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Preface

On my first day as a graduate student at Cambridge in October, 1970 my
official Ph. D. supervisor Frank Adams suggested I work on surgery theory.
In September he had attended the International Congress at Nice, where
Novikov had been awarded the Fields Medal for his work in surgery. Novikov
was prevented by the Soviet authorities from going to the Congress himself,
and his lecture on hermitian K-theory [219] was delivered by Mishchenko.
As usual, Frank had taken meticulous notes, and presented me with a copy.
He also suggested I look at ‘Novikov’s recent paper in Izvestia’. This recom-
mendation was quite mysterious to me, since at the time I knew of only one
publication called Izvestia, and I couldn’t imagine that journal publishing
an article on topology. I was too shy to ask, but a visit to the library of
the Cambridge Philosophical Society soon enlightened me. I started work on
Novikov’s paper [218] under the actual supervision of Andrew Casson, using
a translation kindly provided by Dusa McDuff. (Andrew could not be my
official supervisor since he did not have a Ph.D. himself). Ultimately, my
reading of [218] became my Ph.D. thesis, which was published as Ranicki
[230], [231]. Frank had remained my official supervisor, being ever helpful in
answering my many queries on algebraic topology, and generally keeping me
under his protective wing. I dedicate this book to his memory, as a token of
my gratitude to him.*

Edinburgh, June 1998

This is a reprint of the published version of the book, which includes the
corrections and additional comments posted on

http:/ /www.maths.ed.ac.uk/ aar/books/knoterr.pdf
April 2016

* After the book was published I came across a statement of Frank Adams
which makes the dedication of the book even more appropriate: ‘Of course,
from the point of view of the rest of mathematics, knots in higher-dimensional
space deserve just as much attention as knots in 3-space’ (article on topology,
in 'Use of Mathematical Literature’ (Butterworths (1977)).
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Introduction

Knot theory high and low

An n-dimensional knot (M, N, k) is an embedding of an n-dimensional man-
ifold N™ in an (n + 2)-dimensional manifold M"+2

E: N"c M2,

An n-knot is a knot of the type (S"*2, 5™ k). In general, n can be any positive
integer. A classical knot is a 1-knot k : S* C S°.

The homological algebra methods of surgery theory apply to n-dimensional
knots for all n > 1. This book is mainly concerned with knots in the high
dimensions n > 4, for which there is a much closer correspondence between
this type of algebra and the topology than in the low dimensions n = 1,2, 3.
However, the story begins with the classical case n = 1.

The mathematical study of knots started in the 19th century, with the
work of Gauss.! Towards the end of the century, P. G. Tait (working in Ed-
inburgh) tabulated all the classical knots with < 10 crossings. It was only
in the 20th century that a systematic theory of knots was developed. Many
algebraic and geometric techniques have been invented and used to deal with
classical knots: a large number of invariants is available, including the funda-
mental group of the knot complement, the Alexander polynomial, the Seifert
matrix, assorted signatures, the Jones polynomial, the Vassiliev invariants,
..., although we are still short of a complete classification. The last 20 years
have seen a particular flourishing of classical knot theory, involving deep
connections with 3-manifold topology, physics and biology. There is a large
literature at various levels, including the books by C. Adams [2], Atiyah [12],
Burde and Zieschang [34], Crowell and Fox [59], Kauffman [121], Lickorish
[166], Livingston [168], Murasugi [207], Reidemeister [250], and Rolfsen [253].

Although high-dimensional knot theory does not have such glamorous
applications as classical knot theory, it has many fascinating results of its own,
which make use of a wide variety of sophisticated algebraic and geometric
methods. This is the first book devoted entirely to high-dimensional knot

! See Epple [68], [69], [70] for the history of knot theory.
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theory, which previously has been largely confined to research and survey
papers. The book actually has two aims:

(i) to serve as an introduction to high-dimensional knot theory, using
surgery theory to provide a systematic exposition,

(ii) to serve as an introduction to algebraic surgery theory, using high-
dimensional knots as the geometric motivation.

The topological properties of high-dimensional knots are closely related
to the algebraic properties of modules and quadratic forms over polynomial
extensions. The main theme of the book is the way in which this relationship
is essential to both (i) and (ii). High-dimensional knot theory has a some-
what deserved reputation as being an arcane geometric machine — I hope
that aim (i) is sufficiently achieved to demystify the geometry, and make it
more accessible to algebraic topologists. Likewise, surgery theory has a some-
what deserved reputation as being an arcane algebraic machine — I hope that
aim (ii) is sufficiently achieved to demystify the algebra, and make it more
accessible to geometric topologists.

Knot theory is a good introduction to surgery since it is easier to visualize
knots than manifolds. Many surgery invariants can be viewed as generaliza-
tions of (high-dimensional) knot invariants. For example, the self intersection
quadratic form p used by Wall [304] to define the surgery obstruction of a
normal map is a generalization of the matrix associated by Seifert [263] to
a spanning surface for a classical knot. Moreover, the plumbing construc-
tion in [304, Chap. 5] of normal maps with prescribed quadratic form is a
generalization of the construction in [263] of classical knots with prescribed
matrix.

Artin [8] produced the first non-trivial examples of 2-knots S? C S*, by
spinning classical knots S* C S3.

The theory of n-knots S™ C S™*2 and more general n-dimensional knots
N™ C M"™*? evolved with the work of Whitney on removing singularities in
the 1940s, Thom’s work on transversality and cobordism in the 1950s, the
h-cobordism theorem for manifolds of dimension n > 5 of Smale in 1960
and the consequent surgery theory of high-dimensional manifolds and their
submanifolds. The last 35 years have seen the growth of a large body of re-
search literature on codimension 2 embeddings of high-dimensional manifolds
in the differentiable, piecewise linear and topological categories. However, it
is certainly not the aim of this book to provide a comprehensive account of
all the methods and results of high-dimensional knot theory!?> The book has
the more limited objective of providing an exposition of the algebraic surgery

2 In particular, there is very little about links US™ C S™"*2, and not much about
the connections between knots and singularities, or about the homotopy-theoretic
aspects of high-dimensional knot theory.
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method for the construction and classification of high-dimensional knots in
the topological category.

The pre-1981 applications of high-dimensional surgery theory to codimen-
sion 2 embeddings were considered in Chap. 7 of Ranicki [237] — however, at
the time algebraic surgery was not so highly developed, and the treatment
still relied on geometric transversality. The current treatment makes full use
of the algebraic analogues of transversality obtained by the author since 1981.

Knotty but nice
Two embeddings ko, k1 : N™ C M™ are concordant (or cobordant) if there
exists an embedding
¢ : NxI[0,1]] — M x[0,1]; (x,t) — £(x,t)
such that
Ux,0) = (ko(x),0) , #z,1) = (ki(x),1) (z€N).

Two embeddings ko, k1 : N C M are isotopic if there exists a cobordism
£ which is level-preserving, with

UN x {t)) c M x {t} (te[0,1]).

Isotopy is a considerably stronger equivalence relation than concordance —
much in the way that the isomorphism of quadratic forms is stronger than
stable isomorphism.

Two embeddings kg, k1 : N C M are equivalent if there exists a homeo-
morphism h : M —— M such that

hko(N) = k‘1(N)CM.

If A is isotopic to the identity then kg, k; are isotopic. Every orientation-
preserving homeomorphism h : S™——S™ is isotopic to the identity, so for
embeddings k£ : N™ C S™

equivalent = isotopic = cobordant .

An embedding k : S™ C S™ is unknotted if it is equivalent to the trivial
knot kg : S™ C S™ defined by the standard embedding

ko : S — 8™ (20,X1y. .oy Tn) — (T, X1y, Xy, 0,...,0) .

These definitions are particularly significant for knots, that is embeddings
with codimension m —n = 2.
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Why 27

A knot is a codimension 2 embedding. What about embeddings k : N™ C M™
with codimension m — n # 27 Zeeman [316] and Stallings [274] proved that
embeddings k : S™ C S™ with codimension m — n > 3 are unknotted in the
piecewise linear and topological categories.> Thus topological knotting only
starts in codimension 2. Many algebraic invariants have been developed to
classify the knotting properties of codimension 2 embeddings. Codimension
1 embeddings are almost as interesting as codimension 2 embeddings, al-
though they do not have the intuitive appeal of classical knot theory. In fact,
codimension 1 embeddings deserve a book of their own! In any case, many
of the techniques used in codimension 2 make crucial use of codimension 1
embeddings, such as spanning surfaces.

The fundamental group

The study of knots necessarily involves the fundamental group, as well as
the higher homotopy groups and homology. The isomorphism class of the
fundamental group 71(X) of the complement of a knot (M, N, k)

X = M\k(N)

is an invariant of the equivalence class. The algebraic theory developed in
this book works with modules over an arbitrary ring, reflecting the major
role of the fundamental group 71(X) and the group ring Z[m1(X)] in the
classification of knots (M, N, k).

The fundamental group m(X) of the complement X = S3\k(S1) of a
classical knot k : S' C S% was the first knot invariant to be studied by the
methods of algebraic topology, serving to distinguish many classical knots
k : S* c S3. Dehn’s Lemma (formulated in 1910, but only finally proved
by Papakyriakopoulos in 1956) states that a classical knot k : S* C S® is
unknotted if and only if 71 (X) = Z. The complement X = S"*2\k(S") of
any n-knot k : S™ C S™*? has the homology of a circle by Alexander duality,
H.(X) = H.(S"). Levine [153] proved that for n > 4 an n-knot k : S™ C S"*2
is unknotted if and only if the complement X is homotopy equivalent to a
circle, i.e. if and only if 7, (X) = m.(S*). This unknotting criterion also holds
for n = 3 by Levine [158] and Trotter [292], and for n = 2 by Freedman [85]
(in the topological category). Thus homology does not see knotting, while
homotopy detects unknotting.

3 There is codimension > 3 knotting in the differentiable category. Differentiable
embeddings k : S™ C S™ with m —n > 3 were classified by Haefliger [100] and
Levine [154].
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Local flatness

An n-dimensional knot (M"F2 N™ k) is locally flat at * € N if x has a
neighbourhood in (M, k(N)) which is homeomorphic to (R"*2, R™). The knot
is locally flat if it is locally flat at every x € N.

Given an n-dimensional PL knot (M™+2 N™ k) there is defined at every
point z € N a PL embedding
starps () NN = stary(z) = D™ C stary(z) = D"
which could be knotted, i.e. not PL equivalent to the standard embedding
D™ C D" 2. The restriction to the links defines a PL (n — 1)-knot
ky : linky(x) NN = linky(z) = S™! Clinky(x) = ST,

The knot type of k, is a measure of the local singularity of the topology of
k at x: if k is locally flat at = then k, : S"~! C S"*! is unknotted (Fox and
Milnor [82], with n = 2).4

Unless specified otherwise, from now on knots (M"™+2, N™ k) will be taken

to be locally flat, i.e. only knots which are locally unknotted will be considered.

Surgery theory can also deal with non-locally flat knots, such as arise from
singular spaces (Cappell and Shaneson [42], [46], [47]). However, non-locally
flat knots require special techniques, such as intersection homology.

For any (locally flat) knot (M"™*2, N™ k) the codimension 2 submanifold
k(N) C M has a normal bundle, that is a closed regular neighbourhood
(P, 0P) which is the total space of a bundle

(D?, 8" — (P,0P) — k(N) .

Unless specified otherwise, from now on knots (M"™+2, N™ k) will be taken
to be oriented, with M, N compact and the normal bundle of k : N C M
compatibly oriented.

The exterior of a knot (M™+2, N" k) is the codimension 0 submanifold
of M
(X,0X) = (closure(M\P),0P)

with a homotopy equivalence to the knot complement
X ~ M\E(N).
A locally flat knot (M"™+2, N" k) is homology framed if
kE[N] = 0€ H,(M)
and the normal bundle of k(N) C M is framed
(P,0P) = k(N) x (D* 8%,
mmnal knots arise in a similar way at isolated singular (i.e. non-

manifold) points of a complex hypersurface V' c §%*t! ¢ CP'™! — see the
section Fibred knots and open books further below in the Introduction.
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with a given extension of the projection 8X = 9P—=S' to a map p :
X ——St. Every n-knot (S"+2,8" k) is homology framed, in an essentially
unique manner. Homology framed knots are particularly tractable — for ex-
ample, the knot complement has a canonical infinite cyclic cover, and the
knot admits a codimension 1 spanning (= Seifert) surface.

Polynomials

Many knot invariants involve the Laurent polynomial extension ring A[z, 2 1]
of a ring A, in the first instance for A = Z.

Given a homology framed knot (M, N, k) with exterior X = cl.(M\N x
D?) let X = p*R be the infinite cyclic cover of X classified by the map
p: X—3S!

X—p>51

and let ¢ : X—X be a generating covering translation. The Laurent poly-
nomial ring Z[zf,zil] acts on the homology groups H.(X), with z = (, :
H.(X)—H,(X), and also on the fundamental group m(X). The funda-

mental group of X is the (,-twisted extension of m1(X) by Z
m(X) = m(X) x¢, Z = {97’ |g e m(X),j €L},
with ¢, : 71 (X)——m1(X) the induced automorphism and gz = z(.(g). The

group ring of 71 (X) is the (.-twisted Laurent polynomial extension ring of
the group ring of 71 (X)

Z[Wl(X)] = ZIm(X)e. [, 27] .
In particular, if ¢, = 1 : 7 (X)—m(X) then
m(X) = mX)xZ , Zm(X)] = Zm X))z 27"
The Alexander polynomial ([ ]) of a classical knot k : S* C $3
A(z) € Z[z, 27 1]

is the basic polynomial invariant of the knot complement X = S3\k(S!),
with o
A(l) =1, A(z)H1(X) = 0.

(See Chaps. 17, 33 for the Alexander polynomials of n-knots.) The Alexander
polynomial was the first application of polynomial extension rings to knot the-
ory. Many of the abstract algebraic results in this book concern modules and
quadratic forms over Laurent polynomial extensions, which are then applied
to high-dimensional knots (M, N, k) by considering the algebraic topology of
the complement X = M\k(N).
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Seifert surfaces

Transversality is a key ingredient of knot theory. For example, every classical
knot k : S* C R3 (regarding R?® as a subset of S3) has plane projections,
that is functions f : R3——R? such that fk : S'——R? is an immersion
with a finite number of transverse self-intersections. Plane projections are
not unique. The minimum number of self-intersections in a plane projection
is the crossing number of k. This was the first knot invariant, measuring the
‘knottedness’ of k.

A Seifert (or spanning) surface for a homology framed knot (M"™+2, N" k)
is a codimension 1 submanifold F"*! C M"*?2 with boundary OF = k(N)
and trivial normal bundle F x [0,1] C M. Seifert surfaces can be regarded
as higher-dimensional analogues of knot projections. Seifert surfaces are in
fact the main geometric tool of high-dimensional knot theory, with surgery
theory providing the means for transforming one Seifert surface into another.

Codimension 1 transversality guarantees the existence of Seifert surfaces
for a homology framed knot (M"™*2 N™ k) — make the map on the knot
exterior

p i (cl.(M\(k(N) x D?)),k(N) x S*) — S?
transverse regular at 1 € S' and set
(F"*L0F) = (p (1), k(N)) € M"™*2.

Isolated instances of singular (i.e. immersed) spanning surfaces for classical
knots already feature in the work of Tait [283], as in the following example
of an ‘autotomic’ surface spanning the trefoil knot :

Nomnsingular spanning surfaces for classical knots were first obtained by
Frankl and Pontrjagin [83]. Seifert [263] obtained a spanning surface of a knot
k:S' c 83 from any knot projection, and defined the genus of k to be

genus(k) = min{genus(F)} ,
the minimum genus of a spanning surface F? C S with

1
genus(F) = 3 rank Hy(F) >0 .

The genus of an alternating knot was shown in [263] to be the genus of the
Seifert surface determined by an alternating knot projection.
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The intersection properties of H;(F') were used in [263] to construct the
Seifert matriz of a Seifert surface F of a classical knot k : ST C S3, a 2g x 2¢g
matrix V over Z with g = genus(F). The difference between V and the
transpose V! is an invertible 2g x 2g matrix V —V?, so that det(V —V?) = +1,
with

V V' H\(F) — H\(F) = Homy(H,(F),Z) = H'(F)

the Poincaré duality isomorphism of F'. The Seifert matrix determines the
Alexander polynomial by

A(z) = +det(V — 2V € Z[z, 271 .
The signature of k
o(k) = signature (H,(F),V +V") e€Z

is another classical knot invariant which can be defined using the Seifert form.
The Seifert matrix is the most versatile algebraic artefact of a classical knot,
although the high degree of non-uniqueness of Seifert surfaces has to be taken
into account in the applications.

According to Kervaire and Weber [134] the existence of Seifert surfaces for
high-dimensional n-knots ‘seems to have become public knowledge during the
Morse Symposium at Princeton in 1963. ... It appears in print in Kervaire
[131] and Zeeman [316]". (See also Kervaire [130, Appendix]). Seifert surfaces
for arbitrary high-dimensional homology framed knots were obtained by Erle
[71].

Every n-knot k : S C S"*2 is of the form k = ¢, (constructed as in the
section Local flatness above) for some non-locally flat knot ¢ : Gnt1 c §7+3
with unique singular point x € G, as follows. Let i : F"*1 C D"*3 be the
locally flat embedding of a codimension 2 Seifert surface obtained by pushing
a Seifert surface F"*1 c S"*+2 for k into D"*3 relative to the boundary
OF = k(S™). For x = 0 € D3 identify the cone x * k(S™) with D"*1, and
let

j i xxk(S") = D" — D"
be the inclusion. The union
(= iuj . Q" = Flyy DL DBy, DR = gt
defines a non-locally flat embedding with ¢, = k.

The results of Levine [153], [156] show that for n > 3 an n-knot k : S™ C
S$"*+2 is unknotted (resp. null-cobordant) if and only if k admits a contractible
Seifert surface in S"*2 (resp. D"*?). One way of applying surgery to knot
theory is to start with an arbitrary Seifert surface F' for k, and then try to
modify the codimension 1 (resp. 2) submanifold F' C S™*2 (resp. D"3) by
surgery®, making F as contractible as possible.

5 See the section Codimension q surgery further below in the Introduction for the
basic definitions.
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There are two types of invariants for n-knots k : S™ C S™*2: the intrinsic
invariants of the infinite cyclic cover of the knot complement, and the extrinsic
ones associated with the Seifert surfaces. There is a similar distinction for the
invariants of arbitrary homology framed knots (M, N, k). The two types of
invariants determine each other, although in practice it is not always easy to
work out the details of the correspondence. One of the aims of this book is
to show how algebraic K- and L-theory can be used to define both types of
invariants, and also to relate them to each other.

Fibred knots and open books

A knot (M™% N" k) is fibred if it is homology framed and the canonical
projection p : X — S on the exterior X = cl.(M\ (k(IN)x D?)) is (homotopic
to) a fibre bundle, or equivalently if there exists a Seifert surface F"+t! c M
with a monodromy self homeomorphism h : F——F such that :

(i) h|=1:0F = k(N)—dF,
(11) M= k(N) X D2 Uk(N)Xsl T(h), with

T(h) = (Fx[0,1))/{(x,0) ~ (h(x),1) [z € F'}
the mapping torus of h, so that X = T'(h).

Following Winkelnkemper [311], M is called an open book with page F' and
binding N .6

For the sake of simplicity only fibre bundles over S' and open books with

he = 1 m(F) — m(F)
will be considered, so that
m(M\k(N)) = m(X) = m(T(h)) = m(F)XZ.

The discovery of exotic spheres by Milnor [190], the h-cobordism theorem
of Smale, and the surgery classification of exotic spheres in dimensions > 5
by Kervaire and Milnor [133] were powerful incentives to the extension of
classical knot theory to knots (S"*+2, N™ k) (n > 1), initially for differentiable
n-knots by Kervaire [130],[131]. It was proved in [130, Appendix]| that an
exotic n-sphere X" admits a (differentiable) embedding k : X" C S™*2 if
and only if X™ is the boundary of a parallelizable (n + 1)-manifold (e.g. a
Seifert surface F"™t C S"*2) in which case X™ represents an element of the
group bP,, 1 of [133].

6 See the Appendix by Winkelnkemper for the history and applications of open
books.
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Singular points of complex hypersurfaces (the title of Milnor [196]) pro-
vided a large supply of differentiable knots (S"*2, X" k) with ™ an exotic
n-sphere : given complex variables zg, z1, . . ., z; and integers ag, a1, ...,a; > 2
there is defined a fibred knot (S?*1, N, k) with

k@ N*' = X(ag,ai,...,a;) = V(f)nS*+t c g%+!
where
f:CH s Cy (20,21, 5 21) — 200+ 2 + ...+ 2,
V(f) = {(z0,21,---,2) € CT| f(20,21,...,2) =0},
SEFL — (2, 21,...,2) €ECH 202 + |21)> 4+ ...+ |z)> =1} .

The (2¢ — 1)-dimensional manifold N is (i — 2)-connected, and the fibre
of X = cl.(S#\(N x D?))——S! is an (i — 1)-connected 2i-dimensional
Seifert surface F?* C S?"*1. The precise topological and differentiable nature
of N?=1 c §2*! has been the subject of many investigations, ever since
Brieskorn [26] identified certain N = X(ag, ay,...,a;) as exotic spheres.

Fibred knots (M, N, k) play an especially important role in the develop-
ment of high-dimensional knot theory. On the one hand, the complex hy-
persurface knots (S?'T1 N2=1 k) are fibred, and the invariants of fibred
knots have many special features, e.g. the fibre is a minimal Seifert sur-
face, with unimodular Seifert matrix, and the extreme coefficients of the
Alexander polynomials are £1 € Z. On the other hand, surgery theory
provided ways of recognizing algebraically if a high-dimensional homology
framed knot (M"™*2 N7™ k) is fibred. In general, the fundamental group
71 (X) = ker(p. : m1(X)—7Z) of the infinite cyclic cover X of the exterior
X = cl.(M\(k(N) x D?)) is infinitely generated, but for a fibred knot X is
homotopy equivalent to the fibre F' and 71 (X) = 7 (F) is finitely presented.
For an n-knot (S"*2, 5™ k)

Hy(X) = Hy(S") = Z , m(X) = [m(X),m(X)]

Stallings [273] proved that a classical knot k : S1 C S3 is fibred if and only
if 1 (X) is finitely generated. Browder and Levine [31] proved that for n > 4
a homology framed knot (M"+2 N" k) with m(X) = Z is fibred if and
only if H,(X) is finitely generated over Z. Farrell [78] and Siebenmann [267]
generalized this result to the non-simply-connected case, using the finiteness
obstruction of Wall [302] and Whitehead torsion: the fibering obstruction
S(Y) € Wh(mi(Y)) is defined for a finite CW complex Y with a finitely
dominated infinite cyclic cover Y (a band), and for n > 4 a homology framed
knot (M"+2, N™ k) is fibred if and only if the infinite cyclic cover X of the
exterior X is finitely dominated and ®#(X) =0 € Wh(m(X)).

Winkelnkemper [311] and Quinn [227] applied surgery theory to investi-
gate the existence and uniqueness of open book decompositions for manifolds
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of dimension > 6, and the closely related bordism groups of diffeomorphisms
A,. These results are reproved in Chap. 29 using the algebraic Poincaré com-
plexes of Ranicki [235], [236].

Knot cobordism

The connected sum of n-knots ki, ko : S™ C S™2 is the n-knot
ki#ky : ST#ST = S7 C SnP2psnt? = gnt2Z

An n-knot k : S™ C S™*? is slice if there exists an (n + 1)-dimensional
knot £ : D"t ¢ D"*3 with | = k, or equivalently if k is null-cobordant. The
hypothesis of local flatness is crucial here, since the cone on k(S™) C S"*2 is
a non-locally-flat null-cobordism D"*! ¢ D"+3,

Fox and Milnor [82] defined the abelian group C; of cobordism classes
of 1-knots k : S' C S3, with addition by connected sum, and the trivial
knot kg : S* C S? as the zero element. The group C; is countably infinitely
generated. The motivation for the definition of C; came from the construction
of the 1-knots (52, 51, k,) (already recalled in the section Locally flat above)
from non-locally flat PL knots (M* N2, k) (z € N). It was proved in [82]
that the connected sum of 1-knots ky, ko, ..., k. : S* C S3 is slice if and only
if there exists a non-locally flat 2-knot x : S C S* with k; = k,, (1 <i <)
the 1-knots defined at the points 1,5, ..., 2, € S? where & is not locally
flat.

Kervaire [131] defined cobordism for n-knots k : S™ C S"*2 for all n > 1.
The group of cobordism classes of n-knots with addition by connected sum is
denoted by C,,. An n-knot k is such that [k] = 0 € C), if and only if & is slice.
If £: N*tt ¢ M™*3 is a non-locally flat embedding with a single non-locally
flat point # € N there is defined a (locally flat) n-knot k = k, : S™ C S"+2
as before. The n-knot k is slice if and only if the singularity of £ at x can be
‘resolved’, with ¢ replaced near x by a locally flat embedding.

The algebraic determination of the knot cobordism groups C, was a major
preoccupation of high-dimensional knot theorists in the 1960s and 1970s. The
algebraic structure of C,, for n > 3 was worked out in [131], Levine [156], [157]
and Stoltzfus [278], with

Cpn = Chya , Oy =0

and both Cy.11 and Cg,y3 are countably infinitely generated of the type

@Z@@ZQ@@@.
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(See Chap. 42 for the structure of Cy; 11 for ¢ > 1). The classical knot cobor-
dism group C is still fairly mysterious, with the kernel of the natural sur-
jection C1——Cl4 11 known to be non-trivial, by virtue of the invariants of
Casson and Gordon [48].

Simple knots

An n-knot k : 8™ C S"*2 is simple if it satisfies one of the following equivalent
conditions :

(i) the knot complement X = S"*2\k(S™) is such that
(X)) = m(S) for 1 <r<(n—1)/2,
(ii) k admits a Seifert surface F"*! C S"*2 such that m (F) = {1} and
H.(F) =0for1<r<(n-1)/2.

Every classical knot k : S' C S2 is simple. For n > 2 every n-knot k : S™ C
S"*+2 is cobordant to a simple n-knot. The (2i — 1)-knots k : §%~1 c §%i+!
constructed by Milnor [196] from singular points of complex hypersurfaces
are simple and fibred, with (i — 1)-connected fibre F?.

Seifert surfaces and simply-connected surgery theory were used by Ker-
vaire [131] to characterize the homotopy groups m.(X) of the complements
X = S"F2\k(S™) of high-dimensional n-knots k : S™ C S"*2 (see also Wall
[304, p. 18]), and to prove that C), is isomorphic to the cobordism group of
simple n-knots, with C; = 0 (i > 2). Levine [155] obtained polynomial in-
variants of an n-knot k from the homology H,(X) of the infinite cyclic cover
X of X, generalizing the Alexander polynomial. The high-dimensional knot
polynomials were used in [155] to characterize the rational homology groups
H.(X;Q) as Q[z, 2~ !]-modules, and (working in the differentiable category)
were related to the exotic differentiable structures on spheres. Much work was
done in the mid-1960s and early 1970s on the isotopy classification of simple
n-knots S™ C S"*2, using the Alexander polynomials, the Seifert matrix and
the Blanchfield linking form — see Chaps. 33,42 for references.

Surgery theory

The Browder—Novikov—Sullivan—Wall surgery theory developed in the 1960s
brought a new methodology to high-dimensional knot theory, initially for
n-knots S™ C S"*2 and then for arbitrary codimension 2 embeddings
N™ C M"*2. Surgery theory was then extended to 4-dimensional mani-
folds with certain fundamental groups by Freedman and Quinn [86], but
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low-dimensional manifolds have so many distinctive features that the high-
dimensional theory is too limited in dimensions 3 and 4 — accordingly, n-
dimensional knots N™ C M"™*?2 are much harder to classify for n = 1,2 than
n > 3.

It will be assumed that the reader is already familiar with the basics of
surgery, at least in the simply-connected case considered by Browder [30].

The basic surgery operation on manifolds starts with an n-dimensional
manifold N™ and an embedding

S"x D" CN .
The effect of the surgery is the n-dimensional manifold
N™ = (N\S" x D" ")u D"t x g1
which is related to N by an elementary cobordism (W; N, N'), with
W = Nx[0,1JuD" !t x D" ",

Conversely, every cobordism of manifolds is a union of elementary cobordisms
(Milnor [192]) — for a closed manifold this is just a handle decomposition.
There is a similar decomposition for knot cobordisms.

An n-dimensional geometric Poincaré complex X is a finite CW complex
with n-dimensional Poincaré duality H*(X) = H,,_.(X). The fundamental
problem of surgery is to decide if such an X is homotopy equivalent to a
compact n-dimensional manifold. The traditional method is to break down
the problem into two stages. In the first stage there is a topological K-theory
obstruction to the existence of a normal map” (f,b) : M——X, that is a de-
gree 1 map f: M—— X from a compact n-dimensional manifold M together
with a map b : vpy—n a map from the stable normal bundle of M to some
bundle over X. In the second stage there is an algebraic L-theory obstruction,
the surgery obstruction of Wall [304]

+(f,) € Ln(Z[m (X)])

such that o.(f,b) = 0 if (and for n > 5 only if) (f,b) : M—X can be
modified by surgeries on M to a normal bordant homotopy equivalence.® The
algebraic L-groups L.(A) of [304] are defined for any ring with involution A,
and are 4-periodic, L, (A) = L, 44(A). By construction, Lg;(A) is the Witt
group of nonsingular (—)’-quadratic forms over A, and Ly;11(A) is a group
of automorphisms of nonsingular (—)*-quadratic forms over A.

" See the section Algebraic K- and L-theory invariants of knots further below in
the Introduction for the basic constructions of normal maps from n-knots.

8 See Ranicki [245] for a more streamlined approach, in which the two stages are
united in the total surgery obstruction.
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An n-dimensional quadratic Poincaré complexr over A is an A-module
chain complex C' with a quadratic Poincaré duality, H"*(C) & H,(C). The
algebraic L-groups L,(A) are the cobordism groups of quadratic Poincaré
complexes over A, by the algebraic theory of surgery of Ranicki [235],[236],
[237]. The quadratic kernel of an n-dimensional normal map (f,b) : M—X
is an n-dimensional quadratic Poincaré complex (C,1) with C' = C(f") the
algebraic mapping cone of the Umkehr Z[m; (X)]-module chain map

*

o) ~ o L o ~ o)

with X the universal cover of X and M = f *X the pullback cover of M, and
with a Z[m (X)]-module chain equivalence

C(M) ~ e(fYeC(X) .
The surgery obstruction of (f,b) is the quadratic Poincaré cobordism class

o.(f,0) = (€(f1),¥) € Lu(Z[m(X)]) -

There is also the notion of geometric Poincaré pair (X,0X), with a rel
0 surgery obstruction o.(f,b) € L,(Z[r1(X)]) for a normal map (f,b) :
(M,0M)—(X,0X) from a manifold with boundary and with df = f| :
OM—0X a homotopy equivalence.

Algebraic transversality

The main technique used in the book is algebraic transversality, an analogue
of the geometric transversality construction

Fn+1 _ p—l(l) C Mn+2

of a Seifert surface of a homology framed knot (M"*2 N" k) from a map
p : X—S" on the knot exterior X = cl.(M\(k(N)x D?)) which is transverse
regular at 1 € S! — cutting X along F results in a fundamental domain
(XF; F, zF) for the infinite cyclic cover X = p*R of X. The technique extracts
finitely generated A-module data from finitely generated A[z,z~!]-module
data, with A[z, 27!] the Laurent polynomial extension of a ring A.

Algebraic transversality is a direct descendant of the linearization trick of
Higman [110] for converting a matrix in A[z, 2] by stabilization and elemen-
tary transformations to a matrix with linear entries ag+ a1z (ag, a1 € A). As
explained by Waldhausen [301] and Ranicki [244] linearization corresponds
to the geometric transversality construction of a fundamental domain for
an infinite cyclic cover of a compact manifold. The algebraic transversality
methods used to prove the theorem of Bass, Heller and Swan [14] on the
Whitehead group of a polynomial extension
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Whin x Z) = Wh(r)® Ko(Z[r]) & Nily(Z[x]) @ Nilo(Z[r])

and its algebraic L-theory analogues are used in this book to define and relate
the invariants of high-dimensional knots associated with both complements
and Seifert surfaces.

The splitting theorem for the Wall surgery obstruction groups
Ly (Zlr x Z)) = L (Z[r)) & L1 (Z[x))

n—1

Ly(Zln x Z)) = Ly(Zlx]) ® Ly, _ (Z[x])

n—1

was obtained by Shaneson [264], Novikov [218] and Ranicki [231], [244], with
LY (resp. L", L?) denoting the quadratic L-groups defined using f.g. pro-
jective (resp. f.g. free, based f.g. free) modules. The theorem was motivated
by the codimension 1 splitting results of Farrell and Hsiang [80] and Wall
[304,12.6]. The connections between Wh(m x Z) and Ko(Z[r]) in algebraic
K-theory and between L, (Z[r x Z]) and L._1(Z[x]) in algebraic L-theory
are algebraic analogues of the codimension 1 transversality construction of
Seifert surfaces for knots.

The topological invariance of rational Pontrjagin
classes

Algebraic transversality in L-theory may be regarded as a spinoff from
Novikov’s proof of the topological invariance of the rational Pontrjagin
classes, for which he was awarded the Fields Medal in 1970. The report of
Atiyah [10] included :

Undoubtedly the most important single result of Novikov, and one which
combines in a remarkable degree both algebraic and geometric methods, is his
famous proof of the topological invariance of the (rational) Pontrjagin classes
of a differentiable manifold. . ..

Perhaps you will understand Novikov’s result more easily if I mention a purely
geometrical theorem (not involving Pontrjagin classes) which lies at the heart
of Novikov’s proof. This is as follows :

THEOREM (formulation due to L. SIEBENMANN ) If a differentiable manifold
X is homeomorphic to a product M x R™ (where M is compact, differen-
tiable, simply-connected and has dimension > 5) then X is diffeomorphic to
a product M’ x R™.

... As is well-known many topological problems are very much easier if
one is dealing with simply-connected spaces. Topologists are very happy when
they can get rid of the fundamental group and its algebraic complications.
Not so Novikov! Although the theorem above involves only simply-connected
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spaces, a key step in his proof consists in perversely introducing a fundamental
group, rather in the way that (on a much more elementary level) puncturing
the plane makes it mon-simply-connected. This bold move has the effect of
simplifying the geometry at the expense of complicating the algebra, but the
complication is just manageable and the trick works beautifully. It is a real
master stroke and completely unprecedented.

Novikov’s proof of the topological invariance of the rational Pontrjagin
classes was published in [217]. (See Ranicki [247, Chap. 4] for an account
of some other proofs of the topological invariance of the rational Pontrja-
gin classes.) The theorem had a tremendous influence on the subsequent
development of high-dimensional manifold theory, such as the disproof of
the manifold Hauptvermutung by Casson and Sullivan [249], the Kirby—
Siebenmann structure theory for high-dimensional topological manifolds and
the Chapman-Ferry—Quinn theory of controlled topology, as well as high-
dimensional knot theory.” Moreover, Novikov himself contributed to further
progress, notably the paper [218] already mentioned in the preface, which
included the definitive formulation of the ‘Novikov conjecture’ (reprinted
and translated in [81]). The S!-valued Morse theory of Novikov [220] was
yet another contribution, which initiated the topological applications of the
‘Novikov rings’ of the Laurent polynomial extension A[z,27!] of a ring A

A((2)) = AllNllz™] . A(GTY) = Allz7 Il -

The Novikov rings also play a role in the algebraic treatment of high-
dimensional knot theory, since a high-dimensional knot is fibred precisely
when the knot exterior is acyclic with coefficients in the Novikov rings

Z((2)), Z((z7))-

Localization

The algebraic properties of high-dimensional knots are best understood in
terms of the algebraic K- and L-theory of various localizations X =t A[z, 271
of Laurent polynomial extensions A[z, 271]. Traditionally, the localization of
a ring A inverting a multiplicative subset S C A of central non-zero divisors
is the ring S~ A of fractions a/s (a € A, s € S) with a/s = b/t if and only if
at =bs € A.

The algebraic K-theory localization exact sequence of Bass [13]
= K (A) — K (S7MA) — K1(A,S) — Ko(A) — ...

¥ For example, Novikov [217] proved that for n > 5 every n-knot k : S C S"*? is
equivalent to a differentiable embedding.
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identifies the relative K-group K;(A—sS~1A) of the inclusion A—S~1A
with the class group of the exact category of S-torsion A-modules of homo-
logical dimension 1. For A = Z, S = Z\{0} the localization is S7™1A = Q,
and the relative K-group is the class group of the exact category of finite
abelian groups

K\(Z,8) = Q°/{+1} = @ Koz,) = P z
p prime p prime
detected by the exponents of the primary cyclic groups.
The algebraic L-theory localization exact sequence of Ranicki [237]
.= Ly(A) — L,(S7'A) — L, (A,S) — L, 1(A) — ...

identifies the relative L-group L, (A—S~!A) of the inclusion A—sS~1A
with the cobordism group L, (A, S) of (n—1)-dimensional quadratic Poincaré
complexes over A which are S~!A-contractible. For A = Z, S = Z\{0},
S~'A = Q, n = 0 the relative L-group is the Witt group of linking forms on
finite abelian groups, with

Ly(Z,8) = Z,®Zs® P  LoZ) = P oPZidZs
p # 2 prime oo 0o
detected by the Hasse-Minkowski invariants and the signature mod 8.

The localization of the Laurent polynomial extension ring Z[z, z7!] in-
verting the multiplicative subset

P = {p(2)|p(1) = £1} C Z[z, 2]

is particularly significant in the theory of spherical knots k : S™ C S"*2. The
localization P~'Z[z,271] has the universal property that a finite f.g. free
Z[z, z~']-module chain complex C is P~!Z[z, z~!]-contractible if and only if
C is Z-contractible via the augmentation

Zlz, 27 — Z; 2 — 1.
The groups in the algebraic K-theory localization exact sequence
. — K1(Z]z,27Y)) — K (P7'Z[z,271))
s K(Z[z, Y, P) — Ko(Z[z 2 Y]) — .
can be identified with multiplicative groups of units

Ky(Z]z,27Y) = Zlz, 271 = {2 |j € L},

K(P 2 = (P2 ) = (B paa) € P
Ki\(Z[z,27',P) = (P'Z[z,27Y)*/Z]z,27']° .

~—
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The torsion group L, (Z[z,z71], P) in the algebraic L-theory localization ex-
act sequence

. — Ly(Z]z,27Y) — Lo(P7'Z[z,271))
— Ln(Z]2,27 Y, P) — Lo_1(Z[z,27Y]) — ...

is the cobordism group of Z-contractible (n — 1)-dimensional quadratic

Poincaré complexes over Z[z, 2], with involution z = 2.

Algebraic K- and L-theory invariants of knots

The homological invariants of high-dimensional n-knots k : S™ C S"*2 can
be defined using the methods of algebraic K- and L-theory.

Let &k : S™ € S™*2 be an n-knot with exterior
(X,0X) = (cl.(S"T2\(k(S™) x D*)),k(S™) x S*) .

Let X be the infinite cyclic cover of X induced from the universal cover R of
S by pullback along  the canonical homology equivalence p : X — 81, with
Z-equivariant lift p : X —R. The kernel Z|z, 27 1]-module chain complex

C = Cp: X—R)qy
is Z-contractible, with homology finitely generated P-torsion Z[z, z~!]-module
H.(C) = H(X) 1<r<n).
The Alexander polynomials A,(z) € P of k: S™ C S"*2 are such that
A(2)H(X) = 0 (1<r<n).
The P-torsion class

[H,(X)] = An(2) € Ki(Z]z,27 ], P) = (P 'Z[z,27'])*

determines H,(X) up to extensions. The P-torsion Euler characteristic

xp(C) = Y ()HX) = [TA(=)7 € Ki(z[z.27"), P)

r=1

is the Reidemeister torsion of the knot k. The algebraic K-theoretic interpre-
tation of Reidemeister torsion is due to Milnor [194]. The Z[z, 2~ ]-coefficient
Poincaré duality chain equivalence

~

¢ = [X]N— : C"™7* = Homg, ,-1(C,Z[z,2 \ny2—« — C

induces the Blanchfield linking pairings
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H (X)X Hyy1 (X)) — P 'Z[z, 271/ 72,27 .

The pairings are determined by the non-simply connected surgery quadratic
kernel of a degree 1 normal map from an (n + 2)-dimensional manifold with
boundary to an (n + 2)-dimensional geometric Poincaré pair

(g,¢) © (X,0X) — (D"*3 k(5™)) x S

with g : X —D"*3 x S a homology equivalence and dg : 0X —k(S™) x S*
the identity. For n > 3 the knot k is unknotted if and only if (g,¢) is a
homotopy equivalence, and k is null-cobordant if and only if (g, ¢) is normal
bordant by a homology equivalence to a homotopy equivalence.

The high-dimensional knot cobordism groups Cs,_; were expressed by
Levine [156] as the Witt groups of Seifert matrices in Z, and by Cappell and
Shaneson [40] as certain types of algebraic I'-groups. Pardon [221], Smith
[271] and Ranicki [237, Chap. 7.9] expressed the knot cobordism groups as
torsion L-groups. The cobordism class of an n-knot k : S™ C S"*2 is the
cobordism class of its Blanchfield complex

k] = (C,¢)€Cp = Lypi3(Z[z,27,P) (n>3).

(There is no difference between symmetric and quadratic Poincaré structures
in this case.)

Given a Seifert surface F"*t! c S"*2 for an n-knot k : S™ C S"*2 the
inclusion defines a degree 1 normal map

(f.0) « (F,OF) — (D"*%, k(S"™))
from an (n+1)-dimensional manifold with boundary to an (n+1)-dimensional
geometric Poincaré pair, with df = 1 : dF—k(S™). For n = 2i — 1 the
Seifert matrix V' of F' defines a bilinear form on H;(F') which is a refinement

of the simply-connected surgery quadratic kernel of (f,b), and the surgery
obstruction of (f,b) is given by

1 .
o (fih) = {F 81g.natu?e(Hi(F), V+ VY
Arf invariant(H; (F), V)
Z if i =0(mod 2)
Loyy(Z) =
€ Lu(2) {22 iti=1(mod?2) .
For odd ¢ the theorem of Levine [155] expresses the Arf invariant in terms of
the Alexander polynomial A(z) = det(V — zV*), with
. 0 if A(—1) = +1(mod 8)
Arf L(H,(F),V) = :
tf invariant (Hy(F), V) { 1 if A(~1) = +3(mod 8) .

The surgery obstruction o.(f,b) € Lo;(Z) is detected by just the signature
and the Arf invariant. The knot cobordism class [k] € Cy;_1 is a refinement
of the surgery obstruction — it is the Witt class of any Seifert matrix for k,
and is determined by an infinite number of invariants.
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Codimension g surgery

The surgery theoretic technique which most directly applies to the classifi-
cation of high-dimensional knots is the splitting obstruction theory for sub-
manifolds of codimension 2. This is best understood in the general context
of codimension ¢ submanifolds for arbitrary ¢ > 2.

If N» ¢ M™ is a submanifold of codimension ¢ = m — n and the embed-
ding 8™ x D"~" C N extends to an embedding D™+! x D"~ C M the effect
of the codimension q (or ambient) surgery on N is a submanifold

Nln —_ (N\Sr x anr) UDT+1 x Snfrfl C M™
with an elementary codimension ¢ subcobordism
(Wi N, N') € M x ([0, 1};{0},{1}) .

Conversely, every codimension ¢ subcobordism is a union of elementary sub-
cobordisms.

Given a homotopy equivalence h : M'— M of m-dimensional manifolds
it is possible to make h transverse regular at any submanifold N C M, so
that the restriction (f,b) = h|: N’ = h=}(N)— N is a degree 1 normal map
of n-dimensional manifolds. The homotopy equivalence h splits along N C M
if it is homotopic to a map (also denoted by h) such that the restrictions
f=h|: NN—N,h|: M'\N'— M\N are also homotopy equivalences. Wall
[304, Chap. 11] defined the LS-groups LS, (®P) to fit into the exact sequence

.~ L1 (Z[r (M\N)]|—Z[ry (M)] ) — LSn(®)
s Lo(Z[my(N)]) — Lon( Z[wy (M\N)|—Z[my (M)]) —> ...

depending only on the system @ of fundamental groups of M, N and M\N.
The splitting obstruction s(h) € LS, (®P) of [304, Chap. 12] is such that s(h) =
0 if (and for n > 5 only if) h splits, i.e. if N’ C M’ can be modified by
codimension ¢ surgeries until h splits. The splitting obstruction s(h) has
image the surgery obstruction o, (f,b) € L,(Z[r1(N)]). If m —n > 3 then

m(M\N) = m(M) , s(h) = 0.(f,0) € LSu(®) = Ln(Z[m(N)]) .

The Browder—Casson—Sullivan—Wall theorem states that form—n >3, n > 5
a homotopy equivalence h : M'— M splits along N C M™ if and only if
0.(f,b) = 0 € L,(Z[r1(N)]) — again, knotting only starts in codimension
m-—n=2.

In surgery theory one fixes the homotopy type of a space with Poincaré
duality, and then decides if this contains a topological manifold. In the appli-
cations of the splitting obstruction theory to codimension 2 embeddings the
homology type of the complement is fixed, and the knot is trivial if and only
if it contains the homotopy type of the complement of a standard embedding,
which is decided by homology surgery theory. This point of view was initiated
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by Lépez de Medrano [169] in connection with the study of n-knots k :
S™ C S™*2 which are invariant under a fixed point free involution on S™*2,
generalizing the work of Browder and Livesay [32].

Cappell and Shaneson ([39]-[47] etc.) extended the obstruction theory of
Wall [304] to a homology surgery theory, and used it to obtain many results
for codimension 2 embeddings. The homology surgery obstruction groups are
the algebraic I'-groups I, (F), the generalizations of the algebraic L-groups
defined for any morphism of rings with involution ¥ : A——B. The group
I;(F) is the Witt group of B-nonsingular (—)*-quadratic forms over A4, and
I11(F) C Loj11(B) for surjective F. The high-dimensional knot cobordism
groups C, are particular types of I'-groups. See Levine and Orr [160] for a
survey of the applications of surgery theory to knots (and links).

The surgery treatment of high-dimensional knot theory in Part Two com-
bines the codimension 2 surgery methods of Cappell and Shaneson [40], Freed-
man [84] and Matsumoto [183] with the author’s algebraic methods. In par-
ticular, the LS-groups LS, (®) are generalized in Chap. 22 to the codimension
2 homology splitting obstruction groups I'S,(®P).

Fredholm localization

In order to obtain algebraic expressions for the cobordism groups of high-
dimensional knots N C M"™*2 more general than the n-knots S™ C S™*2 it
is necessary to work with the algebraic K- and L-theory of the less familiar
noncommutative localization X1 A of Cohn [53], which is defined for any set
Y of square matrices in a ring A (see Chap. 9 for the definition). In the
applications

A = Zlry(M\N)] , H,(M\N;X7'A) = 0.

The noncommutative localization 2-'A[z, z71] appropriate to open books
is the Fredholm localization inverting the set {2 of square matrices w in a
Laurent polynomial extension A[z, z7!] such that coker(w) is a f.g. projective
A-module. The Fredholm localization has the universal property that a finite
f.g. free A[z, 2~ !]-module chain complex C' is A-module chain equivalent to a
finite f.g. projective A-module chain complex if and only if the induced finite
f.g. free 271 A[z, 27 !]-module chain complex 271C is acyclic, H,(271C) =
0. The Fredholm localization 271 A[z, 271] is closely related to the Novikov
rings A((2)), A((z71)), with H.(271C) = 0 if and only if

H*(A((Z)) ®A[z,z*1] C) = H*(A((Zil)) ®A[z,z*1] C) =0.

The obstruction theory of Quinn [227] for the existence and uniqueness
of open book decompositions of high-dimensional manifolds will be given
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a chain complex formulation in Chap. 28. The asymmetric signature of an
m-dimensional manifold M is the cobordism class of the Z[m;(M)]-module
chain complex 0(1\7 ) of the universal cover M and its Poincaré duality
onm : C (1\7 = C(M ), regarded as an asymmetric Poincaré complex gen-
eralizing the Seifert form of a knot. For even m the asymmetric signature
takes value in a group LAsy**(Z[r,(M)]) which is infinitely generated, with

LAsy*(Z) = Pre@PzZ. e PZs.

(In the simply-connected case m1(M) = {1} the invariant is just the signa-
ture of M, the original open book obstruction of Winkelnkemper [311]). The
asymmetric signature is 0 for odd m. In Chap. 29 the asymmetric signature
will be identified with a generalization of the Blanchfield form of a knot

o (M;2) = (27'CM)[z, 27, (1 - 2)bar) € L (2 Zlmy (M)][z,274]) .

The asymmetric signature is such that o*(M; §2) = 0 if (and for m > 6 only
if) M admits an open book decomposition. For any knot (M, N, k)

(M3 2) = (Q7'C(X), (1= 2)éx) € L (27 Zfm (M) [z, 271])

with X = cL.(M\(k(N) x D?)) the exterior of k, and X the cover of X
induced from M x R by a map X—M x S'. By definition, M has an
open book decomposition with binding N whenever X fibres over S 1. For
m > 6 this is the case if and only if 7y (X) = m (M) x Z, H. (27 'C(X)) =0
(i.e. the infinite cyclic cover X of X is finitely dominated) and the Farrell-
Siebenmann fibering obstruction is #(X) = 0 € Wh(m1(X)). The asymmetric
signature is the obstruction to improving the empty knot (M,{, ky) with
p = constant : X = M——S! by codimension 2 surgeries to a fibred knot
(M, N, k), i.e. to M having an open book decomposition.

Structure

The book has two parts and an appendix. Part One deals with the algebraic
K-theory aspects of high-dimensional knot theory, with invariants such as the
Alexander polynomials. Part Two deals with the algebraic L-theory aspects
of high-dimensional knot theory, with invariants such as the Seifert matrix,
the Blanchfield pairing, the multisignature and the coupling invariants. The
appendix (by Elmar Winkelnkemper) is an account of the history and ap-
plications of open books, a field where surgery and knot theory meet in a
particularly fruitful way.

I am grateful to Desmond Sheiham for reading a preliminary version of
the book, and making valuable suggestions for improvements.
Errata (if any) will be posted on the WWW home page
http://www.maths.ed.ac.uk/ aar



Part One

Algebraic K-theory



2 High-dimensional knot theory



1. Finite structures

At first sight, Chap. 1 has little to do with high-dimensional knot theory!
However, the homological methods used in knot theory frequently involve
the finiteness and torsion properties of chain complexes over polynomial ex-
tension rings, such as the chain complex of the infinite cyclic cover of a
knot complement. In particular, the algebraic L-theory treatment of high-
dimensional knot theory developed in Part Two is based on the algebraic
K-theory of chain complexes with Poincaré duality.

Chap. 1 brings together the essential definitions from the algebraic the-
ory of finite structures on chain complexes, and the applications to CW
complexes. Milnor [194], [199], Bass [13], Cohen [52] and Rosenberg [254] are
standard references for algebraic K-theory and the applications to topology.
See Ranicki [238],[239], [241] for a fuller account of the Ky- and Kj-groups
in terms of chain complexes.

1A. The Wall finiteness obstruction

The Wall finiteness obstruction is an algebraic K-theory invariant which de-
cides if a ‘finitely dominated’ infinite complex is homotopy equivalent to a
finite complex, where complex is understood to be a chain complex in algebra
and a C'W complex in topology.

Let A be an associative ring with 1. Unless otherwise specified, A-modules
are understood to be left A-modules.

An A-module is projective if it is a direct summand of a free A-module.
The following conditions on an A-module P are equivalent :

(i) P isaf.g. (= finitely generated) projective A-module,

(ii) P is a direct summand of a f.g. free A-module A™,

(iii) P is isomorphic to the image im(p) of a projection p = p? : A" — A"
of a f.g. free A-module.

The projective class group Ko(A) is the abelian group of formal differences
[P] — [Q] of isomorphism classes of f.g. projective A-modules P, @, with
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[Pl - [Q] = [P']-[Q] € Ko(4)
if and only if there exists an A-module isomorphism
P3Q ®R = PoQ&R
for a f.g. projective A-module R.
The reduced projective class group is the quotient of Ky(A)

Ko(A) = coker(Ko(Z)—Kq(A))

with

Equivalently, IN(O(A) is the abelian group of stable isomorphism classes [P]
of f.g. projective A-modules P, with [P] = [P’] € K(A) if and only if there
exists an A-module isomorphism

PoQ = PaQ
for a f.g. projective A-module Q.

A finite domination of an A-module chain complex C'is a finite f.g. free A-
module chain complex D with chain maps f : C—D, g : D——C and a chain
homotopy gf ~ 1: C——C. An A-module chain complex C' is finitely domi-
nated if it admits a finite domination. In [238] it is shown that an A-module
chain complex C is finitely dominated if and only if C' is chain equivalent to
a finite chain complex of f.g. projective A-modules

P.:.... —-0— ... ——>0—PFP, —P, 11— ... —PF.

The projective class of a finitely dominated complex C' is defined by
[C] = [P] = Y (-)'[P] € Ko(A)
i=0
for any such P. An A-module chain complex C'is chain homotopy finite if it
is chain equivalent to a finite f.g. free A-module chain complex. The reduced
projective class [C] € Ko(A) of a finitely dominated A-module chain complex
is such that [C] = 0 if and only if C' is chain homotopy finite.

A finite domination (K, f,g,h) of a topological space X is a finite CW
complex K together with maps f : X— K, g : K—— X and a homotopy
h:gf ~1:X—X. A topological space X is homotopy finite if it is
homotopy equivalent to a finite CW complex.

The Wall finiteness obstruction of a finitely dominated C'W complex X
is the reduced projective class of the cellular Z[m; (X)]-module chain complex
C(X) of the universal cover X

[X] = [C(X)] € Ko(ZIm (X)) .
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Proposition 1.1 (Wall [302])

A connected CW complex X is finitely dominated if and only if the fun-
damental group m(X) is finitely presented and the Z[m1(X)]-module chain
complex C(X) is finitely dominated, in which case [X] = 0 € Ko(Zm (X)])
if and only if X is homotopy finite. O

1B. Whitehead torsion

Whitehead torsion is an algebraic K-theory invariant which is a generaliza-
tion of the determinant. In the first instance torsion is defined for a homotopy
equivalence of finite complexes (in algebra or topology), although in the appli-
cations to fibred knots in Chaps. 15, 33 it is necessary to consider a somewhat
more general context.

In dealing with Whitehead torsion it will always be assumed that the
ground ring A has the invariant basis property, meaning that invertible ma-
trices have to be square, so that f.g. free A-modules have a well-defined di-
mension.

For example, any ring which admits a morphism A——F' to a field F’ (such
as a group ring Z[r], with F' = Z,) has the invariant basis property.

The finite general linear groups of a ring A
GL,(A) = Auta(4") (n>1)
are related by the inclusions
GL,(A) — GLp1(A) s f— fd14.

The infinite general linear group of A is the union of the finite linear groups
GLw(A) = | GL.(4).
n=1

The torsion group of A is the abelianization of GLy(A)
Ki(A) = GLxc(A)" = GLoc(A)/[GLoo(A), GLoo(A)]
i.e. the quotient of GL(A) by the normal subgroup
[GLoo(A),GLx(A)| 9GLx(A)
generated by the commutators zyz~1y~! (z,y € GLy(A)).

The torsion of an automorphism « : A" — A" is the class of the matrix
(vij) € GLy(A) of «
T(a) = (ag5) € K1(A) .
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More generally, the torsion of an automorphism f : P—— P of a f.g. projective
A-module P is defined by

(f) = (W (f®lg)h: A"—A") € Ki(A)
for any f.g. projective A-module () with an isomorphism h: A" =2 P & Q.
In dealing with the torsion groups of rings adopt the following:

Terminology 1.2 The Whitehead group of a ring A is the reduced torsion
group ~
Whl(A) = Coker(K1 (Z)*—)Kl (A)) = K1 (A)
in the algebraic context of an arbitrary ring A. In the topological context of
a group ring A = Z[n] this is understood to be the Whitehead group of the
group 7
Wh(r) = Ki(Z[x])/{£glg €7} .

A chain equivalence is simple if 7 =0 € Wh. O

A f.g. free A-module chain complex C' is based if it is finite and each C,
is a based f.g. free A-module. The torsion of a chain equivalence f : C——D
of based f.g. free A-module chain complexes is

T(f) = 7(C(f)
= T(d+ I C(f)odd—>c(f)even) S Whl(A) )

with C(f) the algebraic mapping cone and I" : 0 ~ 1 : C(f)——C(f) any chain
contraction. The chain equivalence is simple if 7(f) =0 € Why(A).

The Whitehead torsion of a homotopy equivalence f : X ——Y of finite
CW complexes is the torsion of the chain equivalence f : C'(X)—C(Y) of
the cellular based f.g. free Z[m (X )]-module chain complexes induced by a
lift f: X—Y of f to the universal covers )?, Y of XY

T(f) = 7(f: O(X)—C(Y)) € Wh(mi (X)) .

A finite structure on a topological space X is an equivalence class of pairs
(K, f) with K a finite CW complex and f : X — K a homotopy equivalence,
subject to the equivalence relation

(K, f) ~ (K", f)if 7(f f 1 K—K') =0 € Wh(m(X)) .

A finite structure on an A-module chain complex C' is an equivalence class
of pairs (D, f) with D a finite chain complex of based f.g. free A-modules
and f: C——D a chain equivalence, subject to the equivalence relation

(D, f) ~ (D', fYif 7(f'f ' : D—D') =0 € Why(A) .
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Proposition 1.3 The finite structures on a connected CW complex X are
in one-one correspondence with the finite structures on the cellular Zm (X)]-
module chain complex C(X) of the universal cover X. O

Let (B, A C B) be a pair of rings. In the applications, B will be one of
the polynomial extension rings A[z], A[271], A[z, 271] of A. A B-module chain
complex C' is A-finitely dominated if it is finitely dominated when regarded
as an A-module chain complex. An A-finite structure on a B-module chain
complex C' is a finite structure on C' when regarded as an A-module chain
complex. A B-module chain complex C' admits an A-finite structure if and
only if C' is A-finitely dominated and [C] = 0 € K((A), in which case there
is one A-finite structure for each element of Why(A).

A finite chain complex C' of f.g. projective A-modules is round if
€] = 0 € im(Ko(Z)—Ko(A))

i.e. if C' is chain equivalent to a finite chain complex of f.g. free A-modules with
Euler characteristic x(C') = 0. The absolute torsion of a chain equivalence
f: C——D of round finite chain complexes of based f.g. free A-modules was
defined in [239] to be an element 7(f) € K;(A) with image 7(f) € Why(A).

A round A-finite structure on a B-module chain complex C is an equiva-
lence class of pairs (D, f) with D a round finite chain complex of based f.g.
free A-modules and f : C——D a chain equivalence, subject to the equiva-
lence relation

(D, f) ~ (D', fYif 7(f'f ' : D—D')=0€ K, (A) .

A B-module chain complex C' admits a round A-finite structure if and only
if C' is A-finitely dominated and [C] = 0 € K((A), in which case there is one
round A-finite structure for each element of K;(A). The algebraic mapping
cone C(f) of a self chain map f : C——=C of an A-finitely dominated B-
module chain complex C has a canonical round finite structure. See Ranicki
[241, Chap. 6] for a detailed account.

A finite CW complex X is round if
x(X) = 0eKy(Z) = Z.

A round finite structure on a round finite CW complex X is a round fi-
nite structure on the cellular Z[m (X)]-module chain complex C(X) of the
universal cover X.
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1C. The mapping torus

The mapping torus of a self map f : X ——X is the identification space

T(f) = X x[0,1]/{(z,0) = (f(z),1) [z € X} .

For any maps f : X—Y, g : Y——X there are defined inverse homotopy
equivalences

T(gf) — T(fg); (z,5) — (f(2),s) ,
T(fg) — T(gf); (y,t) — (9(v),1)
by Mather [182].

The mapping torus T'(h) of a self map h : X— X of a finitely dominated
space X has a canonical round finite structure, represented by

T(fhg: K—K) ~ T(gfh) ~ T(h)
for any finite domination
(K, f: X—K,g: K—X gf~1: X—X).

See [241, Chap. 6] for a detailed account of the finiteness and torsion proper-
ties of the mapping torus.

Given a ring morphism f: A— B regard B as a (B, A)-bimodule by
BxBxA— B; (byx,a) — b.x.f(a) .
An A-module M induces the B-module
fiM = Ba M
Bz M/{bf(a) @x —bQax|a€ A,be B,z € M} .

Let f: X——X be a self map of a connected CW complex X. Given a
base point zp € X and a path w : I—X from w(0) = 20 € X to w(l) =
f(xo) € X define an endomorphism of the fundamental group at z

1

f* : 7T1(X) = ’/Tl(X,ir()) fH# 7T1(X,f($0)) g) 7T1(X,.’E0) .

Let f *X be the pullback along f : X——X of the universal cover X of X.
The lift of f: X—X to a 71 (X)-equivariant map f : f*X——X induces a
chain map of the cellular Z[m;(X)]-module chain complexes

foX) = (f0X) — o(X) .

The fundamental group of the mapping torus T'(f) is the amalgamation
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m(T(f) = m(X) s {2}

(nx)+ (1) [tz = 2. @)l g €m0}

The natural map 1 (X)——71(T(f)) need not be injective. However, if f, :
m1(X)—m1(X) is an automorphism then

m(T(f)) = m(X) x4, Z
= {927 |g e m(X),j € Z,gz = 2f.(9)}
is the f.-twisted extension of 71 (X) by Z, with an exact sequence of groups
{1} — m(X) — m(T(f)) — Z — {1},

and the fundamental group ring is the f,-twisted Laurent polynomial exten-
sion of Z[m (X)]

Zim(T(f)] = ZIm(X)]plz 271

Definition 1.4 A self map [ : X—X is untwisted if f. : m(X)—m1(X)
is an inner automorphism. O

Suppose that f: X— X is untwisted, with
fulz) = grg™' € m(X) (z € m(X))
for some g € m1(X). Let w’ : I— X be a path such that
w(i) = W EX ((=0,1), g = ' wem(X),
so that
fo = Wy 1 m(X,20) — mi(X, f(xo)) -
Replacing w by ' in the construction of f, gives
fo =1 m(X) — mX),
m(T(f)) = m(X)xZ,
Zim(T(f)] = Zlm(X)][z,27"]

with a m (X)-equivariant lift f : X—X of f : X—>X inducing the
Z[m1(X)]-module chain map f : C(X)—C(X).

)
(

Now consider a connected space X with a connected infinite cyclic cover
X. The fibration X — X ——S! induces an exact sequence of fundamental
groups

1} — 1 (X) — m(X) — m(SY) — {1}

and 71 (X) = 71 (X) Xo Z with o = ¢, : 7 (X)—m;(X) the automorphism
induced by a generating covering translation ¢ : X — X.
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Definition 1.5 An infinite cyclic cover - X of ~a CW complex X is untwisted
if a generating covering translation ¢ : X — X is untwisted. ]

Proposition 1.6 A connected infinite cyclic cover X of a connected CW
complexr X is untwisted if and only if the group extension

{1} — m(X) — m(X) — m(S') — {1}
is trivial, in which case
n(X) = m(X) %2, Zmn(X)] = Zm @)z

and a generating covering translation ¢ : X —X has a 1 (X)-equivariant
lift ¢ + X—X inducing a Z[m(X)]-module chain equivalence ¢ : C(X)
—C(X), with X the universal cover of X. O

The mapping torus T(f) of a map f : X— X is equipped with a canon-
ical infinite cyclic cover

T(f) = < ﬁ Xx{n}x[0,1])/(:E,n,1)~(f(x),n—l—l,O),

n—=——oo

which is the pullback T(f) = p*R of the universal cover R of S! along the
projection

p o T(f) — 1/(0~1) = S5 (2,8) — [s] .

Proposition 1.7 A map f : X—X inducing an automorphism f. :
11 (X)—m1(X) is untwisted if and only if the infinite cyclic cover T(f)
of T(f) is untwisted. O



2. Geometric bands

A band is a compact space W with an infinite cyclic cover W which is finitely
dominated. Bands occur naturally in the classification of manifolds that fibre
over the circle S! such as fibred knot complements, the bordism of diffeomor-
phisms, and open book decompositions. A manifold which fibres over S*

M = T(h: F—F)

is a band, with M = F x R ~ F homotopy finite. Conversely, if M is an
n-dimensional manifold band then the infinite cyclic cover M is a finitely
dominated (n —1)-dimensional geometric Poincaré complex with a homotopy
equivalence

M ~ T((: M—M)

(¢ = generating covering translation), so that M has the homotopy theoretic
properties of a fibre bundle over S! with ‘fibre’ M, but in general there are
obstructions to M actually fibring over S!.

The problem of deciding if a manifold band W fibres over S! was first
studied by Stallings [273] in dimension 3, and then by Browder and Levine
[31] in dimensions > 5 with 1 (W) = Z. In the non-simply-connected high-
dimensional case Farrell [78],[79] and Siebenmann [267] obtained a White-
head group obstruction for a manifold band to fibre over S*.

Much of the progress of high-dimensional compact topological manifolds
achieved in the last 30 years depends on non-compact manifolds with tame
ends, starting with Novikov’s proof of the topological invariance of the ratio-
nal Pontrjagin classes. See Hughes and Ranicki [112] for an account of tame
ends, bands, and some of these applications. In [112,17.11] it is proved that
every tame end of dimension > 6 has an open neighbourhood which is an
infinite cyclic cover of a compact manifold band.

Here is the formal definition in the CW category :

Definition 2.1 (i) A CW band is a finite CW complex X with a finitely
dominated infinite cyclic cover X.
(ii) A CW band is untwisted if X is untwisted (1.5). O

Remark 2.2 The band terminology was introduced by Siebenmann [266].
O
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Example 2.3 The mapping torus T'(h) of a homotopy equivalence h : F——F
of a finite CW complex F' is a CW band, with infinite cyclic cover T'(h) ~ F
homotopy finite. The mapping torus T'(h) is untwisted if and only if h is
untwisted. g

Example 2.4 Every finitely dominated CW complex X is homotopy equiva-
lent to the infinite cyclic cover Y of an untwisted CW band Y. For any finite
domination (K, f : X—K,g : K—X,g9f ~ 1 : X—X) the mapping
torus Y = T(fg : K—K) is a CW band which is homotopy equivalent to
T(gf) ~ X x S', with the infinite cyclic cover Y = T'(fg) homotopy equiva-
lent to T(gf) ~ X x R~ X. O

The obstruction theory for fibering manifold bands over S' will be de-
scribed in Chap. 16. It is a special case of the obstruction theory for fibering
CW bands over S?.

Definition 2.5 A CW band X fibres over S' if there exists a simple homo-
topy equivalence X ~ T'(h) to the mapping torus 7'(h) of a simple homotopy
self equivalence h : F——F of a finite CW complex F' and the diagram

X—= =T

\/

is homotopy commutative, so that the infinite cyclic cover X of X is the
pullback of the canonical infinite cyclic cover T'(h) of T'(h). O

The fibering obstructions @7 (X)), (X) € Wh(m (X)) of a CW band
X are defined as follows. The mapping torus T'(¢) of the generating covering
translation ¢ : X —X of the infinite cyclic cover X of a space X is such
that the projection

gt - T() — X ; (z,5) — p(x)

is a homotopy equivalence, with p : X —X the covering projection. Define
similarly the homotopy equivalence

¢ T — X5 (x,5) — p(x) .

Definition 2.6 The fibering obstructions of a CW band X with respect to
a choice of generating covering translation ¢ : X——X are the Whitehead
torsions

PH(X) = (¢" : T(O)—X),
& (X) = (¢ : T(¢C")—X) € Wh(mi(X))
defined using the canonical finite structures on T'(¢), T'(¢™1). O
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The fibering obstructions &1 (X),®~(X) of a CW band X measure the
difference between the intrinsic finite structure of X determined by the cell
decomposition and the extrinsic finite structures determined by the canonical
finite structures on the mapping tori 7'(¢), T'(¢™1).

Proposition 2.7 (i) The torsion of a homotopy equivalence f : X —Y of
CW bands is the difference of the fibering obstructions

T(f) = ¢7(Y) - 2F(X)
= & (V) - & (X) € Wh(m (X)) .

In particular, T (X) and = (X) are simple homotopy invariants of X .
(ii) The difference

O (X)—dH(X) = 7(—2¢": O(X)alz, 27 |—C(X)alz,271)
€ Wh(mi (X))

is a homotopy invariant of a CW band X, such that = (X) — ¢T(X) =0 if
and only if there exists a finite structure (K, f : X—K) on X such that

T(fCf K—K) = 0 Wh(m (X)) |
in which. case
T(T(fCf7H)—X) = o¥(X) = &7 (X) € Wh(m(X)) .
(iii) A CW band X fibres over S* if and only if
PH(X) = ¢7(X) = 0 Wh(m (X)) .
Proof See Ranicki [244, Chap. 20]. O

Example 2.8 Let f : X—— X be a self homotopy equivalence of a connected
finitely dominated C'W complex X. The mapping torus ¥ = T(f) has a

canonical finite structure, with infinite cyclic cover Y = T(f) ~ X. The
fibering obstructions of any CW band Z in the canonical finite structure of
Y are given by

ot (Z) =0,
b (2) = 7(—2f ' O(X)alz, 271 —C(X)alz, 27 1)) € Wh(m(Y)) ,
with C ()~( ) the cellular chain complex of the universal cover X of X and

a=fi mX)—mX), mY) = m(X)X.Z. O
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3. Algebraic bands

Algebraic bands are the chain complex analogues of the geometric bands of
Chap. 2. An algebraic band is a finite chain complex C' of finitely generated
free modules over the Laurent polynomial extension A[z,z7!] of a ring A
such that C is finitely dominated over A, i.e. A-module chain equivalent
to a finite finitely generated projective A-module chain complex. The most
obvious application of algebraic bands to high-dimensional knot theory is via
fibred knots, but the related algebra is useful in the study of all knots. For
example, the results of Milnor [195] that for any field F' the F-coefficient
homology of the infinite cyclic cover X of a finite CW complex X with
H.(X) = H,(S') is finite-dimensional

dimp H,(X; F) < o0,

and that if X is an (n+2)-dimensional manifold with boundary 9X = S™ x S!
(e.g. the exterior of an n-knot k : S® C S"*2) there are Poincaré duality
isomorphisms

H""W'*(X;F) = H.(X,S"F)

show that every n-knot has the F-coefficient homological properties of a
fibred n-knot, with fibre X.

Definition 3.1 (i) The polynomial extension Alz] of a ring A is the ring

5.5 .
consisting of the polynomials > ajz/ with coefficients a; € A such that
§=0
{j > 0]a; # 0} is finite.
(ii) The Laurent polynomial extension Alz,z71] is the ring consisting of the
oo .
polynomials > a;z? with coefficients a; € A such that {j € Z|a; # 0} is

j=—o00

finite. O

Definition 3.2 A chain compler band over Alz,z~'] is a based f.g. free
Alz, z71]-module chain complex which is A-finitely dominated. O

Example 3.3 If A is a Dedekind ring then an A-module chain complex C
is finitely dominated if and only if the homology H.(C) is finitely generated.
Thus a based f.g. free A[z, 2~ 1]-module chain complex C is a band if and only
if the homology H,(C) is finitely generated as an A-module. a
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Example 3.4 An infinite cyclic cover X = X /7 of a finite CW complex
X with m(X) = 7 X Z is finitely dominated if and only if C(X) is finitely
dominated over Z[r], by Wall [302] (cf. 1.1). Thus X is a CW complex band
if and only if C(X) is a chain complex band. See 3.5 for further details. [

Remark 3.5 Let X be a connected CW complex with universal cover X and
fundamental group The connected infinite cyclic covers X of X correspond
to the normal subgroups 7 <71 (X) such that m (X)/m = Z, with

X =X/m, mX) =nx.
Given any expression of 71 (X) as a group extension
{1} —m 7 —mX) —2Z — {1}

let z € m1(X) be a lift of 1 € Z. Conjugation by z defines an automorphism

1

QM — T, T —> 2 Iz

3

such that
(X)) = 7xaZ , Zrn(X)] = Zr]alz,27Y] .

An infinite cyclic cover X of X is finitely dominated if and only if (X)) =T
is finitely presented and the cellular Z[m; (X)]-module chain complex C(X)
is Z[r]-finitely dominated (1.1). If X is untwisted (1.5) then

a =1, mX) = axZ , Zm(X)] = Zx][z,2z7"] .

(i) A connected finite CW complex X is an untwisted band if and only if
m(X) = 7 x Z and C(X) is a chain complex band over Z[r][z,271] (as in
3.4). If X has a finite 2-skeleton then 7 is finitely presented, and if X is
untwisted then 7 is finitely presented also.

(ii) In the twisted case 71(X) = 7 X4 Z with a # 1 it may be that 1 (X) is
finitely presented but 7 is not finitely presented: for example, if X = T'(2 :
S1——S1) then the canonical infinite cyclic cover X = T(2) is the dyadic
solenoid, and

m(X) = mxaZ = {y,z|zyz"' =9°},
m(X) =7 = mX),mX)] =Z[1/2],a =2 : 7 — 7

with 7 (X) finitely presented and 7 not finitely generated, let alone finitely
presented. (I am indebted to C.J.B.Brookes for this example.) O

Definition 3.6 Given an A-module chain complex C and a chain map f :
C——C define the algebraic mapping tori T*(f), T~ (f) to be the A[z, 27 ]-
module chain complexes

TH(f) = C(1 —zf : Clz, 27 ]—Clz,27']) ,
T (f) = CA—z"1f:Clz, 27 |—C[z,27Y]) . O
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If C is finitely dominated then TF(f) an T~ (f) have canonical round
finite structures. If f : C——C is an isomorphism then T (f) is related to
T=(f~') by the isomorphism

T=(f7) — T7(f) s (@y) — (—2f(2),y) .
If f: C——C is a chain equivalence then T7(f) is chain equivalent to
T=(f7h).

The (geometric) mapping torus T'(f) of an untwisted map of spaces f :

X—X is such that

m(T(f) = m(X) xZ, Zm(T(f)] = Zm(X)][z27"] .

The cellular chain complex C(T(f)) of the universal cover T(f) of T(f)
is an algebraic mapping torus of the induced Z[m;(X)]-module chain map
f: C(X)—C(X) with C(X) the cellular Z[m (X)]-module chain complex
of the universal cover X of X

C(T(f)) = TT(J) = € —=2]: O(X)[z, 27 —C(X)[z,271]) .

If X is a finitely dominated C'W complex then C(X) is a finitely dominated
Z[m (X)]-module chain complex and C(T(f)) has a canonical round finite
structure.

Example 3.7 If C is a based f.g. free A-module chain complex and f :
C——C'is a chain equivalence then the algebraic mapping tori T (f), T~ (f)
are chain complex bands which are A-module chain equivalent to C. |

By analogy with the convention for Why(A) (1.4):
Convention 3.8 (i) The Whitehead group of the Laurent polynomial exten-
sion Az, 271 is
Whi(Alz,27Y]) = coker(Ky(Z[z, 27 ])— K1 (Alz, 27 1))
= Ki(Alz,2: ) {25 |j € 2} .
in the algebraic context of an arbitrary ring A.

(ii) In the topological context of a group ring A = Z[r| this is understood to
be the Whitehead group of the group @ x Z

Whin xZ) = Ki(Z[r x Z])/{+27g|j € Z,ge T} .
(iii) There are corresponding conventions for a simple chain equivalence f :
C——D of based f.g. free Az, 27 !]-module chain complexes, with 7(f) =0 €

Whi(Alz, 271]) in an algebraic context, and 7(f) = 0 € Wh(zr x Z) in a
topological context with A = Z[n]. O

Definition 3.9 A chain complex band C' fibres if it is simple chain equivalent
to the algebraic mapping torus

TH(h) = C(1 —zh:C[z, 27 |—Clz,27Y))

of a simple chain equivalence h : C—C. O
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Definition 3.10 The fibering obstructions of an A[z, z~1]-module chain com-
plex band C' are the Whitehead torsions
oH(C) = (¢" T —0),
& (C) = 1(¢ : T (()—C) € Whi(Alz,271])
defined using the canonical finite structures on 7+ (¢~1), 77 (¢~!) with
(:C—C; 22— zx,
¢t —Cix— 2. O
By analogy with 2.7:
Proposition 3.11 (i) A chain complex band C fibres if and only if
T (C) = & (C) = 0€ Why(Alz,27Y]) .

(ii) The torsion of a chain equivalence f : C——D of chain complex bands is
the difference of the fibering obstructions

7(f) = @7(D)-27(C)
= & (D) - & (C) € Whi(Alz,z7Y]) .

In particular, ®T(C) and &~ (C) are simple chain homotopy invariants of C.
(ii) The difference

o (C) - 27(C)
= 7(=2¢"1: Clz, 27 |—C[z, 27 1)) € Why(Alz, 27 1))

is a chain homotopy invariant of a chain complex band C, such that &~ (C) —
&1 (C) = 0 if and only if there exists an A-finite structure (B, f : B—C)
on C' such that

7(f~'¢f: B—B) = 0€ Why(A) ,
in which case
T(TH(fICTH)—C) = o7(C) = 7(C) € Whi(Alz,271]) .
Proof See Ranicki [244, Chap. 20]. O
By analogy with 2.8:

Example 3.12 Let P be a finitely dominated A-module chain complex,
and let f : P——P be a chain equivalence. The fibering obstructions of any
based f.g. free A[z, z7]-module chain complex C in the canonical round finite
structure of T (f) are given by

T (C) =0,
&= (C) = 7(—2f: Plz,27 ' |—P[z,27']) e Why(A[z, 27 1)),

so that C fibres if and only if P is chain homotopy finite and f is simple.
Similarly for T~ (f). O



4. Localization and completion in K-theory

As already recalled in the Introduction, localization and completion are the
basic algebraic techniques for computing the algebraic K- and L-groups, by
reducing the computation for a complicated ring to simpler rings (e.g. fields).
The classic example of localization and completion is the Hasse-Minkowski
principle by which quadratic forms over Z are related to_quadratic forms
over Q and the finite fields F,, and the p-adic completions Z,, Q, of Z, Q (p
prime). The localization of polynomial rings is particularly relevant to knot
theory, starting with the way in which the Blanchfield form takes its values
in the localization of Z[z, z7!] inverting the Alexander polynomials.

For any ring morphism f : A—— B the algebraic K-groups of A and B
are related by a long exact sequence

s Kn(A) 5 Kn(B) — Ku(f) — K 1(A) — ..

with relative K-groups K, (f). In particular, K1(f) is the abelian group of
equivalence classes of triples (P, @, g) given by f.g. projective A-modules P, Q
and a B-module isomorphism

g: P = BQaP — fiQ = BRaQ,
subject to the equivalence relation defined by :
(P,Q,g) ~ (P',Q',g') if there exist a f.g. projective A-module R
and an A-module isomorphism
h: PeQ &R =P adQadR
such that
(g7 @9 ® Linhs ((PEQ @ R)— [(P®Q ®R) = 0€ Ki(B) .

In the special case when f: A—B = S~ A is the inclusion of A in the
localization inverting a multiplicative subset S C A the relative K-groups
K. (f) are identified with the K-groups of the exact category of homological
dimension 1 S-torsion A-modules.



20 4. Localization and completion in K-theory

4A. Commutative localization

This section only deals with commutative localization, in which only central
elements of a ring are inverted — see Chap. 9 below for noncommutative
localization

Definition 4.1 (i) A multiplicative subset S C A is a subset of central ele-
ments which is closed under multiplication, with st € S for each s,t € S, and
such that 1 € S.

(ii) The localization S~1A is the ring obtained from A by inverting every
s € S, with elements the equivalence classes a/s of pairs (a,s) € A x S
subject to the equivalence relation

(a,s) ~ (b,t) if (at —bs)u = 0€ A for someu €S .
Addition and multiplication are by
a/s+b/t = (at+bs)/st , (a/s)(b/t) = ab/st . O
Proposition 4.2 The ring morphism
it A— ST'A; a — a/l

has the universal property that for any ring morphism f : A— B with f(s) €
B invertible for every s € S there is a unique morphism F : S~ A—— B with

f=Fi:A—S1'A—B. O
The morphism i : A—=S~1A is not injective in general. However, it is
injective if S C A consists of non-zero divisors.

Example 4.3 Given a ring A and a central element s € A define the multi-

plicative subset
S = (5)° = {s"|k>0}CA.

The localization of A inverting S is written
S™A = A[1/s] .

(i) If s € A is a non-zero divisor every non-zero element z € S~!A has a
unique expression as z = a/s (a € A,k > 0).
(ii) If s = s? € A is an idempotent then

S ={l,s} , A=s(A)e(1-s5)(A) , A[l/s] = s(A). O
Given an A-module M write the induced S~! A-module as
STIM = S7'A®a M.

