
THE QUADRATIC FORM E8 AND EXOTIC HOMOLOGY MANIFOLDS

WASHINGTON MIO AND ANDREW RANICKI

1. INTRODUCTION

Exotic ENR homologyn-manifolds,n > 6, were discovered in the early 1990s by
Bryant, Ferry, Mio and Weinberger [2, 3]. In the 1970s, the existence of such spaces had
become a widely debated problem among geometric topologists in connection with the
works of Cannon and Edwards on the characterization of topological manifolds [5, 10, 9].
TheResolution Conjecture, formulated by Cannon in [4], implied the non-existence of ex-
otic homology manifolds – compelling evidence supporting the conjecture was offered by
the solution of theDouble Suspension Problem. Quinn introduced methods of controlled
K-theory and controlled surgery into the area. He associated with an ENR homologyn-
manifoldX, n > 5, a local indexı(X) ∈ 8Z+1 with the property thatı(X) = 1 if and only
if X is resolvable. Aresolution of X is a proper surjectionf : M → X from a topological
manifoldM such that, for eachx∈ X, f−1(x) is contractible in any of its neighborhoods in
M. This led to the celebrated Edwards-Quinn characterization of topologicaln-manifolds,
n > 5, as index-1 ENR homology manifolds satisfying the disjoint disks property (DDP)
[19, 20, 9]. More details and historical remarks on these developments can be found in the
survey articles [4, 10, 28, 15] and in [9].

In [3], ENR homology manifolds with non-trivial local indexes are constructed as in-
verse limits of ever finer Poincar´e duality spaces, which are obtained from topological man-
ifolds using controlled cut-paste constructions. In the simply-connected case, for example,
topological manifolds are cut along the boundaries of regular neighborhoods of very fine
2-skeleta and pasted back together usingε-homotopy equivalences that “carry non-trivial
local indexes” in the form of obstructions to deform them to homeomorphisms in a con-
trolled manner. The construction of theseε-equivalences requires controlled surgery the-
ory, the calculation of controlled surgery groups with trivial local fundamental group, and
“Wall realization” of controlled surgery obstructions. The stability of controlled surgery
groups is a key fact, whose proof was completed more recently by Pedersen, Quinn and
Ranicki [16]; an elegant proof along similar lines was given by Pedersen and Yamasaki
[17] at the Workshop on Exotic Homology Manifolds in Oberwolfach, employing meth-
ods of [29]. An alternative proof based on theα-Approximation Theoremis due to Ferry
[11].

The construction of exotic homology manifolds presented in [3] is somewhat indirect.
Along the years, many colleagues voiced the desire to see – at least in one specific example
– an explicit realization of the controlled quadratic form employed in the Wall realization
of the local index. This became even clearer at the workshop in Oberwolfach. A detailed
inspection of the construction of [3] reveals that it suffices to give this explicit description
at the first (controlled) stage of the construction of the inverse limit, since fairly general
arguments show that subsequent stages can be designed to inherit the local index. The
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main goal of this paper is to provide explicit realizations of controlled quadratic forms that
lead to the construction of compact exotic homology manifolds with fundamental group
Z2n, n > 3, which are not homotopy equivalent to any closed topological manifold. This
construction was suggested in Section 7 of [3], but details were not provided. Starting with
the quadratic formE8 of signature 8, which generates the Wall groupL0(Z) ∼= Z, we first
realize it explicitly inL2n(Z[Z2n]) under the canonical embeddingL0(Z)→ L2n(Z[Z2n]).

Let

ψ0 =



1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


be the 8×8 matrix overZ with symmetrization the unimodular 8×8 matrix of theE8-form

ψ0 + ψ∗0 = E8 =



2 0 0 1 0 0 0 0
0 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
1 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2


.

Write
Z[Z2n] = Z[z1,z

−1
1 , . . . ,z2n,z

−1
2n ]

= Z[z1,z
−1
1 ]⊗Z[z2,z

−1
2 ]⊗·· ·⊗Z[z2n,z

−1
2n ]

and let

αi =
(

1−z2i−1 z2i−1z2i −z2i−1−z2i

1 1−z2i

)
(1 6 i 6 n) ,

so thatα1⊗ α2⊗ ·· · ⊗αn is a 2n× 2n matrix overZ[Z2n]. (See §6 for the geometric
provenance of the matricesαi).

Theorem 8.1The surgery obstruction E8×T2n ∈ L2n(Z[Z2n]) is represented by the non-
singular(−1)n-quadratic form(K,λ,µ) overZ[Z2n], with

K = Z8⊗Z[Z2n]2
n

= Z[Z2n]2
n+3

the f.g. freeZ[Z2n]-module of rank2n+3 = 8.2n and

λ = ψ+ ψ∗ : K → K∗ = Hom
Z[Z2n](K,Z[Z2n]) , µ(x) = ψ(x)(x) (x∈ K)

with
ψ = ψ0⊗α1⊗α2⊗·· ·⊗αn : K → K∗ .

�
Then, we pass to a large finite coverT2n → T2n to obtain a controlled quadraticZ-

form overT2n, which represents a controlled surgery obstruction that can be used in the
construction of exotic homology 2n-manifolds of index 9.
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2. THE WALL GROUPS

We begin with some recollections of surgery obstruction theory – we only need the
details in the even-dimensional oriented case.

The 2n-dimensional surgery obstruction group L2n(Z[π]) is defined by Wall [27, §5]
for any groupπ, to be the Witt group ofnonsingular(−1)n-quadratic forms(K,λ,µ) over
Z[π], with K a finitely generated free (left)Z[π]-module together with

(i) a pairing
λ : K×K → Z[π]

which is nonsingular, sesquilinear and(−)n-symmetric with respect to the involu-
tion

: Z[π]→ Z[π]; a = ∑
g∈π

ngg 7→ a = ∑
g∈π

ngg−1 ,

so that

λ(x,ay) = aλ(x,y) , λ(x,y+z) = λ(x,y)+ λ(x,z) , λ(y,x) = (−1)nλ(x,y)

and the adjointZ[π]-module morphism

λ : K → K∗ = HomZ[π](K,Z[π]) ; x 7→ (y 7→ λ(x,y))

is an isomorphism,
(ii) a (−1)n-quadratic function

µ: K →Q(−1)n(Z[π]) = Z[π]/{a+(−1)n+1a|a∈ Z[π]}
with

λ(x,x) = µ(x)+ (−1)nµ(x) , µ(x+y) = µ(x)+µ(y)+ λ(x,y) , µ(ax) = aµ(x)a .

For a f.g. freeZ[π]-moduleK = Z[π]r with basis{e1,e2, . . . ,er} the pair(λ,µ) can be
regarded as an equivalence class ofr× r matrices overZ[π]

ψ = (ψi j )16i, j6r (ψi j ∈ Z[π])

such thatψ+(−1)nψ∗ is invertible, withψ∗ = (ψ ji ), and

ψ∼ ψ′ if ψ′ −ψ = χ +(−1)n+1χ∗ for somer× r matrixχ = (χi j ) .

The relationship between(λ,µ) andψ is given by

λ(ei ,ej) = ψi j +(−1)nψ ji ∈ Z[π] ,

µ(ei) = ψii ∈Q(−1)n(Z[π]) .

(See Ranicki [24], [25, §4] for the connection betweenψ and the Seifert matrix in knot
theory).

