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Introduction

We take ‘complex’ to mean both a CW (or simplicial) complex in topology
and a chain complex in algebra. An ‘end’ of a complex is a subcomplex
with a particular type of infinite behaviour, involving non-compactness in
topology and infinite generation in algebra. The ends of manifolds are
of greatest interest; we regard the ends of CW and chain complexes as
tools in the investigation of manifolds and related spaces, such as stratified
sets. The interplay of the topological properties of the ends of manifolds,
the homotopy theoretic properties of the ends of CW complexes and the
algebraic properties of the ends of chain complexes has been an important
theme in the classification theory of high dimensional manifolds for over 35
years. However, the gaps in the literature mean that there are still some
loose ends to wrap up! Our aim in this book is to present a systematic
exposition of the various types of ends relevant to manifold classification,
closing the gaps as well as obtaining new results. The book is intended to
serve both as an account of the existing applications of ends to the topology
of high dimensional manifolds and as a foundation for future developments.

We assume familiarity with the basic language of high dimensional man-
ifold theory, and the standard applications of algebraic K- and L-theory to
manifolds, but otherwise we have tried to be as self contained as possible.

The algebraic topology of finite CW complexes suffices for the combinato-
rial topology of compact manifolds. However, in order to understand the dif-
ference between the topological and combinatorial properties it is necessary
to deal with infinite CW complexes and non-compact manifolds. The clas-
sic cases include the Hauptvermutung counterexamples of Milnor [96], the
topological invariance of the rational Pontrjagin classes proved by Novikov
[103], the topological manifold structure theory of Kirby and Siebenmann
[84], and the topological invariance of Whitehead torsion proved by Chap-
man [22]. The algebraic and geometric topology of non-compact manifolds
has been a prominent feature in much of the recent work on the Novikov
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x Ends of complexes

conjectures – see Ferry, Ranicki and Rosenberg [59] for a survey. (In these
applications the non-compact manifolds arise as the universal covers of as-
pherical compact manifolds, e.g. the Euclidean space Ri covering the torus
T i = S1 × S1 × . . . × S1 = BZi.) In fact, many current developments in
topology, operator theory, differential geometry, hyperbolic geometry, and
group theory are concerned with the asymptotic properties of non-compact
manifolds and infinite groups – see Gromov [65], Connes [33] and Roe [135]
for example.

What is an end of a topological space? Roughly speaking, an end of a
non-compact space W is a component of W\K for arbitrarily large compact
subspaces K ⊆ W . More precisely :

Definition 1. (i) A neighbourhood of an end in a non-compact space W is
a subspace U ⊂ W which contains a component of W\K for a non-empty
compact subspace K ⊂ W .

(ii) An end ε of W is an equivalence class of sequences of connected open
neighbourhoods W ⊃ U1 ⊃ U2 ⊃ . . . such that

∞⋂

i=1

cl (Ui) = ∅

subject to the equivalence relation

(W ⊃ U1 ⊃ U2 ⊃ . . .) ∼ (W ⊃ V1 ⊃ V2 ⊃ . . .)

if for each Ui there exists j with Ui ⊆ Vj , and for each Vj there exists i with
Vj ⊆ Ui.

(iii) The fundamental group of an end ε is the inverse limit

π1(ε) = lim←−
i

π1(Ui) .

The theory of ends was initiated by Freudenthal [61] in connection with
topological groups. The early applications of the theory concerned the ends
of open 3-dimensional manifolds, and the ends of discrete groups (which are
the ends of the universal covers of their classifying spaces).

We are especially interested in the ends of manifolds which are ‘tame’,
and in extending the notion of tameness to other types of ends. An end of
a manifold is tame if it has a system of neighbourhoods satisfying certain
strong restrictions on the fundamental group and chain homotopy type. Any
non-compact space W can be compactified by adding a point at infinity,
W∞ = W ∪ {∞}. A manifold end is ‘collared’ if it can be compactified by
a manifold, i.e. if the point at infinity can be replaced by a closed manifold
boundary, allowing the end to be identified with the interior of a compact
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manifold with boundary. A high dimensional tame manifold end can be
collared if and only if an algebraic K-theory obstruction vanishes. The
theory of tame ends has found wide application in the surgery classification
theory of high dimensional compact manifolds and stratified spaces, and in
the related controlled topology and algebraic K- and L-theory.

Example 2. Let K be a connected compact space.
(i) K × [0,∞) has one end ε, with connected open neighbourhoods

Ui = K × (i,∞) ⊂ K × [0,∞) ,

such that π1(ε) = π1(K).
(ii) K × R has two ends ε+, ε−, with connected open neighbourhoods

U+
i = K × (i,∞) , U−

i = K × (−∞,−i) ⊂ K × R ,

such that π1(ε±) = π1(K).
(iii) K × R2 has one end ε, with connected open neighbourhoods

Ui = K × {(x, y) ∈ R2 |x2 + y2 > i2} ,

such that π1(ε) = π1(K)× Z.

Example 3. (i) Let W be a space with a proper map d : W−→[0,∞) which
is onto, and such that the inverse images Ut = d−1(t,∞) ⊆ W (t ≥ 1) are
connected. Then W has one end ε with connected open neighbourhoods

W ⊃ U1 ⊃ U2 ⊃ . . . such that cl(Ut) = d−1[t,∞),
∞⋂
i=0

cl(Ui) = ∅.
(ii) Let (W,∂W ) be a connected open n-dimensional manifold with con-

nected compact boundary. Then W has one end ε if and only if there exists
a proper map d : (W,∂W )−→([0,∞), {0}) which is transverse regular at
N = {0, 1, 2, . . .} ⊂ [0,∞), with the inverse images

(Wi; Mi,Mi+1) = d−1([i, i + 1]; {i}, {i + 1}) (i ∈ N)

connected compact n-dimensional cobordisms such that

(W,∂W ) = (
∞⋃

i=0

Wi,M0) .

(iii) Given connected compact n-dimensional cobordisms (Wi; Mi,Mi+1)
(i ∈ N) there is defined a connected open n-dimensional manifold with

compact boundary (W,∂W ) = (
∞⋃
i=0

Wi, M0). The union of Morse func-

tions di : (Wi; Mi, Mi+1)−→([i, i + 1]; {i}, {i + 1}) defines a proper map
d : (W,∂W )−→([0,∞), {0}), and as in (ii) W has one end ε. If the inclu-
sions Mi−→Wi, Mi+1−→Wi induce isomorphisms in π1 then

π1(M0) = π1(W0) = π1(M1) = . . . = π1(W ) = π1(ε) .
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Definition 4. An end ε of an open n-dimensional manifold W can be
collared if it has a neighbourhood of the type M×[0,∞) ⊂ W for a connected
closed (n− 1)-dimensional manifold M .

Example 5. (i) An open n-dimensional manifold with one end ε is (home-
omorphic to) the interior of a closed n-dimensional manifold if and only if
ε can be collared. More generally, if W is an open n-dimensional manifold
with compact boundary ∂W and one end ε, then there exists a compact
n-dimensional cobordism (L; ∂W,M) with L\M homeomorphic to W rel
∂W if and only if ε can be collared.

(ii) If (V, ∂V ) is a compact n-dimensional manifold with boundary then for
any x ∈ V \∂V the complement W = V \{x} is an open n-dimensional mani-
fold with a collared end ε and ∂W = ∂V , with a neighbourhood M×[0,∞) ⊂
W for M = Sn−1. The one-point compactification of W is W∞ = V . The
compactification of W provided by (i) is L = cl(V \Dn), for any neigh-
bourhood Dn ⊂ V \∂V of x, with (L; ∂W,M) = (W ∪ Sn−1; ∂V, Sn−1).

Stallings [154] used engulfing to prove that if W is a contractible open
n-dimensional PL manifold with one end ε such that π1(ε) = {1} and n ≥ 5
then W is PL homeomorphic to Rn – in particular, the end ε can be collared.

Let (W,∂W ) be an open n-dimensional manifold with compact boundary
and one end ε. Making a proper map d : (W,∂W )−→([0,∞), {0}) transverse
regular at some t ∈ (0,∞) gives a decomposition of (W,∂W ) as

(W,∂W ) = (L; ∂W,M) ∪M (N,M)

with (L; ∂W,M) = d−1([0, t]; {0}, {t}) a compact n-dimensional cobordism
and N = d−1[t,∞) non-compact. The end ε can be collared if and only if
N can be chosen such that there exists a homeomorphism N ∼= M × [0,∞)
rel M = M × {0}, in which case L\M ∼= L ∪M×{0} M × [0,∞) ∼= W
rel ∂W . In terms of Morse theory : it is possible to collar ε if and only
if (W,∂W ) admits a proper Morse function d with only a finite number of
critical points. Browder, Levine and Livesay [14] used codimension 1 surgery
on M ⊂ W to show that if π1(W ) = π1(ε) = {1} and n ≥ 6 then ε can be
collared if and only if the homology groups H∗(W ) are finitely generated
(with Hr(W ) = 0 for all but finitely many values of r). Siebenmann [140]
combined codimension 1 surgery with the finiteness obstruction theory of
Wall [163] for finitely dominated spaces, proving that in dimensions ≥ 6
a tame manifold end can be collared if and only if an algebraic K-theory
obstruction vanishes.

Definition 6. A space X is finitely dominated if there exist a finite CW
complex K and maps f : X−→K, g : K−→X with gf ' 1 : X−→X.
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Example 7. Any space homotopy equivalent to a finite CW complex is
finitely dominated.

Example 8. A connected CW complex X with π1(X) = {1} is finitely
dominated if and only if H∗(X) is finitely generated, if and only if X is
homotopy equivalent to a finite CW complex.

For non-simply-connected X the situation is more complicated :

Theorem 9. (Wall [163, 164]) A connected CW complex X is finitely dom-
inated if and only if π1(X) is finitely presented and the cellular Z[π1(X)]-
module chain complex C(X̃) of the universal cover X̃ is chain equivalent
to a finite f.g. projective Z[π1(X)]-module chain complex P . The reduced
projective class of a finitely dominated X

[X] = [P ] =
∞∑

r=0

(−)r[Pr] ∈ K̃0(Z[π1(X)])

is the finiteness obstruction of X, such that [X] = 0 if and only if X is
homotopy equivalent to a finite CW complex.

Definition 10. An end ε of an open manifold W is tame if it admits a
sequence W ⊃ U1 ⊃ U2 ⊃ . . . of finitely dominated neighbourhoods with

∞⋂

i=1

cl(Ui) = ∅ , π1(U1) = π1(U2) = . . . = π1(ε) .

Example 11. If an end ε of an open manifold W can be collared then
it is tame : if M × [0,∞) ⊂ W is a neighbourhood of ε then the open
neighbourhoods W ⊃ U1 = M × (1,∞) ⊃ U2 = M × (2,∞) ⊃ . . . satisfy
the conditions of Definition 10, with cl(Ui) = M × [i,∞), π1(ε) = π1(M).

Tameness is a geometric condition which ensures stable (as opposed to
wild) behaviour in the topology at infinity of a non-compact space W . The
fundamental example is W = K × [0,∞) for a compact space K, in which
the topology at infinity is that of K.

Theorem 12. (Siebenmann [140]) A tame end ε of an open n-dimensional
manifold W has a reduced projective class invariant, the end obstruction

[ε] = lim←−
i

[Ui] ∈ K̃0(Z[π1(ε)]) = lim←−
i

K̃0(Z[π1(Ui)])

such that [ε] = 0 if (and for n ≥ 6 only if) ε can be collared.
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Even if a tame manifold end ε can be collared, the collarings need not
be unique. The various collarings of a tame end ε in an open manifold
W of dimension ≥ 6 with [ε] = 0 ∈ K̃0(Z[π1(ε)]) are classified by the
Whitehead group Wh(π1(ε)) : if M × [0,∞), M ′ × [0,∞) ⊂ W are two
collar neighbourhoods of ε then for sufficiently large t ≥ 0 there exists an
h-cobordism (N ; M, M ′) between M × {0} and M ′ × {t} ⊂ W , with

M × [0,∞) = N ∪M ′×{t} M ′ × [t,∞) ⊂ W .

By the s-cobordism theorem (N ; M,M ′) is homeomorphic to the product
M × (I; {0}, {1}) if and only if τ(M ' N) = 0 ∈ Wh(π1(ε)). The non-
uniqueness of collarings of PL manifold ends was used by Milnor [96] in
the construction of homeomorphisms of compact polyhedra which are not
homotopic to a PL homeomorphism, disproving the Hauptvermutung for
compact polyhedra. The end obstruction theory played an important role
in the disproof of the manifold Hauptvermutung by Casson and Sullivan
(Ranicki [131]) – the manifold case also requires surgery and L-theory.

Quinn [114, 115, 116] developed a controlled version of the Siebenmann
end obstruction theory, and applied it to stratified spaces. (See Ranicki
and Yamasaki [132] for a treatment of the controlled finiteness obstruction,
and Connolly and Vajiac [34] for an end theorem for stratified spaces.)
The tameness condition of Definition 10 for manifold ends was extended by
Quinn to stratified spaces, distinguishing two tameness conditions for ends
of non-compact spaces, involving maps pushing forward along the end and
in the reverse direction. We shall only consider the two-stratum case of a
one-point compactification, with the lower stratum the point at infinity. In
Chapters 7, 8 we state the definitions of forward and reverse tameness. The
original tameness condition of Siebenmann [140] appears in Chapter 8 as
reverse π1-tameness, so called since it is a combination of reverse tameness
and π1-stability. In general, forward and reverse tameness are independent
of each other, but for π1-stable manifold ends ε with finitely presented π1(ε)
the two kinds of tameness are equivalent by a kind of Poincaré duality.

Definition 13. (Quinn [116]) The end space e(W ) of a space W is the
space of proper paths ω : [0,∞)−→W .

We refer to Appendix B for a brief history of end spaces.

The end space e(W ) is a homotopy model for the ‘space at infinity’ of W ,
playing a role similar to the ideal boundary in hyperbolic geometry. The
topology at infinity of a space W is the inverse system of complements of
compact subspaces (i.e. cocompact subspaces or neighbourhoods of infinity)
of W , which are the open neighbourhoods of the point ∞ in the one-point
compactification W∞ = W ∪ {∞}. The homology at infinity H∞∗ (W ) is
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defined to fit into an exact sequence

. . . −→ H∞
r (W ) −→ Hr(W ) −→ H lf

r (W ) −→ H∞
r−1(W ) −→ . . . ,

and H lf
∗ (W ) = H∗(W∞, {∞}) for reasonable W . The end space e(W ) is

the ‘link of infinity in W∞’. There is a natural passage from the algebraic
topology at infinity of W to the algebraic topology of e(W ), which is a one-
to-one correspondence for forward tame W , with H∗(e(W )) = H∞∗ (W ).

If (W,∂W ) is an open n-dimensional manifold with compact boundary
and one tame end ε the end space e(W ) is a finitely dominated (n − 1)-
dimensional Poincaré space with π1(e(W )) = π1(ε), and (W ; ∂W, e(W )) is
a finitely dominated n-dimensional Poincaré cobordism, regarding e(W ) as
a subspace of W via the evaluation map

e(W ) −→ W ; (ω : [0,∞)−→W ) −→ ω(0) .

The non-compact spaces of greatest interest to us are the infinite cyclic
covers of ‘bands’ :

Definition 14. A band (M, c) is a compact space M with a map c : M−→S1

such that the infinite cyclic cover M = c∗R of M is finitely dominated, and
such that the projection M−→M induces a bijection of path components
π0(M) ∼= π0(M).

Example 15. A connected finite CW complex M with a map c : M−→S1

inducing an isomorphism c∗ : π1(M) ∼= Z defines a band (M, c) (i.e. the infi-
nite cyclic cover M = c∗R is finitely dominated) if and only if the homotopy
groups π∗(M) = H∗(M) (∗ ≥ 2) are finitely generated.

The infinite cyclic cover M of a connected manifold band (M, c) has two
ends. The projection c : M−→S1 lifts to a proper map c : M−→R, such
that the inverse images

M
+ = c−1[0,∞) , M

− = c−1(−∞, 0] ⊂ M

are closed neighbourhoods of the two ends. In Chapter 15 we shall prove
that the two ends of M are tame, with homotopy equivalences

e(M +) ' e(M −) ' M .

The problem of deciding if an open manifold is the interior of a compact
manifold with boundary is closely related to the problem of deciding if a
compact manifold M fibres over S1, i.e. if a map c : M−→S1 is homotopic
to the projection of a fibre bundle. In the first instance, it is necessary for
(M, c) to be a band :
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Example 16. Suppose given a fibre bundle F−→M
c−→S1 with F a closed

(n − 1)-dimensional manifold and M = T (h) the mapping torus of a mon-
odromy self homeomorphism h : F−→F . If h preserves the path compo-
nents then (M, c) is an n-dimensional manifold band, with the infinite cyclic
cover M = F × R homotopy equivalent to a finite CW complex.

Stallings [153] used codimension 1 surgery on a surface c−1(∗) ⊂ M to
prove that a map c : M−→S1 from a compact irreducible 3-dimensional
manifold M with ker(c∗: π1(M)−→Z) 6∼= Z2 is homotopic to the projection
of a fibre bundle if and only if ker(c∗) is finitely generated, in which case
ker(c∗) = π1(F ) is the fundamental group of the fibre F . In particular, the
complement of a knot k : S1 ⊂ S3

(M, ∂M) = (cl(S3\(k(S1)×D2)), S1 × S1)

fibres over S1 if and only if the commutator subgroup [π, π] of the funda-
mental group π = π1(M) is finitely generated. Browder and Levine [13] used
codimension 1 surgery in higher dimensions to prove that for n ≥ 6 a com-
pact n-dimensional manifold band (M, c) with c∗ : π1(M) ∼= Z fibres. Thus
a high-dimensional knot k : Sn−2 ⊂ Sn (n ≥ 6) with π1(Sn\k(Sn−2)) = Z
fibres (i.e. the knot complement fibres over S1) if and only if the higher
homotopy groups π∗(Sn\k(Sn−2)) (∗ ≥ 2) are finitely generated. More
generally :

Theorem 17. (Farrell [46], Siebenmann [145]) An n-dimensional manifold
band (M, c) has a Whitehead torsion invariant, the fibring obstruction

Φ(M, c) ∈ Wh(π1(M)) ,

such that Φ(M, c) = 0 if (and for n ≥ 6 only if) M fibres over S1, with
c : M−→S1 homotopic to a fibre bundle projection.

In the main text we shall actually be dealing with the two fibring obstruc-
tions Φ+(M, c), Φ−(M, c) ∈ Wh(π1(M)) defined for a CW band (M, c). For
an n-dimensional manifold band (M, c) the two obstructions determine each
other by Poincaré duality

Φ+(M, c) = (−)n−1Φ−(M, c)∗ ∈ Wh(π1(M)) ,

and in the Introduction we write Φ+(M, c) as Φ(M, c).

Example 18. For any n-dimensional manifold band (M, c) the (n + 1)-
dimensional manifold band (M × S1, d) with d(x, t) = c(x) has fibring ob-
struction

Φ(M × S1, d) = 0 ∈ Wh(π1(M)× Z) .

For n ≥ 5 the geometric construction of Theorem 19 below actually gives a
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canonical fibre bundle

F −→ M × S1
p−→ S1

with p homotopic to d. The fibre F is the ‘wrapping up’ of the tame end
M

+ of M , a closed n-dimensional manifold such that there are defined
homeomorphisms

F × R ∼= M × S1 , M × S1 ∼= T (h)

for a monodromy self homeomorphism h : F−→F . The fibring obstruction
Φ(M, c) ∈ Wh(π1(M)) is the obstruction to splitting off an S1-factor from
h : F−→F , so that for n ≥ 6 Φ(M, c) = 0 if and only if up to isotopy

h = h1 × 1 : F = F1 × S1 −→ F = F1 × S1

with h1 : F1−→F1 a self homeomorphism such that M ∼= T (h1).

Bands are of interest in their own right. For example, the fibring obstruc-
tion theory for bands gives a geometric interpretation of the ‘fundamental
theorem’ of algebraic K-theory of Bass [4]

Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π])

– see Ranicki [124] for a recent account. The following uniformization the-
orem shows that every tame manifold end of dimension ≥ 6 has an open
neighbourhood which is the infinite cyclic cover of a manifold band. It was
announced by Siebenmann [141], and is proved here in Chapter 17.

Theorem 19. Let (W,∂W ) be a connected open n-dimensional manifold
with compact boundary and one end ε, with n ≥ 6.

(i) The end ε is tame if and only if it has a neighbourhood X = M ⊂ W
which is the finitely dominated infinite cyclic cover of a compact n-dim-
ensional manifold band X̂ = (M, c), the wrapping up of ε, such that

π1(M) = π1(ε) , π1(M) = π1(ε)× Z , e(W ) ' M ,

Φ(M, c) = [ε] ∈ K̃0(Z[π1(ε)]) ⊆ Wh(π1(ε)× Z) ,

and such that the covering translation ζ : M−→M is isotopic to the identity.
The (n+1)-dimensional manifold band (M×S1, d) with d(x, t) = c(x) fibres
over S1 : the map d : M ×S1−→S1 is homotopic to the projection of a fibre
bundle with fibre M , with a homeomorphism

M × S1 ∼= M × R .

Thus ε×S1 can be collared with boundary M : there exists a compact (n+1)-
dimensional cobordism (N ; ∂W × S1, M) with a rel ∂ homeomorphism

(N\M,∂W × S1) ∼= (W,∂W )× S1 .
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(ii) For tame ε the Siebenmann end obstruction of ε is the Wall finiteness
obstruction of M

+

[ε] = [M +] ∈ K̃0(Z[π1(ε)]) ,

with [ε] = 0 if and only if ε can be collared, in which case there exists a
compact n-dimensional cobordism (K; ∂W,L) with a rel ∂ homeomorphism

(K\L, ∂W ) ∼= (W,∂W )

and a homeomorphism

(K; ∂W,L)× S1 ∼= (N ; ∂W × S1,M)

(N as in (i)), and (M, c) fibres over S1 with M ∼= L× S1 and M ∼= L× R.

A CW complex X is finitely dominated if and only if X×S1 is homotopy
equivalent to a finite CW complex, by a result of M. Mather [91]. A manifold
end ε of dimension ≥ 6 is tame if and only if ε × S1 can be collared – this
was already proved by Siebenmann [140], but the wrapping up procedure
of Theorem 19 actually gives a canonical collaring of ε× S1.

In principle, Theorem 19 could be proved using the canonical regular
neighbourhood theory of Siebenmann [148] and Siebenmann, Guillou and
Hähl [149]. We prefer to give a more elementary approach, using a combi-
nation of the geometric, homotopy theoretic and algebraic methods which
have been developed in the last 25 years to deal with non-compact spaces.
While the wrapping up construction has been a part of the folklore, the new
aspect of our approach is that we rely on the end space and the extensively
developed theory of manifold approximate fibrations rather than ad hoc en-
gulfing methods. An approximate fibration is a map with an approximate
lifting property. (Of course, manifold approximate fibration theory relies on
engulfing, but we prefer to subsume the details of the engulfing in the the-
ory.) We do not assume previous acquaintance with approximate fibrations
and engulfing.

The proof of Theorem 19 occupies most of Parts One and Two (Chapters
1–20). There are three main steps in passing from a tame end ε of W to
the wrapping up band (M, c) such that the infinite cyclic cover M ⊆ W is
a neighbourhood of ε :

(i) in Chapter 9 we show that tameness conditions on a space W imply
that the end space e(W ) is finitely dominated and that, near infinity,
W looks like the product e(W )× [0,∞) ;

(ii) in Chapter 16 we use (i) to prove that every tame manifold end ε of
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dimension ≥ 5 has a neighbourhood X which is the total space of a
manifold approximate fibration d : X−→R ;

(iii) in Chapter 17 we show that for every manifold approximate fibration
d : X−→R of dimension ≥ 5 there exists a manifold band (M, c) such
that X = M , with a proper homotopy d ' c : X−→R .

The construction in (iii) of the wrapping up (M, c) of (X, d) is by the mani-
fold ‘twist glueing’ due to Siebenmann [145]. The twist glueing construction
of manifold bands is extended to the CW category in Chapters 19 and 20.

In Part Three (Chapters 21–27) we study the algebraic properties of tame
ends in the context of chain complexes over a polynomial extension ring
and also in bounded algebra. We obtain an abstract version of Theorem
19, giving a chain complex account of wrapping up : manifold wrapping up
induces a CW complex wrapping up, which in turn induces a chain complex
wrapping up, and similarly for the various types of twist glueing.

In Chapter 15 we introduce the notion of a ribbon (X, d), which is a
non-compact space X with a proper map d : X−→R with the homotopy
theoretic and homological end properties of the infinite cyclic cover (W, c)
of a band (W, c). Ribbons are the homotopy analogues of manifold approxi-
mate fibration over R. In Chapter 25 we develop the chain complex versions
of CW ribbons as well as algebraic versions of tameness.

The study of ends of complexes is particularly relevant to stratified spaces.
A topologically stratified space is a space X together with a filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn−1 ⊆ Xn = X

by closed subspaces such that the strata Xj\Xj−1 are open topological
manifolds which satisfy certain tameness conditions and a homotopy link
condition. These spaces were first defined by Quinn [116] in order to study
purely topological stratified phenomena as opposed to the smoothly strati-
fied spaces of Whitney [170], Thom [161] and J. Mather [90], and the piece-
wise linear stratified spaces of Akin [1] and Stone [159]. Quinn’s paper
should be consulted for more precise definitions. Our results only apply
directly to the very special case obtained from the one-point compactifi-
cation W∞ = X of an open manifold W , regarded as a filtered space by
X0 = {∞} ⊆ W∞ = X. Then X is a topologically stratified space with
two strata if and only if W is tame. (The general case requires controlled
versions of our results.) Earlier, Siebenmann [147] had studied a class of
topologically stratified spaces called locally conelike stratified spaces. The
one-point compactification of an open manifold W with one end is locally
conelike stratified if and only if the end of W can be collared. Hence,
Quinn’s stratified spaces are much more general than Siebenmann’s. The
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conditions required of topologically stratified spaces by Quinn are designed
to imply that strata have neighbourhoods which are homotopy equivalent
to mapping cylinders of fibrations, whereas in the classical cases the strata
have neighbourhoods which are homeomorphic to mapping cylinders of bun-
dle projections in the appropriate category : fibre bundle projections in the
smooth case, block bundle projections in the piecewise linear case. Strata in
Siebenmann’s locally conelike stratified spaces have neighbourhoods which
are locally homeomorphic to mapping cylinders of fibre bundle projections,
but not necessarily globally.

A stratified homotopy equivalence is a homotopy equivalence in the strat-
ified category (maps must preserve strata, not just the filtration). In the
special case of one-point compactifications, stratified homotopy equivalences
(W∞, {∞})−→(V ∞, {∞}) are exactly the proper homotopy equivalences
W−→V . Weinberger [166] has developed a stratified surgery theory which
classifies topologically stratified spaces up to stratified homotopy equiva-
lence in the same sense that classical surgery theory classifies manifolds
up to homotopy equivalence. Weinberger outlines two separate proofs of
his theory. The first proof [166, pp. 182–188] involves stabilizing a stratified
space by crossing with high dimensional tori in order to get a nicer stratified
space which is amenable to the older stratified surgery theory of Browder
and Quinn [15]. The obstruction to codimension i destabilization involves
the codimension i lower K-group K1−i(Z[π]) ⊆ Wh(π × Zi). (Example 18
and Theorem 19 treat the special case i = 1.) The second proof outlined in
[166,Remarks p. 189] uses more directly the existence of appropriate tubular
neighbourhoods of strata called teardrop neighbourhoods. These neighbour-
hoods were shown to exist in the case of two strata by Hughes, Taylor,
Weinberger and Williams [76] and in general by Hughes [74]. In 16.13 we
give a complete proof of the existence of teardrop neighbourhoods in the
special case of the topologically stratified space (W∞, {∞}) determined by
an open manifold W with a tame end. The result asserts that W contains
an open cocompact subspace X ⊆ W which admits a manifold approximate
fibration X−→R. In the more rigid smoothly stratified spaces, the tubular
neighbourhoods would be given by a genuine fibre bundle projection. The
point is that Quinn’s definition gives information on the neighbourhoods
of strata only up to homotopy. The existence of teardrop neighbourhoods
means there is a much stronger geometric structure given in terms of man-
ifold approximate fibrations.

We use the theory of manifold approximate fibrations to perform geomet-
ric wrapping up constructions. This is analogous to Weinberger’s second
approach to stratified surgery, in which teardrop neighbourhoods of strata
are used in order to be able to draw on manifold approximate fibration
theory rather than stabilization and destabilization. We expect that the



Introduction xxi

general theory of teardrop neighbourhoods will likewise allow generaliza-
tions of the wrapping up construction to arbitrary topologically stratified
spaces, using the homotopy theoretic and algebraic properties of the rib-
bons introduced in this book. Such a combination of geometry, homotopy
theory and algebra will be necessary to fully understand the algebraic K-
and L-theory of stratified spaces.

This book grew out of research begun in 1990–91 when the first-named
author was a Fulbright Scholar at the University of Edinburgh. We have re-
ceived support from the National Science Foundation (U.S.A.), the Science
and Engineering Research Council (U.K.), the European Union K-theory
Initiative under Science Plan SCI–CT91–0756, the Vanderbilt University
Research Council, and the Mathematics Departments of Vanderbilt Univer-
sity and the University of Edinburgh. We have benefited from conversations
with Stratos Prassidis and Bruce Williams.

The book was typeset in TEX, with the diagrams created using the LAMS-
TEX, PICTEX and XY-pic packages.

Errata (if any) to this book will be posted on the WWW Home Page
http://www.maths.ed.ac.uk/people/aar



Chapter summaries

Part One, Topology at infinity, is devoted to the basic theory of the general,
geometric and algebraic topology at infinity of non-compact spaces. Various
models for the topology at infinity are introduced and compared.

Chapter 1, End spaces, begins with the definition of the end space e(W )
of a non-compact space W . The set of path components π0(e(W )) is shown
to be in one-to-one correspondence with the set of ends of W (in the sense
of Definition 1 above) for a wide class of spaces.

Chapter 2, Limits, reviews the basic constructions of homotopy limits
and colimits of spaces, and the related inverse, direct and derived limits of
groups and chain complexes. The end space e(W ) is shown to be weak ho-
motopy equivalent to the homotopy inverse limit of cocompact subspaces of
W and the homotopy inverse limit is compared to the ordinary inverse limit.
The ‘fundamental group at infinity’ π∞1 (W ) of W is defined and compared
to π1(e(W )).

Chapter 3, Homology at infinity, contains an account of locally finite sin-
gular homology, which is the homology based on infinite chains. The ho-
mology at infinity H∞∗ (W ) of a space W is the difference between ordinary
singular homology H∗(W ) and locally finite singular homology H lf

∗ (W ).
Chapter 4, Cellular homology, reviews locally finite cellular homology, al-

though the technical proof of the equivalence with locally finite singular
homology is left to Appendix A.

Chapter 5, Homology of covers, concerns ordinary and locally finite sin-
gular and cellular homology of the universal cover (and other covers) W̃ of
W . The version of the Whitehead theorem for detecting proper homotopy
equivalences of CW complexes is stated.

Chapter 6, Projective class and torsion, recalls the Wall finiteness ob-
struction and Whitehead torsion. A locally finite finiteness obstruction is
introduced, which is related to locally finite homology in the same way that
the Wall finiteness obstruction is related to ordinary homology, and the
difference between the two obstructions is related to homology at infinity.

xxii
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Chapter 7, Forward tameness, concerns a tameness property of ends,
which is stated in terms of the ability to push neighbourhoods towards
infinity. It is proved that for forward tame W the singular chain complex
of the end space e(W ) is chain equivalent to the singular chain complex at
infinity of W , and that the homotopy groups of e(W ) are isomorphic to the
inverse limit of the homotopy groups of cocompact subspaces of W . There
is a related concept of forward collaring.

Chapter 8, Reverse tameness, deals with the other tameness property of
ends, which is stated in terms of the ability to pull neighbourhoods in from
infinity. It is closely related to finite domination properties of cocompact
subspaces of W . There is a related concept of reverse collaring.

Chapter 9, Homotopy at infinity, gives an account of proper homotopy
theory at infinity. It is shown that the homotopy type of the end space,
the two types of tameness, and other end phenomena are invariant under
proper homotopy equivalences at infinity. It is also established that in most
cases of interest a space W is forward and reverse tame if and only if W is
bounded homotopy equivalent at ∞ to e(W ) × [0,∞), in which case e(W )
is finitely dominated.

Chapter 10, Projective class at infinity, introduces two finiteness obstruc-
tions which the two types of tameness allow to be defined. The finiteness
obstruction at infinity of a reverse tame space is an obstruction to reverse
collaring. Likewise, the locally finite finiteness obstruction at infinity of
a forward tame space is an obstruction to forward collaring. For a space
W which is both forward and reverse tame, the end space e(W ) is finitely
dominated and its Wall finiteness obstruction is the difference of the two
finiteness obstructions at infinity. It is also proved that for a manifold
end forward and reverse tameness are equivalent under certain fundamental
group conditions.

Chapter 11, Infinite torsion, contains an account of the infinite simple ho-
motopy theory of Siebenmann for locally finite CW complexes. The infinite
Whitehead group of a forward tame CW complex is described algebraically
as a relative Whitehead group. The infinite torsion of a proper homotopy
equivalence is related to the locally finite finiteness obstruction at infinity.
A CW complex W is forward (resp. reverse) tame if and only if W × S1

is infinite simple homotopy equivalent to a forward (resp. reverse) collared
CW complex.

Chapter 12, Forward tameness is a homotopy pushout, deals with Quinn’s
characterization of forward tameness for a σ-compact metric space W in
terms of a homotopy property, namely that the one-point compactification
W∞ is the homotopy pushout of the projection e(W )−→W and e(W )−→
{∞}, or equivalently that W∞ is the homotopy cofibre of e(W )−→W .

Part Two, Topology over the real line, concerns spaces W with a proper
map d : W−→R.
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Chapter 13, Infinite cyclic covers, proves that a connected infinite cyclic
cover W of a connected compact ANR W has two ends W

+, W
−, and

establishes a duality between the two types of tameness : W
+ is forward

tame if and only if W
− is reverse tame. A similar duality holds for forward

and reverse collared ends.
Chapter 14, The mapping torus, works out the end theory of infinite cyclic

covers of mapping tori.
Chapter 15, Geometric ribbons and bands, presents bands and ribbons.

It is proved that (M, c : M−→S1) with M a finite CW complex defines a
band (i.e. the infinite cyclic cover M = c∗R of M is finitely dominated) if
and only if the ends M

+, M
− are both forward tame, or both reverse tame.

The Siebenmann twist glueing construction of a band is formulated for a
ribbon (X, d : X−→R) and an end-preserving homeomorphism h : X−→X.

Chapter 16, Approximate fibrations, presents the main geometric tool used
in the proof of the uniformization Theorem 19 (every tame manifold end of
dimension ≥ 5 has a neighbourhood which is the infinite cyclic cover of a
manifold band). It is proved that an open manifold W of dimension ≥ 5
is forward and reverse tame if and only if there exists an open cocompact
subspace X ⊆ W which admits a manifold approximate fibration X−→R.

Chapter 17, Geometric wrapping up, uses the twist glueing construction
with h = 1 : X−→X to prove that the total space X of a manifold approx-
imate fibration d : X−→R is the infinite cyclic cover X = M of a manifold
band (M, c).

Chapter 18, Geometric relaxation, uses the twist glueing construction with
h = covering translation : M−→M to pass from a manifold band (M, c) to
an h-cobordant manifold band (M ′, c′) such that c′ : M ′−→S1 is a manifold
approximate fibration.

Chapter 19, Homotopy theoretic twist glueing, and Chapter 20, Homotopy
theoretic wrapping up and relaxation, extend the geometric constructions
for manifolds in Chapters 17 and 18 to CW complex bands and ribbons.
Constructions in this generality serve as a bridge to the algebraic theory of
Part Three. Moreover, it is shown that any CW ribbon is infinite simple
homotopy equivalent to the infinite cyclic cover of a CW band, thereby
justifying the concept.

Part Three, The algebraic theory, translates most of the geometric, homo-
topy theoretic and homological constructions of Parts One and Two into
an appropriate algebraic context, thereby obtaining several useful algebraic
characterizations.

Chapter 21, Polynomial extensions, gives background information on chain
complexes over polynomial extension rings, motivated by the fact that the
cellular chain complex of an infinite cyclic cover of a CW complex is defined
over a Laurent polynomial extension.
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Chapter 22, Algebraic bands, discusses chain complexes over Laurent poly-
nomial extensions which have the algebraic properties of cellular chain com-
plexes of CW complex bands.

Chapter 23, Algebraic tameness, develops the algebraic analogues of for-
ward and reverse tameness for chain complexes over polynomial extensions.
This yields an algebraic characterization of forward (and reverse) tameness
for an end of an infinite cyclic cover of a finite CW complex. End complexes
are also defined in this algebraic setting.

Chapter 24, Relaxation techniques, contains the algebraic analogues of the
constructions of Chapters 18 and 20. When combined with the geometry of
Chapter 18 this gives an algebraic characterization of manifold bands which
admit approximate fibrations to S1.

Chapter 25, Algebraic ribbons, explores the algebraic analogue of CW rib-
bons in the context of bounded algebra. The algebra is used to prove that
CW ribbons are infinite simple homotopy equivalent to infinite cyclic covers
of CW bands.

Chapter 26, Algebraic twist glueing, proves that algebraic ribbons are sim-
ple chain equivalent to algebraic bands.

Chapter 27, Wrapping up in algebraic K- and L-theory, describes the ef-
fects of the geometric constructions of Part Two on the level of the algebraic
K- and L-groups.

Part Four consists of the three appendices :
Appendix A, Locally finite homology with local coefficients, contains a

technical treatment of ordinary and locally finite singular and cellular ho-
mology theories with local coefficients. This establishes the equivalence of
locally finite singular and cellular homology for regular covers of CW com-
plexes.

Appendix B, A brief history of end spaces, traces the development of end
spaces as homotopy theoretic models for the topology at infinity.

Appendix C, A brief history of wrapping up, outlines the history of the
wrapping up compactification procedure.



Part One: Topology at infinity

1

End spaces

Throughout the book it is assumed that ANR spaces are locally compact,
separable and metric, and that CW complexes are locally finite.

We start with the end space e(W ) of a space W , which is a homotopy
theoretic model for the behaviour at∞ of W . The homotopy type of e(W ) is
determined by the proper homotopy type of W . The set of path components
π0(e(W )) is related to the number of ends of W , and the fundamental group
π1(e(W )) is related to the fundamental group at ∞ of W .

Definition 1.1 The one-point compactification of a topological space W is
the compact topological space

W∞ = W ∪ {∞} ,

with open sets :

(i) U ⊂ W∞ for an open subset U ⊆ W ,
(ii) V ∪ {∞} ⊆ W∞ for a subset V ⊆ W such that W\V is compact.

The topology at infinity of W is the topology of W∞ at ∞.

Definition 1.2 The end space e(W ) of a space W is the space of paths

ω : ([0,∞], {∞}) −→ (W∞, {∞})
such that ω−1(∞) = {∞}, with the compact-open topology.

The end space e(W ) is the homotopy link holink(W∞, {∞}) of {∞} in
W∞ in the sense of Quinn [116]. See 1.8 for the connection with the link
in the sense of PL topology, and 12.11 for the general definition of the
homotopy link.

1



2 Ends of complexes

We refer to Appendix B for a brief history of end spaces.

An element ω ∈ e(W ) can also be viewed as a path ω : [0,∞)−→W
such that ω(t) ‘diverges to ∞’ as t−→∞, meaning that for every compact
subspace K ⊂ W there exists N > 0 with ω([N,∞)) ⊂ W\K.

Definition 1.3 (i) A map of spaces f : V−→W is proper if for each compact
subspace K ⊆ W the inverse image f−1(K) ⊆ V is compact. This is
equivalent to the condition that f extends to a map f∞ : V ∞−→W∞ of
the one-point compactifications with f∞(∞) = ∞.

(ii) A map f : V−→W is a proper homotopy equivalence if it is a proper
map which is a homotopy equivalence in the proper category.

We refer to Porter [111] for a survey of the applications of proper ho-
motopy theory to ends. The end space e(W ) is called the ‘Waldhausen
boundary’ of W in [111, p. 135].

An element ω ∈ e(W ) is a proper map ω : [0,∞)−→W , which is the same
as a path in ω∞ : [0,∞]−→W∞ such that ω∞[0,∞) ⊆ W and ω∞(∞) = ∞.

Example 1.4 (i) The end space of a compact space W is empty,

e(W ) = ∅ ,

since W∞ = W∪{∞} is disconnected and there are no paths ω∞ : [0,∞]−→
W∞ from ω∞(0) ∈ W to ω∞(∞) = ∞ ∈ W∞. The converse is false : the
end space of Z is empty, yet Z is not compact.

(ii) Let T be a tree, and let v ∈ T be a base vertex. A simple edge
path in T is a sequence of adjoining edges e1, e2, e3, . . . (possibly infinite)
without repetition. By the simplicial approximation theorem every proper
map ω : [0,∞)−→T is proper homotopic to an infinite simple edge path
starting at v. If T has at most a finite number of vertices of valency > 2
the end space e(T ) is homotopy equivalent to the discrete space with one
point for each simple edge path of infinite length starting at v ∈ T .

(iii) The end space of R+ = [0,∞) is contractible,

e(R+) ' {pt.} ,

corresponding to the unique infinite simple edge path starting at 0 ∈ R+.
(iv) The end space of R is such that

e(R) ' S0 = {+1,−1} ,

corresponding to the two infinite simple edge paths starting at 0 ∈ R.

In dealing with end spaces e(W ), we shall always assume that W is a
locally compact Hausdorff space.
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Remark 1.5 For any space W the evaluation map

p : e(W ) −→ W ; ω −→ ω(0)

fits into a homotopy commutative square

e(W ) w

u
p

{∞}

u
W wi W∞

with i : W−→W∞ the inclusion. The space W is ‘forward tame’ if and
only if this square is a homotopy pushout rel {∞} – see Chapters 7, 12 for
a more detailed discussion.

Definition 1.6 Let (K,L ⊆ K) be a pair of spaces. The space L is collared
in K if the inclusion L = L × {0}−→K extends to an open embedding
f : L× [0,∞)−→K.

Proposition 1.7 If (K, L) is a compact pair of spaces such that L is collared
in K then the end space of the non-compact space

W = K\L
is such that there is defined a homotopy equivalence

L −→ e(W ) ; x −→ (t −→ f

(
x,

1
1 + t

)
)

with f : L × [0,∞)−→K an open embedding extending the inclusion L =
L× {0}−→K.

In other words, if W is a non-compact space with a compactification K
such that the boundary

∂K = K\W ⊂ K

is a compact subset which is collared in K then there is defined a homotopy
equivalence

e(W ) ' ∂K .

The homotopy theoretic ‘space at infinity’ e(W ) thus has the homotopy type
of an actual space at infinity, provided ∂W is collared in the compactification
K.
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Example 1.8 (i) Let X be a compact polyhedron. For any x ∈ X there
exists a triangulation of X with x as a vertex, with the pair of compact
spaces

(Y, Z) = (star(x), link(x))

such that Y = x ∗ Z is the cone on Z, and Z is collared in Y . (See Rourke
and Sanderson [139] for the PL theory of stars and links.) The non-compact
spaces

Y \Z = Z × [0,∞)/Z × {0} ,

W = X\{x} = cl(X\Y ) ∪Z×{0} Z × [0,∞)

have one-point compactifications

(Y \Z)∞ = Y/Z , W∞ = X (∞ = x) ,

with end spaces such that

e(Y \Z) ' e(W ) ' Z .

The homotopy link of {∞} in W∞ is homotopy equivalent to the actual
link of x in X.

(ii) Let (M,∂M) be a compact n-dimensional topological manifold with
boundary. The boundary ∂M is collared in M . (In the topological category
this was first proved by Brown [16]. See Conelly [31] for a more recent
proof.) The interior of M is an open n-dimensional manifold

W = int(M) = M\∂M

with an open embedding f : ∂M × [0,∞)−→M extending the inclusion
∂M = ∂M × {0}−→M . The end space of W is such that the map

g : ∂M −→ e(W ) ; x −→ (t−→ f

(
x,

1
t + 1

)
)

defines a homotopy equivalence, with the adjoint of g

ĝ : ∂M × [0,∞) −→ W ; (x, t) −→ g(x)(t)

homotopic to f .
(iii) In view of (ii) a necessary condition for an open n-dimensional man-

ifold W to be homeomorphic to the interior of a compact n-dimensional
manifold with boundary is that the end space e(W ) have the homotopy
type of a closed (n− 1)-dimensional manifold. In Chapters 7, 8 we shall be
studying geometric tameness conditions on W which ensure that e(W ) is at
least a finitely dominated (n− 1)-dimensional geometric Poincaré complex.
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The following result is a useful characterization of continuity for functions
into an end space. It is based on elementary facts about the compact-open
topology and proper maps.

Proposition 1.9 For locally compact Hausdorff spaces X, W and a function
f : X−→e(W ), the following are equivalent :

(i) f is continuous,
(ii) the adjoint f̂ : X × [0,∞)−→W ; (x, t)−→f(x)(t) is continuous, and

for all compact subspaces C ⊆ X, K ⊆ W , there exists N ≥ 0 such
that f̂(C × [N,∞)) ⊆ W\K,

(iii) for every compact subspace C ⊆ X, the restriction f̂ | : C× [0,∞)−→
W is a proper map.

Proof (ii) ⇐⇒ (iii) is obvious.
(i) =⇒ (iii) If f is continuous, so is the induced function

f∗ : X × [0,∞] −→ W∞ ; (x, t) −→
{

f(x)(t) if t < ∞ ,
∞ if t = ∞ .

Since f̂ = f∗|, f̂ is continuous and f̂ | : C × [0,∞)−→W is proper.
(iii) =⇒ (i) It suffices to show that the induced function f∗ : X×[0,∞]−→

W∞ is continuous. It is clear that f∗| : C × [0,∞]−→W∞ is continuous for
each compact subspace C ⊆ X. The local compactness of X then implies
that f∗ is continuous.

It follows that for a compact Hausdorff space X, a function f : X−→e(W )
is continuous if and only if the adjoint f̂ : X× [0,∞)−→W is a proper map.
For non-compact X,W a constant map X−→e(W ) is such that the adjoint
X × [0,∞)−→W is not proper.

Proposition 1.10 The end space defines a functor e : W−→e(W ) from the
category of topological spaces and proper maps to the category of topological
spaces and all maps. A proper map f : V−→W induces a map

e(f) : e(V ) −→ e(W ) ; ω −→ fω ,

and a proper homotopy f ' g : V−→W induces a homotopy

e(f) ' e(g) : e(V ) −→ e(W ) .

A subspace V ⊆ W is cocompact if the closure of W\V ⊆ W is compact.
For a CW complex W a subcomplex V ⊆ W is cofinite if it contains all but
finitely many cells of W . A cofinite subcomplex is a cocompact subspace.
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Definition 1.11 A space W is σ-compact if

W =
∞⋃

j=1

Kj

with each Kj compact and Kj ⊆ Kj+1.

In particular, all the ANR’s considered by us are σ-compact, since we are
assuming that they are locally compact, separable and metric.

It follows from 1.10 that the homotopy type of e(W ) is determined by the
proper homotopy type of W . A more general result will be established in
9.4 for a metric space W , that the homotopy type of e(W ) is determined by
the ‘proper homotopy type at∞’ of W . The inclusion of a closed cocompact
subspace is a special case of a ‘proper homotopy equivalence at ∞’, and the
following result will be used in the proof of 9.4 :

Proposition 1.12 If W is a σ-compact metric space and u : V−→W is the
inclusion of a closed cocompact subspace then the inclusion of end spaces
e(u) : e(V )−→e(W ) is a homotopy equivalence.
Proof Since W is a σ-compact metric space, W∞ and e(W ) are metrizable,
and so e(W ) is paracompact. For each ω ∈ e(W ) choose a number tω ∈
[0,∞) such that

ω([tω,∞)) ⊆ int(V ) .

Let U(ω) be an open neighbourhood of ω in e(W ) such that

α([tω,∞)) ⊆ int(V ) (α ∈ U(ω)) .

Let {Ui} be a locally finite refinement of the covering {U(ω) |ω ∈ e(W )}
of e(W ), and let {φi} be a partition of unity subordinate to {Ui}. For each i
choose ωi ∈ e(W ) such that Ui ⊆ U(ωi), and let ti = tωi . For each ω ∈ e(W )
let

mω = min{ti |φi(ω) 6= 0} .

Note that ω([mω,∞)) ⊆ intV and
∑
i

φi(ω)ti ≥ mω. The map

F : e(W )× I −→ e(W ) ;

(ω, t) −→ (s −→ ω((1− t)s + (
∑

i

φi(ω)ti + s)t))

(ω ∈ e(W ) , 0 ≤ t ≤ 1 , s ≥ 0)

is a deformation of e(W ) into e(V ) such that Ft(e(V )) ⊆ e(V ) for 0 ≤ t ≤ 1.
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Example 1.13 (i) The application of 1.12 to the inclusion

{x ∈ Rm | ‖x‖ ≥ 1} = Sm−1 × [1,∞) −→ Rm (m ≥ 1) ,

gives a homotopy equivalence

e(Sm−1 × [1,∞)) ' e(Rm) .

By 1.7 e(Sm−1 × [1,∞)) is homotopy equivalent to Sm−1, so that

e(Sm−1 × [1,∞)) ' e(Rm) ' Sm−1 .

(ii) Given a compact space K and an integer m ≥ 1 let

W = K × Rm .

The one-point compactification W∞ = ΣmK∞ is the m-fold reduced sus-
pension of K∞ = K ∪ {pt.}, and the end space is such that

e(W ) ' K × e(Rm) ' K × Sm−1 .

In dealing with the number of ends of a space W we shall assume the
following standing hypothesis for the rest of this chapter : W is a locally
compact, connected, locally connected Hausdorff space (e.g. a locally finite
connected CW complex).

In the literature the end space e(W ) has not played as central a role as
the ‘ends of W ’ or the ‘number of ends of W ’. Roughly, an end of W should
correspond to a path component of e(W ). We now recall these classical
notions and their relationship to π0(e(W )).

Definition 1.14 (Milnor [100]) An end of a space W is a function

ε : {K |K ⊆ W is compact} −→ {X |X ⊆ W} ; K −→ ε(K)

such that :

(i) ε(K) is a component of W\K for each K,
(ii) if K ⊆ L, then ε(L) ⊆ ε(K).

A neighbourhood of ε is a connected open subset U ⊆ W such that U = ε(K)
for some non-empty compact K ⊆ W .

Remark 1.15 (i) For a σ-compact space W the definition of an end in 1.14
agrees with Definition 1 in the Introduction. A sequence W ⊇ U1 ⊇ U2 ⊇ . . .
of neighbourhoods of an end (in the sense of Definition 1 of the Introduction)

such that
∞⋂

j=1
cl(Uj) = ∅ determines an end ε of W (in the sense of 1.14) as
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follows : for a compact subspace K ⊆ W choose j such that Uj ∩K = ∅ and
let ε(K) be the component of W\K which contains Uj . On the other hand,

if ε is an end of W and W =
∞⋃

j=1
Kj with each Kj compact and Kj ⊆ Kj+1,

then ε(Kj) = Uj defines a sequence of neighbourhoods of an end as above.
(ii) A subspace is unbounded if its closure is not compact. Note that if ε is

an end of W , then ε(K) is unbounded for each compact subspace K ⊆ W .
(Otherwise, L = K∪cl(ε(K)) would be a compact subspace of W containing
K, so ε(L) ⊆ ε(K) ⊆ L, contradicting ε(L) ⊆ W\L.)

Definition 1.16 The number of ends of a locally finite CW complex W
is the least upper bound of the number (which may be infinite) of infinite
components of W\V for finite subcomplexes V ⊂ W .

Example 1.17 (i) The real line R has exactly two ends.
(ii) The dyadic tree X is the tree embedded in R2 with each vertex of

valency 3, with closure the union of X together with a disjoint Cantor set.
The dyadic tree has an uncountable number of ends. See Diestel [37] for
more information on ends of graphs.

An alternative approach to the definition of an end is to focus attention
on the number of ends of a space.

Definition 1.18 (Specker [151], Raymond [134]) The space W has at least
k ends if there exists an open subspace V ⊆ W with compact closure cl(V )
such that W\cl(V ) has at least k unbounded components. The space W
has (exactly) k ends if W has at least k ends but not at least k + 1 ends.

The point set conditions on W imply that if V ⊆ W is an open sub-
space with compact closure, then W\cl(V ) has at most a finite number of
unbounded components (see Hocking and Young [66, Theorem 3–9, p. 111]).
If W has exactly k ends then there exists an open subspace V ⊆ W with
compact closure so that W\cl(V ) has exactly k unbounded components.

Proposition 1.19 Let k ≥ 0 be an integer.
(i) If W has at least k ends in the sense of Definition 1.14, then W has

at least k ends in the sense of Definition 1.18.
(ii) If W is σ-compact and has at least k ends in the sense of Definition

1.18, then W has at least k ends in the sense of Definition 1.14.
(iii) For W σ-compact, W has exactly k ends in the sense of Definition

1.14 if and only if W has exactly k ends in the sense of Definition 1.18.
Proof (i) Let ε1, . . . , εk be distinct ends of W in the sense of 1.14. For 1 ≤
i < j ≤ k, choose a compact subspace Hij ⊆ W such that εi(Hij) 6= εj(Hij).
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It follows that εi(Hij) ∩ εj(Hij) = ∅. Let

H =
⋃

1≤i<j≤k

Hij .

Since H is compact, there is an open subspace V ⊆ W with compact closure
such that H ⊆ V . Then ε1(cl(V )), . . . , εk(cl(V )) are unbounded components
of W\cl(V ). Since εi(cl(V )) ⊆ εi(Hij), these are in fact k distinct compo-
nents. Thus, W has at least k ends in the sense of 1.18.

(ii) We may assume that k ≥ 1, so that W is non-compact. Note that
if K ⊆ W is a compact subspace, then W\K has at least one unbounded
component. For if V ⊆ W is an open subspace with compact closure such
that K ⊆ V , then all but finitely many components of W\K are contained
in V (see Hocking and Young [66, Theorem 3–9, p. 111]). It follows that one
of those finitely many components of W\K must be unbounded.

Next, we shall show that if K ⊆ W is a compact subspace and C is an
unbounded component of W\K, then there exists an end ε of W in the
sense of 1.14 such that ε(K) = C. For W can be written as

W =
∞⋃

j=0

Kj

with K0 = K, each Kj compact and Kj ⊆ Kj+1. Define ε as follows.
First, let ε(K) = ε(K0) = C. Then, assuming j ≥ 1 and that ε(Kj−1)
has been defined, define ε(Kj) to be one of the unbounded components
of cl(ε(Kj−1))\Kj (which exists by the argument above). Finally, for an
arbitrary compact subspace H ⊆ W , choose j such that H ⊆ Kj , and
define ε(H) to be the component of W\H which contains ε(Kj). It is easy
to verify that ε is an end of W in the sense of 1.14.

Since W has at least k ends in the sense of 1.18, there exists an open
subspace V ⊂ W with compact closure such that W\cl(V ) has at least k
unbounded components, say C1, . . . , Ck. Then there exist ends ε1, . . . , εk of
W in the sense of 1.14 such that εj(cl(V )) = Cj for j = 1, . . . , k.

(iii) Immediate from (i) and (ii).

If a space W is not assumed to be σ-compact, then we shall assume that
an end of W refers to an end in the sense of 1.14 unless otherwise stated.
Of course, such an end gives rise to an end in the sense of 1.18.

Proposition 1.20 A connected space W with exactly k ends can be ex-
pressed as

W = K ∪
k⋃

j=1

W (j)

with K ⊆ W a connected compact subspace, and each W (j) ⊆ W a closed
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connected subspace with exactly one end.
Proof Let V ⊆ W be an open subspace with compact closure such that
W\cl(V ) has exactly k unbounded components, say C1, C2, . . . , Ck. Let

X = W\
k⋃

j=1

Cj = cl(V ) ∪
⋃
{all bounded components of W\cl(V )} .

Observe that X is compact. For if U is a collection of open subsets of W
which cover X, extract finitely many U1, U2, . . . , Un ∈ U such that cl(V ) ⊆
n⋃

j=1
Uj . Only finitely many of the components of W\cl(V ) are not con-

tained in
n⋃

j=1
Uj (see Hocking and Young [66, Theorem 3–9, p. 111]). Let

D1, D2, . . . , Dm be the bounded components of W\cl(V ) not contained in
n⋃

j=1
Uj . Then cl(Dj) ⊆ X is compact for each j = 1, 2 . . . , m. Thus, there

exists a finite subcollection Uj of U which covers cl(Dj). Then

{U1, U2, . . . , Un} ∪ U1 ∪ . . . ∪ Um

is a finite subcollection of U which covers X.
Now let K ⊆ W be a compact connected subspace containing X (use

Dugundji [38, page 254, exercise 2, section 6]) and let W (j) = cl(Cj) for
j = 1, 2, . . . , k.

It only remains to see that each W (i) has one end. Suppose on the
contrary that ε1 and ε2 are distinct ends of W (j). These ends induce ends
ε̃1, ε̃2 of W by setting

ε̃i(K) = εi(K ∩W (j))

for K ⊆ W and i = 1, 2. This shows that W has at least k + 1 ends, a
contradiction.

Definition 1.21 The set of ends EW of a space W is the set of ends of W
in the sense of Definition 1.14.

Proposition 1.22 (i) The set of path components of the end space e(W ) is
related to the set of ends of a space W by the map

ηW : π0(e(W )) −→ EW ; [ω] −→ εω

with εω(K) the component of W\K which contains ω([N,∞)), for any com-
pact K ⊆ W .

(ii) Given spaces X, Y , a closed cocompact subspace U ⊆ X and a proper
map f : U−→Y there is induced a map

f∗ : EX −→ EY ; ε −→ f∗(ε)
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with (f∗ε)(K) the component of Y \K such that

f(ε(f−1(K) ∪ cl(X\U))) ⊆ (f∗ε)(K)

for any compact K ⊆ Y . The induced map f∗ satisfies the following prop-
erties :

(a) (Restriction) If U ′ ⊆ X is a closed cocompact subspace with U ′ ⊆ U ,
then f∗ = (f |U ′)∗.

(b) (Proper homotopy invariance) If g : U−→Y is a proper map with f
and g properly homotopic, then f∗ = g∗.

(c) (Naturality) Let ηX : π0(e(X))−→EX and ηY : π0(e(Y ))−→EY be the
maps defined above. Let e(f) : e(U)−→e(Y ) be the map induced by
f . Then the inclusion induced map i : π0(e(U))−→π0(e(X)) is such
that f∗ ◦ ηX ◦ i = ηY ◦ e(f)∗ : π0(e(U))−→EY .

Proof (i) Immediate from the definitions.
(ii) (a) Let K ⊆ Y be compact, and let

A = ε(f |U ′)−1(K) ∪ cl(X\U ′) ⊆ X , B = (f |U ′)(A) ⊆ Y .

Now

X\U ⊆ f−1(K) ∪ cl(X\U ′) ⊆ (f |U ′)−1(K) ∪ cl(X\U ′) ,

so that

A ⊆ ε(f−1(K) ∪ cl(X\U)) ⊆ U\f−1(K)

and hence

B ⊆ f(ε(f−1(K) ∪ cl(X\U))) ⊆ Y \K .

It follows that the component of Y \K containing B is also the component
of Y \K containing f(ε(f−1(K) ∪ cl(X\U))).

(b) Let h : f ' g : U × I−→Y be a proper homotopy and let K ⊆ Y be
compact. The subspace

C = f−1(K) ∪ g−1(K) ∪ cl(X\U) ⊆ U × I

is such that f−1(K) ∪ cl(X\U) ⊆ C and ε(C) ⊆ ε(f−1(K) ∪ cl(X\U)).
Thus f∗(ε)(K) is the component of Y \K which contains f(ε(C)). Also,
g∗(ε)(K) is the component of Y \K which contains g(ε(C)). It suffices to
show that f(ε(C)) and g(ε(C)) are in the same component of Y \K. Since
h−1(K) is compact and ε(C) is unbounded, there exists x ∈ ε(C) such that
h(x× I) ∩K = ∅. It follows that f(x) ∈ f(ε(C)) and g(x) ∈ g(ε(C)) are in
the same component of Y \K.

(c) This is obvious.
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Remark 1.23 Freudenthal [61] and Raymond [134] defined the (Freuden-
thal) end point compactification W ∗ of a non-compact space W . In the case
that W has exactly k ends ε1, . . . , εk, this compactification is essentially by
adjoining one point at infinity for each end, with

W ∗ = W ∪ {ε1, . . . , εk}
and the topology on W ∗ is such that neighbourhoods of εj are of the form
εj(K) ∪ {εj} for compact subspaces K ⊆ W . (If W has one end this is the
one-point compactification, W ∗ = W∞.) If W has infinitely many ends, the
topology on W ∗ is more complicated because the ends are no longer isolated.
The compactification W ∗ is characterized in [134] by the properties :

(i) W ∗ is connected,
(ii) W is open in W ∗,
(iii) W ∗\W is totally disconnected,
(iv) if x ∈ W ∗\W and U is a connected open neighbourhood of x, then

U\(W ∗\W ) is connected.



2

Limits

In this chapter we state the basic constructions and properties of homotopy
limits and colimits of spaces, and the related direct and inverse systems
of groups. In 2.14 we shall show that the end space e(W ) of a σ-compact
space W has the weak homotopy type of the homotopy limit holim←−−−

j

Wj of an

inverse system {Wj | j = 0, 1, 2, . . .} of closed cocompact subspaces Wj ⊆ W

with ∅ =
∞⋂

j=0
Wj ⊂ . . . ⊂ Wj+1 ⊂ Wj ⊂ . . . ⊂ W0 = W, and the homotopy

groups π∗(e(W )) = π∗(holim←−−−
j

Wj) fit into short exact sequences

0 −→ lim←−
j

1 πr+1(Wj) −→ πr(holim←−−−
j

Wj) −→ lim←−
j

πr(Wj) −→ 0

with lim1 denoting the derived limit (2.11). The ‘Mittag–Leffler’ and ‘sta-
bility’ conditions for an inverse sequence of groups are recalled (2.20) and
related to derived limits. The related geometric condition ‘semistability at
∞’ for a space W is interpreted in terms of the end space e(W ) (2.25).

We refer to Bousfield and Kan [9] for the general theory of homotopy
limits and colimits.

Definition 2.1 The direct limit of a direct system of sets

X0

f0−−→ X1

f1−−→ X2 −−→ . . .

is the quotient of the disjoint union
∐

j Xj

lim−→
j

Xj =
∞∐

j=0

Xj

/
(xj+1 = fj(xj)) .

13
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Proposition 2.2 (i) For any set X and any sequence of subsets X0 ⊆ X1 ⊆
X2 ⊆ . . . ⊆ X the direct limit of the direct system {fj : Xj−→Xj+1} defined
by the inclusions is the union

lim−→
j

Xj =
∞⋃

j=0

Xj ⊆ X .

(ii) The direct limit of a direct system of groups {fj : Gj−→Gj+1} is a
group lim−→

j

Gj. For abelian Gj the direct limit is an abelian group, such that

up to isomorphism

lim−→
j

Gj = coker(1−
∑

j

fj :
∞∑

j=0

Gj−→
∞∑

j=0

Gj) .

(iii) Homology commutes with direct limits : the direct limit of a direct
system of short exact sequences of groups

0 −→ Gj −→ Hj −→ Kj −→ 0 (j ≥ 0)

is a short exact sequence of groups

0 −→ lim−→
j

Gj −→ lim−→
j

Hj −→ lim−→
j

Kj −→ 0 .

Definition 2.3 The mapping telescope or homotopy direct limit of a direct

system of spaces X0

f0−−→X1

f1−−→X2−−→ . . . is the identification space

Tel(fj) = hocolim−−−−−→
j

Xj

=
( ∞∐

j=0

Xj × I

)/
((xj , 1) = (fj(xj), 0)) .
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X0 X1 X2 X3

f0−−−−−→
f1−−−−−→

f2−−−−−→ · · ·

Example 2.4 Let X be a CW complex and let

X0 ⊆ X1 ⊆ . . . ⊆ Xj ⊆ Xj+1 ⊆ . . . ⊆ X

be a sequence of subcomplexes. The mapping telescope of the direct system
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{fj : Xj−→Xj+1} defined by the inclusions is a CW complex Tel(fj) which
is homotopy equivalent to the direct limit lim−→

j

Xj =
⋃
j

Xj ⊆ X.

Proposition 2.5 Let W = Tel(fj) be the mapping telescope of a direct
system of spaces {fj : Xj−→Xj+1}.

(i) The homology of W is the direct limit of the induced direct system of
homology groups

H∗(W ) = H∗(hocolim−−−−−→
j

Xj) = lim−→
j

H∗(Xj) .

(ii) If each Xj is compact the one-point compactification W∞ is con-
tractible. Furthermore, the natural projection p : e(W )−→W is a homotopy
equivalence, so that

e(W ) ' W .

Proof (i) Immediate from 2.2 (iii).
(ii) Define a map

g : [0,∞)×W −→ W ; (r, (x, s)) −→ (fj+u−1 . . . fj+1fj(x), v)

(x ∈ Xj , r + s = u + v , u ∈ N , v ∈ [0, 1)) .

The map

h : W∞ × I −→ W∞ ; (w, t) −→




g

(
t

1− t
, w

)
if w ∈ W ,

∞ if w = ∞
defines a contraction of W∞

h : id ' {∞} : W∞ −→ W∞ ,

and the map
W −→ e(W ) ; w −→ (r −→ g(r, w))

defines a homotopy inverse for p : e(W )−→W .

