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1. INTRODUCTION

Exotic ENR homologyn-manifolds,n > 6, were discovered in the early 1990s by
Bryant, Ferry, Mio and Weinberger [2, 3]. In the 1970s, the existence of such spaces had
become a widely debated problem among geometric topologists in connection with the
works of Cannon and Edwards on the characterization of topological manifolds [5, 10, 9].
TheResolution Conjecturdormulated by Cannon in [4], implied the non-existence of ex-
otic homology manifolds — compelling evidence supporting the conjecture was offered by
the solution of theDouble Suspension Probler@uinn introduced methods of controlled
K-theory and controlled surgery into the area. He associated with an ENR hormmlogy
manifoldX, n > 5, a local index(X) € 8Z+ 1 with the property that(X) = 1 if and only
if X is resolvable. Aresolution of X is a proper surjectiori: M — X from a topological
manifoldM such that, for eacke X, f ~1(x) is contractible in any of its neighborhoods in
M. This led to the celebrated Edwards-Quinn characterization of topologitanifolds,

n > 5, as index-1 ENR homology manifolds satisfying the disjoint disks property (DDP)
[19, 20, 9]. More details and historical remarks on these developments can be found in the
survey articles [4, 10, 28, 15] and in [9].

In [3], ENR homology manifolds with non-trivial local indexes are constructed as in-
verse limits of ever finer Poincaduality spaces, which are obtained from topological man-
ifolds using controlled cut-paste constructions. In the simply-connected case, for example,
topological manifolds are cut along the boundaries of regular neighborhoods of very fine
2-skeleta and pasted back together usiigpmotopy equivalences that “carry non-trivial
local indexes” in the form of obstructions to deform them to homeomorphisms in a con-
trolled manner. The construction of thesequivalences requires controlled surgery the-
ory, the calculation of controlled surgery groups with trivial local fundamental group, and
“Wall realization” of controlled surgery obstructions. The stability of controlled surgery
groups is a key fact, whose proof was completed more recently by Pedersen, Quinn and
Ranicki [16]; an elegant proof along similar lines was given by Pedersen and Yamasaki
[17] at the Workshop on Exotic Homology Manifolds in Oberwolfach, employing meth-
ods of [29]. An alternative proof based on theApproximation Theoreris due to Ferry
[11].

The construction of exotic homology manifolds presented in [3] is somewhat indirect.
Along the years, many colleagues voiced the desire to see — at least in one specific example
— an explicit realization of the controlled quadratic form employed in the Wall realization
of the local index. This became even clearer at the workshop in Oberwolfach. A detailed
inspection of the construction of [3] reveals that it suffices to give this explicit description
at the first (controlled) stage of the construction of the inverse limit, since fairly general
arguments show that subsequent stages can be designed to inherit the local index. The
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main goal of this paper is to provide explicit realizations of controlled quadratic forms that
lead to the construction of compact exotic homology manifolds with fundamental group
72", n > 3, which are not homotopy equivalent to any closed topological manifold. This
construction was suggested in Section 7 of [3], but details were not provided. Starting with
the quadratic fornieg of signature 8, which generates the Wall grdwgZ) = Z, we first
realize it explicitly inLan(Z[Z2")) under the canonical embeddibg(Z) — Lan(Z[Z?")).

Let
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Write
Z[Zzn] = Z[Zl,zil7... ,ZZn,ZEnl]
= Z[Zlaz:fl]®Z[22722_1]®"'®Z[22n’22_nl]
and let

1 1-— 7

so thato; ® 0 @ --- @ dy, is a 2' x 2" matrix overZ[Z?"]. (See §6 for the geometric
provenance of the matrices).

1-2 1 2 12 — i 1— 2 .
Gi_< 2i—1 2i—14£2i 2i—1 2|) (1<|<n),

Theorem 8.1The surgery obstructiongsx T2" € Ly (Z[Z?") is represented by the non-
singular (—1)"-quadratic form(K,\, u) overZ[Z?"], with

on+3

K = 28@2z[z%% = 7]z
the f.g. freeZ[Z?"]-module of rank™*3 = 8.2" and
A=Yyt K=K = Homygan (K, Z[Z2) , 1(x) = W(X)(X) (x€ K)
with
P = PoRo1@02® @y 1 K—K".

O
Then, we pass to a large finite covef” — T2" to obtain a controlled quadrati&-
form overT2", which represents a controlled surgery obstruction that can be used in the
construction of exotic homology2manifolds of index 9.
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2. THE WALL GROUPS

We begin with some recollections of surgery obstruction theory — we only need the
details in the even-dimensional oriented case.

The X-dimensional surgery obstruction groupnlZ[1]) is defined by Wall [27, §5]
for any grouprt, to be the Witt group ofionsingular(—1)"-quadratic formsK, A, 1) over
Z[m), with K a finitely generated free (leff[r]-module together with

() a pairing
AMKxK— Z[T[]
which is nonsingular, sesquilinear afd)"-symmetric with respect to the involu-
tion
T ZM -2 a= Y nggda= Y nggt,
geTT geTT
so that

A(xay) =aA(xy) , A(xy+2) =A(XY) +A(x2), Ay,x) = (=1)"A(xy)
and the adjoinZ[m]-module morphism
A K—=K* = Homym (K, Z[m) 5 X—= (Y= A(XY))

is an isomorphism,
(i) a (—1)"-quadratic function

b K = Q_yn(ZIr) = Z[ri/{a+ (~1)" 3| a e Z{r}
with
A%, %) = U(X) + (—1)"(X) , PX+Y) = UX) + Ky) +A(XY) , j@ax) = ap(x)a.

For a f.g. freeZ[n-moduleK = Z[r]" with basis{ey,e,...,&} the pair(A,u) can be
regarded as an equivalence class efr matrices ovefZr

W = (Wij)acij<r (Wij € Z[T0)
such thatp + (—1)"* is invertible, withy* = (@ ), and
Wit Y —g = X+ (=1 X" for somer x r matrixx = (Xij) -

The relationship betweegf, 1) andy is given by

Aei,ej) = Yij+ (=1)"P; € Z[rd ,

H(e) = Wi € Qryyn(Z[m) .
(See Ranicki [24], [25, 84] for the connection betwaprmand the Seifert matrix in knot
theory).

