K$ has eigenvalues $\pm i$, and the eigenspaces

$$
\begin{aligned}
\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{ \pm i} & =\operatorname{ker}\left(1 \otimes J \mp i \otimes 1: \mathbb{C} \otimes_{\mathbb{R}} K \rightarrow \mathbb{C} \otimes_{\mathbb{R}} K\right) \\
& =\{z \otimes J x \pm i z \otimes x \mid x \in K, z \in \mathbb{C}\} \subset \mathbb{C} \otimes_{\mathbb{R}} K
\end{aligned}
$$

are such that

$$
\mathbb{C} \otimes_{\mathbb{R}} K=\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{i} \oplus\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{-i}
$$

with isomorphisms

$$
\begin{aligned}
& K \rightarrow\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{i} ; x \mapsto i \otimes x+1 \otimes J x, \\
& K \rightarrow\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{-i} ; x \mapsto-i \otimes x+1 \otimes J x
\end{aligned}
$$

and projections

$$
\begin{aligned}
& \mathbb{C} \otimes_{\mathbb{R}} K \rightarrow\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{i} ; 1 \otimes x \mapsto \frac{1}{2 i}(i \otimes x+1 \otimes J x) \\
& \mathbb{C} \otimes_{\mathbb{R}} K \rightarrow\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{-i} ; 1 \otimes x \mapsto \frac{1}{2 i}(i \otimes x-1 \otimes J x) .
\end{aligned}
$$

For a nonsingular symmetric form (K, ϕ) over \mathbb{R} the nonsingular hermitian form $\left(\mathbb{C} \otimes_{\mathbb{R}} K, i \otimes \phi\right)$ over \mathbb{C} splits as a sum of a positive definite and a negative definite form

$$
\begin{aligned}
\left(\mathbb{C} \otimes_{\mathbb{R}} K, i \otimes \phi\right) & =\left(\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{i}, \phi_{i}\right) \oplus\left(\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{-i}, \phi_{-i}\right) \\
& \cong(K, \phi J) \oplus(K,-\phi J) .
\end{aligned}
$$

Given a compatible complex structure J for (K, ϕ) and a lagrangian L the complex linear maps

$$
\begin{aligned}
& \mathbb{C} \otimes_{\mathbb{R}} L \rightarrow K ;(u+i v) \otimes x \mapsto u x+v(J x)(u, v \in \mathbb{R}, x \in L), \\
& \Phi^{+}(L): \mathbb{C} \otimes_{\mathbb{R}} L \rightarrow \mathbb{C} \otimes_{\mathbb{R}} K \rightarrow\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{i} ; z \otimes x \mapsto \frac{1}{2}(z \otimes x-i z \otimes J x), \\
& \Phi^{-}(L): \mathbb{C} \otimes_{\mathbb{R}} L \rightarrow \mathbb{C} \otimes_{\mathbb{R}} K \rightarrow\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{-i} ; z \otimes x \mapsto \frac{1}{2}(z \otimes x+i z \otimes J x)
\end{aligned}
$$

are isomorphisms, with $\mathbb{C} \otimes_{\mathbb{R}} L, \mathbb{C} \otimes_{\mathbb{R}} J L \subset \mathbb{C} \otimes_{\mathbb{R}} K$ complementary lagrangians in $\left(\mathbb{C} \otimes_{\mathbb{R}} K, i \otimes \phi\right)$. The composite

$$
\Phi(L)=\Phi^{-}(L) \Phi^{+}(L)^{-1}:\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{i} \rightarrow\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{-i}
$$

is a complex linear isomorphism such that

$$
\mathbb{C} \otimes_{\mathbb{R}} L=\left\{(x, \Phi(L)(x)) \mid x \in\left(\mathbb{C} \otimes_{\mathbb{R}} K\right)_{i}\right\} \subset \mathbb{C} \otimes_{\mathbb{R}} K
$$

as in Kirk and Lesch [2.3, Definition 8.14]. The isomorphism of nonsingular hermitian forms over \mathbb{C}

$$
A_{L}: H_{-}\left(\mathbb{C} \otimes_{\mathbb{R}} L\right) \rightarrow\left(\mathbb{C} \otimes_{\mathbb{R}} K, i \otimes \phi\right) ;(x, y) \mapsto \Phi^{+}(L)(x)+\Phi^{-}(J L)\left(\left(1 \otimes \phi_{L}\right)^{-1}(y)\right)
$$

??
As in Bunke [8, p.403] define the automorphism

$$
\sigma_{L}: K=L \oplus J L \rightarrow K=L \oplus J L ;(x, y) \mapsto(-x, y)
$$

with eigenvalues $-1,+1$, such that

$$
\begin{aligned}
& \left(\sigma_{L}\right)^{2}=1, \sigma_{L}(L)=L, \sigma_{L}(J L)=J L \\
& \sigma_{L} J=-J \sigma_{L},\left(1-\sigma_{L}\right)(K)=L,\left(1+\sigma_{L}\right)(K)=J L
\end{aligned}
$$

If L^{\prime} is another lagrangian of (K, ϕ) then

$$
B=-\sigma_{L^{\prime}} \sigma_{L}:(K,(\phi, J)) \rightarrow(K,(\phi, J))
$$

is the square $B=A^{2}$ of an automorphism such that $A_{L}=L^{\prime}$.

