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& The purpose of this paper is to present a proof of the following theorem:

& Resolution Theorem. Suppose X is un ENR homology manifold of dimension = 5.
I Then there is a cell-like map M—X with domain a manifold (of the same
& dimension ).

k- Such a map is called a resolution, by analogy with the resolution of
E singularities of algebraic varietics. (Quick definitions: LN R = Euclidean ncigh-
j borhood retract; a neighborhood of some closed embedding X < R¥ retracts to
- X. For a finite dimensional homology manifold this is equivalent to locally 1-
. connected. Homology manifold means H_(X. X —p; Zy~H_ (R"R"—0: Z) for
B all pe X. These satisfy all the homological properties of a manifold. A celi-like
4 .‘map has point inverses compact, nonempty, and contractible inside any neigh-
F borhood.)

k' This result has @ long history and nrany special cases have been proved.
E The most advanced required X (o already be mostly a manifold (Cannon et al,
§ (51, Quinn [14] Theorem 3.5.2), or X xRR* to be resolvable (Quinn [14].
f Theorem 3.3.2). For a history and discussion see J. Cannon [3, 4], and R.C.
E Lacher [12]. This has recently been extended to dimension 4, (Quinn [15]).
When combined with an approximation theorem of R.D. Edwards [ 1], this
ftheorem implics:

 Characterization of Manifolds. A4 space is a manifold of dimension =5 if and
gonly if it is an ENR homology manifold, and satisfies the disjoint disc property.

A space X satislies the disjoint disc property il any two maps i.j: D? > X
Fean be approximated by maps with disjoint images. This property was first
fformulated by J. Cannon [3. 4], who conjectured the final result. Edwards:
itheorem asserts that if X satisfies the disjoint disc property then a resolution
M—»X can be approximated by a homeomorphism. A proof of this will be
Bincluded in a forthcoming book by R. Davermann [8].

We remark that the disjoint disc property can fail very badly: Davermann
and Walsh [9] have constructed ENR homology manifolds X such that any
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X ich is injective ! ains smply open set in its

map D*— X which is injective on S'. contains a nonempty oj

image!

The methods used here are quite different from, and compleme.ntzlry to,
those used by Edwards. In the decomposition llleq‘y one fixes a manifold and
uses very geometric tools, engulfing and embeddmg tlleqrenl]s, to study the
ways in which it can be decomposed. Since a manifold is required to even
start, the basic structure of the theory would seem to prectude the conslructhn
of resolutions. By contrast here we fix X and consider l.lllll]il.()lds napping o it,
in the aggregate. The tools are & versions of mclhnds“h‘()m algebraic topology,
homotopy theory, algebraic K-theory, and surgery. .l<|nzllly, lh‘c‘sc l]lClll()ij.dO
not seem to give a good enough hold on any one particular manifold to permit a

proof of Edwards’ theorem. ‘ S
Section 1 contains a relative version of the theorem, some simp (,f c(f)r(})l-
i ew remar -00l. tions 2-4 contai ¢ proofl of the
laries, and a lew remarks on the proof. Sections 2-4 contain the

theorem.

1. Statements and Applications

1.1. Theorem. Suppose (X, X) is an ENR homology manifold pair, 0 X is a
manifold, and dim X =5. Then there is a cell-like map from a manifold
’ 7 - 0 y
(M, éM)—(X, XY which is a homeomorphism on the boundary. Further, if M,
9 b . ) K ; R
and M, are two such resolutions, then for every £>0 there is a homeomorphism
such that the diagram

M, ~M,
N
X

commutes up to e, and on the boundary commutes exactly.

In lact this follows from the unbounded casce: resolve the interior un.d thgn 1
use the boundary collaring results of (Quinn [14]). The uniqueness is given 4

Quinn [14]. The theorem is extended to dimension 4 in Quinn [15].

It is simple to see, as was first observed by Davermann [7]. that i'f‘X is an
ENR homology manifold then X x R? has the disjoint disc pro!u.:rly.. I'herefore 1
it is a manifold, by the characterization theorem. More surprising is the fact 3

that products X x Y have this property (C.D. Bass [1]).

1.2.  Corollary. Suppose X, Y have dimension =2. Then X x Y is a manifold lf

and only if X and Y are ENR homology manifolds.

For all known examples, in fact X x R is a manifold. The outstanding open }
question in the area (along with the 3 and 4 dimensional versions) is whether

X x IR satisfies the disjoint disc property for all ENR homology manifolds X.

An important goal in decomposition theory for some time was the d.oubl.c 1
suspension problem: characterize those manifolds whose sccqnd suspension is 3
homeomorphic to a sphere. We can now identify the spaces with this property.

¢ the tradition of Novikov and Kirby!.
e recognized as part of the ordinary surgery obstruction, and therefore seen fo e
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L3. Corollary. A space X satisfios $2X ~§"+2 i and onlv i X is a closed
ENR homology manifold, and H(X:Z)~H_S"; Z).

22X is a manifold because it satisfies the disjoint disc property. (1.2 applies
in the complement of the suspension circle. Near the circle we can deform (he
discs to cones intersecting the circle in discrete points. and separate these by
pushing along (he circle.) It is a simply connected homology sphere, so by the
generalized Poincaré conjecture is homeomorphic (o a sphere.

Remarks on the Proof. ¢ versions of a number of manifold and algebraie
theorems are required. Versions of the h-corbordism and end theorems. and
homotopy theory, were developed in Ends of Maps 1 (Quinn [14]). We will usc
this material heavily. The new material is given the minimum  development
required for this proof. I'he surgery theory for example, is done only in the
simply connected 4k dimensional case. This is done in Sect. 2, along with an «
version of (he theorem ol Wall [17] relating chain complexes and CH con-
plexes.

In Seet. 3 we begin a scries of reductions. The surgery theorem gives
obstructions to finding & homotopy equivalences M X Lssentially il we can
do this for all >0, then we can use the end theorem of Ends of Maps | to
“take the limit =0 and obtain a resolution. Therefore we must see that these
- obstructions vanish. Most of them are avoided by a naturality argument. 1 hey
are essentially shown to form a cohomology class, so when the problem is

 restricted to a contractible subset only obstructions which occur on a poin(
B survive. 1 am indebted to R.D. Edwards for
 (developed for use elsewhere) could be used here. It considerably simplifics (he
proof.

pointing out that this trick

The remaining obstruction, a single integer, is harder (o avoid. It is locally

£ defined, but globally constant. Therelore being non-zero would imply that no

Fopen set in X has a resolution. In Seet. 4 we transler the probleni to o torus (in
There the Tast obstruction can he

- Zer0.

2. Surgery Obstructions

¢ In this section we show that the algebraic obstructions to surgery arc o«
fversions of the ordinary obstructions. Only the “simply connected™ 4k dimen-
sional case is considered, since that is sufficient for the application. The
& development of Wall [18. Chap. 1. 5] adapts well to this selting, so we
kconcentrate on the changes necessary for the ¢ estimates. There are also a few
changes in notation (mainly the use of “normal map”).

. The usual surgery theorem (Wall [18, p. 37], Browder [2, p. 317 is roughly
' this:

,'(I) a degree | normal map /2 M** 5K (M a manifold, K Poincar¢) has an
- invariant a( /) defined. This is an cquivalence class of nonsmgular even syim-

¥ metric bilincar forms over Z.
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(2) If f is normally bordant to f": M'-K’ (allowing both M and K to
change) then a(f)=0a(f).
(3) If a(f)=0 and K is l-connected, then f is normally bordant (holding K
fixed) to a homotopy equivalence.

