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Localization in gquadratic L-theoxy

by Andrew Ranicki, Princeton University

Introduction

Localization is an indispensable tool in the computation of the
surgery obstruction groups Ln(n) = Ln(zmw]) (n(mod 4)) of Wall [3], at least
for finite groups w. The L~groups Ln(A) of a ring with involution A are
conpared with the I~groups Ln(s~1A) of the localization S~ A inverting
sone multiplicative subset SCTA, the difference being measured by certain
I-groups Ln(A,S) depending on the category of S~torsion A-modules.

In particular, if A = Z[n] , S = Z~-103CA and =« is finite then S-1A = gn]
is semi-simple, and it is comparatively easy to compute Ln(Q[n]), Ln(Z[n],S)
and hence Ln(ZZ['n:]).

Localization in algebraic I~theory has already been studied by many
authors, including Wall [{],[2],[6], Passman and Petrie [1], Connolly [1],
Milnor and Husemoller [1], Bak and Scharlau [1], Karoubi [1], Pardon [1],[2],
Carlsson and Milgram [1], though not in the generality obtained here.

The behéviour of the IL-groups under localization is governed by
an exact seQuence of the type

e L (M) L (§TA) —> L (4,8) —>T__(A) —>L_ _(sTA)—> ...,
Our irmmediate aim in this paper is to obtain a precise statement of this
sequence (Proposition 2.4). We shall go some way towards a proof, but the
detailed azccount is deferred to a projected instalment of the series
"The algebraic theory of surgery" (Ranicki [2]), where we shall also prove
a localization exact sequence of this type for symmetric L-theory.

Apart from the localization exact sequence itself we shall discuss
the following applications:

- Tet A = Lim A/sA be the S~adic completion of A, There are defined
s€S

excision isomorphisms

L (4,8) ——— L (8,8) (n(moa 4))



and a Mayer-Vietoris exact sequence of the type
cor =T (A —>T (Dol (57'M) —1 (BH)—s 1 (A)—> ...
(Proposition 3,2).
~ If the ring A is an R-module then the symmetric Witt group LO(R) acts
on the localization exact sequence of (A,S). This LO(R)-module structure is
used to prove that natural maps of the type
Ln(zztn])-————*Ln(Q[n]) (n(mod &4))
are isomorphisms modulo 8~torsion, and that the L-groups Ln(thn]) are of
ezponent 8 (Propositions 4.2 ,4.4).
- If the ring A is an algebra over a Dedekind ring R and § = R~{0}Ca
there are defined mnatural direct sum decompositions
I (8,8,8) = ?znux,?‘f@ (n(mod 1))
with@DIenging over the non~zero prime ideals of R such that§§=:§).
The I~groups Ln(A;gfte) are defined using quadratic structures on’§)-primary
S=torsion A~modules. (Proposition 5.1).
Vie shall consistently use the language of forms and formations of
Ranicki. [1]., We shall omit the proofs of results of the following nature:

i) some relation, invariably called "cobordism", involving forms
and formations is claimed to be an equivalence relation such that the
equivalence classes define an abelian group with respect to the direct sum e.

ii) some function between such cobordism groups is claimed to
be an isomorphism,

The chain complex formulation of quadratic Lcheory in Ranicki [2] lends
itself more feadily to proofs of such results, those of type i) being
ovtained by an algebraic mimicry of the cobordism of manifolds, and those
of type ii) by identifying cobordism groups of forms and formations with
covordism groups of quadratic Poincaré complexes. From the point of view
of Ranicki [2] the L-groups Ln(A) are defined for n7220 to be the algebraic
covordism groups of pairs (C,W) such that C is an n-dimensional

f.z. projective A-module chain complex and V is a quadratic structure



inducing Poincaré duality B (e) = H,(C). The groups Ln(A,S,E) are defined
for n>0 to be the algebraic cobordism groups of pairs (D,6) such that D
is an (n+1)~dimensional f.g. projective A~module chain complex which.

_ . . -1 . .
becomes chain contractible over S A and 6 is a quadratic structure inducing

n+1-*(D)

Poincaré duality H = H, (D). It is relatively easy to prove the

exact sequence

~1 S -1
eve }_LII(A) an(S A)—+Ln(A’S)—_+Ln“1 (A)‘—?Ln_,](s A)——_> es ey

s0 that to obtain a localization exact sequence for the surgef& obstruction
groups it remains only to identify the chain complex I-~groups with the
L-periodic L~groups defined using forms and formations. Although this
iderntification can be used to both state and prove the localization exact
sequence in terms of forms'and formations we find the chain complex

approach more illuminating, at least as far as proofs are concerned.
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§1. Quadratic IL-theory

[,

We recall some of the definitions and results of Ranicki [1],[2].
Iet A be an associative ring with 1, and with an involution

t A—m—>A ; at——>>a
such that
(3b) = b.a , (atb) =a+1b , =1 , a=a€hs (a,bep).
A-nodules will always be taken to have a left A-action,
The dual of an A-module M is the A-module
M* = HomA(M,A) ,
with A acting by
Ax M*¥—— > M* ; (a,f) —> (x—F(x)a) .
The dual of an A-module mox;p.hism feHomA(M,N) is the A-module morphism
f* ¢ N*¥ — 5 M* 5 gr+—2 (x —>g(£(x))) .
If M is a f.g. projective A~-module then so is the dual M*, and there is

defined a natural A-module isomorphism

M e————3 M** ; x1t > (£ > £(x%))
which we shall use to identify M** = M.
Iet €€ A be a central unit such that
T=cea
(for example, € = _4_-_1). Given a f.g. projective A-module M define the
€=duality involution
T, * Hom (M,M*) ——Hom, (M,M*) ; 9 —> (ep*1x+— (y—seo(y) (%)) ,

let

1l

Q%(M) = ker(1-T_:Hom, (M,M*) —» Hom, (M,}*))
QE(M) = coker('l-TE:HomA(M,M*)———%HomA(M,M*)) .
and define a morphism of abelian groups

14T, ¢ QE(M)————>Q8(M) ; V> ViEW*



e~symmetric (M,¢)
An form over A is a f.ge. projective A~-module M
e-quadratic (M,v)
eeQ ()
together with an element . A morphism (resp. isomorphism) of such
veq (1)

forms
£ (M) —>(M',0")

f

(M, ¥) —— (M, ¥1)

is an A~module morphism (resp., isomorphism) feIHomA(M,M') such that

€
T*p'f = o€ qQ (M)
f¥yis = WeQe(M) .
(M,) ¢ € Hom, (11,M*)
The form is non-singulaxr if is an isomorphisn,
(M,v) ' V+EV* € HomA(M,M“)
g~symme tric (M,q)
A sublagrangian of a non-singular form over A
- g~guadratic (M,v)

is a direct summand L of M such that the inclusion jeikmh(L,M) defines a
morpnism of forms

j s (1,0) ———(M,p)

i (1,00 ———(L,Y) .

The annihilator of a sublagrangian L is the direct summand L* of M defined by

It = ker(j*(p:I'I —_— T*)

1+

U

ker(j*(V+ey*) M —>1*) ,

A lagrangian is a sublagrangian L such that

It =1,
g€-symmetric
A non-singular form over A is hyperbolic if it admits a
g€=-quadratic

lagrangian, or equivalently if it is isomorphic to the standard hyperbolic

form



) 0 1 €
H(P,0) = (PeP*, | € Q7 (PeP*))
€ 0
0 1
HE(P) = (PeP*, ( )e Qg(PeP*))
0 0

g-symmetric form over A (P*,0¢ QF(P*))
for some .
f.gs projective A-module P

e~symme tric LO(A,E)
The Witt group of A is the abelian group
g~guadratic LO(A,a)

with respect to the direct sum ¢ of the equivalence classes of non-singular

g~symmetric (M,9)
forms over A under the equivalence relation
g=quadratic (M,v)
(M,0) ~ (M',0")
if there exists an isomorphism of forms
(M,v) ~ (¥',v!)

- (£ (1,0)eE5(P,0) > (M ot )eH (PT,01)

T (M,\.’/)eHe(P) —_—r (M ,\{/')QHE(P')

g-symmetric forms over A (P*,8),(P'*,0!)
for some .
»f.g. projective A-modules P,P!

The €~symmetrization map of Witt groups

14T LO(A,E)-———>L°(A,8) s (1,¥) s (M, (14T V)
is an isomorphism modulo 8-torsion.

From now on we shall restrict attention to just those aspects of
symmetric Letheory which we shall use in our treatment of quadratic E~theory.
We refer to Part I of Ranicki [2] for a more thorough development of
symmetric I~theory.

An e~guadratic formation over A (M,V¥;F,G) is a non-singular

e-quadratic form over A (M,¥) together with a lagrangian F and a

sublagrangian G. An isomorphism of formations

£ (M,¥;F,G) — Q1" ,V';F,GY)
is an isomorphism of forms f£:(M,V¥)——>(M',¥') such that

(F) = F* , £(G) = Gt .,



A stable isomorphism of formations

[£1 : (M,V;F,G) ——(M! ,V1;F1,G)
is an isomorphism of formations
£ (M,W;F,G)Q(HE(P);P,P*)—————————?(M’,W';F',G')e(Hg(P');P',P'*)
for some f.g. projective A-modules P,PY,

An g~quadratic formation (M,V¥;F,G) is non~singular if G is a

lazrangian of (M,V¥).
form (M,v)
The boundary of an €~quadratic over A is the
formation (M,V¥;F,G)
(=)~ formation
non-singular guadratic over A
£~ form

Am,¥) = (H__(M);M, {(x,(¥+e¥*)(x)) € Meli* | x € M})
o(M,v;F,G) = (GY/G,v+/v) .

form
is non=-singular if and only if its boundary

An e=~quadratic
formation ~

formation stably isomorphic to O
is .
form (0]
forms (M,v),(M*,v")
Non-singular €~quadratic over A
formations (M,v;F,G), (M, F!,G?)
"an isomorphism forms
are cobordant if there exists of
a stable isomorphism formations

£ (M,¥)e(M!,~¥') —> J(N,0;H,K)
[£] ¢ (M,¥;F,G)e(M!,~v1;F! ,G!) ——> I(N,0)
8-

for sone guadratic &

(~€)~-

(N,q)

formation (N,p;H,K)
over A
form

Proposition 1,1 Cobordism is an equivalence relation on the set of

forms ,
non-singular €—-quadratic § over A, such that the equivalence classes
formations
LO(A,E)
define an abelian group with respect to the direct sum eo.
L1(A,e)

(3
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The cobordism group of forms LO(A',S) is just the Witt group of
e~quadratic forms over A, as defined previously.
Define abelian groups Ln(A,E:) for n(mod 4) by
L.(4,(=)"€) 2i
0]
Ln(A,E) = N if n=
L,(4,(~)7¢€) 2i+1 .
For € = 1 €A we shall write
L (A, =18 , 1%a,m =1%0) .
In the terminology of Part I of Ranicki [1]
L8 =1 (8) .
Given a subgroup X& 'I‘ZO(A) (resp. XEE1(A)) which is preserved as a
set by the duality involution

2 K () ——F(8) 5 [PI—s [P*]

(respe s @ 'ﬁ,](A)—-——-—-)vﬁ,](A) ; w(f:P > Q)¢ > T(£*:Q% —D*))

let L}é(A,S) (n(mod 4)) be the L-groups defined as in Proposition 1.1, but
using only forms and formations involving foges projective A-modules P such

that [P]GXSK (4) (resp. based f.g. free A-modules such that all isomorphisms

f&HomA(P,Q) have torsion t(f)exg’ﬁ:l(A)). In particular, for X = ’IEO(A)

% ()
I (Ai,&‘,) = Ln(A,EZ), .

n
For € = 1€A we shall write
X X
Ln(A,'l) = Ln(A) .
In the terminology of Part III of Ranicki [1]

Li(A) = Uﬁ(A) for XQ%O(A) (resp. Lﬁ(A) = Vi(A) for XC_Z%L’,I(A)). .

