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Moduli spaces (or stacks) are often construct-
ed as quotients of algebraic varieties by group

actions.

Reductive groups ~ we can use Mumford’s GIT
(4 techniques from symplectic geometry)

Non-reductive groups?

E.g. moduli spaces of hypersurfaces/complete
intersections in toric varieties — automorphism
group of a toric variety is not in general reduc-

tive.

Example: weighted projective plane P(1,1,2)
Aut(lP(1,1,2)) = Rx U

with R = GL(2) x¢+ C* = GL(2) reductive
U = (C1)3 unipotent

where (z,v,2) — (z,y, z + \x? 4+ uxy + vy?) for
(A, p,v) e C3




Mumford’'s GIT

G complex reductive group
X complex projective variety acted on by G

We require a linearisation of the action (i.e.
an ample line bundle L on X and a lift of the
action to L; think of X C P" and the action
given by a representation p: G — GL(n+ 1)).

X = AX) = Clxo,...,znl/Ix
| = @R HO(X, L®F)
| Ul
!
X//G <= A(X)C ring of invariants

G reductive implies that A(X)C is a finitely
generated graded complex algebra so that
X//G = Proj(A(X)%) is a projective variety:.
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The rational map X — — — X//G fits into a
diagram

X ——— X//G cx proj variety
U |
semistable X?%% onto X//G
U U open
stable X¢* — X°%/G

where the morphism X% — X//G is G-invariant
and surjective.

Topologically |X//G = X%/ ~| where

x~y< GrNGynX® £ ().

N.B. G reductive & G is the complexification
K¢ of a maximal compact subgroup K (for
example SL(n) = SU(n)¢), and then

X//G = p H(0)/K

for a suitable moment map p for the action of
K.



What if G is not reductive?

Problem: We can't define a projective variety
X//G = Proj(A(X)%)

where A(X) = Clzg, ..., zn]/Ix because A(X)C
is not necessarily finitely generated. [In fact G
is reductive if and only if A(X)C is finitely gen-
erated for all such X].

Question: Can we define a sensible ‘quotient’
variety X//G when G is not reductive?

N.B. Any linear algebraic group has a unipotent
normal subgroup U < G (its unipotent radical)
such that R = G/U is reductive [for unipotent
think strictly upper triangular matrices].

Moreover U has a (canonical) chain of normal
subgroups

(V=Up<U;<...<Us=U
such that each U;/U;j_1 £ CT xCT x---x CT.
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Theorem (Doran, K): Let H = Rx U be a
linear algebraic group over C acting linearly on
X C P,

Then X has open subsets X° (‘stable points’)
and X*%% (‘semistable points’) with a geometric
quotient X — X°/H and an ‘enveloping quo-
tient’ X5 — X//H.

Moreover if A(X)* is finitely generated then

X//H = Proj(A(X)H).

We have a similar diagram to the reductive
case

X —— = X//H

U |
semistable X% — X//H

U U open

stable X°* — X%/H

BUT X//H is not necessarily projective and
X% — X//H is not necessarily onto.



Reductive envelopes

We can choose reductive G 2O H and a suit-
able compactification G x g X of G x g X giving
a (non-canonical) compactification G x g X//G
of X//H:

X*/HC X//HCGxpygX//G

However although such a compactification al-
ways exists, it is not at all easy in general
to decide when a compactification G x g X of
G X g X has the properties needed.




Simple example: CT acting on P"

We can choose coordinates in which the gener-
ator of Lie(CT) has Jordan normal form with
blocks of size k1 +1,...,kg+ 1. The linear CT
action therefore extends to G = SL(2) with

01
via Cntl = D7, Symki(C2).

<c+={<1 a):ae@}gc;

In fact in this case the invariants are finitely
generated (Weitzenbock) so we can define

P"//Ct+ = Proj((Clzg, ..., zn])CT).
N.B. Via (g,2) — (gCT, gz) we have
G Xt PP 2 (G/CT) x P £ (C? )\ {0}) x P"

C C2 x P" C P2 x P

and so

Pn//CT £ (P2 x P")//SL(2)




P2 x P — — P2 x P"//G

U |
PP ={[1:0:1]} x P — Pn//CT
U |
(Pn)ss not nionto IP”//(C+
U U
(P)® — (P™)s/CT

Example when (P")$5 — P"//CY is not onto:
P3 = P(Sym3(C?)) = { 3 unordered points on P1}.
Then (P3)%s = (P3)5 is
{ 3 unordered points on Pl at most one at oo}

and its image in

P3//Ct = (P3)*/CT u P3//SL(2)

is the open subset (P3)%/CT which does not
include the ‘boundary’ points coming from

0 € C? C P2,



The blow-up P2 of P2 at 0 € C2 C P2 can be
identified with G xg P! where B is the Borel
subgroup of G = SL(2) containing CT and the
standard maximal torus T = C*.

Similarly the blow-up of P2 x P" along {0} x P"
can be identified with G x 5 (P1 x P").

Let P7//Ct be the blow-up of
P"//CtT = (P? x P?)//G

along the subvariety P"//G corresponding to
0 € P2. Then the G-invariant surjection

(P2 x P")*5C — (P? x P") //G = P"//CT
induces a B-invariant surjection
(Pl % Pn)ss,B N Pn//(c—l—

from a suitable open subset (P! x P?)ss:B of
Pl x P*, and thus a surjection from an open
subset of the GIT quotient

X = (P x PV /T
to Pn//CT.

10



In constructing the GIT quotient

x = (Pt xP")//T
to get a surjection from an open subset X°° of
X to P*//CT, the action of T =2 C* on Pl x P

has to be appropriately linearised; a different
choice of linearisation would give

(P! x P*)//T = (C* x P")/T = P".