Theorem 2.1 is an ¢ version of this, The most awkward leature is that the ¢
version of the equivalence relation on forms is not an equivalence relation.
(A~B~C only implics A C). Therefore instead of an cquivalence class, the

obstruction is a sefr of “associated forms™.
New terms used in the statement (eg. ¢ Poincar¢) will be delined below.

2.1

and k>1.
1)

A

X, which are ¢ nonsingular over Y
2)

g: (N; OgN, O,N)—=(L;¢,L, 0 L) with L & 1-connected over Y

Yoo
R)

homotopy equivalence over Y ™%

We recall and define the terms uscd, beginning with the algebra.

Geometric modules, and size conditions on homomorphisms, arc defined
in Ends 1, p. 321. We will use radius, as in Ends 1, rather than the diameter §
notion ol Ends I, but the dilference is unimportant. A bilinear form 1:G 3
x G—Z has radius <« if for basis elements «, b of G, Ma.h)=0 il d(a.h)ze. Or;
cquivalently, if the adjoint A*: G—G* has radius <& A is ¢ nonsingular over Y3
if the adjoint A° has an inverse of radius <& over Y. A hyperbolic form is the §

i [0 l]
orm
1 0
hordant over Y if there is a G so that (4,.4,)®(A,,
isomorphic over Y to a hyperbolic form.
A degree | normal map is the standard item
notion of an ¢ Poincaré space was introduced in Ends of Maps 1. We repeat it
lhiere with slight modifications. 3

2.2

Theorem. Suppose X is a locally compact metric ANR, YES X is compact,

Giren ¢>0 there is >0 such that if {2 (M** O M)->(K.CK) is a proper 3
degree 1 normal map and p: K—X is proper. satisfyving over Y: K is (5,1) ; ,
connected, Of is a3 homotopy equivalence, and (K.CK) has a & Poincaré §
structure of (total) dimension <100k then there is a (nonempty) set of “as- 3
sociated” (see 2.6) even symmetric ¢ bilinear forms on geometric Z modules over

Given y>0 there is y>¢>0 such that if there is an ¢ normal bordism 3
and 3

dim(N)Z 100k then forms ¢ associated to 0yg, ¢ g over Y~ are y bordant over 3

Given a>0 there is £>0 such that if 8, 2 (M.OM)—>(K,CK) satisfy the .'
conditions of (1), and a form associated to [ is & bordant to the trivial form over 3
Y. then M is normally bordant rel M to f': (M'.C M)—(K.CK) which is an a

on a module G®G. Finally, two forms (A;,4,), {(4,.4,) aresi
0 17\, 1
—~/12)®(G®G,[] 0])155

(Wall [ I8, p. 15]) except that}

degree 1 means with locally finite cocflicients if M, K are not compact. Thej

Definition. Suppose (K,0K) is a locally compact ANR pair, and p: K-X3
is proper. Then an ¢ Poincaré siructure of (total) dimension n+k for (K, @K)
over Y consists of the following: A
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¥ 1) 4 i’:mpping cylinder neighborhood (U. ‘o
§ (R T [0, o), R F 1« {0}). Let 2,

-2 A spherical fibration $* 1S5 K.

‘ 3) A l”(l]) (L/,, ("(,l/. ("‘I U)*?(I)(:)_ l)((l(-\k), b(()
& lence over v, ) i

<

U of a proper embedding (K. K)
U denote the closure of U=20,U.

) which is an « homotopy equiva-

» H'erc 1l c is it spherical fibration then S D) denote the total space |
| assocmlcQ ‘dlsc bundle respectively. Notice that the Poincaré duwlil(’ ‘l:' : Q‘L '(fm
& of (K,0K) is n, dilterent from the total dimension of (he slruclur(c Y imemion

3 23. Example. Suppose (X.0X
. Then for crery ¢>0 there
 total dimension 2n+ 1.

.) is an ANR homology manifold pair of dimension
s oan & Poincaré structure Jor (X.CX). over X of
(1;02];()811:;{0)lhc{rdimensi(m of X is n, there is a proper | -LC embeddinge
s OX) (IR [0, 20, R2"x 1O, Let v: ¢ ' | v
: . , ), i) Letvr 6 U = X be the map in a mappi
‘ R 4 R=" . : a4omapping
‘SYIl?der nughboxh()oq of this embedding (one exists by Ends 1, 3.1) /\lCX’lllI)dC?
3L;a l% shows l‘hul Vs an 'zlpproxinmlc libration with fiber ~§” (sce bnds |
:3.3). 1evassoc.1ulcd Hurewitz fibration ¢ is therefore a §" fibration. and xth:
atu inclusions (U U, 0, U)=(DE D8 X), S(X)) are ¢ .
equivalences for all &> 0, over X. ‘
- This completes the proof of 2.3.
- Tllle next step is to cx.lcnd Wall's connection [17] between chain and CI¥
complexes _lo the ¢ situation. We will use this as a replaceme
jgroups, which do not extend.
. Suppose (K. 1) is a relative ¢ W complex, and p: K
jmage of each ccll has diameter <g.
. .
Co(K, L) be the gecometric Z module
a-cells. These are the cellular

homotopy

nt for homology

‘ - X is such that the
Choose a basepoint in each cell, and let
‘e generated by the images of basepoints of
(o e the cell (.:h'an?‘ groups. I'he boundary homomorphisms
. n—1 €ah bedelimed by intersection numbers, so have radtus = 24
fesult we want is that changes in this chain complex ( quival
can be realized by changes in the ‘

: The
! up to chain equivalence)
’ CW complex structure of (K, L).

4. Proposition. Suppose

X2V as usual (X loc 1
S U ocally compac tric A ’
gompact ) und n, ¢ are given. , o e ANRD

| : Then there exists 6> 0 so that given the datu
) ad CW pair (K,LY—> X with K, L both
3 L)é”)

) 4 geometric Z chuin complex A,
0, 1 or j>n,

B)  a chain map I A, — CL(K, L) which is a 8 chain e

ren there is an ¢ CW pair (K'. L)
g & isomorphism (: A = CLIK,

(0, 1) connected over ¥ and dim(K
over X of radius <3 and with A;=0 forj

quivalence over Y,

sdmap g (K' L)~ (K, L) and a basis presery-
: L) such that J=g,000er Y *

Proof. (See the proof of Theorem 2 in Wall [17], Part 1) We show by

Muction that given §, there is &
) at g x there is 0 small enough so there is (K’ L ;
Rat (K, K;) is (5,. k) connected, and IR so

o A,
C*(Kk.L):{ 0*

* <k

>k
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Note that when k=n the theorem is complete. and that we can start with k=1
> t/izs;;(::n?ﬁ::e?K};(},li(;ll;zi?ssfy the hypotheses above. /\.ssumc (byllzslkn;lgail:
mapping cylinder) that Kj is a subcomplgx of K: lhe;f‘e ls‘a‘-I::u,:dre(sgnct o
equivalence (A*,*>k)—+ka(K,K;(). By using the? mvcw‘e v;/clil Ceﬁq o din
image of generators of A, by small 'algebralc su;?ls 0 (; 0 C(,,{l;ccled e
copics gives maps (DF1 1S9 (K, Kpu Ky But (Ks'“, A .IT(.("i; e e
these deform to maps o (K, Kjp). Usce the houndzulc-‘:s to a 'dL < A,.lliqﬁg; e
esult is K. Vhe maps DT K give aomap Ko o Kowhich satishies | |
lL.\l!ll 18 l«l" hypotheses above. o Next do surgery on M" on small 2k spheres corresponding to a bascs ol
Clmlll‘l()ct‘)::fpt;:lel);ﬁe induction step we must show that (K, Ky, 1} is (0, L+ B B,,. This gives a R

(R chains  equivalent o

.cted. The relative chains are equivalent to (A, x>k+1). so 1L 1s hoi F 0,0,0): B, ®B,,®B,,-B,,. This complex is equivalent to B,, @B,
conlmc'lu“. (0, .k + 1) connceted (Ends L p. 302). Therefore by the cventud & conceniiated in dimension 2k4+1. Now we can apply 2.4 (o find an 6" ho-
mologically (0, K1 !