The detailed definitions of the odd-dimensiohagroupsLon1(Z[11) are rather more
complicated, and are not required here. The quadtagjmups are 4-periodic

Lm(Z[1)) = Lmta(Z[r]) .
The simply-connected quadratiegroups are given by
Z ifm=0(mod4
0 ifm=1(mod4
Zy ifm=2(mod4
0 ifm=3(mod4

Lm(Z) = Pn =
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(Kervaire-Milnor). In particular, fom= 0( mod 4 there is defined an isomorphism

~

Lo(Z) —= Z; (K,\, 1) — ésignatureK,)\).

Thekernel formof ann-connected normal majf, b) : M?" — X from a 2h-dimensional
manifoldM to an oriented 8-dimensional geometric Poin@acomplexX is the nonsingu-
lar (—)"-quadratic form ove?[m (X)] defined in [27, §5]

(KH(M)a)\a “)
with
Kn(M) = ker(f, : Hy(M) — Hn(X))
the kernel (stably) f.g. fre&[m (X)]-module,X the universal cover oX, M = f*X the
pullback cover oM and(A, 1) given by geometric (intersection, self-intersection) numbers.
Thesurgery obstructiomf [27]

0.(f,b) = (Kn(M),A, ) € Lon(Z[mu(X)])

is such thato,.(f,b) = 0 if (and forn > 3 only if) (f,b) is bordant to a homotopy equiva-
lence.

The Realization Theorem of [27, 85] states that for a finitely presented graamm
n > 3 every nonsingulaf—)"-quadratic form(K,A,p) overZ[r is the kernel form of an
n-connected 8-dimensional normal map: M — X with Ty (X) =t

3. THE INSTANT SURGERY OBSTRUCTION

Let (f,b) : M™ — X be anm-dimensional normal map with
f. :mM)—-mX) =

an isomorphism. Th&[ri-module morphisms, : H, (M) — H, (X) are split surjections,
with right inverses the Umkehr maps
. .. f - .
' H(X) 2 HM(X) —— H™ (M) = H/(M).
The kernelZ[r]-modules

Kr(M) = ker(f,: H (M) — H (X))
are such that

He (M) = Ke(M)@He(X) , Ke(M) = Tipa(f) .
By the Hurewicz theorenif,b) is k-connected if and only if
Kr(M) = Oforr <k.

If m=2nor 2n+ 1 then by Poincarduality(f,b) is (n+ 1)-connected if and only if it is
a homotopy equivalence. In the even-dimensional aase2n the surgery obstruction of
(f,b) is defined to be

0.(f,b) = (1) = (Kn(M'),N,H) € Lon(Z[1) (t=Tu (X))

with (f/,b") : M’ — X any bordanb-connected normal map obtained fréfab) by surgery
below the middle dimension. The instant surgery obstruction of Ranicki [21] is an expres-
sion for such a fornfK,(M’), A, f) in terms of a 2-dimensional quadratic Poin@acom-

plex (C,w) such that, (C) = K.(M). In 88 we below we shall use a variant of the instant
surgery obstruction to obtain an expli¢it )"-quadratic form ovef.[Z?"] representing the
generatoEg x T2" € Lon(Z[Z2")).
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Given a ring with involutiom\ and amm-dimensional f.g. freé\-module chain complex

C:Cn - Cri—ma 2 G
letC™* be the duaim-dimensional f.g. freé\-module chain complex, with
dem+ = (=)'d* : (C™ "), = C™" = Hom\(Cyr,A) — C™ "L
and define a duality involution on HoptC™ *,C) by
T @ Homy(CP,Cq) — Homa (CY,Cp) ; @ (—)Pdg" .

An m-dimensional quadratic PoincaicompleXC, i) overA is anm-dimensional f.g. free
A-module chain compleg together withA-module morphisms

Ps : C"—Cmrs (s=0)
such that
dWs+ (=)' Wsd* + (=)™ HWsy1+ (-1 TWPsa) = 0 : C™ 51 =G (s20)

and such thatl+ T)Wyo : C™* — Cis a chain equivalence. The Wall group(A) was
expressed in Ranicki [21] as the cobordism grouprmedimensional quadratic Poinaar”
complexes ovef\, and the surgery obstruction of amdimensional normal mapf,b) :

M — X was identified with the cobordism class

0.(f,b) = (C,p) € Lm(Z[mu(X)])

of a kernel quadratic Poinaacomplex(C, ) overZ[m (X)], with C chain equivalent to
the algebraic mapping cort f' : C(X) — C(M)), so that

H.(C) = K.(M) = ker(f, : H,(M) — H,(X)) .

Definition 3.1. Theinstant formof a 2n-dimensional quadratic Poin@acomplex(C, )
overA\ is the nonsingulaf—)"-quadratic form oveA

(KA =
d* 0

(coker(((_)m(l + T d) .15 Coiz — C' @ Caia) ["60 g])

If C; is f.g. free with rankC; = ¢, thenK is (stably) f.g. free with

n

rank\K = Zb(_)r(cn" +Chirt1) €EZ.
r=

If (14 T)Po:C?"* — Cis an isomorphism (as will be the case in the applications) then
Chirt1=Cnr-1, ranknK = cp,
with
(KA = (C" o) .
Proposition 3.2. (Instant surgery obstruction [21, Proposition 1.4.3])

(i) The cobordism class of 2n-dimensional quadratic PoincarcompleXC, ) overA is
the Witt class

(Ca LIJ) = (Ka)\a“) € LG(/\)
of the instant nonsingulai—)"-quadratic form(K, A, ) overA.
(i) The surgery obstruction of2n-dimensional normal maff,b) : M — X is represented
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by the instant form of a kern@n-dimensional quadratic PoincarcomplexC, yJ) over
Z[m (X))

0*(fab) - (Ka)\au) € LZH(Z[T[J-(X)]) .