The detailed definitions of the odd-dimensionalL-groupsL2n+1(Z[π]) are rather more
complicated, and are not required here. The quadraticL-groups are 4-periodic

Lm(Z[π]) = Lm+4(Z[π]) .

The simply-connected quadraticL-groups are given by

Lm(Z) = Pm =


Z if m≡ 0(mod 4)
0 if m≡ 1(mod 4)
Z2 if m≡ 2(mod 4)
0 if m≡ 3(mod 4)
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(Kervaire-Milnor). In particular, form≡ 0(mod 4) there is defined an isomorphism

L0(Z)
∼= // Z ; (K,λ,µ) 7→ 1

8
signature(K,λ) .

Thekernel formof ann-connected normal map( f ,b) : M2n→X from a 2n-dimensional
manifoldM to an oriented 2n-dimensional geometric Poincar´e complexX is the nonsingu-
lar (−)n-quadratic form overZ[π1(X)] defined in [27, §5]

(Kn(M),λ,µ)

with
Kn(M) = ker( f̃∗ : Hn(M̃)→ Hn(X̃))

the kernel (stably) f.g. freeZ[π1(X)]-module,X̃ the universal cover ofX, M̃ = f ∗X̃ the
pullback cover ofM and(λ,µ) given by geometric (intersection, self-intersection) numbers.
Thesurgery obstructionof [27]

σ∗( f ,b) = (Kn(M),λ,µ) ∈ L2n(Z[π1(X)])

is such thatσ∗( f ,b) = 0 if (and forn > 3 only if) ( f ,b) is bordant to a homotopy equiva-
lence.

The Realization Theorem of [27, §5] states that for a finitely presented groupπ and
n > 3 every nonsingular(−)n-quadratic form(K,λ,µ) overZ[π] is the kernel form of an
n-connected 2n-dimensional normal mapf : M → X with π1(X) = π.

3. THE INSTANT SURGERY OBSTRUCTION

Let ( f ,b) : Mm→ X be anm-dimensional normal map with

f∗ : π1(M)→ π1(X) = π

an isomorphism. TheZ[π]-module morphisms̃f∗ : Hr(M̃)→ Hr(X̃) are split surjections,
with right inverses the Umkehr maps

f ! : Hr(X̃) ∼= Hm−r(X̃)
f̃ ∗ // Hm−r(M̃) ∼= Hr(M̃) .

The kernelZ[π]-modules

Kr(M) = ker( f̃∗ : Hr(M̃)→Hr(X̃))

are such that
Hr(M̃) = Kr(M)⊕Hr(X̃) , Kr(M) = πr+1( f ) .

By the Hurewicz theorem,( f ,b) is k-connected if and only if

Kr(M) = 0 for r < k .

If m= 2n or 2n+1 then by Poincar´e duality( f ,b) is (n+1)-connected if and only if it is
a homotopy equivalence. In the even-dimensional casem= 2n the surgery obstruction of
( f ,b) is defined to be

σ∗( f ,b) = σ∗( f ′,b′) = (Kn(M′),λ′,µ′) ∈ L2n(Z[π]) (π = π1(X))

with ( f ′,b′) : M′ →X any bordantn-connected normal map obtained from( f ,b) by surgery
below the middle dimension. The instant surgery obstruction of Ranicki [21] is an expres-
sion for such a form(Kn(M′),λ′,µ′) in terms of a 2n-dimensional quadratic Poincar´e com-
plex (C,ψ) such thatH∗(C) = K∗(M). In §8 we below we shall use a variant of the instant
surgery obstruction to obtain an explicit(−)n-quadratic form overZ[Z2n] representing the
generatorE8×T2n ∈ L2n(Z[Z2n]).
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Given a ring with involutionΛ and anm-dimensional f.g. freeΛ-module chain complex

C : Cm
d // Cm−1 → ··· →C1

d // C0

letCm−∗ be the dualm-dimensional f.g. freeΛ-module chain complex, with

dCm−∗ = (−)rd∗ : (Cm−∗)r = Cm−r = HomΛ(Cm−r ,Λ)→Cm−r+1 ,

and define a duality involution on HomΛ(Cm−∗,C) by

T : HomΛ(Cp,Cq)→HomΛ(Cq,Cp) ; φ 7→ (−)pqφ∗ .

An m-dimensional quadratic Poincaré complex(C,ψ) overΛ is anm-dimensional f.g. free
Λ-module chain complexC together withΛ-module morphisms

ψs : Cr →Cm−r−s (s> 0)

such that

dψs+(−1)rψsd
∗+(−1)m−s−1(ψs+1 +(−1)s+1Tψs+1) = 0 : Cm−r−s−1 →Cr (s> 0)

and such that(1+ T)ψ0 : Cm−∗ →C is a chain equivalence. The Wall groupLm(Λ) was
expressed in Ranicki [21] as the cobordism group ofm-dimensional quadratic Poincar´e
complexes overΛ, and the surgery obstruction of anm-dimensional normal map( f ,b) :
M → X was identified with the cobordism class

σ∗( f ,b) = (C,ψ) ∈ Lm(Z[π1(X)])

of a kernel quadratic Poincar´e complex(C,ψ) overZ[π1(X)], with C chain equivalent to
the algebraic mapping coneC( f ! : C(X̃)→C(M̃)), so that

H∗(C) = K∗(M) = ker( f̃∗ : H∗(M̃)→H∗(X̃)) .

Definition 3.1. The instant formof a 2n-dimensional quadratic Poincar´e complex(C,ψ)
overΛ is the nonsingular(−)n-quadratic form overΛ

(K,λ,µ) =(
coker(

(
d∗ 0

(−)n+1(1+T)ψ0 d

)
: Cn−1⊕Cn+2→Cn⊕Cn+1) ,

[
ψ0 d
0 0

])
.

�
If Cr is f.g. free with rankΛCr = cr thenK is (stably) f.g. free with

rankΛK =
n

∑
r=0

(−)r(cn−r +cn+r+1) ∈ Z .

If (1+T)ψ0 : C2n−∗ →C is an isomorphism (as will be the case in the applications) then

cn+r+1 = cn−r−1 , rankΛK = cn ,

with
(K,λ,µ) = (Cn,ψ0) .

Proposition 3.2. (Instant surgery obstruction [21, Proposition I.4.3])
(i) The cobordism class of a2n-dimensional quadratic Poincaré complex(C,ψ) overΛ is
the Witt class

(C,ψ) = (K,λ,µ) ∈ L2n(Λ)
of the instant nonsingular(−)n-quadratic form(K,λ,µ) overΛ.
(ii) The surgery obstruction of a2n-dimensional normal map( f ,b) : M→X is represented
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by the instant form of a kernel2n-dimensional quadratic Poincaré complex(C,ψ) over
Z[π1(X)]

σ∗( f ,b) = (K,λ,µ) ∈ L2n(Z[π1(X)]) .

�

If ( f ,b) is n-connected thenC can be chosen to be

C : 0→ ··· → 0→ Kn(M)→ 0→ ··· → 0

and the instant form is just the kernel form(Kn(M),λ,µ) of Wall [27]. More generally, if
( f ,b) is k-connected for somek 6 n thenC can be chosen to be such that

C : 0→ ··· → 0→C2n−k → ··· →Ck → 0→ ··· → 0

and (assumingn > 3) the effect of surgeries killing thec2n−k generators ofH2n−k(C) =
Kk(M) represented by a basis ofC2n−k is a bordant(k+1)-connected normal map( f ′,b′) :
M′ → X with C( f ′! : C(X̃)→C(M̃′)) chain equivalent to a chain complex of the type

C′ : 0→ ··· → 0→C′2n−k−1 → ··· →C′k+1 → 0→ ··· → 0

with

C′r =

ker((d (1+T)ψ0) : Ck+1⊕C2n−k→Ck) if r = k+1

Cr if k+2 6 r 6 2n−k−1 .