Hurewitz Theorem (Ends 1, p. 302) with all (A;. B)=(K, K}, ,) there i 0y Sma" p motopy equivalent CW pai'r (K M"y~(K, M") which has cells only in dimen-
urewilz KL ) is (0 k4 1) connected. F sion 2k + 1. Denole the chain group by A (= By, ®B,, above).
cnOU‘gl.l so that (K, IMl o f(’;f l2‘4 Notice that a corollary (which has a much There is an cven symmetric 267 bilinear form delined on A: il a, b are basis
This c()mplc_lcs t,le pflo(;( L) 1s '(15 k) connccted, then it is ¢ cquivalent 10 elements, they correspond to cells in K’ attached to M” by maps §2%. A1'h
shorter proof) l_S ,lh-dt‘ l,‘l(l‘ ;n (‘il;]cll;i()llg <k. & and A(a,h) is the intersection number of these spheres in M. The standard
(K, L) with no relative fLL fszl with an ¢ analog of Wall [2, Chap. U]z surgery @ arpuments show that it is even and symmetric. It has radius <24" becausc the
We begm.the P(;F’O 0i01.1” ‘B cells of K’ have diameter <4, Finally the standard Poincaré duality argument
“below the middle dimens ; . ! (locally compact metric ANR. ¥ compact), g applied over subsel Z c Y as above, shows that it is 45" nonsingular.
oY as usud ally e
i Lel{?“‘i(f“%’"ﬁf t)lfere i: >0 so that if (K.0K)>X is a 0 CW pair :ﬁ §26. Definition. An & form (4, 4) over Y~* is associated to the map fif it arises
k>0, and ¢ <100k. K and 0K are (5,1) connected over Y an by the construction above: there is an & normal bordism rel @M to 1" MK,
‘(""e"si(l)\'/; (:K ﬂK; is @ normal map. then an ¢ equivalence over Y (K',M")—(K,M") such that (K'.M") has cells only in
q (Mt"(’din)l—[;/[ —’2’k a;zd of is (6.k—1) comected over Y then f s normally ir,nensi()n 2k+1 Co (KM= A, and 7 is given by intersection mmbers in
bi)rd!um rel M to f* which is (s, k) connected over ¥ . " s normally 1 |
2) if dimM=2k+1, and Of s (3,k) mnncsml orer .), tlj(jln‘ _{/ ,(lj,,e,- v
hordant 10 [ (M. eM)>(K.2K) will( /! w(&,lr() ((,m”(/:( ;;(1 OM by smali«
(K,M’U(P,K)).(él, k+ 1) connected over Y ', and M differs fre : A
trivial surgeries on k—1 spheres.

At this point in the standard case, Poincaré duality is used to show (hat
p H (K, M)=0 il 42k + 1. We obtain a similar conclusion on the chain level,
| First, there is a & chain equivalence CL(K. M) > A, where A,=0 for » <2k

Next, the usual duality argument applied locally shows that if Z <} then for
| />2k+1 H(K(Z), M'(Z))> H(K(Z??), M'(Z*%) is zero. Here K(Z) means (he

inverse image of Z in K. This implies a similar fact about A, which can he
£ used o construct a small chain contraction of Aye #>2k 1. The standard
| folding process uses the contraction to give a chain equivalence of

to o
v
. complex ol the form o;

By o Byyosuchothat there is a right inverse o (I

b* According to the discussion above, such associated & forms exist il the
initial 6 is small enough. Therefore 2.1.1 is complete.

Now suppose (as in 2.1.2) that f and g are normally bordant, and we arc
given associated « forms. As part of the data for the forms we have bordism 1o
highly connccted maps [ g Glue these bordisms together to obtain a
gormal map F: (W, 0W)—(J,aJ) with dim W=4k+1. ¢F is the union of ",
-g", and the bordism of M to N which is a o homotopy equivalence. It is
therefore (¢, 2k) connected. We can apply surgery below the middle dimension
§2.5) to obtain F': (W', W9—(J,0J) which is (¢, 2k) connected, refatively (27 2k
k1) connected, and whose boundary differs from @F by trivial surgeries in
imension 2k.

~. We can use the previous data to gel an ¢ equivalence
J)’,@W’)—»((?J, AW’) so that ¢J" is ¢W' union small 2k +1 cells. These cells
fome from the form data for /', g”, and the new surgeries, so the form induced
in the chain group is (form of S +(—form of g")+(hyperbolic). The goal
Bherefore is to show that the form for F is isomorphic to a hyperbolic form.

P At this point in Wall [18, p. 527 one considers the exact sequence

' i il <k ) hen there}
Proof. This proceeds by induction, showing that if j<k and O-",’,;; >:1)nl on e
is 6:.>() such that a map which is (9;./) connected ovel Y : c il
(\5 ! j+ 1) connected over Y 31 (by surgery). We indicate mo
‘ j+ 1> H ) 9
1ecessary in Wall’s treatment. A ' ’ . .
l l7i|'%lylllc maps used for surgery, (D' ',S-’)A»(K., M) must b(,f.s(lilll Wl lz(om :
24 to represent (K, M) by a CW complex with no cells o imens io
8¢ ’ ’ T i aoQ « 3¢ )
'llnd use the j+ | cells of this complex. To represent S - M by a small unghe spel
:Ne the ordinary immersion theorem in the inverse nna%e of.st(.)me ;I:,les o ]
¢ aini tme f Di+'. Now general position - smal
set in X containing the mmage o ‘ TR
i ‘ i an be performed. By comparing wi
embeddings, and small surgeries ¢ | ‘ ‘
complex §btained above with no cells of dimension =j, we can verify
connectivity conclusion. ‘ ‘ . e ol
This ends the discussion of 2.5. We begin the proof of 2.1 with ‘
struction of “associated forms™. ‘ . o 4
ml"::ll;:po:c £ (M. OM)—(K,0K) 1s a map as n 2.1.1 (in particular dim)

0=y, U WO >y (0T WY ST, () 0,
—4k). Then by 2.5 there is a normal bordism rel OM o a (8.2k) C‘Onan
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The end groups are dual, so this can be wrilten as

0Bt A —" B*0.

and h=j*2% Since B is free based (a ge'or.netrlc mo
phism B~ B*. Composing this with a splitting of h, 1

glVC an i 1S — l wm A l) S¢C 1 Vlll ll 1S 1SOMot ]lls]" &
1 1SOMot ph m B@l} A l he Of ) composed v 1 1 1 p
S

0
has matrix |J

= transpose). Changing the splitting r 1o (—11,
. 0!
+B—A to an isometry {rom L ()J

with a hyperbolic lorm.

i » chain level, with control.
We must reformulate this argument on the chain level, with cc

b 3 13 argue, das 1 l]C on- -
l 1 ly to i_. , d 11 {

l tIrst we can usc I()(,ll Il()lll()l()gy (“ld at (lll C

: J W ) (l“d ( (J. VV U(‘J) h(lVL Chalﬂ

contr actl 1S €XCC il di“l “Si ns -+ + \l) (.l.l\(Lly. l;()l”ld(”y con-
Ones 2/( l. 2/\ 2 respe

C 2 OnNs pl 1 C y o ‘

qullvc‘\lelll 1o (.,(“]lp‘cxcg con-

struction of associated forms, that C(

: faq 2k
nected sums with small copies of S .
complexes simultaneously, after which they arc

~

- oI~ B
centrated in a single dimension. Denote these by CL(J.W ) 241

Cod W=Dy .
Next note that because Poincare du

-8, *
over Y "1 By 2=D3isn

above. . o N
For use in the last step we define ¢ exactl sequences.

i
[ i 3 or - B
phisms of gecometric modules over X, A

snee ol chain complexes of
cells of J are small, the short exact sequence ()l.c,h(un.wll nl foxes ¢
(J W’u(’l W'y is actually & short exact. The chain cquivalenc
chain complexes constructed

j h
0By, 2- - > Az » Dy 0.