Localization is exact, so that for any A-module chain complex C' there is a
natural identification

H.(S7'C) = S7'H.(C).



4B. The algebraic K-theory localization exact sequence 21

Definition 4.4 (i) An A-module M is S-torsion if S~1M = 0, or equivalently
if for every & € M there exists s € S such that sz =0 € M. (i) An (4, 5)-
module M is an S-torsion A-module of h.d. (= homological dimension) 1,
that is an A-module with a f.g. projective resolution
d
00— P — P —M—0
such that there exist s € S and I' € Homy (P, P1) with
dF:SZP0—>P0,FdZSIP1—>P1.

Let H (A, S) be the category of (A,S)-modules. The S-torsion class of an
(A, S)-module M is the stable isomorphism class

Ts(M) = [M] e Ko(H(A,S)) . ]
In an exact sequence of S-torsion A-modules
0— M — M-— M —0

M is an (A, S)-module if and only if M’ and M" are (A, S)-modules. Thus
H (A4, S) is an exact category in the sense of Quillen [225], and the algebraic
K-groups K, (H (A, S)) are defined.

4B. The algebraic K-theory localization exact sequence

Proposition 4.5 (Bass [13, XII], Quillen [225])
Let S C A be a multiplicative subset in a ring A such that the natural map
i: A—=S~1A is injective. The algebraic K-groups of A and S~'A are related
by the localization exact sequence
i o j
D Ko(A) — Ko (S7A) — Ko(A,8) = Kp_1(A) — ...
with i induced by the inclusion A—sS~1A and
K,(A,S) = K,_1(H(A,S)) (neZ). O
In the case n =1
Jo Ki(A,8) = Ko(H(A,S)) — Ko(A) ;
Ts(M) — [M] = [R] - [P]
0 @ Ki(S7'A) — Ki(A,S); 1(a)s: A"—A™)

— 7g(coker(a : A"—A")) — Tg(coker(s : A"—A™)) .
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Proposition 4.6 The following conditions on a finite f.g. projective A-module
chain complex C' are equivalent :

(i)  the homology A-modules H,(C) are S-torsion, with S™*H,(C) = 0,

(ii) there exists s € S such that sH.(C) =0,

(iii) there exist A-module morphisms I' : C.——Cry1 and an element
s € S such that

ar+Ird = s : ¢, — C, (rez,

(iv) C is St A-contractible, i.e. the induced finite f.g. projective S™1A-
module chain complex S~'C' is chain contractible,
(v) C is homology equivalent to a finite chain complex D of (A,S)-
modules.
Proof (i) <= (ii) Trivial.
(i) <= (iii) For any ring R a finite projective R-module chain complex P is
chain contractible if and only if H,(P) = 0.
(iii) = (i) It follows from the chain homotopy I : s ~ 0 : C——C' that
s=0:H,(C)—H,(C), and hence that S~1H,(C) = 0.
(i) = (v) By Ranicki [237,6.4.2] there exists a finite chain complex D of
(4, S)-modules with a chain map C——D inducing isomorphisms

H.(C) = H.(D).

(v) = (i) For each D, there exists s, € S such that s, D, = 0. The product
s =], sr € S is such that
sH.(D) = sH.(C) =0

and there exists a chain homotopy I' : s ~ 0 : C—C.
(iii) <= (iv) Every chain contraction of S~1C is of the form I'/s, with

dIr+I'd = s : C, — C, . ]

Definition 4.7 An S~!A-contractible finitely dominated A-module chain
complex C has an S-torsion class invariant

o0

75(C) = Y (=)'rs(Di) € Ki(A,8) = Ko(H(A,S)),

=0

with D any finite (A4, .S)-module chain complex homology equivalent to C.
O

Proposition 4.8 (i) The morphism j in the localization exact sequence

7 o j
L Ki(A) = Ki(STIA) — K(A,8) — Ko(A) —> ...

sends the S-torsion class of C to the projective class



4B. The algebraic K-theory localization exact sequence 23

j Ki(4,8) — Ko(4) ; 75(C) — [C] .

(ii) The connecting map 0 : Ki(S7'A)—K1(A,S) sends the torsion
7(S7LCO) of the contractible based f.g. free S~' A-module chain complex S~1C
induced from a based f.g. free A-module chain complex C with
STLH,(C) =0 to the S-torsion class

or(S7IC) = 75(C) € K1(A,S) .
(iii) If each H-(C) (r > 0) is an (A, S)-module

o

75(C) = Y (=)'7s(H,(C)) € Ki(A,S) . O

r=0

Definition 4.9 (i) For any commutative ring A let max(A) denote the set
of maximal ideals in A.
(ii) For any field F' let M(F) be the set of irreducible monic polynomials

p(z) = ag+arz+a2® +...+aqz? € Flz] (ag=1). 0

Remark 4.10 (i) The maximal ideals of a Dedekind ring A are the non-
zero prime ideals P < A. For S = A\{0} C A a standard devissage argument
identifies
K*(A’S) = @ K*—I(A/j)) )
Pemax(A)

with S~™'A = F the quotient field of A. See Chap. 18 for more on the K-
theory of Dedekind rings.

(ii) The polynomial extension of a field F is a principal ideal domain F'[z]
with maximal ideals the principal ideals generated by the monic irreducible
polynomials, so that there is defined a bijection

M(F) — max(F[2]) ; p(z) — (p(2)) -
The quotient field of F'[z] is the function field
F(z) = ST'F[2] (S=F[\{0})
and the localization exact sequence breaks up into short exact sequences
0 — K,(F[z]) — Kn.(F(z)) — K,(F[2],S) — 0.

The computation
K1(F[2],5) = ZIM(F)]

and its L-theoretic analogues will play an important role in the computation
of the high-dimensional knot cobordism groups in Part Two. ]
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Definition 4.11 A cartesian morphism of rings with multiplicative subsets
f : (A,S) — (B7T)

is a morphism of rings f : A——B such that f| : S—T is a bijection and

such that each
[f] :+ A/(s) — B/(f(s)) (s€9)
is an isomorphism of A-modules. ]

For any multiplicative subset S C A there is defined an A-module iso-
morphism

li% Al(s) —> STYAJA; {as|s €S} — ay/s
se
so that a cartesian morphism induces a cartesian square of rings
A——=S714
B——=T7'B
with an exact sequence of A-modules
0—A— S '"AeB — T 'B—0.

Proposition 4.12 A cartesian morphism f : (A,S)—(B,T) determines
an isomorphism of exact categories

H(A,S) — H(B,T); M — BoaT,

so that
K.(AS) = K.(B,T),

and there are defined a morphism of localization exact sequences

o= K, (A) —= K, (S7'A) —= K, (4,59) —= K,,_1(4) — ...

A

..—>K,(B) — K, (T 'B) — K,(B,T) —= K, _1(B) — ...
and a Mayer—Vietoris exact sequence
. — K, (A) — K,(S7'A) @ K,.(B)
— K,(T7'B) — K, _1(A) — ... .

Proof See Karoubi [115, App. 5] for a proof that H (A, S)—H (B, T) is an
isomorphism of exact categories, and Weibel [308,4.2] for a proof of the nat-
urality. (It is not assumed that B is a flat A-module, so the localization
theorem of Quillen [225, Chap. 8] does not give the naturality directly). O



4B. The algebraic K-theory localization exact sequence 25

Definition 4.13 The multiplicative subsets S, T C A are coprime if for every
s €5, t e T the ideals (s), (t)< A are coprime, i.e. if there exist a,b € A such

that
as+bt=1€ A. O

The localizations inverting coprime multiplicative subsets S,T C A and
the product multiplicative subset

ST = {st|seS,teT}CA
fit into a cartesian square of rings
A S~tA

_—

T7'A—— (ST) A

since inclusion defines a cartesian morphism (A, S)—(T~1A4, S) and
(ST)'A = S™HT7t4).
Proposition 4.14 Let S, T C A be coprime multiplicative subsets.
(i) The relative algebraic K-groups are such that
K. (A ST) = K.(A, S @ K.(AT)
and there is defined a Mayer—Vietoris exact sequence
o Ku(A) — K, (ST'A) o K, (T A) — K,((ST)"'A)
— Kn—l(A) —_— ... .
(ii) A finitely dominated A-module chain complex C is (ST) ' A-contractible
if and only if it is chain equivalent to the sum C' @ C" of a finitely domi-
nated S~ A-contractible A-module chain complex C' and a finitely dominated
T~ A-contractible A-module chain complex C", in which case C' ~ T~1C
and C" ~ S~1C.
(ili) The ST-torsion class of an (ST)~A-contractible finitely dominated A-
module chain complex C' is
ms7(C) = (rs(T7'C),7p(S7'C)) € K1(A,ST) = Ki(A,S) & Ki(AT) .

Proof (i) Apply 4.12 to the cartesian morphism (4,9)—(T1A4,S). Al-
ternatively, note that every (A, ST)-module M has a canonical direct sums
splitting

M — MI @ M//

with
M' = {z € M|sz=0¢€ M for some s € S},

M" = {x € M|tz =0¢€ M for some t € T} ,
defining an isomorphism of exact categories

H (A, ST) —> H(A,S) @ H(A,T) ; M — (M',M") .
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(ii) If C is chain equivalent to C’ & C” then
(ST)"*'C ~ TS 'che s (T7'C") ~ 0.
Conversely, suppose that C' is (ST)~! A-contractible. Replacing C' by a chain
equivalent finite f.g. projective A-module chain complex (if necessary) let
¢ =71'c, 0o =8"'C,
so that there is defined a short exact sequence of A-module chain complexes
0—C—Cal"— (ST)'C —0.

Since (ST)~'C is contractible both C’ and C” are finitely dominated A-
module chain complexes, such that C ~ C’ @ C” with C’ S~! A-contractible
and C" T~!A-contractible.

(iii) Immediate from (ii). O

Definition 4.15 Let A be a ring with a multiplicative subset S C A. The
S-adic completion of A is the ring defined by the inverse limit

As = lim A/(s) .

ses

Let S C 25 be the multiplicative subset defined by the image of S C A under
the canonical inclusion A— Ag. O

Example 4.16 For S = (s)> C A as in 4.3

Ag = A, = ker(I - T': ﬁ A/(sk)—>ﬁ A/(s*))
k=1

k=1
with
o) o0 o
1-7: [ A/ — JT A/ [] ae — [] (e —ara). O
k=1 k=1 k=1 k=1
Proposition 4.17 For any ring with multiplicative subset (A, S) the localiza-

tion STYA and completion A\S are such that the inclusion A—hzl\s defines a

cartesian morphism R
(A7S) — (AS7S) )

inducing a cartesian square of rings

A——S714

L

Ag —= S 145
and a Mayer—Vietoris exact sequence
. — K (A) — Ko (S7'A) @ K, (As) — K, (S 'Ag)
— K, 1(A) — ... . O
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The algebraic K-theory of the polynomial extensions A[z], A[z,27!] enters
high-dimensional knot theory via the action of the group of covering transla-
tions on the infinite cyclic cover of a knot complement, and a related endo-
morphism of the chain complex of a Seifert surface.

The exterior of an n-knot k : S™ C S"*2 is a space
X = cl.(S"3\(S™ x D?))

with a canonical infinite cyclic cover X, so that C(X) is a finite f.g. free
Z|z, 27 ]-module chain complex. A choice of Seifert surface F"™t C §n+2
for k£ determines a Z-module chain complex C’(F ) with a chain map f :
C(F)—C/(F), such that

Cl—f+=2f: C’(F)[z,zil}—AC’(F)[z,zfl]) ~C(X) .

In this connection it is convenient to introduce another indeterminate s over
Z (related to z by s = (1 — 2z)~1), and to regard C(F) as a Z[s]-module
chain complex via s = f — this point of view will become particularly useful
in the treatment of Seifert and Blanchfield complexes in Chap. 32. In any
case, Chap. 5 is devoted to the algebraic K-theory of Alz], A[z,2z71] for an
arbitrary ring A.

The direct summand NK;(A) in the Bass—Heller—-Swan ([13], [14]) direct
sum decompositions

Ki(A[z,27']) = Ki(A) @ Ko(A) @ NK(A) ® NK;(A)

is the reduced nilpotent class group ﬁlo(A). This identification will now
be recalled and extended, using the chain complex interpretation of Ranicki
[244].

']

The Laurent polynomial extension A[z, 27 !] of a ring A is the localization

of Alz] inverting the multiplicative subset

Z = () = {Z¥|k>0}cC 4[],
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that is
Z7 Alz) = Alz, 271

The Laurent polynomial extension ring can also be expressed as
Alz, 274 = Z/71A[7Y
with Z/ = {z7% |k > 0} C A[z7}].
Let A® be the multiplicative group of units of A

leading

Terminology 5.1 (i) The { coefficient of a non-zero polynomial

trailing

D> a;jz? € Alz,27' is the coefficient a; # 0 € A with the {largest
j=—00

possible j € Z.

smallest

o0 .
(ii) The extreme coefficients of a non-zero polynomial Y. a;jz7 € Alz,27]
Jj=—00
are the leading and trailing coefficients a,,,a, # 0 € A (which may be the
same). O

Let
it A— Az, 27, ix : Al — Az, 27V, i 0 A — Al

denote the inclusions, so that there is defined a commutative diagram

A*f>B
o

Given an A-module M let
M[z] = Alz]®@a M = szM
=0

be the induced A[z]-module. Similarly for the induced A[z, z~!]-module

Mz, 27 = Alz, 27 @4 M = Z M .

j=—o00

Proposition 5.2 (i) An Alz]-module M is an A-module with an endomor-
phism
(- M —M;xz— zx.

For any such M there is defined an exact sequence of A[z]-modules

¢
0 — M[z] — M[z] — M — 0
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with

Mlz] — M ; izjxj — i(j(xj) .
5=0 5=0

(ii) For any A-modules L, M there is defined an injection
Hom (L, M)[z] — Homp.)(L[2], Mz]) ;
izjfj — (izkxk — iizj"’kfj(xk)) .
§=0 k=0 §=0 k=0
If L is f.g. projective this is an isomorphism, allowing the identification
Homa (L, M)[z] = Homy| (L[z], M[z]) .
Remark 5.3 If L is not f.g. projective then in general
Homy (L, M)[z] # Homyp,(L[z], M[z]) .

Specifically, consider the special case
L=>)A, M=A4A
0
and the A[z]-module morphism

f i L[zl — M]z] ; sz(xo,xh...) — szxj .
j=0 j=0

29

) .
Then f cannot be expressed as ) 27 f; for some set of A-module morphisms

§=0
{f; € Homu(L,M)|j > 0} with {j > 0] f; # 0} finite.

Similarly for A[z, 2~!]-modules:

O

Proposition 5.4 (i) An Az, z7]-module M is an A-module with an auto-

morphism
(: M —M;xz— zx.

For any such M there is defined an exact sequence of Az, z~']-modules

—¢
0 — Ml[z,27"] = Mlz,27' ] — M — 0
with - -
Mz, 27 — M ; Z Adr; — Z I (zy) .

j=—o0 j=—o0

(ii) For any A-modules L, M there is defined an injection
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HomA(L,M)[z,zfl] — HomA[z,zfl](L[z,zfl],M[z,zfl]) ;

i Af; — ( i 2 — i i zj+kfj(atk)) .

j=—c0 k=—o00 j=—00 k=—00

If L is f.g. projective this is an isomorphism, allowing the identification
Hom(L, M)[z,27Y] = HomA[z’fl](L[z,zfl],M[z,zfl]) . O

Let P(A) be the exact category of f.g. projective A-modules, so that
K.(A) = K.(B(A)).

An element v € A is nilpotent if vV = 0 € A for some N > 0. An
endomorphism v : P—P of an A-module P is nilpotent if v € Hom4 (P, P)
is nilpotent.

Definition 5.5 (i) The nilpotent category Nil(A) is the exact category in
which an object is a pair (P,v) with P a f.g. projective A-module and v :
P—— P a nilpotent endomorphism. A morphism in Nil(A)

fo(Pv) — (PV)
is an A-module morphism f : P—— P’ such that
fv =vf: P—P.
A sequence of objects and morphisms in Nil(A)
0— (Pv) — (P,V)— (P"V'")—0

is exact if 0—P——P'—— P"”"——0 is an exact sequence of the underlying
f.g. projective A-modules.
(ii) The nilpotent K-groups of A are given by

Nil,(A) = K,(Nil(A4)) .
(iii) The reduced nilpotent K -groups of A are given by
Nil.(A) = coker(K., (P(A))—K.(Nil(A)))

with
P(A) — Nil(4) ; P — (P,0) ,

such that .
Nil,(4) = K.(A) ¢ Nil.(A4) .

(iv) The nilpotent class group is

Nilg(4) = Ko(Nil(A)) ,
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the group of equivalence classes of objects (P,v) in Nil(A), subject to the
relation: (P',v') ~ (P,v) + (P”,v") if there exists a short exact sequence

0 — (Pv) — (P,V)— (P"V') — 0.
The reduced nilpotent class group of A is
Nilg(A) = coker(Ko(A)—Nilg(A)) ,

the group of equivalence classes of objects (P,v) in Nil(A), subject to the
relations:

(a) (P,v) ~ (P,v)+ (P",v") if there exists a short exact sequence
0 — (Pv) — (P',V)— (P"V'") — 0,
(b) (P,0) ~ 0 for any f.g. projective A-module P. O

Proposition 5.6 (Bass [13,XI1.9.4], Quillen [225], Grayson [95])
(i) The relative groups K.(A[z], Z) in the localization exact sequence

s Kn(Al]) 5 Ka(Al 2 Y) 5 Ko (AL 2)

— Kn1(Alz]) — ...
are the algebraic K-groups
K.(A[z], Z2) = K..1(H(A[z], 2))

of the exact category H (A[z], Z) of (A[z], Z)-modules. Use the isomorphism
of exact categories

Nil(A) = H(Alz],Z) ; (P,v) — coker(z — v : Plz]—P]z])

to identify

%

=

o

N
I

K. (H(Alz], 2))
= Nil,_1(4) = K, 1(A) @ Nil,_,(A) .

(ii) The localization exact sequence breaks up into split exact sequences

0 — Kn(Alz]) - Kn(Alz,271) —5 Nil,_1(A) — 0,

so that
Kn(A[z,zfl]) = K,(A[z])®Nil,_1(A) (neZ).

(iil) The algebraic K-groups of Alz] fit into split exact sequences

0 — Kn(A) 5 Ko(A[2]) -5 Nily_1(A) — 0

with
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By : Ka(Alz]) -5 Kn(Alz, =)

O K(AlY, 2K 1 (A) = Nil, 1(A)

so that .
K,(Alz]) = Kp,(A)@Nil,_1(4) (neZ). O

Remark 5.7 Let P be a f.g. projective A-module, and let R = Hom (P, P)
be the endomorphism ring.
(i) A linear element

a = ag+ayz € Homyp,(P[2], Plz]) = R[Z]

is a unit @ € R[z]* (i.e. an automorphism of P|z]) if and only if ag : P—P
is an automorphism and v = a;(ag)~! € R is nilpotent, in which case

(ap +a12)”! = (ao)_l(i(—y)jzj) : Plz] — P[7] .
j=0
(ii) A linear element
a = ag+az € HOmA[Z7Z71](P[Z7Z_l],P[Z,Z_lb = R[z,z_l]
is a unit @ € R[z,271]* if and only if ap + a1 € R is a unit and
f = (ap+a)tag € R
is a mear-projection in the sense of Liick and Ranicki [175], i.e. such that
f(1— f) € Ris nilpotent. If k > 0 is so large that (f(1 — f))* =0 € R then
fF+ (1 - f)* e R*, and
fo = (fFF+0@=-HH"frer
is a projection, (f,)? = f.. The f.g. projective A-modules
M = fu(P), N = (1-f.)(P)
are such that P = M & N and
ag+ a1z = (bgp+b12) ® (co + 12) :
Plz,27'] = M[z,27'|®@ N[z, 27 '] —
Plz,27'] = M[z,27'|® N[z, 27 }]
with by : M—=M, ¢; : N——N isomorphisms and (by) 1b : M—M,
(c1)7teg : N—N nilpotent. Thus by +b1 2 : M[2]—M|z] is an A[z]-module

automorphism and coz~! +¢1 : N[z71]—>N[27!] is an A[z7!]-module auto-
morphism. O

The split exact sequences
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0 — Ki(A[z]) — Ki(A[z,27']) — Nilp(A) — 0,
0 — K1(A) — Ky (A]z]) —> Nilg(4) — 0

will now be interpreted in terms of chain homotopy nilpotent chain maps of
finitely dominated A-module chain complexes, generalizing the treatment of
Ranicki [244].

Definition 5.8 An A-module chain map v : C——C is chain homotopy
nilpotent if for some k > 0 there exists a chain homotopy v* ~ 0 : C—C,
or equivalently if v € Ho(Hom4(C, (C)) is nilpotent. O

See Ranicki [244, Chap. 11] for the definition of the nilpotent class
[C, I/] € Nily (A)

of a finitely dominated A-module chain complex C with a chain homotopy
nilpotent map v : C—C.

Proposition 5.9 For a finitely dominated A-module chain complex P the
following conditions on a chain map v : P— P are equivalent :

(i) v is chain homotopy nilpotent,
(ii)  the Alz]-module chain map 1 — zv : P[z]|—P|z] is a chain equiva-
lence, with chain homotopy inverse

(1—zv)"t = szuj : Plz] — P[7],

(iii) the A[z=1]-module chain map 1—2" v : P[z~Y]—=P[z7 1] is a chain
equivalence, with chain homotopy inverse

0
11—zt = Z v . Plz7Y — P27 .

j=—o00

Proof (i) <= (ii) The A[z]-module chain map 1— zv : P[z]—P|[z] is a chain
equivalence if and only if the element

1~ 2v € Hy(Homap (P[2], PLe))) = Ho(Homa(P, P))[:]

is a unit, which by 5.7 is the case if and only if v € Ho(Homu4 (P, P)) is
nilpotent.

(ii) <= (iii) Trivial. O
Proposition 5.10 The following conditions on a finite f.g. free A[z]-module
chain complex E* are equivalent :

(i) ET is A-finitely dominated and the A-module chain map

¢(: EY — Et; 2 — 22
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18 chain homotopy nilpotent,

(11) H,k(A[Z, 2_1} ®A[z] E+) =0,
(i) E7T is homology equivalent to a finite complex of (A[z], Z)-modules.
Proof Immediate from 4.5, 5.5 (i). O

If ET is an A[z, 27 1]-contractible finite f.g. free A[z]-module chain com-
plex the nilpotent class of (KT, () is given by

o0

[E¥,¢] = > (=)[Pr,vy] € Nilg(A)

r=0
for any finite chain complex in Nil(A)
(Pv) : ... — (Poyn) — (Pno1,Vn-1) — ... — (Po,0)
such that ET is chain equivalent to C(z — v : P[z]—P|z]).
Proposition 5.10" The following conditions on a finite f.g. free Alz71]-
module chain complex E~ are equivalent :
(i) E~ is A-finitely dominated and the A-module chain map

(' ET—E ;z— 2z 2

18 chain homotopy nilpotent,
(11) H*(A[Z, Z_l] ®A[z*1] E_) =0,
(iii) E~ is homology equivalent to a finite complex of (A[z71], Z’)-modules.

Proof As for 5.10, but with Et, 2 replaced by E—, 27 1. O

For any A[z]-module chain complex E* there is defined a short exact
sequence of A[z]-module chain complexes

z—C +
1 — E*[z] =5 B[] = EY — 1

with
(: Et —Et; 2 — 2z,
pt . ET[2] = Al]l@a BT — ET iajzj(@xj — iaj{j(:rj) .
j=1 j=1
The A[z]-module chain map
rt = (p" 1) : C(z—(: ET[]—ET[2]) — ET

is a homology equivalence. If E* is a projective A[z]-module chain complex
then 7 is a chain equivalence.

Definition 5.11 The fibering obstruction of an A-finitely dominated based
f.g. free A[z]-module chain complex E* is
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PEY) = 7(rT:C(z—(: ET[z]—ET[z]) — EY) € K1(Alz]) . O

By analogy with the properties (3.12) of the fibering obstructions ¥ (E),
@~ (E) of an A[z, 2~ !]-module chain complex band E:

Proposition 5.12 (i) The fibering obstruction of an A-finitely dominated
based f.g. free A[z]-module chain complex ET is such that ®(ET) = 1 €
K1 (A[2]) if and only if E™ is simple chain equivalent to €(z—h : P[z]— P[z])
for some finite f.g. projective A-module chain complex P and self chain map
h:P—P.

(ii) The torsion of a chain equivalence f : C——D of A-finitely dominated
based f.g. free A[z]-module chain complexes is the difference of the fibering
obstructions

7(f) = (D) - 2(C) € Ki(Al]) - 0

Remark 5.13 In Chap. 8 it will be proved that if ET is a based f.g. free
A[z]-module chain complex such that the induced Alz,27!]-module chain
complex E = Alz, 27 ]®4 E7 is a A-finitely dominated then E* is A-finitely
dominated. See 5.16 (ii) below for the relationship between the fibering ob-
structions @ (E) € Ki(Alz,271]), ®(ET) € K1(A[z]) of 3.10,5.11 in the case
when ET and E are both A-finitely dominated. O

Proposition 5.14 (i) The torsion group of Alz, 21| fits into the direct sum
system

it o4
Ky (Al]) &= Ki(A[z,27]) 7 Nilo(4)

with
i Ki(Al2]) — Ki(Alz,27) 5
T(ET) — 7(Alz, 27| ®@ap ET)
ji o Ki(Alz,27Y) — Ki(A[2]) ;
T(Alz, 27| ®@ap ET) — &(ET),
Oy : Ki(Alz,271]) — Nilg(A) ;
T(Alz, 27 ®@ap BY) — [ET,(],
AL ¢ Nilg(A4) — Ky(Alz,27Y)
[Pv] — T(z—v: P[Z,Z_l]—>P[sz_1D .

(ii) The torsion group of A[z] fits into the direct sum system

K(A) = K (Al]) et Nilp(4)

J+ Ay

with
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iy 0 Ki(A) — Ki(Al2]) ( ) — T(E[Z])
J+ 0 Ki(A[2]) — Ki(A) ; 7(BET) — (A®Az] EY),
9y Ki(Ale]) — Nilg(A) ; ( ) [E7, ¢
(Alz, 27V @ E A[z,z ] - E7)

A, Nilg(A) — K1 (A[2]) ;
[P,v] — 7(1 — zv : P[z]—P]z]) . O
Similarly :

Proposition 5.14' (i) The torsion group of Alz, 21| fits into the direct sum
system .

Ki(A]z7Y) (l—;> Ki(Alz,271)) <i:> Nilo(4)
with j 7

i Ki(Alz7Y]) — Ki(Alz,271Y)
T(E7) — 7(Alz, 27| ®ap-1 E7)

o Ki(Alz,27Y) — Ki(A[lz7Y)

T(Alz, 27 ®ap-y E7) —

PET) = 7(r €= ET [z —E [27Y])—E),
O_ : Ki(Alz,27']) — Nilp(A) ;

7(Alz, 27 @ E7) — [E7,¢7',
A_ : Nilg(A) — Ki(Alz,27Y) ;

[Pv] — (27 —v: Plz, 27— P[z,271]) .

(ii) The torsion group of Alz~1] fits into the direct sum system

Ki(4) ——= Ki(A:"1) <;:> Nilo(A)
with
i Ki(A) — Ki(ART)) 5 7(B) — (BT,
Jo o Ka(AETY) = Ki(A) 5 7(ET) —— m(A®ap- E7)
0_ : Ky(Alz™"]) — Nilg(4) ; 7(E7) — [ET,(]
(Alz, 7Y ®ap-1 BT = A[z,zfl] ® Al ET),
A_ : Nilg(A) — Ky(A[z7Y) ;

[P,v] — 7(1 — 2z v : Pz ]—P[z7']) . O
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Example 5.15 (i) If A is a Dedekind ring every object (P, f) in Nil(A4) has
a finite filtration

(ker(f),0) C (ker(f?), f|) C ... C (ker(fY), f]) = (P, f) (f¥ =0)
such that
fker(f+1)) C ker(f7) (r>0)

with A-module isomorphisms

Ker(f7+1) fkex(f7) = f7(ker(f7+1)) ; @ — f7(x) .
The filtration quotients ker(f”*!)/ker(f") are f.g. torsion-free A-modules,
and hence f.g. projective, with

o

(P.f) = Y (ker(f"")/kex(f7),0) = (P,0) € Nilg(A) .

r=0
It follows that ~
Nilg(A) = Ko(A) , Nilg(4) = 0.
(In fact, Nvilo(A) = 0 for any regular ring A, by Bass, Heller and Swan [14].)

(ii) Let A = F be a field. Dimension and determinant define isomorphisms

dim : Ky(F) [P] — dimp(P) ,

Z;
F*

I I

det : K, (F) 7 — det (1) ,
with F* = F\{0}, and
Nilo(F) = Ko(F) = Z,
Ki(Flz,27Y) = Ki(F)® Ko(F) = F*@Z. O

Proposition 5.16 Let ET be a based f.g. free Alz]-module chain complez,
and let
E = A[Z,Z_l] ®A[z] Et = A[Z,Z_l} ®A[z*1] E~

() If EY is A-finitely dominated then (' : E/E~——=E/E~ is chain homo-
topy nilpotent and

dyd(ET) = —[E/E,(7"] € Nilg(A)
for any compatibly based f.g. free Alz~']-module chain complex E~ with
E = A[Zazil] ®A[z] ET = A[szil} ®A[z—1] E~

(ii) If EY and E are A-finitely dominated then (/¢ : E/ET—E/ET is
chain homotopy nilpotent and
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i+@(E) = O(E) = 7(—C: Elz,z7'|—El2,27']) + Ay (E/ET,()
€ Ki(Alz,271) .

Proof (i) The A[z~']-module chain map defined by

5T BT — Cl -z ¢ BTz | —ET 271 ;
0 0
Z () — Z Za; (z; € ET)
j=—oo j=—oo

induces an A[z, 27 !]-module chain equivalence
l®s™ : E = Alz,27] ®ap-1 E”
= C(l—2z'¢: B[z, 27 |—E"[z,27Y]) .
The composite of 1 ® s~ and the A[z, 27]-module chain isomorphism
t: Cl—z"¢: B[z, 27— ET[z,271])
= €= (B e B ) (@) — (o)
is a chain homotopy inverse for 1 ® r™
tl®s™) = (1erh)™t:
E = Als, 2 @up) B~ — C(z—C: B [s, 27— E*[z,271)
with torsion
(t) = 7(2: B[z, 27— Et[2,27Y)) € Ky (A[z,27Y]) .
The A[z~!]-module chain map

Cl—z"¢: BTz —ET[z7Y]) — E;
(> Fuy Y Ay — D Clay)
j=—00 j=—00 j=—00
is a chain equivalence, and
O_T(l®s™) = [E/E~,(C+[ETNE™,0] € Nilg(A) .
The fibering obstruction @(E+) = 7(r*) € K;(Az]) is thus such that
Aot (r™) O_r(l®rt) = —0_7(1®s7) —0_71(t)
= _[E/E_ac_l] - [E+ n E_,O] + [E+70]

— —[E/E~, ¢ € Nilg(4) C Nily(A) .
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(ii) Immediate from (i) and 5.10. O

Remark 5.17 The chain complexes F, E~ in 5.16 (i) need not be A-finitely
dominated, although the quotient

E/E~ = ET/ETNE"

is A-finitely dominated. For example, if s € A is a central non-unit (e.g.
s =2 € A =1Z) then the chain complexes

ET = @z —s: Alz]—A[2]) ,
E = Cz—s:Alz,z7 | —Alz,271]),
E- = €l —szt: A7 — A7)

are such that ET is A-finitely dominated but F and E~ are not A-finitely
dominated, with

Hy(E') = A, Ho(E) = Ho(E™) = Al/s]. 0

Example 5.18 Let £ be the 1-dimensional based f.g. free A[z]-module
chain complex

dt
Et : ... —0— Ef = F[2] — Ef = G[]

with F, G based f.g. free A-modules and
dt = dy+diz : F[z] — G[z]

for some dy,d; € Homa(F,G). The 1-dimensional f.g. free A[z~!]-module
chain complex

E-: ... —0—E = Fz7'l — E; = Gz

defined by
d~ = dy+doz"" ¢ Flz] — G[7]

is such that
A[Z,Zil] X A[2] Et = A[Z,Zil] ®A[z-1] E .

The induced A-module chain complex

d,
A®A[Z]EJr o ~—>A[Z]®AET_ = F —O>A®A[Z]ES_ =G

is such that H,(A®ap,) ET) = 0 if and only if dy : F—@ is an isomorphism,
in which case the inclusion G——FE~ is an A-module chain equivalence with

("t = —di(do)™! s Ho(ET) = G — Ho(E™) = G .



40 5. K-theory of polynomial extensions

The A[z]-module chain complex E7 is contractible if and only if dg : F—G
is an isomorphism and d;(dp) ™! : G—@G is nilpotent, in which case

() = T(BY) = (r(do: F—G), (G, —da(do) ™))
€ Ki(A[2]) = Ki(A) @ Nilg(A) .
If dy : F—(@ is an isomorphism the A-module morphism
foBf = Glel — G5 ) Hay— Y (—dold) 7 (x5)
§=0 §=0
defines an A-module chain equivalence f : ET——@G such that
fCf Y = —do(d))™ 1 G— G,
and ET is A-finitely dominated with
T(rt € — 2: ET[2]—ET[2]) —ET) = (7(~dy : F—Q),0)
€ Ki(A[z]) = Ki(A)® Nily(A) . 0

As in Ranicki [240], [244] it is possible to consider both the original “al-
gebraically significant” Bass—Heller—-Swan type direct sum decomposition of
K1(A[z,271]) and Why(A[z, 27']) and the transfer-invariant “geometrically
significant” direct sum decomposition. The latter decomposition will play a
greater role in this book.

Definition 5.19 The geometrically significant decomposition of the White-
head group of A[z, 271]

Whi(Alz,271]) = Whi(A) ® Ko(A) ® Nilp(A) & Nilp(A)
is the decomposition determined by the isomorphism
Why(A) & Ko(A) & Nil(A) & Nilg(A) —> Why(Alz,271) ;
(r(f : M—M),[N], [P*,v7], [P7,v7]) —
7(f: Mz, 27 ]—M][z,27Y) + 7(—2 : N[z,27 ' |— Nz, 27 Y])
+7(1 =2z Pz, 27— P [z, 271))

+7(1 =207 : P (2,27 )— P [2,271]) . O



6. K-theory of formal power series

The results of Chap. 5 on the K-theory of the polynomial extensions
Alz], A[z, 271] are extended to the K-theory of the formal power series ring
Al[#]] and the Novikov ring A((z)). This extension will be used in Chap. 8
to show that a finite f.g. free A[z,27!]-module chain complex is A-finitely
dominated (i.e. a band) if and only if

H, (A((2)) ® 4,21 C) = Ho(A((z7) ®apz 2 C) = 0.
d

In particular, if A(z)H,.(C) = 0 for some A(z) = > a;z) € Alz,27!] with

7=0
ap,aq € A® (e.g. the product of the Alexander polynomials for a fibred knot)
then C' is a chain complex band.

As in Chap. 5 let z be an indeterminate over a ring A, and let
Z = {Z"|k>0} C Al7] .

Definition 6.1 The formal power series ring of A is the Z-adic completion
of Alz]
Ally = AllZ]] = lm Al2]/ (%)
consisting of all the formal power series Y a;27 with coefficients a; € A. O

j=0
Given an A-module M let
(oo}
M) = Al @aM = [[#M
j=0
be the induced A[[z]]-module.

Proposition 6.2 For any A-modules L, M there is defined an isomorphism

Hom (1)) (L[[2]], M[[2]]) — Homa(L, M)[[2]] ; f — Y 2f;
§=0

with f; € Homa (L, M) given by

fl@) =Y Zfix) e M[l2]] (wel). O
3=0
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Proposition 6.3 (i) Let P be an A-module, and let
R = Homy(P,P)
be the endomorphism ring. An Al[z]]-module endomorphism
a = Y a;z € Homapy (P[], P[[2])) = R[] (a; € R)
7=0
is an automorphism if and only if ag : P—— P is an automorphism, that is
R[[Z]]* = R*(1+4zR[[z]]) .
In particular, the case P = A gives the units of A[[z]] to be
Al = A*(1+ 2A[]) -
(i) A finite f.g. free A[z]-module chain complex E* is such that
Ho(Al[2]] ®ap ET) = 0
if and only if the A-module chain map
(: Et —E"; 2 — 2z

is an A-module chain equivalence.
Proof (i) The augmentation

J+ : R[[Z] — R; Zajzj — ap
j=0

is a ring morphism, so that if a € R[[2]]* then j, (a) = ag € R®. Conversely,
if ap € R® then a € R][z]]®* with inverse

ol = (1 4 Z( _ (ao)_l Zakzk )j> (ao)_l S RHZ]]. :
j=1 k=1

(ii) The exact sequence of A[z]-module chain complexes

z2—(¢
0 — Azl @4 ET — AlZ]@s ET — ET — 0

induces an exact sequence of A[[z]]-module chain complexes

0 — Allel] @4 BV 5 All2]] @4 B* —> All2]] @4 EY — 0.

Thus H, (A[[z]]®ap.) E1) = 0if and only if 2—( : A[[2]]@ 4 ET—A[[z]]@ 4 ET
is an A[[z]]-module chain equivalence. This is the case if and only if ¢ :
ET—E* is an A-module chain equivalence, with chain homotopy inverse

(z—¢O)7' = —sz(g)—j—l c A2l @4 ET — A[[Z]]@4 EY . O
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Remark 6.4 The ideal J = zA[[z]] < A[[2]] is such that 1+ J C AJ[z]]*, so
that the projection A[[z]]— A[[z]]/J = A induces an isomorphism

Ko(A[[z]]) — Ko(A) ; [P] — [A®aq P
(Silvester [268, p.21]). However, the functor
P(A[[z]]) — P(A) ; P — A@ap P

is not an equivalence of categories, and the split surjection K;(A[[z]])—
K1(A) is not in general an isomorphism. In Chap. 14 the direct summand

NEK,(A) in

Ki(Al[2]]) = Ki(A) @ NK1(4)
will be identified with the abelianization /W(A)“b of the multiplicative group
of Witt vectors -

W(A) = 1+ zA[[z]] C A[[=]]* . O
Definition 6.5 (i) The Nowikov ring of A is the localization of A[[z]] inverting
Z ={*k>0}

A(2)) = Z7 All2]]
consisting of the formal power series Y. a;z? with coefficients a; € A such
j=—o00

that {7 < 0|a; # 0} is finite.
(ii) The Novikov homology of an A[z,2~!]-module chain complex C is the
homology of the induced A((z))-module chain complex

H*(A((Z)) ®A[z,z*1] C) . O

Proposition 6.6 The inclusion of the polynomial ring A[z] in the power
series ring A[[z]] defines a cartesian morphism of rings with multiplicative
subsets

(Alz], 2) — (A[l2]], 2)

with a cartesian square of rings

Alz] — Alz, 271]

]

Allz]] —— A((2))

Proof Immediate from the definition (4.11), since for every k > 1

k—1

A[R/(F) = AllR)/(F) = YA O

J=0

By analogy with 5.6:



44 6. K-theory of formal power series

Proposition 6.7 (i) The relative groups K,(A[[z]],Z) in the localization
exact sequence

- KAl K (A((2))) 2 KAl 2)
— Ko 1 (All2]]) — ...
are the algebraic K-groups K. 1(H(A[[2]],2)) of the ezact category
H (A[[2]], Z) of (A][z]], Z)-modules. The isomorphism of exact categories
Nil(4) — H(A[2]], Z) ; (P,v) — coker(z — v : P[[z]]—sP[[2]])
gives the identifications
K.(Al[2]], Z) = K. 1(H(A[[2]],2)) = Nil,_1(4) .

(ii) The localization exact sequence for A[[z]]— A((z)) breaks up into split
short exact sequences

0 — Ku(All]) — Kn(A((2)) - Kn(A[[2]],2) — 0,

so that
Kn(A((2)) = Kn(A[[2]]) @ Nil,—1(4) (n€Z).

Proof (i) The functor

~

H (Alz], 2) — H(A[[2]}, 2) ; M — A[[2]] ® 4z} M

is an equivalence by 4.12, and H (A[z], Z) is equivalent to Nil(A4) by 5.6 (i).
(ii) The map of localization exact sequences

s K (Al2]) —— Kn(Az, 27 Y)) —2 > Ko (A[2], Z) —— ...

| N

o E(A[[2]]) —— Ea(A((2))) — > En(A[[2]]. 2) — ...
includes isomorphisms K, (A[z], Z) = K, (A[[2]], Z). Use the splitting maps
A, K.(A[2],Z) = Nil,_1(A) — K.(A[z,27'])

given by 5.6 for the connecting maps 0 : K.(A[z,271])—K.(A[z], Z) to
define splitting maps

Ay KA, Z) = Nil,_1(A) — K. (Alz,27Y) — K. (A((2)))
for 8, : K. (A((2))) — K. (A[[2]], Z). For % = 1
Ay Ki(A[[2]], Z) = Nilg(A) — K1 (A((2))) ;
(P,v) — 7(z —v: P((2)) —P((2))) - O
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For any free A[[z]]-module chain complex E* there is defined a short exact
sequence of A[[z]]-module chain complexes

z—C +
0 —s E*[[2]] — E*[[z] =— ET — 0
with
(: Et —E"; 2 — 22,

pt s ET[2)] = Al @a BN — EY 5 Y e @z — > a;¢(x;) -
=0 =0

The A[[z]]-module chain map
(p" 0) ¢ Clz=C: EN[[2ll—E"[[]]) — ET

is a homology equivalence. If ET is A-finitely dominated the chain complex
T(¢) has a canonical round A[[z]]-finite structure, and ¢* is a chain equiva-
lence.

By analogy with 5.14 (i):

Proposition 6.8 The torsion group of the Novikov ring A((z)) fits into the
direct sum system

iy ay
K (Allz]])) /= K1(A(())) <A:> Nilo(A)
with
i KAL) — Ki(A((2) 5 7(E) — T(A(()) @a B

g+ Ki(A((2) — Ki(A[[2]]) 5 7(A((2)) ®agy BT) —
7(C(z = ¢ B¥[[2)]—E*[[2])—E")
0: + Ki(A((2)) — Nilg(4) 5 7(A((2)) ®agy V) — [E¥,(]
Ay ¢ Nilg(A) — Ky (A((2))) 5 [Pv] — (2 — v 1 P((2))—P((2))) -
O

The Novikov ring A((271)) is defined by analogy with A((z)) using 27!
in place of z. The multiplicative subset

"= {z7FE>0} c Alz7Y
is such that
2747 = Alzz' L AR, = Al = lm ARG

The inclusion of A[z7!] in the completion A[[z7!]] defines a cartesian mor-
phism of rings with multiplicative subsets

(A=, 2") — (A=), 2)
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with a cartesian square of rings

Al —— Alz, 271

L

Allz7] —=A((z™)
Proposition 6.7 (i) The exact category H(A[[z"]],Z") of (A[[z"]], Z")-
modules is such that there are natural equivalences
H(A[[z"Y],Z") ~ H(A[z7Y],Z') ~ Nil(4),

and
K. (A[[z7Y,Z") = K.(A[z7'],2') = Nil,_1(4) .

(i) The localization ezact sequence for A[[z71]]— A((z71))
o Ky (A7) — Ka(A((z7Y))

O Ko(All YL ZY) — K (A7) —

breaks up into split short exact sequences

0 — Ku(All 1)) — K (A=) -5 Ko (Al '], 2) — 0.,

and up to isomorphism
Kn(A((z_l))) = Kn(A[[z71]]) ® Nil,—1(4) . O

Proposition 6.8 The torsion group of A((z71)) fits into the direct sum
system

i o_
Ky(As) == Ky(A() &= Nil(4)
with
i KAL) — Ka(AG) 5

T(E7) — 7(A((z™") @ap—y E7)
jo = Ki(A((zTY) — Ku(Allz71) 5 7(A(zTY) @y B7) —
e - ¢ ET [ —ET [T )—ET) ,
0_ : Ky (A((z71))) — Nilg(A) ;
T(A((z™) Qa1 E7) — [B7,¢71,
A_ @ Nilp(4) — K1 (A((z™1)) ;

[Pv] — 7(z ' —v: P((z71)—P((z71))) . .



7. Algebraic transversality

Algebraic transversality is the chain complex analogue of the geometric
transversality technique used to construct fundamental domains for infinite
cyclic covers of compact manifolds and finite CW complexes. Refer to Ran-
icki [244, Chap. 4] for a previous account of algebraic transversality : here,
only the additional results required for the new applications are proved. The
construction in Part Two of the algebraic invariants of knots will make use
of the L-theory version of algebraic transversality for chain complexes with
Poincaré duality, the analogue of the geometric transversality construction of
a Seifert surface fundamental domain for the infinite cyclic cover of a knot
complement.

A Mayer—Vietoris presentation of a finite f.g. free A[z, z71]-module chain
complex is the chain complex analogue of the cutting of an infinite cyclic cover
of a connected finite CW complex into two halves by means of a separating
finite subcomplex. Mayer—Vietoris presentations will be used in Chap. 8 to
prove that a finite f.g. free A[z, z7!]-module chain complex E is A-finitely
dominated if and only if

H*(A((Z)) ®A[z,z*1] E) = H*(A((Zil)) ®A[z,z*1] E) =0.

Definition 7.1 Let M be a based f.g. free A[z, z71]-module, with basis el-
ements {by,bs,...,b.}. A f.g free A[z]-submodule M+ C M is compatibly
based if it is such that

A[Z,Zil] ®A[z] Mt = M

. . + + + .
with basis elements {z =™ by, 27 N2 by, ..., 27N b} for some N;‘ >0, in
which case

+

T(1: Alz, 27| @ap MT—M) = (2N Az, 27 ——=Alz,27Y) = 0
€ Whi(Alz,27Y) = coker(Ky(Z[z, 27 ])—K1(Alz,27Y]))
(Nt =Y N'>0).

Similarly for f.g free A[z!]-submodules M~ C M such that
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A[Z,Z_l] ® A[z—1] M- =M

with basis elements {21 by, 22 by, ..., 2% b} for some N; >0. a

Definition 7.2 A Mayer—Vietoris presentation (ET, E™) of a based f.g. free
Alz, z71]-module chain complex E is a choice of a compatibly based f.g. free
Alz]-module subcomplex E+* C E and a compatibly based f.g. free A[z71]-
module subcomplex E~ C E. O

Proposition 7.3 (i) Every based f.g. free Alz, z~]-module chain complex E
admits Mayer—Vietoris presentations (E™, E™).
(ii) For any Mayer—Vietoris presentation (E*,E~) of a based f.g. free
Alz, z7Y]-module chain complex E there is defined an A-module exact se-
quence

00— E"NE” — Et®0E — FE—0.

Also, the subcomplezes
C =E'NE~,D = E"NzE~CE

are based f.g. free A-module subcomplexes, and there is defined an exact se-
quence of Alz, z~]-module chain complexes and chain maps

1 f—=zg 1 h
0— Clz,z7'] — D[z,27'] — E —0

with
f:C—D;x— (x,

g: C—D;z— x,

o [ee)
h : Dlz,27'] — E; Z a7 @x —> Z ajzlz
j=—00 j=—o00

and such that the chain equivalence

q = (h 0) : C(f —29:Clz,27'}—Dl[z,27']) — F
has T(q) = 0 € Why(Alz, 271)), i.e.

7(q) € im(Ky(Z[z, 27 ) — K1 (A[z,27Y])) .
Proof (i) Let E be n-dimensional
F:...—0—F, —FE, 11— ... — F — Fp—0...,
and let F;. be the f.g. free A-module generated by the basis of E,
E. = Flz,z7'] (0<r<n).

Now
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N N,

is r—1
dg( Z ZF,)C Z AF_y (r=nmn-1,...,0)
j=—N} j:*N:—l

for some integers N,7, N, > 0 such that (starting with N;J = N, = 0,
for example). Let ET be the n-dimensional compatibly based f.g. free A[z]-
module chain complex defined by

Ef = Z AF.CE. (0<r<n).
j=—N}

Similarly, let E~ be the n-dimensional f.g. free A[z~!]-module chain complex
defined by
N
E= = Z ZF.CE. (0<r<n).
j=—o00
(i) Let F be a based f.g. free A-module, and let M = F[z, 271] be the induced

based f.g. free A[z, z7]-module. The Mayer—Vietoris presentation (M™, M ™)
of M defined for any N, N~ > 0 by

%) N—
Mt = N HF, M- = > JFcCM
j=—N+ Jj=—00

determines an exact sequence of A-modules

0— M"N"M — M"eM — M —0

with
N~ N™+1
M*nM~ = Y FF, Mtn¢(M~ = ) ZF
j=—N+ j=—N+

based f.g. free A-modules. The A-module morphisms

f:MTNA"M™ — M"N¢(M™ ; 2 — Cx,

g: MtTNnM~ — M*N(M™ ; o — x,

o ) (o) )
h: (MYOCM7)[z,27] — M ; Z a;7 @ — Z a; 2z,
j=—0o0 j=—o00

are such that the chain equivalence
qg=(h0):Cf—zg: (Mt*NM )|z, ]—(MTNCM)[z,27"]) — M
has torsion 7(q) = 0 € Why(Alz, 27 1)). O

Proposition 7.4 A based f.g. free Alz,z71]-module chain complex E is a
band (i.e. A-finitely dominated) if and only if EY and E~ are A-finitely
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dominated, for any Mayer—Vietoris presentation (ET,E~) of E with respect
to any choice of base, in which case the A-module chain maps

(: E/EY — E/ET ; 2 — 21,
¢': E/JET — E/E” ;2 — 2z 'z

are chain homotopy nilpotent. The fibering obstructions of a band E ®*(E) €
Whi(Alz,271]) have the form

PH(E) = (o7, -[E7],—-[E/EY (], ~-[E/E7,CTY),
@_(E) = ((]5_,[E+],—[E/E+,C],—[E/E_,C_l])
€ Why(Alz,27Y]) = Whi(A) @ Ko(A) @ Nilg(A) @ Nilg(A)

with respect to the geometrically significant direct sum decomposition of
Whi(Alz,271Y) (5.19), for some ¢, ¢~ € Why(A) such that

¢t —¢~ = 7(C: E—E) € Why(A) .
Proof The A[z]-module chain equivalence of 5.16
rt o @z —(: ET[z]—ET[2]) — ET
has torsion of the form
(") = (¢7,[B/E7,¢7Y) € K1(Al2]) = Ki(A) @ Nilg(A)
inducing
rl@rf) = (¢7,0,0,[E/E, (7))
€ Why(Alz,27Y]) = Why(A) & Ko(A) & Nilg(A) & Nily(A) .
The A[z, z~]-module chain equivalence
hoo Az, 2z @ap T(C) = Cz—(: ET[2, 27— ET[z,27Y])
— TT(¢Y) = Cl—2¢'  Elz, 27— E[z,27Y)) ;
(z,y) — (CTH(2),y)
has torsion
T(h) = (2 = C: (B/EF)[2, 27 |—=(B/E)[z,271])
+7(¢7 ' Elz, 27— E[z,271))
= (=7(¢), [B/E"], [E/E*,(].0),
€ Why(Alz,27 1) = Whi(A) @ Ko(A) & Nily(A) & Nily(A)

It now follows from the factorization
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1@qt = qth + Alz,27 " | @4 T() —
THCY) — Alz, 27| @ap ET = E
that
PH(E) = 7(¢") = 11w q") —7(h)
= (o7, —[E7), ~[E/E*,(, - [E/E~,(TY)
€ Why(Alz,271) = Why(A) @ Ko(A) @ Nilg(A) & Nilp(A) ,
with ¢+ = ¢~ + 7(¢) € Why(A). Similarly for &~ (E). O

Example 7.5 Let X be a finite CW complex with fundamental group
m1(X) = 7 x Z. The cellular chain complex of the universal cover X of

X is a finite chain complex C(X) of based f.g. free Z[r;(X)]-modules, with
Zlm(X)] = Zlx]lz,27"] .

Let X = X /7 be the untwisted infinite cyclic cover of X classified by m (X) =
7 C m(X), and let ¢ : X— X be the covering translation. A map ¢ :
X — St inducing

¢« = projection : m(X) = ’/TXZ*—)Wl(Sl) = Z

is a classifying map for X = ¢*R. Replacing X by a simple homotopy equiv-
alent finite CW complex (e.g. a closed regular neighbourhood in some high-
dimensional Euclidean space) it is possible to choose ¢ : X —S?! transverse
regular at a point x € S1, so that U = ¢~ ({*}) C X is a subcomplex with an
embedding U x (0,1) C X. Cutting X along U gives a compact fundamental
domain (V;U,¢U) for X, with

X = fj (VU CU) .

Jj=—00
¢y dv ¢ty
(j_lU CjU Cj'HU Cj+2U
The subcomplexes
X" =¢v,x = |J dvex
§=0 j=—o0

are such that

"TNXT =U, X nX =V.

X
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>
>
)
!
>

X
Codimension 1 manifold transversality thus determines a finite Mayer-Vietor-
is presentation (ET, E~) = (C(X™1),C(X ™)) of E = C(X) with

C = E*NE- = CWU), D= E"nzE- = CV) .

If X is a band the fibering obstructions ®*(X) € Wh(m (X)) are of the form

[@F (X)) =

(67, —[X ], —[C(X)/C(XT), ], —[C(X)/C(X7).¢)
[ (X)] =

(6=, [X ], ~[C(X)/C(XH),¢], ~[C(X)/C(X),¢7Y)

€ Wh((m(X)))
= Wh(m (X)) ® Ko(Z[m(X)]) @ Nil(Z[m1 (X)]) @ Nilo (Z[m, (X)])

with ¢7 = ¢~ + 7(¢ : X—X) € Wh(m1(X)). See Ranicki [244,8.15] for
a discussion of codimension 1 transversality for CW complexes with maps
X — St and chain complexes over polynomial extension rings A[z, z71]. It is
possible to avoid the use of manifolds and obtain codimension 1 CW complex
transversality by purely combinatorial methods. O

Example 7.6 Given a polynomial
d
p(z) = Zajzj € Alz]
§=0

define a 1-dimensional based f.g. free A[z]-module chain complex
ET = C(p(z) : Alz2]—Al2]) .
The induced 1-dimensional based f.g. free A[z, 271]-module chain complex
E = Alz,z7 @ ET = C(p(2) : Alz, 27— Alz,271])

has a Mayer—Vietoris presentation (E*, E~) with
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—1 d—1
E™ = C(p(z): Z ZA— Z 2 A),
j=—00 Jj=—00

d—1
C = EtnNnE- = szA,
=0

d
D = EtN¢E™ = G(p(z):A—>szA) ,
j=0
d—1 d
f:C—D; szzj — szzj_l ,
Jj=0 Jj=1
d—1 d—1
g: C— D; szxj — sza:j
J=0 J=0

and an exact sequence

f—z
00— Clz] — D[z] — ET — 0.

The following conditions are equivalent :

(i) plz) € Al2]°,

(ii) H.(ET)=0,

(iii) the A-module chain map f : C——=D is a chain equivalence, and
f~tg : C—=C is chain homotopy nilpotent,

(iv) ap € A® and the d x d matrix with entries in A

—al(ao)_l 1 0 ... 0
—ag(ao)_l o1 ... 0
—a3(a0)_1 0 0 ... 0
7ad(a0)71 00 ... 0

is nilpotent.
|

Proposition 7.7 The following conditions on a finite f.g. free Alz,z71]-
module chain complex E are equivalent :
(i) H.(E)=0,
(ii) for any Mayer—Vietoris presentation (E*,E™) of E with respect to
any choice of basis for E the Alz]-module chain complex ET is A-
finitely dominated and the A-module chain map

(: Et —Et; 2 — 2z
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is chain homotopy nilpotent,

(iii) for any Mayer—Vietoris presentation (E*, E~) of E the A[z~1]-mod-
ule chain complex E~ is A-finitely dominated and the A-module
chain map

(' BT —E ;z—z 2

is chain homotopy nilpotent.

Proof (i) = (ii)+(iii) For any Mayer—Vietoris presentation (E*, E~) of a
finite f.g. free A[z, z7!]-module chain complex E there is defined a commu-
tative diagram of A[z, z~1]-module chain complexes and chain maps

Et[z,27Y @ E~[z,271]

D[z, 271
with
f:C=FE"NE-— D = E"TNCE™ ; 2 — (x,
g:C=E"'NE” — D =E"N¢E™ ;2 — =z,
* = inclusion : ¢ = EYNE~ — E*
4t = inclusion : D = EtN¢E~ — ET,
j:D =FE"NCE- — E ;o — (2.
(The commutative diagram of Ranicki [244,10.13] is of this type). If E is
contractible each of the chain maps in the diagram is a chain equivalence,
the chain complexes E+, E~ are A-finitely dominated, the A[z, z~1]-module
chain map f—zg : C[z,271]— D[z, 27 1] is a chain equivalence, the A-module
chain maps i : C—ET ® E~, j : E—ET @ E~ are chain equivalences,

and the A-module chain maps ¢ : EY—ET, (! : E-——=E~ are chain
homotopy nilpotent.
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(i) = (i) For A-finitely dominated ET the A[z]-module chain equivalence
q" : T(()—E" of 5.16 induces an A[z, z~!]-module chain equivalence

1®qt
Alz, 271 ®a T(C) = C(¢(—2: Ef[z,27Y|—E*[2,27Y]) — E ,
with
ET[z,27Y] = Alz,27 /@4 ET |, E = Alz,z7Y ®a[2] ET.

If also ¢ : EY — E™ is chain homotopy nilpotent the A[z, 2~!]-module chain
map ¢ — 2z : ET[z,27]—=E¥[z,271] is a chain equivalence, with chain ho-
motopy inverse

(=2 = =3 B s B Y
7=0

so that A[z, 27! ®4p,) T(€) is a contractible A[z, z~']-module chain complex
and hence so is E.

(iii) = (i) As for (ii) = (i), but with ET, z replaced by E—, 2z L. O
d
Example 7.8 Given a polynomial p(z) = Y a;27 € Az] let E,E*T,E~,C,
§=0
f,g be as in 7.6, with

d—1
E = Cp(z): Alz,z7|—Alz,27Y]) , C = szA etc.
j=0

The following conditions are equivalent :

(i) plz) € Alz,271)°,
(i) H.(E)=0,
(iii) the A-module chain map f — g : C——F is a chain equivalence, and

(f=9) ' f(f—9)lg: C—C

is chain homotopy nilpotent,
(iv) the (d + 1) x (d+ 1) matrices with entries in A defined by

a 0 0 ... 0 01 0 ... 0
ag 1 0 ... 0 0 0 1 0
M, = [a 0 1 ... 0 , My = [0 0 0 0
ag 0 0 1 0 00 0

are such that
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a —1 0 0
ay 1 -1 0
leMQ = a2 0 1 0
ag 0 0o ... 1

d
is invertible (which happens if and only if > a; € A®) and the
=0
product
My (My — My) ™ "My (My — My)~!

is nilpotent.



8. Finite domination and Novikov homology

Finite domination for chain complexes was already defined in Chap. 1. Fol-
lowing Ranicki [246], algebraic transversality will now be used to prove that
a finite f.g. free A[z, 27 !]-module chain complex E is A-finitely dominated if
and only if the Novikov homology vanishes

H.(A((2)) ®apso-1) B) = Ho(A((z7) @4z E) = 0.

The special case A = Z will be used in Chap. 33 to prove that a high-
dimensional n-knot k : S™ C S"*2 fibres if and only if the extreme coefficients
of the Alexander polynomials are units.

The suspension of an A-module chain complex F is the A-module chain
complex SE with

dSE = dE : (SE)T = Er—l — (SE)T_l = ET-_Q .

Proposition 8.1 Let E be a based f.g. free Alz,z71]-module chain complex
with a Mayer—Vietoris presentation (ET, E™). The following conditions are
equivalent :

(i) EtisA ﬁnitely dominated,
i) H.(A((z7")) @) EY) =0,
(A((Z )) ®A[z*1] E7) =0,
e ®A[z-1] E s A-finitely dominated, and the A-module chain

=2 NS
—_

11
v

v) H

map

Py

1®@¢ " All7Y] ®ap-11E7 — Az ®ap-1 E-

s chain homotopy nilpotent,
(vi) E/E~ is A-finitely dominated, and the A-module chain map

¢': E/EC —E/E ;22— 22
18 chain homotopy nilpotent.

Moreover, if these conditions are satisfied there is defined a chain equivalence

(E/E_vc_l) = S(A[[Z_lﬂ ®A[z*1] E-1 ®C_1) )
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so that
[B/E=,¢7Y = —[Alle"]] @i B, 19 ¢ € Nilo(A) .
Proof (ii) <= (iii) <= (iv) Applying A((z7")) ®a[;,.—1] — to the identities
Alz,z | @ap EY = Alz,27 ] ®@ap-yE™ = E
gives the identities
A1) @ap BT = A((z7) Qa1 E” = A((z71) ®ap.-1 B
(iii) <= (v) This follows from the equivalences of categories
H(All271]], 2') ~ H(A[2 7], 7') ~ Nil(4)

given by 6.7’
(iv) = (i) The cartesian square of rings

Alz7 ] ——= Alz, 271
L
Alle7 —= A((z™)
gives an exact sequence of A[z]-modules
0 — Alz7Y — Alz,z7 e A7) — A((z™Y)) — 0.
Write the induced f.g. free A((27'))-module chain complex as
E = A((z™") ®ap.— B = A((z7) @1 B~

The f.g. free A[z7!]-module chain complex E~ fits into an exact sequence of
Alz71]-module chain complexes

0— E- — B [so o B[] — B — o0,

with
E7]
E7[[27Y] = Al ®@ap-1 B

By hypothesis H, (E)
Let

szil] = A[Zazil] ®A[z_1] E- = Ea
P 1

0, so that i is an A[z7!]-module chain equivalence.

j: EtNE” — ET o E (27

be the A-module chain map defined by inclusions in each component. The
algebraic mapping cones of i and j are chain equivalent A-module chain
complexes, since E/E~ = ET/(ET N E~). But i is a chain equivalence, so
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that j is also a chain equivalence. Since ET N E~ is a finite f.g. free A-
module chain complex this shows that both E* and E~[[z7!]] are A-finitely
dominated.

(i) = (ii) As already noted in Chap. 5 the A-finite domination of E implies
that there is defined an A[z]-module chain equivalence

rt = (p" 0) : C((—z: EY[z]—ET[z]) — ET.
The A((z7!))-module chain map
(o2 A 0BT = A=) @ap Bl — A=) ©ap B

is an automorphism, with inverse

0
(=27 = = 3 (@

j=—o0

AT @a ET = A((z7) ®ap) ET[2] — A((z71)) @ap) EF[4]

so that A((z71)) ®ap.] ET is a contractible A((z~!))-module chain complex.
(i) <= (vi) It is clear from the isomorphism

E/E- = EY/ETNE~
that ET is A-finitely dominated if and only if E/E~ is A-finitely dominated.
If this is the case the inclusion
Clz~t—¢ B[z —E[z7Y)
— ez = ¢ Bl BlY) (~ B)
is a chain equivalence, so that the A[z~!]-module chain map
=T (B/ET)ETY — (B/ET) T

is a chain equivalence and (! : E/E~——E/E~ is chain homotopy nilpo-
tent. ]
Proposition 8.1' Let E be a based f.g. free Alz, 27 t]-module chain complex
with a Mayer—Vietoris presentation (ET, E™). The following conditions are
equivalent :

(i) E~ is A-finitely dominated,

ii)
iii

NN

v ((Z)) ®A[z,z*1] E) = 07
v) All2]]®ap) EY is A-finitely dominated, and the A-module chain map

Py

1@¢ : All2]) ®ap) BT — All2]] @) BT

1s chain homotopy nilpotent,
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(vi) E/E* is A-finitely dominated, and the A-module chain map
(: E/EY — E/ET ; 2 — zx
is chain homotopy nilpotent.

Moreover, if these conditions are satisfied there is defined a chain equivalence
(B/ET,¢) ~ S(A[[]] ®ap ET,10®0)

so that
B/E*,(] = —[Allz]] @ E+,1¢] € Nily(A) .

Proof As for 8.1, but with E+, E—, 2 replaced by E—, ET, 2z~ L. O

Proposition 8.2 A finite f.g. free A[z] module chain complex ET is A-finitely
dominated if and only if H,(A((27')) ®ap) ET) = 0.

Proof Apply 8.1 to the induced finite f.g. free Alz, z~1]-module chain complex
E = A[z,z_l] @ Alz) Et. O

Similarly :

Proposition 8.2 A finite f.g. free Alz~']-module chain complex E~ is A-
finitely dominated if and only if H.(A((2)) ® 1) E7) = 0. 0O

Proposition 8.3 The following conditions on a finite f.g. free Alz,z71]-
module chain compler E are equivalent :

(i) E is A-finitely dominated,
(i) He(A((2)) ®afz,o-1 E) = H(A((z71)) @4z 21y E) = 0.

Proof Let (E™T,E™) be a Mayer—Vietoris presentation of E, for any choice
of base. By 7.4 E is A-finitely dominated if and only if E+ and E~ are A-
finitely dominated. The equivalence (i) <= (ii) is immediate from 8.1 and
8.1’, which give that ET is A-finitely dominated if and only if

Ho(A((z71) ®az .11 B) = 0,
and that E~ is A-finitely dominated if and only if
H.(A((2)) ®afz,. E) = 0. O
Remark 8.4 Given a space W let
W = WuU{c}

be the one-point compactification. The homotopy link of co e(W) of W in
the sense of Quinn [228] is the space of paths

w : ([0,1],{0}) — (W™, {o0})

such that w=!(co) = {0}. If W is tame at oo in the sense of [228] the
homotopy link is such that there is defined a homotopy pushout
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e(W) ——— {oo}

bw

WLy

with

pw  e(W) —W; w— w(l).
Thus for tame W the homology groups of e(W) are such that there is defined
an exact sequence

. — H,(e(W)) — H (W) — HY (W) — H,_1(e(W)) — ...,

with HY (W) = H,(W®, {oo}) the locally finite homology groups of W. The
chain level properties of the homotopy link construction are investigated in
Hughes and Ranicki [112], including the definition of the end complex of a
based free A-module chain complex F with

E, =Y A (rez)
I

as the A-module chain complex
e(E) = €(i: E—EY), 1,

with
EY = HA (reZz)

I
and i : E—— FE' the inclusion. It is proved in [112] that if W is tame at oo,

and W is the universal cover of W, then the pullback cover e(W) of e(W) is
such that . .
H(e(W)) = H.(e(C(W)))

with py : H, (e(AVI//))HH*(W) induced by the projection
e(C(W)) — C(W) .

Asin 7.5 let X be a finite CW complex with an infinite cyclic cover W = X
classified by

p = projection : m(X) = 71 XxZ —Z,
with a finite fundamental domain (V;U,¢U) such that

wWo=wrtuw- = |J ¢(v;U.U),

j=—o0

with
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o) -1
wt=Jov, w = |J¢v, wiaw- =U.
j=0 j=—o00

It is proved in [112] that if W is finitely dominated then W+ W~ , W are all
tame, and the composites

e(WH) 25 w+ W,

W) 25 w- — W,

eWHue(W™) — e(W)
are homotopy equivalences. Assume that

mU) = m(V) = m(W) = =,

and let Tj', ‘7, W be the universal covers of U,V, W, such that

o0
wo=wtuw- = |J J(ViU.C0),
j=—0o0
with
— oo ~ —~— _1 ~ —~— —~— ~
wht=Jdv, w = |J ¢V, wranw =U.
j=0 j=—o00

Let A = Z[r], so that
Alz,z7Y = Z[r x 7] .

The cellular chain complex of W is a based f.g. free Alz]-module chain
complex

Et = c(WT).
The induced finite f.g. free A[z,27']-module chain complex is the cellular
chain complex of W

A[Zazil] ®A[z] Et = C(/V\V/) )

and the induced based f.g. free A[[z]]-module chain complex is the locally
finite cellular chain complex of W™

A[[Z]] ®A[z} E+ = C(W_‘—)lf = Clj(w_'_) )
so that the end complex of E7T is given by
e(ET) = C(i: BT —Al2]] ®ap) E )1 -

The condition H,(A((27')) ®ap.) EY) = 0 of 8.1 for a finite f.g. free A[z]-
module chain complex ET to be A-finitely dominated is just that the com-
posite



8. Finite domination and Novikov homology 63

proj. incl.

E* E

e(ET)

be a homology equivalence. The condition H,(A((z7")) ® .1 E7) = 0 of
8.1' for a finite f.g. free A[z~!]-module chain complex E~ to be A-finitely
dominated is just that the composite

proj. -~ incl.

e(E7)

be a homology equivalence. The two conditions of 8.3 for a finite f.g. free
Alz, z71]-module chain complex E to be A-finitely dominated

H.(A((2)) ® a1 B) = 0, Ho(A((z7Y)) ®ape-1) B) = 0
are just that the chain maps
e(EY) — E |, e(E7) — E

be homology equivalences, for any Mayer—Vietoris presentation (E*, E™).
|

Example 8.5 Let F' be a field. An F-module chain complex E is finitely
dominated if and only if the homology F-modules H,(FE) are finitely gener-
ated (i.e. finite dimensional vector spaces of F). In (i) (resp. (ii)) below E
will be the F-module chain complex defined by a finite f.g. free F[z]- (resp.
F[z,271]-) module chain complex, and the finite dimensionality of H,(E)
will be related to the localization of F[z] inverting the multiplicative subset
S = F[z]\{0} C F[z] of all the non-zero polynomials, which is the quotient
field of F[z]
STIF[z] = F(z),

the function field in one variable.

(i) If E7 is a finite f.g. free F[z]-module chain complex which is F-finitely
dominated then each H,.(E™1) (r > 0) is a finite dimensional F-vector space.
The characteristic polynomial

gr(2) = det(z — ¢ : H(ET)[z]—H,.(E™)[z]) € F[£]
is such that g.(z)H,(E) = 0, by the Cayley-Hamilton theorem. The product

of characteristic polynomials is an element

g(z) = ng(z) es
r=0

such that g(z)H.(ET) = 0, so that E* is F(z)-contractible. The localization
of F[[2]] inverting Z = {z¥ |k > 0}
Z7'P[lA)] = F((2))

is the quotient field of F[[z]], with inclusions
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F(z) — F((2)) . F(z) — F((z™) -

If E7 is a finite f.g. free F'[z]-module chain complex which is F'(z)-contractible
then it is F'((271))-contractible, so that E* is F-finitely dominated by 8.2.
Thus a finite f.g. free F'[z]-module chain complex ET is F-finitely dominated
if and only if BT is F(z)-contractible. For 1-dimensional EV this is the case
if and only if the dimensions of Ej, E; are equal, and

det(d: Ef —Ef) #0 € F[z]

with respect to any choice of bases.

(ii) If E is a finite f.g. free F|[z,27!]-module chain complex which is F-
finitely dominated, then as in (i) there exists an element g(z) € S such
that g(2)H.(F) = 0 and E is F(z)-contractible. Conversely, if E is a fi-
nite f.g. free F[z, 27 !]-module chain complex which is F(z)-contractible then
it is both F((2))- and F((271))-contractible, so that E is F-finitely dom-
inated by 8.3. (Alternatively, apply (i) to a finite f.g. free F[z]-module
chain complex E* such that £ = F[z,z7 '] ®p[,) ET, and use the identity
H.(E) = coker(¢ : H,(Et)—H,(E")).) Thus a finite f.g. free F|[z,27!]-
module chain complex E is F-finitely dominated if and only if F is F(z)-
contractible (Milnor [194],[195]). As in (i), for 1-dimensional E this is the
case if and only if the dimensions of Ey, F; are equal and

det(d: E;—Eg) #0 € Flz,27 Y]
with respect to any choice of bases. O

Proposition 8.6 Let
p(z) = Z a2l € Alz, 27
j=m

be a Laurent polynomial with extreme coefficients ap,,a, # 0 € A.
(i) If the leading coefficient is a unit a,, € A® then p(z) € A((z71))".
In addition, if n =0 then p(z) € Az~ N A[[z71]]°.
(ii) If the trailing coefficient is a unit a,, € A® then p(z) € A((2))°.
In addition, if m = 0 then p(z) € A[z] N A[[z]]®.
(iii) If the extreme coefficients are units am,,a, € A® then
p(z) € A((2))* N A((z"1))*°

Proof (i) Use 6.3 to identify

Al = A+ AT)

A Laurent polynomial with leading coefficient a unit a,, € A® is a product

0
p(z) = Zn(,z ajnz’) € A((z71))

J n
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O .
of a unit 2™ € Afz,z7!* and aunit Y, aj1n27 € Al[z71]]°.

j=m-—n
(ii) As for (i), reversing the roles of (i) and (ii).
(iii) Immediate from (i) and (ii). O

Example 8.7 (i) If A is an integral domain
d .
AR NAGY)* = {4527 [ag € A%} |
§=0

Al N A((2))

0
{Z ajzl |a_q € A%},

j=—d
Alz, 27 1N A((2))* N A((z7 1) = {zn: a;2 | am, a, € A®} .
j=m
(ii) If e = €% € A is an idempotent then
l—etezc Alz]NA[z, 271 C Alz, 27 N A((2))* N A((z71))*®
with
(I—etex) ™ = 1l—etex?
€A NA[z, 27 CAlz, 27 N A((2)* N A((z71))* .
Example 8.8 Write the centre of A as
Z(A) = {acAlab=bac Aforallbe A},
and define the multiplicative subsets

d
{Zajzj \aj S Z(A),ad = 1} s

Jj=0

S

d
S = D a2 |a; € Z(A),a9 =1} C A[¢]
7=0

of all the central polynomials with leading/constant coefficient 1. It is imme-
diate from 8.6 that the inclusions
Alz] — A((z"1) 5 Al2] — A[[2]]
factor through embeddings
STUA[Z] — A((z7Y) , STUA[] — A[[2]] -



66 8. Finite domination and Novikov homology

(If A = Fis a field then S™'F[z] = F(z), S™'F[z] = F[z](») as in 8.5). If E*
is a finite f.g. free A[z]-module chain complex such that p(z)H.(E1) = 0 for
some p(z) € S then

HJ(ST'ET) = 0, H (A((z"")®a ET) =0,
and by 8.2 ET is A-finitely dominated.
d

(ii) Every element p(z) = Y a;27 € S has an inverse
3=0

d

Pla)™h = 14> (-

ar2*)’ € All2)]
j=1 k=1

defining an embedding

ST A[z] — A[[2]] .

If E is a finite f.g. free A[z, 2~ !]-module chain complex with a Mayer—Vietoris

presentation (E+, E7) such that p(z)H,(E') = 0 for some p(z) € S then
H(ST'EY) = 0, H.(A((2)®ap-1E") = 0,

and by 8.2" E~ is A-finitely dominated. If A is a commutative ring a finite
f.g. free A[z]-module chain complex ET is S~!A[z]-contractible if and only
if ET is A-contractible via A[z]—A;2—0. If a # 0 € A is not a unit (e.g.
a=2¢€A=17)then ET = €(1—za: A[z]—>A[z]) is A-contractible but not
A-finitely dominated. If A is a field then the leading coefficient aq # 0 € A
of every p(z) € S is a unit, so that p(z) is invertible in A((271)) and there is
defined an embedding

STA[Z] — A((z7Y) .

Thus every A-contractible complex E*+ is A((z7!))-contractible, and hence
A-finitely dominated.
(iii) If E is a finite f.g. free A[z,271]-module chain complex such that

p(2)H(E) = 0, q(z)H.(E) = 0
for some p(z) € S, §(z) € S then
H.(S'E) = 0, H(S'E) =0 ,
Ho(A((z™) ®aze-11 E) = 0, Ho(A((2)) ®ap o1 E) = 0
and by 8.3 E is A-finitely dominated. O
Example 8.9 As in 4.2 let

S = (5)®° = {s"|k>0}c A
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be the multiplicative subset defined by the powers of a central non-zero divisor
s € A, and as in Chap. 5 let Z = {z¥|k > 0} C A[z]. There is a natural
identification

(4,9) = (A[]/(z =), 2) — (As,5) = (All2ll/(z —9). 2) ,
allowing the cartesian square

A[z]/([ —5) —— Alz, z_lj/(z —3)
All2]]/(z = s) ——= A((2))/(z — s)
to be identified with the cartesian square

A A1/s]

L

As —=A1/s]
Define the based f.g. free A[z, 2~ !]-module chain complex
E = Cz—s:Alz, 27— Alz,27Y))
and consider the Mayer—Vietoris presentation (E™, E™) of E defined by
ET = C(z—s: A[lz]—A[7]) ,
E- = Clz—s:2z AL —Alz7Y) =2 €1 —sz7 ' Al — A7)
with
ETNE” = A, E = Alz,27 1@ EY = Alz,27 | ®ap- E-
The homology A-modules are such that
Ho(ET) = A[z]/(z—s) = A,
Ho(E™) = Ho(E) = Ho(Alz, 27" ®ap ET)
= A7/ —s27h) = Alz,27/(2—5) = AlL/s]
Ho(All2]] ®ap) EY) = All2]l/(z - ) = 4, ,
Ho(A((2)) ®a2) EY) = Ho(A((2)) ®afz,2-1) E)
= Ho(A[l2]] @i BT) = A((2))/(z—5) = A[1/3]
Ho(Al[e"] ®ap—1) E7) = Ho(A((z™")) ®ap) E7)
= Ho(A((z™")) ®apz.-1) E) = 0
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and
C = S : Ho(E+) = A—>H0(E+> = A
¢ = s Ho(ET) = A[l/s] — Ho(E™) = A[l/s].

If s € Ais not a unit then E~ is not finitely dominated. Let (A, s) denote the
homological dimension 1 A[z]-module defined by Ho(E™) = A with 2 acting
by z = s : A—A, with f.g. free resolution Et. In terms of homological
algebra

Ho(Al[2)] @ap) EY) = TorgP((4,5), All]]) = A4, ,
Ho(Alz, 27" @apg EY) = Torg™((4,5), Alz,271)) = A[l/s],
Ho(A((2) ®aps ET) = TordFl((A,5), A((2))) = Ail1/s] .

The inclusion A—E™ is an A-module chain equivalence, so E™ is A-finitely
dominated. The inclusion E~——=F is an A-module chain equivalence. In
accordance with 8.1, 8.1/, 8.1, 8.5 the following conditions on s, E, ET,E~
are equivalent :
(i) s€ Ais a unit,
(i) AlL/s] = A,
(i) A, =0,
( z — s € Al[z]] is a unit,
(v) Eis A-finitely dominated,
(vi) the inclusion A—F is an A-module chain equivalence,
(vil) E~ is A-finitely dominated,
(viii) the inclusion A—FE~ is an A-module chain equivalence,
(ix) z=s:Ho(ET)=A—Ho(ET) = A is an isomorphism. O

Example 8.10 (i) Given a central element a € A define the multiplicative
subset
(z—a)® = {(z—a)"|k>0} C Alz]

with
((z=a)®)tAl] = Alz, (2 —a)7'].

A finite f.g. free A[z]-module chain complex E* is A[z, (z —a)~!]-contractible
if and only if Et is A-finitely dominated and ¢ — a : ET—=E7T is chain
homotopy nilpotent, and

K.(A[Z], (2 — )) = Nil,_1(4) ,
K.(Alz,(z—a)7']) = K.(A[z]) ® Nil,_1(A) .
(ii) Given a central unit a € A® define the multiplicative subset

(z—a)® = {(z—a)*|k>0} C Alz,27]
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as in (i), with

((z = a)*) "' Az, 27

= Alz,z7 Y (z—a)7Y.
A finite f.g. free Alz,27!]-module chain complex FE is A[z, 271, (2 — a)71]-

contractible if and only if F is A-finitely dominated and ( —a : E—F is
chain homotopy nilpotent, and

K.(Alz,27'], (2 — a)™)
K.(Alz,z27' (z—a)™ 1))

Nil,_1(4) ,

K.(Alz,27']) @ Nil,_;(A) .
By analogy with 5.16:

Proposition 8.11 The connecting map

9 : Ki(A((2)) — Ki(A[[2]], Z) = Nily(A)

is such that for any based f.g. free Alz]-module chain complex ET with

H.(A((2)) ®ap) ET) = 0

the torsion T(A((2)) ®a;,) ET) € K1(A((2))) has image
O7(A((2)) ®ap) E)

[Al[z]] ®ap) ET,1®(]

—[E/E*,vT] € Nilp(4) .
0 is split by the ‘algebraically significant’ split injection

B : Nily(4) — K1(A((2))) ;

(Pv) — 7((1=v)"H(z = v) : P((2))—>P((2)))
and also by the ‘geometrically significant’ split injection

B’ : Nilg(4) — K1(A((2))) ;
(P,v) — 7(v—2z: P((2))—P((2))) .
Proof If E is a based f.g. free A[z, z71]-module chain complex such that

H.(A((2)) ®afz,2-1 E) = 0

(as in 8.1") then for any Mayer—Vietoris presentation (E*, E™)
[E/ET, vt = —[A[[2]] ®ap,) EY,1® (] € Nilp(A) . O
Remark 8.12 (i) Bieri and Eckmann [19] and Brown [33] have obtained a

necessary and sufficient homological criterion for a projective A-module chain
complex C' to be finitely dominated, namely that the functor
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H.(C,—) : {right A-modules} — {graded Z-modules} ;
M — H.(C;M) = H.(M &4 C)

preserve products.