Proceeding in this way, there is obtained a sequence of bordantj-connected normal maps

( f j ,bj) : Mj → X ( j = k,k+1, . . . ,n)

with

( fk,bk) = ( f ,b) , ( f j+1,bj+1) = ( f j ,bj)′ .

The instant form of(C,ψ) is precisely the kernel(−)n-quadratic form(Kn(Mn),λn,µn) of
then-connected normal map( fn,bn) : Mn → X, so that the surgery obstruction of( f ,b) is
given by

σ∗( f ,b) = σ∗( fk,bk) = . . . = σ∗( fn,bn)

= (Kn(Mn),λn,µn) ∈ L2n(Z[π]) .

4. THE QUADRATIC FORM E8

For m > 2 let M4m
0 be the(2m− 1)-connected 4m-dimensionalPL manifold obtained

from the MilnorE8-plumbing of 8 copies ofτS2m by coning off the (exotic)(4m−1)-sphere
boundary, with intersection formE8 of signature 8. (Form = 1 can takeM0 to be the
simply-connected 4-dimensional Freedman topological manifold with intersection form
E8). The surgery obstruction of the corresponding 2m-connected normal map( f0,b0) :
M4m

0 → S4m represents the generator

σ∗( f0,b0) = (K2m(M0),λ,µ) = E8 = 1∈ L4m(Z) = L0(Z) = Z
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with
K2m(M0) = H2m(M0) = Z8 ,

λ = E8 =



2 0 0 1 0 0 0 0
0 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
1 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2


,

µ(0, . . . ,1, . . . ,0) = 1 .

5. THE SURGERY PRODUCT FORMULA

Surgery product formulae were originally obtained in the simply-connected case, no-
tably by Sullivan. We now recall the non-simply-connected surgery product formula of
Ranicki [21], which will be used in Theorem 8.1 below to write down an explicit nonsin-
gular(−1)n-quadratic form overZ[Z2n] (n > 1) representing the image of the generator

1 = E8 ∈ L4m(Z)∼= Z (m> 0)

under the canonical embedding

−×T2n : L4m(Z)→ L4m+2n(Z[Z2n]) ;

σ∗(( f0,b0) : M0 → S4m) = E8 7→ σ∗(( f0,b0)×1 : M0×T2n → S4m×T2n) .

An n-dimensional symmetric Poincaré complex(C,φ) over a ring with involutionΛ is
ann-dimensional f.g. freeΛ-module chain complex

C(Ñ) = C : Cn
d // Cn−1 // . . . // C1

d // C0

together withΛ-module morphisms

φs : Cr = HomΛ(Cr ,Λ)→Cn−r+s (s> 0)

such that

dφs+(−1)rφsd∗+(−1)n+s−1(φs−1 +(−1)sTφs−1) = 0 :

Cn−r+s−1 →Cr (s> 0,φ−1 = 0)

andφ0 : Cn−∗ →C is a chain equivalence. The cobordism group ofn-dimensional sym-
metric Poincar´e complexes overΛ is denoted byLn(Λ) – see [21] for a detailed exposition
of symmetricL-theory.

A CW structure on an orientedn-dimensional manifold withπ1(N) = ρ and universal
coverÑ and the Alexander-Whitney-Steenrod diagonal construction on the cellular com-
plexC(Ñ) determine ann-dimensional symmetric Poincar´e complex(C(Ñ),φ) overZ[ρ]
with

φ0 = [N]∩− : C(Ñ)n−∗ →C(Ñ) .

The Mishchenkosymmetric signatureof N is the cobordism class

σ∗(N) = (C,φ) ∈ Ln(Z[ρ]) .
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See [21] for the products

Ln1(Z[ρ1])⊗Ln2(Z[ρ2])→ Ln1+n2(Z[ρ1×ρ2]) ,

Lm(Z[π])⊗Ln(Z[ρ])→ Lm+n(Z[π×ρ])

given by⊗Z on the level of modules and chain complexes, and the computation

Ln(Z) =


Z if n≡ 0(mod 4)
Z2 if n≡ 1(mod 4)
0 if n≡ 2(mod 4)
0 if n≡ 3(mod 4) .

(However, the symmetricL-groupsL∗(Z[π]) are not 4-periodic in general). Form≡ 0( mod
4) there is defined an isomorphism

L4k(Z)
∼= // Z ; (C,φ) 7→ signature(H2k(C),φ0) .

Proposition 5.1. ( The surgery product formula [21])
(i) The symmetric signature of a product N1×N2 of an n1-dimensional manifold N1 and an
n2-dimensional manifold N2 is the product of the symmetric signatures

σ∗(N1×N2) = σ∗(N1)⊗σ∗(N2) ∈ Ln1+n2(Z[π1(N1×N2)]) .

(ii) The product of an m-dimensional normal map( f ,b) : M → X and an n-dimensional
manifold N is an(m+n)-dimensional normal map

(g,c) = ( f ,b)×1 : M×N→ X×N

with surgery obstruction

σ∗(g,c) = σ∗( f ,b)⊗σ∗(N) ∈ Lm+n(Z[π1(X)×π1(N)]) .

Proof. These formulae already hold on the chain homotopy level, and chain equivalent
symmetric/quadratic Poincar´e complexes are cobordant. In somewhat greater detail:
(i) The symmetric Poincar´e complex of a productN = N1×N2 is the product of the sym-
metric Poincar´e complexes ofN1 andN2

(C(Ñ),φ) = (C(Ñ1),φ1)⊗Z (C(Ñ2),φ2) .

(ii) The product of a kernel quadratic Poincar´e complex(C,ψ)( f ,b) of ( f ,b) and a symmet-
ric Poincaré complex(C,φ)N of N is a kernel quadratic Poincar´e complex(C,ψ)(g,c) of the
product normal map(g,c) = ( f ,b)×1 : M×N→ X×N

(C,ψ)(g,c) = (C,ψ)( f ,b)⊗Z (C,φ)N .

�

The quadraticL-groups ofZ[Zn] are given by

L∗(Z[Zn]) =
n

∑
k=0

(
n
k

)
L∗−k(Z)

(Shaneson, Wall). The symmetricL-groups ofZ[Zn] were computed in Milgram and Ran-
icki [14] to be

L∗(Z[Zn]) =
n

∑
k=0

(
n
k

)
L∗−k(Z) (∗ > 0)
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interpretingL∗−k(Z) for ∗< k as

L∗−k(Z) =

0 if ∗= k−1,k−2

L∗−k(Z) if ∗< k−2 .

The symmetric signature ofTn is given by

σ∗(Tn) = (C(T̃n),φ) = (0, . . . ,0,1) ∈ Ln(Z[Zn]) =
n

∑
k=0

(
n
k

)
Ln−k(Z) ,

with

C(T̃n) =
O

n

C(S̃1) , Cr(T̃n) =
(

n
r

)
Z[Zn] .