Now the argument outlined above for lhe. X =(point) TH\ST‘ (_m side?
applies with ¢ estimates. This gives an ¢ isometry of the for
hyperbolic one. As observed above, this proves 2.1(2).

We now consider part 2.1(3), and suppose an ' ed |
to 0 ;art of this data is a normal bordism of / to an (e,2k)

Connected sums of M with small copies of SZI"XSZT" changes [hi fo;sr:u‘
addition of a hyperbolic form. By replacing M by lhl'S Sun’1 1We :rll;(})flic o
that the form of f is itself (rather than stably) isomorphic to a hyp 7

1 07\ . S
i } 7 : ation above.
This 1s (A, )~ ((;@G, [0 l]) in the notatto

There is also a CW complex equi
Fhere is also as CW complex:equivaien

valent Lo (K..M)

| SOTOR T ;a0 in A hy

e
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dule) there is an isomor- ;
v B¥> A, and adding to j JE

. T
I | Since I is cven symmetric it can be written as + HYy (t‘ ‘
1) changes the isomorphism B‘

to A This is the required isomorphism

ality can be defined using intersection

i rphi ives an &’ isomorphism;
sual global duality homomorphism g phist
T This satisfies the relation denoted by h=j '1',

A pair of homomor
L Cis ¢ exact over Y if they

.. oL avery Ko Y (ker )~ (BIK)S i(AKY). Sincthg
have radius <¢, ji=0, and if for cvery K<Y, (ker j)n(B] he triad

Y of thesc:

Y
above gives an ¢ short exact sequence Over Y=rs

considered by Wall
2kt w1th.

an associated form is & borda
connected may

B By construction the normal map is
with only (2k + 1)-cely
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(D““,S“)—»(K,M). All intersections and selfintersection numbers of the
B boundaries S2* M are zero, and dim M =5, so the Whitney trick given in
¢ Wall [18, Chap. 3] approximates these by disjoint framed embeddings. Since
B K-X is (3. 1) connected, the 2-discs for the Whitney trick can be chosen of
diameter <& Therefore the embeddings are within ¢ of the original maps. As
in Wall [18, p. 517 use these embeddings and maps to do surgery on f. Then
| local homology calculations like those of Wall show that the result is an «
b homotopy equivalence, provided 6 is chosen small enough to begin with.

This completes the proof of Theorem 2.1.

The scction closes with a realization (heorem for the
21 as a special case of a more general situation in which the I-connectedness
of K- X rclaxed; and modules over group rings Zn are encountered.
E Proposition 2.7 is more specialized to the l-connected situation,
4B clusion that it can be done with manifolds without boundary.

obstructions. Theorem
1S

in the con-

E 27 Proposition. Fix k> 1, and consider locally compact metric ANRs of dimen-
b sions <k. Then from a form X on such an ANR X we construct a proper degiee
g | normal map ¢, - B-Q,— X of dimension 4k, 1-connected over X, with 0Q, =0
e-and such that 1 is an associated Jorm of g,. The construction depends only on the
“bordism cluss of 7., is natural with respect to restriction to open sets, and natural
b up to normal bordism with respect to proper maps X, —X,. More precisely :
k1) If Yo X is compact and ¢>0, then there is >0 such
L Symmetric even nonsingular form (G, 2) on Y there is a canonical proper degiee |
g normal map g,: P—>Q.»Y " with Q, (e.D-connected over Y27 ¢Q,=0. and
¥ (G, 4) is associated to g, over Y2,

2) Given >0 there is £>0 so that i (G.A) (H.7) are & forms as abore. and are
k¢ bordant over Y °*, then over Y 7 (here are y homeomorphisms P~ P, 0,0,
such that the diagram y homotopy commutes.

3) Given Y7 and >0, there is £>0 so that if" o is as in (1) for both Y and 7
fthen the realization of the restriction Lz 1 7 homeomorphic (as in (2)) 1o the
 restriction (g, over 7 .

4) If f2 X, > X, is proper, and S Uy, then given >0 there is d>0 so
fthat if (G.4) is u o Jorm on Y, then there is (v, D-comected normal bordism
with o=0 bulween the realization of the image g, . and the image of ihe
realization f,(g,), over Y, .

that given a &

2

roof. Let k=dim X, and let X < W be a mapping cylinder neighborhood of |
=L C embedding of X in R** ' Denote the projection by p: W— X then this
fis (6,1) connccted for all 6. Since X W we can consider (G, 1) as & form over
W, nonsingular over p '(Y). We apply the realization procedure of Wali [17. p.
193] represent the basis of G by small embedded 2k discs in W. Then construct
regular homotopes of the boundary spheres so that the tracks of these homo-
flopies in W x I have intersection numbers given by A. Finally add 2k handles
o the resulting embeddings of $2* ! in the top of Wx I. This gives a degree |
thormal map M - W |.
a homeomorphism of the parts of ¢ A1

ing over (M) x 1 UM x {01, We claim that it can be approximated to be o
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homeomorphism on M x {1} also. More precisely, il x>0 there is 6>0 so

that the result of the construction can be o approximated by a homeomor-

phism over (¢M x {1Y)np~ (Y~ "). To see this, first note that the homology
calculations of Wall used locally show that since 4 is nonsingular over p~

small enough, it will be a y homotopy cquivalence over p

there is 7>0 so that a ¥ homotopy equivalence to W (measured in W) is a

homotopic to a homeomorphism.
Since [ M—>WxI is a homeomorphism on the boundary (over Y %), we

can extend it by the identity map to obtain g: M U W x I (W x Iyu(Wx).
(The target space is the double of Wx ) This is a degree 1 normal map &
without boundary (over Y % at least). Therefore g will satisty the conclusion of 3

the theorem if we show that (G.2) is an & associated form.

In fact g satisfies the conditions required to define the form: Mo, Wx1is
cquivalent to the double (Wx Iyu (Wx1) wedge small 2k spheres correspond- 4
ing to the handles added. Attaching 2k +1 discs to these gives the equivalent §
CW complex with only 2k+1 cells. The cellular chain group is exactly G. The j
boundaries in M U,Wx I are composed of the handles added to Wx1, union
the track of the regular homotopies in Wx I, union the discs in W><{0}."
Therefore by construction of the homotopies the intersections are given by Lx

This shows that (G, A) is associated to g, and completes 2.7(1).