Proposition 1.2 Given #*=invariant subgroups XCYC f{’m(A) (m = 0 or 1) there
is defined an exact sequence of abelian groups
oo BNz 1 /0 — 1R, 0) — LI(a,8) —ENZ,1/X) — Tk (4,8) ..

with the Tate Z.~cohomology groups defined by

2
ﬁn(za;Y/X) = bgev/x]g* = ()%} /fn+ () n*|ney/x}.
[l

(In dealing with based A-modules it is convenient to assume that A is such

that the rank of a f.g. free A-module is well-defined and ’¢‘:(€:A-—>.lx).—:O‘e'ff,l (4)).
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In order to define even—dimensional relative L-groups we shall need

the following refinement of the notion of formation.

L split e-quadratic formation over A (F,((E),B)G) is an e€-quadratic
formation over A (HS(F);F,G), where (g):G—————e-FeF* is the inclusion,
together with a hessian (=g€)-quadratic form over A (G,eeQne(G)) such that

X*P-—: § =~ €0* ¢+ G —>G* ,
Such a split formation will normally be written as (F,G).

An isomorphism of split €~quadratic formations

(o, B,¥) & (F,G) —— (F',G")
is defined by A~module isomorphisms X€ HomA(F’F')’ ﬁEHomA(G’Gl) together
vitn a (~€)=quadratic fornm (F*,W€£Q~E(F*)) such that
i)o(x-l- (W-E‘V*)"‘t) = 25'@:;(} ———3 Tt
ii) ol*"]ta\:'y"p $ G————— F*
iii) e + prvp=pro'pe g (@) .

A stable isomorphism of split €~guadratic formations

[ox,B,v] ¢ (F,G) —> (F',G")

is an isomorphism of the type

| (x,By¥) : (F,&)e(P,P*) ——— (F',G")o(P?,P1*)
for some f.g. projective A-modules P,P!' with (P,P*) = (P,((?),O)P*).

An isomorphism of split €-guadratic formations (X,B,¥):(F,G)—> (F',GV)

determines an isomorphism of the underlying €-quadratic formations

X Xy~ ey*)* _

<o c(,*..',] ): (HE(F);F,G)-——-———)(HE(r');F',G') .
Conversely, every isomorphism of €-quadratic formations

! (HE(F);F,G)———+(H8(F‘);F',G')

can be refined to an isomorphism of split €-quadratic formations
(&, Py¥) : (F,G) —— (F',G"). Similarly for stable isomorphisms.

The svolit boundary of an €=-quadratic form over A (M,WGQS(M)) is the

non-singular split (~€)~quadratic formation over A

1
3(M,¥) = (M,((

Vi4EY* VM)
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A morphism of rings with involution is a function
f$ Ae———B
such that
flaj+ay) = £flay) + £(a,) , flaja,) = fla)f(ay) f(a) = T(a) , £(1) = 1€B
| (a,l,az,aeA) .
Given such a morphism regard B as a (B,A)~bimodule by |
BxBXA—— 5B ; (b,x,8) —>b.x.f(a) .
A f.g. projective A-module M induces a f.g. projective B-module BGiM, and
there is defined a natural B-module isomorphism
B@, M*——» (B&,M)* ; b@ +— (cgx ——c.1(x).%b)
which we shall use to identify (B?KM)* = BGhM*. Given a central unit € €A
such that E = £ ! (as abové) we have that F(e) = £(g)” €B, and it will be

assumed that f£(&) is central in B, It is convenient to also denote f(c)€ B

form (M,v) L
by €. An €-gquadratic over A induces an €-quadratic
formation (M,¥;F,G)
form
over B
formation

B®A(M,\V) = (B®AM,1®W)
B@A(M,W;F,G) = (B&AM,‘l@i/;B@AF,B(ﬁG) ’
and there are induced morphisms‘in the L~groups
T Ln(A,g)———+Ln(B,s) i X ——> BEx (n(mod &4)) .
We shall now define relative L-groups Ln(f,E) (n(mod 4)) to fit into an
exact seguence

s e e TP Ln(A,S)—f——}Ln(B,E) ——'—') Ln(f,s) -—'+Ln_1(A,€> —p s e .

A relative €-guadratic form over f:A—B ((F,G),(M,¥),h) is a

triple consisting of a non-singular split (-g)~-quadratic formation over A
(F,G), an e-quadratic form over B (M,¥), and a stable isomorphism of
non-singular split (-€)=~quadratic formations over B

h : B@A(F,G)m—»a(n,w) .
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The relative forms ((F,G),(M,¥),h),((F*,G*'),(H',¥!), ,h') are cobordant if
there exist a (~g)=-quadratic form over A (L,p) and a stable isomorphism of
non~singular split (=~€)=gquadratic formations over A

k : (L,o)—>(F1,G")e-(F,G) (where =(F,G) = (F,((;E),-B)G))
such that the non=singular €-quadratic form over B obtained by glueing

(N,0) = B8 (L,0) U (v oy () (U =¥ 1)1, V)
is null-cobordant, that is
(Ny0) = 0€L(B,e) .

The glueing operation was introduced in the proof of Theorem 4,3 of Part I of
Ranicki [1], and it has also been described in Wall [6],[7]. We shall not

repeat its definition here.

A relative €=quadratic formation over f:A-—— B ((P,8),Q,h) is a

triple consisting of a non-éingular e~quadratic form over A (P,0),
a f.g. projective B-modul? Q, and an isomorphism of non-singular €-quadratic
forms over B -
b B%(P,G)———bﬂg(Q) .
The relative €-quadratic formations ((P,0),3,h),({P',0'),Q',h') are cobordent
if there exist an €-quadratic formation over A (M,¥;F,G) and an isomorphisn
of non-singular €~quadratic forms over B
k¢ 9(M,¥;F,G) —> (P',0')e(P,=8)
such that the non~singular €~quadratic formation over B
(M,w;E,K) = (B8 (,~¥)eH_(Q); (B, Feq,

{(x+ v,(hten)(18k)(y))€E B®AM0(Q9Q*) |x€B®AG,y€ B@A(G&/G)})

is null~cobordant, that is

(N,;E,K) = 0€L,(B,8) .
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Provosition 1.3 Cobordism is an equivalence relation on the set of relative

forms
€~guadratic over f:A————>B, such that the equivalence classes
formations
Lo(f,s)
define an abelian group with respect to the direct sum .
L,(£,e)
The I~groups defined for n(mod 4) by
L (£,(=)"e) 21
0]
Ln(f,ﬁ) = 5 if n =
L,(£,(=)7¢) 2i+1

fit into an exact sequence of abelian groups

coo'_—ﬁLn(Ags) "‘"‘g—_"Ln(B,E)‘__'}Ln(fye)——')Ln_q(A,E)_""7 eoe o

with |
Ln(B,E)-—————)Ibﬁf,e) ;i x+——(0,%,0)
L (f,8) ——1L .(A,8) 5 (y,x,8)—>y .
(]
In the case € = 1‘we shall write
Ln(f,1) = Ln(f) .
Relative L-groups L (f) were first defined by Wall [3] (for n odd) and
Sharpe [1] (n even), in the case when all the modules involved are f.g. free.
The above definition of the relative e€~quadratic IL~groups Ln(fgs)
generalizes immediately to the intermediate €-quadratic L-groups. Given
* -invariant subgroups ngm(A), Yggm(B) (m = 0 or 1) such that B®AX Ccy
there are defined L-groups Lﬁ’y(f,e) (n(mod 4)) which fit into an exact
sequence of abelian groups

vo s —> L);(A,GZ) —i:'—")' Li(B,S) —_ L};,Y(f’e) —_— L)ri_'](A!E) T ees o
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§2. Localization

In setting up the localization exact sequence for quadratic L-theory
we follow the pattern established for the localization exact sequence of
algebraic K~theory

Ky (A) s K, (87 8)— K, (4,8) — > K (4) ——> K (57 4)
in Chapter IX of Bass [1]. (The extension of the sequence to the lower
K-groups K, (1€ =1) of Bass and the higher K~groups K, (i> 2) of Quillen
need not concern us here). There are three stages 3

I) For any ring morphism f:A——» B there is defined a relative

K-group K1(f) to fit into an exact sequence

| K,I(A)—-—f-—+K1(B)-——-—>K1(f)———»KO(A)J—»KO(B) .
Specifically, K1(f) is a Grothendieck group of triples (P,Q,g) consisting of
f.g. projective A-modules P;Q and a B-module isomorphism g:B%P——-—a-B@AQ.

1I) For a localization map f:A-—-———»-S-qA it is possible to express g

ol

as for some hGHpmA(P,Q)', se 8 such that h induces an isomorphism over S—1A.
Thus K1(A——+ S-1A) can be expressed as a Grothendieck group of triples such
as (P,Q,h).

III) Define X, (A,8) = Ko(exact category of h.d. 1-S-torsion A~modules)
and observe that there is a natural isomorphism of abelian groups

K1(A~——-—>S-1A) —K, (a,s) ; (P,Q,h) ——>[coker(h:P——>Q)] .

We have already developed the L-theoretic analoguer of T) in §1 above.

{As in the algebraic K-theory of Bass [1] we shall only consider
localizations A ———> S-IIA inverting subsets SCA of central elements,
There is some interest in the L-theory of eccentric localizations, inverting

non-central elements. The work of Smith [1] considers localizations of the

type A—> ™A with S = f-1(1)CA for some ring morphism f:A

»B such that
a morphism gEHomA(P,Q) of f.g. projective A-modules P,Q becomes an .
isomorphism 1®g€Hom.‘B(B@AP,B®AQ) if and only if ker(g) = O and coker(g) is an
S~torsion A-module, .In principle, .our methods permit a generalization to

quadratic L~theory of any K-theoretic eccentric localization sequence).,
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Let A be a ring with involution (as in §1).

A multivlicative subset SCA is a subset of A such that

i) steS for all s,t€S

ii) s€S for all s€S

'iii) if sa = O for some a€A,s€S then a = O
iv) as = sa€A for all a€A,s€S

v) 1€s5 .,

The localization of A away from S S_1A is the ring with involution defined

by the eguivalence classes of pairs (a,s) € AXS under the relation
(a,s) ~ (a',s!) if s'a = sated ,
with addition, multiplication and involution by

(a,s) + (b,t) = (at+bs,st) , (a,s)(v,t) = (ab,st) , (a,s) = (3,s) .

As usual, the class of (a,s) is denoted by %6 S-1A. The inclusion

A————#—>S1A H ak————b%

is a morphism of ¥ings with involution, An A-module M induces an S-1A-module
st = s ae M
A

which can be identified with the S-1A—module of equivalence classes of pairs
(x,s5)€ Mx S under the relation

(x,8) ™~ (x',s') if s'x = sx'€M ,
2+ain, the class of (x,s) is denoted by §-€S~1M. Given A-modules M,N regard
HomA(M,N) as an A-module by

A x Hom, (M, ) ——— Hom, (M,X) ;5 (a,f) —> (x— £(x)3)

and use the natural S-1A-module isomorphism

-1 A o=y . £ x ., £5x)
S HomA(M,N)a—-——v-HomS-’IA(S M,s N) ; s"—‘—"(t ts )

as an identification. In particular, for N = A wé have the identification

(s~ > = g1 (M*) .

