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Preface

On my first day as a graduate student at Cambridge in October, 1970 my
official Ph.D. supervisor Frank Adams suggested I work on surgery theory.
In September he had attended the International Congress at Nice, where
Novikov had been awarded the Fields Medal for his work in surgery. Novikov
was prevented by the Soviet authorities from going to the Congress himself,
and his lecture on hermitian K-theory [219] was delivered by Mishchenko.
As usual, Frank had taken meticulous notes, and presented me with a copy.
He also suggested I look at ‘Novikov’s recent paper in Izvestia’. This recom-
mendation was quite mysterious to me, since at the time I knew of only one
publication called Izvestia, and I couldn’t imagine that journal publishing
an article on topology. I was too shy to ask, but a visit to the library of
the Cambridge Philosophical Society soon enlightened me. I started work on
Novikov’s paper [218] under the actual supervision of Andrew Casson, using
a translation kindly provided by Dusa McDuff. (Andrew could not be my
official supervisor since he did not have a Ph.D. himself). Ultimately, my
reading of [218] became my Ph.D. thesis, which was published as Ranicki
[230], [231]. Frank had remained my official supervisor, being ever helpful in
answering my many queries on algebraic topology, and generally keeping me
under his protective wing. I dedicate this book to his memory, as a token of
my gratitude to him.*

Edinburgh, June 1998

This is a reprint of the published version of the book, which includes the
corrections and additional comments posted on
http://www.maths.ed.ac.uk/̃ aar/books/knoterr.pdf

April 2016

* After the book was published I came across a statement of Frank Adams
which makes the dedication of the book even more appropriate: ‘Of course,
from the point of view of the rest of mathematics, knots in higher-dimensional
space deserve just as much attention as knots in 3-space’ (article on topology,
in ’Use of Mathematical Literature’ (Butterworths (1977)).
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Introduction

Knot theory high and low

An n-dimensional knot (M,N, k) is an embedding of an n-dimensional man-
ifold Nn in an (n+ 2)-dimensional manifold Mn+2

k : Nn ⊂Mn+2 .

An n-knot is a knot of the type (Sn+2, Sn, k). In general, n can be any positive
integer. A classical knot is a 1-knot k : S1 ⊂ S3.

The homological algebra methods of surgery theory apply to n-dimensional
knots for all n ≥ 1. This book is mainly concerned with knots in the high
dimensions n ≥ 4, for which there is a much closer correspondence between
this type of algebra and the topology than in the low dimensions n = 1, 2, 3.
However, the story begins with the classical case n = 1.

The mathematical study of knots started in the 19th century, with the
work of Gauss.1 Towards the end of the century, P.G.Tait (working in Ed-
inburgh) tabulated all the classical knots with ≤ 10 crossings. It was only
in the 20th century that a systematic theory of knots was developed. Many
algebraic and geometric techniques have been invented and used to deal with
classical knots : a large number of invariants is available, including the funda-
mental group of the knot complement, the Alexander polynomial, the Seifert
matrix, assorted signatures, the Jones polynomial, the Vassiliev invariants,
. . . , although we are still short of a complete classification. The last 20 years
have seen a particular flourishing of classical knot theory, involving deep
connections with 3-manifold topology, physics and biology. There is a large
literature at various levels, including the books by C. Adams [2], Atiyah [12],
Burde and Zieschang [34], Crowell and Fox [59], Kauffman [121], Lickorish
[166], Livingston [168], Murasugi [207], Reidemeister [250], and Rolfsen [253].

Although high-dimensional knot theory does not have such glamorous
applications as classical knot theory, it has many fascinating results of its own,
which make use of a wide variety of sophisticated algebraic and geometric
methods. This is the first book devoted entirely to high-dimensional knot

1 See Epple [68], [69], [70] for the history of knot theory.
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theory, which previously has been largely confined to research and survey
papers. The book actually has two aims :

(i) to serve as an introduction to high-dimensional knot theory, using
surgery theory to provide a systematic exposition,

(ii) to serve as an introduction to algebraic surgery theory, using high-
dimensional knots as the geometric motivation.

The topological properties of high-dimensional knots are closely related
to the algebraic properties of modules and quadratic forms over polynomial
extensions. The main theme of the book is the way in which this relationship
is essential to both (i) and (ii). High-dimensional knot theory has a some-
what deserved reputation as being an arcane geometric machine – I hope
that aim (i) is sufficiently achieved to demystify the geometry, and make it
more accessible to algebraic topologists. Likewise, surgery theory has a some-
what deserved reputation as being an arcane algebraic machine – I hope that
aim (ii) is sufficiently achieved to demystify the algebra, and make it more
accessible to geometric topologists.

Knot theory is a good introduction to surgery since it is easier to visualize
knots than manifolds. Many surgery invariants can be viewed as generaliza-
tions of (high-dimensional) knot invariants. For example, the self intersection
quadratic form µ used by Wall [304] to define the surgery obstruction of a
normal map is a generalization of the matrix associated by Seifert [263] to
a spanning surface for a classical knot. Moreover, the plumbing construc-
tion in [304, Chap. 5] of normal maps with prescribed quadratic form is a
generalization of the construction in [263] of classical knots with prescribed
matrix.

Artin [8] produced the first non-trivial examples of 2-knots S2 ⊂ S4, by
spinning classical knots S1 ⊂ S3.

The theory of n-knots Sn ⊂ Sn+2 and more general n-dimensional knots
Nn ⊂ Mn+2 evolved with the work of Whitney on removing singularities in
the 1940s, Thom’s work on transversality and cobordism in the 1950s, the
h-cobordism theorem for manifolds of dimension n ≥ 5 of Smale in 1960
and the consequent surgery theory of high-dimensional manifolds and their
submanifolds. The last 35 years have seen the growth of a large body of re-
search literature on codimension 2 embeddings of high-dimensional manifolds
in the differentiable, piecewise linear and topological categories. However, it
is certainly not the aim of this book to provide a comprehensive account of
all the methods and results of high-dimensional knot theory!2 The book has
the more limited objective of providing an exposition of the algebraic surgery

2 In particular, there is very little about links ∪Sn ⊂ Sn+2, and not much about
the connections between knots and singularities, or about the homotopy-theoretic
aspects of high-dimensional knot theory.
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method for the construction and classification of high-dimensional knots in
the topological category.

The pre-1981 applications of high-dimensional surgery theory to codimen-
sion 2 embeddings were considered in Chap. 7 of Ranicki [237] – however, at
the time algebraic surgery was not so highly developed, and the treatment
still relied on geometric transversality. The current treatment makes full use
of the algebraic analogues of transversality obtained by the author since 1981.

Knotty but nice

Two embeddings k0, k1 : Nn ⊂ Mm are concordant (or cobordant) if there
exists an embedding

ℓ : N × [0, 1] −−→ M × [0, 1] ; (x, t) −−→ ℓ(x, t)

such that

ℓ(x, 0) = (k0(x), 0) , ℓ(x, 1) = (k1(x), 1) (x ∈ N) .

Two embeddings k0, k1 : N ⊂ M are isotopic if there exists a cobordism
ℓ which is level-preserving, with

ℓ(N × {t}) ⊂M × {t} (t ∈ [0, 1]) .

Isotopy is a considerably stronger equivalence relation than concordance –
much in the way that the isomorphism of quadratic forms is stronger than
stable isomorphism.

Two embeddings k0, k1 : N ⊂ M are equivalent if there exists a homeo-
morphism h :M−−→M such that

hk0(N) = k1(N) ⊂M .

If h is isotopic to the identity then k0, k1 are isotopic. Every orientation-
preserving homeomorphism h : Sm−−→Sm is isotopic to the identity, so for
embeddings k : Nn ⊂ Sm

equivalent = isotopic =⇒ cobordant .

An embedding k : Sn ⊂ Sm is unknotted if it is equivalent to the trivial
knot k0 : Sn ⊂ Sm defined by the standard embedding

k0 : Sn −−→ Sm ; (x0, x1, . . . , xn) −−→ (x0, x1, . . . , xn, 0, . . . , 0) .

These definitions are particularly significant for knots, that is embeddings
with codimension m− n = 2.
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Why 2?

A knot is a codimension 2 embedding. What about embeddings k : Nn ⊂Mm

with codimension m− n ̸= 2? Zeeman [316] and Stallings [274] proved that
embeddings k : Sn ⊂ Sm with codimension m− n ≥ 3 are unknotted in the
piecewise linear and topological categories.3 Thus topological knotting only
starts in codimension 2. Many algebraic invariants have been developed to
classify the knotting properties of codimension 2 embeddings. Codimension
1 embeddings are almost as interesting as codimension 2 embeddings, al-
though they do not have the intuitive appeal of classical knot theory. In fact,
codimension 1 embeddings deserve a book of their own! In any case, many
of the techniques used in codimension 2 make crucial use of codimension 1
embeddings, such as spanning surfaces.

The fundamental group

The study of knots necessarily involves the fundamental group, as well as
the higher homotopy groups and homology. The isomorphism class of the
fundamental group π1(X) of the complement of a knot (M,N, k)

X = M\k(N)

is an invariant of the equivalence class. The algebraic theory developed in
this book works with modules over an arbitrary ring, reflecting the major
role of the fundamental group π1(X) and the group ring Z[π1(X)] in the
classification of knots (M,N, k).

The fundamental group π1(X) of the complement X = S3\k(S1) of a
classical knot k : S1 ⊂ S3 was the first knot invariant to be studied by the
methods of algebraic topology, serving to distinguish many classical knots
k : S1 ⊂ S3. Dehn’s Lemma (formulated in 1910, but only finally proved
by Papakyriakopoulos in 1956) states that a classical knot k : S1 ⊂ S3 is
unknotted if and only if π1(X) = Z. The complement X = Sn+2\k(Sn) of
any n-knot k : Sn ⊂ Sn+2 has the homology of a circle by Alexander duality,
H∗(X) = H∗(S

1). Levine [153] proved that for n ≥ 4 an n-knot k : Sn ⊂ Sn+2

is unknotted if and only if the complement X is homotopy equivalent to a
circle, i.e. if and only if π∗(X) = π∗(S

1). This unknotting criterion also holds
for n = 3 by Levine [158] and Trotter [292], and for n = 2 by Freedman [85]
(in the topological category). Thus homology does not see knotting, while
homotopy detects unknotting.

3 There is codimension ≥ 3 knotting in the differentiable category. Differentiable
embeddings k : Sn ⊂ Sm with m − n ≥ 3 were classified by Haefliger [100] and
Levine [154].
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Local flatness

An n-dimensional knot (Mn+2, Nn, k) is locally flat at x ∈ N if x has a
neighbourhood in (M,k(N)) which is homeomorphic to (Rn+2,Rn). The knot
is locally flat if it is locally flat at every x ∈ N .

Given an n-dimensional PL knot (Mn+2, Nn, k) there is defined at every
point x ∈ N a PL embedding

starM (x) ∩N = starN (x) = Dn ⊂ starM (x) = Dn+2

which could be knotted, i.e. not PL equivalent to the standard embedding
Dn ⊂ Dn+2. The restriction to the links defines a PL (n− 1)-knot

kx : linkM (x) ∩N = linkN (x) = Sn−1 ⊂ linkM (x) = Sn+1 .

The knot type of kx is a measure of the local singularity of the topology of
k at x : if k is locally flat at x then kx : Sn−1 ⊂ Sn+1 is unknotted (Fox and
Milnor [82], with n = 2).4

Unless specified otherwise, from now on knots (Mn+2, Nn, k) will be taken
to be locally flat, i.e. only knots which are locally unknotted will be considered.

Surgery theory can also deal with non-locally flat knots, such as arise from
singular spaces (Cappell and Shaneson [42], [46], [47]). However, non-locally
flat knots require special techniques, such as intersection homology.

For any (locally flat) knot (Mn+2, Nn, k) the codimension 2 submanifold
k(N) ⊂ M has a normal bundle, that is a closed regular neighbourhood
(P, ∂P ) which is the total space of a bundle

(D2, S1) −−→ (P, ∂P ) −−→ k(N) .

Unless specified otherwise, from now on knots (Mn+2, Nn, k) will be taken
to be oriented, with M,N compact and the normal bundle of k : N ⊂ M
compatibly oriented.

The exterior of a knot (Mn+2, Nn, k) is the codimension 0 submanifold
of M

(X, ∂X) = (closure(M\P ), ∂P )
with a homotopy equivalence to the knot complement

X ≃ M\k(N) .

A locally flat knot (Mn+2, Nn, k) is homology framed if

k[N ] = 0 ∈ Hn(M)

and the normal bundle of k(N) ⊂M is framed

(P, ∂P ) = k(N)× (D2, S1) ,

4 High-dimensional knots arise in a similar way at isolated singular (i.e. non-
manifold) points of a complex hypersurface V 2i ⊂ S2i+1 ⊂ CPi+1 – see the
section Fibred knots and open books further below in the Introduction.
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with a given extension of the projection ∂X = ∂P−−→S1 to a map p :
X−−→S1. Every n-knot (Sn+2, Sn, k) is homology framed, in an essentially
unique manner. Homology framed knots are particularly tractable – for ex-
ample, the knot complement has a canonical infinite cyclic cover, and the
knot admits a codimension 1 spanning (= Seifert) surface.

Polynomials

Many knot invariants involve the Laurent polynomial extension ring A[z, z−1]
of a ring A, in the first instance for A = Z.

Given a homology framed knot (M,N, k) with exterior X = cl.(M\N ×
D2) let X = p∗R be the infinite cyclic cover of X classified by the map
p : X−−→S1

X //

��

R

��
X

p // S1

and let ζ : X−−→X be a generating covering translation. The Laurent poly-
nomial ring Z[z, z−1] acts on the homology groups H∗(X), with z = ζ∗ :
H∗(X)−−→H∗(X), and also on the fundamental group π1(X). The funda-
mental group of X is the ζ∗-twisted extension of π1(X) by Z

π1(X) = π1(X)×ζ∗ Z = {gzj | g ∈ π1(X), j ∈ Z} ,

with ζ∗ : π1(X)−−→π1(X) the induced automorphism and gz = zζ∗(g). The
group ring of π1(X) is the ζ∗-twisted Laurent polynomial extension ring of
the group ring of π1(X)

Z[π1(X)] = Z[π1(X)]ζ∗ [z, z
−1] .

In particular, if ζ∗ = 1 : π1(X)−−→π1(X) then

π1(X) = π1(X)× Z , Z[π1(X)] = Z[π1(X)][z, z−1] .

The Alexander polynomial ([4]) of a classical knot k : S1 ⊂ S3

∆(z) ∈ Z[z, z−1]

is the basic polynomial invariant of the knot complement X = S3\k(S1),
with

∆(1) = 1 , ∆(z)H1(X) = 0 .

(See Chaps. 17, 33 for the Alexander polynomials of n-knots.) The Alexander
polynomial was the first application of polynomial extension rings to knot the-
ory. Many of the abstract algebraic results in this book concern modules and
quadratic forms over Laurent polynomial extensions, which are then applied
to high-dimensional knots (M,N, k) by considering the algebraic topology of
the complement X =M\k(N).
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Seifert surfaces

Transversality is a key ingredient of knot theory. For example, every classical
knot k : S1 ⊂ R3 (regarding R3 as a subset of S3) has plane projections,
that is functions f : R3−−→R2 such that fk : S1−−→R2 is an immersion
with a finite number of transverse self-intersections. Plane projections are
not unique. The minimum number of self-intersections in a plane projection
is the crossing number of k. This was the first knot invariant, measuring the
‘knottedness’ of k.

A Seifert (or spanning) surface for a homology framed knot (Mn+2, Nn, k)
is a codimension 1 submanifold Fn+1 ⊂ Mn+2 with boundary ∂F = k(N)
and trivial normal bundle F × [0, 1] ⊂ M . Seifert surfaces can be regarded
as higher-dimensional analogues of knot projections. Seifert surfaces are in
fact the main geometric tool of high-dimensional knot theory, with surgery
theory providing the means for transforming one Seifert surface into another.

Codimension 1 transversality guarantees the existence of Seifert surfaces
for a homology framed knot (Mn+2, Nn, k) – make the map on the knot
exterior

p : (cl.(M\(k(N)×D2)), k(N)× S1) −−→ S1

transverse regular at 1 ∈ S1 and set

(Fn+1, ∂F ) = (p−1(1), k(N)) ⊂Mn+2 .

Isolated instances of singular (i.e. immersed) spanning surfaces for classical
knots already feature in the work of Tait [283], as in the following example
of an ‘autotomic’ surface spanning the trefoil knot :

Nonsingular spanning surfaces for classical knots were first obtained by
Frankl and Pontrjagin [83]. Seifert [263] obtained a spanning surface of a knot
k : S1 ⊂ S3 from any knot projection, and defined the genus of k to be

genus(k) = min {genus(F )} ,

the minimum genus of a spanning surface F 2 ⊂ S3 with

genus(F ) =
1

2
rankH1(F ) ≥ 0 .

The genus of an alternating knot was shown in [263] to be the genus of the
Seifert surface determined by an alternating knot projection.
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The intersection properties of H1(F ) were used in [263] to construct the
Seifert matrix of a Seifert surface F of a classical knot k : S1 ⊂ S3, a 2g× 2g
matrix V over Z with g = genus(F ). The difference between V and the
transpose V t is an invertible 2g×2g matrix V −V t, so that det(V −V t) = ±1,
with

V − V t : H1(F )
≃−−→ H1(F )

∗ = HomZ(H1(F ),Z) = H1(F )

the Poincaré duality isomorphism of F . The Seifert matrix determines the
Alexander polynomial by

∆(z) = ±det(V − zV t) ∈ Z[z, z−1] .

The signature of k

σ(k) = signature (H1(F ), V + V t) ∈ Z

is another classical knot invariant which can be defined using the Seifert form.
The Seifert matrix is the most versatile algebraic artefact of a classical knot,
although the high degree of non-uniqueness of Seifert surfaces has to be taken
into account in the applications.

According to Kervaire and Weber [134] the existence of Seifert surfaces for
high-dimensional n-knots ‘seems to have become public knowledge during the
Morse Symposium at Princeton in 1963. . . . It appears in print in Kervaire
[131] and Zeeman [316]’. (See also Kervaire [130,Appendix]). Seifert surfaces
for arbitrary high-dimensional homology framed knots were obtained by Erle
[71].

Every n-knot k : Sn ⊂ Sn+2 is of the form k = ℓx (constructed as in the
section Local flatness above) for some non-locally flat knot ℓ : Gn+1 ⊂ Sn+3

with unique singular point x ∈ G, as follows. Let i : F̂n+1 ⊂ Dn+3 be the
locally flat embedding of a codimension 2 Seifert surface obtained by pushing
a Seifert surface Fn+1 ⊂ Sn+2 for k into Dn+3 relative to the boundary
∂F = k(Sn). For x = 0 ∈ Dn+3 identify the cone x ∗ k(Sn) with Dn+1, and
let

j : x ∗ k(Sn) = Dn+1 −−→ Dn+3

be the inclusion. The union

ℓ = i ∪ j : Gn+1 = F̂n+1 ∪∂ Dn+1 ⊂ Dn+3 ∪∂ Dn+3 = Sn+3

defines a non-locally flat embedding with ℓx = k.

The results of Levine [153], [156] show that for n ≥ 3 an n-knot k : Sn ⊂
Sn+2 is unknotted (resp. null-cobordant) if and only if k admits a contractible
Seifert surface in Sn+2 (resp. Dn+3). One way of applying surgery to knot
theory is to start with an arbitrary Seifert surface F for k, and then try to
modify the codimension 1 (resp. 2) submanifold F ⊂ Sn+2 (resp. Dn+3) by
surgery5, making F as contractible as possible.

5 See the section Codimension q surgery further below in the Introduction for the
basic definitions.
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There are two types of invariants for n-knots k : Sn ⊂ Sn+2 : the intrinsic
invariants of the infinite cyclic cover of the knot complement, and the extrinsic
ones associated with the Seifert surfaces. There is a similar distinction for the
invariants of arbitrary homology framed knots (M,N, k). The two types of
invariants determine each other, although in practice it is not always easy to
work out the details of the correspondence. One of the aims of this book is
to show how algebraic K- and L-theory can be used to define both types of
invariants, and also to relate them to each other.

Fibred knots and open books

A knot (Mn+2, Nn, k) is fibred if it is homology framed and the canonical
projection p : X−−→S1 on the exteriorX = cl.(M\(k(N)×D2)) is (homotopic
to) a fibre bundle, or equivalently if there exists a Seifert surface Fn+1 ⊂M
with a monodromy self homeomorphism h : F−−→F such that :

(i) h| = 1 : ∂F = k(N)−−→∂F ,
(ii) M = k(N)×D2 ∪k(N)×S1 T (h), with

T (h) = (F × [0, 1])/{(x, 0) ∼ (h(x), 1) |x ∈ F}

the mapping torus of h, so that X = T (h).

Following Winkelnkemper [311], M is called an open book with page F and
binding N .6

For the sake of simplicity only fibre bundles over S1 and open books with

h∗ = 1 : π1(F ) −−→ π1(F )

will be considered, so that

π1(M\k(N)) = π1(X) = π1(T (h)) = π1(F )× Z .

The discovery of exotic spheres by Milnor [190], the h-cobordism theorem
of Smale, and the surgery classification of exotic spheres in dimensions ≥ 5
by Kervaire and Milnor [133] were powerful incentives to the extension of
classical knot theory to knots (Sn+2, Nn, k) (n ≥ 1), initially for differentiable
n-knots by Kervaire [130], [131]. It was proved in [130,Appendix] that an
exotic n-sphere Σn admits a (differentiable) embedding k : Σn ⊂ Sn+2 if
and only if Σn is the boundary of a parallelizable (n + 1)-manifold (e.g. a
Seifert surface Fn+1 ⊂ Sn+2), in which case Σn represents an element of the
group bPn+1 of [133].

6 See the Appendix by Winkelnkemper for the history and applications of open
books.
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Singular points of complex hypersurfaces (the title of Milnor [196]) pro-
vided a large supply of differentiable knots (Sn+2, Σn, k) with Σn an exotic
n-sphere : given complex variables z0, z1, . . . , zi and integers a0, a1, . . . , ai ≥ 2
there is defined a fibred knot (S2i+1, N, k) with

k : N2i−1 = Σ(a0, a1, . . . , ai) = V (f) ∩ S2i+1 ⊂ S2i+1

where

f : C i+1 −−→ C ; (z0, z1, . . . , zi) −−→ z a00 + z a11 + . . .+ z aii ,

V (f) = {(z0, z1, . . . , zi) ∈ C i+1 | f(z0, z1, . . . , zi) = 0} ,

S2i+1 = {(z0, z1, . . . , zi) ∈ C i+1 | |z0|2 + |z1|2 + . . .+ |zi|2 = 1} .

The (2i − 1)-dimensional manifold N is (i − 2)-connected, and the fibre
of X = cl.(S2i+1\(N × D2))−−→S1 is an (i − 1)-connected 2i-dimensional
Seifert surface F 2i ⊂ S2i+1. The precise topological and differentiable nature
of N2i−1 ⊂ S2i+1 has been the subject of many investigations, ever since
Brieskorn [26] identified certain N = Σ(a0, a1, . . . , ai) as exotic spheres.

Fibred knots (M,N, k) play an especially important role in the develop-
ment of high-dimensional knot theory. On the one hand, the complex hy-
persurface knots (S2i+1, N2i−1, k) are fibred, and the invariants of fibred
knots have many special features, e.g. the fibre is a minimal Seifert sur-
face, with unimodular Seifert matrix, and the extreme coefficients of the
Alexander polynomials are ±1 ∈ Z. On the other hand, surgery theory
provided ways of recognizing algebraically if a high-dimensional homology
framed knot (Mn+2, Nn, k) is fibred. In general, the fundamental group
π1(X) = ker(p∗ : π1(X)−−→Z) of the infinite cyclic cover X of the exterior
X = cl.(M\(k(N) ×D2)) is infinitely generated, but for a fibred knot X is
homotopy equivalent to the fibre F and π1(X) = π1(F ) is finitely presented.
For an n-knot (Sn+2, Sn, k)

H1(X) = H1(S
1) = Z , π1(X) = [π1(X), π1(X)] .

Stallings [273] proved that a classical knot k : S1 ⊂ S3 is fibred if and only
if π1(X) is finitely generated. Browder and Levine [31] proved that for n ≥ 4
a homology framed knot (Mn+2, Nn, k) with π1(X) = Z is fibred if and
only if H∗(X) is finitely generated over Z. Farrell [78] and Siebenmann [267]
generalized this result to the non-simply-connected case, using the finiteness
obstruction of Wall [302] and Whitehead torsion : the fibering obstruction
Φ(Y ) ∈ Wh(π1(Y )) is defined for a finite CW complex Y with a finitely
dominated infinite cyclic cover Y (a band), and for n ≥ 4 a homology framed
knot (Mn+2, Nn, k) is fibred if and only if the infinite cyclic cover X of the
exterior X is finitely dominated and Φ(X) = 0 ∈Wh(π1(X)).

Winkelnkemper [311] and Quinn [227] applied surgery theory to investi-
gate the existence and uniqueness of open book decompositions for manifolds
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of dimension ≥ 6, and the closely related bordism groups of diffeomorphisms
∆∗. These results are reproved in Chap. 29 using the algebraic Poincaré com-
plexes of Ranicki [235], [236].

Knot cobordism

The connected sum of n-knots k1, k2 : Sn ⊂ Sn+2 is the n-knot

k1#k2 : Sn#Sn = Sn ⊂ Sn+2#Sn+2 = Sn+2 .

An n-knot k : Sn ⊂ Sn+2 is slice if there exists an (n + 1)-dimensional
knot ℓ : Dn+1 ⊂ Dn+3 with ℓ| = k, or equivalently if k is null-cobordant. The
hypothesis of local flatness is crucial here, since the cone on k(Sn) ⊂ Sn+2 is
a non-locally-flat null-cobordism Dn+1 ⊂ Dn+3.

Fox and Milnor [82] defined the abelian group C1 of cobordism classes
of 1-knots k : S1 ⊂ S3, with addition by connected sum, and the trivial
knot k0 : S1 ⊂ S3 as the zero element. The group C1 is countably infinitely
generated. The motivation for the definition of C1 came from the construction
of the 1-knots (S3, S1, kx) (already recalled in the section Locally flat above)
from non-locally flat PL knots (M4, N2, κ) (x ∈ N). It was proved in [82]
that the connected sum of 1-knots k1, k2, . . . , kr : S

1 ⊂ S3 is slice if and only
if there exists a non-locally flat 2-knot κ : S2 ⊂ S4 with ki = kxi (1 ≤ i ≤ r)
the 1-knots defined at the points x1, x2, . . . , xr ∈ S2 where κ is not locally
flat.

Kervaire [131] defined cobordism for n-knots k : Sn ⊂ Sn+2 for all n ≥ 1.
The group of cobordism classes of n-knots with addition by connected sum is
denoted by Cn. An n-knot k is such that [k] = 0 ∈ Cn if and only if k is slice.
If ℓ : Nn+1 ⊂Mn+3 is a non-locally flat embedding with a single non-locally
flat point x ∈ N there is defined a (locally flat) n-knot k = kx : Sn ⊂ Sn+2

as before. The n-knot k is slice if and only if the singularity of ℓ at x can be
‘resolved’, with ℓ replaced near x by a locally flat embedding.

The algebraic determination of the knot cobordism groups C∗ was a major
preoccupation of high-dimensional knot theorists in the 1960s and 1970s. The
algebraic structure of Cn for n ≥ 3 was worked out in [131], Levine [156], [157]
and Stoltzfus [278], with

Cn = Cn+4 , C2i = 0

and both C4∗+1 and C4∗+3 are countably infinitely generated of the type⊕
∞

Z⊕
⊕
∞

Z2 ⊕
⊕
∞

Z4 .
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(See Chap. 42 for the structure of C2i+1 for i ≥ 1). The classical knot cobor-
dism group C1 is still fairly mysterious, with the kernel of the natural sur-
jection C1−−→C4j+1 known to be non-trivial, by virtue of the invariants of
Casson and Gordon [48].

Simple knots

An n-knot k : Sn ⊂ Sn+2 is simple if it satisfies one of the following equivalent
conditions :

(i) the knot complement X = Sn+2\k(Sn) is such that

πr(X) = πr(S
1) for 1 ≤ r ≤ (n− 1)/2 ,

(ii) k admits a Seifert surface Fn+1 ⊂ Sn+2 such that π1(F ) = {1} and

Hr(F ) = 0 for 1 ≤ r ≤ (n− 1)/2 .

Every classical knot k : S1 ⊂ S3 is simple. For n ≥ 2 every n-knot k : Sn ⊂
Sn+2 is cobordant to a simple n-knot. The (2i − 1)-knots k : S2i−1 ⊂ S2i+1

constructed by Milnor [196] from singular points of complex hypersurfaces
are simple and fibred, with (i− 1)-connected fibre F 2i.

Seifert surfaces and simply-connected surgery theory were used by Ker-
vaire [131] to characterize the homotopy groups π∗(X) of the complements
X = Sn+2\k(Sn) of high-dimensional n-knots k : Sn ⊂ Sn+2 (see also Wall
[304, p. 18]), and to prove that Cn is isomorphic to the cobordism group of
simple n-knots, with C2i = 0 (i ≥ 2). Levine [155] obtained polynomial in-
variants of an n-knot k from the homology H∗(X) of the infinite cyclic cover
X of X, generalizing the Alexander polynomial. The high-dimensional knot
polynomials were used in [155] to characterize the rational homology groups
H∗(X;Q) as Q[z, z−1]-modules, and (working in the differentiable category)
were related to the exotic differentiable structures on spheres. Much work was
done in the mid-1960s and early 1970s on the isotopy classification of simple
n-knots Sn ⊂ Sn+2, using the Alexander polynomials, the Seifert matrix and
the Blanchfield linking form – see Chaps. 33, 42 for references.

Surgery theory

The Browder–Novikov–Sullivan–Wall surgery theory developed in the 1960s
brought a new methodology to high-dimensional knot theory, initially for
n-knots Sn ⊂ Sn+2 and then for arbitrary codimension 2 embeddings
Nn ⊂ Mn+2. Surgery theory was then extended to 4-dimensional mani-
folds with certain fundamental groups by Freedman and Quinn [86], but
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low-dimensional manifolds have so many distinctive features that the high-
dimensional theory is too limited in dimensions 3 and 4 – accordingly, n-
dimensional knots Nn ⊂Mn+2 are much harder to classify for n = 1, 2 than
n ≥ 3.

It will be assumed that the reader is already familiar with the basics of
surgery, at least in the simply-connected case considered by Browder [30].

The basic surgery operation on manifolds starts with an n-dimensional
manifold Nn and an embedding

Sr ×Dn−r ⊂ N .

The effect of the surgery is the n-dimensional manifold

N ′n = (N\Sr ×Dn−r) ∪Dr+1 × Sn−r−1

which is related to N by an elementary cobordism (W ;N,N ′), with

W = N × [0, 1] ∪Dr+1 ×Dn−r .

Conversely, every cobordism of manifolds is a union of elementary cobordisms
(Milnor [192]) – for a closed manifold this is just a handle decomposition.
There is a similar decomposition for knot cobordisms.

An n-dimensional geometric Poincaré complex X is a finite CW complex
with n-dimensional Poincaré duality H∗(X) ∼= Hn−∗(X). The fundamental
problem of surgery is to decide if such an X is homotopy equivalent to a
compact n-dimensional manifold. The traditional method is to break down
the problem into two stages. In the first stage there is a topological K-theory
obstruction to the existence of a normal map7 (f, b) :M−−→X, that is a de-
gree 1 map f :M−−→X from a compact n-dimensional manifold M together
with a map b : νM−−→η a map from the stable normal bundle of M to some
bundle over X. In the second stage there is an algebraic L-theory obstruction,
the surgery obstruction of Wall [304]

σ∗(f, b) ∈ Ln(Z[π1(X)])

such that σ∗(f, b) = 0 if (and for n ≥ 5 only if) (f, b) : M−−→X can be
modified by surgeries onM to a normal bordant homotopy equivalence.8 The
algebraic L-groups L∗(A) of [304] are defined for any ring with involution A,
and are 4-periodic, Ln(A) = Ln+4(A). By construction, L2i(A) is the Witt
group of nonsingular (−)i-quadratic forms over A, and L2i+1(A) is a group
of automorphisms of nonsingular (−)i-quadratic forms over A.

7 See the section Algebraic K- and L-theory invariants of knots further below in
the Introduction for the basic constructions of normal maps from n-knots.

8 See Ranicki [245] for a more streamlined approach, in which the two stages are
united in the total surgery obstruction.
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An n-dimensional quadratic Poincaré complex over A is an A-module
chain complex C with a quadratic Poincaré duality, Hn−∗(C) ∼= H∗(C). The
algebraic L-groups Ln(A) are the cobordism groups of quadratic Poincaré
complexes over A, by the algebraic theory of surgery of Ranicki [235], [236],
[237]. The quadratic kernel of an n-dimensional normal map (f, b) :M−−→X
is an n-dimensional quadratic Poincaré complex (C,ψ) with C = C(f !) the
algebraic mapping cone of the Umkehr Z[π1(X)]-module chain map

f ! : C(X̃) ≃ C(X̃)n−∗ f̃∗

−−→ C(M̃)n−∗ ≃ C(M̃)

with X̃ the universal cover of X and M̃ = f∗X̃ the pullback cover of M , and
with a Z[π1(X)]-module chain equivalence

C(M̃) ≃ C(f !)⊕ C(X̃) .

The surgery obstruction of (f, b) is the quadratic Poincaré cobordism class

σ∗(f, b) = (C(f !), ψ) ∈ Ln(Z[π1(X)]) .

There is also the notion of geometric Poincaré pair (X, ∂X), with a rel
∂ surgery obstruction σ∗(f, b) ∈ Ln(Z[π1(X)]) for a normal map (f, b) :
(M,∂M)−−→(X, ∂X) from a manifold with boundary and with ∂f = f | :
∂M−−→∂X a homotopy equivalence.

Algebraic transversality

The main technique used in the book is algebraic transversality, an analogue
of the geometric transversality construction

Fn+1 = p−1(1) ⊂Mn+2

of a Seifert surface of a homology framed knot (Mn+2, Nn, k) from a map
p : X−−→S1 on the knot exteriorX = cl.(M\(k(N)×D2)) which is transverse
regular at 1 ∈ S1 – cutting X along F results in a fundamental domain
(XF ;F, zF ) for the infinite cyclic coverX = p∗R ofX. The technique extracts
finitely generated A-module data from finitely generated A[z, z−1]-module
data, with A[z, z−1] the Laurent polynomial extension of a ring A.

Algebraic transversality is a direct descendant of the linearization trick of
Higman [110] for converting a matrix in A[z, z−1] by stabilization and elemen-
tary transformations to a matrix with linear entries a0+a1z (a0, a1 ∈ A). As
explained by Waldhausen [301] and Ranicki [244] linearization corresponds
to the geometric transversality construction of a fundamental domain for
an infinite cyclic cover of a compact manifold. The algebraic transversality
methods used to prove the theorem of Bass, Heller and Swan [14] on the
Whitehead group of a polynomial extension
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Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π])

and its algebraic L-theory analogues are used in this book to define and relate
the invariants of high-dimensional knots associated with both complements
and Seifert surfaces.

The splitting theorem for the Wall surgery obstruction groups

Lsn(Z[π × Z]) = Lsn(Z[π])⊕ Lhn−1(Z[π]) ,

Lhn(Z[π × Z]) = Lhn(Z[π])⊕ L
p
n−1(Z[π])

was obtained by Shaneson [264], Novikov [218] and Ranicki [231], [244], with
Lp∗ (resp. Lh∗ , L

s
∗) denoting the quadratic L-groups defined using f.g. pro-

jective (resp. f.g. free, based f.g. free) modules. The theorem was motivated
by the codimension 1 splitting results of Farrell and Hsiang [80] and Wall

[304, 12.6]. The connections between Wh(π × Z) and K̃0(Z[π]) in algebraic
K-theory and between L∗(Z[π × Z]) and L∗−1(Z[π]) in algebraic L-theory
are algebraic analogues of the codimension 1 transversality construction of
Seifert surfaces for knots.

The topological invariance of rational Pontrjagin

classes

Algebraic transversality in L-theory may be regarded as a spinoff from
Novikov’s proof of the topological invariance of the rational Pontrjagin
classes, for which he was awarded the Fields Medal in 1970. The report of
Atiyah [10] included :

Undoubtedly the most important single result of Novikov, and one which
combines in a remarkable degree both algebraic and geometric methods, is his
famous proof of the topological invariance of the (rational) Pontrjagin classes
of a differentiable manifold. . . .
Perhaps you will understand Novikov’s result more easily if I mention a purely
geometrical theorem (not involving Pontrjagin classes) which lies at the heart
of Novikov’s proof. This is as follows :

Theorem (formulation due to L. Siebenmann) If a differentiable manifold
X is homeomorphic to a product M × Rn (where M is compact, differen-
tiable, simply-connected and has dimension ≥ 5) then X is diffeomorphic to
a product M ′ × Rn.

. . . As is well-known many topological problems are very much easier if
one is dealing with simply-connected spaces. Topologists are very happy when
they can get rid of the fundamental group and its algebraic complications.
Not so Novikov! Although the theorem above involves only simply-connected
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spaces, a key step in his proof consists in perversely introducing a fundamental
group, rather in the way that (on a much more elementary level) puncturing
the plane makes it non-simply-connected. This bold move has the effect of
simplifying the geometry at the expense of complicating the algebra, but the
complication is just manageable and the trick works beautifully. It is a real
master stroke and completely unprecedented.

Novikov’s proof of the topological invariance of the rational Pontrjagin
classes was published in [217]. (See Ranicki [247, Chap. 4] for an account
of some other proofs of the topological invariance of the rational Pontrja-
gin classes.) The theorem had a tremendous influence on the subsequent
development of high-dimensional manifold theory, such as the disproof of
the manifold Hauptvermutung by Casson and Sullivan [249], the Kirby–
Siebenmann structure theory for high-dimensional topological manifolds and
the Chapman–Ferry–Quinn theory of controlled topology, as well as high-
dimensional knot theory.9 Moreover, Novikov himself contributed to further
progress, notably the paper [218] already mentioned in the preface, which
included the definitive formulation of the ‘Novikov conjecture’ (reprinted
and translated in [81]). The S1-valued Morse theory of Novikov [220] was
yet another contribution, which initiated the topological applications of the
‘Novikov rings’ of the Laurent polynomial extension A[z, z−1] of a ring A

A((z)) = A[[z]][z−1] , A((z−1)) = A[[z−1]][z] .

The Novikov rings also play a role in the algebraic treatment of high-
dimensional knot theory, since a high-dimensional knot is fibred precisely
when the knot exterior is acyclic with coefficients in the Novikov rings
Z((z)),Z((z−1)).

Localization

The algebraic properties of high-dimensional knots are best understood in
terms of the algebraic K- and L-theory of various localizations Σ−1A[z, z−1]
of Laurent polynomial extensions A[z, z−1]. Traditionally, the localization of
a ring A inverting a multiplicative subset S ⊂ A of central non-zero divisors
is the ring S−1A of fractions a/s (a ∈ A, s ∈ S) with a/s = b/t if and only if
at = bs ∈ A.

The algebraic K-theory localization exact sequence of Bass [13]

. . . −−→ K1(A) −−→ K1(S
−1A) −−→ K1(A,S) −−→ K0(A) −−→ . . .

9 For example, Novikov [217] proved that for n ≥ 5 every n-knot k : Sn ⊂ Sn+2 is
equivalent to a differentiable embedding.
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identifies the relative K-group K1(A−−→S−1A) of the inclusion A−−→S−1A
with the class group of the exact category of S-torsion A-modules of homo-
logical dimension 1. For A = Z, S = Z\{0} the localization is S−1A = Q,
and the relative K-group is the class group of the exact category of finite
abelian groups

K1(Z, S) = Q•/{±1} =
⊕

p prime

K0(Zp) =
⊕

p prime

Z

detected by the exponents of the primary cyclic groups.

The algebraic L-theory localization exact sequence of Ranicki [237]

. . . −−→ Ln(A) −−→ Ln(S
−1A) −−→ Ln(A,S) −−→ Ln−1(A) −−→ . . .

identifies the relative L-group Ln(A−−→S−1A) of the inclusion A−−→S−1A
with the cobordism group Ln(A,S) of (n−1)-dimensional quadratic Poincaré
complexes over A which are S−1A-contractible. For A = Z, S = Z\{0},
S−1A = Q, n = 0 the relative L-group is the Witt group of linking forms on
finite abelian groups, with

L0(Z, S) = Z2 ⊕ Z8 ⊕
⊕

p ̸= 2 prime

L0(Zp) =
⊕
∞

Z2 ⊕
⊕
∞

Z4 ⊕ Z8

detected by the Hasse-Minkowski invariants and the signature mod 8.

The localization of the Laurent polynomial extension ring Z[z, z−1] in-
verting the multiplicative subset

P = {p(z) | p(1) = ±1} ⊂ Z[z, z−1]

is particularly significant in the theory of spherical knots k : Sn ⊂ Sn+2. The
localization P−1Z[z, z−1] has the universal property that a finite f.g. free
Z[z, z−1]-module chain complex C is P−1Z[z, z−1]-contractible if and only if
C is Z-contractible via the augmentation

Z[z, z−1] −−→ Z ; z −−→ 1 .

The groups in the algebraic K-theory localization exact sequence

. . . −−→ K1(Z[z, z−1]) −−→ K1(P
−1Z[z, z−1])

−−→ K1(Z[z, z−1], P )
0
−−→ K0(Z[z, z−1]) −−→ . . .

can be identified with multiplicative groups of units

K1(Z[z, z−1]) = Z[z, z−1]• = {±zj | j ∈ Z} ,

K1(P
−1Z[z, z−1]) = (P−1Z[z, z−1])• = {p(z)

q(z)
| p(z), q(z) ∈ P} ,

K1(Z[z, z−1], P ) = (P−1Z[z, z−1])•/Z[z, z−1]• .
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The torsion group Ln(Z[z, z−1], P ) in the algebraic L-theory localization ex-
act sequence

. . . −−→ Ln(Z[z, z−1]) −−→ Ln(P
−1Z[z, z−1])

−−→ Ln(Z[z, z−1], P ) −−→ Ln−1(Z[z, z−1]) −−→ . . .

is the cobordism group of Z-contractible (n − 1)-dimensional quadratic
Poincaré complexes over Z[z, z−1], with involution z = z−1.

Algebraic K- and L-theory invariants of knots

The homological invariants of high-dimensional n-knots k : Sn ⊂ Sn+2 can
be defined using the methods of algebraic K- and L-theory.

Let k : Sn ⊂ Sn+2 be an n-knot with exterior

(X, ∂X) = (cl.(Sn+2\(k(Sn)×D2)), k(Sn)× S1) .

Let X be the infinite cyclic cover of X induced from the universal cover R of
S1 by pullback along the canonical homology equivalence p : X−−→S1, with
Z-equivariant lift p : X−−→R. The kernel Z[z, z−1]-module chain complex

C = C(p : X−−→R)∗+1

is Z-contractible, with homology finitely generated P -torsion Z[z, z−1]-module

Hr(C) = Hr(X) (1 ≤ r ≤ n) .

The Alexander polynomials ∆r(z) ∈ P of k : Sn ⊂ Sn+2 are such that

∆r(z)Hr(X) = 0 (1 ≤ r ≤ n) .

The P -torsion class

[Hr(X)] = ∆r(z) ∈ K1(Z[z, z−1], P ) = (P−1Z[z, z−1])•

determines Hr(X) up to extensions. The P -torsion Euler characteristic

χP (C) =

n∑
r=1

(−)r[Hr(X)] =

n∏
r=1

∆r(z)
(−)r ∈ K1(Z[z, z−1], P )

is the Reidemeister torsion of the knot k. The algebraic K-theoretic interpre-
tation of Reidemeister torsion is due to Milnor [194]. The Z[z, z−1]-coefficient
Poincaré duality chain equivalence

ϕ = [X] ∩ − : Cn+2−∗ = HomZ[z,z−1](C,Z[z, z−1])n+2−∗
≃−−→ C

induces the Blanchfield linking pairings
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Hr(X)×Hn+1−r(X) −−→ P−1Z[z, z−1]/Z[z, z−1] .

The pairings are determined by the non-simply connected surgery quadratic
kernel of a degree 1 normal map from an (n+ 2)-dimensional manifold with
boundary to an (n+ 2)-dimensional geometric Poincaré pair

(g, c) : (X, ∂X) −−→ (Dn+3, k(Sn))× S1

with g : X−−→Dn+3×S1 a homology equivalence and ∂g : ∂X−−→k(Sn)×S1

the identity. For n ≥ 3 the knot k is unknotted if and only if (g, c) is a
homotopy equivalence, and k is null-cobordant if and only if (g, c) is normal
bordant by a homology equivalence to a homotopy equivalence.

The high-dimensional knot cobordism groups C2∗−1 were expressed by
Levine [156] as the Witt groups of Seifert matrices in Z, and by Cappell and
Shaneson [40] as certain types of algebraic Γ -groups. Pardon [221], Smith
[271] and Ranicki [237, Chap. 7.9] expressed the knot cobordism groups as
torsion L-groups. The cobordism class of an n-knot k : Sn ⊂ Sn+2 is the
cobordism class of its Blanchfield complex

[k] = (C, ϕ) ∈ Cn = Ln+3(Z[z, z−1], P ) (n ≥ 3) .

(There is no difference between symmetric and quadratic Poincaré structures
in this case.)

Given a Seifert surface Fn+1 ⊂ Sn+2 for an n-knot k : Sn ⊂ Sn+2 the
inclusion defines a degree 1 normal map

(f, b) : (F, ∂F ) −−→ (Dn+3, k(Sn))

from an (n+1)-dimensional manifold with boundary to an (n+1)-dimensional
geometric Poincaré pair, with ∂f = 1 : ∂F−−→k(Sn). For n = 2i − 1 the
Seifert matrix V of F defines a bilinear form on Hi(F ) which is a refinement
of the simply-connected surgery quadratic kernel of (f, b), and the surgery
obstruction of (f, b) is given by

σ∗(f, b) =

{
1
8 signature(Hi(F ), V + V t)

Arf invariant(Hi(F ), V )

∈ L2i(Z) =

{
Z if i ≡ 0(mod 2)

Z2 if i ≡ 1(mod 2) .

For odd i the theorem of Levine [155] expresses the Arf invariant in terms of
the Alexander polynomial ∆(z) = det(V − zV t), with

Arf invariant(Hi(F ), V ) =

{
0 if ∆(−1) ≡ ±1(mod 8)

1 if ∆(−1) ≡ ±3(mod 8) .

The surgery obstruction σ∗(f, b) ∈ L2i(Z) is detected by just the signature
and the Arf invariant. The knot cobordism class [k] ∈ C2i−1 is a refinement
of the surgery obstruction – it is the Witt class of any Seifert matrix for k,
and is determined by an infinite number of invariants.
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Codimension q surgery

The surgery theoretic technique which most directly applies to the classifi-
cation of high-dimensional knots is the splitting obstruction theory for sub-
manifolds of codimension 2. This is best understood in the general context
of codimension q submanifolds for arbitrary q ≥ 2.

If Nn ⊂Mm is a submanifold of codimension q = m− n and the embed-
ding Sr ×Dn−r ⊂ N extends to an embedding Dr+1 ×Dn−r ⊂M the effect
of the codimension q (or ambient) surgery on N is a submanifold

N ′n = (N\Sr ×Dn−r) ∪Dr+1 × Sn−r−1 ⊂Mm

with an elementary codimension q subcobordism

(W ;N,N ′) ⊂M × ([0, 1]; {0}, {1}) .

Conversely, every codimension q subcobordism is a union of elementary sub-
cobordisms.

Given a homotopy equivalence h : M ′−−→M of m-dimensional manifolds
it is possible to make h transverse regular at any submanifold N ⊂ M , so
that the restriction (f, b) = h| : N ′ = h−1(N)−−→N is a degree 1 normal map
of n-dimensional manifolds. The homotopy equivalence h splits along N ⊂M
if it is homotopic to a map (also denoted by h) such that the restrictions
f = h| : N ′−−→N , h| :M ′\N ′−−→M\N are also homotopy equivalences. Wall
[304, Chap. 11] defined the LS-groups LS∗(Φ) to fit into the exact sequence

. . . −−→ Lm+1(Z[π1(M\N)]−−→Z[π1(M)] ) −−→ LSn(Φ)

−−→ Ln(Z[π1(N)]) −−→ Lm(Z[π1(M\N)]−−→Z[π1(M)] ) −−→ . . .

depending only on the system Φ of fundamental groups of M , N and M\N .
The splitting obstruction s(h) ∈ LSn(Φ) of [304, Chap. 12] is such that s(h) =
0 if (and for n ≥ 5 only if) h splits, i.e. if N ′ ⊂ M ′ can be modified by
codimension q surgeries until h splits. The splitting obstruction s(h) has
image the surgery obstruction σ∗(f, b) ∈ Ln(Z[π1(N)]). If m− n ≥ 3 then

π1(M\N) = π1(M) , s(h) = σ∗(f, b) ∈ LSn(Φ) = Ln(Z[π1(N)]) .

The Browder–Casson–Sullivan–Wall theorem states that form−n ≥ 3, n ≥ 5
a homotopy equivalence h : M ′−−→M splits along Nn ⊂ Mm if and only if
σ∗(f, b) = 0 ∈ Ln(Z[π1(N)]) – again, knotting only starts in codimension
m− n = 2.

In surgery theory one fixes the homotopy type of a space with Poincaré
duality, and then decides if this contains a topological manifold. In the appli-
cations of the splitting obstruction theory to codimension 2 embeddings the
homology type of the complement is fixed, and the knot is trivial if and only
if it contains the homotopy type of the complement of a standard embedding,
which is decided by homology surgery theory. This point of view was initiated
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by López de Medrano [169] in connection with the study of n-knots k :
Sn ⊂ Sn+2 which are invariant under a fixed point free involution on Sn+2,
generalizing the work of Browder and Livesay [32].

Cappell and Shaneson ([39]–[47] etc.) extended the obstruction theory of
Wall [304] to a homology surgery theory, and used it to obtain many results
for codimension 2 embeddings. The homology surgery obstruction groups are
the algebraic Γ -groups Γ∗(F), the generalizations of the algebraic L-groups
defined for any morphism of rings with involution F : A−−→B. The group
Γ2i(F) is the Witt group of B-nonsingular (−)i-quadratic forms over A, and
Γ2i+1(F) ⊆ L2i+1(B) for surjective F. The high-dimensional knot cobordism
groups C∗ are particular types of Γ -groups. See Levine and Orr [160] for a
survey of the applications of surgery theory to knots (and links).

The surgery treatment of high-dimensional knot theory in Part Two com-
bines the codimension 2 surgery methods of Cappell and Shaneson [40], Freed-
man [84] and Matsumoto [183] with the author’s algebraic methods. In par-
ticular, the LS-groups LS∗(Φ) are generalized in Chap. 22 to the codimension
2 homology splitting obstruction groups ΓS∗(Φ).

Fredholm localization

In order to obtain algebraic expressions for the cobordism groups of high-
dimensional knots Nn ⊂Mn+2 more general than the n-knots Sn ⊂ Sn+2 it
is necessary to work with the algebraic K- and L-theory of the less familiar
noncommutative localization Σ−1Λ of Cohn [53], which is defined for any set
Σ of square matrices in a ring Λ (see Chap. 9 for the definition). In the
applications

Λ = Z[π1(M\N)] , H∗(M\N ;Σ−1Λ) = 0 .

The noncommutative localization Ω−1A[z, z−1] appropriate to open books
is the Fredholm localization inverting the set Ω of square matrices ω in a
Laurent polynomial extension A[z, z−1] such that coker(ω) is a f.g. projective
A-module. The Fredholm localization has the universal property that a finite
f.g. free A[z, z−1]-module chain complex C is A-module chain equivalent to a
finite f.g. projective A-module chain complex if and only if the induced finite
f.g. free Ω−1A[z, z−1]-module chain complex Ω−1C is acyclic, H∗(Ω

−1C) =
0. The Fredholm localization Ω−1A[z, z−1] is closely related to the Novikov
rings A((z)), A((z−1)), with H∗(Ω

−1C) = 0 if and only if

H∗(A((z))⊗A[z,z−1] C) = H∗(A((z
−1))⊗A[z,z−1] C) = 0 .

The obstruction theory of Quinn [227] for the existence and uniqueness
of open book decompositions of high-dimensional manifolds will be given
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a chain complex formulation in Chap. 28. The asymmetric signature of an
m-dimensional manifold M is the cobordism class of the Z[π1(M)]-module

chain complex C(M̃) of the universal cover M̃ and its Poincaré duality

ϕM : C(M̃)m−∗ ≃ C(M̃), regarded as an asymmetric Poincaré complex gen-
eralizing the Seifert form of a knot. For even m the asymmetric signature
takes value in a group LAsy2∗(Z[π1(M)]) which is infinitely generated, with

LAsy2∗(Z) =
⊕
∞

Z⊕
⊕
∞

Z2 ⊕
⊕
∞

Z4 .

(In the simply-connected case π1(M) = {1} the invariant is just the signa-
ture of M , the original open book obstruction of Winkelnkemper [311]). The
asymmetric signature is 0 for odd m. In Chap. 29 the asymmetric signature
will be identified with a generalization of the Blanchfield form of a knot

σ∗(M ;Ω) = (Ω−1C(M̃)[z, z−1], (1− z)ϕM ) ∈ Lm(Ω−1Z[π1(M)][z, z−1]) .

The asymmetric signature is such that σ∗(M ;Ω) = 0 if (and for m ≥ 6 only
if) M admits an open book decomposition. For any knot (M,N, k)

σ∗(M ;Ω) = (Ω−1C(X̃), (1− z)ϕX) ∈ Lm(Ω−1Z[π1(M)][z, z−1])

with X = cl.(M\(k(N) × D2)) the exterior of k, and X̃ the cover of X

induced from M̃ × R by a map X−−→M × S1. By definition, M has an
open book decomposition with binding N whenever X fibres over S1. For
m ≥ 6 this is the case if and only if π1(X) = π1(M)×Z, H∗(Ω

−1C(X̃)) = 0
(i.e. the infinite cyclic cover X of X is finitely dominated) and the Farrell–
Siebenmann fibering obstruction is Φ(X) = 0 ∈Wh(π1(X)). The asymmetric
signature is the obstruction to improving the empty knot (M, ∅, k∅) with
p = constant : X = M−−→S1 by codimension 2 surgeries to a fibred knot
(M,N, k), i.e. to M having an open book decomposition.

Structure

The book has two parts and an appendix. Part One deals with the algebraic
K-theory aspects of high-dimensional knot theory, with invariants such as the
Alexander polynomials. Part Two deals with the algebraic L-theory aspects
of high-dimensional knot theory, with invariants such as the Seifert matrix,
the Blanchfield pairing, the multisignature and the coupling invariants. The
appendix (by Elmar Winkelnkemper) is an account of the history and ap-
plications of open books, a field where surgery and knot theory meet in a
particularly fruitful way.

I am grateful to Desmond Sheiham for reading a preliminary version of
the book, and making valuable suggestions for improvements.

Errata (if any) will be posted on the WWW home page

http://www.maths.ed.ac.uk/̃ aar



Part One

Algebraic K-theory



2 High-dimensional knot theory



1. Finite structures

At first sight, Chap. 1 has little to do with high-dimensional knot theory!
However, the homological methods used in knot theory frequently involve
the finiteness and torsion properties of chain complexes over polynomial ex-
tension rings, such as the chain complex of the infinite cyclic cover of a
knot complement. In particular, the algebraic L-theory treatment of high-
dimensional knot theory developed in Part Two is based on the algebraic
K-theory of chain complexes with Poincaré duality.

Chap. 1 brings together the essential definitions from the algebraic the-
ory of finite structures on chain complexes, and the applications to CW
complexes. Milnor [194], [199], Bass [13], Cohen [52] and Rosenberg [254] are
standard references for algebraic K-theory and the applications to topology.
See Ranicki [238], [239], [241] for a fuller account of the K0- and K1-groups
in terms of chain complexes.

1A. The Wall finiteness obstruction

The Wall finiteness obstruction is an algebraic K-theory invariant which de-
cides if a ‘finitely dominated’ infinite complex is homotopy equivalent to a
finite complex, where complex is understood to be a chain complex in algebra
and a CW complex in topology.

Let A be an associative ring with 1. Unless otherwise specified, A-modules
are understood to be left A-modules.

An A-module is projective if it is a direct summand of a free A-module.
The following conditions on an A-module P are equivalent :

(i) P is a f.g. (= finitely generated) projective A-module,
(ii) P is a direct summand of a f.g. free A-module An,
(iii) P is isomorphic to the image im(p) of a projection p = p2 : An−−→An

of a f.g. free A-module.

The projective class groupK0(A) is the abelian group of formal differences
[P ]− [Q] of isomorphism classes of f.g. projective A-modules P,Q, with
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[P ]− [Q] = [P ′]− [Q′] ∈ K0(A)

if and only if there exists an A-module isomorphism

P ⊕Q′ ⊕R ∼= P ′ ⊕Q⊕R

for a f.g. projective A-module R.

The reduced projective class group is the quotient of K0(A)

K̃0(A) = coker(K0(Z)−−→K0(A))

with
K0(Z) = Z −−→ K0(A) ; n −−→ [An] .

Equivalently, K̃0(A) is the abelian group of stable isomorphism classes [P ]

of f.g. projective A-modules P , with [P ] = [P ′] ∈ K̃0(A) if and only if there
exists an A-module isomorphism

P ⊕Q ∼= P ′ ⊕Q

for a f.g. projective A-module Q.

A finite domination of an A-module chain complex C is a finite f.g. free A-
module chain complexD with chain maps f : C−−→D, g : D−−→C and a chain
homotopy gf ≃ 1 : C−−→C. An A-module chain complex C is finitely domi-
nated if it admits a finite domination. In [238] it is shown that an A-module
chain complex C is finitely dominated if and only if C is chain equivalent to
a finite chain complex of f.g. projective A-modules

P : . . . −−→ 0 −−→ . . . −−→ 0 −−→ Pn −−→ Pn−1 −−→ . . . −−→ P0 .

The projective class of a finitely dominated complex C is defined by

[C] = [P ] =
∞∑
i=0

(−)i[Pi] ∈ K0(A)

for any such P . An A-module chain complex C is chain homotopy finite if it
is chain equivalent to a finite f.g. free A-module chain complex. The reduced
projective class [C] ∈ K̃0(A) of a finitely dominated A-module chain complex
is such that [C] = 0 if and only if C is chain homotopy finite.

A finite domination (K, f, g, h) of a topological space X is a finite CW
complex K together with maps f : X−−→K, g : K−−→X and a homotopy
h : gf ≃ 1 : X−−→X. A topological space X is homotopy finite if it is
homotopy equivalent to a finite CW complex.

The Wall finiteness obstruction of a finitely dominated CW complex X
is the reduced projective class of the cellular Z[π1(X)]-module chain complex

C(X̃) of the universal cover X̃

[X] = [C(X̃)] ∈ K̃0(Z[π1(X)]) .
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Proposition 1.1 (Wall [302])
A connected CW complex X is finitely dominated if and only if the fun-
damental group π1(X) is finitely presented and the Z[π1(X)]-module chain

complex C(X̃) is finitely dominated, in which case [X] = 0 ∈ K̃0(Z[π1(X)])
if and only if X is homotopy finite. �

1B. Whitehead torsion

Whitehead torsion is an algebraic K-theory invariant which is a generaliza-
tion of the determinant. In the first instance torsion is defined for a homotopy
equivalence of finite complexes (in algebra or topology), although in the appli-
cations to fibred knots in Chaps. 15, 33 it is necessary to consider a somewhat
more general context.

In dealing with Whitehead torsion it will always be assumed that the
ground ring A has the invariant basis property, meaning that invertible ma-
trices have to be square, so that f.g. free A-modules have a well-defined di-
mension.

For example, any ring which admits a morphism A−−→F to a field F (such
as a group ring Z[π], with F = Z2) has the invariant basis property.

The finite general linear groups of a ring A

GLn(A) = AutA(A
n) (n ≥ 1)

are related by the inclusions

GLn(A) −−→ GLn+1(A) ; f −−→ f ⊕ 1A .

The infinite general linear group of A is the union of the finite linear groups

GL∞(A) =

∞∪
n=1

GLn(A) .

The torsion group of A is the abelianization of GL∞(A)

K1(A) = GL∞(A)ab = GL∞(A)/[GL∞(A), GL∞(A)] ,

i.e. the quotient of GL∞(A) by the normal subgroup

[GL∞(A), GL∞(A)] ▹ GL∞(A)

generated by the commutators xyx−1y−1 (x, y ∈ GL∞(A)).

The torsion of an automorphism α : An−−→An is the class of the matrix
(αij) ∈ GLn(A) of α

τ(α) = (αij) ∈ K1(A) .
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More generally, the torsion of an automorphism f : P−−→P of a f.g. projective
A-module P is defined by

τ(f) = τ(h−1(f ⊕ 1Q)h : An−−→An) ∈ K1(A)

for any f.g. projective A-module Q with an isomorphism h : An ∼= P ⊕Q.

In dealing with the torsion groups of rings adopt the following :

Terminology 1.2 The Whitehead group of a ring A is the reduced torsion
group

Wh1(A) = coker(K1(Z)−−→K1(A)) = K̃1(A)

in the algebraic context of an arbitrary ring A. In the topological context of
a group ring A = Z[π] this is understood to be the Whitehead group of the
group π

Wh(π) = K1(Z[π])/{±g | g ∈ π} .

A chain equivalence is simple if τ = 0 ∈Wh. �
A f.g. free A-module chain complex C is based if it is finite and each Cr

is a based f.g. free A-module. The torsion of a chain equivalence f : C−−→D
of based f.g. free A-module chain complexes is

τ(f) = τ(C(f))
= τ(d+ Γ : C(f)odd−−→C(f)even) ∈Wh1(A) ,

with C(f) the algebraic mapping cone and Γ : 0 ≃ 1 : C(f)−−→C(f) any chain
contraction. The chain equivalence is simple if τ(f) = 0 ∈Wh1(A).

The Whitehead torsion of a homotopy equivalence f : X−−→Y of finite
CW complexes is the torsion of the chain equivalence f̃ : C(X̃)−−→C(Ỹ ) of
the cellular based f.g. free Z[π1(X)]-module chain complexes induced by a

lift f̃ : X̃−−→Ỹ of f to the universal covers X̃, Ỹ of X,Y

τ(f) = τ(f̃ : C(X̃)−−→C(Ỹ )) ∈Wh(π1(X)) .

A finite structure on a topological space X is an equivalence class of pairs
(K, f) with K a finite CW complex and f : X−−→K a homotopy equivalence,
subject to the equivalence relation

(K, f) ∼ (K ′, f ′) if τ(f ′f−1 : K−−→K ′) = 0 ∈Wh(π1(X)) .

A finite structure on an A-module chain complex C is an equivalence class
of pairs (D, f) with D a finite chain complex of based f.g. free A-modules
and f : C−−→D a chain equivalence, subject to the equivalence relation

(D, f) ∼ (D′, f ′) if τ(f ′f−1 : D−−→D′) = 0 ∈Wh1(A) .
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Proposition 1.3 The finite structures on a connected CW complex X are
in one-one correspondence with the finite structures on the cellular Z[π1(X)]-

module chain complex C(X̃) of the universal cover X̃. �
Let (B,A ⊆ B) be a pair of rings. In the applications, B will be one of

the polynomial extension rings A[z], A[z−1], A[z, z−1] of A. A B-module chain
complex C is A-finitely dominated if it is finitely dominated when regarded
as an A-module chain complex. An A-finite structure on a B-module chain
complex C is a finite structure on C when regarded as an A-module chain
complex. A B-module chain complex C admits an A-finite structure if and
only if C is A-finitely dominated and [C] = 0 ∈ K̃0(A), in which case there
is one A-finite structure for each element of Wh1(A).

A finite chain complex C of f.g. projective A-modules is round if

[C] = 0 ∈ im(K0(Z)−−→K0(A)) ,

i.e. if C is chain equivalent to a finite chain complex of f.g. freeA-modules with
Euler characteristic χ(C) = 0. The absolute torsion of a chain equivalence
f : C−−→D of round finite chain complexes of based f.g. free A-modules was
defined in [239] to be an element τ(f) ∈ K1(A) with image τ(f) ∈Wh1(A).

A round A-finite structure on a B-module chain complex C is an equiva-
lence class of pairs (D, f) with D a round finite chain complex of based f.g.
free A-modules and f : C−−→D a chain equivalence, subject to the equiva-
lence relation

(D, f) ∼ (D′, f ′) if τ(f ′f−1 : D−−→D′) = 0 ∈ K1(A) .

A B-module chain complex C admits a round A-finite structure if and only
if C is A-finitely dominated and [C] = 0 ∈ K0(A), in which case there is one
round A-finite structure for each element of K1(A). The algebraic mapping
cone C(f) of a self chain map f : C−−→C of an A-finitely dominated B-
module chain complex C has a canonical round finite structure. See Ranicki
[241, Chap. 6] for a detailed account.

A finite CW complex X is round if

χ(X) = 0 ∈ K0(Z) = Z .

A round finite structure on a round finite CW complex X is a round fi-
nite structure on the cellular Z[π1(X)]-module chain complex C(X̃) of the

universal cover X̃.
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1C. The mapping torus

The mapping torus of a self map f : X−−→X is the identification space

T (f) = X × [0, 1]/{(x, 0) = (f(x), 1) |x ∈ X} .

For any maps f : X−−→Y , g : Y−−→X there are defined inverse homotopy
equivalences

T (gf) −−→ T (fg) ; (x, s) −−→ (f(x), s) ,

T (fg) −−→ T (gf) ; (y, t) −−→ (g(y), t)

by Mather [182].

The mapping torus T (h) of a self map h : X−−→X of a finitely dominated
space X has a canonical round finite structure, represented by

T (fhg : K−−→K) ≃ T (gfh) ≃ T (h)

for any finite domination

(K, f : X−−→K, g : K−−→X, gf ≃ 1 : X−−→X) .

See [241, Chap. 6] for a detailed account of the finiteness and torsion proper-
ties of the mapping torus.

Given a ring morphism f : A−−→B regard B as a (B,A)-bimodule by

B ×B ×A −−→ B ; (b, x, a) −−→ b.x.f(a) .

An A-module M induces the B-module

f!M = B ⊗AM
= B ⊗Z M/{bf(a)⊗ x− b⊗ ax | a ∈ A, b ∈ B, x ∈M} .

Let f : X−−→X be a self map of a connected CW complex X. Given a
base point x0 ∈ X and a path ω : I−−→X from ω(0) = x0 ∈ X to ω(1) =
f(x0) ∈ X define an endomorphism of the fundamental group at x0

f∗ : π1(X) = π1(X,x0)
f#−−→ π1(X, f(x0))

ω−1
#−−→ π1(X,x0) .

Let f∗X̃ be the pullback along f : X−−→X of the universal cover X̃ of X.
The lift of f : X−−→X to a π1(X)-equivariant map f̃ : f∗X̃−−→X̃ induces a
chain map of the cellular Z[π1(X)]-module chain complexes

f̃ : C(f∗X̃) = (f∗)!C(X̃) −−→ C(X̃) .

The fundamental group of the mapping torus T (f) is the amalgamation
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π1(T (f)) = π1(X) ∗f∗ {z}

=

(
π1(X) ∗ {z}

)/
{gz = zf∗(g) | g ∈ π1(X)} .

The natural map π1(X)−−→π1(T (f)) need not be injective. However, if f∗ :
π1(X)−−→π1(X) is an automorphism then

π1(T (f)) = π1(X)×f∗ Z

= {gzj | g ∈ π1(X), j ∈ Z, gz = zf∗(g)}

is the f∗-twisted extension of π1(X) by Z, with an exact sequence of groups

{1} −−→ π1(X) −−→ π1(T (f)) −−→ Z −−→ {1} ,

and the fundamental group ring is the f∗-twisted Laurent polynomial exten-
sion of Z[π1(X)]

Z[π1(T (f))] = Z[π1(X)]f∗ [z, z
−1] .

Definition 1.4 A self map f : X−−→X is untwisted if f∗ : π1(X)−−→π1(X)
is an inner automorphism. �

Suppose that f : X−−→X is untwisted, with

f∗(x) = gxg−1 ∈ π1(X) (x ∈ π1(X))

for some g ∈ π1(X). Let ω′ : I−−→X be a path such that

ω(i) = ω′(i) ∈ X (i = 0, 1) , g = ω′−1ω ∈ π1(X) ,

so that
f# = ω′

# : π1(X,x0) −−→ π1(X, f(x0)) .

Replacing ω by ω′ in the construction of f∗ gives

f∗ = 1 : π1(X) −−→ π1(X) ,

π1(T (f)) = π1(X)× Z ,

Z[π1(T (f))] = Z[π1(X)][z, z−1]

with a π1(X)-equivariant lift f̃ : X̃−−→X̃ of f : X−−→X inducing the

Z[π1(X)]-module chain map f̃ : C(X̃)−−→C(X̃).

Now consider a connected space X with a connected infinite cyclic cover
X. The fibration X−−→X−−→S1 induces an exact sequence of fundamental
groups

{1} −−→ π1(X) −−→ π1(X) −−→ π1(S
1) −−→ {1}

and π1(X) = π1(X) ×α Z with α = ζ∗ : π1(X)−−→π1(X) the automorphism
induced by a generating covering translation ζ : X−−→X.
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Definition 1.5 An infinite cyclic cover X of a CW complex X is untwisted
if a generating covering translation ζ : X−−→X is untwisted. �
Proposition 1.6 A connected infinite cyclic cover X of a connected CW
complex X is untwisted if and only if the group extension

{1} −−→ π1(X) −−→ π1(X) −−→ π1(S
1) −−→ {1}

is trivial, in which case

π1(X) = π1(X)× Z , Z[π1(X)] = Z[π1(X)][z, z−1]

and a generating covering translation ζ : X−−→X has a π1(X)-equivariant

lift ζ̃ : X̃−−→X̃ inducing a Z[π1(X)]-module chain equivalence ζ̃ : C(X̃)

−−→C(X̃), with X̃ the universal cover of X. �
The mapping torus T (f) of a map f : X−−→X is equipped with a canon-

ical infinite cyclic cover

T (f) =

( ∞⨿
n=−∞

X × {n} × [0, 1]

)/
(x, n, 1) ∼ (f(x), n+ 1, 0) ,

which is the pullback T (f) = p∗R of the universal cover R of S1 along the
projection

p : T (f) −−→ I/(0 ∼ 1) = S1 ; (x, s) −−→ [s] .

Proposition 1.7 A map f : X−−→X inducing an automorphism f∗ :
π1(X)−−→π1(X) is untwisted if and only if the infinite cyclic cover T (f)
of T (f) is untwisted. �



2. Geometric bands

A band is a compact spaceW with an infinite cyclic coverW which is finitely
dominated. Bands occur naturally in the classification of manifolds that fibre
over the circle S1 such as fibred knot complements, the bordism of diffeomor-
phisms, and open book decompositions. A manifold which fibres over S1

M = T (h : F−−→F )

is a band, with M = F × R ≃ F homotopy finite. Conversely, if M is an
n-dimensional manifold band then the infinite cyclic cover M is a finitely
dominated (n−1)-dimensional geometric Poincaré complex with a homotopy
equivalence

M ≃ T (ζ :M−−→M)

(ζ = generating covering translation), so that M has the homotopy theoretic
properties of a fibre bundle over S1 with ‘fibre’ M , but in general there are
obstructions to M actually fibring over S1.

The problem of deciding if a manifold band W fibres over S1 was first
studied by Stallings [273] in dimension 3, and then by Browder and Levine
[31] in dimensions ≥ 5 with π1(W ) = Z. In the non-simply-connected high-
dimensional case Farrell [78], [79] and Siebenmann [267] obtained a White-
head group obstruction for a manifold band to fibre over S1.

Much of the progress of high-dimensional compact topological manifolds
achieved in the last 30 years depends on non-compact manifolds with tame
ends, starting with Novikov’s proof of the topological invariance of the ratio-
nal Pontrjagin classes. See Hughes and Ranicki [112] for an account of tame
ends, bands, and some of these applications. In [112, 17.11] it is proved that
every tame end of dimension ≥ 6 has an open neighbourhood which is an
infinite cyclic cover of a compact manifold band.

Here is the formal definition in the CW category :

Definition 2.1 (i) A CW band is a finite CW complex X with a finitely
dominated infinite cyclic cover X.
(ii) A CW band is untwisted if X is untwisted (1.5). �
Remark 2.2 The band terminology was introduced by Siebenmann [266].

�
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Example 2.3 The mapping torus T (h) of a homotopy equivalence h : F−−→F
of a finite CW complex F is a CW band, with infinite cyclic cover T (h) ≃ F
homotopy finite. The mapping torus T (h) is untwisted if and only if h is
untwisted. �
Example 2.4 Every finitely dominated CW complex X is homotopy equiva-
lent to the infinite cyclic cover Y of an untwisted CW band Y . For any finite
domination (K, f : X−−→K, g : K−−→X, gf ≃ 1 : X−−→X) the mapping
torus Y = T (fg : K−−→K) is a CW band which is homotopy equivalent to
T (gf) ≃ X × S1, with the infinite cyclic cover Y = T (fg) homotopy equiva-
lent to T (gf) ≃ X × R ≃ X. �

The obstruction theory for fibering manifold bands over S1 will be de-
scribed in Chap. 16. It is a special case of the obstruction theory for fibering
CW bands over S1.

Definition 2.5 A CW band X fibres over S1 if there exists a simple homo-
topy equivalence X ≃ T (h) to the mapping torus T (h) of a simple homotopy
self equivalence h : F−−→F of a finite CW complex F and the diagram

X
≃ //

��;
;;

;;
;;

T (h)

��~~
~~
~~
~

S1

is homotopy commutative, so that the infinite cyclic cover X of X is the
pullback of the canonical infinite cyclic cover T (h) of T (h). �

The fibering obstructions Φ+(X), Φ−(X) ∈ Wh(π1(X)) of a CW band
X are defined as follows. The mapping torus T (ζ) of the generating covering
translation ζ : X−−→X of the infinite cyclic cover X of a space X is such
that the projection

q+ : T (ζ) −−→ X ; (x, s) −−→ p(x)

is a homotopy equivalence, with p : X−−→X the covering projection. Define
similarly the homotopy equivalence

q− : T (ζ−1) −−→ X ; (x, s) −−→ p(x) .

Definition 2.6 The fibering obstructions of a CW band X with respect to
a choice of generating covering translation ζ : X−−→X are the Whitehead
torsions

Φ+(X) = τ(q+ : T (ζ)−−→X) ,

Φ−(X) = τ(q− : T (ζ−1)−−→X) ∈Wh(π1(X))

defined using the canonical finite structures on T (ζ), T (ζ−1). �
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The fibering obstructions Φ+(X), Φ−(X) of a CW band X measure the
difference between the intrinsic finite structure of X determined by the cell
decomposition and the extrinsic finite structures determined by the canonical
finite structures on the mapping tori T (ζ), T (ζ−1).

Proposition 2.7 (i) The torsion of a homotopy equivalence f : X−−→Y of
CW bands is the difference of the fibering obstructions

τ(f) = Φ+(Y )− Φ+(X)

= Φ−(Y )− Φ−(X) ∈Wh(π1(X)) .

In particular, Φ+(X) and Φ−(X) are simple homotopy invariants of X.
(ii) The difference

Φ−(X)− Φ+(X) = τ(−zζ−1 : C(X̃)α[z, z
−1]−−→C(X̃)α[z, z

−1])

∈Wh(π1(X))

is a homotopy invariant of a CW band X, such that Φ−(X)− Φ+(X) = 0 if
and only if there exists a finite structure (K, f : X−−→K) on X such that

τ(fζf−1 : K−−→K) = 0 ∈Wh(π1(X)) ,

in which case

τ(T (fζf−1)−−→X) = Φ+(X) = Φ−(X) ∈Wh(π1(X)) .

(iii) A CW band X fibres over S1 if and only if

Φ+(X) = Φ−(X) = 0 ∈Wh(π1(X)) .

Proof See Ranicki [244, Chap. 20]. �
Example 2.8 Let f : X−−→X be a self homotopy equivalence of a connected
finitely dominated CW complex X. The mapping torus Y = T (f) has a
canonical finite structure, with infinite cyclic cover Y = T (f) ≃ X. The
fibering obstructions of any CW band Z in the canonical finite structure of
Y are given by

Φ+(Z) = 0 ,

Φ−(Z) = τ(−zf̃−1 : C(X̃)α[z, z
−1]−−→C(X̃)α[z, z

−1]) ∈Wh(π1(Y )) ,

with C(X̃) the cellular chain complex of the universal cover X̃ of X and

α = f∗ : π1(X) −−→ π1(X) , π1(Y ) = π1(X)×α Z . �
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3. Algebraic bands

Algebraic bands are the chain complex analogues of the geometric bands of
Chap. 2. An algebraic band is a finite chain complex C of finitely generated
free modules over the Laurent polynomial extension A[z, z−1] of a ring A
such that C is finitely dominated over A, i.e. A-module chain equivalent
to a finite finitely generated projective A-module chain complex. The most
obvious application of algebraic bands to high-dimensional knot theory is via
fibred knots, but the related algebra is useful in the study of all knots. For
example, the results of Milnor [195] that for any field F the F -coefficient
homology of the infinite cyclic cover X of a finite CW complex X with
H∗(X) = H∗(S

1) is finite-dimensional

dimF H∗(X;F ) <∞ ,

and that ifX is an (n+2)-dimensional manifold with boundary ∂X = Sn×S1

(e.g. the exterior of an n-knot k : Sn ⊂ Sn+2) there are Poincaré duality
isomorphisms

Hn+1−∗(X;F ) ∼= H∗(X,S
n;F )

show that every n-knot has the F -coefficient homological properties of a
fibred n-knot, with fibre X.

Definition 3.1 (i) The polynomial extension A[z] of a ring A is the ring

consisting of the polynomials
∞∑
j=0

ajz
j with coefficients aj ∈ A such that

{j ≥ 0 | aj ̸= 0} is finite.
(ii) The Laurent polynomial extension A[z, z−1] is the ring consisting of the

polynomials
∞∑

j=−∞
ajz

j with coefficients aj ∈ A such that {j ∈ Z | aj ̸= 0} is

finite. �
Definition 3.2 A chain complex band over A[z, z−1] is a based f.g. free
A[z, z−1]-module chain complex which is A-finitely dominated. �
Example 3.3 If A is a Dedekind ring then an A-module chain complex C
is finitely dominated if and only if the homology H∗(C) is finitely generated.
Thus a based f.g. free A[z, z−1]-module chain complex C is a band if and only
if the homology H∗(C) is finitely generated as an A-module. �
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Example 3.4 An infinite cyclic cover X = X̃/π of a finite CW complex

X with π1(X) = π × Z is finitely dominated if and only if C(X̃) is finitely
dominated over Z[π], by Wall [302] (cf. 1.1). Thus X is a CW complex band

if and only if C(X̃) is a chain complex band. See 3.5 for further details. �
Remark 3.5 Let X be a connected CW complex with universal cover X̃ and
fundamental group The connected infinite cyclic covers X of X correspond
to the normal subgroups π ▹ π1(X) such that π1(X)/π = Z, with

X = X̃/π , π1(X) = π .

Given any expression of π1(X) as a group extension

{1} −−→ π −−→ π1(X) −−→ Z −−→ {1}

let z ∈ π1(X) be a lift of 1 ∈ Z. Conjugation by z defines an automorphism

α : π −−→ π ; x −−→ z−1xz

such that

π1(X) = π ×α Z , Z[π1(X)] = Z[π]α[z, z−1] .

An infinite cyclic cover X of X is finitely dominated if and only if π1(X) = π

is finitely presented and the cellular Z[π1(X)]-module chain complex C(X̃)
is Z[π]-finitely dominated (1.1). If X is untwisted (1.5) then

α = 1 , π1(X) = π × Z , Z[π1(X)] = Z[π][z, z−1] .

(i) A connected finite CW complex X is an untwisted band if and only if

π1(X) = π × Z and C(X̃) is a chain complex band over Z[π][z, z−1] (as in
3.4). If X has a finite 2-skeleton then π is finitely presented, and if X is
untwisted then π is finitely presented also.
(ii) In the twisted case π1(X) = π ×α Z with α ̸= 1 it may be that π1(X) is
finitely presented but π is not finitely presented : for example, if X = T (2 :
S1−−→S1) then the canonical infinite cyclic cover X = T (2) is the dyadic
solenoid, and

π1(X) = π ×α Z = {y, z | zyz−1 = y2} ,

π1(X) = π = [π1(X), π1(X)] = Z[1/2] , α = 2 : π −−→ π

with π1(X) finitely presented and π not finitely generated, let alone finitely
presented. (I am indebted to C.J.B.Brookes for this example.) �
Definition 3.6 Given an A-module chain complex C and a chain map f :
C−−→C define the algebraic mapping tori T+(f), T−(f) to be the A[z, z−1]-
module chain complexes

T+(f) = C(1− zf : C[z, z−1]−−→C[z, z−1]) ,

T−(f) = C(1− z−1f : C[z, z−1]−−→C[z, z−1]) . �
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If C is finitely dominated then T+(f) an T−(f) have canonical round
finite structures. If f : C−−→C is an isomorphism then T+(f) is related to
T−(f−1) by the isomorphism

T−(f−1) −−→ T+(f) ; (x, y) −−→ (−zf(x), y) .
If f : C−−→C is a chain equivalence then T+(f) is chain equivalent to
T−(f−1).

The (geometric) mapping torus T (f) of an untwisted map of spaces f :
X−−→X is such that

π1(T (f)) = π1(X)× Z , Z[π1(T (f))] = Z[π1(X)][z, z−1] .

The cellular chain complex C(T̃ (f)) of the universal cover T̃ (f) of T (f)
is an algebraic mapping torus of the induced Z[π1(X)]-module chain map

f̃ : C(X̃)−−→C(X̃) with C(X̃) the cellular Z[π1(X)]-module chain complex

of the universal cover X̃ of X

C(T̃ (f)) = T+(f̃) = C(1− zf̃ : C(X̃)[z, z−1]−−→C(X̃)[z, z−1]) .

If X is a finitely dominated CW complex then C(X̃) is a finitely dominated

Z[π1(X)]-module chain complex and C(T̃ (f)) has a canonical round finite
structure.

Example 3.7 If C is a based f.g. free A-module chain complex and f :
C−−→C is a chain equivalence then the algebraic mapping tori T+(f), T−(f)
are chain complex bands which are A-module chain equivalent to C. �

By analogy with the convention for Wh1(A) (1.4) :

Convention 3.8 (i) The Whitehead group of the Laurent polynomial exten-
sion A[z, z−1] is

Wh1(A[z, z
−1]) = coker(K1(Z[z, z−1])−−→K1(A[z, z

−1]))

= K1(A[z, z
−1])/{±zj | j ∈ Z} .

in the algebraic context of an arbitrary ring A.
(ii) In the topological context of a group ring A = Z[π] this is understood to
be the Whitehead group of the group π × Z

Wh(π × Z) = K1(Z[π × Z])/{±zjg | j ∈ Z, g ∈ π} .
(iii) There are corresponding conventions for a simple chain equivalence f :
C−−→D of based f.g. free A[z, z−1]-module chain complexes, with τ(f) = 0 ∈
Wh1(A[z, z

−1]) in an algebraic context, and τ(f) = 0 ∈ Wh(π × Z) in a
topological context with A = Z[π]. �
Definition 3.9 A chain complex band C fibres if it is simple chain equivalent
to the algebraic mapping torus

T+(h) = C(1− zh : C[z, z−1]−−→C[z, z−1])

of a simple chain equivalence h : C−−→C. �
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Definition 3.10 The fibering obstructions of an A[z, z−1]-module chain com-
plex band C are the Whitehead torsions

Φ+(C) = τ(q+ : T+(ζ−1)−−→C) ,

Φ−(C) = τ(q− : T−(ζ)−−→C) ∈Wh1(A[z, z
−1]) ,

defined using the canonical finite structures on T+(ζ−1), T−(ζ−1) with

ζ : C −−→ C ; x −−→ zx ,

ζ−1 : C −−→ C ; x −−→ z−1x . �
By analogy with 2.7 :

Proposition 3.11 (i) A chain complex band C fibres if and only if

Φ+(C) = Φ−(C) = 0 ∈Wh1(A[z, z
−1]) .

(ii) The torsion of a chain equivalence f : C−−→D of chain complex bands is
the difference of the fibering obstructions

τ(f) = Φ+(D)− Φ+(C)

= Φ−(D)− Φ−(C) ∈Wh1(A[z, z
−1]) .

In particular, Φ+(C) and Φ−(C) are simple chain homotopy invariants of C.
(ii) The difference

Φ−(C)− Φ+(C)

= τ(−zζ−1 : C[z, z−1]−−→C[z, z−1]) ∈Wh1(A[z, z
−1])

is a chain homotopy invariant of a chain complex band C, such that Φ−(C)−
Φ+(C) = 0 if and only if there exists an A-finite structure (B, f : B−−→C)
on C such that

τ(f−1ζf : B−−→B) = 0 ∈Wh1(A) ,

in which case

τ(T+(f−1ζ−1f)−−→C) = Φ+(C) = Φ−(C) ∈Wh1(A[z, z
−1]) .

Proof See Ranicki [244, Chap. 20]. �
By analogy with 2.8 :

Example 3.12 Let P be a finitely dominated A-module chain complex,
and let f : P−−→P be a chain equivalence. The fibering obstructions of any
based f.g. free A[z, z−1]-module chain complex C in the canonical round finite
structure of T+(f) are given by

Φ+(C) = 0 ,

Φ−(C) = τ(−zf : P [z, z−1]−−→P [z, z−1]) ∈Wh1(A[z, z
−1]) ,

so that C fibres if and only if P is chain homotopy finite and f is simple.
Similarly for T−(f). �



4. Localization and completion in K-theory

As already recalled in the Introduction, localization and completion are the
basic algebraic techniques for computing the algebraic K- and L-groups, by
reducing the computation for a complicated ring to simpler rings (e.g. fields).
The classic example of localization and completion is the Hasse-Minkowski
principle by which quadratic forms over Z are related to quadratic forms
over Q and the finite fields Fp and the p-adic completions Ẑp, Q̂p of Z, Q (p
prime). The localization of polynomial rings is particularly relevant to knot
theory, starting with the way in which the Blanchfield form takes its values
in the localization of Z[z, z−1] inverting the Alexander polynomials.

For any ring morphism f : A−−→B the algebraic K-groups of A and B
are related by a long exact sequence

. . . −−→ Kn(A)
f!−−→ Kn(B) −−→ Kn(f) −−→ Kn−1(A) −−→ . . .

with relative K-groups K∗(f). In particular, K1(f) is the abelian group of
equivalence classes of triples (P,Q, g) given by f.g. projective A-modules P,Q
and a B-module isomorphism

g : f!P = B ⊗A P −−→ f!Q = B ⊗A Q ,

subject to the equivalence relation defined by :

(P,Q, g) ∼ (P ′, Q′, g′) if there exist a f.g. projective A-module R

and an A-module isomorphism

h : P ⊕Q′ ⊕R ∼= P ′ ⊕Q⊕R
such that

τ((g−1 ⊕ g′ ⊕ 1f!R)h : f!(P ⊕Q′ ⊕R)
≃−−→f!(P ⊕Q′ ⊕R)) = 0 ∈ K1(B) .

In the special case when f : A−−→B = S−1A is the inclusion of A in the
localization inverting a multiplicative subset S ⊂ A the relative K-groups
K∗(f) are identified with the K-groups of the exact category of homological
dimension 1 S-torsion A-modules.
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4A. Commutative localization

This section only deals with commutative localization, in which only central
elements of a ring are inverted – see Chap. 9 below for noncommutative
localization

Definition 4.1 (i) A multiplicative subset S ⊂ A is a subset of central ele-
ments which is closed under multiplication, with st ∈ S for each s, t ∈ S, and
such that 1 ∈ S.
(ii) The localization S−1A is the ring obtained from A by inverting every
s ∈ S, with elements the equivalence classes a/s of pairs (a, s) ∈ A × S
subject to the equivalence relation

(a, s) ∼ (b, t) if (at− bs)u = 0 ∈ A for some u ∈ S .

Addition and multiplication are by

a/s+ b/t = (at+ bs)/st , (a/s)(b/t) = ab/st . �

Proposition 4.2 The ring morphism

i : A −−→ S−1A ; a −−→ a/1

has the universal property that for any ring morphism f : A−−→B with f(s) ∈
B invertible for every s ∈ S there is a unique morphism F : S−1A−−→B with

f = Fi : A −−→ S−1A −−→ B . �

The morphism i : A−−→S−1A is not injective in general. However, it is
injective if S ⊂ A consists of non-zero divisors.

Example 4.3 Given a ring A and a central element s ∈ A define the multi-
plicative subset

S = (s)∞ = {sk | k ≥ 0} ⊂ A .

The localization of A inverting S is written

S−1A = A[1/s] .

(i) If s ∈ A is a non-zero divisor every non-zero element x ∈ S−1A has a
unique expression as x = a/sk (a ∈ A, k ≥ 0).
(ii) If s = s2 ∈ A is an idempotent then

S = {1, s} , A = s(A)⊕ (1− s)(A) , A[1/s] = s(A) . �

Given an A-module M write the induced S−1A-module as

S−1M = S−1A⊗AM .

Localization is exact, so that for any A-module chain complex C there is a
natural identification

H∗(S
−1C) = S−1H∗(C) .
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Definition 4.4 (i) An A-moduleM is S-torsion if S−1M = 0, or equivalently
if for every x ∈M there exists s ∈ S such that sx = 0 ∈M . (ii) An (A,S)-
module M is an S-torsion A-module of h.d. (= homological dimension) 1,
that is an A-module with a f.g. projective resolution

0 −−→ P1

d
−−→ P0 −−→ M −−→ 0

such that there exist s ∈ S and Γ ∈ HomA(P0, P1) with

dΓ = s : P0 −−→ P0 , Γd = s : P1 −−→ P1 .

Let H (A,S) be the category of (A,S)-modules. The S-torsion class of an
(A,S)-module M is the stable isomorphism class

τS(M) = [M ] ∈ K0(H (A,S)) . �

In an exact sequence of S-torsion A-modules

0 −−→ M ′ −−→ M −−→ M ′′ −−→ 0

M is an (A,S)-module if and only if M ′ and M ′′ are (A,S)-modules. Thus
H (A,S) is an exact category in the sense of Quillen [225], and the algebraic
K-groups K∗(H (A,S)) are defined.

4B. The algebraic K-theory localization exact sequence

Proposition 4.5 (Bass [13,XII], Quillen [225])
Let S ⊂ A be a multiplicative subset in a ring A such that the natural map
i : A−−→S−1A is injective. The algebraic K-groups of A and S−1A are related
by the localization exact sequence

. . . −−→ Kn(A)
i
−−→ Kn(S

−1A)
∂
−−→ Kn(A,S)

j
−−→ Kn−1(A) −−→ . . .

with i induced by the inclusion A−−→S−1A and

Kn(A,S) = Kn−1(H (A,S)) (n ∈ Z) . �

In the case n = 1

j : K1(A,S) = K0(H (A,S)) −−→ K0(A) ;

τS(M) −−→ [M ] = [P0]− [P1] ,

∂ : K1(S
−1A) −−→ K1(A,S) ; τ(a/s : A

n−−→An)
−−→ τS(coker(a : An−−→An))− τS(coker(s : An−−→An)) .
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Proposition 4.6 The following conditions on a finite f.g. projective A-module
chain complex C are equivalent :

(i) the homology A-modules H∗(C) are S-torsion, with S
−1H∗(C) = 0,

(ii) there exists s ∈ S such that sH∗(C) = 0,
(iii) there exist A-module morphisms Γ : Cr−−→Cr+1 and an element

s ∈ S such that

dΓ + Γd = s : Cr −−→ Cr (r ∈ Z) ,

(iv) C is S−1A-contractible, i.e. the induced finite f.g. projective S−1A-
module chain complex S−1C is chain contractible,

(v) C is homology equivalent to a finite chain complex D of (A,S)-
modules.

Proof (i) ⇐⇒ (ii) Trivial.
(i) ⇐⇒ (iii) For any ring R a finite projective R-module chain complex P is
chain contractible if and only if H∗(P ) = 0.
(iii) =⇒ (i) It follows from the chain homotopy Γ : s ≃ 0 : C−−→C that
s = 0 : H∗(C)−−→H∗(C), and hence that S−1H∗(C) = 0.
(i) =⇒ (v) By Ranicki [237, 6.4.2] there exists a finite chain complex D of
(A,S)-modules with a chain map C−−→D inducing isomorphisms

H∗(C) ∼= H∗(D) .

(v) =⇒ (i) For each Dr there exists sr ∈ S such that srDr = 0. The product
s =

∏
r sr ∈ S is such that

sH∗(D) = sH∗(C) = 0

and there exists a chain homotopy Γ : s ≃ 0 : C−−→C.
(iii) ⇐⇒ (iv) Every chain contraction of S−1C is of the form Γ/s, with

dΓ + Γd = s : Cr −−→ Cr . �

Definition 4.7 An S−1A-contractible finitely dominated A-module chain
complex C has an S-torsion class invariant

τS(C) =
∞∑
i=0

(−)iτS(Di) ∈ K1(A,S) = K0(H (A,S)) ,

with D any finite (A,S)-module chain complex homology equivalent to C.
�

Proposition 4.8 (i) The morphism j in the localization exact sequence

. . . −−→ K1(A)
i
−−→ K1(S

−1A)
∂
−−→ K1(A,S)

j
−−→ K0(A) −−→ . . .

sends the S-torsion class of C to the projective class
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j : K1(A,S) −−→ K0(A) ; τS(C) −−→ [C] .

(ii) The connecting map ∂ : K1(S
−1A)−−→K1(A,S) sends the torsion

τ(S−1C) of the contractible based f.g. free S−1A-module chain complex S−1C
induced from a based f.g. free A-module chain complex C with
S−1H∗(C) = 0 to the S-torsion class

∂τ(S−1C) = τS(C) ∈ K1(A,S) .

(iii) If each Hr(C) (r ≥ 0) is an (A,S)-module

τS(C) =
∞∑
r=0

(−)rτS(Hr(C)) ∈ K1(A,S) . �

Definition 4.9 (i) For any commutative ring A let max(A) denote the set
of maximal ideals in A.
(ii) For any field F let M(F ) be the set of irreducible monic polynomials

p(z) = a0 + a1z + a2z
2 + . . .+ adz

d ∈ F [z] (ad = 1) . �

Remark 4.10 (i) The maximal ideals of a Dedekind ring A are the non-
zero prime ideals P ▹ A. For S = A\{0} ⊂ A a standard devissage argument
identifies

K∗(A,S) =
⊕

P∈max(A)

K∗−1(A/P) ,

with S−1A = F the quotient field of A. See Chap. 18 for more on the K-
theory of Dedekind rings.
(ii) The polynomial extension of a field F is a principal ideal domain F [z]
with maximal ideals the principal ideals generated by the monic irreducible
polynomials, so that there is defined a bijection

M(F )
≃−−→ max(F [z]) ; p(z) −−→ (p(z)) .

The quotient field of F [z] is the function field

F (z) = S−1F [z] (S = F [z]\{0})

and the localization exact sequence breaks up into short exact sequences

0 −−→ Kn(F [z]) −−→ Kn(F (z)) −−→ Kn(F [z], S) −−→ 0 .

The computation
K1(F [z], S) = Z[M(F )]

and its L-theoretic analogues will play an important role in the computation
of the high-dimensional knot cobordism groups in Part Two. �
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Definition 4.11 A cartesian morphism of rings with multiplicative subsets

f : (A,S) −−→ (B, T )

is a morphism of rings f : A−−→B such that f | : S−−→T is a bijection and
such that each

[f ] : A/(s) −−→ B/(f(s)) (s ∈ S)
is an isomorphism of A-modules. �

For any multiplicative subset S ⊂ A there is defined an A-module iso-
morphism

lim−→
s∈S

A/(s)
≃−−→ S−1A/A ; {as | s ∈ S} −−→ as/s

so that a cartesian morphism induces a cartesian square of rings

A //

��

S−1A

��
B // T−1B

with an exact sequence of A-modules

0 −−→ A −−→ S−1A⊕B −−→ T−1B −−→ 0 .

Proposition 4.12 A cartesian morphism f : (A,S)−−→(B, T ) determines
an isomorphism of exact categories

H (A,S)
≃−−→ H (B, T ) ; M −−→ B ⊗A T ,

so that
K∗(A,S) = K∗(B, T ) ,

and there are defined a morphism of localization exact sequences

. . . // Kn(A) //

��

Kn(S
−1A) //

��

Kn(A,S) //

��

Kn−1(A) //

��

. . .

. . . // Kn(B) // Kn(T
−1B) // Kn(B, T ) // Kn−1(B) // . . .

and a Mayer–Vietoris exact sequence

. . . −−→ Kn(A) −−→ Kn(S
−1A)⊕Kn(B)

−−→ Kn(T
−1B) −−→ Kn−1(A) −−→ . . . .

Proof See Karoubi [115,App. 5] for a proof that H (A,S)−−→H (B, T ) is an
isomorphism of exact categories, and Weibel [308, 4.2] for a proof of the nat-
urality. (It is not assumed that B is a flat A-module, so the localization
theorem of Quillen [225, Chap. 8] does not give the naturality directly). �
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Definition 4.13 The multiplicative subsets S, T ⊂ A are coprime if for every
s ∈ S, t ∈ T the ideals (s), (t) ▹A are coprime, i.e. if there exist a, b ∈ A such
that

as+ bt = 1 ∈ A . �
The localizations inverting coprime multiplicative subsets S, T ⊂ A and

the product multiplicative subset

ST = {st | s ∈ S, t ∈ T} ⊂ A

fit into a cartesian square of rings

A //

��

S−1A

��
T−1A // (ST )−1A

since inclusion defines a cartesian morphism (A,S)−−→(T−1A,S) and

(ST )−1A = S−1(T−1A) .

Proposition 4.14 Let S, T ⊂ A be coprime multiplicative subsets.
(i) The relative algebraic K-groups are such that

K∗(A,ST ) = K∗(A,S)⊕K∗(A, T )

and there is defined a Mayer–Vietoris exact sequence

. . . −−→ Kn(A) −−→ Kn(S
−1A)⊕Kn(T

−1A) −−→ Kn((ST )
−1A)

−−→ Kn−1(A) −−→ . . . .

(ii) A finitely dominated A-module chain complex C is (ST )−1A-contractible
if and only if it is chain equivalent to the sum C ′ ⊕ C ′′ of a finitely domi-
nated S−1A-contractible A-module chain complex C ′ and a finitely dominated
T−1A-contractible A-module chain complex C ′′, in which case C ′ ≃ T−1C
and C ′′ ≃ S−1C.
(iii) The ST -torsion class of an (ST )−1A-contractible finitely dominated A-
module chain complex C is

τST (C) = (τS(T
−1C), τT (S

−1C)) ∈ K1(A,ST ) = K1(A,S)⊕K1(A, T ) .

Proof (i) Apply 4.12 to the cartesian morphism (A,S)−−→(T−1A,S). Al-
ternatively, note that every (A,ST )-module M has a canonical direct sums
splitting

M = M ′ ⊕M ′′

with
M ′ = {x ∈M | sx = 0 ∈M for some s ∈ S} ,
M ′′ = {x ∈M | tx = 0 ∈M for some t ∈ T} ,

defining an isomorphism of exact categories

H (A,ST ) −−→ H (A,S)⊕H (A, T ) ; M −−→ (M ′,M ′′) .
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(ii) If C is chain equivalent to C ′ ⊕ C ′′ then

(ST )−1C ≃ T−1(S−1C ′)⊕ S−1(T−1C ′′) ≃ 0 .

Conversely, suppose that C is (ST )−1A-contractible. Replacing C by a chain
equivalent finite f.g. projective A-module chain complex (if necessary) let

C ′ = T−1C , C ′′ = S−1C ,

so that there is defined a short exact sequence of A-module chain complexes

0 −−→ C −−→ C ′ ⊕ C ′′ −−→ (ST )−1C −−→ 0 .

Since (ST )−1C is contractible both C ′ and C ′′ are finitely dominated A-
module chain complexes, such that C ≃ C ′ ⊕ C ′′ with C ′ S−1A-contractible
and C ′′ T−1A-contractible.
(iii) Immediate from (ii). �
Definition 4.15 Let A be a ring with a multiplicative subset S ⊂ A. The
S-adic completion of A is the ring defined by the inverse limit

ÂS = lim←−
s∈S

A/(s) .

Let Ŝ ⊂ ÂS be the multiplicative subset defined by the image of S ⊂ A under
the canonical inclusion A−−→ÂS . �
Example 4.16 For S = (s)∞ ⊂ A as in 4.3

ÂS = Âs = ker(I − T :
∞∏
k=1

A/(sk)−−→
∞∏
k=1

A/(sk))

with

I − T :

∞∏
k=1

A/(sk) −−→
∞∏
k=1

A/(sk) ;

∞∏
k=1

ak −−→
∞∏
k=1

(ak − ak−1) . �

Proposition 4.17 For any ring with multiplicative subset (A,S) the localiza-

tion S−1A and completion ÂS are such that the inclusion A−−→ÂS defines a
cartesian morphism

(A,S) −−→ (ÂS , Ŝ) ,

inducing a cartesian square of rings

A //

��

S−1A

��
ÂS // Ŝ−1ÂS

and a Mayer–Vietoris exact sequence

. . . −−→ Kn(A) −−→ Kn(S
−1A)⊕Kn(ÂS) −−→ Kn(Ŝ

−1ÂS)

−−→ Kn−1(A) −−→ . . . . �



5. K-theory of polynomial extensions

The algebraic K-theory of the polynomial extensions A[z], A[z, z−1] enters
high-dimensional knot theory via the action of the group of covering transla-
tions on the infinite cyclic cover of a knot complement, and a related endo-
morphism of the chain complex of a Seifert surface.

The exterior of an n-knot k : Sn ⊂ Sn+2 is a space

X = cl.(Sn+2\(Sn ×D2))

with a canonical infinite cyclic cover X, so that C(X) is a finite f.g. free
Z[z, z−1]-module chain complex. A choice of Seifert surface Fn+1 ⊂ Sn+2

for k determines a Z-module chain complex Ċ(F ) with a chain map f :
Ċ(F )−−→Ċ(F ), such that

C(1− f + zf : Ċ(F )[z, z−1]−−→Ċ(F )[z, z−1]) ≃ C(X) .

In this connection it is convenient to introduce another indeterminate s over
Z (related to z by s = (1 − z)−1), and to regard Ċ(F ) as a Z[s]-module
chain complex via s = f – this point of view will become particularly useful
in the treatment of Seifert and Blanchfield complexes in Chap. 32. In any
case, Chap. 5 is devoted to the algebraic K-theory of A[z], A[z, z−1] for an
arbitrary ring A.

The direct summand NK1(A) in the Bass–Heller–Swan ([13], [14]) direct
sum decompositions

K1(A[z]) = K1(A)⊕NK1(A) ,

K1(A[z, z
−1]) = K1(A)⊕K0(A)⊕NK1(A)⊕NK1(A)

is the reduced nilpotent class group Ñil0(A). This identification will now
be recalled and extended, using the chain complex interpretation of Ranicki
[244].

The Laurent polynomial extension A[z, z−1] of a ring A is the localization
of A[z] inverting the multiplicative subset

Z = (z)∞ = {zk | k ≥ 0} ⊂ A[z] ,
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that is
Z−1A[z] = A[z, z−1] .

The Laurent polynomial extension ring can also be expressed as

A[z, z−1] = Z ′−1A[z−1] ,

with Z ′ = {z−k | k ≥ 0} ⊂ A[z−1].

Let A• be the multiplicative group of units of A

Terminology 5.1 (i) The

{
leading

trailing
coefficient of a non-zero polynomial

∞∑
j=−∞

ajz
j ∈ A[z, z−1] is the coefficient aj ̸= 0 ∈ A with the

{
largest

smallest
possible j ∈ Z.
(ii) The extreme coefficients of a non-zero polynomial

∞∑
j=−∞

ajz
j ∈ A[z, z−1]

are the leading and trailing coefficients am, an ̸= 0 ∈ A (which may be the
same). �

Let

i : A −−→ A[z, z−1] , i± : A[z±1] −−→ A[z, z−1] , ĩ± : A −−→ A[z±1]

denote the inclusions, so that there is defined a commutative diagram

A
f //

f ′
��

B

g
��

B′ g′ // A′

Given an A-module M let

M [z] = A[z]⊗AM =
∞∑
j=0

zjM

be the induced A[z]-module. Similarly for the induced A[z, z−1]-module

M [z, z−1] = A[z, z−1]⊗AM =

∞∑
j=−∞

zjM .

Proposition 5.2 (i) An A[z]-module M is an A-module with an endomor-
phism

ζ : M −−→ M ; x −−→ zx .

For any such M there is defined an exact sequence of A[z]-modules

0 −−→ M [z]
z−ζ
−−→ M [z] −−→ M −−→ 0
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with

M [z] −−→ M ;
∞∑
j=0

zjxj −−→
∞∑
j=0

ζj(xj) .

(ii) For any A-modules L, M there is defined an injection

HomA(L,M)[z] −−→ HomA[z](L[z],M [z]) ;

∞∑
j=0

zjfj −−→
( ∞∑
k=0

zkxk −−→
∞∑
j=0

∞∑
k=0

zj+kfj(xk)

)
.

If L is f.g. projective this is an isomorphism, allowing the identification

HomA(L,M)[z] = HomA[z](L[z],M [z]) . �

Remark 5.3 If L is not f.g. projective then in general

HomA(L,M)[z] ̸= HomA[z](L[z],M [z]) .

Specifically, consider the special case

L =

∞∑
0

A , M = A

and the A[z]-module morphism

f : L[z] −−→ M [z] ;
∞∑
j=0

zj(x0, x1, . . .) −−→
∞∑
j=0

zjxj .

Then f cannot be expressed as
∞∑
j=0

zjfj for some set of A-module morphisms

{fj ∈ HomA(L,M) | j ≥ 0} with {j ≥ 0 | fj ̸= 0} finite. �
Similarly for A[z, z−1]-modules :

Proposition 5.4 (i) An A[z, z−1]-module M is an A-module with an auto-
morphism

ζ : M −−→ M ; x −−→ zx .

For any such M there is defined an exact sequence of A[z, z−1]-modules

0 −−→ M [z, z−1]
z−ζ
−−→ M [z, z−1] −−→ M −−→ 0

with

M [z, z−1] −−→ M ;

∞∑
j=−∞

zjxj −−→
∞∑

j=−∞
ζj(xj) .

(ii) For any A-modules L, M there is defined an injection
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HomA(L,M)[z, z−1] −−→ HomA[z,z−1](L[z, z
−1],M [z, z−1]) ;

∞∑
j=−∞

zjfj −−→
( ∞∑
k=−∞

zkxk −−→
∞∑

j=−∞

∞∑
k=−∞

zj+kfj(xk)

)
.

If L is f.g. projective this is an isomorphism, allowing the identification

HomA(L,M)[z, z−1] = HomA[z,z−1](L[z, z
−1],M [z, z−1]) . �

Let P(A) be the exact category of f.g. projective A-modules, so that

K∗(A) = K∗(P(A)) .

An element ν ∈ A is nilpotent if νN = 0 ∈ A for some N ≥ 0. An
endomorphism ν : P−−→P of an A-module P is nilpotent if ν ∈ HomA(P, P )
is nilpotent.

Definition 5.5 (i) The nilpotent category Nil(A) is the exact category in
which an object is a pair (P, ν) with P a f.g. projective A-module and ν :
P−−→P a nilpotent endomorphism. A morphism in Nil(A)

f : (P, ν) −−→ (P ′, ν′)

is an A-module morphism f : P−−→P ′ such that

fν = ν′f : P −−→ P ′ .

A sequence of objects and morphisms in Nil(A)

0 −−→ (P, ν) −−→ (P ′, ν′) −−→ (P ′′, ν′′) −−→ 0

is exact if 0−−→P−−→P ′−−→P ′′−−→0 is an exact sequence of the underlying
f.g. projective A-modules.
(ii) The nilpotent K-groups of A are given by

Nil∗(A) = K∗(Nil(A)) .

(iii) The reduced nilpotent K-groups of A are given by

Ñil∗(A) = coker(K∗
(
P(A))−−→K∗(Nil(A))

)
with

P(A) −−→ Nil(A) ; P −−→ (P, 0) ,

such that
Nil∗(A) = K∗(A)⊕ Ñil∗(A) .

(iv) The nilpotent class group is

Nil0(A) = K0(Nil(A)) ,
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the group of equivalence classes of objects (P, ν) in Nil(A), subject to the
relation: (P ′, ν′) ∼ (P, ν) + (P ′′, ν′′) if there exists a short exact sequence

0 −−→ (P, ν) −−→ (P ′, ν′) −−→ (P ′′, ν′′) −−→ 0 .

The reduced nilpotent class group of A is

Ñil0(A) = coker(K0(A)−−→Nil0(A)) ,

the group of equivalence classes of objects (P, ν) in Nil(A), subject to the
relations :

(a) (P ′, ν′) ∼ (P, ν) + (P ′′, ν′′) if there exists a short exact sequence

0 −−→ (P, ν) −−→ (P ′, ν′) −−→ (P ′′, ν′′) −−→ 0 ,

(b) (P, 0) ∼ 0 for any f.g. projective A-module P . �
Proposition 5.6 (Bass [13,XII.9.4], Quillen [225], Grayson [95])
(i) The relative groups K∗(A[z], Z) in the localization exact sequence

. . . −−→ Kn(A[z])
i+
−−→ Kn(A[z, z

−1])
∂+
−−→ Kn(A[z], Z)

−−→ Kn−1(A[z]) −−→ . . .

are the algebraic K-groups

K∗(A[z], Z) = K∗−1(H (A[z], Z))

of the exact category H (A[z], Z) of (A[z], Z)-modules. Use the isomorphism
of exact categories

Nil(A)
≃−−→ H (A[z], Z) ; (P, ν) −−→ coker(z − ν : P [z]−−→P [z])

to identify

K∗(A[z], Z) = K∗−1(H (A[z], Z))

= Nil∗−1(A) = K∗−1(A)⊕ Ñil∗−1(A) .

(ii) The localization exact sequence breaks up into split exact sequences

0 −−→ Kn(A[z])
i+
−−→ Kn(A[z, z

−1])
∂+
−−→ Niln−1(A) −−→ 0 ,

so that
Kn(A[z, z

−1]) = Kn(A[z])⊕Niln−1(A) (n ∈ Z) .

(iii) The algebraic K-groups of A[z] fit into split exact sequences

0 −−→ Kn(A)
ĩ+
−−→ Kn(A[z])

∂̃+
−−→ Ñiln−1(A) −−→ 0

with
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∂̃+ : Kn(A[z])
i+
−−→ Kn(A[z, z

−1])

∂−
−−→ Kn(A[z

−1], Z ′)/Kn−1(A) = Ñiln−1(A) ,

so that
Kn(A[z]) = Kn(A)⊕ Ñiln−1(A) (n ∈ Z) . �

Remark 5.7 Let P be a f.g. projective A-module, and let R = HomA(P, P )
be the endomorphism ring.
(i) A linear element

a = a0 + a1z ∈ HomA[z](P [z], P [z]) = R[z]

is a unit a ∈ R[z]• (i.e. an automorphism of P [z]) if and only if a0 : P−−→P
is an automorphism and ν = a1(a0)

−1 ∈ R is nilpotent, in which case

(a0 + a1z)
−1 = (a0)

−1(
∞∑
j=0

(−ν)jzj) : P [z] −−→ P [z] .

(ii) A linear element

a = a0 + a1z ∈ HomA[z,z−1](P [z, z
−1], P [z, z−1]) = R[z, z−1]

is a unit a ∈ R[z, z−1]• if and only if a0 + a1 ∈ R is a unit and

f = (a0 + a1)
−1a0 ∈ R

is a near-projection in the sense of Lück and Ranicki [175], i.e. such that
f(1− f) ∈ R is nilpotent. If k ≥ 0 is so large that (f(1− f))k = 0 ∈ R then
fk + (1− f)k ∈ R•, and

fω = (fk + (1− f)k)−1fk ∈ R

is a projection, (fω)
2 = fω. The f.g. projective A-modules

M = fω(P ) , N = (1− fω)(P )

are such that P =M ⊕N and

a0 + a1z = (b0 + b1z)⊕ (c0 + c1z) :

P [z, z−1] = M [z, z−1]⊕N [z, z−1] −−→

P [z, z−1] = M [z, z−1]⊕N [z, z−1]

with b0 : M−−→M , c1 : N−−→N isomorphisms and (b0)
−1b1 : M−−→M ,

(c1)
−1c0 : N−−→N nilpotent. Thus b0+b1z :M [z]−−→M [z] is an A[z]-module

automorphism and c0z
−1+ c1 : N [z−1]−−→N [z−1] is an A[z−1]-module auto-

morphism. �
The split exact sequences
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0 −−→ K1(A[z]) −−→ K1(A[z, z
−1]) −−→ Nil0(A) −−→ 0 ,

0 −−→ K1(A) −−→ K1(A[z]) −−→ Ñil0(A) −−→ 0

will now be interpreted in terms of chain homotopy nilpotent chain maps of
finitely dominated A-module chain complexes, generalizing the treatment of
Ranicki [244].

Definition 5.8 An A-module chain map ν : C−−→C is chain homotopy
nilpotent if for some k ≥ 0 there exists a chain homotopy νk ≃ 0 : C−−→C,
or equivalently if ν ∈ H0(HomA(C,C)) is nilpotent. �

See Ranicki [244, Chap. 11] for the definition of the nilpotent class

[C, ν] ∈ Nil0(A)

of a finitely dominated A-module chain complex C with a chain homotopy
nilpotent map ν : C−−→C.

Proposition 5.9 For a finitely dominated A-module chain complex P the
following conditions on a chain map ν : P−−→P are equivalent :

(i) ν is chain homotopy nilpotent,
(ii) the A[z]-module chain map 1− zν : P [z]−−→P [z] is a chain equiva-

lence, with chain homotopy inverse

(1− zν)−1 =
∞∑
j=0

zjνj : P [z]
≃−−→ P [z] ,

(iii) the A[z−1]-module chain map 1−z−1ν : P [z−1]−−→P [z−1] is a chain
equivalence, with chain homotopy inverse

(1− z−1ν)−1 =
0∑

j=−∞
zjν−j : P [z−1] −−→ P [z−1] .

Proof (i)⇐⇒ (ii) The A[z]-module chain map 1−zν : P [z]−−→P [z] is a chain
equivalence if and only if the element

1− zν ∈ H0(HomA[z](P [z], P [z])) = H0(HomA(P, P ))[z]

is a unit, which by 5.7 is the case if and only if ν ∈ H0(HomA(P, P )) is
nilpotent.
(ii) ⇐⇒ (iii) Trivial. �
Proposition 5.10 The following conditions on a finite f.g. free A[z]-module
chain complex E+ are equivalent :

(i) E+ is A-finitely dominated and the A-module chain map

ζ : E+ −−→ E+ ; x −−→ zx
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is chain homotopy nilpotent,
(ii) H∗(A[z, z

−1]⊗A[z] E
+) = 0,

(iii) E+ is homology equivalent to a finite complex of (A[z], Z)-modules.

Proof Immediate from 4.5, 5.5 (i). �
If E+ is an A[z, z−1]-contractible finite f.g. free A[z]-module chain com-

plex the nilpotent class of (E+, ζ) is given by

[E+, ζ] =
∞∑
r=0

(−)r[Pr, νr] ∈ Nil0(A)

for any finite chain complex in Nil(A)

(P, ν) : . . . −−→ (Pn, νn) −−→ (Pn−1, νn−1) −−→ . . . −−→ (P0, ν0)

such that E+ is chain equivalent to C(z − ν : P [z]−−→P [z]).

Proposition 5.10′ The following conditions on a finite f.g. free A[z−1]-
module chain complex E− are equivalent :

(i) E− is A-finitely dominated and the A-module chain map

ζ−1 : E− −−→ E− ; x −−→ z−1x

is chain homotopy nilpotent,
(ii) H∗(A[z, z

−1]⊗A[z−1] E
−) = 0,

(iii) E− is homology equivalent to a finite complex of (A[z−1], Z ′)-modules.

Proof As for 5.10, but with E+, z replaced by E−, z−1. �
For any A[z]-module chain complex E+ there is defined a short exact

sequence of A[z]-module chain complexes

1 −−→ E+[z]
z−ζ
−−→ E+[z]

p+

−−→ E+ −−→ 1

with

ζ : E+ −−→ E+ ; x −−→ zx ,

p+ : E+[z] = A[z]⊗A E+ −−→ E+ ;
∞∑
j=1

ajz
j ⊗ xj −−→

∞∑
j=1

ajζ
j(xj) .

The A[z]-module chain map

r+ = (p+ 1) : C(z − ζ : E+[z]−−→E+[z]) −−→ E+

is a homology equivalence. If E+ is a projective A[z]-module chain complex
then r+ is a chain equivalence.

Definition 5.11 The fibering obstruction of an A-finitely dominated based
f.g. free A[z]-module chain complex E+ is
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Φ(E+) = τ(r+ : C(z − ζ : E+[z]−−→E+[z])−−→E+) ∈ K1(A[z]) . �

By analogy with the properties (3.12) of the fibering obstructions Φ+(E),
Φ−(E) of an A[z, z−1]-module chain complex band E :

Proposition 5.12 (i) The fibering obstruction of an A-finitely dominated
based f.g. free A[z]-module chain complex E+ is such that Φ(E+) = 1 ∈
K1(A[z]) if and only if E+ is simple chain equivalent to C(z−h : P [z]−−→P [z])
for some finite f.g. projective A-module chain complex P and self chain map
h : P−−→P .
(ii) The torsion of a chain equivalence f : C−−→D of A-finitely dominated
based f.g. free A[z]-module chain complexes is the difference of the fibering
obstructions

τ(f) = Φ(D)− Φ(C) ∈ K1(A[z]) . �
Remark 5.13 In Chap. 8 it will be proved that if E+ is a based f.g. free
A[z]-module chain complex such that the induced A[z, z−1]-module chain
complex E = A[z, z−1]⊗AE+ is a A-finitely dominated then E+ is A-finitely
dominated. See 5.16 (ii) below for the relationship between the fibering ob-
structions Φ+(E) ∈ K1(A[z, z

−1]), Φ(E+) ∈ K1(A[z]) of 3.10, 5.11 in the case
when E+ and E are both A-finitely dominated. �
Proposition 5.14 (i) The torsion group of A[z, z−1] fits into the direct sum
system

K1(A[z])
i+

−−−−−→←−−−−−
j+

K1(A[z, z
−1])

∂+
−−−−−→←−−−−−

∆+

Nil0(A)

with

i+ : K1(A[z]) −−→ K1(A[z, z
−1]) ;

τ(E+) −−→ τ(A[z, z−1]⊗A[z] E
+) ,

j+ : K1(A[z, z
−1]) −−→ K1(A[z]) ;

τ(A[z, z−1]⊗A[z] E
+) −−→ Φ(E+),

∂+ : K1(A[z, z
−1]) −−→ Nil0(A) ;

τ(A[z, z−1]⊗A[z] E
+) −−→ [E+, ζ] ,

∆+ : Nil0(A) −−→ K1(A[z, z
−1]) ;

[P, ν] −−→ τ(z − ν : P [z, z−1]−−→P [z, z−1]) .

(ii) The torsion group of A[z] fits into the direct sum system

K1(A)
ĩ+

−−−−−→←−−−−−
j̃+

K1(A[z])
∂̃+

−−−−−→←−−−−−
∆̃+

Ñil0(A)

with
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ĩ+ : K1(A) −−→ K1(A[z]) ; τ(E) −−→ τ(E[z]) ,

j̃+ : K1(A[z]) −−→ K1(A) ; τ(E
+) −−→ τ(A⊗A[z] E

+) ,

∂̃+ : K1(A[z]) −−→ Ñil0(A) ; τ(E
+) −−→ [E−, ζ−1]

(A[z, z−1]⊗A[z] E
+ = A[z, z−1]⊗A[z−1] E

−) ,

∆̃+ : Ñil0(A) −−→ K1(A[z]) ;

[P, ν] −−→ τ(1− zν : P [z]−−→P [z]) . �

Similarly :

Proposition 5.14′ (i) The torsion group of A[z, z−1] fits into the direct sum
system

K1(A[z
−1])

i−
−−−−−→←−−−−−

j−

K1(A[z, z
−1])

∂−
−−−−−→←−−−−−

∆−

Nil0(A)

with
i− : K1(A[z

−1]) −−→ K1(A[z, z
−1]) ;

τ(E−) −−→ τ(A[z, z−1]⊗A[z−1] E
−) ,

j− : K1(A[z, z
−1]) −−→ K1(A[z

−1]) ;

τ(A[z, z−1]⊗A[z−1] E
−) −−→

Φ(E−) = τ(r− : C(z−1 − ζ−1 : E−[z−1]−−→E−[z−1])−−→E−) ,

∂− : K1(A[z, z
−1]) −−→ Nil0(A) ;

τ(A[z, z−1]⊗A[z−1] E
−) −−→ [E−, ζ−1] ,

∆− : Nil0(A) −−→ K1(A[z, z
−1]) ;

[P, ν] −−→ τ(z−1 − ν : P [z, z−1]−−→P [z, z−1]) .

(ii) The torsion group of A[z−1] fits into the direct sum system

K1(A)
ĩ−

−−−−−→←−−−−−
j̃−

K1(A[z
−1])

∂̃−
−−−−−→←−−−−−

∆̃−

Ñil0(A)

with

ĩ− : K1(A) −−→ K1(A[z
−1]) ; τ(E) −−→ τ(E[z−1]) ,

j̃− : K1(A[z
−1]) −−→ K1(A) ; τ(E

−) −−→ τ(A⊗A[z−1] E
−) ,

∂̃− : K1(A[z
−1]) −−→ Ñil0(A) ; τ(E

−) −−→ [E+, ζ]

(A[z, z−1]⊗A[z−1] E
− = A[z, z−1]⊗A[z] E

+) ,

∆̃− : Ñil0(A) −−→ K1(A[z
−1]) ;

[P, ν] −−→ τ(1− z−1ν : P [z−1]−−→P [z−1]) . �
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Example 5.15 (i) If A is a Dedekind ring every object (P, f) in Nil(A) has
a finite filtration

(ker(f), 0) ⊂ (ker(f2), f |) ⊂ . . . ⊂ (ker(fN ), f |) = (P, f) (fN = 0)

such that
f(ker(fr+1)) ⊆ ker(fr) (r ≥ 0)

with A-module isomorphisms

ker(fr+1)/ker(fr)
≃−−→ fr(ker(fr+1)) ; x −−→ fr(x) .

The filtration quotients ker(fr+1)/ker(fr) are f.g. torsion-free A-modules,
and hence f.g. projective, with

(P, f) =

∞∑
r=0

(ker(fr+1)/ker(fr), 0) = (P, 0) ∈ Nil0(A) .

It follows that
Nil0(A) = K0(A) , Ñil0(A) = 0 .

(In fact, Ñil0(A) = 0 for any regular ring A, by Bass, Heller and Swan [14].)
(ii) Let A = F be a field. Dimension and determinant define isomorphisms

dim : K0(F )
≃−−→ Z ; [P ] −−→ dimF (P ) ,

det : K1(F )
≃−−→ F • ; τ −−→ det (τ) ,

with F • = F\{0}, and

Nil0(F ) = K0(F ) = Z ,

K1(F [z, z
−1]) = K1(F )⊕K0(F ) = F • ⊕ Z . �

Proposition 5.16 Let E+ be a based f.g. free A[z]-module chain complex,
and let

E = A[z, z−1]⊗A[z] E
+ = A[z, z−1]⊗A[z−1] E

− .

(i) If E+ is A-finitely dominated then ζ−1 : E/E−−−→E/E− is chain homo-
topy nilpotent and

∂̃+Φ(E
+) = −[E/E−, ζ−1] ∈ Ñil0(A)

for any compatibly based f.g. free A[z−1]-module chain complex E− with

E = A[z, z−1]⊗A[z] E
+ = A[z, z−1]⊗A[z−1] E

− .

(ii) If E+ and E are A-finitely dominated then ζ/ζ+ : E/E+−−→E/E+ is
chain homotopy nilpotent and
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i+Φ
+(E)− Φ(E) = τ(−ζ : E[z, z−1]−−→E[z, z−1]) +∆+(E/E

+, ζ)

∈ K1(A[z, z
−1]) .

Proof (i) The A[z−1]-module chain map defined by

s− : E− −−→ C(1− z−1ζ : E+[z−1]−−→E+[z−1]) ;

0∑
j=−∞

ζj(xj) −−→
0∑

j=−∞
zjxj (xj ∈ E+)

induces an A[z, z−1]-module chain equivalence

1⊗ s− : E = A[z, z−1]⊗A[z−1] E
−

≃−−→ C(1− z−1ζ : E+[z, z−1]−−→E+[z, z−1]) .

The composite of 1⊗ s− and the A[z, z−1]-module chain isomorphism

t : C(1− z−1ζ : E+[z, z−1]−−→E+[z, z−1])

≃−−→ C(z − ζ : E+[z, z−1]−−→E+[z, z−1]) ; (x, y) −−→ (zx, y)

is a chain homotopy inverse for 1⊗ r+

t(1⊗ s−) = (1⊗ r+)−1 :

E = A[z, z−1]⊗A[z−1] E
− ≃−−→ C(z − ζ : E+[z, z−1]−−→E+[z, z−1]) ,

with torsion

τ(t) = τ(z : E+[z, z−1]−−→E+[z, z−1]) ∈ K1(A[z, z
−1]) .

The A[z−1]-module chain map

C(1− z−1ζ : E+[z−1]−−→E+[z−1]) −−→ E ;

(
0∑

j=−∞
zjxj ,

0∑
j=−∞

zjyj) −−→
0∑

j=−∞
ζj(xj)

is a chain equivalence, and

∂−τ(1⊗ s−) = [E/E−, ζ−1] + [E+ ∩ E−, 0] ∈ Nil0(A) .

The fibering obstruction Φ(E+) = τ(r+) ∈ K1(A[z]) is thus such that

∂̃+τ(r
+) = ∂−τ(1⊗ r+) = −∂−τ(1⊗ s−)− ∂−τ(t)

= −[E/E−, ζ−1]− [E+ ∩ E−, 0] + [E+, 0]

= −[E/E−, ζ−1] ∈ Ñil0(A) ⊆ Nil0(A) .
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(ii) Immediate from (i) and 5.10. �
Remark 5.17 The chain complexes E,E− in 5.16 (i) need not be A-finitely
dominated, although the quotient

E/E− = E+/E+ ∩ E−

is A-finitely dominated. For example, if s ∈ A is a central non-unit (e.g.
s = 2 ∈ A = Z) then the chain complexes

E+ = C(z − s : A[z]−−→A[z]) ,

E = C(z − s : A[z, z−1]−−→A[z, z−1]) ,

E− = C(1− sz−1 : A[z−1]−−→A[z−1])

are such that E+ is A-finitely dominated but E and E− are not A-finitely
dominated, with

H0(E
+) = A , H0(E) = H0(E

−) = A[1/s] . �

Example 5.18 Let E+ be the 1-dimensional based f.g. free A[z]-module
chain complex

E+ : . . . −−→ 0 −−→ E+
1 = F [z]

d+

−−→ E+
0 = G[z]

with F,G based f.g. free A-modules and

d+ = d0 + d1z : F [z] −−→ G[z]

for some d0, d1 ∈ HomA(F,G). The 1-dimensional f.g. free A[z−1]-module
chain complex

E− : . . . −−→ 0 −−→ E−
1 = F [z−1]

d−

−−→ E−
0 = G[z−1]

defined by
d− = d1 + d0z

−1 : F [z] −−→ G[z]

is such that

A[z, z−1]⊗A[z] E
+ = A[z, z−1]⊗A[z−1] E

− .

The induced A-module chain complex

A⊗A[z] E
+ : . . . −−→ A[z]⊗A E+

1 = F
d0
−−→ A⊗A[z] E

+
0 = G

is such that H∗(A⊗A[z]E
+) = 0 if and only if d0 : F−−→G is an isomorphism,

in which case the inclusion G−−→E− is an A-module chain equivalence with

ζ−1 = −d1(d0)−1 : H0(E
−) = G −−→ H0(E

−) = G .
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The A[z]-module chain complex E+ is contractible if and only if d0 : F−−→G
is an isomorphism and d1(d0)

−1 : G−−→G is nilpotent, in which case

τ(r+) = τ(E+) = (τ(d0 : F−−→G), [G,−d1(d0)−1])

∈ K1(A[z]) = K1(A)⊕ Ñil0(A) .

If d1 : F−−→G is an isomorphism the A-module morphism

f : E+
0 = G[z] −−→ G ;

∞∑
j=0

zjxj −−→
∞∑
j=0

(−d0(d1)−1)j(xj)

defines an A-module chain equivalence f : E+−−→G such that

fζf−1 = −d0(d1)−1 : G −−→ G ,

and E+ is A-finitely dominated with

τ(r+ : C(ζ − z : E+[z]−−→E+[z])−−→E+) = (τ(−d1 : F−−→G), 0)

∈ K1(A[z]) = K1(A)⊕ Ñil0(A) . �

As in Ranicki [240], [244] it is possible to consider both the original “al-
gebraically significant” Bass–Heller–Swan type direct sum decomposition of
K1(A[z, z

−1]) and Wh1(A[z, z
−1]) and the transfer-invariant “geometrically

significant” direct sum decomposition. The latter decomposition will play a
greater role in this book.

Definition 5.19 The geometrically significant decomposition of the White-
head group of A[z, z−1]

Wh1(A[z, z
−1]) = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

is the decomposition determined by the isomorphism

Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)
≃−−→ Wh1(A[z, z

−1]) ;

(τ(f :M−−→M), [N ], [P+, ν+], [P−, ν−]) −−→

τ(f :M [z, z−1]−−→M [z, z−1]) + τ(−z : N [z, z−1]−−→N [z, z−1])

+ τ(1− z−1ν+ : P+[z, z−1]−−→P+[z, z−1])

+ τ(1− zν− : P−[z, z−1]−−→P−[z, z−1]) . �



6. K-theory of formal power series

The results of Chap. 5 on the K-theory of the polynomial extensions
A[z], A[z, z−1] are extended to the K-theory of the formal power series ring
A[[z]] and the Novikov ring A((z)). This extension will be used in Chap. 8
to show that a finite f.g. free A[z, z−1]-module chain complex is A-finitely
dominated (i.e. a band) if and only if

H∗(A((z))⊗A[z,z−1] C) = H∗(A((z
−1))⊗A[z,z−1] C) = 0 .

In particular, if ∆(z)H∗(C) = 0 for some ∆(z) =
d∑
j=0

ajz
j ∈ A[z, z−1] with

a0, ad ∈ A• (e.g. the product of the Alexander polynomials for a fibred knot)
then C is a chain complex band.

As in Chap. 5 let z be an indeterminate over a ring A, and let

Z = {zk | k ≥ 0} ⊂ A[z] .
Definition 6.1 The formal power series ring of A is the Z-adic completion
of A[z]

Â[z]Z = A[[z]] = lim←−
k
A[z]/(zk)

consisting of all the formal power series
∞∑
j=0

ajz
j with coefficients aj ∈ A. �

Given an A-module M let

M [[z]] = A[[z]]⊗AM =
∞∏
j=0

zjM

be the induced A[[z]]-module.

Proposition 6.2 For any A-modules L, M there is defined an isomorphism

HomA[[z]](L[[z]],M [[z]]) −−→ HomA(L,M)[[z]] ; f −−→
∞∑
j=0

zjfj

with fj ∈ HomA(L,M) given by

f(x) =
∞∑
j=0

zjfj(x) ∈M [[z]] (x ∈ L) . �
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Proposition 6.3 (i) Let P be an A-module, and let

R = HomA(P, P )

be the endomorphism ring. An A[[z]]-module endomorphism

a =
∞∑
j=0

ajz
j ∈ HomA[[z]](P [[z]], P [[z]])) = R[[z]] (aj ∈ R)

is an automorphism if and only if a0 : P−−→P is an automorphism, that is

R[[z]]• = R•(1 + zR[[z]]) .

In particular, the case P = A gives the units of A[[z]] to be

A[[z]]• = A•(1 + zA[[z]]) .

(ii) A finite f.g. free A[z]-module chain complex E+ is such that

H∗(A[[z]]⊗A[z] E
+) = 0

if and only if the A-module chain map

ζ : E+ −−→ E+ ; x −−→ zx

is an A-module chain equivalence.
Proof (i) The augmentation

j̃+ : R[[z]] −−→ R ;

∞∑
j=0

ajz
j −−→ a0

is a ring morphism, so that if a ∈ R[[z]]• then j̃+(a) = a0 ∈ R•. Conversely,
if a0 ∈ R• then a ∈ R[[z]]• with inverse

a−1 =

(
1 +

∞∑
j=1

(
− (a0)

−1
∞∑
k=1

akz
k
)j)

(a0)
−1 ∈ R[[z]]• .

(ii) The exact sequence of A[z]-module chain complexes

0 −−→ A[z]⊗A E+
z−ζ
−−→ A[z]⊗A E+ −−→ E+ −−→ 0

induces an exact sequence of A[[z]]-module chain complexes

0 −−→ A[[z]]⊗A E+
z−ζ
−−→ A[[z]]⊗A E+ −−→ A[[z]]⊗A[z] E

+ −−→ 0 .

ThusH∗(A[[z]]⊗A[z]E
+) = 0 if and only if z−ζ : A[[z]]⊗AE+−−→A[[z]]⊗AE+

is an A[[z]]-module chain equivalence. This is the case if and only if ζ :
E+−−→E+ is an A-module chain equivalence, with chain homotopy inverse

(z − ζ)−1 = −
∞∑
j=0

zj(ζ)−j−1 : A[[z]]⊗A E+ −−→ A[[z]]⊗A E+ . �
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Remark 6.4 The ideal J = zA[[z]] ▹ A[[z]] is such that 1 + J ⊆ A[[z]]•, so
that the projection A[[z]]−−→A[[z]]/J = A induces an isomorphism

K0(A[[z]])
≃−−→ K0(A) ; [P ] −−→ [A⊗A[[z]] P ]

(Silvester [268, p. 21]). However, the functor

P(A[[z]]) −−→ P(A) ; P −−→ A⊗A[[z]] P

is not an equivalence of categories, and the split surjection K1(A[[z]])−−→
K1(A) is not in general an isomorphism. In Chap. 14 the direct summand

N̂K1(A) in

K1(A[[z]]) = K1(A)⊕ N̂K1(A)

will be identified with the abelianization Ŵ (A)ab of the multiplicative group
of Witt vectors

Ŵ (A) = 1 + zA[[z]] ⊂ A[[z]]• . �
Definition 6.5 (i) The Novikov ring of A is the localization of A[[z]] inverting

Ẑ = {zk | k ≥ 0}
A((z)) = Ẑ−1A[[z]]

consisting of the formal power series
∞∑

j=−∞
ajz

j with coefficients aj ∈ A such

that {j ≤ 0 | aj ̸= 0} is finite.
(ii) The Novikov homology of an A[z, z−1]-module chain complex C is the
homology of the induced A((z))-module chain complex

H∗(A((z))⊗A[z,z−1] C) . �

Proposition 6.6 The inclusion of the polynomial ring A[z] in the power
series ring A[[z]] defines a cartesian morphism of rings with multiplicative
subsets

(A[z], Z) −−→ (A[[z]], Ẑ)

with a cartesian square of rings

A[z] //

��

A[z, z−1]

��
A[[z]] // A((z))

Proof Immediate from the definition (4.11), since for every k ≥ 1

A[z]/(zk) = A[[z]]/(zk) =

k−1∑
j=0

zjA . �

By analogy with 5.6 :
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Proposition 6.7 (i) The relative groups K∗(A[[z]], Ẑ) in the localization
exact sequence

. . . −−→ Kn(A[[z]])
ĩ+
−−→ Kn

(
A((z))

) ∂+
−−→ Kn(A[[z]], Ẑ)

−−→ Kn−1(A[[z]]) −−→ . . .

are the algebraic K-groups K∗−1(H (A[[z]], Ẑ)) of the exact category

H (A[[z]], Ẑ) of (A[[z]], Ẑ)-modules. The isomorphism of exact categories

Nil(A)
≃−−→ H (A[[z]], Ẑ) ; (P, ν) −−→ coker(z − ν : P [[z]]−−→P [[z]])

gives the identifications

K∗(A[[z]], Ẑ) = K∗−1(H (A[[z]], Ẑ)) = Nil∗−1(A) .

(ii) The localization exact sequence for A[[z]]−−→A((z)) breaks up into split
short exact sequences

0 −−→ Kn(A[[z]]) −−→ Kn

(
A((z))

) ∂+
−−→ Kn(A[[z]], Ẑ) −−→ 0 ,

so that
Kn

(
A((z))

)
= Kn(A[[z]])⊕Niln−1(A) (n ∈ Z) .

Proof (i) The functor

H (A[z], Z) −−→ H (A[[z]], Ẑ) ; M −−→ A[[z]]⊗A[z] M

is an equivalence by 4.12, and H (A[z], Z) is equivalent to Nil(A) by 5.6 (i).
(ii) The map of localization exact sequences

. . . // Kn(A[z]) //

��

Kn(A[z, z
−1])

∂+ //

��

Kn(A[z], Z) //

��

. . .

. . . // Kn(A[[z]]) // Kn(A((z)))
∂+ // Kn(A[[z]], Ẑ) // . . .

includes isomorphisms K∗(A[z], Z) ∼= K∗(A[[z]], Ẑ). Use the splitting maps

∆+ : K∗(A[z], Z) = Nil∗−1(A) −−→ K∗(A[z, z
−1])

given by 5.6 for the connecting maps ∂+ : K∗(A[z, z
−1])−−→K∗(A[z], Z) to

define splitting maps

∆+ : K∗(A[[z]], Ẑ) = Nil∗−1(A) −−→ K∗(A[z, z
−1]) −−→ K∗

(
A((z))

)
for ∂+ : K∗

(
A((z))

)
−−→K∗(A[[z]], Ẑ). For ∗ = 1

∆+ : K1(A[[z]], Ẑ) = Nil0(A) −−→ K1

(
A((z))

)
;

(P, ν) −−→ τ(z − ν : P ((z))−−→P ((z))) . �
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For any free A[[z]]-module chain complex E+ there is defined a short exact
sequence of A[[z]]-module chain complexes

0 −−→ E+[[z]]
z−ζ
−−→ E+[[z]]

p+

−−→ E+ −−→ 0

with

ζ : E+ −−→ E+ ; x −−→ zx ,

p+ : E+[[z]] = A[[z]]⊗A E+ −−→ E+ ;

∞∑
j=0

ajz
j ⊗ xj −−→

∞∑
j=0

ajζ
j(xj) .

The A[[z]]-module chain map

(p+ 0) : C(z − ζ : E+[[z]]−−→E+[[z]]) −−→ E+

is a homology equivalence. If E+ is A-finitely dominated the chain complex
T (ζ) has a canonical round A[[z]]-finite structure, and q+ is a chain equiva-
lence.

By analogy with 5.14 (i) :

Proposition 6.8 The torsion group of the Novikov ring A((z)) fits into the
direct sum system

K1(A[[z]])
i+

−−−−−→←−−−−−
j+

K1

(
A((z))

) ∂+
−−−−−→←−−−−−

∆+

Nil0(A)

with

i+ : K1(A[[z]]) −−→ K1

(
A((z))

)
; τ(E+) −−→ τ(A((z))⊗A[[z]] E

+) ,

j+ : K1

(
A((z))

)
−−→ K1(A[[z]]) ; τ(A((z))⊗A[[z]] E

+) −−→

τ(C(z − ζ : E+[[z]]−−→E+[[z]])−−→E+) ,

∂+ : K1

(
A((z))

)
−−→ Nil0(A) ; τ(A((z))⊗A[[z]] E

+) −−→ [E+, ζ] ,

∆+ : Nil0(A) −−→ K1

(
A((z))

)
; [P, ν] −−→ τ(z − ν : P ((z))−−→P ((z))) .

�
The Novikov ring A((z−1)) is defined by analogy with A((z)) using z−1

in place of z. The multiplicative subset

Z ′ = {z−k | k ≥ 0} ⊂ A[z−1]

is such that

Z ′−1A[z−1] = A[z, z−1] , ̂A[z−1]Z′ = A[[z−1]] = lim←−
k
A[z−1]/(z−k) .

The inclusion of A[z−1] in the completion A[[z−1]] defines a cartesian mor-
phism of rings with multiplicative subsets

(A[z−1], Z ′) −−→ (A[[z−1]], Ẑ ′) ,
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with a cartesian square of rings

A[z−1] //

��

A[z, z−1]

��
A[[z−1]] // A((z−1))

Proposition 6.7′ (i) The exact category H (A[[z−1]], Ẑ ′) of (A[[z−1]], Ẑ ′)-
modules is such that there are natural equivalences

H (A[[z−1]], Ẑ ′) ≈ H (A[z−1], Z ′) ≈ Nil(A) ,

and
K∗(A[[z

−1]], Ẑ ′) = K∗(A[z
−1], Z ′) = Nil∗−1(A) .

(ii) The localization exact sequence for A[[z−1]]−−→A((z−1))

. . . −−→ Kn(A[[z
−1]]) −−→ Kn

(
A((z−1))

)
∂+
−−→ Kn(A[[z

−1]], Ẑ ′) −−→ Kn−1(A[[z
−1]]) −−→ . . .

breaks up into split short exact sequences

0 −−→ Kn(A[[z
−1]]) −−→ Kn

(
A((z−1))

) ∂+
−−→ Kn(A[[z

−1]], Ẑ ′) −−→ 0 ,

and up to isomorphism

Kn

(
A((z−1))

)
= Kn(A[[z

−1]])⊕Niln−1(A) . �

Proposition 6.8′ The torsion group of A((z−1)) fits into the direct sum
system

K1(A[[z
−1]])

i−
−−−−−→←−−−−−

j−

K1

(
A((z−1))

) ∂−
−−−−−→←−−−−−

∆−

Nil0(A)

with

i− : K1(A[[z
−1]]) −−→ K1

(
A((z−1))

)
;

τ(E−) −−→ τ(A((z−1))⊗A[[z−1]] E
−) ,

j− : K1

(
A((z−1))

)
−−→ K1(A[[z

−1]]) ; τ(A((z−1))⊗A[[z−1]] E
−) −−→

τ(C(z−1 − ζ−1 : E−[[z−1]]−−→E−[[z−1]])−−→E−) ,

∂− : K1

(
A((z−1))

)
−−→ Nil0(A) ;

τ(A((z−1))⊗A[[z−1]] E
−) −−→ [E−, ζ−1] ,

∆− : Nil0(A) −−→ K1

(
A((z−1))

)
;

[P, ν] −−→ τ(z−1 − ν : P ((z−1))−−→P ((z−1))) .
�



7. Algebraic transversality

Algebraic transversality is the chain complex analogue of the geometric
transversality technique used to construct fundamental domains for infinite
cyclic covers of compact manifolds and finite CW complexes. Refer to Ran-
icki [244, Chap. 4] for a previous account of algebraic transversality : here,
only the additional results required for the new applications are proved. The
construction in Part Two of the algebraic invariants of knots will make use
of the L-theory version of algebraic transversality for chain complexes with
Poincaré duality, the analogue of the geometric transversality construction of
a Seifert surface fundamental domain for the infinite cyclic cover of a knot
complement.

A Mayer–Vietoris presentation of a finite f.g. free A[z, z−1]-module chain
complex is the chain complex analogue of the cutting of an infinite cyclic cover
of a connected finite CW complex into two halves by means of a separating
finite subcomplex. Mayer–Vietoris presentations will be used in Chap. 8 to
prove that a finite f.g. free A[z, z−1]-module chain complex E is A-finitely
dominated if and only if

H∗(A((z))⊗A[z,z−1] E) = H∗(A((z
−1))⊗A[z,z−1] E) = 0 .

Definition 7.1 Let M be a based f.g. free A[z, z−1]-module, with basis el-
ements {b1, b2, . . . , br}. A f.g free A[z]-submodule M+ ⊂ M is compatibly
based if it is such that

A[z, z−1]⊗A[z] M
+ = M

with basis elements {z−N
+
1 b1, z

−N+
2 b2, . . . , z

−N+
r br} for some N+

j ≥ 0, in
which case

τ(1 : A[z, z−1]⊗A[z] M
+−−→M) = τ(zN

+

: A[z, z−1]−−→A[z, z−1]) = 0

∈Wh1(A[z, z
−1]) = coker(K1(Z[z, z−1])−−→K1(A[z, z

−1]))

(N+ =
r∑
j=1

N+
j ≥ 0) .

Similarly for f.g free A[z−1]-submodules M− ⊂M such that
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A[z, z−1]⊗A[z−1] M
− = M

with basis elements {zN
−
1 b1, z

N−
2 b2, . . . , z

N−
r br} for some N−

j ≥ 0. �

Definition 7.2 A Mayer–Vietoris presentation (E+, E−) of a based f.g. free
A[z, z−1]-module chain complex E is a choice of a compatibly based f.g. free
A[z]-module subcomplex E+ ⊂ E and a compatibly based f.g. free A[z−1]-
module subcomplex E− ⊂ E. �
Proposition 7.3 (i) Every based f.g. free A[z, z−1]-module chain complex E
admits Mayer–Vietoris presentations (E+, E−).
(ii) For any Mayer–Vietoris presentation (E+, E−) of a based f.g. free
A[z, z−1]-module chain complex E there is defined an A-module exact se-
quence

0 −−→ E+ ∩ E− −−→ E+ ⊕ E− −−→ E −−→ 0 .

Also, the subcomplexes

C = E+ ∩ E− , D = E+ ∩ zE− ⊂ E

are based f.g. free A-module subcomplexes, and there is defined an exact se-
quence of A[z, z−1]-module chain complexes and chain maps

0 −−→ C[z, z−1]
f−zg
−−→ D[z, z−1]

h
−−→ E −−→ 0

with
f : C −−→ D ; x −−→ ζx ,

g : C −−→ D ; x −−→ x ,

h : D[z, z−1] −−→ E ;
∞∑

j=−∞
ajz

j ⊗ x −−→
∞∑

j=−∞
ajz

jx ,

and such that the chain equivalence

q = (h 0) : C(f − zg : C[z, z−1]−−→D[z, z−1]) −−→ E

has τ(q) = 0 ∈Wh1(A[z, z
−1]), i.e.

τ(q) ∈ im(K1(Z[z, z−1])−−→K1(A[z, z
−1])) .

Proof (i) Let E be n-dimensional

E : . . .−−→ 0 −−→ En −−→ En−1 −−→ . . . −−→ E1 −−→ E0 −−→ 0 . . . ,

and let Fr be the f.g. free A-module generated by the basis of Er

Er = Fr[z, z
−1] (0 ≤ r ≤ n) .

Now
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dE(

N−
r∑

j=−N+
r

zjFr) ⊆
N−

r−1∑
j=−N+

r−1

zjFr−1 (r = n, n− 1, . . . , 0)

for some integers N+
r , N

−
r ≥ 0 such that (starting with N+

n = N−
n = 0,

for example). Let E+ be the n-dimensional compatibly based f.g. free A[z]-
module chain complex defined by

E+
r =

∞∑
j=−N+

r

zjFr ⊂ Er (0 ≤ r ≤ n) .

Similarly, let E− be the n-dimensional f.g. free A[z−1]-module chain complex
defined by

E−
r =

N−
r∑

j=−∞
zjFr ⊂ Er (0 ≤ r ≤ n) .

(ii) Let F be a based f.g. free A-module, and letM = F [z, z−1] be the induced
based f.g. free A[z, z−1]-module. The Mayer–Vietoris presentation (M+,M−)
of M defined for any N+, N− ≥ 0 by

M+ =
∞∑

j=−N+

zjF , M− =
N−∑

j=−∞
zjF ⊂M

determines an exact sequence of A-modules

0 −−→ M+ ∩M− −−→ M+ ⊕M− −−→ M −−→ 0

with

M+ ∩M− =
N−∑

j=−N+

zjF , M+ ∩ ζM− =
N−+1∑
j=−N+

zjF

based f.g. free A-modules. The A-module morphisms

f : M+ ∩M− −−→ M+ ∩ ζM− ; x −−→ ζx ,

g : M+ ∩M− −−→ M+ ∩ ζM− ; x −−→ x ,

h : (M+ ∩ ζM−)[z, z−1] −−→ M ;
∞∑

j=−∞
ajz

j ⊗ x −−→
∞∑

j=−∞
ajz

jx ,

are such that the chain equivalence

q = (h 0) : C(f−zg : (M+∩M−)[z, z−1]−−→(M+∩ζM−)[z, z−1]) −−→M

has torsion τ(q) = 0 ∈Wh1(A[z, z
−1]). �

Proposition 7.4 A based f.g. free A[z, z−1]-module chain complex E is a
band (i.e. A-finitely dominated) if and only if E+ and E− are A-finitely
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dominated, for any Mayer–Vietoris presentation (E+, E−) of E with respect
to any choice of base, in which case the A-module chain maps

ζ : E/E+ −−→ E/E+ ; x −−→ zx ,

ζ−1 : E/E− −−→ E/E− ; x −−→ z−1x

are chain homotopy nilpotent. The fibering obstructions of a band E Φ±(E) ∈
Wh1(A[z, z

−1]) have the form

Φ+(E) = (ϕ+,−[E−],−[E/E+, ζ],−[E/E−, ζ−1]) ,

Φ−(E) = (ϕ−, [E+],−[E/E+, ζ],−[E/E−, ζ−1])

∈Wh1(A[z, z
−1]) = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

with respect to the geometrically significant direct sum decomposition of
Wh1(A[z, z

−1]) (5.19), for some ϕ+, ϕ− ∈Wh1(A) such that

ϕ+ − ϕ− = τ(ζ : E−−→E) ∈Wh1(A) .

Proof The A[z]-module chain equivalence of 5.16

r+ : C(z − ζ : E+[z]−−→E+[z]) −−→ E+

has torsion of the form

τ(r+) = (ϕ−, [E/E−, ζ−1]) ∈ K1(A[z]) = K1(A)⊕ Ñil0(A)

inducing

τ(1⊗ r+) = (ϕ−, 0, 0, [E/E−, ζ−1])

∈Wh1(A[z, z
−1]) = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) .

The A[z, z−1]-module chain equivalence

h : A[z, z−1]⊗A[z] T (ζ) = C(z − ζ : E+[z, z−1]−−→E+[z, z−1])

−−→ T+(ζ−1) = C(1− zζ−1 : E[z, z−1]−−→E[z, z−1]) ;

(x, y) −−→ (ζ−1(x), y)

has torsion

τ(h) = τ(z − ζ : (E/E+)[z, z−1]−−→(E/E+)[z, z−1])

+ τ(ζ−1 : E[z, z−1]−−→E[z, z−1])

= (−τ(ζ), [E/E+], [E/E+, ζ], 0) ,

∈Wh1(A[z, z
−1]) = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

It now follows from the factorization
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1⊗ q+ = q+h : A[z, z−1]⊗A[z] T (ζ) −−→

T+(ζ−1) −−→ A[z, z−1]⊗A[z] E
+ = E

that

Φ+(E) = τ(q+) = τ(1⊗ q+)− τ(h)

= (ϕ+,−[E−],−[E/E+, ζ],−[E/E−, ζ−1])

∈Wh1(A[z, z
−1]) = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) ,

with ϕ+ = ϕ− + τ(ζ) ∈Wh1(A). Similarly for Φ−(E). �
Example 7.5 Let X be a finite CW complex with fundamental group
π1(X) = π × Z. The cellular chain complex of the universal cover X̃ of

X is a finite chain complex C(X̃) of based f.g. free Z[π1(X)]-modules, with

Z[π1(X)] = Z[π][z, z−1] .

LetX = X̃/π be the untwisted infinite cyclic cover ofX classified by π1(X) =
π ⊂ π1(X), and let ζ : X−−→X be the covering translation. A map c :
X−−→S1 inducing

c∗ = projection : π1(X) = π × Z −−→ π1(S
1) = Z

is a classifying map for X = c∗R. Replacing X by a simple homotopy equiv-
alent finite CW complex (e.g. a closed regular neighbourhood in some high-
dimensional Euclidean space) it is possible to choose c : X−−→S1 transverse
regular at a point ∗ ∈ S1, so that U = c−1({∗}) ⊂ X is a subcomplex with an
embedding U × (0, 1) ⊂ X. Cutting X along U gives a compact fundamental
domain (V ;U, ζU) for X, with

X =
∞∪

j=−∞
ζj(V ;U, ζU) .

ζj−1V ζjV ζj+1V

ζj−1U ζjU ζj+1U ζj+2U

The subcomplexes

X
+

=

∞∪
j=0

ζjV , X
−

=

−1∪
j=−∞

ζjV ⊂ X

are such that
X

+ ∩X −
= U , X

+ ∩ ζX −
= V .
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X
−

X
+ ∩X −

X
+

X

Codimension 1 manifold transversality thus determines a finite Mayer-Vietor-
is presentation (E+, E−) = (C(X̃+), C(X̃−)) of E = C(X̃) with

C = E+ ∩ E− = C(Ũ) , D = E+ ∩ zE− = C(Ṽ ) .

If X is a band the fibering obstructions Φ±(X) ∈Wh(π1(X)) are of the form

[Φ+(X)] =

(ϕ+,−[X −
],−[C(X̃)/C(X̃+), ζ],−[C(X̃)/C(X̃−), ζ−1]) ,

[Φ−(X)] =

(ϕ−, [X
+
],−[C(X̃)/C(X̃+), ζ],−[C(X̃)/C(X̃−), ζ−1]) ,

∈Wh((π1(X)))

= Wh(π1(X))⊕ K̃0(Z[π1(X)])⊕ Ñil0(Z[π1(X)])⊕ Ñil0(Z[π1(X)])

with ϕ+ = ϕ− + τ(ζ : X−−→X) ∈ Wh(π1(X)). See Ranicki [244, 8.15] for
a discussion of codimension 1 transversality for CW complexes with maps
X−−→S1 and chain complexes over polynomial extension rings A[z, z−1]. It is
possible to avoid the use of manifolds and obtain codimension 1 CW complex
transversality by purely combinatorial methods. �
Example 7.6 Given a polynomial

p(z) =
d∑
j=0

ajz
j ∈ A[z]

define a 1-dimensional based f.g. free A[z]-module chain complex

E+ = C(p(z) : A[z]−−→A[z]) .

The induced 1-dimensional based f.g. free A[z, z−1]-module chain complex

E = A[z, z−1]⊗A[z] E
+ = C(p(z) : A[z, z−1]−−→A[z, z−1])

has a Mayer–Vietoris presentation (E+, E−) with
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E− = C(p(z) :
−1∑

j=−∞
zjA−−→

d−1∑
j=−∞

zjA) ,

C = E+ ∩ E− =
d−1∑
j=0

zjA ,

D = E+ ∩ ζE− = C(p(z) : A−−→
d∑
j=0

zjA) ,

f : C −−→ D ;
d−1∑
j=0

zjxj −−→
d∑
j=1

zjxj−1 ,

g : C −−→ D ;
d−1∑
j=0

zjxj −−→
d−1∑
j=0

zjxj

and an exact sequence

0 −−→ C[z]
f−zg
−−→ D[z] −−→ E+ −−→ 0 .

The following conditions are equivalent :

(i) p(z) ∈ A[z]•,
(ii) H∗(E

+) = 0,
(iii) the A-module chain map f : C−−→D is a chain equivalence, and

f−1g : C−−→C is chain homotopy nilpotent,
(iv) a0 ∈ A• and the d× d matrix with entries in A

−a1(a0)−1 1 0 . . . 0

−a2(a0)−1 0 1 . . . 0

−a3(a0)−1 0 0 . . . 0

...
...

...
. . .

...

−ad(a0)−1 0 0 . . . 0


is nilpotent.

�
Proposition 7.7 The following conditions on a finite f.g. free A[z, z−1]-
module chain complex E are equivalent :

(i) H∗(E) = 0,
(ii) for any Mayer–Vietoris presentation (E+, E−) of E with respect to

any choice of basis for E the A[z]-module chain complex E+ is A-
finitely dominated and the A-module chain map

ζ : E+ −−→ E+ ; x −−→ zx
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is chain homotopy nilpotent,
(iii) for any Mayer–Vietoris presentation (E+, E−) of E the A[z−1]-mod-

ule chain complex E− is A-finitely dominated and the A-module
chain map

ζ−1 : E− −−→ E− ; x −−→ z−1x

is chain homotopy nilpotent.

Proof (i) =⇒ (ii)+(iii) For any Mayer–Vietoris presentation (E+, E−) of a
finite f.g. free A[z, z−1]-module chain complex E there is defined a commu-
tative diagram of A[z, z−1]-module chain complexes and chain maps

E+[z, z−1]⊕ E−[z, z−1]==(
−z 0

0 1

)

{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{ (

1− z−1ζ 0

0 1− zζ−1

)

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
C

E+[z, z−1]⊕ E−[z, z−1] E+[z, z−1]⊕ E−[z, z−1]

C[z, z−1]

i =

(
i+

i−

)
XX00000000000000000000

f − zg // D[z, z−1]

j =

(
j+

j−

)
GG��������������������

with
f : C = E+ ∩ E− −−→ D = E+ ∩ ζE− ; x −−→ ζx ,

g : C = E+ ∩ E− −−→ D = E+ ∩ ζE− ; x −−→ x ,

i± = inclusion : C = E+ ∩ E− −−→ E± ,

j+ = inclusion : D = E+ ∩ ζE− −−→ E+ ,

j− : D = E+ ∩ ζE− −−→ E− ; x −−→ ζ−1x .

(The commutative diagram of Ranicki [244, 10.13] is of this type). If E is
contractible each of the chain maps in the diagram is a chain equivalence,
the chain complexes E+, E− are A-finitely dominated, the A[z, z−1]-module
chain map f−zg : C[z, z−1]−−→D[z, z−1] is a chain equivalence, the A-module
chain maps i : C−−→E+ ⊕ E−, j : E−−→E+ ⊕ E− are chain equivalences,
and the A-module chain maps ζ : E+−−→E+, ζ−1 : E−−−→E− are chain
homotopy nilpotent.
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(ii) =⇒ (i) For A-finitely dominated E+ the A[z]-module chain equivalence
q+ : T (ζ)−−→E+ of 5.16 induces an A[z, z−1]-module chain equivalence

1⊗ q+ :

A[z, z−1]⊗A[z] T (ζ) = C(ζ − z : E+[z, z−1]−−→E+[z, z−1]) −−→ E ,

with

E+[z, z−1] = A[z, z−1]⊗A E+ , E = A[z, z−1]⊗A[z] E
+ .

If also ζ : E+−−→E+ is chain homotopy nilpotent the A[z, z−1]-module chain
map ζ − z : E+[z, z−1]−−→E+[z, z−1] is a chain equivalence, with chain ho-
motopy inverse

(ζ − z)−1 = −
∞∑
j=0

z−j−1ζj : E+[z, z−1] −−→ E+[z, z−1] ,

so that A[z, z−1]⊗A[z] T (ζ) is a contractible A[z, z−1]-module chain complex
and hence so is E.
(iii) =⇒ (i) As for (ii) =⇒ (i), but with E+, z replaced by E−, z−1. �

Example 7.8 Given a polynomial p(z) =
d∑
j=0

ajz
j ∈ A[z] let E,E+, E−, C,

f, g be as in 7.6, with

E = C(p(z) : A[z, z−1]−−→A[z, z−1]) , C =

d−1∑
j=0

zjA etc.

The following conditions are equivalent :

(i) p(z) ∈ A[z, z−1]•,
(ii) H∗(E) = 0,
(iii) the A-module chain map f − g : C−−→E is a chain equivalence, and

(f − g)−1f(f − g)−1g : C −−→ C

is chain homotopy nilpotent,
(iv) the (d+ 1)× (d+ 1) matrices with entries in A defined by

M1 =



a0 0 0 . . . 0

a1 1 0 . . . 0

a2 0 1 . . . 0
...

...
...

. . .
...

ad 0 0 . . . 1

 , M2 =


0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


are such that
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M1 −M2 =



a0 −1 0 . . . 0

a1 1 −1 . . . 0

a2 0 1 . . . 0
...

...
...

. . .
...

ad 0 0 . . . 1


is invertible (which happens if and only if

d∑
j=0

aj ∈ A•) and the

product
M1(M1 −M2)

−1M2(M1 −M2)
−1

is nilpotent.
�
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Finite domination for chain complexes was already defined in Chap. 1. Fol-
lowing Ranicki [246], algebraic transversality will now be used to prove that
a finite f.g. free A[z, z−1]-module chain complex E is A-finitely dominated if
and only if the Novikov homology vanishes

H∗(A((z))⊗A[z,z−1] E) = H∗(A((z
−1))⊗A[z,z−1] E) = 0 .

The special case A = Z will be used in Chap. 33 to prove that a high-
dimensional n-knot k : Sn ⊂ Sn+2 fibres if and only if the extreme coefficients
of the Alexander polynomials are units.

The suspension of an A-module chain complex E is the A-module chain
complex SE with

dSE = dE : (SE)r = Er−1 −−→ (SE)r−1 = Er−2 .

Proposition 8.1 Let E be a based f.g. free A[z, z−1]-module chain complex
with a Mayer–Vietoris presentation (E+, E−). The following conditions are
equivalent :

(i) E+ is A-finitely dominated,
(ii) H∗(A((z

−1))⊗A[z] E
+) = 0,

(iii) H∗(A((z
−1))⊗A[z−1] E

−) = 0,
(iv) H∗(A((z

−1))⊗A[z,z−1] E) = 0,
(v) A[[z−1]]⊗A[z−1]E

− is A-finitely dominated, and the A-module chain
map

1⊗ ζ−1 : A[[z−1]]⊗A[z−1] E
− −−→ A[[z−1]]⊗A[z−1] E

−

is chain homotopy nilpotent,
(vi) E/E− is A-finitely dominated, and the A-module chain map

ζ−1 : E/E− −−→ E/E− ; x −−→ z−1x

is chain homotopy nilpotent.

Moreover, if these conditions are satisfied there is defined a chain equivalence

(E/E−, ζ−1) ≃ S(A[[z−1]]⊗A[z−1] E
−, 1⊗ ζ−1) ,
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so that

[E/E−, ζ−1] = −[A[[z−1]]⊗A[z−1] E
−, 1⊗ ζ−1] ∈ Nil0(A) .

Proof (ii) ⇐⇒ (iii) ⇐⇒ (iv) Applying A((z−1))⊗A[z,z−1] − to the identities

A[z, z−1]⊗A[z] E
+ = A[z, z−1]⊗A[z−1] E

− = E

gives the identities

A((z−1))⊗A[z] E
+ = A((z−1))⊗A[z−1] E

− = A((z−1))⊗A[z,z−1] E .

(iii) ⇐⇒ (v) This follows from the equivalences of categories

H (A[[z−1]], Ẑ ′) ≈ H (A[z−1], Z ′) ≈ Nil(A)

given by 6.7′.
(iv) =⇒ (i) The cartesian square of rings

A[z−1] //

��

A[z, z−1]

��
A[[z−1]] // A((z−1))

gives an exact sequence of A[z]-modules

0 −−→ A[z−1] −−→ A[z, z−1]⊕A[[z−1]] −−→ A((z−1)) −−→ 0 .

Write the induced f.g. free A((z−1))-module chain complex as

Ê = A((z−1))⊗A[z,z−1] E = A((z−1))⊗A[z−1] E
− .

The f.g. free A[z−1]-module chain complex E− fits into an exact sequence of
A[z−1]-module chain complexes

0 −−→ E− i
−−→ E−[z, z−1]⊕ E−[[z−1]] −−→ Ê −−→ 0 ,

with
E−[z, z−1] = A[z, z−1]⊗A[z−1] E

− = E ,

E−[[z−1]] = A[[z−1]]⊗A[z−1] E
− .

By hypothesis H∗(Ê) = 0, so that i is an A[z−1]-module chain equivalence.
Let

j : E+ ∩ E− −−→ E+ ⊕ E−[[z−1]]

be the A-module chain map defined by inclusions in each component. The
algebraic mapping cones of i and j are chain equivalent A-module chain
complexes, since E/E− ∼= E+/(E+ ∩ E−). But i is a chain equivalence, so
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that j is also a chain equivalence. Since E+ ∩ E− is a finite f.g. free A-
module chain complex this shows that both E+ and E−[[z−1]] are A-finitely
dominated.
(i) =⇒ (ii) As already noted in Chap. 5 the A-finite domination of E+ implies
that there is defined an A[z]-module chain equivalence

r+ = (p+ 0) : C(ζ − z : E+[z]−−→E+[z]) −−→ E+ .

The A((z−1))-module chain map

ζ − z : A((z−1))⊗A E+ = A((z−1))⊗A[z] E
+[z] −−→ A((z−1))⊗A[z] E

+[z]

is an automorphism, with inverse

(ζ − z)−1 = −
0∑

j=−∞
(ζ)jzj−1 :

A((z−1))⊗A E+ = A((z−1))⊗A[z] E
+[z] −−→ A((z−1))⊗A[z] E

+[z] ,

so that A((z−1))⊗A[z] E
+ is a contractible A((z−1))-module chain complex.

(i) ⇐⇒ (vi) It is clear from the isomorphism

E/E− ∼= E+/E+ ∩ E−

that E+ is A-finitely dominated if and only if E/E− is A-finitely dominated.
If this is the case the inclusion

C(z−1 − ζ−1 : E−[z−1]−−→E−[z−1])

−−→ C(z−1 − ζ−1 : E[z−1]−−→E[z−1]) (≃ E)

is a chain equivalence, so that the A[z−1]-module chain map

z−1 − ζ−1 : (E/E−)[z−1] −−→ (E/E−)[z−1]

is a chain equivalence and ζ−1 : E/E−−−→E/E− is chain homotopy nilpo-
tent. �
Proposition 8.1′ Let E be a based f.g. free A[z, z−1]-module chain complex
with a Mayer–Vietoris presentation (E+, E−). The following conditions are
equivalent :

(i) E− is A-finitely dominated,
(ii) H∗(A((z))⊗A[z−1] E

−) = 0,
(iii) H∗(A((z))⊗A[z] E

+) = 0,
(iv) H∗(A((z))⊗A[z,z−1] E) = 0,
(v) A[[z]]⊗A[z]E

+ is A-finitely dominated, and the A-module chain map

1⊗ ζ : A[[z]]⊗A[z] E
+ −−→ A[[z]]⊗A[z] E

+

is chain homotopy nilpotent,
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(vi) E/E+ is A-finitely dominated, and the A-module chain map

ζ : E/E+ −−→ E/E+ ; x −−→ zx

is chain homotopy nilpotent.

Moreover, if these conditions are satisfied there is defined a chain equivalence

(E/E+, ζ) ≃ S(A[[z]]⊗A[z] E
+, 1⊗ ζ) ,

so that
[E/E+, ζ] = −[A[[z]]⊗A[z] E

+, 1⊗ ζ] ∈ Nil0(A) .

Proof As for 8.1, but with E+, E−, z replaced by E−, E+, z−1. �
Proposition 8.2 A finite f.g. free A[z]-module chain complex E+ is A-finitely
dominated if and only if H∗(A((z

−1))⊗A[z] E
+) = 0.

Proof Apply 8.1 to the induced finite f.g. free A[z, z−1]-module chain complex
E = A[z, z−1]⊗A[z] E

+. �
Similarly :

Proposition 8.2′ A finite f.g. free A[z−1]-module chain complex E− is A-
finitely dominated if and only if H∗(A((z))⊗A[z−1] E

−) = 0. �
Proposition 8.3 The following conditions on a finite f.g. free A[z, z−1]-
module chain complex E are equivalent :

(i) E is A-finitely dominated,
(ii) H∗(A((z))⊗A[z,z−1] E) = H∗(A((z

−1))⊗A[z,z−1] E) = 0.

Proof Let (E+, E−) be a Mayer–Vietoris presentation of E, for any choice
of base. By 7.4 E is A-finitely dominated if and only if E+ and E− are A-
finitely dominated. The equivalence (i) ⇐⇒ (ii) is immediate from 8.1 and
8.1′, which give that E+ is A-finitely dominated if and only if

H∗(A((z
−1))⊗A[z,z−1] E) = 0 ,

and that E− is A-finitely dominated if and only if

H∗(A((z))⊗A[z,z−1] E) = 0 . �

Remark 8.4 Given a space W let

W∞ = W ∪ {∞}

be the one-point compactification. The homotopy link of ∞ e(W ) of W in
the sense of Quinn [228] is the space of paths

ω : ([0, 1], {0}) −−→ (W∞, {∞})

such that ω−1(∞) = {0}. If W is tame at ∞ in the sense of [228] the
homotopy link is such that there is defined a homotopy pushout
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e(W ) //

pW

��

{∞}

��
W

i // W∞

with
pW : e(W ) −−→ W ; ω −−→ ω(1) .

Thus for tameW the homology groups of e(W ) are such that there is defined
an exact sequence

. . . −−→ Hn(e(W )) −−→ Hn(W ) −−→ H lf
n (W ) −−→ Hn−1(e(W )) −−→ . . . ,

with H lf
∗ (W ) = H∗(W

∞, {∞}) the locally finite homology groups of W . The
chain level properties of the homotopy link construction are investigated in
Hughes and Ranicki [112], including the definition of the end complex of a
based free A-module chain complex E with

Er =
∑
Ir

A (r ∈ Z)

as the A-module chain complex

e(E) = C(i : E−−→Elf )∗+1 ,

with
Elfr =

∏
Ir

A (r ∈ Z)

and i : E−−→Elf the inclusion. It is proved in [112] that if W is tame at ∞,

and W̃ is the universal cover of W , then the pullback cover ˜e(W ) of e(W ) is
such that

H∗( ˜e(W )) = H∗(e(C(W̃ )))

with p̃W : H∗( ˜e(W ))−−→H∗(W̃ ) induced by the projection

e(C(W̃ )) −−→ C(W̃ ) .

As in 7.5 let X be a finite CW complex with an infinite cyclic cover W = X
classified by

p = projection : π1(X) = π × Z −−→ Z ,

with a finite fundamental domain (V ;U, ζU) such that

W = W+ ∪W− =
∞∪

j=−∞
ζj(V ;U, ζU) ,

with
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W+ =
∞∪
j=0

ζjV , W− =
−1∪

j=−∞
ζjV , W+ ∩W− = U .

It is proved in [112] that if W is finitely dominated then W+,W−,W are all
tame, and the composites

e(W+)
pW+

−−→ W+ −−→ W ,

e(W−)
pW−
−−→ W− −−→ W ,

e(W+) ⊔ e(W−) −−→ e(W )

are homotopy equivalences. Assume that

π1(U) = π1(V ) = π1(W ) = π ,

and let Ũ , Ṽ , W̃ be the universal covers of U, V,W , such that

W̃ = W̃+ ∪ W̃− =

∞∪
j=−∞

ζj(Ṽ ; Ũ , ζŨ) ,

with

W̃+ =

∞∪
j=0

ζj Ṽ , W̃− =

−1∪
j=−∞

ζj Ṽ , W̃+ ∩ W̃− = Ũ .

Let A = Z[π], so that
A[z, z−1] = Z[π × Z] .

The cellular chain complex of W̃+ is a based f.g. free A[z]-module chain
complex

E+ = C(W̃+) .

The induced finite f.g. free A[z, z−1]-module chain complex is the cellular

chain complex of W̃

A[z, z−1]⊗A[z] E
+ = C(W̃ ) ,

and the induced based f.g. free A[[z]]-module chain complex is the locally

finite cellular chain complex of W̃+

A[[z]]⊗A[z] E
+ = C(W̃+)lf = Clf (W̃+) ,

so that the end complex of E+ is given by

e(E+) = C(i : E+−−→A[[z]]⊗A[z] E
+)∗+1 .

The condition H∗(A((z
−1)) ⊗A[z] E

+) = 0 of 8.1 for a finite f.g. free A[z]-
module chain complex E+ to be A-finitely dominated is just that the com-
posite
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e(E+)
proj.
−−−−→ E+

incl.
−−−−→ E

be a homology equivalence. The condition H∗(A((z
−1)) ⊗A[z−1] E

−) = 0 of
8.1′ for a finite f.g. free A[z−1]-module chain complex E− to be A-finitely
dominated is just that the composite

e(E−)
proj.
−−−−→ E− incl.