Example 2.6 Given a compact space K let

W = K × [0,∞) = Tel(fj)

with fj = 1 : Xj = K−→Xj+1 = K. The one-point compactification of W
is the cone on K

W∞ = K × [0,∞]/K × {∞} = cK ,

and by 1.7 there are defined homotopy equivalences

K −→ W ; x −→ (x, 0) ,

K −→ e(W ) ; x −→ (t −→ (x, t)) .
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The map K−→e(W ) sends each x ∈ K to the ray joining it to the cone
point ∞ ∈ W∞ = cK.

Definition 2.7 The inverse limit of an inverse system of sets

X0

f1←−− X1

f2←−− X2 ←−− . . .

is the subset of the product
∏

j Xj

lim←−
j

Xj = {(x0, x1, x2, . . .) ∈
∞∏

j=0

Xj | fj(xj) = xj−1} .

Proposition 2.8 (i) For any set X and any sequence of subsets . . . ⊆ X2 ⊆
X1 ⊆ X0 ⊆ X the inverse limit of the inverse system {fj : Xj−→Xj−1}
defined by the inclusions is the intersection

lim←−
j

Xj =
∞⋂

j=0

Xj ⊆ X .

(ii) The inverse limit of an inverse system of groups {Gj−→Gj−1} is a
group lim←−

j

Gj.

Definition 2.9 The homotopy inverse limit of an inverse system of spaces
{fj : Xj−→Xj−1} is the subspace of the product

∏
j XI

j of the path spaces
XI

j

holim←−−−
j

Xj = {(ω0, ω1, . . .) ∈
∞∏

j=0

XI
j | fj(ωj(0)) = ωj−1(1)} .

Example 2.10 (i) Let

X ⊇ X0 ⊇ X1 ⊇ . . . ⊇ Xj ⊇ Xj+1 ⊇ . . .

be a sequence of subspaces of a space X. The homotopy inverse limit
holim←−−−

j

Xj of the inverse system {fj : Xj−→Xj−1} defined by the inclusions

is the space of paths ω : [0,∞)−→X such that ω([j, j + 1]) ⊆ Xj (j ≥ 0).
(ii) For any inverse system of spaces {fj : Xj−→Xj−1} there is defined

an inclusion of the inverse limit in the homotopy inverse limit

lim←−
j

Xj −→ holim←−−−
j

Xj ; (x0, x1, . . .) −→ (ω0, ω1, . . .) (ωj(I) = xj) .

If each fj is a fibration this is a homotopy equivalence.
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(iii) Every map f : X−→Y can be replaced by a fibration : for path-
connected Y the path space Y I is the total space of a fibration Y I−→Y ;
ω−→ω(0) and is contractible, and the pullback along f : X−→Y

E(f) = f∗(Y I) = {(x, ω) ∈ X × Y I | f(x) = ω(0) ∈ Y }
is the total space of a fibration p(f) : E(f)−→Y ; (x, ω)−→f(x) with

p(f) : E(f) ' X
f−→ Y .

For any inverse system of spaces {fj : Xj−→Xj−1} there is thus defined an
inverse system {gj : Yj−→Yj−1} with each gj a fibration and

gj : Yj ' Xj

fj−→ Xj−1 ' Yj−1 .

The homotopy inverse limit of {Xj} is homotopy equivalent to the inverse
limit of {Yj} :

holim←−−−
j

Xj ' lim←−
j

Yj .

Definition 2.11 The derived limit of an inverse system of groups {fj :
Gj−→Gj−1} is the pointed set

lim←−
j

1 Gj =
∞∏

j=0

Gj

/
∼

with (xj) ∼ (yj) if yj = zjxjfj+1(zj+1)−1 for some (zj) ∈
∏
j

Gj .

Proposition 2.12 (i) The inverse and derived limits of an inverse system
of abelian groups {fj : Gj−→Gj−1} are the abelian groups

lim←−
j

Gj = ker(1−
∏

j

fj :
∞∏

j=0

Gj−→
∞∏

j=0

Gj) ,

lim←−
j

1 Gj = coker(1−
∏

j

fj :
∞∏

j=0

Gj−→
∞∏

j=0

Gj)

with an exact sequence

0 −→ lim←−
j

Gj −→
∞∏

j=0

Gj

1−
∏
j

fj

−−−→
∞∏

j=0

Gj −→ lim←−
j

1 Gj −→ 0 .

(ii) The inverse and derived limits of an inverse system of short exact
sequences of abelian groups

0 −→ Gj −→ Hj −→ Kj −→ 0 (j ≥ 0)
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are related by a long exact sequence

0 −→ lim←−
j

Gj −→ lim←−
j

Hj −→ lim←−
j

Kj

−→ lim←−
j

1 Gj −→ lim←−
j

1 Hj −→ lim←−
j

1 Kj −→ 0 .

Proposition 2.13 (Bousfield and Kan [9, p. 254]) The homotopy groups of
a homotopy inverse limit fit into exact sequences

0 −→ lim←−
j

1 πr+1(Xj) −→ πr(holim←−−−
j

Xj) −→ lim←−
j

πr(Xj) −→ 0 .

A map of spaces f : X−→Y is a weak homotopy equivalence if it induces
a bijection f∗ : π0(X)−→π0(Y ) of the sets of path components, and on each
component f induces isomorphisms f∗ : π∗(X)−→π∗(Y ) of the homotopy
groups. A weak homotopy equivalence f : X−→Y induces homology iso-
morphisms f∗ : H∗(X)−→H∗(Y ) by the Hurewicz theorem. If X and Y have
the homotopy types of CW complexes then f is a homotopy equivalence,
by Whitehead’s theorem.

Proposition 2.14 Let W be a σ-compact space with closed cocompact sub-
spaces Wj ⊆ W for j = 0, 1, 2, . . . such that

Wj+1 ⊆ Wj ,
∞⋂

j=0

Wj = ∅ ,

and write the inclusions as

gj : Wj −→ Wj−1 (j ≥ 1) .

The map

f : holim←−−−
j

Wj −→ e(W ) ; (ωj) −→ (t −→ ωj(t− j)) (j ≤ t ≤ j + 1)

is a weak homotopy equivalence, so that

π∗(holim←−−−
j

Wj) = π∗(e(W ))

and there are defined exact sequences

0 −→ lim←−
j

1 πr+1(Wj) −→ πr(e(W )) −→ lim←−
j

πr(Wj) −→ 0 .

Proof Let α : Bn−→e(W ) and β : ∂Bn−→holim←−−−
j

Wj be maps such that

f ◦ β = α|∂Bn where Bn ⊂ Rn is the unit ball. It suffices to construct a
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map β̃ : Bn−→holim←−−−
j

Wj such that β̃|∂Bn = β and f ◦ β̃ ' α rel ∂Bn. Note

that an element ω ∈ e(W ) is in the image of f : holim←−−−
j

Wj−→e(W ) if and

only if ω([j,∞)) ⊆ Wj for each j = 0, 1, 2, . . . . Therefore, the adjoint of α
is a proper map

α̂ : Bn × [0,∞) −→ W ; (x, t) −→ α(x)(t)

such that α̂(∂Bn×[j,∞)) ⊆ Wj for j = 0, 1, 2, . . . and the problem is reduced
(via 1.9) to showing that α̂ is properly homotopic rel ∂Bn× [0,∞) to a map
α̃ : Bn× [0,∞)−→W such that α̃(Bn× [j,∞)) ⊆ Wj for j = 0, 1, 2, . . . . By
using a proper homotopy of α̂ rel ∂Bn× [0,∞), we may assume α̂(x, t) ∈ Wj

for ‖x‖ ≥ 1
2 , t ≥ j, and j = 0, 1, 2, . . . . Since α̂ is proper, there is a sequence

N0 < N1 < N2 < . . . such that

α̂(Bn × [Nj ,∞)) ⊆ Wj (j = 0, 1, 2, . . .) .

Thus α̂(x, t) ∈ Wj if t ≥ Nj , or if t ≥ j and ‖x‖ ≥ 1
2 for j = 0, 1, 2, . . . .

Construct a homeomorphism

h : Bn × [0,∞) −→ Bn × [0,∞)

such that h is isotopic to the identity rel ∂Bn × [0,∞) and

h(Bn × [j,∞)) ⊆ {(x, t) ∈ Bn × [0,∞) | t ≥ Nj , or t ≥ j and ‖x‖ ≥ 1
2} .

Then α̃ = α̂ ◦ h is properly homotopic to α̂ rel ∂Bn × [0,∞) and

α̃(Bn × [j,∞)) ⊆ Wj (j = 0, 1, 2, . . .) .

Remark 2.15 (i) The exact sequences of 2.14 also appear in Brin and
Thickstun [10], with π∗(e(W )) the ‘absolute Steenrod homotopy groups’ of
the ends of W .

(ii) In 7.10 it will be proved that if W is ‘forward tame’ the lim←−
1 terms in

2.14 vanish, and that

π∗(e(W )) = lim←−
j

π∗(Wj) , H∗(e(W )) = lim←−
j

H∗(Wj) .

Definition 2.16 The mapping cotelescope of an inverse system of spaces

X0

f1←− X1

f2←− X2 ←− . . .

is the space

W(fj) =
( ∞∐

k=0

Xk × I

)/
(xk, 0) = (fk(xk), 1) .



20 Ends of complexes



........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....

X0 X1 X2 X3

f1←−−−−−
f2←−−−−−

f3←−−−−− . . .

Proposition 2.17 Let W = W(fj) be the mapping cotelescope of an inverse
system of spaces {fj : Xj−→Xj−1}.

(i) The inclusion

X0 −→ W(fj) ; x0 −→ (x0, 0)

is a homotopy equivalence (but not in general a proper homotopy equiva-
lence).

(ii) If each Xj is a compact space then the end space of W is weak homo-
topy equivalent to the homotopy inverse limit

e(W ) ' holim←−−−
j

Xj .

Proof (i) The projection

W −→ X0 ; (xj , t) −→ f1f2 . . . fj(xj)

is a homotopy inverse for the inclusion X0−→W .
(ii) Apply 2.14 with

Wj = W(fi | i ≥ j) ⊆ W = W(fj) .

Example 2.18 Fix an integer s ≥ 2, and consider the inverse system of
fibrations

fj = s : Xj = S1 −→ Xj−1 = S1 ; z −→ zs (j ≥ 1) .

The end space e(W(fj)) of the mapping cotelescope W(fj) is homotopy
equivalent to the s-adic solenoid

Ŝ1
s = lim←−

j

Xj = {(x0, x1, x2, . . .) ∈
∞∏

j=0

S1|xs
j+1 = xj for j ≥ 0} .

See Bourbaki [8, III, 7, Ex. 6, p. 325] for the topological properties of Ŝ1
s . See

23.25 and 23.28 for the homological properties of Ŝ1
s .
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Proposition 2.19 (i) The direct limit of a direct system of chain complexes
and chain maps

f(j) : C(j) −→ C(j + 1) (j ≥ 0)

is a chain complex

lim−→
j

C(j) = coker(1−
∑

j

f(j) :
∞∑

j=0

C(j)−→
∞∑

j=0

C(j))

such that

Hr(lim−→
j

C(j)) = lim−→
j

Hr(C(j)) .

(ii) The inverse and derived limits of an inverse system of chain complexes
and chain maps

g(j) : C(j) −→ C(j − 1) (j ≥ 1)

are the chain complexes

lim←−
j

C(j) = ker(1−
∏

j

g(j) :
∞∏

j=0

C(j)−→
∞∏

j=0

C(j)) ,

lim←−
j

1 C(j) = coker(1−
∏

j

g(j) :
∞∏

j=0

C(j)−→
∞∏

j=0

C(j)) .

If lim←−
j

1 C(j) = 0 there are defined short exact sequences

0 −→ lim←−
j

1 Hr+1(C(j)) −→ Hr(lim←−
j

C(j)) −→ lim←−
j

Hr(C(j)) −→ 0 .

If lim←−
j

C(j) = 0 there are defined short exact sequences

0 −→ lim←−
j

1 Hr(C(j)) −→ Hr(lim←−
j

1 C(j)) −→ lim←−
j

Hr−1(C(j)) −→ 0 .

Proof (i) The direct limit fits into a short exact sequence of chain complexes

0 −→
∞∑

j=1

C(j)

1−
∑
j

f(j)

−−−−−→
∞∑

j=1

C(j) −→ lim−→
j

C(j) −→ 0 ,

and the homology exact sequence breaks up into short exact sequences

0 −→
∞∑

j=1

H∗(C(j))

1−
∑
j

f(j)∗

−−−−−→
∞∑

j=1

H∗(C(j)) −→ H∗(lim−→
j

C(j)) −→ 0 .
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(ii) If lim←−
j

1 C(j) = 0 the inverse limit fits into a short exact sequence of

chain complexes

0 −→ lim←−
j

C(j) −→
∞∏

j=1

C(j)

1−
∏
j

g(j)

−−−−→
∞∏

j=1

C(j) −→ 0 ,

inducing a long exact sequence of homology groups

. . . −→
∞∏

j=1

Hr+1(C(j))

1−
∏
j

g(j)

−−−−→
∞∏

j=1

Hr+1(C(j))

−→ Hr(lim←−
j

C(j)) −→
∞∏

j=1

Hr(C(j)) −→ . . . .

If lim←−
j

C(j) = 0 the derived limit fits into a short exact sequence of chain

complexes

0 −→
∞∏

j=1

C(j)

1−
∏
j

g(j)

−−−−→
∞∏

j=1

C(j) −→ lim←−
j

1 C(j) −→ 0 ,

inducing a long exact sequence of homology groups

. . . −→
∞∏

j=1

Hr(C(j))

1−
∏
j

g(j)

−−−−→
∞∏

j=1

Hr(C(j))

−→ Hr(lim←−
j

1 C(j)) −→
∞∏

j=1

Hr−1(C(j)) −→ . . . .

Definition 2.20 Let {fj : Gj−→Gj−1 | j ≥ 1} be an inverse system of
groups.

(i) The inverse system is Mittag–Leffler if there exists k ≥ 1 such that the
morphisms

fj | : im(fj+1) −→ im(fj)

are onto for all j ≥ k.
(ii) The inverse system is stable if there exists k ≥ 1 such that the mor-

phisms
fj | : im(fj+1) −→ im(fj)

are isomorphisms for all j ≥ k.
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Proposition 2.21 Let {fj : Gj−→Gj−1 | j ≥ 1} be an inverse system of
groups.

(i) {Gj} has the same inverse and derived limits as {im(fj)−→im(fj−1)} :

lim←−
j

Gj = lim←−
j

im(fj) , lim←−
j

1 Gj = lim←−
j

1 im(fj) .

(ii) If {Gj} is Mittag–Leffler then

lim←−
j

1 Gj = lim←−
j

1 im(fj) = 0 .

(iii) If {Gj} is stable then it is Mittag–Leffler, with

lim←−
j

Gj = im(fk) = im(fk+1) = . . . , lim←−
j

1 Gj = 0 ,

for sufficiently large k ≥ 0.
(iv) An inverse system {Gj} is stable if and only if there exist a group H

and an integer k ≥ 0 with morphisms

pj : H −→ Gj , qj : Gj −→ H (j ≥ k)

such that the diagrams
H

u
pj

H

u
pj−1

Gj

hh
hhhjqj

wfj
Gj−1

commute, in which case

lim←−
j

Gj = im(fk) = im(fk+1) = . . . = H , lim←−
j

1 Gj = 0

and up to isomorphism

fj : Gj = H ×Kj −→ Gj−1 = H ×Kj−1 ; (x, y) −→ (x, 1) (j > k)

with Kj = ker(fj) = coker(pj) = ker(qj).
Proof (i) By 2.12 (ii) the short exact sequences

0 −→ ker(fj) −→ Gj −→ im(fj) −→ 0

determine a long exact sequence

0 −→ lim←−
j

ker(fj) −→ lim←−
j

Gj −→ lim←−
j

im(fj)

−→ lim←−
j

1 ker(fj) −→ lim←−
j

1 Gj −→ lim←−
j

1 im(fj) −→ 0 .

It follows from fj | = 0 : ker(fj)−→ker(fj−1) that

lim←−
j

ker(fj) = 0 , lim←−
j

1 ker(fj) = 0 .
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(ii) By (i) the derived limit of {Gj} is the same as the derived limit of
{im(fj)}, so it suffices to note that lim←−

j

1 Gj = 0 if each fj : Gj−→Gj−1 is

onto.
(iii) Immediate from (i) and (ii).
(iv) If {Gj} is an inverse system which is stable, let

H = im(fk) = im(fk+1) = . . . ,

pj = inclusion : H = im(fj+1) −→ Gj ,

qj = projection : Gj −→ H = im(fj) .

Conversely, given H, k, pj , qj note that since qjpj = id : H−→H each pj is
one-to-one and each qj is surjective, and since fj = pj−1qj : Gj−→Gj−1 it
is possible to identify H = im(fj) for j ≥ k, and hence to apply (iii).

Remark 2.22 Geoghegan [62] has proved the converse of 2.21 (ii) in the
countable case : if {Gj} is an inverse system of countable groups such that
lim←−

j

1 Gj = {1} then {Gj} is Mittag–Leffler.

As in 1.22 let ηW : π0(e(W ))−→EW be the function which associates an
end of a space W to each path component of the end space e(W ).

Definition 2.23 (i) A σ-compact space W is path-connected at ∞ if every
cocompact subspace of W contains a path-connected cocompact subspace
of W , or equivalently if there exists a sequence W ⊃ W0 ⊃ W1 ⊃ W2 ⊃ . . .
of path-connected cocompact subspaces with

⋂
j

cl(Wj) = ∅.
(ii) A space W is semistable at ∞ if any two proper maps ω1, ω2 :

[0,∞)−→W with ηW ([ω1]) = ηW ([ω2]) are properly homotopic.
(iii) A space W has stable π1 at ∞ if it is path-connected at ∞, and there

exists a sequence as in (i) such that the sequence of inclusion induced group
morphisms

π1(W0)
g1←− π1(W1)

g2←− π1(W2) ←− · · ·
(with base points and base paths chosen) is stable, i.e. for some k ≥ 1 there
are induced isomorphisms

im(gk)
∼=←− im(gk+1)

∼=←− . . . .

(iv) If W has stable π1 at ∞, define the fundamental group at ∞
π∞1 (W ) = lim←−

j

π1(Wj)

for some fixed sequence {Wj} as above, with

π∞1 (W ) = im(gk) = im(gk+1) = . . . .
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Example 2.24 If (M,∂M) is a compact manifold with boundary then each
component L of ∂M is collared in the complement W = M\L, so that W
has stable π1 at infinity with π∞1 (W ) = π1(L).

Proposition 2.25 (i) If W is σ-compact and locally path-connected, then
ηW : π0(e(W ))−→EW is surjective.

(ii) W is semistable at ∞ if and only if ηW is injective.
(iii) If W is σ-compact and locally path-connected, then W is semistable

at ∞ if and only if ηW is bijective.
(iv) If W is σ-compact, locally path-connected and semistable at ∞, then

W is path-connected at ∞ if and only if π0(e(W )) = 0.
Proof (i) Write

W =
∞⋃

j=0

Kj

with each Kj compact and Kj ⊆ Kj+1. Let ε be an end of W (in the sense
of 1.14). For each j, choose xj ∈ ε(Kj). Then xj , xj+1 ∈ ε(Kj) and ε(Kj)
is a component of an open subset of a locally path-connected space. Hence,
ε(Kj) is path-connected, so there is a map

ωj : [j, j + 1] −→ ε(Kj)

with ωj(j) = xj and ωj(j + 1) = xj+1. Then the ωj ’s amalgamate to define
a proper map ω : [0,∞)−→W with ηW ([ω]) = ε.

(ii) Immediate from the Definition 2.23.
(iii) follows from (i) and (ii).
(iv) Since ηW is bijective, we need to show that W is path-connected at∞

if and only if W has exactly one end. Suppose that W is path-connected at
∞ and that ε1, ε2 are distinct ends of W . Then there is a compact subspace
K ⊆ W such that ε1(K) 6= ε2(K), and so ε1(K) ∩ ε2(K) = ∅. Let X
be a path-connected cocompact subspace of W\K. Since ε1(K), ε2(K) are
unbounded

ε1(K) ∩X 6= ∅ 6= ε2(K) ∩X.

But X must be contained in exactly one of the components of W\K, a
contradiction.

On the other hand, if ε is the only end of W , then for every cocompact
subspace X ⊆ W , ε(cl(W\X)) must be a path-connected cocompact sub-
space of W .

Example 2.26 Jacob’s ladder can be realized as the subspace X ⊂ R2

defined by

X = {(x, y) |x = 0, 1 , y ≥ 0} ∪ {(x, n) | 0 ≤ x ≤ 1 , n = 1, 2, 3, . . .} .
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Then X has exactly one end, but π0(e(X)) is infinite and X is not semistable
at ∞.
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Jacob’s ladder (Genesis 28:12)

Remark 2.27 (i) In 9.5 below it will be proved that if X and Y are proper
homotopy equivalent then X is semistable (resp. has stable π1) at ∞ if and
only if Y is semistable (resp. has stable π1) at ∞.

(ii) Let W =
⋃
j

Kj be a locally path-connected σ-compact space, which is

expressed as a union of compact subspaces Kj ⊆ Kj+1. The complements
Wj = W\Kj are cocompact subsets of W such that

Wj ⊇ Wj+1 ,
∞⋂

j=0

Wj = ∅ ,

so that 2.14 gives an exact sequence

0 −→ lim←−
j

1 π1(Wj) −→ π0(e(W )) −→ lim←−
j

π0(Wj) −→ 0 ,

with lim←−
j

π0(Wj) = EW the number of ends of W . Mihalik [93] proves that

W is semistable at ∞ if and only if lim←−
j

1 π1(Wj) = 0, giving another proof

of 2.25 (iii). If W has stable π1 at ∞ the lim←−
1 term in the exact sequence

of 2.14

0 −→ lim←−
j

1 π2(Wj) −→ π1(e(W )) −→ lim←−
j

π1(Wj) −→ 0
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vanishes, and

lim←−
j

π1(Wj) = π∞1 (W ) = π1(e(W )) .

(iii) A well-known conjecture states that if W is a finite connected CW

complex, then the universal cover W̃ is semistable at ∞. This is known to
be a property of π1(W ) and has been verified in many special cases. See
Mihalik [93], Mihalik and Tschantz [94].

The homological properties of non-compact spaces are closely related to
the localization and completion of rings. Here is a brief account of these con-
structions, in the special cases of the localization inverting a single element
and the completion with respect to a principal ideal.

Definition 2.28 Let A be a ring (associative, with 1) and let s ∈ A be a
central non-zero divisor.

(i) The localization of A inverting s is the ring A[1/s] with elements the
equivalence classes a/sj of pairs (a, sj) (a ∈ A, j ≥ 0), subject to the
equivalence relation

(a, sj) ∼ (b, sk) if ask = bsj ∈ A ,

and the usual addition and multiplication of fractions. The localization is
(up to isomorphism) the direct limit

A[1/s] = lim−→(A
s−→ A

s−→ A
s−→ A −→ . . .) ,

with an actual isomorphism defined by

lim−→
j

A
'−→ A[1/s] ; (aj) −→

∞∑

j=0

aj/sj .

The ring morphism

A −→ A[1/s] ; a −→ a/1 (s0 = 1)

is an injection, with cokernel the derived limit

A[1/s]/A = lim←−
1(A

s←− A
s←− A

s←− A ←− . . .) .

(ii) The s-adic completion of A is the inverse limit of the natural projec-
tions A/sj+1A−→A/sjA, the ring

Âs = lim←−(A/sA ←− A/s2A ←− A/s3A ←− . . .) .

The ring morphism

A −→ Âs ; a −→ (a)
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has kernel the inverse limit
∞⋂

j=0

sjA = lim←−(A
s←− A

s←− A
s←− A ←− . . .) ,

and cokernel the derived limit

Âs/A = lim←−
1(A

s←− A
s←− A

s←− A ←− . . .) = A[1/s]/A .

See 23.20 below for the cartesian square of rings relating localization and
completion.

Example 2.29 The localization inverting

s = z ∈ A = Z[z]

is the Laurent polynomial extension of Z

A[1/s] = Z[z, z−1] ,

and the s-adic completion of A is the formal power series ring of Z

Âs = Z[[z]] .

See Chapter 21 for more on polynomial extension rings.

Example 2.30 Let W = W0 ⊃ W1 ⊃ W2 ⊃ . . . be the sequence of subspaces
of Rn+2 with Wj the union of the line {(x, 0, . . . , 0) |x ≥ j} and a copy of
Sn+1 wedged on at (k, 0, . . . , 0) for each integer k ≥ j.
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j j + 1 j + 2 j + 3 j + 4
Wj

. . .

.............................................................................. .............................................................................. .............................................................................. .............................................................................. ..............................................................................

Use the inclusion ω : R+−→W as the base point ω ∈ e(W ). For n = 0
W is proper homotopy equivalent to Jacob’s ladder (2.26). For n ≥ 1 the
homotopy groups of the Wj ’s in dimensions n, n + 1 are given by

πn(Wj) = 0 , πn+1(Wj) = Z[z] ,

with the inclusion Wj+1−→Wj inducing

z : πn+1(Wj+1) = Z[z] −→ πn+1(Wj) = Z[z] ,

so that

lim←−
j

πn(Wj) = 0 , πn(e(W )) = lim←−
j

1 πn+1(Wj) = Z[[z]] 6= 0 .

Moreover, for n ≥ 1 W has stable π1 at ∞.
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Homology at infinity

The homology at infinity H∞∗ (W ) of a space W is the proper homotopy
invariant given by the difference between homology H∗(W ) and locally fi-
nite homology H lf

∗ (W ). The extent to which a space W is non-compact
is measured in the first instance by the failure of the natural maps i :
H∗(W )−→H lf

∗ (W ) to be isomorphisms, or equivalently by the extent to
which H∞∗ (W ) is non-zero. The homology groups of the end space e(W )
are related to the homology at infinity by morphisms H∗(e(W ))−→H∞∗ (W ),
which are isomorphisms if W is forward tame (in the sense of Chapter 7).

Locally finite homology is as important in studying non-compact spaces
as ordinary homology is important in dealing with compact spaces. Since
there is no elementary account of locally finite homology in the literature,
we provide one here.

We shall also investigate the connection between the locally finite ho-
mology H lf

∗ (W ) of a space W and the reduced homology of the one-point
compactification W∞

H̃∗(W∞) = H∗(W∞, {∞}) .

In general, these homology groups are not isomorphic – see 3.18 below for an
actual example. In 3.16 we identify the singular locally finite chain complex
Slf (W ) of a σ-compact space W with an inverse limit of singular chain
complexes, the singular chain complex at infinity S∞(W ) with a derived
limit of singular chain complexes, and the singular locally finite homology
with the homology of an inverse limit of ordinary singular chain complexes
involving W∞. In Chapter 7 we use 3.16 to prove that H lf

∗ (W ) is isomorphic
to H∗(W∞, {∞}) for a forward tame W . 3.16 is used in Appendix A, which
relates locally finite singular and cellular homology to each other.

29
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A singular r-chain in W is a formal linear combination
∑
α

nασα with

coefficients nα ∈ Z of singular r-simplexes σα : ∆r−→W . The singular
chain complex S(W ) is the chain complex with Sr(W ) the abelian group of
singular r-chains, and the usual differentials. The (singular) homology of
W is defined by

H∗(W ) = H∗(S(W )) .

A map f : V−→W induces a chain map f : S(V )−→S(W ), which in turn
induces morphisms in homology f∗ : H∗(V )−→H∗(W ).

Definition 3.1 (i) A locally finite singular r-chain in W is a product∏
α

nασα of formal multiples by coefficients nα ∈ Z of singular r-simplexes

σα : ∆r−→W such that for each x ∈ W there exists an open neighbourhood
U ⊆ W of x with {α |U ∩ σα(∆r) 6= ∅ , nα 6= 0} finite.

(ii) The locally finite singular chain complex Slf (W ) is the chain complex
with Slf

r (W ) the abelian group of locally finite singular r-chains, and the
usual differentials. The locally finite homology of W is defined by

H lf
∗ (W ) = H∗(Slf (W )) .

A map f : V−→W is closed if f(C) is a closed subspace of W for every
closed subspace C ⊆ V .

Proposition 3.2 A proper closed map f : V−→W induces a chain map
f : Slf (V )−→Slf (W ), which in turn induces morphisms in locally finite
homology f∗ : H lf

∗ (V )−→H lf
∗ (W ).

In fact, for W locally compact Hausdorff or metric every proper map
f : V−→W is closed.

The relative singular and locally finite singular chain complexes of a pair
of spaces (W,V ⊆ W )

S(W,V ) = coker(S(V )−→S(W )) ,

Slf (W,V ) = coker(Slf (V )−→Slf (W ))

fit into the short exact sequences

0 −→ S(V ) −→ S(W ) −→ S(W,V ) −→ 0 ,

0 −→ Slf (V ) −→ Slf (W ) −→ Slf (W,V ) −→ 0 .

Proposition 3.3 If W is a space and V ⊆ W is a closed cocompact subspace
then

S(W,V ) = Slf (W,V ) , H∗(W,V ) = H lf
∗ (W,V ) .
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Proof The inclusion S(W )−→Slf (W ) induces a chain isomorphism

S(W,V ) −→ Slf (W,V ) ;
∑

nασα −→
∑

nασα

with inverse

Slf (W,V ) −→ S(W,V ) ;
∏

nασα −→
∑

nβσβ ,

where the sum is taken over all the β = α with |σβ| ∩ cl(W\V ) 6= ∅ and
nβ 6= 0.

Example 3.4 If K is a compact space

S(K) = Slf (K) , H∗(K) = H lf
∗ (K) .

This is just the special case (W,V ) = (K, ∅) of 3.3.

Definition 3.5 (i) A chain map f : C−→D is a chain equivalence if there
exist a chain map g : D−→C and chain homotopies

h : gf ' 1C : C −→ C , k : fg ' 1D : D −→ D .

(ii) A chain map f : C−→D is a homology equivalence if it induces iso-
morphisms f∗ : H∗(C)−→H∗(D) in homology.

Every chain equivalence is a homology equivalence. A chain map f :
C−→D of projective A-module chain complexes which are bounded below
is a chain equivalence if and only if f is a homology equivalence.

The locally finite singular chain groups Slf (W )r are not in general free
Z-modules – see 3.18 for an example. (Note, however, that for any field
F the F -modules Slf (W ; F )r = F ⊗Z Slf (W )r are free.) In fact, Slf (W )
may not even be chain equivalent to a free Z-module chain complex. We
shall therefore have to be careful to distinguish between homology and chain
equivalences of chain complexes.

Given a chain complex C and any k ∈ Z let C∗+k denote the k-fold
suspension of C, the chain complex defined by

dC∗+k
= dC : (C∗+k)r = Cr+k −→ (C∗+k)r−1 = Cr+k−1 .

The algebraic mapping cone C(f) of a chain map f : C−→D is the chain
complex defined by

dC(f) =
(

dD (−)r−1f

0 dC

)
:

C(f)r = Dr ⊕ Cr−1 −→ C(f)r−1 = Dr−1 ⊕ Cr−2 .



32 Ends of complexes

The homology groups of C(f) are the relative homology groups of f :

H∗(C(f)) = H∗(f) .

Lemma 3.6 Let f : C−→D be an A-module chain map.
(i) The short exact sequence of chain complexes

0 −→ D −→ C(f) −→ C∗−1 −→ 0

induces a long exact sequence of homology groups

. . . −→ Hr(C)
f∗−→ Hr(D) −→ Hr(f) −→ Hr−1(C) −→ . . . .

(ii) The chain map f : C−→D is a homology equivalence if and only if
H∗(f) = 0.

(iii) The chain map f : C−→D is a chain equivalence if and only if C(f)
is chain contractible.
Proof Standard homological algebra.

Lemma 3.7 Let f : C−→D be an A-module chain map such that each
f : Cr−→Dr (r ∈ Z) is an injection, and let

E = coker(f : C−→D) ,

so that there is defined a short exact sequence of A-module chain complexes

0 −→ C
f−→ D

g−→ E −→ 0 .

(i) The projection

h : C(f) −→ E ; (x, y) −→ [g(x)]

is a homology equivalence.
(ii) If each f : Cr−→Dr is a split injection (e.g. if E is projective) then

h : C(f)−→E is a chain equivalence.
(iii) If E is projective and bounded below the following conditions are

equivalent :

(a) f is a chain equivalence,
(b) f is a homology equivalence,
(c) E is chain contractible,
(d) H∗(E) = 0.

Proof (i) Immediate from the homology long exact sequence

. . . −→ Hr(C)
f∗−→ Hr(D)

g∗−→ Hr(E) −→ Hr−1(C) −→ . . . .
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(ii) There is no loss of generality in assuming

f =
(

1
0

)
: Cr −→ Dr = Cr ⊕ Er ,

g = ( 0 1 ) : Dr = Cr ⊕Er −→ Er ,

dD =
(

dC (−)rj

0 dE

)
: Dr = Cr ⊕Er −→ Dr−1 = Cr−1 ⊕ Er−1 ,

h = ( 0 1 0 ) : C(f)r = Cr ⊕Er ⊕ Cr−1 −→ Er

for a chain map j : E−→C∗−1. The chain map k : E−→C(f) defined by

k =




0
1
j


 : Er −→ C(f)r = Cr ⊕ Er ⊕ Cr−1

is a chain homotopy inverse for h : C(f)−→E.
(iii) (a) =⇒ (b) Trivial.
(b) ⇐⇒ (d) Immediate from (i).
(c) ⇐⇒ (d) Standard homological algebra.
(c) =⇒ (a) Given a chain contraction

Γ : 1 ' 0 : E −→ E

define a chain homotopy inverse f−1 : D−→C for f by

f−1 = ( 1 (−)rjΓ ) : Dr = Cr ⊕Er −→ Cr .

Definition 3.8 (i) The singular chain complex at ∞ of a space W is the
algebraic mapping cone (with dimension shift)

S∞(W ) = C(i : S(W )−→Slf (W ))∗+1

of the inclusion i : S(W )−→Slf (W ) defined by regarding singular r-simplexes
σ : ∆r−→W as locally finite singular chains.

(ii) The singular homology at ∞ of a space W is defined by

H∞
∗ (W ) = H∗(S∞(W )) .

Proposition 3.9 The various homology groups are related by a long exact
sequence

. . . −→ H∞
r (W ) −→ Hr(W )

i−→ H lf
r (W ) −→ H∞

r−1(W ) −→ . . . .

Example 3.10 (i) If K is compact then S(K) = Slf (K), H∗(K) = H lf
∗ (K)

(3.4), so that
S∞(K) ' 0 , H∞

∗ (K) = 0 .
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(ii) If W = K × [0,∞) for a compact space K then

H∗(W ) = H∞
∗ (W ) = H∗(K) , H lf

∗ (W ) = 0 .

(iii) If W = K × Rn (n ≥ 1) for a compact space K then

H∗(W ) = H∗(K) , H lf
∗ (W ) = H∗−n(K) ,

H∞
∗ (W ) = H∗(K × Sn−1) = H∗(K)⊕H∗−n+1(K) .

Remark 3.11 In Chapter 12 we shall investigate the sequence of 3.9 for
‘forward tame’ W . The locally finite homology of such W is expressed as

H lf
∗ (W ) = H∗(W∞, {∞})

= H∗(lim←−
K

S(W,W\K)) = lim←−
K

H∗(W,W\K)

with W∞ the one-point compactification of W , and K running over all the
compact subspaces of W . In Chapter 7 we shall prove that for forward tame
W

H∗(e(W )) = H∞
∗ (W ) .

In Chapter 12 the exact sequence of 3.9

. . . −→ H∞
r (W ) −→ Hr(W )

i−→ H lf
r (W ) −→ H∞

r−1(W ) −→ . . .

is identified with the sequence

. . . −→Hr(e(W )) −→Hr(W )
i−→ Hr(W∞, {∞}) −→Hr−1(e(W )) −→ . . .

induced by a cofibration sequence

e(W ) −→ W
i−→ W∞ .

Just as the ordinary homology groups H∗(W ) are homotopy invariant,
so the locally finite homology groups H lf

∗ (W ) and the homology groups at
∞ H∞∗ (W ) are proper homotopy invariant. Another essential difference is
revealed in the homology of disjoint unions :

Proposition 3.12 (i) For any collection {Xλ |λ ∈ Λ} of spaces

H∗(
∐

λ

Xλ) =
∑

λ

H∗(Xλ) .

(ii) For any collection {Xλ |λ ∈ Λ} of compact spaces

H lf
∗ (

∐

λ

Xλ) =
∏

λ

H∗(Xλ) .
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The natural map

i : H∗(
∐

λ

Xλ) =
∑

λ

H∗(Xλ) −→ H lf
∗ (

∐

λ

Xλ) =
∏

λ

H∗(Xλ)

is the inclusion of the direct sum in the direct product, and

H∞
∗ (

∐

λ

Xλ) =
∏

λ

H∗+1(Xλ)
/ ∑

λ

H∗+1(Xλ) ,

with H∞∗ (
∐
λ

Xλ) = 0 if and only if the set {λ ∈ Λ |Xλ 6= ∅} is finite.

The homology at ∞ H∞∗ (W ) is invariant upon passing to cocompact
subspaces of W :

Proposition 3.13 If W is a space and V ⊆ W is a closed cocompact
subspace the inclusion S∞(V )−→S∞(W ) is a chain equivalence, and

H∞
∗ (V ) = H∞

∗ (W ) .

Proof For any subspace V ⊆ W there is defined a short exact sequences of
chain complexes

0 −→ S∞(V ) −→ S∞(W ) −→ S∞(W,V ) −→ 0

with each S∞r (V )−→S∞r (W ) a split injection and

S∞(W,V ) = C(S(W,V )−→Slf (W,V ))∗+1 .

If V ⊆ W is a closed cocompact subspace then S(W,V ) = Slf (W,V ) by
3.3, so that S∞(W,V ) is a contractible chain complex by 3.6 (iii), and
S∞(V )−→S∞(W ) is a chain equivalence by 3.7 (iii).

Notation 3.14 For any space X let

gX
k : X −→ X × I ; x −→ (x, k) (k = 0, 1)

and let
DX : gX

0 ' gX
1 : S(X) −→ S(X × I)

be a natural chain homotopy, with

∂DX + DX∂ = gX
0 − gX

1 : Sr(X) −→ Sr(X × I) .

If one checks any standard source (e.g., Munkres [101, pp. 171–172]) for the
acyclic model definition of DX , one sees that DX induces a chain homotopy

Dlf
X : gX

0 ' gX
1 : Slf (X) −→ Slf (X × I)

on the locally finite chain level.



36 Ends of complexes

We have already mentioned that a proper map between locally compact
Hausdorff spaces induces a chain map in locally finite homology. More
generally, suppose

f = {fβ : X −→ Y }
is a locally finite family (i.e., the collection of images {fβ(X)} is locally
finite) of proper maps between locally compact Hausdorff spaces, then there
is an induced chain map

f : Slf (X) −→ Slf (Y ) ;
∏
α

nασα −→
∏

α,β

nα(fβ ◦ σα) .

Proposition 3.15 For any space W there is defined a natural chain map

α : S(e(W )) −→ S∞(W )

such that the homology morphisms induced by the projection

p : e(W ) −→ W ; (ω : [0,∞)−→W ) −→ ω(0)

factor as

p∗ : H∗(e(W ))
α∗−→ H∞

∗ (W ) −→ H∗(W ) .

Proof In the first instance we prove that for any locally compact space X
the inclusion

kX : X −→ X × [0,∞) ; x −→ (x, 0)

is such that there is defined a chain homotopy

GX : kX ' 0 : Slf (X) −→ Slf (X × [0,∞)) .

The locally finite family of proper closed maps

tX = {tk : X × I −→X × [0,∞) ; (x, s)−→ (x, s + k) | k ≥ 0}
induce chain maps

tX : Slf (X × I) −→ Slf (X × [0,∞)) .

The morphisms

GX : Slf
r (X)

Dlf
X−→ Slf

r+1(X × I)
tX−→ Slf

r+1(X × [0,∞))

are such that

∂lfGX + GX∂lf = tX ◦ (gX
0 − gX

1 )

= kX : Slf
r (X) −→ Slf

r (X × [0,∞)) ,

defining a chain homotopy GX : kX ' 0.
The adjoint of a singular simplex σ : ∆r−→e(W ) is a proper map

σ̂ : ∆r × [0,∞) −→ W ; (x, t) −→ σ(x)(t)
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such that
pσ = σ̂k∆r : ∆r −→ W .

The chain map

α : S(e(W )) −→ S∞(W ) = C(i : S(W )−→Slf (W ))∗+1

defined by

α : Sr(e(W )) −→ S∞r (W ) = Slf
r+1(W )⊕ Sr(W ) ;

(σ : ∆r−→e(W )) −→ (σ̂G∆r(1∆r), pσ)

is such that
p : S(e(W ))

α−→ S∞(W ) −→ S(W ) .

The following result expresses the chain complexes of a σ-compact space
W to the chain complexes of an ascending sequence Kj ⊆ Kj+1 of com-
pact subspaces Kj ⊆ W and also to the chain complexes of a descending
subsequence Wj ⊇ Wj−1 of closed cocompact subspaces Wj ⊇ W . In the
applications it is convenient to have available both expressions.

Proposition 3.16 Let W be a σ-compact space, with compact subsets Kj ⊆
W for j = 0, 1, 2, 3, . . . such that

K0 ⊆ K1 ⊆ . . . ⊆ Kj ⊆ Kj+1 ⊆ . . . ⊆
∞⋃

j=1

Kj = W , Kj ⊆ int(Kj+1) .

Write the closed cocompact subsets defined by the closures of the comple-
ments as

Wj = cl(W\Kj) ,

so that

W ⊇ W0 ⊇ W1 ⊇ . . . ⊇ Wj ⊇ Wj+1 ⊇ . . . ⊇
∞⋂

j=1

Wj = ∅ ,

. . . ⊆ W\Kj ⊆ Wj ⊆ W\Kj−1 ⊆ Wj−1 ⊆ . . . .

(i) The singular locally finite chain complex Slf (W ) is the inverse limit

Slf (W ) = lim←−
j

S(W,W\Kj) = lim←−
j

S(W,Wj) ,

and there are defined short exact sequences

0 −→ lim←−
j

1 Hr+1(W,W\Kj) −→ H lf
r (W ) −→ lim←−

j

Hr(W,W\Kj) −→ 0 ,

0 −→ lim←−
j

1 Hr+1(W,Wj) −→ H lf
r (W ) −→ lim←−

j

Hr(W,Wj) −→ 0 .
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(ii) The singular chain complex at ∞ S∞(W ) is homology equivalent to
the derived limit

coker(i : S(W )−→Slf (W ))∗+1 = lim←−
j

1 S(W\Kj)∗+1 = lim←−
j

1 S(Wj)∗+1 ,

so that
H∞
∗ (W ) = H∗+1(lim←−

j

1 S(Wj))

and there are defined short exact sequences

0 −→ lim←−
j

1 Hr+1(W\Kj) −→ H∞
r (W ) −→ lim←−

j

Hr(W\Kj) −→ 0 ,

0 −→ lim←−
j

1 Hr+1(Wj) −→ H∞
r (W ) −→ lim←−

j

Hr(Wj) −→ 0 .

(iii) The composites

πr(e(W ))
Hurewicz−−−−→ Hr(e(W )) −→ H∞

r (W )

fit into morphisms of exact sequences

0 w lim←−
j

1 πr+1(Wj) w

u

πr(e(W )) w

u

lim←−
j

πr(Wj) w

u

0

0 w lim←−
j

1 Hr+1(Wj) w H∞
r (W ) w lim←−

j

Hr(Wj) w 0

(iv) The inclusion W−→W∞ induces a chain map

Slf (W ) = lim←−
j

S(W,W\Kj) −→ lim←−
j

S(W∞,W∞\Kj)

which is a homology equivalence, inducing isomorphisms in homology

H lf
∗ (W ) = H∗(lim←−

j

S(W,W\Kj))
'−→ H∗(lim←−

j

S(W∞,W∞\Kj)) .

Proof The inverse systems {S(W\Kj)}, {S(Wj)} have the same inverse
and derived limits, since

. . . ⊆ S(W\Kj) ⊆ S(Wj) ⊆ S(W\Kj−1) ⊆ S(Wj−1) ⊆ . . . .

Similarly for {S(W,W\Kj)}, {S(W,Wj)}. Thus in verifying (i) and (ii) it
suffices to only consider the expressions in Kj ’s in detail.

(i) We shall define a chain isomorphism

Ψ : Slf (W ) −→ lim←−
j

S(W,W\Kj) .
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Suppose given an element
∏
α

nασα of Slf (W ). For every j = 1, 2, 3, . . .

there exist at most finitely many α, say αj1 , . . . , αjn(j)
, such that nα 6= 0

and |σα| ∩Kj 6= ∅. Here | · | denotes the image of a map. Define

Ψj : Slf (W ) −→ S(W,W\Kj) ;
∏
α

nασα −→
[ n(j)∑

k=1

nαjk
σαjk

]

where [·] denotes the class of an element of S(W ) in S(W,W\Kj). Since Ψj

is the composition

Slf (W )
Ψj+1−−→ S(W,W\Kj+1)

inc∗−→ S(W,W\Kj)

we have an induced chain map

Ψ : Slf (W ) −→ lim←−
j

S(W,W\Kj) .

To define the inverse of Ψ note that an element of lim←−
j

S(W,W\Kj) is repre-

sented by a sequence of elements xj ∈ S(W ) with xj = xj+1 ∈ S(W,W\Kj).
It follows that we can assume that the xj are given as follows : there exist a
sequence of singular simplexes σk in W and integers nk for k = 1, 2, 3, . . . , as

well as a sequence of integers 1 ≤ n(1) ≤ n(2) ≤ . . . such that xj =
n(j)∑
k=1

nkσk

where |σk| ∩Kj 6= ∅ if and only if k ≤ n(j). Then Ψ−1 is given by

Ψ−1 : lim←−
j

S(W,W\Kj) −→ Slf (W ) ; lim←−
j

xj −→
∏

k

nkσk .

(ii) The inverse system of short exact sequences of chain complexes

0 −→ S(W\Kj) −→ S(W ) −→ S(W,W\Kj) −→ 0 (j ≥ 0)

is such that

lim←−
j

S(W\Kj) = S

( ∞⋂

j=0

(W\Kj)
)

= S(∅) = 0 .

By 2.12 (ii) there is defined a short exact sequence

0 −→ lim←−
j

S(W ) −→ lim←−
j

S(W,W\Kj) −→ lim←−
j

1 S(W\Kj) −→ 0 ,

which (by (i)) can be identified with

0 −→ S(W )
i−→ Slf (W ) −→ coker(i) −→ 0 .

(iii) The composite of the chain maps

S(holim←−−−
j

Wj) −→ S(e(W )) −→ S∞(W )
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given by 2.14 and 3.15 is a chain map such that the induced homology
morphisms

H∗(holim←−−−
j

Wj)
'−→ H∗(e(W )) −→ H∞

∗ (W )

are compatible with the inverse and derived limits.
(iv) The inverse system {S(W∞,W∞\Kj)} is such that each of the chain

maps
S(W∞,W∞\Kj) −→ S(W∞,W∞\Kj−1)

is a surjection, so that

lim←−
j

1 S(W∞,W∞\Kj) = 0

and by 2.19 (ii) there are defined short exact sequences

0 −→ lim←−
j

1 Hr+1(W∞,W∞\Kj) −→ Hr(lim←−
j

S(W∞,W∞\Kj))

−→ lim←−
j

Hr(W∞,W∞\Kj) −→ 0 .

The chain maps

S(W,W\Kj) −→ S(W∞, W∞\Kj) (j ≥ 0)

are chain equivalences by excision. Applying the 5-lemma to the morphism
of exact sequences

0 w lim←−
j

1 Hr+1(W,W\Kj) w

u

∼=

Hr(lim←−
j

S(W,W\Kj)) w

u

lim←−
j

Hr(W,W\Kj) w

u

∼=

0

0 w lim←−
j

1Hr+1(W∞,W∞\Kj) w Hr(lim←−
j

S(W∞,W∞\Kj)) w lim←−
j

Hr(W∞,W∞\Kj) w 0

gives that H lf
∗ (W )−→H∗(lim←−

j

S(W∞, W∞\Kj)) are isomorphisms.

Remark 3.17 (i) The first short exact sequence in 3.16 (i) also occurs in
Spanier [150, Thm. 7.3].

(ii) It is not known if the homology equivalence in 3.16 (iv)

Slf (W ) −→ lim←−
j

S(W∞,W∞\Kj)

is a chain equivalence in general. In 7.15 it is shown that it is a chain
equivalence if W is a forward tame ANR.
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In general, H∞−1(W ) 6= 0 and H lf
∗ (W ) 6= H∗(W∞, {∞}) :

Example 3.18 Let W = N = {0, 1, 2, . . .}, with the discrete topology, and
let

Kj = {0, 1, 2, . . . , j} , Wj = {j + 1, j + 2, . . .} ⊂ W (j ≥ 0) .

The end space is e(W ) = ∅. Now

S(Kj) : . . . −→
j∑

0

Z
0−→

j∑

0

Z
1−→

j∑

0

Z
0−→

j∑

0

Z ,

S(W,Wj) : . . . −→
j∑

0

Z
0−→

j∑

0

Z
1−→

j∑

0

Z
0−→

j∑

0

Z ,

S(Wj) : . . . −→
∞∑

j+1

Z
0−→

∞∑

j+1

Z
1−→

∞∑

j+1

Z
0−→

∞∑

j+1

Z ,

so that

S(W∞, {∞}) = S(W ) = lim−→
j

S(Kj) :

. . . −→
∞∑

0

Z
0−→

∞∑

0

Z
1−→

∞∑

0

Z
0−→

∞∑

0

Z ,

Slf (W ) = lim←−
j

S(W,Wj) : . . . −→
∞∏

0

Z
0−→

∞∏

0

Z
1−→

∞∏

0

Z
0−→

∞∏

0

Z ,

S∞(W ) ' coker(i)∗+1 = lim←−
j

1 S(Wj)∗+1 :

. . . −→
∞∏

0

Z/
∞∑

0

Z
0−→

∞∏

0

Z/
∞∑

0

Z
1−→

∞∏

0

Z/
∞∑

0

Z
0−→

∞∏

0

Z/
∞∑

0

Z .

Thus

H0(W ) = H0(W∞, {∞}) =
∞∑

0

Z = Z[z]

6= H lf
0 (W ) =

∞∏

0

Z = Z[[z]] ,

H∞
−1(W ) =

∞∏

0

Z
/ ∞∑

0

Z = Z[[z]]/Z[z] 6= 0 ,

with H∗(W ) = H lf
∗ (W ) = H∞∗−1(W ) = 0 for ∗ 6= 0.
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A singular r-cochain in W is a formal product
∏
α

nασ∗α with coefficients

nα ∈ Z of singular r-simplexes σα : ∆r−→W . The singular cochain complex

S(W )∗ = HomZ(S(W ),Z)

has S(W )r the abelian group of singular r-cochains, with (singular) coho-
mology given by

H∗(W ) = H∗(S(W )) .

A locally finite singular r-cochain in W is a formal sum
∑
α

nασ∗α. The locally

finite singular cochain complex Slf (W )∗ is the subcomplex of S(W )∗ with
Slf (W )r the abelian group of locally finite singular r-cochains. The locally
finite cohomology of W is defined by

H∗
lf (W ) = H∗(Slf (W )∗) .

The cohomology of W at ∞ is defined by

H∗
∞(W ) = H∗(S∞(W )) = H∗+1(i∗ : Slf (W )∗−→S(W )∗) .

The cohomology version of 3.9 is given by :

Proposition 3.19 The various cohomology groups are related by a long
exact sequence

. . . −→ Hr
lf (W )

i−→ Hr(W ) −→ Hr
∞(W ) −→ Hr+1

lf (W ) −→ . . . .

Remark 3.20 Epstein [42] identifies the number of ends (1.14) of a lo-
cally finite CW complex W with the dimension of the real vector space
H0∞(W ;R).
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Cellular homology

It is well-known that the singular homology groups of a CW complex are
isomorphic to the cellular homology groups; it is less well documented (and
much harder to prove) that the singular locally finite homology groups of a
‘strongly locally finite’ CW complex are isomorphic to the cellular locally
finite homology groups. This is stated in 4.7, and is proved in Appendix A.

Definition 4.1 The cellular chain complex of a CW complex W is the free
Z-module chain complex C(W ) with chain objects

C(W )r = Hr(W (r),W (r−1)) =
∑

Ir

Z (r ≥ 0)

the direct sums of Z-modules indexed by the sets Ir of r-cells, and differen-
tials

dC(W ) : C(W )r = Hr(W (r),W (r−1))

−→ C(W )r−1 = Hr−1(W (r−1), W (r−2))

the homology boundary maps of the triple (W (r), W (r−1),W (r−2)).

Unfortunately, it is not in general possible to regard C(W ) as a subcom-
plex of the singular chain complex S(W ). (This is possible in special cases,
e.g. if W has the cell structure of a simplicial complex.) We now recall from
Wall [164] the precise relationship between C(W ) and S(W ). The filtration
of W by its p-skeleta W p induces a filtration of S(W ) by letting F pS(W ) be
the image of S(W p)−→S(W ) under the chain map induced by inclusion.
Following [164, p. 130] define a free subcomplex D(W ) of the singular chain
complex S(W ) by

Dp(W ) = ker(∂ : F pSp(W )−→F pSp−1(W )/F p−1Sp−1(W )) ,

such that C(W ) is a quotient complex of D(W ).

43
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Proposition 4.2 (Wall [164, Lemma 1]) The natural chain maps

S(W ) ←↩ D(W ) −→ C(W )

are chain equivalences of free Z-module chain complexes. In particular,
S(W ) and C(W ) are chain equivalent and

H∗(W ) = H∗(S(W )) = H∗(C(W )) .

This is of course well-known. The locally finite version is somewhat less
familiar.

Definition 4.3 The locally finite cellular chain complex of a CW complex
W is the Z-module chain complex C lf (W ) with chain objects

C lf (W )r = H lf
r (W (r),W (r−1)) =

∏

Ir

Z (r ≥ 0)

the direct products of Z-modules indexed by the sets Ir of r-cells. The
differentials

dClf (W ) : C lf (W )r = H lf
r (W (r),W (r−1))

−→ C lf (W )r−1 = H lf
r−1(W

(r−1),W (r−2))

are the boundary maps of the triples (W (r),W (r−1), W (r−2)).

For an arbitrary locally finite CW complex W , the chain complexes
C lf (W ) and Slf (W ) need not be homology equivalent :

Remark 4.4 For an arbitrary locally finite CW complex W , the chain com-
plexes C lf (W ) and Slf (W ) need not be homology equivalent. For example,
define

W = e0 ∪ e1 ∪ e2 ∪ . . .

by attaching each n-cell en to e0 ∪ e1 ∪ . . .∪ en−1 by collapsing all of ∂en to
a point in the interior of en−1. By 3.16

H0(Slf (W )) = H lf
0 (W ) = 0 .

Since W has only one cell in each dimension

C lf (W ) = C(W ) : . . .
0−→ Z

0−→ Z
0−→ Z ,

and H0(C lf (W )) = H0(W ) = Z, so that C lf (W ) and Slf (W ) are definitely
not homology equivalent.

We now introduce a class of CW complexes for which the locally finite
singular chain complex is homology equivalent to the locally finite cellular
chain complex.

Andrew
Text Box
             Need to assume that W is locally finite! 
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Definition 4.5 (Farrell, Taylor and Wagoner [51]) A CW complex is strongly
locally finite if it is the union of a countable, locally finite collection of finite
subcomplexes.

Strongly locally finite CW complexes are ANR’s.

It is shown in [51] that every countable locally finite, finite dimensional
CW complex is strongly locally finite, and that every countable locally
finite simplicial complex is a strongly locally finite CW complex. A proper
homotopy extension theorem and a proper cellular approximation theorem
for strongly locally finite CW complexes are established in [51].

Lemma 4.6 If W is a strongly locally finite CW complex and C is a compact
subset of W , then there exists a cofinite subcomplex V ⊆ W such that V ⊆
W\C.
Proof Let Ω be a locally finite family of finite subcomplexes which cover W .
Note that only finitely many subcomplexes in Ω meet C. Thus

V =
⋂
{K ∈ Ω |K ∩ C = ∅}

is a cofinite subcomplex of W such that V ⊆ W\C.

It is pointed out in Farrell, Taylor and Wagoner [51] that the CW complex
in Remark 4.4 is not strongly locally finite. W also does not satisfy the
conclusion of Lemma 4.6.

Let Dlf (W ) be the subcomplex of the locally finite singular chain complex
Slf (W ) defined by

Dlf
p (W ) = ker(∂ : F pSlf

p (W )−→F pSlf
p−1(W )/F p−1Slf

p−1(W )) ,

such that C lf (W ) is a quotient complex of Dlf (W ). By analogy with 4.2 :

Proposition 4.7 For a strongly locally finite CW complex W the natural
chain maps

Slf (W ) ←↩ Dlf (W ) −→ C lf (W )

are homology equivalences of Z-module chain complexes. In particular,
Slf (W ) and C lf (W ) are homology equivalent and

H lf
∗ (W ) = H∗(Slf (W )) = H∗(C lf (W )) .

Proof See Proposition A.7 in Appendix A.

By analogy with the singular chain complex at ∞ S∞(W ) (3.8) :
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Definition 4.8 The cellular chain complex at ∞ of a CW complex W is
defined by

C∞(W ) = C(i : C(W )−→C lf (W ))∗+1

with i : C(W )−→C lf (W ) the inclusion defined by regarding cellular r-
simplexes σ : ∆r−→W as locally finite cellular chains.

Corollary 4.9 For a strongly locally finite CW complex W the inclusion
C∞(W )−→S∞(W ) is a homology equivalence, so that

H∗(C∞(W )) = H∗(S∞(W )) = H∞
∗ (W ) .

The cohomology version of 4.7 gives :

Proposition 4.10 The locally finite cohomology groups of a strongly locally
finite CW complex W are such that

H∗
lf (W ) = H∗(Slf (W )∗) = H∗(C∗

lf (W )) ,

where C∗
lf (W ) ⊆ C(W )∗ is the locally finite cellular cochain subcomplex

defined by

Cr
lf (W ) = Hr

lf (W (r), W (r−1)) =
∑

Ir

Z

⊆ Cr(W ) = Hr(W (r),W (r−1)) =
∏

Ir

Z

with Ir an indexing set for the r-cells.

Proposition 4.11 Let W be a CW complex with a proper cellular map
p : W−→[0,∞) such that the inverse images

Vj = p−1[j, j + 1] ⊆ W (j ≥ 0)

are (necessarily finite) subcomplexes, so that W is a strongly locally finite
CW complex. Define the subcomplexes

Uj = p−1(j) = Vj−1 ∩ Vj ,

Wj = p−1[j,∞) =
∞⋃

i=j

Vi ,

Kj = p−1[0, j] =
j−1⋃

i=0

Vi ⊆ W ,
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so that

W =
∞⋃

j=0

Vj =
∞⋃

j=0

Wj =
∞⋃

j=0

Kj ,

U0 = K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ W ,

W = W0 ⊇ W1 ⊇ W2 ⊇ . . . ,
∞⋂

j=0

Wj = ∅ ,

and write the inclusions as

f+
j : Uj −→ Vj , f−j : Uj −→ Vj−1 , gj : Wj −→ Wj−1 .

Vj−1 Vj Vj+1

Uj−1 Uj Uj+1 Uj+2

W

(i) The cellular chain complex is such that up to homology equivalence

C(W ) = lim−→
j

C(Kj)

' C(
∞∑

j=1

(f+
j − f−j ) :

∞∑

j=1

C(Uj)−→
∞∑

j=0

C(Vj)) .

The homology groups are such that

H∗(W ) = lim−→
j

H∗(Kj) ,

and fit into a long exact sequence

. . . −→
∞∑

j=1

Hr(Uj)

∑
j

(f+
j −f−j )

−−−−−−→
∞∑

j=0

Hr(Vj) −→ Hr(W )

−→
∞∑

j=1

Hr−1(Uj)

∑
j

(f+
j −f−j )

−−−−−−→
∞∑

j=0

Hr−1(Vj) −→ . . . .

(ii) The cellular locally finite chain complex is such that up to homology
equivalence

C lf (W ) = lim←−
j

C(W,Wj) = lim←−
j

C(Kj , Uj)

' C(
∞∏

j=1

(f+
j − f−j ) :

∞∏

j=1

C(Uj)−→
∞∏

j=0

C(Vj)) .
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The locally finite homology groups fit into a long exact sequence

. . . −→
∞∏

j=1

Hr(Uj)

∏
j

(f+
j −f−j )

−−−−−−→
∞∏

j=0

Hr(Vj) −→ H lf
r (W )

−→
∞∏

j=1

Hr−1(Uj)

∏
j

(f+
j −f−j )

−−−−−−→
∞∏

j=0

Hr−1(Vj) −→ . . . .

The locally finite homology groups also fit into a long exact sequence

. . . −→
∞∏

j=1

Hr+1(W,Wj)

1−
∏
j

gj

−−−−→
∞∏

j=1

Hr+1(W,Wj) −→ H lf
r (W )

−→
∞∏

j=1

Hr(W,Wj)

1−
∏
j

gj

−−−−→
∞∏

j=1

Hr(W,Wj) −→ . . . ,

which breaks up into short exact sequences

0 −→ lim←−
j

1 Hr+1(W,Wj) −→ H lf
r (W ) −→ lim←−

j

Hr(W,Wj) −→ 0 .

(iii) The cellular cochain complex is such that up to homology equivalence

C(W )∗ = lim←−
j

C(Kj)∗

' C(
∑

j

((f+
j )∗ − (f−j )∗) :

∞∏

j=0

C(Vj)∗−→
∞∏

j=1

C(Uj)∗)∗−1 .

The cohomology groups fit into a long exact sequence

. . . −→
∞∏

j=0

Hr−1(Vj)

∏
j

((f+
j )∗−(f−j )∗)

−−−−−−−−−→
∞∏

j=1

Hr−1(Uj) −→ Hr(W )

−→
∞∏

j=0

Hr(Vj)

∏
j

((f+
j )∗−(f−j )∗)

−−−−−−−−−→
∞∏

j=1

Hr(Uj) −→ . . . .

The cohomology groups also fit into a long exact sequence

. . . −→
∞∏

j=1

Hr−1(Kj)

1−
∏
j

f∗j

−−−−→
∞∏

j=1

Hr−1(Kj) −→ Hr(W )

−→
∞∏

j=1

Hr(Kj)

1−
∏
j

f∗j

−−−−→
∞∏

j=1

Hr(Kj) −→ . . . ,
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which breaks up into short exact sequences

0 −→ lim←−
j

1 Hr−1(Kj) −→ Hr(W ) −→ lim←−
j

Hr(Kj) −→ 0 .

(iv) The locally finite cellular cochain complex is such that up to homology
equivalence

C lf (W )∗ = lim−→
j

C(W,Wj)∗ = lim−→
j

C(Kj , Uj)∗

' C(
∞∑

j=1

((f+
j )∗ − (f−j )∗) :

∞∑

j=0

C(Vj)∗−1−→
∞∑

j=1

C(Uj)∗−1) .

The locally finite cohomology groups of W are such that

H∗
lf (W ) = lim−→

j

H∗(W,Wj) ,

and fit into a long exact sequence

. . . −→
∞∑

j=0

Hr−1(Vj)

∑
j

((f+
j )∗−(f−j )∗)

−−−−−−−−−−→
∞∑

j=1

Hr−1(Uj) −→ Hr
lf (W )

−→
∞∑

j=0

Hr(Vj)

∑
j

((f+
j )∗−(f−j )∗)

−−−−−−−−−−→
∞∑

j=1

Hr(Uj) −→ . . . .

(v) The cellular chain complex at ∞ is such that up to homology equivalence

C∞(W ) ' lim←−
j

1 C(Wj)∗+1 ,

and the homology at ∞
H∞
∗ (W ) = H∗+1(lim←−

j

1 C(Wj))

fits into a long exact sequence

. . . −→
∞∏

j=1

Hr+1(Wj)

1−
∏
j

gj

−−−−→
∞∏

j=1

Hr+1(Wj) −→ H∞
r (W )

−→
∞∏

j=1

Hr(Wj)

1−
∏
j

gj

−−−−→
∞∏

j=1

Hr(Wj) −→ . . . ,

which breaks up into short exact sequences

0 −→ lim←−
j

1 Hr+1(Wj) −→ H∞
r (W ) −→ lim←−

j

Hr(Wj) −→ 0 .
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The cohomology at ∞ is such that

H∗
∞(W ) = H∗(lim←−

j

1 C(Wj)) = lim−→
j

H∗(Wj) .

Proof (i)–(iv) Use the definitions, and the various types of Mayer–Vietoris
exact sequence.

(v) Working as in the singular case (3.16) the application of 2.12 (ii) to
the inverse system of short exact sequence of chain complexes

0 −→ C(Wj) −→ C(W ) −→ C(W,Wj) −→ 0 (j ≥ 0)

gives a short exact sequence of chain complexes

0 −→ lim←−
j

C(Wj) −→ lim←−
j

C(W ) −→ lim←−
j

C(W,Wj)

−→ lim←−
j

1 C(Wj) −→ lim←−
j

1 C(W ) −→ 0 ,

with

lim←−
j

C(Wj) = C(
⋂

j

Wj) = C(∅) = 0 , lim←−
j

C(W ) = C(W ) ,

lim←−
j

C(W,Wj) = C lf (W ) , lim←−
j

1 C(W ) = 0 .

Remark 4.12 The short exact sequence for Hr(W ) of 4.11 (iii) is the
prototypical lim←−− lim←−

1 exact sequence of Milnor [97].

Example 4.13 If each of the finite CW complexes Uj , Vj (j ≥ 0) in 4.11 is
path-connected then W is path-connected with

H0(W ) = H0(W ) = Z , H lf
0 (W ) = H0

lf (W ) = 0 ,

H∞
−1(W ) = H−1

∞ (W ) = 0 .