(ii) A nilpotent space X is finitely dominated if and only if H,(X) is finitely
generated, by Mislin [202]. In the simply-connected case this was first ob-
served by Milnor: in this case finite domination is the same as homotopy
finiteness, since Ko(Z) = 0. O



9. Noncommutative localization

Traditionally, localization is defined in the context of commutative algebra.
However, ever since the work of Ore it has also been possible to localize non-
commutative rings. High-dimensional knot theory requires the noncommu-
tative localization matrix inversion method of Cohn [53], [54]. The algebraic
K- and L-theory invariants of codimension 2 embeddings frequently involve
this type of localization of a polynomial ring, as will become apparent in
Part Two. (This is particularly the case for links, although links are beyond
the scope of the book). The localization exact sequences of algebraic K- and
L-theory also hold in the noncommutative case!?. This chapter deals with
K-theory, and L-theory will be considered in Chap. 25.

In dealing with noncommutative localization it will always be assumed that
the rings involved have the invariant basis property, so that invertible matrices
are square.

Definition 9.1 (Cohn [53, Chap. 7])

For any ring A and any set X of square matrices in A let X ~1A be the
localization of A inverting X, the ring obtained from A by taking a ring
presentation with generators all the elements of A and all the entries m;j

in formal inverses M’ = (mj;) of the matrices M € X, subject to all the
relations holding in A as well as

MM = MM =1 (MeX). a
By analogy with 4.2:
Proposition 9.2 The ring morphism
i A— Y7'A; 0 — a/l

has the universal property that for any ring morphism f : A——B such
that f(M) is invertible for every M € X there is a unique morphism
F: X 'A—B such that

f=Fi: A— Y 'A— B. O

108¢e the footnote at the beginning of Chapter 25.
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Example 9.3 (i) Let A be a commutative ring. Given a multiplicative subset
SCA(41) let

(S) = An(S™'A)* = {ac Alabe S for some b € A} .

(Note that S C (S).) A square matrix M in A becomes invertible in S™1A if
and only if det(M) € (S), in which case

M~' = det(M) tadj(M)

with the adjoint matrix defined in A. The localization of A inverting the set
X of square matrices in A with det(M) € S is

S7TA = §7TA = (S)'A.

(ii) Let X' be any set of square matrices in a ring A such that the entries are
central in A. The inverses M~ (M € X¥) in ¥~! A commute with the images
i(a) € X7YA (a € A), since aM = Ma implies M ~Yi(a) = i(a)M . In order
to invert M € X' it thus suffices to invert det(M) € A, and the localization
of A inverting X is the localization

Y14 = 514

inverting the multiplicative subset S C A generated by the determinants
det(M) € A (M € X). In particular, if A is commutative then so is ¥~ A.
O

Example 9.4 Given a ring A and an element s € A let X' = {(s)}, the set
consisting of the 1 x 1 matrix (s). The localization of A inverting X' is

YA = AxZ[2)/(1 — 25,1 — 52)

with (1 — zs,1 — sz) < A * Z[z] the two-sided ideal in the free product of A
and Z[z] generated by 1 — zs and 1 — sz. If s € A is central then

YA = A[F] = A[2]/( - zs)

and the natural map A— X! A is injective if and only if s € A is a non-zero
divisor. O
Given an A-module M write the induced X~ A-module as

Y>IM = YA M .

Definition 9.5 (i) An (A, X)-module is an A-module M with a f.g. projective
A-module resolution

d
00— P — P — M —0
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such that d € Homa (P, Py) is a X~ ! A-isomorphism, i.e. such that the in-
duced X! A-module morphism d : ¥~ P, — X! P, is an isomorphism.
(ii) Let H (A, X)) be the exact category of (A, X)-modules. O

Example 9.6 Given a multiplicative subset S C A as in 4.1 (i) let X' be the
set of 1 x 1 matrices (s) (s € S). In this case

YlA = ST'A | H(A,Y) = H(A4,S). O

Proposition 9.7 The natural map i : A—X "1 A is injective if and only if
there exists an injective ring morphism j : A——A such that the matrices in
X are A-invertible.

Proof If i is injective take

j=i:A— A =X"14.

Conversely, given an injection j : A——/A as in the statement there is a
factorization

ji A 2A A
by 9.2, from which it is clear that 7 is injective. O

The algebraic K-theory localization exact sequence (4.5) has the follow-
ing generalization to the noncommutative case (cf. Vogel [299, 7.9], Schofield
[258,4.16])) :

Proposition 9.8 Let X be a set of square matrices in a ring A such that the
natural map i : A—X "1 A is injective. The relative K-group Ky (i) in the
exact sequence

: 5 ,
L K(A) — K (37MA) -5 K () = Ko(A) — ...
is isomorphic to the abelian group
Kl(Aaz) = KO(H(A,E))

of equivalence classes of triples (P,Q, f) given by f.g. projective A-modules
P, Q together with a X1 A-isomorphism f : P——Q subject to the equivalence
relation defined by:
(P,Q, f) ~ (P',Q', f") if there exist a f.g. projective A-module R
and an A-module isomorphism
g: PoQ @R = PoQ®R
such that
H((fref @lga)g: 27 (PoQ &R — I (PoQ & R))
= 0c K, (X71A).
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Proof Define a natural map
Ki(A,X) — Ki(1) 5 (PQ,f) — (P.Q, ) .

For f.g. projective A-modules P,Q every X~ !A-module isomorphism A :
Y~ 1P—X71Q can be expressed as the composite

h =glf: 2P —¥1Q— X7'Q

for some X! A-isomorphisms f : P—Q, g : Q—Q, allowing the definition
of the inverse isomorphism

Ki(i) — Ki(A,2); (P,Q,h) — (P,Q, f) —(Q,Q.9) - 0

Example 9.9 Let S C A be a subset which is a right denominator set in the
sense of Stenstrom [275, p. 52], satisfying the conditions:

(i) steSforallstels,
(ii) ifsa=0¢€ Aforsomesec S,ac Athena=0¢€ A,
(iii) for all @ € A, s € S there exist b, € A, t,t' € S such that

at = sb , ta = bs€ A,
(iv) 1€ 5.

As in 9.6 let X' be the set of 1 x 1 matrices (s) (s € S). The localization of A
inverting J/ is the ring of fractions

yla = s7ta,

the ring of equivalence classes a/s of pairs (a,s) € A x S subject to the
equivalence relation

(a,s) ~ (bt)if ca = dbe A, cs = dt € S for some ¢,d € A .

The natural map i : A—X !4 = S71A is injective, so that 9.8 applies.
Grayson [97] extended the algebraic K-theory localization exact sequence of
Bass and Quillen to this type of noncommutative localization, identifying

K., (A—S71'A) = K, 1(H(A,S9)),
as in the case of commutative localization recalled in Chap. 4. g

Definition 9.10 (Cappell and Shaneson [40])
A ring morphism f : A—— B is locally epic if for every finite subset By C B
there exists a unit u € B® such that uBy C f(A). O

Example 9.11 (i) A surjective ring morphism f : A— B is locally epic.
(ii) A localization map i : A—X 1A is locally epic. a
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Proposition 9.12 Let f : A—B be a locally epic morphism of rings, and
let X be the set of B-invertible square matrices in A.
(i) The factorization

fiA— x'A—B

has the universal property that a finite f.g. free A-module chain complex C is
B-contractible if and only if C is X~ A-contractible.

(ii) The natural map i is injective if and only if there exists an injective ring
morphism j : A— A such that a square matriz in A is B-invertible if and
only if it is A-invertible.

(i) If f : A— B is a surjection with kernel ideal

I = ker(f: A—B)<A

and Xy C X is the set of B-invertible square matrices M in A with f(M) an
identity matrix then
rlA = 2itA,

and the natural map from A to the I-adic completion
j: A— Ay = lim A/I*
k
factorizes as ,
jiA— XA — A
with EflA—nZI sending (1 +x)~t (x € I) to the element

LiLn(l—x—ka—...—k(—)k_l:rk_l) €A = @nA/I’C .
k k

The morphism j : A—A; is injective if and only if
ﬂ " = {0},
k=1

in which case i : A—X 1A is also injective.

Proof (i) Note first that an A-module chain complex C is chain contractible
if and only if there exist A-module morphisms I" : C,——C\41 (r € Z) such
that the A-module morphisms

A =dl'+Id : C. — C,
are isomorphisms. For if
I' :0~1:C—C

is a chain contraction then A = 1. Conversely, given I" with A an isomorphism
the A-module morphisms
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' =A7'r: ¢, —Cp

define a chain contraction I : 0 ~ 1 : C—C.
Now suppose that C is finite f.g. free and B-contractible. Since f : A— B
is locally epic it is possible to lift a chain contraction

0~1: BRaC — BaC

to A-module morphisms I' : C,——Cy4+1. The corresponding A-module
morphisms A = dI' + I'd are B-isomorphisms, hence (by 9.2) X~!A-
isomorphisms, and C is X! A-contractible.

(ii) Immediate from 9.7.

(iii) In order to identify X~'A = X' A it suffices to show that if M is a
B-invertible k x k matrix in A then M is X, A-invertible. Since f is locally
epic it is possible to lift f(M)~! to a k x k matrix L in A such that LM € Xy,
so that M is X, ! A-invertible, with M~' = (LM)~'L. O

Example 9.13 Let A be a commutative ring.
() If f: A— B, I are as in 9.12 then a square matrix M in A is B-invertible
if and only if det(M) € (14 I)A®, so that

YA = XA = 1+ MA.
(ii) Let I = (s) < A be the principal ideal generated by an element s € A,
and let f : A—B = A/I be the projection. By (i) the localization of A
inverting the set X' of B-invertible square matrices in A is the (commutative)

localization X ~'A = (14 I)~1 A, which is the localization of A inverting all
the elements ¢ € A coprime to s (i.e. such that as+bt = 1 for some a,b € A).

The natural map g : A—>A; is injective if and only if (] s*A = {0}. O
k=1

Note that if f : A—— B is not injective then in general the natural map
i: A—sX 1A in 9.12 is not injective, so 9.8 does not apply :

Example 9.14 (i) If f: A—B and z,y € A are such that
zy = 0€d, f(e) =0eB, f(yeB*

then
i(x)i(y) = 0€e X7'A | i(y) e X C(X71A)®

and i(r) =0€ X1A.
(ii) Let

f:A=R[Z)] = RT|/1-T?) — B = R; p+qT —>p+gq
and take t =1—T, y =1+ T € R[Zy] in (i). The kernel ideal
I =ker(f) = 1-T)<A

is such that



9. Noncommutative localization T
I = =D = ...
The natural maps in this case
i=f=9:A=RZ]—Y'A=(1+])"'A= A =B =R
are not injective, with x« # 0, i(z) = 0. O
Example 9.15 Given a ring B let
f:A=DB[z]—B;z—0
be the augmentation map, with kernel ideal
I = ker(f) = zB[z]<BJz] .

The I-adic completion of A is the ring of formal power series of B

A; = B[[2]
and the natural map g : B[z]— BJ[[z]] is an injection. Every square matrix

o0 .

M in A can be expressed as ). M;z? with each M; a square matrix in B,
§=0

and M is B-invertible if and only if My is invertible. Let Ry, Ry, Ra,... be

the rings defined inductively by
Ry = Blz] , po : R—B; 2z—0,
R, = (1+ker(pp—1)) "Ryt , pn : R —B; 2—0.

(In particular, Ry = (1 + zB[z])"!B[z].) Given an n x n matrix b = (b;;) in
B let b’ = (b};) be the (n — 1) x (n — 1) matrix in R; defined by the matrix
equation

1 0 ... Zbln(l — Zb',m)71 1-— ZbH —Zb12 e —Zbln
0o 1 ... Zbgn(]. — ann)il *Zbgl 1-— Zb22 BN 7Zb2n
0 0 ... 1 —2zbp1 —2bpa ... 1= zbyy,
1—2by  —2bl, ... 0
B —zbyy  1—zbhyy ... 0
_anl —ang B Zb'rm

Assuming inductively that it is possible to invert 1 — zb' in R, _; it is now
possible to invert 1 — zb in R,,. The localization of A inverting the set X' of
B-invertible square matrices in A is the direct limit

I7'A = ligR, .

The inclusion A — BJ[[z]] factors as
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A 54— B2

sothat i : A = Y~ !Aisinjective. For commutative B the morphism X 1A —
B([z]] is an injection and

Y7'A = R, = (1+:2B[z]))"'B[z] C B[[#]] .

However, it is not known if ¥~1A — B[[z]] is an injection also in the non-
commutative case. g

The noncommutative versions of 4.13,4.14 are given by :

Definition 9.16 Two sets X, Y5 of square matrices in a ring A are coprime if
the natural maps between the localizations of A inverting X'y, X'y and X UX)y
fit into a cartesian square

A (Z1)~'A

| |

(22)_114 E— (21 U 22)_114

i.e. if the sequence of additive groups
0— A— (Z) A (Z) ™4 — (Z1uXy) ™4 —0

is exact. O

Proposition 9.17 If X1, X5 are coprime sets of square matrices in a ring A
such that the natural maps

ip c A— (Z)7TA iy A — (Xy)7tA

are injective then the natural map
i1 1 A — (Z,UXy) A
is injective, and the relative algebraic K-groups are such that
K (A, 21U%) = Ki(A X)) ® K.i(A,X)
with a Mayer—Vietoris exact sequence
L K(A) — Kn((Z1) 71 A) @ Ko((25) 71 4)
— Kp(Z1USs) PA) — Knpq(A) — .
Proof Identify
H(A X UXy) = H(A, X)) x H(A, X9)

and apply 9.8. ]



10. Endomorphism K-theory

Endomorphism K-theory is the algebraic K-theory of modules with an en-
domorphism, such as arise in knot theory via the Seifert matrix.!' An A-
module P with an endomorphism f : P——P is essentially the same as a
module (P, f) over the polynomial ring A[z], with the indeterminate z acting
on P by f. This correspondence will be used to relate the algebraic K-groups
K.(X71A[z]) of the localizations X ~!A[z] of A[z] to the K-groups of pairs
(P, f) with P a f.g. projective A-module.

Two localizations of polynomial extension rings are especially relevant to
knot theory :

(i) the ‘Fredholm’ localization £27'A[z] of A[z] inverting the set 2}
of square matrices in A[z] with cokernel a f.g. projective A-module
(10.4),

(ii) the localization IT-'A[z,271] of Alz,271] inverting the set IT of
square matrices in A[z, 27!] which become invertible over A under
the augmentation z—1 (10.17).

The algebraic description in Part 2 of the high-dimensional knot cobordism
groups will involve algebraic L-theory analogues of the endomorphism class
groups, defined using these localizations.

The splitting theorems of Chap. 5
Ki(Alz,271) = Ki(A[2]) @ Nilo(4) ,
Ki(Alz]) = Ki(A) @ Nilp(A)
will now be extended to splitting theorems
Ki(27'Alz]) = Ki(A[z]) @ Endo(4) ,
K (27'Alz) = Ki(IT7'Alz,27Y) = Ki(A) @ Endg(A)
with Endp(A) and ﬁlo(A) the absolute and reduced endomorphism class
groups of Almkvist [5] and Grayson [95] such that
Endy(A) = Ko(A) @ Endy(A) .

"1n the original treatment of Seifert [263] this was the matrix of an endomorphism,
whereas nowadays it is viewed as the matrix of a bilinear form.
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10A. The endomorphism category

Definition 10.1 Let A be any ring.

(i) The endomorphism category End(A) is the exact category in which an
object is a pair (P, f) with P a f.g. projective A-module and f: P—P an
endomorphism. A morphism in End(A)

g (Pf) — (P f)
is an A-module morphism g : P— P’ such that
gf = flg : P— P
A sequence of objects and morphisms in End(A)
0— (P f) — (P, f) — (P",f") — 0

is exact if 0—P—— P —— P"——0 is an exact sequence of the underlying
f.g. projective A-modules.
(ii) The endomorphism K-groups of A are given by

End,(4) = K.(End(4)) .
(iii) The reduced endomorphism K-groups of A are given by
End.(A) = coker(K.(P(A))—K.(End(A)))

with
P(A) — End(A) ; P — (P,0)

such that .
End.(4) = K.(A) @ End.(4) .

(iv) The endomorphism class group of A is
Endg(4) = Ko(Fnd(A)) ,

the group of equivalence classes of objects (P, f) in End(A), subject to the
relation :

(P, f") ~ (P, f)+ (P”, f") if there exists a short exact sequence
0— (P, f) — (P, f) — (P",f") — 0.
The reduced endomorphism class group of A is the quotient group
Endo(A) = coker(Ko(A)—Endo(4)) ,

with
Ky(A) — Endy(4) ; [P] — [P,0] . O
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Remark 10.2 (i) The endomorphism class group of a field F is given by
Endo(F) = ZIM(F)]

with M(F') the set of irreducible monic polynomials p(z) € F[z] (4.9) — the
class [P, f] € Endg(F) of an endomorphism f : P— P of a finite dimensional
F-vector space P is determined by the factorization of the characteristic
polynomial

ch, (P, f) = det(z — f: P[z]—P[z]) € F[#]

as a product of irreducible monic polynomials. See Chaps. 14,18 below for
more detailed accounts.

(ii) The class [P, f] € Endy(A) is determined by the characteristic polyno-
mial of f : P—P for any ring A (including the noncommutative case!) —
see Chaps. 11,14 below for more detailed accounts. If A is not a field the
relationship between the factorization properties of polynomials in A[z] and
the structure of Endg(A) is necessarily more complicated than in (i), since a
factorization of the characteristic polynomial of an object (P, f) in End(A)
may not be realized by an exact sequence

0—>(P17f1)—>(P7f)_>(P27f2)—>0~ O

The endomorphism K-theory of A is related to the K-theory of the lo-
calization of A[z] inverting matrices of the following type:

Proposition 10.3 The following conditions on a k x k matriz w = (w;;) in
Alz] are equivalent :

(i) the A[z]-module morphism

w Al — Al2)*;

k k k
(Il,fﬂg,...,l’k) — ( E :zzjwlj, E Ij(.()gj,..., E xjwkj)
j=1 j=1 j=1

18 injective and the cokernel is a f.g. projective A-module,
(ii) the I-dimensional f.g. free A[z]-module chain complex

Et © ... —0— Al2)* = Alz]*
18 A-finitely dominated,
(ili) w is invertible in A((z71)).

Proof (i) = (ii) ET is A-module chain equivalent to the 0-dimensional f.g.
projective A-module chain complex P defined by Py = coker(w).

(ii) <= (iii) Immediate from 8.2.

(iii) = (i) The A[z]-module morphism w : A[z]*—=A[z]* is injective (i.e.
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Hi(ET) = 0) since A[z]—A((271)) is injective. It has to be shown that
Hy(E™) = coker(w) is a f.g. projective A-module. Let

N
— ]
w = g wjz
Jj=0

with each w; a k x k matrix in 4, and N > 0. Let E be the induced A[z, 27 1]-
module chain complex

E = A[z,z_l] ®A[z] ET

and let E~ C E be the A[z~!]-module subcomplex defined by
-1 N-1
d- =w|: Ef = ZzlAk—>Ea: szAk.

i=—00 Jj=—00

The intersection ET N E~ is the 0-dimensional f.g. free A-module chain com-
plex with

(EYNE )y = Y A%,

[u

<

As in the proof of 8.1 there is defined a short exact sequence
0— ETNE”™ — ETa(Allz ' |®ap-1E7) — A((z71)®ap ET — 0.

By hypothesis
H*(A((Z_l)) ®A[z] E+) =0,

so that there is defined an A-module isomorphism
Ho(ETNE™) = Ho(E')® Ho(Al[z™ "] ®ap-11 E7) .

Thus Ho(E™) is (isomorphic to) a direct summand of the f.g. free A-module
Ho(ETNE™), and Hy(E") is a f.g. projective A-module. O

10B. The Fredholm localizations Q_T_lA[z], f)jrlA[z]

By analogy with the definition of a Fredholm operator on Hilbert space as
one with finite dimensional kernel and cokernel :

Definition 10.4 (i) A matrix w in A[z] is Fredholm if it is square and satisfies
the equivalent conditions of 10.3.

(ii) Let £24 be the set of Fredholm matrices w in A[z].

(iii) The Fredholm localization of A[z] is the ring £27" A[z] obtained from A[z]
by inverting (2. O
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Remark 10.5 Tt follows from 10.3 that ;' A[z] is the localization of A[z]
in the sense of Schofield [258, 4.1] inverting the morphisms f : P—@Q of f.g.
projective A[z]-modules which are injective and such that coker(f) is a f.g.
projective A-module. |

Every matrix w in A[z] can be expressed as

d
_E: )
w = wjz
Jj=0

with each w; a matrix with entries in A (of the same size as w), for some
d>0.

d )
Definition 10.6 (i) A matrix w = ) w;2’ with entries in A[z] is monic if
§=0
w is square and the leading coefficient wy is the identity matrix in A.
(ii) Let £24 mon be the set of monic matrices w in A[z], so that the localization

27 Alz] is defined as in Chap. 9. O

+,mon

Proposition 10.7 (i) The natural map Alz]— 27" A[2] is injective.
(ii) Every monic matriz in A[z] is Fredholm, so that 24 mon C 24.
(iii) The localizations of A[z] inverting 24 mon and {24 coincide

.Q_;}monA[z} = 07'AlZ].
Proof (i) Immediate from the factorization
Alz] — 27 Alz] — A((z7Y)
of the injection A[z]—A((z71)).
(i) fw = _Zdjo w;jz? is a monic k x k matrix define an A-module isomorphism
=

d—1

Akd — coker(w) ) (ai)ogigkd_l — Z(ajk,ajk+1,...7ajk+k_1)zj .
j=0

Thus coker(w) = A*® is a f.g. free A-module of rank kd, and w is Fredholm.
(iii) Given a Fredholm matrix w in A[z] let

P = coker(w) , ( : P— P; 2z — z2x.

Let @ be a f.g. projective A-module such that P& @ is a f.g. free A-module,
say P @ Q = A?. The A[z]-module morphism

n=1az: A} = (PeQ)z] — A[2]* = (P2 Q)[2]

with coker(n) = @ has a Fredholm matrix in A[z]. Let w’ be the matrix of
the A[z]-module morphism
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2= (C®0) : A = (PoQ)lz] — Al]! = (P®Q)[].

Now (A%, (®0) is an A[z]-module of homological dimension 1, with a resolu-
tion by both w @ n and w’. In order to invert w it therefore suffices to invert
the monic matrix w’. O

Definition 10.8 Let 2, be the set of square matrices w in A[z] with wg
invertible. ]

Proposition 10.9 The localization of Alz] inverting Q. is
Q7'Al2] = ligR,
with Ry, R1, Ra, ... the rings defined inductively by
Ry = Alz] , po:Ry—A4; z—0,
R,=(1+ker(pp_1)) *Ru_1 , pn:Ry—A; 2—0.
In particular, the natural map A[z]—)f)_;lA[z] is injective.
Proof As in 9.15. g

Example 10.10 (i) The indeterminate z is a monic 1 x 1 matrix in A[z], so
that z is monic (as a matrix) and

Alz, 27" C 71 ALR] .

(ii) If P = P? is a projection matrix in A then M = [ — P+ zP € §2,, since
M=Y=1— P+ 2P is defined in Az, 271 C A((z71)).
(iii) If A is commutative then the multiplicative subsets

S = AlJNA((=™1)"

d
Sm(m = {Zaj2j|ad:1€A}gS,

J=0

d

T = A NA[2]]® = {> a;27 [ag € A°} C A[2]
j=0

_ d

S = {Zajzj|a0:1€A°}§T

j=0
are such that
2p = {M|det(M) € S} , Q7'Alz] = ST'A[2] = S,.0,A[2]

Qp = {M|det(M) €T} , Q7'A[z] = ST'A[2] = T A[7] .

(iv) If A is an integral domain then (as in 8.7)
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d
S = {Zajzj|adeA'}CA[z] .

Jj=0

d
It follows from 8.7 and 10.3 that a polynomial p(z) = > ajz7 € Al2] is
§=0

such that A[z]/(p(z)) is a f.g. projective A-module if and only if the leading
coefficient ag € A is a unit, in which case A[z]/(p(z)) is a f.g. free A-module
of rank d.

(v) If A = Z then 27 ' A[z] = S™'Z[z, 2] is a principal ideal domain (Farber
[75,2.5]).

(vi) If A= F is a field then

0 Fl) = {p(=)/a(2) |a(=) # 0)
= F(2)

is the function field of F' (= the quotient field of F[z]), and

07 P[] = {p(2)/a(2) | q(0) # 0}
= F[Z](Z) - F(Z)

is the localization of F'[z] at the maximal ideal (z) < F'[z]. The Laurent poly-
nomial extension F'[z,271] is the localization of F[z] away from (z), and the
various localizations fit into a cartesian square of rings

Flz] —— F[z,271]

L

Flz](z) — F(2) 0

Proposition 10.11 The following conditions on a finite f.g. free A[z]-module
chain complex E1 are equivalent :

() H.(07'E*)=0,
(i) Hi(A((z7")) ®ap EY) =0,
(iii) ET is A-finitely dominated.

Proof (i) <= (ii) A square matrix w in A[z] becomes invertible in 27" A[z]
if and only if it becomes invertible in A((z71)).

(ii) <= (iii) By 8.1. O
Example 10.12 If E* is a finite f.g. free A[z]-module chain complex such
that p(z)H.(ET) = 0 for some p(z) € Alz] with coker(p(z) : A[z]—A[2]) a
f.g. projective A-module (i.e. such that (p(z)) is a 1 x 1 Fredholm matrix in
Alz]) then ET is A-finitely dominated. O

Proposition 10.13 The following conditions on a finite f.g. free A[z]-module
chain complex E1 are equivalent :
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() H.(2.'EY)=0,

(i) Ha(Afl]] @ai B =0,

(iil) Hy(A®ap) ET) =0 via A[ |—A4;2—0

(iv) ¢: ET—E™ is an A-module chain equwalence.

i)
i
ii

Proof (i) <= (ii) A square matrix w in A[z] becomes invertible in f);lA[z]
if and only if it becomes invertible in A[[z]].

(ii) <= (iii) An element Y a;27 € A[[z]] is a unit if and only if ag € A is a
§=0
unit.

(iii) <= (iv) By the exact sequence
¢
0— Et — Et — AQu ET — 0. O

The nilpotent category Nil(A4) is the full subcategory of End(A) with
objects (P,v) such that v : P—P is nilpotent. The inclusion

Nil(A) — End(A) ; (P,v) — (P,v)
induces natural morphisms
Nil,(4) — End,(4) , Nil,(4) —> End,(A) .
The relative groups in the localization exact sequence
o Ka(AlE]) -5 K (271 AR]) 5 Ka(Al), 24)
— Kp_1(Alz])) — ...
are the algebraic K-groups
K.(A[Z], 2,) = K. 1(H(A[Z], 2,))
of the exact category H (A[z], £2+) of (A[z], £2+)-modules.

By analogy with 5.6 and 5.14:
Proposition 10.14 (i) The functor
End(A) — H(A[z], 24) ;
(P, f) — coker(z — f : Plz]—Plz]) = P with z=f
is an isomorphism of exact categories, so that
K. (Alz], 21) = Kia(H(A[Z], 24))
= End,_1(A) = K,_1(A)®End,_(A) .

(ii) The localization exact sequence breaks up into split exact sequences

0 — Kn(A[z]) —5 Kn(27'A[2]) —5 End,_1(4) — 0,
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so that
K, (27'Alz]) = K,(A[z]) ®End,—1(4) (n€Z).

In particular, for n =1 there is defined a direct sum system

it a4
Ki(Al2]) &= Ki(27"Al2) <A:> Endy(A)

with
iy o Ki(Al2]) — Ki(271A[Z) 5 7(BY) — 7(27EY)
g o K927 ALR]) —>K1<A[z])
T(RTVEY) — 7(rT @2 = (: BT [)]—E*[2])—E")
Oy Ki(7MAl2]) — Endo(A) T(RPEY) — (BT (],
Ay : Endg(A) — Ki(Q27MAlZ) 5
[P, f] — (2 — f: Q7' Pz]—027 ' P[2]) . O

Example 10.15 Let X be a finitely dominated CW complex, and let f :
X—X be a map which induces f, =1 : m(X)—m (X). Write

A= Zm(X)] , A= Q7"A}].
The mapping torus T'(f) is A-contractible, with
T(T(f);4) = (0,[X, f]) € Ki(4) = Ki(A[z]) & Endo(4) .

(The endomorphism class [X, f] € Endg(A) agrees with the universal functo-
rial Lefschetz invariant of Liick [173].) The condition f. = 1 can be dropped,
at the expense of dealing with the ring

Aplz) = AxZ[z)/{az = zf.(a)} (a € A)
instead of Ay[z] = A[z], such that
Zim(T(f))] = Zm(X))p.[z,271 O

Proposition 10.16 The torsion group of f);lA[z] fits into the direct sum
system

14 ~ 8+ —_—
Ki(A) —/—— K1 (0271 Al2]) ——— Endo(4)
J+ Ay

with
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i+ o Ki(A) — K7 Al)) 5 7(B) — m(Q7ElZ])
0y : K1(£27" Al2]) — Endo(A) ;

T(27'C(fo+ 2f1 : Pl]—P[2))) — [P —f3 ' fi]
Jt o K27 AlZ) — Ki(A) ; 7(Q7'ET) — 1(A®ap EY)
Ay Endo(A) — Ki(27'A2) ;

[P, f] — 7(1 — 2f : Q7 P[z]— Q7' P[2]) .

Proof Let 2-'A[z7'] be the localization of A[z~!] inverting the set 2_ of
Fredholm matrices in A[z7!] (i.e. the k x k matrices w such that coker(w :
Alz71*— A[z71]%) is a f.g. projective A-module, for all k > 1). By 10.14

Ki(27'A[z7Y) = Ki(A) @ Ko(A) @ Nilg(A) @ Endg(A) .

As in Chap. 5 let Z = {z¥ |k > 0} C A[2], so that Z~'A[z] = A[z, 2~ !]. The
cartesian square of rings

Alz] Q27 AlZ]

| |

Az, 27 ——= 27 Al

induces excision isomorphisms
KAz, 2) = K07 A[2),2-) .

Thus
Ki(27'A[2),0-) = Ki(A[2],Z) = Ko(A) @ Nilp(4) ,
and
Ky (271 A[]) = Ki(A) @ Endo(A) . O

10C. The A-contractible localization IT-1A[z, z71]

The A-contractible localization IT~!A[z, z~1] has the universal property that
a finite f.g. free A[z, 27 !]-module chain complex C is A-contractible if and
only if C' is IT - A[z, z~1]-contractible. This is the localization of A[z,27] of
greatest relevance to knot theory, as will be spelled out in Chaps. 17,32, 33.
The results of 10B. are now used to identify

Ki\(IT7Y Az, 27Y) = Ki(Q27'Al2)
= Ki(A) ® Endg(A) .
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Definition 10.17 (i) An A[z, 2~ !]-module chain complex C is A-contractible
if A® A¥7271] C is a contractible A-module chain complex, regarding A as an
Alz, z~']-module via the augmentation map

p o Az, — A Z a2l — Z aj .
j=—00 j=—00

(ii) A k x k matrix w = (w;;) in Alz, 27 is A-invertible if p(w) = (p(w;;)) is
an invertible £ x k matrix in A.

(iii) Let IT be the set of A-invertible matrices in A[z,27!], so that the local-
ization IT71A[z,27'] is defined as in 9.1. O
Proposition 10.18 (i) The augmentation p : Alz, 27— A; 2—1 has a
canonical factorization

p o Alz,z7Y ] — T 'Alz,27 — A

(ii) The natural map Alz, 2| ——= I~ Alz,271] is an injection.
(iii) The following conditions on a finite f.g. free Az, z=1]-module chain com-
plex E are equivalent :

(a) E is A-contractible,

(b) H.(II7'E) = 0,

(C) H*(A ®A[Z,Z—1] E) =0,

(d) ¢ —1: E—F is a chain equivalence.

Proof Apply 9.12, noting that the natural map into the (z—1)-adic completion

Alz, 27 — L%l Alz, 27 /(2 — l)k = Al[z —1]][z7Y]
is an injection. O

Example 10.19 (i) If A is a commutative ring then
O 'Alz, 27 = P Az, 27Y
with - -
P={> a| > ajeA}CAqz"].
j=—o0 j=—00

A finite f.g. free A[z,27!]-module chain complex E is A-contractible if and
only if
p(2)H.(E) = 0
for some p(z) € P.
(ii) If A = F is a field then P~'F[z,27!] C F(z), so that an F-contractible

finite f.g. free F[z, z7!]-module chain complex E is F(z)-contractible, and
hence by 8.3 F is F-finitely dominated. O
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Proposition 10.20 Let E be a finite based f.g. free Alz, z~1]-module chain
complez.

(i) E is A-contractible if and only if it is chain equivalent to the algebraic
mapping cone C(1 — f + zf : Plz, 27 1]—P[z,27]) for some finite f.g. pro-
jective A-module chain complex P with a chain map f : P—P, in which
case it is possible to choose a chain equivalence such that

r(E=€(1-f+2f) = T(A@u . E) € m(Ki(A)— K (Alz,271]))

(ii) If E is A-contractible then E is A-finitely dominated if and only if f,1—f :
P——P are chain equivalences for any (P, f) as in (i), in which case E is
A-module chain equivalent to P and

f~01-O':P~FE—P~FEF.

Proof (i) The algebraic transversality of Ranicki [244, Chap. 8] shows that
for every based f.g. free Az, z71]-module chain complex E there is a simple
chain equivalence

~

i : E — C(g+zh:Clz,z Y ]—Dlz,z7 1Y)

for some based f.g. free A-module chain complexes C,D and chain maps
g,h : C—D. Applying A ® 5[, .—1] — there is obtained a simple A-module
chain equivalence

1® : A®A[z,z*1]E — G(g+hC—>D) .

Thus F is A-contractible if and only if g+ h : C——D is a chain equivalence,
in which case the chain map

f=(@+hh:P=C—P
is such that there is defined an A[z, z7!]-module chain equivalence

(g+h 0)
e : Cl—f+zf:Plz]—P[z]) ——

i1

C(g+ zh: C[z]—Dl[z]) — E
with torsion
7(e) = 7(9+h:C—D)
= T(A®ap,.—11 E) € im(K;(A)— K1 (Alz,271)) .

Alternatively, use the following construction of (P, f) for an A-contractible
based f.g. free A[z, 27 1]-module chain E. Since E is A-contractible the chain
map ¢( —1: E—FE is an A-module chain equivalence (10.18). Let (ET, E™)
be a compatibly based Mayer—Vietoris presentation of F, so that

E = Alz,27 | ®ap ET = Alz,27 ] @ap-1 E~,
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with

T(1: Alz, 27| ®@ a0 EF—E) = 7'(2'1\’i cAlz, 27— Az, 27Y)

€ Ki(Alz,271)

for some N* € Z. Now E7 is A[[z]]-contractible, so that

A((2) @ap1) E7 = A((2) @4 B = A((2)) @ap BT =~ 0.
Thus E~ is A((z))-contractible, and by 8.1 E~ is A-finitely dominated. The
projection E~[z]— F defines an A[z]-module chain equivalence

j:Cl—2'E[s]—E[z]) — E

such that the A[z]-module chain map

1

kBt 5 E 1o 01— 2t B s ——E[2])
is an A[z]-module chain equivalence with torsion
(k) = T(A®ap ET) € im(K(A)— K1 (A[z]))

(ii) For any A-finitely dominated finite f.g. free A[z, 2~ !]-module chain com-
plex E there is defined an A[z, 2~!]-module chain equivalence

e: Cl—z2C"t :Elz,27' |—E[z,z7Y]) — E,
inducing an A-module chain equivalence
l®e : C1—( " :E—E) — A®up . E.

Thus if E is A-contractible the A-module chain map 1 — (™! : E—F is a
chain equivalence, and the chain equivalence

f=0-0"'"'E—E
is such that
1-f=-¢1-0O"': E—F
is also a chain equivalence, with an A[z, z71]-module chain equivalence

~

e :C0—f+zf:E[z,27' |—E[z,27']) —
(1 —¢H 1 —2¢Y: B2,z |—E[z,27Y]) — F

such that 7(f) € im(K(A)—K;(Az, 271])) with respect to an appropriate
choice of Alz, z71]-module basis for E.

Conversely, if E is an A-contractible based f.g. free A[z, z~!]-module chain
complex with E ~ C(1—f+zf : Plz,27]—P[z,27 ) and f,1—f : P—P
A-module chain equivalences there are defined A-module chain equivalences
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E

12

C(1— f+4zf: Plz, 27 ]—Plz,27Y))
~ C(l+z(1—f) " f:Plz, 27 |—P[z,27Y]) ~ P. O

Proposition 10.21 (i) The torsion group of It Alz, z71] fits into the direct
sum system

% 17} —
Ki(A) —— Ki(II"'Alz,27']) ———= Endo(A)
j A

with
i @ Ki(A) — Ky(IT"'Alz,27Y) 5 7(E) — 7(IT"'E[z,27Y) ,
&« Ki(IT"'Alz,27"]) — Endo(A) ; 7(II"'E) — 8(E) = [P, f]
(with (P, f) as in 10.20) ,
j oo Ki(ITAlz,27Y) — Ki(A); 7(IT7E) — 7(A®ap .1 B)
A i Endg(A) — K{(II""Alz,271)) ;
[P, f] — 7(1 = f+2f : T 'Plz, 27 |— I 'P[z,271]) .

(ii) The torsion group of II"YA[z,271, (1 — 2)71] fits into the direct sum
system

K (IT7'Alz, 271)) <:> K(IT7 ' Alz, 271 (1 - 2)7 1) é Nilg(A)
J A

with
i Ky(IT7' Az, 27Y)) — Ky(IT 1 Alz, 27 (1—2)7Y)
T(EB) — 7((1—2)7'E) ,
0« K (II™* Az, 271, (1 — 2)71]) — Nilg(4) ;
T(1-2)7'E) — [BL1-(],
A : Nilg(A) — K (ITTH Az, 27 (1= 2)71) 5 [Q,v]—
(1= =2 v I'Qlz 2 (1 —2) ) — I 'Qlz, 21, (1—2)"1]) .
(iii) The torsion groups are such that
Ki{(II"" Az, 27]) = Ki(A)® Endo(A) ,
K\(IT7'Alz, 274, (1 - 2)7Y)) = Ki(A) & Ko(A) @ Nilg(A) @ Endg(A) .
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(iv) An (A[z, 27 Y, IT)-module is an h.d. 1 Alz, z=]-module M such that 1 —
¢ : M—M is an automorphism. Every (Alz,z71], IT)-module M admits a
resolution

1—f+=zf
e

0 — Plz,2z7Y] Plz,z7'] — M — 0

for some (P, f) in Endg(A), and there is defined an exact sequence

j k
Nilg(A) @ Nilg(4) —— Endg(A) — K;(Afz, 2", II) — 0

with
N ML) = MaNae ()],

k[P, f] = [coker(l — f + zf: Plz,27 ' |—P[z,27])] .

Proof (i) Let IT be the set of square matrices in A[z] which are A-invertible
via z—1. The ring isomorphism

p : AlZ] = Alzl; 22— 1—2
induces a ring isomorphism
p o (L) Al = T Al 271 — Q7] 2 — 1— 2.
Now apply 10.16 to identify
Ki(IT"Alz,27Y]) = Ki(27'Al2]) = K1(A) @ Endo(A) .

(ii) For any A-invertible n x n matrix M in A[z, z71] there exist an invertible
n X n matrix L in A and an n x n matrix K in A[z, z7!] such that

LM+ (1-2)K = I, .

Thus the commutative square of rings

Alz, 271

|

Alz, 271, (1= 2) ) ——= IO 1Az, 271, (1 — 2)71

I Alz, 271

is cartesian, and there is a Mayer—Vietoris exact sequence in algebraic K-
theory

L Ky (Alz,27Y)) — K (IT7 1 Alz, 27 ) @ K (Alz, 278 (1 —2)7Y)
— K (T Alz, 271 (1= 2)7Y)) — Ko(Alz,271]) — ... .
The decomposition of K1(II71A[z, 271, (1 — 2)71]) now follows from (i).
(iii) Immediate from (i) and (ii).
(iv) It is convenient to introduce another indeterminate over A, called s, and

to let £2; denote the set of Fredholm matrices in Afs]. From (i), (ii) and (iii)
there is defined a commutative braid of exact sequences
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with
Ki(A[s], 24+) = Endg(A) .

The isomorphism of rings
Als,s71 (1 —s)7Y = Alz,z7 8 (1—=2)7Y 8 — (1—2)71
induces an isomorphism of exact categories
H(A[s,s71, (1—5)71,02,) = H(A[z,27L, (1 - 2)74, 1) .

The inclusion Az, 27— Az, 271, (1 — 2)7!] induces an isomorphism of
exact categories

H(A[z,27 '], ) = H(A[]z,27", (1 —2)7", 1),
since IT is coprime to (1 — z). It follows that
Ki(Alz, 27", 1) = Ki(Alz,z7",(1—2)""],1I)

= Ki(Als,s™", (1 —5)7"], 924)
— coker(Ki(Als, 51, (1 — )" 1])— K1 (272 Als]))
= coker(Ky(Afs], (s(1 — ))™)—K1(A[s], £21))
= coker(Nilg(A) & Nilp(A)—Endg(A)) .

(More conceptually, note that an object (P, f) in Endg(A) is such that

1—f+zf : Plz,27'] — Plz, 27}

is an A[z, 27 !]-module isomorphism if and only if f : P—P is a near-
projection (i.e. f(1— f): P—P is nilpotent), if and only if (P, f) is isomor-
phic to (M, ) & (N,1 — v) for some objects (M, ), (N,v) in the nilpotent
category Nil(A). See 5.7 for near-projections.) O
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Example 10.22 Let F' be a field. If F is an F-contractible based f.g. free
F[z, z71]-module chain complex then

O(E) = [H.(E),(1—¢)7"]+d[F,1] € Endo(F)

with
d = X(H.(E")) = x(H.(E)) € 7

for any finite f.g. free F[z]-module chain complex ET such that
Flz,2z71 Qr ET = E,
interpreting negative values of d using chain complex suspension. (|
Example 10.23 (i) Given a group 7 let
A = I Zx)z,27Y , Ay = T 'Zx)[z,27, (1 — 2)7)
with IT the set of Z[r]-invertible square matrices in Z[r][z,27!], and define
Whitehead groups
Whi(A) = Ki(A)/{*gz’'|gem,jel},
Whi(Ar) = Ki(A)/{*gz’(1 - 2)* |gem jkel}.
By 10.21
Whi(4) = Whir) & Endo(Z[x]) ,

Whi(A) = Whir) & Ko(Zlr)) & Endo(Zlr]) & Nilo(Zlx]) -
Assume that 7 is finitely presented, and let K be a connected finite CW
complex with 71 (K) = . Given a finite CW complex X and a cellular map
h: X—K x St let )?,I? be the universal covers of X, K, so that there is
induced a Z[n][z, 2~ !]-module chain map h : C(X)—C(K x R). By 10.18 h
is a Z[r]-homology equivalence if and only if it is a A-homology equivalence.

From now on, assume this is indeed the case, so that there is defined a A-
coefficient Whitehead torsion

T(h; A) = (11,m) € Whi(A) = Wh(r)® Endy(Z[x]) .
(See (ii) below for the application to knot complements). The first component
of 7(h; A) is the Z[n]-coefficient Whitehead torsion
7= 1(hZr]) = T(1®h : Z[r] Qg1 C(X)—C(K x §1)) € Whir) .
The second component of 7(h; A)
7 = [C, f] € Endo(Z[r])

is constructed as follows. Let X = h*(K x R) be the induced infinite cyclic
cover of X, so that h lifts to a Z-equivariant map h : X — K x R. Making h
CW transverse at K x {*} C K x S (up to simple homotopy equivalence, as
in 7.5) it is possible to obtain a fundamental domain (V;U,(U) for X with
a m-isomorphism map

(b;a,Ca) = (V;U,CU) — K x ([0,1];{0},{1}) .
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Let ) =
it U =VnNC'V—V;z—(x

i U =Vn¢CWV —V:z—z

and let U ,17 be the universal covers over U,V so that there is defined a
morphism of short exact sequences of finite f.g. free Z[r][z, 2~!]-module chain
complexes

i_;,. — zi_ ~ ~

0 CO)z, 271 C(V)[z, 27} C(X) 0
‘5 b h
0 C(R) [z, 2] ——£ C(K x I)[z, 2] C(K x R) 0

The Z[n]-module chain maps induced on the chain complex kernels
iy, i : C = C@:C(U)—C(K)) — D = €(b: C(V)—C(K))
are such that i —i_ : C—D is a Z[r]-module chain equivalence. The second
component of 7(h; A) is the endomorphism class 72 = [C, f] € Endo(Z[r]) of
the Z[r]-module chain map
f=—-(ip—i) "t :C—C,
for which
1—f = (ip—i )iy : C—C.
The Z[x][z, 2~ ]-module chain complexes C(X),C(K x R) are A;-contract-
ible, so the split injection Why(A)—Why(Ay) sends 7(h; A) to a difference
of absolute Reidemeister torsion type invariants
T(h; A1) = 7(X;A1) —7(K x SY; A) € Why(Ay)
with
(K xS A) = 7(1—2)X5)) = 0e Why(A) .
(See Chap. 16 below for a brief account of Reidemeister torsion).
(ii) Let k : S™ € S™™2 be a knot, and let
X = cl(S"A\(k(S™) x D?)) c §"*2

be the knot exterior. The generator 1 € H!(X) = Z can be represented by a
map h : X —=S! which is a Z-homology equivalence, and which is transverse
at a point * € S. Thus F"*! = h=1(x) C X is a Seifert surface for k, with
OF = k(S™) C S"*2. The I1~'Z[z, 2~ !]-coefficient Whitehead torsion of h is
then defined as in (i)

T(hiII7'Z[z,27Y)) = [C(F), f] € Wh(II™'Z[2,2"']) = Endy(Z) ,

with K = {pt.} and f = —(iy —i_)"ti_ : C(F)—C(F). See Chaps. 17,33
for the expression of this invariant in terms of the Alexander polynomials of
k. O



11. The characteristic polynomial

The characteristic polynomial is the basic invariant of an endomorphism of
a f.g. free module over a commutative ring A. The Alexander polynomials of
knots (Chaps. 17,33) are scaled characteristic polynomials.

The following treatment of determinants and characteristic polynomials
for endomorphisms of f.g. projective A-modules is an adaptation of Goldman
[90] and Almkvist [5], where further details may be found. In Chap. 14 the
endomorphism class will be shown to be determined by the characteristic
polynomial.

In the following definition the ground ring A is not assumed to be com-
mutative.

Definition 11.1 The reverse of a polynomial of degree d
d
p(z) = Zajzj € Alz]
j=0

with leading coefficient a unit ag € A® is the polynomial

B(z) = (aa)™'2"p(z™")
d
= (ag)7! aq—;7 | € Alz]

with constant coefficient p(0) =1 € A. O
The reverse of a monic polynomial
p(z) = ap+arz+...+ ag_12%1 + 2%
is the polynomial
p(2) = 2%z = 14+ag_12+ ... +apz?
with the same coefficients but in reverse order.

For the remainder of Chap. 11 the ground ring A will be assumed to be
commutative.
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Definition 11.2 Let M be a d x d matrix with entries in A.
(i) The characteristic polynomial of M is

ch, (M) = det(zI; — M) € Alz],

a monic polynomial of degree d.
(ii) The reverse characteristic polynomial of M is

ch, (M) = det(I; —zM) € Al7],
a polynomial of degree < d with constant coefficient 1. O
The characteristic polynomials in 11.2 are related by
ch (M) = 2%h,1(M) € Al2]
i.e. ch.(M) is the reverse of ch,(M) in the sense of 11.1.

Definition 11.3 The trace and determinant of an endomorphism f : P—P
of a f.g. projective A-module P are

tr(f) = tr(f®0: POQ—P Q) ,
det(f) = det(f®1: PHQ—PHQ)e A

for any f.g. projective A-module @ such that P & Q is a f.g. free A-module.
O

Example 11.4 The trace and determinant of a d X d matrix M in A are (of
course) the trace and determinant of the endomorphism M : A1— A%, If

d
ch, (M) = det(zIg— M) = p(z) = Zajzj € Alz]
7=0

then

d
ch.(M) = det(I;—zM) = p(z) = > @, € Al2] .
=0

The coefficients @; € A (0 < j < d) are such that

Ei_]—ad—jaZL/O:CLd:17
G = ap = (—1)%det(M) e A |
a; = ag-1 = —tr(M) €A,

@ = aay = (~1)te(W (M) H(A)—N(AN) € A,

with A*(A%) the exterior algebra on A9. O
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Example 11.5 For any monic polynomial of degree d
d .
p(z) = Zajzj € Alz] (ag=1)
j=0

the quotient A-module A[z]/(p(2)) is a d-dimensional f.g. free A-module, with
ch.(A[2)/(p(2)),€) = p(2),

d
ch.(A[2l/(p(2)),¢) = Blz) = Y aa_;2’ € Alz] . O
=0

Proposition 11.6 (i) For any endomorphisms f : P—P, g : Q—Q of
f-g. projective A-modules

det(f@dg: POQ—P ® Q) = det(f: P—P)det(g: Q—Q) € A,
and if P=Q
det(fg: P—P) = det(f: P—P)det(g: P—P) € A,

with
det(l: P—P) = 1€ A.

(ii) An endomorphism f : P——P of a f.g. projective A-module P is an
automorphism if and only if det(f) € A is a unit.
(iii) If A is an integral domain with quotient field F' then

det(f: P—P) = det(1® f: Fa P—F®4P)c ACF,

with det(f) # 0 if and only if f : P—P is injective, if and only if 1 ® f :
F®aP—F ®a P is an automorphism. O

Remark 11.7 If F' is a f.g. free A-module of rank d > 1 then
det(0: F—F) = 0 , det(z: F[z]—F[z]) = 2%,
as usual. But in general for a f.g. projective A-module P
det(0: P—P) #0€ A , det(z: P[z]—P[2]) # 2% .
For example, if P = e(A) for some idempotent e = €2 € A then

det(0: P—P) = 1—e€ A,
det(z : P[z]—P[z]) = 1—e+ze € Al7] . O
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Definition 11.8 Let f : P——P be an endomorphism of a f.g. projective
A-module P.
(i) The characteristic polynomial of (P, f) is

ch, (P, f) = det(z— f: P[z]—P|z]) € Al#] .
(ii) The reverse characteristic polynomial of (P, f) is
ch,(P, f) = det(1 —zf : P[z]—P[2]) € Alz] . 0

For f.g. free P the characteristic polynomials of 11.8 agree with the defi-
nitions in 11.2.

2

Example 11.9 If P = ¢(A) for some idempotent e = e € A there is an

evident identification
Homu(P,P) = {f € Alefe=fe A},
and for any such f
ch.(P,f) = det(z— f: P[z]—PJz]) = ze+1—e—f,
ch.(P,f) = det(1 —zf : Plz]—P[z]) = 1—zf € A[2] . 0

Proposition 11.10 (i) The characteristic and reverse characteristic polyno-
mials are related by

ch.(P, f) = ch,(P,0)ch,— (P, f) € Alz] ,

with ch,(P,0) € Alz] a unit in Alz,271].

(ii) Every characteristic polynomial ch, (P, f) € Alz] is a factor of a monic
polynomial.

(iii) The reverse characteristic polynomial is of the form

d
cho(Pf) = D (~1)te(Af: NP— A P)2 € Alz
j=0

with AV P the jth exterior product of P.
(iv) If A is an integral domain with quotient field F then

ch. (P f) = ch.(F®a(Pf)),
CAhz(Pvf) = C~hz(F®A (P’f)) EA[Z] gF[Z] :

In particular, ch, (P, f) is a monic polynomial of degree dimp(F ®4 P).
Proof (i) Let P = im(p = p? : A¥—— AF), so that

ch,(P,0) = det(z: P[z]—P[z])
= det(1 —p+pz: Al2]F—A[2)*) € Alz] N Alz,271]°
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with inverse
ch,(P,0)™! = det(z7': P[z7']—P[z71))
= det(l1 —p+pz~t: A" — A1)
cAlz7 ' nAlz, 271° .
By the result of Goldman [87,2.3]
ch.(P,0) = Y ez € Al
i=0
for a complete set of orthogonal idempotents eg, e1,...,e, € A with
eiej = 0(i#£75), (€)? = e, ZeizleA
i=0
ann (A'P) = (eg+e1+...+ei—1)(A),

det(z: Plz]—P[z]) ™" = > ez ' € Alz,27'].

=0
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The identity &1Z(P, f) = ch,(P,0)ch,-1 (P, f) is obtained by applying the

multiplicative property of the determinant to the identity
1—2zf = 2(z7' = f) : Plz,27Y] — Plz,271].

(ii) Given (P, f) let @ be a f.g. projective A-module such that P & @ is f.g.

free, and note that

chz(P, f)ch:(Q,0) = ch.(P@Q,f®0) € Alz]

is a monic polynomial — this is a special case of 10.7 (ii). (Grayson [95, p. 440]
has a different proof: “the characteristic polynomial is monic locally on

spec(A), and thus divides a monic polynomial.”)
(iii) See Almkvist [5,2.3].
(iv) Immediate from 11.6 (iii).

Example 11.11 (i) If P is f.g. free of rank d then
cho(P0) = 2, cho(P.f) = zch.i(P.f) € Al],

s0 p(z) = ch.(P, f) and p(z) = ch.(P, f) are related as in 11.1.
(ii) If P = e(A) for some idempotent e = e € A then

ch,(P,0) = det(z: P[z]—P[z]) = 1—e+ze,
ch.(P,0) = det(1: P[z]—P[z]) = 1€ A[7].

O
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The Cayley-Hamilton theorem extends to endomorphisms of f.g. projec-
tive A-modules:

Proposition 11.12 (Goldman [87,2.1], Almkvist [5,1.6])
If the characteristic polynomial and the reverse characteristic polynomial of
(P, f) are given by

cho(P,f) = p(z) , ch(Pf) = q(z) € Alz]

then
p(f) = q(f)y =0: P—P. O

Definition 11.13 Let W(A) be the abelian group of rational Witt vectors,
the subgroup W(A) C A[[z]]* consisting of the formal power series of the

type

Zaj = 2 €1+ zA[[z]] C A[l#])°

with p(z),q(z2) € A[z] such that ag = p(0) =¢(0) =1 € A. O

Proposition 11.14 (Almkvist [6])
The reverse characteristic polynomial defines an isomorphism

Bndo(4) = W(A) 5 (P.f) — chu(P.)
with inverse
W(A) — Endo(4) ; p(z) — [A[2]/(p(2))] -
Proof See 14.12 below (which also works in the noncommutative case). O

Example 11.15 (Almkvist [5,1.10])
For any endomorphism f : P— P of a f.g. projective A-module P the loga-
rithmic derivative of ch, (P, f) is such that

—zch. (P, f)"'ch, (P, f) = > tr(f": P—P)z" € A[[2]] .

If Q@ C A the reverse characteristic polynomial is given by the exponential

trace formula -
(P, f) = exp(— Ztﬂf))

n=1

el+zA[z]] cW(A) .
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Proposition 11.16 The following conditions on a polynomial

d
p(z) = Zajzj € Alz]

are equivalent :

(i) plz) € A((z"1)",

(il) p(z) € A[z] is a non-zero divisor and A[z]/(p(2)) is a f.g. projective
A-module,

(iii) p(2) is a factor of a monic polynomial in Alz].

Proof (i) <= (ii) By 8.2 applied to ET = C(p(z) : A[z]—A[z]).
(ii) = (iil) Define the multiplicative subset

S = (p(x)* = {p(x)" |k >0} C Al].
The (A[z], S)-module P = Alz]/(p(z)) has a f.g. free A[z]-module resolution

(=
00— Al] " A —s P — 0

and also the f.g. projective A[z]-module resolution

z—C
0 — P[z] — P[z] — P — 0,

which are related by a chain equivalence. The characteristic polynomial of
the endomorphism ¢ € Hom 4 (P, P) is thus of the form

ch,(P,¢) = p(2)t(z) € Alz]

for some unit t(z) € A[z]*. (If a4 = 1 € A then P is f.g. free of rank d and
(P, ¢) has characteristic polynomial ch, (P, ) = p(z) — see 12.18 below). Now
ch, (P, () is a factor of a monic polynomial by 11.10 (ii), and hence so is p(z).
(ili) = (ii) Every monic polynomial in A[z] is a unit in A((z71)). O

Similarly :

Proposition 11.17 The following conditions on a Laurent polynomial
n
p(z) = Z a;2’ € Alz, 27
j=m

are equivalent :

() p(2) € A((2))* NA((=71)",

(ii) p(z) € Alz,27Y] is a non-zero divisor and Alz,27']/(p(2)) is a f.g.
projective A-module,

(iii) p(2) is a factor of a polynomial in Alz, z=1] with extreme coefficients
units.
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Proof (i) <= (ii) By 8.3 applied to E = C(p(z) : Az, 27— A[z,271]).
(ii) = (iil) Define the multiplicative subset

S = (p(2)° = {p(x)" |k 20} C Alz,27"] .
The (A[z,271],S)-module P = Alz,27'/(p(z)) has a f.g. free Alz,271)-
module resolution

p(z)

0 — Alz,z7'] — Alz, 27 1]

— P —0

and also the f.g. projective A[z, z~1]-module resolution

1y 2=¢ -1
0 — Plz,z27'] — Plz,27 | — P — 0,

which are related by a chain equivalence. The characteristic polynomial of
the automorphism ¢ € Hom4 (P, P) is thus of the form

ch.(P,¢) = p(2)t(z) € Alz,27"]
for some unit ¢(z) € Alz, z71]*, with
cho(P,{) = det(—¢: P—P) € A®.

(If ay, € A®, a, = 1 € A then P is f.g. free of rank n —m and (P, () has
characteristic polynomial ch,(P,{) = z~™p(z)). Now ch,(P,() is a factor of
a monic polynomial by 11.10 (ii), and hence so is p(z).

(iii) = (ii) Every monic polynomial in Az, 27!] with constant coefficient a
unit in A is a unit in both A((2)) and A((z71)). O
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In the applications of endomorphism K- (and L-) theory to the computation
of the high-dimensional knot cobordism groups it is necessary to restrict at-
tention to endomorphisms f : P—— P of f.g. projective A-modules such that
p(f) = 0 for a particular type of polynomial p(z) € A[z], e.g. an (Alexander)
polynomial p(z) € A[z] with p(1) € A°.

This chapter studies the endomorphism class groups End3 (A), ﬁi{? (A) of
pairs (P, f) with p(f) = 0 for some p(z) € S, with S C A[z] a multiplicative
subset. The splitting theorems of Chap. 10 will now be specialized to the
splitting theorems of Grayson [95]

Ki(S7'A[z]) = Ki(A[z]) ® Endj (A) ,
Ki(5'A[2]) = Ki(A) @ End, (A)

for appropriate S, S C Alz].

Definition 12.1 Let S C A[z] be a multiplicative subset.
(i) An object (P, f) in End(A) is S-primary if

z—f : ST'P[2] — ST'P[]

is an S~ A[z]-module automorphism.

(ii) The S-primary endomorphism category End®(A) is the full subcategory
of End(A) with S-primary objects (P, f). The S-primary endomorphism K-
groups of A are defined by

End?(4) = K.(End®(A)).
(iii) If z € S use the embedding
P(A) — End(A) ; P — (P,0)
to define the reduced S-primary endomorphism K -groups of A by
End. (A) = coker(K.(A)— K, (EndS(4))) ,

such that
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EndS(A) = K.(A)®End. (A) . 0

Example 12.2 Suppose that A is commutative, and that S C A[z] is a mul-
tiplicative subset. An object (P, f) € End(A) with characteristic polynomial

ch, (P, f) = det(z— f: P[z]—P[z]) € S C Al7]
is S-primary. (See 12.6 below for a generalization). |

Example 12.3 Let A, S be asin 12.1. The A[z]-module given for any p(z) € S
by
P = Al2l/(p(2))
determines an object (P,¢) in End¥(A) if and only if p(z) € A((z~1))*.
d
(i) If p(z) = > a;27 € S has leading coefficient aq € A® then p(z) €
§=0

A((z71))® and Pis a f.g. free A-module of rank d. The A-module isomorphism

Fi AT 5 P (bubay . by) — by 4oz 4. 4 bgz?]

is such that

00 0 ... —aoa(zl
1 0 0 ... —alagl
“1,p _ 10 1 0 —agza;! . ogpd d
= = 20y A = AgAD ... @A — AY.
00 0 ... —ad,lagl

(This is the companion matriz of linear algebra). If A is commutative then

ChZ(P,C) == Chz(Ad7f71Cf)

d
(ad)_l(zoajﬂ) = (ag) " 'p(z) € S C Al2] .

(i) If p(z) = 1 — e+ ez € S for an idempotent e = e? € A then
(P,¢) = (e(A),0)
is an object in End”(A). O

Proposition 12.4 Let S C A[z] be a multiplicative subset. The following
conditions on an object (P, f) in End(A) are equivalent :

(i) (P, f) is S-primary,
(i) S~'(Pf)=0,
(iii) p(f) =0: P—=P for some p(z) € S.

Proof (i) <= (ii) The exact sequence
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0 — P[z] i:i Plz] — (P, f) — 0

defines a f.g. projective A[z]-module resolution of the A[z]-module (P, f) (=
A-module P with z = f : P—P). Localization is exact, so there is induced
an exact sequence of S~!A[z]-modules

0 — S'P[2] = S7'P[] — STYP,f) — 0

and z — f is an isomorphism if and only if S=*(P, f) = 0.
(i) = (iii) If (P, f) is S-primary then the inverse of z — f is of the form

(z= " = 9(2)/p(z) : ST'P[z] — S P[]
for some
p(z) €5, g(z) € Homyp,(P[2], P[z]) = Homa(P, P)[7] ,

so that
(2= flg(z) = p(z) : Plz] — Pl

and p(f) =0: P—P.
(iii) = (i) Let p(f) =0 : P—P for some

d
p(z) = Zajzj €s.
j=0

The A[z]-module morphism

9(z) = (p(z) —p()/(z =)

d j—1
— Z ajfjflszk : P[z] ~—>P[Z]
j=1k=0
is such that
(z—f)_1 = g(2)/p(z) : S_lP[z] — S_lP[z] . O

Terminology 12.5 A polynomial p(z) € A[z] with central coefficients gen-
erates a principal ideal

P = (p(z) < AlZ]
and a multiplicative subset
(p(2))* = {up(2)" |u € Z(A®),k > 0} C A[z],

where Z(A®) C A is the subset of central units. Abbreviate (p(z))°°-primary
to P-primary, in line with the usual terminology. ]
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Example 12.6 Suppose that A is commutative, and that S C Alz] is a
multiplicative subset. The following conditions on an object (P, f) € End(A)
are equivalent :

(i) (P, f) is S-primary,
(ii) ch,(P, f) € Alz] is a unit in ST A[z],
(iii) ch,(P, f) divides an element p(z) € S.

These conditions are satisfied if ch,(P, f) € S (12.2). In particular, if S =
(p(2))*° (as in 12.4) for a monic polynomial p(z) € A[z] the conditions are
satisfied if ch, (P, f) = p(z)* for some k > 1. O

Recall from 4.13 that multiplicative subsets S, T C A[z] are coprime if for
all p(z) € S, q(z) € T there exist a(z),b(z) € A[z] such that

a(2)p(z) + b(=)a(z) = 1€ A[] .

Proposition 12.7 If S,T C A[z] are coprime central multiplicative subsets
the multiplicative subset

ST = {p(2)a(2) |p(2) € S,q(2) € T} C Al7]

is such that
End®?(4) = End®(A) x End”(A) ,

End3T(A) = End?(A4) @ End? (A) .

Proof By 12.4, for any object (P, f) in End®7 (A) there exist p(z) € S, q(z) €
T such that
p(fla(f) = 0: P—P.

If a(z),b(z) € A[z] are such that a(z)p(z) + b(z)q(z) = 1 then the endomor-
phisms a(f)p(f),b(f)q(f) : P—P are idempotents such that

a(fp(f) +o(fla(f) =1 : P— P.
The A-modules

Ps = ST'P = a(f)p(f)(P) , Pr = T7'P = b(f)q(f)(P)
are such that
(Pvf) = (PSafS)®(PT7fT)
with (Ps, fs) S-primary and (Pr, fr) T-primary. O

Remark 12.8 If F is a field then F[z] is a unique factorization domain, and
every monic polynomial p(z) € F[z] has a unique factorization as a product
of powers of irreducible monic polynomials p(z), so that

End,(F) = P Ead?®7(F)
p(z)Emax(F[z])
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according to the factorization of the characteristic polynomial. See Chap. 18
for a more detailed account of Endg(F). O

Definition 12.9 Let S C A[z] be a multiplicative subset.

d .
(i) S has leading units if for each ) a;z? € S the leading coefficient is a unit,

7=0
ie.if ag € A°®.
d ;
(ii) S has constant units if for each ) a;27 € S the constant coefficient is a
3=0
unit, i.e. if ag € A°. a

Remark 12.10 (i) If S C A[2] has leading units then S C A[z] N A((z71))".
If A is an integral domain then S C A[z] has leading units if and only if
S CA[Z]NA((z71))".

(ii) If S C A[z] has constant units then S C A[z] N A[[z]]®. If A is an integral
domain then S C A[z] has constant units if and only if S C A[z]NA[[z]]*. O

A chain complex (C, f) in End(A) is a f.g. projective A-module chain
complex C' together with a chain map f: C—C.

Definition 12.11 Let S C A[z] be a multiplicative subset. A finite chain
complex (C, f) in End(A) is S-primary if

z—f : STIC[2] — STC[]

is an S~!A[z]-module chain equivalence. The chain map f : C——C is said
to be S-primary. O
By analogy with 12.4:

Proposition 12.12 The following conditions on a finite chain complex (C, f)
in End(A) are equivalent :

(i) (C,f) is S-primary,
(i) ST(H.(C), fx) =0,
(iii) p(f) =~ 0: C—=C for some p(z) € S.

By analogy with 10.10:
Proposition 12.13 Let S C A[z] be a multiplicative subset such that

S CARINA((z™)*

(i) The inclusion Alz)]—S~1A[z] has the universal property that a finite f.g.
free Alz]-module chain complex ET is such that H.(S™'E™) =0 if and only
if BT is A-finitely dominated and ¢ : ET —E% is S-primary.

(ii) The functor

H (A[z],S) — End®(4) ; M — (M, ()
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is an isomorphism of categories. The relative K -groups
K.(Alz],8) = K._1(H(A[2],9))
in the localization exact sequence
. — K, (A[z]) — K,(ST*A[z]) — Kn(A[2],9)

— K1 (Al2]) — ...

can be expressed as
K.(A[z],S) = End?_,(A).

The exact sequence breaks up into split exact sequences
0 — K,(Alz]) — K,(S7*A[z]) — K.(A[z],S) — 0.

(iii) The torsion group of STLA[z] fits into the direct sum system

K (A[2]) <—;> K1 (S Al2]) <i——+> Endj (A)

with
iy o Ki(Al]) — Ki(STMAL]) 5 7(EY) — 7(STIEY)
je o Ki(STUAL) —>K1<A[z1>
T(STIEY) — 1(r 1 C(z = C: BT [e]— BT [2])— ET)
d: + Ki(S™'Alz)) — End§ <A> (STUEY) — (B¢ .
Ay Endy(4) — K1(S7A[Z]) ;
[P, f] — 7(2— f: ST P[z]—S~'P[2]) . O

Example 12.14 If A is commutative then by 11.16 S = A[z] N A((z71))* is
the multiplicative subset of all the polynomials in A[z] which divide monic
polynomials, with

ST1A[2] = 27'A[2] , End®(A) = End(A)

and 12.13 (iii) is just the splitting of 10.14. Moreover, S~ A[z] is the local-
ization of A[z] inverting all the monic polynomials. ]

d .
As in 11.1, given a polynomial p(z) = ) a;2’ € A[z] with leading unit
§=0

aq € A® define the reverse polynomial

d
) = (a5 = (0™ (L aas ) € Al
=0



12. Primary K-theory 111

with constant unit p(0) = 1. If g(2) = Y br2* € A[2] has leading unit b, € A

k=0
pa(z) = p(2)q(2) € Al] .
Definition 12.15 Given a multiplicative subset S C A[z] with leading units

let S C A[z] be the reverse multiplicative subset with constant units consist-
ing of the reverse elements p(z) of p(z) € S. O

then

Proposition 12.16 Let S C Alz] be a multiplicative subset with leading
units and z € S. An object (P, f) in End(A) is S-primary if and only if
1—zf : S1P[z]— 51 P[z] is an S~ A[z]-module automorphism.

Proof If (P, f) is S-primary there exist an A-module morphism

d
g(z) = Zgjzj : Plz] — P[z] (g; € Homu(P, P))
3=0

with g4 : P— P an automorphism and p(z) € S such that
(2= fg(z) = p(z) + Pls] — P[e].

The A[z]-module morphism defined by

d
9(z) = Z(gd)‘lgdszj : Plz] — Pl

is such that
(1-2f)g(z) = p(z) : Plz] — P[z],

so that 1 — zf : P[z]—P[z] is an S~'A[z]-module isomorphism.
Conversely, suppose 1 — zf : P[z]—P]z] is an S~ A[z]-equivalence, so
that there exist an A[z]-module morphism

d
g(z) = Y 97’ : Pl2] — P[z] (g; € Homa(P, P))
j=0
with go =1: P—P and
p(z) = Z ajz €8
j=m
such that

with
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The A[z]-module morphism defined by
d .
9(z) = > Ga—j?’ : Plz] — P[]
3=0
is such that
(== fg(z) = (@)D az'™™)
j=m

= 27"™(an) " 'p(2) : P[z] — P[2],
so that z — f : P[z]—P[2] is an S~1A[z]-module automorphism. O

Example 12.17 If S = ()™ then S = {1}, and 12.16 identifies the (z)-
primary (= nilpotent) category End®)” (4) = Nil(A) with the subcategory
of End(A) consisting of the objects (P, f) such that 1 — zf : P[z]—>P[z] is
an automorphism. O

Example 12.18 If A is commutative and S C A[z] is a multiplicative subset
with leading units and z € S then 12.16 shows that an object (P, f) in End(A)
is S-primary if and only if the reverse characteristic polynomial (:,BZ(P, f) e
Alz] is a unit in S~A[z]. In particular, this is the case if ch, (P, f) divides
an element of S, or if c~hZ(P7 f)es. O

Proposition 12.19 Let S C Alz] be a multiplicative subset with leading
units and z € S, with reverse multiplicative subset S C Alz]. A chain com-
plex (C, f) in End(A) is S-primary if and only if the 571A[z]—m0dule chain
map 1 — zf : S1C[z]—S~1C[2] is a chain equivalence.

Proof The chain homotopy class of an S-primary chain equivalence f :
C——C is an object (Ho(Hom4(C,C)), f) in End®(Ho(Hom 4(C,C))). Now
apply 12.4 and 12.15. 0

An S-primary chain equivalence f : C——C of a finitely dominated A-
module chain complex C has an S-primary class invariant

[C, f] € Endj (A) .
By analogy with 10.16:

Proposition 12.20 If S C A[z] is a multiplicative subset with leading units
and z € S the torsion group of STLA[2] fits into the direct sum system

iy ~ s — S
Kl(A) <~:> Kl(SilA[Z]) — Endo (A)
J+ Ay

with
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iy o Ki(A) — Ki(S7A[2]) 5 T(BE) — 7(ST'E[2]) |
J+ @ Ki(STMALZ]) — Ki(A); 7(STIEY) — 1(A®ap ET)

B, : K1(§'A[z]) —> End, (A) ;

T(SC(fo + 2f1 : Ple]—PL]) — [P —f5 ' fi]
Ay : Endy(4) — Ki($7AL2)) 5
[P, f] — 7(1—2f : S~'P[z2]—5~'P[2]) .
Proof Let S_ C A[z71] be the image of S C A[z] under the isomorphism
AlZ] = AlzY ;5 2 — 271

This is the product _
S_ =ZS

of the coprime multiplicative subsets Z = {z¥}, § C A[z], so that there is
defined a cartesian square of rings

Alz] ——= 51 A[Z]

| |

Alz, 271 ——= §7A[z71)
with excision isomorphisms
K.(Alz],2) = K.(S7'A[z],5_) .
Combining the special case * = 1 with
K1(Al2],Z2) = Ko(A) & Nily(4) ,
Ki(SZ'A[TY) = Ki(S7HA[)
— Ki(A) & Ko(A)  Nilo(A) @ End (A)
gives
Ki(§1A[2]) = Ki(A) @ Ends (A) . 0

Example 12.21 If A is commutative and S C A[z] is the multiplicative
subset of all the monic polynomials then every object (P, f) in End(A) is
S-primary, since ch, (P, f) € A[z] divides a monic polynomial (11.10) and so
is a unit in S~'A[z]. The reverse multiplicative subset is

S = 1+4zA[z] c Al7],

and
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EndS(A) = End(A) , EndS(4) — End.(4), Bnd. (A) — End.(A) .

The splitting theorem of 12.20 coincides in this case with the splitting theorem
of 10.16, identifying

Q7YAlZ] = STA[R] , Q7'AlZ] = StAl],

so that
K.(S7'A[2]) = K.(Al2]) ® End.—1(4) ,

K.(S7'A[z]) = End,(A). 0
Example 12.22 The multiplicative subset with leading units
Z = {+]j >0} C A}
is such that
Z = {1} , Z7'Alz] = Alz,27Y] , Z7'Alz] = A[7].
An object (P, f) in End(A) is Z-primary if and only if f is nilpotent, that is
N =0:P—P
for some N > 0. Thus
End?(A) = Nil(4) , End?(A) = Nil,(A)
and 12.13, 12.20 give the direct sum decompositions of Chap. 5
Ki(Alz,27Y]) = Ki(A[z]) @ Nilg(A) ,
Ki(AlZ]) = Ki(A) & Nilg(A) . O
Example 12.23 The multiplicative subset with leading units
S = 221 -2 = {1 -2)"|j,k>0} C Al
is such that
S ={1-2Fk>0} , ST} = Alz,z71,(1-2)7"],
S71A[Z] = Alz,(1—2)71 = Alz,27Y].

An object (P, f) in End(A) is S-primary if and only if f is a near-projection
(5.7), that is
=Y =0:P—P

for some N > 0. For any such N the endomorphism

fo = (N+Q=-HM)TY = f3P—P
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is the unique projection commuting with f such that f — f, : P—P is
nilpotent. Use f,, and the nilpotent endomorphisms

vo=f|: P =Q1-f)P)— R,
nm = 0=f:h = fu(P) — P
to define isomorphisms
Endj (4) — Ko(A) @ Ko(A) & Nilg(4) & Nilg(4) ;
[P, f] — ([Po], [P1], [Po, vol; [Pr, 1)
Endy (4) — Ko(A) @ Nilo(A) & Nil(4) ;
[P, f] — ([Fo] = [PA], [Po,wol, [Pr,01])
Use 12.13 and 12.20 to identify

K (S7'A[2]) =
K1 (A) @ Ko(A) @ Ko(A) @ Nily(A) @ Nily(A) & Nily(4) ,
Ki(S7'A[2]) = Ki(A)® Ko(A) @ Nilg(A) @ Nilg(A) . 0

Example 12.24 Given a monic central polynomial of degree n
d .
p(z) = Zajzj € Alz] (aqg=1)
§=0

define the multiplicative subset
S = (p(2)™ = {p(z)*|k >0} C A[]

with leading units. Identify the (A[z], S)-module A[z]/(p(%)) with the object
of End®(A) defined by

(P f) = (Al]/(p(2)), ) ,

with P a f.g. free A-module of rank n and f : P——P an S-primary endo-
morphism such that

p(f)y =0: P— P,
0:7(p(2) : STHA[Z]— ST A[2]) = (P, f) € Endg(4)
As in 12.3 the A-module isomorphism
g i AT 5 P (b, ba) — by 4 bzt .. 4 gzt

is such that
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000 ... —ao
1 0 0 ... —ay

g lfg =10 10 ... —a A = A A ... pA— AT
00 0 ... —ag.

If A is commutative the characteristic polynomials are given by
ch.(P.f) = p(z) € S C Al
ch.(P,f) = p(z) € S C Al2] .
If A=F is afield and p(z) € F[z] is irreducible then
017(p() = [FI2)/(p()),¢] = 1 €End§(F) = Z
is a generator. 0

Remark 12.25 Let A be a commutative ring, and let S C A[z] be a multi-
plicative subset with leading units.
(i) The composite

det

EndS(4) —5 Ki(S7 AL — (S AL)®
sends an S-primary endomorphism class (P, f) to the characteristic polyno-
mial det AL[P, f] = det(z — f: P[z]—P|z])
= ch, (P, f) € (ST A[2])* .
(i) If z € S the composite

Bdg (A) —5 K151 AL2]) — (§1A[2))"

sends a reverse S-primary endomorphism class (P, f) to the reverse charac-
teristic polynomial

det AL[P, f] = det(1 — zf : P[z]—P[z])
= ch,(P,f) e (S71A[2))* . 0

Example 12.26 Let A = F be a field, and as in 12.21 let S C F[z] be the
subset of all the monic polynomials, so that S C F|[z] is the subset of all the
polynomials with constant coefficient 1. Thus

STl = (PO} Fl2] = F(2)
is the quotient field of F[z] (cf. 8.5), and

STUF[e] = Flele) = {p(2)/a(2)|q(0) € F*} C F(2) .
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The multiplicative subsets S, {z* | k > 0} C F[z] are coprime, so that there
is defined a cartesian square

Flz] —— Flz,2z71]

|

Flz]) — F(2)
For each of the rings A in the square the determinant defines an isomorphism
det : Ki(A) — A*,

and N
Nily(F) = 0 , K (F[z]) = Kq(F) = F[z2]* = F*,

Ko(F) = Z , Endo(F) = Z® Endo(F) ,
K\(Fl) = Ki(Flz]) @ Endo(F) = FIIL,) |
Ki1(F(z)) = Ki(F[z]) @ Endo(F) = F(2)°.
The characteristic polynomial defines an isomorphism
Endo(F) — F(2)*/F* ; [P, f] — ch.(P.f) .

The reverse characteristic polynomial defines an isomorphism

~

Endo(F) — FLJt,) /Fle]* = F(2)*/(F @ (=" |neZ}) ;
[P, f] — cha(P.f) .
By 12.13 there are defined isomorphisms
(i+ Ay) @ Ki(F) @ Endo(F) = K1(F(2)) ;
(r(a), [P, f]) — 7(a) + 7(z — [ : P(2)—P(2)) ,
(v &)+ Ka(F) @ Bndo(F) — Ki(Flzl() |
(r(a), [P, f]) — 7(a) + 7(1 = 2f : P[2](s)——P[2](2)) -
The inclusion F'[z].y—F(z) induces the injection
K1(F[2]() = Ki(F) @ Endo(F) — K1(F(2)) = Ki(F) ® Endo(F) ;
(r(a), [P, f]) — (r(a) = 7(9), (@, 9)) ,

with
(Q,9) = (coker(l —zf: Plz]|—Pl2]),2)

= (coker(1 — zf : Plz, 2" ]—=P[z,27']), 2)
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such that g : Q— @ is an automorphism. See 13.29 below for a proof that
ch.(P, f) = ag2%ch.(Q,9) € F[z]
with

d = dimp(P) —dimp(Q) , ag = det(—g: Q—Q) € F* . O



13. Automorphism K-theory

Automorphism K-theory is the algebraic K-theory of modules with an auto-
morphism, such as arise from fibred knots. An A-module M with an automor-
phism h : M—— M is essentially the same as a module M over the Laurent
polynomial ring A[z, z71], with the invertible indeterminate 2 acting on M
by h. This correspondence will be used to express the various automorphism
K-groups of A in terms of the algebraic K-groups K.(X 1A[z,27]) of the
localizations ¥~ A[z, 2~ !] inverting appropriate sets X of square matrices in
Alz, 271

The automorphism class group Autg(A) of a ring A is defined by anal-
ogy with the endomorphism class group Endg(A4), using automorphisms
h : P—P of f.g. projective A-modules. By definition, an automorphism
h : P—P is fibred if h — 1 : P—=P is also an automorphism, and there
is also a fibred automorphism class group AutéZb(A). The algebraic descrip-
tion in Part Two of the high-dimensional fibred knot cobordism groups and
the bordism groups of automorphisms of manifolds will involve the algebraic
L-theory analogues of the automorphism class groups (for A = Z, Z[m] re-
spectively).