−−−−→ E

be a homology equivalence. The two conditions of 8.3 for a finite f.g. free
A[z, z−1]-module chain complex E to be A-finitely dominated

H∗(A((z))⊗A[z,z−1] E) = 0 , H∗(A((z
−1))⊗A[z,z−1] E) = 0

are just that the chain maps

e(E+) −−→ E , e(E−) −−→ E

be homology equivalences, for any Mayer–Vietoris presentation (E+, E−).
�

Example 8.5 Let F be a field. An F -module chain complex E is finitely
dominated if and only if the homology F -modules H∗(E) are finitely gener-
ated (i.e. finite dimensional vector spaces of F ). In (i) (resp. (ii)) below E
will be the F -module chain complex defined by a finite f.g. free F [z]- (resp.
F [z, z−1]-) module chain complex, and the finite dimensionality of H∗(E)
will be related to the localization of F [z] inverting the multiplicative subset
S = F [z]\{0} ⊂ F [z] of all the non-zero polynomials, which is the quotient
field of F [z]

S−1F [z] = F (z) ,

the function field in one variable.
(i) If E+ is a finite f.g. free F [z]-module chain complex which is F -finitely
dominated then each Hr(E

+) (r ≥ 0) is a finite dimensional F -vector space.
The characteristic polynomial

gr(z) = det(z − ζ : Hr(E
+)[z]−−→Hr(E

+)[z]) ∈ F [z]

is such that gr(z)Hr(E) = 0, by the Cayley-Hamilton theorem. The product
of characteristic polynomials is an element

g(z) =
∞∏
r=0

gr(z) ∈ S

such that g(z)H∗(E
+) = 0, so that E+ is F (z)-contractible. The localization

of F [[z]] inverting Z = {zk | k ≥ 0}

Z−1F [[z]] = F ((z))

is the quotient field of F [[z]], with inclusions
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F (z) −−→ F ((z)) , F (z) −−→ F ((z−1)) .

If E+ is a finite f.g. free F [z]-module chain complex which is F (z)-contractible
then it is F ((z−1))-contractible, so that E+ is F -finitely dominated by 8.2.
Thus a finite f.g. free F [z]-module chain complex E+ is F -finitely dominated
if and only if E+ is F (z)-contractible. For 1-dimensional E+ this is the case
if and only if the dimensions of E+

0 , E
+
1 are equal, and

det(d : E+
1 −−→E

+
0 ) ̸= 0 ∈ F [z]

with respect to any choice of bases.
(ii) If E is a finite f.g. free F [z, z−1]-module chain complex which is F -
finitely dominated, then as in (i) there exists an element g(z) ∈ S such
that g(z)H∗(E) = 0 and E is F (z)-contractible. Conversely, if E is a fi-
nite f.g. free F [z, z−1]-module chain complex which is F (z)-contractible then
it is both F ((z))- and F ((z−1))-contractible, so that E is F -finitely dom-
inated by 8.3. (Alternatively, apply (i) to a finite f.g. free F [z]-module
chain complex E+ such that E = F [z, z−1] ⊗F [z] E

+, and use the identity
H∗(E) = coker(ζ : H∗(E

+)−−→H∗(E
+)).) Thus a finite f.g. free F [z, z−1]-

module chain complex E is F -finitely dominated if and only if E is F (z)-
contractible (Milnor [194], [195]). As in (i), for 1-dimensional E this is the
case if and only if the dimensions of E0, E1 are equal and

det(d : E1−−→E0) ̸= 0 ∈ F [z, z−1]

with respect to any choice of bases. �
Proposition 8.6 Let

p(z) =
n∑

j=m

ajz
j ∈ A[z, z−1]

be a Laurent polynomial with extreme coefficients am, an ̸= 0 ∈ A.
(i) If the leading coefficient is a unit an ∈ A• then p(z) ∈ A((z−1))•.
In addition, if n = 0 then p(z) ∈ A[z−1] ∩A[[z−1]]•.
(ii) If the trailing coefficient is a unit am ∈ A• then p(z) ∈ A((z))•.
In addition, if m = 0 then p(z) ∈ A[z] ∩A[[z]]•.
(iii) If the extreme coefficients are units am, an ∈ A• then

p(z) ∈ A((z))• ∩A((z−1))• .

Proof (i) Use 6.3 to identify

A[[z−1]]• = A•(1 + z−1A[[z−1]]) .

A Laurent polynomial with leading coefficient a unit an ∈ A• is a product

p(z) = zn(

0∑
j=m−n

aj+nz
j) ∈ A((z−1))
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of a unit zn ∈ A[z, z−1]• and a unit
0∑

j=m−n
aj+nz

j ∈ A[[z−1]]•.

(ii) As for (i), reversing the roles of (i) and (ii).
(iii) Immediate from (i) and (ii). �
Example 8.7 (i) If A is an integral domain

A[z] ∩A((z−1))• = {
d∑
j=0

ajz
j | ad ∈ A•} ,

A[z−1] ∩A((z))• = {
0∑

j=−d

ajz
j | a−d ∈ A•} ,

A[z, z−1] ∩A((z))• ∩A((z−1))• = {
n∑

j=m

ajz
j | am, an ∈ A•} .

(ii) If e = e2 ∈ A is an idempotent then

1− e+ ez ∈ A[z] ∩A[z, z−1]• ⊆ A[z, z−1] ∩A((z))• ∩A((z−1))•

with

(1− e+ ez)−1 = 1− e+ ez−1

∈ A[z−1] ∩A[z, z−1]• ⊆ A[z, z−1] ∩A((z))• ∩A((z−1))• .

�
Example 8.8 Write the centre of A as

Z(A) = {a ∈ A | ab = ba ∈ A for all b ∈ A} ,

and define the multiplicative subsets

S = {
d∑
j=0

ajz
j | aj ∈ Z(A), ad = 1} ,

S̃ = {
d∑
j=0

ajz
j | aj ∈ Z(A), a0 = 1} ⊂ A[z]

of all the central polynomials with leading/constant coefficient 1. It is imme-
diate from 8.6 that the inclusions

A[z] −−→ A((z−1)) , A[z] −−→ A[[z]]

factor through embeddings

S−1A[z] −−→ A((z−1)) , S̃−1A[z] −−→ A[[z]] .
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(If A = F is a field then S−1F [z] = F (z), S̃−1F [z] = F [z](z) as in 8.5). If E+

is a finite f.g. free A[z]-module chain complex such that p(z)H∗(E
+) = 0 for

some p(z) ∈ S then

H∗(S
−1E+) = 0 , H∗(A((z

−1))⊗A[z] E
+) = 0 ,

and by 8.2 E+ is A-finitely dominated.

(ii) Every element p̃(z) =
d∑
j=0

ajz
j ∈ S̃ has an inverse

p̃(z)−1 = 1 +
∞∑
j=1

(
−

d∑
k=1

akz
k
)j ∈ A[[z]] ,

defining an embedding
S̃−1A[z] −−→ A[[z]] .

If E is a finite f.g. free A[z, z−1]-module chain complex with a Mayer–Vietoris

presentation (E+, E−) such that p̃(z)H∗(E
+) = 0 for some p̃(z) ∈ S̃ then

H∗(S̃
−1E+) = 0 , H∗(A((z))⊗A[z−1] E

−) = 0 ,

and by 8.2′ E− is A-finitely dominated. If A is a commutative ring a finite
f.g. free A[z]-module chain complex E+ is S̃−1A[z]-contractible if and only
if E+ is A-contractible via A[z]−−→A; z−−→0. If a ̸= 0 ∈ A is not a unit (e.g.
a = 2 ∈ A = Z) then E+ = C(1−za : A[z]−−→A[z]) is A-contractible but not
A-finitely dominated. If A is a field then the leading coefficient ad ̸= 0 ∈ A
of every p̃(z) ∈ S̃ is a unit, so that p(z) is invertible in A((z−1)) and there is
defined an embedding

S̃−1A[z] −−→ A((z−1)) .

Thus every A-contractible complex E+ is A((z−1))-contractible, and hence
A-finitely dominated.
(iii) If E is a finite f.g. free A[z, z−1]-module chain complex such that

p(z)H∗(E) = 0 , q̃(z)H∗(E) = 0

for some p(z) ∈ S, q̃(z) ∈ S̃ then

H∗(S
−1E) = 0 , H∗(S̃

−1E) = 0 ,

H∗(A((z
−1))⊗A[z,z−1] E) = 0 , H∗(A((z))⊗A[z,z−1] E) = 0

and by 8.3 E is A-finitely dominated. �
Example 8.9 As in 4.2 let

S = (s)∞ = {sk | k ≥ 0} ⊂ A
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be the multiplicative subset defined by the powers of a central non-zero divisor
s ∈ A, and as in Chap. 5 let Z = {zk | k ≥ 0} ⊂ A[z]. There is a natural
identification

(A,S) = (A[z]/(z − s), Z) −−→ (Âs, Ŝ) = (A[[z]]/(z − s), Ẑ) ,

allowing the cartesian square

A[z]/(z − s) //

��

A[z, z−1]/(z − s)

��
A[[z]]/(z − s) // A((z))/(z − s)

to be identified with the cartesian square

A //

��

A[1/s]

��
Âs // Âs[1/s]

Define the based f.g. free A[z, z−1]-module chain complex

E = C(z − s : A[z, z−1]−−→A[z, z−1])

and consider the Mayer–Vietoris presentation (E+, E−) of E defined by

E+ = C(z − s : A[z]−−→A[z]) ,

E− = C(z − s : z−1A[z−1]−−→A[z−1]) ∼= C(1− sz−1 : A[z−1]−−→A[z−1])

with

E+ ∩ E− = A , E = A[z, z−1]⊗A[z] E
+ = A[z, z−1]⊗A[z−1] E

− .

The homology A-modules are such that

H0(E
+) = A[z]/(z − s) = A ,

H0(E
−) = H0(E) = H0(A[z, z

−1]⊗A[z] E
+)

= A[z−1]/(1− sz−1) = A[z, z−1]/(z − s) = A[1/s] ,

H0(A[[z]]⊗A[z] E
+) = A[[z]]/(z − s) = Âs ,

H0(A((z))⊗A[z] E
+) = H0(A((z))⊗A[z,z−1] E)

= H0(A[[z]]⊗A[z] E
+) = A((z))/(z − s) = Âs[1/s] ,

H0(A[[z
−1]]⊗A[z−1] E

−) = H0(A((z
−1))⊗A[z] E

+)

= H0(A((z
−1))⊗A[z,z−1] E) = 0
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and

ζ = s : H0(E
+) = A −−→ H0(E

+) = A

ζ−1 = s−1 : H0(E
−) = A[1/s] −−→ H0(E

−) = A[1/s] .

If s ∈ A is not a unit then E− is not finitely dominated. Let (A, s) denote the
homological dimension 1 A[z]-module defined by H0(E

+) = A with z acting
by z = s : A−−→A, with f.g. free resolution E+. In terms of homological
algebra

H0(A[[z]]⊗A[z] E
+) = Tor

A[z]
0 ((A, s), A[[z]]) = Âs ,

H0(A[z, z
−1]⊗A[z] E

+) = Tor
A[z]
0 ((A, s), A[z, z−1]) = A[1/s] ,

H0(A((z))⊗A[z] E
+) = Tor

A[z]
0 ((A, s), A((z))) = Âs[1/s] .

The inclusion A−−→E+ is an A-module chain equivalence, so E+ is A-finitely
dominated. The inclusion E−−−→E is an A-module chain equivalence. In
accordance with 8.1, 8.1′, 8.1, 8.5 the following conditions on s,E,E+, E−

are equivalent :

(i) s ∈ A is a unit,
(ii) A[1/s] = A,

(iii) Âs = 0,
(iv) z − s ∈ A[[z]] is a unit,
(v) E is A-finitely dominated,
(vi) the inclusion A−−→E is an A-module chain equivalence,
(vii) E− is A-finitely dominated,
(viii) the inclusion A−−→E− is an A-module chain equivalence,
(ix) z = s : H0(E

+) = A−−→H0(E
+) = A is an isomorphism. �

Example 8.10 (i) Given a central element a ∈ A define the multiplicative
subset

(z − a)∞ = {(z − a)k | k ≥ 0} ⊂ A[z]

with
((z − a)∞)−1A[z] = A[z, (z − a)−1] .

A finite f.g. free A[z]-module chain complex E+ is A[z, (z−a)−1]-contractible
if and only if E+ is A-finitely dominated and ζ − a : E+−−→E+ is chain
homotopy nilpotent, and

K∗(A[z], (z − a)∞) = Nil∗−1(A) ,

K∗(A[z, (z − a)−1]) = K∗(A[z])⊕Nil∗−1(A) .

(ii) Given a central unit a ∈ A• define the multiplicative subset

(z − a)∞ = {(z − a)k | k ≥ 0} ⊂ A[z, z−1]
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as in (i), with

((z − a)∞)−1A[z, z−1] = A[z, z−1, (z − a)−1] .

A finite f.g. free A[z, z−1]-module chain complex E is A[z, z−1, (z − a)−1]-
contractible if and only if E is A-finitely dominated and ζ − a : E−−→E is
chain homotopy nilpotent, and

K∗(A[z, z
−1], (z − a)∞) = Nil∗−1(A) ,

K∗(A[z, z
−1, (z − a)−1]) = K∗(A[z, z

−1])⊕Nil∗−1(A) . �

By analogy with 5.16 :

Proposition 8.11 The connecting map

∂ : K1

(
A((z))

)
−−→ K1(A[[z]], Ẑ) = Nil0(A)

is such that for any based f.g. free A[z]-module chain complex E+ with

H∗(A((z))⊗A[z] E
+) = 0

the torsion τ(A((z))⊗A[z] E
+) ∈ K1

(
A((z))

)
has image

∂τ(A((z))⊗A[z] E
+) = [A[[z]]⊗A[z] E

+, 1⊗ ζ]

= −[E/E+, ν+] ∈ Nil0(A) .

∂ is split by the ‘algebraically significant’ split injection

B : Nil0(A) −−→ K1

(
A((z))

)
;

(P, ν) −−→ τ((1− ν)−1(z − ν) : P ((z))−−→P ((z)))

and also by the ‘geometrically significant’ split injection

B
′
: Nil0(A) −−→ K1

(
A((z))

)
;

(P, ν) −−→ τ(ν − z : P ((z))−−→P ((z))) .

Proof If E is a based f.g. free A[z, z−1]-module chain complex such that

H∗(A((z))⊗A[z,z−1] E) = 0

(as in 8.1′) then for any Mayer–Vietoris presentation (E+, E−)

[E/E+, ν+] = −[A[[z]]⊗A[z] E
+, 1⊗ ζ] ∈ Nil0(A) . �

Remark 8.12 (i) Bieri and Eckmann [19] and Brown [33] have obtained a
necessary and sufficient homological criterion for a projective A-module chain
complex C to be finitely dominated, namely that the functor
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H∗(C,−) : {right A-modules} −−→ {graded Z-modules} ;
M −−→ H∗(C;M) = H∗(M ⊗A C)

preserve products.
(ii) A nilpotent space X is finitely dominated if and only if H∗(X) is finitely
generated, by Mislin [202]. In the simply-connected case this was first ob-
served by Milnor : in this case finite domination is the same as homotopy
finiteness, since K̃0(Z) = 0. �



9. Noncommutative localization

Traditionally, localization is defined in the context of commutative algebra.
However, ever since the work of Ore it has also been possible to localize non-
commutative rings. High-dimensional knot theory requires the noncommu-
tative localization matrix inversion method of Cohn [53], [54]. The algebraic
K- and L-theory invariants of codimension 2 embeddings frequently involve
this type of localization of a polynomial ring, as will become apparent in
Part Two. (This is particularly the case for links, although links are beyond
the scope of the book). The localization exact sequences of algebraic K- and
L-theory also hold in the noncommutative case10. This chapter deals with
K-theory, and L-theory will be considered in Chap. 25.

In dealing with noncommutative localization it will always be assumed that
the rings involved have the invariant basis property, so that invertible matrices
are square.

Definition 9.1 (Cohn [53, Chap. 7])
For any ring A and any set Σ of square matrices in A let Σ−1A be the
localization of A inverting Σ, the ring obtained from A by taking a ring
presentation with generators all the elements of A and all the entries m′

ij

in formal inverses M ′ = (m′
ij) of the matrices M ∈ Σ, subject to all the

relations holding in A as well as

MM ′ = M ′M = I (M ∈ Σ) . �

By analogy with 4.2 :

Proposition 9.2 The ring morphism

i : A −−→ Σ−1A ; a −−→ a/1

has the universal property that for any ring morphism f : A−−→B such
that f(M) is invertible for every M ∈ Σ there is a unique morphism
F : Σ−1A−−→B such that

f = Fi : A −−→ Σ−1A −−→ B . �

10See the footnote at the beginning of Chapter 25.
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Example 9.3 (i) Let A be a commutative ring. Given a multiplicative subset
S ⊂ A (4.1) let

⟨S⟩ = A ∩ (S−1A)• = {a ∈ A | ab ∈ S for some b ∈ A} .

(Note that S ⊆ ⟨S⟩.) A square matrix M in A becomes invertible in S−1A if
and only if det(M) ∈ ⟨S⟩, in which case

M−1 = det(M)−1adj(M)

with the adjoint matrix defined in A. The localization of A inverting the set
Σ of square matrices in A with det(M) ∈ S is

Σ−1A = S−1A = ⟨S⟩−1A .

(ii) Let Σ be any set of square matrices in a ring A such that the entries are
central in A. The inverses M−1 (M ∈ Σ) in Σ−1A commute with the images
i(a) ∈ Σ−1A (a ∈ A), since aM =Ma implies M−1i(a) = i(a)M−1. In order
to invert M ∈ Σ it thus suffices to invert det(M) ∈ A, and the localization
of A inverting Σ is the localization

Σ−1A = S−1A

inverting the multiplicative subset S ⊂ A generated by the determinants
det(M) ∈ A (M ∈ Σ). In particular, if A is commutative then so is Σ−1A.

�
Example 9.4 Given a ring A and an element s ∈ A let Σ = {(s)}, the set
consisting of the 1× 1 matrix (s). The localization of A inverting Σ is

Σ−1A = A ∗ Z[z]/(1− zs, 1− sz)

with (1 − zs, 1 − sz) ▹ A ∗ Z[z] the two-sided ideal in the free product of A
and Z[z] generated by 1− zs and 1− sz. If s ∈ A is central then

Σ−1A = A[
1

s
] = A[z]/(1− zs)

and the natural map A−−→Σ−1A is injective if and only if s ∈ A is a non-zero
divisor. �

Given an A-module M write the induced Σ−1A-module as

Σ−1M = Σ−1A⊗AM .

Definition 9.5 (i) An (A,Σ)-module is an A-moduleM with a f.g. projective
A-module resolution

0 −−→ P1

d
−−→ P0 −−→ M −−→ 0
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such that d ∈ HomA(P1, P0) is a Σ−1A-isomorphism, i.e. such that the in-
duced Σ−1A-module morphism d : Σ−1P1−−→Σ−1P0 is an isomorphism.
(ii) Let H (A,Σ) be the exact category of (A,Σ)-modules. �
Example 9.6 Given a multiplicative subset S ⊂ A as in 4.1 (i) let Σ be the
set of 1× 1 matrices (s) (s ∈ S). In this case

Σ−1A = S−1A , H (A,Σ) = H (A,S) . �

Proposition 9.7 The natural map i : A−−→Σ−1A is injective if and only if
there exists an injective ring morphism j : A−−→Λ such that the matrices in
Σ are Λ-invertible.
Proof If i is injective take

j = i : A −−→ Λ = Σ−1A .

Conversely, given an injection j : A−−→Λ as in the statement there is a
factorization

j : A
i
−−→ Σ−1A −−→ Λ

by 9.2, from which it is clear that i is injective. �
The algebraic K-theory localization exact sequence (4.5) has the follow-

ing generalization to the noncommutative case (cf. Vogel [299, 7.9], Schofield
[258, 4.16]) :

Proposition 9.8 Let Σ be a set of square matrices in a ring A such that the
natural map i : A−−→Σ−1A is injective. The relative K-group K1(i) in the
exact sequence

. . . −−→ K1(A)
i
−−→ K1(Σ

−1A)
∂
−−→ K1(i)

j
−−→ K0(A) −−→ . . .

is isomorphic to the abelian group

K1(A,Σ) = K0(H (A,Σ))

of equivalence classes of triples (P,Q, f) given by f.g. projective A-modules
P,Q together with a Σ−1A-isomorphism f : P−−→Q subject to the equivalence
relation defined by :

(P,Q, f) ∼ (P ′, Q′, f ′) if there exist a f.g. projective A-module R

and an A-module isomorphism

g : P ⊕Q′ ⊕R ∼= P ′ ⊕Q⊕R
such that

τ((f−1 ⊕ f ′ ⊕ 1Σ−1)g : Σ−1(P ⊕Q′ ⊕R)
≃−−→Σ−1(P ⊕Q′ ⊕R))

= 0 ∈ K1(Σ
−1A) .
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Proof Define a natural map

K1(A,Σ) −−→ K1(i) ; (P,Q, f) −−→ (P,Q, f) .

For f.g. projective A-modules P,Q every Σ−1A-module isomorphism h :
Σ−1P−−→Σ−1Q can be expressed as the composite

h = g−1f : Σ−1P −−→ Σ−1Q −−→ Σ−1Q

for some Σ−1A-isomorphisms f : P−−→Q, g : Q−−→Q, allowing the definition
of the inverse isomorphism

K1(i) −−→ K1(A,Σ) ; (P,Q, h) −−→ (P,Q, f)− (Q,Q, g) . �

Example 9.9 Let S ⊂ A be a subset which is a right denominator set in the
sense of Stenström [275, p. 52], satisfying the conditions :

(i) st ∈ S for all s, t ∈ S,
(ii) if sa = 0 ∈ A for some s ∈ S, a ∈ A then a = 0 ∈ A,
(iii) for all a ∈ A, s ∈ S there exist b, b′ ∈ A, t, t′ ∈ S such that

at = sb , t′a = b′s ∈ A ,

(iv) 1 ∈ S.

As in 9.6 let Σ be the set of 1× 1 matrices (s) (s ∈ S). The localization of A
inverting Σ is the ring of fractions

Σ−1A = S−1A ,

the ring of equivalence classes a/s of pairs (a, s) ∈ A × S subject to the
equivalence relation

(a, s) ∼ (b, t) if ca = db ∈ A , cs = dt ∈ S for some c, d ∈ A .

The natural map i : A−−→Σ−1A = S−1A is injective, so that 9.8 applies.
Grayson [97] extended the algebraic K-theory localization exact sequence of
Bass and Quillen to this type of noncommutative localization, identifying

K∗(A−−→S−1A) = K∗−1(H (A,S)) ,

as in the case of commutative localization recalled in Chap. 4. �
Definition 9.10 (Cappell and Shaneson [40])
A ring morphism f : A−−→B is locally epic if for every finite subset B0 ⊆ B
there exists a unit u ∈ B• such that uB0 ⊆ f(A). �
Example 9.11 (i) A surjective ring morphism f : A−−→B is locally epic.
(ii) A localization map i : A−−→Σ−1A is locally epic. �
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Proposition 9.12 Let f : A−−→B be a locally epic morphism of rings, and
let Σ be the set of B-invertible square matrices in A.
(i) The factorization

f : A
i
−−→ Σ−1A −−→ B

has the universal property that a finite f.g. free A-module chain complex C is
B-contractible if and only if C is Σ−1A-contractible.
(ii) The natural map i is injective if and only if there exists an injective ring
morphism j : A−−→Λ such that a square matrix in A is B-invertible if and
only if it is Λ-invertible.
(iii) If f : A−−→B is a surjection with kernel ideal

I = ker(f : A−−→B) ▹ A

and Σ1 ⊆ Σ is the set of B-invertible square matrices M in A with f(M) an
identity matrix then

Σ−1A = Σ−1
1 A ,

and the natural map from A to the I-adic completion

j : A −−→ ÂI = lim←−
k
A/Ik

factorizes as

j : A
i
−−→ Σ−1

1 A −−→ ÂI

with Σ−1
1 A−−→ÂI sending (1 + x)−1 (x ∈ I) to the element

lim←−
k

(1− x+ x2 − . . .+ (−)k−1xk−1) ∈ ÂI = lim←−
k
A/Ik .

The morphism j : A−−→ÂI is injective if and only if

∞∩
k=1

Ik = {0} ,

in which case i : A−−→Σ−1A is also injective.
Proof (i) Note first that an A-module chain complex C is chain contractible
if and only if there exist A-module morphisms Γ : Cr−−→Cr+1 (r ∈ Z) such
that the A-module morphisms

∆ = dΓ + Γd : Cr −−→ Cr

are isomorphisms. For if

Γ : 0 ≃ 1 : C −−→ C

is a chain contraction then∆ = 1. Conversely, given Γ with∆ an isomorphism
the A-module morphisms
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Γ ′ = ∆−1Γ : Cr −−→ Cr+1

define a chain contraction Γ ′ : 0 ≃ 1 : C−−→C.
Now suppose that C is finite f.g. free and B-contractible. Since f : A−−→B

is locally epic it is possible to lift a chain contraction

0 ≃ 1 : B ⊗A C −−→ B ⊗A C

to A-module morphisms Γ : Cr−−→Cr+1. The corresponding A-module
morphisms ∆ = dΓ + Γd are B-isomorphisms, hence (by 9.2) Σ−1A-
isomorphisms, and C is Σ−1A-contractible.
(ii) Immediate from 9.7.
(iii) In order to identify Σ−1A = Σ−1

1 A it suffices to show that if M is a
B-invertible k× k matrix in A then M is Σ−1

1 A-invertible. Since f is locally
epic it is possible to lift f(M)−1 to a k×k matrix L in A such that LM ∈ Σ1,
so that M is Σ−1

1 A-invertible, with M−1 = (LM)−1L. �
Example 9.13 Let A be a commutative ring.
(i) If f : A−−→B, I are as in 9.12 then a square matrixM in A is B-invertible
if and only if det(M) ∈ (1 + I)A•, so that

Σ−1A = Σ−1
1 A = (1 + I)−1A .

(ii) Let I = (s) ▹ A be the principal ideal generated by an element s ∈ A,
and let f : A−−→B = A/I be the projection. By (i) the localization of A
inverting the set Σ of B-invertible square matrices in A is the (commutative)
localization Σ−1A = (1 + I)−1A, which is the localization of A inverting all
the elements t ∈ A coprime to s (i.e. such that as+ bt = 1 for some a, b ∈ A).
The natural map g : A−−→ÂI is injective if and only if

∞∩
k=1

skA = {0}. �

Note that if f : A−−→B is not injective then in general the natural map
i : A−−→Σ−1A in 9.12 is not injective, so 9.8 does not apply :

Example 9.14 (i) If f : A−−→B and x, y ∈ A are such that

xy = 0 ∈ A , f(x) = 0 ∈ B , f(y) ∈ B•

then
i(x)i(y) = 0 ∈ Σ−1A , i(y) ∈ Σ ⊆ (Σ−1A)•

and i(x) = 0 ∈ Σ−1A.
(ii) Let

f : A = R[Z2] = R[T ]/(1− T 2) −−→ B = R ; p+ qT −−→ p+ q

and take x = 1− T , y = 1 + T ∈ R[Z2] in (i). The kernel ideal

I = ker(f) = (1− T ) ▹ A

is such that
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I = I2 = I3 = . . . .

The natural maps in this case

i = f = g : A = R[Z2] −−→ Σ−1A = (1 + I)−1A = ÂI = B = R

are not injective, with x ̸= 0, i(x) = 0. �
Example 9.15 Given a ring B let

f : A = B[z] −−→ B ; z −−→ 0

be the augmentation map, with kernel ideal

I = ker(f) = zB[z] ▹ B[z] .

The I-adic completion of A is the ring of formal power series of B

ÂI = B[[z]]

and the natural map g : B[z]−−→B[[z]] is an injection. Every square matrix

M in A can be expressed as
∞∑
j=0

Mjz
j with each Mj a square matrix in B,

and M is B-invertible if and only if M0 is invertible. Let R0, R1, R2, . . . be
the rings defined inductively by

R0 = B[z] , p0 : R0 → B ; z → 0 ,

Rn = (1 + ker(pn−1))
−1Rn−1 , pn : Rn → B ; z → 0 .

(In particular, R1 = (1 + zB[z])−1B[z].) Given an n× n matrix b = (bij) in
B let b′ = (b′ij) be the (n− 1)× (n− 1) matrix in R1 defined by the matrix
equation

1 0 . . . zb1n(1− zbnn)−1

0 1 . . . zb2n(1− zbnn)−1

...
...

. . .
...

0 0 . . . 1




1− zb11 −zb12 . . . −zb1n
−zb21 1− zb22 . . . −zb2n

...
...

. . .
...

−zbn1 −zbn2 . . . 1− zbnn



=


1− zb′11 −zb′12 . . . 0
−zb′21 1− zb′22 . . . 0

...
...

. . .
...

−zbn1 −zbn2 . . . 1− zbnn

 .

Assuming inductively that it is possible to invert 1 − zb′ in Rn−1 it is now
possible to invert 1 − zb in Rn. The localization of A inverting the set Σ of
B-invertible square matrices in A is the direct limit

Σ−1A = lim−→n Rn .

The inclusion A→ B[[z]] factors as
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A
i
−−→ Σ−1A −−→ B[[z]]

so that i : A→ Σ−1A is injective. For commutativeB the morphismΣ−1A→
B[[z]] is an injection and

Σ−1A = R1 = (1 + zB[z])−1B[z] ⊆ B[[z]] .

However, it is not known if Σ−1A → B[[z]] is an injection also in the non-
commutative case. �

The noncommutative versions of 4.13, 4.14 are given by :

Definition 9.16 Two sets Σ1, Σ2 of square matrices in a ring A are coprime if
the natural maps between the localizations of A inverting Σ1, Σ2 and Σ1∪Σ2

fit into a cartesian square

A //

��

(Σ1)
−1A

��
(Σ2)

−1A // (Σ1 ∪Σ2)
−1A

i.e. if the sequence of additive groups

0 −−→ A −−→ (Σ1)
−1A⊕ (Σ2)

−1A −−→ (Σ1 ∪Σ2)
−1A −−→ 0

is exact. �
Proposition 9.17 If Σ1, Σ2 are coprime sets of square matrices in a ring A
such that the natural maps

i1 : A −−→ (Σ1)
−1A , i2 : A −−→ (Σ2)

−1A

are injective then the natural map

i12 : A −−→ (Σ1 ∪Σ2)
−1A

is injective, and the relative algebraic K-groups are such that

K∗(A,Σ1 ∪Σ2) = K∗(A,Σ1)⊕K∗(A,Σ2)

with a Mayer–Vietoris exact sequence

. . . −−→ Kn(A) −−→ Kn((Σ1)
−1A)⊕Kn((Σ2)

−1A)

−−→ Kn((Σ1 ∪Σ2)
−1A) −−→ Kn−1(A) −−→ . . . .

Proof Identify

H (A,Σ1 ∪Σ2) = H (A,Σ1)×H (A,Σ2)

and apply 9.8. �



10. Endomorphism K-theory

Endomorphism K-theory is the algebraic K-theory of modules with an en-
domorphism, such as arise in knot theory via the Seifert matrix.11 An A-
module P with an endomorphism f : P−−→P is essentially the same as a
module (P, f) over the polynomial ring A[z], with the indeterminate z acting
on P by f . This correspondence will be used to relate the algebraic K-groups
K∗(Σ

−1A[z]) of the localizations Σ−1A[z] of A[z] to the K-groups of pairs
(P, f) with P a f.g. projective A-module.

Two localizations of polynomial extension rings are especially relevant to
knot theory :

(i) the ‘Fredholm’ localization Ω−1
+ A[z] of A[z] inverting the set Ω+

of square matrices in A[z] with cokernel a f.g. projective A-module
(10.4),

(ii) the localization Π−1A[z, z−1] of A[z, z−1] inverting the set Π of
square matrices in A[z, z−1] which become invertible over A under
the augmentation z−−→1 (10.17).

The algebraic description in Part 2 of the high-dimensional knot cobordism
groups will involve algebraic L-theory analogues of the endomorphism class
groups, defined using these localizations.

The splitting theorems of Chap. 5

K1(A[z, z
−1]) = K1(A[z])⊕Nil0(A) ,

K1(A[z]) = K1(A)⊕ Ñil0(A)

will now be extended to splitting theorems

K1(Ω
−1
+ A[z]) = K1(A[z])⊕ End0(A) ,

K1(Ω̃
−1
+ A[z]) = K1(Π

−1A[z, z−1]) = K1(A)⊕ Ẽnd0(A)

with End0(A) and Ẽnd0(A) the absolute and reduced endomorphism class
groups of Almkvist [5] and Grayson [95] such that

End0(A) = K0(A)⊕ Ẽnd0(A) .

11In the original treatment of Seifert [263] this was the matrix of an endomorphism,
whereas nowadays it is viewed as the matrix of a bilinear form.
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10A. The endomorphism category

Definition 10.1 Let A be any ring.
(i) The endomorphism category End(A) is the exact category in which an
object is a pair (P, f) with P a f.g. projective A-module and f : P−−→P an
endomorphism. A morphism in End(A)

g : (P, f) −−→ (P ′, f ′)

is an A-module morphism g : P−−→P ′ such that

gf = f ′g : P −−→ P ′ .

A sequence of objects and morphisms in End(A)

0 −−→ (P, f) −−→ (P ′, f ′) −−→ (P ′′, f ′′) −−→ 0

is exact if 0−−→P−−→P ′−−→P ′′−−→0 is an exact sequence of the underlying
f.g. projective A-modules.
(ii) The endomorphism K-groups of A are given by

End∗(A) = K∗(End(A)) .

(iii) The reduced endomorphism K-groups of A are given by

Ẽnd∗(A) = coker
(
K∗(P(A))−−→K∗(End(A))

)
with

P(A) −−→ End(A) ; P −−→ (P, 0) ,

such that
End∗(A) = K∗(A)⊕ Ẽnd∗(A) .

(iv) The endomorphism class group of A is

End0(A) = K0(End(A)) ,

the group of equivalence classes of objects (P, f) in End(A), subject to the
relation :

(P ′, f ′) ∼ (P, f) + (P ′′, f ′′) if there exists a short exact sequence

0 −−→ (P, f) −−→ (P ′, f ′) −−→ (P ′′, f ′′) −−→ 0 .

The reduced endomorphism class group of A is the quotient group

Ẽnd0(A) = coker(K0(A)−−→End0(A)) ,

with
K0(A) −−→ End0(A) ; [P ] −−→ [P, 0] . �



10A. The endomorphism category 81

Remark 10.2 (i) The endomorphism class group of a field F is given by

End0(F ) = Z[M(F )]

with M(F ) the set of irreducible monic polynomials p(z) ∈ F [z] (4.9) – the
class [P, f ] ∈ End0(F ) of an endomorphism f : P−−→P of a finite dimensional
F -vector space P is determined by the factorization of the characteristic
polynomial

chz(P, f) = det(z − f : P [z]−−→P [z]) ∈ F [z]

as a product of irreducible monic polynomials. See Chaps. 14, 18 below for
more detailed accounts.
(ii) The class [P, f ] ∈ End0(A) is determined by the characteristic polyno-
mial of f : P−−→P for any ring A (including the noncommutative case!) –
see Chaps. 11, 14 below for more detailed accounts. If A is not a field the
relationship between the factorization properties of polynomials in A[z] and
the structure of End0(A) is necessarily more complicated than in (i), since a
factorization of the characteristic polynomial of an object (P, f) in End(A)
may not be realized by an exact sequence

0 −−→ (P1, f1) −−→ (P, f) −−→ (P2, f2) −−→ 0 . �

The endomorphism K-theory of A is related to the K-theory of the lo-
calization of A[z] inverting matrices of the following type :

Proposition 10.3 The following conditions on a k × k matrix ω = (ωij) in
A[z] are equivalent :

(i) the A[z]-module morphism

ω : A[z]k −−→ A[z]k ;

(x1, x2, . . . , xk) −−→ (
k∑
j=1

xjω1j ,
k∑
j=1

xjω2j , . . . ,
k∑
j=1

xjωkj)

is injective and the cokernel is a f.g. projective A-module,
(ii) the 1-dimensional f.g. free A[z]-module chain complex

E+ : . . . −−→ 0 −−→ A[z]k
ω
−−→ A[z]k

is A-finitely dominated,
(iii) ω is invertible in A((z−1)).

Proof (i) =⇒ (ii) E+ is A-module chain equivalent to the 0-dimensional f.g.
projective A-module chain complex P defined by P0 = coker(ω).
(ii) ⇐⇒ (iii) Immediate from 8.2.
(iii) =⇒ (i) The A[z]-module morphism ω : A[z]k−−→A[z]k is injective (i.e.
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H1(E
+) = 0) since A[z]−−→A((z−1)) is injective. It has to be shown that

H0(E
+) = coker(ω) is a f.g. projective A-module. Let

ω =
N∑
j=0

ωjz
j

with each ωj a k×k matrix in A, and N ≥ 0. Let E be the induced A[z, z−1]-
module chain complex

E = A[z, z−1]⊗A[z] E
+

and let E− ⊂ E be the A[z−1]-module subcomplex defined by

d− = ω| : E−
1 =

−1∑
i=−∞

ziAk −−→ E−
0 =

N−1∑
j=−∞

zjAk .

The intersection E+∩E− is the 0-dimensional f.g. free A-module chain com-
plex with

(E+ ∩ E−)0 =
N−1∑
j=0

zjAk .

As in the proof of 8.1 there is defined a short exact sequence

0 −−→ E+∩E− −−→ E+⊕(A[[z−1]]⊗A[z−1]E
−) −−→ A((z−1))⊗A[z]E

+ −−→ 0 .

By hypothesis
H∗(A((z

−1))⊗A[z] E
+) = 0 ,

so that there is defined an A-module isomorphism

H0(E
+ ∩ E−) ∼= H0(E

+)⊕H0(A[[z
−1]]⊗A[z−1] E

−) .

Thus H0(E
+) is (isomorphic to) a direct summand of the f.g. free A-module

H0(E
+ ∩ E−), and H0(E

+) is a f.g. projective A-module. �

10B. The Fredholm localizations Ω−1
+ A[z], Ω̃−1

+ A[z]

By analogy with the definition of a Fredholm operator on Hilbert space as
one with finite dimensional kernel and cokernel :

Definition 10.4 (i) A matrix ω in A[z] is Fredholm if it is square and satisfies
the equivalent conditions of 10.3.
(ii) Let Ω+ be the set of Fredholm matrices ω in A[z].
(iii) The Fredholm localization of A[z] is the ring Ω−1

+ A[z] obtained from A[z]
by inverting Ω+. �
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Remark 10.5 It follows from 10.3 that Ω−1
+ A[z] is the localization of A[z]

in the sense of Schofield [258, 4.1] inverting the morphisms f : P−−→Q of f.g.
projective A[z]-modules which are injective and such that coker(f) is a f.g.
projective A-module. �

Every matrix ω in A[z] can be expressed as

ω =

d∑
j=0

ωjz
j

with each ωj a matrix with entries in A (of the same size as ω), for some
d ≥ 0.

Definition 10.6 (i) A matrix ω =
d∑
j=0

ωjz
j with entries in A[z] is monic if

ω is square and the leading coefficient ωd is the identity matrix in A.
(ii) Let Ω+,mon be the set of monic matrices ω in A[z], so that the localization
Ω−1

+,monA[z] is defined as in Chap. 9. �

Proposition 10.7 (i) The natural map A[z]−−→Ω−1
+ A[z] is injective.

(ii) Every monic matrix in A[z] is Fredholm, so that Ω+,mon ⊂ Ω+.
(iii) The localizations of A[z] inverting Ω+,mon and Ω+ coincide

Ω−1
+,monA[z] = Ω−1

+ A[z] .

Proof (i) Immediate from the factorization

A[z] −−→ Ω−1
+ A[z] −−→ A((z−1))

of the injection A[z]−−→A((z−1)).

(ii) If ω =
d∑
j=0

ωjz
j is a monic k× k matrix define an A-module isomorphism

Akd
≃−−→ coker(ω) ; (ai)0≤i≤kd−1 −−→

d−1∑
j=0

(ajk, ajk+1, . . . , ajk+k−1)z
j .

Thus coker(ω) = Akd is a f.g. free A-module of rank kd, and ω is Fredholm.
(iii) Given a Fredholm matrix ω in A[z] let

P = coker(ω) , ζ : P −−→ P ; x −−→ zx .

Let Q be a f.g. projective A-module such that P ⊕Q is a f.g. free A-module,
say P ⊕Q = Ad. The A[z]-module morphism

η = 1⊕ z : A[z]d = (P ⊕Q)[z] −−→ A[z]d = (P ⊕Q)[z]

with coker(η) = Q has a Fredholm matrix in A[z]. Let ω′ be the matrix of
the A[z]-module morphism
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z − (ζ ⊕ 0) : A[z]d = (P ⊕Q)[z] −−→ A[z]d = (P ⊕Q)[z] .

Now (Ad, ζ⊕0) is an A[z]-module of homological dimension 1, with a resolu-
tion by both ω ⊕ η and ω′. In order to invert ω it therefore suffices to invert
the monic matrix ω′. �
Definition 10.8 Let Ω̃+ be the set of square matrices ω in A[z] with ω0

invertible. �
Proposition 10.9 The localization of A[z] inverting Ω̃+ is

Ω̃−1
+ A[z] = lim−→n Rn

with R0, R1, R2, . . . the rings defined inductively by

R0 = A[z] , p0 : R0 → A ; z → 0 ,

Rn = (1 + ker(pn−1))
−1Rn−1 , pn : Rn → A ; z → 0 .

In particular, the natural map A[z]−−→Ω̃−1
+ A[z] is injective.

Proof As in 9.15. �
Example 10.10 (i) The indeterminate z is a monic 1× 1 matrix in A[z], so
that z is monic (as a matrix) and

A[z, z−1] ⊂ Ω−1
+ A[z] .

(ii) If P = P 2 is a projection matrix in A then M = I − P + zP ∈ Ω+, since
M−1 = I − P + z−1P is defined in A[z, z−1] ⊂ A((z−1)).
(iii) If A is commutative then the multiplicative subsets

S = A[z] ∩A((z−1))• ,

Smon = {
d∑
j=0

ajz
j | ad = 1 ∈ A} ⊆ S ,

T = A[z] ∩A[[z]]• = {
d∑
j=0

ajz
j | a0 ∈ A•} ⊂ A[z] ,

S̃ = {
d∑
j=0

ajz
j | a0 = 1 ∈ A•} ⊆ T

are such that

Ω+ = {M | det(M) ∈ S} , Ω−1
+ A[z] = S−1A[z] = S−1

monA[z] ,

Ω̃+ = {M | det(M) ∈ T} , Ω̃−1
+ A[z] = S̃−1A[z] = T−1A[z] .

(iv) If A is an integral domain then (as in 8.7)
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S = {
d∑
j=0

ajz
j | ad ∈ A•} ⊂ A[z] .

It follows from 8.7 and 10.3 that a polynomial p(z) =
d∑
j=0

ajz
j ∈ A[z] is

such that A[z]/(p(z)) is a f.g. projective A-module if and only if the leading
coefficient ad ∈ A is a unit, in which case A[z]/(p(z)) is a f.g. free A-module
of rank d.
(v) If A = Z then Ω−1

+ A[z] = S−1Z[z, z−1] is a principal ideal domain (Farber
[75, 2.5]).
(vi) If A = F is a field then

Ω−1
+ F [z] = {p(z)/q(z) | q(z) ̸= 0}

= F (z)

is the function field of F (= the quotient field of F [z]), and

Ω̃−1
+ F [z] = {p(z)/q(z) | q(0) ̸= 0}

= F [z](z) ⊂ F (z)

is the localization of F [z] at the maximal ideal (z) ▹ F [z]. The Laurent poly-
nomial extension F [z, z−1] is the localization of F [z] away from (z), and the
various localizations fit into a cartesian square of rings

F [z] //

��

F [z, z−1]

��
F [z](z) // F (z) �

Proposition 10.11 The following conditions on a finite f.g. free A[z]-module
chain complex E+ are equivalent :

(i) H∗(Ω
−1
+ E+) = 0 ,

(ii) H∗(A((z
−1))⊗A[z] E

+) = 0 ,
(iii) E+ is A-finitely dominated.

Proof (i) ⇐⇒ (ii) A square matrix ω in A[z] becomes invertible in Ω−1
+ A[z]

if and only if it becomes invertible in A((z−1)).
(ii) ⇐⇒ (iii) By 8.1. �
Example 10.12 If E+ is a finite f.g. free A[z]-module chain complex such
that p(z)H∗(E

+) = 0 for some p(z) ∈ A[z] with coker(p(z) : A[z]−−→A[z]) a
f.g. projective A-module (i.e. such that (p(z)) is a 1× 1 Fredholm matrix in
A[z]) then E+ is A-finitely dominated. �
Proposition 10.13 The following conditions on a finite f.g. free A[z]-module
chain complex E+ are equivalent :
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(i) H∗(Ω̃
−1
+ E+) = 0 ,

(ii) H∗(A[[z]]⊗A[z] E
+) = 0 ,

(iii) H∗(A⊗A[z] E
+) = 0 via A[z]−−→A; z−−→0 ,

(iv) ζ : E+−−→E+ is an A-module chain equivalence.

Proof (i) ⇐⇒ (ii) A square matrix ω in A[z] becomes invertible in Ω̃−1
+ A[z]

if and only if it becomes invertible in A[[z]].

(ii) ⇐⇒ (iii) An element
∞∑
j=0

ajz
j ∈ A[[z]] is a unit if and only if a0 ∈ A is a

unit.
(iii) ⇐⇒ (iv) By the exact sequence

0 −−→ E+
ζ
−−→ E+ −−→ A⊗A[z] E

+ −−→ 0 . �

The nilpotent category Nil(A) is the full subcategory of End(A) with
objects (P, ν) such that ν : P−−→P is nilpotent. The inclusion

Nil(A) −−→ End(A) ; (P, ν) −−→ (P, ν)

induces natural morphisms

Nil∗(A) −−→ End∗(A) , Ñil∗(A) −−→ Ẽnd∗(A) .

The relative groups in the localization exact sequence

. . . −−→ Kn(A[z])
i+
−−→ Kn(Ω

−1
+ A[z])

∂+
−−→ Kn(A[z], Ω+)

−−→ Kn−1(A[z]) −−→ . . .

are the algebraic K-groups

K∗(A[z], Ω+) = K∗−1(H (A[z], Ω+))

of the exact category H (A[z], Ω+) of (A[z], Ω+)-modules.

By analogy with 5.6 and 5.14 :

Proposition 10.14 (i) The functor

End(A) −−→ H (A[z], Ω+) ;

(P, f) −−→ coker(z − f : P [z]−−→P [z]) = P with z = f

is an isomorphism of exact categories, so that

K∗(A[z], Ω+) = K∗−1(H (A[z], Ω+))

= End∗−1(A) = K∗−1(A)⊕ Ẽnd∗−1(A) .

(ii) The localization exact sequence breaks up into split exact sequences

0 −−→ Kn(A[z])
i+
−−→ Kn(Ω

−1
+ A[z])

∂+
−−→ Endn−1(A) −−→ 0 ,
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so that
Kn(Ω

−1
+ A[z]) = Kn(A[z])⊕ Endn−1(A) (n ∈ Z) .

In particular, for n = 1 there is defined a direct sum system

K1(A[z])
i+

−−−−−→←−−−−−
j+

K1(Ω
−1
+ A[z])

∂+
−−−−−→←−−−−−

∆+

End0(A)

with

i+ : K1(A[z]) −−→ K1(Ω
−1
+ A[z]) ; τ(E+) −−→ τ(Ω−1

+ E+) ,

j+ : K1(Ω
−1
+ A[z]) −−→ K1(A[z]) ;

τ(Ω−1
+ E+) −−→ τ(r+ : C(z − ζ : E+[z]−−→E+[z])−−→E+) ,

∂+ : K1(Ω
−1
+ A[z]) −−→ End0(A) ; τ(Ω

−1
+ E+) −−→ [E+, ζ] ,

∆+ : End0(A) −−→ K1(Ω
−1
+ A[z]) ;

[P, f ] −−→ τ(z − f : Ω−1
+ P [z]−−→Ω−1

+ P [z]) . �

Example 10.15 Let X be a finitely dominated CW complex, and let f :
X−−→X be a map which induces f∗ = 1 : π1(X)−−→π1(X). Write

A = Z[π1(X)] , Λ = Ω−1
+ A[z] .

The mapping torus T (f) is Λ-contractible, with

τ(T (f);Λ) = (0, [X, f ]) ∈ K1(Λ) = K1(A[z])⊕ End0(A) .

(The endomorphism class [X, f ] ∈ End0(A) agrees with the universal functo-
rial Lefschetz invariant of Lück [173].) The condition f∗ = 1 can be dropped,
at the expense of dealing with the ring

Af∗ [z] = A ∗ Z[z]/{az = zf∗(a)} (a ∈ A)

instead of A1[z] = A[z], such that

Z[π1(T (f))] = Z[π1(X)]f∗ [z, z
−1] . �

Proposition 10.16 The torsion group of Ω̃−1
+ A[z] fits into the direct sum

system

K1(A)
ĩ+

−−−−−→←−−−−−
j̃+

K1(Ω̃
−1
+ A[z])

∂̃+
−−−−−→←−−−−−

∆̃+

Ẽnd0(A)

with
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ĩ+ : K1(A) −−→ K1(Ω̃
−1
+ A[z]) ; τ(E) −−→ τ(Ω̃−1

+ E[z]) ,

∂̃+ : K1(Ω̃
−1
+ A[z]) −−→ Ẽnd0(A) ;

τ(Ω̃−1
+ C(f0 + zf1 : P [z]−−→P [z])) −−→ [P,−f−1

0 f1] ,

j̃+ : K1(Ω̃
−1
+ A[z]) −−→ K1(A) ; τ(Ω̃

−1
+ E+) −−→ τ(A⊗A[z] E

+) ,

∆̃+ : Ẽnd0(A) −−→ K1(Ω̃
−1
+ A[z]) ;

[P, f ] −−→ τ(1− zf : Ω̃−1
+ P [z]−−→Ω̃−1

+ P [z]) .

Proof Let Ω−1
− A[z−1] be the localization of A[z−1] inverting the set Ω− of

Fredholm matrices in A[z−1] (i.e. the k × k matrices ω such that coker(ω :
A[z−1]k−−→A[z−1]k) is a f.g. projective A-module, for all k ≥ 1). By 10.14

K1(Ω
−1
− A[z−1]) = K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ẽnd0(A) .

As in Chap. 5 let Z = {zk | k ≥ 0} ⊂ A[z], so that Z−1A[z] = A[z, z−1]. The
cartesian square of rings

A[z] //

��

Ω̃−1
+ A[z]

��
A[z, z−1] // Ω−1

− A[z−1]

induces excision isomorphisms

K∗(A[z], Z) ∼= K∗(Ω̃
−1
+ A[z], Ω−) .

Thus
K1(Ω̃

−1
+ A[z], Ω−) = K1(A[z], Z) = K0(A)⊕ Ñil0(A) ,

and
K1(Ω̃

−1
+ A[z]) = K1(A)⊕ Ẽnd0(A) . �

10C. The A-contractible localization Π−1A[z, z−1]

The A-contractible localization Π−1A[z, z−1] has the universal property that
a finite f.g. free A[z, z−1]-module chain complex C is A-contractible if and
only if C is Π−1A[z, z−1]-contractible. This is the localization of A[z, z−1] of
greatest relevance to knot theory, as will be spelled out in Chaps. 17, 32, 33.
The results of 10B. are now used to identify

K1(Π
−1A[z, z−1]) = K1(Ω̃

−1
+ A[z])

= K1(A)⊕ Ẽnd0(A) .
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Definition 10.17 (i) An A[z, z−1]-module chain complex C is A-contractible
if A⊗A[z,z−1] C is a contractible A-module chain complex, regarding A as an
A[z, z−1]-module via the augmentation map

p : A[z, z−1] −−→ A ;

∞∑
j=−∞

ajz
j −−→

∞∑
j=−∞

aj .

(ii) A k× k matrix ω = (ωij) in A[z, z
−1] is A-invertible if p(ω) = (p(ωij)) is

an invertible k × k matrix in A.
(iii) Let Π be the set of A-invertible matrices in A[z, z−1], so that the local-
ization Π−1A[z, z−1] is defined as in 9.1. �
Proposition 10.18 (i) The augmentation p : A[z, z−1]−−→A; z−−→1 has a
canonical factorization

p : A[z, z−1] −−→ Π−1A[z, z−1] −−→ A .

(ii) The natural map A[z, z−1]−−→Π−1A[z, z−1] is an injection.
(iii) The following conditions on a finite f.g. free A[z, z−1]-module chain com-
plex E are equivalent :

(a) E is A-contractible,
(b) H∗(Π

−1E) = 0,
(c) H∗(A⊗A[z,z−1] E) = 0,
(d) ζ − 1 : E−−→E is a chain equivalence.

Proof Apply 9.12, noting that the natural map into the (z−1)-adic completion

A[z, z−1] −−→ lim←−
k
A[z, z−1]/(z − 1)k = A[[z − 1]][z−1]

is an injection. �
Example 10.19 (i) If A is a commutative ring then

Π−1A[z, z−1] = P−1A[z, z−1]

with

P = {
∞∑

j=−∞
ajz

j |
∞∑

j=−∞
aj ∈ A•} ⊂ A[z, z−1] .

A finite f.g. free A[z, z−1]-module chain complex E is A-contractible if and
only if

p(z)H∗(E) = 0

for some p(z) ∈ P .
(ii) If A = F is a field then P−1F [z, z−1] ⊂ F (z), so that an F -contractible
finite f.g. free F [z, z−1]-module chain complex E is F (z)-contractible, and
hence by 8.3 E is F -finitely dominated. �
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Proposition 10.20 Let E be a finite based f.g. free A[z, z−1]-module chain
complex.
(i) E is A-contractible if and only if it is chain equivalent to the algebraic
mapping cone C(1− f + zf : P [z, z−1]−−→P [z, z−1]) for some finite f.g. pro-
jective A-module chain complex P with a chain map f : P−−→P , in which
case it is possible to choose a chain equivalence such that

τ(E ≃ C(1− f + zf)) = τ(A⊗A[z,z−1] E) ∈ im(K1(A)−−→K1(A[z, z
−1])) .

(ii) If E is A-contractible then E is A-finitely dominated if and only if f, 1−f :
P−−→P are chain equivalences for any (P, f) as in (i), in which case E is
A-module chain equivalent to P and

f ≃ (1− ζ)−1 : P ≃ E −−→ P ≃ E .

Proof (i) The algebraic transversality of Ranicki [244, Chap. 8] shows that
for every based f.g. free A[z, z−1]-module chain complex E there is a simple
chain equivalence

i : E
≃−−→ C(g + zh : C[z, z−1]−−→D[z, z−1])

for some based f.g. free A-module chain complexes C,D and chain maps
g, h : C−−→D. Applying A ⊗A[z,z−1] − there is obtained a simple A-module
chain equivalence

1⊗ i : A⊗A[z,z−1] E −−→ C(g + h : C−−→D) .

Thus E is A-contractible if and only if g+h : C−−→D is a chain equivalence,
in which case the chain map

f = (g + h)−1h : P = C −−→ P

is such that there is defined an A[z, z−1]-module chain equivalence

e : C(1− f + zf : P [z]−−→P [z])
(g+h 0)
−−−−→

C(g + zh : C[z]−−→D[z])
i−1

−−→ E

with torsion

τ(e) = τ(g + h : C−−→D)

= τ(A⊗A[z,z−1] E) ∈ im(K1(A)−−→K1(A[z, z
−1])) .

Alternatively, use the following construction of (P, f) for an A-contractible
based f.g. free A[z, z−1]-module chain E. Since E is A-contractible the chain
map ζ − 1 : E−−→E is an A-module chain equivalence (10.18). Let (E+, E−)
be a compatibly based Mayer–Vietoris presentation of E, so that

E = A[z, z−1]⊗A[z] E
+ = A[z, z−1]⊗A[z−1] E

− ,
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with

τ(1 : A[z, z−1]⊗A[z±1] E
±−−→E) = τ(zN

±
: A[z, z−1]−−→A[z, z−1])

∈ K1(A[z, z
−1])

for some N± ∈ Z. Now E+ is A[[z]]-contractible, so that

A((z))⊗A[z−1] E
− = A((z))⊗A[z,z−1] E = A((z))⊗A[z] E

+ ≃ 0 .

Thus E− is A((z))-contractible, and by 8.1′ E− is A-finitely dominated. The
projection E−[z]−−→E defines an A[z]-module chain equivalence

j : C(1− zζ−1 : E−[z]−−→E−[z])
≃−−→ E

such that the A[z]-module chain map

k : E+ −−→ E
j−1

−−→ C(1− zζ−1 : E−[z]−−→E−[z])

is an A[z]-module chain equivalence with torsion

τ(k) = τ(A⊗A[z] E
+) ∈ im(K1(A)−−→K1(A[z])) .

(ii) For any A-finitely dominated finite f.g. free A[z, z−1]-module chain com-
plex E there is defined an A[z, z−1]-module chain equivalence

e : C(1− zζ−1 : E[z, z−1]−−→E[z, z−1]) −−→ E ,

inducing an A-module chain equivalence

1⊗ e : C(1− ζ−1 : E−−→E) −−→ A⊗A[z,z−1] E .

Thus if E is A-contractible the A-module chain map 1 − ζ−1 : E−−→E is a
chain equivalence, and the chain equivalence

f = (1− ζ)−1 : E −−→ E

is such that
1− f = −ζ(1− ζ)−1 : E −−→ E

is also a chain equivalence, with an A[z, z−1]-module chain equivalence

e : C(1− f + zf : E[z, z−1]−−→E[z, z−1])
≃−−→

C((1− ζ−1)−1(1− zζ−1) : E[z, z−1]−−→E[z, z−1]) −−→ E

such that τ(f) ∈ im(K1(A)−−→K1(A[z, z
−1])) with respect to an appropriate

choice of A[z, z−1]-module basis for E.
Conversely, if E is an A-contractible based f.g. free A[z, z−1]-module chain

complex with E ≃ C(1−f+zf : P [z, z−1]−−→P [z, z−1]) and f, 1−f : P−−→P
A-module chain equivalences there are defined A-module chain equivalences
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E ≃ C(1− f + zf : P [z, z−1]−−→P [z, z−1])

≃ C(1 + z(1− f)−1f : P [z, z−1]−−→P [z, z−1]) ≃ P . �

Proposition 10.21 (i) The torsion group of Π−1A[z, z−1] fits into the direct
sum system

K1(A)
ĩ

−−−−−→←−−−−−
j̃

K1(Π
−1A[z, z−1])

∂̃
−−−−−→←−−−−−

∆̃

Ẽnd0(A)

with

ĩ : K1(A) −−→ K1(Π
−1A[z, z−1]) ; τ(E) −−→ τ(Π−1E[z, z−1]) ,

∂̃ : K1(Π
−1A[z, z−1]) −−→ Ẽnd0(A) ; τ(Π

−1E) −−→ ∂̃(E) = [P, f ]

(with (P, f) as in 10.20) ,

j̃ : K1(Π
−1A[z, z−1]) −−→ K1(A) ; τ(Π

−1E) −−→ τ(A⊗A[z,z−1] E) ,

∆̃ : Ẽnd0(A) −−→ K1(Π
−1A[z, z−1]) ;

[P, f ] −−→ τ(1− f + zf : Π−1P [z, z−1]−−→Π−1P [z, z−1]) .

(ii) The torsion group of Π−1A[z, z−1, (1 − z)−1] fits into the direct sum
system

K1(Π
−1A[z, z−1])

i
−−−−−→←−−−−−

j

K1(Π
−1A[z, z−1, (1− z)−1])

∂
−−−−−→←−−−−−

∆

Nil0(A)

with

i : K1(Π
−1A[z, z−1]) −−→ K1(Π

−1A[z, z−1, (1− z)−1]) ;

τ(E) −−→ τ((1− z)−1E) ,

∂ : K1(Π
−1A[z, z−1, (1− z)−1]) −−→ Nil0(A) ;

τ((1− z)−1E) −−→ [E !, 1− ζ] ,

∆ : Nil0(A) −−→ K1(Π
−1A[z, z−1, (1− z)−1]) ; [Q, ν]−−→

τ(1− (1− z)−1ν : Π−1Q[z, z−1, (1− z)−1]−−→Π−1Q[z, z−1, (1− z)−1]) .

(iii) The torsion groups are such that

K1(Π
−1A[z, z−1]) = K1(A)⊕ Ẽnd0(A) ,

K1(Π
−1A[z, z−1, (1− z)−1]) = K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ẽnd0(A) .
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(iv) An (A[z, z−1],Π)-module is an h.d. 1 A[z, z−1]-module M such that 1−
ζ : M−−→M is an automorphism. Every (A[z, z−1],Π)-module M admits a
resolution

0 −−→ P [z, z−1]
1−f+zf
−−−−→ P [z, z−1] −−→ M −−→ 0

for some (P, f) in End0(A), and there is defined an exact sequence

Nil0(A)⊕Nil0(A)
j
−−→ End0(A)

k
−−→ K1(A[z, z

−1],Π) −−→ 0

with
j([M,µ], [N, ν]) = [M ⊕N,µ⊕ (1− ν)] ,

k[P, f ] = [coker(1− f + zf : P [z, z−1]−−→P [z, z−1])] .

Proof (i) Let Π+ be the set of square matrices in A[z] which are A-invertible
via z−−→1. The ring isomorphism

ρ : A[z]
≃−−→ A[z] ; z −−→ 1− z

induces a ring isomorphism

ρ : (Π+)
−1A[z] = Π−1A[z, z−1]

≃−−→ Ω̃−1
+ A[z] ; z −−→ 1− z .

Now apply 10.16 to identify

K1(Π
−1A[z, z−1]) = K1(Ω̃

−1
+ A[z]) = K1(A)⊕ Ẽnd0(A) .

(ii) For any A-invertible n×n matrix M in A[z, z−1] there exist an invertible
n× n matrix L in A and an n× n matrix K in A[z, z−1] such that

LM + (1− z)K = In .

Thus the commutative square of rings

A[z, z−1] //

��

Π−1A[z, z−1]

��
A[z, z−1, (1− z)−1] // Π−1A[z, z−1, (1− z)−1]

is cartesian, and there is a Mayer–Vietoris exact sequence in algebraic K-
theory

. . . −−→ K1(A[z, z
−1]) −−→ K1(Π

−1A[z, z−1])⊕K1(A[z, z
−1, (1− z)−1])

−−→ K1(Π
−1A[z, z−1, (1− z)−1]) −−→ K0(A[z, z

−1]) −−→ . . . .

The decomposition of K1(Π
−1A[z, z−1, (1− z)−1]) now follows from (i).

(iii) Immediate from (i) and (ii).
(iv) It is convenient to introduce another indeterminate over A, called s, and
to let Ω+ denote the set of Fredholm matrices in A[s]. From (i), (ii) and (iii)
there is defined a commutative braid of exact sequences
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K1(A[s])

  A
AA

AA
AA

AA

##
K1(Ω

−1
+ A[s])

  A
AA

AA
AA

AA

##
K1(A[s, s

−1, (1− s)−1], Ω+)

  A
AA

AA
AA

AA
A

K1(A[s, s
−1, (1− s)−1])

>>}}}}}}}}}

  A
AA

AA
AA

AA
K1(A[s], Ω+)

>>}}}}}}}}}}

  A
AA

AA
AA

AA
A

0

Nil0(A)⊕Nil0(A)

>>}}}}}}}}}
== 0

>>}}}}}}}}}}}

with
K1(A[s], Ω+) = End0(A) .

The isomorphism of rings

A[s, s−1, (1− s)−1]
≃−−→ A[z, z−1, (1− z)−1] ; s −−→ (1− z)−1

induces an isomorphism of exact categories

H(A[s, s−1, (1− s)−1], Ω+) ∼= H(A[z, z−1, (1− z)−1],Π) .

The inclusion A[z, z−1]−−→A[z, z−1, (1 − z)−1] induces an isomorphism of
exact categories

H(A[z, z−1],Π) ∼= H(A[z, z−1, (1− z)−1],Π) ,

since Π is coprime to (1− z). It follows that

K1(A[z, z
−1],Π) = K1(A[z, z

−1, (1− z)−1],Π)

= K1(A[s, s
−1, (1− s)−1], Ω+)

= coker(K1(A[s, s
−1, (1− s)−1])−−→K1(Ω

−1
+ A[s]))

= coker(K1(A[s], (s(1− s))∞)−−→K1(A[s], Ω+))

= coker(Nil0(A)⊕Nil0(A)−−→End0(A)) .

(More conceptually, note that an object (P, f) in End0(A) is such that

1− f + zf : P [z, z−1] −−→ P [z, z−1]

is an A[z, z−1]-module isomorphism if and only if f : P−−→P is a near-
projection (i.e. f(1−f) : P−−→P is nilpotent), if and only if (P, f) is isomor-
phic to (M,µ) ⊕ (N, 1 − ν) for some objects (M,µ), (N, ν) in the nilpotent
category Nil(A). See 5.7 for near-projections.) �
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Example 10.22 Let F be a field. If E is an F -contractible based f.g. free
F [z, z−1]-module chain complex then

∂̃(E) = [H∗(E), (1− ζ)−1] + d[F, 1] ∈ Ẽnd0(F )

with
d = χ(H∗(E

+))− χ(H∗(E)) ∈ Z
for any finite f.g. free F [z]-module chain complex E+ such that

F [z, z−1]⊗F [z] E
+ = E ,

interpreting negative values of d using chain complex suspension. �
Example 10.23 (i) Given a group π let

Λ = Π−1Z[π][z, z−1] , Λ1 = Π−1Z[π][z, z−1, (1− z)−1]

with Π the set of Z[π]-invertible square matrices in Z[π][z, z−1], and define
Whitehead groups

Wh1(Λ) = K1(Λ)/{±gzj | g ∈ π, j ∈ Z} ,

Wh1(Λ1) = K1(Λ1)/{±gzj(1− z)k | g ∈ π, j, k ∈ Z} .
By 10.21

Wh1(Λ) = Wh(π)⊕ Ẽnd0(Z[π]) ,

Wh1(Λ1) = Wh(π)⊕ K̃0(Z[π])⊕ Ẽnd0(Z[π])⊕ Ñil0(Z[π]) .
Assume that π is finitely presented, and let K be a connected finite CW
complex with π1(K) = π. Given a finite CW complex X and a cellular map

h : X−−→K × S1 let X̃, K̃ be the universal covers of X,K, so that there is
induced a Z[π][z, z−1]-module chain map h̃ : C(X̃)−−→C(K̃×R). By 10.18 h̃
is a Z[π]-homology equivalence if and only if it is a Λ-homology equivalence.
From now on, assume this is indeed the case, so that there is defined a Λ-
coefficient Whitehead torsion

τ(h;Λ) = (τ1, τ2) ∈Wh1(Λ) = Wh(π)⊕ Ẽnd0(Z[π]) .
(See (ii) below for the application to knot complements). The first component
of τ(h;Λ) is the Z[π]-coefficient Whitehead torsion

τ1 = τ(h;Z[π]) = τ(1⊗h̃ : Z[π]⊗Z[π][z,z−1]C(X̃)−−→C(K̃×S1)) ∈Wh(π) .

The second component of τ(h;Λ)

τ2 = [C, f ] ∈ Ẽnd0(Z[π])
is constructed as follows. Let X = h∗(K × R) be the induced infinite cyclic
cover of X, so that h lifts to a Z-equivariant map h : X−−→K ×R. Making h
CW transverse at K×{∗} ⊂ K×S1 (up to simple homotopy equivalence, as
in 7.5) it is possible to obtain a fundamental domain (V ;U, ζU) for X with
a π1-isomorphism map

(b; a, ζa) : (V ;U, ζU) −−→ K × ([0, 1]; {0}, {1}) .
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Let
i+ : U = V ∩ ζ−1V −−→ V ; x −−→ ζx

i− : U = V ∩ ζ−1V −−→ V ; x −−→ x

and let Ũ , Ṽ be the universal covers over U, V , so that there is defined a
morphism of short exact sequences of finite f.g. free Z[π][z, z−1]-module chain
complexes

0 // C(Ũ)[z, z−1]
i+ − zi− //

ã

��

C(Ṽ )[z, z−1] //

b̃
��

C(X̃) //

h̃
��

0

0 // C(K̃)[z, z−1]
1− z// C(K̃ × I)[z, z−1] // C(K̃ × R) // 0

The Z[π]-module chain maps induced on the chain complex kernels

i+ , i− : C = C(ã : C(Ũ)−−→C(K̃)) −−→ D = C(̃b : C(Ṽ )−−→C(K̃))

are such that i+−i− : C−−→D is a Z[π]-module chain equivalence. The second

component of τ(h;Λ) is the endomorphism class τ2 = [C, f ] ∈ Ẽnd0(Z[π]) of
the Z[π]-module chain map

f = −(i+ − i−)−1i− : C −−→ C ,

for which
1− f = (i+ − i−)−1i+ : C −−→ C .

The Z[π][z, z−1]-module chain complexes C(X̃),C(K̃ × R) are Λ1-contract-
ible, so the split injection Wh1(Λ)−−→Wh1(Λ1) sends τ(h;Λ) to a difference
of absolute Reidemeister torsion type invariants

τ(h;Λ1) = τ(X;Λ1)− τ(K × S1;Λ1) ∈Wh1(Λ1) ,

with
τ(K × S1;Λ1) = τ((1− z)χ(K)) = 0 ∈Wh1(Λ1) .

(See Chap. 16 below for a brief account of Reidemeister torsion).
(ii) Let k : Sn ⊂ Sn+2 be a knot, and let

X = cl.(Sn+2\(k(Sn)×D2)) ⊂ Sn+2

be the knot exterior. The generator 1 ∈ H1(X) = Z can be represented by a
map h : X−−→S1 which is a Z-homology equivalence, and which is transverse
at a point ∗ ∈ S1. Thus Fn+1 = h−1(∗) ⊂ X is a Seifert surface for k, with
∂F = k(Sn) ⊂ Sn+2. The Π−1Z[z, z−1]-coefficient Whitehead torsion of h is
then defined as in (i)

τ(h;Π−1Z[z, z−1]) = [C(F ), f ] ∈Wh(Π−1Z[z, z−1]) = Ẽnd0(Z) ,

with K = {pt.} and f = −(i+ − i−)−1i− : C(F )−−→C(F ). See Chaps. 17, 33
for the expression of this invariant in terms of the Alexander polynomials of
k. �



11. The characteristic polynomial

The characteristic polynomial is the basic invariant of an endomorphism of
a f.g. free module over a commutative ring A. The Alexander polynomials of
knots (Chaps. 17, 33) are scaled characteristic polynomials.

The following treatment of determinants and characteristic polynomials
for endomorphisms of f.g. projective A-modules is an adaptation of Goldman
[90] and Almkvist [5], where further details may be found. In Chap. 14 the
endomorphism class will be shown to be determined by the characteristic
polynomial.

In the following definition the ground ring A is not assumed to be com-
mutative.

Definition 11.1 The reverse of a polynomial of degree d

p(z) =

d∑
j=0

ajz
j ∈ A[z]

with leading coefficient a unit ad ∈ A• is the polynomial

p̃(z) = (ad)
−1zdp(z−1)

= (ad)
−1

( d∑
j=0

ad−jz
j

)
∈ A[z]

with constant coefficient p̃(0) = 1 ∈ A. �
The reverse of a monic polynomial

p(z) = a0 + a1z + . . .+ ad−1z
d−1 + zd

is the polynomial

p̃(z) = zdp(z−1) = 1 + ad−1z + . . .+ a0z
d

with the same coefficients but in reverse order.

For the remainder of Chap. 11 the ground ring A will be assumed to be
commutative.
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Definition 11.2 Let M be a d× d matrix with entries in A.
(i) The characteristic polynomial of M is

chz(M) = det(zId −M) ∈ A[z] ,

a monic polynomial of degree d.
(ii) The reverse characteristic polynomial of M is

c̃hz(M) = det(Id − zM) ∈ A[z] ,

a polynomial of degree ≤ d with constant coefficient 1. �
The characteristic polynomials in 11.2 are related by

c̃hz(M) = zdchz−1(M) ∈ A[z] ,

i.e. c̃hz(M) is the reverse of chz(M) in the sense of 11.1.

Definition 11.3 The trace and determinant of an endomorphism f : P−−→P
of a f.g. projective A-module P are

tr(f) = tr(f ⊕ 0 : P ⊕Q−−→P ⊕Q) ,

det(f) = det(f ⊕ 1 : P ⊕Q−−→P ⊕Q) ∈ A

for any f.g. projective A-module Q such that P ⊕Q is a f.g. free A-module.
�

Example 11.4 The trace and determinant of a d× d matrix M in A are (of
course) the trace and determinant of the endomorphism M : Ad−−→Ad. If

chz(M) = det(zId −M) = p(z) =
d∑
j=0

ajz
j ∈ A[z]

then

c̃hz(M) = det(Id − zM) = p̃(z) =
d∑
j=0

ãjz
j ∈ A[z] .

The coefficients ãj ∈ A (0 ≤ j ≤ d) are such that

ãj = ad−j , ã0 = ad = 1 ,

ãd = a0 = (−1)ddet(M) ∈ A ,

ã1 = ad−1 = −tr(M) ∈ A ,

ãj = ad−j = (−1)jtr(Λj(M) : Λj(Ad)−−→Λj(Ad)) ∈ A ,

with Λ∗(Ad) the exterior algebra on Ad. �
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Example 11.5 For any monic polynomial of degree d

p(z) =
d∑
j=0

ajz
j ∈ A[z] (ad = 1)

the quotient A-module A[z]/(p(z)) is a d-dimensional f.g. free A-module, with

chz(A[z]/(p(z)), ζ) = p(z) ,

c̃hz(A[z]/(p(z)), ζ) = p̃(z) =

d∑
j=0

ad−jz
j ∈ A[z] . �

Proposition 11.6 (i) For any endomorphisms f : P−−→P , g : Q−−→Q of
f.g. projective A-modules

det(f ⊕ g : P ⊕Q−−→P ⊕Q) = det(f : P−−→P ) det(g : Q−−→Q) ∈ A ,

and if P = Q

det(fg : P−−→P ) = det(f : P−−→P ) det(g : P−−→P ) ∈ A ,

with
det(1 : P−−→P ) = 1 ∈ A .

(ii) An endomorphism f : P−−→P of a f.g. projective A-module P is an
automorphism if and only if det(f) ∈ A is a unit.
(iii) If A is an integral domain with quotient field F then

det(f : P−−→P ) = det(1⊗ f : F ⊗A P−−→F ⊗A P ) ∈ A ⊆ F ,

with det(f) ̸= 0 if and only if f : P−−→P is injective, if and only if 1 ⊗ f :
F ⊗A P−−→F ⊗A P is an automorphism. �
Remark 11.7 If F is a f.g. free A-module of rank d ≥ 1 then

det(0 : F−−→F ) = 0 , det(z : F [z]−−→F [z]) = zd ,

as usual. But in general for a f.g. projective A-module P

det(0 : P−−→P ) ̸= 0 ∈ A , det(z : P [z]−−→P [z]) ̸= zd .

For example, if P = e(A) for some idempotent e = e2 ∈ A then

det(0 : P−−→P ) = 1− e ∈ A ,

det(z : P [z]−−→P [z]) = 1− e+ ze ∈ A[z] . �
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Definition 11.8 Let f : P−−→P be an endomorphism of a f.g. projective
A-module P .
(i) The characteristic polynomial of (P, f) is

chz(P, f) = det(z − f : P [z]−−→P [z]) ∈ A[z] .

(ii) The reverse characteristic polynomial of (P, f) is

c̃hz(P, f) = det(1− zf : P [z]−−→P [z]) ∈ A[z] . �

For f.g. free P the characteristic polynomials of 11.8 agree with the defi-
nitions in 11.2.

Example 11.9 If P = e(A) for some idempotent e = e2 ∈ A there is an
evident identification

HomA(P, P ) = {f ∈ A | efe = f ∈ A} ,

and for any such f

chz(P, f) = det(z − f : P [z]−−→P [z]) = ze+ 1− e− f ,

c̃hz(P, f) = det(1− zf : P [z]−−→P [z]) = 1− zf ∈ A[z] . �

Proposition 11.10 (i) The characteristic and reverse characteristic polyno-
mials are related by

c̃hz(P, f) = chz(P, 0) chz−1(P, f) ∈ A[z] ,

with chz(P, 0) ∈ A[z] a unit in A[z, z−1].
(ii) Every characteristic polynomial chz(P, f) ∈ A[z] is a factor of a monic
polynomial.
(iii) The reverse characteristic polynomial is of the form

c̃hz(P, f) =
d∑
j=0

(−1)jtr(Λjf : ΛjP−−→ΛjP )zj ∈ A[z]

with ΛjP the jth exterior product of P .
(iv) If A is an integral domain with quotient field F then

chz(P, f) = chz(F ⊗A (P, f)) ,

c̃hz(P, f) = c̃hz(F ⊗A (P, f)) ∈ A[z] ⊆ F [z] .

In particular, chz(P, f) is a monic polynomial of degree dimF (F ⊗A P ).
Proof (i) Let P = im(p = p2 : Ak−−→Ak), so that

chz(P, 0) = det(z : P [z]−−→P [z])

= det(1− p+ pz : A[z]k−−→A[z]k) ∈ A[z] ∩A[z, z−1]•
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with inverse

chz(P, 0)
−1 = det(z−1 : P [z−1]−−→P [z−1])

= det(1− p+ pz−1 : A[z−1]k−−→A[z−1]k)

∈ A[z−1] ∩A[z, z−1]• .

By the result of Goldman [87, 2.3]

chz(P, 0) =

n∑
i=0

eiz
i ∈ A[z]

for a complete set of orthogonal idempotents e0, e1, . . . , en ∈ A with

eiej = 0 (i ̸= j) , (ei)
2 = ei ,

n∑
i=0

ei = 1 ∈ A

ann (ΛiP ) = (e0 + e1 + . . .+ ei−1)(A) ,

det(z : P [z]−−→P [z])−1 =
n∑
i=0

eiz
−i ∈ A[z, z−1] .

The identity c̃hz(P, f) = chz(P, 0) chz−1(P, f) is obtained by applying the
multiplicative property of the determinant to the identity

1− zf = z(z−1 − f) : P [z, z−1] −−→ P [z, z−1] .

(ii) Given (P, f) let Q be a f.g. projective A-module such that P ⊕Q is f.g.
free, and note that

chz(P, f)chz(Q, 0) = chz(P ⊕Q, f ⊕ 0) ∈ A[z]

is a monic polynomial – this is a special case of 10.7 (ii). (Grayson [95, p. 440]
has a different proof : “the characteristic polynomial is monic locally on
spec(A), and thus divides a monic polynomial.”)
(iii) See Almkvist [5, 2.3].
(iv) Immediate from 11.6 (iii). �
Example 11.11 (i) If P is f.g. free of rank d then

chz(P, 0) = zd , chz(P, f) = zdc̃hz−1(P, f) ∈ A[z] ,

so p(z) = chz(P, f) and p̃(z) = c̃hz(P, f) are related as in 11.1.
(ii) If P = e(A) for some idempotent e = e2 ∈ A then

chz(P, 0) = det(z : P [z]−−→P [z]) = 1− e+ ze ,

c̃hz(P, 0) = det(1 : P [z]−−→P [z]) = 1 ∈ A[z] . �
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The Cayley-Hamilton theorem extends to endomorphisms of f.g. projec-
tive A-modules :

Proposition 11.12 (Goldman [87, 2.1], Almkvist [5, 1.6])
If the characteristic polynomial and the reverse characteristic polynomial of
(P, f) are given by

chz(P, f) = p(z) , c̃hz(P, f) = q(z) ∈ A[z]

then
p(f) = q(f) = 0 : P −−→ P . �

Definition 11.13 Let W (A) be the abelian group of rational Witt vectors,
the subgroup W (A) ⊂ A[[z]]• consisting of the formal power series of the
type

∞∑
j=0

ajz
j =

p(z)

q(z)
∈ 1 + zA[[z]] ⊂ A[[z]]•

with p(z), q(z) ∈ A[z] such that a0 = p(0) = q(0) = 1 ∈ A. �
Proposition 11.14 (Almkvist [6])
The reverse characteristic polynomial defines an isomorphism

Ẽnd0(A)
≃−−→ W (A) ; (P, f) −−→ c̃hz(P, f)

with inverse

W (A)
≃−−→ Ẽnd0(A) ; p(z) −−→ [A[z]/(p(z))] .

Proof See 14.12 below (which also works in the noncommutative case). �
Example 11.15 (Almkvist [5, 1.10])
For any endomorphism f : P−−→P of a f.g. projective A-module P the loga-
rithmic derivative of c̃hz(P, f) is such that

−z c̃hz(P, f)−1c̃h
,

z(P, f) =
∞∑
n=1

tr(fn : P−−→P )zn ∈ A[[z]] .

If Q ⊆ A the reverse characteristic polynomial is given by the exponential
trace formula

c̃hz(P, f) = exp

(
−

∞∑
n=1

tr(fn)

n
zn
)

∈ 1 + zA[[z]] ⊂W (A) .

�
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Proposition 11.16 The following conditions on a polynomial

p(z) =
d∑
j=0

ajz
j ∈ A[z]

are equivalent :

(i) p(z) ∈ A((z−1))•,
(ii) p(z) ∈ A[z] is a non-zero divisor and A[z]/(p(z)) is a f.g. projective

A-module,
(iii) p(z) is a factor of a monic polynomial in A[z].

Proof (i) ⇐⇒ (ii) By 8.2 applied to E+ = C(p(z) : A[z]−−→A[z]).
(ii) =⇒ (iii) Define the multiplicative subset

S = (p(z))∞ = {p(z)k | k ≥ 0} ⊂ A[z] .

The (A[z], S)-module P = A[z]/(p(z)) has a f.g. free A[z]-module resolution

0 −−→ A[z]
p(z)
−−→ A[z] −−→ P −−→ 0

and also the f.g. projective A[z]-module resolution

0 −−→ P [z]
z−ζ
−−→ P [z] −−→ P −−→ 0 ,

which are related by a chain equivalence. The characteristic polynomial of
the endomorphism ζ ∈ HomA(P, P ) is thus of the form

chz(P, ζ) = p(z)t(z) ∈ A[z]

for some unit t(z) ∈ A[z]•. (If ad = 1 ∈ A then P is f.g. free of rank d and
(P, ζ) has characteristic polynomial chz(P, ζ) = p(z) – see 12.18 below). Now
chz(P, ζ) is a factor of a monic polynomial by 11.10 (ii), and hence so is p(z).
(iii) =⇒ (ii) Every monic polynomial in A[z] is a unit in A((z−1)). �

Similarly :

Proposition 11.17 The following conditions on a Laurent polynomial

p(z) =
n∑

j=m

ajz
j ∈ A[z, z−1]

are equivalent :

(i) p(z) ∈ A((z))• ∩A((z−1))•,
(ii) p(z) ∈ A[z, z−1] is a non-zero divisor and A[z, z−1]/(p(z)) is a f.g.

projective A-module,
(iii) p(z) is a factor of a polynomial in A[z, z−1] with extreme coefficients

units.
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Proof (i) ⇐⇒ (ii) By 8.3 applied to E = C(p(z) : A[z, z−1]−−→A[z, z−1]).
(ii) =⇒ (iii) Define the multiplicative subset

S = (p(z))∞ = {p(z)k | k ≥ 0} ⊂ A[z, z−1] .

The (A[z, z−1], S)-module P = A[z, z−1]/(p(z)) has a f.g. free A[z, z−1]-
module resolution

0 −−→ A[z, z−1]
p(z)
−−→ A[z, z−1] −−→ P −−→ 0

and also the f.g. projective A[z, z−1]-module resolution

0 −−→ P [z, z−1]
z−ζ
−−→ P [z, z−1] −−→ P −−→ 0 ,

which are related by a chain equivalence. The characteristic polynomial of
the automorphism ζ ∈ HomA(P, P ) is thus of the form

chz(P, ζ) = p(z)t(z) ∈ A[z, z−1]

for some unit t(z) ∈ A[z, z−1]•, with

ch0(P, ζ) = det(−ζ : P−−→P ) ∈ A• .

(If am ∈ A•, an = 1 ∈ A then P is f.g. free of rank n − m and (P, ζ) has
characteristic polynomial chz(P, ζ) = z−mp(z)). Now chz(P, ζ) is a factor of
a monic polynomial by 11.10 (ii), and hence so is p(z).
(iii) =⇒ (ii) Every monic polynomial in A[z, z−1] with constant coefficient a
unit in A is a unit in both A((z)) and A((z−1)). �



12. Primary K-theory

In the applications of endomorphism K- (and L-) theory to the computation
of the high-dimensional knot cobordism groups it is necessary to restrict at-
tention to endomorphisms f : P−−→P of f.g. projective A-modules such that
p(f) = 0 for a particular type of polynomial p(z) ∈ A[z], e.g. an (Alexander)
polynomial p(z) ∈ A[z] with p(1) ∈ A•.

This chapter studies the endomorphism class groups EndS0 (A), Ẽnd
S

0 (A) of
pairs (P, f) with p(f) = 0 for some p(z) ∈ S, with S ⊂ A[z] a multiplicative
subset. The splitting theorems of Chap. 10 will now be specialized to the
splitting theorems of Grayson [95]

K1(S
−1A[z]) = K1(A[z])⊕ EndS0 (A) ,

K1(S̃
−1A[z]) = K1(A)⊕ Ẽnd

S

0 (A)

for appropriate S, S̃ ⊂ A[z].

Definition 12.1 Let S ⊂ A[z] be a multiplicative subset.
(i) An object (P, f) in End(A) is S-primary if

z − f : S−1P [z] −−→ S−1P [z]

is an S−1A[z]-module automorphism.
(ii) The S-primary endomorphism category EndS(A) is the full subcategory
of End(A) with S-primary objects (P, f). The S-primary endomorphism K-
groups of A are defined by

EndS∗ (A) = K∗(End
S(A)) .

(iii) If z ∈ S use the embedding

P(A) −−→ End(A) ; P −−→ (P, 0)

to define the reduced S-primary endomorphism K-groups of A by

Ẽnd
S

∗ (A) = coker(K∗(A)−−→K∗(End
S(A))) ,

such that
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EndS∗ (A) = K∗(A)⊕ Ẽnd
S

∗ (A) . �
Example 12.2 Suppose that A is commutative, and that S ⊂ A[z] is a mul-
tiplicative subset. An object (P, f) ∈ End(A) with characteristic polynomial

chz(P, f) = det(z − f : P [z]−−→P [z]) ∈ S ⊂ A[z]

is S-primary. (See 12.6 below for a generalization). �
Example 12.3 Let A,S be as in 12.1. The A[z]-module given for any p(z) ∈ S
by

P = A[z]/(p(z))

determines an object (P, ζ) in EndS(A) if and only if p(z) ∈ A((z−1))•.

(i) If p(z) =
d∑
j=0

ajz
j ∈ S has leading coefficient ad ∈ A• then p(z) ∈

A((z−1))• and P is a f.g. free A-module of rank d. The A-module isomorphism

f : Ad
≃−−→ P ; (b1, b2, . . . , bd) −−→ b1 + b2z + . . .+ bdz

d−1

is such that

f−1ζf =



0 0 0 . . . −a0a−1
d

1 0 0 . . . −a1a−1
d

0 1 0 . . . −a2a−1
d

...
...

...
. . .

...

0 0 0 . . . −ad−1a
−1
d

 : Ad = A⊕A⊕ . . . ⊕A −−→ Ad .

(This is the companion matrix of linear algebra). If A is commutative then

chz(P, ζ) = chz(A
d, f−1ζf)

= (ad)
−1

( d∑
j=0

ajz
j

)
= (ad)

−1p(z) ∈ S ⊂ A[z] .

(ii) If p(z) = 1− e+ ez ∈ S for an idempotent e = e2 ∈ A then

(P, ζ) = (e(A), 0)

is an object in EndS(A). �
Proposition 12.4 Let S ⊂ A[z] be a multiplicative subset. The following
conditions on an object (P, f) in End(A) are equivalent :

(i) (P, f) is S-primary,
(ii) S−1(P, f) = 0,
(iii) p(f) = 0 : P−−→P for some p(z) ∈ S.

Proof (i) ⇐⇒ (ii) The exact sequence
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0 −−→ P [z]
z−f
−−→ P [z] −−→ (P, f) −−→ 0

defines a f.g. projective A[z]-module resolution of the A[z]-module (P, f) (=
A-module P with z = f : P−−→P ). Localization is exact, so there is induced
an exact sequence of S−1A[z]-modules

0 −−→ S−1P [z]
z−f
−−→ S−1P [z] −−→ S−1(P, f) −−→ 0

and z − f is an isomorphism if and only if S−1(P, f) = 0.
(i) =⇒ (iii) If (P, f) is S-primary then the inverse of z − f is of the form

(z − f)−1 = g(z)/p(z) : S−1P [z] −−→ S−1P [z]

for some

p(z) ∈ S , g(z) ∈ HomA[z](P [z], P [z]) = HomA(P, P )[z] ,

so that
(z − f)g(z) = p(z) : P [z] −−→ P [z]

and p(f) = 0 : P−−→P .
(iii) =⇒ (i) Let p(f) = 0 : P−−→P for some

p(z) =

d∑
j=0

ajz
j ∈ S .

The A[z]-module morphism

g(z) = (p(z)− p(f))/(z − f)

=
d∑
j=1

j−1∑
k=0

ajf
j−1−kzk : P [z] −−→ P [z]

is such that

(z − f)−1 = g(z)/p(z) : S−1P [z] −−→ S−1P [z] . �

Terminology 12.5 A polynomial p(z) ∈ A[z] with central coefficients gen-
erates a principal ideal

P = (p(z)) ▹ A[z]

and a multiplicative subset

(p(z))∞ = {up(z)k |u ∈ Z(A•), k ≥ 0} ⊂ A[z] ,

where Z(A•) ⊂ A is the subset of central units. Abbreviate (p(z))∞-primary
to P-primary, in line with the usual terminology. �
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Example 12.6 Suppose that A is commutative, and that S ⊂ A[z] is a
multiplicative subset. The following conditions on an object (P, f) ∈ End(A)
are equivalent :

(i) (P, f) is S-primary,
(ii) chz(P, f) ∈ A[z] is a unit in S−1A[z],
(iii) chz(P, f) divides an element p(z) ∈ S.

These conditions are satisfied if chz(P, f) ∈ S (12.2). In particular, if S =
(p(z))∞ (as in 12.4) for a monic polynomial p(z) ∈ A[z] the conditions are
satisfied if chz(P, f) = p(z)k for some k ≥ 1. �

Recall from 4.13 that multiplicative subsets S, T ⊂ A[z] are coprime if for
all p(z) ∈ S, q(z) ∈ T there exist a(z), b(z) ∈ A[z] such that

a(z)p(z) + b(z)q(z) = 1 ∈ A[z] .

Proposition 12.7 If S, T ⊂ A[z] are coprime central multiplicative subsets
the multiplicative subset

ST = {p(z)q(z) | p(z) ∈ S, q(z) ∈ T} ⊂ A[z]

is such that
EndST (A) = EndS(A)× EndT (A) ,

EndST∗ (A) = EndS∗ (A)⊕ EndT∗ (A) .

Proof By 12.4, for any object (P, f) in EndST (A) there exist p(z) ∈ S, q(z) ∈
T such that

p(f)q(f) = 0 : P −−→ P .

If a(z), b(z) ∈ A[z] are such that a(z)p(z) + b(z)q(z) = 1 then the endomor-
phisms a(f)p(f), b(f)q(f) : P−−→P are idempotents such that

a(f)p(f) + b(f)q(f) = 1 : P −−→ P .

The A-modules

PS = S−1P = a(f)p(f)(P ) , PT = T−1P = b(f)q(f)(P )

are such that
(P, f) = (PS , fS)⊕ (PT , fT )

with (PS , fS) S-primary and (PT , fT ) T -primary. �
Remark 12.8 If F is a field then F [z] is a unique factorization domain, and
every monic polynomial p(z) ∈ F [z] has a unique factorization as a product
of powers of irreducible monic polynomials p(z), so that

End∗(F ) =
⊕

p(z)∈max(F [z])

Endp(z)
∞

∗ (F )
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according to the factorization of the characteristic polynomial. See Chap. 18
for a more detailed account of End0(F ). �
Definition 12.9 Let S ⊂ A[z] be a multiplicative subset.

(i) S has leading units if for each
d∑
j=0

ajz
j ∈ S the leading coefficient is a unit,

i.e. if ad ∈ A•.

(ii) S has constant units if for each
d∑
j=0

ajz
j ∈ S the constant coefficient is a

unit, i.e. if a0 ∈ A•. �
Remark 12.10 (i) If S ⊂ A[z] has leading units then S ⊆ A[z] ∩A((z−1))•.
If A is an integral domain then S ⊂ A[z] has leading units if and only if
S ⊆ A[z] ∩A((z−1))•.
(ii) If S ⊂ A[z] has constant units then S ⊆ A[z]∩A[[z]]•. If A is an integral
domain then S ⊂ A[z] has constant units if and only if S ⊆ A[z]∩A[[z]]•. �

A chain complex (C, f) in End(A) is a f.g. projective A-module chain
complex C together with a chain map f : C−−→C.

Definition 12.11 Let S ⊂ A[z] be a multiplicative subset. A finite chain
complex (C, f) in End(A) is S-primary if

z − f : S−1C[z] −−→ S−1C[z]

is an S−1A[z]-module chain equivalence. The chain map f : C−−→C is said
to be S-primary. �

By analogy with 12.4 :

Proposition 12.12 The following conditions on a finite chain complex (C, f)
in End(A) are equivalent :

(i) (C, f) is S-primary,
(ii) S−1(H∗(C), f∗) = 0,
(iii) p(f) ≃ 0 : C−−→C for some p(z) ∈ S.

�
By analogy with 10.10 :

Proposition 12.13 Let S ⊂ A[z] be a multiplicative subset such that

S ⊆ A[z] ∩A((z−1))• .

(i) The inclusion A[z]−−→S−1A[z] has the universal property that a finite f.g.
free A[z]-module chain complex E+ is such that H∗(S

−1E+) = 0 if and only
if E+ is A-finitely dominated and ζ : E+−−→E+ is S-primary.
(ii) The functor

H (A[z], S) −−→ EndS(A) ; M −−→ (M, ζ)
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is an isomorphism of categories. The relative K-groups

K∗(A[z], S) = K∗−1(H (A[z], S))

in the localization exact sequence

. . . −−→ Kn(A[z]) −−→ Kn(S
−1A[z]) −−→ Kn(A[z], S)

−−→ Kn−1(A[z]) −−→ . . .

can be expressed as
K∗(A[z], S) = EndS∗−1(A) .

The exact sequence breaks up into split exact sequences

0 −−→ Kn(A[z]) −−→ Kn(S
−1A[z]) −−→ Kn(A[z], S) −−→ 0 .

(iii) The torsion group of S−1A[z] fits into the direct sum system

K1(A[z])
i+

−−−−−→←−−−−−
j+

K1(S
−1A[z])

∂+
−−−−−→←−−−−−

∆+

EndS0 (A)

with

i+ : K1(A[z]) −−→ K1(S
−1A[z]) ; τ(E+) −−→ τ(S−1E+) ,

j+ : K1(S
−1A[z]) −−→ K1(A[z]) ;

τ(S−1E+) −−→ τ(r+ : C(z − ζ : E+[z]−−→E+[z])−−→E+) ,

∂+ : K1(S
−1A[z]) −−→ EndS0 (A) ; τ(S

−1E+) −−→ [E+, ζ] ,

∆+ : EndS0 (A) −−→ K1(S
−1A[z]) ;

[P, f ] −−→ τ(z − f : S−1P [z]−−→S−1P [z]) . �

Example 12.14 If A is commutative then by 11.16 S = A[z] ∩A((z−1))• is
the multiplicative subset of all the polynomials in A[z] which divide monic
polynomials, with

S−1A[z] = Ω−1
+ A[z] , EndS(A) = End(A)

and 12.13 (iii) is just the splitting of 10.14. Moreover, S−1A[z] is the local-
ization of A[z] inverting all the monic polynomials. �

As in 11.1, given a polynomial p(z) =
d∑
j=0

ajz
j ∈ A[z] with leading unit

ad ∈ A• define the reverse polynomial

p̃(z) = (ad)
−1zdp(z−1) = (ad)

−1

( d∑
j=0

ad−jz
j

)
∈ A[z]
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with constant unit p̃(0) = 1. If q(z) =
e∑

k=0

bkz
k ∈ A[z] has leading unit be ∈ A

then
p̃q(z) = p̃(z)q̃(z) ∈ A[z] .

Definition 12.15 Given a multiplicative subset S ⊂ A[z] with leading units

let S̃ ⊂ A[z] be the reverse multiplicative subset with constant units consist-
ing of the reverse elements p̃(z) of p(z) ∈ S. �
Proposition 12.16 Let S ⊂ A[z] be a multiplicative subset with leading
units and z ∈ S. An object (P, f) in End(A) is S-primary if and only if

1− zf : S̃−1P [z]−−→S̃−1P [z] is an S̃−1A[z]-module automorphism.
Proof If (P, f) is S-primary there exist an A-module morphism

g(z) =
d∑
j=0

gjz
j : P [z] −−→ P [z] (gj ∈ HomA(P, P ))

with gd : P−−→P an automorphism and p(z) ∈ S such that

(z − f)g(z) = p(z) : P [z] −−→ P [z] .

The A[z]-module morphism defined by

g̃(z) =

d∑
j=0

(gd)
−1gd−jz

j : P [z] −−→ P [z]

is such that
(1− zf)g̃(z) = p̃(z) : P [z] −−→ P [z] ,

so that 1− zf : P [z]−−→P [z] is an S̃−1A[z]-module isomorphism.

Conversely, suppose 1 − zf : P [z]−−→P [z] is an S̃−1A[z]-equivalence, so
that there exist an A[z]-module morphism

g̃(z) =
d∑
j=0

g̃jz
j : P [z] −−→ P [z] (g̃j ∈ HomA(P, P ))

with g̃0 = 1 : P−−→P and

p(z) =
n∑

j=m

ajz
j ∈ S

such that
(1− zf)g̃(z) = p̃(z) : P [z] −−→ P [z] ,

with

p̃(z) = (an)
−1(

n∑
j=m

am+n−jz
j) ∈ S̃ .
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The A[z]-module morphism defined by

g(z) =

d∑
j=0

g̃d−jz
j : P [z] −−→ P [z]

is such that

(z − f)g(z) = (an)
−1(

n∑
j=m

ajz
j−m)

= z−m(an)
−1p(z) : P [z] −−→ P [z] ,

so that z − f : P [z]−−→P [z] is an S−1A[z]-module automorphism. �

Example 12.17 If S = (z)∞ then S̃ = {1}, and 12.16 identifies the (z)-

primary (= nilpotent) category End(z)
∞
(A) = Nil(A) with the subcategory

of End(A) consisting of the objects (P, f) such that 1− zf : P [z]−−→P [z] is
an automorphism. �
Example 12.18 If A is commutative and S ⊂ A[z] is a multiplicative subset
with leading units and z ∈ S then 12.16 shows that an object (P, f) in End(A)

is S-primary if and only if the reverse characteristic polynomial c̃hz(P, f) ∈
A[z] is a unit in S̃−1A[z]. In particular, this is the case if chz(P, f) divides

an element of S, or if c̃hz(P, f) ∈ S̃. �
Proposition 12.19 Let S ⊂ A[z] be a multiplicative subset with leading

units and z ∈ S, with reverse multiplicative subset S̃ ⊂ A[z]. A chain com-

plex (C, f) in End(A) is S-primary if and only if the S̃−1A[z]-module chain

map 1− zf : S̃−1C[z]−−→S̃−1C[z] is a chain equivalence.
Proof The chain homotopy class of an S-primary chain equivalence f :
C−−→C is an object (H0(HomA(C,C)), f) in EndS(H0(HomA(C,C))). Now
apply 12.4 and 12.15. �

An S-primary chain equivalence f : C−−→C of a finitely dominated A-
module chain complex C has an S-primary class invariant

[C, f ] ∈ EndS0 (A) .

By analogy with 10.16 :

Proposition 12.20 If S ⊂ A[z] is a multiplicative subset with leading units

and z ∈ S the torsion group of S̃−1A[z] fits into the direct sum system

K1(A)
ĩ+

−−−−−→←−−−−−
j̃+

K1(S̃
−1A[z])

∂̃+
−−−−−→←−−−−−

∆̃+

Ẽnd
S

0 (A)

with
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ĩ+ : K1(A) −−→ K1(S̃
−1A[z]) ; τ(E) −−→ τ(S̃−1E[z]) ,

j̃+ : K1(S̃
−1A[z]) −−→ K1(A) ; τ(S̃

−1E+) −−→ τ(A⊗A[z] E
+) ,

∂̃+ : K1(S̃
−1A[z]) −−→ Ẽnd

S

0 (A) ;

τ(S̃−1C(f0 + zf1 : P [z]−−→P [z])) −−→ [P,−f−1
0 f1] ,

∆̃+ : Ẽnd
S

0 (A) −−→ K1(S̃
−1A[z]) ;

[P, f ] −−→ τ(1− zf : S̃−1P [z]−−→S̃−1P [z]) .

Proof Let S− ⊂ A[z−1] be the image of S ⊂ A[z] under the isomorphism

A[z]
≃−−→ A[z−1] ; z −−→ z−1 .

This is the product
S− = ZS̃

of the coprime multiplicative subsets Z = {zk}, S̃ ⊂ A[z], so that there is
defined a cartesian square of rings

A[z] //

��

S̃−1A[z]

��
A[z, z−1] // S−1

− A[z−1]

with excision isomorphisms

K∗(A[z], Z) ∼= K∗(S̃
−1A[z], S−) .

Combining the special case ∗ = 1 with

K1(A[z], Z) = K0(A)⊕ Ñil0(A) ,

K1(S
−1
− A[z−1]) = K1(S

−1A[z])

= K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ẽnd
S

0 (A)

gives

K1(S̃
−1A[z]) = K1(A)⊕ Ẽnd

S

0 (A) . �
Example 12.21 If A is commutative and S ⊂ A[z] is the multiplicative
subset of all the monic polynomials then every object (P, f) in End(A) is
S-primary, since chz(P, f) ∈ A[z] divides a monic polynomial (11.10) and so
is a unit in S−1A[z]. The reverse multiplicative subset is

S̃ = 1 + zA[z] ⊂ A[z] ,

and



114 12. Primary K-theory

EndS(A) = End(A) , EndS∗ (A) = End∗(A) , Ẽnd
S

∗ (A) = Ẽnd∗(A) .

The splitting theorem of 12.20 coincides in this case with the splitting theorem
of 10.16, identifying

Ω−1
+ A[z] = S−1A[z] , Ω̃−1

+ A[z] = S̃−1A[z] ,

so that
K∗(S

−1A[z]) = K∗(A[z])⊕ End∗−1(A) ,

K∗(S̃
−1A[z]) = End∗(A) . �

Example 12.22 The multiplicative subset with leading units

Z = {zj | j ≥ 0} ⊂ A[z]

is such that

Z̃ = {1} , Z−1A[z] = A[z, z−1] , Z̃−1A[z] = A[z] .

An object (P, f) in End(A) is Z-primary if and only if f is nilpotent, that is

fN = 0 : P −−→ P

for some N ≥ 0. Thus

EndZ(A) = Nil(A) , EndZ∗ (A) = Nil∗(A)

and 12.13, 12.20 give the direct sum decompositions of Chap. 5

K1(A[z, z
−1]) = K1(A[z])⊕Nil0(A) ,

K1(A[z]) = K1(A)⊕ Ñil0(A) . �

Example 12.23 The multiplicative subset with leading units

S = z∞(1− z)∞ = {zj(1− z)k | j, k ≥ 0} ⊂ A[z]

is such that

S̃ = {(1− z)k | k ≥ 0} , S−1A[z] = A[z, z−1, (1− z)−1] ,

S̃−1A[z] = A[z, (1− z)−1] ∼= A[z, z−1] .

An object (P, f) in End(A) is S-primary if and only if f is a near-projection
(5.7), that is

(f − f2)N = 0 : P −−→ P

for some N ≥ 0. For any such N the endomorphism

fω = (fN + (1− f)N )−1fN = f 2
ω : P −−→ P
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is the unique projection commuting with f such that f − fω : P−−→P is
nilpotent. Use fω and the nilpotent endomorphisms

ν0 = f | : P0 = (1− fω)(P ) −−→ P0 ,

ν1 = (1− f)| : P1 = fω(P ) −−→ P1

to define isomorphisms

EndS0 (A)
≃−−→ K0(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A) ;

[P, f ] −−→ ([P0], [P1], [P0, ν0], [P1, ν1]) ,

Ẽnd
S

0 (A)
≃−−→ K0(A)⊕Nil0(A)⊕Nil0(A) ;

[P, f ] −−→ ([P0]− [P1], [P0, ν0], [P1, ν1]) .

Use 12.13 and 12.20 to identify

K1(S
−1A[z]) =

K1(A)⊕K0(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A)⊕ Ñil0(A) ,

K1(S̃
−1A[z]) = K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A) . �

Example 12.24 Given a monic central polynomial of degree n

p(z) =
d∑
j=0

ajz
j ∈ A[z] (ad = 1)

define the multiplicative subset

S = (p(z))∞ = {p(z)k | k ≥ 0} ⊂ A[z]

with leading units. Identify the (A[z], S)-module A[z]/(p(z)) with the object
of EndS(A) defined by

(P, f) = (A[z]/(p(z)), ζ) ,

with P a f.g. free A-module of rank n and f : P−−→P an S-primary endo-
morphism such that

p(f) = 0 : P −−→ P ,

∂+τ(p(z) : S
−1A[z]−−→S−1A[z]) = (P, f) ∈ EndS0 (A) ,

As in 12.3 the A-module isomorphism

g : Ad
≃−−→ P ; (b1, b2, . . . , bd) −−→ b1 + b2z + . . .+ bdz

d−1

is such that
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g−1fg =



0 0 0 . . . −a0
1 0 0 . . . −a1
0 1 0 . . . −a2
...

...
...

. . .
...

0 0 0 . . . −ad−1

 : Ad = A⊕A⊕ . . . ⊕A −−→ Ad .

If A is commutative the characteristic polynomials are given by

chz(P, f) = p(z) ∈ S ⊂ A[z] ,

c̃hz(P, f) = p̃(z) ∈ S̃ ⊂ A[z] .

If A = F is a field and p(z) ∈ F [z] is irreducible then

∂+τ(p(z)) = [F [z]/(p(z)), ζ] = 1 ∈ EndS0 (F ) = Z

is a generator. �
Remark 12.25 Let A be a commutative ring, and let S ⊂ A[z] be a multi-
plicative subset with leading units.
(i) The composite

EndS0 (A)
∆+

−−→ K1(S
−1A[z])

det
−−→ (S−1A[z])•

sends an S-primary endomorphism class (P, f) to the characteristic polyno-
mial

det∆+[P, f ] = det(z − f : P [z]−−→P [z])

= chz(P, f) ∈ (S−1A[z])• .

(ii) If z ∈ S the composite

Ẽnd
S

0 (A)
∆̃+

−−→ K1(S̃
−1A[z])

det
−−→ (S̃−1A[z])•

sends a reverse S-primary endomorphism class (P, f) to the reverse charac-
teristic polynomial

det ∆̃+[P, f ] = det(1− zf : P [z]−−→P [z])

= c̃hz(P, f) ∈ (S̃−1A[z])• . �

Example 12.26 Let A = F be a field, and as in 12.21 let S ⊂ F [z] be the

subset of all the monic polynomials, so that S̃ ⊂ F [z] is the subset of all the
polynomials with constant coefficient 1. Thus

S−1F [z] = (F [z]\{0})−1F [z] = F (z)

is the quotient field of F [z] (cf. 8.5), and

S̃−1F [z] = F [z](z) = {p(z)/q(z) | q(0) ∈ F •} ⊂ F (z) .
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The multiplicative subsets S̃, {zk | k ≥ 0} ⊂ F [z] are coprime, so that there
is defined a cartesian square

F [z] //

��

F [z, z−1]

��
F [z](z) // F (z)

For each of the rings A in the square the determinant defines an isomorphism

det : K1(A)
≃−−→ A• ,

and
Ñil0(F ) = 0 , K1(F [z]) = K1(F ) = F [z]• = F • ,

K0(F ) = Z , End0(F ) = Z⊕ Ẽnd0(F ) ,

K1(F [z](z)) = K1(F [z])⊕ Ẽnd0(F ) = F [z]•(z) ,

K1(F (z)) = K1(F [z])⊕ End0(F ) = F (z)• .

The characteristic polynomial defines an isomorphism

End0(F )
≃−−→ F (z)•/F • ; [P, f ] −−→ chz(P, f) .

The reverse characteristic polynomial defines an isomorphism

Ẽnd0(F )
≃−−→ F [z]•(z)/F [z]

• = F (z)•/(F • ⊕ {zn |n ∈ Z}) ;

[P, f ] −−→ c̃hz(P, f) .

By 12.13 there are defined isomorphisms

(i+ ∆+) : K1(F )⊕ End0(F )
≃−−→ K1(F (z)) ;

(τ(a), [P, f ]) −−→ τ(a) + τ(z − f : P (z)−−→P (z)) ,

(̃i+ ∆̃+) : K1(F )⊕ Ẽnd0(F )
≃−−→ K1(F [z](z)) ;

(τ(a), [P, f ]) −−→ τ(a) + τ(1− zf : P [z](z)−−→P [z](z)) .

The inclusion F [z](z)−−→F (z) induces the injection

K1(F [z](z)) = K1(F )⊕ Ẽnd0(F ) −−→ K1(F (z)) = K1(F )⊕ End0(F ) ;

(τ(a), [P, f ]) −−→ (τ(a)− τ(g), [Q, g]) ,

with
(Q, g) = (coker(1− zf : P [z]−−→P [z]), z)

= (coker(1− zf : P [z, z−1]−−→P [z, z−1]), z)
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such that g : Q−−→Q is an automorphism. See 13.29 below for a proof that

chz(P, f) = adz
dc̃hz(Q, g) ∈ F [z]

with

d = dimF (P )− dimF (Q) , ad = det(−g : Q−−→Q) ∈ F • . �



13. Automorphism K-theory

Automorphism K-theory is the algebraic K-theory of modules with an auto-
morphism, such as arise from fibred knots. An A-moduleM with an automor-
phism h : M−−→M is essentially the same as a module M over the Laurent
polynomial ring A[z, z−1], with the invertible indeterminate z acting on M
by h. This correspondence will be used to express the various automorphism
K-groups of A in terms of the algebraic K-groups K∗(Σ

−1A[z, z−1]) of the
localizations Σ−1A[z, z−1] inverting appropriate sets Σ of square matrices in
A[z, z−1].

The automorphism class group Aut0(A) of a ring A is defined by anal-
ogy with the endomorphism class group End0(A), using automorphisms
h : P−−→P of f.g. projective A-modules. By definition, an automorphism
h : P−−→P is fibred if h − 1 : P−−→P is also an automorphism, and there
is also a fibred automorphism class group Autfib0 (A). The algebraic descrip-
tion in Part Two of the high-dimensional fibred knot cobordism groups and
the bordism groups of automorphisms of manifolds will involve the algebraic
L-theory analogues of the automorphism class groups (for A = Z, Z[π1] re-
spectively).

The algebraic K-theory splitting theorems of Chaps. 10, 11, 12 are now
extended to

K1(Ω
−1A[z, z−1]) = K1(A[z, z

−1])⊕Aut0(A) ,

K1(Ω
−1
fibA[z, z

−1]) = K1(A[z, z
−1])⊕Autfib0 (A)

for the appropriate localizations of A[z, z−1].
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13A. The Fredholm localization Ω−1A[z, z−1]

By analogy with the 10.3 :

Proposition 13.1 (Ranicki [248])
The following conditions on a k × k matrix ω = (ωij) in A[z, z

−1] are equiv-
alent :

(i) the A[z, z−1]-module morphism

ω : A[z, z−1]k −−→ A[z, z−1]k ;

(x1, x2, . . . , xk) −−→ (
k∑
i=1

xiω1i,
k∑
i=1

xiω2i, . . . ,
k∑
i=1

xiωki)

is injective and the cokernel is a f.g. projective A-module,
(ii) the 1-dimensional f.g. free A[z, z−1]-module chain complex

E : . . . −−→ 0 −−→ A[z, z−1]k
ω
−−→ A[z, z−1]k

is A-finitely dominated,
(iii) ω is invertible in A((z))×A((z−1)). �

Remark 13.2 13.1 can be used to prove that a based f.g. free A[z, z−1]-
module chain complex C is A-finitely dominated (i.e. a chain complex band)
if and only if C is chain equivalent to the algebraic mapping torus

T−(h) = C(1− z−1h : P [z, z−1]−−→P [z, z−1])

of an automorphism h : P−−→P of a finite f.g. projective A-module chain
complex P . See Ranicki [248, 1.9]. �

By analogy with the definition in 10.4 of Fredholm matrices in A[z] :

Definition 13.3 (i) A matrix ω in A[z, z−1] is Fredholm if it is square and
satisfies the equivalent conditions of 13.1.
(ii) Let Ω be the set of Fredholm matrices ω in A[z, z−1].
(iii) The Fredholm localization of A[z, z−1] is the ring Ω−1A[z, z−1] obtained
from A[z, z−1] by inverting Ω. �

A matrix ω with entries in A[z, z−1] can be expressed as

ω =
n∑

j=m

ωjz
j

with each ωj a matrix with entries in A (of the same size as ω), for some
m ≤ n.

Definition 13.4 (i) A matrix ω =
n∑

j=m

ωjz
j with entries in A[z, z−1] is

bionic if ω is square, ωn is the identity matrix and ωm is invertible in A, with
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n−m > 1.
(ii) Let Ωbio be the set of bionic matrices ω in A[z, z−1]. �

By analogy with 10.7 :

Proposition 13.5 (i) The natural map A[z, z−1]−−→Ω−1A[z, z−1] is injec-
tive.
(ii) Every bionic matrix in A[z, z−1] is Fredholm, so that Ωbio ⊂ Ω.
(iii) The localizations of A[z, z−1] inverting Ωbio and Ω coincide

Ω−1
bioA[z, z

−1] = Ω−1A[z, z−1] .

Proof (i) Immediate from the factorization

A[z, z−1] −−→ Ω−1A[z, z−1] −−→ A((z))

of the injection A[z, z−1]−−→A((z)).
(ii) If ω =

n∑
j=m

ωjz
j is a bionic k×k matrix define an A-module isomorphism

Ak(n−m) ≃−−→ coker(ω) ;

(ai)0≤i≤k(n−m)−1 −−→
n−m−1∑
j=0

(ajk, ajk+1, . . . , ajk+k−1)z
j .

Thus coker(ω) = Ak(n−m) is a f.g. free A-module of rank k(n−m), and ω is
Fredholm.
(iii) Given a Fredholm matrix ω in A[z, z−1] let

P = coker(ω) , ζ : P −−→ P ; x −−→ zx .

Let Q be a f.g. projective A-module such that P ⊕Q is a f.g. free A-module,
say P ⊕Q = Ad. The A[z, z−1]-module morphism

η = 1⊕ (z − 1) : A[z, z−1]d = (P ⊕Q)[z, z−1]

−−→ A[z, z−1]d = (P ⊕Q)[z, z−1]

with coker(η) = Q has a Fredholm matrix in A[z, z−1]. Let ω′ be the matrix
of the A[z, z−1]-module morphism

z−(ζ⊕1) : A[z, z−1]d = (P⊕Q)[z, z−1] −−→ A[z, z−1]d = (P⊕Q)[z, z−1] .

Now (P ⊕Q, ζ ⊕ 1) is an A[z, z−1]-module of homological dimension 1, with
a resolution by both ω ⊕ η and ω′. In order to invert ω it therefore suffices
to invert the bionic matrix ω′. �
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Definition 13.6 (i) An automorphism h : P−−→P of a module P is fibred if
h− 1 : P−−→P is also an automorphism.

(ii) A Fredholm matrix ω =
∞∑

j=−∞
ωjz

j in A[z, z−1] is fibred if
∞∑

j=−∞
ωj is an

invertible matrix in A.
(iii) Let Ωfib ⊂ Ω be the set of fibred Fredholm matrices in A[z, z−1]. �
Example 13.7 (i) If H is an invertible matrix in A such that I −H is also
invertible then I −H + zH is a fibred Fredholm matrix in A[z, z−1].
(ii) If P = P 2 is a projection matrix in A then I−P+zP is a fibred Fredholm
matrix in A[z, z−1].
(iii) If Q is a nilpotent square matrix in A then I − zQ is a fibred Fredholm
matrix in A[z, z−1]. �
Proposition 13.8 (i) A Fredholm matrix ω in A[z, z−1] is fibred if and only
if it is A-invertible.
(ii) The localization Ω−1

fibA[z, z
−1] is a subring of Π−1A[z, z−1] with canonical

factorizations

A[z, z−1] −−→ Ω−1
fibA[z, z

−1] −−→ Π−1A[z, z−1] −−→ A

with Π the set of A-invertible matrices in A[z, z−1] (10.17). �
The inclusions

A[z, z−1] −−→ A((z)) , A[z, z−1] −−→ A((z−1))

have canonical factorizations

A[z, z−1] −−→ Ω−1A[z, z−1] −−→ A((z)) ,

A[z, z−1] −−→ Ω−1A[z, z−1] −−→ A((z−1))

with A[z, z−1]−−→Ω−1A[z, z−1] injective. The factorization

A[z, z−1] −−→ Ω−1A[z, z−1] −−→ A((z))×A((z−1))

is such that the localization A[z, z−1]−−→Ω−1A[z, z−1] has the same universal
property as the completion A[z, z−1]−−→A((z))×A((z−1)), namely :

Proposition 13.9 The following conditions on a finite f.g. free A[z, z−1]-
module chain complex E are equivalent :

(i) H∗(Ω
−1E) = 0,

(ii) H∗(A((z))⊗A[z,z−1] E) = 0, H∗(A((z
−1))⊗A[z,z−1] E) = 0,

(iii) E is A-finitely dominated.

Proof By 8.3. �
Similarly, A[z, z−1]−−→Ω−1

fibA[z, z
−1] is injective and such that :
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Proposition 13.10 The following conditions on a finite f.g. free A[z, z−1]-
module chain complex E are equivalent :

(i) H∗(Ω
−1
fibE) = 0,

(ii) H∗(A((z))⊗A[z,z−1] E) = 0, H∗(A((z
−1))⊗A[z,z−1] E) = 0,

H∗(A⊗A[z,z−1] E) = 0,
(iii) E is A-finitely dominated and A-contractible,
(iv) E is A-finitely dominated and ζ− 1 : E−−→E is a chain equivalence.

�
Example 13.11 (i) If E is a finite f.g. free A[z, z−1]-module chain com-
plex such that p(z)H∗(E) = 0 for some p(z) ∈ A[z, z−1] with coker(p(z) :
A[z, z−1]−−→A[z, z−1]) a f.g. projective A-module (i.e. such that (p(z)) is a
1× 1 Fredholm matrix in A[z, z−1]) then E is A-finitely dominated.
(ii) As for (i), but with p(1) ∈ A•, in which case (p(z)) is a 1× 1 fibred Fred-
holm matrix in A[z, z−1], and E is A-finitely dominated and A-contractible.

�
Example 13.12 (i) For a commutative ring A define the multiplicative sub-
sets

P = {
n∑

j=m

ajz
j ∈ A[z, z−1] |

n∑
j=m

aj ∈ A•} ,

Q = A[z, z−1] ∩A((z))• ∩A((z−1))• ,

Qbio = {
n∑

j=m

ajz
j ∈ A[z, z−1] | an = 1, am ∈ A•} ,

R = P ∩Q = {
n∑

j=m

ajz
j ∈ Q |

n∑
j=m

aj ∈ A•} ⊂ A[z, z−1] .

The localization P−1A[z, z−1] = Π−1A[z, z−1] of A[z, z−1] is the one de-
fined in Chap. 10, such that a square matrix ω in A[z, z−1] is invertible in
Π−1A[z, z−1] if and only if it is A-invertible (via z−−→1). The (fibred) Fred-
holm localizations of A[z, z−1] are the localizations inverting Q and R are

Ω−1A[z, z−1] = Q−1A[z, z−1] = Q−1
bioA[z, z

−1] ,

Ω−1
fibA[z, z

−1] = R−1A[z, z−1] .

A finite f.g. free A[z, z−1]-module chain complex E is A-finitely dominated
if and only if p(z)H∗(E) = 0 for some p(z) ∈ Q. A finite f.g. free A[z, z−1]-
module chain complex E is A-finitely dominated and A-contractible if and
only if q(z)H∗(E) = 0 for some q(z) ∈ R.
(ii) If A is an integral domain then the multiplicative subsets Q,R in (i) are
given by
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Q = {
n∑

j=m

ajz
j | am, an ∈ A•} ,

R = {
n∑

j=m

ajz
j | am, an,

n∑
j=m

aj ∈ A•} ⊂ A[z, z−1] .

Thus Q consists of all the Laurent polynomials with the extreme coefficients
units in A, and R = P ∩Q is the subset of those which project via z−−→1 to a

unit in A. It follows from 13.1 that a polynomial p(z) =
n∑

j=m

ajz
j ∈ A[z, z−1]

is such that A[z, z−1]/(p(z)) is a f.g. projective A-module if and only if the
extreme coefficients am, an ∈ A are units, in which case A[z, z−1]/(p(z)) is a
f.g. free A-module of rank n−m.
(iii) If A = F is a field then the multiplicative subsets P,Q,R in (i) are such
that

P = R = {
∞∑

j=−∞
ajz

j |
∞∑

j=−∞
aj ∈ F •}

⊂ Q = F [z, z−1]\{0} ⊂ F [z, z−1]

and

Ω−1F [z, z−1] = Q−1F [z, z−1] = F (z) ,

Ω−1
fibF [z, z

−1] = P−1F [z, z−1] = R−1F [z, z−1]

= F [z](1−z) = {p(z)/q(z) | q(1) ∈ F •} ⊂ F (z) .

The multiplicative subset

S = (1− z)∞ = {(1− z)k | k ≥ 0} ⊂ F [z, z−1]

is coprime to P and such that

Q = PS , S−1F [z, z−1] = F [z, z−1, (1− z)−1] ,

so that there is defined a cartesian square

F [z, z−1] //

��

P−1F [z, z−1]

��
F [z, z−1, (1− z)−1] // F (z) �
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13B. The automorphism category

Definition 13.13 (i) The automorphism category Aut(A) is the full subcate-
gory of End(A) with objects (P, h) such that h : P−−→P is an automorphism.
The automorphism K-groups of A are given by

Aut∗(A) = K∗(Aut(A)) ,

with Aut0(A) the automorphism class group.
(ii) The fibred automorphism category Autfib(A) is the full subcategory of
Aut(A) with objects (P, h) such that h − 1 : P−−→P is an automorphism.
The fibred automorphism K-groups of A are given by

Autfib∗ (A) = K∗(Aut
fib(A)) . �

Remark 13.14 The automorphism class group Aut0(A) is the abelian group
with one generator (P, h) for each isomorphism class in Aut(A) and relations

(P, h) + (P ′, h′)− (P ⊕ P ′,

(
h g

0 h′

)
) .

The torsion group K1(A) is a quotient of Aut0(A)

K1(A) = Aut0(A)/{(P, h) + (P, k)− (P, hk)} . �

Example 13.15 Let A be a commutative ring.
(i) Let (P, h) be an object in End(A). The characteristic polynomial

chz(P, h) = det(z − h : P [z]−−→P [z]) =
d∑
j=0

ajz
j ∈ A[z]

is such that

ch0(P, h) = det(−h : P−−→P ) = a0 ,

ch1(P, h) = det(1− h : P−−→P ) =
d∑
j=0

aj ∈ A .

Thus (P, h) is in Aut(A) if and only if a0 ∈ A•, and (P, h) is in Autfib(A) if

and only if a0,
d∑
j=0

aj ∈ A•.

(ii) The multiplicative subsets S, T ⊂ A[z] defined by

S = {
d∑
j=0

ajz
j | a0 ∈ A•} ∩A((z−1))• ,

T = {
d∑
j=0

ajz
j | a0,

d∑
j=0

aj ∈ A•} ∩A((z−1))•
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are such that

A[z] ∩ (S−1A[z])• = S , A[z] ∩ (T−1A[z])• = T

and it follows from 12.4 and (i) that

EndS(A) = Aut(A) , EndT (A) = Autfib(A) .

If A is an integral domain then

S = {
d∑
j=0

ajz
j | a0, ad ∈ A•} ,

T = {
d∑
j=0

ajz
j | a0, ad,

d∑
j=0

aj ∈ A•} ⊂ A[z] .

�
By analogy with 10.14 :

Proposition 13.16 (i) The relative groups in the localization exact sequence
for the Fredholm localization Ω−1A[z, z−1] (13.3)

. . . −−→ Kn(A[z, z
−1])

i
−−→ Kn(Ω

−1A[z, z−1])
∂
−−→ Kn(A[z, z

−1], Ω)

−−→ Kn−1(A[z, z
−1]) −−→ . . .

are the algebraic K-groups

K∗(A[z, z
−1], Ω) = K∗−1(H (A[z, z−1], Ω))

of the exact category H (A[z, z−1], Ω) of (A[z, z−1], Ω)-modules. The functor

Aut(A) −−→ H (A[z, z−1], Ω) ;

(P, h) −−→ coker(z − h : P [z, z−1]−−→P [z, z−1]) = P with z = h

is an isomorphism of exact categories, and

K∗(A[z, z
−1], Ω) = K∗−1(H (A[z, z−1], Ω))

= Aut∗−1(A) .

(ii) The localization exact sequence breaks up into split exact sequences

0 −−→ Kn(A[z, z
−1])

i
−−→ Kn(Ω

−1A[z, z−1])
∂
−−→ Autn−1(A) −−→ 0 ,

so that

Kn(Ω
−1A[z, z−1]) = Kn(A[z, z

−1])⊕Autn−1(A) (n ∈ Z) .

Similarly for (Ωfib)−1[z, z−1] and Autfib(A). �
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In particular, for n = 1 :

Proposition 13.17 (i) The torsion group of Ω−1A[z, z−1] fits into the direct
sum system

K1(A[z, z
−1])

i
−−−−−→←−−−−−

j

K1(Ω
−1A[z, z−1])

∂
−−−−−→←−−−−−

∆

Aut0(A)

with

i : K1(A[z, z
−1]) −−→ K1(Ω

−1A[z, z−1]) ; τ(E) −−→ τ(Ω−1E) ,

j : K1(Ω
−1A[z, z−1]) −−→ K1(A[z, z

−1]) ;

τ(Ω−1E) −−→ Φ+(E)

= τ(q+ : C(1− zζ−1 : E[z, z−1]−−→E[z, z−1])−−→E) ,

∂ : K1(Ω
−1A[z, z−1]) −−→ Aut0(A) ; τ(Ω

−1E) −−→ [E, ζ] ,

∆ : Aut0(A) −−→ K1(Ω
−1A[z, z−1]) ;

[P, h] −−→ τ(1− zh−1 : Ω−1P [z, z−1]−−→Ω−1P [z, z−1]) .

(iii) The torsion group of Ω−1
fibA[z, z

−1] fits into the direct sum system

K1(A[z, z
−1])

ĩ
−−−−−→←−−−−−

j̃

K1(Ω
−1
fibA[z, z

−1])
∂̃

−−−−−→←−−−−−
∆̃

Autfib0 (A)

with ĩ, j̃, ∂̃, ∆̃ defined in the same way as i, j, ∂,∆ in (i).
(iv) The inclusion Ω−1

fibA[z, z
−1]−−→Π−1A[z, z−1] induces

K1(Ω
−1
fibA[z, z

−1]) = K1(A[z, z
−1])⊕Autfib0 (A)

−−→ K1(Π
−1A[z, z−1]) = K1(A)⊕ Ẽnd0(A) ;

(τ(Ω−1
fibE), [P, h]) −−→ (τ(A⊗A[z,z−1] E), [E, (1− ζ)−1] + [P, h])

with K1(Π
−1A[z, z−1]) = K1(A)⊕ Ẽnd0(A) as in 10.21. �

Example 13.18 Let X be an untwisted CW complex band with

π1(X) = π × Z , π1(X) = π

and write
Λ = Ω−1Z[π][z, z−1] .

Now X is Λ-contractible, with Λ-coefficient torsion

τ(X;Λ) = (Φ+(X), [X, ζ])

∈ K1(Λ)/{±π × Z} = Wh(π × Z)⊕Aut0(Z[π]) .



128 13. Automorphism K-theory

The fibering obstruction Φ+(X) ∈Wh(π×Z) is a simple homotopy invariant,
and the automorphism class [X, ζ] ∈ Aut0(Z[π]) is a homotopy invariant.
The Λ-coefficient torsion of a homotopy equivalence f : X−−→Y of untwisted
bands is given by

τ(f ;Λ) = τ(Y ;Λ)− τ(X;Λ)

= (Φ+(Y )− Φ+(X), [Y , ζY ]− [X, ζX ])

= (τ(f), 0) ∈Wh(π × Z)⊕Aut0(Z[π]) .

The Λ-coefficient torsion of the mapping torus T (h) of an untwisted self
homotopy equivalence h : P−−→P of a finite CW complex P with π1(P ) = π
is

τ(T (h);Λ) = (0, [P, h]) ∈Wh(π × Z)⊕Aut0(Z[π]) . �
Definition 13.19 Let S ⊂ A[z, z−1] be a multiplicative subset.
(i) An object (P, h) in Aut(A) is S-primary if it is defined in EndS(A), i.e. if

z − h : S−1P [z, z−1] −−→ S−1P [z, z−1]

is an S−1A[z, z−1]-module automorphism. The S-primary automorphism cat-
egory

AutS(A) = EndS(A) ∩Aut(A)

is the full subcategory of Aut(A) with S-primary objects (P, h). The S-
primary automorphism K-groups of A are defined by

AutS∗ (A) = K∗(Aut
S(A)) .

(ii) The fibred S-primary automorphism category

Autfib,S(A) = AutS(A) ∩Autfib(A)

and the fibred S-primary automorphism K-groups of A are defined by

Autfib,S∗ (A) = K∗(Autfib,S(A)) .

(iii) S is bionic if for each
n∑

j=m

ajz
j ∈ S the extreme non-zero coefficients are

an = 1 ∈ A and a unit am ∈ A•. �
Example 13.20 If A is commutative and S ⊂ A[z, z−1] is any multiplicative
subset then an object (P, h) in Aut(A) is S-primary if and only if chz(P, h) is
a factor of an element p(z) ∈ S. In particular, this is the case if chz(P, h) ∈ S.

�
Example 13.21 If a multiplicative subset S ⊂ A[z, z−1] is such that

S ⊂ A((z))• ∩A((z−1))•

(e.g. if S has extreme units) then the inclusions of A[z, z−1] factor as
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A[z, z−1] −−→ S−1A[z, z−1] −−→ Ω−1A[z, z−1] −−→ A((z)) ,

A[z, z−1] −−→ S−1A[z, z−1] −−→ Ω−1A[z, z−1] −−→ A((z−1)) ,

and there is defined an isomorphism of categories.

H (A[z, z−1], S)
≃−−→ AutS(A) ; P −−→ (P, ζ) .

The relative K-groups in the localization exact sequence

. . . −−→ Kn(A[z, z
−1]) −−→ Kn(S

−1A[z, z−1]) −−→ Kn(A[z, z
−1], S)

−−→ Kn−1(A[z, z
−1]) −−→ . . .

can thus be expressed as

K∗(A[z, z
−1], S) = K∗−1(H (A[z, z−1], S)) = AutS∗−1(A) .

In fact, this exact sequence breaks up into split exact sequences

0 −−→Kn(A[z, z
−1]) −−→Kn(S

−1A[z, z−1]) −−→Kn(A[z, z
−1], S) −−→ 0 . �

By analogy with 12.7 :

Proposition 13.22 If S, T ⊂ A[z, z−1] are coprime central multiplicative
subsets then

AutST (A) = AutS(A)×AutT (A) ,

AutST∗ (A) = AutS∗ (A)⊕AutT∗ (A)

and similarly for fibred automorphisms.
Proof As for 12.7. �

By analogy with 13.17 :

Proposition 13.23 For any multiplicative subset S ⊂ A[z, z−1] such that
S ⊆ A((z))•∩A((z−1))• the torsion group of S−1A[z, z−1] fits into the direct
sum system

K1(A[z, z
−1])

i
−−−−−→←−−−−−

j

K1(S
−1A[z, z−1])

∂
−−−−−→←−−−−−

∆

AutS0 (A)

with

i : K1(A[z, z
−1]) −−→ K1(S

−1A[z, z−1]) ; τ(E) −−→ τ(S−1E) ,

j : K1(S
−1A[z, z−1]) −−→ K1(A[z, z

−1]) ;

τ(S−1E) −−→ Φ+(E)

= τ(q+ : C(1− zζ−1 : E[z, z−1]−−→E[z, z−1])−−→E) ,

∂ : K1(S
−1A[z, z−1]) −−→ AutS0 (A) ; τ(S

−1E) −−→ [E, ζ] ,

∆ : AutS0 (A) −−→ K1(S
−1A[z, z−1]) ;

[P, h] −−→ τ(1− zh−1 : S−1P [z, z−1]−−→S−1P [z, z−1]) . �
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Remark 13.24 For a commutative ring A the composite

AutS0 (A)
∆
−−→ K1(S

−1A[z, z−1])
det
−−→ (S−1A[z, z−1])•

sends an S-primary automorphism class (P, h) to

det∆[P, h] = det(1− zh−1 : P [z]−−→P [z]) = c̃hz(P, h
−1)

= chz(P, h)/det(−h : P−−→P ) ∈ (S−1A[z, z−1])• . �

Proposition 13.25 Let S ⊂ A[z] be a multiplicative subset with constant
units, and let

T = (z)∞S = {zkp(z) | k ≥ 0, p(z) ∈ S} ⊂ A[z] .

(i) The S- and T -primary endomorphism categories and K-groups are such
that

EndS(A) = AutS(A) , EndS∗ (A) = AutS∗ (A) ,

EndT (A) = End(z)
∞
(A)× EndS(A)

= Nil(A)×AutS(A)

EndT∗ (A) = Nil∗(A)⊕AutS∗ (A) .

(ii) If for every p(z) =
d∑
j=0

ajz
j ∈ S it is the case that p(1) =

d∑
j=0

aj ∈ A•

then
EndS(A) = AutS(A) = Autfib,S(A) ,

EndS∗ (A) = AutS(A) = Autfib,S∗ (A) .

Proof (i) For any object (P, f) in EndS(A) there exists an element

p(z) =
d∑
j=0

ajz
j ∈ S ⊂ A[z]

such that p(f) = 0 : P−−→P , by 12.4. Now a0 ∈ A• (by hypothesis), so that
(P, f) is defined in AutS(A), with the inverse defined by

f−1 = −(a0)−1
d∑
j=1

ajf
j−1 : P −−→ P .

The multiplicative subsets (z)∞, S ⊂ A[z] are coprime, so that 12.7 applies.
(ii) Given (P, f) in EndS(A) let p(z) ∈ S be as in the proof of (i). Since
d∑
j=0

aj ∈ A• (P, f) is defined in Autfib,S(A), with the inverse of 1−f : P−−→P

given by
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(1− f)−1 = (
d∑
i=0

ai)
−1

d∑
j=1

aj(

j−1∑
k=0

fk) : P −−→ P .

�

The multiplicative subset with extreme units

(1− z)∞ = {(1− z)j | j ≥ 0} ⊂ A[z, z−1]

has localization

((1− z)∞)−1A[z, z−1] = A[z, z−1, (1− z)−1] .

In dealing with (1− z)-primary objects adopt the following terminology.

Definition 13.26 (i) An A-module endomorphism f : P−−→P is unipotent
if 1− f : P−−→P is nilpotent, in which case f is an automorphism.
(ii) A chain map h : C−−→C is chain homotopy unipotent if h− 1 : C−−→C is
chain homotopy nilpotent, in which case h : C−−→C is a chain equivalence.
(iii) The unipotent category

Autuni(A) = End(1−z)
∞
(A) = Aut(1−z)

∞
(A)

is the exact category of pairs (P, f) with P a f.g. projective A-module and
f : P−−→P an unipotent automorphism.
(iv) The unipotent automorphism K-groups of A are given by

Autuni∗ (A) = K∗(Autuni(A)) . �

Proposition 13.27 (i) An A-module endomorphism f : P−−→P is (1 − z)-
primary if and only if f is a unipotent automorphism.
(ii) A finite f.g. free A[z, z−1]-module chain complex C is A[z, z−1, (1−z)−1]-
contractible if and only if C is A-finitely dominated and ζ : C−−→C is chain
homotopy unipotent.
(iii) The functor

Nil(A) −−→ Autuni(A) ; (P, ν) −−→ (P, 1 + ν)

is an isomorphism of categories, and

K1(A[z, z
−1, (1− z)−1]) = K1(A[z, z

−1])⊕Nil0(A)

= K1(A)⊕K0(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A)⊕ Ñil0(A) ,

End
z∞(1−z)∞
0 (A) = Nil0(A)⊕Autuni0 (A) = Nil0(A)⊕Nil0(A) ,

in accordance with 12.23 and 13.25. �
Example 13.28 Let X be a finite CW complex, with fundamental group
π1(X) = π and universal cover X̃. Write

Λ = Z[π][z, z−1, (1− z)−1] .
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The product X × S1 is Λ-contractible, with Λ-coefficient torsion

τ(X × S1;Λ)

= τ(1− z : C(X̃)[z, z−1, (1− z)−1]−−→C(X̃)[z, z−1, (1− z)−1])

= (0, (C(X̃), 0)) ∈Wh1(Λ) = Wh1(Z[π][z, z−1])⊕Nil0(Z[π]) . �

Example 13.29 For a field F the multiplicative subsets

S = {
∞∑
j=0

ajz
j | a0 ∈ F •} , T = (z)∞S ⊂ F [z]

are such that

S−1F [z] = F [z](z) , T−1F [z] = F (z)

with a cartesian square

F [z] //

��

F [z, z−1]

��
F [z](z) // F (z)

(as in 12.26) and identifications

H (F [z], T ) = H (F [z], (z)∞)×H (F [z], S)

= End(F ) = Nil(F )×Aut(F ) ,

EndT0 (F ) = End0(F )

= End
(z)∞

0 (F )⊕ EndS0 (F )

= Nil0(F )⊕Aut0(F ) .

From 5.15
Ñil0(F ) = 0 , Nil0(F ) = K0(F ) = Z ,

so that
End0(F ) = Nil0(F )⊕Aut0(F ) = Z⊕Aut0(F ) ,

Ẽnd0(F ) = Aut0(F ) .

Every object (P, f) in End(F ) can be expressed as a direct sum

(P, f) = (P1, f1)⊕ (P2, f2)

with



13B. The automorphism category 133

(P1, f1) = (coker(z − f : S−1P [z]−−→S−1P [z]), ζ)

= (
∞∪
r=0

ker(fr : P−−→P ), f |) ∈ Nil(F ) ,

(P2, f2) = (coker(z − f : P [z, z−1]−−→P [z, z−1]), ζ)

= (

∞∩
r=0

im(fr : P−−→P ), f |) ∈ Aut(F ) .

If

chz(P, f) =
n∑

j=m

ajz
j ∈ F [z] (am ∈ F •, an = 1)

then

dimF (P ) = n , dimF (P1) = m , dimF (P2) = n−m ,

chz(P1, f1) = zm , chz(P2, f2) =
n−m∑
j=0

aj+mz
j ∈ F [z] ,

am = (−1)n−mdet(f2) ∈ F • .

The automorphism object constructed in 12.26

(Q, g) = (coker(1− zf : P [z, z−1]−−→P [z, z−1]), z) = (P2, (f2)
−1)

is such that

c̃hz(Q, g) = (am)−1

( n−m∑
j=0

aj+mz
j

)
∈ F [z] .

The multiplicative subsets

Sfib = {
∞∑
j=0

ajz
j | a0,

∞∑
j=0

aj ∈ F •} , (1− z)∞ ⊂ F [z]

are coprime, and such that

S = (1− z)∞Sfib ⊂ F [z] ,

so that

Aut(F ) = EndS(F ) = End(1−z)
∞
(F )× EndS

fib

(F )

= Nil(F )×Autfib(F )

(up to isomorphism) and

Aut0(F ) = Nil0(F )⊕Autfib0 (F ) = Z⊕Autfib0 (F ) . �
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Example 13.30 For any field F the multiplicative subsets P,Q of F [z, z−1]
defined by

P = {
∞∑

j=−∞
ajz

j |
∞∑

j=−∞
aj ∈ F •} , Q = F [z, z−1]\{0}

are such that (1 − z)∞, P are coprime, (1 − z)∞P = Q, there is defined a
cartesian square of rings

F [z, z−1] //

��

P−1F [z, z−1]

��
F [z, z−1, (1− z)−1] // F (z)

and there are identifications

Ω−1
fibF [z, z

−1] = P−1F [z, z−1] = F [z, z−1](1−z) ,

H (F [z, z−1], P ) = AutP (F ) = Autfib(F ) ,

H (F [z, z−1], (1− z)∞) = Aut(1−z)
∞
(F ) = Nil(F ) ,

Ω−1F [z, z−1] = Q−1F [z, z−1] = F (z) ,

H (F [z, z−1], Q) = Aut(F )

= H (F [z, z−1], (1− z)∞)×H (F [z, z−1], P )

= Nil(F )×Autfib(F ) . �
Remark 13.31 If A is a ring which is not a field then the natural map

Autuni0 (A)⊕Autfib0 (A) −−→ Aut0(A)

need not be an isomorphism, since in general it is not possible to express
every object (P, h) in Aut(A) as a sum

(P, h) = (P1, h1)⊕ (P2, h2)

with (P1, h1) unipotent and (P2, h2) fibred. For example, if A = Z and

h =

(
1 2

1 3

)
: P = Z⊕ Z −−→ P = Z⊕ Z

the characteristic polynomial of (P, h)

det(z − h : P [z]−−→P [z]) = z2 − 4z + 1 ∈ Z[z]

is irreducible, and

det(1− h : P−−→P ) = −2 ̸= 0,±1 ∈ Z .

Thus (P, h) is not the sum of a unipotent object and a fibred object in Aut(Z).
�
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A Witt vector is a formal power series with constant coefficient 1. The re-
verse characteristic polynomial of an endomorphism is a Witt vector which
determines the endomorphism K-theory class. In Chap. 17 the Reidemeister
torsion of an A-contractible finite f.g. A[z, z−1]-module chain complex E will
be identified with the Witt vector determined by the Alexander polynomials.
In the applications to knot theory in Chap. 33 E will be the cellular chain
complex of the infinite cyclic cover of the knot complement.

The endomorphism K-theory class of an endomorphism f : P−−→P of a
f.g. free Z-module P is entirely determined by the rank of P and the char-
acteristic polynomial of f , and a factorization of the polynomial determines
a primary decomposition of the class. The situation is considerably compli-
cated for L-theory. The high-dimensional knot cobordism groups C∗ are the
algebraic L-groups of quadratic forms over Z with certain types of endo-
morphisms (Chap. 31). The actual computation of C∗ is complicated by the
possibility that for an endomorphism of a quadratic form a factorization of
the characteristic polynomial in Z[z, z−1] as a product of powers of coprime
irreducible polynomials does not in general lead to a primary decomposition
of the endomorphism L-theory class, with coupling invariants obstructing
such an expression – see Chap. 40 for more details.

Almkvist [5], [6] and Grayson [96] proved that the reduced endomorphism

class group Ẽnd0(A) of a commutative ring A is isomorphic to the group
W (A) of rational Witt vectors. There will now be obtained such an isomor-
phism

c̃h : Ẽnd0(A)
≃−−→ W (A)abq ; (P, f) −−→ c̃hz(P, f)

for any ring A, with W (A)abq a quotient of the abelianization W (A)ab of
the group W (A) of rational Witt vectors. In the first instance, the summand

N̂K1(A) in the direct sum decomposition

K1(A[[z]]) = K1(A)⊕ N̂K1(A)

will be identified with a quotient Ŵ (A)abq of the abelianization Ŵ (A)ab of
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the group of Witt vectors Ŵ (A).12

Definition 14.1 (i) A Witt vector over A is an infinite sequence

a = (a1, a2, a3, . . .) ∈
∞∏
1

A (ai ∈ A)

which can be regarded as a formal power series with constant coefficient 1

1 +
∞∑
i=1

aiz
i ∈ A[[z]] .

(ii) The Witt vector group Ŵ (A) is the group of Witt vectors over A, with
multiplication by

(1 +
∞∑
i=1

aiz
i)(1 +

∞∑
j=1

bjz
j) = 1 +

∞∑
k=1

(
∑
i+j=k

aibj)z
k . �

By 6.3 the units of A[[z]] are given by

A[[z]]• = A•(1 + zA[[z]])

= {
∞∑
i=0

aiz
i ∈ A[[z]] | a0 ∈ A•} ,

so that
Ŵ (A) = 1 + zA[[z]] ⊂ A[[z]]• .

The abelianization

Ŵ (A)ab = Ŵ (A)/[Ŵ (A), Ŵ (A)]

= Ŵ (A)/{xyx−1y−1 |x, y ∈ Ŵ (A)}

is an abelian group (!).

Example 14.2 (Almkvist [5, 6.13])
If A is a commutative ring such that Q ⊆ A there is defined an isomorphism
of abelian groups

∞∏
j=1

A
≃−−→ Ŵ (A) ; (a1, a2, a3, . . .) −−→ exp

(∫ z

0

(a1 − a2s+ a3s
2 − . . .)ds

)
12This corrects the isomorphisms

Ẽnd0(A) ∼=W (A)ab , N̂K1(A) ∼= Ŵ (A)ab

stated in the published book – see the paper of A.V.Pajitnov and A.A.Ranicki,
The Whitehead group of the Novikov ring (math.AT\0012031, K-theory 21, 325–
365 (2000)) for an explicit counterexample to the original statement.
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with
∫ z
0
skds = zk+1/(k + 1). The inverse isomorphism is given by

Ŵ (A)
≃−−→

∞∏
1

A; q(z) = 1 + b1z + b2z
2 + . . .−−→

q′(z)

q(z)
=
b1 + 2b2z + 3b3z

2 + . . .

1 + b1z + b2z2 + . . .
= a1 − a2z + a3z

2 − . . .−−→ (a1, a2, a3, . . .)

([5, 6.13]). The reverse characteristic polynomial of an endomorphism f :
P−−→P of a f.g. projective A-module P

c̃hz(P, f) = det(1− zf : P [z]−−→P [z]) = exp

(
−

∞∑
i=1

tr(f i)

i
zi
)

∈ 1 + zA[z] ⊂W (A) ⊂ Ŵ (A)

has image (−tr(f), tr(f2),−tr(f3), . . .) ∈
∞∏
1
A. For any polynomial of the

type

p(z) = 1 +
d∑
i=1

biz
i ∈ 1 + zA[z] ⊂W (A)

the image (a1, a2, a3, . . .) ∈
∞∏
1
A has components ai = (−)itr(f i) ∈ A, with

f = z : P = A[z]/(zdp(z−1)) −−→ P = A[z]/(zdp(z−1))

such that c̃hz(P, f) = p(z). �

Witt vectors arise as the noncommutative determinants of invertible ma-
trices in A[[z]], using the following generalization of the Dieudonné determi-
nant of an invertible matrix in a local ring (cf. Rosenberg [254, 2.2.5]).

A k × k matrix M =
∞∑
r=0

Mrz
r in A[[z]] is invertible if and only if M0 is

an invertible k× k matrix in A. Given such an M define the invertible k× k
matrix in A[[z]]

B = (M0)
−1M = (bij)1≤i,j≤k ∈ GLk(A[[z]])

in which the diagonal entries are Witt vectors

bii ∈ Ŵ (A) = 1 + zA[[z]] ⊂ A[[z]]• .

Use Gaussian elimination (i.e. elementary row operations) to express B as a
product

B = LU

with L = (ℓij) a k×k lower triangular matrix in A[[z]] and U = (uij) a k×k
upper triangular matrix in A[[z]] with diagonal entries
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ℓii = 1 , uii ∈ Ŵ (A) = 1 + zA[[z]] ⊂ A[[z]]• .

Definition 14.3 The Dieudonné determinant Witt vector of an invertible
matrix M ∈ GLk(A[[z]]) is the abelianized Witt vector

DW (M) = u11u22 . . . ukk ∈ Ŵ (A)ab . �

Example 14.4 If A is commutative then

DW (M) = det(B) = det((M0)
−1M) ∈ Ŵ (A) = 1 + zA[[z]] . �

Example 14.5 For an invertible 2× 2 matrix M ∈ GL2(A[[z]]) with

B = M−1
0 M =

(
b11 b12
b21 b22

)
take

L =

(
1 0

b21(b11)
−1 1

)
, U =

(
b11 b12
0 b22 − b21(b11)−1b12

)
so that B = LU and

DW (M) = b11(b22 − b21(b11)−1b12) ∈ Ŵ (A)ab . �

The function

∆̃+ : Ŵ (A) −−→ K1(A[[z]]) ;

(a1, a2, . . .) −−→ τ(1 +

∞∑
j=1

ajz
j : A[[z]]−−→A[[z]])

is a morphism of groups. Define the image

Ŵ (A)abq = im(∆̃+ : Ŵ (A)−−→K1(A[[z]])) ,

which is a quotient of the abelianization Ŵ (A)ab. For commutative A

Ŵ (A)abq = Ŵ (A)ab = Ŵ (A) .

By analogy with 5.14 (ii) :

Proposition 14.6 The torsion group of A[[z]] fits into the direct sum system

K1(A)
ĩ+

−−−−−→←−−−−−
j̃+

K1(A[[z]])
∂̃+

−−−−−→←−−−−−
∆̃+

Ŵ (A)abq

with
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ĩ+ : K1(A) −−→ K1(A[[z]]) ; τ(E) −−→ τ(E[[z]]) ,

j̃+ : K1(A[[z]]) −−→ K1(A) ; τ(E
+) −−→ τ(A⊗A[[z]] E

+) ,

∂̃+ : K1(A[[z]]) −−→ Ŵ (A)abq ; τ(M : A[[z]]k−−→A[[z]]k) −−→ DW (M) ,

∆̃+ : Ŵ (A)abq −−→ K1(A[[z]]) ;

(a1, a2, . . .) −−→ τ(1 +
∞∑
j=1

ajz
j : A[[z]]−−→A[[z]]) .

Proof The morphisms

ĩ+ : K1(A) −−→ K1(A[[z]]) , j̃+ : K1(A[[z]]) −−→ K1(A)

are such that j̃+ĩ+ = 1, since they are induced by the ring morphisms

ĩ+ = inclusion : A −−→ A[[z]] ,

j̃+ = projection : A[[z]] −−→ A ; z −−→ 0 .

It is clear from the definition of DW (M) that ∂̃+∆̃+ = 1. The exactness of

Ŵ (A)abq
∆̃+

−−−−−→ K1(A[[z]])
j̃+

−−−−−→ K1(A)

is given by the following argument of Suslin (Pazhitnov [223, 8.2]) : for any

invertible k × k matrix M ∈ GLk(A[[z]]) such that j̃+(M) ∈ Ek(A) let

M ′ ∈ ker(GLk(A[[z]])−−→GLk(A))

be the result of applying toM the elementary operations which reduce j̃+(M)
to Ik ∈ Ek(A). The diagonal entries in M ′ are units in A[[z]], and repeated
application of the matrix identity(

a b

c d

)
=

(
1 0

ca−1 1

)(
a 0

0 d− ca−1b

)(
1 a−1b

0 1

)
allowsM ′ to be reduced by further elementary operations to the stabilization
of a 1× 1 matrix in ker(j̃+ : GL1(A[[z]])−−→GL1(A)) = Ŵ (A). �

The subset
Ŵ (A) ∩A[z] = 1 + zA[z] ⊂ Ŵ (A)

is closed under multiplication, but not under inverses : for example

(1 + z)−1 =

∞∏
j=0

(−z)j ∈ Ŵ (A)\(Ŵ (A) ∩A[z]) .
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Definition 14.7 (i) The rational Witt vector group W (A) is the subgroup of

Ŵ (A) generated by the subset Ŵ (A) ∩ A[z] ⊂ Ŵ (A) of all the polynomials

p(z) =
∞∑
j=0

ajz
j ∈ A[z] with a0 = 1 ∈ A.

(ii) Let A be a commutative ring. The reduced rational Witt vector group

W̃ (A) is the quotient of the rational Witt vector group W (A)

W̃ (A) = coker(K0(A)−−→W (A))

with
K0(A) −−→ W (A) ; [P ] −−→ det(1− z : P [z]−−→P [z]) . �

In other words, W (A) is the subgroup of Ŵ (A) consisting of the elements

a = (a1, a2, a3, . . .) ∈
∞∏
1

A

such that

1 +
∞∑
j=1

ajz
j =

p(z)

q(z)
∈ A[[z]]

for some polynomials p(z), q(z) ∈ A[z] with p(0) = q(0) = 1 ∈ A. (W (A) was
already defined in 11.13 for commutative A).

Proposition 14.8 Let A be an integral domain with quotient field F . Let
M(F ) be the set of irreducible monic polynomials in F [z], and let MA(F ) ⊆
M(F ) be the subset of the F -irreducible monic polynomials in A[z].
(i) The rational Witt vector group W (F ) is (isomorphic to) the free abelian
group on M(F )\{z}, with an isomorphism

Z[M(F )\{z}]
≃−−→ W (F ) ;

p(z) =
d∑
j=0

ajz
j −−→ p̃(z) = zdp(z−1) =

d∑
j=0

ad−jz
j (ad = 1) .

(In the terminology of 11.1 p̃(z) is the reverse polynomial of p(z).)
(ii) The rational Witt vector group W (A) is a subgroup of W (F ).
(iii) If A is integrally closed (e.g. a Dedekind ring) W (A) is the subgroup of
W (F ) given by

W (A) = Z[MA(F )\{z}] ⊆ W (F ) = Z[M(F )\{z}] .

Proof (i) The polynomial ring F [z] is a principal ideal domain, and every
element q(z) ∈ F [z] with q(0) = 1 has a unique expression as a product of
irreducible polynomials

q(z) = q1(z)
n1q2(z)

n2 . . . qk(z)
nk ∈ F [z] (n1, n2, . . . , nk ≥ 1)
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with q1(z), q2(z), . . . , qk(z) ∈ F [z] coprime and such that qj(0) = 1. Moreover,
q(z) = p̃(z) with p(z) ∈M(F )\{z}.
(ii) The composite

W (A) −−→ W (F ) −−→ Ŵ (F )

is the composite of the injections W (A)−−→Ŵ (A), Ŵ (A)−−→Ŵ (F ), so that
W (A)−−→W (F ) is also an injection.
(iii) Every monic polynomial p(z) ∈ A[z] has a unique factorization as a
product

p(z) = p1(z)p2(z) . . . pk(z) ∈ F [z]

of irreducible monic polynomials pj(z) ∈ M(F ) (1 ≤ j ≤ k). Since
A is integrally closed the factors are actually defined in A[z] (Eisenbud
[67, Prop. 4.12]), so that pj(z) ∈ MA(F ). Passing to the reverse polynomi-
als gives a factorization

p̃(z) = p̃1(z)p̃2(z) . . . p̃k(z) ∈ A[z] .

Every polynomial q(z) ∈ A[z] with q(0) = 1 thus has a unique factorization

q(z) = q1(z)q2(z) . . . qk(z) ∈ A[z]

with qj(z) = p̃j(z) (1 ≤ j ≤ k) the reverse of an F -irreducible monic polyno-
mial pj(z) ∈ A[z]. �
Example 14.9 (Almkvist [7, 3.5])
(i) If F is an algebraically closed field

M(F ) = {z + λ |λ ∈ F}

and there is defined an isomorphism

Z[F •]
≃−−→ W (F ) ;

k∑
j=1

njλj −−→
k∏
j=1

(1 + λjz)
nj .

(ii) For F = R

M(R) = {z + λ |λ ∈ R} ∪ {(z + µ)(z + µ) |µ ∈ H\R}

with H ⊂ C the upper half-plane, and there is defined an isomorphism

Z[H ]
≃−−→ W (R) ; λ −−→

{
1 + λz if λ ∈ R
(1 + λz)(1 + λz) otherwise . �

Definition 14.10 The (noncommutative) reverse characteristic polynomial
of an endomorphism f : P−−→P of a f.g. projective A-module P is the
Dieudonné determinant Witt vector (14.3)

c̃hz(P, f) = DW (1− z(f ⊕ 0) : (P ⊕Q)[[z]]−−→(P ⊕Q)[[z]]) ∈W (A)ab
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for any f.g. projective A-module Q such that P ⊕Q is a f.g. free A-module.
�

Example 14.11 If A is a commutative ring then W (A) is abelian, and

W (A)ab = W (A) = {p̃(z)/q̃(z) | p(z), q(z) ∈ S} ⊂ Ŵ (A)

with S ⊂ A[z] the multiplicative subset of all monic polynomials, where

p̃(z) = zdeg(p(z))p(z−1) ∈ F [z]

is the reverse polynomial with constant coefficient 1 determined by p(z) ∈ S.
The reverse characteristic polynomial c̃hz(P, f) ∈ W (A) of 14.10 is just the
reverse characteristic polynomial in the terminology of Chap. 11, with

c̃hz(P, f) = det(1− z(f ⊕ 0) : (P ⊕Q)[z]−−→(P ⊕Q)[z]) ∈W (A)

the ordinary determinant. �
As in Chap. 10 let Ω̃+ be the set of square matrices ω in A[z] such that

the square matrix ω(0) in A is invertible, with

Ω̃−1
+ A[z] = (1 + zA[z])−1A[z]

by 10.9. The function

∆̃+ : W (A) −−→ K1(Ω̃
−1
+ A[z]) ;

(a1, a2, . . .) −−→ τ(1 +
∞∑
j=1

ajz
j : Ω̃−1

+ A[z]−−→Ω̃−1
+ A[z])

is a morphism of groups. Define the image

W (A)abq = im(∆̃+ :W (A)−−→K1(Ω̃
−1
+ A[z])) ,

which is a quotient of the abelianization W (A)ab. For commutative A

W (A)abq = W (A)ab = W (A) .

Proposition 14.12 (Almkvist [6], Grayson [96] for commutative A.)
(i) The reverse characteristic polynomial defines a natural isomorphism

c̃h : Ẽnd0(A)
≃−−→ W (A)abq ;

[P, f ] −−→ c̃hz(P, f) = det(1− zf : P [z]−−→P [z]) ,

(ii) The projective class and reverse characteristic polynomial define a natural
isomorphism

End0(A)
≃−−→ K0(A)⊕W (A)abq ; [P, f ] −−→ ([P ], c̃hz(P, f)) .
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Proof (i) From 10.16 we have a direct sum decomposition

K1(A)
ĩ+

−−−−−→←−−−−−
j̃+

K1(Ω̃
−1
+ A[z])

∂̃+
−−−−−→←−−−−−

∆̃+

Ẽnd0(A) .

The proof of 14.6 gives a direct sum system

K1(A)
ĩ+

−−−−−→←−−−−−
j̃+

K1(Ω̃
−1
+ A[z])

∂̃+
−−−−−→←−−−−−

∆̃+

W (A)abq .

It now follows from the factorization

c̃h : Ẽnd0(A)
∆̃+

−−→ K1(Ω̃
−1
+ A[z])

∂̃+
−−→ W (A)abq

that c̃h : Ẽnd0(A)−−→W (A)abq is an isomorphism, with inverse

c̃h
−1

: W (A)abq −−→ Ẽnd0(A) ; p(z) −−→ [A[z]/(p̃(z)), z]

(p(z) =
d∑
j=0

ajz
j , p̃(z) = zdp(z−1) , a0 = 1, ad ̸= 0 ∈ A) .

(ii) Immediate from (i). �
Example 14.13 Let X be a connected finitely dominated CW complex with
a regular cover X̃ with group of covering translations π, and let A = Z[π].
Let f : X−−→X be a π-untwisted map, so that there is induced an A-module
chain map f̃ : C(X̃)−−→C(X̃). The invariant

[X, f ] = [C(X̃), f̃ ] = ([X], [X, f ])

∈ End0(A) = K0(A)⊕ Ẽnd0(A)

has first component the A-coefficient projective class of X

[X] = [C(X̃)] ∈ K0(A) .

The isomorphism c̃h : Ẽnd0(A)
≃−−→W (A)abq of 14.12 sends the second com-

ponent to the ζ-function

ζ(X, f) = c̃hz(P, f̃) =

∞∏
r=0

c̃hz(f̃ : Pr−−→Pr)(−)r ∈W (A)abq ,

for any finite f.g. projective A-module chain complex P chain equivalent to
C(X̃). This ζ-function agrees with the ζ-function of Geoghegan and Nicas13.
The mapping torus of f

13Trace and torsion in the theory of flows, Topology 33, 683–719 (1994).
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T (f) = X × [0, 1]/{(x, 0) = (f(x), 1) |x ∈ X}

has a regular cover

T (f̃) = X̃ × [0, 1]/{(x̃, 0) = (f̃(x̃), 1) | x̃ ∈ X̃}

with group of covering translations π. The canonical infinite cyclic cover T (f̃)

of T (f̃) is a regular cover of T (f) with group of covering translations π × Z,
with

Z[π × Z] = A[z, z−1] .

The cellular A[z, z−1]-module chain complex of T (f̃) is the algebraic mapping

torus of f̃ : C(X̃)−−→C(X̃)

C(T (f̃)) = C(f̃ − z : C(X̃)[z, z−1]−−→C(X̃)[z, z−1]) ,

with a canonical round finite structure. As in Chap. 10 let Ω+ the set of Fred-
holm matrices in A[z], with localization Ω−1

+ A[z]. The Ω−1
+ A[z]-contractible

A-finitely dominated A[z]-module chain complex

E+ = C(f̃ − z : C(X̃)[z]−−→C(X̃)[z])

is A-chain equivalent to C(X̃), and is such that

A[z, z−1]⊗A[z] E
+ = C(T (f̃)) .

The Ω−1
+ A[z]-coefficient torsion of T (f) is given by

τ(T (f);Ω−1
+ A[z]) = τ(Ω−1

+ E+) = (0, [X, f ])

∈ K1(Ω
−1
+ A[z]) = K1(A[z])⊕ End0(A)

with

[X, f ] = ([X], ζ(X, f)) ∈ End0(A) = K0(A)⊕W (A)abq .

A morphism A−−→B to a commutative ring B extends to a morphism
Ω−1

+ A[z]−−→S−1B[z], with S ⊂ B[z] the multiplicative subset of all monic
polynomials. The mapping torus T (f) is S−1B[z]-contractible, and the im-
age of τ(Ω−1

+ E+) ∈ K1(Ω
−1
+ A[z]) is the S−1B[z]-coefficient (Reidemeister)

torsion of T (f)

τ(T (f);S−1B[z]) = S−1B[z]⊗Ω−1
+
A[z] τ(Ω

−1
+ E+)

∈ K1(S
−1B[z]) = K1(B[z])⊕ End0(B) ,

with component

B ⊗A [X, f ] = ([C(X̃;B)], ζ(C(X̃;B), f̃))

∈ End0(B) = K0(B)⊕W (B) .
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A morphism A−−→R to a semi-simple ring R sends ζ(X, f) ∈W (A)abq to

ζ(C(X̃;R), f̃) = c̃hz(H∗(X̃;R), f̃∗)

=
∞∏
r=0

c̃hz(f̃∗ : Hr(X̃;R)−−→Hr(X̃;R))(−)r ∈W (R)abq .

See Chap. 16 below for further discussion of the case when R is a field. �
Definition 14.14 For any ring A let TA ⊂ A[z] be the set of monic polyno-
mials. �
Proposition 14.15 The endomorphism class group of a field F is such that

End0(F ) = Z[max(F [z])] = Z[M(F )]

= K1(F [z], TF ) = K0(F )⊕W (F ) = Z⊕
(
F (z)•/F •) ,

with inverse isomorphisms

Z[max(F [z])]
≃−−→ End0(F ) ; (p(z)) −−→ [F [z]/(p(z)), z] ,

End0(F )
≃−−→ Z[max(F [z])] ; [P, f ] −−→

k∑
j=1

nj(pj(z))

(chz(P, f) =
k∏
j=1

pj(z)
nj , pj(z) ∈M(F )) .

There is also defined an isomorphism

End0(F )
≃−−→ Z⊕

(
F (z)•/F •) ;

[P, f ] −−→ (dimF (P ), det(1− zf : P [z]−−→P [z])) .

The reduced endomorphism class group of F is such that

Ẽnd0(F ) = Z[max(F [z])\{(z)}] = Z[M(F )\{z}]

= W (F ) = K1(F [z, z
−1], TF ) = F (z)•/F • . �

See Chap. 19 for a more detailed exposition of the algebraic K-theory of
function fields.

Proposition 14.16 Let A be an integrally closed integral domain with quo-
tient field

F = S−1A (S = A\{0}) .

and let maxA(F [z]) be the set of maximal ideals (p(z))▹F [z] generated by the
F -irreducible monic polynomials with coefficients in A ⊂ F

p(z) = a0 + a1z + . . . + ad−1z
d−1 + adz

d ∈ TA ⊂ F [z] (ad = 1)
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with coefficients aj ∈ A.
(i) The localization map of reduced endomorphism class groups

Ẽnd0(A) −−→ Ẽnd0(F ) = Z[max(F [z])\{z}] ;

(P, f) −−→ S−1(P, f) = chz(P, f)

is injective, with image Z[maxA(F [z])\{z}].
(ii) The localization map of reduced endomorphism class groups

Ẽnd0(A) −−→ Ẽnd
TA

0 (F ) ; (P, f) −−→ S−1(P, f)

is an isomorphism, with image the subgroup of End0(F ) of endomorphisms g :
Q−−→Q of finite-dimensional F -vector spaces with characteristic polynomial

chz(Q, g) ∈ TA ⊂ F [z] .

The endomorphism class groups of A are given by

Ẽnd0(A) = Ẽnd
TA

0 (F ) = W (A) =
⊕

p(z)∈maxA(F [z])\{(z)}

End
p(z)∞

0 (F )

= Z[maxA(F [z])\{(z)}] ⊆ Ẽnd0(F ) = Z[max(F [z])\{(z)}] ,

End0(A) = K0(A)⊕ Ẽnd0(A)

= K0(A)⊕W (A) = K0(A)⊕ Z[maxA(F [z])\{(z)}] .

(iii) The natural map

Ñil0(A) −−→ Ẽnd0(A) ; (P, ν) −−→ (P, ν)

is 0.
(iv) Let P = {p(z) | p(1) ∈ A•} ⊂ A[z, z−1] be the multiplicative subset of
10.19. The P -torsion group of A[z, z−1] is given by

K1(A[z, z
−1], P ) = W̃ (A)

with W̃ (A) = coker(K0(A)−−→W (A)) the reduced rational Witt group (14.7
(ii)), the cokernel of

K0(A) −−→ W (A) ; [L] −−→ det(1− z : L[z]−−→L[z]) .

Every (A[z, z−1], P )-module K has a presentation of the type

0 −−→ L[z, z−1]
1−f+zf
−−−−→ L[z, z−1] −−→ K −−→ 0

for some object (L, f) in End(A), and the P -torsion class of K is given by

τP (K) = det(1− zf : L[z]−−→L[z]) ∈ K1(A[z, z
−1], P ) = W̃ (A) .
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(v) If (L, f), (M, g) are objects in End(A) which are related by a morphism
i : (L, f)−−→(M, g) such that S−1i : S−1L−−→S−1M is an isomorphism of
F -vector spaces then

[L, f ] = [M, g] ∈ Ẽnd0(A) .

(vi) If A is a Dedekind ring then

Ẽnd0(A) =
⊕

p(z)∈maxA(F [z])\{(z)}

End
p(z)∞

0 (A)

=
⊕

p(z)∈maxA(F [z])\{(z)}

End
p(z)∞

0 (F ) = Z[maxA(F [z])\{(z)}] .

Proof (i)+(ii) Apply 14.8 and 14.12.
(iii) This follows from the commutative square

Ñil0(A) //

��

Ñil0(F )

��
Ẽnd0(A) // Ẽnd0(F )

on noting that Ẽnd0(A)−−→Ẽnd0(F ) is an injection by (ii), and Ñil0(F ) = 0
(5.15 (i)).
(iv) Combine (ii), (iii) and the exact sequence of 10.21 (ii)

Nil0(A)⊕Nil0(A) −−→ End0(A) −−→ K1(A[z, z
−1], P ) −−→ 0 .

(v) Immediate from 14.15, since the characteristic polynomials are such that

chz(L, f)− chz(M, g) = chz(S
−1(L, f))− chz(S

−1(M, g))

= 0 ∈ A[z] ⊂ F [z] .

(vi) Let (L, f) be an object in End(A) with L f.g. free, so that

chz(L, f) = det(z − f : L[z]−−→L[z]) ∈ A[z]

is a monic polynomial in A[z]. Write the characteristic polynomial as

chz(L, f) = p(z) ∈ TA ⊂ A[z] ,

and let
p(z) = p1(z)p2(z) . . . pk(z) ∈ F [z]

be a factorization as a product of monic polynomials p1(z), p2(z), . . . , pk(z) ∈
TA ⊂ A[z] which are coprime in F [z]. Write

αj(z) = p1(z) . . . pj−1(z)pj+1(z) . . . pk(z) ∈ A[z] (1 ≤ j ≤ k) .
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There exist β1(z), β2(z), . . . , βk(z) ∈ A[z], s ∈ S such that

k∑
j=1

αj(z)βj(z) = s ∈ A[z] .

The f.g. A-modules

Lj = αj(f)(L) ⊆ L (1 ≤ j ≤ k)

are torsion-free. Since A is Dedekind each Lj is a f.g. projective A-module,

and there are defined objects (Lj , fj) in End(pj(z))
∞
(A) with

fj = f | : Lj −−→ Lj , chz(Lj , fj) = pj(z) ∈ A[z] .

The morphisms defined in End(A) by

α =
k⊕
j=1

αj(f) : (L, f) −−→
k⊕
j=1

(Lj , fj) ,

β =
k⊕
j=1

βj(f) :
k⊕
j=1

(Lj , fj) −−→ (L, f)

are such that αβ = s, βα = s, so that α becomes an isomorphism in End(F ).
It follows from (v) that

[L, f ] =
k∑
j=1

[Lj , fj ] ∈ Ẽnd0(A) ,

and hence that the natural map⊕
p(z)∈maxA(F [z])\{(z)}

End
p(z)∞

0 (A) −−→ Ẽnd0(A)

is an isomorphism. On the other hand, the natural map

Ẽnd0(A) −−→ Ẽnd
TA

0 (F ) =
⊕

p(z)∈maxA(F [z])\{(z)}

End
p(z)∞

0 (F )

is an isomorphism by (ii). The natural map

End
p(z)∞

0 (A) −−→ End
p(z)∞

0 (F ) = Z

is an isomorphism, and End
p(z)∞

0 (A) is the infinite cyclic group generated by
[A[z]/(p(z)), z]. �
Remark 14.17 The isomorphism End0(F ) ∼= Z[max(F [z])] was first ob-
tained by Kelley and Spanier [129]. �
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Example 14.18 A monic polynomial p(z) ∈ Z[z] is irreducible in Z[z] if and
only if it is irreducible in Q[z] (Gauss lemma), so that

maxZ(Q[z]) = {irreducible monic polynomials p(z) ∈ Z[z]}

and 14.16 gives an isomorphism

Z[maxZ(Q[z])]
≃−−→ End0(Z) ; p(z) −−→ [Z[z]/(p(z)), z] . �

Proposition 14.19 (i) If (P, f) is a finite f.g. projective A-module chain
complex P with a chain map f : P−−→P the isomorphism

c̃h : Ẽnd0(A)
≃−−→ W (A)abq

sends the class [P, f ] ∈ Ẽnd0(A) to

c̃hz(P, f) =
∞∏
r=0

c̃hz(f : Pr−−→Pr)(−)r ∈W (A)abq .

(ii) If E+ is an A-finitely dominated finite f.g. free A[z]-module chain com-

plex the isomorphism c̃h : Ẽnd0(A)
≃−−→W (A)abq sends the class [E+, ζ] ∈

Ẽnd0(A) to

c̃hz(E
+) = c̃hz(P, f) =

∞∏
r=0

c̃hz(f : Pr−−→Pr)(−)r ∈W (A)abq

for any finite f.g. projective A-module chain complex P A-module chain equiv-
alent to E+, with

f ≃ ζ : P ≃ E+ −−→ P ≃ E+ .

(iii) The split surjections ∂+, ∂̃+ in the direct sum systems of 10.14, 10.16
are given by

∂+ : K1(Ω
−1
+ A[z]) −−→ End0(A) = K0(A)⊕W (A)abq ;

τ(Ω−1
+ E+) −−→ ([E+], c̃hz(E

+, ζ)) ,

∂̃+ : K1(Ω̃
−1
+ A[z]) −−→ Ẽnd0(A) = W (A)abq ;

τ(Ω̃−1
+ E+) −−→ c̃hz(E

−, ζ−1) .

(iv) The natural map Ω̃−1
+ A[z]−−→A[[z]] induces the map

K1(Ω̃
−1
+ A[z]) = K1(A)⊕W (A)abq −−→ K1(A[[z]]) = K1(A)⊕ Ŵ (A)abq

given by the sum of the identity on K1(A) and the map of abelianizations

induced by the inclusion W (A)−−→Ŵ (A).
Proof (i) Immediate from 14.12 and the identity
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[P, f ] =
∞∑
r=0

(−)r[Pr, f ] ∈ Ẽnd0(A) .

(ii) Immediate from (i).
(iii) Immediate from (ii) and 10.14.
(iv) Immediate from 14.6 and 14.12. �
Example 14.20 Let A be a semi-simple ring (e.g. a field), so that every A-
module is projective. A finite A-module chain complex P is finitely dominated
if and only if the A-modules H∗(P ) are finitely generated. Every finitely
dominated A-module chain complex P is chain equivalent to its homology
H∗(P ) (regarded as a chain complex with 0 differentials), and for any chain
map f : P−−→P

c̃hz(P, f) = c̃hz(H∗(P ), f∗)

=
∞∏
r=0

c̃hz(Hr(P ), f∗)
(−)r ∈W (A)abq . �

Definition 14.21 Let A be a commutative ring. Given a multiplicative subset
S ⊂ A[z] with leading units and z ∈ S define the S-primary Witt vector group

WS(A) = {p̃(z)/q̃(z) | p(z), q(z) monics dividing some element of S}
⊆W (A) .