6. ALMOST (−)n-SYMMETRIC FORMS

The surgery obstruction of the(4m+2n)-dimensional normal map

( f ,b) = ( f0,b0) : M4m
0 ×T2n → S4m×T2n

is given by the instant surgery obstruction of §3 and the surgery product formula of §5 to
be the Witt class

σ∗( f ,b) = (K,λ,µ) ∈ L4m+2n(Z[Z2n])
of the instant form(K,λ,µ) of the 2n-dimensional quadratic Poincar´e complex

(C,ψ) = E8⊗ (C(T̃2n),φ) ,

with

rank
Z[Z2n]K = 8rank

Z[Z2n]Cn(T̃2n) = 8

(
2n
n

)
.

In principle, it is possible to compute(λ,µ) directly from the(4m+2n)-dimensional sym-
metric Poincar´e complexE8⊗ (C(T̃n),φ). In practice, we shall use the almost symmetric
form surgery product formula of Clauwens [6],[7],[8], which is the analogue for symmet-
ric Poincaré complexes of the instant surgery obstruction of §3. We establish a product
formula for almost symmetric forms which will be used in §7 to obtain an almost(−)n-
symmetric form forT2n of rank 2n 6

(2n
n

)
, and hence a representative(−)n-quadratic form

for σ∗( f ,b) ∈ L4m+2n(Z[Z2n]) of rank 2n+3 6 8
(2n

n

)
.

Definition 6.1. Let Λ be a ring with involution.
(i) An almost(−)n-symmetric form(A,α) overΛ is a f.g. freeΛ-moduleA together with a
nonsingular pairingα : A→ A∗ such that the endomorphism

1+(−)n+1α−1α∗ : A→ A

is nilpotent.
(ii) A sublagrangianof an almost(−1)-symmetric form(A,α) is a direct summandL⊂ A
such thatL⊆ L⊥, where

L⊥ := {b∈ A|α(b)(A) = α(A)(b) = {0}} .

A lagrangianis a sublagrangianL such that

L = L⊥ .

(iii) The almost(−)n-symmetric Witt group AL2n(Λ) is the abelian group of isomorphism
classes of almost(−)n-symmetric forms(A,α) overΛ with relations

(A,α) = 0 if (A,α) admits a lagrangian
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and addition by
(A,α)+ (A′,α′) = (A⊕A′,α⊕α′) .

�

Example 6.2. A nonsingular(−)n-symmetric form(A,α) is an almost(−)n-symmetric
form such that

α = (−)nα∗ : A→ A∗

so that 1+(−)n+1α−1α∗ = 0 : A→ A. �

An almost(−)n-symmetric form(Λq,α) on a f.g. freeΛ-module of rankq is represented
by an invertibleq× q matrix α = (αrs) such that theq×q matrix 1+ (−1)n+1α−1α∗ is
nilpotent.

Definition 6.3. The instant formof a 2n-dimensional symmetric Poincar´e complex(C,φ)
is the almost(−)n-symmetric form

(A,α) =
(

coker(
(

d∗ 0
−φ∗0 d

)
: Cn−1⊕Cn+2→Cn⊕Cn+1) ,

[
φ0 +dφ1 d
(−)nd∗ 0

])
.

�

Example 6.4. If φ0 : C2n−∗ →C is an isomorphism (as will be the case in our applications)
the instant almost(−)n-symmetric form is

(A,α) = (Cn,φ0 +dφ1) .

�

The instant form defines a forgetful map

L2n(Λ)→ AL2n(Λ) ; (C,φ) 7→ (A,α) .

Proposition 6.5. (Ranicki [24, 36.3])The almost(−)n-symmetric Witt group ofZ is given
by

AL2n(Z) =

{
Z if n≡ 0(mod 2)
0 if n≡ 1(mod 2)

with L4k(Z) → AL4k(Z) an isomorphism. The Witt class of an almost symmetric form
(A,α) overZ is

(A,α) = signature(Q⊗Z A,(α+ α∗)/2) ∈ AL4k(Z) = Z .

�

The almost(−)n-symmetricL-groupAL2n(Z[ρ]) is denotedLAsy0h,S(−)n
(Z[ρ]) in [24].

Definition 6.6. The almost symmetric signatureof a 2n-dimensional manifoldN2n with
π1(N) = ρ is the Witt class

σ∗(N) = (A,α) ∈ L2n(Z[ρ])

of the instant almost(−)n-symmetric form(A,α) overZ[ρ] of the 2n-dimensional sym-
metric Poincar´e complex(C(Ñ),φ) overZ[ρ]. �

The forgetful mapL2n(Z[ρ]) → AL2n(Z[ρ]) sends the symmetric signatureσ∗(N) ∈
L2n(Z[ρ]) to the almost symmetric signatureσ∗(N) ∈ AL2n(Z[ρ]).
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Proposition 6.7. The almost symmetric signature of a product N= N1×N2 of2ni-dimensional
manifolds Ni with π1(Ni) = ρi and almost(−1)ni -symmetric forms(Z[ρi ]qi ,αi) (i = 1,2)
is the product

σ∗(N1×N2) = σ∗(N1)⊗σ∗(N2)

∈ im(AL2n1(Z[ρ1])⊗AL2n2(Z[ρ2])→ AL2n1+2n2(Z[ρ1×ρ2])) .

Proof. The almost(−)n1+n2-symmetric form(A,α) of N1×N2 is defined on

A = Cn1+n2(Ñ1× Ñ2) =
M

(p1,p2)∈S

Cp1(Ñ1)⊗Z Cp2(Ñ2)

with
S = {(p1, p2) | p1 + p2 = n1 +n2} .

Define an involution

T : S→ S ; (p1, p2) 7→ (2n1− p1,2n2− p2) ,

and letU ⊂ S\{(n1,n2)} be any subset such thatSdecomposes as a disjoint union

S = {(n1,n2)}∪U ∪T(U) .

The submodule
L =

M

(p1,p2)∈U

Cp1(Ñ1)⊗Z Cp2(Ñ2)⊆ A

is a sublagrangian of(A,α) such that

(L⊥/L, [α]) = (Cn1(Ñ1),α1)⊗Z (Cn2(Ñ2),α2) .

The submodule
∆L⊥ = {(b, [b]) |b∈ L⊥} ⊂ A⊕ (L⊥/L)

is a lagrangian of(A,α)⊕ (L⊥/L,−[α]), and

(A,α) = (L⊥/L, [α]) = (Cn1(Ñ1),α1)⊗Z (Cn2(Ñ2),α2)

∈ im(AL2n1(Z[ρ1])⊗AL2n2(Z[ρ2])→ AL2(n1+n2)(Z[ρ1×ρ2])) .

�

Given a nonsingular(−1)m-quadratic form(Z[π]p,λ,µ) over a group ringZ[π] with
associatedp× p matrix ψ = {ψi j} and an almost(−1)n-symmetric form(Z[ρ]q,α) over
Z[ρ] there is defined a nonsingular(−1)m+n-quadratic form overZ[π]⊗Z Z[ρ] = Z[π×ρ]

(Z[π×ρ]pq,λ′,µ′) = (Z[π]p,λ,µ)⊗ (Z[ρ]q,α)

with (λ′,µ′) = (λ,µ)⊗α the form associated to thepq× pqmatrix

ψ′ = ψ⊗α

with
ψ′tu = ψi j ⊗αrs if t = (i−1)p+ r , u = ( j−1)p+s .