9. Asymmetric forms

Definition 9.1. (i) An asymmetric form (K, λ) is a bilinear pairing

$$
\lambda: K \times K \rightarrow R ;(x, y) \mapsto \lambda(x, y)
$$

on a finite-dimensional real vector space K. The adjoint of λ is the linear map

$$
\lambda: K \rightarrow K^{*} ; x \mapsto(y \mapsto \lambda(x, y)) .
$$

There is virtually no difference between the pairing and the adjoint. (ii) The dual of an asymmetric form (K, λ) is the asymmetric form (K, λ^{*}) with

$$
\lambda^{*}: K \times K \rightarrow R ;(x, y) \mapsto \lambda^{*}(x, y)=\lambda(y, x) .
$$

The adjoint $\lambda^{*}: K \rightarrow K^{*}$ is the dual of the adjoint $\lambda: K \rightarrow K^{*}$.
(iii) An asymmetric form (K, λ) is nonsingular if $\lambda: K \rightarrow K^{*}$ is an isomorphism, or equivalently if $\lambda^{*}: K \rightarrow K^{*}$ is an isomorphism.
(iv) The monodromy of a nonsingular asymmetric form (K, λ) is the automorphism

$$
A=\lambda^{-1} \lambda^{*}: K \rightarrow K
$$

such that for $\epsilon= \pm 1$

$$
I+\epsilon A=\lambda^{-1}\left(\lambda+\epsilon \lambda^{*}\right): K \rightarrow K .
$$

(v) A nonsingular asymmetric form (K, λ) is fibred if A is fibred, i.e. if $I-A, I+A: K \rightarrow K$ are isomorphisms, or equivalently if the symmetric form $\left(K, \lambda+\lambda^{*}\right)$ and the symplectic form ($K, \lambda-\lambda^{*}$) are nonsingular.

Proposition 9.2. The monodromy defines a one-one correspondence of isomorphism classes
\{fibred nonsingular asymmetric forms $\}$
$\rightarrow\{$ fibred symplectic automorphisms $\}$;

$$
(K, \lambda) \mapsto\left(K, \lambda-\lambda^{*}, A\right), A=\lambda^{-1} \lambda^{*}
$$

with inverse
\{fibred symplectic automorphisms\}
\rightarrow \{fibred nonsingular asymmetric forms ;

$$
(K, \phi, A) \mapsto(K, \lambda), \lambda=\phi(I-A)^{-1} .
$$

For any such $(K, \phi, A),(K, \lambda)$ there is defined an isomorphism of nonsingular symmetric forms

$$
I-A:\left(K, \phi\left(A-A^{-1}\right)\right) \rightarrow\left(K, \lambda+\lambda^{*}\right) .
$$

Definition 9.3. Let (K, λ) and (K, ϕ, A) be related as in Proposition Q.2

$$
A=\lambda^{-1} \lambda^{*}, \phi=\lambda-\lambda^{*}, \lambda=\phi(1-A)^{-1}
$$

(i) The Alexander polynomial of (K, λ) is the Alexander polynomial of the monodromy $A=\lambda^{-1} \lambda^{*}: K \rightarrow K$

$$
\begin{aligned}
\Delta_{(K, \lambda)}(z) & =\Delta_{A}(z) \\
& =\operatorname{det}\left(\left(\lambda-\lambda^{*}\right)^{-1}\left(z \lambda-\lambda^{*}\right): K[z] \rightarrow K[z]\right) \\
& =\prod_{j=1}^{n} \frac{\left(z^{2}-2 z \cos \theta_{j}+1\right)}{4 \sin ^{2} \theta_{j} / 2} \in \mathbb{R}[z]
\end{aligned}
$$

with $0<\theta_{1}<\theta_{2}<\cdots<\theta_{n}<\pi$. Set

$$
\begin{aligned}
& \theta_{0}=0, \theta_{2 n+1}=2 \pi \\
& \theta_{j}=2 \pi-\theta_{2 n-j+1} \in(\pi, 2 \pi)(j=n+1, n+2, \ldots, 2 n) .
\end{aligned}
$$

The eigenspaces of the monodromy A

$$
K_{j}=\left\{x \in K \mid\left(A^{2}-2 A \cos \theta_{j}+1\right)(x)=0\right\}
$$

give decompositions

$$
(K, \phi, A)=\sum_{j=1}^{n}\left(K_{j}, \phi_{j}, A_{j}\right),(K, \lambda)=\sum_{j=1}^{n}\left(K_{j}, \lambda_{j}\right)
$$

with

$$
\sigma\left(K_{j}, \phi_{j}\left(A_{j}-A_{j}^{-1}\right)\right)=\sigma\left(K_{j}, \lambda_{j}+\lambda_{j}^{*}\right) \in 2 \mathbb{Z} .
$$

Let

$$
\alpha_{j}=\left\{\begin{array}{ll}
\sigma\left(K_{j}, \phi_{j}\left(A_{j}-A_{j}^{-1}\right)\right) / 2 & \text { if } 1 \leqslant j \leqslant n \\
-\alpha_{2 n-j+1} & \text { if } n+1 \leqslant j \leqslant 2 n
\end{array} \in \mathbb{Z}\right.
$$

(ii) The ω-signature of (K, λ) is given for $\omega=e^{i \psi} \in S^{1}$ by

$$
\begin{aligned}
\sigma_{\omega}(K, \lambda) & =\sigma_{\omega}(K, \phi, A)=\sigma\left(\mathbb{C} \otimes_{\mathbb{R}} K,(1-\omega) \lambda+(1-\bar{\omega}) \lambda^{*}\right) \\
& = \begin{cases}2 \sum_{j=1}^{m} \alpha_{j} & \text { if } \theta_{m}<\psi<\theta_{m+1} \\
2\left(\sum_{j=1}^{m-1} \alpha_{j}\right)+\alpha_{m} & \text { if } \psi=\theta_{m}\end{cases}
\end{aligned}
$$

for $m=0,1,2, \ldots, 2 n-1$. The L^{2}-signature, the η-invariant and the signature of (K, λ) are given by

$$
\begin{aligned}
\rho(K, \lambda) & =\rho(K, \phi, A)=\int_{\omega} \sigma_{\omega}(K, \lambda) \\
& =\sum_{j=1}^{2 n} \sigma_{\left(\theta_{j}+\theta_{j+1}\right) / 2}(K, \lambda)\left(\theta_{j+1}-\theta_{j}\right) / \pi=2 \sum_{j=1}^{n} \alpha_{j} \eta\left(\theta_{j} / 2\right) \\
\eta(K, \lambda) & =\eta(K, \phi, A)=\sum_{j=1}^{n} \alpha_{j} \eta\left(\theta_{j}\right) \\
\sigma(K, \lambda) & =\sigma(K, \phi, A)=\sigma_{-1}(K, \lambda)=2 \sum_{j=1}^{n} \alpha_{j} \in \mathbb{Z}
\end{aligned}
$$