For example, if A = Z, S = Z~-$0} then A = g,
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Iet Li(s~1A,€) (n(mod 4)) be the intermediate €-guadratic L-groups
of S—1A associated to the #-invariant subgroup S:im(KOSA)}aKO(s~1A))gﬁb(s_qﬂ)

of the projective classes of f.g. projective S_1A-modules induced from

/1

fog. projective A-modules. Let Li(Aw——+S~ A,e) (n(mod 4)) be the relative

L-groups appearing in the exact segquence

1

oo T (8,8) ——I5(sT 0, 0) —— TP —s"a e —— L (a,e) ...

1

2i
In the first instance we shall express Li(A——-aS A,e) for n = { as the

2i+1

fsplit (-)1-18-quadratic formations

cobordism group of non=-singular 5 over A
L(“) €=-guadratic forms
" stably isomorphic to O -
which become over S A, corresponding to stage II) of
hyperbolic

the above programme.,:We shall then use this expression to identify

Li(A——:—->S—1A,8) = 1_(4,5,6) (n(moa 1))

LZ.(A,S,E) .
with + (i{mod 2)) the Witt group of non=singular (~) e-quadratic

Lpjuq(848,€)
forms
linking defined using h.d. 1 S-torsion A-modules, corresponding
formations

to stage II1).

An A-module morphism fe;HomA(M,N) is an S~isomoryphism if the induced

S-1A-module morphisn

£(x)
s

1 1

M—38 N j = r—>

s Vs g™

0l

is an isomorphism.

An S-isomorphism of €~quadratic forms over A

£t (MV)———(N,qp)
is a morphism of €-quadratic forms such that f‘€HbmA(H,N) is an S~isomorphisn.
There is induced an isomorphism of €-quadratic forms over S-qA

-1 -1
s~lris (M) —— S (N,p) .
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An g-quadratic form over A (M,¥) is non-degenerate if W+€W*€HOQA(M,M*)I
is an S~isomorphisn,

An S-lagrangian of a non~degenerate €~guadratic form over A M,v)

is a f.ge projective submodule L of M such that the inclusion jeiHoqA(L,M)
defines a morphism of forms over A

i (L,0)——(M,v)
which becomes the inclusion of a lagrangian over S-1A. The inclusion j

extends to an S-isomoiphism of non-degenerate e€~guadratic forms over A
0 s
(3 k) : (LeL*, ) —— (M, V)
0] 0

for some kéHomA(L*,M), sES,

A non-degenerate €-quadratic formation over A (M,V;F,G) is a

non~singular €-quadratic form over A (M,¥) together with a lagrangian F and

an S-lagrangian G, .

form (M,v)

A non-degenerate €-quadratic over A induces s
' formation (M,v¥;F,G)
. form -1 S“’i (M.W)
non~singular g£-quadratic over S A -1 )
formation s (M,¥;F,G)
Lg(s”1A,e)
representing an element of S, -1 . Conversely, every element of

Lq(s A,E)

L5(s™a,€) form

S, =1 is represented by a of this type.

Lq(s A,€) formation ,

(We could achieve a more systematic terminology by calling
non-degenerate objects over A 'S-non~singular?!. We prefer to bow to the
tradition of calling forms over Z which become non-singular over R

fnon~degenerate!),
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An g-guadratic S-form over A (M,¥;L) is a non~degenerate £-quadratic

form over A (M,W) together with an S-lagrangian L, The S-form is non-singular

if the form (M,V¥) is non~-singular, in which case there is defined an

associated relative €=quadratic formation over.A-——a»S-1A
(,w),s7'5,03 H 57 v — (57

with jeHomA(L,M), k € Hom (L*,M), s €5 as above.

An isomorphism of €~gquadratic S-forms over A

for (MV;L)—— (MY, ¥t ;510)
is an isomorphism of forms

£ (M,y)——> (M, ")
such that

£(L) = L' .

A stable isomorphism of €=-quadratic S~forms over A

[£] = (M,V¥;L) ——>(M*, vt ;Lt)
is an isomorphism of the t;pe
£ 2 (M,v;L)e(H (P); P)—> (M',¥' ;L1 )0 (B _(P');P')
for some f.,g. projective A~modules P,P!,

An g-quadratic S-formation over A (M,V¥;F,G) is a non-degenerate

€=-quadratic formation over A such that the A=~module morphism
G ——> M/F ; x+—— [x]

is an S~isomorphism. The S-formation is non-singular if G is a lagrangizn

of (M,Vv).

An isomorphisnm of'E-quadratic S-formations over A
£ 3 (M,¥;F,G) —— (M! ¥45F1,GY)
is an isomorphism ofVE-quadratic forms over A
£ (M,¥) — (M, V1) /.
such that

f(F) = F', £(G) = G' .
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A stable isomorphism of €~quadratic S~formations over A

[£] ¢ (M,¥;F,G) ——— (M*,¥';F!,G")
is an isomorphism of the type
£ (M,W;F,G)e(He(P);P,P*)-———+(M' ,W';F',G')e(HE(P');P',P'*)
for some f.g. projective A-modules P,P!',

A split €~guadratic S-formation over A (F,((x),e)G) is an e~quadratic

S~formation over A (HE(F);F,G), where (ﬁ):G————»FeF* is the inclusion,

together with a hessian (~€)=-quadratic form over A (G,ee:Qﬂa(G)) such that
K*H:B - £0* ¢ G —>G* ,

Such a split S-formation will normally be written as (F,G), denoting

(F,((}E),ve)G) by ~(F,G). Note that P@&Homﬁ(G,F*) is an S-isomorphism,

A split €-quadratic S-formation (F,G) is non-singular if G is a

lagrangian of HS(F), that is if the sequence of A-modules

¥ P,
> G (“) Sialll) )'7- G*

(0] > Fol'* >0

is exact. For non-singular (F,G) define the associated relative (~€)=-quadratic
form over A——>8™ A ((r,a),0,0).

An isomorphism of split €=quadratic S=-formations over A

(*,B,¥) : (F,6) —— (F',G")
is defined by A~module isomorphismstXGHomA(F,F'),{3€HomA(G,G') together with
a (~g)-quadratic form (F*,WGQ_S(F*)) such that
i) ay+ (V=-ev*)*u= y'B: G—F!
i) o = pp: G———F"
iii) 8 + VM- (s*e'{s,esker(s"1 :Q_E(G)-——-—vQ_e(s"‘G)) .

A stable isomorphism of split €=quadratic S-formations over A

[,p,¥] ¢ (F,G) ——> (F',G')
is an isomorphism of the type
(o, B¥) : (F,G)e{P,P*) —>(F',G")e(P!,P'*)

for some f.g. projective A-modules P,P'.
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form
The boundary of & non~degenerate €=-quadratic over A
formation
(M,v) split (=€)-quadratic S-formation
is the non~singular over A
(11,v;7,G) g-quadratic S~form
1.
20, ¥) = (M, ({ y, gys ) ¥IM)
o(M,¥;F,q) = (M,V;G) .

e-gquadratic S-forms
Non~singular over A
split €~quadratic S~formations

(M,v;L), (M ¥ ;1Y)

are cobordant if there exists a stable isomorphism
(r,G),(F*,G")

T[£] o (M,v;L)e(M',-v1; L) ——A(N,0;H,XK)

[x,B,¥] : (F,8)e~(F',G!') —>3(W,q)

€= formation (N,0;H,K)
for some non-degenerate { - quadratic over A such that
- (=e)- form (N,p)

-1 -1
s™(N,p3H,K) = 0€L5(s™4,€)

s'1(1¢,(p) = OGLg(S-qA,»E) .

Provosition 2,1 Cobordism is an equivalence relation on the set of

€=-gquadratic S=forms
non~singular over A, such that the equivalence
split €~quadratic S~formatiomns

classes define an abelian group with respect to the direct sum e.

(-)te-quadratic S~forms
The cobordism group of non-singular i
split (~) e~-quadratic S~-formations

formation
over A is maturally isomorphic (via the associated relative
form

- 2i+1
construction) to the relative L~group Li(A————)S 1A,e) for n = g .
’ 2i+2
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The morphisms of the exact sequence

-1

—«wnyl,(A E)——~—>I,(S a 4E)—> 1, (A-——)S A e)—~—a~L 1 (A,E)—>

. . el . .
involving Ln(A-——>S A,e) are given in terms of S-forms and S-formations by

( LS.(S"']A 8)————>LS.(A——>S-1A,€) 5 57T (M, V) ——> 3(M, ¥)
(\1 gl (57 8)~———>L§ 1(A»-—-—->S-1A,€) 5 871U, V3 F,G) > (M, V;F,G)
&1, 51 (A 578,80 —— L. (4,8 § (F,0) s (H,_yi=1_(F);F,C)
ng(A—#s 1a e)-—-—-»,L (A e) 5 (M,v;L) —— (M,y) .,
{1
An A-module M is S-torsion if
s“M=o0,

or equivalently if for every x¢M there exists s€S such that sx = O€M,
An A-module M is h.d., 1 ( = homological dimension 1) if it admits
a f.g. projective A-module resolution of length 1
> d 3 5 N
00— P1 'PO » M >0 .

An h.d., 1 S-torsion A~-module is thus an A-module which admits a

fo.g. projective A~module resolution of length 1 with d(EHomA(P1,PO) an
S=isomorphism,

Regard the abelian group anA/A as an A-module by

Axs™ A/ ——5s" A/ (a,2 ) W asb .

The S~dual of an A=-module M is the A-module
M = HomA(M,s'1A/A)
with A acting by
AxM ——5 M 5 (a,f) — (x—> £(x)a) .
The S~dual of an A-module morphisnm féEHomA(M,N) is the A~-module morphism
£ i NN —a M g— (x—>g(£(x))) .
The S-dual of an h.d. 1 S-torsion A-module M = coker(d:P,—P,) is an

n.d. 1 S~torsion A-module M" s Wwith resolution

0 —>P a* » P2 Su? >0

where

Bf —— u" f.-—»([xjr—-»%ﬁ) (xé.Po, yEP,, s€8 , sx = dyéPo)
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The natural A~module morphism

Me——— M™% (£ T(%))
is an isomorphism if M is an h.d. 1 S-torsion A~module, in which case we
shall use it as an identification, and to define the g€~duality involution
T, * HomA(M,M“)»——wHomA(M,M*) 3 or—— (e0™ itz r— (yr— eo(y) (%)) .

An g~symmetric linking form over (4,S) (M,A\) is an h.d, 1 S-torsion

A-nodule M together with an element A€ ker('l-TezHomA(M,M")————eHomA(M,M")) .
Equivalently, )\ is given by a pairing
\: MxM -———)S-']A/A 5 (x,7) ——> A (x)(y)
satisfying
i) Mx,ay) = a)\(x,y)CSﬂA/A
ii) Mx,y+y') = Mx,y) + Mx,y")€ S-‘]A/A
111) ) (7,%) = eX(x,y) €5 'A/A (x,y,7' € 1) .
Define the abeliazi groups
T (a,s) = S-1A/§a+ €ala€A}
Qe(s'1A/A) = (s'1A/A)/{b-s'€[beA'§
and the abelian group morphism

T ¢ QE(S""A/A)w———rQ,e(A,S) ; C——> C+EC .

An g-quadratic linking form over (A,S) (M,)x,r&) is an €~symmetric

linking form over (A,S) (M,A) together with a function

Pl

.