�
Proposition 14.22 (Stienstra [277, p. 60])
For a commutative ring A and a multiplicative subset S ⊂ A[z] with leading
units and z ∈ S the characteristic polynomial defines a surjection

c̃h : Ẽnd
S

0 (A) −−→ WS(A) ;

[P, f ] −−→ c̃hz(P, f) = det(1− zf : P [z]−−→P [z])

which is split by

WS(A) −−→ Ẽnd
S

0 (A) ; p(z) −−→ [A[z]/p(z)] .

Proof The torsion group of any commutative ring R splits as

K1(R) = R• ⊕ SK1(R) ,

with SK1(R) the kernel of the split surjection

det : K1(R) −−→ R• ; τ(f) −−→ det(f) .

Thus
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Ẽnd
S

0 (A) = coker(K1(A)−−→K1(S̃
−1A[z]))

= coker(A•−−→(S̃−1A[z])•)⊕ coker(SK1(A)−−→SK1(S̃
−1A[z]))

= WS(A)⊕ coker(SK1(A)−−→SK1(S̃
−1A[z])) .

�
Remark 14.23 (i) If S ⊂ A[z] is the multiplicative subset of all monic
polynomials in A then the split surjection of 14.21 is the isomorphism of
14.12

c̃h : Ẽnd
S

0 (A) = Ẽnd0(A)
≃−−→ WS(A) = W (A) .

(ii) For a field F and a multiplicative subset S ⊂ F [z] such that z ∈ S the

split surjection of 14.21 is an isomorphism c̃h : Ẽnd
S

0 (F )
≃−−→WS(F ). See

Chap. 18 for further details.
(iii) If A is an integral domain with quotient field F , and TA ⊂ F [z] is the
multiplicative subset of monic polynomials (14.16) then

Ẽnd0(A) = W (A) = Ẽnd
TA

0 (F ) = WTA(F ) .

(iv) If S = {zk | k ≥ 0} ⊂ A[z] then

Ẽnd
S

0 (A) = Ñil0(A) ,

WS(A) = {1 + a1z + . . .+ adz
d | ai ∈ A nilpotent} ⊆W (A)

(Almkvist [7, 4.11]). �
Example 14.24 Let A be a commutative ring, and let S ⊂ A[z] be the

multiplicative subset consisting of all the polynomials p(z) =
n∑

j=m

ajz
j with

am, an ∈ A•, so that by 13.5

S−1A[z] = Ω−1A[z, z−1] , EndS(A) = EndΩ(A)

with Ω the set of Fredholm matrices in A[z, z−1]. The corresponding multi-
plicative subset of the reverse polynomials

S̃ = {p̃(z) | p(z) ∈ S} ⊂ A[z]

is the subset of S consisting of all the polynomials p̃(z) =
d∑
j=0

bjz
j with

b0 = 1, bd ∈ A•. There are identifications

EndS̃(A) = Aut(A) ,

EndS(A) = Nil(A)×Aut(A) ,

K∗(S
−1A[z]) = K∗(Ω

−1A[z, z−1])

= K∗(A[z])⊕ EndS∗ (A)

= K∗(A[z, z
−1])⊕Aut∗(A) .
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By 14.22 the characteristic polynomial defines a split surjection

c̃h : Ẽnd
S

0 (A) = Ñil0(A)⊕Aut0(A) −−→ WS(A) . �



15. The fibering obstruction

The fibering obstruction is the Whitehead torsion invariant whose vanishing
is the necessary and sufficient condition for a manifold of dimension ≥ 6 with
finitely dominated infinite cyclic cover (i.e. a band) to fibre over a circle.
Given a codimension 2 framed submanifold Nn ⊂Mn+2 it is natural to ask
if the exterior M\(N ×D2) is actually a fibre bundle over S1 – see Chap. 33
for more on fibred knots. See Hughes and Ranicki [112] for a general account
of the fibering obstruction.

The splitting theorem of Chap. 14

K1(A[[z]]) = K1(A)⊕ Ŵ (A)ab

extends to splittings

Wh1
(
A((z))

)
= Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ŵ (A)ab

Wh1
(
A((z−1))

)
= Wh1(A)⊕ K̃0(A)⊕ Ŵ (A)ab ⊕ Ñil0(A)

which have an application to fibering obstruction theory.

The most important sources of the algebraic and geometric bands of
Chaps. 1,2 are the manifold bands :

Definition 15.1 A manifold band is a compact manifold M with a finitely
dominated infinite cyclic cover M . �

A manifold band is a CW band, with the CW structure given by the
handlebody decomposition.

Remark 15.2 A manifold band is a ‘candidate for fibering’ in the terminol-
ogy of Siebenmann [266], [267]. �

Example 15.3 If F is a compact (n − 1)-dimensional manifold and h :
F−−→F is a homeomorphism the mapping torus T (h) is a compact n-
dimensional manifold band. The canonical map c : T (h)−−→S1 is the pro-
jection of a fibre bundle with fibre F and generating covering translation

ζ : T (h) = F × R −−→ T (h) = F × R ; (x, t) −−→ (h(x), t+ 1) . �
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Example 15.4 (Siebenmann [265])
If ϵ is a tame end of a non-compact n-dimensional manifold W with n ≥ 6
there exists an open neighbourhood M ⊂ W of ϵ which is the infinite cyclic
cover of an untwisted n-dimensional manifold band M with

π1(M) = π1(ϵ)× Z , π1(M) = π1(ϵ) .

See Hughes and Ranicki [112, Chaps. 15–17] for an account of the structure
theory of tame ends. �
Definition 15.5 A closed n-dimensional manifold M fibres over S1 if M is
isomorphic to the mapping torus T (h) of an automorphism h : F−−→F of a
closed (n− 1)-dimensional manifold F . �

In order for a manifold to fibre over S1 it is necessary (but not in general
sufficient) for it to be a band.

Let M be an n-dimensional manifold band. The classifying map c :
M−−→S1 can be made transverse regular at a point in S1 with inverse image
a codimension 1 framed submanifold

Fn−1 = c−1({pt.}) ⊂Mn

with a codimension 0 embedding F × (0, 1) ⊂ M . Cutting M along F there
is obtained a fundamental domain

(MF ;F, ζF ) = (M\F × (0, 1);F × {0}, F × {1})
for the infinite cyclic cover

M =

∞∪
j=−∞

ζjMF .

The manifold band M fibres over S1 if and only if M admits a fundamental
domain homeomorphic to a product F × (I; {0}, {1}). It is thus a direct con-
sequence of the s-cobordism theorem that there exists a fundamental domain
(MF ;F, ζF ) which is an s-cobordism if (and for n ≥ 6 only if) the manifold
band M fibres over S1.

Stallings [273] proved that every irreducible 3-dimensional manifold band
M3 with π1(M) ̸= Z2 fibres over S1, by considering surgery on the surface

F 2 = c−1({pt.}) ⊂M3 ,

with c :M−−→S1 the classifying map for the infinite cyclic coverM . Browder
and Levine [31] proved that for n ≥ 6 every n-dimensional manifold bandMn

with π1(M) = {1} (or equivalently c∗ : π1(M) ∼= π1(S
1) = Z) fibres over S1,

by considering surgery on the simply-connected submanifold

Fn−1 = c−1({pt.}) ⊂Mn .

Farrell [78], [79] and Siebenmann [266], [267] defined a Whitehead torsion ob-
struction

Φ+(M) ∈Wh(π1(M))
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for any n-dimensional manifold band M , such that Φ+(M) = 0 if (and for
n ≥ 6 only if) M fibres over S1.

Proposition 15.6 For n ≥ 6 an n-dimensional manifold band M fibres over
S1 if and only if it fibres as a CW complex band.
Proof The manifold fibering obstruction Φ+(M) is one of the CW complex
fibering obstructions Φ+(M), Φ−(M) (2.9). For a manifold bandM the fiber-
ing obstructions are dual to each other

Φ+(M) = (−)n−1Φ−(M)∗ ∈Wh(π1(M)) ,

so that Φ+(M) = 0 if and only if Φ−(M) = 0. �
For n = 4, 5 there are examples of n-dimensional manifold bands M with

Φ+(M) = 0 which do not fibre over S1 (Kearton [128], Weinberger [273]).

From now on, only untwisted manifold bands M will be considered, so that

π1(M) = π1(M)× Z , Z[π1(M)] = Z[π1(M)][z, z−1] .

This is a convenient simplifying assumption, which avoids the need for twisted
coefficients.

Novikov [220] initiated the development of S1-valued Morse theory, using
the power series rings A((z)), A((z−1)) to count critical points. Farber [75]
used S1-valued Morse theory to recover the result of Browder and Levine
[31] for fibering manifold bands Mn with n ≥ 6 and π1(M) = Z, using the
Fredholm localization for noetherian rings – the result of [31] appears as a
special case of a theorem realizing the Novikov inequalities on a manifold M
with π1(M) = Z by Morse maps M−−→S1 with a minimal number of critical
points of each index (namely 0 for the fibering case). See Lazarev [152] for
the computation of the Novikov homology of a knot complement in terms
of the Alexander polynomials. Pazhitnov [222], [223] used S1-valued Morse
theory to prove that for n ≥ 6 a compact n-dimensional manifold band M
fibres over S1 if and only if the A((z))-coefficient Reidemeister torsion

τ̂+(M) = τ(A((z))⊗A[z,z−1] C(M̃)) ∈Wh1
(
A((z))

)
/Ŵ (A)ab

is such that τ̂+(M) = 0, with C(M̃) the cellular chain complex of the uni-

versal cover M̃ and

A = Z[π1(M)] , A[z, z−1] = Z[π1(M)] .

A similar result was obtained by Latour [147]. The geometrically significant
splittings ofWh1

(
A((z))

)
andWh1

(
A((z−1))

)
allow this result to be deduced

from the original fibering obstruction theory of Farrell [78], [79] and Sieben-
mann [266], [267] using the algebraic fibering obstruction theory of Ranicki
[244, Chap. 20] recalled in Chap. 3.

By analogy with the conventions regarding theWhitehead groupsWh1(A)
(1.4) and Wh1(A[z, z

−1]) (3.8) :
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Convention 15.7 The Whitehead group of the formal power series ring
A((z)) is

Wh1
(
A((z))

)
= coker

(
K1(Z[z, z−1])−−→K1

(
A((z))

) )
= K1

(
A((z))

)
/{±zj | j ∈ Z}

in the algebraic context of an arbitrary ring A. In the topological context of
a group ring A = Z[π] the Whitehead group is to be understood to be

Ŵh
+
(π × Z) = K1

(
Z[π]((z))

)
/{±zjg | j ∈ Z, g ∈ π} .

Similarly for

Wh1
(
A((z−1))

)
= coker

(
K1(Z[z, z−1])−−→K1

(
A((z−1))

) )
= K1

(
A((z−1))

)
/{±zj | j ∈ Z}

and
Ŵh

−
(π × Z) = K1

(
Z[π]((z−1))

)
/{±zjg | j ∈ Z, g ∈ π} . �

By analogy with the geometrically significant decomposition

Wh1(A[z, z
−1]) = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

given by 5.19 :

Definition 15.8 The geometrically significant decompositions of the White-
head groups of A((z)), A((z−1))

Wh1
(
A((z))

)
= Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ŵ (A)ab

Wh1
(
A((z−1))

)
= Wh1(A)⊕ K̃0(A)⊕ Ŵ (A)ab ⊕ Ñil0(A)

are the decompositions determined by the isomorphisms

Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ŵ (A)ab
≃−−→ Wh1

(
A((z))

)
;

(τ(f :M−−→M), [N ], [P+, ν+], (a1, a2, . . .)) −−→

τ
(
f :M((z))−−→M((z))

)
+ τ
(
− z : N((z))−−→N((z))

)
+ τ
(
1− z−1ν+ : P+((z))−−→P+((z))

)
+ τ
(
1 +

∞∑
j=1

ajz
j : A((z))−−→A((z))

)
,

Wh1(A)⊕ K̃0(A)⊕ Ŵ (A)ab ⊕ Ñil0(A)
≃−−→ Wh1

(
A((z−1))

)
;

(τ(f :M−−→M), [N ], (a1, a2, . . .), [P
−, ν−]) −−→

τ
(
f :M((z−1))−−→M((z−1))

)
+ τ
(
− z : N((z−1))−−→N((z−1))

)
+ τ
(
1 +

∞∑
j=1

ajz
−j : A((z−1))−−→A((z−1))

)
+ τ
(
1− zν− : P−((z−1))−−→P−((z−1))

)
. �
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Recall from 8.3 that a based f.g. free A[z, z−1]-module chain complex E is
a band if and only if it is both A((z))-contractible and A((z−1))-contractible.

Definition 15.9 For any chain complex band E over A[z, z−1] let

τ̂+(E) = τ(A((z))⊗A[z,z−1] E) ∈Wh1
(
A((z))

)
,

τ̂−(E) = τ(A((z−1))⊗A[z,z−1] E) ∈Wh1
(
A((z−1))

)
. �

The algebraic mapping tori of an A-module chain map f : P−−→P are
the A[z, z−1]-module chain complexes

T+(f) = C(1− zf : P [z, z−1]−−→P [z, z−1]) ,

T−(f) = C(1− z−1f : P [z, z−1]−−→P [z, z−1]) .

Proposition 15.10 Let P be a finitely dominated A-module chain complex.
(i) For any chain map f : P−−→P

τ̂+(T+(f)) = (0, 0, 0, c̃hz(P, f))

∈Wh1
(
A((z))

)
= Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ŵ (A)ab

τ̂−(T−(f)) = (0, 0, c̃hz(P, f), 0)

∈Wh1
(
A((z−1))

)
= Wh1(A)⊕ K̃0(A)⊕ Ŵ (A)ab ⊕ Ñil0(A) .

(ii) For any chain equivalence f : P−−→P

τ̂+(T−(f)) = (τ(f),−[P ], 0, c̃hz(P, f−1))

∈Wh1
(
A((z))

)
= Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ŵ (A)ab

τ̂−(T+(f)) = (τ(f), [P ], c̃hz(P, f
−1), 0)

∈Wh1
(
A((z−1))

)
= Wh1(A)⊕ K̃0(A)⊕ Ŵ (A)ab ⊕ Ñil0(A) . �

Proposition 15.11 For any chain complex band E over A[z, z−1]

τ̂+(E) = (ϕ+,−[E−],−[E/E+, ζ], c̃hz(E
−, ζ−1))

∈Wh1
(
A((z))

)
= Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ŵ (A)ab

τ̂−(E) = (ϕ−, [E+], c̃hz(E
+, ζ),−[E/E−, ζ−1])

∈Wh1
(
A((z−1))

)
= Wh1(A)⊕ K̃0(A)⊕ Ŵ (A)ab ⊕ Ñil0(A)

for some ϕ+, ϕ− ∈Wh1(A) such that

ϕ+ − ϕ− = τ(ζ : E−−→E) ∈Wh1(A) .

Proof By 7.4 the fibering obstructions of E are of the form
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Φ+(E) = τ(q+ : T+(ζ−1)−−→E)

= (ϕ+,−[E−],−[E/E+, ζ],−[E/E−, ζ−1])

Φ−(E) = τ(q− : T−(ζ)−−→E)

= (ϕ−, [E+],−[E/E+, ζ],−[E/E−, ζ−1])

∈Wh1(A[z, z
−1]) = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) .

The A[z, z−1]-module chain equivalence q+ : T+(ζ−1)−−→E induces an
A((z))-module chain equivalence

1⊗ q+ : A((z))⊗A[z,z−1] T
+(ζ−1) −−→ A((z))⊗A[z,z−1] E

of contractible complexes. Applying 15.10 (i) gives

τ̂+(E) = τ(1⊗ q+) + τ̂+(T+(ζ−1))

= (ϕ+,−[E−],−[E/E+, ζ],−c̃hz(E/E−, ζ−1))

+ (0, 0, 0, c̃hz(E, ζ
−1))

= (ϕ+,−[E−],−[E/E+, ζ], c̃hz(E
−, ζ−1))

∈Wh1
(
A((z))

)
= Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ŵ (A)ab .

Similarly for τ̂−(E) ∈Wh1
(
A((z−1))

)
. �

Proposition 15.12 The fibering obstructions of a chain complex band E
over A[z, z−1] are such that Φ+(E) = Φ−(E) = 0 ∈ Wh1(A[z, z

−1]) if and
only if

τ̂+(E) = 0 ∈Wh1
(
A((z))

)
/Ŵ (A)ab ,

τ̂−(E) = 0 ∈Wh1
(
A((z−1))

)
/Ŵ (A)ab .

Proof Immediate from 15.11, since the components of

Φ+(E) = (ϕ+,−[E−],−[E/E+, ζ],−[E/E−, ζ−1]) ,

Φ−(E) = (ϕ−, [E+],−[E/E+, ζ],−[E/E−, ζ−1])

∈Wh1(A[z, z
−1]) = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

are determined by the components of

τ̂+(E) = (ϕ+,−[E−],−[E/E+, ζ])

∈Wh1
(
A((z))

)
/Ŵ (A)ab = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A) ,

τ̂−(E) = (ϕ−, [E+],−[E/E−, ζ−1])

∈Wh1
(
A((z−1))

)
/Ŵ (A)ab = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A) . �
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Definition 15.13 A geometric Poincaré band is a finite n-dimensional geo-
metric Poincaré complex X with

π1(X) = π × Z , Z[π1(X)] = Z[π][z, z−1]

satisfying any one of the following equivalent conditions :

(i) X is a CW band, i.e. the infinite cyclic cover X = X̃/π of X is
finitely dominated,

(ii) the cellular Z[π][z, z−1]-module chain complex C(X̃) of the universal

cover X̃ of X is finitely dominated,
(iii) H∗(X;Ω−1Z[π][z, z−1]) = 0,

in which caseX is a finitely dominated (n−1)-dimensional geometric Poincaré
complex. �
Example 15.14 A manifold band (15.1) is a geometric Poincaré band. �
Proposition 15.15 (Ranicki [244, p. 163])
The torsion τ(X) ∈Wh(π×Z) of an n-dimensional geometric Poincaré band
X and the Farrell–Siebenmann fibering obstructions

Φ+(X) = (ϕ+,−[E−], ν+, ν−) , Φ−(X) = (ϕ−, [E+], ν+, ν−)

are such that

τ(X) = Φ+(X) + (−)nΦ−(X)∗

= (ϕ+ + (−)n(ϕ−)∗, (−)n+1[E+]∗ − [E−],

ν+ + (−)n+1(ν−)∗, ν− + (−)n+1(ν+)∗)

∈Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π])

with E = C(X̃) and

ϕ+ − ϕ− = τ(ζ : X−−→X) ∈Wh(π) ,

[E+] + [E−] = [E] = [X] ∈ K̃0(Z[π]) .

Also, 15.11 gives

τ̂+(X) = (ϕ+,−[E−], ν+)

∈Wh1
(
Z[π]((z))

)
/Ŵ (Z[π])ab = Wh1(Z[π])⊕ K̃0(Z[π])⊕ Ñil0(Z[π])

τ̂−(X) = (ϕ−, [E+], ν−)

∈Wh1
(
Z[π]((z−1))

)
/Ŵ (Z[π])ab = Wh1(Z[π])⊕ K̃0(Z[π])⊕ Ñil0(Z[π]) .

In particular, for a simple Poincaré band τ(X) = 0 ∈Wh(π × Z) (e.g. for a
manifold band), so that



160 15. The fibering obstruction

ϕ− = (−)n+1(ϕ+)∗ ∈Wh(π) ,

[E−] = (−)n+1[E+]∗ ∈ K̃0(Z[π]) ,

ν− = (−)n(ν+)∗ ∈ Ñil0(Z[π]) . �
Proposition 15.16 The Farrell–Siebenmann fibering obstruction

Φ+(M) = τ(T (ζ)−−→M) ∈Wh(π × Z)

of an n-dimensional manifold band M with π1(M) = π×Z and the Pazhitnov
fibering obstruction

τ̂+(M) = τ(Z[π]((z))⊗Z[π][z,z−1] C(M̃)) ∈Wh1
(
Z[π]((z))

)
/Ŵ (Z[π])ab

are such that Φ+(M) = 0 if and only if τ̂+(M) = 0.
Proof M is a simple Poincaré band, so that by 15.15 the Farrell–Siebenmann
fibering obstruction

Φ+(M) = (ϕ+,−[E−], ν+, (−)n(ν+)∗)

∈Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π])

determines and is determined by the Pazhitnov fibering obstruction

τ̂+(M) = (ϕ+,−[E−], ν+)

∈Wh1
(
Z[π]((z))

)
/Ŵ (Z[π])ab = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π]) .

�
Remark 15.17 The fibering obstructions can also be described using the
Fredholm localization Ω−1A[z, z−1] of 13.3. A finite based f.g. free A[z, z−1]-
module chain complex E is A-finitely dominated if and only if it is
Ω−1A[z, z−1]-contractible, in which case it has Ω−1A[z, z−1]-coefficient tor-
sion

τ(Ω−1E) = (Φ+(E), [E, ζ])

∈ K1(Ω
−1A[z, z−1]) = K1(A[z, z

−1])⊕Aut0(A)

by the splitting theorem of 13.17 (cf. Ranicki [248]). �
Example 15.18 Let X be an untwisted CW band with fundamental group
π1(X) = π × Z, universal cover X̃ and infinite cyclic cover X = X̃/π, and
write

Λ = Ω−1Z[π][z, z−1] .

Now X is Λ-acyclic, with Λ-coefficient torsion

τ(X;Λ) = (Φ+(X), [X, ζ])

∈Wh1(Λ) = Wh1(Z[π][z, z−1])⊕Aut0(Z[π]) . �



16. Reidemeister torsion

Reidemeister torsion is an invariant of simple homotopy type, a precursor of
Whitehead torsion, which was originally used in the combinatorial classifica-
tion of lens spaces. There are many connections between Reidemeister tor-
sion and knots, particularly the Alexander polynomials of knots – see Milnor
[193], [194], [195] and Turaev [295], as well as Chap. 17 below. In the current
chapter the treatment of Reidemeister torsion in [194] will be generalized to
define a relative K-theory invariant for chain complexes.

For any ring morphism f : A−−→B there is defined an exact sequence of
algebraic K-groups

K1(A)
f
−−→ K1(B) −−→ K1(f) −−→ K0(A)

f
−−→ K0(B) ,

with K1(f) the algebraic K-group of triples (P,Q, g) with P,Q f.g. projective
A-modules and g : B ⊗A P−−→B ⊗A Q a B-module isomorphism. A finitely
dominated A-module chain complex C with a round finite structure ϕB on
B ⊗A C has a relative K-theory invariant

[C, ϕB] ∈ K1(f)

with image the projective class [C] ∈ K0(A) (Ranicki [241]). The projective
class of a finitely dominated B-contractible A-module chain complex C is an
element

[C] ∈ ker(f : K0(A)−−→K0(B)) = im(K1(f)−−→K0(A)) ,

the image of [C, ϕB ] ∈ K1(f) for any choice of round finite structure ϕB on
B ⊗A C. The projective class is [C] = 0 if and only if C admits a round
A-finite structure ϕA, in which case

[C, ϕB ] ∈ ker(K1(f)−−→K0(A)) = im(K1(B)−−→K1(f))

is the image of τ(B ⊗A C, 1⊗ ϕA) ∈ K1(B).

Definition 16.1 (i) The absolute Reidemeister torsion of a B-contractible
A-module chain complex C with a round finite structure ϕA is

∆(C, ϕA) = τ(B ⊗A C, 1⊗ ϕA) ∈ K1(B) .
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(ii) The relative Reidemeister torsion of a B-contractible f.g. free A-module
chain complex C is

∆(C) = [∆(C, ϕA)]

∈ coker(f : K1(A)−−→K1(B)) = ker(K1(f)−−→K0(A))

using any round finite structure ϕA on C. �
Terminology 16.2 If C is a B-contractible based f.g. free A-module chain
complex the bases determine a round finite structure ϕA on C, and the Rei-
demeister torsion ∆(C, ϕA) = τ(B ⊗A C, 1⊗ ϕA) is written

∆(C) = τ(B ⊗A C) ∈ K1(B) . �

Proposition 16.3 (i) If C is a B-contractible f.g. free A-module chain com-
plex then B ⊗A C has a canonical round finite structure ϕB with

∆(C, ϕA) = τ(1 : (B ⊗A C, 1⊗ ϕA)−−→(B ⊗A C, ϕB)) ∈ K1(B)

for any round finite structure ϕA on C.
(ii) If C is a B-contractible based f.g. free A-module chain complex then

∆(C) =

∞∑
r=0

(−)rτ(1 : B ⊗A Cr−−→(B ⊗A Cr, ϕr)) ∈ K1(B)

with ϕr the (stable) basis of B⊗ACr determined by the canonical round finite
structure ϕB on B ⊗A C.
Proof (i) Define

Dr = B ⊗A Cr , Er = ker(d : Dr−−→Dr−1) (r ≥ 0)

and use a chain contraction Γ : 0 ≃ 1 : D−−→D to define an isomorphism of
B-module chain complexes

(i Γ |) : C(1 : E−−→E) −−→ D

with i : Er−−→Dr the inclusion. For each r ≥ 0 there is defined a contractible
chain complex

0 −−→ Er −−→ Dr −−→ . . . −−→ D1 −−→ D0 −−→ 0 ,

so that there is an isomorphism

Er ⊕Dr−1 ⊕Dr−3 ⊕ . . . ∼= Dr ⊕Dr−2 ⊕ . . .

and Er is (stably) f.g. free. Choosing an arbitrary (stable) basis for each Er
determines the canonical round finite structure ϕB on D = B ⊗A C.
(ii) Immediate from (i). �
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Example 16.4 (i) Let X be a finite CW complex with finite fundamental
group π1(X) = π and Euler characteristic χ(X) = 0. Also, let

f : A = Z[π] −−→ B = Q[π]/(
∑
g∈π

g)

be the natural ring morphism, and let C = C(X̃) be the cellular A-module

chain complex of the universal cover X̃, with the bases determined by the
cell structure up to ±π. It follows from Q[π] = Q⊕B that

H∗(X̃;Q) = H∗(Q[π]⊗A C) = H∗(Q⊗A C)⊕H∗(B ⊗A C) .

If π acts trivially on H∗(X̃;Q) then

H∗(X̃;Q) = H∗(Q⊗A C) , H∗(B ⊗A C) = 0 ,

and X has an absolute Reidemeister torsion invariant as in Milnor [194, 12.4]

∆(X) = ∆(C) ∈Wh(B) = K1(B)/{±π} .

If h : Y−−→X is a homotopy equivalence of finite CW complexes for which
τ is defined

h∗∆(Y )−∆(X) = [τ(h)] ∈ im(Wh(π)−−→Wh(B)) ,

with τ(h) ∈Wh(π) the Whitehead torsion. Thus ∆(X) is a simple homotopy
invariant, while the relative Reidemeister torsion

[∆(X)] ∈ coker(f :Wh(π)−−→Wh(B))

is a homotopy invariant of X.
(ii) In the applications of absolute Reidemeister torsion to the classification
of lens spaces (due to Reidemeister, Franz and deRham) π = Zm is a cyclic
group, with

Q[Zm] =
⊕
d|m

Q(ζd) , B =
⊕

d|m,d̸=1

Q(ζd)

products of cyclotomic fields Q(ζd) (ζd = e2πi/d), and

K1(Q[Zm]) =
⊕
d|m

Q(ζd)
• , K1(B) =

⊕
d|m,d̸=1

Q(ζd)
• .

By results of Higman and Bass

Wh(Zm) = Z[m/2]+1−δ(m)

with δ(m) the number of divisors of m. �
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Proposition 16.5 Let

i : A −−→ B = S−1A

be the inclusion of a ring in the localization inverting a multiplicative subset
S ⊂ A.
(i) An S−1A-contractible finite f.g. projective A-module chain complex has
an S-torsion class τS(C) ∈ K1(A,S) (4.7) with image the projective class
[C] ∈ K0(A).
(ii) If [C] = 0 ∈ K0(A) a choice of round finite structure on C determines
a lift of the S-torsion class τS(C) ∈ K1(A,S) to the element τ(S−1C) ∈
K1(S

−1A), and the relative Reidemeister torsion of C agrees with the S-
torsion class

∆(C) = [τ(S−1C)] = τS(C)

∈ coker(i : K1(A)−−→K1(S
−1A)) = ker(K1(A,S)−−→K0(A)) . �

Example 16.6 Let A be an integral domain with quotient field F . Let

i : A −−→ F = S−1A

be the inclusion, with S = A\{0} ⊂ A, so that

i : K1(A) −−→ K1(F ) = F • ; (ajk) −−→ det(ajk) .

If C is a finite f.g. free A-module chain complex then H∗(F ⊗A C) = 0 if and
only if H∗(C) is S-torsion, that is sH∗(C) = 0 for some s ∈ S. A choice of
s ∈ S such that sH∗(C) = 0 determines a round finite structure on C. As in
16.5 the relative Reidemeister torsion of C is an element

∆(C) ∈ coker(i : K1(A)−−→F •)

which (at least for A a unique factorization ring) may be identified with the

class of
1

s
for some element s ∈ S such that sH∗(C) = 0, as follows.

(i) The annihilator of an A-module M is the ideal

ann(M) = {a ∈ A | aM = 0} ▹ A .

Every f.g. A-module M admits a presentation of the type

Am
d
−−→ An −−→ M −−→ 0

with m ≤ ∞. The order ideal o(M)▹A ofM (or 0th Fitting ideal) is the ideal
generated by the n× n minors of the matrix of d, such that

o(M) ⊆ ann(M) .

If m < n then o(M) = ann(M) = {0}.
If m = n then o(M) = (det(d)) and the annihilator of M is
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ann(M) = {a ∈ A | ao1(M) ⊆ o(M)} ▹ A

with o1(M) the Fitting ideal generated by the (n−1)× (n−1) minors of the
matrix of d – see Eisenbud [67, p. 511].
(ii) Suppose now that A is a unique factorization domain. The order of a f.g.
A-module M is

ord(M) = {greatest common divisor of o(M)}
∈ coker(i : K1(A)−−→F •) .

If M has a presentation (as in (i)) with m = n and o(M) is a principal ideal
then

ord(M) = det(d) ∈ coker(i : K1(A)−−→F •) .

If A is a principal ideal domain then every f.g. S-torsion A-module M is a
finite direct sum of cyclic S-torsion A-modules

M =
k⊕
j=1

A/sjA (sj ∈ S , sj+1 | sj) ,

and

ann(M) = (s1) , o(M) =

( k∏
j=1

sj

)
, o1(M) =

( k∏
j=2

sj

)
▹ A

with

ord(M) =
k∏
j=1

sj ∈ coker(i : K1(A)−−→F •) .

(iii) If A is noetherian ring the homology modules Hr(C) (r ≥ 0) of a finite
f.g. free A-module chain complex C are f.g., and H∗(F ⊗A C) = 0 if and
only if each Hr(C) is an S-torsion A-module. If A is a noetherian unique
factorization domain the relative Reidemeister torsion of a finite f.g. free
A-module chain complex C with H∗(F ⊗A C) = 0 is given by the formula

∆(C) =
∏
r≥0

ord(Hr(C))
(−)r ∈ coker(i : K1(A)−−→F •) . �

Example 16.7 For any ring A let

i : A[z, z−1] −−→ B = Ω−1A[z, z−1]

be the inclusion of A[z, z−1] in the Fredholm localization (13.3). A finitely
dominated A[z, z−1]-module chain complex C is Ω−1A[z, z−1]-acyclic if and
only if it is A-finitely dominated, in which case the relative Reidemeister
torsion of C is the automorphism class of Chap. 13
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∆(C) = [C, ζ]

∈ coker(i : K1(A[z, z
−1])−−→K1(Ω

−1A[z, z−1])) = Aut0(A) .

(This is also a special case of 16.5). �
Example 16.8 The Laurent polynomial extension F [z, z−1] of a field F is
a principal ideal domain with quotient F (z) the field of rational functions.
A f.g. F [z, z−1]-module M is torsion if and only if dimF (M) < ∞, in which
case M is a finite direct sum of cyclic F [z, z−1]-modules

M =
k⊕
j=1

F [z, z−1]/(sj(z))

with
sj(z) ̸= 0 ∈ F [z, z−1] , sj+1(z) | sj(z) ,

dimF (M) =

k∑
j=1

deg(sj(z)) <∞ ,

ord(M) =
k∏
j=1

sj(z) = chz(M, ζ) ∈ F [z, z−1] .

A finite f.g. free F [z, z−1]-module chain complex C is F (z)-contractible if and
only if the homology F -vector spaces Hr(C) (r ≥ 0) are finite dimensional,
in which case the relative Reidemeister torsion is given by

∆(C) =
∏
r≥0

ord(Hr(C))
(−)r =

∏
r≥0

chz(Hr(C), z)
(−)r

∈ coker(K1(F [z, z
−1])−−→K1(F (z)))

= F (z)•/{uzn |u ∈ F •, n ∈ Z}

as in Milnor [195] and Turaev [295]. This is also the automorphism torsion
of C (16.7). See Chap. 19 below for an elaboration of this example. �
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In Chap. 17 it is assumed that the ground ring A is an integral domain, with
quotient field F .

This chapter only deals with the algebraic properties of Alexander poly-
nomials – see Chap. 33E for the applications to knot theory.

The Alexander polynomials of an n-dimensional A-contractible finite f.g.
projective A[z, z−1]-module chain complex E

∆r(z) ∈ A[z] (r ≥ 0)

are chain homotopy invariants such that

∆r(1) = 1 , ∆r(0) ̸= 0 , ∆r(z)Hr(E) = 0

with ∆r(z) = 1 for r ≥ n. The multiplicative subset

P = {p(z) ∈ A[z, z−1] | p(1) ∈ A•} ⊂ A[z, z−1]

has the universal property that a finite f.g. projective A[z, z−1]-module chain
complex E is A-contractible if and only if E is P−1A[z, z−1]-contractible.

Recall that the Witt vector groups W (A), W̃ (A) of Chap. 14 are defined by

W (A) = {p(z)
q(z)

| p(z), q(z) ∈ A[z], p(0) = q(0) = 1} ⊂ F (z)• ,

W̃ (A) = W (A)/{det(1− z : P [z]−−→P [z])}
for f.g. projective A-modules P . The two main results of Chap. 17 are that
for an A-contractible E :

(i) the Alexander polynomials of E determine the P -torsion K-theory
class

τP (E) =
∞∏
r=0

∆r(1− z)(−)r ∈ K1(A[z, z
−1], P ) = W̃ (A) ,

which is sent by the injection W̃ (A) ⊆ W̃ (F ) to the Reidemeister
torsion

[τP (E)] = ∆(F ⊗A E) ∈ W̃ (F ) = (F (z)•/F •)/{(1− z)} .
(ii) E is A-finitely dominated if and only if the extreme coefficients of

the Alexander polynomials ∆r(z) are units in A.
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The Alexander polynomials of knot theory arise in the case A = Z. The
criterion for finite domination is an abstraction of the result that a high-
dimensional knot k is fibred if and only if the extreme coefficients of the
Alexander polynomials of k are units in Z (i.e. ±1).

A finite f.g. projective A[z, z−1]-module chain complex E is A-contractible
if and only if the A-module morphisms 1− ζ : H∗(E)−−→H∗(E) are isomor-
phisms, in which case the induced F -module morphisms are also isomor-
phisms

1− ζ : H∗(E;F )
≃−−→ H∗(E;F ) .

Definition 17.1 The Alexander polynomials of an A-contractible finite f.g.
projective A[z, z−1]-module chain complex E are

∆r(z) = det((z − ζ)(1− ζ)−1 : Hr(E;F )[z]−−→Hr(E;F )[z])

∈ F [z] (r ≥ 0) ,

with
H∗(E;F ) = H∗(F ⊗A E) = H∗(F [z, z

−1]⊗A[z,z−1] E) . �
The Alexander polynomials ∆r(z) are in fact defined in A[z] ⊂ F [z] :

Proposition 17.2 Let Q ⊂ A[z] be the multiplicative subset of monic poly-
nomials, so that as in 10.10 (iii) the localization of A[z] inverting Q is the
Fredholm localization of A[z]

Q−1A[z] = Ω−1
+ A[z] .

(i) The Q-torsion class of a finite chain complex (D, f) in End(A) is given
by

τQ(D, f) =

( ∞∑
r=0

(−)r[Dr] ,
∞∏
r=0

det(1− zf : Dr[z]−−→Dr[z])
(−)r

)
∈ K1(A[z], Q) = End0(A) = K0(A)⊕W (A) .

(ii) The ring morphism

A[z] −−→ A[z, z−1, (1− z)−1] ; z −−→ (1− z)−1

induces an exact functor

End(A) = H(A[z], Q) −−→ H(A[z, z−1, (1− z)−1], P ) = H(A[z, z−1], P ) ;

(D, f) −−→ coker(1− f + zf : D[z, z−1]−−→D[z, z−1])

and a morphism of torsion K-groups

K1(A[z], Q) = End0(A) = K0(A)⊕W (A) −−→

K1(A[z, z
−1, (1− z)−1], P ) = K1(A[z, z

−1], P ) = W̃ (A) ;

τQ(D, f) −−→ τP (E)
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with
E = C(1− f + zf : D[z, z−1]−−→D[z, z−1])

an A-contractible finite f.g. projective A[z, z−1]-module chain complex and

τP (E) =
∞∏
r=0

det(1− zf : Dr[z]−−→Dr[z])
(−)r

=
∞∏
r=0

det(1− zf : Hr(D;F )[z]−−→Hr(D;F )[z])(−)r

=
∞∏
r=0

det(1− z(1− ζ)−1 : Hr(E;F )[z]−−→Hr(E;F )[z])(−)r

=

∞∏
r=0

∆r(1− z)(−)r ∈ W̃ (A) .

(iii) Every A-contractible finite f.g. projective A[z, z−1]-module chain complex
E is chain equivalent to C(1−f+zf : D[z, z−1]−−→D[z, z−1]) for some finite
chain complex (D, f) in End(A) (10.20). If

det(1− f + zf : Hr(D;F )[z]−−→Hr(D;F )[z]) = znr (

mr∑
j=0

aj,rz
j) ∈ A[z]

(a0,r ̸= 0 ,

mr∑
j=0

aj,r = 1 ∈ A)

then the Alexander polynomials of E are given by

∆r(z) =

mr∑
j=0

aj,rz
j ∈ A[z] .

(iv) If A is a Dedekind ring then for (D, f), E as in (iii) the A-modules
H∗(D) are finitely generated, and the torsion-free quotients

Lr = Hr(D)/torsion

are f.g. projective A-modules, with the Alexander polynomials of E given by

∆r(z) = z−nrdet(1− f + zf : Lr[z]−−→Lr[z]) ∈ A[z] ⊂ F [z] (r ≥ 0)

(nr as in (iii)).
(v) If A is a Dedekind ring and the A-modules H∗(E) are finitely generated14

then the torsion-free quotients

Mr = Hr(E)/torsion

14if and only if E is A-finitely dominated (17.8)
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are f.g. projective A-modules, with the Alexander polynomials of E given by

∆r(z) = det((z − ζ)(1− ζ)−1 :Mr[z]−−→Mr[z])

∈ A[z] ⊂ F [z] (r ≥ 0) .

Proof (i)+(ii) Immediate from 14.16 (iv).
(iii) The polynomial

pr(z) = det(1− f + zf : Hr(D;F )[z]−−→Hr(D;F )[z]) ∈ F [z]

is such that pr(1) = 1, so that pr(z) ̸= 0. Moreover, pr(z) ∈ A[z] ⊂ F [z], since
it is possible to choose a basis for Hr(D;F ) in im(Hr(D)−−→Hr(D;F )), and
the matrix of 1−f+zf with respect to the corresponding basis forHr(D;F )[z]
has entries in A[z]. The connecting maps in the homology exact sequence

. . . −−→ Hr(D;F )[z, z−1]
1−f+zf
−−−−→ Hr(D;F )[z, z−1]

−−→ Hr(E;F )
∂
−−→ Hr−1(D;F )[z, z−1] −−→ . . .

are ∂ = 0, and there is defined an exact sequence in End(F )

0 −−→ (Cr, g) −−→ (Hr(D;F ), f) −−→ (Hr(E;F ), (1− ζ)−1) −−→ 0

with

Cr = {x ∈ Hr(D;F ) | (f2 − f)k(x) = 0 for some k ≥ 0} , g = f | .

For any indeterminate s over A

chs(Cr, g) = sℓr−mr−nr (s− 1)nr ∈ A[s] ,

with

ℓr = dimFHr(D;F ) , mr = dimFHr(E;F ) ,

nr = dimF

( ∞∪
k=0

ker
(
(1− f)k : Hr(D;F )−−→Hr(D;F )

))
and

chs(Hr(D;F ), f) = chs(Cr, g)chs(Hr(E;F ), (1− ζ)−1) ∈ A[s] .

Substituting s = (1− z)−1 and multiplying by (1− z)ℓr gives

det(1− f + zf : Hr(D;F )[z]−−→Hr(D;F )[z])

= det(1− g + zg : Cr[z]−−→Cr[z])

det((z − ζ)(1− ζ)−1 : Hr(E;F )[z]−−→Hr(E;F )[z]) ,

det(1− g + zg : Cr[z]−−→Cr[z]) = znr ∈ A[z] .
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(iv) By the universal coefficient theorem

Hr(D;F ) = F ⊗A Lr ,

and by 11.6 (iii)

det(1− f + zf : Hr(D;F )[z]−−→Hr(D;F )[z])

= det(1− f + zf : Lr[z]−−→Lr[z]) ∈ A[z] ⊂ F [z] .

(v) By the universal coefficient theorem

Hr(E;F ) = F ⊗AMr ,

and by 11.6 (iii)

det((z − ζ)(1− ζ)−1 : Hr(E;F )[z]−−→Hr(E;F )[z])

= det((z − ζ)(1− ζ)−1 :Mr[z]−−→Mr[z]) ∈ A[z] ⊂ F [z] . �

Remark 17.3 Let E be an A-contractible finite f.g. projective A[z, z−1]-
module chain complex, as in 17.2.
(i) The Laurent polynomial extension F [z, z−1] is a principal ideal domain
and each Hr(E;F ) is a f.g. F [z, z−1]-module such that

Hr(E;F ) =

kr∑
j=1

F [z, z−1]/(λj,r(z))

for some polynomials λj,r(z) ∈ F [z, z−1] with λj,r(1) = 1 ∈ F . The Alexander
polynomial ∆r(z) ∈ A[z, z−1] is a generator of the order ideal (16.6)

o(Hr(E;F )) = {p(z) ∈ F [z, z−1] | p(z)Hr(E;F ) = 0}

=

kr∏
j=1

(λj,r(z)) = (

kr∏
j=1

λj,r(z)) ▹ F [z, z
−1]

(Levine [155], Milnor [195]).
(ii) It is necessary to define the Alexander polynomials ∆∗(z) using H∗(E;F )
instead of H∗(E), since the F -modules H∗(E;F ) are finitely generated and
in general the A-modules H∗(E) are not finitely generated – see (iii) below
for an explicit example.
(iii) Let A = Z, F = Q and let E be the Z-contractible finite f.g. free
Z[z, z−1]-module chain complex

E : . . . −−→ 0 −−→ Z[z, z−1]
2z−1
−−→ Z[z, z−1] .

In this case H0(E) = Z[1/2] is an infinitely generated free Z-module. The
Q-coefficient homology
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H0(E;Q) = Q[z, z−1]/(2z − 1) = Q

is a 1-dimensional Q-vector space with ζ = 1/2 : Q−−→Q, and the Alexander
polynomial is ∆0(z) = 2z − 1. �
Proposition 17.4 The Alexander polynomials of an A-contractible finite f.g.
projective A[z, z−1]-module chain complex E

∆r(z) =

mr∑
j=0

aj,rz
j ∈ A[z] (r ≥ 0)

are such that

mr = dimFHr(E;F ) ,

chz(Hr(E;F ), ζ) = det(1− ζ)∆r(z) ∈ A[z] ,

chz(Hr(E;F ), (1− ζ)−1) = zmr∆r(1− z−1)

=

mr∑
j=0

aj,r(z − 1)jzmr−j ∈ A[z] ,

chz(Hr(E;F ),−ζ(1− ζ)−1) = (z − 1)mr∆r(z(z − 1)−1)

=

mr∑
j=0

aj,rz
j(z − 1)mr−j ∈ A[z] ,

∆r(0) = a0,r = det(−ζ(1− ζ)−1 : Hr(E;F )−−→Hr(E;F )) ̸= 0 ∈ A ,

amr,r = det((1− ζ)−1 : Hr(E;F )−−→Hr(E;F )) ̸= 0 ∈ A ,

∆r(z)Hr(E) = 0 , ∆r(1) =

mr∑
j=0

aj,r = 1 ∈ A .

Proof Let (D, f) be a finite chain complex in End(A) with anA[z, z−1]-module
chain equivalence

C(1− f + zf : D[z, z−1]−−→D[z, z−1]) ≃ E .

Define the finite f.g. projective A[z]-module chain complex

E+ = C(1− f + zf : D[z]−−→D[z])

such that
A[z, z−1]⊗A[z] E

+ ≃ E .

Now

det(1− f + zf : Hr(D;F )[z]−−→Hr(D;F )[z]) = znr

mr∑
j=0

aj,rz
j ∈ A[z]
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with
nr = dimF

(
ker(ζ∗ : Hr(E

+;F )−−→Hr(E
+;F ))

)
= dimFHr(E

+;F )− dimFHr(E;F ) ≥ 0

as in 14.19 (i), and as in 17.2 the Alexander polynomials of E are given by

∆r(z) = z−nrdet(1− f + zf : Hr(D;F )[z]−−→Hr(D;F )[z])

=

mr∑
j=0

aj,rz
j ∈ A[z] . �

Proposition 17.5 Let E be a 1-dimensional A-contractible f.g. free A[z, z−1]-
module chain complex

E : . . . −−→ 0 −−→ E1

d
−−→ E0

with

d =
m∑
j=0

djz
j : E1 = A[z, z−1]k −−→ E0 = A[z, z−1]k

and

det(d) =

mk∑
j=n

ajz
j ∈ A[z] (an ̸= 0 ∈ A) .

The Alexander polynomial of E is given by

∆0(z) = z−ndet(d(
m∑
j=0

dj)
−1 : E0−−→E0) ∈ A[z] .

Proof Define the A-module

D =

m∑
0

Ak .

The A-module endomorphisms

g =



d0 0 0 . . . 0

−d1 1 0 . . . 0

d2 0 1 . . . 0
...

...
...

. . .
...

(−)mdm 0 0 . . . 1

 : D −−→ D ,

h =


0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 : D −−→ D
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are such that

g + zh =


1 −z z2 . . . (−)mzm

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1



−1
d 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




1 0 0 . . . 0

d1 1 0 . . . 0

−d2 0 1 . . . 0
...

...
...

. . .
...

(−)m+1dm 0 0 . . . 1



−1

: D[z, z−1] −−→ D[z, z−1] .

(The matrix identity comes from the algebraic transversality of the Higman
linearization trick – see Chap. 7 above, and Ranicki [244, 10.6]). Now

det(g + h) = det(

m∑
j=0

dj) ∈ A• ,

so that g + h : D−−→D is an automorphism. The endomorphism

f = (g + h)−1h : D −−→ D

is such that

C(1− f + zf : D[z, z−1]−−→D[z, z−1])

= C((g + h)−1(g + zh) : D[z, z−1]−−→D[z, z−1])

≃ C(d : A[z, z−1]k−−→A[z, z−1]k) = E .

By 17.2 the Alexander polynomial of E is

∆0(z) = z−ndet(1− f + zf : D[z]−−→D[z])

= z−ndet(d(
m∑
j=0

dj)
−1 : E0−−→E0) ∈ A[z] . �

Example 17.6 Given a polynomial

p(z) = zn
m∑
j=0

ajz
j ∈ A[z]

with p(1) = 1 ∈ A, a0, am ̸= 0 ∈ A, define

E+ = C(p(z) : A[z]−−→A[z]) ,

E = A[z, z−1]⊗A[z] E
+ = C(p(z) : A[z, z−1]−−→A[z, z−1])
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such that

dimFH0(E
+;F ) = m+ n , dimFH0(E;F ) = m .

The Alexander polynomial of E is

∆0(z) = z−np(z) =
m∑
j=0

ajz
j ∈ A[z] . �

In fact, 17.5 is the 1-dimensional case of :

Proposition 17.7 Let E be a finite f.g. projective A[z, z−1]-module chain
complex which is A-contractible, so that E is P−1A[z, z−1]-contractible, with

P = {p(z) ∈ A[z, z−1] | p(1) ∈ A•} ⊂ A[z, z−1] .

(i) The boundary map ∂ in the localization exact sequence

. . . −−→ K1(A[z, z
−1]) −−→ K1(P

−1A[z, z−1])
∂
−−→ K1(A[z, z

−1], P )

−−→ K0(A[z, z
−1]) −−→ . . .

sends the torsion τ(P−1E) ∈ K1(P
−1A[z, z−1]) (with respect to arbitrary

choice of bases for each P−1Er) to the P -torsion class (= Reidemeister tor-
sion, by 16.5)

τP (E) = ∆(E) =
∞∏
r=0

∆r(1− z)(−)r ∈ K1(A[z, z
−1], P ) = W̃ (A) ,

with

∆r(1− z) = c̃hz(Hr(D;F ), f)

= det(1− zf : Hr(D;F )[z]−−→Hr(D;F )[z]) ∈W (A)

for any finite chain complex (D, f) in End0(A) such that

C(1− f + zf : D[z, z−1]−−→D[z, z−1]) ≃ E .

(ii) There exist A[z, z−1]-module morphisms Γ : Er−−→Er+1 such that

(dΓ + Γd− 1)(Er) ⊆ (1− z)(Er) (r ≥ 0)

and d+Γ : Eodd−−→Eeven is an A-isomorphism. If bases are chosen for each
Er such that

det(1⊗ (d+ Γ ) : A⊗A[z,z−1] Eodd−−→A⊗A[z,z−1] Eeven) = 1 ∈ A

then for some n ∈ Z
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τ(P−1E) = τ(d+ Γ : P−1Eodd−−→P−1Eeven) ∈ K1(P
−1A[z, z−1]) ,

det(d+ Γ : Eodd−−→Eeven) = zn
∞∏
r=0

∆r(z)
(−)r ∈ P ⊂ A[z, z−1] .

�
The extreme coefficients of the Alexander polynomials determine if a chain

complex is a band :

Proposition 17.8 Let E be an A-contractible finite f.g. projective A[z, z−1]-
module chain complex with Alexander polynomials

∆r(z) =

mr∑
j=0

aj,rz
j ∈ A[z] (a0,r, amr,r ̸= 0 ∈ A, r ≥ 0) .

(i) The chain complex E is A-finitely dominated (i.e. E is a band) if and only
if the extreme coefficients a0,r, amr,r ∈ A are units.
(ii) If A is a Dedekind ring then E is A-finitely dominated if and only if the
homology groups Hr(E) (r ≥ 0) are finitely generated as A-modules.
Proof (i) Define the multiplicative subset

S = {
n∑

j=m

ajz
j | am, an ∈ A are units} ⊂ A[z, z−1] ,

so that as in 13.12 (i)

S−1A[z, z−1] = Ω−1A[z, z−1] .

By 13.8 E is A-finitely dominated if and only if it is S−1A[z, z−1]-contract-
ible. Thus E is A-finitely dominated if and only if ∆r(z) ∈ S (r ≥ 0).
(ii) For any noetherian ring A the homology of a f.g. A-module chain complex
consists of f.g. A-modules. Conversely, if A is Dedekind and the homology
groups Hr(E) are f.g. A-modules then (as in 17.3 (iii)) the Alexander poly-
nomials are given by

∆r(z) = det((z − ζ)(1− ζ)−1 :Mr[z]−−→Mr[z]) ∈ A[z] (r ≥ 0)

with each Mr = Hr(E)/torsion a f.g. projective A-module. The extreme
coefficients of ∆r(z) are units

∆r(0) = det(−ζ(1− ζ)−1 :Mr−−→Mr) , det((1− ζ)−1 :Mr−−→Mr) ∈ A•

so that (i) applies. �
Example 17.9 The 1-dimensional A-contractible f.g. free A[z, z−1]-module
chain complex of 17.6

E = C(zn
m∑
j=0

ajz
j : A[z, z−1]−−→A[z, z−1])
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is A-finitely dominated if and only if the coefficients a0, am ∈ A are units, in
which case E ≃ Am. �
Remark 17.10 Suppose that A = Z. For any object (L, f) in End(Z) the
(Z[z, z−1], P )-module

K = coker(1− f + zf : L[z, z−1]−−→L[z, z−1])

is a torsion-free abelian group (Crowell [58], Trotter [292, Lemma 2.1]). By
17.8 (ii) K is a finitely generated abelian group if and only if the extreme
coefficients of the Alexander polynomial

∆(z) = det(1− f + zf : L[z]−−→L[z]) =

m∑
j=0

ajz
j ∈ Z[z]

are units a0, am ∈ Z• = {±1}, in which case K is a f.g. free abelian group of
rank m. �

The classic application of Alexander polynomials to high-dimensional
knot complements is given by :

Example 17.11 (Milnor [193, Chap. 2], [194], [195])
(i) Let X be a connected finite CW complex with a homology equivalence
p : X−−→S1 (as in 10.23 (ii)). Let X = p∗R be the pullback infinite cyclic
cover, and let p : X−−→R be a lift of p to a Z-equivariant map. The finite f.g.
free Z[z, z−1]-module chain complex

E = C(f : C(X)−−→C(R))∗+1

is Z-contractible, so that the Alexander polynomials of E are defined

∆r(z) ∈ Z[z] (r ≥ 0)

with ∆0(z) = 1. If (XF ;F, ζF ) is a fundamental domain for X then the
inclusions

g : Ċ(F ) −−→ Ċ(XF ) , h : Ċ(F ) = Ċ(ζF ) −−→ Ċ(XF )

are such that g − h : Ċ(F )−−→Ċ(XF ) is a chain equivalence, with

Ċ(F ) = C(C(F )−−→C({0}))∗+1 ,

Ċ(XF ) = C(C(XF )−−→C([0, 1]))∗+1

the reduced chain complexes of F and XF . (If X is finitely dominated, e.g. if
p : X−−→S1 is the projection of a fibre bundle, and F ≃ XF ≃ X, then g, h
are chain equivalences with g−1h ≃ ζ : Ċ(F )−−→Ċ(F ).) The chain map

f = (g − h)−1(−h) : D = Ċ(F ) −−→ D = Ċ(F )

is such that
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E ≃ C(1− f + zf : D[z, z−1]−−→D[z, z−1])

as in 17.2. The abelian groups defined by

Lr = Hr(D)/torsion (r ≥ 1)

are f.g. free, with
Q⊗Z Lr = Hr(D;Q) .

Let
P = {p(z) | p(1) = ±1} ⊂ Z[z, z−1] .

The Alexander polynomials of E are given by

∆r(z) = det(1− f + zf : Lr[z]−−→Lr[z]) ∈ P (r ≥ 1)

and the P -primary torsion is given by

τP (E) =
∞∑
r=1

(−)r[Lr, f ] ∈ K1(Z[z, z−1], P ) = End0(Z)/{(Z, 0), (Z, 1)}

with P = {p(z) ∈ Z[z, z−1] | p(1) = ±1 ∈ Z}. The isomorphism of 17.7

K1(Z[z, z−1], P ) ∼= W̃ (Z) = W (Z)/{(1− z)}

sends the P -primary torsion τP (E) to the Reidemeister torsion (16.5)

∆(X) =

∞∏
r=1

∆r(1− z)(−)r

=

∞∏
r=1

det(1− zf : Lr[z]−−→Lr[z])(−)r

=

∞∏
r=1

det(1− zf : Dr[z]−−→Dr[z])
(−)r ∈ W̃ (Z) ,

which is sent by the injection W̃ (Z) ⊂ W̃ (Q) to

∆(X;Q) =
∞∏
r=1

det(1− zf : Hr(X;Q)[z]−−→Hr(X;Q)[z])(−)r

∈ W̃ (Q) = (Q(z)•/Q•)/{(1− z)} .

(ii) If k : Sn ⊂ Sn+2 is an n-knot with exterior

X = cl.(Sn+2\k(Sn)×D2)

then any representative p : X−−→S1 of the generator

1 ∈ [X,S1] = H1(X) = Z

is a homology equivalence, so that (i) applies, with Fn+1 = p−1(pt.) ⊂ Sn+2

a Seifert surface. �



18. K-theory of Dedekind rings

The construction of Reidemeister torsion using relative K-groups in Chap. 16
is now combined with the algebraic K-theory exact sequence for a Dedekind
ring A. In particular, the torsion projective class of a f.g. free A-module chain
complex C is expressed in terms of the torsion of the homology A-modules
H∗(C) and the maximal ideal structure of A. The corresponding algebraic
L-theoretic expression for a chain complex with Poincaré duality will be used
in Chaps. 39–42 in the computation of the high-dimensional knot cobordism
groups C∗.

Let A be a Dedekind ring. Write the quotient field of A as

F = S−1A ,

with S = A\{0}.

Remark 18.1 The following properties of a Dedekind ring A are well-known
– see e.g. Milnor [199].
(i) An ideal class of A is an equivalence class of ideals I ▹ A, with

I ∼ J if xI = yJ for some x, y ∈ A .

The ideal class group C(A) is the set of ideal classes of A, with the multipli-
cation of ideals as the abelian group law. Every ideal is a product of maximal
ideals (= non-zero prime ideals for Dedekind A), so that the ideal class group
is generated by the ideal classes of maximal ideals. For every P ∈ max(A)
there exist r ∈ P, Q ∈ max(A) such that

(r) = PQ ▹ A ,

with generators p1, p2 ∈ P and q1, q2 ∈ Q such that

p1q1 + p2q2 = r ∈ A .

Define
a =

p1q1
r

, b =
p2q1
r

, c =
p1q2
r
∈ A

such that
a(1− a) = bc ∈ A .
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The projections

p =

(
a b

c 1− a

)
, 1− p =

(
1− a −b
−c a

)
: A⊕A −−→ A⊕A

are such that there are defined A-module isomorphisms

im(p)
≃−−→ P ; p(x, y) −−→ p1x+ p2y ,

im(1− p)
≃−−→ Q ; (1− p)(x, y) −−→ q1x+ q2y .

Thus P is a f.g. projective A-module, with an A-module isomorphism

P⊕ Q ∼= A⊕A .

Moreover, if F = (A\{0})−1A is the quotient field of A, there is defined an
A-module isomorphism

Q
≃−−→ {x ∈ F |xP ⊆ A} ; q −−→ q

r
.

For a principal ideal P = (r) take Q = A, (p1, p2) = (r, 0), (q1, q2) = (1, 0),
so that

p =

(
1 0

0 0

)
, 1− p =

(
0 0

0 1

)
: A⊕A −−→ A⊕A

with an A-module isomorphism

A
≃−−→ P ; x −−→ rx .

(ii) Every f.g. A-moduleM has homological dimension 1, with a f.g. projective
A-module resolution of length ≤ 1

0 −−→ P1 −−→ P0 −−→ M −−→ 0 ,

and M is isomorphic to the direct sum of a finite number of copies of A,
A/Pk (P ∈ max(A), k ≥ 1) and possibly also a single Q ∈ max(A). M is
projective if there are no summands of type A/Pk. M is S-torsion if there
are no summands of type A,Q. The ideal class group of A is isomorphic to
the reduced projective class group of A, with an isomorphism

C(A)
≃−−→ K̃0(A) ; [P] −−→ [P] .

The category of (A,S)-modules is

H (A,S) = {f.g. S-torsion A-modules} ,

and there is defined an isomorphism
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Z[max(A)]
≃−−→ K1(A,S) = K0(H(A,S)) ;∑

P

nP[P] −−→
∑
P

(signnP)
[
(A/P)|nP|] =

∑
P

(signnP)
[
A/(P|nP|)

]
.

The ideal class group fits into an exact sequence

F • −−→ Z[max(A)] −−→ C(A) −−→ 0

with

Z[max(A)] −−→ C(A) ; m[P] −−→ [Pm] ,

F • −−→ K0(H(A,S)) = Z[max(A)] ; a/s −−→ [A/(a)]− [A/(s)] .

(iii) For each P ∈ max(A) let H (A,P∞) be the full subcategory of H (A,S)
consisting of the P-primary f.g. torsion A-modules. Let π ∈ P\P2 be a uni-
formizer, and define the multiplicative subset

P∞ = {πk | k ≥ 0} ⊂ A .

The localization (P∞)−1A = A[1/π] fits into a cartesian square

A //

��

A[1/π]

��
AP

// F

with AP = (A\P)−1A the local ring of A at P. The following conditions on
an (A,S)-module M are equivalent :

(a) M is P-primary, i.e. an (A,P∞)-module,
(b) M [1/π] = 0,
(c) M = AP ⊗AM ,
(d) the annihilator of M is a power of P

ann(M) = {a ∈ A | ax = 0 ∈M for all x ∈M} = Pk

for some k ≥ 0.

(iv) The ring of algebraic integers A in an algebraic number field F is a

Dedekind ring with finite ideal class group C(A) = K̃0(A). �
Proposition 18.2 Let A be a Dedekind ring, and let P ▹ A be a maximal
ideal with uniformizer π.
(i) The relative K-groups in the localization exact sequence

. . . −−→ Kn(A) −−→ Kn(A[1/π]) −−→ Kn(A,P
∞) −−→ Kn−1(A) −−→ . . .

are such that
K∗(A,P

∞) = K∗−1(A/P) ,
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with A/P the residue class field.
(ii) Every (A,P∞)-module M has a direct sum decomposition

M =
∞∑
k=1

Mk

such that ann (Mk) = Pk and Mk is a f.g. free A/Pk-module. The P-primary
class invariant of M is given by

[M ] =
∞∑
j=0

dimA/P(P
jM/Pj+1M)

=
∞∑
k=1

k dimA/Pk(Mk) ∈ K1(A,P
∞) = K0(A/P) = Z .

(iii) The projective class [C] ∈ K0(A) of a finite f.g. projective A-module chain
complex C with P-primary homology H∗(C) is the image of the P∞-torsion
class invariant

χP(C) =
∞∑
r=0

(−)r [Hr(C)]P ∈ K1(A,P) = K0(A/P) = Z .

Proof Localization at P defines an isomorphism of exact categories

H (A,P∞)
≃−−→ H (AP,P

∞) ; M −−→ M = AP ⊗AM ,

allowing every f.g. P-primary A-module M to be regarded as a module over
the local ring AP. Every f.g. projective module over a local ring is free, and
matrices can be diagonalized, so that M has a f.g. free AP-module resolution

0 −−→ AnP
d
−−→ AnP −−→ M −−→ 0

with

d =


πi1 0 . . . 0

0 πi2 . . . 0
...

...
. . .

...

0 0 . . . πin

 : AnP −−→ AnP

for some i1, i2, . . . , in ≥ 1. Thus M has a direct sum decomposition of the
form

M =
∞∑
k=1

Mk

with ann (Mk) = Pk andMk a f.g. free A/Pk-module. Every (A,P∞)-module
M has a finite filtration

{0} = PkM ⊂ Pk−1M ⊂ . . . ⊂ PM ⊂M
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such that the successive quotients PjM/Pj+1M are finite dimensional vector
spaces over A/P, with

dimA/P(P
jM/Pj+1M) =

∞∑
k=j+1

dimA/P(P
jMk/P

j+1Mk)

=

∞∑
k=j+1

dimA/Pk(Mk) .

The embedding

P(A/P) −−→ H (A,P∞) ; M1 −−→ M1

induces devissage isomorphisms in algebraic K-theory, with

K∗(A,P
∞) = K∗−1(A/P)

(Bass [13, pp. 405,702] for ∗ = 1, Quillen [225, p. 105] in general). �
Proposition 18.3 Given a Dedekind ring A and a subset J ⊆ max(A) let Pj
be the maximal ideal indexed by j ∈ J , with uniformizer πj ∈ Pj, and define
the multiplicative subset

SJ = {πk11 πk22 . . . πkmm | k1, k2, . . . , km ≥ 1} ⊂ A .

(i) The relative terms in the algebraic K-theory localization exact sequence

. . . −−→ Kn(A) −−→ Kn(S
−1
J A) −−→ Kn(A,SJ) −−→ Kn−1(A) −−→ . . .

are such that

Kn(A,SJ) =
∑
j∈J

Kn−1(A/Pj) (n ≥ Z) .

(ii) An S−1
J A-contractible finite f.g. projective A-module chain complex C has

an SJ -torsion class invariant

χJ(C) =
∑
j∈J

χj(C)[j] ∈ K1(A,SJ) =
∑
j∈J

K0(A/Pj) = Z[J ] ,

with

χj(C) = χPj
(H∗(C)Pj

) ∈ K1(A,P
∞
j ) = K0(A/Pj) = Z

the P∞
j -torsion class invariant. The projective class of C is the image of the

SJ -torsion class invariant

[C] =
∑
j∈J

χj(C) ∈ im(
∑
j∈J

K1(A,P
∞
j )−−→K0(A)) .
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(iii) For an S−1
J A-contractible finite f.g. projective A-module chain complex

C with [C] = 0 ∈ K0(A) a choice of round finite structure on C determines
a lift of χJ(C) ∈ K1(A,SJ) to τ(S−1

J C) ∈ K1(S
−1
J A), so that as in 16.3 the

Reidemeister torsion of C is given by

∆(C) = [τ(S−1
J C)] = χJ(C)

∈ coker(K1(A)−−→K1(S
−1
J A)) = ker(K1(A,SJ)−−→K0(A)) .

Proof (i) Every (A,SJ)-module M has a P-primary decomposition

M =
∑
j∈J

APj ⊗AM ,

so that

H (A,SJ) =
⨿
j∈J

H (A,P∞
j ) ,

K∗(A,SJ ) = K∗−1(H (A,SJ )) =
∑
j∈J

K∗−1(A,P
∞
j ) =

∑
j∈J

K∗−1(A/Pj) .

The relative K-groups K∗(A,SJ ) are such that

K∗(A,SJ) = K∗−1(H (A,SJ)) =
∑
j∈J

K∗−1(A/Pj) .

(ii)+(iii) Apply 18.2 at each of the maximal ideals Pj ▹ A (j ∈ J), summing
all the contributions. �
Example 18.4 In the maximal case J = max(A) the localization

S−1
J A = (A\{0})−1A = F

is the quotient field of A, and the localization exact sequence is

. . . −−→Kn(A)−−→Kn(F )−−→
∑

P∈max(A)

Kn−1(A/P)−−→Kn−1(A)−−→ . . . .

�
Proposition 18.5 Let A be a Dedekind ring, and let TA ⊂ A[z] be the
multiplicative subset of monic polynomials

p(z) =

d∑
j=0

ajz
j ∈ A[z] (ad = 1) .

The reverse multiplicative subset T̃A ⊂ A[z] consists of the polynomials

p̃(z) =

d∑
j=0

ãjz
j ∈ A[z]

with constant coefficient ã0 = 1 ∈ A (i.e. the reverse polynomials).
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(i) The localization T−1
A A[z] is a Dedekind ring with

Kn+1(T
−1
A A[z]) = Kn+1(A[z])⊕ Endn(A) ,

Kn+1(T̃
−1
A A[z]) = Kn+1(A)⊕ Ẽndn(A) .

(ii) For any multiplicative subset S ⊂ A the exact functor

S−1 : End(A) −−→ EndTA(S−1A) ; (P, f) −−→ S−1(P, f)

is an embedding of the endomorphism category of A as a subcategory of the
TA-primary endomorphism category of S−1A. An object (Q, g) in End(S−1A)
is isomorphic to S−1(P, f) for an object (P, f) in End(A) if and only if [Q] ∈
im(K̃0(A)−−→K̃0(S

−1A)) and (Q, g) is TA-primary, i.e. such that Q = S−1P
for some f.g. projective A-module and

chz(Q, g) ∈ A[z] ⊂ S−1A[z] .

The localization map of reduced endomorphism class groups

S−1 : Ẽnd0(A) −−→ Ẽnd
TA

0 (S−1A) ; [P, f ] −−→ S−1[P, f ]

is an isomorphism.
Proof (i) See Lam [142, IV.1.3] for a proof that T−1

A A[z] is a Dedekind ring.

The expressions for K∗(T
−1
A A[z]), K∗(T̃

−1
A A[z]) are given by 12.13, 12.20.

(ii) The characteristic polynomial of an object (P, f) in End(A) is a monic
polynomial p(z) = chz(P, f) ∈ TA such that p(f) = 0 (11.12), so that
S−1(P, f) is an object in EndTA(S−1A).

Conversely, given an object (Q, g) in EndTA(S−1A) let p(z) ∈ TA be
such that p(g) = 0 : Q−−→Q. For any f.g. projective A-module L such that
Q = S−1L define a g-invariant A-submodule containing L

P = L+ g(L) + . . .+ gd−1(L) ⊂ Q = S−1L

and let f = g| : P−−→P . Now P is a f.g. A-module which is torsion-free,
and thus f.g. projective, so that (P, f) is an object in End(A) such that

S−1(P, f) = (Q, g). The localization map S−1 : Ẽnd0(A)−−→Ẽnd
TA

0 (S−1A)
is an isomorphism by 14.16, with inverse given by

Ẽnd
TA

0 (S−1A) −−→ Ẽnd0(A) ; [Q, g] −−→ [P, f ] . �

Remark 18.6 The localization maps in reduced endomorphism K-theory

S−1 : Ẽnd∗(A) −−→ Ẽnd
TA

∗ (S−1A)

are not isomorphisms in general. The localization exact sequence of 18.2

. . . −−→ Kn+1(T
−1
A A[z]) −−→ Kn+1(S

−1T−1
A A[z]) −−→ Kn+1(T

−1
A A[z], S)

−−→ Kn(T
−1
A A[z]) −−→ . . .
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is a direct sum of the localization exact sequences

. . . −−→ Kn+1(A[z]) −−→ Kn+1(S
−1A[z]) −−→ Kn+1(A[z], S)

−−→ Kn(A[z]) −−→ . . . ,

. . . −−→ Kn(A) −−→ Kn(S
−1A) −−→

⊕
P∈maxS(A)

Kn−1(A/PA)

−−→ Kn−1(A) −−→ . . . ,

. . . −−→ Ẽndn(A) −−→ Ẽnd
TA

n (S−1A) −−→
⊕

P∈maxS(A)

Ẽndn−1(A/PA)

−−→ Ẽndn−1(A) −−→ . . .

with maxS(A) ⊆ max(A) the set of maximal ideals P ▹ A with uniformizers

π ∈ P such that π ∈ S. In general, Ẽnd∗(A/PA) ̸= 0. For example, if ∗ = 0,

A = Z, S = Z\{0} and P = (p) then Ẽnd0(Zp) =W (Zp) ̸= 0 by 14.8, 14.12.
�
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The computation of the knot cobordism groups C∗ in Chaps. 40–42 will make
use of the algebraic K- and L-theory of the function field F (z) of a field F .
The function field is the quotient field of F [z], which is a Dedekind ring. The
results of Chap. 18 are now specialized to describe the K-theory of F (z) –
see Chap. 39 for the L-theory of F (z).

The polynomial extension of a field F is a principal ideal domain F [z],
and hence a Dedekind ring with quotient the function field

S−1F [z] = F (z) ,

where S = F [z]\{0}. The algebraic K-theory localization exact sequence
breaks up into split exact sequences

0 −−→ Kn(F [z]) −−→ Kn(F (z)) −−→ Kn(F [z], S) −−→ 0

with

Kn(F [z], S) = Endn−1(F ) =
⊕

P∈max(F [z])

Kn−1(F [z]/P) .

The maximal ideals of F [z] are the principal ideals

P = (p(z)) ▹ F [z]

generated by the irreducible monic polynomials p(z) ∈M(F ) (4.9), allowing
the identification

max(F [z]) = M(F ) .

For any such P there is defined a multiplicative subset

P∞ = {p(z)k | k ≥ 0} ⊂ F [z]

such that the localization

(P∞)−1F [z] = F [z, p(z)−1]

fits into a cartesian square
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F [z] //

��

F [z, p(z)−1]

��
F [z]p(z) // F (z)

with F [z](p(z)) the local ring of F [z] at P, obtained by inverting all the polyno-
mials coprime to p(z). An endomorphism f : V−−→V of a finite dimensional
F -vector space V is P-primary in the sense of 12.5 if the induced F [z, p(z)−1]-
module endomorphism

z − f : V [z, p(z)−1] −−→ V [z, p(z)−1]

is an isomorphism. As in 12.5 adopt the usual terminology, calling such en-
domorphisms (V, f) P-primary.

Proposition 19.1 The following conditions on an endomorphism f : V−−→V
of a finite dimensional F -vector space V are equivalent :

(i) (V, f) is P-primary,
(ii) chz(V, f) = p(z)k for some k ≥ 1,
(iii) p(f)k = 0 : V−−→V for some k ≥ 1. �
Similarly for the Laurent polynomial extension F [z, z−1], and automor-

phism K-theory Aut∗(F ), with

max(F [z, z−1]) = M(F )\{(z)} ,

and P-primary automorphisms.

Proposition 19.2 (i) The endomorphism category of a field F is the disjoint
union of the (p(z))-primary endomorphism categories of F

End(F ) =
⨿

p(z)∈M(F )

Endp(z)
∞
(F ) .

The endomorphism K-groups are direct sums of the ordinary K-groups of the
residue class fields F [z]/(p(z))

End∗(F ) =
∑

p(z)∈M(F )

Endp(z)
∞

∗ (F )

=
∑

p(z)∈M(F )

K∗(F [z]/(p(z))) .

(ii) The automorphism category of a field F is the disjoint union

Aut(F ) =
⨿

p(z) ̸=z∈M(F )

Autp(z)
∞
(F )

=
⨿

p(z) ̸=z∈M(F )

Endp(z)
∞
(F ) .



19. K-theory of function fields 189

The automorphism K-groups are direct sums

Aut∗(F ) = Ẽnd∗(F )

=
∑

p(z) ̸=z∈M(F )

Autp(z)
∞

∗ (F )

=
∑

p(z) ̸=z∈M(F )

K∗(F [z]/(p(z))) .

(iii) The algebraic K-groups of the function field F (z) are such that

K∗(F (z)) = K∗(F [z])⊕ End∗−1(F )

= K∗(F [z, z
−1])⊕Aut∗−1(F )

= K∗(F )⊕K∗−1(F )⊕Aut∗−1(F ) .

Proof (i) Let S ⊂ F [z] be the multiplicative subset consisting of the monic
polynomials, so that S−1F [z] = F (z). An (F [z], S)-module is a finite di-
mensional F -vector space V together with an endomorphism f : V−−→V , so
that

H (F [z], S) = End(F ) .

Factorize the characteristic polynomial of (V, f) as a product

chz(V, f) = det(z − f : V [z]−−→V [z])

=
k∏
j=1

pj(z)
mj ∈ S ⊂ F [z] (mj ≥ 0)

of powers of distinct irreducible monic polynomials pj(z) ∈M(F ). The poly-
nomials

gj(z) = p1(z)
m1 . . . pj−1(z)

mj−1pj+1(z)
mj+1 . . . pk(z)

mk ∈ F [z]

are such that there exist a1(z), a2(z), . . . , ak(z) ∈ F [z] with

k∑
j=1

aj(z)gj(z) = 1 ∈ F .

The subspaces
Vj = aj(f)gj(f)(V ) ⊆ V

are such that there is a direct sum decomposition

(V, f) =
k⊕
j=1

(Vj , fj)

with (Vj , fj) (pj(z))-primary, and
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chz(Vj , fj) = pj(z)
mj ∈ F [z] .

The expression of S as a product

S =
∏

p(z)∈M(F )

p(z)∞

of the coprime multiplicative subsets

p(z)∞ = {p(z)k | k ≥ 0} ⊂ F [z]

thus determines identifications

End(F ) = H (F [z], S)

=
⨿

p(z)∈M(F )

H (F [z], p(z)∞) =
⨿

p(z)∈M(F )

Endp(z)
∞
(F ) .

Let P(F ) be the additive category of finite dimensional F -vector spaces. The
inclusion

P(F [z]/(p(z))) −−→ Endp(z)
∞
(F ) ; F [z]/(p(z)) −−→ (F [z]/(p(z)), ζ)

induces isomorphisms in algebraic K-theory by devissage (18.2), so that

Endp(z)
∞

∗ (F ) = K∗(F [z]/(p(z))) .

The splitting of the algebraic K-theory localization exact sequence is the
special case A = F of 10.14 (ii).
(ii)+(iii) Immediate from (i). �
Proposition 19.3 (i) The unique factorization of every non-zero polynomial
p(z) ∈ F [z]

p(z) = a

k∏
j=1

pj(z)
mj ∈ F [z] (mj ≥ 0)

as a product of a unit a ∈ F • and powers of distinct irreducible monic poly-
nomials pj(z) ∈M(F ) determines an isomorphism

K1(F (z)) = F (z)•
≃−−→ F • ⊕ Z[M(F )] ; τ(p(z)) −−→ (a,

k∑
j=1

mj [pj(z)]) .

(ii) For any endomorphism f : V−−→V of a finite dimensional F -vector space
V the unique factorization in F [z] of the characteristic polynomial

chz(V, f) =
k∏
j=1

pj(z)
mj ∈ F [z] (mj ≥ 0)

determines an isomorphism
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End0(F )
≃−−→ Z[M(F )] ; [V, f ] −−→

k∑
j=1

mj [pj(z)] ,

which is compatible with the isomorphism in (i) via the injection

End0(F ) −−→ K1(F (z)) ; [V, f ] −−→ τ(z − f : V (z)−−→V (z)) .

(iii) For any automorphism f : V−−→V of a finite dimensional F -vector space
V the unique factorization in F [z, z−1] of chz(V, f) determines an isomor-
phism

Aut0(F )
≃−−→ Z[M(F )\{z}] ; [V, f ] −−→

k∑
j=1

mj [pj(z)]

as in (ii).
Proof These are special cases of 19.2. �
Example 19.4 (i) For an algebraically closed field F (e.g. C)

M(F ) = {z − a | a ∈ F} ∼= F

so that the isomorphism of 19.3 (ii) can be written as

End0(F )
≃−−→ Z[F ] ; [V, f ] −−→

k∑
j=1

mjλj ,

sending an endomorphism f : V−−→V of a finite dimensional F -vector space
V to the linear combination of the distinct eigenvalues λ1, λ2, . . . , λk ∈ F
counted with their multiplicities m1,m2, . . . ,mk, such that

chz(V, f) =
k∏
j=1

(z − λj)mj ∈ F [z] .

This can also be viewed as the devissage isomorphism

K1(F [z], S) = End0(F )
≃−−→

∑
a∈F

K0(F [z]/(z − a)) = Z[F ] ;

[V, f ] −−→
k∑
j=1

mjλj

with S = F [z]\{0} ⊂ F [z] and S−1F [z] = F (z). The near-projections (12.22)

pj(f) =
∏
i ̸=j

(f − λi)mi/(λj − λi)mi : V −−→ V (1 ≤ j ≤ k)

are such that

( pj(f)(1− pj(f)) )mj = 0 : V −−→ V .



192 19. K-theory of function fields

The projection

pj(f)ω = (pj(f)
mj + (1− pj(f))mj )−1pj(f)

mj : V −−→ V

has image the (z−λj)-primary component of the (F [z], S)-torsion module V

Vj = im(pj(f)ω) = ker((f − λj)mj : V−−→V )

= F [z](z−λj) ⊗F [z] V ,

with z acting by f : V−−→V on V and by the restriction fj = f | : Vj−−→Vj
on Vj . As in Lam, Ranicki and Smith [141] the Jordan normal form decom-
position is given by

(V, f) =

k⊕
j=1

(Vj , fj)

with fj − λi : Vj−−→Vj nilpotent for i = j and an automorphism for i ̸= j.
(ii) For F = R there is one degree 1 irreducible monic polynomial z−α ∈ R[z]
for each α ∈ R, and one degree 2 irreducible monic polynomial (z−ω)(z−ω) ∈
R[z] for each unordered pair {ω, ω̄} of distinct complex conjugates in C, so
that

max(R[z]) = C/∼ (∼ = complex conjugation)

(cf. 14.9). The isomorphism of 19.3 (i) is given by

End0(R)
≃−−→ Z[C/∼] ; [V, f ] −−→

p∑
j=1

mj [αj ] +

q∑
k=1

nk[ωk]

with αj ∈ R, ωk ∈ C\R, mj , nk ≥ 0 such that

chz(V, f) =

p∏
j=1

(z − αj)mj

q∏
k=1

(
(z − ωk)(z − ωk)

)nk ∈ R[z] .

(iii) If F is a finite field with q elements

M(F ) =

∞⨿
n=1

M(q, n)

with M(q, n) the finite set of irreducible monic polynomials pj,n(z) ∈ F [z] of
degree n. Let M(q, n) be the number of elements in M(q, n). The cyclotomic
identity

1

1− qz
=

∞∏
n=1

(
1

1− zn

)M(q,n)

and the formula

M(q, n) =
1

n

∑
d|n

µ(d)q
n
d
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are due to Gauss and MacMahon, with µ the Möbius function

µ(d) =


1 if d = 1

(−1)r if d is a product of r distinct primes

0 otherwise .

The isomorphism of 19.3 (ii) is given by

End0(F )
≃−−→ Z[M(F )] =

∞∑
n=1

ZM(q,n) ; [V, f ] −−→
∞∑
n=1

M(q,n)∑
j=1

mj,n[pj,n(z)]

with

chz(V, f) =

∞∏
n=1

M(q,n)∏
j=1

pj,n(z)
mj,n (mj,n ≥ 0) .

See Dress and Siebeneicher [61], [62] for the connections between the numbers
M(q, n) and various combinatorial facts. �

The inclusion F [z]−−→F (z) has the property that a finite f.g. free F [z]-
module chain complex E+ is F -finitely dominated if and only if E+ is F (z)-
contractible (8.5 (i)), if and only if dimFH∗(E

+) <∞. Similarly, the inclusion
F [z, z−1]−−→F (z) has the property that a finite f.g. free F [z, z−1]-module
chain complex E is F -finitely dominated if and only if E is F (z)-contractible
(8.5 (ii)), if and only if dimFH∗(E) <∞.

The general definition of Reidemeister torsion (16.1) is now specialized to
function fields.

Definition 19.5 (i) The Reidemeister torsion of an F -finitely dominated
finite f.g. free F [z]-module chain complex E+ is the torsion

∆+(E+) = τ(F (z)⊗F [z] E
+) =

∞∑
r=0

(−)r[Hr(E
+), ζ]

∈ coker
(
K1(F [z])−−→K1(F (z))

)
= End0(F ) = Z[M(F )] ,

which is independent of the choice of basis for E+ used in the definition.
(ii) The Reidemeister torsion of an F -finitely dominated finite f.g. free
F [z, z−1]-module chain complex E is the torsion

∆(E) = τ(F (z)⊗F [z,z−1] E) =
∞∑
r=0

(−)r[Hr(E), ζ]

∈ coker
(
K1(F [z, z

−1])−−→K1(F (z))
)

= Aut0(F ) = Z[M(F )\{z})] ,

which is independent of the choice of basis for E used in the definition. �
The projection
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coker
(
K1(F [z])−−→K1(F (z))

)
−−→ coker

(
K1(F [z, z

−1])−−→K1(F (z))
)

sends ∆+(E+) to ∆(E) with E = F [z, z−1]⊗F [z] E
+.

Example 19.6 Given a polynomial p(z) ∈ F [z], define

E+ = C(p(z) : F [z]−−→F [z]) ,

E = C(p(z) : F [z, z−1]−−→F [z, z−1]) .

If p(z) ̸= 0 then E+ and E are F -finitely dominated, with Reidemeister
torsions

∆+(E+) = [H0(E
+), ζ] = [F [z]/(p(z)), ζ] ∈ End0(F ) ,

∆(E) = [H0(E), ζ] = [F [z, z−1]/(p(z)), ζ] ∈ Aut0(F ) .

See 19.13 for further details. �
Example 19.7 Let X be a finite CW complex with an infinite cyclic cover
X such that the F -vector space H∗(X;F ) is finite dimensional, so that the
F -coefficient cellular chain complex C(X;F ) is an F -finitely dominated fi-
nite f.g. free F [z, z−1]-module chain complex. The F -coefficient Reidemeister
torsion of X considered by Milnor [194], [195] is

∆(X;F ) = ∆(C(X;F )) ∈ coker
(
K1(F [z, z

−1])−−→K1(F (z))
)
. �

The K-theoretic properties of the Reidemeister torsion are now refor-
mulated in terms of the computation of K1(S

−1F [z]) for the localizations
S−1F [z] ⊆ F (z) inverting various multiplicative subsets S ⊂ F [z].

Terminology 19.8 Given a subset J ⊆ M(F ) let {pj(z) ∈ F [z] | j ∈ J}
be the corresponding collection of irreducible monic polynomials, and let
SJ ⊂ F [z] be the multiplicative subset of all the finite products

p(z) = pj1(z)
m1pj2(z)

m2 . . . pjk(z)
mk ∈ F [z]

for j1, j2, . . . , jk ∈ J,m1,m2, . . . ,mk ≥ 0. For each j ∈ J write S{j} as Sj ,
and let

Fj = F [z]/(pj(z))

be the residue class field of F [z]. Also, let

TJ = SM(F )\J ⊂ F [z] ,

so that SJ , TJ ⊂ F [z] are coprime multiplicative subsets with

(SJTJ)
−1F [z] = F (z)

and there is defined a cartesian square of rings
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F [z] //

��

S−1
J F [z]

��
T−1
J F [z] // F (z) �

Proposition 19.9 (i) For any subset J ⊆ M(F ) the algebraic K-theory
localization exact sequence for F [z]−−→S−1

J F [z]

. . . −−→ Kn(F [z]) −−→ Kn(S
−1
J F [z])

∂+
−−→ Kn(F [z], SJ)

−−→ Kn−1(F [z]) −−→ . . .

breaks up into split exact sequences

0 −−→ Kn(F [z]) −−→ Kn(S
−1
J F [z])

∂+
−−→ Kn(F [z], SJ) −−→ 0 (n ∈ Z) ,

with
Kn(F [z], SJ ) = EndSJ

n−1(F )

=
∑
j∈J

End
Sj

n−1(F ) =
∑
j∈J

Kn−1(Fj) .

(ii) The SJ -primary endomorphism class group of F is such that

EndSJ
0 (F ) = Z[max(T−1

J F [z])] = Z[J ] .

Proof (i) Every finite dimensional Fj-vector space Vj is an (F [z], Sj)-module,
and the functors

P(Fj) −−→ H (F [z], Sj) ; Vj −−→ Vj ,⨿
j∈J

P(Fj) −−→ H (F [z], SJ ) ; {Vj | j ∈ J} −−→
∑
j∈J

Vj

induce isomorphisms in algebraic K-theory, by P-primary decomposition and
devissage (as in 19.4), so that

K∗(F [z], SJ) =
∑
j∈J

K∗(F [z], Sj) =
∑
j∈J

K∗−1(Fj) .

There is defined an isomorphism of exact categories

H (F [z], SJ)
≃−−→ EndSJ (F ) ; VJ −−→ (VJ , ζ) ,

so that
K∗(F [z], SJ ) = K∗−1(H (F [z], SJ))

= K∗−1(End
SJ (F )) = EndSJ

∗−1(F ) .

(ii) By (i)
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EndSJ
0 (F ) =

∑
j∈J

K0(Fj) = Z[J ] ,

with the generator [Fj ] = 1 ∈ K0(Fj) = Z corresponding to the endomor-
phism

ζ : Fj −−→ Fj ; x −−→ zx

of the finite dimensional F -vector space Fj with characteristic polynomial

chz(Fj , ζ) = pj(z) ∈ Sj ⊂ F [z] .

An endomorphism f : V−−→V of a finite dimensional F -vector space is SJ -
primary if and only if chz(V, f) ∈ SJ , in which case the factorization

chz(V, f) =

k∏
j=1

pj(z)
mj ∈ SJ

determines the endomorphism class

[V, f ] =
k∑
j=1

mj [pj(z)] ∈ EndSJ
0 (F ) = Z[J ] . �

Example 19.10 (i) For any irreducible monic polynomial p(z) ∈ F [z] let
J = {(p(z))} ∈M(F ). The multiplicative subsets

SJ = p(z)∞ = {p(z)k | k ≥ 0} ,
TJ = {q(z) | q(z) monic and coprime to p(z)} ⊂ F [z]

are such that

S−1
J F [z] = F [z, p(z)−1] , T−1

J F [z] = F [z](p(z)) ,

Kn(F [z, p(z)
−1]) = Kn(F [z])⊕Kn(F [z], p(z)

∞)

= Kn(F )⊕ End
p(z)∞

n−1 (F )

= Kn(F )⊕Kn−1(F [z]/(p(z))) ,

Endp(z)
∞

∗ (F ) = K∗(F [z]/(p(z))) .

The generator of

K1(F [z], p(z)
∞) = K0(F [z]/(p(z))) = Z

is represented by the (p(z))-primary endomorphism (F [z]/(p(z)), ζ), and

End
p(z)∞

0 (F ) = Z[max(F [z](p(z)))] = Z[M(F )\(p(z))] .

If p(z) ̸= z then
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Endp(z)
∞
(F ) = Autp(z)

∞
(F ) ,

Endp(z)
∞

∗ (F ) = Autp(z)
∞

∗ (F ) = K∗(F [z]/(p(z))) ,

If p(z) = z then

End(z)
∞
(F ) = Nil(F ) ,

End(z)
∞

∗ (F ) = Nil∗(F ) = K∗(F ) .

(ii) For J = M(F ) the set {pj(z) | j ∈ J} consists of all the irreducible monic
polynomials, and SJ ⊂ F [z] is the multiplicative subset of all the monic
polynomials. The localization is the quotient field

S−1
J F [z] = F (z)

and 19.9 gives

K∗(F [z], SJ) = End∗(F ) =
∑
j∈J

K∗−1(Fj) ,

K∗(F (z)) = K∗(F )⊕
∑
j∈J

K∗−1(Fj) .

In particular, for ∗ = 1

K1(F [z], SJ) = End0(F ) = Z⊕W (F ) = Z[M(F )] ,

K1(F (z)) = F • ⊕ Z[M(F )] = F (z)• .

For the completion F [[z]]

max(F [[z]]) = {(z)} , K1(F [[z]]) = K1(F )⊕ Ŵ (F ) ,

K1(F [[z]], Z) = K1(F [z], Z) = Nil0(F ) = K0(F ) ,

so that

K1

(
F ((z))

)
= K1(F [[z]])⊕K1(F [[z]], Z)

= K1(F )⊕K0(F )⊕ Ŵ (F ) = F ((z))• ,

with
K1(F (z)) = F (z)• −−→ K1

(
F ((z))

)
= F ((z))•

the evident inclusion.
(iii) For n = 1 and any subset J ⊆M(F ) 19.9 gives :

K1(S
−1
J F [z]) = {p(z)/q(z) ∈ F (z)• | q(z) ∈ SJ}

= K1(F [z])⊕K1(F [z], SJ) ,

K1(F [z], SJ) = EndSJ
0 (F )

=
∑
j∈J

K1(F [z], Sj) =
∑
j∈J

K0(Fj) = Z[J ] ,



198 19. K-theory of function fields

with an isomorphism

Z[J ]
≃−−→ EndSJ

0 (F ) ;
∑
j∈J

mjj −−→
∑
j∈J

mj [Fj , ζ] .

The boundary map ∂+ : K1(S
−1
J F [z])−−→K1(F [z], SJ) is split by

K1(F [z], SJ ) = Z[J ] −−→ K1(S
−1
J F [z]) ;∑

j∈J

mjj −−→ τ(
∏
j∈J

pj(z)
mj : S−1

J F [z]−−→S−1
J F [z]) ,

with

∂+ : K1(S
−1
J F [z]) −−→ K1(F [z], SJ) = Z[J ] ;

τ(a
∏
j∈J

pj(z)
mj : S−1

J F [z]−−→S−1
J F [z]) −−→

∑
j∈J

mjj .

If (z) ∈ J then the reverse characteristic polynomial defines an isomorphism

c̃hz : EndSJ
0 (F ) = Z[J ]

≃−−→ Z⊕WSJ (F ) ;∑
j∈J

mjj −−→ (m(z),
∏

j∈J\{(z)}

p̃j(z)
mj ) ,

withWSJ (F ) the SJ -primaryWitt vector group (14.21). If (z) /∈ J the reverse
characteristic polynomial defines an isomorphism

c̃hz : AutSJ
0 (F ) = EndSJ

0 (F ) = Z[J ]
≃−−→ W (z)∞SJ (F ) ;∑

j∈J
mjj −−→

∏
j∈J

p̃j(z)
mj . �

Proposition 19.11 (i) The Reidemeister torsion of an F -finitely dominated
finite f.g. free F [z]-module chain complex E+ is given by

∆+(E+) = (m0,
k∏
j=1

p̃j(z)
mj )

∈ coker
(
K1(F [z])−−→K1(F (z))

)
= Z⊕W (F ) ,

with pj(z) the irreducible monic polynomials ̸= z appearing in the torsion

τ(F (z)⊗F [z] E
+) = azm0

k∏
j=1

pj(z)
mj

∈ K1(F (z)) = F (z)• (a ∈ F •,mj ∈ Z) .
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(ii) The Reidemeister torsion of an F -finitely dominated finite f.g. free
F [z, z−1]-module chain complex E is given by

∆(E) =
k∏
j=1

p̃j(z)
mj ∈ coker

(
K1(F [z, z

−1])−−→K1(F (z))
)

= W (F ) ,

with pj(z) the irreducible monic polynomials appearing in the torsion

τ(F (z)⊗F [z,z−1] E) = a
k∏
j=0

pj(z)
mj ∈ K1(F (z)) = F (z)•

(a ∈ F •,mj ∈ Z, p0(z) = z, p̃0(z) = 1) .

Proof Let
J = M(F )\{(z)} ⊂ J ′ = M(F ) ,

so that J ′ indexes all the irreducible monic polynomials, and S = SJ′ ⊂ F [z]
is such that

S−1F [z] = F (z) .

In this case 19.10 gives

(i) coker
(
K1(F [z])−−→K1(F (z))

)
= End0(F )

= K0(F )⊕W (F ) = Z⊕ Z[J ] ,

(ii) coker
(
K1(F [z, z

−1])−−→K1(F (z))
)

= Aut0(F )

= W (F ) = Z[J ] . �

Proposition 19.12 (i) The Reidemeister torsion of an F -finitely dominated
finite f.g. free F [z]-module chain complex E+ is given by

∆+(E+) = (
∞∑
r=0

(−)rnr,
∞∏
r=0

c̃hz(Hr(E
+), ζ)(−)r )

∈ coker
(
K1(F [z])−−→K1(F (z))

)
= Z⊕W (F ) ,

with
nr = dimF

(
ker(ζ : Hr(E

+)−−→Hr(E
+))
)

= dimFHr(E
+)− dimFHr(F [z, z

−1]⊗F [z] E
+) ∈ Z .

(ii) The Reidemeister torsion of an F -finitely dominated finite f.g. free
F [z, z−1]-module chain complex E is given by

∆(E) =
∞∏
r=0

c̃hz(Hr(E), ζ)(−)r

∈ coker
(
K1(F [z, z

−1])−−→K1(F (z))
)

= W (F ) .
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Proof This is just an invariant formulation of 19.11. �
The expression in 19.12 (ii) of the Reidemeister torsion ∆(E) as an alter-

nating product of characteristic polynomials was first obtained in Assertion
7 of Milnor [195].

Example 19.13 (i) Let E+ be the 1-dimensional F (z)-contractible f.g. free
F [z]-module chain complex defined by

E+ = C(p(z) : F [z]−−→F [z])

for a polynomial

p(z) = zn
m∑
j=0

ajz
j ∈ F [z] (a0, am ̸= 0 ∈ F, n ≥ 0) .

The Reidemeister torsion of E+ is given by

∆+(E+) = (n, c̃hz(F [z]/(p(z)), ζ))

= (n, (a0)
−1(

m∑
j=0

am−jz
j)) ∈ Z⊕W (F ) .

(ii) Let E be the 1-dimensional F (z)-contractible f.g. free F [z, z−1]-module
chain complex defined by

E = C(p(z) : F [z, z−1]−−→F [z, z−1])

for a polynomial

p(z) = zn
m∑
j=0

ajz
j ∈ F [z, z−1] (a0, am ̸= 0 ∈ F, n ∈ Z) .

The Reidemeister torsion of E is given by

∆(E) = c̃hz(F [z, z
−1]/(p(z)), ζ) = (a0)

−1(
m∑
j=0

am−jz
j) ∈W (F ) . �

Example 19.14 Let J = M(F ), as in 19.10 (ii). Given an element ω ∈ F let

Jω = {p(z) ∈M(F ) | p(ω) ̸= 0 ∈ F} ⊆ J ,

Sω = SJω = {q(z) ∈ SJ | q(ω) ̸= 0 ∈ F} ⊆ S .

(i) The local ring of F [z] at ω ∈ F is the localization

S−1
ω F [z] = {p(z)/q(z) ∈ F (z) | q(ω) ̸= 0} .

The evaluation map
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τω : F [z] −−→ F ;
∞∑
j=0

ajz
j −−→

∞∑
j=0

ajω
j

has a canonical factorization

τω : F [z] −−→ S−1
ω F [z]

τω
−−→ F ,

with
τω : S−1

ω F [z] −−→ F ; p(z)/q(z) −−→ p(ω)/q(ω)

such that

ker(S−1
f F [z]−−→F ) = {p(z)/q(z) ∈ F (z) | q(ω) ̸= 0, p(ω) = 0}

is the unique maximal ideal of S−1
ω F [z].

The following conditions on a finite f.g. free F [z]-module chain complex E+

are equivalent :

(a) E+ is F -contractible via τω,
(b) E+ is S−1

ω F [z]-contractible,
(c) the reverse characteristic polynomials

cr(z) = c̃hz(Hr(E
+), ζ) ∈ F [z] (r ≥ 0)

are such that cr(ω) ̸= 0 ∈ F .

By 19.9 there is defined an isomorphism

K1(S
−1
ω F [z])

≃−−→ F • ⊕ Z[Jω] ;

τ(p(z) : S−1
ω F [z]−−→S−1

ω F [z]) −−→ (a,
∑
j∈Jω

mjj)

(p(z) = a
∏
j∈Jω

pj(z)
mj ∈ Sω ⊂ F [z] , a ∈ F •) .

The evaluation map

τω : S−1
ω F [z] −−→ F ; z −−→ ω

induces

τω : K1(S
−1
ω F [z]) −−→ K1(F ) = F • ; τ(p(z)) −−→ p(ω) .

If E+ is a based f.g. free F [z]-module chain complex which is F -contractible
via τω the torsion of the induced contractible based f.g. free S−1

ω F [z]-module
chain complex S−1

ω E+ is given by

τ(S−1
ω E+) = (τ(r+),∆+(E+))

∈ K1(S
−1
ω F [z]) = K1(F )⊕ Z[Jω] ,
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with
r+ : C(ζ − z : E+[z]−−→E+[z]) −−→ E+

the F [z]-module chain equivalence of 5.15.
(ii) Let ω be as in (i), and assume also that ω ̸= 0 ∈ F , so that

z ∈ Sω , F [z, z−1] ⊆ S−1
ω F [z] ,

and the projection

τω : F [z, z−1] −−→ F ;
∞∑

j=−∞
ajz

j −−→
∞∑

j=−∞
ajω

j

has a canonical factorization

τω : F [z, z−1] −−→ S−1
ω F [z] −−→ F

with
S−1
ω F [z] −−→ F ; p(z)/q(z) −−→ p(ω)/q(ω) .

The following conditions on a finite f.g. free F [z, z−1]-module chain complex
E are equivalent :

(a) E is F -contractible via τω,
(b) E is S−1

ω F [z]-contractible,
(c) the characteristic polynomials

c̃hz(Hr(E), ζ∗) = cr(z) ∈ F [z] (r ≥ 0)

are such that cr(ω) ̸= 0 ∈ F .

The inclusion S−1
ω F [z]−−→F (z) induces the inclusion

K1(S
−1
ω F [z]) = K1(F )⊕ Z[Jω] −−→ K1(F (z)) = K1(F )⊕ Z[J ] .

If E is a based f.g. free F [z, z−1]-module chain complex which is F -contract-
ible via τω the torsion of the induced contractible based f.g. free S−1

ω F [z]-
module chain complex S−1

ω E is given by

τ(S−1
ω E) = (Φ+(E),∆(E))

∈ K1(S
−1
ω F [z]) = K1(F [z, z

−1])⊕ Z[Jω\{(z)}] ,

with

Φ+(E) = τ(q+ : C(1− zζ−1 : E[z, z−1]−−→E[z, z−1])−−→E)

∈ K1(F [z, z
−1])

the absolute version of the fibering obstruction (3.10). The evaluation map

τω : S−1
ω F [z] −−→ F ; z −−→ ω
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induces

K1(S
−1
ω F [z]) = K1(F )⊕ Z[Jω] −−→ K1(F ) = F • ;

(a,
∑
j∈Jω

mjj) −−→ a
∏
j∈Jω

pj(ω)
mj ,

sending

∆(E) =
∑

j∈Jω\{(z)}

mjj ∈ Z[Jω\{(z)}]

to the Reidemeister torsion of E with respect to ω

∆ω(E) =
∏

j∈Jω\{(z)}

pj(ω)
mj ∈ F •

as defined by Milnor [194, p. 387] in the case F = R. �
Proposition 19.15 The algebraic mapping torus of a chain map f : C−−→C
of a finite dimensional F -vector space chain complex C is an F -finitely dom-
inated finite f.g. free F [z, z−1]-module chain complex

T (f) = C(z − f : C[z, z−1]−−→C[z, z−1])

with Reidemeister torsion

∆(T (f)) =
∞∏
r=0

c̃hz(Hr(C), f∗)
(−)r ∈W (F ) .

Proof The finite f.g. free F [z]-module chain complex

T (f)+ = C(z − f : C[z]−−→C[z])

is such that

(H∗(T (f)
+), ζ) = (H∗(C), f∗) , T (f) = F [z, z−1]⊗F [z] T (f)

+ .

Now 19.12 (i) gives the Reidemeister torsion of T (f)+ to be

∆+(T (f)+) = (n,

∞∏
r=0

c̃hz(Hr(T (f)
+), ζ)(−)r )

= (n,

∞∏
r=0

c̃hz(Hr(C), f∗)
(−)r ) ∈ Z⊕W (F ) ,

with first component

n =

∞∑
r=0

(−)rdimF

(
ker(f∗ : Hr(C)−−→Hr(C))

)
∈ Z

and second component ∆(T (f)) ∈W (F ). �
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Example 19.16 Let f : X−−→X be a map, with X a finitely dominated
CW complex. The cellular F [z, z−1]-module chain complex of the infinite
cyclic cover T (f) of the mapping torus T (f) is the algebraic mapping torus
of f : C(X;F )−−→C(X;F )

C(T (f);F ) = T (f : C(X;F )−−→C(X;F ))

= C(z − f : C(X;F )[z, z−1]−−→C(X;F )[z, z−1])

which is F -finitely dominated with Reidemeister torsion

∆(T (f);F ) =

∞∏
r=0

c̃hz(Hr(X;F ), f∗)
(−)r ∈W (F ) .

If F has characteristic 0 this is the Lefschetz ζ-function of f

∆(T (f);F ) = exp

( ∞∑
n=1

L(fn;F )zn/n

)−1

∈W (F ) ,

with

L(fn;F ) =
∞∑
r=0

(−)rtr(fn∗ : Hr(X;F )−−→Hr(X;F )) ∈ F (n ≥ 1)

the Lefschetz numbers of the iterates fn : X−−→X. The Lefschetz zeta func-
tion was used by Weil in the study of the fixed points of the iterates of the
Frobenius map on the algebraic variety over the algebraic closure of a finite
field, and by Smale in dynamical systems. �
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20. Algebraic Poincaré complexes

The algebraic K-theory treatment of chain complexes will be extended in
Part Two to algebraic Poincaré complexes, i.e. to algebraic L-theory, and
this will be applied to high-dimensional knots.

An n-dimensional algebraic Poincaré complex over a ring with involution
A is an n-dimensional A-module chain complex E with a chain equivalence
to the n-dual En−∗

En−∗ ≃ E

with either a symmetric or a quadratic structure. See Ranicki [235], [237]
for the algebraic theory of Poincaré complexes. This chapter reviews the
definitions, and the two basic types of cobordism groups of algebraic Poincaré
complexes which occur in applications :

(i) the L-groups L∗(A) of quadratic Poincaré complexes over A,
(ii) the Γ -groups Γ∗(A−−→B) of quadratic complexes which are defined

over A and become Poincaré over B, for a morphism of rings with
involution A−−→B.

The applications of the L-groups to knot theory require many variations of
these types, as well as the symmetric analogues. See Chap. 37 for exam-
ples of actual computations of the L-groups. The computation of the high-
dimensional knot cobordism groups C∗ is related in Chap. 42 to the L-groups
of algebraic number fields and their rings of integers.

20A. L-groups

Given a ring A let Aop be the opposite ring, the ring with one element aop

for each element a ∈ A and

aop + bop = (a+ b)op , aopbop = (ba)op ∈ Aop .

An involution ¯ : A−−→A; a−−→ā is an isomorphism of rings

A −−→ Aop ; a −−→ āop

such that
¯̄a = a ∈ A (a ∈ A) .
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Use the involution on A to define a duality functor

∗ : {A-modules} −−→ {A-modules} ; M −−→ M∗ = HomA(M,A)

with
A×M∗ −−→ M∗ ; (a, f) −−→ (x −−→ f(x).ā) .

The dual of an A-module morphism f :M−−→N is the A-module morphism

f∗ : N∗ −−→ M∗ ; x −−→
(
g −−→ g(f(x))

)
.

If M is a f.g. projective A-module the natural A-module morphism

M −−→ M∗∗ ; x −−→ (f −−→ f(x))

is an isomorphism.

Definition 20.1 (i) An ϵ-symmetric form (M,ϕ) is a f.g. projective A-module
M together with an A-module morphism

ϕ : M −−→ M∗ ; x −−→ (y −−→ ϕ(x)(y))

such that ϵϕ∗ = ϕ. Equivalently, regard ϕ as a bilinear pairing

ϕ : M ×M −−→ A ; (x, y) −−→ ϕ(x, y) = ϕ(x)(y)

such that

ϕ(ax, by) = bϕ(x, y)a , ϵϕ(y, x) = ϕ(x, y) ∈ A
(x, y ∈M , a, b ∈ A) .

The form (M,ϕ) is nonsingular if ϕ :M−−→M∗ is an isomorphism.
(ii) An ϵ-quadratic form (M,ψ) is a f.g. projective A-moduleM together with
an equivalence class of A-module morphisms ψ : M−−→M∗, subject to the
equivalence relation

ψ ∼ ψ + χ− ϵχ∗ (χ ∈ HomA(M,M∗)) .

The ϵ-symmetrization of (M,ψ) is the ϵ-symmetric form (M,ψ + ϵψ∗).
(iii) A sublagrangian of an ϵ-symmetric form (M,ϕ) is a direct summand
L ⊂M such that L ⊆ L⊥, with

L⊥ = {x ∈M |ϕ(x)(L) = 0} .

A lagrangian is a sublagrangian L such that

L = L⊥ .

Similarly for ϵ-quadratic forms. �
For an A-module chain complex C write the dual A-modules as

Cr = (Cr)
∗ (r ∈ Z) .
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The n-dual of an A-module chain complex C is the A-module chain complex
Cn−∗ defined by

dCn−∗ = (−1)r(dC)∗ : (Cn−∗)r = Cn−r −−→ (Cn−∗)r−1 = Cn−r+1 .

Given an A-module chain complex C and a central unit ϵ ∈ A such that

ϵ = ϵ−1 ∈ A

define the ϵ-transposition involution on C ⊗A C by

Tϵ : Cp ⊗A Cq −−→ Cq ⊗A Cp ; x⊗ y −−→ (−)pqϵy ⊗ x ,

and let {
W%C = HomZ[Z2](W,C ⊗A C)
W%C = W ⊗Z[Z2] (C ⊗A C)

with

W : . . . −−→ Z[Z2]
1−T
−−→ Z[Z2]

1+T
−−→ Z[Z2]

1−T
−−→ Z[Z2]

the standard free Z[Z2]-module resolution of Z.
For chain complexes C which are f.g. projective (as will usually be the

case) there are natural identifications

C ⊗A C = HomA(C
∗, C) ,

Tϵ : HomA(C
p, Cq) −−→ HomA(C

q, Cp) ; ϕ −−→ (−)pqϕ∗ .

A chain

{
ϕ ∈W%Cn

ψ ∈W%Cn
is a collection of A-module morphisms

{
ϕs : Cn−r+s −−→ Cr
ψs : Cn−r−s −−→ Cr

(r, s ≥ 0) ,

with the boundary

{
dϕ ∈W%Cn−1

dψ ∈W%Cn−1

given by


(dϕ)s = dϕs + (−)rϕsd∗ + (−)n+s−1(ϕs−1 + (−)sTϵϕs−1)

: Cn−r+s−1 −−→ Cr (ϕ−1 = 0)

(dψ)s = dψs + (−)rψsd∗ + (−)n−s−1(ψs+1 + (−)s+1Tϵψs+1)

: Cn−r−s−1 −−→ Cr .

Definition 20.2 (i) The

{
ϵ-symmetric

ϵ-quadratic
Q-groups of an A-module chain com-

plex C are the

{
Z2-cohomology

Z2-homology
groups of C ⊗A C{

Qn(C, ϵ) = Hn(Z2 ;C ⊗A C) = Hn(W
%C)

Qn(C, ϵ) = Hn(Z2 ;C ⊗A C) = Hn(W%C) .
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(ii) An n-dimensional

{
ϵ-symmetric

ϵ-quadratic
complex over A

{
(C, ϕ)

(C,ψ)
is a finite f.g.

projective A-module chain complex C together with a cycle

{
ϕ ∈ (W%C)n
ψ ∈ (W%C)n

representing an element

{
ϕ ∈ Qn(C, ϵ)
ψ ∈ Qn(C, ϵ) .

Such a complex is Poincaré if the

A-module chain map {
ϕ0 : Cn−∗ −−→ C

(1 + Tϵ)ψ0 : Cn−∗ −−→ C

is a chain equivalence. �
In the applications, the chain complex C is usually n-dimensional.

Example 20.3 (i) A 0-dimensional ϵ-symmetric (Poincaré) complex (C, ϕ)
with C 0-dimensional

C : . . . −−→ 0 −−→ C0 −−→ 0 −−→ . . .

is an ϵ-symmetric form (C0, ϕ0) (with ϕ0 : C0−−→C0 an isomorphism).
(ii) A 1-dimensional ϵ-symmetric (Poincaré) complex (C, ϕ) with C 1-dim-
ensional

C : . . . −−→ 0 −−→ C1

d
−−→ C0 −−→ 0 −−→ . . .

is an ϵ-symmetric formation

(C1 ⊕ C1,

(
0 1

ϵ ϕ1

)
;C1, im(

(
ϕ0

d∗

)
: C0−−→C1 ⊕ C1))

that is an ϵ-symmetric form with a lagrangian and a sublagrangian (with the

sublagrangian L = im(

(
ϕ0
d∗

)
) a lagrangian in the nonsingular case).

Similarly in the ϵ-quadratic case.
See Ranicki [230] for more on forms and formations. �

A chain map f : C−−→D of f.g. projective A-module chain complexes
induces a Z-module chain map{

f% : W%C −−→ W%D ; ϕ = {ϕs} −−→ f%ϕ = {fϕsf∗}
f% : W%C −−→ W%D ; ψ = {ψs} −−→ f%ψ = {fψsf∗}

with induced morphisms{
f% : Qn(C, ϵ) −−→ Qn(D, ϵ)

f% : Qn(C, ϵ) −−→ Qn(D, ϵ) .

An A-module chain homotopy g : f ≃ f ′ : C−−→D induces a Z-module chain
homotopy

g% : f% ≃ f ′% : W%C −−→ W%D
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with

g%(ϕ)s = gϕsf
∗ + (−)qf ′ϕsg∗ + (−)q+s−1gTϵϕs−1g

∗

∈W%Dn−s+1 =
∞∑
q=0

HomA(D
n−q−s+1, Dq) (s ≥ 0, ϕ ∈W%Cn) .

Definition 20.4 (i) A morphism of n-dimensional ϵ-symmetric complexes

(f, χ) : (C, ϕ) −−→ (D, θ)

is a chain map f : C−−→D together with a chain χ ∈W%Dn+1 such that

θ − f%(ϕ) = d(χ) ∈W%Dn .

(ii) A homotopy of morphisms of n-dimensional ϵ-symmetric complexes

(g, ν) : (f, χ) ≃ (f ′, χ′) : (C, ϕ) −−→ (D, θ)

is a chain homotopy g : f ≃ f ′ : C−−→D together with a chain ν ∈W%Dn+2

such that
χ′ − χ = g%(ϕ) + d(ν) ∈W%Dn+1 .

Similarly in the ϵ-quadratic case. �
A morphism of ϵ-symmetric complexes (f, χ) : (C, ϕ)−−→(D, θ) is a ho-

motopy equivalence if and only if f : C−−→D is a chain equivalence. The
homotopy type of an ϵ-symmetric complex (C, ϕ) over A depends only on the
chain homotopy class of C and the homology class

ϕ ∈ Qn(C, ϵ) = Hn(W
%C) .

Similarly in the ϵ-quadratic case.

Example 20.5 (i) Given a CW complex X with universal cover X̃ let C(X̃)
of the cellular chain complex of free Z[π1(X)]-modules. The symmetric con-
struction of Ranicki [236] is the natural transformation

∆ : Hn(X) −−→ Qn(C(X̃))

which is obtained by applying Hn(Z⊗Z[π1(X)]−) to the Alexander-Whitney-
Steenrod diagonal chain approximation

∆
X̃

: C(X̃) −−→ W%C(X̃) .

For finite X and any homology class [X] ∈ Hn(X) there is thus defined an

n-dimensional symmetric complex (C(X̃), ϕ) over Z[π1(X)] with

ϕ = ∆[X] ∈ Qn(C(X̃))

such that
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ϕ0 = [X] ∩ − : C(X̃)n−∗ −−→ C(X̃) .

By definition, X is an n-dimensional geometric Poincaré complex with fun-
damental class [X] ∈ Hn(X) if and only if (C(X̃), ϕ) is an n-dimensional

symmetric Poincaré complex over Z[π1(X)], with ϕ0 : C(X̃)n−∗−−→C(X̃) a
chain equivalence.
(ii) An n-dimensional normal space (X, νX , ρX) is a finite CW complex
together with a spherical fibration νX : X−−→BSG(k) and a map ρX :
Sn+k−−→T (νX) (Quinn [226]). Geometric Poincaré complexes are normal
spaces, with the Spivak normal structure. See Ranicki [236], [237] for the
quadratic construction and its application to the quadratic kernel of a nor-
mal map (f, b) : M−−→X from an n-dimensional geometric Poincaré com-
plex M to an n-dimensional normal space X. The quadratic kernel is an n-
dimensional quadratic complex (C(f !), ψ) over Z[π1(X)] with f ! the Umkehr
Z[π1(X)]-module chain map

f ! : C(X̃)n−∗ f̃∗

−−→ C(M̃)n−∗ ≃ C(M̃)

with C(f !) ≃ C(f̃)n−∗+1. If X is an n-dimensional geometric Poincaré com-
plex with fundamental class [X] = f∗[M ] ∈ Hn(X) (so that f has degree 1)
then f ! can be regarded as a chain map

f ! : C(X̃) ≃ C(X̃)n−∗ f̃∗

−−→ C(M̃)n−∗ ≃ C(M̃)

and (C(f !), ψ) is an n-dimensional quadratic Poincaré complex over Z[π1(X)],
such that there is defined a homotopy equivalence of n-dimensional symmetric
Poincaré complexes over Z[π1(X)])

(C(M̃),∆[M ]) ≃ (C(f !), (1 + T )ψ)⊕ (C(X̃),∆[X]) .

See Ranicki [235], [236], [237] for further details. �
Definition 20.6 ([235, Chap. 3], [237, Chap. 1.5])

(i) The relative

{
ϵ-symmetric

ϵ-quadratic
Q-groups

{
Qn(f, ϵ)

Qn(f, ϵ)
of an A-module chain

map f : C−−→D are the

{
Z2-cohomology

Z2-homology
groups of the Z[Z2]-module chain

map
f ⊗ f : C ⊗A C −−→ D ⊗A D

with a long exact sequence . . . −−→ Qn(C, ϵ)
f%

−−→ Qn(D, ϵ) −−→ Qn(f, ϵ) −−→ Qn−1(C, ϵ) −−→ . . .

. . . −−→ Qn(C, ϵ)
f%−−→ Qn(D, ϵ) −−→ Qn(f, ϵ) −−→ Qn−1(C, ϵ) −−→ . . . .

(ii) An n-dimensional ϵ-symmetric pair over A (f, (δϕ, ϕ)) is a chain map
f : C−−→D of f.g. projective A-module chain complexes together with a
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cycle representing an element (δϕ, ϕ) ∈ Qn(f, ϵ). Such a pair is Poincaré if
the A-module chain map

(δϕ, ϕ)0 =

(
δϕ0
ϕ0f

∗

)
: Dn−∗ −−→ C(f)

is a chain equivalence. A cobordism of ϵ-symmetric Poincaré complexes (C, ϕ),
(C ′, ϕ′) is an ϵ-symmetric Poincaré pair ((f f ′) : C⊕C ′−−→D, (δϕ, ϕ⊕−ϕ′)).
Similarly in the ϵ-quadratic case. �
Example 20.7 The constructions of algebraic Poincaré complexes from ge-
ometric Poincaré complexes in 20.4 generalize to pairs. Geometric Poincaré
pairs determine symmetric Poincaré pairs. Likewise, normal maps of geomet-
ric Poincaré pairs determine quadratic Poincaré pairs. �

The terminology of 1.2 is extended to :

Terminology 20.8 The Whitehead group of a ring A is

Wh1(A) =


K̃1(A) for arbitrary A

K̃1(B[z, z−1])/{τ(z)} if A = B[z, z−1]

Wh(π) for a group ring A = Z[π].

It should be clear from the context which of the three (inconsistent) defini-
tions is being used. �

Proposition 20.9 Let

{
(C, ϕ)

(C,ψ)
be an n-dimensional

{
ϵ-symmetric

ϵ-quadratic
Poin-

caré complex over A with C based f.g. free.
(i) The torsion of the complex is given by{

τ(C, ϕ) = τ(ϕ0 : Cn−∗−−→C) ∈Wh1(A)/{τ(ϵ)}
τ(C,ψ) = τ((1 + Tϵ)ψ0 : Cn−∗−−→C) ∈Wh1(A)/{τ(ϵ)} .

(ii) The complex is simple if {
τ(C, ϕ) = 0

τ(C,ψ) = 0 . �
The involution on A determines the duality involutions

∗ : K̃0(A) −−→ K̃0(A) ; [P ] −−→ [P ∗] ,

∗ : Wh1(A) −−→ Wh1(A) ; τ(f :M−−→M) −−→ τ(f∗ :M∗−−→M∗) .

Definition 20.10 Let U ⊆ K̃0(A) (resp. Wh1(A)/{τ(ϵ)}) be a ∗-invariant

subgroup. The n-dimensional U -intermediate

{
ϵ-symmetric

ϵ-quadratic
L-group of A{

LnU (A, ϵ)

LUn (A, ϵ)
is the cobordism group of n-dimensional

{
ϵ-symmetric

ϵ-quadratic
Poincaré
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complexes (C, θ) over A (n ≥ 0) which are f.g. projective (resp. based f.g.
free), with

[C] ∈ U ⊆ K̃0(A) (resp. τ(C, θ) ∈ U ⊆Wh1(A)/{τ(ϵ)}) . �

Example 20.11 The 0-dimensional L-group

{
L0
U (A, ϵ)

LU0 (A, ϵ)
is the Witt group of

nonsingular

{
ϵ-symmetric

ϵ-quadratic
forms

{
(M,ϕ :M−−→M∗)

(M,ψ :M−−→M∗)
over A, with

{
ϕ = ϵϕ∗ : M −−→ M∗

ψ + ϵψ∗ : M −−→ M∗

an isomorphism. Such a form is

{
metabolic

hyperbolic
if there exists a lagrangian

(20.1), in which case {
(M,ϕ) = 0 ∈ L0

U (A, ϵ)

(M,ψ) = 0 ∈ LU0 (A, ϵ) .

See Ranicki [235] for a more detailed account of the correspondence between
the 0-dimensional algebraic Poincaré cobordism groups and the Witt groups
of forms. �
Proposition 20.12 For U ⊆ V there is a Rothenberg-type exact sequence

. . . −−→ Ĥn(Z2 ;V/U) −−→ LnU (A, ϵ) −−→ LnV (A, ϵ)

−−→ Ĥn(Z2 ;V/U) −−→ . . .

. . . −−→ Ĥn+1(Z2 ;V/U) −−→ LUn (A, ϵ) −−→ LVn (A, ϵ)

−−→ Ĥn(Z2 ;V/U) −−→ . . .

with the Tate Z2-cohomology groups defined by

Ĥn(Z2 ;V/U) = {a ∈ V/U | a∗ = (−)na}/{b+ (−)nb∗ | b ∈ V/U} . �

In the extreme cases U = {0}, K̃0(A),Wh1(A)/{τ(ϵ)} the ϵ-symmetric
L-groups LnU (A, ϵ) are denoted by

Ln
K̃0(A)

(A, ϵ) = Lnp (A, ϵ)

Ln
{0}⊆K̃0(A)

(A, ϵ) = LnWh1(A)/{τ(ϵ)}(A, ϵ) = Lnh(A, ϵ)

Ln{0}⊆Wh1(A)/{τ(ϵ)}(A, ϵ) = Lns (A, ϵ)

with exact sequences
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. . . −−→ Lnh(A, ϵ) −−→ Lnp (A, ϵ) −−→ Ĥn(Z2 ; K̃0(A))

−−→ Ln−1
h (A, ϵ) −−→ . . .

. . . −−→ Lns (A, ϵ) −−→ Lnh(A, ϵ) −−→ Ĥn(Z2 ;Wh1(A)/{τ(ϵ)})

−−→ Ln−1
s (A, ϵ) −−→ . . . ,

and similarly in the ϵ-quadratic case. The ϵ-symmetrization maps

1 + Tϵ : LUn (A, ϵ) −−→ LnU (A, ϵ) ; (C,ψ) −−→ (C, ϕ)

are defined by

ϕs =

{
(1 + Tϵ)ψ0 if s = 0

0 if s ≥ 1 .

Remark 20.13 The ϵ-symmetrization maps 1+Tϵ : L
U
∗ (A, ϵ)−−→L∗

U (A, ϵ) are
isomorphisms modulo 8-torsion, and are actual isomorphisms if there exists
a central element s ∈ A with

s+ s = 1 ∈ A ,

e.g. s = 1/2 ∈ A. �
In the case ϵ = 1 the terminology is abbreviated

1-symmetric = symmetric , 1-quadratic = quadratic

L∗
U (A, 1) = L∗

U (A) , LU∗ (A, 1) = L∗
U (A) .

The free L-groups are written

L∗
h(A) = L∗(A) , Lh∗(A) = L∗(A) .

The skew-suspension maps of Ranicki [235, p. 105]

S : LUn (A, ϵ) −−→ LUn+2(A,−ϵ) ; (C,ψ) −−→ (SC, Sψ) (Sψs = ψs) ,

S : LnU (A, ϵ) −−→ Ln+2
U (A,−ϵ) ; (C, ϕ) −−→ (SC, Sϕ) (Sϕs = ϕs)

are isomorphisms for the ϵ-quadratic L-groups L∗ for all A, but are isomor-
phisms for the ϵ-symmetric L-groups L∗ only for certain A, e.g. if A has
homological dimension 1, such as a Dedekind ring, or if 1/2 ∈ A. The ϵ-
quadratic L-groups of any ring with involution A are thus 4-periodic

LUn (A, ϵ) = LUn+2(A,−ϵ) = LUn+4(A, ϵ) ,

with
LU2i(A, ϵ) = LU0 (A, (−)iϵ) , LU2i+1(A, ϵ) = LU1 (A, (−)iϵ) ,

(as in the original treatment by Wall [304]), while the ϵ-symmetric L-groups
L∗
U (A, ϵ) are not 4-periodic in general.
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The algebraic L-groups L∗(A), L
∗(A) of a ring with involution A are al-

gebraic analogues of the manifold and geometric Poincaré bordism groups.

Example 20.14 (i) The symmetric signature of an n-dimensional geometric
Poincaré complex X is the symmetric Poincaré cobordism class introduced
by Mishchenko [201]

σ∗(X) = (C(X̃),∆[X]) ∈ Ln(Z[π1(X)]) ,

with X̃ the universal cover of X. (ii) The quadratic signature of a (degree
1) normal map (f, b) : M−−→X of n-dimensional geometric Poincaré com-
plexes is the quadratic Poincaré cobordism class of the kernel n-dimensional
quadratic Poincaré complex (C(f !), ψ) over Z[π1(X)] (20.4).

σ∗(f, b) = (C(f !), ψ) ∈ Ln(Z[π1(X)]) .

See Ranicki [236] for a detailed exposition of these signatures, including the
identification of the quadratic signature of a normal map (f, b) : M−−→X
from a manifold to a geometric Poincaré complex with the surgery obstruction
of Wall [304]. �

Recall from Chap. 1 that a finite chain complex C of f.g. projective A-
modules is round if [C] = 0 ∈ K0(A). It is convenient to have available the
‘round L-groups’ L∗

r(A) which are related to the projective L-groups L∗
p(A) in

much the way that the absolute K-groups K∗(A) are related to the reduced

K-groups K̃∗(A).

Definition 20.15 (Hambleton, Ranicki and Taylor [103])
(i) The round ϵ-symmetric L-groups Lnr (A, ϵ) (n ≥ 0) are the cobordism
groups of n-dimensional ϵ-symmetric Poincaré complexes (C, ϕ) over A with
C round, that is finite f.g. projective with

[C] = 0 ∈ K0(A) .

(ii) The round simple ϵ-symmetric L-groups Lnrs(A, ϵ) (n ≥ 0) are the cobor-
dism groups of based f.g. free n-dimensional ϵ-symmetric Poincaré complexes
(C, ϕ) over A with C round and

τ(ϕ0 : Cn−∗−−→C) = 0 ∈ K1(A) .

Similarly for the round ϵ-quadratic L-groups Lr∗(A, ϵ) and the round simple
ϵ-quadratic L-groups Lrs∗ (A, ϵ). �
Proposition 20.16 [103]
(i) The projective and round ϵ-symmetric L-groups are related by a Rothen-
berg-type exact sequence

. . . −−→ Ĥn(Z2 ;K0(A)) −−→ Lnr (A, ϵ) −−→ Lnp (A, ϵ)

−−→ Ĥn(Z2 ;K0(A)) −−→ . . . .
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(ii) The round and round simple ϵ-symmetric L-groups are related by a
Rothenberg-type exact sequence

. . . −−→ Ĥn(Z2 ;K1(A)) −−→ Lnrs(A, ϵ) −−→ Lnr (A, ϵ)

−−→ Ĥn(Z2 ;K1(A)) −−→ . . . .

Similarly in the ϵ-quadratic case. �

20B. Γ -groups

The algebraic L-groups L∗(A) of Wall [304] are the obstruction groups for
surgery up to homotopy equivalence. The algebraic Γ -groups Γ∗(A−−→B)
of Cappell and Shaneson [40] are the obstruction groups for surgery up to
homology equivalence. This section just deals with the algebraic definitions
of the Γ -groups – see Chap. 22 for the applications to codimension 2 surgery
theory.

Definition 20.17 Let F : A−−→B be a morphism of rings with involution,
and let U ⊆ K̃0(B) (resp. Wh1(B)/{τ(ϵ)}) be a ∗-invariant subgroup. The

n-dimensional U -intermediate

{
ϵ-symmetric

ϵ-quadratic
Γ -group

{
ΓnU (F, ϵ)

ΓUn (F, ϵ)
(n ≥ 0) is

the cobordism group of n-dimensional

{
ϵ-symmetric

ϵ-quadratic
B-Poincaré complexes

(C, θ) over A which are f.g. projective (resp. based f.g. free) for i = 0 (resp.
1) with

[B ⊗A C] ∈ U ⊆ K̃0(B) (resp. τ(B ⊗A (C, θ)) ∈ U ⊆Wh1(B)/{τ(ϵ)}) . �

By analogy with 20.12 :

Proposition 20.18 For U ⊆ V there is a Rothenberg-type exact sequence
. . . −−→ Ĥn+1(Z2 ;V/U) −−→ ΓnU (F, ϵ) −−→ ΓnV (F, ϵ)

−−→ Ĥn(Z2 ;V/U) −−→ . . .

. . . −−→ Ĥn+1(Z2 ;V/U) −−→ ΓUn (F, ϵ) −−→ ΓVn (F, ϵ)

−−→ Ĥn(Z2 ;V/U) −−→ . . . .

�
Remark 20.19 (i) See Cappell and Shaneson [40] for the original definition
of the Γ -groups and B-homology surgery theory, and Ranicki [237, Chap. 7.7]
for the chain complex treatment.
(ii) For a morphism of rings with involution F : A−−→B which is locally epic
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(9.10) the forgetful map from the free ϵ-quadratic Γ -groups of F to the free
ϵ-quadratic L-groups of B

Γhn (F, ϵ) −−→ Lhn(B,F(ϵ)) ; (C,ψ) −−→ B ⊗A (C,ψ)

is surjective for even n and injective for odd n. The Γ -groups for F = 1 :
A−−→B = A are just the L-groups of A

Γ∗(1 : A−−→A, ϵ) = L∗(A, ϵ) .

(iii) Let (X, ∂X) be an n-dimensional geometric Λ-coefficient Poincaré pair,
for some morphism of rings with involution F : Z[π1(X)]−−→Λ, and let U ⊆
Wh1(Λ) be a ∗-invariant subgroup such that τ(X, ∂X;Λ) ∈ U . The quadratic
kernel of a degree 1 normal map (f, b) : (M,∂M)−−→(X, ∂X) with ∂f :
∂M−−→∂X a Λ-homology equivalence with Λ-coefficient torsion τ(∂f ;Λ) ∈ U
is an n-dimensional quadratic Λ-Poincaré complex (C(f !), ψ) over Z[π1(X)]
with torsion τ(C(f !), ψ) ∈ U . The Λ-coefficient quadratic signature

σΛ∗ (f, b) = (C(f !), ψ) ∈ ΓUn (F)

is the cobordism class of the kernel n-dimensional quadratic Λ-Poincaré over
Z[π1(X)]. This is the Λ-homology surgery obstruction, such that σΛ∗ (f, b) = 0
if (and for F locally epic and n ≥ 5 only if) (f, b) is normal bordant rel ∂ to
a Λ-homology equivalence of pairs with torsion in U .
(iv) Let (X, ∂X) be an n-dimensional geometric Poincaré pair such that
H∗(∂X;Λ) = 0 for some morphism of rings with involution F : Z[π1(X)]−−→Λ,
and let U ⊆ Wh1(Λ) be a ∗-invariant subgroup such that τ(X, ∂X;Λ) ∈ U .
The Λ-coefficient symmetric signature

σ∗
Λ(X, ∂X) = (C(X̃, ∂̃X), ϕ) ∈ ΓnU (F)

is the cobordism class of the n-dimensional symmetric Λ-Poincaré complex

(C(X̃, ∂̃X), ϕ) over Z[π1(X)] with ϕ = ∆[X] the usual symmetric structure.
�

The relative ϵ-quadratic Γ -groups Γ∗(Φ, ϵ) are defined for any commuta-
tive square of rings with involution

A //

��

A′

��

Φ

B // B′

to fit into the exact sequence

. . . −−→ Γn(A−−→B, ϵ) −−→ Γn(A
′−−→B′, ϵ) −−→ Γn(Φ, ϵ)

−−→ Γn−1(A−−→B, ϵ) −−→ . . . .
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Similarly for the ϵ-symmetric Γ -groups Γ ∗.

Definition 20.20 For any morphism of rings with involution F : A−−→B let
ΦF be the commutative square

A //

��

A

��

ΦF

A // B

so that the relative ϵ-quadratic Γ -groups Γ∗(ΦF, ϵ) fit into an exact sequence

. . . −−→ Ln(A, ϵ) −−→ Γn(F, ϵ)
∂
−−→ Γn(ΦF, ϵ) −−→ Ln−1(A, ϵ) −−→ . . . .

Similarly for the relative ϵ-symmetric Γ -groups Γ ∗(ΦF, ϵ). �
Proposition 20.21 (Ranicki [237, 2.5.7])
For a locally epic morphism of rings with involution F : A−−→B the relative ϵ-
quadratic Γ -group Γn(ΦF, ϵ) is (isomorphic to) the cobordism group of (n−1)-
dimensional ϵ-quadratic B-contractible Poincaré complexes over A. The map
∂ in the exact sequence of 20.20 given by

∂ : Γn(F, ϵ) −−→ Γn(ΦF, ϵ) ; (C,ψ) −−→ ∂(C,ψ)

with (C,ψ) an n-dimensional ϵ-quadratic B-Poincaré complex over A, and
∂(C,ψ) the boundary (n−1)-dimensional ϵ-quadratic B-contractible Poincaré
complex over A. Similarly for the relative ϵ-symmetric Γ -groups Γ ∗(ΦF, ϵ).

�

20C. Thickenings, unions and triads

This section sets out various algebraic Poincaré analogues of standard topo-
logical constructions, which will be useful further on.

For any n-dimensional geometric Poincaré pair (W,∂W ) the n-dimensional
symmetric Poincaré pair (C(∂W )−−→C(W ), ∆[W ]) is determined algebraically
by the n-dimensional symmetric complex (C(W,∂W ),∆[W ]/∆[∂W ]), as fol-
lows.

Definition 20.22 (Ranicki [235, Chap. 3])
(i) The thickening of an n-dimensional ϵ-symmetric complex (C, ϕ) is the
n-dimensional ϵ-symmetric Poincaré pair (f : ∂C−−→Cn−∗, (0, ∂ϕ)) with
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∂C = S−1C(ϕ0 : Cn−∗−−→C) ,
f = (0 1) : ∂Cr = Cr+1 ⊕ Cn−r −−→ Cn−r ,

d∂C =

(
dC (−)rϕ0
0 (−)rd∗C

)
:

∂Cr = Cr+1 ⊕ Cn−r −−→ ∂Cr−1 = Cr ⊕ Cn−r+1 ,

∂ϕ0 =

(
(−)n−r−1Tϵϕ1 (−)r(n−r−1)ϵ

1 0

)
:

∂Cn−r−1 = Cn−r ⊕ Cr+1 −−→ ∂Cr = Cr+1 ⊕ Cn−r ,

∂ϕs =

(
(−)n−r+s−1Tϵϕs+1 0

0 0

)
:

∂Cn−r+s−1 = Cn−r+s ⊕ Cr−s+1

−−→ ∂Cr = Cr+1 ⊕ Cn−r (s ≥ 1) .

The (n− 1)-dimensional ϵ-symmetric Poincaré complex

∂(C, ϕ) = (∂C, ∂ϕ)

is the boundary of (C, ϕ).
(ii) The Thom complex of an n-dimensional ϵ-symmetric Poincaré pair (f :
C−−→D, (δϕ, ϕ)) over A is the n-dimensional ϵ-symmetric complex (D/C,
δϕ/ϕ) over A with

D/C = C(f : C−−→D)

and δϕ/ϕ ∈ Qn(D/C, ϵ) the image of (δϕ, ϕ) ∈ Qn(f, ϵ) under the canonical
map.
Similarly in the ϵ-quadratic case. �
Proposition 20.23 ([235, Chap. 3])
(i) The thickening and the Thom complex define inverse bijections between the
homotopy equivalence classes of n-dimensional ϵ-symmetric complexes over
A and (n+ 1)-dimensional ϵ-symmetric Poincaré pairs over A.
(ii) An n-dimensional ϵ-symmetric complex (C, ϕ) over A if and only if the
boundary (n− 1)-dimensional ϵ-symmetric Poincaré complex ∂(C, ϕ) is con-
tractible.
Similarly in the ϵ-quadratic case. �

The union of n-dimensional geometric Poincaré pairs (X+, ∂X+),
(X−, ∂X−) with ∂X+ = −∂X− is an n-dimensional geometric Poincaré com-
plex X+ ∪∂ X−.
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X+ X−

X+ ∪∂ X−

Similarly for algebraic Poincaré pairs :

Definition 20.24 ([235, p. 135], [237, 1.7])
The union of n-dimensional ϵ-symmetric Poincaré pairs over A

c+ = (f+ : C−−→D+, (δ+ϕ, ϕ)) , c− = (f− : C−−→D−, (δ−ϕ,−ϕ))

is the n-dimensional ϵ-symmetric Poincaré complex over A

c+ ∪ c− = (D+ ∪C D−, δ+ϕ ∪ϕ δ−ϕ)

with

(D+ ∪C D−) = C(

(
f+
f−

)
: C−−→D+ ⊕D−) ,

(δ+ϕ ∪ϕ δ−ϕ)s =

 δ+ϕs 0 0

(−)n−r−1ϕsf
∗
+ (−)n−r+sTϵϕs−1 0

0 (−)sf−ϕs δ−ϕs

 :

(D+ ∪C D−)
n−r+s = (D+)

n−r+s ⊕ Cn−r+s−1 ⊕ (D−)
n−r+s

−−→ (D+ ∪C D−)r = (D+)r ⊕ Cr−1 ⊕ (D−)r (s ≥ 0, ϕ−1 = 0) .

Similarly in the ϵ-quadratic case. �
The glueing of algebraic Poincaré pairs is a special case of the glueing

of algebraic Poincaré cobordisms. In the applications of algebraic Poincaré
complexes to topology in general (and Chap. 30 in particular) it is convenient
to have available the following splitting construction, which characterizes the
algebraic Poincaré complexes which are unions.

Proposition 20.25 Let (C, ϕ) be an n-dimensional ϵ-symmetric Poincaré
complex over A. A morphism of n-dimensional ϵ-symmetric complexes

(f, χ) : (C, ϕ) −−→ (D, θ)

determines a homotopy equivalence

(C, ϕ) ≃ c+ ∪ c−
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(regarding (C, ϕ) as the n-dimensional ϵ-symmetric Poincaré pair (0−−→C,
(ϕ, 0))) with c+, c− the n-dimensional ϵ-symmetric Poincaré pairs

c+ = (g : ∂D−−→Dn−∗, (0, ∂θ)) , c− = (g− : ∂D−−→D−, (θ
′, ∂θ))

with c+ the thickening of (D, θ), c− homotopy equivalent to the thickening of
(C(ϕ0f

∗ : Dn−∗−−→C), e%(θ)) and

D− = C(f : C−−→D)∗+1 ,

e = inclusion : C −−→ C(ϕ0f
∗) ,

g− =

(
1 0

0 ϕ0f
∗

)
:

∂Dr = Dr+1 ⊕Dn−r −−→ (D−)r = Dr+1 ⊕ Cr . �

A manifold triad (M ; ∂0M,∂1M) is a cobordism of manifolds with bound-
ary, or equivalently a manifold M with the boundary expressed as a union of
codimension 0 submanifolds ∂0M,∂1M ⊂ ∂M

∂M = ∂0M ∪ ∂1M

such that
∂0M ∩ ∂1M = ∂∂0M = ∂∂1M .
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M∂0M ∂1M

Algebraic and geometric Poincaré triads are the evident analogues of man-
ifold triads, and have already been studied in Ranicki [237]. The standard
constructions of algebraic complexes (resp. pairs) from geometric Poincaré
complexes (resp. pairs) extend to triads. The algebraic properties of triads
will be used in the treatment of codimension q surgery in Chap. 21 and
beyond.

Definition 20.26 (i) An n-dimensional ϵ-symmetric triad over A

(Γ,Θ) =

( ∂01B
f0 //

f1

��

∂0B

g0

��
∂1B

g1 // B

,

∂01θ //

��

∂0θ

��
∂1θ // θ

)

is a commutative square Γ of f.g. projective A-module chain complexes with
an element Θ ∈ Qn(Γ, ϵ) in the triad Q-group which fits into the commutative
diagram of exact sequences
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�� �� �� ��
// Qn(∂01B, ϵ)

f%
0 //

f%
1

��

Qn(∂0B, ϵ) //

g%0
��

Qn(f0, ϵ) //

��

Qn−1(∂01B, ϵ) //

f%
1

��
// Qn(∂1B, ϵ)

g%1 //

��

Qn(B, ϵ) //

��

Qn(g1, ϵ) //

��

Qn−1(∂1B, ϵ) //

��
// Qn(f1, ϵ) //

��

Qn(g0, ϵ) //

��

Qn(Γ, ϵ) //

��

Qn−1(f1, ϵ) //

��
// Qn−1(∂01B, ϵ)

f%
0 //

��

Qn−1(∂0B, ϵ) //

��

Qn−1(f0, ϵ) //

��

Qn−2(∂01B, ϵ) //

��

(ii) An n-dimensional ϵ-symmetric triad (Γ,Θ) is Poincaré if the (n − 1)-
dimensional ϵ-symmetric pairs (f0, ∂0Θ), (f1, ∂1Θ) are Poincaré, and the A-
module chain map

Θ0 : C(g0)
n−∗ −−→ C(g1)

is a chain equivalence, in which case there is defined an n-dimensional ϵ-
symmetric Poincaré pair

(g0 ∪ g1 : ∂0B ∪∂01B ∂1B−−→B, (θ, ∂0θ ∪∂01θ −∂1θ))

with boundary the union

(g0 : ∂01B−−→∂0B, (∂0θ, ∂01θ)) ∪ (g1 : ∂01B−−→∂1B, (−∂1θ,−∂01θ)) .

Similarly for ϵ-quadratic (Poincaré) pairs and triads. �
The following triad version of the one-one correspondence between the ho-

motopy equivalence classes of algebraic Poincaré pairs and complexes (20.23)
will be used in Chaps. 22, 26 :

Proposition 20.27 The homotopy equivalence classes of n-dimensional ϵ-
symmetric Poincaré triads (Γ,Θ) over A are in one-one correspondence with
the homotopy equivalence classes of n-dimensional ϵ-symmetric complexes
(C, ϕ) over A together with a factorization

ϕ0 = gf : Cn−∗ f
−−→ D

g
−−→ C

up to chain homotopy, for some finite f.g. projective A-module chain complex
D and chain maps f : Cn−∗−−→D, g : D−−→C. The triad (Γ,Θ) (as in 20.22)
corresponding to (C, ϕ), f, g has
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B = Cn−∗ ,

∂0B = C(f : Cn−∗−−→D)∗+1 , ∂1B = C(g∗ : Cn−∗−−→Dn−∗)∗+1 ,

∂01B = C(C(f∗)n−1−∗−−→C(f∗))∗+1 = C(C(g)n−1−∗−−→C(g))∗+1 .

Similarly for the ϵ-quadratic case, with an ϵ-quadratic complex (C,ψ) and a
factorization

(1 + Tϵ)ψ0 = gf : Cn−∗ f
−−→ D

g
−−→ C . �

Remark 20.28 Here is a useful interpretation of 20.27, which was already im-
plicit in the odd-dimensional surgery obstruction of Wall [304, Chap. 6] (and
the subsequent reformulations of Novikov [218] and Ranicki [230] using forma-
tions – see 20.29 (ii) below), and in the construction of the algebraic surgery
transfer map in Lück and Ranicki [174]. Let Dn(A) be the n-dimensional
derived category, the additive category of n-dimensional f.g. free A-module
chain complexes and chain homotopy classes and chain maps. Regard Dn(A)
as an additive category with involution C−−→Cn−∗, so that the L-theory of
Dn(A) is defined as in Ranicki [243]. Given (C, ϕ), f , g as in 20.8 note that
the morphisms defined in Dn(A) by

γ = g∗ : L = Cn−∗ −−→ Dn−∗ ,

µ = f : L = Cn−∗ −−→ D

are the components of a morphism of symmetric forms in Dn(A)(
γ
µ

)
: (L, 0) −−→ (D ⊕Dn−∗,

(
0 1
1 0

)
)

which is the inclusion of a sublagrangian with hessian form(
γ
µ

)∗(
0 1
0 0

)(
γ
µ

)
= γ∗µ = gf = ϕ0 : Cn−∗ −−→ C

and boundary
L⊥/L = ∂01B .

(See [230] for more on the hessian form). �
Example 20.29 (i) An n-dimensional geometric Poincaré triad

(X; ∂0X, ∂1X; ∂01X)

determines an n-dimensional symmetric Poincaré triad over Z[π1(X)]

(Γ,Θ) =

( C(∂̃01X) //

��

C(∂̃0X)

��
C(∂̃1X) // C(X̃)

,

∆[∂01X] //

��

∆[∂0X]

��
∆[∂1X] // ∆[X]

)



20C. Thickenings, unions and triads 225

with
∂0X ∩ ∂1X = ∂01X , ∂0X ∪ ∂1X = ∂X

and X̃ the universal cover of X. The corresponding n-dimensional symmetric
complex over Z[π1(X)]

(C, ϕ) = (C(X̃, ∂̃X),∆[X])

is such that

ϕ0 = [X] ∩ − = gf : Cn−∗ = C(X̃, ∂̃X)n−∗ ≃ C(X̃)

f
−−→ D = C(X̃, ∂̃1X)n−∗ ≃ C(X̃, ∂̃0X)

g
−−→ C(X̃, ∂̃X) = C

with f, g induced by the inclusions and

C(∂̃0X) ≃ C(f)∗+1 , C(∂̃1X) ≃ C(g∗ : Cn−∗−−→Dn−∗)∗+1 .

The (n− 1)-dimensional symmetric Poincaré pairs (∂0X, ∂01X), (∂0X, ∂01X)
correspond to the (n− 1)-dimensional symmetric complexes

(C(∂̃0X, ∂̃01X), (e0)
%(∂ϕ)) , (C(∂̃1X, ∂̃01X), (e1)

%(∂ϕ))

with

e0 : ∂C ≃ C(∂̃X)
1⊕g∗
−−−→

C(f)n−∗ ≃ C(∂̃0X)n−1−∗ ≃ C(∂̃X, ∂̃1X) ≃ C(∂̃0X, ∂̃01X) ,

e1 : ∂C ≃ C(∂̃X)
1⊕f
−−−→

C(g∗)n−∗ ≃ C(∂̃1X)n−1−∗ ≃ C(∂̃X, ∂̃0X) ≃ C(∂̃1X, ∂̃01X) .

Similarly for kernels of normal maps and quadratic Poincaré triads.
(ii) Let

(f, b) : (M ; ∂0M,∂1M ; ∂01M) −−→ (X; ∂0X, ∂1X; ∂01X)

be a normal map of n-dimensional geometric Poincaré triads, so that the
quadratic kernel is an n-dimensional quadratic Poincaré triad (Γ, Ψ) over
Z[π1(X)]. Suppose that n = 2i, that f is i-connected, ∂0f , ∂1f are (i −
1)-connected and that ∂01f is a homotopy equivalence. In this case, the
Z[π1(X)]-module morphisms of 20.24

γ = f : L = C2i−∗ = Ki(M) −−→ D = Ki(M,∂1M) ,

µ = g∗ : L = C2i−∗ = Ki(M) −−→ D2i−∗ = Ki(M,∂0M)
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are the components of the inclusion of a lagrangian in a hyperbolic (−)i−1-
quadratic form (

γ
µ

)
: (L, 0) −−→ (D ⊕Dn−∗,

(
0 1
0 0

)
)

with hessian the kernel (−)i-quadratic intersection form (Ki(M), ψ)

γ∗µ = ψ + (−)iψ∗ : Ki(M) −−→ Ki(M)∗ = Ki(M) .

The quadratic kernel determines (and is determined by) the nonsingular
(−)i−1-quadratic formation

(D ⊕D2i−∗,

(
0 1
0 0

)
;D, im

(
γ
µ

)
) ,

corresponding to the automorphism of the hyperbolic (−)i−1-quadratic form

sending D to im

(
γ
µ

)
used by Wall [304, Chap. 6] to construct the (2i− 1)-

dimensional surgery obstructions of (f0, b0) and (f1, b1)

σ∗(∂0f, ∂0b) = σ∗(∂1f, ∂1b) ∈ L2i−1(Z[π1(X)])

assuming π1(∂0X) = π1(∂1X) = π1(X). Furthermore, if ∂0f , ∂1f are homo-
topy equivalences then (Ki(M), ψ) is a nonsingular (−)i-quadratic form over
Z[π1(X)], and the 2i-dimensional surgery obstruction of (f, b) ([304, Chap.
5]) is given by

σ∗(f, b) = (Ki(M), ψ) ∈ L2i(Z[π1(X)]) . �
It is also possible to glue together algebraic Poincaré triads. The follow-

ing construction decomposing algebraic Poincaré pairs as unions of algebraic
Poincaré triads is a relative version of 20.25, which will be used in Chap. 30 :

Proposition 20.30 Let (i : ∂C−−→C, (ϕ, ∂ϕ)) be an n-dimensional ϵ-
symmetric Poincaré pair over A. A morphism of n-dimensional ϵ-symmetric
pairs

(f, ∂f ;χ, ∂χ) : (i : ∂C−−→C, (ϕ, ∂ϕ)) −−→ (j : ∂D−−→D, (θ, ∂θ))

determines n-dimensional ϵ-symmetric Poincaré triads

(Γ+, Θ+) =

( ∂∂D //

��

C(∂f)∗+1

��
∂+D // C(f)∗+1

,

∂∂θ //

��

∂+θ+

��
∂+θ // θ+

)
,

(Γ−, Θ−) =

( ∂∂D //

��

∂Dn−∗−1

��
∂+D // C(j)n−∗

,

−∂∂θ //

��

∂+θ−

��
−∂+θ // θ−

)
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such that
(i : ∂C−−→C, (ϕ, ∂ϕ)) ≃ (Γ+, Θ+) ∪ (Γ−, Θ−) ,

with
∂∂D = C(∂θ0 : ∂Dn−∗−1−−→∂D)∗+1 ,

∂+D = C((θ0 j∂θ0) : C(j)
n−∗−−→D)∗+1 .

Similarly in the ϵ-quadratic case. �



228 20. Algebraic Poincaré complexes



21. Codimension q surgery

This chapter reviews codimension q surgery theory for q ≥ 1. Refer to Chap. 7
of Ranicki [237] for a previous account of the algebraic theory of codimension
q surgery. For q ≥ 3 this is the same as the ordinary surgery obstruction
theory on the submanifold, while for q = 1, 2 the situation is considerably
more complicated. It may appear that case q = 2 is the one of most direct
application to knot theory, although in fact the case q = 1 (applied to the
Seifert surfaces of knots) is just as relevant.

21A. Surgery on submanifolds

Here is the basic operation of codimension q surgery, for any q ≥ 1 :

Definition 21.1 Let M be an n-dimensional manifold, and let Nn−q ⊂Mn

be a submanifold of codimension q ≥ 1. An ambient (or codimension q)
surgery on N inside M is the operation (M,N)−−→(M,N ′) determined by
an embedding

(Dr+1, Sr)×Dn−q−r −−→ (M,N)

with
N ′ = cl.(N\(Sr ×Dn−q−r)) ∪ (Dr+1 × Sn−q−r−1) ⊂M. �

Proposition 21.2 The effect of an ambient surgery on a codimension q
submanifold N ⊂M is a codimension q submanifold N ′ ⊂M which is related
to N by the trace cobordism

(W ;N,N ′) = (N × I ∪Dr+1 ×Dn−q−r;N × {0}, N ′)

with a codimension q embedding

(W ;N,N ′) ⊂M × (I; {0}, {1}) .

Conversely, every ambient cobordism (W ;N,N ′) ⊂ M × (I; {0}, {1}) is the
union of traces of a sequence of ambient surgeries.
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WN N ′

M × {0} M × I M × {1} �

Definition 21.3 (i) A codimension q CW pair (X,Y ) is a CW complex with
a decomposition

X = E(ξ) ∪S(ξ) Z

for some (q−1)-spherical fibration ξ : Y−−→BG(q) over a subcomplex Y ⊂ X,
with Z ⊂ X a disjoint subcomplex and

(Dq, Sq−1) −−→ (E(ξ), S(ξ)) −−→ Y

the associated (Dq, Sq−1)-fibration.
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E(ξ) S(ξ) Z

X

(ii) A topological normal structure on a a codimension q CW pair (X,Y ) is
a topological q-block bundle

ξ̃ : Y −−→ BT̃OP (q)

such that
ξ = Jξ̃ : Y −−→ BG(q) .

(iii) An (n, n− q)-dimensional geometric Poincaré pair (X,Y ) is a codimen-
sion q CW pair such that :

(a) X is an n-dimensional Poincaré complex,
(b) Y is an (n− q)-dimensional Poincaré complex,
(c) (Z, S(ξ)) is an n-dimensional Poincaré pair.

In this case, the normal (q − 1)-spherical fibration is written

ξ = νY⊂X : Y −−→ BG(q) .
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The pair (X,Y ) is simple if the Poincaré complexes and pairs in (a),(b),(c)
are simple, i.e. have torsion τ = 0 ∈Wh. �
Example 21.4 For q = 1, 2

BT̃OP (q) = BO(q) = BG(q)

so that every codimension q CW pair (X,Y ) has a canonical topological
normal structure. �

21B. The splitting obstruction

Proposition 21.5 Let (X,Y ) be a codimension q CW pair with a topological
normal structure.
(i) Every map f :M−−→X from an n-dimensional manifold M can be made
topologically transverse at Y ⊂ X, with

N = f−1(Y ) ⊂M

a codimension q submanifold, defining a simple (n, n − q)-dimensional geo-
metric Poincaré pair (M,N) with

νN⊂M : N
f |
−−→ Y

ξ̃
−−→ BT̃OP (q) .

(ii) If (f, b) :M−−→X is a normal map (i.e. if f is covered by a map of stable
topological block bundles b : νM−−→η) then the restrictions define normal
maps

(g, c) = (f, b)| : N −−→ Y ,

(h, d) = (f, b)| : (P, ∂P ) = f−1(Z, ∂Z) −−→ (Z, ∂Z)

with ∂Z = S(ξ), ∂P = S(νN⊂M ). �
Definition 21.6 Let (X,Y ) be a codimension q CW pair with a topological
normal structure.
(i) A homotopy equivalence h : M−−→M ′ from an n-dimensional manifold
M to an n-dimensional geometric Poincaré complex M ′ splits along Y ⊂ X
if there is given a reference map r : M ′−−→X which is Poincaré transverse
at Y ⊂ X, with (M ′, N ′) an (n, n− q)-dimensional geometric Poincaré pair,
such that the restrictions

(f, b) = h| : N = (rh)−1(Y ) −−→ N ′ = r−1(Y ) ,

(g, c) = h| : P = (rh)−1(Z) −−→ P ′ = r−1(Z)

are homotopy equivalences, i.e. if the normal maps (f, b) and (g, c) obtained
by transversality can be improved by ambient surgeries on the codimension
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q submanifold N ⊂M to be homotopy equivalences.
(ii) The homotopy equivalence h h-splits along Y ⊂ X if h is h-cobordant to
a split homotopy equivalence.
(iii) If (M ′, N ′) is a simple codimension q Poincaré pair and h is a simple
homotopy equivalence then h s-splits along Y ⊂ X if h is s-cobordant to a
split homotopy equivalence such that the restrictions f , g are simple homo-
topy equivalences.
(iv) There are analogous notions of splitting for a homotopy equivalence from
a manifold with boundary to a geometric Poincaré pair. �

Note that for n ≥ 5 it is possible to replace ‘s-cobordant’ by ‘homotopic
to’ in the definition of s-splitting, by the s-cobordism theorem.

The codimension q splitting obstruction theory of Wall [304] was origi-
nally formulated for the problem of s-splitting homotopy equivalences, with
obstruction groups LS∗(Φ). These will be denoted by LSs∗(Φ). There is also
an h-splitting version with obstruction groups LSh∗ (Φ), and it is these which
will be denoted by LS∗(Φ). In the original treatment the LS-groups were
defined geometrically, but in Ranicki [237] the LS-groups were expressed al-
gebraically as the cobordism groups of algebraic Poincaré triads.

The fundamental groups (or groupoids) of the spaces in a codimension q
CW pair (X,Y ) fit into the pushout square

π1(S(ξ)) //

��

π1(Z)

��

Φ

π1(E(ξ)) // π1(X)

given by the Seifert–van Kampen theorem

π1(X) = π1(E(ξ)) ∗π1(S(ξ)) π1(Z)

(working with groupoids in the disconnected case).

Definition 21.7 (Wall [304, pp. 127, 138], Ranicki [237, p. 565])
Let (X,Y ) be a codimension q CW pair with topological normal structure.
(i) The quadratic LS-groups LS∗(Φ) of the pushout square of groups Φ as-
sociated to (X,Y ) are the relative groups appearing in the exact sequence

. . . −−→ Ln+1(Z[π1(Z)]−−→Z[π1(X)]) −−→ LSn−q(Φ) −−→ Ln−q(Z[π1(Y )])

pξ !

−−→ Ln(Z[π1(Z)]−−→Z[π1(X)]) −−→ . . . .

Every element of Ln−q(Z[π1(Y )]) is the rel ∂ surgery obstruction σ∗(f, b) of a
normal map (f, b) : (N, ∂N)−−→(N ′, ∂N ′) from an (n− q)-dimensional man-
ifold with boundary to an (n− q)-dimensional geometric Poincaré pair, such
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that ∂f : ∂N−−→∂N ′ is a homotopy equivalence, and with a π1-isomorphism
reference map N ′−−→Y . The map pξ ! is the composite of the transfer map

ξ ! : Ln−q(Z[π1(Y )]) −−→ Ln(Z[π1(S(ξ))]−−→Z[π1(E(ξ))]) ;

σ∗(f, b) −−→ σ∗(E(f), E(b))

sending the rel ∂ surgery obstruction σ∗(f, b) to the rel ∂ surgery obstruction
σ∗(E(f), E(b)) of the induced normal map of (Dk, Sk−1)-bundles from an n-
dimensional manifold with boundary to an n-dimensional geometric Poincaré
pair

(E(f), E(b)) : (E(ξ̃N ), ∂E(ξ̃N )) −−→ (E(ξ̃N ′), ∂E(ξ̃N ′))

with
ξ̃N : N −−→ BT̃OP (q) , ξ̃N ′ : N ′ −−→ BT̃OP (q)

the pullbacks of ξ̃ : Y−−→BT̃OP (q), and

p : Ln(Z[π1(S(ξ))]−−→Z[π1(E(ξ))]) −−→ Ln(Z[π1(Z)]−−→Z[π1(X)])

is the morphism of relative L-groups induced functorially by Φ.
(ii) Let h : (M,∂M)−−→(M ′, ∂M ′) be a homotopy equivalence from an n-
dimensional manifold with boundary to an n-dimensional geometric Poincaré
pair, with a π1-isomorphism reference map r : M ′−−→X which is Poincaré
transverse at Y ⊂ X, such that ∂h : ∂M−−→∂M ′ is a homotopy equivalence
which is h-split along Y ⊂ X. The codimension q splitting obstruction of h

sY (h) ∈ LSn−q(Φ)

has image the surgery obstruction σ∗(f, b) ∈ Ln−q(Z[π1(Y )]) of the codimen-
sion q normal map obtained by transversality

(f, b) = h| : (N, ∂N) = (rh, ∂r∂h)−1(Y ) −−→ (N ′, ∂N ′) = (r, ∂r)−1(Y )

which is determined by the bordism

h× 1 : (M × I;M × {0}, E(νN⊂M )× {1};P × {1})
−−→ (M ′ × I;M ′ × {0}, E(νN ′⊂M ′)× {1};P ′ × {1})

(P = (rh)−1(Z) = cl.(M\E(νN⊂M )))

of
(f, b) ! : (E(νN⊂M ), S(νN⊂M )) −−→ (E(νN ′⊂M ′), S(νN ′⊂M ′))

to the homotopy equivalence h : (M,∂M)−−→(M ′, ∂M ′), as in the diagram
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h h× 1 (f, b) !

∂M × {0} P × {1} S(νN⊂M )× {1}

M ′ × {0} M ′ × I E(νN ′⊂M ′)× {1}

M × {0} M × I E(νN⊂M )× {1}

∂M ′ × {0} P ′ × {1} S(νN ′⊂M ′)× {1}

(iii) The quadratic LN -groups LN∗ are the LS-groups for a codimension q
CW pair (X,Y ) with

π1(X) = π1(Y ) , π1(S(ξ)) = π1(Z)

(e.g. if X = E(ξ) with Z = S(ξ)), that is

LS∗(Φ) = LN∗(Z[π1(S(ξ))]−−→Z[π1(Y )]) .

(iv) The simple quadratic LS-groups LSs∗(Φ) and the simple quadratic LN -
groups LNs

∗ are defined similarly, using the simple quadratic L-groups Ls∗.
�

Proposition 21.8 (Wall [304, p. 126], Ranicki [237, 7.2.5])
(i) The codimension q splitting obstruction of a homotopy equivalence from
an n-dimensional manifold to an n-dimensional geometric Poincaré pair
h : (M,∂M)−−→(M ′, ∂M ′) with ∂h : ∂M−−→∂M ′ split along Y ⊂ X is
such that sY (h) = 0 ∈ LSn−q(Φ) if (and for n− q ≥ 5 only if) h h-splits rel
∂ along Y ⊂ X. Similarly for s-splitting.
(ii) Every element x ∈ LSn−q(Φ) is the codimension q splitting obstruction
x = sY (h) with h as in (i).
Proof The original proof in [304] was in terms of the smoothing theory of
Poincaré embeddings. The basic idea goes back to Browder : first try to per-
form (non-ambient) surgery on the submanifold N ⊂ M to obtain a normal
bordism from h : M−−→M ′ to a split homotopy equivalence h′ : M ′′−−→M ′,
and then try to perform rel ∂ surgery on the normal bordism. �
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Example 21.9 (i) For a codimension q CW pair (X,Y ) with q ≥ 3

π1(S(ξ)) = π1(E(ξ)) = π1(Y ) = π1(Z) = π1(X)

and the codimension q splitting obstruction is just the ordinary surgery ob-
struction

sY (h) = σ∗(f, b) ∈ LSn−q(Φ) = Ln−q(Z[π1(Y )]) ,

by the Browder–Casson–Sullivan–Wall embedding theorem ([304, 11.3.1]).
(ii) For q = 1 there are three cases :

(A) ξ is trivial, and Y separates X (e.g. Y = {pt.} ⊂ X = S1 ∨ S1),

(B) ξ is trivial, but Y does not separate X (e.g. Y = {pt.} ⊂ X = S1),

(C) ξ is non-trivial (e.g. Y = S1 ⊂ X = RP2).

See [304, Chaps. 12A, 12B, 12C] and Ranicki [237, 7.6] for accounts of codi-
mension 1 splitting obstruction theory. �
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22. Codimension 2 surgery

Lopez de Medrano [169] formulated ”the general philosophy for dealing with
surgery problems in codimension 2 : do not insist on obtaining homotopy
equivalences when you are doing surgery on the complement of a submani-
fold, be happy if you can obtain the correct homology conditions.” Cappell
and Shaneson [40], [46] developed the appropriate homology surgery theory,
with the Γ -groups (20.17) as obstruction groups, and applied the theory to
codimension 2 surgery. Freedman [84] and Matsumoto [183] worked out a
somewhat different approach to codimension 2 surgery, using ±z-quadratic
forms over Z[π1(S(ξ))] to formulate the obstructions to individual ambient
surgeries. The relationship between these approaches has already been stud-
ied in Ranicki [237, 7.6], using both algebra and geometry. This chapter starts
by recalling and extending the chain complex reformulation in [237] of the
theory of [84] and [183].

22A. Characteristic submanifolds

In order to avoid twisted coefficients only oriented 2-plane bundles ξ :
M−−→BSO(2) are considered. Manifolds and submanifolds will be all as-
sumed to be oriented.

Proposition 22.1 If (M,∂M) is an n-dimensional manifold with boundary
the following sets are in natural one-one correspondence :

(i) the cohomology group H2(M),
(ii) the homology group Hn−2(M,∂M),
(iii) the set [M,BSO(2)] of isomorphism classes of 2-plane bundles ξ

over M ,
(iv) the ambient cobordism classes of codimension 2 submanifolds

(N, ∂N) ⊂ (M,∂M).

Proof Immediate from Poincaré duality, manifold transversality and the iden-
tifications

BSO(2) = MSO(2) = K(Z, 2) = CP∞ . �
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For a 2-plane bundle ξ : M−−→BSO(2) over a connected space M the
S1-fibration

S1 −−→ S(ξ)
p
−−→ M

induces an exact sequence of groups

π1(S
1) −−→ π1(S(ξ))

p∗
−−→ π1(M) −−→ {1}

such that the image of 1 ∈ π1(S1) is central in π1(S(ξ)). The image of 1 will
be denoted by z ∈ π1(S(ξ)). Note that there is defined an exact sequence of
group rings

Z[π1(S(ξ))]
1−z
−−→ Z[π1(S(ξ))]

p∗
−−→ Z[π1(M)] −−→ 0 .

Definition 22.2 Let (M,∂M) be an n-dimensional manifold with boundary,
and let ξ :M−−→BSO(2) be a 2-plane bundle.
(i) The exterior of a codimension 2 submanifold with boundary

(Nn−2, ∂N) ⊂ (Mn, ∂M)

is the pair

(Pn, ∂+P ) = (cl.(M\E(νN⊂M )), cl.(∂M\E(ν∂N⊂∂M ))) ,

such that (P ; ∂+P, S(νN⊂M )) is an n-dimensional manifold triad.
(ii) A ξ-characteristic codimension 2 submanifold of (M,∂M) is a codimen-
sion 2 submanifold with boundary (N, ∂N) ⊂ (M,∂M) representing the
Poincaré dual of the Euler class of ξ

[N ] = e(ξ) ∈ Hn−2(M,∂M) = H2(M) ,

with an identification

ξ|N = νN⊂M : N −−→ BSO(2)

and an extension of the trivialization

ξ|S(νN⊂M ) = ϵ2 : S(νN⊂M ) −−→ BSO(2)

to a trivialization
ξ|P = ϵ2 : P −−→ BSO(2) .
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Proposition 22.3 (i) For a ξ-characteristic codimension 2 submanifold
(N, ∂N) ⊂ (M,∂M) the total spaces of S1-fibrations define an (n + 1)-
dimensional manifold with boundary

(M ′, ∂M ′) = (S(ξ), S(ξ|∂M ))

such that

(N ′, ∂N ′) = (S(νN⊂M ), S(ν∂N⊂∂M )) ⊂ (M ′, ∂M ′)

is an ϵ2-characteristic codimension 2 submanifold with exterior

(P ′, ∂+P
′) = (cl.(M ′\(N ′ ×D2)), cl.(∂M ′\(∂N ′ ×D2)))

= (P × S1, ∂+P × S1) .

(ii) Every codimension 2 submanifold (N, ∂N) ⊂ (M,∂M) is ξ-characteristic,
with ξ :M−−→BSO(2) the 2-plane bundle with Euler class the Poincaré dual
of the homology class represented by (N, ∂N)

e(ξ) = [N ] ∈ H2(M) = Hn−2(M,∂M) .

(iii) For any 2-plane bundle ξ : M−−→BSO(2) over an n-dimensional man-
ifold with boundary (M,∂M) there exist ξ-characteristic codimension 2 sub-
manifolds (N, ∂N) ⊂ (M,∂M).
Proof (i)+(ii) Immediate from 22.1.
(iii) The pullback of ξ :M−−→BSO(2) along the projection p : S(ξ)−−→M is
a trivial 2-plane bundle, since p∗ξ ≃ {∗} :M−−→BSO(2). �

22B. The antiquadratic construction

The algebraic theory of pseudoquadratic structures on chain complexes was
developed in Ranicki [237, pp. 781–810] in order to describe the L-theory
transfer maps

ξ ! : Ln(Z[π1(M)]) −−→ Ln+2(Z[π1(S(ξ))]−−→Z[π1(E(ξ))])

induced on the chain level by a 2-plane bundle ξ :M−−→BSO(2). This theory
will now be used to associate an ‘antiquadratic complex’ to a codimension 2
submanifold, such that geometric surgery on the submanifold corresponds to
algebraic surgery on the complex.

Definition 22.4 ([237, p. 807]) The antiquadratic complex of a ξ-character-
istic codimension 2 submanifold (N, ∂N) ⊂ (M,∂M) of an n-dimensional
manifold with boundary is the n-dimensional (−z)-quadratic complex

σ∗(M,N, ξ) = (C,ψ)
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with C = C(P̃ , ∂̃+P ) the Z[π1(S(ξ))]-module chain complex of the cover

(P̃ , ∂̃+P ) of the exterior (P, ∂+P ) induced from the universal cover S̃(ξ) of
S(ξ), and ψ ∈ Qn(C,−z) the evaluation of the pseudoquadratic construction.

�
Remark 22.5 (i) The ‘anti’-terminology refers to the antistructure in the
sense of Wall [305] which is determined on Z[π1(S(ξ))] by an arbitrary 2-plane
bundle ξ : M−−→BO(2) using the ‘pseudosymmetric’ and ‘pseudoquadratic’
constructions of [237, pp. 799–802], the S1-fibration analogues of the symmet-
ric and quadratic constructions of Ranicki [236]. As indicated in [237, 7.8.9]
it is possible to obtain these analogues by induction on the cells in the base
CW complex (assumed finite). However, it would be more satisfactory to
use an equivariant cellular Eilenberg-Zilber theorem, developing further the
methods of Smith [272].
(ii) Since it is assumed that ξ is oriented, there is no actual need to consider
antistructures here.
(iii) See 27.5 below for an explicit formula for the (−z)-quadratic structure
ψ ∈ Qn(C,−z) in the framed case ξ = ϵ2. �
Proposition 22.6 The antiquadratic complex σ∗(M,N, ξ) = (C,ψ) has the
following properties :
(i) The boundary (n− 1)-dimensional (−z)-quadratic Poincaré complex over
Z[π1(S(ξ))]

∂(C,ψ) = (∂C, ∂ψ)

has

∂C = C((1 + T−z)ψ0 : Cn−∗−−→C)∗+1 ≃ C(S̃(ξ), ∂̃+P )∗+1 .

The antiquadratic complex of ∂N ⊂ ∂M is the (n − 1)-dimensional (−z)-
quadratic complex over Z[π1(S(ξ))]

σ∗(∂M, ∂N, ξ|∂N ) = (C(∂̃+P ), e%ψ)

with

e : ∂C ≃ C(S̃(ξ), ∂̃+P )∗+1

proj.
−−→ C(∂̃+P ) , ∂C(∂̃+P ) ≃ C( ˜S(ξ|∂N ))∗+1 .

(ii) Let

i : C = C(P̃ , ∂̃+P ) −−→ C(P̃ , ∂̃P )

be the inclusion. The induced morphism i% of (−z)-quadratic Q-groups sends
ψ ∈ Qn(C,−z) to

i%ψ = ϕ0 ∈ Qn(C(P̃ , ∂̃P ),−z)

with ϕ = ∆[P ] ∈ Qn(C(P̃ , ∂̃P )) the symmetric structure of (P, ∂P ), and

ϕ0 = [P ] ∩ − : C(P̃ , ∂̃P )n−∗ −−→ C(P̃ , ∂̃P ) .
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(iii) Inclusion defines a normal map

(f, b) : (N, ∂N) −−→ (M,∂N)

from an (n− 2)-dimensional manifold with boundary (N, ∂N) to an (n− 2)-
dimensional normal pair (M,∂N), with fundamental class

f∗[N ] ∈ Hn−2(M,∂N)

and normal fibration νM ⊕ ξ. The quadratic kernel of (f, b) is the (n − 2)-
dimensional quadratic complex over Z[π1(M)]

σ∗(f, b) = Z[π1(M)]⊗Z[π1(S(ξ))] (S
−1C, S

−1
ψ)

with S : Qn−2(S
−1C, z) ∼= Qn(C,−z) the skew-suspension isomorphism, and

Z[π1(M)]⊗Z[π1(S(ξ))] (S
−1C) ≃ C(f !)

the algebraic mapping cone of the Umkehr Z[π1(M)]-module chain map

f ! : C(M̃, ∂̃N)n−2−∗ f̃∗

−−→ C(Ñ , ∂̃N)n−2−∗ ≃ C(Ñ)

where M̃ is the universal cover of M and Ñ , ∂̃N are the induced covers of
N, ∂N . The quadratic kernel of the induced normal map of S1-fibrations from
an (n− 1)-dimensional manifold with boundary to a normal pair

(S(f), S(b)) : (S(ξ|N ), S(ξ|∂N )) −−→ (S(ξ), S(ξ|∂N ))

is the (n− 1)-dimensional quadratic complex over Z[π1(S(ξ))]

σ∗(S(f), S(b)) = (C(1− z : C−−→C)∗+1, θ)

with

C(S(f) ! : C(S̃(ξ), ˜S(ξ|∂N ))n−1−∗−−→C( ˜S(ξ|N ))) ≃ C(S̃(ξ), ˜S(ξ|N ))n−∗

≃ C( ˜S(ξ|P ), ˜S(ξ|∂+P ))∗+1 ≃ C(1− z : C−−→C)∗+1 ,

θs =

(
0 ψs

z−1ψs 0

)
: C(S(f) !)n−1−r+s = Cn−r+s ⊕ Cn−r+s−1

−−→ C(S(f) !)r = Cr+1 ⊕ Cr (s ≥ 0) .