The algebraic K-theory splitting theorems of Chaps. 10,11,12 are now
extended to

Ki(Q7' Az 27Y) = Ki(Alz.27Y]) @ Auto(A)
Ky(253Alz,27Y) = Ki(Alz271) © Autd(4)

for the appropriate localizations of A[z, 27 1.
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13A. The Fredholm localization 271 A[z, 27 1]

By analogy with the 10.3:

Proposition 13.1 (Ranicki [248])
The following conditions on a k x k matriz w = (w;;) in Alz, 27| are equiv-
alent :

(i) the Alz, 27 1]-module morphism

w : Alz, 27— Alz,27YF

k k k
($17x27'~7$k) — ( E TiWiq, E LWy« vy E xiwkz’)
i=1 i=1 i=1

18 injective and the cokernel is a f.g. projective A-module,
(ii) the 1-dimensional f.g. free Alz,z~']-module chain complex

E:...—0— Alz,z 1)k = Alz, 271"

18 A-finitely dominated,
(iii) w is invertible in A((2)) x A((z71)). O

Remark 13.2 13.1 can be used to prove that a based f.g. free A[z,271]-
module chain complex C' is A-finitely dominated (i.e. a chain complex band)
if and only if C' is chain equivalent to the algebraic mapping torus

T-(h) = C(1—z"'h: Plz,27]—P|z,27"])
of an automorphism h : P——P of a finite f.g. projective A-module chain
complex P. See Ranicki [248,1.9]. O
By analogy with the definition in 10.4 of Fredholm matrices in A[z]:

Definition 13.3 (i) A matrix w in A[z,271] is Fredholm if it is square and
satisfies the equivalent conditions of 13.1.

(i) Let £2 be the set of Fredholm matrices w in A[z, z71].

(iii) The Fredholm localization of Az, z7!] is the ring 27! A[z, 271] obtained
from A[z,27!] by inverting {2. a

A matrix w with entries in A[z, 27!] can be expressed as

n
- E o
w = wjz
Jj=m

with each w; a matrix with entries in A (of the same size as w), for some
m < n.

n .
Definition 13.4 (i) A matrix w = Y w;z’/ with entries in Afz,27!] is
Jj=m
bionic if w is square, wy, is the identity matrix and w, is invertible in A, with
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n—m>1.
(i) Let £24;, be the set of bionic matrices w in Alz, 27 1]. O
By analogy with 10.7:

Proposition 13.5 (i) The natural map Alz, 27 1|— 0271 Alz, 271] is injec-
tive.

(ii) Every bionic matriz in Alz, z=1] is Fredholm, so that y;, C 2.

(iii) The localizations of Alz, z=1] inverting i, and 2 coincide

QA2 27 = 7 AR, 27
Proof (i) Immediate from the factorization

Alz, 27 — .Q*lA[z,zfl] — A((2))

of the injection A[z, 27— A((2)).

(i) f w = Y w;27 is a bionic k x k matrix define an A-module isomorphism
j=m

Abr=m) = coker(w) ;

(ai)o<i<k(n—m)—1 — Z (@jks Qjkt1s - Qikgh—1)2

n—m-—1
Jj=0

Thus coker(w) = A¥("=™) is a f.g. free A-module of rank k(n —m), and w is
Fredholm.
(iii) Given a Fredholm matrix w in A[z,27] let

P = coker(w) , ( : P— P; z — zx.

Let @ be a f.g. projective A-module such that P @ @ is a f.g. free A-module,
say P @ Q = A?. The A[z, 2~ !]-module morphism

n=1®(-1) : Az,z71 = (P®Q)[z,27Y]
— Alz,2z71 = (P®Q)[z, 27

with coker(n) = @ has a Fredholm matrix in Az, 27!]. Let w’ be the matrix
of the A[z, z~!]-module morphism

z—(C®1) : Alz,271¢ = (P®Q)[z,271] — Alz,27 1% = (P®Q)[z,271].

Now (P @ Q,( @ 1) is an A[z, 2~ !]-module of homological dimension 1, with
a resolution by both w @ 1 and w’. In order to invert w it therefore suffices
to invert the bionic matrix w’. O
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Definition 13.6 (i) An automorphism h : P— P of a module P is fibred if
h —1: P——P is also an automorphism.
00 . 0
(ii) A Fredholm matrix w = Y. w;27 in Alz,27 1] is fibred if Y wj is an
j=—00 Jj=—00
invertible matrix in A.
(iii) Let £24 C £2 be the set of fibred Fredholm matrices in Az, 2. O

Example 13.7 (i) If H is an invertible matrix in A such that I — H is also
invertible then I — H + zH is a fibred Fredholm matrix in Az, z71].

(i) If P = P? is a projection matrix in A then I — P+ 2P is a fibred Fredholm
matrix in Alz, z71].

(iii) If @ is a nilpotent square matrix in A then I — 2@Q) is a fibred Fredholm
matrix in Afz, 2. O

Proposition 13.8 (i) A Fredholm matriz w in Alz, 27 is fibred if and only
if it is A-invertible.

(i) The localization £2;;, Az, 27 ] is a subring of II "' Az, 2~ "] with canonical
factorizations

Alz, 27 — Qﬁ}jA[z,zfl] — T 'A[z,27' ] — A
with IT the set of A-invertible matrices in Alz,2z71] (10.17). O

The inclusions
Alz, 27 — A((2)) , Alz, 27 — A((z7Y)
have canonical factorizations
Alz, 27 — Q7 Az, 27 — A((2))
Alz, 27 — 7 Az, 27 — A((z7Y))
with Alz, 27— 271 Az, 27] injective. The factorization
Alz, 27 — 27 Az, 27 — A((2)) x A((z7Y))

is such that the localization Az, 271]—= 271 A[z, 27!] has the same universal
property as the completion Az, 27— A((2)) x A((z71)), namely :

Proposition 13.9 The following conditions on a finite f.g. free Alz,z71]-
module chain complex E are equivalent :

(i) H.(27'E)=0,
(11) H*(A((Z)) ®A[z,z‘1] E) = 0} H*(A((Zil)) ®A[z,z_1] E) = O;
(iii) E is A-finitely dominated.

Proof By 8.3. |

Similarly, Alz, 271 ]—2;,;A[z, 2] is injective and such that :
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Proposition 13.10 The following conditions on a finite f.g. free Alz, z71]-
module chain complex E are equivalent :

(i) Hi(27;E) =0,

(11) H*(A(( )) ®A[z,z*1] E) = 07 H*(A((Z_l)) ®A[z,z*1] E) = 0;

H*(A ®A[z,z*1] E) = 0;
(iii) E is A-finitely dominated and A-contractible,
(iv) E is A-finitely dominated and ( —1: E—FE is a chain equivalence.
([l

Example 13.11 (i) If E is a finite f.g. free A[z,z7!]-module chain com-
plex such that p(z)H.(E) = 0 for some p(z) € Az,27!] with coker(p(z) :
Alz, 27— Alz, 271]) a f.g. projective A-module (i.e. such that (p(z)) is a
1 x 1 Fredholm matrix in A[z, 271]) then E is A-finitely dominated.
(ii) As for (i), but with p( ) € A®, in which case (p(z)) is a 1 x 1 fibred Fred-
holm matrix in A[z,27!], and E is A-finitely dominated and A-contractible.
|
Example 13.12 (i) For a commutative ring A define the multiplicative sub-
sets

P:{ZaszGA \ZaJGA'
Q = A[Z’Z_ [N A((2))° ﬂA((Z_ )* s

Qvio = {Z ajzj € A[z,z_l] la, =1,am € A%},

R =PNQ = {Zajzj €qQ| Zaj € A°} C Az, 271
Jj=m Jj=m
The localization P~1A[z,27'] = IT7'A[z,271] of A[z,27!] is the one de-
fined in Chap. 10, such that a square matrix w in A[z,27!] is invertible in
IT71Alz, 271 if and only if it is A-invertible (via z——1). The (fibred) Fred-
holm localizations of A[z, z7!] are the localizations inverting @ and R are

Q1 Az, 27 = QA 2 = QAL 27

Qfle[ 1 = R7'A[z, 271
A finite f.g. free A[z,27!]-module chain complex E is A-finitely dominated
if and only if p(z)H.(E) = 0 for some p(z) € Q. A finite f.g. free A[z,271]-
module chain complex F is A-finitely dominated and A-contractible if and
only if ¢(z)H.(E) = 0 for some ¢(z) € R.
(ii) If A is an integral domain then the multiplicative subsets @, R in (i) are
given by
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Q

n
{Z a; 2’ | am,an € A%},

j=m
R = {Z a; 2’ | apm, an, Z aj € A®} C Alz,z7 1] .
j=m j=m

Thus @ consists of all the Laurent polynomials with the extreme coefficients
units in A, and R = PNQ is the subset of those which project via z—1 to a
n

unit in A. It follows from 13.1 that a polynomial p(z) = > a;27 € Alz,27!]
j=m

is such that Az, 271]/(p(2)) is a f.g. projective A-module if and only if the

extreme coefficients a,,, a, € A are units, in which case A[z,271]/(p(2)) is a

f.g. free A-module of rank n — m.

(iii) If A = F is a field then the multiplicative subsets P, Q, R in (i) are such

that - -
P:R:{Zajzj\ZajEF?
j=—o0 j=—o0
CQ = Flz,z'|\{0} C F[z,2z7!]
and

Q7'Fz,27Y = Q7'F[2,27Y = F(2),
R Flz,27" = P7'Flz,27"] = R7'Flz,27"]
= Flla_s = {p(=)/a()|a(1) € F*} C F(z) .
The multiplicative subset
S =(1-2 ={1-2)"Ek>0}CFlz,27"
is coprime to P and such that
Q =PS, S'Flz,z7Y = Flz,z75(1-2)7Y,

so that there is defined a cartesian square

Flz,27Y ] ———= P71F[z,27}]
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13B. The automorphism category

Definition 13.13 (i) The automorphism category Aut(A) is the full subcate-
gory of End(A) with objects (P, h) such that h : P— P is an automorphism.
The automorphism K -groups of A are given by

Aut.(A) = K.(Aut(A)),

with Auto(A) the automorphism class group.

(ii) The fibred automorphism category Aut/®(A) is the full subcategory of
Aut(A) with objects (P, h) such that h —1 : P—P is an automorphism.
The fibred automorphism K-groups of A are given by

Aut!®(A) = K, (Aut/™(A)) . O

Remark 13.14 The automorphism class group Autg(A) is the abelian group
with one generator (P, h) for each isomorphism class in Aut(A) and relations

(P.,h) + (P',})— (P& P, (g }f,)) .

The torsion group K (A) is a quotient of Autg(A)
K1(A) = Auto(A)/{(P,h) + (P, k) — (P,hk)} . 0

Example 13.15 Let A be a commutative ring.
(i) Let (P, h) be an object in End(A). The characteristic polynomial

d
ch,(P,h) = det(z —h: Plz]—P[z]) = Zajzj € Alz]
=0

is such that
cho(P,h) = det(—h: P—P) = ag,

d
chy(P,h) = det(l—h:P—P) = > a; €A.
=0

Thus (P, h) is in Aut(A) if and only if ag € A, and (P, h) is in Aut/®(A) if

d
and only if ag, )" a; € A®.
§=0
(ii) The multiplicative subsets S, T C A[z] defined by

d
S = {Z a;jzl |ag € A} N A((z71))*,

=0

d d
T = {Z a;z’ \ao,Zaj c A YNA((zh)°

Jj=0 Jj=0
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are such that

AZJN(STIARD® = S, ARN(T'A])® = T
and it follows from 12.4 and (i) that

End%(A) = Aut(4) , End”(4) = Aut/®(A).

If A is an integral domain then

d
S = {Zajzj|ao,ad€A°},

=0

d d
T = {Zajzj |a0,ad,2aj € A%} C Al7] .
=0 =0

|
By analogy with 10.14:

Proposition 13.16 (i) The relative groups in the localization exact sequence
for the Fredholm localization 271 A[z,271] (13.8)

s KAl V)~ K (27 Al 2 Y) —5 K (Al Y, 2)
— K, 1 (Alz, 27Y) — ...
are the algebraic K-groups
K.(Alz,27',02) = K, 1(H(Alz,271],2))
of the exact category H (Alz, 27, 2) of (A[z,271], £2)-modules. The functor
Aut(A) — H(A[z,271],2) ;
(P,h) —> coker(z — h: P[z, 2 ']—=P[z,27"]) = P with z="h
is an isomorphism of exact categories, and
K.(Alz,271,02) = K. 1(H(A[z, 27, 2))
= Aut,_1(4) .

(ii) The localization exact sequence breaks up into split exact sequences

0 — Kn(Alz, 2 Y]) — Kn(2- Az, 2 1) — Auty_1(A) — 0,
so that
K,(27'Alz,27Y)) = K,(A[z,27Y]) @ Aut,_1(A) (n€Z) .
Similarly for (27%)71[z, 271 and Aut/™(A). O
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In particular, for n =1:

Proposition 13.17 (i) The torsion group of 2~ A[z, 271] fits into the direct
sum system

Ki(Alz,271)) ﬁ Ki(Q7 Az, 271) é Autg(A)
J A

with
i Ki(Alz, 27 1Y) — Ky (27 Az, 27Y) 5 7(BE) — 7(27'E)
jor K27 Az, 27Y)) — Ki(Alz, 27Y)
7(27'E) — &oT(E)

= 7(¢":C(1 —2¢" 1 : Elz, 27 |—E[z,27])—E) ,
0 @ Ky (Q27'Alz,271)) — Auto(A) ; 7(27'E) — [B,(],
A Autg(A) — K1(27'Alz,27Y) ;

[P,h] — 7(1 —2zh™: Q7 P[z, 27 | — Q71 P[2,27Y]) .

iii) The torsion group o Q7Y Alz, 271 fits into the direct sum system
fib

i 3 4
KI(A[Zv 2_1]) @ Kl(“Qf_'L%)A[Z7 Z—l]) ; Autglb(A)
J A

with z;, 5, A defined in the same way as i, j,0, A in (i).
(iv) The inclusion Q;i})A[Z, 27— I Alz, 271] induces
K1 (2734l 271]) = Ki(Alz, 27 1]) & Autf®(4)
— Ki(IT""Alz,27Y)) = Ki(A) @ Endo(A) ;

(T(Qf_z})E), [Pa h]) — (T(A ®A[z,z*l] E)’ [E7 (1 - C)il] + [Pa h])
with K1(IT71 Az, 271]) = K1(A) @ ]'_‘f);l/do(A) as in 10.21. O
Example 13.18 Let X be an untwisted CW complex band with
m(X) = axZ , m(X) =«

and write
A = Q7 'Zx)[z,271] .

Now X is A-contractible, with A-coefficient torsion
T(X;4) = (27(X),[X.¢])
€ Kj(A)/{tr xZ} = Wh(r X Z) ® Auto(Z[r]) .
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The fibering obstruction @ (X) € Wh(m x Z) is a simple homotopy invariant,

and the automorphism class [X, (] € Auto(Z[n]) is a homotopy invariant.
The A-coefficient torsion of a homotopy equivalence f : X —Y of untwisted
bands is given by

T(f; ) = 7(V;4) — 7(X; A)
(YY) = &7(X), [V, ¢v] = [X,¢x])
7(f),0) € Wh(m x Z) & Auto(Z[~]) .

o~ o~

The A-coefficient torsion of the mapping torus T'(h) of an untwisted self
homotopy equivalence h : P— P of a finite CW complex P with m1(P) =«
is

T(T(h); A) = (0,[P,h]) € Wh(r x Z) ® Auto(Z[r]) . O
Definition 13.19 Let S C Alz,27!] be a multiplicative subset.
(i) An object (P, h) in Aut(A) is S-primary if it is defined in End¥(A), i.e. if
z—h : ST Pz, 27 Y] — ST'P[z, 27!

is an ST1 Az, 27 !]-module automorphism. The S-primary automorphism cat-

eqgory
Aut®(A) = End”(A) N Aut(A)

is the full subcategory of Aut(A) with S-primary objects (P, h). The S-
primary automorphism K-groups of A are defined by

Aut?(4) = K, (Aut®(A)) .
(ii) The fibred S-primary automorphism category
Aut/®%(4) = Aut®(A4) N Aut/?(A)
and the fibred S-primary automorphism K-groups of A are defined by
Aut!®5(A) = K, (Aut/™®5(4)) .

n .
(iii) S is bionic if for each ) a;2? € S the extreme non-zero coefficients are
j=m
a, =1¢€ A and a unit q,, € A°. O

Example 13.20 If A is commutative and S C Az, 27 !] is any multiplicative
subset then an object (P, h) in Aut(A) is S-primary if and only if ch, (P, h) is
a factor of an element p(z) € S. In particular, this is the case if ch, (P, h) € S.

O

Example 13.21 If a multiplicative subset S C A[z, 27 !] is such that
S CA((2)" NA((z"H)*

(e.g. if S has extreme units) then the inclusions of Az, z7!] factor as
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Alz, 27 — ST 1Az, 27 — 27 Az, 27 — A((2))
Alz, 27 — STz, 27 — 27 Az, 27 — A((z7Y)
and there is defined an isomorphism of categories.
H(Alz,27Y,5) — AutS(A); P — (P,C) .
The relative K-groups in the localization exact sequence
. Ko(Alz,27Y]) — Kno(S7'Alz,27Y) — K, (Alz,27Y,9)
— K 1 (Alz,27Y)) — ...
can thus be expressed as
K.(Alz,27Y,8) = K. 1(H(A[z,271],5)) = Aut? ,(A) .
In fact, this exact sequence breaks up into split exact sequences
0 — K,(A[z,27Y]) — K, (S7*A[z,27']) — K, (A[z,27'],8) — 0. O
By analogy with 12.7:

Proposition 13.22 If S,T C Alz,27 '] are coprime central multiplicative

subsets then
Aut®T(4) = Aut”(A) x AutT(A) ,

Aut?T(4) = Aut?(A) @ AutT(A)

and similarly for fibred automorphisms.
Proof As for 12.7. O

By analogy with 13.17:

Proposition 13.23 For any multiplicative subset S C Alz,z7 '] such that
S C A((2))*NA((z71))® the torsion group of ST Alz, 271 fits into the direct
sum system

Ki(Alz,27Y) <:> Ki(S7'A[z,27Y) é Aut§ (A)

j A
with
i Ki(Alz,27Y) — Ki(S7 Az, 27 Y) ; 7(E) — 7(STIE)
j o K1(ST'A[z,27Y) — Ki(Alz,27Y) 5
7(ST'E) — &7 (E)
= 1(¢":C(1—2¢"": E[z,27 ' |—Ez,2 ])—E) ,
9 Ki(S7'A[z,27Y) — Aut(A); 7(STE) — [E,(],
A : Autd(A) — K (ST Az, 27Y)
[P,h] — 7(1 —zh~ ' : ST Pz, 27 |—S ' P[z,271]) . O
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Remark 13.24 For a commutative ring A the composite

Autd(4) 5 K (ST A 2 Y) S (571AL, 271"
sends an S-primary automorphism class (P, h) to
det A[P,h] = det(1 — zh~': P[z]—P[z]) = ch.(P,h™")
= ch,(P,h)/det(—h: P—P) € (S~ Alz, 27 1])* . O

Proposition 13.25 Let S C A[z] be a multiplicative subset with constant
units, and let

T = (2)®°8 = {"p(2) |k >0,p(z) € S} C Al7] .

(i) The S- and T-primary endomorphism categories and K-groups are such
that
End®(A) = Aut®(4) , End?(4) = Aut?(A),

End’(4) = End® ™ (4) x End®(A)
= Nil(A) x Aut®(A)

End? (4) = Nil,(A) ® Aut?(A) .

d d
(ii) If for every p(z) = Y a;27 € S it is the case that p(1) = > a; € A®
§=0 §=0

then )
End®(4) = Aut’(4) = Aut/®5(4) |

End?(4) = Aut¥(4) = Aut/®5(4) .

Proof (i) For any object (P, f) in End®(A) there exists an element

d
p(z) = Zajzj €S C Al7]

Jj=0

such that p(f) =0: P—P, by 12.4. Now a¢ € A® (by hypothesis), so that
(P, f) is defined in Aut®(A), with the inverse defined by

d
1= —(ao)flzajfjfl : P— P.
j=1

The multiplicative subsets (2)*°,S C Alz] are coprime, so that 12.7 applies.
(ii) Given (P, f) in End®(A) let p(z) € S be as in the proof of (i). Since
d 4

S aj € A® (P, f) is defined in Aut/™9(A), with the inverse of 1— f : P—P

§=0

given by
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d j—1
1-fH" = (Zai)_lzaj(z:fk) : P—P.
i=0 =1 k=0 0

The multiplicative subset with extreme units
(1-2)% = {(1—2)|j >0} C Alz,27"]
has localization
(1 =2)°)"tAz,27Y = Alz,z27, (1 —2)7Y] .
In dealing with (1 — z)-primary objects adopt the following terminology.

Definition 13.26 (i) An A-module endomorphism f : P—P is unipotent
if 1 — f : P—P is nilpotent, in which case f is an automorphism.

(ii) A chain map h : C——C' is chain homotopy unipotentif h—1: C—C'is
chain homotopy nilpotent, in which case h : C——C'is a chain equivalence.
(iii) The unipotent category

Aut®(4) = End®727(4) = Aut(7)7(4)

is the exact category of pairs (P, f) with P a f.g. projective A-module and
f : P—P an unipotent automorphism.
(iv) The unipotent automorphism K-groups of A are given by

Aut"™(A) = K,(Aut"™(A)) . O

Proposition 13.27 (i) An A-module endomorphism f : P—P is (1 — z)-
primary if and only if f is a unipotent automorphism.

(i) A finite f.g. free Alz, 2= 1]-module chain complex C is Alz, 271, (1—2)71]-
contractible if and only if C is A-finitely dominated and ( : C——C' is chain
homotopy unipotent.

(iii) The functor

Nil(4) — Aut""(A) ; (P,v) — (P,1+v)
is an isomorphism of categories, and
Ki(Alz, 271, (1= 2)7Y) = Ki(Alz,271) @ Nilg(A)
= K1(A) ® Ko(A) © Ko(A) © Nilg(4) & Nilg(4) & Nily(4) ,
End] 727 (4) = Nilg(A) @ Auti™(A) = Nily(A) ® Nily(A) ,
i accordance with 12.23 and 13.25. |

Example 13.28 Let X be a finite CW complex, with fundamental group
m1(X) = m and universal cover X. Write

A = Zr)z,z7 (1 —2)7Y .
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The product X x S' is A-contractible, with A-coefficient torsion
(X x S A)

= 1(1—2:C(X)[z,27 ", (1 — 2) " —CX)[z,2 1, (1 — 2)"}))

= (0,(C(X),0)) € Whi(4) = Why(Z[x][z>]) & Nilg(Z[r]) .
Example 13.29 For a field F' the multiplicative subsets

S = {iajzj lag e F*} , T = (2)°S C F[7]
§=0
are such that
S7'F[z] = Fl2l) , T'Flz] = F(2)

with a cartesian square

(as in 12.26) and identifications
H(F[z],T) = H(F[z],(2)%) x H(F[2], 5)
= End(F) Nil(F) x Aut(F) ,
End(F)

End} (F)
= End{?” (F) @ End$(F)

From 5.15 N
Nilo(F) = 0, Nilo(F) = Ko(F) = Z

)

so that
Endo(F) = Nllo(F) (5) Auto(F) = Z D Auto(F) 5

Endy(F) = Auto(F) .
Every object (P, f) in End(F) can be expressed as a direct sum
(P f) = (P1, f1) ® (P, f2)
with
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(Pr,f1) = (coker(z — f : ST Pl]—87'P[2]),()
= (| ker(f": P—P), f|) € Nil(F)

(Py, f2) = (coker(z — f: Plz, 2 ]—P[z,271]),¢)

= ([)im(f": P—P), f|) € Aut(F) .
r=0
If .
cho(P f) = Y ;2 € Flz] (am € F*,a, = 1)
j=m
then

Chz(Plafl) = 2" ) P25f2 Za]-‘rmzj €F ]

am = (—1)""™det(fo) € F* .
The automorphism object constructed in 12.26
(@,9) = (coker(l —2f: Plz, 27 |=—=Plz,27']),2) = (P, (f2)7")

is such that

n—m

@.(Qu) = (@) (X aeme? ) € FL.

Jj=0

The multiplicative subsets
gl — {Zajzj |a0,Zaj EF*} , (1—2)°CFlg
§=0 §=0

are coprime, and such that
S = (1—-2)>°87" c F[],
so that
Aut(F) = EndS(F) = End~27(F) x End®"" (F)
= Nil(F) x Aut/®(F)
(up to isomorphism) and

Auto(F) = Nilg(F) ® Aut{®(F) = Z o Aut!™(F) . 0
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Example 13.30 For any field F' the multiplicative subsets P, Q of F|[z,27}]
defined by

P={Y a3 aer}, Q= Flz\{0}

j=—o0 j=—o0

are such that (1 — 2)°°, P are coprime, (1 — 2)®P = @, there is defined a
cartesian square of rings

Flz,27Y ] ————= P7'F[z,27}]

Flz,z7, (1= 2)7 ] ———=F(2)
and there are identifications
_Q;iiF[z, 21 = P'F[z,27Y] = F[z,zfl](l_z) ,
H(F[z,27Y],P) = Aut’(F) = Aut/*(F),
H(Flz,27'],(1—2)®) = Awt"™®)7(F) = Nil(F),
Q7 'Flz,27Y = Q'Flz,27'] = F(2),
H(F[z,27',Q) = Aut(F)
= H(F[z,27',(1 - 2)>®) x H(F[z,27'], P)
= Nil(F) x Aut/™(F) . O
Remark 13.31 If A is a ring which is not a field then the natural map
Auti™(A) & Aut]™®(A) — Autg(A)

need not be an isomorphism, since in general it is not possible to express
every object (P, h) in Aut(A) as a sum

(P,h) = (P1,h1) @ (P, ha)
with (Pp, h1) unipotent and (P, ha) fibred. For example, if A =7 and

1 2
h:(l 3>:P:Z@Z—>P:Z@Z

the characteristic polynomial of (P, h)
det(z — h: P[z]—P[z]) = 2°> —4z+1 € Z[2]
is irreducible, and
det(l—h:P—P) = —2#0,£1€Z.

Thus (P, h) is not the sum of a unipotent object and a fibred object in Aut(Z).
([l
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A Witt vector is a formal power series with constant coefficient 1. The re-
verse characteristic polynomial of an endomorphism is a Witt vector which
determines the endomorphism K-theory class. In Chap. 17 the Reidemeister
torsion of an A-contractible finite f.g. A[z, z7!]-module chain complex E will
be identified with the Witt vector determined by the Alexander polynomials.
In the applications to knot theory in Chap. 33 E will be the cellular chain
complex of the infinite cyclic cover of the knot complement.

The endomorphism K-theory class of an endomorphism f: P—P of a
f.g. free Z-module P is entirely determined by the rank of P and the char-
acteristic polynomial of f, and a factorization of the polynomial determines
a primary decomposition of the class. The situation is considerably compli-
cated for L-theory. The high-dimensional knot cobordism groups C, are the
algebraic L-groups of quadratic forms over Z with certain types of endo-
morphisms (Chap. 31). The actual computation of C, is complicated by the
possibility that for an endomorphism of a quadratic form a factorization of
the characteristic polynomial in Z[z, 27 !] as a product of powers of coprime
irreducible polynomials does not in general lead to a primary decomposition
of the endomorphism L-theory class, with coupling invariants obstructing
such an expression — see Chap. 40 for more details.

Almkvist [5], [6] and Grayson [96] proved that the reduced endomorphism

class group Endg(A) of a commutative ring A is isomorphic to the group
W (A) of rational Witt vectors. There will now be obtained such an isomor-
phism

ch : Endo(A) — W(A)™; (P.f) — ch.(P. )
for any ring A, with W(A)% a quotient of the abelianization W (A)® of
the group W (A) of rational Witt vectors. In the first instance, the summand
NK(A) in the direct sum decomposition

Ki(A[l2]) = Ki(4) @ NEK1(A)

will be identified with a quotient W(A)2%? of the abelianization W(A)® of
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the group of Witt vectors W(A).12

Definition 14.1 (i) A Witt vector over A is an infinite sequence
oo
a = (a1,az2,as,...) € HA (a; € A)
1
which can be regarded as a formal power series with constant coefficient 1
(o)
1+ a2 € All2]] .
i=1

(ii) The Witt vector group W(A) is the group of Witt vectors over A, with
multiplication by

(1+ iaizi)(l + ibjzj) = 1+ i( > aiby)F 0
=1 Jj=1 k=1 i+j=k
By 6.3 the units of A[[z]] are given by
Allz]]* = A*(1+ 2A[[2]])
= Y aiz € AllAl]ag € A%},
1=0
so that .
W(A) = 1+ 2A[[2] € A[[]]" .

The abelianization

W(A)™ = W(A)/[W(A), W(A)]

= W(A) {ayz 'y~ |2,y € W(A)}

is an abelian group (!).

Example 14.2 (Almkvist [5,6.13])
If A is a commutative ring such that Q C A there is defined an isomorphism
of abelian groups

HA = W\(A) i (a1,a9,a3,...) —> exp(/ (a1 — ags + azs® —...)ds)
j=1 0

12This corrects the isomorphisms
Endo(A) = W(A)™ , NK1(A) = W(A)™

stated in the published book — see the paper of A.V.Pajitnov and A.A.Ranicki,
The Whitehead group of the Novikov ring (math.AT\0012031, K-theory 21, 325—
365 (2000)) for an explicit counterexample to the original statement.
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with [ s*ds = z¥*1/(k 4 1). The inverse isomorphism is given by
/VI?(A);> HA;q(z) =14+bz+b2?+...—
1

q’(z) . b1 + 2b22 +3b32:2 + ...
q(z)  14biz+by22+...

2
=a; —asz+azz® —...— (a1, az2,as,...)

([5, 6.13]). The reverse characteristic polynomial of an endomorphism f :
P——P of a f.g. projective A-module P

- X tr( 1) .

ch, (P, f) = det(l1 —zf: P[lz]—P[z]) = exp< - Z r(f )zl>

‘ 7
=1

€1+ zA[z] € W(A) € W(A)

has image (—tr(f),tr(f?), —tr(f3),...) € []A. For any polynomial of the
1
type
d .
p(z) = 1+ Zbizl €1+ zA[z] CW(A)

i=1

oo . .
the image (a1, az,as,...) € [[ A has components a; = (—)"tr(f*) € A, with
1

f=2z:P = A[/P(") — P = Al2]/(z(z""))
such that ch, (P, f) = p(z). O
Witt vectors arise as the noncommutative determinants of invertible ma-

trices in A[[z]], using the following generalization of the Dieudonné determi-
nant of an invertible matrix in a local ring (cf. Rosenberg [254,2.2.5]).

A k x k matrix M = Y M,z" in A[[z]] is invertible if and only if M is
r=0

an invertible k x k matrix in A. Given such an M define the invertible k x k
matrix in A[z]]

B = (Mo)™'M = (bij)i<ij<r € GLe(A[[2]])
in which the diagonal entries are Witt vectors
by € W(A) = 1+ zA[[z] C A[[2]]°* .

Use Gaussian elimination (i.e. elementary row operations) to express B as a
product
B = LU

with L = (¢;;) a k x k lower triangular matrix in A[[z]] and U = (u,;) a k x k
upper triangular matrix in A[[z]] with diagonal entries
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li = 1, uz € W(A) = 1+ 2A[[2]] C A[[2])* .

Definition 14.3 The Dicudonné determinant Witt vector of an invertible
matrix M € GL(A][z]]) is the abelianized Witt vector

DW(M) = ULLU22 ... UKLk € /W(A)ab . |
Example 14.4 If A is commutative then
DW(M) = det(B) = det((My) *M) € W(A) = 1+4+z2A[z]]. O

Example 14.5 For an invertible 2 x 2 matrix M € GLy(A[[z]]) with

_ bi1 b1z
B = M;'M =
0 (521 bzz)

take

1 0 b11 bi2 >
L = y U frng
(b21(b11)1 1> ( 0 bao — bay(b11) thi2

so that B = LU and
DW (M) = by1(bys — bay (by1) ‘b1a) € W(A) . O
The function

Ay W(A) — Ki(All2]) ;

(a1,az2,...) — 7(1 4+ Zajzj s Allz]]—A[[2])

is a morphism of groups. Define the image
W(A)™ = im(Ay - W(A) — K1 (A[[2]]) |
which is a quotient of the abelianization W(A)ab. For commutative A
W(A)® = W(A)?® = W(A) .

By analogy with 5.14 (ii):
Proposition 14.6 The torsion group of A[[z]] fits into the direct sum system

4 ot —~
Ki(A) 7= Ki(A[[])) &=—= W(4)™
J+ Ay

with
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) T(E) — m(E[[Z]]) ,
g+ + Ki(A[l2]])) — Kai(A) ; 7(EY) — m(A@ua BT)
5+ Kl(AH ) — W(A)*; 7(M : A[2]]"—A[[2]]") — DW(M)

(a1,02,...) — T(1+ Y _a;27 : A[[2]]—A[[2]]) .
j=1

Proof The morphisms

i Ki(A) — Ki(A[R]D) Gy Ka(A[[E]]) — Ki(4)

are such that 3+Z+ = 1, since they are induced by the ring morphisms

L = inclusion : A — A[[z]],

j+ = projection : A[z]] — A; z — 0.

It is clear from the definition of DW (M) that 5+A~+ = 1. The exactness of

W(A)™1 —s Ky (Alls])) —— Ky(4)

is given by the following argument of Suslin (Pazhitnov [223,8.2]): for any
invertible k x k matrix M € GLy(A[[z]]) such that j (M) € Ei(A) let

M’ € ker(GLy,(A[[2]]) —GLi(A))

be the result of applying to M the elementary operations which reduce }+ (M)
to I, € Er(A). The diagonal entries in M’ are units in A[[z]], and repeated
application of the matrix identity

a b\ 1 0 a 0 1 a b
c d)  \ect 1 0 d—ca'b 0 1
allows M’ to be reduced by further elementary operations to the stabilization

of a 1 x 1 matrix in ker(j, : GL1(A[[2])) —GL1(A)) = W(A). 0

The subset - .
W(A)NA[z] = 14 zA[z] Cc W(A)

is closed under multiplication, but not under inverses: for example

(1+2)7" = [[(~2) e WANW(A) N A[2]) .
=0
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Definition 14.7 (i) The rational Witt vector group W (A) is the subgroup of
W (A) generated by the subset W(A) N Alz] C W(A) of all the polynomials

p(z) = Y a;j27 € Alz] with ag =1 € A.
7=0

(ii) Let A be a commutative ring. The reduced rational Witt vector group
W(A) is the quotient of the rational Witt vector group W (A)

W(A) = coker(Ko(A)—sW(A))
with
Ko(A) — W(A) ; [P] — det(1 — z: P[z]—P[z]) . O

In other words, W (A) is the subgroup of W(A) consisting of the elements

such that

for some polynomials p(z),¢(z) € Alz] with p(0) = ¢(0) =1 € A. (W(A) was
already defined in 11.13 for commutative A).

Proposition 14.8 Let A be an integral domain with quotient field F'. Let
M(F) be the set of irreducible monic polynomials in F[z], and let M4 (F) C
M(F) be the subset of the F-irreducible monic polynomials in Alz].

(i) The rational Witt vector group W (F') is (isomorphic to) the free abelian
group on M(F)\{z}, with an isomorphism

ZIM(F)\{z}] — W(F) ;
d d
p(z) = Y a;z? — Bz) = 2"p(z7") = > aa ;2 (aa=1) .
§=0 §=0
(In the terminology of 11.1 p(z) is the reverse polynomial of p(z).)
(ii) The rational Witt vector group W (A) is a subgroup of W(F).
(iil) If A is integrally closed (e.g. a Dedekind ring) W (A) is the subgroup of
W(F) given by

W(A) = ZMa(F)\{z}] € W(F) = ZM(E)\{z}] .

Proof (i) The polynomial ring F[z] is a principal ideal domain, and every
element ¢(z) € F[z] with ¢(0) = 1 has a unique expression as a product of
irreducible polynomials

q(z) = q(2)"q2(2)" ... qu(2)"™ € Fl2] (n1,n2,...,n > 1)
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with ¢1(2), g2(2), ..., qr(2) € F[z] coprime and such that ¢;(0) = 1. Moreover,
q(z) = p(z) with p(z) € M(F)\{z}.
(ii) The composite
W(A) — W(F) — W(F)

is the composite of the injections W(A)—>W(A), W(A)—)W(F), so that
W (A)— W (F) is also an injection.
(iii) Every monic polynomial p(z) € A[z] has a unique factorization as a
product

p(z) = p1(2)p2(2)...px(2) € F[2]

of irreducible monic polynomials p;(z) € M(F) (1 < j < k). Since
A is integrally closed the factors are actually defined in A[z] (Eisenbud
[67,Prop.4.12]), so that p;(z) € M4(F). Passing to the reverse polynomi-
als gives a factorization

p(z) = p1(2)p2(2)...0x(2) € Alz] .
Every polynomial ¢(z) € A[z] with ¢(0) = 1 thus has a unique factorization
9(2) = q1(2)g2(2) .- ar(2) € Al2]

with ¢;(2) = p;(z) (1 < j < k) the reverse of an F-irreducible monic polyno-
mial p;(z) € Alz]. O

Example 14.9 (Almkvist [7,3.5])
(i) If F is an algebraically closed field

M(F) = {z+A|\e F}

and there is defined an isomorphism
- k k
ZIF*) — W(F); Y ndy — [J+X2)" .
j=1 j=1

(ii) For F =R
MR) = {z+A[XeR}U{(z+p)(z +7) | p € H\R}
with H C C the upper half-plane, and there is defined an isomorphism

{1+)\z ifxeR

= . _
ZH)] W(R); A — (1+ A2)(1 4+ Az) otherwise . O

Definition 14.10 The (noncommutative) reverse characteristic polynomial
of an endomorphism f : P——P of a f.g. projective A-module P is the
Dieudonné determinant Witt vector (14.3)

cho(P.f) = DW(1—2(f ©0): (P& Q)] —(P @ Q)[[2]]) € W(A)**
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for any f.g. projective A-module @ such that P & @ is a f.g. free A-module.
O

Example 14.11 If A is a commutative ring then W (A) is abelian, and
WA = W(A) = {B(2)/q(2) | p(2),q(2) € S} € W(A)
with S C A[z] the multiplicative subset of all monic polynomials, where
plz) = 21#PEp(z71) € P[]

is the reverse polynomial with constant coefficient 1 determined by p(z) € S.

The reverse characteristic polynomial ch., (P, f) € W(A) of 14.10 is just the
reverse characteristic polynomial in the terminology of Chap. 11, with

cho(P, f) = det(1—z(f & 0): (P& Q)[z]—(P & Q)[2]) € W(A)
the ordinary determinant. a

As in Chap. 10 let f)+ be the set of square matrices w in A[z] such that
the square matrix w(0) in A is invertible, with

Q7N AR] = (1+2A[) ' AlR]
by 10.9. The function
Ay s W(A) — K (271 A[2)
(a1,02,...) — 7(1+ Y a2 : Q7 Alz]— 02,1 AlZ))
j=1
is a morphism of groups. Define the image
W(A)® = im(A, : W(A) — K, (27 4[2)
which is a quotient of the abelianization W (A)?. For commutative A
W(A)™ = W(A)™ = W(A).

Proposition 14.12 (Almkvist [6], Grayson [96] for commutative A.)
(i) The reverse characteristic polynomial defines a natural isomorphism

ch : EEiO(A) = W(A)™
[P, f] — ch.(P, f) = det(1 — zf : Plz]—P[z]) ,

(ii) The projective class and reverse characteristic polynomial define a natural
isomorphism

Endg(A) — Ko(A) ® W(A)™ ; [P, f] — ([P, ch.(P, f)) .
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Proof (i) From 10.16 we have a direct sum decomposition

7 _ 5
K1(A) 7= Ki(027 ' Al2]) 7/—= Endo(4) .

J+ Ay

The proof of 14.6 gives a direct sum system

i ~ 3y
Ki(A) /= K1 (027 Alz) PE— W(A)®™
J+ Ay

It now follows from the factorization

o At 5-1 O+ ab
ch : Endg(A) — Ki(07'A[2]) —» W(A)™

that ch : Endg(A)—sW(A)®4 is an isomorphism, with inverse
~_1 — ~
ch ~ : W(A)® — Endy(A) ; p(z) — [A[2]/(B(2)), 7]
d
(p(z) =D a;z? | Pp(z) =2'p(z"") , ao=1aa#0€ A).
j=0

(ii) Immediate from (i). O
Example 14.13 Let X be a connected finitely dominated CW complex with
a regular cover X with group of covering translations 7, and let A = Z[r].
Let f: X——X be a m-untwisted map, so that there is induced an A-module
chain map f : C(X)—C(X). The invariant
(X, f] = [C(X), f] = (X], [X, f])

€ Endo(4) = Ko(4) & Fndo(A)

has first component the A-coefficient projective class of X

[X] = [C(X)] € Ko(4) .

The isomorphism ch : Endg(A) — W (A)?7 of 14.12 sends the second com-
ponent to the (-function

(X ) = AP ]) = [T PP € W)™
r=0

for any finite f.g. projective A-module chain complex P chain equivalent to
C(X). This ¢(-function agrees with the (-function of Geoghegan and Nicas!3.
The mapping torus of f

13 Trace and torsion in the theory of flows, Topology 33, 683719 (1994).
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T(f) = X x [07 1]/{(‘%'70) = (f($)71) ‘CL’ € X}
has a regular cover
T(f) = X x[0,1]/{(#0) = (J(@),1)|7 € X}

with group of covering translations 7. The canonical infinite cyclic cover T'(f)

of T'(f) is a regular cover of T'(f) with group of covering translations = x Z,
with
Zir x7) = Alz,z7Y.

The cellular A[z, z~1]-module chain complex of T'(f) is the algebraic mapping
torus of f: C(X)—C(X)

C(T(f)) = €(f—z:C(X)[z 2 ]—C(X)[z,271)

with a canonical round finite structure. As in Chap. 10 let {2 the set of Fred-
holm matrices in A[z], with localization 27" A[z]. The 27" A[z]-contractible
A-finitely dominated A[z]-module chain complex

E* = C(f - 2: C(X)[2]—C(X)[z])
is A-chain equivalent to C'(X), and is such that
Alz, 2 N @ap ET = C(T())) -
The Q;lA[z]—coefﬁcient torsion of T'(f) is given by
T(T(f); 27 AlZ) = 7(7'ET) = (0,[X, /)
€ K1(27'Al2]) = Ki(A[z]) ® Endy(A)
with
(X, f] = (X],¢(X, f)) € Endo(A) = Ko(A) ®W(A)™ .

A morphism A——B to a commutative ring B extends to a morphism
7' A[2]—S71Blz], with S C B[z] the multiplicative subset of all monic
polynomials. The mapping torus T(f) is S~!B[z]-contractible, and the im-
age of T(27'EY) € K1(£2;'Al2]) is the S~ B[z]-coefficient (Reidemeister)
torsion of T'(f)

T(T(f); S7'Ble]) = ST Bl @1y (271 E7)
€ K1(S7'B[z]) = K1(B[z]) ®Endy(B) ,

with component

B®a[X,f] = ([C(X;B)],¢(C(X;B),f))
€ Endy(B) = Ko(B)® W(B) .
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A morphism A— R to a semi-simple ring R sends ((X, f) € W (A)? to

H ch( ~(X; R)—H,(X;R)7)" € W(R)™9 .

See Chap. 16 below for further discussion of the case when R is a field. O

Definition 14.14 For any ring A let T4 C A[z] be the set of monic polyno-
mials. O

Proposition 14.15 The endomorphism class group of a field F is such that
Endg(F) = Zmax(F[z])] = Z[M(F)]
= Ki(F[1.Tr) = Ko(F) & W(F) = Za& (F(z)*/F*) ,

with inverse isomorphisms

Zimax(F[2])] — Endo(F) 5 (p(2) — [F[2]/(p(2)), 4] ,
Endo(F) — Zmax(F[])] ; [P, f] — Zn] pi(z

(ch,(P, f) = Hpj i, pi(z) e M(F)) .

There is also defined an isomorphism

Endo(F) — Z & (F(2)*/F*) ;
[P, f] — (dimp(P),det(l — zf : P[z]—P]z])) .
The reduced endomorphism class group of F' is such that
Endo(F) = Zmax(F[)D\{(z)}] = ZIM(F)\{=}]
= W(F) = Ki(Flz,27'],Tr) = F(2)*/F* . O

See Chap. 19 for a more detailed exposition of the algebraic K-theory of
function fields.

Proposition 14.16 Let A be an integrally closed integral domain with quo-
tient field
F = S7'A (S=A\{0)).

and let max 4 (F[z]) be the set of mazximal ideals (p(z)) < F[z] generated by the
F-irreducible monic polynomials with coefficients in A C F

p(z) = ap+tarz+... +ag-12"" +agz? € Ta C Flz] (aq=1)
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with coefficients a; € A.
(i) The localization map of reduced endomorphism class groups

Endg(A) — Endo(F) = Zmax(F[2]))\{z}] ;
(P, f) — S7HP,f) = cha(P,f)
is injective, with image Zlmax 4 (F[z])\{z}].
(ii) The localization map of reduced endomorphism class groups
Endo(4) — Endy " (F) ; (P,f) — S™'(P.f)

is an isomorphism, with image the subgroup of Endo(F’) of endomorphisms g :
Q—Q of finite-dimensional F-vector spaces with characteristic polynomial

ch,(Q,g9) € Ta C Flz] .

The endomorphism class groups of A are given by

——Ta

Endg(4) = End,” (F) = W(4) = P End?®)” (F)
p(z)€maxa (FID\{(2)}
= Zlmaxa(F[2))\{()}] € Endo(F) = Zlmax(F[))\{(2)}] ,
Endo(A) = Ko(A)@® Endo(A)
= Ko(A) @ W(A) = Ko(A) ® Zmaxa(F[z])\{(2)}] -
(iii) The natural map
Nilg(4) — Endo(A) ; (P,v) — (P, v)

s 0.
(iv) Let P = {p(2)|p(1) € A*} C Alz,271] be the multiplicative subset of
10.19. The P-torsion group of Alz,z~1] is given by

Ki(Alz,271],P) = W(A)

with W(A) = coker(Ko(A)—W(A)) the reduced rational Witt group (14.7
(ii)), the cokernel of

Ko(A) — W(A) ; [L] —> det(1 — z: L[z]—L[2]) .
Every (Alz, 27, P)-module K has a presentation of the type

1y LIRS -1
0 — L[z,z27"] —— Llz,z7' ] — K — 0
for some object (L, f) in End(A), and the P-torsion class of K is given by

p(K) = det(l1 —zf : L[z]—L[2]) € K1(A[z,27'],P) = W(A) .
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(v) If (L, f), (M, g) are objects in End(A) which are related by a morphism
i: (L, f)—(M,gq) such that S~'i : ST*L—=S~1M is an isomorphism of
F-vector spaces then

[L,f] = [M,g] € Endg(A) .

(vi) If A is a Dedekind ring then

Endo(A) = &) Endf®™ (4)
p(z)€maxa (F[z])\{(2)}
_ D End}®” (F) = Z[maxa(F[z])\{(2)}] .

p(z)emaxa (F[z)\{(2)}

Proof (i)+(ii) Apply 14.8 and 14.12.
(iii) This follows from the commutative square

Nilg(A) — Nilo(F)

I

151\1210(14) - E’h\lao(F)

on noting that End, (A)—)E\n/do (F) is an injection by (ii), and Nily (F)=0
(5.15 (i)).
(iv) Combine (ii), (iii) and the exact sequence of 10.21 (ii)

Nilg(A) @ Nilg(A) — Endg(A) — Ki(A[z,27'],P) — 0.

(v) Immediate from 14.15, since the characteristic polynomials are such that

ch(L, f) = cho(M,g) = ch.(S7(L, f)) — cho(S7' (M, g))
= 0€ Alz] C F[7] .

(vi) Let (L, f) be an object in End(A) with L f.g. free, so that
ch, (L, f) = det(z — f: L[z]—L[z]) € Al#]
is a monic polynomial in A[z]. Write the characteristic polynomial as
cho(L.f) = plz) € Ta C A[2],

and let
p(z) = pi1(2)p2(2)...pi(2) € F[2]

be a factorization as a product of monic polynomials p;(2),p2(z2),...,px(2) €
T4 C Alz] which are coprime in F[z]. Write

aj(z) = pi(2)...pj—1(2)pj+1(2) ... p(z) € A[l] (1<j<k).
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There exist 81(z2), B2(2),...,Bk(z) € Alz], s € S such that

k
D a;(2)Bi(z) = s€Al].
j=1

The f.g. A-modules
Lj = aj(f)(L)CL (1<j<k)

are torsion-free. Since A is Dedekind each L; is a f.g. projective A-module,
and there are defined objects (L;, f;) in End®i )™ (A) with

= f| : Lj — Lj s ChZ(Lj,fj) = pj(z) EA[Z] .
The morphisms defined in End(A) by

k
a = @Oéj(f) D (L) — P, 1)

k k
B = @i : PEL;.f) — (L. f)
j=1 j=1

are such that a8 = s, Sa = s, so that a becomes an isomorphism in End(F).
It follows from (v) that

k
L, f] = Y [L;, f;] € Endo(4) ,

j=1

and hence that the natural map

End?®™ (4) — Endy(A)
p(z)emaxa(FD\{(2)}

is an isomorphism. On the other hand, the natural map
TR oA p(2)
Endg(A) — End,” (F) = D End}® (F)
p(z)€maxa(F[z)\{(2)}

is an isomorphism by (ii). The natural map
End}®)” (4) — End}? " (F) = Z

is an isomorphism, and Endg(z)oo (A) is the infinite cyclic group generated by
[Alz]/(p(2)), 2]- 0

Remark 14.17 The isomorphism Endg(F) = Z[max(F[z])] was first ob-
tained by Kelley and Spanier [129). O
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Example 14.18 A monic polynomial p(z) € Z[z] is irreducible in Z[z] if and
only if it is irreducible in Q[z] (Gauss lemma), so that

maxz(Q[z]) = {irreducible monic polynomials p(z) € Z[z]}

and 14.16 gives an isomorphism

Zlmaxz(Q[z])] — Endo(Z) ; p(2) — [Z[2]/(p(2)), ] - 0
Proposition 14.19 (i) If (P, f) is a finite f.g. projective A-module chain
complex P with a chain map f : P—— P the isomorphism

h : Endo(A) —> W(A)™

sends the class [P, f] € ﬁio(A) to

cho(P,f) = [[cha(f: PB—P) )" e W(A)™
r=0
(ii) If ET is an A-finitely dominated finite f.g. free A[z]-module chain com-
plex the isomorphism ch : mo(A):—)W(A)“bq sends the class [E1,(] €
El’ldo(A) to

ch,(EY) = ch(P,f) = ﬁ&iz(f:PT—>PT)(_)r € W (A)b
r=0

for any finite f.g. projective A-module chain complex P A-module chain equiv-
alent to ET, with

f~(:P~E"—P~FE".

(iii) The split surjections 8+,5+ in the direct sum systems of 10.14, 10.16
are given by

Oy + Ki(27'Alz]) — Endo(4) = Ko(A) & W(A)* ;
T(R7EY) — ([EY],ch.(E*,Q)) ,
Oy : Ki(27'A[z]) — Endg(4) = W(A)™ ;
(27 EY) — ch,(B7, (7Y

(iv) The natural map ﬁ;lA[z]—>A[[z]] induces the map
Ku@TUALR) = Ki(A) @ WA™ — KAL) = Ki(4) & (4

given by the sum of the identity on Ki(A) and the map of abelianizations
induced by the inclusion W(A)—W (A).
Proof (i) Immediate from 14.12 and the identity
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oo

[P.f] = Y (=)[P f] € Endo(4) .

r=0

(ii) Immediate from (i).
(iii) Immediate from (ii) and 10.14.
(iv) Immediate from 14.6 and 14.12. O

Example 14.20 Let A be a semi-simple ring (e.g. a field), so that every A-
module is projective. A finite A-module chain complex P is finitely dominated
if and only if the A-modules H,(P) are finitely generated. Every finitely
dominated A-module chain complex P is chain equivalent to its homology
H,(P) (regarded as a chain complex with 0 differentials), and for any chain
map f: P—P

C’IlZ(P7f) = &Z(H*(P)vf*)

[T cha(.(P), 1) € W)™ =
r=0

Definition 14.21 Let A be a commutative ring. Given a multiplicative subset
S C Alz] with leading units and z € S define the S-primary Witt vector group

W3 (A) = {p(2)/q(2) | p(2),q(z) monics dividing some element of S}
CW(A) .

]
Proposition 14.22 (Stienstra [277,p. 60])

For a commutative ring A and a multiplicative subset S C A[z] with leading
units and z € S the characteristic polynomial defines a surjection

A : End, (4) — W5(A) ;

[P, f] — ch.(P,f) = det(l—zf : P[z]—Plz])
which is split by

WS(4) —> Budy (4) ; p(z) — [A[:]/p()]
Proof The torsion group of any commutative ring R splits as

Ki(R) = R*& SKy(R) ,
with SK;(R) the kernel of the split surjection
det : K1(R) — R*; 7(f) — det(f) .

Thus
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Fnds (A) = coker(Ky (A)— K, (S A[2])
= coker(A*— (51 A[2])®) @ coker(SK;(A)—SK1 (S~ A[2]))
= W3(A) & coker(SK; (A)—SK; (S A[2))) .
(|

Remark 14.23 (i) If S C A[z] is the multiplicative subset of all monic
polynomials in A then the split surjection of 14.21 is the isomorphism of
14.12 L - -

ch : Endy(A) = Endg(A) — W9(A) = W(A).
(ii) For a field F' and a multiplicative subset S C F[z] such that z € S the

]
~ 5 ~
split surjection of 14.21 is an isomorphism ch : End, (F) — W*(F). See

Chap. 18 for further details.
(iii) If A is an integral domain with quotient field F, and T4 C F[7] is the
multiplicative subset of monic polynomials (14.16) then

Endo(4) = W(4) = Endy'(F) = W™ (F).
(iv) If S = {z¥ |k > 0} C A[2] then

Endg (4) = Nilo(4) ,

W9(A) = {14+ a1z+...+aqz?|a; € A nilpotent} C W(A)
(Almkvist [7,4.11]). O
Example 14.24 Let A be a commutative ring, and let S C A[z] be the
multiplicative subset consisting of all the polynomials p(z) = Zn: ajzj with
G, an € A®, so that by 13.5 sz

S71A[z] = Q27'A[z,27] , End®(A) = End?(4)

with 2 the set of Fredholm matrices in A[z, 27!]. The corresponding multi-
plicative subset of the reverse polynomials

S = {p(2)|p(z) € S} C A[2]

is the subset of S consisting of all the polynomials p(z) = f: bjz? with
bo = 1,bg € A®. There are identifications =
End®(A) = Aut(A) ,
End®(A4) = Nil(4) x Aut(4) ,
K.(ST'A[z]) = K.(27'Alz,27Y)
K.(A[2]) ® End? (A)
= K.(Alz,z7') @ Aut.(A) .
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By 14.22 the characteristic polynomial defines a split surjection

A : Endy (A) = Nilo(4) @ Aute(A) —s WS(A) .



15. The fibering obstruction

The fibering obstruction is the Whitehead torsion invariant whose vanishing
is the necessary and sufficient condition for a manifold of dimension > 6 with
finitely dominated infinite cyclic cover (i.e. a band) to fibre over a circle.
Given a codimension 2 framed submanifold N® C M"™*2 it is natural to ask
if the exterior M\ (N x D?) is actually a fibre bundle over S — see Chap. 33
for more on fibred knots. See Hughes and Ranicki [112] for a general account
of the fibering obstruction.

The splitting theorem of Chap. 14
Ky(Allzll) = Kai(4) & W(A4)™
extends to splittings
Whi(A((2))) = Whi(A) ® Ko(4) & Nil(4) & W(A)**
Whi(A((z™Y)) = Whi(A) @ Ko(A) & W(A)™ & Nily(A)
which have an application to fibering obstruction theory.

The most important sources of the algebraic and geometric bands of
Chaps. 1,2 are the manifold bands:

Definition 15.1 A manifold band is a compact manifold M with a finitely
dominated infinite cyclic cover M. |

A manifold band is a CW band, with the CW structure given by the
handlebody decomposition.

Remark 15.2 A manifold band is a ‘candidate for fibering’ in the terminol-
ogy of Siebenmann [266], [267]. O

Example 15.3 If F is a compact (n — 1)-dimensional manifold and h :
F—F is a homeomorphism the mapping torus T'(h) is a compact n-
dimensional manifold band. The canonical map ¢ : T(h)—>S" is the pro-
jection of a fibre bundle with fibre F' and generating covering translation

¢ :T(h) = FxR—T(h) = FxR; (z,t) — (h(z),t+1). O
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Example 15.4 (Siebenmann [265])

If € is a tame end of a non-compact n-dimensional manifold W with n > 6
there exists an open neighbourhood M C W of e which is the infinite cyclic
cover of an untwisted n-dimensional manifold band M with

m(M) = m(e) xZ , m(M) = mi(e) .
See Hughes and Ranicki [112, Chaps. 15-17] for an account of the structure
theory of tame ends. |

Definition 15.5 A closed n-dimensional manifold M fibres over S if M is
isomorphic to the mapping torus T'(h) of an automorphism h : F—F of a
closed (n — 1)-dimensional manifold F'. O

In order for a manifold to fibre over S it is necessary (but not in general
sufficient) for it to be a band.

Let M be an n-dimensional manifold band. The classifying map c¢ :
M ——S* can be made transverse regular at a point in S with inverse image
a codimension 1 framed submanifold

F b = ¢ ({pt.}) c M"
with a codimension 0 embedding F' x (0,1) C M. Cutting M along F there
is obtained a fundamental domain
(Mp; F.(F) = (M\F x (0,1); F x {0}, F x {1})

for the infinite cyclic cover

M= |J ¢Mp.
Jj=—00
The manifold band M fibres over S' if and only if M admits a fundamental
domain homeomorphic to a product F x (I;{0},{1}). It is thus a direct con-
sequence of the s-cobordism theorem that there exists a fundamental domain
(Mp; F,(F) which is an s-cobordism if (and for n > 6 only if) the manifold
band M fibres over S!.

Stallings [273] proved that every irreducible 3-dimensional manifold band

M3 with 71 (M) # Zs fibres over S!, by considering surgery on the surface
F? = c({pt}) © MP
with ¢ : M——=S" the classifying map for the infinite cyclic cover M. Browder
and Levine [31] proved that for n > 6 every n-dimensional manifold band M™
with 71 (M) = {1} (or equivalently c, : w1 (M) = w1 (S*) = Z) fibres over S?,
by considering surgery on the simply-connected submanifold
Frt = Y pt.}) c M™ .

Farrell [78], [79] and Siebenmann [266], [267] defined a Whitehead torsion ob-

struction
@*(M) € Wh(m (M))
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for any m-dimensional manifold band M, such that &+ (M) = 0 if (and for
n > 6 only if) M fibres over S*.

Proposition 15.6 For n > 6 an n-dimensional manifold band M fibres over
St if and only if it fibres as a CW complex band.

Proof The manifold fibering obstruction (M) is one of the CW complex
fibering obstructions &1 (M), ®~ (M) (2.9). For a manifold band M the fiber-
ing obstructions are dual to each other

OH(M) = ()"0 (M) € Wh(m (M) ,
so that @7 (M) = 0 if and only if ¢~ (M) = 0. O

For n = 4,5 there are examples of n-dimensional manifold bands M with
@1 (M) = 0 which do not fibre over S* (Kearton [128], Weinberger [273]).

From now on, only untwisted manifold bands M will be considered, so that
m(M) = m(M)xZ , Zm(M)] = Zm(M)][z271] .

This is a convenient simplifying assumption, which avoids the need for twisted
coefficients.

Novikov [220] initiated the development of S*-valued Morse theory, using
the power series rings A((2)), A((271)) to count critical points. Farber [75]
used Sl-valued Morse theory to recover the result of Browder and Levine
[31] for fibering manifold bands M™ with n > 6 and 7 (M) = Z, using the
Fredholm localization for noetherian rings — the result of [31] appears as a
special case of a theorem realizing the Novikov inequalities on a manifold M
with 71 (M) = Z by Morse maps M —S! with a minimal number of critical
points of each index (namely 0 for the fibering case). See Lazarev [152] for
the computation of the Novikov homology of a knot complement in terms
of the Alexander polynomials. Pazhitnov [222],[223] used S!'-valued Morse
theory to prove that for n > 6 a compact n-dimensional manifold band M
fibres over S! if and only if the A((z))-coefficient Reidemeister torsion

FHM) = 7(A((2)) @z, C(M)) € Wha(A((2))) /W (A)"

is such that 7+ (M) = 0, with C (M ) the cellular chain complex of the uni-
versal cover M and

A = Zm(M)] , Alz,z7'] = Z[m(M)] .

A similar result was obtained by Latour [147]. The geometrically significant
splittings of Why (A((2))) and Why (A((271))) allow this result to be deduced
from the original fibering obstruction theory of Farrell [78], [79] and Sieben-
mann [266], [267] using the algebraic fibering obstruction theory of Ranicki
[244, Chap. 20] recalled in Chap. 3.

By analogy with the conventions regarding the Whitehead groups Why (A)
(1.4) and Why(Alz,271]) (3.8):
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Convention 15.7 The Whitehead group of the formal power series ring
A((2)) is
Why(A((2))) = coker( Ki(Z[z,27"]) — K1(A((2))))
= Ki(A((2))/{£2 |j e 2}

in the algebraic context of an arbitrary ring A. In the topological context of
a group ring A = Z[r] the Whitehead group is to be understood to be

Wh' (rxZ) = Ky(Z)((2)))/{£27g|j € Z.g € 7} .
Similarly for
Whq (A((zfl))) = Coker(Kl(Z[z,zfl]) — K, (A((zfl))))
= Ki(A((z"))/{£2|j e 2}

and o _
Wh (rxZ) = Ki(Z[r]((z"")))/{xz/g|j € Z,g e n} . O

By analogy with the geometrically significant decomposition
Whi(Alz,27]) = Whi(A) ® Ko(A) ® Nilp(A) @ Nilp(A)
given by 5.19:

Definition 15.8 The geometrically significant decompositions of the White-
head groups of A((2)), A((z71))

Whi(A((2))) = Whi(A) ® Ko(A) @ Nilg(A) & W(A)™
Whi(A((z™Y)) = Whi(A) @ Ko(A) @ W(A)® @ Nily(A)
are the decompositions determined by the isomorphisms
Whi(A) & Ko(A) & Nily(4) & W ()™ —> Why(A((2)) ;
(r(f : M—M),[N], [PT,v"], (a1, a9,...)) —>
7(f  M((2)—M((2)) +7( = 2 N((2)—N((2)))
+7(1- 2t Pt ((2))—P*((2)))

+7(1+ Zajzj L A((2)—A((2))

Whi(A) & Ko(A) @ W(A)* & Nilg(4) — Whi(A((=™1)) ;

(r(f : M—M),[N], (a1, a2,...),[P",v7]) —

T(f: M((z7")—M((z™") +7(—2: N((z7")—N((z"1))
+r(L+ > a2 A((z)—A((z 7))

j=1
+7(l—zv” : P((z71)—P((z7Y)) . O
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Recall from 8.3 that a based f.g. free A[z, z~1]-module chain complex E is
a band if and only if it is both A((2))-contractible and A((z~1))-contractible.

Definition 15.9 For any chain complex band E over Alz, z71] let
THE) = 7(A((2)) ®aps,.—1 E) € Whi(A((2))) ,
7(E) = 7(A((z7") ®ap,.-1) E) € Whi(A((z71))) - O

The algebraic mapping tori of an A-module chain map f : P—P are
the A[z, 2~ !]-module chain complexes

TH(f) = C(1 —zf: Plz, 2 ]—P[z,27']),
T (f) = Cl =z f: Plz, 27 ]—Plz,27Y]) .

Proposition 15.10 Let P be a finitely dominated A-module chain complex.
(i) For any chain map f : P—P

FHTT(S) = (0,0,0,ch.(P, f))
e Whi(A((2)) = Whi(A) @ Ko(A) @ Nilg(A) @ W(A)®
7(T7(f) = (0,0,ch.(P, f),0)
e Whi(A((z7Y)) = Whi(A) & Ko(A) & W(A)*® & Nily(A) .
(ii) For any chain equivalence f : P—P
() = (7(f), =[P, 0,ch.(P, f 1))
e Whi(A((2))) = Whi(A) ® Ko(A) ® Nilg(A) & W(A)™
FTT(S) = (7(f), [P),cha (P, f71),0)
eWhi(A((z™Y)) = Whi(A) @ Ko(A) @ W(A)® @ Nilg(4) . O
Proposition 15.11 For any chain complex band E over Az, z7!]
FHE) = (¢F, —[E7],~[B/ET,],ch.(E7,(7Y)
€ Whi(A((2))) = Whi(A) @ Ko(A) @ Nilg(A) @ W(A)*
F(E) = (¢7,[E],ch.(ET,¢),~[E/E~,¢7Y)
e Whi(A((z™Y)) = Whi(A) @ Ko(A) & W(A)™ @ Nily(A)
for some ¢+, ¢~ € Why(A) such that
6T — ¢ = 7(¢: E—E) € Why(A) .

Proof By 7.4 the fibering obstructions of E are of the form
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OH(E) = 1(¢":TH((")—E)
= (¢%, —-[E7),-[E/ET.(],~[E/E~,(7Y)
P (E) = 7(¢ : T (()—E)
= (¢7,[EF),-[E/ET.(],~[E/E~,(TY)
€ Why(Alz,27Y]) = Why(A) & Ko(A) & Nilg(A) & Nily(A) .

The Alz,2~!]-module chain equivalence ¢* : T+(¢("!)——FE induces an
A((z))-module chain equivalence

1@q" © A(2) @apy T — A((2)) @apee-) B
of contractible complexes. Applying 15.10 (i) gives
THE) = 1(log") +7H(TH ()
= (¢7,—[E7],~[B/E",{), —ch.(E/E™,¢7Y))
+(0,0,0,ch,(E,¢Y)

= (¢*, —[E7],—[B/E* (] ch.(B7, (7))

€ Whi(A((2))) = Whi(A) ® Ko(A) ® Nilg(A) & W(A)™ .
Similarly for 7~ (E) € Why (A((=™1)). 0

Proposition 15.12 The fibering obstructions of a chain complex band E
over Alz, 27 Y] are such that ®T(E) = &~ (E) = 0 € Why(A[z,271]) if and
only if -

TH(E) = 0€ Whi(A((2)))/W(A4)*

77(E) = 0e Why(A((z"1))/W(A)™ .
Proof Immediate from 15.11, since the components of
oH(E) = (¢%,—[E7],~[B/EY (], ~[E/E”,(TT),
o (B) = (o7, [EY],—[B/ET, (), ~[E/E~,¢CY)
€ Whi(Alz,27 1) = Whi(A) ® Ko(A) @ Nilg(A) @ Nily(A)
are determined by the components of
THE) = (o7, —[E7],~[E/ET.(])
€ Whi(A((2)))/W(A)™ = Why(A) @ Ko(A) @ Nilg(4) ,
T(E) = (¢7,[EY],~-[E/E7,CTY)
e Whi(A((z"1))/W(A)™ = Whi(A) @ Ko(A) @ Nilp(4) . O
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Definition 15.13 A geometric Poincaré band is a finite n-dimensional geo-
metric Poincaré complex X with

m(X)=nrxZ , Zr(X)] = Z[x][z27Y
satisfying any one of the following equivalent conditions:

(i) X is a CW band, i.e. the infinite cyclic cover X = X /m of X is
finitely dominated, _
(i) the cellular Z[r][2, 2~ "]-module chain complex C'(X) of the universal

cover X of X is finitely dominated,
(i) H.(X; 271 Zl][2, =~ 1]) = 0,

in which case X is a finitely dominated (n—1)-dimensional geometric Poincaré
complex. O

Example 15.14 A manifold band (15.1) is a geometric Poincaré band. O

Proposition 15.15 (Ranicki [244, p. 163])
The torsion 7(X) € Wh(n xZ) of an n-dimensional geometric Poincaré band
X and the Farrell-Siebenmann fibering obstructions

PHX) = (¢, —[E7 v vT) , (X)) = (67, [ETvT,0T)
are such, that
T(X) = o7(X) +(-)"?" (X)"
= (& + (=)"(¢7)" ()" HET] - [EB7],
vE ()" ) T+ ()T )
€ Whin x Z) = Whir)@® Ko(Z[r]) & Nilo(Z[r]) & Nilo(Z[x])
with E = C(X) and
ot —¢7 = 7(C: X—X)
[EX1+[E7] = [BE] = [X]

Wh(m) ,

Also, 15.11 gives
FHX) = (o",—[E )T

€ Whi (Z[x)(())) /W (ZIr)™ = Wha(Z[x]) & Ko(Z[r]) & Nilg(Z[r])
X)) = (67, (BT

€ Whi (Z[x)((=71)) /W (ZIr)™ = Whi(Zlx]) & Ko(Z[r]) & Nilo(Z[x]) -

In particular, for a simple Poincaré band 7(X) =0 ¢€ Wh(n x Z) (e.g. for a
manifold band), so that
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¢~ = (=)"H¢")" € Wh(m),
[E7] = (="M BN € Ko(Z[r))
vo = (=)"(vh)" e Nilo(Z[r]) . O
Proposition 15.16 The Farrell-Siebenmann fibering obstruction
(M) = 7(T(¢()—M) € Wh(r x 7Z)

of an n-dimensional manifold band M with w1 (M) = 7 X Z and the Pazhitnov
fibering obstruction

FHM) = T(ZIr)((2) ®zpm(z,2-1) C(M)) € Wha(Z[x)((2))) /W (Z[m])™

are such that (M) = 0 if and only if 7H(M) = 0.
Proof M is a simple Poincaré band, so that by 15.15 the Farrell-Siebenmann
fibering obstruction

oT(M) = (67, —[E7LvF, ()" (1))
€ Wh(r x Z) = Wh(r) @ Ko(Z[x]) ® Nily(Z[r]) ® Nilo(Z[n])
determines and is determined by the Pazhitnov fibering obstruction
THM) = (¢F,-[E7],vT)
€ Why (Z[7]((2))) /W (Z[x])* = Wh(r) @ Ko(Z[r]) & Nily(Z[r]) .
O
Remark 15.17 The fibering obstructions can also be described using the
Fredholm localization 271 A[z, 27!] of 13.3. A finite based f.g. free A[z,271]-
module chain complex FE is A-finitely dominated if and only if it is
271 Az, 2~ -contractible, in which case it has 271 A[z, z~1]-coefficient tor-
sion
T(27'E) = (97(E),[E.(])
€ K1(27'Alz,27Y)) = Ki(Alz,27Y) @ Auto(A)
by the splitting theorem of 13.17 (cf. Ranicki [248]). O

Example 15.18 Let X be an untwisted CW band with fundamental group
m1(X) = m X Z, universal cover X and infinite cyclic cover X = X /7, and

write
A = Q7 'Zx)[z,27Y] .

Now X is A-acyclic, with A-coefficient torsion
T(X;4) = (27(X),[X, )
€ Whyi(A) = Whi(Z[r][z,27']) @ Auto(Z[x]) . O



16. Reidemeister torsion

Reidemeister torsion is an invariant of simple homotopy type, a precursor of
Whitehead torsion, which was originally used in the combinatorial classifica-
tion of lens spaces. There are many connections between Reidemeister tor-
sion and knots, particularly the Alexander polynomials of knots — see Milnor
[193], [194], [195] and Turaev [295], as well as Chap. 17 below. In the current
chapter the treatment of Reidemeister torsion in [194] will be generalized to
define a relative K-theory invariant for chain complexes.

For any ring morphism f : A—— B there is defined an exact sequence of
algebraic K-groups

Ky(4) = Ki(B) — Ki(f) — Ko(4) — Ko(B),

with K7 (f) the algebraic K-group of triples (P, @, g) with P, Q f.g. projective
A-modules and g : B®4 P—B ®4 Q a B-module isomorphism. A finitely
dominated A-module chain complex C with a round finite structure ¢p on
B ®4 C has a relative K-theory invariant

[C, 98] € Ki(f)

with image the projective class [C] € Ky(A) (Ranicki [241]). The projective
class of a finitely dominated B-contractible A-module chain complex C' is an
element

[C] € ker(f : Ko(A)——Ko(B)) = im(K1(f)—Ko(4)) ,

the image of [C, ¢p] € K1(f) for any choice of round finite structure ¢ on
B ®4 C. The projective class is [C] = 0 if and only if C' admits a round
A-finite structure ¢4, in which case

[C, ¢5] € ker (K1 (f)—Ko(4)) = im(K1(B)—K1(f))

is the image of 7(B®4 C,1® ¢4) € K1(B).

Definition 16.1 (i) The absolute Reidemeister torsion of a B-contractible
A-module chain complex C' with a round finite structure ¢4 is

A(C,pa) = T(B®aC,1® ¢a) € Ki(B) .
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(ii) The relative Reidemeister torsion of a B-contractible f.g. free A-module
chain complex C'is

A(C) = [A(C,¢4)]
€ coker(f : K1(A)—K1(B)) = ker(K1(f)—Ko(A))
using any round finite structure ¢4 on C. ]

Terminology 16.2 If C is a B-contractible based f.g. free A-module chain
complex the bases determine a round finite structure ¢ 4 on C', and the Rei-
demeister torsion A(C,¢4) =T7(BR4 C,1 R ¢4) is written

A(C) = 7(B®4 C) € Ki(B) . O

Proposition 16.3 (i) If C is a B-contractible f.g. free A-module chain com-
plex then B ® 4 C' has a canonical round finite structure ¢ with

A(C,¢pa) = 7(1: (BRaC,10¢a)—(B®4C,¢5)) € K1(B)

for any round finite structure ¢4 on C.
(ii) If C is a B-contractible based f.g. free A-module chain complex then

o

A(C) = Y (=)'7(1: Boa Cr—(B®4 Cr,¢r)) € Ki(B)
r=0

with ¢, the (stable) basis of B& 4 C,. determined by the canonical round finite
structure ¢p on B®4 C.
Proof (i) Define

D, = BesC, , E, = ker(d: D,—D,_1) (r>0)

and use a chain contraction I' : 0 ~ 1 : D——D to define an isomorphism of
B-module chain complexes

«rI]) :C€1l:E—FE)— D

with i : E,.——D,. the inclusion. For each r > 0 there is defined a contractible
chain complex

0O —F, —D,.— ... — Dy —> Dy — 0,
so that there is an isomorphism
E. oD, 19D, 35®... 2 D, DPD,_ 2@ ...

and E, is (stably) f.g. free. Choosing an arbitrary (stable) basis for each E,
determines the canonical round finite structure ¢ on D = B®,4 C.
(ii) Immediate from (i). O
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Example 16.4 (i) Let X be a finite CW complex with finite fundamental
group 71 (X) = 7 and Euler characteristic x(X) = 0. Also, let

fiA=2Z—B=qn/(9)

gem

be the natural ring morphism, and let C = C()z ) be the cellular A-module
chain complex of the universal cover X, with the bases determined by the
cell structure up to 7. It follows from Q7] = Q @ B that

H.(X;Q) = H.(Qlr]©4C) = H.(Q®4C)®H.(B®4C).
If m acts trivially on H,(X;Q) then
H.(X;Q) = H.(Q®aC) , H(B®4C) = 0,
and X has an absolute Reidemeister torsion invariant as in Milnor [194, 12.4]
A(X) = A(C) e Wh(B) = Ki(B)/{£n}.

If h: Y—X is a homotopy equivalence of finite CW complexes for which
7 is defined

ho A(Y) — A(X) = [r(h)] € im(Wh(m)—Wh(B)) ,

with 7(h) € Wh(nm) the Whitehead torsion. Thus A(X) is a simple homotopy
invariant, while the relative Reidemeister torsion

[A(X)] € coker(f : Wh(m)—Wh(B))

is a homotopy invariant of X.

(ii) In the applications of absolute Reidemeister torsion to the classification
of lens spaces (due to Reidemeister, Franz and deRham) 7 = Z,, is a cyclic
group, with

QZm] = PQC) , B = P Q)
dlm

djm,d#1

products of cyclotomic fields Q(¢g) (Cq = €27/ %), and

Ki(QZn)) = Q) ., Ki(B) = P Q) -

dlm d|m,d#1
By results of Higman and Bass
Wh(Zm) _ Z[m/2]+176(m)

with §(m) the number of divisors of m. O
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Proposition 16.5 Let
i: A— B =S4

be the inclusion of a ring in the localization inverting a multiplicative subset
S CA.

(i) An S=A-contractible finite f.g. projective A-module chain complex has
an S-torsion class 75(C) € K1(A,S) (4.7) with image the projective class
(C] € Ko(A).

(ii) If [C] = 0 € Ko(A) a choice of round finite structure on C determines
a lift of the S-torsion class 75(C) € Ki(A,S) to the element T(S7C) €
K1(S7tA), and the relative Reidemeister torsion of C agrees with the S-
torsion class

A(C) = [r(s7'0)] = 75(C)
€ coker(i : K1 (A)—K(S7'A)) = ker(Ki(A,S)—Ky(A)) . O
Example 16.6 Let A be an integral domain with quotient field F'. Let
it A— F = 5S4
be the inclusion, with S = A\{0} C A, so that
i Kqi(A) — Ki(F) = F*; (ajr) — det(ajr)

If C is a finite f.g. free A-module chain complex then H,(F ®4 C) = 0 if and
only if H,(C) is S-torsion, that is sH,.(C) = 0 for some s € S. A choice of
s € S such that sH,.(C) = 0 determines a round finite structure on C. As in
16.5 the relative Reidemeister torsion of C' is an element

A(C) € coker(i : K1(A)—F*)
which (at least for A a unique factorization ring) may be identified with the

class of — for some element s € S such that sH,(C) = 0, as follows.
s
(i) The annihilator of an A-module M is the ideal

ann(M) = {a€ AlaM =0} <A .

Every f.g. A-module M admits a presentation of the type

d
A" — A" 5 M — 0

with m < co. The order ideal o(M)< A of M (or Oth Fitting ideal) is the ideal
generated by the n X n minors of the matrix of d, such that

o(M) C ann(M) .

If m < n then o(M) = ann(M) = {0}.
If m = n then o(M) = (det(d)) and the annihilator of M is
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ann(M) = {a € Alao1(M) Co(M)}< A

with o1 (M) the Fitting ideal generated by the (n —1) x (n — 1) minors of the
matrix of d — see Eisenbud [67, p.511].

(i) Suppose now that A is a unique factorization domain. The order of a f.g.
A-module M is

ord(M) = {greatest common divisor of o(M)}
€ coker(i : K1 (A)—F"*) .

If M has a presentation (as in (1)) with m = n and o(M) is a principal ideal
then
ord(M) = det(d) € coker(i : K1(A)—F*) .

If A is a principal ideal domain then every f.g. S-torsion A-module M is a
finite direct sum of cyclic S-torsion A-modules

k
M = @A/S]A (Sj S S, Sj+1 |Sj) R
j=1

and

ann(M) = (s1), o(M) = (f[lsj) L 01(M) = (115]-)@

with .
ord(M) = H sj € coker(i : Kq1(A)—F"*) .
j=1

(iii) If A is noetherian ring the homology modules H,(C) (r > 0) of a finite
f.g. free A-module chain complex C' are f.g., and H.(F ®4 C) = 0 if and
only if each H,(C) is an S-torsion A-module. If A is a noetherian unique
factorization domain the relative Reidemeister torsion of a finite f.g. free
A-module chain complex C' with H,(F ® 4 C) = 0 is given by the formula

A(C) = JJord(H.(C))T)" € coker(i : K1(A)—F*) . 0
r>0
Example 16.7 For any ring A let
i Az, 27— B = Q7 Az, 271

be the inclusion of A[z,27!] in the Fredholm localization (13.3). A finitely
dominated A[z, 27 !]-module chain complex C is 27 A[z, 2~ !-acyclic if and
only if it is A-finitely dominated, in which case the relative Reidemeister
torsion of C' is the automorphism class of Chap. 13
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A(C) = [C.(]
€ coker(i : Ky (Alz, 27 ) —= K1 (27 Alz, 271])) = Auto(A) .

(This is also a special case of 16.5). O

Example 16.8 The Laurent polynomial extension F[z,27!] of a field F is
a principal ideal domain with quotient F'(z) the field of rational functions.
A f.g. F[z, 27 ]-module M is torsion if and only if dimg(M) < oo, in which
case M is a finite direct sum of cyclic F[z, z71]-modules

k
M = @ Pl (5(2)
with
SJ(Z) #0¢€ F[Z’z_l] ) SjJrl(Z) | Sj(z) )
k
dimF = Zdeg Sj s
k

o) = [[6) = a1, € ez

A finite f.g. free F'[z, 27 !]-module chain complex C is F'(z)-contractible if and
only if the homology F-vector spaces H,.(C) (r > 0) are finite dimensional,
in which case the relative Reidemeister torsion is given by

= Hord(H,.( HCh ( )"
r>0 r>0
€ coker(K(F[z,2 ) — K1 (F(2)))
= F(2)*/{uz"|ue F*,neZ}

as in Milnor [195] and Turaev [295]. This is also the automorphism torsion
of C (16.7). See Chap. 19 below for an elaboration of this example. O



17. Alexander polynomials

In Chap. 17 it is assumed that the ground ring A is an integral domain, with
quotient field F.