Proposition 6.8. (Almost symmetric product formula , Clauwens [6])
(i) The product

L2m(Z[π])⊗L2n(Z[ρ])→ L2m+2n(Z[π×ρ])
factors through the product

L2m(Z[π])⊗AL2n(Z[ρ])→ L2m+2n(Z[π×ρ]) ;

(Z[π]p,λ,µ)⊗ (Z[ρ]q,α) 7→ (Z[π×ρ]pq,(λ,µ)⊗α) .
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(ii) Let ( f ,b) : M → X be a2m-dimensional normal map with surgery obstruction

σ∗( f ,b) = (Z[π]p,λ,µ) ∈ L2m(Z[π]) (π = π1(X)) ,

and let N be a2n-dimensional manifold withπ1(N) = ρ and almost(−1)n-symmetric form
(Z[ρ]q,α). The surgery obstruction of the(2m+2n)-dimensional normal map

(g,c) = ( f ,b)×1 : M×N→ X×N

is given by

σ∗(g,c) = (Z[π×ρ]pq,(λ,µ)⊗α)

∈ im(L2m(Z[π])⊗AL2n(Z[ρ])→ L2m+2n(Z[π×ρ])) .

(iii) The surgery obstruction of the product2(m+n1+n2)-dimensional normal map

(g,c) = ( f ,b)×1 : M×N1×N2 → X×N1×N2

is given by

σ∗(g,c) = (Z[π×ρ1×ρ2]pq1q2,(λ,µ)⊗α1⊗α2) ∈ L2(m+n1+n2)(Z[π×ρ1×ρ2]) .

Proof. (i) By construction.
(ii) It may be assumed that( f ,b) : M→ X is anm-connected 2m-dimensional normal map,
with kernel(−)m-quadratic form overZ[π]

(Km(M),λ,µ) = (Z[π]p,λ,µ) .

The product(g,c) = ( f ,b)×1 : M×N→ X×N is m-connected, with quadratic Poincar´e
complex

(C,ψ) = (Km(M),λ,µ)⊗ (C(Ñ),φ)

and kernelZ[π×ρ]-modules

K∗(M×N) = Km(M)⊗Z H∗−m(Ñ) .

Let ( f ′,b′) : M′ → X×N be the bordant(m+ n)-connected normal map obtained from
(g,c) by surgery below the middle dimension, using(C,ψ) as in §3. The kernel(−)m+n-
quadratic form overZ[π× ρ] of ( f ′,b′) is the instant form of(C,ψ), which is just the
product of(Km(M),λ,µ) and the almost(−1)n-symmetric form(Z[ρ]q,α)

(Km+n(M′),λ′,µ′) =(
coker(

(
d∗ 0

(−)m+n+1(1+T)ψ0 d

)
: Cm+n−1⊕Cm+n+2→Cm+n⊕Cm+n+1),[

ψ0 d
0 0

])
= (Z[π×ρ]pq,(λ,µ)⊗α) .

The surgery obstruction of(g,c) is thus given by

σ∗(g,c) = σ∗( f ′,b′) = (Km+n(M′),λ′,µ′)

= (Z[π×ρ]pq,(λ,µ)⊗α) ∈ L2m+2n)(Z[π×ρ]) .

(iii) Combine (i) and (ii) with Proposition 6.7. �
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7. THE ALMOST (−1)n-SYMMETRIC FORM OFT2n

Geometrically,−×T2n sends the surgery obstructionσ∗( f0,b0)∈ L4m(Z) to the surgery
obstruction

E8×T2n = σ∗( fn,bn) ∈ L4m+2n(Z[Z2n])
of the(4m+2n)-dimensional normal map

( fn,bn) = ( f0,b0)×1 : M4m
0 ×T2n → S4m×T2n

given by product with the almost symmetric signature of

T2n = S1×S1×·· ·×S1 (2n factors)

= T2×T2×·· ·×T2 (n factors) .

In order to apply the almost symmetric surgery product formula 6.8 forN2n = T2n it there-
fore suffices to work out the almost(−1)-symmetric form(C1(T̃2),α) of T2.

The symmetric Poincar´e structureφ = {φs|s> 0} of the universal cover̃S1 = R of S1 is
given by

d = 1−z : C1(R) = Z[z,z−1]→C0(R) = Z[z,z−1] ,

φ0 =

{
1 : C0(R) = Z[z,z−1]→C1(R) = Z[z,z−1]

z : C1(R) = Z[z,z−1]→C0(R) = Z[z,z−1] ,

φ1 = −1 : C1(R) = Z[z,z−1]→C1(R) = Z[z,z−1] .

Write
Λ = Z[π1(T2)] = Z[z1,z

−1
1 ,z2,z

−1
2 ] .

The Poincar´e duality ofT̃2 = R2 is theΛ-module chain isomorphism given by the chain-
level Künneth formula to be

C(T̃2)2−∗ : C0 = Λ

φ0

��

d∗ =
(

z2−1
1−z−1

1

)
//

1

��

C1 = Λ⊕Λ
d∗ = (1−z−1

1 1−z2)//

(
0 −z1

z−1
2 0

)
��

C2 = Λ

−z1z−1
2

��
C(T̃2) : C2 = Λ

d =
(

1−z1

1−z−1
2

)
// C1 = Λ⊕Λ

d = (z−1
2 −1 1−z1)// C0 = Λ .

The chain homotopy
φ1 : φ0 ' Tφ0 : C(T̃2)2−∗ →C(T̃2)

is given by

φ1 =


(

1 −z2

)
: C1 = Λ⊕Λ→C2 = Λ(

−z1

1

)
: C2 = Λ→C1 = Λ⊕Λ .

Proposition 7.1. The almost(−1)-symmetric form of T2 is given by(C1,α) with

α = φ0−φ1d∗ =
(

1−z1 z1z2−z1−z2

1 1−z2

)
: C1 = Λ⊕Λ→C1 = Λ⊕Λ .
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Proof. By construction, noting that

1+ α−1α∗ =

(
−(1−z1)(1−z−1

2 ) z1(1−z2)(1−z−1
2 )

−z−1
2 (1−z1)(1−z−1

1 ) (1−z1)(1−z−1
2 )

)
:

C1 = Λ⊕Λ→C1 = Λ⊕Λ

is nilpotent, with

(1+ α−1α∗)2 = 0 : C1 = Λ⊕Λ→C1 = Λ⊕Λ .

�

Remark.An almost(−1)n-symmetric form(Z[ρ]q,α) overZ[ρ] determines a nonsingular
(−1)n-quadratic form(Z[1/2][ρ]q,λ,µ) overZ[1/2][ρ], with

λ(x,y) = (α(x,y)+ (−1)nα(y,x))/2 , µ(x) = α(x)(x)/2 .

In particular, the almost(−1)-symmetric form(Λ⊕Λ,α) of T2 determines the nonsingular
(−1)-quadratic form(Λ[1/2]⊕Λ[1/2],λ,µ) overΛ[1/2] = Z[Z2][1/2], with

λ = (α−α∗)/2

=

(
((z1)−1−z1)/2 (1−z1z2−z1−z2)/2

(−1+(z1)−1(z2)−1 +(z1)−1 +(z2)−1)/2 ((z2)−1−z2)/2

)
the invertible skew-symmetric 2×2 matrix exhibited in [12][Example, p.120]. �

8. AN EXPLICIT FORM REPRESENTINGE8×T2n ∈ L4∗+2n(Z[Z2n])

Write the generators of the free abelian groupπ1(T2n) = Z2n asz1,z2, . . . ,z2n−1,z2n, so
that

Z[Z2n] = Z[z1,z
−1
1 ,z2,z

−1
2 , . . . ,z2n,z

−1
2n ] .