(iv) The zero section inclusion M−−→E(ξ) deforms to a normal map from
an n-dimensional manifold triad to a normal space triad

(h, d) : (M ;E(ξ|∂N ), ∂+P ) −−→ (E(ξ);E(ξ|∂N ), S(ξ))

such that

h = E(f) ∪S(f) g :

M = E(ξ|N ) ∪S(ξ|N ) P −−→ E(ξ) = E(ξ) ∪S(ξ)×{1} S(ξ)× I ,
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with

(g, c) : (P ;S(ξ|N ), ∂+P ;S(ξ|∂N ))

−−→ (S(ξ)× I;S(ξ)× {0}, S(ξ)× {1};S(ξ|∂N )× I)

a normal map from an n-dimensional manifold triad to a normal space triad,
such that

(g, c)| = (S(f), S(b)) : (S(ξ|N ), S(ξ|∂N )) −−→ (S(ξ), S(ξ|∂N ))

is the induced normal map from an (n−1)-dimensional manifold with bound-
ary (with (f, b) as in (iii)) which is the identity on the boundaries. Let

σ∗(g, c) =

( 0 //

��

C(∂+g
!)

��

Γ

C(S(f) !) // C(g !)

, Ψ

)

be the kernel n-dimensional quadratic triad over Z[π1(S(ξ))], with the Umkehr
Z[π1(S(ξ))]-module chain maps given by

g ! : C(S̃(ξ), ˜S(ξ|∂N ))n−1−∗ −−→ C(P̃ ) ,

∂+g
! : C(S̃(ξ), ˜S(ξ|∂N ))n−1−∗ −−→ C(∂̃+P ) ,

S(f) ! : C(S̃(ξ), ˜S(ξ|∂N ))n−1−∗ −−→ C( ˜S(ξ|N )) .

Let (Γ ′, Ψ ′) the n-dimensional quadratic Poincaré triad over Z[π1(S(ξ))] as-
sociated by 20.27 to the n-dimensional quadratic complex

(C ′, ψ′) = (C, (1− z−1)ψ)

and the factorization

(1 + T )ψ′
0 : Cn−∗ 1−z−1

−−−→ Cn−∗ (1+T−z)ψ0

−−−−−−→ C ,

with

B //

��

C((1 + T−z)ψ0)∗+1

��

Γ ′

C(1− z−1 : Cn−∗−−→Cn−∗)∗+1
// Cn−∗

≃

B //

��

C(S̃(ξ), ∂̃+P )∗+1

��

C(S̃(ξ), ˜S(ξ|N ))∗+1
// C(S̃(ξ), P̃ )∗+1
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and
B = C(1− z−1 : C((1 + T−z)ψ0)−−→C((1 + T−z)ψ0))∗+2

≃ C(C(S̃(ξ), ˜S(ξ|∂N ))n−1−∗−−→C(S̃(ξ)))∗+1 .

The kernel quadratic triad σ∗(g, c) = (Γ, Ψ) is obtained from (Γ ′, Ψ ′) by col-
lapsing B, with a homotopy equivalence

(Γ, Ψ) ≃ (Γ ′, Ψ ′)/B

=

( 0 //

��

C((1 + T−z)ψ0)∗+1

��
C(1− z : C−−→C)∗+1

// C(B−−→Cn−∗)

, Ψ ′/B

)

�
Example 22.7 (i) Let ξ = ϵ2 : M−−→BSO(2) be the trivial 2-plane bundle
over an n-dimensional manifold with boundary (M,∂M), so that

(E(ξ), S(ξ)) = (M ×D2,M × S1) .

The empty submanifold N = ∅ ⊂ M is ξ-characteristic, representing the
Euler class e(ξ) = 0 ∈ H2(M), with exterior (P, ∂+P ) = (M,∂M). The

universal cover of S(ξ) = M × S1 is S̃(ξ) = M̃ × R with M̃ the universal
cover M , and the induced cover of (P, ∂+P ) is

(P̃ , ∂̃+P ) = (M̃ × Z, ∂̃M × Z) .

The antiquadratic complex of 22.4

σ∗(M, ∅, ϵ2) = (C(P̃ , ∂̃+P ), ψ)

is given by the cellular chain complex

C(P̃ , ∂̃+P ) = C(M̃, ∂̃M)[z, z−1] ,

and the n-dimensional (−z)-quadratic structure ψ ∈ Qn(C(P̃ , ∂̃+P ),−z) over
Z[π1(M)][z, z−1] is determined by the n-dimensional symmetric structure

ϕ = ∆[M ] ∈ Qn(C(M̃, ∂̃M)) over Z[π1(M)], with

ψs =

{
ϕ0 if s = 0

0 if s ≥ 1
: C(P̃ , ∂̃+P )

n−r−s −−→ C(P̃ , ∂̃+P )r .

(ii) Let ξk : M = CPk−−→BSO(2) be the Hopf 2-plane bundle over the
k-dimensional complex projective space CPk (k ≥ 1), so that n = 2k and

(E(ξk), S(ξk)) = (cl.(CPk+1\D2k+2), S2k+1) ,

z = 1 ∈ π1(S(ξk)) = {1} .
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The (k − 1)-dimensional complex projective space is a ξk-characteristic sub-
manifold

N2k−2 = CPk−1 ⊂M2k = CPk

representing the Euler class e(ξk) = 1 ∈ H2(M) = Z, with exterior P = D2k

and C(P ) = Z (up to chain equivalence). The antiquadratic complex of 22.4

σ∗(CPk,CPk−1, ξk) = (C(P ), ψ)

has the (−1)-quadratic structure ψ ∈ Q2k(C(P ),−1) with

ψ2k = 1 : C(P )0 = Z −−→ C(P )0 = Z . �

Theorem 22.8 (Freedman [84], Matsumoto [183])
Let (M,∂M) be an n-dimensional manifold with boundary. Given ξ :M−−→
BSO(2), let (N, ∂N) ⊂ (M,∂M) be a ξ-characteristic codimension 2 sub-
manifold with normal bundle

νN⊂M = ξ|N : N −−→ BSO(2)

and exterior (P, ∂+P ). Let σ∗(M,N, ξ) = (C,ψ) be the corresponding anti-

quadratic complex over Z[π1(S(ξ))], with C = C(P̃ , ∂̃+P ) and ψ ∈ Qn(C,−z).
If (P, ∂+P ) is (r − 1)-connected with 2r ≤ n it is possible to kill an element
x ∈ πr(P, S(ξ|N )) = Hn−r(C) by algebraic surgery on (C,ψ) if (and for
n ≥ 7 only if) it is possible to kill x by an ambient surgery on (M,N) rel ∂,
and the effect of the ambient surgery corresponds to the effect of the algebraic
surgery.
Proof The algebraic theory of surgery on ϵ-quadratic complexes was devel-
oped in Ranicki [235], [236]. The exterior (P, ∂+P ) is (r − 1)-connected if
and only if the antiquadratic complex (C,ψ) is (r − 1)-connected, and there
are no obstructions to either geometric or algebraic surgery on any element
x ∈ πr(P, S(ξ|N )) = Hn−r(C) if 2r < n or n = 2r + 1 (although some new
r-dimensional homology may be created if n = 2r + 1).
For n = 2r geometric intersection and self intersection numbers define a
(−)r+1z-symmetric pairing

λ : πr(P, S(ξ|N ))× πr(P, S(ξ|N )) −−→ Z[π1(S(ξ))]

with a (−)r+1z-quadratic refinement

µ : πr(P, S(ξ|N )) −−→ Z[π1(S(ξ))]/{a+ (−)rza | a ∈ Z[π1(S(ξ))]}

such that µ(x) = 0 if (and for r ≥ 4 only if) is possible to kill x ∈
πr(P, S(ξ|N )) by an ambient surgery, as follows.
Every element x ∈ πr(P, S(ξ|N )) is represented by an immersion

(f, ∂f) : (Dr, Sr−1) −−→ (P, S(ξ|N ))
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with a choice of path in P from the base point in S(ξ|N ) to ∂f(base point in
Sr−1), such that ∂f : Sr−1−−→S(ξ|N ) is an embedding with the composite

p ∂f : Sr−1
g
−−→ S(ξ|N )

p
−−→ N2r−2

an immersion. Any two elements x, x′ ∈ πr(P, S(ξ|N )) have representatives
(f, ∂f), (f ′, ∂f ′) which intersect transversely at a finite number of points,
and the evaluation of λ is defined by

λ(x, x′) = α(x, x′) + (1− z)β(x, x′) ∈ Z[π1(S(ξ))]

with

α(x, x′) =
∑

u∈Sr−1,p ∂f(u)=p ∂f ′(u)

±g(u) ∈ Z[π1(S(ξ))] ,

β(x, x′) =
∑

v∈Dr\Sr−1,f(v)=f ′(v)

±h(v) ∈ im(Z[π1(P )]−−→Z[π1(S(ξ))])

with g(u) ∈ π1(S(ξ)) (resp. h(v) ∈ im(π1(P )−−→π1(S(ξ)))) represented by
the loop obtained by starting at the base point in S(ξ|N ), using the pre-
scribed paths, and switching from f(Dr) (resp. ∂f(Sr−1)) to f ′(Dr) (resp.
∂f ′(Dr)) at u (resp. v), joining ∂f(u) to ∂f ′(u) by the path in the fibre
p−1(p ∂f(u)) = S1 determined by the orientations. Similarly for the self in-
tersection µ(x).
The (−z)-quadratic complex (C,ψ) is compatible with the geometrically de-
fined (−)r+1z-quadratic form (πr(P, S(ξ|N )), λ, µ) via the Hurewicz map

πr(P, S(ξ|N )) = πr(P̃ , ˜S(ξ|N ))

−−→ Hr(P̃ , ˜S(ξ|N )) = Hn−r(P̃ , ∂̃+P ) = Hn−r(C) .

If (P, S(ξ|N )) is (r−1)-connected then the Hurewicz map is an isomorphism,
and µ(x) = 0 is just the condition ψ(x)(x) = 0 for killing x ∈ Hn−r(C) by
algebraic surgery on (C,ψ). �
Remark 22.9 A codimension 2 submanifold N2i ⊂ M2i+2 is taut if the
exterior (P, ∂P ) is i-connected

πr(P, ∂P ) = 0 (r ≤ i) .

Lefschetz proved that nonsingular algebraic hypersurfaces in complex projec-
tive space are taut. Many authors have studied the representation of codi-
mension 2 homology classes ξ ∈ H2i(M) = H2(M) by taut submanifolds
N ⊂ M for i ≥ 1, using a variety of methods : Thom, Rochlin, Massey,
Hsiang-Szczarba, . . . . In particular, see Thomas and Wood [289] for results
on taut embeddings in the smooth category, obtained by means of the signa-
tures of the cyclic branched covers of manifoldsM branched over codimension
2 submanifolds N ⊂ M (cf. 27.10) and the Atiyah-Singer G-signature theo-
rem. See Kato and Matsumoto [118] and Freedman [84] for results on taut
embeddings obtained by means of codimension 2 surgery methods. �
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22C. Spines

Definition 22.10 Let (M,∂M) be an n-dimensional manifold with bound-
ary, with a 2-plane bundle ξ : M−−→BSO(2), and let F : Z[π1(S(ξ))]−−→Λ
be a morphism of rings with involution.
(i) A Λ-homology boundary spine of (M,∂M) is a ξ|∂M -characteristic codi-
mension 2 submanifold K ⊂ ∂M with exterior

L = cl.(∂M\E(νK⊂∂M )) (νK⊂∂M = ξ|K)

such that the inclusion L−−→S(ξ) is a Λ-homology equivalence. The torsion
of K is

τ(L−−→S(ξ);Λ) ∈Wh1(Λ) = K1(Λ)/{τ(±zj) | j ∈ Z} .

(ii) A Λ-homology spine of (M,∂M) is a ξ-characteristic codimension 2 sub-
manifold with boundary (N, ∂N) ⊂ (M,∂M) with exterior

(P, ∂+P ) = (cl.(M\E(ξ|N )), cl.(∂M\E(ξ|∂N )))

such that the inclusions ∂+P−−→P , P−−→S(ξ) are Λ-homology equivalences.
The torsions of (N, ∂N) are

τ(∂+P−−→P ;Λ) , τ(P−−→S(ξ);Λ) ∈Wh1(Λ) .

Note thatK = ∂N is a Λ-homology boundary spine of (M,∂M) with exterior
L = ∂+P and torsion

τ(L−−→S(ξ);Λ) = τ(∂+P−−→P ;Λ) + τ(P−−→S(ξ);Λ) ∈Wh1(Λ) ,

and that (P ; ∂+P, S(ξ|N )) is a relative Λ-coefficientH-cobordism with torsion
τ(∂+P−−→P ;Λ).
(iii) A codimension 2 Seifert surface of a ξ|∂M -characteristic codimension 2
submanifold K ⊂ ∂M with exterior L is a ξ-characteristic codimension 2
submanifold (N, ∂N) ⊂ (M,∂M) with exterior (P, ∂+P ), such that

∂N = K , ∂+P = L . �

Remark 22.11 Codimension 2 Seifert surfaces are evident generalizations
of the codimension 1 Seifert surfaces which arise in knot theory. See Chap.
27 for the connection between the two types of Seifert surface in the framed
case ξ = ϵ2. �
Example 22.12 Given an (n − 2)-dimensional manifold with boundary
(N, ∂N) and a 2-plane bundle η : N−−→BSO(2) define the n-dimensional
manifold with boundary

(M,∂M) = (E(η), ∂E(η)) ,

where
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∂E(η) = E(η|∂N ) ∪S(η|∂N ) S(η) .

Let ξ :M−−→BSO(2) be the 2-plane bundle with

e(ξ) = e(η) ∈ H2(M) = H2(N) .

Then (N, ∂N) ⊂ (M,∂M) is a ξ-characteristic codimension 2 submanifold
with normal bundle

νN⊂M = ξ|N = η : N −−→ BSO(2) .

The exterior is given up to homeomorphism by

(P, ∂+P ) = (S(η)× I, S(η)× {0}) ,

so that (N, ∂N) ⊂ (M,∂M) is a Λ-homology spine for any ring morphism
F : Z[π1(S(η))]−−→Λ. �
Proposition 22.13 Let (M,∂M) be an n-dimensional manifold with bound-
ary, and let ξ :M−−→BSO(2) be a 2-plane bundle.
Let K ⊂ ∂M be a ξ|∂M -characteristic codimension 2 submanifold, with exte-
rior L.
(i) K has codimension 2 Seifert surfaces, and any two such are cobordant
inside M rel K.
(ii) The antiquadratic complex σ∗(M,N, ξ) = (C,ψ) associated by 22.4 to any
codimension 2 Seifert surface N of K is an n-dimensional (−z)-quadratic
complex over Z[π1(S(ξ))] with

C = C(P̃ , L̃) , ∂C = C((1+T−z)ψ0 : Cn−∗−−→C)∗+1 ≃ C(S̃(ξ), L̃)∗+1 .

(iii) K is a Λ-homology boundary spine of (M,∂M) if and only if (C,ψ) is
Λ-Poincaré, for any codimension 2 Seifert surface N .
(iv) A codimension 2 Seifert surface N of K is a Λ-homology spine (N,K)
of (M,∂M) if and only if (C,ψ) is Λ-Poincaré and Λ-contractible.
Proof The classifying map ξ :M−−→BSO(2) = CP∞ can be made transverse
regular at CP∞−1 ⊂ CP∞ with

(ξ|∂M )−1(CP∞−1) = K ⊂ ∂M

and
N = ξ−1(CP∞−1) ⊂M

a codimension 2 Seifert surface for K. �
Definition 22.14 Let (M,∂M) be an n-dimensional manifold with bound-
ary, and with a Λ-homology boundary spine K, for some ξ : M−−→BSO(2),
F : Z[π1(S(ξ))]−−→Λ. The Λ-homology spine obstruction is the cobordism
class

σΛ∗ (M,K) = σ∗(M,N, ξ) ∈ Γn(F,−z)
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of the n-dimensional (−z)-quadratic Λ-Poincaré complex σ∗(M,N, ξ) =
(C,ψ) over Z[π1(S(ξ))] associated by 22.13 to any codimension 2 Seifert sur-
face N . �
Proposition 22.15 Let (M,∂M) be an n-dimensional manifold with bound-
ary, with ξ :M−−→BSO(2), F : Z[π1(S(ξ))]−−→Λ as before.
(i) The Λ-homology spine obstruction of (M,∂M) with respect to a Λ-
homology boundary spine K ⊂ ∂M is such that

σΛ∗ (M,K) = 0 ∈ Γn(F,−z)

if (and for n ≥ 7, locally epic F only if) there exists a codimension 2 Seifert
surface N such that (N,K) is a Λ-homology spine of (M,∂M).
(ii) Let ΦF be the commutative square of rings with involutions

Z[π1(S(ξ))] //

��

Z[π1(S(ξ))]

��

ΦF

Z[π1(S(ξ))] // Λ

so that the relative Γ -groups Γ∗(ΦF,−z) fit into an exact sequence

. . . −−→ Ln(Z[π1(S(ξ))],−z) −−→ Γn(F,−z) −−→ Γn(ΦF,−z)
−−→ Ln−1(Z[π1(S(ξ))],−z) −−→ . . .

with Γn(ΦF,−z) the cobordism group of (n − 1)-dimensional (−z)-quadratic
Λ-contractible Poincaré complexes over Z[π1(S(ξ))] (20.21). If (N, ∂N) ⊂
(M,∂M) is a ξ-characteristic codimension 2 submanifold such that K = ∂N
is a Λ-homology boundary spine the image of the Λ-homology spine obstruc-
tion σΛ∗ (M,∂N) = (C,ψ) ∈ Γn(F,−z) is the cobordism class

∂(C,ψ) = (∂C, ∂ψ) ∈ Γn(ΦF,−z)

of the boundary (n− 1)-dimensional (−z)-quadratic Λ-contractible Poincaré

complex over Z[π1(S(ξ))] with ∂C ≃ C(S̃(ξ), ∂̃+P )∗+1. Moreover, the normal
maps (S(f), S(b)), (g, c) of 22.6 are such that

(S(f), S(b)) : (S(ξN ), S(ξ|∂N )) −−→ (S(ξ), S(ξ|∂N ))

is a normal map from an (n− 1)-dimensional manifold with boundary to an
(n− 1)-dimensional geometric Λ-coefficient Poincaré pair, and

(g, c) : (P ;S(ξ|N ), ∂+P ;S(ξ|∂N ))

−−→ (S(ξ)× I;S(ξ)× {0}, S(ξ)× {1};S(ξ|∂N )× I)

is a normal map from an n-dimensional manifold triad to an n-dimensional
geometric Λ-coefficient Poincaré triad, such that
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(∂+g, ∂+c) : (∂+P, S(ξ|∂N )) −−→ (S(ξ), S(ξ|∂N ))

is a Λ-homology equivalence. The quadratic kernel of (g, c) is the n-dimen-
sional quadratic Λ-Poincaré triad σ∗(g, c) described in 22.6 (iv), correspond-
ing to the factorization

(1 + T )((1− z−1)ψ0) : Cn−∗ 1−z−1

−−−→ Cn−∗ (1+T−z)ψ0

−−−−−−→ C

with (1 + T−z)ψ0 : Cn−∗−−→C a Λ-equivalence.
(iii) Let Σ be the set of Λ-invertible square matrices in Z[π1(S(ξ))]. If the
natural map Z[π1(S(ξ))]−−→Σ−1Z[π1(S(ξ))] is injective and 1− z ∈ Λ• (i.e.
1− z ∈ Σ) then

Γn(F,−z) = Ln(Σ
−1Z[π1(S(ξ))],−z)

= Γn(F) = Ln(Σ
−1Z[π1(S(ξ))])

= Γn(F,−z) = Ln(Σ−1Z[π1(S(ξ))],−z)

= Γn(F) = Ln(Σ−1Z[π1(S(ξ))])

and the Λ-homology spine obstruction is the Λ-coefficient symmetric signature
of the n-dimensional geometric Λ-coefficient Poincaré pair (P, ∂P )

σΛ∗ (M,K) = σ∗
Λ(P, ∂P ) ∈ Γn(F,−z) = Γn(F) .

Proof (i) Immediate from 22.8.
(ii) Immediate from 20.21 and 22.6.
(iii) The central unit

s = (1− z)−1 ∈ Σ−1Z[π1(S(ξ))]•

is such that s+ s = 1, so that the ϵ-symmetrization maps

1 + Tϵ : L∗(Σ
−1Z[π1(S(ξ))], ϵ) −−→ L∗(Σ−1Z[π1(S(ξ))], ϵ)

are isomorphisms, for any central unit ϵ ∈ Σ−1Z[π1(S(ξ))] such that ϵ = ϵ−1.
See Chap. 25 below for the identifications

Γ∗(F, ϵ) = L∗(Σ
−1Z[π1(S(ξ))], ϵ) ,

Γ ∗(F, ϵ) = L∗(Σ−1Z[π1(S(ξ))], ϵ) . �

Definition 22.16 Let X be a space with a 2-plane bundle ξ : X−−→BSO(2),
let F : Z[π1(S(ξ)]−−→Λ be a morphism of rings with involution, and let
U ⊆Wh1(Λ) be a ∗-invariant subgroup.
(i) The U -intermediate bounded spine bordism group BBUn (X, ξ,F) is the
group of bordism classes of objects (M,K, f), where (M,∂M) is an (n+ 2)-
dimensional manifold with boundary, together with a map f : M−−→X and
a (∂f)∗ξ-characteristic codimension 2 submanifold Kn−1 ⊂ ∂M with the
exterior ∂+P = cl.(∂M\E((∂f)∗ξ|K)) such that
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(∂+f)
∗e(ξ) = 0 ∈ H2(∂+P ) ,

H∗(∂+P ;Λ) = H∗(S(f
∗ξ);Λ) ,

τ(∂+P−−→S(f∗ξ);Λ) ∈ U ⊆Wh1(Λ) ,

i.e. such that K is a Λ-homology boundary spine for (M,∂M) with torsion
in U .
(ii) The U -intermediate empty spine bordism group ABUn (X, ξ,F) is the group
of bordism classes of objects (M,f), where (M,∂M) is an (n+2)-dimensional
manifold with boundary with a map f :M−−→X such that

(∂f)∗e(ξ) = 0 ∈ H2(∂M) ,

H∗(∂M ;Λ) = H∗(S(f
∗ξ);Λ) ,

τ(∂M−−→S(f∗ξ);Λ) ∈ U ⊆Wh1(Λ) ,

i.e. such that ∅ is a Λ-homology boundary spine for (M,∂M) with torsion in
U .
(iii) Suppose that 1 − z ∈ Λ• and τ(1 − z) ∈ U . The U -intermediate closed
spine bordism group ∆U

n (X, ξ,F) is the group of bordism classes of objects
(M,f), where M is a closed (n + 1)-dimensional manifold with a map f :
M−−→S(ξ) such that

H∗(M ;Λ) = 0 , τ(M ;Λ) ∈ U ⊆Wh1(Λ) ,

i.e. such that ∅ is a Λ-homology spine for (M, ∅) with torsion in U . �
For U =Wh1(Λ) the groups defined in 22.16 are denoted by

BBWh1(Λ)
n (X,F, ξ) = BBn(X,F, ξ) ,

ABWh1(Λ)
n (X,F, ξ) = ABn(X,F, ξ) ,

∆Wh1(Λ)
n (X,F, ξ) = ∆n(X,F, ξ) .

Proposition 22.17 Let X be a space with a 2-plane bundle ξ : X−−→BSO(2),
and let

F : A = Z[π1(S(ξ)] −−→ Λ

be a morphism of rings with involution. Let U ⊆ Wh1(Λ) be a ∗-invariant
subgroup, denoting the preimage in Wh1(A) by U also.
(i) The bounded and empty spine bordism groups are isomorphic

ABU∗ (X, ξ,F) = BBU∗ (X, ξ,F) .

(ii) The spine obstruction defines morphisms

BBUn (X, ξ,F) −−→ ΓUn+2(F,−z) ; (M,K, f) −−→ σΛ∗ (M,K)
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which are isomorphisms for locally epic F and n ≥ 5 with π1(X) finitely pre-
sented (e.g. if X has a finite 2-skeleton), in which case the spine obstruction
defines a natural isomorphism of exact sequences

// BBUn (X, ξ,A) //

∼=σ∗
��

BBUn (X, ξ,F) //

∼=σ∗
��

ΓUn+2(ΦF,−z) // BBUn−1(X, ξ,A) //

∼=σ∗
��

// LUn+2(A,−z) // ΓUn+2(F,−z) // ΓUn+2(ΦF,−z) // LUn+1(A,−z) //

with ΦF as in 22.15, and ΓUn+2(ΦF,−z) the cobordism group of based f.g. free
(n+1)-dimensional (−z)-quadratic Poincaré complexes (C,ψ) over A which
are Λ-contractible with τ(C;Λ) ∈ U .
(iv) If 1−z ∈ Λ• and τ(1−z) ∈ U the empty and closed spine bordism groups
are related by an exact sequence

. . . −−→ Ωn+2(S(ξ)) −−→ ABUn (X, ξ,F) −−→ ∆U
n (X, ξ,F)

−−→ Ωn+1(S(ξ)) −−→ . . .

with Ω∗(S(ξ)) the ordinary bordism groups of S(ξ), and

Ωn+2(S(ξ)) −−→ ABUn (X, ξ,F) ; (M,f) −−→ (M,pf) ,

ABUn (X, ξ,F) −−→ ∆U
n (X, ξ,F) ; (M,f) −−→ (∂M, ∂f) ,

∆U
n (X, ξ,F) −−→ Ωn+1(S(ξ)) ; (M,f) −−→ (M,f)

with ∂f : ∂M−−→S(ξ) the lift of ∂f : ∂M−−→X determined by the trivializa-
tion (∂f)∗ξ = ϵ2 : ∂M−−→BSO(2).
(v) If 1− z ∈ Λ• and F is locally epic with factorization through an injective
localization map i

F : A
i
−−→ Σ−1A −−→ Λ

(with Σ as in 22.15), then for n ≥ 5, finitely presented π1(X) and locally
epic F

ABUn (X, ξ,F) = BBUn (X, ξ,F)

= ΓUn+2(F,−z) = ΓUn+2(F)

= LUn+2(Σ
−1A,−z) = LUn+2(Σ

−1A)

= Γn+2
U (F,−z) = Γn+2

U (F)

= Ln+2
U (Σ−1A,−z) = Ln+2

U (Σ−1A) ,

the symmetric signature defines a natural transformation of exact sequences
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. . . // Ωn+2(S(ξ))

σ∗
��

// ABUn (X, ξ,F)

σ∗∼=
��

// ∆U
n (X, ξ,F)

σ∗

��

// Ωn+1(S(ξ))

σ∗

��

// . . .

. . . // Ln+2
U (A) // Γn+2

U (F) // Γn+2
U (ΦF) // Ln+1

U (A) // . . .

and there is defined an exact sequence

. . . −−→ Ln+2
U (A) −−→ ∆U

n (X, ξ,F) −−→ Γn+2
U (ΦF)⊕Ωn+1(S(ξ))

−−→ Ln+1
U (A) −−→ . . . .

Proof (i) Given an (n + 2)-dimensional manifold with boundary (M,∂M)
with a map f : M−−→X and a Λ-homology boundary spine K ⊂ ∂M with
exterior L let N ⊂ M be a codimension 2 Seifert surface (22.13 (ii)) with
∂N = K, and define an (n+ 2)-dimensional manifold with boundary

(M ′, ∂M ′) = (M ∪E(νK⊂∂M ) E(νN⊂M ), L ∪S(νK⊂∂M ) S(νN⊂M ))

with empty Λ-homology boundary spine ∅ ⊂ ∂M ′. The construction defines
an isomorphism

BBUn (X, ξ,F) −−→ ABUn (X, ξ,F) ; (M,K, f) −−→ (M ′, f ′)

inverse to the evident forgetful map

ABUn (X, ξ,F) −−→ BBUn (X, ξ,F) ; (M,f) −−→ (M, ∅, f) .

(ii)+(iii) Immediate from 22.15, realizing elements of ΓUn+2(F,−z) by ele-
ments of BBUn (X,F) as in Matsumoto [183, 5.2]. Here are the details of the
construction for n = 2i ≥ 6, realizing a (−)iz-quadratic form (Aℓ, ψ) over
A = Z[π1(S(ξ))]. Choose a (2i − 1)-dimensional manifold with boundary
(K0, ∂K0) with a π1-isomorphism map K0−−→X, and use the method of Wall
[304, Chap. 5] to construct a 2i-dimensional relative cobordism (N ;K0,K1)
with

N2i = K0 × I ∪1⊗ψ+(−)i1⊗ψ∗

∪
ℓ

Di ×Di

the trace of surgeries on ℓ disjoint trivial embeddings Si−1 × Di ⊂ int(K0)
with self intersection form (Z[π1(X)]ℓ, 1 ⊗ ψ). By construction, there is an
i-connected normal map of 2i-dimensional manifold triads

(f, b) : (N ;K0,K1) −−→ K0 × (I; {0}, {1})

with
(f, b)| = id. : K0 −−→ K0 , Ki(N) = Z[π1(X)]ℓ ,

and quadratic kernel the 2i-dimensional quadratic complex (SiZ[π1(X)]ℓ, 1⊗
ψ) over Z[π1(X)]. Define the (2i+ 2)-dimensional manifold with boundary

(M,∂M) = (E(ξ|K0×I), ∂E(ξ|K0×I)) ,
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regarding

∂(K0 × I)× {0} ⊂ ∂M = E(ξ|∂(K0×I)) ∪S(ξ|∂(K0×I)) S(ξ|K0×I)

as a ξ-characteristic codimension 2 submanifold. Use the method of [183, 5.2]
(cf. 22.8) to perform ambient surgeries on ℓ disjoint trivial embeddings

Si−1 ×Di ⊂ int(K0)× {0} ⊂ ∂M

with self intersections ψ, and trace a ξ-characteristic codimension 2 subman-
ifold triad

(N ∪∂K0×I K0 × I; ∂(K0 × I), ∂N) ⊂ ∂M × (I; {0}, {1}) .

Let
P 2i+2 = S(ξ|N )× I ∪

∪
ℓ

Di+1 ×Di+1 ,

the trace of surgeries on ℓ disjoint embeddings Si × Di+1 ⊂ int(S(ξ|N ))
representing generators of the kernel A-module

Ki(S(ξ|N )) = Aℓ

of the i-connected normal map of (2i+1)-dimensional manifolds with bound-
ary

(S(f), S(b)) : (S(ξ|N ), S(ξ|∂N )) −−→ (S(ξ|K0×I), S(ξ|∂(K0×I))) ,

and let ∂+P be the effect of these surgeries. The ξ-characteristic codimension
2 submanifold (N, ∂N) ⊂ (M,∂M) has exterior (P, ∂+P ), so that up to
homeomorphism

(M,∂M) = (E(ξ|N ) ∪S(ξ|N ) P,E(ξ|∂N ) ∪S(ξ|∂N ) ∂+P )

and there is defined a normal map of (2i+ 2)-dimensional manifold triads

(g, c) : (P ; ∂+P, S(ξ|N );S(ξ|∂N ))

−−→ (S(ξ|K0×I)× I;S(ξ|K0×I)× {0}, S(ξ|K0×I)× {1};S(ξ|∂(K0×I))× I) .

The kernel (2i + 2)-dimensional quadratic Poincaré triad over A is the
one associated by 20.27 to the (2i + 2)-dimensional quadratic complex
(Si+1Aℓ, (1− z−1)ψ) and the factorization

(1− z−1)ψ + (−)i+1((1− z−1)ψ)∗ = (ψ + (−)izψ∗)(1− z−1) :

C(g !)2i+2−∗ = Si+1Aℓ
1−z−1

−−−→ Si+1Aℓ
ψ+(−)izψ∗

−−−−−−→ C(g !) = Si+1Aℓ .

Now

C(∂+g
! : C( ˜S(ξ|K0×I))−−→C(∂̃+P )) ≃ SiC(ψ + (−)izψ∗ : Aℓ−−→Aℓ) ,
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so that ∂N is a Λ-homology boundary spine of (M,∂M) if and only if the
(−)iz-quadratic form (Aℓ, ψ) is Λ-nonsingular, in which case the Λ-homology
spine obstruction of (N, ∂N) ⊂ (M,∂M) is

σΛ∗ (M,∂N) = (Aℓ, ψ) ∈ Γ2i+2(F,−z) = Γ0(F, (−)iz) .

(iv) If M is a closed (n+2)-dimensional manifold with a map f :M−−→S(ξ)
then ∅ is a Λ-homology boundary spine of (M, ∅), with H∗(S(f

∗ξ);Λ) = 0
and

τ(S(f∗ξ);Λ) = χ(M)τ(1− z) ∈ U ⊆Wh1(Λ) .

(v) Combine 22.6, 22.15 and (i)–(iv). �
Remark 22.18 If 1−z ∈ Λ•, τ(1−z) ∈ U the isomorphism BBUn (X, ξ,F)

∼=
ABUn (X, ξ,F) of 22.17 (i) can also be expressed as

BBUn (X, ξ,F)
≃−−→ ABUn (X, ξ,F) ; (M,K, f) −−→ (P, f |)

with P = cl.(M\E(νN⊂M )) the exterior of any codimension 2 Seifert surface
(N, ∂N) ⊂ (M,∂M) of ∂N = K ⊂ ∂M . �

For the remainder of Chap. 22 only the case Λ = Z[π1(M)] will be con-
sidered.

Example 22.19 Let (M,∂M) be an n-dimensional manifold with boundary,
with a 2-plane bundle ξ :M−−→BSO(2) and let

F = p∗ : A = Z[π1(S(ξ))] −−→ Λ = Z[π1(M)] .

A ξ|∂M -characteristic codimension 2 submanifold K ⊂ ∂M with exterior L
is a Λ-homology boundary spine of (M,∂M) if and only if (M,K) is an
(n− 2)-dimensional geometric Poincaré pair, with

H∗(M,K;Λ) ∼= H∗(M,E(ξ|K);Λ) ∼= Hn−∗(M,L;Λ)

∼= Hn−∗(E(ξ), S(ξ);Λ) ∼= Hn−2−∗(M ;Λ) ,

τ(M,K;Λ) = τ(L−−→S(ξ);Λ) ∈Wh1(Λ) .

If K ⊂ ∂M is a Λ-homology boundary spine for (M,∂M) and N ⊂ M is a
codimension 2 Seifert surface for K the inclusion N ⊂ M defines a normal
map (g, c) : (N,K)−−→(M,K) and the antiquadratic complex σ∗(M,N, ξ) =
(C,ψ) of 22.4 is an n-dimensional (−z)-quadratic complex over A which is
Λ-Poincaré, with

C = C(P̃ , L̃) , Λ⊗A C ≃ C(M̃, Ñ) ,

∂C ≃ C(S̃(ξ), L̃)∗+1 , τ(Λ⊗A C) = τ(M,K;Λ) .

A codimension 2 Seifert surface of K is a Λ-homology spine (N,K) of
(M,∂M) if and only if (g, c) is a homotopy equivalence, if and only if (C,ψ)
is Λ-contractible. The Λ-homology spine obstruction

σΛ∗ (M,K) = (C,ψ) ∈ BBn(X,F, ξ) = Γn(F,−z)
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is the obstruction of Matsumoto [183], with image the surgery obstruction of
(g, c)

Λ⊗A σΛ∗ (M,K) = σ∗(g, c) ∈ Ln(Λ,−1) = Ln−2(Λ) .

Cappell and Shaneson [45] showed that there exists an immersed Λ-homology
spine, i.e. a homotopy equivalence N−−→M which is a codimension 2 immer-
sion with boundary ∂N = K. �

22D. The homology splitting obstruction

Definition 22.20 (i) A weak (n, n−2)-dimensional geometric Poincaré pair
(X,Y ) is a codimension 2 CW pair such that :

(a) X is an n-dimensional Poincaré complex,
(b) Y is an (n− 2)-dimensional Poincaré complex,
(c) (Z, S(ξ)) is an n-dimensional Z[π1(X)]-coefficient Poincaré pair.

(ii) Let (X,Y ) be a codimension 2 CW pair with a topological normal struc-
ture. A homotopy equivalence h :M−−→X ′ from an n-dimensional manifold
M to an n-dimensional geometric Poincaré complex X ′ weakly splits along
Y ⊂ X if there is given a reference map r : X ′−−→X which is weakly Poincaré
transverse at Y ⊂ X, with (X ′, Y ′) a weak (n, n− 2)-dimensional geometric
Poincaré pair, such that the restriction

(f, b) = h| : N = (rh)−1(Y ) −−→ Y ′ = r−1(Y )

is a homotopy equivalence, and the restriction

(g, c) = f | : P = (rh)−1(Z) −−→ Z ′ = r−1(Z)

is a Z[π1(X)]-coefficient homology equivalence.
(iii) There are relative versions of (i) and (ii). In particular, a weak (n, n −
2)-dimensional geometric Poincaré triad (X,Y ; ∂X, ∂Y ) is a codimension 2
CW pair (X,Y ) such that (X, ∂X) is an n-dimensional geometric Poincaré
pair for some subcomplex ∂X ⊂ X, and such that (Y, ∂Y ) is an (n − 2)-
dimensional geometric Poincaré pair with boundary ∂Y = ∂X ∩ Y , and
such that (Z; ∂+Z, S(ξ), S(ξ|∂Y )) is an n-dimensional geometric Z[π1(X)]-
coefficient Poincaré triad with ∂+Z = ∂X ∩ Z.
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The ΓS- and ΓN -groups of Ranicki [237] are the analogues of the LS- and
LN -groups in the context of the homology surgery theory of Cappell and
Shaneson [40].

Definition 22.21 (Ranicki [237, p. 770])
(i) The quadratic ΓS-groups ΓS∗(Φ) of the pushout square of groups associ-
ated to a codimension 2 CW pair (X,Y )

π1(S(ξ)) //

��

π1(Z)

��

Φ

π1(E(ξ)) // π1(X)

are the relative groups appearing in the exact sequence

. . . −−→ Γn+1(ΦX) −−→ ΓSn−2(Φ) −−→ Ln−2(Z[π1(Y )])
pξ !

−−→ Γn(ΦX) −−→ . . .

with ΦX the commutative square of rings with involution

Z[π1(Z)] //

��

Z[π1(X)]

��

ΦX

Z[π1(X)] // Z[π1(X)]

and pξ ! the composite of the transfer map

ξ ! : Ln−2(Z[π1(X)]) −−→ Ln(Z[π1(S(ξ))]−−→Z[π1(E(ξ))])

and the natural map

p : Ln(Z[π1(S(ξ))]−−→Z[π1(E(ξ))]) −−→ Γn(ΦX) .

(iii) Let (X ′, Y ′; ∂X ′, ∂Y ′) be a weak (n, n−2)-dimensional geometric Poinc-
aré triad, with a π1-isomorphism reference map r : X ′−−→X weakly Poincaré
transverse at Y ⊂ X. Let h : (M,∂M)−−→(X ′, ∂X ′) be a homotopy equiva-
lence from an n-dimensional manifold with boundary with ∂h : ∂M−−→∂X ′

a weakly split homotopy equivalence. The codimension 2 weak splitting ob-
struction of h is the element

wsY (h) ∈ ΓSn−2(Φ)

with image the surgery obstruction σ∗(g, c) ∈ Ln−2(Z[π1(Y )]) of the codi-
mension 2 normal map obtained by transversality

(f, b) = h| : (N, ∂N) = (rh)−1(Y, ∂Y ) −−→ (Y ′, ∂Y ′) = r−1(Y, ∂Y )
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which is determined by the bordism

h× 1 : (M × I;M × {0}, E(νN⊂M )× {1};P × {1})
−−→ (X ′ × I;X ′ × {0}, E(νY ′⊂X′)× {1};Z ′ × {1})

(P = (rh)−1(Z) = cl.(M\E(νN⊂M )))

of
(f, b) ! : (E(νN⊂M ), S(νN⊂M )) −−→ (E(νY ′⊂X′), S(νY ′⊂X′))

to the homotopy equivalence h : (M,∂M)−−→(X ′, ∂X ′).
(iv) The quadratic ΓN -groups ΓN∗(F) are the ΓS-groups for a codimension
2 CW pair (X,Y ) with

π1(X) = π1(Y ) , π1(S(ξ)) = π1(Z)

(e.g. if X = E(ξ) with Z = S(ξ)) and F : Z[π1(S(ξ))]−−→Z[π1(Y )] the
induced map, that is

ΓN∗(F) = ΓS∗

( π1(S(ξ)) //

F
��

π1(S(ξ))

F
��

π1(Y ) // π1(Y )

)
.

�
Proposition 22.22 (Ranicki [237, 7.8.1, 7.8.2])
(i) The LS- and ΓS-groups of a codimension 2 CW pair (X,Y ) are related
by the commutative braid of exact sequences

Γn+1(ΦX)

''OO
OOO

OO

%%
Γn(ΦF)

''OO
OOO

OO

%%
LSn−3(Φ)

ΓSn−2(Φ)

77ooooooo

''OO
OOO

OO
Ln(F)

77ooooooo

''OO
OOO

OO

LSn−2(Φ)

77ooooooo

99
Ln−2(Z[π1(Y )])

77ooooooo

99
Γn(ΦX)

with F : Z[π1(Z)]−−→Z[π1(X)] the natural map, and ΦF the commutative
square of rings with involution

Z[π1(Z)] //

��

Z[π1(Z)]

��

ΦF

Z[π1(Z)] // Z[π1(X)]
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(ii) The codimension 2 weak splitting obstruction of a homotopy equivalence
from an n-dimensional manifold with boundary to an n-dimensional geomet-
ric Poincaré triad (h, ∂h) : (M,∂M)−−→(X ′, ∂X ′) with ∂h weakly split along
Y ⊂ X is such that

wsY (h) = 0 ∈ ΓSn−2(Φ)

if (and for n ≥ 7 only if) h can be weakly split rel ∂ along Y ⊂ X. Similarly
for s-splitting.
(iii) Every element x ∈ ΓSn−2(Φ) is the codimension 2 weak splitting ob-
struction x = wsY (h) of a homotopy equivalence h as in (ii), with images

σ∗(f, b) ∈ Ln−2(Z[π1(Y )]) , σ
Z[π1(X)]
∗ (g, c) ∈ Γn(ΦF)

the surgery obstructions of the restrictions

(f, b) = h| : (N, ∂N) −−→ (Y ′, ∂Y ′) ,

(g, c) = h| : (P ; ∂+P, S(ξ|N );S(ξ|∂N )) −−→ (Z ′; ∂+Z
′, S(ξ|Y ′);S(ξ|∂Y ′))

(P = cl.(M\E(ξ|N )) , ∂+P = cl.(∂M\E(ξ|∂N )))

with (g, c) a normal bordism from the (n− 1)-dimensional normal map

(g, c)| = (S(f), S(b)) : (S(ξ|N ), S(ξ|∂N )) −−→ (S(ξ|Y ′), S(ξ|∂Y ′))

to the Z[π1(X)]-homology equivalence

(g, c)| : (∂+P, S(ξ|∂N )) −−→ (∂+Z
′, S(ξ|∂Y ′)) . �

Proposition 22.23 (Ranicki [237, 7.8.12])
Given a 2-plane bundle ξ : Y−−→BSO(2) over a CW complex Y let (X,Y )
be the codimension 2 CW pair defined by

X = E(ξ) , Z = S(ξ) .

Let z ∈ π1(S(ξ)) be the image of 1 ∈ π1(S1), and let

F = p∗ : A = Z[π1(S(ξ))] −−→ Λ = Z[π1(Y )] .

The quadratic LN - and ΓN -groups of (X,Y ) are related to the (−z)-
quadratic L- and Γ -groups of A by an isomorphism of exact sequences

. . . // LNn−2(F)

∼=
��

// ΓNn−2(F)

∼=
��

// Γn(ΦF)

∼=
��

// LNn−3(F)

∼=
��

// . . .

. . . // Ln(A,−z) // Γn(F,−z) // Γn(ΦF,−z) // Ln−1(A,−z) // . . .

with ΦF the commutative square of rings with involution

A //

��

A

��

ΦF

A // Λ
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Proof Every element x ∈ LNn−2(F) (resp. ΓNn−2(F)) is the codimen-
sion 2 splitting obstruction x = sY (h) (resp. weak splitting obstruction
x = wsY (h)) of a homotopy equivalence h : (M,∂M)−−→(X ′, ∂X ′) from
an n-dimensional manifold with boundary to an n-dimensional geometric
Poincaré pair (X ′, ∂X ′) with a weakly Poincaré transverse reference map
(r, ∂r) : (X ′, ∂X ′)−−→X such that

νN⊂M : N = (rh)−1(Y ) −−→ Y ′ = r−1(Y )
νY ′⊂X′
−−−−→ BSO(2) ,

νY ′⊂X′ : Y ′ −−→ X ′ −−→ Y
ξ
−−→ BSO(2) ,

π1(M) = π1(∂M) = π1(X
′) = π1(∂X

′) = π1(Y ) ,

π1(P ) = π1(∂+P ) = π1(Z
′) = π1(∂+Z

′) = π1(S(ξ))

(P = cl.(M\E(νN⊂M )) , ∂+P = cl.(∂M\E(ν∂N⊂∂M )))

and such that ∂h : ∂M−−→∂X ′ is split (resp. weakly split) along Y ⊂ X.
The kernel version of the antiquadratic complex of 22.4 is an n-dimensional
(−z)-quadratic complex (C,ψ) over Z[π1(S(ξ))] with

C = C(h ! : C(Z̃ ′, ∂̃+Z
′
)−−→C(P̃ , ∂̃+P ))

which is Poincaré (resp. Z[π1(Y )]-Poincaré), with P̃ , Z̃ ′ the universal covers
of P,Z ′ and

h ! : C(Z̃ ′, ∂̃+Z
′
) ≃ C(Z̃ ′, ˜S(νY ′⊂X′))n−∗

−−→ C(P̃ , ˜S(νN⊂M ))n−∗ ≃ C(P̃ , ∂̃+P )

the Umkehr Z[π1(S(ξ))]-module chain map. The morphisms

LNn−2(F) −−→ Ln(Z[π1(S(ξ))],−z) ; sY (h) −−→ (C,ψ) ,

ΓNn−2(F) −−→ Γn(F,−z) ; wsY (h) −−→ (C,ψ)

are isomorphisms.
A finite f.g. free Z[π1(S(ξ))]-module chain complex C is Z[π1(Y )]-contractible
if and only if the Z[π1(S(ξ))]-module chain map 1−z : C−−→C is a Z[π1(Y )]-
equivalence, so that there is defined an isomorphism

Γn(ΦF)
≃−−→ Γn(ΦF,−z) ; (C,ψ) −−→ (C, (1− z)ψ) . �

Example 22.24 Let (M,∂M) be an n-dimensional manifold with boundary,
and let ξ : M−−→BSO(2), (N, ∂N) ⊂ (M,∂M), (P, ∂+P ) as in 22.2, and
F = p∗ : Z[π1(S(ξ))]−−→Λ = Z[π1(M)] as in 22.24. Define the codimension
2 CW pair

(X,Y ) = (M,N) .
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As in 22.19 assume that K = ∂N is a Λ-homology boundary spine of
(M,∂M), so that (M,K) is an (n− 2)-dimensional geometric Poincaré pair.
The weak (n, n− 2)-dimensional geometric Poincaré triad defined by

(X ′, Y ′; ∂X ′, ∂Y ′) = (E(ξ),M ;S(ξ) ∪S(ξ|K) E(ξ|K),K)

is equipped with a reference map r : X ′−−→X which is weakly Poincaré
transverse at Y ⊂ X. The homotopy equivalence defined by the inclusion
M ⊂ E(ξ) as the zero section

(h, ∂h) : (M,∂M) −−→ (X ′, ∂X ′)

has ∂h : ∂M−−→∂X ′ a weakly split homotopy equivalence, and the anti-

quadratic complex (C,ψ) of 22.4 (with C = C(P̃ , ∂̃+P )) is an n-dimensional
(−z)-quadratic Λ-Poincaré complex over Z[π1(S(ξ))]. By 22.22 and 22.23 the
Λ-homology spine obstruction of 22.14 is the weak codimension 2 splitting
obstruction of 22.21

σΛ∗ (M,K) = wsY (h) = (C,ψ) ∈ BBn(X, ξ,F) = ΓNn−2(F) = Γn(F,−z) .

Inclusion defines a normal map

(f, b) : (N,K) −−→ (M,K)

with quadratic kernel σ∗(f, b) an (n − 2)-dimensional quadratic Poincaré
complex over Λ. Use 22.6 (iii) to identify the n-dimensional (−1)-quadratic
Poincaré complexes over Λ

Λ⊗Z[π1(S(ξ))] (C,ψ) = Sσ∗(f, b) ,

showing that the Λ-homology spine obstruction has image the surgery ob-
struction of (f, b)

Λ⊗Z[π1(S(ξ))] σ
Λ
∗ (M,K) = σ∗(f, b) ∈ Ln(Λ,−1) = Ln−2(Λ) .

The restriction of (h, ∂h) defines a normal map from an n-dimensional man-
ifold triad to an n-dimensional geometric Poincaré triad

(h, ∂h)| = (g, c) : (P ; ∂+P, S(ξ|N );S(ξ|K))

−−→ (S(ξ)× I;S(ξ)× {0}, S(ξ)× {1};S(ξ|K)× I)

with ∂+P−−→S(ξ) a Λ-homology equivalence. The boundary map

∂ : Γn(F,−z) = ΓNn−2(F)−−→Γn(ΦF,−z) = Γn(ΦF) ; (C,ψ)−−→ ∂(C,ψ)

(with ΦF as in 22.23) sends the Λ-homology spine obstruction σΛ∗ (M,K) =
(C,ψ) to the relative Λ-coefficient homology surgery obstruction

σΛ∗ (g, c) = ∂(C,ψ) ∈ Γn(ΦF) ,

which is the obstruction of Cappell and Shaneson [44] to the existence of a
Λ-homology spine. �



23. Manifold and geometric Poincaré bordism

of X × S1

The free L-groups of the Laurent polynomial extension A[z, z−1] of a ring
with involution A split as

Ln+1
h (A[z, z−1]) = Ln+1

h (A)⊕ Lnp (A) ,

Lhn+1(A[z, z
−1]) = Lhn+1(A)⊕ Lpn(A)

(Shaneson [264], Wall [304, 12.6], Novikov [218], Ranicki [231],Milgram and
Ranicki [189]). The L-theory splittings are algebraic analogues of the split-
tings of the manifold bordism groups of X × S1

Ωn+1(X × S1) = Ωn+1(X)⊕Ωn(X)

and also of the geometric Poincaré bordism groups

Ωhn+1(X × S1) = Ωhn+1(X)⊕Ωpn(X) .

These geometric splittings will now be described in detail.

In Chap. 23 manifolds are understood to be oriented manifolds in one of
the standard three categories : smooth, combinatorial or topological.

Definition 23.1 For any space X let Ωn(X) (n ≥ 0) be the group of equiv-
alence classes of pairs (M,f) with M a closed n-dimensional manifold and
f :M−−→X a map, subject to the equivalence relation :

(M,f) ≃ (M ′, f ′) if there exists an (n+1)-dimensional cobordism (L;M,M ′)
with a map e : L−−→X such that e| = f : M−−→X, e| =
f ′ :M ′−−→X.

�
Choose a base point ∗ ∈ S1, and let

i : X −−→ X × S1 ; x −−→ (x, ∗) ,

j : X × S1 −−→ X ; (x, s) −−→ x .
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Proposition 23.2 The manifold bordism group Ωn+1(X × S1) fits into a
direct sum system

Ωn+1(X)
i

−−−−−→←−−−−−
j

Ωn+1(X × S1)
B

−−−−−→←−−−−−
C

Ωn(X)

with

i : Ωn+1(X) −−→ Ωn+1(X × S1) ; (M, e) −−→ (M, ie) ,

j : Ωn+1(X × S1) −−→ Ωn+1(X) ; (M,f) −−→ (M, jf) ,

B : Ωn+1(X × S1) −−→ Ωn(X) ; (M,f) −−→ (f−1(X × {∗}), f |)

(assuming f :M−−→X × S1 transverse at X × {∗} ⊂ X × S1) ,

C : Ωn(X) −−→ Ωn+1(X × S1) ; (N, g) −−→ (N × S1, g × 1) .

Proof Given an (n+1)-dimensional manifold M and a map f :M−−→X×S1

which is transverse at X × {∗} ⊂ X × S1 let

g = f | : N = f−1(X × {∗}) −−→ X × {∗} = X ,

with N ⊂M a codimension 1 framed submanifold. CuttingM along N there
is obtained an (n+ 1)-dimensional manifold

MN = cl.(M\(N × [0, 1]))

with boundary ∂MN = N ⊔−zN two copies of N . The bordism (MN ;N, zN)
is a fundamental domain for the infinite cyclic cover of M

M = f∗(X × R) =

∞∪
j=−∞

zj(MN ;N, zN)

with z : M−−→M the generating covering translation. Regard M × [0, 1] as
a relative bordism (M × [0, 1];MN ,M ⊔ N × [0, 1]), defining a fundamen-
tal domain for a bordism (δM, δf : δM−−→X × S1) between (M,f) and
(M, ijf) ⊔ (N × S1, g × 1) realizing

(M,f) = (M, ijf) + (N × S1, g × 1) ∈ Ωn+1(X × S1) ,

and verifying the identity

1 = ij + CB : Ωn+1(X × S1) −−→ Ωn+1(X × S1) . �

Definition 23.3 For any space X let Ωhn(X) (resp. Ωpn(X)) be the group
of bordism classes of pairs (P, f) with P a finite (resp. finitely dominated)
n-dimensional geometric Poincaré complex and f : P−−→X a map. �
Proposition 23.4 (Pedersen and Ranicki [224])
(i) For n ≥ 5 the finite and finitely dominated geometric Poincaré bordism
groups are related by a Rothenberg-type exact sequence
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. . . −−→ Ωhn(X) −−→ Ωpn(X) −−→ Ĥn(Z2 ; K̃0(Z[π1(X)]))

−−→ Ωhn−1(X) −−→ . . . .

(ii) The geometric Poincaré bordism class of a (finitely dominated, finite)
n-dimensional geometric Poincaré pair (P, ∂P ) relative to a map P−−→X is
the Tate Z2-cohomology class of the Wall finiteness obstruction

[P ] ∈ Ĥn(Z2 ; K̃0(Z[π1(X)])) . �

The projective surgery theory of [224] also gives :

Proposition 23.5 For n ≥ 5 and any space X a map f : M−−→X × S1

from a finite (n + 1)-dimensional geometric Poincaré complex M is finitely
dominated Poincaré transverse at X × {∗} ⊂ X × S1, in that (up to finite
Poincaré bordism)

f = fN ∪g×1 : M = MN ∪N× [0, 1] −−→ X×S1 = X× [0, 1]∪X× [0, 1]

with N = f−1(X × {∗}) and

(fN ; g, zg) : (MN ;N, zN) −−→ X × ([0, 1]; {0}, {1})

a finitely dominated (n + 1)-dimensional geometric Poincaré bordism such
that

[MN ] = [N ] = Bτ(M) ∈ K̃0(Z[π1(X)]) . �
Proposition 23.6 The finite geometric Poincaré bordism group Ωhn+1(X ×
S1) fits into a direct sum system

Ωhn+1(X)
i

−−−−−→←−−−−−
j′

Ωhn+1(X × S1)
B

−−−−−→←−−−−−
C

Ωpn(X)

with

i : Ωhn+1(X) −−→ Ωhn+1(X × S1) ; (M, e) −−→ (M, ie) ,

j′ : Ωhn+1(X × S1) −−→ Ωhn+1(X) ; (M,f) −−→ (M, jf) + (∂P, ∂h)

(assuming f :M−−→X × S1 Poincaré transverse at X × {∗} ⊂ X × S1,

for any (finitely dominated, finite) (n+ 2)-dimensional geometric

Poincaré pair (P, ∂P ) with a map h : P−−→X such that

[P ] = [N ] ∈ K̃0(Z[π1(X)]), with N = f−1(X × {∗}) ⊂M) ,

B : Ωhn+1(X × S1) −−→ Ωpn(X) ; (M,f) −−→ (f−1(X × {∗}), f |) = (N, g) ,

C : Ωpn(X) −−→ Ωhn+1(X × S1) ; (N, g) −−→ (N × S1, g × 1) .

Proof Suppose given a finite (n+1)-dimensional geometric Poincaré complex
M and a map f : M−−→X × S1 which is finitely dominated Poincaré trans-
verse at X ×{∗} ⊂ X × S1, as above. Regard M × [0, 1] as a relative finitely
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dominated geometric Poincaré bordism (M×[0, 1];MN ,M⊔N×[0, 1]), defin-
ing a fundamental domain for a finitely dominated geometric Poincaré bor-
dism (δM, δf : δM−−→X×S1) between (M,f) and (M, ijf)⊔(N×S1, g×1)
realizing

(M,f) = (M, ijf) + (N × S1, g × 1) ∈ Ωpn+1(X × S1) ,

with finiteness obstruction

[δM ] = −i[N ] ∈ K̃0(Z[π1(X)][z, z−1]) .

For any (finitely dominated, finite) (n + 2)-dimensional geometric Poincaré
pair (P, ∂P ) with a map h : P−−→X such that

[P ] = [N ] ∈ K̃0(Z[π1(X)])

there is defined a (homotopy) finite geometric Poincaré bordism (δM, δf) ⊔
(P, h) between (M,f) and the disjoint union

(M, ijf) ⊔ (N × S1, g × S1) ⊔ (∂P, i∂h)

realizing the identity

1 = ij′ + CB : Ωhn+1(X × S1) −−→ Ωhn+1(X × S1) . �
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The algebraic mapping torus of a self homotopy equivalence of an algebraic
Poincaré complex over a ring with involution A is an A-finitely dominated
algebraic Poincaré complex over the Laurent polynomial extension A[z, z−1]
(z = z−1). Following a recollection of the algebraic L-theory splitting theo-
rems

Lnh(A[z, z
−1], ϵ) = Lnh(A, ϵ)⊕ Ln−1

p (A, ϵ) ,

Lhn(A[z, z
−1], ϵ) = Lhn(A, ϵ)⊕ L

p
n−1(A, ϵ)

it will now be proved that an algebraic Poincaré complex over A[z, z−1] is
A-finitely dominated if and only if it is homotopy equivalent to the algebraic
mapping torus of a self homotopy equivalence of an algebraic Poincaré com-
plex over A. See Chap. 34 for the L-theory of the polynomial extensions A[x],
A[x, x−1] with involution x = x.

Fundamental domains for infinite cyclic covers of compact manifolds may
be constructed by geometric transversality. Likewise, algebraic transversality
provides finitely dominated Poincaré fundamental domains over A for finite
f.g. free algebraic Poincaré complexes over the Laurent polynomial extension
A[z, z−1] with the involution

¯ : A[z, z−1] −−→ A[z, z−1] ;
∞∑

j=−∞
ajz

j −−→
∞∑

j=−∞
ajz

−j .

Definition 24.1 (i) Given A-module chain complexes C,D and chain maps

f, g : C−−→D define the double relative

{
ϵ-symmetric

ϵ-quadratic
Q-groups of (C, f, g){

Qn+1(f, g, ϵ) = Hn+1(f
% − g% :W%C−−→W%D)

Qn+1(f, g, ϵ) = Hn+1(f% − g% :W%C−−→W%D)

to fit into an exact sequence

. . . −−→ Qn+1(D, ϵ) −−→ Qn+1(f, g, ϵ)

−−→ Qn(C, ϵ)
f%−g%
−−−−→ Qn(D, ϵ) −−→ . . .

. . . −−→ Qn+1(D, ϵ) −−→ Qn+1(f, g, ϵ)

−−→ Qn(C, ϵ)
f%−g%−−−→ Qn(D, ϵ) −−→ . . . .
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(ii) An n-dimensional

{
ϵ-symmetric

ϵ-quadratic
pair over A

Γ =

(
(f g) : C ⊕ C ′−−→D ,

{
(δϕ, ϕ⊕−ϕ′)
(δψ, ψ ⊕−ψ′)

)

is fundamental if

{
(C ′, ϕ′) = (C, ϕ)

(C ′, ψ′) = (C,ψ) ,
so that

{
(δϕ, ϕ) ∈ Qn+1(f, g, ϵ)

(δψ, ψ) ∈ Qn+1(f, g, ϵ).

(iii) The union of a fundamental n-dimensional

{
ϵ-symmetric

ϵ-quadratic
(Poincaré)

pair Γ over A is the n-dimensional

{
ϵ-symmetric

ϵ-quadratic
(Poincaré) complex over

A[z, z−1]

U(Γ ) =

{
(E,Φ)

(E,Ψ)

with

dE =

(
dD (−)r−1(f − gz)
0 dC

)
:

Er = Dr[z, z
−1]⊕ Cr−1[z, z

−1]

−−→ Er−1 = Dr−1[z, z
−1]⊕ Cr−2[z, z

−1] ,

Φs =

(
δϕs (−)sgϕsz

(−)n−r−1ϕsf
∗ (−)n−r+sTϵϕs−1

)
:

En−r+s = Dn−r+s[z, z−1]⊕ Cn−r+s−1[z, z−1]

−−→ Er = Dr[z, z
−1]⊕ Cr−1[z, z

−1] ,

Ψs =

(
δψs (−)sgψsz

(−)n−r−1ψsf
∗ (−)n−r−sTϵψs+1

)
:

En−r−s = Dn−r−s[z, z−1]⊕ Cn−r−s−1[z, z−1]

−−→ Er = Dr[z, z
−1]⊕ Cr−1[z, z

−1] .

(iii) A fundamental pair Γ over A is finitely balanced if C and D are finitely
dominated and

[C] = [D] ∈ K̃0(A) ,

in which case

[U(Γ )] = [D[z, z−1]]− [C[z, z−1]] = 0 ∈ K̃0(A[z, z
−1])

and the union U(Γ ) is homotopy finite. A choice of chain equivalence C ≃ D
(if any) determines a round finite structure on U(Γ ). �



24. L-theory of Laurent extensions 267

Proposition 24.2 (Ranicki [244, Chap. 16])

(i) Every f.g. free n-dimensional

{
ϵ-symmetric

ϵ-quadratic
(Poincaré) complex (E, θ)

over A[z, z−1] is homotopy equivalent to the union U(Γ ) of a finitely balanced

n-dimensional

{
ϵ-symmetric

ϵ-quadratic
(Poincaré) cobordism Γ . If (E, θ) is based and

simple then Γ can be chosen to be based f.g. free, with (E, θ) simple homotopy
equivalent to U(Γ ).

(ii) The simple and free

{
ϵ-symmetric

ϵ-quadratic
L-groups of A[z, z−1] fit into geomet-

rically significant direct sum systems

Lnt (A, ϵ)

i!−−−−−→
←−−−−−

j′
Lnt (A[z, z

−1], ϵ)
B

−−−−−→
←−−−−−

C
Ln−1
u (A, ϵ) ,

Ltn(A, ϵ)

i!−−−−−→
←−−−−−

j′
Ltn(A[z, z

−1], ϵ)
B

−−−−−→
←−−−−−

C
Lun−1(A, ϵ)

for (t, u) = (s, h) or (h, p), with i! induced by the inclusion i : A−−→A[z, z−1]
and C defined by product with the symmetric Poincaré complex σ∗(S1) over
Z[z, z−1]

C = σ∗(S1)⊗− : Ln−1
u (A, ϵ) −−→ Lnt (A[z, z

−1], ϵ) ,

C = σ∗(S1)⊗− : Lrn−1(A, ϵ) −−→ Ltn(A[z, z
−1], ϵ) . �

Let
j : A[z, z−1] −−→ A ; z −−→ 1 .

Note that in general j′ ̸= j! – see 24.4 below for a description of j′ − j!.
The symmetric signature defines a natural transformation of direct sum

systems

Ωhn+1(X)

σ∗

��

i //
Ωhn(X × S1)

j′
oo

σ∗

��

B //
Ωpn−1(X)

σ∗

��

C
oo

Lnh(Z[π1(X)])
i! //

Lnh(Z[π1(X)][z, z−1])

j′
oo

B //
Ln−1
p (Z[π1(X)])

C
oo

from geometric Poincaré bordism to symmetric Poincaré bordism.

Definition 24.3 Let

(h, χ) : (C, ϕ) −−→ (C, ϕ)

be a self map of a finitely dominated n-dimensional ϵ-symmetric complex
(C, ϕ) over A.
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(i) The algebraic mapping torus of (h, χ) is the homotopy finite (n + 1)-
dimensional ϵ-symmetric complex over A[z, z−1]

T (h, χ) = U(Γ ) = (E, θ)

defined by the union of the finitely balanced (n+1)-dimensional ϵ-symmetric
cobordism

Γ = ((h 1) : C ⊕ C−−→C, (χ, ϕ⊕−ϕ)) ,
with

E = C(h− z : C[z, z−1]−−→C[z, z−1]) ,

θs =

(
χs (−)sϕsz

(−)n−rϕsh∗ (−)n−r+s+1Tϵϕs−1

)
:

En−r+s+1 = Cn−r+s+1[z, z−1]⊕ Cn−r+s[z, z−1]

−−→ Er = Cr[z, z
−1]⊕ Cr−1[z, z

−1] (s ≥ 0) .

(ii) The A-coefficient algebraic mapping torus of (h, χ) is the homotopy finite
(n+ 1)-dimensional ϵ-symmetric complex over A

TA(h, χ) = A⊗A[z,z−1] T (h, χ) = (EA, θA)

EA = C(h− 1 : C−−→C) ,

(θA)s =

(
χs (−)sϕs

(−)n−rϕsh∗ (−)n−r+s+1Tϵϕs−1

)
:

(EA)
n−r+s+1 = Cn−r+s+1 ⊕ Cn−r+s −−→ (EA)r = Cr ⊕ Cr−1 (s ≥ 0) .

Similarly in the ϵ-quadratic case. �
Proposition 24.4 The algebraic mapping torus T (h, χ) of a self homotopy
equivalence (h, χ) : (C, ϕ)−−→(C, ϕ) of a finitely dominated n-dimensional
ϵ-symmetric Poincaré complex (C, ϕ) over A is a homotopy finite (n + 1)-
dimensional ϵ-symmetric Poincaré complex over A[z, z−1] with a canonical
(round) finite structure, with respect to which it has torsion

τ(T (h, χ)) = τ(−zh : C[z, z−1]−−→C[z, z−1]) = (τ(h), [C], 0, 0)

∈Wh1(A[z, z
−1]) = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) .

The cobordism class T (h, χ) ∈ Ln+1
h (A[z, z−1], ϵ) is such that

BT (h, χ) = (C, ϕ) ∈ Lnp (A, ϵ) ,

and
j′T (h, χ)− TA(h, χ) = [τ(−1 : C−−→C)]

∈ im(Ĥn+2(Z2 ;Wh1(A))−−→Ln+1
h (A, ϵ)) .

If C is f.g. free then τ(−1 : C−−→C) = 0 ∈Wh1(A) and

j′T (h, χ) = TA(h, χ) = j!T (h, χ) ∈ Ln+1
h (A, ϵ) ,

T (h, χ) = i!j!T (h, χ)⊕
(
σ∗(S1)⊗ (C, ϕ)

)
∈ Ln+1

h (A[z, z−1], ϵ) ,
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with j : A[z, z−1]−−→A; z−−→1 the projection. �
An infinite cyclic cover X of a finite (n + 1)-dimensional geometric

Poincaré complex X is finitely dominated if and only if X is homotopy equiv-
alent to the mapping torus T (h) of a self homotopy equivalence h : Y−−→Y
of a finitely dominated n-dimensional geometric Poincaré complex Y , with
(Y, h) ≃ (X, ζ). Similarly for algebraic Poincaré complexes :

Proposition 24.5 An (n + 1)-dimensional f.g. free ϵ-symmetric Poincaré
complex (E, θ) over A[z, z−1] is A-finitely dominated if and only if it is ho-
motopy equivalent to the algebraic mapping torus T (h, χ) of a self homotopy
equivalence (h, χ) : (C, ϕ)−−→(C, ϕ) of a finitely dominated n-dimensional ϵ-
symmetric Poincaré complex (C, ϕ) over A. Similarly in the ϵ-quadratic case.
Proof The A[z, z−1]-module chain complex

T (h) = C(h− z : C[z, z−1]−−→C[z, z−1])

is A-module chain equivalent to C, for any self chain equivalence h : C−−→
C of a finitely dominated A-module chain complex C. In particular, it fol-
lows that the algebraic mapping torus T (h, χ) of a self homotopy equivalence
(h, χ) : (C, ϕ)−−→(C, ϕ) of a finitely dominated n-dimensional ϵ-symmetric
Poincaré complex (C, ϕ) over A is A-finitely dominated.

Conversely, let (E, θ) be an A-finitely dominated (n+1)-dimensional f.g.
free ϵ-symmetric Poincaré complex over A[z, z−1]. Let i!E denote the A-
module chain complex defined by E, with A acting by the restriction of the
A[z, z−1]-module action on E to the inclusion i : A−−→A[z, z−1]. Since i!E is
A-finitely dominated there is defined an A[z, z−1]-module chain equivalence

q : T (ζ) = C(ζ − z : i!E[z, z−1]−−→i!E[z, z−1])
≃−−→ E

as in 3.10. Regard the ϵ-symmetric structure on E as an element of the Z2-
hyperhomology group θ ∈ Qn+1(E, ϵ) = Hn+1(W

%E) with

W%E = HomZ[Z2](W,HomA[z,z−1](E
∗, E))

= HomZ[Z2](W,E ⊗A[z,z−1] E) .

Applying E ⊗A[z,z−1] − to q there is obtained a Z[Z2]-module chain equiva-
lence

1⊗ q+ : E ⊗A[z,z−1] T (ζ) = C(1− ζ ⊗ ζ : i!E ⊗A i!E−−→i!E ⊗A i!E)

−−→ E ⊗A[z,z−1] E ,

The relative ϵ-symmetric structure groups Q∗(1, ζ, ϵ) in the exact sequence

. . . −−→ Qn+1(i!E, ϵ)
1−ζ%
−−→ Qn+1(i!E, ϵ)

−−→ Qn+1(1, ζ, ϵ) −−→ Qn(i!E, ϵ) −−→ . . .
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are thus such that
Q∗(1, ζ, ϵ) = Q∗(E, ϵ) .

The absolute ϵ-symmetric Poincaré structure θ ∈ Qn+1(E, ϵ) corresponds to
a relative ϵ-symmetric Poincaré structure (χ, i!θ) ∈ Qn+1(1, ζ, ϵ), defining
a finitely dominated n-dimensional ϵ-symmetric Poincaré complex (i!E, i!θ)
over A with a homotopy equivalence (ζ, χ) : (i!E, i!θ)−−→(i!E, i!θ) such that
(E, θ) is homotopy equivalent to T (ζ, χ). �

For any self chain equivalence h : P−−→P of a finitely dominated A-
module chain complex P and any n ≥ 0 the (n + 1)-dual T (h)n+1−∗ of
the algebraic mapping torus T (h) = C(h − z : P [z, z−1]−−→P [z, z−1]) is
A[z, z−1]-module chain equivalent to the algebraic mapping torus of (h∗)−1 :
Pn−∗−−→Pn−∗. Thus if (E, θ) is an A-finitely dominated finite f.g. free
(n + 1)-dimensional ϵ-symmetric Poincaré complex over A[z, z−1] there is
an A[z, z−1]-module chain equivalence

(i!E)n−∗ = HomA(E,A)∗−n
≃−−→

En+1−∗ = HomA[z,z−1](E,A[z, z
−1]))∗−n−1

and the n-dimensional ϵ-symmetric Poincaré structure i!θ ∈ Qn(i!E, ϵ) de-
fined in the proof of 24.5 is such that

i!θ0 : (i!E)n−∗ −−→ En+1−∗ θ0
−−→ E = i!E .

Example 24.6 Let (E, θ) be a 1-dimensional ϵ-symmetric Poincaré complex
over A[z, z−1] with

d =

n∑
j=m

ajz
j : E1 = A[z, z−1] −−→ E0 = A[z, z−1]

for some Laurent polynomial

p(z) =
n∑

j=m

ajz
j ∈ A[z, z−1] .

If E is A-finitely dominated (e.g. if A is commutative and the extreme co-
efficients am, an ∈ A are units) then (E, θ) is homotopy equivalent to the
algebraic mapping torus T (h, χ) of the self homotopy equivalence

(h, χ) : (P, ϕ) −−→ (P, ϕ)

of the f.g. free 0-dimensional ϵ-symmetric Poincaré complex (= nonsingular
ϵ-symmetric form) (P, ϕ) over A defined by

h = ζ−1 : P0 = H0(E) = A[z, z−1]/(p(z)) −−→ P0 ,

ϕ = θ0 : P 0 = H1(E) −−→ H0(E) = P0 , χ = 0 . �



25. Localization and completion in L-theory

Localization and completion techniques are a standard feature of the theory of
quadratic forms, as evidenced by the Hasse-Minkowski local-global principle.
Refer to Chap. 3 of Ranicki [237] for an account of the relevant L-theory.
The main novelty here is that the localization exact sequences of [237] in
ϵ-symmetric and ϵ-quadratic L-theory

. . . −−→Ln(A, ϵ)−−→Ln(S−1A, ϵ)−−→Ln(A,S, ϵ)−−→Ln−1(A, ϵ)−−→ . . . ,

. . . −−→Ln(A, ϵ)−−→Ln(S
−1A, ϵ)−−→Ln(A,S, ϵ)−−→Ln−1(A, ϵ)−−→ . . .

are extended to noncommutative localizations Σ−1A of a ring with involution
A. 15

As in Chap. 9 let Σ be a set of square matrices with entries in a ring A, so
that the localization Σ−1A is defined. An involution ¯ : A−−→A is extended
to the ring Mn(A) of n× n matrices with entries in A by

¯ : Mn(A) −−→ Mn(A) ; M = (aij) −−→ M = (āji) .

A set Σ of square matrices in A is involution-invariant if M ∈ Σ for all
M ∈ Σ, in which case the localization Σ−1A is a ring with involution, and
the natural map

i : A −−→ Σ−1A ; a −−→ a/1

is a morphism of rings with involution.

As in Part One only localizations in the case when i : A−−→Σ−1A is
injective will be considered, so that there is a localization exact sequence in
algebraic K-theory (9.8)

15In the published book there was an error in dealing with the noncommu-
tative localization exact sequence in the ϵ-symmetric case. It was assumed
that every finite f.g. projective Σ−1A-module chain complex C with [C] ∈
im(K0(A) → K0(Σ

−1A)) is chain equivalent to Σ−1B for a finite f.g. pro-
jective A-module chain complex B. In the paper Noncommutative localization
and chain complexes I. Algebraic K- and L-theory by A.Neeman and A.Ranicki
(http://arXiv.org/abs/math.RA.0109118) it is proved that in general this is the
case if and only if TorAi (Σ

−1A,Σ−1A) = 0 for i ≥ 1, and the ϵ-symmetric local-
ization exact sequence is proved under this additional hypothesis.
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. . . −−→ K1(A)
i
−−→ K1(Σ

−1A)
∂
−−→ K1(A,Σ)

j
−−→ K0(A)

i
−−→ K0(Σ

−1A) −−→ . . .

with K1(A,Σ) = K0(H (A,Σ)) the class group of (A,Σ)-modules. It will
be assumed that the natural maps Z−−→A, Z−−→Σ−1A induce split injec-
tions K∗(Z)−−→K∗(A), K∗(Z)−−→K∗(Σ

−1A) (∗ = 0, 1) so there is a reduced
version of the localization exact sequence

. . . −−→ Wh1(A)
i
−−→ Wh1(Σ

−1A)
∂
−−→ Wh1(A,Σ)

j
−−→ K̃0(A)

i
−−→ K̃0(Σ

−1A) −−→ . . .

with

Wh1(A,Σ) = K1(A,Σ) ,

Wh1(A) =

{
K̃1(A) for arbitrary A

Wh(π) for a group ring A = Z[π] ,

Wh1(Σ
−1A)

=

{
K̃1(Σ

−1A) for arbitrary A

K1(Σ
−1Z[π])/{±g | g ∈ Z[π]} for a group ring A = Z[π] .

For a ring with involution A and an involution-invariant set Σ of square
matrices in A the dual of a Σ−1A-isomorphism d ∈ HomA(P1, P0) is a Σ

−1A-
isomorphism d∗ ∈ HomA(P

∗
0 , P

∗
1 ).

Definition 25.1 The Σ-dual of an (A,Σ)-module M with f.g. projective
A-module resolution

0 −−→ P1

d
−−→ P0 −−→ M −−→ 0

is the (A,Σ)-module M̂ with f.g. projective A-module resolution

0 −−→ P ∗
0

d∗

−−→ P ∗
1 −−→ M̂−−→ 0 . �

The Σ-duality involution

H (A,Σ) −−→ H (A,Σ) ; M −−→ M̂
induces an involution

∗ : Wh1(A,Σ) −−→ Wh1(A,Σ) ; τΣ(M) −−→ τΣ(M )̂ .

Remark 25.2 For a multiplicative subset Σ = S ⊂ A the S-dual of an
(A,S)-module M can be expressed as

M̂ = HomA(M,S−1A/A)
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with A acting by

A×M̂−−→ M̂ ; (a, f) −−→ (x −−→ f(x).a) ,

and

P ∗
1 −−→ M̂ ; f −−→ ([x] −−→ f(d−1(x))) (x ∈ P0 , [x] ∈M) ,

with d−1 ∈ HomS−1A(S
−1P0, S

−1P1). �
The algebraic K-theory localization exact sequence has the following L-

theory analogues, involving the torsion L-groups :

Definition 25.3 Let A be a ring with involution and let Σ be an involution-
invariant set of square matrices with entries in A such that i : A−−→Σ−1A
is injective. For any ∗-invariant subgroup U ⊆ Wh1(A,Σ) the ϵ-symmetric
(A,Σ)-torsion L-group LnU (A,Σ, ϵ) (n ≥ 0) is the group of cobordism classes
of Σ−1A-contractible f.g. projective (n−1)-dimensional ϵ-symmetric Poincaré
complexes (C, ϕ) over A with

τΣ(C) ∈ U ⊆Wh1(A,Σ) .

Similarly for the ϵ-quadratic (A,Σ)-torsion L-group LUn (A,Σ, ϵ). �
See Ranicki [237, Chap. 1.12] for the definition of (−1)-dimensional al-

gebraic Poincaré complexes required for the definition of L0
U (A,Σ, ϵ) and

LU0 (A,Σ, ϵ).

Proposition 25.4 16 (i) The ϵ-symmetric L-group Ln∂−1U (Σ
−1A, ϵ) is (iso-

morphic to) the cobordism group of n-dimensional f.g. projective ϵ-symmetric
Σ−1A-Poincaré complexes (C, ϕ) over A with [∂C] ∈ U ⊆Wh1(A,Σ).
(ii) The ϵ-symmetric (A,Σ)-torsion L-groups are the relative groups in the
localization exact sequence

. . . −−→ LnjU (A, ϵ)
i
−−→ Ln∂−1U (Σ

−1A, ϵ)

∂
−−→ LnU (A,Σ, ϵ)

j
−−→ Ln−1

jU (A, ϵ) −−→ . . . ,

with

∂ : Ln∂−1U (Σ
−1A, ϵ) = Γn∂−1U (A−−→Σ

−1A, ϵ) −−→ LnU (A,Σ, ϵ) ;

Σ−1(C, ϕ) −−→ ∂(C, ϕ) .

(iii) The ϵ-symmetric L-groups associated to a pair (U2, U1 ⊆ U2) of ∗-
invariant subgroups U1 ⊆ U2 ⊆ Wh1(A,Σ) are related by a Rothenberg-type
exact sequence

16The ϵ-symmetric case of this Proposition requires the additional hypothesis
TorAi (Σ

−1A,Σ−1A) = 0 for i ≥ 1.
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. . . −−→ Ĥn+1(Z2 ;U2/U1) −−→ LnU1
(A,Σ, ϵ)

−−→ LnU2
(A,Σ, ϵ) −−→ Ĥn(Z2 ;U2/U1) −−→ . . . .

Similarly for the ϵ-quadratic case.
Proof As for the localization S−1A inverting an involution-invariant multi-
plicative subset S ⊂ A in Ranicki [237, Chap. 3]. The injection i : A−−→Σ−1A
is locally epic, and the relative L-groups are given by 20.21 to be

L∗(i, ϵ) = Γ∗(Φi, ϵ) = L∗(A,Σ, ϵ)

with
A //

��

A

��

Φi

A // Σ−1A

�
Proposition 25.5 (Cappell and Shaneson [40], Vogel [299])
Let π be a finitely presented group, and let F : Z[π]−−→Λ be a locally epic
morphism of rings with involution. Assume that the localization of Σ−1Z[π]
inverting the set Σ of Λ-invertible matrices in Z[π] is such that the natural
map i : Z[π]−−→Σ−1Z[π] is injective. Let U ⊆ K1(Λ) be a ∗-invariant sub-
group containing the image of ±π.
(i) A normal map (f, b) : (M,∂M)−−→(X, ∂X) from an n-dimensional mani-
fold with boundary to an n-dimensional Λ-coefficient n-dimensional geometric
Poincaré pair with π1(X) = π, τ(X, ∂X;Λ) ∈ U and with ∂f : ∂M−−→∂X
a Λ-coefficient homology equivalence with τ(∂f ;Λ) ∈ U has a Λ-homology
surgery obstruction

σΛ∗ (f, b) ∈ ΓUn (F) = LUn (Σ
−1Z[π])

such that σΛ∗ (f, b) = 0 if (f, b) is normal bordant to a Λ-coefficient homology
equivalence with torsion in U .
(ii) Let n ≥ 5. If (f, b) (as in (i)) is such that σΛ∗ (f, b) = 0 then (f, b) is
normal bordant to a Λ-coefficient homology equivalence with torsion in U .
Moreover, every element in ΓUn (F) is realized as σΛ∗ (f, b) for some (f, b). �
Terminology 25.6 In the special cases

U = {0} , im(Wh1(Σ
−1A)−−→Wh1(A,Σ)) , Wh1(A,Σ)

write the ϵ-symmetric L-groups L∗
U (A,Σ, ϵ) of 25.4 as

Ln{0}⊆Wh1(A,Σ)(A,Σ, ϵ) = Lns (A,Σ, ϵ) ,

Lnim(Wh1(Σ−1A))(A,Σ, ϵ) = Lnh(A,Σ, ϵ) ,

LnWh1(A,Σ)(A,Σ, ϵ) = Lnp (A,Σ, ϵ) .
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Similarly in the ϵ-quadratic case. �
Proposition 25.7 17 The torsion ϵ-symmetric L-groups of 25.6 fit into the
commutative braids of exact sequences

Lnh(A, ϵ)

%%KK
KKK

K

##
Lnh(Σ

−1A, ϵ)

%%KK
KKK

K

##
Lnp (A,Σ, ϵ)

LnJ0(A, ϵ)

99ssssss

%%KK
KKK

Lnh(A,Σ, ϵ)

99ssssss

%%KK
KKK

K

Ln+1
p (A,Σ, ϵ)

99ssssss

;;
Ĥn(Z2;J0)

99ssssss

;;
Ln−1
h (A, ϵ)

Lnh(A, ϵ)

$$JJ
JJJ

J

""
Lnh(Σ

−1A, ϵ)

$$JJ
JJ

JJ

##
Ĥn(Z2;Wh1(Σ

−1A)/J1)

LnJ1(Σ
−1A, ϵ)

::tttttt

$$JJ
JJJ

J
Lnh(A,Σ, ϵ)

::tttttt

$$JJ
JJJ

J

Ĥn+1(Z2;Wh1(Σ
−1A)/J1)

::ttttt

<<
Lns (A,Σ, ϵ)

::tttttt

<<
Ln−1
h (A, ϵ)

with

J0 = im(Wh1(A,Σ)−−→K̃0(A)) = ker(K̃0(A)−−→K̃0(Σ
−1A)) ,

J1 = im(Wh1(A)−−→Wh1(Σ
−1A)) = ker(Wh1(Σ

−1A)−−→Wh1(A,Σ)) .

Similarly in the ϵ-quadratic case. �
Remark 25.8 As in the case of a multiplicative subset S ⊂ A considered in
Ranicki [237, 3.2] it is possible to view LnU (A,Σ, ϵ) as the cobordism group
of n-dimensional ϵ-symmetric Poincaré complexes (C, ϕ) over (A,Σ), where :

(i) C is an n-dimensional chain complex of (A,Σ)-modules such that

τΣ(C) =
n∑
r=0

(−)rτΣ(Cr) ∈ U ⊆Wh1(A,Σ) ,

(ii) ϕ ∈ Qn+1(D,−ϵ) for some (n+1)-dimensionalΣ−1A-contractible f.g.
projective A-module chain complex D with an A-module chain map
h : D−−→C inducing homology isomorphisms h∗ : H∗(D) ∼= H∗(C),

17The ϵ-symmetric case of this Proposition requires the additional hypothesis
TorAi (Σ

−1A,Σ−1A) = 0 for i ≥ 1.
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(iii) the A-module chain map

ϕ0 : Dn+1−∗ ≃ Cn−̂ = HomA(C,Σ
−1A/A)∗−n −−→ D ≃ C

is a homology equivalence,
(iv) for each x ∈ Dn+1 there exists a ∈ A such that

ϕn+1(x)(x) = a− ϵa ∈ A .

The projective (A,Σ)-torsion ϵ-symmetric L-groups L∗
p(A,Σ, ϵ) depend on

the exact category structure of H (A,Σ), and are not the same as the L-
groups L∗(H (A,Σ), ϵ) defined in Ranicki [243] for any additive category with
involution : the natural maps

L∗(H (A,Σ), ϵ) −−→ L∗
p(A,Σ, ϵ)

may not be isomorphisms. The natural maps

Q
n
(C, ϵ) = Hn(HomZ[Z2](W,HomA(C ,̂C))) −−→ Qn+1(D,−ϵ)

are not isomorphisms in general, fitting instead into the ϵ-symmetric version
of the Q-group exact sequence of Vogel [298, 2.5] (cf. [237, p. 195])

. . . −−→Q
n
(C, ϵ)−−→Qn+1(D,−ϵ)

h%

−−→ Qn+1(C,−ϵ)−−→Q
n−1

(C, ϵ)−−→ . . .

with
Qn(C, ϵ) = Hn(HomZ[Z2](W,C ⊗A C)) .

Similarly in the ϵ-quadratic case on the Q-group level, with an exact sequence

. . . −−→Qn(C, ϵ)−−→Qn+1(D,−ϵ)
h%−−→ Qn+1(C,−ϵ)−−→Qn−1(C, ϵ)−−→ . . . .

However, in this case it is proved in [298] that on the L-group level

L∗(H (A,Σ), ϵ) = Lp∗(A,Σ, ϵ) . �

Definition 25.9 (i) An involution T : H−−→H on an abelian group H is
hyperbolic if there exists a direct sum decomposition H = H+ ⊕ H− and
inverse isomorphisms

T+ : H+ ≃−−→ H− , T− : H− ≃−−→ H+

such that

T =

(
0 T−

T+ 0

)
: H = H+ ⊕H− −−→ H = H+ ⊕H− .

(ii) An involution T : H−−→H on an exact category H is hyperbolic if there
exists a product decomposition H = H+ ×H− and inverse isomorphisms
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T+ : H+ ≃−−→ H− , T− : H− ≃−−→ H+

such that

T =

(
0 T−

T+ 0

)
: H = H+ ×H− −−→ H = H+ ×H− . �

Proposition 25.10 If the Σ-duality involution on H (A,Σ) is hyperbolic then

Ĥ∗(Z2 ;Wh1(A,Σ)) = 0

and for any ∗-invariant subgroup U ⊆Wh1(A,Σ)

L∗
U (A,Σ, ϵ) = LU∗ (A,Σ, ϵ) = 0 ,

LjU∗ (A, ϵ) = L∗
jU (A, ϵ)

= L∂
−1U

∗ (Σ−1A, ϵ) = L∗
∂−1U (Σ

−1A, ϵ) .

Proof Let H (A,Σ) = H+×H−, with H+, H− interchanged by the Σ-duality
involution T : H (A,Σ)−−→H (A,Σ). Every Σ−1A-contractible f.g. projective
A-module chain complex C is chain equivalent to C+⊕C− with C ± homology
equivalent to a chain complex in H±, such that

Qn(C, ϵ) = Qn(C, ϵ) = Hn(HomA((C
+)∗, C−)) ,

Qn(C
±, ϵ) = Qn(C ±, ϵ) = 0 .

In particular, the ϵ-symmetric and ϵ-quadratic Q-groups coincide, and simi-
larly for the L-groups. Every Σ−1A-contractible ϵ-symmetric Poincaré com-
plex (C, ϕ) admits a Σ−1A-contractible ϵ-symmetric Poincaré null-cobordism
(C−−→C+, (j+ϕ, ϕ)). �
Proposition 25.11 Let A be a ring with involution such that there exists a
central element s ∈ A with

s+ s = 1 ∈ A .

(i) For any f.g. projective A-module chain complex C the ϵ-duality involution
Tϵ : Hn−−→Hn on Hn = Hn(HomA(C

∗, C)) is hyperbolic, and

Qn(C, ϵ) = ker(1− Tϵ : Hn−−→Hn)

= coker(1− Tϵ : Hn−−→Hn) = Qn(C, ϵ) .

The L-groups of A are such that for any ∗-invariant subgroup U ⊆ K̃i(A)
(i = 0, 1)

L∗
U (A, ϵ) = LU∗ (A, ϵ) .

(ii) If s ∈ A is a non-zero divisor then

S = {sj(1− s)k | j, k ≥ 0} ⊂ A
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is a multiplicative subset such that for any ∗-invariant subgroup U ⊆ K1(A,S)

LU∗ (A,S, ϵ) = L∗
U (A,S, ϵ) = 0 ,

and
LjU∗ (A, ϵ) = L∗

jU (A, ϵ)

= L∂
−1U

∗ (S−1A, ϵ) = L∗
∂−1U (S

−1A, ϵ) .

Proof (i) The forgetful map

Qn(C, ϵ) −−→ ker(1− Tϵ : Hn−−→Hn) ; ϕ −−→ ϕ0

is an isomorphism with inverse

ker(1− Tϵ : Hn−−→Hn) −−→ Qn(C, ϵ) ; θ −−→ ϕ , ϕj =

{
sθ if j = 0

0 if j ≥ 1 .

The forgetful map

Qn(C, ϵ) −−→ coker(1− Tϵ : Hn−−→Hn) ; ψ −−→ s(1 + Tϵ)ψ0

is an isomorphism with inverse

coker(1− Tϵ : Hn−−→Hn) −−→ Qn(C, ϵ) ; θ −−→ ψ , ψj =

{
sθ if j = 0

0 if j ≥ 1 .

The ϵ-symmetrization map

1 + Tϵ : Qn(C, ϵ) −−→ Qn(C, ϵ) ; ψ −−→ ϕ , ϕj =

{
(1 + Tϵ)ψ0 if j = 0

0 if j ≥ 1

is an isomorphism with inverse

(1 + Tϵ)
−1 : Qn(C, ϵ) −−→ Qn(C, ϵ) ; ϕ −−→ ψ , ψj =

{
sϕ0 if j = 0

0 if j ≥ 1.

(ii) The multiplicative subsets

S0 = {sj | j ≥ 0} , S1 = {(1− s)k | k ≥ 0} ⊂ A

are such that
S = S0S1 , S0 = S1 , S1 = S0 .

An A-module M is S-torsion if and only if s : M−−→M is a near-projection
(12.23) with

(s(1− s))N = 0 : M −−→ M

for some N ≥ 0, in which case the projection defined by

sω = (sN + (1− s)N )−1sN : M −−→ M

is such that M =M0 ⊕M1 with
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M0 = {x ∈M | sjx = 0 for some j ≥ 0} = (1− sω)(M) ,

M1 = {x ∈M | (1− s)kx = 0 for some k ≥ 0} = sω(M) ,

(M )̂0 = (M1)̂ , (M )̂1 = (M0)̂ .

The S-duality involution

H (A,S) −−→ H (A,S) ; M −−→ M̂
is hyperbolic, corresponding to

H (A,S0)×H (A,S1) −−→ H (A,S0)×H (A,S1) ; (M0,M1) −−→ (M1̂ ,M0̂ )

under the isomorphism of exact categories

H (A,S)
≃−−→ H (A,S0)×H (A,S1) ; M −−→ (M0,M1) ,

so that 25.10 applies. �
Example 25.12 If 2 ∈ A is invertible then s = 1/2 ∈ A is such that s+ s =
1 ∈ A, and 25.11 gives

LU∗ (A, ϵ) = L∗
U (A, ϵ) = LU∗ (A[1/2], ϵ) = L∗

U (A[1/2], ϵ) ,

LU∗ (A, (2)
∞, ϵ) = L∗

U (A, (2)
∞, ϵ) . �

Definition 25.13 Given a ring with involution A let A[s] be the polynomial
extension ring of A, with the involution extended by

s = 1− s . �

See Chap. 36 for a detailed account of the L-theory of A[s].

Proposition 25.14 (i) The ϵ-symmetrization maps for A[s] are isomor-
phisms

1 + Tϵ : LUn (A[s], ϵ)
≃−−→ LnU (A[s], ϵ)

for any ∗-invariant subgroup U ⊆Wh1(A).
(ii) The morphism of rings with involution

A[s] −−→ A[z, z−1, (1− z)−1] ; s −−→ (1− z)−1

induces isomorphisms in Tate Z2-cohomology

Ĥn(Z2;K1(A[s]))
≃−−→ Ĥn(Z2;K1(A[z, z

−1, (1− z)−1]))

and also in L-theory

LnU (A[s], ϵ)
≃−−→ LnU (A[z, z

−1, (1− z)−1], ϵ)
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for any ∗-invariant subgroup U ⊆Wh1(A[s]).
Proof (i) Immediate from 25.11 (i).
(ii) As in the proof of 25.11 (ii) define the multiplicative subsets

S = {sj(1− s)k | j, k ≥ 0} ,

S0 = {sj | j ≥ 0} , S1 = {(1− s)k | k ≥ 0} ⊂ A[s] ,

such that S = S0S1 is involution-invariant and S0 = S1, S1 = S0. An
(A[s], S)-module M is a f.g. projective A-module with a near-projection s :
M−−→M , such that (s(1− s))N = 0 :M−−→M for some N ≥ 0. As in 12.23
there is defined a projection

sω = (sN + (1− s)N )−1sN = s 2
ω : M −−→ M ,

so that M =M0 ⊕M1 with

M0 = (1− sω)(M) , M1 = sω(M) .

The endomorphisms

ν0 = s | : M0 −−→ M0 , ν1 = (1− s)| : M1 −−→ M1

are nilpotent, and the functor

H (A[s], S) −−→ Nil(A)×Nil(A) ; M −−→ ((M0, ν0), (M1, ν1))

is an isomorphism of exact categories. For i = 0 (resp. 1) an (A[s], Si)-
module Mi is a f.g. projective A-module with a nilpotent endomorphism
s :M0−−→M0 (resp. 1− s :M1−−→M1), and the functors

H (A[s], S0) −−→ Nil(A) ; M0 −−→ [M0, s] ,

H (A[s], S1) −−→ Nil(A) ; M1 −−→ [M1, 1− s]

are also isomorphisms of exact categories. The S-duality involution on
H (A[s], S) is hyperbolic, corresponding to

Nil(A)×Nil(A) −−→ Nil(A)×Nil(A) ;

((M0, ν0), (M1, ν1)) −−→ ((M∗
1 , ν

∗
1 ), (M

∗
0 , ν

∗
0 )) .

Use s = (1− z)−1 to identify

S−1A[s] = A[z, z−1, (1− z)−1] ,

with
z = 1− (1− s)−1 = (1− s−1)−1 = z−1 ∈ S−1A[s] .

The short exact sequence of Z[Z2]-modules

0 −−→ K1(A[s]) −−→ K1(A[s, s
−1, (1− s)−1]) −−→ K1(A[s], S) −−→ 0
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has

K1(A[s]) = K1(A)⊕Nil0(A) ,

K1(A[s, s
−1, (1− s)−1]) = K1(A)⊕K0(A)⊕Nil0(A)⊕Nil0(A)⊕Nil0(A) ,

K1(A[s], S) = K1(A[s], S0)⊕K1(A[s], S1) = Nil0(A)⊕Nil0(A)

with the duality involution determined by s = 1 − s interchanging the two
summands in K1(A[s], S), so that

Ĥ∗(Z2;K1(A[s], S)) = 0

and
Ĥ∗(Z2;K1(A[s])) = Ĥ∗(Z2;K1(A[s, s

−1, (1− s)−1])) .

It is immediate from 25.11 (ii) that

LU∗ (A[s], S, ϵ) = L∗
U (A[s], S, ϵ) = 0

for any ∗-invariant subgroup U ⊆Wh1(A[s]), and hence that

L∗
U (A[s], ϵ) = L∗

U (A[z, z
−1, (1− z)−1], ϵ)

= LU∗ (A[s], ϵ) = LU∗ (A[z, z
−1, (1− z)−1], ϵ) . �

Definition 25.15 A central element t ∈ A is coprime to a multiplicative
subset S ⊂ A if for every s ∈ S there exist a, b ∈ A such that

as+ bt = 1 ∈ A ,

or equivalently if S and T = {tk | k ≥ 0} ⊂ A are coprime multiplicative
subsets in the sense of 4.13. �

If t ∈ A is coprime to S ⊂ A there is defined a cartesian morphism

(A,S) −−→ (T−1A,S) ,

and hence a cartesian square of rings

A //

��

T−1A

��
S−1A // (ST )−1A

with an isomorphism of exact categories

H (A,S)
≃−−→ H (T−1A,S) ; M −−→ T−1M

inducing excision isomorphisms in the relative L-groups. See Ranicki [237,
Chap. 3] for the corresponding L-theory Mayer–Vietoris exact sequences.
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Proposition 25.16 Let S ⊂ A be an involution-invariant multiplicative sub-
set in a ring with involution, and such that there exists a central element
t ∈ A coprime to S and with

t+ t = tt ∈ A .

(i) For any S−1A-contractible f.g. free A-module chain complex C the ϵ-
duality involution Tϵ : Hn−−→Hn on Hn = Hn(HomA(C

∗, C)) is hyperbolic,
and

Qn(C, ϵ) = ker(1− Tϵ : Hn−−→Hn)

= coker(1− Tϵ : Hn−−→Hn) = Qn(C, ϵ) .

(ii) The L-groups of (A,S) are such that

L∗
U (A,S, ϵ) = LU∗ (A,S, ϵ)

for any ∗-invariant subgroup U ⊆Wh1(A,S).
Proof (i) The multiplicative subset

T = {tjtk | j, k ≥ 0} ⊂ A

is involution-invariant and coprime to S. The cartesian morphism

(A,S) −−→ (T−1A,S)

determines a cartesian square of rings with involution

A //

��

T−1A

��
S−1A // (ST )−1A

and an isomorphism of exact categories with duality

H (A,S) −−→ H (T−1A,S) ; M −−→ T−1M .

The element
a = t−1 ∈ T−1A

is such that
a+ a = tt/(t+ t) = 1 ∈ T−1A .

The inclusion C−−→T−1C is a homology equivalence for any S−1A-contract-
ible finite f.g. free A-module chain complex C, so that the localization maps
are isomorphisms

H∗(C ⊗A C)
≃−−→ H∗(T

−1C ⊗T−1A T
−1C) ,

Q∗(C, ϵ)
≃−−→ Q∗(T−1C, ϵ) , Q∗(C, ϵ)

≃−−→ Q∗(T
−1C, ϵ)
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and 25.11 applies to T−1C.
(ii) Immediate from (i). �
Example 25.17 (i) If S = {odd integers} ⊂ Z ⊆ A then t = 2 ∈ A is
coprime to S with t+ t = tt = 4 ∈ A, so that

LU∗ (A,S, ϵ) = L∗
U (A,S, ϵ) .

(ii) For any ring with involution A the set Π of A-invertible square matrices
in A[z, z−1] is coprime to

t = 1− z ∈ A[z, z−1]

with
t+ t = (1− z)(1− z−1) = tt ∈ A[z, z−1] ,

so that
LU∗ (A[z, z

−1],Π, ϵ) = L∗
U (A[z, z

−1],Π, ϵ) . �
Definition 25.18 (i) An ϵ-symmetric linking form (M,λ) over (A,Σ) is an
(A,Σ)-module M with a pairing

λ : M ×M −−→ Σ−1A/A ; (x, y) −−→ λ(x, y)

such that
λ(y, x) = ϵλ(x, y) ∈ Σ−1A/A .

(ii) A linking form (M,λ) is nonsingular if the adjoint A-module morphism

M −−→ M̂ ; x −−→ (y −−→ λ(x, y))

is an isomorphism.
(iii) A linking form (M,λ) is metabolic if there exists an (A,S)-submodule
L ⊆M such that L = L⊥, with

L⊥ = {y ∈M |λ(x, y) = 0 ∈ Σ−1A/A for all x ∈ L} .

(iv) The ϵ-symmetric linking Witt groupW ϵ(A,Σ) is the group of equivalence
classes of nonsingular ϵ-symmetric linking forms over (A,Σ) with

(M,λ) ∼ (M ′, λ′) if there exists an isomorphism

(M,λ)⊕ (N,µ) ∼= (M ′, λ′)⊕ (N ′, µ′)

for some metabolic (N,µ), (N ′, µ′) . �
Proposition 25.19 (i) The isomorphism classes of (nonsingular) ϵ-symm-
etric linking forms over (A,Σ) are in natural one-one correspondence with
the homotopy equivalence classes of Σ−1A-contractible 1-dimensional (−ϵ)-
symmetric (Poincaré) complexes (C, ϕ) over A.
(ii) For i ≥ 1 there is a natural map from the ϵ-symmetric linking form
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Witt group of (A,Σ) to the 2i-dimensional (A,Σ)-torsion (−)iϵ-symmetric
L-group

W ϵ(A,Σ) −−→ L2i(A,Σ, (−)iϵ) ; (M,λ) −−→ Si−1(C, ϕ) .

Proof Given a linking form (M,λ) let

0 −−→ C1 −−→ C0 −−→ M̂−−→ 0

be a f.g. projective A-module resolution of M .̂ Then C is an Σ−1A-
contractible A-module chain complex such that

Q1(C,−ϵ) = ker(1− Tϵ : HomA(M,M )̂−−→HomA(M,M )̂) . �

Example 25.20 Let A be a ring with involution, with an involution-invariant
multiplicative subset

S = {ujsk | j ∈ Z, k ≥ 0} ⊂ A

for some central non-zero divisor s ∈ A and unit u ∈ A• such that

us = s , u = u−1 ∈ A .

The localization of A inverting S is a ring with involution

S−1A = A[1/s] .

An (A,S)-module M is an A-module of homological dimension 1 such that
skM = 0 for some k ≥ 0. The A-module morphism

HomA/skA(M,A/skA) −−→ HomA(M,S−1A/A) ; f −−→ (x −−→ f(x)/sk)

is an isomorphism if M is a f.g. projective A/skA-module. Thus for each
k ≥ 1 there is defined a one-one correspondence

{ukϵ-symmetric forms over A/skA} −−→
{ϵ-symmetric linking forms (M,µ) over (A,S)

with M a f.g. projective A/skA-module} ;

(M,λ) −−→ (M,µ) (µ(x, y) = λ(x, y)/sk) .

The morphism of Witt groups

L0(A/sA, uϵ) −−→ W ϵ(A,S) ; (M,λ) −−→ (M,µ)

will be shown in Chap. 38 to be an isomorphism if A is a Dedekind ring and
A/sA is a field, with

L0(A/sA, uϵ) = W ϵ(A,S) = L2i(A,S, (−)iϵ) (i ≥ 1) . �
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Example 25.21 Let X be an n-dimensional geometric Poincaré complex,
and let X̃ be a regular covering with group of covering translations π (e.g.
the universal cover with π1(X) = π). If Σ is an involution-invariant set of
square matrices in A = Z[π] such that

Σ−1H∗(X̃) = 0

there is defined an n-dimensional Σ−1A-contractible symmetric Poincaré
complex (C(X̃), ϕ) over A, with ϕ = ∆[X], and hence a symmetric signa-
ture

σ∗(X) = (C(X̃), ϕ) ∈ Ln+1(A,Σ) .

The symmetric Poincaré structure ϕ determines a linking pairing

µ : Hr(X̃)×Hn−r−1(X̃) −−→ Σ−1A/A ;

(x, y) −−→ ϕ0(w, y)/σ (σ ∈ Σ,w ∈ Cr+1, d(w) = σx)

such that
µ(ax, by) = bµ(x, y)a (a, b ∈ A) ,

µ(y, x) = (−)r(n−r−1)µ(x, y) ∈ Σ−1A/A .

(i) The construction of µ generalizes the classical linking pairing of Seifert
[262]

Tr(X)× Tn−r−1(X) −−→ Q/Z

on the torsion subgroups Tr(X) ⊆ Hr(X).
(ii) If X is the exterior of a knot k : Sn−2 ⊂ Sn and X is the canonical
infinite cyclic cover then

P−1H∗(X) = 0 (∗ ̸= 0)

with P = {p(z) | p(1) = 1} ⊂ Z[z, z−1], and

µ : Hr(X)×Hn−r−1(X) −−→ P−1Z[z, z−1]/Z[z, z−1]

is the linking pairing of Blanchfield [23]. See Chap. 32 for a more detailed
exposition. �

See Ranicki [237, Chap. 3.5] for a detailed account of linking forms, includ-
ing the precise relationship between L2i(A,Σ, ϵ) and the Witt group of non-
singular (−)iϵ-symmetric linking forms over (A,Σ), as well as the ϵ-quadratic
versions. The ϵ-quadratic L-groups LU∗ (A,S, ϵ) are 4-periodic

LU∗ (A,S, ϵ) = LU∗+2(A,S,−ϵ) = LU∗+4(A,S, ϵ) ,

with LU2i(A,S, ϵ) = LU0 (A,S, (−)iϵ) the Witt group of nonsingular split (−)iϵ-
quadratic linking forms (M,λ, ν) over (A,S) with

[M ] ∈ U ⊆Wh1(A,S) .
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The ϵ-symmetric L-groups L∗
U (A,S, ϵ) are not 4-periodic in general, but there

are defined skew-suspension maps

LnU (A,S, ϵ) −−→ Ln+2
U (A,S,−ϵ) −−→ Ln+4

U (A,S, ϵ) .

Proposition 25.22 Let A be a ring with involution and let S ⊂ A be an
involution-invariant multiplicative subset such that there exists a central el-
ement t ∈ A coprime to S ⊂ A with t + t = tt ∈ A the ϵ-symmetric L-
groups L∗

U (A,S, ϵ) coincide with the ϵ-quadratic L-groups LU∗ (A,S, ϵ), and
are 4-periodic for ∗ ≥ 0. In particular, L2i

U (A,S, ϵ) (i ≥ 0) is the Witt
group of nonsingular (−)iϵ-symmetric linking forms (M,λ) over (A,S) with
[M ] ∈ U ⊆Wh1(A,S).
Proof Immediate from 25.16 and the 4-periodicity of the ϵ-quadratic L-groups.

�
The following results on the L-theory localization exact sequence will be

used later on :

Proposition 25.23 Let Σ1, Σ2 be involution-invariant coprime sets of square
matrices in a ring with involution A (9.16) such that the natural maps

i1 : A −−→ (Σ1)
−1A , i2 : A −−→ (Σ2)

−1A

are injective. The localizations fit into a cartesian square of rings with invo-
lution

A //

��

(Σ1)
−1A

��
(Σ2)

−1A // (Σ1 ∪Σ2)
−1A

and the ϵ-symmetric torsion L-groups are such that

L∗
p(A,Σ1 ∪Σ2, ϵ) = L∗

p(A,Σ1, ϵ)⊕ L∗
p(A,Σ2, ϵ) ,

L∗
h(A,Σ1 ∪Σ2, ϵ) = L∗

h(A,Σ1, ϵ)⊕ L∗
h(A,Σ2, ϵ)

with commutative braids of exact sequences

Ln+1
p (A,Σ2, ϵ)

%%KK
KKK

KKK

$$
Ln
K̃0(A)

((Σ1)
−1A, ϵ)

%%KK
KKK

K

$$
Lnp (A,Σ1, ϵ)

Lnp (A, ϵ)

99ssssss

%%KK
KKK

KK
Ln
K̃0(A)

((Σ1 ∪Σ2)
−1A, ϵ)

99sssssss

%%KK
KKK

K

Ln+1
p (A,Σ1, ϵ)

99sssssss

88
Ln
K̃0(A)

((Σ2)
−1A, ϵ)

99ssssss

99
Lnp (A,Σ2, ϵ)
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Ln+1
h (A,Σ2, ϵ)

%%KK
KKK

K

##
Lnh((Σ1)

−1A, ϵ)

%%KK
KKK

K

##
Lnh(A,Σ1, ϵ)

Lnh(A, ϵ)

99ssssss

%%KK
KKK

K
Lnh((Σ1 ∪Σ2)

−1A, ϵ)

99ssssss

%%KK
KKK

K

Ln+1
h (A,Σ1, ϵ)

99ssssss

;;
Lnh((Σ2)

−1A, ϵ)

99ssssss

;;
Lnh(A,Σ2, ϵ)

with L∗ ≡ L∗
h. Similarly for ϵ-quadratic L-theory. �

Proposition 25.24 18 Let Σ, Σ̃ be involution-invariant sets of square matri-
ces with entries in a ring with involution A, such that the localizations Σ−1A,
Σ̃−1A are defined, with the natural maps A−−→Σ−1A, A−−→Σ̃−1A injections
and Σ̃ ⊆ Σ. The symmetric L-theory localization exact sequences for (A,Σ),

(A, Σ̃) are related by a commutative braid of exact sequences

Ln(A, ϵ)

%%JJ
JJJ

J

##
Ln(Σ−1A, ϵ)

%%JJ
JJJ

JJ

##
Lnh(A,Σ, Σ̃, ϵ)

Lnh(Σ̃
−1A, ϵ)

99tttttt

%%JJ
JJJ

J
Lnh(A,Σ, ϵ)

99tttttt

%%JJ
JJJ

J

Ln+1(A,Σ, Σ̃, ϵ)

99tttttt

<<
Ln(A, Σ̃, ϵ)

99tttttt

<<
Ln−1(A, ϵ)

with L∗ ≡ L∗
h and Ln(A,Σ, Σ̃, ϵ) the cobordism group of f.g. free (n − 1)-

dimensional ϵ-symmetric complexes over A which are Σ̃−1A-Poincaré and
Σ−1A-contractible. Similarly for ϵ-quadratic L-theory. �
Proposition 25.25 Let A be a ring with involution and let Σ be an invol-
ution-invariant set of square matrices with entries in A such that the natural
map F : A−−→Σ−1A is injective (as in 25.4), and also such that the algebraic
K-theory exact sequence

0 −−→ Wh1(A)
i
−−→ Wh1(Σ

−1A)
∂
−−→ Wh1(A,Σ) −−→ 0

is split exact, with morphisms

18The ϵ-symmetric cases of Propositions 25.24 and 25.25 require the additional
hypothesis TorAi (Σ

−1A,Σ−1A) = 0 for i ≥ 1 in the ϵ-symmetric case.)
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∆ : Wh1(A,Σ) −−→ Wh1(Σ
−1A) , j : Wh1(A,Σ) −−→ Wh1(A)

such that

∂∆ = 1 : Wh1(A,Σ) −−→ Wh1(A,Σ) ,

∆− ∗∆∗ = ij : Wh1(A,Σ) −−→ Wh1(Σ
−1A) ,

j ∗ = − ∗ j : Wh1(A,Σ) −−→ Wh1(A) ,

and such that for any n-dimensional based f.g. free Σ−1A-contractible sym-
metric Poincaré complex (C, ϕ) over A

τ(C, ϕ) = jτΣ(C)

∈ im(j : Ĥn−1(Z2 ;Wh1(A,Σ))−−→Ĥn(Z2 ;Wh1(A))) .

(i) The L-groups L∗
U (A,Σ, ϵ) associated to any ∗-invariant subgroup U ⊆

Wh1(A,Σ) fit into the localization exact sequence

. . . −−→ LnjU (A, ϵ)
i
−−→ LnijU⊕∆U (Σ

−1A, ϵ)
∂
−−→ LnU (A,Σ, ϵ)

j
−−→ Ln−1

jU (A, ϵ) −−→ . . . .

(ii) The J-groups of 25.7 are given by

J0 = {0} , J1 = Wh1(A)

and
L∗
h(A,Σ, ϵ) = L∗

p(A,Σ, ϵ) .

The L-groups L∗
q(A,Σ, ϵ) (q = s, h) fit into localization exact sequences

. . . −−→ Lns (A, ϵ)
i
−−→ Lns (Σ

−1A, ϵ)
∂
−−→ Lns (A,Σ, ϵ)

j
−−→ Ln−1

s (A, ϵ) −−→ . . . ,

. . . −−→ Lnh(A, ϵ)
i
−−→ Lnh(Σ

−1A, ϵ)
∂
−−→ Lnh(A,Σ, ϵ)

j
−−→ Ln−1

h (A, ϵ) −−→ . . .

and are such that there is defined a commutative diagram
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�� �� �� ��
// Lns (A, ϵ) //

i
��

Lnh(A, ϵ)
//

i
��

Ĥn(Z2 ;Wh1(A)) //

i
��

Ln−1
s (A, ϵ) //

i
��

// Lns (Σ
−1A, ϵ) //

∂
��

Lnh(Σ
−1A, ϵ) //

∂
��

Ĥn(Z2 ;Wh1(Σ
−1A)) //

∂
��

Ln−1
s (Σ−1A, ϵ) //

∂
��

// Lns (A,Σ, ϵ) //

j
��

Lnh(A,Σ, ϵ)
//

j
��

Ĥn(Z2 ;Wh1(A,Σ)) //

j
��

Ln−1
s (A,Σ, ϵ) //

j
��

// Ln−1
s (A, ϵ) //

��

Ln−1
h (A, ϵ) //

��

Ĥn−1(Z2 ;Wh1(A)) //

��

Ln−2
s (A, ϵ) //

��

with exact rows and columns.
Similarly for the ϵ-quadratic L-groups. �

By analogy with the localization-completion excision property of K-
theory :

Proposition 25.26 (Ranicki [237, 3.7.3])
Let A be a ring with involution, and let S ⊂ A be an involution-invariant
multiplicative subset. The localization S−1A and completion ÂS fit into a
cartesian square of rings with involution

A //

��

S−1A

��
ÂS // Ŝ−1ÂS

The inclusion A−−→Â induces excision isomorphisms in the relative ϵ-symm-
etric L-groups

L∗
p(A,S, ϵ)

∼= L∗
p(Â, Ŝ, ϵ)

and a Mayer–Vietoris exact sequence in the absolute ϵ-symmetric L-groups

. . . −−→ LnI (A, ϵ) −−→ Lnh(S
−1A, ϵ)⊕ Ln

Î
(ÂS , ϵ) −−→ Lnh(Ŝ

−1ÂS , ϵ)

−−→ Ln−1
I (A, ϵ) −−→ . . .

with
I = ker(K̃0(A)−−→K̃0(S

−1A)) ⊆ K̃0(A) ,

Î = ker(K̃0(ÂS)−−→K̃0(Ŝ
−1ÂS)) ⊆ K̃0(ÂS) .
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Similarly for ϵ-quadratic L-theory.
Proof As for the K-theory case in 4.17, noting that A−−→ÂS induces an
isomorphism of exact categories with involution

H (A,S) ∼= H (ÂS , Ŝ) .

The condition

δ = 0 : Ĥ0(Z2; Ŝ
−1ÂS/ÂS , ϵ) −−→ Ĥ1(Z2;A, ϵ)

required for the ϵ-symmetric case in [228, 3.7.3] is actually redundant, since

Q∗(D,−ϵ) ∼= Q∗(D̂,−ϵ) for any S−1A-contractible finite f.g. projective A-
module chain complex D by the exact sequence of Vogel [298, 2.5] (quoted in
25.8 above). �
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An asymmetric complex (C, λ) is a chain complex with a chain map λ :
Cn−∗−−→C. The complex is Poincaré if λ is a chain equivalence. In Chap.
26 we shall develop asymmetric L-theory, in preparation for the applications
to topology in subsequent chapters. See Chap. 39 for the computation of the
asymmetric L-groups of a field F .

There are two distinct situations in topology where asymmetric complexes
arise :

(a) A knot in a boundary. Given an n-dimensional manifold with bound-
ary (M,∂M) and a codimension 2 submanifold Kn−3 ⊂ ∂M and
a Seifert surface Jn−2 ⊂ ∂M , there is defined in Chap. 27 an n-
dimensional asymmetric complex (C(M,J), λ). This construction
generalizes the Seifert form of an (n − 3)-knot k : Sn−3 ⊂ Sn−1

– the special case (M,∂M) = (Dn, Sn−1), K = Sn−3.

(b) A twisted double (e.g. an open book) boundary. Given an n-dimen-
sional manifold with boundary (M,∂M) and a codimension 1 sub-
manifold Pn−2 ⊂ ∂M such that ∂M = Q ∪h Q is a twisted dou-
ble with h : P = ∂Q−−→∂Q, there is defined in Chap. 28 an n-
dimensional asymmetric Poincaré complex

(C(i0 − i1 : C(Q)−−→C(M,P )), λ) ,

with i0, i1 : Q−−→M the two inclusions. This construction generalizes
the nonsingular Seifert form of a fibred (n−3)-knot k : Sn−3 ⊂ Sn−1

– the special case (M,∂M) = (Dn, Sn−1), Q = J × I, h = g ∪ 1 :
∂Q = J∪∂J J−−→∂Q with g : J−−→J the monodromy automorphism
of a Seifert surface Jn−2 ⊂ Sn−3.

The asymmetric complex construction (a) will be used in Chap. 27 to
express the obstruction groups of Chap. 22 for surgery on submanifolds of
codimension 2 in the framed case ξ = ϵ2 as asymmetric L-groups. The appli-
cations to knot theory will be considered in Chap. 33.

The asymmetric Poincaré complex construction (b) will be used in Chaps.
28, 29, 30 to express the twisted double and open book bordism groups as
asymmetric L-groups, and to describe the relationship with the automor-
phism bordism groups.
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Terminology 26.1 Given a ring with involution A let

F : A[z, z−1] −−→ Λ (z = z−1)

be a locally epic morphism of rings with involution, and let Σ be the set of
Λ-invertible matrices in A. �

As in 20.20 let ΦF be the commutative square of rings with involution

A[z, z−1] //

��

A[z, z−1]

��

ΦF

A[z, z−1] // Λ

so that the relative quadratic Γ -groups Γ∗(ΦF, ϵ) fit into an exact sequence

. . . −−→ Ln(A[z, z
−1], ϵ) −−→ Γn(F, ϵ) −−→ Γn(ΦF, ϵ)

−−→ Ln−1(A[z, z
−1], ϵ) −−→ . . .

with ϵ ∈ A[z, z−1] a central unit such that ϵ = ϵ−1. By 20.21 Γn(ΦF, ϵ) is the
cobordism group of (n− 1)-dimensional ϵ-quadratic Λ-contractible Poincaré
complexes over A[z, z−1].

The framed codimension 2 surgery obstruction groups are the algebraic
Γ -groups Γ∗(F, ϵ), Γ∗(ΦF, ϵ), for appropriate F, ϵ. The factorization

F : A[z, z−1] −−→ Σ−1A[z, z−1] −−→ Λ

has the universal property that a finite f.g. free A[z, z−1]-module chain com-
plex C is Λ-contractible if and only if it is Σ−1A[z, z−1]-contractible (9.15).
It will be the case in the applications that

A[z, z−1] −−→ Σ−1A[z, z−1]

is an injection, so that the algebraic Γ -groups are the L-groups of the local-
ization

Γ∗(F, ϵ) = Γ∗(A[z, z
−1]−−→Σ−1A[z, z−1], ϵ)

= L∗(Σ
−1A[z, z−1], ϵ)

(where L∗ = Lh∗) and the L-groups of the localization fit into the L-theory
exact sequence of Chap. 25

. . . −−→ Ln(A[z, z
−1], ϵ) −−→ Ln(Σ

−1A[z, z−1], ϵ)

−−→ Ln(A[z, z
−1], Σ, ϵ) −−→ Ln−1(A[z, z

−1], ϵ) −−→ . . .

and
Γ∗(ΦF, ϵ) = L∗(A[z, z

−1], Σ, ϵ) .
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In the original application of the ϵ-quadratic Γ -groups to codimension
2 surgery due to Cappell and Shaneson [40] ϵ = 1, as in the original ap-
plication of the algebraic L-groups to ordinary surgery due to Wall [304].
As recalled in Chap. 22, the codimension 2 surgery groups LS∗ of [304]
and their Γ -analogues were expressed in Ranicki [237, 7.8] in terms of the
(−z)-quadratic Γ -groups Γ∗(F,−z), Γ∗(ΦF,−z), making use of the work of
Matsumoto [183] and Freedman [84]. The main results of Chap. 26 express
Γ∗(F,−z), Γ∗(ΦF,−z) in terms of asymmetric complexes over A, using an al-
gebraic transversality analogue of the relationship between knots and Seifert
surfaces.

Definition 26.2 Let ϵ ∈ A[z, z−1] be a central unit such that ϵ = ϵ−1.
(i) An n-dimensional asymmetric complex over A (C, λ) is an n-dimensional
f.g. projective A-module chain complex

C : . . . −−→ 0 −−→ Cn −−→ Cn−1 −−→ . . . −−→ C −−→ C0

together with a chain map λ : Cn−∗−−→C. The asymmetric complex (C, λ)
is (Λ, ϵ)-Poincaré if the A[z, z−1]-module chain map

(1 + Tϵ)λ : Cn−∗[z, z−1] −−→ C[z, z−1]

is a Λ-equivalence, and for based f.g. free C the torsion is

τ(C, λ) = τ((1 + Tϵ)λ : Λ⊗A[z,z−1] C
n−∗−−→Λ⊗A[z,z−1] C) ∈Wh1(Λ) .

(ii) An (n + 1)-dimensional asymmetric pair over A (f : C−−→D, (δλ, λ)) is
a chain map f : C−−→D of f.g. projective A-module chain complexes with C
n-dimensional and D (n+ 1)-dimensional, together with a chain homotopy

δλ : fλf∗ ≃ 0 : Dn−∗ −−→ D .

The asymmetric pair is (Λ, ϵ)-Poincaré if the A[z, z−1]-module chain maps

(1 + Tϵ)

(
δλ

λf∗

)
: Dn+1−∗[z, z−1] −−→ C(f)[z, z−1] ,

(1 + Tϵ) ( δλ fλ ) : C(f)n+1−∗[z, z−1] −−→ D[z, z−1]

are Λ-equivalences, in which case (C, λ) is an n-dimensional asymmetric
(Λ, ϵ)-Poincaré complex called the boundary of the pair.
(iii) (Λ, ϵ)-asymmetric Poincaré complexes (C, λ), (C ′, λ′) over A are cobor-
dant if (C, λ) ⊕ (C ′,−λ′) is the boundary of a (Λ, ϵ)-asymmetric Poincaré
pair.

(iv) The


projective

free

simple

(Λ, ϵ)-asymmetric L-group


LAsynp (A,Λ, ϵ)

LAsynh(A,Λ, ϵ)

LAsyns (A,Λ, ϵ)

is the

cobordism group of n-dimensional (Λ, ϵ)-asymmetric Poincaré complexes
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(C, λ) over A with C


f.g. projective

f.g. free

based f.g. free and τ(C, λ) = 0 .
�

It will be proved in 26.11 that

Ln(A[z, z
−1], z) = Ĥn+1(Z2 ; K̃0(A)) ,

Γ qn(F, z) = Lqn(Σ
−1A[z, z−1], z) = LAsynq (A,Λ, z) (q = s, h) ,

Γhn (ΦF, z) = Lhn(A[z, z
−1], Σ, z) = LAsynp (A,Λ, z) .

The 0-dimensional asymmetric complexes are asymmetric forms :

Definition 26.3 (i) An asymmetric form over A (L, λ) is a f.g. projective A-
module L together with an A-module morphism λ : L−−→L∗, corresponding
to a sesquilinear pairing

λ : L× L −−→ A ; (x, y) −−→ λ(x, y) = λ(x)(y)

which is additive in each variable, and such that

λ(ax, by) = bλ(x, y)a ∈ A (a, b ∈ A, x, y ∈ L) .

(ii) An asymmetric form (L, λ) over A is (Λ, ϵ)-nonsingular if the A[z, z−1]-
module morphism

λ+ ϵλ∗ : L[z, z−1] −−→ L∗[z, z−1]

is a Λ-isomorphism.
(iii) A lagrangian of a (Λ, ϵ)-nonsingular asymmetric form (L, λ) over A is a
submodule K ⊂ L such that :

(a) λ(x, y) = 0 ∈ A for all x, y ∈ K,
(b) Λ⊗A[z,z−1]K[z, z−1] is a f.g. projective lagrangian of the nonsingular

ϵ-symmetric form (Λ⊗A[z,z−1] L[z, z
−1], λ+ ϵλ∗) over Λ.

A form is metabolic if it has a lagrangian.
(iv) The (Λ, ϵ)-asymmetric form Witt group of A is the group of equivalence
classes of (Λ, ϵ)-nonsingular asymmetric form over A, with (L, λ) ∼ (L′, λ′)
if there exists an isomorphism

(L, λ)⊕ (M,µ) ∼= (L′, λ′)⊕ (M ′, µ′)

for some metabolic forms (M,µ), (M ′, µ′). �
Asymmetric forms (L, λ) which are nonsingular in the sense that λ :

L−−→L∗ is an A-module isomorphism will appear in Chap. 28.
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Proposition 26.4 The 0-dimensional (Λ, ϵ)-asymmetric L-group of A
LAsy0q(A,Λ, ϵ) (q = p, h, s) is isomorphic to the Witt group of (Λ, ϵ)-non-
singular asymmetric forms (L, λ) over A with L f.g. projective (resp. f.g.
free, resp. based f.g. free with τ = 0) for q = p (resp. h, resp. s). �
Example 26.5 (i) Let Ω be the set of Fredholm matrices in A[z, z−1] (13.3),
and let

F : A[z, z−1] −−→ Λ = Ω−1A[z, z−1]

be the natural injection. An n-dimensional asymmetric complex (C, λ) over
A is (Λ, ϵ)-Poincaré if and only if the A[z, z−1]-module chain complex

C((1 + Tϵ)λ : Cn−∗[z, z−1]−−→C[z, z−1])

is A-finitely dominated. See Chap. 28 below for a more detailed account of
the (Ω, ϵ)-asymmetric L-groups LAsy∗(A,Ω, ϵ), which will be applied to the
bordism groups of automorphisms of manifolds and to open book decompo-
sitions in Chap. 29 below.
(ii) Let

F : A[z, z−1] −−→ Λ = A

be the natural projection, so that the localization Π−1A[z, z−1] inverting
the set Π of A-invertible matrices in A[z, z−1] is defined as in 10.18. An n-
dimensional asymmetric complex (C, λ) over A is (Π, z)-Poincaré if and only
if the A-module chain map (1 + T )λ : Cn−∗−−→C is a chain equivalence.
See Chap. 33 for a more detailed account of the (Π, ϵ)-asymmetric L-groups
LAsy∗(A,Π, ϵ), and the applications to knot theory. �
Proposition 26.6 (i) The projective and free (Λ, ϵ)-asymmetric L-groups are
related by an exact sequence

. . . −−→ Ĥn+1(Z2 ; K̃0(A)) −−→ LAsynh(A,Λ, ϵ) −−→ LAsynp (A,Λ, ϵ)

−−→ Ĥn(Z2 ; K̃0(A)) −−→ LAsyn−1
h (A,Λ, ϵ) −−→ . . . .

(ii) The free and simple (Λ, ϵ)-asymmetric L-groups are related by an exact
sequence

. . . −−→ Ĥn+1(Z2 ;Wh1(Λ)) −−→ LAsyns (A,Λ, ϵ) −−→ LAsynh(A,Λ, ϵ)

−−→ Ĥn(Z2 ;Wh1(Λ)) −−→ LAsyn−1
s (A,Λ, ϵ) −−→ . . . .

Proof As for the symmetric L-groups in Ranicki [235, Chap. 9]. �
Definition 26.7 (i) For any A-modules M,N there is defined a natural
injection of Z[z, z−1]-modules

HomA(M,N)[z, z−1] −−→ HomA[z,z−1](M [z, z−1], N [z, z−1]) ;

∞∑
j=−∞

zjfj −−→
( ∞∑

k=−∞

zkxk −−→
∞∑

j=−∞

∞∑
k=−∞

zj+kfj(xk)

)
.
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(ii) An A[z, z−1]-module morphism f :M [z, z−1]−−→N [z, z−1] is positive if it
is in the image of the natural Z[z]-module morphism

HomA(M,N)[z] −−→ HomA[z,z−1](M [z, z−1], N [z, z−1]) ;

∞∑
j=0

zjfj −−→
( ∞∑

k=−∞

zkxk −−→
∞∑
j=0

∞∑
k=−∞

zj+kfj(xk)

)
.

Let

Hom+
A[z,z−1](M [z, z−1], N [z, z−1])

= im(HomA(M,N)[z]) ⊆ HomA[z,z−1](M [z, z−1], N [z, z−1])

be the Z[z]-module of positive A[z, z−1]-module morphisms f :M [z, z−1]−−→
N [z, z−1].
(iii) An A[z, z−1]-module morphism f : M [z, z−1]−−→N [z, z−1] is negative if
it is in the image of the natural Z[z−1]-module injection

z−1HomA(M,N)[z−1] −−→ HomA[z,z−1](M [z, z−1], N [z, z−1]) ;

−1∑
j=−∞

zjfj −−→
( ∞∑

k=−∞

zkxk −−→
−1∑

j=−∞

∞∑
k=−∞

zj+kfj(xk)

)
.

Let

Hom−
A[z,z−1](M [z, z−1], N [z, z−1])

= im(z−1HomA(M,N)[z−1]) ⊆ HomA[z,z−1](M [z, z−1], N [z, z−1])

be the Z[z−1]-module of negative A[z, z−1]-module morphisms f : M [z, z−1]
−−→N [z, z−1]. �
Proposition 26.8 If M is a f.g. projective A-module then the morphism in
26.7 (i) is an isomorphism, allowing the identifications

HomA[z,z−1](M [z, z−1], N [z, z−1]) = HomA(M,N)[z, z−1] ,

Hom+
A[z,z−1](M [z, z−1], N [z, z−1]) = HomA(M,N)[z] ,

Hom−
A[z,z−1](M [z, z−1], N [z, z−1]) = z−1HomA(M,N)[z−1] ,

HomA[z,z−1](M [z, z−1], N [z, z−1])

= Hom+
A[z,z−1](M [z, z−1], N [z, z−1])⊕Hom−

A[z,z−1](M [z, z−1], N [z, z−1]) .

Every A[z, z−1]-module morphism f : M [z, z−1]−−→N [z, z−1] has a unique
expression as a Laurent polynomial

f =

∞∑
j=−∞

zjfj (fj ∈ HomA(M,N))
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and hence a unique decomposition as a sum of a positive and a negative
morphism

f = f+ + f− : M [z, z−1] −−→ N [z, z−1]

with

f+ =

∞∑
j=0

zjfj , f− =

−1∑
j=−∞

zjfj . �

Definition 26.9 The reduced asymmetric L-groups LÃsy
∗
h(A,Λ, ϵ) are the

relative groups in the exact sequence

. . . −−→ Lnh(A, ϵ) −−→ LAsynh(A,Λ, ϵ) −−→ LÃsy
n

h(A,Λ, ϵ)

−−→ Ln−1
h (A, ϵ) −−→ . . . . �

It is convenient (although potentially confusing) to have two terminologies
for the asymmetric L-groups :

Terminology 26.10 For any involution-invariant set Σ0 of square matrices
in A[z, z−1] such that the natural morphism of rings with involution

A[z, z−1] −−→ Λ0 = (Σ0)
−1A[z, z−1]

is injective write the asymmetric L-groups of (A,Λ0, ϵ) as

LAsy∗q(A,Λ0, ϵ) = LAsy∗q(A,Σ0, ϵ) (q = p, h, s) ,

calling (Λ0, ϵ)-Poincaré asymmetric complexes (resp. L-groups) the (Σ0, ϵ)-
Poincaré asymmetric complexes (resp. L-groups). Similarly in the reduced
case

LÃsy
∗
q(A,Λ0, ϵ) = LÃsy

∗
q(A,Σ0, ϵ) (q = p, h, s) . �

In particular,

LAsy∗q(A,Λ, ϵ) = LAsy∗q(A,Σ, ϵ) ,

LÃsy
∗
q(A,Λ, ϵ) = LÃsy

∗
q(A,Σ, ϵ) .

Proposition 26.11 Let F : A[z, z−1]−−→Λ be a locally epic morphism of rings
with involution, such that the localization map A[z, z−1]−−→Σ−1A[z, z−1] in-
verting the set Σ of Λ-invertible matrices in A[z, z−1] is injective.
Given a central unit ϵ ∈ A such that ϵ = ϵ−1 ∈ A write

ϵ1 = ϵz±1 ∈ A1 = A[z, z−1] .

(i) There are defined isomorphisms of exact sequences



298 26. Asymmetric L-theory

. . . // Ĥn+1 //

∼=
��

LAsynh(A,Λ, ϵ1) //

∼=
��

LAsynp (A,Λ, ϵ1) //

∼=
��

Ĥn //

∼=
��

. . .

. . . // Lhn(A1, ϵ1) // Γhn (F, ϵ1) //

∼=
��

Γhn (ΦF, ϵ1) //

∼=
��

Lhn−1(A1, ϵ1) // . . .

. . . // Lhn(A1, ϵ1) //

∼= 1 + Tϵ1
��

Lhn(Σ
−1A1, ϵ1)

∂ //

∼= 1 + Tϵ1
��

Lhn(A1, Σ, ϵ1) //

∼= 1 + Tϵ1
��

Lhn−1(A1, ϵ1) //

∼= 1 + Tϵ1
��

. . .

. . . // Lnh(A1, ϵ1) // Lnh(Σ
−1A1, ϵ1)

∂ // Lnh(A1, Σ, ϵ1) // Ln−1
h (A1, ϵ1) // . . .

with Ĥn = Ĥn(Z2 ; K̃0(A)), including the isomorphisms

LAsynh(A,Λ, ϵ1) −−→ Γhn (F, ϵ1) ; (C, λ) −−→ (C[z, z−1], λ) ,

Γhn (F, ϵ1) −−→ Lnh(Σ
−1A1, ϵ1) ; (C,ψ) −−→ (Σ−1C, (1 + Tϵ1)ψ) ,

LAsynp (A,Λ, ϵ1) −−→ Lnh(A1, Λ, ϵ1) ; (C, λ) −−→ ∂(C[z, z−1], (1 + Tϵ1)λ) .

Thus up to isomorphism

Lhn(A1, ϵ1) = Lnh(A1, ϵ1) = Ĥn+1(Z2 ; K̃0(A)) ,

Γhn (F, ϵ1) = Lhn(Σ
−1A1, ϵ1) = Lnh(Σ

−1A1, ϵ1) = LAsynh(A,Λ, ϵ1) ,

Γhn (ΦF, ϵ1) = Lhn(A1, Λ, ϵ1) = Lnh(A1, Λ, ϵ1) = LAsynp (A,Λ, ϵ1) .

The simple asymmetric L-groups are such that there are defined isomorphisms

LAsyns (A,Λ, ϵ1) −−→ Γ sn(F, ϵ1) ; (C, λ) −−→ (C[z, z−1], λ) .

(ii) The various asymmetric L-groups are 4-periodic

LAsynq (A,Λ, ϵ1) = LAsyn+2
q (A,Λ,−ϵ1) = LAsyn+4

q (A,Λ, ϵ1) (q = p, h, s) .

(iii) If Σ = Σ1 ∪ Σ2 for involution-invariant sets of square matrices Σ1, Σ2

in A which are coprime (9.16) then for any central unit η ∈ A[z, z−1] such
that η = η−1 the projective asymmetric L-groups split as

LAsynp (A,Λ, η) = LAsynp (A,Σ, η)

= LAsynp (A,Σ1, η)⊕ LAsynp (A,Σ2, η) .

For η = ϵ1 the free asymmetric L-groups fit into a commutative braid of exact
sequences
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LAsyn+1
p (A,Σ2, ϵ1)

%%LL
LLL

L

##
LAsynh(A,Σ1, ϵ1)

%%LL
LLL

LL

##
LAsynp (A,Σ1, ϵ1)

Ĥn+1(Z2; K̃0(A))

99rrrrrr

%%LL
LLL

LL
LAsynh(A,Σ, ϵ1)

99rrrrrr

%%LL
LLL

LL

LAsyn+1
p (A,Σ1, ϵ1)

99rrrrrr

;;
LAsynh(A,Σ2, ϵ1)

99rrrrrrr

::
LAsynp (A,Σ2, ϵ1)

(iv) If 1− z ∈ Σ there is defined an isomorphism

Lnh(Σ
−1A1, ϵ)

≃−−→ Lnh(Σ
−1A1,−ϵ1) ; Σ−1(E, θ) −−→ Σ−1(E, (1− z∓1)θ) ,

and the localization exact sequence for the ϵ-symmetric L-theory of Σ−1A1

is such that there is defined an isomorphism

Lnh(A1, ϵ) //

∼=
��

Lnh(Σ
−1A1, ϵ)

∂ //

∼=
��

Lnh(A1, Σ, ϵ)

∼=
��

Lnh(A, ϵ)⊕ Ln−1
p (A, ϵ) // LAsynh(A,Σ, ϵ) // LÃsy

n

h(A,Σ, ϵ)⊕ Ln−2
p (A, ϵ)

with

Lnh(A, ϵ)⊕ Ln−1
p (A, ϵ) −−→ LAsynh(A,Σ, ϵ) ; ((C, ϕ), (C ′, ϕ′)) −−→ (C, ϕ0) ,

so that

Lnh(Σ
−1A1, ϵ) = Lnh(Σ

−1A1,−ϵ1) = LAsynh(A,Λ,−ϵ1)
= LAsynh(A,Λ, ϵ) = LAsynh(A,Σ, ϵ) .

Similarly for ϵ-quadratic L-theory, with an isomorphism

Lhn(A1, ϵ) //

∼=
��

Lhn(Σ
−1A1, ϵ)

∂ //

∼=
��

Lhn(A1, Σ, ϵ)

∼=
��

Lhn(A, ϵ)⊕ L
p
n−1(A, ϵ)

// LAsynh(A,Λ,−ϵ1) // LÃsy
n

h(A,Λ,−ϵ1)⊕ L
p
n−2(A, ϵ)

(v) If Σ is coprime to 1− z there are defined isomorphisms

Lnh(A1, Σ, ϵ1)
≃−−→ Lnh(A1, Σ,−ϵ) ; (E, θ) −−→ (E, (1− z∓1)θ)

and
Lnh(A1, Σ,−ϵ) = Lnh(A1, Σ, ϵ1)

= LAsynp (A,Λ, ϵ1) = LAsynp (A,Σ, ϵ1) .
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Let
A2 = ((1− z)∞)−1A1 = A[z, z−1, (1− z)−1] .

The commutative braid of exact sequences given by 25.24

Ln+1
h (A1, (1− z)∞, ϵ1)

&&MM
MMM

MM

$$
Lnh(Σ

−1A1, ϵ1)

&&MM
MMM

M

$$
Lnh(A1, Σ, ϵ1)

Lnh(A1, ϵ1)

88qqqqqqq

&&MM
MMM

MM
Lnh(Σ

−1A2, ϵ1)

88qqqqqq

&&MM
MMM

MM

Ln+1
h (A1, Σ, ϵ1)

88qqqqqq

::
Lnh(A2, ϵ1)

88qqqqqqq

::
Lnh(A1, (1− z)∞, ϵ1)

is isomorphic to

LAsyn+1
p (A1, (1− z)∞, ϵ1)

%%KK
KKK

##
LAsynh(A,Σ, ϵ1)

%%KK
KKK

KK

##
LAsynp (A1, Σ, ϵ1)

Ĥn+1(Z2; K̃0(A))

99ssssss

%%JJ
JJJ

JJ
LAsynh(A,Σ(1− z)∞, ϵ1)

99ssssss

%%JJ
JJJ

JJJ
J

LAsyn+1
p (A1, Σ, ϵ1)

99ttttttt

::
LAsyn+1

h (A, (1− z)∞, ϵ1)

99ttttttt

88
LAsynp (A, (1− z)∞, ϵ1)

If A is such that K̃0(A) = 0 then

Lnh(Σ
−1A2, ϵ1) = Lnh(Σ

−1A2,−ϵ)
= Lnh(A2,−ϵ)⊕ Lnh(A1, Σ,−ϵ)
= LAsynh(A, (1− z)∞, ϵ1)⊕ LAsynp (A,Σ, ϵ1) .

Proof For definiteness, take ϵ1 = ϵz−1.
(i)+(ii) Let E be a finite based f.g. free A[z, z−1]-module chain complex. By
7.3 there exists a Mayer–Vietoris presentation (E+, E−). In particular, there
exists a finite based f.g. free A[z]-module subcomplex E+ ⊂ E such that

A[z, z−1]⊗A[z] E
+ = E .

Let Fr ⊂ E+
r be the A-submodule generated by the A[z]-module basis, so

that
E+
r = Fr[z] , Er = Fr[z, z

−1] .

Every element
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θ ∈ (E ⊗A[z,z−1] E)n = HomA[z,z−1](E
∗, E)n

is represented by A[z, z−1]-module morphisms

θ : Er = F r[z, z−1] −−→ En−r = Fn−r[z, z
−1] (r ∈ Z) .

Let (E ⊗A[z,z−1] E)+ (resp. (E ⊗A[z,z−1] E)−) be the Z-module subcomplex
of E⊗A[z,z−1]E consisting of the elements θ for which these A[z, z−1]-module
morphisms are positive (resp. negative), so that by 26.8

E ⊗A[z,z−1] E = (E ⊗A[z,z−1] E)+ ⊕ (E ⊗A[z,z−1] E)− .

In particular, for E = A[z, z−1]

A[z, z−1] = A[z, z−1]+ ⊕A[z, z−1]−

with A[z, z−1]+ = A[z], A[z, z−1]− = z−1A[z−1]. Since ϵ1 = ϵz−1 the ϵ1-
transposition involution

Tϵ1 : A[z, z−1] −−→ A[z, z−1] ; a =
∞∑

j=−∞
ajz

j −−→ ϵ1a =
∞∑

j=−∞
ϵa−j−1z

j

is such that
Tϵ1(A[z, z

−1]±) = A[z, z−1]∓

and (A[z, z−1], Tϵ1) is a free Z[Z2]-module. Similarly, the ϵ1-transposition
involution

Tϵ1 : E ⊗A[z,z−1] E −−→ E ⊗A[z,z−1] E

is such that
Tϵ1(E ⊗A[z,z−1] E)± = (E ⊗A[z,z−1] E)∓ .

Thus (E ⊗A[z,z−1] E, Tϵ1) is a free Z[Z2]-module chain complex and

Qn(E, ϵ1) = Qn(E, ϵ1) = Hn((E ⊗A[z,z−1] E)+) .

More precisely, a positive chain map θ : En−∗−−→E determines an n-dimen-
sional ϵ1-quadratic structure ψ ∈ (W%E)n with

ψs =

{
θ if s = 0

0 if s ≥ 1

and the Z-module morphisms

Hn((E ⊗A[z,z−1] E)+) −−→ Qn(E, ϵ1) ; θ −−→ ψ ,

1 + Tϵ1 : Qn(E, ϵ1) −−→ Qn(E, ϵ1)

are isomorphisms. Similarly for L-groups.
Every element of Lnh(Σ

−1A1, ϵ1) is represented by Σ−1(E, (1 + Tϵ1)θ) for
some θ ∈ Hn((E ⊗A[z,z−1 E)+) such that the A[z, z−1]-module chain map
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1+Tϵ1 : En−∗−−→E is a Σ−1A[z, z−1]-equivalence. It will be proved that the
morphism

LAsynh(A,Λ, ϵ1) −−→ Lnh(Σ
−1A1, ϵ1) ; (B, λ) −−→ (Σ−1B[z, z−1], (1 + Tϵ1)λ)

is an isomorphism by constructing an explicit inverse, using the algebraic
transversality technique of Ranicki [244, Chap. 16], as follows. Given finite
based f.g. free A-module chain complexes C,D and A-module chain maps
f, g : C−−→D define the A-module chain map

Γf,g = f ⊗ f − g ⊗ g : C ⊗A C −−→ D ⊗A D ,

the finite based f.g. free A[z, z−1]-module chain complex

E = C(f − zg : C[z, z−1]−−→D[z, z−1]) ,

and the union Z-module chain map

U : C(Γf,g) −−→ (E ⊗A[z,z−1] E)+ ; (δµ, µ) −−→ θ

with

θ =

(
δµ zgµ

µf∗ 0

)
:

En−r = (Dn−r ⊕ Cn−r−1)[z, z−1] −−→ Er = (Dr ⊕ Cr−1)[z, z
−1]

((δµ, µ) ∈ C(Γf,g)n) .

Working as in [244, Chap. 16] it can be shown that every n-dimensional ϵ1-
symmetric complex over A[z, z−1] is homotopy equivalent to the union (E, θ)
of some n-dimensional asymmetric pair over A

((f g) : C ⊕ C−−→D, (δµ, µ⊕−µ))

with
θ = U(δµ, µ) ∈ Qn(E, ϵ1) = Hn((E ⊗A[z,z−1] E)+) .

Define the n-dimensional asymmetric complex over A

(D′, δµ′) = (C(fµ∗ − gµ : Cn−∗−1−−→D),

(
δµ f

g∗ 0

)
) .

Use the (n + 1)-dimensional ϵ1-symmetric pair (p : E−−→SC[z, z−1], (0, θ))
(p = projection) over A[z, z−1] to perform algebraic surgery on (E, θ), with
trace an (n + 1)-dimensional ϵ1-symmetric Σ−1A[z, z−1]-Poincaré pair over
A[z, z−1] (E ⊕ E′−−→δE, (0, θ ⊕−θ′)) with δE = C(Cn−∗[z, z−1]−−→E) and

(E′, θ′) = (D′[z, z−1], (1 + Tϵ1)δµ
′) .

The function
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Lnh(Σ
−1A1, ϵ1) −−→ LAsynh(A,Σ, ϵ1) ;

Σ−1(E, θ) = Σ−1(E′, θ′) −−→ (D′, δµ′)

is the inverse isomorphism.
In particular, taking Σ = {1} there are defined isomorphisms

LAsynh(A, {1}, ϵ1) −−→ Lnh(A1, ϵ1) ; (B, λ) −−→ (B[z, z−1], (1 + Tϵ1)λ) .

For any n-dimensional f.g. free asymmetric ({1}, ϵ1)-Poincaré complex (B, λ)
over A the A[z, z−1]-module chain map

(1 + Tϵ1)λ : Bn−∗[z, z−1] −−→ B[z, z−1]

is a chain equivalence, and the A-module chain complexes defined by

P = C((1 + Tϵ1)λ : zBn−∗[z]−−→B[z]) ,

Q = C((1 + Tϵ1)λ : Bn−∗[z−1]−−→B[z−1])

are such that

λ ≃
(
0 0

µ 0

)
: Bn−∗ ≃ Pn−∗ ⊕Qn−∗ −−→ B ≃ P ⊕Q

for a chain equivalence µ : Pn−∗−−→Q. The morphisms

LAsynh(A, {1}, ϵ1) −−→ Ĥn+1(Z2 ; K̃0(A)) ; (B, λ) −−→ [P ] ,

Ĥn+1(Z2 ; K̃0(A)) −−→ LAsynh(A, {1}, ϵ1) ; [P ] −−→ (P ⊕ Pn−∗,

(
0 0

1 0

)
)

are thus inverse isomorphisms, allowing the identification

LAsynh(A, {1}, ϵ1) = Lnh(A1, ϵ1) = Ĥn+1(Z2 ; K̃0(A)) .

The morphisms

LAsynp (A,Σ, ϵ1) −−→ Lnh(A1, Σ, ϵ1) ; (B, λ) −−→ ∂(B[z, z−1], (1 + Tϵ1)λ)

fit into a morphism of exact sequences

// Ĥn+1 //

∼=
��

LAsynh(A,Σ, ϵ1) //

∼=
��

LAsynp (A,Σ, ϵ1) //

��

Ĥn

∼=
��

//

// Lnh(A1, ϵ1) // Lnh(Σ
−1A1, ϵ1)

∂ // Lnh(A1, Σ, ϵ1) // Ln−1
h (A1, ϵ1) //

It now follows from the 5-lemma that there is also an identification

LAsynp (A,Σ, ϵ1) = Lnh(A1, Σ, ϵ1) .
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(iii) If C is a finite f.g. projective A-module chain complex which is Σ−1A1-
contractible then the induced (Σi)

−1A1-module chain complexes

C(i) = (Σi)
−1C[z, z−1] (i = 1, 2)

are such that the natural A1-module chain map

C[z, z−1] −−→ C(1)⊕ C(2)

is a chain equivalence. Thus C(1) (resp. C(2)) is A1-module chain equivalent
to a finite f.g. projective A1-module chain complex which is (Σ2)

−1A1- (resp.
(Σ1)

−1A1)-contractible, and

Qn(C[z, z−1], η) = Qn(C(1), η)⊕Qn(C(2), η)⊕Hn(C(1)⊗A1 C(2))

= Qn(C(1), η)⊕Qn(C(2), η) .

The commutative exact braid for η = ϵ1 is obtained by using (i) to express
the commutative exact braid of 25.24

Ln+1
h (A1, Σ2, ϵ1)

&&NN
NNN

NN

$$
Lnh((Σ1)

−1A1, ϵ1)

&&NN
NNN

NN

$$
Lnh(A1, Σ1, ϵ1)

Lnh(A1, ϵ1)

88ppppppp

&&NN
NNN

NN
Lnh((Σ1 ∪Σ2)

−1A1, ϵ1)

88ppppppp

&&NN
NNN

NN

Ln+1
h (A1, Σ1, ϵ1)

88pppppp

::
Lnh((Σ2)

−1A1, ϵ1)

88ppppppp

::
Lnh(A1, Σ2, ϵ1)

in terms of the asymmetric L-groups.
(iv) If 1− z ∈ Σ then

u = 1− z ∈ Σ−1A1

is a central unit such that

u = −z−1u , −ϵ1 =
u

u
. ϵ ∈ A1 .

(v)Σ is coprime to 1−z if and only if the augmentationA[z, z−1]−−→A; z−−→1
sends every matrix in Σ to an invertible matrix in A, in which case 1 − z :
E−−→E is an A[z, z−1]-module chain equivalence for every Σ−1A[z, z−1]-
contractible finite f.g. free A[z, z−1]-module chain complex E and the mor-
phisms

1− z : Qn(E, ϵ1) −−→ Qn(E,−ϵ) ; θ −−→ (1− z)θ
are isomorphisms. �
Remark 26.12 (i) The identifications of 26.11

Lhn(A[z, z
−1], z) = Ĥn+1(Z2 ; K̃0(A))



26. Asymmetric L-theory 305

are analogues of the identifications of the codimension 2 surgery obstruction
LN∗

LNn = Lsn(A[z, z
−1], z) = Ĥn+1(Z2 ; K̃1(A))

obtained geometrically for a group ring A = Z[π] by Wall [304, 13A.10] and
algebraically by Ranicki [237, Prop. 7.8.14] for any ring with involution A.
The other identifications of 26.11 are also motivated by codimension 2 surgery
obstruction theory, as described in Chap. 27 below.
(ii) Let Σ = Ω be the set of Fredholm matrices in A[z, z−1]. In particular,
1− z ∈ Ω, so that by 26.11 (iii)

Lnh(Ω
−1A[z, z−1]) = Lnh(Ω

−1A[z, z−1],−z) = LAsynh(A,Ω,−z) .

In Chap. 28 the asymmetric L-groups LAsynh(A,Ω,−z) will be shown to be
2-periodic in n, being the Witt group of nonsingular asymmetric forms over
A if n is even, and 0 if n is odd.
(iii) Let Σ = (1− z)∞, so that

Σ−1A[z, z−1] = A[z, z−1, (1− z)−1]

and by 26.11 (iii)

Lnh(A[z, z
−1, (1− z)−1], ϵ) = LAsynh(A,Σ,−ϵz)

for any central unit ϵ ∈ A with ϵ = ϵ−1 ∈ A. The algebraic L-theory of
A[z, z−1, (1− z)−1] will be studied in detail in Chap. 36, and the asymmetric
(Σ,−ϵz)-Poincaré L-groups LAsy∗h(A,Σ,−ϵz) will be identified there with
the ‘almost ϵ-symmetric’ L-groups of A. �
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27. Framed codimension 2 surgery

The algebraic results on asymmetric L-theory of Chap. 26 will now be ap-
plied to the codimension 2 surgery theory of Chap. 22 with trivial normal
bundle ξ = ϵ2. This will be used to describe the bordism of automorphisms
of manifolds in Chap. 28, the algebraic theory of open books in Chap. 29,
and high-dimensional knot cobordism in Chap. 33.

27A. Codimension 1 Seifert surfaces

In general, a knot k : Nn ⊂ Mn+2 need not be spanned by a codimension
1 Seifert surface. The following condition ensures the existence of such a
spanning surface.

Definition 27.1 Let (M,∂M) be an n-dimensional manifold with boundary.
A codimension 2 submanifold (N, ∂N) ⊂ (M,∂M) is homology framed if it is
ϵ2-characteristic in the sense of 22.2, that is if

[N ] = 0 ∈ Hn−2(M,∂M)

and there is given a particular identification

νN⊂M = ϵ2 : N −−→ BSO(2)

with an extension of the projection S(νN⊂M ) = N×S1−−→S1 to the canonical
projection on the exterior

(p, ∂+p) : (P, ∂+P ) = (cl.(M\N ×D2), cl.(∂M\∂N ×D2)) −−→ S1 ,

corresponding to a lift of

[N ] ∈ ker(Hn−2(N, ∂N)−−→Hn−2(M,∂M))

= im(Hn−1(M,N ×D2 ∪ ∂+P )−−→Hn−2(N, ∂N))

to an element

p ∈ Hn−1(M,N ×D2 ∪ ∂+P ) = Hn−1(P, ∂P ) = H1(P ) = [P, S1] . �
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Remark 27.2 The homology framing condition [N ] = 0 ∈ Hn−2(M,∂M)
is equivalent to the condition νN⊂M = ϵ2 if H2(M)−−→H2(N) is injective.
However, in general the two conditions are not equivalent. For example,

N = {pt.} ⊂M = S2

has νN⊂M = ϵ2, but it is not homology framed (and does not admit a Seifert
surface) – in fact, N ⊂ M is η-characteristic, with η : M−−→BSO(2) the
Hopf bundle, such that

[N ] = e(η) = 1 ∈ H0(M) = H2(M) = Z . �

Definition 27.3 Let (M,∂M) be an n-dimensional manifold with boundary,
and let (N, ∂N) ⊂ (M,∂M) be a homology framed codimension 2 submani-
fold with exterior (P, ∂+P ), so that

M = N ×D2 ∪N×S1 P , P = cl.(M\N ×D2) ,

∂M = ∂N ×D2 ∪∂N×S1 ∂+P , ∂+P = cl.(∂M\∂N ×D2) .
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∂+P ∂N ×D2 PN ×D2

N × S1
∂N × S1

∂M M

(i) The canonical infinite cyclic cover of the exterior (P, ∂+P ) is the infinite
cyclic cover obtained from the universal cover R of S1 by pullback along the
canonical projection (p, ∂+p) : (P, ∂+P )−−→S1

(P , ∂+P ) = (p, ∂+p)
∗R ,

which restricts to (N, ∂+N)× R over (N, ∂N)× S1 ⊆ (P, ∂+P ).
(ii) A codimension 1 Seifert surface (F, ∂+F ) for (N, ∂N) is a codimension 1
submanifold F ⊂ P such that

∂F = N ∪∂N ∂+F with ∂+F = F ∩ ∂+P ,

∂(∂+F ) = ∂N , νF⊂P = ϵ : F −−→ BO(1) ,

[F ] = p ∈ Hn−1(M,N ×D2 ∪ ∂+P ) ,

with ∂+F a codimension 1 Seifert surface for ∂N ⊂ ∂M .
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PF F × IN ×D2

F × {0}

F × {1}

M

(iii) A Seifert fundamental domain for the canonical infinite cyclic cover P
of P is the relative cobordism (PF ; i0F, i1F ) obtained by cutting P along a
codimension 1 Seifert surface F ⊂ P , with

ik : F −−→ F × {0, 1} ⊂ PF ; x −−→ (x, k) (k = 0, 1) ,

P = PF ∪F×{0,1} F × I .

The relative cobordism (∂+P∂+F ; i0∂+F, i1∂+F ) is then a Seifert fundamental

domain for the canonical infinite cyclic cover ∂+P of ∂+P . �
Remark 27.4 The special case N = Sn−2 ⊂M = Sn of 27.3 for n = 3 is the
classical knot theory situation in which codimension 1 Seifert surfaces first
appeared (Frankl and Pontrjagin [83], Seifert [263]). �

The antiquadratic complex (22.4) of a homology framed codimension 2
submanifold has the following expression in terms of a codimension 1 Seifert
surface :

Proposition 27.5 Let (M,∂M) be an n-dimensional manifold with bound-
ary, and let (N, ∂N) ⊂ (M,∂M) be a homology framed codimension 2 sub-
manifold with exterior (P, ∂+P ).
(i) There exist codimension 1 Seifert surfaces (F, ∂+F ) ⊂ (M,∂M) for
(N, ∂N), with

∂F = N ∪∂N ∂+F ⊂ ∂P = N × S1 ∪∂N×S1 ∂+P .

(ii) A codimension 1 Seifert surface (F, ∂+F ) for (N, ∂N) determines an
n-dimensional manifold triad (PF ; i0F, i1F,N) and hence an n-dimensional
symmetric Poincaré triad over Z[π1(M)]

(Γ, Φ) =

( C(Ñ , ∂̃N) //

��

C(F̃ , ∂̃+F )

i0
��

C(F̃ , ∂̃+F )
i1 // C(P̃F , ∂̃+P ∂+F )

,

∂ϕ //

��

ϕ

��
ϕ // δϕ

)

with Ñ , ∂̃N, F̃ , ∂̃+F , P̃F , ∂̃+P ∂+F the covers of N, ∂N,F, ∂+F, PF , ∂+P∂+F
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induced from the universal cover M̃ of M . The antiquadratic complex

σ∗(M,N, ϵ2) = (C,ψ)

is the n-dimensional (−z)-quadratic complex over Z[π1(M)][z, z−1] given by

C = C(P̃ , ∂̃+P )

= C(i0 − zi1 : C(F̃ , ∂̃+F )[z, z
−1]−−→C(P̃F , ∂̃+P ∂+F )[z, z

−1]) ,

ψs =


(

δϕ0 zi1ϕ0

±ϕ0i∗0 0

)
if s = 0

0 if s ≥ 1

(as in 24.1) and such that

C((1 + T−z)ψ : Cn−∗−−→C) ≃ C(M̃ × R, ∂̃+P )

with P̃ , ∂̃+P the pullbacks to P, ∂+P of the universal cover M̃×R of M×S1.
Proof Make (p, ∂+p) : (P, ∂+P )−−→S1 transverse regular at {pt.} ⊂ S1, with

(F, ∂+F ) = (p, ∂+p)
−1({pt.}) ⊂ (P, ∂+P ) . �

Here is how asymmetric complexes arise in homology framed codimension
2 surgery :

Definition 27.6 Let (M,∂M) be an n-dimensional manifold with boundary,
and let K ⊂ ∂M be a homology framed codimension 2 submanifold, with
exterior L and a codimension 1 Seifert surface J ⊂ ∂M , so that

∂J = K ⊂ ∂M = K ×D2 ∪K×S1 L .

Let M̃ be the universal cover of M , and let J̃ , L̃J be the induced covers of
J, LJ , so that (M ;LJ , J × I) is a relative cobordism with

L = LJ ∪J×{0,1} J × I

and there is defined a Z[π1(M)]-module chain equivalence

[M ] ∩ − : C(M̃, L̃J )
n−∗ ≃ C(M̃, J̃ × I) .
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(i) The asymmetric complex of (M,J) is the n-dimensional asymmetric com-
plex (C, λ) over Z[π1(M)] with

C = C(M̃, L̃J) ,

λ : Cn−∗ = C(M̃, L̃J )
n−∗ [M]∩−−−−→

≃ C(M̃, J̃ × I) ≃ C(M̃, J̃)

ĩ0
−−→ C(M̃, L̃J) = C ,

such that up to Z[π1(M)]-module chain equivalence

C(λ : Cn−∗−−→C) ≃ C(̃i0 : C(J̃)−−→C(L̃J ))∗−1 ,

C(Tλ : Cn−∗−−→C) ≃ C(̃i1 : C(J̃)−−→C(L̃J))∗−1

and up to Z[π1(M)][z, z−1]-module chain equivalence

C((1 + T−z)λ : Cn−∗[z, z−1]−−→C[z, z−1])

≃ C(̃i0 − zĩ1 : C(M̃, J̃)[z, z−1]−−→C(M̃, L̃J )[z, z
−1])

≃ C(M̃ × R, L̃)

with L̃ the pullback to L of the universal cover M̃ × R of M × S1.
(ii) If K is a Λ-homology boundary spine of (M,∂M) with respect to some
morphism of rings with involution F : Z[π1(M)][z, z−1]−−→Λ then (C, λ) is
an n-dimensional asymmetric complex which is (Λ,−z)-Poincaré, and the
asymmetric signature of (M,J) is the cobordism class

σ∗(M,J) = (C, λ) ∈ LAsynh(Z[π1(M)], Λ,−z) . �

Remark 27.7 As in Remark 20.28 and Example 20.29 the Z[π1(M)]-module
chain maps induced by the relative cobordism (M ; J × I, LJ)

γ : G = C(M̃) −−→ F = C(M̃, L̃J) ,

µ : G = C(M̃) −−→ C(M̃, J̃ × I) ≃ Fn−∗

are the components of the inclusion of a sublagrangian in a metabolic (−1)-
symmetric form in the derived category with involution Dn(Z[π1(M)]) of n-
dimensional f.g. free Z[π1(M)]-module chain complexes and chain homotopy
classes of chain maps(

γ
µ

)
: (G, 0) −−→ (F ⊕ Fn−∗,

(
0 1

−1 0

)
)

such that
C(γ) ≃ C(L̃J)∗−1 , C(µ) ≃ C(J̃ × I)∗−1 ,

with boundary
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G⊥/G ≃ C(∂(J̃ × I))∗−1

and hessian form the intersection pairing

γ∗µ = [M ] ∩ − :

G = C(M̃) ≃ C(M̃, ∂̃M)n−∗ −−→ C(M̃, ∂̃M) ≃ Gn−∗ .

The special feature of the situation in 27.6 is the existence of the asymmetric
pairing (i.e. chain map) λ : Fn−∗−−→F such that

γ ≃ λµ ≃ λ∗µ : G −−→ F ,

with

λ⊕ 1 ≃ ĩ0 : C(µ) ≃ C(J̃)∗−1 −−→ C(γ) ≃ C(L̃J)∗−1 ,

λ∗ ⊕ 1 ≃ ĩ1 : C(µ) ≃ C(J̃)∗−1 −−→ C(γ) ≃ C(L̃J)∗−1 . �

27B. Codimension 2 Seifert surfaces

Proposition 27.8 Let (M,∂M) be an n-dimensional manifold with bound-
ary, and let K ⊂ ∂M be a homology framed codimension 2 submanifold, with
exterior L.
(i) Let N ⊂ M be a codimension 2 Seifert surface for K, so that (N,K) ⊂
(M,∂M) is a homology framed codimension 2 submanifold, and let (P,L) be
the exterior. Inclusion defines a normal map from an (n − 2)-dimensional
manifold with boundary to an (n− 2)-dimensional normal pair

(f, b) : (N,K) −−→ (M,K)

with (f, b)| = 1 : ∂N = K−−→K. Let p : P−−→S1 be the canonical projection,
and let q : P−−→I a Morse function on the relative cobordism (P ;N ×S1, L).
Then

g : P −−→ M × S1 × I ; x −−→ (x, p(x), q(x))

defines a normal map from an n-dimensional manifold triad to an n-dimen-
sional normal triad

(g, c) : (P ;N × S1, L;K × S1) −−→

(M × S1 × I;M × S1 × {0},M × S1 × {1};K × S1)

such that

(g, c)| = (f, b)× 1 : (N,K)× S1 −−→ (M,K)× S1

and
(g, c) ∪ id. : M = P ∪N×S1 (N ×D2)

−−→ M × S1 × I ∪N×S1×{1} (N ×D2)

is a deformation of the inclusion M−−→M ×D2 (as in 22.6 (iv)).
(ii) A codimension 1 Seifert surface J ⊂ ∂M for K determines a codimension
2 Seifert surface N ⊂M for K, with the exterior (P,L) such that
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C(P̃ , L̃) = C(M̃, L̃J )[z, z
−1] = C[z, z−1] ,

with M̃ the universal cover of M , L̃J the pullback cover of LJ , and with
P̃ , L̃ the pullbacks to P,L of the universal cover M̃ × R of M × S1. The
n-dimensional asymmetric complex (C, λ) over Z[π1(M)] (27.6) determines
the antiquadratic complex (22.4)

σ∗(M,N, ϵ2) = (C[z, z−1], ψ) ,

the n-dimensional (−z)-quadratic complex over Z[π1(M)][z, z−1] with

ψs =

{
λ if s = 0

0 if s ≥ 1 ,

C((1 + T−z)ψ0 : Cn−∗[z, z−1]−−→C[z, z−1])

= C((1 + T−z)λ : Cn−∗[z, z−1]−−→C[z, z−1])

≃ C(M̃ × R, L̃) ≃ C(f̃ : C(L̃)−−→C(M̃ × R)) .

The quadratic kernel of (f, b) is the (n − 2)-dimensional quadratic complex
over Z[π1(M)]

σ∗(f, b) = (S−1C, λ)

with S−1C ≃ C(f !) the algebraic mapping cone of the Umkehr chain map

f ! : C(M̃, K̃)n−2−∗ f̃∗

−−→ C(Ñ , K̃)n−2−∗ ≃ C(Ñ) .

Let

σ∗(g, c) =

( 0 //

��

C(∂+g
!)

��

Γ

C(S(f) !) // C(g !)

, Ψ

)

be the kernel n-dimensional quadratic triad over Z[π1(M)][z, z−1], with the
Umkehr Z[π1(M)][z, z−1]-module chain maps given by

g ! : C(M̃ × R, K̃ × R)n−1−∗ −−→ C(P̃ ) ,

∂+g
! : C(M̃ × R, K̃ × R)n−1−∗ −−→ C(L̃) ,

S(f) ! : C(M̃ × R, K̃ × R)n−1−∗ −−→ C(M̃ × R) .

Let (Γ ′, Ψ ′) be the n-dimensional quadratic Poincaré triad over Z[π1(M)]
[z, z−1] associated by 20.27 to the n-dimensional quadratic complex

(C ′, ψ′) = (C[z, z−1], (1− z−1)ψ)

and the factorization

(1 + T )ψ′
0 : Cn−∗[z, z−1]

1−z−1

−−−→ Cn−∗[z, z−1]
(1+T−z)ψ0

−−−−−−→ C[z, z−1] ,
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corresponding to the inclusion of the lagrangian in a hyperbolic (−1)-quadratic
form in the derived category with involution Dn(Z[π1(M)][z, z−1]) (20.28)(
(1 + T−z)ψ0

1− z−1

)
: (Cn−∗[z, z−1], 0) −−→ (C[z, z−1]⊕Cn−∗[z, z−1],

(
0 1

0 0

)
)

with hessian form (Cn−∗[z, z−1], ψ′
0) and

B //

��

C((1 + T−z)ψ0)∗+1

��

Γ ′

C(1− z−1 : Cn−∗[z, z−1]−−→Cn−∗[z, z−1])∗+1
// Cn−∗[z, z−1]

≃

B //

��

C(M̃ × R, L̃)∗+1

��
C(M̃ × R, K̃ × R)∗+1

// C(M̃ × R, P̃ )∗+1

and
B = C(1− z−1 : C((1 + T−z)ψ0)−−→C((1 + T−z)ψ0))∗+2

≃ C(C(M̃ × R, K̃ × R)n−1−∗−−→C(M̃ × R))∗+1 .

The kernel quadratic triad σ∗(g, c) = (Γ, Ψ) is obtained from (Γ ′, Ψ ′) by col-
lapsing B, with a homotopy equivalence

(Γ, Ψ) ≃ (Γ ′, Ψ ′)/B

=

( 0 //

��

C((1 + T−z)ψ0)∗+1

��
C(1− z : C[z, z−1]−−→C[z, z−1])∗+1

// C(B−−→Cn−∗[z, z−1])

, Ψ ′/B

)

In particular, the kernel (n− 1)-dimensional quadratic complex

σ∗(∂+g, ∂+c) = (∂+C, ∂+ψ)

is given by

∂+C = C(∂+g
! : C(M̃ × R, K̃ × R)n−1−∗−−→C(L̃))

≃ C(M̃ × R, L̃)n−∗ ≃ C(M̃ × R, L̃)∗+1

≃ C((1 + T−z)λ : Cn−∗[z, z−1]−−→C[z, z−1])∗+1 ,

∂+ψs =


(
0 1

z 0

)
if s = 0

0 if s ≥ 1 .

(iii) For any morphism of rings with involution F : Z[π1(M)][z, z−1]−−→Λ the
following conditions are equivalent :
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(a) (C, λ) is an asymmetric (Λ,−z)-Poincaré complex (26.2),
(b) ∂+g : L−−→M × S1 is a Λ-homology equivalence,
(c) (M × S1,K × S1) is an (n− 1)-dimensional Λ-coefficient geometric

Poincaré pair with fundamental class [L] ∈ Hn−1(M × S1,K × S1),
(d) K is a Λ-homology boundary spine for (M,∂M) (22.10),
(e) (C[z, z−1], ψ) is a Λ-Poincaré (−z)-quadratic complex,
(f) (∂+C, ∂+ψ) is a Λ-contractible quadratic complex.

(iv) If F is locally epic and the conditions of (iii) are satisfied, the isomor-
phism of 26.11

LAsynh(Z[π1(M)], Λ,−z) ∼= Γhn (F,−z)

sends the cobordism class (C, λ) to the Λ-homology spine obstruction (22.14)

σΛ∗ (M,K) = (C[z, z−1], ψ) ∈ Γhn (F,−z)

allowing the identification

σΛ∗ (M,K) = (C, λ) ∈ LAsynh(Z[π1(M)], Λ,−z) = Γhn (F,−z) .

Proof (i) Formal.
(ii) Define a push-in of the codimension 1 Seifert surface J ⊂ ∂M to be the
codimension 2 Seifert surface N ⊂ M for K ⊂ ∂M obtained by pushing J
rel ∂ into the interior of N , with

N ∼= J , ∂N = ∂J = K ⊂ ∂M .

As in the proof of 27.5 the exterior of the homology framed codimension 2
submanifold (N, ∂N) ⊂ (M,∂M)

(P, ∂+P ) = (cl.(M\(N ×D2)), cl.(∂M\(∂N ×D2)))

is equipped with a map (p, ∂+p) : (P, ∂+P )−−→S1 transverse regular at
{pt.} ⊂ S1. In this case it is possible to arrange the inverse image to be
a codimension 1 Seifert surface for (N, ∂N) ⊂ (M,∂M)

(F, ∂+F ) = (p, ∂+p)
−1({pt.}) ⊂ (P, ∂+P )

such that

(F, ∂+F ) ∼= (J × I, J × {0}) , (PF , ∂+P∂+F )
∼= (M,LJ) .

The antiquadratic complex (C(P̃ , ∂̃+P ), ψ) is given by 27.5, with

C(P̃ , ∂̃+P ) = C(i0 − zi1 : C(F̃ , ∂̃+F )[z, z
−1]−−→C(P̃F , ∂̃+P ∂+F )[z, z

−1])

≃ C(P̃F , ∂̃+P ∂+F )[z, z
−1]

≃ C(M̃, L̃J )[z, z
−1] = C[z, z−1] .

(iii) The structures of the quadratic kernel complex σ∗(f, b) and triad σ∗(g, c)
are given by 22.6.
(iv) Immediate from (iii). �
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Example 27.9 (i) Let π be a finitely presented group, and let (Z[π]ℓ, λ) be
an asymmetric form on a f.g. free Z[π]-module of rank ℓ ≥ 1. For any integer
i ≥ 3 it is possible to realize the (2i + 2)-dimensional asymmetric complex
(Si+1Z[π]ℓ, λ) as the asymmetric complex of a (2i+2)-dimensional manifold
with boundary (M,∂M) and a homology framed codimension 2 submanifold
K ⊂ ∂M with a codimension 1 Seifert surface J ⊂ ∂M , as follows.
As in the proof of 22.17 choose a (2i−1)-dimensional manifold with boundary
(K0, ∂K0) such that π1(K0) = π, and use the method of Wall [304, Chap. 5]
to construct a 2i-dimensional relative cobordism (N ;K0,K1) with

N2i = K0 × I ∪λ+(−)iλ∗

∪
ℓ

Di ×Di

the trace of surgeries on ℓ disjoint trivial embeddings Si−1 × Di ⊂ int(K0)
with self intersections λ, writing the boundary of N as

K = ∂N = K0 ∪∂ −K1 .