This chapter only deals with the algebraic properties of Alexander poly-
nomials — see Chap. 33E for the applications to knot theory.

The Alexander polynomials of an n-dimensional A-contractible finite f.g.
projective A[z, z71]-module chain complex E

Ap(z) € Alz] (r>0)
are chain homotopy invariants such that
Al) =1, A0) £ 0, A()H(E) = 0
with A,.(z) =1 for r > n. The multiplicative subset
P = {p(z) € Alz,z71]|p(1) € A*} C A[z,27]

has the universal property that a finite f.g. projective A[z, z~!]-module chain
complex E is A-contractible if and only if E is P~'A[z, 27 1]-contractible.

Recall that the Witt vector groups W (A), W (A) of Chap. 14 are defined by

W(A) = {28 |p(2),q(2) € Alz],p(0) = q(0) =1} C F(2)*,
W(A) = W(A)/{det(1 — 2 : P[z]—P[2])}

for f.g. projective A-modules P. The two main results of Chap. 17 are that
for an A-contractible F:

(i) the Alexander polynomials of E determine the P-torsion K-theory
class

p(E) = [[A-(1 -2 € Ki(Alz,27],P) = W(A),
which is sent by the injection W/(A) - W(F) to the Reidemeister
torsion

[p(E)] = A(F®4E) e W(F) = (F(2)*/F*)/{(1-2)}.

(ii) FE is A-finitely dominated if and only if the extreme coefficients of
the Alexander polynomials A,.(z) are units in A.
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The Alexander polynomials of knot theory arise in the case A = Z. The
criterion for finite domination is an abstraction of the result that a high-
dimensional knot k is fibred if and only if the extreme coefficients of the
Alexander polynomials of k are units in Z (i.e. £1).

A finite f.g. projective A[z, 2~!]-module chain complex E is A-contractible
if and only if the A-module morphisms 1 — ¢ : H,(E)— H.(FE) are isomor-
phisms, in which case the induced F-module morphisms are also isomor-
phisms

1-¢ : H(E;F) — H.(E;F) .
Definition 17.1 The Alexander polynomials of an A-contractible finite f.g.
projective A[z, z71]-module chain complex E are
An(z) = det((z— Q1 —¢) "« Hy(B; F)[2]—H,(E; F)[z])
€ Flz] (r>0),
with
H.(E;F) = H(F®sE) = H.(Flz2,27 | ®ap .1 E) . O

The Alexander polynomials A,(z) are in fact defined in A[z] C F[z]:

Proposition 17.2 Let Q C Alz] be the multiplicative subset of monic poly-

nomials, so that as in 10.10 (iii) the localization of Alz] inverting Q 1is the
Fredholm localization of Alz]

Q'A[2] = 27'AlZ] .

(i) The Q-torsion class of a finite chain complex (D, f) in End(A) is given
by

ro(D.f) = (S0 TLdettt o 0,10, ) )

€ Ki(Al2,Q) = Endo(A) = Ko(A) @ W(A) .
(ii) The ring morphism
Alz] — Alz, 27,1 —2)7Y; 2 — (1 —2)7!
induces an ezxact functor
End(A) = H(A[z],Q) — H(A[z, 271, (1 —2)7Y,P) = H(A[z,27'],P) ;
(D, f) — coker(1 — f + zf : D[z, ']—DJ[z,27 1))
and a morphism of torsion K-groups
K1(Alz],Q) = Endg(4) = Ko(A)®dW(A) —
Ki(Alz,z7', (1-2)7",P) = Ki(Alz,27"],P) = W(A);
(D, f) — 7p(E)
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with
E = C1—f+4zf:D[z, 27 |—D[z,271))

an A-contractible finite f.g. projective Az, z~1]-module chain complex and

TP(E)

ﬁ det(1 — zf : D,[2]—D,[2])) 7"
r=0

_ ﬁ det(1 — zf : H,(D; F)[z]—s H,(D; F)[2]))"

r=0

- ﬁ det(1 — 2(1 — )~ : H(B; F)[2]— H, (E; F)[2) )
r=0

= ﬁ A(1=2) e W(A) .

r=0

(iii) Every A-contractible finite f.g. projective Alz, 2~ ']-module chain complex
E is chain equivalent to C(1— f+zf : D[z, 27— D[z, 271]) for some finite
chain complex (D, f) in End(A) (10.20). If

det(1 — f+ zf : H.(D; F)[z]—H,.(D; F)[z]) = z"T(i aj2') € Alz]
=0

(ao,r;«éO, ZCL]',TZIEA)

j=0
then the Alexander polynomials of E are given by
An(z) = Zajﬂazj € Alz] .
j=0
(iv) If A is a Dedekind ring then for (D, f), E as in (#i) the A-modules
H.(D) are finitely generated, and the torsion-free quotients
L, = H.(D)/torsion
are f.g. projective A-modules, with the Alexander polynomials of E given by
Ap(z) = z7"det(1 = f+zf : L.[z]—L,[z]) € A[z] C Flz] (r >0)
(n, as in (iii) ).
(v) If A is a Dedekind ring and the A-modules H,(E) are finitely generated*
then the torsion-free quotients
M, = H.(FE)/torsion

if and only if E is A-finitely dominated (17.8)
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are f.g. projective A-modules, with the Alexander polynomials of E given by
An(z) = det((z = Q)1 = )"+ My[o]—M,[2])
€ Alz]C Flz] (r>0).

Proof (i)+(ii) Immediate from 14.16 (iv).
(iii) The polynomial

pr(2) = det(1— f+2f: H.(D; F)[z|—H.(D; F)[z]) € Fl[z]

is such that p,(1) = 1, so that p,(z) # 0. Moreover, p,(z) € A[z] C F|[z], since
it is possible to choose a basis for H,.(D; F) in im(H,.(D)—H,(D; F)), and
the matrix of 1— f+z f with respect to the corresponding basis for H,.(D; F')[z]
has entries in A[z]. The connecting maps in the homology exact sequence

. 1=ftEf
. — H.(D;F)[z,z7"] ——

H(D;F)[z,z""]
— H,.(E; F) TN H, 1(D;F)[z,27] — ...
are 0 = 0, and there is defined an exact sequence in End(F)
0 — (Crg) — (H(D; F), f) — (H (B F),(1=¢)7") — 0
with
C, = {zx € H.AD;F)|(f*— f)*(z) =0 for some k >0} , g = f|.
For any indeterminate s over A

chy(Cr,g) = s (s — 1) € Als]

with
¢, = dimpH,.(D;F) , m, = dimpH.(E;F),
n, = dimF< U ker((1— f)*: HAD;F)%H,(D;F)))
k=0
and

chs(H,(D; F), f) = chs(Cr, g)chs (Ho(B; F), (1= Q)7") € Als] .
Substituting s = (1 — 2)~! and multiplying by (1 — 2)*" gives
det(1— f + =f + H.(D; F)[s]—H,(D; F)[2])
= det(l — g+ zg : Cr[z]—C\[2])
det((z = )(1 = Q)7 : Hy(B; F)[z]—H, (B; F)[2]) ,
det(1 — g+ z9: Crl[z2]—C,[2]) = 2" € Al7] .
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(iv) By the universal coefficient theorem

H.(D;F) = F®alL,,
and by 11.6 (iii)

det(1— f + zf : Ho(D; F)[2]—H,(D; F)[2])
= det(1 — f+zf: L [z]—L,[2]) € A[z] C F[z#] .

(v) By the universal coefficient theorem

H.(E;F) = FoiM,
and by 11.6 (iii)

det((= — O)(1 — )1 s Hy(E; F)[:l—H, (E; F)[2])
= det((z — O)(1 — )7 : M, [z]—M,[z]) € Alz] C F[z] . O

Remark 17.3 Let E be an A-contractible finite f.g. projective Az, z71]-
module chain complex, as in 17.2.

(i) The Laurent polynomial extension F[z,z71] is a principal ideal domain
and each H,(E; F) is a f.g. F[z, z~!]-module such that

kr
H(B;F) = ) Flz27"/(A(2))
j=1
for some polynomials A; .(z) € F[z, 27! with \; (1) = 1 € F. The Alexander
polynomial A,.(2) € Alz,271] is a generator of the order ideal (16.6)

o(H.(E; F)) = {p(2) € Flz,z7"]|p(z)H,(E; F) = 0}
ko kr
= [INr(2) = (JIXiw(2) 9 Flz, 27
Jj=1 j=1

(Levine [155], Milnor [195]).

(ii) It is necessary to define the Alexander polynomials A, (z) using H,.(E; F')
instead of H,(FE), since the F-modules H,.(E; F') are finitely generated and
in general the A-modules H,(FE) are not finitely generated — see (iii) below
for an explicit example.

(iii) Let A = Z, F = Q and let E be the Z-contractible finite f.g. free
Z|z, z~1]-module chain complex

2z—1
E:...—0—7Zzz"' — Z[z,27"].

In this case Ho(E) = Z[1/2] is an infinitely generated free Z-module. The
Q-coefficient homology
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Ho(E;Q) = Qlz,271/(22-1) = Q

is a 1-dimensional Q-vector space with ( = 1/2 : Q—@Q, and the Alexander
polynomial is Ag(z) =2z — 1. O

Proposition 17.4 The Alexander polynomials of an A-contractible finite f.g.
projective Az, z~t]-module chain compler E

A(z) = iaj,rzj € Alz] (r>0)
j=0

are such that
m, = dimpH,.(E;F) ,
ch,(H,(E;F),() = det(1 —()A(2) € A[7],
chy(H (E; F),(1=¢)7") = 2™A(1-271)

= Zajﬁr(z — 1)z € A7),
=0

cho(HA(E; F), ~¢(1=0)7") = (= 1)™ A (2(z = 1)71)

= Zajyrzj(z —1)™ I € Ale]

j=0
A(0) = ag, = det(—C(1—-¢)" ' : H(E; F)—H,(E;F))#0€ A,
am,» = det((1 =)' H(E;F)—H,.(E;F)) #0€ A,

Av(2)HA(E) = 0, A1) = Y aj, = 1€A.
7=0

ProofLet (D, f) be a finite chain complex in End(A) with an A[z, z~!]-module
chain equivalence
Cl—f+4+zf: D[z, 27 ]—D[z,27']) ~ E.
Define the finite f.g. projective A[z]-module chain complex
ET = C(1 - f+zf: D[z]—Dl[z])

such that
Alz,z7Y ®Alz] Et ~ E.

Now

det(1—f+z2f: H.(D; F)[z|—H.(D; F)[z]) = 2" Zraj’,«zj € Alz]
5=0
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with
n, = dimp(ker(¢, : H(ET; F)—H,(E"; F)))

= dimpH,.(E"; F) — dimgH,.(E; F) > 0
as in 14.19 (i), and as in 17.2 the Alexander polynomials of F are given by
A(z) = z7"det(l1— f+ 2f: H.(D; F)[z2]—H,.(D; F)[z])

Mo
= Zaj’rz] e A[Z] . O
7=0

Proposition 17.5 Let E be a 1-dimensional A-contractible f.g. free Alz, z71]-
module chain complex

d
E:...—0—F — E
with
m .
d = Zdjzj D By = Alz, 27— Ey = Alz, 271
=0

and

mk
det(d) = Y a;27 € A[z] (an #0€ A) .
j=n
The Alexander polynomial of E is given by
Ag(z) = z7"det(d(D d;)"" : BEy—Ey) € Alz] .
§=0

Proof Define the A-module

D =) Ak,
0
The A-module endomorphisms
do 0 0 ... 0
—d; 1 0
g = ds 01 ..0|.p—D,
(=)™d,, 0 0 1
010 0
0 0 1 0
h=1000 0 D — D
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are such that

1 —z 22 (=)mzmy\ Tt sd 0 0
0 0 0 0 1 0
g+zh = |0 0 1 0 00 1 0
0 0 O 1 0 0 0 1
1 00 A
dy 1 0 0
—d> 0 1 0 : D[z,27Y] — D[z,27Y] .
(=)"*+d, 0 0 ... 1

(The matrix identity comes from the algebraic transversality of the Higman
linearization trick — see Chap. 7 above, and Ranicki [244,10.6]). Now

det(g +h) = det(zm: d;j) e A,
j=0
so that g + h : D——D is an automorphism. The endomorphism
f=1(@+h)h:D—D
is such that
C(l—f+zf:D[z,z ' ]—Dl[z,27Y])

= €((g+h)"(g+zh): D[z, 27 |—Dlz,271])

~ C(d: Alz, 27 —Alz,271)%) = F.
By 17.2 the Alexander polynomial of F is

Ao(z) = z7"det(l — f + zf : D[z]—D|[z])
= zf"det(d(i d;j)': Ep—Fy) € Al2] . 0
j=0

Example 17.6 Given a polynomial
p(z) = Z"Zajzj € Alz]
j=0

with p(1) =1 € A, ag,a,m # 0 € A, define
ET = C(p(2) : A[z]—Al])
E = Alz,z7 | ®ap ET = C(p(2) : Alz, 27— Alz,271))
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such that
dimpHo(E™;F) = m+n, dimpHo(E;F) = m .

The Alexander polynomial of E is

m

Ap(2) = 27 "p(z) = Zajzj € Al7] . O
3=0

In fact, 17.5 is the 1-dimensional case of :

Proposition 17.7 Let E be a finite f.g. projective Az, z~t]-module chain
complex which is A-contractible, so that E is P~1Alz, 2~ ]-contractible, with

P = {p(z) € Alz, 27 ']|p(1) € A®} C Alz,271] .
(i) The boundary map O in the localization exact sequence
a
. — Ki(Alz,27Y) — K1(P7'Alz,27Y) — Ki(A[z, 271, P)
— Ko(Alz,27Y) — ...

sends the torsion T(P71E) € Ki(P~'A[z,271]) (with respect to arbitrary
choice of bases for each P~'E,.) to the P-torsion class (= Reidemeister tor-
sion, by 16.5)

TP(E) = A(E) = HAr(lfz)(i)TGKl(A[szil]7P> = W(A)v
r=0

with
A(1=2) = ch.(H.(D;F),f)
= det(1— 2f : H(D; F) 2| — H,(D; F)[2)) € W(A)
for any finite chain complex (D, f) in Endo(A) such that
C(l—f+zf:D[z,z7]—D[z,27']) ~ E.
(ii) There exist Alz, z~']-module morphisms I' : E,—E, 1 such that
(dI + Td—1)(E,) € (1 - 2)(E,) (> 0)

and d+ I : Eygqq—> Eeyen s an A-isomorphism. If bases are chosen for each
E, such that

det(l ® <d+ F) cA ®A[z,z*1] Eoga—A ®A[z,z*1] Eeven) =1leA

then for some n € Z
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T(P'E) = 7(d+ 1 : P 'Epga—P 'Eepen) € K1 (P Alz,271])

det(d + I': Boga—Eeven) = 2" [[ Ar(2) 7" € P C A[z,271] .
r=0

The extreme coefficients of the Alexander polynomials determine if a chain
complex is a band :

Proposition 17.8 Let E be an A-contractible finite f.g. projective Alz, z71]-
module chain complex with Alexander polynomials

An(z) = Y aj 2’ € Alz] (o, Gm,.» #0 € A1 >0) .
=0

(i) The chain complex E is A-finitely dominated (i.e. E is a band) if and only
if the extreme coefficients ag r, am, » € A are units.
(ii) If A is a Dedekind ring then E is A-finitely dominated if and only if the
homology groups H,.(E) (r > 0) are finitely generated as A-modules.
Proof (i) Define the multiplicative subset

S = {Z a2 | am,a, € A are units} C Afz, 27,

j=m
so that as in 13.12 (i)
STl Az, 271 = Q7 Az, 7Y

By 13.8 E is A-finitely dominated if and only if it is S~ A[z, 27 1]-contract-
ible. Thus E is A-finitely dominated if and only if A.(2) € S (r > 0).

(i) For any noetherian ring A the homology of a f.g. A-module chain complex
consists of f.g. A-modules. Conversely, if A is Dedekind and the homology
groups H,(E) are f.g. A-modules then (as in 17.3 (iii)) the Alexander poly-
nomials are given by

Ar(z) = det((z = ¢)(1 = ¢)7": My[e]—M;[2]) € A[z] (r>0)

with each M, = H,(F)/torsion a f.g. projective A-module. The extreme
coefficients of A,.(z) are units

A(0) = det(—C(1 ¢~ Mp—M,) , det((1—¢)~': M,—M,) € A®
so that (i) applies. O

Example 17.9 The 1-dimensional A-contractible f.g. free A[z, 2~ !]-module
chain complex of 17.6

E = @(Z”Zajzj D Alz, 27— Az, 27Y)
j=0
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is A-finitely dominated if and only if the coefficients ag, a,,, € A are units, in
which case F ~ A™. a

Remark 17.10 Suppose that A = Z. For any object (L, f) in End(Z) the
(Z]z, 271, P)-module

K = coker(1 — f+zf: L[z, 2 ]—L[z,27'])

is a torsion-free abelian group (Crowell [58], Trotter [292, Lemma 2.1]). By
17.8 (ii) K is a finitely generated abelian group if and only if the extreme
coefficients of the Alexander polynomial

m

A(z) = det(1— f+zf: L[z]—L[z]) = Zajzj € Z[7]
=0

are units ag, a,, € Z* = {£1}, in which case K is a f.g. free abelian group of
rank m. |

The classic application of Alexander polynomials to high-dimensional
knot complements is given by :

Example 17.11 (Milnor [193, Chap. 2], [194], [195])

(i) Let X be a connected finite CW complex with a homology equivalence
p: X—St (as in 10.23 (ii)). Let X = p*R be the pullback infinite cyclic
cover, and let p : X —R be a lift of p to a Z-equivariant map. The finite f.g.
free Z[z, 2~ !]-module chain complex

E = e : C(X)—C(R))ss
is Z-contractible, so that the Alexander polynomials of E are defined
An(z) €Z[z] (r>0)

with Ag(z) = 1. If (Xp; F,(F) is a fundamental domain for X then the
inclusions

g: C(F) — C(Xp) , h: C(F) = C(CF) — C(Xp)
are such that g — h : C(F)—C(XF) is a chain equivalence, with
C(F) = C(C(F)——=C({0}))us1 ,
C(Xrp) = C(C(Xp)—C([0,1]))s1

the reduced chain complexes of F' and Xp. (If X is finitely dominated, e.g. if
p: X——81 is the projection of a fibre bundle, and F' ~ Xp ~ X, then g, h
are chain equivalences with g='h ~ ¢ : C(F)——C(F).) The chain map

f=1(g—-h7Y=h) : D =CF)— D = C(F)

is such that
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E ~ C(1—f+zf:Dlz,z2 ' |—Dl[z,27'])
as in 17.2. The abelian groups defined by
L, = H,.(D)/torsion (r>1)

are f.g. free, with
Q@Z Lr - Hr(DaQ) .

Let
P = {p(z)|p(1) = +1} C Z[z,2z7'] .

The Alexander polynomials of E are given by
A(z) = det(l— f+zf : L[z]—Ly[2]) e P (r>1)

and the P-primary torsion is given by

o0

p(E) = Y (=)L, f] € Ki(Z[z,27"), P) = Endo(Z)/{(Z,0),(Z,1)}

r=1

with P = {p(z) € Z[z,27] | p(1) = £1 € Z}. The isomorphism of 17.7
Ki(Z[z,27',P) = W(2) = W(2)/{(1-2)}

sends the P-primary torsion 7p(E) to the Reidemeister torsion (16.5)

A(X) = ﬁ A1 —2))"

= ﬁ det(1 — zf : L[z]—L,[2])7)"

= ﬁ det(1 — zf : Dp[z]—sD,[2)) )" e W(Z) ,

which is sent by the injection W (Z) C W(Q) to

AX;Q) = ] det(l = 2f : Ho(X;Q)[s]—H(X;Q)[2]) )

r=1
eW(Q = (Q(=)*/Q")/{(1-2)}.

(ii) If k : S™ C S™*2 is an n-knot with exterior
X = cl.(S"TA\k(S™) x D?)
then any representative p : X —=S" of the generator
1e[X,8' = H'(X) = 2

is a homology equivalence, so that (i) applies, with F"*1 = p~1(pt.) C S"F2
a Seifert surface. O



18. K-theory of Dedekind rings

The construction of Reidemeister torsion using relative K-groups in Chap. 16
is now combined with the algebraic K-theory exact sequence for a Dedekind
ring A. In particular, the torsion projective class of a f.g. free A-module chain
complex C' is expressed in terms of the torsion of the homology A-modules
H,.(C) and the maximal ideal structure of A. The corresponding algebraic
L-theoretic expression for a chain complex with Poincaré duality will be used
in Chaps. 3942 in the computation of the high-dimensional knot cobordism
groups C,.

Let A be a Dedekind ring. Write the quotient field of A as
F =S4,
with S = A\{0}.

Remark 18.1 The following properties of a Dedekind ring A are well-known
— see e.g. Milnor [199].
(i) An ideal class of A is an equivalence class of ideals J < A, with

J~3if 2J = yg for some z,y € A .

The ideal class group C(A) is the set of ideal classes of A, with the multipli-
cation of ideals as the abelian group law. Every ideal is a product of maximal
ideals (= non-zero prime ideals for Dedekind A), so that the ideal class group
is generated by the ideal classes of maximal ideals. For every P € max(A)
there exist r € P, Q € max(A) such that

(r) = PQ<A,
with generators p1,ps € P and ¢1,¢2 € Q such that

P1g1 +Pp2ge = r€A.

Define

a:plCIl,b:pqu,c:pl(DeA

such that
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The projections

1— —
p:(a b ),1—p:( “ b):A@A—>A@A
c 1—a —c a

are such that there are defined A-module isomorphisms

~

im(p) — P p(z,y) — prz+p2y
m(l—p) —* Q3 (1-p)(e.y) — @+ gy -
Thus P is a f.g. projective A-module, with an A-module isomorphism
PoQ = A A.

Moreover, if F' = (A\{0})7!A is the quotient field of A, there is defined an
A-module isomorphism

Qi{xeF\x?QA};qH

q
.
For a principal ideal P = (r) take Q = A, (p1,p2) = (,0), (¢1,92) = (1,0),

so that
1 0 0 0
b (0 0)’ p (0 1> eA— A9

with an A-module isomorphism
A— Pz —rx.

(ii) Every f.g. A-module M has homological dimension 1, with a f.g. projective
A-module resolution of length < 1

0O—P —FP —M—0,

and M is isomorphic to the direct sum of a finite number of copies of A,
A/Pk (P € max(A), k > 1) and possibly also a single Q € max(A). M is
projective if there are no summands of type A/P*. M is S-torsion if there
are no summands of type A, Q. The ideal class group of A is isomorphic to
the reduced projective class group of A, with an isomorphism

C(A) — Ko(4); [P] — (7]
The category of (A, S)-modules is
H(A4,S) = {f.g. S-torsion A-modules} ,

and there is defined an isomorphism
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Zmax(A)] — Ki(A,8) = Ko(H(A,S)) ;
Zn?[f})] — Z(signn?)[(A/fP)‘”'Pq = Z(signng;)[A/(f]DIMI)] .
P P

P

The ideal class group fits into an exact sequence
F* — Z[max(A)] — C(A) — 0
with
Zmax(A)] — C(A) ; m[P] — [P"],
F* — Ko(H(A,5)) = Zmax(A)] ; a/s — [A/(a)] = [4/(s)] .

(iii) For each P € max(A) let H (A, P>°) be the full subcategory of H (A, S)
consisting of the P-primary f.g. torsion A-modules. Let 7 € P\P? be a uni-
formizer, and define the multiplicative subset

P = {rF|k>0}cA.
The localization (P>)~1A = A[1/x] fits into a cartesian square

A—— Ali/x]

]

Ap —F

with Ap = (A\P)~LA the local ring of A at P. The following conditions on
an (A, S)-module M are equivalent :

a) M is P-primary, i.e. an (A4, P>°)-module,
b) M[l/x] = 0,

c) M=A» 24 M,

d) the annihilator of M is a power of P

(
(
(
(

ann(M) = {a€ Alax=0¢€ M forall z € M} = PF
for some k > 0.

(iv) The ring of algebraic integers A in an algebraic number field F is a
Dedekind ring with finite ideal class group C'(A) = Ky(A). O

Proposition 18.2 Let A be a Dedekind ring, and let P < A be a mazimal
ideal with uniformizer m.
(i) The relative K-groups in the localization exact sequence

. — Ky (A) — K, (A[l/7]) — K (A, P%°) — K,,_1(A) — ...

are such that
K. (A,P*) = K. 1(A/P),
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with A/P the residue class field.
(ii) Every (A, P>°)-module M has a direct sum decomposition

M:ZMk

k=1

such that ann (My) = P* and My, is a f.g. free A/P*-module. The P-primary
class invariant of M is given by

[M] =) dimyp(PTM/PTHM)
j=0

> kdimy pe (M) € Ki(A,P°) = Ko(A/P) = Z.

k=1

(iil) The projective class [C] € Ko(A) of a finite f.g. projective A-module chain
complex C with P-primary homology H.(C) is the image of the P> -torsion
class invariant

oo

x2(C) = D () [HAO)p € K1(A,P) = Ko(A/P) = Z.

Proof Localization at P defines an isomorphism of exact categories
H(A,P®) — H(Ap,P®); M — M = Ap @4 M ,

allowing every f.g. P-primary A-module M to be regarded as a module over
the local ring Ap. Every f.g. projective module over a local ring is free, and
matrices can be diagonalized, so that M has a f.g. free Ap-module resolution

d
0— A — A5 — M — 0

with

™ 0 0

0 a2 ... 0

d = . . . : : g — A%

0 0 ... 7tn
for some iq,49,...,4, > 1. Thus M has a direct sum decomposition of the
form -

M =Y M,
k=1

with ann (M},) = P*¥ and M}, a f.g. free A/P¥-module. Every (A, P>)-module
M has a finite filtration

{0} = PPMcP*'Mc...cPMcM
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such that the successive quotients PJ M /PI+1 M are finite dimensional vector
spaces over A/P, with

dim g/ (PTM/PIHM) = Z dim g/ (P7 My /P M)
k=j+1

> dimy pe(My)
k=j+1
The embedding
P(A/P) — H(A,P*); My — M;
induces devissage isomorphisms in algebraic K-theory, with
K. (A P®) = K, 1(A/P)
(Bass [13, pp. 405,702] for * = 1, Quillen [225, p. 105] in general). O

Proposition 18.3 Given a Dedekind ring A and a subset J C max(A) let P;
be the mazimal ideal indexed by j € J, with uniformizer m; € P;, and define
the multiplicative subset

_ k1 ko km
= {m'my* ...

kay...,knm >1}CA.

(i) The relative terms in the algebraic K -theory localization exact sequence
c = Ku(A) — K (S71A) — Kn(A,S)) — Kuo1(A) — ...

are such that

Ku(A,8)) = Y. Kaoa(A/P) (n>17).

jeJ

(ii) An S;lA-contmctz'ble finite f.g. projective A-module chain complex C' has
an Sj-torsion class invariant

ZXJ EKlASJ ZK@ A/fp = Z[J],

jeJ jeJ
with
X;(C) = xo,(H(C)p,) € K1(A,P]°) = Ko(A/P;) = Z

the P5°-torsion class invariant. The projective class of C' is the image of the
S j-torsion class invariant

Cl = > x;(C) €im(d Ki(A,P)—Ko(A)) .

Jje€J JjeJ
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(iii) For an S;lA-contmctible finite f.g. projective A-module chain complex
C with [C] =0 € Ko(A) a choice of round finite structure on C determines
a lift of x7(C) € K1(A,Sy) to 7(S;'C) € K1(S;'A), so that as in 16.3 the

Reidemeister torsion of C is given by
A(C) = [7(87'0)] = xu(O)
€ coker(K1(A)—K1(S;'A)) = ker(Ki(A4,S;)—Ko(A)) .
Proof (i) Every (A, Sy)-module M has a P-primary decomposition

= Y Ay, @a M,
jedJ
so that
H (A, Sy) H]HI (4,9%)
jeJ
K.(A,S;) = K. 1(H(A,S)) = Y K a(APP) = Y K. 1(A/P;).
JjeJ jeJ

The relative K-groups K, (A4, S;) are such that

K.(AS)) = K. 1(H(A,S)) = Y K. 1(A/P;) .

JjeJ
(ii)+(iii) Apply 18.2 at each of the maximal ideals P; <A (j € J), summing
all the contributions. |

Example 18.4 In the maximal case J = max(A) the localization
S;TA = (A\{oh)'A = F
is the quotient field of A, and the localization exact sequence is
K (A) — Kn(F)— Y Ky 1(A/P) — K 1(A)— ...

Pemax(A)
O

Proposition 18.5 Let A be a Dedekind ring, and let Ta C Alz] be the
multiplicative subset of monic polynomials

d
= Zajzj € Alz] (ag=1).

The reverse multiplicative subset Ty C Alz] consists of the polynomials

d
p(z) = Zﬁjzj € Alz]
j=0

with constant coefficient ag = 1 € A (i.e. the reverse polynomials).
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(i) The localization Ty ' Alz] is a Dedekind ring with
Knp1(ThA[2]) = Knp(Al2]) © End,(A)
Ko (T AlZ]) = Kog1(A) ® End,,(A) .

(ii) For any multiplicative subset S C A the exact functor

S~ . End(A) — End™(S7'A4) ; (P, f) — S™YP, f)

is an embedding of the endomorphism category of A as a subcategory of the
Ta-primary endomorphism category of ST1A. An object (Q, g) in End(S—tA)
is isomorphic to STY(P, f) for an object (P, f) in End(A) if and only if [Q] €
im(Ko(A)—Ko(S™1A)) and (Q, g) is Ta-primary, i.e. such that Q = S™1P
for some f.g. projective A-module and

ch.(Q,g) € Alz] € ST'A[z] .

The localization map of reduced endomorphism class groups
— T
S~ : Endg(A) —> End, " (S7'4) ; [P, f] — SYP, f]

is an isomorphism.
Proof (i) See Lam [142,1V.1.3] for a proof that Ty ' A[z] is a Dedekind ring.
The expressions for K. (T A[2]), K*(TglA[z]) are given by 12.13, 12.20.
(ii) The characteristic polynomial of an object (P, f) in End(A) is a monic
polynomial p(z) = ch,(P,f) € Ta such that p(f) = 0 (11.12), so that
S—1(P, f) is an object in End™* (S~ A).

Conversely, given an object (Q,g) in End™*(S~1A) let p(z) € Ta be
such that p(g) = 0 : Q—Q. For any f.g. projective A-module L such that
Q = S7'L define a g-invariant A-submodule containing L

P="L+gL)+...+¢"(L)cQ = S7'L

and let f = g| : P—P. Now P is a f.g. A-module which is torsion-free,
and thus f.g. projective, so that (P, f) is an object in End(A) such that

po T
S7Y(P, f) = (Q, g). The localization map S~! : EndO(A)—>EndOA(S_1A)
is an isomorphism by 14.16, with inverse given by

Budy " (§714) — Endo(A) ; [@.9] — [P.f] 0
Remark 18.6 The localization maps in reduced endomorphism K-theory
S1 : End.(A) — End.(S~1A)
are not isomorphisms in general. The localization exact sequence of 18.2
- K (T3 AL — Koa (ST T AR) — Ko (T3 AL S)

— Ko (T A[2]) — ...



186 18. K-theory of Dedekind rings

is a direct sum of the localization exact sequences
. Kn1(Al2]) — Knp1(S7YA[2]) — K (Afz],S)
— Kp(4z])) — ...,
L Kn(A) — Kn(ST'A) — @ Kaoi(4/PA)
Pemaxg(A)
— K, 1(A) — ...
— P —
. — End,(4) — End, (S7'4) — @  End,_1(4/PA)
Pemaxg(A)
- ﬂln_l(A) e
with maxg(A) C max(A) the set of maximal ideals P < A with uniformizers
7w € P such that m € S. In general, End,(A/PA) # 0. For example, if * = 0,

A=17,5=7\{0} and P = (p) then Endo(Z,) = W(Z,) # 0 by 14.8,14.12.
0



19. K-theory of function fields

The computation of the knot cobordism groups C, in Chaps. 40-42 will make
use of the algebraic K- and L-theory of the function field F(z) of a field F.
The function field is the quotient field of F'[z], which is a Dedekind ring. The
results of Chap. 18 are now specialized to describe the K-theory of F(z) —
see Chap. 39 for the L-theory of F'(z).

The polynomial extension of a field F is a principal ideal domain F[z],
and hence a Dedekind ring with quotient the function field

STIF[z] = F(2),

where S = F[z]\{0}. The algebraic K-theory localization exact sequence
breaks up into split exact sequences

0 — Kn(Flz]) — Kn(F(2)) — Kn(F[2],5) — 0
with

K, (F[2],5) = End, 1 (F) = @ Knua(F[2]/P) .
Pemax(F[z])

The maximal ideals of F[z] are the principal ideals
P = (p(2)) < Fl7]

generated by the irreducible monic polynomials p(z) € M(F') (4.9), allowing
the identification
max(F[z]) = M(F) .

For any such P there is defined a multiplicative subset
P> = {p(z)¥|k >0} C F[z]
such that the localization
(P*)7'Fl2] = Flzp(2)7']

fits into a cartesian square
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Flz] —— Flz,p(2)™"]

|

Flz]pz) —— F(2)

with F[2](,(2)) the local ring of F[z] at P, obtained by inverting all the polyno-
mials coprime to p(z). An endomorphism f : V—V of a finite dimensional
F-vector space V is P-primary in the sense of 12.5 if the induced F[z, p(z) -
module endomorphism

2= [ Vizp() ] — Viz,p(2) 7]
is an isomorphism. As in 12.5 adopt the usual terminology, calling such en-
domorphisms (V, f) P-primary.

Proposition 19.1 The following conditions on an endomorphism f : V—V
of a finite dimensional F-vector space V are equivalent :

(i) (V. f) is P-primary,
(ii) ch.(V, f) = p(2)* for some k > 1,
(iii) p(f)* =0: V—=V for some k > 1. O

Similarly for the Laurent polynomial extension F[z,27!], and automor-
phism K-theory Aut,(F), with

max(F[z,271) = ME)\{(2)}
and P-primary automorphisms.

Proposition 19.2 (i) The endomorphism category of a field F is the disjoint
union of the (p(2))-primary endomorphism categories of F

End(F) = J[ End?®7(F).
p(z)EM(F)

The endomorphism K -groups are direct sums of the ordinary K -groups of the
residue class fields F[z]/(p(2))

End.(F) = Y End?®7(F)
p(x)EM(F)

= Y K(FEE)

p(z)EM(F)
(ii) The automorphism category of a field F is the disjoint union
Aut(F) = H Aut?® ™ (F)
p(2)#2€M(F)

= [T  End?®7(F).
p(2)£2EM(F)
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The automorphism K-groups are direct sums
Aut,(F) = End,(F)
= Y AT (F)
p(z)#zEM(F)

- Y KFRGE) .

p(2)#zEM(F)
(iii) The algebraic K-groups of the function field F(z) are such that
K. (F(2)) = K.(F[2]) ® End.1(F)
= K.(F[z,27']) ® Aut,_1(F)
= K.(F)® K. 1(F)® Aut._1(F) .

Proof (i) Let S C F[z] be the multiplicative subset consisting of the monic
polynomials, so that S™'F[z] = F(z). An (F[z],S)-module is a finite di-
mensional F-vector space V' together with an endomorphism f: V—V, so
that

H(F[z],S) = End(F) .

Factorize the characteristic polynomial of (V, f) as a product
ch,(V, f) = det(z — f: V[z]—V][z])

k
= Hpj(z)mj €S CFlz] (mj>0)

j=1

of powers of distinct irreducible monic polynomials p;(z) € M(F'). The poly-
nomials

9i(2) = p1(2)™ ...pj—1(2)" pipr(2)M L pR(2)™ € FZ]

are such that there exist a1(z),a2(2),...,ar(z) € F|z] with

k
Y aj(2)gi(z) = 1€F.
j=1

The subspaces
Vi = a;(fg;(HV)CSV
are such that there is a direct sum decomposition
k
V.f) = P f)
j=1

with (Vj, f;) (p;(2))-primary, and
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ch.(Vj, f;) = pj(2)™ € Flz] .

The expression of S as a product

s= JI »@&>

p(z)EM(F)
of the coprime multiplicative subsets
p(2)* = {p(2)" |k > 0} C F2]
thus determines identifications
End(F) = H(FIz],S)
= J] HEELp:)>™) = ][] Ead?®7(F).

p(z)eM(F) p(z)eM(F)

Let P(F) be the additive category of finite dimensional F-vector spaces. The
inclusion

P(F[2]/(p(2))) — End”?™(F) ; F[2]/(p(2)) — (F[2]/(p(2)), )
induces isomorphisms in algebraic K-theory by devissage (18.2), so that
End?®”(F) = K.(F[2]/(p(2))) -

The splitting of the algebraic K-theory localization exact sequence is the
special case A = F of 10.14 (ii).
(ii)+(iii) Immediate from (i). O

Proposition 19.3 (i) The unique factorization of every non-zero polynomial

p(z) € F[7]

= aHpJ )™ € Flzl (m; > 0)

as a product of a unit a € F* and powers of distinct irreducible monic poly-
nomials p;(z) € M(F') determines an isomorphism

~ k
Ki(F(z)) = F(2)* — F*@ZM(F)]; 7(p(2)) — (G,ij[pj(Z)D :

(ii) For any endomorphism f : V—V of a finite dimensional F-vector space
V' the unique factorization in F[z] of the characteristic polynomial

Hpj )™ € FI2] (m; > 0)

determines an isomorphism
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N k
Endo(F) — ZM(F)] 5 [V f] — > mylp(2)] 4

j=1
which is compatible with the isomorphism in (1) via the injection
Endg(F) — K1 (F(2)); [V, f] — 7z = f: V(2)—V(2)) .

(iii) For any automorphism [ : V—=V of a finite dimensional F -vector space
V' the unique factorization in F|z,27Y] of ch,(V, f) determines an isomor-
phism
- k
Auto(F) — ZIMEN)] 3 Vo] —> D mylp; (=)
j=1
as in (ii).
Proof These are special cases of 19.2. ]
Example 19.4 (i) For an algebraically closed field F' (e.g. C)

M(F) = {#—alacF} 2 F

so that the isomorphism of 19.3 (ii) can be written as

N k
Endo(F) — Z[F]; [V, f] — Y mj);

Jj=1

sending an endomorphism f : V——V of a finite dimensional F-vector space
V' to the linear combination of the distinct eigenvalues A1, Ao,..., A\ € F
counted with their multiplicities mi,ms, ..., mg, such that

k

cho(V, f) = [](z= )™ € Fl2] .

j=1

This can also be viewed as the devissage isomorphism

K\(F[,8) = Endo(F) — 3 Ko(F[2l/(z —a)) = ZIF] ;

with S = F[2]\{0} C F[z] and S~'F[z] = F(z). The near-projections (12.22)

pi(f) = JIGF =)™/ =A™+ V—V 1<j<k)
i#j
are such that

(pi () A =pi(f)))™ =0 :V—V.
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The projection
pi(Hew = i(H™ + L —p; (™) p;(H)™ : V—V

has image the (z — \;)-primary component of the (F'[z], S)-torsion module V'
V; = im(p;j(flw) = ker((f — ;)™ : V—V)
= Fl2]z—x;) ®F[ V

with z acting by f : V—V on V and by the restriction f; = f| : V;—V;
on V. As in Lam, Ranicki and Smith [141] the Jordan normal form decom-

position is given by
k
= D5y

Jj=1

with f; — A; : V;——=V} nilpotent for ¢ = j and an automorphism for ¢ # j.
(ii) For F = R there is one degree 1 irreducible monic polynomial z—«a € R[z]
for each o € R, and one degree 2 irreducible monic polynomial (z—w)(z—w) €
R[z] for each unordered pair {w,@} of distinct complex conjugates in C, so
that

max(R[z]) = C/~ (~ = complex conjugation)

(cf. 14.9). The isomorphism of 19.3 (i) is given by

Endo(R) — ZIC/~] 5 [V f] — S mylag] + 3 il
j=1 k=1

with o; € R, wy € C\R, m;,n, > 0 such that

p

ch, (V) f) = H(z—aJ H (z —wi)(z —wg)) """ € R[] .

(iii) If F is a finite field with ¢ elements

with M(g,n) the finite set of irreducible monic polynomials p; ,(z) € F[z] of
degree n. Let M (g,n) be the number of elements in M(g, n). The cyclotomic

identity
M (q,n)
1—gqz H (1 - z”)

n=1

and the formula

n = 3wt

d|n
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are due to Gauss and MacMahon, with p the Mobius function

1 ifd=1
p(d) = § (=1)" if d is a product of r distinct primes
0 otherwise .

The isomorphism of 19.3 (ii) is given by

-~ 00 oo M(q,n)
Endo(F) — ZIM(F)] = > ZM@W [V f] — > Y mjalpjn(2)]
n=1 n=1 j=1
with )
oo M(gqm
Chz(V7f> = H H pj,n(z)mjyn (mj,n ZO) .
n=1 j=1

See Dress and Siebeneicher [61], [62] for the connections between the numbers
M (g,n) and various combinatorial facts. O

The inclusion F[z]——F(z) has the property that a finite f.g. free F[z]-
module chain complex E7 is F-finitely dominated if and only if ET is F(2)-
contractible (8.5 (i)), if and only if dimp H,(E™') < co. Similarly, the inclusion
F[z,271]—=F(2) has the property that a finite f.g. free F|[z,27!]-module
chain complex E is F-finitely dominated if and only if E is F'(z)-contractible
(8.5 (ii)), if and only if dimpH,.(E) < co.

The general definition of Reidemeister torsion (16.1) is now specialized to
function fields.

Definition 19.5 (i) The Reidemeister torsion of an F-finitely dominated
finite f.g. free F[z]-module chain complex E7 is the torsion

o0

AT(ET) = 7(F(2) @ EY) = ) (=) [HAE),(]

€ coker(Kl(F[z])—>K1(F(z))) = Endy(F) = ZM(F)],
which is independent of the choice of basis for Et used in the definition.

(ii) The Reidemeister torsion of an F-finitely dominated finite f.g. free
F|z,271]-module chain complex F is the torsion

A(E) = T<F(Z) ®F[z,z*1] E) = Z<_)T[HT(E>7<]

€ coker (K1 (Flz,z ') — K1 (F(2))) = Auto(F) = ZM(F)\{z})],
which is independent of the choice of basis for F used in the definition. [

The projection
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coker (K1 (F[z])— K1 (F(z))) — coker(K;(F[z, 27 '])— K1 (F(z)))
sends AT(ET) to A(E) with E = Flz, 27 @pp,) ET.
Example 19.6 Given a polynomial p(z) € F|z], define
ET = €(p(z) : F[z]—F[2]) ,
E = C(p(2): Flz,z7'|—F[z,271]) .

If p(2) # 0 then ET and E are F-finitely dominated, with Reidemeister
torsions

AT(ET) = [Ho(ET),(] = [F[2]/(p(2)),¢] € Endo(F) ,
A(E) = [Ho(E),¢] = [Flz,271/(p(2)), (] € Auto(F) .
See 19.13 for further details. O

Example 19.7 Let X be a finite CW complex with an infinite cyclic cover
X such that the F-vector space H,(X;F) is finite dimensional, so that the
F-coefficient cellular chain complex C(X; F) is an F-finitely dominated fi-
nite f.g. free F'[z, 27 !]-module chain complex. The F-coefficient Reidemeister
torsion of X considered by Milnor [194],[195] is

A(X;F) = A(C(X;F)) € coker (K (F[z,27 ') — K (F(2)) . O

The K-theoretic properties of the Reidemeister torsion are now refor-
mulated in terms of the computation of K;(S™1F[z]) for the localizations
S~1F[z] C F(z) inverting various multiplicative subsets S C F|[z].

Terminology 19.8 Given a subset J C M(F) let {p;(z) € F[z]|j € J}
be the corresponding collection of irreducible monic polynomials, and let
Sy C F[z] be the multiplicative subset of all the finite products

p(2) = pj(2)" Py ()™ ... pj, (2)™ € Fl2]
for ji,j2,--.,Jk € Jy;m1,ma,...,my > 0. For each j € J write Sg;y as Sy,
and let
Fy = Flz]/(p;(2))

be the residue class field of F[z]. Also, let

Ty = Swyg C Fle],
so that Sy, Ty C F|z] are coprime multiplicative subsets with

(S,Ty)"'Flz] = F(2)

and there is defined a cartesian square of rings
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Flz] — S;'F[2]

L

T;'Flz] — F(z) O

Proposition 19.9 (i) For any subset J C M(F) the algebraic K-theory
localization exact sequence for F|z|— S, F[2]
2
. — K (F[2]) — Ko (S7'F[2]) — K, (F[2],5,)

— Ko 1(Fl2)) — ...

breaks up into split exact sequences

0 — K, (F[2]) — K.(S;'F[2]) 2 K,.(F[z],S;) — 0 (n€Z),

with
K, (F[2],S;) = End3’ (F)

= ZEndfj_l(F) = ZKTL—I(Fj)'

JjeJ jeJ
(ii) The Sj-primary endomorphism class group of F is such that
End}’(F) = Zlmax(T;'F[2))] = Z[J] .

Proof (i) Every finite dimensional F}j-vector space V; is an (F[z], S;)-module,
and the functors

P(Fy) — H(F[2],8;); V; — Vi,

[[PE) — H(F[],S) 5 {Vilje Tt — DV
jed jed

induce isomorphisms in algebraic K-theory, by P-primary decomposition and
devissage (as in 19.4), so that

K.(F[2],S5) = > K.(F[2],8;) = Y K. 1(F).
jeJ JjeJ
There is defined an isomorphism of exact categories
H(F[2), S5) — End™ (F) 5 Vi — (V1,0) ,

so that
K.(Fl2],S1) = Kioa(H(F[2],S,))
K._1(End®’(F)) = End?’ (F) .

(i) By (i)
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Endj’(F) = Y Ko(F;) = Z[J],
jed
with the generator [F;] = 1 € Ko(F;) = Z corresponding to the endomor-

phism
Fy — Fj x — 2o
¢

of the finite dimensional F-vector space F; with characteristic polynomial
ch.(Fj,¢) = p;(z) €55 C Flz] .

An endomorphism f : V——V of a finite dimensional F-vector space is S ;-
primary if and only if ch,(V, f) € S, in which case the factorization

k
) = [T e s,

determines the endomorphism class
] = > mylpj(2)] € Endg” (F) = Z[J] . O

Example 19.10 (i) For any irreducible monic polynomial p(z) € F[z] let
J ={(p(2))} € M(F). The multiplicative subsets

Sy = p(x)* = {p(x)"|k >0},

T; = {q(2)]q(z) monic and coprime to p(z)} C F[z]
are such that

S7UF[2] = Flz,p(z)~1] , T;'Fl2] = Fl2lpz))

Kn(Flz,p(2)7"]) = Kn(F[z]) ® (F[Z],p(Z)OO)

End!7(F) = K.(F[2]/(p(2))) -
The generator of
K2 (FI2),p(2)) = Ko(Fl/(0(2)) =
is represented by the (p(z))-primary endomorphism (F[z]/(p(z)), (), and
Endf™" (F) = Z[max(F[:] )] = ZIME)\@(2))] -
If p(z) # = then
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End?®” (F) = Aut?®™(F) |
End?®™ (F) = Aut?®™(F) = K.(F[2]/(p(2))) ,
If p(z) = z then
End® ™ (F) = Nil(F) ,
End®™ (F) = Nil,(F) = K,(F).

(i) For J = M(F) the set {p;(z)|j € J} consists of all the irreducible monic
polynomials, and S; C F|[z] is the multiplicative subset of all the monic
polynomials. The localization is the quotient field

STIFz] = F(2)
and 19.9 gives
K.(F[2],8,) = End.(F) = > K. 1(Fj)

jeJ
K.(F(2)) = K.(F) &> K.
jeJ
In particular, for x =1
Kyi(Flz],S5) = Endo(F) = W(F) = ZM(F)],
Ki(F(2)) = F* @ ZM(F)] = ()'

For the completion FJ[[z]]
max(F[[2]]) = {(2)}, Ki(F[[2]]) = Ki(F) & W(F),
Ky (Fll2]). 2) = Ki(F[2],Z) = Nilg(F) = Ko(F)
so that
Ei(F((2) = Ki(P[[2])) @ Ki(F[[2]), 2)
= Ki(F) & Ko(F) e W(F) = F((2))*,

with
K\(F(z)) = F(2)* — Ki(F(())) = F((2))*®

the evident inclusion.
(iii) For n = 1 and any subset J C M(F') 19.9 gives:

Ki(S7'F[2]) = {p(2)/a(2) € F(2)* |q(2) € Ss}
= Ki(F[z]) © Ki(F[2], 5) ,
Ki(F[2],S;) = End§’(F)

= Y Ki(F[2],S;) = Y Ko(Fy) = Z[J],

JjeJ jeJ
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with an isomorphism
Z]J = Endj’ (F ijj — Zm]
jeJ JjeJ
The boundary map 0y : K:1(S; "' F[z])— K1 (F[z], S;) is split by
Ki(F[z],85) = Z[J] — Kl(S_lF[z]) ;

ijj — T Hp] 2 ST P[] —S7 F[2])
JjeJ jeJ

with
3+ : Kl(Sle[Z]) — Kl(F[Z],SJ) = Z[J] ;

T(aHpj(z)mj : ST F[2]— S, Flz]) — Zm]]
JjeJ jeJ

If (z) € J then the reverse characteristic polynomial defines an isomorphism
ch, : Endj’(F) = Z[J] — Z& WS/ (F) ;

> omij— (mey, [ Bi2)™)

JjeJ JEIN{(=)}

with W57 (F) the S;-primary Witt vector group (14.21). If () ¢ J the reverse
characteristic polynomial defines an isomorphism

ch, : Autd’(F) = EndS/(F) = Z[J] — WETSs(F)

ijj — Hﬁj(z)mf . 0

jed jeJ

Proposition 19.11 (i) The Reidemeister torsion of an F-finitely dominated
finite f.g. free F[z]-module chain complex E* is given by

k
ATE) = (mo. []s(2)™
€ coker (K (F[))— K1 (F(2)) = Z@W(F)

with p;(2) the irreducible monic polynomials # z appearing in the torsion

k
T(F(2) @pp EY) = az™ [ pi(2)™

€K (F(z)) = F(2)* (a€eF*,m; €Z).
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(ii) The Reidemeister torsion of an F-finitely dominated finite f.g. free
F[z,z7Y-module chain complex E is given by

k
A(E) = Hﬁj(z)"” € coker(Kl(F[z7z_l])—>K1(F(z))) = W(F),

j=1

with p;j(z) the irreducible monic polynomials appearing in the torsion

T(F(2) ®p[s,-1) E) = aHpJ mie Ki(F(z) = F(2)*

(a € F*,m; € Z,po(z) =zpo(z) =1).
Proof Let
J = M=)} ' = M(F),

so that J’ indexes all the irreducible monic polynomials, and S = S C F[z]
is such that
STIF[z] = F(2).

In this case 19.10 gives
(i) coker (K1 (F[z])—K1(F(z))) = Endo(F)
= Ky(F)eW(F) = Z&Z[J],
(ii) coker(K:(F[z,z'|)— K1 (F(2))) = Auto(F)
= W(F) = Z[J] . O

Proposition 19.12 (i) The Reidemeister torsion of an F-finitely dominated
finite f.g. free F[z]-module chain complex E* is given by

oo

ANty = (Y- nr,Hch ),O) )

r=0
€ coker(Kl(F[z])—>K1(F(z))) = ZaW(F),

with
n, = dimp(ker(( : H,,(E"')—)HT(EJ“)))

= dimpH,(ET) — dimpH,(F[z,2z | ®@p EY) € Z .

(ii) The Reidemeister torsion of an F-finitely dominated finite f.g. free
F[z,z7Y-module chain complex E is given by

€ coker (K1 (Flz,27 ') — K1 (F(2))) = W(F).
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Proof This is just an invariant formulation of 19.11. O

The expression in 19.12 (ii) of the Reidemeister torsion A(E) as an alter-
nating product of characteristic polynomials was first obtained in Assertion
7 of Milnor [195].

Example 19.13 (i) Let £ be the 1-dimensional F(z)-contractible f.g. free
F[z]-module chain complex defined by

ET = C(p(z) : Flz]|—F[z2])

for a polynomial

m

p(z) = z"ZajzjeF[z] (ag,am #0 € F,n > 0) .
7=0

The Reidemeister torsion of Et is given by

ANEY) = (n,cho(F[2]/(p(2)), Q)

m
= (n, (ao)fl(z am—;2")) € Z® W(F) .
j=0
(ii) Let E be the 1-dimensional F(z)-contractible f.g. free F[z, z~!]-module
chain complex defined by
B = €p(s) : Flsyo—F[z,27Y))

for a polynomial
p(z) = Z"Zajzj € Flz,27Y (ag,am #0€ F,n € 7).
j=0

The Reidemeister torsion of E is given by

A(E) = cho(Flz,271/(p(2)),¢) = (a0) 'O am—;z’) e W(F). O
j=0

Example 19.14 Let J = M(F'), as in 19.10 (ii). Given an element w € F' let

Jo = {p(z) e M(F) [p(w) #0€ F} C J,
Se = Sy, = {g9(z) €Sylqw)#£0e F} CS.

(i) The local ring of F[z] at w € F' is the localization

Sa'Flzl = {p(2)/a(z) € F(2) | q(w) # 0} .

The evaluation map
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o0 o0
T ¢ Flz] — F; Zajzj — Zajw]
J=0 J=0

has a canonical factorization

T

7w : Flz2] — S;'F[2] — F,

with
7w ¢ SSUF[z) — F ;5 p(2)/q(2) — p(w)/q(w)

such that
ker(S; 1 F[z]—F) = {p(2)/q(2) € F(2)|q(w) # 0,p(w) = 0}

is the unique maximal ideal of S F[z].
The following conditions on a finite f.g. free F[z]-module chain complex E*
are equivalent :

(a) ET is F-contractible via 7,
(b) E* is S F[z]-contractible,
(c) the reverse characteristic polynomials

cr(2) = i (HA(EY),Q) € P[] (r>0)

are such that ¢, (w) #0 € F.

By 19.9 there is defined an isomorphism
Ki(S3'FE) — F* & 2] ;
T(p(2) : S, Fle]—SS F2]) — (a, ) myj)

J€Jw

(p(z) = a H pj(2)™ €S, C Flz] ,a€ F*).

J€Jw
The evaluation map
Tw @ SGMF[2] — F; 2z — w
induces
7o ¢ Ki(S;UF[2]) — Ki(F) = F*; 7(p(2)) — p(w) .

If ET is a based f.g. free F'[z]-module chain complex which is F-contractible
via 7, the torsion of the induced contractible based f.g. free S F[z]-module
chain complex S;1ET is given by

T(S,IET) = (r(rh), AT(ET))
€ K1(S;1F[Z]) = Kl(F) @Z[Jw} )
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with
T C((—z: ET[z]—ET[z]) — ET

the F[z]-module chain equivalence of 5.15.
(ii) Let w be as in (i), and assume also that w # 0 € F, so that

z€8, , Flz,2"Y1C S;'F[2],
and the projection
oo ] (o)
Tw ¢ Flz,27Y — F Z a;zl —> Z a;w’
Jj=—00 j=—o00
has a canonical factorization
To ¢ Flz,27'] — S;'F[z] — F

with
S, F[z] — F 5 p(2)/a(z) — p(w)/a(w) -

The following conditions on a finite f.g. free F[z, 27 !]-module chain complex
FE are equivalent :

(a) E is F-contractible via 7,
(b) E is S, ! F[z]-contractible,
(c) the characteristic polynomials

ch.(H,(E),¢.) = en(2) € F[Z] (r>0)
are such that ¢,.(w) #0 € F.
The inclusion S ' F[z]—F(z) induces the inclusion
Ki(S;'F[2]) = Ki(F)®Z[J,] — Ki(F(2)) = Ki(F)aZ[J] .

If E is a based f.g. free F[z, 2~ !]-module chain complex which is F-contract-
ible via 7, the torsion of the induced contractible based f.g. free S;1F[z]-
module chain complex S, E is given by

T(S5'E) = (97(E), A(E))
€ K1(S;'Flz]) = Ki(Flz, 27 ') ® Z[J\(2)}]
with
PT(E) = 7(¢":C(1 —2¢"": Blz, 27 |—E[z,27']) — E)
€ K\(F[z,27Y))
the absolute version of the fibering obstruction (3.10). The evaluation map

Tw : SJUFZ] — F; 2 — w
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induces
Ki(S;'F[2]) = Ki(F)®Z[J,] — K\(F) = F*;
(aa Z m]]) —a H pj(w)mj )
JE€EJw JE€Jw

sending

AE) = ) myj e Z[J\(2))]
JETA=)

to the Reidemeister torsion of E with respect to w

Ay = JI witym e Fe
j€J (=)}

as defined by Milnor [194, p. 387] in the case F = R. O

Proposition 19.15 The algebraic mapping torus of a chain map f : C—C
of a finite dimensional F-vector space chain complex C' is an F'-finitely dom-
inated finite f.g. free F|z, 2~ ']-module chain complex

T(f) = €z~ f:Clz, 27 ]—Clz,271)

with Reidemeister torsion
H ch, ( )T e w(F) .
Proof The finite f.g. free F[z]-module chain complex
T(f)" = €(z—f:Clz]—Cl2])
is such that

(HA(T(/)7),¢) = (HA(O),f) , T(f) = Flz.z"@p T(F)F .
Now 19.12 (i) gives the Reidemeister torsion of T'(f)™ to be

ANT(f)T) = (TL?Hcth(Hr(T(f)*),C)(’)T)

- Hch S ezew(F),
with first component
= Y (=) dimp (ker(f. : H.(C)—H,(C))) € Z
r=0

and second component A(T(f)) € W(F). O
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Example 19.16 Let f : X——X be a map, with X a finitely dominated
CW complex. The cellular F|z,z']-module chain complex of the infinite
cyclic cover T(f) of the mapping torus T'(f) is the algebraic mapping torus
of f:C(X; F)—C(X;F)
CT(f)iF) = T(f : C(X; F)—C(X; F))
= C(z—[: C(X; F)[z,27']|—C(X; F)[z,271])

which is F-finitely dominated with Reidemeister torsion
AT Hch H(XF), f) ) e w(F) .
If F' has characteristic 0 this is the Lefschetz (-function of f
AT(f):F) = exp( S L F>z”/n) Cew)
n=1

with
L(f"5F) = Y (=) te(fl s Ho(X: F)——H (X F)) € F (n 1)
r=0
the Lefschetz numbers of the iterates f™ : X ——X. The Lefschetz zeta func-
tion was used by Weil in the study of the fixed points of the iterates of the
Frobenius map on the algebraic variety over the algebraic closure of a finite
field, and by Smale in dynamical systems. |
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20. Algebraic Poincaré complexes

The algebraic K-theory treatment of chain complexes will be extended in
Part Two to algebraic Poincaré complexes, i.e. to algebraic L-theory, and
this will be applied to high-dimensional knots.

An n-dimensional algebraic Poincaré complex over a ring with involution
A is an n-dimensional A-module chain complex E with a chain equivalence
to the n-dual E"~*

E"* ~ F

with either a symmetric or a quadratic structure. See Ranicki [235],[237]
for the algebraic theory of Poincaré complexes. This chapter reviews the
definitions, and the two basic types of cobordism groups of algebraic Poincaré
complexes which occur in applications :

(i) the L-groups L.(A) of quadratic Poincaré complexes over A,

(ii) the I'-groups I, (A—B) of quadratic complexes which are defined
over A and become Poincaré over B, for a morphism of rings with
involution A—B.

The applications of the L-groups to knot theory require many variations of
these types, as well as the symmetric analogues. See Chap. 37 for exam-
ples of actual computations of the L-groups. The computation of the high-
dimensional knot cobordism groups C, is related in Chap. 42 to the L-groups
of algebraic number fields and their rings of integers.

20A. L-groups

Given a ring A let A°? be the opposite ring, the ring with one element a°?
for each element a € A and

a’® + b = (a+b)? , aPb? = (ba)? € AP .
An involution ~: A—— A; a——a is an isomorphism of rings
A— A% a — a”?

such that
a =acA (acA).
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Use the involution on A to define a duality functor
* 1 {A-modules} — {A-modules} ; M — M* = Homy (M, A)

with
AxM* — M*; (a,f) — (x — f(z).a) .

The dual of an A-module morphism f: M——N is the A-module morphism
ffr N — M — (g —>g(f(x))) .

If M is a f.g. projective A-module the natural A-module morphism

is an isomorphism.

Definition 20.1 (i) An e-symmetric form (M, ¢) is a f.g. projective A-module
M together with an A-module morphism

¢ M— M z— (y — éz)(y))
such that ep* = ¢. Equivalently, regard ¢ as a bilinear pairing
¢ MxM— A (z,y) — o(z,y) = o(z)(y)

such that

Plax,by) = bo(z,y)a , ed(y,z) = ¢(z,y) € A
(z,ye M, a,be A).

The form (M, ¢) is nonsingular if ¢ : M——M* is an isomorphism.

(ii) An e-quadratic form (M, 1) is a f.g. projective A-module M together with
an equivalence class of A-module morphisms v : M——M*, subject to the
equivalence relation

Y~ +x—ex™ (x € Homy (M, M¥)) .

The e-symmetrization of (M, 1)) is the e-symmetric form (M, + ep*).
(iii) A sublagrangian of an e-symmetric form (M, ¢) is a direct summand
L € M such that L C LL, with

LY = {we M|o()(L) =0} .
A lagrangian is a sublagrangian L such that
L =L".

Similarly for e-quadratic forms. (]

For an A-module chain complex C write the dual A-modules as

T = (C) (reiz).
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The n-dual of an A-module chain complex C' is the A-module chain complex
C"™* defined by

den—v = (=1)"(de)* : (C"™*), = C" " — (C" %),y = C" "+,
Given an A-module chain complex C' and a central unit € € A such that
e=¢clcA
define the e-transposition involution on C'® 4 C by

T. : Cp@4C; — Cy@4Cp; 20y — (—)Mey®x,

and let
{ W%C = Homz[zz](VV, C ®AaA C)
Wy C = W Rz[22) (C®aC)
with
1-T 14T 1-T

the standard free Z[Zs]-module resolution of Z.
For chain complexes C' which are f.g. projective (as will usually be the
case) there are natural identifications

C®aC = Homu(C*,C),

T. : Homa(C?,Cy) — Homyu(C?,Cp) ;3 ¢ — (—)Pl9" .
¢ € W"C,
¢ € W%Cn

{¢s L CnThs 5
he 1 CTTTS 5 C,

is a collection of A-module morphisms

A chain {

(r7820) )

dp € W*C,,_4

iven b
dw c W%On—l 8 Y

with the boundary {
(do)s = dos + (=) dsd" + (=) H(Ps—1 + (=) Teths—1)
ol 5 O (¢ =0)
(d¢)s = dws + (_)T’(l}sd* + (_)n—s—l(ws+1 + (_)s+1Tews+1)
N O G

e-symmetric

Definition 20.2 (i) The { Q-groups of an A-module chain com-

e-quadratic
Zo-cohomol
plex C' are the 27CONOMOTOEY groups of C' ®4 C
Zo-homology
{Q"(C,e) = H"(Z2;C®4C) = H,(W*C)
Qn(Cie) = Hy(Z2;C®4C) = H,(Wy,C) .



210 20. Algebraic Poincaré complexes

(C,9)
(C)
projective A-module chain complex C' together with a cycle {

¢ €Q"(C,e)
W€ Qn(Ce) .

e-symmetric
Y is a finite f.g.

b€ (W*C),
w S (W%C)n

Such a complex is Poincaré if the

(ii) An n-dimensional { complex over A {

e-quadratic

representing an element {
A-module chain map
{¢0 O — O
A+T)p : C"F — C
is a chain equivalence. O
In the applications, the chain complex C' is usually n-dimensional.

Example 20.3 (i) A 0-dimensional e-symmetric (Poincaré) complex (C, ¢)
with C' 0-dimensional

cC:...—0—Cyh—0— ...

is an e-symmetric form (C°, ¢g) (with ¢g : C°—Cy an isomorphism).
(ii) A 1-dimensional e-symmetric (Poincaré) complex (C,¢) with C' 1-dim-
ensional 4

c:...—0—C —Cy—0— ...

is an e-symmetric formation

(Cl@cl,<(€) 1 >;Cl7im(<¢0> ZCO—>01 @Cl))

b1 d*
that is an e-symmetric form with a lagrangian and a sublagrangian (with the
sublagrangian L = im( ( f;i) )) a lagrangian in the nonsingular case).
Similarly in the e-quadratic case.
See Ranicki [230] for more on forms and formations. O

A chain map f : C——D of f.g. projective A-module chain complexes
induces a Z-module chain map

{f% : WAC — WD 5 ¢ = {¢s} — [P0 = {f¢sf*}
foo + W€ — Wy D3 b = {ths} — fov = {fsf"}
with induced morphisms
{f% 1 Q"(Cre) — Q"(Dse)
fo @ Qn(Cre) — Qn(D;e) .

An A-module chain homotopy ¢ : f ~ f’ : C——D induces a Z-module chain
homotopy
g° o [P % WAC — WD
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with
g%(d))s = gosf" + (_)qf/¢sg* + (_)quSilgTsﬁbsflg*

EW’ Dy 1 = > Homu (D" *H Dy) (s >0, € W"C,) .
q=0

Definition 20.4 (i) A morphism of n-dimensional e-symmetric complexes
(f:x) + (C.d) — (D, 0)
is a chain map f : C—D together with a chain x € W% D, such that
0—f"*(¢) = d(x) e W"D, .
(ii) A homotopy of morphisms of n-dimensional e-symmetric complexes

(g;v) = (f:x) = (f.X) : (C.¢) — (D,0)

is a chain homotopy ¢ : f ~ f' : C—D together with a chain v € W% D,,_,
such that
X' =x = g%(¢)+d(v) e WDy .

Similarly in the e-quadratic case. ]

A morphism of e-symmetric complexes (f,x) : (C,¢)—(D,0) is a ho-
motopy equivalence if and only if f : C——D is a chain equivalence. The
homotopy type of an e-symmetric complex (C, ¢) over A depends only on the
chain homotopy class of C' and the homology class

¢ €Q™(Ce) = H,(WC) .
Similarly in the e-quadratic case.

Example 20.5 (i) Given a CW complex X with universal cover X let C'(X)
of the cellular chain complex of free Z[m (X)]-modules. The symmetric con-
struction of Ranicki [236] is the natural transformation

A Hy(X) — Q"(C(X))

which is obtained by applying H,,(Z ®zx,(x)] —) to the Alexander-Whitney-
Steenrod diagonal chain approximation

Agz 1 C(X) — WHC(X) .

For finite X and any homology class [X] € H,(X) there is thus defined an

n-dimensional symmetric complex (C(X), ¢) over Z[r(X)] with
o = AX]€Q"(C(X))

such that
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do = [X]N— : C(X)"* — C(X) .

By definition, X is an n-dimensional geometric Poincaré complexr with fun-
damental class [X] € H,(X) if and only if (C(X),¢) is an n-dimensional
symmetric Poincaré complex over Z[r1(X)], with ¢g : C(X)"*—C(X) a
chain equivalence.

(ii) An n-dimensional normal space (X,vx,px) is a finite CW complex
together with a spherical fibration vx : X—BSG(k) and a map px :
Stk T(vx) (Quinn [226]). Geometric Poincaré complexes are normal
spaces, with the Spivak normal structure. See Ranicki [236],[237] for the
quadratic construction and its application to the quadratic kernel of a nor-
mal map (f,b) : M——X from an n-dimensional geometric Poincaré com-
plex M to an n-dimensional normal space X. The quadratic kernel is an n-
dimensional quadratic complex (C(f'),v) over Z[r(X)] with f' the Umkehr
Z[m1(X)]-module chain map

*

fo@r L o ~ o)

with C(f') ~ €(f)»~**+L. If X is an n-dimensional geometric Poincaré com-
plex with fundamental class [X] = f.[M] € H,(X) (so that f has degree 1)
then f' can be regarded as a chain map

*

o) ~ oxr L o ~ o)

and (C(f"),%) is an n-dimensional quadratic Poincaré complex over Z[r1(X)],
such that there is defined a homotopy equivalence of n-dimensional symmetric
Poincaré complexes over Z[m (X)])

(C(M), A[M]) = (C(f"),(1+T)p) & (C(X), A[X]) .
See Ranicki [235], [236], [237] for further details. O
Definition 20.6 ([235, Chap. 3], [237, Chap. 1.5])

(i) The relative {e-symmﬁtric g:g: 3

groups of the Z[Zs]-module chain

. Q-groups of an A-module chain
e-quadratic

Zo-cohomology

:C—D th
map f are the { Zo-homology

map
fof : C®RaC — D®aD

with a long exact sequence

QUG T U D) — Q) — QNC ) — ..
. Qn(cﬂe) & Qn(DvG) — Qn(faG) — Qn—l(cae) — .

(ii) An n-dimensional e-symmetric pair over A (f, (d¢,¢)) is a chain map
f : C—D of f.g. projective A-module chain complexes together with a
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cycle representing an element (§¢,¢) € Q™(f,€). Such a pair is Poincaré if
the A-module chain map

d¢o
Gof*
is a chain equivalence. A cobordism of e-symmetric Poincaré complexes (C, ¢),

(C', ¢') is an e-symmetric Poincaré pair ((f /) : Ca&C'—D, (¢, 0B —¢)).
Similarly in the e-quadratic case. ]

oo = (20 ) 0 e

Example 20.7 The constructions of algebraic Poincaré complexes from ge-
ometric Poincaré complexes in 20.4 generalize to pairs. Geometric Poincaré
pairs determine symmetric Poincaré pairs. Likewise, normal maps of geomet-
ric Poincaré pairs determine quadratic Poincaré pairs. O

The terminology of 1.2 is extended to:
Terminology 20.8 The Whitehead group of a ring A is

Ki(A) for arbitrary A
Whi(A) = { K(Blz,271)/{r(2)} if A= Bz,27]
Wh(m) for a group ring A = Z[x].
It should be clear from the context which of the three (inconsistent) defini-
tions is being used. O
(C,9) e-symmetric

Proposition 20.9 Let be an n-dimensional { oin-

e-quadratic

(C,v)
caré complex over A with C' based f.g. free.
(i) The torsion of the complex is given by
{T(C, @) = T(po: C"*—C) e Whi(A)/{7(e)}
T(C,p) = 7(14+ Ty : C"*—C) € Why(A)/{7(e)} .

(ii) The complex is simple if
{T (C,¢) =0
T(C,¢) = 0. 0

The involution on A determines the duality involutions

# 1 Ko(4) — Ko(4) ; [P) — [P7] |
x @ Whi(A) — Why(A); 7(f : M—M) — 7(f* : M*—M~) .

Definition 20.10 Let U C Ky(A) (resp. Why(A)/{r(€)}) be a s-invariant

e-symmetric

subgroup. The n-dimensional U-intermediate L-group of A

by

e-quadratic

. . . . e-symmetric . B
is the cobordism group of n-dimensional Poincaré

e-quadratic
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complexes (C,0) over A (n > 0) which are f.g. projective (resp. based f.g.
free), with

[CleUC I?O(A) (resp. 7(C,0) € U C Why(A)/{7(€)}) . |
. . LY (Ae) . .
Example 20.11 The 0-dimensional L-group LU (A, €) is the Witt group of
0 ) €

e-symmetric { (M, : M—M*)

A, with
(M, 16+ M—s M) over A, wi

nonsingular .
e-quadratic

¢ = ep* : M —> M*
{1/)—&—61[1* M — M

metabolic
an isomorphism. Such a form is { if there exists a lagrangian

hyperbolic
(20.1), in which case
{ (M,¢) = 0€ LY (Ae)
(M,y) = 0€ LY (A e) .

See Ranicki [235] for a more detailed account of the correspondence between
the 0-dimensional algebraic Poincaré cobordism groups and the Witt groups
of forms. |

Proposition 20.12 For U C V there is a Rothenberg-type exact sequence
. — H™(Zo; VIU) — L{ (A e) — L (A€)
— H"(Zy; VIU) — ...
. H" N (Zy; VJU) — LY(A,€) — LY (A,¢)
— H"(Zy; VIU) — ...

with the Tate Zo-cohomology groups defined by

~

H™(Zy:V/U) = {a€V/U|a* = (=) a}/{b+ (=)"b* |be V/U}. O

In the extreme cases U = {0}, Ko(A), Why(A)/{r(e)} the e-symmetric
L-groups L{;(A,€) are denoted by

L%O(A)(A,e) = Ly(Ae)

Liyciony A = Livnyay/iroy(die) = Li(4,e)
Lioycwn, (4)/ ey (A €) = Li(A€)

with exact sequences
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. — LY(Aje) — LA €) — H"(Zy; Ko(A))
— L} (Aye) — ...
o LA ) — LR(A ) — 7 (Lo Whi(A)/{7(e)})
— LN (Ae) — ...,
and similarly in the e-quadratic case. The e-symmetrization maps
1+ T, : LY(Aje) — L (A €) 5 (C,) — (C, )

are defined by

by — {(1+T€)¢0 if s=0
o ifs>1.

Remark 20.13 The e-symmetrization maps 147, : LY (A, €)— L} (A, €) are
isomorphisms modulo 8-torsion, and are actual isomorphisms if there exists
a central element s € A with

s+s5=1€ A,
eg. s=1/2¢€ A O
In the case e = 1 the terminology is abbreviated
l-symmetric = symmetric , 1l-quadratic = quadratic
Liy(A1) = Li(4) , LI(A1) = Li(4).
The free L-groups are written
Li(4) = L*(A) , LY(A) = L.(4).

The skew-suspension maps of Ranicki [235, p. 105]

S o LY(Aje) — LY (A, —€) 5 (C,) — (SC,S¢) (Stps = 9s) ,
S ¢ Lij(Aje) — LE(A, =€) 5 (C,0) —> (SC,S¢) (Sps = ¢s)

are isomorphisms for the e-quadratic L-groups L, for all A, but are isomor-
phisms for the e-symmetric L-groups L* only for certain A, e.g. if A has
homological dimension 1, such as a Dedekind ring, or if 1/2 € A. The e-
quadratic L-groups of any ring with involution A are thus 4-periodic

Lg(A7€) = L71{+2(A7_€) = L7lz]+4(Aa€)7

with

Lgi(Av 6) = L(()](Av (_)ie) ’ Lgi+1(A>€) = L?(A, <_)i6) )
(as in the original treatment by Wall [304]), while the e-symmetric L-groups
L} (A, €) are not 4-periodic in general.
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The algebraic L-groups L.(A), L*(A) of a ring with involution A are al-
gebraic analogues of the manifold and geometric Poincaré bordism groups.

Example 20.14 (i) The symmetric signature of an n-dimensional geometric
Poincaré complex X is the symmetric Poincaré cobordism class introduced
by Mishchenko [201]

o*(X) = (C(X),A[X]) € L"(Z[m(X)])

with X the universal cover of X. (i) The quadratic signature of a (degree
1) normal map (f,b) : M——X of n-dimensional geometric Poincaré com-
plexes is the quadratic Poincaré cobordism class of the kernel n-dimensional
quadratic Poincaré complex (€(f'), 1) over Z[m(X)] (20.4).

o:(f:0) = (C(f),9) € Lu(ZIm (X)) -

See Ranicki [236] for a detailed exposition of these signatures, including the
identification of the quadratic signature of a normal map (f,b) : M—X
from a manifold to a geometric Poincaré complex with the surgery obstruction
of Wall [304]. O

Recall from Chap. 1 that a finite chain complex C' of f.g. projective A-
modules is round if [C] = 0 € K(A). It is convenient to have available the
‘round L-groups’ L;(A) which are related to the projective L-groups Ly(A) in
much the way that the absolute K-groups K, (A) are related to the reduced
K-groups f(*(A)

Definition 20.15 (Hambleton, Ranicki and Taylor [103])

(i) The round e-symmetric L-groups LI'(A,e) (n > 0) are the cobordism
groups of n-dimensional e-symmetric Poincaré complexes (C, ¢) over A with
C round, that is finite f.g. projective with

(ii) The round simple e-symmetric L-groups L7 (A, €) (n > 0) are the cobor-
dism groups of based f.g. free n-dimensional e-symmetric Poincaré complexes
(C, ¢) over A with C round and

T(go: C"*—C) = 0€ K (A) .

Similarly for the round e-quadratic L-groups L%(A,€) and the round simple
e-quadratic L-groups LT°(A,€). O

Proposition 20.16 [103]
(i) The projective and round e-symmetric L-groups are related by a Rothen-
berg-type exact sequence

. — H"(Zy; Ko(A)) — LT(A,€) — LI (A, ¢)
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(ii) The round and round simple e-symmetric L-groups are related by a
Rothenberg-type exact sequence

. — H"(Zy; K1(A)) — L",(A,¢) —> L"(A,€)
— H"(Zy; K1(A) — ... .

Similarly in the e-quadratic case. |

20B. I'-groups

The algebraic L-groups L.(A) of Wall [304] are the obstruction groups for
surgery up to homotopy equivalence. The algebraic I'-groups I'.(A—B)
of Cappell and Shaneson [40] are the obstruction groups for surgery up to
homology equivalence. This section just deals with the algebraic definitions
of the I'-groups — see Chap. 22 for the applications to codimension 2 surgery
theory.

Definition 20.17 Let 3 : A—— B be a morphism of rings with involution,
and let U C Ky(B) (resp. Why(B)/{7(€)}) be a #-invariant subgroup. The
e-symmetric I'p(F,e) (n>0) is

n-dimensional U-intermediate -grou,
e-quadratic group { Y (F,¢)

. . . e-symmetric . i
the cobordism group of n-dimensional . B-Poincaré complexes
e-quadratic

(C,0) over A which are f.g. projective (resp. based f.g. free) for ¢ = 0 (resp.
1) with

[B®aCleUC Ko(B) (resp. 7(B @4 (C,0)) € U C Whi(B)/{r(e)}) . O

By analogy with 20.12:
Proposition 20.18 For U C V there is a Rothenberg-type exact sequence

. H" (2o VIU) — T, €) — T3(F,€)
— H"(Zy;V/U) — ...
. — H"Y(Zy, VIU) — TY(F,e) — IV (F,¢)
— H"(Zo; VU) —> ... .
O
Remark 20.19 (i) See Cappell and Shaneson [40] for the original definition
of the I'-groups and B-homology surgery theory, and Ranicki [237, Chap. 7.7]

for the chain complex treatment.
(ii) For a morphism of rings with involution ¥ : A—— B which is locally epic
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(9.10) the forgetful map from the free e-quadratic I'-groups of F to the free
e-quadratic L-groups of B

LT ) — Ly(B,3(e) 5 (C,¢) — B®a (C,9)

is surjective for even n and injective for odd n. The I'-groups for ¥ =1 :
A—— B = A are just the L-groups of A

I(1: A—Aje) = L.(4,¢) .

(iii) Let (X,0X) be an n-dimensional geometric A-coefficient Poincaré pair,
for some morphism of rings with involution F : Z[mr (X)]— A, and let U C
Whi(A) be a s-invariant subgroup such that 7(X,0X; A) € U. The quadratic
kernel of a degree 1 normal map (f,b) : (M,0M)—(X,0X) with 9f :
OM—0X a A-homology equivalence with A-coefficient torsion 7(9f; A) € U
is an n-dimensional quadratic A-Poincaré complex (C(f'),) over Z[ri(X)]
with torsion 7(C(f'),4) € U. The A-coefficient quadratic signature

o (f.b) = (€(f"),v) e IY(F)

is the cobordism class of the kernel n-dimensional quadratic A-Poincaré over
Z[r1(X)]. This is the A-homology surgery obstruction, such that o2 (f,b) = 0
if (and for F locally epic and n > 5 only if) (f,b) is normal bordant rel 9 to
a A-homology equivalence of pairs with torsion in U.

(iv) Let (X,0X) be an n-dimensional geometric Poincaré pair such that
H,.(0X; A) = 0 for some morphism of rings with involution F : Z[m (X)]— A4,
and let U C Why(A) be a x-invariant subgroup such that 7(X,0X;A) € U.
The A-coefficient symmetric signature

oA (X,0X) = (C(X,0X),¢) € IH(T)

is the cobordism class of the n-dimensional symmetric A-Poincaré complex
(C(X,0X),0) over Z|m1(X)] with ¢ = A[X] the usual symmetric structure.
(]

The relative e-quadratic I'-groups [.(®,¢) are defined for any commuta-
tive square of rings with involution

A—— A
7

B— B
to fit into the exact sequence
. —— IhW(A—B,e) — [,(A'—B',¢) — I[,(P,¢)

— I-1(A—Bje) — ... .
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Similarly for the e-symmetric I'-groups I™*.