The expression ofT2n as ann-fold cartesian product ofT2’s

T2n = T2×T2×·· ·×T2

gives

Z[Z2n] = Z[z1,z
−1
1 ,z2,z

−1
2 ]⊗Z Z[z3,z

−1
3 ,z4,z

−1
4 ]⊗Z · · ·⊗Z Z[z2n−1,z

−1
2n−1,z2n,z

−1
2n ] .

For i = 1,2, . . . ,n define the invertible 2×2 matrix overZ[z2i−1,z
−1
2i−1,z2i ,z

−1
2i ]

αi =
(

1−z2i−1 z2i−1z2i −z2i−1−z2i

1 1−z2i

)
.

The generator 1= E8∈L0(Z)= Z is represented by the nonsingular quadratic form(Z8,ψ0)
overZ with

ψ0 =



1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


.
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Theorem 8.1. The2n+3×2n+3 matrix overZ[Z2n]

ψn = ψ0⊗α1⊗α2 · · ·⊗αn

is such that
E8×T2n = (Z[Z2n]2

n+3
,ψn) ∈ L2n(Z[Z2n]) .

Proof. A direct application of the almost symmetric surgery product formula 6.8, noting
thatα1, α2, . . . , αn are copies of the almost(−1)-symmetric form ofT2 obtained in 7.1.

�

9. TRANSFER INVARIANCE

A covering mapp : T2n → T2n induces an injection of the fundamental group in itself

p∗ : π1(T2n) = Z2n → π1(T2n) = Z2n

as a subgroup of finite index, sayq= [Z2n : p∗(Z2n)]. Given aZ[Z2n]-moduleK let p!K be
theZ[Z2n]-module defined by the additive group ofK with

Z[Z2n]× p!K → p!K ; (a,b) 7→ p∗(a)b .

In particular
p!Z[Z2n] = Z[Z2n]q .

The restriction functor

p! : {Z[Z2n]-modules}→ {Z[Z2n]-modules} ; K 7→ p!K

induces transfer maps in the quadraticL-groups

p! : L2n(Z[Z2n])→ L2n(Z[Z2n]) ; (K,ψ) 7→ p!(K,ψ) .

See Chapter 18 of Ranicki [22] for the algebraic identification of the image of the (split)
injection

L0(Z)→ L2n(Z[Z2n]) ; E8 7→ E8×T2n

with the subgroup of the transfer-invariant elements

L2n(Z[Z2n])INV = {x∈ L2n(Z[Z2n]) | p!x = x for all p : T2n → T2n} .

Here is an explicit verification that

p!(E8×T2) = E8×T2 ∈ L2(Λ) (Λ = Z[Z2])

for the double cover

p : T2 = S1×S1→ T2 ; (w1,w2) 7→ ((w1)2,w2)

with
p∗ : π1(T2) = Z2 → Z2 ; z1 7→ (z1)2 , z2 7→ z2

the inclusion of a subgroup of index 2. For anyj1, j2 ∈ Z the transfer of theΛ-module
morphismzj1

1 zj2
2 : Λ→ Λ is given by theΛ-module morphism

p!(zj1
1 zj2

2 ) =



(
(z1) j1/2zj2

2 0

0 (z1) j1/2zj2
2

)
:

p!Λ = Λ⊕Λ→ p!Λ = Λ⊕Λ if j1 is even(
0 (z1)( j1+1)/2zj2

2

(z1)( j1−1)/2zj2
2 0

)
:

p!Λ = Λ⊕Λ→ p!Λ = Λ⊕Λ if j1 is odd.
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If (K,α) has a lagrangianL ⊂ K thenZ8⊗ L ⊂ Z8⊗K is a lagrangian of the(−1)-
quadratic formE8⊗ (K,α), and

E8⊗ (K,α) = 0∈ L2(Λ) .

If (K,α) has a sublagrangianL⊂ K the induced almost(−1)-symmetric form(L⊥/L, [α])
overΛ is such that

∆L⊥ = {(b, [b]) |b∈ L⊥} ⊂ K⊕ (L⊥/L)

is a lagrangian of(K,α)⊕ (L⊥/L,−[α]), and

E8⊗ (K,α) = E8⊗ (L⊥/L, [α]) ∈ L2(Λ) .

The transfer of the almost(−1)-symmetric form ofT2 overΛ

(C2(T̃2),α) = (Λ⊕Λ,

(
1−z1 z1z2−z1−z2

1 1−z2

)
)

is the almost(−1)-symmetric form overΛ

p!(C2(T̃2),α) = (Λ⊕Λ⊕Λ⊕Λ,


1 −z1 −z2 z1z2−z1

−1 1 z2−1 −z2

1 0 1−z2 0
0 1 0 1−z2

)

TheΛ-module morphisms

i =


z1−z1z2

0
−z1

1

 : Λ→ Λ⊕Λ⊕Λ⊕Λ ,

j =


1 0 z1−z1z2

z−1
1 0 0
0 1 −z1

0 0 1

 : Λ⊕Λ⊕Λ→ Λ⊕Λ⊕Λ⊕Λ

are such thati = j|0⊕0⊕Λ and there is defined a (split) exact sequence

0 // Λ⊕Λ⊕Λ
j // Λ⊕Λ⊕Λ⊕Λ

i∗p!α // Λ // 0

with

j∗(p!α) j =

1−z1 z1z2−z1−z2 0
1 1−z2 0
0 0 0

 : Λ⊕Λ⊕Λ→ Λ⊕Λ⊕Λ .

The submodule
L = i(Λ)⊂ p!(Λ⊕Λ) = Λ⊕Λ⊕Λ⊕Λ

is thus a sublagrangian ofp!(C2(T̃2),α) such that

(L⊥/L, [p!α]) = (C2(T̃2),α)

and
p!(E8×T2) = E8⊗ p!(C2(T̃2),α)

= E8⊗ (L⊥/L, [p!α])

= E8⊗ (C2(T̃2),α) = E8×T2 ∈ L2(Λ) .
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For anyn > 1 replacep by

pn = p×1 : T2n = T2×T2n−2→ T2n = T2×T2n−2

to likewise obtain an explicit verification that

p!
n(E8×T2n) = E8×T2n ∈ L2n(Z[Z2n]) .

10. CONTROLLED SURGERY GROUPS

A geometricZ[π]-moduleover a metric spaceB is a pair (K,ϕ), whereK = Z[π]r

is a freeZ[π]-module with basisS= {e1, . . . ,er} and ϕ : S→ B is a map. The(ε,δ)-
controlled surgery group Ln(B;Z,ε,δ) (with trivial local fundamental group) is defined
as the group ofn-dimensional quadraticZ-Poincaré complexes (see [21]) overB of ra-
dius< δ, modulo(n+ 1)-dimensional quadraticZ-Poincaré bordisms of radius< ε. El-
ements ofL2n(B;Z,ε,δ) are represented by non-singular(−1)n-quadratic forms(K,λ,µ),
whereK = Zr is a geometricZ-module overB, andλ has radius< δ, i.e., λ(ei ,ej) = 0
if d(ϕ(ei),ϕ(ej)) > δ. In matrix representation(K,ψ), this is equivalent toψi j = 0 if
d(ϕ(ei),ϕ(ej )) > δ. The radius of a bordism is defined similarly.