M—> QE(A,S)

such that

I

i) p(ax) aF(x)ZﬁQS(A,S)
ii) }L(x+y) -fl(x) -’.l(y) = A(x,y) + EmeQE(A,S)
1i1) [p(x)] = M) (x) €57a/n (z,7,y' €M, ach).
The linking forms appearing in the work of Wall [2], Passman and
Petrie [1], Connolly [1] and Pardon [1],[{2] on odd-dimer&sional surgery
obstructions are just the €~-quadratic linking forms over (Z[n] ,Z—{O}_) .

with € = +1 and n a finite group.
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A split €-quadratic linking form over (A,S) (M,\,V) is an e-symmetric

linking form over (4,S) (M,)\) together with a function
Vi M (87 A/0)
such that
i) V(ax) = am(x)a eQe(S~1A/A)
11) Mxry) = 2(x) = ¥(y) = [N (1)1 €Q (87 a/R)
111) »(x) + €00 = M) (x) €57 A/8  (x,yeM, ach).
Split €~quadratic linking forms were introduced by Karoubi [1].

E~symmetric

A morphism (resp. isomorphism) of | e-quadratic linking forms
split €-quadratic
over (A,S)
£ 2 (M) ——> (M1, A1)

£

(13

(M N JR) ——> (M', \F, u")

£ (MAY)——> (M, W ,ut)

is a morphism (resp. isomorphism) fe;HomA(M,M') such that
£YA'E = \ € Hom, (11,11"7)

and also

t
peu—Lom P g (a,9)

£

Ve ‘M

' -

»ur 2 q (s Ta/n)
It can be shown that the forgetful functor

(split €-quadratic linking forms over (A,S))

——— > (e~quadratic linking forms over (4,S)) ;

1+T
U L 4
(M) ) (M), p= (4T v 2 M——>q (57 a/8) — 5 (4,8))
defines a surjection of isomorphism classes, which is a bijection if_%éis—1A,

T = @[n]. (This may be deduced from

eege if A = Z[n], S = Z=50%, 8
Proposition 2,2 below)., In § we shall give examples of triples (4,S,g) for
which there is a perceptible difference between split €-quadratic and

g~quadratic linking forms over (A,S).
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g€~symme tric (M,3)
An / e-quadratic linking form over (4,8) ) (M,%,W) is
split €~-quadratic (MyX,»)

non-singular if heHomA(M,M“) is an isomorphism,

As in §1 we shall concentrate on the €-quadratic L-theory, leaving
the €~-symmetric IL~theory of linking forms to the relevant part of
Ranicki [2].

There is a close connection between linking forms over (A,S) and
S~formations over A, which was first observed by Wall [1] in the case
A=2%Z,5=z=-{0}, s7la = g.

€=-quadratic
Provosition 2.2 The isomorphism classes of (non-singular)

split €=quadratic

- (M,>,1)
linking forms over (A,S) are in a natural one~one correspondence
(M,5,v)

(~e)~-quadratic
with the stable isomorphism classes of (non-~singular)
split (=&)~quadratic

(W,v;F,G) (M A ,1)
S~formations over A » The linking form corresponding to
(r,G¢) . M,z )
(N,y;F7,G)

the S-formation is defined by

(F,((¥),0)0)
® |
M= N/(F+G) , N ¢ M——M" ; x+—> (yr—>S(v-ev*) (x) (&)

p: M——sQ_(a,8) ; yr-—-—’;-;—(v-sw*)(y)(g) - vy ()

(x,y€N, seS, geG, sy - g€ F)

M = coker(p:G—>F*) ,\: M—2>M" x— (yr—> -;-x*(x)(g))

> () (g)
55

-]
Ve M—-———-)QE(S A/A) ;5 y¢
(x,y€F*, s€S, gEG, sy = pge F*).

]
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A sublagrangian of a non-singular split £-quadratic linking form

over (4,3) (M,\,u) is a submodule L of M such that
i) L, M/L are h.d. 1 S-torsion A-modules
ii) the inclusion je:HomA(L,M) defines a morphism of linking forms
j ¢ (L,0,0)——(M,),»)
iii) the A-module morphism
[N ¢ M/L — 1" [x]r—> (y—> N(x)(y)) (xeM,yeL)
is onto,

The annihilator of a sublagrangian L in (M,A,») is the submodule

Lt of M defined by
It = ker(fPA: M——I') ,
which is.such that LC L*.
A lagrangian of (M,\,») is a sublagrangian L such that
| It = L.
A non~singular split E-quaératic linking form which admits a lagrangian is
hyperbolic. For example, if L is a sublagrangian of (M,X\,2) then there is
defined a non-singular split €-quadratic linking form (LY/L,\t/5,ut/u)
such that (M,\,)e(IL/L,~\%/x\,~p»%/») is hyperbolic, with lagrangian
L' = §(x,[x])EMeld/L|x €I} .

Given an h.,d. 1 S~torsion A~module P define the standard hyperbolic split
g~quadratic linking form over (4,S)

H(P) = (PeP" N 1PeP" ——(PoP") ; (x,8)— ((3,8) —> £(y) + €6(x)) ,

V:P@PA——+Q€(S-1A/A) i (%, f) —s £(x) ) .

A split e-quadratic linking formation over (4,S) (F,((}‘L),e)G) is
defined by a sublagrangian G in a standard hyperbolic split €-quadratic
linking form over (A,S) HS(F), together with a hessian (-g£)-quadratic
linking form over (4,S)

(G, f}eHon, (6,6%) ,0:6 —>Q__(4,5))
where (g):G——-—*I@FA is the inclusion. Such objects first appeared in the

work of Pardon [1], and similar structures have been studied by Karoubdbi [1].
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We shall normally write (F’((§>G)G> as (F,G), denoting (F,((;f ,-8)G) by
-(F,G) .

An isomorphism of split €~quadratic linking formations over (A,S)

f: (F,G)——(F*,G")

is an isomorphism of the hyperbolic split €-guadratic linking forms
£ HE(F)_—m——»HS(F')

such that
£f(F) = Fv , £(G) = G!

'and also

£ 0!

8 : G > G!

>Q_€(A,S) .

A sublagrangian of a split €-quadratic linking formation over (4,S)

(F,G) is a sublagrangian L of H_(F) such that
| i) LEE, with G/L an h.d. 1 S-torsion A-module
ii) FnL =40}, FeF*=TF + L+ .

Such a sublagrangian determines an elementary equivalence of split

g~quadratic linking formations over (4,S), the transformation
(F,G) ———> (F',G")
with (F',G') defined by

F' = Fnlt , G' =G/L

]

¥!' 2 G'—>F' ; [x]+— Y(x)

pros G'——F ; [x)t— (y—— px)(y))

el

G'—>Q_.(4,8) 5 [x]+——>0(x) (x€G,yeF ).
Elementary equivalences and isomorphisms generate an equivalence
relation on the set of split €-quadratic linking formations over (4,8),

which we shall call stable equivalence.

A split e~quadratic linking formation over (4,8) (F,G) is

non~singular if G is a lagrangian of HE(F), or eguivalently if the seguence
) (ept Y
ept )

G t h > M

is exact. Any linking formation stably equivalent to a non-~singular one is

0 md

- FoF

> O

itself non~singular,
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There is a close connection between linking formations over (A,S)'

and S~forms over A,

Proposition 2.3 The stable equivalence classes of (non-singular) split

e~=quadratic linking formations over (A,S) (F,G) are in a natural one-one
correspondence with the stable isomorphism classes of (non-singular)
g~quadratic S-forms over A (M,¥;L), The linking formation (F,G) corresponding
to the S~form (M,\'J’;L) is defined as follows: extend the inclusion jéHomA(L,M)
to an S-isomorphism of €=-quadratic forms over A

o s

(; % = (LeL*,( ))-—-—-—)(M,w)

o) 0

for some keHomA(L*,M), s€S, set
F = coker(s:L——>1) , @ = coker((j k):Lel* ——>M) ,

define (:SJ.G-—-——) FeF" via the resolution

0 > Lelr — 3 X oy >G ——>0
€ 0 _ : k* (V+EWV*) Y
s 0 )
0 1 ( . J*(wreV*) L p
0——5Tot* N0 8/ Jya1s —s FoF ——>0 ,

and let (G,{;A&‘HomA(G,GA),B:G—-—-)Q_e(A,S)) be the (~&)~gquadratic linking

form over (A,S) corresponding to the €-quadratic S-formation over A

[~V  V*k
(He(M*);M*,im( ‘ tToL* ——3 M*eM))
3 k
(1
form
The boundary of a split €~quadratic linking over (4,8)
formation
‘ (M,\,) (~g)=- formation
is the non-singular split gquadratic linking
(r,q) €= form

over (A,S)
21\ ) = 01, (1), (147000

o(F,G) = (G2/G,\+/\,wt/p) , where HE(F) = (FeF™,\,0) ,
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form
A split €=-guadratic linking is non-singular if and only if its
formation
A formation "stably equivalent to O
boundary linking is .
form 0
forms
Non-singular split €=~quadratic linking over (A,S)
formations

(M0 ,0) , (M N1 ,0t) an isomorphism

are cobordant if there exists [
(F,G),(F',G')

a stable equivalence
(M A ,2) o (M =N =p!) — 5 (K, L)
(F,G)e-(F',G')~———~eja(m,¢,w)

g~ formation (x,1)

for some split quadratic linking over (A,8) ) .

(-€)- form (W,0,¥)

Proposition 2.4 Cobordism is an equivalence relation on the set of

forns
non-singular split €-quadratic linking over (A,S), such that the
- formations
(1,04,8,¢8)
equivalence classes define an abelian group with respect to the
. L1(A,S,€)

direct sum e, The IL~groups defined for n(mod 4) by

Lo(4,8,(=)"e) 21
Ln(A,S,E) = i if n =
L,(A,8,(=)"€) 2i+1
it into the localization exact sequence

oco—"—) Ln(A’E)_->Li(s-"A’E)”——)Ln(A’S’S)—_——?Ln-’l (A’E)‘_—"} eee o

The fit is achieved by natural isomorphisms
1

L (4,5,6) > IS (A——570,e)  (nlmoa 4))

?
form

defined by sending a non-singular linking over (A,S) to the
formation

S—~formation ‘2.2

corresponding non-singular over A (given by Proposition ).
S-form 2e3

]



28

Note that LO(A,S,E) can also be viewed as the abelian group of
equivalence classes of non-singular split €-quadratic linking forms over (4,S)
under the relation

(,N,») ~ (M, A?,»') if there exists an isomorphism
£ (MA D) e(Ny@,¥) — (M, 2, 0" e (N 0! ,¥')
for some hyperbolic split €~quadratic linking forms (N,p,¥),(N',ot,v¥!),

‘The localization exact sequence of Proposition 2.4 was first obtained
by Pardon [1] in the case A= Z[n] (n finite), S=Z~=$0} following on from the
earlier work of Wall [1],[2], Passman and Petrie [1], Connolly [1] and his
own work on rational surgery (Pardon [2]). These authors only work with
f.g. free A~modules - we shall discuss the effect éf this restriction in
§7 below.

Karoubi [1] obtained a localiéation exact sequence in the context
of hermitian K~theory. However, the methods of that paper are not sufficient
for a localization»sequenc; in the surgery obstruction groups, since it is
frequently assumed that 1/2€A, the formula for the quadratic function Q on
P.365 of Part I is not well-defined in general, and the quadratic linking
formations do not include the hessian 6 appearing in the definition of (r,c)
(introduced by Pardon [1]1) which carries delicate quadratic information
such as the Arf invariant.

The localization exact sequence is natural, in the following sense.

