are given by
$\eta\left(f_{*}(P, g)\right)=\eta(Q, h)=t(h, d)$,
$\left(f^{-1}\right)^{*} \eta(P, g)=\left(f^{-1}\right)^{*} \eta(g, c)=t\left(f^{\prime}, b^{\prime}\right) \in \mathcal{T}^{T O P}(M)=H_{n}(M ; \mathbb{L}$ • $)$,
differing by
$t(h, d)-t\left(f^{\prime}, b^{\prime}\right)=t(f, b) t\left(f^{\prime}, b^{\prime}\right) \in \mathcal{T}^{T O P}(M)=H_{n}(M ; \mathbb{L} \bullet)$.
Thus
$\eta(N, f)+\eta\left(f_{*}(P, g)\right)=t(f, b)+t(h, d)$

$$
\begin{aligned}
& =t(f, b)+t\left(f^{\prime}, b^{\prime}\right)+t(f, b) t\left(f^{\prime}, b^{\prime}\right) \\
& =\eta(N, f) \oplus \eta\left(N^{\prime}, f^{\prime}\right) \\
& =\eta(N, f) \oplus\left(f^{-1}\right)^{*} \eta(P, g) \in \mathcal{T}^{T O P}(M)=H_{n}\left(M ; \mathbb{L}_{\bullet}\right) .
\end{aligned}
$$

We conclude with a specific example, $M=S^{p} \times S^{q}$, one of the two cases for which the manifold structure composition formula $s(f g)=s(f)+f_{*} s(g)$ of Theorem 2.3 is used by Kreck and Lück [8].
Example 3.6. (i) Let $M=S^{p} \times S^{q}$ for $p, q \geqslant 2$, so that $\pi_{1}(M)=\{1\}$. The assembly map in quadratic L-theory is given by
$A: H_{p+q}(M ; \mathbb{L} \bullet)=L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z}) \oplus L_{p+q}(\mathbb{Z}) \rightarrow L_{p+q}(\mathbb{Z}) ;(x, y, z) \mapsto z$ and

$$
\mathcal{S}_{p+q+1}(M)=\operatorname{ker}(A)=L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z}) .
$$

The addition and intersection pairing in $H_{p+q}\left(M ; \mathbb{L}_{\bullet}\right)$ are given by

$$
\begin{aligned}
& (x, y, z)+\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right) \\
& (x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(0,0, x y^{\prime}+x^{\prime} y\right) \in H_{p+q}\left(M ; \mathbb{L}_{\bullet}\right)
\end{aligned}
$$

The product $L_{p}(\mathbb{Z}) \otimes L_{q}(\mathbb{Z}) \rightarrow L_{p+q}(\mathbb{Z})$ factors through $L_{p}(\mathbb{Z}) \otimes L^{q}(\mathbb{Z})$ and the quadratic and symmetric L-groups of \mathbb{Z} are given by

$$
L_{n}(\mathbb{Z})=\left\{\begin{array}{l}
\mathbb{Z} \\
0 \\
\mathbb{Z}_{2} \\
0
\end{array} \quad, L^{n}(\mathbb{Z})=\left\{\begin{array} { l }
{ \mathbb { Z } } \\
{ \mathbb { Z } _ { 2 } } \\
{ 0 } \\
{ 0 }
\end{array} \quad \text { for } n \equiv \left\{\begin{array}{ll}
0 & \\
1 \\
2 & (\bmod 4) \\
3 &
\end{array}\right.\right.\right.
$$

so the intersection pairing is non-zero only in the case $p \equiv q \equiv 0(\bmod 4)$. Given a topological normal map $(f, b): N \rightarrow M$ make f transverse regular at $S^{p} \times\{*\}$, $\{*\} \times S^{q} \subset M$ to obtain topological normal maps

$$
\begin{aligned}
& \left(f_{p}, b_{p}\right)=(f, b) \mid: N_{p}=f^{-1}\left(S^{p} \times\{*\}\right) \rightarrow S^{p}, \\
& \left(f_{q}, b_{q}\right)=(f, b) \mid: N_{q}=f^{-1}\left(\{*\} \times S^{q}\right) \rightarrow S^{q} .
\end{aligned}
$$

and write the surgery obstructions as
$\left(\sigma_{*}\left(f_{p}, b_{p}\right), \sigma_{*}\left(f_{q}, b_{q}\right), \sigma_{*}(f, b)\right)=\left(x_{f}, y_{f}, z_{f}\right) \in L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z}) \oplus L_{p+q}(\mathbb{Z})$.
The algebraic normal invariant defines a bijection

$$
\mathcal{T}^{T O P}(M) \rightarrow L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z}) \oplus L_{p+q}(\mathbb{Z}) ; \eta(f, b) \mapsto t(f, b)=\left(x_{f}, y_{f}, z_{f}\right) .
$$