Example 4.14 Let W = {(x, 0) |x ≥ 0} ∪
∞⋃

j=0
Cj ⊂ R2, with Cj the circle

centre (j, 1/4) of radius 1/4 and p : W −→ [0,∞) ; (x, y)−→x.
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Thus W is half an infinite cyclic cover of S1∨S1. Note that W is the special
case n = 0 of the space in 2.30, and that it is proper homotopy equivalent
to Jacob’s ladder (2.26). The cellular chain complex of W is given by

C(W ) : . . . −→ 0 −→ Z[z]⊕ Z[z]
(1− z 0)
−−−−−−→ Z[z]

so that

Hr(W ) =




Z if r = 0 ,
Z[z] if r = 1 ,
0 otherwise ,

Hr(W ) =





Z if r = 0 ,
Z[[z]] if r = 1 ,
0 otherwise ,

H lf
r (W ) =

{
Z[[z]] if r = 1 ,
0 otherwise ,

Hr
lf (W ) =

{
Z[z]⊕ Z if r = 1 ,
0 otherwise ,

H∞
r (W ) =

{
(Z[[z]]/Z[z])⊕ Z if r = 0 ,
0 otherwise ,

Hr
∞(W ) =




Z if r = 0 ,
Z[[z]]/Z[z] if r = 1 ,
0 otherwise .

Proposition 4.15 Let W = Tel(fj) be the mapping telescope (2.3) of a
direct system of cellular maps of finite CW complexes

fj : Uj −→ Uj+1 (j ≥ 0) .

The various homology and cohomology groups are given by

H∗(W ) = H∞
∗ (W ) = lim−→

j

H∗(Uj) ,

H∗(W ) = H∗
∞(W ) , H lf

∗ (W ) = H∗
lf (W ) = 0

with short exact sequences

0 −→ lim←−
j

1 Hr−1(Uj) −→ Hr(W ) −→ lim←−
j

Hr(Uj) −→ 0 .
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Proof Apply 4.11, with p : W−→[0,∞) such that

Vj = p−1[j, j + 1]

= (mapping cylinder of fj : Uj−→Uj+1) ' Uj+1 ,

Wj = p−1[j,∞) = Tel(fi | i ≥ j) ' W,

Kj = p−1[0, j]

= (mapping cylinder of fj−1 · · · f1f0 : U0−→Uj) ' Uj ,

f+
j ' fj : Uj −→ Vj ' Uj+1 , f−j ' 1 : Uj −→ Vj−1 ' Uj .

Proposition 4.16 Let W = W(gj) be the mapping cotelescope (2.16) of an
inverse system of cellular maps of finite CW complexes

gj : Uj −→ Uj−1 (j ≥ 1) .

(i) The homotopy groups of the end space e(W ) fit into short exact se-
quences

0 −→ lim←−
j

1 πr+1(Uj) −→ πr(e(W )) −→ lim←−
j

πr(Uj) −→ 0 .

(ii) The various homology and cohomology groups are given by

H∗(W ) = H∗(U0) , H∗(W ) = H∗(U0) ,

H∗
∞(W ) = lim−→

j

H∗(Uj) , H∗
lf (W ) = lim−→

j

H∗(U0, Uj)

with H lf
∗ (W ), H∞∗ (W ) fitting into short exact sequences

0 −→ lim←−
j

1 Hr+1(U0, Uj) −→ H lf
r (W ) −→ lim←−

j

Hr(U0, Uj) −→ 0 ,

0 −→ lim←−
j

1 Hr+1(Uj) −→ H∞
r (W ) −→ lim←−

j

Hr(Uj) −→ 0 .

Proof Apply 2.14 for (i) and 4.11 for (ii), with p : W−→[0,∞) the canonical
proper map such that

Vj = p−1[j, j + 1] = (mapping cylinder of gj+1 : Uj+1−→Uj) ' Uj ,

Wj = p−1[j,∞) = W(fi | i ≥ j) ' Uj ,

Kj = p−1[0, j]

= (mapping cylinder of g1 · · · gj−1gj : Uj−→U0) ' U0 ' W ,

f+
j ' 1 : Uj −→ Vj ' Uj , f−j ' gj : Uj −→ Vj−1 ' Uj−1 .
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Example 4.17 Fix an integer s ≥ 2, and let

T = T (s : S1−→S1) = (S1 × I)/{(x, 0) = (xs, 1) |x ∈ S1}

be the mapping torus of s : S1−→S1; x−→xs. In (i) and (ii) below we shall
apply 4.11, 4.15 and 4.16 to compute the homology at ∞ of the two ends
T+, T− of the canonical infinite cyclic cover T of T , one of which is the
mapping telescope of {s : S1−→S1} regarded as a direct system, and the
other is the mapping cotelescope of {s : S1−→S1} regarded as an inverse
system. The general theory of the mapping torus and its canonical infinite
cyclic cover is developed in Chapter 14 below.

(i) Let T+ = Tel(s) be the mapping telescope of the direct system

fj = s : Uj = S1 −→ Uj+1 = S1 (j ≥ 0) .

The chain complexes are such that

C(T+) ' C(1− sz : Z[z]−→Z[z])∗−1 ⊕ C(1− z : Z[z]−→Z[z]) ,

C lf (T+) ' C(1− sz : Z[[z]]−→Z[[z]])∗−1 ⊕ C(1− z : Z[[z]]−→Z[[z]])

' 0 ,

and the various (co)homology groups are given by

H lf
∗ (T+) = H∗

lf (T+) = 0 ,

Hr(T+) = H∞
r (T+) = lim−→

j

Hr(Uj) =





Z if r = 0 ,
Z[1/s] if r = 1 ,
0 otherwise ,

Hr(T+) = Hr
∞(T+) = lim←−

j

Hr(Uj) =




Z if r = 0 ,
Ẑs if r = 1 ,
0 otherwise ,

with Z[1/s] the localization inverting s ∈ Z and Ẑs = lim←−
j

(Z/sjZ) the s-adic

completion of Z (2.28).
(ii) Let T− = W(s) be the mapping cotelescope of the inverse system

gj = s : Uj = S1 −→ Uj−1 = S1 (j ≥ 1) .

The chain complexes are such that

C(T−) ' C(s− z : Z[z]−→Z[z])∗−1 ⊕ C(1− z : Z[z]−→Z[z])

' C(S1) = Z∗−1 ⊕ Z ,

C lf (T−) ' C(s− z : Z[[z]]−→Z[[z]])∗−1 ,
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with

Hr(T−) = Hr(T−) =
{
Z if r = 0, 1 ,
0 otherwise ,

H lf
r (T−) =

{
Ẑs if r = 1 ,
0 otherwise ,

H∞
r (T−) =

{
Z⊕ (Ẑs /Z) if r = 0 ,
0 otherwise ,

Hr
lf (T−) =

{
Z[1/s]/Z if r = 2 ,
0 otherwise ,

Hr
∞(T−) =




Z if r = 0 ,
Z[1/s] if r = 1 ,
0 otherwise .

The Steenrod homology groups Hst∗ (X) are defined for compact metric
spaces X (Steenrod [156]). For a compact subset X ⊆ Sn+1 :

Hst
∗ (X) = Hn+1−∗(Sn+1, Sn+1\X)

( = Hn−∗(Sn+1\X) for ∗ 6= 0, n) ,

or equivalently

H̃st
∗ (X) = H̃n−∗(Sn+1\X) .

The Steenrod homology groups are homotopy invariant, like the singular
homology groups, and for finite CW complexes are just the usual singular
homology groups. The reduced singular and Steenrod homology groups
behave differently on countable infinite one-point unions, with

H̃∗(
∞∨

n=0

Xn) =
∞∑

n=0

H̃∗(Xn) , H̃st
∗ (

∞∨

n=0

Xn) =
∞∏

n=0

H̃st
∗ (Xn) ,

assuming that lim−→
n

diam(Xn) = 0 for Steenrod homology.

More generally, Milnor [95] proved that if X = lim←−
j

Xj is the inverse limit

of an inverse system X0←−X1←−X2←− . . . of compact metric spaces there
are defined exact sequences

0 −→ lim←−
j

1 Hst
r+1(Xj) −→ Hst

r (X) −→ lim←−
j

Hst
r (Xj) −→ 0 .

See Kahn, Kaminker and Schochet [80], Kaminker and Schochet [81]. Also,
see Carlsson and Pedersen [21] and Ferry [56] for the applications of Steenrod
homology to the Novikov conjecture.
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If W is a locally compact separable Hausdorff space (e.g. a countable
locally finite CW complex) then W∞ is compact separable Hausdorff, hence
metrizable, and Hst∗ (W∞) is defined.

Proposition 4.18 (Milnor [95]) The locally finite cellular homology groups
of a countable locally finite CW complex W are such that

H∗(C lf (W )) = Hst
∗ (W∞, {∞}) ,

with Hst∗ the Steenrod homology groups.

Remark 4.19 (i) For a strongly locally finite CW complex W the result of
4.18 can also be written as

H lf
∗ (W ) = Hst

∗ (W∞, {∞}) ,

using 4.7 to identify H∗(C lf (W )) = H lf
∗ (W ).

(ii) If W is a countable locally finite CW complex such that (W∞, {∞})
has the homotopy type of a finite CW pair

H∗(C lf (W )) = Hst
∗ (W∞, {∞}) = H∗(W∞, {∞}) .

It will be proved in 7.11 below that for a forward tame countable CW
complex W the pair (W∞, {∞}) has the homotopy type of a finite CW
pair, so that

H∗(W∞, {∞}) = Hst
∗ (W∞, {∞}) .
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Homology of covers

In dealing with the homological properties of non-compact spaces W and
the end spaces e(W ) we shall also need to consider the homology of some
cover W̃ of W (usually the universal cover) and the pullback cover ˜e(W )
of e(W ). The ordinary Whitehead theorem detects homotopy equivalences
by homology isomorphism of the universal covers. The main result of this
chapter (5.7) is the analogue of the Whitehead theorem which detects proper
homotopy equivalences using locally finite homology isomorphisms of the
universal covers.

Let W be a space with a regular cover W̃ , with group of covering trans-
lations π. The covering translations

g : W̃ −→ W̃ ; x −→ gx (g ∈ π)

are proper maps inducing isomorphisms

g∗ : H∗(W̃ )
'−→ H∗(W̃ ) , g∗ : H lf

∗ (W̃ )
'−→ H lf

∗ (W̃ )

so that the homology groups H∗(W̃ ) and the locally finite homology groups
H lf
∗ (W̃ ) are Z[π]-modules.

Definition 5.1 (i) The locally π-finite homology Z[π]-modules of W̃ are

H lf,π
∗ (W̃ ) = H∗(Slf,π(W̃ )) ,

with Slf,π(W̃ ) ⊆ Slf (W̃ ) the subcomplex consisting of the locally finite
singular chains in W̃ which project to locally finite singular chains in W .

(ii) The singular Z[π]-module chain complex at ∞
S∞,π(W̃ ) = C(i : S(W̃ )−→Slf,π(W̃ ))∗+1 ,

with i the inclusion. The locally π-finite homology of W at ∞ is defined by

H∞,π
∗ (W̃ ) = H∗(S∞,π(W̃ )) ,

56
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to fit into an exact sequence

. . . −→ H∞,π
r (W̃ ) −→ Hr(W̃ )

i−→ H lf,π
r (W̃ ) −→ H∞,π

r−1 (W̃ ) −→ . . . .

(iii) The π-cohomology of W̃ is

H∗
π(W̃ ) = H∗(HomZ[π](S(W̃ ),Z[π])) .

Example 5.2 (i) In the special case W̃ = W , π = {1}

H
lf,{1}
∗ (W ) = H lf

∗ (W ) , H
∞,{1}
∗ (W ) = H∞

∗ (W ) ,

H∗
{1}(W ) = H∗(W ) .

(ii) If W is compact then for any W̃ , π

H lf,π
∗ (W̃ ) = H∗(W̃ ) , H∞,π

∗ (W̃ ) = 0 .

By analogy with 3.15, 3.16 :

Proposition 5.3 Let ˜e(W ) be the cover of the end space e(W ) induced from
the cover W̃ of W by the projection p : e(W )−→W , and let p̃ : ˜e(W )−→W̃
be a π-equivariant lift of p.

(i) There is defined a natural Z[π]-module chain map

α̃ : S( ˜e(W )) −→ S∞,π(W̃ )

such that

p̃∗ : H∗( ˜e(W ))
α̃∗−→ H∞,π

∗ (W̃ ) −→ H∗(W̃ ) .

(ii) If W is a σ-compact space such that

W ⊇ W0 ⊇ W1 ⊇ . . . ⊇ Wj ⊇ Wj+1 ⊇ . . . ⊇
∞⋂

j=1

Wj = ∅

for closed cocompact subsets Wj ⊂ W with induced covers W̃j ⊂ W̃ there
are defined short exact sequences

0−→ lim←−
j

1 Hr+1(W̃ , W̃j)−→H lf,π
r (W̃ )−→ lim←−

j

Hr(W̃ , W̃j)−→ 0 ,

0−→ lim←−
j

1 Hr+1(W̃j)−→H∞,π
r (W̃ )−→ lim←−

j

Hr(W̃j)−→ 0 .
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A proper map f : V−→W between locally compact Hausdorff spaces
induces a Z[π]-module chain map

f̃ : Slf,π(Ṽ ) −→ Slf,π(W̃ ) ;
∏
α

nασα −→
∏
α

nα(f̃ ◦ σα)

for any regular cover W̃ of W with group of covering translations π, Ṽ =
f∗W̃ the induced cover of V and f̃ : Ṽ−→W̃ a π-equivariant lift of f .

Remark 5.4 In 7.10 it will be shown that for a ‘forward tame’ σ-compact
metric space W the Z[π]-module chain map α̃ : S( ˜e(W ))−→S∞,π(W̃ ) of 5.3
(i) is a chain equivalence, inducing isomorphisms

α̃∗ : H∗( ˜e(W ))
'−→ H∞,π

∗ (W̃ ) ,

so that there is defined an exact sequence of Z[π]-modules

. . . −→Hr( ˜e(W ))−→Hr(W̃ )
i−→ H lf,π

r (W̃ )−→Hr−1( ˜e(W ))−→ . . . .

Let now W be a CW complex with a regular cover W̃ and with group of
covering translations π.

Definition 5.5 (i) The cellular locally π-finite homology Z[π]-modules of W̃

are the homology modules H∗(C lf,π(W̃ )) of the Z[π]-module chain complex
C lf,π(W̃ ) with

C lf,π
r (W̃ ) = H lf,π

r (W̃ (r), W̃ (r−1)) .

(ii) The cellular Z[π]-module chain complex of W at ∞ is defined by

C∞,π(W̃ ) = C(i : C(W̃ )−→C lf,π(W̃ ))∗+1 .

Proposition 5.6 Let W be a countable strongly locally finite CW complex
with a regular cover W̃ and with group of covering translations π, and for
each r ≥ 0 let Ir be an indexing set for the r-cells of W .

(i) The inclusions

C lf,π(W̃ ) −→ Slf,π(W̃ ) , C∞,π(W̃ ) −→ S∞,π(W̃ )

are homology equivalences.
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(ii) The various homology and cohomology groups of W̃ are such that

H∗(W̃ ) = H∗(C(W̃ )) , H∗(W̃ ) = H∗(HomZ(C(W̃ ),Z)) ,

H∗
π(W̃ ) = H∗(HomZ[π](C(W̃ ),Z[π])) ,

H lf,π
∗ (W̃ ) = H∗(C lf,π(W̃ )) ,

H∗
lf,π(W̃ ) = H∗(C lf,π(W̃ )∗) ,

H∞,π
∗ (W̃ ) = H∗(C∞,π(W̃ ))

with

C(W̃ )r = Hr(W̃ (r), W̃ (r−1)) =
∑

Ir

Z[π] ,

HomZ(C(W̃ ),Z)r = Hr(W̃ (r), W̃ (r−1)) =
∏

Ir

Z[[π]] ,

HomZ[π](C(W̃ ),Z[π])r = Hr
π(W̃ (r), W̃ (r−1)) =

∏

Ir

Z[π] ,

C lf (W̃ )r = H lf
r (W̃ (r), W̃ (r−1)) =

∏

Ir

Z[[π]] ,

C lf (W̃ )r = Hr
lf (W̃ (r), W̃ (r−1)) =

∑

Ir

Z[π] ,

C lf,π(W̃ )r = H lf,π
r (W̃ (r), W̃ (r−1)) =

∏

Ir

Z[π] ,

where Z[π] =
∑
π
Z, Z[[π]] =

∏
π
Z.

Proof There exists a subcomplex Dlf,π(W̃ ) ⊂ Slf,π(W̃ ) such that the nat-
ural Z[π]-module chain maps

Slf,π(W̃ ) ←↩ Dlf,π(W̃ ) −→ C lf,π(W̃ )

are homology equivalences. See Proposition A.7 in Appendix A.

The Whitehead theorem states that a map of connected CW complexes
is a homotopy equivalence if and only if it induces isomorphisms of funda-
mental groups and the homology groups of the universal covers. Farrell,
Taylor and Wagoner [51] established a Whitehead theorem in the proper
category; roughly speaking, a homotopy equivalence of locally finite infinite
CW complexes is a proper homotopy equivalence if and only if it induces
isomorphisms of the fundamental groups at ∞ and of the locally finite co-
homology groups. We shall only need the following special case :
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Proposition 5.7 Let W1, W2 be connected finite dimensional locally finite
infinite CW complexes equipped with proper cellular maps pi : Wi−→R such
that the subcomplexes

W+
i = (pi)−1[0,∞) , W−

i = (pi)−1(−∞, 0] ⊂ Wi

are connected with the inclusions inducing isomorphisms

π1(W±
i ) ∼= π∞1 (W±

i ) ∼= π1(Wi) (i = 1, 2) .

Let f : W1−→W2 be a proper cellular map with a proper homotopy p2f '
p1 : W1−→R.

(i) The map f is a proper homotopy equivalence if and only if it induces
isomorphisms

f∗ : π1(W1)
'−→ π1(W2) , f̃∗ : H∗(W̃1)

'−→ H∗(W̃2) ,

f̃∗ : H∗
lf (W̃2)

'−→ H∗
lf (W̃1)

with W̃1, W̃2 the universal covers of W1, W2.
(ii) The map f is a proper homotopy equivalence if and only if it induces

isomorphisms

f∗ : π1(W1)
'−→ π1(W2) , f̃∗ : H∗(W̃1)

'−→ H∗(W̃2) ,

f̃∗ : H lf,π
∗ (W̃1)

'−→ H lf,π
∗ (W̃2)

with π = π1(W1) = π1(W2).
Proof (i) A special case of the proper Whitehead theorem of [51].

(ii) Given a Z[π]-module which is expressed as a countable direct sum of
f.g. free Z[π]-modules

M =
∞∑

j=−∞
M(j)

define the locally finite Z[π]-module

M lf =
∞∏

j=−∞
M(j) ,

and the locally finite dual Z[π]-module

Homlf
Z[π](M,Z[π]) = HomZ[π](M

lf ,Z[π])

=
∞∑

j=−∞
HomZ[π](M(j),Z[π]) .

There are evident identifications
M(j) = HomZ[π](HomZ[π](M(j),Z[π]),Z[π]) ,

M lf = HomZ[π](Homlf
Z[π](M,Z[π]),Z[π])
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so that
C lf (W̃i)∗ = HomZ[π](C

lf,π(W̃i),Z[π]) ,

C lf,π(W̃i) = HomZ[π](C
lf (W̃i)∗,Z[π]) .

Thus the Z[π]-module chain map f̃∗ : C lf (W̃2)∗−→C lf (W̃1)∗ is a homology
equivalence if and only if the Z[π]-module chain map f̃ : C lf,π(W̃1)−→
C lf,π(W̃2) is a homology equivalence, and (i) is equivalent to (ii).

Definition 5.8 (i) An n-dimensional geometric Poincaré complex is a finite
CW complex W with a fundamental class [W ] ∈ Hn(W ) such that the cap
product defines Z[π]-module isomorphisms

[W ] ∩ − : H∗
π(W̃ )

'−→ Hn−∗(W̃ ) ,

with W̃ the universal cover of W and π = π1(W ).
(ii) An n-dimensional geometric Poincaré pair is a finite CW pair (W,∂W )

with a fundamental class [W ] ∈ Hn(W,∂W ) such that the cap product de-
fines Z[π]-module isomorphisms

[W ] ∩ − : H∗
π(W̃ , ∂W̃ )

'−→ Hn−∗(W̃ ) ,

with W̃ , π as in (i) and ∂W̃ ⊂ W̃ the induced cover of ∂W . In addition, it
is required that ∂W be an (n− 1)-dimensional geometric Poincaré complex
– this is automatic if π1(∂W ) = π1(W ).

(iii) An n-dimensional geometric Poincaré cobordism (V ; U,U ′) is an n-
dimensional geometric Poincaré pair (V, ∂V ) such that ∂V = U q U ′ for
disjoint subcomplexes U,U ′ ⊆ V , in which case the cap product defines
Z[π]-module isomorphisms

[V ] ∩ − : H∗
π(Ṽ , Ũ)

'−→ Hn−∗(Ṽ , Ũ ′) (π = π1(V )) .

(iv) An open n-dimensional geometric Poincaré pair is a locally finite
CW pair (W,∂W ) with ∂W finite, together with a fundamental class [W ] ∈
H lf

n (W,∂W ) such that the cap product defines Z[π]-module isomorphisms

[W ] ∩ − : H∗
lf,π(W̃ , ∂W̃ )

'−→ Hn−∗(W̃ ) (π = π1(W )) .

In addition, it is required that ∂W be an (n − 1)-dimensional geometric
Poincaré complex – as in (i), this is automatic if π1(∂W ) = π1(W ).

(v) A proper map p : (W,∂W )−→([0,∞), {0}) from a locally finite CW
pair is n-dimensional (geometric) Poincaré transverse if each

(Vj ; Uj , Uj+1) = p−1([j, j + 1]; {j}, {j + 1}) (j ≥ 0)

is an n-dimensional geometric Poincaré cobordism.



62 Ends of complexes

Example 5.9 (i) A compact n-dimensional manifold is an n-dimensional
geometric Poincaré complex, and similarly for pairs and cobordisms.

(ii) An open n-dimensional manifold with compact boundary (W,∂W ) is
an open n-dimensional geometric Poincaré pair with a Poincaré transverse
map p : (W,∂W )−→([0,∞), {0}) (cf. 5.11 below).

(iii) If W is an n-dimensional geometric Poincaré complex with a map
c : W−→S1 then the infinite cyclic cover W = c∗R of W is an open n-
dimensional geometric Poincaré complex (= open n-dimensional geometric
Poincaré pair of the type (W, ∅)).

Proposition 5.10 (i) The various homology and cohomology groups associ-
ated to an open n-dimensional geometric Poincaré pair (W,∂W ) are related
by a Poincaré duality isomorphism of exact sequences

. . . w Hr−1
∞,π(W̃ )

u
[W ] ∩ − ∼=

w Hr
lf,π(W̃ , ∂W̃ )

u
[W ] ∩ − ∼=

w Hr
π(W̃ , ∂W̃ ) w

u
[W ] ∩ − ∼=

Hr
∞,π(W̃ )

u
[W ] ∩ − ∼=

w . . .

. . . w H∞,π
n−r (W̃ ) w Hn−r(W̃ ) w H lf,π

n−r(W̃ ) w H∞,π
n−r−1(W̃ ) w . . .

(ii) If (W,∂W ) is a locally finite CW pair with an n-dimensional Poincaré
transverse map p : (W,∂W )−→([0,∞), {0}) then (W,∂W ) is an open n-
dimensional geometric Poincaré pair.
Proof (i) The dual of the Poincaré duality chain equivalence

[W ] ∩ − : C lf,π(W̃ , ∂W̃ )n−∗ '−→ C(W̃ )

is the Poincaré duality chain equivalence

[W ] ∩ − : C(W̃ , ∂W̃ )n−∗ '−→ C lf,π(W̃ ) .

The cap product

[W ] ∩ − : S∞,π(W̃ )n−1−∗ −→ S∞,π(W̃ )

is a Poincaré duality chain equivalence by the 5-lemma.
(ii) Each

(Kj ; ∂W,Uj) = p−1([0, j]; {0}, {j}) =
j−1⋃

i=0

(Vi; Ui, Ui+1) (j ≥ 1)

is an n-dimensional geometric Poincaré cobordism, with

Wj = p−1[j,∞) =
∞⋃

i=j

Vi ⊆ W .
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The direct limit of the Poincaré duality isomorphisms

[Kj ] ∩ − : Hr
π(W̃ , ∂W̃ q W̃j) = Hr

π(K̃j , ∂W̃ q Ũj)
'−→ Hn−r(K̃j)

is the Poincaré duality isomorphism

[W ] ∩ − : Hr
lf,π(W̃ , ∂W̃ ) = lim−→

j

Hr
π(K̃j , ∂W̃ q Ũj)

'−→ Hn−r(W̃ ) = lim−→
j

Hn−r(K̃j) .

The inverse and derived limits of the Poincaré duality isomorphisms

[Kj ] ∩ − : Hn−∗
π (K̃j , ∂W̃ )

'−→ H∗(K̃j , Ũj) = H∗(W̃ , W̃j)

determine an isomorphism of short exact sequences

0 w lim←−
j

1 Hr−1
π (K̃j , ∂W̃ )

u

[Kj ] ∩ − ∼=

w Hr
π(W̃ , ∂W̃ )

u

[W ] ∩ − ∼=

w lim←−
j

Hr
π(K̃j , ∂W̃ ) w

u

[Kj ] ∩ − ∼=

0

0 w lim←−
j

1 Hn−r+1(K̃j , Ũj) w H lf,π
n−r(W̃ ) w lim←−

j

Hn−r(K̃j , Ũj) w 0

Example 5.11 By Morse theory, an (oriented) open n-dimensional manifold
with compact boundary (W,∂W ) admits a proper map

p : (W,∂W ) −→ ([0,∞), {0})
which is manifold transverse at {0, 1, 2, . . .} ⊂ [0,∞), with each

(Vj ; Uj , Uj+1) = p−1([j, j + 1]; {j}, {j + 1}) (j ≥ 0)

an n-dimensional manifold cobordism. Then p is geometric Poincaré trans-
verse and (W,∂W ) is an open n-dimensional geometric Poincaré pair.

For any space W satisfying the forward tameness condition of Chapter 7
below the homology and cohomology at ∞ are realized by the end space
e(W ), with

H∞
∗ (W ) = H∗(e(W )) , H∗

∞(W ) = H∗(e(W )) .

By 5.10 the homology and cohomology at ∞ of an open n-dimensional
geometric Poincaré pair (W,∂W ) with a Poincaré transverse proper map
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p : (W,∂W )−→([0,∞), {0}) are related by (n − 1)-dimensional Poincaré
duality

Hn−1−∗
∞ (W ) = H∞

∗ (W ) .

If (W,∂W ) is forward tame and also reverse tame (Chapter 8) this is real-
ized geometrically, with the end space e(W ) a finitely dominated (n − 1)-
dimensional geometric Poincaré space such that

Hn−1−∗(e(W )) = H∗(e(W )) .



6

Projective class and torsion

This chapter serves two purposes : firstly, a recollection of the fundamental
properties of the algebraic theories of the Wall finiteness obstruction and
Whitehead torsion, and secondly to introduce the locally finite finiteness
obstruction. The relationship between ordinary homology, locally finite
homology and homology at ∞ is mirrored in the context of the finiteness
obstruction.

Let A be a ring. A domination (D, f, g, h) of an A-module chain complex
C by an A-module chain complex D is given by chain maps

f : C −→ D , g : D −→ C

and a chain homotopy h : gf ' 1 : C−→C, so that C is a homotopy direct
summand of D. An A-module chain complex C is chain homotopy finite if
it is chain equivalent to a finite chain complex of f.g. free A-modules

F : . . . −→ 0 −→ . . . −→ 0 −→ Fn −→ Fn−1 −→ . . . −→ F0 .

An A-module chain complex C is finitely dominated if it is dominated by a
finite chain complex of f.g. free A-modules.

Proposition 6.1 (i) An A-module chain complex C is dominated by a free
A-module chain complex if and only if C is chain equivalent to a free A-
module chain complex.

(ii) An A-module chain complex C is finitely dominated if and only if it
is chain equivalent to a finite f.g. projective A-module chain complex

P : . . . −→ 0 −→ . . . −→ 0 −→ Pn −→ Pn−1 −→ . . . −→ P0 .

Proof (i) For any A-module chain maps f : C−→D, g : D−→C there is
defined in Ranicki [123, Chapter 6] an A[z, z−1]-module chain equivalence

C(z − gf : C[z, z−1]−→C[z, z−1]) ' C(z − fg : D[z, z−1]−→D[z, z−1]) .

(This is an abstract version of the mapping torus trick of M. Mather [91].)

65
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If (D, f, g, h) is a domination of C and D is a free A-module chain complex
then the left hand side is A-module chain equivalent to C, and the right
hand side is a free A-module chain complex. The converse is trivial.

(ii) A finite f.g. projective chain complex is finitely dominated since it is a
direct summand of a finite f.g. free chain complex. See Ranicki [120] for the
proof of the converse, including the construction from a finite domination
(D, f, g, h) of an explicit f.g. projective chain complex P chain equivalent
to a finitely dominated C. (In fact, by Lück and Ranicki [87] such P can
be constructed from the chain homotopy projection fg : D−→D.)

The projective class of a finitely dominated A-module chain complex C is
defined by

[C] =
∞∑

r=0

(−)r[Pr] ∈ K0(A)

with P any chain equivalent finite f.g. projective A-module chain complex,
as usual.

Proposition 6.2 (i) The reduced projective class of a finitely dominated
A-module chain complex C

[C] ∈ K̃0(A) = coker(K0(Z)−→K0(A))

is such that [C] = 0 if and only if C is chain homotopy finite.
(ii) If any two chain complexes in a short exact sequence of free A-module

chain complexes

0 −→ C −→ D −→ E −→ 0

are finitely dominated then so is the third, with the projective classes related
by

[C]− [D] + [E] = 0 ∈ K0(A) .

A finite structure (D, φ) on an A-module chain complex C is a finite chain
complex D of based f.g. free A-modules together with a chain equivalence
φ : C−→D. An A-module chain complex C is chain homotopy finite if and
only if it admits a finite structure.

The torsion of a contractible finite chain complex C of based f.g. free
A-modules is

τ(C) = τ(d + Γ :Codd−→Ceven) ∈ K1(A) ,

with Γ : 0 ' 1 : C−→C any chain contraction and

Ceven = C0 ⊕ C2 ⊕ C4 . . . , Codd = C1 ⊕ C3 ⊕ C5 . . . .
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The Whitehead group of A is defined to be

Wh(A) =

{
Wh(π) = K1(Z[π])/{±π} if A = Z[π] is a group ring ,

K̃1(A) = coker(K1(Z)−→K1(A)) = K1(A)/{±1} otherwise.

The torsion of a chain equivalence f : C−→D of finite chain complexes of
based f.g. free A-modules is the reduced torsion of the algebraic mapping
cone

τ(f) = τ(C(f)) ∈ Wh(A) .

The chain equivalence is simple if τ(f) = 0 ∈ Wh(A). A simple chain ho-
motopy type on a chain homotopy finite A-module chain complex C is an
equivalence class of finite structures (D, φ : C−→D), subject to the equiva-
lence relation

(D, φ) ∼ (D′, φ′) if τ(φ′φ−1 : D−→D′) = 0 ∈ Wh(A) .

Example 6.3 The algebraic mapping cone C(1−e : C−→C) has a canonical
simple chain homotopy type, for any self chain map e : C−→C of a finitely
dominated A-module chain complex C. If (D, f, g, h : gf ' 1C) is any finite
domination of C then (C(1 − feg : D−→D), φ) is a finite structure in the
canonical simple chain homotopy type, with

φ =
(

f feh

0 f

)
: C(1−e)r = Cr⊕Cr−1 −→ C(1−feg)r = Dr⊕Dr−1 .

(This is another application of the algebraic Mather trick cited in the proof
of 6.1 (i).)

We refer to Milnor [99] and Cohen [30] for accounts of simple homo-
topy theory, and to Rosenberg [136] for algebraic K-theory. See Ranicki
[120, 121, 123] for more detailed accounts of the algebraic theories of finite-
ness obstruction and torsion.

In the applications to topology A = Z[π] is a group ring. Here are some
examples when the algebraic K-groups are known :

Example 6.4 (i) The reduced projective class group of the group ring of
the quaternion group Q(8) = {±1,±i,±j,±k} is

K̃0(Z[Q(8)]) = Z2 ,

with generator [P ] the projective class of the f.g. projective Z[Q(8)]-module
P = im(p) defined by the image of the projection

p =
(

1− 8N 21N
−3N 8N

)
: Z[Q(8)]⊕ Z[Q(8)] −→ Z[Q(8)]⊕ Z[Q(8)] ,
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with N =
∑

g∈Q(8)
g ∈ Z[Q(8)] such that N2 = 8N (cf. Ranicki [129]).

(ii) The Whitehead group of the cyclic group of order 5 Z5 = {t | t5} is

Wh(Z5) = Z ,

with generator the torsion τ(u) of the unit u = 1− t + t2 ∈ Z[Z5]•.
(iii) For many infinite torsion-free groups π with finite classifying space

Bπ

K̃0(Z[π]) = Wh(π) = 0 ,

by the algebraic K-theory version of the integral Novikov conjecture. In par-
ticular, this is the case for the fundamental groups of hyperbolic manifolds
(Farrell and Jones [50]). Thus tame ends of high dimensional hyperbolic
manifolds have unique collarings. See Chapter D.3 of Benedetti and Pe-
tronio [6] for an account of the ends of hyperbolic manifolds, including a
geometric proof that certain ends of hyperbolic manifolds can be collared.
See also §12.6 of Ratcliffe [133].

The torsion of a homotopy equivalence f : K−→L of finite CW complexes
is defined by

τ(f) = τ(f̃ : C(K̃)−→C(L̃)) ∈ Wh(π1(L)) .

The homotopy equivalence f is simple if τ(f) = 0, which is the case if and
only if f is homotopic to the composite of a finite sequence of elementary
expansions and collapses.

A finite structure (Y, φ) on a space X is a finite CW complex Y together
with a homotopy equivalence φ : X−→Y . A topological space is homotopy
finite if it admits a finite structure, i.e. if it is homotopy equivalent to a
finite CW complex. A simple homotopy type on a space X is an equivalence
class of finite structures (Y, φ) on X, subject to the equivalence relation

(Y, φ) ∼ (Y ′, φ′) if τ(φ′φ−1 : Y−→Y ′) = 0 ∈ Wh(π1(X)) .

The simple homotopy types on a connected CW complex X are in one-to-
one correspondence with the simple chain homotopy types (if any) on the
cellular Z[π1(X)]-module chain complex C(X̃) of the universal cover X̃ of
X.

Example 6.5 A compact ANR is homotopy finite (West [168]), and has a
canonical simple homotopy type (Chapman [24]). For a finite CW complex
this is the simple homotopy type determined by the cellular structure.
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An h-cobordism is a manifold cobordism (W ;M, M ′) such that the inclu-
sions M−→W , M ′−→W are homotopy equivalences, with torsion

τ(W ; M, M ′) = τ(M−→W ) ∈ Wh(π1(W )) .

An s-cobordism is an h-cobordism (W ; M,M ′) with

τ(W ; M, M ′) = 0 ∈ Wh(π1(W )) .

The s-cobordism theorem is given by :

Theorem 6.6 (Barden, Mazur, Stallings) An n-dimensional h-cobordism
(W ; M, M ′) is an s-cobordism if (and for n ≥ 6 only if) (W ; M, M ′) is
homeomorphic rel M to M × (I; {0}, {1}).

The original h-cobordism theorem of Smale is the special case π1(W ) =
{1}, when every h-cobordism is an s-cobordism, by virtue of Wh({1}) = 0.
Kervaire [83] is the standard account of the s-cobordism theorem.

A domination (Y, f, g, h) of a space X by a space Y is defined by maps
f : X−→Y , g : Y−→X and a homotopy h : gf ' 1 : X−→X, so that X is
a homotopy direct summand of Y . A topological space is finitely dominated
if it is dominated by a finite CW complex.

Proposition 6.7 (i) A topological space X is dominated by a CW complex
if and only if it has the homotopy type of a CW complex.

(ii) A topological space X is finitely dominated if and only if X × S1 has
the homotopy type of a finite CW complex.
Proof For any maps f : X−→Y , g : Y−→X M. Mather [91] defines a
homotopy equivalence T (gf) ' T (fg) of the mapping tori (14.2) – see
Chapter 14 below for the definition of the mapping torus.

(i) If (Y, f, g, h) is a domination of a space X by a CW complex Y then
X×S1 ' T (gf) ' T (fg) determines a domination of X by the CW complex
T (fg). It follows from the homotopy equivalences X ' X×R ' T (fg) that
X is homotopy equivalent to a CW complex, namely the infinite cyclic cover
T (fg) of T (fg) (as defined in Chapter 14 below). The converse is trivial.

(ii) As for (i), noting that T (fg) is a finite CW complex for a finite CW
complex Y .

Let X̃ be a regular cover of a CW complex X, with group of covering
translations π. If X is finitely dominated then C(X̃) is a finitely dominated
Z[π]-module chain complex, and the projective class of X with respect to X̃
is defined by

[X] = [C(X̃)] ∈ K0(Z[π])
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as usual, with simply-connected component the Euler characteristic

χ(X) =
∞∑

r=0

(−)rrankCr(X)

=
∞∑

r=0

(−)rrankHr(X)/torsion ∈ K0(Z) = Z .

The main results of finiteness obstruction theory are summarized in :

Theorem 6.8 (Wall [163]) (i) A connected CW complex X is finitely dom-
inated (resp. homotopy finite) if and only if the fundamental group π1(X)
is finitely presented and the cellular chain complex C(X̃) of the universal
cover X̃ is a finitely dominated (resp. chain homotopy finite) Z[π1(X)]-
module chain complex.

(ii) The reduced projective class of a finitely dominated CW complex X

with respect to the universal cover X̃ is the finiteness obstruction

[X] ∈ K̃0(Z[π1(X)]) ,

such that [X] = 0 if and only if X is homotopy finite.
(iii) If π is a finitely presented group and P is a f.g. projective Z[π]-module

there exists a finitely dominated CW complex X with

π1(X) = π , [X] = [P ] ∈ K̃0(Z[π]) .

Idea of proof (i) It is clear that if X is finitely dominated (resp. homotopy
finite) then π1(X) is finitely presented and C(X̃) is finitely dominated (resp.
chain homotopy finite), so only the converse has to be verified. The original
proof in [163] was simplified by Hofer [67] using the algebraic theory of
finiteness obstruction of Ranicki [120], as follows. A connected CW complex
X with finitely presented π1(X) is homotopy equivalent to a CW complex
(also denoted by X) with finite 2-skeleton. If D is a based free Z[π1(X)]-
module chain complex with Dr = C(X̃)r for r = 0, 1, 2 and f : D−→C(X̃)
is a chain equivalence which is the identity in dimensions ≤ 2 then the
method of attaching cells to kill homotopy classes can be used to realize D
by a CW complex Y with a homotopy equivalence f : Y−→X inducing f :
C(Ỹ ) = D−→C(X̃). Consider first the case when C(X̃) is chain homotopy
finite, so that D can be chosen to be a f.g. free Z[π1(X)]-module chain
complex, Y is finite and X is homotopy finite. In the other case C(X̃) is
chain homotopy finitely dominated, and X × S1 is such that the cellular
Z[π][z, z−1]-module chain complex of the universal cover (X×S1)̃ = X̃×R

C(X̃ × R) = C(X̃)⊗Z C(R)

is chain homotopy finite, so that X × S1 is homotopy finite (by the first



6. Projective class and torsion 71

case) and X is finitely dominated.
(ii) Immediate from (i) and 6.2.
(iii) Let K be a finite CW complex with π1(K) = π, and let p = p2 :

Z[π]r−→Z[π]r be a Z[π]-module projection such that P = im(p). For any
N ≥ 2 the finite CW complex

L = (K × S1 ∨
∨
r

SN ) ∪−zp+1−p

⋃
r

DN+1

has a finitely dominated infinite cyclic cover L with two ends L
+, L

− such
that

π1(L) = π1(L
+) = π1(L

−) = π ,

[L+] = −[L−] = (−)N [P ] ∈ K̃0(Z[π]) .

(See Chapter 13 for an account of infinite cyclic covers. Note that L is
homotopy equivalent to K ×S1, so that L is homotopy equivalent to K.)

Proposition 6.9 Let W be a connected CW complex.
(i) If W is a regular cover of W with group of covering translations π

such that the classifying map π1(W )−→π is a split injection and the cellular
Z[π]-module chain complex C(W ) is finitely dominated, then W is finitely
dominated.

(ii) If V ⊆ W is a cofinite subcomplex which is finitely dominated then W
is also finitely dominated, such that

[W ] = u∗[V ] ∈ K̃0(Z[π1(W )])

with u∗ : π1(V )−→π1(W ) the morphism induced by the inclusion u : V−→W .
(iii) If W is finitely dominated and u : V−→W is the inclusion of a cofi-

nite subcomplex V ⊆ W with u∗ : π1(V )−→π1(W ) a split injection then V
is also finitely dominated, with

[V ] = r∗[W ] ∈ K̃0(Z[π1(V )])

for any surjection r : π1(W )−→π1(V ) splitting u∗, and

[W ] = u∗[V ] ∈ im(u∗ : K̃0(Z[π1(V )])−→K̃0(Z[π1(W )]))

= ker(1− u∗r∗ : K̃0(Z[π1(W )])−→K̃0(Z[π1(W )])) .

Proof (i) Since π1(W )−→π is a split injection the Z[π1(W )]-module chain
complex of the universal cover W̃ of W is induced from the Z[π]-module
chain complex of the cover W

C(W̃ ) = Z[π1(W )]⊗Z[π] C(W ) .

Thus C(W̃ ) is a finitely dominated Z[π1(W )]-module chain complex by 6.2
(ii), and W is finitely dominated by 6.8 (i). (Remark : W is connected



72 Ends of complexes

if and only if π1(W )−→π is a surjection, in which case split injectivity is
equivalent to isomorphism and W = W̃ .)

(ii) Let W̃ be the universal cover of W , and let ũ : Ṽ−→W̃ be a lift of
u : V−→W to the induced cover Ṽ of V . The cellular Z[π1(W )]-module
chain complex C(Ṽ ) is finitely dominated, and C(W̃ , Ṽ ) is finite f.g. free.
It now follows from the short exact sequence

0 −→ C(Ṽ )
ũ−→ C(W̃ ) −→ C(W̃ , Ṽ ) −→ 0

and 6.2 (ii) that C(W̃ ) is also finitely dominated, so that W is finitely
dominated by (i), with

[W ] = [C(W̃ )] = [C(Ṽ )] = u∗[V ] ∈ K̃0(Z[π1(W )]) .

(iii) Let W be the cover of W classified by r∗ : π1(W )−→π1(V ), so that
the induced cover V ⊆ W is the universal cover V of V . The cellular
Z[π1(V )]-module chain complex C(W ) is finitely dominated, and C(W,V )
is finite f.g. free. It now follows from the short exact sequence

0 −→ C(V )
ũ−→ C(W ) −→ C(W,V ) −→ 0

and 6.2 (ii) that C(V ) is also finitely dominated, so that V is finitely dom-
inated by (i), with

[V ] = [C(V )] = [C(W )] = r∗[W ] ∈ K̃0(Z[π1(V )]) .

Remark 6.10 A cofinite subcomplex V ⊆ W of a finitely dominated CW
complex W need not be finitely dominated. A fundamental group condition
such as the split injectivity of u∗ : π1(V )−→π1(W ) is necessary in 6.9 (iii)
to ensure that V is finitely dominated. Siebenmann [140, 8.8] constructed
in every dimension n ≥ 6 a contractible open n-dimensional manifold W
with one end which has stable π1 at ∞ but which is not reverse π1-tame
(in the terminology of Chapter 8), providing explicit examples of cofinite
pairs (W,V ⊂ W ) such that W is finitely dominated but V is not finitely
dominated. In 7.19 below it will be shown that a cofinite subcomplex of
a forward tame CW complex W with finitely dominated e(W ) is finitely
dominated.

Example 6.11 (i) A simply-connected CW complex W is finitely domi-
nated if and only if the homology H∗(W ) is finitely generated, in which
case W is homotopy finite, and the projective class is the Euler character-
istic

[W ] =
∞∑

r=0

(−)rrankHr(W ) = χ(W ) ∈ K0(Z) = Z .
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(ii) A simply-connected cofinite subcomplex V ⊆ W of a finitely domi-
nated CW complex W is homotopy finite.

The projective class has the following locally finite analogue :

Definition 6.12 Let W be a space with a regular cover W̃ such that
Slf,π(W̃ ) is a finitely dominated Z[π]-module chain complex, with π the
group of covering translations. The locally finite projective class of W with
respect to W̃ is

[W ]lf = [Slf,π(W̃ )] ∈ K0(Z[π]) .

The locally finite projective class is a proper homotopy invariant, with
simply-connected component the locally finite Euler characteristic :

Example 6.13 The simply-connected component of the locally finite pro-
jective class of a CW complex W with finitely generated H lf

∗ (W ) is

[W ]lf =
∞∑

r=0

(−)rrankH lf
r (W ) = χlf (W ) ∈ K0(Z) = Z .

Example 6.14 (i) The projective classes of R+ = [0,∞) and e(R+) ' {pt.}
are given by

[R+] = [e(R+)] = [Z] , [R+]lf = 0 ∈ K0(Z) .

(ii) The projective classes of R and e(R) ' S0 are given by

[R] = [Z] , [R]lf = −[Z] , [e(R)] = [Z⊕ Z] ∈ K0(Z) .

Example 6.15 As in 4.17 let W = Tel(s) be the mapping telescope of
s : S1−→S1, for some integer s ≥ 2, an infinite CW complex with cellular
Z-module chain complex

C(W ) : 0 −→ Z[z]

(
1− sz

0

)

−−−−−−→ Z[z]⊕ Z[z]
( 0 1− z )
−−−−−−−→ Z[z] .

The space W is not finitely dominated, since H1(W ) = Z[1/s] is not finitely
generated, so that the projective class [W ] ∈ K0(Z) is not defined. The
locally finite cellular chain complex

C lf (W ) : 0 −→ Z[[z]]

(
1− sz

0

)

−−−−−−→ Z[[z]]⊕ Z[[z]]
( 0 1− z )
−−−−−−−→ Z[[z]]

is contractible, so that the locally finite projective class is defined, with

[W ]lf = 0 ∈ K0(Z) = Z .
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Proposition 6.16 If W is a CW complex such that the Z[π]-module chain
complexes S(W̃ ), Slf,π(W̃ ) are finitely dominated then so is S∞(W̃ ), with
projective class

[S∞(W̃ )] = [W ]− [W ]lf ∈ K0(Z[π]) .

Here is a preview of the various projective class invariants we shall be
associating in Chapter 10 to a CW complex W , subject to various geometric
hypotheses on the behaviour of W at ∞. The fundamental group at ∞
π∞1 (W ) (2.23) comes equipped with a morphism π∞1 (W )−→π1(W ). The
‘locally finite projective class’ of a ‘forward tame’ W

[W ]lf = [Slf,π(W̃ )] = [C lf,π(W̃ )] ∈ K̃0(Z[π1(W )])

is defined in Chapter 10. If W is ‘forward and reverse tame’ then W and
e(W ) are finitely dominated (Chapter 9), and the finiteness obstruction of
e(W ) has image

[e(W )] = [W ]− [W ]lf ∈ K̃0(Z[π1(W )]) .

The ‘projective class at ∞’ of a ‘reverse π1-tame’ W

[W ]∞ ∈ K̃0(Z[π∞1 (W )])

is defined in Chapter 10, and has image [W ] ∈ K̃0(Z[π1(W )]). The ‘locally
finite projective class at ∞’ of a ‘forward tame’ W is also defined in Chapter
10,

[W ]lf∞ = [Slf,π(Ṽ )] = [C lf,π(Ṽ )] ∈ K̃0(Z[π∞1 (W )]) ,

for an appropriate cofinite subcomplex V ⊆ W such that π1(V ) = π∞1 (W ),
with image [W ]lf ∈ K̃0(Z[π1(W )]). The locally finite projective class at ∞
is an obstruction to W being ‘forward collared’, i.e. to the existence of a
cofinite subcomplex V ⊆ W homotopy equivalent to the end space e(W ).
If W is both forward and reverse tame then π1(e(W )) = π∞1 (W ) and the
finiteness obstruction of e(W ) is given by

[e(W )] = [W ]∞ − [W ]lf∞ ∈ K̃0(Z[π∞1 (W )]) .
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Forward tameness

We now recall the definitions of ‘forward tameness’ and ‘forward collaring’,
and derive various consequences. For a forward tame σ-compact metric
space W the homology at ∞ S∞(W ) of Chapter 3 is shown in 7.10 to be
just the homology of e(W ),

H∞
∗ (W ) = H∗(e(W )) ,

so that there is defined an exact sequence

. . . −→Hr(e(W ))−→Hr(W )−→H lf
r (W )−→Hr−1(e(W ))−→ . . . .

The locally finite homology of a forward tame ANR W is identified in 7.15
with the reduced homology of the one-point compactification W∞

H lf
∗ (W ) = H∗(W∞, {∞}) .

Definition 7.1 (Quinn [116]) Let W be a locally compact Hausdorff space.
(i) The space W is forward tame if there exists a closed cocompact sub-

space V ⊆ W such that the inclusion V × {0}−→W extends to a proper
map q : V × [0,∞)−→W .

(ii) The space W is forward collared if there exists a closed cocompact
ANR subspace V ⊆ W such that the identity V × {0}−→V extends to a
proper map q : V × [0,∞)−→V .

Forward tameness is a homotopy theoretic version of Siebenmann’s com-
pression axiom [148, 149]. Forward tameness will be interpreted as a homo-
topy pushout property in Chapter 12. In Parts Two and Three we shall be
particularly concerned with forward tameness and collaring for the ends of
infinite cyclic covers of finite CW complexes. In Chapter 13 we shall give
a homotopy theoretic criterion for forward tameness of such an end, and in
Chapter 23 we shall give a homological criterion. The ‘locally finite projec-
tive class at ∞’ of a forward tame CW complex constructed in Chapter 10
is an algebraic K-theory obstruction to forward collaring. In Chapter 13 it
will be shown that a forward tame end of an infinite cyclic cover of a finite
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CW complex is forward collared up to infinite simple homotopy (Chapter
11) if and only if this invariant vanishes.

The proper map q in 7.1 (i) is equivalent to a map of compact spaces

q : (V × [0,∞))∞ = V ∞ ∧ [0,∞] −→ W∞

such that (q)−1(∞) = ∞.

Proposition 7.2 (i) A forward collared ANR space is forward tame.
(ii) If a σ-compact metric space W is forward collared and V ⊆ W is

the closed cocompact subspace in 7.1 (ii) then there are defined homotopy
equivalences

e(W ) ' e(V ) ' V .

(iii) A σ-compact metric space W is forward collared if and only if W is
forward tame and there exists a closed cocompact ANR subspace V ⊆ W
such that the evaluation p : e(V )−→V is a homotopy equivalence.

(iv) A locally compact Hausdorff space W is forward collared if and only
if there exists a closed cocompact ANR subspace V ⊆ W such that the
inclusion V−→V × [0,∞);x−→(x, 0) is a proper homotopy equivalence.
Proof (i) Take V = W in 7.1 (i).

(ii) See 1.12 for e(W ) ' e(V ). The adjoint of the proper map q : V ×
[0,∞)−→V is a map q̂ : V−→e(V ) which is a homotopy inverse of the
projection p : e(V )−→V .

(iii) (⇐=) Let q : V−→e(V ) be a homotopy inverse for p. Thus, there is
a homotopy h : V × I−→V such that h0 = idV and h1 = pq. Since W is
forward tame, V is also, so there exist a closed cocompact subspace U ⊆ V
and a proper map g : U × [0,∞)−→V extending the inclusion.

Define

r : V × [0,∞) −→ V ; (x, t) −→
{

h(x, t) if 0 ≤ t ≤ 1 ,
q(x)(t− 1) if 1 < t < ∞ .

Even though r need not be proper (because neither h nor the adjoint of q
need be proper), if K ⊆ V is compact, then r|K×[0,∞) is proper. Define

G : g ' r|U×[0,∞) : U × [0,∞) −→ V ;

(x, t, u) −→ g(r(x, tu), t(1− u)) .

As with r, G need not be proper. However, if K ⊆ U is compact, then
G|K × [0,∞)× I is proper.

Choose a closed cocompact subspace U0 ⊆ U such that

cl(V \U) ∩ U0 = ∅
and choose a map φ : V−→I such that

φ−1(0) = U0 , φ−1(1) = cl(V \U) .
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Finally, define

f : V × [0,∞) −→ V ; (x, t) −→
{

r(x, t) if x ∈ cl(V \U) ,
G(x, t, φ(t)) if x ∈ U .

Then f is proper and f0 = idV .
(=⇒) Let V ⊆ W be a closed cocompact ANR subspace for which there

is a proper map f : V × [0,∞)−→V such that f0 = idV . Then the adjoint
f̃ : V−→e(V ) is a homotopy inverse for p because pf̃ = idV and f̃p ' ide(V ).

(iv) Suppose first that W is forward collared so that there exist a closed
cocompact subspace V ⊆ W and a proper map q : V ×[0,∞)−→V extending
the identity. To show that q is a proper homotopy inverse for the inclusion
V−→V × [0,∞) define a homotopy

h : identity ' inclusion ◦ q : V × [0,∞) −→V × [0,∞) ;

(x, s, t)−→(q(x, st), (1− t)s) .

It remains to verify that h is a proper homotopy, for which it suffices to
show that for any compact subspace K ⊆ V and N ≥ 0, h−1(K × [0, N ])
is compact. Since q is proper there exist a compact subspace K ′ ⊆ V and
n′ ≥ 0 such that q−1(K) ⊆ K ′ ×N ′. It follows that if

h(x, s, t) = (q(x, st), (1− t)s) ∈ K × [0, N ] ,

then x ∈ K ′, st ≤ N ′, (1− t)s ≤ N . In particular, s ≤ N + N ′ so that

h−1(K × [0, N ]) ⊆ K ′ × [0, N + N ′]× I .

Conversely, if p : V × [0,∞)−→V is a proper map with a proper homotopy
g : identity ' p ◦ inclusion : V−→V , then

q : V × [0,∞) −→ V ; (x, t) −→
{

g(x, t) if 0 ≤ t ≤ 1 ,
p(x, t− 1) if t ≥ 1

is a proper map extending the identity.

Example 7.3 (i) Let (L,K ⊆ L) be a pair of compact spaces with K an
ANR, and let

W = L ∪K×{0} K × [0,∞) .

Then W is forward collared, with V = K × [0,∞) ⊂ W a closed cocompact
ANR subspace such that the identity V × {0}−→V extends to the proper
map

q : V × [0,∞) −→ V ; ((x, s), t) −→ (x, s + t)

and

W∞ = L ∪ cK = L ∪K×{0} K × [0,∞]/K × {∞} , e(W ) ' K .
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(ii) Let (M, ∂M) be a compact manifold with boundary. The boundary
is collared (1.8), meaning that the interior

W = int(M) = M\∂M

is homeomorphic to M ∪ ∂M × [0,∞), and W is forward collared by (i),
with

W ' M , W∞ = M/∂M = M ∪ c ∂M , e(W ) ' ∂M .

(iii) Let η be a real n-plane vector bundle over a compact space K. The
total space E(η) is forward collared, with E(η) ' K. The one-point com-
pactification E(η)∞ and the end space e(E(η)) are such that

E(η)∞ = T (η) , e(E(η)) ' S(η)

with T (η) the Thom space of η and S(η) the (n− 1)-sphere bundle.
(iv) The special case of (ii) with (M, ∂M) = (Dn, Sn−1) (or (iii) with

K = {pt.}) shows that

W = int(M) = Rn

is forward collared, with

W∞ = Sn , e(W ) ' Sn−1 .

(v) The mapping telescope Tel(fj) of a direct system of maps fj : Xj−→
Xj+1 (2.3) is forward collared : the projection e(Tel(fj))−→Tel(fj) is a
homotopy equivalence by 2.5, so that 7.2 (iii) applies with V = W = Tel(fj).
The one-point compactification Tel(fj)∞ is contractible.

(vi) If X is a compact subset of the interior of a compact manifold M and
X has an I-regular neighbourhood in M in the sense of Siebenmann [148]
then a result of Ferry and Pedersen [57, p. 487] can be used to show that
M\X is forward tame. In particular, if X is 1-LCC embedded in M , and
has the shape of a CW complex (for example, if X has the homotopy type
of a CW complex) then M\X is forward tame by [148, p. 56].

Remark 7.4 (i) If a space W has finitely many ends, then W is forward
tame (resp. forward collared) if and only if each end of W is forward tame
(forward collared).

(ii) In 11.14 below we shall show that an ANR space W is forward tame
if and only if W × S1 is infinite simple homotopy equivalent to a forward
collared ANR space X.

Proposition 7.5 Let W be a forward tame space and let V ⊆ W be a closed
cocompact subspace for which the inclusion u : V−→W extends to a proper
map q : V × [0,∞)−→W . Let (W̃ , Ṽ ) be a cover of (W,V ) with group of
covering translations π.
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(i) If W is a σ-compact metric space the end space e(W ) is dominated by
V .

(ii) The inclusion of locally π-finite singular chain complexes is chain
homotopic to 0,

ũ ' 0 : Slf,π(Ṽ ) −→ Slf,π(W̃ ) ,

and there is defined a chain equivalence

Slf,π(W̃ , Ṽ ) ' Slf,π(W̃ )⊕ Slf,π(Ṽ )∗−1 .

Thus Slf,π(W̃ ) is dominated by the chain complex Slf,π(W̃ , Ṽ ) = S(W̃ , Ṽ ).
(iii) If W is an ANR and V is a closed cocompact ANR subspace with

the property that (W∞, V ∞) is a pair of compact ANR’s, then S(W̃ , Ṽ ) is
chain equivalent to a f.g. free Z[π]-module chain complex and Slf,π(W̃ ) is
finitely dominated.
Proof (i) The adjoint of q is a map

q̂ : V −→ e(W ) ; x −→ (t −→ q(x, t))

such that pW q̂ = u : V−→W . The map

F : e(V )× I −→ e(W ) ; (ω, t) −→ (s −→ q̂(ω(ts))((1− t)s))

defines a homotopy F : q̂pV ' e(u) : e(V )−→e(W ), so there is defined a
homotopy commutative diagram

e(V ) we(u)

u
pV

e(W )

u
pW

V wu
[[
[[
[]

q̂

W

By 1.12 e(u) : e(V )−→e(W ) is a homotopy equivalence. Use a homotopy
inverse to define a map

p = pV e(u)−1 : e(W ) −→ V

such that

q̂p ' 1 : e(W ) −→ e(W ) ,

so that V dominates e(W ).
(ii) For the inclusion u : V−→W of any closed cocompact subspace V ⊆

W the short exact sequence of Z[π]-module chain complexes

0 −→ Slf,π(Ṽ )
ũ−→ Slf,π(W̃ ) −→ Slf,π(W̃ , Ṽ ) −→ 0
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has Slf,π(W̃ , Ṽ ) = S(W̃ , Ṽ ) a free chain complex, so that 3.7 (ii) gives a
chain equivalence C(ũ) ' S(W̃ , Ṽ ). Now suppose V, q are as in (i). Let

k : Ṽ −→ Ṽ × [0,∞) ; x −→ (x, 0) .

The chain homotopy in the proof of 3.15

G : k ' 0 : Slf,π(Ṽ ) −→ Slf,π(Ṽ × [0,∞))

determines a chain homotopy

q̂G : q̂k = ũ ' 0 : Slf,π(Ṽ ) −→ Slf,π(W̃ ) ,

so that there are defined chain equivalences

C(ũ) ' Slf,π(W̃ )⊕ Slf,π(Ṽ )∗−1 ' S(W̃ , Ṽ ) .

(iii) The quotient space W/V = W∞/V ∞ is a compact ANR and

S(W̃ , Ṽ ) ' S(W̃/Ṽ ) .

Every compact ANR has the homotopy type of a finite CW complex (West
[168]), so that S(W̃ , Ṽ ) is chain equivalent to a f.g. free Z[π]-module chain
complex.

Corollary 7.6 The end space e(W ) of a forward tame strongly locally finite
CW complex W has the homotopy type of a CW complex.
Proof Apply 7.5 to a subcomplex V ⊆ W for which there is a proper map
V × [0,∞)−→W extending the inclusion V−→W . Thus e(W ) is dominated
by a CW complex V , and hence (by 6.7) has the homotopy type of a CW
complex.

A finitely dominated CW complex W with a proper map W−→R+ need
not be forward tame :

Example 7.7 Let W be the subspace of R2 defined by

W = {(x, x) |x ∈ [0,∞)} ∪ {(x, n) |x ≥ n, n = 0, 1, 2, . . .} .
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The projection onto the positive real axis is a proper map

p : W −→ [0,∞) ; (x, y) −→ x

with respect to which W has a bounded CW complex structure. W is
contractible, and hence finitely dominated. The end space e(W ) is not
finitely dominated, since π0(e(W )) is (countably) infinite : no two of the
proper paths

ωn : [0,∞) −→ W ; t −→ (n + t, n) (n ≥ 0)

are proper homotopic. Moreover, since every closed cocompact subspace
V ⊆ W has only finitely many path components, e(W ) is not dominated by
any such V . By 7.5 (i), W is not forward tame.

In fact, W∞ is homotopy equivalent to the Hawaiian earring, the subspace
of the plane consisting of circles of radius 1/n and centre (1/n, 0) (n =
1, 2, 3, . . .), which is well-known not to be homotopy equivalent to a CW
complex. (This can be proved as follows. By definition, a space X is weakly
locally contractible if every point x ∈ X has a neighbourhood U ⊆ X which
is contractible in X. Any space homotopy equivalent to X is then also
weakly locally contractible (Dugundji [38, p. 375, Exercise 7]). Every CW
complex is (weakly) locally contractible. The Hawaiian earring is not weakly
locally contractible at 0.)

Remark 7.8 A locally compact space W is movable at the end if for each
cocompact subspace U of W there exists a cocompact subspace V ⊆ U of
W such that for each cocompact subspace Z of W there is a homotopy
f : V × I−→U such that f0 = inclusion : V−→U and f(V × {1}) ⊆ Z (see
Geoghegan [63]). Movability at the end is a precursor to forward tameness
and originated in shape theory with the notion of movability for compacta
due to Borsuk [7]. End movability has played a role in the theory of ends
of open 3-manifolds (see Brin and Thickstun [11]). Clearly a forward tame
space is movable at the end. The converse does not hold as the space W in
7.7 is movable at the end but not forward tame.

Remark 7.9 (i) The CW complex W = {(x, n) ∈ R2 |x ≥ 0, n ∈ N} is
a forward tame locally finite CW complex with W ' e(W ) not finitely
dominated. (This example appears again in 12.6.)

(ii) If W is forward tame and path-connected at ∞, then W is semistable
at ∞ (2.23).

Proposition 7.10 Let W be a σ-compact metric space W which is forward
tame and path-connected at ∞, and let W ⊇ W0 ⊇ W1 ⊇ . . . be a sequence
of closed cocompact subspaces such that

⋂
j

Wj = ∅.
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(i) W has stable π1 at ∞ (2.23), and the fundamental group of the end
space e(W ) is the fundamental group at ∞ of W ,

π1(e(W )) = π∞1 (W ) .

(ii) The homotopy and homology groups of e(W ) are such that

π∗(e(W )) = lim←−
j

π∗(Wj) , lim←−
j

1 π∗(Wj) = 0 ,

H∗(e(W )) = H∞
∗ (W ) = lim←−

j

H∗(Wj) , lim←−
j

1 H∗(Wj) = 0 .

(iii) The chain map α : S(e(W ))−→S∞(W ) of 3.15 is a chain equivalence.
(iv) If W̃ is a regular covering of W with group of covering translations

π and ˜e(W ) is the pullback covering of e(W ) then

H∗( ˜e(W )) = H∞,π
∗ (W̃ ) = lim←−

j

H∗(W̃j) , lim←−
j

1 H∗(W̃j) = 0 ,

and the Z[π]-module chain map of 5.3 is a chain equivalence

α̃ : S( ˜e(W ))
'−→ S∞,π(W̃ ) .

Proof (i)+(ii) Let V ⊆ W be a cocompact subspace for which there is a
proper map q : V × [0,∞)−→W with q(x, 0) = x ∈ W (x ∈ V ). Choose
path-connected cocompact subspaces of W

V = W0 ⊃ W1 ⊃ W2 ⊃ . . .

such that
⋂

j

cl(Wj) = ∅ , q(Wj × [0,∞)) ⊆ Wj−1 (j ≥ 1) .

The maps

gj = inclusion : Wj −→ Wj−1 ,

pj = pWj : e(Wj) −→ Wj ; ω −→ ω(0) ,

qj : Wj −→ e(Wj−1) ; x −→ (t −→ q(x, t))

fit into a homotopy commutative diagram

e(Wj) we(gj)

u
pj

e(Wj−1)

u
pj−1

Wj

[[
[[
[]

qj

wgj
Wj−1
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with e(gj) : e(Wj)−→e(Wj−1) a homotopy equivalence by 1.12. Apply 2.21
(iv) to the commutative diagrams

πr(e(Wj)) we(gj)
∼=

u
pj

πr(e(Wj−1))

u
pj−1

πr(Wj)
[[
[[
[]

qj

wgj
πr(Wj−1)

Hr(e(Wj)) we(gj)
∼=

u
pj

Hr(e(Wj−1))

u
pj−1

Hr(Wj)
[[
[[
[]

qj

wgj
Hr(Wj−1)

to obtain
πr(e(W )) = lim←−

j

πr(Wj) , lim←−
j

1 πr(Wj) = 0 ,

Hr(e(W )) = lim←−
j

Hr(Wj) , lim←−
j

1 Hr(Wj) = 0 .

By 3.16 and lim←−
j

1 H∗(Wj) = 0

H∞
r (W ) = lim←−

j

Hr(Wj) ,

so that the chain map S(e(W ))−→S∞(W ) of 3.15 induces isomorphisms in
homology.

