TRANSVERSALITY IN GENERALIZED MANIFOLDS

J. L. BRYANT AND W. MIO

Abstract. Suppose that X is a generalized n-manifold, $n \geq 5$, satisfying the disjoint disks property, and M and Q are topological m- and q-manifolds, respectively, 1-LCC embedded in X, with $n - m \geq 3$ and $n - q \geq 3$. We define what it means for M to be stably transverse to Q in X. In the metastable range, $3m \leq 2(n - 1)$ and $3(m + q) < 4(n - 1)$, we show that there is an arbitrarily small homotopy of M to a 1-LCC embedding that is stably transverse to Q.

1. Introduction

In this paper we introduce a notion of transversality for submanifolds of a generalized n-manifold. One of the major difficulties in arriving at suitable criteria for transversality is that a (generalized) submanifold M of a generalized manifold X may not have a stable euclidean normal (micro)bundle neighborhood in X. This situation occurs, for example, when M is a topological manifold, which has Quinn index $[22] \iota(M) = 1$, and X is a generalized manifold with $\iota(X) \neq 1$. Examples of generalized manifolds X with $\iota(X) \neq 1$ were constructed in [4]. An embryonic form of transversality was established in [5] for codimension three topological submanifolds M and Q of a generalized manifold X having complementary dimensions in X. Specifically, it was shown that if $m \leq q \leq n - 3$, $m + q = n \geq 6$, and M and Q are orientable topological manifolds of dimensions m and q, respectively, tamely embedded in an orientable generalized n-manifold X with the disjoint disks property, then there is an arbitrarily small homotopy of M to a tame embedding $f : M \to X$ such that $f(M) \cap Q$ is a finite set and the intersection number of $f(M) \cap Q$ at each point of intersection is ± 1. Assuming the metastable codimension restriction $3m \leq 2(n - 1)$, $3(m + q) < 4(n - 1)$, we find a small homotopy of M to a tame embedding $f : M \to X$ such that $f(M)$ and Q are stably transverse, in an sense to be described. In fact, we need only assume that Q is a generalized q-manifold with the disjoint disks property. In particular, $f(M) \cap Q$ will be a tame topological submanifold of $f(M)$ and Q of the expected dimension, $m + q - n$. The proof makes use of the transversality theorems of Kirby-Siebenmann [15] and Marin [16], the Main Construction of [5], and a splitting theorem of [7]. Map transversality, which can be obtained from submanifold transversality, has been studied by Johnston [14] in the special case where the homology submanifold has a bundle neighborhood.

2. Definitions

A generalized n-manifold (n-gm) without boundary is a locally compact euclidean neighborhood retract (ENR) X such that for each $x \in X$,
Following Mitchell [19] we say that an ENR X is an n-gm with boundary if the condition $H_n(X, X \setminus \{x\}; \mathbb{Z}) \cong \mathbb{Z}$ is replaced by $H_n(X, X \setminus \{x\}; \mathbb{Z}) \cong \mathbb{Z}$ or 0, and if $\partial X = \{x \in X : H_n(X, X \setminus \{x\}; \mathbb{Z}) \cong 0\}$ is an $(n-1)$-gm embedded in X as a Z-set. (In [19] Mitchell shows that ∂X is a homology $(n-1)$-manifold.) Recall that Y is a Z-set in X if, for each open set U in X, the inclusion $U \setminus Y \to U$ is a homotopy equivalence. A n-gm X, $n \geq 5$, has the disjoint disks property (DDP) if every pair of maps of the 2-cell B^2 into X can be approximated arbitrarily closely by maps that have disjoint images. A subset A of X is 1-LCC in X if for each $x \in A$ and neighborhood U of x in X, there is a neighborhood V of x in X lying in U such that the inclusion induced homomorphism $\pi_1(V \setminus A) \to \pi_1(U \setminus A)$ is trivial. An ENR A in X of codimension at least three will be called tame in X if it is 1-LCC in X.

Given an n-gm X, a manifold approximate fibration with fiber $F(MAF)$ over X is an approximate fibration $p: N \to X$, where N is a topological manifold and the homotopy fiber of p is homotopy equivalent to F. (Equivalently, each $p^{-1}(x)$ has the shape of the space F.) (See [8], [13].) If Q is a (topological or generalized) manifold in X and $p: N \to X$ is a MAF, then p is said to be split over Q if $p[p^{-1}(Q)]: p^{-1}(Q) \to Q$ is also a MAF.