If (f,b) is n-connected the@ can be chosen to be
C:0—--+-—-0-KyM)—0—---—0

and the instant form is just the kernel foftd,(M), A, ) of Wall [27]. More generally, if
(f,b) is k-connected for somle< nthenC can be chosen to be such that

C:0—--—0—-Cpk——Ck—0—---—0

and (assuming > 3) the effect of surgeries killing thex, « generators oH?"¥(C) =
Kk(M) represented by a basis@" ¥ is a bordantk + 1)-connected normal ma’,b') :
M’ — X with @(f" : C(X) — C(M’)) chain equivalent to a chain complex of the type

C:0--—0-Chyq——Chg—0—-—0

with

c =

ker((d (1+T)Wo) : Gy 1 ®C K =) ifr=k+1
C fk+2<r<2n—-k-1.

Proceeding in this way, there is obtained a sequence of bojdaantnected normal maps
(fj,bj) : Mj =X (j=kk+1,...,n)
with
(fb) = (f,b), (fir1,0j11) = (fj,b))".

The instant form of C, ) is precisely the kerndl-)"-quadratic formKn(My),An, pn) of
then-connected normal maffs, bn) : My — X, so that the surgery obstruction df, b) is
given by

o.(f,b) = o.(fx,bx) = ... = 0.(fn,bn)
= (Kn(Mn),An,n) € Lon(Z[1) .

4. THE QUADRATIC FORMEg

Form > 2 let M™ be the(2m— 1)-connected #+dimensionaPL manifold obtained
from the MilnorEg-plumbing of 8 copies ofgm by coning off the (exoticj4m— 1)-sphere
boundary, with intersection forrig of signature 8. (Fom = 1 can takeMg to be the
simply-connected 4-dimensional Freedman topological manifold with intersection form
Eg). The surgery obstruction of the correspondimg-@nnected normal maffp,bp) :

M3M — S*™ represents the generator

O'*(fo,bo) = (KZm(Mo),)\,u) =E =1¢ L4m(Z) = Lo(Z) =7
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with

Kom(Mo) = Ham(Mo) = Z8,
2001000 Q
02100000
01210000
10121000

A=B=1p001210 0o°
00001210
00000121
00000O0O0T1 72

uo,...,1,...,0) = 1

5. THE SURGERY PRODUCT FORMULA

Surgery product formulae were originally obtained in the simply-connected case, no-
tably by Sullivan. We now recall the non-simply-connected surgery product formula of
Ranicki [21], which will be used in Theorem 8.1 below to write down an explicit nonsin-
gular(—1)"-quadratic form oveZ[Z?"] (n > 1) representing the image of the generator

1=EgéeLsm(Z)=Z (m>=0)
under the canonical embedding
X T2 Lym(Z) — Lamyon(Z[Z2) ;
0.((fo,bo) : Mg — S*M) = Eg +— 0..((fo,bo) x 1: Mg x T?" — S*Mx T21) |

An n-dimensional symmetric PoindacomplexC, @) over a ring with involution\ is
ann-dimensional f.g. freé\-module chain complex

cN)=c: G —4ci—s —a—%q

together withA-module morphisms
@ : C" = Homy(Ci,A) — Chris (5= 0)

such that
dgs+ (—1)"@d* + (- 1) N1+ (-1)Tgs 1) = 0 :
chrts1 (s=0,0_1=0)

andq : C"* — C is a chain equivalence. The cobordism groumafimensional sym-
metric Poincae’complexes oveh is denoted by."(A) — see [21] for a detailed exposition
of symmetricL-theory.

A CW structure on an orientegtdimensional manifold withy (N) = p and universal
coverN and the Alexander-Whitney-Steenrod diagonal construction on the cellular com-
plexC(N) determine am-dimensional symmetric Poinaacomplex(C(N), @) overZ[p]
with

@ = [NJn—: C(N)"* - C(N) .
The Mishchenkesymmetric signaturef N is the cobordism class

o*(N) = (C,@) € L"(Z[p]) .
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See [21] for the products
L™ (Z[p1]) @ L"(Z[p2]) — L™ "2(Z[p1 x p2]) ,
Lm(Z[1) © L"(Z[p]) — Lmn(Z[1rx p])
given by®y on the level of modules and chain complexes, and the computation
Z ifn=0(mod 4
Zp ifn=1(mod4
0 ifn=2(mod4
0 ifn=3(mod4.

L"(Z) =

(However, the symmetric-groupd.*(Z[m]) are not 4-periodic in general). For= 0( mod
4) there is defined an isomorphism

L*(z) = 7. (C,q) — signaturéH?(C), q) .

Proposition 5.1. ( The surgery product formula [21])
(i) The symmetric signature of a product NN of an nj-dimensional manifold Nand an
ny-dimensional manifold Nis the product of the symmetric signatures

O'*(Nl X Nz) = 0'*(N1) ®0'*(N2) S Ln1+n2(Z[T[1(N1 X Nz)]) .

(i) The product of an m-dimensional normal m@fb) : M — X and an n-dimensional
manifold N is an(m+ n)-dimensional normal map

(9,c) = (f,bp)x1 : MxN—=XxN
with surgery obstruction
0.(g,¢) = 0.(f,b)®0*(N) € L™ (Z[m (X) x Ta(N)]) .

Proof. These formulae already hold on the chain homotopy level, and chain equivalent
symmetric/quadratic Poincacomplexes are cobordant. In somewhat greater detail:

(i) The symmetric Poincarcomplex of a produdtl = N; x N, is the product of the sym-
metric Poincae’complexes oN; andN;

(C(N),®) = (C(N1),01) @z (C(N2), @2) -
(i) The product of a kernel quadratic PoineardmplexC, @)t 1, of (f,b) and a symmet-

ric Poincag complexC, @) of N is a kernel quadratic PoinaacomplexC, @) 4 o) of the
product normal magg,c) = (f,b) x 1:M xN— X x N

CW)ge = (CW) b @z (C, QN -

The quadratidt.-groups ofZ[Z"] are given by
1 /n
ny _—
L@z = 5 (f)r@
(Shaneson, Wall). The symmettiegroups ofZ|Z"] were computed in Milgram and Ran-
icki [14] to be

vz = 3 (Jr@e>o
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interpretingL*K(Z) for < k as

L XzZ) =

0 if x =k—1k—2
L, «(Z) ifx<k—2.