(iii) The chain map α : S(e(W ))−→S∞(W ) is a homology equivalence,
since by (ii)

H∗(e(W )) = lim←−
j

H∗(Wj) = H∞
∗ (W ) .

The chain complex S(e(W )) is free, and S∞(W ) is chain equivalent to a
free chain complex by 7.5 (ii) and 6.1 (i). Any homology equivalence of free
chain complexes is a chain equivalence, so that α is a chain equivalence. (In
fact, it is possible to define a chain homotopy inverse

α−1 : S∞(W )
u−1

−→ S∞(V ) −→ S(V )
q̂−→ S(e(W ))

with u−1 a chain homotopy inverse to the inclusion u : S∞(V )−→S∞(W ),
which is a chain equivalence by 3.13.)

(iv) As for (ii), using 5.3.

Proposition 7.11 (i) The one-point compactification W∞ of a forward
tame ANR W is an ANR.

(ii) The one-point compactification W∞ of a forward tame ANR W is
such that there exists a pointed finite CW complex (X,x0) with a homotopy
equivalence

(W∞,∞) ' (X, x0) .
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Proof (i) Let V be a closed cocompact subset of W for which there is
a proper map q : V × [0,∞)−→W extending the inclusion q0 : V−→W .
Suppose that W∞ is a closed subset of some (separable) metric space X.
Then W is closed in X\{∞}, so there exist a neighbourhood N of W in
X\{∞} and a retraction r : N−→W . Let U1 ⊆ X be an open subset
containing ∞ such that

U1 ∩W\V = ∅ .

Let U2 ⊆ X\{∞} be an open subset such that

W ⊆ U2 ⊆ U2 ⊆ N , (U1\r−1int(V )) ∩ U2 = {∞} .

Let ρ : (U1 ∪ U2)\{∞}−→[0,∞] be a map such that

ρ−1(∞) = U1\(r−(int(V )) ∪ {∞}) , ρ−1(0) = U2 .

The map r̃ : U1 ∪ U2−→W∞ defined by

r̃(x) =





∞ if x ∈ U1\r−1(int(V )) ,
q(r(x), ρ(x)) if x ∈ r−1(V ) ,
r(x) if x ∈ U2\r−1(V )

is a retraction.
(ii) From (i) we know that W∞ is a compact ANR. The result now fol-

lows from some well-known facts. The Triangulation Theorem of Chapman
[23, p. 83] states that every Q-manifold M can be triangulated, i.e. is home-
omorphic to K × Q for a polyhedron K. The ANR Theorem of Edwards
([23, p. 106]) states that if X is an ANR then X ×Q is a Q-manifold. Ap-
plied to our context we have that there exists a finite CW complex X such
that W∞×Q ∼= X×Q where Q is the Hilbert cube. If (x0, q) ∈ X×Q cor-
responds to (∞, 0) under such a homeomorphism, then (W∞,∞) ' (X,x0).
West [168] originally proved that compact ANR’s have the homotopy type
of finite CW complexes. The argument above is a well-known alternative
proof of West’s theorem (see Chapman [23]). The relevance of this argu-
ment is that it shows that pointed compact ANR’s have the homotopy type
of pointed finite CW complexes.

Example 7.12 Jacob’s ladder X (2.26) is an ANR whose one-point com-
pactification X∞ is not locally contractible at {∞}. Thus X∞ is not an
ANR and 7.11 (i) implies that X is not forward tame. Similarly for the
space W of 4.14 (which is proper homotopy equivalent to X – in 9.6 below
forward tameness will be shown to be a proper homotopy invariant, in fact
an invariant of the ‘proper homotopy type at ∞’).

The one-point compactification of a CW complex does not in general have
the homotopy type of a CW complex.
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Example 7.13 As in 3.18 let N = {0, 1, 2, . . .} have the discrete topology,
the only topology compatible with CW status, so that

H0(N ) =
∞∑

0

Z , H lf
0 (N ) =

∞∏

0

Z .

The countable direct product
∞∏
0
Z is an abelian group which is not free,

by a result of Baer (Kaplansky [82, p. 48]). The one-point compactification
N∞ = {0, 1, 2, . . . ,∞} is such that the function

N∞ −→ R ; n −→ 1/(n + 1) , ∞ −→ 0

is an embedding. N∞ does not have the homotopy type of a CW complex,
since CW complexes are locally path-connected. Thus N is not forward
tame, by 7.11 (ii).

Proposition 7.14 Suppose W is a forward tame ANR written as

W =
∞⋃

j=0

Kj

with Kj compact and Kj ⊆ Kj+1 for j = 1, 2, 3, . . . . Then the inclusions

(W∞, {∞}) −→ (W∞,W∞\Kj)

induce a chain equivalence

S(W∞, {∞}) '−→ lim←−
j

S(W∞,W∞\Kj) .

Proof There exist a closed cocompact subset V ⊆ W and a proper map
q : V × [0,∞)−→W which extends the inclusion

j = q|V×{0} : V −→ W .

Extend q to q+ : V ∞ × I−→W∞ by insisting that

q+(V ∞ × {0}) = ∞ = q+({∞} × [0,∞]) .

(Thus q+ is the composition

V ∞ × [0,∞] −→ V ∞ ∧ [0,∞]
q−→ W∞

where q is the map mentioned after 7.1.) Without loss of generality assume
that K1 is so large that

q((W\K1)× [0,∞)) ⊆ V .

Since W∞ is an ANR (7.11), the homotopy extension property implies that
q+ can be extended to a homotopy q̃ : W∞ × [0,∞]−→W∞ such that :
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(i) q̃0 = idW∞ ,
(ii) q̃|V×[0,∞) = q ,
(iii) q̃t(∞) = ∞ for each t ≥ 0 ,
(iv) q̃∞(V ∞) = ∞ .

Note that for each j = 1, 2, 3, . . . we have a map of pairs

q̃∞| : (W∞,W∞\Kj) −→ (W∞, {∞}) .

Hence there is an induced chain map

ν : lim←−
i

S(W∞,W∞\Kj) −→ S(W∞, {∞}) .

Let

ι : S(W∞, {∞}) −→ lim←−
j

S(W∞, W∞\Kj)

denote the chain map induced by inclusion. We shall show that ι and ν are
chain homotopy inverses. Clearly,

νι : S(W∞, {∞}) −→ S(W∞, {∞})
is the chain map induced by

q̃∞ : (W∞, {∞}) −→ (W∞, {∞}) .

Since q̃∞ is homotopic to idW∞ rel {∞}, it follows that νι is chain homotopic
to the identity. In order to investigate ιν, use the properness of q to define
a sequence i1 ≤ i2 ≤ i3 ≤ . . . of integers such that ij ≥ j and

q̃((W∞\Kij )× [0,∞]) ⊆ W∞\Kj

for each j = 1, 2, 3, . . . . It follows that if

Q = q0 ' q∞ : S(W∞) −→ S(W∞)∗+1

is the standard chain homotopy then we may consider Q as a chain homo-
topy

Q : q̃0 ' q̃∞ : S(W∞,W∞\Kij ) −→ S(W∞, W∞\Kj)∗+1 .

These chain homotopies are compatible with inclusions so that there is a
chain homotopy

Q : q̃0 ' q̃∞ : lim←−
j

S(W∞,W∞\Kij ) −→ lim←−
j

S(W∞,W∞\Kj)∗+1

from q̃0 = id to q̃∞ = ιν.
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Proposition 7.15 (i) If W is a forward tame ANR then

H lf
∗ (W ) = H∗(W∞, {∞}) .

(ii) If W is a forward tame strongly locally finite CW complex then

H lf
∗ (W ) = H∗(W∞, {∞}) = H∗(C lf (W )) .

Proof (i) follows from Propositions 3.16 (iv), 7.14.
(ii) follows from (i) and Proposition 4.7 (or Proposition A.7).

We shall need the following properties of forward tameness in Chapter 9
below.

Lemma 7.16 If W is a forward tame space with a proper map p : W−→
[0,∞), then there exist a closed cocompact subspace V ⊆ W and a proper
map q : V × [0,∞)−→W such that :

(i) q| : V = V × {0}−→W is the inclusion,
(ii) pq(V × [j,∞)) ⊆ [j,∞) for j = 0, 1, 2, . . . .

Proof Let V ⊆ W be a closed cocompact subspace for which there exists a
proper map q′ : V × [0,∞)−→W extending the inclusion V−→W . Choose
numbers 0 < N1 < N2 < . . . such that pq′(V × [Nj ,∞)) ⊆ [j,∞) for each
j = 1, 2, 3, . . . . Let ρ : [0,∞)−→[0,∞) be the PL homeomorphism such
that ρ(j) = Nj , and which is linear on [j−1, j] for each j = 1, 2, 3, . . . . The
desired map is

q : V × [0,∞) −→ W ; (x, t) −→ q′(x, ρ(t)) .

Lemma 7.17 If W is a forward tame metric space with a proper map
p : W−→[0,∞), then there is a homotopy h : e(W )× I−→e(W ) such that :

(i) h0 = id : e(W )−→e(W ) ,
(ii) (h1(ω))[j,∞) ⊆ p−1[j,∞) for each ω ∈ e(W ) and j = 0, 1, 2, . . . .

Proof By 7.16 there exist a closed cocompact subspace V ⊆ W and a proper
map q : V × [0,∞)−→W extending the inclusion such that pq(V × [j,∞)) ⊆
[j,∞) for j = 0, 1, 2, . . . . By the proof of 7.5, q is the adjoint of a domination
q̂ : V−→e(W ) with right inverse s : e(W )−→V . A homotopy h : ide(W ) ' q̂s
satisfies the conclusions of the statement.
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Proposition 7.18 If W is a forward tame metric space with a proper map
p : W−→[0,∞) the end space e(W ) is homotopy equivalent to the homotopy
inverse limit

e(W ) ' holim←−−−
j

Wj

of the inverse system of inclusions

Wj+1 = p−1[j + 1,∞) ⊆ Wj = p−1[j,∞) (j ≥ 0) .

Proof Let f : holim←−−−
j

Wj−→e(W ) be the map defined in Proposition 2.14,

and define

X = im(f) ⊆ e(W ) .

Note that f is a homeomorphism onto X, and that by Lemma 7.17 there
is a homotopy h : e(W )× I−→e(W ) such that h0 = id and h1(e(W )) ⊆ X.
By examining the explicit formulas used in defining the homotopy, it can be
seen that ht(X) ⊆ X for each t ∈ I, so that f is a homotopy equivalence.

Proposition 7.19 Let W be a forward tame metric space such that e(W )
is finitely dominated. If U is any cocompact subset of W such that U is an
ANR, then U is finitely dominated.
Proof It suffices to consider the case U = W . Let C be a compact space
which dominates e(W ), say by maps f : C−→e(W ) and g : e(W )−→C
with a homotopy h : fg ' ide(W ). Let K = pW f(C) ⊆ W , where pW :
e(W )−→W is the evaluation. Of course, K is compact. A homotopy d :
Y × I−→W such that d0(Y ) ⊆ K and d1 = inclusion : Y−→W is given by

ds = pW hsq̂ : Y −→ W .

Now use the homotopy extension property to define a homotopy d̃ : W ×
I−→W such that d̃|Y×I = d and d̃1 = idW . Then

d̃0(W ) ⊂ d0(Y ) ∪ d̃0(W\Y )

which is contained in a compact subset of W .

The end space e(W ) of a forward tame CW complex W has the homotopy
type of a CW complex (7.6), but it does not have the homotopy type of a
particular CW complex, so it is not possible to associate a cellular chain
complex to e(W ). We shall now show that the cellular chain complex at ∞
C∞(W ) = C(C(W )−→C lf (W ))∗+1 is an adequate substitute. We shall also
show that C lf (W ) (and its π1(W )-equivariant analogue) is finitely domi-
nated, allowing the locally finite projective classes of W to be defined (in
Chapter 10).
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Proposition 7.20 Let W be a forward tame strongly locally finite CW com-
plex, and let W̃ be a regular cover of W with group of covering translations
π. Let ˜e(W ) be the cover of e(W ) induced from W̃ by pullback along the
evaluation map p : e(W )−→W .

(i) Let u : V−→W be the inclusion of a cofinite subcomplex V ⊆ W . The
inclusion of the locally finite cellular chain complexes

ũlf : C lf,π(Ṽ ) −→ C lf,π(W̃ )

is such that there is defined a Z[π]-module chain equivalence

C(ũlf ) ' C(W̃ , Ṽ ) .

The inclusion of cellular chain complexes at ∞ is a Z[π]-module chain equiv-
alence

ũ∞ : C∞,π(Ṽ )
'−→ C∞,π(W̃ ) .

(ii) There exists a cofinite subcomplex V ⊆ W such that ũlf is chain
homotopic to 0, and there are defined Z[π]-module chain equivalences

C(W̃ , Ṽ ) ' C lf,π(Ṽ )∗−1 ⊕ C lf,π(W̃ ) ,

C(Ṽ ) ' C lf,π(Ṽ )⊕ C∞,π(W̃ )

with C(W̃ , Ṽ ) = C lf,π(W̃ , Ṽ ) a finite f.g. free Z[π]-module chain complex.
In particular, C lf,π(W̃ ) is finitely dominated.

(iii) If W is finitely dominated and π1(e(W ))−→π1(W ) is a split injection
then e(W ) is finitely dominated.

(iv) If there exists a cofinite subcomplex V ⊆ W which is finitely domi-
nated with π1(V ) = π1(e(W )) then e(V ) ' e(W ) is finitely dominated.

(v) If W and e(W ) are finitely dominated then there exist chain equiva-
lences of finitely dominated Z[π]-module chain complexes

C lf,π(W̃ ) ' Slf,π(W̃ ) , S( ˜e(W )) ' C∞,π(W̃ ) ' S∞,π(W̃ )

and the projective classes are such that

[W ]lf = [C lf,π(W̃ )] = [Slf,π(W̃ )] ,

[e(W )] = [C∞,π(W̃ )] = [S∞,π(W̃ )] ∈ K0(Z[π]) .

Proof (i) As in the proof of 3.13 we have that C(W̃ , Ṽ ) = C lf,π(W̃ , Ṽ ) is
a f.g. free Z[π]-module chain complex. The short exact sequence of Z[π]-
module chain complexes

0 −→ C lf,π(Ṽ )
ũlf

−→ C lf,π(W̃ ) −→ C(W̃ , Ṽ ) −→ 0

has C(W̃ , Ṽ ) a finite f.g. free Z[π]-module chain complex. By 3.7 (ii) there
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is a Z[π]-module chain equivalence C(ũlf ) ' C(W̃ , Ṽ ).
Next, consider the short exact sequence of Z[π]-module chain complexes

0 −→ C∞,π(Ṽ )
ũ∞−→ C∞,π(W̃ ) −→ C∞,π(W̃ , Ṽ ) −→ 0

with
C∞,π(W̃ , Ṽ ) = C(C(W̃ , Ṽ )−→C lf (W̃ , Ṽ ))∗+1

a contractible free Z[π]-module chain complex. The inclusion

ũ∞ : C∞,π(Ṽ ) −→ C∞,π(W̃ )

is a Z[π]-module chain equivalence by 3.7 (iii).
(ii) Since W is forward tame there exists a cofinite subcomplex V ⊂ W

with an extension of the inclusion V × {0}−→W to a proper map V ×
[0,∞)−→W . Let Ṽ ⊆ W̃ be the cover of V corresponding to the cover W̃

of W . The inclusion ũlf : C lf,π(Ṽ )−→C lf,π(W̃ ) admits a chain homotopy
to 0

v : ũlf ' 0 : C lf,π(Ṽ ) −→ C lf,π(W̃ ) ,

and

C(W̃ , Ṽ ) = C lf,π(W̃ , Ṽ )

' C(ũlf : C lf,π(Ṽ )−→C lf,π(W̃ ))

' C(0 : C lf,π(Ṽ )−→C lf,π(W̃ )) = C lf,π(W̃ )⊕ C lf,π(Ṽ )∗−1 .

The chain map

p : C∞,π(W̃ ) ' C∞,π(Ṽ ) −→ C(Ṽ )

has a left chain homotopy inverse

q : C(Ṽ ) −→ C∞,π(W̃ ) ; x −→ (u(x), vi(x))

with a chain homotopy direct sum system

C∞,π(W̃ )
p

−−−−→←−−−−
q

C(Ṽ )
i−−−−→←−−−−
j

C lf,π(Ṽ ) .

(iii) By 7.10 S( ˜e(W )) is Z[π]-module chain equivalent to

C∞,π(W̃ ) = C(C(W̃ )−→C lf,π(W̃ ))∗+1 .

The Z[π]-module chain complex C(W̃ ) is finitely dominated by the finite
domination of W , and C lf,π(W̃ ) is finitely dominated by (iii). By 6.9 the
finite domination of W follows from the finite domination of the Z[π]-module
chain complex S( ˜e(W )), with π = π1(W ) and ˜e(W ) the pullback to e(W )
of the universal cover W̃ of W .
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(iv) Apply (iii), with V instead of W , noting that 1.12 gives a homotopy
equivalence e(V ) ' e(W ).

(v) The Z[π]-module chain map of 5.3 is a chain equivalence

α̃ : S( ˜e(W ))
'−→ S∞,π(W̃ ) .

By Proposition A.7 in Appendix A there exists a subcomplex

Dlf,π = Dlf,π(W̃ ) ⊆ Slf,π(W̃ )

with homology equivalences

Dlf,π '−→ Slf,π(W̃ ) , Dlf,π '−→ C lf,π(W̃ ) .

The Z[π]-module chain complexes Slf,π(W̃ ), C lf,π(W̃ ) are finitely domi-
nated by 7.5 and (ii), so that they are chain equivalent to free Z[π]-module
chain complexes. Let F be a free Z[π]-module chain complex with a homol-
ogy equivalence F−→Dlf . The composites

F −→ Dlf,π −→ Slf,π(W̃ ) , F −→ Dlf,π −→ C lf,π(W̃ )

are homology equivalences, and hence chain equivalences. Similarly for
the finitely dominated Z[π]-module chain complexes S∞,π(W̃ ), C∞,π(W̃ ),
noting that the subcomplexes

D = Dlf,π ∩ S(W̃ ) = D(W̃ ) ⊆ S(W̃ ) ,

D∞,π = C(D−→Dlf,π)∗+1 ⊆ S∞,π(W̃ )

are equipped with homology equivalences

D
'−→ S(W̃ ) , D

'−→ C(W̃ ) ,

D∞,π '−→ S∞,π(W̃ ) , D∞,π '−→ C∞,π(W̃ ) .
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Reverse tameness

We now formulate the definition of ‘reverse tameness’, which is a general-
ization of the manifold tameness of Siebenmann [140].

Definition 8.1 Let W be a locally compact Hausdorff space.
(i) The space W is reverse tame if for every cocompact subspace U ⊆ W

there exists a cocompact subspace V ⊆ W with V ⊆ U such that U is
dominated by U\V , by a homotopy h : W × I−→W such that :

(a) h0 = idW ,
(b) ht|(W\U) = inclusion : W\U−→W for every t ∈ I,
(c) h(U × I) ⊆ U ,
(d) h1(W ) ⊆ W\V .

(ii) The space W is reverse collared if for every cocompact subspace U ⊆
W there exists a cocompact subspace V ⊆ U such that U\V is a strong
deformation retract of U , in which case there exists a homotopy h : W ×
I−→W as in (i).

By analogy with 7.2 and 7.3 :

Proposition 8.2 A reverse collared space is reverse tame.

In Parts Two and Three we shall be particularly concerned with reverse
tameness and collaring for the ends of infinite cyclic covers of finite CW
complexes, and with the connections with forward tameness and collarings.
In Chapter 13 we shall give a homotopy theoretic criterion for reverse tame-
ness of such an end, and in Chapter 23 we shall give a homological criterion.
The ‘projective class at ∞’ of a reverse tame CW complex constructed in
Chapter 10 is an algebraic K-theory obstruction to reverse collaring. In
Chapter 13 it will be shown that a reverse tame end of an infinite cyclic
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cover of a finite CW complex is reverse collared if and only if this invariant
vanishes.

Example 8.3 (i) Let (L,K ⊆ L) be a pair of compact spaces, and let

W = L ∪K×{0} K × [0,∞) .

Then W is reverse collared : for each cocompact subspace U ⊂ W there
exists t > 0 such that V = K × (t,∞) ⊂ U is a cocompact subspace with
U\V a deformation retract of U .

(ii) Let (M, ∂M) be a compact manifold with boundary. The boundary
is collared (1.8), so that the interior

int(M) = M\∂M ∼= M ∪∂M×{0} ∂M × [0,∞)

is reverse collared by (i).

Remark 8.4 (i) If a space W has finitely many ends, then W is reverse
tame (resp. reverse collared) if and only if each end of W is reverse tame
(resp. reverse collared).

(ii) In a reverse tame space W every closed cocompact subspace U ⊆ W
is dominated by a compact subspace, the closure of U\V in the terminology
of 8.1. In particular, W is dominated by a compact subspace.

(iii) In Chapter 13 below we shall show that a finitely dominated infinite
cyclic cover of a finite CW complex is reverse tame (as well as forward
tame).

Proposition 8.5 For an ANR space W the following are equivalent :

(i) W is reverse collared,
(ii) there exists a sequence of compact ANR subspaces

K1 ⊆ K2 ⊆ K3 ⊆ . . . ⊆ W , W =
∞⋃

j=1

Kj ,

such that the inclusion Kj−→W is a homotopy equivalence for each
j = 1, 2, 3, . . . .

Proof (i) =⇒ (ii) Choose a sequence of cocompact subspaces

W = V1 ⊇ V2 ⊇ V3 ⊇ . . . ,
∞⋂

j=1

cl(Vj) = ∅ ,

such that Vj\Vj+1 is a strong deformation retract of Vj . Let

Kj = W\Vj+1 = Vj\Vj+1 ∪Kj−1 .
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The strong deformation retraction of Vj to Vj\Vj+1 extends to a strong
deformation retraction of W to Kj . Hence, the inclusion Kj−→W is a
homotopy equivalence. Since Kj is a retract of W , Kj is an ANR.

(ii) =⇒ (i) Since the inclusion Kj−→W is a homotopy equivalence and
W,Kj are ANR’s, Kj is a strong deformation retract of W for each j =
1, 2, 3, . . . . Given a cocompact subspace U ⊆ W , there exists j ≥ 1 such
that W\U ⊆ Kj . Let V = W\Kj . A strong deformation retraction of W
to Kj restricts to a strong deformation retraction of U to U\V .

Example 8.6 Jacob’s ladder X (2.26) is an ANR with H1(X) = Z[z]
an infinitely generated f.g. free Z-module. A compact ANR is finitely
dominated (and in fact homotopy finite, West [168]), so that its homology
consists of f.g. Z-modules. Thus X is not homotopy equivalent to a compact
ANR and 8.5 implies that X is not reverse tame. Similarly for the space W
of 4.14 (which is proper homotopy equivalent to X – in 9.8 below reverse
tameness will be shown to be a proper homotopy invariant for ANR spaces
such as X, W ).

Proposition 8.7 Suppose W is a space with the property that every cocom-
pact subspace X ⊆ W contains an ANR cocompact subspace Y ⊆ X which
is closed in W . Then the following conditions are equivalent :

(i) W is reverse tame,
(ii) every closed ANR cocompact subspace X ⊆ W is finitely dominated,
(iii) every cocompact subspace X ⊆ W contains a finitely dominated

(ANR) cocompact subspace Y ⊆ X which is closed in W .

Moreover, if W is also σ-compact, then the above conditions are equivalent
to :

(iv) there exists a sequence of finitely dominated (ANR) closed cocompact
subspaces W = W0 ⊇ W1 ⊇ W2 ⊇ . . . with

⋂
j

Wj = ∅.

Proof (i) =⇒ (ii) X is compactly dominated, by 8.4 (ii). Since X is an
ANR (and hence homotopy equivalent to a CW complex), it follows that
X is finitely dominated.

(ii) =⇒ (iii) This follows immediately from the hypothesis.
(iii) =⇒ (i) Let U ⊆ W be a cocompact subspace. By hypothesis there

exists an ANR cocompact subspace X ⊆ U which is closed in W . Now there
exists a finitely dominated cocompact subspace Y ⊆ X which is closed in W .
We may assume that Y is disjoint from the frontier Fr(X) of X. Since Y is
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finitely dominated, there exist a compact subspace C ⊆ Y and a homotopy
g : Y × I−→Y such that g0 = idY and g1(Y ) ⊆ C. Extend g to a homotopy
g̃ : (Fr(X) ∪ Y ) × I−→X by setting g̃t|Fr(X) = inclusion : Fr(X)−→X for
each t ∈ I. Since Fr(X)∪Y is a closed subset of the ANR X, the homotopy
extension property implies there exists a homotopy h : X×I−→X such that
h0 = idX and h|(Fr(X)∪Y )×I = g̃. Now extend h to a homotopy h̃ : W ×
I−→W by setting h̃t|(W\X) = inclusion : W\X−→W for each t ∈ I. Since
cl(W\Y ) is compact so is h̃1(cl(W\Y )). Thus V = W\(h̃1(cl(W\Y )) ∪ C)
is cocompact and V ⊆ U . Since h̃1(W ) ⊆ W\V we have shown that W is
reverse tame.

Finally, it is clear that if W is σ-compact, then (iii) and (iv) are equivalent.

Remark 8.8 Lemma 4.6 shows that every strongly locally finite CW com-
plex W satisfies the hypothesis of 8.7 (that W contains arbitrarily small
ANR closed cocompact subspaces). It is unclear whether or not every lo-
cally finite CW complex has this property, but this would be the case if
every locally finite CW complex had a strongly locally finite subdivision. It
is apparently unknown if the latter statement is true (cf. Farrell and Wag-
oner [52, p. 503]). Note that Hilbert cube manifolds satisfy the hypothesis
of 8.7. Moreover, all Hilbert cube manifolds are σ-compact (being locally
compact, separable and metric) and a countable CW complex is σ-compact.

Proposition 8.9 The following conditions on a strongly locally finite CW
complex W are equivalent :

(i) W is reverse tame,
(ii) every cofinite subcomplex V ⊆ W is finitely dominated,
(iii) every cocompact subspace X ⊆ W contains a finitely dominated cofi-

nite subcomplex.

Moreover, if W is also countable, then the above conditions are equivalent
to :

(iv) there exists a sequence of finitely dominated cofinite subcomplexes

W = W0 ⊇ W1 ⊇ W2 ⊇ . . .

with
⋂
j

Wj = ∅.

Proof (i) =⇒ (ii) This follows from Remark 8.4 (ii).
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(ii) =⇒ (iii), (iii) =⇒ (i) These follow from 8.7.
Finally, it is clear that if W is countable, then (iii) and (iv) are equivalent.

Corollary 8.10 A reverse tame strongly locally finite CW complex W is
finitely dominated.

Definition 8.11 A space W is reverse π1-tame if it is reverse tame and
each end has stable π1 at ∞ (2.23).

Remark 8.12 An open manifold with compact boundary (W,∂W ) and one
end is tame in the sense of Siebenmann [140] if :

(i) W is π1-stable at∞, so that there exists a sequence W ⊇ W0 ⊃ W1 ⊃
W2 ⊃ . . . of path-connected cocompact subspaces with

⋂
j

cl(Wj) = ∅
such that the sequence of inclusion induced group morphisms

π1(W0)
g1←− π1(W1)

g2←− π1(W2) ←− · · ·
induces isomorphisms

π∞1 (W ) = im(g1)
∼=←− im(g2)

∼=←− . . . , and

(ii) there is a finitely dominated cocompact subspace V ⊆ W such that
V ⊆ W1, π1(V ) = π∞1 (W ).

These conditions are equivalent to reverse π1-tameness.

Proposition 8.13 A reverse π1-tame strongly locally finite countable CW
complex W admits a sequence W ⊇ W0 ⊃ W1 ⊃ W2 ⊃ . . . of finitely
dominated cofinite subcomplexes, with

⋂
j

Wj = ∅ and such that the sequence

of inclusion induced morphisms

π1(W0)
g1←− π1(W1)

g2←− π1(W2) ←− . . .

(with base points and base paths chosen) induces isomorphisms

π∞1 (W ) = im(g1)
∼=←− im(g2)

∼=←− . . . .

Proposition 8.14 For a σ-compact metric space W the following conditions
are equivalent :

(i) W is forward and reverse π1-tame,
(ii) W is forward and reverse tame.

Proof By 7.10 a forward tame W has stable π1 at ∞.



9

Homotopy at infinity

A proper homotopy equivalence at infinity is a proper map which (among
other properties) induces a homotopy equivalence of the end spaces. The
main result of this chapter is that an ANR is both forward and reverse
tame if and only if it is bounded homotopy equivalent at ∞ to a product
with [0,∞).

Definition 9.1 Let X,Y be topological spaces. A proper homotopy equiv-
alence at ∞

(f, g, U, V ) : X −→ Y

is defined by proper maps

f : U −→ Y , g : V −→ X

defined on closed cocompact subspaces U ⊆ X, V ⊆ Y , such that there
exist proper homotopies

fg| ' inclusion : g−1(U) −→ Y ,

gf | ' inclusion : f−1(V ) −→ X .

We shall usually write (f, g, U, V ) as f .

Example 9.2 The inclusion U ⊆ X of a closed cocompact subspace defines
a proper homotopy equivalence at ∞.

Example 9.3 Let (Y, X ⊆ Y ) be a pair of metric spaces with a proper
homotopy ht : Y−→Y (t ∈ I) such that :

(i) ht(v) = v ∈ Y for all v ∈ X, t ∈ I,
(ii) h0(w) = w ∈ Y for all w ∈ Y ,
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(iii) h1(Y ) ⊆ X ′ with X ⊆ X ′ ⊆ Y such that X is a cocompact subspace
of X ′.

The inclusion X−→Y is a proper homotopy equivalence near ∞ in the
sense of Siebenmann [144, p. 489]. There is also defined a proper homotopy
equivalence at ∞ (f, g, U, V ) : X−→Y in the sense of 9.1, with

f = inclusion : U = X −→ Y ,

g = h1| : V = (h1)−1(X) −→ X .

Proposition 9.4 A proper homotopy equivalence at ∞ (f, g, U, V ) : X−→Y
of σ-compact metric spaces X, Y induces :

(i) a bijection f∗ : EX−→EY of the sets of ends if X, Y are locally com-
pact, connected, locally connected,

(ii) a homotopy equivalence of the end spaces e(f) : e(X)−→e(Y ).

Proof (i) Immediate from 1.22 (ii).
(ii) It follows from 1.12 that inclusions induce homotopy equivalences

i1 : e(f−1(V )) −→ e(X) , i2 : e(V ) −→ e(Y ) ,

i3 : e(U) −→ e(X) , i4 : e(g−1(U)) −→ e(Y ) .

The composite

i2 e(f |f−1(V ))(i1)
−1 : e(X) −→ e(Y )

is a homotopy equivalence with homotopy inverse (i4)−1e(g|g−1(U))i3.

Proposition 9.5 Suppose X and Y are σ-compact, connected, locally path-
connected metric spaces which are proper homotopy equivalent at ∞.

(i) X is semistable at ∞ if and only if Y is semistable at ∞.
(ii) X has stable π1 at ∞ if and only if Y has stable π1 at ∞.

Proof (i) Propositions 1.22 and 9.4 imply that ηX : π0(e(X))−→EX is bijec-
tive if and only if ηY : π0(e(Y ))−→EY is bijective. Now apply Proposition
2.25 (iii).

(ii) Let (f, g, U, V ) : X−→Y be a proper homotopy equivalence at ∞ with
homotopies

h : gf | ' inclusion : f−1(V ) −→ X ,

k : fg| ' inclusion : g−1(U) −→ Y .

The first step is to construct cocompact subspaces

X ⊇ f−1(V ) = X0 ⊇ X1 ⊇ · · · , Y ⊇ g−1(U) = Y0 ⊇ Y1 ⊇ · · ·
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such that ⋂

j

cl(Xj) =
⋂

j

cl(Yj) = ∅

and h and k restrict to homotopies

h| : gf | ' inclusion : Xj −→ Xj−2 ,

k| : fg| ' inclusion : Yj −→ Yj−2

for j ≥ 2. This is done by an elementary induction argument. Write X and
Y as ascending unions of compact subspaces

X =
∞⋃

j=0

Cj , Y =
∞⋃

j=0

Dj

with
C0 = cl(X\X0) , D0 = cl(Y \Y0) .

Assuming that N ≥ 0 and that XN , YN have been defined, set

C ′
N−1 = projXh−1(cl(X\XN−1)) ,

XN+1 = f−1(YN )\(CN+1 ∪ C ′
N−1)

and similarly for D′
N−1, YN+1.

Now assume that X has stable π1 at∞. In particular, X is path-connected
at ∞, and we may assume that each Xj is path-connected for j ≥ 1. From
2.25 (iv) it follows that π0(e(X)) = 0; therefore, π0(e(Y )) = 0 by 9.4 (ii).
From (i) we know that Y is semistable at ∞. Another application of 2.25
(iv) gives that Y is path-connected at ∞. Therefore, we may also assume
that each Yj is path-connected for j ≥ 1.

It follows from Siebenmann [140, p. 12] that some subsequence of the Xj

satisfies the stability condition of 2.23 (iii). For simplicity, we assume that
the original sequence satisfies that condition, i.e. the inclusions induce iso-
morphisms

im(π1(Xj+3)−→π1(Xj+2))
'−→ im(π1(Xj+2)−→π1(Xj)) .

A diagram chase shows that the inclusions also induce isomorphisms

im(π1(Yj+6)−→π1(Yj+3))
'−→ im(π1(Yj+3)−→π1(Yj)) ,

so that Y has stable π1 at ∞.

Proposition 9.6 If W , W ′ are proper homotopy equivalent at ∞ then W
is forward tame if and only if W ′ is forward tame.
Proof Let (f, g, U, U ′) : W−→W ′ be a proper homotopy equivalence at
∞. If W is forward tame, then there exist a closed cocompact subspace
V ⊆ W and a proper map q : V × [0,∞)−→W which extends the inclusion



100 Ends of complexes

V × {0}−→W . The inverse image g−1(V ) is a closed cocompact subspace
of W ′ and we may assume that q(V × [0,∞)) ⊆ U , so in particular V ⊆ U .
Use a proper homotopy

h : fg|g−1(U) ' inclusion : g−1(U) −→ W ′

to define a proper map

q′ = fq(g × id[0,∞)) ∪ h :

g−1(V × [−1,∞)) = g−1(V × [0,∞)) ∪ g−1(V × [−1, 0]) −→ W ′

such that q′| : g−1(V )× {−1}−→W ′ is the inclusion.

Remark 9.7 The property of being forward collared is not an invariant of
the proper homotopy type at ∞ – see 11.7 (ii) below.

Proposition 9.8 Suppose W,W ′ are ANR’s which have arbitrarily small
closed cocompact subspaces which are ANR’s and that W,W ′ are proper
homotopy equivalent at ∞.

(i) W is reverse tame if and only if W ′ is reverse tame.
(ii) W is reverse π1-tame if and only if W ′ is reverse π1-tame.

Proof (i) Let (f, g, U, U ′) : W−→W ′ be a proper homotopy equivalence at
∞ with a homotopy

h : inclusion ' fg| : g−1(U) −→ W ′ .

We may assume that U ′ ⊆ W ′ is a closed cocompact ANR subspace. To
show that W ′ is reverse tame it suffices to show that U ′ is finitely dominated
(8.7). If W is reverse tame, then there exist a closed cocompact subspace
X ⊆ U and a homotopy k : X × I−→X with k0 = idX and k1(X) ⊆ C
for some compact subspace C ⊆ X (8.7). We may assume that f(X) ⊆ U ′
and h(g−1(X × I)) ⊆ U ′ so that fktg(g−1(X)) ⊆ U ′ for each t ∈ I. The
homotopy

H : inclusion ' fk1g| : g−1(X) −→ U ′

defined by

H(x, t) =

{
h(x, 2t) if 0 ≤ t ≤ 1

2 ,
fk(g(x), 2t− 1) if 1

2 ≤ t ≤ 1

can be extended (using the homotopy extension property for ANR’s) to a
homotopy H̃ : idU ′ ' H̃1 such that

H̃(U ′) ⊆ H̃1(cl(U ′\g−1(X))) ∪ f(C)

which is compact.
(ii) follows from (i) and 9.5 (ii).
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Remark 9.9 Note that 9.8 applies to strongly locally finite CW complexes
and Hilbert cube manifolds, since they are ANR spaces which have arbi-
trarily small closed cocompact subsets which are ANR’s (8.8).

Definition 9.10 Let X,Y be topological spaces with maps

p : X −→ [0,∞) , q : Y −→ [0,∞) .

(i) A bounded homotopy equivalence at ∞
(f, g, X ′, Y ′) : X −→ Y

is defined by maps

f : X ′ −→ Y , g : Y ′ −→ X

defined on subspaces

X ′ = p−1([s,∞)) , Y ′ = q−1([t,∞))

for some s, t ≥ 0, such that for some ε > 0

d(p(x), qf(x)) < ε , d(pg(y), q(y)) < ε (x ∈ X ′, y ∈ Y ′)

and that there exist homotopies

h : fg| ' inclusion : g−1(X ′) −→ Y ,

k : gf | ' inclusion : f−1(Y ′) −→ X

such that for all x ∈ g−1(X ′), y ∈ f−1(Y ′)

diameter qh({x} × I) < ε , diameter pk({y} × I) < ε .

(ii) An ε-homotopy equivalence at ∞ is defined as in (i), but with a par-
ticular ε > 0.

Note that in 9.10 neither p nor q is required to be proper. Thus, the ‘∞’
referred to is not the ∞ in the one-point compactifications of X and Y , but
rather the ∞ in the one-point compactification of [0,∞).

Proposition 9.11 Let X, Y be Hausdorff spaces with proper maps p : X−→
[0,∞), q : Y−→[0,∞).

(i) A bounded homotopy equivalence at ∞ (f, g, X ′, Y ′) : X−→Y is a
proper homotopy equivalence at ∞.

(ii) If (f, g, X ′, Y ′) : X−→Y is a proper homotopy equivalence at ∞ with
X ′ = p−1([s,∞)), Y ′ = q−1([t,∞)), then there are proper homotopies p '
p′, q ' q′ so that (f, g, X ′, Y ′) is a bounded homotopy equivalence at ∞ with
respect to p′, q′.
Proof (i) Let ε > 0, h and k be as in 9.10 (i). We need to show that f, g, h
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and k are proper. If K ⊆ Y is compact, then q(K) ⊆ [0, N ] for some N ≥ 0.
Since p is ε-close to qf :

f−1(K) ⊆ p−1([0, N + ε]) .

Thus, f−1(K) is a closed subset of a compact space, hence compact, veri-
fying that f is proper. Likewise,

h−1(K) ⊆ q−1([0, N + ε])× I ,

verifying that h is proper. The proofs that g and k are proper are analogous.
(ii) Let

h : fg| ' inclusion : g−1(X ′) −→ Y,

k : gf | ' inclusion : f−1(Y ′) −→ X

be proper homotopies. Let n0 = 0 and use the properness of p, q, f, g, h, k
to inductively choose nj ≥ j for j = 0, 1, 2, . . . such that :

(a) fp−1([0, nj−1]) ⊆ q−1([0, nj ]) ,
gq−1([0, nj−1]) ⊆ p−1([0, nj ]) ,

(b) fp−1([nj ,∞)) ⊆ q−1([nj−1,∞)) ,
gq−1([nj ,∞)) ⊆ p−1([nj−1,∞)) ,

(c) qh(q−1([0, nj−1])× I) ⊆ q−1([0, nj ]) ,
pk(p−1([0, nj−1])× I) ⊆ p−1([0, nj ]) ,

(d) qh(q−1([nj ,∞))× I) ⊆ q−1([nj−1,∞)) ,
pk(p−1([nj ,∞))× I) ⊆ p−1([nj−1,∞)) .

These conditions imply that :

(e) fp−1([nj , nj+1]) ⊆ q−1([nj−1, nj+2]) ,
gq−1([nj , nj+1]) ⊆ p−1([nj−1, nj+2]) ,

(f) qh(q−1([nj , nj+1])× I) ⊆ q−1([nj−1, nj+2]) ,
pk(p−1([nj , nj+1])× I) ⊆ p−1([nj−1, nj+2]) .

Let γ : [0,∞)−→[0,∞) be the PL homeomorphism such that γ(nj) = j for
each j = 0, 1, 2, . . . . Then p′ = γp and q′ = γq satisfy the requirements.

Proposition 9.12 Suppose W is a space with a proper map p : W−→[0,∞)
such that W is boundedly homotopy equivalent at ∞ to the projection q :
Y × [0,∞)−→[0,∞) for some space Y .

(i) W is forward tame.
(ii) If W is an ANR, then W is reverse tame.
(iii) If W is a metric space, then Y ' e(W ).
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Proof Let
f : W ′ = p−1([s,∞)) −→ Y × [0,∞) ,

g : Y ′ = Y × [t,∞) −→ W ,

h : fg| ' inclusion : g−1(W ′) −→ Y ,

k : gf | ' inclusion : f−1(Y ′) −→ W

be as in Definition 9.10, for some ε > 0. Let

p1 : Y × [0,∞) −→ Y , p2 : Y × [0,∞) −→ [0,∞)

be the projections.
(i) Since p is proper, it follows that f−1(Y ′) is cocompact in W and k is

a proper homotopy. Then F : f−1(Y ′)× [0,∞)−→W defined by

F (x, u) =
{

k(x, 1− u) if 0 ≤ u ≤ 1 ,
g(p1f(x), up2f(x)) if 1 ≤ u

gives the required proper map extending the inclusion.
(ii) Let U be a given open cocompact subset of W . Choose s0 ≥ max{s, t}

such that p−1([s0,∞)) ⊆ U . Let

V ′ = p−1([s0 + 4ε,∞))

and note that V ′ ⊆ W ′ and f(V ′) ⊆ Y ′.
Define a homotopy F : V ′ × I−→W by

F (x, u) =

{
k(x, 1− 2u) if 0 ≤ u ≤ 1

2 ,
g(p1f(x), (2− 2u)p2f(x) + (2u− 1)(s0 + 2ε)) if 1

2 ≤ u ≤ 1 .

Note that F (V ′ × I) ⊆ U , so we consider F as a homotopy F : V ′ × I−→U
such that

F0 = inclusion : V ′ −→ U , F1(V ′) ⊂ U\V ′ .

Since W is an ANR so is U . Thus, we can use the homotopy extension
property to define a homotopy F̃ : U × I−→U such that

F̃ |V ′×I = F , F̃0|U∩p−1([0,s0]) = inclusion .

Finally, extend via the identity to get a homotopy F̃ : W × I−→W and let
V = F̃1(W ). It is easy to see that V is cocompact and that F̃ gives the
required domination of U by U\V .

(iii) The map f induces a map

f∗ : e(W ′) −→ Y ; ω −→ p1f(ω(0)) .

If t is chosen so large that g(Y ′) ⊆ W ′, then g induces the map

g∗ : Y −→ e(W ′) ; y −→ (u−→ g(y, t + u)) (u ≥ 0) .

It is clear that h induces a homotopy f∗g∗ ' 1Y . Also, if W ′′ is a cocompact
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subset of W ′ chosen so that f(W ′′) ⊂ Y ′, then k will induce a homotopy
g∗f∗|e(W ′′) ' 1e(W ′′). Since W is a metric space, Proposition 1.12 implies
that the inclusions W ′′−→W ′−→W induce homotopy equivalences on end
spaces and the result follows.

Proposition 9.13 Suppose W is a forward tame metric space with a proper
map p : W−→[0,∞). Then there exist a closed cocompact subspace Y ⊆ W
and maps

f : Y −→ e(W )× [0,∞) , g : e(W )× [0,∞) −→ Y

together with homotopies

F : igf ' i : Y −→ W ,

G : fg ' id : e(W )× [0,∞) −→ e(W )× [0,∞) ,

with i : Y−→W the inclusion such that :

(i) p = p2f : Y−→[0,∞) with p2 : e(W )× [0,∞)−→[0,∞) the projection,
(ii) for every N ≥ 0 there exists M ≥ 0 such that

(pg)−1([0, N ]) ⊆ e(W )× [0,M ] ,

(iii) F : Y × I−→W is proper,
(iv) for every N ≥ 0 there exists M ≥ 0 such that

G(e(W )× [M,∞)× I) ⊆ e(W )× [N,∞) .

Proof Let Y ⊆ W be a closed cocompact subspace for which there exists a
proper map q : Y × [0,∞)−→W extending the inclusion such that pq(Y ×
[M,∞)) ⊆ [M,∞) for M = 0, 1, 2, . . . (7.16). For the adjoint q̂ : Y−→e(W )
choose a closed cocompact subspace Y ′ ⊆ Y such that q̂(Y ′) ⊆ e(Y ). Use i
also to denote the inclusion i : Y ′−→W . It induces a homotopy equivalence
e(i) : e(Y ′)−→e(W ), so there is a homotopy inverse j : e(W )−→e(Y ′) with
a homotopy

k : e(i)j ' ide(W ) : e(W ) −→ e(W ) .

By using the explicit construction of 1.12, we may assume that for every
ω ∈ e(W ), t ∈ I, u ≥ 0, k(ω, t)(u) = ω(s) for some s ≥ 0. Define

f : Y −→ e(W )× [0,∞) ; x −→ (q̂(x), p(x)) .

Define g : e(W )× [0,∞)−→Y to be the composition

e(W )× [0,∞)
j×id−→ e(Y ′)× [0,∞)

pY ′×id
−−−→ Y ′ × [0,∞)

q̂×id−→ e(Y )× [0,∞)
p+

Y−→ Y
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where pY ′ and p+
Y are the evaluation maps. The homotopy F : igf ' i :

Y−→W is given by

F (x, t) = q̂[ktq̂(x)(0)]((1− t)p(x)) .

Define

γ : e(W )× [0,∞) −→ e(W ) ; (ω, t) −→ q̂[q̂(xω)(t)]

where xω = j(ω)(0) ∈ Y ′. Define a homotopy

G′ : e(W )× [0,∞)× I −→ e(W )× [0,∞) ;

(ω, t, s) −→ (γ(ω, t), (1− s)p[q̂(xω)(t)] + st) .

Note that G′
0 = fg. We claim there is a homotopy

G′′ : e(W )× [0,∞)× I −→ e(W )

with G′′
0 = γ and G′′

1 = projection : e(W ) × [0,∞)−→e(W ). Contracting
[0,∞) to {0} there is defined a homotopy γ ' γ′ with

γ′(ω, t) = q̂[q̂(xω)(0)] = q̂(xω) = q̂(pY ′(j(ω))) .

The proof of 7.5 (i) shows that q̂pY ′ : e(Y ′)−→e(W ) is homotopic to the
inclusion, so γ′ ' γ′′ where γ′′(ω, t) = j(ω). Since j : e(W )−→e(Y ′) was
chosen to be a homotopy inverse for the inclusion, the homotopy G′′ exists
as claimed above. We can now define the homotopy

G : e(W )× [0,∞)× I −→ e(W )× [0,∞) ;

(ω, t, s) −→
{

G′(ω, t, 2s) if 0 ≤ s ≤ 1
2 ,

(G′′(ω, t, 2s− 1), t) if 1
2 ≤ s ≤ 1 .

Finally we verify the four properties of f, g, F, G :
(i) is obvious.
(ii) Since g(ω, t) = q̂(xω)(t) = q(xω, t), it follows that pg(ω, t) ≥ M if

t ≥ M and M = 0, 1, 2, . . . .
(iii) To verify that F is proper, let K ⊆ W be compact and suppose

F (x, t) ∈ K. Since ktq̂(x)(0) = q(x, s) for some s ≥ 0, it follows that

F (x, t) = q̂[q(x, s)]((1− t)p(x)) = q[q(x, s), (1− t)p(x)] .

Thus, [q(x, s), (1− t)p(x)] ∈ q−1(K). Since q is proper, q−1(K) is compact
as is C ⊆ Y , the projection into Y of q−1(K). Since q(x, s) ∈ C, (x, s) ∈
q−1(C). Since q−1(C) is compact, so is C ′ ⊆ Y , the projection into Y of
q−1(C). Since {(1 − t)p(x) | t ∈ I , x ∈ C ′} ⊆ [0,∞) is also compact, it
follows that F−1(K) ⊆ Y × I is compact.

(iv) If t ≥ M for M = 0, 1, 2, . . ., and x ∈ Y ′, then

p(q̂(x)(t)) = p(q(x, t)) ≥ M
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so

(1− s)p[q̂(xω)(t)] + st ≥ M .

It follows that

G′(e(W )× [M,∞)× I) ⊆ e(W )× [M,∞) (M = 0, 1, 2, . . .) .

Proposition 9.14 Suppose W is a forward tame metric space with e(W )
finitely dominated and a proper map p : W−→[0,∞). Then for every ε > 0,
p is properly homotopic to a proper map p′ : W−→[0,∞) for which W is
ε-homotopy equivalent at ∞ to the projection p2 : e(W )× [0,∞)−→[0,∞).
Proof Let Y, f, g, F,G be as in Proposition 9.13. Since e(W ) is finitely
dominated, there exist a compact subspace K ⊆ e(W ) and a homotopy
D : e(W )× I−→e(W ) such that D0(e(W )) ⊆ K and D1 = ide(W ). Define

g′ : e(W )× [0,∞) −→ Y ,

F ′ : ig′f ' i : Y −→ W ,

G′ : fg′ ' id : e(W )× [0,∞) −→ e(W )× [0,∞)

as follows :

g′ = g(D0 × id[0,∞)) ,

F ′
s =

{
ig(D2s × id[0,∞))f if 0 ≤ s ≤ 1

2 ,
F2s−1 if 1

2 ≤ s ≤ 1 ,

G′
s =

{
G2s(D0 × id[0,∞)) if 0 ≤ s ≤ 1

2 ,
D2s−1 × id[0,∞) if 1

2 ≤ s ≤ 1 .

It follows from 9.13 (ii), (iii) that F ′ is proper. From 9.13 (iii) it follows that
for every N ≥ 0 there exists M ≥ 0 such that

G′(e(W )× [M,∞)× I) ⊆ e(W )× [N,∞) .

Let n0 = 0 and choose nj ≥ j inductively such that :

(1) pF ′(p−1([0, nj−1])× I) ⊆ [0, nj ].
(This uses the properness of p.)

(2) p2G
′(e(W )× [0, nj−1]× I) ⊆ [0, nj ].

(This uses the compactness of K.)
(3) pF ′(p−1([nj ,∞))× I) ⊆ [nj−1,∞).

(This uses the properness of p and F ′.)
(4) p2G

′(e(W )× [nj ,∞)× I) ⊆ [nj−1,∞).
(This uses the property of G′ mentioned above.)
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Given ε > 0 let

γ : [0,∞) −→ [0,∞)

be the PL homeomorphism such that

γ(nj) =
jε

3
(j = 0, 1, 2, . . .) .

Let p′ = γp : W−→[0,∞). Then

(ide(W ) × γ)f : Y −→ e(W )× [0,∞)

is an ε-equivalence with inverse g′(ide(W ) × γ−1).

Proposition 9.15 Let W be an ANR which has arbitrarily small closed
cocompact subsets which are ANR’s. The following conditions on W are
equivalent :

(i) W is both forward and reverse tame,
(ii) W is forward tame and the end space e(W ) is finitely dominated,
(iii) there exist a proper map W−→[0,∞) and a space Y such that W is

bounded homotopy equivalent at ∞ to the projection Y × [0,∞)−→
[0,∞).

Moreover, if these conditions are satisfied Y is homotopy equivalent to e(W ).
Proof (i) implies (ii) by 7.5 (i) and 8.7.

(ii) implies (iii) by 9.14.
(iii) implies (i) by 9.12 (i), (ii).
If these conditions are satisfied Y ' e(W ) by 9.12 (iii).

Theorem 9.16 Let W be an ANR which has arbitrarily small closed co-
compact subsets which are ANR’s. The following conditions on W are
equivalent :

(i) W is both forward and reverse tame and e(W ) is homotopy equivalent
to a finite CW complex,

(ii) there exist a proper map W−→[0,∞) and a finite CW complex K
so that W is bounded homotopy equivalent at ∞ to the projection
K × [0,∞)−→[0,∞),

(iii) there exists a finite CW complex K so that W is proper homotopy
equivalent at ∞ to the projection K × [0,∞)−→[0,∞).

Moreover, if these conditions are satisfied K is homotopy equivalent to
e(W ).
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Proof (ii) and (iii) are equivalent by 9.11. The rest of the proof follows
from 9.15.

Example 9.17 Let

X = {(x, y) ∈ R2 |x ≥ 0 , y ∈ {1
2 , 1

3 , 1
4 , . . . , 0}} .

...
...

...

...

X

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .y = 1
2

y = 1
3

y = 1
4

y = 0

The metric space X is locally compact, forward tame and reverse tame.
However, the end space e(X) has infinitely many components, one for each
element of {1

2 , 1
3 , 1

4 , . . . , 0}, so that it is not finitely dominated. Since X
is not locally connected, X is not an ANR and therefore this does not
contradict 9.15. However, this example does contradict Quinn [116, p. 466].

Proposition 9.18 Let W be a forward tame ANR which has arbitrarily
small closed cocompact subsets which are ANR’s (e.g. a strongly locally
finite CW complex or a Hilbert cube manifold). The following conditions
on W are equivalent :

(i) W is reverse tame,
(ii) W is reverse π1-tame,
(iii) the end space e(W ) is finitely dominated.

Proof (i) =⇒ (ii) W has stable π1 at ∞ by 7.11.
The other implications follow from 9.15.
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Projective class at infinity

We associate to a reverse π1-tame space W the ‘projective class at ∞’
[W ]∞ ∈ K̃0(Z[π∞1 (W )]) (10.1) with image the projective class (= Wall
finiteness obstruction) [W ] ∈ K̃0(Z[π1(W )]). The projective class at ∞
is an obstruction to reverse collaring W , which for an open manifold is the
end obstruction of Siebenmann [140]. In 10.13 we prove a form of Poincaré
duality (originally due to Quinn [116]) that a manifold end is forward tame
if and only if it is reverse tame, subject to suitable fundamental group con-
ditions, in which case the locally finite projective class at ∞ is the Poincaré
dual of the projective class at ∞ (10.15).

We associate to a forward tame CW complex W the ‘locally finite pro-
jective class’ [W ]lf ∈ K̃0(Z[π1(W )]) (10.4), and a ‘locally finite projective
class at ∞’ [W ]lf∞ ∈ K̃0(Z[π1(e(W ))]) (10.8), such that [W ]lf is the image of
[W ]lf∞. The locally finite projective class at ∞ is an obstruction to forward
collaring W . If W is both forward and reverse tame then e(W ) is finitely
dominated, with finiteness obstruction

[e(W )] = [W ]∞ − [W ]lf∞ ∈ K̃0(Z[π])

where π = π1(e(W )) = π∞1 (W ).

In 10.5 below it will be proved that for an open n-dimensional manifold
with boundary (W,∂W ) and a forward and reverse tame end the end space
e(W ) of W is a finitely dominated (n− 1)-dimensional Poincaré space with
finiteness obstruction

[e(W )] = [W ]∞ + (−)n−1[W ]∗∞

∈ K̃0(Z[π1(e(W ))]) = K̃0(Z[π∞1 (W )]) ,

and that (W ; ∂W, e(W )) is an n-dimensional geometric Poincaré cobordism.

109
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Let W be a space with arbitrarily small closed cocompact ANR subspaces,
e.g. a strongly locally finite CW complex (4.6). If W has stable π1 at ∞
there exists a sequence W0 ⊇ W1 ⊇ W2 ⊇ . . . of closed path-connected
cocompact ANR’s such that the induced group morphisms

π1(W0)
g1←− π1(W1)

g2←− π1(W2)
g3←− . . .

induce isomorphisms between images and

π∞1 (W ) = im(g1) = im(g2) = . . . .

As in 2.21 (iv) each gj induces a surjection qj : π1(Wj)−→im(gj) = π∞1 (W )
which is a left inverse for the injection pj : π∞1 (W ) = im(gj+1)−→π1(Wj),
with

gj : π1(Wj) = π∞1 (W )× ker(qj)

−→ π1(Wj−1) = π∞1 (W )× ker(qj−1) ; (x, y) −→ (x, 1) .

If W is σ-compact and reverse tame then each Wj is finitely dominated
by 8.7. In particular, if W is a reverse π1-tame strongly locally finite CW
complex there exists such a sequence W0 ⊇ W1 ⊇ W2 ⊇ . . . of finitely
dominated cofinite subcomplexes with each qj : π1(Wj)−→π∞1 (W ) a split
surjection and

(q0)∗[W0] = (q1)∗[W1] = (q2)∗[W1] = . . . ∈ K̃0(Z[π∞1 (W )]) .

Definition 10.1 The projective class at ∞ of a reverse π1-tame space W
with arbitrarily small closed cocompact ANR subspaces is the image of the
Wall finiteness obstruction [V ] ∈ K̃0(Z[π1(V )])

[W ]∞ = q∗[V ] ∈ K̃0(Z[π∞1 (W )])

with V ⊆ W any finitely dominated closed cocompact subset such that
the natural morphism p : π∞1 (W )−→π1(V ) is a split injection (on each
component) with a left inverse q : π1(V )−→π∞1 (W ).

The morphism K̃0(Z[π∞1 (W )])−→K̃0(Z[π1(W )]) sends the projective class
at ∞ [W ]∞ to the finiteness obstruction [W ].

Theorem 10.2 (Siebenmann [140]) (i) Let (W,∂W ) be an open n-dimen-
sional manifold with a compact boundary ∂W and a reverse π1-tame end.
The projective class at ∞

[W ]∞ ∈ K̃0(Z[π∞1 (W )])

has image the Wall finiteness obstruction [W ] ∈ K̃0(Z[π1(W )]).
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(ii) The projective class at ∞ of (W,∂W ) as in (i) is such that [W ]∞ = 0 if
(and for n ≥ 6 only if) (W,∂W ) can be collared, i.e. there exists a compact
n-dimensional cobordism (N ; ∂W,M) with a homeomorphism rel ∂W

(W,∂W ) ∼= (N\M, ∂W ) .

If n ≥ 6 and [W ]∞ = 0 any two such cobordisms (N ; ∂W,M), (N ′; ∂W,M ′)
differ by an h-cobordism (L; M, M ′) such that

(N ′; ∂W,M ′) ∼= (N ; ∂W,M) ∪ (L; M, M ′) .

(iii) For any finitely presented group π and any f.g. projective Z[π]-module
P there exists (W,∂W ) as in (i), with

π∞1 (W ) = π1(W ) = π , [W ]∞ = [W ] = [P ] ∈ K̃0(Z[π]) .

Idea of proof (i)+(ii) The projective class at ∞ of W is the finiteness
obstruction of a cocompact submanifold V ⊆ W with π1(V ) = π∞1 (W )

[W ]∞ = [V ] ∈ K̃0(Z[π1(V )]) = K̃0(Z[π∞1 (W )]) .

Let U = cl(W\V ), so that (U ; ∂W, ∂V ) is a compact cobordism with

(W,∂W ) = (U ; ∂W, ∂V ) ∪ (V, ∂V ) .

It is possible to choose V such that the inclusion ∂V−→V is a homotopy
equivalence if (and for n ≥ 6 only if) W can be collared. The condition
n ≥ 6 occurs here because of the application of the Whitney trick to modify
the (n − 1)-dimensional manifold ∂V by codimension 1 surgeries inside V .
The projective class at ∞ [W ]∞ ∈ K̃0(Z[π∞1 (W )]) is the obstruction to the
construction of such V by handle exchanges on ∂V inside W .

(iii) Let P = im(p) for a projection p = p2 : Z[π]r−→Z[π]r. For any n ≥ 5
there exists a closed (n− 1)-dimensional manifold M with π1(M) = π. As
in [140, Chapter VIII] construct a ‘strange end’

(W,∂W ) = (M × I ∪
∞⋃

0

2-handles ∪
∞⋃

0

3-handles,M × {0})

satisfying the hypothesis of (i), with

π∞1 (W ) = π1(W ) = π , [W ]∞ = [W ] = [P ] .

The 2-handles are attached trivially and the 3-handles are attached non-
trivially, with

C(W̃ , ∂W̃ ) : . . . −→ 0 −→ Z[π]r[z]
d−→ Z[π]r[z] −→ 0 −→ 0

such that
H2(W̃ , ∂W̃ ) = coker(d) = P

(e.g. d = 1− p± zp or 1− zp).
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Remark 10.3 (i) In 10.5 below it will be shown that if (W,∂W ) is an n-
dimensional open manifold as in 10.2 (i) then (W ; ∂W, e(W )) is a finitely
dominated n-dimensional Z[π1(W )]-coefficient geometric Poincaré cobor-
dism. If n ≥ 6 and [W ]∞ = 0 then (W,∂W ) can be collared, and (W ; ∂W,
e(W )) is homotopy equivalent rel ∂W to a compact n-dimensional manifold
cobordism (N ; ∂W,M) as in 10.2 (ii). Any two such collarings (N ; ∂W,M),
(N ′; ∂W,M ′) of (W,∂W ) are related by an h-cobordism (L; M, M ′) with

(N ′; ∂W,M ′) = (N ; ∂W,M) ∪ (L; M,M ′) ,

so that the collarings are classified by the Whitehead group Wh(π∞1 (W )).
(See Example 17.3 below for an account of the connections between h-
cobordism theory and collarings.)

(ii) In the simply-connected case π∞1 (W ) = {1} the projective class at ∞
vanishes, [W ]∞ = 0 ∈ K̃0(Z) = 0, and 10.2 recovers the result of Browder,
Levine and Livesay [14] that for n ≥ 6 it is possible to collar an open
n-dimensional open manifold (W,∂W ) with finitely generated H∗(W ) (=
reverse π1-tameness in the simply-connected case).

(iii) The construction of tame manifold ends in 10.2 (iii) can be generalized
using bands (15.3), as follows. For P = im(p), M as in the proof of 10.2 (iii)
let (L; M × S1, N) be the compact (n + 1)-dimensional cobordism with

L = M × S1 × I ∪
⋃
r

2-handles ∪1−zp

⋃
r

3-handles .

Then π1(L) = π1(N) = π× Z, and the projection π1(N)−→Z is realized by
a map c : N−→S1 such that (N, c) is an n-dimensional manifold band. The
infinite cyclic cover N = c∗R of N has two ends, and

(W,∂W ) = (N +
, N

+ ∩N
−)

is an open n-dimensional manifold with compact boundary and a reverse
π1-tame end such that π∞1 (W ) = π1(W ) = π and [W ]∞ = [W ] = [P ] ∈
K̃0(Z[π]). It will be shown in Proposition 15.9 below that e(W ) ' N .

The locally finite projective class of a forward tame CW complex W is
defined as in 6.12, using the finite domination of C lf,π(W̃ ) given by 7.20 :

Definition 10.4 The locally finite projective class of a forward tame locally
finite CW complex W is the projective class

[W ]lf = [C lf,π(W̃ )] ∈ K0(Z[π]) (π = π1(W ))

of the finitely dominated Z[π]-module chain complex C lf,π(W̃ ) , with W̃ the
universal cover of W .
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Proposition 10.5 (i) If W is a locally finite CW complex which is both
forward and reverse tame the end space e(W ) is finitely dominated, with
Z[π1(W )]-coefficient reduced projective class

[e(W )] = [W ]− [W ]lf ∈ K̃0(Z[π1(W )]) .

(ii) If (W,∂W ) is an open n-dimensional geometric Poincaré pair which
is both forward and reverse tame then

[W ]lf = (−)n[W ]∗ ∈ K̃0(Z[π1(W )]) .

The end space e(W ) is a finitely dominated (n− 1)-dimensional Z[π1(W )]-
coefficient Poincaré space and (W ; ∂W, e(W )) is an n-dimensional Z[π1(W )]-
coefficient geometric Poincaré cobordism, with

[e(W )] = [W ]− [W ]lf = [W ] + (−)n−1[W ]∗ ∈ K̃0(Z[π1(W )]) .

Proof Let π = π1(W ).
(i) The finite domination of e(W ) is given by 7.20. The projective class

identity follows from the Z[π]-module chain equivalence given by 7.20 (v)

S( ˜e(W )) ' C∞,π(W̃ ) = C(C(W̃ )−→C lf,π(W̃ ))∗+1 .

(ii) The universal cover W̃ of W is such that the Z[π]-module chain com-
plexes C(W̃ ), C lf,π(W̃ ) are finitely dominated. Let [e(W )] ∈ Hn−1(e(W ))
be the image of the fundamental class

[W ] ∈ H lf
n (W,∂W ) = Hn(W,∂W q e(W )) .