Example 9.4. The fibred symplectic automorphism defined for $\alpha \in$ $\{-1,1\}$ and $\theta \in(0, \pi)$ by

$$
(K, \phi, A)=\left(\mathbb{R} \oplus \mathbb{R}, \alpha\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\right)
$$

corresponds to the fibred nonsingular asymmetric form

$$
(K, \lambda)=\left(\mathbb{R} \oplus \mathbb{R}, \frac{\alpha}{2}\left(\begin{array}{cc}
\cot \theta / 2 & 1 \\
-1 & \cot \theta / 2
\end{array}\right)\right)
$$

with

$$
\begin{aligned}
& \Delta_{(K, \lambda)}(z)=\frac{\left(z^{2}-2 z \cos \theta+1\right)}{4 \sin ^{2} \theta / 2} \in \mathbb{R}[z] \\
& \sigma_{\omega}(K, \lambda)= \begin{cases}2 \alpha & \text { if } \theta<\psi<2 \pi-\theta \\
0 & \text { if } 0<\psi<\theta \text { or } 2 \pi-\theta<\psi<2 \pi\end{cases} \\
& \sigma(K, \lambda)=2 \alpha \in 2 \mathbb{Z}, \rho(K, \lambda)=2 \alpha \eta(\theta / 2), \eta(K, \lambda)=\alpha \eta(\theta) \in \mathbb{R}, \\
& \rho(K, \lambda)-\eta(K, \lambda)=\alpha=\sigma(K, \lambda) / 2 \in \mathbb{Z} \subset \mathbb{R}
\end{aligned}
$$

Proposition 9.5. The L^{2}-signature, the η-invariant and the signature are Witt group invariants of a fibred nonsingular asymmetric form (K, λ) over \mathbb{R}, and are related by

$$
\rho(K, \lambda)-\eta(K, \lambda)=\sigma(K, \lambda) / 2 \in \mathbb{Z} \subset \mathbb{R} .
$$

10. Knots

KEY RESULT: if $k: S^{1} \subset S^{3}$ is a knot with Seifert surface $F \subset S^{3}$ and Seifert form $\left(H_{1}(F), \lambda\right)$ the relative cobordism

$$
\left(D^{4} ; X_{F} ; F \times I ; F \cup_{\partial} F\right)
$$

is a fundamental domain for the infinite cyclic cover (\bar{Y}, \bar{X}) of the 4manifold with boundary

$$
(Y, X)=\left(\operatorname{cl.}\left(D^{4} \backslash\left(F \times D^{2}\right)\right), \operatorname{cll} .\left(S^{3} \backslash\left(k\left(S^{1}\right) \times D^{2}\right)\right)\right)
$$

The fundamental domain has real signature

$$
\sigma_{\mathbb{R}}\left(D^{4} ; X_{F} ; F \times I ; F \cup_{\partial} F\right)=\sigma\left(D^{4}\right)+\eta(A)=\eta(A) \in \mathbb{R}
$$

The double cover of $\left(D^{4}, S^{3}\right)$ branched over $\left(F, k\left(S^{1}\right)\right)$ is a relative cobordism
$\left.\left(D^{4} ; X_{F} ; F \times I ; F \cup_{\partial} F\right) \cup\left(D^{4} ; F \times I, X_{F} ; F \cup_{\partial} F\right)\right)=\left(D^{4} \cup_{F \times I} D^{4} ; X_{F}, X_{F} ; F \cup_{\partial} F\right)$ with intersection form $\left(H_{1}(F), \lambda+\lambda^{*}\right)$, and real signature

$$
\begin{aligned}
& \sigma_{\mathbb{R}}\left(D^{4} \cup_{F \times I} D^{4} ; X_{F}, X_{F} ; F \cup_{\partial} F\right) \\
& =\sigma_{\mathbb{R}}\left(D^{4} ; X_{F} ; F \times I ; F \cup_{\partial} F\right)+\sigma_{\mathbb{R}}\left(D^{4} ; F \times I, X_{F} ; F \cup_{\partial} F\right) \\
& =\sigma\left(H_{1}(F), \lambda+\lambda^{*}\right)+\eta\left(A^{2}\right)=2 \eta(A) \in \mathbb{R}
\end{aligned}
$$

so that the signature of k is

$$
\sigma(k)=\sigma\left(H_{1}(F), \lambda+\lambda^{*}\right)=2 \eta(A)-\eta\left(A^{2}\right)
$$

The exterior of a knot $k: S^{1} \subset S^{3}$

$$
X=S^{3} \backslash k\left(S^{1}\right)
$$

is a homology circle, with

$$
H_{*}(X)=H_{*}\left(S^{1}\right), H^{*}(X)=H^{*}\left(S^{1}\right)
$$

The generator $1 \in H^{1}(X)=\mathbb{Z}$ is represented by a map $p: X \rightarrow S^{1}$ such that making p transverse regular at $* \in S^{1}$ gives a Seifert surface for k, a codimension 1 submanifold

$$
F=p^{-1}(*) \subset S^{3}
$$

with

$$
\partial F=k\left(S^{1}\right) \subset S^{3}
$$

and with a neighbourhood $F \times I \subset S^{3}$. The 3-dimensional relative cobordism

$$
\left(X_{F} ; F_{0}, F_{1} ; \partial F\right)=(\operatorname{cl} .(X \backslash F \times I) ; F \times\{0\}, F \times\{1\} ; \partial F \times\{1 / 2\})
$$

is a fundamental domain for the canonical infinite cyclic cover

$$
\bar{X}=p^{*} \mathbb{R}=\bigcup_{k=-\infty}^{\infty} \zeta^{k}\left(X_{F} ; F_{0}, F_{1} ; \partial F\right)
$$

with $\zeta: \bar{X} \rightarrow \bar{X}$ a generating covering translation.
Proposition 10.1. (Milnor [34]) The \mathbb{R}-coefficient cohomology of \bar{X} is such that

$$
\operatorname{dim}_{\mathbb{R}} H_{2}(\bar{X} ; \mathbb{R})=1, \operatorname{dim}_{\mathbb{R}} H^{1}(\bar{X} ; \mathbb{R})<\infty
$$