In effect, Yamasaki [29] defined an assembly mapHn(B;L) → Ln(B;Z,ε,δ), where
H∗(B;L) denotes homology with coefficients in the 4-periodic simply-connected surgery
spectrumL of Chapter 25 of Ranicki [23]. (See also Ranicki and Yamasaki [26]). The
Stability Theoremof Pedersen, Quinn and Ranicki [16], Ferry [11] and Pedersen and Ya-
masaki [17] – states that the assembly is an isomorphism ifε andδ are sufficiently small.
This is a key ingredient in the construction of exotic ENR homology manifolds.

We are interested in controlled surgery over the torusT2n = R2n/Z2n equipped with the
usual geodesic metric. Let(K,ψ) represent an element ofL2n(Z[Z2n]), whereK = Z[Z2n]r .
Our next goal is to show that passing to a sufficiently large covering spacep: T2n → T2n,
(K,ψ) defines an element ofL2n(T2n;Z,ε,δ). For simplicity, we assume that

p∗ : π1(T2n)∼= Z2n → π1(T2n)∼= Z2n

is given by multiplication byk > 0, so thatp is ak2n-sheeted covering space.
Let (K̄, ψ̄) = Z[Z2n

k ]⊗
Z[Z2n] (K,ψ), where the (right)Z[Z2n]-module structure onZ[Z2n

k ]
is induced by reduction modulok. TheZ-moduleK̃ underlyingK̄ has basisZ2n

k ×S; if
g∈ Z2n

k andei ∈ S, we write(g,ei) = gei . Pick a pointx0 in the covering torusT2n viewed
as aZ2n

k -space under the action of the group of deck transformations. Letϕ(ei) = x0, for
everyei ∈ S, and extend itZ2n

k -equivariantly to obtainϕ : Z2n
k ×S→ T2n. Then, the pair

(K̃,ϕ) is a geometricZ-module overT2n of dimensionrk2n.
We now describe the quadraticZ-module(K̃, ψ̃) induced by(K,ψ) and the coveringp.

Write ψ̄ = ∑g∈Z
2n
k

gψ̄g, where each̄ψg is a matrix with integer entries. For basis elements

gei, f ej ∈ Z2n
k ×S, let ψ̃(gei , f ej ) = ψ̄g−1 f (ei ,ej); this defines a bilinearZ-form on the

geometricZ-moduleK̃. For a given quadraticZ[Z2n]-module(K,ψ), we show that(K̃, ψ̃)
has diameter< δ over the (covering) torusT2n, if k is sufficiently large.

Elements ofZ2n can be expressed uniquely aszi = zi1
1 . . .zi2n

2n , wherei = (i1, . . . , i2n) ∈
Z2n is a multi-index. We use the notation|i|= max{|i1|, . . . , |i2n|}. Any z∈ Z[Z2n] can be
expressed uniquely asz= ∑i∈Z2n αi zi , whereαi ∈ Z is zero for all but finitely many values
of i. We define theorder of zto beo(z) = max{|i| : αi 6= 0} and let|ψ|= max{o(ψi j ),1≤
i, j ≤ r}. Then,(K̃, ψ̃) is a quadraticZ-module overT2n of radius< δ, provided that
k > 2|ψ|/δ. Similarly, quadraticZ[Z2n]-Poincaré bordisms induce quadraticZ-Poincaré
ε-bordisms fork large.
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10.1. The forgetful map. We give an algebraic description of the forget-control map

F : L2n(T2n;Z,ε,δ)→ L2n(Z[Z2n]),

for ε andδ small. Letσ ∈ L(T2n;Z,ε,δ) be represented by the(−1)n-quadraticZ-module
(K,ψ) overT2n of radius< δ, whereK has basisS= {e1, . . . ,er} and projectionϕ : S→
T2n. Consider the freeZ[Z2n]-moduleK̃ of rank r generated bỹS= {ẽ1, . . . , ẽ2n} and
let ϕ̃ : S̃→ R2n be a map satisfyingq◦ ϕ̃(ẽi) = ϕ(ei), 1≤ i ≤ r, whereq: R2n → T2n =
R2n/Z2n is the universal cover. Ifψi j 6= 0 andδ is small, there is a unique elementgi j of Z2n

such thatd (ϕ̃(ẽj)+gi j , ϕ̃(ẽi)) < δ, whered denotes Euclidean distance. Letψ̃ = (ψ̃i j ),
1≤ i, j ≤ r be the matrix whose entries inZ[Z2n] are

(10.1) ψ̃i j =

{
0, if ψi j = 0;

ψi j gi j , if ψi j 6= 0.

The quadraticZ[Z2n]-module(K̃, ψ̃) representsF(σ) ∈ L2n(Z[Z2n). Likewise, quadratic
Z-Poincaréε-bordisms overT2n induce quadraticZ[Z2n]-Poincaré bordisms.

10.2. Controlled E8 over T2n. Starting with the(−1)n-quadraticZ[Z2n]-moduleE8×
T2n, pass to a large covering spacep: T2n → T2n to obtain aδ-controlled quadraticZ-
moduleẼ8 over T2n representing an element ofL2n(T2n;Z,ε,δ). It is simple to verify
that F(Ẽ8) = p! (E8× T2n), where p! is the L-theory transfer. The transfer invariance
results discussed in Section 9 imply thatF(Ẽ8) = E8×T2n. Thus,Ẽ8 gives aδ-controlled
realization of the formE8 overT2n.

11. CONTROLLED SURGERY OBSTRUCTIONS

Definition 11.1. Let p: X→B be a map to a metric spaceB andε > 0. A map f : Y→X is
anε-homotopy equivalenceoverB, if there exist a mapg: X →Y and homotopiesHt from
g◦ f to 1Y andKt from f ◦g to 1X such that diam(p◦ f ◦Ht(y)) < ε for everyy∈Y, and
diam(p◦Kt(x)) < ε, for everyx∈ X. This means that the tracks ofH andK areε-small as
viewed fromB.

Controlled surgery theory addresses the question of existence and uniqueness of con-
trolled manifold structures on a space. Complexes homotopy equivalent to compact topo-
logical manifolds satisfy the Poincar´e duality isomorphism. Likewise, there is a notion of
ε-Poincare duality satisfied by complexes finely equivalent to a manifold. Poincar´e dual-
ity can be estimated by the diameter of cap product with a fundamental class as a chain
homotopy equivalence.

Definition 11.2. Let p: X→ B be a map, whereX is a polyhedron andB is a metric space.
X is anε-Poincaŕe complex of formal dimension noverB if there exist a subdivision ofX
such that simplices have diameter� ε in B and ann-cycley in the simplicial chains ofX
so that∩y: C](X)→Cn−](X) is anε-chain homotopy equivalence in the sense that∩y and
the chain homotopies have the property that the image of each generatorσ only involves
generators whose images underp are within anε-neighborhood ofp(σ) in B.

To formulate simply-connected controlled surgery problems, the notion of locally triv-
ial fundamental group from the viewpoint of the control space is needed. This can be
formalized using the notion ofUV1 maps as follows.
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Definition 11.3. Givenδ > 0, a mapp: X→B is calledδ−UV1 if for any polyhedral pair
(P,Q), with dim(P)≤ 2, and mapsα0 : Q→ X andβ : P→ B such thatp◦α0 = β|Q,

Q
α0 //

i

��

X

p

��
P

α
??