The commutative diagram

Clf,π(W̃ )n−∗ w

u
[W ] ∩ − '

C(W̃ )n−∗

u
[W ] ∩ − '

C(W̃ , ∂W̃ ) w Clf,π(W̃ , ∂W̃ )

induces an (n−1)-dimensional Z[π]-coefficient Poincaré duality chain equiv-
alence

[e(W )] ∩ − : S( ˜e(W ))n−1−∗ ' C(C(W̃ )−→C lf,π(W̃ ))n−∗

'−→ S( ˜e(W )) ' C(C(W̃ , ∂W̃ )−→C lf,π(W̃ , ∂W̃ ))∗+1 ,

so that e(W ) is an (n − 1)-dimensional Z[π]-coefficient Poincaré space. In
fact, (W ; ∂W, e(W )) is an n-dimensional Z[π]-coefficient Poincaré cobor-
dism, with a Z[π]-coefficient Poincaré duality chain equivalence

[W ] ∩ − : C lf,π(W̃ , ∂W̃ )n−∗ ' C(W̃ , ∂W̃ q ˜e(W ))n−∗ '−→ C(W̃ ) .
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Example 10.6 The polynomial ring Z[z] consists of the polynomials
∞∑
i=0

aiz
i

with only a finite number of the coefficients ai ∈ Z non-zero. Give R+ =
[0,∞) the CW structure with one 0-cell at each n ∈ N ⊂ R+, and 1-cells
[n, n+1], so that the cellular chain complex is the Z[z]-module chain complex

C(R+) : Z[z]
1− z−−−→ Z[z] ,

with z acting by R+−→R+; x−→x+1. Let Z[[z]] be the ring of formal power

series
∞∑
i=0

aiz
i (ai ∈ Z). The differential in the locally finite cellular chain

complex

C lf (R+) : Z[[z]]
1− z−−−→ Z[[z]]

is an isomorphism, with inverse

(1− z)−1 =
∞∑

k=0

zk : Z[[z]] −→ Z[[z]] ;
∞∑

j=0

ajz
j −→

∞∑

k=0

(
k∑

j=0

aj)zk ,

so that C lf (R+) is contractible and the locally finite projective class is

[R+]lf = [C lf (R+)] = 0 ∈ K0(Z) = Z .

There are defined homology equivalences of Z-module chain complexes

C∞(R+) ' C(R+) ' Z , C lf (R+) ' 0

in accordance with e(R+) ' {pt.}.

Example 10.7 The Laurent polynomial ring Z[z, z−1] consists of the poly-

nomials
∞∑

i=−∞
aiz

i with only a finite number of the coefficients ai ∈ Z non-

zero. The cellular chain complex of the universal cover S̃1 = R of the circle
S1 is the Z[z, z−1]-module chain complex

C(R) : Z[z, z−1]
1− z−−−→ Z[z, z−1] ,

identifying Z[π1(S1)] = Z[z, z−1]. The locally finite cellular chain complex
of R is

C lf (R) : Z[[z, z−1]]
1− z−−−→ Z[[z, z−1]] ,

with Z[[z, z−1]] = Z[[π1(S1)]] the Z[z, z−1]-module of formal Laurent poly-

nomials
∞∑

i=−∞
aiz

i (ai ∈ Z). The Z-module morphism

Z −→ C lf (R)1 = Z[[z, z−1]] ; 1 −→
∞∑

i=−∞
zi
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defines a homology equivalence Z−→C lf (R)∗+1, and the locally finite pro-
jective class of R is

[R]lf = [C lf (R)] = −[Z] = −1 ∈ K0(Z) = Z .

The Z[z, z−1]-module chain map i : C(R)−→C lf (R) defined by inclusion is
chain homotopic to 0, with a chain homotopy h : i ' 0 defined by

h : C(R)0 = Z[z, z−1] −→ C lf (R)1 = Z[[z, z−1]] ;
∞∑

j=−∞
ajz

j −→
∞∑

k=−∞
(

k∑

j=−∞
aj)zk .

As Z-module chain complexes C(R) ' C lf (R)∗+1 ' Z, and

e(C(R)) = C(i)∗+1 ' C(R)⊕ C lf (R)∗+1 ' C(e(R)) ' Z⊕ Z ,

in accordance with e(R) ' S0. The locally Z-finite cellular chain complex
of R is

C lf,Z(R) = C(R) : Z[z, z−1]
1− z−−−→ Z[z, z−1] ,

so that i : C(R)−→C lf,Z(R) is an isomorphism and

C( ˜e(S1)) = C(i : C(R)−→C lf,Z(R))∗+1 ' 0 ,

in accordance with e(S1) = ∅.

If W is a forward tame strongly locally finite CW complex which is path-
connected at ∞ there exists a cofinite subcomplex V ⊆ W such that the
inclusion V−→W extends to a proper map q : V × [0,∞)−→W . The locally
finite Z[π]-module chain complex C lf,π(Ṽ ) is finitely dominated by 7.20,
with π = π1(e(W )), and Ṽ the cover of V induced from the universal cover
˜e(W ) of e(W ) by the adjoint map q̂ : V−→e(W ).

Definition 10.8 The locally finite projective class at ∞ of a forward tame
strongly locally finite CW complex W which is path-connected at ∞ is

[W ]lf∞ = [C lf,π(Ṽ )] ∈ K̃0(Z[π])

with π = π1(e(W )), V ⊆ W any cofinite subcomplex such that the inclusion
V−→W extends to a proper map q : V × [0,∞)−→W .

Proposition 10.9 Let W be a forward tame strongly locally finite CW
complex which is path-connected at ∞, and let π = π1(e(W )).

(i) If V ⊆ W is a cofinite subcomplex such that π1(V ) = π then the locally
finite Z[π]-module chain complex C lf,π(Ṽ ) is finitely dominated, and

[W ]lf∞ = [C lf,π(Ṽ )] ∈ K̃0(Z[π])
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with Ṽ the universal cover of V .
(ii) If W is both forward and reverse tame then the end space e(W ) is

finitely dominated, with finiteness obstruction

[e(W )] = [W ]∞ − [W ]lf∞ ∈ K̃0(Z[π]) .

(iii) If W is forward collared then [W ]lf∞ = 0 ∈ K̃0(Z[π]).
Proof (i) Let V ′ ⊆ V be a cofinite subcomplex such that the inclusion
V ′−→W extends to a proper map q′ : V ′ × [0,∞)−→W . Let Ṽ ′ be the
cover of V induced from the universal cover ˜e(W ) of e(W ) by the adjoint
map q̂ ′ : V ′−→e(W ). We are assuming that identification π1(V ) = π is
such that

i∗ = q̂ ′∗ : π1(V ′) −→ π1(V ) = π1(e(W )) = π ,

so that there exists a lift of i to an inclusion ĩ : Ṽ ′−→Ṽ . Now C lf,π(Ṽ ′) is
a finitely dominated Z[π]-module chain complex such that

[W ]lf∞ = [C lf,π(Ṽ ′)] ∈ K̃0(Z[π]) .

The finite domination of C lf,π(Ṽ ) and the identity [C lf,π(Ṽ ′)] = [C lf,π(Ṽ )]
follow from the short exact sequence of Z[π]-module chain complexes

0 −→ C lf,π(Ṽ ′) −→ C lf,π(Ṽ ) −→ C lf,π(Ṽ , Ṽ ′) −→ 0

with C lf,π(Ṽ , Ṽ ′) = C(Ṽ , Ṽ ′) a finite f.g. free Z[π]-module chain complex.
(ii) Apply 10.5 (i) to a cofinite subcomplex V ⊆ W such that π1(V ) =

π1(e(W )).
(iii) Let U ⊆ W be a closed cocompact ANR subspace with an extension

of the identity U × {0}−→U to a proper map U × [0,∞)−→U and let
V ⊆ U be a cofinite subcomplex of W . Let π = π1(e(W )), and let Ũ , Ṽ be
the covers of U, V induced from the universal cover ˜e(W ) of e(W ). By 7.5

S(Ũ , Ṽ ) = Slf,π(Ũ , Ṽ ) ' Slf,π(Ũ)⊕ Slf,π(Ṽ )∗−1

with S(Ũ , Ṽ ) chain homotopy finite. The identity chain map Slf,π(Ũ)−→
Slf,π(Ũ) is chain homotopic to 0, so that there are defined Z[π]-module
chain equivalences

Slf,π(Ũ) ' 0 , C lf,π(Ṽ ) ' Slf,π(Ṽ ) ' S(Ũ , Ṽ )∗+1

and

[W ]lf∞ = [C lf,π(Ṽ )] = −[S(Ũ , Ṽ )] = 0 ∈ K̃0(Z[π]) .

The locally finite projective class [W ]lf∞ ∈ K̃0(Z[π1(e(W ))]) of a forward
tame CW complex W is thus an obstruction to W being forward collared.
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For a manifold forward and reverse tameness are Poincaré dual to each
other, as was first established by Quinn [116]. We give a proof in 10.13
below. We begin with a simple geometric way to detect forward tameness
(10.10). This is combined with the Eventual Hurewicz Theorem (10.11) to
give a homological criterion for forward tameness (10.12).

Lemma 10.10 Let W be a σ-compact space. If for every cocompact subspace
U ⊆ W there exists a cocompact subspace V = V (U) ⊆ U such that for
every cocompact subspace X ⊆ V there exists a cocompact subspace Y =
Y (U,X) ⊆ X so that V deforms in U to X rel Y (i.e. there is a homotopy
h : V × I−→U such that h0 = inclusion : V−→U , h1(V ) ⊆ X and ht|Y =
inclusion : Y−→U for each t ∈ I), then W is forward tame.
Proof Let W ⊇ W0 ⊇ W1 ⊇ . . . be closed cocompact subspaces with⋂

Wi = ∅. Define closed cocompact subspaces Vj ⊆ W , j = 0, 1, 2, . . .,
inductively as follows. Let V0 = V (W0). Assume j > 0 and that V0 ⊇ V1 ⊆
. . . ⊆ Vj−1 and Vi ⊆ Wi for i = 0, 1, . . . , j − 1. Let Vj = V (Wj ∩ Vj−1). For
each j = 0, 1, 2, . . . let Xj = Vj+1 and Yj = Y (Vj−1, Xj). By hypothesis Vj

deforms in Wj ∩Vj−1 to Xj rel Yj . That is, for each j = 0, 1, 2, . . . there is a
homotopy hj : Vj×I−→Wj∩Vj−1 such that hj

0 = inclusion : Vj−→Wj∩Vj−1,
hj

1(Vj) ⊆ Xj = Vj+1 and hj
t |Yj = inclusion : Yj−→Wj ∩ Vj−1 for all t ∈ I.

Define

h : V0 × [0,∞) −→ W ; (x, t) −→ hj(hj−1
1 ◦ hj−2

1 ◦ · · · ◦ h0
1(x), t− j)

(x ∈ V0, j ≤ t ≤ j + 1) .

To see that h is a proper homotopy let K ⊆ W be compact. There exists
i > 0 such that K ∩ Vi = ∅. Thus h−1(K) = (h|(V0 × [0, i + 1]))−1(K).
Since each hj fixes the cocompact subspace Yj ⊆ W , it follows that each hj

is proper and that h|(V0 × [0, i + 1]) is proper.

The following Eventual Hurewicz Theorem is a relative version of a result
from Ferry [54, p. 570]. A proof of the relative version, in a more general
context, can be found in Quinn [114, p. 302].

Lemma 10.11 For each integer n > 0 there exists an integer kn > 0
such that the following holds. Let W be an n-dimensional locally finite CW
complex for which there are sequences of cofinite subcomplexes

W ⊇ A0 ⊇ A1 ⊇ A2 ⊇ A3 ⊇ . . . ⊇ Akn ,

W ⊇ B0 ⊇ B1 ⊇ B2 ⊇ B3 ⊇ . . . ⊇ Bkn

with Bj ⊆ Aj for each j. Suppose that A0 has a regular cover Ã0 with
group of covering translations π and that Ãj, B̃j denote the regular covers
of Aj, Bj induced by the inclusions Aj−→A0 and Bj−→A0 for 0 ≤ j ≤ kn.
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Suppose the inclusions induce 0 morphisms in π1

0 : π1(Ãj) −→ π1(Ãj−1) , 0 : π1(B̃j) −→ π1(B̃j−1)

and 0 morphisms in homology

0 : Hr(Ãj , B̃j) −→ Hr(Ãj−1, B̃j−1) (r ≤ n) .

Then Akn deforms in A0 to B0 rel Bkn, i.e. there is a homotopy h : Akn ×
I−→A0 such that h0 = inclusion : Akn−→A0, h1(Akn) ⊆ B0 and ht|Bkn =
inclusion : Bkn−→A0 for each t ∈ I.

Lemma 10.12 Let W be an n-dimensional locally finite CW complex with
stable π1 at ∞ and let W ⊇ W0 ⊇ W1 ⊇ . . . be a sequence of cofinite
subcomplexes such that

⋂
j

Wj = ∅ and the inclusion induced morphisms

π1(W0)
f0←− π1(W1)

f1←− π1(W2)
f2←− . . .

induce isomorphisms

π = im(f0)
∼=←− im(f1)

∼=←− im(f2)
∼=←− . . . .

Suppose that for every cocompact subspace U ⊆ W0 there exists a cocompact
subspace V ⊆ U such that for every cocompact subspace X ⊆ V there exists
a cocompact subspace Y ⊆ X so that the inclusion induces 0 morphisms in
homology

0 : Hr(Ṽ , Ỹ ) −→ Hr(Ũ , X̃) (r ≤ n)

with Ũ , Ṽ , X̃, Ỹ the regular covers induced from the universal cover W̃0−→W0

by inclusion. Then W is forward tame.
Proof First note that the inclusions induce 0 morphisms

{0} = π1(W̃0)
0←− π1(W̃1)

0←− π1(W̃2)
0←− . . . .

In order to verify the hypothesis of 10.10, let U ⊆ W be an arbitrary cocom-
pact subspace and assume that U ⊆ W0. By assumption and induction there
exists a sequence of cocompact subspaces U ⊇ V0 ⊇ V1 ⊇ V2 ⊇ . . . ⊇ Vkn

(with kn given by 10.11) such that for every cocompact subspace X ⊆ Vkn

there exists a cocompact subspace Y ⊆ X such that the inclusion induces
the 0 morphism in homology

0 : Hr(Ṽj , Ỹ ) −→ Hr(Ũ , X̃) (r ≤ n)

with the covers induced from W̃0−→W0 by inclusion. Choose integers i0 <
i1 < . . . < ikn such that Wij ⊆ Vj for each j = 0, 1, 2, . . . , kn. Then for every
cocompact subspace X ⊆ Wikn

there exists a cocompact subspace Y ⊆ X
such that the inclusion induces 0 morphisms in homology

0 : Hr(W̃ij , Ỹ ) −→ Hr(Ũ , X̃) (r ≤ n) .
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Let V = Wikn
and let X ⊆ V be an arbitrary cocompact subspace. Again by

assumption and induction there exists a sequence of cocompact subspaces

X ⊇ Y0 ⊇ Y1 ⊇ Y2 ⊇ . . . ⊇ Ykn

such that inclusion induces 0 morphisms in homology

0 : Hr(Ṽj , Ỹj) −→ Hr(Ũ , X̃) (r ≤ n) .

Choose integers ikn < l0 < l1 < . . . < lkn such that Wlj ⊆ Yj for each
j = 0, 1, 2, . . . , kn. Then inclusion induces 0 morphisms in homology

0 : Hr(Ṽ , W̃lj ) −→ Hr(Ũ , X̃) (r ≤ n) .

Let Y = Wlkn
. It follows from 10.11 that V deforms in U to X rel Y so

that W is forward tame by 10.10.

Proposition 10.13 Let (W,∂W ) be an open n-dimensional manifold with
compact boundary. W is forward tame with finitely presented π1(e(W )) if
and only if W is reverse π1-tame.
Proof Suppose first that W is forward tame and π1(e(W )) is finitely pre-
sented. According to 7.10 (i) W has stable π1 at∞ and π1(e(W )) = π∞1 (W ).
By 7.5 (i) there exists a closed cocompact subspace V ⊆ W such that the
natural morphism

π = π1(e(W )) = π∞1 (W ) −→ π1(V )

is split injective. Since it suffices to prove that V is reverse tame, we assume
that π = π1(e(W ))−→π1(W ) is split injective. All covers below are induced
from the universal cover W̃−→W . By 9.18 it suffices to prove that e(W ) is
finitely dominated. Since e(W ) has the homotopy type of a CW complex
(7.6), it suffices to show that S( ˜e(W )) is a finitely dominated Z[π]-module
chain complex (6.9 (i)). According to 7.10 (iv) there is defined a Z[π]-module
chain equivalence

S( ˜e(W )) ' C(S(W̃ )−→Slf,π(W̃ ))∗+1 .

Since Slf,π(W̃ ) is finitely dominated by 7.5 (iii), it suffices to prove that
S(W̃ ) is a finitely dominated Z[π]-module chain complex. The Z[π]-module
chain complex S(W̃ ) is finitely dominated if and only if the n-dual Z[π]-
module chain complex S(W̃ )n−∗ = HomZ[π](S(W̃ ),Z[π])n−∗ is finitely dom-
inated. Now (W,∂W ) is an open n-dimensional Poincaré pair, so there is
a Z[π]-module chain equivalence S(W̃ )n−∗ ' Slf,π(W̃ , ∂W̃ ). Use 7.5 (iii)
again to conclude that Slf,π(W̃ ) is finitely dominated, from which it follows
that Slf,π(W̃ , ∂W̃ ) is finitely dominated.

Conversely, suppose W is reverse π1-tame. In order to apply 10.12, let
W ⊇ W0 ⊇ W1 ⊇ . . . be as in 10.12. Since it suffices to prove that W0 is for-
ward tame, we assume that W = W0 and all covers below are induced from
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the universal cover W̃−→W . Since W is reverse tame, for every cocompact
subspace U ⊆ W there exists a cocompact subspace V ⊆ U such that U is
dominated by U \ V , by a homotopy h : W × I−→W as in 8.1. For every
cocompact subspace X ⊆ V there exists a cocompact subspace Y ⊆ X such
that h((W \ X) × I) ⊆ W \ Y . In particular, the inclusion induced chain
map S(W̃ \ X̃, W̃ \ Ũ)−→S(W̃ \ Ỹ , W̃ \ Ṽ ) is chain homotopic to 0. Now
Alexander duality gives a commutative diagram

S(W̃\X̃, W̃\Ũ) w

u
'

S(W̃\Ỹ , W̃\Ṽ )

u
'

S(Ũ , X̃)n−∗ S(Ṽ , Ỹ )n−∗u

Since the top horizontal arrow is chain homotopic to 0, so is the bottom
arrow. Taking n-duals gives that S(Ṽ , Ỹ )−→S(Ũ , X̃) is chain homotopic
to 0. Thus for every cocompact subspace U ⊆ W there exists a cocompact
subspace V ⊆ U such that for every cocompact subspace X ⊆ V there
exists a cocompact subspace Y ⊆ X such that S(Ṽ , Ỹ )−→S(Ũ , X̃) is chain
homotopic to 0. That W is forward tame now follows from 10.12, since
the fundamental group of a finitely dominated space is finitely presented
(6.8 (i)). Finally, by 7.5 (i) e(W ) is dominated by a closed ANR cocompact
subspace V ⊆ W . By 8.7 V is finitely dominated. Hence π1(e(W )) is finitely
presented.

Remark 10.14 (i) Quinn gave a proof of 10.13 in [116] but without taking
into account the fundamental group conditions. However, these conditions
are required by Freedman and Quinn [60, p. 214]. The proof of the first half
of 10.13 differs from the proof in [116].

(ii) In Chapter 23 we shall show that for a connected finite CW complex
X with a connected infinite cyclic cover X and π = π1(X) the following
conditions are equivalent :

(a) X
+ is forward tame,

(b) the natural map e(X +)−→X is a homotopy equivalence,
(c) the locally π-finite cellular Z[π]-module chain complex C lf,π(X̃ +) is

finitely dominated, allowing the definition of the locally finite pro-
jective class

[X +]lf = [C lf,π(X̃ +)] ∈ K0(Z[π]) ,

(d) X
− is reverse tame,

(e) X
− is finitely dominated,

(f) the cellular Z[π]-module chain complex C(X̃ −) is finitely dominated,
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allowing the definition of the projective class

[X −] = [C(X̃ −)] ∈ K0(Z[π]) .

If these conditions are satisfied there is defined a Z[π]-module chain equiv-
alence

C lf,π(X̃ +) ' C(X̃ −, X̃ + ∩ X̃ −)∗+1

and the projective classes are such that

[X +]lf + [X −] = [X + ∩X
−] ∈ K0(Z[π]) .

(iii) In Chapter 23 we shall use the infinite simple homotopy theory of
Chapter 11 to also prove that for X,X, π satisfying the conditions of (ii)
the following conditions are equivalent :

(a) X is infinite simple homotopy equivalent to an infinite cyclic cover W

of a finite CW complex W with W
+ forward collared,

(b) X is infinite simple homotopy equivalent to an infinite cyclic cover W

of a finite CW complex W with W
− reverse collared,

(c) [X +]lf = 0 ∈ K̃0(Z[π]),
(d) [X −] = 0 ∈ K̃0(Z[π]).

(iv) If W is a forward tame strongly locally finite CW complex which is
path-connected at ∞ there may not exist a cofinite subcomplex V ⊆ W

with π1(V ) = π1(e(W )) as in 10.9 (i) – the CW complex W
+ of Example

13.16 is a counterexample.

Corollary 10.15 If (W,∂W ) is a reverse π1-tame open n-dimensional man-
ifold with compact boundary then the locally finite projective class at ∞ is
the Poincaré dual of the projective class at ∞ :

[W ]lf∞ = (−)n[W ]∗∞ ∈ K̃0(Z[π1(e(W ))]) .

Proof W is forward tame, by 10.13. There exists a cocompact closed neigh-
bourhood W ′ ⊆ W such that (W ′, ∂W ′) is an open n-dimensional manifold
with compact boundary and

π1(W ′) = π1(e(W ′)) = π1(e(W )) (= π , say) ,

[W ′] = [W ′]∞ = [W ]∞ , [W ′]lf = [W ′]lf∞ = [W ]lf∞ ∈ K̃0(Z[π]) .

Applying 10.5 (ii) to the forward and reverse tame open n-dimensional ge-
ometric Poincaré pair (W ′, ∂W ′) we obtain

[W ]lf∞ = [W ′]lf = (−)n[W ′]∗ = (−)n[W ]∗∞ ∈ K̃0(Z[π]) .
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Infinite torsion

The ‘infinite Whitehead group’ S(W ) of Siebenmann [144] is defined geo-
metrically for any locally finite CW complex W , and is denoted here by
Whlf (W ). A proper homotopy equivalence f : V−→W of locally finite
CW complexes has an ‘infinite torsion’ τ lf (f) ∈ Whlf (W ), which for for-
ward tame V, W has image [W ]∞ − [V ]∞ ∈ K̃0(Z[π∞1 (W )]). The projective
class [W ] ∈ K̃0(Z[π1(W )]) of a finitely dominated space W is a homotopy
invariant, whereas the projective class at ∞ [W ]∞ ∈ K̃0(Z[π∞1 (W )]) of a
reverse π1-tame space W is only an infinite simple homotopy invariant. In
11.14 and 11.15 we prove that if a strongly locally finite CW complex W
is forward (resp. reverse) tame, then W × S1 is infinite simple homotopy
equivalent to a forward (resp. reverse) collared CW complex, analogous to
Siebenmann’s result that if W is a manifold of dimension n ≥ 5 with one
tame end, then the end of W × S1 is collared.

For a forward tame W we identify Whlf (W ) with the algebraically defined
relative Whitehead group in the exact sequence

Wh(π1(e(W )))
p∗−→ Wh(π1(W )) −→ Whlf (W )

−→ K̃0(Z[π1(e(W ))])
p∗−→ K̃0(Z[π1(W )])

with p : e(W )−→W the projection (11.6). The infinite torsion τ lf (f) ∈
Whlf (W ) of a proper homotopy equivalence f : V−→W of forward tame
CW complexes has image

[τ lf (f)] = [W ]lf∞ − [V ]lf∞ ∈ K̃0(Z[π1(e(W ))]) .

The locally finite projective class [W ]lf ∈ K̃0(Z[π1(W )]) of a forward tame
CW complex W is an invariant of proper homotopy type of W , whereas
the locally finite projective class at ∞ [W ]lf∞ ∈ K̃0(Z[π1(e(W ))]) is only an
infinite simple homotopy invariant.

122
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Definition 11.1 (i) The infinite Whitehead group Whlf (W ) of a locally
finite CW complex W is the geometrically defined group S(W ) of Sieben-
mann [144]

Whlf (W ) = S(W ) .

(ii) The infinite torsion of a proper homotopy equivalence f : V−→W of
locally finite CW complexes is the element defined in [144]

τ lf (f) ∈ Whlf (W ) ,

and f is an infinite simple homotopy equivalence if τ lf (f) = 0.

Remark 11.2 (i) In dealing with infinite torsion, it is necessary to restrict
attention to strongly locally finite CW complexes. The need for this re-
striction is discussed in Chapter 1 of Farrell and Wagoner [52].

(ii) Chapman [22, 23] proved that a proper homotopy equivalence f :
V−→W of strongly locally finite CW complexes is an infinite simple ho-
motopy equivalence if and only if f × idQ : V × Q−→W × Q is properly
homotopic to a homeomorphism, with Q the Hilbert cube. Hilbert cube
manifold theory then allows the extension of proper simple homotopy the-
ory to ANR’s : a proper homotopy equivalence f : V−→W of ANR’s is
an infinite simple homotopy equivalence if f × idQ : V × Q−→W × Q is
properly homotopic to a homeomorphism. This agrees with the theory of
Siebenmann [144] for strongly locally finite CW complexes.

Proposition 11.3 (Siebenmann [144], Farrell and Wagoner [52]) (i) A proper
homotopy equivalence f : V−→W of locally finite CW complexes is a proper
simple homotopy equivalence if and only if f is properly homotopic to a fi-
nite sequence of proper expansions and collapses.

(ii) The infinite Whitehead group of a strongly locally finite CW complex
W fits into an exact sequence

Whlf (W ) −→ lim←−
j

K̃0(Z[π1(Wj)]) −→ K̃0(Z[π1(W )])

for a sequence W ⊃ W1 ⊃ W2 ⊃ . . . of cofinite subcomplexes such that⋂
j

Wj = ∅. The subgroup

Whlf
b (W ) = ker(Whlf (W )−→ lim←−

j

K̃0(Z[π1(Wj)])) ⊆ Whlf (W )

fits into an exact sequence

lim←−
j

Wh(π1(Wj)) −→ Wh(π1(W )) −→ Whlf
b (W )

−→ lim←−
j

1 Wh(π1(Wj)) −→ 0 .
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(iii) The infinite torsion τ lf (f) ∈ Whlf (W ) of a proper homotopy equiv-
alence f : V−→W of locally finite CW complexes has image

[τ lf (f)] = [C(f̃j : C(Ṽj)−→C(W̃j))] ∈ lim←−
j

K̃0(Z[π1(Wj)]) ,

with C(f̃j) the finitely dominated Z[π1(Wj)]-module chain complex defined
by the algebraic mapping cone of the chain map induced by a π1(Wj)-
equivariant lift f̃j : Ṽj−→W̃j of fj = f | : Vj = f−1(Wj)−→Wj.

(iv) If f : V−→W is a proper homotopy equivalence of reverse π1-tame
CW complexes then it is possible to choose each Wj ⊂ W and Vj = f−1(Wj)
⊂ V to be finitely dominated, and

[τ lf (f)] = [Wj ]− [Vj ] ∈ lim←−
j

K̃0(Z[π1(Wj)]) ,

with image [W ]∞ − [V ]∞ ∈ K̃0(Z[π∞1 (W )]).
(v) (Proper s-cobordism theorem) The infinite torsion of a proper h-

cobordism (W ; M,M ′) of open n-dimensional manifolds

τ lf (W ; M, M ′) = τ lf (M−→W ) ∈ Whlf (W )

is such that τ lf (W ; M, M ′) = 0 if (and for n ≥ 6 only if) (W ; M, M ′) is
homeomorphic rel M to M × (I; {0}, {1}).

Corollary 11.4 The projective class [W ] ∈ K̃0(Z[π1(W )]) of a reverse π1-
tame CW complex W is an invariant of the proper homotopy type of W ,
whereas the projective class at ∞ [W ]∞ ∈ K̃0(Z[π∞1 (W )]) is only an invari-
ant of the infinite simple homotopy type.

Example 11.5 (i) If K is a finite CW complex with π1(K) = π then
e(K × Rm) ' K × Sm−1 and

Whlf (K×Rm) =





K̃0(Z[π]) if m = 1 ,
ker(K̃0(Z[π × Z])−→K̃0(Z[π]))
= K−1(Z[π])⊕ Ñil−1(Z[π])⊕ Ñil−1(Z[π]) if m = 2 ,
0 if m ≥ 3

as in Siebenmann [144], with K−1, Ñil−1 the lower K- and Ñil-groups of
Bass [4] such that

K0(Z[π][z, z−1]) = K0(Z[π])⊕K−1(Z[π])⊕ Ñil−1(Z[π])⊕ Ñil−1(Z[π]) .

(ii) The infinite transfer map

Wh(π × Z) −→ Whlf (K × R) = K̃0(Z[π]) ;

τ(f : L−→K × S1) −→ τ lf (f : L−→K × R) = [L+]
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(with K, π as in (i)) is given algebraically by the split surjection of Bass [4]

Wh(π × Z) −→ K̃0(Z[π]) ;

τ(f : M [z, z−1]−→M [z, z−1]) −→ [M+ ∩ f(zNM−)]− [M+ ∩ zNM−]

for any N ≥ 0 so large that f(zNM+) ⊆ M+. See 11.8 below for the appli-
cation of the calculation Whlf (K×R) = K̃0(Z[π]) (in the case K̃0(Z[π]) 6= 0)
to the construction of an infinite CW complex W which is proper homo-
topy equivalent to the reverse collared CW complex K ×R, such that W is
reverse π1-tame but not reverse collared.

A group morphism f : π−→ρ determines a (Z[ρ],Z[π])-bimodule structure
on the group ring Z[ρ] by

Z[ρ]× Z[ρ]× Z[π] −→ Z[ρ] ; (a, x, b) −→ axf(b) .

This is used to define a functor

f : {Z[π]-modules} −→ {Z[ρ]-modules} ; M −→ Z[ρ]⊗Z[π] M

inducing morphisms

f∗ : K̃0(Z[π]) −→ K̃0(Z[ρ]) , f∗ : Wh(π) −→ Wh(ρ) .

The relative Whitehead group of f : π−→ρ is the abelian group of equivalence
classes of triples (P,Q, g) with P a f.g. projective Z[π]-module, Q a based
f.g. free Z[ρ]-module, and g : Z[ρ]⊗Z[π] P ∼= Q a Z[ρ]-module isomorphism,
subject to the equivalence relation :

(P, Q, g) ∼ (P ′, Q′, g′) if there exists a Z[π]-module isomorphism

h : P ⊕ Z[π]r ∼= P ′ ⊕ Z[π]r
′
with τ((g′ ⊕ 1)(1⊗ h)(g ⊕ 1)−1) = 0 ∈ Wh(ρ) .

As usual, addition is by

[P1, Q1, g1] + [P2, Q2, g2] = [P1 ⊕ P2, Q1 ⊕Q2, g1 ⊕ g2] ∈ Wh(f) .

The relative Whitehead group fits into an exact sequence

Wh(π)
f∗−→ Wh(ρ) −→ Wh(f) −→ K̃0(Z[π])

f∗−→ K̃0(Z[ρ])

with
Wh(f) −→ K̃0(Z[π]) ; (P, Q, g) −→ [P ] .

The involution on the group ring

Z[π] −→ Z[π] ; a =
∑
g∈π

ngg −→ a =
∑
g∈π

ngg
−1

determines an involution
{f.g. projective Z[π]-modules} −→ {f.g. projective Z[π]-modules} ;

P −→ P ∗ = HomZ[π](P,Z[π])
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with

Z[π]× P ∗ −→ P ∗ ; (a, u) −→ (x −→ u(x)a) .

The corresponding duality involutions on the algebraic K-groups

∗ : K̃0(Z[π]) −→ K̃0(Z[π]) ; [P ] −→ [P ]∗ = [P ∗] ,

∗ : Wh(π) −→ Wh(π) ; τ(α) −→ τ(α)∗ = τ(α∗)

extend to a duality involution on the relative Whitehead group

∗ : Wh(f) −→ Wh(f) ; (P, Q, g) −→ (P ∗, Q∗, (g∗)−1) .

See Ranicki [123] for the definition of the relative Whitehead invariant

[C, D, φ] ∈ Wh(f)

of a Z[ρ]-module chain equivalence φ : Z[ρ]⊗Z[π] C−→D for a finitely domi-
nated Z[π]-module chain complex C and a finite based f.g. free Z[ρ]-module
chain complex D, with image [C] ∈ K̃0(Z[π]), and such that

[C,D, φ]∗ = [C∗, D∗, (φ∗)−1] ∈ Wh(f) .

Proposition 11.6 (i) The infinite Whitehead group of a forward tame lo-
cally finite CW complex W is the relative Whitehead group

Whlf (W ) = Wh(p∗ : π1(e(W ))−→π1(W ))

which fits into the exact sequence

Wh(π1(e(W )))
p∗−→ Wh(π1(W )) −→ Whlf (W )

−→ K̃0(Z[π1(e(W ))])
p∗−→ K̃0(Z[π1(W )]) .

(ii) The infinite torsion τ lf (f) ∈ Whlf (W ) of a proper homotopy equiva-
lence f : V−→W of forward tame locally finite CW complexes has image

[τ lf (f)] = [W ]lf∞ − [V ]lf∞

∈ ker(p∗ : K̃0(Z[π1(e(W ))])−→K̃0(Z[π1(W )])) .

(iii) If f : V−→W is a proper homotopy equivalence of strongly locally
finite CW complexes which are forward and reverse tame then

[e(V )] = [V ]∞ − [V ]lf∞

= [W ]∞ − [W ]lf∞ = [e(W )] ∈ K̃0(Z[π1(e(W ))]) ,

and
[τ lf (f)] = [W ]lf∞ − [V ]lf∞ = [W ]∞ − [V ]∞

∈ ker(p∗ : K̃0(Z[π1(e(W ))])−→K̃0(Z[π1(W )])) .
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Proof (i) As W is forward tame it is possible to choose a π1-stable se-
quence W ⊃ W1 ⊃ W2 ⊃ . . . in 11.3. By 2.21 (iv) the stable inverse
system {π1(Wj)} with inverse limit π1(e(W )) induces a stable inverse sys-
tem {Wh(π1(Wj))} with inverse limit Wh(π1(e(W ))), and similarly for K̃0,
so that

lim←−
j

Wh(π1(Wj)) = Wh(π1(e(W ))) ,

lim←−
j

K̃0(Z[π1(Wj)]) = K̃0(Z[π1(e(W ))]) ,

lim←−
j

1 Wh(π1(Wj)) = 0 ,

Whlf
b (W ) = coker(p∗ : Wh(π1(e(W )))−→Wh(π1(W )))

= ker(Whlf (W )−→K̃0(Z[π1(W )])) .

(ii) Let Ṽ , W̃ be the universal covers of V,W , and let f̃ : Ṽ−→W̃ be
a π1(W )-equivariant lift of f . The algebraic mapping cone C(f̃) is a con-
tractible Z[π1(W )]-module chain complex. Let π = π1(e(W )), and let e(V ),
e(W ) be the universal covers of e(V ), e(W ). Choose a cofinite subcomplex
W1 ⊆ W such that π1(W1) = π, let

f1 = f | : V1 = f−1(W1) −→ W1

and let f1 : V 1−→W 1 be a π-equivariant lift of f1 with W 1 the universal
cover of W1, and V 1 the pullback cover of V1. The homotopy equivalence
e(f1) : e(V1)−→e(W1) induces a Z[π]-module chain equivalence

S(e(V )) ' C∞,π(V 1) = C(C(V 1)−→C lf,π(V 1))∗+1

−→ S(e(W )) ' C∞,π(W 1) = C(C(W 1)−→C lf,π(W 1))∗+1

so that the inclusion

C(f1 : C(V 1)−→C(W 1)) −→ C(f1 : C lf,π(V 1)−→C lf,π(W 1))

is also a Z[π]-module chain equivalence. The locally finite cellular Z[π]-
module chain complexes C lf,π(V 1), C lf,π(W 1) are finitely dominated (by
7.20), and hence so is C(f1 : C(V 1)−→C(W 1)). The algebraic mapping
cone C(f̃1) is a finitely dominated Z[π]-module chain complex such that
there is defined a short exact sequence of Z[π1(W )]-module chain complexes

0 −→ Z[π1(W )]⊗Z[π] C(f1) −→ C(f̃) −→ D −→ 0

with

D = C(f̃ : C(Ṽ , Ṽ1)−→C(W̃ , W̃1))
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a finite based f.g. free Z[π1(W )]-module chain complex. The cellular struc-
ture thus determines a finite structure on the chain complex Z[π1(W )]⊗Z[π]

C(f1), representing an element τ lf (f) ∈ Whlf (W ) with image

[τ lf (f)] = [C(f1)] = [W ]lf − [V ]lf ∈ K̃0(Z[π]) .

(iii) The induced map e(f) : e(V )−→e(W ) is a homotopy equivalence by
9.4.

Corollary 11.7 (i) The locally finite projective class [W ]lf ∈ K̃0(Z[π1(W )])
of a forward tame CW complex W is an invariant of the proper homo-
topy type of W , whereas the locally finite projective class at ∞ [W ]lf∞ ∈
K̃0(Z[π1(e(W ))]) is only an invariant of the infinite simple homotopy type.

(ii) The property of being forward collared is not a proper homotopy in-
variant.
Proof (i) If f : V−→W is a proper homotopy equivalence then the Wall
finiteness obstruction is preserved,

[W ] = [V ] ∈ K̃0(Z[π1(W )]) ,

so that
[W ]lf − [V ]lf = [W ]− [V ] = 0 ∈ K̃0(Z[π1(W )]) ,

and

[W ]∞ − [V ]∞ = [W ]lf∞ − [V ]lf∞

= [τ lf (f)] ∈ ker(p∗ : K̃0(Z[π1(e(W ))])−→K̃0(Z[π1(W )]))

is an invariant of the infinite torsion τ lf (f) ∈ Whlf (W ).
(ii) If W is forward collared then [W ]lf∞ = 0∈K̃0(Z[π1(e(W ))]) by 10.9 (iii).

For every element τ lf ∈ Whlf (W ) there exists a proper homotopy equiva-
lence f : V−→W with τ lf (f) = τ lf , so that V is forward tame (9.6) with
[V ]lf = −[τ lf ]. If [τ lf ] 6= 0 ∈ K̃0(Z[π1(e(W ))]) then V cannot be forward
collared.

Example 11.8 Let K be a connected finite CW complex with a fun-
damental group π1(K) = π such that K̃0(Z[π]) 6= 0 (e.g. π = Q(8),
as in 6.4 (i)). As in the proof of 6.8 (iii) use a Z[π]-module projection
p = p2 : Z[π]r−→Z[π]r with P = im(p) such that [P ] 6= 0 ∈ K̃0(Z[π]) to
construct for any N ≥ 2 a finite CW complex

L = (K × S1 ∨
∨
r

SN ) ∪−zp+1−p

⋃
r

DN+1

such that the projection defines a homotopy equivalence

f : L
'−→ K × S1
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with torsion

τ(f) = (−)Nτ(−zp + 1− p : Z[π][z, z−1]r−→Z[π][z, z−1]r)

= (−)Nτ(−z : P [z, z−1]−→P [z, z−1])

6= 0 ∈ im(K̃0(Z[π])−→Wh(π × Z)) .

As in 11.5 (ii) the lift of f to the infinite cyclic covers is a proper homotopy
equivalence

f : L = f∗(K × R)
'−→ K × R

with infinite torsion

τ lf (f) = [L+]∞ = [L+]lf∞ = [L+] = [L+]lf

= [P ] 6= 0 ∈ Whlf (K × R) = K̃0(Z[π]) .

The infinite CW complex K×R (with two ends) is both forward and reverse
collared, while the proper homotopy equivalent infinite CW complex L is
both forward and reverse tame but is neither forward nor reverse collared.

Proposition 11.9 Let (W,∂W ) be an open n-dimensional geometric Poin-
caré pair such that W is both forward and reverse tame.
(i) (W,∂W ) has an infinite torsion

τ lf (W ) = (−)nτ lf (W )∗ ∈ Whlf (W ) = Wh(p∗ : π1(e(W ))−→π1(W ))

with image

[τ lf (W )] = [W ]∞ + (−)n−1([W ]lf∞)∗

= [W ]lf∞ + (−)n−1[W ]∗∞

∈ ker(p∗ : K̃0(Z[π1(e(W ))])−→K̃0(Z[π1(W )])) .

(ii) If there exists a Poincaré transverse map (W,∂W )−→([0,∞), {0})
then

τ lf (W ) ∈ im(Wh(π1(W ))−→Whlf (W ))

= ker(Whlf (W )−→K̃0(Z[π1(e(W ))])) ,

[W ]lf∞ = (−)n[W ]∗∞ ∈ K̃0(Z[π1(e(W ))]) ,

the end space e(W ) is a finitely dominated (n − 1)-dimensional geometric
Poincaré space, and (W ; ∂W, e(W )) is a finitely dominated n-dimensional
geometric Poincaré cobordism with

[e(W )] = [W ]∞ − [W ]lf∞

= [W ]∞ + (−)n−1[W ]∗∞ ∈ K̃0(Z[π1(e(W ))]) .
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Proof (i) Let W̃ be the universal cover of W . The Z[π1(W )]-module chain
complex

C = C([W ] ∩ − : C lf,π1(W )(W̃ , ∂W̃ )n−∗−→C(W̃ ))

is contractible. Write π = π1(e(W )). Let V ⊆ W be a cofinite subcomplex
such that π1(V ) = π, and let V be the universal cover of V . Let

∂V = V ∩ cl(W\V ) ,

and let

[V ] ∈ H lf
n (V, ∂V ) = H lf

n (W, cl(W\V ))

be the image of [W ] ∈ H lf
n (W,∂W ). The Z[π]-module chain complex

D = C([V ] ∩ − : C lf,π(V , ∂V )n−∗−→C(V ))

is finitely dominated, and there is defined a short exact sequence of Z[π1(W )]-
module chain complexes

0 −→ Z[π1(W )]⊗Z[π] D −→ C −→ E −→ 0

with E finite based f.g. free. The corresponding finite structure (F, φ) on
Z[π1(W )]⊗Z[π] D determines the infinite torsion of W

τ lf (W ) = (D, F, φ) ∈ Whlf (W ) = Wh(p∗)

with image

[τ lf (W )] = [D] = [V ] + (−)n−1([V ]lf )∗

= [W ]∞ + (−)n−1([W ]lf∞)∗ ∈ K̃0(Z[π]) .

(ii) By Poincaré transversality (V, ∂V ) in (i) may be taken to be an open
n-dimensional geometric Poincaré pair, i.e. such that D ' 0. Apply (i) to
(V, ∂V ), with π1(V ) = π1(e(V )) = π.

Example 11.10 A forward and reverse tame open n-dimensional manifold
(W,∂W ) with a compact boundary ∂W is an open n-dimensional geomet-
ric Poincaré pair with a Poincaré transverse map (W,∂W )−→([0,∞), {0}),
such that

τ lf (W ) = 0 ∈ Whlf (W ) ,

[W ]lf∞ = (−)n[W ]∗∞ ∈ K̃0(Z[π1(e(W ))]) (10.15) .

In particular, this applies to the open n-dimensional manifold with compact
boundary and a reverse π1-tame end constructed by Siebenmann [140] with
prescribed fundamental group at ∞ π∞1 (W ) and prescribed projective class
at ∞ [W ]∞ ∈ K̃0(Z[π∞1 (W )]) (10.2 (iii)).
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Remark 11.11 (i) Given a locally finite infinite CW complex W let Llf,q
∗ (W )

be the proper surgery obstruction groups of Maumary [92] and Taylor [160],
for surgery on proper normal maps of open manifolds up to proper homotopy
equivalence for q = h (simple for q = s). The proper L-groups are related
to the original surgery obstruction groups Lq

∗(Z[π]) (q = s, h) of Wall [165]
and the projective L-groups Lp

∗(Z[π]) of Novikov [105] and Ranicki [117] by
the L-theory analogues of the lim←−–lim←−

1 exact sequence for Whlf (W ) of 11.3,
as related in Pedersen and Ranicki [109]. For forward tame W it is possible
to express Llf,q

∗ (W ) as relative L-groups of p∗ : Z[π1(e(W ))]−→Z[π1(W )],
by analogy with 11.6, as follows. Let

Π = π1(e(W )) , π = π1(W ) .

The ∗-invariant subgroups

I0 = im(Whlf (W )−→K̃0(Z[Π]))

= ker(p∗ : K̃0(Z[Π])−→K̃0(Z[π])) ⊆ K̃0(Z[Π]) ,

J1 = im(p∗ : Wh(Π)−→Wh(π))

= ker(Wh(π)−→Whlf (W )) ⊆ Wh(π)

are such that there is defined a short exact sequence

0 −→ Wh(π)/J1 −→ Whlf (W ) −→ I0 −→ 0 .

The groups Llf,q
∗ (W ) for forward tame W fit into the commutative diagram

with exact rows and columns
...

u

...

u

...

u

...

u
. . . w Lh

n(Z[Π]) wp∗

u

LJ1
n (Z[π]) w

u

Llf,s
n (W ) w

u

Lh
n−1(Z[Π]) w

u

. . .

. . . w LI0
n (Z[Π]) wp∗

u

Lh
n(Z[π]) w

u

Llf,h
n (W ) w

u

LI0
n−1(Z[Π]) w

u

. . .

. . . w Ĥn(Z2; I0) w

u

Ĥn(Z2;Wh(π)/J1) w

u

Ĥn(Z2;Whlf (W )) w

u

Ĥn−1(Z2; I0) w

u

. . .

. . . w Lh
n−1(Z[Π]) wp∗

u

LJ1
n−1(Z[π]) w

u

Llf,s
n−1(W ) w

u

Lh
n−2(Z[Π]) w

u

. . .

...
...

...
...
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(ii) Let W = K ×Rm with K a finite CW complex, so that W is forward
collared with e(K × Rm) ' K × Sm−1. The proper surgery obstruction
groups of K × Rm are given by

Llf,s
n (K × Rm) =





Lh
n−1(Z[π]) if m = 1 ,

Lp
n−2(Z[π]) if m = 2 ,

0 if m ≥ 3 ,

Llf,h
n (K × Rm) =





Lp
n−1(Z[π]) if m = 1 ,

L
〈−1〉
n−2 (Z[π]) if m = 2 ,

0 if m ≥ 3

with π = π1(K). The lower L-groups L
〈−1〉
∗ of Ranicki [118] are such that

Lp
n(Z[π][z, z−1]) = Lp

n(Z[π])⊕ L
〈−1〉
n−1 (Z[π]) ,

and there is defined a Rothenberg-type exact sequence

. . . −→ Lp
n(Z[π]) −→ L〈−1〉

n (Z[π]) −→ Ĥn(Z2 ; K−1(Z[π]))

−→ Lp
n−1(Z[π]) −→ . . . .

The infinite transfer maps

Lq
n(Z[π][z, z−1]) −→ Llf,q

n (K × R) = Lr
n−1(Z[π]) ;

σ∗((f, b) : M−→X) −→ σlf
∗ ((f, b) : M−→X) ((q, r) = (s, h), (h, p))

are given algebraically by the projections in the splittings of [118]

Lq
n(Z[π][z, z−1]) = Lq

n(Z[π])⊕ Lr
n−1(Z[π]) .

We conclude this chapter with the applications of infinite simple homotopy
theory to the detection of reverse and forward collaring. In 11.13 we prove
that a locally finite CW complex W is infinite simple homotopy equivalent
to a reverse collared CW complex if and only if every cofinite subcomplex of
W is homotopy equivalent to a finite CW complex. The proof will require
the following technical result.

Lemma 11.12 Let W be a strongly locally finite CW complex with a cofi-
nite subcomplex V ⊆ W homotopy equivalent to a finite CW complex. Let
A ⊆ W be a finite subcomplex with W\V ⊆ A. Then there exist a cofi-
nite subcomplex U ⊆ V with A ∩ U = ∅, a finite subcomplex B ⊆ V with
W\(A∪U) ⊆ B, a finite CW complex B′ with B ∩ (A∪U) = B′ ∩ (A∪U)
such that B, B′ are simple homotopy equivalent rel B∩ (A∪U), and a finite
subcomplex K ⊆ W ′ = A ∪ B′ ∪ U with A ⊆ K ⊆ A ∪ B′ such that the
inclusion K−→W ′ is a homotopy equivalence.
Proof Let C = A ∩ V and let L be a finite CW complex homotopy equiv-
alent to V . For some large n, we may assume that L is a subcomplex of
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V × Dn and that inclusion : L−→V × Dn is a homotopy equivalence (i.e.
L is a strong deformation retract of V × Dn). Let r : identity ' r1 :
V ×Dn−→V ×Dn be a cellular homotopy such that r1(V ×Dn) ⊆ L and
rt|L = inclusion : L−→V × Dn for each t ∈ I. Let U ⊆ V be a cofinite
subcomplex such that

r(C ×Dn × I) ∩ (U ×Dn) = ∅ = L ∩ (U ×Dn) .

Let B ⊆ W be a finite subcomplex such that A∩B = C and W\(A∪U) ⊆ B.
The maps

g : C −→ B ×Dn ; x −→ (x, 0) ,

g′ : C −→ B ×Dn ; x −→ r1(x, 0)

are homotopic so that the mapping cylinders M(g), M(g′) are simple homo-
topy equivalent rel C ∪ (B × Dn). Let B′ = M(g′) with B′ ∩ A = C (the
base of M(g)) and B′ ∩ U = (B ∩ U) × {0} ⊆ B × Dn. Since B is simple
homotopy equivalent to M(g) rel B∩(A∪U), it follows that B, B′ are simple
homotopy equivalent rel B ∩ (A ∪ U). The map

g′′ : C −→ L ; x −→ r1(x, 0)

is such that M(g′′) ∪L (B × Dn) = M(g′). Thus, the finite subcomplex
K = A ∪M(g′′) of W ′ = A ∪ B′ ∪ U is such that A ⊆ K ⊆ A ∪ B′ and the
strong deformation retraction of V ×Dn to L induces a strong deformation
retraction of W ′ to K.

Proposition 11.13 For a strongly locally finite CW complex W the follow-
ing conditions are equivalent :

(i) W is infinite simple homotopy equivalent to a reverse collared CW
complex.

(ii) Every cofinite subcomplex of W is infinite simple homotopy equiva-
lent to a reverse collared CW complex.

(iii) Every cofinite subcomplex of W is homotopy equivalent to a finite
CW complex.

Proof (i) =⇒ (ii) If W is infinite simple homotopy equivalent to the reverse
collared CW complex W ′ and V ⊆ W is a cofinite subcomplex, then V is
infinite simple homotopy equivalent to some cofinite subcomplex V ′ ⊆ W ′.
Since cofinite subcomplexes of reverse collared CW complexes are reverse
collared, V ′ is reverse collared.

(ii) =⇒ (iii) Reverse collared CW complexes are homotopy equivalent to
finite CW complexes.

(iii) =⇒ (i) We shall use 11.12 to construct :
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(a) a sequence A1 ⊆ A2 ⊆ A3 ⊆ . . . of finite subcomplexes of W with

W =
∞⋃

j=1
Aj ,

(b) a sequence U1 ⊇ U2 ⊇ U3 ⊇ . . . of cofinite subcomplexes of W ,
(c) a sequence B1, B2, B3, . . . of finite subcomplexes of W , and
(d) a sequence B′

1, B
′
2, B

′
3, . . . of finite CW complexes

such that for every i 6= j we have :

(e) Aj ∩ Uj = ∅ , W\(Aj ∪ Uj) ⊆ Bj , Bi ∩Bj = ∅ = B′
i ∩B′

j ,
Bj ∩ (Aj ∪ Uj) = B′

j ∩ (Aj ∪ Uj) ,
(f) Bj and B′

j are simple homotopy equivalent rel Bj ∩ (Aj ∪ Uj), and
(g) the strongly locally finite CW complex Wj = Aj ∪ B′

j ∪ Uj contains a
finite subcomplex Kj with Aj ⊆ Kj ⊆ Aj ∪B′

j so that the inclusion
Kj−→Wj is a homotopy equivalence.

The construction is by induction. Let W = V1 ⊇ V2 ⊇ V3 ⊇ . . . be a se-

quence of cofinite subcomplexes of W such that
∞⋂

j=1
Vj = ∅. Let A1 = ∅. By

11.12 there exist a cofinite subcomplex U1 ⊆ V1, a finite subcomplex B1 ⊆
W with W\U1 ⊆ B1, a finite CW complex B′

1 with B1 ∩U1 = B′
1 ∩U1 such

that B1, B
′
1 are simple homotopy equivalent rel B1∩U1, and a finite subcom-

plex K1 ⊆ W1 = B′
1∪U1 with K1 ⊆ B′

1 such that the inclusion K1−→W1 is a
homotopy equivalence. Suppose A1, . . . , An, U1, . . . , Un, B1, . . . , Bn, B′

1, . . . ,
B′

n, K1, . . . , Kn have been constructed with the properties above and Uj ⊆
Vj for j = 1, . . . , n. Let An+1 ⊆ W be a finite subcomplex such that

An ∪Bn ∪ (W\(Un ∩ Vn+1)) ⊆ An+1 .

Let V ⊆ int(Un ∩ Vn+1) be a cofinite subcomplex. By 11.12 there exist a
cofinite subcomplex Un+1 ⊆ V with An+1 ∩ Un+1 = ∅, a finite subcomplex
Bn+1 ⊆ V with W\(An+1∪Un+1) ⊆ Bn+1, a finite CW complex B′

n+1 such
that Bn+1∩(An+1∪Un+1) = B′

n+1∩(An+1∪Un+1) such that Bn+1, B
′
n+1 are

simple homotopy equivalent rel Bn+1∩ (An+1∪Un+1), and a finite subcom-
plex Kn+1 ⊆ Wn+1 = An+1∪B′

n+1∪Un+1 with An+1 ⊆ Kn+1 ⊆ An+1∪B′
n+1

such that the inclusion Kn+1−→Wn+1 is a homotopy equivalence. Given
such a construction, let

W ′ = (W\
∞⋃

j=1

Bj) ∪
∞⋃

j=1

B′
j .

Then W and W ′ are infinite simple homotopy equivalent. The finite sub-
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complex of W ′

K ′
j = (Kj\

j−1⋃

i=1

Bi) ∪
j−1⋃

i=1

B′
i

is such that the inclusion K ′
j−→W ′ is a homotopy equivalence. Since K ′

1 ⊆
K ′

2 ⊆ K ′
3 ⊆ . . . ⊆ W ′, W =

∞⋃
j=1

K ′
j , it follows from 8.5 that W ′ is reverse

collared.

Proposition 11.14 The following conditions on an ANR space W are
equivalent :

(i) W is forward tame,
(ii) W × S1 is infinite simple homotopy equivalent to a forward collared

ANR X,
(iii) W × S1 is properly dominated by a forward tame space Z.

Proof (i) =⇒ (ii) There exist a closed cocompact V ⊆ W and a proper
map q : V × [0,∞)−→W ; (x, t)−→qt(x) with q0 : V−→W the inclusion.
Inductively select closed cocompact subspaces V = U0 ⊇ U1 ⊇ U2 ⊇ . . . and
non-negative numbers 0 = t0 ≤ t1 ≤ t2 ≤ . . . such that :

(a)
∞⋂
i=1

Ui = ∅ ,

(b) qt(Ui+1) ⊆ Ui for each t ≥ 0 and i = 1, 2, 3, . . . ,
(c) qt(Ui) ⊆ Ui+1 for each t ≥ ti and i = 1, 2, 3, . . . .

Choose a map ρ : W−→[0,∞) such that ρ(Ui) ≥ ti for each i = 1, 2, 3, . . . ,
and use it to define a map

ζ : V −→ W ; x −→ q(x, ρ(x)) .

Note that if x ∈ Ui then ρ(x) ≥ ti so ζ(x) ∈ Ui+1, and that ζ is proper
homotopic to the inclusion V−→W . The homotopy extension property can
be used to extend ζ to a proper map, also denoted ζ, defined on all of W
such that ζ is proper homotopic to idW . It follows that W × S1 = T (idW )
and X = T (ζ) are infinite simple homotopy equivalent.

To see that T (ζ) is forward collared, consider

A = T (ζ|U1) ⊆ T (ζ) .

Then A is closed and cocompact and there exists a proper map

g : A× [0,∞) −→ A ; ([x, s], t) −→ [x, s + t] .
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(ii) =⇒ (iii) Obvious.
(iii) =⇒ (i) Let f : W × S1−→Z be a proper map such that there exist

a proper map g : Z−→W × S1 and a proper homotopy h : idW×S1 ' gf
with Z forward tame. Let A ⊆ Z be a closed cocompact subspace for which
there exists a proper map p : A × [0,∞)−→Z extending the inclusion p0.
Choose a closed cocompact subspace V ⊆ W such that V × S1 ⊆ f−1(A).
Define q : V × [0,∞)−→W to be the composition

V × [0,∞) = V × {pt.} × [0,∞) ⊆ V × S1 × [0,∞)
f |×id
−−→ A× [0,∞)

p−→ A
g|
−→ W × S1

proj.−→ W .

Then q0 : V−→W is proper homotopic to the inclusion so that q can be
adjusted to get a proper map q′ : V × [0,∞)−→W with q′0 the inclusion.

Proposition 11.15 For a strongly locally finite CW complex W the follow-
ing conditions are equivalent :

(i) W is reverse tame,
(ii) W × S1 is infinite simple homotopy equivalent to a reverse collared

CW complex,
(iii) W × S1 is properly dominated by a reverse tame space.

Proof (i) =⇒ (ii) If U ⊆ W × S1 is a cofinite subcomplex, then there
exists a cofinite subcomplex V ⊆ W with V × S1 ⊆ U . By 8.9 V is finitely
dominated. By 6.7 (ii) V × S1 is homotopy equivalent to a finite CW
complex. It follows that U is homotopy equivalent to a finite CW complex.
W × S1 is infinite simple homotopy equivalent to a reverse collared CW
complex by 11.13.

(ii) =⇒ (iii) Obvious.
(iii) =⇒ (i) Let Z be a reverse tame space for which there exist proper

maps f : W × S1−→Z, g : Z−→W × S1 and a proper homotopy h :
identity ' gf : W × S1−→W × S1. For V ⊆ W a cofinite subcomplex, it
suffices to show that V is finitely dominated (8.9). Since V is dominated
by V ×S1, we need to show that V ×S1 is finitely dominated. There exists
a cocompact subspace U ⊆ Z such that U ⊆ g−1(V × S1) and h(f−1(U)×
I) ⊆ V × S1. Thus gf | : f−1(U)−→V × S1 is homotopic to inclusion :
f−1(U)−→V × S1. Since Z is reverse tame, U is dominated by a compact
subspace C ⊆ U , i.e. there exists a homotopy k : identity ' k1 : U−→U
with k1(U) ⊆ C. It follows that there is a homotopy of f−1(U) in V × S1

which deforms f−1(U) into a compact subspace of V × S1. The homotopy
extension property then implies that V × S1 is finitely dominated.
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Forward tameness is a homotopy pushout

Following Quinn [116] we shall now obtain a result of the following type :
a σ-compact metric space W is forward tame if and only if the homotopy
commutative square

e(W ) w

u
pW

{∞}

u
W wi W∞

is a homotopy pushout, with i : W−→W∞ the inclusion in the one-point
compactification W∞, e(W ) the end space and

pW : e(W ) −→ W ; ω −→ ω(0)

the evaluation map. The cofibration sequence

e(W ) −→ W
i−→ W∞

induces the long exact sequence of homology groups of 3.9

. . . −→ H∞
r (W ) −→ Hr(W )

i−→ H lf
r (W ) −→ Hr−1(e(W )) −→ . . . ,

using 7.10 and 7.15 to identify

H∗(e(W )) = H∞
∗ (W ) , H∗(W∞,∞) = H lf

∗ (W ) .

The exact sequence shows that if W is forward tame then

H∞
−1(W ) = H−1(e(W )) = 0 .

There is a corresponding exact sequence for the cohomology of a forward
tame space W

. . . −→ Hr
lf (W )

i−→ Hr(W ) −→ Hr(e(W )) −→ Hr+1
lf (W ) −→ . . .

137
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with H∗(e(W )) = H∗∞(W ). Thus if W is a locally finite forward tame CW
complex the number of ends of W (1.14) is the number of path components
of the end space e(W ).

The standard constructions of mapping cylinders are given by :

Definition 12.1 (i) The mapping cylinder of a map f : X−→Y is the
identification space

M(f) = (X × I
∐

Y )/{(x, 1) ∼ f(x) ∈ Y |x ∈ X} .

(ii) The double mapping cylinder of maps f : X−→Y , f ′ : X−→Y ′ is the
identification space

M(f, f ′) = (X × I
∐

Y
∐

Y ′)/∼

with ∼ the equivalence relation on the disjoint union X × I
∐

Y
∐

Y ′ gen-
erated by

(x, 0) ∼ f(x) ∈ Y , (x′, 1) ∼ f ′(x′) ∈ Y ′ (x, x′ ∈ X) .

The double mapping cylinder can also be expressed as a union of single
mapping cylinders

M(f, f ′) = M(f) ∪X M(f ′) .

Proposition 12.2 The double mapping cylinder M(f, f ′) (12.1) of maps
f : X−→Y , f ′ : X−→Y ′ fits into a homotopy commutative square

X wf

u
f ′

Y

u
Y ′ w M(f, f ′)

which is a homotopy pushout, with the universal property that for any ho-
motopy commutative square

X wf

u
f ′

Y

u
g

Y ′ wg′
Z

there is defined a map uniquely up to homotopy

(g, g′) : M(f, f ′) −→ Z
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which fits into a homotopy commutative square

X wf

u
f ′

Y

u

h
h
h
h
h
h
h
h
hhj

gY ′ w���������������
g′

M(f, f ′)A
A
A
A
A
AAC

(g, g′)

Z

We shall also need the following non-standard mapping cylinders, using
the ‘teardrop topology’ of Hughes, Taylor, Weinberger and Williams [76] :

Definition 12.3 (i) The teardrop mapping cylinder cyl(f) of a map f :
X−→Y is the topological space defined by the set M(f) with the minimal
topology such that :

(a) the inclusion X × [0, 1)−→ cyl(f) is an open embedding,
(b) the map

c : M(f) −→ Y × I ;
{

(x, t) −→ (f(x), t) if (x, t) ∈ X × [0, 1) ,
y −→ y if y ∈ Y

is continuous.

(ii) The teardrop double mapping cylinder of f of maps f : X−→Y , f ′ :
X−→Y ′ is the topological space defined by the set M(f, f ′) with the topol-
ogy given by cyl(f, f ′)

cyl(f, f ′) = cyl(f) ∪X cyl(f ′) .

Note that the identity M(f)−→cyl(f) is continuous, but not in general
a homeomorphism. For example, M(R−→{∗}) is not homeomorphic to
cyl(R−→{∗}).

Proposition 12.4 (i) For any map f : X−→Y the identity map M(f)−→
cyl(f) is a homotopy equivalence rel Y .

(ii) For any maps f : X−→Y , f ′ : X−→Y ′ the identity map M(f, f ′)−→
cyl(f, f ′) is a homotopy equivalence rel Y ∪ Y ′.
Proof (i) In fact, it is easily seen that Y is a strong deformation retract of
both M(f) and cyl(f).

(ii) The linear map I−→I which takes [0, 1
3 ] to {0} and [23 , 1] to {1} induces
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a map X × I−→X × I which in turn induces a map cyl(f, f ′)−→M(f, f ′)
which is the identity on Y ∪ Y ′. This map is a homotopy inverse of the
identity M(f, f ′)−→ cyl(f, f ′) rel Y ∪ Y ′.

Proposition 12.5 Let W be a σ-compact metric space, and let

e(W ) wk

u
pW

{∞}

u
W wi W∞

be the homotopy commutative square given by 1.5.
(i) W is forward tame if and only if there exists a homotopy equivalence

of triads

(W∞; W, {∞}) ' (cyl(pW , k); cyl(pW , k)\{∞}, {∞}) .

(ii) If W is forward tame then the induced map

M(pW , k) −→ W∞

is a homotopy equivalence rel ∞. In particular, the square is a homotopy
pushout.
Proof (i) For this proof we replace the I coordinates in the double mapping
cylinder by [−∞,∞] coordinates. That is, write

cyl(pW , k) = (W ∪ e(W )× [−∞,∞] ∪ {∞})/∼
with

(x,−∞) ∼ pW (x) ∈ W , (x,∞) ∼ ∞ (x ∈ e(W )) .

Let π : cyl(pW , k)−→[−∞,∞] be the natural map so that π−1([0,∞]) =
cyl(k) and π−1([−∞, 0]) = cyl(pW ). Then π−1([0,∞)) = cyl(k)\{∞}
can be identified with e(W ) × [0,∞). Note that cyl(k) has the mini-
mal topology such that e(W )× [0,∞)−→cyl(k) is an open embedding and
π|cyl(k)−→[0,∞] is continuous.

Suppose now that

f : (W∞; W, {∞}) −→ (cyl(pW , k); cyl(pW , k)\{∞}, {∞})
is a homotopy equivalence of triads with inverse g. Let

Y = f−1π−1([0,∞))

and note that Y is a closed cocompact subspace of W . The proper map

[0,∞)× [0,∞) −→ [0,∞) ; (s, t) −→ s + t
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induces a map

q′ : π−1([0,∞))× [0,∞) −→ π−1([0,∞))

which extends the inclusion. Let

q = gq′(f |Y × id[0,∞)) : Y × [0,∞) −→ W .

Note that q|Y × {0} = gf |Y and, hence, is properly homotopic to the
inclusion Y−→W . Therefore, if q is proper, then q is properly homotopic to
a proper map Y ×[0,∞)−→W which extends the inclusion Y−→W , showing
that W is forward tame. The argument will be completed by showing that
q is proper. To this end let K ⊆ W be compact. Since g−1(W\K) is a
neighbourhood of ∞, there exists t1 ≥ 0 with

g−1(K) ⊆ π−1([−∞, t1]) .

There also exists t2 ≥ 0 with

(q′)−1π−1([0, t1]) ⊆ π−1([0, t1])× [0, t2] .

Thus q−1(K) ⊆ f−1π−1([0, t1]) × [0, t2]. Observe that f−1π−1([0, t1]) is
compact because f−1π−1(t1,∞] is an open neighbourhood of ∞. Thus
q−1(K) is a closed subset of a compact subspace, hence compact.