For statement (2), suppose forms A, t are bordant. This means that after
stabilization by hyperbolic forms they are isomorphic. According to Ends 13
9.4, the isomorphism after further stabilization is equivalent to a deformation.s
Stabilization corresponds to adding cancelling pairs of handles, so does not]
change the underlying manifold. Similarly deformations can be realized by]
handle moves which do not change the manifold. We are therefore comparing
two handlebodies formed by adding (2k)-handles to Wx I, on spheres which;
extend to discs in Wx I There is a bijective correspondence between the twag
sets of discs, so that corresponding discs have the same intersection numbers. 3

We construel an fi-cobordism between the handlebodies. Consider one ol

the scts of discs as lying in (Wx I, Wx {0}), the other in (WxI, Wx{t}
Changing ends reverses orientation, so the collections now have opposi
intersections. Taking connected sums of corresponding discs on each side gives

framed embeddings S?* ' x < Wx I with zero interscctions and sellinterseoy

tions. Use the Whitney trick to remove these intersections, and obtain embed
dings. Usc these embeddings to attach (handles) < I: D2 x D¥*x 1, S?*~ ' x DY
x| to these embeddings in the top of (WxI)xI. The result is an (g
cobordism, with the original handlebodies on the ends. The thin h-cobordisa
theorem therefore implies that they are homeomorphic. 3

The remaining choice was of a homeomorphism from the upper boundary 1]
the lower. But since the homeomorphism group is locally contractible (Edwardg
and Kirby [117). if ¢ is small enough these will be isotopic. !

The statement (3) should be clear. For (4) onc observes that the map f give
4 codimension 0 embedding of the regular neighborhood of X, in the neigh

. Quinn

"(Y), ¥
the boundary of M over Wx {1} is homologically o equivalent to Wx {1} (9 :
measured in W). The eventual Hurewitz theorem (Ends I, 5.2) shows that if ois
(Y 7, for given
7>0. Finally Chapman and Ferry [6] have shown that if W, o are given, then |
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borhood of X,. The bordism between W, and W,
Uw, iy Wy < [1,2], and the handlebody 1 5
g ded to. W, by the identity. ’
This completes the proof of 2.7.

is given by 11 x]0.1)
and homeomorphism on I, are exten-

L 3. Reduction (o the Single Obstruction

: :n this section the resolution problfem s reduced
E tion. /

: 3.1.. First Reduction. 7o show that
- sufficient to show that for some k ¢

to a single integer obstiuc-

X of dimensi g ‘
f dimension =5 has a resolution, i is

ach point in X k y i
e o oy e potnt in X xIR* has a neighborhood vwhich

, Proolj.'Slln.cc “Y xl!{" (k=2) satisfics the 2-dise condition (
b Tes0 vability implies that it is a manifold (Edw
p Ends 1, 3.23, this implics th

Davenman | 7)) local

| ' ards [10]). But according
at X itsell is resolvable if dim X > 5. e

2. Deliniti i i i
inition of the Obstruction. Suppose X is an ANR homology manifold.

S8 g B
y some 1{’ Ve may i ume tha ll(f (h“le 1Ston 4 SOMme
B Crossin Wllll S V y SS tt ¢ (‘I ,\ S /\ O >

P k- h [} « -
2 p() { X /\ l obst t
C
C (6] € d . m X 0]“00 Ol lexo l) ruction Wl“ l)e to “]e const uction ()l o

" Suppose X CIR"~+* g ; \
vcﬂmdeprpnei hb_olrl}{] { ;/a proper 1~'LC.embedding. Then there is a mapping
fsphere o % Looc - and the projection v: W— X is an approximate 5 - |
ation. Let X, be a neighborhood of ich i ( E
2 on. (, be . ood of x, which is contr
mvializaiii)emlé“on' of this approximate fibration to X, has a fiber homotons
ration ol 121. r,onsgdcrcd as a smooth structure on the Spivak normal l‘ilhy
v,smo,mhlsm e f;}f:lsllll ll/l\/e traditional way a proper degree 1 normal m'l[; ['mn;
antlold to X' . Explicitly, let oW, -y (X he n

: ' phcitly, fet ¢W, —v (X ,). g i
o o . fold to ! : D and Woothe mapp
£y der of this. Then the fiber homotopy trivialization dlcl'inm i

Approximate this rel boundary to be .

actible in X

a map
ansverse

Mo and

f(W,, 0W,) > (D" s 1),
n N VR H . Ay " M

.OTtl}g mverse image of 0 is then a smooth manifold

{ 13 si 101‘1 M<W- X, is a proper degree | normal map.

; : 0\3 wft, apply the surgery Theorem 2.1

porhood of x,,. > CM =0, X, is (6

’ ovory (5:)0 I(\Jé)lc ( 1\;1 ﬁzv)})/\ 1 18 (0. 1) connected, and is 6 Poincare over \

xample 2.3). Therelore for every « i A,
. > | :>() ther : ‘

;gqcnated bilinear forms which arc obstructio . o o

equivalence over X;* Let (G, A) be one

ioeorem 2.7 there is a proper degree |

6k, OP=7Q =0. and such that p

to

the

- Choose X, < X | a compact neigh-
.
‘ ns to obtaining an 2 homotopy
of these forms. Then by the realization
normal map P Q- X, with dim P
- —Q has (G, £) as an associated form over
B The  fiber
I of (W,,0W,)— X i i

S T 2 2). X 18 homotopy  equivalent to
) 2> CW,). The composition Q - X, < W, is disjoint {r O,
gacrefore the image of S" ! Since (hese are Il ; N ol
2 : . se are all smooth manifolds we c;
osely approximate the maps o be transverse regular : e

es a pullback diagram Mtk 1t

i
A

7
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P’ I Q' I (D”, Su l)

P O Wy W)

P> Q' is a degree | normal map of closed smooth 1.mmill'olds .ol‘ ‘difl?elflf)g 1
12k, Since this is a multiple ol 4, the surgery nl?slruclmn is an II)ILL-LLI (=1/
(index P - index Q). This integer is the obstruction we associate o x,€X. :

This completes the Delinition 3.2. Nolc.lhul t ) 2 ) :
forms and the realization theorem is to obtain a map with manifold range, so ;
that transversality can be applied.

3.3. Second Reduction. Suppose the obstruction dL{/'ir_zgd in 3.2 :s zero. Then x, :
x {0} has a neighborhood in X % R3 which has a manifold resolution.
there is a neighborhood X, < X, such thqt;
I map M — X, constructed in 3.2 is §
s an ¢ homotopy equivalence over

Proof. The first step is to show that
lor évcry #>0 the proper degree | norma
normally bordant to f,: M — X, which 1
Xi" o

Choose X , to be a neighborhood of x, i'n X, which is conlracllbleﬁn th
Let X, be a neighborhood whose closure is in X ;. Aﬁs abo‘ve let W, be the Ii)j;:
of W lying over X,. The inclusion (W, dW;)=(W,. ¢ W,) 1s.homolopy equ a
lent to X5, <X, crossed with (D", S"~ '), so the contraction of X gives
factorization up to homotopy ,

£3
.

. (1)", Sn 1)

(W, oW,) y (W, OW,).
We will use this homotopy to construct a normal bm‘di:s'm Qf P—0Q. o
Choose a smooth triangulation of W, so that the simplices have nndgf?? ..
X of diameter <g, and so that there is a compact PL .sg'blmamo 4
W, K > W,. Triangulate D" so that (D", 8" ")—»(.W . .D W) 1s §|lnpl|?1¢1. ;
Next make the map Q — W, transverse to this (rl'dl.lgul‘dll()l‘] .(lldllSVCI‘S;
each simplex), and make P — @ transverse (0 the resulting ﬂpurglllon of. Q. |
breaks P —Q up into many small degreg 1 normal maps. ?he fnve'rsta 1ma%e
a simplex of W, in Q is a manifold, with boundary the inverse 1mage o )
simplex. i
bOU?g:rgeZE gt]:p fitspnicely into the geometric description of surgery develot
in the author’s thesis (see Quinn [13] or Wall [18, Chap. 17A]). d
There is a simplicial complex NM (4-set actually; see Rourke a.lrldldSan ;
son [16]) whose simplices are degree 1 normal maps of mz}Im (;' S,
boundary split up into picces like the bo'undzlry of a smlpl?x. 1 md’ ace .
ation &; in the A-set corresponds to taking the part of lh(,” F)‘om; flr)./bod
normal map corresponding to ;4. The A4-set NM was first described i
C. Rourke in unpublished notes on Sullivan’s work on surgery.

he point of going through e L L
b simplicial maps

S
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The association of a simplex in W, to the piece of the normal

map P—Q — W, lying over the simplex, defines a map W, - NM. Since °Q is

f empty, and the image of Q is disjoint from cW,. W, maps to the empty
k normal map e NM.

