
Geometric invariant theory for non-reductive

group actions and jet differentials

Frances Kirwan

Oxford

(based on joint work with Brent Doran and

Gergely Berczi)

1



Moduli spaces (or stacks) are often construct-
ed as quotients of algebraic varieties by group
actions.

Reductive groups ; we can use Mumford’s GIT

(+ techniques from symplectic geometry)

Non-reductive groups?

E.g. moduli spaces of hypersurfaces/complete
intersections in toric varieties – automorphism
group of a toric variety is not in general reduc-
tive.

Example: weighted projective plane P(1,1,2)

Aut(P(1,1,2)) ∼= R n U

with R ∼= GL(2)×C∗ C∗ ∼= GL(2) reductive

U ∼= (C+)3 unipotent

where (x, y, z) 7→ (x, y, z + λx2 + µxy + νy2) for
(λ, µ, ν) ∈ C3
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Mumford’s GIT

G complex reductive group

X complex projective variety acted on by G

We require a linearisation of the action (i.e.

an ample line bundle L on X and a lift of the

action to L; think of X ⊆ Pn and the action

given by a representation ρ : G→ GL(n + 1)).

X ⇒ A(X) = C[x0, . . . , xn]/IX
| =

⊕∞
k=0 H0(X, L⊗k)

|
⋃
|

↓
X//G ⇐ A(X)G ring of invariants

G reductive implies that A(X)G is a finitely

generated graded complex algebra so that

X//G = Proj(A(X)G) is a projective variety.
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The rational map X − − → X//G fits into a
diagram

X −− → X//G cx proj variety⋃
||

semistable Xss onto−→ X//G⋃ ⋃
open

stable Xs −→ Xs/G

where the morphism Xss → X//G is G-invariant
and surjective.

Topologically X//G = Xss/ ∼ where

x ∼ y ⇔ Gx ∩Gy ∩Xss 6= ∅.

N.B. G reductive ⇔ G is the complexification
KC of a maximal compact subgroup K (for
example SL(n) = SU(n)C), and then

X//G = µ−1(0)/K

for a suitable moment map µ for the action of
K.
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What if G is not reductive?

Problem: We can’t define a projective variety

X//G = Proj(A(X)G)

where A(X) = C[x0, . . . , xn]/IX because A(X)G

is not necessarily finitely generated. [In fact G

is reductive if and only if A(X)G is finitely gen-
erated for all such X].

Question: Can we define a sensible ‘quotient’
variety X//G when G is not reductive?

N.B. Any linear algebraic group has a unipotent
normal subgroup U 6 G (its unipotent radical)
such that R = G/U is reductive [for unipotent
think strictly upper triangular matrices].

Moreover U has a (canonical) chain of normal
subgroups

{1} = U0 6 U1 6 . . . 6 Us = U

such that each Uj/Uj−1
∼= C+×C+× · · · ×C+.
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Theorem (Doran, K): Let H = R n U be a
linear algebraic group over C acting linearly on
X ⊆ Pn.

Then X has open subsets Xs (‘stable points’)
and Xss (‘semistable points’) with a geometric
quotient Xs → Xs/H and an ‘enveloping quo-
tient’ Xss → X//H.
Moreover if A(X)H is finitely generated then

X//H = Proj(A(X)H).

We have a similar diagram to the reductive
case

X −− → X//H⋃
||

semistable Xss −→ X//H⋃ ⋃
open

stable Xs −→ Xs/H

BUT X//H is not necessarily projective and
Xss → X//H is not necessarily onto.
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Reductive envelopes

We can choose reductive G ⊇ H and a suit-

able compactification G×H X of G×H X giving

a (non-canonical) compactification G×H X//G

of X//H:

Xs/H ⊆ X//H ⊆ G×H X//G

However although such a compactification al-

ways exists, it is not at all easy in general

to decide when a compactification G×H X of

G×H X has the properties needed.
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Simple example: C+ acting on Pn

We can choose coordinates in which the gener-
ator of Lie(C+) has Jordan normal form with
blocks of size k1 +1, . . . , kq +1. The linear C+

action therefore extends to G = SL(2) with

C+ = {
(

1 a
0 1

)
: a ∈ C} 6 G

via Cn+1 ∼=
⊕q

i=1 Symki(C2).

In fact in this case the invariants are finitely
generated (Weitzenbock) so we can define

Pn//C+ = Proj((C[x0, . . . , xn])C+
).