β
// B

there is a mapα : P→ X extendingα0 so thatp◦α is δ-homotopic toβ overB. The map
p is UV1 if it is δ−UV1, for everyδ > 0.

Let B be a compact metric ENR andn≥ 5. Givenε > 0, there is aδ > 0 such that if
p: X → B is a δ-Poincaré duality space overB of formal dimensionn, ( f ,b) : Mn → X
is a surgery problem, andp is δ−UV1, then there is a well-defined surgery obstruction
σ( f ,b) ∈ Hn(B;L) such that( f ,b) is normally cobordant to anε-homotopy equivalence if
and only ifσ( f ,b) = 0.

The main theorem of [16] is the following controlled surgery exact sequence (see also
[11]).

Theorem 11.4.Suppose B is a compact metric ENR and n≥ 4. There is a stability thresh-
old ε0 > 0 such that for any0 < ε < ε0, there isδ > 0 with the property that if p: N → B
is a δ−UV1 map, with N is a compact n-manifold, there is an exact sequence

Hn+1(B;L)→ Sε,δ(N, f )→ [N,∂N;G/TOP,∗]→ Hn(B;L).

Here, Sε,δ is the controlled structure set defined as the set of equivalence classes of
pairs(M,g), whereM is a topological manifold andg: (M,∂M) → (N,∂N) restricts to a
homeomorphism on∂N and is aδ-homotopy equivalence relative to the boundary. The
pairs (M1,g1) and (M2,g2) are equivalent if there is a homeomorphismh: M1 → M2

such thatg1 andh◦ g2 are ε-homotopic rel boundary. As in classical surgery, the map
Hn+1(B;L)→ Sε,δ(N, f ) is defined using controlled Wall realization.

12. EXOTIC HOMOLOGY MANIFOLDS

In [2], exotic ENR homology manifolds of dimensions greater than 5 are constructed
as limits of sequences of controlled Poincar´e complexes{Xi , i ≥ 0}. These complexes
are related by mapspi : Xi+1 → Xi such thatXi+1 is εi+1-Poincaré overXi , i ≥ 0, andpi

is an εi -homotopy equivalence overXi−1, i ≥ 1, where∑εi < ∞. Beginning, say, with
a closed manifoldX0, the sequence{Xi} is constructed iteratively using cut-paste con-
structions on closed manifolds. The gluing maps are obtained using Wall realization of
controlled surgery obstructions, which emerge as a non-trivial local index in the limiting
ENR homology manifold. As pointed out in the Introduction, our main goal is to give an
explicit construction of the first controlled stageX1 of this construction using the quadratic
form E8, beginning with the 2n-dimensional torusX0 = T2n, n≥ 3. The construction of
subsequent stages follows from fairly general arguments presented in [2] and leads to an
index-9 ENR homology manifold not homotopy equivalent to any closed topological man-
ifold. Since an explicit algebraic description of the controlled quadratic moduleẼ8 over
T2n has already been given in Section 10.2, we conclude the paper with a review of how
this quadratic module can be used to constructX1.

Let P be the 2-skeleton of a fine triangulation ofT2n, andC a regular neighborhood of
P in T2n. The closure of the complement ofC in T2n will be denotedD, and the common
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boundaryN = ∂C = ∂D (see Figure 1). Givenδ > 0, we may assume that the inclusions of
C,D andN into T2n are allδ−UV1 by taking a fine enough triangulation.

ND

C

FIGURE 1

Let (K,ϕ) be a geometricZ-module overT2n representing the controlled quadratic form
Ẽ8, whereK ∼= Zr is a freeZ-module with basisS= {e1, . . . ,er} andϕ : S→ T2n is a
map. IfQ⊂ T2n is the dual complex ofP, after a small perturbation, we can assume that
ϕ(S)∩ (P∪Q) = /0. Composing this deformation with a retractionT2n\ (P∪Q)→ N, we
can assume thatϕ factors throughN, that is, the geometric module is actually realized over
N.

Using a controlled analogue of the Wall Realization Theorem (Theorem 5.8 of [27])
applied to the identity map ofN, realize this quadratic module overN ⊂ T2n to obtain a
degree-one normal mapF : (V,N,N′)→ (N× I ,N×{0},N×{1}) satisfying:

(a) F |N = 1N.
(b) f = F |N′ : N′ → N is a fine homotopy equivalence overT2n.
(c) The controlled surgery obstruction ofF rel ∂ overT2n is Ẽ8∈H2n(T2n;L).

The mapF can be assumed to beδ−UV1 using controlled analogues ofUV1 deformation
results of Bestvina and Walsh [13].

Let Cf be the mapping cylinder off . Form a Poincar´e complexX1 by pastingCf ∪N′
(−V) into T2n alongN, that is,

X1 = C∪N Cf ∪N′ (−V)∪N D,

as shown in Figure 2. Our goal next goal is to define the mapp1 : X1 → X0 = T2n.

C Cf D−V

FIGURE 2. The Poincar´e complexX1.

Let g: N→N′ be a controlled homotopy inverse tof andG∗ = (g× id)◦F : V →N× I .
Using an estimated version of the Homotopy Extension Theorem (see e.g. [2]) and the
controlled Bestvina-Walsh Theorem, one can deformG∗ to aδ−UV1 mapG: V →N× I ,
so thatG|N′ = g andG|N = 1N.

Let X′
1 = C∪N Cf ∪N′ Cg∪N D andp∗1 : X1 → X′

1 be as indicated in Figure 3. Crushing
Cf ∪N′ Cg to N = ∂C, we obtain the desired mapp1 : X1 → T2n = C∪N D.

To conclude, as in [2], we argue thatX1 is not homotopy equivalent to any closed topo-
logical manifold. To see this, consider the closed manifold

M = C∪N V ∪N′ N
′ × I ∪N′ (−V)∪N D

and the degree-one normal mapφ : M → X1 depicted in Figure 4, whereπ : N′ × I →Cf is
induced byf : N′ → N. The controlled surgery obstruction ofφ overT2n is σ(φ) = Ẽ8 ∈
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C −VCf D

id idid G

g

C −VCf D

C Cf DC

FIGURE 3. The mapp∗1 : X1 → X′
1.

f D−VC

id id idF π

C

N’x IV −V DC

V

FIGURE 4. The mapφ : M → X1.

H∗
(
T2n;L(Z2n)

)
. If F : H∗

(
T2n;L(Z2n)

)→ L2n
(
Z[Z2n]

)
is the forgetful map,F(Ẽ8) =

E8× T2n, which generates the subgroup of transfer invariant elements ofL2n
(
Z[Z2n]

)
.

SinceH∗
(
T2n;G/Top

)
acts trivially on transfer invariant elements, it follows that surgery

obstruction of any other normal mapM1 → X1 is non-zero. Thus,X1 is not homotopy
equivalent to any topological manifold.

The Bryant-Ferry-Mio-Weinberger procedure for constructing an ENR homology man-
ifold starting with p1 : X1 → T2n leads to a homology manifold homotopy equivalent to
X1. Thus, from the quadratic formE8, we obtained a compact index-9 ENR homology
2n-manifoldX8 which is not homotopy equivalent to any closed topological manifold.
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