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Step 11. Since L = AR,  show that (5) implies RGR* = AGA = G. Equating components in 
RG = GR, noting that RR' = I ,  show that 

where S is 3 x 3 orthogonal in the standard basis. Hence R has the same form in the basis 
e, ,n ,v3 ,v4. This concludes the proof outline. 

The physical interpretation of the theorem is worth noting: The theorem claims that if L is 
linear and satisfies (2) and if R is orientation preserving in the sense that R,, = +1 and 
det S = +1, then L is the transformation of coordinates from a rocket to a lab frame in which 
case n points in the direction of motion of the rocket. Finally note that L may be decomposed as 
L = M. The reader will find that the relationships among R ,  A ,  R , a have interesting computa- 
tional details. 

References 

1. Morton Hamermesh, Group Theory and its Application to Physical Problems, Addison-Wesley, Reading, 
MA, 1964. 

2. Kenneth Hoffman and Ray Kunze, Linear Algebra, Prentice-Hall, Englewood Cliffs, NJ, 1971. 
3. L. Janossy, Theory of Relativity Based on Physical Reality, Akademiai Kiado, Budapest, 1971. 
4. Ian R. Porteous, Topological Groups, Van Nostrand Reinhold, London, 1969. 
5. H. P. Robertson and Thomas W. Noonan, Relativitivy and Cosmology, W. B. Saunders, Philadelphia, 1969. 
6. E. F. Taylor and J. A. Wheeler, Spacetime Physics, Freeman, 1966. 
7. Hermann Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York, 1950. 

THE JORDAN CURVE THEOREM VIA THE BROUWER FIXED POINT THEOREM 

RYUJIMAEHARA 
Depurtment of Mathematics, University of Ryukyu, Okinuwu, Jupun 

A homeomorphc image of a closed interval [ a ,  b ]  ( a  < b )  is called an arc and a homeomor- 
phic image of a circle is called a Jordan curve. One of the most classical theorems in topology is 

THEOREM(Jordan Curve Theorem). The complement in theplane R2 of a Jordan curve J consists 
of two components, each of which has J as its boundary. 

Since the first rigorous proof given by Veblen [4] in 1905, a variety of elementary (and lengthy) 
proofs have been provided by many authors. Among them, the one given by Moise [3] is intuitive 
and transparent yet lengthy. The purpose of this note is to provide a short proof by modifying 
Moise's method. In order to avoid the tedious arguments, we will use the following celebrated 
theorem of Brouwer (for an elementary proof, for example, see [I]). 

THEOREM (Brouwer Fixed Point Theorem). Every continuom map from a disk into itself has a 
fixed point. 

To begin with, we note two simple facts concerning the components of R~ - J, where J is a 
Jordan curve: (a) R2 - J has exactly one unbounded component, and (b) each component of 
R2 - J is path connected and open. The assertion (a) follows from the boundedness of J ,  and (b) 
from the local path-connectedness of R2 and the closedness of J.  

LEMMA1. If R~ - J is not connected, then each component has J as its boundary. 

Proof. By assumption, R2 - J has at least two components. Let U be an arbitrary compo- 
nent. Since any other component W is disjoint from U and open, W contains no point of the 
closure U and hence no point of the boundary U n U" of U. Thus U n U" c J .  Suppose-
U n U' # J .  Then there exists an arc A c J such that 

-

( # )  U n U ' C A .  
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We will show that this leads to a contradiction. By the preceding remark (a). R2 - J has at least 
one bounded component. Let o be a point in a bounded component; if U itself is bounded we 
choose o in U. Let D be a large disk with center o such that its interior contains J. Then the 
boundary S of D is contained in the unbounded component of R2 - J. Since arc A is 
homeomorphic to the interval [O, 11, the identity map A -+ A has a continuous extension 
r : D + A by the Tietze Extension Theorem (see, for example, 121). We define a map q : D -+ D -
{ o ), according as U is bounded or not, by 

(;(z) for z E L I ,  for z E U ,  
4 2 )  = 

for z E U c ,  
or q(z)  = ( j ( z )  forz  t Lit, 

respectively. By (#), the intersection of the two closed sets U and U' lies in A on which r is the 
identity map. Thus q is well defined and continuous. Note that q(z) = z if z E S. Let 
p : D - { o )  -+ S be the natural projection and let t :  S -+ S be the antipodal map. Then the 
composition t . p . q :  D -+ S c D has no fixed point. This contradicts the Brouwer fixed point 
theorem. 

Note that the preceding proof implicitly contains a proof that no arc separates R ~ ,  which is 
often a lemma to the Jordan curve theorem. 