N.B. Via (g, x) 7→ (gC+, gx) we have

G×C+ Pn ∼= (G/C+)× Pn ∼= (C2 \ {0})× Pn

⊆ C2 × Pn ⊆ P2 × Pn

and so

Pn//C+ ∼= (P2 × Pn)//SL(2)
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P2 × Pn −− → P2 × Pn//G⋃
||

Pn = {[1 : 0 : 1]} × Pn −− → Pn//C+⋃
||

(Pn)ss not nec onto−→ Pn//C+⋃ ⋃
(Pn)s −→ (Pn)s/C+

Example when (Pn)ss → Pn//C+ is not onto:

P3 = P(Sym3(C2)) = { 3 unordered points on P1}.

Then (P3)ss = (P3)s is

{ 3 unordered points on P1, at most one at ∞}

and its image in

P3//C+ = (P3)s/C+ t P3//SL(2)

is the open subset (P3)s/C+ which does not

include the ‘boundary’ points coming from

0 ∈ C2 ⊆ P2.
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The blow-up P̃2 of P2 at 0 ∈ C2 ⊆ P2 can be

identified with G ×B P1 where B is the Borel

subgroup of G = SL(2) containing C+ and the

standard maximal torus T ∼= C∗.
Similarly the blow-up of P2×Pn along {0}×Pn

can be identified with G×B (P1 × Pn).

Let ˜Pn//C+ be the blow-up of

Pn//C+ = (P2 × Pn)//G

along the subvariety Pn//G corresponding to

0 ∈ P2. Then the G-invariant surjection

(P2 × Pn)ss,G → (P2 × Pn)//G = Pn//C+

induces a B-invariant surjection

(P1 × Pn)ss,B → Pn//C+

from a suitable open subset (P1 × Pn)ss,B of

P1 × Pn, and thus a surjection from an open

subset of the GIT quotient

X = (P1 × Pn)//T

to Pn//C+.
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In constructing the GIT quotient

X = (P1 × Pn)//T

to get a surjection from an open subset X ss of
X̂ to Pn//C+, the action of T ∼= C∗ on P1 × Pn

has to be appropriately linearised; a different
choice of linearisation would give

(P1 × Pn)//T = (C∗ × Pn)/T = Pn.

Thus the theory of variation of GIT quotients
(Thaddeus, Dolgachev-Hu, Ressayre) tells us
that X and Pn are related by a sequence of
explicit blow-ups + blow-downs (flips in the
sense of Thaddeus).

VGIT ; X = (P1 × Pn)//T
flips
← −→ X = Pn

Pn
flips

← −− → X⋃ ⋃
(Pn)ss −→ Pn//C+ onto←− X ss⋃ ⋃ ⋃
(Pn)s −→ (Pn)s/C+ ←− (Pn)s
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Defn: Call a unipotent linear algebraic group
U graded unipotent if there is a homomorphism
λ : C∗ → Aut(U) with the weights of the C∗
action on Lie(U) all strictly positive. Then let

Û = U o C∗ = {(u, t) : u ∈ U, t ∈ C∗}
with multiplication (u, t)·(u′, t′) = (u(λ(t)(u′)), tt′).

Thm: Let U be graded unipotent acting lin-
early on a projective variety X, and suppose
that the action extends to Û = U o C∗. Then
(i) the ring A(X)U of U-invariants is finitely
generated, so that X//U = Proj(A(X)U);
(ii) there is a projective variety X which is relat-
ed to X via VGIT and a surjection X ss → X//U
to X//U from an open subset X ss of X .

X
flips

← −− → X⋃ ⋃
Xss −→ X//U = Proj(A(X)U)

onto←− X ss⋃ ⋃ ⋃
Xs −→ Xs/U ←− Xs
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Example: The automorphism group of the
weighted projective plane P(1,1,2) is

Aut(P(1,1,2)) ∼= R n U

with R ∼= GL(2) reductive and U ∼= (C+)3

unipotent .... (λ, µ, ν) ∈ (C+)3 acts as
(x, y, z) 7→ (x, y, z + λx2 + µxy + νy2).

The central one-parameter subgroup C∗ of R ∼=
GL(2) acts on Lie(U) with all positive weights,
and the associated extension Û = UoC∗ can be
identified with a subgroup of Aut(P(1,1,2)).