By construction, there is an i-connected normal map of 2i-dimensional man-
ifold triads

(f, b) : (N ;K0,K1) −−→ K0 × (I; {0}, {1})
with

(f, b)| = id. : K0 −−→ K0 , Ki(N) = Z[π]ℓ ,

and quadratic kernel the 2i-dimensional quadratic complex (SiZ[π]ℓ, λ) over
Z[π]. The quadratic kernel of the normal map of closed (2i− 1)-dimensional
manifolds

(∂f, ∂b) = (f, b)| : K −−→ ∂(K0 × I) = K0 ∪∂ −K0

is the boundary (2i−1)-dimensional quadratic Poincaré complex ∂(SiZ[π]ℓ, λ)
over Z[π]. Define the (2i+ 2)-dimensional manifold with boundary

(M,∂M) = (K0 × I ×D2, ∂(K0 × I ×D2))

and regard

∂(K0 × I)× {0} ⊂ ∂M = ∂(K0 × I)×D2 ∪∂(K0×I)×S1 (K0 × I × S1)

as a homology framed codimension 2 submanifold. Use the method of Mat-
sumoto [183, 5.2] (cf. 22.8) to perform ambient surgeries on ℓ disjoint trivial
embeddings

Si−1 ×Di ⊂ int(K0)× {0} ⊂ ∂(K0 × I)×D2

with self intersections λ, and trace a homology framed codimension 2 sub-
manifold triad

(N ∪∂K0×I K0 × I; ∂(K0 × I),K) ⊂ ∂(K0 × I)×D2 × (I; {0}, {1}) .
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The homology framed codimension 2 submanifold (N,K) ⊂ (M,∂M) is such
that

(M,∂M) ∼= (N ×D2 ∪N×S1 P,K ×D2 ∪K×S1 L)

with the exterior (P,L) given by

P 2i+2 = N × S1 × I ∪
∪
ℓ

Di+1 ×Di+1

the trace of surgeries on ℓ disjoint embeddings Si × Di+1 ⊂ int(N × S1)
representing generators of the kernel Z[π][z, z−1]-module

Ki(N × S1) = Z[π][z, z−1]ℓ

of the i-connected normal map e× idS1 : N × S1−−→K0 × I × S1, and L the
effect of these surgeries. The kernel (2i+ 2)-dimensional quadratic Poincaré
triad over Z[π][z, z−1] of the corresponding (i+ 1)-connected normal map of
(2i+ 2)-dimensional manifold triads

(g, c) : (P ;N × S1, L) −−→ K0 × I × S1 × (I; {0}, {1})

is the one associated by 20.27 to the factorization of the duality chain map
of the (2i+ 2)-dimensional quadratic complex over Z[π][z, z−1]

(C(g !), ψ) = (Si+1Z[π][z, z−1]ℓ, (1− z−1)λ)

given by

(1 + T )ψ0 = (1− z−1)λ+ (−)i+1(1− z)λ∗ = (1− z−1)(λ+ (−)izλ∗)

: C(g !)2i+2−∗ = Si+1Z[π][z, z−1]ℓ
1−z−1

−−−→ Si+1Z[π][z, z−1]ℓ

(1+T−z)λ
−−−−−→ C(g !) = Si+1Z[π][z, z−1]ℓ .

The homology framed codimension 2 submanifold K ⊂ ∂M has a codimen-
sion 1 Seifert surface J ⊂ ∂M homeomorphic to N (so that N is a push-in
of J), such that the canonical infinite cyclic cover L of L admits a Seifert
fundamental domain (LJ ; i0J, i1J) with a normal map

(g, c) : (LJ ; i0J, i1J) −−→ K0 × I × (I; {0}, {1})

and

i0 = λ : C(∂0g
!) = SiZ[π]ℓ −−→ C(g !) = SiZ[π]ℓ ,

i1 = (−)i+1λ∗ : C(∂1g
!) = SiZ[π]ℓ −−→ C(g !) = SiZ[π]ℓ ,

C(L̃, K̃0 × I × R) = C(i0 − zi1 : C(∂0g
!)[z, z−1]−−→C(∂1g

!)[z, z−1])

= C(λ+ (−)izλ∗ : SiZ[π][z, z−1]ℓ−−→Si(Z[π][z, z−1]ℓ)∗) .
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The cellular chain complexes of the universal covers M̃, Ñ , L̃J of M,N,LJ
are such that

C(M̃, L̃J) ≃ C(M̃, Ñ)2i+2−∗ ≃ Si+1Z[π]ℓ ,

and the asymmetric complex given by 27.6 is (Si+1Z[π]ℓ, λ).
(ii) Suppose that π = {1}, (K0, ∂K0) = (D2i−1, S2i−2) in (i), and that (Zℓ, λ)
is an asymmetric form over Z such that

λ+ (−)iλ∗ : Zℓ −−→ (Zℓ)∗

is a Z-module isomorphism, i.e. a (−)i-symmetric Seifert form over Z in
the terminology of 32.1. In this case (M,∂M) = (D2i+2, S2i+1), and the
homology framed codimension 2 submanifold K ⊂ S2i+1 is homeomorphic to
S2i−1 by the generalized Poincaré conjecture – in effect, this is the surgery
construction of high-dimensional knots due to Kervaire [131] and Levine [155].
The knot k : K ∼= S2i−1 ⊂ S2i+1 has a codimension 1 Seifert surface J2i ⊂
S2i+1 with Ḣ∗(J) = 0 (∗ ≠ i), Hi(J) = Zℓ and Seifert form (Zℓ, λ). �

27C. Branched cyclic covers

Branched cyclic covers are manifolds which are cyclic covers off a submanifold,
usually codimension 2. See Burde and Zieschang [34, Chap. 8E] for an account
of the traditional applications of branched covers in knot theory. This section
relates cyclic branched covers and asymmetric complexes, generalizing the
relationship between a Seifert matrix for a 1-knot k : S1 ⊂ S3 and the
homology of the cyclic covers of S3 branched over k.

Definition 27.10 Let (M,∂M) be an n-dimensional manifold with bound-
ary, and let (N, ∂N) ⊂ (M,∂M) be a homology framed codimension 2 sub-
manifold with exterior (P, ∂+P ), so that

(M,∂M) = (N ×D2 ∪N×S1 P, ∂N ×D2 ∪∂N×S1 ∂+P ) .

For any integer a ≥ 2 the a-fold branched cyclic cover of (M,∂M) branched
over (N, ∂N) is the n-dimensional manifold with boundary

(M ′, ∂M ′) = (N ×D2 ∪N×S1 P ′, ∂N ×D2 ∪∂N×S1 ∂+P
′)

with homology framed codimension 2 submanifold (N, ∂N) ⊂ (M ′, ∂M ′) and
exterior

(P ′, ∂+P
′) = (P , ∂+P )/z

a

the a-fold (unbranched) cyclic cover of (P, ∂+P ), with (P , ∂+P ) the canonical
infinite cyclic cover of (P, ∂+P ). �
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What is the asymmetric complex of a branched cyclic cover?

Proposition 27.11 Given an n-dimensional manifold with boundary (M,
∂M) and a homology framed codimension 2 submanifold K ⊂ ∂M with a
codimension 1 Seifert surface J ⊂ ∂M , let (C, λ) be the asymmetric complex
of (M,J) (27.6), the n-dimensional asymmetric complex Z[π1(M)] with

C = C(M̃, ∂̃+MJ ) ≃ C(M̃, J̃)n−∗ ≃ C(M̃, Ñ)n−∗ .

Let N ⊂ M be a push-in codimension 2 Seifert surface for K obtained by
pushing J rel ∂ into the interior of M , with ∂N = K, and let (M ′, ∂M ′)
be the a-fold cyclic cover of (M,∂M) branched over (N, ∂N), as in 27.10.
Then N ⊂ M ′ is a push-in of the codimension 1 Seifert surface J ⊂ ∂M ′

for ∂N ⊂ ∂M ′ into M ′. Let M̃ ′ be the pullback to M ′ of the universal cover
M̃ of M along the branched covering projection M ′−−→M . The asymmetric
complex of (M ′, J) over Z[π1(M)] is given by

(C ′, λ′) =

(⊕
a

C ,


λ −Tλ 0 . . . 0

−λ λ+ Tλ −Tλ . . . 0

0 −λ λ+ Tλ . . . 0
...

...
...

. . .
...

0 0 0 . . . λ+ Tλ


)
,

with
C ′ = C(M̃ ′, ∂̃+M

′
J) ≃ C(M̃ ′, Ñ)n−∗ .

Proof Regarding M as a relative cobordism

(M ;J × I, J × I; ∂+MJ ∪ (J × I))

gives a fundamental domain for the canonical infinite cyclic cover (P , ∂+P ),
so that (P ′, ∂+P

′) is the cyclic concatenation of a copies of M , and M ′ is the
linear concatenation of a copies of M

(M ′; J × I, J × I; ∂+M ′
J ∪ (J × I)) =

∪
a

(M ; J × I, J × I; ∂+MJ ∪ (J × I))

as in the diagram
. . .

. . .

M M MJ × I J × I J × I J × I J × I

∂+MJ ∪ (J × I) ∂+MJ ∪ (J × I) ∂+MJ ∪ (J × I)

As in 27.7 the chain maps

γ : G = C(M̃) −−→ F = C(M̃, ∂̃+MJ ) ,

µ : G = C(M̃) −−→ C(M̃, J̃ × I) ≃ Fn−∗
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are the components of the inclusion of a sublagrangian in a metabolic (−1)-
symmetric form in the derived category with involution Dn(Z[π1(M)])(

γ
µ

)
: (G, 0) −−→ (F ⊕ Fn−∗,

(
0 1

−1 0

)
) ,

with λ : Cn−∗ = Fn−∗−−→C = F such that

γ = λµ = λ∗µ : G −−→ F ,

and hessian the intersection pairing of (M,∂M)

γ∗µ = ϕ0 : G = C(M̃) −−→ Gn−∗ = C(M̃, ∂̃M) .

The components of the inclusion of the sublagrangian corresponding to the
branched cover are given by

γ′ =


γ −Tλ 0 . . . 0

−γ λ+ Tλ −Tλ . . . 0

0 −λ λ+ Tλ . . . 0
...

...
...

. . .
...

0 0 0 . . . λ+ Tλ

 :

G′ = C(M̃ ′) = G⊕
⊕
a−1

Fn−∗ −−→ F ′ = C(M̃ ′, ∂̃+M
′
J ) =

⊕
a

F ,

µ′ =


µ 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 : G′ = G⊕
⊕
a−1

Fn−∗−−→F ′n−∗ =
⊕
a

Fn−∗ ,

with hessian the intersection pairing of (M ′, ∂M ′)

γ′∗µ′ = ϕ′0 =


ϕ0 −γ∗ 0 . . . 0

−γ λ+ Tλ −Tλ . . . 0

0 −λ λ+ Tλ . . . 0
...

...
...

. . .
...

0 0 0 . . . λ+ Tλ

 :

G′ = C(M̃ ′) = G⊕
⊕
a−1

Fn−∗

−−→ G′n−∗ = C(M̃ ′, ∂̃M
′
) = Gn−∗ ⊕

⊕
a−1

F . �
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Example 27.12 Let

(M,∂M) = (D2i+2, S2i+1) (i ≥ 1) ,

and let
K = S2i−1 ⊂ S2i+1

be a knot with Seifert surface J . The statement and proof of 27.11 give the
homological invariants of the corresponding a-fold branched cover (M ′, ∂M ′)
of (M,∂M). Only the middle-dimensional homology modulo torsion will be
considered here. The relevant part of the asymmetric complex (C, λ) of (M,J)
is the (−)i-symmetric Seifert form (L, λ) over Z, with

λ+ (−)iλ∗ : Hi+1(C) = L = Hi(J) −−→ L∗

an isomorphism. In this case

Hi+1(G) = Hi+1(D
2i+2) = 0 ,

Hi+1(F ) = Hi+1(D2i+2, J) = Hi(J)

and the inclusion of the sublagrangian in a metabolic (−)i-symmetric form
over Z(

γ′

µ′

)
: (Hi+1(G

′), 0) −−→ (Hi+1(F
′)⊕Hi+1(F

′)∗,

(
0 1

(−)i 0

)
)

has components

γ′ =



(−)iλ∗ 0 0 . . . 0

λ+ (−)i+1λ∗ (−)iλ∗ 0 . . . 0

−λ λ+ (−)i+1λ∗ (−)iλ∗ . . . 0

...
...

...
. . .

...

0 0 0 . . . λ+ (−)i+1λ∗

 :

Hi+1(G
′) = Hi+1(M

′) =
⊕
a−1

L

−−→ Hi+1(F
′) = Hi+1(M

′, ∂+M
′
J ) =

⊕
a

L∗ ,

µ′ =


0 0 0 . . . 0

1 0 0 . . . 0

0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 : Hi+1(G
′) =

⊕
a−1

L−−→Hi+1(F
′)∗ =

⊕
a

L ,

with hessian the (−)i+1-symmetric intersection pairing of (M ′, ∂M ′)
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γ′∗µ′ = ϕ′0

=



λ+ (−)i+1λ∗ (−)iλ∗ 0 . . . 0

−λ λ+ (−)i+1λ∗ (−)iλ∗ . . . 0

0 −λ λ+ (−)i+1λ∗ . . . 0

...
...

...
. . .

...

0 0 0 . . . λ+ (−)i+1λ∗


: Hi+1(G

′) =
⊕
a−1

L −−→ Hi+1(G
′)∗ =

⊕
a−1

L∗

and
coker(ϕ′0 :

⊕
a−1

L−−→
⊕
a−1

L∗) = Hi(∂M
′) .

The construction and homology computation of (M ′, ∂M ′) go back to Seifert
[263] (cf. Burde and Zieschang [34, Chap. 8E]), and the formula for the in-
tersection pairing was obtained by Cappell and Shaneson [41] and Kauffman
[120, 5.6], [121, 12.2]. See 40.15 for the signature of this pairing. �

27D. Framed spines

Definition 27.13 Given a space X let ξ = ϵ2 : X−−→BSO(2) be the trivial
2-plane bundle, and let

F : Z[π1(S(ξ))] = Z[π1(X)][z, z−1] −−→ Λ

be a morphism of rings with involution.
The framed spine bordism groups BB∗(X,F), AB∗(X,F), ∆∗(X,F) are the
spine bordism groups of 22.16 with

BBn(X,F) = BBn(X, ϵ
2,F) ,

ABn(X,F) = ABn(X, ϵ
2,F) ,

∆n(X,F) = ∆n(X, ϵ
2,F) .

More explicitly :
(i) The bounded framed spine bordism group BBn(X,F) is the bordism
group of (n+ 2)-dimensional manifolds with boundary (M,∂M) with a map
(M,∂M)−−→X and a homology framed codimension 2 submanifold K ⊂ ∂M
with exterior L such that K is a Λ-homology boundary spine, i.e.

H∗(L;Λ) = H∗(M × S1;Λ) .

(ii) The framed empty spine bordism group ABn(X,F) is the bordism group of
(n+2)-dimensional manifolds with boundary (M,∂M) with a map (M,∂M)
−−→X × S1 such that K = ∅ in (i), i.e.

H∗(∂M ;Λ) = H∗(M × S1;Λ) .
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(iii) Assuming 1 − z ∈ Λ•, the framed closed spine bordism group ∆n(X,F)
is the bordism group of closed (n+ 1)-dimensional manifolds N with a map
N−−→X × S1 such that H∗(N ;Λ) = 0.
Similarly for the U -intermediate groups. �
Proposition 27.14 (i) The bounded framed and empty spine cobordism
groups are isomorphic

BBn(X,F) = ABn(X,F) .

(ii) The asymmetric complex construction of 27.6 defines a morphism

σ∗ : BBn(X,F)−−→LAsyn+2
h (Z[π1(X)], Λ,−z) ; (M,K)−−→ (C(M̃, L̃J ), λ) ,

which is an isomorphism if n ≥ 5, π1(X) is finitely presented and F is lo-
cally epic. Moreover, in this case the asymmetric signature defines a natural
isomorphism of exact sequences

. . . // ABn(X, 1) //

σ∗∼=
��

ABn(X,F) //

σ∗∼=
��

Γhn+2(ΦF,−z) //

σ∗∼=
��

. . .

. . . // Ĥn+3 // LAsyn+2
h (A,Λ,−z) // LAsyn+2

p (A,Λ,−z) // . . .

with A = Z[π1(X)], Γhn+2(ΦF,−z) the cobordism group of (n+1)-dimensional
(−z)-quadratic Λ-contractible Poincaré complexes over A[z, z−1], and

Ĥn+3 = Lhn+2(A[z, z
−1],−z) = Ĥn+3(Z2; K̃0(A)) .

(iv) If F is locally epic and 1−z ∈ Λ• there is defined a natural transformation
of exact sequences

. . . // Ωn+2(X × S1) //

σ∗
��

ABn(X,F) //

σ∗
��

∆n(X,F) //

σ∗
��

. . .

. . . // Ln+2
h (A[z, z−1]) // LAsyn+2

h (A,Λ,−z) // Γn+2
h (ΦF) // . . .

with Γn+2
h (ΦF) the cobordism group of (n + 1)-dimensional symmetric Λ-

contractible Poincaré complexes over A[z, z−1], and

σ∗ : ∆n(X,F) −−→ Γn+2
h (ΦF) ; M −−→ (C(M̃),∆[M ])

the Λ-contractible symmetric signature map. If n ≥ 5, π1(X) is finitely pre-
sented and F is locally epic

σ∗ : ABn(X,F) ∼= LAsyn+2
h (A,Λ,−z) ,

and there is defined an exact sequence

. . . −−→ Ln+2
h (A[z, z−1]) −−→ ∆n(X,F) −−→ Γn+2

h (ΦF)⊕Ωn+1(X × S1)

−−→ Ln+1
h (A[z, z−1]) −−→ . . . .

Proof This is the special case ξ = ϵ2 of 22.18. �
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Example 27.15 For

F : Z[π1(X)][z, z−1] −−→ Λ = Z[π1(X)] ; z −−→ 1

there are identifications

ABn(X,F) = BBn(X,F) = LAsyn+2
h (Z[π1(X)], Λ,−z) ,

Γn+2(ΦF) = Γn+2(ΦF,−z) = LAsyn+2
p (Z[π1(X)], Λ,−z) .

In particular, for X = {pt.} and Λ = Z

ABn+1({pt.},F) = BBn+1({pt.},F) = LAsyn+3
h (Z,Z,−z)

= Γn+3(ΦF) = Γn+3(ΦF,−z) = LAsyn+3(Z,Z,−z) ,

and these are the high-dimensional knot cobordism groups Cn for knots k :
Sn ⊂ Sn+2 – see Chap. 33 for a further discussion. �
Remark 27.16 (i) For any rings with involution A,A′ the product of an n-
dimensional asymmetric complex (C, λ) over A and an n′-dimensional asym-
metric complex (C ′, λ′) overA′ is an (n+n′)-dimensional asymmetric complex
over A⊗Z A

′

(C, λ)⊗ (C ′, λ′) = (C ⊗ C ′, λ⊗ λ′) .
(ii) Let (M,∂M) be an n-dimensional manifold with boundary, with a ho-
mology framed codimension 2 submanifold (N, ∂N) ⊂ (M,∂M) such that N
is a push-in of a codimension 1 Seifert surface J ⊂ ∂M for ∂N . As in 27.6
there is defined an n-dimensional asymmetric complex (C, λ) over Z[π1(M)],

with C = C(M̃, Ñ)n−∗. Likewise, let (M ′, ∂M ′) be an n′-dimensional man-
ifold with boundary, with a homology framed codimension 2 submanifold
(N ′, ∂N ′) ⊂ (M ′, ∂M ′) such that N ′ is a push-in, and let (C ′, λ′) be the
corresponding n′-dimensional asymmetric complex over Z[π1(M ′)]. Then

N ′′ = N ×M ′ ∪M ×N ′ ⊂M ′′ = M ×M ′

is a homology framed codimension 2 submanifold of an (n+ n′)-dimensional
manifold with boundary, such that the corresponding (n + n′)-dimensional
asymmetric complex over

Z[π1(M ′′)] = Z[π1(M)× π1(M ′)] = Z[π1(M)]⊗Z Z[π1(M ′)]

is the product
(C ′′, λ′′) = (C, λ)⊗ (C ′, λ′) ,

with
C ′′ = C(M̃ ′′, Ñ ′′)n+n

′−∗

= C(M̃, Ñ)n−∗ ⊗Z C(M̃
′, Ñ ′)n

′−∗ = C ⊗Z C
′ .

ForM = Dn,M ′ = Dn′
this is the knot product operation of Kauffman [119]

and Kauffman and Neumann [122] (cf. 29.22 below). �



28. Automorphism L-theory

This chapter deals with the L-theory of automorphisms of algebraic Poincaré
complexes, using the localization Ω−1A[z, z−1] inverting the set Ω (13.3)
of Fredholm matrices in the Laurent polynomial extension A[z, z−1] (z =
z−1) of a ring with involution A. In the first instance, the duality involution
on Wh1(Ω

−1A[z, z−1]) and the fibering obstruction are used to prove that
every manifold band is cobordant to a fibre bundle over S1, allowing the
identification of the closed framed spine bordism groups ∆∗(X,F) of Chap.
27 for

F = inclusion : Z[π1(X)][z, z−1] −−→ Ω−1Z[π1(X)][z, z−1]

with the bordism groups ∆∗(X) of automorphisms of manifolds over a space
X.

The automorphism L-groups LAut∗q(A) (q = s, h, p) are the cobordism
groups of self homotopy equivalences of algebraic Poincaré complexes over a
ring with involution A, the algebraic analogues of ∆∗(X). The main algebraic
results of Chap. 28 are the identifications (28.17, 28.33)

L∗
h(A[z, z

−1], Ω) = LAut∗−2
p (A) , L∗

h(Ω
−1A[z, z−1]) = LAsy∗h(A)

with LAsy∗h(A) the asymmetric L-groups of Chap. 26. The automorphism
L-groups thus fit into the exact sequence

. . . −−→ Lnh(A[z, z
−1]) −−→ LAsynh(A) −−→ LAutn−2

p (A)

−−→ Ln−1
h (A[z, z−1]) −−→ . . . .

The connection between the automorphism and asymmetric L-groups will
be considered further in Chap. 29 below, in connection with the obstruction
theory for open book decompositions. See Chap. 39 for the computation of
the automorphism and asymmetric L-groups of a field with involution F .

The algebraic K-theory localization exact sequence

. . . −−→ Wh1(A[z, z
−1])

i
−−→ Wh1(Ω

−1A[z, z−1])
∂
−−→ Wh1(A[z, z

−1], Ω)

j
−−→ K̃0(A[z, z

−1]) −−→ . . .
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splits for any ring A (by 13.19), with j = 0 and ∂ split by

∆ : Wh1(A[z, z
−1], Ω) = Aut0(A) −−→ Wh1(Ω

−1A[z, z−1]) ;

[P, h] −−→ τ(z − h : Ω−1P [z, z−1]−−→Ω−1P [z, z−1]) .

A based f.g. free A[z, z−1]-module chain complex E is Ω−1A[z, z−1]-contract-
ible if and only if it is A-finitely dominated (i.e. a band), in which case

τ(Ω−1E) = (Φ+(E), [E, ζ])

∈Wh1(Ω
−1A[z, z−1]) = Wh1(A[z, z

−1])⊕Aut0(A) .

For a ring with involution A the involution

A[z, z−1] −−→ A[z, z−1] ; z −−→ z−1

extends to isomorphisms of rings

A((z)) −−→ A((z−1))op ;
∞∑

j=−∞
ajz

j −−→
∞∑

j=−∞
ajz

−j ,

A((z−1)) −−→ A((z))op ;
∞∑

j=−∞
ajz

j −−→
∞∑

j=−∞
ajz

−j .

28A. Algebraic Poincaré bands

Definition 28.1 An n-dimensional algebraic Poincaré band (C, ϕ) is an n-
dimensional algebraic (= ϵ-symmetric or ϵ-quadratic) Poincaré complex over
A[z, z−1] such that C is a chain complex band in the sense of 3.2, that is
based f.g. free and A-finitely dominated. �
Example 28.2 The symmetric Poincaré complex of a geometric Poincaré
band (15.13) is an algebraic Poincaré band. �
Proposition 28.3 (i) The set Ω of Fredholm matrices in A[z, z−1] is inv-
olution-invariant, such that the Ω-duality involution on Wh1(A[z, z

−1], Ω)
corresponds to the involution

∗ : Aut0(A) −−→ Aut0(A) ; (P, h) −−→ (P ∗, (h∗)−1)

on the automorphism class group Aut0(A).
(ii) The algebraic K-theory localization exact sequence of 13.19

0 −−→ Wh1(A[z, z
−1])

i
−−→ Wh1(Ω

−1A[z, z−1])
∂
−−→ Aut0(A) −−→ 0

is a short exact sequence of Z[Z2]-modules, which splits as a Z-module exact
sequence. The splitting map for ∂
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∆ : Aut0(A) −−→ Wh1(Ω
−1A[z, z−1]) ;

[P, h] −−→ τ(z − h : Ω−1P [z, z−1]−−→Ω−1P [z, z−1])

is such that

∆− ∗∆∗ = iδ : Aut0(A) −−→ Wh1(Ω
−1A[z, z−1]) ,

with
δ : Aut0(A) −−→ Wh1(A[z, z

−1]) ;

[P, h] −−→ τ(−zh : P [z, z−1]−−→P [z, z−1])

such that
δ ∗ = − ∗ δ : Aut0(A) −−→ Wh1(A[z, z

−1]) .

(iii) A based f.g. free n-dimensional ϵ-symmetric Poincaré complex (C, ϕ)
over A[z, z−1] is Ω−1A[z, z−1]-contractible if and only if it is an algebraic
Poincaré band (i.e. C is A-finitely dominated), in which case

τΩ(C) = [C, ζ] ∈Wh1(A[z, z
−1], Ω) = Aut0(A) ,

τ(C, ϕ) = Φ+(C) + (−)nΦ+(C)∗ + δ[C, ζ] ∈Wh1(A[z, z
−1])

and

δ : Ĥn−1(Z2 ; Aut0(A)) −−→ Ĥn(Z2 ;Wh1(A[z, z
−1])) ;

[C, ζ] −−→ δ[C, ζ] = τ(C, ϕ) .

(iv) A based f.g. free n-dimensional ϵ-symmetric complex (C, ϕ) over A[z, z−1]
is Ω−1A[z, z−1]-Poincaré if and only if ∂C is A-finitely dominated, in which
case

τ(Ω−1(C, ϕ)) = τ(Ω−1∂C) = (Φ+(∂C), [∂C, ζ])

∈Wh1(Ω
−1A[z, z−1]) = Wh1(A[z, z

−1])⊕Aut0(A) ,

τ(∂C, ∂ϕ) = Φ+(∂C) + (−)n+1Φ+(∂C)∗ + δ[∂C, ζ] ∈Wh1(A[z, z
−1]) .

Proof (i) Given a k×k Fredholm matrix ω = (ωij) in A[z, z
−1] there is defined

a f.g. projective A-module

P = coker(z − ω : A[z, z−1]k−−→A[z, z−1]k)

with an automorphism

h : P −−→ P ; x −−→ zx

and an A[z, z−1]-module exact sequence

0 −−→ A[z, z−1]k
z−ω
−−→ A[z, z−1]k −−→ P −−→ 0 .
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The dual k × k matrix ω∗ = (ωji) is Fredholm, with an A[z, z−1]-module
exact sequence

0 −−→ A[z, z−1]k
z−1−ω∗

−−−−→ A[z, z−1]k −−→ P ∗ −−→ 0

where
z = (h∗)−1 : P ∗ −−→ P ∗ .

(ii) Immediate from the definitions.
(iii) The algebraic mapping torus of a self homotopy equivalence (h, χ) :
(E, θ)−−→(E, θ) of a finitely dominated (n − 1)-dimensional ϵ-symmetric
Poincaré complex (E, θ) over A is a homotopy finite n-dimensional ϵ-symmet-
ric Poincaré complex T (h, χ) over A[z, z−1]. The torsion of T (h, χ) with re-
spect to the canonical finite structure is given by

τ(T (h, χ)) = τ(−zh : C[z, z−1]−−→C[z, z−1])

= δ[C, h] = δ[E, ζ] ∈Wh1(A[z, z
−1]) .

By 23.5 every Ω−1A[z, z−1]-contractible based f.g. free n-dimensional ϵ-
symmetric Poincaré complex (C, ϕ) over A[z, z−1] is homotopy equivalent
to the algebraic mapping torus T (h, χ) of a homotopy equivalence (h, χ) :
(E, θ)−−→(E, θ) of a f.g. projective (n−1)-dimensional ϵ-symmetric Poincaré
complex (E, θ) over A with

[C, ζ] = [E, h] ∈ Aut0(A) .

(iv) Apply (iii) to the boundary (n − 1)-dimensional ϵ-symmetric Poincaré
complex ∂(C, ϕ) = (∂C, ∂ϕ) over A[z, z−1]. �

28B. Duality in automorphism K-theory

Let
δ : Aut0(A) −−→ Wh1(A[z, z

−1]) ;

[P, h] −−→ τ(−zh : P [z, z−1]−−→P [z, z−1]) ,

δ0 : Aut0(A) −−→ K̃0(A) ; [P, h] −−→ [P ]

(with δ as in 28.3).

Definition 28.4 (i) The simple automorphism class group of A is

Auts0(A) = ker(δ : Aut0(A)−−→Wh1(A[z, z
−1]))

= {[P, h] ∈ Aut0(A) |P f.g. free and τ(h) = 0 ∈Wh1(A)}
= {[P, f ] + [P, g]− [P, gf ]− [P, 1]}+ {[A,±1]} ⊆ Aut0(A) .

(ii) The free automorphism class group of A is
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Auth0 (A) = ker(δ0 : Aut0(A)−−→K̃0(A))

= {[P, h] ∈ Aut0(A) |P f.g. free} . �

Proposition 28.5 (i) The ∗-invariant subgroups

Auts0(A) ⊆ Auth0 (A) ⊆ Aut0(A)

are such that there is defined a commutative braid of exact sequences

Auts0(A)

$$II
III

I

""
Aut0(A)

$$I
II

II

δ0

##
K̃0(A)

Auth0 (A)

::uuuuuu

$$JJ
JJJ

J
Wh1(A)⊕ K̃0(A)

::uuuuu

$$JJ
JJJ

JJJ

0

::tttttttt
<<

Wh1(A)

::tttttt
== 0

with δ0 : Aut0(A)−−→K̃0(A) split by

∆0 : K̃0(A) −−→ Aut0(A) ; [P ] −−→ [P, 1] .

(ii) The ∗-invariant subgroup

∆(Auts0(A)) ⊆Wh1(Ω
−1A[z, z−1])

is such that

Ĥ∗(Z2 ;∆(Auts0(A))) = Ĥ∗(Z2 ;Wh1(Ω
−1A[z, z−1])) ,

L∗
∆(Auts0(A))(Ω

−1A[z, z−1], ϵ) = L∗
h(Ω

−1A[z, z−1], ϵ) .

Proof (i) Immediate from the definitions.
(ii) The (geometrically significant) decomposition

Wh1(A[z, z
−1]) = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

is such that

Aut0(A)/Auts0(A) = im(δ : Aut0(A)−−→Wh1(A[z, z
−1]))

= Wh1(A)⊕ K̃0(A) .

The duality involution on Wh1(A[z, z
−1]) interchanges the two Ñil-compo-

nents, so that
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Ĥ∗(Z2 ; Aut0(A)/Aut
s
0(A)) = Ĥ∗+1(Z2 ;Wh1(A[z, z

−1]))

= Ĥ∗+1(Z2 ;Wh1(A))⊕ Ĥ∗(Z2 ; K̃0(A)) .

The isomorphism

( i ∆ ) : Wh1(A[z, z
−1])⊕Aut0(A)

≃−−→ Wh1(Ω
−1A[z, z−1])

is such that

( i ∆ )
−1 ∗ ( i ∆ ) =

(
∗ ∗δ
0 ∗

)
:

Wh1(A[z, z
−1])⊕Aut0(A) −−→ Wh1(A[z, z

−1])⊕Aut0(A) .

The short exact sequence of Z[Z2]-modules

0 −−→ Wh1(A[z, z
−1])

i
−−→ Wh1(Ω

−1A[z, z−1])/∆(Auts0(A))

∂
−−→ Aut0(A)/Auts0(A) −−→ 0

induces a long exact sequence of Tate Z2-cohomology groups

. . . −−→ Ĥn(Z2 ;Wh1(A[z, z
−1]))

i
−−→ Ĥn(Z2 ;Wh1(Ω

−1A[z, z−1])/∆(Auts0(A)))

∂
−−→ Ĥn(Z2 ; Aut0(A)/Aut

s
0(A))

δ
−−→ Ĥn−1(Z2 ;Wh1(A[z, z

−1])) −−→ . . . .

The connecting maps δ are isomorphisms, so that

Ĥ∗(Z2 ;Wh1(Ω
−1A[z, z−1])/∆(Auts0(A))) = 0 ,

Ĥ∗(Z2 ;∆(Auts0(A))) = Ĥ∗(Z2 ;Wh1(Ω
−1A[z, z−1])) ,

L∗
∆(Auts0(A))(Ω

−1A[z, z−1], ϵ) = L∗
h(Ω

−1A[z, z−1], ϵ) . �

Proposition 28.6 For n ≥ 6 every n-dimensional manifold bandM is cobor-
dant to a fibre bundleM ′ over S1 by a cobordism (W ;M,M ′) which is a band.
Proof Let π1(M) = π, so that π1(M) = π × Z, and write

Λ = Ω−1Z[π][z, z−1] .

The cellular Z[π][z, z−1]-module chain complex C(M̃) of the universal cover

M̃ of M is Λ-contractible, with the Λ-coefficient torsion

τ(M ;Λ) = (Φ+(M), [M, ζ]) ∈Wh1(Λ) = Wh1(π × Z)⊕Aut0(Z[π])

such that
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τ(M ;Λ) + (−)n+1τ(M ;Λ)∗ = Λ⊗ τ([M ] ∩ − : C(M̃)n−∗−−→C(M̃))

= 0 ∈Wh1(Λ) .

Given a k × k Fredholm matrix ω in Z[π][z, z−1] let

τ(ω) = (α, β) ∈Wh1(Λ) = Wh1(π × Z)⊕Aut0(Z[π]) ,

so that

τ(ω)∗ = τ(ω∗) = (α∗ + δβ∗, β∗) ∈Wh1(Λ) = Wh1(π×Z)⊕Aut0(Z[π]) .

For any integer r ≥ 2 such that 2r < n let (W ;M,M ′) be the Λ-coefficient
H-cobordism obtained by trivially attaching k r-handles to M × I, and then
using ω to attach k (r + 1)-handles

W = (M × I ∪
∪
k

Dr ×Dn−r+1) ∪ω
∪
k

Dr+1 ×Dn−r .

Then
π1(M) = π1(W ) = π1(M

′) = π × Z

and the universal covers W̃ , M̃ ′ of W,M ′ are such that the relative cellular
chain complexes of (W̃ , M̃), (W̃ , M̃ ′) are given by

C(W̃ , M̃) = SrC(ω : Z[π][z, z−1]k−−→Z[π][z, z−1]k) ,

C(W̃ , M̃ ′) = Sn−r+1C(ω∗ : Z[π][z, z−1]k−−→Z[π][z, z−1]k) .

Thus W,M ′ are Λ-acyclic, and hence bands (13.9), with

τ(W ;Λ) = τ(M ;Λ) + (−)rτ(ω)

= τ(M ′;Λ) + (−)n−r+1τ(ω)∗ ∈Wh1(Λ) ,

and

Φ+(W ) = Φ+(M) + (−)rα = Φ+(M ′) + (−)n−r+1(α∗ + δβ∗) ,

Φ+(M ′) = Φ+(M) + (−)r(α+ (−)nα∗ + (−)nδβ∗) ∈Wh1(π × Z) ,

[M ′, ζ ′] = [M, ζ] + (−)r(β + (−)nβ∗) ∈ Aut0(Z[π]) .

By 28.5 the inclusion ∆(Auts0(Z[π]))−−→Wh1(Λ) induces an isomorphism

Ĥn(Z2;∆(Auts0(Z[π])))
≃−−→ Ĥn(Z2;Wh1(Λ)) ,

so that for some k × k Fredholm matrix ω in Z[π][z, z−1]

τ(M ;Λ) + (−)r(τ(ω) + (−)nτ(ω)∗) ∈ ∆(Auts0(Z[π])) ⊆Wh1(Λ) .

In this case the fibering obstruction of M ′ is
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Φ+(M ′) = Φ+(M) + (−)r(α+ (−)nα∗ + (−)nδβ∗)

= 0 ∈Wh1(π × Z) ,

so that M ′ is a fibre bundle over S1. �
Remark 28.7 (i) Given an n-dimensional manifold band M and an integer
r such that 2r < n as in 28.6 let ν : Z[π]k−−→Z[π]k be a nilpotent endomor-

phism such that (−)r+1(Z[π]k, ν) ∈ Ñil0(Z[π]) is one of the Ñil-components
of the fibering obstruction Φ+(M) ∈Wh1(π × Z), with

Φ+(M) + (−)r(τ(1− zν : Z[π][z, z−1]k−−→Z[π][z, z−1]k)

+ (−)n+1τ(1− z−1ν∗ : Z[π][z, z−1]k−−→Z[π][z, z−1]k))

∈ im(Wh1(π)⊕ K̃0(Z[π])−−→Wh1(π × Z)) .

Taking ω = 1 − zν in the construction of the proof of 28.6 gives the ‘relax-
ation’ h-cobordism (W ;M,M ′) from M to a ‘relaxed’ band M ′ with fibering
obstruction

Φ+(M ′) = Φ+(M) + (−)r(τ(ω) + (−)n+1τ(ω)∗)

∈ im(Wh1(π)⊕ K̃0(Z[π])−−→Wh1(π × Z))

such that the Ñil-components are 0. See Siebenmann [267] and Hughes and
Ranicki [112, Chaps. 18, 24] for the various relaxing properties of bands.
(ii) There is also a purely algebraic version of 28.6 : every based f.g. free simple
n-dimensional algebraic Poincaré band over A[z, z−1] is band cobordant to
the mapping torus of a simple self homotopy equivalence of a based f.g. free
simple (n− 1)-dimensional algebraic Poincaré complex over A. �

28C. Bordism of automorphisms of manifolds

The framed spine bordism groups AB∗(X,F), ∆∗(X,F) of Chap. 27 for the
Fredholm localization

F = inclusion : Z[π1(X)][z, z−1] −−→ Ω−1Z[π1(X)][z, z−1]

will now be identified with the bordism groups AB∗(X) of manifolds with
boundary a fibre bundle over S1 and the bordism groups ∆∗(X) of automor-
phisms of manifolds. The bordism groups AB∗(X), ∆∗(X) will be related
to automorphism L-theory in 28D, and to asymmetric L-theory in Chaps.
29, 30.
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Definition 28.8 (i) The automorphism bordism group ∆n(X) is the group of
bordism classes of triples (F, g, h) with F a closed n-dimensional manifold, g :
F−−→X a map, and h : F−−→F an automorphism together with a homotopy
g ≃ gh : F−−→X, so that there is induced a map

T (g) : T (h) −−→ T (1 : X−−→X) = X × S1 .

(ii) The bounded fibre bundle bordism group ABn(X) is the group of bordism
classes of quintuples (M,f ;F, g, h) with (F, g, h) as in (i), M an (n + 2)-
dimensional manifold with boundary the fibre bundle ∂M = T (h) over S1,
and f :M−−→X × S1 a map such that

f | = T (g) : ∂M = T (h) −−→ X × S1 . �
In other words, ∆n(X) is the bordism group of closed (n + 1)-dimensional
manifolds with the structure of a fibre bundle over S1 and a map to X.

Remark 28.9 Browder [29, 2.29] initiated the study of the bordism of diffeo-
morphisms of manifolds, using the mapping torus to pass from the bordism
class of a diffeomorphism h : F−−→F of a closed n-dimensional manifold F
to the bordism class of the closed (n+ 1)-dimensional manifold

T (h) = F × [0, 1]/{(x, 0) = (h(x), 1) |x ∈ F} . �
Proposition 28.10 (i) Given a space X let

F : Z[π1(X)][z, z−1] −−→ Ω−1Z[π1(X)][z, z−1]

be the inclusion in the Fredholm localization. The forgetful maps from the
automorphism and fibre bundle groups to the framed spine bordism groups of
Chap. 27

ABn(X) −−→ ABn(X,F) , ∆n(X) −−→ ∆n(X,F)

are isomorphisms for n ≥ 5, so that for ∗ ≥ 5 there are identifications

AB∗(X) = AB∗(X,F) , ∆∗(X) = ∆∗(X,F) .

(ii) The automorphism and bounded fibre bundle bordism groups fit into an
exact sequence

. . . −−→ Ωn+2(X × S1) −−→ ABn(X) −−→ ∆n(X)

T
−−→ Ωn+1(X × S1) −−→ . . .

with

Ωn+2(X × S1) −−→ ABn(X) ; (M,f) −−→ (M,f ; ∅, ∅, ∅) ,
ABn(X) −−→ ∆n(X) ; (M,f ;F, g, h) −−→ (F, g, h) ,

T : ∆n(X) −−→ Ωn+1(X × S1) ; (F, g, h) −−→ (T (h), T (g)) .

Proof (i) Immediate from 28.6.
(ii) Formal. �
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28D. The automorphism signature

The (A[z, z−1], Ω)-torsion L-groups L∗(A[z, z−1], Ω, ϵ) will now be identified
with the automorphism L-groups LAut∗−2(A, ϵ). The automorphism signa-
ture of a self homotopy equivalence of a Poincaré complex is identified with
signature of the mapping torus, in both algebra and topology.

Definition 28.11 (i) The

{
ϵ-symmetric

ϵ-quadratic
autometric Q-groups of a chain map

h : C−−→C are the Q-groups{
Q∗
aut(C, h, ϵ) = Q∗(C, h, 1, ϵ)

Qaut∗ (C, h, ϵ) = Q∗(C, h, 1, ϵ)

which fit into the exact sequence

. . . −−→ Qn+1(C, ϵ) −−→ Qn+1
aut (C, h, ϵ)

−−→ Qn(C, ϵ)
h%−1%

−−−−→ Qn(C, ϵ) −−→ . . .

. . . −−→ Qn+1(C, ϵ) −−→ Qautn+1(C, h, ϵ)

−−→ Qn(C, ϵ)
h%−1%−−−−→ Qn(C, ϵ) −−→ . . . .

(ii) An autometric structure (h, δϕ) for an n-dimensional ϵ-symmetric com-
plex (C, ϕ) over A is a self chain map h : C−−→C together with a chain
δϕ ∈W%Cn+1 such that

hϕsh
∗ − ϕs = dδϕs + (−)rδϕsd∗ + (−)n+s−1(δϕs−1 + (−)sTϵδϕs−1)

: Cn−r+s −−→ Cr (r, s ≥ 0, δϕ−1 = 0) ,

representing an element (δϕ, ϕ) ∈ Qn+1
aut (C, h, ϵ), or equivalently a morphism

(h, δϕ) : (C, ϕ)−−→(C, ϕ).
Similarly in the ϵ-quadratic case. �
Example 28.12 (i) An autometric structure for an ϵ-symmetric form (M,ϕ)
over A is an endomorphism

h : (M,ϕ) −−→ (M,ϕ) ,

that is h ∈ HomA(M,M) such that

h∗ϕh = ϕ : M −−→ M∗ .

This is just an autometric structure (h∗, 0) on the 0-dimensional ϵ-symmetric
complex (C, ϕ) with C0 =M∗, Cr = 0 for r ̸= 0.
(ii) An automorphism h : (M,ϕ)−−→(M,ϕ) of an ϵ-symmetric form over A is
an autometric structure such that h :M−−→M is an automorphism. �
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Proposition 28.13 (i) The ϵ-symmetric Q-groups of an A-finitely dominated
(= Ω−1A[z, z−1]-contractible) finite f.g. free A[z, z−1]-module chain complex
D are the autometric ϵ-symmetric Q-groups of (D!, ζ)

Q∗(D, ϵ) = Q∗
aut(D

!, ζ, ϵ) .

(ii) The homotopy equivalence classes of f.g. free n-dimensional Ω−1A[z, z−1]
-contractible ϵ-symmetric Poincaré complexes (C, ϕ) over A[z, z−1] are in
one-one correspondence with the homotopy equivalence classes of self ho-
motopy equivalences of finitely dominated (n − 1)-dimensional ϵ-symmetric
Poincaré complexes over A.
(iii) The L-group Lnh(Ω

−1A[z, z−1], ϵ) is (isomorphic to) the cobordism group
of f.g. free n-dimensional ϵ-symmetric Poincaré pairs (f : C−−→D, (δϕ, ϕ))
over A[z, z−1] such that (C, ϕ) is A-finitely dominated.
Proof (i) Let (C, h) be a finite chain complex of (A[z, z−1], Ω)-modules, i.e.
a finite f.g. projective A-module chain complex C together an automorphism
h : C−−→C. The f.g. projective A[z, z−1]-module chain complex

D = C(z − h : C[z, z−1]−−→C[z, z−1])

is homology equivalent to (C, h), and every A-finitely dominated f.g. free
A[z, z−1]-module chain complex is chain equivalent to one of this type. The
Z[Z2]-module chain map

C(h⊗ h− 1⊗ 1 : C ⊗A C−−→C ⊗A C) −−→ D ⊗A[z,z−1] D

defined by

C(h⊗ h− 1⊗ 1)r = (C ⊗A C)r ⊕ (C ⊗A C)r−1

−−→ (D ⊗A[z,z−1] D)r = (C[z, z−1]⊗A[z,z−1] C[z, z
−1])r

⊕ (C[z, z−1]⊗A[z,z−1] C[z, z
−1])r−1

⊕ (C[z, z−1]⊗A[z,z−1] C[z, z
−1])r−1

⊕ (C[z, z−1]⊗A[z,z−1] C[z, z
−1])r−2 ;

(u, v) −−→ ((h−1 ⊗ 1)u, (zh−1 ⊗ 1)v, (1⊗ 1)v, 0)

is a homology equivalence inducing isomorphisms

Q∗
aut(C, h, ϵ)

∼= Q∗(D, ϵ) ,

so that there is defined an exact sequence

. . . −−→ Qn+1(D, ϵ) −−→ Qn(C, ϵ)
h%−1
−−→ Qn(C, ϵ) −−→ Qn(D, ϵ) −−→ . . . .

An (n + 1)-dimensional ϵ-symmetric structure θ ∈ Qn+1(D, ϵ) on D is thus
the same as an n-dimensional ϵ-symmetric structure ϕ ∈ Qn(C, ϵ) with a
refinement to an autometric structure (δϕ, ϕ) ∈ Qn+1

aut (C, h, ϵ). Moreover
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θ0 : Hn+1−∗(D) ∼= Hn−∗(C)
ϕ0

−−→ H∗(C) ∼= H∗(D) ,

so that (D, θ) is a Poincaré complex over A[z, z−1] if and only if (C, ϕ) is a
Poincaré complex over A.
(ii) The mapping torus defines a one-one correspondence between the ho-
motopy equivalence classes of self homotopy equivalences and autometric
structures of finitely dominated (n − 1)-dimensional ϵ-symmetric Poincaré
complexes over A. Self homotopy equivalences can thus be taken to be given
by autometric structures, and (i) applies.
(iii) Every f.g. free n-dimensional ϵ-symmetric Poincaré complex over
A[z, z−1] is (homotopy equivalent to) Ω−1(E, θ) for an n-dimensional ϵ-
symmetric Ω−1A[z, z−1]-Poincaré complex (E, θ) over A[z, z−1] (by 24.4 (i)),
and the thickening of (E, θ) (20.22) is an n-dimensional ϵ-symmetric Poincaré
pair (f : C−−→D, (δϕ, ϕ)) over A[z, z−1] such that (C, ϕ) = ∂(E, θ) is A-
finitely dominated. �
Proposition 28.14 The ϵ-symmetrization maps

1 + Tϵ : LUn (Ω
−1A[z, z−1], ϵ) −−→ LnU (Ω

−1A[z, z−1], ϵ)

are isomorphisms, for any ∗-invariant subgroup U ⊆Wh1(Ω
−1A[z, z−1]).

Proof The central unit

s = (1− z)−1 ∈ Ω−1A[z, z−1]

is such that
s+ s = 1 ∈ Ω−1A[z, z−1] ,

so that 25.11 (i) applies. �
Remark 28.15 (i) A nonsingular ϵ-symmetric form (M,ϕ) over A deter-
mines a ring HomA(M,M) with involution f−−→ϕ−1f∗ϕ. The surgery trans-
fer group L0(R,A, ϵ) of Lück and Ranicki [176] is defined for any rings with
involution R,A to be the Witt group of triples (M,ϕ,U) with (M,ϕ) a non-
singular ϵ-symmetric form over A and U : R−−→HomA(M,M)op a morphism
of rings with involution. (See 28.24 below for the connection with surgery
transfer). For a group ring R = Z[π] L0(Z[π], A, ϵ) is the π-equivariant Witt
group studied by Dress [60] for finite π and by Neumann [212] for infinite π.
(ii) If A is a Dedekind ring with quotient field F = S−1A (S = A\{0}) the
L-groups Ln(R,A, ϵ) are defined in [176] for all n ≥ 0. The even-dimensional
group

L2i(R,A, ϵ) = L0(R,A, (−)iϵ)

is just the (−)iϵ-symmetric L-group of (R,A), as in (i). A nonsingular ϵ-
symmetric linking form (L, λ) over A determines a ring HomA(L,L) with
involution f−−→λ−1f̂λ. The odd-dimensional group

L2i+1(R,A, ϵ) = L1(R,A, (−)iϵ)
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is the quotient of the Witt group of triples (L, λ, T ) with (L, λ) a nonsingular
(−)i+1ϵ-symmetric linking form over (A,S) and T : R−−→HomA(L,L)

op)
a morphism of rings with involution by the boundaries ∂(N, θ, V ) of F -
nonsingular (−)i+1ϵ-symmetric forms (N, θ) over A with a morphism of rings
V : R−−→HomA(N,N)op such that the composite

R
V
−−→ HomA(N,N)op −−→ HomF (F ⊗A N,F ⊗A N)op

is a morphism of rings with involution. In particular, for R = Z

Ln(Z, A, ϵ) = Ln(A, ϵ) .

(iii) An n-dimensional ϵ-symmetric Poincaré complex (C, ϕ) over A deter-
mines a ringH0(HomA(C,C))

op with involution f−−→ϕ−1f∗ϕ. An autometric
structure (h, δϕ) on an n-dimensional ϵ-symmetric Poincaré complex (C, ϕ)
over A determines an element h ∈ H0(HomA(C,C))

op such that h = h−1, so
that there is defined a morphism of rings with involution

ρ : Z[z, z−1] −−→ H0(HomA(C,C))
op ; z −−→ h .

If n = 0 or if A is a Dedekind ring it is possible to identify

LAutn(A, ϵ) = Ln(Z[z, z−1], A, ϵ) . �

Definition 28.16 Let U ⊆ Aut0(A) be a ∗-invariant subgroup. The ϵ-
symmetric automorphism L-groups LAutnU (A, ϵ) are the cobordism groups
of self homotopy equivalences (h, χ) : (E, θ)−−→(E, θ) of finitely dominated
n-dimensional ϵ-symmetric Poincaré complexes (E, θ) over A with automor-
phism class

[E, h] ∈ U ⊆ Aut0(A) .

Similarly for the ϵ-quadratic automorphism L-groups LAutUn (A, ϵ). �
Proposition 28.17 (i) For any ∗-invariant subgroup U ⊆ Aut0(A) there are
natural identifications of the (A[z, z−1], Ω)-torsion L-groups of A[z, z−1] and
the automorphism L-groups of A

LnU (A[z, z
−1], Ω, ϵ) = LAutn−2

U (A, ϵ) ,

and there is a localization exact sequence

. . . −−→ Lnδ(U)(A[z, z
−1], ϵ)

i
−−→ Lnδ(U)⊕∆(U)(Ω

−1A[z, z−1], ϵ)

∂
−−→ LAutn−2

U (A, ϵ)
T
−−→ Ln−1

δ(U)(A[z, z
−1], ϵ) −−→ . . . ,

with T defined by the algebraic mapping torus.
(ii) The ϵ-symmetric automorphism L-groups associated to a pair (U2, U1 ⊆
U2) of ∗-invariant subgroups U1 ⊆ U2 ⊆ Aut0(A) are related by a Rothenberg-
type exact sequence
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. . . −−→ Ĥn+1(Z2 ;U2/U1) −−→ LAutnU1
(A, ϵ)

−−→ LAutnU2
(A, ϵ) −−→ Ĥn(Z2 ;U2/U1) −−→ . . .

with

LAutnU2
(A, ϵ) −−→ Ĥn(Z2 ;U2/U1) ; ((h, χ), (E, θ)) −−→ [E, h] .

(iii) If U ⊆ Aut0(A) is a ∗-invariant subgroup such that Auts0(A) ⊆ U then

L∗
δ(U)⊕∆(U)(Ω

−1A[z, z−1], ϵ) = L∗
h(Ω

−1A[z, z−1], ϵ) .

Similarly in the ϵ-quadratic case.
Proof (i) Apply 25.25, with (A,Σ) replaced by (A[z, z−1], Ω).
(ii) As for the ordinary L-groups in Ranicki [235, Chap. 10].
(iii) As in 28.5 (ii) (the special case U = Auts0(A)) the inclusion

δ(U)⊕∆(U) −−→ Wh1(Ω
−1A[z, z−1])

induces isomorphisms in the Tate Z2-cohomology Ĥ∗(Z2 ; ). �
Terminology 28.18 (i) Write

LAutnp (A, ϵ) = LAutnAut0(A)(A, ϵ)

LAutnh(A, ϵ) = LAutnAuth0 (A)(A, ϵ)

LAutns (A, ϵ) = LAutnAuts0(A)(A, ϵ) .

Thus


LAutnp (A, ϵ)

LAutnh(A, ϵ)

LAutns (A, ϵ)

is the cobordism group of


−
−
simple

self homotopy

equivalences (h, χ) : (E, θ)−−→(E, θ) of


f.g. projective

f.g. free

f.g. free

n-dimensional ϵ-

symmetric Poincaré complexes (E, θ) over A.
(ii) In the case ϵ = 1 the terminology is abbreviated

LAut∗U (A, 1) = LAut∗U (A) ,

LAut∗q(A, 1) = LAut∗q(A) . �

Proposition 28.19 The ϵ-symmetric automorphism L-groups LAut∗q(A, ϵ)
for q = s, h, p are related to each other and to the ϵ-symmetric L-groups of
A[z, z−1] and Ω−1A[z, z−1] by the commutative braids of exact sequences
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Ln+2
h (Ω−1A[z, z−1], ϵ)

$$JJ
JJJ

JJ

##
LAutnp (A, ϵ)

$$J
JJ

JJ
J

&&
Ĥn+1(Z2 ;Wh1(A[z, z

−1]))

LAutns (A, ϵ)

::ttttttt

$$JJ
JJJ

JJ
Ln+1
h (A[z, z−1], ϵ)

::tttttttt

$$J
JJ

JJ
J

Ĥn+2(Z2 ;Wh1(A[z, z
−1]))

::ttttt

;;
Ln+1
s (A[z, z−1], ϵ)

::ttttttt

;;
Ln+1
h (Ω−1A[z, z−1], ϵ)

Ln+2
h (Ω−1A[z, z−1], ϵ)

$$II
III

II

""
LAutnp (A, ϵ)

$$I
II

II
I

%%
Ĥn(Z2 ; K̃0(A))

LAutnh(A, ϵ)

::uuuuuuu

$$HH
HHH

HH
Ln+1
h (A[z, z−1], ϵ)

::uuuuuuu

$$HH
HHH

HH

Ĥn+1(Z2 ; K̃0(A))

::vvvvv

::
Ln+1
Wh1(A)(A[z, z

−1], ϵ)

::vvvvvvv

;;
Ln+1
h (Ω−1A[z, z−1], ϵ)

Ln+2
h (Ω−1A[z, z−1], ϵ)

$$H
HH

HH
HH

""
LAutnh(A, ϵ)

$$HH
HHH

HH

%%
Ĥn+1(Z2 ;Wh1(A))

LAutns (A, ϵ)

::vvvvvvv

$$H
HH

HH
HH

Ln+1
Wh1(A)(A[z, z

−1], ϵ)

::vvvvvvvv

$$HH
HHH

H

Ĥn+2(Z2 ;Wh1(A))

::vvvvv

<<
Ln+1
s (A[z, z−1], ϵ)

::vvvvvv

;;
Ln+1
h (Ω−1A[z, z−1], ϵ)

LAutns (A, ϵ)

$$H
HHH

HHH
H

##
LAutnp (A, ϵ)

$$H
HH

HH

&&
Ĥn−1(Z2 ; K̃0(A))

LAutnh(A, ϵ)

::vvvvvvv

$$I
II

II
Ĥn(Z2 ;Wh1(A[z, z

−1]))

::vvvvvv

$$I
II

II
II

I

Ĥn(Z2 ; K̃0(A))

::uuuuu

<<
Ĥn(Z2 ;Wh1(A))

::uuuuuu

;;
LAutn−1

s (A, ϵ)
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with

LAutnp (A, ϵ) −−→ Ĥn+1(Z2 ;Wh1(A[z, z
−1])) ;

((h, χ) : (E, θ)−−→(E, θ)) −−→ τ(−zh : E[z, z−1]−−→E[z, z−1]) ,

LAutnh(A, ϵ) −−→ Ĥn(Z2 ;Wh1(A)) ; ((h, χ) : (E, θ)−−→(E, θ)) −−→ τ(h) .

Similarly in the ϵ-quadratic case. �
Definition 28.20 Let h : F−−→F be a self homotopy equivalence of a
finitely dominated n-dimensional geometric Poincaré complex F with a map
g : F−−→X and a homotopy gh ≃ g : F−−→X, for some space X with univer-
sal cover X̃ and fundamental group π1(X) = π. The automorphism symmetric
signature of (F, h, f) with respect to a ∗-invariant subgroup U ⊆ Aut0(Z[π])
such that [F, h] ∈ U is the cobordism class

σ∗(F, h) = (h̃, χ) ∈ LAutnU (Z[π]) = Ln+2
U (Z[π][z, z−1], Ω)

with (h̃, χ) : (C(F̃ ), ϕ)−−→(C(F̃ ), ϕ) the induced self homotopy equivalence of
the finitely dominated n-dimensional symmetric Poincaré complex σ∗(F ) =

(C(F̃ ), ϕ) over Z[π], and F̃ = g∗X̃ the pullback cover of F . �

Proposition 28.21 A


−
−
simple

self homotopy equivalence h : F−−→F of a
finitely dominated

finite

finite

n-dimensional geometric Poincaré complex F with a

map g : F−−→X and a homotopy gh ≃ g : F−−→X for some space X with
universal cover X̃ and fundamental group π1(X) = π has an invariant

σ∗(F, h) ∈ LAutnp (Z[π])
σ∗(F, h) ∈ LAutnh(Z[π])
σ∗(F, h) ∈ LAutns (Z[π]) .

The mapping torus T (h) of a self homotopy equivalence h : F−−→F of a{
finitely dominated

finite
n-dimensional geometric Poincaré complex F is a{

homotopy finite

simple
(n+1)-dimensional geometric Poincaré complex, with the

symmetric signature given by

σ∗(T (h)) = [σ∗(F, h)]

∈ im(T : LAutnp (Z[π])−−→Ln+1
h (Z[π][z, z−1]))

= ker(i : Ln+1
h (Z[π][z, z−1])−−→Ln+1

h (Ω−1Z[π][z, z−1])) ,

σ∗(T (h)) = [σ∗(F, h)]

∈ im(T : LAutnh(Z[π])−−→Ln+1
s (Z[π][z, z−1]))

= ker(i : Ln+1
s (Z[π][z, z−1])−−→Ln+1

h (Ω−1Z[π][z, z−1])) .
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Proof The symmetric Poincaré complex of a mapping torus of a self homotopy
equivalence of a geometric Poincaré complex is the algebraic mapping torus
of the induced self chain equivalence of a symmetric Poincaré complex. �
Proposition 28.22 (Ranicki [248])
Let X be a connected space, and let

A = Z[π1(X)] , Λ = Ω−1A[z, z−1] .

(i) The symmetric signatures define a natural transformation of exact se-
quences

// Ωn+2(X × S1) //

σ∗
��

ABn(X) //

σ∗
��

∆n(X)
T //

σ∗
��

Ωn+1(X × S1) //

σ∗
��

// Ln+2
t (A[z, z−1])

i // Ln+2
h (Λ)

∂ // Ln+2
t (A[z, z−1], Ω)

j // Ln+1
t (A[z, z−1]) //

with
Ln+2
t (A[z, z−1], Ω) = LAutnu(A) (28.19)

for (t, u) = (h, p), (Wh1(A), h) or (s, s).
(ii) For finitely presented π1(X) and n ≥ 5 the symmetric signature maps are
isomorphisms

σ∗ : ABn(X)
≃−−→ Ln+2

h (Λ) ,

and the automorphism bordism groups ∆∗(X) fit into an exact sequence

. . . −−→ Ln+2
t (A[z, z−1]) −−→ ∆n(X) −−→ LAutnu(A)⊕Ωn+1(X × S1)

−−→ Ln+1
t (A[z, z−1]) −−→ . . .

with (t, u) as in (i).
Proof (i) Use 28.20, taking into account that an automorphism h : F−−→F
of a compact manifold is a simple self homotopy equivalence of a simple
geometric Poincaré complex, and that T (h) is Ω-contractible with torsion

τ(Ω−1T (h)) = ∆[F, h] ∈ ∆(Auts0(A)) ⊆Wh1(A[z, z
−1]) .

The braids of 28.19 include the L-theory localization exact sequences for each
of the pairs of categories (t, u).
(ii) This is a special case of 27.14. �
Example 28.23 (i) Let h : F−−→F be an automorphism of a 2k-dimensional
manifold F , with a map g : F−−→X to a space X and a homotopy
gh ≃ g : F−−→X. For any morphism Z[π1(X)]−−→A to a Dedekind ring
with involution A there is defined an automorphism symmetric signature

A⊗Z[π1(X)] σ
∗(F, h) = (Hk(F ;A), 1⊗ ϕ0, h∗)

∈ LAut2k(A) = LAut0(A, (−)k) .
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This is the isometric invariant of López de Medrano [171], the Witt class of
the automorphism

h∗ : (Hk(F ;A)/torsion, 1⊗ ϕ0) −−→ (Hk(F ;A)/torsion, 1⊗ ϕ0)

of the nonsingular (−)k-symmetric intersection form over A. See Neumann
[212] for the computation of the Z-equivariant (−)k-symmetric Witt ring
LAut2k(Z) = LAut0(Z, (−)k). The exact sequence of 28.22 for X = {pt.}

. . . −−→ Ln+2(Z[z, z−1]) −−→ ∆n(pt.)

−−→ LAutn(Z)⊕Ωn+1(S
1) −−→ Ln+1(Z[z, z−1]) −−→ . . .

recovers the computation of ∆n(pt.) (n ≥ 3) due to Kreck [140, 5.7].
(ii) See Bonahon [24] and Edmonds and Ewing [62] for the computation of
∆2(pt.), the bordism group of automorphisms of surfaces. �
Example 28.24 The algebraic surgery transfer map of Lück and Ranicki
[174], [176]

p ! : Lm(Z[π1(B)]) −−→ Lm+n(Z[π1(E)])

is defined for any fibration F−−→E
p
−−→B with the fibre F an n-dimensional

geometric Poincaré complex. The surgery transfer group Ln(Z[π1(B)],Z) is
defined in [176] (cf. 28.15), with products

Ln(Z[π1(B)],Z)⊗ Lm(Z[π1(B)]) −−→ Lm+n(Z[π1(B)]) .

The π1(B)-equivariant symmetric signature

σ∗(F, p) ∈ Ln(Z[π1(B)],Z)

is such that

p !p
! = σ∗(F, p)⊗− : Lm(Z[π1(B)]) −−→ Lm+n(Z[π1(B)]) .

In particular, for any element (F, g, h) ∈ ∆n(X) there is defined a fibre bundle

F −−→ E = T (h)
p
−−→ B = S1

and the Z-equivariant symmetric signature is just the Z-coefficient automor-
phism symmetric signature

σ∗(F, p) = Z⊗Z[π1(X)] σ
∗(F, h) ∈ Ln(Z,Z) = LAutn(Z) . �
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28E. The trace map χz

The identification given by 28.17

L0(A[z, z−1], Ω, ϵ) = LAut0(A,−ϵ)

is somewhat indirect : this will now be remedied by obtaining a direct one-
one correspondence between ϵ-symmetric linking forms over (A[z, z−1], Ω)
and automorphisms of (−ϵ)-symmetric forms over A. This extends to the L-
theory of A[z, z−1] (z = z−1) the identification of exact categories given by
13.16

H(A[z, z−1], Ω) = Aut(A) .

Let A[[z, z−1]] be the A[z, z−1]-module consisting of all the formal Laurent

polynomials
∞∑

j=−∞
ajz

j , without any finiteness conditions on the coefficients

aj ∈ A. The inclusions

i+ : A[z, z−1] −−→ A((z)) , i− : A[z, z−1] −−→ A((z−1)) ,

j+ : A((z)) −−→ A[[z, z−1]] , j− : A((z−1)) −−→ A[[z, z−1]]

fit into a short exact sequence of A[z, z−1]-modules

0 −−→ A[z, z−1]

(
i+

i−

)
−−−−→ A((z))⊕A((z−1))

( j+ −j− )
−−−−−−−−→ A[[z, z−1]] −−→ 0 .

Every Fredholm matrix ω ∈ Ω is invertible over A((z)) and A((z−1)) (13.1),
so that there are defined ring morphisms

k+ : Ω−1A[z, z−1] −−→ A((z)) , k− : Ω−1A[z, z−1] −−→ A((z−1))

such that

i+ : A[z, z−1] −−→ Ω−1A[z, z−1]
k+
−−−→ A((z)) ,

i− : A[z, z−1] −−→ Ω−1A[z, z−1]
k−
−−−→ A((z−1)) ,

j+k+ = j−k− : Ω−1A[z, z−1] −−→ A[[z, z−1]] .

Definition 28.25 The universal trace map is the A-module morphism

χz : Ω−1A[z, z−1]/A[z, z−1] −−→ A ; [ω] −−→ a+0 − a
−
0

with a+0 , a
−
0 ∈ A the constant coefficients in

k+(ω) =
∞∑

j=−∞
a+j z

j ∈ A((z)) , k−(ω) =
∞∑

j=−∞
a−j z

j ∈ A((z−1)) . �
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Remark 28.26 For a field A = F the universal trace map

χz : Ω−1A[z, z−1]/A[z, z−1] = F (z)/F [z, z−1] −−→ F

is the version due to Litherland [167,A3] of the trace function of Trotter
[292], [293]. �
Proposition 28.27 (i) If

p(z) =
d∑
j=0

ajz
j , q(z) =

d−1∑
k=0

bkz
k ∈ A[z, z−1]

are such that the coefficients aj ∈ A are central and a0, ad ∈ A• then

χz

(
q(z)

p(z)

)
=

b0
a0
∈ A .

(ii) For any ω ∈ Ω−1A[z, z−1]/A[z, z−1]

χz(ω) = −χz(ω) ∈ A .

(iii) For any (A[z, z−1], Ω)-module L (= f.g. projective A-module L with an
automorphism z : L−−→L) the universal trace map χz induces an A[z, z−1]-
module isomorphism

L̂ = HomA[z,z−1](L,Ω
−1A[z, z−1]/A[z, z−1])

≃−−→ L∗ = HomA(L,A) ;

f −−→ χzf .

The identification of 28.17

L0(A[z, z−1], Ω, ϵ) = LAut0(A,−ϵ)

is induced by the one-one correspondence

{ϵ-symmetric linking forms (L, λ) over (A[z, z−1], Ω)} −−−−→←−−−−
{(−ϵ)-symmetric forms (L, ϕ) over A

with an automorphism h : (L, ϕ)−−→(L, ϕ)}

with
h = z : L −−→ L ,

ϕ = χzλ : L× L
λ
−−→ Ω−1A[z, z−1]/A[z, z−1]

χz

−−→ A .

Proof (i) The polynomial p(z) ∈ A[z, z−1] is a 1× 1 Fredholm matrix, with

k+

(
q(z)

p(z)

)
0

=
b0
a0

, k−

(
q(z)

p(z)

)
0

= 0 ∈ A .

(ii) The identity χz(ω) = −χz(ω) is immediate from the identities
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k+(ω) = k−(ω) ∈ A((z−1)) ,

k−(ω) = k+(ω) ∈ A((z)) .

(iii) The (A[z, z−1], Ω)-dual L̂ of L has the universal property that for any
1-dimensional f.g. projective A[z, z−1]-module resolution of L

0 −−→ P1

d
−−→ P0 −−→ L −−→ 0

there is a dual resolution

0 −−→ P ∗
0

d∗

−−→ P ∗
1 −−→ L̂ −−→ 0 .

For the standard resolution of L

d = z − h : P1 = L[z, z−1] −−→ P0 = L[z, z−1]

the universal trace map χz identifies the dual resolution with the standard
resolution of L∗

0 −−→ L∗[z, z−1]
z−1−h∗

−−−−→ L∗[z, z−1] −−→ L∗ −−→ 0 . �

Example 28.28 Let A be commutative ring with involution, so that by 13.12
(ii)

Ω−1A[z, z−1] = S−1A[z, z−1]

with S ⊂ A[z, z−1] the multiplicative subset of the bionic polynomials

p(z) =

d∑
j=0

ajz
j ∈ A[z, z−1] (ad = 1, a0 ∈ A•) .

An (A[z, z−1], S)-module L is a f.g. projective A-module (also denoted by
L) together with an automorphism h : L−−→L. For any such L there exists
p(z) ∈ S with

p(h) = 0 : L −−→ L , a0z
dp(z) = p(z) ∈ A[z, z−1]

(e.g. p(z) = chz(L, h) if L is a f.g. free A-module), and there is defined an
A[z, z−1]-module isomorphism

HomA[z,z−1](L,A[z, z
−1]/(p(z)))

≃−−→ HomA[z,z−1](L, S
−1A[z, z−1]/A[z, z−1]) ; f −−→ (x −−→ f(x)/p(x)) .

Every f ∈ HomA[z,z−1](L,A[z, z
−1]/(p(z))) can be expressed as

f =
d−1∑
j=0

zjfj : L −−→ A[z, z−1]/(p(z)) =
d−1∑
j=0

zjA ,
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with fj ∈ L∗ = HomA(L,A) and

χz

(
f(x)

p(z)

)
= f0(x) ∈ A ,

fj(x) = (a0)
−1f0(

j∑
i=0

aih
i−jx) ∈ A ,

(x ∈ L, 0 ≤ j ≤ d− 1) .

The isomorphism of 28.27 is given in this case by

L̂ = HomA[z,z−1](L,A[z, z
−1]/(p(z)))

≃−−→ L∗ = HomA(L,A) ; f −−→ f0 .

�
Example 28.29 Let X be an n-dimensional geometric Poincaré complex,
and let X̃ be a regular cover of X with group of covering translations π×Z.
Let A = R[π] for some commutative ring R, so that A[z, z−1] = R[π ×
Z]. As before, let Ω be the involution-invariant set of Fredholm matrices

in A[z, z−1]. The finite f.g. free A[z, z−1]-module chain complex C(X̃;R) is
A-finitely dominated if and only if

Ω−1H∗(X̃;R) = 0 ,

in which case the infinite cyclic coveringX is an (n−1)-dimensional geometric
R-coefficient Poincaré complex and as in 25.21 there is defined a linking
pairing

µ : Hr(X̃;R)×Hn−r−1(X̃;R) −−→ Ω−1A[z, z−1]/A[z, z−1] .

The composite

χzµ : Hr(X̃;R)×Hn−r−1(X̃;R)
µ
−−→ Ω−1A[z, z−1]/A[z, z−1]

χz

−−→ A

is the nonsingular intersection pairing of X̃ regarded as a cover of X. Two
cases are particularly interesting :
(i) If X is an n-dimensional geometric Poincaré band take R = Z, and let

X̃ be the universal cover of X, with the infinite cyclic cover X a finitely
dominated (n − 1)-dimensional geometric Poincaré band. The exterior X of
a fibred (n− 2)-knot k : Sn−2 ⊂ Sn is a special case.
(ii) Given a map X−−→S1 with pullback infinite cyclic cover X take π = {1},
and let R = F be a field, so that

A = F , Ω−1A[z, z−1] = F (z) .

If H∗(X;F ) ∼= H∗(S
1;F ) then
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Ω−1H∗(X;F ) = 0 , dimFH∗(X;F ) <∞ ,

µ : Hr(X;F )×Hn−r−1(X;F ) −−→ F (z)/F [z, z−1]

with
χzµ : Hr(X;F )×Hn−r−1(X;F ) −−→ F

the pairing of Milnor [195]. The exterior X of any (n−2)-knot k : Sn−2 ⊂ Sn
is a special case – H∗(X;F ) has the homological properties properties of a
fibred (n− 2)-knot. �

28F. Automorphism and asymmetric L-theory

The ϵ-symmetric L-groups of the Fredholm localization Ω−1A[z, z−1] were
identified in Chap. 26 with the (Ω,−zϵ)-asymmetric L-groups of A, with

Lnh(Ω
−1A[z, z−1], ϵ) = Lnh(Ω

−1A[z, z−1],−zϵ)
= LAsynh(A,Ω,−zϵ) .

The (Ω,−zϵ)-asymmetric L-groups LAsy∗(A,Ω,−zϵ) will now be identified
with the L-groups LAsy∗(A) of asymmetric complexes (C, λ) overA which are
Poincaré in the sense that λ : Cn−∗−−→C is an A-module chain equivalence.
Such asymmetric complexes arise in the obstruction theory for open book
decompositions, as will be described in Chap. 29. In 28.33 it will be shown
that

LAsynp (A) −−→ Lnh(Ω
−1A[z, z−1], ϵ) ;

(C, λ) −−→ (Ω−1C[z, z−1], (1− z−1)λ+ (1− z)Tϵλ)

is an isomorphism. This is an abstract version of the expression in 27.8 of the
symmetric complex of the exterior of a framed codimension 2 submanifold
N ⊂M in terms of an asymmetric complex.

Definition 28.30 (i) An n-dimensional asymmetric complex over A (C, λ) is
Poincaré if the chain map λ : Cn−∗−−→C is a chain equivalence. The torsion
of a based f.g. free n-dimensional asymmetric Poincaré complex (C, λ) over
A is

τ(C, λ) = τ(λ : Cn−∗−−→C) ∈Wh1(A) .

(ii) An (n + 1)-dimensional asymmetric pair over A (f : C−−→D, (δλ, λ)) is
Poincaré if the chain maps(

δλ

λf∗

)
: Dn+1−∗ −−→ C(f) , ( δλ fλ ) : C(f)n+1−∗ −−→ D

are chain equivalences, in which case (C, λ) is an asymmetric Poincaré com-
plex. The n-dimensional asymmetric complex (C, λ) is the boundary of the
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pair.
(iii) Asymmetric Poincaré complexes (C, λ), (C ′, λ′) are cobordant if (C, λ)⊕
(C ′,−λ′) is the boundary of an asymmetric Poincaré pair.
(iv) The projective (resp. free, simple) asymmetric L-group LAsynp (A) (resp.
LAsynh(A), LAsy

n
s (A)) is the cobordism group of n-dimensional asymmetric

Poincaré complexes (C, λ) over A with C f.g. projective (resp. f.g. free, based
f.g. free with τ(λ : Cn−∗−−→C) = 0 ∈Wh1(A)). �
Example 28.31 The 0-dimensional asymmetric L-group LAsy0q(A) (q =
s, h, p) is the Witt group of nonsingular asymmetric forms (L, λ) over A,
with λ : L−−→L∗ an isomorphism. Such a form is metabolic if there exists a
lagrangian, i.e. a direct summand K ⊂ L such that K = K⊥, with

K⊥ = {x ∈ L |λ(x)(K) = 0} ,

in which case
(L, λ) = 0 ∈ LAsy0q(A) .

A nonsingular asymmetric form (L, λ) is such that (L, λ) = 0 ∈ LAsy0q(A) if
and only if it is stably metabolic, i.e. there exists an isomorphism

(L, λ)⊕ (M,µ) ∼= (M ′, µ′)

for some metabolic (M,µ), (M ′, µ′). A 0-dimensional asymmetric Poincaré
complex (C, λ) is the same as a nonsingular asymmetric form (L, λ) with
L = C0. For a 1-dimensional asymmetric Poincaré pair (f : C → D, (δλ, λ))
with Dr = 0 for r ̸= 0 there is defined an exact sequence

0→ D0 f∗ // C0 fλ // D0 → 0

so that K = im(f∗ : D0 → C0) ⊂ L = C0 is a lagrangian of (C0, λ), and the
pair is the same as a nonsingular asymmetric form together with a lagrangian.
More generally, suppose given a 1-dimensional asymmetric Poincaré pair (f :
C → D, (δλ, λ)). The mapping cone of the chain equivalence ( δλ fλ ) :
C(f)1−∗ → D is an exact sequence

0→ D0 g // C0 ⊕D1 ⊕D1
h // D0 → 0

with

g =

 f∗

d∗

δλ

 : D0 → C0 ⊕D1 ⊕D1 ,

h = ( fλ δλ d ) : C0 ⊕D1 ⊕D1 → D0 .

However (as pointed out by Joerg Sixt), in general
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h ̸= g∗

λ 0 0
0 0 1
0 1 0

 : C0 ⊕D1 ⊕D1 → D0

so that g is not the inclusion of a lagrangian in (C0, λ)⊕(D1⊕D1,

(
0 1
1 0

)
).

To repair this, proceed as follows. Use the chain equivalences(
δλ

λf∗

)
: D1−∗ −−→ C(f) , ( δλ fλ ) : C(f)1−∗ −−→ D

to define a chain equivalence

i = T

(
δλ

λf∗

)
( δλ fλ )

−1
: D → D .

In order to prove that (C0, λ) is stably metabolic, it is convenient to replace
D by a chain equivalent complex for which i is (chain homotopic to) an
isomorphism. The exact sequence

0 −−→ D1

(
d
i1

)
// D0 ⊕D1

( i0 −d )
// D0 −−→ 0

splits, so there exists an A-module morphism (α β ) : D0 ⊕D1 → D1 such
that

(α β )

(
d
i1

)
= αd+ βi1 = 1 : D1 → D1 .

The 1-dimensional A-module chain complex D′ defined by

d′ =

(
d 0

0 1

)
: D′

1 = D1 ⊕D1 → D′
0 = D0 ⊕D1

is such that the inclusion D → D′ and the projection D′ → D are inverse
chain equivalences. The chain isomorphism i′ : D′ → D′ defined by

i′0 =

(
i0 −d
α β

)
: D′

0 = D0 ⊕D1 → D′
0 = D0 ⊕D1 ,

i′1 =

(
i1 −1
αd β

)
=

(
0 −1
1 β

)(
1 0

−i1 1

)
: D′

1 = D1 ⊕D1 → D′
1 = D1 ⊕D1

is such that

i : D → D′ i′ // D′ → D .

Replacing D by D′ and reverting to the previous notation, it may thus be
assumed that i : D → D is an isomorphism. Choose a chain homotopy
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( j k ) : i ( δλ fλ ) ≃ T

(
δλ

λf∗

)
: C(f)1−∗ → D .

The nonsingular asymmetric form defined by

(M,µ) = (C0 ⊕D1 ⊕D1,

λ k∗ 0
0 j∗ 1
0 i∗1 0

)

is such that
h = g∗µ : M = C0 ⊕D1 ⊕D1 → D0

so that g : D0 →M is the inclusion of a lagrangian and (M,µ) is metabolic.
The A-module morphism

C0 ⊕D1 → C0 ⊕M = C0 ⊕ C0 ⊕D1 ⊕D1 ; (x, y) 7→ (x, x, 0, y)

is the inclusion of a lagrangian in (C0, λ)⊕ (M,−µ), so that (C0, λ) is stably
metabolic. �
Proposition 28.32 (i) The projective and free asymmetric L-groups are
related by a Rothenberg-type exact sequence

. . . −−→ LAsynh(A) −−→ LAsynp (A) −−→ Ĥn(Z2 ; K̃0(A))

−−→ LAsyn−1
h (A) −−→ . . . .

(ii) The forgetful maps LAsyns (A)−−→LAsy
n
h(A) are isomorphisms, so the free

and simple asymmetric L-groups coincide

LAsy∗s(A) = LAsy∗h(A) .

Proof (i) As for the symmetric L-groups in Ranicki [235, Chap. 10].
(ii) Given an n-dimensional based f.g. free asymmetric Poincaré complex
(B, λ) over A let α : C−−→C be a self chain equivalence of an n-dimensional
based f.g. free A-module chain complex C such that

τ(α) = −τ(λ : Bn−∗−−→B) ∈Wh1(A) .

The morphism

LAsynh(A) −−→ LAsyns (A) ; (B, λ) −−→ (B, λ)⊕ (C ⊕ Cn−∗,

(
0 1

α 0

)
)

is an isomorphism inverse to the forgetful map LAsyns (A) −−→ LAsynh(A).
�

As in Chap. 13 let Ω be the involution-invariant set of Fredholm matrices
M in A[z, z−1], i.e. the square matrices such that coker(M) is a f.g. projective
A-module.
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Proposition 28.33 Let ϵ ∈ A be a central unit such that ϵ = ϵ−1, and let
(t, u) = (h, s) or (h, h) or (K̃0(A), p).
(i) The asymmetric L-groups of 28.30 are such that up to natural isomorphism

LAsy∗u(A) = LAsy∗u(A,Ω,−ϵz)

= L∗
t (Ω

−1A[z, z−1],−ϵz)

= L∗
t (Ω

−1A[z, z−1], ϵ) .

In particular, there are defined natural isomorphisms

LAsynu(A)
≃−−→ Lnt (Ω

−1A[z, z−1], ϵ) ;

(C, λ) −−→ (Ω−1C[z, z−1], (1− z−1)λ+ (1− z)Tϵλ) .

(ii) The asymmetric and automorphism L-groups are related by an exact se-
quence

. . . −−→ Lnt (A[z, z
−1], ϵ) −−→ LAsynu(A) −−→ LAutn−2

p (A, ϵ)

−−→ Ln−1
t (A[z, z−1], ϵ) −−→ . . . .

Proof (i) An n-dimensional asymmetric Poincaré complex (C, λ) over A is an
n-dimensional asymmetric (Ω, ϵz)-Poincaré complex over A, so that there is
defined a morphism

LAsynu(A) −−→ LAsynu(A,Ω,−ϵz) ; (C, λ) −−→ (C, λ) .

Given an n-dimensional asymmetric (Ω,−ϵz)-Poincaré complex (D,µ) over
A define an n-dimensional asymmetric Poincaré complex (C, λ) over A by

C = C((1 + T−ϵz)µ : Dn−∗[z, z−1]−−→D[z, z−1])∗+1 ,

λ =

(
0 −ϵz
1 0

)
: Cn−r = Dr+1[z, z

−1]⊕Dn−r[z, z−1]

−−→ Cr = Dn−r[z, z−1]⊕Dr+1[z, z
−1] .

The construction defines a morphism

LAsynu(A,Ω,−ϵz) −−→ LAsynu(A) ; (D,µ) −−→ (C, λ) .

The composite

LAsynu(A) −−→ LAsynu(A,Ω,−ϵz) −−→ LAsynu(A)

is the identity on the level of objects. The composite

LAsynu(A,Ω,−ϵz) −−→ LAsynu(A) −−→ LAsynu(A,Ω,−ϵz)
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sends an n-dimensional asymmetric (Ω,−ϵz)-Poincaré complex (D,µ) over
A to the n-dimensional asymmetric (Ω,−ϵz)-Poincaré complex (C, λ) over A
constructed as above. The A-module chain complex defined by

E = C((1 + T−ϵz)µ : Dn−∗[z]−−→D[z])∗+1

is such that there is a natural identification

En−∗ = C((1 + T−ϵz)µ : Dn−∗[z−1]−−→z−1D[z−1])∗+1

with a homotopy equivalence of n-dimensional asymmetric (Ω,−ϵz)-Poincaré
complexes over A

(D,µ) ≃ (C, λ)⊕ (E ⊕ En−∗,

(
0 1

0 0

)
) ,

so that
(D,µ) = (C, λ) ∈ LAsynu(A,Ω,−ϵz)

and the composite

LAsynu(A,Ω,−ϵz) −−→ LAsynu(A) −−→ LAsynu(A,Ω, ϵz)

is also the identity. The identifications

LAsy∗u(A,Ω,−ϵz) = L∗
t (Ω

−1A[z, z−1],−ϵz) = L∗
t (Ω

−1A[z, z−1], ϵ)

were already obtained in 26.11.
(ii) Combine (i) and 28.19. �
Proposition 28.34 (i) The asymmetric L-groups are 2-periodic

LAsy∗q(A) = LAsy∗+2
q (A) (q = s, h, p) .

(ii) The even-dimensional asymmetric L-groups of asymmetric Poincaré com-
plexes are the L-groups of nonsingular asymmetric forms

LAsy2∗q (A) = LAsy0q(A) (q = s, h, p) .

(iii) The free odd-dimensional asymmetric L-groups vanish

LAsy2∗+1
h (A) = LAsy1h(A) = 0 ,

and the projective odd-dimensional asymmetric L-groups

LAsy2∗+1
p (A) = LAsy1p(A)

fit into an exact sequence

0 −−→ LAsy1p(A) −−→ Ĥ1(Z2 ; K̃0(A)) −−→ LAsy0h(A) −−→ LAsy0p(A)

−−→ Ĥ0(Z2 ; K̃0(A)) −−→ 0 .

Proof It will be proved that for n = 2i or 2i+ 1 the i-fold suspension map

Si : LAsyn−2i
q (A) −−→ LAsynq (A) ; (C, λ) −−→ (SiC, λ)

is an isomorphism, by constructing an explicit inverse. (The construction is
the asymmetric L-theory version of the instant quadratic Poincaré surgery
obstruction of Ranicki [235].)
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Given an n-dimensional asymmetric Poincaré complex (C, λ) let (C ′, λ′) be
the cobordant (i−1)-connected n-dimensional asymmetric Poincaré complex
defined as follows. Choose a chain homotopy inverse µ : C → Cn−∗ for
λ : Cn−∗ → C and a chain homotopy ν : µλ ≃ 1 : Cn−∗ → Cn−∗, and set

C ′
r =


Cr ⊕ Cn−r+1 if r ≤ i− 1

Ci ⊕ Ci+1 ⊕ Ci+1 if n = 2i and r = i

Cr ⊕ Cr+1 otherwise,

dC′ =



(
dC (−)r−1λ

0 d∗C

)
:

C ′
r = Cr ⊕ Cn−r+1 → C ′

r−1 = Cr−1 ⊕ Cn−r+2

if r ≤ i− 1(
dC (−)r−1λ 0

0 d∗C 0

)
:

C ′
r = Ci ⊕ Ci+1 ⊕ Ci+1 → C ′

r−1 = Ci−1 ⊕ Ci+2

if n = 2i and r = i dC 0

0 0

(−)r−1λ∗µ dC

 :

C ′
r = Ci+1 ⊕ Ci+2 → C ′

r−1 = Ci ⊕ Ci+1 ⊕ Ci+1

if n = 2i and r = i+ 1(
dC 0

0 0

)
:

C ′
r = Ci+1 ⊕ Ci+2 → C ′

r−1 = Ci ⊕ Ci+2

if n = 2i+ 1 and r = i+ 1(
dC 0

(−)r−1λ∗µ dC

)
:

C ′
r = Cr ⊕ Cr+1 → C ′

r−1 = Cr−1 ⊕ Cr
otherwise,

λ′ =



(
λ 0

0 µ∗λ

)
: C ′n−r = Cn−r ⊕ Cn−r+1 → C ′

r = Cr ⊕ Cn−r+1

if r ≤ i− 1 λ 0 0

0 0 µ∗λ

λ∗ν 1 0

 :

C ′n−r = Ci ⊕ Ci+1 ⊕ Ci+1 → C ′
r = Ci ⊕ Ci+1 ⊕ Ci+1

if n = 2i and r = i(
λ 0

λ∗ν 1

)
: C ′n−r = Cn−r ⊕ Cr+1 → C ′

r = Cr ⊕ Cr+1

otherwise.
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Thus
(C, λ) = (C ′, λ′) ∈ LAsynq (A) ,

and the maps

LAsynq (A) −−→ LAsyn−2i
q (A) ; (C, λ) −−→ (S−iC ′, λ′) ,

LAsyn−2i
q (A) −−→ LAsynq (A) ; (C, λ) −−→ (SiC, λ)

are inverse isomorphisms.
It remains to prove that LAsy1h(A) = 0. Note first that for any 1-dimensional
f.g. free asymmetric Poincaré complex (C, λ) over A such that λ : C1−∗−−→C
is an isomorphism there is defined a null-cobordism (f : C−−→D, (0, λ)) with

f = 1 : C1 −−→ D1 = C1 , Dr = 0 for r ̸= 1 ,

so that
(C, λ) = 0 ∈ LAsy1h(A) .

It therefore suffices to prove that every 1-dimensional f.g. free asymmet-
ric Poincaré complex (C, λ) over A is homotopy equivalent to one with
λ : C1−∗−−→C an isomorphism (which is the case if and only if λ : C0−−→C1 is
an isomorphism). This is done using the following adaptation to asymmetric
L-theory of Neumann’s stabilization lemma (cf. Winkelnkemper [311], Quinn
[227, §8]). Let (C ′, λ′) be the 1-dimensional f.g. free asymmetric Poincaré
complex homotopy equivalent to (C, λ) defined by

d′ = d⊕ 1 : C ′
1 = C1 ⊕ C0 −−→ C ′

0 = C0 ⊕ C0 ,

λ′ = λ⊕ 0 :

{
C ′0 = C0 ⊕ C0 −−→ C ′

1 = C1 ⊕ C0

C ′1 = C1 ⊕ C0 −−→ C ′
0 = C0 ⊕ C0 .

The short exact sequence

0 −−→ C0

(
λ

d∗

)
−−−−→ C1 ⊕ C1

(d −λ )
−−−−−−→ C0 −−→ 0

splits, so there exist A-module morphisms

α : C0 −−→ C1 , β : C0 −−→ C1

such that
dα− λβ = 1 : C0 −−→ C0 ,

and the A-module morphism(
λ α

d∗ β

)
: C0 ⊕ C0 −−→ C1 ⊕ C1

is an isomorphism. Choose an A-module isomorphism
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h : C1 ≃−−→ C0 .

(Recall that A is assumed to be such that the rank of f.g. free A-modules is
well-defined, so that C0, C1 are isomorphic A-modules). Use the A-module
morphism

γ =

(
0 α

h hβ

)
: C ′1 = C1 ⊕ C0 −−→ C ′

1 = C1 ⊕ C0

to define an isomorphism

λ′′ = λ′ + d′γ + γd′∗ : C ′1−∗ ≃−−→ C ′

in the chain homotopy class of λ′ : C ′1−∗−−→C ′, with

λ′′ =

(
λ 0

0 0

)
+

(
0 α

h hβ

)(
d∗ 0

0 1

)
=

(
1 0

0 h

)(
λ α

d∗ β

)
:

C ′0 = C0 ⊕ C0 −−→ C1 ⊕ C1 −−→ C ′
1 = C1 ⊕ C0 . �

Definition 28.35 (i) A self chain equivalence h : E−−→E is fibred if

h− 1 : E −−→ E

is a chain equivalence, generalizing the notion of fibred automorphism (13.2).
(ii) The projective (resp. free) ϵ-symmetric fibred automorphism L-groups
LAutnq,fib(A, ϵ) for q = p (resp. h) are the cobordism groups of fibred self
homotopy equivalences (h, χ) : (E, θ)−−→(E, θ) of finitely dominated (resp.
f.g. free) n-dimensional ϵ-symmetric Poincaré complexes (E, θ) over A. �

The fibred automorphism L-groups will be related in Chapter 31 to the
‘isometric’ L-groups.

By analogy with the round L-groups (20.15, 20.16) :

Definition 28.36 The round ϵ-symmetric automorphism L-group LAutnr (A, ϵ)
(n ≥ 0) is the cobordism group of self homotopy equivalences (h, χ) :
(E, θ)−−→(E, θ) of finitely dominated n-dimensional ϵ-symmetric Poincaré
complexes (E, θ) over A such that [E, h] = 0 ∈ Aut0(A).
Similarly for the round ϵ-quadratic L-groups LAutr∗(A, ϵ). �
Proposition 28.37 The projective and round ϵ-symmetric automorphism
L-groups are related by a Rothenberg-type exact sequence

. . . −−→ Ĥn+1(Z2 ; Aut0(A)) −−→ LAutnr (A, ϵ) −−→ LAutnp (A, ϵ)

−−→ Ĥn(Z2 ; Aut0(A)) −−→ . . .
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with

LAutnp (A, ϵ) −−→ Ĥn(Z2 ; Aut0(A)) ; (E, h, θ, χ) −−→ [E, h] .

Similarly in the ϵ-quadratic case. �
In 39.20 it will be shown that LAut0(F ) maps onto Z2[H

0(Z2;Mz(F ))],
for any field with involution F .
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An n-dimensional manifold M is an ‘open book’ if it is the relative map-
ping torus of a rel ∂ automorphism of an (n− 1)-dimensional manifold with
boundary, or equivalently if there exists a codimension 2 homology framed
submanifold Nn−2 ⊂Mn such that the exterior fibres over S1.

A closed n-dimensional manifold M is a ‘twisted double’ if it is obtained
from two copies of an n-dimensional manifold with boundary (Q, ∂Q) by
glueing along a homeomorphism h : ∂Q−−→∂Q, with M = Q ∪h −Q. Open
books are particular examples of twisted doubles. The handlebody methods
of Smale’s h-cobordism theorem were applied in the 1960’s to study twisted
double decompositions of manifolds, initially in the differentiable case. In
the 1970’s Winkelnkemper [310], [311] and Quinn [227] combined handlebody
theory, Stallings engulfing and high-dimensional surgery theory to obtain an
obstruction theory for the existence and uniqueness of twisted double and
open book decompositions. This obstruction theory for open book decompo-
sitions will now be developed from the chain complex point of view. Twisted
doubles will be considered in Chap. 30 – in fact, the high-dimensional ob-
struction theory for twisted doubles is the same as for open books.

The geometric definitions of open books are given in 29A. The asymmetric
signature of an n-dimensional manifold M is defined in 29B

σ∗(M) ∈ LAsyn(Z[π1(M)]) ,

such that σ∗(M) = 0 if (and for n ≥ 5 only if) M has an open book de-
composition. The asymmetric signature is just the image of the symmetric
signature σ∗(M) ∈ Ln(Z[π1(M)]). The asymmetric L-groups vanish for odd
n, so odd-dimensional manifolds have (non-unique) open book decomposi-
tions.

See the Appendix by Winkelnkemper for a detailed account of the history
and applications of open books.
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29A. Geometric open books

Definition 29.1 Let (F, ∂F ⊂ F ) be a pair of spaces. The relative mapping
torus of a rel ∂ self map (h, 1) : (F, ∂F )−−→(F, ∂F ) is the space

t(h) = T (h) ∪∂F×S1 ∂F ×D2 . �
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....t(h) ∂F ×D2

∂F × S1

T (h)

Proposition 29.2 Let (h, ∂h) : (F, ∂F )−−→(F, ∂F ) be an automorphism of
an n-dimensional manifold with boundary (F, ∂F ).
(i) The mapping torus pair (T (h), T (∂h)) is an (n+1)-dimensional manifold
with boundary which fibres over S1

(F, ∂F ) −−→ (T (h), T (∂h)) −−→ S1 .

(ii) If ∂h = 1 : ∂F−−→∂F the relative mapping torus t(h) is a closed (n+1)-
dimensional manifold with a homology framed codimension 2 submanifold
∂F ⊂ t(h) such that the exterior

cl.(t(h)\∂F ×D2) = T (h)

fibres over S1. �
Definition 29.3 An open book decomposition of a closed (n+1)-dimensional
manifold M is a homeomorphism M ∼= t(h) for some rel ∂ automorphism
(h, 1) : (F, ∂F )−−→(F, ∂F ) of an n-dimensional manifold with boundary
(F, ∂F ). This is abbreviated to M is an open book

M = t(h) .

The codimension 1 submanifold F ⊂ M is the page and the codimension 2
submanifold ∂F ⊂M is the binding of the open book. �
Example 29.4 The mapping torus of an automorphism h : F−−→F of a
closed n-dimensional manifold F is a closed (n + 1)-dimensional manifold
with an open book decomposition

M = T (h) = t(h)
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with the fibre F as page and empty binding ∂F = ∅. �
Example 29.5 The only closed (connected, orientable) surfaces with open
book decompositions are S2 and S1 × S1. For if M2 = t(h : F−−→F ) has
genus g then the Euler characteristic of the 0-dimensional manifold ∂F is

χ(∂F ) = χ(M) = 2− 2g ≥ 0

and g = 0 or 1. However, for every surface M the 6-dimensional manifold
M × CP2 does have an open book decomposition (30.14). �
Proposition 29.6 Let M be a closed (n + 2)-dimensional manifold with a
codimension 2 homology framed submanifold Nn ⊂Mn+2 with exterior P .
(i) If the projection ∂P = N × S1−−→S1 extends to the projection P−−→S1

of a fibre bundle P = T (h : F−−→F ), with Fn+1 ⊂ M a codimension 1
Seifert surface for N , then M has an open book decomposition with page F
and binding ∂F .
(ii) The manifold M has an open book decomposition with page F and binding
N if and only if there exists a codimension 1 Seifert surface Fn+1 ⊂ M for
N such that the Seifert fundamental domain (PF ; i0F, i1F ) (27.3) for the
canonical infinite cyclic cover P of P is homeomorphic to F × (I; {0}, {1}).
For n ≥ 4 this is the case if and only if the inclusion i0F−−→PF is a simple
homotopy equivalence, by the s-cobordism theorem.
Proof (i) This is just the restatement of the definition of an open book in the
language of codimension 2 manifolds.
(ii) Immediate from (i). �

There are also relative versions :

Proposition 29.7 If (F ; ∂+F, ∂−F ) is an (n+1)-dimensional relative cobor-
dism with an automorphism

(h; 1, ∂−h) : (F ; ∂+F, ∂−F ) −−→ (F ; ∂+F, ∂−F ) ,

the relative mapping tori of h, ∂−h constitute an (n+2)-dimensional manifold
with boundary

(t+(h), t(∂−h)) = (T (h) ∪ ∂+F ×D2, T (∂−h) ∪ ∂∂−F ×D2) . �

Thus (∂+F, ∂∂+F ) ⊂ (t+(h), t(∂−h)) is a homology framed codimension
2 submanifold such that the exterior is a fibre bundle over S1, with fibre the
codimension 1 Seifert surface (F, ∂−F ) ⊂ (t+(h), t(∂−h)).

Definition 29.8 (i) An open book decomposition of an (n + 2)-dimensional
manifold with boundary (M,∂M) is a homeomorphism

(M,∂M) ∼= (t+(h), t(∂−h))

for some automorphism of a relative (n+ 1)-dimensional cobordism
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(h; 1, ∂−h) : (F ; ∂+F, ∂−F ) −−→ (F ; ∂+F, ∂−F ) ,

with page (F, ∂−F ) and binding (∂+F, ∂∂+F ). (ii) An open book cobordism
(t+(h); t(∂−h), t(∂

′
−h)) is an open book decomposition of a cobordism.
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T (h)T (∂−h) T (∂′−h)

(iii) The open book bordism group OBn(X) is defined for any space X and any
n ≥ 0 to be the group of bordism classes of triples (F, g, h) consisting of an n-
dimensional manifold with boundary (F, ∂F ), a map g : F−−→X and a rel ∂
automorphism (h, 1) : (F, ∂F )−−→(F, ∂F ) with a homotopy g ≃ gh : F−−→X
which is constant on ∂F .
(iv) The bounded book bordism group BBn(X) is the group of bordism classes
of quintuples (M,f ;F, g, h) with X, (F, g, h) as in (iii), together with an (n+
2)-dimensional manifold M with boundary the open book ∂M = t(h), and a
map f : M−−→X such that f | = t(g) : ∂M = t(h)−−→X. (Here, t(g) is the
map induced by f , rather than the relative mapping torus of g). �

In other words,OBn(X) is the bordism group of closed (n+1)-dimensional
manifolds with an open book structure and a compatible map to X.

Proposition 29.9 The book bordism groups are related by the exact sequence

. . . −−→ Ωn+2(X) −−→ BBn(X) −−→ OBn(X)
t
−−→ Ωn+1(X) −−→ . . .

with
t : OBn(X) −−→ Ωn+1(X) ; (F, g, h) −−→ (t(h), t(g)) .

Proof Formal. �
Proposition 29.10 Given an (n+2)-dimensional manifold M with an open
book boundary ∂M = t(h : F−−→F ), let Nn ⊂ Mn+2 be the codimension 2
Seifert surface for ∂N = ∂F ⊂ ∂M obtained by pushing F into the interior
of M , and let

h′ = h ∪ 1 : F ′ = F ∪∂ −F −−→ F ′ ,

so that the exterior
M ′ = cl.(M\N ×D2)

has boundary the fibre bundle
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∂M ′ = T (h′ : F ′−−→F ′)

and (M ;F × I, F × I) is a fundamental domain for the canonical infinite

cyclic cover M
′
of M ′. For n ≥ 4 the following conditions are equivalent :

(i) the open book decomposition on ∂M extends to an open book decom-
position of M with page F × I and binding F ′,

(ii) the fibre bundle decomposition on ∂M ′ extends to a fibre bundle de-
composition of M ′ with fibre F × I,

(iii) the inclusion i : F−−→M is a simple homotopy equivalence.

Proof By the relative s-cobordism theorem. From the algebraic point of view,
note that the Z[π][z, z−1]-module chain equivalence

C((1− z)i : C(F̃ )[z, z−1]−−→C(M̃)[z, z−1]) ≃ C(M̃ ′)

determines an Ω−1Z[π][z, z−1]-module chain equivalence

Ω−1C(M̃, F̃ )[z, z−1] ≃ Ω−1C(M̃ ′)

(since 1− z ∈ Ω−1Z[π][z, z−1] is a unit), so that M
′
is finitely dominated if

and only if i : F−−→M is a homotopy equivalence. Here, it is assumed that

π1(F ) = π1(M) = π , π1(M
′) = π × Z ,

F̃ , M̃ , M̃ ′ are the universal covers of F,M,M ′ respectively, and M
′
= M̃ ′/Z

is the corresponding infinite cyclic cover of M ′. �
Every open book is open book cobordant to a fibre bundle over S1 :

Proposition 29.11 Let (h, 1) : (F, ∂F )−−→(F, ∂F ) be a rel ∂ automor-
phism of an n-dimensional manifold with boundary (F, ∂F ). For any (n+1)-
dimensional manifold N with boundary ∂N = ∂F (e.g. N = F ) the mapping
torus of the automorphism

h′ = h ∪ 1 : F ′ = F ∪∂ −N −−→ F ∪∂ −N

is a fibre bundle T (h′) = T (h)∪∂ −N ×S1 over S1, such that there is defined
an open book cobordism (t+(g); t(h), T (h

′)) with

g = h′ × 1 : F ′ × I −−→ F ′ × I , ∂F ′ = ∅ , ∂+G = N . �

Proposition 29.12 Let M be an (n + 2)-dimensional manifold with open
book boundary ∂M = t(h : F−−→F ).
(i) If (N, ∂N) ⊂ (M,∂M) is a codimension 2 Seifert surface for ∂N = ∂F ⊂
∂M then the exterior of (N, ∂N) ⊂ (M,∂M) is an (n+2)-dimensional man-
ifold with boundary a fibre bundle over S1

(M ′, ∂M ′) = (cl.(M\N ×D2), T (h′))

where
h′ = h ∪ 1 : F ′ = F ∪∂ −N −−→ F ′ .
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∂M M

The manifolds with boundary (M,∂M), (M ′, ∂M ′) are connected by a relative
bordism (L;M,M ′; ∂+L) such that

(∂+L; ∂M, ∂M ′) = (t+(g); t(h), T (h
′))

is the open book cobordism of 29.11.
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(ii) It is possible to extend the open book decomposition on ∂M to an open
book decomposition of M with page F ′ and binding N if and only if there
exists a codimension 2 Seifert surface N ⊂M for ∂M ⊂ ∂N such that

(M ′;F ′ × I, F ′ × I) ∼= F ′ × I × (I; {0}, {1}) .

For n ≥ 5 this is the case if and only if F ′−−→M ′ is a simple homotopy
equivalence, by the relative s-cobordism theorem.
Proof (i) Identify

M = M ′ ∪T (h′) t+(g)

and set
L = M × I , g = h× 1 : G = F × I −−→ G .

(ii) Apply 29.10. �
Corollary 29.13 (i) The bounded book bordism groups are isomorphic to the
bounded fibre bundle bordism groups of 28.8

BBn(X) ∼= ABn(X) (n ≥ 0) .

(ii) The bounded book bordism groups are related to the automorphism bordism
groups by the exact sequence
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. . . −−→ Ωn+2(X×S1) −−→ BBn(X) −−→ ∆n(X)
T
−−→ Ωn+1(X×S1) −−→ . . .

with

Ωn+2(X × S1) −−→ BBn(X) ; M −−→ (M, ∅) ,
BBn(X) −−→ ∆n(X) ; (M,f ;F, g, h) −−→ (F ∪ −F, h ∪ 1, f ∪ f) ,

T : ∆n(X) −−→ Ωn+1(X × S1) ; (F, g, h) −−→ (T (h), T (g)) . �
Proof (i) There is an evident forgetful map

ABn(X) −−→ BBn(X) ; (M,f ;F, g, h) −−→ (M, jf ;F, g, h) ,

with j : X × S1−−→X the projection. Use the construction of 29.11 with
N = F to define a morphism

BBn(X) −−→ ABn(X) ; (M,f ;F, g, h) −−→ (M ′, f ′;F ′, g′, h′)

with
M ′ = M ∪F×I×∂I (F × I × I) ,
F ′ = ∂(F × I) = F ∪∂F −F , h′ = h ∪ 1 (etc.)

In order to define f ′ :M ′−−→X ×S1 identify t(h) with the h′-twisted double
of F × I

t(h) = (F × I) ∪h′ −(F × I) ,

regard M as a relative cobordism (M ;F × I, F × I) with a Morse function

e : (M ;F × I, F × I) −−→ (I; {0}, {1})

and set

f ′ = (F × e) ∪ (h× pr2) : M ′ = M ∪F×I×∂I (F × I × I)

−−→ (X × I) ∪X×∂I X × I = X × S1 .

The composite
ABn(X) −−→ BBn(X) −−→ ABn(X)

is the identity, by construction. The composite

BBn(X) −−→ ABn(X) −−→ BBn(X)

is the identity, by the relative open book bordism between (M, t(h)) and
(M ′, T (h′)) of 29.12 (i). (The method of proof is essentially the same as for
22.17 (i)).
(ii) Immediate from (i). �

Open book decompositions are the same as framed Ω−1Z[π][z, z−1]-
homology spines :
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Proposition 29.14 Let (M,∂M) be an (n + 2)-dimensional manifold with
boundary, and let

π1(M) = π , Λ = Ω−1Z[π][z, z−1] .

(i) If ∂M = t(h : F−−→F ) is an open book with page F then the binding
K = ∂F ⊂ ∂M is a framed Λ-homology boundary spine for (M,∂M) with
exterior

L = cl.(∂M\K ×D2) = T (h : F−−→F )
and Λ-coefficient torsion

τ(L−−→M × S1;Λ) = (0, [M, 1]− [F, h])

∈ ∆(Auts0(Z[π])) ⊆Wh1(Λ) = Wh1(π × Z)⊕Aut0(Z[π]) .

(ii) If n ≥ 5 and K ⊂ ∂M is a Λ-homology boundary spine with exterior L
and Λ-coefficient torsion

τ(L−−→M × S1;Λ) ∈ ∆(Auts0(Z[π])) ⊆Wh1(Λ)

then ∂M has an open book decomposition with binding K and page a codi-
mension 1 Seifert surface J ⊂ ∂M such that (LJ ; i0J, i1J) is an s-cobordism.
(iii) Let (M,∂M) = (t(h), t(∂+h)) be an open book with page (F, ∂+F ) and
binding (N, ∂N), so that

(h, ∂+h) : (F, ∂+F ) −−→ (F, ∂+F ) , ∂F = ∂+F ∪N

as in 29.2 (iii). Then (N, ∂N) ⊂ (M,∂M) is a framed Λ-homology spine for
(M,∂M) with exterior

(P, ∂+P ) = (cl.(M\N ×D2), cl.(∂M\∂N ×D2))

= (T (h : F−−→F ), T (∂+h : ∂+F−−→∂+F ))

and Λ-coefficient torsions

τ(∂+P−−→P ;Λ) = (0, [F, h]− [∂+F, ∂+h]) ,

τ(P−−→M × S1;Λ) = (0, [M, 1]− [F, h])

∈ ∆(Auts0(Z[π])) ⊆Wh1(Λ) = Wh1(π × Z)⊕Aut0(Z[π]) .

(iv) If n ≥ 6 and (N, ∂N) ⊂ (M,∂M) is a Λ-homology boundary spine with
exterior (P, ∂+P ) and Λ-coefficient torsions

τ(∂+P−−→P ;Λ) , τ(P−−→M × S1;Λ) ∈ ∆(Auts0(Z[π])) ⊆Wh1(Λ)

then (M,∂M) has an open book decomposition with binding (N, ∂N). The
dimension restriction n ≥ 6 can be reduced to n ≥ 5 if ∂M already has an
open book decomposition (e.g. if ∂M = ∅).
Proof Translate the Λ-homology spine terminology of Chap. 27 into open
book terminology. �
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29B. The asymmetric signature

The asymmetric signature will now be defined for a manifold with open book
boundary. The asymmetric signature vanishes if and only if the open book
decomposition extends to the interior. In particular, the asymmetric signature
is defined for a closed manifold, in which case it is the obstruction to the
existence of an open book decomposition.

Definition 29.15 Let (M,∂M) be an (n + 2)-dimensional manifold with
open book boundary

∂M = t(h : F−−→F )
with (h, 1) : (F, ∂F )−−→(F, ∂F ) a rel ∂ automorphism of an n-dimensional
manifold with boundary (F, ∂F ). The exterior of ∂F ⊂ ∂M is

L = cl.(t(h)\∂F ×D2) = T (h : F−−→F )

with codimension 1 Seifert surface F ⊂ L and

LF = cl.(L\F × I) ∼= F × I .

(i) The asymmetric complex of (M,F, h) is the (n+2)-dimensional asymmetric
Poincaré complex (C, λ) over Z[π1(M)] given by the construction of 27.6, with

M̃ the universal cover of M , F̃ the pullback cover of F and λ : Cn−∗−−→C
the Z[π1(M)]-module chain equivalence given by

C = C(M̃, L̃F ) ≃ C(M̃, F̃ ) ,

λ : Cn−∗ = C(M̃, L̃F )
n−∗ [M]∩−−−−→

≃ C(M̃, F̃ × I) ≃ C(M̃, F̃ )

ĩ0−−→
≃ C(M̃, L̃F ) = C ,

with M̃ the universal cover of M and F̃ the pullback cover of F .
(ii) The asymmetric signature of (M,F, h) is the cobordism class

σ∗(M,F, h) = (C, λ) ∈ LAsyn+2
h (Z[π1(M)]) . �

Proposition 29.16 The asymmetric signature is a bounded open book bor-
dism invariant, defining morphisms

σ∗ : BBn(X) −−→ LAsyn+2
h (Z[π1(X)]) ; (M,f ;F, g, h) −−→ σ∗(M,F, h)

Proof By the relative version of 29.15 a relative (n+2)-dimensional cobordism
(M ; ∂+M,∂−M) with

(∂+M,∂∂+M) = (t+(h), t(∂−h))

an (n+1)-dimensional open book with boundary (29.8) determines an (n+2)-

dimensional asymmetric Poincaré pair (C(∂̃−M, ∂̃−F )−−→C(M̃, F̃ ), (λ, ∂−λ))
over Z[π1(M)]. �
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Alexander [3] proved that every 3-manifold has an open book decompo-
sition. More generally :

Theorem 29.17 (Winkelnkemper [311] for M closed, π1(M) = {1} and
n ≥ 7, T. Lawson [151] for M closed and odd n ≥ 7, Quinn [227] for n ≥ 3)
(i) If (M,∂M) is an (n + 2)-dimensional manifold with open book boundary
∂M = t(h : F−−→F ) the asymmetric signature is

σ∗(M,F, h) = 0 ∈ LAsyn+2
h (Z[π1(M)])

if (and for n ≥ 3 only if) the open book decomposition of ∂M extends to M .
The obstruction group is 0 for odd n, so in particular every odd-dimensional
closed manifold of dimension ≥ 3 is an open book.
(ii) The asymmetric signature map is an isomorphism for n ≥ 4 and finitely
presented π1(X)

σ∗ : BBn(X)
≃−−→ LAsyn+2

h (Z[π1(X)]) .

Proof (i) It is clear from 29.16 that if the open book decomposition ∂M
extends to M then σ∗(M,F, h) = 0, so only the converse need be considered.
Three methods are presented in the high-dimensional case n ≥ 5. See [227]
for the special low-dimensional arguments required for n = 3, 4.

Method 1. An open book structure is the same as a Λ-homology spine (29.14),
with Λ = Ω−1Z[π1(M)][z, z−1]. By 27.8 the asymmetric signature is the Λ-
homology spine obstruction of 22.15

σ∗(M,F, h) ∈ Γhn+2(F,−z) = LAsyn+2
h (Z[π1(M)]) .

The asymmetric signature is the obstruction to modifying the pushed in
codimension 2 Seifert surface Fn ⊂Mn+2 for ∂F ⊂ ∂M by ambient surgery
to a submanifold Nn ⊂ Mn+2 such that the exterior is a fibre bundle over
S1.

Method 2 (Chain complex version of [227, §11]).
A codimension 1 Seifert surface (G, ∂+G) ⊂M for (F, ∂F ) ⊂ ∂M is a page for
an open book decomposition of M extending the open book decomposition
of ∂M if and only if the relative cobordism obtained by cutting M along
G ⊂M

(MG;G0, G1) = (cl.(M\G× I);G× {0}, G× {1})

is homeomorphic to G × (I; {0}, {1}). Conversely, given a codimension 1
Seifert surface (G, ∂+G) ⊂M such that there is defined an (n+3)-dimensional
asymmetric pair over Z[π1(M)]

dG = (fG : C(M̃, F̃ )−−→C(M̃, G̃), (δλ, λ))

then
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C(fG)
n+3−∗ ≃ C(G̃, F̃ )n+2−∗

≃ C(G̃× I, G̃× {0} ∪ ∂̃+G× I ∪ G̃× {1}) ,

C(M̃, G̃) ≃ C(M̃G, G̃× {0} ∪ ∂̃+G× I ∪ G̃× {1}) ,

C((δλ, λ) : C(fG)
n+3−∗−−→C(M̃, G̃)) ≃ C(M̃G, G̃0) ,

and dG is a simple Poincaré pair if and only if (MG;G0, G1) is a relative
s-cobordism. Thus for n ≥ 5 dG is a simple Poincaré pair if and only if G
is a page of an open book decomposition of M extending the open book
decomposition of ∂M . The asymmetric signature

σ∗(M,F, h) ∈ LAsyn+2
h (Z[π1(M)]) = LAsyn+2

s (Z[π1(M)])

is 0 if and only if there exists a simple asymmetric null-cobordism

d = (f : C(M̃, F̃ )−−→D, (δλ, λ)) ,

which can be arranged (as in 28.34) to be such that Dr = 0 for 2r < n+2. If d
can be realized as d = dG for some codimension 1 Seifert surface (G, ∂+G) ⊂
M the open book decomposition of ∂M extends to M . A ribbon handle of
index r+1 for a codimension 1 Seifert surface (G, ∂+G) ⊂M is an embedding

(Dr+1 ×Dn−r, Sr ×Dn−r)× I ⊂ (M,∂+G× I) .

Attaching a ribbon handle to (G, ∂+G) results in a new codimension 1 Seifert
surface

(G′, ∂+G
′) = (G ∪Dr+1 ×Dn−r, cl.(∂+G\Sr ×Dn−r) ∪Dr+1 × Sn−r−1) .

The method is to start with an arbitrary codimension 1 Seifert surface
(G, ∂+G) (e.g. a collar (F × I, F × {1}) ⊂ M) and then realize d by at-
taching ribbon handles of index r + 1 ≤ [(n+ 2)/2].

Method 3 (Chain complex version of [227, §§4-10]).
For any codimension 2 Seifert surface ∂+G ⊂ M for ∂F ⊂ ∂M the exterior
is an (n+ 2)-dimensional manifold with fibre bundle boundary

(M ′, ∂M ′) = (cl.(M\∂+G×D2), T (h′))

where
h′ = h ∪ 1 : F ′ = F ∪∂ ∂+G −−→ F ′ .

The relative mapping torus

t+(h
′ × 1 : F ′ × I−−→F ′ × I) = T (h′)× I ∪ ∂+G×D2 × {0}

defines an open book cobordism (t+(h
′ × 1); t(h), T (h′)) such that

(M × I;M × {0},M ′ × {1}; t+(h′ × 1))
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is a relative bordism, so that as in 29.16 there is induced an asymmetric
Poincaré cobordism over Z[π1(M)]

(C(M̃, F̃ )⊕ C(M̃ ′, F̃ ′)−−→C(M̃, F̃ ′), (0, λ⊕−λ′)) .

Attach handles to ∂F × I ⊂ M of index ≤ [n/2], to obtain a codimension 2
Seifert surface ∂+G ⊂M for ∂F ⊂ ∂M such that

Hr(∂+G̃, ∂F̃ ) = Hr(M̃, F̃ ) for r ̸=
{
i

i, i+ 1
if n+ 2 =

{
2i

2i+ 1 ,

in which case

Hr(M̃
′, F̃ ′) = 0 for r ̸=

{
i

i, i+ 1
if n+ 2 =

{
2i

2i+ 1 .

In the even-dimensional case n+ 2 = 2i the asymmetric signature

σ∗(M,F, h) = (Hi(M̃
′, F̃ ′), λ′)

∈ LAsy2ih (Z[π1(M)]) = LAsy2is (Z[π1(M)])

is 0 if and only if the simple nonsingular asymmetric form (Hi(M̃
′, F̃ ′), λ′)

admits a simple based f.g. free lagrangian L. If there exists such a lagrangian
the basis elements x1, x2, . . . , xℓ ∈ L can be represented by ℓ disjoint ribbon
handles of index i

(Di ×Di−1, Si−1 ×Di−1)× I ⊂ (M ′2i, F ′2i−2 × I) .

The trace of the corresponding ℓ codimension 2 surgeries on F ′ = F ′×{0} ⊂
M ′ is a codimension 1 Seifert surface for (F, ∂F ) ⊂ ∂M

(G, ∂+G) = (F ′ × I ∪
∪
ℓ

Di ×Di−1, ∂+G× {0}) ⊂M2i

with (MG;G0, G1) a relative s-cobordism.
In the odd-dimensional case n+2 = 2i+1 it is possible to apply Neumann’s

stabilization lemma as in the proof of

LAsy2i+1
h (Z[π1(M)]) = LAsy2i+1

s (Z[π1(M)]) = 0

in 28.34, arranging for the chain equivalence in the (i−1)-connected (2i+1)-

dimensional asymmetric Poincaré complex (C(M̃ ′, F̃ ′), λ′)

λ′ : C(M̃ ′, F̃ ′)2i+1−∗ ≃−−→ C(M̃ ′, F̃ ′)

to be a simple isomorphism. The basis elements of C(M̃ ′, F̃ ′)i can then be
represented by disjoint ribbon handles of index i

(Di ×Di, Si−1 ×Di)× I ⊂ (M ′2i+1, F ′2i−1 × I)
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such that the trace of the corresponding codimension 2 surgeries on F ′ ⊂M ′

is a codimension 1 Seifert surface for (F, ∂F ) ⊂ ∂M

(G, ∂+G) = (F ′ × I ∪
∪
ℓ

Di ×Di, ∂+G× {0}) ⊂M2i+1

with (MG;G0, G1) a relative s-cobordism.

(ii) Immediate from (i), noting that the proof of (i) includes the realization
of every nonsingular asymmetric form as the asymmetric complex of an even-
dimensional manifold with open book boundary – see 29.20 below for a more
detailed account. �
Remark 29.18 The actual result of Winkelnkemper [311] is that for n ≥ 7
a simply-connected closed n-dimensional manifold M is an open book if n ̸≡
0(mod4), and that for n = 4k ≥ 8 M is an open book if and only if

signature(M) = 0 ∈ L4k(Z) = Z .

The asymmetric L-theory formulation is due to Quinn [227]. The natural
map

L4k(Z) = Z −−→ LAsy4k(Z) = Z∞ ⊕ Z∞
2 ⊕ Z∞

4

is a split injection (see Chaps. 37–42 below for this and related results), so
that the signature is subsumed in the simply-connected asymmetric signa-
ture invariant of 29.17. See 30.12 below for the chain complex version of the
method of [311]. �
Corollary 29.19 (i) The bounded book bordism groups BB∗(X) are related
to the framed spine bordism groups BB∗(X,F) (27.13) for

F : Z[π1(X)][z, z−1] −−→ Λ = Ω−1Z[π1(X)][z, z−1]

by forgetful maps
BBn(X) −−→ BBn(X,F) .

(ii) For n ≥ 5 and finitely presented π1(X) the forgetful maps of (i) are
isomorphisms, so that there are identifications

BBn(X) = BBn(X,F)

= ABn(X) = Ln+2
h (Ω−1Z[π1(X)][z, z−1])

= LAsyn+2
h (Z[π1(X)])

=

{
LAsy0h(Z[π1(X)]) if n is even

0 if n is odd .

Proof The identification BBn(X) = LAsyn+2
h (Z[π1(X)]) was already ob-

tained in 29.17. The identification

Ln+2
h (Ω−1Z[π1(X)][z, z−1]) = LAsyn+2

h (Z[π1(X)])
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is a special case of 28.33. �
Remark 29.20 The inverse of the asymmetric signature isomorphism

σ∗ : BBn(X)
≃−−→ LAsyn+2

h (A) = Lhn+2(Λ)

(n = 2i ≥ 6 , A = Z[π1(X)] , Λ = Ω−1A[z, z−1])

can be described by the realization of asymmetric forms as in 27.9 or Quinn
[227, §7]. Alternatively, it is possible to directly apply the realization theorem
of Wall [304, Chap. 5], as follows.

Given a nonsingular asymmetric form (L, λ) over A define an asymmetric
form (L[z, z−1], ψ) over A[z, z−1] by

ψ = (1− z−1)λ : L[z, z−1] −−→ L∗[z, z−1] .

The (−)i+1-symmetrization of ψ defines a Λ-isomorphism

ω = ψ + (−)i+1ψ∗ = (1− z−1)(λ+ (−)izλ∗) : L[z, z−1] −−→ L∗[z, z−1] ,

with a short exact sequence

0 −−→ L[z, z−1]
ω
−−→ L∗[z, z−1] −−→ L⊕ L∗ −−→ 0 .

The action of z on L ⊕ L∗ defines an automorphism of a hyperbolic (−)i-
quadratic form over A

h =

(
1 + (−)i+1(λ∗)−1λ (λ∗)−1

(−)iλ 0

)
: (L⊕ L∗,

(
0 1

0 0

)
) −−→ (L⊕ L∗,

(
0 1

0 0

)
)

with torsion
τ(h) = τ(λ)− τ(λ)∗ ∈Wh1(A) .

Let N2i be a closed 2i-dimensional manifold with a π1-isomorphism reference
map N−−→X. Let ℓ = dimA(L), and attach ℓ (i+ 1)-handles to N × S1 × I
with self intersections ψ, to obtain an (i+ 1)-connected (2i+ 2)-dimensional
normal map

(f, b) : (M ;N × S1, ∂+M) −−→ N × S1 × (I; {0}, {1})

with quadratic kernel the based f.g. free (2i + 2)-dimensional quadratic Λ-
Poincaré complex over A[z, z−1]

σ∗(f, b) = (Si+1L[z, z−1], ψ)

and such that

M = N × S1 × I ∪ω
∪
ℓ

Di+1 ×Di+1 .
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The normal map

(∂+f, ∂+b) = (f, b)| : ∂+M −−→ N × S1

is a Λ-coefficient homology equivalence, so that ∂+M is a band. The quadratic
kernel of (∂+f, ∂+b) is the (2i + 1)-dimensional Λ-contractible quadratic
Poincaré complex over A[z, z−1]

σ∗(∂+f, ∂+b) = ∂(Si+1L[z, z−1], ψ)

= (SiC(ω : L[z, z−1]−−→L∗[z, z−1]), ∂ψ)

and the Λ-coefficient Whitehead torsion of ∂+f is

τ(∂+f ;Λ) = τ(ω) = (Φ+(∂+M), [∂+M, ζ])− (Φ+(N), [N, 1])

= (τ(λ), [L⊕ L∗, h])

∈Wh1(Λ) = Wh1(A[z, z
−1])⊕Aut0(A) .

The fibering obstruction of ∂+M is

Φ+(∂+M) = τ(λ) ∈Wh1(A) ⊆Wh1(A[z, z
−1])

so that ∂+M fibres over S1 if and only if τ(λ) = 0. Thus for simple (L, λ)

∂+M = T (h′ : N ′−−→N ′) , N ′2i = N2i##
ℓ
Si × Si

with h′ : N ′−−→N ′ a homeomorphism inducing the Z[π]-module self chain
equivalence

h̃′ = 1⊕ h :

C(Ñ ′) = C(Ñ)⊕ (L⊕ L∗)
≃−−→ C(Ñ ′) = C(Ñ)⊕ (L⊕ L∗) .

The asymmetric Witt class of (L, λ) is the obstruction to extending the open
book decomposition of the boundary

∂M = T (1 ∪ h′ : N ∪N ′−−→N ∪N ′)

to M , i.e. the asymmetric signature is given by

σ∗(M,N ∪N ′, 1 ∪ h′) = σ∗(f, b) = (L, λ)

∈ BB2i(X) = LAsy0h(A) = L2i+2
h (Λ) . �

Example 29.21 (i) Suppose given an open book decomposition of Sn+2, i.e.
a rel ∂ automorphism (h, 1) : (F, ∂F )−−→(F, ∂F ) of an (n + 1)-dimensional
manifold with boundary (F, ∂F ) with relative mapping torus

t(h) = Sn+2 .
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The asymmetric signature of (Dn+3, F, h) ∈ BBn+1({pt.}) is given by

σ∗(Dn+2, F, h) = (SĊ(F ), λ) ∈ LAsyn+3(Z) ,

with Ċ(F ) the reduced chain complex of F , and λ : SĊ(F )n+3−∗−−→SĊ(F )
a chain equivalence inducing the isomorphisms

λ∗ : Hn+1−∗(F )
[F ]∩−
−−−→≃ H∗(F, ∂F )

V
−−→≃ H∗(F ) (∗ ̸= 0, n+ 1)

with V the variation map such that

1− h∗ : H∗(F ) −−→ H∗(F, ∂F )
V
−−→ H∗(F ) .

(The variation map V : H∗(F, ∂F )−−→H∗(F ) is defined for any open book
t(h : F−−→F ), with an exact sequence

. . . −−→ Hr(F, ∂F )
V
−−→ Hr(F ) −−→ Hr(t(h)) −−→ Hr−1(F, ∂F ) −−→ . . .

– see Lamotke [143], Durfee and Kauffman [65], Kauffman [120, §2]).
(ii) A fibred knot k : Sn ⊂ Sn+2 with Seifert surface

(Fn+1, ∂F = k(Sn)) ⊂ Sn+2

and monodromy
(h, 1) : (F, ∂F ) −−→ (F, ∂F )

determines an open book decomposition of Sn+2 = t(h), and so determines
an element

(Dn+3, G;F, h, f) ∈ BBn+1({pt.})

with an asymmetric signature as in (i)

σ∗(Dn+3, F, h) = (SĊ(F ), λ) ∈ LAsyn+3(Z) .

In particular, the trivial knot k0 : Sn ⊂ Sn+2 is fibred, with monodromy
h0 = id. : F0 = Dn+1−−→Dn+1, and σ∗(Dn+3, F0, h0) = 0.
(iii) For any integer a ≥ 2 the cyclic permutation of period a

ha : Fa = {1, 2, . . . , a} −−→ Fa ; j −−→ j + 1(mod a)

has (relative) mapping torus

t(ha) = T (ha) = S1 ,

defining an open book decomposition of S1 with page Fa and empty binding
∂Fa = ∅. The nonsingular asymmetric form is given by
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(H1(D
2, Fa), λa) =

(⊕
a−1

Z,


1 −1 0 . . . 0

0 1 −1 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


)

and the asymmetric signature is

σ∗(D2, Fa, ha) = (C(D2, Fa), λa) ∈ LAsy2(Z) ,

with C(D2, Fa) ≃
⊕
a−1

SZ. In the terminology of Kauffman and Neumann

[122, Chap. 6] S1 = t(ha) is the open book decomposition of S1 associated to
the empty fibred knot [a] : S−1 = ∅ ⊂ S1, corresponding to the fibration

Fa −−→ S1
a
−−→ S1

with a : S1−−→S1; z−−→za. This is the fibred knot construction of Milnor [196]
associated to the isolated singular point 0 of C−−→C ; z−−→za. See 29.22 (iii)
below for the application to the Brieskorn fibred knots.
(iv) Set a = 2 in (iii). The isomorphism BB0({pt.}) ∼= AB0({pt.}) of 29.20
sends the element

(W,G;F, h, f) = (D2, G;F2, h2, f) ∈ BB0({pt.})

to

(W ∪ F × I × I,G ∪ f(pr1);F ∪ −F, h ∪ 1, f ∪ f) ∈ AB0({pt.}) .

The map G∪ f(pr1) :W ∪F × I × I−−→S1 defines a null bordism over S1 of

T (h2 ∪ 1) = (S1, 2 : S1−−→S1) ⊔ −(S1 ⊔ S1, 1 ⊔ 1 : S1 ⊔ S1−−→S1) ,

which is a double cover of the annulus S1 × I branched over a point. This
is a special case of the construction of Dold (López de Medrano [170, p. 75]),
which for any fixed-point free involution T : N−−→N of a closed n-dimension-
al manifold N with characteristic codimension 1 submanifold M ⊂ N uses
the double cover D of N × I branched at M/T ×{1/2} to define a cobordism
(D;N,N ⊔N) with an involution

(S;T, transposition) : (D;N,N ⊔N) −−→ (D;N,N ⊔N)

such that S has fixed point setM/T . (Here, (N,T ) = (S1,−1) ,M = S0 ⊂ S1

and M/T = {pt.}, with D = W ∪ F × I × I a connected surface with three
boundary components.) �
Remark 29.22 (i) For any rings with involution A,A′ the product of an n-
dimensional asymmetric Poincaré complex (C, λ) overA and an n′-dimension-
al asymmetric Poincaré complex (C ′, λ′) over A′ is an (n + n′)-dimensional
asymmetric Poincaré complex over A⊗Z A

′
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(C, λ)⊗ (C ′, λ′) = (C ⊗ C ′, λ⊗ λ′)

with a corresponding product in the asymmetric L-groups

LAsyn(A)⊗Z LAsyn
′
(A′) −−→ LAsyn+n

′
(A⊗Z A

′) .

As in 27.16, there is a geometric interpretation : if M is an n-dimensional
manifold with open book boundary ∂M = t(h : F−−→F ) and M ′ is an n′-
dimensional manifold with open book boundary ∂M ′ = t(h′ : F ′−−→F ′) then
M ×M ′ is an (n+ n′)-dimensional manifold with open book boundary

∂(M ×M ′) = M × ∂M ′ ∪ ∂M ×M ′

= t((1M × h′) ∪ (h× 1M ′) :M × F ′ ∪ F ×M ′

−−→M × F ′ ∪ F ×M ′) ,

with the product asymmetric signature

σ∗(M ×M ′,M × F ′ ∪ F ×M ′, (1M × h′) ∪ (h× 1M ′))

= σ∗(M,F, h)⊗ σ∗(M ′, F ′, h′) ∈ LAsyn+n
′
(Z[π1(M ×M ′)]) .

(ii) Suppose that (M,∂M) is an n-dimensional manifold with boundary and
(N, ∂N) ⊂ (M,∂M) is a homology framed codimension 2 submanifold which
is a push-in as in the proof of 27.8, with n-dimensional asymmetric complex
(C, λ) over Z[π1(M)] (27.6) where C = C(M̃, Ñ)n−∗. For any integer a ≥ 2

let F̂a ⊂ D2 be a subset of a points in the interior of D2, a push-in of
the codimension 1 Seifert surface Fa ⊂ S1 of 29.21 (iii) for the fibred knot
[a] : S−1 = ∅ ⊂ S1. Define the a-fold cyclic suspension (M × D2,M ′) of
(M,N) to be the product (n+2)-dimensional manifold with boundary (M ×
D2, ∂(M ×D2)) with the homology framed codimension 2 submanifold

M ′ = N ×D2 ∪M × F̂a ⊂M ×D2

such that (M ′, ∂M ′) is the a-fold cyclic branched cover of (M,∂M) branched
over (N, ∂N) (27.10). The (n + 2)-dimensional asymmetric complex over
Z[π1(M)] of the cyclic suspension is the product

(C ′, λ′) = (C, λ)⊗ (
⊕
a−1

SZ, λa) .

For (M,∂M) = (Dn, Sn−1) this is just the a-fold cyclic suspension operation
of Kauffman and Neumann [122].
(iii) The product formula for the Seifert form of the product of a knot and a
fibred knot was first proved in [122, 6.5], including the a-fold cyclic suspension
of a knot K = ∂N ⊂ Sn−1 as a special case. See Kauffman [119], [120] for the
topological construction of the manifolds of Brieskorn [26] : the fibred knot
Σ(a0, a1, . . . , ai)

2i−1 ⊂ S2i+1 at the singular point 0 ∈ Ci+1 of the function
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f : C i+1 −−→ C ; (z0, z1, . . . , zi) −−→ z a00 + z a11 + . . .+ z aii (a0, . . . , ai ≥ 2)

was obtained inductively as the ai-fold cyclic suspension of the fibred knot
Σ(a0, a1, . . . , ai−1)

2i−3 ⊂ S2i−1, starting with [a0] : Σ(a0) = S−1 = ∅ ⊂ S1.
The application of the product formula gave the Seifert form to be

i⊗
j=0

(
⊕
aj−1

Z, λaj )

as originally obtained by Brieskorn and Pham (cf. Milnor [196, 9.1]).
(iv) The 2-fold periodicity isomorphism

LAsyn(A)
≃−−→ LAsyn+2(A) ; (C, λ) −−→ (SC, λ)

is given by product with the element (SZ, λ2) ∈ LAsy2(Z) (λ2 = 1), corre-
sponding to the 2-fold cyclic suspension operation of Bredon [25], Kauffman
[119], Neumann [210] and Kauffman and Neumann [122]. �
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30. Twisted doubles

A closed manifold is a twisted double if it is of the form

Q ∪h −Q = Q× {0, 1}/{(x, 0) ≃ (h(x), 1) |x ∈ P}

for some manifold with boundary (Q,P ) and a self homeomorphism

h : ∂Q = P −−→ P .

Twisted doubles have played an important role in the history of manifolds,
especially in the odd dimensions :

(i) every 3-dimensional manifold admits a Heegaard decomposition as a
twisted double of solid tori

M3 = (#S1 ×D2) ∪h −(#S1 ×D2)

with h : #S1 × S1−−→#S1 × S1,
(ii) the original exotic 7-spheres of Milnor [190] are twisted doubles

Σ7 = S3 ×D4 ∪h1 −(S3 ×D4) = D7 ∪h2 −D7

with h1 : S3 × S3−−→S3 × S3, h2 : S6−−→S6 diffeomorphisms,
(iii) Smale [270] and Barden used the handlebody proof of the h-cobordism

theorem to show that every simply-connected odd-dimensional man-
ifold M2i+1 (i ≥ 2) is a twisted double,

(iv) the original formulation in Wall [304] of the odd-dimensional surgery
obstruction groups was in terms of automorphisms of hyperbolic
quadratic forms, corresponding to twisted doubles in algebraic L-
theory.

Although the existence and classification of twisted double structures appears
at first to be a codimension 1 surgery problem, it is in fact susceptible to the
methods of codimension 2 surgery.

An open book decomposition is a particular kind of twisted double. The
asymmetric signature obstruction to an open book decomposition on a man-
ifold M was identified in Chap. 29 with a framed 2 codimension surgery
invariant, namely the obstruction to modifying the empty codimension 2 sub-
manifold ∅ ⊂ M to a framed codimension 2 submanifold L ⊂ M such that
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the exterior fibres over S1. In the original work of Winkelnkemper [310] and
Quinn [227] the open book invariant arose via codimension 1 surgery, as the
obstruction to the existence of a twisted double decompositionM = Q∪h−Q
such that P = R ∪k −R is a twisted double with the two inclusions R−−→Q
simple homotopy equivalences. This chapter will extend the open book theory
of Chap. 29 to twisted doubles, reversing the historical order. The asymmet-
ric signature invariant will be generalized to a manifold with twisted double
boundary, and will be shown to be the obstruction to extending the twisted
double decomposition to the interior.

The geometric theory of twisted doubles is developed in 30A. Twisted
doubles arise as the boundaries of fundamental domains for infinite cyclic
covers of manifolds with boundary a fibre bundle over S1, as follows. If
(M,∂M) is an (n + 2)-dimensional manifold with boundary and a map
(p, ∂p) : (M,∂M)−−→S1 such that ∂p : ∂M−−→S1 is a fibre bundle with
∂M = T (h : P−−→P ) then a fundamental domain (W ;Q, ζQ) for the infi-
nite cyclic cover M = p∗R of M is an (n+ 2)-dimensional manifold W with
boundary the twisted double ∂W = Q ∪h −Q.

................................................................................................................................................................................................................................................................................................
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Conversely, a manifold with a twisted double boundary (W,∂W = Q∪h−Q)
determines an (n+ 2)-dimensional manifold with fibre bundle boundary

(M,∂M) = (W ∪Q× I, T (h : P−−→P )) .
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For any such W,M,P,Q, h the construction of Chap. 29 gives an (n + 2)-
dimensional asymmetric Poincaré complex (C, λ) over Z[π1(W )] with

C = C(M̃, P̃ ) = C(( i j0 − j1 ) : C(P̃ )⊕ C(Q̃)−−→C(W̃ ))

(i : P−−→W , j0, j1 : Q−−→W inclusions) .

The algebraic theory of twisted doubles is developed in 30B, allowing the
definition of the asymmetric signature

σ∗(W,Q,P, h) = (C, λ) ∈ LAsyn+2
h (Z[π1(W )])

using only the algebraic Poincaré duality decomposition of (W,Q,P, h). The
asymmetric signature is 0 if (and for n ≥ 4 only if) the twisted double
decomposition of the boundary ∂W extends to W . Thus a high-dimensional
manifold is a twisted double if and only if it is an open book. The algebraic
theory of twisted doubles is extended to open books in 30C, with the algebraic
L-groups of twisted doubles defined in 30D. In particular, it is shown that
the odd-dimensional L-groups are quotients of the odd-dimensional twisted
double L-groups.

30A. Geometric twisted doubles

Definition 30.1 (i) The double of an n-dimensional geometric Poincaré pair
(Q,P ) is the n-dimensional geometric Poincaré complex

D(Q,P ) = Q ∪P −Q = ∂(Q× I) .

(ii) The twisted double of an n-dimensional geometric Poincaré pair (Q,P )
with respect to a self homotopy equivalence h : P−−→P is the n-dimensional
geometric Poincaré complex

D(Q,P, h) = Q ∪h −Q = Q× {0, 1}/{(x, 0) = (h(x), 1) |x ∈ P} . �
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Remark 30.2 (i) The double of (Q,P ) is just the (un)twisted double

D(Q,P ) = D(Q,P, 1) .



380 30. Twisted doubles

(ii) The twisted double D(Q,P, h) of an n-dimensional manifold with bound-
ary (Q,P ) with respect to an automorphism h : P−−→P is a closed n-
dimensional manifold.
(iii) If h : P−−→P extends to a homotopy equivalence (resp. homeomorphism)
H : Q−−→Q there is defined a homotopy equivalence (resp. homeomorphism)

D(Q,P, h) −−→ D(Q,P ) ; (x, i) −−→
{
(H(x), 0) if i = 0

(x, 1) if i = 1
(x ∈ Q) .

(iv) The mapping torus of a homotopy equivalence of an n-dimensional geo-
metric Poincaré complex h : P−−→P is a twisted double

T (h : P−−→P ) = D(P × I, P × ∂I, h ⊔ 1) ,

with
h ⊔ 1 : ∂(P × I) = P ⊔ −P −−→ P ⊔ −P .

(v) The relative mapping torus of a rel ∂ homeomorphism of an n-dimensional
manifold with boundary (h, 1) : (P, ∂P )−−→(P, ∂P ) is a twisted double

t(h : P−−→P ) = D(P × I, ∂(P × I), h ∪ 1) ,

with

h ∪ 1 : ∂(P × I) = D(P ) = P ∪∂P −P −−→ P ∪∂P −P . �

By contrast with open book structures on surfaces (29.5) :

Example 30.3 Every closed (connected, orientable) surfaceM2 is the double

M = D(F, ∂F )

of the 2-dimensional manifold with boundary obtained by deleting the neigh-
bourhoods Di

∼= D2 ⊂ D2 of g distinct points xi ∈ int(D2) (1 ≤ i ≤ g)

(F, ∂F ) = (cl.(D2\
g
⊔
i=1

Di), ⊔
g+1

S1) ,

with g the genus of M . �
Proposition 30.4 Let (Q,P ) be an n-dimensional manifold with boundary,
together with an automorphism h : P−−→P .
(i) The twisted double D(Q,P, h) is twisted double cobordant to the mapping
torus T (h) by a twisted double cobordism.
(ii) Given a map (g, f) : (Q,P )−−→X such that there exists a homotopy
fh ≃ f : P−−→X. Choose a base point ∗ ∈ S1 and let

i : X −−→ X × S1 ; x −−→ (x, ∗) ,

j : X × S1 −−→ X ; (x, s) −−→ x .

Then g extends to a map
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D(g, f) = g ∪ g : D(Q,P, h) = Q ∪h −Q −−→ X

such that

(D(Q,P, h), iD(g, f)) = (T (h), ijT (f)) = (T (h), T (f))

∈ im(i : Ωn(X)−−→Ωn(X × S1)) ⊆ Ωn(X × S1) .

Proof (i) Use a collar P × I ⊂ Q to write the double as

D(Q,P, h) = (Q× {−1} ∪1 P × [−1, 0])
∪
h

(P × [0, 1] ∪1 Q× {1}) .

The mapping torus T (h) is obtained from D(Q,P, h) by surgery on

Q× {−1, 1} ⊂ D(Q,P, h) ,

with the trace

R = D(Q,P, h)× I ∪Q×{−1,1}×{1} Q× [−1, 1]

= (Q× [−1, 0]× I ∪Q×{−1}×{1} Q× [−1, 0])∪
1∪h∪1

(Q× [0, 1]× I ∪Q×{1}×{1} Q× [0, 1])

defining a twisted double cobordism (R;D(Q,P, h), T (h)).
(ii) By 23.2

(T (h), T (f)) = (T (h), ijT (f))⊕ (P × S1, f × 1)

= (T (h), ijT (f))⊕ ∂(Q× S1, g × 1)

= (T (h), ijT (f)) ∈ Ωn(X × S1) ,

so it suffices to verify that

(D(Q,P, h), D(g, f)) = (T (h), jT (f)) ∈ Ωn(X) .

The map g : Q−−→X extends to a map on the cobordism defined in (i)

(G;D(g, f), jT (f)) : (R;D(Q,P, h), T (h)) −−→ X ,

so that
(D(Q,P, h), D(g, f)) = (T (h), jT (f)) ∈ Ωn(X) . �

Definition 30.5 (i) The twisted double bordism group DBn(X) is the group
of bordism classes of quintuples (Q,P, h, g, f) with (Q,P ) an (n + 1)-
dimensional manifold with boundary, h : P−−→P an automorphism and
(g, f) : (Q,P )−−→X a map such that there exists a homotopy fh ≃ f :
P−−→X.
(ii) The bounded twisted double bordism group CBn(X) is the group of
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bordism classes of septuples (W,G;Q,P, h, g, f) with (W,∂W ) an (n + 2)-
dimensional manifold with boundary ∂W = D(Q,P, h) the twisted double
of an (n+ 1)-dimensional manifold with boundary (Q,P ) with respect to an
automorphism h : P−−→P , and G :W−−→X, (g, f) : (Q,P )−−→X maps such
that there exists a homotopy fh ≃ f : P−−→X with

G| = D(g, f) : ∂W = D(Q,P, h) −−→ X . �

In other words,DBn(X) is the bordism group of closed (n+1)-dimensional
manifolds with a twisted double structure and a compatible map to X.

Proposition 30.6 (i) There are natural identifications of the open book and
twisted double bordism books

OBn(X) = DBn(X) (n ≥ 0) ,

and also of the bounded automorphism, open book and twisted double bordism
groups

ABn(X) = BBn(X) = CBn(X) (n ≥ 0) ,

with a natural isomorphism of exact sequences

. . . // Ωn+2(X) // BBn(X) //

∼=
��

OBn(X)
t //

∼=
��

Ωn+1(X) // . . .

. . . // Ωn+2(X) // CBn(X) // DBn(X)
D // Ωn+1(X) // . . .

with

BBn(X) −−→ CBn(X) ;

(W,G;P, h, f) −−→ (W,G;P × I,D(P ), h ∪ 1, f(prP ), f ∪ f) ,
OBn(X) −−→ DBn(X) ; (P, h, f) −−→ (P × I,D(P ), h ∪ 1, f(prP )) ,

t : OBn(X) −−→ Ωn+1(X) ; (P, h, f) −−→ (t(h), t(f)) ,

D : DBn(X) −−→ Ωn+1(X) ; (Q,P, h, g, f) −−→ (D(Q,P, h), g ∪ g) .

(ii) The automorphism bordism groups split as

∆n(X) = OBn(X)⊕Ωn(X) .

The exact sequence

. . . −−→ Ωn+2(X×S1) −−→ BBn(X) −−→ ∆n(X)
T
−−→ Ωn+1(X×S1) −−→ . . .

is isomorphic to

. . . −−→ Ωn+2(X)⊕Ωn+1(X) −−→ BBn(X)

−−→ OBn(X)⊕Ωn(X)
t⊕1
−−→ Ωn+1(X)⊕Ωn(X) −−→ . . . ,
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and contains the exact sequence

. . . −−→ Ωn+2(X) −−→ BBn(X) −−→ OBn(X)
t
−−→ Ωn+1(X) −−→ . . .

as a direct summand.
(iii) The asymmetric signature maps

σ∗ : ABn(X) = BBn(X) = CBn(X) −−→ LAsyn+2
h (Z[π1(X)])

are isomorphisms for finitely presented π1(X) and n ≥ 5. Moreover, using
28.33 to identify

LAsyn+2
h (Z[π1(X)]) = Ln+2

h (Ω−1Z[π1(X)][z, z−1])

the asymmetric signature is identified with the Ω−1Z[π1(X)][z, z−1]-coefficient
symmetric signature

CBn(X) −−→ Ln+2
h (Ω−1Z[π1(X)][z, z−1]) ;

(W,G;Q,P, h, g, f) −−→ σ∗(M,∂M ;Ω−1Z[π1(X)][z, z−1])

with (M,∂M) the (n + 2)-dimensional manifold with fibre bundle boundary
given by

M = W ∪Q× I , ∂M = T (h : P−−→P ) .

(iv) For finitely presented π1(X) and n ≥ 5 the automorphism and open book
bordism groups ∆n(X), OBn(X) are related to the ordinary bordism groups
Ω∗(X) by exact sequences

0 −−→ ∆2i+1(X)
T
−−→ Ω2i+2(X × S1) −−→ LAsy0h(Z[π1(X)])

−−→ ∆2i(X)
T
−−→ Ω2i+1(X × S1) −−→ 0 ,

0 −−→ OB2i+1(X)
t
−−→ Ω2i+2(X) −−→ LAsy0h(Z[π1(X)])

−−→ OB2i(X)
t
−−→ Ω2i+1(X) −−→ 0 .

Proof (i) See 29.13 for the identifications ABn(X) = BBn(X). The following
argument shows that the natural maps

CBn(X) −−→ ABn(X) ;

(W,G;Q,P, h, g, f) −−→ (M,G ∪ g(prQ);P, h, f) , M = W ∪Q× I ,
ABn(X) −−→ CBn(X) ;

(M,F ;P, h, f) −−→ (M, jF ;P × I, P × ∂I, h ∪ 1, T (f)|, T (f)|)

define inverse isomorphisms.
Given any representative of an element (M,F ;P, h, f) ∈ ABn(X) it is possi-
ble to make the map
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(F, T (f)) : (M,T (h)) −−→ X × S1

transverse regular at X × {pt.} ⊂ X × S1, with

(Q,P ) = (F, T (f))−1(X × {pt.}) ⊂M

a framed codimension 1 submanifold with boundary equipped with a map

(g, f) = (F, T (f))| : (Q,P ) −−→ X × {pt.} = X .

Cutting M along Q defines an (n+ 2)-dimensional manifold with boundary

(N, ∂N) = (cl.(M\nbhd.(Q)), D(Q,P, h))

with a map

(G,D(g, f)) : (N,D(Q,P, h)) −−→ M
jF
−−→ X

such that

F = G ∪ g × 1 : M = N ∪Q× I −−→ X × S1 .

The image of (M,F ;P, h, f) ∈ ABn(X) under the map ABn(X)−−→CBn(X)
can thus be expressed as

(M, jF ;P × I, P × ∂I, h ∪ 1, T (f)|, T (f)|)
= (N,G;Q,P, h, g, f) + (Q× I, g(pr1);Q,P, f, 1)
= (N,G;Q,P, h, g, f) ∈ CBn(X) .

Applying 30.4, it follows that both the composites

ABn(X) −−→ CBn(X) −−→ ABn(X) ,

CBn(X) −−→ ABn(X) −−→ CBn(X)

are the identity maps.
The maps

OBn(X) −−→ DBn(X) ; (P, h, f) −−→ (P × I,D(P ), h ∪ 1, f(prP ), f) ,

DBn(X) −−→ OBn(X) ; (Q,P, h, g, f) −−→ (P, h, f)

are inverse isomorphisms, noting that

(Q,P, h, g, f) = (P × I,D(P ), h ∪ 1, f(prP ), f) ∈ DBn(X)

via the relative bordism Q× I between Q and P × I.
(ii) By analogy with the direct sum system of 23.2

Ωn+1(X)
i

−−−−−→←−−−−−
j

Ωn+1(X × S1)
B

−−−−−→←−−−−−
C

Ωn(X)
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define the direct sum system

OBn(X)
i

−−−−−→←−−−−−
j

∆n(X)
B

−−−−−→←−−−−−
C

Ωn(X)

with

i : OBn(X) −−→ ∆n(X) ; (P, h, f) −−→ (D(P, ∂P ), h ∪ 1, f ∪ f) ,
j : ∆n(X) −−→ OBn(X) ; (P, h, f) −−→ (D(P, ∅), h ⊔ 1, f ⊔ f) ,
B : ∆n(X) −−→ Ωn(X) ; (P, h, f) −−→ (P, f) ,

C : Ωn(X) −−→ ∆n(X) ; (P, f) −−→ (P, 1, f) .

The mapping tori define a natural transformation of direct sum systems

OBn(X)

t

��

i //
∆n(X)

j
oo

T
��

B //
Ωn(X)

C
oo

Ωn+1(X)
i //

Ωn+1(X × S1)
j

oo
B //

Ωn(X)
C

oo

(iii) Combine (i) and 29.17 (ii).
(iv) Combine (ii) and (iii). �

It has already been remarked that an open book is a twisted double (30.2
(v)). The following result gives a sufficient homotopy theoretic condition for
a manifold to be an open book, and a fortiori a twisted double.

Proposition 30.7 Let W be a closed n-dimensional manifold. Suppose given
a separating codimension 1 submanifold V n−1 ⊂W , so that

W = W+ ∪V W− , W+ ∩W− = ∂W+ = ∂W− = V ,

and also a separating codimension 1 submanifold Un−2 ⊂ V , so that

V = V+ ∪U V− , V+ ∩ V− = ∂V+ = ∂V− = U .

If the inclusions V+−−→W+, V+−−→W− are simple homotopy equivalences
and n ≥ 6 then W has an open book decomposition

W ∼= t(h : P−−→P )

with h : P−−→P a rel ∂ self homeomorphism of the (n − 1)-dimensional
manifold with boundary (P, ∂P ) = (V+, U).
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•

Proof Apply the relative s-cobordism theorem to the relative bordisms
(W+;V+, V−;U) and (W−;V+, V−;U). �

30B. Algebraic twisted doubles

Algebraic twisted doubles are the algebraic Poincaré analogues of twisted
doubles. A high-dimensional manifold has a twisted double structure if and
only if its algebraic Poincaré complex has an algebraic twisted double struc-
ture, if and only if the asymmetric signature is 0.

Given an algebraic Poincaré pair over a ring with involution A with
twisted double boundary there will now be constructed an asymmetric
Poincaré complex over A, whose cobordism class is the obstruction to the
extension (up to bordism) of the twisted double decomposition to the inte-
rior. The pair is a fundamental domain for an algebraic Poincaré complex over
the Fredholm localization Ω−1A[z, z−1]. The construction allows the inverse
of the isomorphism of 28.33

LAsyn+2
h (A)

≃−−→ Ln+2
h (Ω−1A[z, z−1], ϵ) ;

(C, λ) −−→ (Ω−1C[z, z−1], (1− z)λ+ (1− z−1)Tϵλ)

to be interpreted as an asymmetric signature map

Ln+2
h (Ω−1A[z, z−1], ϵ)

≃−−→ LAsyn+2
h (A) ,

an algebraic version of the asymmetric signature map of 30.7

σ∗ : CBn(X) = Ln+2
h (Ω−1Z[π1(X)][z, z−1]) −−→ LAsyn+2

h (Z[π1(X)]) .

Definition 30.8 (i) The double of an n-dimensional ϵ-symmetric complex
(E, θ) over A is the n-dimensional ϵ-symmetric Poincaré complex over A

D(E, θ) = (D(E), D(θ))

= (∂E−−→En−∗, (0, ∂θ)) ∪(E,θ) (∂E−−→En−∗, (0,−∂θ)) .

(ii) The twisted double of an n-dimensional ϵ-symmetric Poincaré pair c =
(f : C−−→D, (δϕ, ϕ)) over A with respect to a self homotopy equivalence
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(h, χ) : (C, ϕ)−−→(C, ϕ) is the n-dimensional ϵ-symmetric Poincaré complex
over A

c ∪(h,χ) −c = (D ∪h −D, δϕ ∪χ −δϕ)

= (fh : C−−→D, (δϕ+ fχf∗, ϕ)) ∪ (f : C−−→D, (−δϕ,−ϕ))

with

D ∪h D = C(

(
fh

f

)
: C−−→D ⊕D) ,

(δϕ ∪χ −δϕ)s =

 δϕs + fχsf
∗ 0 0

(−)n−rϕsh∗f∗ (−)n−r+sTϵϕs−1 0
0 (−)s−1fϕs −δϕs

 :

(D ∪h D)n−r+s = Dn−r+s ⊕ Cn−r+s−1 ⊕Dn−r+s

−−→ (D ∪h D)r = Dr ⊕ Cr−1 ⊕Dr (s ≥ 0) .

The untwisted double of (i) is the twisted double of the n-dimensional ϵ-
symmetric Poincaré pair (∂E−−→En−∗, (0, ∂θ)) with respect to the identity
(1, 0) : (∂E, ∂θ)−−→(∂E, ∂θ), which can be written as

(D ∪h D, δϕ ∪χ −δϕ) = (D ∪C D, δϕ ∪ϕ −δϕ) .

(iii) A twisted double structure on an n-dimensional ϵ-symmetric Poincaré
complex (E, θ) is a homotopy equivalence (E, θ) ≃ c ∪(h,χ) −c to a twisted
double. Similarly for pairs.
(iv) A concordance of twisted double structures on (E, θ) is a twisted double
structure on the product cobordism (E, θ)⊗σ∗(I; {0}, {1}) which agrees with
the given structures on (E, θ)⊗ σ∗({0}) and (E, θ)⊗ σ∗({1}). �
Example 30.9 The twisted double of an n-dimensional geometric Poincaré
pair (Q,P ) with respect to a self homotopy equivalence h : P−−→P is an
n-dimensional geometric Poincaré complex

N = D(Q,P, h) = Q ∪h −Q .

Let (Q̃, P̃ ) be the pullback to (Q,P ) of the universal cover Ñ of N . The sym-
metric complex of N is the twisted symmetric Poincaré double over Z[π1(N)]

σ∗(N) = (C(Q̃) ∪
h̃
C(Q̃), δϕ ∪χ −δϕ)

with
σ∗(Q,P ) = (C(P̃ )−−→C(Q̃), (δϕ, ϕ))

the n-dimensional symmetric Poincaré pair of (Q,P ) over Z[π1(N)] and

(h̃, χ) : (C(P̃ ), ϕ) −−→ (C(P̃ ), ϕ)

the induced self homotopy equivalence. �
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Definition 30.10 Let x = (g : ∂E−−→E, (θ, ∂θ)) be an n-dimensional ϵ-
symmetric Poincaré pair over A such that the boundary is the twisted double
of an (n−1)-dimensional ϵ-symmetric Poincaré pair (f : C−−→D, (δϕ, ϕ)) over
A with respect to a self homotopy equivalence (h, χ) : (C, ϕ)−−→(C, ϕ)

(∂E, ∂θ) = (D ∪h D, δϕ ∪χ −δϕ)

with

g = (j0 k j1) : (D ∪h D)r = Dr ⊕ Cr−1 ⊕Dr −−→ Er .

(i) The asymmetric complex of x is the n-dimensional asymmetric Poincaré
complex (B, λ) over A with

B = C(j0 − j1 : D−−→C(j0f : C−−→E))

and λ : Bn−∗−−→B the chain equivalence which fits into the chain homotopy
commutative diagram

0 // C((j0 j1) : D ⊕D−−→E)n−∗

(θ, ∂θ)0≃

��

// Bn−∗

λ
��

// C(f)n−∗

(δϕ, ϕ)0≃

��

// 0

0 // C(j0f : C−−→E) // B // D∗−1
// 0

In particular, (B, λ) = (E, θ0) in the closed case ∂E = 0.
(ii) The asymmetric signature of x is the asymmetric Poincaré cobordism
class

σ∗(x) = (B, λ) ∈ LAsyn(A) . �

Given an n-dimensional geometric Poincaré triad (Q; ∂0Q, ∂1Q; ∂01Q) and
a self homotopy equivalence of the partial boundary (n− 1)-dimensional ge-
ometric Poincaré pair

(h, ∂0h) : (∂1Q, ∂01Q) −−→ (∂1Q, ∂01Q)

there is defined a twisted double n-dimensional geometric Poincaré pair

(Q ∪h −Q, ∂0Q ∪∂0h −∂0Q) .
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There is a corresponding construction of the twisted double of an n-dimen-
sional ϵ-symmetric Poincaré triad with respect to a self homotopy equivalence
of the partial boundary (n− 1)-dimensional ϵ-symmetric Poincaré pair.

Proposition 30.11 (i) The concordance classes of twisted double decompo-
sitions of an n-dimensional ϵ-symmetric Poincaré complex (E, θ) are in one-
one correspondence with the rel ∂ asymmetric null-cobordisms of (E, θ0). In
particular, (E, θ) has a twisted double structure if and only if the asymmetric
signature

σ∗(x) = (E, θ0) ∈ LAsyn(A)

is σ∗(x) = 0.
(ii) The asymmetric signature of an n-dimensional ϵ-symmetric Poincaré pair
x = (∂E−−→E, (θ, ∂θ)) with a twisted double structure on the boundary ∂x =
(∂E, ∂θ) is given by

σ∗(x) = (E ∪∂E F, θ0 ∪∂θ0 −λ) ∈ LAsyn(A)

with (∂E−−→F, (λ, ∂θ0)) the asymmetric null-cobordism corresponding to the
twisted double structure of ∂x. It is possible to extend the twisted double
structure from ∂x to x if and only if σ∗(x) = 0.
(iii) The cobordism group of f.g. free n-dimensional ϵ-symmetric Poincaré
pairs x over A with a twisted double structure on the boundary is isomorphic
to Lnh(Ω

−1A[z, z−1]). The asymmetric signature isomorphism

Lnh(Ω
−1A[z, z−1], ϵ)

≃−−→ LAsynh(A) ; x −−→ σ∗(x) = (B, λ)

is inverse to the isomorphism of 28.33

LAsynh(A)
≃−−→ Lnh(Ω

−1A[z, z−1], ϵ) ;

(C, λ) −−→ (Ω−1C[z, z−1], (1− z)λ+ (1− z−1)Tϵλ) .

Proof (i) Suppose that (E, θ) is homotopy equivalent to the twisted double

(D ∪h D, δϕ ∪χ −δϕ)

of an n-dimensional ϵ-symmetric Poincaré pair (f : C−−→D, (δϕ, ϕ)) with
respect to a self homotopy equivalence (h, χ) : (C, ϕ)−−→(C, ϕ). Define a
chain complex

F = C(f)⊕ C∗−1

and let e : D ∪h D−−→F be the chain map defined by

e =

 1 0 1

0 1− h 0

0 1 0

 :

(D ∪h D)r = Dr ⊕ Cr−1 ⊕Dr −−→ Fr = Dr ⊕ Cr−1 ⊕ Cr−1 .
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The composite chain map

g : E ≃ D ∪h D
e
−−→ F

and the A-module morphisms

λ =

 0 0 0

χ0f
∗ ϕ0(1− h∗) ϕ0

0 ϕ0h
∗ 0

 :

Fn+1−r = Dn+1−r ⊕ Cn−r ⊕ Cn−r −−→ Fr = Dr ⊕ Cr−1 ⊕ Cr−1

define an (n+1)-dimensional asymmetric Poincaré pair (g : E−−→F, (λ, θ0)),
so that

(E, θ0) = 0 ∈ LAsyn(A) .

(Let T (h, χ) be the algebraic mapping torus of (h, χ) (24.3), and write

A⊗A[z,z−1] T (h, χ) = (B, β) ,

so that

dB =

(
dC (−)r(1− h)
0 dC

)
:

Br = Cr ⊕ Cr−1 −−→ Br−1 = Cr−1 ⊕ Cr−2 ,

βs =

(
0 (−)sϕs

(−)n−r−1ϕs (−)n−r+sTϵϕs−1

)
:

Bn−r+s = Cn−r+s ⊕ Cn−r+s−1 −−→ Br = Cr ⊕ Cr−1 .

The asymmetric Poincaré pair (g, (λ, β0)) is the union of the asymmetrization
of the twisted double symmetric Poincaré cobordism

(E ⊕B−−→C(∆ : D−−→E), (δϕ, ϕ⊕−θ))

analogous to the geometric twisted double cobordism (R;D(Q,P, h), T (h))
used in the proof of 30.4 (i), and the asymmetric null-cobordism (B−−→C∗−1,
(0, β0)) of (B, β0).)

Conversely, suppose that (E, θ0) = 0 ∈ LAsyn(A), so that there exists
an (n + 1)-dimensional asymmetric Poincaré pair (g : E−−→F, (λ, θ0)). Ap-
ply the construction of 20.25 to the morphism of n-dimensional ϵ-symmetric
complexes

(g, 0) : (E, θ) −−→ (F, g%(θ)) .

The construction gives a homotopy equivalence

(E, θ) ≃ c+ ∪ c−

with c+ the thickening of (F, g%(θ)) (20.22) and c− homotopy equivalent
to the thickening of (C(θ0g

∗ : Fn−∗−−→E), j%(θ)), with j : E−−→C(θ0g
∗) the
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inclusion. This is a twisted double decomposition of (E, θ) since the A-module
morphisms

h = (g λ) : C(θ0g
∗)r = Er ⊕ Fn−r+1 −−→ Fr

define a homotopy equivalence of n-dimensional ϵ-symmetric complexes

h : (C(θ0g
∗), j%(θ)) ≃ (F, g%(θ))

inducing a homotopy equivalence of the thickenings h : c− ≃ c+.
(ii) This is just the relative version of (i), using the relative version of 20.25
given by 20.30.
(iii) By 24.2 every f.g. free n-dimensional ϵ-symmetric Poincaré complex over
Ω−1A[z, z−1] is the union U(Γ ) (24.1) of the fundamental n-dimensional
symmetric Ω−1A[z, z−1]-Poincaré pair

Γ = (C(f)⊕ C(f)−−→C(j0f), (θ/∂θ, δϕ/ϕ⊕−δϕ/ϕ))

obtained from a f.g. free n-dimensional ϵ-symmetric Poincaré pair x = (g :
∂E−−→E, (θ, ∂θ)) with boundary the twisted double of an (n−1)-dimensional
ϵ-symmetric Poincaré pair (f : C−−→D, (δϕ, ϕ)) over A with respect to a self
homotopy equivalence (h, χ) : (C, ϕ)−−→(C, ϕ). �
Corollary 30.12 Given an n-dimensional manifold with twisted double
boundary (W,∂W = Q ∪h −Q) and a map G : W−−→X let (B, λ) be the
n-dimensional asymmetric Poincaré complex constructed as in 30.10 from
the n-dimensional symmetric Poincaré pair σ∗(W,∂W ) over Z[π1(X)] with
twisted double boundary σ∗(∂W ) = σ∗(Q)∪h−σ∗(Q). Up to chain equivalence

B = C(j0 − j1 : C(Q̃)−−→C(W̃ , P̃ )) = C(M̃, P̃ )

with j0, j1 : Q−−→W the two inclusions and

(M,∂M) = (W ∪Q× I, T (h : P−−→P ))

an n-dimensional manifold with fibre bundle boundary.
(i) (B, λ) is the asymmetric Poincaré complex associated to (M,∂M) in
29.15, with

λ = [M ] ∩ − : Hn−∗(B) = Hn−∗(M̃, P̃ )
≃−−→ H∗(B) = H∗(M̃, P̃ ) ,

so that
σ∗(W ;Q,P, h, g, f) = σ∗(M,G ∪ 1Q×I ;P, h, f)

= (B, λ) ∈ LAsynh(Z[π1(X)]) .

(ii) The asymmetric signature map on the twisted double bordism group is
given by

σ∗ : CBn−2(X) −−→ LAsynh(Z[π1(X)]) ;

(W,G;Q,P, h, g, f) −−→ σ∗(W,G;Q,P, h, g, f) = (B, λ) .
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(iii) Take G = 1 : W−−→X = W . The asymmetric signature is such that
σ∗(W ) = 0 ∈ LAsynh(Z[π1(W )]) if (and for n ≥ 6 only if) W has a twisted
double decomposition extending ∂W = Q ∪h −Q.
Proof (i) The construction of 30.11 is the algebraic analogue of the geometric
construction of 29.15.
(ii) Immediate from (i).
(iii) It is clear from 30.11 that σ∗(W ) = 0 for a twisted double W . For
the converse, only the closed case ∂W = ∅ will be considered, for the sake
of brevity. Let then W be a closed n-dimensional manifold with universal
cover W̃ , with simple n-dimensional symmetric Poincaré complex and let
(C, ϕ) = (C(W̃ ), ∆[W ]) over Z[π1(W )], so that

σ∗(W ) = (C, ϕ0) ∈ LAsynh(Z[π1(W )]) = LAsyns (Z[π1(W )]) .

If σ∗(W ) = 0 there exists a simple asymmetric null-cobordism

(f : C(W̃ )−−→D, (λ, ϕ0))

with Dr = 0 for 2r < n. The morphism of n-dimensional symmetric com-
plexes

(f, 0) : (C, ϕ) −−→ (D, f%(ϕ))

determines by 20.25 an algebraic splitting

(C, ϕ) ≃ c+ ∪ c−

which can be realized geometrically (perhaps after some low-dimensional ad-
justments) as

W = W+ ∪V W− , V n−1 = W+ ∩W− = ∂W+ = ∂W−

with
c± = (C(Ṽ )−−→C(W̃±),∆[W±]) ,

f : C = C(W̃ ) −−→ D = C(W̃ , W̃+) = C(W̃−, Ṽ ) .

The chain map

g = (1 λ) : C(Ṽ ) = ∂D −−→ D∗+1

determines a morphism of (n− 1)-dimensional symmetric complexes

(g, 0) : (C(Ṽ ),∆[V ]) = (∂D, ∂f%(ϕ)) −−→ (D∗+1, g
%∂f%(ϕ)) .

Applying 20.25 again there is obtained an algebraic splitting

(∂D, ∂f%(ϕ)) ≃ d+ ∪ d−

which can be realized geometrically (perhaps after some low-dimensional ad-
justments) as
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V = V+ ∪U V− , Un−2 = V+ ∩ V− = ∂V+ = ∂V−

with

d± = (C(Ũ)−−→C(Ṽ±),∆[V±]) ,

g : ∂D = C(Ṽ ) −−→ D∗+1 = C(Ṽ , Ṽ+) = C(Ṽ−, Ũ) .
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Now (W+;V+, V−;U) and (W−;V+, V−;U) are relative s-cobordisms, so that
by 30.7W is a twisted double, namely an open book with page V+ and binding
U . (This is a chain complex version of the original argument of Winkelnkem-
per [310], [311]). �
Corollary 30.13 For n ≥ 6 a closed n-dimensional manifold M has an open
book decomposition if and only if it is a twisted double.
Proof The vanishing of the asymmetric signature σ∗(M) ∈ LAsynh(Z[π1(M)])
is the necessary and sufficient condition for both an open book decomposition
and a twisted double decomposition. �
Remark 30.14 Every closed surface M2 is a double (30.3), and hence so is
M ×CP2. Therefore the 6-dimensional manifold M ×CP2 has an open book
decomposition, whereas M itself only has an open book decomposition if it
is S2 or S1 × S1 (29.5). �

30C. Algebraic open books

Algebraic open books are the algebraic Poincaré analogues of open books.
A high-dimensional manifold has an open book structure if and only if its
algebraic Poincaré complex has an algebraic open book structure, if and only
if the asymmetric signature is 0.

Definition 30.15 (i) A rel ∂ self homotopy equivalence

(h, χ) : (f : C−−→D, (δϕ, ϕ)) −−→ (f : C−−→D, (δϕ, ϕ))

of an n-dimensional ϵ-symmetric Poincaré pair (f : C−−→D, (δϕ, ϕ)) is a chain
equivalence h : D−−→D such that
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hf = f : C −−→ D

together with a chain χ ∈ (W%C)n+1 such that

h%(δϕ)− δϕ = d(χ) ∈ (W%C)n .

(ii) The relative algebraic mapping torus of a rel ∂ self homotopy equivalence
(h, χ) (as in (i)) is the (n + 1)-dimensional ϵ-symmetric Poincaré complex
over A

t(h, χ) = (E, θ)

with

dE =

 dD (−)r−1(1− h) 0

0 dD (−)rf
0 0 dC

 :

Er = Dr ⊕Dr−1 ⊕ Cr−2 −−→ Er−1 = Dr−1 ⊕Dr−2 ⊕ Cr−3 ,

θs =

 χs (−)sδϕs hfϕs
(−)n−rδϕsh∗ (−)n−r+s+1Tϵδϕs−1 0

ϕsf
∗h∗ 0 0

 :

En−r+s+1 = Dn−r+s+1 ⊕Dn−r+s ⊕ Cn−r+s−1

−−→ Er = Dr ⊕Dr−1 ⊕ Cr−2 .