We need another lemma for our purpose. Let E(a ,  b; c, d )  denote the rectangular set 
{(x,  y )  la < x < b, c < y < d )  in the plane R2, where a < b and c < d. 

LEMMA2. Let h(t)  = (h,(t), h2(t)) and u(t) = (u,(t), u2(t)) ( -1  < t < 1) be continuom 
paths in E(a ,  b; c, d )  satisfying 

( # # I  h,(-1) = a ,  h,(l) = b ,  u2(-1) = c ,  u2(l) = d .  

Then the two paths meet, i. e., h (s) = v(t) for some s, t in [ -1,1]. 

Proof. Suppose h(s) # u(t) for all s ,  t .  Let N(s, t) denote the maximum-norm of h(s) - v(t), 
i.e., 

N(s , t )  = Max{ Ih,(s) - v,(t)l, lh2(s) - ~ 2 ( t ) I } .  

Then N(s, t)  # 0 for all s, t. We define a continuous map F from E(-  1 , l ;  -1 , l )  into itself by 

Note that the image of F is in the boundary of E(-  1 , l ;  -1, l ) .  To see that F has no fixed point, 
assume F(s, , to) = (so, to). By the above remark, we have Is,l = 1 or It,l = 1. Suppose, for 
example, s, = -1. Then by (# #), the first coordinate of F( -  1, t,), (u,(t,) -
h, ( - l))/N( - 1, t,), is nonnegative and hence cannot equal s, (= -1). Similarly, the other 
possibilities of Is, 1 = 1or 1 to1 = 1cannot occur. This contradicts the Brouwer fixed point theorem 
since E (  -1.1; -1 , l )  is homeomorphic to a disk. 

We are now ready to prove the Jordan curve theorem. By Lemma 1,we need only show that 
R~ - J has one and only one bounded component. The proof will consist of the following three 
steps: Establishing the notation and defining a point z, in R2 - J ;  proving that the component U 
containing z, is bounded; and proving that there is no bounded component other than U .  

Since J is compact, there exist points a ,  b in J such that the distance \la - bll is the largest. 
We may assume that a = ( - 1,O) and b = (1,O). Then the rectangular set E( -  1 , l ;  -2,2) 
contains J, and its boundary r meets J at exactly two points a and b. Let n be the middle point 
of the top side of E ( -  1 , l ;  -2,2), and s the middle point of the bottom side; i.e., n = (0,2) and 
s = (0, -2). The segment ns meets J by Lemma 2. Let I be the y-maximal point (that means the 
point (0, y )  with maximal y)  in J nns. Points a and b divide J into two arcs; we denote the one 
containing I by J,, and the other by 4. Let m be the y-minimal point in J, nns (possibly, 
I = rn). Then the segment rns meets J,; otherwise, the path 2 + G + & (where G denotes the 
subarc of J,, with end points I and mj  could not meet-J,, contradicting Lemma 2. Let p and q 
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denote the y-maximal point and the y-minimal point in 4 nE,respectively. Finally, let z ,  be 
the middle point of the segment 6.(see Fig. 1). 

I1  

Now we show that U ,  the component of R2  - J which contains z,, is bounded. Suppose that 
U is unbounded. Since U is path connected, there exists a path a in U from z, to a point outside 
E (  - 1 , l ;  -2,2). Let w be the first point at which a meets the boundary F of E (  - 1 , l ;  --2,2).  
Denote by a ,  the part of a from z, to w.  If w is on the lower half of r,we can find a path & in 

A - A 

F from w to s which contains neither a nor b. Now consider the path 2 + lm + mz, + a,. + ws. 
This path does not meet 4, contradicting Lemma 2. Similarly, if w is on the upper half of F, the 

-

path sz, + a,  + fails to meet J,,, where wn is the shortest path in r from w to n.  The 
contradiction shows that U is a bounded component. 

Finally suppose that there exists another bounded component W(+ U )  of R2 - J. Clearly- - - A 

W c E(- 1 , l ;  - 2,2). We denote by j? the path 2 + + mp + pq + qs, where pq is the subarc 
of 4 from p to q. As seen easily, j? has no point of W. Since a and b are not on j?, there are 
circular neighborhoods I/,,Vhof a , b, respectively, such that each of them contains no point of P.  
By Lemma 1, a and b are in the closure W.Hence, there exist a,  E W n V ,  and b, E W n V,. 
Let be a path in W from a, to b,. Then the path G, +a+ b,b fails to meet j?. This 
contradicts Lemma 2 and completes our proof. 
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