The characteristic polynomial of the monodromy automorphism

$$
A=\zeta^{*}: K=H^{1}(\bar{X} ; \mathbb{R}) \rightarrow K
$$

is the Alexander polynomial of k

$$
\Delta(z)=\operatorname{det}\left(z-A: K\left[z, z^{-1}\right] \rightarrow K\left[z, z^{-1}\right]\right) \in \mathbb{R}\left[z, z^{-1}\right]
$$

with $\Delta(1)=1 \in \mathbb{R}$. The monodromy is an elliptic automorphism of the nonsingular symplectic form over \mathbb{R}

$$
\phi: K \times K \rightarrow \mathbb{R} ;(x, y) \mapsto\langle(A(x) \cup y)+(x \cup A(y),[\bar{X}]\rangle .
$$

so that (K, ϕ, A) is an elliptic symplectic automorphism, with eigenvalues the roots of $\Delta(z)$. The linear isomorphism

$$
\lambda=\phi(1-A)^{-1}: K \rightarrow K^{*}
$$

is such that

$$
\lambda-\lambda^{*}=\phi: K \rightarrow K^{*} .
$$

Proposition 10.2. For any Seifert surface $F \subset S^{3}$ the linear isomorphism

$$
\lambda: H_{1}(F ; \mathbb{R}) \rightarrow H_{1}\left(S^{3} \backslash F ; \mathbb{R}\right)=H^{1}(F ; \mathbb{R})=H_{1}(F ; \mathbb{R})^{*}
$$

defines a Seifert (asymmetric) form for k, with

$$
\lambda-\lambda^{*}: H_{1}(F ; \mathbb{R}) \rightarrow H_{1}(F ; \mathbb{R})^{*}
$$

the nonsingular symplectic form over \mathbb{R}, and

$$
\begin{aligned}
& K=\operatorname{coker}\left(\lambda-z \lambda^{*}: H_{1}(F ; \mathbb{R})\left[z, z^{-1}\right] \rightarrow H_{1}(F ; \mathbb{R})^{*}\left[z, z^{-1}\right]\right), \\
& \phi: K \times K \rightarrow \mathbb{R} ; \\
& (x, y) \mapsto\left(\text { coefficient of } z^{-1} \text { in }\left(\lambda-z \lambda^{*}\right)^{-1}(x)(y) \in \mathbb{R}(z)\right) \\
& A=\lambda^{-1} \lambda^{*}=\zeta^{*}=z: K \rightarrow K
\end{aligned}
$$

Definition 10.3. (i) The ω-signature of a knot $k: S^{1} \subset S^{3}$ is defined for any $\omega \in S^{1}$ by

$$
\left.\sigma_{\omega}(k)=\sigma_{\omega}(K, \lambda)=\sigma\left(K,(1-\omega) \lambda+(1-\bar{\omega}) \lambda^{*}\right)\right) \in \mathbb{Z}
$$

(ii) The signature of k is

$$
\sigma(k)=\sigma_{-1}(k)=\sigma\left(K, \lambda+\lambda^{*}\right) \in \mathbb{Z}
$$

The 0 -framed surgery on $k: S^{1} \subset S^{3}$ is the closed 3-dimensional manifold

$$
M_{k}=X \cup_{S^{1} \times S^{1}} D^{2} \times S^{1}
$$

cobordant to S^{3}, with $H_{1}\left(M_{k}\right)=\mathbb{Z}$.
Definition 10.4. The ρ-invariant or reduced $\sigma^{(2)}$-signature of k is

$$
\rho(k)=\sigma^{(2)}(W)-\sigma(W) \in \mathbb{R}
$$

for any 4-dimensional manifold W with $\partial W=M_{k}$ and an extension of $H_{1}\left(M_{k}\right)=\mathbb{Z}$ to a morphism $H_{1}(W) \rightarrow \mathbb{Z}$, where $\sigma^{(2)}(W) \in \mathbb{R}$ is the $L^{(2)}$-signature and $\sigma(W) \in \mathbb{Z}$ is the ordinary signature.

Proposition 10.5. The reduced $\sigma^{(2)}$-signature of a knot $k: S^{1} \subset S^{3}$ is

$$
\rho(k)=\int_{\omega \in S^{1}} \sigma_{\omega}\left(H_{1}(F), \lambda\right) \in \mathbb{R}
$$

for any Seifert surface $F^{2} \subset S^{3}$, with Seifert form $\left(H_{1}(F), \lambda\right)$.

Proof. The 4-dimensional manifold with boundary

$$
\left(W^{4}, \partial W\right)=\left(\operatorname{cl} .\left(D^{4} \backslash F \times D^{2}\right), X \cup F \times S^{1}\right)
$$

is such that $\pi_{1}(W)=\mathbb{Z}$ and the intersection form on the infinite cyclic cover $(\bar{W}, \overline{\partial W})$ is

$$
\left(H_{2}(\bar{W} ; \mathbb{R}(z)), \text { intersection form }\right)=\left(K(z),(1-z) \lambda+\left(1-z^{-1}\right) \lambda^{*}\right)
$$

so that

$$
\sigma(W)=\sigma(K, 0)=0 \in \mathbb{Z}, \sigma^{(2)}(W)=\int_{\omega \in S^{1}} \sigma_{\omega}(K, \lambda) \in \mathbb{R}
$$

The reduced $\sigma^{(2)}$-signature of k is thus

$$
\rho(k)=\sigma^{(2)}(W)-\sigma(W)=\sigma^{(2)}(W)=\int_{\omega \in S^{1}} \sigma_{\omega}(K, \lambda) \in \mathbb{R}
$$

Definition 10.6. The Alexander polynomial of $k: S^{1} \subset S^{3}$ is the Alexander polynomial of A

$$
\Delta_{k}(z)=\Delta_{A}(z)=\prod_{j=1}^{n} \frac{z^{2}-2 z \cos \theta_{j}+1}{4 \sin ^{2} \theta_{j} / 2} \in \mathbb{R}[z]
$$

with roots $e^{ \pm i \theta_{j}}\left(\theta_{j} \in(0, \pi)\right)$.