Definition 20.20 For any morphism of rings with involution ¥ : A— B let
@4 be the commutative square

A——A

Dy

A B

so that the relative e-quadratic I'-groups ', (@, €) fit into an exact sequence

9]
. — Ly(Aye) — I(F,€) — L(Pr,e) —> Lp—1(Ayje) — ... .

Similarly for the relative e-symmetric I'-groups I'*(Pg,€). (]

Proposition 20.21 (Ranicki [237,2.5.7])
For a locally epic morphism of rings with involution F : A—— B the relative e-
quadratic I'-group I, (P, €) is (isomorphic to) the cobordism group of (n—1)-
dimensional e-quadratic B-contractible Poincaré complexes over A. The map
0 in the exact sequence of 20.20 given by

0 : F71,(3:a5) — Fn(@:}“,ﬁ) 5 (an/)) — 3(0,1/1)

with (C,v) an n-dimensional e-quadratic B-Poincaré complex over A, and
9(C, 1) the boundary (n—1)-dimensional e-quadratic B-contractible Poincaré
complex over A. Similarly for the relative e-symmetric I'-groups I'* (P, €).

O

20C. Thickenings, unions and triads

This section sets out various algebraic Poincaré analogues of standard topo-
logical constructions, which will be useful further on.

For any n-dimensional geometric Poincaré pair (W, 9W) the n-dimensional
symmetric Poincaré pair (C(0W)—C(W), A[W]) is determined algebraically
by the n-dimensional symmetric complex (C(W,0W), A[W]/A[0W]), as fol-
lows.

Definition 20.22 (Ranicki [235, Chap. 3])
(i) The thickening of an n-dimensional e-symmetric complex (C,¢) is the
n-dimensional e-symmetric Poincaré pair (f : 0C—C™* (0,0¢)) with
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aC = S71C(¢y: C" T —C) ,

f= (O 1) : 0C, = Crpy®@CV " — O,
doc = (dc (_)TQZ’O)
0 (=)"dg
20, = Cry1 ®C" " — 9C,_, = C,@C™ T
()T gy (<) e
D60 = < 1 O
80"77‘71 - C’n,’r‘ @ Cr—‘,—l E — 807 — 1 EB C’IZ*T ,
(_)’ﬂ*T+SflT€¢S+1 0
0ps =
¢ < 0 0

aonfr+sfl —_ CnfrJrs @ Cr—s-&-l
5 0C, = Cpa O™ (s2 1) .

The (n — 1)-dimensional e-symmetric Poincaré complex
9(C, ) = (0C,09)

is the boundary of (C, ).
(ii) The Thom complex of an n-dimensional e-symmetric Poincaré pair (f :
C—D, (6¢,¢)) over A is the n-dimensional e-symmetric complex (D/C,
d¢/@) over A with

D/C = C(f:C—D)

and d¢/¢p € Q™(D/C,¢€) the image of (d¢, p) € Q™(f,€) under the canonical
map.
Similarly in the e-quadratic case. O

Proposition 20.23 ([235, Chap. 3])

(i) The thickening and the Thom complex define inverse bijections between the
homotopy equivalence classes of n-dimensional e-symmetric complexes over
A and (n + 1)-dimensional e-symmetric Poincaré pairs over A.

(ii) An n-dimensional e-symmetric complez (C, ¢) over A if and only if the
boundary (n — 1)-dimensional e-symmetric Poincaré complex O(C, ¢) is con-
tractible.

Stmilarly in the e-quadratic case. |

The union of n-dimensional geometric Poincaré pairs (X4,0Xy),
(X_,0X_) with 90X = —0X_ is an n-dimensional geometric Poincaré com-
plex X1 Ug X_.
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X1 U X

Similarly for algebraic Poincaré pairs:

Definition 20.24 (]235, p. 135],[237,1.7])
The union of n-dimensional e-symmetric Poincaré pairs over A

C+ = (f-‘r:C*_)D—O—?((S-i—QSa(b)) , C— = (f_lca-—)D_,((;_(ZS,*Qﬁ))

is the n-dimensional e-symmetric Poincaré complex over A

Ct Ue_. = <D+ Uco D7,6+¢ U¢ (57(?)
with
(Dy Uc D) = e(<§+) :C—D,®D_),
5+¢)s 0 0
(5+¢ U¢ 6—¢)s = (7>n77‘71¢sfj- (7)n7T+STe¢s—1 0
0 (=) f-¢s  0-0s

(D+ Ueo D_)n—r+s — (D+)n—r+s D on—rts—1 ® (D_)n_r_;_s
— (D+ Uc D,)T = (D+)T@C’r71@(D7)T (SZO,¢71 :0) .
Similarly in the e-quadratic case. 0

The glueing of algebraic Poincaré pairs is a special case of the glueing
of algebraic Poincaré cobordisms. In the applications of algebraic Poincaré
complexes to topology in general (and Chap. 30 in particular) it is convenient
to have available the following splitting construction, which characterizes the
algebraic Poincaré complexes which are unions.

Proposition 20.25 Let (C,¢) be an n-dimensional e-symmetric Poincaré
complex over A. A morphism of n-dimensional e-symmetric complexes

(f,x) : (C,0) — (D, 0)
determines a homotopy equivalence

(C,¢) ~ cyUc_
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(regarding (C, $) as the n-dimensional e-symmetric Poincaré pair (0—C,
(¢,0))) with c4,c_ the n-dimensional e-symmetric Poincaré pairs

cy = (g:0D—D"* (0,00)) , c. = (g9 :0D—D_,(¢',00))

with cy the thickening of (D, 0), c— homotopy equivalent to the thickening of
(C(gof* : D" *—C),e”(0)) and

D_ = C(f:C—D)uy1 ,

e = inclusion : C — C(¢of*),

<1 0>
== \0 o

GDT = Dr+1 @ Dn_r — (Df)r = Dr+1 @Cr . D

A manifold triad (M; 9y M, d, M) is a cobordism of manifolds with bound-
ary, or equivalently a manifold M with the boundary expressed as a union of
codimension 0 submanifolds dg M,y M C OM

oM = oMU M

such that
OoMNOM = 00gM = 001 M .

80]\4 M 81M

Algebraic and geometric Poincaré triads are the evident analogues of man-
ifold triads, and have already been studied in Ranicki [237]. The standard
constructions of algebraic complexes (resp. pairs) from geometric Poincaré
complexes (resp. pairs) extend to triads. The algebraic properties of triads
will be used in the treatment of codimension ¢ surgery in Chap. 21 and
beyond.

Definition 20.26 (i) An n-dimensional e-symmetric triad over A

1B 1"~ 0,B 0910 — 90

o (o T

31BL>B 00 —10

is a commutative square I" of f.g. projective A-module chain complexes with
an element © € Q™ (I, €) in the triad Q-group which fits into the commutative
diagram of exact sequences
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T

e QM@0 B.€) 2= QM(00B.€) — Q" (for€) —= Q" (91 B, ) —

% % %
f1n 900 fl0
%

—=Q"(A1B,e) > Q"(B,e) — Q"(g1,€) —= Q" (9B, ¢) —
—— Q"(f1,6) — Q" (g0, €) — Q"(I'€) — Q" }(f1,¢) —

— Q"N (D01B,e) = Q1 (@0B.€) — Q" (fos€) — Q" 2(Jo1 Be) —

(ii) An n-dimensional e-symmetric triad (I',0) is Poincaré if the (n — 1)-
dimensional e-symmetric pairs (fo, 900), (f1,010) are Poincaré, and the A-
module chain map

6o : €(g0)" " — C(g1)

is a chain equivalence, in which case there is defined an n-dimensional e-
symmetric Poincaré pair

(goU g1 : 0B Upy, B 01B—B, (0,000 Ug,,9 —010))
with boundary the union
(90 : Qo1 B—00B, (000, 0010)) U (g1 : 091 B——01B, (=016, —0010)) .
Similarly for e-quadratic (Poincaré) pairs and triads. O

The following triad version of the one-one correspondence between the ho-
motopy equivalence classes of algebraic Poincaré pairs and complexes (20.23)
will be used in Chaps. 22,26:

Proposition 20.27 The homotopy equivalence classes of n-dimensional e-
symmetric Poincaré triads (I', ©) over A are in one-one correspondence with
the homotopy equivalence classes of n-dimensional e-symmetric complexes
(C, ¢) over A together with a factorization

f
b = gf : O D = C

up to chain homotopy, for some finite f.g. projective A-module chain complex
D and chain maps f : C"*——D, g : D—C'. The triad (I, ©) (as in 20.22)
corresponding to (C, ), f, g has
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B =c""
aoB = G(f:cni*a-—)D)*_;'_l s 81B = G(g*icni*d-—)Dni*)*_Fl y
1B = CC(f)" ' —=C(f*))ss1 = C(C(9)" T —=C(9))ut1

Similarly for the e-quadratic case, with an e-quadratic complex (C,v) and a
factorization

f
(1+ T = gf : C"* — D — C . O

Remark 20.28 Here is a useful interpretation of 20.27, which was already im-
plicit in the odd-dimensional surgery obstruction of Wall [304, Chap. 6] (and
the subsequent reformulations of Novikov [218] and Ranicki [230] using forma-
tions — see 20.29 (ii) below), and in the construction of the algebraic surgery
transfer map in Liick and Ranicki [174]. Let D, (A) be the n-dimensional
derived category, the additive category of n-dimensional f.g. free A-module
chain complexes and chain homotopy classes and chain maps. Regard D,,(A)
as an additive category with involution C——C"™"*, so that the L-theory of
D, (A) is defined as in Ranicki [243]. Given (C, ), f,g as in 20.8 note that
the morphisms defined in D,,(A4) by

,y — g* . L — C’ll—* H Dn—* ,
p=7f:L=0C""—D

are the components of a morphism of symmetric forms in D,,(A)

(Z) : (L,O)—>(D@D"‘*,<(1) (1)))

which is the inclusion of a sublagrangian with hessian form

GY (3 )G) = =wr = e

and boundary
LY/L = 0y.,B .

(See [230] for more on the hessian form). O

Example 20.29 (i) An n-dimensional geometric Poincaré triad
(X5 00X, 01.X;001X)

determines an n-dimensional symmetric Poincaré triad over Z[m(X)]

C(901X) —= C(9X) Aldo1 X] —= Al X]

o (1T

(LX) —= C(X) Alo1X] A[X]
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with
W XNhX = 0pnX , GpXUKX = 0X

and X the universal cover of X. The corresponding n-dimensional symmetric
complex over Z[m (X)]

(C,¢) = (C(X,0X), A[X])
is such that
¢ = [X]N— = gf :C"" = C(X,0X)"™ ~ O(X)
Lo p = X, ax) ~ C(X,00X)
2 0(X,0X) = C
with f, g induced by the inclusions and
C(00X) 2 C(far1 , C(O1X) = €(g": C"*—D"").py .

The (n — 1)-dimensional symmetric Poincaré pairs (9p X, 991 X), (00X, 901X)
correspond to the (n — 1)-dimensional symmetric complexes

(C(80X,001X), (e0)*(99)) , (C(O1X,001X), (1) ()

with

e = XY = COX,0X) = 00X, dnX) |

—  lof
e : 0C ~ C(0X) —

Clg")" ™ ~ C(X)" 1 ~ C(0X,00X) ~ C(hX,00.X) .

Similarly for kernels of normal maps and quadratic Poincaré triads.
(ii) Let
(f,b) + (M;00M,01M; 001 M) — (X;00X,01X;001X)

be a normal map of n-dimensional geometric Poincaré triads, so that the
quadratic kernel is an n-dimensional quadratic Poincaré triad (I',¥) over
Z[m(X)]. Suppose that n = 2i, that f is i-connected, dof,01f are (i —
1)-connected and that 9p;f is a homotopy equivalence. In this case, the
Z[m(X)]-module morphisms of 20.24

y=f:L=C*""=K{(M)— D = K;(M,0,M) ,

pw =g :L=C"* = K(M)— D** = K;(M,dM)
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are the components of the inclusion of a lagrangian in a hyperbolic (—)*~1-

quadratic form
7Y . n—s (0 1
(1) o — oo (3 1)

with hessian the kernel (—)*-quadratic intersection form (K;(M),)
Vo= 4 ()T K(M) — Ki(M)" = K'(M) .

The quadratic kernel determines (and is determined by) the nonsingular
(—)t-quadratic formation

i 0 1 . ¥
D @ D% *,( );D,lm( ) ,
( 0 0 u)

corresponding to the automorphism of the hyperbolic (—)*~!-quadratic form
sending D to im <7> used by Wall [304, Chap. 6] to construct the (2i — 1)-
dimensional surgers obstructions of (fo,bo) and (f1,b1)

04 (0o f,00b) = 0.(O1f,01b) € Loi—1(Z[m1(X)])

assuming m1 (9o X) = w1 (01 X) = m1(X). Furthermore, if 9y f, 01 f are homo-

topy equivalences then (K;(M), 1)) is a nonsingular (—)‘-quadratic form over

Z[m(X)], and the 2i-dimensional surgery obstruction of (f,b) ([304, Chap.
5]) is given by

ou(fib) = (Ki(M),9) € Lai(Z[my (X)]) . 0

It is also possible to glue together algebraic Poincaré triads. The follow-

ing construction decomposing algebraic Poincaré pairs as unions of algebraic
Poincaré triads is a relative version of 20.25, which will be used in Chap. 30:

Proposition 20.30 Let (i : 0C—C,(¢,0¢)) be an n-dimensional e-
symmetric Poincaré pair over A. A morphism of n-dimensional e-symmetric
pairs

(f,0f;x,0x) + (i:90C—C,(9,0¢)) — (j : 0D—D, (0, 00))
determines n-dimensional e-symmetric Poincaré triads

83D —— e(af)*+1 889 —— 84_04_

<r+,@+>< l | l l )

0D —=C(f)eps 00— 0

90D — 9pn—*~1 —000 —= 0.,.0_

o (T T

0y D ——C(j)n* —0.0 ——0_
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such that
(7’ : ac_>ca ((ba 8¢)) = (F-l‘a@-i-) U (F—a 9—) )

with
20D = C(d0 : OD"* "' —=0D).y1 ,

8.D = C((6p j9): C(j)"*—D)ys1 .

Similarly in the e-quadratic case.

227
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21. Codimension g surgery

This chapter reviews codimension ¢ surgery theory for ¢ > 1. Refer to Chap. 7
of Ranicki [237] for a previous account of the algebraic theory of codimension
q surgery. For ¢ > 3 this is the same as the ordinary surgery obstruction
theory on the submanifold, while for ¢ = 1,2 the situation is considerably
more complicated. It may appear that case ¢ = 2 is the one of most direct
application to knot theory, although in fact the case ¢ = 1 (applied to the
Seifert surfaces of knots) is just as relevant.

21A. Surgery on submanifolds

Here is the basic operation of codimension g surgery, for any ¢ > 1:

Definition 21.1 Let M be an n-dimensional manifold, and let N*~¢ C M™
be a submanifold of codimension ¢ > 1. An ambient (or codimension q)
surgery on N inside M is the operation (M, N)— (M, N’) determined by
an embedding
(D", 8" x D"97" — (M, N)

with

N’ = cl.(N\(S" x D"~ ")) u (D"t x §"~7"1) c M. O
Proposition 21.2 The effect of an ambient surgery on a codimension q

submanifold N C M 1is a codimension q submanifold N' C M which is related
to N by the trace cobordism

(W;N,N") = (NxITuD"™ x D" 7", N x {0}, N)
with a codimension q embedding
(Wi;N,N') € M x (I;{0},{1}) .

Conversely, every ambient cobordism (W;N,N') C M x (I;{0},{1}) is the
union of traces of a sequence of ambient surgeries.
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) [
O I [
\

M x {0} MxI M x {1}

O

Definition 21.3 (i) A codimension ¢ CW pair (X,Y) is a CW complex with

a decomposition
X = E(f) US(E) VA

for some (g—1)-spherical fibration £ : Y—BG(q) over a subcomplex Y C X,
with Z C X a disjoint subcomplex and

(D7, 8971 — (E(§),5(§) — Y

the associated (D4, S9~1)-fibration.

(ii) A topological normal structure on a a codimension ¢ CW pair (X,Y) is
a topological g-block bundle

€ : Y — BTOP(q)
such that _
¢ = JE: Y — BG(q) .

(iii) An (n,n — q)-dimensional geometric Poincaré pair (X,Y) is a codimen-
sion ¢ CW pair such that :

(a) X is an n-dimensional Poincaré complex,
(b) Y is an (n — g)-dimensional Poincaré complex,
(c) (Z,5(¢)) is an n-dimensional Poincaré pair.

In this case, the normal (¢ — 1)-spherical fibration is written

& = vyex Y — BG(q) .
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The pair (X,Y) is simple if the Poincaré complexes and pairs in (a),(b),(c)
are simple, i.e. have torsion 7 =0 € Wh. O

Example 21.4 For ¢ =1,2
BTOP(q) = BO(q) = BG(q)

so that every codimension ¢ CW pair (X,Y) has a canonical topological
normal structure. O

21B. The splitting obstruction

Proposition 21.5 Let (X,Y) be a codimension ¢ CW pair with a topological
normal structure.

(i) Every map f: M——X from an n-dimensional manifold M can be made
topologically transverse at' Y C X, with

N = ff'(Y)cMm

a codimension q submanifold, defining a simple (n,n — q)-dimensional geo-
metric Poincaré pair (M, N) with
f1 €
vnem © N — Y — BTOP(q) .
(ii) If (f,b) : M——X is a normal map (i.e. if f is covered by a map of stable

topological block bundles b : vyy—n) then the restrictions define normal
maps

(g:¢) = (1,0)] : N —Y
(hvd) = (f»b)‘ : (Pvap) = fﬁl(Zvaz) —>(Z’aZ)
with 07 = S(f), P = S(VNCM)- g

Definition 21.6 Let (X,Y) be a codimension ¢ CW pair with a topological
normal structure.

(i) A homotopy equivalence h : M—— M’ from an n-dimensional manifold
M to an n-dimensional geometric Poincaré complex M’ splits along Y C X
if there is given a reference map r : M’'—— X which is Poincaré transverse
at Y C X, with (M’, N’) an (n,n — q)-dimensional geometric Poincaré pair,
such that the restrictions

(f,b) = hl : N = (rh)™(Y) — N' = r7'(Y),
(g,¢) = h| : P = (rh)"2) — P = v Y(2)

are homotopy equivalences, i.e. if the normal maps (f,b) and (g, ¢) obtained
by transversality can be improved by ambient surgeries on the codimension
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q submanifold N C M to be homotopy equivalences.

(ii) The homotopy equivalence h h-splits along Y C X if h is h-cobordant to
a split homotopy equivalence.

(iii) If (M’,N’) is a simple codimension ¢ Poincaré pair and h is a simple
homotopy equivalence then h s-splits along Y C X if h is s-cobordant to a
split homotopy equivalence such that the restrictions f, g are simple homo-
topy equivalences.

(iv) There are analogous notions of splitting for a homotopy equivalence from
a manifold with boundary to a geometric Poincaré pair. |

Note that for n > 5 it is possible to replace ‘s-cobordant’ by ‘homotopic
to” in the definition of s-splitting, by the s-cobordism theorem.

The codimension ¢ splitting obstruction theory of Wall [304] was origi-
nally formulated for the problem of s-splitting homotopy equivalences, with
obstruction groups LS. (®). These will be denoted by LS#(®). There is also
an h-splitting version with obstruction groups LS?(®), and it is these which
will be denoted by LS.(®). In the original treatment the LS-groups were
defined geometrically, but in Ranicki [237] the LS-groups were expressed al-
gebraically as the cobordism groups of algebraic Poincaré triads.

The fundamental groups (or groupoids) of the spaces in a codimension ¢
CW pair (X,Y) fit into the pushout square

m(5(§) ———=m(2)

P

Wl(E(f))

given by the Seifert—van Kampen theorem

m(X) = m(E(E)) *r,(s(¢)) T1(Z)
(working with groupoids in the disconnected case).

Definition 21.7 (Wall [304, pp. 127, 138], Ranicki [237, p. 565])

Let (X,Y) be a codimension ¢ CW pair with topological normal structure.
(i) The quadratic LS-groups LS,.(®) of the pushout square of groups ¢ as-
sociated to (X,Y’) are the relative groups appearing in the exact sequence

7T1(X)

= L1 (2[mi (2)]—2[mi (X)]) — LSn—4(?) — Ln—q(Z[m (Y)])

¢!

— Lp(Z[m(2)]—Z[r (X)]) — ... .
Every element of L,,_,(Z[r1(Y")]) is the rel 0 surgery obstruction o, (f,b) of a
normal map (f,b) : (N,ON)—(N’,ON’) from an (n — ¢)-dimensional man-
ifold with boundary to an (n — ¢)-dimensional geometric Poincaré pair, such
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that 9f : ON—ON' is a homotopy equivalence, and with a 7m;-isomorphism
reference map N'—Y . The map p¢' is the composite of the transfer map

£ Lng(Z[m(Y)]) — Ln(Z[m1(S(6))]—Z[m (E(S)))) ;

sending the rel 9 surgery obstruction o, (f, b) to the rel d surgery obstruction
o.(E(f), E(b)) of the induced normal map of (D¥, S*~1)-bundles from an n-
dimensional manifold with boundary to an n-dimensional geometric Poincaré
pair _ _ _ _
(E(f), E() : (E(¢n),0E(EN)) — (E(&n1), 0E(En"))
with _ - _ .
é&v : N — BTOP(q) , é&x+ @ N' —s BTOP(q)
the pullbacks of € : Y—>BTf6/P(q), and
p i Ln(Z[m(S(€)]—Z[m(E(6))]) — Ln(Z[m (2)]—Z[m (X))

is the morphism of relative L-groups induced functorially by &.

(ii) Let h : (M,0M)—(M',0M’) be a homotopy equivalence from an n-
dimensional manifold with boundary to an n-dimensional geometric Poincaré
pair, with a mj-isomorphism reference map r : M’——X which is Poincaré
transverse at Y C X, such that 0h : 9M ——0M’ is a homotopy equivalence
which is h-split along Y C X. The codimension q splitting obstruction of h

Sy(h) S LSn_q(Q)

has image the surgery obstruction o.(f,b) € L,_4(Z[m1(Y)]) of the codimen-
sion ¢ normal map obtained by transversality

(f,b) = h| : (N,ON) = (rh,0roh)""(Y) — (N’,0N’) = (r,0r) ' (Y)
which is determined by the bordism
hx1: (MxI;Mx{0},E(uncm) x {1} P x {1})
— (M x I; M x {0}, E(vnrcar) x {1} P’ x {1})
(P = (rh)™(Z) = cL.(M\E(vncu)))

of
(f,0)' : (BEwncm), S(wnem)) — (Ewnicm), Svnrcur))
to the homotopy equivalence h : (M,0M)—(M',0M’), as in the diagram
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oM x {0} P x {1} S(yewr) x {1}
M x {0} MxTI E(vnewm) x {1}
h hx1 (f,0)'
M’ x {0} M' x I E(vnrcmr) x {1}
oM’ x {0} P’ x {1} S(VN’CM’) X {1}

(iii) The quadratic LN -groups LN, are the LS-groups for a codimension ¢
CW pair (X,Y) with

m(X) = m(Y) , m(5%) = m(2)
(e.g. if X = E(§) with Z = 5(£)), that is
LS.(@) = LN.(Z[m(S(€)]—Zm(Y))

(iv) The simple quadratic LS-groups LSE(®P) and the simple quadratic LN -
groups LN? are defined similarly, using the simple quadratic L-groups LZ.
|

Proposition 21.8 (Wall [304, p. 126], Ranicki [237,7.2.5])

(i) The codimension q splitting obstruction of a homotopy equivalence from
an n-dimensional manifold to an n-dimensional geometric Poincaré pair
h : (M, 0M)—(M',0M") with Oh : OM—9M' split along Y C X is
such that sy (h) =0 € LS,_¢(P) if (and for n —q > 5 only if) h h-splits rel
0 along Y C X. Similarly for s-splitting.

(ii) Every element © € LS, _4(P) is the codimension q splitting obstruction
x = sy (h) with h as in (i).

Proof The original proof in [304] was in terms of the smoothing theory of
Poincaré embeddings. The basic idea goes back to Browder : first try to per-
form (non-ambient) surgery on the submanifold N C M to obtain a normal
bordism from h : M—— M’ to a split homotopy equivalence h' : M" — M’,
and then try to perform rel 0 surgery on the normal bordism. |
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Example 21.9 (i) For a codimension ¢ CW pair (X,Y") with ¢ > 3

m(5() = m(E() = m(Y) = m(2) = m(X)

and the codimension ¢ splitting obstruction is just the ordinary surgery ob-
struction

sy(h) = o.(f,b) € LS, (D) = Lyn—o(Z[m(Y)]) ,

by the Browder-Casson—Sullivan-Wall embedding theorem ([304,11.3.1]).
(ii) For ¢ = 1 there are three cases:

(A) € is trivial, and Y separates X (e.g. Y = {pt.} C X = St v 1),
(B) € is trivial, but Y does not separate X (e.g. Y = {pt.} C X = S1),
(C) € is non-trivial (e.g. Y = St C X = RP?).

See [304, Chaps. 12A,12B, 12C] and Ranicki [237,7.6] for accounts of codi-
mension 1 splitting obstruction theory. |
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22. Codimension 2 surgery

Lopez de Medrano [169] formulated ”the general philosophy for dealing with
surgery problems in codimension 2: do not insist on obtaining homotopy
equivalences when you are doing surgery on the complement of a submani-
fold, be happy if you can obtain the correct homology conditions.” Cappell
and Shaneson [40], [46] developed the appropriate homology surgery theory,
with the I'-groups (20.17) as obstruction groups, and applied the theory to
codimension 2 surgery. Freedman [84] and Matsumoto [183] worked out a
somewhat different approach to codimension 2 surgery, using +z-quadratic
forms over Z[m(S(€))] to formulate the obstructions to individual ambient
surgeries. The relationship between these approaches has already been stud-
ied in Ranicki [237, 7.6], using both algebra and geometry. This chapter starts
by recalling and extending the chain complex reformulation in [237] of the
theory of [84] and [183].

22A. Characteristic submanifolds

In order to avoid twisted coefficients only oriented 2-plane bundles & :
M—BSO(2) are considered. Manifolds and submanifolds will be all as-
sumed to be oriented.

Proposition 22.1 If (M,0M) is an n-dimensional manifold with boundary
the following sets are in natural one-one correspondence :

(i)  the cohomology group H*(M),

(ii) the homology group Hy_o(M,0M),

(iii) the set [M,BSO(2)] of isomorphism classes of 2-plane bundles &
over M,

(iv) the ambient cobordism classes of codimension 2 submanifolds

(N,ON) C (M,dM).

Proof Immediate from Poincaré duality, manifold transversality and the iden-
tifications
BSO(2) = MSO(2) = K(Z,2) = CP>. |
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For a 2-plane bundle £ : M——BSO(2) over a connected space M the
Sl-fibration »
St — S(6) — M

induces an exact sequence of groups
s
m(S1) — m(S() — m(M) — {1}
such that the image of 1 € m1(S?) is central in 7 (S(€)). The image of 1 will
be denoted by z € m1(S(§)). Note that there is defined an exact sequence of
group rings
11—z Px
Z[mi (S()] — Z[m(S(€)] — Z[m(M)] — 0.

Definition 22.2 Let (M, 9M) be an n-dimensional manifold with boundary,
and let £ : M——BSO(2) be a 2-plane bundle.
(i) The exterior of a codimension 2 submanifold with boundary

(N""2,ON) C (M™,0M)
is the pair
(P",0,P) = (cl.yM\E(vNcm)),cl.(OM\E(vancom))) ,

such that (P; 04 P, S(vnca)) is an n-dimensional manifold triad.

(ii) A &-characteristic codimension 2 submanifold of (M,0M) is a codimen-
sion 2 submanifold with boundary (N,0N) C (M,0M) representing the
Poincaré dual of the Euler class of £

IN] = e(€) € Hoo(M,OM) = H*(M),
with an identification
fINn = vnem © N — BSO(2)
and an extension of the trivialization
Elswnery = € ¢ S(vnem) — BSO(2)

to a trivialization

&lp = € : P— BSO(2) .

oM ’ M
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Proposition 22.3 (i) For a &-characteristic codimension 2 submanifold
(N,ON) C (M,0M) the total spaces of S*-fibrations define an (n + 1)-
dimensional manifold with boundary

(M’ 0M") = (S(£), S(&lom))
such that
(N',ON") = (S(vnem), S(wancon)) C (M',0M")
is an €2-characteristic codimension 2 submanifold with exterior
(P',0,P") = (cl.(M'\(N' x D?)),cl.(0M'\(ON’ x D?)))
= (PxSY,9,PxS").
(ii) Every codimension 2 submanifold (N,0N) C (M,0M) is £-characteristic,

with £ : M——BSO(2) the 2-plane bundle with Euler class the Poincaré dual
of the homology class represented by (N,0ON)

e(€) = [N] € HX(M) = H,_o(M,0M).

(iii) For any 2-plane bundle & : M——BSO(2) over an n-dimensional man-
ifold with boundary (M,0M) there exist £-characteristic codimension 2 sub-
manifolds (N,ON) C (M,0M).

Proof (1)+(ii) Immediate from 22.1.

(iii) The pullback of £ : M——BSO(2) along the projection p : S(§)— M is
a trivial 2-plane bundle, since p*§ ~ {*} : M—BSO(2). O

22B. The antiquadratic construction

The algebraic theory of pseudoquadratic structures on chain complexes was
developed in Ranicki [237,pp.781-810] in order to describe the L-theory
transfer maps

€' ¢ La(ZImi(M)]) — Lus2(Z[m1(S(€))—Z[m (B(€)))

induced on the chain level by a 2-plane bundle £ : M ——BSO(2). This theory
will now be used to associate an ‘antiquadratic complex’ to a codimension 2
submanifold, such that geometric surgery on the submanifold corresponds to
algebraic surgery on the complex.

Definition 22.4 ([237,p.807]) The antiquadratic complex of a &-character-
istic codimension 2 submanifold (N,0N) C (M,9M) of an n-dimensional
manifold with boundary is the n-dimensional (—z)-quadratic complex

cr*(M,N,é) = (Cﬂ/’)
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with C = 0(15,6:73) the Z[mr1(S(§))]-module chain complex of the cover
(P,d, P) of the exterior (P,d,P) induced from the universal cover S(€) of

S(£), and ¥ € Q,(C, —2) the evaluation of the pseudoquadratic construction.
O

Remark 22.5 (i) The ‘anti’-terminology refers to the antistructure in the
sense of Wall [305] which is determined on Z[r (S(£))] by an arbitrary 2-plane
bundle £ : M——BO(2) using the ‘pseudosymmetric’ and ‘pseudoquadratic’
constructions of [237, pp. 799-802], the S!-fibration analogues of the symmet-
ric and quadratic constructions of Ranicki [236]. As indicated in [237,7.8.9]
it is possible to obtain these analogues by induction on the cells in the base
CW complex (assumed finite). However, it would be more satisfactory to
use an equivariant cellular Eilenberg-Zilber theorem, developing further the
methods of Smith [272].

(ii) Since it is assumed that £ is oriented, there is no actual need to consider
antistructures here.

(iii) See 27.5 below for an explicit formula for the (—z)-quadratic structure
Y € Q,(C,—z) in the framed case & = €. O

Proposition 22.6 The antiquadratic complex o.(M, N, &) = (C,4) has the
following properties :
(i) The boundary (n — 1)-dimensional (—z)-quadratic Poincaré complex over

Z[m1(S(6))]
9(C,9) = (9C,09)

has

AC = C((1+T_.)o: C"* —C)up1 = C(S(€),04P)eyr -

The antiquadratic complex of ON C OM is the (n — 1)-dimensional (—z)-
quadratic complex over Z[m1(S(€))]

7. (OM,ON,E|on) = (C(84P),eqt))
with

¢ 00 ~ C(S(E),0, Pl =5 C(O.P) . 000, P) ~ C(S(Elon))ers

(ii) Let - .
i: C = C(P,0+P) — C(P,0P)

be the inclusion. The induced morphism iy, of (—z)-quadratic Q-groups sends

P € Qn(C,—2) to
intd = ¢0 € Qu(C(P,OP), —2)
with ¢ = A[P] € Q"(C(P,dP)) the symmetric structure of (P,0P), and

¢o = [PlN— : C(P,0P)"* — C(P,0P) .



22B. The antiquadratic construction 241

(iil) Inclusion defines a normal map

from an (n — 2)-dimensional manifold with boundary (N,0ON) to an (n — 2)-
dimensional normal pair (M,0N), with fundamental class

f*[N] € an2(M>aN)

and normal fibration vy ® €. The quadratic kernel of (f,b) is the (n — 2)-
dimensional quadratic complex over Z[my(M)]

Ppp—
0.(f,0) = Z[m(M)] @zpm, (s()) (ST'C S )
with S : Qn_o(S71C,2) =2 Q,(C, —2) the skew-suspension isomorphism, and

Z[my (M) ®zpry (s(ey) (S71C) = C(f)
the algebraic mapping cone of the Umkehr Z[m1(M)]-module chain map

fU c(LLaN) 2 L o(N,aN ) ~ o)

where M is the universal cover of M and N,gﬁ are the induced covers of
N,ON. The quadratic kernel of the induced normal map of S*-fibrations from
an (n — 1)-dimensional manifold with boundary to a normal pair

(S(f),5(0)) : (S(EIn), S(Elon)) — (S(£), S(Elan))
is the (n — 1)-dimensional quadratic complex over Z[m(S(§))]
0.(S(f),S(0) = (€1 —z:C—C)s11,0)
with

C(S(f)": C(S(E), S(Elon))"*—=C(S(E]n)) =~ C(S(E),S(Eln)"

~ C(S(ElP), S(Elo. )1 = CA—z: C—C)upr

_ 0 11[]5 . \n—1-r4+s __ n—r+s n—r+s—1
0, = (z'lq/)s O> 2 C(S()) =C ®C

— €(S(f))r = Cra@Cr (s20).

(iv) The zero section inclusion M——E(§) deforms to a normal map from
an n-dimensional manifold triad to a normal space triad

(h,d) = (M;E(&lon), 04 P) — (E(&); E(Elon), S(£))
such that
h = E(f)Usip g :
M = E(¢|n)Usn) P — E(§) = E(§) Us)xq13 S(€) x I,
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with
(g,¢) : (P;S(&ln), 04 P;S(Elan))
— (8(8) x I; S(§) x {0}, 5(&) x {1}; S(&lon) x 1)

a normal map from an n-dimensional manifold triad to a normal space triad,
such that

(g,0)l = (5(£),5(0b)) : (SEln),S(Elon)) — (S(£),S(Elon))
is the induced normal map from an (n—1)-dimensional manifold with bound-

ary (with (f,b) as in (iii)) which is the identity on the boundaries. Let

0 ————C(d19)

ox(g,¢) = ( r ‘ , v )

C(S(f)) ——==Cg"

be the kernel n-dimensional quadratic triad over Z[m1(S(€))], with the Umkehr
Z[71(S(&))]-module chain maps given by

g' = C(S(6), S(Elon))" 1 — C(P)
019" C(S(E), S(Elon))" 1" — C(0:P)

S(f)' = C(S(€), S(Elon))" 7 — C(S(E]w)) -
Let (I'", W) the n-dimensional quadratic Poincaré triad over Zm1(S(§))] as-
sociated by 20.27 to the n-dimensional quadratic complex
(C ) = (C,(1==2")
and the factorization

1—z"1 (14T )
A+T), : C"* cn "

with
B C((1+ T-2)v0)s+1

F/

C(l— 21 : O ——C ), 4 cn*

C a *+1

|

C(S(€), S(E]n))ss1 —= C(S(), P)ais

12
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and
B = €(1— 21 €((1+ T-.)10) —C((1 + T—2)tho))srt2

~ Q(C(S(€), S(Elon))" T —=C(S(€)))ut1 -

The kernel quadratic triad o.(g,c) = (I, W) is obtained from (I, @) by col-
lapsing B, with a homotopy equivalence

2

(rw) ~ (I",v'")/B

0 —————C((L+T-2)0)et1

SO

Cl—2z:C—C)uqq C(B—C™¥)

O

Example 22.7 (i) Let £ = €2 : M——BSO(2) be the trivial 2-plane bundle
over an n-dimensional manifold with boundary (M, 9M), so that

(B(€),5(€)) = (M x D*, M x 8.

The empty submanifold N = ) C M is &-characteristic, representing the
Euler class e(¢) = 0 € H?(M), with exterior (P,0,P) = (M,0M). The

universal cover of S(£) = M x S is 57(\2) = M x R with M the universal
cover M, and the induced cover of (P, 04 P) is

(P,0.P) = (M xZ,0M x Z) .
The antiquadratic complex of 22.4
0.(M.0.€) = (C(P.04P), 1)
is given by the cellular chain complex
C(P,0,P) = C(M,0M)[z,27"],

and the n-dimensional (—z)-quadratic structure ¢ € Q,,(C(P, 3:?), —Z) over
Z[m(M)][z,27 Y] is determined by the n-dimensional symmetric structure
¢ = A[M] € Q™(C(M,0M)) over Z[m(M)], with

b0 ifs=0 N I
. = . C(P,0,P)""* —s C(P,d, P), .
v = {0 20 s c@apyr s oPOD)

(ii) Let & : M = CP*—~——BSO(2) be the Hopf 2-plane bundle over the
k-dimensional complex projective space CP*¥ (k > 1), so that n = 2k and

(E(&),S(&)) = (cL(CP*1\D?"*2) 528+ |
z = lem(S(&) = {1}.
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The (k — 1)-dimensional complex projective space is a &g-characteristic sub-
manifold
N2k72 _ C]P)k71 C M2k _ (C[Epk

representing the Euler class e(¢;) = 1 € H*(M) = Z, with exterior P = D?*
and C(P) = Z (up to chain equivalence). The antiquadratic complex of 22.4

0.(CP*,CP* &) = (C(P),%)
has the (—1)-quadratic structure ¢ € Qox(C(P), —1) with
Yo = 1: CP)°Y =Z—C(P)y = Z. O

Theorem 22.8 (Freedman [84], Matsumoto [183])

Let (M,0M) be an n-dimensional manifold with boundary. Given & : M—
BSO(2), let (N,ON) C (M,0M) be a &-characteristic codimension 2 sub-
manifold with normal bundle

UNcM — §|N : N—)BSO(Q)

and exterior (P,04P). Let 0.(M,N,&) = (C,4) be the corresponding anti-
quadratic complez over Z[my (S(€))], with C = C(P, 8/_:13) and € Qn(C,—2).
If (P,04P) is (r — 1)-connected with 2r < n it is possible to kill an element
x € m.(P,S(&|n)) = H" "(C) by algebraic surgery on (C,¢) if (and for
n > 7 only if ) it is possible to kill x by an ambient surgery on (M, N) rel 0,
and the effect of the ambient surgery corresponds to the effect of the algebraic
surgery.

Proof The algebraic theory of surgery on e-quadratic complexes was devel-
oped in Ranicki [235],[236]. The exterior (P,0,+P) is (r — 1)-connected if
and only if the antiquadratic complex (C, ) is (r — 1)-connected, and there
are no obstructions to either geometric or algebraic surgery on any element
x € m(P,S¢n)) = H"(C) if 2r < n or n = 2r + 1 (although some new
r-dimensional homology may be created if n = 2r 4+ 1).

For n = 2r geometric intersection and self intersection numbers define a
(—)"*1z-symmetric pairing

A me(PS(E ) X e (P S(E]v)) — Zm(S(6))]

with a (—)"*1z-quadratic refinement

poz mr(PS(EN)) — Z[mi(S(6)]/{a + (=) za]a € Z[m (S(£))]}

such that p(x) = 0 if (and for r > 4 only if) is possible to kill x €
(P, S(€|n)) by an ambient surgery, as follows.
Every element x € m.(P, S(£|n)) is represented by an immersion

(f.0f) « (D", 8"71) — (P, S(¢]w))
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with a choice of path in P from the base point in S(¢|n) to df(base point in
S™=1), such that 9f : S""'—S(£|n) is an embedding with the composite

pdf + STV s S(E|n) — N2

an immersion. Any two elements z,2’ € m,.(P,S(£|n)) have representatives
(f,0f), (f',0f") which intersect transversely at a finite number of points,
and the evaluation of )\ is defined by

)‘(wi/) = Oé(l’,fE/) + (1 - Z)ﬁ(‘T?xl) € Z[Wl(S(é))]
with

a(z,z') = > +g(u) € Z[m (5(6))]

u€ST=1pof(u)=pdf’(u)

Blx,a’) = > +h(v) € im(Z[m (P)]—Z[m(S())

veDT\STL, f(v)=f"(v)

with g(u) € m1(S(§)) (resp. h(v) € im(m (P)—m1(S(€)))) represented by
the loop obtained by starting at the base point in S(£|y), using the pre-
scribed paths, and switching from f(D") (resp. df(S"™1)) to f'(D") (resp.
af'(D")) at u (resp. v), joining df(u) to df'(u) by the path in the fibre
p~L(pdf(u)) = S! determined by the orientations. Similarly for the self in-
tersection p(x).

The (—z)-quadratic complex (C, ) is compatible with the geometrically de-
fined (—)"*1z-quadratic form (m,.(P, S(€|n)), A, ) via the Hurewicz map

w0 (P, S(E|N) = m(P,S(E]x))
— H.(P,S(¢|ly)) = H*"(P,0,P) = H""(C) .

If (P, S(&|n)) is (r —1)-connected then the Hurewicz map is an isomorphism,
and p(z) = 0 is just the condition ¢ (z)(z) = 0 for killing x € H"~"(C) by
algebraic surgery on (C, ). O

Remark 22.9 A codimension 2 submanifold N2 ¢ M?%*2 is tqut if the
exterior (P,0P) is i-connected

m(P,0P) = 0 (r <i).

Lefschetz proved that nonsingular algebraic hypersurfaces in complex projec-
tive space are taut. Many authors have studied the representation of codi-
mension 2 homology classes { € Hai(M) = H?(M) by taut submanifolds
N C M for i > 1, using a variety of methods: Thom, Rochlin, Massey,
Hsiang-Szczarba, ... . In particular, see Thomas and Wood [289] for results
on taut embeddings in the smooth category, obtained by means of the signa-
tures of the cyclic branched covers of manifolds M branched over codimension
2 submanifolds N C M (cf. 27.10) and the Atiyah-Singer G-signature theo-
rem. See Kato and Matsumoto [118] and Freedman [84] for results on taut
embeddings obtained by means of codimension 2 surgery methods. ]
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22C. Spines

Definition 22.10 Let (M,0M) be an n-dimensional manifold with bound-
ary, with a 2-plane bundle £ : M——BSO(2), and let F : Z[r1(S(§))]—A
be a morphism of rings with involution.

(1) A A-homology boundary spine of (M,0M) is a &|apr-characteristic codi-
mension 2 submanifold K C OM with exterior

L = cL.(OM\E(viconm)) (vicom = &|k)

such that the inclusion L—S(§) is a A-homology equivalence. The torsion
of K is

T(L—5(€);4) € Whi(A) = EKy(A)/{7(£27)|j € Z} .

(ii) A A-homology spine of (M,0M) is a &-characteristic codimension 2 sub-
manifold with boundary (N,0ON) C (M,0M) with exterior

(P,01P) = (cl.(M\E(¢|n)), cl.(OM\E(|on)))

such that the inclusions 0 P— P, P—5(&) are A-homology equivalences.
The torsions of (N,0N) are

T(04P—P; A) , T(P—S(§); A) € Why(4) .

Note that K = ON is a A-homology boundary spine of (M, dM ) with exterior
L = 04 P and torsion

T(L—8(£); A) = 7(04 P—P; A) + 17(P—5(§); A) € Why(A)
and that (P; 0+ P, S(§|n)) is a relative A-coefficient H-cobordism with torsion
T(0L P—P; A).

(iii) A codimension 2 Seifert surface of a &|gar-characteristic codimension 2

submanifold K C OM with exterior L is a {-characteristic codimension 2
submanifold (N,0ON) C (M,0M) with exterior (P, 04 P), such that

ON = K , 0,P = L. O

Remark 22.11 Codimension 2 Seifert surfaces are evident generalizations
of the codimension 1 Seifert surfaces which arise in knot theory. See Chap.
27 for the connection between the two types of Seifert surface in the framed
case £ = €2 O

Example 22.12 Given an (n — 2)-dimensional manifold with boundary
(N,0N) and a 2-plane bundle  : N——BSO(2) define the n-dimensional
manifold with boundary

(M,0M) = (E(n),0E®)) ,

where
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OE(m) = Emlon) Us(lon) S() -
Let & : M——BSO(2) be the 2-plane bundle with

e(€) = e(n) € H*(M) = H*(N).

Then (N,ON) C (M,0M) is a {-characteristic codimension 2 submanifold
with normal bundle

UNem = &y = n : N — BSO(2) .
The exterior is given up to homeomorphism by

(P04 P) = (S(n) x1,5(n) x{0}) ,

so that (N,0ON) C (M,0M) is a A-homology spine for any ring morphism
F:Z[r(S(n))|—A. O

Proposition 22.13 Let (M,0M) be an n-dimensional manifold with bound-
ary, and let £ : M——BSO(2) be a 2-plane bundle.

Let K C OM be a &|onr-characteristic codimension 2 submanifold, with exte-
rior L.

(i) K has codimension 2 Seifert surfaces, and any two such are cobordant
inside M rel K.

(ii) The antiquadratic complex o.(M, N, &) = (C,v) associated by 22.4 to any
codimension 2 Seifert surface N of K is an n-dimensional (—z)-quadratic
complex over Zlm(S(§))] with

C = CP,L), 0C = C((1+T_.)to : C"*—C)spr =~ C(S(€),L)ss1 -

(iii) K is a A-homology boundary spine of (M,0M) if and only if (C,1)) is
A-Poincaré, for any codimension 2 Seifert surface N.

(iv) A codimension 2 Seifert surface N of K is a A-homology spine (N, K)
of (M,0M) if and only if (C, ) is A-Poincaré and A-contractible.

Proof The classifying map £ : M——BS0(2) = CP* can be made transverse
regular at CP>~! C CP* with

(Eloar)THCPXTY) = K C oM
and
N = ¢cHCcPehHcecMm
a codimension 2 Seifert surface for K. ]
Definition 22.14 Let (M,0M) be an n-dimensional manifold with bound-
ary, and with a A-homology boundary spine K, for some ¢ : M—BSO0(2),
F : Zr1(S(€))]—A. The A-homology spine obstruction is the cobordism

class
ol (M,K) = 0.(M,N,§) € [,(F,-2)
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of the n-dimensional (—z)-quadratic A-Poincaré complex o.(M,N,§) =
(C, ) over Z[m1(S(§))] associated by 22.13 to any codimension 2 Seifert sur-
face N. O

Proposition 22.15 Let (M,0M) be an n-dimensional manifold with bound-
ary, with § : M——BSO(2), F : Z[r1(S(§))]— A as before.

(i) The A-homology spine obstruction of (M,0M) with respect to a A-
homology boundary spine K C OM is such that

oMM,K) = 0 IL(F,—2)

if (and for n > 7, locally epic F only if) there exists a codimension 2 Seifert
surface N such that (N, K) is a A-homology spine of (M,0M).
(ii) Let @5 be the commutative square of rings with involutions

Zlm(S(8))] —— Z[m (S(9))]
D5

Zm(5(8)] ———4

so that the relative I'-groups I'v(P5,—2) fit into an exact sequence
.= Ly(Z[m1(S(8))], —2) — [W(F,—2) — [(Pg, —2)

— Ln_1(Z[m1(SE))], —2) — ...
with Iy (P, —2) the cobordism group of (n — 1)-dimensional (—z)-quadratic
A-contractible Poincaré complezes over Z[m1(S(§))] (20.21). If (N,0N) C
(M,0M) is a &-characteristic codimension 2 submanifold such that K = ON

is a A-homology boundary spine the image of the A-homology spine obstruc-
tion o2 (M,0N) = (C,v) € I,(F, —2) is the cobordism class

C, ) = (9C,0¢) € I'(Pg, —2)

of the boundary (n — 1)-dimensional (—z)-quadratic A-contractible Poincaré

complex over Zm1(S(§))] with 0C ~ C(S(§), 8:73)”1. Moreover, the normal
maps (S(f),S(b)), (g,¢) of 22.6 are such that

(5(f);5(0)) = (S(én), S(Elon)) — (S(£), S(Elon))

is a normal map from an (n — 1)-dimensional manifold with boundary to an
(n — 1)-dimensional geometric A-coefficient Poincaré pair, and

(970) : (P;S(glN)7a+P;S(§|3N>)
— (5(§) x I;5(¢) x {0}, S(&) x {1} 5(&lon) x I)

is a normal map from an n-dimensional manifold triad to an n-dimensional
geometric A-coefficient Poincaré triad, such that



22C. Spines 249

(049,04¢) : (04P,S(&lan)) — (S(&),S(&lan))

is a A-homology equivalence. The quadratic kernel of (g,c) is the n-dimen-
sional quadratic A-Poincaré triad o.(g,c) described in 22.6 (iv), correspond-
ing to the factorization

-1 n—s* -2~ n—s* (+T-2)%o
L+ T)(1 -2 Y) e o onmr B

with (1 4+ T-.) : C"*—C a A-equivalence.

(iil) Let X be the set of A-invertible square matrices in Z[m(S(£))]. If the
natural map Z[m1(S(€))]— X" Z[r1(S(€))] is injective and 1 — 2z € A® (i.e.
1—2z¢€X) then

(T, ~2) = La(Z7'Z[m(S(E)), —2)

= IW(F) = La(Z7'ZIm(S(9)))
= I"(F,—2) = L"(Z7'Zm(S(E))], —7)
= I"(F) = L"(Z7'Zm(S©)))

(
(

and the A-homology spine obstruction is the A-coefficient symmetric signature
of the n-dimensional geometric A-coefficient Poincaré pair (P, 0P)

oMM,K) = o(P,0P) € I,(F,—2) = I'"(F).

Proof (i) Immediate from 22.8.
(ii) Immediate from 20.21 and 22.6.
(iii) The central unit

s = (1-2)7" e Z7'Z[m(5(¢)))*
is such that s +35 = 1, so that the e-symmetrization maps

1+ Te : L7 Z[m(S(€))],€) — L™ (ST Z[m(S(6))], €)

are isomorphisms, for any central unit e € X ~Z[m; (S(£))] such that € = e~ .

See Chap. 25 below for the identifications
L(F,€) = Lo(Z'Z[m(S(©))e)
I*(F,e) = LY(Z7'Zm(SE)))e) - 0

Definition 22.16 Let X be a space with a 2-plane bundle £ : X —BSO(2),
let F : Zlr1(S(§)]— A be a morphism of rings with involution, and let
U C Why(A) be a xinvariant subgroup.

(i) The U-intermediate bounded spine bordism group BBY(X,¢,F) is the
group of bordism classes of objects (M, K, f), where (M,0M) is an (n + 2)-
dimensional manifold with boundary, together with a map f: M—X and
a (0f)*&-characteristic codimension 2 submanifold K"~' € M with the
exterior 04 P = cl.(OM\E((0f)*¢|k)) such that
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O41) el¢) = 0€ B0, P),

H (04 P;A) = H.(5(f7¢); 1) ,
i.e. such that K is a A-homology boundary spine for (M, M) with torsion
in U.
(ii) The U-intermediate empty spine bordism group ABY (X, &, F) is the group
of bordism classes of objects (M, f), where (M,0M) is an (n+2)-dimensional
manifold with boundary with a map f : M——X such that

(0f)7e(€) = 0€ H*(OM),
H.(OM; A) = H.(S(f7€);4) ,
T(OM—S5(f"¢); A) e U S Whi(4) ,

i.e. such that @ is a A-homology boundary spine for (M, dM) with torsion in
U.

(iii) Suppose that 1 — z € A® and 7(1 — z) € U. The U-intermediate closed
spine bordism group AU(X,&,F) is the group of bordism classes of objects
(M, f), where M is a closed (n + 1)-dimensional manifold with a map f :
M—5(&) such that

H.(M;A) = 0, 7(M; A) €U C Why(4)
i.e. such that () is a A-homology spine for (M, () with torsion in U. O
For U = Why(A) the groups defined in 22.16 are denoted by
BBV W(X,5,6) = BB,(X,5,¢),
AB)/MN(X,F ¢) = AB,(X,9,€),
AV (X F€) = A(X,F,€) .

Proposition 22.17 Let X be a space with a 2-plane bundle § : X — BSO(2),
and let
F: A= ZmSE)] — 4

be a morphism of rings with involution. Let U C Whq(A) be a x-invariant
subgroup, denoting the preimage in Why(A) by U also.
(i) The bounded and empty spine bordism groups are isomorphic

AB/(X,&,9) = BB/(X,£,9) .
(ii) The spine obstruction defines morphisms

BBg(Xa§7?) — F7?+2(?a _Z) ; (MvKaf) — Uf(MvK)



22C. Spines 251

which are isomorphisms for locally epic F and n > 5 with m(X) finitely pre-
sented (e.g. if X has a finite 2-skeleton), in which case the spine obstruction
defines a natural isomorphism of exact sequences

— BB[(X,§,A) = BB/(X,§,9) = I}/\5(P5, —2) = BB, 1 (X,§, A) —

U*iu a*lu -]

9Ln+2(‘4 Z>‘>Fn+2(gj _Z)‘>Fr€]+2(¢3"a_ )‘>L7H»1(A —z) —=

IR

with @5 as in 22.15, and Fg+2(433v, —z) the cobordism group of based f.g. free
(n 4+ 1)-dimensional (—z)-quadratic Poincaré complezes (C,v) over A which
are A-contractible with 7(C; A) € U.

(iv) If1—z € A®* and 7(1—2z) € U the empty and closed spine bordism groups
are related by an exact sequence

C = Qa4a(8(6)) — ABJ(X,£,9) — AJ(X,€,7)
— 2,41(5(8) — ...
with $2.(S(€)) the ordinary bordism groups of S(§), and
Qn42(S(6)) — ABJ(X,6,9) 5 (M, f) — (M,pf) ,
AB(X,6,9) — AL(X.69) 5 (M, f) — (0M,0f) ,
AT(X,6F) — 2,401(S(€)) : (M, f) — (M, f)

with Of : OM—=S(€) the lift of Of : OM—X determined by the trivializa-
tion (0f)*¢ = €2 : OM—BSO(2).

(v) If 1 —z € A® and F is locally epic with factorization through an injective
localization map ©

FiA— 5454

(with X as in 22.15), then for n > 5, finitely presented w1 (X) and locally
epic F

ABY(X,¢,9) = BBY(X,¢,9)
= [T, —2) = L/L(9)
= Lya(Z70 A, —2) = L ,(5714)
= Iyt (3, —2) = Iy(9)
= LPP(X7A, —2) = LEPA(Z7A)

the symmetric signature defines a natural transformation of exact sequences
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ST
co—= L (A) —— I7(F) ——= T (P5) —= LT (A) — ...
and there is defined an exact sequence
C > Ly (A) — AL(X,6,9) — Iy (@) © 241(S(6))
— LM A) — ...
Proof (i) Given an (n + 2)-dimensional manifold with boundary (M,0M)
with a map f: M——X and a A-homology boundary spine K C M with

exterior L let N C M be a codimension 2 Seifert surface (22.13 (ii)) with
ON = K, and define an (n + 2)-dimensional manifold with boundary

(MlvaMl) = (M UE(VKCBM) E(VNCM)vL US(VKCBM) S(VNCM))

with empty A-homology boundary spine ) C OM’. The construction defines
an isomorphism

BBJ(X,£,5) — ABJ(X,6,9); (M,K,f) — (M, f)
inverse to the evident forgetful map

(ii)+(iii) Immediate from 22.15, realizing elements of IV, o(F,—z) by ele-
ments of BBY (X, J) as in Matsumoto [183,5.2]. Here are the details of the
construction for n = 2i > 6, realizing a (—)’z-quadratic form (A, 1)) over
A = Zr1(S(£))]. Choose a (2¢ — 1)-dimensional manifold with boundary
(Ko, 0K() with a mj-isomorphism map Ko— X, and use the method of Wall
[304, Chap. 5] to construct a 2i-dimensional relative cobordism (N; Ky, K1)
with . 4 4

N* = Ko x IUiggp(-yiige | JD' x D'

¢

the trace of surgeries on ¢ disjoint trivial embeddings S'~! x D* C int(Kj)
with self intersection form (Z[r;(X)]%,1 ® v). By construction, there is an
i-connected normal map of 2i-dimensional manifold triads

(f:0) = (N; Ko, K1) — Ko x (1;{0},{1})

with
(f,b)] = id. : Ko — Ko , Ki(N) = Z[mi(X)]",

and quadratic kernel the 2i-dimensional quadratic complex (S*Z[m (X)], 1®
1) over Z[m1(X)]. Define the (2i 4+ 2)-dimensional manifold with boundary

(M, 0M) = (E(lkox1), OE(Elox1))
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regarding
(Ko x I) x {0} COM = E(&la(roxn)) YUs(eloigxr) Ol Koxr)

as a {-characteristic codimension 2 submanifold. Use the method of [183,5.2]
(cf. 22.8) to perform ambient surgeries on ¢ disjoint trivial embeddings

S x D' C int(Ky) x {0} € OM

with self intersections 1, and trace a &-characteristic codimension 2 subman-
ifold triad

(N Usryxs Ko x I; 0(Ko x I),0N) € M x (I;{0},{1}) .
Let _ ) )
P2 = §(¢ly) x Tu D' x D
l

the trace of surgeries on /¢ disjoint embeddings S* x D1 C int(S(¢|n))
representing generators of the kernel A-module

Ki(S(E[n) = A

of the i-connected normal map of (2i+ 1)-dimensional manifolds with bound-
ary

(5(f),50)) = (SEln),SElon)) — (S(€lxox1), S(Eloxox1))) »

and let 04 P be the effect of these surgeries. The {-characteristic codimension
2 submanifold (NV,0N) C (M,0M) has exterior (P,d1P), so that up to
homeomorphism

(M,0M) = (E(§|N) Usely) P E(€lon) Us(elon) 9+P)
and there is defined a normal map of (2i + 2)-dimensional manifold triads
(9,¢) = (P;0+P,S(€|n); S(Elan))
— (S(lrox1) X I; S(€|rox1) x {0}, Sl roxr) X {1} S(Elacxoxn)) X 1) -

The kernel (2i + 2)-dimensional quadratic Poincaré triad over A is the
one associated by 20.27 to the (2¢ + 2)-dimensional quadratic complex
(S7+1AY (1 — 271)eh) and the factorization

Q=2+ () HA -2 = @+ () =)1-271) -

. . 1—z"1 . —)izah* .
e(g)t2r = sttt Ty ginige P on _ gitiye
Now

€19 : O(S(Elkyxr))—C(04P)) =~ SC(+ (—)izp* : A'—AY)
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so that ON is a A-homology boundary spine of (M,9M) if and only if the
(—)?z-quadratic form (A¢, ) is A-nonsingular, in which case the A-homology
spine obstruction of (N,0N) C (M,0M) is
O'x{l(Mv 8N) = (Aeﬂ/)) € F272+2(5t7 _Z) = FO(g:a (_)ZZ) .

(iv) If M is a closed (n + 2)-dimensional manifold with a map f : M—S(§)
then @ is a A-homology boundary spine of (M, ), with H.(S(f*¢);4) =0
and

T(S(f76);4) = x(M)7(1 —2) €U C Why(4) .
(v) Combine 22.6, 22.15 and (i)—(iv).
Remark 22.18 If 1 — 2z € A®, 7(1—2) € U the isomorphism BBY (X, ¢, F) =
ABY(X,¢&,9) of 22.17 (i) can also be expressed as

O

BB(X,6,5) — AB/(X,£,9); (MK, f) — (P, f])
with P = cl.(M\E(vncar)) the exterior of any codimension 2 Seifert surface
(N,ON) C (M,0M) of DN = K C M. O
For the remainder of Chap. 22 only the case A = Z[m1(M)] will be con-

sidered.

Example 22.19 Let (M, 0M) be an n-dimensional manifold with boundary,
with a 2-plane bundle £ : M—BSO0(2) and let

F=p: A= Zm(S(E)] — A = Z[m(M)].

A ¢|apr-characteristic codimension 2 submanifold K C M with exterior L
is a A-homology boundary spine of (M,0M) if and ounly if (M, K) is an
(n — 2)-dimensional geometric Poincaré pair, with

H.(M,K;A) = H.(M,E({|k);A) = H" (M, L; A)
H" *(B(£),S(£);4) = H' *7*(M; A) ,
T(M,K;A) = 7(L—S5(£); A) € Why(A) .

If K C OM is a A-homology boundary spine for (M,0M) and N C M is a
codimension 2 Seifert surface for K the inclusion N C M defines a normal
map (g,c¢) : (N, K)— (M, K) and the antiquadratic complex o, (M, N, &) =
(C, ) of 22.4 is an n-dimensional (—z)-quadratic complex over A which is
A-Poincaré, with

C = C(P,L) , A®w,C ~ C(M,N) ,

1%

8C ~ C(S(€),L)ur1 , T(A®4C) = 7(M,K;A) .

A codimension 2 Seifert surface of K is a A-homology spine (N, K) of
(M,0M) if and only if (g, ¢) is a homotopy equivalence, if and only if (C, )
is A-contractible. The A-homology spine obstruction

oM M,K) = (C,¢) € BB, (X,F,6) = I,(F,—2)
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is the obstruction of Matsumoto [183], with image the surgery obstruction of

,C
(9 A@a 02 (M,K) = 0.(g,¢) € Ln(A,—1) = L, _o(A) .
Cappell and Shaneson [45] showed that there exists an immersed A-homology
spine, i.e. a homotopy equivalence N— M which is a codimension 2 immer-
sion with boundary ON = K. a

22D. The homology splitting obstruction

Definition 22.20 (i) A weak (n,n —2)-dimensional geometric Poincaré pair
(X,Y) is a codimension 2 CW pair such that :

(a) X is an n-dimensional Poincaré complex,
(b) Y is an (n — 2)-dimensional Poincaré complex,
(c) (Z,5(€)) is an n-dimensional Z[m (X )]-coefficient Poincaré pair.

(ii) Let (X,Y") be a codimension 2 CW pair with a topological normal struc-
ture. A homotopy equivalence h : M — X’ from an n-dimensional manifold
M to an n-dimensional geometric Poincaré complex X' weakly splits along
Y C X if there is given a reference map r : X'— X which is weakly Poincaré
transverse at Y C X, with (X', Y”) a weak (n,n — 2)-dimensional geometric
Poincaré pair, such that the restriction

(£.0) = bl : N = (rh)"(¥) — ¥ = +7}(Y)
is a homotopy equivalence, and the restriction
(9.0) = fl + P = (rh)"(2) — Z' = r7}(2)

is a Z[m (X)]-coefficient homology equivalence.

(iii) There are relative versions of (i) and (ii). In particular, a weak (n,n —
2)-dimensional geometric Poincaré triad (X,Y;0X,0Y) is a codimension 2
CW pair (X,Y) such that (X,0X) is an n-dimensional geometric Poincaré
pair for some subcomplex 90X C X, and such that (Y,9Y) is an (n — 2)-
dimensional geometric Poincaré pair with boundary Y = 0X NnY, and
such that (Z;04+7,5(€),S(&loy)) is an n-dimensional geometric Z[mi(X)]-
coefficient Poincaré triad with 0,72 = 0X N Z.

0X . b's
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The I'S- and I'N-groups of Ranicki [237] are the analogues of the LS- and
LN-groups in the context of the homology surgery theory of Cappell and
Shaneson [40].

Definition 22.21 (Ranicki [237, p. 770])
(i) The quadratic I'S-groups I'S.(®) of the pushout square of groups associ-
ated to a codimension 2 CW pair (X,Y)

m(5(8)) ———=m(2)
o

m(E(§) ———m(X)

are the relative groups appearing in the exact sequence

. — Fn-i—l(@X) — FSn_Q(é) — Ln_Q(Z[ﬂ'l(Y)D EL} Fn(éX) —_— ...

with @x the commutative square of rings with involution

Zm(2)] ——— Z[m (X))
Dx
Zmy (X)] ——— Z[m (X))]
and p¢' the composite of the transfer map
£ Lu—a(Z[m(X)])) — La(Z[m (S()—Z[m (E(€)))
and the natural map
P+ Ln(Zm(S(§)]—Z[m(E(§))]) — In(Px) .

(iii) Let (X', Y’;0X’,0Y") be a weak (n,n — 2)-dimensional geometric Poinc-
aré triad, with a 7j-isomorphism reference map r : X’— X weakly Poincaré
transverse at Y C X. Let h : (M,0M)—(X’,0X’) be a homotopy equiva-
lence from an n-dimensional manifold with boundary with oh : 9M —0X’
a weakly split homotopy equivalence. The codimension 2 weak splitting ob-
struction of h is the element

wsy (h) € I'Sy,_o(P)

with image the surgery obstruction o.(g,¢) € L,—2(Z[m1(Y)]) of the codi-
mension 2 normal map obtained by transversality

(f,b) = h| : (N,ON) = (rh)"(Y,0Y) — (Y',0Y") = r~1(Y,0Y)
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which is determined by the bordism
hx1: (MxI;Mx{0}, E(vnem) X {1}; P x {1})
— (X' x I; X' x {0}, E(vy cx/) x {1}; Z' x {1})
(P = (rh)™(Z) = cL.(M\E(vncu)))

of
(f,0)' : (Bwnem), Svncm)) — (Ewyrcx:), S(vyrcxr))
to the homotopy equivalence h : (M,0M)—(X’,0X").

(iv) The quadratic I'N-groups I'N,(F) are the I"'S-groups for a codimension
2 CW pair (X,Y) with

m(X) = m(Y) , m(S() = m(2)

(eg. if X = E(&) with Z = S(¢)) and F : Z[r1(S(€))]—Z[m1(Y)] the
induced map, that is

m(5(§)) —=m(5(¢))
I'N,(F) = FS*< gi lf; ) .
7T1(Y)4>7T1(Y) D

Proposition 22.22 (Ranicki [237,7.8.1,7.8.2])
(i) The LS- and I'S-groups of a codimension 2 CW pair (X,Y) are related
by the commutative braid of exact sequences

T T

L (Px) I (P5) LSn3(®)
'S, _o(P) L,(F)
LSy—2(P) Lp—2(Z[m (Y)]) I(®x)

with F 1 Zlm(Z2)|—Z[r1(X)] the natural map, and ®5 the commutative
square of rings with involution

Zm(2)] ——— Z[m(2)]
D5

Zm(2)] ——— Z[m (X)]
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(ii) The codimension 2 weak splitting obstruction of a homotopy equivalence
from an n-dimensional manifold with boundary to an n-dimensional geomet-
ric Poincaré triad (h,0h) : (M,0M)— (X', 0X") with Oh weakly split along
Y C X is such that

wsy(h) = 0€ I'S,_2(P)
if (and for n > 7 only if) h can be weakly split rel & along Y C X. Similarly
for s-splitting.
(iii) Every element © € I'S,_2(P) is the codimension 2 weak splitting ob-
struction x = wsy (h) of a homotopy equivalence h as in (ii), with images

0u(f,0) € Laa@Im(V)]) , 0P (g,0) € T(@9)
the surgery obstructions of the restrictions
(f,b) = h| : (N,ON) — (Y',0Y"),
(9:¢) = h| : (P;04P,S(E|n); S(Elon)) — (Z27;0+.2", S(Ely); S(€lav))
(P = cl(M\E(¢|n)) , 04P = cl.(OM\E({[on)))
with (g,c¢) a normal bordism from the (n — 1)-dimensional normal map
(g:09 = (5(f),50) : (SE¢ln),SElon)) — (S(Ely), S(Elay))
to the Z[m (X)]-homology equivalence
(g:9) = (0+P,S(Elon)) — (042", 5(Eloy")) - 0

Proposition 22.23 (Ranicki [237,7.8.12])
Given a 2-plane bundle £ : Y——BSO(2) over a CW complez Y let (X,Y)
be the codimension 2 CW pair defined by

X = E(¢ , 2 =59 .
Let z € w1 (S(€)) be the image of 1 € w1 (SY), and let
F =pe: A= Zm(SQ)] — A = Zm(Y)].

The quadratic LN- and I'N-groups of (X,Y) are related to the (—z)-
quadratic L- and I'-groups of A by an isomorphism of exact sequences

..—> LN, o(F) —>I'N, o(F) —> I, (Pg) —> LN, _5(F) — ...

N

o> Ly(A —2) = (F,—2) = (P, —2) = Lp_1(4,—2) — ...
with @5 the commutative square of rings with involution

A—> A
%

A——— A
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Proof Every element & € LN, _o(F) (resp. I'N,,_o(F)) is the codimen-
sion 2 splitting obstruction = = sy (h) (resp. weak splitting obstruction
x = wsy(h)) of a homotopy equivalence h : (M,0M)—(X',0X’) from
an n-dimensional manifold with boundary to an n-dimensional geometric
Poincaré pair (X’,0X’) with a weakly Poincaré transverse reference map
(r,0r): (X’,0X')—X such that

Vyrcx!

vnenm 2 N = (rh) YY) — Y’ = r~ 1Y) —= BSO(2) ,

vyicx: 2 Y — X' — Y -, BSO(2) ,

m(M) = m(OM) = m((X') = m(0X') = m(Y),
m(P) = m(0:P) = m(Z) = m(0:7)) = m(S())
(P = cl.(M\E(vncm)) , O+P = cl.(OM\E(vancon)))

and such that Oh : IM——0X' is split (resp. weakly split) along ¥ C X.
The kernel version of the antiquadratic complex of 22.4 is an n-dimensional
(—2)-quadratic complex (C, 1)) over Z[m(S(§))] with

C = e(h':C(Z',0,7)—C(P.0;P))
which is Poincaré (resp. Z[r1 (Y )]-Poincar¢), with P, Z' the universal covers
of P,Z" and
W' C(Z,0.7) = C(Z . S(vyex)"
— C(P,S(vwem))"™" =~ C(P,0,P)
the Umkehr Z[m (S(§))]-module chain map. The morphisms

LNp—2(F) — Ln(Z[m(S(£))], —2) ; sy(h) — (C,¢),
I'N,_o(F) — IL(F,—2) ; wsy(h) — (C, )

are isomorphisms.

A finite f.g. free Z[m1(S(€))]-module chain complex C'is Z[m1 (Y)]-contractible
if and only if the Z[m1 (S(£))]-module chain map 1 —z : C—C'is a Z[m1(Y)]-
equivalence, so that there is defined an isomorphism

Do(@5) — Do(@g,—2) 3 (C,) — (C, (1 — 2)) . O

Example 22.24 Let (M,9M) be an n-dimensional manifold with boundary,
and let £ : M—BSO(2), (N,0N) C (M,0M), (P,0+P) as in 22.2, and
F =p.: ZIm1(S(§))] — A = Z[r1(M)] as in 22.24. Define the codimension
2 CW pair

(X,Y) = (M,N) .
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As in 22.19 assume that K = JN is a A-homology boundary spine of
(M,0M), so that (M, K) is an (n — 2)-dimensional geometric Poincaré pair.
The weak (n,n — 2)-dimensional geometric Poincaré triad defined by

(X/vYI;aX/vaY/) = (E(f),M,S(f) US(§|K) E(£|K)7K)

is equipped with a reference map r : X’——X which is weakly Poincaré
transverse at ¥ C X. The homotopy equivalence defined by the inclusion
M C E(§) as the zero section

(h,0h) : (M,0M) —» (X',0X")

has Oh : OM—0X' a weakly split homotopy equivalence, and the anti-
quadratic complex (C, 1)) of 22.4 (with C' = C(P,d, P)) is an n-dimensional
(—=2)-quadratic A-Poincaré complex over Z[m (S(£))]. By 22.22 and 22.23 the
A-homology spine obstruction of 22.14 is the weak codimension 2 splitting
obstruction of 22.21

oMM, K) = wsy(h) = (C,)) € BB,(X,£,F) = I'N,_o(F) = [,(F,—2).
Inclusion defines a normal map
(fab) : (N7K)4—>(MaK)

with quadratic kernel o.(f,b) an (n — 2)-dimensional quadratic Poincaré
complex over A. Use 22.6 (iii) to identify the n-dimensional (—1)-quadratic
Poincaré complexes over A

A®gim,(se)) (C,0) = Sou(f,b),

showing that the A-homology spine obstruction has image the surgery ob-
struction of (f,b)

A®g (56 LM, K) = 04(f,b) € Ly(A,—1) = L,_5(A) .

The restriction of (h,0h) defines a normal map from an n-dimensional man-
ifold triad to an n-dimensional geometric Poincaré triad

(h,0h)| = (g,c) : (P;0+P,5(§In);: S(Elk))
— (S(§) x I;5(§) x {0}, S(&) x {1} 5(¢|x) x )
with 94 P—S5(€) a A-homology equivalence. The boundary map
0 : I(F,=z) = I'Np2(F) —> [(P5, —2) = [(P5); (C,¢) — 0(C, )

(with @5 as in 22.23) sends the A-homology spine obstruction o(M, K) =
(C, 1) to the relative A-coefficient homology surgery obstruction

O—f(gac) = 8(071,0) S Fn(@?) 5

which is the obstruction of Cappell and Shaneson [44] to the existence of a
A-homology spine. O



23. Manifold and geometric Poincaré bordism
of X x S1

The free L-groups of the Laurent polynomial extension A[z,27!] of a ring
with involution A split as

Ly (Alz,271) = Ly (A) & Ly(4)
Ly (Alz,271]) = Ly, (A) @ L5 (A)
(Shaneson [264], Wall [304, 12.6], Novikov [218], Ranicki [231], Milgram and

Ranicki [189]). The L-theory splittings are algebraic analogues of the split-
tings of the manifold bordism groups of X x S?!

np1(X X Sl) = Q01 (X) @ 2,(X)
and also of the geometric Poincaré bordism groups

On(X x 8Y) = 2p,(X) @ 25(X) .

n
These geometric splittings will now be described in detail.

In Chap. 23 manifolds are understood to be oriented manifolds in one of
the standard three categories: smooth, combinatorial or topological.

Definition 23.1 For any space X let £2,,(X) (n > 0) be the group of equiv-
alence classes of pairs (M, f) with M a closed n-dimensional manifold and
f: M—X a map, subject to the equivalence relation :
(M, f) ~ (M', f') if there exists an (n+1)-dimensional cobordism (L; M, M")
with a map e : L— X such that e|] = f : M— X, ¢| =
M —X.
O

Choose a base point * € S', and let
i X — X xS 2 — (1,%),

jr X xS — X (z,5) — .
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Proposition 23.2 The manifold bordism group $2,.1(X x S) fits into a
direct sum system

1 B
Qn1(X) == 21 (X x §') = 2,(X)
J C

with

D 201 (X) — 2,01(X x SN (M,e) — (M, ie) ,

Jt (X x 8Y) — 2041 (X) 5 (M, f) — (M, jf)

B i 0,1(X x 8Y) — 2,(X) 5 (M, f) — (f(X x {}), 1)
(assuming f: M—X x S transverse at X x {x} € X x S*) ,

C: 2,(X) — 2, 1(X xS ; (N,g) — (NxS'gx1).

.

Proof Given an (n + 1)-dimensional manifold M and a map f : M—X x S!
which is transverse at X x {x} C X x St let

g=fl:N=f1Xx{x}) —Xx{x} =X,
with N C M a codimension 1 framed submanifold. Cutting M along N there
is obtained an (n + 1)-dimensional manifold
My = cl.(M\(N x [0,1]))

with boundary My = NU—zN two copies of N. The bordism (My; N, zN)
is a fundamental domain for the infinite cyclic cover of M

M = f(XxR) = |J #/(My;N,2N)
Jj=—00
with 2z : M——M the generating covering translation. Regard M x [0, 1] as
a relative bordism (M x [0,1]; My, M U N x [0,1]), defining a fundamen-

tal domain for a bordism (6M,df : SM—X x S') between (M, f) and
(M,ijf)uU (N x S, g x 1) realizing

(M, f) = (M,ijf)+ (N x S',g x1) € 211 (X x '),
and verifying the identity
1 = ij4+CB : 2,1(X x 8" — 2,1(X x8"). O

Definition 23.3 For any space X let £2"(X) (resp. £22(X)) be the group
of bordism classes of pairs (P, f) with P a finite (resp. finitely dominated)
n-dimensional geometric Poincaré complex and f : P— X a map. |

Proposition 23.4 (Pedersen and Ranicki [224])
(i) For n > 5 the finite and finitely dominated geometric Poincaré bordism
groups are related by a Rothenberg-type exact sequence
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L OMX) — Q2(X) — H™(Zs ; Ko(Z[m1 (X))
— " (X)) — ...

(ii) The geometric Poincaré bordism class of a (finitely dominated, finite)
n-dimensional geometric Poincaré pair (P, 0P) relative to a map P—X is
the Tate Zo-cohomology class of the Wall finiteness obstruction

[P € H"(Zy; Ko(Z[r1 (X)) - O
The projective surgery theory of [224] also gives:

Proposition 23.5 For n > 5 and any space X a map f : M—X x S!
from a finite (n + 1)-dimensional geometric Poincaré complex M is finitely
dominated Poincaré transverse at X x {x} C X x S, in that (up to finite
Poincaré bordism)

f = fvUgxl : M = MNyUNx[0,1] — X xS' = X x[0,1JUX x[0,1]
with N = f~1(X x {x}) and
(fnig,29) + (Mn;N,z2N) — X x ([0,1]; {0}, {1})

a finitely dominated (n + 1)-dimensional geometric Poincaré bordism such
that
[My] = [N] = Br(M) € Ko(Z[m (X)]) . 0

Proposition 23.6 The finite geometric Poincaré bordism group Q,’}H(X X
S1) fits into a direct sum system

21 (X) <j;—,) Q1 (X x 81 % 20(X)

with

i 2 (X) = 2 (X x SY) 5 (Moe) — (M, ie)

§ (X xS — 28 (X) 5 (M, f) — (M, jf) + (0P, 0h)
(assuming f: M—X x S' Poincaré transverse at X x {*} ¢ X x S*,
for any (finitely dominated, finite) (n + 2)-dimensional geometric
Poincaré pair (P,0P) with a map h : P—X such that
[P] = [N] € Ko(Z[m (X)), with N = (X x {x}) € M) ,

B i 24 (X x 81— Q8(X) 5 (M, f) — (X x {+}), f]) = (N, g) ,

C: PX)— 28 (X xS (N,g) — (NxS'gx1).

Proof Suppose given a finite (n + 1)-dimensional geometric Poincaré complex
M and a map f: M—X x S! which is finitely dominated Poincaré trans-
verse at X x {x} C X x S!, as above. Regard M x [0, 1] as a relative finitely



264 23. Manifold and geometric Poincaré bordism of X x S*

dominated geometric Poincaré bordism (M x [0, 1]; M, MUN x [0, 1]), defin-
ing a fundamental domain for a finitely dominated geometric Poincaré bor-
dism (6M,5f : M —X x S*) between (M, f) and (M,ijf)U(N xS, gx1)

realizing
(M, f) = (M,ijf)+ (N xS*gx1)e 2’ (X xS,
with finiteness obstruction
[0M] = —i[N] € Ko(Zm (X)][z,27}]) .

For any (finitely dominated, finite) (n + 2)-dimensional geometric Poincaré
pair (P,0P) with a map h : P—X such that

[P] = [N] € Ko(Z[m (X))

there is defined a (homotopy) finite geometric Poincaré bordism (§M,df) U
(P, h) between (M, f) and the disjoint union

(M,ijf) U (N x S', g x S*) U (9P,i0h)
realizing the identity

1 =ij+CB : 2! (X xS — 2h (X xS"). O



24. L-theory of Laurent extensions

The algebraic mapping torus of a self homotopy equivalence of an algebraic
Poincaré complex over a ring with involution A is an A-finitely dominated
algebraic Poincaré complex over the Laurent polynomial extension A[z, 27}]
(z = 27 1). Following a recollection of the algebraic L-theory splitting theo-
rems

Li(Alz,27Y,e) = Li(A )@ Ly~ (Ae)

LZ(A[Zv 271]7 6) = LZ(A’ 6) D Lﬁfl(Av 6)

it will now be proved that an algebraic Poincaré complex over A[z,z71] is
A-finitely dominated if and only if it is homotopy equivalent to the algebraic
mapping torus of a self homotopy equivalence of an algebraic Poincaré com-
plex over A. See Chap. 34 for the L-theory of the polynomial extensions A[z],
Alz, z~!] with involution T = .