(iii) An open book structure on an n-dimensional ϵ-symmetric Poincaré com-
plex (E, θ) is a homotopy equivalence (E, θ) ≃ t(h, χ) to an open book.
Similarly for pairs.
(iv) A concordance of open book structures on (E, θ) is an open book struc-
ture on the product cobordism (E, θ)⊗σ∗(I; {0}, {1}) which agrees with the
given structures on (E, θ)⊗ σ∗({0}) and (E, θ)⊗ σ∗({1}). �
Example 30.16 A rel ∂ self homotopy equivalence h : (F, ∂F )−−→(F, ∂F )
of an n-dimensional geometric Poincaré pair induces a rel ∂ self homotopy
equivalence of an ϵ-symmetric Poincaré pair over Z[π1(F )]

(h̃, χ̃) : σ∗(F, ∂F ) −−→ σ∗(F, ∂F )

and the symmetric Poincaré complex of a geometric open book t(h) is an
algebraic open book

σ∗(t(h)) = t(h̃, χ̃) . �
Open books are twisted doubles in algebra as well as in topology (30.4

(v)) :

Proposition 30.17 Let (h, χ) be a rel ∂ self homotopy equivalence of an
n-dimensional ϵ-symmetric Poincaré pair (f : C−−→D, (δϕ, ϕ)) over A.
(i) The relative algebraic mapping torus is such that up to homotopy equiva-
lence
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t(h, χ) = TA(h, χ) ∪TA(C,ϕ) δTA(C, ϕ)

with
TA(C, ϕ) = (C, ϕ)⊗ σ∗(S1;Z) = (C ⊕ C∗−1, θ)

the A-coefficient algebraic mapping torus (24.3) of 1 : (C, ϕ)−−→(C, ϕ) and

TA(h, χ) = (f ⊕ f : C ⊕ C∗−1−−→C(1− h : D−−→D), (δθ, θ)) ,

δTA(h, χ) = (1⊕ 0 : C ⊕ C∗−1−−→C, (0, θ))

the null-cobordisms defined by

θs =

(
0 (−)sϕs

(−)n−r−1ϕs (−)n−r+sTϵϕs−1

)
:

Cn−r+s ⊕ Cn−r+s−1 −−→ Cr ⊕ Cr−1 ,

δθs =

(
χs (−)sδϕs

(−)n−rδϕsh∗ (−)n−r+s+1Tϵδϕs−1

)
:

Dn−r+s+1 ⊕Dn−r+s −−→ Dr ⊕Dr−1 (s ≥ 0) . �

(ii) There is defined an (n+ 2)-dimensional asymmetric Poincaré pair

δt(h, χ) = (g : E−−→C(f)∗−1, (0, θ0))

with

g =

(
0 1 0

0 0 1

)
: Er = Dr⊕Dr−1⊕Cr−2 −−→ C(f)r−1 = Dr−1⊕Cr−2 ,

so that
t(h, χ) = 0 ∈ LAsyn+1(A) .

(iii) The relative algebraic mapping torus t(h, χ) is homotopy equivalent to
the twisted double of the (n+ 1)-dimensional ϵ-symmetric Poincaré pair

(1 ∪ 1 : D ∪1:C−→C D−−→D, (0, δϕ ∪ϕ −δϕ))

over A with respect to the self homotopy equivalence

(h∪1, χ∪0) : (D∪1:C−→CD, δϕ∪ϕ−δϕ) −−→ (D∪1:C−→CD, δϕ∪ϕ−δϕ) . �

All the results on algebraic twisted doubles of 30B have open book ver-
sions, such as the following version of 30.11 :

Proposition 30.18 The concordance classes of open book structures on an
n-dimensional ϵ-symmetric Poincaré complex (E, θ) are in one-one corre-
spondence with the rel ∂ cobordism classes of asymmetric null-cobordisms of
(E, θ0). In particular, (E, θ) has an open book structure if and only if the
asymmetric signature

σ∗(x) = (E, θ0) ∈ LAsyn(A)

is σ∗(x) = 0. Similarly for the relative case. �
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The concordance classes of open book structures are thus the same as
the concordance classes of twisted double structures, and the asymmetric
signature is the obstruction to the existence of an open book structure as
well as the obstruction to the existence of a twisted double structure.

30D. Twisted double L-theory

The twisted double L-groups DBL∗(A, ϵ) are the algebraic analogues of the
twisted double bordism groups DB∗(X) of 30A.

Definition 30.19 The projective ϵ-symmetric twisted double L-group
DBLnp (A, ϵ) is the cobordism group of f.g. projective (n + 1)-dimensional
ϵ-symmetric Poincaré complexes over A with a twisted double structure.

�
An element of DBLnp (A, ϵ) is the cobordism class of a f.g. projective

(n + 1)-dimensional ϵ-symmetric Poincaré pair over A (f : C−−→D, (δϕ, ϕ))
together with a self homotopy equivalence (h, χ) : (C, ϕ)−−→(C, ϕ).

Proposition 30.20 (i) The twisted double L-groups are such that

LAutnp (A, ϵ) = Lnp (A, ϵ)⊕DBLnp (A, ϵ) .

(ii) The twisted double L-group DBLnp (A, ϵ) is (isomorphic to) the cobordism
group of (n+ 1)-dimensional f.g. projective ϵ-symmetric Poincaré complexes
over A with an open book structure.
Proof (i) Define a direct sum system

DBLnp (A, ϵ)
−−−−→
←−−−− LAutnp (A, ϵ)

−−−−→
←−−−− Lnp (A, ϵ)

with

LAutnp (A, ϵ) −−→ Lnp (A, ϵ) ; ((h, χ) : (C, ϕ)−−→(C, ϕ)) −−→ (C, ϕ) ,

Lnp (A, ϵ) −−→ LAutnp (A, ϵ) ; (C, ϕ) −−→ ((1, 0) : (C, ϕ)−−→(C, ϕ)) ,

DBLnp (A, ϵ) −−→ LAutnp (A, ϵ) ; (f : C−−→D, (δϕ, ϕ), (h, χ)) −−→ (h, χ) ,

LAutnp (A, ϵ) −−→ DBLnp (A, ϵ) ;

((h, χ) : (C, ϕ)−−→(C, ϕ)) −−→ ((1 1) : C ⊕ C−−→C, (0, ϕ⊕−ϕ), h⊕ 1) .

The main ingredient is the following algebraic analogue of 30.4, which for
any f.g. projective (n + 1)-dimensional ϵ-symmetric Poincaré pair over A
(f : C−−→D, (δϕ, ϕ)) together with a self homotopy equivalence (h, χ) :
(C, ϕ)−−→(C, ϕ) gives a canonical twisted double cobordism between the
twisted double (D ∪h D, δϕ ∪χ −δϕ) and the A-coefficient algebraic map-
ping torus TA(h, χ). The (n + 1)-dimensional ϵ-symmetric Poincaré pairs
(f : C−−→D, (δϕ, ϕ)), ((1 1) : C ⊕ C−−→C, (0, ϕ ⊕ −ϕ)) are cobordant via
an (n+ 2)-dimensional ϵ-symmetric Poincaré triad (Γ,Φ) with
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C ⊕ (C ⊕ C)
1⊕ (f ⊕ f)

//

f ⊕ (1⊕ 1)

��

C ⊕D

f ⊕ 1

��

Γ

D ⊕ C
1⊕ f // D

Use the commutative diagram of chain complexes and chain maps

D
1 // D C

foo

C
1⊕ 0 //

f

OO

≃h

��

C ⊕D

f ⊕ 1

OO

≃h⊕ 1

��

C ⊕ C

1⊕ 1

OO

≃ h⊕ 1

��

1⊕ foo

C
1⊕ 0 //

f

��

C ⊕D

f ⊕ 1

��

C ⊕ C
1⊕ foo

1⊕ 1

��
D

1 // D C
foo

to define a twisted double cobordism

((u v) : (D ∪h D)⊕ TA(h)−−→E, (δχ, (δϕ ∪χ −δϕ)⊕ TA(χ)))

between (D ∪h D, δϕ ∪χ −δϕ) and TA(h, χ), with

E = C(f(1− h) : C−−→D)

chain equivalent to the chain complex twisted double

D ∪h⊕1:C⊕D−→C⊕D D = C(

(
f 1

fh 1

)
: C ⊕D−−→D ⊕D)

and
u : D ∪h D −−→ E , v : TA(h) −−→ E

the chain maps defined by

u =

(
1 0 1

0 1 0

)
: (D ∪h D)r = Dr ⊕ Cr−1 ⊕Dr

−−→ Er = Dr ⊕ Cr−1 ,

v =

(
f 0

0 1

)
: TA(h)r = Cr ⊕ Cr−1 −−→ Er = Dr ⊕ Cr−1 .
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(ii) This algebraic analogue of the isomorphism DBn(X) ∼= OBn(X) of 30.6
(i) is immediate from 30.11 and 30.18. �
Remark 30.21 The relative version of the thickening construction of 20.22
can be used to identify DBLn(A, ϵ) with the cobordism group of rel ∂ self
homotopy equivalences (h, χ) : (C, ϕ)−−→(C, ϕ) of n-dimensional ϵ-symmetric
complexes over A. �

Recall from 28.4 the definition of the free automorphism class group

Auth0 (A) = ker(Aut0(A)−−→K̃0(A)) .

Definition 30.22 For any ∗-invariant subgroup U ⊆ Auth0 (A) the U -
intermediate ϵ-symmetric twisted double L-groups DBL∗

U (A, ϵ) are

DBLnU (A, ϵ) = ker(LAutnU (A, ϵ)−−→Lnh(A, ϵ)) . �
The twisted double L-group DBLnU (A, ϵ) is the cobordism group of self

homotopy equivalences (h, χ) : (C, ϕ)−−→(C, ϕ) of f.g. free n-dimensional ϵ-
symmetric Poincaré complexes over A with

[C, h] ∈ U ⊆ Auth0 (A) , (C, ϕ) = 0 ∈ Lnh(A, ϵ) .

Remark 30.23 The twisted double ϵ-symmetric L-groups of a field with
involution F will be identified in 35.20 below with the fibred automorphism
ϵ-symmetric L-groups of F (28.35)

DBLn(F, ϵ) = LAutnfib(F, ϵ) . �
Terminology 30.24 In the case ϵ = 1 the terminology is abbreviated

DBL∗
U (A, 1) = DBL∗

U (A) .

Also, for U = Auth0 (A),Aut
s
0(A) write

DBLnAuth0 (A)(A, ϵ) = DBLnh(A, ϵ) = DBLn(A, ϵ) ,

DBLnAuts0(A)(A, ϵ) = DBLns (A, ϵ) . �

Proposition 30.25 Let (f : C−−→D, (δϕ, ϕ)) be a f.g. free n-dimensional
ϵ-symmetric Poincaré pair over A together with a self homotopy equivalence
(h, χ) : (C, ϕ)−−→(C, ϕ). The twisted double is such that

(D ∪h D, δϕ ∪χ −δϕ) = TA(h, χ) ∈ Lnh(A, ϵ) ,

i!(D ∪h D, δϕ ∪χ −δϕ) = T (h, χ) ∈ Lnh(A[z, z−1], ϵ) .

Proof By 24.4

T (h, χ) = i!TA(h, χ) ∈ im(i! : L
n
h(A, ϵ)−−→Lnh(A[z, z−1], ϵ)) ,

and by the cobordism constructed in the proof of 30.20

(D ∪h D, δϕ ∪χ −δϕ) = TA(h, χ) ∈ Lnh(A, ϵ) . �
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Proposition 30.26 (i) For any ∗-invariant subgroups U ⊆ Auth0 (A), V ⊆
K̃0(A) there are natural direct sum splittings

LAutnU⊕V (A, ϵ) = DBLnU (A, ϵ)⊕ LnV (A, ϵ) .

(ii) For any ∗-invariant subgroup U ⊆ Auth0 (A) such that Auts0(A) ⊆ U there
is defined an exact sequence

. . . −−→ Ln
δ̃(U)

(A, ϵ)
i
−−→ Lnh(Ω

−1A[z, z−1], ϵ)

∂
−−→ DBLn−2

U (A, ϵ)
D
−−→ Ln−1

δ̃(U)
(A, ϵ) −−→ . . . ,

with
Lnh(Ω

−1A[z, z−1], ϵ) = LAsynh(A) (28.33)

and D given by the twisted double

D : DBLn−2
U (A, ϵ) −−→ Ln−1

δ̃(U)
(A, ϵ) ;

((h, χ) : (C, ϕ)−−→(C, ϕ)) −−→ (D ∪h D, δϕ ∪χ −δϕ) .

for any f.g. free null-cobordism (f : C−−→D, (δϕ, ϕ)) of (C, ϕ).
(iii) The cobordism class of the algebraic mapping torus T (h, χ) of a self
homotopy equivalence (h, χ) : (E, θ)−−→(E, θ) of a f.g. free n-dimensional ϵ-
symmetric Poincaré complex (E, θ) over A with [E, h] ∈ U ⊆ Auth0 (A) and
(E, θ) = 0 ∈ Lnh(A, ϵ) is induced via the inclusion i : A−−→A[z, z−1] from the
A-coefficient algebraic mapping torus TA(h, χ)

T (h, χ) = i !TA(h, χ) ∈ im(i ! : L
n+1

δ̃(U)
(A, ϵ)−−→Ln+1

δ̃(U)
(A[z, z−1], ϵ)) .

(iv) The twisted double map D in (ii) is given by the A-coefficient algebraic
mapping torus

D = TA : DBLnU (A, ϵ) −−→ Ln+1

δ̃(U)
(A, ϵ) ; (h, χ) −−→ TA(h, χ) .

Proof (i) Define a direct sum system

DBLnU (A, ϵ)
−−−−→
←−−−− LAutnU⊕V (A, ϵ)

−−−−→
←−−−− LnV (A, ϵ)

with

LAutnU⊕V (A, ϵ)−−→LnV (A, ϵ) ; ((h, χ) : (C, ϕ)−−→(C, ϕ)) −−→ (C, ϕ) ,

LnV (A, ϵ) −−→ LAutnU⊕V (A, ϵ) ; (C, ϕ) −−→ ((1, 0) : (C, ϕ)−−→(C, ϕ)) ,

LAutnU⊕V (A, ϵ) −−→ DBLnU (A, ϵ) ;

((h, χ) : (C, ϕ)−−→(C, ϕ)) −−→
((h, χ)⊕ (1, 0) : (C, ϕ)⊕ (C,−ϕ)−−→(C, ϕ)⊕ (C,−ϕ)) ,

DBLnU (A, ϵ) −−→ LAutnU⊕V (A, ϵ) ;

((h, χ) : (C, ϕ)−−→(C, ϕ)) −−→ ((h, χ) : (C, ϕ)−−→(C, ϕ)) .
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(ii) The maps in the exact sequence of 28.17

. . . −−→ Ln
δ̃(U)⊕V (A[z, z

−1], ϵ)
i
−−→ Lnh(Ω

−1A[z, z−1], ϵ)

∂
−−→ LAutn−2

U⊕V (A, ϵ)
T
−−→ Ln−1

δ̃(U)⊕V (A[z, z
−1], ϵ) −−→ . . .

split as

i = ĩ⊕ 0 : Ln
δ̃(U)⊕V (A[z, z

−1], ϵ) = Ln
δ̃(U)

(A, ϵ)⊕ Ln−1
V (A, ϵ)

−−→ Lnh(Ω
−1A[z, z−1], ϵ)

∂ = ∂̃ ⊕ 0 : Lnh(Ω
−1A[z, z−1], ϵ)

−−→ LAutn−2
U⊕V (A, ϵ) = DBLn−2

U (A, ϵ)⊕ Ln−2
V (A, ϵ) ,

T = D ⊕ 1 : LAutn−2
U⊕V (A, ϵ) = DBLn−2

U (A, ϵ)⊕ Ln−2
V (A, ϵ)

−−→ Ln−1

δ̃(U)⊕V (A[z, z
−1], ϵ) = Ln−1

δ̃(U)
(A, ϵ)⊕ Ln−2

V (A, ϵ)

for any ∗-invariant subgroup V ⊆ K̃0(A), with T = D⊕ 1 by 30.25. Alterna-
tively, use 30.11.
(iii)+(iv) Immediate from 24.4 and 30.24, since

τ(−1 : C−−→C) = 0 ∈Wh1(A)

for a f.g. free A-module chain complex C. �
Proposition 30.27 (i) The automorphism L-groups LAut∗q (q = s, h, p) split
as

LAutnp (A, ϵ) = DBLnh(A, ϵ)⊕ Lnp (A, ϵ) ,

LAutnh(A, ϵ) = DBLnh(A, ϵ)⊕ Lnh(A, ϵ) ,
LAutns (A, ϵ) = DBLns (A, ϵ)⊕ Lnh(A, ϵ) .

(ii) The twisted book L-groups DBL∗
q(A, ϵ) (q = s, h) fit into a commutative

braid of exact sequences

Ln+2
h (Ω−1A[z, z−1], ϵ)

%%LL
LLL

LL

##
DBLnh(A, ϵ)

%%LL
LLL

L

$$
Ĥn+1(Z2 ;Wh1(A))

DBLns (A, ϵ)

99rrrrrrr

%%LL
LLL

LL
Ln+1
h (A, ϵ)

99rrrrrr

%%LL
LLL

L

Ĥn+2(Z2 ;Wh1(A))

99rrrrrr

;;
Ln+1
s (A, ϵ)

99rrrrrr

::
Ln+1
h (Ω−1A[z, z−1], ϵ)

Proof Immediate from 30.26 (i) and 28.19. �
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Proposition 30.28 (i) The symmetric automorphism signature maps split
as sums

σ∗ = σ̃∗ ⊕ σ∗ : ∆n(X) = DBn(X)⊕Ωn(X)

−−→ LAutns (A) = DBLns (A)⊕ Lnh(A)

for any space X, with A = Z[π1(X)].
(ii) The various signature maps define a natural transformation of exact se-
quences

. . . // Ωn+2(X) //

σ∗

��

ABn(X) //

σ∗

��

DBn(X)
D //

σ̃∗

��

Ωn+1(X) //

σ∗

��

. . .

. . . // Ln+2
s (A)

i // Ln+2
h (Ω−1A[z, z−1])

∂ // DBLns (A)
D // Ln+1

s (A) // . . .

with σ∗ : ABn(X)
≃−−→Ln+2

h (Ω−1A[z, z−1]) the asymmetric signature of
28.22, and σ̃∗ sending a rel ∂ automorphism (h, 1) : (P, ∂P )−−→(P, ∂P ) of an
n-dimensional manifold with boundary (P, ∂P ) to the cobordism class of the

induced rel ∂ simple self homotopy equivalence (h̃, χ) : σ∗(P, ∂P )−−→σ∗(P, ∂P )
of the f.g. free n-dimensional symmetric Poincaré pair σ∗(P, ∂P ) over A.
(iii) For finitely presented π1(X) and n ≥ 5 the asymmetric signature maps
σ∗ are isomorphisms, and there is defined an exact sequence

. . . −−→ Ln+2
s (A) −−→ DBn(X)

D⊕σ̃∗

−−−→ Ωn+1(X)⊕DBLns (A)
σ∗⊕−D
−−−−→ Ln+1

s (A) −−→ . . . . �

Remark 30.29 The identification (28.33)

L2i+2
h (Ω−1A[z, z−1], ϵ) = LAsy0h(A)

and the vanishing of the odd-dimensional asymmetric L-groups (28.34)

LAsy2i+1
h (A) = 0

give the exact sequences of 30.26 to be

0 −−→ DBL2i+1
q (A, ϵ)

t
−−→ L2i+2

q (A, ϵ) −−→ LAsy0h(A)

−−→ DBL2i
q (A, ϵ)

t
−−→ L2i+1

q (A, ϵ) −−→ 0

with q = s, h, and there are also quadratic L-theory versions

0 −−→ DBLq2i+1(A, ϵ)
t
−−→ Lq2i+2(A, ϵ) −−→ LAsy0h(A)

−−→ DBLq2i(A, ϵ)
t
−−→ Lq2i+1(A, ϵ) −−→ 0 .
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The quadratic L-groups Lq∗(A, ϵ), DBL
q
∗(A, ϵ) are 4-periodic, and

t : DBLq2i(A, ϵ) = DBLq0(A, (−)iϵ) −−→ Lq2i+1(A, ϵ) = Lq1(A, (−)iϵ)

is the surjection which sends an automorphism α : H(−)iϵ(L)−−→H(−)iϵ(L) of
a hyperbolic (−)iϵ-quadratic form to the Witt class of the nonsingular (−)iϵ-
quadratic formation (H(−)iϵ(L);L,α(L)). The surjectivity of t in quadratic
L-theory is thus essentially given by the original definition byWall [304, Chap.
6] of the odd-dimensional surgery obstruction groups as stable unitary groups.
The symmetric L-groups L∗

q(A, ϵ), DBL
∗
q(A, ϵ) are not 4-periodic in general.

The surjectivity of

t : DBL2i
q (A, ϵ) −−→ L2i+1

q (A, ϵ)

is not obvious even in the low-dimensional case i = 0, when t sends an
automorphism α : (M,ϕ)−−→(M,ϕ) of a metabolic ϵ-symmetric form to the
Witt class of the nonsingular ϵ-symmetric formation (M,ϕ;L,α(L)), for any
lagrangian L. �
Remark 30.30 (i) The Schneiden und Kleben (= cutting and pasting) bor-
dism groups SK∗(X) of Karras, Kreck, Neumann and Ossa [116] are the
quotients of the ordinary bordism groups

SKn(X) = Ωn(X)/∼

by the equivalence relation generated by

M ∪f −N ∼ M ∪g −N for manifolds with boundary (M,∂M), (N, ∂N)

and homeomorphisms f, g : ∂M−−→∂N ,

or equivalently

SKn(X) = coker(D : DBn−1(X)−−→Ωn(X)) .

For finitely presented π1(X) and n ≥ 6 the exact sequence of [116, 1.2]

0 −−→ Fn(X) −−→ Ωn(X) −−→ SKn(X) −−→ 0

is isomorphic to the exact sequence given by 30.6

0 −−→ im(D : DBn−1(X)−−→Ωn(X)) −−→ Ωn(X)

−−→ im(σ∗ : Ωn(X)−−→LAsynh(Z[π1(X)])) −−→ 0

with Fn(X) ⊆ Ωn(X) the subgroup of the bordism classesMn−−→X of closed
manifolds which fibre over S1. In particular

SKn(X) = im(σ∗ : Ωn(X)−−→LAsynh(Z[π1(X)]))

= ker(LAsynh(Z[π1(X)])−−→DBn−2(X))
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is the cobordism group of the n-dimensional asymmetric Poincaré complexes
over Z[π1(X)] which are realized by bordism classes Mn−−→X. The even-
dimensional SK-groups are non-zero in general, while the odd-dimensional
SK-groups vanish

SK2∗+1(X) = 0 .

Thus for n ≥ 6 the following conditions are equivalent for a closed connected
n-dimensional manifold M :

(a) M is an open book,

(b) M is a twisted double,

(c) σ∗(M) = 0 ∈ LAsynh(Z[π1(M)]),

(d) (M, 1) = 0 ∈ SKn(M).

Note that the asymmetric signature map factors through the symmetric L-
theory assembly map A of Ranicki [245, Chap. 13]

σ∗ : Ωn(X) −−→ Hn(X;L•(Z))
A
−−→ Lnh(Z[π1(X)]) −−→ LAsynh(Z[π1(X)]) .

The SK-groups of a simply-connected space X are given by

SKn(X) = SKn({∗})
= im(Ln(Z)−−→LAsyn(Z))

=

{
Z (signature) if n ≡ 0(mod 4)

0 otherwise

(Neumann [211, Theorem 1]).
(ii) Define the Schneiden und Kleben ϵ-symmetric L-groups SKLn(A, ϵ) to
be the quotients of the ϵ-symmetric L-groups

SKLn(A, ϵ) = Ln(A, ϵ)/∼

by the equivalence relation generated by

C ∪f −D ∼ C ∪g −D
for n-dimensional ϵ-symmetric Poincaré pairs (C, ∂C), (D, ∂D)

and homotopy equivalences f, g : ∂C−−→∂D .

The ϵ-symmetric SKL-groups are the images of the ϵ-symmetric L-groups in
the asymmetric L-groups

SKLn(A, ϵ) = coker(D : DBLn−1(A, ϵ)−−→Ln(A, ϵ))
= im(Ln(A, ϵ)−−→LAsyn(A)) ,

with
SKL2∗+1(A, ϵ) = 0 .
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As usual, there is also an ϵ-quadratic version. �
Remark 30.31 A fibre bundle with fibre a d-dimensional manifold F

F d −−→ E
p
−−→ B

induces geometric transfer maps in the ordinary bordism groups

p ! : Ωn(B) −−→ Ωn+d(E) ; (M,f :M−−→B) −−→ (M !, f ! :M !−−→E)

with M ! = f∗E the pullback fibre bundle over M . The geometric transfer
maps are also defined for the twisted double bordism groups

p ! : DBn(B) −−→ DBn+d(E) ,

and the bordism SK-groups

p ! : SKn(B) −−→ SKn+d(E) .

The transfer maps in the algebraic K- and quadratic L-groups

p ! : Ki(Z[π1(B)]) −−→ Ki(Z[π1(E)]) (i = 0, 1) ,

p ! : Ln(Z[π1(B)]) −−→ Ln+d(Z[π1(E)]) (n ≥ 0)

can be defined both geometrically and algebraically : a morphism of based
f.g. free Z[π1(B)]-modules

f : Z[π1(B)]k −−→ Z[π1(B)]ℓ

is sent to the chain homotopy class of the ‘parallel transport’ Z[π1(E)]-module
chain map

f ! :
⊕
k

C(F̃ ) −−→
⊕
ℓ

C(F̃ )

(Lück [172], Lück and Ranicki [174], [176]). The algebraic construction also
gives transfer maps in the asymmetric L-groups

p ! : LAsynh(Z[π1(B)]) −−→ LAsyn+dh (Z[π1(E)]) (n ≥ 0)

which fit into a natural transformation of exact sequences

// LAsyn+1
h (Z[π1(B)]) //

p !

��

DBn−1(B) //

p !

��

Ωn(B)

p !

��

// LAsynh(Z[π1(B)]) //

p !

��
// LAsyn+d+1

h (Z[π1(E)]) // DBn+d−1(E) // Ωn+d(E) // LAsyn+dh (Z[π1(E)]) //

For n + d ≡ 0(mod4) the transfer map in asymmetric L-theory and the
surgery transfer methods of [176] (cf. 28.24) can be used to provide an L-
theoretic interpretation of the work of Karras, Kreck, Neumann and Ossa
[116] and Neumann [211], [213] on the connection between open book decom-
positions, the SK-groups and the (non-)multiplicativity of signature in fibre
bundles. �



31. Isometric L-theory

This chapter is concerned with the algebraic L-theory of the polynomial
extension A[s] with the involution s = 1 − s. The connection with high-
dimensional knot theory may appear remote at first, so here is a quote
from the introduction to the memoir of Stoltzfus [278] in which the high-
dimensional knot cobordism groups were finally computed :

We are, however, acutely aware that [the formalism used] is intimately related
to the setting of Hermitian algebraic K-theory, particularly for the ring Z[X]
and the involution induced by X∗ = 1−X. This ring is crucial in our study
of the complement of a knot or any space which is a homology circle.

In fact, it is the L-theory of the Fredholm localization Ω−1
+ A[s] rather than

A[s] itself which is relevant to knot theory.

An isometric structure on an n-dimensional ϵ-symmetric complex (C, ϕ)
is a chain map f : C−−→C such that

fϕ0 ≃ ϕ0(1− f∗) : Cn−∗ −−→ C

or equivalently a chain map ψ̂0 : Cn−∗−−→C such that

(1 + Tϵ)ψ̂0 ≃ ϕ0 : Cn−∗ −−→ C .

The isometric L-group LIson(A, ϵ) is defined to be the cobordism group of n-
dimensional ϵ-symmetric complexes over A with isometric structure. In Chap.
33 below the high-dimensional knot cobordism groups C∗ are identified with
the isometric L-groups LIso∗+1(Z).

31A. Isometric structures

Terminology 31.1 Given a ring with involution A let A[s] denote the poly-
nomial extension of A with the involution extended by

s = 1− s . �

The ϵ-symmetrization maps
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1 + Tϵ : Ln(A[s], ϵ) −−→ Ln(A[s], ϵ)

are isomorphisms (25.14), so there is no difference between the ϵ-quadratic
and ϵ-symmetric L-groups for the rings with involution and structures con-
sidered in this chapter.

As in Chap. 10 let Ω+ be the set of Fredholm matrices in A[s]. By 10.3 a
k × k matrix ω in A[s] is Fredholm if and only if the A[s]-module morphism

s− ω : A[s]k −−→ A[s]k

is injective and the cokernel is a f.g. projective A-module. By 10.14 the Ω+-
torsion K-group of A[s] is related to the endomorphism class group of A by
the isomorphism

End0(A)
≃−−→ K1(A[s], Ω+) ;

[P, f ] −−→ [coker(s− f : P [s]−−→P [s])] = [P with s acting by f ] .

Let A[z, z−1] have the involution z = z−1, and let

j : A[z, z−1] −−→ A ; z −−→ 1 .

The set Π (10.17) of square matrices ω in A[z, z−1] such that j(ω) is an
invertible matrix in A is involution-invariant.

The main result of Chap. 31 is the identification of the ϵ-symmetric
Ω−1

+ A[s]-torsion L-groups of A[s] with the (−ϵ)-symmetric isometric L-
groups

Ln(A[s], Ω+, ϵ) = LIson(A,−ϵ) .

More precisely, the localization exact sequence

. . . −−→ Lnq (A[s], ϵ) −−→ Lnq (Ω
−1
+ A[s], ϵ) −−→ Lnq (A[s], Ω+, ϵ)

−−→ Ln−1
q (A[s], ϵ) −−→ . . . (q = s, h)

will be shown to break up into split exact sequences

0 −−→ Lnq (A[s], ϵ) −−→ Lnq (Ω
−1
+ A[s], ϵ) −−→ Lnq (A[s], Ω+, ϵ) −−→ 0

with

Lnt (A[s], Ω+, ϵ) = LIsonu(A,−ϵ)

= Lnt (A[z, z
−1],Π, ϵ) ((t, u) = (s, h), (h, p)) .

Definition 31.2 The isometric class group Iso0(A) is the endomorphism
class group End0(A) with the duality involution

Iso0(A) −−→ Iso0(A) ; [P, f ] −−→ [P ∗, 1− f∗] . �

Proposition 31.3 The set Ω+ of Fredholm matrices in A[s] is involution-
invariant, and the isomorphism of 10.14
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Iso0(A)
≃−−→ K1(A[s], Ω+) ; [P, f ] −−→ [coker(s− f : P [s]−−→P [s])]

preserves the involutions, and

K1(A[s])
i+

−−−−−→←−−−−−
j+

K1(Ω
−1
+ A[s])

∂+
−−−−−→←−−−−−

∆+

Iso0(A)

is a direct sum system of Z[Z2]-modules, with

Ĥ∗(Z2 ;K1(Ω
−1
+ A[s])) = Ĥ∗(Z2 ;K1(A[s]))⊕ Ĥ∗(Z2 ; Iso0(A)) .

Proof Given a k× k Fredholm matrix ω = (ωij) in A[s] there is defined a f.g.
projective A-module

P = coker(s− ω : A[s]k−−→A[s]k)

with an endomorphism

f : P −−→ P ; x −−→ sx

and an A[s]-module exact sequence

0 −−→ A[s]k
s−ω
−−→ A[s]k −−→ P −−→ 0 .

The dual k × k matrix ω∗ = (ωji) is Fredholm, with an A[s]-module exact
sequence

0 −−→ A[s]k
1−s−ω∗

−−−−→ A[s]k −−→ P ∗ −−→ 0

where
s = 1− f∗ : P ∗ −−→ P ∗ . �

Definition 31.4 (i) Given an A-module chain complex C and a chain map
f : C−−→C use the Z[Z2]-module chain map

Γ isof = f ⊗ 1− 1⊗ (1− f) : (C ⊗A C, Tϵ) −−→ (C ⊗A C, Tϵ)

to define the ϵ-isometric Q-groups of (C, f)

Qn+1
iso (C, f, ϵ) = Hn+1(Γ

iso
f :W%C−−→W%C)

to fit into an exact sequence

. . . −−→ Qn+1(C, ϵ) −−→ Qn+1
iso (C, f, ϵ)

−−→ Qn(C, ϵ)
Γ iso
f−−→ Qn(C, ϵ) −−→ . . . .

(ii) An isometric structure (f, δϕ) for an n-dimensional ϵ-symmetric complex
(C, ϕ) over A is a chain map f : C−−→C together with a chain δϕ ∈W%Cn+1

such that
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fϕq − ϕq(1− f∗) = dδϕq + (−)rδϕqd∗ + (−)n+q−1(δϕq−1 + (−)qTϵδϕq−1)

: Cn−r+q −−→ Cr (q, r ≥ 0, δϕ−1 = 0) ,

representing an element (δϕ, ϕ) ∈ Qn+1
iso (C, f, ϵ).

(iii) An isometric structure (f, δϕ) on (C, ϕ) is fibred if f : C−−→C is fibred
(28.35), i.e. if f, 1− f : C−−→C are chain equivalences. �
Proposition 31.5 (i) The morphisms Γ isof : Q∗(C, ϵ)−−→Q∗(C, ϵ) are such
that

Γ isof + 1 : Qn(C, ϵ) −−→ Hn(C ⊗A C)
f⊗1
−−→ Hn(C ⊗A C) −−→ Qn(C, ϵ)

with
Qn(C, ϵ) −−→ Hn(C ⊗A C) ; ϕ −−→ ϕ0 ,

Hn(C ⊗A C) −−→ Qn(C, ϵ) ;

ψ −−→ ϕ , ϕq =

{
(1 + Tϵ)ψ if q = 0

0 if q ≥ 1.

(ii) The isometric Q-groups are such that there is defined a commutative braid
of exact sequences

Qn+1
iso (C, f, ϵ)

&&NN
NNN

NN

$$
Qn(C, ϵ)

Γ isof

&&NN
NNN

NN

S

$$
Qn+1(SC, ϵ)

Hn(C ⊗A C)

88ppppppp

Γ isof
&&NN

NNN
NN

Qn(C, ϵ)

S 88ppppppp

&&NN
NNN

NN

Qn+2(SC, ϵ)

88pppppp

::
Hn(C ⊗A C)

88ppppppp

::
Qniso(C, f, ϵ)

with
Qn+1
iso (C, f, ϵ) −−→ Hn(C ⊗A C) ; ϕ −−→ (f ⊗ 1)ϕ0 ,

and

S : Qn(C, ϵ)−−→Qn+1(SC, ϵ) ; {ϕq | q ≥ 0}−−→{ϕq−1 | q ≥ 0} (ϕ−1 = 0)

the suspension map of Ranicki [235]. �
Remark 31.6 The exact sequence in the braid of 31.5 (ii)

. . . −−→ Hn+1(C ⊗A C) −−→ Qn+1
iso (C, f, ϵ) −−→ Hn(C ⊗A C)

Γ iso
f−−→ Hn(C ⊗A C) −−→ . . .

shows that an n-dimensional ϵ-symmetric (Poincaré) complex (C, ϕ) with
an isometric structure (δϕ, f) is essentially the same as an ϵ-ultraquadratic
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(Poincaré) complex (C, ψ̂ ∈ Hn(C ⊗A C)) – see Ranicki [237, 7.8] and Chap.
32 below for ϵ-ultraquadratic L-theory. �
Example 31.7 (i) An isometric structure for an ϵ-symmetric form (M,ϕ)
over A is an endomorphism f :M−−→M such that

f∗ϕ = ϕ(1− f) : M −−→ M∗ .

An isometric structure on (M,ϕ) is just an isometric structure (f∗, 0) on the
0-dimensional ϵ-symmetric complex (C, ϕ) with C0 =M∗, Cr = 0 for r ̸= 0.
(ii) Isometric structures on ϵ-symmetric forms were used by Levine [156], [157],
Kervaire [132] and Stoltzfus [278] in the computation of the high-dimensional
knot cobordism groups. See Chaps. 32, 33 for the connection between isomet-
ric structures and Seifert forms. �

By analogy with 28.13 :

Proposition 31.8 (i) The ϵ-symmetric Q-groups of an A-finitely dominated
(= Ω−1

+ A[s]-contractible) finite f.g. free A[s]-module chain complex D are the
isometric ϵ-symmetric Q-groups of (D!, σ)

Q∗(D, ϵ) = Q∗
iso(D

!, σ) ,

with D! the finitely dominated A-module chain complex defined by D and

σ : D! −−→ D! ; w −−→ sw .

(ii) The homotopy equivalence classes of finitely dominated n-dimensional
ϵ-symmetric Poincaré complexes (C, ϕ) over A with an isometric structure
(f, δϕ) are in one-one correspondence with the homotopy equivalence classes
of f.g. free (n + 1)-dimensional Ω−1

+ A[s]-contractible ϵ-symmetric Poincaré
complexes (D, θ) over A[s].
(iii) A finitely dominated n-dimensional ϵ-symmetric Poincaré complex (C, ϕ)
over A with an isometric structure (f, δϕ) determines a f.g. projective n-
dimensional (−ϵ)-symmetric Ω−1

+ A[s]-Poincaré complex (C[s], Φ) over A[s]
with

Φq = (s− f)ϕq + δϕq−1 : C[s]n−r+q −−→ C[s]r (q, r ≥ 0) .

The skew-suspension (SC[s], Φ) is a f.g. projective (n + 2)-dimensional ϵ-
symmetric Ω−1

+ A[s]-Poincaré complex over A[s]. The boundary

(D, θ) = ∂(SC[s], Φ)

is a (homotopy) f.g. free (n+ 1)-dimensional ϵ-symmetric Poincaré complex
over A[s] corresponding to (C, ϕ) and (f, δϕ) in (i), such that

τΩ+(D) = [C, f ] ∈ K1(A[s], Ω+) = Iso0(A) ,

τ(D, θ) = Φ(D) + (−)nΦ(D)∗ ∈ K1(A[s])
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with respect to the canonical round finite structure on D.
Proof (i) Let (C, f) be a finite chain complex of (A[s], Ω+)-modules, i.e. a
finite f.g. projective A-module chain complex C together a chain map f :
C−−→C. The f.g. projective A[s]-module chain complex

D = C(s− f : C[s]−−→C[s])

is homology equivalent to (C, f), and every A-finitely dominated (=Ω−1
+ A[s]-

contractible) f.g. free A[s]-module chain complex is chain equivalent to one
of this type, with (D!, σ) ≃ (C, f). The Z[Z2]-module chain map

C(Γ isof : C ⊗A C−−→C ⊗A C) −−→ D ⊗A[s] D

defined by

C(Γ isof )r = (C ⊗A C)r ⊕ (C ⊗A C)r−1

−−→ (D ⊗A[s] D)r = (C[s]⊗A[s] C[s])r ⊕ (C[s]⊗A[s] C[s])r−1

⊕ (C[s]⊗A[s] C[s])r−1 ⊕ (C[s]⊗A[s] C[s])r−2 ; (u, v) −−→ (u, v, v, 0)

is a homology equivalence inducing isomorphisms

Q∗
iso(C, f, ϵ)

∼= Q∗(D, ϵ) ,

so that there is defined an exact sequence

. . . −−→ Qn+1(D, ϵ) −−→ Qn(C, ϵ)
Γ iso
f−−→ Qn(C, ϵ) −−→ Qn(D, ϵ) −−→ . . . .

An (n + 1)-dimensional ϵ-symmetric structure θ ∈ Qn+1(D, ϵ) on D is thus
the same as an n-dimensional ϵ-symmetric structure ϕ ∈ Qn(C, ϵ) with a
refinement to an isometric structure (δϕ, ϕ) ∈ Qn+1

iso (C, f, ϵ). Moreover

θ0 : Hn+1−∗(D) ∼= Hn−∗(C)
ϕ0

−−→ H∗(C) ∼= H∗(D) ,

so that (D, θ) is a Poincaré complex over A[s] if and only if (C, ϕ) is a Poincaré
complex over A.
(ii)+(iii) Immediate from (i). �
Definition 31.9 Let U ⊆ Iso0(A) be a ∗-invariant subgroup.
(i) The ϵ-isometric L-groups LIsonU (A, ϵ) (n ≥ 0) are the cobordism groups
of finitely dominated n-dimensional ϵ-symmetric Poincaré complexes (C, ϕ)
over A with an isometric structure (f, δϕ) such that

[C, f ] ∈ U ⊆ End0(A) .

(ii) The fibred ϵ-isometric L-groups LIsonfib,U (A, ϵ) (n ≥ 0) are defined as in
(i), using fibred isometric structures.

(iii) The reduced ϵ-isometric L-groups LĨso
n

U (A, ϵ) (n ≥ 0) are defined as in
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(i), but in addition requiring that (C, ϕ) be equipped with a finitely domi-

nated null-cobordism with projective class in the image U0 ⊆ K̃0(A) of U .
�

Proposition 31.10 Let U ⊆ Iso0(A) be a ∗-invariant subgroup.
(i) The isometric and reduced isometric L-groups are related by an exact
sequence

. . . −−→ LĨso
n

U (A, ϵ) −−→ LIsonU (A, ϵ) −−→ LnU0
(A, ϵ)

−−→ LĨso
n−1

U (A, ϵ) −−→ . . . .

(ii) There are natural identifications of the (A[s], Ω+)-torsion ϵ-symmetric
L-groups and the (−ϵ)-isometric L-groups of A

LnU (A[s], Ω+, ϵ) = LIsonU (A,−ϵ) .

(iii) For any ∗-invariant subgroup T ⊆ K1(A[s]) the localization exact se-
quence of 25.4

. . . −−→ LnT (A[s], ϵ)
i+
−−→ Lni+(T )⊕∆+(U)(Ω

−1
+ A[s], ϵ)

∂+
−−→ LIsonU (A,−ϵ)

j+
−−→ Ln−1

T (A[s], ϵ) −−→ . . .

breaks up into split exact sequences, with j+ = 0 and ∂+ split by

∆+ : LIsonU (A,−ϵ) −−→ Lni+(T )⊕∆+(U)(Ω
−1
+ A[s], ϵ) ;

(C, f, δϕ, ϕ) −−→ Ω−1
+ (C(s− f : C[s]−−→C[s]), Φ)

(Φ as in 31.8 (iii)), so that there are defined direct sum systems

Lni+(T )(A[s], ϵ)
i+

−−−−−→←−−−−−
j+

Lni+(T )⊕∆+(U)(Ω
−1
+ A[s], ϵ)

∂+
−−−−−→←−−−−−

∆+

LIsonU (A,−ϵ) .

(iii) The ϵ-isometric L-groups associated to a pair (U2, U1 ⊆ U2) of ∗-
invariant subgroups U1 ⊆ U2 ⊆ Iso0(A) are related by a Rothenberg-type
exact sequence

. . . −−→ Ĥn+1(Z2 ;U2/U1) −−→ LIsonU1
(A, ϵ)

−−→ LIsonU2
(A, ϵ) −−→ Ĥn(Z2 ;U2/U1) −−→ . . .

with

LIsonU2
(A, ϵ) −−→ Ĥn(Z2 ;U2/U1) ; (C, f, δϕ, ϕ) −−→ [C, f ] .

Proof (i) By construction.
(ii) Immediate from 31.8 (ii).
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(iii) By 31.8 (iii) the maps ∂+, ∆+ are such that ∂+∆+ = 1.
(iii) As for the ordinary L-groups in Ranicki [235, Chap. 10]. �
Remark 31.11 The algebraic surgery method of Ranicki [235] extends to
prove that the ϵ-isometric L-groups of any ring with involution A are 4-
periodic

LIsonU (A, ϵ) = LIson+2
U (A,−ϵ) = LIson+4

U (A, ϵ) (U ⊆ Iso0(A))

See Chap. 39B below for more on the isometric L-theory of fields. �
Terminology 31.12 Write the projective isometric L-groups as

LIsonIso0(A)(A, ϵ) = LIsonp (A, ϵ) ,

LĨso
n

Iso0(A)(A, ϵ) = LĨso
n

p (A, ϵ) . �

Proposition 31.13 (i) The free ϵ-symmetric L-groups of Ω−1
+ A[s] are such

that
Lnh(Ω

−1
+ A[s], ϵ) = Lnh(A[s], ϵ)⊕ LIso

n
p (A,−ϵ) ,

Lnh(A[s], Ω+, ϵ) = LIsonp (A,−ϵ) .

(ii) The forgetful map

LIsonp (A, ϵ) −−→ Lpn(A, ϵ) ; (C, f, δϕ, ϕ) −−→ (C,ψ) , ψq =

{
fϕ0 if q = 0

0 if q ≥ 1

is onto for n even and one-one for n odd.
Proof (i) This is a special case of 31.10.
(ii) By the 4-periodicity of LIso∗ and L∗ it is sufficient to consider the cases
n = 0, 1.
For n = 0 every element (M,ψ) ∈ Lp0(A, ϵ) is represented by a nonsingular
ϵ-quadratic form (M,ψ) over A. A lift of

ψ ∈ Qϵ(M) = coker(1− Tϵ : HomA(M,M∗)−−→HomA(M,M∗))

to an element ψ̂ ∈ HomA(M,M∗) determines an isometric structure on
(M,ψ)

f = (ψ + ϵψ∗)−1ψ : M −−→ M

such that (M,ψ + ϵψ∗, f) ∈ LIso0p(A, ϵ) has image (M,ψ) ∈ Lp0(A, ϵ).
For n = 1 every element

(C, f, δϕ, ϕ) ∈ ker(LIso1p(A, ϵ)−−→L
p
1(A, ϵ))

is represented by a 1-dimensional ϵ-symmetric Poincaré complex (C, ϕ) with
an isometric structure (f, δϕ) such that the image 1-dimensional ϵ-quadratic
Poincaré complex (C,ψ) admits a null-cobordism (C−−→D, (δψ, ψ)) with
Dr = 0 for r ̸= 1. It is possible to lift δψ to a null-cobordism of the iso-
metric structure, so that (C, f, δϕ, ϕ) = 0 ∈ LIso1p(A, ϵ). �
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By analogy with 28.17 :

Remark 31.14 An isometric structure (f, δϕ) on an m-dimensional ϵ-symm-
etric Poincaré complex (C, ϕ) over A determines an element

f ∈ R = H0(HomA(C,C))

such that f = 1 − f , so that there is defined a morphism of rings with
involution

ρ : Z[s] −−→ R ; s −−→ f .

The morphisms

LIsom(A, ϵ) −−→ Lm(Z[s], A, ϵ) ; (C, f, δϕ, ϕ) −−→ (C, ϕ, ρ) (m ≥ 0)

are isomorphisms by 31.6, with Lm(Z[s], A, ϵ) the surgery transfer group of
Lück and Ranicki [176] (cf. 28.15, 28.24), such that either m = 0 or A is
a Dedekind ring with involution. For any ring with involution B there are
defined products

LIsom(A, ϵ)⊗ Ln(B[s], η) −−→ Lm+n(A⊗Z B, ϵη) . �

Proposition 31.15 Let

Λ = A[z, z−1, (1− z)−1] .

(i) Sending s to (1− z)−1 defines isomorphisms of rings with involution

A[s, s−1, (1− s)−1] ∼= Λ , Ω−1
+ A[s] ∼= Π−1Λ .

(ii) The inclusion

A[s] −−→ A[s, s−1, (1− s)−1] = Λ

induces an isomorphism of split exact sequences

0 // Lnh(A[s], ϵ) //

∼=
��

Lnh(Ω
−1
+ A[s], ϵ) //

∼=
��

Lnh(A[s], Ω+, ϵ)

∼=
��

// 0

0 // Lnh(Λ, ϵ) // Lnh(Π
−1Λ, ϵ) // Lnh(Λ,Π, ϵ) // 0

and the inclusion A[z, z−1]−−→Λ induces an isomorphism

Lnh(A[z, z
−1],Π, ϵ) ∼= Lnh(Λ,Π, ϵ) .

(iii) The commutative braid of L-theory localization exact sequences
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Lnh(Π
−1A[z, z−1], ϵ)

&&MM
MMM

MM

$$
LIson−2

p (A, ϵ)

&&MM
MMM

M

Lnh(A[z, z
−1], ϵ)

88qqqqqqq

&&MM
MMM

MM
Lnh(Π

−1Λ, ϵ)

&&MM
MMM

M

88qqqqqq
Ln−1
h (A[z, z−1], ϵ)

Lnh(Λ, ϵ)

88qqqqqqq

::
LAutn−2

uni (A, ϵ)

88qqqqqq

splits as a direct sum of the commutative braid of exact sequences

Lnh(A, ϵ)

''OO
OOO

OO
$$
0

''OO
OOO

OOO
O

Lnh(A, ϵ)

77ooooooo

''NN
NNN

NNN
Lnh(A[s], ϵ)

''NN
NNN

N

77oooooooooo
Ln−1
h (A, ϵ)

Lnh(A[s], ϵ)

77pppppppp

99
LÃut

n−2

uni (A, ϵ)

77pppppp

and the commutative braid of exact sequences

LĨso
n−2

p (A, ϵ)

&&LL
LLL

LL

%%
LIson−2

p (A, ϵ)

&&LL
LLL

LL

Ln−1
p (A, ϵ)

88rrrrrrr

&&MM
MMM

MMM
M

LIson−2
p (A, ϵ)

&&MM
MMM

M

88rrrrrrr
Ln−2
p (A, ϵ)

0

88qqqqqqqqq
99

Ln−2
p (A, ϵ)

88qqqqqq

In particular,

Lnh(A[z, z
−1],Π, ϵ) = Lnh(A[s], Ω+, ϵ) = LIson−2

p (A, ϵ) ,

Lnh(Π
−1A[z, z−1], ϵ) = Lnh(A, ϵ)⊕ LĨso

n−2

p (A, ϵ) ,

Lnh(Π
−1Λ, ϵ) = Lnh(Ω

−1
+ A[s], ϵ)

= Lnh(A[s], ϵ)⊕ LIson−2
p (A, ϵ) .

Proof (i) The morphism of rings with involution
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A[s] −−→ Λ ; s −−→ (1− z)−1

sends a monic Fredholm matrix in A[s]

ω =

d∑
j=0

ωjz
j ∈ Ω+,mon (ωd = 1)

to a matrix in Λ of the form (1− z)−dτ with

τ =
d∑
j=0

ωj(1− z)d−j

A-invertible. The isomorphism of rings with involution

Λ
≃−−→ A[s, s−1, (1− s)−1] ; z −−→ 1− s−1

sends an A-invertible matrix in A[z, z−1]

τ =
n∑

j=m

τjz
j ∈ Π

with
n∑

j=m

τj = 1 to a matrix in A[s] of the form (s− 1)ms−nω with

ω =
n−m∑
k=0

τk+ms
n−m−k(s− 1)k ∈ Ω+,mon

monic. By 10.7 (iii)
Ω−1

+,monA[s] = Ω−1
+ A[s] ,

so s−−→(1− z)−1 defines an isomorphism of rings with involution

Ω−1
+ A[s]

≃−−→ Π−1Λ .

(ii) The isomorphism Lnh(A[s], ϵ)
∼= Lnh(Λ, ϵ) was obtained in 25.25 (i). Since

Π is coprime to (1 − z) the inclusion A[z, z−1]−−→Λ induces an equivalence
of exact categories with involution

H (A[z, z−1],Π) ∼= H (Λ,Π)

and hence an isomorphism of L-groups

Lnh(A[z, z
−1],Π, ϵ) ∼= Lnh(Λ,Π, ϵ) .

(iii) For any A-module chain map f : C−−→C the Z[Z2]-module chain map
of 31.4 is such that
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Γ isof = f ⊗ 1− 1⊗ (1− f)

= f ⊗ f − (1− f)⊗ (1− f) = f% − (1− f)%

: (C ⊗A C, Tϵ) −−→ (C ⊗A C, Tϵ) .

The ϵ-symmetric Q-groups of (C, f) thus fit into an exact sequence

. . . −−→ Qn+1(C, ϵ) −−→ Qn+1
iso (C, f, ϵ)

−−→ Qn(C, ϵ)
f%−(1−f)%
−−−−−−−→ Qn(C, ϵ) −−→ . . . ,

and an isometric structure (δϕ, ϕ) ∈ Qniso(C, f, ϵ) is the same as a fundamental
cobordism

Γ = ((f 1− f) : C ⊕ C−−→C, (δϕ, ϕ⊕−ϕ) ∈ Qn+1((f 1− f), ϵ)) .

Every A-contractible finite f.g. free A[z, z−1]-module chain complex C is chain
equivalent to C(1− f + zf : P [z, z−1]−−→P [z, z−1]) for some endomorphism
f : P−−→P of a finite f.g. projective A-module chain complex P , so that the
morphism

LIson−2
p (A, ϵ) −−→ Lnh(A[z, z

−1],Π, ϵ) ; (C, f, δϕ, ϕ) −−→ U(Γ )

is an isomorphism.
The isomorphism of (i) induces isomorphisms in L-theory which respect the
direct sum splittings of 31.13 and

Lnh(Ω
−1
+ A[s], ϵ) = Lnh(Π

−1Λ, ϵ)

= Lnh(Λ, ϵ)⊕ Lnh(A[z, z−1], Π, ϵ)

= Lnh(A[s], ϵ)⊕ LIso
n−2
p (A, ϵ) . �

Proposition 31.16 The fibred automorphism L-groups of 28.35 are related
to the fibred isometric L-groups by isomorphisms

LAutnfib,p(A, ϵ)
≃−−→ LIsonfib,p(A, ϵ) ; (C, ϕ, h, χ) −−→ (C, (1− h)−1, δϕ, ϕ)

and a commutative braid of exact sequences

Lnh(A[z, z
−1], ϵ)

%%LL
LLL

L

$$
Lnh(Π

−1A[z, z−1], ϵ)

%%LL
LLL

L

$$
Lnh(A[z, z

−1],Π,Ωfib, ϵ)

Lnh(Ω
−1
fibA[z, z

−1], ϵ)

99rrrrrr

%%KK
KKK

K
LIson−2

p (A, ϵ)

99rrrrrr

%%KK
KKK

K

Ln+1
h (A[z, z−1],Π,Ωfib, ϵ)

99ssssss

::
LAutn−2

fib,p(A, ϵ)

99ssssss

::
Ln−1
h (A[z, z−1], ϵ)
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with

LAutnfib,p(A, ϵ) −−→ LIsonp (A, ϵ) ; (C, ϕ, h, χ) −−→ (C, (1− h)−1, δϕ, ϕ)

and Ln+2
h (A[z, z−1],Π,Ωfib, ϵ) the cobordism group of finitely dominated n-

dimensional ϵ-symmetric complexes (C, ϕ) over A with an isometric structure
(f, δϕ) such that ∂f : ∂C−−→∂C is a fibred self chain equivalence, where

∂f =

(
f δϕ0

0 1− f∗

)
: ∂Cr = Cr+1 ⊕ Cn−r −−→ ∂Cr = Cr+1 ⊕ Cn−r .

The morphism

Lnh(Ω
−1
fibA[z, z

−1], ϵ) = Lnh(A, ϵ)⊕ LÃut
n−2

fib,p(A, ϵ)

−−→ Lnh(Π
−1A[z, z−1], ϵ) = Lnh(A, ϵ)⊕ LĨso

n−2

p (A, ϵ)

has components the identity 1 : Lnh(A, ϵ)−−→Lnh(A, ϵ) and the morphism

LÃut
n−2

fib,p(A, ϵ) −−→ LĨso
n−2

p (A, ϵ) ; (C, ϕ, h, χ) −−→ (C, ϕ, (1− h)−1, χ′) .

Proof Combine the L-theory localization exact sequence of 31.15

. . . −−→ Lnh(A[z, z
−1], ϵ) −−→ Lnh(Π

−1A[z, z−1], ϵ) −−→ LIson−2
p (A, ϵ)

−−→ Ln−1
h (A[z, z−1], ϵ) −−→ . . .

and the L-theory localization exact sequence

. . . −−→ Lnh(A[z, z
−1], ϵ) −−→ Lnh(Ω

−1
fibA[z, z

−1], ϵ) −−→ LAutn−2
fib,p(A, ϵ)

−−→ Ln−1
h (A[z, z−1], ϵ) −−→ . . . .

�
Example 31.17 If A = F is a field with involution and

P = {p(z) ∈ F [z, z−1] | p(1) ∈ F •}

then by 13.12

Π−1F [z, z−1] = P−1F [z, z−1]

= Ω−1
fibF [z, z

−1] = F [z, z−1](1−z) ,

so that
L∗(F [z, z−1],Π,Ωfib, ϵ) = 0

and the morphisms

LAutnfib(F, ϵ) −−→ LIson(F, ϵ) ; (C, ϕ, h, χ) −−→ (C, (1− h)−1, δϕ, ϕ)

are isomorphisms. �
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By analogy with the round L-groups (20.15, 20.16) :

Definition 31.18 The round ϵ-symmetric isometric L-groups LIsonr (A, ϵ)
(n ≥ 0) are the cobordism groups of finitely dominated n-dimensional ϵ-
symmetric Poincaré complexes (C, ϕ) over A with an isometric structure
(f, δϕ) : C−−→C such that

[C, f ] = 0 ∈ Iso0(A) .

Similarly for the round ϵ-quadratic isometric L-groups LIsor∗(A, ϵ). �
Proposition 31.19 The projective and round ϵ-symmetric isometric L-
groups are related by a Rothenberg-type exact sequence

. . . −−→ Ĥn+1(Z2 ; Iso0(A)) −−→ LIsonr (A, ϵ)

−−→ LIsonp (A, ϵ) −−→ Ĥn(Z2 ; Iso0(A)) −−→ . . .

where

LIsonp (A, ϵ) −−→ Ĥn(Z2 ; Iso0(A)) ; (C, f, δϕ, ϕ) −−→ [C, f ] .

Similarly in the ϵ-quadratic case. �
In 39.12 it will be shown that LIso0(F ) maps onto Z2[H

0(Z2;Ms(F ))],
for any field with involution F .

31B. The trace map χs

The identification given by 31.13

L0
h(A[s], Ω+, ϵ) = LIso0p(A,−ϵ)

will now be made more explicit, extending to the L-theory of A[s] (s = 1−s)
the identification of exact categories given by 10.14

H(A[s], Ω+) = End(A) .

A trace map χs : Ω
−1
+ A[s]/A[s]−−→A will be used to obtain a direct one-one

correspondence between ϵ-symmetric linking forms over (A[s], Ω+) and (−ϵ)-
symmetric forms over A with an isometric structure (by analogy with the
automorphism case in Chap. 28E). In Chap. 32B a modified version of χs
will be used to obtain a one-one correspondence between the S-equivalence
classes of ϵ-symmetric Seifert forms over A and the isomorphism classes of
(−ϵ)-symmetric Blanchfield forms over A[z, z−1].

Every Fredholm matrix ω ∈ Ω+ is invertible over A((s−1)) (10.3), so that
the inclusion i : A[s]−−→A((s−1)) factors through a ring morphism
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k : Ω−1
+ A[s] −−→ A((s−1))

with

i : A[s] −−→ Ω−1
+ A[s]

k
−−−→ A((s−1)) .

By analogy with 28.25, 28.26, 28.27 :

Definition 31.20 The universal trace map is the A-module morphism

χs : Ω−1
+ A[s]/A[s] −−→ A ; [ω] −−→ a−1

with a−1 the coefficient of s−1 in

k(ω) =
∞∑

j=−∞
ajs

j ∈ A((s−1)) . �

Remark 31.21 For a field A = F the universal trace map

χs : Ω−1
+ A[s]/A[s] = F (s)/F [s] −−→ F

is the trace function of Trotter [292], [293]. �
Proposition 31.22 (i) If

p(s) =
d∑
j=0

ajs
j , q(s) =

d−1∑
k=0

bks
k ∈ A[s]

are such that the coefficients aj ∈ A are central and ad ∈ A• then

χs

(
q(s)

p(s)

)
=

bd−1

ad
∈ A .

(ii) For any ω ∈ Ω−1
+ A[s]/A[s]

χs(ω) = −χs(ω) ∈ Ω−1
+ A[s]/A[s] .

(iii) For any (A[s], Ω+)-module L (= f.g. projective A-module L with an en-
domorphism s : L−−→L) the universal trace map χs induces an A[s]-module
isomorphism

L̂ = HomA[s](L,Ω
−1
+ A[s]/A[s])

≃−−→ L∗ = HomA(L,A) ;

f −−→ χsf .

The identification of 31.13

L0(A[s], Ω+, ϵ) = LIso0(A,−ϵ)

is induced by the one-one correspondence
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{ϵ-symmetric linking forms (L, λ) over (A[s], Ω+)} −−−−→←−−−−
{(−ϵ)-symmetric forms (L, ϕ) over A

with an isometric structure f : L−−→L}

with
f = s : L −−→ L ,

ϕ = χsλ : L× L
λ
−−→ Ω−1

+ A[s]/A[s]
χs

−−→ A .

Proof (i) The polynomial p(s) ∈ A[s] is a 1× 1 Fredholm matrix with

1

p(s)
= (ad)

−1s−d + lower powers of s ∈ A((s−1)) ,

so that

k

(
q(s)

p(s)

)
−1

=
bd−1

ad
∈ A .

(ii) A 1× 1 Fredholm matrix in A[s] is a polynomial

p(s) =
∞∑
j=0

ajs
j ∈ A[s]

with an inverse in A((s−1))

1

p(s)
=

∞∑
j=−∞

bjs
j ∈ A((s−1)) .

The dual polynomial

p(s) =
∞∑
j=0

aj(1− s)j ∈ A[s]

is again a 1× 1 Fredholm matrix in A[s], with inverse

1

p(s)
=

∞∑
j=−∞

bj(1− s)j ∈ A((s−1))

where

(1− s)j = (−s)j(1− s−1)j

= (−)j
j∑

i=−∞

(
−1− i
j − i

)
si ∈ A((s−1)) (j ≤ −1) .

Thus for any element of the type

ω =
sr

p(s)
∈ Ω−1

+ A[s]/A[s] (r ∈ Z)
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it is the case that

χs(ω) = b−r−1 ,

χs(ω) = χs

(
(1− s)r

p(s)

)
= −b−r−1 = −χs(ω) ∈ A .

Similarly for more general numerators and denominators.
(iii) The (A[s], Ω+)-dual L̂ of L has the universal property that for any
1-dimensional f.g. projective A[s]-module resolution of L

0 −−→ P1

d
−−→ P0 −−→ L −−→ 0

there is a dual resolution

0 −−→ P ∗
0

d∗

−−→ P ∗
1 −−→ L̂ −−→ 0 .

For the standard resolution of L

d = s− f : P1 = L[s] −−→ P0 = L[s]

the universal trace map χs identifies the dual resolution with the standard
resolution of L∗

0 −−→ L∗[s]
1−s−f∗

−−−−→ L∗[s] −−→ L∗ −−→ 0 . �

Example 31.23 Suppose that A is commutative, so that (as in 10.10 (iii))

Ω−1
+ A[s] = S−1A[s]

with S ⊂ A[s] the multiplicative subset consisting of all the monic polyno-
mials

p(s) =

d∑
j=0

ajs
j ∈ A[s] (ad = 1) .

Let L be an (A[s], S)-module, i.e. a f.g. projective A-module (also denoted
by L) together with an endomorphism f : L−−→L. If p(s) ∈ S is such that
p(f) = 0 (e.g. p(s) = chs(L, f) if L is a f.g. free A-module) there is defined
an A[s]-module isomorphism

HomA[s](L,A[s]/(p(s)))
≃−−→ HomA[s](L, S

−1A[s]/A[s]) ;

g −−→ (y −−→ g(y)

p(s)
) .

Every g ∈ HomA[s](L,A[s]/(p(s))) can be expressed as

g =

d−1∑
j=0

zjgj : L −−→ A[s]/(p(s)) =

d−1∑
j=0

sjA ,
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with gj ∈ L∗ = HomA(L,A) and

χs

(
g(y)

p(s)

)
= gd−1(y) ∈ A ,

gj(y) = gd−1(
d∑

i=j+1

aif
i−j−1(y)) ∈ A

(y ∈ L, 0 ≤ j ≤ d− 1) .

The isomorphism of 31.22 is given in this case by

L̂ = HomA[s](L,A[s]/(p(s)))
≃−−→ L∗ = HomA(L,A) ; g −−→ gd−1 . �



32. Seifert and Blanchfield complexes

Seifert complexes are abstractions of the duality properties of a Seifert surface
of an n-knot, generalizing the form of Seifert [263]. Blanchfield complexes
are abstractions of the duality properties of the infinite cyclic cover of the
exterior of an n-knot, generalizing the form of Blanchfield [23]. These types
of algebraic Poincaré complexes were already introduced in Ranicki [237].
The object of this chapter is to recall the definitions, and to make precise
the relationship between the Blanchfield and Seifert complexes, using the
L-theory of the Fredholm localizations

Ω−1
+ A[s] , Ω−1

+ A[s, s−1, (1− s)−1] = Π−1A[z, z−1]

(s = 1− s , s = (1− z)−1 , z = z−1)

for any ring with involution A. In particular, the cobordism groups of Seifert
complexes over A are identified with the cobordism groups of Blanchfield
complexes over A[z, z−1].

An n-dimensional ϵ-symmetric Seifert complex over A is an n-dimensional
asymmetric complex (C, λ) such that the A-module chain map

(1 + Tϵ)λ : Cn−∗ −−→ C

is a chain equivalence. An ϵ-symmetric Seifert complex (C, ψ̂) is essentially
the same as an ϵ-symmetric Poincaré complex with an isometric structure.
The ϵ-ultraquadratic L-groups L̂∗ of [237] are the cobordism groups of ϵ-
symmetric Seifert complexes over A are just the isometric L-groups of Chap.
31

L̂∗(A, ϵ) = LIso∗(A, ϵ) .

See Chap. 33 for the identification (already obtained in [237]) of the high-
dimensional knot cobordism groups C∗ and the isometric L-groups of Z : a
choice of Seifert surface Fn ⊂ Sn+1 for an (n − 1)-knot k : Sn−1 ⊂ Sn+1

determines an n-dimensional Seifert complex over Z

σ∗(k, F ) = (Ċ(F ), λ)

and the function

Cn−1 −−→ LIson(Z) ; k −−→ σ∗(k, F )
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is an isomorphism for n ≥ 4.
An n-dimensional ϵ-symmetric Seifert complex (C, ψ̂) over A is also essen-

tially the same as an Ω−1
+ A[s]-contractible (n + 1)-dimensional ϵ-symmetric

Poincaré complex over A[s], with

s = f = ψ̂((1 + Tϵ)ψ̂)
−1 : C −−→ C ,

so that there is also an identification

LIson(A, ϵ) = Ln(A[s], Ω+,−ϵ) .

There are also identifications with the asymmetric L-groups LAsy∗(A,Π, ϵz)
of Chap. 26

LIson(A, ϵ) = LAsyn(A,Π, ϵz) ,

with Π the set of A-invertible matrices in A[z, z−1] (z = z−1). By def-
inition, an n-dimensional ϵ-symmetric Seifert complex (C, λ) is fibred if
λ : Cn−∗−−→C is a chain equivalence ; fibred Seifert complexes correspond to
fibred knots. The cobordism groups L̂fib∗ (A, ϵ) of fibred Seifert complexes are
identified with the fibred automorphism L-groups LAut∗fib(A, ϵ) of Chap. 28

L̂fib∗ (A, ϵ) = LIso∗fib(A, ϵ) = LAut∗fib(A, ϵ) .

An ϵ-symmetric Blanchfield complex over A[z, z−1] is an ϵ-symmetric
Poincaré complex which is A-contractible, or equivalently Π−1A[z, z−1]-
contractible. A Blanchfield complex can also be regarded as an ϵ-symmetric
Poincaré complex over A[s, s−1, (1 − s)−1] which is Ω−1

+ A[s, s−1, (1 − s)−1]-
contractible. The cobordism groups of Blanchfield complexes are the torsion
L-groups

L∗(A[z, z−1], Π, ϵ) = L∗(A[s, s−1, (1− s)−1], Ω+, ϵ) .

Following [237], it will be shown in Chap. 33 that the canonical infinite cyclic
cover X of the exterior X of an (n− 1)-knot k : Sn−1 ⊂ Sn+1 determines an
(n+ 1)-dimensional Blanchfield complex over Z[z, z−1]

σ∗(k) = (Ċ(X), ψ)

and that for n ≥ 4 the function

Cn−1 −−→ Ln+2(Z[z, z−1], P ) ; k −−→ σ∗(k)

is an isomorphism, with P = {p(z) ∈ Z[z, z−1] | p(1) = 1 ∈ Z}. The inclu-
sion A[s]−−→A[s, s−1, (1− s)−1] induces an isomorphism of L-groups sending
Seifert complexes to Blanchfield complexes in Ω+-torsion L-theory, so that
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Ln(A[s], Ω+, ϵ) = LIson(A,−ϵ)
= LAsyn(A,Π,−ϵz)

= Ln(A[z, z−1],Π, ϵ)

= Ln(A[z, z−1, (1− z)−1], Π, ϵ)

= Ln(A[s, s−1, (1− s)−1], Ω+, ϵ)

(ignoring the decorations here). See Chap. 33 for a more detailed account
of the one-one correspondence between the cobordism groups of Seifert and
Blanchfield complexes over A = Z, in the case when these are the high-
dimensional knot cobordism groups C∗.

32A. Seifert complexes

Definition 32.1 (Ranicki [237, Chap. 7.8])

(i) An n-dimensional ϵ-ultraquadratic complex (C, ψ̂) is a finitely dominated
n-dimensional A-module chain complex C together with a chain map over
A

ψ̂ : Cn−∗ −−→ C .

Such a complex is Poincaré if the A-module chain map

(1 + Tϵ)ψ̂ : Cn−∗ −−→ C

is a chain equivalence. An ϵ-symmetric Seifert complex is an ϵ-ultraquadratic
Poincaré complex.
(ii) An ϵ-symmetric Seifert form (L, λ) over A is a f.g. projective A-module L
together with an A-module morphism λ : L−−→L∗ such that λ+ϵλ∗ : L−−→L∗

is an isomorphism.
(iii) The projective (resp. free) ϵ-ultraquadratic L-group L̂pn(A, ϵ) (resp.

L̂hn(A, ϵ)) is the cobordism group of finitely dominated (resp. homotopy fi-
nite) n-dimensional ϵ-ultraquadratic Poincaré complexes over A. �

Given an n-dimensional ϵ-ultraquadratic (Poincaré) complex (C, ψ̂) define
an n-dimensional ϵ-quadratic (Poincaré) complex (C,ψ) by

ψs =

{
ψ̂0

0
: Cn−r−s −−→ Cr if

{
s = 0

s ≥ 1
,

with
(1 + Tϵ)ψ0 = (1 + Tϵ)ψ̂ : Cn−∗ −−→ C .
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Proposition 32.2 (Ranicki [237, Chap. 7.8])
(i) The homotopy equivalence classes of 2i-dimensional ϵ-symmetric Seifert

complexes (C, ψ̂) over A with Hr(C) = 0 for r ̸= i are in one-one correspon-
dence with the isomorphism classes of (−)iϵ-symmetric Seifert forms (L, λ)
over A, with

λ : L = Hi(C)
ψ̂
−−→ Hi(C) = HomA(H

i(C), A) = L∗ .

(ii) The ϵ-ultraquadratic L-groups L̂q∗(A, ϵ) for q = p (resp. h) are 4-periodic

L̂q∗(A, ϵ) = L̂q∗+4(A, ϵ) ,

with L̂q2i(A, ϵ) the Witt group of f.g. projective (resp. f.g. free) (−)iϵ-symmetric
Seifert forms over A.
(iii) The forgetful map

L̂qn(A, ϵ) −−→ Lqn(A, ϵ) ; (C, ψ̂) −−→ (C,ψ)

is onto for n even, and one-one for n odd.
(iv) The free and projective L̂-groups are related by a Rothenberg-type exact
sequence

. . . −−→ L̂hn(A, ϵ)−−→ L̂pn(A, ϵ)−−→ Ĥn(Z2 ; K̃0(A))−−→ L̂hn−1(A)−−→ . . . .
�

For ϵ = 1 write

1-ultraquadratic = ultraquadratic , L̂q∗(A, 1) = L̂q∗(A) .

Proposition 32.3 (i) The refinements of an n-dimensional ϵ-symmetric
Poincaré complex (C, ϕ) over A to an n-dimensional ϵ-ultraquadratic Poinc-

aré (= Seifert) complex (C, ψ̂) are in one-one correspondence with the iso-
metric structures (f, δϕ) for (C, ϕ).
(ii) The ϵ-ultraquadratic L-groups are isomorphic to the isometric L-groups
of Chap. 31, with isomorphisms

L̂qn(A, ϵ)
≃−−→ LIsonq (A, ϵ) ; (C, f, δϕ, ϕ) −−→ (C, fϕ0) (n ≥ 0, q = h, p) .

Proof (i) Given an n-dimensional ϵ-ultraquadratic Poincaré complex (C, ψ̂)
define an isometric structure (f, δϕ) for the associated n-dimensional ϵ-

symmetric Poincaré complex (C, (1 + Tϵ)ψ̂) by

f = ψ̂((1 + Tϵ)ψ̂)
−1 : C −−→ C , δϕ = 0 ,

with
f(1 + Tϵ)ψ̂ ≃ (1 + Tϵ)ψ̂(1− f∗) ≃ ψ̂ : Cn−∗ −−→ C .
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Conversely, given an an n-dimensional ϵ-symmetric Poincaré complex (C, ϕ)
and an isometric structure (f, δϕ) define an ϵ-ultraquadratic Poincaré com-

plex (C, ψ̂) such that (1 + Tϵ)ψ̂ = ϕ ∈ Qn(C, ϵ) by

ψ̂ = fϕ0 : Cn−∗ −−→ C .

(ii) Immediate from (i). �
Remark 32.4 The Witt group Cϵ(A) of nonsingular ϵ-symmetric forms over
A with an isometric structure considered by Stoltzfus [278] is given by 32.3
(ii) to be

Cϵ(A) = L̂0(A, ϵ) = LIso0h(A, ϵ) . �

32B. Blanchfield complexes

By 10.18 the localization Π−1A[z, z−1] is such that the following conditions
on a finite f.g. free A[z, z−1]-module chain complex C are equivalent :

(i) C is A-contractible via A[z, z−1]−−→A; z−−→1,
(ii) ζ − 1 : C−−→C is a homology equivalence,
(iii) the induced Π−1A[z, z−1]-module chain complex Π−1C is contract-

ible.

Given an involution on A extend the involution to A[z, z−1], Π−1A[z, z−1]
by z = z−1, as in Chap. 24.

Definition 32.5 (i) An ϵ-symmetric Blanchfield complex (C, ϕ) is an A-
contractible f.g. free ϵ-symmetric Poincaré complex over A[z, z−1].
(ii) An ϵ-symmetric Blanchfield form (M,µ) over A[z, z−1] is a nonsingular ϵ-
symmetric linking form over (A[z, z−1],Π), that is an (A[z, z−1], Π)-module
M with a nonsingular ϵ-symmetric pairing

µ : M ×M −−→ Π−1A[z, z−1]/A[z, z−1] . �

For ϵ = 1 write

L∗(A[z, z
−1],Π, 1) = L∗(A[z, z

−1],Π) .

Proposition 32.6 (i) The homotopy equivalence classes of (2i + 1)-dimen-
sional ϵ-symmetric Blanchfield complexes (C, ϕ) over A with Hr(C) = 0 for
r ̸= i are in one-one correspondence with the isomorphism classes of the
(−)i+1ϵ-symmetric Blanchfield forms (M,µ) over A[z, z−1], with

µ : M = Hi+1(C)
ϕ0

−−→

Hi(C) = HomA[z,z−1](H
i+1(C),Π−1A[z, z−1]/A[z, z−1]) = M ̂ .
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(ii) A f.g. free ϵ-symmetric Poincaré complex (C, ϕ) over A[z, z−1] is a
Blanchfield complex if and only if (C, ϕ) is Π−1A[z, z−1]-contractible.
(iii) The cobordism group of n-dimensional ϵ-symmetric Blanchfield com-
plexes over A[z, z−1] is the (n + 1)-dimensional (A[z, z−1],Π)-torsion ϵ-
symmetric L-group Ln+1

h (A[z, z−1],Π, ϵ) in the L-theory localization exact
sequence

. . . −−→ Ln+1
h (A[z, z−1], ϵ) −−→ Ln+1

h (Π−1A[z, z−1], ϵ)

−−→ Ln+1
h (A[z, z−1],Π, ϵ) −−→ Lnh(A[z, z

−1], ϵ) −−→ . . . .

(iv) The groups L∗
h(A[z, z

−1],Π, ϵ) are 4-periodic

Lnh(A[z, z
−1],Π, ϵ) = Ln+2

h (A[z, z−1],Π,−ϵ) = Ln+4
h (A[z, z−1],Π, ϵ) ,

with L2i
h (A[z, z

−1],Π, ϵ) the Witt group of (−)iϵ-symmetric Blanchfield forms
over A[z, z−1].
(v) Up to natural isomorphism

LIsonp (A, ϵ) = Lnh(A[z, z
−1],Π, ϵz) = Lnh(A[z, z

−1],Π,−ϵ) .

(vi) The ϵ-symmetrization maps

1 + Tϵ : Ln(A[z, z
−1],Π, ϵ) −−→ Ln(A[z, z−1], Π, ϵ)

are isomorphisms.
Proof (i)+(ii)+(iii)+(iv) This is a special case of 25.4 (ii).
(v) See the proof of 32.24 below.
(vi) Given an A-contractible f.g. free A[z, z−1]-module chain complex E let

Hn = Hn(HomA[z,z−1](E
∗, E)) .

By 25.11 there are natural identifications

Qn(E, ϵ) = ker(1− Tϵ : Hn−−→Hn)

= coker(1− Tϵ : Hn−−→Hn) = Qn(E, ϵ) ,

noting that t = 1− z ∈ A[z, z−1] is coprime to Π with

tt = (1− z)(1− z−1) = t+ t ∈ A[z, z−1] .

In particular, the ϵ-symmetrization maps of Q-groups are isomorphisms

1 + Tϵ : Qn(E, ϵ) −−→ Qn(E, ϵ) ,

and hence so are the ϵ-symmetrization maps of L-groups. �
The following construction is an algebraic analogue of the procedure for

obtaining the infinite cyclic cover of an n-knot exterior from a Seifert surface :
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Definition 32.7 (Ranicki [237, p. 820])
(i) The covering of a finitely dominated n-dimensional ultraquadratic com-

plex (C, ψ̂) over A is the finitely dominated (n+1)-dimensional ϵ-symmetric
complex over A[z, z−1]

β(C, ψ̂) = (E, θ)

defined by

E = C(Tϵψ̂ + zψ̂ : Cn−∗[z, z−1]−−→C[z, z−1]) ,

θ0 =

(
0 (−)r(n−r+1)ϵ(1− z−1)

1− z 0

)
:

En−r+1 = Cn−r+1[z, z−1]⊕ Cr[z, z−1]

−−→ Er = Cr[z, z
−1]⊕ Cn−r+1[z, z−1] ,

θs = 0 (s ≥ 1)

with projective class

[E] = [C] + (−)n+1[C]∗ ∈ im(K0(A)−−→K0(A[z, z
−1])) .

(ii) The covering of an ϵ-symmetric Seifert form (L, λ) over A is the (−ϵ)-
symmetric Blanchfield form over A[z, z−1]

β(L, λ) = (M,µ)

with

M = coker(zλ+ ϵλ∗ : L[z, z−1]−−→L∗[z, z−1]) ,

µ : M ×M −−→ Π−1A[z, z−1]/A[z, z−1] ;

(x, y) −−→ (1− z)(λ+ ϵλ∗)(x, (zλ+ ϵλ∗)−1(y)) (x, y ∈ L∗[z, z−1]) .

�
In fact, 32.7 (ii) is just the highly-connected special case of 32.7 (i).

Proposition 32.8 Let (C, ψ̂) be a finitely dominated n-dimensional ϵ-ultra-

quadratic complex over A, with covering β(C, ψ̂) = (E, θ).

(i) (C, ψ̂) is a Seifert complex if and only if (E, θ) is a Blanchfield complex,

i.e. (C, ψ̂) is Poincaré if and only if E is A-contractible.
(ii) If (E, θ) is A-contractible then it is Poincaré, and is homotopy equivalent
to the union U(Γ ) of the (n+1)-dimensional ϵ-isometric Poincaré cobordism

Γ = ((g h) : C ⊕ C−−→C, (δϕ, ϕ⊕−ϕ))

determined by the isometric structure (f, δϕ) on (C, ϕ = (1 + Tϵ)ψ̂) with
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g = 1− f = Tϵψ̂((1 + Tϵ)ψ̂)
−1 : C −−→ C ,

h = −f = −ψ̂((1 + Tϵ)ψ̂)
−1 : C −−→ C .

The chain complex E has a canonical (round) finite structure, with respect to
which

τ(E, θ) = τ(−z : C[z, z−1]−−→C[z, z−1]) = (0, [C], 0, 0)

∈Wh1(A[z, z
−1]) = Wh1(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) .

Proof (i) Immediate from the identity

H∗(A⊗A[z,z−1] E) = H∗+1((1 + Tϵ)ψ̂ : Cn−∗−−→C) .

(ii) By (i) there is defined a chain equivalence (1 + Tϵ)ψ̂ : Cn−∗ ≃−−→C. The
canonical round finite structure on E is defined using the canonical round
finite structure on C(1 − f + zf : C[z, z−1]−−→C[z, z−1]) and the A[z, z−1]-
module chain equivalence

1⊕ (1 + Tϵ)ψ̂ : E = C(Tϵψ̂ + zψ̂ : Cn−∗[z, z−1]−−→C[z, z−1])

≃−−→ C(g − zh : C[z, z−1]−−→C[z, z−1])

= C(1− f + zf : C[z, z−1]−−→C[z, z−1]) .

Since E is A-contractible the A[z, z−1]-module chain map 1− z : E−−→E is
a chain equivalence. Define a homotopy equivalence (E, θ) ≃ U(Γ ) by(

1⊕ (1 + Tϵ)
)
(1− z)−1 : E −−→ C(g − zh) ,

with (1− z)−1 : E → E any chain homotopy inverse of 1− z : E → E. �
Definition 32.9 (i) The covering Blanchfield complex of a projective Seifert

complex (C, ψ̂) will be written βh(C, ψ̂), and called the free covering of (C, ψ̂).
(ii) A projective Seifert complex for an (n + 1)-dimensional ϵ-symmetric
Blanchfield complex (E, θ) over A[z, z−1] is a finitely dominated n-dimension-

al ϵ-symmetric Seifert complex (C, ψ̂) such that the free covering βh(C, ψ̂) is
homotopy equivalent to (E, θ). �

The following result is an algebraic analogue of the transversality con-
struction of a Seifert surface for an (n+1)-knot from a fundamental domain
of the infinite cyclic cover of the (n+ 1)-knot exterior :

Proposition 32.10 Blanchfield complexes have projective Seifert complexes.
More precisely, every A-contractible based f.g. free (n + 1)-dimensional ϵ-
symmetric Poincaré complex (E, θ) over A[z, z−1] is homotopy equivalent to

the free covering βh(C, ψ̂) of a finitely dominated n-dimensional ϵ-ultraquad-

ratic Poincaré complex (C, ψ̂) over A with reduced projective class

[C] = Bτ(E, θ) ∈ K̃0(A)
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the image of τ(E, θ) ∈ Wh1(A[z, z
−1]) under the Bass–Heller–Swan projec-

tion B : Wh1(A[z, z
−1])−−→K̃0(A) (= reduced K0-component of ∂+ in 5.14

(i)). In particular, the case n = 0 is that free Blanchfield forms admit pro-
jective Seifert forms.
Proof Let

Γ = ((g h) : C ⊕ C−−→D, (δϕ, ϕ⊕−ϕ))

be a finitely balanced (n+1)-dimensional symmetric Poincaré cobordism over
A such that the union U(Γ ) is homotopy equivalent to (E, θ), as given by
24.2. Now

E ≃ C(g − zh : C[z, z−1]−−→D[z, z−1]) ,

and
H∗(A⊗A[z,z−1] E) = H∗(g − h : C−−→D) = 0 .

Thus g − h : C−−→D is an A-module chain equivalence and Γ is isometric.
The corresponding isometric structure (f, δϕ) for (C, ϕ) with

f = −(g − h)−1h : C −−→ C

determines by 32.5 (i) a finitely dominated n-dimensional ϵ-symmetric Seifert

complex (C, ψ̂) with

ψ̂ = f(1 + Tϵ)ψ0 = −(g − h)−1g(1 + Tϵ)ψ0 : Cn−∗ −−→ C ,

and such that there are defined homotopy equivalences

βh(C, ψ̂)
≃−−→ U(Γ )

≃−−→ (E, θ) . �

Proposition 32.11 (i) The covering construction of 32.7 defines natural
isomorphisms

βh : LIsonp (A,−ϵ)
≃−−→ Lnh(A[z, z

−1],Π, ϵ) ; (C, ψ̂) −−→ βh(C, ψ̂) .

(ii) The morphism of rings with involution

A[s] −−→ A[z, z−1, (1− z)−1] ; s −−→ (1− z)−1

induces isomorphisms in Tate Z2-cohomology

Ĥn(Z2;K1(A[s], Ω+)) = Ĥn(Z2; Iso0(A))

≃−−→ Ĥn(Z2;K1(A[z, z
−1, (1− z)−1],Π)) = Ĥn(Z2;K1(A[z, z

−1], Π))

and in L-theory

LIsonp (A,−ϵ) = Lnh(A[s], Ω+, ϵ)
≃−−→ Lnh(A[z, z

−1, (1− z)−1],Π, ϵ) .

The L-theory isomorphism is the composite of the isomorphism βh of (i) and
the isomorphism
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Lnh(A[z, z
−1],Π, ϵ)

≃−−→ Lnh(A[z, z
−1, (1− z)−1], Π, ϵ)

induced by the inclusion A[z, z−1]−−→A[z, z−1, (1− z)−1].
Proof (i) The algebraic Poincaré transversality construction of 32.10 defines

inverse maps (βh)−1 : (E, θ)−−→(C, ψ̂).
(ii) Since s, 1− s ∈ Ω+ it is possible to identify

Ω−1
+ A[s] = Ω−1

+ A[s, s−1, (1− s)−1] ,

and hence

Lnh(Ω
−1
+ A[s], ϵ) = Lnh(Ω

−1
+ A[s, s−1, (1− s)−1], ϵ) .

The inclusion A[s]−−→A[s, s−1, (1 − s)−1] induces isomorphisms in Tate Z2-
cohomology and L-theory

Ĥn(Z2;K1(A[s], Ω+))
≃−−→ Ĥn(Z2;K1(A[s, s

−1, (1− s)−1], Ω+)) ,

Lnh(A[s], ϵ)
≃−−→ Lnh(A[s, s

−1, (1− s)−1], ϵ)

by 25.14 (i). By the 5-lemma there are also induced isomorphisms

Lnh(A[s], Ω+, ϵ)
≃−−→ Lnh(A[s, s

−1, (1− s)−1], Ω+, ϵ) .

The isomorphism of rings with involution

A[s, s−1, (1− s)−1]
≃−−→ A[z, z−1, (1− z)−1] ; s −−→ (1− z)−1

sends Ω+ to Π, so that there is induced an isomorphism of L-groups

Lnh(A[s, s
−1, (1− s)−1], Ω+, ϵ)

≃−−→ Lnh(A[z, z
−1, (1− z)−1],Π, ϵ) . �

A Blanchfield complex (E, θ) admits many Seifert complexes (C, ψ̂).

Definition 32.12 Finitely dominated n-dimensional ϵ-symmetric Seifert
complexes (C, ψ̂), (C ′, ψ̂′) are S-equivalent if the (n + 1)-dimensional ϵ-

symmetric Blanchfield complexes βh(C, ψ̂), βh(C ′, ψ̂′) over A[z, z−1] are ho-
motopy equivalent. �

The special case n = 0 of 32.12 defines the S-equivalence relation on
Seifert forms (= 0-dimensional Seifert complexes). See 33.11 below for the
isotopy classification of simple odd-dimensional knots. by the S-equivalence
classes of Seifert forms over Z.

Example 32.13 (i) Homotopy equivalent Seifert complexes are S-equivalent.

(ii) An n-dimensional Seifert complex (C, ψ̂) is S-equivalent to the Seifert
complex
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(C ′, ψ̂′) = (C ⊕D ⊕Dn−∗,

 ψ̂ β 0

α γ 1

0 0 0

) ,

for any finite f.g. free A-module chain complex D and any A-module chain
maps

α : Cn−∗ −−→ D , β : Dn−∗ −−→ C , γ : Dn−∗ −−→ D . �

Proposition 32.14 The covering construction βh defines a bijection between
the S-equivalence classes of finitely dominated n-dimensional ϵ-symmetric
Seifert complexes over A and the homotopy equivalence classes of free (n+1)-
dimensional ϵ-symmetric Blanchfield complexes over A[z, z−1]. �

32C. Fibred Seifert and Blanchfield complexes

As their name indicates, fibred Seifert and Blanchfield complexes are the
Seifert and Blanchfield complex analogues of fibred knots.

Definition 32.15 (i) A finitely dominated n-dimensional ϵ-symmetric Seifert

complex (C, ψ̂) over A is fibred if ψ̂ : Cn−∗−−→C is a chain equivalence, or
equivalently if

f = ψ̂((1 + Tϵ)ψ̂)
−1 : C −−→ C

is a chain equivalence, in which case the monodromy

h = 1− f−1 = −(Tϵψ̂)ψ̂−1 : C −−→ C .

is a fibred chain equivalence, i.e. h and h− 1 : C−−→C are both chain equiv-
alences.
(ii) The fibred ϵ-ultraquadratic L-group L̂q,fibn (A, ϵ) (n ≥ 0) for q = p (resp. h)
is the cobordism group of finitely dominated (resp. f.g. free) n-dimensional
ϵ-symmetric fibred Seifert complexes over A. �
Proposition 32.16 (i) The homotopy equivalence classes of the following
objects are in one-one correspondence :

(a) n-dimensional ϵ-symmetric fibred Seifert complexes over A,
(b) fibred self homotopy equivalences of finitely dominated n-dimensional

ϵ-symmetric Poincaré complexes over A (28.35),
(c) n-dimensional ϵ-symmetric Poincaré complexes over A with an iso-

metric structure (31.4).

(ii) The fibred ϵ-ultraquadratic L-groups are isomorphic to the fibred auto-
morphism L-groups (28.35) and also to the fibred isometric L-groups (31.9),
with isomorphisms
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L̂q,fibn (A, ϵ)
≃−−→ LAutq,fibn (A, ϵ) ;

(C, ψ̂) −−→ (C, (1 + Tϵ)ψ̂,−ψ̂(Tϵψ̂)−1) ,

LAutnq,fib(A, ϵ)
≃−−→ LIsonq,fib(A, ϵ) ;

(C, ϕ, h, χ) −−→ (C, (h− 1)−1ϕ0) (q = s, h, p) .

Proof (i) (a) ⇐⇒ (b) Given a finitely dominated n-dimensional ϵ-symmetric

fibred Seifert complex (C, ψ̂) over A define a fibred self homotopy equivalence

h = −ψ̂(Tϵψ̂)−1 : (C, (1 + Tϵ)ψ̂) −−→ (C, (1 + Tϵ)ψ̂)

of the finitely dominated n-dimensional ϵ-symmetric Poincaré complex
(C, (1 + Tϵ)ψ̂) over A.
Conversely, given a fibred self homotopy equivalence

(h, χ) : (C, ϕ) −−→ (C, ϕ)

of a finitely dominated n-dimensional ϵ-symmetric Poincaré complex (C, ϕ)
over A the A-module chain equivalence

ψ̂ = (h− 1)−1ϕ0 : Cn−∗ −−→ C

defines a finitely dominated n-dimensional ϵ-symmetric Seifert complex
(C, ψ̂) over A.
(a) ⇐⇒ (c) This is just the fibred version of 32.3. An ϵ-symmetric Seifert

complex (C, ψ̂) is fibred if and only if the corresponding isometric structure

(f, δϕ) for (C, (1 + Tϵ)ψ̂) is fibred.
(ii) Immediate from (i). �

Definition 32.17 A nonsingular ϵ-symmetric Seifert form (M, ψ̂) over A is

fibred if ψ̂ :M−−→M∗ is an isomorphism, in which case the isometric structure
is a fibred automorphism

f = (ψ̂ + ϵψ̂∗)−1ψ̂ : M
≃−−→ M . �

Proposition 32.18 (i) The 2i-dimensional fibred Seifert complexes (C, ψ̂)
over A with Cr = 0 for r ̸= i are in one-one correspondence with nonsingular
(−)i-symmetric fibred Seifert forms (M, ψ̂) over A, with M = Ci.
(ii) The nonsingular ϵ-symmetric fibred Seifert forms over A are in one-one
correspondence with fibred automorphisms h : (M,ϕ)−−→(M,ϕ) of nonsingu-
lar ϵ-symmetric forms (M,ϕ) over A.
(iii) The fibred automorphism L-group LAut2ifib(A, ϵ) is the Witt group of f.g.

projective nonsingular fibred (−)iϵ-symmetric Seifert forms over A.
Proof (i) Immediate from the definitions.

(ii) The monodromy of a nonsingular ϵ-symmetric fibred Seifert form (M, ψ̂)
defines a fibred automorphism of a nonsingular ϵ-symmetric form
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h = ϵ(ψ̂∗)−1ψ̂ : (M, ψ̂ + ϵψ̂∗)
≃−−→ (M, ψ̂ + ϵψ̂∗) .

Conversely, given a fibred automorphism of an ϵ-symmetric form

h : (M,ϕ) −−→ (M,ϕ)

define a fibred ϵ-symmetric Seifert form (M, ψ̂) over A by

ψ̂ = ϕ(h− 1)−1 : M
≃−−→ M∗ ,

with monodromy h and isometric structure

f = ϕ−1ψ̂ : M
≃−−→ M .

(iii) Immediate from (ii). �
And now for fibred Blanchfield complexes.

Definition 32.19 (i) A f.g. free (n + 1)-dimensional ϵ-symmetric Blanch-
field complex (E, θ) over A[z, z−1] is fibred if it is homotopy equivalent to
the algebraic mapping torus T (h, χ) of a self homotopy equivalence (h, χ) :
(C, ϕ)−−→(C, ϕ) of a f.g. projective n-dimensional ϵ-symmetric Poincaré com-
plex (C, ϕ), which is necessarily fibred (= such that h− 1 : C−−→C is also a
chain equivalence).
(ii) The fibre of a fibred (n+1)-dimensional ϵ-symmetric Blanchfield complex
(E, θ) over A[z, z−1] is the finitely dominated n-dimensional ϵ-symmetric fi-

bred Seifert complex (E !, ψ̂) over A with E ! the A-module chain complex
obtained from E by restricting the A[z, z−1]-action to A and

ψ̂ = (1− ζ)−1θ!0 : (E !)n−∗ ≃ (En+1−∗)! −−→ E ! . �

Let Ωfib be the set defined in Chap. 13 of fibred Fredholm matrices in
A[z, z−1]. The following conditions on a f.g. free symmetric Poincaré complex
(C, ϕ) over A[z, z−1] will be shown to be equivalent :

(i) (C, ϕ) is a fibred Blanchfield complex,
(ii) the A[z, z−1]-module chain complex C is a band (= A-finitely domi-

nated) and the A-module chain complex A⊗A[z,z−1]C is contractible,

(iii) the induced Ω−1
fibA[z, z

−1]-module chain complex Ω−1
fibC is contract-

ible.

Proposition 32.20 (i) A f.g. free ϵ-symmetric Poincaré complex (C, ϕ)
over A[z, z−1] is a fibred Blanchfield complex if and only if (C, ϕ) is
Ω−1
fibA[z, z

−1]-contractible.
(ii) The homotopy equivalence classes of fibred n-dimensional ϵ-symmetric
Blanchfield complexes over A[z, z−1] are in one-one correspondence with the
homotopy equivalence classes of fibred self homotopy equivalences of finitely
dominated (n− 1)-dimensional ϵ-symmetric Poincaré complexes over A.
(iii) The cobordism group of fibred n-dimensional ϵ-symmetric Blanchfield
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complexes over A[z, z−1] is the (n − 1)-dimensional projective fibred auto-
morphism L-group

Ln+1
h (A[z, z−1], Ωfib, ϵ) = LAutn−1

fib,p(A, ϵ) ,

which is the torsion L-group in the localization exact sequence

. . . −−→ Ln+1
h (A[z, z−1], ϵ) −−→ Ln+1

h (Ω−1
fibA[z, z

−1], ϵ)

−−→ LAutn−1
fib,p(A, ϵ) −−→ Lnh(A[z, z

−1], ϵ) −−→ . . . .

The ϵ-symmetric L-groups of Ω−1
fibA[z, z

−1] naturally split as

Lnh(Ω
−1
fibA[z, z

−1], ϵ) = Lnh(A, ϵ)⊕ LÃut
n−2

fib (A, ϵ) .

Proof (i) This is a special case of 25.5.
(ii) This is the fibred version of 32.11 (i).
(iii) The identification of the fibred automorphism L-groups with the torsion
L-groups is the fibred analogue of 32.11 (ii). The inclusion A−−→Ω−1

fibA[z, z
−1]

is split by the projection Ω−1
fibA[z, z

−1]−−→A given by 13.10, so that

Lnh(Ω
−1
fibA[z, z

−1], ϵ) contains Lnh(A, ϵ) as a direct summand. The identifica-

tion of the exterior with LÃut
n−2

fib (A, ϵ) follows from (i) and

Lnh(A[z, z
−1], ϵ) = Lnh(A, ϵ)⊕ Ln−1

p (A, ϵ) . �

Example 32.21 If A is commutative then the multiplicative subsets

P = {
d∑
j=0

ajz
j |

d∑
j=0

aj ∈ A•} ,

Pfib = {
d∑
j=0

ajz
j | a0, ad,

d∑
j=0

aj ∈ A•} ⊂ A[z, z−1]

are such that
Π−1A[z, z−1] = P−1A[z, z−1] ,

Ω−1
fibA[z, z

−1] = P−1
fibA[z, z

−1] . �

Proposition 32.22 For any field with involution F every Blanchfield complex
over F [z, z−1] fibres, and

Ln+2(F [z, z−1], P, ϵ) = Ln+2(F [z, z−1], Pfib, ϵ) = LAutnfib(F, ϵ) .

Proof Every Blanchfield complex (E, θ) over F [z, z−1] fibres by 32.20 (i), since

P−1F [z, z−1] = P̃−1F [z, z−1] ⊂ F (z) .
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By 32.20 (ii) the homotopy equivalence classes of (n + 1)-dimensional ϵ-
symmetric Blanchfield complexes over F [z, z−1] are in one-one correspon-
dence with the homotopy equivalence classes of fibred self homotopy equiv-
alences of finitely dominated n-dimensional ϵ-symmetric Poincaré complexes
over F , and likewise for cobordism classes. �

32D. Based Seifert and Blanchfield complexes

There is also a based version of Blanchfield complex theory.

Definition 32.23 A simple Blanchfield complex is an A-contractible based
f.g. free ϵ-symmetric Poincaré complex over A[z, z−1] such that

τ(C, ϕ) = 0 ∈Wh1(A[z, z
−1]) , τ(A⊗A[z,z−1] C) = 0 ∈Wh1(A) . �

Proposition 32.24 The cobordism groups Lns (A[z, z
−1],Π, ϵ) of simple (n−

1)-dimensional ϵ-symmetric Blanchfield complexes over A[z, z−1] are such
that

LIsonh(A, ϵ) = Lnh(Π
−1A[z, z−1], ϵz) = Lns (A[z, z

−1],Π,−ϵ) ,

and fit into the simple ϵ-symmetric L-theory localization exact sequence

. . . −−→ Lns (A[z, z
−1], ϵ) −−→ Lns′(Π

−1A[z, z−1], ϵ) −−→ Lns (A[z, z
−1],Π, ϵ)

−−→ Ln−1
s (A[z, z−1], ϵ) −−→ . . . ,

with
s′ = ker(Wh1(Π

−1A[z, z−1])−−→Wh1(A))

= Ẽnd0(A) ⊆Wh1(Π
−1A[z, z−1]) .

Proof By 26.11 (i) there are defined isomorphisms

LAsynh(A,Π, ϵz) = LIsonh(A, ϵ)
≃−−→ Lnh(Π

−1A[z, z−1], ϵz) ;

(C, λ) −−→ (Π−1C[z, z−1], (1 + Tϵz)λ) ,

LAsynp (A,Π, ϵz) = LIsonp (A, ϵ)
≃−−→ Lnh(A[z, z

−1],Π, ϵz) ;

(C, λ) −−→ ∂(C[z, z−1], (1 + Tϵz)λ) .

Now Π is coprime to (1− z), and the covering isomorphism of 32.12 can be
identified with one of the isomorphisms given by 26.11 (v)

βs : LIsonh(A, ϵ)
≃−−→ Lns (A[z, z

−1],Π,−ϵ) ;

(C, λ) −−→ ∂(C[z, z−1], (1− z−1)(1 + Tϵz)λ) ,

βh : LIsonp (A, ϵ)
≃−−→ Lnh(A[z, z

−1],Π,−ϵ) ;

(C, λ) −−→ ∂(C[z, z−1], (1− z−1)(1 + Tϵz)λ) . �
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Definition 32.25 A simple ϵ-symmetric Blanchfield complex (E, θ) over
A[z, z−1] fibres if it is homotopy equivalent to the algebraic mapping torus
T (h, χ) of a simple self homotopy equivalence (h, χ) : (C, ϕ)−−→(C, ϕ) of a
based f.g. free n-dimensional ϵ-symmetric Poincaré complex (C, ϕ) such that
h− 1 : C−−→C is also a chain equivalence. �
Remark 32.26 The ϵ-symmetric Poincaré complex (C, ϕ) in 32.25 need not
be simple : the torsion is given by

τ(C, ϕ) = B2τ2(E, θ) ∈Wh1(A)

with τ2(E, θ) ∈Wh2(A[z, z
−1]) the Wh2-invariant determined by the failure

of symmetry in a choice of trivialization of τ(E, θ) ∈Wh1(A[z, z
−1]) and

B2 : Wh2(A[z, z
−1]) −−→ Wh1(A)

the Wh2-analogue of B :Wh1(A[z, z
−1])−−→K̃0(A). �

The fibering obstructions Φ±(E) of an A-finitely dominated based f.g. free
(n+1)-dimensional ϵ-symmetric Blanchfield complex (E, θ) over A[z, z−1] are
such that

τ(E, θ) = Φ+(E) + (−)n+1Φ−(E)∗ ∈Wh1(A[z, z
−1]) .

Thus for simple (E, θ) the two fibering obstructions determine each other by
the duality relation

Φ+(E) = (−)nΦ−(E)∗ ∈Wh1(A[z, z
−1]) ,

and E fibres (= simple chain equivalent to the algebraic mapping torus
T+(h) = C(1 − zh : C[z, z−1]−−→C[z, z−1]) of a simple chain equivalence
h : C−−→C of a based f.g. free A-module chain complex C) if and only if
Φ+(E) = 0.

The based version of 32.20 is given by :

Proposition 32.27 A simple Blanchfield complex (E, θ) over A[z, z−1] fibres
if and only if the based finite f.g. free A[z, z−1]-module E is a fibred band, i.e.
A-finitely dominated with Φ+(E) = 0 ∈Wh1(A[z, z

−1]). �
Proposition 32.28 For any field with involution F

LAut∗fib(F, ϵ) = LIso∗(F, ϵ) = LIso∗fib(F, ϵ) .

Proof Use 32.16 to identify

LAut∗fib(F, ϵ) = LIso∗fib(F, ϵ) .

The forgetful maps

LAutnfib(F, ϵ) −−→ LIson(F, ϵ) ; (C, ϕ, h, χ) −−→ (C, (h− 1)−1ϕ0)
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will now be shown to be isomorphisms, by an explicit construction of the
inverse isomorphisms. The covering of an n-dimensional ϵ-symmetric Seifert
complex (D, ψ̂) is an (n + 1)-dimensional ϵ-symmetric Blanchfield complex

β(D, ψ̂) over F [z, z−1]. Now β(D, ψ̂) is fibred, so that it is homotopy equiva-
lent to the algebraic mapping torus T (h, χ) of a fibred self homotopy equiv-
alence (h, χ) : (C, ϕ)−−→(C, ϕ) of an n-dimensional symmetric ϵ-symmetric
Poincaré complex (C, ϕ) over F . The covering construction thus defines the
inverse isomorphisms

LIson(F, ϵ)
≃−−→ LAutnfib(F, ϵ) ; (D, ψ̂) −−→ β(D, ψ̂) = (C, ϕ, h, χ) ,

with
H∗(C) = H∗+1(ψ̂ + zTϵψ̂ : Dn−∗[z, z−1]−−→D[z, z−1]) ,

h = ζ : H∗(C) −−→ H∗(C) . �

Proposition 32.29 An ϵ-symmetric Seifert complex (C, ψ̂) is S-equivalent

to a fibred Seifert complex if and only if βh(C, ψ̂) is a fibred Blanchfield com-
plex.
Proof If (C, ψ̂) is a fibred Seifert complex then βh(C, ψ̂) is a fibred Blanchfield
complex.
Conversely, if (C, ψ̂) is a Seifert complex such that βh(C, ψ̂) is a fibred

Blanchfield complex then the fibre of βh(C, ψ̂) is a fibred Seifert complex

S-equivalent to (C, ψ̂). �
Proposition 32.30 An (n+1)-dimensional ϵ-symmetric Blanchfield complex
(E, θ) over A[z, z−1] fibres if and only it has a fibred projective Seifert complex

(C, ψ̂).
Proof If (E, θ) fibres let (i!E, i!θ) be the finitely dominated n-dimensional
symmetric Poincaré complex over A defined in 25.5 (the ‘infinite cyclic cover’
of (E, θ)). The fibred isometric structure ((1−ζ)−1, 0) for (i!E, i!θ) determines

a fibred finitely dominated Seifert complex (i!E, ψ̂) for (E, θ), with

ψ̂ = (1− ζ)−1θ0 : (i!E)n−∗ ≃ En+1−∗ −−→ i!E .

Conversely, the free covering βh(C, ψ̂) of a fibred finitely dominated Seifert

complex (C, ψ̂) is homotopy equivalent to the algebraic mapping cone T (h, χ)
of the monodromy homotopy equivalence

(h, χ) = ((Tϵψ̂)ψ̂
−1, 0) : (C, (1 + Tϵ)ψ̂)

≃−−→ (C, (1 + Tϵ)ψ̂) ,

so that the Blanchfield complex βh(C, ψ̂) is fibred. �
There is also a based version of the covering construction :

Definition 32.31 The simple covering of a based f.g. free n-dimensional ϵ-
symmetric Seifert complex (C, ψ̂) over A is the simple (n + 1)-dimensional
ϵ-symmetric Blanchfield complex over A[z, z−1]
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βs(C, ψ̂) = U(Γ ) = (E′, θ′)

defined by the union of the fundamental symmetric Poincaré cobordism over
A

Γ = ((1− f − f) : C ⊕ C−−→C, (δϕ, ϕ⊕−ϕ)) ,

with (f, 0) the isometric structure on (C, (1 + Tϵ)ψ̂) given by

f = ψ̂((1 + Tϵ)ψ̂)
−1 : C −−→ C ,

E′ = C(1− f + zf : C[z, z−1]−−→C[z, z−1]) . �

The free and simple coverings are related by a homotopy equivalence

(h, χ) : βh(C, ψ̂)
≃−−→ βs(C, ψ̂)

with

h = (1 (1 + Tϵ)ψ̂) : C(Tϵψ̂ + zψ̂ : Cn−∗[z, z−1]−−→C[z, z−1])

−−→ C(1− f + zf : C[z, z−1]−−→D[z, z−1]) ,

such that

τ(h) = τ(C, ψ̂) ∈ im(Wh1(A)−−→Wh1(A[z, z
−1])) .

Definition 32.32 A free Seifert complex for a simple (n + 1)-dimensional
ϵ-symmetric Blanchfield complex (E, θ) over A[z, z−1] is a based f.g. free n-

dimensional ϵ-symmetric Seifert complex (C, ψ̂) such that the simple covering

βs(C, ψ̂) is simple homotopy equivalent to (E, θ). �

Remark 32.33 The Seifert complex (C, ψ̂) in 32.32 need not be simple : the
torsion is given by

τ(C, ψ̂) = B2τ2(E, θ) ∈Wh1(A)

with τ2(E, θ) ∈Wh2(A[z, z
−1]) the Wh2-invariant determined by a choice of

trivialization of τ(E, θ) ∈Wh1(A[z, z
−1]) and

B2 : Wh2(A[z, z
−1]) −−→ Wh1(A)

the Wh2-analogue of the Bass–Heller–Swan projection

B : Wh1(A[z, z
−1]) −−→ K̃0(A) . �

Proposition 32.34 Simple Blanchfield complexes have free Seifert com-
plexes. More precisely, every simple A-contractible based f.g. free (n + 1)-
dimensional symmetric Poincaré complex (E, θ) over A[z, z−1] with

τ(A⊗A[z,z−1] E) = 0 ∈Wh1(A)
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is simple homotopy equivalent to the simple covering βs(D, ψ̂) of a based f.g.

free n-dimensional ultraquadratic Poincaré complex (D, ψ̂).
Proof As for 32.23, but taking account of torsions. �

The based version of 32.24 is given by :

Proposition 32.35 The simple covering construction of 32.31 defines natu-
ral isomorphisms

βs : LIsonh(A, ϵ)
≃−−→ Lsn+2(A[z, z

−1],Π, ϵ) ; (C, ψ̂) −−→ βs(C, ψ̂) .

Proof The algebraic Poincaré transversality construction of 32.23 defines in-
verse maps (βs)−1 : (E, θ)−−→(C, ψ̂). �

Definition 32.36 A based f.g. free n-dimensional ϵ-symmetric Seifert com-
plex (C, ψ̂) over A is simple fibred if the A-module chain maps

f = ψ̂((1 + Tϵ)ψ̂)
−1 : C −−→ C ,

1− f = Tϵψ̂((1 + Tϵ)ψ̂)
−1 : C −−→ C

are simple chain equivalences. �
The monodromy of a fibred based Seifert complex (C, ψ̂) is a simple chain

equivalence

h = (Tϵψ̂)ψ̂
−1 = 1− f−1 : C

≃−−→ C .

The based version of 32.30 is given by :

Proposition 32.37 A simple (n+1)-dimensional Blanchfield complex (E, θ)
over A[z, z−1] fibres if and only it has a simple fibred free Seifert complex

(C, ψ̂). �
Proposition 32.38 Let A be an integral domain, with

P = {p(z) | p(1) = 1} ⊂ A[z, z−1] ,

and let E be an n-dimensional A-contractible finite f.g. free A[z, z−1]-module
chain complex with Alexander polynomials

∆r(z) =

mr∑
j=0

aj,rz
j ∈ A[z] (0 ≤ r ≤ n− 1) ,

and let E′ = En−∗ be the n-dual n-dimensional A-contractible finite f.g. free
A[z, z−1]-module chain complex.
(i) The Alexander polynomials ∆′

∗(z) of E
′ are given by

∆′
n−r−1(z) = zmr∆r(z) =

mr∑
j=0

āmr−j,rz
j ∈ A[z] (0 ≤ r ≤ n− 1) .
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(ii) If E is chain equivalent to E′ then

∆r(z) = ∆′
r(z) ∈ A[z] (0 ≤ r ≤ n− 1) ,

so that

mr = mn−1−r , aj,r = āmr−j,n−1−r (0 ≤ r ≤ n− 1) .

The Reidemeister torsion (16.5) is given by

∆(E) = ∆(E′) =
n−1∏
r=0

∆r(1− z)(−)r ∈ W̃ (A) ,

so that

∆(E) =

{
τ(τ∗)−1 if n = 2i

∆i(1− z)(−)iττ∗ if n = 2i+ 1

with
τ =

∏
2r<n

∆r(1− z)(−)r ∈ W̃ (A) .

(iii) The P -primary torsion class morphism of 31.19

∆ : Ln+1(A[z, z−1], P, ϵ) = LIson−1(A, ϵ)

−−→ Ĥn+1(Z2;K1(A[z, z
−1], P )) = Ĥn−1(Z2; Iso0(A)) ; (E, θ) −−→ ∆(E)

sends an n-dimensional ϵ-symmetric Blanchfield complex (E, θ) over A[z, z−1]
to the Tate Z2-cohomology class of ∆(E). By (ii) the map ∆ is 0 for even
n, and for odd n = 2i + 1 it is given by the middle-dimensional Alexander
polynomial

∆(E) = ∆i(1− z)(−)i ∈ Ĥn−1(Z2; Iso0(A)) = Ĥn−1(Z2; W̃ (A)) .

Proof (i) It suffices to consider the 1-dimensional case

E = C(1− f + zf : D[z, z−1]−−→D[z, z−1])

with D a f.g. projective A-module and f ∈ HomA(D,D), and with 1-dual

E′ = E1−∗ = C(1− f∗ + z−1f∗ : D∗[z, z−1]−−→D∗[z, z−1]) .

Let

det(1− f + zf : D[z]−−→D[z]) = zk
m∑
j=0

ajz
j ∈ A[z]

(a0, am ̸= 0 ∈ A, k ≥ 0) ,

so that
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det(1− f∗ + z−1f∗ : D∗[z−1]−−→D∗[z−1]) = z−m−k
m∑
j=0

ām−jz
j ∈ A[z−1] .

The Alexander polynomials of E,E′ are given by

∆0(z) =
m∑
j=0

ajz
j , ∆′

0(z) =
m∑
j=0

ām−jz
j ∈ A[z] .

(ii) Immediate from (i) and 17.7. �
Example 32.39 Let (E, θ) be a f.g. free (n + 2)-dimensional Blanchfield
complex over A[z, z−1], which by 32.30 is homotopy equivalent to the covering

β(C, ψ̂) of a finitely dominated (n+1)-dimensional Seifert complex (C, ψ̂) over
A. Assume that A is an integral domain, so that the Alexander polynomials
of (E, θ) are defined (32.38). The Alexander polynomials are determined by
the isometric structure

f = ψ̂((1 + T )ψ̂)−1 : C −−→ C ,

with

∆r(z) = z−nrdet(1− f + zf : Hr(C)[z]−−→Hr(C)[z]) (r ≥ 0) ,

where
nr = dimFHr(E

+;F )− dimFHr(E;F ) ≥ 0 . �

32E. Minimal Seifert complexes

In 32E. the ground ring A is assumed to be an integral domain.

Definition 32.40 (i) A polynomial

q(s) =
d∑
j=0

ajs
j ∈ A[s]

is minimal if

a0 ̸= 0 ∈ A ,

d∑
j=0

aj ̸= 0 ∈ A , ad ∈ A• .

(ii) Let QA ⊂ A[s] be the involution-invariant multiplicative subset of all
polynomials with leading coefficient a unit in A, and let QA,min ⊂ QA be
the subset of the minimal polynomials, so that QA,min ⊂ A[s] is also an
involution-invariant multiplicative subset.
(iii) An ϵ-symmetric Seifert complex (C, λ) over A is minimal if the chain
map
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s = f = λ((1 + Tϵ)λ)
−1 : C −−→ C

(= the isometric structure on (C, (1 + Tϵ)λ)) is such that

q(f) ≃ 0 : C −−→ C

for some q(s) ∈ QA,min. Similarly for a Seifert form. �
Proposition 32.41 Let (C, λ) be a Seifert complex over A with covering
Blanchfield complex β(C, λ) = (E, θ) over A[z, z−1]. The natural A-module
chain map g : C−−→E induces injections g∗ : H∗(C)−−→H∗(E) if and only if
f∗, 1 − f∗ : H∗(C)−−→H∗(C) are injections. In particular, this is the case if
(C, λ) is minimal.
Proof The kernel of

g∗ : Hr(C) −−→ Hr(E) = A[s, s−1, (1− s)−1]⊗A[s] Hr(C)

consists of the elements x ∈ Hr(C) such that (f∗(1− f∗))N (x) = 0 ∈ Hr(C)
for some N ≥ 0. It follows from

ker(f∗) + ker(1− f∗) ⊆ ker(g∗)

that if g∗ is injective then so are f∗, 1−f∗. Conversely, if f∗, 1−f∗ are injective
then so is each (f∗(1− f∗))N , and hence so is g∗.
If (C, λ) is minimal and q(s) ∈ QA,min is such that q(f) ≃ 0 define

p0(s) =
q(s)− q(0)

s
, p1(s) =

q(1)− q(s)
1− s

∈ A[s]

such that

sp0(s) + q(0) = q(1)− (1− s)p1(s) = q(s) ∈ A[s]

with q(0), q(1) ̸= 0 ∈ A. Now

fp0(f) + q(0) = q(1)− (1− f)p1(f) = q(f) ≃ 0 : C −−→ C

so that f∗, 1− f∗ : H∗(C)−−→H∗(C) are injective. �
Remark 32.42 A Seifert surface F for an n-knot k : Sn ⊂ Sn+2 is minimal
if the inclusion F ⊂ X in the canonical infinite cyclic cover of the exterior X
induces injections H∗(F )−−→H∗(X). By 32.41 this is the case if the Seifert
complex (Ċ(F ), λ) over Z is minimal. Farber [76, 2.4] proved that for n ≥ 4
every n-knot k has minimal Seifert surfaces Fn+1 ⊂ Sn+2, with H∗(F ) ⊆
H∗(X) prescribed f.g. Z[s]-modules (∗ ̸= 0, up to multiplication by some ti,
with self duality if n+ 1 = 2∗) such that

Z[s, s−1, (1− s)−1]⊗Z[s] H∗(F ) = H∗(X) ,

with
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s = λ((1 + T )λ)−1 : H∗(F ) −−→ H∗(F ) ,

s = (1− ζ)−1 : H∗(X) −−→ H∗(X) . �
In 35.12 below it will be proved that every Seifert complex over an integral

domain A is cobordant to a minimal Seifert complex. The 0-dimensional case
is that every Seifert form is Witt-equivalent to a minimal Seifert form. For the
remainder of Chap. 32 only forms will be considered. In 32.45 below it will
be proved that every Seifert form over a Euclidean domain is S-equivalent to
a minimal Seifert form.

Proposition 32.43 (i) The characteristic polynomial of an object (P, f) in
End(A)

q(s) = chs(P, f) = det(s− f : P [s]−−→P [s]) ∈ A[s]

is minimal if and only if the endomorphisms f, 1− f : P−−→P are injective.
(ii) The localization of A[s] inverting QA is just the Fredholm localization

Q−1
A A[s] = Ω−1

+ A[s] ,

which fits into a commutative square of rings with involution

A[s] //

��

Q−1
A,minA[s]

��
A[s, s−1, (1− s)−1] // Q−1

A A[s] .

The induced morphism of abelian groups

Q−1
A,minA[s]/A[s] −−→ Q−1

A A[s]/A[s, s−1, (1− s)−1]

is injective. This morphism is surjective if and only if A = F is a field, in
which case the square is cartesian with

Q−1
A,minA[s] = F [s](s,1−s) , Q−1

A A[s] = F (s) .

(iii) Let

PA = {
∞∑

j=−∞
ajz

j |
∞∑

j=−∞
aj = 1 ∈ A} ⊂ A[z, z−1] .

The morphisms

Q−1
A A[s]/A[s, s−1, (1− s)−1]−−→P−1

A A[z, z−1]/A[z, z−1] ; s−−→ (1− z)−1 ,

P−1
A A[z, z−1]/A[z, z−1]−−→P−1

A A[z, z−1, (1− z)−1]/A[z, z−1, (1− z)−1]

are isomorphisms.
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Proof (i) The characteristic polynomial has values

q(0) = det(−f : P−−→P ) , q(1) = det(1− f : P−−→P ) ∈ A .

These values are non-zero precisely when f and 1− f are injective.
(ii) The natural A[s]-module morphisms

A[s, s−1, (1− s)−1] −−→ Q−1
A A[s] , Q−1

A,minA[s] −−→ Q−1
A A[s]

are inclusions of submodules. For any elements

r(s)

sj(1− s)k
∈ A[s, s−1, (1− s)−1] ,

p(s)

q(s)
∈ Q−1

A,minA[s]

such that
r(s)

sj(1− s)k
=

p(s)

q(s)
∈ Q−1

A A[s]

it follows from the minimality of q(s) and the identity

p(s)sj(1− s)k = q(s)r(s) ∈ A[s]

that sj(1− s)k divides r(s), and hence that

A[s, s−1, (1− s)−1] ∩Q−1
A,minA[s] = A[s] ⊂ Q−1

A A[s] .

The commutative square

F [s] //

��

Q−1
F,minF [s]

��
F [s, s−1, (1− s)−1] // Q−1

F F [s]

is cartesian for any field F , since any polynomial p(s) ̸= 0 ∈ F [s] can be
factorized as

p(s) = sj(1− s)kq(s) ∈ F [s]

with j, k ≥ 0 and q(s) ∈ F [s] coprime to sj(1 − s)k. Thus q(0), q(1) ∈ F •,
and there exist β(s), γ(s) ∈ F [s] with

β(s)q(s) + γ(s)sj(1− s)k = 1 ∈ F [s] ,

giving a partial fraction decomposition

1

p(s)
=

β(s)

sj(1− s)k
+
γ(s)

q(s)

∈ im(F [s, s−1, (1− s)−1]⊕Q−1
F,minF [s]−−→Q

−1
F F [s]) .

If A is not a field and a ∈ A\(A• ∪ {0}), then
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1

s(s+ a)
̸∈ im(A[s, s−1, (1− s)−1]⊕Q−1

A,minA[s]−−→Q
−1
A A[s])

since otherwise
1

s(s+ a)
=

β(s)

s
+

γ(s)

s+ a

for some β(s), γ(s) ∈ A[s] and β(0) = a−1 ∈ A, a contradiction.
(iii) This follows from the isomorphism of rings with involution

A[s, s−1, (1− s)−1]
≃−−→ A[z, z−1, (1− z)−1] ; s −−→ (1− z)−1 . �

Proposition 32.44 Let (L, λ) be an ϵ-symmetric Seifert form over A, cor-
responding to the isometric structure

f = (λ+ ϵλ∗)−1λ : L −−→ L

on the nonsingular ϵ-symmetric form (L, λ+ ϵλ∗) over A, with

1− f = (λ+ ϵλ∗)−1(ϵλ∗) : L −−→ L .

Also, let (M,µ) = β(L, λ) be the covering (−ϵ)-symmetric Blanchfield form
over A[z, z−1], with

M = coker(1− f + zf : L[z, z−1]−−→L[z, z−1]) ,

µ : M ×M −−→ P−1
A A[z, z−1]/A[z, z−1] ;

(x, y) −−→ (1− z)(λ+ ϵλ∗)(x, (1− f + zf)−1(y)) .

(i) The Blanchfield form (M,µ) is such that for any x, y ∈ L the composite

P−1
A A[z, z−1]/A[z, z−1]

→ P−1
F [z, z−1]/F [z, z−1] = Q−1

F,min[s]/F [s] = F [s](s,1−s)/F [s]

→ F ((s))/F [s] = s−1F [[s−1]]

sends µ(i(x), i(y)) ∈ P−1
A A[z, z−1]/A[z, z−1] to

µ(i(x), i(y)) =
−1∑

j=−∞
(λ+ ϵλ∗)(x, f−j−1(y))sj ∈ s−1A[[s−1]] ⊂ s−1F [[s−1]] ,

where i : L → M is the natural A-module morphism. In particular, µ deter-
mines λ by

λ : L×L
i×si
−−→ M×M

µ
−−→ P−1

A A[z, z−1]/A[z, z−1] −−→ F ((s))/F [s]
χs−−→ F

with s = (1− z)−1 :M−−→M and χs = coefficient of s−1 (31.20).
(ii) The following conditions are equivalent :

(a) λ : L−−→L∗ is injective,
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(b) i : L−−→M is injective,
(c) the Seifert form (L, λ) is minimal.

(iii) If A is a Euclidean domain then (L, λ) is S-equivalent to a minimal
Seifert form.
(iv) If A is a field then (L, λ) is S-equivalent to the minimal Seifert form
(L′, λ′) defined by

L′ = coker(zλ+ ϵλ∗ : L[z, z−1]−−→L∗[z, z−1]) ,

λ′(x, y) = χz(ϵzx((zλ+ ϵλ∗)−1(y))) ∈ A (x, y ∈ L∗[z, z−1]) .

Proof (i) Work in the completion A[[s−1]] to obtain

µ(i(x), i(y)) = (1− z)(λ+ ϵλ∗)(x, (1− f + zf)−1(y))

= s−1(λ+ ϵλ∗)(x, (1− s−1f)−1y)

=
−1∑

j=−∞
(λ+ ϵλ∗)(x, f−j−1(y))sj ∈ A[[s−1]]

so that
χs(µ(i(x), i(y))) = (λ+ ϵλ∗)(x, y) ,

χs(µ(i(x), si(y))) = λ(x, y) ∈ A ⊂ F .

(ii) Since s, 1− s ∈ A[s] are coprime the kernel of

i : L −−→ M = A[s, s−1, (1− s)−1]⊗A[s] L

(with s acting on L by f) is of the form

ker(i) = K+ ⊕K− ,

with
K+ = {x ∈ L | fk(x) = 0 for some k ≥ 0} ,

K− = {x ∈ L | (1− f)k(x) = 0 for some k ≥ 0} .

(a) =⇒ (b) If λ is injective then so are λ∗ : L−−→L∗, f, 1−f : L−−→L, whence
K+ = K− = 0.
(b) =⇒ (a) If K+ = 0 then fk : L−−→L is injective for every k ≥ 1, including
k = 1.
(c) =⇒ (a) Let

q(s) =

∞∑
j=0

ajs
j ∈ A[s]

be a monic polynomial with q(0) ̸= 0 ∈ A such that q(f) = 0 : L−−→L. If
x ∈ ker(λ : L−−→L∗) then f(x) = 0 ∈ L, and

q(f)(x) = q(0)x = 0 ∈ L .



32E. Minimal Seifert complexes 449

Since L is a f.g. projective A-module, it must be the case that x = 0 ∈ L,
and hence that f and λ are injective.
(a) =⇒ (c) The characteristic polynomial of f

q(s) = chs(L, f) ∈ A[s]

is a monic polynomial such that

q(f) = 0 : L −−→ L , q(0) = det(−f) , q(1) = det(1− f) ̸= 0 ∈ A .

(iii) If the structure f on (L, λ) is not minimal there exists an element x ̸=
0 ∈ L such that

λ(x) = 0 ∈ L∗ .

Since A is a principal ideal domain K̃0(A) = 0, so that L can be taken to be
f.g. free, say L = An, and

x = (a1, a2, . . . , an) ∈ L = An .

Dividing by the greatest common divisor of a1, a2, . . . , an ∈ A if necessary, it
may be assumed that a1, a2, . . . , an are coprime, so that x ∈ L generates a
direct summand

K = A⟨x⟩ ⊂ L = An

which is a sublagrangian of (L, λ + ϵλ∗). Since (L, λ + ϵλ∗) is nonsingular
there exists an element x∗ ∈ L such that

(λ+ ϵλ∗)(x, x∗) = 1 ∈ A ,

generating a direct summand

K∗ = A⟨x∗⟩ ⊂ L = An

such that

(L, λ) = (K ⊕K∗ ⊕ L′,

 0 1 0

0 α β

0 −ϵβ∗ λ′

)

for some α, β with (L′, λ′) = (K⊥/K, [λ]). Thus (L, λ) is S-equivalent to
(L′, λ′) with

dimA(L
′) = dimA(L)− 2 .

If (L′, λ′) is not minimal repeat the procedure, and so on.
(iv) Immediate from the isomorphism of exact sequences

0 // L[z, z−1]
zλ+ ϵλ∗ //

zϵ ∼=

��

L∗[z, z−1] // L′ //

λ′ ∼=

��

0

0 // L[z, z−1]
z−1λ∗ + ϵ−1λ

// L∗[z, z−1] // L′∗ // 0
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and 28.27. �
Corollary 32.45 If A is a Euclidean domain every Blanchfield form (M,µ)
over A[z, z−1] admits a minimal Seifert form (L, λ) over A.
Proof The existence of Seifert forms is the 0-dimensional case of 32.10 (for
any ring with involution A). Minimal Seifert forms for Euclidean A are given
by 32.44 (iii). �
Remark 32.46 The result that every Seifert form over Z is S-equivalent to
a minimal one was first obtained by Trotter [291]. The precise nature of the
relationship between Seifert and Blanchfield forms for the case of greatest
knot-theoretic significance A = Z was worked out by Kearton [124] (geomet-
rically) and Trotter [292], [293], Farber [73], [77] (algebraically), including the
result that every Blanchfield form over Z[z, z−1] admits a minimal Seifert
form over Z. �



33. Knot theory

This chapter deals with the classification theory of high-dimensional n-knots
k : Sn ⊂ Sn+2 from the algebraic surgery point of view, extending the treat-
ment in Ranicki [237, Chaps. 7.8, 7.9]. The following Chaps. 34–41 are devoted
to various algebraic L-theoretic techniques, which are used in Chap. 42 to
describe the computation of the high-dimensional knot cobordism groups C∗.

Definition 33.1 (Kervaire [131])
(i) An n-knot k : Sn ⊂ Sn+2 is an embedding of Sn in Sn+2.
(ii) Two n-knots k0, k1 : Sn ⊂ Sn+2 are cobordant if there exists an embedding
ℓ : Sn × I ⊂ Sn+2 × I such that

ℓ(Sn × I) ∩ (Sn+2 × {i}) = ki(S
n)× {i} ,

ℓ(x, i) = (ki(x), i) (i = 0, 1) .

(iii) The connected sum of n-knots k, k′ : Sn ⊂ Sn+2 is the n-knot

k#k′ : Sn#Sn = Sn ⊂ Sn+2#Sn+2 = Sn+2 .

The n-knot cobordism group Cn is the abelian group of cobordism classes of
n-knots k : Sn ⊂ Sn+2, with addition by the connected sum
(iv) An n-knot k : Sn ⊂ Sn+2 is slice if it is null-cobordant, or equivalently if
the Z-homology boundary spine k(Sn) ⊂ Sn+2 for (Dn+3, Sn+2) extends to
a Z-homology spine (Dn+1, k(Sn)) ⊂ (Dn+3, Sn+2). �

33A. The Seifert complex of an n-knot

Definition 33.2 (i) A Seifert surface for an n-knot k : Sn ⊂ Sn+2 is a
codimension 1 framed submanifold Fn+1 ⊂ Sn+2 with boundary

∂F = k(Sn) ⊂ Sn+2 ,

i.e. a codimension 1 Seifert surface in the sense of 27.3.
(ii) The Seifert complex of an n-knot k with respect to a Seifert surface F is
the (n+ 1)-dimensional ultraquadratic Poincaré complex over Z

σ∗(k, F ) = (C, ψ̂)
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defined in [237, p. 828] using a degree 1 normal map

(f, b) : (Fn+1, ∂F ) −−→ (Dn+3, k(Sn))

which is a homeomorphism on ∂F , with

H∗(C) = H∗+1(D
n+3, F ) = Ḣ∗(F ) . �

Proposition 33.3 (Kervaire [131], Levine [156], Ranicki [237, 7.9.4])
The Seifert complex morphisms

σ∗ : Cn −−→ L̂n+1(Z) = LIson+1(Z) ; k −−→ σ∗(k, F )

are isomorphisms for n ≥ 3.
Proof For even n note that C2∗ = 0 by the simply-connected surgery of [131]
and LIso2∗+1(Z) = 0 by algebraic surgery as in [237]. For odd n = 2i − 1
the identification of C2i−1 (i ≥ 2) with the Witt group of (−)i-symmetric
Seifert forms over Z is due to [156], and LIso2i(Z) was identified with this
Witt group in [237]. (The groups C2∗−1 are infinitely generated – see Chap.
42 for more details.) �

From the point of view of the framed codimension 2 surgery theory of
Chap. 27 the high-dimensional n-knot cobordism groups are the Z-homology
spine cobordism groups

Cn = ABn+1(pt.;F) = BBn+1(pt.;F)

= Γn+3(F,−z) = LAsyn+3(Z, P,−z) (n ≥ 3)

with F : Z[z, z−1]−−→Z the augmentation map z−−→1, and

P = {
∞∑

j=−∞
ajz

j |
∞∑

j=−∞
aj = ±1} ⊂ Z[z, z−1] .

Remark 33.4 (i) The morphisms ψ̂ : Hn+1−∗(C)−−→H∗(C) are given by

ψ̂ : Hn+1−∗(C) = Ḣn−∗(F ) = Ḣ∗(F )

−−→ Ḣ∗(S
n+2\F ) = Ḣn+1−∗(F ) = Ḣ∗(F ) .

The suspension Sσ∗(k, F ) is the (n+3)-dimensional (P,−z)-Poincaré asym-
metric complex obtained by applying the construction of 27.6 to the (n+3)-
dimensional manifold with boundary (Dn+3, Sn+2) and the homology framed
codimension 2 submanifold k(Sn) ⊂ Sn+2 with respect to the codimension 1
Seifert surface Fn+1 ⊂ Sn+2.
(ii) The Seifert form of a (2i− 1)-knot k : S2i−1 ⊂ S2i+1 (i ≥ 1) with Seifert

surface F 2i ⊂ S2i+1 is the (−)i-symmetric Seifert form (Hi(F )/torsion, ψ̂)
over Z determined by the Seifert complex σ∗(k, F ). See 27.9 (ii) for the
surgery construction of a (2i − 1)-knot k : S2i−1 ⊂ S2i+1 with prescribed
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(−)i-symmetric Seifert form over Z.
(iii) See Bredon [25] and Kauffman and Neumann [122, Chap. 8] for the ge-
ometric construction of maps Cn−−→Cn+4 (n ≥ 1) using the 2-fold cyclic
suspension of n-knots (cf. 29.22 (iii)), which are isomorphisms for n ≥ 3 by
Cappell and Shaneson [39].
(iv) The classical knot cobordism group C1 was defined by Fox and Milnor
[82], and shown to be infinitely generated using the Alexander polynomial
(cf. 42.1 below). The map C1−−→C4∗+1 to the high-dimensional (4∗+1)-knot
cobordism group is a surjection, with the invariants of Casson and Gordon
[48], [49] detecting non-trivial elements in the kernel – see Litherland [167]
for the relationship of these invariants with L2∗(Q(z)) = LAsy0(Q). �

33B. Fibred n-knots

Definition 33.5 (i) A homology framed knot Kn ⊂ Sn+2 is fibred if the
exterior X = cl.(Sn+2\(K × D2)) ⊂ Sn+2 fibres over S1, i.e. if X = T (h)
is the mapping torus of the monodromy homeomorphism h : F−−→F of a
Seifert surface Fn+1 ⊂ Sn+2 with h| = id. : ∂F = K−−→K, in which case
(X, ζ) = (F × R, h × T ) ≃ (F, h) with T : R−−→R;x−−→x + 1, and Sn+2 is
an open book with page F and binding K.
(ii) The cobordism group of fibred n-knots k : Sn ⊂ Sn+2 is denoted by Cfibn .
(iii) A fibred n-knot k : Sn ⊂ Sn+2 with fibre F has a fibred Seifert complex

(Ċ(F ), ψ̂). The fibred automorphism signature of k is the cobordism class

σ∗
fib(k, F ) = (Ċ(F ), ψ̂) ∈ LIson+1

fib (Z) = LAutn+1
fib (Z).

(iv) A fibred knot K2i−1 ⊂ S2i+1 with fibre F 2i is simple if K and F are
(i− 1)-connected. �

Durfee [64] and Kato [117] identified the isotopy classes of simple fibred
knots K2i−1 ⊂ S2i+1 for i ≥ 3 with the isomorphism classes of nonsingular
asymmetric forms (L, λ) over Z, with λ + (−)iλ∗ : L = Hi(F )−−→L∗ =
Hi(F,K) the intersection form of the fibre F and (λ∗)−1λ = h : L−−→L.
The isotopy classes of the simple fibred (2i − 1)-knots k : S2i−1 ⊂ S2i+1

for i ≥ 3 are thus in one-one correspondence with the isomorphism classes
of the nonsingular (−)i-symmetric Seifert forms over Z, i.e. the asymmetric
forms (L, λ) over Z with both λ : L−−→L∗ and λ + (−)iλ∗ : L−−→L∗ an
isomorphism.

Proposition 33.6 The fibred automorphism signature map

σ∗
fib : Cfibn −−→ LIson+1

fib (Z) ; k −−→ σ∗
fib(k, F )

is an isomorphism for n ≥ 4.
Proof For n = 2i work as in Kervaire [131], with Cfib2∗ = 0. For n = 2i − 1
note that every fibred (2i−1)-knot is cobordant to a simple one, and use the
isotopy classification of simple fibred (2i− 1)-knots. �
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33C. The Blanchfield complex of an n-knot

Let k : Sn ⊂ Sn+2 be an n-knot, for any n ≥ 1. The n-knot exterior

(X, ∂X) = (cl.(Sn+2\(k(Sn)×D2)), k(Sn)× S1)

is a compact (n+2)-dimensional manifold with a degree 1 normal map to an
(n+ 2)-dimensional geometric Poincaré pair

(f, b) : (X, ∂X) −−→ (Dn+3, k(Sn))× S1

which is a Z-homology equivalence onX and the identity on ∂X. The induced
group morphism f∗ : π1(X)−−→π1(Dn+3 × S1) = Z is onto, representing a
generator 1 ∈ H1(X) = Z, and

X = f∗(Dn+3 × R)

is the canonical infinite cyclic cover of X.

Definition 33.7 The Blanchfield complex of an n-knot k : Sn ⊂ Sn+2 is the
kernel Z-contractible (n + 2)-dimensional symmetric Poincaré complex over
Z[z, z−1]

σ∗(k) = (E, θ)

defined in [237, p. 822] with homology the knot Z[z, z−1]-modules

H∗(E) = H∗+1(f : X−−→Dn+3 × R) = Ḣ∗(X)

and Z-coefficient homology

H∗(Z⊗Z[z,z−1] E) = H∗+1(f : X−−→Dn+3 × S1) = 0 . �

Write the reduced homology and cohomology groups as

Ḣ∗(X) = H∗(X, pt.) , Ḣ∗(X) = H∗(X,pt.) .

The Z[z, z−1]-coefficient Poincaré duality isomorphisms

Hn+2−∗(E) ∼= H∗(E)

are the original Blanchfield duality isomorphisms

θ0 : Ḣn+2−r(X)
≃−−→

Ḣr(X) = HomZ[z,z−1](Ḣ
r+1(X), P−1Z[z, z−1]/Z[z, z−1]) ,

with
Ḣ∗(X) = H−∗(HomZ[z,z−1](Ċ(X),Z[z, z−1])) .

The adjoints are the nonsingular Blanchfield pairings

Ḣn+2−r(X)× Ḣr+1(X) −−→ P−1Z[z, z−1]/Z[z, z−1] .
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Sending an n-knot k : Sn ⊂ Sn+2 to its Blanchfield complex σ∗(k) defines an
isomorphism

Cn
≃−−→ Ln+3(Z[z, z−1], P ) ; k −−→ σ∗(k)

for n ≥ 4, with C2∗ = 0. The Blanchfield complex of a fibred n-knot k is
fibred.

Proposition 33.8 Let k : Sn ⊂ Sn+2 be an n-knot, with knot exterior

X = cl.(Sn+2\(k(Sn)×D2)) ,

and let Fn+1 ⊂ Sn+2 be a Seifert surface for k.
(i) The Blanchfield complex of k is homotopy equivalent to the covering of
the Seifert complex of k with respect to F

σ∗(k) ≃ βσ∗(k, F ) .

(ii) The covering isomorphism (32.9)

β : LIson+1(Z)
≃−−→ Ln+3(Z[z, z−1], P ) = Cn

sends the cobordism class of the Seifert complex σ∗(k, F ) to the cobordism
class of the Blanchfield complex σ∗(k).
(iii) The homotopy equivalence class of the Blanchfield complex σ∗(k) of an
n-knot k : Sn ⊂ Sn+2 is an isotopy invariant of k.
(iv) The S-equivalence class of the Seifert complex σ∗(k) of an n-knot k :
Sn ⊂ Sn+2 is an isotopy invariant of k.
Similarly for fibred n-knots.
Proof (i) Cutting X along F gives a fundamental domain (G;F, zF ) for the
canonical infinite cyclic cover of X

X =
∞∪

j=−∞
zjG .

The fundamental (n + 2)-dimensional symmetric Poincaré cobordism over
Z[z, z−1]

Γ = ((i+ i−) : Ċ(F )⊕ Ċ(zF )−−→ Ċ(G) , (δϕ, ϕ⊕−ϕ) )

is such that i+ − i− : Ċ(F )−−→Ċ(G) is a chain equivalence. The union of Γ
is the Blanchfield complex of k

U(Γ ) = σ∗(k) ,

corresponding to an isometric structure (f, δϕ) for the n-dimensional sym-
metric complex σ∗(F ) = (Ċ(F ), ϕ) over Z, with

f = −(i+ − i−)−1i− : Ċ(F ) −−→ Ċ(F ) .
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The covering of the Seifert complex of an n-knot k : Sn ⊂ Sn+2 with respect
to a Seifert surface Fn+1 ⊂ Sn+2 is the Blanchfield complex of k

βσ∗(k, F ) = σ∗(k) .

(ii) Immediate from (i).
(iii) The homotopy type of the pair (X,Sn×S1) is an isotopy invariant of k.
(iv) Immediate from (iii). �

Similarly for fibred n-knots :

Proposition 33.9 Let k : Sn ⊂ Sn+2 be a fibred n-knot, with knot exterior

X = cl.(Sn+2\(k(Sn)×D2))

the mapping torus X = T (h) of a monodromy homeomorphism h : F−−→F
on a Seifert surface Fn+1 ⊂ Sn+2 with

h| = id. : ∂F = k(Sn) −−→ ∂F .

(i) The Blanchfield complex of k is homotopy equivalent to the covering of
the Seifert complex of k with respect to F

σ∗
fib(k) ≃ βσ∗

fib(k, F ) .

(ii) The covering isomorphism

βfib : LIson+1
fib (Z)

≃−−→ Ln+3(Z[z, z−1], Pfib) = Cfibn

sends the cobordism class of the fibred Seifert complex σ∗
fib(k, F ) to the cobor-

dism class of the fibred Blanchfield complex σ∗
fib(k), with Pfib ⊂ Z[z, z−1] as

in 32.21.
Proof As for 33.8. �

33D. Simple n-knots

Definition 33.10 Let k : Sn ⊂ Sn+2 be an n-knot, with exterior X.
(i) The n-knot k is r-simple if the map X−−→S1 is r-connected, that is if

πi(X) = πi(S
1) for i ≤ r ,

or equivalently if k admits an r-connected Seifert surface Fn+1 ⊂ Sn+2, with

πi(F ) = 0 for i ≤ r .

(ii) The n-knot k is simple if it is [(n− 1)/2]-simple.
(iii) The n-knot k is stable if it is ([n/3] + 1)-simple. �
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An n-knot k : Sn ⊂ Sn+2 is simple if and only if the Blanchfield com-
plex σ∗(k) is [(n − 1)/2]-connected, corresponding to a nonsingular (−)i+1-
symmetric linking form over (Z[z, z−1], P ) (= Blanchfield form) for n = 2i−1
and a nonsingular (−)i+1-symmetric linking formation over (Z[z, z−1], P ) for
n = 2i. See Ranicki [237, Chap. 3.5] for linking formations, and [237, Chap.
7.9] for more on Blanchfield complexes.

Proposition 33.11 (Levine [158], Kearton [124], Trotter [292], [293])
For i ≥ 2 the following sets are in one-one correspondence :

(i) the isotopy classes of simple (2i− 1)-knots k : S2i−1 ⊂ S2i+1,
(ii) the S-equivalence classes of (−)i-symmetric Seifert forms over Z,
(iii) the isomorphism classes of (−)i+1-symmetric Blanchfield forms over

Z[z, z−1].

Proof See the original references for detailed proofs. The S-equivalence equiv-
alence relation on (−)i-symmetric Seifert forms over Z (originally defined by
Murasugi [206]) is generated by isomorphism and relations of the type

(L, λ) ∼ (L⊕K ⊕K∗,

 λ β 0

α γ 1

0 0 0

)

which correspond to modifying a Seifert surface by ambient codimension 1
surgery. (See 32.16 for the S-equivalence relation on Seifert complexes.) �
Remark 33.12 (i) For i ≥ 2 the isotopy classes of simple 2i-knots k :
S2i ⊂ S2i+2 are in one-one correspondence with the isomorphism classes of
nonsingular (−)i+1-symmetric linking formations over (Z[z, z−1], P ) together
with an extra homotopy pairing, by the work of Kearton [125] and Farber
[73], [74].
(ii) Schubert [259] proved that every 1-knot has a unique factorization as the
connected sum of finitely many irreducible 1-knots. For n ≥ 2 every n-knot
factorizes into finitely many irreducible knots, by Dunwoody and Fenn [63]. In
Bayer [16] and Bayer-Fluckiger [17] the classification of simple (2i− 1)-knots
and algebraic results on quadratic forms were used to prove that factorization
is not unique for high-dimensional knots, and that cancellation fails.
(iii) Farber [72] obtained an isotopy classification of stable n-knots k : Sn ⊂
Sn+2 for n ≥ 5 in terms of homotopy Seifert pairings.
(iv) For n ≥ 5 the isotopy class of an n-knot k : Sn ⊂ Sn+2 is determined by
the complement up to two possibilities, by Browder [28] : if k has exterior X
and τ : Sn × S1−−→Sn × S1 is a diffeomorphism representing the generator
τ ∈ π1(SO(n+ 1)) = Z2 the n-knot

kτ : Sn ⊂ Sn ×D2 ∪τ X = Sn+2

with the same exterior Xτ = X may not be equivalent to k. This general-
ized the result of Gluck [87] for n = 2, and was subsequently extended to
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n = 3, 4 by Lashof and Shaneson [146]. It followed from the classifications
that high-dimensional simple and stable n-knots are determined by their
complements, since the isotopy invariants could be derived from the n-knot
exterior. Richter [251] used Poincaré embedding theory to prove that [n/3]-
simple n-knots k : Sn ⊂ Sn+2 (n ≥ 5) are determined by their complements.
Cappell and Shaneson [43] and Gordon [92] constructed examples of n-knots
Sn ⊂ Sn+2 for n = 3, 4 which are not determined by their complements. Su-
ciu [281] constructed pairs of inequivalent n-knots Sn ⊂ Sn+2 with the same
complement, for every n ≥ 3 with n ≡ 3 or 4(mod 8). Gordon and Luecke
[94] showed that a classical knot S1 ⊂ S3 is determined by its complement.
(v) Let k : Sn ⊂ Sn+2 be a 1-simple n-knot, so that the exteriorX is such that
π1(X) = Z, and there exists a simply-connected Seifert surface Fn+1 ⊂ Sn+2.
The n-knot k fibres if and only if it admits a simply-connected Seifert sur-
face Fn+1 ⊂ Sn+2 such that σ∗(k, F ) is a fibred Seifert complex over Z. For
n ≥ 3 this is equivalent to the Blanchfield complex σ∗(k) over Z[z, z−1] being
fibred. �

33E. The Alexander polynomials of an n-knot

The algebraic theory of Alexander polynomials developed in Chap. 17 will
now be applied to n-knots.

Definition 33.13 The Alexander polynomials of an n-knot k : Sn ⊂ Sn+2

are the Alexander polynomials (17.1)

∆r(z) ∈ Z[z] (1 ≤ r ≤ n)

of the Blanchfield complex σ∗(k) = (E, θ) over Z[z, z−1], such that

∆n+1−r(z) = zmr∆r(z
−1) ∈ Z[z] (1 ≤ r ≤ n)

by 32.38 (ii), with mr = degree(∆r(z)). �
By convention

∆0(z) = 1− z , ∆r(z) = 1 (r ≥ n+ 1) .

The Blanchfield complex of k is the covering of the Seifert complex over Z
(32.5) with respect to a Seifert surface Fn+1 ⊂ Sn+2

σ∗(k) = βσ∗(k, F )

with isometric structure (C(F )n+1−∗, ((1 + T )ψ̂)−1ψ̂). The Alexander poly-
nomials of k are given by

∆r(z) = ±z−nrdet((zψ̂ + T ψ̂)((1 + T )ψ̂)−1 : Hr(F )[z]−−→Hr(F )[z])

∈ Z[z] (1 ≤ r ≤ n) ,
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with
nr = dimQHr(X

+
;Q)− dimQHr(X;Q) ≥ 0 .

Example 33.14 (i) If (L, λ) is a nonsingular ϵ-symmetric Seifert form over an
integral domain with involution A then by 17.5 the Alexander polynomial of
the 2-dimensional A-contractible finite f.g. free A[z, z−1]-module chain com-
plex

E : . . .−−→ 0 −−→ L[z, z−1]
zλ+ϵλ∗

−−−−→ L∗[z, z−1] −−→ 0

is
∆1(z) = z−ndet((λ+ ϵλ∗)−1(zλ+ ϵλ∗) : L[z]−−→L[z]) ∈ A[z] ,

with n ≥ 0 determined by the condition ∆1(0) ̸= 0 ∈ Z. Note that n = 0 if
and only if λ : L−−→L∗ is injective.
(ii) Let k : S2i−1 ⊂ S2i+1 be a simple (2i− 1)-knot. A Seifert surface M2i ⊂
S2i+1 determines a nonsingular (−)i-symmetric Seifert form (L, λ) over Z
with L = Hi(M)/torsion, via the Seifert complex (32.5). By (i) the ith
Alexander polynomial of k is given by

∆i(z) = det((λ+ (−)iλ∗)−1(zλ+ (−)iλ∗) : L[z]−−→L[z]) ∈ Z[z] . �

Proposition 33.15 The Alexander polynomials of a fibred n-knot k : Sn ⊂
Sn+2 with exterior X = T (h : F−−→F ) are related to the characteristic
polynomials of the monodromy automorphisms

qr(s) = chs(Hr(F ), h∗) ∈ Z[s] (1 ≤ r ≤ n)

by
qr(s) = snr∆r(1− s−1) ∈ Z[s] ,

∆r(z) = znrqr(1− z−1) ∈ Z[z]

with nr = degree (qr(s)) = degree (∆r(z)) = dimQHr(F ;Q).

Proof The Seifert complex (C, ψ̂) is fibred, and the monodromy is the iso-
metric structure

h = T ψ̂((1 + T )ψ̂)−1 : C −−→ C .

Setting s = (1− z)−1 gives

s− h = (1− z)−1(zT ψ̂ + ψ̂)((1 + T )ψ̂)−1 :

C[z, z−1, (1− z)−1] −−→ C[z, z−1, (1− z)−1] . �

Proposition 33.16 Let k : Sn ⊂ Sn+2 be an n-knot with exterior X, such
that π1(X) = Z. For n ≥ 4 the following conditions are equivalent :

(i) X fibres over S1,
(ii) the infinite cyclic cover X is finitely dominated,
(iii) the Z[z, z−1]-module chain complex C(X) is Z-finitely dominated,



460 33. Knot theory

(iv) the homology Z-modules Hr(X) (2 ≤ r ≤ (n + 1)/2) are finitely
generated,

(v) the extreme coefficients of the Alexander polynomials

∆r(z) =

mr∑
j=0

aj,rz
j ∈ Z[z] (2 ≤ r ≤ (n+ 1)/2)

are a0,r, amr,r = ±1 ∈ Z.

Proof (i) ⇐⇒ (ii) By Browder and Levine [31]. Alternatively, apply the
Farrell–Siebenmann fibering obstruction theory, noting that the obstruction
takes value in Wh1(Z) = 0.
(ii) ⇐⇒ (iii) A special case of 3.5.
(iii)⇐⇒ (iv) The finite domination of X is equivalent to the finite generation
of the homology Z-modules H∗(X), which by Poincaré duality is equivalent
to (iv).
(iv) ⇐⇒ (v) Immediate from 32.6. �
Remark 33.17 The equivalence 33.16 (i)⇐⇒ (v) for n ≥ 4 was first obtained
by Sumners [282, 3.4]. �



34. Endomorphism L-theory

Open books and automorphisms of manifolds were shown in Chaps. 28–30
to be closely related to the L-theory of the Laurent polynomial extensions
A[z, z−1] of rings with involution A, with the involution extended by z = z−1.
High-dimensional knots have been shown in Chaps. 31–33 to be closely related
to the L-theory of the polynomial extensions A[s] of rings with involution A,
with the involution extended by s = 1 − s. This chapter deals with the L-
theory of A[x] with x = x, which is somewhat easier to deal with, yet shares
many essential features with the L-theories of A[z, z−1] and A[s].

An endometric structure on a symmetric form (M,ϕ) is an endomorphism
f :M−−→M such that

ϕf = f∗ϕ : M −−→ M∗ .

Endomorphism L-theory is the study of symmetric forms and algebraic
Poincaré complexes with an endometric structure. The localization exact se-
quence of Chap. 25 and endomorphism L-theory give L-theory analogues of
the K-theory splitting theorems of Chaps. 5, 10

K1(A[z]) = K1(A)⊕ Ñil0(A) ,

K1(A[z, z
−1]) = K1(A[z])⊕Nil0(A)

= K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A) ,

K1(Ω
−1
+ A[z]) = K1(A[z])⊕ End0(A)

= K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ẽnd0(A) ,

K1(Ω̃
−1
+ A[z]) = K1(A)⊕ Ẽnd0(A) ,

with Ω+, Ω̃+ the sets of matrices in A[z] defined in Chap. 10.
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34A. Endometric structures

Terminology 34.1 Given a ring with involution A let A[x] denote the poly-
nomial extension of A with the involution extended by

x = x . �

Recall that Ω+ is the set of Fredholm matrices in A[x] (10.4). The local-
ization exact sequence

. . . −−→ Lnh(A[x], ϵ) −−→ Lnh(Ω
−1
+ A[x], ϵ) −−→ Lnh(A[x], Ω+, ϵ)

−−→ Ln−1
h (A[x], ϵ) −−→ . . .

will now be shown to break up into split exact sequences

0 −−→ Lnh(A[x], ϵ) −−→ Lnh(Ω
−1
+ A[x], ϵ) −−→ Lnh(A[x], Ω+, ϵ) −−→ 0

with
Lnh(A[x], Ω+, ϵ) = LEndnp (A, ϵ)

the L-group of f.g. projective n-dimensional ϵ-symmetric Poincaré complexes
over A with an endometric structure, and similarly in the ϵ-quadratic case.

The reduced endomorphism L-groups LẼnd
n

p (A, ϵ) are defined such that

LEndnp (A, ϵ) = Lnp (A, ϵ)⊕ LẼnd
n

p (A, ϵ) .

The splitting theorems

Lnh(Ω
−1
+ A[x], ϵ) = Lnh(A[x], ϵ)⊕ LEnd

n
p (A, ϵ) ,

Lnh(Ω̃
−1
+ A[x], ϵ) = Lnh(A, ϵ)⊕ LẼnd

n

p (A, ϵ)

are generalizations of the splitting theorems of Ranicki [232], [237] for the
L-theory of A[x] and A[x, x−1] : the nilpotent and reduced nilpotent L-

groups LNil∗p(A, ϵ), LÑil
∗
p(A, ϵ) are the cobordism groups of f.g. projective

ϵ-symmetric Poincaré complexes over A with a nilpotent structure, such that

LNilnp (A, ϵ) = Lnp (A, ϵ)⊕ LÑil
n

p (A, ϵ) ,

Lnh(A[x, x
−1], ϵ) = Lnh(A[x], ϵ)⊕ LNilnp (A, ϵ) ,

Lnh(A[x], ϵ) = Lnh(A, ϵ)⊕ LÑil
n

p (A, ϵ) .

By 10.14 there is defined an isomorphism of categories

End(A)
≃−−→ H (A[x], Ω+) ; (P, f) −−→ coker(x− f : P [x]−−→P [x])

for any ring A, and the algebraic K-theory localization exact sequence
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. . . −−→ K1(A[x])
i+
−−→ K1(Ω

−1
+ A[x])

∂+
−−→ K1(A[x], Ω+)

j+
−−→ K0(A[x]) −−→ . . .

splits, with j+ = 0 and ∂+ split by

∆+ : K1(A[x], Ω+) = End0(A) −−→ K1(Ω
−1
+ A[x]) ;

[P, f ] −−→ τ(x− f : Ω−1
+ P [x]−−→Ω−1

+ P [x]) .

A based f.g. free A[x]-module chain complex D is Ω−1
+ A[x]-contractible if and

only if D is A-finitely dominated, in which case

τ(Ω−1
+ D) = (Φ(D), [D!, ξ])

∈ K1(Ω
−1
+ A[x]) = K1(A[x])⊕ End0(A)

with Φ(D) ∈ K1(A[x]) the fibering obstruction of 5.11, D! the finitely domi-
nated A-module chain complex defined by D and

ξ : D! −−→ D! ; w −−→ xw .

Proposition 34.2 (i) The set Ω+ of Fredholm matrices in A[x] is involution-
invariant, such that the Ω+-duality involution on K1(A[x], Ω+) corresponds
to the involution

∗ : End0(A) −−→ End0(A) ; (P, f) −−→ (P ∗, f∗)

on the endomorphism class group End0(A).
(ii) The direct sum system of 10.14

K1(A[x])
i+

−−−−−→←−−−−−
j+

K1(Ω
−1
+ A[x])

∂+
−−−−−→←−−−−−

∆+

End0(A)

is a direct sum system of Z[Z2]-modules, so that

Ĥ∗(Z2 ;K1(Ω
−1
+ A[x])) = Ĥ∗(Z2 ;K1(A[x]))⊕ Ĥ∗(Z2 ; End0(A)) .

(iii) The direct sum system of 10.16

K1(A)
ĩ+

−−−−−→←−−−−−
j̃+

K1(Ω̃
−1
+ A[x])

∂̃+
−−−−−→←−−−−−

∆̃+

Ẽnd0(A)

is a direct sum system of Z[Z2]-modules, so that

Ĥ∗(Z2 ;K1(Ω̃
−1
+ A[x])) = Ĥ∗(Z2 ;K1(A))⊕ Ĥ∗(Z2 ; Ẽnd0(A)) .

Proof (i) Given a k× k Fredholm matrix ω = (ωij) in A[x] there is defined a
f.g. projective A-module
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P = coker(x− ω : A[x]k−−→A[x]k)

with an endomorphism

f : P −−→ P ; y −−→ xy

and an A[x]-module exact sequence

0 −−→ A[x]k
x−ω
−−→ A[x]k −−→ P −−→ 0 .

The dual k × k matrix ω∗ = (ωji) is Fredholm, with an A[x]-module exact
sequence

0 −−→ A[x]k
x−ω∗

−−→ A[x]k −−→ P ∗ −−→ 0

where
x = f∗ : P ∗ −−→ P ∗ .

(ii)+(iii) Immediate from (i). �
Definition 34.3 (i) Given an A-module chain complex C and a chain map
f : C−−→C define the Z[Z2]-module chain map

Γ endf = f ⊗ 1− 1⊗ f : (C ⊗A C, Tϵ) −−→ (C ⊗A C, T−ϵ) .

The

{
ϵ-symmetric

ϵ-quadratic
endometric Q-groups of (C, f) are the relative groups


Qn+1
end (C, f, ϵ) = Hn+1(Γ

end
f : HomZ[Z2](W, (C ⊗A C, Tϵ))
−−→ HomZ[Z2](W, (C ⊗A C, T−ϵ)))

Qendn+1(C, f, ϵ) = Hn+1(Γ
end
f :W ⊗Z[Z2] (C ⊗A C, Tϵ)
−−→ W ⊗Z[Z2] (C ⊗A C, T−ϵ)))

in the exact sequence

. . . −−→ Qn+1(C,−ϵ) −−→ Qn+1
end (C, f, ϵ)

−−→ Qn(C, ϵ)
Γ end
f−−→ Qn(C,−ϵ) −−→ . . .

. . . −−→ Qn+1(C,−ϵ) −−→ Qendn+1(C, f, ϵ)

−−→ Qn(C, ϵ)
Γ end
f−−→ Qn(C,−ϵ) −−→ . . . .

(ii) An endometric structure (f, δϕ) for an n-dimensional ϵ-symmetric com-
plex (C, ϕ) over A is a chain map f : C−−→C together with a chain

δϕ ∈ HomZ[Z2](W,C ⊗A C)n+1

such that
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fϕs − ϕsf∗ = dδϕs + (−)rδϕsd∗ + (−)n+s−1(δϕs−1 + (−)sT−ϵδϕs−1)

: Cn−r+s −−→ Cr (r, s ≥ 0, δϕ−1 = 0) ,

representing an element (δϕ, ϕ) ∈ Qn+1
end (C, f, ϵ).

Similarly in the ϵ-quadratic case. �
Example 34.4 An endometric structure for an ϵ-symmetric form (M,ϕ) over
A is an endomorphism f :M−−→M such that

f∗ϕ = ϕf : M −−→ M∗ .

This is just an endometric structure (f∗, 0) on the 0-dimensional ϵ-symmetric
complex (C, ϕ) with C0 =M∗, Cr = 0 for r ̸= 0. �
Proposition 34.5 (i) The (−ϵ)-symmetric Q-groups of an A-finitely domi-
nated (= Ω−1

+ A[x]-contractible) finite f.g. free A[x]-module chain complex D
are the endometric ϵ-symmetric Q-groups of (D!, ξ)

Q∗(D,−ϵ) = Q∗
end(D

!, ξ, ϵ) .

Similarly in the ϵ-quadratic case.
(ii) The homotopy equivalence classes of finitely dominated n-dimensional
ϵ-symmetric Poincaré complexes (C, ϕ) over A with an endometric struc-
ture (f, δϕ) are in one-one correspondence with the homotopy equivalence
classes of f.g. free (n+ 1)-dimensional Ω−1

+ A[x]-contractible (−ϵ)-symmetric
Poincaré complexes (D, θ) over A[x].
(iii) A finitely dominated n-dimensional ϵ-symmetric Poincaré complex (C, ϕ)
over A with an endometric structure (f, δϕ) determines a f.g. projective n-
dimensional ϵ-symmetric Ω−1

+ A[x]-Poincaré complex (C[x], Φ) over A[x] with

Φs = (x− f)ϕs + δϕs−1 : C[x]n−r+s −−→ C[x]r (r, s ≥ 0) .

The skew-suspension (SC[x], Φ) is a f.g. projective (n+2)-dimensional (−ϵ)-
symmetric Ω−1

+ A[x]-Poincaré complex over A[x]. The boundary

(D, θ) = ∂(SC[x], Φ)

is a (homotopy) f.g. free (n+1)-dimensional (−ϵ)-symmetric Poincaré com-
plex over A[x] corresponding to (C, ϕ) and (f, δϕ) in (i), such that

τΩ+(D) = [C, f ] ∈ K1(A[x], Ω+) = End0(A) ,

τ(D, θ) = Φ(D) + (−)nΦ(D)∗ ∈ K1(A[x])

with respect to the canonical round finite structure on D.
Proof (i) Let (C, f) be a finite chain complex of (A[x], Ω+)-modules, i.e. a
finite f.g. projective A-module chain complex C together a chain map f :
C−−→C. The f.g. projective A[x]-module chain complex

D = C(x− f : C[x]−−→C[x])
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is homology equivalent to (C, f), and every A-finitely dominated f.g. free
A[x]-module chain complex D is chain equivalent to one of this type, with
(D!, ξ) ≃ (C, f). The Z[Z2]-module chain map

C(Γ endf : C ⊗A C−−→C ⊗A C) −−→ D ⊗A[x] D

defined by

C(Γ endf )r = (C ⊗A C)r ⊕ (C ⊗A C)r−1

−−→ (D ⊗A[x] D)r = (C[x]⊗A[x] C[x])r ⊕ (C[x]⊗A[x] C[x])r−1

⊕ (C[x]⊗A[x] C[x])r−1 ⊕ (C[x]⊗A[x] C[x])r−2 ; (u, v) −−→ (u, v, v, 0)

is a homology equivalence inducing isomorphisms

Q∗
end(C, f, ϵ)

∼= Q∗(D,−ϵ) ,

so that there is defined an exact sequence

. . . −−→Qn+1(D,−ϵ) −−→Qn(C, ϵ)
Γ end
f−−→ Qn(C,−ϵ) −−→Qn(D,−ϵ) −−→ . . . .

An (n + 1)-dimensional (−ϵ)-symmetric structure θ ∈ Qn+1(D,−ϵ) on D is
thus the same as an n-dimensional ϵ-symmetric structure ϕ ∈ Qn(C, ϵ) with
a refinement to an endometric structure (δϕ, ϕ) ∈ Qn+1

end (C, f, ϵ). Moreover

θ0 : Hn+1−∗(D) ∼= Hn−∗(C)
ϕ0

−−→ H∗(C) ∼= H∗(D) ,

so that (D, θ) is a Poincaré complex over A[x] if and only if (C, ϕ) is a Poincaré
complex over A.
(ii)+(iii) Immediate from (i). �
Definition 34.6 (i) Let U ⊆ End0(A) be a ∗-invariant subgroup. The ϵ-
symmetric endomorphism L-group LEndnU (A, ϵ) (n ≥ 0) is the cobordism
group of finitely dominated n-dimensional ϵ-symmetric Poincaré complexes
(C, ϕ) over A with an endometric structure (f, δϕ) such that

[C, f ] ∈ U ⊆ End0(A) .

(ii) Let

U = U0 ⊕ V ⊆ End0(A) = K0(A)⊕ Ẽnd0(A)

for some ∗-invariant subgroups U0 ⊆ K0(A), V ⊆ Ẽnd0(A). The ϵ-symmetric

reduced endomorphism L-group LẼnd
n

V (A, ϵ) (n ≥ 0) is

LẼnd
n

V (A, ϵ) = ker(LEndnU (A, ϵ)−−→LnU0
(A, ϵ); (C, f, δϕ, ϕ)−−→(C, ϕ)) ,

so that
LEndnU (A, ϵ) = LnU0

(A, ϵ)⊕ LẼnd
n

V (A, ϵ) .
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(iii) Similarly for the ϵ-quadratic endomorphism L-group LEndUn (A, ϵ) and

the ϵ-quadratic reduced endomorphism L-group LẼnd
V

n (A, ϵ). �
The L-theoretic analogue of 10.14 is :

Proposition 34.7 (i) For any ∗-invariant subgroup U ⊆ End0(A) there are
natural identifications of the (A[x], Ω+)-torsion L-groups and the endomor-
phism L-groups of A

LnU (A[x], Ω+, ϵ) = LEndnU (A, ϵ) .

(ii) For any ∗-invariant subgroups T ⊆ K1(A[x]), U ⊆ End0(A) the localiza-
tion exact sequence of 25.4

. . . −−→ LnT (A[x], ϵ)
i+
−−→ Lni+(T )⊕∆+(U)(Ω

−1
+ A[x], ϵ)

∂
−−→ LEndnU (A, ϵ) −−→ Ln−1

T (A[x], ϵ) −−→ . . .

breaks up into split exact sequences, with direct sum systems

Lni+(T )(A[x], ϵ)
i+

−−−−−→←−−−−−
j+

Lni+(T )⊕∆+(U)(Ω
−1
+ A[x], ϵ)

∂+
−−−−−→←−−−−−

∆+

LEndnU (A, ϵ)

where

∆+ : LEndnU (A, ϵ) −−→ Lni+(T )⊕∆+(U)(Ω
−1
+ A[x], ϵ) ;

(C, f, δϕ, ϕ) −−→ Ω−1
+ (C(x− f : C[x]−−→C[x]), Φ)

(Φ as in 34.5 (iii)).
(iii) The ϵ-symmetric endomorphism L-groups associated to a pair (U2, U1 ⊆
U2) of ∗-invariant subgroups U1 ⊆ U2 ⊆ End0(A) are related by a Rothenberg-
type exact sequence

. . . −−→ Ĥn+1(Z2 ;U2/U1) −−→ LEndnU1
(A, ϵ)

−−→ LEndnU2
(A, ϵ) −−→ Ĥn(Z2 ;U2/U1) −−→ . . .

with

LEndnU2
(A, ϵ) −−→ Ĥn(Z2 ;U2/U1) ; (C, f, δϕ, ϕ) −−→ [C, f ] .

Similarly in the ϵ-quadratic case.
Proof (i) Immediate from 34.5 (ii).
(ii) By 34.5 (iii) the maps ∂+, ∆+ are such that ∂+∆+ = 1.
(iii) As for the ordinary L-groups in Ranicki [235, Chap. 10]. �

Recall that Ω̃+ is the set of square matrices ω =
∞∑
j=0

ωjx
j in A[x] with ω0

invertible (10.8). The L-theoretic analogue of 10.16 is :
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Proposition 34.8 For any ∗-invariant subgroups U1 ⊆ K1(A),V ⊆ Ẽnd0(A)
there is defined a direct sum system

LnU1
(A, ϵ)

ĩ+
−−−−−→←−−−−−

j̃+

Ln
ĩ+(U1)⊕∆̃+(V )

(Ω̃−1
+ A[x], ϵ)

∂̃+
−−−−−→←−−−−−

∆̃+

LẼnd
n

V (A, ϵ)

with

ĩ+ : LnU1
(A, ϵ) −−→ Ln

ĩ+(U1)⊕∆̃+(V )
(Ω̃−1

+ A[x], ϵ) ;

(C, ϕ) −−→ Ω̃−1
+ A[x]⊗A (C, ϕ) ,

∂̃+ : Ln
ĩ+(U1)⊕∆̃+(V )

(Ω̃−1
+ A[x], ϵ) −−→ Lni−(U1)⊕∆−(V )(Ω

−1
− A[x−1], ϵ)

∂−
−−→ LẼnd

n

V (A, ϵ) ,

j̃+ : Ln
ĩ+(U1)⊕∆̃+(V )

(Ω̃−1
+ A[x], ϵ) −−→ LnU1

(A, ϵ) ;

Ω̃−1
+ (E+, θ+) −−→ A⊗A[x] (E

+, θ+) ,

∆̃+ : LẼnd
n

V (A, ϵ) −−→ LnU1⊕V (Ω̃
−1
+ A[x], ϵ) ;

(C, f, δϕ, ϕ) −−→ Ω̃−1
+ (C[x], Φ̃)

(Φ̃s = (1− xf)ϕs − xδϕs−1 , s ≥ 0 , δϕ−1 = 0) .

Proof As in the proof of 10.16 consider the localization Ω−1
− A[x−1] of A[x−1]

inverting the set Ω− of Fredholm matrices in A[x−1]. By 34.7

Lni−(U1)⊕∆−(V )(Ω
−1
− A[x−1], ϵ) = LnU1

(A[x], ϵ)⊕ LEndnV (A, ϵ)

= LnU1
(A, ϵ)⊕ LÑil

n

{0}(A, ϵ)⊕ Lnh(A, ϵ)⊕ LẼnd
n

V (A, ϵ) .

The cartesian square of rings with involution

A[x] //

��

Ω̃−1
+ A[x]

��
A[x, x−1] // Ω−1

− A[x−1]

induces excision isomorphisms

L∗
U1
(A[x], X, ϵ) ∼= L∗

U1⊕V (Ω̃
−1
+ A[x], Ω−, ϵ) .

Thus

Ln
ĩ+(U1)⊕∆̃+(V )

(Ω̃−1
+ A[x], Ω−, ϵ) = LnU1

(A[x], X, ϵ) = Lnh(A[x
−1], ϵ)

= Lnh(A, ϵ)⊕ LÑil
n

{0}(A, ϵ)

and
Ln
ĩ+(U1)⊕∆̃+(V )

(Ω̃−1
+ A[x], ϵ) = LnU1

(A, ϵ)⊕ LẼnd
n

V (A, ϵ) . �
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The splitting theorems of 34.7 and 34.8 can be written as

LnT⊕U (A[x, x
−1], ϵ) = LnT (A[x], ϵ)⊕ LEnd

n
U (A, ϵ)

LnU1⊕V (Ω̃
−1
+ A[x], ϵ) = LnU1

(A, ϵ)⊕ LẼnd
n

V (A, ϵ) .

Terminology 34.9 Write

LEndnp (A, ϵ) = LEndnEnd0(A)(A, ϵ)

and similarly in the reduced and ϵ-quadratic cases. �
Proposition 34.10 (i) The free ϵ-symmetric L-groups of Ω−1

+ A[x] and

Ω̃−1
+ A[x] are such that

Lnh(Ω
−1
+ A[x], ϵ) = Lnh(A[x], ϵ)⊕ LEnd

n
p (A, ϵ) ,

Lnh(Ω̃
−1
+ A[x], ϵ) = Lnh(A, ϵ)⊕ LẼnd

n

p (A, ϵ) .

Similarly for the ϵ-quadratic L-groups.
(ii) The reduced projective odd-dimensional ϵ-quadratic endomorphism L-
groups vanish

LẼnd
p

2∗+1(A, ϵ) = 0

and
Lh2∗+1(Ω

−1
+ A[x], ϵ) = Lh2∗+1(A[x], ϵ)⊕ Lh2∗+1(A, ϵ) ,

Lh2∗+1(Ω̃
−1
+ A[x], ϵ) = Lh2∗+1(A, ϵ) ,

LEndp2∗+1(A, ϵ) = Lp2∗+1(A, ϵ) .

Proof (i) These are special cases of 34.7 and 34.8.
(ii) The forgetful maps Γh2∗+1(F, ϵ)−−→Lh2∗+1(S, ϵ) are injective for any locally
epic morphism of rings with involution F : R−−→S (20.19 (ii)). Applying this
to the projection

F : R = A[x] −−→ S = A ; x −−→ 0

gives that the forgetful maps

Γh2∗+1(F : A[x]−−→A, ϵ) = Lh2∗+1(Ω̃
−1
+ A[x], ϵ)

= Lh2∗+1(A, ϵ)⊕ LẼnd
p

2∗+1(A, ϵ)

−−→ Lh2∗+1(A, ϵ)

are injections, and hence that LẼnd
p

2∗+1(A, ϵ) = 0. �
Example 34.11 Algebraic surgery below the middle dimension was used in
Ranicki [235] to prove that the ϵ-quadratic L-groups of a ring with involution
A are 4-periodic
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LUn (A, ϵ) = LUn+2(A,−ϵ) = LUn+4(A, ϵ) (U ⊆Whi(A))

and that the ϵ-symmetric L-groups of a Dedekind ring with involution A are
4-periodic

LnU (A, ϵ) = Ln+2
U (A,−ϵ) = Ln+4

U (A, ϵ) .