The eigenspaces of A

$$
K_{j}=\left\{x \in K \mid\left(A^{2}-2 A \cos \theta_{j}+1\right)(x)=0\right\}
$$

give decompositions

$$
(K, \phi, A)=\sum_{j=1}^{n}\left(K_{j}, \phi_{j}, A_{j}\right),(K, \lambda)=\sum_{j=1}^{n}\left(K_{j}, \lambda_{j}\right) .
$$

As before, let
$\theta_{0}=0, \theta_{2 n+1}=2 \pi, \theta_{j}=2 \pi-\theta_{2 n-j+1} \in(\pi, 2 \pi)(j=n+1, n+2, \ldots, 2 n)$
and

$$
\alpha_{j}=\left\{\begin{array}{ll}
\sigma\left(K_{j}, \phi_{j}\left(A_{j}-A_{j}^{-1}\right)\right) / 2 & \text { if } 1 \leqslant j \leqslant n \\
-\alpha_{2 n-j+1} & \text { if } n+1 \leqslant j \leqslant 2 n
\end{array} \in \mathbb{Z}\right.
$$

The signatures

$$
2 \alpha_{j}=\sigma\left(K_{j}, \phi_{j}\left(A_{j}-A_{j}^{-1}\right)\right)=\sigma\left(K_{j}, \lambda_{j}+\lambda_{j}^{*}\right) \in 2 \mathbb{Z}(1 \leqslant j \leqslant n)
$$

are the knot signatures of Milnor [34]. The ω-signature of k (Levine [27], Tristram [55]]) is given for $\omega=e^{i \psi} \in S^{1}$ by

$$
\begin{aligned}
\sigma_{\omega}(k) & =\sigma_{\omega}(K, \phi, A)=2 \sum_{j=1}^{n} \alpha_{j} \sigma_{\omega}\left(-\theta_{j} / 2\right) \\
& =2 \sum_{j=1}^{n} \alpha_{j}\left(\operatorname{sgn}\left(\sin (\psi / 2) \sin \left(\left(\psi-\theta_{j}\right) / 2\right)\right)\right. \\
& = \begin{cases}2 \sum_{j=1}^{m} \alpha_{j} & \text { if } \theta_{m}<\psi<\theta_{m+1} \\
2\left(\sum_{j=1}^{m-1} \alpha_{j}\right)+\alpha_{m} & \text { if } \psi=\theta_{m} .\end{cases}
\end{aligned}
$$

Definition 10.7. The η-invariant of a knot $k: S^{1} \subset S^{3}$ is

$$
\eta(k)=\eta\left(M_{k}, F \cup_{\partial} F, J\right) \in \mathbb{R}
$$

with

$$
F \cup_{\partial} F \subset M_{k}=\left(F \times I \cup D^{2} \times S^{1}\right) \cap_{F \cup_{\partial} F}(F \times I \cup X)
$$

Proposition 10.8. The ρ-invariant, η-invariant and signature of k are given by

$$
\begin{aligned}
& \rho(k)=\rho(K, \lambda)=2 \sum_{j=1}^{n} \alpha_{j} \eta\left(\theta_{j} / 2\right) \in \mathbb{R}, \\
& \eta(k)=\eta(K, \lambda)=\sum_{j=1}^{n} \alpha_{j} \eta\left(\theta_{j}\right) \in \mathbb{R}, \\
& \sigma(k)=\sigma(K, \lambda)=2 \sum_{j=1}^{n} \alpha_{j} \in \mathbb{Z}
\end{aligned}
$$

are related by

$$
\rho(k)-\eta(k)=\sigma(k) / 2 \in \mathbb{Z} \subset \mathbb{R}
$$

Let $F^{2} \subset S^{3}$ be a Seifert surface for k, with $\partial F=k\left(S^{3}\right)$, and let

$$
A:(K, \phi)=\left(H_{1}(F ; \mathbb{R}), \text { intersection form }\right) \rightarrow(K, \phi)
$$

be the monodromy automorphism, which is elliptic, corresponding to the Seifert form

$$
\lambda=\phi(1-A)^{-1}: K \rightarrow K^{*}
$$

The 4-dimensional manifold with boundary

$$
\left(W^{4}, \partial W\right)=\left(\operatorname{cl} .\left(D^{4} \backslash F \times D^{2}\right), T\left(A \cup 1: F \cup_{\partial} F \rightarrow F \cup_{\partial} F\right)\right)
$$

is such that $\eta(k)=\eta(\partial W) \in \mathbb{R}$. The infinite cyclic cover $(\bar{W}, \overline{\partial W})$ classified by a map $(W, \partial W) \rightarrow S^{1}$ representing a generator $1 \in H^{1}(W, \partial W)=$ \mathbb{Z} is such that

$$
\left(H_{2}(\bar{M} ; \mathbb{R}(z)), \text { intersection form }\right)=\left(K(z),(1-z) \lambda+\left(1-z^{-1}\right) \lambda^{*}\right) .
$$

The isomorphism

$$
L \operatorname{Asy}^{0}(\mathbb{R}) \rightarrow L^{4}(\mathbb{R}(z)) ;(K, \lambda) \mapsto \sigma^{*}(W)=\left(K(z),(1-z) \lambda+\left(1-z^{-1}\right) \lambda^{*}\right)
$$

sends the Witt class of the Seifert form to the multisignature

$$
\begin{aligned}
\sigma^{*}(W) & =\left(K(z),(1-z) \lambda+\left(1-z^{-1}\right) \lambda^{*}\right) \\
& =\left(0, \sum_{j=1}^{n} \alpha_{j} \theta_{j}\right) \in L^{4}(\mathbb{R}(z))=\mathbb{Z} \oplus \sum_{0<\theta<\pi} \mathbb{Z}
\end{aligned}
$$