Fundamental domains for infinite cyclic covers of compact manifolds may
be constructed by geometric transversality. Likewise, algebraic transversality
provides finitely dominated Poincaré fundamental domains over A for finite
f.g. free algebraic Poincaré complexes over the Laurent polynomial extension
Alz, z71] with the involution

T Alz, 27— Alz, 27 Z ajz — Z a;z .

j=—o00 j=—o00
Definition 24.1 (i) Given A-module chain complexes C, D and chain maps

- tri
f,g9 : C——D define the double relative {6 symme Tw Q-groups of (C, f,g)
e-quadratic

{ QnJrl(fag? 6) = HnJrl(f% — g% : W%C—>W%D)
QnJrl(fagac) - Hn+1(f‘7 — g% W%C‘-)WOOD)
to fit into an exact sequence

. — Q" (D, e) — Q"L(f, g,¢)

£ g%
— Q" (Cye) —— Q"(D,e) — ...

. — Qn+1(D76) — Qn+1(fag76)
f%—9%

— Qn(Cye) —— Qn(Dye) — ... .
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e-symmetric

(ii) An n-dimensional { pair over A

e-quadratic
(5¢a d) D _(b/) )
(09,1 & =)

(06,0) € Q" (f. g,¢)
(&ﬁﬂﬂ) € Qn+1(fvgve)'

e-symmetric

r = ((fg):C@C’—>D, {

(C",¢") = (C,9)
(€ ¢") = (C,4)

(iii) The union of a fundamental n-dimensional

is fundamental if { so that {

Poincaré
e-quadratic ( )

e-symmetric

pair I' over A is the n-dimensional { (Poincaré) complex over

e-quadratic

(E.9)
vir) = {<E,w>

" = (dé) <>T;<§gz>):

E, = D[z, 2o Cr_1[z,27 1]
— E,_1 = D12,z | ®Crs]z,27Y],
d. — ( 5¢9 (7)89(77552 ) .
’ (=) s ()T e
EnfrJrs — Dniﬂks[z,zil} D CnfrJrsfl[Z’Zfl]

— B, = D.[z,27 Y1 ®Cr_1[z,271],

v, = ( s (=)’gibsz >
’ ()" ()T T

EnhTTS — l)n—r—s[z7 Z_l] D Cn—r—s—l[z, Z—l]
— E, = Dylz, 271 @ Cralz,27Y] .

(iii) A fundamental pair I" over A is finitely balanced if C' and D are finitely

dominated and B
[C] = [D] € Ko(4) ,

in which case
U] = [Dlz,27] = [Clz, 27 Y]] = 0€ Ko(Alz,271])

and the union U(I") is homotopy finite. A choice of chain equivalence C' ~ D
(if any) determines a round finite structure on U(I"). O
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Proposition 24.2 (Ranicki [244, Chap. 16])
i tri
E_ZZTZZ;ZC (Poincaré) complex (E,0)

over Alz, 27 is homotopy equivalent to the union U(I") of a finitely balanced
- tri
ersymimerrie (Poincaré) cobordism I'. If (E,0) is based and

(i) Every f.g. free n-dimensional {

n-dimensional .
e-quadratic

simple then I can be chosen to be based f.g. free, with (E,0) simple homotopy
equivalent to U(I").

- tri
(ii) The simple and free {6 SymmenTe

_ L-groups of Alz,271] fit into geomet-
e-quadratic

rically significant direct sum systems

1 B

LP(A) T LAl =) T LI (A9,
J’ c
iy . B

Lt (A, Lt (Alz,z7Y,e) 7— L“_ (A,

n( 6) (—j/ n( [Z z ] 6) %C n 1( 6)

for (t,u) = (s, h) or (h,p), with iy induced by the inclusion i : A— Az, 27 1]
and C defined by product with the symmetric Poincaré complex o*(S') over
Z[z, 271

C =" (SY®— : L' YA€) — LAz, 27 Y,€) ,

C =o' (SY®— : LT _;(Ae) — Lt (Alz, 27 "],¢) . O

n—1
Let
joARz T — Az — 1.
Note that in general j’ # 5, — see 24.4 below for a description of j' — ji.

The symmetric signature defines a natural transformation of direct sum
systems

O (X) T QMK xS T 2 (X)
7 8
7 B
L@ (X)) T @ (D)l =) T L Em ()
J

from geometric Poincaré bordism to symmetric Poincaré bordism.
Definition 24.3 Let
(h7X) : (Ca ¢) — (07 ¢)

be a self map of a finitely dominated n-dimensional e-symmetric complex
(C, ) over A.
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(i) The algebraic mapping torus of (h,x) is the homotopy finite (n + 1)-
dimensional e-symmetric complex over A[z, 27 }]

T(h,x) = UI') = (E,0)

defined by the union of the finitely balanced (n+ 1)-dimensional e-symmetric

cobordism
I = (h1):000—C,(x,0®—9)),

with
E = Ch—2:Clz,27 ' |—C[z,271]),

6. — ( Xs (=)"¢s )
’ ()" Tgsh* ()T gy
En7r+s+1 — Cnfr+s+1[z’ 2’71] o Cmfr%»s[z’ Zﬁl}
— B, = Clz, 27 1@ Cri[z,27Y] (s>0).

(ii) The A-coefficient algebraic mapping torus of (h, x) is the homotopy finite
(n + 1)-dimensional e-symmetric complex over A

TA(h7X) = A®A[z,z*1] T(h7X) = (EAaeA)
Es = Ch—1:0—0),

(0.)s = ( Xs (=)°0s )

(—)"_Tqbsh* (—)n_T+s+1Te¢571
(EA)n7T+S+1 _ C’I’L*T“rsﬁ’l o Cn7r+s SN (EA)r _ Cr o Crfl (8 > 0) )
Similarly in the e-quadratic case. O

Proposition 24.4 The algebraic mapping torus T(h,x) of a self homotopy
equivalence (h,x) : (C,9)—(C,¢) of a finitely dominated n-dimensional
e-symmetric Poincaré complex (C,¢) over A is a homotopy finite (n + 1)-
dimensional e-symmetric Poincaré complex over Alz,z~] with a canonical
(round) finite structure, with respect to which it has torsion

(T(h,x)) = 7(—2h:Clz, 27 |—C[z,27 ') = (7(h),[C],0,0)
€ Why(Alz,z7Y)) = Whl(A)@I?O(A)@I\INHO(A)@NNHO(A).
The cobordism class T(h,x) € L} (Alz,271],€) is such that
BT(h,x) = (C, ¢) €Ly(Ae),

and

"T(h,x) = Ta(h,x) = [r(-1:C—0)]
e im(H"2(Zy; Why(A))— LA, €)) .
If C is f.g. free then 7(—1: C—C) =0 € Why(A) and
§'T(h,x) = Ta(h,x) = 3 T(h,x) € Ly '(A€) ,
T(h,x) = wjT(h,x) @ (o(5") @ (C,9)) € Ly (Alz,27 . e)
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with j : Alz, 27— A; z—1 the projection. O

An infinite cyclic cover X of a finite (n + 1)-dimensional geometric
Poincaré complex X is finitely dominated if and only if X is homotopy equiv-
alent to the mapping torus T'(h) of a self homotopy equivalence h : Y —Y
of a finitely dominated n-dimensional geometric Poincaré complex Y, with
(Y,h) ~ (X, ). Similarly for algebraic Poincaré complexes :

Proposition 24.5 An (n + 1)-dimensional f.g. free e-symmetric Poincaré
complex (E,0) over Alz,z71] is A-finitely dominated if and only if it is ho-
motopy equivalent to the algebraic mapping torus T'(h, x) of a self homotopy
equivalence (h,x) : (C,¢)—(C, @) of a finitely dominated n-dimensional e-
symmetric Poincaré complex (C, @) over A. Similarly in the e-quadratic case.
Proof The Alz, z~1]-module chain complex

T(h) = Ch—z:Clz,z ]—C[z,27'))

is A-module chain equivalent to C, for any self chain equivalence h : C—
C of a finitely dominated A-module chain complex C. In particular, it fol-
lows that the algebraic mapping torus T'(h, x) of a self homotopy equivalence
(h,x) : (C,¢)—(C, ¢) of a finitely dominated n-dimensional e-symmetric
Poincaré complex (C, ¢) over A is A-finitely dominated.

Conversely, let (E,0) be an A-finitely dominated (n + 1)-dimensional f.g.
free e-symmetric Poincaré complex over A[z,z7!]. Let i'E denote the A-
module chain complex defined by E, with A acting by the restriction of the
Alz, z~Y-module action on E to the inclusion i : A—A[z,271]. Since i'E is
A-finitely dominated there is defined an A[z, z7!]-module chain equivalence

g TE) = C(—2:i'Elz, 2 |—i'E[z,2"1]) — E

as in 3.10. Regard the e-symmetric structure on E as an element of the Zo-
hyperhomology group 6 € Q" (E, ¢) = H,11(W”E) with

W%E = HomZ[Zz](VVaHomA[z,zfl](EﬂE))
= Homz[zz](I/V,E D Alz,2—1] E) .

Applying E ® 4. .-1] — to ¢ there is obtained a Z[Zs]-module chain equiva-
lence

1@¢t : E®ap.1TC) = CL—(®C:iI'E@si'E—i'E®4i'E)
— F ®A[z,z—1] E )

The relative e-symmetric structure groups Q*(1, ¢, €) in the exact sequence

1—¢%
. — Q"M('E &) — Q"TL(i'E,€)

S Qn—i_l(lvgve) — Qn(llE, 6) —_— ...
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are thus such that

Q"(1,¢e) = Q" (E,e) .
The absolute e-symmetric Poincaré structure § € Q"*1(E, €) corresponds to
a relative e-symmetric Poincaré structure (x,i'0) € Q"T'(1,¢,¢), defining
a finitely dominated n-dimensional e-symmetric Poincaré complex (i'E,i'0)
over A with a homotopy equivalence (¢, x) : (i'E,i'0)—(i'E, i'6) such that
(E, 6) is homotopy equivalent to T(¢, x). O

For any self chain equivalence h : P——P of a finitely dominated A-
module chain complex P and any n > 0 the (n + 1)-dual T'(h)" "1~ of
the algebraic mapping torus T'(h) = C(h — 2z : Plz,27Y——=P[z,271]) is
Alz, z71]-module chain equivalent to the algebraic mapping torus of (h*)~1! :
pPr~*——pn~* Thus if (E,0) is an A-finitely dominated finite f.g. free
(n + 1)-dimensional e-symmetric Poincaré complex over A[z,z7!] there is
an Alz, z7!]-module chain equivalence

~

(i!E)n—* _ HOmA(EaA>*7n N
Ertl-+ — HOmA[z,z—l](EuA[Z’Z_l]))**"*1

and the n-dimensional e-symmetric Poincaré structure i'0 € Q™(i'E, €) de-
fined in the proof of 24.5 is such that

0
0 : ('E)" — B — B = (B
Example 24.6 Let (F,0) be a 1-dimensional e-symmetric Poincaré complex
over Alz, z71] with
d = Z ajz By = Alz, 27 — By = Alz,27Y
j=m
for some Laurent polynomial

p(z) = Z a2’ € Alz, 271 .
j=m

If £ is A-finitely dominated (e.g. if A is commutative and the extreme co-
efficients a,,,a, € A are units) then (E,6) is homotopy equivalent to the
algebraic mapping torus T'(h, x) of the self homotopy equivalence

(h,x) = (Py¢) — (P, 9)

of the f.g. free 0-dimensional e-symmetric Poincaré complex (= nonsingular
e-symmetric form) (P, ¢) over A defined by

h = (' Py = Hy(E) = Alz,27']/(p(2)) — P ,
¢ = 6 : P° = HY(E) — Ho(E) = Py, x = 0. O



25. Localization and completion in L-theory

Localization and completion techniques are a standard feature of the theory of
quadratic forms, as evidenced by the Hasse-Minkowski local-global principle.
Refer to Chap. 3 of Ranicki [237] for an account of the relevant L-theory.
The main novelty here is that the localization exact sequences of [237] in
e-symmetric and e-quadratic L-theory

v = L"(Aye) — L™ (ST A €) — L"(A, S, e) — L™ (Aye) — ...,
oo = Lp(Aye) = Lp(ST A €) — L, (A, S, €) — Ly _1(A,e) —> ...

are extended to noncommutative localizations X ~' A of a ring with involution
A. 15

As in Chap. 9 let X be a set of square matrices with entries in a ring A, so
that the localization X! A is defined. An involution ~: A——+A is extended
to the ring M,,(A) of n x n matrices with entries in A by

Tt My (A) — Mu(A) 5 M = (a) — M = (ay) .

A set X of square matrices in A is involution-invariant if M € X for all
M € X, in which case the localization X ~1'A is a ring with involution, and
the natural map

it A— XA a4 — a/l

is a morphism of rings with involution.

As in Part One only localizations in the case when i : A— X714 is
injective will be considered, so that there is a localization exact sequence in
algebraic K-theory (9.8)

15Tn the published book there was an error in dealing with the noncommu-
tative localization exact sequence in the e-symmetric case. It was assumed
that every finite f.g. projective ¥ ~'A-module chain complex C with [C] €
im(Ko(A) — Ko(X'A)) is chain equivalent to X~ 'B for a finite f.g. pro-
jective A-module chain complex B. In the paper Noncommutative localization
and chain complexes I. Algebraic K- and L-theory by A.Neeman and A.Ranicki
(http://arXiv.org/abs/math.RA.0109118) it is proved that in general this is the
case if and only if Tory (¥ ~'A, X7'A) = 0 for i > 1, and the e-symmetric local-
ization exact sequence is proved under this additional hypothesis.
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[ 17}
o K (A) — K (P7'A) — Ki(AY)

s Ko(A) — Ko(E71A) — ...
with K7(A,Y) = Ko(H (A, X)) the class group of (A4, Y)-modules. It will
be assumed that the natural maps Z—A, Z— X' A induce split injec-
tions K,(Z)— K, (A), K.(Z)—K.(X71A) (* = 0,1) so there is a reduced
version of the localization exact sequence

i o
.= Whi(A) — Why(E7PA) — Whyi(A, X)
s Ko(A) — Ko(571A) — ...
with
Whl(sz) = Kl(AaZ) )

Wha(A) = {Kl(A) for arbitrary -A
Wh(r) for a group ring A = Z[r] ,
Why(271A)
_ { Ki(X71A) for arbitrary A
Ki1(X7'Z|r))/{£g|g € Z[x]} for a group ring A = Z[n] .

For a ring with involution A and an involution-invariant set X' of square
matrices in A the dual of a X ~! A-isomorphism d € Homa (P, Py) is a X1 A-
isomorphism d* € Homa (FPy, Py).

Definition 25.1 The X-dual of an (A, X)-module M with f.g. projective
A-module resolution

d
0—P — P — M —0

is the (A, X)-module M~ with f.g. projective A-module resolution

*

0— Py — Pf — M —0. O
The X-duality involution
H(AY) — H(AXY); M — M~
induces an involution
x 0 Whi(A,X) — Whi(A,X); 75(M) — (M) .

Remark 25.2 For a multiplicative subset X = S C A the S-dual of an
(A, S)-module M can be expressed as

M~ = Homa(M,S *A/A)
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with A acting by
Ax M — M; (a,f) — (@ — f(2).a)
and
Py — M f — (fa] — f(d(2)) (@€ Py, 2] € M),

with d—1 EHoms—lA(S_1PO7S_1P1). O
The algebraic K-theory localization exact sequence has the following L-
theory analogues, involving the torsion L-groups:

Definition 25.3 Let A be a ring with involution and let X' be an involution-
invariant set of square matrices with entries in A such that i : A—X"14
is injective. For any #-invariant subgroup U C Why(A4, X)) the e-symmetric
(A, X)-torsion L-group LT (A, X, €) (n > 0) is the group of cobordism classes
of ¥ =1 A-contractible f.g. projective (n—1)-dimensional e-symmetric Poincaré
complexes (C, ¢) over A with

T2(C)eU CWhi(4,X) .
Similarly for the e-quadratic (A, X)-torsion L-group LY (A, X, ¢). O

See Ranicki [237, Chap. 1.12] for the definition of (—1)-dimensional al-
gebraic Poincaré complexes required for the definition of LY;(4, X, €) and
LY (A, X €).

Proposition 25.4 ¢ (i) The e-symmetric L-group L}_, (27 A ¢€) is (iso-
morphic to) the cobordism group of n-dimensional f.g. projective e-symmetric
XY A-Poincaré complezes (C, @) over A with [0C] € U C Why(A, X).

(ii) The e-symmetric (A, X)-torsion L-groups are the relative groups in the
localization exact sequence

S Liy(Ave) — L3y (X7MA e
) ,
= LE(A, D) = LT (Ave) — ...,
with
9 Ly (X27'Aje) = Thp(A—2X 7 Aje) — LE(A, X)e) ;
2—1(07 Qb) — a(cv ¢) :

(iil) The e-symmetric L-groups associated to a pair (U, Uy C Us) of x*-
invariant subgroups Uy C Uy C Why(A, X)) are related by a Rothenberg-type
exact sequence

The e-symmetric case of this Proposition requires the additional hypothesis
Tor(X7'A, 27 A) =0 for i > 1.
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L — ﬁ7L+1(Z2;U2/U1) — L;}l(A, E,e)
— L}, (A, Z,€) — H"(Zo;Ua/Uh) — ... .

Similarly for the e-quadratic case.

Proof As for the localization S~!A inverting an involution-invariant multi-
plicative subset S C A in Ranicki [237, Chap. 3]. The injection i : A— X1 A
is locally epic, and the relative L-groups are given by 20.21 to be

L.(ie) = TI'i(Pse) = Li(A, X ¢)
A
A
Proposition 25.5 (Cappell and Shaneson [40], Vogel [299])
Let 7 be a finitely presented group, and let F : Z[r]—A be a locally epic
morphism of rings with involution. Assume that the localization of X~ Z|r]
inverting the set X of A-invertible matrices in Z[r] is such that the natural
map i : Z[r|—X"YZ[r] is injective. Let U C K1(A) be a x-invariant sub-
group containing the image of +m.
(i) A normal map (f,b) : (M,0M)—(X,0X) from an n-dimensional mani-
fold with boundary to an n-dimensional A-coefficient n-dimensional geometric
Poincaré pair with m(X) = 7, 7(X,0X;A) € U and with 0f : OM —0X

a A-coefficient homology equivalence with T7(0f; A) € U has a A-homology
surgery obstruction

ol(f,b) e IY(F) = LY (£7'Z[n))

such that c2(f,b) = 0 if (f,b) is normal bordant to a A-coefficient homology
equivalence with torsion in U.

(ii) Let n > 5. If (f,b) (as in (i)) is such that o22(f,b) = O then (f,b) is
normal bordant to a A-coefficient homology equivalence with torsion in U.
Moreover, every element in I'V (F) is realized as o2(f,b) for some (f,b). O

with

oA
D;

— 1A

O

Terminology 25.6 In the special cases
U = {0}, im(Whi (X rA)—Why(A, X)), Whyi(A,X)
write the e-symmetric L-groups Lj;(A, X, €) of 25.4 as
L?O}gWhl(A,ZJ)(A7 Ye) = L{(A Xe),
L whi(s—1ay)(A, X €) = Lp(A Xe),
L%hl(A,E)(fL Ye) = Ly(A Xe) .
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Similarly in the e-quadratic case. O

Proposition 25.7 '7 The torsion e-symmetric L-groups of 25.6 fit into the
commutative braids of exact sequences

L (A e€) LMY 1A ¢ L'(A, X, €)
L7 (A, e) Ly (A, X e)
L' (A, X €) "(Zg; Jo) L' (Ae)

Ly (Ae) LU (D7 Ave)  H™(Zo; Why (27 A)/y)
L7 (271A, ) L7 (A, X e)
i 7 \ / \
H"™ Y (Zy; Why(Z7YA) /1) L7(A, X, €) Ly Y (Aye)

~_ 7 >~ 7

Jo = im(Why(A, X)—Ko(A)) = ker(Ko(A)—Ko(X~1A4)),
Ji = im(Why(A)—Whi(X1A)) = ker(Why(E tA)—Why(A, X)) .
Similarly in the e-quadratic case. (|

Remark 25.8 As in the case of a multiplicative subset S C A considered in
Ranicki [237,3.2] it is possible to view L (A, X, ¢) as the cobordism group
of n-dimensional e-symmetric Poincaré complexes (C, ¢) over (A, X), where:

(i) C is an n-dimensional chain complex of (A, X')-modules such that
(C) = Y (-)'m=(C) €U CWhi(A,X),

(ii) ¢ € Q" (D, —e¢) for some (n+1)-dimensional X ~! A-contractible f.g.
projective A-module chain complex D with an A-module chain map
h : D—C inducing homology isomorphisms h, : H.(D) = H,(C),

Y"The e-symmetric case of this Proposition requires the additional hypothesis
Tor (X 1A, 71 A) = 0 for i > 1.
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(iii) the A-module chain map
$o : D"V~ O™ = Homa(C, X 'A/A)._, — D~C

is a homology equivalence,
(iv) for each z € D™ there exists a € A such that

Onr1(z)(x) = a—eac A.

The projective (A, X)-torsion e-symmetric L-groups Lj(A, X, ¢) depend on
the exact category structure of H (A, Y), and are not the same as the L-
groups L*(H (4, X), €) defined in Ranicki [243] for any additive category with
involution : the natural maps

L*(H (A, X),e) — L,(A, X,¢€)
may not be isomorphisms. The natural maps
Q"(C,e) = H,,(Homgz, (W, Hom4(C™, C))) — Q" (D, —e)
are not isomorphisms in general, fitting instead into the e-symmetric version
of the Q-group exact sequence of Vogel [298,2.5] (cf. [237,p. 195])
%
= QN(C ) — QD —€) — QU —e) — Q" (Cre) —> ...
with
Q"(Cie) = Hn(Homz[Z2](V[/'7C’ ®aC)) .

Similarly in the e-quadratic case on the Q-group level, with an exact sequence

_ ho _
o —Q,(Cre) — Qui1(D, —€) — Qn+1(C,—€) — Q,,_1(Cye) — ... .
However, in this case it is proved in [298] that on the L-group level
L.(H(A, X),¢) = LP(A, 5,e) . 0

Definition 25.9 (i) An involution 7' : H——H on an abelian group H is
hyperbolic if there exists a direct sum decomposition H = H* @ H~ and
inverse isomorphisms

~ ~

T . HY — H~

T- : H — H"

)

such that

0 T~
T = c:H=H"¢$H — H = H " ®H .
(8 57) = :

(ii) An involution T : H——MH on an exact category H is hyperbolic if there
exists a product decomposition H = H T x H~ and inverse isomorphisms
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Tt : HY — H~ T : H- — HT"

)

such that

0 T
T = H =HtxH — H = H" xH"™ . ]
T 0

Proposition 25.10 If the X-duality involution on H (A, X) is hyperbolic then
H*(Z2:Whi(4,5)) = 0
and for any x-invariant subgroup U C Why(A, X)
Li(A, X, e) = LY(A, 2,¢) = 0,
LiY(Ae) = Ljy(Ae)
= LV V(DA e) = Lhap(57 A .

Proof Let H (A, Y) =H* xH ~, with H*, H ~ interchanged by the Y-duality
involution T : H (A, ¥)—H (A, X). Every X! A-contractible f.g. projective
A-module chain complex C'is chain equivalent to CT@®C~ with C'* homology
equivalent to a chain complex in H*, such that

Qn(C,e) = Q"(C,e) = Hy(Homa((CT)",C7))

Qn(C*,6) = Q"(CFe) = 0.
In particular, the e-symmetric and e-quadratic Q-groups coincide, and simi-
larly for the L-groups. Every X ~!A-contractible e-symmetric Poincaré com-

plex (C, ¢) admits a X~ A-contractible e-symmetric Poincaré null-cobordism
(C—>C+a (]+¢7¢)) U

Proposition 25.11 Let A be a ring with involution such that there exists a
central element s € A with

s+35 =1€A.

(i) For any f.g. projective A-module chain complex C the e-duality involution
T.: H,—H, on H, = H,(Homa(C*,C)) is hyperbolic, and

Q"(C,e) = ker(1-T,: H,—H,)
= coker(1 —T.: H,—H,) = Q,(C,e) .
The L-groups of A are such that for any *-invariant subgroup U C f(Z(A)

(i =0, 1)
Li(Aye) = LY(Aye) .

(ii) If s € A is a non-zero diwvisor then

S = {s’(1—s)*|jk>0}C A
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is a multiplicative subset such that for any *-invariant subgroup U C K1(A, S)
LY(A,S,e) = Lj(A,S,e) = 0,

and )
v (A4,¢) = L;U (A,e€)

= LU Aje) = L., (S Ae) .
Proof (i) The forgetful map
Q"(Cye) —> ker(1 =T, : H,—H,) ; & — ¢o
is an isomorphism with inverse
ker(1— T, : Hy—H,) — Q"(Cye); 0 — ¢, ¢; = {39 i‘j?l)

The forgetful map
Qn(C,e) —> coker(1 — T, : H,—H,,) ; ¥ — s(14+ T )
is an isomorphism with inverse
0 ifj=0
coker(l1 — T, : H,—H,) — Q,(C,¢) ; § — ¢, ¢; = N 1 j
0 ifj>1.

The e-symmetrization map

1+ Ty ifj=0

4T, 5 QulC.) — @G i v — 6, 65 = { ] o

is an isomorphism with inverse

1 . n . o 8(150 lfj =0
(+T) 5 QUG — Qu(Cd i 6 —r v vy = {3 LI
(ii) The multiplicative subsets

Sp = {s7]j>0},8 = {1-s)Flk>0lCcA

are such that

525051,30251,31250.

An A-module M is S-torsion if and only if s : M—— M is a near-projection
(12.23) with
(s1—=s)Y =0: M — M

for some N > 0, in which case the projection defined by
so = (SN + A -s)M)N D M — M

is such that M = My ® M, with
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My = {x € M|s’z =0 for some j >0} = (1—s,)(M),

M, = {z € M|(1-s)kz =0 for some k >0} = s,(M),

(Mo = (M), (M) = (Mo)" .
The S-duality involution

H(A,S) — H(A,S); M — M~
is hyperbolic, corresponding to
H (A, Sp) x H(A,S1) — H(A,Sy) x H(A,S1); (Mo, My) — (M1, My")
under the isomorphism of exact categories
H(A,S) — H (A, So) x H(A,S1) ; M — (Mo, M) ,

so that 25.10 applies. ]

Example 25.12 If 2 € A is invertible then s = 1/2 € A is such that s +35 =
1€ A, and 25.11 gives

LI(Ae) = Li(Ae) = LY(A[/2],e) = Li(A[1/2],¢)
LI(A(2)%,6) = Ly(A,(2)%,¢) . O

Definition 25.13 Given a ring with involution A let A[s] be the polynomial
extension ring of A, with the involution extended by

5 =1-s. O
See Chap. 36 for a detailed account of the L-theory of Als].

Proposition 25.14 (i) The e-symmetrization maps for Als| are isomor-
phisms

14T, : LY(Als],e) — L%(A[s], ¢)

for any x-invariant subgroup U C Why(A).
(ii) The morphism of rings with involution

Als] — Alz,z7 5 (1—2)71 ;s — (1—2)7*

induces isomorphisms in Tate Zo-cohomology

~

H™(Z; K (Als])) — H™(Za; K1 (A2, 274, (1= 2)71))

and also in L-theory

LZ(A[sLe) - LZ(A[sz_lv(l _Z)_1]7€)
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for any x-invariant subgroup U C Why(Als]).
Proof (i) Immediate from 25.11 (i).
(ii) As in the proof of 25.11 (ii) define the multiplicative subsets

S = {s’(1—9)"|j,k >0},
So = {s71j>0}, 8 = {1—-s)F|k>0}CAls],

such that S = Sp5; is involution-invariant and Sy = S1, S1 = Sp. An
(A[s], S)-module M is a f.g. projective A-module with a near-projection s :
M ——M, such that (s(1 —s))N =0: M—M for some N > 0. As in 12.23
there is defined a projection

so = SN+ (1 =) = 52 M — M,
so that M = My & M; with
My = (1—s,)(M) , My = s,(M).
The endomorphisms
vo = 8| My — My, vy = (1-9)| : My — M,
are nilpotent, and the functor

H (A[s], S) — Nil(A4) x Nil(A) ; M — (Mo, v0), (M1,11))

is an isomorphism of exact categories. For ¢ = 0 (resp. 1) an (A[s], Si)-
module M; is a f.g. projective A-module with a nilpotent endomorphism
s: Mo— My (resp. 1 — s : M;——> M), and the functors

H(A[S],So) — NII(A) ) MO — [M(),S] s
H (A[s], S1) —s Nil(A) ; My — [My,1— ]

are also isomorphisms of exact categories. The S-duality involution on
H (Als], S) is hyperbolic, corresponding to

Nil(A) x Nil(4) —> Nil(A4) x Nil(4) ;
(Mo, vo), (My,11)) — (M7, v1), (Mg, v5)) -
Use s = (1 — 2)~! to identify
STVAls] = Alz, 2 (1-2)7Y,

with
Z=1-(1-s)t=(0-sH"t =21es 4.

The short exact sequence of Z[Zs]-modules

0 — K1 (A[s]) —> Ki(Als,s™2, (1 — 8)71]) — K1 (A[s],8) — 0
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has
K1 (Afs]) = Ki(A) @ Nilo(A) ,
Kl(A[S, 8_1, (1 — 8)_1}) = Kl(A) &) Ko(A) 5% NIIQ(A) 5% NIIQ(A) 5% Nllo(A) s

with the duality involution determined by § = 1 — s interchanging the two
summands in K7(A[s], S), so that

H*(Zy; K1(A[s], 5)) = 0

and
H*(Zy; K1(Als])) = H*(Zo; Ki(Als, s, (1—5)71)) .

It is immediate from 25.11 (ii) that
LY(A[s],S,e) = Ly (As],S,¢) = 0
for any #-invariant subgroup U C Why(A[s]), and hence that
Ly(Alsle) = Li(Alz, 27, (1= 2)]€)
= VAsLe) = VAR L (-2 . O

Definition 25.15 A central element t € A is coprime to a multiplicative
subset S C A if for every s € S there exist a,b € A such that

as+bt = 1€ A,

or equivalently if S and T = {t¥ |k > 0} C A are coprime multiplicative
subsets in the sense of 4.13. g

If t € A is coprime to S C A there is defined a cartesian morphism
(4,8) — (T7'A,S)
and hence a cartesian square of rings

A——T714

.

ST1A——(ST) A
with an isomorphism of exact categories
H(A,S) — H(T'A,S); M — T'M

inducing excision isomorphisms in the relative L-groups. See Ranicki [237,
Chap. 3] for the corresponding L-theory Mayer—Vietoris exact sequences.
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Proposition 25.16 Let S C A be an involution-invariant multiplicative sub-
set in a ring with involution, and such that there exists a central element
t € A coprime to S and with

t+t = tteA.

(i) For any S~!A-contractible f.g. free A-module chain complex C the e-
duality involution T, : H,—H,, on H, = H,(Hom4(C*,C)) is hyperbolic,

and
Q"(Cye) = ker(1-T.: H,—H,)

= coker(1-T,: H,—H,) = Qn(C,e) .
(ii) The L-groups of (A, S) are such that
Lj(4,8,6) = LY(A,5,¢

for any x-invariant subgroup U C Why(A,S).
Proof (i) The multiplicative subset

T = {Ft"|j,k>0}C A
is involution-invariant and coprime to S. The cartesian morphism
(A,S) — (T7'A,S)
determines a cartesian square of rings with involution
A T4

_

S~1A—— (ST)~'A

and an isomorphism of exact categories with duality
H(A,S) — H(TA,S); M — T7'M .

The element
a =t 1leT A

is such that
at+a = tt/(t+1) = 1€TA.

The inclusion C——T~1C is a homology equivalence for any S~!A-contract-
ible finite f.g. free A-module chain complex C, so that the localization maps
are isomorphisms

H (C©4C) — HA(T'Cop T 'C),

Q(Cre) — Q*(T7'C.e) , Qu(Cre) — Q.(T™C,¢)
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and 25.11 applies to T~1C.
(ii) Immediate from (i). O

Example 25.17 (i) If S = {odd integers} C Z C A thent = 2 € A is

coprime to S with ¢t +# = ¢t = 4 € A, so that
LY(A,S,e) = L (A, S,e) .
(ii) For any ring with involution A the set IT of A-invertible square matrices
in A[z, 27! is coprime to
t = 1-2€ Az, 27
with
t+t = (1—2)(1—271) = tt € Alz, 27,

so that
LY(Alz,27Y, I, ¢) = Li(Alz,27Y, I, ¢) . O

Definition 25.18 (i) An e-symmetric linking form (M, \) over (A, X)) is an
(A, X)-module M with a pairing
A MxM— S7YAJA; (z,y) — Mz,v)
such that
My, z) = ez,y) € X1A/A .
(ii) A linking form (M, \) is nonsingular if the adjoint A-module morphism

M— M z— (y — AMa,y))

is an isomorphism.
(iii) A linking form (M, ) is metabolic if there exists an (A4, S)-submodule
L C M such that L = L+, with

Lt = {ye M| \z,y) =0 X 'A/Aforallz € L} .

(iv) The e-symmetric linking Witt group W€¢(A, X)) is the group of equivalence
classes of nonsingular e-symmetric linking forms over (A, X) with

(M, X\) ~ (M',\') if there exists an isomorphism
(M, 2) & (N, p) = (M, N) & (N', 1)
for some metabolic (N, u), (N’ 1) . 0
Proposition 25.19 (i) The isomorphism classes of (nonsingular) e-symm-
etric linking forms over (A,X) are in natural one-one correspondence with
the homotopy equivalence classes of X1 A-contractible 1-dimensional (—e)-

symmetric (Poincaré) complexes (C, ¢) over A.
(ii) For i > 1 there is a natural map from the e-symmetric linking form



284 25. Localization and completion in L-theory

Witt group of (A, X) to the 2i-dimensional (A, X)-torsion (—)'e-symmetric
L-group

WG(sz) — L%(Av Ea (_)iﬁ) ) (M7 >‘) — Si_l(cv ¢) :
Proof Given a linking form (M, A) let
0—C —Cy — M —0

be a f.g. projective A-module resolution of M~ Then C is an X 'A-
contractible A-module chain complex such that

Q' (C,—€) = ker(1 —T. : Hom4 (M, M) —Hom (M, M)) . O

Example 25.20 Let A be a ring with involution, with an involution-invariant
multiplicative subset

S = {ws'|jez,k>01C A
for some central non-zero divisor s € A and unit u € A® such that
us = s , U =ul€e€A.
The localization of A inverting S is a ring with involution
S™A = A[1/s] .

An (A, S)-module M is an A-module of homological dimension 1 such that
s¥M = 0 for some k > 0. The A-module morphism

HOmA/skA(M,A/SkA) — HomA(M,SflA/A) s f— (r — f(x)/sk)

is an isomorphism if M is a f.g. projective A/s¥A-module. Thus for each
k > 1 there is defined a one-one correspondence

{uFe-symmetric forms over A/s¥A} —
{e-symmetric linking forms (M, ) over (4, S)
with M a f.g. projective A/s* A-module} ;
(M, A) — (M, p) (u(z,y) = Mz, y)/s") .
The morphism of Witt groups
LY(A/sA ue) — WE(A,S) ; (M,\) — (M, p)

will be shown in Chap. 38 to be an isomorphism if A is a Dedekind ring and
A/sA is a field, with

LO(A/sA,ue) = WA, S) = L¥(A,S,(=)e) (i>1). O
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Example 25.21 Let X be an n-dimensional geometric Poincaré complex,
and let X be a regular covering with group of covering translations 7 (e.g.
the universal cover with 71 (X) = x). If X' is an involution-invariant set of
square matrices in A = Z[r] such that

2UH(X) =0

there is defined an n-dimensional Y~ A-contractible symmetric Poincaré
complex (C(X), @) over A, with ¢ = A[X], and hence a symmetric signa-
ture _

(X)) = (O(X),¢) € L" (A, X).

The symmetric Poincaré structure ¢ determines a linking pairing
por Ho(X) x Hy_p_1(X) — X1AJA
('Tay) — ¢0(w,y)/a (0 € E7w € CT+1?d(w) = O'l')

such that
wlaz,by) = bu(z,y)a (a,be A),

p(y,z) = (=) Vpu(z,y) e STTA/A

(i) The construction of p generalizes the classical linking pairing of Seifert
[262]
T (X)X Thr1(X) — Q/Z

on the torsion subgroups T;.(X) C H,(X). o
(i) If X is the exterior of a knot k : S"=2 C S™ and X is the canonical
infinite cyclic cover then

P'H.(X) = 0 (x#0)
with P = {p(2) |p(1) = 1} C Z[z,271], and
o Ho(X) x Hy—p1(X) — P71 2]z, 274/ 2]z, 271

is the linking pairing of Blanchfield [23]. See Chap. 32 for a more detailed
exposition. O

See Ranicki [237, Chap. 3.5] for a detailed account of linking forms, includ-
ing the precise relationship between L? (A, X, ¢) and the Witt group of non-
singular (—)’e-symmetric linking forms over (4, X)), as well as the e-quadratic
versions. The e-quadratic L-groups LY (A, S, €) are 4-periodic

L*U(AaSaG) = Lg+2(A7S776) = L*U+4(A,S,6),

with LY. (A, S €) = LY (A, S, (—)%€) the Witt group of nonsingular split (—)%e-
quadratic linking forms (M, \,v) over (A4, S) with

[M] € U C Whi(A,S) .
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The e-symmetric L-groups Lj;(A, S, €) are not 4-periodic in general, but there
are defined skew-suspension maps

LE(A, S €) — LIT2(A, S, —e) —> LET (A, S e) .

Proposition 25.22 Let A be a ring with involution and let S C A be an
involution-invariant multiplicative subset such that there exists a central el-
ement t € A coprime to S C A witht +t = tt € A the e-symmetric L-
groups L (A, S,€) coincide with the e-quadratic L-groups LY (A, S,¢), and
are j-periodic for x > 0. In particular, L?'(A,S,e) (i > 0) is the Witt
group of nonsingular (—)‘e-symmetric linking forms (M, \) over (A, S) with
[M] e U CWhi(4,S).
Proof Immediate from 25.16 and the 4-periodicity of the e-quadratic L-groups.
O

The following results on the L-theory localization exact sequence will be
used later on:

Proposition 25.23 Let Xy, X5 be involution-invariant coprime sets of square
matrices in a ring with involution A (9.16) such that the natural maps

1 - A — (21)_114 s i9 A — (22)_114

are injective. The localizations fit into a cartesian square of rings with invo-
lution
A (X))~ tA

| l

(22)_1/1 —_— (21 U 22)_114

and the e-symmetric torsion L-groups are such that
Ly(A, 21U Xs6) = Ly(A, Y1,€) @ Ly(A, Xae)
L;(Aa Zl U 227 6) = L;;(Av 217 6) @ LZ(A7 227 6)

with commutative braids of exact sequences

T T

L;L“(A Yo, €) %O(A)((Zl)*lA,e) L}(A, Y1)
L7 (Ae) L%O(A)((Zl UXy) 1A e)
Lyti(A, 2 ,e) L%(J(A)(( 2)"tA€) L} (A, X5, ¢)
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/’\/_\

LI (A, Do, ¢) LP((Z1) " A €) LY(A, Xy, €)
LZ(A,E) LZ((Zl U 22)_114,6)
Lyt (A, 1, €) L((Z2)7 A e) L7 (A, 5, €)
with L* = Ly . Similarly for e-quadratic L-theory. |

Proposition 25.24 '® Let ¥, X be involution-invariant sets of square matri-
ces with entries in a ring with involution A, such that the localizations >1A,
2_14 are defined, with the natural maps A—sX"'A, A— X1 A injections
and X C X. The symmetric L-theory localization exact sequences for (A, X)),
(A, 5’) are related by a commutative braid of exact sequences

L™(A,e) L"(X7 1A e) Ly(A X, X, ¢€)
LZ(ZilA,e) Ly (A, X e)
N e \
L"Y(A, X, 5 €) L"(A, X ¢) L"1(A,€)

with L* = L} and L™(A, X, 5‘,6) the cobordism group of f.g. free (n — 1)-
dimensional e-symmetric complexes over A which are X~ A-Poincaré and

X1 A-contractible. Similarly for e-quadratic L-theory. O

Proposition 25.25 Let A be a ring with involution and let X be an invol-
ution-invariant set of square matrices with entries in A such that the natural
map F : A— X1 A is injective (as in 25.4), and also such that the algebraic
K-theory exact sequence

i 17}
0 — Why(A) — Whi(X7tA) — Whi(4,%) — 0
is split exact, with morphisms

3The e-symmetric cases of Propositions 25.24 and 25.25 require the additional
hypothesis Tor* (X7t A, X7t A) = 0 for > 1 in the e-symmetric case.)



288 25. Localization and completion in L-theory

A Whi(AX) — Whi(Z7'A) |, j @ Whi(A,X) — Why(A)
such that
0A = 1 : Whi(AX) — Whi(AX),
A—xAx = ij : Whi(AX) — Why(21A)
jr = —%j 1 Whi(AX) — Why(A),

and such that for any n-dimensional based f.g. free X~ A-contractible sym-
metric Poincaré complex (C,¢) over A

T(O7¢) = .77—2<C)
cim(j: H" Y (Zy ;Why(A, X)) —H"(Zy ; Why(A))) .

(i) The L-groups Lf;(A, X, €) associated to any x-invariant subgroup U C
Why(A, X) fit into the localization exact sequence

i d
L= LUy (Ae) — Lliyear(Z7A ) — LE(A, 2,e)
J e
— LI (Ae) — ... .
(ii) The J-groups of 25.7 are given by
Jo = {0} , Ji = Whi(A)

and
Ly (A X)e) = L;(A,E7e).

The L-groups Ly (A, X €) (q = s,h) fit into localization exact sequences
L IM(Ae) — LI(Z A~ LA, Z.e)
YA —
S IR(A) — Lp(E A0 -5 IR(AL 5.6
A e — .

and are such that there is defined a commutative diagram
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—> LA, ) —> L(A,€) —— H"(Zy; Wha(A)) — L7 }(A,¢) —
=L XA €)= LN E YA€) = H"(Zy; Why (271 A)) = L1 (X724, €) >
d o d d

— LA, X, €) — L7 (A, X, €) — H™"(Zy; Why (A, X)) — LP 1A, 5, ¢) -
J J J J

— LM (A €) — Lp 7N (A €) — H" " (Zo; Whi(A)) —>= LI 2(A,e) —

with exact rows and columns.
Similarly for the e-quadratic L-groups. O

By analogy with the localization-completion excision property of K-
theory :

Proposition 25.26 (Ranicki [237,3.7.3])
Let A be a ring with involution, and let S C A be an involution-invariant
multiplicative subset. The localization S™'A and completion Ag fit into a
cartesian square of rings with involution

A——=S714
A\S —_— §_1A\S

The inclusion A— A induces excision isomorphisms in the relative e-symm-
etric L-groups

L(A,S,e) = Ly(A, S e€)
and a Mayer—Vietoris exact sequence in the absolute e-symmetric L-groups
L L} — LE(ST A, @ L2(As ) — Lp(§ 1 As, ¢
— LT A4,¢) — ...

with

~)
[
-
@
=X
2
N
N
5
)
&
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Similarly for e-quadratic L-theory. R
Proof As for the K-theory case in 4.17, noting that A—— Ag induces an
isomorphism of exact categories with involution

H(A,S) =~ H(Ag,S) .
The condition
§ =0 : H%Zy; 5 'Ag/Ag,¢) — H' (Zy; A, €)

required for the e-symmetric case in [228,3.7.3] is actually redundant, since
Q*(D,—¢€) = Q*(D,—e) for any S~!A-contractible finite f.g. projective A-
module chain complex D by the exact sequence of Vogel [298,2.5] (quoted in
25.8 above). O
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An asymmetric complex (C,\) is a chain complex with a chain map A :
C"*——(C. The complex is Poincaré if \ is a chain equivalence. In Chap.
26 we shall develop asymmetric L-theory, in preparation for the applications
to topology in subsequent chapters. See Chap. 39 for the computation of the
asymmetric L-groups of a field F'.

There are two distinct situations in topology where asymmetric complexes
arise :

(a) A knot in a boundary. Given an n-dimensional manifold with bound-
ary (M,0M) and a codimension 2 submanifold K"~3 C M and
a Seifert surface J"~2 C OM, there is defined in Chap. 27 an n-
dimensional asymmetric complex (C(M,J),\). This construction
generalizes the Seifert form of an (n — 3)-knot k£ : S"=3 C Sn~!
— the special case (M,0M) = (D", 5" 1), K = §"73.

(b) A twisted double (e.g. an open book) boundary. Given an n-dimen-
sional manifold with boundary (M,JM) and a codimension 1 sub-
manifold P"~2 C OM such that OM = Q Uy @ is a twisted dou-
ble with h : P = 0Q——0Q), there is defined in Chap. 28 an n-
dimensional asymmetric Poincaré complex

(Cip — i1 : C(Q)—C(M, P)), \)

with 49,41 : @—— M the two inclusions. This construction generalizes
the nonsingular Seifert form of a fibred (n —3)-knot k : S7=3 c S"~1
— the special case (M,0M) = (D",S" 1), Q =JxI,h=gUl:
0Q = JUyy J—0Q with g : J—J the monodromy automorphism
of a Seifert surface J"~2 C S"~3.

The asymmetric complex construction (a) will be used in Chap. 27 to
express the obstruction groups of Chap. 22 for surgery on submanifolds of
codimension 2 in the framed case & = €2 as asymmetric L-groups. The appli-
cations to knot theory will be considered in Chap. 33.

The asymmetric Poincaré complex construction (b) will be used in Chaps.
28,29,30 to express the twisted double and open book bordism groups as
asymmetric L-groups, and to describe the relationship with the automor-
phism bordism groups.
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Terminology 26.1 Given a ring with involution A let
T Az, — A (=271

be a locally epic morphism of rings with involution, and let X' be the set of
A-invertible matrices in A. |

As in 20.20 let @5 be the commutative square of rings with involution

Alz, 27— Az, 27 1]

Az, 27— A
so that the relative quadratic I'-groups Iy (P, €) fit into an exact sequence
.= Ly(Alz, 274, €) — Th(F,€) — (P, €)
— Ly 1(Alz,27Y,6) — ...

with € € Alz, 27!] a central unit such that € = e~*. By 20.21 I},(®5, €) is the
cobordism group of (n — 1)-dimensional e-quadratic A-contractible Poincaré
complexes over Alz, z71].

The framed codimension 2 surgery obstruction groups are the algebraic
I'-groups I',(F,¢€), ['\(P5,€), for appropriate F, e. The factorization

F: Alz,2z7 — ZTAlz, 27— A

has the universal property that a finite f.g. free A[z, 27 !]-module chain com-
plex C is A-contractible if and only if it is X1 A[z, 27 !]-contractible (9.15).
It will be the case in the applications that

Alz, 27 — T Az, 271
is an injection, so that the algebraic I'-groups are the L-groups of the local-
ization
I(F,e) = LAz, 27— X Az, 271, €)
= L.(X7'Alz, 27, €)

(where L, = L") and the L-groups of the localization fit into the L-theory
exact sequence of Chap. 25

o= Ly(Alz, 271, €) — L (27 Az, 271 €)
— Ly(Alz, 274, 2,€) — Lp_1(Alz, 27, €) — ...

and
I (®g,¢) = L.(Alz,27'],X,¢) .
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In the original application of the e-quadratic I'-groups to codimension
2 surgery due to Cappell and Shaneson [40] € = 1, as in the original ap-
plication of the algebraic L-groups to ordinary surgery due to Wall [304].
As recalled in Chap. 22, the codimension 2 surgery groups LS. of [304]
and their I'-analogues were expressed in Ranicki [237,7.8] in terms of the
(—z)-quadratic I'-groups I'.(F, —z), [« (5, —z), making use of the work of
Matsumoto [183] and Freedman [84]. The main results of Chap. 26 express
I.(F,—2), ['(P5, —z) in terms of asymmetric complexes over A, using an al-
gebraic transversality analogue of the relationship between knots and Seifert
surfaces.

Definition 26.2 Let € € A[z,27!] be a central unit such that € = ¢~ .
(1) An n-dimensional asymmetric complex over A (C, \) is an n-dimensional
f.g. projective A-module chain complex

c....—0—C,—Ch1— ... —C —(Cy

together with a chain map A\ : C"~*——(C. The asymmetric complex (C, )
is (A, €)-Poincaré if the A[z, z71]-module chain map

(L+THN : C" 2,27 — C[z,271]
is a A-equivalence, and for based f.g. free C the torsion is
T(C,N) = T((l +THN: A®A[z,z*1] C"r—A D Alz,2—1] C) e Why(A) .

(ii) An (n + 1)-dimensional asymmetric pair over A (f : C—=D, (60X, N)) is
a chain map f : C——D of f.g. projective A-module chain complexes with C'
n-dimensional and D (n + 1)-dimensional, together with a chain homotopy

S\ : fAff ~0: DV D,

The asymmetric pair is (A, €)-Poincaré if the A[z, z~1]-module chain maps

1) () D el
(14+T) (N fA) = C(H" T [z,27Y] — D[z, 27

are A-equivalences, in which case (C,\) is an n-dimensional asymmetric
(A, €)-Poincaré complex called the boundary of the pair.

(iii) (4, €)-asymmetric Poincaré complexes (C, ), (C', X') over A are cobor-
dant if (C,\) @ (C’,—=X) is the boundary of a (4, ¢)-asymmetric Poincaré
pair.

projective LAsy, (A, A e)
(iv) The { free (A, €)-asymmetric L-group { LAsyy (A, A, e) is the
simple LAsy (A, A e)

cobordism group of n-dimensional (A,e)-asymmetric Poincaré complexes
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f.g. projective
(C,\) over A with C' ¢ f.g. free
based f.g. free and 7(C,\) =0 .

It will be proved in 26.11 that
Lo(Alz,27Y,2) = H"W(Zy; Ko(A)) ,
I'i{(F,z) = L%(Z*IA[,Z, zil], z) = LAsyZ(A, A z) (g=s,h),
I'"(@5,2) = Lh(Alz,27Y,5,2) = LAsy, (A, A, 2) .

The 0-dimensional asymmetric complexes are asymmetric forms :

Definition 26.3 (i) An asymmetric form over A (L, \) is a f.g. projective A-
module L together with an A-module morphism \ : L——L*, corresponding
to a sesquilinear pairing

A LxL—A; (z,y) — Mz,y) = Mz)(y)
which is additive in each variable, and such that
Maz,by) = bA\(z,y)ae A (a,b€ A,z,y€ L) .

(ii) An asymmetric form (L, ) over A is (A, €)-nonsingular if the A[z, z71]-
module morphism

AeX ¢ L[z, 27 — L*[z,27Y]

is a A-isomorphism.
(iii) A lagrangian of a (A, €)-nonsingular asymmetric form (L, A) over A is a
submodule K C L such that:

(a) Mx,y)=0€ Aforall z,y € K,
(b) A®4p,.—11 K[z, 27 is a f.g. projective lagrangian of the nonsingular
e-symmetric form (A ®4.,.-17 Lz, 27, A + eX*) over A.

A form is metabolic if it has a lagrangian.

(iv) The (A, €)-asymmetric form Witt group of A is the group of equivalence
classes of (A, €)-nonsingular asymmetric form over A, with (L, \) ~ (L', \)
if there exists an isomorphism

(L, A) & (M, p) = (L', N) & (M, 1)
for some metabolic forms (M, u), (M, u'). O

Asymmetric forms (L, \) which are nonsingular in the sense that A :
L——L* is an A-module isomorphism will appear in Chap. 28.
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Proposition 26.4 The 0-dimensional (A, ¢)-asymmetric L-group of A
LAsyg(A,/l,e) (q = p,h,s) is isomorphic to the Witt group of (A, ¢)-non-
singular asymmetric forms (L,\) over A with L f.g. projective (resp. f.g.
free, resp. based f.g. free with T =0) for ¢ =p (resp. h, resp. s). |
Example 26.5 (i) Let {2 be the set of Fredholm matrices in Az, 271] (13.3),

and let
T Az, 27— A = Q7 Az, 27

be the natural injection. An n-dimensional asymmetric complex (C,\) over
Ais (A, €)-Poincaré if and only if the A[z, 2~ !]-module chain complex

C((L+THN: C" *[z, 27 1 ]—Clz, 27 1))
is A-finitely dominated. See Chap. 28 below for a more detailed account of
the (2, €)-asymmetric L-groups LAsy* (A, §2, €), which will be applied to the
bordism groups of automorphisms of manifolds and to open book decompo-
sitions in Chap. 29 below.
(ii) Let

F Az, — A=A

be the natural projection, so that the localization IT-'A[z,27!] inverting
the set I of A-invertible matrices in A[z, 27!] is defined as in 10.18. An n-
dimensional asymmetric complex (C, A) over A is (II, z)-Poincaré if and only
if the A-module chain map (1 + T)A : C" *——C is a chain equivalence.
See Chap. 33 for a more detailed account of the (I, €)-asymmetric L-groups
LAsy*(A, II,¢), and the applications to knot theory. a
Proposition 26.6 (i) The projective and free (A, €)-asymmetric L-groups are
related by an exact sequence

coo — H"(Zy; Ko(A)) — LAsy}i(A, A,e) — LAsy? (A, Ae)
— H™(Zy; Ko(A)) — LAsy? (A, Ae) — ... .

(ii) The free and simple (A, €)-asymmetric L-groups are related by an exact
sequence

o, — H"Y(Zy; Why(A)) —> LAsy™(A, A, €) —» LAsy}(A, A, €)
— H™(Zy; Why(A)) — LAsy" (A, A,e) — ... .

Proof As for the symmetric L-groups in Ranicki [235, Chap. 9]. O

Definition 26.7 (i) For any A-modules M, N there is defined a natural
injection of Z[z, 2~ !]-modules

Hom 4 (M, N)[z,z_l] — HOmA[z7Z—1](M[Z,Z_l],N[Z,Z_l}) :

i f; —>< i 2Fry — i i Zj+kfj(xk)>.

j=—00 k=—o00 j=—00 k=—o00
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(ii) An A[z, z71]-module morphism f : M[z, 2~ 1|— N|z, 2] is positive if it
is in the image of the natural Z[z]-module morphism

Homyu (M, N)[z] — HomA[Z7Z_1](M[z,2_1]7]\7[272_1]) :
o0 ) oo (o) o0 )
szfj — ( Z Par T a— Z Z 23+kfj(33k)> .
3=0 k=—o0 §=0 k=—oc
Let
Homj[ (M[z,27'],N[z,271])

z,z27 1]

= im(Hom(M, N)[z]) € Hom [, ,-1)(M[z, 27|, N[z,27"])

be the Z[z]-module of positive A[z, 2~ !]-module morphisms f : M|z, z~1]—
Nz, z71].
(iii) An Az, 27 !]-module morphism f : M|z, 27 1]—=N|z, 271] is negative if
it is in the image of the natural Z[z~!]-module injection

z_lHomA(M, N)[z_l] — HOmA[zzfl](M[Z,Z_l],N[Z,Z_l]) :

—1 0o

Z 2 f ———>< Z Koy — i i Zkaj(l"k))-

j=—o0 k=—o0 j=—o00 k=—o0
Let
Homz[zyz_l](M[z,z_l],N[z,z_l])
= im(z~"Homs (M, N)[z"]) € Hom [, .-1)(M[z, 27"}, N[z,27"])

be the Z[z~!]-module of negative A[z, z~!]-module morphisms f : Mz, 271
— Nz, z71]. O

Proposition 26.8 If M is a f.g. projective A-module then the morphism in
26.7 (i) is an isomorphism, allowing the identifications

Hom . 1 (Mz,27 '], N[z, 271]) = Homa(M, N)[z,27]

Hom}, , 1) (M[z,27 "], N[z,27"]) = Homa(M,N)[z]
Homy, 1y (M[z, 27", N[z,27"]) = 27 "Homa(M,N)[z7"],

Hom [ .1 (M [z, 27'], N[z, 27])

= HomA[z)z_l](M[z,z_l],N[z,z_l]) EBHom;‘[z’z_l](M[z,z_l],N[z7z_1]) .

Every Alz,z~Y-module morphism f : M[z,z71]—>Nlz,27'] has a unique
expression as a Laurent polynomial

o0

f = Z ijj (f] EHOmA(M,N))

j=—o0
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and hence a unique decomposition as a sum of a positive and a negative
morphism
f=fT+f : Mzz' — NzzY

with
—1

=048, = Y Af . O
j=0

j=—o0

Definition 26.9 The reduced asymmetric L-groups L@Z(A,A,e) are the
relative groups in the exact sequence

. — L(A,¢) —> LAsy}(A, A,¢) — LAsy, (A, A,¢)
— LN (Aje) — ... O

It is convenient (although potentially confusing) to have two terminologies
for the asymmetric L-groups:

Terminology 26.10 For any involution-invariant set Xy of square matrices
in A[z, z71] such that the natural morphism of rings with involution

Az, 27— Ao = (Z0) ' Alz, 27
is injective write the asymmetric L-groups of (A4, Ag,€) as
LAsy; (A, Aog,e) = LAsy (A, Yo,¢) (¢=p,h,s),

calling (Ap, €)-Poincaré asymmetric complexes (resp. L-groups) the (X, €)-
Poincaré asymmetric complexes (resp. L-groups). Similarly in the reduced
case . .

LAsy, (A, Ag,e) = LAsy, (A, Xo,¢) (@g=p,h,s). O

In particular,
LAsy (A, Aje) = LAsy (A, X,e),
LAsy,(A,A,e) = LAsy,(A, 5,e) .

Proposition 26.11 Let F : A[z, 2~ ]—A be a locally epic morphism of rings
with involution, such that the localization map Alz, 2= |— X1 Alz, 27 in-
verting the set X of A-invertible matrices in Alz, z71] is injective.

Given a central unit e € A such that € = e~ ' € A write

e = el c Ay = Alz,27Y.

(i) There are defined isomorphisms of exact sequences
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e T L ASR(A, A, ) = LASYD(A, Ay ) ——= T

A1,€1 4>Fh(9: 61)4>F7]:(@3~,61)4>L A1,€1

o o

A1761 9'Lh(E 1A1,61)£>L2(A1,Z,61)*>L A17€1)

:l1+T€1 ~|14T, ~|1+4T, :ll—i-Tel

o= LAy, e) = LY (X7 AL ) 92, LAy, 2, e1) — L} YAy, ) =

with H" = H"™(Zy: Ko(A)), including the isomorphisms
LAsyp(A,Ajer) — T (F,e1) 5 (C,N) — (Clz, 27, A)
Li(F,e) — Ly(Z ' A a) s (C9) — (5710 1+ T )Y)
LAsyl (A, A e1) — Lip(Ar, Ayer) 5 (C,A) — 0(Clz, 27 ], (L+Te)A) .
Thus up to isomorphism
Li(Ar,e) = Li(A,e) = H™ (225 Ko(A))
L(F.e) = Ly(Z 7 A e) = Li(Z7 A e) = LAsyp(A 4,e)
I @g,e1) = LE(ALAe) = Li(A, A e1) = LAsyl (A, Aer) .
The simple asymmetric L-groups are such that there are defined isomorphisms
LAsy? (A, Aer) — TE(F,e1) 5 (C,N) — (Clz, 27 M, 0) .
(ii) The various asymmetric L-groups are 4-periodic
LAsyl (A, Aer) = LAsyl™(A,A,—e1) = LAsyl™ (A, Ae1) (¢=p,h,s).

(iil) If ¥ = X1 U Xy for involution-invariant sets of square matrices X, X
in A which are coprime (9.16) then for any central unit n € Alz,271] such
that 7 = n~' the projective asymmetric L-groups split as

LAsy,(A,A,n) = LAsyy (A, X,n)
= LASyZ(A7 217 77) D LASyZ(A7 227 77) .

Forn = €1 the free asymmetric L-groups fit into a commutative braid of exact
sequences
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/\/\

LAS,y;‘*'l(A7 Yo, €1) LAsyy (A, X1, €) LAsy, (A, X1, 61)
H"(Zy: Ko(A)) LAsy? (A, X, ¢))
LASyZ+1 (A, 21, 61) LASyZ(A, ZQ, 61) LASyZ(A, 22, 61)

~_ 7 ~ 7

(iv) If 1 — z € X there is defined an isomorphism
Li(Z 7 A ) = LT Ay, —a) s SUE0) — 5B, (1-2710) |

and the localization exact sequence for the e-symmetric L-theory of X~ 1A,
is such that there is defined an isomorphism

L (Ar€) L(E AL — 0 (AL 5 e

oy

Ly(A,€) @ L (A €) > LAsy}(A, 2, ¢) = LAsy, (A, 5,€) & LI (A, ¢)

with
Li(Aje) ® Ly~ (Aje) — LAsy(A, X,¢) 5 ((C,9),(C",¢")) — (C,¢0) ,

so that
LY (X7 'Aye) = LU(X7YA;, —€e)) = LAsyl (A A, —e)

= LAsy} (A, Aje) = LAsyj(A, X e) .

Similarly for e-quadratic L-theory, with an isomorphism

Ih(A1e) — = TM(5-1Ay,6) — 0~ Th(A,, 5,6

| :

LM(Ae) @ LP | (A,e) > LAsyp (A, A, —€1) > LA\S;:(/L A —e)®LP _,(Ae)

(v) If X is coprime to 1 — z there are defined isomorphisms
LAy, X, e)) — LA, X, —€) 5 (B,0) — (E,(1—2zTH0)

and

LZ(Ala 27 61)

= LAsy, (A, Aye1) = LAsy, (A, X e1) .

LZ(AL 27 _6)
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Let
Ay = (1 =214 = Az, (1 —-2)7Y.

The commutative braid of exact sequences given by 25.2/

T T

LZ+1(A1,(172)00,€1) LZ(ZilAl,El) LZ(Al,E,El)
LZ(A1,€1) LZ(E_1A2,€1)
LZ+1(A1,E,€1) LZ(AQ,E]) LZ(Ah(l—Z)OO,Gl)

~_ 7 ~ 7

is isomorphic to

LASYZJFI (Alv (1 - Z)Ooa€1) LASYZ(Aa Za€1) LASYZ(AlaE,El)
H™(Zy; Ko(A))  LAsyp(A, 2(1 - 2), e1)
If A is such that Ko(A) =0 then
Ly (X7 Age1) = Lp(27"Ag, —€)

= L;LL(AZ, 76) D L;LL(Alv Za 76)
— LAsy(A, (1 - 2)%,e1) @ LAsy™ (4, 1)

Proof For definiteness, take ¢; = ez~ L.

(i)+(ii) Let E be a finite based f.g. free A[z, 2~ !]-module chain complex. By

7.3 there exists a Mayer—Vietoris presentation (E, E7). In particular, there
exists a finite based f.g. free A[z]-module subcomplex E* C F such that

A[Z,Z_l] D Alz] Et = E.

Let F,. C E;' be the A-submodule generated by the A[z]-module basis, so
that
Ef = Fz] , E, = Filz,27'] .

T

Every element
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6e(E D Alz,2-1] E), = HOIHA[Z,Z—1](E*,E)”
is represented by A[z, 2~!]-module morphisms
§ : E" = F'z,27Y — Ep_y = Fu_r[z,27Y] (rez).

Let (E ®aps,,-1] E)t (resp. (E ®aj,,.-1) E)~) be the Z-module subcomplex
of E® 4[;,.-1) F consisting of the elements 0 for which these Az, 2~ !-module
morphisms are positive (resp. negative), so that by 26.8

E ®A[z,z_1] E = (E ®A[z7z_1] E)Jr @ (E ®A[z,z‘1] E)i .
In particular, for E = A[z, 271
Alz,z71Y = Alz,z YT @ Alz, 274~

with Alz, 27" = Alz], Alz,271]" = 27tA[z71]. Since ¢, = ez! the ;-
transposition involution

o0 (o)
T, : Alz,27Y ) — Alz,27Y;a = Z ajz) — eja = Z €a_j_12

j=—00 j=—o00

is such that
Tél(A[Zazil]i) = A[szil}:':

and (A[z,271,T¢,) is a free Z[Zs]-module. Similarly, the e;-transposition
involution
T, : E®A[z,z*1] EF— F D Alz,2—1] E

is such that
Te (B ®ap o1 B)F = (E®aps,.m1) E)T

Thus (E ®ap.,.-1) E,T¢,) is a free Z[Zs]-module chain complex and
Qn(Ea 61) = Qn(E,El) = Hn((E ®A[z,z*1} E)Jr) .

More precisely, a positive chain map 6 : " *——FE determines an n-dimen-
sional €;-quadratic structure ¢ € (Wo, E),, with

0 ifs=0
Vs = {0 if s> 1
and the Z-module morphisms
Hoy(E ® a1 B)Y) — Qu(Bre) 3 0 — ¢,
1+ T @ Qu(Ee1) — Q"(E,e1)

are isomorphisms. Similarly for L-groups.
Every element of L7 (X' Ay,¢€;) is represented by X~ (E, (1 +T.,)6) for
some 0 € H,((E ®ap,.— E)") such that the A[z,z']-module chain map
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1+T,, : E"*——Eis a Y"1 Az, 27 ]-equivalence. It will be proved that the
morphism

LAsy} (A, Aje) — LPW(X 7 Ay e1) 5 (B,A) — (Z7'B[z, 27 Y], (1 + T.,)\)

is an isomorphism by constructing an explicit inverse, using the algebraic
transversality technique of Ranicki [244, Chap. 16], as follows. Given finite
based f.g. free A-module chain complexes C, D and A-module chain maps
f,9: C——D define the A-module chain map

Ity = f@f—g®g : C®aC — D®4D,
the finite based f.g. free A[z, 2~ !]-module chain complex
E = €(f —29: Cls,27]—D[z,271)
and the union Z-module chain map
U : G(Ff,g) — (E ® Alz,2-1] E)+ ; (5,u7u) — 0
with
0 — ( op zgu)
wf* 0
Ev" = (D" "o 0" " Y 2,27 — B, = (D, ®Cr_1)[z,27Y]
((Op, 1) € C(Ipg)n) -

Working as in [244, Chap. 16] it can be shown that every n-dimensional €;-
symmetric complex over A[z, 27 !] is homotopy equivalent to the union (E, 0)
of some n-dimensional asymmetric pair over A

((f9):C®C—D,(0p,p® —p))

with
0 = U((SM,,U/) S Qn(E,Gl) = Hn((E ®A[z,z*1] E)+) .

Define the n-dimensional asymmetric complex over A

5
(D', 6p) = (C?(f,u*—g,u:C”*l—>D),<glj {;))

Use the (n + 1)-dimensional ¢;-symmetric pair (p : E—SC[z,271],(0,0))
(p = projection) over A[z, 271] to perform algebraic surgery on (E, ), with
trace an (n + 1)-dimensional €;-symmetric X~ A[z, z71]-Poincaré pair over
Alz, 2711 (E® E'—48E,(0,0 ® —0')) with 6E = C(C"*[2,27!]—E) and

(E".0) = (D'[z,27"], 1+ T, )op') -

The function



26. Asymmetric L-theory 303
LY (X7 YAy, ) — LAsy} (A, X, 1) ;
2_1(E70) = 2_1(El70/) — (D/,(S/.L/)

is the inverse isomorphism.
In particular, taking X' = {1} there are defined isomorphisms

LAsy} (A, {1},e1) — L} (A1, €1) 5 (B,N) — (Blz, 27, (1 + TN .

For any n-dimensional f.g. free asymmetric ({1}, €1 )-Poincaré complex (B, \)
over A the Alz, 2~!]-module chain map

(1+T. )\ : B"*[z2,27'] — Blz, 27 ]
is a chain equivalence, and the A-module chain complexes defined by
P = C((1+T,)\: zB" *[z]—Blz]) ,
Q = C(L+T.)N: B *[z7']—B[z7'])

are such that

0 0
A~ ( O) : B~ PP Q"" — B ~ PHQ
L

for a chain equivalence p : P"~*——(@). The morphisms
LAsyi (A, {1} e1) — H™ ! (Z23 Ko(4) 5 (BA) — [P],

H™ Y (Zy; Ko(A)) — LAsyp (A, {1},e1) 5 [P] — (P ® P"™, ((1) 8))

are thus inverse isomorphisms, allowing the identification
LAsYR(A {1} e1) = Li(An,e) = H""(Z2; Ko(4))
The morphisms
LAsy, (A, X e1) — Lp(A1, Y,e1) 5 (B,A) — A(Blz, 271, (1 +T.,)N)
fit into a morphism of exact sequences

f_\anrl

LAsyp (A, X, e1) — LAsy, (A, X, e1)

R

— L} (A1, e) — LP(2 71 Ay e) 9, Ly(A, X e1) — L7 (Ar,e1) —

o

It now follows from the 5-lemma that there is also an identification

LASYZ(szvfl) = LZ(A1,E761) .
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(iii) If C is a finite f.g. projective A-module chain complex which is X1 A4;-
contractible then the induced (X;)~!A;-module chain complexes
Ci) = (Z)7'Clz,27Y (i=1,2)
are such that the natural A;-module chain map
Clz,z7'] — C(1) ® C(2)

is a chain equivalence. Thus C(1) (resp. C(2)) is Aj-module chain equivalent
to a finite f.g. projective A;-module chain complex which is (X2) "1 A4;- (resp.
(X1)~1Ay)-contractible, and

Q"(Clz,z7,m) = Q™(C(1),n) ® Q™(C(2),n) ® Ha(C(1) @4, C(2))
= Qn(c(l)v 7]) D Qn(c(2)a 77) :

The commutative exact braid for n = ¢; is obtained by using (i) to express
the commutative exact braid of 25.24

N

Lyt (A, Es,€) Lp((21) 1Ay, e) Ly(Ay, Yy 6)
LZ(AMGI) LZ((EI UZQ)_lAl,El)
LI (Ay, X, 6) L ((X5) ' Ar, 1) Ly (A1, Yo, €1)

\_/\_—’/

in terms of the asymmetric L-groups.
(iv) If 1 — z € X then
w=1—z2eX14,
is a central unit such that
u
u = 727171 , —€ = 7.6€A1 .
U

(v) X is coprime to 1—z if and only if the augmentation A[z, 27— A4; 2—1
sends every matrix in X' to an invertible matrix in A, in which case 1 — z :
E——FE is an Alz, z71]-module chain equivalence for every Y~ 1Az, 27 1]-
contractible finite f.g. free A[z,27!]-module chain complex E and the mor-
phisms

1—z: Q"(E,e1) — Q" (E,—¢); § — (1 —2)0

are isomorphisms. O

Remark 26.12 (i) The identifications of 26.11

L'(Alz,27Y,2) = H"Y(Zy; Ko(A))
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are analogues of the identifications of the codimension 2 surgery obstruction
LN,
LN, = Ly(Alz,27",2) = H""H(Z3; Ki(4))

obtained geometrically for a group ring A = Z[x| by Wall [304,13A.10] and
algebraically by Ranicki [237,Prop.7.8.14] for any ring with involution A.
The other identifications of 26.11 are also motivated by codimension 2 surgery
obstruction theory, as described in Chap. 27 below.

(i) Let X = £ be the set of Fredholm matrices in A[z,27!]. In particular,
1 —z € {2, so that by 26.11 (iii)

Lp(27 Alz,27Y])) = LR(Q7 Alz, 271, —2) = LAsy(4,92,-2) .

In Chap. 28 the asymmetric L-groups LAsy}, (4, 2, —z) will be shown to be
2-periodic in n, being the Witt group of nonsingular asymmetric forms over
A if n is even, and 0 if n is odd.

(iii) Let X = (1 — 2)°°, so that

Y7 Az, 27 = Az, 27l (1—2)7
and by 26.11 (iii)
LY (Alz, 27 (1 —2)7Y,e) = LAsy} (A, %, —ez)

for any central unit e € A with € = ¢! € A. The algebraic L-theory of
Alz, 271, (1 —2)71] will be studied in detail in Chap. 36, and the asymmetric
(X, —ez)-Poincaré L-groups LAsy} (A, X, —ez) will be identified there with
the ‘almost e-symmetric’ L-groups of A. |
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27. Framed codimension 2 surgery

The algebraic results on asymmetric L-theory of Chap. 26 will now be ap-
plied to the codimension 2 surgery theory of Chap. 22 with trivial normal
bundle ¢ = €2. This will be used to describe the bordism of automorphisms
of manifolds in Chap. 28, the algebraic theory of open books in Chap. 29,
and high-dimensional knot cobordism in Chap. 33.

27A. Codimension 1 Seifert surfaces

In general, a knot k : N™ C M"™2 need not be spanned by a codimension
1 Seifert surface. The following condition ensures the existence of such a
spanning surface.

Definition 27.1 Let (M, M) be an n-dimensional manifold with boundary.
A codimension 2 submanifold (N,0N) C (M, 9M) is homology framed if it is
e2-characteristic in the sense of 22.2, that is if

[N] = 0€ H,_o(M,0M)
and there is given a particular identification
UNcM = 62 : N — BSO(Q)

with an extension of the projection S(vycpr) = NxS'——St to the canonical
projection on the exterior

(p,0yp) : (P,04P) = (cl.(M\N x D?),cl.(M\ON x D?)) — S* |
corresponding to a lift of
[N] € ker(H,,_2(N,ON)—H,_(M,0M))
= im(H,_1(M,N x D* U9, P)—H,_»(N,0N))
to an element

p€H, 1(M,NxD?*Ud,P) = H, 1(P,0P) = H'(P) = [P,S']. O
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Remark 27.2 The homology framing condition [N] = 0 € H,_2(M,0M)
is equivalent to the condition vycy = €2 if H2(M)—H?(N) is injective.
However, in general the two conditions are not equivalent. For example,

N = {ptycM = §?

has vycar = €2, but it is not homology framed (and does not admit a Seifert
surface) — in fact, N C M is n-characteristic, with n : M——BSO(2) the
Hopf bundle, such that

[N] = e(n) = 1€ Hy(M) = H*(M) = Z. O

Definition 27.3 Let (M, M) be an n-dimensional manifold with boundary,
and let (N,ON) C (M,0M) be a homology framed codimension 2 submani-
fold with exterior (P, 04 P), so that

M = N xD*Uyyq1 P, P = cl.(M\N x D?),
OM = ON x D*Ugnxs1 0+ P , 0.P = cl.(OM\ON x D?).

oM . M

(i) The canonical infinite cyclic cover of the exterior (P, 4 P) is the infinite
cyclic cover obtained from the universal cover R of S! by pullback along the
canonical projection (p,dyp) : (P,0; P)—S*

(ﬁ7a+P) = (pa a+p)*Ra

which restricts to (N, 94 N) x R over (N,0ON) x St C (P,0,P).
(ii) A codimension 1 Seifert surface (F,0+F) for (N,0N) is a codimension 1
submanifold F' C P such that

oFr = NU@N 6+F with 6+F = F08+P,
0(0+F) = ON , vpcp = ¢ : F — BO(1),
[F] = p€ H,_1(M,N x D*Ud,P),

with 04 F a codimension 1 Seifert surface for ON C OM.
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M

(iii) A Seifert fundamental domain for the canonical infinite cyclic cover P
of P is the relative cobordism (Pg;ioF,i1F') obtained by cutting P along a
codimension 1 Seifert surface F' C P, with

i - F—)FX{O,l}CPF; {E—>(£L',/€) (k:O,l),
P = PFUFX{O,I}FXI-

The relative cobordism (04 Py, r; 1004 F, 1104 F) is then a Seifert fundamental
domain for the canonical infinite cyclic cover d4 P of 04 P. ]

Remark 27.4 The special case N = S"2 ¢ M = S™ of 27.3 for n = 3 is the
classical knot theory situation in which codimension 1 Seifert surfaces first
appeared (Frankl and Pontrjagin [83], Seifert [263]). O

The antiquadratic complex (22.4) of a homology framed codimension 2
submanifold has the following expression in terms of a codimension 1 Seifert
surface :

Proposition 27.5 Let (M,0M) be an n-dimensional manifold with bound-
ary, and let (N,ON) C (M,0M) be a homology framed codimension 2 sub-
manifold with exterior (P,0.P).

(i) There exist codimension 1 Seifert surfaces (F,0+F) C (M,0M) for
(N,0ON), with

OF = NUgny O, F COP = N x S'Upnyst 4P .

(ii) A codimension 1 Seifert surface (F,0+F) for (N,ON) determines an
n-dimensional manifold triad (Pr;ioF,i1F, N) and hence an n-dimensional
symmetric Poincaré triad over Z[mi(M)]

C(N,ON) ——= C(F,0, F) 0 ——> ¢

- D

i S
C(F,8+F)41>C(PF78+P6+F) ¢ ——>0¢

with N,@N,F,8+F,PF,8+P8+F the covers of N,ON,F,0,F, Pr,0, Py, r
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induced from the universal cover M of M. The antiquadratic complex
o.(M,N,¢*) = (C.¢)
is the n-dimensional (—z)-quadratic complex over Z[mi(M)][z,271] given by
C = C(P,0.P)

= Clig — 21 : O(F,04F)[z, 27 |—C(Pp,0: Py _p)lz,27")
dpo  zi1¢o o

(:‘:%Z_3 0 > if s=0

0 ifs>1

(as in 24.1) and such that

ql)s:

C((L+T ) : C"*—C) ~ C(M xR,d,P)

with P, 8173 the pullbacks to P, 04 P of the universal cover M xR of M x S*.
Proof Make (p,dyp) : (P,0, P)—S?! transverse regular at {pt.} C S*, with

(F,04F) = (p,01p)"({pt.}) C (P04 P) . U

Here is how asymmetric complexes arise in homology framed codimension
2 surgery :

Definition 27.6 Let (M, M) be an n-dimensional manifold with boundary,
and let K C OM be a homology framed codimension 2 submanifold, with
exterior L and a codimension 1 Seifert surface J C OM, so that

0] = KCOM = K x D?Ugys L.

Let M be the universal cover of M , and let J, , Z,] be the induced covers of
J, Ly, so that (M; Ly, J x I) is a relative cobordism with

L = LJ UJX{O,I} Jx 1
and there is defined a Z[my (M )]-module chain equivalence

[M]N— : C(M,L,)"* ~ C(M,Jx1I).

oM
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(i) The asymmetric complex of (M, J) is the n-dimensional asymmetric com-
plex (C, \) over Z[r1(M)] with

C = C(M,Ly),

A Ot = O(M,Ly)"* " (M, J x I) ~ C(M,.J)

L e(LL) = C,

such that up to Z[m1(M)]-module chain equivalence

C(A: C"*—C) =~ €(ig : C(J)—C(Ly))s1

C(TA: C"*—C) ~ C(iy : C(J)—C(Ly))s
and up to Z[r1(M)][z, 2~ !]-module chain equivalence

C((L+T )N : C" [z, 271 ]—C[z, 27 1))
~ C(ig — ziy : O(M, )z, 2~ |—C(M, Lj)[z,2"1])

C(M x R,L)

R

with L the pullback to L of the universal cover M xR of M x S.

(ii) If K is a A-homology boundary spine of (M, M) with respect to some
morphism of rings with involution F : Z[my (M)][z, 27 1]—A then (C,\) is
an n-dimensional asymmetric complex which is (A, —z)-Poincaré, and the
asymmetric signature of (M, J) is the cobordism class

o*(M,J) = (C,\) € LAsyy, (Z[r1 (M)], A, —=2) . O

Remark 27.7 As in Remark 20.28 and Example 20.29 the Z[m (M )]-module
chain maps induced by the relative cobordism (M;J x I, L)

v:G=CM)— F = C(M,Ly),

p: G = CM)— C(M,JxI)~F"*
are the components of the inclusion of a sublagrangian in a metabolic (—1)-
symmetric form in the derived category with involution D,,(Z[m(M)]) of n-

dimensional f.g. free Z[m (M )]-module chain complexes and chain homotopy
classes of chain maps

(Z) : (G,O)—>(F69F"‘*7(_01 é))

such that _
C(J X I)*—l s

@
2
R
Q
lt
<
¥
|
L
o
=
R

with boundary
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GG ~ CO(T x I))us
and hessian form the intersection pairing
Vo= [M]Nn—:
G = C(M) ~ C(M,0M)"™ —» C(M,0M) ~ G"~*.

The special feature of the situation in 27.6 is the existence of the asymmetric
pairing (i.e. chain map) A : F"~*——F such that

v A~ Ny G— F
with
AXB1 ~ 4y : Cu) ~ C(J)ey — €(7) ~ C(Ly)s_s ,

M@l ~ i Cu) ~ C(J)sy — C() ~ C(Ly)er . 0

27B. Codimension 2 Seifert surfaces

Proposition 27.8 Let (M,0M) be an n-dimensional manifold with bound-
ary, and let K C OM be a homology framed codimension 2 submanifold, with
exterior L.