Conversely, assume that W is forward tame. Let U ⊆ W be a closed
cocompact subspace for which there is a proper map q : U × [0,∞)−→W
extending the inclusion. Let p : W−→[−∞,∞) be a proper map such that
p(W\U) = {−∞} and let Y = p−1([0,∞)). According to 9.13 there exist
maps

f : Y −→ e(W )× [0,∞) , g : e(W )× [0,∞) −→ Y

and homotopies

F : igf ' i : Y −→ W ,

G : fg ' identity : e(W )× [0,∞) −→ e(W )× [0,∞) ,

with i : Y−→W the inclusion. The properties of f, g, F,G listed in 9.13
imply that there are continuous extensions

f+ : (Y ∞, {∞}) −→ (cyl(k), {∞}) ,

g+ : (cyl(k), {∞}) −→ (Y ∞, {∞}) ,

F+ : i+g+f+ ' i+ : Y ∞ −→ W∞ ,

G+ : f+g+ ' identity : cyl(k) −→ cyl(k) ,

with i+ : Y ∞−→W∞ the inclusion and the homotopies F+, G+ both rel
{∞}. Extend f+ to f̃ : W∞−→cyl(pW , k) by

f̃ | : p−1([−∞, 0]) −→ cyl(pW ) ; x −→
{

[q̂(x), p(x)] if x ∈ p−1(−∞, 0] ,
x if x ∈ p−1(−∞)
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with q̂ : U−→e(W ) the adjoint of q. Note from the proof of 9.13 that
g(ω, 0) = (jω)(0) for each ω ∈ e(W ) where j : e(W )−→e(Y ′) is a homotopy
inverse of the inclusion e(i) : e(W )−→e(Y ′) for a certain subspace Y ′ ⊆ Y .
Let k : e(i)j ' identitye(W ). Extend g+ to g̃ : cyl(pW , k)−→W∞ by

g̃| : cyl(pW ) −→ W ;

x −→ x if x ∈ W ,

[ω, t] −→
{

k(ω,−t)(0) if −1 ≤ t ≤ 0 ,
ω(0) if −∞ ≤ t ≤ −1

(ω ∈ e(W )) .

In order to extend F+ to a homotopy

F̃ : g̃f̃ ' id : W∞ −→ W∞ rel {∞} ,

note that g̃f̃ | : p−1([−∞,−1])−→W∞ is the inclusion and

g̃f̃ | : p−1([−1, 0]) −→ W∞ ; x −→ k(q̂(x),−p(x))(0) .

Thus
F̃ | : p−1([−∞, 0])× I −→ W ;

(x, t) −→
{

k(q̂(x), t− p(x))(0) if t− p(x) ≤ 1 ,
x if t− p(x) ≥ 1

is a continuous extension of F+ (one must use the explicit formula for F in
9.13). In order to extend G+ to a homotopy

G̃ : f̃ g̃ ' id : cyl(pW , k) −→ cyl(pW , k) rel {∞}
note that

f̃ g̃| : W = π−1(−∞) −→ cyl(pW , k) ;

x −→
{

[q̂(x), p(x)] ∈ cyl(pW , k)\{∞} if x ∈ p−1(−∞,∞) ,
x if x ∈ p−1(−∞) .

Thus f̃ g̃| : W−→cyl(pW , k) is homotopic to the inclusion. Now use the fact
that

(W ∪ cyl(k))× I ∪ (cyl(pW , k)× {0})
is a strong deformation retract of cyl(pW , k)× I in order to extend G+.

(ii) By 12.4 (ii) the identityM(pW , k)−→cyl(pW , k) is a homotopy equiva-
lence rel {∞}. By (i) there is a homotopy equivalence g̃ : cyl(pW , k)−→W∞
rel {∞}. The composition M(pW , k)−→W∞ is homotopic rel {∞} to the
induced map.

The following example shows that it is necessary to be careful about the
topology on the mapping cylinders in Proposition 12.5.
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Example 12.6 Let

Wj = {(x, j) ∈ R2 |x ≥ 0} (j = 0, 1, 2, . . .) ,

and define

W =
∞∐

j=0

Wj ⊂ R2 .

...
...

...

W
W0

W1

W2

W3

W4

Then W is a forward tame σ-compact metric space. However, the tri-
ads (W∞; W, {∞}) and (M(pW , k); M(pW , k)\{∞}, {∞}) are not homotopy
equivalent. For suppose

f : (W∞; W, {∞}) −→ (M(pW , k); M(pW , k)\{∞}, {∞})
is a homotopy equivalence. The end space of W is the disjoint union

e(W ) =
∞∐

j=0

e(Wj) .

Let Mj = M(pWj , k|) so that M(pW , k) =
⋃

Mj . The identification topology
insures that no sequence of points from distinct Mj ’s converges to ∞ ∈
M(pW , k). Let xj = (0, j) ∈ Wj ⊆ W so that xj −→ ∞ ∈ W∞. Since f
restricts to a homotopy equivalence W−→M(pW , k)\{∞}, for each i there
exists a unique j(i) such that f(Wi) ⊆ Mj(i). It follows that the sequence
{f(xi)} ⊆ M(pW , k) does not converge to ∞ ∈ M(pW , k), a contradiction.

Remark 12.7 The characterization of forward tameness in terms of homo-
topy pushouts was first obtained by Quinn [116] – the use of the teardrop
mapping cylinder in 12.5 corrects certain technical deficiencies in the state-
ment of [116].

Example 12.8 (i) As in 7.3 (i) let

W = L ∪K × [0,∞)
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for a pair (L,K ⊆ L) of compact spaces, so that W is forward collared,
W ' L, W∞ = L ∪ cK is the mapping cone of the inclusion K−→L, and
e(W ) ' K. The homotopy pushout square of 12.5 is given up to homotopy
equivalence by

K w

u

{∞}

u
L w L ∪ cK

(ii) As in 7.3 (ii) let (M, ∂M) be a compact manifold with boundary, so
that

W = int(M) = M\∂M

is forward collared. The homotopy pushout square of 12.5 is given by

e(W ) ' ∂M w

u

{∞}

u
W ' M w W∞ = M/∂M

(iii) As in 7.3 (iii) let η be a real n-plane vector bundle over a compact
space K, so that the total space W = E(η) is forward collared. The homo-
topy pushout square of 12.5 is given by

e(W ) ' S(η) w

u

{∞}

u
W ' K w W∞ = T (η)

Example 12.9 As in 1.13 and 3.10 (iii) let W = K × Rn (n ≥ 1) for a
compact space K. Then W = E(εn) is the total space of the trivial n-plane
bundle εn over K, so that 7.3 (iii) applies to show that W is forward collared
with

W∞ = T (εn) = (K ×Dn)/(K × Sn−1) = ΣnK∞ ,

e(W ) ' S(εn) = K × Sn−1 .

The homotopy pushout square of 12.5 is given by

e(W ) ' K × Sn−1 w

u

{∞}

u
W ' K ×Dn w W∞ = ΣnK∞
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Example 12.10 (i) Let X be a locally compact polyhedron. For any x ∈ X
there exists a locally finite triangulation of X with x a vertex, and such that

(Y, Z) = (star(x), link(x))

is a compact polyhedral pair with Y = x ∗ Z a cone on Z (as in 1.8). The
open star

W = Y \Z
is contractible and forward collared with

W∞ = Y/Z , e(W ) ' Z ,

H̃∗(e(W )) = H̃∗(Z) = H lf
∗+1(W ) = H∗+1(Y,Z) = H∗+1(X, X\{x}) .

The homotopy pushout square of 12.2 gives a homotopy equivalence

Σe(W ) ' W∞ ,

which corresponds to ΣZ ' Y/Z.
(ii) If X is a homology (resp. combinatorial) n-manifold and Y, Z,W are

as in (i) then (Y,Z) is homology (resp. homotopy) equivalent to (Dn, Sn−1),
e(W ) is a homology (resp. homotopy) (n−1)-sphere and W∞ is a homology
(resp. homotopy) n-sphere.

(iii) If X is a compact polyhedron and x,Z are as in (i) then V = X\{x}
is forward collared with

V ∞ = X , e(V ) ' Z , H lf
∗ (V ) = H∗(X, {x}) .

Remark 12.11 The homotopy link of a subspace Y ⊆ X is defined by
Quinn [116] to be

holink(X, Y ) = {ω ∈ XI |ω[0, 1) ∈ X\Y , ω(1) ∈ Y } .

(See Appendix B for historical background on the homotopy link.) The
evaluation maps

holink(X, Y ) −→ X\Y ; ω −→ ω(0) ,

holink(X, Y ) −→ Y ; ω −→ ω(1)

fit into a homotopy commutative square

holink(X, Y ) w

u

Y

u
X\Y w X

which is a homotopy pushout in many situations of geometric interest. In
particular, this is the case if (X,Y ) is a CW pair with X = E(ν)∪S(ν) Z for
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a (Dk, Sk−1)-fibration (E(ν), S(ν)) over Y , with Y ⊂ E(ν) the zero section
and Z = cl(X\E(ν)), and with homotopy equivalences

Z ' X\Y , S(ν) ' holink(X, Y ) .

Thus if X is a closed n-dimensional manifold and Y ⊆ X is a closed (n−k)-
dimensional submanifold with a normal topological k-block bundle ν =
νY⊂X : Y−→BT̃OP (k) then holink(X, Y ) is homotopy equivalent to the
total space S(ν) of the corresponding (k − 1)-sphere bundle over Y .

We shall be mainly concerned with the situation in which (X,Y ⊆ X) is a
pair of spaces such that X is compact, Y ⊆ X is closed and the complement

W = X\Y ⊆ X

is a dense open subset of X – thus X is a compactification of W and Y =
X\W is the ‘space at ∞’. Here are some special cases :

(i) For any space W the homotopy link of (X, Y ) = (W∞, {∞}) is the
end space of Chapter 1

holink(W∞, {∞}) = e(W ) ,

with a homotopy commutative square

e(W ) w

u

{∞}

u
W w W∞

which is a homotopy pushout if W forward tame (12.5).
(ii) If W is a space with a finite number k of forward tame ends and

(X, Y ) = (W ∗, {1, 2, . . . , k}) with W ∗ the Freudenthal compactification of
W (1.23). In fact, (i) with W forward tame is just the case k = 1.

(iii) W is an n-dimensional Hadamard manifold (= a simply-connected
complete Riemannian manifold of nonpositive curvature), Y = ∂X is the
boundary of a compact n-dimensional manifold with boundary (X, ∂X),
such that up to homeomorphism

W = Rn , X = Dn , ∂X = Y = X\W = Sn−1

with ∂X = Sn−1 the sphere at ∞ – see Ballmann, Gromov and Schroeder
[3, pp. 15–22]. In this case W is forward and reverse collared, and there are
defined homotopy equivalences

holink(X, Y ) ' e(W ) ' Y = Sn−1 , W ' X = Dn .



Part Two: Topology over the real line

13

Infinite cyclic covers

The non-compact spaces of greatest interest to us are equipped with a proper
map to R. In this chapter we shall be particularly concerned with the infinite
cyclic cover W of a compact space W classified by a map c : W−→S1, which
lifts to a proper map c : W = c∗R−→R. We prove (!) that if W and W are
connected and W is sufficiently nice (such as a compact ANR) then W has
two ends with (closed) neighbourhoods

W
+ = c−1[0,∞) , W

− = c−1(−∞, 0] ⊂ W

such that
W = W

+ ∪W
−

with W
+ ∩W

− = c−1(0) compact.

ε− W
−

W
+ ∩W

−
W

+ ε+

W

The main result of this chapter is a geometric duality between forward
and reverse tameness for the ends of an infinite cyclic cover W of a compact
ANR W : in 13.13 it is shown that W

+ is forward tame if and only if W
−

is reverse tame.

In Chapter 15 we shall study ‘bands’ (W, c), which are compact spaces W
with a map c : W−→S1 such that the infinite cyclic cover W = c∗R of W
is finitely dominated. It will be shown there that for an ANR band (W, c)
the end spaces are such that

e(W ) ' W qW , e(W +) ' e(W −) ' W .

147
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In Chapter 17 it will be shown that a manifold end V which is both forward
and reverse tame has an open neighbourhood W ⊂ V which is the infinite
cyclic cover of a manifold band (W, c), with e(V ) ' W .

Every infinite cyclic cover p : W−→W is induced from p : R−→S1 by a
map c : W−→S1 = I/(0 = 1), with

W = {(x, t) ∈ W × R | c(x) = [t] ∈ S1}
and generating covering translation

ζ : W −→ W ; (x, t) −→ (x, t + 1) .

Proposition 13.1 The number of path components in an infinite cyclic
cover W of a path-connected space W is the index of the subgroup im(c∗ :
π1(W )−→π1(S1)) in π1(S1) = Z.

In particular, W is path-connected if and only if c∗ : π1(W )−→π1(S1) is
onto.

The following result is a slight generalization of a result of Hopf [68].

Proposition 13.2 If W is a connected infinite cyclic cover of a compact,
path-connected, locally path-connected Hausdorff space W , then W has ex-
actly two ends ε+, ε−. Each end is path-connected at ∞, with closed con-
nected neighbourhoods W

+
, W

− ⊂ W such that W
+ ∪ W

− = W with
W

+ ∩W
− compact.

Proof Let c : W−→S1 be a classifying map for W (which is surjective on
π1), with a lift to a Z-equivariant proper map c : W−→R. Let p : W−→W
be the covering map. Let ζ : W−→W be the generating covering translation
corresponding to +1 ∈ Z = π1(S1). We need to verify the following :

Claim There exists an integer N ≥ 0 such that for all x ∈ c−1(0), there
exists a path αx in W from x to ζ1x with the image of c◦αx in [−N, N ] ⊂ R.
Proof For each y ∈ c−1(1) choose a loop βy based at y such that c∗[βy] =
+1 ∈ π1(S1, 1) and choose a path-connected open subspace Uy ⊆ W such
that y ∈ Uy and c(Uy) 6= S1. Choose finitely many y1, y2, . . . , yn ∈ c−1(1)
such that {Uyi}n

i=1 covers c−1(1). Let Ui = Uyi . Let xi = p−1(yi) ∩ c−1(0)
for i = 1, 2, . . . , n. Let αi be a lift of βyi from xi to ζ1xi for i = 1, 2, . . . , n.
For any other x ∈ c−1(0), choose i(x) ∈ {1, 2, . . . , n} such that p(x) ∈ Ui(x)

and choose a path γx in Ui(x) from p(x) to yi(x). Then let

αx = γ̃x ∗ αi(x) ∗ ζ1γ̃ −1
x

where γ̃x is a lift of γx from x to xi(x).
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Returning to the proof of 13.2, define for each x ∈ c−1(0) a proper map

ωx : [0,∞) −→ W ; t −→ ζiαx(t− i) (i ≤ t < i + 1)

where αx is the path constructed in the claim above. Clearly, ωx shows that
W has an end at +∞. A similar construction shows that W has an end at
−∞, so that W has at least two ends.

To see that W has exactly two ends suppose that C is an unbounded
component of W\c−1([−k, k]) for some k ∈ Z+ and assume without loss of
generality that C ⊆ c−1(k,∞). Fix x0 ∈ c−1(0) and let ω0 = ωx0 be as
defined in the previous paragraph. We shall show that C is the unbounded
component determined by ω0. The latter component contains ζnx0 for all
n > k. Choose x1 ∈ c−1(0) such that for some m > N +k, ζmx1 ∈ C. Then

ωx1([m,∞)) ⊆ W\c−1([−k, k]) , ωx1([m,∞)) ⊆ C ,

and so ζpx1 ∈ C for each p ≥ m. Choose a path β in W from x0 to ζnx1

for some n ∈ Z (which is obtained by lifting a path in W from p(x0) to
p(x1)). Choose l ∈ Z+ such that the image of ζ lβ lies in c−1(k,∞). If
L = max{l, m}, then ζLβ is a path in c−1(k,∞) from ζLx0 to ζL+nx1 ∈ C.

To see that the end of W at +∞ (for example) is path connected at ∞,
let k ∈ Z+, choose x0 ∈ c−1(0) and let ω0 = ωx0 : [0, 1)−→W be the proper
map constructed above. There exists an integer n ≥ 0 such that ω([n,∞)) ⊆
c−1(k,∞). Let V be the component of c−1(k,∞) which contains ω([n,∞)).
It follows that V is path-connected and is the unique unbounded component
of c−1(k,∞). That is, V is a path-connected neighbourhood of the end of
W at +∞, and W

+ = cl(V ) is a connected closed neighbourhood of the
end.

Corollary 13.3 A connected infinite cyclic cover W of a connected finite
CW complex W has two ends ε+, ε−.

Definition 13.4 A fundamental domain (V ; U, ζU) for an infinite cyclic
cover W of a space W is a subspace V ⊂ W such that

ζ −1V ∩ V ∩ ζV = ∅ ,
∞⋃

j=−∞
ζjV = W ,

with ζ : W−→W the covering translation and

U = V ∩ ζ−1V ⊂ W .
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ζj−1V ζjV ζj+1V

ζj−1U ζjU ζj+1U ζj+2U

W

The subspaces defined by

W
+ =

∞⋃

j=0

ζjV , W
− =

−1⋃

j=−∞
ζjV ⊂ W

are then such that

U = W
+ ∩W

−
, V = W

+ ∩ ζW
−

, W = W
+ ∪W

−
.

If W is a CW complex and ζ : W−→W is cellular, then a CW fundamental
domain is a fundamental domain (V ; U, ζU) such that V, U, ζU are subcom-
plexes of W . Similarly, if W is an ANR then an ANR fundamental domain
is a fundamental domain (V ; U, ζU) such that V, U, ζU are ANR’s.

Example 13.5 Let W be a space with a decomposition of the form

W = U × I ∪ V

such that

(U × I) ∩ V = U × {0, 1}

and such that there is given a map

c : W −→ S1 = I/(0 = 1)

with

U × I = c−1[0, 1/2] , V = c−1[1/2, 1]

and

c(u, t) = t/2 (0 ≤ t ≤ 1 , u ∈ U) .
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V

U × I

ζUU

W

The map c : W−→S1 classifies an infinite cyclic cover W = c∗R of W
with fundamental domain (V ; U × {0}, U × {1}). The construction of W
by cutting W along U and glueing together Z copies of the fundamental
domain generalizes the construction of the canonical infinite cyclic cover of
a knot complement by cutting along a Seifert surface.

Proposition 13.6 (i) If (V ;U, ζU) is a fundamental domain for an infinite
cyclic cover W of a compact space W then U and V are compact.

(ii) If a connected infinite cyclic cover W of an ANR W admits a funda-
mental domain (V ; U, ζU) with U, V connected then the subspaces W

+
, W

−

⊂ W are neighbourhoods of the two ends ε+, ε−.

Definition 13.7 The mapping coequalizer of maps f+, f − : U−→V is the
identification space

W(f+, f −) = U × I ∪f+∪f − V

= (U × I q V )/{(x, 0) = f −(x), (x, 1) = f+(x) |x ∈ U} .
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.........................................................................................................................

V

U × I

f+(U)f−(U)

W(f+, f−)

Given a commutative diagram of maps

U wf+

u
g

V

u
h

Uu f−

u
g

U ′ wf ′+
V ′ U ′u f ′−

let (g, h) : W(f+, f −)−→W(f ′+, f ′ −) be the induced map of identification
spaces.

A map f : U−→V is the inclusion of a collared subspace (1.6) if it extends
to an open embedding f : L× [0,∞)−→K.

Proposition 13.8 If the maps f+, f − : U−→V are inclusions of disjoint
collared subspaces, with extensions to disjoint embeddings

f
+

, f
− : U × [0,∞) −→ V

the mapping coequalizer W(f+, f−) is such that there is defined a homeo-
morphism

W(f+, f−) ∼= V/{f+(x) = f−(x) |x ∈ U} ,

and W(f+, f−) has a canonical infinite cyclic cover

W(f+, f −) = Z× V/{(j, f −(x)) = (j + 1, f+(x)) |x ∈ U, j ∈ Z}
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with generating covering translation

ζ : W(f+, f −) −→ W(f+, f −) ; [j, x] −→ [j + 1, x]

and fundamental domain (V ; f+(U), f −(U)).

'
'
'')

(j, U)
A
A
AD

f−


�f
+

(j + 1, U)
A
A
AD

f−


�f
+

[
[
[[̂

(j − 1, V ) (j, V ) (j + 1, V )

Remark 13.9 (i) The hypothesis of 13.8 is satisfied if V is replaced by the
mapping cylinder of f+ ∪ f − : U × {0, 1}−→V .

(ii) If (V ;U, ζU) is a fundamental domain for an infinite cyclic cover W
of a space W and the maps

f+ : U −→ V ; x −→ x ,

f − : U −→ V ; y −→ ζy

satisfy the hypothesis of 13.8 then

W = W(f+, f −) , W = W(f+, f −) .

Definition 13.10 A π1-fundamental domain (V ; U, ζU) for an infinite cyclic
cover W of a space W is a fundamental domain such that the inclusions
U−→V , ζU−→V induce isomorphisms

π1(U) ∼= π1(V ) , π1(ζU) ∼= π1(V )

(on each component) in which case the inclusion V−→W induces an iso-
morphism π1(V ) ∼= π1(W ) and π1(W ) = π1(W )×ζ∗ Z with

ζ∗ : π1(W ) ∼= π1(V ) ∼= π1(U) ∼= π1(ζU) ∼= π1(V ) ∼= π1(W ) .

Proposition 13.11 (i) An infinite cyclic cover W of a compact manifold
W admits a manifold π1-fundamental domain (V ; U, ζU).

(ii) For any finite CW complex W with an infinite cyclic cover W there
exists a simple homotopy equivalence W ' W ′ to a finite CW complex
W ′ such that the induced infinite cyclic cover W

′ of W ′ admits a CW π1-
fundamental domain (V ′; U ′, ζ ′U ′).
Proof (i) It is possible to make a classifying map c : W−→S1 transverse
regular at a point ∗ ∈ S1, such that the codimension 1 submanifold

U = c−1(∗) ⊂ W

has an open regular neighbourhood N(U) = U × (−1, 1) ⊂ W . Surgery on
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U inside W ensures that π1(U) ∼= π1(W ). The effect of cutting W along U
is a codimension 0 submanifold

V = W\N(U) ⊂ W

with boundary ∂V = U ∪ ζU , such that the inclusion V ⊂ W lifts to an
embedding V ⊂ W defining a manifold π1-fundamental domain (V ; U, ζU)
as in 13.5.

(ii) Embed W as a subcomplex of SN (N large), and apply (i) to a closed
regular neighbourhood W ′. Alternatively, proceed combinatorially as in
Ranicki [124, 8.16], as follows. Replacing W by a simple homotopy equiv-
alent finite CW complex (if necessary), it is possible to choose a finite
subcomplex V ⊂ W such that

∞⋃

j=−∞
ζjV = W , π1(V ∩ ζ−1V ) ∼= π1(V ) ∼= π1(W )

and the maps

f+ : U = V ∩ ζ−1V −→ V × I ; x −→ (x, 0) ,

f− : U = V ∩ ζ−1V −→ V × I ; x −→ (ζx, 1)

are the inclusions of disjoint subcomplexes inducing π1-isomorphisms, and
such that the mapping coequalizer is a finite CW complex

W ′ = W(f+, f−) .

The projection
W ′ −→ W/ζ = W ; (x, t) −→ [x]

has contractible point inverses, so that it is a simple homotopy equivalence.
The induced cyclic cover of W ′ is the canonical infinite cyclic cover W

′ =
W(f+, f −) of the mapping coequalizer W(f+, f −) with CW fundamental
domain (V × I; U × {0}, ζU × {1}).

Remark 13.12 In Example 13.16 below we shall construct a finite CW
complex W with an infinite cyclic cover W which does not admit a π1-
fundamental domain, showing the necessity of passing to an infinite simple
homotopy equivalent CW complex in 13.11 (ii).

Proposition 13.13 Let W be a connected compact ANR with a connected
infinite cyclic cover W which admits an ANR fundamental domain. The
following conditions are equivalent :

(i) W
+ is forward tame,

(ii) W
− is reverse tame,
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(iii) there is a compactly supported homotopy

h : W × I −→ W ; (x, t) −→ ht(x)

such that

h0 = idW , h1(W
+) ⊆ ζW

+
,

(iv) the composite

p : e(W +)
p

W
+

−−−→ W
+ −→ W

is a homotopy equivalence.

Proof Let

W = W
+ ∪W

−

with W
+ ∩W

− compact, connected and such that

ζW
+ ⊂ W

+
, ζ−1W

− ⊂ W
−

with ζ : W−→W a generating covering translation.
(i) =⇒ (iii) There exist a closed cocompact subspace V ⊆ W

+ and a
proper map q : V × [0,∞)−→W

+ with q0 = inclusion : V−→W . Choose
n,N ≥ 1 so large that

ζnW
+ ⊆ V , qN (V ) ⊆ ζn+1W

+
.

Set

gt = ζ−n ◦ qt ◦ ζn : W
+ −→ W (0 ≤ t ≤ N) ,

so that

gNW
+ ⊆ ζW

+
.

Since g is a proper homotopy there exists k ≥ 1 so large that

gt(ζkW
+) ⊆ W\ζW

−

for each t. Since W\ζW
− is an ANR, the homotopy extension property

can be used to get a homotopy

g̃t : W
+ −→ W (0 ≤ t ≤ N)

such that g̃ is compactly supported and

g̃t|W +\ζkW
+ = gt| , g̃t(ζkW

+) ⊆ W\ζW
−

.

Then we still have

g̃N (W +) ⊆ ζW
+

.
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Finally, use the homotopy extension property again to extend g̃ to a com-
pactly supported homotopy defined on all of W and reparametrize [0, N ] to
get the required homotopy h.

(iii) =⇒ (i) We have to find a closed cocompact subspace V ⊆ W
+ such

that the inclusion V × {0}−→W
+ extends to a proper map

q : V × [0,∞) −→ W
+

.

Choose n ≥ 1 so large that h(W + × I) ⊆ ζ−nW
+, let V = ζnW

+ and
define a map q : V × [0,∞)−→W

+; (x, t)−→qt(x) as follows. First set

qt = ζn ◦ ht ◦ ζ−n : V −→ W
+ (0 ≤ t ≤ 1) .

Then assuming k ≥ 1 and q|V×[0,k] has been defined, set

qt = ζn+k ◦ ht−k ◦ ζ−n−k ◦ qk : V −→ W
+ (k ≤ t ≤ k + 1) .

Of course
q0 = inclusion : V −→ W

+
,

so it remains to verify that q is proper. One can verify inductively that

qk+1(V ) ⊆ ζn+k+1W
+

, qt(V ) ⊆ ζkW
+ (k ≤ t ≤ k + 1) .

From this it follows that if C ⊆ W
+ is compact, then there exists N ≥ 1

so large that qt(V ) ∩ C = ∅ for t ≥ N . Thus q−1(C) ⊆ V × [0, N ]. Since
q|V×[0,N ] is clearly proper, q−1(C) is compact as required.

(ii) =⇒ (iii) By reverse tameness there exist a cocompact V ⊆ W
− and

a homotopy g : W
− × I−→W

− such that

g0 = id
W
− , g1(W

−) ⊆ W
−\V

and
gt| = inclusion : W

− ∩W
+ −→ W

−

for each t. It follows that g extends via the identity to a homotopy g̃ :
W × I−→W .

Choose n ≥ 1 so large that

ζ−n+1W
− ⊆ V .

Define h′ : W
+ × I−→W ; (x, t)−→h′t(x) by

h′t = ζn ◦ g̃t ◦ ζ−n : W
+ −→ W .

Then
h′1(W

+) = ζn ◦ g̃1 ◦ ζ−nW
+ ⊆ ζn(W\V ) ⊆ ζW

+
.

Since g̃ is the identity on ζnW
+, it follows that h′ is compactly supported.
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Finally, use the homotopy extension property to extend h′ to a compactly
supported homotopy h : W × I−→W .

(iii) =⇒ (ii) For each k = 1, 2, 3, . . . define a homotopy

hk : W × I −→ W ; (x, t) −→ hk
t (x)

by

hk
t = ζ−k ◦ ht ◦ ζk : W −→ W (0 ≤ t ≤ 1) .

The formulas which follow are designed to make sense of the infinite right
concatenation

h1 ∗ h2 ∗ h3 ∗ . . . .

For k = 1, 2, 3, . . . let

Xk = cl(ζ−kW
+\ζ−k+1W

+)

and define ρ : W
−−→[1,∞) to be such that ρ−1([k, k + 1]) = Xk. For

x ∈ Xk and t ∈ I define

gt(x) =





hk+1(x, t

(
ρ(x)

ρ(x)− k

)
) if 0 ≤ t ≤ ρ(x)− k

ρ(x)
,

hk(x, tρ(x)− ρ(x) + k) if
ρ(x)− k

ρ(x)
≤ t ≤ ρ(x)− k + 1

ρ(x)
,

...

h1(x, tρ(x)− ρ(x) + 1) if
ρ(x)− k + (k − 1)

ρ(x)
≤ t ≤ 1 .

This defines a homotopy

g : W
− × I −→ W ; (x, t) −→ gt(x)

such that

g0 = inclusion : W
− −→ W , g1(W

−) ⊆ W
+

,

and there exists n ≥ 1 so large that

gt|ζnW
+ = inclusion : ζnW

+ −→ W (t ∈ I) .

If U ⊆ W
− is cocompact, choose N ≥ 1 so large that

W
−\U ⊆ ζ−N+nW

+
.

Then ζ−N ◦ gt ◦ ζN is a homotopy establishing the reverse tameness of W
−.

(i) =⇒ (iv) By (iii) and forward tameness there exist a closed cocompact
subset V ⊆ W

+ with ζW
+ ⊆ V and a proper map q : V × [0,∞)−→W

+
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such that q1 = inclusion and a homotopy h : W × I−→W with h0 = id,
h1(W ) ⊆ ζW

+ and ht|V = inclusion for each t ∈ I. Define

g : W
h1−→ V

q̂
−→ e(W +) ,

where q̂ is the adjoint of q. We claim that g is a homotopy inverse of p. To
see this, first note that

pg = h1 ' 1 : W −→ W .

The existence of a homotopy

gp ' 1 : e(W +) −→ e(W +)

follows from the homotopy commutativity of the diagram

e(W
+
)u

'

wgp
'
'
'
'')

p
W

+

e(W
+
)u

'
W

+ w W
hh
hhjg

u
h1

ζW
+

u

w V
N
N
N
N
N
N
NP

q̂

*'
'
'
''

pV

e(ζW
+
)
hh
hhjp

ζW
+

w' e(V )

in which the unnamed arrows are inclusions.
(iv) =⇒ (iii) Suppose that p : e(W +)−→W is a homotopy equivalence

with homotopy inverse g : W−→e(W +) and homotopy F : W × I−→W

such that F0 = idW and F1 = pg. Elements in e(W +) are considered as
proper maps [0,∞)−→W

+. Define

G : W × [0,∞) −→ W ; (x, t) −→
{

F (x, t) if 0 ≤ t ≤ 1 ,
g(x)(t− 1) if 1 ≤ t < ∞ .

Let

D = W
+ ∩ ζ(W −)

(with ζ(W +) ⊆ W
+). There exists an integer k ≥ 0 such that F (ζ(D) ×

I) ⊆ ζ−k+1(W +). Let

A =
k+1⋃

i=0

ζi(D) = W
+ ∩ ζk+2(W −) ,
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and define

Ĝ : A× [0,∞) −→ W ; (x, t) −→ ζkG(ζ−k(x), t) .

Note that Ĝ0 = inclusion and Ĝ(ζk+1(D)× [0,∞)) ⊆ ζW
+.

There exists an integer N ≥ 0 such that Ĝ(A × {N}) ⊆ ζ(W +). Since
ζ(W +) is an ANR we can extend Ĝ|A × [0, N ] to a homotopy H : W

+ ×
[0, N ]−→W such that :

(a) H|A× [0, N ] = Ĝ| ,
(b) H0 = inclusion,
(c) H(ζk+1(W +)× [0, N ]) ⊆ ζ(W +) ,
(d) Ht|ζk+2(W +) = inclusion for each t ∈ [0, N ] .

Now use the fact that W is an ANR to extend H to a compactly supported
homotopy h : W × [0, N ]−→W . Since h|W + × [0, N ] = H it follows that
hN (W +) ⊆ ζ(W +). After reparametrizing [0, N ] by I, we have a homotopy
satisfying (iii).

Proposition 13.14 The following conditions on a connected infinite cyclic
cover W of a compact ANR W are equivalent :

(i) W
+ is forward collared,

(ii) W
− is reverse collared,

(iii) there exist a closed cocompact ANR subspace Y ⊆ W
+ and an in-

teger M ≥ 1 such that ζ`Y is a strong deformation retract of Y for
every integer ` ≥ M .

Proof (i) =⇒ (iii) According to 7.2 (iii) there exists a closed cocompact
ANR subspace Y ⊆ W such that the evaluation map e(Y )−→Y is a homo-
topy equivalence. Choose a positive integer M so large that ζ`Y ⊆ Y for
every ` ≥ M . Then there is a commutative diagram

e(ζ`Y ) w

u

e(Y )

u
ζ`Y w Y

where the vertical arrows are evaluation maps and the horizontal ones are
inclusions. The evaluation map e(Y )−→Y is a homotopy equivalence, and
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hence so is e(ζ`Y )−→ζ`Y . The inclusion e(ζ`Y )−→e(Y ) is a homotopy
equivalence by 1.12. Thus, the inclusion ζ`Y−→Y is also a homotopy equiv-
alence. Since Y is an ANR it follows that ζ`Y is a strong deformation retract
of Y .

(iii) =⇒ (i) Assume M is so large that ζ`Y ⊆ Y for every ` ≥ M and there
exists a homotopy h : Y × I−→Y such that h0 = idY , ht|ζMY =inclusion
for each t ∈ I, and h1(Y ) = ζMY . Define a proper map

f : Y × [0,∞) −→ Y ; (y, t) −→ ft(y)

by induction as follows. Let ft = ht for 0 ≤ t ≤ 1. Assume k ≥ 1 and
f |Y × [0, k] has been defined. For k ≤ t ≤ k + 1, set

ft = ζkM ◦ ht−k ◦ ζ−kM ◦ fk : Y −→ Y .

Note that fk(Y ) ⊆ ζkMY .
(i) =⇒ (ii) Let U ⊆ W

− be a cocompact subspace. By the proof above we
may assume that condition (iii) holds. Thus, there exists a closed cocompact
ANR subspace Y ⊆ W

+ and an integer M ≥ 1 such that ζ`Y is a strong
deformation retract of Y for each integer ` ≥ M . Choose a positive integer
k so large that W

−\U ⊆ ζ−kY . Since W
+ is forward tame, 13.13 implies

that W
− is reverse tame so that there exist a cocompact subspace V ⊆ W

−

with V ⊆ W
−\ζ−kY and a homotopy h : W

− × I−→W
− such that :

(1) h0 = id
W
− ,

(2) ht|W ∩ ζ−kY = inclusion for each t ∈ I ,
(3) ht(W

−\ζ−kY ) ⊆ W
−\ζ−kY for each t ∈ I ,

(4) h1(W
−) ⊆ W

−\V .

Choose an integer N > k so large that W
−\ζ−N (Y ) ⊆ V and N − k ≥ M .

It follows that ζ−kY is a strong deformation retract of ζ−N (Y ), so let
g : ζ−N (Y ) × I−→ζ−N (Y ) be a homotopy such that g0 = id, gt|ζ−kY =
inclusion for each t ∈ I and g1(ζ−N (Y )) ⊆ ζ−kY . Then the concatenation
of g and h shows that U\(W −\ζ−kY ) is a strong deformation retract of U

and, hence, W
− is reverse collared.

(ii) =⇒ (iii) Since W
− is reverse collared there exists a cocompact sub-

space V ⊆ W
− such that W

−\V is a strong deformation retract of W
−.

Let X = (W −\V )∪W
+ so that X is a strong deformation retract of W and

there is a homotopy g : W × I−→W such that g0 = idW , gt|X = inclusion
for each t ∈ I and g1(W ) ⊆ X.

Choose an integer M ≥ 1 so large that if ` ≥ M then ζ`X ⊆ X and
g1ζ

`X ⊆ ζX. It will to suffice to show that if ` ≥ M then X is a strong
deformation retract of ζ−`X. Define a homotopy h : ζ−`X × I−→W by
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h(x, t) = ht(x), with

ht = ζ−` ◦ g1 ◦ ζ` ◦ gt : ζ−`X −→ W (t ∈ I) .

It can be verified that h0 = inclusion, ht(ζ−`X) ⊆ ζ`X for each t ∈ I, and
h1(ζ−`X) ⊆ X.

We now specialize to the case of an infinite cyclic cover W of a finite CW
complex W .

Proposition 13.15 Let W be a connected finite CW complex, and let W
be a connected infinite cyclic cover of W which admits a π1-fundamental
domain. Let W̃ be the universal cover of W , and let π = π1(W ), so that
W = W̃/π.

(i) The following conditions are equivalent :

(a) W
+ is forward tame,

(b) W
− is reverse tame,

(c) the projection e(W +)−→W is a homotopy equivalence,
(d) W

− is finitely dominated.

(ii) If the conditions of (i) are satisfied and W = W
+ ∪W

− then

C(W̃ +) ' C(W̃ )⊕ C lf,π(W̃ +) ,

C(W̃ + ∩ W̃ −) ' C(W̃ −)⊕ C lf,π(W̃ +) ,

[W +]lf = −[W −] ∈ K̃0(Z[π]) ,

with W̃ ± ⊂ W̃ the cover of W
± ⊂ W induced from W̃ regarded as a cover

of W .
(iii) The following conditions are equivalent :

(a) W is infinite simple homotopy equivalent to an infinite cyclic cover X

of a finite CW complex X with X
+ forward collared,

(b) W is infinite simple homotopy equivalent to an infinite cyclic cover X

of a finite CW complex X with X
− reverse collared,

(c) W
+ is forward tame and [W +]lf = 0 ∈ K̃0(Z[π]) ,

(d) W
− is reverse tame and [W −] = 0 ∈ K̃0(Z[π]) ,

(e) W
− is homotopy equivalent to a finite CW complex.
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Proof (i) (a) ⇐⇒ (b) ⇐⇒ (c) by 13.13.
(b) =⇒ (d) By 8.7.
(d) =⇒ (b) By 8.7, since

W
− ⊃ ζ−1W

− ⊃ ζ−2W
− ⊃ . . .

is a sequence of cofinite subcomplexes isomorphic to W
− with

⋂
j

ζ−jW
− =

∅.
(ii) If the conditions of (i) are satisfied then by 7.20 (v) there is defined a

chain equivalence of finitely dominated Z[π]-module chain complexes

S(
˜

e(W +)) ' C∞,π(W̃ +) .

Also, the homotopy equivalence e(W +) ' W induces a chain equivalence

S(
˜

e(W +)) ' S(W̃ ) ,

so that the composite chain map

f : C∞,π(W̃ +) = C(C(W̃ +)−→C lf,π(W̃ +))∗+1 −→ C(W̃ +) −→ C(W̃ )

is a chain equivalence. The algebraic mapping cone of the chain map

g : C(W̃ +) −→ C(W̃ )⊕ C lf,π(W̃ +)

defined by inclusion on each component is also the algebraic mapping cone
of f , C(g) = C(f), so that g is also a chain equivalence. The inclusion

C(C(W̃ + ∩ W̃ −)−→C(W̃ −)) −→ C(C(W̃ +)−→C(W̃ ))

is a chain equivalence (excision), so that the chain map

C(W̃ + ∩ W̃ −) −→ C(W̃ −)⊕ C lf,π(W̃ )

defined by inclusion on each component is also a chain equivalence.
(iii) (a) ⇐⇒ (b) by 13.14.
(c) ⇐⇒ (d) by (ii).
(a) =⇒ (c) W

+ is forward tame by 7.2 (i) and 9.6, and [W +]lf =
[W +]lf∞ = 0 by 13.13 (iv), 11.7 (i) and 10.9 (iii).

(d) =⇒ (e) The reduced projective class [W −] ∈ K̃0(Z[π]) is the finiteness
obstruction of W

−.
(e) =⇒ (d) W

− is finitely dominated, so that W
− is reverse tame by

(i). Moreover, [W −] = 0 since W
− is homotopy equivalent to a finite CW

complex.
(e) =⇒ (b) Let W

− be homotopy equivalent to a finite CW complex K.
By replacing W by W ×Dn for some large n, we may assume that K is a
subcomplex of W

− and K is a strong deformation retract of W
−. Let

r : id
W
− ' r1 : W

− −→ W
−
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be a cellular homotopy with rt|K = inclusion : K−→W
− for each t ∈ I and

r1(W
−) = K. Let ζ : W−→W be the (+1)-generating covering translation

and (V ; U, ζU) a fundamental domain for W . There is an integer N ≤ −1
such that

r(ζ−1V × I) ⊆ K ∪
−1⋃

j=N

ζjV = Z .

In particular, K ⊆ Z and the maps

g = inclusion : ζ−1V −→ Z ,

g′ = r1| : ζ−1V −→ Z

are homotopic. Hence M(g), M(g′) are simple homotopy equivalent rel
ζ−1V ∪ Z. Let

X = (M(g′)× Z )/∼
where ∼ identifies ζ−1V ×{i} in the base of M(g′)×{i} with ζNV ×{i+1}
in the top of M(g′) × {i + 1} for each i ∈ Z : (x, 0, i) ∼ (ζN+1x, i + 1) for
(x, 0) ∈ ζ−1V × {0} ⊆ M(g′) and ζN+1x ∈ ζNV ⊆ Z ⊆ M(g′). Similarly let

Y = (M(g)× Z )/∼
where ∼ identifies ζ−1V ×{i} in the base of M(g)×{i} with ζNV ×{i + 1}
in the top of M(g)×{i+1}. Clearly Y and W are infinite simple homotopy
equivalent. The simple homotopy equivalence of mapping cylinders M(g′),
M(g) induces an infinite simple homotopy equivalence of X and Y . Define
a generating covering translation

ζ ′ : X −→ X ; (x, i) −→ (x, i + 1)

so that X = X/ζ ′ is a finite CW complex. Let

V ′ = (M(g′)
⋃

ζ−1V

Z)× {0}

so that V ′ contains two natural copies of Z, firstly

U ′ = Z × {1} × {0} ⊆ M(g′)× {0}
which is the top of M(g′), and secondly ζ ′U ′ which intersects M(g′)×{0} in
the bottom. Then (V ′; U ′, ζ ′U ′) is a fundamental domain for X. It remains
to show that X

− is reverse collared. For each k ≤ 0, (ζ ′)k(X −) is infi-
nite simple homotopy equivalent to ζ |N |kW − rel (ζ ′)k(U ′) = ζ |N |kZ. Since
ζ |N |kW − strong deformation retracts to ζ |N |kK ⊆ ζ |N |kZ, it follows that

X
− strong deformation retracts to

k+1⋃
j=0

(ζ ′)jV ′ ∪ (ζ ′)k(M(r1 : ζ−1V−→K)).

Thus X
− is reverse collared.
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The following example is a CW complex with bad local properties at
infinity, such as a nasty two-point compactification :

Example 13.16 Let Sk
1∨Sk

2 be the wedge of two k-spheres with {p0} = Sk
1∩

Sk
2 . Let Dk+1 be a (k+1)-disk with Sk

2 = ∂Dk+1 so that Sk
1∨Sk

2 ⊆ Sk
1∨Dk+1.

Represent Dk+1 by [−1, 1]k+1 where p0 = (−1, 0, 0, . . . , 0) ∈ Dk+1. Define
the k-cell

Y = {(x1, x2, . . . , xk+1) ∈ Dk+1 |x1 ≤ 0 , xk+1 = 0}
and let q : Y−→Sk

1 be a surjective map such that q(p0) = p0. Define also

X = (Sk
1 ∨Dk+1)/∼

where ∼ is generated by y ∼ q(y) for each y ∈ Y . Thus X is a CW complex
with subcomplex Sk

1 ∨ Sk
2 . Note that :

(i) Sk
1 is not contractible in X ,

(ii) Sk
2 is contractible in X ,

(iii) Sk
2 is not contractible in X\{x} for any x ∈ Sk

1 ,
(iv) X is simple homotopy equivalent to Sk

1 ∨Dk+1 rel Sk
1 ∨ Sk

2 .

Let
W = (X × Z)/∼

where ∼ homeomorphically identifies Sk
1 × {n + 1} with Sk

2 × {n}, n ∈ Z.
Then

ζ : W −→ W ; [x, n] −→ [x, n + 2]

is a covering translation and

W = W/ζ

is a finite CW complex. The simple homotopy equivalence X ' Sk
1 ∨Dk+1

induces an infinite simple homotopy equivalence

W ' . . . ∨Dk+1 ∨Dk+1 ∨ . . .

= {(x1, x2, . . . , xk+1) ∈ Rk+1 | (x1 − i)2 + x2
2 + . . . + x2

k+1 ≤ 1/4

for some i ∈ Z} .

Thus W is infinite simple homotopy equivalent to R. In fact, W is simple
homotopy equivalent to S1. There is a fundamental domain (V ; U, ζU) for
ζ : W−→W with

V = X × {0} ∪Dk+1 × {1} ' Sk ,

U = Sk
1 × {0} = Sk

2 × {−1} ∼= Sk ,

ζU = Sk
1 × {2} = Sk

2 × {1} ∼= Sk .
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The inclusion U−→V is a homotopy equivalence, but ζU is contractible in
V . There are infinite simple homotopy equivalences

W ' R , W
+ ' Sk ∨ [0,∞) , W

− ' [0,∞) .

For k = 1 the one-point compactification C of W
+ is the compact metric

space described in Hocking and Young [66, page 350 and Figure 8-9(b)]. The
space C is locally simply-connected at the point at infinity, but that point
does not have arbitrarily small simply-connected open neighbourhoods in
C. For k > 1

π1(U) = π1(V ) = π1(W
+) = π1(W

−) = π1(W ) = {1}
so that the conventions of this chapter are satisfied.

Claim The infinite cyclic cover W is such that :

(i) W is both forward and reverse tame,
(ii) the end spaces e(W +), e(W −) are contractible,
(iii) W

+ is not forward collared,
(iv) W

− is not reverse collared,
(v) W

+ is reverse collared,
(vi) W

− is forward collared,
(vii) [W +]lf = [W −] = 0 ∈ K̃0(Z) = {0} .

Proof (i) follows from 9.6 and 9.8 since W is proper homotopy equivalent
to R.

(ii) follows from 9.4 (ii).
(iii) First observe that if b ∈ Sk

1 ⊆ X and b 6= p0, then X\{b} ' Sk ∨ Sk

with one of the k-spheres given by Sk
2 . It follows that if b ∈ Sk

1 ×{n0} ⊆ W
and b 6∈ {p0} × Z, then W\{b} ' Sk ∨ Sk with one of the k-spheres given
by Sk

1 × {n0 + 1} = Sk
2 × {n0}. Now for any closed cocompact subspace

Z ⊆ W
+, let n0 ∈ {−1, 0, 1, . . .} be the largest integer such that Sk

1×{n0} =
Sk

2 × {n0 − 1} 6⊆ Z so that Sk
1 × {n0 + 1} = Sk

2 × {n0} ⊆ Z. Choose
b ∈ Sk

1 × {n0} ⊆ W with b 6∈ {p0} × Z and b 6∈ Z. It follows from the
observation above that Sk

1 × {n0 + 1} = Sk
2 × {n0} is not contractible in

W\{b} and also not contractible in Z. Thus πk(Z) is not trivial so that
W

+ is not forward collared by (ii) and 7.2 (ii).
(iv) follows from (iii) and 13.14.
(v) and (vi) follow from 13.14 since ζ−1W

− is a strong deformation retract
of W

−.
(vii) is obvious.
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Remark 13.17 Example 13.16 shows that neither the property of being
forward collared nor that of being reverse collared is an invariant of infinite
simple homotopy type (cf. 9.7, 11.7 (ii), 11.8). Moreover, this example
shows the necessity of passing to an infinite simple homotopy equivalent
CW complex in 13.15 (iii). The CW complex P obtained from W

+ by
filling in U ∼= Sk with a (k + 1)-cell is forward collared, showing that a
cofinite subcomplex of a forward collared CW complex need not be forward
collared.

The following result will be used in Chapters 14, 19 :

Proposition 13.18 For any cellular maps of CW complexes

i+ : K −→ X , i− : K −→ Y ,

j+ : L −→ Y , j− : L −→ X

the CW complexes W(f(i, j)+, f(i, j)−), W(g(i, j)+, g(i, j)−) determined by
the maps

f(i, j)+ : K
i+−→ X −→ X ∪L Y ,

f(i, j)− : K
i−−→ Y −→ X ∪L Y ,

g(i, j)+ : L
j+

−→ Y −→ X ∪K Y ,

g(i, j)− : L
j−−→ X −→ X ∪K Y

are related by a canonical homotopy equivalence

W(f(i, j)+, f(i, j)−) ' W(g(i, j)+, g(i, j)−) ,

which is simple if K, L,X, Y are finite CW complexes.
Proof Replacing X, Y by mapping cylinders (if necessary) it may be as-
sumed that i+, i−, j+, j− are embeddings of subcomplexes such that

i+(K) ∩ j−(L) = ∅ ⊂ X , i−(K) ∩ j+(L) = ∅ ⊂ Y .

The CW complex

Z = (X q Y )/{i+(K) = i−(K), j+(L) = j−(L)}

can be cut open along either K or L, so that both W(f(i, j)+, f(i, j)−) and
W(g(i, j)+, g(i, j)−) are homotopy equivalent to Z.
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The mapping torus

The mapping torus of a self map is a space with a canonical infinite cyclic
cover.

Definition 14.1 The mapping torus of a map h : X−→X is the identifica-
tion space

T (h) = X × I/{(x, 1) = (h(x), 0) |x ∈ X} .

In the terminology of 13.7 the mapping torus is the mapping coequalizer

T (h) = W(1 : X−→X, h : X−→X) .

The canonical infinite cyclic cover T (h) of T (h) is given by 13.8, as described
in detail in 14.6 below.

A homotopy h ' h′ : X−→X determines a homotopy equivalence

T (h) ' T (h′) .

Proposition 14.2 (M. Mather [91], Ferry [55], Ranicki [123]) For any maps
f : X−→Y , g : Y−→X the map

T (gf : X−→X) −→ T (fg : Y−→Y ) ; (x, t) −→ (f(x), t) .

is a homotopy equivalence. If X,Y are finite CW complexes it is a simple
homotopy equivalence.

Definition 14.3 Let X be a finitely dominated space, and let h : X−→X
be a map. The canonical simple homotopy type on the mapping torus T (h)
is represented by (T (fhg : Y−→Y ), e) for any domination of X

(Y, f : X−→Y, g : Y−→X, gf ' 1 : X−→X)

by a finite CW complex Y , with

e : T (h) ' T (hgf) ' T (fhg) = finite CW complex .

168
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Remark 14.4 (i) For a finite CW complex X the canonical simple homo-
topy type on T (h : X−→X) is just the simple homotopy type given by the
finite CW structure of T (h).

(ii) For maps f : X−→Y , g : Y−→X of finitely dominated CW complexes
the homotopy equivalence T (gf) ' T (fg) of 14.2 is simple,

τ(T (gf) ' T (fg)) = 0 ∈ Wh(π1(T (gf))) ,

giving T (gf), T (fg) the canonical simple homotopy types. This is a special
case of the simple homotopy equivalence

W(f(i, j)+, f(i, j)−) 's W(g(i, j)+, g(i, j)−)

of 13.18, with

i+ = 1 : K = X −→ X , i− = f : K = X −→ Y ,

j+ = 1 : L = Y −→ Y , j− = g : L = Y −→ X .

Example 14.5 For any finitely dominated space X

X × S1 = T (1 : X−→X)

is homotopy finite (Mather [91]), with a canonical simple homotopy type.

The canonical infinite cyclic cover T (h) of T (h) (13.8) has the following
properties :

Proposition 14.6 (i) A mapping torus T (h : X−→X) has a canonical
projection

c : T (h) −→ S1 = I/(0 = 1) ; (x, t) −→ t

which classifies the canonical infinite cyclic cover

T (h) = c∗R =
( ∞∐

j=−∞
(X × I × {j})

)/
(x, 1, j) = (h(x), 0, j + 1)

with generating covering translation

ζ : T (h) −→ T (h) ; (x, t, j) −→ (x, t, j + 1)

and fundamental domain

(M(h : X−→X) ; X × {0} , X × {1}) .

(ii) If X is connected with fundamental group π1(X) = π and h : X−→X
induces h∗ = α : π−→π then T (h) is connected with fundamental group

π1(T (h)) = π ∗α Z = π ∗ {z}/{αx = zxz−1 |x ∈ π} .
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The canonical infinite cyclic cover T (h) of T (h) is classified by the projection

π ∗α Z −→ Z ; π −→ 1 , z −→ z

and
π1(T (h)) = 〈im(π)〉 = ker(π ∗α Z−→Z)

is the normal subgroup generated by im(π) in π ∗α Z. The natural map
π−→π ∗α Z is an injection if and only if α : π−→π is an injection.

(iii) If X is a finite connected CW complex and h : X−→X is a cellular
map then T (h) is a finite CW complex, such that the infinite cyclic cover
T (h) has exactly two ends (13.2).

(iv) If h : X−→X is a homotopy equivalence then

X −→ T (h) −→ S1

is a homotopy fibration, and the inclusion X−→T (h);x−→(x, 0, 0) is a ho-
motopy equivalence such that

ζT (h) ' h−1 : T (h) ' X −→ T (h) ' X .

(v) If h : X−→X is a homeomorphism then X−→T (h)−→S1 is a fibre
bundle, with a homeomorphism

T (h) −→ X ×Z R ; [x, s, j] −→ [h−j(x), s + j] ,

where the action of Z on X × R is by

Z× (X × R) −→ (X × R) ; (i, (x, j)) −→ (h−i(x), i + j) .

(vi) If p : W−→W is the covering projection of an infinite cyclic cover
with generating covering translation ζ : W−→W there is defined a homotopy
equivalence

T (ζ) = W ×Z R −→ W = W/Z ; (x, t) −→ p(x) ,

where the action of Z on W × R is by

Z× (W × R) −→ (W × R) ; (i, (x, j)) −→ (ζi(x), i + j) .

(vii) The subspaces of T (h) defined by

T
+(h) = Tel(h) =

( ∞∐

j=0

X × I × {j}
)/

(x, 1, j) = (h(x), 0, j + 1) ,

T
−(h) =

( −1∐

j=−∞
X × I × {i}

)/
(x, 1, j) = (h(x), 0, j + 1)

are such that the inclusions

T
+(h) −→ T

+(h) ∪ T
−(h) = T (h) ,

T
+(h) ∩ T

−(h) = X −→ T
−(h)
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are homotopy equivalences (although not in general proper homotopy equiv-
alences), and

T
+(h) ' hocolim−−−−−→ (X

h−→ X
h−→ X −→ . . .) .

If X is compact then

e(T −(h)) ' holim←−−− (X
h←− X

h←− X ←− . . .) ,

the one-point compactification T
+(h)∞ is contractible, T

+(h) is forward
collared with locally finite projective class

[T +(h)]lf = 0 ∈ K0(Z[π1(T
+(h))]) ,

and the evaluation map p
T

+
(h)

: e(T +(h))−→T
+(h) is a homotopy equiva-

lence.
(viii) If X is a finitely dominated CW complex then T

−(h) is finitely
dominated for any map h : X−→X, with projective class

[T −(h)] = [X] ∈ K0(Z[π1(X)]) .

If X is finite then T
−(h) is reverse collared, with [T −(h)] = [X] = 0.

Remark 14.7 It will follow from 23.22 that the following conditions are
equivalent for the mapping torus T (h) of a map h : X−→X of a finite CW
complex X with h∗ = 1 : π1(X)−→π1(X) :

(a) T
+(h) is reverse tame,

(b) T
−(h) is forward tame,

(c) T (h) is finitely dominated,

in which case

e(T +(h)) ' e(T −(h)) ' T
+(h) ' T (h) ,

π∞1 (T +(h)) = π∞1 (T −(h)) = π1(T (h)) = π1(X)

and the projective classes are such that

[e(T +(h))] = [e(T −(h))] = [T +(h)] = [T (h)] ,

[T −(h)]lf = [X]− [T (h)] ∈ K0(Z[π1(X)]) .

In general, the infinite cyclic cover T (h) of the mapping torus T (h) of a
map h : X−→X of a finite CW complex X is not finitely dominated, T

+(h)
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is not reverse tame, and T
−(h) is not forward tame – see 23.25 below for

an explicit example.

Proposition 14.8 (i) Let ζ : X−→X be a self map which fits into a com-
mutative square

X wζ

u
q

X

u
q

R w R
with q : X−→R some map and R−→R; s−→s + 1. The mapping torus T (ζ)
is such that there is defined a homeomorphism

T (ζ) ∼= X/ζ × R
with X/ζ the quotient of X by the equivalence relation ∼ generated by x ∼
ζ(x) (x ∈ X).

(ii) Let W = c∗R be the infinite cyclic cover W of a space W classified by
a map c : W−→S1. The mapping torus of a generating covering translation
ζ : W−→W is such that there is defined a homeomorphism T (ζ) ∼= W × R.
Proof (i) Let p : X−→X/ζ be the projection, and define a homeomorphism

T (ζ) −→ X/ζ × R ; (x, s) −→ (p(x), q(x) + s) .

(ii) Apply (i) with

X = W = {(w, s) ∈ W × R | c(w) = [s] ∈ S1 = R/Z} ,

ζ : X −→ X ; (w, s) −→ (w, s + 1) ,

q : X −→ R ; (w, s) −→ s .



15

Geometric ribbons and bands

A band is a compact space W with a finitely dominated infinite cyclic cover
W . The main result (15.10) of this chapter is that an infinite cyclic cover
W of a finite CW complex W is finitely dominated if and only if W is both
forward and reverse tame, in which case the end space e(W ) is homotopy
equivalent to the disjoint union of two copies of W .

Ribbons are non-compact spaces with the homotopy theoretic and ho-
mological end properties of the infinite cyclic covers of bands. In Chapters
15–20 we shall use engulfing and homotopy theory to prove that ribbons are
in fact proper homotopy equivalent to the infinite cyclic covers of bands.

Definition 15.1 A ribbon (X, d) is a non-compact space X with a proper
map d : X−→R such that the subspaces

X+ = d−1[0,∞) , X− = d−1(−∞, 0] ⊂ X

satisfy :

(i) the inclusions

X+ ∩X− −→ X+ , X+ ∩X− −→ X− , X+ −→ X , X− −→ X

induce bijections between the path components and induce isomor-
phisms

π1(X+ ∩X−) ∼= π1(X±) ∼= π∞1 (X±) ∼= π1(X)

on each component,
(ii) the composites

e(X+) −→ X+ −→ X , e(X−) −→ X− −→ X

are homotopy equivalences,

173
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(iii) inclusions (on each component) induce Z[π]-module isomorphisms

H∗(X̃+) ∼= H lf,π
∗ (X̃+)⊕H∗(X̃) , H∗(X̃−) ∼= H lf,π

∗ (X̃−)⊕H∗(X̃)

with π = π1(X) and X̃, X̃+, X̃− the universal covers of X, X+, X−.

e(X −) ' X X − X + e(X +) ' X

X

Definition 15.2 (i) A CW ribbon is a ribbon (X, d) such that X is a CW
complex, and the subspaces X+, X−, X+∩X− are subcomplexes. Similarly
for an ANR ribbon.

(ii) An n-dimensional manifold ribbon is a ribbon (X, d) such that X is
an n-dimensional manifold and d : X−→R is transverse regular at 0 ∈ R, so
that

X+ = d−1[0,∞) , X− = d−1(−∞, 0] ⊂ X

are codimension 0 submanifolds with

∂X+ = ∂X− = X+ ∩X− = d−1(0) ⊂ X

a compact (n− 1)-dimensional submanifold.
(iii) An n-dimensional geometric Poincaré ribbon (X, d) is a CW ribbon

which is an open n-dimensional geometric Poincaré complex, i.e. equipped
with a locally finite homology class [X] ∈ H lf

n (X) such that the cap products
define Z[π]-module isomorphisms

[X] ∩ − : Hn−∗
π (X̃)

'−→ H lf,π
∗ (X̃) (π = π1(X)) .

In particular, manifold ribbons are geometric Poincaré ribbons.

It is not required in 15.2 (iii) that d : X−→R be geometric Poincaré
transverse at 0 ∈ R, so that X+ ∩X− need not be an (n − 1)-dimensional
geometric Poincaré complex (as is the case in 15.2 (ii)).

Manifolds with tame ends arise in the obstruction theory of Farrell [46, 47]
and Siebenmann [145] for fibring manifolds over S1, as finitely dominated
infinite cyclic covers of compact manifolds. These are particular cases of
‘bands’ :



15. Geometric ribbons and bands 175

Definition 15.3 (Siebenmann [143]) A band (W, c) is a compact space W
with a map c : W−→S1 such that the pullback infinite cyclic cover W = c∗R
of W is finitely dominated, and such that the covering projection W−→W
determines a bijection between the path components of W and those of W .

Similarly for ANR band, CW band, geometric Poincaré band and mani-
fold band.

In Chapter 15 we shall be mainly concerned with bands (W, c : W−→S1),
particularly ones for which the infinite cyclic cover (W, c : W−→R) is a
ribbon. In 15.9 below it will be shown that if (W, c) is a ANR band with
a π1-fundamental domain (e.g. a manifold band) then (W, c) is an ANR
ribbon. However, in general the infinite cyclic cover (W, c) of a band (W, c)
is not a ribbon, since the π1-conditions of 15.1 may fail :

Example 15.4 The infinite cyclic cover (W, c) of the CW band (W, c)
constructed in Example 13.16 for k = 1 is not a ribbon, since π1(W ) = {1}
and π1(Z) 6= {1} for any closed cocompact Z ⊆ W

+.

In Chapter 19 we shall develop the ‘wrapping up’ construction of bands
from ribbons, tying the two ends of a ribbon (X, d) to obtain a band (W, c) =
(X̂, d̂) with an infinite simple proper homotopy equivalence (W, c) ' (X, d).
In particular, the infinite cyclic cover of the band (S1, 1) is the ribbon
(S1

, 1) = (R, 1), and the wrapping up of the ribbon (R, 1) is the band
(R̂, 1̂) = (S1, 1).

Wrapping up will be used in Chapters 17–20 to prove that :
(i) if W is a finite CW complex with a map c : W−→S1 then (W, c) is a

band (i.e. the infinite cyclic cover W = c∗R is finitely dominated) with a
π1-fundamental domain for the infinite cyclic cover W = c∗R of W if and
only if (W, c : W−→R) is a ribbon,

(ii) if X is an infinite CW complex with a proper map d : X−→R then
(X, d) is infinite simple homotopy equivalent to a CW ribbon if and only
if (X, d) is infinite simple homotopy equivalent to the infinite cyclic cover
(W, c) of a CW band (W, c), if and only if d : X−→R is proper homotopic
to a bounded fibration, in which case X+, X− are both forward and reverse
tame, and H lf,π

∗ (X̃) = H∗−1(X̃),
(iii) if (X, d) is an n-dimensional geometric Poincaré ribbon then X is a

finitely dominated (n− 1)-dimensional geometric Poincaré complex,
(iv) if X is an open manifold of dimension n ≥ 5 with a proper map

d : X−→R then (X, d) is a ribbon if and only if (X, d) is homeomorphic to
the infinite cyclic cover (W, c) of an n-dimensional manifold band (W, c), if
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and only if d : X−→R is proper homotopic to an approximate fibration.
(Some of these results can be proved directly.)

Remark 15.5 (i) By 13.1 the condition on path components in 15.3 is
equivalent to the surjectivity of c∗ : π1(Wi)−→π1(S1) for each path compo-
nent Wi of W .

(ii) For the mapping torus T (f) of a map f : K−→K of a compact space
K the condition on path components in 15.3 is equivalent to f preserving
the path components of K.

(iii) In dealing with CW (resp. ANR) bands (W, c) we shall always as-
sume that the infinite cyclic cover W admits a compact CW (resp. ANR)
fundamental domain.

Example 15.6 (i) Let f1, f2 : S0−→S0 be the maps defined by

f1 = identity : S0 −→ S0 ; ±1 −→ ± 1 ,

f2 = flip : S0 −→ S0 ; ±1 −→ ∓ 1 .

The mapping torus T (f1) is a band, with

c1 = proj. : T (f1) = S0 × S1 −→ S1 , T (f1) = S0 × R ,

since p1 : T (f1)−→T (f1) induces a bijection between the path components.
The mapping torus T (f2) is not a band, with

c2 = 2 : T (f2) = S1 −→ S1 , T (f2) = S0 × R ,

since p2 : T (f2)−→T (f2) does not induce a bijection between the path com-
ponents.

(ii) If K is compact and f : K−→K is a homotopy equivalence then
T (f) ' K is homotopy finite, and T (f) is a band if and only if f preserves
path components.

(iii) The mapping torus T (h) of a homeomorphism h : F−→F of a com-
pact (n − 1)-dimensional manifold F which preserves path components is
an n-dimensional manifold band T (h) with

ζT (h) : T (h) = F × R −→ T (h) = F × R ; (x, t) −→ (h(x), t + 1) .

(iv) A compact n-dimensional manifold band (M, c) is a fibre bundle
over S1 if and only if M is homeomorphic to the mapping torus T (h) of
a homeomorphism h : F−→F of a compact (n − 1)-dimensional manifold
F which preserves path components, such that c is homotopic to M ∼=
T (h)−→S1, so that the homeomorphism M ∼= T (h) lifts to a Z-equivariant
homeomorphism M ∼= T (h) = F × R.
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Remark 15.7 (i) If (W, c) is a connected ANR band, then W = c∗R has
exactly two ends W

+, W
− which will be shown in 15.9 to be both forward

and reverse tame, with

e(W +) ' e(W −) ' W .