Let f:A——>B be a morphism of rings with involution such that
f(8)CT for some multiplicative subsets SCA, TCB, Given an h.d, 1 S-torsion
A-module M with a f,g. projective A-module resolution

d > M >0

o) > P > P

1 0

we have that dEEHogA(P1,PO) is an S-isomorphism, and hence that

16§dEEH°mB(BQiP1’B@ﬁPO) is a T~isomorphism. Also, the functor
B® ~ : (A-modules) ——% (B-modules) ; Pl——> B P

is right exact, so that we have a f.g. projective B-module resolution
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0 ——>BQP, _1®a Bg P, > B M >0

and B@kM is an h.d, 1 T=torsion B-module. Thus f induces a functor

BQ&- ¢ (h.d, 1 S-torsion A-modules) —>(h.d, 1 T~torsion B-modules)

3

14‘———78®AM ,
and there are defined abelian group morphisms

f: Ln(A,S,S)——~—a>Ln(B,T,8) j x———>B®x (n(mod &4)) .

Provosition 2.5 A morphism of rings with involution f:A——>B such that

f(8) ST for some multiplicative subsets SCA, TCB induces a norphism of
exact sequences of abelian groups

fl s~1fl fl | fl
os 0 —> Ln(B,E) ’éLi(T"]B,g) _—"'? Ln(B,TQS) _%Ln-’](B’E)-—.—? eeys .

t]

Were it necessary we could define relative L-groups Ln(f,S,E) for

n(mod 4) (as cobvordism groups of relative lirking forms and formations)

to fit into exact seguences

ooo—'—?’Ln(A,S’a) "‘:g'_‘}'Ln(BQT,E:) "—*—)Ln(f’sgs) —'"%'I‘n_,] (A,S,EZ)——-) see

ooo‘—"“'?Ln(f,E) %Lﬁ(s-']i‘,a) _ﬁLn(f,S’g)-_%Ln_"](f’e)-—'—? es s o
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§3. Cartesian squares

W2 shall now investigate the conditions under which a nmorphisn of
rirgs with involution and multiplicative subsets
£f: (4,8) ——(B,T)
induces excision isomorphisms
£ Ln(A,S,E)-—————-»Ln(B,T,e) (n(mod %))
and a Mayer~Vietoris exact sequence
ver—rL (8,8)—> I5(57'A,8)0L_(B,6) —> L (17 ' B,e)—>L__ (A,€) —> ... .
Define a partial ordering om S by
sg s' if there exists t€ S such that s' = ste S ,
Define also a direct system of abelian groups {A/SAISEEsg'with structure maps
A/sh——A/sth ;3 x—>tx
The abelian group morphisms‘
A/sh ——>S™A/A a;.__.)%
allow the identification

Iim A/sA = s azn .
seS

The involution

= saa—ssTam ; B

n
olis]

is identified with the involution

Tt Lim A/sA ——> Lim A/sA ; gaseA/sAlses}HizgeA/sAlsesk .
s€S s€S

A morphism of rings with involution and multiplicative subsets
T (A,S)-——-—‘—)(B,T)
is cartesian if £(S) = T and if for every s€S the map
£t A/sA——>B/tB ; x+—>1(x) (¢t = £f(s)€T)
is an isomorphism of abelian ggoups. It follows that there is induced an
isomorphism of abelian groups with involution

s ora ~1 . -1
f.L_:l_ﬁ;A/sA:S A/A———»%:_.}gB/tB:T B/B ; xi—> £(x) ,
S€E €

and hence that the commutative square of rings with involution



L
B— T 'B
is cartesian, in the sense that there is defined an exact sequence of

abelian groups with involution

0 yA ;s"1AeB NG .

Cartesian morphisms were introduced by Karoubi [1] (Appendix 5 of Part 1),
who proved that a cartesian morphism f:(A,3) ——(B,T) induces an

isomorphism of exact categories

f : (hede 1 S~torsion A-modules) >(h.d. 1 T=torsion B-modules) ;
M»———~—~+B6§AM (= M as an A-module) .
As an ilmmediate consequence of this and of the localization exact sequence

of Proposition 2.4 we have:

Provosition 3.1 A cartesian morphism f:(A,S)——(B,T) induces excision

isomorphisms of £elative L-groups
£ Ln(A,S,E)———————+Ln(B,T,€) (n(mod &)) ,
and there is defined a Mayer-Vietoris exact sequence of absolute L-groups
‘ ...——-——»Ln(A,s)—»Li(S-1A,8)eLn(B,8)—)L‘i(T-’lB,e)“——*Ln_,l(A,e) > e
]

A Mayer~Vietoris exact sequence of the above type was first obtained
by Wall [6] for a cartesian square of arithmetic type (cf. Proposition 3.2
below), by a direct proof which avoided relative L~theory at the expense of
invoking the strong approximation theorem. In fact, if is possible to obtain
both the Mayer~Vietoris sequence and the excision isomorphisms avoiding the
localization sequence, by directly constructing appropriate morphisms
3¢ LL(B—17"B,e)——L__(4,6)  (n(mod 4))
(generalizing the method of Wall [6]), using the characterization of the
relative L~groups in terms of relative forms and formations of §1. The idea

of combining a localization exact sequence with the above isomorphism of

categories is due to Karoubi [1], who obtained excision isomorphisms and a
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Mayer-Vietoris sequence in hermitian K-theory (with the qualifications
regarding the L-groups expressed at the end of §2), Bak [2] has obtained
similar results in the context of the KU~-theory of Bass [2].
In §7 below we shall generalize the excision isomorphisms and the
Mayer-Vietoris sequence of Proposition 3.1 to the intermediate L-groups.
Given a multiplicative subset SCA of a ring with involution A

define the S~adic completion of A to be the inverse limit

A
A = I‘g;_m A/sA
SES

of the inverse system of rings {A/sAls&S} with structure maps the natural
projections )
A/stA—rA/sh  (s,t€8) .
~

Then A is a ring, with involution by .

—— A ”~ ) gr——
t A ——1h ; {aenr/sa|sesh——{aen/anfses} .

s ‘ s

The inclusion .

A -
f$t Ae—m A ; a?——)—iaEA/sA[séSl
is a morphism of rings with involution, such that the image of 8 is a

N
multiplicative subset S = f(S)CA,

AN
Proposition 3.2 The inclusion f:(A,8)— (A,8) is a cartesian morphism,

so that there are induced excision isomorphisms
A A
f: Ln(A,s,e)~——~>Ln(A,s,a) (n(mod &))
and there is defined a Mayer~Vietoris exact sequence
A
an A D o
noaﬂLn(A,E)ﬂ Li(S 1A,€)9Ln(A,€) _'—)'Li(s 1K,€)'—__‘-> Ln_,](A,€>'_—*—’.OOO .
(N
. . N
In particular, we have a cartesian morphism f:(Z,Z-{0})—> (Z,z-40%}),
with &: ‘_‘__Ln_mZ/mZ the profinite completion of Zi, The associated cartesian
m
square
Y —>
,Jf
77, ——>

is the 'arithmetic square', with é\g the finite adéle ring of 4. In Wall [6]

Dy &< B
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there was obtained an L-theoretic Mayer-Vietoris exact sequence for the
cartesian square

B A ———> RS,
(=4) z'

Beoyh ——Ae,)

for any ring with involution A such that the additive group of A is finitely
generated. For torsion~free A (e.g. A = Z[n],with m a finite group) this is
just the cartesian square considered in Proposition 3.2 with S = Z“{_OECA(

Given a ring with involution A we shall say that multiplicative
subsets S,TCA are coprime if for any se€S, t€T the ideals sA,tA <A are
coprime, that is if there exist a,béA such that

as + bt = 1€4 .,
The multiplicative subsets
= {st|ses,teT}CA , TS = {-;Sl-]seS}CT~1A

are such that there is a natural identification

-1

(T'qs)"l(T ) = (ST)~1A .

Proposition 3,3 If S,TCA are coprime multiplicative subsets then the
-1

inclusion f:(A,S)—— (T A,T-1S) is a cartesian morphism, inducing

excision isomorphisms

£ Ln(A,s,e)————>Ln(T“1A,T“’s,a) (a(mod 4))

L)

and there is defined a Mayer-.-Vietoris exact sequence

-1

eoe—>L (4, 8)—~——-»L (s~ a s)eL (T 'a,8) —> I T((ST) A,e)——L _,(A,€) ..,

(]
K, k k_ 3
For example, if S = {'p,] Pzaooop 'k1 ,ka,too,k O} and T = {q,l "qsslj']‘.js?o}

for some disjoint collections of primes P ={p1,p2,...}, Q = {q,l,qz,...l

such that PuQ = {all primes in ZE then 8-1

1
Z=2zgl = Z(Q) (= localization
away from P = localization at Q) and S,TCZ are coprime multiplicative

o1
subsets with (ST) Z =QQ.
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§4, Products

We shall now show that the localization sequence
———+Ln(A,s)——-—9Lf'1(8"1A,8)———»Ln(A,S,€)—-+Ln_,,(A,€)————->
is an exact sequence of Lo(ﬁ)—modules if A is an R-module for some ring
with involution R. As in §1 LO(R) denotes the symmetric Witt group of R.
We shall use this LO(R)—action to prove that the natural maps
Ln(A,E)——>Li(Q®ZA,€) (n(mod 4) , 8 = m=foYcya)
are isomorphisms modulo 8-torsion for any torsion~free ring with involutionr
A, along with other results of this nature.
A ring with involution A is an R-module for some ring with involution
R if there is given a morphism of rings with involution
| .R®ZA —————-—%A ; r@ar—>ra ,
Wwith the involution oh R@®,A defined by
T R@ A —> R&A ; r®atl—> r@a .
Note that each r'lAeA (reR) is central in A, so that given an R-module M
and an A~module N there is defined>an A-module
M%N = M®ZN/§:rx®y-x®(r1A)y[x6 M,yE€EN,r€ R’g
with A acting by
AXM@hN ———>-M®RN i (a,x@y)—>xgay .
In particular, we have a pairing
(f.g. projective R-modules) X (f.g. projective A-modules)
———>» (f.g. projective A-modules) ; (M,N)&————-—>M®RN .
with natural identifications
(M@RN)* = PI*@RN* .
Given a multiplicative subset SCA we have that S-1A is an R-module by
R®Zzs"1A————->s"1A ; T@S > =2,
ané that there is defined a pairing

(f.g. projective R-modules) X (h.d. 1 S-torsion A-modules)

~————> (h.d. 1 S~torsion A-modules) ; (M,N)r——> M®RN

!
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with natural identifications
(M@RN)“ = M@ N,
Define LO(R)-actions on quadratic L-~theory by
LO(R)®ZLH(A,€)-—-———->Ln(A,€) ;
(M, )B(N, ¥V ) ——> (MBS N, 0 ¥) it n o 2i
(M,0)B(N,¥; F ,G——— (M B N, 0 @V; M@LF MR G) t T 2i+1 .
(In terms of the products defined in Part I of Ranicki [2] these are just
the composites
2RO, L (4,8) —2>1 (R®A,106) —> L_(4,8)  (almod 4))).
Define also LO(R)-actions
LO(R)®ZL§1(S-1A,€)-—————————>-Li(s-1A,€) ;
(}I,@)®S~1(N,W)»——-——'-—)8-1(M®RN,¢®W) . 2i
(14,@)®S-1(II,W;F,G)V—~—>S-1(M®RN,<;>®W;M®RF,M®RG) Hns 2i+1
LO(R)®ZZLH(A,S,8)———-——>Ln(A,S,E) 3

(M,0) ®(br,x,p)k——>'(M®RN,<p®X yOB®Y 1 xRy t——> o(x) (x)1(y))

, N . 1Y
(Ivz,¢)®(F,((H>,e)G)k———+(M@RF,( o®)

21
if n = .
190® 0IMRLG) 2i+1
In each case the element
(R,1:R—> R*; q—> (v —> 72)) €LO(R)
acts by the identity. (In general R is not itself an R~module, However, if
R is commutative then it is an R~module in the usual fashion, and the

symmetric Witt group 1%R) is a commutative ring with 1).