Thus the theory of variation of GIT quotients
(Thaddeus, Dolgachev-Hu, Ressayre) tells us
that X and P"™ are related by a sequence of
explicit blow-ups + blow-downs (flips in the
sense of Thaddeus).

flips
VGIT ~ | X =PI xP")//T — — = X =P"

P <—fﬂris—> X
U U

(]Pm)ss _ Pn//@—l— O(ﬂ_tO XSS
U U U

(P")* — (P"M)®/Ct — (P")°



Defn: Call a unipotent linear algebraic group
U graded unipotent if there is a homomorphism
A C* — Aut(U) with the weights of the C*
action on Lie(U) all strictly positive. Then let

U=UxC*={(u,t) :uecUtecC"}
with multiplication (u,t)-(v/,t) = (u(\ () (), tt).

Thm: Let U be graded unipotent acting lin-
early on a projective variety X, and suppose
that the action extends to U = U x C*. Then
(i) the ring A(X)V of U-invariants is finitely
generated, so that X//U = Proj(A(X)Y);

(ii) there is a projective variety X which is relat-
ed to X via VGIT and a surjection X% — X//U
to X//U from an open subset X%° of X.

flips
X ——— — X
U U
X$5 . X/JU = Proj(A(X)V) QO yss
U U U

X5 — X3/U «— XS
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Example: The automorphism group of the
weighted projective plane P(1,1,2) is

Aut(P(1,1,2)) 2 Rx U

with R = GL(2) reductive and U = (C1)3
unipotent .... (\, u,v) € (C1)3 acts as
(z,y,2) — (z,9, 2 + 22 + pzy + vy?).

The central one-parameter subgroup C* of R =
GL(2) acts on Lie(U) with all positive weights,
and the associated extension U = U xC* can be
identified with a subgroup of Aut(P(1,1,2)).

Corollary When H = Aut(lP(1,1,2)) acts lin-
early on a projective variety X, the ring of in-
variants A(X)H is finitely generated as a com-
plex algebra, so that

X//H = Proj(A(x)™),

and moreover there is a projective variety X
which is related to X via VGIT and a surjection
X*® — X//H to X//H from an open subset X%°

of X.
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Application to jet differentials (following
Demailly 1995)

X complex manifold, dimX =n

Ji. — X bundle of k-jets of holomorphic curves
f:(C,0)—-X

[f and g have the same k-jet if their Taylor
expansions at O coincide up to order k]. More
generally Jk,p — X is the bundle of k-jets of
holomorphic maps f : CP — X.

Under composition modulo t*t1 we have a
group G given by
{k-jets of germs of biholomorphisms of (C,0)}
t— ¢(t) = arttaot’®+...4aith, a; € C,a; #0

Gy, acts on J; fibrewise by reparametrising k-
jets. Similarly we have Gk,p acting fibrewise on

Sk p-
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(a,]_ a» ... ak\
O a%

\ 0 0 a’{)

G has a subgroup C* (represented by ¢(t) =
a1t) and a unipotent subgroup U, (represented

by ¢(t) =t + ast? + ...+ axt’) such that
Gk = Uk X (C*

D a1 EC*,CLQ,...CLkE(C}

Similarly
Gk,p = Uk,p X GL(p)

where Ukjp IS the unipotent radical of Gk,p,
and the central one-parameter subgroup C* of
GL(p) acts on Lie(Uy, ,) with all weights strictly
positive. Thus

linear actions of Gy, have
finitely generated invariants.
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Green-Griffiths (1979): For x € X consider
(Jp)z = @?;1 Symj(@n)
and
(Egg)x = {C-valued polynomials on (Jy)z
of weighted degree m wrt C* < G }.

Demailly-Semple jet differentials:

(Brm)e = (EEG)2" = O((J3)2)®h

is the fibre at x of the bundle Ej ,,, of invariant
jet differentials of order k and degree m over X.
(N.B. The action of G, on O((Jy)z) is twisted
by the character G, — C* with kernel Uyg).

Merker (2008) gave algorithm to generate all
invariants, and showed invariants are finitely
generated for small n and k (in the casep = 1).
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Kobayashi hyperbolicity
X compact complex manifold

X is Kobayashi hyperbolic «<— A
nonconstant entire holo curve in X

Idea: global holo sections of Ey, ,,, vanishing on
a fixed divisor ~» global algebraic differential
equations satisfied by every entire holo curve
f.:.C— X.

Conjecture (Kobayashi 1970)
X C prtl generic hypersurface of degree d > n

= X hyperbolic.

Siu (2004): method of proof but no effective
lower bound for d.
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Conjecture (Green-Griffiths)
X C prtl generic hypersurface of degree

d>d(n) >n

= 4 proper algebraic subvariety ¥ C X such
that every nonconstant entire holo curve
f:C — X is contained in Y.

Diverio-Merker-Rousseau (2009) prove this with
d(n) N n(n_l_l)n—i—S

(for n > 2).

Berczi-K use non-reductive GIT to obtain

d(n) ~ n3/2.
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Method goes back to Demailly
J. 0 ={feJy : f(0)# 0}

Thm (Demailly 1995) J,“//Gy, is a locally triv-
ial bundle over X with a compactification

X — X
and a line bundle Oy, (1) satisfying m«(Ox, (m)) =
Epm.-

If 4 an ample line bundle L — X such that
HO(Xy, Ox, (m)®@r*L™1) =2 HO(X, By, ,®L™1) # 0

with basis o1,...,0n and base locus Z, then
every entire holo curve f: C — X is contained
to kth order in Z.

The bound n("+1)n+5 comes from the relative-
ly complicated nature of the compactification
X (an iterated projective bundle). The better
bound n3/2 comes from using the compactifi-
cation of J, /Gy, obtained from non-reductive
GIT.
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