The one-point compactification W
∞ is homotopy equivalent to the reduced

suspension of W+ = W ∪ {pt.}
Σ(W+) = (W × I)/(W × {0, 1}) ,

so that for a CW band (W, c)

H lf,π
∗ (W̃ ) = H∗−1(W̃ )

with W̃ any regular cover of W with group of covering translations π.
(ii) Let W be a connected finite CW complex with a map c : W−→S1

such that the infinite cyclic cover W = c∗R of W is connected. By 13.13
W

+ is forward tame if and only if W
− is reverse tame, with

π1(W
+) = π1(W

−) = π1(W ) = π .

In 15.10 it will be proved that (W, c) is a band if and only if W
+ is both

forward and reverse tame. In Chapter 23 it will be proved that W
+ is

reverse (resp. forward) tame if and only if the cellular Z[π]-module chain
complex C(W̃ +) (resp. the π-locally finite cellular Z[π]-module chain com-
plex C lf,π(W̃ +)) is finitely dominated, with W̃ + the universal cover of W +.
It follows that if W is a finite n-dimensional geometric Poincaré complex
the end W

+ is forward tame if and only if W
+ is reverse tame, if and only if

(W, c) is a band, in which case W is a finitely dominated (n−1)-dimensional
geometric Poincaré complex and cap product with the fundamental class

[W ] ∈ H lf
n (W ) = Hn−1(W )

defines Poincaré duality isomorphisms

[W ] ∩ − : Hn−∗(W )
'−→ H lf

∗ (W ) = H∗−1(W ) .

(iii) Let (V, ∂V ) be an open n-dimensional manifold with a compact
boundary ∂V and one end which is both reverse and forward tame, so
that (V ; ∂V, e(V )) is a finitely dominated n-dimensional geometric Poincaré
cobordism. In Chapter 17 it will be shown that for n ≥ 5 there exists an
open neighbourhood of the end W ⊂ V which is the infinite cyclic cover of a
compact n-dimensional manifold band (W, c) (the ‘wrapping up’ of V ) such
that there exists a compact (n+1)-dimensional cobordism (M ; ∂V ×S1,W )
with homotopy equivalences

(V ; ∂V, e(V ))× S1 ' (M ; ∂V × S1,W ) , e(V ) ' W
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and homeomorphisms

(M\W,∂V × S1) ∼= (V, ∂V )× S1 , W × R ∼= W × S1 .

Recall from Chapter 13 that a fundamental domain (V ; U, ζU) for the
infinite cyclic cover W = c∗R of a band (W, c : W−→S1) is ‘π1-fundamental’
if the inclusions induce isomorphisms π1(U) ∼= π1(V ), π1(ζU) ∼= π1(V ).

Definition 15.8 A π1-band is a band (W, c) which admits a π1-fundamental
domain.

Recall from 13.11, 13.12 that there exist CW bands which are not π1-
bands, but that every CW band is simple homotopy equivalent to a π1-
band.

Proposition 15.9 Let (W, c) be a compact ANR band.
(i) The spaces W

+
, W

− are forward and reverse π1-tame.
(ii) The end spaces are such that there are defined homotopy equivalences

e(W ) ' W qW , e(W +) ' W ' e(W −) .

(iii) If (W, c) is a π1-band

π∞1 (W +) = π∞1 (W −) = π1(W ) = π ,

H∗(W̃ +) = H lf,π
∗ (W̃ +)⊕H∗(W̃ ) ,

H∗(W̃ −) = H lf,π
∗ (W̃ −)⊕H∗(W̃ ) ,

H∗(W̃ + ∩ W̃ −) = H lf,π
∗ (W̃ +)⊕H lf,π

∗ (W̃ −)⊕H∗(W̃ ) .

In particular, (W, c) is an ANR ribbon.
(iv) If W is a CW π1-band

[W +]lf∞ = [W +]lf , [W −]lf∞ = [W −]lf ,

[W ] = [W +] + [W −]− [W + ∩W
−] ,

[W +]lf = [W +]− [W ] = [W + ∩W
−]− [W −] ,

[W −]lf = [W −]− [W ] = [W + ∩W
−]− [W +] ∈ K0(Z[π]) .

Proof (i) The finite domination of W implies that there exists a homotopy

f : W × I −→ W ; (x, t) −→ ft(x)

such that

f0 = 1 : W −→ W , f1(W ) ⊆ c−1[−k, k]
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for some integer k ≥ 0. Use the homotopy extension property to construct
a homotopy

F : W × I −→ W ; (x, t) −→ Ft(x)

such that

F0 = 1 : W −→ W , F1(W ) ⊆ c−1[−k,∞) ,

Ft| = inclusion : c−1[k + 1,∞) −→ W (t ∈ I) .

The generating covering translation ζ : W−→W can be used to construct
for each integer m ≥ 0 a homotopy

h(m) : W × I −→ W ; (x, t) −→ ζk+mFtζ
−(k+m)(x)

such that

h(m)0 = 1 : W −→ W , h(m)1(W ) ⊆ c−1[m,∞) ,

h(m)t| = inclusion : c−1[2k + m + 1,∞) −→ W (t ∈ I) .

Define a sequence of positive integers m1,m2, . . . by setting

m1 = 1 , mi = 2k + mi−1 + 1 (i > 1) .

Then the homotopies h(mi) for i = 1, 2, . . . can be concatenated to define
a proper homotopy W

+ × [0, 1)−→W extending the inclusion. Reversing
the role of the two ends of W similarly gives a proper homotopy W

− ×
[0, 1)−→W extending the inclusion. Let N ≥ 0 be an integer so large that
ζNW

+ is disjoint from W
−. The subspace

V = ζNW
+ ∪W

− ⊂ W

is cocompact, and such that there exists a proper homotopy V × [0, 1)−→W

extending the inclusion, so that W is forward tame, and hence W
+
, W

− are
forward tame. The spaces W

+
, W

− are reverse tame by 13.13, and have
stable π1 at ∞ by 7.11, so that they are reverse π1-tame.

(ii) The composite

p : e(W +)
p

W
+

−−−→ W
+ −→ W

is a homotopy equivalence by 13.13. Reversing the role of the two ends of
W similarly gives that the composite e(W −)−→W

−−→W is a homotopy
equivalence.

(iii) The homology identities are given as in 13.15 (ii).
(iv) These identities follow from (i), (ii) and W = W

+ ∪W
−.
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Proposition 15.10 Let W be a connected finite CW complex with a map
c : W−→S1 such that c∗ : π1(W )−→π1(S1) = Z is onto, and such that the
infinite cyclic cover W = c∗R of W is connected. The following conditions
on (W, c) are equivalent :

(i) (W, c) is a CW band,
(ii) W

+ and W
− are reverse tame,

(iii) W
+ and W

− are forward tame,
(iv) W

+ is forward and reverse tame,
(v) W

+ and W
− are finitely dominated.

If these conditions are satisfied

[W +]lf = −[W −] , [W −]lf = −[W +] ∈ K̃0(Z[π])

where π = π1(W ) = ker(c∗ : π1(W )−→π1(S1)).
Proof By 13.11 (ii) (W, c) is simple homotopy equivalent to a CW π1-band
(W ′, c′). By 9.6 and 9.8 the conditions (i)–(v) hold for (W, c) if and only
if they hold for (W ′, c′). So there is no loss of generality in assuming that
(W, c) is itself a π1-band, with

π1(W
+ ∩W

−) = π1(W
+) = π1(W

−) = π .

(i) ⇐⇒ (v) Let W̃ , W̃ +, W̃ − be the universal covers of W,W
+
, W

−, so
that

W̃ = W̃ + ∪ W̃ −

with W̃ + ∩ W̃ − the universal cover of the finite CW complex W
+ ∩W

−.
The cellular Z[π]-module chain complexes fit into a short exact sequence

0 −→ C(W̃ + ∩ W̃ −) −→ C(W̃ +)⊕ C(W̃ −) −→ C(W̃ ) −→ 0

with C(W̃ + ∩ W̃ −) f.g. free. Thus C(W̃ ) is finitely dominated if and only
if C(W̃ +) and C(W̃ −) are finitely dominated. The space W is finitely
dominated if and only if the Z[π]-module chain complex C(W̃ ) is finitely
dominated (6.8), and similarly for W

+
, W

−.
(ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) by 13.15.
The finiteness obstruction identities are given by 15.9.

Definition 15.11 The geometric fibring obstructions of an ANR band
(W, c) with respect to a choice of generating covering translation ζ : W−→W
are the torsions

Φ+(W, c) = τ(T (ζ)−→W ) ,

Φ−(W, c) = τ(T (ζ−1)−→W ) ∈ Wh(π1(W ))
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of the homotopy equivalences

T (ζ) −→ W ; (x, t) −→ p(x) ,

T (ζ−1) −→ W ; (x, t) −→ p(x)

with p : W−→W the covering projection, using the canonical simple homo-
topy types on W (6.5) and T (ζ) and T (ζ−1) (14.3) to define the torsions.

Remark 15.12 (i) A CW band (W, c) is simple homotopy equivalent to
the mapping torus T (h) of a simple self homotopy equivalence h : F−→F
of a finite CW complex F if and only if

Φ+(W, c) = Φ−(W, c) = 0 ∈ Wh(π1(W ))

by Ranicki [124, Chapter 20]. For any CW band (W, c)

Φ+(W × S1, c(pr1)) = Φ−(W × S1, c(pr1)) = 0 ∈ Wh(π1(W )× S1) ,

with W ×S1 simple homotopy equivalent to the mapping torus T (h) of the
simple self homotopy equivalence h : F−→F defined for any finite structure
(F, φ : W × S1−→F ) on W × S1 by

h = φ(ζ × 1)φ−1 : F ' W × S1 −→ W × S1 ' F .

(ii) The torsion of an n-dimensional geometric Poincaré complex W is

τ(W ) = τ([W ] ∩ − : C(W̃ )n−∗−→C(W̃ )) ∈ Wh(π1(W )) ,

and W is simple if τ(W ) = 0. The fibring obstructions of an n-dimensional
geometric Poincaré band (W, c) determine the torsion

τ(W ) = Φ+(W, c) + (−)nΦ−(W, c)∗ ∈ Wh(π1(W )) .

Thus for a simple geometric Poincaré band (W, c) (e.g. a manifold band)
the fibring obstructions are related by the duality

Φ+(W, c) = (−)n−1Φ−(W, c)∗ ∈ Wh(π1(W )) ,

and Φ+(W, c) = 0 if and only if Φ−(W, c) = 0. In the manifold case
Φ+(W, c) is the fibring obstruction of Farrell [47] and Siebenmann [145],
such that Φ+(W, c) = 0 if (and for n ≥ 6 only if) c : W−→S1 is homotopic
to the projection of a fibre bundle, i.e. if and only if W is homeomorphic
to the mapping torus T (h) of a self homeomorphism h : F−→F of a codi-
mension 1 submanifold F ⊂ W . See Remark 24.17 below for the geometric
interpretation of Φ+(W, c) = Φ−(W, c) = 0 for an ANR band (W, c).
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Proposition 15.13 Let (W, c) be an ANR band. For any fundamental
domain (V ; U, ζU) for W let

W
+ =

∞⋃

j=0

ζjV , W
− =

−1⋃

j=−∞
ζjV .

(i) There exists an integer N+ ≥ 0 such that
N+⋃
j=0

ζjV dominates W
+ rel

U .

(ii) There exists an integer N− ≥ 0 such that
0⋃

j=−N−
ζjV dominates ζW

−

rel ζU .
Proof (i) By 13.13 there exist a homotopy

h : W × I −→ W ; (x, t) −→ ht(x)

and an integer N+ ≥ 0 such that :

(a) h1(x) = x for x ∈ W ,

(b) ht(y) = y for y ∈ ζ−N+
W

− =
−N+−1⋃
j=−∞

ζjV , t ∈ I ,

(c) h0(W
+) ⊆

−1⋃
j=−N+

ζjV .

The maps

f : W
+ −→

N+⋃

j=0

ζjV ; x −→ ζN+
h0ζ

−N+
(x) ,

g = inclusion :
N+⋃

j=0

ζjV −→ W
+

are such that there is defined a rel U homotopy

ζN+
htζ

−N+
: gf ' 1 : W

+ −→ W
+

,

so that
N+⋃
j=0

ζjV dominates W
+ rel U .

(ii) As for (i), with the role of W
+
, W

− reversed.

Definition 15.14 Let (W, c) be a band.
(i) The band (W, c) is positively relaxed if there exists a fundamental

domain (V ; U, ζU) for W such that V dominates W
+ rel U .

(ii) The band (W, c) is negatively relaxed if there exists a fundamental
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domain (V ; U, ζU) for W such that ζ−1V dominates W
− rel U .

(iii) The band (W, c) is relaxed if there exists a fundamental domain (V ;U,
ζU) for W which is both positively and negatively relaxed, i.e. if N+ =
N− = 0 in 15.13.

Example 15.15 (i) The mapping torus T (h) of a self homotopy equivalence
h : F−→F of a finite CW complex F is a relaxed CW band; in this case
the infinite cyclic cover T (h) has a fundamental domain

(V ; U, ζU) ' F × (I; {0}, {1})
such that the inclusions V−→T (h)+, ζ−1V−→T (h)− are homotopy equiv-
alences rel U .

(ii) In 16.15 it is proved that if W is a finite CW complex with a map
c : W−→S1 such that c∗ : π1(W )−→π1(S1) is onto, and which is homotopic
to an approximate fibration, then (W, c) is a relaxed CW band.

How do manifold bands arise? The obvious sources are :
(a) fibre bundles over S1, e.g. complements of fibred knots,
(b) manifold tame ends, since these have open neighbourhoods which are

infinite cyclic covers of manifold bands.
Here is another source :

(c) surgery theory.

Example 15.16 Surgery theory can be used to construct manifold bands
(W, c) in dimensions n ≥ 5 with prescribed fundamental group, as follows.
For the sake of simplicity we shall only consider the untwisted case, with
c∗ = projection : π1(W ) = π × Z−→Z for some finitely presented group π.
Let A = Z[π], with Laurent polynomial extension A[z, z−1] = Z[π × Z]. As
in Ranicki [128, 130] define a square matrix ω = (ωij)1≤i,j≤k with entries
ωij ∈ A[z, z−1] to be Fredholm if the A[z, z−1]-module morphism

ω : A[z, z−1]k −→ A[z, z−1]k ;

(a1, a2, . . . , ak) −→ (
k∑

i=1

aiωi1,
k∑

i=1

aiωi2, . . . ,
k∑

i=1

aiωik)

is injective and the cokernel is a f.g. projective A-module, or equivalently
if ω becomes invertible over the Novikov rings A((z)) and A((z−1)) (cf.
23.1 and 23.2 below). Let Ω be the set of Fredholm matrices in A[z, z−1],
and let Λ = Ω−1A[z, z−1] be the (noncommutative) localization of A[z, z−1]
inverting Ω. This type of localization is a generalization of the single-element
inversion of 2.28 (i). The injection A[z, z−1]−→Λ is a ring morphism with
the universal property that a finite f.g. free A[z, z−1]-module chain complex
C is A-finitely dominated if and only if H∗(Λ ⊗A[z,z−1] C) = 0, by Ranicki
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[126]. For a connected finite CW complex X with π1(X) = π × Z we
have Z[π1(X)] = A[z, z−1] and H∗(X; Λ) = H∗(Λ ⊗A[z,z−1] C(X̃)), with
X̃ the universal cover of X. The infinite cyclic cover X = X̃/π of X is
finitely dominated if and only if H∗(X; Λ) = 0. The realization theorems of
Chapters 5 and 6 of Wall [165] for the L-groups have Λ-homology surgery
versions for the Γ-groups of Cappell and Shaneson [20]. It is thus possible
to realize every element x ∈ Ln+1(Λ) = Γn+1(A[z, z−1]−→Λ) as the Λ-
coefficient surgery obstruction x = σ∗(f, b) of an (n+1)-dimensional normal
map

(f, b) : (L; M × S1, N) −→ M × S1 × (I; {0}, {1})
with M a closed (n− 1)-dimensional manifold such that π1(M) = π,

(f, b)| = 1 : M × S1 −→ M × S1

and with the restriction

(e, a) = (f, b)| : N −→ M × S1

a normal map inducing isomorphisms

e∗ : π1(N)
'−→ π1(M × S1) = π × Z ,

e∗ : H∗(N ; Λ)
'−→ H∗(M × S1; Λ) = 0 .

Then (N, c) is an n-dimensional manifold band, with

c : N
e−→ M × S1

proj.−→ S1

inducing c∗ = projection : π1(N) = π×Z−→π1(S1) = Z. (The construction
of manifold ands in 10.3 (iii) is a special case). See [128] for a more detailed
account, including the identification L2∗(Λ) = W (A) with W (A) the Witt
group of nonsingular asymmetric forms over A of Quinn [113], and the
computation L2∗+1(Λ) = 0 (implicit in [113]).

We shall be more concerned with the geometric construction of bands.
In Chapters 18–20 we shall relate the geometric and homotopy theoretic
properties of ribbons and bands, using elementary versions of the geometric
twist glueing of Siebenmann [145] :

Definition 15.17 Let X be a locally compact Hausdorff space with a proper
map d : X−→R and an end-preserving homeomorphism h : X−→X. Sup-
pose there exist homeomorphisms f± : U±−→X with U± ⊆ X open sub-
spaces, U− ∩ U+ = ∅, for which there exist m > n > 0 such that

d−1(−∞,−n) ⊆ U− , d−1(n,∞) ⊆ U+ ,
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and such that the restrictions

f−| : d−1(−∞,−m] −→ X , f+| : d−1[m,∞) −→ X

are the inclusions. The Siebenmann twist glueing of X relative to h is the
identification space

Wh(f−, f+) = X/∼

with ∼ the equivalence relation generated by x ∼ f−1
+ hf−(x) for x ∈ U−.

Note that Wh(f−, f+) is homotopy equivalent to the mapping torus T (h).

Siebenmann [145, p. 19] proved the following uniqueness result by an ele-
mentary method.

Proposition 15.18 Let X be a locally compact Hausdorff space with a
proper map d : X−→R. If the two ends of X have arbitrarily small neigh-
bourhoods U± with homeomorphisms f± : U±−→X as above, then any
two twist glueings Wh(f−, f+),Wh(f ′−, f ′+) with respect to the same end-
preserving homeomorphism h : X−→X are homeomorphic.

We shall be particularly concerned with the Siebenmann twist glueing
construction in two special cases :

(i) Given a manifold ribbon (X, d) with d : X−→R a ‘manifold approx-
imate fibration’ (Chapter 16) we construct in Chapter 17 the ‘geometric
wrapping up’ (M, c) = (X̂, ĉ), a manifold band with infinite cyclic cover
(M, c) = (X, d). The construction in Chapter 17 uses elementary proper-
ties of approximate fibrations. In 18.6 M is identified with the Siebenmann
twist glueing of X relative to 1 : X−→X.

(ii) The ‘relaxation’ of a manifold band (M, c) is constructed in Chapter
18 to be an h-cobordant manifold band (M ′, c′) with c′ : M ′−→S1 a mani-
fold approximate fibration. The construction in Chapter 18 uses elementary
properties of ‘bounded fibrations’ (Chapter 16). In 18.7 M ′ is identified with
the Siebenmann twist glueing of the infinite cyclic cover M of M relative
to a generating covering translation ζ : M−→M .

Definition 15.19 Let (X, d), (X ′, d′) denote spaces X,X ′ with maps d :
X−→R, d′ : X ′−→R (but not necessarily ribbons).

(i) A homotopy equivalence f : (X, d)−→(X ′, d′) is a homotopy equiva-
lence f : X−→X ′.

(ii) Suppose that the maps d, d′ are proper. A proper homotopy equiva-
lence f : (X, d)−→(X ′, d′) is a proper homotopy equivalence f : X−→X ′
with a proper homotopy d′f ' d : X−→R.
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In Chapter 19 we shall develop a CW analogue of the Siebenmann twist
glueing : given a connected CW ribbon (X, d) and a homotopy equivalence
h : (X, d)−→(X, d) we use h to tie the two ends of X together to obtain
a CW complex X(h) with a map d(h) : X(h)−→S1 and with homotopy
equivalences (X, d) ' (X(h), d(h)), X(h) ' T (h). In the special case when
h : (X, d)−→(X, d) is a proper homotopy equivalence with h a covering
translation or the identity we obtain a relaxed CW band (X[h], d[h]) with
a proper homotopy equivalence (X, d) ' (X[h], d[h]) which is simple in
the sense of the infinite simple homotopy theory of Siebenmann [144]. In
Chapter 20 the ‘wrapping up’ of a CW ribbon (X, d)

(X̂, d̂) = (X[1], d[1])

will be used to prove that d : X−→R is proper homotopic to a proper
bounded fibration. The ‘relaxation’ of a CW π1-band (W, c) is defined in
Chapter 20 to be the relaxed CW band

(W ′, c′) = (W [ζ], c[ζ])

in the homotopy type of (W, c). In Chapters 24, 25 below we shall apply
the homotopy theoretic twist glueing to study the fibring obstructions of
relaxed CW bands (which are distinguished by the property that the Ñil-
components vanish).
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Approximate fibrations

We characterize forward and reverse tameness for open manifolds in terms
of approximate lifting properties; the main result (16.13) is that an open
manifold W of dimension n ≥ 5 is forward tame and reverse tame if and
only if there exists an open cocompact X ⊆ W with a manifold approximate
fibration d : X−→R. In Chapter 17 it will then be shown that an open
manifold X of dimension n ≥ 5 is the total space of a manifold approximate
fibration d : X−→R if and only if it is the infinite cyclic cover X = M of
an n-dimensional manifold band (M, c).

Definition 16.1 Let B be a metric space.
(i) Let ε > 0, and let X,Y be spaces equipped with maps p : X−→B,

q : Y−→B. A map f : X−→Y is an ε-homotopy equivalence over B if there
exists a map g : Y−→X together with homotopies

h : gf ' 1 : X −→ X , k : fg ' 1 : Y −→ Y

such that for all x ∈ X, y ∈ Y

d(p(x), qf(x)) < ε , d(pg(y), q(y)) < ε ,

diameter ph({x} × I) < ε , diameter qk({y} × I) < ε .

(ii) A bounded homotopy equivalence of spaces with maps to B is a homo-
topy equivalence which is an ε-homotopy equivalence over B for some ε > 0.

Definition 16.2 Let B be a metric space.
(i) Let ε > 0. An ε-fibration is a map p : X−→B such that for any space

W and maps f : W−→X, F : W × I−→B satisfying

F (x, 0) = pf(x) (x ∈ W )

there exists a map F̃ : W × I−→X such that

F̃ (x, 0) = f(x) , d(pF̃ (x, t), F (x, t)) < ε (x ∈ W, t ∈ I) .

187
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W × {0} wf

u

X

u

p

W × I wF
hh
hh
hj

F̃

B

(ii) If U ⊆ B then p : X−→B is an ε-fibration over U if the image of the
homotopy F above is in U .

(iii) A bounded fibration is a map p : X−→B which is an ε-fibration for
some ε > 0.

Proposition 16.3 A map p : X−→R from a metric space X is a bounded
fibration if and only if it is bounded homotopy equivalent to the projection
Y × R−→R for some space Y .
Proof Let pi denote the projection onto the ith coordinate space (i = 1, 2).
Assume first that X is bounded homotopy equivalent to Y × R over R so
that there exist maps f : X−→Y × R and g : Y × R−→X as in 16.1 (i) for
some ε > 0. Suppose we are given a lifting problem F : W × I−→R and
h : W−→X such that F (x, 0) = ph(x) for each x ∈ W . Convert this to a
lifting problem in Y × R by defining

G : W × I −→ R ; (x, t) −→ F (x, t)− F (x, 0) + p 2fh(x)

with solution

G̃ : W × I −→ Y × R ; (x, t) −→ (p1fh(x), G(x, t)) .

Note that G is ε-close to F and pgG̃ is 2ε-close to F .
Let H : 1 ' gf : X−→X be a homotopy such that for all x ∈ X

diameter pH({x} × I) < ε .

Define

F ′ : W × [−1, 1] −→ X ; (x, t) −→
{

gG̃(x, t) if 0 ≤ t ≤ 1 ,
H(h(x), 1 + t) if −1 ≤ t ≤ 0 .

Assume for the moment that W is paracompact. Then there exists a map
α : W−→(0, 1] such that for all x ∈ W

diameter pF ′({x} × [−1, α(x)]) < ε

(see Dugundji [38, page 179]). Define

J : W×I −→W×[−1, 1] ; (x, t)−→




(x, t) if α(x) ≤ t ≤ 1 ,

(x, t +
t

α(x)
− 1) if 0 ≤ t ≤ α(x) .
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Then F̃ = F ′J has the property that F̃ (x, 0) = h(x) and pF̃ is 3ε-close to
F . To avoid the paracompactness assumption, let

E(p) = {(x, λ) ∈ X × RI | p(x) = λ(0)} .

Then E(p) is a metric space (hence, paracompact) and, in the standard
way, a universal lifting problem can be given in terms of E(p), the bounded
solution of which implies that p is a bounded fibration.

Conversely, assume that p is a bounded fibration. Define

f : X −→ X × R ; x −→ (x, p(x)) .

Note that p = p 2f . We shall show that f is a bounded homotopy equiv-
alence. In order to get an inverse, consider the following lifting problem.
Let

h = projection : X × R −→ X ,

F : X × R× I −→ R ; (x, y, t) −→ (1− t)p(x) + ty .

Then there exists a map F̃ : X × R× I−→X such that

F̃ (x, y, 0) = x ((x, y) ∈ X × R)

and pF̃ is ε-close to F for some ε > 0. We claim that F̃1 : X × R−→X is a
bounded homotopy inverse for f . First note that F̃tf : 1 ' F̃1f : X−→X is
a 2ε-homotopy over R. The map

G : X×R×I −→ X×R ; (x, y, t) −→ (F̃ (x, y, t), (1− t)y+ tp 2fF̃ (x, y, 1))

is a 2ε-homotopy over R

G : 1 ' fF̃1 : X × R −→ X × R .

Corollary 16.4 If p : X−→R is a proper bounded fibration such that
p−1[0,∞) and p−1(−∞, 0] are ANR’s, then X is forward tame and reverse
tame.
Proof Apply 16.3 and 9.12.

The following result says that the existence of a bounded fibration to R
is a proper homotopy invariant.

Proposition 16.5 If X is a metric space, f : X−→Y is a proper homo-
topy equivalence and p : Y−→R is a bounded fibration then pf : X−→R is
properly homotopic to a bounded fibration d : X−→R.
Proof Let g : Y−→X be a proper homotopy inverse for f and let G : idX '
gf be a proper homotopy. Let n0 = 0 and use the properness of p, f, g, and
G to inductively choose ni ≥ i (i = 0, 1, 2, . . .) so that :
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(i) pfg(p−1[−ni−1, ni−1]) ⊆ [−ni, ni],
(ii) pfg(p−1[±ni,±∞)) ⊆ [±ni−1,±∞),
(iii) pfGt((pf)−1[−ni−1, ni−1]) ⊆ [−ni, ni] for each t,
(iv) pfGt((pf)−1[±ni,±∞)) ⊆ [±ni−1,±∞) for each t.

Let γ : R−→R be the PL homeomorphism such that

γ(±ni) = ±i (i = 0, 1, 2, . . .) .

Then pf is properly homotopic to d = γpf : X−→R. One may check that
γp is 3-close to γpfg and that γpfG : X× I−→R is a 3-homotopy. In order
to show that d is a bounded fibration, consider a lifting problem h : Z−→X
and H : Z × I−→R such that

dh(z) = H(z, 0) (z ∈ Z) .

It follows from standard arguments that we may assume that Z is paracom-
pact (see the proof of 16.3). This lifting problem induces a lifting problem
fh : Z−→Y and H : Z × I−→R for γp : Y−→R. Suppose that p : Y−→R
is a b-fibration. Since γ is distance nonincreasing, γp is also a b-fibration.
There is a solution Ĥ : Z × I−→Y such that

fh(z) = Ĥ(z, 0) (z ∈ Z)

and γpĤ is b-close to H. Use the paracompactness of Z to define a map
φ : Z−→(0, 1] such that H(z, 0) is 1-close to H(z, t) if t ≤ φ(z). Define

H̃ : Z × I −→ X ; (z, t) −→
{

G(h(z), t/φ(z)) if 0 ≤ t ≤ 1/2 ,
gĤ(z, t/φ(z)− 1) if 1/2 ≤ t ≤ 1 .

Then

h(z) = H̃(z, 0) (z ∈ Z)

and dH̃ is max{4, 3 + b}-close to H. Hence d is a bounded fibration.

Note that the proof above just requires X to be properly dominated by a
bounded fibration, rather than proper homotopy equivalent to one.

We shall be mainly concerned with bounded fibrations p : X−→B with p
a proper map.

Definition 16.6 (i) An approximate fibration p : X−→B is a map which is
an ε-fibration for every ε > 0.

(ii) A manifold approximate fibration p : W−→B is an approximate fibra-
tion such that W and B are manifolds (either finite dimensional without
boundary or Hilbert cube manifolds), and such that p is a proper map.
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Proposition 16.7 A map p : X−→R from a metric space X is an approx-
imate fibration if and only if for every ε > 0 it is ε-equivalent over R to the
projection Y × R−→R for some space Y .
Proof The proof of 16.3 shows that a space which is ε-equivalent over R
to a product with R is a 3ε-fibration. And conversely, an ε-fibration is
2ε-equivalent over R to a product with R.

More general versions of 16.3 and 16.7 are given in Hughes, Taylor and
Williams [77, p. 47].

Proposition 16.8 Let X be a metric space with a map p : X−→[0,∞)
which is ε-homotopy equivalent at ∞ to the projection Y × [0,∞)−→[0,∞)
for some space Y and some ε > 0. Then there exists u > 0 such that p is
an 3ε-fibration over (u,∞).
Proof Let (f, g,X ′, Y ′) : X−→Y × [0,∞) be an ε-equivalence at ∞ with
X ′ = p−1([s,∞)) and Y ′ = Y × [t,∞). For u much larger than s, t, the
proof of 16.3 shows that p is a 3ε-fibration over (u,∞).

We shall use the sucking principle of Chapman [25, 26] to gain the control
necessary to pass from bounded fibrations to approximate fibrations. This
says that, for manifolds, there is essentially no difference between proper
approximate fibrations and proper ε-fibrations for sufficiently small ε > 0.
At its simplest, the sucking principle takes on the following form.

Theorem 16.9 (Chapman) For every n ≥ 5 and ε > 0 there exists δ > 0
such that if W is an open n-dimensional manifold or a Hilbert cube manifold
and p : W−→R is a proper δ-fibration, then p is ε-homotopic to a manifold
approximate fibration p′ : W−→R.

The proof of 16.9 uses controlled engulfing.

Corollary 16.10 If W is an open manifold of dimension ≥ 5 or a Hilbert
cube manifold and p : W−→R is a proper bounded fibration, then p is bound-
edly homotopic to a manifold approximate fibration.
Proof Suppose p is an ε-fibration for some ε > 0. Choose δ > 0 by Theorem
16.9 so that any proper δ-fibration from an n-manifold to R is 1-homotopic
to a manifold approximate fibration. Choose L > 0 so large that ε/L < δ
and define

γ : R −→ R ; x −→ x/L .

Then γp : M−→R is an (ε/L)-fibration and is 1-homotopic to a manifold
approximate fibration p′ : M−→R. It follows that p is L-homotopic to γ−1p′
which is a manifold approximate fibration.
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Proposition 16.11 For every n ≥ 5 there exists ε > 0 such that if (W,∂W )
is an open n-dimensional manifold with compact boundary or a Hilbert cube
manifold, and p : W−→[0,∞) is a proper ε-fibration over (a,∞) for some
a > 0, then p is properly homotopic to a map p′ such that

p′| : (p′)−1(a + 1,∞) −→ (a + 1,∞)

is a manifold approximation fibration.
Proof The proof follows from Chapman’s proof of 16.9 in [25, 26].

The next example shows that this version of Chapman’s sucking principle
fails for ANR’s.

Example 16.12 We construct a non-manifold 2-dimensional CW band
(W, c) such that c : W−→R is not properly homotopic to an approximate
fibration even though c is a proper bounded fibration.

Let D be the topologist’s dunce cap, the space obtained from the standard
2-simplex σ by identifying its three edges, two with the same orientation
and one with the opposite orientation. So D is a CW complex with one
0-cell, one 1-cell, and one 2-cell. Let x be the 0-cell and let y be a point in
the interior of the 2-cell.

Let W be the space obtained from D by identifying x and y. Clearly, W
can be given the structure of a finite 2-dimensional CW complex. (If D is
obtained from the standard 2-simplex σ by identifying edges, and y is the
barycentre of σ, the subdivision of σ obtained by starring from y induces
a CW structure on D which in turn induces a CW structure on W . This
CW structure on W has one 0-cell, four 1-cells, and three 2-cells.)

Fix a classifying map c : W−→S1 such that c−1(1) = {x = y}. A Z-
equivariant lift c : W−→R is a bounded fibration. This is because there
is a strong deformation retraction of D to an arc in D joining x and y.
This strong deformation retraction induces a bounded strong deformation
retraction of W to a copy L of R such that c|L : L−→R is a homeomorphism.
It also follows from 17.14 below that c is a bounded fibration.

Write

W =
∞⋃

i=−∞
Di

where Di is a fundamental domain homeomorphic to D with vertices zi ∈ Di

such that c(zi) = i and Di ∩Di+1 = {zi+1}.
Assume by way of contradiction that c is properly homotopic to an ap-

proximate fibration d : W−→R. Since W and R are contractible, so is the
homotopy fibre of d. This in turn implies that d is a cell-like map (Ferry
[53, p. 337]). It can also be verified directly that d is a cell-like map. Since d
is proper, there exists an integer i such that d(zi) < d(zi+1). Choose t such
that d(zi) < t < d(zi+1).
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Claim 1 d−1(t) ⊆ Di.
Proof Suppose on the contrary that there exists u ∈ d−1(t) such that u /∈
Di. Assume without loss of generality that u ∈ ⋃

j<i
Dj . By the connectivity

of Di, there exists v ∈ Di such that d(v) = t. Since zi /∈ d−1(t), d−1(t) has
at least two components : one containing u, and another containing v. This
contradicts the cell-likeness of d−1(t).

Identify Di with D and assume i = 0. Thus, we have a map d : D−→I
such that d(x) = 0, d(y) = 1, and d−1(t) is cell-like for each t ∈ (0, 1). It
follows that d−1(1

2) is a cell-like subset of D which separates x from y. The
following claim provides a contradiction.

Claim 2 If Z ⊆ D is a cell-like set and x /∈ Z, then Z does not separate D.
Proof Let π : σ−→D denote the quotient map. The proof is based on the
following five items :

(i) Every proper 2-dimensional subpolyhedron P of D contains a free
1-dimensional face. For let Q be the subpolyhedron of σ which is the
union of all 2-simplexes in π−1(P ). It suffices to observe that that Q
has a free 1-dimensional face not in ∂σ.

(ii) Every subpolyhedron P of D is aspherical. If P = D this is true. On
the other hand if P is proper, then (i) implies that P collapses to a
1-dimensional subpolyhedron which of course is aspherical. It also
follows from Papakyriakopoulos [107, p. 19] that any subpolyhedron
of D is aspherical.

(iii) If P ⊆ Q ⊆ D\{x} are subpolyhedra, P contracts to a point in Q
and Q contracts to a point in D\{x}, then there exists a contractible
subpolyhedron P ′ of D such that P ⊆ P ′ ⊆ Q. By (ii) it suffices
to find a simply-connected subpolyhedron P ′ with P ⊆ P ′ ⊆ Q.
This would follow from standard plane topology if Q ⊆ D\π(∂σ)
(by adding appropriate complementary domains of P ). In the more
general case, pass to the universal cover U of D\V where V is the
interior of a small regular neighbourhood of x. Lift P and Q to
subpolyhedra P̃ , Q̃ of U . The fundamental domain F for U is home-
omorphic to a 2-cell so plane topology can be used in U to build P ′.
The idea is to work inductively starting at the outermost translates
of F which meet P̃ and add appropriate complementary domains in
that translate to P̃ .

(iv) If P ⊆ Q ⊆ D are subpolyhedra such that Q collapses to P across
2-simplexes and Q separates D, then P separates D. This can be
verified by pulling P and Q back to σ and examining the several
possible cases.



194 Ends of complexes

(v) No contractible 1-dimensional subpolyhedron P of D separates D.
Since P collapses to a point and D is not separated by a point, a
1-dimensional analogue of (iv) is needed. As in (iv) this is verified
by pulling back to σ and examining the several possible cases.

Given these five items we can finish the proof of Claim 5. It follows from
(iii) that we can write

Z =
∞⋂

i=1

Zi

where Zi+1 ⊆ Zi and Zi is a contractible proper subpolyhedron of D. If
Z separates D, then we may assume that each Zi separates D. It follows
from (i) and (iv) that Z1 collapses to a 1-dimensional subpolyhedron P
which does not separate D. Since Z1 is contractible, so is P , which is a
contradiction to (v).

Theorem 16.13 Let W be an open manifold of dimension ≥ 5 with compact
boundary or a Hilbert cube manifold. The following conditions on W are
equivalent :

(i) W is both forward and reverse tame,
(ii) W is forward tame and the end space e(W ) is finitely dominated,
(iii) there exist an open cocompact X ⊆ W and a manifold approximate

fibration X−→R.

Proof (i) ⇐⇒ (ii) follows from 9.15.
(i) =⇒ (iii) follows from 9.14, 16.8 and 16.11.
(iii) =⇒ (i) follows from 16.7 and 9.12.

Theorem 16.13 is the existence part of the Teardrop Structure Theorem
of Hughes, Taylor, Weinberger and Williams [76] in the simplest case (two
strata, the lower stratum being a point). The next example shows that one
cannot hope for a true analogue of 16.13 for ANR’s, even if one only wants
a proper bounded fibration.

Example 16.14 For the CW complex W of 16.12 the result of adding a
point at −∞ (thereby compactifying W−) is an ANR X = W ∪ {−∞}
which satisfies all the hypotheses of 16.13, yet no open cocompact subset of
X admits a proper approximate fibration to R.
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Proposition 16.15 If W is a connected finite CW complex with a map
c : W−→S1 which is homotopic to an approximate fibration, and c∗ :
π1(W )−→π1(S1) is onto, then (W, c) is a relaxed CW band.
Proof We have to show that there exists a fundamental domain (V ; U, ζU)
for W = c∗R such that V dominates W

+ rel U and ζ−1V dominates W
−

rel U . Assume first that c is an approximate fibration and consider the
induced proper approximate fibration c : W−→R. Choose a fundamen-
tal domain (V ; U, ζU) such that U ⊆ c−1(0, 1/2). Define a homotopy
F : [1/2,∞) × I−→[1/2,∞) such that F (s, 0) = s, F (1/2, t) = 1/2, and
F (s, 1) = 1/2 for all s, t ∈ [1/2,∞) × I. Use the regular approximate ho-
motopy lifting property of Coram and Duvall [36] to construct a homotopy
F̃ : c−1[1/2,∞) × I−→c−1[1/2,∞) such that F̃ (x, 0) = x, F̃ (y, t) = y and
F̃ (x, 1) ∈ c−1[1/2, 1] for all (x, t) ∈ c−1[1/2,∞) × I and y ∈ c−1(1/2).
Then F̃ extends to a homotopy, also denoted F̃ , defined on all of W

+,
by setting F̃ (x, t) = (x, t) for all x ∈ W

+ ∩ c−1[0, 1/2] and t ∈ I. Thus,
F̃ : W

+ × I−→W
+ satisfies F̃0 = 1

W
+ , F̃t|U = inclusion : U−→W

+ for

each t ∈ I, and F̃1(W
+) ⊆ V , showing that V dominates W

+ rel U . A
similar construction shows that ζ−1V dominates W

− rel U .
If c is merely homotopic to an approximate fibration c′ : W−→S1, then the

associated infinite cyclic cover W
′ = c′∗R of W has a fundamental domain

(V ′; U ′, ζ ′U ′) with the required domination properties. Moreover, there is
an isomorphism h : W

′−→W of covering spaces so that ζ = hζ ′h−1. It fol-
lows that (hV ; hU, ζhU) is a fundamental domain for W with the required
domination properties.

Proposition 16.16 If d : W−→R is a proper approximate fibration then
the composite

p : e(W+) −→ W+ −→ W

is a homotopy equivalence, with W+ = d−1[0,∞).
Proof W is forward tame by 16.4, and there exists a closed cocompact
V ⊆ W+ with a proper map q : V × [0,∞)−→W+ extending the inclusion.
Chose n > 0 so large that d−1[n + 1,∞) ⊆ U . Define a homotopy

h : R× I −→ R ; (x, t) −→ (1− t)x + tmax{N,x} .

This homotopy can be approximately lifted to obtain a homotopy h̃ : W ×
I−→R with h̃0 = idW and dh̃t 1-close to htd for each t ∈ I. In particular,
h̃1(W ) ⊆ U . Define

f : W −→ e(W+) ; x −→ (t −→ q(h̃1(x), t)) .

Then f is a homotopy inverse for p.



196 Ends of complexes

Corollary 16.17 A manifold approximate fibration d : W−→R is a ribbon.
Proof The transversality conditions (i) in the definition of a ribbon (15.1)
are given by manifold transversality. The homotopy conditions (ii) are given
by 16.16. The homology conditions (iii) follow from the forward tameness
of W (16.4) and 13.15 (ii).

In Chapter 17 we shall prove that a manifold approximate fibration d :
W−→R of dimension ≥ 6 is proper homotopic to a lift c : M−→R of the
classifying map c : M−→S1 of a manifold band (M, c) such that W = M .



17

Geometric wrapping up

Wrapping up is a geometric compactification procedure which for n ≥ 5 as-
sociates to an n-dimensional manifold approximate fibration (X, d : X−→R)
a relaxed n-dimensional manifold band (M, c) = (X̂, d̂ : X̂−→S1) with infi-
nite cyclic cover M = X, such that c : X−→R is an approximate fibration
properly homotopic to d, with X × S1 homeomorphic to M × R. By 16.13
an open n-dimensional manifold W which is both forward and reverse tame
has an open cocompact X ⊆ W with a manifold approximate fibration
d : X−→R, and the wrapping up provides a canonical collaring of the open
(n + 1)-dimensional manifold W × S1 with boundary M = X̂ (17.10).

We shall use wrapping up to prove that an ANR space X admits a proper
bounded fibration d : X−→R if and only if it is infinite simple homotopy
equivalent to the infinite cyclic cover M of a CW band (M, c) (17.16). We
also prove that an open manifold X admits a manifold approximate fibration
d : X−→R if and only if X is the infinite cyclic cover M of a manifold band
(M, c) (17.18).

We begin in 17.1 with the wrapping up construction of a manifold band
from a manifold approximate fibration over R. Then in 17.11 we give some
elementary consequences of the sucking principle (16.9). After observing
in 17.12 that total spaces of proper bounded fibrations over R are finitely
dominated, we present the main characterizations (17.16 and 17.18).

The next result of this chapter concerns bands. We know that finitely
dominated infinite cyclic covers of ANR bands admit proper bounded fi-
brations to R (17.14), but might not admit any proper approximate fibration
to R (16.12, 16.14). However, in 17.20 we show that if the ANR band is
allowed to vary up to simple homotopy type, then it will have a finitely dom-
inated infinite cyclic cover which admits a proper approximate fibration to
R.

197
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The final part of this chapter is concerned with the homotopy theoretic
analogues of the main characterizations; namely, when is a CW complex
homotopy equivalent to a CW complex which admits a proper bounded
fibration to R, and when is an ANR (resp. manifold) homotopy equivalent
to an ANR (resp. manifold) which admits an approximate fibration to R?

Theorem 17.1 (Wrapping up) Let d : X−→R be an n-dimensional mani-
fold approximate fibration, with n ≥ 5 or n = ∞ (= Hilbert cube manifold).
Then there exists an n-dimensional relaxed manifold band

(M, c) = (X̂, d̂ : X̂−→S1)

with infinite cyclic cover M = X such that :

(i) the classifying map c : M−→S1 is a manifold approximate fibration,
such that the lift c : M−→R is a manifold approximate fibration
properly homotopic to d ,

(ii) the generating covering translation ζ̂ : X−→X for the infinite cyclic
cover is isotopic to idX ,

(iii) the mapping torus T (ζ̂) is homeomorphic to X̂ × R ,
(iv) X × S1 is homeomorphic to X̂ × R .

Remark 17.2 (i) In general, X̂ is not in the canonical simple homotopy
type of X × S1 : the fibring obstructions of the wrapping up (X̂, d̂) are
computed in 26.7 below to be

Φ+(X̂, d̂) = −[X−] , Φ−(X̂, d̂) = [X+]

∈ K̃0(Z[π]) ⊆ Wh(π × Z) (π = π1(X)) ,

so that the homeomorphism in 17.1 (iv) has torsion

τ(X × S1 ∼= X̂ × R) = Φ−(X̂, d̂)− Φ−(X × S1, pS1)

= [X+] ∈ K̃0(Z[π]) ⊆ Wh(π × Z) .

This does not contradict the topological invariance of Whitehead torsion, by
which homeomorphisms of compact ANR’s are simple. Nor does it contra-
dict the fact that the infinite torsion of a homeomorphism of non-compact
ANR’s is zero.

(ii) Suppose that n < ∞, so that

[X−] = (−)n−1[X+]∗ ∈ K̃0(Z[π]) ,

and [X−] = 0 if and only if [X+] = 0. Thus Φ+(X̂, d̂) = Φ−(X̂, d̂) = 0 if and
only if [X+] = 0, and for n ≥ 6 d̂ : X̂−→S1 is homotopic to a fibre bundle
projection if and only if X+ can be collared. More precisely, d̂ is homotopic
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to a fibre bundle projection with fibre a closed (n−1)-dimensional manifold
F if and only if X+ can be collared with boundary F , in which case

(X, d) ∼= (F × R, pR) , (X̂, d̂) ∼= (F × S1, pS1) .

Example 17.3 (i) A manifold cobordism (V ; U,U ′) is invertible if there
exists a manifold cobordism (V ′; U ′, U) with rel ∂ homeomorphisms

(V ; U,U ′) ∪ (V ′; U ′, U) ∼= U × (I; {0}, {1}) ,

(V ′; U ′, U) ∪ (V ; U,U ′) ∼= U ′ × (I; {0}, {1}) .

Stallings [155] used the collarings of U and U ′ and the infinite repetition
trick to construct rel ∂ homeomorphisms

U × ([0,∞), {0}) ∼= (V ;U,U ′) ∪ (V ′; U ′, U) ∪ (V ; U,U ′) ∪ . . .

∼= (V \U ′, U) ,

U ′ × ([0,∞), {0}) ∼= (V ′; U ′, U) ∪ (V ; U,U ′) ∪ (V ′; U ′, U) ∪ . . .

∼= (V ′\U,U ′)

as well as homeomorphisms

U × R ∼= . . . ∪ (V ; U,U ′) ∪ (V ′; U ′, U) ∪ (V ; U,U ′) ∪ . . .

∼= U ′ × R .

The s-cobordism theorem (6.6) shows that for n ≥ 6 every n-dimensional
manifold h-cobordism (V ; U,U ′) is invertible, with inverse (V ′; U ′, U) any
h-cobordism with torsion

τ(V ′; U ′, U) = −τ(V ; U,U ′) ∈ Wh(π1(V )) .

Connell [32] proved that for n ≥ 5 an invertible n-dimensional manifold
cobordism (V ; U,U ′) is necessarily an h-cobordism. The product of an n-
dimensional h-cobordism (V ; U,U ′) with S1 is an (n + 1)-dimensional s-
cobordism (V × S1; U × S1, U ′ × S1), so that for n ≥ 5 there exists a
homeomorphism rel U × S1

(V × S1; U × S1, U ′ × S1) ∼= U × S1 × (I; {0}, {1}) ,

as first observed by de Rham (Kervaire [83, p. 41]). Siebenmann [142, Thm.
III] gave an explicit construction of a particular such homeomorphism, us-
ing only the existence of an inverse (V ′; U,U ′) for (V ; U,U ′) and the infinite
repetition trick. This was a direct precursor of wrapping up : the homeo-
morphism of open manifolds

X = U × R ∼= X ′ = U ′ × R
was wrapped up to a homeomorphism of bands

X̂ = U × S1 ∼= X̂ ′ = U ′ × S1 .
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In fact, for n ≥ 5 the following conditions on closed n-dimensional manifolds
U,U ′ are equivalent :

(a) U , U ′ are h-cobordant,
(b) U × R, U ′ × R are homeomorphic,
(c) U × S1, U ′ × S1 are homeomorphic.

(ii) Farrell and Hsiang [49] and Siebenmann [145] showed that for n ≥
6 the following conditions on an n-dimensional manifold band (W, c) are
equivalent :

(a) the infinite cyclic cover W = c∗R of W admits a fundamental domain
(V ; U, ζU) such that there exists a homeomorphism rel U

U × ([0,∞), {0}) ∼= (W +
, U) ,

(b) W admits a fundamental domain (V ; U, ζU) such that the inclusion
U = U × {0}−→W extends to a homeomorphism

U × R ∼= W ,

(c) [W +] = 0 ∈ K̃0(Z[π1(W )]) .

(In order for (W, c) to admit a fundamental domain (V ; U, ζU) which is an h-
cobordism it is necessary and sufficient that in addition the Ñil-components
of the fibring obstructions vanish – see 24.16 below.) If (W, c) satisfies these
conditions the manifold ribbon defined by the infinite cyclic cover

(X, d) = (W, c)

is such that there exists a homeomorphism (X, d) ∼= (U × R, pR). In par-
ticular, d : X−→R is an approximate fibration, such that the wrapping
up of (X, d) given by 17.1 is the n-dimensional manifold band (X̂, d̂) =
(U × S1, pS1). The self homotopy equivalence

h : U ' W
ζ−→ W ' U

is such that the product

h× 1 : X̂ = U × S1 −→ X̂ = U × S1

is homotopic to a self homeomorphism ζ̂ : X̂−→X̂ with a homeomorphism

W × S1 ∼= T (ζ̂ : X̂−→X̂) .

The (n + 1)-dimensional manifold band

(W, c)× S1 = (W × S1,W × S1
proj.−→ W

c−→ S1)
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fibres, with fibre X̂ and monodromy ζ̂. (This fact is well-known to the
experts, cf. Ferry and Pedersen [57, p. 492].)

The plan of the proof of 17.1 is as follows. The manifold X̂ is constructed
using a variation of Chapman’s wrapping up construction (which in turn is a
variation of Siebenmann twist glueing (15.17); see Hughes and Prassidis [75]
for the precise relation between the two constructions). The input needed is
the approximate isotopy covering property for manifold approximate fibra-
tions due to Hughes, allowing the standard shift map R−→R; s−→s + 1 to
be lifted to a covering translation ζ̂ : X−→X isotopic to the identity. Note
that 17.1 (iv) is a direct consequence of (ii) and (iii).

In dealing with isotopies

G : X × I −→ X ; (x, s) −→ Gs(x)

we always assume that G0 = id. : X−→X.

Theorem 17.4 (Approximate Isotopy Covering) Let p : M−→B be a man-
ifold approximate fibration where M is a manifold without boundary of di-
mension n ≥ 5 or a Hilbert cube manifold (n = ∞). Let α be an open cover
of B, and let g : B × I−→B be an isotopy. Then there exists an isotopy
G : M × I−→M such that pGt is α-close to gtp for each t ∈ I.

Comments on Proof. Note that ‘Approximate Isotopy Covering’ theo-
rems are not well documented in the literature. However, the ‘Controlled
Isotopy Covering Theorem’ in Hughes, Taylor and Williams [79] is derived
from ‘Controlled Straightening’ in Hughes, Taylor and Williams [77], which
in turn is derived from ‘Approximate Straightening’. Now ‘Approximate
Straightening’ is just the ‘Approximation Theorem’ of Hughes [72]. The
point of all of this is that the Approximate Isotopy Covering Theorem fol-
lows easily from the Approximation Theorem of [72].

Proposition 17.5 Let a1, a2, a3 > 0 be real numbers such that a3 > a1 +a2.
Let d : X−→R be a proper map, and let ζ̂ : X−→X be a homeomorphism
with dζ̂ a2-close to d. Also, let

g : R −→ R ; x −→ x + a3

and let G : X−→X be a homeomorphism such that dG is a1-close to gd.
Then

ζ̂G : X −→ X

is a covering translation of an infinite cyclic cover of X/ζ̂G, with

U = d−1(0) , V = ζ̂Gd−1(−∞, 0] ∩ d−1[0,∞)
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such that (V ; U, ζ̂GU) is a fundamental domain.
Proof We shall show by induction on n ∈ Z+ that for each x ∈ X

d(ζ̂G)nx > dx + n(a3 − a1 − a2) .

A similar argument would show

d(ζ̂G)−nx < dx− n(a3 − a1 − a2)

and from these two inequalities it follows immediately that the orbit
{(ζ̂G)nx |n ∈ Z} is closed and discrete in X (the fact that d is proper
must be invoked here), so that the action

Z×X −→ X ; (n, x) −→ (ζ̂G)nx

is properly discontinuous.
Note that the estimates imply that dζ̂G is (a1 +a2)-close to gd. It follows

that

dζ̂Gx > gdx− a1 − a2 = dx + a3 − a2 − a1 ,

establishing the inequality for n = 1. Assuming n > 1 and that

d(ζ̂G)n−1x > dx + (n− 1)(a3 − a2 − a1) ,

note that

d(ζ̂G)nx = dζ̂G(ζ̂G)n−1x

> dg(ζ̂G)n−1x− a1 − a2 = d(ζ̂G)n−1x + a3 − a2 − a1

> dx + (n− 1)(a3 − a2 − a1) + a3 − a2 − a1

= dx + n(a3 − a2 − a1) .

In order to establish the second statement, we need to verify that

X =
⋃

n∈Z
(ζ̂G)nV .

Let x ∈ X and m = min{n ∈ Z | 0 < d(ζ̂G)nx}. This minimum exists
because the inequalities above show first of all that

{n ∈ Z | 0 < d(ζ̂G)nx} 6= ∅ ,

and second that

{n ∈ Z | 0 < d(ζ̂G)nx < k}

is finite for each k > 0. It follows that d(ζ̂G)m−1x ≤ 0 so that (ζ̂G)mx ∈ V .
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Proposition 17.6 Let a1, a2, a3 > 0 be such that a3 > 17(a1 + a2), let
d : X−→R be a manifold approximate fibration with dim(X) ≥ 5, and let
ζ̂ : X−→X be a homeomorphism such that dζ̂ is a2-close to d. Also, let

gs : R −→ R ; t −→ t + a3s (0 ≤ s ≤ 1) ,

and let Gs : X−→X be an isotopy such that dGs is a1-close to g1d. Then d
is properly homotopic to a manifold approximate fibration d̃ : X−→R such
that there is defined a commutative diagram

X wζ̂G1

u
d̃

u
d̃

X

R wg1 R

Proof Define a homotopy

h : d ' g1dG−1
1 ζ̂−1 : X −→ R

by

ht(x) =

{
(1− 2t)d(x) + 2tdζ̂−1(x) if 0 ≤ t ≤ 1

2 ,
g(2t−1)dG−1

(2t−1)ζ̂
−1(x) if 1

2 ≤ t ≤ 1 .

Since d is a2-close to dζ̂−1 and gsd is a1-close to dGs for each s, it follows
that h is a (2a1 + a2)-homotopy.

Let u : X−→I be a map such that

u−1(0) = d−1(−∞, 1
4(a3 − a2 − a1)] ,

u−1(1) = d−1[34(a3 − a2 − a1),∞) .

Note that u(d−1(0)) = 0 and u(ζ̂G1d
−1(0)) = 1. (The first equality is

obvious; the second follows from the facts that dG1 is a1-close to g1d and
dζ̂ is a2-close to d.) The map

d ′ : X −→ R ; x −→ hu(x)(x)

is such that

d ′(x) =

{
d(x) if x ∈ (−∞, 1

8(a3 − a2 − a1)] ,

g1dG−1
1 ζ̂−1(x) if x ∈ [78(a3 − a2 − a1),∞) .

Since h is a bounded homotopy, d ′ is a bounded fibration. Moreover, d ′ is
a manifold approximate fibration over

(−∞, 1
8(a3 − a2 − a1)] ∪ [78(a3 − a2 − a1),∞) .
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It follows from a relative version of the sucking principle 16.9 (see [26]) that
d ′ is boundedly homotopic rel

(−∞, 1
16(a3 − a2 − a1)] ∪ [15

16(a3 − a2 − a1),∞)

to a manifold approximate fibration d ′′ : X−→R. Let

V = ζ̂G1d
−1(−∞, 0] ∩ d−1[0,∞) .

It follows from Proposition 17.5 that

X =
⋃

n∈Z
(ζ̂G1)nV .

Define d̃ : X−→R by

d̃|(ζ̂G1)nV = gn
1 ◦ d ′′ ◦ (ζ̂G1)−n .

Then d̃ is a manifold approximate fibration boundedly close to d such that
d̃ζ̂G1 = g1d̃.

Proof of 17.1 Let d : X−→R be a manifold approximate fibration as in
the statement of 17.1. The isotopy

g : R× I −→ R ; (s, t) −→ s + t

is such that g1 : R−→R; s−→s + 1 is a generating covering translation of
the universal covering R−→S1. Choose a1 > 0 such that 17a1 < 1. Apply
17.4 (Approximate Isotopy Covering) to get an isotopy G : X×I−→X such
that dGs is a1-close to gsd. Apply 17.5 (with ζ̂ = idX , a3 = 1, and a2 as
small as needed) to conclude that G1 acts properly discontinuously on X
with fundamental domain (V ; U,G1U) where

U = d−1(0) , V = G1d
−1(−∞, 0] ∩ d−1[0,∞) .

Definition 17.7 The wrapping up of a manifold approximate fibration d :
X−→R is the manifold band

(X̂, d̂) = (X/G1, X/G1−→S1)

with d̂ : X/G1−→S1 classifying d̂∗R = X.

Lemma 17.8 The manifold approximate fibration d : X−→R is homotopic
to a Z-equivariant proper approximate fibration d̃ : X−→R.
Proof Apply 17.6 (with ζ̂ = idX) to get a manifold approximate fibration
d̃ : X−→R such that d̃G1 = g1d̃. Then d̃ induces a manifold approximate
fibration c : X̂−→S1 classifying X−→X̂. (That c is a manifold approximate
fibration follows from the fact that it is one locally (Coram [35]).)
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We now return to the proof of 17.1. It follows from 14.8 (i) that X̂ ×
R ∼= T (G1). On the other hand, since G1 is isotopic to idX there is a
homeomorphism T (G1) ∼= X × S1. This completes the proof of 17.1.

Remark 17.9 The wrapping up construction above is very similar to Chap-
man’s original construction [25, 26]. However, our construction is technically
easier and more conceptual because we make use of the Approximate Iso-
topy Covering Theorem 17.4. Chapman only had the technology to approx-
imately cover compactly supported isotopies and the shift map g1 : R−→R
is far from compactly supported. Chapman had to truncate the shift map to
get a compactly supported isotopy which he then approximately covered by
a compactly supported isotopy on X. The upshot is that he constructed the
fundamental domain V above, but the infinite cyclic cover X̂ of X̂ was given
as a proper open subset of X rather than equal to X. Using Chapman’s
approach it is far from obvious that the generating covering translation ζ̂ is
isotopic to the identity, but it is immediate in our approach.

Theorem 17.10 Let (W,∂W ) be an open n-dimensional manifold with com-
pact boundary and one end, with n ≥ 5 or n = ∞ (= Hilbert cube manifold).
If W is forward tame and reverse tame then the end space e(W ) is homo-
topy equivalent to an open cocompact submanifold X ⊂ W with a proper
map d : X−→R such that

(X, d) = (M, c)

is the finitely dominated infinite cyclic cover of a relaxed n-dimensional
manifold band (M, c) = (X̂, d̂) with X × S1 homeomorphic to M × R, and
with a rel ∂ homeomorphism

(W,∂W )× S1 ∼= (N\M, ∂W × S1)

for a compact (n + 1)-dimensional manifold cobordism (N ; ∂W × S1,M).
Proof Combine 16.13 and 17.1.

Let Q denote the Hilbert cube. Edwards proved that X ×Q is a Hilbert
cube manifold for any ANR X. (Recall our global assumption at the be-
ginning of Chapter 1 that only locally compact, separable ANR’s are to be
considered.)

Proposition 17.11 (i) For any ANR X, the following are equivalent :

(a) there exists a proper bounded fibration d : X−→R ,
(b) for every ε > 0 there exists a proper ε-fibration d : X−→R ,
(c) there exists a proper approximate fibration d : X ×Q−→R .
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(ii) For an open manifold X of dimension ≥ 5 or a Hilbert cube manifold,
the conditions in (i) are equivalent to :

(d) there exists a manifold approximate fibration d : X−→R .

Proof (a) =⇒ (b) By the usual method of shrinking R.
(b) =⇒ (c) Let d : X−→R be a proper ε-fibration for some ε > 0. Then

p1 ◦ d : X × Q−→R is also a proper ε-fibration. Since X × Q is a Hilbert
cube manifold, if ε is sufficiently small, then Chapman’s sucking principle
implies that p is close to a proper approximate fibration.

(c) =⇒ (a) Since X and X ×Q are proper homotopy equivalent, Propo-
sition 16.5 can be applied.

(ii) (d) ⇐⇒ (a) by 16.10.

Proposition 17.12 If d : X−→R is a proper bounded fibration, then X is
dominated by a compact space. Hence, if X has the homotopy type of a CW
complex, then X is finitely dominated.
Proof An ε-lift of a contraction of R to 0 gives a homotopy K : X× I−→X
such that K0 = idX and K1(X) ⊆ d−1[−ε, ε].

We now turn to the problem of deciding when there is a bounded or
approximate fibration from a space to R.

Lemma 17.13 (Sliding domination) Let (W, c) be an ANR band, and let
c : W−→R be a Z-equivariant lift of c : W−→S1. There exist a homotopy

Ks : W × R −→ W × R (0 ≤ s ≤ 1)

and a constant N > 1 such that :

(i) K0 = idW ,
(ii) Ks is fibre-preserving over R (i.e. p 2Ks = p 2 where p 2 : W ×R−→R

is the projection) for each s ,
(iii) Ks(x, t) = (x, t) if c(x) = t for each s (so that Ks|Γ(c) is the

inclusion, where Γ(c) denotes the graph of c) ,
(iv) K1(W × R) ⊆ {(x, t) | t−N ≤ c(x) ≤ t + N} .

Proof Let ζ̂ : W−→W denote the (+1)-generating covering translation. It
follows from 15.10 that W

− is reverse tame. Hence there exist a homotopy

h : W × I −→ W ; (x, t) −→ ht(x)

and a constant m1 > 1 such that :



17. Geometric wrapping up 207

(i) h0 = idW ,
(ii) ht|c−1[−1,∞) is the inclusion for each t ,
(iii) htc

−1(−∞,−1) ⊆ c−1(−∞,−1) for each t ,
(iv) h1W ⊆ c−1[−m1,∞) .

Compactness implies that there is a constant m2 > m1 such that for each t

htc
−1[−m1 − 1,∞) ⊆ c−1[−m2,∞) .

Define a homotopy

H : W × R× I −→ W × R ; (x, s, t) −→ Hs(x, t)

by
Hs(x, t) = (ζ̂n+1hs(t−n)ζ̂

−1h1ζ̂
−1hs(n+1−t)ζ̂

1−n(x), t)

for n ≤ t ≤ n + 1. One can verify that :

(i) H0 = id ,
(ii) Hs is fibre-preserving over R for each s ,
(iii) Hs(x, t) = (x, t) if t ≤ c(x) for each s ,
(iv) Hs{(x, t) | c(x) ≤ t} ⊆ {(x, t) | c(x) ≤ t} for each s ,
(v) H1(W × R) ⊆ {(x, t) | t−m2 ≤ c(x)} .

Since W
+ is also reverse tame (15.10), we can use the argument above to

define a homotopy

Gs : W × R −→ W × R (0 ≤ s ≤ 1)

and a constant m′
2 > 1 such that :

(i) G0 = id ,
(ii) Gs is fibre-preserving over R for each s ,
(iii) Gs(x, t) = (x, t) if c(x) ≤ t for each s ,
(iv) Gs{(x, t) | t ≤ c(x)} ⊆ {(x, t) | t ≤ c(x)} for each s ,
(v) G1(W × R) ⊆ {(x, t) | c(x) ≤ t + m′

2} .

Then let

Ks = Gs ◦Hs : W × R −→ W × R (0 ≤ s ≤ 1)

and let N = max{m2,m
′
2}.

Proposition 17.14 Let W be a compact ANR with a map c : W−→S1.
The infinite cyclic cover W = c∗R of W is finitely dominated (i.e. (W, c) is
a band) if and only if c : W−→R is a proper bounded fibration.
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Proof The ‘if’ statement follows from 17.12. Let ζ̂ : W−→W denote the
(+1)-generating covering translation. Let Ks be given by 17.13. It remains
to show that c has the (N + 1)-homotopy lifting property. This estimate
arises because cp1K1 : W ×R−→R is (N +1)-close to p 2 : W ×R−→R where
p1 : W ×R−→W and p 2 : W ×R−→R are the projections (in fact, they are
a distance at most N apart). Define

g : W −→ W × R ; x −→ (x, c(x)) .

Thus g is the natural embedding of W onto the graph Γ(c) of c. A lifting
problem for c, say a homotopy F : Z×I−→R with an initial lift f : Z−→W
so that F0 = cf , induces a lifting problem for p 2 with homotopy F but with
initial lift given by gf : Z−→W × R. Of course, p 2 is a fibration, so let
F̂ : Z × I−→W × R be a solution of this second problem so that F̂0 = gf .
It follows that F̃ = p1K1F̂ is an (N + 1)-solution of the first problem.

Corollary 17.15 Let X be an open manifold of dimension n ≥ 5 or a
Hilbert cube manifold. If X is an infinite cyclic cover of a compact space,
then there exists a manifold approximate fibration d : X−→R.
Proof Apply 16.10 and 17.14.