The Whitney sum addition in $\mathcal{T}^{T O P}(M)$ corresponds to the addition
$(x, y, z) \oplus\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, x y^{\prime}+x^{\prime} y+z+z^{\prime}\right) \in L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z}) \oplus L_{p+q}(\mathbb{Z})$. Given a homotopy equivalence $f: N \rightarrow M$ let $(f, b): N \rightarrow M$ be the corresponding topological normal map. The function

$$
\mathcal{S}^{T O P}(M) \rightarrow L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z}) ; s(f) \mapsto\left(x_{f}, y_{f}\right)
$$

is a bijection, and

$$
t(f, b)=\left(x_{f}, y_{f}, 0\right) \in \mathcal{T}^{T O P}(M)=L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z}) \oplus L_{p+q}(\mathbb{Z}) .
$$

Given also a homotopy equivalence $g: P \rightarrow N$ with corresponding topological normal map (g, c) : $P \rightarrow N$ let

$$
f_{*} s(g)=\left(x_{g}, y_{g}\right) \in \mathcal{S}^{T O P}(M)=L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z}),
$$

so that

$$
f_{*} t(g, c)=\left(x_{g}, y_{g}, 0\right) \in \mathcal{T}^{T O P}(M)=L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z}) \oplus L_{p+q}(\mathbb{Z}) .
$$

As in the proof of Corollary 3.5 let $\left(f^{\prime}, b^{\prime}\right): N^{\prime} \rightarrow M$ be a topological normal map with topological normal invariant

$$
\eta\left(f^{\prime}, b^{\prime}\right)=\left(f^{-1}\right)^{*} \eta(g, c) \in \mathcal{T}^{T O P}(M),
$$

let $h: Q \rightarrow N$ be a homotopy equivalence with

$$
s(h)=f_{*} s(g)=\left(x_{g}, y_{g}\right) \in \mathcal{S}^{T O P}(M)=\mathcal{S}_{p+q+1}(M)=L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z})
$$

and let $(h, d): Q \rightarrow N$ be the corresponding topological normal map. Then $\eta(f, b) \oplus \eta\left(f^{\prime}, b^{\prime}\right)=\eta(f g, b c) \in \mathcal{T}^{T O P}(M)$,
$t\left(f^{\prime}, b^{\prime}\right)=\left(x_{g}, y_{g},-x_{f} y_{g}-x_{g} y_{f}\right), t(h, d)=\left(x_{g}, y_{g}, 0\right)$,
$t(f g, b c)=t(f, b)+f_{*} t(g, c)$
$=t(f, b) \oplus t\left(f^{\prime}, b^{\prime}\right)=t(f, b)+t\left(f^{\prime}, b^{\prime}\right)+t(f, b) t\left(f^{\prime}, b^{\prime}\right)$
$=\left(x_{f}+x_{g}, y_{f}+y_{g}, 0\right) \in H_{p+q}(M ; \mathbb{L} \mathbf{\bullet})=L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z}) \oplus L_{p+q}(\mathbb{Z})$,
$s(f g)=s(f)+f_{*} s(g)=\left(x_{f}+x_{g}, y_{f}+y_{g}\right) \in \mathcal{S}^{T O P}(M)=L_{p}(\mathbb{Z}) \oplus L_{q}(\mathbb{Z})$.
(ii) For the simplest example of the non-additivity of the surgery obstruction unction

$$
\theta: \mathcal{T}^{T O P}(M) \rightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(M)\right]\right)
$$

with respect to \oplus set $p=q=4$ in (i), and let $f: N \rightarrow M=S^{4} \times S^{4}$ be a homotopy equivalence with

$$
s(f)=(x, y) \in \mathcal{S}^{T O P}(M)=L_{4}(\mathbb{Z}) \oplus L_{4}(\mathbb{Z}),
$$