The L^{2}-signature map of Cochran, Orr and Teichner [[I, §5]

$$
\sigma^{(2)}: L^{4}(\mathbb{R}(z)) \rightarrow L^{4}(\mathcal{U} \mathbb{Z})=\mathbb{R}
$$

sends $\sigma^{*}(W)$ to

$$
\begin{aligned}
\sigma^{(2)}(W) & =\int_{\omega \in S^{1}} \sigma_{\omega}(k) \\
& =2 \sum_{j=1}^{n} \alpha_{j} \eta\left(\theta_{j} / 2\right)=\sum_{j=1}^{n} \alpha_{j} \eta(\theta)+\sum_{j=1}^{n} \alpha_{j} \\
& =\eta(k)+\sigma(k) / 2 \in \mathbb{R} .
\end{aligned}
$$

Let ∂ be the boundary map in the localization exact sequence

$$
0 \longrightarrow L^{4}\left(\mathbb{R}\left[z, z^{-1}\right]\right) \longrightarrow L^{4}(\mathbb{R}(z)) \xrightarrow{\partial} L \operatorname{Aut}^{2}(\mathbb{R}) \longrightarrow 0 .
$$

The isomorphism

$$
\sigma \oplus \partial: L^{4}(\mathbb{R}(z)) \rightarrow L^{4}\left(\mathbb{R}\left[z, z^{-1}\right]\right) \oplus \operatorname{Aut}^{2}(\mathbb{R})=\mathbb{Z} \oplus \sum_{0<\theta<\pi} \mathbb{Z}
$$

sends the symmetric signature to

$$
\begin{aligned}
\left(\sigma(W), \partial \sigma^{*}(W)\right) & =(0,(K, \phi, A) \oplus(K,-\phi, 1)) \\
& =\left(0, \sum_{j=1}^{n} \alpha_{j} \theta_{j}\right) \in L^{4}(\mathbb{R}(z))=\mathbb{Z} \oplus \sum_{0<\theta<\pi} \mathbb{Z}
\end{aligned}
$$

Example 10.9. The right-handed trefoil knot $k: S^{1} \subset S^{3}$ has Seifert form

$$
(K, \lambda)=\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)\right)
$$

and elliptic monodromy

$$
A=\lambda^{-1} \lambda^{*}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right):\left(K, \phi=\lambda-\lambda^{*}\right)=\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right) \rightarrow(K, \phi)
$$

The Alexander polynomial, symmetric form, ρ-invariant, η-invariant and signature of k are

$$
\begin{aligned}
& \Delta_{k}(z)=z^{2}-z+1=\left(z-e^{\pi i / 3}\right)\left(z-e^{-\pi i / 3}\right), \theta_{1}=\pi / 3, \\
& \left(K, \phi\left(A-A^{-1}\right)\right)=\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right)\right), \alpha_{1}=-1, \\
& \rho(k)=2 \alpha_{1} \eta\left(\theta_{1} / 2\right)=-4 / 3, \\
& \eta(k)=\alpha_{1} \eta\left(\theta_{1}\right)=-1 / 3, \\
& \sigma(k)=2 \alpha_{1}=-2 \in \mathbb{Z} .
\end{aligned}
$$

Example 10.10. (Kervaire [21, III.12], Milnor [34]) For $m \neq 0 \in \mathbb{Z}$ let K_{m} be the m-twist knot, with Seifert matrix

$$
(K, \lambda)=\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
m & 0 \\
-1 & 1
\end{array}\right)\right) .
$$

The Alexander polynomial is

$$
\Delta_{K_{m}}(z)=\frac{\operatorname{det}\left(\lambda-z \lambda^{*}\right)}{\operatorname{det}\left(\lambda-\lambda^{*}\right)}=m z^{2}-(2 m-1) z+m \in \mathbb{R}[z]
$$

with roots

$$
z_{1}, z_{2}=\frac{(2 m-1) \pm \sqrt{1-4 m}}{2 m} \in \mathbb{C}
$$

such that $z_{1} z_{2}=1$. The monodromy is

$$
A=\lambda^{-1} \lambda^{*}=\left(\begin{array}{cc}
1 & -\frac{1}{m} \\
1 & \frac{m-1}{m}
\end{array}\right):(K, \phi) \rightarrow(K, \phi)
$$

with

$$
\phi=\lambda-\lambda^{*}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right): K \rightarrow K^{*}
$$

For $m \leqslant-1$ the roots of A are real and K_{m} is algebraically slice, with

$$
\sigma_{\omega}\left(K_{m}\right)=0\left(\omega \in S^{1}\right), \sigma\left(K_{m}\right)=\rho\left(K_{m}\right)=\eta\left(K_{m}\right)=0 .
$$

K_{m} is slice if and only if $-m=n(n+1)$ for some $n \geqslant 1$ by Casson and Gordon [9].