The method extends to prove that the ϵ-quadratic endomorphism L-groups
of any ring with involution A are 4-periodic

LEndUn (A, ϵ) = LEndUn+2(A,−ϵ) = LEndUn+4(A, ϵ) (U ⊆ End0(A))

and that the ϵ-symmetric endomorphism L-groups of a Dedekind ring with
involution A are 4-periodic

LEndnU (A, ϵ) = LEndn+2
U (A,−ϵ) = LEndn+4

U (A, ϵ) .

See Chap. 39 below for more on the endomorphism L-theory of fields. �
Remark 34.12 (i) Given an m-dimensional ϵ-symmetric Poincaré complex
(C, ϕ) over A define an involution on the ring H0(HomA(C,C)) of chain
homotopy classes of chain maps f : C−−→C by

¯ : H0(HomA(C,C)) −−→ H0(HomA(C,C)) ; f −−→ f = ϕ0f
∗(ϕ0)

−1 .

(ii) The surgery transfer group Lm(R,A, ϵ) (m ≥ 0) of Lück and Ranicki
[176] (cf. 27.15, 27.24) is defined for any rings with involution R,A to be the
cobordism group of triples (C, ϕ, ρ) with (C, ϕ) a m-dimensional ϵ-symmetric
Poincaré complex over A and ρ : R−−→H0(HomA(C,C))

op a morphism of
rings with involution, where it is assumed that either m = 0 or that A is a
Dedekind ring. The surgery transfer groups act on the quadratic L-groups by
products

Lm(R,A, ϵ)⊗ Ln(R⊗Z B, η) −−→ Lm+n(A⊗Z B, ϵη) .

(iii) An endometric structure (f, δϕ) on anm-dimensional ϵ-symmetric Poinc-
aré complex (C, ϕ) over A determines an element f ∈ H0(HomA(C,C))

op

such that f = f , so that there is defined a morphism of rings with involution

ρ : Z[x] −−→ H0(HomA(C,C))
op ; x −−→ f .

The morphism

LEndm(A, ϵ) −−→ Lm(Z[x], A, ϵ) ; (C, f, δϕ, ϕ) −−→ (C, ϕ, ρ)

is an isomorphism for m = 0 (by 34.4). The products of [176] give products

LEndm(A, ϵ)⊗ Ln(B[x], η) −−→ Lm+n(A⊗Z B, ϵ⊗ η)

for any rings with involution A,B and any m,n ≥ 0. �
By analogy with the round L-groups (20.15, 20.16) :
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Definition 34.13 The round ϵ-symmetric endomorphism L-groups
LEndnr (A, ϵ) (n ≥ 0) are the cobordism groups of of finitely dominated n-
dimensional ϵ-symmetric Poincaré complexes (C, ϕ) over A with an endomet-
ric structure (f, δϕ) : C−−→C such that

[C, f ] = 0 ∈ End0(A) .

Similarly for the round ϵ-quadratic endomorphism L-groups LEndr∗(A, ϵ). �
Proposition 34.14 The projective and round ϵ-symmetric endomorphism
L-groups are related by a Rothenberg-type exact sequence

. . . −−→ Ĥn+1(Z2 ; End0(A)) −−→ LEndnr (A, ϵ)

−−→ LEndnp (A, ϵ) −−→ Ĥn(Z2 ; End0(A)) −−→ . . .

with

LEndnp (A, ϵ) −−→ Ĥn(Z2 ; End0(A)) ; (C, f, δϕ, ϕ) −−→ [C, f ] .

Similarly in the ϵ-quadratic case. �

34B. The trace map χx

The identification given by 34.7

L0(A[x], Ω+, ϵ) = LEnd0(A,−ϵ)

will now be made more explicit, via a direct one-one correspondence between
ϵ-symmetric linking forms over (A[x], Ω+) and (−ϵ)-symmetric forms over
A with an endometric structure (by analogy with the automorphism and
isometric cases in Chaps. 28, 31). This extends to the L-theory of A[x] (x = x)
the identification of exact categories given by 10.14

H(A[s], Ω+) = End(A) .

Definition 34.15 The universal trace map is the A-module morphism

χx : Ω−1
+ A[x]/A[x] −−→ A ; [ω] −−→ a−1

sending ω ∈ Ω−1
+ A[x] to the coefficient a−1 of x−1 in

k(ω) =

∞∑
j=−∞

ajx
j ∈ A((x−1)) ,

with k : Ω−1
+ A[x]−−→A((x−1)) the universal map factoring the inclusion

A[x]−−→A((x−1)). �
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In fact, χx is the same as the universal trace map χs of 31.20. The separate
terminology is introduced to take into account the different behaviour in L-
theory.

Proposition 34.16 (i) If

p(x) =
d∑
j=0

ajx
j , q(x) =

d−1∑
k=0

bkx
k ∈ A[s]

are such that ad ∈ A• then

χx

(
q(x)

p(x)

)
=

bd−1

ad
∈ A .

(ii) For any ω ∈ Ω−1
+ A[x]/A[x]

χx(ω) = χx(ω) ∈ Ω−1
+ A[x]/A[x] .

(iii) For any (A[x], Ω+)-module L (= f.g. projective A-module L with an en-
domorphism x : L−−→L) the universal trace map χx induces an A[x]-module
isomorphism

L̂ = HomA[x](L,Ω
−1
+ A[x]/A[x])

≃−−→ L∗ = HomA(L,A) ;

f −−→ χxf .

The identification of 34.7

L0(A[x], Ω+, ϵ) = LEnd0(A, ϵ)

is induced by the one-one correspondence

{ϵ-symmetric linking forms (L, λ) over (A[x], Ω+)} −−−−→←−−−−
{ϵ-symmetric forms (L, ϕ) over A

with an endometric structure f : L−−→L}

with
f = x : L −−→ L ,

ϕ = χxλ : L× L
λ
−−→ Ω−1

+ A[x]/A[x]
χx

−−→ A .

Proof As for 31.22. �
By analogy with 31.23 :
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Example 34.17 Suppose that A is commutative, so that (as in 10.10 (iii))

Ω−1
+ A[x] = S−1A[x]

with S ⊂ A[x] the multiplicative subset consisting of all the monic polyno-
mials

p(x) =
d∑
j=0

ajx
j ∈ A[x] (ad = 1) .

Let L be an (A[x], S)-module, i.e. a f.g. projective A-module (also denoted
by L) together with an endomorphism f : L−−→L. If p(x) ∈ S is such that
p(f) = 0 (e.g. p(x) = chx(L, f) if L is a f.g. free A-module) there is defined
an A[x]-module isomorphism

HomA[x](L,A[x]/(p(x)))
≃−−→ HomA[x](L, S

−1A[x]/A[x]) ;

g −−→ (x −−→ g(x)/p(x)) .

Every g ∈ HomA[x](L,A[x]/(p(x))) can be expressed as

g =

d−1∑
j=0

zjgj : L −−→ A[x]/(p(x)) =

d−1∑
j=0

xjA ,

with gj ∈ L∗ = HomA(L,A) and

χx

(
g(x)

p(x)

)
= gd−1(x) ∈ A ,

gj(x) = gd−1(

d∑
i=j+1

aif
i−j−1(x)) ∈ A

(x ∈ L, 0 ≤ j ≤ d− 1) .

The isomorphism of 34.16 is given in this case by

L̂ = HomA[x](L,A[x]/(p(x)))
≃−−→ L∗ = HomA(L,A) ; g −−→ gd−1 . �
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35. Primary L-theory

The various types of L-groups defined in Chaps. 26,27,30,32 (asymmetric, au-
tomorphism, endomorphism, isometric etc.) have primary analogues in which
the endomorphism f is required to be such that p(f) = 0 for some polynomial
p(z) in a prescribed class of polynomials. The primary L-groups feature in
the L-theory analogues of the splitting theorems of Chap. 12

K1(S
−1A[x]) = K1(A[x])⊕ EndS0 (A) ,

K1(S̃
−1A[x]) = K1(A)⊕ Ẽnd

S

0 (A) ,

EndS0 (A) = K0(A)⊕ Ẽnd
S

0 (A)

which will now be obtained, with S ⊂ A[x] a multiplicative subset with

leading units and x ∈ S, and S̃ ⊂ A[x] the reverse multiplicative subset

(12.15). The S-primary endomorphism L-groups LEnd∗S(A, ϵ), LẼnd
∗
S(A, ϵ)

are defined for an involution-invariant S ⊂ A[x], such that

Lnh(S
−1A[x], ϵ) = Lnh(A[x], ϵ)⊕ LEnd

n
S(A, ϵ) ,

Lnh(S̃
−1A[x], ϵ) = Lnh(A[x], ϵ)⊕ LẼnd

n

S(A, ϵ) ,

LEndnS(A, ϵ) = Lnp (A, ϵ)⊕ LẼnd
n

S(A, ϵ) .

There will also be defined the S-primary automorphism, isometric and asym-
metric L-groups LAut∗S(A, ϵ), LIso

∗
S(A, ϵ), LAsy

∗
S(A), for appropriate multi-

plicative sets S of polynomials with coefficients in A. The various S-primary
L-groups will be used in the computations of Chap. 39 of the L-groups of
function fields. For the sake of brevity only the S-primary L-groups arising
in the localization exact sequence for free L-groups will be considered, but it
is possible to develop the intermediate versions.

The primary endomorphism, isometric, automorphism, asymmetric and
fibred automorphism L-groups will now be considered, in that order.

As in Chaps. 27,30,32 the three distinct ways of extending an involution
on a ring A to an involution on the polynomial extensions A[x], A[x, x−1] are
distinguished by different names for the variable x :
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(i) A[x], with x = x,
(ii) A[s], with s = 1− s,
(iii) A[z, z−1], with z = z−1.

35A. Endomorphism L-theory

Consider first the polynomial extension ring A[x] with involution x = x.

Let S ⊂ A[x] be an involution-invariant multiplicative subset. Recall from
12.12 that for a finite f.g. projective A-module chain complex P an A-module
chain map f : P−−→P is S-primary if and only if p(f) ≃ 0 : P−−→P for some
p(x) ∈ S.

Definition 35.1 (i) The ϵ-symmetric S-primary endomorphism L-group
LEndnS(A, ϵ) (n ≥ 0) is the cobordism group of finitely dominated n-dimen-
sional ϵ-symmetric Poincaré complexes (C, ϕ) over A with an endometric
structure (f, δϕ) such that f : C−−→C is S-primary.

(ii) The reduced ϵ-symmetric S-primary endomorphism L-group LẼnd
n

S(A, ϵ)
(n ≥ 0) is the cobordism group of null-cobordant f.g. free n-dimensional ϵ-
symmetric Poincaré complexes (C, ϕ) over A with an endometric structure
(f, δϕ) such that f : C−−→C is S-primary.
Similarly in the ϵ-quadratic case. �
Proposition 35.2 (i) The absolute and reduced ϵ-symmetric S-primary en-
domorphism L-groups are related by natural splittings

LEndnS(A, ϵ) = Lnp (A, ϵ)⊕ LẼnd
n

S(A, ϵ) .

(ii) If S, T ⊂ A[x] are coprime involution-invariant multiplicative subsets

LEndnST (A, ϵ) = LEndnS(A, ϵ)⊕ LEnd
n
T (A, ϵ) ,

LẼnd
n

ST (A, ϵ) = LẼnd
n

S(A, ϵ)⊕ LẼnd
n

T (A, ϵ) .

Similarly in the ϵ-quadratic case. �
By analogy with 12.13 :

Proposition 35.3 Let S ⊂ A[x] be an involution-invariant multiplicative
subset such that each A[x]/(p(x)) (p(x) ∈ S) is a f.g. projective A-module
(i.e. if S ⊆ A[x] ∩ A((x−1))•). The ϵ-symmetric (A[x], S)-torsion L-groups
are such that

Lnh(A[x], S, ϵ) = LEndnS(A, ϵ) ,

and the L-groups of S−1A[x] fit into the direct sum systems

Lnh(A[x], ϵ)
i+

−−−−−→←−−−−−
j+

Lnh(S
−1A[x], ϵ)

∂+
−−−−−→←−−−−−

∆+

LEndnS(A, ϵ) .
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Similarly in the ϵ-quadratic case.
Proof As for 34.7, noting that S is a subset of the set of Fredholm matrices
Ω+ over A[x]. �

As in 11.1, given a polynomial

p(x) =

d∑
j=0

ajx
j ∈ A[x]

with leading unit ad ∈ A• define a polynomial

p̃(x) = (ad)
−1xdp(x−1) = (ad)

−1

( d∑
j=0

ad−jx
j

)
∈ A[x]

with constant unit p̃(0) = 1 ∈ A.

By analogy with 12.20 :

Proposition 35.4 If S ⊂ A[x] is an involution-invariant multiplicative sub-

set with leading units and x ∈ S the ϵ-symmetric L-groups of S̃−1A[x] fit into
the direct sum systems

Lnh(A, ϵ)
ĩ+

−−−−−→←−−−−−
j̃+

Lnh(S̃
−1A[x], ϵ)

∂̃+
−−−−−→←−−−−−

∆̃+

LẼnd
n

S(A, ϵ) .

Similarly in the ϵ-quadratic case.
Proof As for 34.8, noting that S̃ is a subset of the set Ω̃+ of the reverses of
Fredholm matrices in A[x]. �

By analogy with 12.22 :

Definition 35.5 (i) Let

X = {xk | k ≥ 0} ⊂ A[x] ,

an involution-invariant multiplicative subset with leading units such that

X-primary = nilpotent ,

X̃ = {1} , X−1A[x] = A[x, x−1] , X̃−1A[x] = A[x] .

(ii) The ϵ-symmetric nilpotent L-group LNilnq (A, ϵ) (n ≥ 0) for q = h (resp.
p) is the cobordism group of f.g. free (resp. f.g. projective) n-dimensional
ϵ-symmetric Poincaré complexes (C, ϕ) over A with an endometric structure
(ν, δϕ) such that ν : C−−→C is chain homotopy nilpotent. For q = p

LEnd∗X(A, ϵ) = LNil∗p(A) .
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(iii) The reduced ϵ-symmetric nilpotent L-group LÑil
n

q (A, ϵ) (n ≥ 0) for q = h
(resp. p) is the cobordism group of null-cobordant f.g. free (resp. f.g. projec-
tive) n-dimensional ϵ-symmetric Poincaré complexes (C, ϕ) over A with an
endometric structure (ν, δϕ) such that ν : C−−→C is chain homotopy nilpo-
tent. For q = h

LẼnd
∗
X(A, ϵ) = LÑil

∗
h(A, ϵ) .

Similarly in the ϵ-quadratic case. �
Proposition 35.6 (i) The absolute and reduced ϵ-symmetric nilpotent L-
groups are related by natural splittings

LNilnq (A, ϵ) = Lnq (A, ϵ)⊕ LÑil
n

q (A, ϵ) (q = h, p) .

Similarly in the ϵ-quadratic case.
(ii) The free and projective nilpotent L-groups are related by a Rothenberg-type
exact sequence

. . . −−→ Ĥn+1(Z2 ; Nil0(A)) −−→ LNilnh(A, ϵ) −−→ LNilnp (A, ϵ)

−−→ Ĥn(Z2 ; Nil0(A)) −−→ . . . .

(iii) The ϵ-symmetric L-groups of A[x] and A[x, x−1] fit into direct sum sys-
tems

Lnh(A[x], ϵ)

i+
−−−−−→
←−−−−−

j+

Lnh(A[x, x
−1], ϵ)

∂+
−−−−−→
←−−−−−

∆+

LNilnp (A, ϵ) ,

Lns (A[x], ϵ)

i+
−−−−−→
←−−−−−

j+

Lns (A[x, x
−1], ϵ)

∂+
−−−−−→
←−−−−−

∆+

LNilnh(A, ϵ) ,

Lnh(A, ϵ)
ĩ+

−−−−−→←−−−−−
j̃+

Lnh(A[x], ϵ)
∂̃+

−−−−−→
←−−−−−

∆̃+

LÑil
n

p (A, ϵ) ,

Lnh(A, ϵ)
ĩ+

−−−−−→←−−−−−
j̃+

Ln
K̃1(A)

(A[x], ϵ)
∂̃+

−−−−−→
←−−−−−

∆̃+

LÑil
n

h(A, ϵ)

with identifications

Lnh(A[x, x
−1], ϵ) = Lnh(A, ϵ)⊕ Lnp (A, ϵ)⊕ LÑil

n

p (A, ϵ)⊕ LÑil
n

p (A, ϵ) ,

Lns (A[x, x
−1], ϵ) = Lns (A, ϵ)⊕ Lnh(A, ϵ)⊕ LÑil

n

h(A, ϵ)⊕ LÑil
n

h(A, ϵ) ,

Lnh(A[x], ϵ) = Lnh(A, ϵ)⊕ LÑil
n

p (A, ϵ) ,

Ln
K̃0(A)

(A[x], ϵ) = Lnp (A, ϵ)⊕ LÑil
n

p (A, ϵ) = LNilnp (A, ϵ) ,

Ln
K̃1(A)

(A[x], ϵ) = Lnh(A, ϵ)⊕ LÑil
n

h(A, ϵ) = LNilnh(A, ϵ)
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Similarly in the ϵ-quadratic case.
Proof Set S = X in 35.3 and 35.4. �
Remark 35.7 The direct sum decompositions of 35.6 (iii) were obtained in
Ranicki [232], [237, Chap. 5], generalizing the results of Karoubi [115]. In [115]
it was proved that if 1/2 ∈ A

LÑil
∗
p(A, ϵ) = 0 , L∗

h(A[x], ϵ) = L∗
h(A, ϵ) .

This follows from the binomial expansion

(1− x)1/2 =
∞∑
k=0

(−)k
(
1/2

k

)
xk ∈ Z[1/2][[x]]

as follows. Given a nonsingular ϵ-symmetric form (M,ϕ) over A with a nilpo-
tent endometric structure f : M−−→M there is defined an isomorphism of
nonsingular ϵ-symmetric forms over A[x]

(1− xf)1/2 =
∞∑
k=0

(−)k
(
1/2

k

)
xkfk : (M [x], ϕ(1− xf))

≃−−→ (M [x], ϕ) ,

so that the isomorphism

LNil0p(A, ϵ)
≃−−→ L0

K̃0(A)
(A[x], ϵ) ; (M,ϕ, f) −−→ (M [x], ϕ(1− xf))

is onto L0
p(A, ϵ). Similarly for the odd-dimensional case. �

Remark 35.8 For ϵ = ±1 the reduced ϵ-quadratic nilpotent quadratic L-
groups of a ring with involution A can be identified with the UNil-groups of
Cappell [38]

LÑil
h

n(A, ϵ) = UNiln(Φ
ϵ)

associated to the pushout square of rings with involution

A //

��

A[Zϵ2]

��

Φϵ

A[Zϵ2] // A[Dϵ
∞]

which expresses the A-group ring of the infinite dihedral group D∞ = Z2 ∗Z2

with the involution ti = ϵti (i = 1, 2) on the two generators t1, t2 as an
amalgamated free product

A[Dϵ
∞] = A[Zϵ2] ∗A A[Zϵ2] .

See Ranicki [237, p. 743] for the case of a group ring A = Z[π], and Connolly
and Ranicki [56] for arbitrary A. �
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35B. Isometric L-theory

Consider now the polynomial extension ring A[s] with involution s = 1− s.

Let S ⊂ A[s] be an involution-invariant multiplicative subset.

Definition 35.9 The ϵ-symmetric S-primary isometric L-group LIsonS(A, ϵ)
(n ≥ 0) is the cobordism group of finitely dominated n-dimensional ϵ-
symmetric Poincaré complexes (C, ϕ) over A with an isometric structure
(f, δϕ) such that f : C−−→C is S-primary. �

By analogy with 35.2 (ii) :

Proposition 35.10 If S, T ⊂ A[s] are coprime involution-invariant multi-
plicative subsets

LIsonST (A, ϵ) = LIsonS(A, ϵ)⊕ LIso
n
T (A, ϵ) . �

By analogy with 35.3 :

Proposition 35.11 Let S ⊂ A[s] be an involution-invariant multiplicative
subset such that each A[s]/(p(s)) (p(s) ∈ S) is a f.g. projective A-module
(i.e. if S ⊆ A[s] ∩ A((s−1))•). The ϵ-symmetric (A[s], S)-torsion L-groups
are such that

Lnh(A[s], S, ϵ) = LIsonS(A,−ϵ) ,

and the L-groups of S−1A[s] fit into the direct sum systems

Lnh(A[s], ϵ)
i+

−−−−−→←−−−−−
j+

Lnh(S
−1A[s], ϵ)

∂+
−−−−−→←−−−−−

∆+

LIsonS(A,−ϵ) .
�

In Chap. 36 Lnh(A[s], ϵ) will be identified with the cobordism group of
n-dimensional ‘almost symmetric’ Poincaré complexes over A.

Recall the definition of a minimal isometric structure (32.40).

Proposition 35.12 Let A be an integral domain with involution, and let
Q,Qmin ⊂ A[s] be the involution-invariant multiplicative subsets

Q = {
d∑
j=0

ajs
j ∈ A[s] | ad = 1 ∈ A} ,

Qmin = {p(s) ∈ Q | p(0), p(1) ̸= 0 ∈ A} ⊂ Q .

(i) The Qmin-primary isometric L-group LIsonQmin
(A, ϵ) is the cobordism

group of n-dimensional ϵ-symmetric Poincaré complexes over A together with
a minimal isometric structure.
(ii) The inclusion

Q−1
minA[s] −−→ Q−1A[s] = Ω−1

+ A[s]
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induces isomorphisms

Ln(Q−1
minA[s], ϵ)

≃−−→ Ln(Q−1A[s], ϵ) ,

LIsonQmin
(A, ϵ) = Ln(A[s], Qmin,−ϵ)

≃−−→ LIsonQ(A, ϵ) = Ln(A[s], Q,−ϵ) .

The isometric L-group LIson(A, ϵ) = LIsonQ(A, ϵ) is thus isomorphic to the
minimal isometric L-group LIsonQmin

(A, ϵ).
Proof (i) An isometric structure is minimal if and only if it is Qmin-primary.
(ii) Immediate from 25.11 (ii) since Q−1A[s] is obtained from Q−1

minA[s] by
inverting the multiplicative subset

{sj(1− s)k | j, k ≥ 0} ⊂ Q−1
minA[s] . �

Remark 35.13 The case n = 0 of 35.12 is that for an integral domain with
involution A the natural map from the Witt group of minimal nonsingular ϵ-
symmetric Seifert forms to the Witt group of nonsingular ϵ-symmetric Seifert
forms over A is an isomorphism. �
Example 35.14 Stoltzfus [278, 5.15] computed the high-dimensional knot
cobordism groups

Cn = LIson+1(Z) = LIson+1
Q (Z)

and the fibred knot cobordism groups

Cfibn (Z) = LIson+1
fib (Z) = LIson+1

Qfib
(Z)

and also the Brieskorn fibred knot cobordism groups

CBfibn (Z) = LIson+1
QBfib

(Z)

with Q ⊂ Z[s] as in 35.12 (with A = Z),

Qfib = {p(s) ∈ Q | p(0), p(1) = ±1 ∈ Z} ⊂ Q

and QBfib ⊂ Qfib the involution-invariant multiplicative subset (denoted by
K in [278, p. 28]) generated by the cyclotomic polynomials Φm(s) for com-
posite (non-prime power) integers m. The odd-dimensional groups are such
that

CBfib2i−1 ⊂ Cfib2i−1 = LAut2ifib(Z) ⊂ LAut2i(Z)

and the even-dimensional groups are

CBfib2i = Cfib2i = C2i = 0 .

A fibred knot k : S2i−1 ⊂ S2i+1 with exterior T (h : F−−→F ) represents an

element [k] ∈ Cfib2i−1 since

chs(Hi(F ), h∗) ∈ Qfib
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(cf. 33.15). The fibred knots k : Σ2i−1 ⊂ S2i+1 of Brieskorn [26] are such
that

chs(Hi(F ), h∗) ∈ QBfib

(cf. Milnor [196, 9.6]), and so represent elements [k] ∈ CBfib2i−1 . �

35C. Automorphism L-theory

Consider now the Laurent polynomial extension ring A[z, z−1] with involution
z = z−1.

Let S ⊂ A[z, z−1] be an involution-invariant multiplicative subset.

Proposition 35.15 The following conditions on a self chain equivalence f :
P−−→P of a finite f.g. projective A-module chain complex P are equivalent :

(i) the S−1A[z, z−1]-module chain map

z − f : S−1P [z, z−1] −−→ S−1P [z, z−1]

is a chain equivalence,
(ii) f is S+-primary, with S+ the multiplicative subset of A[z] defined by

S+ = A[z] ∩ S ⊂ A[z] ,

(iii) p(f) ≃ 0 : P−−→P for some p(z) ∈ S.

Proof Immediate from 12.13 and the identities

S =
∞∪

j=−∞
zj(S+) , S−1A[z, z−1] = S−1

+ A[z] . �

Definition 35.16 (i) An A-module chain map f : P−−→P is S-primary if it
satisfies the equivalent conditions of 35.15.
(ii) The S-primary automorphism ϵ-symmetric L-group LAutnS(A, ϵ) (n ≥
0) is the cobordism group of finitely dominated n-dimensional ϵ-symmetric
Poincaré complexes (C, ϕ) over A with a self homotopy equivalence (h, χ) :
(C, ϕ)−−→(C, ϕ) such that h : C−−→C is S-primary.
(iii) The reduced S-primary automorphism ϵ-symmetric L-group is

LÃut
n

S(A, ϵ) = ker(LAutnS(A, ϵ)−−→Lnp (A, ϵ)) (n ≥ 0)

with
LAutnS(A, ϵ) −−→ Lnp (A, ϵ) ; (C, ϕ, h, χ) −−→ (C, ϕ) .

Similarly in the ϵ-quadratic case. �
By analogy with 35.2 :
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Proposition 35.17 If S, T ⊂ A[z, z−1] are coprime involution-invariant mul-
tiplicative subsets

LAutnST (A, ϵ) = LAutnS(A, ϵ)⊕ LAutnT (A, ϵ) . �

By analogy with 35.3 :

Proposition 35.18 Let S ⊂ A[z, z−1] be an involution-invariant multiplica-
tive subset such that each A[z, z−1]/(p(z)) (p(z) ∈ S) is a f.g. projective
A-module (i.e. if S ⊆ A[z, z−1] ∩A((z))• ∩A((z−1))•).
(i) The ϵ-symmetric (A[z, z−1], S)-torsion L-groups are such that

Lnh(A[z, z
−1], S, ϵ) = LAutn−2

S (A, ϵ) ,

so that there is defined an exact sequence

. . . −−→ Lnh(A[z, z
−1], ϵ) −−→ Lnh(S

−1A[z, z−1], ϵ) −−→ LAutn−2
S (A, ϵ)

−−→ Ln−1
h (A[z, z−1], ϵ) −−→ . . . .

(ii) If 1− z ∈ S then up to natural isomorphism

LAutnS(A, ϵ) = Lnp (A, ϵ)⊕ LÃut
n

S(A, ϵ)

and there is defined an exact sequence

. . . −−→ Lnh(A, ϵ) −−→ Lnh(S
−1A[z, z−1], ϵ) −−→ LÃut

n−2

S (A, ϵ)

−−→ Ln−1
h (A, ϵ) −−→ . . . .

(iii) If S ⊂ A[z, z−1] is such that

S−1A[z, z−1] = Ω−1A[z, z−1]

is the Fredholm localization of A[z, z−1] then every automorphism of a f.g.
projective A-module is S-primary, and

LAutnS(A, ϵ) = LAutnp (A, ϵ) = Lnp (A, ϵ)⊕ LÃut
n

p (A, ϵ) .

The reduced S-primary automorphism L-groups in this case are the projective
twisted double L-groups (30.19)

LÃut
n

S(A, ϵ) = DBLnp (A, ϵ)

Proof (i) This is just the localization exact sequence of Chap. 25

. . . −−→ Lnh(A[z, z
−1], ϵ) −−→ Lnh(S

−1A[z, z−1], ϵ) −−→ Ln(A[z, z−1], S, ϵ)

−−→ Ln−1
h (A[z, z−1], ϵ) −−→ . . .

using 35.15 to identify
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Ln(A[z, z−1], S, ϵ) = LAutn−2
S (A, ϵ) .

(ii) Since 1− z ∈ S the projection LAutnS(A, ϵ)−−→Lnp (A, ϵ) is split by

Lnp (A, ϵ) −−→ LAutnS(A, ϵ) ; (C, ϕ) −−→ (C, ϕ, 1, 0) ,

so that there is defined a direct sum system

Lnp (A, ϵ)
−−−→←−−− LAutnS(A, ϵ)

−−−→←−−− LÃut
n

S(A, ϵ) .

The exact sequence of (ii) is a direct summand of the exact sequence of (i).
(iii) Apply (ii), noting that 1− z ∈ S is a Fredholm 1× 1 matrix. �
Example 35.19 If A is an integral domain and

S = A[z, z−1] ∩A((z))• ∩A((z−1))•

= {
n∑

j=m

ajz
j | am, an ∈ A•}

then the Fredholm localization of A[z, z−1] is just the localization inverting
S

Ω−1A[z, z−1] = S−1A[z, z−1] ,

and every automorphism f : P−−→P of a f.g. projective A-module is S-
primary. The S-primary automorphism L-groups of 35.16 (ii) are just the
projective automorphism L-groups of Chap. 27

LAut∗S(A, ϵ) = LAut∗p(A, ϵ) ,

and the exact sequence of 35.18 (i) is just the exact sequence of 28.17

. . . −−→ Lnh(A[z, z
−1], ϵ) −−→ Lnh(Ω

−1A[z, z−1], ϵ) −−→ LAutn−2
p (A, ϵ)

−−→ Ln−1
h (A[z, z−1], ϵ) −−→ . . . .

�
Example 35.20 For a field with involution F take

A = F , S = F [z, z−1]\{0} ⊂ F [z, z−1]

in 35.19 (i).
(i) By 35.18 (iii)

LAutnS(F, ϵ) = LAutn(F, ϵ) = Ln(F, ϵ)⊕ Ãut
n
(F, ϵ) ,

LÃut
n
(F, ϵ) = DBLn(F, ϵ)

with DBLn(F, ϵ) the ϵ-symmetric twisted double L-group of F (30.19).
(ii) The multiplicative subset

P = {p(z) ∈ F [z, z−1] | p(1) ̸= 0 ∈ F} ⊂ F [z, z−1]
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has the property that a self chain equivalence h : C−−→C of a finite f.g. free
F -module chain complex is P -primary if and only if 1−h : C−−→C is a chain
equivalence, i.e. h is fibred. Thus the P -primary ϵ-symmetric L-groups of F
are just the fibred automorphism L-groups (28.35)

LAutnP (F, ϵ) = LAutnfib(F, ϵ) .

Now
S = (1− z)∞P

so that by 35.17

LAutn(F, ϵ) = LAutn(1−z)∞(F, ϵ)⊕ LAutnP (F, ϵ)

= Ln(F, ϵ)⊕ LAutnfib(F, ϵ)

with
LAutnfib(F, ϵ) = DBLn(F, ϵ) .

By definition, DBLn(F, ϵ) is the cobordism group of self homotopy equiva-
lences of null-cobordant n-dimensional ϵ-symmetric Poincaré complexes over
F . The identification with the fibred automorphism L-group is via the iso-
morphism

LAutnfib(F, ϵ)
≃−−→ DBLn(F, ϵ) ; (C, ϕ, h, χ) −−→ (C, ϕ, 1, 0)⊕ (C,−ϕ, h, χ) .

Combining this with 31.17 gives identifications

LAutnfib(F, ϵ) = LIson(F, ϵ) = DBLn(F, ϵ) . �

35D. Asymmetric L-theory

Definition 35.21 Let S ⊂ A[z, z−1] (z = z−1) be an involution-invariant
multiplicative subset.
(i) An n-dimensional asymmetric Poincaré complex (C, λ) over A is S-
primary if it satisfies the following equivalent conditions :

(a) the A-module chain equivalence (Tλ)λ−1 : C−−→C is S-primary,
(b) p((Tλ)λ−1) ≃ 0 : C−−→C for some p(z) ∈ S,
(c) the S−1A[z, z−1]-module chain map

zλ− Tλ : S−1Cn−∗[z, z−1] −−→ S−1C[z, z−1]

is a chain equivalence.

(ii) The free (resp. projective) S-primary asymmetric L-group LAsynS(A)
(n ≥ 0) is the cobordism group of f.g. projective n-dimensional S-primary
asymmetric Poincaré complexes (C, λ) over A.
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(iii) For any central unit ϵ ∈ A with ϵ = ϵ−1 let Sϵ ⊂ A[z, z−1] be the image
of S under the additive automorphism

A[z, z−1] −−→ A[z, z−1] ;
∞∑

j=−∞
ajz

j −−→
∞∑

j=−∞
aj(ϵ

−1z)j ,

so that an n-dimensional asymmetric Poincaré complex (C, λ) over A is Sϵ-
primary if the S−1A[z, z−1]-module chain map

zλ− Tϵλ : S−1Cn−∗[z, z−1] −−→ S−1C[z, z−1]

is a chain equivalence. �
Proposition 35.22 If S, T ⊂ A[z, z−1] are coprime involution-invariant mul-
tiplicative subsets

LAsynST (A, ϵ) = LAsynS(A, ϵ)⊕ LAsynT (A, ϵ) .

Proof This is a special case of 26.11 (iii). Here is a detailed proof in the case
n = 0. Given a nonsingular asymmetric form (L, λ) over A let

h = λ−1λ∗ : L −−→ L .

For any central polynomial f(z) ∈ A[z, z−1]

f(z)∗λ = f(z)λ = λf(z) : L −−→ L∗

with
z = (λ−1λ∗)∗ = λ(λ∗)−1 : L∗ −−→ L∗ .

Suppose that
p(h)q(h) = 0 : L −−→ L

for some p(z) ∈ S, q(z) ∈ T . Since S, T are coprime there exist a(z), b(z) ∈
A[z, z−1] such that

a(z)p(z) + b(z)q(z) = 1 ∈ A[z, z−1] .

Since S, T are involution invariant

up(z) = p(z) ∈ S , vq(z) = q(z) ∈ T

for some central units u, v ∈ A[z, z−1]•. The endomorphisms

f = a(h)p(h) , g = b(h)q(h) : L −−→ L

are such that

f2 = f , g2 = g , fg = gf = 0 , f + g = 1 : L −−→ L ,

f∗λg = ua(h)∗λp(h)g = 0 , g∗λf = vb(h)∗λq(h)f = 0 : L −−→ L∗ .

Thus (L, λ) and h split as
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(L, λ) = (LS , λS)⊕ (LT , λT ) ,

h = hS ⊕ hT : L = LS ⊕ LT −−→ L = LS ⊕ LT

with
LS = S−1L = f(L) , LT = T−1L = g(L)

(as in 12.7), and q(hS) = 0, p(hT ) = 0. �
Proposition 35.23 Let S ⊂ A[z, z−1] be an involution-invariant multiplica-
tive subset such that each A[z, z−1]/(p(z)) (p(z) ∈ S) is a f.g. projective A-
module, or equivalently such that p(z) ∈ A((z))• ∩A((z−1))• (i.e. if S ⊂ Ω).
For such S with 1− z ∈ S

Lnh(S
−1A[z, z−1], ϵ) = LAsynh,Sϵ

(A) .

Proof The morphism

LAsynh,Sϵ
(A) −−→ Lnh(S

−1A[z, z−1], ϵ) ;

(C, λ) −−→ S−1(C[z, z−1], (1− z−1)λ+ (1− z)Tϵλ)

is an isomorphism by 26.11. �
Example 35.24 As in 14.24 let A be an integral domain and

S = A[z, z−1] ∩A((z))• ∩A((z−1))•

= {
n∑

j=m

ajz
j | am, an ∈ A•}

so that
Ω−1A[z, z−1] = S−1A[z, z−1] ,

and every automorphism f : P−−→P of a f.g. projective A-module is S-
primary. The S-primary asymmetric L-groups of 28.14 are just the free asym-
metric L-groups

LAsy∗S(A) = LAsy∗h(A) ,

and the localization exact sequence of 22.4 is just the exact sequence of 28.17

. . . −−→ Lnh(A[z, z
−1]) −−→ LAsynh(A) −−→ LAutn−2

p (A)

−−→ Ln−1
h (A[z, z−1]) −−→ . . .

(with LAsynh(A) = Lnh(Ω
−1A[z, z−1])). �

Proposition 35.25 If S ⊂ A[z, z−1] is an involution-invariant multiplicative
subset which is coprime to (z − ϵ)∞ then

LAsynS(A) = LAutnS(A,−ϵ) (n ≥ 0) .

Proof For every p(z) ∈ S there exist a(z), b(z) ∈ A[z, z−1] such that
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a(z)p(z) + b(z)(z − ϵ) = 1 ∈ A[z, z−1] .

A self chain equivalence h : C−−→C of an A-module chain complex is S-
primary if and only if p(h) ≃ 0 for some p(z) ∈ S, in which case h−ϵ : C−−→C
is also a self chain equivalence, with chain homotopy inverse (h−ϵ)−1 = b(h).
An n-dimensional asymmetric Poincaré complex (C, λ) over A is S-primary
if and only if the self chain equivalence (Tλ)λ−1 : C−−→C is S-primary,
in which case (C, (1 + T−ϵ)λ) is an n-dimensional (−ϵ)-symmetric Poincaré
complex over A with an S-primary autometric structure (Tλ)λ−1 : C−−→C.
The morphisms

LAsynS(A) −−→ LAutnS(A,−ϵ) ; (C, λ) −−→ (C, (1 + T−ϵ)λ, (Tλ)λ
−1) ,

LAutnS(A,−ϵ) −−→ LAsynS(A) ; (C, ϕ, h) −−→ (C, (h− ϵ)−1ϕ0)

are inverse isomorphisms. �
Proposition 35.26 Suppose that A is a commutative ring with involution,
and let

P = {p(z) ∈ A[z, z−1] | p(1) ∈ A•} ,

so that for a central unit ϵ ∈ A with ϵ = ϵ−1

Pϵ = {p(z) ∈ A[z, z−1] | p(ϵ) ∈ A•}

is defined as in 35.21 (ii).
The following conditions on an n-dimensional asymmetric Poincaré complex
(C, λ) over A are equivalent :

(a) (C, λ) is Pϵ-primary,
(b) zλ−Tϵλ : Cn−∗[z, z−1]−−→C[z, z−1] is a P−1A[z, z−1]-module chain

equivalence,
(c) (1− Tϵ)λ : Cn−∗−−→C is an A-module chain equivalence,
(d) (C, λ) is a (−ϵ)-symmetric Seifert complex.

Thus there are defined forgetful maps

LAsynPϵ
(A) −−→ LIson(A,−ϵ) ; (C, λ) −−→ (C, λ) .

Proof An A[z, z−1]-module chain complex D is P−1A[z, z−1]-contractible if
and only if the induced A-module chain complex A⊗A[z,z−1] D is chain con-
tractible. �
Example 35.27 For a field with involution F every (−ϵ)-symmetric Seifert
form over F is S-equivalent to a nonsingular Pϵ-primary asymmetric form
over F , by 32.44 (iii), so that the forgetful maps LAsynPϵ

(F )−−→LIson(F,−ϵ)
are isomorphisms, and

LAsynPϵ
(F ) = LIson(F,−ϵ) . �
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Definition 35.28 Let S ⊂ A[z, z−1, (1 − z)−1] be an involution-invariant
multiplicative subset.
(i) An A-module chain map h : P−−→P is S-primary if it is a fibred chain
equivalence such that p(h) ≃ 0 for some p(z) ∈ S, or equivalently if the
S−1A[z, z−1, (1− z)−1]-module chain map

z − h : S−1P [z, z−1, (1− z)−1] −−→ S−1P [z, z−1, (1− z)−1]

is a chain equivalence.
(ii) The S-primary fibred automorphism ϵ-symmetric L-group LAutnfib,S(A, ϵ)
(n ≥ 0) is the cobordism group of finitely dominated n-dimensional ϵ-
symmetric Poincaré complexes (C, ϕ) over A with a fibred self homotopy
equivalence (h, χ) : (C, ϕ)−−→(C, ϕ) such that h : C−−→C is S-primary.
Similarly in the ϵ-quadratic case. �

Recall from Chap. 13 that a chain map h : C−−→C is chain homotopy
unipotent if h − 1 : C−−→C is chain homotopy nilpotent, in which case h :
C−−→C is a chain equivalence.

Definition 35.29 (i) The ϵ-symmetric unipotent L-group LAutnuni(A, ϵ)
(n ≥ 0) is the cobordism group of f.g. projective n-dimensional ϵ-symmetric
Poincaré complexes (C, ϕ) over A with a self homotopy equivalence (h, χ) :
(C, ϕ)−−→(C, ϕ) which is chain homotopy unipotent.

(ii) The reduced ϵ-symmetric unipotent L-group LÃut
n

uni(A, ϵ) (n ≥ 0) is the
cobordism group of null-cobordant f.g. projective n-dimensional ϵ-symmetric
Poincaré complexes (C, ϕ) over A with an endometric structure (f, δϕ) such
that f : C−−→C is chain homotopy unipotent. �
Proposition 35.30 (i) The unipotent L-groups

LAut∗uni(A, ϵ) = LAut∗(1−z)∞(A, ϵ)

= L∗
p(A, ϵ)⊕ LÃut

∗
uni(A, ϵ)

fit into the localization exact sequence

. . . −−→ Lnh(A[z, z
−1], ϵ) −−→ Lnh(A[z, z

−1, (1− z)−1], ϵ) −−→ LAutn−2
uni (A, ϵ)

−−→ Ln−1
h (A[z, z−1], ϵ) −−→ . . . .

The reduced unipotent L-groups LÃut
∗
uni(A, ϵ) fit into an exact sequence

. . . −−→ Lnh(A, ϵ) −−→ Lnh(A[z, z
−1, (1− z)−1], ϵ) −−→ LÃut

n−2

uni (A, ϵ)

−−→ Ln−1
h (A, ϵ) −−→ . . . .

(ii) If S ⊂ A[z, z−1] is an involution-invariant multiplicative subset which
is coprime to (1 − z)∞ and such that each A[z, z−1]/(p(z)) (p(z) ∈ S) is a
f.g. projective A-module then there is defined a commutative braid of exact
sequences
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LAutn−1
uni (A)

&&MM
MMM

M

$$
Lnh(S

−1A[z, z−1])

&&MM
MMM

M

$$
LAsynS(A)

Lnh(A[z, z
−1])

88qqqqqq

&&MM
MMM

MM
Lnh((S(1− z)∞)−1A[z, z−1])

88qqqqqqq

&&MM
MMM

M

LAsyn+1
S (A)

88qqqqqq

::
LAsyn(1−z)∞(A)

8 8qqqqqqq

::
LAutn−2

uni (A)

with

Lnh(A[z, z
−1, (1− z)−1]) = LAsyn(1−z)∞(A) ,

LAutnuni(A) = LAutn(1−z)∞(A) ,

Ln((S(1− z)∞)−1A[z, z−1]) = LAsynS(1−z)∞(A)

= LAsynS(A)⊕ LAsyn(1−z)∞(A) .

Proof (i) The following conditions on a self chain map f : C−−→C of a finitely
dominated A-module chain complex C are equivalent :

(a) f : C−−→C is (1− z)-primary,
(b) f − 1 : C−−→C is chain homotopy nilpotent,
(c) −f : C−−→C is (1 + z)-primary,
(d) f : C−−→C is chain homotopy unipotent.

(ii) Combine 25.14, 35.22, 35.23 and 35.25. �
Proposition 35.31 (i) The assignation z = (1− s)−1 and the functions

A[z] −−→ A[s] ;

p(z) =
d∑
j=0

ajz
j −−→ q(s) = sdp(1− s−1) =

d∑
j=0

ajs
d−j(s− 1)j ,

A[s] −−→ A[z] ;

q(s) =
d∑
j=0

bjs
j −−→ p(z) = (1− z)dq((1− z)−1) =

d∑
j=0

bj(1− z)d−j

determine inverse bijections

{p(z) ∈ A[z] | p(1) ̸= 0 ∈ A} −−−−→←−−−− {q(s) ∈ A[s] | q(0) ̸= 0 ∈ A}

such that :

(a) leading coefficient (p(z)) = ad = (−)db0 = (−)dq(0)
= (−)dconstant coefficient (q(s)) ∈ A ,
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(b) p(1) =
d∑
j=0

aj = bd = leading coefficient (q(s)) ∈ A ,

(c) p(0) = a0 =
d∑
j=0

bj = q(1) ∈ A ,

(d) if a0 ̸= 0 ∈ A then (−z)dp(z) corresponds to q(s),

(e) if p1(z), p2(z) ∈ A[z] correspond to q1(s), q2(s) ∈ A[s] respectively,
and

degree(p1(z)p2(z)) = degree(p1(z)) + degree(p2(z)) ,

then p1(z)p2(z) ∈ A[z] corresponds to q1(s)q2(s) ∈ A[s].

(ii) Let S ⊂ A[z, z−1] be an involution-invariant multiplicative subset such
that p(1) ̸= 0 ∈ A for each p(z) ∈ S, with z ∈ S. Let T ⊂ A[s] be the
involution-invariant multiplicative subset of the polynomials q(s) ∈ A[s] cor-
responding to the polynomials p(z) ∈ S ∩ A[z], such that q(0) ̸= 0 ∈ A. If
p(1) ∈ A is a unit for each p(z) ∈ S (or equivalently if the leading coefficient
of each q(s) ∈ T ) is a unit) then

LIsonT (A, ϵ) = Lnh(A[s], T,−ϵ) = Lnh(A[z, z
−1], S,−ϵ) .

(iii) If S, T are as in (ii), and the constant coefficient of each q(s) ∈ T is a
unit (or equivalently, if the leading coefficient of each p(z) ∈ S is a unit) then

LAsynSϵ
(A) = LAutnS(A,−ϵ) = LAutnfib,S(A,−ϵ)

= Lnh(A[z, z
−1], S, ϵ) = Lnh(A[z, z

−1, (1− z)−1], S, ϵ)

= LIsonT (A,−ϵ) = Lnh(A[s], T, ϵ) .

Proof (i) Obvious.
(ii) The identification LIsonT (A, ϵ) = Lnh(A[s], T,−ϵ) is given by 35.11. The
multiplicative subsets S, (1− z)∞ ⊂ A[z, z−1] are coprime, so that

Lnh(A[z, z
−1], S, ϵ) ∼= Lnh(A[z, z

−1, (1− z)−1], S, ϵ) .

The isomorphism of rings with involution

A[s, s−1, (1− s)−1] −−→ A[z, z−1, (1− z)−1] ; s −−→ (1− z)−1

induces isomorphisms

Lnh(A[s, s
−1, (1− s)−1], T, ϵ) ∼= Lnh(A[z, z

−1, (1− z)−1], S, ϵ) .

The inclusion
A[s] −−→ A[s, s−1, (1− s)−1]

induces isomorphisms

Lnh(A[s], T, ϵ)
∼= Lnh(A[s, s

−1, (1− s)−1], T, ϵ)
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by 25.11 (i).
(iii) Since p(1) ∈ A• for every p(z) ∈ S, there is defined a morphism of rings
with involution

S−1A[z, z−1] −−→ A ; z −−→ 1 .

An A-module chain equivalence h : C−−→C is S-primary if and only if

z − h : S−1C[z, z−1] −−→ S−1C[z, z−1]

is an S−1A[z, z−1]-module chain equivalence, in which case 1 − h : C−−→C
is an A-module chain equivalence. An n-dimensional asymmetric Poincaré
complex (C, λ) is Sϵ-primary if and only if the S−1A[z, z−1]-module chain
map

zλ− Tϵλ : S−1Cn−∗[z, z−1] −−→ S−1C[z, z−1]

is a chain equivalence, in which case (1 − Tϵ)λ : Cn−∗−−→C is an A-module
chain equivalence. The functions

LAsynSϵ
(A) −−→ LAutnS(A,−ϵ) ; (C, λ) −−→ (C, λ− Tϵλ, (Tϵλ)−1λ) ,

LAutnS(A,−ϵ) −−→ LAsynSϵ
(A) ; (C, ϕ, h) −−→ (C, (1− h−1)−1ϕ)

define inverse isomorphisms.
Since q(0) = (−1)dad ∈ A• and q(1) = a0 ∈ A• for each q(s) ∈ T , there

are defined ring morphisms

T−1A[s] −−→ A ; s −−→ 0 , s −−→ 1 .

(which do not preserve the involutions). An A-module chain map f : C−−→C
is T -primary if and only if

s− f : T−1C[s] −−→ T−1C[s]

is a T−1A[s]-module chain equivalence, in which case f, 1 − f : C−−→C are
A-module chain equivalences with q(f) ≃ 0 for the polynomial q(s) ∈ A[s]
associated to some p(z) ∈ S, and

h = 1− f−1 : C −−→ C

is an S-primary A-module chain equivalence with

p(h) ≃ f−dq(f) ≃ 0 : C −−→ C .

The functions

LAutnS(A, ϵ) −−→ LIsonT (A, ϵ) ; (C, ϕ, h) −−→ (C, ϕ, (1− h)−1)

LIsonT (A, ϵ) −−→ LAutnS(A, ϵ) ; (C, ϕ, f) −−→ (C, ϕ, 1− f−1)

define inverse isomorphisms. �



36. Almost symmetric L-theory

As already noted in Chap. 31 the high-dimensional knot cobordism groups
C∗ can be expressed in terms of the L-theory of Z[s] (s = 1 − s). The ϵ-
symmetric L-theory of A[s] for any ring with involution A is now identified
with the L-theory of almost ϵ-symmetric forms over A, generalizing the work
of Clauwens [51], and relating it to knot theory and automorphism L-theory.

A nonsingular asymmetric form (L, λ) is ‘almost ϵ-symmetric’ if

1− (ϵλ∗)−1λ : L −−→ L

is nilpotent, i.e. if (L, λ) is (z − ϵ)-primary in the terminology of Chap. 35.
The free L-group L0

h(A[s], ϵ) was identified in [51] with the Witt group of
nonsingular almost ϵ-symmetric forms over A. The main results of Chap.
36 are the identification of L∗

h(A[s], ϵ) with the cobordism groups of almost
ϵ-symmetric Poincaré complexes over A, and the exact sequence

. . . −−→Lnh(A, ϵ)−−→Lnh(A[s], ϵ)−−→LÃut
n−2

uni (A, ϵ)−−→Ln−1
h (A, ϵ)−−→ . . .

relating the almost ϵ-symmetric and ϵ-symmetric L-groups of A, with

LÃut
∗
uni(A, ϵ) the reduced unipotent L-groups. (In 36.3 and 41.19 it will be

proved that LÃut
∗
uni(A, ϵ) = 0 for Dedekind A, so that L∗

h(A[s], ϵ) = L∗
h(A, ϵ)

for such A).

Let

S = (1− z)∞ = {±zj(1− z)k | j ∈ Z , k ≥ 0} ⊂ A[z, z−1] ,

so that
S−1A[z, z−1] = A[z, z−1, (1− z)−1] ,

and

Sϵ = (ϵ− z)∞ = {±ϵjzj(ϵ− z)k | j ∈ Z , k ≥ 0} ⊂ A[z, z−1]

(in the terminology of 35.21 (iii)). An endomorphism f : M−−→M of a f.g.
projective A-module is Sϵ-primary if and only if ϵ−f :M−−→M is nilpotent.
Similarly for chain maps.
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Definition 36.1 (i) An asymmetric Poincaré complex (C, λ) is almost ϵ-
symmetric if the self chain map

1− λ(Tϵλ)−1 : C −−→ C

is chain homotopy nilpotent, or equivalently if (C, λ) is Sϵ-primary (in the
terminology of 35.21 (i)).
(ii) The free (resp. projective) almost ϵ-symmetric L-groups LAsy∗q,Sϵ

(A)
(q = h (resp. p)) are the cobordism groups of f.g. free almost ϵ-symmetric
Poincaré complexes over A, which are just the free (resp. projective) Sϵ-
primary asymmetric L-groups of 35.21 (ii). �
Example 36.2 A nonsingular asymmetric form (M,ϕ) is almost ϵ-symmetric
if it is Sϵ-primary, i.e. if the endomorphism

1− (ϵϕ∗)−1ϕ : M −−→ M

is nilpotent. The 0-dimensional free (resp. projective) almost ϵ-symmetric
L-group LAsy0h,Sϵ

(A) (resp. LAsy0p,Sϵ
(A)) is the Witt group of nonsingular

almost ϵ-symmetric forms (M,ϕ) over A, with M f.g. free (resp. projective).
�

Proposition 36.3 (i) The free almost ϵ-symmetric L-groups of A are such
that

LAsynh,Sϵ
(A) = Lnh(A[s], ϵ)

= Lnh(A[z, z
−1, (1− z)−1], ϵ) .

(ii) The free almost ϵ-symmetric L-groups LAsy∗h,Sϵ
(A) fit into a braid of

exact sequences

Lnh(A, ϵ)

%%LL
LLL

LL

$$
LAsynh(A)

%%LL
LLL

$$
Lnh(A[z, z

−1], Ω, S, ϵ)

LAsynh,Sϵ
(A)

99rrrrrrr

%%JJ
JJJ

J
LÃut

n−2

p (A, ϵ)

99rrrrr

%%JJ
JJJ

JJ

Ln+1
h (A[z, z−1], Ω, S, ϵ)

99ttttttt

::
LÃut

n−2

uni (A, ϵ)

99tttttt

::
Ln−1
h (A, ϵ)

(iii) If

either there exists a central element t ∈ A such that t+ t = 1 ∈ A (e.g.
t = 1/2)

or A is a Dedekind ring

then
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L∗
h(A, ϵ) = LAsy∗h,Sϵ

(A) = L∗
h(A[s], ϵ) , LÃut

∗
uni(A, ϵ) = 0 .

Proof (i) By 25.11 and 26.11 the morphism of rings with involution

A[s] −−→ S−1A[z, z−1] = A[z, z−1, (1− z)−1] ; s −−→ (1− z)−1

induces isomorphisms of L-groups

L∗
h(A[s], ϵ)

≃−−→ L∗
h(S

−1A[z, z−1], ϵ) = LAsy∗h,Sϵ
(A) ,

with the inverse isomorphisms explicitly given by

LAsynh,Sϵ
(A)

≃−−→ Lnh(A[s], ϵ) ; (C, λ) −−→ (C[s], sλ+ (1− s)Tλ) .

(ii) This is a direct summand of the braid of localization exact sequences

Lnh(A[z, z
−1], ϵ)

&&MM
MMM

M

$$
Lnh(Ω

−1A[z, z−1], ϵ)

&&MM
MMM

M

$$
Lnh(A[z, z

−1], Ω, S, ϵ)

Lnh(S
−1A[z, z−1], ϵ)

88qqqqqq

&&MM
MMM

M
Lnh(A[z, z

−1], Ω, ϵ)

88qqqqqq

&&MM
MMM

M

Ln+1
h (A[z, z−1], Ω, S, ϵ)

88qqqqqq

::
Lnh(A[z, z

−1], S, ϵ)

88qqqqqq

::
Ln−1
h (A[z, z−1], ϵ)

(iii) Assume A is such that there exists a central element t ∈ A with t+t = 1.
The inclusion A−−→A[s] is split by

A[s] −−→ A ; s −−→ t ,

so that one of the exact sequences in (ii) breaks up into short exact sequences

0 −−→ Lnh(A, ϵ)
i
−−→ Lnh(A[s], ϵ) −−→ LÃut

n−2

uni (A, ϵ) −−→ 0

with i split by

Lnh(A[s], ϵ) = LAsynh,Sϵ
(A) −−→ Lnh(A, ϵ) ; (C, λ) −−→ (C, tλ+ (1− t)Tϵλ) ,

and it suffices to prove that the split injections

Lnh(A, ϵ) −−→ Lnh(A[s], ϵ) = LAsynh,Sϵ
(A)

are onto. Given an n-dimensional almost ϵ-symmetric Poincaré complex
(C, λ) over A there is a chain map

ν = 1− λ(Tϵλ)−1 : C −−→ C
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which is chain homotopy nilpotent. Working as in the proof of Theorem 3 of
Clauwens [51] it is possible to find integers α1, α2, . . . , αp ∈ Z and a chain
map ψ : Cn−∗−−→C over A such that

f(sλ+ (1− s)Tϵλ)f∗ ≃ tψ + (1− t)Tϵψ : Cn−∗ −−→ C ,

with
f = 1 + α1ν + α2ν

2 + . . .+ αpν
p : C −−→ C

an A-module chain equivalence. Then (C, (1 + Tϵ)ψ) is an n-dimensional ϵ-
symmetric Poincaré complex over A with image

(C[s], (1 + Tϵ)ψ) = (C[s], tψ + (1− t)Tϵψ)
= (C[s], sλ+ (1− s)Tϵλ) = (C, λ)

∈ im(Lnh(A, ϵ)−−→Lnh(A[s], ϵ) = LAsynh,Sϵ
(A)) .

The case of A Dedekind is deferred to Proposition 41.19 below. �
Remark 36.4 (i) The identification of 36.3 (i)

Lnh(A[s]) = LAsynh,S(A)

was first obtained by Clauwens [51] for n = 2i. An element

(M,λ) ∈ LAsy2ih,S(A) = LAsy0h,S(−)i
(A)

is represented by a f.g. free nonsingular almost (−)i-symmetric form (M,λ)
over A. In particular, for a 2i-dimensional f.g. free ϵ-symmetric Poincaré
complex (C, ϕ) over A the image of (C, ϕ) ∈ L2i

h (A) in LAsy2ih,S(A) is the

Witt class of the nonsingular almost (−)i-symmetric form

(M,λ)

= (coker(

(
d∗ 0

(−)i−1ϕ0 d

)
: Ci−1 ⊕ Ci+2−−→Ci ⊕ Ci+1),

[
ϕ0 + ϕ1d

∗ d

(−)id∗ 0

]
)

obtained in [51], and it is only this Witt class which enters the surgery product
formula, as described in (ii) below.
(ii) The L-theory product of Ranicki [235, Chap. 10]

Lm(A, ϵ)⊗ Ln(B, η) −−→ Lm+n(A⊗B, ϵ⊗ η) ,

the L-theory product of Clauwens [50]

Lm(A, ϵ)⊗ Ln(B[s], η) −−→ Lm+n(A⊗B, ϵ⊗ η) ,

and the L-theory product of Lück and Ranicki [176, p. 148]

Lm(A[s], ϵ)⊗ LIson(B, η) −−→ Lm+n(A⊗Z B, ϵ⊗ η)

are related by a commutative diagram



36. Almost symmetric L-theory 497

LIsom(A, ϵ)⊗ Ln(B, η) //

��

**TTT
TTTT

TTTT
TTTT

T
Lm(A, ϵ)⊗ Ln(B, η)

��

uukkkk
kkkk

kkkk
kkk

Lm(A, ϵ)⊗ Ln(B[s], η)

))SSS
SSSS

SSSS
SSSS

LIsom(A, ϵ)⊗ Ln(B[s], η)

44jjjjjjjjjjjjjjjj
// Lm+n(A⊗B, ϵ⊗ η)

The product

LIsom(A, ϵ)⊗ Ln(B[s], η) −−→ Lm+n(A⊗Z B, ϵ⊗ η)

is given for m = n = 0 on the level of forms by

LIso0(A, ϵ)⊗ LAsy0(B, η) −−→ L0(A⊗B, ϵ⊗ η) ;
(P, θ, f)⊗ (Q,ϕ) −−→ (P ⊗Q, fθ ⊗ ϕ) .

The product of an m-dimensional normal map (f, b) :M−−→X with π1(X) =
π and an n-dimensional manifoldN with π1(N) = ρ is an (m+n)-dimensional
normal map

(g, c) = (f, b)× 1 : M ×N −−→ X ×N

with surgery obstruction the product

σ∗(g, c) = σ∗(f, b)⊗ σ∗(N) ∈ Lm+n(Z[π × ρ])

of the surgery obstruction σ∗(f, b) ∈ Lm(Z[π]) and the almost symmetric
signature of [50]

σ∗(N) ∈ Lnh(Z[ρ][s]) = LAsynh,S(Z[ρ])

(= the image of the symmetric signature σ∗(N) ∈ Lnh(Z[ρ])). The oozing
conjecture concerning the image of the assembly map

A : H∗(Bπ;L•(Z)) −−→ L∗(Z[π])

for a finite group π was solved by Hambleton, Milgram, Taylor and Williams
[102] and Milgram [187], [188]. The method of [187], [188] used the almost
symmetric signature and the commutative square

LIsom(Z)⊗ Ln(Z[π]) //

��

Lm(Z)⊗ Ln(Z[π])

��
LIsom(Z)⊗ Ln(Z[π][s]) // Lm+n(Z[π])

The isometric L-group LIsom(Z) = Cm−1 is the cobordism group of knots
Sm−1 ⊂ Sm+1 (33.3). �
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37. L-theory of fields and rational localization

The computation of the knot cobordism groups reduces to the computation
of the L-theory of various fields and integral domains. The main proper-
ties of the L-groups of a field with involution F are summarized in 37A.
The computations of the L-groups of Z, Zm, Ẑm, Q and the localization ex-
act sequence are used in 37B to prove a general result : the natural maps
L∗(A)−−→L∗(Q⊗Z A) are isomorphisms modulo 8-torsion for any additively
torsion-free ring involution A (e.g. a group ring A = Z[π]). In Chap. 42 the
version of this result for torsion L-groups will be used to prove that the
natural maps

C∗ = LIso∗+1(Z) −−→ LIso∗+1
UZ

(Q)

are isomorphisms modulo 8-torsion, for an appropriately defined UZ.

In Chap. 37 the undecorated L-groups L∗, L∗ are the projective L-groups
L∗
p, L

p
∗.

37A. Fields

Given ϵ ∈ F • such that ϵϵ = 1 let

U(F, ϵ) = {x ∈ F • | ϵx = x} .

Proposition 37.1 (Milnor and Husemoller [200, Chap. III], Scharlau [257])
(i) Every nonsingular ϵ-symmetric form over a field F can be diagonalized.
(ii) The abelian group morphism

Z[U(F, ϵ)] −−→ L0(F, ϵ) ; x −−→ (F, x)

is onto, with kernel generated by elements of the type

[x]− [axā] , [x] + [−x] , [x] + [y]− [x+ y]− [x(x+ y)−1y]

for any a ∈ F •, x, y ∈ U(F, ϵ) with x+ y ̸= 0.
(iii) The odd-dimensional ϵ-symmetric L-groups of F vanish

L2∗+1(F, ϵ) = 0 .
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(iv) The ϵ-symmetric L-groups of F are 4-periodic

Ln(F, ϵ) = Ln+2(F,−ϵ) = Ln+4(F, ϵ) .

(v) If char(F ) ̸= 2 and F has the identity involution then

L4∗+2(F ) = L4∗(F,−1) = 0 .

(vi) If char(F ) = 2 then

Ln(F, ϵ) = Ln(F,−ϵ) = Ln+2(F, ϵ) .

(vii) If char(F ) ̸= 2 and F has a non-identity involution then F = F0(
√
a) is

a quadratic Galois extension of the fixed field F0 = {u ∈ F |u = u} for some

non-square a ∈ F0 with
√
a = −

√
a ∈ F , the ϵ-symmetric L-groups of F are

2-periodic
Ln(F, ϵ) = Ln(F,−ϵ) = Ln+2(F, ϵ)

and there are defined isomorphisms

L0(F, ϵ)
≃−−→ L0(F,−ϵ) ; (M,ϕ) −−→ (M,

√
aϕ) .

(viii) If F is a finite field with the identity involution

L0(F ) =


Z2 if |F | ≡ 0(mod 2)

Z2 ⊕ Z2 if |F | ≡ 1(mod 4)

Z4 if |F | ≡ 3(mod 4) .

If F is a finite field with a non-identity involution

L0(F ) = Z2 .

(ix) The symmetric Witt group of R is

L0(R) = Z .

The Witt class of a nonsingular symmetric form (M,ϕ) over R is given by
the signature

σ(M,ϕ) = d+ − d− ∈ Z ,

with d+ (resp. d−) the number of positive (resp. negative) entries in a diag-
onalization of (M,ϕ).
(x) Let C− be C with the complex conjugation. For ϵ ∈ S1 the ϵ-symmetric
Witt group of C− is

L0(C−, ϵ) = Z .

The Witt class of a nonsingular ϵ-symmetric form (M,ϕ) over C− is given
by the signature

σ(M,ϕ) = d+ − d− ∈ Z ,

with d+ (resp. d−) the number of positive (resp. negative) entries in a diag-
onalization of the symmetric form (M,η−1ϕ), with η ∈ S1 such that η2 = ϵ.
(The choice of η determines the sign of σ(M,ϕ).)
(xi) Let C+ be C with the identity involution. The symmetric Witt group of
C+ is

L0(C+) = Z2 .
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The Witt class of a nonsingular symmetric form (M,ϕ) over C+ is given by
dimC(M) mod 2.
(xii) The symmetric Witt group of Q is

L0(Q) = L0(Z)⊕
⊕

p prime

L0(Zp) = Z⊕
⊕
∞

Z2 ⊕
⊕
∞

Z4 . �

The computation of the high-dimensional knot cobordism groups C∗
makes use of the computations of the L-groups of algebraic number fields
(= finite extensions of Q) and their rings of integers. The L-groups modulo
torsion of the fields are given in 37.2 below, and those of the rings of integers
in 38.10 below.

Proposition 37.2 (Hasse [107], Landherr [144], Milnor and Husemoller [200,
p. 81], Conner [55, II], Scharlau [257, pp. 224, 351])
Let F be an algebraic number field, with F = Q[x]/(p(x)) for an irreducible
monic polynomial p(x) ∈Mx(Q) of degree d = r+2s, with r real roots and 2s
non-real roots. For each real root α ∈ R of p(x) there is defined an embedding

ρα : F −−→ R ; x −−→ α ,

and hence an ordering of F . For each complex root ω ∈ C of p(x) there is
defined an embedding

σω : F −−→ C ; x −−→ ω .

(i) Nonsingular symmetric forms over F with the identity involution are clas-
sified by dimension, determinant, the signatures associated to the r orderings
of F , and the Hasse invariants at the local completions of F . The Witt group
of F is of the type

L0(F ) = Zr ⊕ 8-torsion

with ⊕
r

ρα : L0(F ) −−→
⊕
r

L0(R) = Zr

an isomorphism modulo 8-torsion.
(ii) Suppose that F has a non-identity involution with fixed field F0, so that
F = F0(

√
a) (as in 37.1 (vii)). Let s0 be the number of conjugate pairs

of non-real roots ω ∈ C of p(x) with σω(F0) ⊂ R and σω(a) < 0, so that
σω : F−−→C− is a morphism of rings with involution. Nonsingular symmetric
forms over F are classified by dimension, determinant and the signatures
associated to the s0 embeddings σω : F−−→C−. The Witt group of F is of the
type

L0(F ) = Zs0 ⊕ 8-torsion

with ⊕
s0

σω : L0(F ) −−→
⊕
s0

L0(C−) = Zs0

an isomorphism modulo 8-torsion. Moreover, L2(F ) = L0(F ). �
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Let F be any field with a non-identity involution, and let F0 be the
fixed field of the involution. A symmetric form (M,ϕ) over F determines
a quadratic form (M,ψ0) over F0, with

ψ0(x)(x) = ϕ(x)(x) ∈ F0 (x ∈M) .

By a theorem of Jacobson nonsingular symmetric forms over F are isomorphic
if and only if the corresponding quadratic forms over F0 are isomorphic ;
Milnor and Husemoller [200,Appendix 2] used this result to obtain the exact
sequence

0 −−→ L0(F ) −−→ L0(F0) −−→ L0(F
+)

with F+ denoting F with the identity involution. This sequence will be used
in Chap. 40 below, but only in the case when char(F ) ̸= 2, for which L0(F0) =
L0(F0).

Proposition 37.3 (Lewis [162])
If F is a field with non-identity involution and char(F ) ̸= 2 there is defined
an exact sequence of L-groups

0 −−→ L0(F ) −−→ L0(F0) −−→ L0(F+) −−→ L0(F0) −−→ L0(F ) −−→ 0 . �

Example 37.4 (i) As in 37.2 let F = Q[x]/(p(x)) be an algebraic num-
ber field with a non-identity involution, so that F = F0(

√
a) is a quadratic

extension of the fixed field F0. Then F0 is an algebraic number field, say
F0 = Q[y]/(p0(y)). Let r0 (resp. r1) be the number of the real roots α ∈ R
of p0(y) for which ρα : F0−−→R has ρα(a) > 0 (resp. ρα(a) < 0). Each of the
r0+r1 real roots of p0(y) determines a signature map L0(F0)−−→Z. Now p(x)
has exactly r = 2r0 real roots, the images of x ∈ F under the 2r0 embeddings

F −−→ R ; u+ v
√
a −−→ ρα(u)± ρα(v)

√
ρα(a) (u, v ∈ F0, ρα(a) > 0) ,

which determine 2r0 signature maps L0(F+)−−→Z. Also, p(x) has exactly
s0 = r1 conjugate pairs of non-real roots ω ∈ C which determine r1 signature
maps σω : L0(F )−−→Z, the images of x ∈ F under the r1 conjugate pairs of
involution-preserving embeddings

F −−→ C− ; u+ v
√
a −−→ ρα(u)± ρα(v)

√
ρα(a) (u, v ∈ F0, ρα(a) < 0) .

In this case, 37.4 gives

L0(F ) = Zr1 ⊕ 8-torsion ,

L0(F0) = Zr0+r1 ⊕ 8-torsion ,

L0(F+) = Z2r0 ⊕ 8-torsion .

(ii) For p(x) = xq−1+xq−2+ . . .+x+1 (q ≥ 3 prime) in (i) and the complex
conjugation x = x−1 take a = −1, y = x+ x−1, so that

F = Q(ζ) , F0 = Q(ζ + ζ−1) , r0 = 0 , r1 = (q − 1)/2

with ζ = e2πi/q. �
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37B. Rational localization

Following the recollection of the periodicity properties of the algebraic L-
groups and the computations of the L-groups of Z,Q and related rings, the
localization exact sequence of Chap. 25 will be used to investigate the natural
maps L∗(A, ϵ)−−→L∗(Q⊗Z A, ϵ), L

∗(A,Σ, ϵ)−−→L∗(Q⊗Z A,Σ, ϵ).

The original algebraic L-groups of L∗(A) of Wall [304] were 4-periodic by
construction. The algebraic L-groups L∗(A, ϵ), L∗(A, ϵ) defined using alge-
braic Poincaré complexes have the following 4-periodicity properties.

Proposition 37.5 (Ranicki [235])
(i) The ϵ-quadratic L-groups of any ring with involution A are 4-periodic

Ln(A, ϵ) = Ln+2(A,−ϵ) = Ln+4(A, ϵ) .

(ii) The ϵ-symmetric L-groups of a ring with involution A of global dimension
d are such that

Ln(A, ϵ) = Ln+2(A,−ϵ) = Ln+4(A, ϵ)

for n+ 2 ≥ 2d. A Dedekind ring A has global dimension ≤ 1, so that

Ln(A, ϵ) = Ln+2(A,−ϵ) = Ln+4(A, ϵ) (n ≥ 0) . �
Proposition 37.6 (Kervaire and Milnor [133], Ranicki [237, 4.4])
(i) The quadratic L-groups of Z are given by

Ln(Z) =


Z if n ≡ 0(mod 4) (signature/8)

Z2 if n ≡ 2(mod 4) (Arf invariant)

0 otherwise .

(ii) The symmetric L-groups of Z are given by

Ln(Z) =


Z if n ≡ 0(mod 4) (signature)

Z2 if n ≡ 1(mod 4) (deRham invariant)

0 otherwise .

(iii) For any prime p

L0(Zp) =


Z2 if p = 2

Z2 ⊕ Z2 if p ≡ 1(mod 4)

Z4 if p ≡ 3(mod 4) ,

and for any integer k ≥ 1

L0(Zpk) =


L0(Zp) if p is odd, or if p = 2 and k = 1

L0(Z4) = Z2 ⊕ Z4 if p = 2 and k = 2

L0(Z8) = Z2 ⊕ Z8 if p = 2 and k ≥ 3 .

For any integer m with factorization

m = (p1)
k1(p2)

k2 . . . (pr)
kr
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as a product of powers of distinct primes p1, p2, . . . , pr

L0(Zm) =
r⊕
i=1

L0(Z(pi)ki ) .

(iv) For any odd prime p the projection of the p-adic completion of Z

Ẑp = lim←−
k

Zpk

onto the residue class field Ẑp/(p) = Zp induces isomorphisms

L0(Ẑp) ∼= L0(Zp)

For p = 2
L0(Ẑ2) ∼= L0(Z8) = Z2 ⊕ Z8 .

(v) The symmetric L-theory of the profinite completion of Z

Ẑ = lim←−m Zm =
∏

p prime

Ẑp

is given by

Ln(Ẑ) =
⊕
p

Ln(Ẑp) ,

with
L0(Ẑ) =

⊕
p

L0(Ẑp) =
⊕
∞

Z2 ⊕
⊕
∞

Z4 ⊕ Z8 . �

Definition 37.7 (i) For any integer m let

ψ(m) = exponent(L0(Zm))

=


2 if m = d or 2d

4 if m = 4d, e, 2e or 4e

8 otherwise

with

d = a product of odd primes p ≡ 1(mod 4)

e = a product of odd primes, including at least one p ≡ 3(mod 4) .

(ii) For any integer m let

ψ̂(m) = exponent(L0(Ẑm))

=


2 if m is a product of odd primes ≡ 1(mod 4)

4 if m is odd and has a prime factor ≡ 3(mod 4)

8 if m is even . �
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Proposition 37.8 (Ranicki [234, 4.2])
If A is a ring with involution of finite characteristic m ≥ 2 then the algebraic
L-groups L∗(A, ϵ), L∗(A, ϵ) are of exponent ψ(m).
Proof The action of Zm on A induces an action of the symmetric Witt group
L0(Zm) on the algebraic L-groups L∗(A, ϵ), L∗(A, ϵ), and L0(Zm) is a ring
with 1 of exponent ψ(m). �

By 25.4 there is an ϵ-symmetric L-theory localization exact sequence

. . . −−→Ln(A, ϵ)−−→Ln
K̃0(A)

(S−1A, ϵ)−−→Ln(A,S, ϵ)−−→Ln−1(A, ϵ)−−→ . . .

for any ring with involution A and involution-invariant multiplicative subset
S ⊂ A, with L∗(A, ϵ) the projective L-groups of A, L∗

K̃0(A)
(S−1A, ϵ) the

im(K̃0(A)−−→K̃0(S
−1A))-intermediate L-groups of S−1A, and L∗(A,S, ϵ)

the cobordism groups of S−1A-contractible projective Poincaré complexes
over A.

Definition 37.9 (i) A ring A is additively m-torsion-free for some integer
m ≥ 2 if multiplication by m is an injective map

m : A −−→ A ; a −−→ ma ,

that is if {a ∈ A |ma = 0} = {0}.
(ii) A ring A is additively torsion-free if it is additively m-torsion-free for
every integer m ≥ 2. �
Example 37.10 If A is an integral domain of characteristic p and π is a
group then A[π] is additively m-torsion-free for any integer m ≥ 2 coprime
to p. Furthermore, if p = 0 then A[π] is additively torsion-free. �
Proposition 37.11 (Ranicki [234, 4.4])
(i) Let A be a ring with involution which is additively m-torsion-free for some
m ≥ 2, so that

S = {mk | k ≥ 0} ⊂ A

is a central multiplicative subset of non-zero divisors with localization

S−1A = Z[1/m]⊗Z A .

The torsion ϵ-symmetric L-groups L∗(A,S, ϵ) are of exponent ψ̂(m), and
the localization maps Ln(A, ϵ)−−→Ln

K̃0(A)
(S−1A, ϵ) are isomorphisms mod-

ulo ψ̂(m)-torsion.
(ii) If A is a ring with involution which is additively torsion-free, so that

S = Z\{0} ⊂ A

is a central multiplicative subset of non-zero divisors with localization

S−1A = Q⊗Z A .
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The torsion ϵ-symmetric L-groups L∗(A,S, ϵ) are of exponent 8, and the
localization maps Ln(A, ϵ)−−→Ln

K̃0(A)
(S−1A, ϵ) are isomorphisms modulo 8-

torsion.
Similarly in the ϵ-quadratic case.
Proof (i) By 25.26 the inclusion of A in the m-adic completion of A

Â = lim←−
k
A/mkA

induces excision isomorphisms in L-theory

L∗(A,S, ϵ) ∼= L∗(Â, Ŝ, ϵ)

The symmetric Witt group L0(Ẑm) is a ring with 1 which acts on L∗(Â, Ŝ, ϵ),

and which has additive exponent ψ̂(m).
(ii) By 25.26 the inclusion of A in the profinite completion of A

Â = lim←−m A/mA

induces excision isomorphisms in L-theory

L∗(A,S, ϵ) ∼= L∗(Â, S, ϵ)

The symmetric Witt group L0(Ẑ) is a ring with 1 which acts on L∗(Â, S, ϵ),
and which has additive exponent 8. �
Example 37.12 A group ring A = Z[π] is additively torsion-free, so that the
inclusion

A = Z[π] −−→ S−1A = Q[π] (S = Z\{0})
induces isomorphisms modulo 8-torsion in algebraic L-theory, by 37.11 (ii).

�
Proposition 37.13 Let A be a ring with involution which is additively m-
torsion-free (resp. torsion-free) and let S = Z\{0} ⊂ A, as in 37.11. For any
localization Σ−1A of A with A−−→Σ−1A injective the natural morphisms of
ϵ-symmetric L-groups

L∗(Σ−1A, ϵ) −−→ L∗
K̃0(Σ−1A)

(S−1(Σ−1A), ϵ) ,

L∗(A,Σ, ϵ) −−→ L∗(S−1A,Σ, ϵ)

are isomorphisms modulo ψ̂(m)- (resp. 8-) torsion.
Similarly for the ϵ-quadratic L-groups.
Proof The localization Σ−1A is also additively m-torsion-free (resp. torsion-
free), and the morphisms induced in algebraic L-theory by

Σ−1A −−→ S−1(Σ−1A) = Σ−1(S−1A)

are isomorphisms modulo ψ̂(m)- (resp. 8-) torsion by 37.11 (i) (resp. (ii)).

Similarly for the torsion L-groups, noting that the ring L0(Ẑm) (resp. L0(Ẑ))
also acts on the relative torsion L-groups L∗(A−−→S−1A,Σ, ϵ). �
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The high-dimensional knot cobordism groups C∗ are isomorphic to the L-
groups of various polynomial extensions over Z. The actual computation of C∗
first works out the corresponding L-groups of various polynomial extensions
over Q, and then uses L-theoretic localization techniques to pass from Q to
Z. This chapter describes particular features of the general localization exact
sequence of Chap. 25 in the case when the ground ring with involution A is
Dedekind.

The localization exact sequence relates the algebraic L-groups of a ring
with involution A and the localization S−1A of A inverting an involution-
invariant multiplicative subset S ⊂ A

. . . −−→Lnp (A, ϵ)−−→LnS(S
−1A, ϵ)−−→Lnp (A,S, ϵ)−−→Ln−1

p (A, ϵ)−−→ . . .

with L∗
p(A,S, ϵ) the ϵ-symmetric L-groups of (A,S)-modules, andL∗

S(S
−1A, ϵ)

the ϵ-symmetric L-groups of the S−1A-modules induced from f.g. projective
A-modules.

In Chap. 38 A is a Dedekind ring with involution, with quotient field F .
The undecorated L-groups L∗, L∗ are the projective L-groups L∗

p, L
p
∗.

For a Dedekind ring with involution A and any involution-invariant mul-
tiplicative subset S ⊂ A the splitting of (A,S)-modules into P-primary com-
ponents and a devissage argument give identifications

Ln(A,S, ϵ) =
⊕
P

Ln(A,P∞, ϵ) =
⊕
P

Ln(A/P, uPϵ)

with P = P ▹ A the involution-invariant prime ideals such that P ∩ S ̸= ∅,
and uP ∈ A/P appropriate units in the residue class fields A/P. The odd-
dimensional torsion L-groups vanish

L2∗+1(A,S, ϵ) = 0 ,

so that the localization exact sequence breaks up into exact sequences

0 −−→ L2i(A, ϵ) −−→ L2i
S (S

−1A, ϵ) −−→
⊕
P

L2i(A/P, uPϵ)

−−→ L2i−1(A, ϵ) −−→ L2i−1
S (S−1A, ϵ) −−→ 0 .
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Chap. 38 is devoted to the localization exact sequence for an arbitrary
Dedekind ring with involution A. In Chap. 39 the endomorphism L-groups
LEnd∗(F, ϵ) (resp. LIso∗(F, ϵ), LAut∗(F, ϵ)) of a field with involution F are
expressed in terms of ordinary L-groups, using the localization exact sequence
for the Dedekind rings F [x] (resp. F [s], F [z, z−1]). These results are gener-
alized to the various endomorphism L-groups of a Dedekind ring with invo-
lution A in Chap. 41.

For any ring with involution A and any ∗-invariant subgroup U ⊆Whi(A)
(i = 0, 1) the skew-suspension maps define isomorphisms

S : LUn (A, ϵ)
≃−−→ LUn+2(A,−ϵ) ; (C,ψ) −−→ (SC, Sψ) ((Sψ)j = ψj) ,

so that the ϵ-quadratic L-groups are 4-periodic

LU∗ (A, ϵ) = LU∗+2(A,−ϵ) = LU∗+4(A, ϵ) .

The ϵ-symmetric L-groups are not 4-periodic in general, but they are 4-
periodic for a Dedekind ring A :

Proposition 38.1 (Ranicki [235], [237])
Let A be a Dedekind ring with involution.
(i) For any ∗-invariant subgroup U ⊆Whi(A) (i = 0, 1) the skew-suspension
maps define isomorphisms

S : LnU (A, ϵ)
≃−−→ Ln+2

U (A,−ϵ) ; (C, ϕ) −−→ (SC, Sϕ) ((Sϕ)j = ϕj) ,

so that the ϵ-symmetric L-groups are 4-periodic

L∗
U (A, ϵ) = L∗+2

U (A,−ϵ) = L∗+4
U (A, ϵ) .

(ii) Let S ⊂ A be any involution-invariant multiplicative subset. For any
∗-invariant subgroup U ⊆Wh1(A,S) with

I1(A,S) = im(Wh1(S
−1A)−−→Wh1(A,S)) ⊆ U

and with image V ⊆ K̃0(A) the localization exact sequence is given by

. . . −−→ Ln+1
U (A,S, ϵ) −−→ LnV (A, ϵ) −−→ Ln(S−1A, ϵ)

−−→ LnU (A,S, ϵ) −−→ Ln−1
V (A, ϵ) −−→ . . . .

The ϵ-symmetric L-groups L∗
U (A,S, ϵ) are 4-periodic for ∗ ≥ 2. The even-

dimensional groups are such that L2i
U (A,S, ϵ) is the Witt group of nonsingu-

lar (−)iϵ-symmetric linking forms (M,λ) over (A,S) such that [M ] ∈ U ⊆
Wh1(A,S). The odd-dimensional groups are such that

L2i−1(A,S, ϵ) = 0 ,

L2i−1
U (A,S, ϵ) = coker(L2i(A,S, ϵ)−−→Ĥ2i(Z2 ;Wh1(A,S)/U))
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for any i ≥ 1.
(iii) Let S = A\{0} ⊂ A, so that S−1A = F . Then

L2i+1(F, ϵ) = 0 , L2i+1(A,S, ϵ) = 0

and the localization exact sequences for

(U, V ) = (Wh1(A,S), K̃0(A)) , (I1(A,S), {0})

fit into a commutative braid of exact sequences

L2i
h (A, ϵ)

!!C
CC

CC

��
L2i(F, ϵ)

!!C
CC

CC

��
L2i(A,S, ϵ)

!!C
CC

CC

��
Ĥ1(Z2 ; K̃0(A))

L2i(A, ϵ)

=={{{{{

!!C
CC

CC
L2i
h (A,S, ϵ)

=={{{{{

!!C
CC

CC
L2i−1(A, ϵ)

=={{{{{

!!C
CC

CC
C

0

=={{{{{{
@@

Ĥ0(Z2 ; K̃0(A))

=={{{{{

@@
L2i−1
h (A, ϵ)

=={{{{{

AA 0

The Witt class (C, ϕ) ∈ L2i−1(A, ϵ) of a f.g. projective (2i − 1)-dimensional
ϵ-symmetric Poincaré complex (C, ϕ) over A is determined by the Witt class
(M,λ) ∈ L2i(A,S, ϵ) of the nonsingular (−)iϵ-symmetric linking form (M,λ)
over (A,S) with

M = torsionHi(C) = ker(Hi(C)−−→S−1Hi(C)) ,

λ : M ×M −−→ F/A ; (x, y) −−→ ϕ0(x)(z)/s

(x, y ∈ ker(d∗ : Ci−−→Ci+1) , z ∈ Ci−1 , s ∈ S , d∗z = sy) ,

defining an isomorphism

L2i−1(A, ϵ)
≃−−→ coker(L2i(F, ϵ) −−→ L2i(A,S, ϵ)) ; (C, ϕ) −−→ (M,λ) .

Similarly in the free case, with an isomorphism

L2i−1(A, ϵ)
≃−−→ coker(L2i(F, ϵ) −−→ L2i(A,S, ϵ)) .

Proof (i) If (C, ϕ) is an n-dimensional ϵ-symmetric Poincaré complex over A
and n ≥ 2 then a f.g. projective A-module resolution of H0(C)

0 −−→ D1 −−→ D0 −−→ H0(C) −−→ 0

determines an (n+1)-dimensional ϵ-symmetric pair (C−−→D, (0, ϕ)) allowing
H0(C) to be killed by surgery on (C, ϕ). See Ranicki [235, Chap. 4] for further
details.
(ii) The proof of 4-periodicity proceeds as for (i), but using F -contractible
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chain complexes. See [237, 3.6.5, 4.2] for further details.
(iii) See Ranicki [233] for the proof of L2∗+1(F, ϵ) = 0, and [237, 3.2.5] for the
proof that L2∗+1(A,S, ϵ) = 0. �
Definition 38.2 Let max(A) be the set of maximal ideals in A, and let

max(A) = {P ∈ max(A) |P = P}

be the set of involution-invariant maximal ideals. Also, let

U(A) = {u ∈ A• |uu = 1} .

For each P ∈ max(A) choose a uniformizer π ∈ P\P2, so that

uππ = π ∈ P

for some element uπ ∈ U(A) uniquely determined by π. The localization of
A inverting the involution-invariant multiplicative subset

P∞ = {(uπ)jπk | j ∈ Z, k ≥ 0} ⊂ A

is a ring with involution

(P∞)−1A = A[1/π] .

The P-local ring
AP = (A\P)−1A

is a local ring, with unique maximal ideal PAP ▹ AP and residue class field

AP/PAP = A/P . �

Remark 38.3 If π, π′ ∈ P\P2 are two uniformizers for an involution-invariant
maximal ideal P ∈ max(A) then

π′ = πv ∈ P

for some unit v ∈ A•. Now

uπ′ = v(v)−1uπ ∈ U(A) ,

so that there are defined scaling isomorphisms in uϵ-symmetric L-theory

Ln(A/P, uπϵ)
≃−−→ Ln(A/P, uπ′ϵ) ; (C, ϕ) −−→ (C, vϕ) .

Thus the uπϵ-symmetric L-groups L∗(A/P, uπϵ) only depend on A,P, ϵ and
are independent of the choice of uniformizer π. Similarly for uπϵ-quadratic
L-groups L∗(A/P, uπϵ). From now on uπ ∈ U(A) will be denoted by uP, even
though uπ depends on the choice of uniformizer π. �
Remark 38.4 Every maximal ideal P▹A is a f.g. projective A-module, which
is isomorphic to the image im(p) of a projection
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p = p2 =

(
a b

c 1− a

)
: A⊕A −−→ A⊕A

for some a, b, c ∈ A such that a(1− a) = bc, as in 17.1 (i). For any involution
on A the dual f.g. projective A-module P∗ is isomorphic to im(p∗), with

p∗ =

(
a c

b 1− a

)
: A⊕A −−→ A⊕A

the dual projection. For the identity involution on A

p∗ =

(
a c

b 1− a

)
= τ−1(1− p)τ : A⊕A −−→ A⊕A

with τ =

(
0 −1
1 0

)
, so that

P⊕ P∗ ∼= A⊕A

and the duality involution on the reduced projective class group is given by

∗ = −1 : K̃0(A) −−→ K̃0(A) ; [P] −−→ [P∗] = −[P] . �

Proposition 38.5 Let P ∈ max(A), with uniformizer π ∈ P.
(i) The cartesian morphism of rings with involution and multiplicative subsets

(A,P∞) −−→ (AP,P
∞)

determines a cartesian square of rings with involution

A //

��

A[1/π]

��
AP

// F

(ii) The relative algebraic K-groups are such that

K∗(A,P
∞) = K∗(AP,P

∞) = K∗−1(A/P) ,

Wh1(A,P
∞) = K0(A/P) = Z ,

I1(A,P
∞) = im(Wh1(A,P

∞)−−→K̃0(A)) = {0} .

(iii) The relative ϵ-symmetric L-groups are such that

L∗(A,P∞, ϵ) = L∗(AP,P
∞, ϵ) = L∗(A/P, uPϵ)

with
L2∗+1(A,P∞, ϵ) = 0 .

Proof (i) Immediate from 17.1.
(ii) See Chap. 18 for devissage in algebraic K-theory.
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(iii) See Ranicki [237, 4.2] for devissage in ϵ-symmetric L-theory. Here are the
details of the identification

L0(A,P∞, ϵ) = L0(A/P, uPϵ) .

For any finite-dimensional A/P-vector space L there is defined an isomor-
phism

HomA/P(L,A/P)
≃−−→ HomA(L,A[1/π]/A) ; f −−→ (x −−→ f(x)/π) ,

so that as in 25.20 there is defined a one-one correspondence

{uPϵ-symmetric forms (L, ϕ) over A/P} −−−−→←−−−−
{ϵ-symmetric linking forms (L, λ) over (A,P∞) with PL = 0}

with λ = ϕ/π. The one-one correspondence determines a morphism

L0(A/P, uPϵ) −−→ L0(A,P∞, ϵ) ; (L, ϕ) −−→ (L, λ) .

In order to construct the inverse start with a nonsingular ϵ-symmetric linking
form (M,µ) over (A,P∞). As in 17.2 decompose the (A,P∞)-module M as
a direct sum

M =

j∑
k=1

Mk

with ann (Mk) = Pk andMk a f.g. free A/P
k-module. Write the dual (A,P∞)-

module as

N = M̂ =

j∑
k=1

Nk

with Nk = (Mk)̂. An A-module morphism f :M−−→N can be expressed as

f =

(
f ′ g

h fj

)
: M = M ′ ⊕Mj −−→ N = N ′ ⊕Nj

with

f ′ : M ′ =

j−1∑
k=1

Mk −−→ N ′ =

j−1∑
k=1

Nk ,

fj : Mj −−→ Nj , g : Mj −−→ N ′ , h : M ′ −−→ Nj .

An element a ∈ A/Pj is a unit if and only if the projection [a] ∈ A/P is non-
zero, so that the A/Pj-module morphism fj : Mj−−→Nj is an isomorphism
if and only if the A/P-module morphism

[f ] = [fj ] : M/Pj−1M = Mj/P
j−1Mj −−→ N/Pj−1N = Nj/P

j−1Nj

is an isomorphism. Thus f is an isomorphism if and only if fj :Mj−−→Nj is
an isomorphism and
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f ′ − g(fj)−1h : M ′ −−→ N ′

is an isomorphism, in which case

f =

(
f ′ g

h fj

)
=

(
f ′ − g(fj)−1h g

0 fj

)(
1 0

(fj)
−1h 1

)
: M = M ′ ⊕Mj −−→ N = N ′ ⊕Nj .

In particular, we have that µ : M−−→N = M̂ is an isomorphism, so that
the restriction of (M,µ) to Mj ⊆ M is a nonsingular ϵ-symmetric linking
form (Mj , µj) over (A,P

∞), which can be split off from (M,µ) with an iso-
morphism

(M,µ) ∼= (M ′, µ′)⊕ (Mj , µj) .

Proceeding by induction (as in Milnor [197, p. 95]) there is obtained an iso-
morphism of the type

(M,µ) ∼=
j∑

k=1

(Mk, µk) .

Consider (Mk, µk). For any integer ℓ ≥ 1 with 2ℓ ≥ k ≥ ℓ there is defined a
sublagrangian

L = PℓMk ⊂Mk

with an isomorphism

Mk/P
2ℓ−kMk

≃−−→ L⊥/L ; x −−→ πk−ℓx .

If k is
{ even

odd
let ℓk =

{
k/2

(k + 1)/2
. The submodule

Lk = PℓkMk ⊂Mk

is a

{
lagrangian

sublagrangian
of (Mk, µk), such that

{
Lk = L⊥

k

Lk ⊆ L⊥
k

, (L⊥
k /Lk, µ

⊥
k /µk) =

{
0

(Mk/PMk, [µk]) .

The terms (Mk, µk) with even k are thus hyperbolic, and do not contribute to
the Witt class of (M,µ). For odd k the nonsingular ϵ-symmetric linking form
(Mk/PMk, [µk]) over (A,P∞) is defined on a finite dimensional A/P-vector
spaceMk/PMk, and so can be regarded as a nonsingular uPϵ-symmetric form
over A/P. The morphisms

L0(A/P, uPϵ) −−→ L0(A,P∞, ϵ) ; (L, ϕ) −−→ (L, λ) ,

L0(A,P∞, ϵ) −−→ L0(A/P, uPϵ) ; (M,µ) −−→
∑
k odd

(Mk/PMk, [µk])
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are inverse isomorphisms. �
Remark 38.6 In ϵ-quadratic L-theory

L∗(A,P
∞, ϵ) = L∗(AP,P

∞, ϵ) ,

but the map
L∗(A/P, uPϵ) −−→ L∗(A,P

∞, ϵ)

(determined by a choice of uniformizer π ∈ P) is not an isomorphism in
general (Ranicki [237, p. 413]) – for example, the map

L0(Z2) = Z2 −−→ L0(Z, (2)∞) = Z8 ⊕ Z2

is only an injection. �
Given a subset J ⊆ max(A) write Pj for the ideal indexed by j ∈ J , with

uniformizer πj ∈ Pj\P2
j and uPj = uj ∈ U(A) such that ujπj = πj ∈ Pj .

Also, define the involution-invariant multiplicative subset

SJ = {πk11 πk22 . . . πkmm | k1, k2, . . . , km ≥ 1} ⊂ A .

Proposition 38.7 For any subset J ⊆ max(A) the ϵ-symmetric L-groups of
a Dedekind ring with involution A and the localization S−1

J A are related by
an exact sequence

0 −−→ L2∗(A, ϵ) −−→ L2∗
K̃0(A)

(S−1
J A, ϵ)

∂
−−→ L2∗(A,SJ , ϵ)

−−→ L2∗−1(A, ϵ) −−→ L2∗−1

K̃0(A)
(S−1
J A, ϵ) −−→ 0 ,

with
L2∗(A,SJ , ϵ) =

⊕
j∈J

L2∗(A/Pj , ujϵ) ,

L2∗+1(A,SJ , ϵ) = 0

by Pj-primary decomposition and devissage.
Proof Every nonsingular (−)iϵ-symmetric linking form (M,λ) over (A,SJ)
has a direct sum decomposition

(M,λ) =
∑
j∈J

∑
k≥1

(Mj,k, λj,k)

with Mj,k Pj-primary and f.g. free over A/Pkj . The devissage isomorphisms
are given by 38.5 (iii) to be

L2i(A,SJ , ϵ)
≃−−→

⊕
j∈J

L2i(A/Pj , ujϵ) ;

(M,λ) −−→
∑
j∈J

∑
k odd

(Mj,k/PjMj,k, [λj,k]) . �
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Remark 38.8 The relative ϵ-quadratic L-groups have P-primary decompo-
sition

L∗(A,SJ , ϵ) =
⊕
j∈J

L∗(A,P
∞
j , ϵ)

but do not in general have devissage : the maps

L∗(A/Pj , ujϵ) −−→ L∗(A,P
∞
j , ϵ)

may not be isomorphisms if char(A/Pj) = 2 (cf. Remark 38.6). �
Proposition 38.9 The ϵ-symmetric L-groups of A and the quotient field
F = S−1A are related by an exact sequence

0 −−→ L2∗(A, ϵ) −−→ L2∗(F, ϵ)
∂
−−→ L2∗(A,S, ϵ) −−→ L2∗−1(A, ϵ) −−→ 0

with

L2∗(A,S, ϵ) =
⊕

P∈max(A)

L2∗(A,P∞, ϵ) =
⊕

P∈max(A)

L2∗(A/P, uPϵ)

by P-primary decomposition and devissage.
Proof Take

J = max(A) , J ′ = max(A)\max(A)

in 38.8. There is defined a cartesian square of rings with involution

A //

��

S−1
J A

��
S−1
J ′ A // F .

The involution acts freely on J ′, so that the involution on

H (S−1
J A,SJ ′) = H (A,SJ ′)

is hyperbolic and by 22.6

L∗(A,SJ′ , ϵ) = L∗(S−1
J A,SJ′ , ϵ) = 0 ,

L∗(A, ϵ) = L∗(S−1
J ′ A, ϵ) , L∗(S−1

J A, ϵ) = L∗(F, ϵ) . �

The computation of the Witt group of an algebraic number field F in 37.2
can now be extended to the Witt group of the ring of integers :

Proposition 38.10 (Milnor and Husemoller [200, IV.4])
Let F be an algebraic number field and let A ⊂ F be the ring of integers, so
that A is a Dedekind ring with quotient field F . Let F = Q[x]/(p(x)) for an
irreducible monic polynomial p(x) ∈Mx(Q) of degree d = r + 2s, with r real
roots and 2s non-real roots.
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(i) For any involution on F and ϵ = ±1 the ϵ-symmetric Witt groups of A
and F are related by the localization exact sequence

0−−→L0(A, ϵ)−−→L0(F, ϵ)−−→
⊕

P∈max(A)

L0(A/P, uPϵ)−−→L−1(A, ϵ)−−→ 0 .

The residue class fields A/P are finite, and L0(A/P, uPϵ) is an L0(A/P)-
module. Hence each L0(A/P, uPϵ) is 4-torsion, and so is L−1(A, ϵ).
(ii) For the identity involution on F

dimensionL0(A, ϵ) = dimensionL0(F, ϵ) =

{
r if ϵ = 1

0 if ϵ = −1 .

Both L0(A) and L0(F ) are of the form Zr ⊕ 8-torsion, with one signature in
L0(R) = Z for each embedding F ⊂ R, and

L0(A,−1) = L0(F,−1) = 0 .

(iii) For a non-trivial involution on F with fixed field F0 and F = F0(
√
a)

(
√
a = −

√
a)

dimensionL0(A, ϵ) = dimensionL0(F, ϵ) = r1 ,

with r1 the number of real roots of p0(y) for which the corresponding embed-
ding ρξ : F0 = Q[y]/(p0(y))−−→R; y−−→ξ has ρξ(a) < 0. Both L0(A, ϵ) and
L0(F, ϵ) are of the form Zr1 ⊕ 8-torsion. �
Addendum 38.11 The symmetric Witt groups of any Dedekind ring with
involution A and quotient field F fit into the commutative braid of exact
sequences

L0
h(A)

##G
GG

GG

  
L0(F )

##G
GG

GG

  
L0(A,S)

##G
GG

GG

!!
Ĥ1(Z2 ; K̃0(A))

L0(A)

;;wwwww

##G
GG

GG
L0
h(A,S)

;;wwwww

##G
GG

GG
L−1(A)

;;wwwww

##G
GG

GG
GG

0

;;wwwwwww
>>

Ĥ0(Z2 ; K̃0(A))

;;wwwww

>>
L−1
h (A)

;;wwwww

?? 0

as in 38.1. If A has the identity involution then

L0(A,S) =
⊕

P∈max(A)

L0(A/P) .

Moreover, ∗ = −1 : K̃0(A)−−→K̃0(A) (38.4), so that
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Ĥi(Z2; K̃0(A)) =

{
{x ∈ K̃0(A) | 2x = 0} if i ≡ 0(mod 2)

K̃0(A)/2K̃0(A) if i ≡ 1(mod 2) .

If A is the Dedekind ring of algebraic integers in an algebraic number field
F (with the identity involution) it now follows from the exact sequence of
Milnor and Husemoller [200, IV.3.4]

0 −−→ L0(A) −−→ L0(F ) −−→
⊕

P∈max(A)

L0(A/P) −−→ K̃0(A)/2K̃0(A) −−→ 0

that
L−1(A) = Ĥ1(Z2; K̃0(A)) .

In Ranicki [235, p. 417] it is shown that

L−1
h (A) = coker(L0(A)−−→Ĥ1(Z2; K̃0(A))) = 0 . �

Example 38.12 (i) For F = Q, A = Z with r = 1, s = 0 and by 38.10 (ii)

L0(Z) = Z ,

L0(Q) = Z⊕
⊕

p prime

L0(Fp) = Z⊕
⊕
∞

Z2 ⊕
⊕
∞

Z4 ,

L0(Z,−1) = L0(Q,−1) = 0 .

(ii) Let

F = Q[z, z−1]/(z2 + 2qz + 1) = Q(
√
q2 − 1)

for some q ∈ Q such that
√
q2 − 1 ̸∈ Q, with

A = Z[
√
p2 − 1] ,

√
q2 − 1 = −

√
q2 − 1 , r = 1 , s = 0 ,

The fixed field of the involution z = z−1 is F0 = Q, and 38.10 (iii) gives

dimensionL0(A, ϵ) = dimensionL0(F, ϵ) = r0 + s =

{
1 if q2 < 1

0 if q2 > 1 .

(iii) Let ζm = e2πi/m, a primitive mth root of 1, with m ≥ 3. The minimal
polynomial of ζm is the cyclotomic polynomial

Φm(z) =
∏

(m,k)=1

(z − (ζm)k) ∈ Z[z]

of degree
d = ϕ(m) (the Euler function)

= the number of units u ∈ Z•
m .

(If m is prime then ϕ(m) = m− 1, Φm(z) = zm−1 + zm−2 + . . .+ z+1.) The
cyclotomic algebraic number field
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F = Q(ζm) = Q[z, z−1]/(Φm(z))

is of degree ϕ(m), with

r = 0 , s = ϕ(m)/2 ,

and the ring of integers is

A = Z[z, z−1]/(Φm(z)) = Z[ζm] .

For the complex conjugation involution z = z−1 on F 38.10 (iii) gives

dimensionL0(A, ϵ) = dimensionL0(F, ϵ) = ϕ(m)/2 ,

with one signature for each conjugate pair of embeddings

F = Q(ζm) −−→ C− ; ζm −−→ (ζm)u (u ∈ Z•
m) . �
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The L-theory localization exact sequence will now be used to express the
various L-groups LEnd∗(F, ϵ), LAut∗(F, ϵ), LAut∗(F, ϵ), LAut∗fib(F, ϵ),
LAsy∗(F ), LIso∗(F ) for a field with involution F in terms of the ordinary
L-groups of fields with involution associated to F . This expression will allow
the computation in the cases F = Q,R,C of particular interest in high-
dimensional knot theory.

The basic tools for expressing the L-theory of a function field in terms
of the L-theory of the ground field are the localization exact sequence of
Chap. 25 and the devissage technique of Chap. 38. For each of the three
basic ways of extending the involution on F to an involution on the function
field F (x) (= the quotient field of F [x]) the ϵ-symmetric L-groups L∗(F (x), ϵ)
are expressed in terms of the L-groups of the residue class fields F [x]/P. As
before, the different involutions will be distinguished by the name assigned
to the variable x :

(i) F [x], with x = x,
(ii) F [s], with s = 1− s,
(iii) F [z, z−1], with z = z−1.

In fact, there are defined isomorphisms of fields with involution

F (s)
≃−−→ F (x)[s]/(s2 − s+ x) ; s −−→ s ,

F (s)
≃−−→ F (z) ; s −−→ (1− z)−1

but it is convenient to deal separately with (i), (ii) and (iii). In all cases only
the even-dimensional L-groups need be considered, since the odd-dimensional
L-groups of fields are 0, by 37.1 (iii). The L-groups of the function fields for
(i), (ii) and (iii) are 2-periodic if char(F ) = 2 by 37.1 (vi), and also for (ii)
and (iii) if char(F ) ̸= 2 by 37.1 (vii), since

F (x)[
√
a] ∼= F (s) ∼= F (z)

with a = 1− 4x = (2s− 1)2,
√
a = −

√
a.
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39A. L-theory of F (x) (x = x)

The polynomial ring F [x] is a Dedekind ring with quotient field F (x). Recall
thatM(F ) denotes the set of irreducible monic polynomials p(x) ∈ F [x] (4.9).

Definition 39.1 Let Mx(F ) ⊆ M(F ) be the set of irreducible monic poly-
nomials

p(x) = a0 + a1x+ . . .+ ad−1x
d−1 + adx

d ∈ F [x] (ad = 1)

which are involution-invariant

p(x) = p(x) ∈ F [x] ,

that is aj = aj ∈ F (0 ≤ j ≤ d− 1). �
The involution-invariant maximal ideals P ∈ max(F [x]) are the principal

ideals P = (p(x)) ▹F [x] generated by the elements p(x) ∈Mx(F ), so identify

max(F [x]) = Mx(F ) .

For the identity involution on F

Mx(F ) = M(F ) .

For any involution on F the duality involution

End0(F ) −−→ End0(F ) ; (P, f) −−→ (P ∗, f∗)

corresponds under the identification of 19.3

End0(F ) = Z[Mx(F )]

to the involution

Z[Mx(F )] −−→ Z[Mx(F )] ; p(x) −−→ p(x) ,

so that
Ĥn(Z2; End0(F )) = Ĥn(Z2;Z)[Mx(F )]

with

Ĥn(Z2;Z) =

{
Z2 if n ≡ 0(mod 2)

0 if n ≡ 1(mod 2) .

Proposition 39.2 For any p(x) ∈Mx(F ), ϵ ∈ U(F )

L0(F [x], p(x)∞, ϵ) = LEnd0p(x)∞(F, ϵ) = L0(E, ϵ)

with E = F [x]/(p(x)) the residue class field.
Proof The identification

L0(F [x], p(x)∞, ϵ) = LEnd0p(x)∞(F, ϵ)
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was already obtained in 35.3, and the identification

L0(F [x], p(x)∞, ϵ) = L0(E, ϵ)

is a special case of 38.5 (iii). These identifications will now be made explicit.
In view of the devissage result of 38.5 (iii) this need only be done in the p(x)-
torsion case, so that L0(F [x], p(x)∞, ϵ) will be regarded as the cobordism
group of 1-dimensional (−ϵ)-symmetric Poincaré complexes (C, ϕ) over F [x]
such that p(x)H∗(C) = 0, and LEnd0p(x)∞(F, ϵ) will be regarded as the Witt
group of nonsingular ϵ-symmetric forms (L, θ) over F with an endometric
structure f : L−−→L such that p(f) = 0 : L−−→L. A finite dimensional F -
vector space L with an endomorphism f : L−−→L such that p(f) = 0 is the
same as an (F [x], p(x)∞)-module L with f = x, p(x)L = 0, and also the same
as a finite-dimensional E-vector space. Identify

HomE(L,E) = HomF [x](L,F [x, p(x)
−1]/F [x])

using the E-vector space isomorphism

L∗ = HomE(L,E)
≃−−→ L̂ = HomF [x](L,F [x, p(x)

−1]/F [x]) ;

g −−→ (y −−→ p(x)−1g(y)) .

In order to identify L∗ with HomF (L,F ) proceed as follows. Write

p(x) = a0 + a1x+ . . .+ ad−1x
d−1 + adx

d ∈Mx(F ) (ad = 1) ,

and let X be an indeterminate over E. The polynomial

p(X) =
d∑
j=0

ajX
j ∈ E[X]

has root x ∈ E, with p(x) = 0 ∈ E. The polynomial

q(X) =
p(X)− p(x)
X − x

=

d−1∑
j=0

qj(x)X
j ∈ E[X]

has coefficients qj(x) ∈ E the evaluations at x of the polynomials

qj(X) =

d−j−1∑
i=0

ai+j+1X
i ∈ F [X] (0 ≤ j ≤ d− 1) .

Every element y ∈ E has a unique representation as

y =
d−1∑
j=0

yjx
j ∈ E (yj ∈ F ) ,

i.e. {1, x, x2, . . . , xd−1} is a basis for E as an F -vector space. Now
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d−1∑
j=0

xjqj(f)(x− f) = p(x) : L[x] −−→ L[x] ,

so that for any E-linear map g : L−−→E the F -linear maps

gj : L −−→ F (0 ≤ j ≤ d− 1)

defined by

g(y) =
d−1∑
j=0

gj(y)x
j ∈ E (y ∈ L)

are in fact all determined by gd−1, with

gj = gd−1qj(f) : L −−→ F .

The function

HomE(L,E) −−→ HomF (L,F ) ; g −−→ gd−1

is thus an E-vector space isomorphism, and there are identifications

L̂ = HomF [x](L,F [x, p(x)
−1]/F [x]) = HomE(L,E) = HomF (L,F ) .

The one-one correspondence of 25.19

{1-dimensional (−ϵ)-symmetric complexes (C, ϕ) over F [x]

such that p(x)H∗(C) = 0} −−−−→←−−−−
{ϵ-symmetric linking forms (L, ρ) over (F [x], p(x)∞) with p(x)L = 0}

is given by

f = x : L = H1(C) −−→ H1(C) ,

ρ : H1(C)×H1(C) −−→ F [x, x−1, p(x)−1]/F [x] ;

(u, v) −−→ p(x)−1ϕ0(u,w)

(u, v ∈ C1 , w ∈ C0 , d∗(w) = p(x)(v)) .

Define also the one-one correspondence

{1-dimensional (−ϵ)-symmetric complexes (C, ϕ) over F [x]

such that p(x)H∗(C) = 0} −−−−→←−−−−
{ϵ-symmetric forms (L, θ) over F with an

endometric structure f : L−−→L such that p(f) = 0}

with (L, θ, f) corresponding to (C, ϕ) given by
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dC = x− f∗ : C1 = L∗[x] −−→ C0 = L∗[x] ,

ϕ0 =

{
θ : C0 = L[x] −−→ C1 = L∗[x]

θ : C1 = L[x] −−→ C0 = L∗[x] ,

ϕ1 = 0 : C1 = L[x] −−→ C1 = L∗[x] .

The inverse isomorphisms of 38.5 (iii) are given by

LEnd0p(x)∞(F, ϵ) −−→ L0(F [x], p(x)∞, ϵ) ; (L, ρ) −−→ (C, ϕ) ,

L0(F [x], p(x)∞, ϵ) −−→ LEnd0p(x)∞(F, ϵ) ; (C, ϕ) −−→ (L, ρ) .

The one-one correspondence

{ϵ-symmetric forms (L, µ) over E} −−−−→←−−−−
{ϵ-symmetric linking forms (L, ρ) over (F [x], p(x)∞) with p(x)L = 0}

with
ρ(u, v) = p(x)−1λ(u, v) ∈ F [x, p(x)−1]/F [x] (u, v ∈ L) .

gives the inverse isomorphisms of 35.3

L0(E, ϵ) −−→ L0(F [x], p(x)∞, ϵ) ; (L, λ) −−→ (L, ρ) ,

L0(F [x], p(x)∞, ϵ) −−→ L0(E, ϵ) ; (L, ρ) −−→ (L, λ) .

The composite isomorphism

L0(E, ϵ)
≃−−→ L0(F [x], p(x)∞, ϵ)

≃−−→ LEnd0p(x)∞(F, ϵ)

is given by the one-one correspondence

{ϵ-symmetric forms (L, λ) over E} −−−−→←−−−−
{ϵ-symmetric forms (L, θ) over F with an

endometric structure f : L−−→L such that p(f) = 0}

with

λ(u, v) = θ(u,w) ∈ E
(u, v ∈ L , w ∈ L[x] , (x− f)(w) = p(x)v ∈ L[x]) .

For u, v, w as above

w =

d−1∑
j=0

wjx
j ∈ L[x] (wj ∈ L)

with wd−1 = v, so that λ determines θ by

θ(u, v) = (coefficient of xd−1 in λ(u, v)) ∈ F . �
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Remark 39.3 As in 39.2 let

p(x) =

d∑
j=0

ajx
j ∈Mx(F ) (ad = 1) ,

with q(X), qj(X) as before.
(i) Given any non-zero involution-preserving F -linear map

h : E = F [x]/(p(x)) −−→ F

there is defined a one-one correspondence

{ϵ-symmetric forms (L, λ) over E} −−−−→←−−−−
{ϵ-symmetric forms (L, θ) over F with an

endometric structure f : L−−→L such that p(f) = 0}

with
θ(u, v) = h(λ(u, v)) ∈ F , f(u) = xu ∈ L ,

so that there is an isomorphism of Witt groups

L0(E, ϵ)
≃−−→ LEnd0p(x)∞(F, ϵ) ; (L, λ) −−→ (L, θ, f) .

This follows from Milnor [197,Remark 1.4] – the methods developed there for
automorphisms of forms (which will be used in 39.20 below) apply equally
well to forms with endometric structures.
(ii) It has already been verified that the one-one correspondence used in the
proof of 39.2 is determined by the choice

h : E −−→ F ; y =

d−1∑
j=0

yjx
j −−→ yd−1 (yj ∈ F )

in (i). In (iii) this choice will be related to the trace map used in [197] (in
the separable case). The one-one correspondence between ϵ-symmetric forms
(L, λ) over E and ϵ-symmetric forms (L, θ) over F with an endometric struc-
ture f : L−−→L such that p(f) = 0 in the proof of 39.2 is given by

λ(u, v) =

d−1∑
j=0

θ(u, qj(f)(v))x
j ∈ E , f(u) = xu ∈ L ,

θ(u, v) = (coefficient of xd−1 in λ(u, v)) ∈ F (u, v ∈ L) ,

noting that qd−1(x) = 1 and that w =
d−1∑
j=0

qj(f)(v)x
j ∈ L[x] has image

(x− f)(w) = p(x)(v) ∈ L[x] .
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(iii) The field E is a degree d extension of F , and the trace map is defined by

trE/F : E −−→ F ; y =

d−1∑
j=0

yjx
j −−→ trE/F (y) =

d−1∑
j=0

yj(

d∑
k=1

(xk)
j)

with x1, x2, . . . , xd the roots of p(x) in an algebraic closure of F . Equivalently,
trE/F (y) ∈ F is the trace of the F -linear endomorphism of E

E −−→ E ; z −−→ yz

regarded as a d-dimensional F -vector space.
Suppose now that p(x) ∈Mx(F ) is separable, i.e. with x1, x2, . . . , xd distinct
(which is automatically the case if char(F ) = 0), so that trE/F is onto and it
is possible to choose h = trE/F in (i). The evaluation of q(X) ∈ E[X] at x is
the derivative of p(x)

q(x) = p′(x) =
d−1∑
j=0

qj(x)x
j =

d−1∑
j=1

jajx
j−1 ∈ E .

with trace

trE/F (p
′(x)) = discriminant p(x) =

∏
i ̸=j

(xi − xj) ∈ F • ,

and the elements

qj(x)x
k =

d−j−1∑
i=0

ai+j+1x
i+k ∈ E

are such that

trE/F (p
′(x)−1qj(x)x

k) = δjk ∈ F (0 ≤ j, k ≤ d− 1)

(Lang [145, p. 287]). It follows that the coefficients yj ∈ F in the expression
of any element y ∈ E as a polynomial in x of degree d− 1

y =
d−1∑
j=0

yjx
j ∈ E

are given by

yj = trE/F (p
′(x)−1qj(x)y) ∈ F (0 ≤ j ≤ d− 1) .

In particular, the choice of h in (ii) is given in terms of the trace map by

h : E −−→ F ; y =

d−1∑
j=0

yjx
j −−→ yd−1 = trE/F (p

′(x)−1y) .
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(iv) For any choice of h in (i) the composite of the isomorphism

L0(E, ϵ)
≃−−→ LEnd0p(x)∞(F, ϵ) ; (L, λ) −−→ (L, θ, f)

and the forgetful map

LEnd0p(x)∞(F, ϵ) −−→ L0(F, ϵ) ; (L, θ, f) −−→ (L, θ)

can be expressed as an algebraic surgery transfer map

p ! : L0(E, ϵ) −−→ L0(F, ϵ) ; (L, λ) −−→ (L, θ)

in the sense of Lück and Ranicki [174], as follows. The symmetric form (E, θ)
over F defined by

θ : E −−→ E∗ = HomF (E,F ) ; u −−→ (v −−→ h(uv))

is nonsingular. Write the opposite of the F -endomorphism ring of E as

R = HomF (E,E)op ,

and let it have the involution

: R −−→ R ; f −−→ θ−1f∗θ ,

so that there is defined a morphism of rings with involution

p : E −−→ R ; u −−→ (v −−→ uv)

and p ! is defined as in [174]. �
Proposition 39.4 (i) The localization exact sequence of 34.7

. . . −−→ Ln(F [x], ϵ)
i
−−→ Ln(F (x), ϵ)

∂
−−→ LEndn(F, ϵ)

j
−−→ Ln−1(F [x], ϵ) −−→ . . .

breaks up into split exact sequences

0 −−→ L2k(F [x], ϵ)
i
−−→ L2k(F (x), ϵ)

∂
−−→ LEnd2k(F, ϵ) −−→ 0

with ∂ split by

LEnd2k(F, ϵ) −−→ L2k(F (x), ϵ) ; (L, θ, f) −−→ (L(x), θ(x− f)) .

(ii) The L-groups of F [x] are such that

L2k(F [x], ϵ) = L2k(F, ϵ) = L0(F, (−)kϵ)

and the endomorphism L-groups of F are such that
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LEnd2k(F, ϵ) =
⊕

p(x)∈Mx(F )

LEnd2kp(x)∞(F, ϵ)

=
⊕

p(x)∈Mx(F )

L0(F [x]/(p(x)), (−)kϵ) .

(iii) The morphism

LEnd2k(F ) =
⊕

p(x)∈Mx(F )

LEnd2kp(x)∞(F )

−−→ Ĥ0(Z2; End0(F )) = Z2[Mx(F )] ;

(L, θ, f) −−→ [L, f ] =
∑

p(x)∈Mx(F )

[Lp(x)∞ ]p(x)

fits into the exact sequence of 34.14

0 −−→ LEnd2kr (F ) −−→ LEnd2k(F ) −−→ Z2[Mx(F )] −−→ LEnd2k−1
r (F ) −−→ 0

with Lp(x)∞ the p(x)-primary component of L, x = f : L−−→L and

[Lp(x)∞ ] =
∞∑
j=0

dimE(p(x)
jL/p(x)j+1L)

∈ Ĥ0(Z2; End
p(x)∞

0 (F )) = Ĥ0(Z2;K0(E)) = Z2

(using 18.2 (ii)) with E = F [x]/p(x) the quotient field.
Proof (i) By construction.
(ii) This is the special case (A, J) = (F [x],Mx(F )) of 38.7, using 39.2. If (L, θ)
is a nonsingular (−)kϵ-symmetric form over F with an endometric structure
f : L−−→L then a factorization

minimal polynomial(L, f) = p1(x)p2(x) . . . pm(x)q(x)q(x) ∈ F [x]

with pj(x) ∈Mx(F ) coprime determines a decomposition

(L, θ, f) =
m⊕
j=1

(Lj , θj , fj)⊕ hyperbolic

with
Lj = Lpj(x) , pj(fj) = 0 : Lj −−→ Lj (1 ≤ j ≤ m) .

Thus

(L, θ, f) =
m⊕
j=1

(Lj , θj , fj) ∈ LEnd2k(F, ϵ) =
⊕

p(x)∈Mx(F )

LEnd2kp(x)∞(F, ϵ) .
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(iii) As in 39.3 (i) choose a non-zero involution-preserving F -linear map h :
E−−→F (which may be taken to be the trace map for separable p(x)). The
F -linear map x : E−−→E is a p(x)-primary endometric structure on the
nonsingular symmetric form (E, θ) over F given by

θ : E × E −−→ F ; (u, v) −−→ h(vu) . �

Remark 39.5 The split exact sequence

0 −−→ L0(F )
i
−−→ L0(F (x))

∂
−−→

⊕
p(x)∈Mx(F )

L0(F [x]/(p(x))) −−→ 0

was first obtained by Knebusch [135] and Milnor [198] – see Scharlau [257, 6.3]
for a detailed account. See [135] and Knus [137,VIII] for the Witt groups of
schemes. �
Example 39.6 If F is a finite field the residue class fields F [x]/(p(x)) (p(x) ∈
M(F )) are also finite, so that

L0(F (x), ϵ) = L0(F, ϵ)⊕ LEnd0(F, ϵ)

= L0(F, ϵ)⊕
⊕

p(x)∈Mx(F )

L0(F [x]/(p(x)), ϵ)

is an abelian group of exponent 4 (cf. 37.1 (viii)). �
Proposition 39.7 The involution-invariant irreducible monic polynomials
in F [x] of degree 1 are of the type

(x− a) ∈Mx(F )

with a ∈ F such that a = a ∈ F . Fix one such a ∈ F .
(i) Up to isomorphism

L0(F [x], (x− a)∞, ϵ) = LEnd0(x−a)∞(F, ϵ)

= L0(F [x]/(x− a), ϵ) = L0(F, ϵ) ,

L0(F [x, (x− a)−1], ϵ) = L0(F [x], ϵ)⊕ L0(F [x], (x− a)∞, ϵ)

= L0(F, ϵ)⊕ L0(F, ϵ) .

(ii) The forgetful map

LEnd0(x−a)∞(F, ϵ) −−→ L0(F, ϵ) ; (L, θ, f) −−→ (L, θ)

is an isomorphism, with inverse

L0(F, ϵ) −−→ LEnd0(x−a)∞(F, ϵ) ; (L, θ) −−→ (L, θ, a) .

Proof (i) Apply 39.4.
(ii) Immediate from (i). �
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Example 39.8 Let F be algebraically closed, so that

Mx(F ) = {(x− a) | a = a ∈ F}

and
L0(F (x), ϵ) = L0(F, ϵ)⊕ LEnd0(F, ϵ)

with
LEnd0(F, ϵ) =

⊕
a=a∈F

L0(F [x]/(x− a), ϵ)

=
⊕

a=a∈F

L0(F, ϵ) .

(i) A nonsingular ϵ-symmetric form (L, θ) over F with an endometric struc-
ture f : L−−→L has a direct sum decomposition of the type

(L, θ, f) =
∑

a=a∈F

(La, θa, fa)⊕ (K ⊕K∗,

(
0 1

ϵ 0

)
,

(
g 0

0 g∗

)
)

with

La =
∞∪
j=0

ker((f − a)j : L−−→L) , K ⊕K∗ =
∑

b ̸=b∈F•

Lb ,

chx(La, fa) = (x− a)da (da = dimF (La)) .

The endomorphism Witt class is given by

(L, θ, f) =
∑

a=a∈F

(La, θa) ∈ LEnd0(F, ϵ) =
⊕

a=a∈F

L0(F, ϵ) .

Furthermore, it is possible to decompose each (La, θa, fa) as a direct sum

(La, θa, fa) =
∞∑
k=1

(La,k, θa,k, fa,k)

with
minimal polynomial(La,k, fa,k) = (x− a)k ,

and
(La, θa) =

∑
k odd

(La,k/(f − a)La,k, [θa,k])

∈ LEnd0(x−a)∞(F, ϵ) = L0(F, ϵ) .

(ii) If F = C+ then

LEnd0(C+) =
∑
a∈C

L0(C+) =
∑
a∈C

Z2 ,
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with the components generated by (C+, 1, a).
(iii) If F = C− then

LEnd0(C−) =
⊕
a∈R

L0(C−) =
⊕
a∈R

Z .

There is one Z-valued signature for each real number a ∈ R, and the a-
component is generated by (C−, 1, a). This is the endomorphism multisigna-
ture, about which more in Chap. 40 below. �
Example 39.9 For F = R

M(R) = Mx(R)

= {(x− a) | a ∈ R} ⊔ {(x− b)(x− b) | b ∈ H+}

with H+ = {u + iv ∈ C | v > 0} the upper-half complex plane. The residue
class fields are such that there are defined isomorphisms of rings with invo-
lution

R[x]/(x− a)
≃−−→ R ; x −−→ a ,

R[x]/(x− b)(x− b)
≃−−→ C+ ; x −−→ b .

The endomorphism L-groups of R are given by

LEnd0(R, ϵ) =
∑
a∈R

L0(R, ϵ)⊕
∑
b∈H+

L0(C+, ϵ)

=

{ ∑
a∈R

Z⊕
∑
b∈H+

Z2 if ϵ = 1

0 if ϵ = −1 .

The components of LEnd0(R) are generated by (R, 1, a) (a ∈ R) and

(R⊕ R,
(
0 1

1 0

)
,

(
u −v
v u

)
) (b = u+ iv ∈ H+).

�
Example 39.10 Let F = Q.
(i) If p(x) ∈ M(Q) has rp(x) real roots and 2sp(x) complex roots then the
residue class field Q[x]/(p(x)) is an algebraic number field with rp(x) embed-
dings in R and 2sp(x) embeddings in C, so that by 38.10 (ii)

L0(Q[x]/(p(x)), ϵ) =

{
Zrp(x) ⊕ 8-torsion if ϵ = 1

0 if ϵ = −1 .

The endomorphism L-groups of Q are thus given by

LEnd0(Q, ϵ) =
∑

p(x)∈M(Q)

L0(Q[x]/(p(x)), ϵ)

=

{ ∑
p(x)∈M(Q)

Zrp(x) ⊕ 8-torsion if ϵ = 1

0 if ϵ = −1 .
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(ii) Let (L, θ, f) be a nonsingular symmetric form (L, θ) over Q with an
endometric structure f : L−−→L. Let p(x) ∈ M(Q) be the minimal poly-
nomial of f , with r real roots α1, α2, . . . , αr ∈ R and 2s non-real roots
β1, β1, β2, . . . , βs ∈ C, so that

p(x) =

r∏
j=1

(x− αj)
s∏

k=1

(x2 − (βk + βk)x+ βkβk) ∈ R[x] .

The endomorphism Witt class (L, θ, f) ∈ LEnd0(Q) is determined up to
8-torsion by the signatures

σj(L, θ, f) = σ(gj(L, θ)) ∈ L0(R) = Z (1 ≤ j ≤ r)

with
gj : Q[x]/(p(x)) −−→ R ; x −−→ αj .

The induced nonsingular symmetric form over R splits as

R⊗Q (L, θ) =

r∑
j=1

(Lj , θj)⊕ hyperbolic

with

Lj = {u ∈ R⊗Q L | (1⊗ f − αj)N (u) = 0 for some N ≥ 0}

the generalized αj-eigenspace of 1⊗ f : R⊗Q L−−→R⊗Q L. Since

gj : Q[x]/(p(x)) −−→ R[x]/(p(x)) ∼=
∏
r

R×
∏
t

C+
pj
−−→ R

the jth signature is

σj(L, θ, f) = (Lj , θj) ∈ L0(R) = Z .

Thus
LEnd0(Q) = Z∞ ⊕ 8-torsion

with one Z-valued signature for each real algebraic number α ∈ R (= real
root of a polynomial p(x) ∈ Q[x]). �
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39B. L-theory of F (s) (s = 1− s)

Definition 39.11 Let Ms(F ) ⊆M(F ) be the set of irreducible monic poly-
nomials

p(s) = a0 + a1s+ . . .+ ad−1s
d−1 + ads

d ∈ F [s] (ad = 1)

which are involution-invariant, with

up(s)p(s) = p(s) ∈ F [s]

for some unit up(s) ∈ U(F [s]), that is

d∑
i=j

(
i

j

)
ai = (−)j+daj ∈ F (0 ≤ j ≤ d− 1 , ad = 1)

with up(s) = (−)d ∈ U(F [s]). �
The involution-invariant maximal ideals (p(s)) ∈ max(F [s]) are the prin-

cipal ideals P = (p(s)) ▹ F [s] generated by the elements p(s) ∈ Ms(F ), so
identify

max(F [s]) = Ms(F ) .

As in 31.2 let Iso0(F ) denote End0(F ) with the duality involution

Iso0(F ) −−→ Iso0(F ) ; [P, f ] −−→ [P ∗, 1− f∗]

Under the identification of 19.3

Iso0(F ) = Z[Ms(F )]

this corresponds to the involution

Z[Ms(F )] −−→ Z[Ms(F )] ; p(s) −−→ up(s)p(s) ,

so that
Ĥn(Z2; Iso0(F )) = Ĥn(Z2;Z)[Ms(F )] .

Proposition 39.12 (i) For any p(s) ∈Ms(F ), ϵ ∈ U(F )

LIso0p(s)∞(F, ϵ) = L0(F [s], (p(s))
∞
,−ϵ)

= L0(E, ϵ) = L0(E,−up(s)ϵ)

with

E = F [s]/(p(s)) , up(s) = (−)d ∈ E• , d = degree (p(s)) .

(ii) The boundary map ∂ in the split exact localization exact sequence of 31.10
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0 −−→ L2k(F [s], ϵ)
i
−−→ L2k(F (s), ϵ)

∂
−−→ LIso2k(F,−ϵ) −−→ 0

is split by

LIso2k(F,−ϵ) −−→ L2k(F (s), ϵ) ; (L, θ, f) −−→ (L(s), θ(s− f)) .

(iii) The L-groups of F [s] are such that

L2k(F [s], ϵ) = L2k(F, ϵ) = L0(F, (−)kϵ)

and the isometric L-groups of F are such that

LIso2k(F,−ϵ) =
⊕

p(s)∈Ms(F )

LIso2kp(s)∞(F,−ϵ)

=
⊕

p(s)∈Ms(F )

L0(F [s]/(p(s)), (−)kup(s)ϵ) .

(iv) The morphism

LIso2k(F ) =
⊕

p(s)∈Ms(F )

LIso2kp(s)∞(F )

−−→ Ĥ0(Z2; Iso0(F )) = Z2[Ms(F )] ;

(L, θ, f) −−→ [L, f ] =
∑

p(s)∈Ms(F )

[Lp(s)∞ ]p(s)

fits into the exact sequence of 31.19

0 −−→ LIso2kr (F ) −−→ LIso2k(F ) −−→ Z2[Ms(F )] −−→ LIso2k−1
r (F ) −−→ 0

with Lp(s)∞ the p(s)-primary component of L, s = f : L−−→L and

[Lp(s)∞ ] =

∞∑
j=0

dimE(p(s)
jL/p(s)j+1L)

∈ Ĥ0(Z2; Iso
p(s)∞

0 (F )) = Ĥ0(Z2;K0(E)) = Z2

(using 18.2 (ii)) with E = F [s]/p(s) the quotient field.
Proof (i) Direct applications of 35.11 and 38.5 (iii) give identifications

LIso0p(s)∞(F, ϵ) = L0(E,−up(s)ϵ) = L0(F [s], (p(s))
∞
,−ϵ) ,

using a devissage argument to identify LIso0p(s)∞(F, ϵ) with the Witt group
of nonsingular ϵ-symmetric forms (L, θ) over F with an isometric structure
f : L−−→L such that p(f) = 0. Working as in 39.2 there is obtained a one-one
correspondence
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{(−up(s)ϵ)-symmetric forms (L, µ) over E} −−−−→←−−−−
{ϵ-symmetric forms (L, θ) over F with an isometric

structure f : L−−→L such that p(f) = 0}

with

θ(u, v) = (coefficient of sd−1 in µ(u, v)) ∈ F , f(u) = su ∈ L (u, v ∈ L) ,

giving the isomorphism

L0(E,−up(s)ϵ)
≃−−→ LIso0p(s)∞(F, ϵ) ; (L, µ) −−→ (L, θ, f) .

As in Milnor [197] (cf. 39.4 (ii)) use any non-zero involution-preserving F -
linear map h : E → F to define a one-one correspondence

{ϵ-symmetric forms (L, λ) over E} −−−−→←−−−−
{ϵ-symmetric forms (L, θ) over F with an isometric structure

f : L−−→L such that p(f) = 0}

with
θ(u, v) = h(λ(u, v)) ∈ F , f(u) = su ∈ L (u, v ∈ L) .

This gives an isomorphism of Witt groups

L0(E, ϵ)
≃−−→ LIso0p(s)∞(F, ϵ) ; (L, λ) −−→ (L, θ, f) .

(In the separable case it is possible to choose h = trE/F : E−−→F as in [197],
and λ, µ are related by

λ(u, v) = p′(s)µ(u, v) ∈ E (u, v ∈ L)

with

p′(s) =
d∑
j=1

jajs
j−1 ∈ F [s]

such that
p′(s) + up(s)p′(s) = 0 ∈ F [s] ,

trE/F (p
′(s)) = discriminant (p(s)) ̸= 0 ∈ F

and p′(s) ̸= 0 ∈ E.)
(ii) By construction.
(iii) This is the special case (A, J) = (F [s],Ms(F )) of 38.7. If (L, θ) is a
nonsingular (−)kϵ-symmetric form over F with an isometric structure f :
L−−→L then the factorization of the characteristic polynomial as a product
of coprime factors

chs(L, f) = p1(s)p2(s) . . . pm(s)q(s)q(s) ∈ F [s]
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with each pj(s) ∈Ms(F ) determines a decomposition

(L, θ, f) =

m⊕
j=1

(Lj , θj , fj) ∈ LIso2k(F, ϵ) =
⊕

p(s)∈Ms(F )

LIso2kp(s)∞(F, ϵ)

with chs(Lj , fj) = pj(s) (1 ≤ j ≤ m).
(iv) As for 39.4 (iii). �
Example 39.13 For a finite field F the residue class fields F [s]/(p(s)) (p(s) ∈
max(F [s])) are finite, so that

L2k(F (s), ϵ) = L2k(F, ϵ)⊕ LIso2k(F,−ϵ)

= L2k(F, ϵ)⊕
⊕

p(s)∈Ms(F )

L2k(F [s]/(p(s)), up(s)ϵ)

is an abelian group of exponent 8. �
Proposition 39.14 The involution-invariant irreducible monic polynomials
in F [s] of degree 1 are of the type

(s− a) ∈Ms(F )

with a ∈ F such that a+ a = 1 ∈ F , and u(s−a) = −1. For any such a ∈ F

L0(F [s], (s− a)∞, ϵ) = LIso0(s−a)∞(F, ϵ)

= L0(F [s]/(s− a),−ϵ) = L0(F,−ϵ) ,

L0(F [s, (s− a)−1], ϵ) = L0(F [s], ϵ)⊕ L0(F [s], (s− a)∞, ϵ)

= L0(F, ϵ)⊕ L0(F,−ϵ) .

Proof Apply 39.12. �
Example 39.15 Let F be algebraically closed, so that

Ms(F ) = {(s− a) | a+ a = 1 ∈ F}

and
L0(F (s), ϵ) = L0(F, ϵ)⊕ LIso0(F,−ϵ)

with
LIso0(F, ϵ) =

⊕
a+a=1∈F

L0(F [s]/(s− a), ϵ)

=
⊕

a+a=1∈F

L0(F, ϵ) .

(i) A nonsingular ϵ-symmetric form (L, θ) over F with an isometric structure
f : L−−→L has a direct sum decomposition of the type
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(L, θ, f) =
∑

a+a=1∈F

(La, θa, fa)⊕ (K ⊕K∗,

(
0 1

ϵ 0

)
,

(
g h

0 1− g∗

)
)

with

La =
∞∪
j=0

ker((f − a)j : L−−→L) , K ⊕K∗ =
∑

b+b ̸=1∈F

Lb ,

chs(La, fa) = (s− a)da (da = dimF (La)) .

The isometric Witt class is given by

(L, θ, f) =
∑

a+a=1∈F

(La, θa) ∈ LIso0(F, ϵ) =
⊕

a+a=1∈F

L0(F, ϵ) .

Furthermore, it is possible to decompose each (La, θa, fa) as a direct sum

(La, θa, fa) =
∞∑
k=0

(La,k, θa,k, fa,k)

with
minimal polynomial(La,k, fa,k) = (s− a)k ,

and
(La, θa) =

∑
k odd

(La,k/(f − a)La,k, [θa,k])

∈ LIso0(s−a)∞(F, ϵ) = L0(F, ϵ) .

(ii) If F = C+ then

LIso0(C+) = L0(C+) = Z2 ,

generated by (C+, 1, 1/2).
(iii) If F = C− then

LIso0(C−) =
⊕

a∈C,Re(a)=1/2

L0(C−) =
⊕

a∈C,Re(a)=1/2

Z .

There is one Z-valued signature for each complex number a with Re(a) =
1/2, and the a-component is generated by (C−, 1, a). This is the isometric
multisignature, about which more in Chap. 40. �
Remark 39.16 Let F have the identity involution, so that

Ms(F ) = {
d∑
j=0

ajs
j ∈M(F ) |

d∑
i=j

(
i

j

)
ai = (−)i+jaj ∈ F (0 ≤ j ≤ d)} .

(i) The fixed subfield of the non-trivial involution s = 1− s on F (s) is
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F (s)0 = F (s(1− s)) ,

and there is defined an isomorphism of fields

F (x)
≃−−→ F (s)0 ; x −−→ s(1− s) .

The computations of L∗(F (x)), L∗(F (s)) given by 39.5, 39.12 in the case
char(F ) ̸= 2 are related by the exact sequence of 37.3

0 −−→ L0(F (s)) −−→ L0(F (s)0) −−→ L0(F (s)+)

−−→ L0(F (s)0) −−→ L0(F (s)) −−→ 0

where F (s)+ = F (s) with the identity involution. This sequence can be writ-
ten as

0 −−→ L0(F (s)) −−→ L0(F (x)) −−→ L0(F (x))

−−→ L0(F (x)) −−→ L0(F (s)) −−→ 0 .

(ii) If char(F ) ̸= 2 and p(s) ∈Ms(F ) is of degree d then

(−)dp(1/2) = (−)dp(1/2) = p(1/2) ∈ F ,

so that either d is even or p(s) = s− 1/2. �
Example 39.17 Let F = R.
(i) The involution-invariant irreducible monic polynomials in R[s] are given
by

Ms(R) = {(s− 1/2)} ⊔ {(s− b)(s− b) | b ∈ H+,Re(b) = 1/2} .

The residue class fields are such that there are defined isomorphisms of rings
with involution

R[s]/(s− 1/2)
≃−−→ R ; s −−→ 1/2 ,

R[s]/(s− b)(s− b)
≃−−→ C− ; s −−→ b .

The isometric L-groups of R are thus given by

LIso0(R, ϵ) =


L0(R)⊕

∑
c>0

L0(C−) = Z⊕
∑
c>0

Z if ϵ = 1∑
c>0

L0(C−) =
∑
c>0

Z if ϵ = −1

with b = 1/2 + ic ∈ H+ (c > 0), and the components are generated by
(R, 1, 1/2), (R⊕ R,

(
1 0

0 1

)
,

(
1/2 −c
c 1/2

)
)

(R⊕ R,
(

0 1

−1 0

)
,

(
1/2 −c
c 1/2

)
) .

(ii) For every real number α > 1/4 there is a signature isomorphism
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LIso0(s2−s+α)(R, ϵ)
≃−−→ L0(C−, ϵ) = Z ; (L, θ, f) −−→ σ(L, ϕ)

as follows : by devissage every element of LIso0(s2−s+α)(R, ϵ) is represented
by a nonsingular ϵ-symmetric form (L, θ) over R with an isometric structure
f : L−−→L such that f2 − f + α = 0 : L−−→L, and (L, ϕ) is the nonsingular
ϵ-symmetric form over C− given by

i =
f − 1/2√
α− 1/4

: L −−→ L ,

ϕ : L× L −−→ C ; (u, v) −−→ θ(u, v)− iθ(u, iv) . �
Example 39.18 Let F = Q.
(i) If p(s) ∈Ms(Q) has degree dp(s) then the residue class field

E = Q[s]/(p(s))

is an algebraic number field with involution which is a degree dp(s) extension
of Q. The involution is non-trivial if p(s) ̸= s − 1/2, in which case dp(s) is
even, say dp(s) = 2m, and p(s) splits over R as a product

p(s) =
m∏
j=1

(s2 − s+ αj)
n∏
k=1

[(s2 − s+ βk)(s
2 − s+ βk)] ∈ R[s]

with αj ̸= 1/4 ∈ R, and βk ∈ C such that Re(βk) ̸= 1/2, Im(βk) ̸= 0. Now
R[s]/(p(s)) is a product of rings with involution

R[s]/(p(s)) =

m∏
j=1

R[s]/(s2 − s+αj)×
n∏
k=1

R[s]/[(s2 − s+ βk)(s
2 − s+ βk)] .

For any α ̸= 1/4 ∈ R

R[s]/(s2 − s+ α) ∼=
{
(R× R)T if α < 1/4

C− if α > 1/4

where (R× R)T denotes R× R with the hyperbolic involution

T : R× R −−→ R× R ; (u, v) → (v, u) ,

so that

L0(R[s]/(s2 − s+ α), ϵ) =

{
L0((R× R)T , ϵ) = 0 if α < 1/4

L0(C−, ϵ) = Z if α > 1/4 .

For any β ∈ C with Re(β) ̸= 1/2, Im(β) ̸= 0.

R[s]/[(s2 − s+ β)(s2 − s+ β)] ∼= (C× C)T ,

so that
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L0(R[s]/[(s2 − s+ β)(s2 − s+ β)], ϵ) = 0 .

It now follows from 38.10 (iii) that if p(s) ̸= s− 1/2

L0(E, ϵ) = Ztp(s) ⊕ 8-torsion

with tp(s) the number of the factors (s2 − s + αj) in p(s) with αj > 1/4.
Working as in 39.12 the isometric L-groups of Q are given by

LIso0(Q, ϵ) =
∑

p(s)∈Ms(Q)

L0(Q[s]/(p(s)), (−)dp(s)+1ϵ)

=


Z⊕

∑
p(s)̸=(s−1/2)

Ztp(s) ⊕ 8-torsion if ϵ = 1∑
p(s) ̸=(s−1/2)

Ztp(s) ⊕ 8-torsion if ϵ = −1 .

(ii) Let (L, θ) be a nonsingular ϵ-symmetric form over Q with an isometric
structure f : L−−→L such that 1/2 is not an eigenvalue of f . The minimal
polynomial of f can be expressed as a product

p(s)q(s)q(s) ∈ Q[s]

with

p(s) =

m∏
j=1

(s2 − s+ αj)

n∏
k=1

[(s2 − s+ βk)(s
2 − s+ βk)] ∈ R[s]

as above, numbered in such a way that αj > 1/4 for j ≤ t and αj < 1/4 for
j > t. Thus

R⊗Q (L, θ, f) =
m⊕
j=1

(Lj , θj , fj)⊕ hyperbolic ,

with (Lj , θj , fj) (s
2 − s+ αj)-primary and

Lj = {u ∈ R⊗Q L | (1⊗ f2 − 1⊗ f + αj)
N (u) = 0 for some N ≥ 0} .

The isometric Witt class (L, θ, f) ∈ LIso0(Q, ϵ) is determined up to 8-torsion
by the signatures

σj(L, θ, f) = (Lj , θj , fj) = σ(gj(L, θ))

∈ LIso0(s2−s+αj)(R, ϵ) = L0(C−, ϵ) = Z (1 ≤ j ≤ t)

(using 39.17 (ii)) with

gj : Q[s]/(p(s)) −−→ C− ; s −−→ λj =
1

2
±
√

1

4
− αj .
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The two possible values of λj are the two roots of s2 − s+αj = 0, which are
complex conjugate algebraic numbers with Re(λj) =

1
2 . Thus

LIso0R(Q, ϵ) = LIso0(Q,−1) = Z∞ ⊕ 8-torsion

with R = {p(s) ∈ Q[s] | p(1/2) ̸= 0}. There is one Z-valued signature for each
algebraic number λ ∈ C with Re(λ) = 1/2, Im(λ) > 0. �

39C. L-theory of F (z) (z = z−1)

Definition 39.19 Let Mz(F ) ⊆M(F ) be the set of irreducible monic poly-
nomials

p(z) = a0 + a1z + . . .+ ad−1z
d−1 + adz

d ∈ F [z, z−1] (ad = 1)

which are involution-invariant, such that

up(z)p(z) = p(z) ∈ F [z, z−1]

for some unit up(z) ∈ U(F [z, z−1]), that is

aj = a0ad−j ∈ F (0 ≤ j ≤ d , ad = 1)

with a0 ∈ U(F ) and

up(z) = zda0 ∈ U(F [z, z−1]) . �

The involution-invariant maximal ideals p(z) ∈ max(F [z, z−1]) are the
principal ideals P = (p(z)) ▹ F [z, z−1] generated by the elements p(z) ∈
Mz(F ), so identify

max(F [z, z−1]) = Mz(F ) .

The duality involution

Aut0(F ) −−→ Aut0(F ) ; [P, f ] −−→ [P ∗, (f∗)−1]

corresponds under the identification of 19.3

Aut0(F ) = Z[Mz(F )]

to the involution

Z[Mz(F )] −−→ Z[Mz(F )] ; p(z) −−→ up(z)p(z) ,

so that
Ĥn(Z2; Aut0(F )) = Ĥn(Z2;Z)[Mz(F )] .

Proposition 39.20 (i) For any p(z) ∈Mz(F ), ϵ ∈ U(F )
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LAut0p(z)∞(F, ϵ) = L0(F [z, z−1], (p(z))
∞
,−ϵ)

= L0(E, ϵ) = L0(E,−up(z)ϵ)

with E = F [z, z−1]/(p(z)), up(z) = p(0)zd ∈ E• (d = degree (p(z)) ).
(ii) Given

p(z) =
d∑
j=0

ajz
j ̸= (z − 1) ∈Mz(F ) (ad = 1)

let

q(s) = p(1)−1sdp(1− s−1) = p(1)−1
d∑
j=0

ajs
d−j(s− 1)j ∈Ms(F )

(35.31). For any ϵ ∈ U(F )

LAut0p(z)∞(F, ϵ) = LIso0q(s)∞(F, ϵ)

= L0(E,−up(z)ϵ) = L0(E, ϵ)

= L0(D,−uq(s)ϵ) = L0(D, ϵ)

with D = F [s]/(q(s)), uq(s) = (−)d.
(iii) The ϵ-symmetric automorphism and fibred automorphism L-groups of F
are such that

LAutn(F, ϵ) = Ln(F, ϵ)⊕ LAutnfib(F, ϵ)

(= 0 for n odd) .

(iv) The automorphism L-groups of F are such that

LAut2k(F, ϵ) =
⊕

p(z)∈Mz(F )

LAut2kp(z)∞(F, ϵ)

=
⊕

p(z)∈Mz(F )

L0(F [z, z−1]/(p(z)), (−)kϵ) .

(v) The localization exact sequence of 28.17

0 −−→ L2k(F [z, z−1], ϵ)
i
−−→ L2k(F (z), ϵ)

∂
−−→ LAut2k(F,−ϵ)
j
−−→ L2k−1(F [z, z−1], ϵ) −−→ 0

is isomorphic to
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0 −−→ L0(F, (−)kϵ)

(
1
0

)
−−−→ L0(F, (−)kϵ)⊕ LAut0fib(F, (−)k+1ϵ)(

0 −jfib
0 1

)
−−−−−−−−−→ L0(F, (−)k+1ϵ)⊕ LAut0fib(F, (−)k+1ϵ)

( 1 jfib )−−−−−−→ L0(F, (−)k+1ϵ) −−→ 0

with

jfib : LAut0fib(F, (−)k+1ϵ) −−→ L0(F, (−)k+1ϵ) ; (L, θ, f) −−→ (L, θ)

and

LAut0fib(F, (−)k+1ϵ) =
⊕

p(z) ̸=(z−1)∈Mz(F )

LAut0p(z)∞(F, (−)k+1ϵ)

=
⊕

p(z) ̸=(z−1)∈Mz(F )

L0(F [z, z−1]/(p(z)), (−)k+1ϵ) .

In particular, there is defined an isomorphism

( i ∆fib ) : L0(F, (−)kϵ)⊕ LAut0fib(F, (−)k+1ϵ)
≃−−→ L0(F (z), (−)kϵ)

with

∆fib : LAut0fib(F, (−)k+1ϵ) −−→ L0(F (z), (−)kϵ) ;

(L, θ, f) −−→ (L(z), (1− z−1)θ(1− f)−1 + (−)kϵ(1− z)(1− f∗)−1θ∗) .

(vi) If there exists an element a ̸= a ∈ F • then the ϵ-symmetric L-groups of
F are 2-periodic

L∗(F, ϵ) = L∗(F,−ϵ) .
(vii) The ϵ-symmetric L-groups of F (z) are 2-periodic

L∗(F (z), ϵ) = L∗(F (z),−ϵ) .

(viii) If p(z) ̸= (z−1), (z+1) ∈Mz(F ) then the (p(z))-primary automorphism
L-groups of F are 2-periodic

L∗(F [z, z−1], (p(z))
∞
, ϵ) = L∗(F [z, z−1], (p(z))

∞
,−ϵ) .

(ix) The morphism

LAut2k(F ) =
⊕

p(z)∈Mz(F )

LAut2kp(z)∞(F )

−−→ Ĥ0(Z2; Aut0(F )) = Z2[Ms(F )] ;

(L, θ, f) −−→ [L, f ] =
∑

p(z)∈Ms(F )

[Lp(z)∞ ]p(z)
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fits into the exact sequence of 28.37

0 −−→ LAut2kr (F ) −−→ LAut2k(F ) −−→ Z2[Ms(F )] −−→ LAut2k−1
r (F ) −−→ 0

with Lp(z)∞ the p(z)-primary component of L, s = f : L−−→L and

[Lp(z)∞ ] =

∞∑
j=0

dimE(p(z)
jL/p(z)j+1L)

∈ Ĥ0(Z2; Aut
p(z)∞

0 (F )) = Ĥ0(Z2;K0(E)) = Z2

(using 18.2 (ii)) with E = F [z, z−1]/p(z) the quotient field.
Proof (i) By definition, LAut0p(z)∞(F, ϵ) is the Witt group of nonsingular
ϵ-symmetric forms (L, θ) over F with a (p(z))-primary automorphism f :
(L, θ)−−→(L, θ). The 1-dimensional (−ϵ)-symmetric Poincaré complex (C, ϕ)
defined over F [z, z−1] by

dC = z − f∗ : C1 = L∗[z, z−1] −−→ C0 = L∗[z, z−1] ,

ϕ0 =

{
θ : C0 = L[z, z−1] −−→ C1 = L∗[z, z−1]

−zf∗θ : C1 = L[z, z−1] −−→ C0 = L∗[z, z−1] ,

ϕ1 = θ : C1 = L[z, z−1] −−→ C1 = L∗[z, z−1]

is p(z)∞-primary. Conversely, if (C, ϕ) is a p(z)∞-primary 1-dimensional
(−ϵ)-symmetric Poincaré complex over F [z, z−1] there is defined a nonsingu-
lar ϵ-symmetric form (L, θ) over F with an automorphism

f = z : (L, θ) −−→(L, θ)

such that

ϕ0 : L = H1(C)
≃−−→ H0(C) ∼= HomF [z,z−1](L,F [z, z

−1, p(z)−1]/F [z, z−1]) ;

u−−→ (v−−→ ϕ(u,w)

p(z)k
)

(u, v ∈ L , w ∈ L[z, z−1] , (z − f)(w) = p(z)k(v)) .

The morphisms

LAut0p(z)∞(F, ϵ) −−→ L0(F [z, z−1], p(z)∞,−ϵ) ; (L, θ, f) −−→ (C, ϕ) ,

L0(F [z, z−1], p(z)∞,−ϵ) −−→ LAut0p(z)∞(F, ϵ) ; (C, ϕ) −−→ (H1(C), ϕ0, f)

are inverse isomorphisms. The identification

L0(E,−up(z)ϵ) = L0(F [z, z−1], p(z)∞,−ϵ)

is a special case of 38.5 (iii), with a one-one correspondence
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{(−up(z)ϵ)-symmetric forms (L, µ) over E} −−−−→←−−−−
{(−ϵ)-symmetric linking forms (L, ρ)

over (F [z, z−1], p(z)∞) with p(z)L = 0}

given by

ρ(u, v) = µ(u, v)p(z)−1 ∈ F [z, z−1, p(z)−1]/F [z, z−1] (u, v ∈ L) .

Direct applications of 35.18 and 38.5 (iii) give identifications

LAut0p(z)∞(F, ϵ) = L0(E,−up(z)ϵ) = L0(F [z, z−1], (p(z))
∞
,−ϵ) ,

using a devissage argument to identify LAut0p(z)∞(F, ϵ) with the Witt group
of nonsingular ϵ-symmetric forms (L, θ) over F with an automorphism f :
(L, θ)−−→(L, θ) such that p(f) = 0. The isomorphism of Witt groups

L0(E,−up(z)ϵ)
≃−−→ LAut0p(z)∞(F, ϵ) ; (L, µ) −−→ (L, θ, f)

is determined by the one-one correspondence

{(−up(z)ϵ)-symmetric forms (L, µ) over E} −−−−→←−−−−
{ϵ-symmetric forms (L, θ) over F with an

automorphism f : (L, θ)−−→(L, θ) such that p(f) = 0}

given by

θ(u, v) = (coefficient of zd−1 in µ(u, v)) ∈ F ,

f(u) = zu ∈ L (u, v ∈ L) ,

working as in 39.2. As in Milnor [197] (cf. 39.4 (ii)) use any non-zero
involution-preserving F -linear map h : E → F to define a one-one corre-
spondence

{ϵ-symmetric forms (L, λ) over E} −−−−→←−−−−
{ϵ-symmetric forms (L, θ) over F with an

automorphism f : (L, θ)−−→(L, θ) such that p(f) = 0}

with
θ(u, v) = h(λ(u, v)) ∈ F , f(u) = zu ∈ L (u, v ∈ L) .

This gives an isomorphism of Witt groups

L0(E, ϵ)
≃−−→ LAut0p(z)∞(F, ϵ) ; (L, λ) −−→ (L, θ, f) .

(In the separable case it is possible to choose h = trE/F : E−−→F as in [197],
and λ, µ are related by
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λ(u, v) = q(z)µ(u, v) ∈ E (u, v ∈ L)

with

q(z) = zp′(z) =
d∑
j=1

jajz
j ∈ F [z, z−1]

such that
q(z) + up(z)q(z) = dp(z) ∈ F [z, z−1] ,

q(z) = −up(z)q(z) ∈ E ,

trE/F (p
′(z)) = discriminant (p(z)) ̸= 0 ∈ F

and q(z) ̸= 0 ∈ E.)
(ii) The identification

LAut0p(z)∞(F,−ϵ) = LIso0(q(s))∞(F,−ϵ)

is the special case (A,S) = (F, (p(z))
∞
) of 35.31 (iii). Moreover, there is

defined an isomorphism of fields with involution

F [z, z−1]/(p(z)) −−→ F [s]/(q(s)) ; z −−→ 1− s−1 ,

with inverse

F [s]/(q(s)) −−→ F [z, z−1]/(p(z)) ; s −−→ (1− z)−1 .

(iii) The involution-invariant multiplicative subsets

P = {p(z) | p(1) ∈ F •} , (z − 1)∞ ⊂ F [z, z−1]

are coprime and such that the localizations P−1F [z, z−1], F [z, z−1, (z−1)−1]
fit into a cartesian square of rings with involution

F [z, z−1] //

��

F [z, z−1, (z − 1)−1]

��
P−1F [z, z−1] // F (z)

It follows that

LAutn(F, ϵ) = Ln+2(F [z, z−1], (z − 1)∞P, ϵ)

= Ln+2(F [z, z−1], (z − 1)∞, ϵ)⊕ Ln+2(F [z, z−1], P, ϵ)

= LAutnuni(F, ϵ)⊕ LAut
n
fib(F, ϵ)

and by 38.5 (iii)
LAutnuni(F, ϵ) = Ln(F, ϵ) .

(iv) This is the special case (A, J) = (F [z, z−1],Mz(F )) of 38.10, using (i).
(v) Apply (iv), or alternatively use the isomorphism of fields with involution
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F (s)
≃−−→ F (z) ; s −−→ (1− z)−1

to interpret the direct sum decomposition of 39.12

L0(F (s), (−)kϵ) = L0(F, (−)kϵ)⊕ LIso0(F, (−)k+1ϵ)

as a direct sum decomposition

L0(F (z), (−)kϵ) = L0(F, (−)kϵ)⊕ LAut0fib(F, (−)k+1ϵ) .

(vi) The unit u = a− a ∈ F • is such that u = −u, so that there are defined
isomorphisms

Ln(F, ϵ)
≃−−→ Ln(F,−ϵ) ; (C, ϕ) −−→ (C, uϕ) .

(vii) Apply (vi) with a ∈ F • replaced by z ∈ F (z)•, to obtain a unit

u = z − z−1 ∈ F (z)•

such that u = −u.
(viii) For any p(z) ∈Mz(F )

L∗(F [z, z−1], (p(z))
∞
, ϵ) = L∗(F [z, z−1]/(p(z)), up(z)ϵ)

by the devissage isomorphism of 38.5 (iii), and by (i)

L∗(F [z, z−1]/(p(z)), up(z)ϵ) = L∗(F [z, z−1]/(p(z)),−ϵ) .

If p(z) ̸= z − 1, z + 1 then

v = z − z−1 = z−1(z − 1)(z + 1) /∈ (p(z)) ,

so that v ∈ (F [z, z−1]/(p(z)))• is a unit such that v = −v and there are
defined isomorphisms

Ln(F [z, z−1]/(p(z)), up(z)ϵ)
≃−−→ Ln(F [z, z−1]/(p(z)),−up(z)ϵ) ;

(C, ϕ) −−→ (C, vϕ) .

(ix) As for 39.4 (iii). �
Proposition 39.21 The involution-invariant irreducible monic polynomials
in F [z, z−1] of degree 1 are of the type

(z − a) ∈Mz(F )

with a ∈ F such that a = a−1 ∈ F , and u(z−a) = −za. For any such a ∈ F

Ln(F [z, z−1], (z − a)∞, ϵ) = LAutn−2
(z−a)∞(F, ϵ)

= Ln(F [z, z−1]/(z − a),−zϵa)

= Ln(F,−a2ϵ) = Ln(F,−ϵ) ,

Ln(F [z, z−1, (z − a)−1], ϵ) = Ln(F, ϵ) .
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The inclusion F−−→F [z, z−1, (z − a)−1] thus induces an isomorphism in ϵ-
symmetric L-theory. If U(F ) has more than 2 elements there exists b ̸= a ∈
U(F ), and the inverse is induced by the morphism of rings with involution

F [z, z−1, (z − a)−1] −−→ F ; z −−→ b .

Proof Apply 39.20 (i). �
Example 39.22 Let F be algebraically closed, so that

Mz(F ) = {(z − a) | a ∈ U(F )}

and
LAut0(F, ϵ) =

⊕
a∈U(F )

L0(F [z, z−1]/(z − a), ϵ)

=
⊕

a∈U(F )

L0(F, ϵ) .

(i) A nonsingular ϵ-symmetric form (L, θ) over F with an automorphism
f : (L, θ)−−→(L, θ) has a direct sum decomposition of the type

(L, θ, f) =
∑

a∈U(F )

(La, θa, fa)⊕ (K ⊕K∗,

(
0 1

ϵ 0

)
,

(
g h

0 (g∗)−1

)
)

with

La =

∞∪
j=0

ker((f − a)j : L−−→L) , K ⊕K∗ =
∑

b ̸=b−1∈F•

Lb ,

chz(La, fa) = (z − a)da (da = dimF (La)) .

The automorphism Witt class is given by

(L, θ, f) =
∑

a∈U(F )

(La, θa) ∈ LAut0(F, ϵ) =
⊕

a∈U(F )

L0(F, ϵ) .

Furthermore, it is possible to decompose each (La, fa, θa) as a direct sum

(La, θa, fa) =

∞∑
k=0

(La,k, θa,k, fa,k)

with
minimal polynomial(La,k, fa,k) = (z − a)k ,

and
(La, θa, fa) =

∑
k odd

(La,k/(f − a)La,k, [θa,k])

∈ LAut0(z−a)∞(F, ϵ) = L0(F, ϵ) .
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(ii) If F = C+ then U(F ) = {+1,−1} and

LAut0(C+) = L0(C+)⊕ L0(C+) = Z2 ⊕ Z2 ,

with the components generated by (C+, 1, 1) and (C+, 1,−1).
(iii) If F = C− then U(F ) = S1 and

LAut0(C−) =
⊕
a∈S1

L0(C−) =
⊕
a∈S1

Z ,

with the components generated by (C−, 1, a). (This is the automorphism
multisignature, about which more in Chap. 40). �
Example 39.23 Let F = R. The involution-invariant irreducible monic poly-
nomials in R[z, z−1] are given by

Mz(R) = {(z − 1)} ⊔ {(z + 1)} ⊔ {pθ(z) | 0 < θ < π}

with

pθ(z) = z2 − 2zcos θ + 1 = (z − eiθ)(z − e−iθ) ∈Mz(R) .

The residue class fields are such that there are defined isomorphisms of rings
with involution

R[z, z−1]/(z ± 1)
≃−−→ R ; z −−→ ∓ 1 ,

R[z, z−1]/(pθ(z))
≃−−→ C− ; z −−→ eiθ .

By 39.21

LAut0(R, ϵ) =
⊕

p(z)∈Mz(R)

L0(R[z, z−1]/(p(z)), ϵ)

=


Z⊕ Z⊕

⊕
0<θ<π

Z if ϵ = 1⊕
0<θ<π

Z if ϵ = −1 ,

with components generated by
(R, 1,±1) , (R⊕ R,

(
1 0

0 1

)
,

(
cos θ −sin θ
sin θ cos θ

)
)

(R⊕ R,
(

0 1

−1 0

)
,

(
cos θ −sin θ
sin θ cos θ

)
) .

�
Example 39.24 Let F = Q.
(i) If p(z) ∈Mz(Q) has degree dp(z) then the residue class field

E = Q[z, z−1]/(p(z))
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is an algebraic number field with involution which is a degree dp(z) extension
of Q. The involution is non-trivial if p(z) ̸= z − 1, z + 1, in which case dp(z)
is even, say dp(z) = 2m, and p(z) splits over R as a product

p(z) = (z2 − 2β1z + 1)(z2 − 2β2z + 1) . . . (z2 − 2βmz + 1) ∈ R[z, z−1]

with

R[z, z−1]/(p(z)) =
m∏
k=1

R[z, z−1]/(z2 − 2βkz + 1) (βk ̸= ±1 ∈ R)

a product of rings with involution. For β ̸= ±1 ∈ R

R[z, z−1]/(z2 − 2βz + 1) ∼=
{
(R× R)T if |β| > 1

C− if |β| < 1

where (R × R)T denotes R × R with the hyperbolic involution T : (u, v) →
(v, u), so that

L0(R[z, z−1]/(z2 − 2βz + 1), ϵ) =

{
L0((R× R)T , ϵ) = 0 if |β| > 1

L0(C−, ϵ) = Z if |β| < 1
.

It now follows from 38.10 (iii) that if p(z) ̸= z − 1, z + 1

L0(E, ϵ) = Ztp(z) ⊕ 8-torsion

with tp(z) the number of the factors (z2 − 2βkz + 1) in p(z) with |βk| < 1.
Working as in 39.12 the automorphism L-groups of Q are given by

LAut0(Q, ϵ) =
∑

p(z)∈Mz(Q)

L0(Q[z, z−1]/(p(z)), (−)dp(z)ϵ)

=


Z⊕ Z⊕

∑
p(z)̸=(z−1),(z+1)

Ztp(z) ⊕ 8-torsion if ϵ = 1∑
p(z)̸=(z−1),(z+1)

Ztp(z) ⊕ 8-torsion if ϵ = −1 .

(ii) Let h : (L, θ)−−→(L, θ) be an automorphism of a nonsingular ϵ-symmetric
form (L, θ) over Q such that h − 1, h + 1 : L−−→L are also automorphisms.
The minimal polynomial of f can be expressed as a product

p(z)q(z)q(z) ∈ Q[z, z−1] ,

with

p(z) = (z2 − 2β1z + 1)(z2 − 2β2z + 1) . . . (z2 − 2βmz + 1) ∈ R[z]

as above, numbered in such a way that |βk| < 1 for k ≤ t and |βk| > 1 for
k > t. Thus
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R⊗Q (L, θ, h) =
m⊕
k=1

(Lk, θk, hk)⊕ hyperbolic ,

with (Lk, θk, hk) (z2 − 2βkz + 1)-primary. The automorphism Witt class
(L, θ, h) ∈ LAut0(Q, ϵ) is determined up to 8-torsion by the signatures

σk(L, θ, h) = σ(gk(L, θ)) ∈ L0(C−, ϵ) = Z (1 ≤ k ≤ t)

with

gk : Q[z, z−1]/(p(z)) −−→ C− ; z −−→ µk = βk ±
√
(βk)2 − 1 .

The two possible values of µk are the two roots of z2 − 2βkz + 1 = 0, which
are complex conjugate algebraic numbers with |µk| = 1. Since

gk : Q[z, z−1]/(p(z))−−→ R[z, z−1]/(p(z)) ∼=
∏
t

C−×
∏
m−t

(R×R)T
pk−−→ C−

the kth signature is

σk(L, θ) = (L′
k, θ

′
k) ∈ L0(C−, ϵ) = Z

where (L′
k, θ

′
k) is the restriction of C⊗Q(L, θ) to the generalized µk-eigenspace

of 1⊗ h : C⊗Q L−−→C⊗Q L

L′
k = {u ∈ C⊗Q L | (1⊗ h− µk)N (u) = 0 for some N ≥ 0} .

Thus
LAut0

P̂
(Q, ϵ) = LAut0(Q,−1) = Z∞ ⊕ 8-torsion

with P̂ = {p(z) ∈ Q[z, z−1] | p(1), p(−1) ̸= 0}. There is one Z-valued signa-
ture for each algebraic number µ ∈ S1 ⊂ C such that Im(µ) > 0.
(iii) As in 39.18 let R = {p(s) ∈ Q[s] | p(1/2) ̸= 0}, so that there is defined
an isomorphism

LAut0
P̂
(Q, ϵ)

≃−−→ LIso0R(Q, ϵ) ; (L, θ, h) −−→ (L, θ, f)

with f = (1 − h)−1 : L−−→L. If h : L−−→L has minimal polynomial p(z) ∈
Q[z] with factorization

p(z) = (z2 − 2β1z + 1)(z2 − 2β2z + 1) . . . (z2 − 2βmz + 1) ∈ R[z]

then f : L−−→L has minimal polynomial

q(s) = s2mp(1− s−1) ∈ Q[s]

with factorization

q(s) = (s2 − s+ α1)(s
2 − s+ α2) . . . (s

2 − s+ αm) ∈ R[s]

where
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αk =
1

2(1− βk)
(1 ≤ k ≤ m) .

(See 41.22 below for a generalization of the relationship between p(z) and
q(s).) The equations s2−s+α = 0 with α < 1/4 correspond to the equations
z2 − 2βz + 1 = 0 with |β| < 1 under the identifications

s = (1− z)−1 , α =
1

2(1− β)
.

The automorphism multisignature components for (L, θ, h) ∈ Z are thus given
by (ii) for the coefficients β1, β2, . . . , βt ∈ R in the factorization of p(z) such
that |βk| < 1 coincide with the isometric multisignature components for
(L, θ, f) given by 39.18 for the coefficients α1, α2, . . . , αt ∈ R in the factor-
ization of q(s) such that αk < 1/4 coincide

σk(L, θ, h) = σk(L, θ, f) ∈ Z (1 ≤ k ≤ t) . �

39D. The asymmetric L-theory of F

The asymmetric Witt group LAsy0(F ) was defined in 25.3.

Definition 39.25 Let p(z) ∈Mz(F ).
(i) A nonsingular asymmetric form (L, λ) over F is (p(z))-primary if the
automorphism (λ∗)−1λ : L−−→L is (p(z))-primary, i.e. if it has characteristic
polynomial a power of p(z)

chz(L, (λ
∗)−1λ) = p(z)k .

(ii) The (p(z))-primary asymmetric Witt group LAsy0p(z)∞(F ) is the Witt
group of nonsingular (p(z))-primary asymmetric forms over F . �

The splitting of ϵ-symmetric automorphism L-theory

LAut0(F, ϵ) =
⊕

p(z)∈Mz(F )

LAut0p(z)∞(F, ϵ)

will now be extended to asymmetric L-theory

LAsy0(F ) =
⊕

p(z)∈Mz(F )

LAsy0p(z)∞(F ) ,

and LAsy0p(z)∞(F ) will be identified with the appropriate u-symmetric Witt

group of the residue class field F [z, z−1]/(p(z)).

Proposition 39.26 (Riehm [252, p. 47], Warshauer [307, p. 83])
Every nonsingular asymmetric form (L, λ) over F splits as a sum
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(L, λ) =
∑

p(z)∈Mz(F )

(Lp(z), λp(z))⊕ (L′, λ′)

according to the p(z)∞-primary decomposition of the automorphism λ−1λ∗ :
L−−→L, with

L′ =
∑

p(z)̸=up(z)p(z)∈M(F )

Lp(z)

and (L′, λ′) metabolic.
Proof Immediate from the special case A = F of 35.22, using the unique
factorization in F [z, z−1]. �

The asymmetric Witt group LAsy0(F ) was defined in 25.3.

Proposition 39.27 Let ϵ ∈ U(F ).
(i) The asymmetric Witt group of F is isomorphic to the ϵ-symmetric Witt
group of F (z), with an isomorphism

LAsy0(F )
≃−−→ L0(F (z), ϵ) ; (L, λ) −−→ (L(z), (1− z−1)λ+ ϵ(1− z)λ∗)

such that the composite

L0(F, ϵ) −−→ LAsy0(F ) ∼= L0(F (z), ϵ)

is the injection induced by the inclusion F−−→F (z).
(ii) The asymmetric Witt group of F decomposes as the sum of (p(z))-primary
asymmetric Witt groups

LAsy0(F ) =
∑

p(z)∈Mz(F )

LAsy0p(z)∞(F ) .

(iii) For p(z) ∈ Mz(F ) of degree d the ideal (p(ϵ−1z)) ∈ max(F [z, z−1]) is
generated by ϵdp(ϵ−1z) ∈Mz(F ), and

LAsy0p(ϵ−1z)∞(F ) = LAsy0(ϵdp(ϵ−1z))∞(F )

=

{
L0(F, ϵ) if p(z) = z − 1

LAut0p(z)∞(F,−ϵ) = L0(F [z, z−1]/(p(z)),−ϵ) if p(z) ̸= z − 1.

In particular, if p(z) = z − a then ϵp(ϵ−1z) = z − ϵa and the natural map

L0(F, ϵa) −−→ LAsy0(z−ϵa)∞(F ) ; (L, λ) −−→ (L, λ)

from the ϵ-symmetric Witt group of F to the (z − ϵa)-primary asymmetric
(= almost ϵa-symmetric) Witt group of F is an isomorphism. If char(F ) ̸= 2
the inverse isomorphism is given by

LAsy0(z−ϵa)∞(F ) −−→ L0(F, ϵa) ; (L, λ) −−→ (L,
1

2
(λ+ ϵaλ∗)) .
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If a ̸= 1 then the composite of the isomorphism

L0(F, ϵa) ∼= LAsy0(z−ϵa)∞(F )
≃
−−→ LAut0(z−ϵa)∞(F,−ϵ) ;

(L, λ) −−→ (L, λ− ϵλ∗, ϵa)

and the forgetful isomorphism

LAut0(z−ϵa)∞(F,−ϵ)
≃
−−→ L0(F,−ϵ) ; (L, θ, f) −−→ (L, θ)

is the isomorphism

L0(F, ϵa)
≃
−−→ L0(F,−ϵ) ; (L, λ) −−→ (L, (1− a)λ) .

(iv) The localization exact sequence

0 −−→ L4∗(F [z, z−1], ϵ)
i
−−→ L4∗(F (z), ϵ)

∂
−−→ LAut4∗−2(F, ϵ)

j
−−→ L4∗−1(F [z, z−1], ϵ) −−→ 0

is isomorphic to

0 −−→ L0(F, ϵ)

(
1
0

)
−−−→ L0(F, ϵ)⊕

⊕
p(z)̸=(z−1)∈Mz(F )

L0(F [z, z−1]/(p(z)),−ϵ)

(
0 − ⊕

p(z)
jp(z)

0 1

)
−−−−−−−−−−−−−→ L0(F,−ϵ)⊕

⊕
p(z) ̸=(z−1)∈Mz(F )

L0(F [z, z−1]/(p(z)),−ϵ)

(
1 ⊕

p(z)
jp(z)

)
−−−−−−−−−−→ L0(F,−ϵ) −−→ 0

with

jp(z) : L0(F [z, z−1]/(p(z)),−ϵ) = LAut0p(z)∞(F,−ϵ) −−→ L0(F,−ϵ) ;

(L, ϕ, f) −−→ (L, ϕ) .