The symmetric signature @ is given by
n
@'(17) = ©(F).9) = (0..01) @) = 3 (L),

with

6. ALMOST (—)"-SYMMETRIC FORMS

The surgery obstruction of tHgm+ 2n)-dimensional normal map
(f.b) = (fo,bo) : Mg™x T?" — S*Mx T2

is given by the instant surgery obstruction of 83 and the surgery product formula of 85 to
be the Witt class

0.(f,b) = (K,\, W) € Lam:2n(Z[Z2)
of the instant formK, A, p) of the Zn-dimensional quadratic Poin@acomplex

(Ca lIJ) = E8®(C(f2n)v(p)a
with
rankyon K = 8rank;on Cy(T?") = 8<2n) .

n
In principle, it is possible to comput@, ) directly from the(4m+ 2n)-dimensional sym-
metric Poincae’complexEg ® (C(f”),(p). In practice, we shall use the almost symmetric
form surgery product formula of Clauwens [6],[7],[8], which is the analogue for symmet-
ric Poincag complexes of the instant surgery obstruction of 83. We establish a product
formula for almost symmetric forms which will be used in §7 to obtain an almest-
symmetric form forT2" of rank 2' < (Zn”) and hence a representative)"-quadratic form

for 0, (,b) € Lams2n(Z[Z?"]) of rank 243 < 8(%).

Definition 6.1. Let A be a ring with involution.
(i) An almost(—)"-symmetric forn{A, o) overA is a f.g. freeA\-moduleA together with a
nonsingular pairingt : A — A* such that the endomorphism

1+ ()" o ta* : A=A
is nilpotent.

(i) A sublagrangiarof an almos{—1)-symmetric form(A,a) is a direct summantd C A
such that C L+, where

L+ = {be AJa(b)(A) =a(A)(b) = {0}} .
A lagrangianis a sublagrangiah such that
L=1L".
(iii) The almost(—)"-symmetric Witt group Al?(A) is the abelian group of isomorphism
classes of almogt-)"-symmetric formgA, a) overA with relations
(A,a) = 0if (A ja) admits a lagrangian
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and addition by
(Ajo)+ (A,o') = (ApA,add').
O

Example 6.2. A nonsingular(—)"-symmetric form(A a) is an almost —)"-symmetric
form such that

a=(-)a": A=A
sothat I+ (—)"la~la* =0:A— A O

An almost(—)"-symmetric form(AY,a) on af.g. free\-module of ranlqis represented
by an invertibleq x q matrix o = (os) such that theg x g matrix 1+ (—1)"ta—ta* is
nilpotent.

Definition 6.3. Theinstant formof a 2n-dimensional symmetric PoinaacomplexC, @)
is the almost—)"-symmetric form
d 0 _ +d d
(Aa) = <COke'(<—(p5 d> C" 1 Ch2—C"®Chi1) {(?_)nd?l OD .
Il

Example 6.4. If o : C2"* — C is an isomorphism (as will be the case in our applications)
the instant almost—)"-symmetric form is

(Aja) = (C",@+d@) .

The instant form defines a forgetful map
L*'(A) = AL(A) ; (C.9) — (A0) .

Proposition 6.5. (Ranicki [24, 36.3]) The almost—)"-symmetric Witt group dZ is given
by

ALZ(Z) — Z ?fnzO(modZ)

0 ifn=1(mod2
with L*(Z) — AL*(Z) an isomorphism. The Witt class of an almost symmetric form
(Aja) overZis
(A,a) = signaturéQ @z A, (a+a*)/2) e AL¥(Z) = Z.
([l

The almos{—)"-symmetricL-groupAL?"(Z[p]) is denoted.As;ﬂﬁ%)n (Z[p]) in [24].
Definition 6.6. The almost symmetric signatuef a 2n-dimensional manifoldN" with
i (N) = pis the Witt class

o*(N) = (Aa) € L*"(Z[p])

of the instant almost—)"-symmetric form(A,a) overZ|p] of the Zh-dimensional sym-
metric Poincae’complexC(N), @) overZp]. O

The forgetful mapL?"(Z[p]) — AL?"(Z[p]) sends the symmetric signatucg(N) €
L2"(Z[p]) to the almost symmetric signatus&(N) € AL2"(Z[p]).
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Proposition 6.7. The almost symmetric signature of a productMl; x N, of 2n;-dimensional
manifolds N with 1y (N;) = p; and almost(—1)"-symmetric forms$Z[pi]%, a;) (i = 1,2)
is the product

0'*(N1 X Nz) = 0'*(N1) X O'*(Nz)
€ im(AL?™ (Z[pa]) @ AL?2(Z[p2]) — AL 2%2(Z[p1 x pg])) -
Proof. The almos{—)™"2-symmetric form(A,a) of N; x Ny is defined on
A= Cn1+n2(Nl X Nz) = @ Cpl(Nl) ®ZCp2(N2)
(P1.p2)€S
with
S = {(p1,p2)|p1+pP2=n1+n2}.
Define an involution
T:S—S; (p1,p2) — (21— p1,2n2 — pp) ,
and letU C S\{(n1,n2)} be any subset such thtlecomposes as a disjoint union
S = {(n,n)}UUUT(U).
The submodule _ _
L= &P CP(N1)®zCP(Np) CA
(P1.p2)eV
is a sublagrangian dfA, a) such that

(LH/L[a]) = (C™(Ny),a1) @z (C™(Np),a2) -
The submodule
AL = {(bo))|beLlt} cAD (L)L)
is a lagrangian ofA, o) @ (L*/L,—a]), and
(Aa) = (L'/Lfa]) = (C"(Ny),a1) @z (C™2(Np), 0rz)
€ im(AL?" (Z[p1]) © AL?™(Z[pa]) — AL*M*12)(Z[p1 x pg)) -
U
Given a nonsingulat—1)™-quadratic form(Z[m(P,A, ) over a group ringZ[m] with

associate x p matrix ¢ = {(;jj} and an almost—1)"-symmetric form(Z[p]9,a) over
Z|p] there is defined a nonsingulgr 1)™"-quadratic form oveZ|n ®z Z[p] = Z[m x p]

(Z[rex pPIN W) = (Z[rP A, W) @ (Z[p)*, @)
with (\',¥) = (A, 1) ® a the form associated to theg x pgmatrix
Y = yoa

with

Wy = Wij@asif t=(i—1)p+r,u=(j—1)p+s.
Proposition 6.8. (Almost symmetric product formula, Clauwens [6])
(i) The product