For $m \geqslant 1 A$ is elliptic, with $\left\{z_{1}, z_{2}\right\}=\left\{e^{i \theta_{m}}, e^{-i \theta_{m}}\right\}$ for $\theta_{m} \in(0, \pi / 2)$ such that

$$
\cos \theta_{m}=\frac{2 m-1}{2 m}, \sin \theta_{m}=\frac{\sqrt{4 m-1}}{2 m}
$$

with

$$
(K, \phi, A)=\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
\cos \theta_{m} & -\sin \theta_{m} \\
\sin \theta_{m} & \cos \theta_{m}
\end{array}\right)\right) .
$$

The ρ-invariant, η-invariant and signature of K_{m}

$$
\begin{aligned}
& \rho\left(K_{m}\right)=2 \eta\left(\theta_{m} / 2\right)=2-\frac{2 \theta_{m}}{\pi} \in \mathbb{R} \\
& \eta\left(K_{m}\right)=\eta\left(\theta_{m}\right)=1-\frac{2 \theta_{m}}{\pi} \in \mathbb{R} \\
& \sigma\left(K_{m}\right)=2 \in \mathbb{Z}
\end{aligned}
$$

are related by

$$
\rho\left(K_{m}\right)-\eta\left(K_{m}\right)=\sigma\left(K_{m}\right) / 2=1 \in \mathbb{Z} \subset \mathbb{R}
$$

(The computation of $\rho\left(K_{2 m}\right)$ first appeared in Cochran, Orr and Teichner $[\llbracket 2,5.7])$.
Example 10.11. Let $T(p, q)$ be the (p, q)-torus knot, with $p, q \geqslant 2$ coprime integers. Let $n=(p-1)(q-1) / 2$, and let $1=r_{1}<r_{2}<\cdots<$ r_{n} be such that

$$
\{r \mid 1 \leqslant r<p q / 2, p \nmid r, q \nmid r\}=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}
$$

with

$$
r_{j}=a_{j} q+b_{j} p\left(a_{j} \neq 0,1 \leqslant b_{j}<q\right)
$$

The Alexander polynomial of $T(p, q)$ is

$$
\Delta_{T(p, q)}(z)=\frac{\left(z^{p q}-1\right)(z-1)}{\left(z^{p}-1\right)\left(z^{q}-1\right)} \in \mathbb{R}[z]
$$

with roots $\left\{e^{ \pm i \theta_{j}} \mid 1 \leqslant j \leqslant n\right\}$ given by

$$
\theta_{j}=\frac{2 \pi r_{j}}{p q}=2 \pi\left(\frac{a_{j}}{p}+\frac{b_{j}}{q}\right)
$$

The elliptic symplectic automorphism (K, ϕ, A) over \mathbb{R} is given by

$$
\begin{aligned}
(K, \phi, A) & =\sum_{j=1}^{n}\left(K_{j}, \phi_{j}, A_{j}\right) \\
& =\sum_{j=1}^{n}\left(\mathbb{R} \oplus \mathbb{R}, \alpha_{j}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
\cos \theta_{j} & -\sin \theta_{j} \\
\sin \theta_{j} & \cos \theta_{j}
\end{array}\right)\right)
\end{aligned}
$$

with

$$
\alpha_{j}=\operatorname{sgn}\left(a_{j}\right) \in\{-1,1\}
$$

The ρ-invariant, η-invariant and signature of $T(p, q)$

$$
\begin{aligned}
\rho(T(p, q)) & =2 \sum_{j=1}^{n} \alpha_{j} \eta\left(\theta_{j} / 2\right)=2 \sum_{j=1}^{n} \alpha_{j} \eta\left(\frac{\pi r_{j}}{p q}\right)=2 \sum_{j=1}^{n} \alpha_{j}\left(1-\frac{2 r_{j}}{p q}\right) \in \mathbb{R} \\
\eta(T(p, q)) & =\sum_{j=1}^{n} \alpha_{j} \eta\left(\theta_{j}\right)=\sum_{j=1}^{n} \alpha_{j} \eta\left(\frac{2 \pi r_{j}}{p q}\right)=\sum_{j=1}^{n} \alpha_{j}\left(1-\frac{4 r_{j}}{p q}\right) \in \mathbb{R} \\
\sigma(T(p, q)) & =2 \sum_{j=1}^{n} \alpha_{j} \in \mathbb{Z}
\end{aligned}
$$

are related by

$$
\rho(T(p, q))-\eta(T(p, q))=\sigma(T(p, q)) / 2 \in \mathbb{Z} \subset \mathbb{R}
$$

Kirby and Melvin [22, 3.8], Borodzik [6] and Collins [13] have obtained a formula for the ρ-invariant

$$
\rho(T(p, q))=-\frac{(p-1)(p+1)(q-1)(q+1)}{3 p q} \in \mathbb{R}
$$

Borodzik and Oleszkiewicz [7] have recently obtained a formula for the signature for coprime p, q odd
$\sigma(T(p, q))=-\frac{p q}{2}+\frac{2 p}{3 q}+\frac{2 q}{3 p}+\frac{1}{6 p q}-4(s(2 p, q)+s(2 q, p))-1 \in \mathbb{Z}$.