Propozition 4.1 Let A,R be rings with involution such that A is an R-module,

and let SCTA be a multiplicative subset. The localization sequence
cerm> T (4,6) ——>15(s7"h,0) —> 1 (4,5,6) —> 1 (a,8)— ...
is an exact sequence of LO(R)-modules.

3

More generally, if f:A——B is a morphism of rings with involution which
is a morphism of R-modules then the symmetric Witt group LO(R) acts on the
exact sequence of Proposition 1.3

£
P B of Ln(A,E’:) ———d> Ln(B,€> — Ln(f,g) —_— Ln_1 (A,g)—-—-, oo )0
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In our applications of Proposition 4,1 we shall need to know the
symmetric Witt groups LO(ZZm) of the finite cyclic rings Zm: Z/nZ .

k, k k
let m = p11p22...prr be the factorization of m into prime powers, so that

@ 0 g% 0
z, = & zx L(zm)=i=1L(zki) ]
Py P;

Lemma 5 of Wall [4] and Theorem 3.3 of Bak [1] on reduction modulo a

complete ideal (alias Hensel's lemma) apply to show that the projections

2 "induce isomorphisms

74 k—-—-——»ZZP y D 0dd y 21
Y

0 0
L (Zak?——eL (Z8) = dezz

2

10z k)~—-——-—>LO(7Z ) =
P Z),  if p=3(mod k) .

{zaez if p=1(mod 4)
P

lMoreover,

O

For each integer m2> 2 define the number

-0 -
y LAZy) =z, .

2 if m = d or 24
¥(m) = exponent of LO(Zm) = 44 if m = bd,e,2e or he

8 otherwise

2
11

a product of odd primes pZ 1(mod &)

(1]
il

a product of odd primes, including at least one p= 3(mod 4).

A ring with involution A is of characteristic m if m is the least

integer » 2 such that m1 = O€A, in which case ma = O for 2ll a €A and
Ais a Zm-module.

Proposition 4,2 If the ring with involution A is of characteristic m then

the localization sequence
...——-)Ln(A,E:)—+LISI(S-1A,€)——>LH(A,S,€)—-——-)Ln__,i(A,e)———)
is an exact sequence of LO( Zm)—modules, so that.all the L-groups involved

are of exponent V(n).

3



37

~
The symmetric Witt groups LO(Zm) of the rings of m~adic integers

: Ik by ky X
" L(_J;_x; Z/m 7 are computed as follows, Again, let m = p1 P, "'Pr so that

1

N>

A r A 0, A L o,A
= = &
sz B i§1 ZZP' » L (Zm) - :i.:’lL (Zp.)
1 ) X
and
1Nz = Bz, if p = 2
g = “ge%s p=
O A
L% )= Z, o% if p = 1(mod 4)
P Zy, if p = 3(mod L) .

For each integer m3} 2 define the number

2 if m is a product of odd primes p = 1(mod 4)

i

n 0, A L if m is a product of odd prrimes at least one
V(m) = exponent of L (Zm) = ' .

of which is p = 3(mod 4)
8 if m is even .

The method of Wall [5] applies to show that the symmetrie Witt group

Y
of the profinite completion Z = lim Z/nZ = g %P is the infinite product
m .

0, 0,2
L(Z&):FI;YL (zp) .

A ring with involution A is m-torsion-free if S = {mklkz O}CA is a

maltiplicative subset, so that the localization away from m S~1A = A[-%] is

N ~
defined, The m=-adic completion A = I;_j_.y_l A/mkA is a Zm»module.
k

A ring with involution A is torsion~free if S = Z-{0yCA is a

multiplicative subset, so that the localization S-1A = Q@ZA is defined,

The profinite completion 2= L‘_:i___xg A/mA is a Z-module .
m

Proposition 4.% Let A be a ring with involution which is m~torsion-free

(resp. torsion-free) and let S = {mklk> 0} C & (resp, S = Z~-3$0YCa).
N
The localization sequence of the S~-adic completion A = E._r_n A/sA
~ S€S

. PaS s l\;.’li\ LA l\_ A

voo mm——p Ln(A,E)—-——-)Ln(S A,s)-——-——>Ln(A,s;e)_—-—> Ln_1(A,e) — ...
. 0,2 0,2
is an exact sequence of L (Zm)‘(resp.-.L (Z) )=~ modules, so that all the

A
L-groups are of exponent ¥(m) (resp. 8). Thus the L-groups

A A

A
L (4,5,€) = Ln(A,S,E) are of exponent ¥(m) (resp., 8) and the natural maps

I_(A,6) ——13(s7'A,8)  (n(moa 1))

are isomorphisms modulo ¥(m) (resp. 8)-torsion.

£l
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The integral group ring Z[n] of a group n is torsion=-free, with
localization S-1ZIn] = @fx] (S = Z?Qb}) the rational group ring, so that as

a particular case of Proposition 4,3 we have:

Proposition 4,4 The natural maps
}Ln(ZIn])~—-—»I§(Q[ﬁ]) (n(moa 4))
are isomorphisms modulo 8~torsion, for any group T.
]

Results of this type were first obtained for finite groups 1,
If we take for granted the result that the natural maps Lai(Q[n])-——>I?i(R[n])
are isomorphisms modulo 2-primary torsion (x finite, i(mod é)) then
Theorems 13A,3, 13A.4 1) of Wall [3] can be interpreted as stating that the
natural maps L, (Z[n])———»L (Q[n]) are isomorphisms modulo 2-primary
torsion. The results of Passman and Petrie [1] and Connolly [1] can be
interpreted as stating that the natural maps L +1(an])———~> o5 +1(Q[n])
are isomorphisms modulo 8~torsion (n finite, i(mod 2)).

Results similar to those of Propositions 4,3,4,4 were fifst obtained by

Karoubi [1], for hermitian K-theory.
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§5. Dedekind algebra

We shall now investigate the general properties of the L~-groups
Ln(A,S,E) (n(mod %)) in the case when the ring with involution A is an
algzebra over a Dedekind ring R and S = R-{O} . An S-torsion A-module has
a canonical direct sum deconmposition as a direct sum of ?—primary S~-torsion
A-modules, with P ranging over all the (non-zero) prime ideals of R, and
there is a corresponding decomposition for Ln(A,S,E).

Given a multiplicative subset SCA in a ring with involution A we

shall say that the pair (A,S) is a Dedekind algebra if R = Sui0} is a

Dedekind ring with respect to the ring operations inherited from A.

The localization S-1A = F&RA is the induced algebra over the quotient
field F = S-']R. For example, a torsion-free ring with involution A is the
same as a Dedekind algebra (4,%Z=-03). A Dedekind ring with involution R
is the same as a Dedekind mlgebra (R,R-{03}). In dealing with Dedekind

algebras (A,S) and the prime ideals P of R we shall always exclude the
case P = {o}.
Let (A,S) be a Dedekind algebra.

The annihilator of an S~torsion A-~module M is the ideal of R

defined by
ann(M) = $seR|sM = O} 4 R,
Iike all ideals of R this has a unique expression as a product of powers

of distinct prime ideals ?1’?2’""@1‘

?k1§)k2 ?kr
ann(M) = 1 2 oo r (ki>/ 1) .
If M is such that the natural map M—>M™" is an isomorphism (e.g. if M is
h.d. 1) then
ann(M™) = ann(H¥) 4R .
An S~torsion A-module M is ?—Erimarz for some prime ideal P of R if
ann(M) =?k .

for some k3 1.
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Define the localization of A at™® for some prime ideal ® of R to

be the ring

-1

IfP =5 there is defined an involution

(&GA, réR"@) Y

Hlw |

= .3
: As;wm—*%.%p e

(If P £@ there is defined an involution ~ @ A?" A:-’;

Given an h.,d. 1 S~torsion A~module M define an h.d, 1% -primary S~torsion

*"*A?XA:‘; 3 (x,y)—>(3,3)).

A=-module

Mp,=A®M .,

PTUFA

k, k, k_
If ann(M) = ?1 P, ...?r it is possible to identify

-,ﬁk k. k.
Kieko  ofi-10594+1 k. . .
?1 52 eee¥ iy '?i-l-" ....?r M if?:?i for some i, 1<igr

M =
¥ Lo ' PR, P
so that

3 A
‘M’=.i=1M§5i , M), = (1)

We thus have a canonical identification of exact categories

, Hom, (M,M') = gﬁomA(M?,M'?) .

(h.d. 1 S~torsion A-modules) = %(h.d. 1 ® -primary S~torsion A-modules) ,

with? ranging over all the 'prime ideals of R, The S—~duality functor

—

M+——3 M" sends the G’-primary component to the ?-primary component,
Express the spectrum of prime ideals of R as a disjoint union
spec(R) = {P} o &Q} u&@}
withg> ranging over all the prime ideals such that §=? .

fornm
A non=-singular split €~quadratic linkingg over (4,S)
formation

4

(M, ,2)
has a canonical direct sum decomposition
(F,G)

(MA,») = 6?3(My,ls,,l})e%(MQQM—,Xq,UQ)
(r,G) = %(Fp,GP)eg(FQqu,GQeGQ) ,
such that for each @
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i

(I/IQfM-,KQ,vQ) 0€rL,(4,s,8)

(FQeFQ,GQeGQ) = OeL,i(A,S,S) .

For each prime ideal 5 of R such that ?:? define the L~groups
Ln(A{§¥:€) (n(mod 4)) in the same way as Lh(A,S,S) but using only P-primary
h.d. 1 S-torsion A-modules. There is a natural identification

(h.d. 17 -primary S-torsion A-modules)

= (h.d..1 Sy-torsion %?;modules)
where Sp = %-;?-GA,‘J sGS}CA?, so that we can also identify |
I.n(A,PM,E) = Ln(A ,sj,,e) (n(moa &)) .

1t P = nR is a prime ideal of R which is principal, with generator‘negb,
then & = n:ue? for some unit u€R such that uu = 1€R and there is defined a
miltiplicative subset S_ = {njukljzo,kez} C A such that

(h.d. 1 P~primary S-torsion A-modules)

. = (h.d., 1 Sn-torsion A-modules)

Ln(A,'Poc:e) = Ln(A,Sn,s) (n(mod 4)) .

Proposition 5,1 The L~groups of a Dedekind algebra (A,S) have a canonical

direct sum decomposition
L (4,5,6) = gLn(A,?”,a) (nlmod 4))
with ¥ ranging over all the prime ideals of R such that § =5 . _
The localization exact sequence of (A,S) can thus be expressed as
voom—>L (A, ) —=> (T A, 0) —> @1 (4,8 )T (8,8) —>... .

&
td

The localization sequence in the case (4,S) = (R,R-{0})
oo —>L (R,&) —>L (F,e) — % L (R,Pe)—> 1T (R,e)—> ...
is closely related to the original localization exact sequence of Milnor
(Corollary IV.3.3 of Milnor and Husemoller [1]) for the symmetric Witt grouyp
of a Dedekind ring R
0 —51.2(r) —> 1.9%(F) ——> D1oz/p) .
(In the part of Ranicki [2] devoted to localization we shall extend this to

an exact sequence
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OA——~»I,(R g)——> L (F g) —> GBL (R/p,e)-——4>1,(R ~£) —> 0
with L (R,e) the cobordism group of non-51ngu1ar €~-symmetric formations
over R). Now L1(F,€) = 0, so that the above sequence of quadratic I~groups
breaks up into two sequences of the type

O———*»-%L,I(R,?C»,E)——-*r LO(R,S)-——»LO(F,E)—ﬁ%LO(R,?m,a)‘———»Lq(R,n-e)——?O .
A standard devissage argument shows that the forgetful functors
(f.d. vector spaces over the residue class field R/)

—>(h.d, 1P-primary S-torsion R-modules) ; Vi——> V
induce isomorphisms in algebraic K-theory and symmetric L-theory. There are
induced morphisms in quadratic L=theory

L (R/p,e) —1_(R,5",€) (n(moa 4),2=F)
but these may not be isomor?hisms (particularly %f R/Pis a field of
characteristic 2, cf, Appendix 1 of Part II of Kéroubi [11). For example,
neither of the worphisms .

k]

-~ . 0
1Y = I = .
LO(ZLZ,';)_ za-———euo(za,(zzz) ,1) ZgeZi, 51— (@,

L (Z,,=1) = 0 —— L,(%Z,(22)7,~1) = z,
is an isomorphism.,
Next, we shall describe the Mayer-Vietoris exact sequence of the

L-groups of a localization-completion square of a Dedekind algebra (A,S)

(Proposition 3.2) in terms of the prime ideal structure of the Dedeking
ring R = Sv{0} , We shall confine the discussion to the case wheni3==§> for
every prime ideal P of R, leaving the general case for the reader.