Lom(Z[19) @ L*"(Z[p]) — Lam-2n(Z[rtx p])
factors through the product
Lom(Z[1]) © AL*(Z[p]) — Lami-2n(Z[Tx p)) ;
(Z[TgP A, ) @ (Z[p]%, a) — (Z[rx p]P%, (A, W) @ ) .
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(i) Let(f,b) : M — X be a2m-dimensional normal map with surgery obstruction
0.(f,b) = (Z[1P, A, ) € Lom(Z[r1) (1= T18(X))

and let N be @n-dimensional manifold witi (N) = p and almos{—1)"-symmetric form
(Z[p]%,a). The surgery obstruction of thH@m+ 2n)-dimensional normal map

(g,c) = (f,b)x1 : MxN—XxN
is given by
0.(8.0) = (Z[mx pP% (A ) ®a)
€ im(Lam(Z[1)) @ AL(Z[p]) — Lami.2n(Z[1tx p])) -
(ii) The surgery obstruction of the prod&{im+ n; + nz)-dimensional normal map
(g,€) = (f,b)x1 : MxNgxN2— XxNgxN

is given by

0.(9,0) = (Z[rx p1x p2]PR%, (N, ) © 01 © A2) € Loimin-snp) (Z[T1X P1X P2) -

Proof. (i) By construction.
(ii) It may be assumed thaf,b) : M — X is anm-connected 8+dimensional normal map,
with kernel(—)™M-quadratic form oveZ[r

(Km(M),}\,IJ.) = (Z[T[]pa}\ap-)

The produc{g,c) = (f,b) x 1: M x N — X x N is m-connected, with quadratic Poinear”
complex

(Ca LIJ) = (Km(M)J\vH) ® (C(N)vw)
and kerneEZ[m x p]-modules

Ke(MxN) = Kn(M)®zH,_m(N) .

Let (f',b') : M" — X x N be the bordanfm+ n)-connected normal map obtained from
(9,¢) by surgery below the middle dimension, usif@ ) as in 83. The kerngl—)™"-
quadratic form ovefZ[mix p] of (f',b’) is the instant form of C, ), which is just the
product of(Km(M), A, 1) and the almost—1)"-symmetric form(Z[p]9, a)

(KWH(M/)v)\/a“/) =
d* 0 -
(COke'( ((_)m+n+1(l+ T)wo d) :C™ 1§ Crhini2 — C™ @O Crmyinga),
Yo d
0 O
= (Z[mxp[P (A @a).
The surgery obstruction df, ¢) is thus given by

O'*(g,C) = O-*(f/ab/) = (KWH(M/)a)\/vu/)
= (Z[rx p]P%, (A, W) @ ) € Lomy2n) (Z[11x ) -
(iif) Combine (i) and (ii) with Proposition 6.7. O
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7. THE ALMOST (—1)"-SYMMETRIC FORM OFT?"

Geometrically— x T2" sends the surgery obstruction( fo,bo) € Lam(Z) to the surgery

obstruction
Egx T2 = 0,(fn,bn) € Lam:2n(Z[Z?"))

of the (4m+ 2n)-dimensional normal map
(fa,bn) = (fo,bo) x 1 : MM x T2" — S¥My T2

given by product with the almost symmetric signature of
T = StxStx...x St (2nfactory
= T?xT2x---x T? (nfactors .

In order to apply the almost symmetric surgery product formula 6.81f8e= T2" it there-

fore suffices to work out the almogt-1)-symmetric form(C%(T2),a) of T2,
The symmetric Poincarstructurep = {@s|s > 0} of the universal cove®' = R of St is

given by
d=1-z:CGR) = Z[zz Y - Cy(R) = Z[zZz Y],
1:CYR) = Z[zz Y] - C(R) = Z[z,z Y]
B {z L CYR) = Z[z7 Y —Go(R) = Z[zz Y],
¢, = -1:CYR) = Z[zz Y - C(R) = Z[zz Y]
Write
A = ZIm(T?)] = Za,z Y 2,1 .

The Poincae duality of T2 = R? is theA-module chain isomorphism given by the chain-

level Kiinneth formula to be

o (355
- T \1-z*t d=1-zt11-z
C(T?)%* : Cl=A A Cl=AoA 1 2)02:
0 —Z _
® ' <zal 0) “az
d_<l—21>
5 T \1-zt d=(z'-11-z
C(T?) : C=A i CL=NADOA & 1)Co=/\-

The chain homotopy
@ T : C(T?)2* - C(T?

is given by
(1 —Zz) :Cl = NON—-C = A

¢ = -
< 121> G2 = NG = ADA.
Proposition 7.1. The almost—1)-symmetric form of ¥ is given by(C!, a) with

a=q-@d = (1_121 21221__2;2_22> ' Cl = A@A—Ci = AGA.
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Proof. By construction, noting that

Lialar — < “A-ma-zh) 21(1—22)(1—2211)> :
' l-n)l-7") (1-2)1-3Y
Cl = AeA—Cl = AaA

is nilpotent, with
(1+a a2 =0:Ct = A@A—=Ct = A@A.
(I

Remark.An almost(—1)"-symmetric form(Z[p]%,a) overZ[p] determines a nonsingular
(—1)"-quadratic formZ[1/2][p]9, A, 1) overZ[1/2][p], with

)\(Xay) = (O((X,y)+(—1)”0((y,x))/2, H(X) = G(X)(X)/z

In particular, the almost-1)-symmetric form(A@ A, a) of T? determines the nonsingular
(—1)-quadratic formA[1/2] © A[1/2],A, 1) overA[1/2] = Z[Z?][1/2], with

A = (a—o)/2

_ ( (@) *-2)/2 A-2z-2- 22)/2>
(~1+@) ') ' +@) T+ @22 () t-2)/2
the invertible skew-symmetric:2 2 matrix exhibited in [12][Example, p.120]. O

8. AN EXPLICIT FORM REPRESENTINGEg x T2 e L4*+2n(Z[ZZ”])

Write the generators of the free abelian graupT?") = Z?" asz, 2, . .. , Zon_1, Zon, SO
that