Suppose that M_p is the mapping cylinder of a MAF $p: N \to X$ with fiber a sphere and mapping cylinder projection $\pi: M_p \to X$. If M_p is a topological manifold, then we will call $\pi: M_p \to X$ (or, sometimes, just M_p) a manifold stabilization of X. As the following proposition shows, this last condition is almost always satisfied.

Proposition 2.1. Suppose that N is a topological n-manifold, X is a generalized manifold, and M_p is the mapping cylinder of a MAF $p: N \to X$ with fiber a k-sphere and mapping cylinder projection $\pi: M_p \to X$. If $n \geq 5$, then M_p is a topological manifold. If, in addition, $k \geq 2$, then X is 1-LCC embedded in M_p.

Proof. That M_p is a homology manifold follows easily from results of Gottlieb [11] and Quinn [20]. Since M_p has manifold points, M_p has a resolution [22], and, hence, by a theorem of Edwards (see [9]), it suffices to observe that M_p has the DDP. We consider three cases.

Case 1. $k \geq 2$. In this case it enough to show that X is 1-LCC in M_p, since we can then use ordinary general position in $M_p \setminus X$. Suppose then that $f: B^2 \to M_p$ and T is a fine triangulation of B^2. By Alexander duality, X is 0-LCC in M_p; hence, we may assume that, if $T^{(1)}$ denotes the 1-skeleton of T, then $f(T^{(1)}) \cap X = \emptyset$. Let Δ be a 2-simplex of T with boundary Σ, such that $f(\Delta) \cap X \neq \emptyset$. By a small homotopy of $f[\Sigma]$ in $M_p \setminus X$, we can assume that $f(\Sigma)$ lies in some t-level N_t of the mapping cylinder near X. Since $\pi|\Sigma$ is null-homotopic in X, we can use the approximate lifting property of p to assume that $f(\Sigma)$ lies near a fiber of p in N_t. Since the fibers have the shape of S^k, $k \geq 2$, we can homotope $f[\Sigma]$ to a constant in a neighborhood of a fiber in N_t. Thus there is a small homotopy of $f|\Delta$ to a map of Δ into $M_p \setminus X$.

Case 2. $k = 1$. Since X is 0-LCC in M_p, we can begin as in Case 1. Given $f: B^2 \to M_p$, we can assume that $f(T^{(1)}) \cap X = \emptyset$, where T is a fine triangulation of B^2. If $f(\Delta) \cap X \neq \emptyset$, for some 2-simplex Δ of T with boundary Σ, then we
may assume that $f(\Sigma)$ lies near a fiber of p in some t-level N_t of M_p, as above. Thus, there is a small homotopy of $f|_{\Delta}$ to $f': \Delta \to M_p$ such that $f'(\Delta) \cap X$ is a single point. This process gives a small homotopy of f to $f': B^2 \to M_p$ such that $f'(B^2) \cap X$ is a finite set. Given another mapping $g: B^2 \to X$, we can get a small homotopy of g to g' such that $g(B^2) \cap X$ is a finite set disjoint from $f'(B^2) \cap X$. We can then use general position in $M_p \setminus X$ to get $f'(B^2)$ and $g'(B^2)$ disjoint.

Case 3. $k = 0$. In this case X locally separates M_p, and the approximate lifting property of p implies that X is 1-LCC in M_p. If $f: B^2 \to M_p$, and T is a fine triangulation of B^2, then it is easy to get a small homotopy of f to f' such that $\dim f'(B^2) \cap X \leq 1$. Since $\dim X \geq 4$, $f'(B^2) \cap X$ is 0-LCC in X. Thus, if $g: B^2 \to M_p$ is another mapping, then there is a small homotopy of g to g' such that $g'(B^2) \cap (f'(B^2) \cap X) = \emptyset$. We can then use general position in $M_p \setminus X$ to get $f'(B^2)$ and $g'(B^2)$ disjoint as before. \qed

Suppose $M, Q \subseteq N$ are topological manifolds without boundary of dimensions $m, q,$ and n, respectively. Let $p = m + q - n$. Then M and Q are locally transverse if, for each $x \in M \cap Q$, there is a neighborhood W of x in N, with $W \cap M = U$ and $W \cap Q = V$, such that

$$(W, U, V, U \cap V) \cong (\mathbb{R}^m, \mathbb{R}^{m-p} \times \mathbb{R}^p \times 0, 0 \times \mathbb{R}^p \times \mathbb{R}^{q-p}, 0 \times \mathbb{R}^q \times 0).$$