The ¥-adic completion of A for some prime ideal © of R is the ring

~ . k
Ay:L(_:{_k.EIA/yA ’
with involution

— A

PRk A ; {a_cA/p $alxy 31} ——s gakeA/gn Az},
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A ,
The ¥ ~adic completion As,of A can be identified with the %;adic completion -

of the localization A? of A at ®

Ay Lin A /shg (= le A/nfA it = xR, neP).
sesj,

X X
Given s€S = R-}0} let sR =3’11?22...?rr<3 R, so that

X k, k
A/sh = A/®, AsA/P, Ae...eﬁ/?rrA
1 _ A P=in .

SEAC S A, 10 PR )%, P X .

It is thus possible to define morphisms of rings with involution

~N

A = Lim A/sA —> ﬂA
seS

and hence also abelian group morphisms

L (K,e)-———»ﬂL (K ,€)

15 (S A ) ——)ﬂ(gy \?1Ay,€) L, G 91€)) (n(mod 4&))

(The restricted product IL(G ,H of a collection of pairs of objects
®

(G ?’H§) indexed by{?}amd equipped with morphisms §y~——§G3,1s defined to

be the direct limit
T ,B) =14 ﬂGxﬂH)
5 3y TP :PeI 1 S
taken over all the finite subsets I of ﬁP}). Wall [5] and Bak [2] have studied

some of the circumstances under which the above morphisms are isomorphisms,
roughly speaking when A is finitély generated as an R-module and s A FQQRA
is a semi-simple F-algebra (e.g. if (A,8) = (Z[n],Z~{0}) for a finite group

n, with R = Z). At any rate, it is possible to obtain a Mayer-Vietoris

exact sequence relating the IL-groups of A,S-1A to those of all the®-adic

AN
completions A 1A Propositions. 3.2, 5.1 give morphisms of exact

?.‘9

sequences
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- )
ooo‘——"'?Ln(A,g) >LS(S 1A,€)_——_—9®L (A,? ,8)——’1' (A,E)-—qoac
n o n _ n-1
l A v ¥
N « D A=TA _ A A
,..————>Ln(A,€) > Ln(S A,E) > ? Ln(AP,Sy,s)-———)Ln_,](A,E)-—k*
l | . A J{
L 4

S v .
A 5 Aeel A ~ . AA ~
v o_‘*gLn(A‘P ,€> ‘_"']?I(Ln(sy AJ”S) ’Ln(Ay ,E)) “”’%Ln(A?,Syfe)*)g\;Ln_.‘ (A9,€) e
involving the isomorphisms
o0 . ~ A
Ln(A,P ,E) = Ln(AP,SP,E) ————)Ln(Ay,SP,e) (n(mod &)) .

We deduce the following exact sequence, which is valid even in the case when
the Dedekind ring R has prime ideals ¥ such that® £P.

Proposition 5,2 Given a Dedekind algebra (A,S) there is defined a

Mayer-Vietoris exact sequence A
S
coo—L (A,€)—L (5 A,s)egLn(Ap,e)..—,SL [(Ln(s? AP,E),Ln(AP,e))

—_ Ln_,i(A,a)'————}... ’

w:i.‘chS> ranging over all the prime ideals of R = SU{O} such that§=?.

€l
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§6. Polwynomial extensions

Given a central indeterminate x over a ring A there is defined =a
multiplicative subset S = ixklkz;OEC:A[x] with localization S-1A[x] = A[x,x-qj.
An h.d., 1 S-torsion A[x]-module M is the same as a f.g. projective A-module M
together with a nilpotent endomorphism e:M—>1{;y—>xy, and there is in fact
a canonical identification of exact categories

(hod., 1 S~torsion A[x]~modules M)
= (f.g. projective A-modules M with a nilpotent endomorphism e:M-—M),
As in Chapter XITI of Bass [1] it is possible to combine this identification
with the localization exact sequence of algebraic K—theory

Ky (ALx]) s K, (ALx, %" 1) —> K, (ALx],8) —> K (ALx]) —— K (ALx,x" 1)

to obtain split exact sequences

O~—~——7K1(A[x])«——e:K1(A[x,x—1])~—~4~K1(A[x},S)—~—%?O

0—K, (A)——->K1 (A[=x] )@K,l (A[x-1])——>K1(A[x,x~1]) > KO(A) >0 ,
i.e. the 'fundamental theorem of algebraic K~theoxy'.

It is likewise possible to use an L-theoretic localization exact
sequence to describe the L~groups of the polynomial extensions A[x],A[x,x-1]
of a ring with involution A, where X = x. Indeed, such was the approach

taker by Karoubi [1]. On the other hand, we have already shown in Part IV of

Ranicki [1] that there are defined split exact sequences

0 —1_(A[x]) ———»Li(A[x,x"H) »LE(ALx 1) —> 0

0 —>L_(4) —-———»LI;(A[::] )eL};(A[x—qj ) -——-—)Li(A[x,x-1] )—>L (A)—>0

(n(mod &), K = im(ib(A)-——>%B(é[xi1]))),
by a modification of Part II of Ranicki [1] (which concerned thg L-theory of
the Laurent extension A[z,z~1] of A, with Z = z-1). We shall now explicitly
identify
Ln(A[x],s,'e) = L§(AEX~1],€) (n(moad 4)) ,
The vitt class of a non-singular split €~quadratic linking form over (A[x],S)
corresponds to the Witt class of a non-singular €~quadratic form over A[x-1],

whereas £-quadratic linking forms over (A[x],S) correspond to even
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ce-symmetric forms over A[x-qj, so that the extra structure of split
g-quadratic linking forms over (A[x],S) ic seen to carry delicate quadratic
information such as the Arf invariant.

The polynomial extensions of a ring with involution A are the rings

A[x],A[x_qj,A[x,x-1] with involution by
X=x.
Then S =£xk|k3 O}CA[x] is a multiplicative subset in the sense of §2, such
that
s arx] = Arx,x 11, sTTArxRI/ALE] = xA[xT ] = j;chg‘jA .
Given an h.d, 1 S~torsion A[x]-module M we have a f.g. projective A-module
together with a nilpotent endomorphism
e t M——M; yr—>xy ,
in which case the dual M* ='HomA(M,A) is a f.g. projective A~module with a
nilpotent endomorphism |
. o i M M ;£ (y > £(ey))
and there is defined a natural A[x]-module isomorphism

ll

M*—— > M = HomA[xﬂ(M,S-1A[x]/A[x]) ; f»—~*>(yv~ﬁ-ngagjf(e~j~1y)) .

Given h.d. 1 S~torsion A[x]-modules M,M! there is a natural identification

HomA[x]

An e-symmetric linking form over (A[x],S) (M,A) is the same as a

(1,') = § £ €Hom, (M,H")| fe = e'f § .

pair (M,e) (as above) together with an element ¢¢5Q€(M) such thaf}
pe = e*@tiQe(M) = ker(1-T€:HomA(M,H*)«jr—rHomA(M,M*))
A Iﬁxld————as~1A[x]/A[x] ; (y,z)k——v;é;m?j@(y,e-j~1z) .

An e-quadratic linking form over (A[x],S) (M,N\,}Y) is the same as a
trivle (M,e,p) (as above) such that both (M,o) and (M,pe) are even
g~symmetric forms over A, that is

¢ 1 ve € Qv (M) = im(1+T_tq_(M)——>Q(0) ,
in which case
ot M—>Q_(A[x],8) = s™IArx1/$ b+ s‘isql veArny ;

Y—s T x%(y,e
jmm 0

-3-1y) )
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A split e-quadratic linking form over (A[x],S) (M,\,V) is the same
as a triple (M,e,p) (as above) together with elements WO,W1€jQ€(M) such that
- \E
@ = WO+-€W8 , e = W1+-€Wq €5Q<yo> o,
in which case

- .
R XJQ (1) ;

Yot — Qs(s""A[x]/A[x])

] _ e
¥y —> k:Z_w(xahﬁ\Vo(y)(e ZE=2yy 4 xgkw1(y)(e'2k~2y))-

J=

Define an abelian group morphism

LO(A[x],S,e)—-—-?LIC{)(A[x-H@) ; (M,'A,v)&———>(r«1[x“1],wo+ x""w1) .
where M[x '] = A[x'qjsgAM, K = im(ﬁio(A)——)’I\{)O(A[x-’I])).

A split €-guadratic linking formation over‘(A[x],S) (F,((g),e)G)

is the same as an €~gquadratic formation cver A (HE(F);F,im((iD:G~——~>FeF*))

toogether with nilpotent enéomorphisms fEEHogA(F,F), géiHomA(G,G) such that
y& = £y€Hon, (6,F) , Mg = f*p€Hom, (G,F*) , X*FgGQ(vo\r—e(G) .

in which case =

-1
6 ¢ G—>Q_.(A[x],5) ; T2 x:’(‘é*}*g o .
Define an abelian group morphism
u1(A[xJ,S,e)-————?Lg(A[x-1],8) 3
— \.-31 —1 . “’ ""1 "'1 -1 ) P
(F,6) (B (F[x~ 1);F[x 1,im = G[x J—sF[x JeF[x 1%)).
Pd1+x

In this way there are defined abelian group morphisms
L_(A[x1,8,8) ——>Io(A[x"'1,8) (n(mod 4))
which fit into a morphism of exact seguences
(A[x1,8 ,€)—>L (A[x], e)—aL (Alx,x ] g)—1L (A[xj S s)——>L -q(ALZ] ,E)
S T l l

0 ———— L (A[x] ,E:)~—>LISI(A[x,x-1] ,€)-—-——>L§(A[x—1],€) _—s0 .

n+1

The top sequence is the localization sequence given by Proposition 2.4, while
the bottom sequence is one of the split exact sequences obtained in the proof
of Theorem 4,1 of Part IV of Ranicki [1] (- only the case € = +1€ A was

considered there, but the proof generalizes to arbitrary €&A). We deduce:
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Proposition 6.1 The abelian group morphisus

Ln(A[x] ,S,E)—-——-—}Li(ﬁ[x-qv] ,E) (I}(mod Ly)

are isomorphisms,

]

Define non~singular split (=1)=-quadratic linking forms over

(Z[x],5 = $ x|k 05 (M), (,A,0') by

M= ZeZ , zxM=0

NS MXM—+Z[x,x-1]/Z[x] ; ((y,z),(y',z'))k—ﬁxﬂ(yz‘ ~y'z)

P31 M Q_1(Z[x,x-1]/Z[x]) = ZLx,x 1/CEE] + 2% 0%, D) 5

(y,z2—> x‘-‘[(yZ + yi + 22) ’

praoM —s Q_,](Z[x,x-1]/Z[x]) i (yy2) —s x-1yz
with the same associated (=1)-gquadratic linking form over (Z[x],S) (M, X, 1

peM—— Q__,I(Z[.x,x-’l],S) = Z’l[x,x-1} i (y,2)b—>0 ,
The isomorphism given by Proposition 6,1

Lo(ZLx1 8 ,=1) —> Lo( Z[x" '1,=1) = Z,?