Corollary When H = Aut(P(1,1,2)) acts lin-
early on a projective variety X, the ring of in-
variants A(X)H is finitely generated as a com-
plex algebra, so that

X//H = Proj(A(X)H),

and moreover there is a projective variety X
which is related to X via VGIT and a surjection
X ss → X//H to X//H from an open subset X ss

of X .
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Application to jet differentials (following

Demailly 1995)

X complex manifold, dimX = n

Jk → X bundle of k-jets of holomorphic curves

f : (C,0)→ X

[f and g have the same k-jet if their Taylor

expansions at 0 coincide up to order k]. More

generally Jk,p → X is the bundle of k-jets of

holomorphic maps f : Cp → X.

Under composition modulo tk+1 we have a

group Gk given by

{k-jets of germs of biholomorphisms of (C,0)}
t 7→ φ(t) = a1t+a2t2+. . .+aktk, aj ∈ C, a1 6= 0

Gk acts on Jk fibrewise by reparametrising k-

jets. Similarly we have Gk,p acting fibrewise on

Jk,p.

14



Gk
∼= {


a1 a2 . . . ak
0 a2

1 . . .
. . .

0 0 . . . ak
1

 : a1 ∈ C∗, a2, . . . ak ∈ C}

Gk has a subgroup C∗ (represented by φ(t) =
a1t) and a unipotent subgroup Uk (represented
by φ(t) = t + a2t2 + . . . + aktk) such that

Gk
∼= Uk o C∗.

Similarly

Gk,p
∼= Uk,p o GL(p)

where Uk,p is the unipotent radical of Gk,p,
and the central one-parameter subgroup C∗ of
GL(p) acts on Lie(Uk,p) with all weights strictly
positive. Thus

linear actions of Gk,p have

finitely generated invariants.
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Green-Griffiths (1979): For x ∈ X consider

(Jk)x
∼=
⊕k

j=1 Symj(Cn)

and

(EGG
k,m)x = {C-valued polynomials on (Jk)x

of weighted degree m wrt C∗ 6 Gk}.

Demailly-Semple jet differentials:

(Ek,m)x = (EGG
k,m)

Uk
x = O((Jk)x)

Gk

is the fibre at x of the bundle Ek,m of invariant

jet differentials of order k and degree m over X.

(N.B. The action of Gk on O((Jk)x) is twisted

by the character Gk → C∗ with kernel Uk).

Merker (2008) gave algorithm to generate all

invariants, and showed invariants are finitely

generated for small n and k (in the case p = 1).
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Kobayashi hyperbolicity

X compact complex manifold

X is Kobayashi hyperbolic ⇐⇒ 6 ∃
nonconstant entire holo curve in X

Idea: global holo sections of Ek,m vanishing on

a fixed divisor ; global algebraic differential

equations satisfied by every entire holo curve

f : C→ X.

Conjecture (Kobayashi 1970)

X ⊆ Pn+1 generic hypersurface of degree d� n

⇒ X hyperbolic.

Siu (2004): method of proof but no effective

lower bound for d.
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Conjecture (Green-Griffiths)

X ⊆ Pn+1 generic hypersurface of degree

d ≥ d(n)� n

⇒ ∃ proper algebraic subvariety Y ⊂ X such

that every nonconstant entire holo curve

f : C→ X is contained in Y .

Diverio-Merker-Rousseau (2009) prove this with

d(n) ∼ n(n+1)n+5

(for n ≥ 2).

Berczi-K use non-reductive GIT to obtain

d(n) ∼ n3/2.
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Method goes back to Demailly

J
reg
k = {f ∈ Jk : f ′(0) 6= 0}

Thm (Demailly 1995) J
reg
k /Gk is a locally triv-

ial bundle over X with a compactification

π : Xk → X

and a line bundle OXk
(1) satisfying π∗(OXk

(m)) =
Ek,m.

If ∃ an ample line bundle L→ X such that

H0(Xk,OXk
(m)⊗π∗L−1) ∼= H0(X, Ek,m⊗L−1) 6= 0

with basis σ1, . . . , σN and base locus Z, then
every entire holo curve f : C→ X is contained
to kth order in Z.

The bound n(n+1)n+5
comes from the relative-

ly complicated nature of the compactification
Xk (an iterated projective bundle). The better
bound n3/2 comes from using the compactifi-
cation of J

reg
k /Gk obtained from non-reductive

GIT.
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