ZIZ?) = Za, 542,20, .. 20, 25 -
The expression 6f 2" as am-fold cartesian product of%’s
T = T2xT2x .- xT?
gives
ZIZ™) = Ln, " 2., | @1 223,27, 24,2, | @z -+ @2, L[Zon-1,Zr1, Zon, Ty -

Fori =1,2,...,n define the invertible % 2 matrix overZ(zi_1,2," |, i, ;"]

— 1-2i1 Zi 1% — 21— 2
: 1 1- 27y ’

The generator & Eg € Lo(Z) = Z is represented by the nonsingular quadratic fGfh o)
overZ with

Yo =

[cNeoNeoNolNelNelNol )
[cNeoNoNoNeoNal o)
[cNoNoNoNah i o)
[cNoNeoNaN i el
QOO krPFrPRFOOOo
OCOPFRPPFRPROOOOo
OFRPPFPOOOOOo
P OO OO0 oo
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Theorem 8.1. The2™3 x 23 matrix overZ[Z?"|
Yn=Wo®01®02:--®0n

is such that
2n+3

Eg x T2 = (Z[Z22" n) € Lan(Z[Z2)) .

Proof. A direct application of the almost symmetric surgery product formula 6.8, noting
thatas, ay, ..., ap are copies of the almogt-1)-symmetric form ofT 2 obtained in 7.1.
O

9. TRANSFER INVARIANCE

A covering mapp : T?" — T?" induces an injection of the fundamental group in itself
p* : nl(TZn) — ZZn — T[l(TZn) — ZZn
as a subgroup of finite index, say= [Z?" : p,(Z")]. Given aZ[Z?"]-moduleK let p'K be
the Z[Z?"]-module defined by the additive grouplfwith
Z[Z® x p'K — p'K; (a,b) — p.(@)b.
In particular
The restriction functor
p' : {Z[Z?"-module$ — {Z[Z>"]-module3 ; K — p'K
induces transfer maps in the quadratigroups
P 1 Len(Z[Z?) — Lan(Z[Z2") ; (K. W) = P/ (K, W) .
See Chapter 18 of Ranicki [22] for the algebraic identification of the image of the (split)
injection
Lo(Z) — Lon(Z[Z?"]) ; Eg — Eg x T?"
with the subgroup of the transfer-invariant elements
Lon(Z[Z2)NY = {x € Lon(Z[Z?")) | p'x = xforall p: T2 — T2} .
Here is an explicit verification that
P'(Egx T?) = Egx T2 € La(A) (A= 1Z[7?))
for the double cover
p:T?=8Sx%xS —T?2; (w,wp) = ((Wr)?we)
with
p. i (T?) =722 =7%; 01— (2)?, n— 2
the inclusion of a subgroup of index 2. For ajy j» € Z the transfer of thé\-module
morphismz}*Z? : A — A is given by theA-module morphism

(22)12/222 0 .
0 (@)

PA = AOA—pPA = ABA if jriseven
0 (z2)1+D)/2702
(z2)11-D/2702 0 ‘
PA = AeA— pA =A@ if jpisodd.

p (Z:JLlZéz) _
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If (K,a) has a lagrangiah c K thenZ® @ L c Z8 ® K is a lagrangian of thé—1)-
quadratic formEg ® (K, a), and
Es® (K,a) = 0 La(A).

If (K,a) has a sublagrangidnc K the induced almost-1)-symmetric form(L* /L, [a])
overA is such that

A = {(b,b])|beLT} cKa(LT/L)
is a lagrangian ofK,a) @ (L*/L,—a]), and
Es® (K,a) = Eg® (L*/L,[a]) € La(A) .
The transfer of the almost-1)-symmetric form ofT? overA

2,52 _ -2z z2-21-2
Ca) = hon (B R

is the almost—1)-symmetric form oven

1 —Z —2Z 2 —7p
~ -1 1 =zn-1 —Z
L2 T2 _ 2 2
pC(T).a) = ADABABA, | | 4 1 2 0 )
0 1 0 1-»
The/A-module morphisms
2l —12p
i = _021 N—=NBNBANBN,
1
1 0 zn—z»
—1
=12 % % l.AsreA—AsAsAaA
0 1 —Z1
0O O 1

are such that= j|opz0sa and there is defined a (split) exact sequence

P

. i
I"pa
04>/\69/\69/\4]>/\69/\69/\@/\ P N 0
with
l—Zj_ 2o —2n — Do 0
jf(pa)j = 1 1-2 0| : A\@ABA—=ADABA.
0 0 0

The submodule
L=iA)Cp(AeA) = AGASAGA
is thus a sublagrangian f (C2(T?2),a) such that
(L*/L,[pla)) = (C*(T?),0)
and B
P (EsxT?) = Eg®p!(CH(T?),a)
|

= Eg® (L*/L,[p'a])
= Eg®(C4(T?),a) = Egx T2 e Ly(A).
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For anyn > 1 replacep by
Ph= Px1:T? = T2x T2, T2 = T2 T2
to likewise obtain an explicit verification that
Ph(Es x T2") = Egx T2 € Lon(Z[Z2")) .

10. CONTROLLED SURGERY GROUPS

A geometricZ[m]-moduleover a metric spac® is a pair (K,¢), whereK = Z[m'
is a freeZ[m-module with basiS= {ey,...,e} and$: S— B is a map. Thegg,d)-
controlled surgery group MB;Z,¢,6) (with trivial local fundamental group) is defined
as the group ofi-dimensional quadratiZ-Poincag complexes (see [21]) ové& of ra-
dius < 8, modulo(n+ 1)-dimensional quadratig-Poincag bordisms of radius: €. El-
ements ol (B;Z,¢,0) are represented by non-singularl)"-quadratic formgK, A, p),
whereK = Z' is a geometri&Z-module overB, andA has radius< 9, i.e.,A(g,ej) =0
if d(d(e),d(ej)) = 6. In matrix representatiofK, ), this is equivalent tap; = O if
d(¢(e),d(e))) > 8. The radius of a bordism is defined similarly.