$t(f, b)=(x, y, 0) \in \mathcal{T}^{T O P}(M)=L_{4}(\mathbb{Z}) \oplus L_{4}(\mathbb{Z}) \oplus L_{8}(\mathbb{Z})$,
$\theta(\eta(f, b))=\sigma_{*}(f, b)=A(t(f, b))=0 \in L_{8}(\mathbb{Z})$
for any $x, y \in \mathbb{Z} \backslash\{0\}$. By (i) a homotopy inverse $g=f^{-1}: P=M \rightarrow N$ is then such that
$f_{*} s(g)=-s(f)=(-x,-y) \in \mathcal{S}^{T O P}(M)=L_{4}(\mathbb{Z}) \oplus L_{4}(\mathbb{Z})$,
$f_{*} t(g, c)=-t(f, b)=(-x,-y, 0) \in \mathcal{T}^{T O P}(M)=L_{4}(\mathbb{Z}) \oplus L_{4}(\mathbb{Z}) \oplus L_{8}(\mathbb{Z})$
and a topological normal map $\left(f^{\prime}, b^{\prime}\right): N^{\prime} \rightarrow M$ with topological normal invariant $\eta\left(f^{\prime}, b^{\prime}\right)=\left(f^{-1}\right)^{*} \eta(g, c)$ has
$t\left(f^{\prime}, b^{\prime}\right)=(-x,-y, 2 x y) \in \mathcal{T}^{T O P}(M)=L_{4}(\mathbb{Z}) \oplus L_{4}(\mathbb{Z}) \oplus L_{8}(\mathbb{Z})$,
$\theta\left(\eta\left(f^{\prime}, b^{\prime}\right)\right)=\sigma_{*}\left(f^{\prime}, b^{\prime}\right)=A\left(t\left(f^{\prime}, b^{\prime}\right)\right)=2 x y \neq 0 \in L_{8}(\mathbb{Z})=\mathbb{Z}$.
The Whitney sum
$\eta(f, b) \oplus \eta\left(f^{\prime}, b^{\prime}\right)=\eta(f g, b c)=\eta(1: M \rightarrow M)=0 \in \mathcal{T}^{T O P}(M)$
has surgery obstruction
$\sigma_{*}(f g, b c)=\sigma_{*}(f, b)+\sigma_{*}\left(f^{\prime}, b^{\prime}\right)+A\left(t(f, b) t\left(f^{\prime}, b^{\prime}\right)\right)=0+2 x y-2 x y=0 \in L_{8}(\mathbb{Z})$,
so
$\theta\left(\eta(f, b) \oplus \eta\left(f^{\prime}, b^{\prime}\right)\right)=0 \neq \theta(\eta(f, b))+\theta\left(\eta\left(f^{\prime}, b^{\prime}\right)\right)=2 x y \in L_{8}(\mathbb{Z})=\mathbb{Z}$.

Remark 3.7. See the preprint by Jahren and Kwasik [5] for an application of the composition formula obtained in this paper to the classification of free involutions on $S^{1} \times S^{n}$ for $n \geqslant 3$.

References

[1] G.Brumfiel, Homotopy equivalences of almost smooth manifolds, Comm. Math. Helv. 46 381-407 (1971)
[2] S.Cappell and S.Weinberger, A geometric interpretation of Siebenmann's periodicity phe nomenon, Geometry and topology (Athens, Ga., 1985), Lecture Notes in Pure and Appl. Math. 105, 47-52, Dekker (1987)
[3] G.E.Cooke, The Hauptvermutung according to Casson and Sullivan (1968), published in The Hauptvermutung Book, 165-187, Kluwer (1996)
4] M.Freedman and F.Quinn, Topology of 4 -manifolds, Princeton Mathematical Series 39, Princeton University Press (1990)
5] B.Jahren and S.Kwasik, Free involutions on $S^{1} \times S^{n}$, ArXiv e-print math.GT/08022035 (2008)

6] L.Jones, Patch spaces: a geometric represntation for Poincaré spaces, Ann. of Maths. 97 , 306-343 (1973), Corrections for patch spaces, ibid. 102, 183-185 (1975)
[7] R.Kirby and L.Siebenmann, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Annals of Mathematics Studies 88, Princeton (1977)
8] M.Kreck and W.Lïck, Topological rigidity for non-aspherical manifolds, to appear in the Hirzebruch 80th birthday volume of the Quarterly Journal of Pure and Applied Mathematics, Part 2, e-print arXiv:math.GT/0509238
9] T.Kro, Geometrically defined group structures in 3 -dimensional surgery, Oslo Cand. Scient Thesis (2000), http://www.maths.ntnu.no/toreak/hopp.pdf
[10] I.Madsen, L.Taylor and B.Williams, Tangential homotopy equivalences, Comm. Math. Helv 55, 445-484 (1980)
11] A.Nicas, Induction theorems for groups of homotopy manifold structures. Memoirs AMS 267 (1982)
[12] F.Quinn, A geometric formulation of surgery, Topology of manifolds, Proceedings 1969 Georgia Topology Conference, Markham Press, 500-511 (1970)

[14] A.A.Ranicki, The total surgery obstruction, Proc. 1978 Arhus Topology Conference, Springer Lecture Notes in Mathematics 763, 275-316 (1979)
[15] \quad, The algebraic L-theory of surgery I. Foundations, Proc. L.M.S. (3) 40, 87-192
[16]
——, The algebraic L-theory of surgery II. Applications to topology, Proc. L.M.S. (3) 40 193-283 (1980)

A Composition Formula for Manifold Structures

[17] , Algebraic L-theory and topological manifolds, Tracts in Mathematics 102, Cam bridge (1992)
18] ._Singularities, double points, controlled topology and chain duality, Documenta Math. 4, 1-59 (1999)
19] _—_ and M.Weiss, Chain complexes and assembly, Math. Z. 204, 157-185 (1990)
20] L.Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11, 271-294 (1972)
[22] C.T.C.Wall, Poincaré complexes, Ann. Math. 86, 213-245 (1967)
Andrew Ranicki
School of Mathematics and Maxwell Institute for Mathematical Sciences
University of Edinburgh
Edinburgh EH9 3JZ
Scotland, UK
E-mail: A.Ranicki@ed.ac.uk