$ Next restrict this map to the neighborhood W;. The homotopy factori-
e zation constructed above gives a homotopy rel ¢ W to a map which factors

(WL AW D" S" ) S INM, ).

. Using the simplicial approximation theorem and the Kan condition we can pet

(Wi, W) —(A", 24" > (N M, §).

e The simplicial map (4", 24") >(NM., §) corresponds to a degree one normal

map of closed manifolds, specifically the transverse pullback P'—(Q' con-
‘structed in 3.2,

Now we assemble these maps. A simplicial map K —NM assigns to cach
¢ simplex of K a normal map, with boundary divided into pieces corresponding
kto the faces of the simplex. Il two simplices have a common face. then the
f corresponding parts of the normal maps are equal. Therefore we can fit them
ftogether. Tuke the disjoint union of the normal maps corresponding to nonde-
generate simplices of K. and identily pieces of the boundaries corresponding to
common faces. If K is a PL manifold then the result is a normal map of PL
Imanifolds. (If K is a PL homology manifold the assembly is a topological
fnormal map; see Ends I. 3.3.1 Part 2.)

K-' The original map W, -»NM was defined by splitting P - into pieces over
ssimplices of W,. Therefore the map assembles to give back P—Q. The ho-
motopy of W; - NM assembles to give a normal bordism of the restriction of
P—Q to W,. The result of the homotopy factors simplicially through A", so
rn be described as follows: a simplical map (W, W= {(A", 0" is automati-
cally transverse (o the barycenter of A" Let Nc W, be the inverse image
manifold. Then the factored map asscmbles to the product N x (P — Q). We
'ave therefore constructed a normal bordism from P—Q (over Wy to N
& (P -0, | |

8. The next step is to apply the hypothesis of 3.3 that the surgery obstruction
Dl P'— Q' is trivial. This mcans that P'—Q" is normally cobordant to a
;(?motopy equivalence P"—Q". Crossing with N and adding to the previous
Bormal bordism gives a normal bordism of P—Q (over W;) to a homotopy
fquivalence. Finally since it maps to X, by projection N x(P'—>Q")—>N
=W, - X, it is an ¢ homotopy equivalence.

®. Actually because of simplicial technicalities the map is not quite the to-
logical projection. Since the simplices were arranged to have diameter <& in
it differs from the projection by only & so is still an ¢ homotopy equiva-
gnce.

I Now we apply the uniqueness part of the surgery Theorem, 2.1(2). Since
-'-»Q over X; is normally bordant to an & homotopy equivalence, the form
A) is & bordant to the trivial form over X,’. The bordism constructed may
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not satisfy the (& 1) connected condition of 2.1(2). ‘hlfl“(_ljls("mcz:;:c t,”l]illl;/e l:)ef
arranged; belore the maps to NAM are asscmbled. d)oi su} gu.;‘)ldq O e
each simplex to make it a normal map of I-connected ,mc}n]l o‘ ,,;;]ected ¢ space
level this is a deformation into l.he subcomplex NM .0 -Ct e o
maps. The dimensions of the manifolds involved are large enoug

surgery to be done.

Finally since the form (G, 4) is bordant to the trivial form, Theorem 2.1(3)

igin: pr ap M, X, is 4
implies (if & is small enough) that the original degree | map M, 3

ivalence - X% Tor >0,
normally bordant to an o homotopy equivalence over X ;7%

This completes the first step in the proof of 3.3:

B "W OVe . . I st ] 1S to
cquiy llbn(,b.\ Vet \ I 1C next step
,,. /\/1 ¢ > ‘ i \Vlll(h are { h()ln()l( | y l i 1

Aabilized: we will show that there
construct ii-cobordisms between these, whien stabilized: we will s

is X, < X, a ncighborhood ol x, \ hat il
zl:rc\ ‘ihC S\‘qps ﬁmslriclcd ;1bov‘c, lhcnqlh‘crc s 111 pfl(lvlzu(wcr
FoN - X, xRY so that &, F :,I({ X 1 ey ¢ ,u:f_/,; X Ly

an (5. ) cobor it o Mbm X " il(l)lkI)\i/rjl:)od.which contracts in X, and X¢a 3
e e closune i glluined in X.. A normal bordism from f, to
| map to X xI. Crossing with IRY gives 'af-
), F:N—=XxIxR? whose boundary 1s}

normal
X, xB* Fis

neighborhood whose closure is cot

fz can be considered as a norma

‘normal map of dimension 4(k+1 .

1vz : R".

a max (o, f) equivalence over X, X o o _ e

Api}lyli}t)lg the surgery theorem to this gives an associated fonlm (G, ll o

X, x2B3. As above we apply the realization theorem, and use the spadcuct '
to4 analy.ze the restriction to X¢x2B>. It is fc}ulvzile‘11it ‘t.o (,llsir;r,? P’__,Q’

’ ince X x R” has odd dime , ]

x (P — as above. Now however, i . ‘ ‘ n 94

ha(s odde)imension. Since odd dimensional simply connected nolml:ll mfsseed
bordant to homotopy equivalences (L2i+l(ZE1]):0), llze:lrlgumeecong ot

without obstruction to give an ¢ equivalence. This compl?l;s lllelsChooge ° .>0

e fing is an applicati [ the end theorem of Ends L. se 0;> s

The final step is an application o A FEn : e

so that f; X lg is (1/2',h) cobordant to .‘/,5” R over /\,,;BX,IRb}yWithpan

:l‘uking lhc union of these h-cobordisms gives a mzu:llold .SI“—>1V ll Theoreml

end, which is tame and I[-connected ove:‘ i\i(,xli*. By 44m15' . N,

lhmjc is a completion of S over X ,xB" Ihe levels M, are app

X - 3 s
ions of this end, and are 9, homotopy cquivalent to X X B*. 1t follows}

compel uivalence for all

that the new boundary of the completion is a 6 homotopy ¢q
‘ : i 33, 4

0, hence a resolution of X, x I N o
0>This complete the prool of 3.3, and reduces the main theorem to the smg].

obstruction.

4. The Last Obstruction

i i ani tion
We show that the obstruction defined in 3.2 vanishes. The oblsitrtlli:e " g
defined by transversality on a manifold degree | normul. map W’l izself e
{ | . The an s transversality construction on
form as [ M — X. The analogous ality construc on J ou s
be: take a manifold point peX, make [ transverse, and take the surgeng

: , p - ints, sg
obstruction of f "(p)—p. This is a degree | map ol a discrete set of po :

normal bordisms of f to

il & ' at i 5 and f,, fp
such that if >0 so that if «, p < for I1
i bordism #
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has obstruction zero. Therefore the obstruction will vanish if we can show (hat
it depends only on the form. not (he particular degree | normal map. This is
done by transferring the problem (o a torus. where it can be recognized

g of the ordinary surgery obstruction L(Z[Z"]) (forget «)
extending an ¢ Poincaré space across the puncture in

as part
. The hard step will be
a punctured torus.