)
sends (M,\,v) to the element (1,0) (= the image of the Arf invariant element

1 1
(ZeoZ, ( )GQ_,](ZQZZ)) GLO(Z,-'I) under the map induced by the natural
0 1

inclusion Z——-)Z[x-1]), while (M,\,»') is sent to O, Thus split €-quadratic
linking forms carry more information than €-~guadratic linking foras,

in general,
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§7. Change of K=theory

We shall now describe the localization exact sequence for guadratic
theory in the case when all the algebraic K-~theory around is restricted

to 2 prescribed s~invariant subgroup Xg'ﬁm(ﬁ),(m = 0 or 1).

Iet A,S,e be as in §2.

An h,d. 1 S-torsion A-module M has a projective class

D %
(M} = [-'-0] = [P1]€IxO(A)

with PO’P’I the f.g., projective A~modules appearing in a resolution
d

1 'rPO > M > 0 .

o~ ~ -
As déHomA(P,l,Po) is an S-isomorphism [M] eker(Ko(A)——a KO(S 1A)).

0 > P

Given a short exact seguence of h.d, 1 S-torsion A-modules

i

E: 00— N> —dym 5 0

there are defined f.g., projective A-module resolutions

d

0 > P, 7 Pg > M > O
- i,l i, ! i
v dl \
! > P! S Mt >
0 7 P1 > PO > M 0
iq io i
SR UNG. SR
O 4 P,] 4 0 ? I’ 7 O Py
and there exists a chain homotopy k€& HomA(PO,P',;) such that

Cos ' C s L _
igig = d"keHomA(Po,P'O) y Jqiq = kdéHomA(P,],P',{) .

Thus there is defined an acyclic f.g. projective A-module chain complex

C(g) : 0 5 P

giving the sum formula
M - ('] + ('] = 0eKy(a) .
The S~-dual M = HomA(M,S-1A/A) of an h.d., 1 S~torsion A-module M has

projective class

(MM = [BX] - [BY] = ~[MI* € Ky(a) .
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form
The projective class of a split €~quadratic linking
formation
(M,%,»)
over (4,S) is defined to be
(F,6)

[(M,0,)] = [M] €K (A)
[(F,@)] = [6] - [F1 €Ky (A) .
%(M,'X,»’)
If is non=singular then
(F,G)
[ALA)1* = =[] €E (a)
[(F,&)]* = [(F,&)]e K () .
Given a *-invariant subgroup XS;%%(A) let Li(A,S,&) (n(mod 4)) be the
Witt groups of non=-singular split +€=-quadratic linking forms and formations
over (A,S) defined exactly as Ln(A,S,E), but using only h.d, 1 S-torsion
A-modules with projective class in XGZEB(A). In particular,

K ()
L (A,s,8) = Ln(A,S,e) (n(moa 4)) .,

Define s-invariant subgroups
x5 = xnker(s"":'f:'O(A)——-—{f{'O(s""A))QI“c'O(A)
- g - ~J -
s7x = {87 m | rme x3CR (5T

s0 that there is defined a short exact sequence of Z[Zzaj—modules

0—3pX— X —>5"1x —>0

inducing a long exact sequence of Tate 7

Z—cohomology groups

cee —>ﬁn(zsa;xs) ———»ﬁn(zzz;x)—-—a- ﬁn(zzz;s”x)—-—-» ﬁn"1(zza;xs) —_— . .

The exact sequences of Propositions 1.2,2.% can be generalized to

the intermediate projective L-groups, as follows.
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Provosition 7.1 Given *=~invariant subgroups XG;YSiEb(A) there is defined a

commutative diagram of abelian groups with exact rows and coluumns

L N

a0 0 @
é—-‘ L N ]

R L};(A,e) —>L (S“1A,€)~—-->'L§(A,S,8)—~—-> Lﬁ_q (A,e) — ...

n
v l hd ¥

¥ 5™y, -1 Y Y
...—-——-—+Ln(A,s)-———>Ln (s A,e)———eLn(A,s,a)———,>Ln~1(A,e)———‘»—

v J‘ v Y

coo—> ﬁn(ZZE;Y/X)—)f{p(ZZ;S"']Y/S-qX) 5Tz Y9x5y T (Zy3 ¥/X) > ..

sy

2
Y -1 2 4 . Y
X S X, =1 X X
cor > L (8,€) —>L° (s A,a)———-7Ln__1(A,s,a>—>Ln_2(A,s)—-—>

2 . l Y _ Y

L N )
L XX ]
*e
LN}

| ' []
In dealing with based A-modules we shall assume (as in §1) that

fegs. free A-modules have a well-defined rank, and that ¥(g€:A-—>4) = Of&%;(A).
An h.d, 1 S-torsion A-module M is based if there is given a |

fogs free A~module resolution

0 > P1 d 7 PO > M > 0 |
such that PO and P1 are based, in which case there is defined a torsion
T ) = (s a5~ P, —>5™ Py ef{'1 (s"tay .

The S~dual M" is also based, with torsion
Ay o N*e ® (=1
T ) =T (M) ek (s a) .
A short exact sequence of based h.d, 1 S~torsion A~-modules

E: 0 > M > M! > MM >0

has a torsion

(&) =xe@NER ()

sucn that

1

sR(E) = ) - 2 1) + T ek (s .
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[ form
The torsion of a non-singular split €-quadratic linking
formation
(11,%,v) M ,
over (A,S) ‘with based is defined by
(r,G) F,G

TAAM = @(E10—> M —2s 1N 50 —>0), 7, (1))

14T 0 ~ ~ - ~ ~
€ ker({ 2 K (B)eK (87 'A) — K, (A)eK, (57 '4))
-8~ 1-T

e(F,@) = (x(€:0 —> @G C'Q; FeF" e ﬁ)e" > 0),%(6) = T, (FY)
1~T 0] - ~ ~ ~
eker(< -1 2 Kp(A)eK, (57 '4) — K (A)eK, (57 'A)) ,
. =S 1+T
with T.:m—-» x* the duality involution.
Given *-invariant subgroups XQ’I{] (1), YCS E1(8-1A) ~such that
sz = fesT ek (sTW v exkC
let L}é’Y(A,B,E) (n(mod 4)). be the Witt groups of non-singular split
+E€=quadratic linﬁng forms and formations over (4,S) defined exactiy as
Ln(A,S,&:), but using only based h,d. 1 S~torsion A-modules and reguiring

the torsions to lie in

-

&(x,y)éXeY | x* = v(ﬂ-v)n"'qx , s x =3 4 (—)n“1y*}§_: E1(A)e’f<;(s“"A)

In particular,

¥, (8),%, (s7 ') foye® (4)
L, (a,8,8) = L, (A,s,e) (n(mod &4)) .
Given a morphiém of Z[ZZE]-modﬁ'les
f: G—>H
define relative Tate Zz-cohomology grouns
ﬁn(%Z;f:G——-)H) = {Geyy) ot | x* = (=)™ EEE (__,)n"'ly*'} (n(mod 2))

€ Cu+ (~)n_1u*,i‘u+ v+ (_-)nv*)'_! (u,v) € GoH }
to fit into a long exact sequence
oo 8% Z36) —Ls B2 ;1) ——> (25 ) — B (Z 500 —> oL
The exact sequences of Propositions 1.2, 2.4, 7.1 can be generalized

to the intermediate torsion L~groups, as follows.
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aS4 -
Proposition 7,2 Given *-invariant subgroups XS;X'EEK%(A), YS;Y'QQ%;(S 1A)
such that S~1X§£Y, S"1X'§;Y' there is defined a cormutative diagram cf

abelian groups with exact rows and columns

L4 L 4
L4 . L]
o *

1 ] i

oo —Th(a,0) — L (878, 6) ——> 1FF(a,5,0) —— 1

l S
v v v

Xt t, o _Xv.Yye t
vor ——— Tk (4,8) —>L (87h,8) — Ik (4,8, T (a,e) — ..,

Y l v v

s X1/X) 382,51 /1)1 X' XY/ H( Zyi X' /X) 70

\, | " J

(A,g)"—_—" so e

e "‘—'_> Ln_1 (A’E) "”'—} Lzl"’l §S—1A,€) '—""7' L}n(:',YI(A,S’E) _-§ Li_‘E(A,E) .——'—} s
Y l l v
]
Let ~ ~
§ 0K (A) K, (8)
Vn(A,E) =L, (A,€) = L, (a,e) (n(mod &4))

ve the L-groups defined using only f.g. free A-modules, and let

{o}ck (») T, (1), (s7)

V_(4,5,8) = L (a,5,8) = L' (2,5,8) (n(mod 1))

n
be the L~groups defined using only h.d. 1 S-torsion A-modules which admit a
fog. free A-module resolution of length 1. As a special case of either of
the localization sequences of Propositions 7.1, 7.2 we have an exact seguence
of V-groups

oo V_(4,8) -_.}Vn(s—qA,e)-—avn(A,S,s)———)Vn_,](A,e)—*—} cee

For ezample, the localization exact sequence of Pardon [1] is of this type.
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The excision isomorphisms and the Mayer-Vietoris exzact sequence for

the IL~theory of the cartesian square

A——>55" A

‘.

-1

Be—e——>»T B
associated to a cartesian morphism f:(A,S)—>(B,T) (Proposition 3.1)
can be generalized as follows.,

Proposition 7.3 Let f£:(A,S)——(B,T) be a cartesian morphism of rings with

involution and multlpllcatlve subsets, and let XCX (A) Yg;%;(s-1A),

Zc:K (B) W<IK (T B) (m = O or 1) be *~invariant subgroups such that

1 1 _1 s ) i — -’l ~t
sT'Xcy , B®Axgz , T ZCW , T B@é_,lAng,ker(Km(A)——;Km(S A)eKm(B))QX

and such that the sequence
o——-—+x/ker('f<'m(A)-'—>”im(s"1A) efim( B) )—> Yo% —>W —> 0

is exact. Then there are defined excision isomorphisms

-

f'L’Y(ASS)

12"(3,7,8) (a(moa 1))

and a Mayer~Vietoris exact sequence

X

ooo“‘“—‘)L}n{.(A,e)""—‘» L§(8-1A9€)9LE(B,E)“”“?L‘g(anqu)““"‘:’ Ln-"l(A,e)_J' oee o

(1
(In the case m = O the groups Li’Y(A,S,e) are to be interpreted as the
relative groups Lﬁ’Y(A-——»S-qA,E) apbearing in the exact seguence

1A 8)_—911 (A 8)‘_—‘)000 °

15, 8) —> 11578, 8) — IF T (a—>s
For ¥ = S-1X these are the groups defined previously

rX,S X(A,S,E) - Li(A:S’S) (n(mod L)) ,

but for general X,Y it is not possible to express these relative L=groups
in terms of linking forms and formations over (4,S)).
For example, the Mayer-Vietoris sequence of Theorem 6.6 of Wall [6]

A
is a special case of the sequence of Proposition 7.3, with (B,T) = (K,S) and

~ ~ A 1A - - ~ AN
X = ker(K,l(A)——-yK,](S 1A)) s, ¥ = ker(K1(S 1A)———-)K1(S 1A))
7 = Iier(‘fq(g)w—%ﬁ](g-qﬁ)) , W= {o}g_i’,l(g""ﬁ) .
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