(v) Given a nonsingular asymmetric form (L, λ) over F and an element
a ∈ U(F ) the following conditions are equivalent :

(a) the (−ϵa)-symmetric form (L, λ− ϵaλ∗) over F is nonsingular,
(b) a is not a root of the characteristic polynomial

chz(L, (ϵλ
∗)−1λ) = det(z − (ϵλ∗)−1λ : L[z, z−1]−−→L[z, z−1])

∈ F [z, z−1] .
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The conditions are satisfied if (L, λ) is p(ϵ−1z)-primary and a ∈ U(F ) is such
that the polynomials p(z), (z − a) ∈ F [z, z−1] are coprime (i.e. if p(a) ̸= 0 ∈
F ). For a ̸= 1 these conditions are also equivalent to :

(c) the ϵ-symmetric form over F [z, z−1](z−a)

(L[z, z−1](z−a), (1− z−1)λ+ ϵ(1− z)λ∗)

is nonsingular,
(d) the ϵ-symmetric form over F

(L, (1− a)λ+ ϵ(1− a)λ∗)

is nonsingular.

(vi) For a ̸= 1 ∈ U(F ) the ϵ-symmetric Witt group of F [z, z−1](z−a) is such
that there is defined an isomorphism∑

p(z)̸=(z−a)∈Mz(F )

LAsy0p(ϵ−1z)∞(F )
≃−−→ L0(F [z, z−1](z−a), ϵ) ;

(L, λ) −−→ (L[z, z−1](z−a), (1− z−1)λ+ ϵ(1− z)λ∗) .

The morphism of rings with involution

τa : F [z, z−1](z−a) −−→ F ; z −−→ a

induces a morphism of ϵ-symmetric Witt groups

τa : L0(F [z, z−1](z−a), ϵ) ∼=
∑

p(z)̸=(z−a)

LAsy0p(ϵ−1z)∞(F ) −−→ L0(F, ϵ) ;

(L, λ) −−→ (L, (1− a)λ+ ϵ(1− a)λ∗)

which is given on the components for p(z) = z − b (b ̸= a ∈ U(F )) by the
isomorphism

LAsy0p(ϵ−1z)∞(F ) = L0(F, ϵb)
≃−−→ L0(F, ϵ) ; (L, λ) −−→ (L, vλ)

with v = (1− a)(b− a) ∈ F • such that v = vb.
Proof (i) This is just the special case A = F , n = 0 of the identification of
28.33

LAsyn(A) = Ln(Ω−1A[z, z−1], ϵ) .

(ii) The splitting is immediate from 39.26.
(iii) Consider first the case p(z) = z − 1. The following conditions on a
nonsingular asymmetric form (L, λ) over F are equivalent :

(a) (L, λ) is (z − ϵ)-primary,
(b) the endomorphism 1− (ϵλ∗)−1λ : L−−→L is nilpotent,
(c) (L, λ) is almost ϵ-symmetric (35.1).
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The morphisms

LAsy0(z−ϵ)∞(F ) −−→ L0(F [z, z−1, (z − 1)−1], ϵ) ;

(L, λ) −−→ (L[z, z−1, (z − 1)−1], (1− z−1)λ+ ϵ(1− z)λ∗) ,

L0(F, ϵ) −−→ L0(F [s], ϵ) = L0(F [z, z−1, (z − 1)−1], ϵ)

are isomorphisms by 35.3 (i). Thus the forgetful map

L0(F, ϵ) −−→ LAsy0(z−ϵ)∞(F ) ; (L, θ) −−→ (L, θ)

is an isomorphism.
Now suppose given p(z) ∈ Mz(F ) with p(z) ̸= (z − 1). Given a nonsingular
asymmetric form (L, λ) over F define a (−ϵ)-symmetric form (L, θ) over F
with an automorphism f : (L, θ)−−→(L, θ) by

θ = λ− ϵλ∗ , f = (ϵλ∗)−1λ .

The asymmetric form (L, λ) is (p(ϵ−1z))-primary if and only if the auto-
morphism f : L−−→L is (p(z))-primary, in which case (L, θ) is nonsingular
and 1− f : L−−→L is an automorphism. The nonsingular (p(ϵ−1z))-primary
asymmetric forms (L, λ) over F are thus in one-one correspondence with the
(p(z))-primary automorphisms of nonsingular (−ϵ)-symmetric forms over F ,
and there are defined inverse isomorphisms

LAsy0p(ϵ−1z)∞(F ) −−→ LAut0p(z)∞(F,−ϵ) ;

(L, λ) −−→ (L, λ− ϵλ∗, (ϵλ∗)−1λ) ,

LAut0p(z)∞(F,−ϵ) −−→ LAsy0p(ϵ−1z)∞(F ) ;

(L, θ, f) −−→ (L, θ(1− f−1)−1) .

(This is the special case (A,S) = (F, (p(z))
∞
) of 35.31 (iii).) Identify

LAut0p(z)∞(F,−ϵ) = L0(F [z, z−1], (p(z))
∞
, ϵ) = L0(F [z, z−1]/(p(z)),−ϵ)

as in 39.20.
(iv) Working as in 28.12 it may be verified that the composite

LAsy0(F ) ∼= L0(F (z), ϵ)
∂
−−→ LAut0(F,−ϵ)

sends the Witt class of a nonsingular asymmetric form (L, λ) over F to the
Witt class of the automorphism f : (M,ϕ)−−→(M,ϕ) of the nonsingular (−ϵ)-
symmetric form (M,ϕ) over F defined by

ϕ =

(
0 1

−ϵ 0

)
: M = L⊕ L∗ −−→ M∗ = L∗ ⊕ L ,

f =

(
1 + (ϵλ∗)−1λ −(ϵλ∗)−1

λ 0

)
: M = L⊕ L∗ −−→ M = L⊕ L∗ .
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If ϵλ∗ = λ then

K = im(

(
1
λ

)
: L−−→L⊕ L∗) ⊂ L

is a lagrangian of (M,ϕ) such that f | = 1 : K−−→K, so that

(M,ϕ, f) = 0 ∈ LAut0(F,−ϵ) .

If (L, λ) is (p(z))ϵ-primary with p(z) ̸= (z − 1) then (L, λ− ϵλ∗) is a nonsin-
gular (−ϵ)-symmetric form over F and there is defined an isomorphism(

1 1

ϵλ∗ λ

)
: (L,−(λ− ϵλ∗), (ϵλ∗)−1λ)⊕ (L, λ− ϵλ∗, 1)

≃−−→ (M,ϕ, f) ,

so that

(M,ϕ, f) = (L,−(λ− ϵλ∗), (ϵλ∗)−1λ)⊕ (L, λ− ϵλ∗, 1)

∈ LAut0p(z)∞(F,−ϵ)⊕ LAut0(z−1)∞(F,−ϵ) ⊆ LAut0(F,−ϵ) .

(vi)+(vii) Combine 39.20, 39.26 and work as in (v), but using the localization
exact sequence

0 −−→ L0(F [z, z−1], ϵ) −−→ L0(F [z, z−1](z−a), ϵ)

−−→
⊕

p(z) ̸=(z−a)

LAut0p(z)∞(F,−ϵ)

−−→ L−1(F [z, z−1], ϵ) −−→ 0 . �

Example 39.28 For a finite field F the residue class fields F [z, z−1]/(p(z))
(p(z) ∈M(F )) are finite, so that the automorphism L-group of F

LAut0(F, ϵ) =
⊕

p(z)∈Mz(F )

L0(F [z, z−1]/(p(z)),−ϵ)

is also an abelian group of exponent 8, and hence so is the asymmetric Witt
group

LAsy0(F ) = L0(F )⊕
⊕

p(z)̸=(z−1)∈Mz(F )

L0(F [z, z−1]/(p(z)),−1) . �

The multiplicative subset

P = {p(z) | p(1) ∈ F •} ⊂ F [z, z−1]

is involution-invariant, and such that

P−1F [z, z−1] = F [z, z−1](z−1) .
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A self chain equivalence f : C−−→C of a finite f.g. free F -module chain
complex is fibred (i.e. 1 − f : C−−→C is a chain equivalence) if and only if
the P−1F [z, z−1]-module chain map

z − f : P−1C[z, z−1] −−→ P−1C[z, z−1]

is a chain equivalence. As in Chap. 35, define also the multiplicative subset

Pϵ = {p(z) | p(ϵ) ∈ F •} ⊂ F [z, z−1] .

An n-dimensional asymmetric Poincaré complex (C, λ) over F is Pϵ-primary
if and only if (1 + Tϵ)λ : Cn−∗−−→C is a chain equivalence.

Proposition 39.29 For any field with involution F there are natural iden-
tifications

LAutnfib(F, ϵ) = Ln+2(F [z, z−1], P, ϵ)

= LIson(F, ϵ) = LIsonfib(F, ϵ) = LAsynP−ϵ
(F ) .

Proof Every P−1F [z, z−1]-contractible (n+1)-dimensional ϵ-symmetric Poin-
caré complex (E, θ) over F [z, z−1] is homotopy equivalent to the alge-
braic mapping torus T (h, χ) of a fibred self homotopy equivalence (h, χ) :
(C, ϕ)−−→(C, ϕ) of an n-dimensional ϵ-symmetric Poincaré complex (C, ϕ)
over F .
A self homotopy equivalence (h, χ) : (C, ϕ)−−→(C, ϕ) of an n-dimensional
ϵ-symmetric Poincaré complex (C, ϕ) over F is fibred if and only if the alge-
braic mapping torus T (h, χ) over F [z, z−1] is P−1F [z, z−1]-contractible.
The combination of these two statements proves that the algebraic mapping
torus defines isomorphisms

LAutnfib(F, ϵ)
≃−−→ Ln+2(F [z, z−1], P, ϵ) ; (C, ϕ, f, χ) −−→ T (f, χ) .

See 31.13 for the identifications

Ln+2(F [z, z−1], P, ϵ) = LIson(F, ϵ) .

Use the covering construction of 32.7 to define an isomorphism

β : LIson(F, ϵ) −−→ Ln+2(F [z, z−1], P, ϵ) ; (C, ψ̂) −−→ β(C, ψ̂) .

(See 39.33 below for an explicit inverse β−1). There are also defined inverse
isomorphisms

LAutnfib(F, ϵ) −−→ LIson(F, ϵ) ; (C, ϕ, f) −−→ (C, (1− f)−1ϕ0) ,

LIson(F, ϵ) −−→ LAutnfib(F, ϵ) ; (C, ψ̂) −−→ (C, (1 + Tϵ)ψ̂,−(Tϵψ̂)ψ̂−1) .

(This is the special case (A,S) = (F, F [z, z−1]\{0}) of 35.31 (iii)). See 35.27
for the identification

LAsynP−ϵ
(F ) = LIson(F, ϵ) . �
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39E. The automorphism L-theory of F

The L-theory localization exact sequence of Chap. 25 combined with the
identifications

K̃0(F [z, z
−1]) = 0 ,

I1(F [z, z
−1], P ) = I1(F [z, z

−1], S) = 0 ,

J1(F [z, z
−1], P ) = K1(F [z, z

−1], P ) = Z[Mz(F )\{(z − 1)}] ,

J1(F [z, z
−1], S) = K1(F [z, z

−1], S) = Z[Mz(F )] ,

L∗(F [z, z−1], P, ϵ) = L∗(F [z, z−1], P, ϵ) = LAut∗fib(F,−ϵ) ,

L2∗+1(P−1F [z, z−1], ϵ) = L2∗+1(F [z, z−1], P, ϵ) = 0 ,

L∗(F [z, z−1], S, ϵ) = L∗(F [z, z−1], (z − 1)∞, ϵ)⊕ L∗(F [z, z−1], P, ϵ)

= LAut∗(F,−ϵ)
= L∗(F,−ϵ)⊕ LAut∗fib(F,−ϵ) ,

L2∗+1(F, ϵ) = L2∗+1(F (z), ϵ)

= L2∗+1(F [z, z−1], P, ϵ) = L2∗+1(F [z, z−1], S, ϵ)

= LAut2∗+1(F,−ϵ) = LAut2∗+1
fib (F,−ϵ) = 0

will now be used to express the L-groups L∗(F (z), ϵ), LAut∗(F, ϵ) and
LAut∗fib(F, ϵ) in terms of the L-groups of F and the residue class fields
F [z, z−1]/(p(z)), extending the results already obtained in 39C above.

Proposition 39.30 (i) For any field with involution F

L2k(F (z), ϵ) = L2k(F, ϵ)⊕
∑

p(z)̸=(z−1)∈Mz(F )

L2k(F [z, z−1]/(p(z)),−ϵ) ,

LAut2kfib(F, ϵ) = L2k(F [z, z−1], P,−ϵ)

=
∑

p(z)̸=(z−1)∈Mz(F )

L2k(F [z, z−1]/(p(z)), ϵ) ,

LAut2k(F, ϵ)

= L2k(F, ϵ)⊕
∑

p(z)̸=(z−1)∈Mz(F )

L2k(F [z, z−1]/(p(z)) , ϵ) ,

L2k+1(F (z), ϵ) = L2k+1(F [z, z−1], P, ϵ)

= LAut2k−1(F, ϵ) = LAut2k−1
fib (F, ϵ) = 0 .

(ii) The ϵ-symmetric L-groups of P−1F [z, z−1] are given by
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L2k(P−1F [z, z−1], ϵ)

= L0(F, (−)kϵ)⊕ ker

(
jfib : LAut

0
fib(F, (−)k+1ϵ)−−→L0(F, (−)k+1ϵ)

)
= L0(F, (−)kϵ)

⊕ ker

(⊕
p(z)

jp(z) :
∑

p(z)̸=(z−1)∈Mz(F )

L0(F [z, z−1]/(p(z)), (−)k+1ϵ)

−−→L0(F, (−)k+1ϵ)

)
,

L2k+1(P−1F [z, z−1], ϵ)

= coker

(
jfib : LAut

0
fib(F, (−)k+1ϵ)−−→L0(F, (−)k+1ϵ)

)
= coker

(⊕
p(z)

jp(z) :
∑

p(z)̸=(z−1)∈Mz(F )

L0(F [z, z−1]/(p(z)), (−)k+1ϵ)

−−→L0(F, (−)k+1ϵ)

)
,

with jfib, jp(z) as in 39.20, 39.27.
(iii) If there exists an element a ̸= 1 ∈ U(F ) (e.g. if char(F ) ̸= 2 with a = −1)
then

L2k(P−1F [z, z−1], ϵ)

= L0(F, (−)kϵ)⊕
∑

p(z)̸=(z−1),(z−a)∈Mz(F )

L0(F [z, z−1]/(p(z)), (−)k+1ϵ) ,

L2k+1(P−1F [z, z−1], ϵ) = 0 .

(iv) If char(F ) ̸= 2 then the involution-invariant multiplicative subsets

(z + 1)∞ = {zj(z + 1)k | j ∈ Z, k ≥ 0} ,

P̂ = {p(z) | p(1), p(−1) ∈ F •} ⊂ F [z, z−1]

are coprime, with
(z + 1)∞P̂ = P ,

so that

Ln(F [z, z−1], P, ϵ) = Ln(F [z, z−1], (z + 1)∞, ϵ)⊕ Ln(F [z, z−1], P̂ , ϵ)

= Ln(F,−ϵ)⊕ Ln(F [z, z−1], P̂ , ϵ) .

The automorphism L-group Ln(F [z, z−1], P̂ , ϵ) = LAutn
P̂
(F,−ϵ) is the cobor-

dism group of self homotopy equivalences (h, χ) : (C, ϕ)−−→(C, ϕ) of n-
dimensional (−ϵ)-symmetric Poincaré complexes (C, ϕ) over F such that h−
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h−1 : C−−→C is also a chain equivalence. The unit z−z−1 ∈ (P̂−1F [z, z−1])•

is such that there is defined an isomorphism of exact sequences

. . . // Ln(P̂−1F [z, z−1], ϵ) //

∼=z − z−1

��

Ln(F (z), ϵ) //

∼=z − z−1

��

Ln(F [z, z−1], P̂ , ϵ) //

∼=z − z−1

��

. . .

. . . // Ln(P̂−1F [z, z−1],−ϵ) // Ln(F (z),−ϵ) // Ln(F [z, z−1], P̂ ,−ϵ) // . . .

and

L∗(F [z, z−1], P̂ , ϵ) =
∑

p(z) ̸=(z−1),(z+1)∈Mz(F )

L∗(F [z, z−1]/(p(z)), ϵ)

=
∑

p(z) ̸=(z−1),(z+1)∈Mz(F )

L∗(F [z, z−1]/(p(z)),−ϵ)

= L∗(F [z, z−1], P̂ ,−ϵ) ,
L∗(F (z), ϵ) = L∗(F (z),−ϵ)

= L∗(F [z, z−1], P, ϵ)⊕ L∗(F, ϵ)

= L∗(P−1F [z, z−1],−ϵ)⊕ L∗(F, ϵ) ,

LAut∗fib(F, ϵ) = L∗(F [z, z−1], P,−ϵ) = L∗(P−1F [z, z−1], ϵ)

= L∗(F, ϵ)⊕
∑

p(z) ̸=(z−1),(z+1)∈Mz(F )

L∗(F [z, z−1]/(p(z)), ϵ)

LAut∗(F, ϵ) = L∗(F, ϵ)⊕ L∗(F, ϵ)

⊕
∑

p(z)̸=(z−1),(z+1)∈Mz(F )

L∗(F [z, z−1]/(p(z)), ϵ) .

Proof (i) Let J = Mz(F )\{(z− 1)}, and let SJ ⊂ F [z, z−1] be as in 39.10, so
that the inclusion

S−1
J F [z, z−1] −−→ P−1F [z, z−1]

induces isomorphisms

L∗(S−1
J F [z, z−1], ϵ)

≃−−→ L∗(P−1F [z, z−1], ϵ)

and
L2∗(F [z, z−1], P, ϵ) = L2∗(F [z, z−1], SJ , ϵ)

=
∑
p(z)∈J

L2∗(F [z, z−1]/(p(z)),−ϵ) .

Write
G = F [z, z−1, (z − 1)−1] ,
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and substitute

L2∗−1(F (z), ϵ) = 0 , L2∗+1(F [z, z−1], P, ϵ) = 0 ,

L∗(F [z, z−1], (z − 1)∞, ϵ) = L∗(F,−ϵ) ,
L∗(G, ϵ) = L∗(F, ϵ)

in the commutative braid of exact sequences

Ln+1(F [z, z−1], (z − 1)∞, ϵ)

&&LL
LLL

L

##
Ln(P−1F [z, z−1], ϵ)

&&LL
LLL

L

##
Ln(F [z, z−1], P, ϵ)

Ln(F [z, z−1], ϵ)

88rrrrrr

&&LL
LLL

L
Ln(F (z), ϵ)

88rrrrrr

&&LL
LLL

L

Ln+1(F [z, z−1], P, ϵ)

88rrrrrr

;;
Ln(G, ϵ)

88rrrrrr

;;
Ln(F [z, z−1], (z − 1)∞, ϵ)

to obtain the expressions for L∗(P−1F [z, z−1], ϵ), L∗(F (z), ϵ).
(ii) Immediate from 39.27 and (i).
(iii) Immediate from (ii), on noting that j(z−a)∞ is an isomorphism.
(iv) As char(F ) ̸= 2 the connecting map in the exact sequence of (i)

L2k(F [z, z−1], P, ϵ) = LAut2kfib(F,−ϵ)

−−→ L2k−1(F [z, z−1], ϵ) = L2k(F,−ϵ) ; (L, θ, f) −−→ (L, θ)

is a surjection, with a splitting

L2k(F,−ϵ) −−→ LAut2kfib(F,−ϵ) ; (L, θ) −−→ (L, θ,−1) ,

so that
L2k−1(P−1F [z, z−1], ϵ) = 0 .

(See 39.31 below for an example with char(F ) = 2 where this group is non-
zero.) The exact sequence

0 −−→ L2k(F, ϵ) −−→ L2k(P−1F [z, z−1], ϵ) −−→ L2k(F [z, z−1], P̂ , ϵ) −−→ 0

splits : the map L2k(F, ϵ)−−→L2k(P−1F [z, z−1], ϵ) is split by the composite

L2k(P−1F [z, z−1], ϵ) −−→ L2k(F (z), ϵ) = L2k(F (z),−ϵ)

−−→ L2k(P−1F [z, z−1], (z − 1)∞,−ϵ)

= L2k(F [z, z−1], (z − 1)∞,−ϵ) = L2k(F, ϵ) ,

and the map L2k(P−1F [z, z−1], ϵ)−−→L2k(F [z, z−1], P̂ , ϵ) is split by
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L2k(F [z, z−1], P̂ , ϵ) = LAut0
P̂
(F, (−)n+1ϵ)

−−→ L2k(P−1F [z, z−1], ϵ) = L0(P−1F [z, z−1], (−)kϵ) ;

(M,ϕ, f) −−→ (M(z), (1− z)ϕ(f − 1)−1(1− z−1f)) .

The exact sequence given by (i)

0 −−→ L2k(F, ϵ) −−→ L2k(F (z), ϵ) −−→ L2k(F [z, z−1], P̂ , ϵ) −−→ 0

also splits : the map L2k(F, ϵ)−−→L2k(F (z), ϵ) is split by the composite

L2k(F, ϵ) −−→ L2k(F (z), ϵ) = L2k(F (z),−ϵ)

−−→ L2k(P−1F [z, z−1], (z − 1)∞,−ϵ)

= L2k(F [z, z−1], (z − 1)∞,−ϵ) = L2k(F, ϵ) ,

and the map L2k(F (z), ϵ)−−→L2k(F [z, z−1], P, ϵ) is split by

L2k(F [z, z−1], P, ϵ) = LAut0P (F, (−)n+1ϵ)

−−→ L2k(F (z), ϵ) = L0(F (z), (−)kϵ) ;

(M,ϕ, f) −−→ (M(z), (1− z)ϕ(1− f−1)(1− z−1f)) . �

Example 39.31 If F is an algebraically closed field of characteristic 2 with
the identity involution then

Mz(F ) = {(z − 1)} ,

L0(F ) = L0(P−1F [z, z−1]) = L0(F (z)) = LAsy0(F )

= LAut0(F ) = L1(P−1F [z, z−1]) = Z2 ,

L0(F [z, z−1], P ) = LAut0fib(F ) = 0 . �

Remark 39.32 Let F have the identity involution. The fixed subfield of the
non-trivial involution z = z−1 on F (z) is

F (z)0 = F (z + z−1) ,

and there is defined an isomorphism of fields

F (x)
≃−−→ F (z)0 ; x −−→ z + z−1 .

The computations of L∗(F (x)), L∗(F (z)) given by 39.5, 39.30 in the case
char(F ) ̸= 2 are related by the exact sequence of 37.3

0 −−→ L0(F (z)) −−→ L0(F (x)) −−→ L0(F (x))

−−→ L0(F (x)) −−→ L0(F (z)) −−→ 0 . �
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Proposition 39.33 (i) Every free Blanchfield complex over F [z, z−1] fibres.
(ii) The cobordism group Ln+1(F [z, z−1], P, ϵ) of free n-dimensional ϵ-symm-
etric Blanchfield complexes is isomorphic to the cobordism group of P -
primary homotopy equivalences (h, χ) : (C, ϕ)−−→(C, ϕ) of f.g. free (n − 2)-
dimensional ϵ-symmetric Poincaré complexes (C, ϕ) over F .
(iii) The L-groups of (F [z, z−1], P ) are such that

Ln+1(F [z, z−1], P ) =
∑

p(z) ̸=(z−1)∈Mz(F )

Ln+1(F [z, z−1]/(p(z)),−1) ,

(= 0 for n even) .

(iv) The inverse of the covering isomorphism of 32.11

β : LIson(F ) ∼= Ln+2(F [z, z−1], P )

is given by

β−1 : Ln+2(F [z, z−1], P )
≃−−→ LIson(F ) ; (E, θ) −−→ (i!E, ψ̂) .

(v) Every Seifert complex (C, ψ̂) over F is cobordant to a fibred Seifert com-
plex.
(vi) The isometric L-groups of F are such that

LIso2∗(F ) = L2∗+2(F [z, z
−1], P ) = L2∗+2(F [z, z−1], P )

=
∑

p(z) ̸=(z−1)∈Mz(F )

L2∗(F [z, z−1]/(p(z)),−1) ,

LIso2∗+1(F ) = 0 .

The cobordism class of a 2i-dimensional Seifert complex (C, ψ̂) over F is
the Witt class of the nonsingular (−)i-symmetric linking form (L, λ) over
(F [z, z−1], P ) defined by

L = coker(ψ̂ + (−)izψ̂∗ : Hi(C)[z, z−1]−−→Hi(C)[z, z
−1]) ,

λ(x, y) = (1− z−1)(ψ̂ + (−)izψ̂∗)−1(x)(y) ∈ P−1F [z, z−1]/F [z, z−1] ,

with one component for each irreducible polynomial pj(z) ∈ F [z, z−1] appear-
ing in a factorization of the Alexander polynomial

∆(z) = det
(
(ψ̂ + (−)iψ̂∗)−1(ψ̂ + (−)izψ̂∗) :

Hi(C)[z, z−1]−−→Hi(C)[z, z−1]
)

=

( m∏
j=1

pj(z)
aj

)
q(z)q(z) ∈ F [z, z−1]

for some coprime polynomials pj(z), q(z) ∈ F [z, z−1] such that
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(pj(z)) = (pj(z)) , (q(z)) ̸= (q(z)) ▹ F [z, z−1]

with pj(z) irreducible. If (C, ψ̂) is fibred then L = Hi(C), and (L, λ) corre-
sponds to the monodromy automorphism of the nonsingular (−)i-symmetric

form (L, ψ̂ + (−)iψ̂∗) over F

h = (−)i+1(ψ̂∗)−1ψ̂ : (L, ψ̂ + (−)iψ̂∗)
≃−−→ (L, ψ̂ + (−)iψ̂∗) .

Proof (i)+(ii)+(iii) Immediate from 31.24 and 39.30.
(iv) Every free (n+1)-dimensional Blanchfield complex (E, θ) over F [z, z−1]

fibres, and is homotopy equivalent to the covering β(i!E, ψ̂) of the fibred n-

dimensional Seifert complex (i!E, ψ̂) over F .
(v) Immediate from (ii).
(vi) Identify LIso∗(F ) = L∗+2(F [z, z

−1], P ), and apply 39.30. �
Example 39.34 (i) For an algebraically closed field F 39.15 gives

LIso2∗(F ) =
∑

a∈U(F )\{1}

L2∗(F ) ,

(ii) For F = C−

LIso2∗(C−) =
⊕

(z−eiθ )̸=(z−1)∈Mz(C−)

L2∗(C−[z, z−1]/(z − eiθ),−1)

=
∑

0<θ≤π

L2∗(C−[z, z−1]/(z − eiθ),−1) =
∑

0<θ≤π

Z . �

For any field F the multiplicative subset

S = F [z, z−1]\{0} ⊂ F [z, z−1]

is such that the category H (F [z, z−1], S) of (F [z, z−1], S)-modules is iso-
morphic to the category Aut(F ) of finite dimensional F -vector spaces with
an automorphism. For a field with involution F the category of nonsingu-
lar ϵ-symmetric linking forms over (F [z, z−1], S) is isomorphic to the cat-
egory of nonsingular ϵ-dimensional symmetric forms over F with an auto-
metric structure (i.e. an automorphism). A (2i + 1)-dimensional symmetric
Poincaré complex (C, ϕ) over the Laurent polynomial extension F [z, z−1] de-
termines by 38.1 (iii) a nonsingular (−)i+1-symmetric linking form (T, λ) over
(F [z, z−1], S), which corresponds to the automorphism

ζ : (T, ϕ0) −−→ (T, ϕ0)

of the nonsingular (−)i-symmetric form (T, ϕ0) over F with
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T = Ti(C) = F [z, z−1]-torsionHi(C)

= ker(Hi+1(C)−−→F (z)⊗F [z,z−1] Hi(C)39,

λ = ϕ0 : T
≃−−→ T̂ = HomF [z,z−1](T, F (z)/F [z, z

−1]) = T ∗

= HomF (Ti(C), F ) .

Definition 39.35 The monodromy of a (2i + 1)-dimensional symmetric
Poincaré complex (C, ϕ) over F [z, z−1] is the nonsingular (−)i-symmetric
form over F with autometric structure

H(C, ϕ) = (Ti(C), ϕ0, ζ) . �

Remark 39.36 (i) If (C, ϕ) = T (f, χ) is the algebraic mapping torus of a
homotopy equivalence (f, χ) : (D, θ)−−→(D, θ) of a 2i-dimensional symmetric
Poincaré complex (D, θ) over F the monodromy is given by

H(C, ϕ) = (Hi(D), θ0, f) .

More generally, if (C, ϕ) is a (2i + 1)-dimensional symmetric Poincaré band
over F [z, z−1] (3.2) then

H(C, ϕ) = (Hi(C !), ϕ !
0, ζ) ,

with (C !, ϕ !
0) the 2i-dimensional symmetric Poincaré complex over F defined

by the restriction of the F [z, z−1]-action to F ⊂ F [z, z−1].
(ii) Let X be a (2i+1)-dimensional geometric Poincaré complex with an infi-
nite cyclic cover X, so that there is defined a symmetric (2i+1)-dimensional
symmetric Poincaré complex σ∗(X;F ) = (C(X), ϕ) over F [z, z−1]. The F -
coefficient monodromy of X in the sense of Neumann [214] is just the mon-
odromy of σ∗(X;F )

H(X;F ) = H(σ∗(X;F )) .

(iii) Working as in [214, Chaps. 2, 11] it is possible to express the monodromy
H(C, ϕ) in terms of the locally finite homology of C, as follows. The Laurent
polynomial extension F [z, z−1] fits into an exact sequence

0 −−→ F [z, z−1] −−→ F ((z))⊕ F ((z−1)) −−→ F [[z, z−1]] −−→ 0

with F ((z)), F ((z−1)) the Novikov completions (6.4) and F [[z, z−1]] the

F [z, z−1]-module of formal Laurent series
∞∑

j=−∞
ajz

j , without any restric-

tions on the coefficients aj ∈ F . Given a finite f.g. free F [z, z−1]-module
chain complex C define the locally finite F [z, z−1]-module chain complex

Clf = F [[z, z−1]]⊗F [z,z−1] C ,

and define also
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C((lf)) = F ((z))⊗F [z,z−1] C ,

C((lf−1)) = F ((z−1))⊗F [z,z−1] C .

The short exact sequence of F [z, z−1]-module chain complexes

0 −−→ C −−→ C((lf)) ⊕ C((lf−1)) −−→ Clf −−→ 0

induces an exact sequence in homology

. . . −−→ Hr+1(C
lf )

∂
−−→ Hr(C)

−−→ Hr(C
((lf)))⊕Hr(C

((lf−1))) −−→ Hr(C
lf ) −−→ . . . .

The torsion F [z, z−1]-module of Hr(C) is

Tr(C) = {x ∈ Hr(C) | p(z)(x) = 0 for some p(z) ∈ S}

= im(∂ : Hr+1(C
lf )−−→Hr(C))

= ker(Hr(C)−−→Hr(C
((lf)))⊕Hr(C

((lf−1)))) .

It follows from 8.3 that the following conditions on C are equivalent :

(a) dimF (H∗(C)) <∞ ,
(b) C is F -finitely dominated,

(c) H∗(C
((lf))) = H∗(C

((lf−1))) = 0 ,
(d) ∂ : H∗(C

lf ) ∼= H∗−1(C) ,
(e) T∗(C) = H∗(C) ,
(f) ∆(z)H∗(C) = 0 for some ∆(z) ̸= 0 ∈ F [z, z−1] .

(iv) If (C, ψ̂) is a 2i-dimensional fibred symmetric Seifert complex over a field

F then the covering β(C, ψ̂) = (E, θ) (31.31) is a (2i+ 1)-dimensional fibred
symmetric Blanchfield complex over F [z, z−1] with

H∗+1(E
lf ) = H∗(E) = H∗(C) ,

and monodromy

Hβ(C,ψ) = (Hi(C), (1 + T )ψ̂,−(T ψ̂)ψ̂−1) .

(v) Let W be an open (2i + 1)-dimensional manifold with a proper map
p :W−−→R which is transverse regular at 0 ∈ R, and let j :M−−→W be the
inclusion of the closed codimension 1 submanifoldM = p−1(0) ⊂W . For any
coefficient field F the subspace

T = Ti(W ;F ) = im(j∗[M ] ∩ − : H lf
i+1(W ;F ) = Hi(W ;F )−−→Hi(W ;F ))

⊆ im(j∗ : Hi(M ;F )−−→Hi(W ;F ))

is finite dimensional. The (−)i-symmetric pairing
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Hi(W ;F )×Hi(W ;F ) −−→ F ;

(x, y) −−→ ⟨x ∪ y, j∗[M ]⟩ = ⟨j∗x ∪ j∗y, [M ]⟩

(on the potentially infinite dimensional F -vector spaceHi(W ;F )) determines
a nonsingular (−)i-symmetric form (T, ϕ0) over F such that the Witt class

(T, ϕ0) = σ∗(M ;F ) ∈ L2i(F ) = L0(F, (−)i)

is a proper homotopy invariant of W . Novikov [216] used this proper ho-
motopy invariance in the case i = 2k, F = R to prove that the kth com-
ponent of the L-genus Lk(M) ∈ H4k(M ;Q) is a homotopy invariant for
closed (4k + 1)-dimensional manifolds M4k+1. The proof of the topological
invariance of the rational Pontrjagin classes in Novikov [217] used a differ-
ent (albeit related) method. Gromov [99] obtained a new proof of topolog-
ical invariance, using a twisted-coefficient version of the invariant of [216].
See Ranicki [247] for the relationship between the method of [99], the origi-
nal proof in [217], and the lower L-theory method of Ranicki [244], [245]. If
W = X is the infinite cyclic cover of a closed (2i + 1)-dimensional mani-
fold X with π1(X) = π × Z (as in (ii)) then (T, ϕ0) is the pairing used to
define the monodromy H(X;F ) = (T, ϕ0, ζ), with C = C(X;F ) such that

H∗(C
lf ) = H lf

∗ (X;F ). �
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40. The multisignature

A multisignature is a collection of integer-valued signature invariants. For
example, the torsion-free part of the symmetric Witt group L0(F ) of an al-
gebraic number field F is detected by the multisignature consisting of the
signatures associated to involution-preserving embeddings F−−→C (37.2).
Similarly, the torsion-free parts of the quadratic L-groups L2∗(Z[π]) for a
finite group π are detected by the signatures associated to irreducible real
representations of π (cf. 40.26 below). In these examples the multisignatures
have a finite number of components.

Multisignatures can also be used to detect the torsion-free parts of the
high-dimensional knot cobordism groups C2∗−1 = LIso2∗(Z), the asymmet-
ric L-groups LAsy2∗(Z) and the automorphism L-groups LAut2∗(Z). These
multisignatures have an infinite number of components, essentially one for
each complex conjugate pair of algebraic integers on the line Re = 1/2.

The multisignature of a form over Z is the multisignature of the induced
form over C. The multisignatures can also be defined for other rings with
involution (e.g. Q, R, algebraic number fields), but in each case they are the
restrictions of the complex multisignatures. In this chapter only multisigna-
tures over C will be considered.

Symmetric forms over C with the complex conjugation involution are
traditionally called hermitian forms, although they will be called symmetric
forms here. The even-dimensional symmetric L-groups of C are detected by
the signature isomorphisms

σ : L2j(C)
≃−−→ Z .

The even-dimensional isometric Witt groups of C are detected by the iso-
metric multisignature isomorphism

σIso∗ : LIso2j(C)
≃−−→ Z[R1/2]

defined in 40A below, where R1/2 ⊂ C is the line Re = 1/2. More precisely,
the Witt class

(L, λ) ∈ LIso2j(C) = LIso0(C, (−)j)
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of a (−)j-symmetric Seifert form (L, λ) over C is determined by the formal
linear combination of signatures

σIso∗ (L, λ) =
∑

a∈R1/2

σ(La, λa + (−)jλ∗a).a ∈ Z[R1/2]

with (La, λa) the restriction of (L, λ) to the generalized a-eigenspace of the
endomorphism

f = (λ+ (−)jλ∗)−1λ : L −−→ L ,

that is

La = {x ∈ L | (f − a)N (x) = 0 ∈ L for some N ≥ 1} .

Similarly, the even-dimensional asymmetric Witt groups of C are detected
by the asymmetric multisignature isomorphism

σAsy∗ : LAsy2j(C)
≃−−→ Z[S1]

defined in 40B below, and the even-dimensional automorphism Witt groups
of C are detected by the automorphism multisignature isomorphism

σAut∗ : LAut2j(C)
≃−−→ Z[S1]

defined in 40D below. In fact, the isometric multisignature is the restriction
of the automorphism multisignature to the fibred automorphism L-groups

σIso∗ = σAut∗ | : LIso2∗(C) = LAut2∗fib(C)
≃−−→ Z[R1/2] ∼= Z[S1\{1}] .

The asymmetric and automorphism multisignatures fit together with the sig-
nature isomorphisms σ : L2j(C) ∼= Z to define an isomorphism of exact
sequences

0 // L2j+2(C)

∼=σ
��

// LAsy2j+2(C)

∼=σAsy∗
��

// LAut2j(C)

∼=σAut∗
��

// L2j(C)

∼=σ
��

// 0

0 // Z 1 // Z[S1]
∂ // Z[S1]

e // Z // 0

with
∂(a) = a− 1 , e(a) = 1 (a ∈ S1) .

The general results of Chaps. 39–41 will be used in Chap. 42 to show that
the morphisms induced by Z ⊂ C

C2j−1 = LIso2j(Z) −−→ LIso2j(C) = Z[R1/2]

are such that
C2j−1 −−→ im(C2j−1) = Z∞

has 4-torsion kernel.
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Definition 40.1 (i) The signature of a 2j-dimensional symmetric complex
(C, ϕ) over C is the signature of the (−)j-symmetric form (Hj(C), ϕ0) over
C

σ(C, ϕ) = σ(Hj(C), ϕ0) ∈ Z .

(ii) The signature of a 2j-dimensional symmetric Poincaré pair over C

(D,C) = (f : C−−→D, (ϕD, ϕC))

is the signature of the quotient 2j-dimensional symmetric complex over C
(D/C, ϕD/ϕC)

σ(D,C) = σ(Hj(D/C), (ϕD/ϕC)0) ∈ Z . �

The 2j-dimensional symmetric L-groups of C are given by

L2j(C) = L0(C , (−)j) = Z .

By 37.1 (x) the signature defines isomorphisms

σ : L2j(C)
≃−−→ Z ; (C, ϕ) −−→ σ(C, ϕ)

with generator (SjC , 1) ∈ L2j(C) for j even, and (SjC ,−i) ∈ L2j(C) for j
odd.

40A. Isometric multisignature

Given an ϵ-symmetric Seifert form (L, λ) over C let C[s] act on L by the
isometric structure

f = (λ+ ϵλ∗)−1λ : L −−→ L

for the nonsingular ϵ-symmetric form (L, λ + ϵλ∗) over C. The Seifert form
decomposes into the (s− a)-primary components given by 39.15

(L, λ) =
∑

a∈R1/2

(La, λa)⊕ hyperbolic

with
R1/2 = {a ∈ C |Re(a) = 1/2} ,

La =

∞∪
N=0

ker((f − a)N : L−−→L) ,

chs(La, fa) = (s− a)da (da = dimC(La)) .



572 40. The multisignature

Definition 40.2 (i) The isometric multisignature of an ϵ-symmetric Seifert
form (L, λ) over C is the formal linear combination

σIso∗ (L, λ) =
∑

a∈R1/2

σIsoa (L, λ).a ∈ Z[R1/2]

with
σIsoa (L, λ) = σ(La, λa + ϵλ∗a) ∈ Z .

(ii) The isometric multisignature of a 2j-dimensional Seifert complex (C, λ)
over C is the isometric multisignature of the (−)j-symmetric Seifert form
(Hj(C), λ)

σIso∗ (C, λ) = σIso∗ (Hj(C), λ) ∈ Z[R1/2] .

(iii) The multisignature of a (2j − 1)-knot k : S2j−1 ⊂ S2j+1 is the isometric
multisignature

σ∗(k) = σIso∗ (SjHj(X;C), λ) ∈ Z[R1/2]

of the 2j-dimensional Seifert complex (SjHj(X;C), λ) over C, with X the
canonical infinite cyclic cover of the knot exterior X and

λ : Hj(X;C)∗ ∼= Hj(X;C)
[X]∩−−−→≃ Hj(X;C)

(1−ζ)−1

−−→≃ Hj(X;C)

with ζ : X → X a generating covering translation. �
Proposition 40.3 The isometric multisignature defines isomorphisms

σIso∗ : LIso2j(C)
≃−−→ Z[R1/2]

inverse to

Z[R1/2]
≃−−→ LIso2j(C) ; a −−→

{
(SjC, a) if j ≡ 0(mod 2)

(SjC, ia) if j ≡ 1(mod 2) .

Proof This is a special case of 39.15. �
Remark 40.4 (i) The multisignature of a (2j − 1)-knot k : S2j−1 ⊂ S2j+1

was first defined by Milnor [194]. The finite-dimensionality of Hj(X;C) (as
a complex vector space) and the Poincaré duality

[X] ∩ − : Hj(X;C) ∼= Hj(X;C)

were shown to follow from H∗(X;C) ∼= H∗(S
1;C). See 39.36 (iii) for a general

discussion of such finite-dimensionality results.
(ii) The multisignature of knots defines morphisms

ij : C2j−1 = LIso2j(Z) −−→ LIso2j(C) = Z[R1/2]

which were shown by Milnor [195] and Levine [157] to map C2j−1 = LIso2j(Z)
onto a countably infinitely generated subgroup im(ij) = Z∞ ⊂ Z[R1/2] with
countably infinite 2- and 4-torsion kernel. See Chap. 42 for a more detailed
account. �
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40B. Asymmetric multisignature

Given a nonsingular asymmetric form (L, λ) over C let C[z, z−1] act on L by
the automorphism

h = λ−1λ∗ : L −−→ L .

The asymmetric form decomposes into the (z−a)-primary components given
by 39.26

(L, λ) =
⊕
a∈S1

(La, λa)⊕ hyperbolic ,

with
La = {x ∈ L | (h− a)N (x) = 0 for some N ≥ 1} .

Definition 40.5 (i) The asymmetric multisignature of a nonsingular asym-
metric form (L, λ) over C is the formal linear combination

σAsy∗ (L, λ) =
∑
a∈S1

σAsya (L, λ).a ∈ Z[S1]

with

σAsya (L, λ) =


σ

(
La,

λa + λ∗a
2

)
if a ̸= −1

σ

(
La,

λa − λ∗a
2i

)
if a = −1 .

(ii) The asymmetric multisignature of a 2j-dimensional asymmetric Poincaré
complex (C, λ) over C is

σAsy∗ (C, λ) =
∑
a∈S1

σAsya (C, λ).a

=
∑
a∈S1

σAsy(−)ja(H
j(C), λ).a ∈ Z[S1]

with
σAsya (C, λ) = σAsy(−)ja(H

j(C), λ) ∈ Z .

(Note that (i) is just the case j = 0). �
Proposition 40.6 The asymmetric multisignature defines isomorphisms

σAsy∗ : LAsy2j(C)
≃−−→ Z[S1] ; (C, λ) −−→ σAsy∗ (C, λ)

inverse to

Z[S1]
≃−−→ LAsy2j(C) ;

b −−→


(SjC, i(1− b)−1) if b ̸= 1 and j ≡ 0(mod 2)

(SjC, 1) if b = 1 and j ≡ 0(mod 2)

(SjC, (1− b)−1) if b ̸= 1 and j ≡ 1(mod 2)

(SjC, i) if b = 1 and j ≡ 1(mod 2) .
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Proof By 39.27 the asymmetric L-group splits as a direct sum

LAsy2j(C) =
∑
a∈S1

LAsy2j(z−a)∞(C)

=
∑
a∈S1

LAsy0(z−(−)ja)∞(C)

according to the decomposition of nonsingular asymmetric Poincaré com-
plexes over C into (z − a)-primary components, corresponding to the de-
composition given by 39.26 of nonsingular asymmetric forms over C into
(z−(−)ja)-primary components. The (z−a)-primary component of the mul-
tisignature

σAsya : LAsy2j(z−a)∞(C) = LAsy0(z−(−)ja)∞(C) −−→ Z

is an isomorphism, since for a ̸= (−)j+1 σAsya is the composite of the isomor-
phisms

LAsy0(z−(−)ja)∞(C)
≃−−→ L0(C) ; (L, λ) −−→ (L,

1

2
(λ+ λ∗)) ,

L0(C)
≃−−→ Z ; (M,µ) −−→ σ(M,µ) ,

and for a = (−)j+1 the composite of σAsya and the isomorphism

L0(C ,−1)
≃−−→ LAsy0(z+1)∞(C) ; (M,µ) −−→ (M,µ)

is the isomorphism

L0(C ,−1)
≃−−→ Z ; (L, λ) −−→ σ(L, λ) . �

Proposition 40.7 The isometric and asymmetric multisignatures are related
by a commutative square of isomorphisms

LIso2j(C)
∼= //

∼= σIso∗
��

LAsy2j+2
P (C)

∼= σAsy∗
��

Z[R1/2]
∼= // Z[S1\{1}]

with P = {p(z) | p(1) = 1} ⊂ C [z, z−1] and

Z[R1/2]
≃−−→ Z[S1\{1}] ; a −−→ 1− a−1 .

Proof A 2j-dimensional Seifert complex (C, λ) over C is homotopy equivalent
to a fibred complex (C ′, λ′), with λ′ : (C ′)2j−∗−−→C ′ a chain equivalence.
Indeed, by 32.44 (iv) it is possible to take
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C ′ = C(zλ− Tλ : C2j−∗[z, z−1]−−→C[z, z−1])

with

λ′ : Hj(C ′) × Hj(C ′) −−→ C ; (x, y) −−→ χz(zx((zλ− Tλ)−1(y))) .

Now (SC ′, λ′) is a (2j+2)-dimensional P -primary asymmetric Poincaré com-
plex over C, and the function

LIso2j(C) −−→ LAsy2j+2
P (C) ; (C, λ) −−→ (SC ′, λ′)

is an isomorphism by 35.27. For any a ∈ R1/2 the 2j-dimensional Seifert
complex (SjC, a) with isometric multisignature

σIso∗ (SjC, a) = 1.a ∈ Z[R1/2]

is sent by this isomorphism to the (2j+2)-dimensional P -primary asymmetric
Poincaré complex (Sj+1C, a) with asymmetric multisignature

σAsy∗ (Sj+1C, a) = 1.(1− a−1) ∈ Z[S1\{1}] . �

40C. The ω-signatures

The isometric and asymmetric multisignatures are cobordism invariants
which are closely related to the ‘ω-signatures’. The ω-signatures are not
cobordism invariants in general, but they do have a nice geometric inter-
pretation as signatures of branched covers (cf. 40.15).

Definition 40.8 Let ω ∈ S1.
(i) The ω-signature of an asymmetric form (L, λ) over C is

τω(L, λ) = σ(L, (1− ω)λ+ (1− ω)λ∗) ∈ Z .

(ii) The ω-signature of a 2j-dimensional asymmetric complex (C, λ) over C
is

τω(C, λ) = τω(H
j(C), λ) ∈ Z . �

Note that τ1 = 0.

Example 40.9 The (−1)-signature of an asymmetric form (L, λ) over C is
the signature of the symmetric form (L, λ+ λ∗) over C

τ−1(L, λ) = σ(L, λ+ λ∗) ∈ Z . �

In general, the ω-signature τω(L, λ) ∈ Z of a nonsingular asymmetric form
(L, λ) over C is an invariant of the Witt class (L, λ) ∈ LAsy0(C) only if ω is
not an eigenvalue of (λ∗)−1λ : L−−→L (or equivalently, if λ−ωλ∗ : L−−→L∗ is
an isomorphism), in which case the ω-signature can be expressed as a linear
combination of multisignature components :
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Proposition 40.10 Let a = eiθ, ω = eiϕ ∈ S1, with ω ̸= 1.
(i) If a ̸= ω the ω-symmetric signature is an invariant of the (z− a)-primary
asymmetric Witt group of C, defining an isomorphism

τω : LAsy0(z−a)∞(C)
≃−−→ Z ; (L, λ) −−→ τω(L, λ)

which sends the generator (C, eiθ/2) ∈ LAsy0(z−a)∞(C) to

τω(C, eiθ/2) = σ(C, cos(θ/2)− cos(θ/2− ϕ))
= sign(sin(ϕ/2)sin((ϕ− θ)/2)) .

The generator has asymmetric multisignature components

σAsyb (C, eiθ/2) =


sign(cos(θ/2)) if b = a ̸= −1,
sign(sin(θ/2)) if b = a = −1,
0 if b ̸= a.

(ii) Let (L, λ) be a nonsingular asymmetric form over C, and let ω1, ω2, . . . ,
ωn ∈ S1 be the eigenvalues of (λ∗)−1λ : L−−→L. For any a ∈ S1 let

τa+(L, λ) = lim
h→0+

τaeih(L, λ) , τa−(L, λ) = lim
h→0−

τaeih(L, λ) ∈ Z .

The function
S1 −−→ Z ; ω −−→ τω(L, λ)

is constant on each component of S1\{1, ω1, ω2, . . . , ωn}, with

τa+(L, λ)− τa−(L, λ) =

{
2σAsyωk

(L, λ) if a = ωk ̸= 1

0 if a ∈ S1\{1, ω1, ω2, . . . , ωn} ,

and

τω(L, λ) = sign(im(ω))(
∑

a ̸=−1∈S1

sign(ϕ− θ)σAsya (L, λ)− σAsy−1 (L, λ)) ∈ Z

(−π < θ, ϕ < π)

for any ω ∈ S1\{−1, 1, ω1, ω2, . . . , ωn}. For ω = −1 ̸∈ {ω1, ω2, . . . , ωn}

τ−1(L, λ) =
∑
a∈S1

σAsya (L, λ) ∈ Z

with σAsy−1 (L, λ) = 0.
In particular, τω(L, λ) ∈ Z is an invariant of the Witt class (L, λ) ∈
LAsy0(C) for ω ∈ S1\{1, ω1, ω2, . . . , ωn}.
Proof (i) The ω-signature map is the special case F = C of the isomorphism
obtained in 39.27 (vi)

τω : LAsy0(z−a)∞(C)
≃−−→ L0(C) = Z ; (L, λ) −−→ σ(L, (1−ω)λ+(1−ω)λ∗)
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as the composite of the split injection

LAsy0(z−a)∞(C) −−→ L0(C[z, z−1](z−ω)) ;

(L, λ) −−→ (L[z, z−1](z−ω), (1− z−1)λ+ (1− z)λ∗)

and the morphism of symmetric Witt groups induced by the morphism of
rings with involution

τω : C[z, z−1](z−ω) −−→ C ; z −−→ ω .

(ii) Decompose (L, λ) into primary components

(L, λ) =
⊕
a∈S1

(La, λa)⊕
⊕

b∈C •,|b|<1

(Lb ⊕ Lb−1 ,

(
0 λ

b
−1

λb 0

)
) ,

as above. For a ̸= −1 ∈ S1

(La, λa) = σ(La, λa + λ∗a)(C, eiθ/2) ∈ LAsy0(z−a)∞(C) = Z

with
chz(La, λa) = (z − a)dimC(La)

and for ω ̸= a the contribution of (La, λa) to the ω-signature is given by (i)
to be

τω(La, λa) = σ(La, λa + λ∗a)τω(C, eiθ/2)

= σ(La, λa + λ∗a)sign(sin(ϕ/2)sin((ϕ− θ)/2))

= sign(im(ω))sign(ϕ− θ)σAsya (La, λa) ∈ Z .

For ω ̸= a = −1 ∈ S1 it follows from

(L−1, λ−1) = σ(L−1, λ−1)(C, i) ∈ LAsy0(z+1)∞(C) = Z ,

τω(C, i) = −sign(im(ω)) ∈ Z

that the contribution of (L−1, λ−1) is −sign(im(ω))σ(L−1, λ−1). The hyper-
bolic summands Lb ⊕ L

b
−1 ⊆ L (b ∈ C •\S1) do not contribute to the ω-

signatures. �
Definition 40.11 (i) The ω-signatures of a (2j − 1)-knot k : S2j−1 ⊂ S2j+1

are the ω-signatures

τω(k) = τω(H
j(X;C), λ) ∈ Z (ω ̸= 1 ∈ S1)

of the nonsingular asymmetric form (Hj(X;C), λ) over C given by the (−)j-
symmetric Seifert form

λ : Hj(X;C)
[X]∩−−−→≃ Hj(X;C)

(1−ζ)−1

−−→≃ Hj(X;C) ∼= Hj(X;C)∗
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with X the canonical infinite cyclic cover of the knot exterior X (as in 40.2).
(ii) The signature of a (2j − 1)-knot k : S2j−1 ⊂ S2j+1 is the (−1)-signature

σ(k) = τ−1(k) ∈ Z . �

Proposition 40.12 (i) Let k : S2j−1 ⊂ S2j+1 be a (2j − 1)-knot, and let
ω1, ω2, . . . , ωn ∈ S1 be the roots of the Alexander polynomial

∆j(z) = det((λ+ (−)jλ∗)−1(zλ+ (−)jλ∗) :

Hj(X;C)[z]−−→Hj(X;C)[z]) ∈ C[z]

(which are the eigenvalues of ζ : Hj(X;C)−−→Hj(X;C)).
The ω-signatures τω(k) ∈ Z are invariants of the knot cobordism class k ∈
C2j−1 for any ω ∈ S1\{1, ω1, . . . , ωn}.
(ii) The signature is a cobordism invariant

σ = τ−1 : C2j−1 = LIso2j(Z) −−→ Z .

(iii) If ω ∈ S1 is not an algebraic number then the ω-signature is a cobordism
invariant

τω : C2j−1 = LIso2j(Z) −−→ Z .

Proof (i) Immediate from 40.10.
(ii) It follows from ∆j(1) = 1 ∈ Z that ∆j(−1) = 1 ∈ Z2, and hence that
∆j(−1) ̸= 0 ∈ Z, so that (i) applies.
(iii) The roots of Alexander polynomials are algebraic numbers, so that (i)
applies. �
Remark 40.13 (i) The signature σ(k) ∈ Z of a (2j − 1)-knot k : S2j−1 ⊂
S2j+1 is just the signature of k in the sense of Trotter [291], Murasugi [206]
and Milnor [195], such that

σ(k) = τ−1(k) = τ−1(L, λ) = σ(L, λ+ λ∗) ∈ Z

with (L, λ) any (−)j-symmetric Seifert form over Z for k. The signature was
first proved to be a knot cobordism invariant in [195]. Kauffman and Taylor
[123] proved the cobordism invariance of the signature of a 1-knot k : S1 ⊂ S3

by identifying it with the signature of a double cover of D4 branched over a
push-in of a Seifert surface F 2 ⊂ D4 for k (cf. 40.15 for ω = −1).
(ii) Suppose that (L, λ) is a nonsingular asymmetric form over Z which is
also a (−1)-symmetric Seifert form (i.e. such that λ − λ∗ : L−−→L∗ is an
isomorphism). The eigenvalues of (λ∗)−1λ : L−−→L are the inverses of the
roots of the Alexander polynomial

∆(z) = det((λ− λ∗)−1(zλ− λ∗) : L[z]−−→L[z]) ∈ Z[z]

with ∆(1) = 1. If ω ∈ S1 is a pth root of unity (p prime) then ∆(ω−1) ̸=
0, since otherwise (1 + z + . . . + zp−1) |∆(z) and p |∆(1). The ω-signature
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τω(L, λ) ∈ Z is thus a Witt invariant of (L, λ). Tristram [290] used the ω-
signature map

τω : LAsy0P (Z) = LIso0(Z,−1) −−→ Z ; (L, λ) −−→ τω(L, λ)

to obtain cobordism invariants of links, and to map the classical knot cobor-
dism group C1 onto Z∞.
(iii) Levine [156], [157] identified C2j−1 = LIso2j(Z) and used the ω-signatures
of Seifert forms over Z to map C2j−1 (i ≥ 2) onto Z∞ with 2- and 4-torsion
kernel.
(iv) The expression in 40.10 (ii) above of the ω-signature in terms of the
multisignature components is due to Matumoto [184]. See also Kearton [127]
and Litherland [167].
(v) Casson and Gordon [48], [49] obtained their invariants of the classical knot
group C1 using the ω-signatures and the specific Rochlin-type 4-dimensional
properties of the cyclic covers of D4 branched over knots S1 ⊂ S3.
(vi) Viro [297], Durfee and Kauffman [65], Cappell and Shaneson [41] and
Kauffman [121, 5.6] used the ω-signatures to express the signatures of the
branched cyclic covers of a high-dimensional knots S4i+1 ⊂ S4i+3 (i ≥ 0) in
terms of Seifert forms, as outlined in 40.15 below. �
Remark 40.14 Here are some specific examples of ω-signatures which are
not invariants of the asymmetric Witt class.
(i) Given any ω ∈ C •, a ∈ C define a nonsingular asymmetric form over C

(L, λ) = (C⊕ C,
(
0 ω

1 a

)
)

with

(L, λ) = 0 ∈ LAsy0(C) , (λ∗)−1λ =

(
ω 0

−a ω−1

)
.

If ω ∈ S1 and (1− ω)a+ (1− ω)a ̸= 0 ∈ R then

τω(L, λ) = σ(C⊕ C,
(
0 0

0 (1− ω)a+ (1− ω)a

)
)

= σ(C, (1− ω)a+ (1− ω)a)
= sign((1− ω)a+ (1− ω)a) ̸= 0 ∈ Z .

(ii) Setting ω = −1 in (i), it is clear that the signature σ(L, λ+λ∗) (40.9) is not
an invariant of the asymmetric Witt class (L, λ) ∈ LAsy0(C). In particular,
the nonsingular asymmetric form over C

(L, λ) = (C⊕ C,
(
0 −1
1 1

)
)

has
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(L, λ) = 0 ∈ LAsy0(C) ,

τ−1(L, λ) = σ(L, λ+ λ∗) = σ(C⊕ C,
(
0 0

0 2

)
) = 1 ̸= 0 ∈ Z .

(iii) If (L, λ) is a nonsingular asymmetric form over C such that λ + λ∗ :
L−−→L∗ is an isomorphism then

L−1 = 0 , σAsy−1 (L, λ) = 0 .

The (−1)-signature of such (L, λ) is the sum of all the multisignature com-
ponents

τ−1(L, λ) = σ(L, λ+ λ∗) =
∑
a∈S1

σAsya (L, λ) ∈ Z ,

and is thus a Witt invariant. �
Remark 40.15 (i) Given a nonsingular asymmetric form (L, λ) over C and
an integer a ≥ 2 define the symmetric form over C

ψa(L, λ) = (L[z, z−1], (1− z−1)λ+ (1− z)λ∗)/(
a−1∑
j=0

zj)

=

(⊕
a−1

L,



λ+ λ∗ −λ 0 . . . 0 0

−λ∗ λ+ λ∗ −λ . . . 0 0

0 −λ∗ λ+ λ∗ . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . λ+ λ∗ −λ
0 0 0 . . . −λ∗ λ+ λ∗


)

with the automorphism

ζ =



0 0 0 . . . 0 −1
1 0 0 . . . 0 −1
0 1 0 . . . 0 −1
...

...
...

. . .
...

...

0 0 0 . . . 0 −1
0 0 0 . . . 1 −1


: ψa(L, λ) −−→ ψa(L, λ)

such that
chz(

⊕
a−1

L, ζ) = (1 + z + z2 + . . .+ za−1)d

where d = dimC(L). The eigenvalues of ζ : L−−→L are the ath roots of 1
other than 1 itself, that is the powers

ωj = e2πij/a (1 ≤ j ≤ a− 1)
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of ω = e2πi/a, and the eigenspaces are the images of the inclusions

fj =



1 + ωj + . . .+ (ωj)a−3 + (ωj)a−2

1 + ωj + . . .+ (ωj)a−3

...

1 + ωj

1

 : L −−→
⊕
a−1

L .

Thus there is defined an isomorphism of symmetric forms over C

(f1 f2 . . . fa−1) :
a−1⊕
j=1

(L, (1− ωj)λ+ (1− ωj)λ∗)
≃−−→ ψa(L, λ)

and the signature of ψa(L, λ) is the sum of the ωj-signatures of (L, λ)

σ(ψa(L, λ)) =
a−1∑
j=1

τωj (L, λ) ∈ Z .

(ii) If (L, λ) is the Seifert form (over C) of a (4i + 1)-knot S4i+1 ⊂ S4i+3

with L = H2i+1(F ;C) for a Seifert surface F 4i+2 ⊂ S4i+3, then ψa(L, λ) is
the intersection form of the a-fold branched cover of D4i+4, branched over a
copy of F pushed into D4i+4 as in 27.10. Let ω be a primitive ath root of 1.
The ωj-signatures τωj (L, λ) ∈ Z determine the signature σ(ψa(L, λ)) ∈ Z as
in (i). The Alexander polynomial

∆(z) = det((λ− λ∗)−1(zλ− λ∗) : L[z, z−1]−−→L[z, z−1]) ∈ C[z, z−1]

is such that
∆(1) = 1 , ∆(z) ∈ Z[z, z−1] ,

so that
∆(ωj) ̸= 0 ∈ C (1 ≤ j ≤ a− 1) .

The ωj-signatures τωj (L, λ) are thus Witt class invariants (cf. 40.13 (ii)),
and hence so is σ(ψa(L, λ)). In particular, for a = 2 this is the signature
σ(L, λ+ λ∗) ∈ Z. �

40D. Automorphism multisignature

Next, the multisignature of an automorphism of an ϵ-symmetric form over
C .

Definition 40.16 (i) Let f : (M,ϕ)−−→(M,ϕ) be an automorphism of a
nonsingular ϵ-symmetric form (M,ϕ) over C, with ϵ = ±1. Use the decom-
position
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(M,ϕ, f) =
∑
a∈S1

(Ma, ϕa, fa)⊕ hyperbolic

(as in 39.22) with

Ma = {x ∈M | (f − a)N (x) = 0 for some N ≥ 1} , ϕa = ϕ|Ma

to define the automorphism multisignature of (M,ϕ, h) to be the formal linear
combination

σAut∗ (M,ϕ, f) =
∑
a∈S1

σAuta (M,ϕ, f).a ∈ Z[S1]

of the signatures

σAuta (M,ϕ, f) = σ(Ma, ϕa) ∈ Z (a ∈ S1)

of the ϵ-symmetric forms (Ma, ϕa) over C . The signature of (M,ϕ) is the sum
of the multisignature components

σ(M,ϕ) =
∑
a∈S1

σAuta (M,ϕ, f) ∈ Z .

(ii) The automorphism multisignature of a self homotopy equivalence h :
E−−→E of a 2j-dimensional symmetric Poincaré complex E over C is the
multisignature of the induced automorphism

h∗ : (Hj(E), ϕE) −−→ (Hj(E), ϕE)

of the (−)j-symmetric form on Hj(E)

σAut∗ (E, h) = σAut∗ (Hj(E), ϕE , h
∗) ∈ Z[S1] .

Again, the signature is the sum of the multisignature components

σ(E) =
∑
a∈S1

σAuta (E, h) ∈ Z . �

Proposition 40.17 (Neumann [212])
The automorphism multisignature defines an isomorphism

σAut∗ : LAut2j(C)
≃−−→ Z[S1] ; (E, h) −−→ σAut∗ (E, h) ,

with (SjC , 1, a) (resp. (SjC ,−i, a)) the generator of the (z − a)-primary
component for k even (resp. odd).
Proof This is the special case F = C of 39.30, noting that

max(C [z, z−1]) = {(z − a) | a ∈ C •} ,

max(C [z, z−1]) = {(z − a) | a ∈ S1}

(cf. 39.22, 39.34). �
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By analogy with 40.7 :

Proposition 40.18 The isometric and automorphism multisignatures are
related by a commutative square of isomorphisms

LIso2j(C)
∼= //

∼= σIso∗
��

LAut2j+2
fib (C)

∼= σAut∗
��

Z[R1/2]
∼= // Z[S1\{1}]

with

LIso2j(C)
≃−−→ LAut2j(C) ; (C, λ) −−→ (C, (1 + T )λ, λ(Tλ)−1) ,

Z[R1/2]
≃−−→ Z[S1\{1}] ; a −−→ 1− a−1 . �

The cobordism classes of the following types of algebraic Poincaré struc-
tures are in one-one correspondence, for any ring with involution A :

(i) (2j + 2)-dimensional asymmetric Poincaré complexes over A,
(ii) (2j + 2)-dimensional symmetric Ω−1A[z, z−1]-Poincaré complexes

over A[z, z−1],
(iii) (2j + 2)-dimensional symmetric Poincaré pairs over A[z, z−1] with

band boundary.

The corresponding identifications

LAsy2j+2
h (A) = L2j+2

h (Ω−1A[z, z−1])

and exact sequence

0→LÃut
2j+1

p (A)→L2j+2
h (A)→LAsy2j+2

h (A)→LÃut
2j

p (A)→L2j+1
h (A)→0

were obtained in Chap. 28. These identifications and LAut2j+1(C) = 0
(Proposition 39.20 (iii)) will now be used for A = C to define the asym-
metric multisignature for (ii) and (iii), and to examine the relationship with
the automorphism multisignature.

Definition 40.19 Let (D,C, ϕ) = (f : C−−→D, (ϕD, ϕC)) be a (2j + 2)-
dimensional symmetric Poincaré pair over C [z, z−1] with band boundary, i.e.
such that (C, ϕC) = T (h) is the algebraic mapping torus of a self homotopy
equivalence h : (E, ϕE)−−→(E, ϕE) of a 2j-dimensional symmetric Poincaré
complex (E, ϕE) over C .
The asymmetric multisignature of (D,E, h) is the formal sum

σAsy∗ (D,E, h) =
∑
a∈S1

σAsya (D,E, h)a ∈ Z[S1]

with components
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σAsya (D,E, h) = σAuta (Hj(E), ϕE , h
∗) ∈ Z (a ̸= 1)

and 1-component

σAsy1 (D,E, h) = σ(C⊗C[z,z−1] (D,C)) + σAsy1 (E, h)

= σ(Hj+1(C⊗C[z,z−1] (D/C)), 1⊗ (ϕD/ϕC))

+ σAut1 (Hj(E), ϕE(h
∗ − (h∗)−1), h∗) ∈ Z

with (Hj+1(C⊗C[z,z−1] (D/C)), 1⊗ (ϕD/ϕC)) and (Hj(E), ϕE(h
∗− (h∗)−1))

(−)j+1-symmetric forms over C (which are singular in general). �
Every (2j+2)-dimensional symmetric Poincaré complex B over C(z) is ho-

motopy equivalent to the localization C(z)⊗C[z,z−1]C of a (2j+2)-dimensional
symmetric C(z)-Poincaré complex C over C [z, z−1], corresponding to the
(2j + 2)-dimensional symmetric Poincaré pair over C [z, z−1] (C2j+3−∗, ∂C)
with ∂C = T (ζ) the algebraic mapping torus of the self homotopy equiva-
lence ζ : ∂C !−−→∂C ! of a 2j-dimensional symmetric Poincaré complex ∂C !

over C .

Definition 40.20 The asymmetric multisignature of a (2j + 2)-dimensional
symmetric Poincaré complex B over C(z) is defined by

σAsy∗ (B) = σAsy∗ (C2j+3−∗, ∂C !, ζ) ∈ Z[S1]

using any (2j + 2)-dimensional symmetric C(z)-Poincaré complex C over
C [z, z−1] such that B ≃ C(z) ⊗C[z,z−1] C. This is just the asymmetric mul-
tisignature of 40.19 for the (2j + 2)-dimensional symmetric Poincaré pair
(C2j+3−∗, T (ζ)) over C [z, z−1]. �
Example 40.21 If D is a (2j + 2)-dimensional symmetric Poincaré com-
plex over C[z, z−1] the asymmetric multisignature of the induced (2j + 2)-
dimensional symmetric Poincaré complex over C(z)

B = C(z)⊗C[z,z−1] D

is just the signature of the induced (2j +2)-dimensional symmetric Poincaré
complex over C

σAsy∗ (B) = σ(C⊗C[z,z−1] D).1 ∈ Z ⊂ Z[S1] . �
Proposition 40.22 (i) The asymmetric multisignature of 40.20 is a cobor-
dism invariant, defining an isomorphism

σAsy∗ : L2j+2(C(z))
≃−−→ Z[S1] ; B −−→ σAsy∗ (B) .

The 1-component defines a morphism

σAsy1 : L2j+2(C (z)) −−→ Z ; B −−→ σAsy1 (B)

which splits the injection

L2j+2(C [z, z−1]) = Z −−→ L2j+2(C (z))
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induced by the inclusion C [z, z−1]−−→C (z).
(ii) The composite of the isomorphism of 39.27

LAsy2j+2(C)
≃−−→ L2j+2(C(z)) ; (C, λ) −−→ (C(z), (1− z−1)λ+ (1− z)Tλ)

and the asymmetric multisignature isomorphism

σAsy∗ : L2j+2(C(z))
≃−−→Z[S1]

of (i) agrees up to sign with the asymmetric multisignature isomorphism of
40.6

σAsy∗ : LAsy2j+2(C)
≃−−→Z[S1] .

(iii) The asymmetric and automorphism multisignature maps define isomor-
phisms of exact sequences

0 // L2j+2(C)

∼=σ

��

// L2j+2(C(z))

∼=σAsy∗
��

// LAut2j(C)

∼=σAut∗
��

// L2j(C)

∼=σ

��

// 0

0 // Z 1 // Z[S1]
∂ // Z[S1]

e // Z // 0

and

0 // L2j+2(C)

∼=σ

��

// LAsy2j+2(C)

∼=σAsy∗
��

// LAut2j(C)

∼=σAut∗
��

// L2j(C)

∼=σ

��

// 0

0 // Z 1 // Z[S1]
∂ // Z[S1]

e // Z // 0

with
∂ : Z[S1] −−→ Z[S1] ; a −−→ a− 1 ,

e : Z[S1] −−→ Z ; a −−→ 1 .

Proof (i) This is immediate from the special case F = C of 39.30, once
it has been verified that the 1-component of the multisignature is in fact
a cobordism invariant. Suppose then that (D,C) is a (2j + 2)-dimensional
symmetric Poincaré pair over C [z, z−1] with band boundary C = T (h), such
that there exists a (2j+3)-dimensional symmetric Poincaré pair (R, ∂R) with
boundary

∂R = D ∪T (h) −T (g)

for some extension of h to a self homotopy equivalence (g, h) : (Q,P ) →
(Q,P ) of a (2j + 1)-dimensional symmetric Poincaré pair (Q,P ) over C . By
the Novikov additivity of signature

σ(∂R) = σ(D,C)− σ(T (g)) = 0 ∈ Z .

Write
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(M,ϕ, h) = (Hj(P ), ϕP , h
∗)

and let L ⊂M be the h-invariant lagrangian of (M,ϕ) defined by

L = im(Hj(Q)−−→Hj(P )) .

Apply the formula of Wall [303] for the nonadditivity of the signature exactly
as in Neumann [214, p. 164], to obtain

σ(T (g)) = −σ(N,ψ) ∈ Z

with (N,ψ) the (potentially singular) (−)j+1-symmetric form over C defined
by

(N,ψ) = ({x ∈M | (1− h)(x) ∈ L}, ϕ(h− h−1)|) ,
such that h restricts to an automorphism h| : (N,ψ)−−→(N,ψ). The (z − a)-
primary decomposition of h :M−−→M determines (z−a)-primary decompo-
sitions

(M,ϕ, h) =
∑
a∈S1

(Ma, ϕa, ha)⊕ (M ′, ϕ′, h′) ,

(N,ψ) =
∑
a∈S1

(Na, ψa)⊕ (N ′, ψ′)

with
M ′ =

∑
a̸=a

Ma , N ′ =
∑
a ̸=a

Na

and (N ′, ψ′) hyperbolic. As in [214], the (z−a)-primary components of (N,ψ)
for a ̸= 1 ∈ S1 have ψa = 0, and (N1, ψ1) is a subform of (M1, ϕ1(h1 − h−1

1 ))
with N⊥

1 ⊆ N1, so that

σ(N,ψ) = σ(N1, ψ1)

= σ(M1, ϕ1(h1 − h−1
1 )) = σAut1 (M,ϕ(h− h−1), h) ∈ Z

and hence

σAsy1 (D,C) = σ(D,C) + σAut1 (M,ϕ(h− h−1), h)

= σ(T (g)) + σ(N,ψ) = 0 ∈ Z .

(ii) By 40.6 the asymmetric L-group LAsy2j+2(C) is generated by the cobor-
dism classes of the (2j+2)-dimensional asymmetric Poincaré complexes over
C of the type (Sj+1C , λ) (λ ∈ S1), so it suffices to prove that the mul-
tisignature of (Sj+1C , λ) agrees up to sign with the multisignature of the
(2j + 2)-dimensional symmetric Poincaré complex over C(z)

Bλ,(−)j+1 = (Sj+1C(z), ϕλ,(−)j+1)

defined by

ϕλ,(−)j+1 = (1− z−1)λ+ (−)j+1(1− z)λ : C(z) −−→ C(z)∗ .
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Let
a = (−)j+1λ

−1
λ = (−)j+1λ2 ∈ S1 .

By definition (40.5 (ii)), the asymmetric multisignature of (Sj+1C , λ) is

σAsy∗ (Sj+1C , λ) = (−)j+1σAsy∗ (C, λ)

=


σ(C,

1

2
(λ+ λ)).a if a ̸= (−)j

σ(C,
1

2i
(λ− λ)).a if a = (−)j

= ±a ∈ Z[S1] .

By construction
Bλ,(−)j+1 = C(z)⊗C[z,z−1] (C, ϕ)

is induced from (C, ϕ) = (Sj+1C [z, z−1], ϕλ,(−)j+1), with

σ(C⊗C[z,z−1] (C, ϕ)) = σ(C , 0) = 0 ∈ Z ,

so that

σAsy∗ (Bλ,(−)j+1) = σAut1 (∂C !, ∂ϕ !
0(ζ − ζ−1), ζ).1 +

∑
b ̸=1

σAutb (∂C !, ∂ϕ !
0, ζ).b

∈ Z[S1] .

As in the proof of 39.27 (iv)

(∂C !, ∂ϕ !
0, ζ) = (C⊕ C ,

(
0 1

(−)j 0

)
,

(
1 + (−)j+1λ

−1
λ (−)jλ−1

λ 0

)
){

has lagrangian {(x, λ(x)) |x ∈ C } ⊂ C⊕ C if a = 1
∼= (C , λ+ (−)jλ, 1)⊕ (C ,−(λ+ (−)jλ), a) if a ̸= 1 .

The (1− z)-primary component of the (−)j+1-symmetric form over C

(∂C !, ∂ϕ !
0(ζ − ζ−1)) = (C⊕ C ,

(
λ+ (−)j+1λ −1 + (−)jλλ−1

(−)j − λ−1
λ λ

−1
+ (−)j+1λ−1

)
)

with respect to the automorphism ζ is given up to isomorphism by

σAut1 (∂C !, ∂ϕ !
0(ζ − ζ−1), ζ) =

{
(C , λ)⊕ (C , 0) if a = 1

(C , 0) if a ̸= 1.

The asymmetric multisignature of Bλ,(−)j+1 is thus

σAsy∗ (Bλ,(−)j+1) = σAut1 (∂C !, ∂ϕ !
0(ζ − ζ−1), ζ).1 +

∑
b ̸=1

σAutb (∂C !, ∂ϕ !
0, ζ).b

=

{
σ(C , λ).1 if a = 1

σ(C ,−(λ+ (−)jλ)).a if a ̸= 1

= ±a ∈ Z[S1] .
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(iii) Combine 40.6 and (i). �
Definition 40.23 (i) The signature of a (2j + 2)-dimensional geometric
Poincaré pair (N, ∂N) is the signature of the (−)j+1-symmetric intersection
form (Hj+1(N ;C), ϕN ) over C

σ(N) = σ(Hj+1(N ;C), ϕN ) ∈ Z .

(The form is singular in general. The invariant is 0 for even k).
(ii) The automorphism multisignature of a self homotopy equivalence h :
P−−→P of a 2j-dimensional geometric Poincaré complex P is the automor-
phism multisignature of the induced automorphism

h∗ : (Hj(P ;C), ϕP ) −−→ (Hj(P ;C), ϕP )

of the (−)j-symmetric intersection form over C

σAut∗ (P, h) = σAut∗ (Hj(P ;C), ϕP , h∗) ∈ Z[S1] .

The signature of P is the sum of the multisignature components

σ(P ) =
∑
a∈S1

σAuta (P, h) ∈ Z .

(iii) Let (N, ∂N) be a (2j + 2)-dimensional geometric Poincaré pair which is
equipped with a map

(p, ∂p) : (N, ∂N) −−→ S1

such that ∂p : ∂N = T (h)−−→S1 is the projection of the mapping torus
of a self homotopy equivalence h : P−−→P of a 2j-dimensional geometric
Poincaré complex P . The asymmetric multisignature of (N,P, h) is the asym-
metric multisignature of the (2j + 2)-dimensional symmetric Poincaré pair
(C(N ;C), T (h : C(P ;C)−−→C(P ;C))) over C [z, z−1]

σAsy∗ (N,P, h) = σAsy∗ (C(N ;C), C(P ;C), h)

=
∑
a∈S1

σAsya (N,P, h).a ∈ Z[S1]

with components

σAsya (N,P, h)

=

{
σ(N) + σAut1 (Hj(P ;C), ϕP (h∗ − (h∗)−1), h∗) if a = 1

σAuta (P, h) if a ̸= 1 . �

Proposition 40.24 (i) Let (N, ∂N) be a (2j + 2)-dimensional geometric
Poincaré pair with ∂N = T (h : P−−→P ). The asymmetric multisignature
of (N,P, h) is the asymmetric multisignature of the (2j + 2)-dimensional
asymmetric Poincaré complex (C(N,P ;C), λ) obtained as in 27.6
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σAsy∗ (N,P, h) = σAsy∗ (C(N,P ;C), λ) ∈ Z[S1] .

The automorphism multisignature of (P, h) is given by

σAut∗ (P, h) = ∂σAsy∗ (N,P, h) ∈ Z[S1]

with ∂ : Z[S1]−−→Z[S1]; a−−→a− 1.
(ii) The asymmetric and automorphism multisignature maps define a natural
transformation of exact sequences

∆2j+1

σAut∗
��

// Ω2j+2(S
1)

σ
��

// AB2j

σAsy∗
��

// ∆2j

σAut∗
��

// Ω2j+1(S
1)

σ
��

LAut2j+1(C) //

∼=

��

L2j+2(Λ)

∼=

��

// L2j+2(C(z))

∼=
��

// LAut2j(C)

∼=
��

// L2j+1(Λ)

∼=

��
0 // Z 1 // Z[S1]

∂ // Z[S1]
e // Z

with Λ = C[z, z−1] and e : Z[S1]−−→Z; a−−→1. �
Corollary 40.25 (Neumann [214])
Let (N, ∂N) be a (2j + 2)-dimensional manifold with boundary which is a
fibre bundle over S1, with

(N, ∂N) = T ((g, ∂g) : (Q, ∂Q)−−→(Q, ∂Q)) .

The asymmetric multisignature of (N, ∂Q, ∂g) is

σAsy∗ (N, ∂Q, ∂g) =
∑
a∈S1

σAsya (N, ∂Q, ∂g).a = 0 ∈ Z[S1] .

In particular

σAsy1 (N, ∂Q, ∂g) = σ(N) + σAut1 (Hj(P ;C), ϕP (h∗ − (h∗)−1), h∗)

= 0 ∈ Z (P = ∂Q) .

Proof The double of N defines a null-cobordism of (N, ∂Q, ∂g), so that

(N, ∂Q, ∂g) = 0 ∈ AB2j

and the asymmetric multisignature vanishes by 40.22. �
Remark 40.26 (i) The various multisignatures considered in this chapter
are infinite versions of the multisignature used to compute L0

p(C[π]) for finite
groups π, which only has a finite number of components corresponding to the
self dual irreducible complex representations of π. See Wall [304, Chap. 13A]
(and also Ranicki [237, Chap. 22]) for more on the multisignature for finite
π, including the result that L2∗(Z[π]) is detected modulo 2-primary torsion
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by the real multisignature.
(ii) If π = Zm is a cyclic group of order m there is defined an isomorphism
of rings with involution

C[Zm] = C[z, z−1]/(zm − 1)
≃−−→

∏
m

C ; z −−→ (1, ω, ω2, . . . , ωm−1)

with ω = e2πi/m ∈ S1 a primitive mth root of 1. A projective nonsingular
symmetric form (L, λ) over C[Zm] can be regarded as a nonsingular symmet-
ric form (L, λ !) over C together with an automorphism ζ : (L, λ !)−−→(L, λ !)
such that ζm = 1 : L−−→L, with

λ !(u, v) =

(
coefficient of 1 in λ(u, v) ∈ C[π]

)
∈ C (u, v ∈ L) .

Now

(L, λ !) =
m−1⊕
j=0

(Lj , λ
!
j)

with
Lj = {u ∈ L | (ζ − ωj)N (u) = 0 for some N ≥ 0} ,

the generalized ωj-eigenspace of ζ. The jth projection

fj : C[Zm] −−→ C ; z −−→ ωj

is a morphism of rings with involution such that

fj(Lk, λ
!
k) =

{
(Lk, λ

!
k) if j = k

0 if j ̸= k .

The Witt class is determined by the signatures

σj = (Lj , λ
!
j) ∈ L0(C) = Z ,

with

(L, λ) = (σ0, σ1, . . . , σm−1) ∈ L0
p(C[Zm]) = LAut0(zm−1)(C) = Z[Zm] .

The symmetric Witt group L0
p(C[Zm]) = Z[Zm] can thus be regarded as a

subgroup of the automorphism Witt group LAut0(C) = Z[S1]. �



41. Coupling invariants

In Chap. 41 A is a Dedekind ring with involution, and F = S−1A is the
quotient field, with S = A\{0} ⊂ A. The undecorated L-groups L∗, L∗ are the
projective L-groups L∗

p, L
p
∗.

The results of Chap. 39 for the endomorphism L-groups of a field F are
now extended to the endomorphism L-groups of a Dedekind ring A, using
the ordinary L-theory of the appropriate localizations of the polynomial ex-
tensions :

(i) A[x], with x = x,
(ii) A[s], with s = 1− s,
(iii) A[z, z−1], with z = z−1.

Note that if A is not a field these polynomial extensions have global
dimension 2, so that they are not themselves Dedekind rings (although some
of the localizations may be so, e.g. if S = A\{0} ⊂ A is inverted). The
case most directly relevant to the computation of the high-dimensional knot
cobordism groups C2∗+1 is (ii) with A = Z, as will be discussed in Chap.
42 below. However, the other cases are also of interest, for example in open
books and the bordism of automorphisms of manifolds.

The endomorphism class group of A splits as

End0(A) =
⊕
p(x)

End
p(x)∞

0 (A)

with the sum running over all the monic irreducible polynomials p(x) ∈ A[x]
(14.16), and

End
p(x)∞

0 (A) =

{
Nil0(A) = K0(A) if p(x) = x

End
p(x)∞

0 (F ) = Z if p(x) ̸= x.

As already indicated in Chap. 14 the situation is considerably more compli-
cated for L-theory, involving the coupling invariants used by Stoltzfus [278]
to unravel the knot cobordism groups. The coupling endomorphism L-groups
CLEnd∗(A, ϵ) will now be defined, to fit into exact sequences
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. . . −−→
⊕
p(x)

LEndnp(x)∞(A, ϵ) −−→ LEndn(A, ϵ) −−→ CLEndn(A, ϵ)

−−→
⊕
p(x)

LEndn−1
p(x)∞(A, ϵ) −−→ . . .

for any central unit ϵ ∈ A such that ϵ = ϵ−1, with the sums running over all
the involution-invariant monic irreducible polynomials p(x) ∈ A[x]. Similarly
for the isometric, automorphism and asymmetric L-groups. The isometric L-
theory of A = Z is particularly significant, since the high-dimensional knot
cobordism groups are given by Cn = LIson+1(Z).

41A. Endomorphism L-theory

Definition 41.1 (i) Let

TA = {
d∑
j=0

ajx
j | aj = aj ∈ A , ad = 1} ⊂ A[x]

be the multiplicative subset of the involution-invariant monic polynomials,
with

d∑
j=0

ajx
j =

d∑
j=0

ajx
j ∈ A[x] ,

and let T−1
A A[x] be the localization of A[x] inverting TA.

(ii) Let Mx(A) ⊂ TA be the set of the involution-invariant monic polynomials
p(x) ∈ A[x] which are irreducible. �
Proposition 41.2 (i) The endomorphism L-groups of A are related to the
TA-primary endomorphism L-groups of F by a localization exact sequence

. . . −−→ LEndn(A, ϵ) −−→ LEndnTA
(F, ϵ)

−−→ LEndn(A,S, ϵ) −−→ LEndn−1(A, ϵ) −−→ . . .

with LEndn(A,S, ϵ) the cobordism groups of S−1A-contractible (n−1)-dimen-
sional f.g. projective ϵ-symmetric Poincaré complexes over A with an endo-
metric structure.
(ii) The endomorphism L-groups of A are 4-periodic

LEndn(A, ϵ) = LEndn+2(A,−ϵ) = LEndn+4(A, ϵ) .

The TA-primary endomorphism L-groups of F are 4-periodic and such that :

(a) LEnd2iTA
(F, ϵ) is the Witt group of F -nonsingular (−)iϵ-symmetric

forms (L, λ) over A with an endometric structure f : L−−→L,
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(b) LEnd2i+1
TA

(F, ϵ) = 0.

(iii) The TA-primary endomorphism ϵ-symmetric L-groups of F split as

LEndnTA
(F, ϵ) =

⊕
p(x)∈Mx(A)

LEndnp(x)∞(F, ϵ) .

If p(x) ∈Mx(A) factorizes in F [x] as a product of coprime monic polynomials

p(x) = p1(x)p2(x) . . . pk(x)q(x)q(x) ∈ F [x]

with each pj(x) ∈Mx(F ) involution-invariant and irreducible the

LEndnp(x)∞(F, ϵ) =
k⊕
j=1

Ln(F [x]/(pj(x)), ϵ) .

(iv) The endomorphism torsion L-groups split as

LEndn(A,S, ϵ) =
⊕

P∈max(A)

LEndn(A,P∞, ϵ) =
⊕

P∈max(A)

LEndn(A/P, uPϵ)

and
LEnd2∗+1(A,S, ϵ) = 0 .

Proof (i) Each monic polynomial p(x) ∈ TA ⊂ A[x] is a Fredholm 1 × 1
matrix in A[x], with A[x]/(p(x)) a f.g. free A-module of rank degree(p(x)).
The localization of A[x] inverting TA is thus a subring

T−1
A A[x] ⊆ Ω−1

+ A[x]

of the Fredholm localization of A[x] inverting the set Ω+ of the Fredholm
matrices in A[x] (10.4). (For the identity involution on A T−1

A A[x] = Ω−1
+ A[x]

by 8.7 and 10.10 (iv).) If (C, ϕ) is an n-dimensional ϵ-symmetric Poincaré
complex over A with an endometric structure f : C−−→C then

p(f) ≃ 0 : C −−→ C

for some p(x) ∈ TA, so that by 34.8

Ln
K̃0(A)

(T̃−1
A A[x], ϵ) = Ln

K̃0(A)
(Ω̃−1

+ A[x], ϵ) = LEndn(A, ϵ)

with

T̃A = {
d∑
j=0

bjx
j | bj = bj ∈ A, b0 = 1} ⊂ A[x]

the multiplicative subset consisting of the involution-invariant polynomials
with constant coefficient 1. The stated localization exact sequence is just the
localization exact sequence of 25.4
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. . . −−→ Ln
K̃0(A)

(T̃−1
A A[x], ϵ) −−→ Ln(T̃−1

A F [x], ϵ)

−−→ Ln(T̃−1
A A[x], S, ϵ) −−→ Ln−1

K̃0(A)
(T̃−1
A A[x], ϵ) −−→ . . . .

(ii) The 4-periodicity of the endomorphism L-groups is obtained by surgery
below the middle dimension, as for the ordinary ϵ-symmetric L-groups
Ln(A, ϵ) in 38.1 (i). Here are the details.

(a) Every element of LEnd2iTA
(F, ϵ) is represented by an endometric struc-

ture g : S−1M−−→S−1M for the form S−1(M,ϕ) over S−1A = F induced
from an F -nonsingular (−)iϵ-symmetric form (M,ϕ) over A with

p(g) = 0 : S−1M −−→ S−1M

for some

p(x) =
d∑
j=0

ajx
j ∈ TA ⊂ A[x] (aj = aj , ad = 1) .

Working as in Stoltzfus [278, 2.4] (cf. 17.5) define a g-invariant submodule

L = M + g(M) + . . .+ gd−1(M) ⊂ S−1M ,

and let
f = g| : L −−→ L , λ = sdϕsd| : L −−→ L∗

with s ∈ S such that sg(M) ⊆M . Now L is a torsion-free f.g. module over a
Dedekind ring A, so that it is f.g. projective, and (L, λ) is an F -nonsingular
(−)iϵ-symmetric form over A with an endometric structure f : L−−→L such
that

(S−1(M,ϕ), g) = S−1(L, λ, f) ∈ LEnd2iTA
(F, ϵ) .

(b) LEnd2i+1
TA

(F, ϵ) is just the subgroup of

LEnd2i+1(F, ϵ) =
⊕

p(x)∈Mx(F )

LEnd2i+1
p(x) (F, ϵ) = L2i+1(F (x), ϵ) = 0 ,

indexed by Mx(A) ⊆Mx(F ).

(iii) Immediate from 35.2 (ii) and the unique factorization of polynomials in
F [x].
(iv) As for the corresponding results for the ordinary L-groups

Ln(A,S, ϵ) =
⊕

P∈max(A)

Ln(A,P∞, ϵ) =
⊕

P∈max(A)

Ln(A/P, uPϵ) ,

L2∗+1(A,S, ϵ) = 0

of 38.5 and 38.9. �
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Proposition 41.3 Let p(x) ∈Mx(A).
(i) The localization exact sequence

. . . −−→ Ln(A[x], ϵ) −−→ Ln
K̃0(A[x])

(A[x, p(x)−1], ϵ)

−−→ Ln(A[x], p(x)∞, ϵ) −−→ Ln−1(A[x], ϵ) −−→ . . .

splits, with

Ln
K̃0(A[x])

(A[x, p(x)−1], ϵ) = Ln(A[x], ϵ)⊕ Ln(A[x], p(x)∞, ϵ) .

(ii) The (p(x))-primary torsion ϵ-symmetric L-groups of A[x] are such that

Ln(A[x], p(x)∞, ϵ) = LEndnp(x)∞(A, ϵ) = LEndnp(x)(A, ϵ)

with LEndnp(x)(A, ϵ) the cobordism group of f.g. projective n-dimensional ϵ-
symmetric Poincaré complexes (C, ϕ) over A with an endometric structure
(f, δϕ) such that p(f) ≃ 0 : C−−→C.
(iii) The (p(x))-primary ϵ-symmetric endomorphism L-groups of A and F
are related by a localization exact sequence

. . . −−→ LEndnp(x)(A, ϵ) −−→ LEndnp(x)(F, ϵ)

−−→ LEndnp(x)(A,S, ϵ) −−→ LEndn−1
p(x)(A, ϵ) −−→ . . .

with LEndnp(x)(A,S, ϵ) the cobordism group of F -contractible f.g. projective
(n − 1)-dimensional ϵ-symmetric Poincaré complexes (C, ϕ) over A with an
endometric structure (f, δϕ) such that p(f) ≃ 0 : C−−→C, and :

(a) LEnd2ip(x)(A,S, ϵ) is the Witt group of F -nonsingular (−)iϵ-symm-
etric linking forms (L, λ) over (A,S) with an endometric structure
f : L−−→L such that p(f) = 0, and

LEnd2ip(x)(A,S, ϵ)

=
⊕

P∈max(A)

⊕
q(x)∈Mx(A/P),q(x)|p(x)

LEnd0q(x)(A/P, (−)iϵ)

=
⊕

P∈max(A)

⊕
q(x)∈Mx(A/P),q(x)|p(x)

L0((A/P)[x]/(q(x)), (−)iϵ) ,

(b) LEnd2i+1
p(x) (A,S, ϵ) = 0.

(iv) If A[x]/(p(x)) is a Dedekind ring (e.g. if A is a field, or if p(x) has degree
1) then

LEndnp(x)(A, ϵ) = Ln(A[x]/(p(x)), ϵ) .

(v) The ϵ-symmetric L-groups of A[x] are such that

Lnh(A[x], ϵ) = Lnh(A, ϵ) , Ln
K̃0(A)

(A[x], ϵ) = Ln(A, ϵ) .
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Proof (i) This is a special case of 35.4.
(ii) The skew-suspension maps define isomorphisms

S : LEndnp(x)(A, ϵ)
≃−−→ LEndn+2

p(x)(A,−ϵ) ,

S : LEndnp(x)∞(A, ϵ)
≃−−→ LEndn+2

p(x)∞(A,−ϵ)

by algebraic surgery above the middle dimension (as in the ordinary L-theory
case of Ranicki [235, Prop. 4.6]), so it suffices to prove that the natural maps

LEndnp(x)(A, ϵ) −−→ LEndnp(x)∞(A, ϵ) ; (C, f, δϕ, ϕ) −−→ (C, f, δϕ, ϕ)

are isomorphisms for n = 0, 1. This will be done using the appropriate devis-
sage argument.
Only the case n = 0 will be worked out in detail; the case n = 1 is similar,
with formations instead of forms. An element

(M,ϕ, f) ∈ LEnd0p(x)∞(A, ϵ)

is represented by a f.g. projective nonsingular ϵ-symmetric form (M,ϕ) over
A together with an endomorphism f :M−−→M such that

f∗ϕ = ϕf : M −−→ M∗ , p(f)N = 0 : M −−→ M

for some N ≥ 1. If N ≥ 2 reduce to the case N = 1, as follows. Consider the
submodule

K = p(f)N−1(M) ⊂M .

The A-submodule

L = {x ∈M | ax ∈ K for some a ∈ A\{0}} ⊆M

contains K, with L/K the torsion submodule of M/K. The quotient A-
module M/L is projective, so that L is a direct summand of M . For any
x1, x2 ∈ L there exist a1, a2 ∈ A\{0}, y1, y2 ∈M such that

a1x1 = p(f)N−1(y1) , a2x2 = p(f)N−1(y2) ∈ K ,

a2ϕ(x1, x2)a1 = ϕ(p(f)N−1(y1), p(f)
N−1(y2))

= ϕ(y1, p(f)
2N−2(y2))

= 0 ∈ A (since 2N − 2 ≥ N) ,

ϕ(x1, x2) = 0 ∈ A .

Thus L is a sublagrangian of (M,ϕ) and

(M,ϕ, f) = (L⊥/L, [ϕ], f) ∈ im(LEnd0p(x)(A, ϵ)−−→LEnd
0
p(x)∞(A, ϵ)) .

(iii) Let
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p(x) =
d∑
j=0

ajx
j ∈Mx(A) (ad = 1)

with reduction

p̃(x) = xdp(x−1) =

d∑
j=0

ad−jx
j ∈ A[x] .

The ϵ-symmetric L-groups of A[x, p̃(x)−1] are such that

Ln
K̃0(A)

(A[x, p̃(x)−1], ϵ) = Ln(A, ϵ)⊕ LẼnd
n

p(x)(A, ϵ)

= LEndnp(x)(A, ϵ)

by the special case S = {xjp(x)k | j, k ≥ 0} ⊂ A[x] of 35.4. In particular,
there is defined an isomorphism

LEnd0p(x)(A, ϵ)
≃−−→ L0

K̃0(A)
(A[x, p̃(x)−1], ϵ) ;

(M,ϕ, f) −−→ (M [x, p̃(x)−1], ϕ(1− xf)) .

The stated localization exact sequence is just the localization exact sequence
of 25.4

. . . −−→ Ln
K̃0(A)

(A[x, p̃(x)−1], ϵ) −−→ Ln(F [x, p̃(x)−1], ϵ)

−−→ Ln(A[x, p̃(x)−1], S, ϵ) −−→ Ln−1

K̃0(A)
(A[x, p̃(x)−1], ϵ) −−→ . . . .

The ring
R = A[x]/(p(x))

is an integral domain which is an order with quotient field

E = F [x]/(p(x)) .

As in 41.3 choose a non-zero involution-preserving F -linear map h : E−−→F ,
e.g. the trace map trE/F if p(x) is separable. The inverse different (alias
codifferent) of R

∆ = {v ∈ E |h(Rv) ⊆ A}

is equipped with a pairing

∆×R −−→ A ; (u, v) −−→ h(uv)

such that the adjoint A-module morphisms

∆ −−→ HomA(R,A) ; u −−→ (v −−→ h(uv)) ,

R −−→ HomA(∆,A) ; v −−→ (u −−→ h(uv))
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are isomorphisms. Use h to identify LEnd2ip(x)(A, ϵ) with the Witt group of

nonsingular (−)iϵ-symmetric ∆-valued forms on f.g. torsion-free R-modules
(cf. Milnor [197], Knebusch and Scharlau [136] and Stoltzfus [278, 4.6],
[279, 2.13]). The other even-dimensional endomorphism L-groups in the lo-
calization exact sequence

0 −−→ LEnd2ip(x)(A, ϵ) −−→ LEnd2ip(x)(F, ϵ) −−→ LEnd2ip(x)(A,S, ϵ)

−−→ LEnd2i−1
p(x) (A, ϵ) −−→ 0

are given by

LEnd2ip(x)(F, ϵ) = L0(E, (−)iϵ) ,

LEnd2ip(x)(A,S, ϵ) =
⊕

Q∈max(∆)

L0(∆/Q, (−)iϵ) .

The involution-invariant maximal ideals of ∆ are of the form

Q = (P, q(x)) ▹ ∆

with P ∈ max(A) and q(x) ∈ A[x] a monic polynomial such that the reduction
in (A/P)[x] is involution-invariant, irreducible and divides the reduction of
p(x), with

∆/Q = (A/P)[x]/(q(x)) .

(iv) If R = A[x]/(p(x)) is a Dedekind ring it is possible to identify

{f.g. projective R-modules M}
= {f.g. projective A-modules M with an endomorphism

f :M−−→M such that p(f) = 0 :M−−→M} ,

and also

{ϵ-symmetric forms (M,ϕ) over R}
= {ϵ-symmetric forms (M,ϕ) over A with an endomorphic

structure f :M−−→M such that p(f) = 0 :M−−→M}

with λ, ϕ, f related by

λ(y, z) = ϕ(y, w) ∈ R
(y, z ∈M,w ∈M [x], (x− f)(w) = p(x)z ∈M [x]) .

The function

Ln(R, ϵ) −−→ LEndnp(x)(A, ϵ) ; (C, λ) −−→ (C, x, 0, ϕ)

is an isomorphism already on the level of algebraic Poincaré complexes.
(v) By 35.6 (iii) and the special case p(x) = x of (iii)
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Ln
K̃0(A)

(A[x], ϵ) = LNiln(A, ϵ)

= LEndn(x)∞(A, ϵ) = LEndnx(A, ϵ) = Ln(A, ϵ) .

For the free case apply the 5-lemma to the morphism of exact sequences

// Lnh(A, ϵ) //

��

Ln(A, ϵ) //

∼=

��

Ĥn(Z2; K̃0(A)) // Ln−1
h (A, ϵ) //

��
// Lnh(A[x], ϵ) //

Ln
K̃0(A)

(A[x], ϵ)

// Ĥn(Z2; K̃0(A)) // Ln−1
h (A[x], ϵ) //

�
Remark 41.4 (i) The endomorphism L-groups which occur in 41.3 (iv) are
given in the terminology of 28.15 by

LEndnp(x)(A, ϵ) = Ln(A[x]/(p(x)), A, ϵ)

(cf. 34.12). For n = 0 this is the Witt group of nonsingular ϵ-symmetric forms
(M,ϕ) over A with a morphism of rings with involution

A[x]/(p(x)) −−→ HomA(M,M)op .

(ii) For separable p(x) ∈Mx(A) the trace map

trE/F : E = F [x]/(p(x)) −−→ F

is such that

trE/F

(
xk

p′(x)

)
=

{
0 if k = 0, 1, 2, . . . , d− 2

1 if k = d− 1

(cf. 39.4), so that the inverse different of R = A[x]/(p(x)) is

∆ = Rp′(x)−1 ⊂ E .

(iii) See Levine [159, 28.2] for the necessary and sufficient condition on an
integral irreducible monic polynomial p(x) ∈ Mx(Z) for the quotient ring
Z[x]/(p(x)) to be Dedekind. For example, suppose that p(x) = x2 + ax+ b ∈
Z[x] is a quadratic polynomial with discriminant D = a2 − 4b ̸= 0. The
quotient ring Z[x]/(x2 + ax + b) is Dedekind unless p2|D for some prime p,
and p divides at most one of a, b, and D ≡ 0 or 4(mod 16) if p = 2. �
Remark 41.5 The analogue of 41.3 is false for the ϵ-quadratic endomorphism
L-groups, since the corresponding devissage fails in ϵ-quadratic L-theory (cf.
38.6). The natural map

LEndp(x)n (A, ϵ) −−→ LEndp(x)
∞

n (A, ϵ)
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is injective, but need not be surjective – for example, in the case A = Z,
p(x) = x, n = 0, ϵ = −1 the map

L0(Z,−1) = LEndx0(Z,−1)

−−→ LEndx
∞

0 (Z,−1) = LNil0(Z,−1) = L0(Z[x],−1)

has infinitely generated cokernel (cf. Remark 35.8 and Cappell [37]). �
Definition 41.6 The coupling endomorphism L-groups CLEndn(A, ϵ) are
the relative L-groups in the exact sequences

. . . −−→
⊕
p(x)

LEndnp(x)∞(A, ϵ) −−→ LEndn(A, ϵ) −−→ CLEndn(A, ϵ)

−−→
⊕

p(x)∈Mx(A)

LEndn−1
p(x)∞(A, ϵ) −−→ . . . .

�
Thus CLEndn(A, ϵ) is the cobordism group of n-dimensional ϵ-symmetric

Poincaré pairs (C−−→D, (δϕ, ϕ)) overA with an endometric structure (fD, fC)
which is decoupled on the boundary, i.e. such that

(C, ϕ, fC) =
⊕
p(x)

(C, ϕ, fC)p(x)

with (C, ϕ, fC)p(x) (p(x))-primary.

Proposition 41.7 (i) The coupling endomorphism L-groups fit into a com-
mutative braid of exact sequences

⊕
p(x)

LEndnp(x)(A, ϵ)

  B
BB

BB
BB

##⊕
p(x)

LEndnp(x)(F, ϵ)

  B
BB

BB
BB

BB

''
LEndn(A,S, ϵ)

LEndn(A, ϵ)

>>|||||||

##H
HH

HH
HH

HH
H ⊕

p(x)

LEndnp(x)(A,S, ϵ)

>>|||||||||||||||

##
LEndn+1(A,S, ϵ)

;;vvvvvvvvvv

99
CLEndn(A, ϵ)

;;vv

88
LEndn−1

p(x)(A, ϵ)

with
LEnd2∗+1(A,S, ϵ) = CLEnd2∗+1(A, ϵ) = 0 .

(ii) The endomorphism L-groups of A fit into an exact sequence
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0 −−→
⊕
p(x)

LEnd2ip(x)(A, ϵ) −−→ LEnd2i(A, ϵ) −−→
⊕
p(x)

LEnd2ip(x)(A,S, ϵ)

−−→ LEnd2i(A,S, ϵ)⊕
⊕
p(x)

LEnd2i−1
p(x) (A, ϵ) −−→ 0 .

(iii) If A is additively torsion-free the morphisms⊕
p(x)

LEnd2ip(x)(A, ϵ) −−→ LEnd2i(A, ϵ) ,

LEnd2i(A, ϵ) −−→
⊕
p(x)

LEnd2ip(x)(F, ϵ)

are isomorphisms modulo 8-torsion.
Proof (i) The braid is derived (by working on the chain level) from the mor-
phism of exact sequences

0 // CLEnd2i(A, ϵ) // ⊕
p(x)

LEnd2ip(x)(A,S, ϵ)

//

∼=

��

LEnd2i(A,S, ϵ) //

∼=

��

0

0 // CLEnd2i(A, ϵ) // ⊕
p(x)

LEnd2ip(x)(Â, Ŝ, ϵ)

// LEnd2i(Â, Ŝ, ϵ) // 0

and LEnd2∗+1(A,S, ϵ) = 0 by 41.2 (iv). Furthermore, there is defined an
exact sequence⊕

p(x)

LEnd2i+2
p(x)∞(A,S, ϵ)

∂
−−→ LEnd2i+2(A,S, ϵ) −−→ CLEnd2i+1(A, ϵ)

−−→
⊕
p(x)

LEnd2i+1
p(x)∞(A,S, ϵ)

with
LEnd2i+2(A,S, ϵ) =

⊕
P∈max(A)

LEnd2i+2(A/P, uPϵ)

by 41.2 (iv). The boundary map ∂ is onto, since if (M,ϕ) is a nonsingular
uPϵ-symmetric form over A/P with an endometric structure f : M−−→M
then

(M,ϕ, f) =
⊕

q(x)∈Mx(A/P)

(M,ϕ, f)q(x)

with (M,ϕ, f)q(x) (q(x))-primary, and each q(x) can be lifted to an element

q̃(x) ∈ Mx(A). Since LEnd2i+1
p(x)∞(A,S, ϵ) = 0 (41.3 (iv)), it follows that
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CLEnd2i+1(A, ϵ) = 0.
(ii) This is the Mayer–Vietoris exact sequence obtained from (i), using
LEnd2i+1(A,S, ϵ) = 0 and CLEnd2i+1(A, ϵ) = 0.
(iii) Exactly as for ordinary L-theory in 37.8, with the natural morphism of

rings with involution A−−→Â to the S-adic completion inducing an excision
isomorphism of exact sequences

// ⊕
p(x)

LEndnp(x)(A, ϵ)

//

��

⊕
p(x)

LEndnp(x)(F, ϵ)

//

∼=

��

⊕
p(x)

LEndnp(x)(A,S, ϵ)

��

//

// LEndn(A, ϵ) // LEndnTA
(F, ϵ) // LEndn(A,S, ϵ) //

and the symmetric Witt ring L0(Ẑ) = Z8 ⊕ Z2 of the profinite completion Ẑ
of Z acting on the endomorphism L-groups of (Â, Ŝ) (cf. 37.13). �

41B. Isometric L-theory

Definition 41.8 (i) Let

UA = {
d∑
j=0

ajs
j | aj = (−)d−j

d∑
k=j

(
k

j

)
ak , ad = 1} ⊂ A[s]

be the multiplicative subset of the involution-invariant monic polynomials,
with

d∑
j=0

aj(1− s)j = (−)d
d∑
j=0

ajs
j ∈ A[s] ,

and let U−1
A A[s] be the localization of A[s] inverting UA.

(ii) Let Ms(A) ⊂ UA be the set of the involution-invariant monic polynomials
p(s) ∈ A[s] which are irreducible. �
Proposition 41.9 (i) The isometric L-groups of A are related to the UA-
primary isometric L-groups of F by a localization exact sequence

. . . −−→ LIson(A, ϵ) −−→ LIsonUA
(F, ϵ)

−−→ LIson(A,S, ϵ) −−→ LIson−1(A, ϵ) −−→ . . .

with LIson(A,S, ϵ) the cobordism groups of (n−1)-dimensional F -contractible
f.g. projective ϵ-symmetric Poincaré complexes over A with an isometric
structure.
(ii) The isometric L-groups of A are 4-periodic

LIson(A, ϵ) = LIson+2(A,−ϵ) = LIson+4(A, ϵ) .
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The UA-primary isometric L-groups of F are 4-periodic and such that :

(a) LIso2iUA
(F, ϵ) is the Witt group of F -nonsingular (−)iϵ-symmetric

forms (L, λ) over A with an isometric structure f : L−−→L,
(b) LIso2i+1

UA
(F, ϵ) = 0.

(iii) The UA-primary isometric ϵ-symmetric L-groups of F split as

LIsonUA
(F, ϵ) =

⊕
p(s)∈Ms(A)

LIsonp(s)∞(F, ϵ) .

If p(s) ∈Ms(A) factorizes in F [s] as a product of coprime monic polynomials

p(s) = p1(s)p2(s) . . . pk(s)q(s)q(s) ∈ F [s]

with each pj(s) ∈Ms(F ) involution-invariant and irreducible then

LEndnp(s)∞(F, ϵ) =
k⊕
j=1

Ln(F [s]/(pj(s)), (−)dj ϵ) .

where dj = degree(pj(s)).
(iv) The isometric torsion L-groups split as

LIson(A,S, ϵ) =
⊕

P∈max(A)

LIson(A,P∞, ϵ) =
⊕

P∈max(A)

LIson(A/P, uPϵ)

and
LIso2∗+1(A,S, ϵ) = 0 .

Proof As for 41.2. �
Proposition 41.10 Let p(s) ∈Ms(A).
(i) The localization exact sequence

. . . −−→ Ln(A[s], ϵ) −−→ Ln
K̃0(A[s])

(A[s, p(s)−1], ϵ) −−→ Ln(A[s], p(s)∞, ϵ)

−−→ Ln−1(A[s], ϵ) −−→ . . .

splits, with

Ln
K̃0(A[s])

(A[s, p(s)−1], ϵ) = Ln(A[s], ϵ)⊕ Ln(A[s], p(s)∞, ϵ) .

(ii) The (p(s))-primary torsion ϵ-symmetric L-groups of A[s] are such that

Ln(A[s], p(s)∞, ϵ) = LIsonp(s)∞(A,−ϵ) = LIsonp(s)(A,−ϵ)

with LIsonp(s)(A,−ϵ) the cobordism group of f.g. projective n-dimensional
(−ϵ)-symmetric Poincaré complexes (C, ϕ) over A with an isometric struc-
ture (f, δϕ) such that p(f) ≃ 0 : C−−→C.
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(iii) The (p(s))-primary ϵ-symmetric isometric L-groups of A and F are re-
lated by a localization exact sequence

. . . −−→ LIsonp(s)(A, ϵ) −−→ LIsonp(s)(F, ϵ)

−−→ LIsonp(s)(A,S, ϵ) −−→ LIson−1
p(s) (A, ϵ) −−→ . . .

with LIsonp(s)(A,S, ϵ) the cobordism group of F -contractible f.g. projective
(n − 1)-dimensional ϵ-symmetric Poincaré complexes (C, ϕ) over A with an
isometric structure (f, δϕ) such that p(f) ≃ 0 : C−−→C, and :

(a) LIso2ip(s)(A,S, ϵ) is the Witt group of F -nonsingular (−)iϵ-symmetric
linking forms (L, λ) over (A,S) with an isometric structure f :
L−−→L such that p(f) = 0, and

LIso2ip(s)(A,S, ϵ)

=
⊕

P∈max(A)

⊕
q(s)∈Ms(A/P),q(s)|p(s)

LIso0q(s)(A/P, (−)iϵ)

=
⊕

P∈max(A)

⊕
q(s)∈Ms(A/P),q(s)|p(s)

L0((A/P)[s]/(q(s)), (−)iϵ) ,

(b) LIso2i+1
p(s) (A,S, ϵ) = 0.

(iv) If A[s]/(p(s)) is a Dedekind ring (e.g. if A is a field, or if p(s) has degree
1) then

LIsonp(s)(A, ϵ) = Ln(A[s]/(p(s)), ϵ) .

(v) The ϵ-symmetric L-groups of A[s] are such that

Lnh(A[s], ϵ) = Lnh(A, ϵ) , Ln
K̃0(A)

(A[s], ϵ) = Ln(A, ϵ) .

Proof (i) This is a special case of 35.11.
(ii)+(iii)+(iv) As in the proof of 41.3 (ii) it suffices to prove that the natural
map

LIsonp(s)(A, ϵ) −−→ LIsonp(s)∞(A, ϵ) ; (C, f, δϕ, ϕ) −−→ (C, f, δϕ, ϕ)

is an isomorphism for n = 0. An element

(M,ϕ, f) ∈ LIso0p(s)∞(A, ϵ)

is represented by a f.g. projective nonsingular ϵ-symmetric form (M,ϕ) over
A together with an endomorphism f :M−−→M such that

(1− f∗)ϕ = ϕf : M −−→ M∗ , p(f)N = 0 : M −−→ M

for some N ≥ 1. If N ≥ 2 reduce to the case N = 1 as in the proof of 41.3,
noting that p(f) :M−−→M is such that
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p(f)∗ϕ = p(f∗)ϕ = ϕp(1− f) = u−1ϕp(f) : M −−→ M∗ .

The rest is as for 41.3 (ii)+(iii)+(iv)+(v). �
Remark 41.11 (i) The isometric L-groups which occur in 41.10 (iv) are
given in the terminology of 28.15 by

LIsonp(s)(A, ϵ) = Ln(A[s]/(p(s)), A, ϵ) .

For n = 0 this is the Witt group of nonsingular ϵ-symmetric forms (M,ϕ)
over A with a morphism of rings with involution

A[s]/(p(s)) −−→ HomA(M,M)op .

(ii) In general, R = A[s]/(p(s)) is an order in its quotient field E =
F [s]/(p(s)). As in 41.4 (ii) choose a non-zero involution-preserving F -linear
map h : E−−→F (e.g. the trace map trE/F if p(s) is separable) and identify

LIso2ip(s)(A, ϵ) with the Witt group of nonsingular (−)iϵ-symmetric ∆-valued
forms on f.g. torsion-free A[s]/(p(s))-modules, with

∆ = {v ∈ E |h(vR) ⊆ A}

the inverse different. The other terms in the localization exact sequence

0 −−→ LIso2ip(s)(A, ϵ) −−→ LIso2ip(s)(F, ϵ) −−→ LIso2ip(s)(A,S, ϵ)

−−→ LIso2i−1
p(s) (A, ϵ) −−→ 0

are given by

LIso2ip(s)(F, ϵ) = L0(E, (−)iϵ) ,

LIso2ip(s)(A,S, ϵ) =
⊕

P∈max(∆)

L0(∆/P, (−)iϵ) . �

Definition 41.12 The coupling isometric L-groups CLIson(A, ϵ) are the rel-
ative L-groups in the exact sequences

. . . −−→
⊕
p(s)

LIsonp(s)(A, ϵ) −−→ LIson(A, ϵ) −−→ CLIson(A, ϵ)

−−→
⊕
p(s)

LIson−1
p(s) (A, ϵ) −−→ . . . .

with p(s) ∈Ms(A). �
Thus CLIson(A, ϵ) is the cobordism group of n-dimensional ϵ-symmetric

Poincaré pairs (C−−→D, (δϕ, ϕ)) over A with an isometric structure (fD, fC)
which is decoupled on the boundary, i.e. such that
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(C, ϕ, fC) =
⊕
p(s)

(C, ϕ, fC)p(s)

with (C, ϕ, fC)p(s) (p(s))-primary.

Proposition 41.13 (i) The coupling isometric L-groups fit into a commuta-
tive braid of exact sequences

⊕
p(x)

LIsonp(x)(A, ϵ)

��?
??

??
?

""⊕
p(x)

LIsonp(x)(F, ϵ)

��?
??

??
??

?

''
LIson(A,S, ϵ)

LIson(A, ϵ)

??������

""E
EE

EE
EE

EE
E ⊕

p(x)

LIsonp(x)(A,S, ϵ)

??��������������

""
LIson+1(A,S, ϵ)

<<yyyyyyyyy

::
CLIson(A, ϵ)

<<yy

99
LIson−1

p(x)(A, ϵ)

with
LIso2∗+1(A,S, ϵ) = CLIso2∗+1(A, ϵ) = 0 .

(ii) The isometric L-groups of A fit into an exact sequence

0 −−→
⊕
p(s)

LIso2ip(s)(A, ϵ) −−→ LIso2i(A, ϵ) −−→
⊕
p(s)

LIso2ip(s)(A,S, ϵ)

−−→ LIso2i(A,S, ϵ)⊕
⊕
p(s)

LIso2i−1
p(s) (A, ϵ) −−→ 0 .

(iii) If A is additively torsion-free the morphisms⊕
p(s)

LIso2ip(s)(A, ϵ) −−→ LIso2i(A, ϵ) ,

LIso2i(A, ϵ) −−→
⊕
p(s)

LIso2ip(s)(F, ϵ)

are isomorphisms modulo 8-torsion. �
Remark 41.14 The odd-dimensional knot cobordism groups

C2i−1 = LIso2i(Z)

fit into a commutative braid of exact sequences
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⊕
p(s)

LIso2ip(s)(Z)

!!D
DD

DD
DD

$$⊕
p(s)

LIso2ip(s)(Q)

!!D
DD

DD
DD

DD

))
LIso2i(Z, S)

C2i−1

==zzzzzzz

!!D
DD

DD
DD

DD
DD

D ⊕
p(s)

LIso2ip(s)(Z, S)

==zzzzzzzzzzzzzzz

!!D
DD

DD
DD

0

==zzzzzzzzzzzzzz
99

CLIso2i(Z)

==zzzz

44
⊕
p(s)

LIso2i−1
p(s) (Z)

with exact sequences

0 −−→ C2i−1 −−→
⊕
p(s)

LIso2ip(s)(Q) −−→ LIso2i(Z, S) −−→ 0 ,

0 −−→
⊕
p(s)

LIso2ip(s)(Z) −−→ C2i−1 −−→
⊕
p(s)

LIso2ip(s)(Z, S)

−−→ LIso2i(Z, S)⊕
⊕
p(s)

LIso2i−1
p(s) (Z) −−→ 0

as in Stoltzfus [278, p. 25], with p(s) ∈ Ms(Z). Levine [157] showed that the
odd-dimensional knot cobordism groups C2i−1 have an infinite number of
elements of order 4 (cf. 42.1 below). By contrast, it is proved in [278, p. 58]
that the groups LIso2ip(s)(Z) do not have elements of order 4 for i even, with

the difference picked up by the coupling invariants in CLIso2i(Z). �

41C. Automorphism L-theory

Definition 41.15 (i) Let

VA = {
d∑
j=0

ajz
j | a0 ∈ U(A), ad = 1, aj = a0ad−j} ⊂ A[z, z−1]

be the multiplicative subset of the involution-invariant monic polynomials,
with

d∑
j=0

ajz
−j = a0z

−d(

d∑
j=0

ajz
j) ∈ A[z, z−1] ,
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and let V −1
A A[z, z−1] be the localization of A[z, z−1] inverting VA.

(ii) Let Mz(A) ⊂ VA be the set of the involution-invariant monic polynomials
p(z) ∈ A[z, z−1] which are irreducible. �
Proposition 41.16 (i) The automorphism L-groups of A are related to the
VA-primary automorphism L-groups of F by a localization exact sequence

. . . −−→ LAutn(A, ϵ) −−→ LAutnVA
(F, ϵ)

−−→ LAutn(A,S, ϵ) −−→ LAutn−1(A, ϵ) −−→ . . .

with LAutn(A,S, ϵ) the cobordism groups of (n− 1)-dimensional F -contract-
ible f.g. projective ϵ-symmetric Poincaré complexes over A with an autometric
structure.
(ii) The automorphism L-groups of A are 4-periodic

LAutn(A, ϵ) = LAutn+2(A,−ϵ) = LAutn+4(A, ϵ) .

The VA-primary automorphism L-groups of F are 4-periodic and such that :

(a) LAut2iTA
(F, ϵ) is the Witt group of F -nonsingular (−)iϵ-symmetric

forms (L, λ) over A with an F -automorphism h : (L, λ)−−→(L, λ),
and

LAut2ip(z)(A,S, ϵ) =
⊕

P∈max(A)

LAut2ip(z)(A/P, uPϵ) ,

(b) LAut2i+1
TA

(F, ϵ) = 0.

(iii) The VA-primary automorphism ϵ-symmetric L-groups of F split as

LAutnVA
(F, ϵ) =

⊕
p(z)∈Mz(A)

LAutnp(z)∞(F, ϵ) .

If p(z) ∈ Mz(A) factorizes in F [z, z−1] as a product of coprime monic poly-
nomials

p(z) = p1(z)p2(z) . . . pk(z)q(z)q(z) ∈ F [z, z−1]

with each pj(z) ∈Mz(F ) involution-invariant and irreducible the

LAutnp(z)∞(F, ϵ) =

k⊕
j=1

Ln(F [z, z−1]/(pj(z)), ϵ) .

(iv) The automorphism torsion L-groups split as

LAutn(A,S, ϵ) =
⊕

P∈max(A)

LAutn(A,P∞, ϵ) =
⊕

P∈max(A)

LAutn(A/P, uPϵ)

and
LAut2∗+1(A,S, ϵ) = 0 .



41C. Automorphism L-theory 609

Similarly for the asymmetric L-groups.
Proof As for 41.2. The sequence in (i) may be identified with the localization
exact sequence of 25.4

. . . −−→ Ln
K̃0(A)

(A[z, z−1], VA,−ϵ) −−→ Ln(F [z, z−1], VA,−ϵ)

−−→ Ln(A[z, z−1], SVA,−ϵ) −−→ Ln−1

K̃0(A)
(A[z, z−1], VA,−ϵ) −−→ . . . ,

noting that VA ⊆ Ω is such that

Ln
K̃0(A)

(A[z, z−1], VA,−ϵ) = Ln
K̃0(A)

(A[z, z−1], Ω,−ϵ) = LAutn(A, ϵ) . �

Proposition 41.17 Let p(z) ∈Mz(A).
(i) The (p(z))-primary ϵ-symmetric L-groups fit into a localization exact se-
quence

. . . −−→ Ln
K̃0(A)

(A[z, z−1], ϵ) −−→ Ln
K̃0(A)

(A[z, z−1, p(z)−1], ϵ)

−−→ Ln(A[z, z−1], p(z)∞, ϵ) −−→ Ln−1

K̃0(A)
(A[z, z−1], ϵ) −−→ . . .

(ii) The (p(z))-primary torsion ϵ-symmetric L-groups of A[z, z−1] are such
that

Ln(A[z, z−1], p(z)∞, ϵ) = LAutnp(z)∞(A,−ϵ) = LAutnp(z)(A,−ϵ)

with LAutnp(z)(A,−ϵ) the cobordism group of f.g. projective n-dimensional
(−ϵ)-symmetric Poincaré complexes (C, ϕ) over A with an automorphism
(f, δϕ) such that p(f) ≃ 0 : C−−→C.
(iii) The (p(z))-primary ϵ-symmetric automorphism L-groups of A and F are
related by a localization exact sequence

. . . −−→ LAutnp(z)(A, ϵ) −−→ LAutnp(z)(F, ϵ)

−−→ LAutnp(z)(A,S, ϵ) −−→ LAutn−1
p(z) (A, ϵ) −−→ . . .

with LAutnp(z)(A,S, ϵ) the cobordism group of F -contractible f.g. projective
(n − 1)-dimensional ϵ-symmetric Poincaré complexes (C, ϕ) over A with an
automorphism (f, δϕ) such that p(f) ≃ 0 : C−−→C, and :

(a) LAut2ip(z)(A,S, ϵ) is the Witt group of F -nonsingular (−)iϵ-symm-
etric linking forms (L, λ) over (A,S) with an automorphism f :
(L, λ)−−→(L, λ) such that p(f) = 0, and

LAut2ip(z)(A,S, ϵ)

=
⊕

P∈max(A)

⊕
q(z)∈Mz(A/P),q(z)|p(z)

LAut0q(z)(A/P, (−)iϵ)

=
⊕

P∈max(A)

⊕
q(z)∈Mz(A/P),q(z)|p(z)

L0((A/P)[z, z−1]/(q(z)), (−)iϵ) ,



610 41. Coupling invariants

(b) LAut2i+1
p(z) (A,S, ϵ) = 0.

(iv) If A[z, z−1]/(p(z)) is a Dedekind ring (e.g. if A is a field, or if p(z) has
degree 1) then

LAutnp(z)(A, ϵ) = Ln(A[z, z−1]/(p(z)), ϵ) .

(v) The ϵ-symmetric L-groups of A[z, z−1] are such that

Lnh(A[z, z
−1], ϵ) = Lnh(A, ϵ) , Ln

K̃0(A)
(A[z, z−1], ϵ) = Ln(A, ϵ) .

Proof (i) As in the proof of 41.3 it suffices to prove that the natural map

LAutnp(z)(A, ϵ) −−→ LAutnp(z)∞(A, ϵ) ; (C, h, δϕ, ϕ) −−→ (C, h, δϕ, ϕ)

is an isomorphism for n = 0. An element

(M,ϕ, h) ∈ LAut0p(z)∞(A, ϵ)

is represented by a f.g. projective nonsingular ϵ-symmetric form (M,ϕ) over
A together with an automorphism h : (M,ϕ)−−→(M,ϕ) such that

p(h)N = 0 : M −−→ M

for some N ≥ 1. If N ≥ 2 reduce to the case N = 1 as in the proof of 41.3,
noting that p(h) :M−−→M is such that

p(h)∗ϕ = p(h∗)ϕ = ϕp(h−1) = u−1ϕp(h) : M −−→ M∗ .

(ii)+(iii) As for 41.3 (ii)+(iii). �
Remark 41.18 (i) The automorphism L-groups which occur in 41.17 (iii)
are given in the terminology of 28.15 by

LAutnp(z)(A, ϵ) = Ln(A[z, z−1]/(p(z)), A, ϵ) .

For n = 0 this is the Witt group of nonsingular ϵ-symmetric forms (M,ϕ)
over A with a morphism of rings with involution

A[z, z−1]/(p(z)) −−→ HomA(M,M)op .

(ii) In general, A[z, z−1]/(p(z)) is an order in its quotient field

E = F [z, z−1]/(p(z)) ,

and for separable p(z) it is possible to use the trace map trE/F : E−−→F as in

41.4 (ii) and 41.11 (ii) to identify LAut2ip(z)(A, ϵ) with the Witt group of non-

singular (−)iϵ-symmetric∆-valued forms on f.g. torsion-free A[z, z−1]/(p(z))-
modules, with ∆ the inverse different. The other terms in the localization
exact sequence
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0 −−→ LAut2ip(z)(A, ϵ) −−→ LAut2ip(z)(F, ϵ) −−→ LAut2ip(z)(A,S, ϵ)

−−→ LAut2i−1
p(z) (A, ϵ) −−→ 0

are given by

LAut2ip(z)(F, ϵ) = L0(E, (−)iϵ) ,

LAut2ip(z)(A,S, ϵ) =
⊕

P∈max(∆)

L0(∆/P, (−)iϵ) . �

Proposition 41.19 Let

p(z) = z − a ∈Mz(A)

for some a ∈ U(A) (i.e. a unit a ∈ A• with a = a−1). In this case the
localization exact sequence of 41.17 (i) splits, with

Ln
K̃0(A)

(A[z, z−1], ϵ) = Ln(A, ϵ)⊕ Ln−1(A, ϵ) ,

Ln(A[z, z−1], (z − a)∞, ϵ) = LAutn−2
(z−a)∞(A, ϵ) = Ln−2(A, ϵ) ,

Ln
K̃0(A)

(A[z, z−1, (z − a)−1], ϵ) = Ln(A, ϵ) .

In particular, the special case a = 1 shows that the unipotent ϵ-symmetric
groups of A (35.29) are given by

LAutnuni(A, ϵ) = Ln(z−1)∞(A, ϵ) = Ln(A, ϵ) ,

LÃut
n

uni(A, ϵ) = 0 .

Proof The case p(z) = z − a of 41.17 (ii) gives

Ln(A[z, z−1], (z − a)∞, ϵ) = LAutn−2
(z−a)(A, ϵ) = Ln−2(A, ϵ) .

Write Λ = A[z, z−1, (z − a)−1]. The application of the 5-lemma to the mor-
phism of exact sequences

. . . // Ln(A, ϵ)⊕ Ln−1(A, ϵ)

∼=

��

(1 0)
// Ln(A, ϵ)

��

0 // Ln−2(A, ϵ)

∼=

��

// . . .

. . . //
Ln
K̃0(A)

(A[z, z−1], ϵ)

//
Ln
K̃0(A)

(Λ, ϵ)

// LAutn−2
(z−a)∞(A, ϵ) // . . .

gives
Ln
K̃0(A)

(Λ, ϵ) = Ln(A, ϵ) . �
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Definition 41.20 The coupling automorphism L-groups CLAutn(A, ϵ) are
the relative L-groups in the exact sequences

. . . −−→
⊕
p(z)

LAutnp(z)(A, ϵ) −−→ LAutn(A, ϵ) −−→ CLAutn(A, ϵ)

−−→
⊕

p(z)∈Mz(A)

LAutn−1
p(z) (A, ϵ) −−→ . . . . �

Thus CLAutn(A, ϵ) is the cobordism group of n-dimensional ϵ-symmetric
Poincaré pairs (C−−→D, (δϕ, ϕ)) overA with an autometric structure (fD, fC)
which is decoupled on the boundary, i.e. such that

(C, ϕ, fC) =
⊕
p(z)

(C, ϕ, fC)p(z)

with (C, ϕ, fC)p(z) (p(z))-primary.

Proposition 41.21 (i) The coupling automorphism L-groups fit into a com-
mutative braid of exact sequences

⊕
p(z)

LAutnp(z)(A, ϵ)

  A
AA

AA
AA

##⊕
p(z)

LAutnp(z)(F, ϵ)

  A
AA

AA
AA

A

''
LAutn(A,S, ϵ)

LAutn(A, ϵ)

>>}}}}}}}

##G
GG

GG
GG

GG
G ⊕

p(z)

LAutnp(z)(A,S, ϵ)

>>}}}}}}}}}}}}}}}

##
LAutn+1(A,S, ϵ)

;;wwwwwwwwww

::
CLAutn(A, ϵ)

;;ww

99
LAutn−1

p(z) (A, ϵ)

with
LAut2∗+1(A,S, ϵ) = CLAut2∗+1(A, ϵ) = 0 .

(ii) The automorphism L-groups of A fit into an exact sequence

0 −−→
⊕
p(z)

LAut2ip(z)(A, ϵ) −−→ LAut2i(A, ϵ) −−→
⊕
p(z)

LAut2ip(z)(A,S, ϵ)

−−→ LAut2i(A,S, ϵ)⊕
⊕
p(z)

LAut2i−1
p(z) (A, ϵ) −−→ 0 .



41C. Automorphism L-theory 613

(iii) If A is additively torsion-free the morphisms⊕
p(z)

LAut2ip(z)(A, ϵ) −−→ LAut2i(A, ϵ) ,

LAut2i(A, ϵ) −−→
⊕
p(z)

LAut2ip(z)(F, ϵ)

are isomorphisms modulo 8-torsion.
Similarly for the asymmetric L-groups. �
Proposition 41.22 (i) Let

p(z) =
d∑
j=0

ajz
j ∈ A[z, z−1] , q(s) =

d∑
j=0

bjs
j ∈ A[s] ,

be polynomials which are related by the one-one correspondence of 35.31 (i),
with p(0), p(1) ̸= 0 ∈ A and

p(z) = (1− z)dq((1− z)−1) =
d∑
j=0

bj(1− z)d−j ,

q(s) = sdp(1− s−1) =

d∑
j=0

ajs
d−j(s− 1)j .

The polynomial p(z) is irreducible (resp. involution-invariant) if and only if
the polynomial q(s) is irreducible (resp. involution-invariant).
(ii) If p(z) ∈ A[z, z−1], q(s) ∈ A[s] are related as in (i), involution-invariant,
irreducible and p(1) = 1 ∈ A (or equivalently q(s) is monic) then

LIso0q(s)(A, ϵ) = L0
h(A[z, z

−1], p(z)∞,−ϵ) .

Furthermore, if p(z) is monic (or equivalently q(0) = (−)d ∈ A) then

LIso0q(s)(A, ϵ) = L0
h(A[z, z

−1], p(z)∞,−ϵ)

= LAut0p(z)(A, ϵ)

= LAut0fib,p(z)(A, ϵ)

= LAsy0p(−ϵ−1z)(A) .

Proof Take S = (p(z))∞ ⊂ A[z, z−1], T = (q(s))∞ ⊂ A[s] in 35.31 (ii). �
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42. The knot cobordism groups

The cobordism groups Cn of n-knots k : Sn ⊂ Sn+2 were first defined in the
1960’s. The computation in the high dimensions n ≥ 3 was completed by the
1970’s. The object of this final chapter is to give a brief description of the
algebraic structure of the odd-dimensional groups

C2j−1 = L̂0(Z, (−)j) = LIso0(Z, (−)j)

= LAsy0(Z, P, (−)j) = L0(Z[z, z−1], P, (−)j+1) (j ≥ 2)

with P = {p(z) | p(1) = ±1} ⊂ Z[z, z−1].

Proposition 42.1 (Kervaire [131],Milnor [195], Levine [156], [157], Stoltzfus
[278])
(i) The high-dimensional knot cobordism groups Cn (n ≥ 3) are 4-periodic

Cn = Cn+4 .

(ii) The even-dimensional groups vanish

C2∗ = 0 .

(iii) The odd-dimensional groups C2∗+1 are countably infinitely generated,
with both C4∗ and C4∗+2 of the type⊕

∞
Z⊕

⊕
∞

Z2 ⊕
⊕
∞

Z4 .

Proof As in [131] apply the high-dimensional surgery method of Kervaire and
Milnor [133] to prove that Cn is the cobordism group of simple n-knots, and
to extend the computation L2∗+1(Z) = 0 to C2∗ = 0.

The first odd-dimensional knot cobordism invariant was obtained for clas-
sical knots k : S1 ⊂ S3 by Fox and Milnor [82] from Reidemeister torsion
modulo squares, and used to show that C1 is infinitely generated. This in-
variant can be used as in [131, III.12] to show that all the odd-dimensional
knot cobordism groups C2j−1 are infinitely generated. Here are the details.

Given a (2j − 1)-knot k : S2j−1 ⊂ S2j+1 with knot exterior X write the
jth Alexander polynomial as
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∆j(z) = det((z − ζ)/(1− ζ) : Hj(X;Q)[z]−−→Hj(X;Q)[z])

=

d∑
i=0

aiz
i ∈ P ⊂ Z[z] ⊂ Q[z] (

d∑
i=0

ai = 1 , ad = 1) ,

with d = dimQHj(X;Q). In terms of a Seifert form (L, λ) for k

∆j(z) = det(1− f + zf : L[z]−−→L[z]) ∈ Z[z]

with
f = (λ+ (−)jλ∗)−1λ : L −−→ L ,

Hj(X;Q) = coker(1− f + zf : L[z, z−1]−−→L[z, z−1]) .

Define the involution-invariant monic polynomial

∆̃j(s) = sd∆j(1− s−1) =
d∑
i=0

ai(s− 1)isd−i

= sddet(1− s−1f : L[s]−−→L[s]) ∈ Z[s] ,

and factorize ∆̃j(s) as a product

∆̃j(s) =

( t∏
r=1

pr(s)
nr

)
q(s)q(s) ∈ Z[s]

with each pr(s) ∈ Ms(Z) an involution-invariant irreducible monic polyno-
mial. The Reidemeister torsion map in knot cobordism is given by

∆ : C2j−1 = L2j+2(Z[z, z−1], P ) = LIso2j(Z)

−−→ Ĥ0(Z2;K1(Z[z, z−1], P )) = Ĥ0(Z2; Iso0(Z)) = Z2[Ms(Z)] ;

k −−→ ∆̃j(s) = [L, f ] =
t∑

r=1

nr[pr(s)] .

The image of the Reidemeister torsion map

∆ : C2j−1 −−→ Z2[Ms(Z)]

was characterized in [156] : ∆ is onto for odd j, and for even j the image of
∆ is generated by the classes of the involution-invariant monic polynomials
∆̃(s) ∈ Z[s] such that 2d∆̃(1/2) is a square, where d = degree(∆̃(s)). In both
cases the image of ∆ is countably infinitely generated, namely

⊕
∞

Z2.

The isometric multisignature (Chap. 40A) provides integer-valued knot
cobordism invariants, as in [195] and [156], [157]. It follows from 41.13 (iii)
that the natural maps

C2j−1 = LIso2j(Z) −−→ LIso2jUZ
(Q)
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are injections with 8-torsion cokernel, where UZ ⊂ Q[s] is the multiplicative
subset of involution-invariant monic polynomials with integer coefficients.
If (M,ϕ) is a nonsingular (−)j-symmetric form over Q with an isometric
structure f :M−−→M such that chs(M,f) ∈ UZ, say

chs(M,f) = det(s− f :M [s]−−→M [s]) =

m∑
j=0

bjs
j ∈ Z[s]

(bm = 1 , m = dimQ(M)) ,

then

det(1− 2f :M−−→M) =

m∑
j=0

bj2
m−j = 2(

m−1∑
j=0

bj2
m−j−1) + 1 ∈ Z

is an odd integer, so that 1− 2f :M−−→M is an automorphism. The groups
LIso2jUZ

(Q) are 2-periodic (i.e. independent of j), with an isomorphism

LIso2jUZ
(Q) −−→ LIso2j+2

UZ
(Q) ; (M,ϕ, f) −−→ (M,ϕ(1− 2f), f) .

Define the sets

R1/2 = {a ∈ C |Re(a) = 1/2} ,

Q1/2 = {a ∈ R1/2 | a is an algebraic integer, Im(a) > 0}
and the subgroup

I = Z[{1.a+ 1.a | a ∈ Q1/2}] ⊂ Z[R1/2] .

By 40.3 the isometric signature defines an isomorphism

σIso∗ : LIso2j(C)
≃−−→ Z[R1/2] .

By the primary decomposition of isometric L-theory and devissage (39.12)

LIso2jUZ
(Q) =

⊕
p(s)∈Ms(Z)

LIso2jp(s)(Q)

=
⊕

p(s)∈Ms(Z)

L0(Q[s]/(p(s)), (−)j) .

The image of the natural map

i : LIso2jUZ
(Q) −−→ LIso2j(C) = Z[R1/2]

is such that im(i) ⊆ I, with ker(i) and I/im(i) 8-torsion. The isometric
multisignature maps

σIso∗ : C2j−1 = LIso2j(Z) −−→ I ∼= Z[Q1/2] ∼=
⊕
∞

Z

are thus isomorphisms modulo 2-primary torsion, and

C2j−1/torsion =
⊕
∞

Z .
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See [157] for the original proof (based on the methods of Milnor [197]) that
there is only countable 2- and 4-torsion in C2j−1, so that

torsion =
⊕
∞

Z2 ⊕
⊕
∞

Z4 .

The precise nature of the torsion in C2∗−1 was computed in [278] by means
of the coupling invariants. �
Example 42.2 Specific infinite linearly independent sets in C2j−1 were con-
structed in Kervaire [131, III.12] and Milnor [195], as follows.
(i) For odd j define for each integer m ≥ 1 the skew-symmetric Seifert form
over Z

(Lm, λm) = (Z⊕ Z,
(
m 0

−1 1

)
) ,

with Alexander polynomial

∆j(z)m = det((λm − λ∗m)−1(zλm − λ∗m) : Lm[z, z−1]−−→Lm[z, z−1])

=

∣∣∣∣ z 1− z
m(z − 1) 1

∣∣∣∣
= m− (2m− 1)z +mz2 ∈ P ⊂ Z[z, z−1] .

The roots of ∆j(z)m are a complex conjugate pair of algebraic numbers on
the unit circle

z1, z2 = cos θm + isin θm ∈ S1

with

cos θm =
2m− 1

2m
, sin θm = ±

√
4m− 1

2m
.

The Reidemeister torsion is determined by the irreducible involution-invariant
monic polynomial

∆(s)m = s2∆j(1− s−1)m

= m− s+ s2 ∈ UZ ⊂Ms(Z) ⊂ Z[s]

with roots
sk = (1− zk)−1 (k = 1, 2)

a complex conjugate pair of algebraic integers

s1, s2 =
1 + icot (θm/2)

2

=
1± i

√
4m− 1

2
∈ Q1/2 ⊂ R1/2 ⊂ C .

The subset {∆(s)m |m ≥ 1} ⊂ Z2[Ms(Z)] is Z2-linearly independent, so that
{(Lm, λm) |m ≥ 1} ⊂ C2j−1 is Z-linearly independent. Now
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C⊗Z (Lm, λm + λ∗m) ∼= (C, 1)⊕ (C, 1) ,
so that the isometric multisignature of C⊗Z (Lm, λm) is

σIso∗ (C⊗Z (Lm, λm)) = 1.s1 + 1.s2 ∈ I ⊂ Z[R1/2]

with I as in 42.1.
(ii) For even j define for each integer m ≥ 1 the symmetric Seifert form over
Z

(L′
m, λ

′
m) = (Z⊕ Z⊕ Z⊕ Z,


0 0 m m

1 0 1 1

−m −1 0 0

−m −1 1 0

)

with Alexander polynomial

∆′
j(z)m = det((λ′m + λ′∗m)−1(zλ′m + λ′∗m) : L′

m[z, z−1]−−→L′
m[z, z−1])

= m− (2m− 1)z2 +mz4 ∈ P ⊂ Z[z, z−1] .

The Reidemeister torsion is determined by the irreducible involution-invariant
monic polynomial

∆′(s)m = s4∆′
j(1− s−1)m

= m− 4ms+ (4m+ 1)s2 − 2s3 + s4 ∈Ms(Z) ⊂ Z[s] .

The subset {∆′(s)m |m ≥ 1} ⊂ Z2[Ms(Z)] is Z2-linearly independent, so that
{(L′

m, λ
′
m) |m ≥ 1} ⊂ C2j−1 is Z-linearly independent. The roots of ∆′

j(z)m
are two complex conjugate pairs of algebraic numbers on the unit circle

z1, z2, z3, z4 = cos θm/2 + isin θm/2 ∈ S1\{1}
(with θm as in (i)) and

C⊗Z (L′
m, λ

′
m + λ′∗m) ∼= (C, 1)⊕ (C, 1)⊕ (C,−1)⊕ (C,−1) .

The roots of ∆′(s)m are algebraic integers

sk = (1− zk)−1 =
1 + icot(θm/4)

2
∈ Q1/2 ⊂ R1/2 (k = 1, 2, 3, 4)

and the isometric multisignature of C⊗Z (L′
m, λ

′
m) is

σIso∗ (C⊗Z (L′
m, λ

′
m)) = 1.s1 + 1.s2 − 1.s3 − 1.s4 ∈ I ⊂ Z[R1/2]

with I as in 42.1. �
Exercise 42.3 Verify that the even-dimensional automorphism L-groups
LAut2∗(Z), the asymmetric L-groups LAsy2∗(Z) and the twisted double
symmetric L-groups

DBL2∗(Z) = ker(LAut2∗(Z)−−→L2∗(Z))

are all countably infinitely generated, of the type⊕
∞

Z⊕
⊕
∞

Z2 ⊕
⊕
∞

Z4 .
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As stated, this can be worked out by the method of Levine [156], [157] for
C2∗−1 = LIso2∗(Z), using the computations in Chap. 39 of LAut2∗(Q),
LAsy2∗(Q) and

DBL2∗(Q) = LAut2∗fib(Q) = LIso2∗(Q) .

The torsion can then be unraveled by the method of Stoltzfus [278], using
the automorphism coupling invariants of Chap. 41C. In fact, there is defined
a commutative braid of exact sequences

L2n(Z[z, z−1])

$$J
JJ

JJ

""
LAut2n(Z)

$$J
JJ

JJ
JJ

""
L2n+1(Z[z, z−1])

LAsy2∗(Z)

::uuuuuu

$$J
JJ

JJ
G

::uuuuuuu

$$JJ
JJJ

JJ

L2n+2(Z[z, z−1])

::uuuuuu

<<
LAut2n+2(Z)

::uuuuuuu

<<
L2n+3(Z[z, z−1])

with

Lm(Z[z, z−1]) = Lm(Z)⊕ Lm−1(Z) ,

Lm(Z) =


Z (signature)

Z2 (deRham invariant)

0

if m ≡


0

1

2 or 3

(mod 4) ,

LAut2n(Z) = L2n(Z)⊕DBL2n(Z) ,

G = DBL2n(Z)⊕ L2n+3(Z[z, z−1]) = DBL2n+2(Z)⊕ L2n+1(Z[z, z−1])

= DBL0(Z) = DBL2(Z)⊕ L0(Z)⊕ L1(Z) ,

LAsy2∗(Z) = L2n(Z)⊕ ker(DBL2n+2(Z)−−→L2n+3(Z))

= ker(DBL2n(Z)−−→L2n+1(Z))⊕ L2n+2(Z)

= ker(DBL0(Z)−−→L1(Z)) = DBL2(Z)⊕ L0(Z) .

The groups LAut2∗(Z), DBL2∗(Z) and LAsy2∗(Z) only differ in the sum-
mands L0(Z) = Z and L1(Z) = Z2, all being of the type⊕

∞
Z⊕

⊕
∞

Z2 ⊕
⊕
∞

Z4 . �
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The history and applications of open books

by H. E. Winkelnkemper

A1. Open book theorems, analogues, motivations and

historical remarks

Let V be a compact differentiable (n−1)-manifold with ∂V ̸= ∅ and h : V →
V a diffeomorphism, which restricts to the identity on ∂V ; by forming the
mapping torus Vh , which has ∂V × S1 as boundary, and identifying (x, t) ∼
(x, t′) on ∂Vh for each x ∈ ∂V, t, t′ ∈ S1, we obtain a closed differentiable
n-manifold M . If we look at a piece of the image N of ∂V × S1 under the
identification map, then M looks like an open book, as in the figure.

Definition A closed manifold is an open book if it is diffeomorphic to M .
The fibers V × {t} (t ∈ S1) of Vh are codimension 1 submanifolds of M
whose images are the pages of the open book, and the image of the closed
codimension 2 submanifold N of M is called the binding of the open book.

N

V

On an open book M every point x ∈ M\N lies on one and only one page
and N is the boundary of each page.
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An open book is represented by a page V and a monodromy self diffeo-
morphism h : V → V which restricts to the identity on ∂V . If h∗ : H∗(V )→
H∗(V ) is the identity, we say that the open book decomposition has no mon-
odromy.

Open book decompositions describe an arbitrary closed manifold in terms
of lower dimensional ones. Mapping tori are open books with ∂V = ∅.

Example Let V be any compact manifold with ∂V ̸= ∅; in V × I identify
each interval (x, t), x ∈ ∂V, t ∈ I, to a point (x, 12 ) obtaining a manifold with
boundary, W . Let N ⊂ ∂W be the image of ∂V × I under the identification,
which divides ∂W into (∂W )+ and (∂W )−; if

h : (∂W, (∂W )+, (∂W )−)→ (∂W, (∂W )+, (∂W )−)

is a diffeomorphism of triples, thenW ∪hW has an open book decomposition
with binding N .

V × 1 ∂V × ½
N

W
(∂W)+

(∂W)–

At first glance, open books are just refined Heegaard decompositions (‘twisted
doubles’) whose existence for high-dimensional manifolds was part of Smale’s
celebrated 1961 breakthrough in higher dimensions [270] (Poincaré conjec-
ture, h-cobordism theorem, etc.) Indeed, the first general open book theorem
was obtained by the author in 1972 as a consequence of his 1970 thesis com-
pleting Smale’s work on Heegaard decompositions ([310]).

Open Book Theorem ([311]) Let n > 6 and Mn be closed and simply-
connected. Mn is an open book if and only if the signature of Mn is 0.
Furthermore, the page V can always be chosen to be such that π1(V ) = 0,
Hi(V ) = 0 for i > [n2 ] and Hi(V ) ∼= Hi(M) for i < [n2 ].

Thus the signature of the manifold reveals itself, intrinsically and geo-
metrically, as the exact, unique obstruction to a decomposition of Mn, very
similar to Lefschetz’s famous classical decomposition of non-singular complex
algebraic varieties.

For other, but equivalent, definitions of open books (which were briefly
known also as “fibered knots”, “spinnable structures”, “Alexander decom-
positions”) see Chapter 29 of this book, Tamura [284], H.B. Lawson [150],
Hector and Hirsch [109], Kauffman and Neumann [122], Quinn [227] ; for
their classification in many cases, using Seifert forms, see Kato [117].
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As usual when a general definition is made it turned out that in par-
ticular cases these decompositions had appeared implicitly in the literature
already; the most notable via Milnor’s fibration theorem : it gives open book
decompositions of odd-dimensional spheres S2n+1, whose monodromy is very
interesting ([196]). Also in 1972 I. Tamura [284] used these methods instead of
Smale’s decompositions to obtain open book decompositions of a very large
class of manifolds.

Soon afterward, the author discovered that a theorem of Alexander, [3],
usually quoted and used in the non-intrinsic form19 as “every link in S3 can
be written as a braid” leads in fact to the most general open book theorem
for any closed, orientable 3-manifold; furthermore, the page can be chosen to
be a 2-disk with holes or have a connected binding.

However, this intrinsic interpretation of Alexander’s theorem was cer-
tainly not well-known among the leading researchers in low-dimensional
topology.

As evidence of this see the list in Section A2 of the simple proofs of
important theorems as well as new ones in 3-manifold theory obtained after
1972 using Alexander’s theorem as an open book theorem.

For modern proofs of Alexander’s theorem (as an open book theorem) and
refinements see González-Acuña [91], Rolfsen [253], Myers [208], Lyon [179],
Harer [105], [106], Montesinos and Morton [204] and in the non-orientable
case, Berstein and Edmonds [18].

A2. Applications of Alexander’s theorem in dimension

3 as an open book theorem, and Artin presentations

We list some applications to 3-manifold theory of Alexander’s theorem :

(i) In 1973 González-Acuña [91] (at the author’s request) showed20 that one
can augment Alexander’s theorem by requiring that the binding be con-
nected : “every 3-manifoldM3 contains a fibered knot” and J. Simon realized
that Bing’s characterization of S3 (“a 3-manifold M3 is homeomorphic to S3

if and only if every simple closed curve lies in a topological disk D3 in M3”
[20]) is an immediate corollary, when combined with Schoenflies’ theorem.
Indeed, the boundary of a Bing 3-disk D3, which we assume contains the
connected binding N in its interior, also bounds a 3-disk in the complement
ofD3, becauseM3\N is fibered and thus covered by R3, etc. (See also Rolfsen
[253, p. 341], Myers [208].)

19Most notably as a starting point of the celebrated work of V. Jones [114].
20Using basic work of Lickorish [163],[164],[165].
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(ii) Alexander’s theorem gives an immediate proof of the existence of a codi-
mension 1 foliation on any closed 3-manifold due to Lickorish [164] : indeed
a simple procedure (H.B. Lawson [149], [150]) allows one to alter the obvi-
ous fibering foliation of M3\(binding) so that its boundary becomes a union
of leaves; pasting on solid tori with Reeb foliations then gives the required
foliation.

(iii) Similarly, Alexander’s theorem was used by Thurston and Winkelnkem-
per [289] to give a short proof of a conjecture of Chern “every M3 has a
contact form”, (i.e. a 1-form ω such that ω ∧ dω ̸= 0 everywhere). This had
been shown first by Lutz and Martinet [181].

(iv) In a short paper J. Simon [269] used Alexander’s theorem to show that,
among all homotopy 3-spheres, S3 is characterized by its fibered knot theory.
This is a converse of a theorem of Neuwirth as well as a sharpening of a
theorem of A.Connor.

(v) More recently, Bavard [15] used Alexander’s theorem to extend examples
of Gromov’s from S3 to any M3 : given any ϵ > 0, there exists a Riemannian
metric on M3 with sectional curvature K ≤ 1, diameter ≤ ϵ and volume ≤ ϵ.
Thus (unlike dimension 2) the existence of a Riemannian metric of almost
negative curvature on a 3-dimensional manifold M3 has no bearing on the
topology of M3, even if one also requires the volume to be small.

For the following applications we use an open book decomposition of a closed,
orientable 3-manifoldM3, where the page is the compact 2-disk with n holes,
denoted by Ωn. In 1975 González-Acuña [92] defined the notion of an Artin
presentation of π1(M

3). By a theorem of Nielsen (Birman [21, Chap. 2], Zi-
eschang [317, p. 3]) the monodromy homeomorphism h : Ωn → Ωn in the
open book decomposition can be substituted in a natural way by an Artin
presentation.

In particular, we can say : although the fundamental group π1(M
3) alone

does not in general determine the closed, orientable 3-manifold M3 up to
homeomorphisms, a presentation of a certain type of π1(M

3), indeed does so.

Let Fn denote the free group generated by x1, x2, . . . , xn.

Definition (i) A presentation of a group

r = ⟨x1, x2, . . . , xn | r1, r2, . . . , rn⟩

is called an Artin presentation if

x1x2 . . . xn = (r−1
1 x1r1)(r

−1
2 x2r2) . . . (r

−1
n xnrn) ∈ Fn .

(ii) The set of Artin presentations with n generators is denoted by Rn. For
r ∈ Rn let A(r) be the exponent sum n×n-matrix of r, let π(r) be the group
presented by r, and letM3(r) be the closed, orientable 3-manifold determined
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by r. It is not difficult to see that an arbitrary integer n × n-matrix is an
A(r) for some r ∈ Rn if and only if it is symmetric ([314]).

From the work of Milnor [191] we have the important result :

If det A(r) = ±1 and π(r) is a finite group then π(r) is either trivial or
isomorphic to the binary icosahedral group of order 120

I(120) = ⟨a, b | a3 = b5 = (ab)2⟩ .

Examples Besides the obvious Artin presentations ⟨x1, . . . , xn | 1, . . . , 1⟩ (of
Fn) and ϵn = ⟨x1, . . . , xn |x1, . . . , xn⟩ (of the trivial group), we have :

(1) n = 2; the only Artin presentations are given by

r1 = xa−b1 (x1x2)
b , r2 = xc−b2 (x1x2)

b .

Here

A(r) =

(
a b

b c

)
.

If say A =

(
1 −2
−2 3

)
, then π(r) = I(120), and M3(r) is the Poincaré

homology 3-sphere.

(2) n = 8; set
X = x7(x6x7x8)

−1x5x6x7x8x
−1
7 ,

r1 = x21x2 ,

r2 = x2x1x2x
−1
4 x3x4 ,

r3 = x3x4(x1x2)
−1r2 ,

r4 = x4x3x4X ,

r5 = x5x6x7x8(x3x4x7)
−1r4 ,

r6 = x26Xx7 ,

r7 = x7(x6X)−1r6 ,

r8 = x28x
−1
7 Xx7 .

Here A(r) = E8, the well-known unimodular, even, positive definite 8 × 8
matrix used by Milnor to construct his exotic 7-sphere21, and π(r) = I(120).

For more examples, see [314].

(vi) In [92], using the HNN construction (Lyndon and Schupp [178]),
González-Acuña obtained the fundamental :

21See, e.g. Lectures on Modern Mathematics, II, T. L. Saaty, ed., Wiley (1964),
p. 174.
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TheoremAn arbitrary abstract group is isomorphic to the fundamental group
of a closed, orientable 3-manifold, if and only if it has an Artin presentation.

A much more elaborate algorithmic characterization had been given by
Neuwirth [215].

(vii) In [91] González-Acuña used a theorem of Waldhausen [300] (Burde and
Zieschang [34, p. 41]) to give a purely algebraic equivalent of the Poincaré
conjecture, which is simpler than those of Birman, Traub, et al (see Birman
[22]). An elegenat but different characterization was given by Turaev [294] in
1983.

(viii) With the fundamental theorem of Gordon and Luecke [94], one can use
Artin presentations to test (on the computer) whether knots in homotopy
3-spheres have exotic peripheral structures or whether they satisfy Property
P : in [314] the author obtains the following explicit criterion for testing the
Poincaré conjecture. First observe :

Given an Artin presentation r = ⟨x1, . . . , xn | r1, . . . , rn⟩ and an integer j
(1 ≤ j ≤ n) we obtain another Artin presentation, j-red r, called the j-
reduction of r, by simply removing rj and setting xj = 1 everywhere else
(and renumbering, of course).

Criterion The Poincaré conjecture implies : if π(r) = 1 and π(j-red r) = 1,
then the group Gj presented by

⟨x1, . . . , xn | r1, . . . , rj−1, xjrj = rjxj , rj+1, . . . , rn⟩

is isomorphic to Z.

Remark This is not true for just any presentation of deficiency 0; consider

H = ⟨x, y |w1, w2⟩ ,

where
w1 = x3yx−2y−1 , w2 = y3xy−2x−1 .

Then H = 1 and the 1-reduction also presents the trivial group, but the
group

H1 = ⟨x, y |xw1 = w1x,w2⟩

is non-abelian, since, after adding the relation x2 = 1, the commutator [x, y2]
has order 5.

For more criteria, some of which are related to gauge theory and 3+1
TQFT ’s (= topological quantum field theories), see [314].

We stress that no knowledge of topology or geometry is needed for testing
these criteria on a computer.



History and applications of open books 629

Since 3-dimensional open books are not discussed in this book we end
this section A2 by making some remarks justifying that at least Artin pre-
sentation theory (i.e. the case where the pages are planar) is as purely al-
gebraic and arithmetic as possible, in the spirit of the development of the
high-dimensional theory in the main body of the book.

A main advantage of Artin presentation theory, which detaches it and
pushes it away from all other 3-manifold theories, comes from the discovery in
[313] of the following fundamental fact : an Artin presentation r does not just
determine the closed, orientable 3-manifold M3(r), but also, in a canonical
way, a well-defined, smooth, compact, simply-connected 4-manifold W 4(r),
whose boundary ∂W 4(r) =M3(r) and whose intersection form is given by the
matrix A(r) : namely the cobordism constructed in section A3 (ii) below.22

Thus each Artin presentation r representing a givenM3 literally materializes
as a cobordism23 of M3.

The purely discrete coupling r → A(r) is thus strengthened by the smooth
4-dimensional gauge theory (and 3+1 TQFT ’s). Conversely, Artin presenta-
tion theory becomes a first approximation to 4-dimensional gauge theory in
the same philosophical sense as, according to Artin himself [9, p. 491], braid
theory is a first approximation to knot theory.

For example, let D denote the set of unimodular, symmetric, integer ma-
trices prevented by Donaldson’s theorem from representing the quadratic
form of a a closed, smooth, simply-connected 4-manifold. From a theorem of
Taubes [287, p. 366] showing among other things that Donaldson’s theorem
holds even if one allows homotopy 3-spheres as boundaries we obtain the
purely group theoretic :

Theorem If A(r) ∈ D, then π(r) cannot be the trivial group; in fact it has
a non-trivial representation into the Lie group SU(2).

Thus, in particular, for the groups π1(M
3), detA(r) ̸= ±1 is not the only

abelian condition preventing π1(M
3) from being trivial.

Notice the philosophical similarity with Bohm-Aharonov phenomena : we
obtain non-trivial homotopy where, a priori, intuitively, none should exist
(see [12], [113], [180]).

Does gauge theory, via this theorem, disturb the conjectured equivalence
of the two basic decision problems : the simply-connectedness for M3(r) and
the homeomorphism problem for S3?

22These facts are easy consequences of the van Kampen theorem and the Mayer–
Vietoris sequence.

23In particular, we obtain a canonical cobordism (i.e. one obtained without using
Thom transversality) for any M3. This was first done by Wallace [306, Thm.6] in
a different way; see also Lickorish [163] and Rourke [255].
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If so, this could already disprove the Poincaré conjecture without having
to give an explicit counterexample – see Haken [101, p. 147].

Similar arguments can be made with topological quantum field theories in
the sense of [11] : given r, any 3+1 TQFT will associate to r not only a vector
space Z(r) but also, via W 4(r), a well-defined (vacuum) vector z(r) ∈ Z(r);
furthermore this is done in a completely discrete fashion. Which is the most
natural TQFT here?

This again leads to more computer criteria for testing several important
conjectures in 3,4-manifold theory (see [314]).

For an assessment of the importance of Artin Presentations for physics
(e.g. string theory), see [315].

A3. Applications to cobordism theory, SK-theory, etc.

(i) Already in [310] it was shown that Heegaard decompositions (i.e. twisted
doubles) have applications to the problem of fibering over S1 in a cobordism
class :

Proposition If Mn = W ∪hW where h : ∂W → ∂W is a homeomorphism,
then Mn is canonically cobordant to the mapping torus of h, (∂W )h.

Proof Let C be a collar of ∂W in W and extend h to a homeomorphism
H : C → C; consider W × I and identify C × 0 with C × 1 via H.

C × 0 C × 1

H
→

W
n

× 1,  I = [0,1]

We have obtained a cobordism between (∂W )h (on the “outside”) andWn∪h
Wn =Mn (on the “inside”) – see [310]. Hence it follows easily from the open
book theorem that a smooth or oriented cobordism class contains a manifold
fibered over S1 if and only if its signature = 0; furthermore, the fiber will
be cobordant to 0, and will have similar properties to that of the cobordism
class; for example, all this is true in the spin category, as well as the stably
parallelizable category, etc. (See also Neumann [209]).
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Question Do this canonical cobordism and its cyclic covers induce any uni-
versal, categorical relations on certain axiomatic TQFT ’s ([11], [148], [229])?

(ii) Another canonical cobordism (which however does need the full open
book structure) is the following :

Proposition (see [313]) Let Mn have an open book decomposition whose
page V n−1 embeds in Sn−1; then there exists a canonical cobordism of Mn,
denoted by W (h), which is k-connected if Hi(V ) = 0 for i > k.
Proof Let cV denote the closure of the complement of V in Sn−1; extend h
to Sn−1 and then to all of Dn obtaining a homeomorphism H : Dn → Dn;
the mapping torus of H, call it Dn

H , has cV ×S1 canonically embedded in its
boundary ∂Dn

H andW (h) is obtained by pasting cV ×D2 onto this part of the
boundary of Dn

H by the identity; the k-connectedness follows by Alexander
duality.

Remark In the smooth case, in order to obtain H, we have to add the
corresponding exotic sphere to Mn.

A theorem of Hirsch [111] can be used to show that a large class of stably
parallelizable n-manifolds (i.e. π-manifolds) have open book decompositions
whose page embeds in Sn−1.

(iii) J.-C.Hausmann [108] extended the work of Hatcher and T. Lawson on in-
ertial h-cobordisms (i.e. h-cobordism of a manifold with itself) by inductively
relating such a cobordism of an open book to one of its binding.

(iv) The cutting and pasting of Heegaard decompositions (twisted doubles)
can be generalized and given a systematic treatment via a Grothendieck
construction (Jänich, Karras et. al. [116] and Neumann [211]) to obtain the
so called SK-invariants (SK from “Schneiden und Kleben”) and SK-groups,
SKn(X), of singular manifolds in a topological space X. For the relative
version see Koshikawa [138]. For example, the index of a smooth elliptic
operator on an orientable manifold is an SK-invariant. In Chap. 8 of [116] it
is shown how open books facilitate their study considerably.

A4. Applications to bordism of automorphisms

In the fall of 1965, in Princeton, William Browder gave the author the prob-
lem of cobordisms of diffeomorphisms, as a thesis problem : if h1 :Mn

1 →Mn
1

and h2 :Mn
2 →Mn

2 are self diffeomorphisms, when does there exist a cobor-
dism Wn+1 between Mn

1 and Mn
2 and a self diffeomorphism H : Wn+1 →

Wn+1 such that H restricts to h1 and h2 onM1, respectivelyM2. In the usual
way one obtains abelian groups in each dimension which in the orientable,
orientation preserving case are denoted by ∆n.

The following questions are already nontrivial :



632 Appendix (by H. E. Winkelnkemper)

(a) Is any diffeomorphism of Sn cobordant to 0 in ∆n?
(b) If so, is it still true if one requires the cobording diffeomorphism

H :Mn+1
0 →Mn+1

0 to be, say, homotopic to the identity of Mn+1
0 ?

Using the well-known 1 to 1 correspondence between diffeomorphism
classes of h : Sn → Sn and homotopy (n + 1)-spheres

∑n+1
, it is easy

to see : if H :Mn+1
0 →Mn+1

0 cobords h : Sn → Sn and
∑n+1

is determined
by h, then the connected sum M#

∑
is diffeomorphic to M , where M is the

closed smooth manifold Mn+1
0 ∪idDn+1. One then says

∑
lies in the inertia

group, I(M), of M . (If, in addition, the diffeomorphism is homotopic to the
’identity’ : M#

∑
→M , one says

∑
lies in the special inertia group, I0(M),

of M).

The above questions can then be reformulated as follows :

(a) For each n, does there exist a smooth, closed, orientable Mn whose
inertia group is the group Θn of [312], i.e. as large as possible?

(b) Same question with the special inertia group.

The author succeeded in answering (a) affirmatively (the answer to (b),
somewhat surprisingly, is negative [312]) by using Smale’s Heegaard decom-
positions as follows : given an arbitrary homotopy 2m-sphere,

∑
, let W0 be a

smooth, simply-connected cobordism of
∑

, then W = W0∪(cone on)
∑

is a
closed (2m+ 1)-manifold, smooth except at the cone; since in Smale’s proof
the 2 hemispheres of the Heegaard decomposition are obtained as regular
neighborhoods, N , N∗, of the m-skeletons of a triangulation of W and its
dual, the non-smooth cone can be avoided and one obtains an “h-cobordism”
of the form :

∂N
∗

∂N

Σ

Since ∂N and ∂N∗ can be shown to be diffeomorphic, (see [310])
∑

lies in
the inertia group I(∂N).

Of course, since Smale’s proof only, a priori, applied to (2m+1)-manifolds
M whereHm(M) was torsion-free, to solve problem (a) for all dimensions, one
had to settle the existence of twisted doubles in all dimensions, which, aided
by the engulfing techniques of Levitt [161], the author proceeded to do in the
thesis [310]. In a very elementary manner it was shown there that, unlike in
many cobordism problems, the groups ∆4n are not finitely generated. (The
author gave up trying to compute them).
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In 1971, López de Medrano [171] noticed the similarity with knot cobor-
dism computations of Fox, Milnor and Levine and, in the case of (n − 1)-
connected 2n-manifolds, introduced, as a new invariant in ∆2n, the isometric
structure of a diffeomorphism, taking values in an infinitely generated Witt
group; in particular he showed that the groups ∆2n were also infinitely gen-
erated.

It thus came as quite a surprise when in 1976 M.Kreck [140] succeeded
in giving a complete description of all ∆n, n ≥ 4, by just using López de
Medrano’s invariant and the obvious ones determined by the ordinary cobor-
dism classes of M and the mapping torus of h. (The groups ∆2,∆3 were
computed by Bonahon [24], Melvin [186] respectively).

In 1978, Quinn [227] identified ∆n with the bordism groups of open books
BBn(pt.) appearing in his surgery theory of open book decompositions, and
used an exact sequence relating BBn(pt.) to the oriented bordism groups Ωn
to again compute ∆n for n ≥ 5. In the same paper Quinn found the exact
obstruction for any manifold M , (not necessarily a simply-connected one) to
be an open book. T. Lawson had settled the odd-dimensional case in 1976,
[151]. Stoltzfus [280] found the explicit relation between the invariants used
by Kreck and Quinn. Recently Ranicki [248] (and in the main body of the
book) gave his more algebraic L-theory version of Quinn’s BBn(X) groups
as surgery groups of a localized ring.

A5. Applications to foliations.

Open books just in the form of Milnor’s fibration theorem were first used by
Blaine Lawson [149] in his famous 1971 breakthrough (the first since Reeb
foliated S3 in the early 1940’s) in explicitly constructing smooth codimension

1 foliations of the spheres S2k+3 (k = 1, 2, . . .) .

The relevance of open books to this type of construction is given by Law-
son’s Lemma 1 of [149, p. 495] : in the complement of an open neighborhood
of the binding one can always easily change the obvious foliation given by
the pages to one where the boundary of the complement becomes a compact
leaf; then one is done if one finds a similar foliation for (binding)×D2. For
example, this is why Lickorish’s theorem [164] in dimension 3 followed easily
from Alexander’s theorem.

Lawson’s method was extended by others and culminated with the work
of Freedman and Tamura : if n > 2, then on any closed, (n − 1)-connected
(2n+1)-manifold one can construct an explicit codimension 1 foliation in the
above manner, [285]. The case n = 2 had been settled by A’Campo [1].

Mizutani and Tamura [203] settled the case of (n − 1)-connected 2n-
manifolds with vanishing signature and Euler characteristic. Tamura and
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Verjovsky also used these methods to find, among other things explicit foli-
ations on S7, S15 of codimension 3, 7, respectively, (see [286], [296]).

Since Lawson’s Steele Prize memoir [150] with its exhaustive bibliography
is hard to improve upon we refer the reader to it, as well as to the more recent
books of Hector and Hirsch [109] and Godbillon [89].

A6. Applications in differential geometry.

In differential geometry, besides Bavard’s theorem in section A2, we have :

(i) H.Gluck [88] used open books to construct a non-singular geodesible vec-
tor field on any odd-dimensional closed manifold, i.e. a non-singular vector
field such that there exists a Riemannian metric on M so that all orbits are
geodesics.

(ii) F.Morgan [205, Thm. 4.15] proved among other things : if a codimension
2 submanifold, B, in certain closed manifolds, bounds an infinite number
of minimal submanifolds, then M is an open book with binding B and the
bounding minimal submanifolds are among the pages; thus, for example, if
the signature ofM is non-zero, such a B inM can only bound a finite number
of minimal submanifolds.

Open books were also used to study the uniqueness of minimal submani-
folds by Hardt and Rosenberg [104].

(iii) In [185], Meersseman and Verjovsky used open books to construct a
smooth, codimension one, integrable, Levi-flat CR-structure on S5.

A7. Miscellaneous applications.

Among the various other applications we single out the following :

(i) L.Kauffman [120] characterizes homotopy n-spheres by their monodromy
and uses it to prove a knot cobordism periodicity theorem for fibered knots.

(ii) If h : V → V defines an open book, then so, of course do the iterates
hk : V → V . J. Stevens [276] generalized the work of Durfee and Kauffman
[65], showing that the corresponding open booksMk andMk+d have the same
rational homology if the eigenvalues of the monodromy are all dth roots of
unity.

(iii) L.Rudolph, [256], attaches a non-zero vector field to an open books
decomposition of a 3-manifold and then, in the case of homology 3-spheres,
expresses them with linking number formulae and shows they do not depend
on the Seifert form and hence are independent of the algebraic monodromy.
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(iv) In [261], J. Seade associates open book decompositions to holomorphic
vector fields, and uses them to study new types of singularities by analogy
with Milnor’s use of functions.

(v) Also in the complex case, new studies of complex open books are devel-
oped in papers [35], [36], [260].

(vi) In [177], R. Lutz generalized the definition of open books to ’fibrations
noueés’ and used these to study contact structures invariant under locally
free Lie group actions.

In the bibliography the reader will find other applications not discussed
here.
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– Poincaré band 159
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– nilpotent L-groups, LÑil
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– projective class 4
– S-primary automorphism L-groups,

LÃut
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S-equivalence
– Seifert complexes 432
– Seifert forms 457
S-primary
– asymmetric L-groups, LAsy∗

S(A)
485

– asymmetric complex 485
– automorphism 128
– automorphism K-groups, AutS∗ (A)

128
– automorphism L-groups,
LAut∗S(A, ϵ), LAutS∗ (A, ϵ) 482

– automorphism L-groups,
LAut∗fib,T (A, ϵ), LAutfib,T∗ (A, ϵ)
489



Index 657

– chain complex 109
– chain map 109
– endomorphism 105
– endomorphism K-groups, EndS

∗ (A)
105

– endomorphism L-groups,
LEnd∗

S(A, ϵ), LEnd
S
∗ (A, ϵ) 476

– endomorphism category, EndS(A)
105

– isometric L-groups, LIso∗S(A, ϵ) 480
– reduced automorphism L-groups,

LÃut
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U (A, ϵ)

214
– ϵ-symmetric Γ -groups, Γ ∗

U (A, ϵ)
217

– ϵ-symmetric Witt group, L0
U (A, ϵ)

214
– bounded spine bordism,
BBU

∗ (X, ξ,F) 249
– closed spine bordism, ∆U

∗ (X, ξ,F)
250

– empty spine bordism, ABU
∗ (X, ξ,F)

250
– twisted double L-groups,DBL∗

U (A, ϵ)
398

ultraquadratic

– L-groups, L̂p
∗(A, ϵ), L̂

h
∗(A, ϵ) 425

– complex 425

– fibred L-groups, L̂fib
∗ (A) 433

Umkehr, f ! 212
union
– algebraic Poincaré pair over A[z, z−1]

266
– algebraic Poincaré pairs 221

– chain map 302
unipotent 131
– automorphism K-groups, Autuni

∗ (A)
131

– automorphism L-groups,
LAut∗uni(A, ϵ), LAutuni

∗ (A, ϵ)
489

– category, Autuni(A) 131
– reduced endomorphism L-groups,

LÃut
∗
uni(A, ϵ) 489

universal trace map
– χs 419
– χx 471
– χz 343
unknotted xvii
untwisted
– band 11
– infinite cyclic cover 10
– self map 9

variation, V 372

Wall finiteness obstruction 4
weak
– codimension 2 geometric Poincaré

pair 255
– codimension 2 geometric Poincaré

triad 255
– codimension 2 splitting 255
Whitehead
– group, Wh1(A((z))) 156
– group, Wh1(A) 6, 213
– group, Wh1(A[z, z

−1]) 17
– torsion 6
Witt group
– U -intermediate ϵ-quadratic, LU

0 (A, ϵ)
214

– U -intermediate ϵ-symmetric,
L0

U (A, ϵ) 214
– ϵ-symmetric linking form, W ϵ(A,S)

283
– asymmetric, P-primary,
LAsy0

p(z)∞(F ) 551

– asymmetric, LAsy0
q(A) 348

– asymmetric, LAsy0
q(A,Λ, ϵ) 294

Witt vector 136
– S-primary group, WS(A) 150
– Dieudonné determinant, DW (M)

138
– group, Ŵ (A) 136
– rational group, W (A) 140

– rational group, reduced, W̃ (A) 140