4.1. Reduction to Poincaré Problems. As in 3.2 we let X, be
p of x, whose mapping cylinder neighborhood in R '
b trivial. Fix i XF->(R*™*, a degree | map of [-point compactifications. such
that g(o0)= o and g(x,)=0. Obstruction theory shows that there is one. Lol B
be an open ball about 0 in IR, and identily it with a ball in the torus 7',

a neighborhoaod
is fiber homotopically

First Reduction. Suppose that Jor every 6>0 there is h: Y — 7%
nected degree 1 normal map, with 'Y 6 Poincaré over T and (7:X,.%,) +B
which over B ° is a (6. 1) connected S Poincaré normal bordism. Then the
L obstruction of 3.2 is zero. Here Xy Yy denote j Y(B), I '(B) respectively.

. d ((S, I’ O

E Proof. Note that normal map, normal bordism here just mean that the (re-

& lative) mapping cylinder neighborhoods in Euclidean space are d equivalent to

E the product with (D7, o/ 1) for appropriate j. Proceeding as in 3.2 we muke
£ projection to DY transverse to 0, and do surgery below the middle dimension.
£ Over X, this gives the ¢ form used in 3.2. The map Y- T" defines an ¢ form
f over T". As in the uniqueness result for forms, 2.1(2), the § bordism from X
o Y, over B* gives a bordism of the forms, over B~*.
e Now we use the naturality properties of the realization construction 2.7.
E The construction gives 8o: [, =0y — Xy realizing the form for X, and
£ 810 P> Q, — 1" realizing the form for Y. Applying the naturality 2.7(4) gives a
g oormal bordism from g, to the realization of the image form over B.
‘bordism of forms over B and naturality with respect to
kidentify this image as the restriction of ¢y. Therefore over the mapping
e cylinder hi: X, B we have an # normal bordism - p 2Q B with &, -
10,G=¢,|B ',
a9

The
restriction 2.7(3)

i
1) -

E-! The next step is to make G transverse 1o something. As in the
of the single obstruction (3.2) we let (W Co WO, W)S(B,, Xy, B) be a mapping
 cylinder neighborhood of a proper relative embedding into IR**' " x [0, 1]. As
part of the data of & Poincaré duality and normal maps. we have 3
homotopy equivalence (IV: CoWo O, W, 0, W)y— (B, x D", Xpx D', BxD". B,
x8"™1), over B *. Consider the inverse applied to the disc crossed with the arce
fl:om Xg to 0. This is a map (D"x1: D"x 0}, D" {1}, S" U x ) (W: o, 1
§0, W, 0, W). Make the normal bordism G- P—Q B W transverse (o (his
fmap. This gives a normal bordism of closed manifold normal maps. On the
end over X is the normal map used to define the single invariant in 3.2, The
a:iant is therefore equal to the surgery obstruction at the other end, over B
C T4,

:‘Over T*k the mapping cylinder neighborhood is T4k x D", Transversality (o
flhe disc is therefore the same
3 A0, T

* The surgery obstruction group L, (Z|Z'"|
hich for closed manifold surgery problems is

construction
a

£

as the transverse inverse image of a point in

) has a summand Ly 711~ 7.
detected by the surgery obstruc-
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tion of the inverse image of a point in TH (Wall [18]). Therefore lhikmteger
that we want is part of the total surgery obstruction a(gl)eL%*(ZLZ. D But
the surgery obstruction depends only on the form on -lhf? middle dimension
after surgery below the middle dimension. Tberefore it 1s‘.lhe sume as th;,
degree 1 normal map M —Y used (o find the lorm for ¢,. Flflill!}’. as pom.te
out in the introduction of the section, the appropriate part of this obs.lruc.tlon
vanishes: Y- T3 is itsell degree 1. so the transverse image of a point is 0-
dimensional.

Second Reduction. We must show that the & Poincar¢ space X, »B<T

extends over all of T The objective here is to reduce this to a probiem over

an interval. " '
Let p be a point in T* =B, and let a: T —p - R*™ be a smooth immer-
sion which is the identity on B. Then the pullback

X»/ N 'IMU\' o I’

A

, I(RJI\') i . |R4L

gives a proper degree | normal map. and over B, X=X". Let o >.(). We musl/
find a (J, 1) connected normal bordism to a (o, 1) connected Poincare space

over T**—p, and then extend it over p.

For the first step. for any 7>0 there is a 7 homotopy equi\{zllence X=X
(measured in X') such that X" has a manifold neighborhood of a 7 | -skeleton.
This is the & version of Wall [19]. Corollary 2.3.2. and is proved in the same 3

way using the ¢ chain complex material of 2.4.

Now take a y 2-skeleton of T*—p, deform the image of the [-skeleton of
X' into i, and form the mapping cylinder. This gives « relative 2-complex 3
which is universal for the (6, 1)-connected lilting problem. /\t.luclll 0, I and 2:,
handles to the top of X7 x |0, 1] corresponding to the CCI,IS 0! .ﬁ'ﬂ"“ 2-con}pl€)}.,
This gives a (4, 1) connected normal bordism of X" to Y, —1**—p, which lS:

also (3, 1) connected. »
Define T**-p—T*" U, [0, 1) by: choose an open Cf)“zll‘ S '
the projection to [0,1) on S*~'x[0.1), is radial cxpansion on

x[—1,0)>8* " x [ —1.1), and is the identity outside the collar. Composing

. . . pedk Caae { DAl .
gives Y, - T* U [0, 1) which is proper, degree 1 (on T, normal, o Poincare,

and (8, 1) connected over T* U0, 1-9). Finally we can project this to [0, 1)

by mapping T+ 1o 0.

42. Lemma. Given k>0 and }>e>0 there is 0>0 such that if Y~>.[0, 1? is
proper, over [0,1—90) is a 0 Poincaré CW complex of dimension 4/\' with fiber]
homotopically trivial normal fibration, and is S, 1 connected over (O.. 11—5), then]
there is Y, —[0,1] which is a compact 0 Poincaré space \?‘Iﬂl Irvlmal :lormal
fibration which is e, 1 connected over (¢, 1] and the restrictions Y, [0, 3] and

Y 1[0. 4] are equal (homeomorphic commuting with the map to ).

Completion of the Reduction. Apply the lemma (o the situation preceeding it
There is a map Y, - T Q[0 1] since ¥,=1V¥, necar 0.

F. Quinn 3

D, §" ' Make this transverse o 0 to give a manifold A — Yo,y
= closed since Y'u, Y

Cx [ =1, 1) It isd
S4k-l

Project to T* by
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- collapsing |0, 1] to p, then the composition Y, = 1 satistics all the require-

. ments of the reduction,

Proof of 4.2. We “double™ ¥ 10 get something which is not Poincaré, but has a
X trivial normal bundle. Smooth transversality gives a manifold M mapping 1o

this object. We use the surgery theory of Section 2 to make M equivalent to

Y near 3, and then use the chain complex material 2.4 to patch together M and
Y

The homotopy and Poincare data give the following: Let U be a regulan

y neighborhood of ¥ in R ' which is a mapping cylinder of p: cU » ¥ There
pptng ¢y !

is VU containing p "(Y[0,1 -26]) and a map (U, V) (Y x D" ¥~ 8" 1)
which is projection on the ¥ factor and o homotopy equivalence over [ 1
-30].

Choose £ near 1 =46 so that Y - [0, 1] is transverse Lo ¢ (we may assume p
is PL). Let Y be the inverse of [0.7]. Z the inverse of 1. Then the double
PIY)U, P Y)Y U, Y gives aregular neighborhood in R Sinee
p~ (Y) < 1 the map to D" gives 4 map rel boundary ol this ncighborhood (o
.which s
is compacl.