In effect, Yamasaki [29] defined an assembly ntéyiB;IL) — Ln(B;Z,€,d), where
H.(B;LL) denotes homology with coefficients in the 4-periodic simply-connected surgery
spectrumlL of Chapter 25 of Ranicki [23]. (See also Ranicki and Yamasaki [26]). The
Stability Theorenof Pedersen, Quinn and Ranicki [16], Ferry [11] and Pedersen and Ya-
masaki [17] — states that the assembly is an isomorphignaifdd are sufficiently small.
This is a key ingredient in the construction of exotic ENR homology manifolds.

We are interested in controlled surgery over the t@rtis= R2"/Z?" equipped with the
usual geodesic metric. L&, g) represent an element bjn(Z[Z?"]), whereK = Z[Z?"]".

Our next goal is to show that passing to a sufficiently large covering gpaté” — T2",
(K, ) defines an element bn(T2"; Z,€,8). For simplicity, we assume that

p*: T[l(TZn) o~ ZZn — T[l(TZn) o~ ZZn

is given by multiplication by > 0, so thatp is ak?"-sheeted covering space.

Let (K, ) = Z[Zg" @zz2n (K, ), where the (right¥[Z?"]-module structure oft[Z{"]
is induced by reduction moduk The Z-moduleK underlyingK has basi2" x S if
ge Zﬁ“ ande € S, we write(g,&) = gq. Pick a pointxg in the covering torug 2" viewed
as aZﬁ“-space under the action of the group of deck transformations¢ (&) = xo, for
everyg € S and extend iZZ"-equivariantly to obtaip: Z2" x S— T2, Then, the pair
(K,$) is a geometriZ-module oveiT 2 of dimensiorrk®",

We now describe the quadraiemodule(K, ]) induced by(K, W) and the covering.
Write () = EQEZ%] gy, Where eachjy is a matrix with integer entries. For basis elements
ga,fe; € Z2"x S let {i(ga, fej) = Wy-1¢(&,€)); this defines a bilineaZ-form on the
geometricZ-moduleK. For a given quadrati&[Z2"]-module(K, y), we show thatK, {)
has diametex: 5 over the (covering) toru§?", if k is sufficiently large.

Elements ofZ2" can be expressed uniquely Zs= 211 ...z, wherei = (ig,...,ion) €
72" is a multi-index. We use the notatidin = max{|is|,...,lin|}. Any z€ 7[7?"| can be
expressed uniquely &s= 5,20 i Z, wherea; € Z is zero for all but finitely many values
of i. We define th@rder of zto beo(z) = max{|i| : aj # 0} and let|p| = max{o(yij),1 <
i,j <r}. Then,(K,]) is a quadraticZ-module overT?" of radius< 3, provided that
k > 2|w|/8. Similarly, quadraticZ[Z?"]-Poincag bordisms induce quadrati&Poincag
e-bordisms foik large.
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10.1. The forgetful map. We give an algebraic description of the forget-control map
F: Lon(T2;Z,€,8) — Lan(Z[Z2"),

for £ andd small. Leto € L(T?";Z,€,8) be represented by th{e-1)"-quadraticZ-module
(K, ) overT?" of radius< 8, whereK has basiS= {ey,...,&} and projectiorp: S—
T2, Consider the fre€[Z?"-moduleK of rankr generated bys = {&,...,&n} and
let §: S— R?" be a map satisfyingo $(&) = ¢(e), 1 <i <r, whereq: R?" — T2 =
R2"/72"is the universal cover. Ifij # 0 andd is small, there is a unique elemeytof Z2"
such thad (§(&;) +gij,$(&)) < &, whered denotes Euclidean distance. lLkt= (Jjj),
1<i,j <r be the matrix whose entries #[{Z?"] are

0, if Yij =0;
Pij gij, if Yij #0.

The quadrati&Z|Z?"-module(K, ) represents (o) € Lon(Z[Z?"). Likewise, quadratic
Z-Poincage-bordisms ovell 2" induce quadrati[Z2"]-Poincag bordisms.

(10.1) {ij = {

10.2. Controlled Eg over T?". Starting with the(—1)"-quadraticZ[Z?"|-module Eg x
T2, pass to a large covering spape T2" — T2" to obtain ad-controlled quadratié.-
moduleEg over T2" representing an element bbn(T2";Z,€,8). It is simple to verify
that F(Eg) = p' (Eg x T?"), wherep' is the L-theory transfer. The transfer invariance
results discussed in Section 9 imply tkvé(ég) = Eg x T?". Thus,Eg gives ad-controlled
realization of the fornkg overT2".

11. CONTROLLED SURGERY OBSTRUCTIONS

Definition 11.1. Let p: X — B be a map to a metric spaBandes > 0. Amapf: Y — Xis

ane-homotopy equivalenawrerB, if there exist a mag: X — Y and homotopiekl; from

go f to 1y andK; from f ogto 1x such that diamipo f o H;(y)) < € for everyy € Y, and
diam(poK;(x)) < €, for everyx € X. This means that the tracks ldfandK aree-small as
viewed fromB.

Controlled surgery theory addresses the question of existence and uniqueness of con-
trolled manifold structures on a space. Complexes homotopy equivalent to compact topo-
logical manifolds satisfy the Poinaaduality isomorphism. Likewise, there is a notion of
e-Poincare duality satisfied by complexes finely equivalent to a manifold. Peilca-
ity can be estimated by the diameter of cap product with a fundamental class as a chain
homotopy equivalence.

Definition 11.2. Let p: X — B be a map, wherX is a polyhedron anB is a metric space.
X is ane-Poincat complex of formal dimensionaver B if there exist a subdivision of
such that simplices have diametere in B and ann-cycley in the simplicial chains oK
so thaty: C!(X) — Cn—t(X) is ane-chain homotopy equivalence in the sense thaand
the chain homotopies have the property that the image of each genemtdy involves
generators whose images ungeare within are-neighborhood of(ag) in B.

To formulate simply-connected controlled surgery problems, the notion of locally triv-
ial fundamental group from the viewpoint of the control space is needed. This can be
formalized using the notion &¥V! maps as follows.
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Definition 11.3. Givend > 0, amapp: X — Bis calledd — UV if for any polyhedral pair
(P,Q), with dim(P) < 2, and mapsip: Q — X andp: P — B such thatpo ap = Blg,

Q—2>x

il 4 lp

P——B

there is a mapi: P — X extendingog so thatpo a is -homotopic tof overB. The map
pisUVtifitis 8—UV1, for everyd > 0.