This implies, in particular, that $P = M \cap Q$ is a p-dimensional submanifold of both M and Q. If M (or Q) has boundary, and $x \in \partial M$ (or $x \in \partial Q$), then local transversality at x can be described by replacing \mathbb{R}^m by $\mathbb{R}^{m-1} \times \mathbb{R}^+$, (or \mathbb{R}^q by $\mathbb{R}^{q-1} \times \mathbb{R}^+$), and so on. Following [15], we say that M is stably microbundle transverse to Q in N if M and Q are locally transverse and, for some integer $s \geq 0$, there exists a normal microbundle ξ to $Q \times 0$ in $N \times \mathbb{R}^s$ so that $M \times \mathbb{R}^s$ is embedded microbundle transverse to ξ in $N \times \mathbb{R}^{s}$. That is, $M \cap Q$ has a normal microbundle ν in M each of whose fibers lies in a fiber of ξ. Marin shows that this relation is symmetric [16] and, with help from Scharlemann [23] when $p = 4$, that local transversality implies stable microbundle transversality, provided $n - m \leq 3$ and $n - q \leq 3$. With these ideas in mind, we make the following definition.

Definition 2.2. Given a topological manifold M and generalized manifold Q in a generalized manifold X, Q is stably locally transverse to M if there is a manifold stabilization $\pi: M_p \to X$ of X, split over Q, such that $\pi^{-1}(Q)$ and M are locally transverse in M_p.

3. **Transversality in the Metastable Range**

Theorem 3.1. Suppose that X is an n-gm with the DDP, $n \geq 5$, M is a topological m-manifold embedded in X (with or without boundary), and Q is either a topological q-manifold or a q-gm with the DDP if $q \geq 5$, 1-LCC embedded in X, such that $n - q \geq 3, 3m \leq 2(n - 1)$, and $3(m + q) < 4(n - 1)$. Then for every $\epsilon > 0$ there is an ϵ-homotopy of the inclusion of M in X to a 1-LCC embedding $f: M \to X$ such that Q is stably locally transverse to $f(M)$ in X.

The following corollary is a consequence of Theorem 3.1 and Corollary 1.3 of [5].

Corollary 3.2. Suppose that M and Q are topological m- and q-manifolds, respectively, in an n-gm X, $n \geq 5$, with the DDP, such that $3m \leq 2(n - 1), 3q \leq 2(n - 1), 3(m + q) < 4n - 4$. Then there are arbitrarily small homotopies of the inclusions.
to 1-LCC embeddings \(f : M \to X \) and \(g : Q \to X \) such that \(f(M) \) is stably locally transverse to \(g(Q) \) in \(X \).

The proof of Theorem 3.1 ultimately depends upon a transversality theorem of Kirby-Siebenmann [15] and Marin [16]. One of the main ingredients of the proof is the following splitting theorem proved in [7].

Theorem 3.3 ([7]). Suppose that \(X \) is an \(n \)-gm without boundary, \(n \geq 5 \), and \(Q \subseteq X \) is an \(q \)-gm (with or without boundary), \(n - q \geq 3 \), 1-LCC in \(X \). Assume \(Q \) is a topological manifold if \(q \leq 4 \). Then there is a manifold stabilization \(\pi : M_p \to X \) of \(X \) of dimension \(\geq n + 3 \) that is split over \(Q \).

The manifold stabilization \(X \) of Theorem 3.3 is obtained in [7] by first taking a mapping cylinder neighborhood \(M_p \) of \(X \) is some euclidean space \([18, 25]\), where \(p' : N \to X \) is a MAF with homotopy fiber a sphere, and then homotoping \(p' \) to a MAF \(p : N \to X \) such that \(p^{-1}(M) \) is a topological manifold. A similar argument can be found in [6], wherein \(X \) is a topological manifold.

Another important ingredient is the Main Construction of [5]. It can be summarized in the following theorem.