Now map Y u, V' > Y'/Z by collapsing the sccond piece 1o a point. Since

= Zis a point inverse, we get Y'/Z [0 1] Over |0.1=50]. Y, Z=1. Since M
e was constructed using the Poincaré data of ¥, M > Y'/Z is a degree | normal
. map over [0, 1 —56]. Since Y is o, | connected over [0, 1 58], and of dimen-
L sion 4k, we can apply the surgery Theorem 2.1. The obstruction is a form
£ which we can analyse as in Sect. 3: realize it as a map of manifolds, malke
;. transverse to get a map (¢, i —¢)—> NM. Since the interval is contractible the
- only obstruction is the inverse over a single point. But the dimension of this is
E 4k—1, so has surgery obstruction 0. The form is therefore bordant to 0. and
owe can do surgery to obtain an & equivalence over (& 1 —¢), if ¢ was small

g enough.

~ We now have M >Y'/7Z an & homotopy cquivalence over (41 | ).
Define X -[0,1] to be the union of M over |31} and ¥ over [0, 3] This

e object fails (o be Poincar¢ at §. However it maps to ¥ over | L e 12| by an
¢ equivalence except at the ends and near §. We will add cells to X near ? 1o
F make it an ¢ equivalence. The result will be Poincaré, and almost the object

: needed for the lemmia.

© Using the 3, 1 connectedness of ¥ add 0. 1 and 2 cells to X near 110 nake
te 1 connected over (34, 1 —2). The pair (¥, X) then satisfies the hypotheses
g of the chain complex Lemma 2.4, Therefore to add cells near 2 to X (o obtain
a complex equivalent (o Y, it is sufficient to show that C Y. X) is equivalent to
f'a geometric chain complex concentrated near 1 Since X - Y is an & cquiva-
f lence on regions on each side of 3, (34 i—z:) and (£+::, I —¢) the complex
£ C.(Y, X) has an ¢ chain contraction over these regions. We use these to show
C, can be made zero on slightly smaller regions.

The standard folding argument concentrates C, in two dimensions: if s
the lowest nonzero module over (a,b), let C;=C, for i+j, j+2, Ci=Clu.a
~+e)u(b—e, b), Gy = Ch O Tad e b —2e), with boundary  homeomor-
hism 045 in dimension j 1 2. Here s is the chain contraction. Notice (hat (he
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next step takes place on a smaller interval, and has larger radius. The loss is
determined by the number of steps necessary, namely dim Y=4k. Since this is
fixed in advance we can allow for it.

When C, is concentrated in two dimensions the boundary homeomor-
phism is an isomorphism. The isomorphism Theorem 8.4 of Ends | shows that
this can be stably deforned to be the identity on a smaller interval. Finally a
subcomplex on which the boundary is the identity can be deleted from the
complex. This climinates €, except near ;.

As cxplained above this shows how to modify X to be equivalent to Y over
(/. L =&, if & was small cnough. X is globally Poincar¢, and satisfics all the
conclusions of Lemma 4.3 except ¢, | connectedness near 1. It is & manifold
there, so low dimensional surgery there yields this condition.

This completes the proof of the lemma, and therefore the theorem.

References

b, Bass. C.D.: Some products of topological space which are manifolds. Proc. AMS 81, 641-646
(1981)
2. Browder, W.: Surgery on simply-connected manifolds. Berlin-Heidelberg-New York: Springer
1972
3, Cannon, J.W.; The recognition problem: what is a topological manifold? Bull. AMS 84, 832-
866 (1978}
4. Cannon, J.W.: The characterization of topological manifolds of dimension =5. Proc. Int
Congess of Math. 1978, Acad. Sci. Fennica, Helsinki 1980. pp. 449-454
5. Cannon, J.W., Bryant, J., Lacher, R.C.: The structure of generalized manifolds having non-
manifold set of trivial dimension. In: Geometric Topology. Cantrell, J.C.. (ed.). New York:
Academic Press 1979, pp. 261 -300
. Chapman, T.A., Ferry, S.: Approximating homotopy cquivalences by homecomorphisms. Amer.
1. Math. 101, 583-607 (1979)
. Davermann, R.J.: Detecting the disjoint disks property. Pacific J. Math. 93, 277-298 (1981)
. Davermann, R.J.: Decompositions of manifolds. New York: Academic Press, in preparation
.~ Davermann, R.J., Walsh, J.J.: A ghastly gencralized manifold. 11 J. Math.
. Edwards, R.D.: The topology of manilolds and cell-like maps, Proc. Int. Congress of Math.
1978, Acad. Sci. Fennica, Helsinki 1980, pp. 111-127
. Edwards, R.D.. Kirby, R.C.: Deformations of spaces of embeddings. Ann. Math. 93, 63-88
(1971}
12. Lacher. R.C.: Cell-like mappings and their generalizations. Bull. AMS 83, 495-552 (1977)
13. Quinn, F.: A geometric formulation of surgery. In: Topology of Manifolds, Cantrell, J.C,
Edwards. C.H., (eds.). Markham 1970, pp. 500-511
14. Quinn. I.: Ends of Maps, I, Ann. Math. 110, 275-331 (1979)
[5. Quinn, F.: Ends of Maps 111; dimensions 4 and 5, J. Dill. Geom. 17, 503-521 (1982).
16. Rourke, C.P.. Sanderson. BJ.: 4-sets I, Quart. J. Math Oxford, 2, (22) 321-328 (1971)
17. Wali, C.T.C.: Finiteness conditions for CW complexes. I. Ann. Math. 81, 56-69 (1965); 1L, Proc.
Royal Soc. A 295, 129-139 (1966)
18. Wall, C.T.C.: Surgery on compact manifolds. New York: Academic press 1970
19. Wall, C.T.C.: Poincaré complexes. I. Ann. Math. 86, 213-245 (1967)

= < x o

Oblatum 22-1X-1982

& able.

Invent. math, 72, 285-298 (1983) 1771}671[['0’]6)‘
mathenaticae

¢ Springer-Verlag 1083

./ Differentiability of Minima
of Non-Dilterentiable Functionals
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 In this paper we shall consider the problem of the regularity of the derivatives
- of functions minimizing a variational integral

F(H:Q):j'.l’(x, u, Duydx (.1

b where Q is an open set in R”, u: Q >R, Du={D u"t o= n:i= N
E . N nN : S ’ ~ 7 'V T )
; and f QXR xR"™ >R is a Carathéodory function (i.e. measurable in v and
i continuous in u, p) satisfying

Apl*a s ou py < AplP r a2, (1.2)

A local minimum for the functional F is a function ue Wl RY) such
E that for every pe W' 2(Q RY) with supp ¢p < = Q we have

Flssupp gy =i 4- oz supp ).

- l.n a recent article [ 6], we have proved basic regularity results for the local
g minima of the functional (L.1). In the scalar case (N = I} we have shown that
; every local minimum of F with condition (1.2) is Holder-continuous in €.

In the general case N=1 such a result cannot hold: we proved however
g that Duel’'” for some ¢>0. More generally these results hold for Q-ninima
(see [7]).

. .I.n this paper we investigate the regularity of the first derivatives of the
. minima of F, under additional hypotheses on the function f(x.u, p). Roughhy
speaking, we assume that / is twice differentiable and strictly convex in p, and
Hélder-.con.tinuous in (x, u). We remark that we do not assume the existence of
P the derivative f,, and therefore our functionals are in general non differenti-

As usual, our results will take different form in the scalar and in the veclot
¥ case. When N =1, we prove that every local minimum has Halder-continuous

Fe derivatives in Q. When N 21, we obtain that for cvery local minimum o there

~exists an open sel Q, < Q. with mean $(Q —Q,)=0 such that neC'7(Q. 1Y)

“0e