(i) Let N C M be a codimension 2 Seifert surface for K, so that (N, K) C
(M,0M) is a homology framed codimension 2 submanifold, and let (P, L) be
the exterior. Inclusion defines a normal map from an (n — 2)-dimensional
manifold with boundary to an (n — 2)-dimensional normal pair

(f;0) + (N, K) — (M, K)

with (f,b)| =1: 0N = K—K. Let p: P—S" be the canonical projection,
and let ¢ : P——1 a Morse function on the relative cobordism (P; N x S, L).
Then

g: P — MxS"xI;z— (z,p(z),q))

defines a normal map from an n-dimensional manifold triad to an n-dimen-
sional normal triad

(g,¢) : (P;N xSYL;K x S') —
(M x S* x I; M x S* x {0}, M x S* x {1}; K x S*)
such that
(g.c)] = (f,b)x1 : (N,K)xS" — (M,K) x S*

and ) 5
(g,c)Uid. : M = PUpnxst (N x D?)
— M x S" x I Unysixqy (N x D?)

is a deformation of the inclusion M—sM x D? (as in 22.6 (iv)).
(ii) A codimension 1 Seifert surface J C OM for K determines a codimension
2 Seifert surface N C M for K, with the exterior (P, L) such that
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C(? f/) = C(M z])[z 27 = Clz,27Y,

with M the universal cover of M, LJ the pullback cover of Ly, and with
P L the pullbacks to P,L of the universal cover M x R of M x S'. The
n-dimensional asymmetric complex (C,\) over Z[ni(M)] (27.6) determines
the antiquadratic complex (22.4)

O.*(M’ N’ 62) = (C[Z7 271]71/}) 3
the n-dimensional (—z)-quadratic complex over Z[mi(M)][z, 2~ 1] with

A ifs=0
¥s = {0 ifs>1,

C((1+T )0 : [z, 2] —Cle, 571
= C((L+T_)\:C" 2,271 ]—C[z,27Y))
~ C(M xR,L) ~ C(f:C(L)—C(M xR)) .
The quadratic kernel of (f,b) is the (n — 2)-dimensional quadratic complex

over Zlm (M)]
o.(f.D) = (STICN)
with S~'C ~ C(f") the algebraic mapping cone of the Umkehr chain map

— - f ~ ~
f': O(M,K)""** — C(N,K)""2* ~ C(N).
Let

0 C(0+9")

a*(g,c) = ( I , v )

C(S(f)) ——==€l(g")

be the kernel n-dimensional quadratic triad over Z[mi(M)][z, z71], with the
Umkehr Z[m1(M)][z, 2~ ]-module chain maps given by

g'  C(M xR, K xR)"'* — C(P),
drg9' : C(M xR, K xR — C(L),
S(H)' : O(M xR, K xR — C(M x R) .

Let (I'",¥') be the n-dimensional quadratic Poincaré triad over Z[mi(M)]
[z, 271 associated by 20.27 to the n-dimensional quadratic complex

(C"9") = (Clz,27 ], (L =27 Hy)
and the factorization

1—z"1 14T, )o
A+T)py : C" *[z,27 ] —— C" *[z,27] Qv Clz, 27,



314 27. Framed codimension 2 surgery

corresponding to the inclusion of the lagrangian in a hyperbolic (—1)-quadratic
form in the derived category with involution D, (Z[m1(M)][z,271]) (20.28)

1 T_Z —% — _ —% _ O 1
with hessian form (C™*[z,27,{) and
B G((l + T—z)¢0)*+1

F/

C(l—27t:C" ¥z, 27 ]—C"*[2,27Y)sr1 C"*[z,271]

B C(M xR, Z)*-H

- l

C(M xR,K xR),11 —=C(M xR, P), 1

and
B

C(L— 271 (1 +T-2)to) —C((1 + T_.)1h0) )42

C(C(M xR, K x R)"™ *—C(M x R)),41 .
The kernel quadratic triad o.(g,c) = (I',¥) is obtained from (I'",¥") by col-
lapsing B, with a homotopy equivalence

(w) ~ (I'",¥')/B

R

0 C((1+T-2)v0)s+1
(] "
C(1—2:Clz,27Y]—Clz,27)sr1 — C(B—C"*[2,271))
In particular, the kernel (n — 1)-dimensional quadratic complex
0:(049,04¢c) = (0+C,04¢)
is given by
9,C = €049 : C(M xR, K x R)"'*—C(L))
C(M xR,L)"™* ~ C(M xR, L),
~ C(L+T_)N:C" *[z,27 ]—Clz, 2 Pt

0 1 )
Dyhy = {(z 0) ifs=0
0

ifs>1.

(iii) For any morphism of rings with involution F : Zmy(M)][z, 2~ —A the
following conditions are equivalent :

R
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(a) (C,A) is an asymmetric (A, —z)-Poincaré complex (26.2),
(b) 0rg: L—M x S is a A-homology equivalence,
(c) (M x S, K x SY) is an (n — 1)-dimensional A-coefficient geometric

Poincaré pair with fundamental class [L] € H,—1(M x S*, K x S1),
K is a A-homology boundary spine for (M,0M) (22.10),
(Clz,271,9) is a A-Poincaré (—z)-quadratic complez,

(04+C,04+) is a A-contractible quadratic complex.

IO
=ee

(iv) If F is locally epic and the conditions of (iii) are satisfied, the isomor-
phism of 26.11

LAsyp(Z[m (M)], A, —z) = IMTF, —z)
sends the cobordism class (C,\) to the A-homology spine obstruction (22.14)
o (M. K) = (Clz,27'],¢) € [,/(F, —2)
allowing the identification
oMM,K) = (C,)\) € LAsy} (Z[r (M)], A, —z) = TMTF, —z) .

Proof (i) Formal.

(ii) Define a push-in of the codimension 1 Seifert surface J C OM to be the
codimension 2 Seifert surface N C M for K C M obtained by pushing J
rel O into the interior of N, with

N=J,6 oN =0d] = KCoM.

As in the proof of 27.5 the exterior of the homology framed codimension 2
submanifold (N,0N) C (M,0M)

(P,0,P) = (cl.(M\(N x D?)),cl.(dM\(ON x D?)))

is equipped with a map (p,d.p) : (P,04P)—S! transverse regular at
{pt.} C S'. In this case it is possible to arrange the inverse image to be
a codimension 1 Seifert surface for (N,0N) C (M,0M)

(F,0:F) = (p,01p) ' ({pt.}) C (P,0+P)
such that
(F,0.F) = (Jx1,Jx{0}) , (Pp,dyPs r) = (M,Ly).
The antiquadratic complex (C(P,d4 P),1) is given by 27.5, with
C(P,0,P) = C(ig — zi1 : C(F,04F)[z,2~|——C(Pr, 0 Py, p)lz,27"])
~ C(Pr,0: Py, p)lz27")
~ C(M,Lj)[z 27" = Clz,27Y].

(iii) The structures of the quadratic kernel complex o, (f,b) and triad o.(g, ¢)
are given by 22.6.
(iv) Immediate from (iii). O



316 27. Framed codimension 2 surgery

Example 27.9 (i) Let 7 be a finitely presented group, and let (Z[r]*, \) be
an asymmetric form on a f.g. free Z[r]-module of rank £ > 1. For any integer
1 > 3 it is possible to realize the (2i + 2)-dimensional asymmetric complex
(S™1Z[r]*, \) as the asymmetric complex of a (2i + 2)-dimensional manifold
with boundary (M,9M) and a homology framed codimension 2 submanifold
K C OM with a codimension 1 Seifert surface J C 9M, as follows.

As in the proof of 22.17 choose a (2i — 1)-dimensional manifold with boundary
(Ko, 0Kp) such that 71 (Ky) = 7, and use the method of Wall [304, Chap. 5]
to construct a 2i-dimensional relative cobordism (N; Ko, K1) with

N* = Ko x IUxi(yix- D' x D’
4

the trace of surgeries on ¢ disjoint trivial embeddings S'~! x D? C int(Kj)
with self intersections A, writing the boundary of N as

K = ON = KyUp—K; .

By construction, there is an i-connected normal map of 2i-dimensional man-
ifold triads
(f,b) + (N5 Ko, K1) — Ko x (1;{0},{1})

with
(f,b)] = id. : Ky — Ko , Ki(N) = Z[x]*,

and quadratic kernel the 2i-dimensional quadratic complex (S*Z[r]*, \) over
Z[r]. The quadratic kernel of the normal map of closed (2i — 1)-dimensional
manifolds

(0f,0b) = (f,0)] + K — 0(Ko xI) = KoUy—Ko

is the boundary (2i—1)-dimensional quadratic Poincaré complex 9(S*Z[r]¢, )
over Z[r]. Define the (2¢ 4+ 2)-dimensional manifold with boundary

(M,0M) = (Ko x I x D* 0(Ky x I x D?))
and regard
(Ko xI)x {0} COM = (Ko x I) x D> Up(koxryxsr (Ko x I x S

as a homology framed codimension 2 submanifold. Use the method of Mat-
sumoto [183,5.2] (cf. 22.8) to perform ambient surgeries on ¢ disjoint trivial
embeddings

St x D' Cint(Ky) x {0} € (Ko x I) x D?

with self intersections A, and trace a homology framed codimension 2 sub-
manifold triad

(N Upryxr Ko x I;0(Ko x I), K) C 9(Ko x I) x D? x (I;{0},{1}) .
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The homology framed codimension 2 submanifold (N, K') C (M,0M) is such
that
(M,0M) = (N x D?>Upys1 P, K x D*> Uy L)

with the exterior (P, L) given by
P2i+2 — N x Sl % IUUDi+1 % Di+1
¢

the trace of surgeries on ¢ disjoint embeddings S* x D*t! C int(INV x S?)
representing generators of the kernel Z[r][z, z~!]-module

K;(N x SY = Z[x][z, 27

of the i-connected normal map e x idg: : N x S'—= Ky x I x S', and L the
effect of these surgeries. The kernel (2i + 2)-dimensional quadratic Poincaré
triad over Z[r][z, 271] of the corresponding (i + 1)-connected normal map of
(2i 4 2)-dimensional manifold triads

(g,¢) + (P;N x S' L) — Ko x I xS"x (I;{0},{1})

is the one associated by 20.27 to the factorization of the duality chain map
of the (2i + 2)-dimensional quadratic complex over Z[r|[z, z7!]

(€(g"),0) = (S™'Zx]z, 27", (1 —27hN)
given by
L+T)o = L=2"DA+ (D)L =2)A" = (1 -2 A+ (-)'2\)

1

. . 11—z~ .
. e(g!)2z+2—* — SH_IZ[W][Z,Z_l]é N SH_IZ[?THZWZ_I]@
14+T_)A .
TR e = $H1Z0][z, 1)

The homology framed codimension 2 submanifold K’ C OM has a codimen-
sion 1 Seifert surface J C M homeomorphic to N (so that N is a push-in
of J), such that the canonical infinite cyclic cover L of L admits a Seifert
fundamental domain (L j;i0J,41J) with a normal map

(9,¢) : (Lyiiod,inJ) — Ko x I x (I;{0},{1})

and

io = A : Cg') = S'Zr)" — Cg') = Sz,

i = ()T s edg') = Sz — e(g') = S'ZIn",

C(L, Ko x I xR) = Cig — zi1 : €(Aog")[z, 2~ |—C(A1g ")z, 271))
= COA+ (=)2X\* : 8Z[x][z, 2 ' — S (Z[r][z, 2~ 1])") .
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The cellular chain complexes of the universal covers M , N , E,] of M,N,Lj
are such that

C(M,Lj;) ~ C(M,N)?*>~* ~ §itlzzg]¢

and the asymmetric complex given by 27.6 is (S*H'Z[x]’, \).
(ii) Suppose that 7 = {1}, (Ko, 0Ko) = (D*~!,8%~2) in (i), and that (Z*, )
is an asymmetric form over Z such that

At (=)A 28— (2

is a Z-module isomorphism, i.e. a (—)*-symmetric Seifert form over Z in
the terminology of 32.1. In this case (M,0M) = (D%*%2 §2+1) and the
homology framed codimension 2 submanifold K C S?**! is homeomorphic to
52=1 by the generalized Poincaré conjecture — in effect, this is the surgery
construction of high-dimensional knots due to Kervaire [131] and Levine [155].
The knot k : K = §?=! ¢ §2*! has a codimension 1 Seifert surface J2' C
S%+1 with H,(J) =0 (x #4), H;y(J) = Z* and Seifert form (Z¢, \). O

27C. Branched cyclic covers

Branched cyclic covers are manifolds which are cyclic covers off a submanifold,
usually codimension 2. See Burde and Zieschang [34, Chap. 8E] for an account
of the traditional applications of branched covers in knot theory. This section
relates cyclic branched covers and asymmetric complexes, generalizing the
relationship between a Seifert matrix for a 1-knot k : S' C S and the
homology of the cyclic covers of S3 branched over k.

Definition 27.10 Let (M,0M) be an n-dimensional manifold with bound-
ary, and let (N,0ON) C (M,0M) be a homology framed codimension 2 sub-
manifold with exterior (P, 4 P), so that

(M,0M) = (N x D*Unyst P,ON x D* Ugnxg1 04 P) .

For any integer a > 2 the a-fold branched cyclic cover of (M,0M) branched
over (N,0N) is the n-dimensional manifold with boundary

(M',0M') = (N x D*Uyygst P',ON x D* Ugnxs1 04 P')

with homology framed codimension 2 submanifold (N,ON) C (M',0M’) and
exterior

(P/,8+P/) = (Paa-i-ip)/za

the a-fold (unbranched) cyclic cover of (P, 8, P), with (P, d; P) the canonical
infinite cyclic cover of (P, 04 P). O
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What is the asymmetric complex of a branched cyclic cover?

Proposition 27.11 Given an n-dimensional manifold with boundary (M,
OM) and a homology framed codimension 2 submanifold K C OM with a
codimension 1 Seifert surface J C OM, let (C, X) be the asymmetric complex
of (M, J) (27.6), the n-dimensional asymmetric complex Z[m (M)] with

C = C(M,0,M,) ~ C(M,J)"™ ~ C(M,N)"* .

Let N C M be a push-in codimension 2 Seifert surface for K obtained by
pushing J reld into the interior of M, with ON = K, and let (M',0M’)
be the a-fold cyclic cover of (M,0M) branched over (N,0ON), as in 27.10.
Then N C M’ is a push-in of the codimension 1 Seifert surface J C OM’
for ON C OM' into M'. Let M' be the pullback to M’ of the universal cover
M of M along the branched covering projection M'—sM. The asymmetric
complex of (M',J) over Z[m1(M)] is given by

A =T 0 . 0

A A+TX =-TX ... 0

) = (@C’ 0 A A4TA ... 0 )

0 0 0 oo AFTA

with S L
C'" = C(M',o:M;) ~ C(M',N)"~*.

Proof Regarding M as a relative cobordism

(M;JxI,JxI;:0,.M;U(J x I))

gives a fundamental domain for the canonical infinite cyclic cover (P, d, P),
so that (P’, 0, P’) is the cyclic concatenation of a copies of M, and M’ is the
linear concatenation of a copies of M

(M';J x 1,0 x ;0. My U (J x 1)) = | JM;J x I,J x I;0,M; U (J x I))

a

as in the diagram

Jx I M JxI M JxI Jx 1 M JxI

O, My U (T xT) 0. M;U(J x 1) 0. M, U (J x )
As in 27.7 the chain maps
v:G=CM)— F = C’(M,@:MJ),

= C

p: G (M) —s C(M,J x I) ~ F"™*
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are the components of the inclusion of a sublagrangian in a metabolic (—1)-
symmetric form in the derived category with involution D,,(Z[r1(M)])

(Z) ; (G,O)—>(FEBF”‘*,<_01 é))

with A : C"™* = F"*——(C = F such that
vy=d = Npu: G— F
and hessian the intersection pairing of (M, 0M)
v = ¢o 1 G = C(M) — G"* = C(M,0M) .

The components of the inclusion of the sublagrangian corresponding to the
branched cover are given by

¥ =T\ 0 0
-y A+TXN =T ... 0
N 0 A A+TN ... 0
0 0 0 oo AFTA
@ =00l = Ga@F — F = CAI'o:M,) = PF,
a—1 a
uw 0 0 0
010 ... 0
/‘Ll: 0 0 1 .. 0 :GI:G@®F”’7*—)F/”7* :@F‘ni*7
e : a1 .
0O 0 0 ... 1

with hessian the intersection pairing of (M’, M)

(b() —’y* O e 0
—y A+TA  -TA ... 0
,y/*'u/ :¢6 _ 0 -\ AN+TN ... 0
0 0 0 A+TA
G/ — C(M/) _ G@@Fn_*
a—1
— @ = oMM = e @PF O
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Example 27.12 Let
(M,OM) = (D2, $%+1) (i>1),

and let
K _ 521'71 C 52i+1

be a knot with Seifert surface J. The statement and proof of 27.11 give the
homological invariants of the corresponding a-fold branched cover (M',9OM")
of (M,0M). Only the middle-dimensional homology modulo torsion will be
considered here. The relevant part of the asymmetric complex (C, ) of (M, J)
is the (—)%-symmetric Seifert form (L, \) over Z, with

A (=) - HYYC) = L = Hy(J) — L*
an isomorphism. In this case
Hi1(G) = Hipa(D**?) = 0,
Hi+1(F) _ Hi+1(D2i+2,J) _ Hz(J)

and the inclusion of the sublagrangian in a metabolic (—)*symmetric form
over Z

(Zi) : (Hipa1(G),0) — (Hi+1(F/)@H¢+1(F’)*,< 0 1))

has components

(—=)iA* 0 0 0
A+ (=)itiar (=)iAx 0o ... 0
N = -2 A (=) (=) L 0
0 0 0 A (=)
Hi1(G) = Hin(M') = DL
a—1
— Hip1(F') = Hip (M0, M)) = L,
a
0 0 O 0
10 0 ... 0
W =0 10 ...0 5Hi+1(G/):@L—>Hi+1(F/)*:@L7
. : . .. . a—1 a
00 0 ... 1

with hessian the (—)""l-symmetric intersection pairing of (M’,dM’)
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V= b

A+ (=) (—)in* 0 0

—A A+ (=)t (—)in* 0

_ 0 - A4 (=) L 0
0 0 0 I G P

: Hi+1<G/) = @L — Hl‘+1(Gl>* = @L*

a—1 a—1
and

coker(¢) : D L— @D L*) = Hi(0M') .
a—1 a—1

The construction and homology computation of (M’, dM') go back to Seifert
[263] (cf. Burde and Zieschang [34, Chap. 8E]), and the formula for the in-
tersection pairing was obtained by Cappell and Shaneson [41] and Kauffman
[120,5.6], [121,12.2]. See 40.15 for the signature of this pairing. O

27D. Framed spines

Definition 27.13 Given a space X let £ = €2 : X——BSO(2) be the trivial
2-plane bundle, and let
F o 2m ()] = Zm(X)][z 27" — 4

be a morphism of rings with involution.
The framed spine bordism groups BB.(X,¥F), AB.(X,F), A.(X,TF) are the
spine bordism groups of 22.16 with

BB,(X,¥) = BB,(X,*,9),

AB,(X,F) = AB,(X,€%,9),

An(X,F) = An(X,2,9) .
More explicitly :
(i) The bounded framed spine bordism group BB, (X,F) is the bordism
group of (n + 2)-dimensional manifolds with boundary (M, M) with a map

(M,0M)—X and a homology framed codimension 2 submanifold K C OM
with exterior L such that K is a A-homology boundary spine, i.e.

H.(L;A) = H. (M x S';A) .

(ii) The framed empty spine bordism group AB,, (X, F) is the bordism group of
(n+ 2)-dimensional manifolds with boundary (M, M) with a map (M, M)
—X x St such that K =0 in (i), i.e.

H.(OM;A) = H,(M x S*; A) .
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(iii) Assuming 1 — z € A®, the framed closed spine bordism group A, (X, )
is the bordism group of closed (n 4 1)-dimensional manifolds N with a map
N—X x S such that H,(N;A) = 0.

Similarly for the U-intermediate groups. g
Proposition 27.14 (i) The bounded framed and empty spine cobordism
groups are isomorphic

BB,(X,F) = AB,(X,J) .
(ii) The asymmetric complex construction of 27.6 defines a morphism
c* : BB, (X, %) —>LAsyZ+2(Z[771(X)],A, —z); (M, K) — (C’(M7f_])7)\),

which is an isomorphism if n > 5, w1 (X) is finitely presented and F is lo-
cally epic. Moreover, in this case the asymmetric signature defines a natural
isomorphism of exact sequences

..— AB,(X,1) AB,(X,F) I ( Py, —2) — ...
%la* 2la* =|g*
f_jn-‘r?)

LAsy} (A A, —2) — LAsyZ+2 (A, A, —2) — ...
with A = Z[m (X)), I'", (P, —2) the cobordism group of (n+1)-dimensional
(—2)-quadratic A-contractible Poincaré complexes over Az, z71], and

H™ = LAl 27 —2) = H'(Zo; Ko(4))

(iv) If F is locally epic and 1—z € A® there is defined a natural transformation
of exact sequences

coi > Qpyo(X x §Y) ———= AB,(X,F) ——— A (X, F) — ...

la* o* ia*

o= L7 (Alz, 27Y) — LAsy} T2 (A, A, —2) — T2 (P5) — ...

7 )

with T7"Y2(Pg) the cobordism group of (n + 1)-dimensional symmetric A-
contractible Poincaré complexes over Alz,271], and

o 1 AN(X,F) — TP(@g) s M — (C(M), A[M])

the A-contractible symmetric signature map. If n > 5, m(X) is finitely pre-
sented and F s locally epic

o 1 AB,(X,F) = LAsy} (A, A, —2) ,
and there is defined an exact sequence
C— LAz, 27Y)) — AW(X,F) — I7T(Py) @ 2ppa (X x ST
— Lyt (Al 27Y) — ...

Proof This is the special case ¢ = €2 of 22.18. O
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Example 27.15 For
T Zm(X)][z, 27 — A = Z[m(X)]; 2 — 1

there are identifications

AB,(X,%) = BB,(X,%) = LAsy} ™ (Z[m(X)],4,—z) ,

No2(D5) = D@y, —2) = LAsyp P (Z[r(X)], A, —2) .
In particular, for X = {pt.} and A =7
AB,1({pt.},F) = BB,i({pt.},F) = LAsy (2,2, —2)

= Days(P5) = Duys(Pr,—2) = LAsy" (2,2, -2)

and these are the high-dimensional knot cobordism groups C,, for knots k :
8™ C §"2 — see Chap. 33 for a further discussion. O

Remark 27.16 (i) For any rings with involution A, A’ the product of an n-
dimensional asymmetric complex (C, \) over A and an n'-dimensional asym-
metric complex (C’, \) over A" is an (n+n')-dimensional asymmetric complex
over A @z A’

(C,NR(CN) = (CoC A N).

(ii) Let (M,0M) be an n-dimensional manifold with boundary, with a ho-
mology framed codimension 2 submanifold (N,0N) C (M,9M) such that N
is a push-in of a codimension 1 Seifert surface J C M for ON. As in 27.6
there is defined an n-dimensional asymmetric complex (C, \) over Z[m (M)],
with C' = C(M, N)"~*. Likewise, let (M’,0M’) be an n/-dimensional man-
ifold with boundary, with a homology framed codimension 2 submanifold
(N’,ON") C (M',0M') such that N’ is a push-in, and let (C’,\’) be the
corresponding n/-dimensional asymmetric complex over Z[my(M')]. Then

N' = NxMUMxN cM'" = MxM

is a homology framed codimension 2 submanifold of an (n + n')-dimensional
manifold with boundary, such that the corresponding (n + n')-dimensional
asymmetric complex over

Zim(M")] = Zlm (M) x mi(M")] = Zlm1(M)] @z Zlm: (M')]

is the product
(CN’ >‘H) = (Ca )‘) ® (C/u )‘/) ’

with L
C// _ C(M",N”)n+nl7*

= C(M,N)"* @, C(M',N')"* = C®,C" .

For M = D", M’ = D™ this is the knot product operation of Kauffman [119)]
and Kauffman and Neumann [122] (cf. 29.22 below). O



28. Automorphism L-theory

This chapter deals with the L-theory of automorphisms of algebraic Poincaré
complexes, using the localization 271A[z,271] inverting the set §2 (13.3)
of Fredholm matrices in the Laurent polynomial extension A[z,z7!] (z =
27 1) of a ring with involution A. In the first instance, the duality involution
on Why (271 Alz,271]) and the fibering obstruction are used to prove that
every manifold band is cobordant to a fibre bundle over S*, allowing the
identification of the closed framed spine bordism groups A, (X,F) of Chap.
27 for

F = inclusion : Z[m(X)][z, 27! — Q7' Z[m (X)][z, 2]

with the bordism groups A,(X) of automorphisms of manifolds over a space
X.

The automorphism L-groups LAut,(A) (¢ = s,h,p) are the cobordism
groups of self homotopy equivalences of algebraic Poincaré complexes over a
ring with involution A, the algebraic analogues of A, (X). The main algebraic
results of Chap. 28 are the identifications (28.17,28.33)

F(Alz, 271, 0) = LAutZﬁQ(A) , Li(27YA[z,27Y]) = LAsyi(A)

with LAsy},(A) the asymmetric L-groups of Chap. 26. The automorphism
L-groups thus fit into the exact sequence

. — Lp(Alz,27"]) — LAsyj(A) — LAut]*(A)
— Ly Al 27Y) — .

The connection between the automorphism and asymmetric L-groups will
be considered further in Chap. 29 below, in connection with the obstruction
theory for open book decompositions. See Chap. 39 for the computation of
the automorphism and asymmetric L-groups of a field with involution F.

The algebraic K-theory localization exact sequence
i a
. —— Whi(Alz,27']) — Whi(27 Az, 27Y]) — Whi(Alz, 27 '], 02)

L Ro(A[z,271)) — ..



326 28. Automorphism L-theory

splits for any ring A (by 13.19), with j = 0 and 9 split by
A Whi(Alz, 271, 02) = Autg(A) — Why (2 Alz, 27 1Y) ;
[P,h] — 7(2 —h: 27 Pz, 27 |— 027 P[z,271]) .

A based f.g. free A[z, z~1]-module chain complex E is 2! A[z, 2~ 1]-contract-
ible if and only if it is A-finitely dominated (i.e. a band), in which case

T(QTE) = (97(E).[E.Q)
€ Why (27 Alz,27Y) = Whi(Alz, 271]) @ Autg(A) .

For a ring with involution A the involution

Alz, 27 — Alz, 271 2 — 27T

extends to isomorphisms of rings

A((2) — A7 > 4 — Y @iz

j=—o0 j=—o0

A((z) — A7 Y ar — > ae

j=—o00 j=—00

28A. Algebraic Poincaré bands

Definition 28.1 An n-dimensional algebraic Poincaré band (C,¢) is an n-
dimensional algebraic (= e-symmetric or e-quadratic) Poincaré complex over
Alz,271] such that C is a chain complex band in the sense of 3.2, that is
based f.g. free and A-finitely dominated. O

Example 28.2 The symmetric Poincaré complex of a geometric Poincaré
band (15.13) is an algebraic Poincaré band. O

Proposition 28.3 (i) The set 2 of Fredholm matrices in Alz, 2z~ is inv-
olution-invariant, such that the 2-duality involution on Why(A[z, 271, 2)
corresponds to the involution

« 1 Auto(A) — Auto(A) ; (P,h) — (P*, (k")™Y

on the autormorphism class group Autg(A).
(ii) The algebraic K -theory localization exact sequence of 13.19

i o
0 — Wha(Alz,27Y]) — Whi(2 'Alz,27Y]) — Auto(A) — 0

is a short exact sequence of Z[Zs]-modules, which splits as a Z-module exact
sequence. The splitting map for 0
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A Autg(A) — Why(27 Alz,27Y)
[P,h] — T(z —h: Q7 'Plz, 27— 027 Pz, 27 1))
is such that
A—xAx = 0§ : Autg(A) — Whi (27 Az, 271,

with
§ ¢ Auto(A) — Why(Alz,27Y) ;

[P,h] — 7(—zh: Pz, 27 ]—P|z,27Y])

such that
% = —x 08 : Autg(A) — Why(Alz,27Y]) .

(ill) A based f.g. free n-dimensional e-symmetric Poincaré complex (C, )
over Alz,z71] is Q7Y Alz, z7]-contractible if and only if it is an algebraic
Poincaré band (i.e. C is A-finitely dominated), in which case

m0(C) = [0,¢] € Whi(Alz,271],2) = Auto(4),
7(C,0) = F(0) + (=)"@T(C)* +6[C, (] € Whi(Alz,271])
and
§ + H" Y (Zy; Auto(A)) — H™(Zy: Why(Alz, 27 1)) ;
[C.¢] —d[C,(] = 7(C,9) .

(iv) A based f.g. free n-dimensional e-symmetric complex (C, ¢) over Alz, z71]
is 271 Az, z71]-Poincaré if and only if OC is A-finitely dominated, in which
case

T(Q7H(C,¢)) = 7(2719C) = (#+(9C),[0C,())
€ Whi(27Alz,271)) = Whi(Alz,271])) @ Aute(A) ,
7(0C,0¢) = &T(9C) + (—)" T+ (0C)* +6[0C, (] € Why(Alz,271]) .

Proof (i) Given a k x k Fredholm matrix w = (w;;) in A[z, 27 !] there is defined
a f.g. projective A-module

P = coker(z —w: Az, 27 F— Az, 27 1F)
with an automorphism
h: P— P;x— z2x

and an A[z, 27 !]-module exact sequence

00— Alz,271F =5 Az, 27 — P — 0.
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The dual k x k matrix w* = (wj;) is Fredholm, with an Az, z~!]-module
exact sequence

0 — Alz,2z71)" - Alz,z71)F — P* — 0
where
z = (h*)"' . P* — P*.
(ii) Immediate from the definitions.
(iii) The algebraic mapping torus of a self homotopy equivalence (h,x) :
(E,0)—(FE,0) of a finitely dominated (n — 1)-dimensional e-symmetric
Poincaré complex (E, 6) over A is a homotopy finite n-dimensional e-symmet-

ric Poincaré complex T'(h, x) over Az, z71]. The torsion of T'(h,x) with re-
spect to the canonical finite structure is given by

(T(h,x)) = 7(—2h:Clz,27|—C[z,27])
= 0[C,h] = §[E,¢] € Whi(Alz,z7Y]) .
By 23.5 every 27 !A[z, z71]-contractible based f.g. free n-dimensional e-
symmetric Poincaré complex (C,$) over A[z,z71] is homotopy equivalent
to the algebraic mapping torus T'(h, x) of a homotopy equivalence (h,x) :

(E,0)—(FE, ) of a f.g. projective (n — 1)-dimensional e-symmetric Poincaré
complex (E, ) over A with

[C’ C] = [E7h] € AUtO(A) .

(iv) Apply (iii) to the boundary (n — 1)-dimensional e-symmetric Poincaré
complex 9(C, ¢) = (9C,d¢p) over Az, z71]. O

28B. Duality in automorphism K-theory
Let
§ ¢ Autg(A) — Why(Alz,27Y)) ;
[P,h] — 7(—zh: P[z,27'|—P[z,271]) ,
8o + Auto(A) — Ko(A) ; [P,h] — [P
(with 0 as in 28.3).
Definition 28.4 (i) The simple automorphism class group of A is
Autj(A) ker(8 : Auto(A)—Why(Alz,271)))
= {[P,h] € Autg(A)| P f.g. free and 7(h) =0 € Why(A)}
= {[Pf1+[P.gl =[P, gf] = [P, 1]} + {[A, +1]} C Auto(A) .

(ii) The free automorphism class group of A is
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Autl(A) = ker(dp : Auto(A)—Ko(A))
= {[P,h] € Autg(A) | P f.g. free} . O
Proposition 28.5 (i) The x-invariant subgroups
Auti(A) C Autl(A) C Auto(A)

are such that there is defined a commutative braid of exact sequences

do
/\ /’\~
Alltg(A) Auto (A) Ko(A)
D
Autl(A) Whi(A) ® Ko(A)
\ /
0 / Whi(A) \ 0

with & : Autg(A)—s Ko(A) split by
Ay ¢ Ko(A) —» Auto(A) ; [P] — [P,1] .
(ii) The *-invariant subgroup
A(Auti(A)) € Why (27 Alz, 271)
is such that
H*(Zo; A(Auty(A))) = H*(Zo; Wha(27 Alz,271)))
L*A(Autg(A))(QilA[zv271]76) = Li(27'Alz, 271, e)

Proof (i) Immediate from the definitions.
(ii) The (geometrically significant) decomposition

Why(Alz,27']) = Why(A) @ Ko(A) @ Nilg(A) @ Nilg(A)
is such that
Auto(A)/Auti(A) = im(5 : Autg(A)—Why (Alz,271)))
= Whi(A) @ Ko(A) .

The duality involution on Whi(A[z, 271]) interchanges the two Nil-compo-
nents, so that
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~

H*(Zs ; Auto(A)/Auts(A)) = H* Y (Zy; Why(Alz,271)))

= H**N(Zy;Why(A)) ® H*(Z2; Ko(A)) .
The isomorphism
(i A) : Whi(Alz,27]) @ Auto(A) — Whi(2 'Alz, 271

is such that

(i A)le(i A) = (; *‘5> :

*
Whi(Alz, 271) @ Autg(A) — Why(Alz,271]) @ Autg(A) .
The short exact sequence of Z[Zs]-modules
0 — Whi(Alz 271)) — Whi(27 Alz, 2~ 1)) JA(Autg(A))
25 Auto(A)/Auti(4) — 0
induces a long exact sequence of Tate Zs-cohomology groups
s H"(Zy; Why (A2, 271)))
B (Z s Whi (271 A2, 2 1)) JA(AutS (A))
s H(Za: Auto(A)/Auti(A))
L BN 2y Whi(A[z, 27 Y])) — .
The connecting maps § are isomorphisms, so that
H*(Z2; Whi (27 Alz, 27 1)) JA(Autg(4)) = 0,
H*(Zs; A(Autg(A))) = H*(Zo;Whi(27'Alz,271)
L*A(AutS(A))(Q_lA[z,z_l],e) = L;(27'Alz, 27 Y,€) . O

Proposition 28.6 Forn > 6 every n-dimensional manifold band M is cobor-
dant to a fibre bundle M’ over St by a cobordism (W; M, M") which is a band.

Proof Let 71 (M) = 7, so that m (M) = m X Z, and write
A = 072z, 271 .

The cellular Z[x][z, z~!]-module chain complex C(M) of the universal cover
M of M is A-contractible, with the A-coefficient torsion

T(M;4) = (2F(M),[M,(]) € Whi(A) = Why(r x Z) & Auto(Zl[r])

such that
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A®7([M]N—: C(M)* *—C(M))
=0e€e Whl(/l) .

T(M; A) + (=)" (M A)*

Given a k x k Fredholm matrix w in Z[r][z, 2~ ] let
T(w) = (a,8) € Whi(A) = Whi(r x Z) & Auto(Z[r]) ,
so that
W) = T(w*) = (a"+38%,5%) € Whi(A) = Wha(r x Z) & Auto(Z[r]) .

For any integer r > 2 such that 2r < n let (W; M, M’) be the A-coefficient
H-cobordism obtained by trivially attaching k r-handles to M x I, and then
using w to attach k (r + 1)-handles

W = (M xIulJD" x D"y, | D+ x D
k

Then
m(M) = m(W) = m(M') = nxZ

and the universal covers V W M’ M/ of W, M " are such that the relative cellular
chain complexes of (W M ) (W, M M’ ) are given by

C(W,M) = S"Cw : Z[x][z, 2~ ) —Z[x][z, 2~ ']F) ,
CW,M'") = S "e(w* : Z[r][z, 2| —Z[r][z, 2~ ]F) .
Thus W, M’ are A-acyclic, and hence bands (13.9), with
TWi4) = 7(M;4) + (=)' 7(w)
= 7(M'; A) + (=) r(w)* € Why(A)
and
W) = &5 (M) + (=)"a = &7(M) + ()" (a" +57)
OTH(M') = PT(M)+ (=) (a+ (=)"a" + (=)"08") € Wha(r x Z) ,
[M7,¢'] = [M, ]+ (=)"(B+(=)"B") € Auto(Z[x]) .
By 28.5 the inclusion A(Autj(Z[r]))—Why(A) induces an isomorphism
A" (Zo; A(Auti (Z[n]))) —> B (Zoi Whn (4)
so that for some k x k Fredholm matrix w in Z[r][z, 271
P(M; A) + (=) (r(w) + ()" r(w)*) € A(AuE(Z[r])) € Whi(A) .

In this case the fibering obstruction of M’ is
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(M) = &7 (M)+ (=) (a+ (=)"a" +(=)"68")
= OEWhl(’ITXZ),

so that M’ is a fibre bundle over S*. O

Remark 28.7 (i) Given an n-dimensional manifold band M and an integer
7 such that 2r < n as in 28.6 let v : Z[r]*——Z[x]* be a nilpotent endomor-

phism such that ()"t (Z[x]*,v) € N\;IQ(Z[TF]) is one of the Nil-components
of the fibering obstruction @+ (M) € Why(m x Z), with

ST (M) + (=) (t(1 = zv : Z[n][z, 2~ P —Z[7][z, 27 1]F)
+ ()" (1 = 27" Zn)[z, 2~ N ——Z[x] [z, 27 %))
€ im(Why (r) & Ko(Z[x])—sWhy (7 x Z)) .

Taking w = 1 — zv in the construction of the proof of 28.6 gives the ‘relax-
ation’ h-cobordism (W; M, M') from M to a ‘relaxed’ band M’ with fibering
obstruction

T (M') = (M) + (=) (1(w) + (=) (w)")
€ im(Why () & Ko(Z[r))—Why (7 x Z))

such that the ﬁﬂ—components are 0. See Siebenmann [267] and Hughes and
Ranicki [112, Chaps. 18, 24] for the various relaxing properties of bands.

(ii) There is also a purely algebraic version of 28.6 : every based f.g. free simple
n-dimensional algebraic Poincaré band over Alz,27!] is band cobordant to
the mapping torus of a simple self homotopy equivalence of a based f.g. free
simple (n — 1)-dimensional algebraic Poincaré complex over A. O

28C. Bordism of automorphisms of manifolds

The framed spine bordism groups AB.(X,¥), A.(X,F) of Chap. 27 for the
Fredholm localization

F = inclusion : Z[m(X)][z, 2] — Q7' Z[m (X)][z, 2]

will now be identified with the bordism groups AB.(X) of manifolds with
boundary a fibre bundle over S and the bordism groups A, (X) of automor-
phisms of manifolds. The bordism groups AB,.(X), A.(X) will be related
to automorphism L-theory in 28D, and to asymmetric L-theory in Chaps.
29, 30.
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Definition 28.8 (i) The autornorphism bordism group A, (X) is the group of
bordism classes of triples (F, g, h) with F' a closed n-dimensional manifold, g :
F—X amap, and h : F—F an automorphism together with a homotopy
g~ gh: F— X so that there is induced a map

T(g9) : T(h) — T(1: X—X) = X xSt
(ii) The bounded fibre bundle bordism group AB,(X) is the group of bordism
classes of quintuples (M, f; F,g,h) with (F,g,h) as in (i), M an (n + 2)-
dimensional manifold with boundary the fibre bundle M = T'(h) over S*,
and f: M——X x S a map such that

fl = T(g) : OM = T(h) — X x S*. 0

In other words, A, (X) is the bordism group of closed (n + 1)-dimensional
manifolds with the structure of a fibre bundle over S! and a map to X.

Remark 28.9 Browder [29, 2.29] initiated the study of the bordism of diffeo-
morphisms of manifolds, using the mapping torus to pass from the bordism
class of a diffeomorphism h : FF——F of a closed n-dimensional manifold F'
to the bordism class of the closed (n + 1)-dimensional manifold

T(h) = Fx[0,1]/{(z,0) = (h(x),1) |z € F} . 0
Proposition 28.10 (i) Given a space X let
T Zm(X))[z, 27 — Q7' Zr (X)][z, 27

be the inclusion in the Fredholm localization. The forgetful maps from the
automorphism and fibre bundle groups to the framed spine bordism groups of
Chap. 27

AB,(X) — AB,(X,3) , A, (X)) — A(X,TF)
are isomorphisms for n > 5, so that for x > 5 there are identifications
AB,(X) = AB.(X,%) , AJX) = A(X,9) .

(ii) The automorphism and bounded fibre bundle bordism groups fit into an
exact sequence

C o 2n0(X x SN — AB,(X) — An(X)

T
— 21 (X xS — ...
with
Qpy2(X x 8Y) — AB(X) 5 (M, f) — (M, f:0,0,0) ,
ABp(X) — A(X); (M, f;F,g,h) — (F,g9,h),
T o An(X) — 201 (X x 8Y) 5 (Fog,h) — (T(h), T(g)) -

Proof (i) Immediate from 28.6.
(ii) Formal. O
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28D. The automorphism signature

The (A[z, z71], 2)-torsion L-groups L*(A[z, z71], 2, €) will now be identified
with the automorphism L-groups LAut*_2(A, €). The automorphism signa-
ture of a self homotopy equivalence of a Poincaré complex is identified with
signature of the mapping torus, in both algebra and topology.

e-symmetric

Definition 28.11 (i) The { . autometric Q-groups of a chain map
e-quadratic

h : C——C are the Q-groups

{ Fu(Cohye) = Q*(C h,1,¢)
Q‘iUt(C? h7 6) Q*(C7 h? 1’ e)

which fit into the exact sequence

cen — QPO e) — Q"+1(C,h7e)

aut o 1%
— Q"(C,e) —— Q" (C,e) — ...
.= Qui1(Cre) — Q¥4 (C, hye)
hog— 1o,
5 Qu(Cre) —=3 Qu(Cre) —> ... .
(ii) An autometric structure (h,d¢) for an n-dimensional e-symmetric com-
plex (C,¢) over A is a self chain map h : C——C together with a chain
0 € W%C’nﬂ such that
hosh* — b5 = dds + (=) ¢sd” + (=)"** "1 (0ps—1 + (=) Tedps—1)
OV 5 O (1,820,001 =0)

n+1
aut

representing an element (d¢, @) € Q
(h,69) : (C,9)—(C, §).

Similarly in the e-quadratic case. (|

(C, h,e€), or equivalently a morphism

Example 28.12 (i) An autometric structure for an e-symmetric form (M, ¢)
over A is an endomorphism

h (Ma¢) — (M7¢) )
that is h € Hom4 (M, M) such that
Weoh = ¢ : M —s M* .

This is just an autometric structure (h*,0) on the 0-dimensional e-symmetric
complex (C, ¢) with Cy = M*, C,. =0 for r # 0.

(ii) An automorphism A : (M, ¢)— (M, ¢) of an e-symmetric form over A is
an autometric structure such that h : M——M is an automorphism. ]
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Proposition 28.13 (i) The e-symmetric Q-groups of an A-finitely dominated
(= 27 Az, z7Y]-contractible) finite f.g. free Az, z~1]-module chain complex
D are the autometric e-symmetric Q-groups of (D', ()

Q*(Dve) = Qaut(D G )

(ii) The homotopy equivalence classes of f.g. free n-dimensional 271 Alz, z71]
-contractible e-symmetric Poincaré complezes (C,$) over Alz,z71] are in
one-one correspondence with the homotopy equivalence classes of self ho-
motopy equivalences of finitely dominated (n — 1)-dimensional e-symmetric
Poincaré complexes over A.

(iii) The L-group L (271 Alz,271],€) is (isomorphic to) the cobordism group
of f.g. free n-dimensional e-symmetric Poincaré pairs (f : C——D, (0¢, ¢))
over Alz,z71] such that (C, ) is A-finitely dominated.

Proof (i) Let (C,h) be a finite chain complex of (A[z, 27!, £2)-modules, i.e.
a finite f.g. projective A-module chain complex C together an automorphism
h : C—C. The f.g. projective A[z, z~!]-module chain complex

D = Cz—h:Clz, 27 ]—Clz,27Y))

is homology equivalent to (C,h), and every A-finitely dominated f.g. free
Alz, z71]-module chain complex is chain equivalent to one of this type. The
Z|Zs)-module chain map

Choh-101:004C—C®4C) — D®yp..-11 D
defined by
Choah—1®1), = (CR40C),®(C®4C),—
— (D®ap-1 D) = (Clz, 27 ®@ap C[Zazfl])r

S
S
@ (Clz, 27 Y ®Alz,2-1) Clz, 2 o ;
(u,v) — (A"t ® Du, (zh ™t @ 1)v, (1 ® 1)v,0)

is a homology equivalence inducing isomorphisms

Qaut(Coh,€) = Q7(D,e)

so that there is defined an exact sequence

@D, — QU(C.) T QUG — QD) — ...

An (n + 1)-dimensional e-symmetric structure § € Q"*1(D,¢) on D is thus
the same as an n-dimensional e-symmetric structure ¢ € Q"(C,e) with a

refinement to an autometric structure (8¢, ¢) € Q™5 (C, h, €). Moreover



336 28. Automorphism L-theory

¢
0o : H"™ (D) = H" *(C) — H,(C) = H.(D),

so that (D, 0) is a Poincaré complex over A[z,z~!] if and only if (C,¢) is a
Poincaré complex over A.

(ii) The mapping torus defines a one-one correspondence between the ho-
motopy equivalence classes of self homotopy equivalences and autometric
structures of finitely dominated (n — 1)-dimensional e-symmetric Poincaré
complexes over A. Self homotopy equivalences can thus be taken to be given
by autometric structures, and (i) applies.

(iii) Every f.g. free n-dimensional e-symmetric Poincaré complex over
Alz,2z71] is (homotopy equivalent to) 27'(E,0) for an n-dimensional e-
symmetric 271 A[z, 271]-Poincaré complex (E, 6) over A[z, 27| (by 24.4 (i)),
and the thickening of (E, §) (20.22) is an n-dimensional e-symmetric Poincaré
pair (f : C—D,(6¢,¢)) over Alz,27!] such that (C,¢) = 9(E,0) is A-
finitely dominated. U

Proposition 28.14 The e-symmetrization maps
L+T, : LY Alz, 27 6) — LE(Q27 Az, 271, €)

are isomorphisms, for any *-invariant subgroup U C Why (27 Alz, 271]).
Proof The central unit

s = (1—2)te Q7 Az, 271

is such that
s+5 = 1€ Q7 Az, 271,

so that 25.11 (i) applies. O

Remark 28.15 (i) A nonsingular e-symmetric form (M, ¢) over A deter-
mines a ring Hom 4 (M, M) with involution f—-s¢~!f*¢. The surgery trans-
fer group L°(R, A, €) of Liick and Ranicki [176] is defined for any rings with
involution R, A to be the Witt group of triples (M, ¢, U) with (M, ¢) a non-
singular e-symmetric form over A and U : R—Hom 4 (M, M)°P a morphism
of rings with involution. (See 28.24 below for the connection with surgery
transfer). For a group ring R = Z[r] L°(Z[x], A, €) is the m-equivariant Witt
group studied by Dress [60] for finite 7 and by Neumann [212] for infinite 7.
(ii) If A is a Dedekind ring with quotient field F = S™1A (S = A\{0}) the
L-groups L™(R, A, €) are defined in [176] for all n > 0. The even-dimensional
group

L*(R,A,e) = L°(R, A, (—)%)
is just the (—)’e-symmetric L-group of (R, A), as in (i). A nonsingular e-
symmetric linking form (L, ) over A determines a ring Homu (L, L) with
involution f—A~!f"\. The odd-dimensional group

L2i+1(R7Aa€) = Ll(R,A7(7)i€)
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is the quotient of the Witt group of triples (L, A, T') with (L, A) a nonsingular
(=) le-symmetric linking form over (A,S) and T : R—Homa (L, L)°P)
a morphism of rings with involution by the boundaries 9(N,6,V) of F-
nonsingular (—)“e-symmetric forms (IV, §) over A with a morphism of rings
V : R—Hom (N, N)°P such that the composite

v
R — Homu(N,N)? — Homp(F ®4 N, F ®4 N)P
is a morphism of rings with involution. In particular, for R = Z
L"(Z,A,e) = L"(A,e) .

(iii) An n-dimensional e-symmetric Poincaré complex (C,¢) over A deter-
mines a ring Ho(Hom 4 (C, C))° with involution f—s¢~!f*$. An autometric
structure (h,d¢) on an n-dimensional e-symmetric Poincaré complex (C, ¢)
over A determines an element h € Ho(Hom4(C, C))° such that h = h~!, so
that there is defined a morphism of rings with involution

p 1 Zz, 2] — Ho(Homa(C,C)? ; z — h .
If n =0 orif A is a Dedekind ring it is possible to identify
LAut™(A,e) = L™(Z]z,27 '], Aye) . |

Definition 28.16 Let U C Autg(A4) be a s-invariant subgroup. The e-
symmetric automorphism L-groups LAuty;(A,€) are the cobordism groups
of self homotopy equivalences (h,x) : (F,0)—(FE,0) of finitely dominated
n-dimensional e-symmetric Poincaré complexes (E, ) over A with automor-

phism class
[E,h) € U C Autg(4) .

Similarly for the e-quadratic automorphism L-groups LAutY (A4, €). a

Proposition 28.17 (i) For any x-invariant subgroup U C Autg(A) there are
natural identifications of the (Alz, 27|, £2)-torsion L-groups of Alz,27'] and
the automorphism L-groups of A

LY(Alz, 271, 02,e) = LAut} %(Ae) ,

and there is a localization exact sequence
. — LSL(U) (A[Z, 2_1]7 E) — Lg(U)@A(U)(Q_lA[Z’ Z_l], 6)

o T
— LAutZ_Q(A,e) — L?(_Ul)(A[z,z_l],e) —
with T defined by the algebraic mapping torus.
(ii) The e-symmetric automorphism L-groups associated to a pair (U, Uy C
Us) of *-invariant subgroups Uy C Us C Autg(A) are related by a Rothenberg-
type ezxact sequence
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. — H"N(Zy;Us/Uy) — LAt} (A,e)
— LAWY, (A,¢) — H"(Zo;UsJUL) — ...
with
LAut, (A, €) — H"(Z2:U2/U1) ; ((h,x), (E.6)) — [E.H] .
(iii) If U C Auto(A) is a *-invariant subgroup such that Auti(A) C U then
Linyoaw) (@ Az, 271 6) = Li(27 Az, 271 e)

Similarly in the e-quadratic case.

Proof (i) Apply 25.25, with (A, ) replaced by (A[z, 271], 2).
(ii) As for the ordinary L-groups in Ranicki [235, Chap. 10].
(iii) As in 28.5 (ii) (the special case U = Autj(A)) the inclusion

S(U) @ A(U) — Why (271 Alz,271))
induces isomorphisms in the Tate Zy-cohomology H (Zs ). O
Terminology 28.18 (i) Write

LAutZ(A, 6) = LAUtXutO(A) (A, 6)
LAuty(A,e) = LAUtZutg(A) (A, e)
LAut?(A,¢e) = LAutXut.S(A) (Ae) .

LAut;(A,e) -

Thus § LAut;(A,e) is the cobordism group of ¢ — self homotopy
LAut? (A, e€) simple
f.g. projective
equivalences (h,x) : (F,0)—(FE,0) of ¢ f.g. free n-dimensional e-
f.g. free

symmetric Poincaré complexes (F,#) over A.
(ii) In the case € = 1 the terminology is abbreviated

LAut;; (A, 1) = LAut;(A),
LAuty(A,1) = LAuty(A) . O
Proposition 28.19 The e-symmetric automorphism L-groups LAut, (A, )

for ¢ = s,h,p are related to each other and to the e-symmetric L-groups of
Alz, 271 and 271 Alz, 27 Y] by the commutative braids of exact sequences
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/_\

Lyt (027 Alz, 271, ) LAuty(4,e€) ﬁnJrl(Z;’W}ll(A[zaZlD)
LAut? (A, e) Lyt (Alz, 271, e)

Q7 Al 2 Ye) LAut'(A,e) %2 Ko(A))
LAuty (A, e€) LMY (Alz, 271, €)

LAt (A, e) H"(Zy; Wha(A[z,271]))

H"(Z; Ko(A)) H"(Zy; Wha(A)) LAut" (A, ¢)

~_ 7 >~
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with
LAt (A,¢) — H" Y (Zy; Why(Alz,271])) ;

(h,x) : (B,0)—(E,0)) — 7(—zh: Elz,27 ' |—E[z, 27 1),
LAuth(A,€) — H™(Zo;Wha(A)) 5 ((h,X) : (E,0)—(E,0)) —> 7(h) .
Similarly in the e-quadratic case. |

Definition 28.20 Let h : FF——F be a self homotopy equivalence of a
finitely dominated n-dimensional geometric Poincaré complex F' with a map
g : F'—X and a homotopy gh ~ g : '— X, for some space X with univer-
sal cover X and fundamental group 71 (X) = 7. The automorphism symmetric
signature of (F, h, f) with respect to a x-invariant subgroup U C Auto(Z[r])
such that [F,h] € U is the cobordism class

oc*(F,h) = (TL,X) € LAuty,(Z[r]) = L}}H(Z[ﬂ[z,z*l],!?)

with (h, x) : (C(F), $)—>(C(F), ¢) the induced self homotopy equivalence of
the finitely dominated n-dimensional symmetric Poincaré complex o*(F) =
(C(F),¢) over Z[r], and F = g*X the pullback cover of F. O
Proposition 28.21 A ¢ — self homotopy equivalence h : F—F of a

simple
finitely dominated

finite n-dimensional geometric Poincaré complex F with a
finite
map g : F——X and a homotopy gh ~ g : F——X for some space X with
universal cover X and fundamental group m(X) = 7 has an invariant
o*(F, h) € LAut (Z[r])
o*(F,h) € LAuty (Z[r])
o*(F,h) € LAut?(Z[n]) .
The mapping torus T(h) of a self homotopy equivalence h : F—F of a
finitely dominated
finite
homotopy finite
simple
symmetric signature given by
ot (T(R)) = [o"(F,h)]
€im(T: LAutZ(Z[w])—)LZH(Z[W] [z,271]))
= ker(i: LZH(Z[W][Z,z’ﬂ)—)LZH(Q’lZ[W] [2,271) ,
o*(T(h)) = [o"(F,h)]
€ im(T : LAut} (Z[r])— LY (Z[r][z, 271]))
= ker(i : LIH(Z[l[z, =) — L (2712l [z, 271))

n-dimensional geometric Poincaré complex F is a

(n+1)-dimensional geometric Poincaré complex, with the
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Proof The symmetric Poincaré complex of a mapping torus of a self homotopy
equivalence of a geometric Poincaré complex is the algebraic mapping torus
of the induced self chain equivalence of a symmetric Poincaré complex. [

Proposition 28.22 (Ranicki [248])
Let X be a connected space, and let

A= Zm(X) , A= Q2 'Alz,z7Y.

(i) The symmetric signatures define a natural transformation of exact se-
quences

e Onia(X X SY) = ABy(X) —— Ap(X) — Lo 001 (X x S

T R |-
= (A ) L ) LAl 2, 0) L L Al ) >
with
LIT2(Alz,27Y,02) = LAut?(A) (28.19)
for (t,u) = (h,p), (Why(A),h) or (s,s).
(ii) For finitely presented w1(X) and n > 5 the symmetric signature maps are
isomorphisms

0" ABL(X) — L}¥(A)
and the automorphism bordism groups A.(X) fit into an exact sequence
. — L2 (Alz,27Y)) — An(X) — LAut™(A) @ 2,.1(X x S1)
— LMY (Alz,27Y]) — ...
with (t,u) as in (i).
Proof (i) Use 28.20, taking into account that an automorphism h : F—F

of a compact manifold is a simple self homotopy equivalence of a simple
geometric Poincaré complex, and that T'(h) is £2-contractible with torsion

7(Q7IT(h)) = A[F,h] € A(Auti(A)) C Why(Alz,271]) .

The braids of 28.19 include the L-theory localization exact sequences for each
of the pairs of categories (t,u).
(ii) This is a special case of 27.14. O

Example 28.23 (i) Let h : F—F be an automorphism of a 2k-dimensional
manifold F, with a map ¢ : F—X to a space X and a homotopy
gh ~ g : F—X. For any morphism Z[m(X)|—A to a Dedekind ring
with involution A there is defined an automorphism symmetric signature

A @zimy(x)) 0" (F ) = (Hip(F3A),1® ¢o, ha)
€ LAut*(A) = LAut’(4, (-)") .
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This is the isometric invariant of Lépez de Medrano [171], the Witt class of
the automorphism

hy @ (Hg(F; A)/torsion, 1 ® ¢g) — (Hi(F'; A)/torsion, 1 ® ¢p)

of the nonsingular (—)*-symmetric intersection form over A. See Neumann
[212] for the computation of the Z-equivariant (—)*-symmetric Witt ring
LAut?*(Z) = LAut®(Z, (-)*). The exact sequence of 28.22 for X = {pt.}

. — L' (Z]z,27Y]) — A, (pt.)
— LAut™(Z) @ 2,,1(S") — L™ (Z[z,27Y]) — ...

recovers the computation of A, (pt.) (n > 3) due to Kreck [140,5.7].
(ii) See Bonahon [24] and Edmonds and Ewing [62] for the computation of
Ay(pt.), the bordism group of automorphisms of surfaces. O

Example 28.24 The algebraic surgery transfer map of Liick and Ranicki
[174], [176]
!
P Ln(Z[mi(B)]) — Lmin(Z[m(E)])

is defined for any fibration F—F LB with the fibre F' an n-dimensional
geometric Poincaré complex. The surgery transfer group L"(Z[mr1(B)],Z) is
defined in [176] (cf. 28.15), with products

L"(Z[r(B)), Z) @ Lin(Z[m1(B)]) — Lintn(Z[m1(B)]) -
The 71 (B)-equivariant symmetric signature
o"(Fp) € L"(Z[m(B)], Z)
is such that
pw' = 0"(F,p) @~ : L(Zm(B)]) — Linin(Z[mi(B))) -
In particular, for any element (F, g, h) € A, (X) there is defined a fibre bundle
F—E =T(h) — B = S

and the Z-equivariant symmetric signature is just the Z-coefficient automor-
phism symmetric signature

o*(F,p) = Z@gm (x) 0" (F,h) € L"(Z,Z) = LAut"(Z) . O
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28E. The trace map X

The identification given by 28.17
LO(Alz,271,02,¢) = LAut’(A, —¢)

is somewhat indirect : this will now be remedied by obtaining a direct one-
one correspondence between e-symmetric linking forms over (A[z, 271, 2)
and automorphisms of (—e)-symmetric forms over A. This extends to the L-
theory of A[z,271] (Z = z7!) the identification of exact categories given by
13.16

H(Alz,27Y,92) = Aut(A) .

Let A[[z, 27 Y]] be the A[z, 2~ !]-module consisting of all the formal Laurent

polynomials Y a;z7, without any finiteness conditions on the coefficients
j=—0o0
a; € A. The inclusions

i Az, 27 — A((2) , il Az, 27 — A((z7Y)
g+ A((R) — Allz. 27, g- s A((T)) — Allz, 7]
fit into a short exact sequence of A[z, 2~ !]-modules

()

0 — A=) ~b A o Ay I

Allz,27'] — 0.

Every Fredholm matrix w € 2 is invertible over A((z)) and A((271)) (13.1),
so that there are defined ring morphisms

ke« Q7 Az, 27 — A((2) , k- @ Q7'Alz 27— A((2TY)
such that
k.
i Az, 27— 27 Az, 27— A((2))
ke
iio: Az, 27— Q7 AR, 27— A((27Y)
Giky = j ko Q7' Az 27 — Allz, 271 .
Definition 28.25 The universal trace map is the A-module morphism
Xz ¢ 27 ALz 27 /Al 2 — A W] — ad —ag
with ag,a; € A the constant coefficients in

ki(w) = > afz € A((2) , b-(w) = ‘Z a;2 € A((z7Y) . O

j=—o00 j=—o00
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Remark 28.26 For a field A = F' the universal trace map
Xo : 27'Alz, 27 Y/Alz, 27 = F(2)/Flz,27Y — F

is the version due to Litherland [167, A3] of the trace function of Trotter
292], [293]. 0

Proposition 28.27 (i) If

d d—1
p(z) = Zajzj , q(z) = Z b2 € Az, 271
j=0 k=0

are such that the coefficients a; € A are central and ag,aq € A® then

a)\ _ b
Xz (p(z)) = % €A.
(ii) For any w € 271 Alz, 271 /A2, 271

Xz(w) = —x.(w) € A.

(iii) For any (Alz,271], 2)-module L (= f.g. projective A-module L with an
automorphism z : L—L) the universal trace map X, induces an Alz, z71]-
module isomorphism

L™ = Hompp . 1y(L, 27 Az, 27V /A[z,27"]) — L* = Homa(L, A) ;
f—rxaf-
The identification of 28.17
LO(Alz,271,2,¢) = LAut’(A, —e)

is induced by the one-one correspondence

e

{e-symmetric linking forms (L, \) over (Alz,z71],2)} |

{(—€)-symmetric forms (L, ) over A
with an automorphism h : (L, ¢)— (L, ¢)}

with
h=z:1L—L,

A Xz
¢ = XA LxL — Q7 Az, 27 /Alz,27] — A
Proof (i) The polynomial p(z) € Afz,271] is a 1 x 1 Fredholm matrix, with

(ii) The identity x,(w) = —x. (@) is immediate from the identities
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@) = k@) € A=)
@) = k(@) € A((2)) -

(iii) The (A[z, 27, £2)-dual L™ of L has the universal property that for any
1-dimensional f.g. projective A[z, z~!]-module resolution of L

d
0—P — P —L—0

there is a dual resolution

0— Py — P — L —0.
For the standard resolution of L
d =z—h:P = Llz2 Y — Py = L[z,27

the universal trace map x. identifies the dual resolution with the standard
resolution of L*
—1_p*
0 — L*[z,27Y] —— L*[z,27Y] — L* — 0. O
Example 28.28 Let A be commutative ring with involution, so that by 13.12
(i)
Q7 YAz, 27 = ST Az, 27

with S C A[z, 271] the multiplicative subset of the bionic polynomials
d .
p(z) = Zajzj € Alz,27'] (aq=1,a0 € A®) .
j=0

An (A[z,2z71],S)-module L is a f.g. projective A-module (also denoted by
L) together with an automorphism h : L—L. For any such L there exists
p(z) € S with

p(h) =0 : L — L , apz’p(z) = p(z) € Alz,271]

(e.g. p(z) = ch,(L,h) if L is a f.g. free A-module), and there is defined an
Alz, z71]-module isomorphism

HomA[z7z71](L,A[z,zil}/(p(z)))
= Homyy, .1 (L, ST Az, 2 /A2, 27 ]) 5 f — (x — f(x)/p(x)) .

Every f € Homyp, ,—1)(L, A[z,27']/(p(2))) can be expressed as

d—1 d—1
F=3 48 L—Azz/p2) = > 24,
j=0 j=0
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with f; € L* = Homyu (L, A) and

(L9 = f@wyea,
(p(Z))

fiz) = (a0) " foO_ahIx) € A,
=0

(reL0<j<d—1).

The isomorphism of 28.27 is given in this case by

L™ = HomA[z,zfl](LvA[Zazil]/(p(z))) i L = HomA(LaA); f”_>f0 .
U

Example 28.29 Let X be an n-dimensional geometric Poincaré complex,
and let X be a regular cover of X with group of covering translations m x Z.
Let A = R[r] for some commutative ring R, so that A[z,27!] = R[r x
Z]. As before, let 2 be the involution-invariant set of Fredholm matrices
in Az, z7']. The finite f.g. free A[z,z~]-module chain complex C(X;R) is
A-finitely dominated if and only if

Q'H.(X;R) = 0,

in which case the infinite cyclic covering X is an (n—1)-dimensional geometric
R-coefficient Poincaré complex and as in 25.21 there is defined a linking
pairing

p o Ho(X;R) X Hy_p_1(X;R) — 27 Alz,27']/Alz, 27 1] .
The composite
Xapt : Hy(X:R)x Hy_p_1(X;R) AN QilA[z,zfl]/A[z,zfl]i) A

is the nonsingular intersection pairing of X regarded as a cover of X. Two
cases are particularly interesting:

(i) If X is an n-dimensional geometric Poincaré band take R = Z, and let
X be the universal cover of X , with the infinite cyclic cover X a finitely
dominated (n — 1)-dimensional geometric Poincaré band. The exterior X of
a fibred (n — 2)-knot k : S"~2 C S™ is a special case.

(ii) Given a map X —S* with pullback infinite cyclic cover X take m = {1},
and let R = F be a field, so that

A=F , Q7'A]zz27" = F(2).
If H,(X;F) 2 H,(S'; F) then
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Q'H(X;F) = 0, dimpH,(X;F) <0,
p o Ho(X;F)x Hy o 1(X;F) — F(2)/F[z,27]

with o o
Xapt 2 He(X5F)x Hyp (X5 F) — F

the pairing of Milnor [195]. The exterior X of any (n—2)-knot k : S*~2 C S™
is a special case — H,(X; F) has the homological properties properties of a
fibred (n — 2)-knot. O

28F. Automorphism and asymmetric L-theory

The e-symmetric L-groups of the Fredholm localization 271 A[z, 271] were
identified in Chap. 26 with the ({2, —z¢)-asymmetric L-groups of A, with

LY (27 YAz, 27 ,e) = L2 Az, 271, —ze)
= LAsyj (A, 2, —ze) .

The (2, —ze)-asymmetric L-groups LAsy™ (A, 2, —z¢) will now be identified
with the L-groups LAsy*(A) of asymmetric complexes (C, A) over A which are
Poincaré in the sense that A : C"™*——(C'is an A-module chain equivalence.
Such asymmetric complexes arise in the obstruction theory for open book
decompositions, as will be described in Chap. 29. In 28.33 it will be shown
that

LAsy,(A) — LY (27 Az, 27 Y,6)
(CN) — (27102, 27,1 — 27 HA+ (1 — 2)TN)

is an isomorphism. This is an abstract version of the expression in 27.8 of the
symmetric complex of the exterior of a framed codimension 2 submanifold
N C M in terms of an asymmetric complex.

Definition 28.30 (i) An n-dimensional asymmetric complex over A (C, \) is
Poincaré if the chain map X : C""~*——(C'is a chain equivalence. The torsion
of a based f.g. free n-dimensional asymmetric Poincaré complex (C,\) over
Ais

7(C,\) = 7(A: C"*—C) e Why(4) .
(ii) An (n + 1)-dimensional asymmetric pair over A (f : C——D, (0, N)) is
Poincaré if the chain maps

(ff)‘\*) . prtlex e(f) s ((S)\ f)\) . e(f>n+1_* _\D

are chain equivalences, in which case (C, ) is an asymmetric Poincaré com-
plex. The n-dimensional asymmetric complex (C,\) is the boundary of the
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pair.

(iii) Asymmetric Poincaré complexes (C, \), (C’, \') are cobordant if (C, \) ®
(C’,—X) is the boundary of an asymmetric Poincaré pair.

(iv) The projective (resp. free, simple) asymmetric L-group LAsy, (A) (resp.
LAsyp(A), LAsyy(A)) is the cobordism group of n-dimensional asymmetric
Poincaré complexes (C, A) over A with C f.g. projective (resp. f.g. free, based
f.g. free with 7(A : C"*—C) =0 € Why(A)). O

Example 28.31 The 0-dimensional asymmetric L-group LAsyg(A) (¢ =
s,h,p) is the Witt group of nonsingular asymmetric forms (L, \) over A,
with A : L—L* an isomorphism. Such a form is metabolic if there exists a
lagrangian, i.e. a direct summand K C L such that K = K+, with

K* = {o € L|A@)(K) =0} ,
in which case
(L,\) = 0€ LAsy)(A) .
A nonsingular asymmetric form (L, A) is such that (L,\) =0 € LAsyg(A) if
and only if it is stably metabolic, i.e. there exists an isomorphism

(L,A) @ (M, p) = (M, )

for some metabolic (M, ), (M', /). A 0-dimensional asymmetric Poincaré
complex (C, ) is the same as a nonsingular asymmetric form (L, \) with
L = C°. For a 1-dimensional asymmetric Poincaré pair (f : C — D, (61, \))
with D, = 0 for r # 0 there is defined an exact sequence

[ fA

0— D° c° Dy — 0

so that K = im(f* : DY — %) C L = C" is a lagrangian of (C°, \), and the
pair is the same as a nonsingular asymmetric form together with a lagrangian.
More generally, suppose given a 1-dimensional asymmetric Poincaré pair (f :
C — D, (6\, ). The mapping cone of the chain equivalence (A f\) :
C(f)!~* — D is an exact sequence

05D 4o c9ap'ap, -~ Dy=0
with
f*
g=|a )| : D =c’eaD ¢ D,
b))
h = (f\ 6\ d): C°@D'® D, — Dy .

However (as pointed out by Joerg Sixt), in general
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A0 0
h#gl0 0 1] :C°®»D'¢eD, — Dy
010

so that g is not the inclusion of a lagrangian in (C°, \) & (D@ Dy, (? (1)))

To repair this, proceed as follows. Use the chain equivalences

(f;) : D' — C(f), (6N fX) : C(f)'"* — D
to define a chain equivalence
_ oA 1
=T : D—D.
i (Af*) (OA  fA) —

In order to prove that (C°, \) is stably metabolic, it is convenient to replace
D by a chain equivalent complex for which ¢ is (chain homotopic to) an
isomorphism. The exact sequence

d
Z‘1 (ZO 7d)
0—Dy —> Dog®D; ——= Dy —0

splits, so there exists an A-module morphism (« ) : Dy @ D1 — D; such
that

(a B)(i) :ad+ﬁi1:1:D1—>D1.

The 1-dimensional A-module chain complex D’ defined by

d 0
dI: <0 1) Di:Dl@DlﬁDéiDo@Dl

is such that the inclusion D — D’ and the projection D’ — D are inverse

chain equivalences. The chain isomorphism i’ : D’ — D’ defined by

o —d
26:<ZC(3 ﬂ) DézDo@DlﬁDézDO@Dla

, (i1 -1\ [0 -1 1 0
e (ad 6) - (1 ﬁ)(—il 1)
: D) = Dy®Dy — Dy = D@D
is such that
i:D—>D’i>D’—>D.

Replacing D by D’ and reverting to the previous notation, it may thus be
assumed that ¢ : D — D is an isomorphism. Choose a chain homotopy
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(.7 k') : ’L(5)\ f/\) ~ T(f}t) . e(f)l_*—>D,

The nonsingular asymmetric form defined by

A k* 0
(M,pn) = (C°@D'@ Dy, [0 5 1))
0 if 0

is such that
h=gu:M=C"®D'®D, — Dy

so that g : D° — M is the inclusion of a lagrangian and (M, u) is metabolic.
The A-module morphism

C°@D, -C'aM = C°@C°®D'®D; ; (z,y) — (z,2,0,y)

is the inclusion of a lagrangian in (C°, \) @ (M, —pu), so that (C°, \) is stably
metabolic. g

Proposition 28.32 (i) The projective and free asymmetric L-groups are
related by a Rothenberg-type exact sequence

. — LAsyJ(A) — LAsy"(A) — H"(Zy; Ko(A))

n—1

— LAsy, " (A) — ... .

(ii) The forgetful maps LAsy’y (A)—LAsy} (A) are isomorphisms, so the free
and simple asymmetric L-groups coincide

LAsy:(A) = LAsy;(A) .

Proof (i) As for the symmetric L-groups in Ranicki [235, Chap. 10].

(ii) Given an n-dimensional based f.g. free asymmetric Poincaré complex
(B, ) over A let o : C——C be a self chain equivalence of an n-dimensional
based f.g. free A-module chain complex C' such that

7(a) = —=7(A: B""—B) € Why(4) .

The morphism

LAsy}.(4) — LAsy}(A) 5 (B,N) — (BA) @ (CoC" ™, (2 3>)

is an isomorphism inverse to the forgetful map LAsy, (A) — LAsy} (A).
O

As in Chap. 13 let {2 be the involution-invariant set of Fredholm matrices
M in A[z, 271], i.e. the square matrices such that coker(M) is a f.g. projective
A-module.
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Proposition 28.33 Let € € A be a central unit such that € = e, and let
(t,u) = (h,s) or (h,h) or (Ko(A),p).
(i) The asymmetric L-groups of 28.30 are such that up to natural isomorphism

LAsy),(A) = LAsy, (A, 2,—¢z)
= L} (27 'Alz, 271, —€2)
= L}(27'Alz, 27 1,e) .
In particular, there are defined natural isomorphisms
LAsy™(A) — LI(027 Az, 271 €) ;
(CN) — (27'Cz, 271, (1 =27 YA+ (1 = 2)T.N) .

(ii) The asymmetric and automorphism L-groups are related by an exact se-
quence

. — L} (Alz,27"],€) — LAsyp(A) — LAut) *(Ae)
— LMY (Alz, 27 ,e) — ...

Proof (i) An n-dimensional asymmetric Poincaré complex (C, \) over A is an
n-dimensional asymmetric ({2, €z)-Poincaré complex over A, so that there is
defined a morphism

LAsy; (A) — LAsy, (A, 2,—e€z) ; (C,\) — (C,\) .

Given an n-dimensional asymmetric ({2, —ez)-Poincaré complex (D, u) over
A define an n-dimensional asymmetric Poincaré complex (C, A) over A by

C = (1 +T-c)u: D"z, 2" =Dz, 2 )1

0 —

— C, = D" "[z,27 | ® Dyya[z,27Y .
The construction defines a morphism
LAsyl, (A, 2, —ez) — LAsy. (A) ; (D,u) — (C,\) .
The composite
LAsy!(A) — LAsy. (A, 2, —ez) — LAsy, (A4)
is the identity on the level of objects. The composite
LAsyl (A, 2, —ez) — LAsy. (A) — LAsy}, (4, 2, —ez)
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sends an n-dimensional asymmetric ({2, —ez)-Poincaré complex (D, u) over
A to the n-dimensional asymmetric (§2, —ez)-Poincaré complex (C, \) over A
constructed as above. The A-module chain complex defined by

E = e((1+ T )u: D"*[z]—D[2]). 11
is such that there is a natural identification
E"* = QA4 T_)pu: D" *z7 | —2"'D[z7)up1

with a homotopy equivalence of n-dimensional asymmetric ({2, —ez)-Poincaré
complexes over A

D) = cneEer= (),

so that
(D7 /J’) = (Cv )‘) € LASYZ(A7 *Qa _EZ)

and the composite
LAsy; (A, 2,—ez) — LAsy. (A) — LAsy,, (A, 2,¢z)
is also the identity. The identifications
LAsy* (A, 2, —ez) = LI (27 'Alz,27Y, —ez) = Li(27'Alz,27Y,¢)

were already obtained in 26.11.
(ii) Combine (i) and 28.19. O
Proposition 28.34 (i) The asymmetric L-groups are 2-periodic

LAsy;(A) = LAsy;"*(A) (¢=s,h,p) .
(ii) The even-dimensional asymmetric L-groups of asymmetric Poincaré com-
plexes are the L-groups of nonsingular asymmetric forms

2% 0
LAsy,"(A) = LAsy,(A) (¢=s,h,p) .
(iii) The free odd-dimensional asymmetric L-groups vanish
LAsy}*"'(A) = LAsy,(A) = 0,
and the projective odd-dimensional asymmetric L-groups
2+ 1 _ 1
LAsy," " (A) = LAsy,(A)
fit into an exact sequence
0 — LAsyL(A) — H'(Zy; Ko(A)) — LAsy§(A) — LAsy)(A)
— H(Zy; Ko(A)) — 0.
Proof Tt will be proved that for n = 2i or 2i + 1 the i-fold suspension map
S* . LAsyl *(A) — LAsyl(A) ; (C,A) — (S'C, \)
is an isomorphism, by constructing an explicit inverse. (The construction is

the asymmetric L-theory version of the instant quadratic Poincaré surgery
obstruction of Ranicki [235].)
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Given an n-dimensional asymmetric Poincaré complex (C, ) let (C’,\’) be
the cobordant (i — 1)-connected n-dimensional asymmetric Poincaré complex
defined as follows. Choose a chain homotopy inverse u : C — C™™* for
A:C"* — (C and a chain homotopy v : pA ~1:C"™* — C™*, and set

C, =

T

dCl =

C,@Ccrrtl ifr<i-—1
CioC*taCiyy ifn=2iandr =1
C, ®Cryq otherwise,

(dc (

0

i

(
(

_)7"—1)\

i)

Cl = C,@aCn T+l 5 0 = Cp_y @ CnT+2
ifr<i-—1

_)7'—1)\ 0
d; 0

quﬂ = CZ (&) Ci+1 &, Ci+1 — C;,l = Cifl (&) Ci+2
ifn=2tandr =1

do 0
0 0
(=)""Np de

quﬂ = Ci+1EBCi+2—)C;_1 = Ci@CiJrlEBCiJrl
ifn=2iandr=4i+1

dc 0
0 O

Cl = i+1 @D CH_Q — 07/"—1 = C;® Cit?

T

fn=2i+landr=7+1

de 0 )
(_)7‘—1)\*M dC’

0

Cl =CaCi1—C_, = Cr10C,
otherwise,

A
. Clnfr — Cnfr@cnfrdrl*}cvln — Cr@cnfﬂrl
0 u*A

(s

ifr<i-—1

A0 0
0 0 p*X
AMvo 1 0

A0

*r 1

om-r — Ci@CH_l@CiJ"l%CL = Ci@ci+1@ci+1
ifn=2iandr =1

) L O = O TG Crgy — O = Cp @ Cry

otherwise.
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Thus
(C,A) = (C',X) € LAsyy(A)

and the maps

LAsy(A) — LAsy} *(A) ; (C,\) — (S7'C", N,

LAsy; *'(A) — LAsy}(A) ; (C,\) — (S'C,\)

are inverse isomorphisms.

It remains to prove that LAsy},(A) = 0. Note first that for any 1-dimensional
f.g. free asymmetric Poincaré complex (C, \) over A such that \ : C1=*——C
is an isomorphism there is defined a null-cobordism (f : C—D, (0, X)) with

filicla——)Dl:Cl s DT:()fOI’T#l,

so that
(C,\) = 0¢€ LAsy;,(A) .

It therefore suffices to prove that every 1-dimensional f.g. free asymmet-
ric Poincaré complex (C,\) over A is homotopy equivalent to one with
A : C1=*——(C an isomorphism (which is the case if and only if A : C°——C} is
an isomorphism). This is done using the following adaptation to asymmetric
L-theory of Neumann'’s stabilization lemma (cf. Winkelnkemper [311], Quinn
[227,88]). Let (C’,\N) be the 1-dimensional f.g. free asymmetric Poincaré
complex homotopy equivalent to (C, A) defined by

d =dol:C, = C,aC —C) = CoaC,

C0 = C0pCy— C) = CL&C"
Cl = CleCy— Cly = CoaCO .

A’ZAEBO:{

The short exact sequence
()
o d* L (d =
0—C° —= Cl & C Co — 0
splits, so there exist A-module morphisms
a: Cy— Cy s ﬁ : C()—>Ol

such that
dO[—AB =1": OO—>CO7

and the A-module morphism

A«
(d* 5) e Cy — G Ct

is an isomorphism. Choose an A-module isomorphism
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hoooCol = 0

(Recall that A is assumed to be such that the rank of f.g. free A-modules is
well-defined, so that C°, C! are isomorphic A-modules). Use the A-module
morphism

0
v = (h ;;) 0 =C'eCy —C, = o

to define an isomorphism
)\/I — )\/+d/'y+'7d/* . Cll—* ;> C/
in the chain homotopy class of ' : C'1~*—(C", with
v (A0, (0 aN(d o0
0 0 h hp 0 1
(1 0 A«
~\0 h a* g
cY =C'9Cy — C1aCt —C] = CiaC". O
Definition 28.35 (i) A self chain equivalence h : E—F is fibred if
h-1: F—F

is a chain equivalence, generalizing the notion of fibred automorphism (13.2).
(ii) The projective (resp. free) e-symmetric fibred automorphism L-groups
LAuty ¢, (A, €) for ¢ = p (vesp. h) are the cobordism groups of fibred self
homotopy equivalences (h,x) : (E,0)—(E, ) of finitely dominated (resp.
f.g. free) n-dimensional e-symmetric Poincaré complexes (E,6) over A. O

The fibred automorphism L-groups will be related in Chapter 31 to the
‘isometric’ L-groups.

By analogy with the round L-groups (20.15,20.16):
Definition 28.36 The round e-symmetric automorphism L-group LAut; (A, €)
(n > 0) is the cobordism group of self homotopy equivalences (h,x) :
(E,0)—(FE,0) of finitely dominated n-dimensional e-symmetric Poincaré

complexes (E, 6) over A such that [E,h] =0 € Autg(A).
Similarly for the round e-quadratic L-groups LAut} (A, ¢). O

Proposition 28.37 The projective and round e-symmetric automorphism
L-groups are related by a Rothenberg-type exact sequence

. — H""Y(Zy; Auto(A)) — LAut?(A,€) — LAutl(A,e)
— H™(Zy; Auto(A)) — ...
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with
LAt (A,e) — H™(Zy;Auto(A)) ; (B, h,0,x) — [E,h] .

Similarly in the e-quadratic case. |

In 39.20 it will be shown that LAut’(F) maps onto Zo[H(Za; M, (F))],
for any field with involution F.
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An n-dimensional 