Theorem 3.4 ([5]). Suppose that \(M \) is a topological \(m \)-manifold and \(X \) is an \(n \)-gm with the DDP, \(n \geq 5 \), \(3m \leq 2(n - 1) \). Then for every \(\epsilon > 0 \) there is a \(\delta > 0 \) such that if \(f : M \to X \) is a \((\delta, 2m - n + 1)\)-connected map, then \(f \) is \(\epsilon \)-homotopic to a 1-LCC embedding. Moreover, the homotopy is supported in a neighborhood of a 1-LCC subset of \(X \) of dimension \(\leq 2m - n + 2 \).

A map \(f : M \to X \) is \((\epsilon, k)\)-connected if the pair \((M, X)\) is \((\epsilon, i)\)-connected for \(0 \leq i \leq k \). If \(M \), in 3.3 or 3.4, is not compact, then \(f \) should be a proper map and \(\epsilon \) and \(\delta \) should be interpreted as positive, continuous functions on \(M \). The “moreover” part of Theorem 3.4 has the following consequence, which will be important for us here.

Addendum. If \(P \) is a (closed) ANR in \(M \), with \(\dim P < m \), such that \(f|f^{-1}f(P) \) is a 1-LCC embedding, then we can arrange to have the homotopy \(f_t, t \in [0, 1] \), of \(f \) to an embedding satisfy \(f_1|P = f|P \) and \(f_t^{-1}f_t(P) = P \) for all \(t \in [0, 1] \).

Proof of Theorem 3.1. Suppose that \(X \), \(M \), and \(Q \) are given as in the hypothesis of Theorem 3.1. By Theorem 3.3, there is a manifold stabilization \(\pi : M_p \to X \) of \(X \) of dimension \(n + k \), with \(k \geq 3 \), that is split over \(Q \). Let \(W = \pi^{-1}(Q) \). Choose \(k \) large enough so that, by 2.1, \(W \) is a topological \((q + k)\)-manifold. Since \(Q \) is 1-LCC in \(X \), \(W \) is 1-LCC in \(M_p \), hence, locally flat [3]. Thus, by [15], [16], and [23], there is an arbitrarily small ambient isotopy of the inclusion of \(M \) in \(M_p \) to a locally flat embedding \(h : M \to M_p \) such that \(h(M) \) and \(W \) are locally transverse. Let \(P = h(M) \cap W \). Then \(P \) is a manifold of dimension \(p = m + q - n \), locally flatly embedded in \(h(M) \) and in \(W \). The next step is to push \(h(M) \) down into \(X \), sending \(P \) into \(Q \) and \(h(M) \to X - Q \), to a 1-LCC embedding close to \(M \). Observe that \(\pi|h(M) \) has all but the last of these properties.

The first step is to observe that the inequalities \(3m \leq 2(n - 1) \), \(3(m + q) < 4(n - 1) \) imply \(2p + 1 \leq q \). General position then implies that \(\pi|P : P \to Q \) can be approximated by a 1-LCC embedding. (If \(Q \) is a manifold, this is immediate. If \(Q \) is a \(q \)-gm with the DDP, then the general position results of [2] and [24] may be applied.) Since \(k \geq 3 \), there is a small ambient isotopy of \(W \) taking \(P \) to this
embedding [1], which can be extended to M_j by [12]. After composing with π, we get a map $h' : (M, M \setminus h^{-1}(P)) \to (X, X \setminus Q)$ such that h' approximates the inclusion of M into X and $h'|P$ is a 1-LCC embedding into Q. Finally, as long as $\pi \circ h'$ is a sufficiently close approximation to the inclusion of M in X, it will have the desired connectivity properties to apply Theorem 3.4. Thus we can get a small homotopy of h' rel P to a 1-LCC embedding in X. According to Theorem 3.4, this homotopy is supported on a 1-LCC set of dimension $2m - n + 2$, and our dimension restrictions imply that $(2m - n + 2) + q < n$. By the general position results of [2] and [24], we can assume that these supports can be made to miss Q. Thus, the homotopy of h' to a 1-LCC embedding can be constructed so as not to introduce any new intersections of M with Q as guaranteed by the Addendum to Theorem 3.4. This final adjustment provides the map $f : M \to X$ promised in the theorem.

\begin{thebibliography}{99}

\end{thebibliography}

Department of Mathematics, Florida State University, Tallahassee, FL 32306
E-mail address, J. L. Bryant: bryant@math.fsu.edu
E-mail address, W. Mio: mio@math.fsu.edu