Let B be a compact metric ENR amd> 5. Givene > 0, there is @ > 0 such that if
p: X — B is aod-Poincag duality space oveB of formal dimensiom, (f,b): M" — X
is a surgery problem, angis —UV?, then there is a well-defined surgery obstruction
o(f,b) € Hy(B;LL) such that f,b) is normally cobordant to asthomotopy equivalence if
and only ifo(f,b) =0.

The main theorem of [16] is the following controlled surgery exact sequence (see also
[11]).

Theorem 11.4. Suppose B is a compact metric ENR and A. There is a stability thresh-
old &g > 0 such that for any) < € < &g, there isd > 0 with the property thatif pN — B
is ad—UV?! map, with N is a compact n-manifold, there is an exact sequence

Hat1(B; L) — Se.5(N, f) — [N,0N; G/T OR ] — Hn(B; ).

Here, S¢ 5 is the controlled structure set defined as the set of equivalence classes of
pairs(M,g), whereM is a topological manifold and: (M,0M) — (N,0N) restricts to a
homeomorphism 0dN and is ad-homotopy equivalence relative to the boundary. The
pairs (M1,91) and (Mz,g2) are equivalent if there is a homeomorphismM; — M,
such thatg; andho g2 are e-homotopic rel boundary. As in classical surgery, the map
Hn1(B;L) — S¢ 5(N, f) is defined using controlled Wall realization.

12. EXOTIC HOMOLOGY MANIFOLDS

In [2], exotic ENR homology manifolds of dimensions greater than 5 are constructed
as limits of sequences of controlled Poire@dmplexegX;,i > 0}. These complexes
are related by mapg;: Xi11 — X such thatX;,; is €1-Poincag overX;, i > 0, andp;
is angj-homotopy equivalence ove§_1, i > 1, wherey & < . Beginning, say, with
a closed manifoldXy, the sequencéX;} is constructed iteratively using cut-paste con-
structions on closed manifolds. The gluing maps are obtained using Wall realization of
controlled surgery obstructions, which emerge as a non-trivial local index in the limiting
ENR homology manifold. As pointed out in the Introduction, our main goal is to give an
explicit construction of the first controlled staie of this construction using the quadratic
form Eg, beginning with the 8-dimensional toruo = T2", n > 3. The construction of
subsequent stages follows from fairly general arguments presented in [2] and leads to an
index-9 ENR homology manifold not homotopy equivalent to any closed topological man-
ifold. Since an explicit algebraic description of the controlled quadratic mdetever
T2 has already been given in Section 10.2, we conclude the paper with a review of how
this quadratic module can be used to constijct

Let P be the 2-skeleton of a fine triangulation ", andC a regular neighborhood of
Pin T2". The closure of the complement@fin T2" will be denoted, and the common
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boundaryN = dC = 0D (see Figure 1). Gived > 0, we may assume that the inclusions of
C,D andN into T?" are alld — UV* by taking a fine enough triangulation.

FIGURE 1

Let (K, ) be a geometriz-module oveiT 2" representing the controlled quadratic form
Es, whereK = 7' is a freeZ-module with basisS = {e1,...,&} and¢d: S— T is a
map. IfQ ¢ T?" is the dual complex o, after a small perturbation, we can assume that
$(S) N (PUQ) = 0. Composing this deformation with a retractio® \ (PUQ) — N, we
can assume thgtfactors througtN, that is, the geometric module is actually realized over
N.

Using a controlled analogue of the Wall Realization Theorem (Theorem 5.8 of [27])
applied to the identity map d¥l, realize this quadratic module ovidrc T2" to obtain a
degree-one normal map: (V,N,N’) — (N x I,N x {0},N x {1}) satisfying:

(@) Fln=1n.
(b) f =F|w: N — Nis a fine homotopy equivalence oVEf".
(c) The controlled surgery obstruction®frel d overT2" is Eg € Hon (T2, 1L).

The mapF can be assumed to Be- UV using controlled analogues 0! deformation
results of Bestvina and Walsh [13].

Let Cs be the mapping cylinder of. Form a PoincacomplexX; by pastingCs Uy
(=V) into T?" alongN, that is,

X1 =CUNCt Un (—V) Un D,
as shown in Figure 2. Our goal next goal is to define the map<; — Xo = T2".

FIGURE 2. The Poincag’complexX;.

Letg: N — N’ be a controlled homotopy inverset@ndG* = (g x id)oF: V — Nx|.
Using an estimated version of the Homotopy Extension Theorem (see e.g. [2]) and the
controlled Bestvina-Walsh Theorem, one can def@no ad—UV! mapG: V — N x|,
so thatG|y = g andG|y = In.

Let X{ = CUnCt Uy CgUn D andp;: Xg — X{ be as indicated in Figure 3. Crushing
Ct Uy Cg to N = 0C, we obtain the desired mag: X; — T2"=CuyD.

To conclude, as in [2], we argue thét is not homotopy equivalent to any closed topo-
logical manifold. To see this, consider the closed manifold

M=CUnVUn N x I Uy (=V)UnD

and the degree-one normal mppM — X; depicted in Figure 4, whem: N’ x | — Cs is
induced byf: N’ — N. The controlled surgery obstruction @fover T?" is o(¢) = Eg €
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FIGURE4. The mapp: M — Xj.

H, (T2ML(Z2). If 32 H, (T2 1L(Z2") — Lan (Z[Z2") is the forgetful mapF(Eg) =

Eg x T2", which generates the subgroup of transfer invariant elemeritsnoj%[ZZ“]).
SinceH. (TZ”; G/Top) acts trivially on transfer invariant elements, it follows that surgery
obstruction of any other normal may; — X is non-zero. ThusX; is not homotopy
equivalent to any topological manifold.

The Bryant-Ferry-Mio-Weinberger procedure for constructing an ENR homology man-
ifold starting with p1: X; — T?" leads to a homology manifold homotopy equivalent to
Xi1. Thus, from the quadratic forfag, we obtained a compact index-9 ENR homology
2n-manifold Xg which is not homotopy equivalent to any closed topological manifold.
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