References

[1] V.Arnold, On a characteristic class entering into conditions of quantisation, Functional Analysis and Its Applications 1, 1-14 (1967)
[2] _ The Sturm theorems and symplectic geometry, Functional Analysis and Its Applications 19, 1-10 (1985)
[3] M.Atiyah, The logarithm of the Dedekind η-function, Math. Ann. 278, 335-380 (1987)
[4] _ , V.Patodi and I.Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78, 405-432 (1975)
[5] J.Barge et E.Ghys, Cocycles d'Euler et de Maslov, Math. Ann. 294, 235265 (1992)
[6] M.Borodzik, A rho-invariant of iterated torus knots, arxiv:math.AT/0906.3660 (2009)
[7] ___ and K.Oleszkiewicz, On the signatures of torus knots, arxiv:math.AT/1002.4500 (2010)
[8] U.Bunke, On the gluing problem for the η-invariant, J. Diff. Geom. 41, 397-448 (1995)
[9] A.Casson and C.McA.Gordon, On slice knots in dimension three, Proc. Sympos. Pure Math., XXXII, 39-53, A.M.S. (1978)
[10] S.Cappell, R.Lee and E.Miller, On the Maslov index, Comm. Pure Appl. Math. 47, 121-186 (1994)
[11] T.Cochran, K.Orr and P.Teichner, Knot concordance, Whitney towers and L^{2} signatures, Ann. of Math. (2) 157, 433-519 (2003)
[12] T.Cochran, K.Orr and P.Teichner, Structure in the classical knot concordance groups, Comm. Math. Helv. 79, 105-123 (2004)
[13] J.Collins, The L^{2}-signature of torus knots, arxiv:math.GT/1001.1329 (2010)
[14] M.de Gosson, The structure of q-symplectic geometry, J. Math. Pures Appl. (9) 71, 429-453 (1992)
[15] __ On the usefulness of an index due to Leray for studying the intersections of Lagrangian and symplectic paths, J. Math. Pures Appl. (9) 91, 598-613 (2009)
[16] M.Farber and J.Levine, Jumps of the eta-invariant, Math. Z. 223, 197-246 (1996)
[17] P.Gilmer and G.Masbaum, Maslov index, lagrangians, mapping class groups and TQFT, Forum Math. 25, 10671106 (2013)
[18] I.Hambleton, A.Korzeniewski and A.Ranicki, The signature of a fibre bundle is multiplicative mod 4, Geometry and Topology 11, 251-314 (2007)
[19] F.Hirzebruch, Singularities and exotic spheres, Sèminaire Bourbaki 1966/67, Vol. 10, Exp. No. 314, Soc. Math. France, 13-32 (1995)
[20] M.Kashiwara and P.Schapira, Categories and sheaves, Grundlehren der Math. Wiss. 332, Springer (2006)
[21] M.Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93, 225-271 (1965)
[22] R.Kirby and P.Melvin, Dedekind sums, μ-invariants and the signature cocycle, Math. Ann. 299, 231-267 (1994)
[23] P.Kirk and M.Lesch, The η-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math. 16, 553-629 (2004)
[24] L.Kramer and K.Tent, A Maslov cocycle for unitary groups, Porc. LMS (3) 100, 91-115 (2010)
[25] J.Leray, Lagrangian analysis and quantum mechanics, MIT Press (1981)
[26] M.Lesch and K.Wojciechowski, On the η-invariant of generalized Atiyah-Patodi-Singer boundary value problems, Ill. J. Math. 40, 30-46 (1996)
[27] J.Levine, Invariants of knot cobordism, Invent. Math. 8, 98-110 (1969)
[28] G.Lion and M.Vergne, The Weil representation, Maslov index and theta series, Progress in Math. 6, Birkhäuser (1980)
[29] W.Lück, L^{2}-invariants: theory and applications to geometry and K theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 44, Springer (2002)
[30] T.Matumoto, On the signature invariants of a nonsingular complex sesquilinear form, J. Math. Soc. Japan 29, 67-71 (1977)
[31] D.McDuff and D.Salamon, Introduction to symplectic topology, Oxford (1995)
[32] W.Meyer, f?Bonn. Math. Schr. 53 (1972)
[33] W.Meyer, Die Signatur von Flächenbündeln, Math. Ann. 201, 239-264 (1973)
[34] J.Milnor, Infinite cyclic coverings, Proc. Conf. on the Topology of Manifolds (Michigan State Univ., 1967), 115-133 (1968)
[35] T.Morifuji, The η-invariant of mapping tori with finite monodromies, Topology Appl. 75, 41-49 (1997)
[36] W.Müller, Eta invariants and manifolds with boundary, J. Diff. Geo. 40, 311-377 (1994)
[37] J.Nekovar, The Maslov index and Clifford algebras, Funct. Anal. Appl. 24 (1990), 196204 (1991)
[38] W.Neumann, Signature related invariants of manifolds. I. Monodromy and γ-invariants, Topology 18, 147-172 (1979)
[39] A.Nicas, Classifying pairs of lagrangians in a hermitian vector space, Topology and its Appl. 42, 71-81 (1991)
[40] S.P.Novikov, Pontrjagin classes, the fundamental group and some problems of stable algebra, Essays in honour of G. de Rham, 147-155, Springer (1970)
[41] R.Paley, A remarkable series of orthogonal functions. I, II., Proc. Lond. Math. Soc., II. Ser., 34, 241-279 (1932)
[42] R.Parimala, R.Preeti and R.Sridharan, Maslov index and a central extension of the symplectic group, K-Theory 19, 29-45 (2000)
[43] P.Py, Indice de Maslov et théorème de Novikov-Wall", Bol. Soc. Mat. Mex. 11, 303-331 (2005)
[44] F.Quinn, Open book decompositions, and the bordism of automorphisms, Topology 18, 55-73 (1979)
[45] H.Rademacher, Einige Sätze über Orthogonalreihen, Mathematische Annalen 87, 112-138 (1922)
[46] A.A.Ranicki, Algebraic L-theory I. Foundations, Proc. L.M.S. (3) 27, 101-125 (1973)
[47] , High-dimensional knot theory, Springer (1998)
[48] , Algebraic and geometric surgery, OUP (2002)
[49] J.Rawnsley, On the universal covering group of the real symplectic group, J. Geometry and Physics 62, 2044-2058 (2012)
[50] H.Reich, On the K - and L-theory of the algebra of operators affiliated to a finite von Neumann algebra, K-Theory 24, 303-326 (2001)
[51] J.J.Sylvester, A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitution to the form of a sum of positive and negative squares, Philosophical Magazine IV, 138-142 (1852)
[52] , On a remarkable modification of Sturm's theorem, Philosophical Magazine V, 446-456 (1853)
[53] R.Sczech, Dedekind sums and signatures of intersection forms, Math. Ann 299, 269-274 (1994)
[54] J-M.Souriau, Construction explicite de l'indice de Maslov. Applications, Group theoretical methods in physics, Nijmegen, 1975, Springer Lecture Notes in Phys., Vol. 50, 117-148 (1976)
[55] A.Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66, 251-264 (1969)
[56] V.Turaev, A cocycle of the symplectic first Chern class and Maslov indices, Funct. Anal. and Appl. 18, 43-48 (1984)
[57] C.T.C.Wall, Non-additivity of the signature, Invent. Math. 7, 269-274 (1969)
[58] , Surgery on compact manifolds, Academic Press (1970), 2nd edition, A.M.S. (1999)
[59] , Singular points of plane curves, LMS Student Texts 63, Cambridge (2004)
[60] J.Walsh, A Closed Set of Normal Orthogonal Functions, Amer. J. Math. 45, 5-24 (1923)