Proposition 17.16 (i) For an ANR X the following are equivalent :

(a) there exists a proper bounded fibration d : X−→R ,
(b) for every ε > 0 there exists a proper ε-fibration d : X−→R ,
(c) there exists a manifold approximate fibration d : X ×Q−→R ,
(d) X is finitely dominated and X × Q is an infinite cyclic cover of a

compact space,
(e) X is infinite simple homotopy equivalent to the finitely dominated infi-

nite cyclic cover W of a CW band (W, c) ,
(f) X is proper homotopy equivalent to the finitely dominated infinite cyclic

cover W of a CW band (W, c).

(ii) For an open manifold X of dimension n ≥ 5 or a Hilbert cube manifold,
the conditions of (i) are equivalent to :

(g) there exists a manifold approximated fibration d : X−→R ,
(h) X is finitely dominated and is an infinite cyclic cover of a compact

space.

Proof (i) (a) ⇐⇒ (b) ⇐⇒ (c) by 17.11 (i).
(c) =⇒ (d) because X × Q is a Hilbert cube manifold, so 17.1 implies

that X ×Q is the finitely dominated infinite cyclic cover of a Hilbert cube
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manifold band.
(d) =⇒ (e) Let K be a compact space with infinite cyclic cover K = X×Q.

Since K is a compact Hilbert cube manifold, X is homeomorphic to Y ×Q
for some finite CW complex Y (by Chapman’s Triangulation Theorem).
Then Y is a CW band with finitely dominated infinite cyclic cover Y such
that X ×Q and Y ×Q are homeomorphic. By the work of Chapman, this
is what it means for X and Y to be infinite simple homotopy equivalent.

(e) =⇒ (f) is obvious.
(f) =⇒ (a) by 16.5 and 17.14.
(ii) (a) ⇐⇒ (g) by 17.11 (ii).
(g) =⇒ (h) by 17.1.
(h) =⇒ (a) by 17.14.

Remark 17.17 (i) If the conditions of 17.16 (i) are satisfied, then the
compact space of which X is an infinite cyclic cover is a compact ANR
and, hence, of the homotopy type of a finite CW complex (by the theorem
of West [168]).

(ii) It follows from 15.9 that the conditions of 17.16 (i) imply that X is
proper homotopy equivalent to an ANR ribbon. For a CW ribbon (X, d)
the converse is established in 20.3 (ii) : X is proper homotopy equivalent to
the finitely dominated infinite cyclic cover of a CW band.

Corollary 17.18 An open manifold X of dimension ≥ 5 is the total space
of a manifold approximate fibration X−→R if and only if it is the infinite
cyclic cover X = M of a compact manifold band (M, c).

Theorem 17.19 (i) For a strongly locally finite CW complex X with a
finite number of ends, the following are equivalent :

(a) X is forward and reverse tame,
(b) there exists a CW band (W, c) such that X and W

+ are proper homo-
topy equivalent at ∞.

(ii) For a manifold X with a finite number of ends of dimension ≥ 5 with
compact boundary or a Hilbert cube manifold, the conditions above are equiv-
alent to :

(c) there exists a manifold band (W, c) such that W
+ is homeomorphic to

a closed cocompact subspace of X ,
(d) there exists a manifold band (W, c) such that W is homeomorphic to

an open cocompact subspace of X.
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Proof (i) (a) =⇒ (b) By 16.13 and 17.1 X × Q has an open cocompact
subspace U which is the finitely dominated infinite cyclic cover of a Hilbert
cube manifold band (U, c1). Since U is homeomorphic to W × Q for some
finite CW complex W , (W, c = c1 ◦ inclusion) is a CW band such that X

and W
+ are proper homotopy equivalent at ∞.

(b) =⇒ (a) by 15.9 (i), 9.6 and 9.8.
(ii) (a) =⇒ (d) by 16.13 and 17.1.
(d) =⇒ (c) and (c) =⇒ (b) are obvious.

Proposition 17.20 Every ANR band (X, c) is simple homotopy equivalent
to one such that c : X−→R is proper homotopic to a proper approximate
fibration.

The proof of 17.20 will be based on the following two lemmas.

Lemma 17.21 Suppose M is a finitely dominated manifold such that ∂M
is also finitely dominated. Then there exist a compact subset C ⊆ M and a
homotopy h : idM ' h1 : M × I−→M such that :

(i) h1(M) ⊆ C ,
(ii) if x ∈ ∂M (resp. int(M)) then h(x× I) ⊆ ∂M (resp. int(M)) .

Proof This is a standard construction using a collar of ∂M in M .

Lemma 17.22 Let (N, ∂N) be a compact n-dimensional manifold with
boundary such that π1(∂N)−→π1(N) is a split injection. If (b, ∂b) : (N, ∂N)
−→S1 is a map such that (N, b) is a band then the boundary (∂N, ∂b) is
also a band.
Proof Let Ñ be the universal cover of N , and let ∂̃N be the corresponding
cover of ∂N . We need to show that the infinite cyclic cover ∂N = (∂b)∗R
of ∂N is finitely dominated, which by 6.9 (i) is equivalent to the Z[π1(N)]-
finite domination of the cellular Z[π1(N)]-module chain complex C(∂̃N).
The infinite cyclic cover N = b∗R of N is finitely dominated, so that C(Ñ)
is Z[π1(N)]-finitely dominated, and so is the n-dual Z[π1(N)]-module chain
complex C(Ñ)n−∗. By the exactness of

0 −→ C(∂̃N) −→ C(Ñ) −→ C(Ñ , ∂̃N) −→ 0

and the Poincaré–Lefschetz Z[π1(N)]-module chain equivalence

C(Ñ , ∂̃N) ' C(Ñ)n−∗

there is defined a Z[π1(N)]-module chain equivalence

C(∂̃N) ' C(C(Ñ)−→C(Ñ)n−∗)∗+1 ,
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so that C(∂̃N) is indeed Z[π1(N)]-finitely dominated.

Proof of 17.20 By West’s result on the homotopy finiteness of compact
ANR’s there is no loss of generality in assuming that (X, c) is a CW band.
Let N be a regular neighbourhood of X in some Euclidean space of suffi-
ciently high dimension that the inclusion ∂N−→N induces an isomorphism
π1(∂N) ∼= π1(N) and dim(N) > 5.

Thus, X is simple homotopy equivalent to N and there is a map

b : N ' X
c−→ S1

inducing a finitely dominated infinite cyclic cover N . It follows from Propo-
sition 17.14 that the induced map b : N−→R is a proper bounded fibration.
Lemma 17.22 implies that ∂N is also finitely dominated, so ∂b : ∂N−→R is
also a proper bounded fibration.

The rest of the proof consists of applying a stratified sucking principle
from Hughes [74] to show that b is boundedly homotopic to an approximate
fibration. (Note that 16.10 cannot be used because N has a boundary.)
The idea is that N is a stratified space with strata ∂N and int(N). The
proof of Proposition 17.14 actually shows that (b, ∂b) : (N, ∂N)−→R is a
proper stratified bounded fibration. This is because Lemma 17.22 shows that
(N, ∂N) is finitely dominated in a stratified sense. Now use the stratified
sucking theorem [74].

Remark 17.23 (i) The wrapping up (X̂, d̂) of a manifold approximate
fibration (X, d) can also be constructed by the end obstruction theory of
Siebenmann [140] (quoted in 10.2) and the projective surgery theory of
Pedersen and Ranicki [109], as follows.

The total projective surgery obstruction groups Sp
∗(K) of [109] are defined

for any space K to fit into the algebraic surgery exact sequence

. . . −→ Hm(K;L.)
Ap

−→ Lp
m(Z[π1(K)]) −→ Sp

m(K)

−→ Hm−1(K;L.) −→ . . . ,

with L. the 1-connective simply-connected surgery spectrum such that π∗(L.)
= L∗(Z), and Ap the assembly map in projective L-theory.

The total projective surgery obstruction sp(K) ∈ Sp
m(K) of a finitely

dominated m-dimensional Poincaré space K is such that sp(K) = 0 if
(and for m ≥ 5 only if) K × S1 is homotopy equivalent to a compact
(m + 1)-dimensional manifold L. (See Ranicki [125] for a detailed expo-
sition of the total surgery obstruction.) If sp(K) = 0 then the composite
c : L ' K × S1−→S1 defines an (m + 1)-dimensional manifold band (L, c),
such that K is homotopy equivalent to the infinite cyclic cover L = c∗R of L.
It was shown in [109] that L can be chosen such that L×S1 is homeomorphic
to L× R.
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Given an n-dimensional manifold approximate fibration (X, d : X−→R)
there is defined an open n-dimensional manifold with compact boundary

(W,∂W ) = (X+, X+ ∩X−)

with one end which is both forward and reverse tame, such that e(W ) is a
finitely dominated (n − 1)-dominated Poincaré space homotopy equivalent
to X (16.17). The projective class at ∞ of W × S1 is

[W × S1]∞ = [W × S1] = 0 ∈ K̃0(Z[π][z, z−1]) (π = π1(X)) ,

so that for n ≥ 5 there exists a compact (n + 1)-dimensional manifold
cobordism (N ; ∂W × S1,M) with a rel ∂ homeomorphism

(N\M,∂W × S1) ∼= (W,∂W )× S1

and a homotopy equivalence M ' e(W ) × S1, such that (N ; ∂W × S1,M)
is unique up to adjoining h-cobordisms to M (10.2). By [109] it is possible
to choose M to be such that M × S1 is homeomorphic to M × R and also

[M +] = [W ] ∈ K̃0(Z[π]) .

Then (M, c : M−→S1) = (X̂, d̂) is the wrapping up of (X, d) with X = M ,
and X is a finitely dominated (n− 1)-dimensional geometric Poincaré com-
plex such that sp(X) = 0 ∈ Sp

n−1(X). In fact, this type of wrapping up is
the method used by Freedman and Quinn [60, p. 225] to classify tame ends
of 4-dimensional manifolds with good fundamental group.

(ii) Let (W,∂W ) be an open n-dimensional manifold with compact bound-
ary, such that n ≥ 5 and W is both forward and reverse tame. By 17.10
there exists an open cocompact X ⊆ W with a manifold approximate fibra-
tion X−→R, such that the end space e(W ) is a finitely dominated (n− 1)-
dimensional Poincaré space homotopy equivalent to X. The S-groups are
homotopy invariant, so that

sp(e(W )) = sp(X) = 0 ∈ Sp
n−1(e(W )) ,

with sp(X) = 0 as in (i). The product e(W )×S1 is homotopy equivalent to
a compact n-dimensional manifold, namely the wrapping up X̂ of X, with
X × S1 ∼= X̂ × R.

We now determine when a space is homotopy equivalent to a space which
admits a manifold approximate fibration or proper bounded fibration to R.

Proposition 17.24 The following conditions on a CW complex X are
equivalent for n ≥ 5 :

(i) X is homotopy equivalent to the infinite cyclic cover M = c∗R of an
n-dimensional manifold approximate fibration c : M−→S1 ,
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(ii) X is homotopy equivalent to an open n-dimensional manifold W with
a manifold approximate fibration d : W−→R ,

(iii) X × S1 is homotopy equivalent to a closed n-dimensional manifold,
(iv) X is a finitely dominated (n − 1)-dimensional geometric Poincaré

complex with Pedersen–Ranicki [109] total projective surgery obstruc-
tion sp(X) = 0 ∈ Sp

n−1(X) .

Proof (i) =⇒ (ii) Let d = c : W = M−→R.
(ii) =⇒ (i), (ii) =⇒ (iii) The wrapping up (Ŵ , d̂) = (M, c) of (W,d)

(17.1) is such that c : M−→S1 is an approximate fibration, with homotopy
equivalences X ' W = M , X × S1 ' W × S1 ' M .

(iii) =⇒ (ii) Let X × S1 ' N for a closed n-dimensional manifold N .
The infinite cyclic cover of N classified by N ' X × S1−→S1 is an open n-
dimensional manifold W = N proper homotopy equivalent to X×R. There
exists a proper map d : W−→R which is boundedly homotopy equivalent
to the projection X × R−→R. Also, W is homotopy equivalent to X. Now
16.3 implies that d is a bounded fibration and 16.10 implies that W admits
a manifold approximate fibration to R.

(iii) ⇐⇒ (iv) by [109].

Remark 17.25 The equivalence (i) ⇐⇒ (iii) in 17.24 was first obtained by
Chapman [26].

Proposition 17.26 Let X be a CW complex. The following conditions are
equivalent :

(i) X is finitely dominated,
(ii) X × S1 is homotopy equivalent to a finite CW complex,
(iii) X is homotopy equivalent to a CW complex which admits a proper

bounded fibration to R ,
(iv) X is homotopy equivalent to a CW complex which admits a proper

approximate fibration to R .

Proof (i) ⇐⇒ (ii) by 6.7 (ii).
(i) =⇒ (iii) Let X be a finitely dominated CW complex. Then X × S1

is homotopy equivalent to a CW band with X homotopy equivalent to its
infinite cyclic cover. Apply 17.14 to this infinite cyclic cover.

(iii) =⇒ (iv) by 17.16 and 17.20.
(iv) =⇒ (i) by 17.12.
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Geometric relaxation

By definition (15.14), a band (M, c : M−→S1) is relaxed if there exists
a fundamental domain (V ; U, ζU) for the infinite cyclic cover M = c∗R of
M such that V dominates W

+ rel U , and ζ−1V dominates W
− rel U .

By 16.15 a CW band (M, c) with c an approximate fibration is relaxed.
We shall now associate to a manifold band (M, c) with dim(M) ≥ 5 an
h-cobordant relaxed manifold band (M ′, c′) with c′ : M ′−→S1 a manifold
approximate fibration, using approximate lifting properties. We shall relate
this to the original construction of Siebenmann [145], which obtained the
relaxation by ζ-twist glueing the two ends of the infinite cyclic cover M .

Proposition 18.1 For any manifold band (M, c) with dim(M) ≥ 5 a gen-
erating covering translation ζ : M−→M is isotopic to a generating covering
translation ζ ′ : M−→M of an infinite cyclic covering M−→M/ζ ′ = M ′
such that (M ′, c′) is a relaxed manifold band, with c′ : M ′−→S1 a manifold
approximate fibration.
Proof By Proposition 17.14 c : M−→R is a bounded fibration. Thus there
is a bounded homotopy h : c ' d where d : M−→R is a manifold approx-
imate fibration (16.10). Let a2 > 0 be the bound on the homotopy h. In
particular, dζ is (2a2 + 1)-close to d where ζ : M−→M is the generating
covering translation. Choose a3 > 17(2a2 + 1). Let gs : R−→R be the iso-
topy gs : t−→t + a3s. Choose a1 > 0 such that a3 > 17(a1 + 2a2 + 1) and
let Gs : M−→M be an isotopy with dGs a1-close to gsd (17.4, Approximate
Isotopy Covering). Let ζ ′ = ζG1 : M−→M . It follows from 17.5 that ζ ′
acts properly discontinuously on M so that M−→M/ζ ′ is an infinite cyclic
covering. It follows from Proposition 17.6 that d is properly homotopic to
a manifold approximate fibration d̃ : M−→R such that d̃ζ ′ = g1d̃. If S1 is
identified with R/Z, then d̃ induces a manifold approximate fibration

c′ : M ′ = M/ζ ′ −→ S1 ; [x] −→ [d̃(x)/a3] .

That c′ is a manifold approximate fibration follows from the fact that it is
one locally (Coram [35]).

214
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Definition 18.2 The relaxation of a manifold band (M, c) with dim(M) ≥ 5
is the relaxed manifold band of 18.1

(M ′, c′) = (M/ζ ′, M/ζ ′−→S1) .

Relaxation Theorem 18.3 The relaxation (M ′, c′) of a manifold band
(M, c) with dim(M) ≥ 5 has the following properties :

(i) M
′ = M ,

(ii) the generating covering translation ζ ′ : M
′−→M

′ is isotopic to the
generating covering translation ζ : M−→M ,

(iii) the classifying map c′ : M ′−→S1 is a manifold approximate fibration,
(iv) there exist homeomorphisms

M × R ∼= T (ζ) ∼= T (ζ ′) ∼= M ′ × R ,

(v) the homeomorphism of (iv) determines the relaxation h-cobordism
(W ; M,M ′) with well-defined torsion in Wh(π1(M)) which depends
only on the homotopy class of the classifying map c : M−→S1. The
homotopy equivalence f : M−→M ′ induced by the h-cobordism is
such that c ' c′f .

The following conditions are equivalent :

(a) c : M−→S1 is homotopic to a manifold approximate fibration,
(b) (W ; M,M ′) is a trivial h-cobordism,
(c) f : M−→M ′ is homotopic to a homeomorphism.

Proof (M ′, c′) is a relaxed manifold band by 16.15.
(i),(ii),(iii) obvious.
(iv) It follows from 14.8 (ii) that T (ζ) ∼= M × R and T (ζ ′) ∼= M ′ × R.

Since ζ ′ is isotopic to ζ we have T (ζ ′) ∼= T (ζ).
(v) We begin with an explicit description of the homeomorphism

M × R ∼= M ′ × R .

Consider

T (ζ) = (M × R)/∼ , T (ζ ′) = (M × R)/ ≈
where

(x, s + n) ∼ (ζnx, s) , (x, s + n) ≈ ((ζ ′)nx, s) , n ∈ Z .

The natural projections π1 : T (ζ)−→S1 = R/Z and π2 : T (ζ ′)−→S1 = R/Z
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are [x, s]−→[s]. Define a homeomorphism

h1 : M×R = M/ζ×R '−→ T (ζ) = (M×R)/∼ ; ([x], s) −→ [x, s−c(x)] .

The composition M
×0−→M × R h1−→T (ζ) is [x]−→[x,−c(x)] for x ∈ M , and

the diagram

M w×0

u
c

M × R wh1 T (ζ)

u
S1 w−1

S1

commutes where −1 : S1−→S1; [s]−→[−s]. The isotopy ζ ∼= ζ ′ induces a
homeomorphism

h2 : T (ζ)
'−→ T (ζ ′) ; [x, s] −→ [ζGn+1−sζ

n−1x, s− n]

(n ≤ s ≤ n + 1 , n ∈ Z)

which commutes with the natural projections T (ζ)−→S1 and T (ζ ′)−→S1.
Define a homeomorphism

h3 : T (ζ ′) = (M × R)/ ≈ '−→ M ′ × R = M/ζ ′ × R ;

[x, s] −→ ([x], s + c′(x)) .

As above, the diagram

M ′ w×0

u
c′

M ′ × R wh−1
3 T (ζ ′)

u
S1 w−1

S1

commutes. The homeomorphism

h = h3h2h1 : M × R '−→ M ′ × R
determines an h-cobordism (W ; M, M ′) by choosing L > 0 so large that

h(M × (−∞, 0]) ⊆ M ′ × (−∞, L)

and letting

W = M ′ × (−∞, L] ∩ h(M × [0,∞)) ,

that is, W ⊆ M ′ × R is the region between h(M × {0}) and M ′ × {L} in
M ′×R. In the h-cobordism (W ; M,M ′) we identify M with h(M×{0}) and
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M ′ with M ′ × {L}. With these identifications there is a map c̃ : W−→S1

such that c̃|M = c and c̃|M ′ = c′. This map is constructed by using the
homotopy extension property to adjust the map π2h

−1
3 | : W−→S1. For

π2h
−1
3 |h(M × {0}) = −ch−1|h(M × {0})

and π2h
−1
3 |M ′ × {L} is homotopic to the composition

M ′ × {L} −→ M ′ × {0}
π2h−1

3−−−−−−→ S1 ; (x, L) −→ − c′(x) .

The homotopy equivalence f : M−→M ′ is such that

c′f ' c̃ ◦ i = c : M −→ S1

with i = inclusion : M−→W . We now show that the torsion of (W ; M, M ′)
is well-defined, by which we mean that it is independent of the choices made
in constructing M ′. So suppose G′

s : M−→M is another isotopy such that
cG′

s is (a1 + 2a2)-close to gsc. By a one-parameter and relative version of
Approximate Isotopy Covering 17.4 (see Hughes, Taylor and Williams [77])
there is a two-parameter isotopy Γs,t : M−→M such that Γ0,t = idM , cΓs,t

is (a1 + 2a2)-close to gsc, Γs,0 = Gs and Γs,1 = G′
s. The homeomorphism

β = (ζ × idI)Γ1,− : M × 1× I
'−→ M × 1× I

defines a properly discontinuous action of Z on M × I (Proposition 17.5).
We claim that the natural projection (M × I)/β−→I is a locally trivial
bundle projection. First note that since M × I−→(M × I)/β is a covering
and the composition M × I−→(M × I)/β−→I is locally trivial, it follows
easily that (M × I)/β−→I is a Serre fibration. Because (M × I)/β and I
are finite dimensional ANR’s, (M × I)/β−→I is also a Hurewicz fibration
(Ungar [162]). The fibres are manifolds of dimension greater than 4, so that
it is locally trivial (Chapman and Ferry [29]). Since β0 = ζG1, there is a
trivializing homeomorphism α : M ′ × I−→(M × I)/β such that α0 = idM ′ .
Let

H : (M × I)/β × R '−→ M × I × R
be the homeomorphism given by the composite

(M × I)/β × R ∼= T (β) ∼= T (ζ × idI) ∼= M × I × R.

Since H0 is isotopic to H1 ◦ (α1 × idR), it follows that the h-cobordisms
determined by H0 and H1 ◦ (α1× idR) are homeomorphic (using the Isotopy
Extension Theorem of Edwards and Kirby [41]), and have the same torsion.
Hence, the h-cobordisms determined by H0 and H1 have the same torsion.
These are the h-cobordisms given by the two sets of data so we have estab-
lished well-definedness. This also shows that the torsion depends only on
the homotopy class of c, for if c ' c1, then both c and c1 induce data for
constructing the relaxation of (M, c) yielding the same torsion.
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(a) =⇒ (b) We now assume that c is homotopic to a manifold approxi-
mate fibration and show that the h-cobordism is trivial. By the preceding
paragraph we may assume that c itself is a manifold approximate fibration.
Therefore, in the construction of M ′ we may take d = c, a3 > 17 and a1, a2

as small as we like. Then we shall have cGs a1-close to gsc. Proposition
17.5 can be used to show that ζGs acts properly discontinuously on M for
each s. Then the homeomorphism

γ = (ζ × idI)G : M × I −→ M × I

induces a properly discontinuous action on M × I with (M × I)/γ ∼= M × I
by the argument above. Since γ0 = ζ and γ1 = ζG1, it follows as above
that γ may be used to show that the h-cobordism between M = M/ζ and
M ′ = M/ζG1 is trivial.

(b) =⇒ (c) If h : M × I−→W is a homeomorphism with h0 = idM then

M = M × {1}
h|
−→M ′ ⊆ W is a homeomorphism homotopic to f .

(c) =⇒ (a) Since c ' c′f , if f is homotopic to a homeomorphism h :
M−→M ′ then c is homotopic to the manifold approximate fibration c′f .

Remark 18.4 (i) For any (n+1)-dimensional h-cobordism (W ; M, M ′) the
torsion of the homotopy equivalence f : M−→W−→M ′ is

τ(f) = τ(M−→W )− τ(M ′−→W )

= τ(M−→W ) + (−)nτ(M−→W )∗ ∈ Wh(π1(M)) .

It will be shown in 26.13 that for the relaxation h-cobordism (W ; M, M ′)
of 18.3 (v) τ(M−→W ) and τ(M ′−→W ) are in complementary direct sum-
mands of the Whitehead group of π1(M) = π1(M) ×ζ∗ Z, namely the two
copies of the reduced nilpotent class group Ñil0, and that there is a Poincaré
duality τ(M ′−→W ) = (−)n−1τ(M−→W )∗. Thus the conditions (a), (b),
(c) in 18.3 are also equivalent to :

(d) τ(f) = 0 .
In particular, f is simple if and only if f is homotopic to a homeomor-
phism.

(ii) It will follow from 26.10 (ii) that an n-dimensional manifold band
(M, c) with n ≥ 5 is relaxed if and only if the homotopy equivalence
f : M−→M ′ in 18.3 (v) is simple. Combining this with (i) and 18.3 (iii)
gives :

a manifold band (M, c) with dimM ≥ 5 is relaxed if and only if the map
c : M−→S1 is homotopic to a manifold approximate fibration.
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Lemma 18.5 For a manifold approximate fibration d : X−→R with dim(X)
≥ 5, there exists an isotopy of open embeddings

H : d−1(−∞, 1)× I −→ X

with H0 : d−1(−∞, 1)−→X the inclusion, H1 : d−1(−∞, 1)−→X a homeo-
morphism, and for every t ∈ I Ht| : d−1(−∞, 0]−→X the inclusion.
Proof Define

X∗ = {(x, t) ∈ X × I | d(x) <
1

1− t
} ,

d∗ : X∗ −→ R× I ; (x, t) −→





(d(x), t) if d(x) ≤ 0 ,(
d(x)

1− (1− t)d(x)
, t

)
if 0 ≤ d(x) <

1
1− t

so that d∗| : (d∗)−1(R× {t})−→R× {t} is a manifold approximate fibration
for each t ∈ I and

d∗| = d| × idI : (d∗)−1((−∞, 0]× I) = d−1(−∞, 0]× I −→ (−∞, 0]× I .

It follows from the argument of Hughes [73, p. 75] that the composition

π : X∗ d∗−→ R× I
proj.−→ I

is a fibre bundle with trivial subbundle π| : d−1(−∞, 0] × I−→I. Since
π−1(0) = d−1(−∞, 1) a trivializing homeomorphism

H : d−1(−∞, 1)× I −→ X∗ ⊆ X × I

with
H0 = identity : π−1(0) −→ d−1(−∞, 1) ,

H| = inclusion : d−1(−∞, 0]× I −→ X∗

gives the desired isotopy of open embeddings.

Proposition 18.6 Let d : X−→R be a manifold approximate fibration with
dim(X) ≥ 5. The wrapping up X̂ of 17.1 is homeomorphic to any Sieben-
mann twist glueing W1(f−, f+) of X relative to the identity 1 : X−→X
(15.17).
Proof The isotopy

gs : R −→ R ; t −→ t + s (0 ≤ s ≤ 1)

can be covered up to a1 by an isotopy Gs : X−→X where a1 > 0 is such
that 17a1 < 1. Then G1 is a covering translation and X̂ = X/G1 is the
wrapping up X (17.7). Define a fundamental domain (V ; U,G1U) by

U = d−1(0) , V = G1d
−1(−∞, 0] ∩ d−1[0,∞) .
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Let
U− = d−1(−∞, 1

4) , U+ = d−1(3
4 ,∞) ⊂ X .

By Edwards and Kirby [41] there exists an isotopy H : X × I−→X × I
supported on d−1[−2, 3] such that

Hs|d−1([−1, 2]) = Gs| (0 ≤ s ≤ 1) .

By 18.5 Hs|d−1(−∞, 0] extends to an isotopy k−s : U−−→X (0 ≤ s ≤ 1) of
open embeddings such that k−1 U− = X and

Hs| = ks| = inclusion : d−1(−∞,−2] −→ X (0 ≤ s ≤ 1) .

Since we can choose a1 > 0 as small as desired we can assume that G1d
−1(0)

⊆ d−1(7
8 ,∞). By 18.5 again, there is an isotopy k+

s : U+−→X of open
embeddings such that k+

1 U+ = X and k+
s | = inclusion : d−1([78 ,∞))−→X

for 0 ≤ s ≤ 1. Let f− = k−1 , f+ = k+
1 and form the Siebenmann twist glueing

W1(f−, f+). We now demonstrate that the inclusion : V−→X induces a
homeomorphism

X̂ = X/G1
'−→ W1(f−, f+) = X/∼ .

The map is well-defined for if x ∈ U then G1(x) = f−1
+ f−(x). The map is

onto because every x ∈ X is ∼-related to a point in V . This also shows that
X/∼ = V/∼ , from which it follows that the map is one-to-one. Uniqueness
follows from 15.18.

Proposition 18.7 Let (W, c) be a manifold band, dim(W ) ≥ 5, with gen-
erating covering translation ζ : W−→W . Any Siebenmann twist glueing
Wζ(f−, f+) of W relative to ζ is homeomorphic to the relaxation W ′ of
18.2.
Proof Let c : W−→R be the bounded fibration induced by c : W−→S1.
Let a1, a2, a3 > 0 be as in 18.1, so that there is an a2-homotopy from c to a
manifold approximate fibration d : W−→R, and recall that a1 is allowed to
be chosen as small as desired. The isotopy

gs : R −→ R ; t −→ t + a3s (0 ≤ s ≤ 1)

can be covered up to a1 by an isotopy Gs : W−→W . Then ζ ′ = ζG1 is a
covering translation and W ′ = W/ζ ′ is the relaxation of W . The infinite
cyclic cover W

′ of W ′ has a fundamental domain (V ; U, ζ ′U) with

U = d−1(0) , V = ζ ′d−1(−∞, 0] ∩ d−1[0,∞) .

Let
U− = d−1(−∞, 1) , U+ = d−1(2,∞) ⊂ W .

By Edwards and Kirby [41] there exists an isotopy H : W × I−→W × I
supported on d−1[−2, N + 1] such that Hs|d−1[−1, N ] = Gs| for 0 ≤ s ≤ 1
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where N is so large that V ⊆ d−1(−∞, N). By 18.5 Hs|d−1(−∞, 0] extends
to an isotopy k−s : U−−→W of open embeddings such that k−1 U− = W and

Hs| = ks| = inclusion : d−1(−∞,−2] −→ W (0 ≤ s ≤ 1) .

Since a3 > 17 and we can choose a1 > 0 as small as desired we can as-
sume that G1d

−1(0) ⊆ d−1(3,∞). By 18.5 again, there is an isotopy
k+

s : U+−→W of open embeddings such that k+
1 U+ = W and k+

s | =
inclusion : d−1[4,∞)−→W for 0 ≤ s ≤ 1. Let f− = k−1 , f+ = k+

1 and
form the Siebenmann twist glueing Wζ(f−, f+). We now demonstrate that
inclusion : V−→W induces a homeomorphism

W ′ = W/ζ ′
'−→ Wζ(f−, f+) = W/∼ .

The map is well-defined for if x ∈ U then ζG1(x) = f−1
+ ζf−(x). To show

that the map is onto it suffices to show that every x ∈ U− is ∼-related to a
point in V . This is clear for d(x) > −1, so we consider the case d(x) ≤ −1.
For such an x we have x ∼ f−1

+ ζf−(x) = f−1
+ ζ(x), so it suffices to show that

f−1
+ ζ(x) ∈ V . For this we must make sure that a1 is chosen small enough

that a3 − a1 > 2a2, in which case

d−1(−∞, 2a2] ⊆ d−1(−∞, a3 − a1] ⊆ G1d
−1(−∞, 0] .

Since d(x) ≤ −1 it follows that c(x) ≤ a2−1 so cζ(x) ≤ a2 and dζ(x) ≤ 2a2.
Thus ζ(x) ∈ G1d

−1(−∞, 0], from which it follows that f−1
+ ζ(x) ∈ V . This

also shows that W/∼ = V/∼ , from which it follows that the map is one-
to-one. Uniqueness follows from 15.18.
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Homotopy theoretic twist glueing

Given a CW ribbon (X, d : X−→R) and a self homotopy equivalence h :
(X, d)−→(X, d) we use h to identify the two copies of X in e(X) ' X qX,
constructing an infinite CW complex X(h) equipped with a map d(h) :
X(h)−→S1. The ‘homotopy theoretic twist glueing’ X(h) is homotopy
equivalent to the mapping torus T (h). The induced infinite cyclic cover
X(h) = d(h)∗R of X(h) is related to (X, d) by a homotopy equivalence

F (h) : (X, d)
'−→ (X(h), d(h))

such that the generating covering translation ζX(h) : X(h)−→X(h) fits into
a homotopy commutative square

X wF (h)

u
h

X(h)

u
ζX(h)

X wF (h)
X(h)

The construction of (X(h), d(h)) from (X, d), h is a homotopy theoretic ver-
sion of Siebenmann twist glueing (15.17). If h : (X, d)−→(X, d) is a proper
homotopy equivalence which is either an end-preserving covering translation
or the identity we refine the construction of (X(h), d(h)), F (h) to obtain a
relaxed CW π1-band (X[h], d[h]) in the homotopy type of (X(h), d(h)) with
an infinite simple homotopy equivalence

F [h] : (X, d)
'−→ (X[h], d[h]) .

In Chapter 20 we shall show that the wrapping up (X̂, d̂) of a manifold
ribbon (X, d) constructed in Chapter 17 has the simple homotopy type of
the 1-twist glueing (X[1], d[1]), and that the relaxation (M ′, c′) of a manifold
band (M, c) constructed in Chapter 18 has the simple homotopy type of the
ζ-twist glueing (X[ζ], d[ζ]) of the manifold ribbon (X, d) = (M, c).

222
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The homotopy theoretic twist glueings fit into various homotopy pushouts.
The chain homotopy analogue of the homotopy pushout property of the
double mapping cylinder (12.1) is given by :

Definition 19.1 Let A be a ring.
(i) The algebraic mapping pushout of A-module chain maps f : P−→Q,

g : P−→R is the algebraic mapping cone

M(f, g) = C(
(

f

g

)
: P−→Q⊕R) .

(ii) The algebraic mapping pullback of A-module chain maps h : Q−→S,
k : R−→S is the algebraic mapping cone

P(h, k) = C(( h k ) : Q⊕R−→S)∗+1 .

(iii) A square of A-module chain complexes and chain maps

P wf

u
g

Q

u
h

R wk S

is chain homotopy cartesian if there is given a chain homotopy

e : hf ' kg : P −→ S

such that the A-module chain map

M(f, g) = C(
(

f

g

)
: P−→Q⊕R) −→ S

defined by

M(f, g)n = Pn−1 ⊕Qn ⊕Rn −→ Sn ; (x, y, z) −→ e(x) + h(y)− k(z)

is a chain equivalence, or equivalently such that the A-module chain map

P −→ P(h, k) = C((h − k) : Q⊕R−→S)∗+1

defined by

Pn −→ P(h, k)n = Qn ⊕Rn ⊕ Sn+1 ; x −→ (f(x), g(x), e(x))

is a chain equivalence.

Example 19.2 A homotopy pushout of spaces induces a chain homotopy
cartesian square on the chain level.
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A chain homotopy cartesian square has the universal property of a chain
homotopy pushout (analogous to 12.2), and also the universal property of
a chain homotopy pullback :

Proposition 19.3 A chain homotopy cartesian square as in 19.1 has the
following universal properties :

(i) Given an A-module chain complex T , chain maps u : Q−→T , v :
R−→T and a chain homotopy uf ' vg : P−→T there exists a chain map

(u, v) : S −→ T

such that there is defined a chain homotopy commutative diagram

P wf

u
g

Q

u
h









�

uR wk
�

v

S4
4
4
4
4
446

(u, v)

T

(ii) Given an A-module chain complex T , chain maps u : T−→Q, v :
T−→R and a chain homotopy hu ' kv : T−→S there exists a chain map

(u, v) : T −→ P

such that there is defined a chain homotopy commutative diagram

TN
N
N
N
N
NNP(u, v)

4
4
4
4
4
4
4
4
4
4
446

v

���������������

u

P wf

u

g

Q

u

h

R wk S

Definition 19.4 (i) A homotopy cobordism (V, U1, U2, f1, f2) is a diagram
of spaces and maps

U1

f1−→ V
f2←−− U2
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which may be visualized as

........

........

........
........
.........
...........

..................................................................................................................................................
.........
.........
........
........
........
... ........

........

........
........
.........
...........

..................................................................................................................................................
.........
.........
........
........
........
...

................................................................................................................................................................................

................................................................................................................................................................................

U1

f1−−→ V
f2←−− U2

If the spaces are CW complexes and the maps are cellular this is a CW
cobordism.

(ii) The union of homotopy cobordisms

c = (V, U1, U2, f1, f2) , c′ = (V ′, U ′
1, U

′
2, f

′
1, f

′
2)

with U2 = U ′
1 is the homotopy cobordism

c ∪ c′ = (V ′′, U ′′
1 , U ′′

2 , f ′′1 , f ′′2 )

with

f ′′1 : U ′′
1 = U1

f1−→ V −→ V ′′ = M(f2, f
′
1) ,

f ′′2 : U ′′
2 = U ′

2

f ′2−→ V ′ −→ V ′′ = M(f2, f
′
1) ,

so that there is defined a homotopy commutative diagram

U1 wf ′′1
�
�
���f1

V ′′ U ′
2u

f ′′2

N
N
NNQ

f ′2

V

N
N
NNP

V ′

�
�
���

U2 = U ′
1

�
�
���

f2
N
N
NNP
f ′1

with the square a homotopy pushout.
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.................................................................................................................................................
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... ........
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.........
...........

.................................................................................................................................................
.........
.........
........
........
........
... ........

........

........
.........
.........
...........

.................................................................................................................................................
.........
.........
........
........
........
... ........

........

........
.........
.........
...........

.................................................................................................................................................
.........
.........
........
........
........
...

................................................................................................................................................................................ ................................................................................................................................................................................

................................................................................................................................................................................ ................................................................................................................................................................................

U ′′
1 = U1

f1−−→ V
f2←−− U2 = U ′

1

f ′1−−→ V ′ f ′2←−− U ′′
2 = U ′

2

V ′′

Example 19.5 (i) A manifold cobordism (V ; U1, U2) determines a homo-
topy cobordism (V,U1, U2, f1, f2) with f1 : U1−→V , f2 : U2−→V the in-
clusions. The union of manifold cobordisms (V ; U1, U2), (V ′; U ′

1, U
′
2) with
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U2 = U ′
1

(V ; U1, U2) ∪ (V ′; U ′
1, U

′
2) = (V ∪U2=U ′1 V ′; U1, U

′
2)

is a manifold cobordism which is rel ∂ homotopy equivalent to the union
homotopy cobordism (V, U1, U2, f1, f2) ∪ (V ′, U ′

1, U
′
2, f

′
1, f

′
2).

(ii) A fundamental domain (V ; U, ζU) for an infinite cyclic cover W of
a space W with generating covering translation ζ : W−→W determines a
homotopy cobordism (V, U,U, f+, f−) with

f+ : U −→ V ; x −→ x ,

f− : U −→ V ; y −→ ζy .

Proposition 19.6 Let (X, d) be a CW complex ribbon, and write the in-
clusions as

j+ : U = d−1(0) −→ X+ = d−1[0,∞) ,

j− : U −→ X− = d−1(−∞, 0] ,

q+ : X+ −→ X , q− : X− −→ X ,

so that

X = X+ ∪X− , U = X+ ∩X− ,

with U ⊂ X a finite subcomplex. Also, let

π = π1(U) = π1(X +) = π1(X −) = π1(X)

and let Ũ , X̃ +, X̃ −, X̃ be the universal covers of U,X+, X−, X.
(i) The commutative square

U wj+

u
j−

X+

u
q+

X− wq−
X

is a homotopy pushout, with the natural map defining a homotopy equiva-
lence

M(j+, j−)
'−→ X .

(ii) X + and X − dominate X.
(iii) The finite f.g. free Z[π]-module chain complex C(Ũ) dominates C(X̃ +)

and C(X̃ −).
(iv) X +, X − and X are finitely dominated.
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Proof (i) This is a standard property of CW complexes : pushout squares
are homotopy pushouts.

(ii) Use the homotopy equivalences e(X ±) ' X to define dominations of
X by X + and X −

(X +, p+, q +, q +p+ ' 1X) ,

(X −, p−, q−, q−p− ' 1X)

with

q± : X± −→ X

the inclusions and

p± : X ' e(X ±) −→ X± .

(iii) The Z[π]-module chain homotopy cartesian square

C(Ũ) wj+

u
j−

C(X̃ +)

u
q+

C(X̃ −) wq−
C(X̃)

is a chain homotopy pullback by 19.3. The Z[π]-module chain maps

i+ : C(X̃ +)
(1,p−q+)
−−−−→ P(q+, q−) ' C(Ũ) ,

i− : C(X̃ −)
(p+q−,1)
−−−−→ P(q+, q−) ' C(Ũ)

fit into chain homotopy commutative diagrams

C(X̃ +) hhhhhhhhhhhhhj
1

4
4
4
4
446

i+

'
'
'
'
'
'
'
'
'
')

p−q+ C(Ũ) wj+

u

j−

C(X̃ +)

u

q+

C(X̃ −) wq−
C(X̃)
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C(X̃ −) hhhhhhhhhhhhhj

p+q−
4
4
4
4
446

i−

'
'
'
'
'
'
'
'
'
')

1 C(Ũ) wj+

u

j−

C(X̃ +)

u

q+

C(X̃ −) wq−
C(X̃)

so that there are defined chain homotopy dominations of C(X̃ +) and C(X̃ −)

(C(Ũ), i+, j +, j +i+ ' 1
C(X̃+)

) , (C(Ũ), i−, j −, j −i− ' 1
C(X̃−)

) .

(iv) It follows from (iii) and 6.8 (i) that X+ and X− are finitely dominated.
Combining this with (ii) gives that X is finitely dominated also.

Remark 19.7 In general, the finite subcomplex U = X+ ∩ X− of a CW
ribbon (X, d) does not dominate X+ and X−. In particular, this fails to
be the case for the example in (i) below. In Chapter 20 below it is proved
that every CW ribbon (X, d) is infinite simple homotopy equivalent to the
infinite cyclic cover (W, c) of a relaxed CW π1-band (W, c). In (ii) be-
low it is shown that every relaxed CW π1-band (W, c) is simple homotopy
equivalent to a relaxed CW π1-band (W1, c1) with a π1-fundamental do-
main (V1, U1, U1, f

+
1 , f−1 ) for W 1 such that U1 = W

+
1 ∩W

−
1 dominates W

+
1

and W
−
1 rel U1. Thus every CW ribbon (X, d) is infinite simple homotopy

equivalent to one (also denoted (X, d)) such that U dominates X+ and X−,
with dominations

(U, i+ : X+−→U, j+, j+i+ ' 1X+) , (U, i− : X−−→U, j−, j−i− ' 1X−)

inducing the chain homotopy dominations

(C(Ũ), i+, j +, j +i+ ' 1
C(X̃+)

) , (C(Ũ), i−, j −, j −i− ' 1
C(X̃−)

)

of 19.6.
(i) For any integers m,n ≥ 1 let (V1, U1, U2, f1, f2) be the trace of the

trivial surgery on Sm ⊂ U1 = Sm+n, so that

V1 = Sm+n × I ∪Dm+1 × Sn ' Sm+n ∨ Sn , U2 = Sm × Sn .

Also, let (V2, U2, U3, f
′
2, f3) be the trace of the trivial surgery on Sm ⊂ U2 =

Sm × Sn, so that

V2 = Sm × Sn × I ∪Dm+1 × Sn ' Sm+n ∨ Sm , U3 = U1 = Sm+n .
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Then
(V1, U1, U2, f1, f2) ∪ (V2, U2, U3, f

′
2, f3)

' (Sm+n × I, Sm+n × {0}, Sm+n × {1}, i0, i1) ,

(V2, U2, U3, f
′
2, f3) ∪ (V1, U1, U2, f1, f2)

' (Sm+n ∨ Sm ∨ Sn, Sm × Sn, Sm × Sn, q ∨ p1 ∨ 0, q ∨ 0 ∨ p2)

with i0, i1 the inclusions, p1 : Sm × Sn−→Sm, p2 : Sm × Sn−→Sn the
projections and q : Sm × Sn−→Sm+n a degree 1 map. The infinite cyclic
cover of the CW band

(W, c) = (Sm+n × S1, projection : Sm+n × S1−→S1)

is thus a CW ribbon

(X, d) = (W, c) = (Sm+n × R, projection : Sm+n × R−→R)

with a fundamental domain (V, U,U, f+, f−) such that up to homotopy

f+ : U = Sm × Sn
q∨p1∨0−−−→ Sm+n ∨ Sm ∨ Sn ' V ,

f− : U = Sm × Sn
q∨0∨p2−−−→ Sm+n ∨ Sm ∨ Sn ' V ,

g+ : V ' Sm+n ∨ Sm ∨ Sn −→ Sm+n ∨ Sm ' X+ ,

g− : V ' Sm+n ∨ Sm ∨ Sn −→ Sm+n ∨ Sn ' X− .

(ii) For any CW π1-band (W, c) and any π1-fundamental domain (V, U,U,
f+, f−) for the infinite cyclic cover W = c∗R of W let

V1 = M(f+, f−)

be the double mapping cylinder, so that there is defined a homotopy pushout

U wf+

u
f−

V

u
f−1

V wf+
1 V1

The CW cobordism (V1, V, V, f+
1 , f−1 ) is a π1-fundamental domain for the

CW π1-band defined by the mapping coequalizer

(W1, c1) = W(f+
1 , f−1 ) .

The application of 13.18 with

i+ = f+ , i− = f− : K = U −→ X = Y = V ,

j+ = j− = 1 : L = V −→ X = Y = V
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shows that (W1, c1) is simple homotopy equivalent to (W, c). If (W, c) is a
relaxed CW π1-band and V dominates W

+ rel U and V dominates W
− rel

ζU let

k+ : W
+ −→ V , k− : ζW

− −→ V

be maps such that

g+k+ ' 1 : W
+ −→ W

+ relU ,

g−k− ' 1 : ζW
− −→ ζW

− rel ζU ,

with g+ : V−→W
+, g− : V−→ζW

− the inclusions. The homotopy com-
mutative square

U wf+

u
f−

V

u
k−g−

V wk+g+

V

is a homotopy pushout, so that

f+
1 : U1 = V

k+g+

−−→ V ' V1 , f−1 : U1 = V
k−g−−−→ V ' V1 ,

g+
1 : V

g+

−→ W
+ ' W

+
1 , g−1 : V

g−−→ W
− ' W

−
1 .

(Warning: the homotopy equivalence V ' V1 is not simple in general – in
the notation of 22.5 τ(V ' V1) = φ+ ∈ Wh(π1(W )).) The fundamental
domain (V1, U1, U1, f

+
1 , f−1 ) for the infinite cyclic cover (W 1, c1) of (W1, c1)

is such that U1 dominates W
+
1 and W

−
1 , with

g+
1 f+

1 : U1 = V
g+

−→ W
+ ' W

+
1 ,

g−1 f−1 : U1 = V
g−−→ W

− ' W
−
1 .

Definition 19.8 Given a CW ribbon (X, d) and a homotopy equivalence
h : X−→X define the h-twist glueing (X(h), d(h)) of X to be the (infinite)
CW complex

X(h) = W(f+(h), f−(h))

= U × I ∪f +(h)qf −(h) V (h)

with
(V (h), U, U, f+(h), f−(h))

= (X +, U,X, j+, p+h) ∪ (X −, X, U, p−, j−)
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the union cobordism and

d(h) : X(h) −→ W(1{pt.}, 1{pt.}) = S1

the canonical map. The double mapping cylinder

V (h) = M(p+h, p−)

fits into the homotopy pushout square

X wp−

u
p+h

X −

u
k−(h)

X + wk+(h)
V (h)

and the maps f +(h), f −(h) are the composites

f +(h) : U
j+

−−→ X +
k+(h)
−−−→ V (h) ,

f −(h) : U
j−
−−→ X − k−(h)

−−−→ V (h) .
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U
j+

−−−→ X + p+h←−−− X
p−−−−→ X − j−←−−− U

V (h)

Proposition 19.9 (i) The maps f±(h) : U−→V (h) induce isomorphisms

f±(h)∗ : π1(U) = π1(X)
'−→ π1(V (h))

such that

(f +(h)∗)−1f −(h)∗ = h∗ : π1(U) = π1(X)
'−→ π1(X) .

The h-twist glueing X(h) is homotopy equivalent to the mapping torus T (h),
with d(h) homotopic to the canonical map T (h)−→S1 :

d(h) : X(h) ' T (h) −→ S1 .

The infinite cyclic cover of X(h)

X(h) = Z× V (h)/{(j, f −(h)(x)) = (j + 1, f +(h)(x)) | j ∈ Z, x ∈ U}
is homotopy equivalent to X, with the generating covering translation

ζX(h) : X(h) −→ X(h) ; (j, v) −→ (j + 1, v)
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such that

ζX(h) ' h : X(h) ' X −→ X(h) ' X .

The restrictions

ζ+
X(h)

= ζX(h)| : X(h)+ −→ X(h)+ ,

ζ−
X(h)

= ζ−1
X(h)

| : X(h)− −→ X(h)−

are such that

ζ+
X(h)

: X(h)+ ' X +
p+hq+

−−−→ X + ' X(h)+ ,

ζ−
X(h)

: X(h)− ' X − p−h−1q−−−−−→ X − ' X(h)− .

(ii) The maps

g+(h) : V (h) −→ X(h)+ ' X + ,

g−(h) : V (h) −→ X(h)− ' X −

fit into a homotopy pushout square

V (h) wg+(h)

u
g−(h)

X +

u
q+

X − whq−
X

and homotopy commutative diagrams

X +
4
4
4
4
4
4
4
4
446

k+(h)

�
�
�
�
�
�
�
�
�
�
�
�
�
���

p−h−1q+

��������������������

1

V (h) wg+(h)

u

g−(h)

X +

u

q+

X − whq−
X
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X −
4
4
4
4
4
4
4
4
446

k−(h)

��������������������

p+hq−

�
�
�
�
�
�
�
�
�
�
�
�
�
���

1
V (h) wg+(h)

u

g−(h)

X +

u

q+

X − whq−
X

In particular, V (h) dominates X + and X − rel U .
(iii) There are defined homotopy pushout squares

U wf+(h)

u
j−

V (h)

u
g−(h)

X − wp−h−1q−
X −

U wf−(h)

u
j+

V (h)

u
g+(h)

X + wp+hq+

X +

(iv) V (h) is finitely dominated, with finiteness obstruction

[V (h)] = (h∗ − 1)[X +] = (1− h∗)[X −] ∈ K̃0(Z[π1(X)]) .

Proof (i) The map

(q+j+, q+g+(h)) : W(f+(h), f−(h)) = X(h) −→ W(1X , h) = T (h)

is a homotopy equivalence – this is a special case of 13.18, since the maps

j+ : U −→ X + , j− : U −→ X − ,

p+h : X −→ X+ , p− : X −→ X −

are such that up to homotopy

f+(h) : U
j+

−→ X+
k+(h)
−−→ M(p+h, p−) = V (h) ,

f−(h) : U
j−−→ X− k−(h)

−−→ M(p+h, p−) = V (h) ,

h : X
p+h−→ X+

q+

−→ M(j+, j−) = X ,

1 : X
p−−→ X− q−−→ M(j+, j−) = X .
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U

X

X − X +X(h) ' T (h)

The infinite cyclic cover X(h) of X(h) has a fundamental domain

( {0} ×X − ∪{0}×f −(h)(U)={1}×f +(h)(U) {1} ×X + ; {0} ×X, {1} ×X)

which is (homotopy equivalent to) a fundamental domain (M(h : X−→X),
X×{0}, X×{1}) of the canonical infinite cyclic cover T (h) of the mapping
torus T (h), so that

ζX(h) ' ζT (h) ' h : X(h) ' T (h) ' X −→ X(h) ' T (h) ' X .

(ii) The square is a homotopy pushout because it is homotopy equivalent
to the pushout square

V (h) w

u

X(h)+

u
X(h)− w X(h)

(iii) The squares are homotopy pushouts because they are homotopy
equivalent to the pushout squares

U wf+(h)

u

V (h)

u
X(h)− wζ−

X(h)
X(h)−

U wf−(h)

u

V (h)

u
X(h)+ wζ+

X(h)
X(h)+



19. Homotopy theoretic twist glueing 235

(iv) Let Ṽ (h), X̃, X̃ +, X̃ −, X̃(h) be the universal covers of V (h), X,X +,
X −, X(h) respectively, and let

π1(V (h)) = π1(X) = π1(X +) = π1(X −) = π .

The Z[π]-module chain complexes C(X̃), h∗C(X̃ +), C(X̃ −) in the chain
homotopy cartesian square

C(X̃) wp−

u
p+h

C(X̃−)

u
k−(h)

h∗C(X̃+) wk+(h)
C(Ṽ (h))

are finitely dominated, so that C(Ṽ (h)) is also a finitely dominated Z[π]-
module chain complex, and V (h) is a finitely dominated CW complex (by
6.8). It now follows from

[X] = [X +] + [X −]

= h∗[X] = h∗[X +] + h∗[X −] ∈ K̃0(Z[π])

that the finiteness obstruction of V (h) is given by

[V (h)] = h∗[X +] + [X −]− [X]

= (h∗ − 1)[X +] = (1− h∗)[X −] ∈ K̃0(Z[π]) .

Example 19.10 If h∗ = 1 : π1(X)−→π1(X) then

[V (h)] = [X +]− [X +] = 0 ∈ K̃0(Z[π1(X)]) ,

and V (h) is homotopy finite.

Proposition 19.11 (i) Let h = 1 : X−→X. The cellular chain complex
C(Ṽ (1)) of the universal cover Ṽ (1) of V (1) is equipped with a Z[π1(X)]-
module chain equivalence

C(Ũ) ' C(Ṽ (1))

such that

f+(1) : C(Ũ)
i+j+

−−→ C(Ũ) ' C(Ṽ (1)) ,

f−(1) : C(Ũ)
i−j−−−→ C(Ũ) ' C(Ṽ (1)) .

The chain equivalence determines a particular simple chain homotopy type
on C(Ṽ (1)), and hence particular simple homotopy types on the spaces V (1),
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(X(1), d(1)).
(ii) If h : X−→X is a covering translation with

h(X+) ⊂ X+ , h−1(X−) ⊂ X−

let
U = X+ ∩X− , V = X+ ∩ h(X−) ⊂ X ,

f+ : U −→ V ; x −→ x ,

f− : U −→ V ; x −→ h(x) .

Then (V, U, U, f+, f−) is a π1-fundamental domain for X regarded as the
infinite cyclic cover of the CW π1-band X/h, with f+, f− inducing isomor-
phisms

f+
∗ , f−∗ : π1(U)

'−→ π1(V ) = π1(X)

such that f−∗ = h∗f+∗ .
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U V h(U) h(X +)

X +

The cellular chain complex C(Ṽ (h)) of the universal cover Ṽ (h) of V (h) is
equipped with a Z[π1(X)]-module chain equivalence

C(Ṽ ) ' C(Ṽ (h))

which determines a particular simple chain homotopy type on C(Ṽ (h)).
This determines a particular simple homotopy type on the space V (h), and
also on (X(h), d(h)).
Proof (i) Both C(Ũ) and C(Ṽ (1)) fit into chain homotopy cartesian squares

C(X̃) wp−

u
p+

C(X̃−)

u
i−

C(X̃+) wi+ C(Ũ)

C(X̃) wp−

u
p+

C(X̃−)

u
k−(1)

C(X̃+) wk+(1)
C(Ṽ (1))

(ii) The maps

g+ : V −→ X + ; x −→ x ,

g− : V −→ X − ; x −→ h−1(x)
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fit into a pushout square

V wg+

u
g−

X +

u
q+

X − whq−
X

The restrictions
h+ = h| : X + −→ X + ,

h− = h−1| : X − −→ X −

are proper homotopy equivalences at ∞ such that there are defined com-
mutative diagrams

e(X +)�

u

e(h+) '

w' X

u

h

X +

u
h+

AAA
AACq+

X +������
q+

e(X +)
NN
NNNP

w' X

e(X −)�

u

e(h−) '

w' X

u

h−1

X −

u
h−

AAA
AACq−

X −������
q−

e(X −)
NN
NNNP

w' X

so that
p+h ' h+p+ : X −→ X + ,

p−h−1 ' h−p− : X −→ X − .
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The Z[π]-module chain maps

k+ = f+i+ : C(X̃ +) −→ C(Ṽ ) ,

k− = f−i− : C(X̃ −) −→ C(Ṽ )

fit into chain homotopy commutative diagrams

C(X̃ +) wq+

u

1

h
h
hhj
k+

C(X̃)
'
'
''*

p−h−1

u

1C(Ṽ )
'
'
''*

g+

wg−
C(X̃ −)h

h
hhj
hq−

C(X̃ +) wq+

C(X̃)

C(X̃ −)�
k−

u

q−

w1 C(X̃ −)

u

hq−

C(Ṽ )

u
g+

444
4446g−

C(X̃ +)������
q+

C(X̃)
NN
NNNPp+h

wh C(X̃)

It follows that the chain homotopy commutative squares

C(X̃ +) wq+

u
k+

C(X̃)

u
p−h−1

C(Ṽ ) wg−
C(X̃ −)

C(X̃ −) wk−

u
q−

C(Ṽ )

u
g+

C(X̃) wp+h
C(X̃ +)

are chain homotopy cartesian. Moreover, it follows from the chain homotopy
commutative diagram
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C(X̃) w1

u

h−1

4
4
4
4
4
46

p−h−1

[[[[[[[[[[]
p+

C(X̃)
h
h
h
h
h
hk

p−h−1

u

1

C(X̃ +)
�����

�����q+

u k
+

C(X̃ −) wk− C(Ṽ ) wg−

u
g+

C(X̃ −)�
�
�
�
�
��

hq−
C(X̃ +) [[[[[[[[[[]

q+

C(X̃)
�����

�����p+h
h
h
h
h
h
hj

q−

wh C(X̃)

that the chain homotopy commutative square

C(X̃) wp+

u
p−h−1

C(X̃ +)

u
k+

C(X̃ −) wk− C(Ṽ )

is chain homotopy cartesian, so that there is defined a chain equivalence

C(Ṽ ) ' C(Ṽ (h))

such that

k+(h) : C(X̃ +)
k+

−→ C(Ṽ ) ' C(Ṽ (h)) ,

k−(h) : C(X̃ −)
k−−→ C(Ṽ ) ' C(Ṽ (h)) .

Proposition 19.12 Let (X, d) be a CW ribbon, and let h : (X, d)−→(X, d)
be a proper homotopy equivalence such that h : X−→X is a cellular end-
preserving homeomorphism which is either a covering translation or the
identity, with

h(X +) ⊆ X + , h−1(X −) ⊆ X − .

Let

(V, U, U, f+, f−)

=
{ a fundamental domain for X if h is a covering translation ,

(U,U,U, 1, 1) if h = 1 .
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Choose a finite CW complex V [h] in the simple homotopy type of V (h)
given by 19.11, and let (V [h], U, U, f+[h], f−[h]) be the finite CW cobordism
defined by

f±[h] : U
f±(h)
−−→ V (h) ' V [h] .

(i) The finite CW cobordism (V [h], U, U, f+[h], f−[h]) is a π1-fundamental
domain for the infinite cyclic cover X[h] = d[h]∗R of a relaxed CW π1-band
(X[h], d[h]) with

X[h] = W(f+[h], f−[h])

= U × I ∪f+[h]qf−[h] V [h]

and

d[h] : X[h] ' X(h)
d(h)
−→ S1 .

The chain homotopy idempotents given by 19.6

r+ = i+j+ , r− = i−j− : C(Ũ) −→ C(Ũ)

are such that
f±[h] ' f±h r± : C(Ũ) −→ C(Ṽ [h]) ,

with

f±h : C(Ũ)
f±−→ C(Ṽ ) −→ C(Ṽ [h]) .

(ii) There is defined an end-preserving proper homotopy equivalence

F [h] : (X, d) −→ (X[h], d[h])

such that the generating covering translation ζX[h] : X[h]−→X[h] fits into a
homotopy commutative square

X wF [h]

u
h

X[h]

u
ζX[h]

X wF [h]
X[h]

If h : X−→X is a covering translation then d : X−→R is proper homotopic
to a Z-equivariant lift of a map d/h : X/h−→S1 classifying (d/h)∗R = X,
and F [h] is homotopic to a Z-equivariant lift of a homotopy equivalence
(X/h, d/h)−→(X[h], d[h]) of CW bands.
If h = 1 : X−→X the composite

G : X × S1 = T (1X)
T (F [1])
−−−→ T (ζX[1])

proj.−→ X[1]/ζX[1] = X[1]

is a homotopy equivalence such that

F [1] : X
incl.−→ X × R G−→ X[1] .
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Proof (i) The chain homotopy f±[h] ' f±h r± is given by the chain homo-
topy commutative diagram

C(Ũ)

))

r±

//
f±[h]

½½

j±

55
55

55
55

55
55

55
55

5

))

f±(h)

TTTTTTTTTTTTTTTTTTT C(Ṽ [h])

C(Ṽ (h))

$$

'
IIIIIIIII

55
'

jjjjjjjjjjjjjjjjj

C(X̃±) //k±

ÀÀ

i±

<<
<<

<<
<<

<<
<<

<<
<

::
k±(h) ttttttttt

C(Ṽ )

DD

'

ªªªªªªªªªªªªªªªªª

C(Ũ)

BB

f±

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

NN

f±h

(ii) The homotopy equivalence X[h] ' X(h) is induced by the rel ∂ ho-
motopy equivalence

(V [h], U, U, f+[h], f−[h]) ' (V (h), U, U, f+(h), f−(h)) .

The composite

X −→ X × R −→ T (h) −→ X(h)

of

X −→ X × R ; x −→ (x, d(x)) ,

X × R −→ T (h) ; (x, a + b) −→ (ha(x), b) (a ∈ Z , b ∈ [0, 1))

and a Z-equivariant lift T (h)−→X(h) of the homotopy equivalence T (h)−→
X(h) of 19.9 (i) is a proper map

F [h] : X −→ X(h) .

Now F [h] induces isomorphisms of the fundamental groups, the fundamental
groups at ∞, the homology groups of the universal covers

F̃ [h]∗ : H∗(X̃)
'−→ H∗(X̃(h))

and also the locally π-finite homology groups of the universal covers

F̃ [h]∗ : H lf,π
∗ (X̃)

'−→ H lf,π
∗ (X̃(h)) ,

so that F [h] is a proper homotopy equivalence by 5.7.



242 Ends of complexes

Proposition 19.13 Let (X, d) be a CW ribbon with π1(X) = π, and let
h : (X, d)−→(X, d) be a proper homotopy equivalence.

(i) The finiteness obstruction of V (h) is the image of the infinite torsion
τ lf (h) ∈ Whlf (X) (11.1) under the isomorphism Whlf (X) ∼= K̃0(Z[π]) :

[V (h)] = [τ lf (h)] = (h∗ − 1)[X+] ∈ K̃0(Z[π]) .

Thus V (h) is homotopy finite if and only if τ lf (h) = 0 ∈ Whlf (X).
(ii) If h is a covering translation or the identity (as in 19.12) then

τ lf (h) = [V (h)] = 0 ∈ Whlf (X) = K̃0(Z[π])

and F [h] : X−→X[h] is a proper homotopy equivalence with infinite torsion

τ lf (F ) = [X+]− [X +[h]] = 0 ∈ Whlf (X) = K̃0(Z[π]) .

Remark 19.14 The fundamental group of the h-twist glueing X(h) is the
α-twisted extension of π = π1(X) by Z

π1(X(h)) = π ×α Z

with α = h∗ : π−→π. The splitting theorem of Farrell and Hsiang [48]
expresses the Whitehead group as

Wh(π ×α Z) = Wh(π, α)⊕ Ñil0(Z[π], α)⊕ Ñil0(Z[π], α−1)

with Wh(π, α) the class group of α-twisted automorphisms of f.g. projective
Z[π]-modules, the relative group of Siebenmann [145] in the exact sequence

Wh(π)
1−α−→ Wh(π) −→ Wh(π, α) −→ K̃0(Z[π])

1−α−→ K̃0(Z[π]) ,

and Ñil0(Z[π], α) the reduced nilpotent class group of α-twisted endomor-
phisms of f.g. projective Z[π]-modules. (See Chapter 21 for a slightly more
detailed account.) The fibring obstructions of the relaxed CW band X[h]
of 19.12 will be shown in Chapter 26 to be such that

Φ±(X[h]) ∈ Wh(π, α) ⊆ Wh(π ×α Z) ,

with image

[Φ±(X[h])] = ±[X ∓] ∈ ker(1− α : K̃0(Z[π])−→K̃0(Z[π])) .

(Actually, only the case α = 1 is considered in Chapter 26, but the result
holds for arbitrary α.)

Example 19.15 Let (X, d) = (W, c) be the manifold ribbon defined by
the infinite cyclic cover of an n-dimensional manifold band (W, c), and let
h : X−→X be an end-preserving homeomorphism which is either a cov-
ering translation or the identity, as in 19.12. For n ≥ 6 the relaxed CW
π1-band (X[h], d[h]) is realized by a relaxed manifold band (also denoted by
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(X[h], d[h])), constructed by the original geometric twist glueing construc-
tion of Siebenmann [145], as follows. Let (V ; U, ζU) be a manifold funda-
mental domain for the infinite cyclic cover W . Use engulfing (Siebenmann,
Guillou and Hähl [149]) to realize the maps p+ : X−→X +, p− : X−→X −
by embeddings

[p+] : X ⊂ X + , [p−] : X ⊂ X −

as disjoint open neighbourhoods of the ends. The finite CW fundamental
domain (V [h], U, U, f+[h], f−[h]) for X[h] of 19.12 is realized by the com-
pact n-dimensional manifold cobordism (also denoted by (V [h], U, U, f+[h],
f−[h])) which fits into pushout squares

X w[p−]

u
[p+]h

X −

u
X + w V [h]

V [h] w

u

X −

u
ζ[h]q−

X + wq+

X

with

f +[h] : U −→ X + −→ V [h] , f −[h] : U −→ X − −→ V [h]

and ζ[h] : X−→X a covering translation isotopic to h. The h-twist glueing

X[h] = W(f+[h], f−[h]) = U × I ∪f +[h]qf −[h] V [h]

is a relaxed manifold band such that

ζ[h] = ζX[h] ' h : X[h] = X −→ X[h] = X ,

X[h]+ = X + , X[h]− = X − ,

X[h]+ ∩X[h]− = X + ∩X − = U ,

V [h] = X + ∩ ζ[h](X −) ' X + ∩ h(X −) ' V (h) ,

f +(h) : U
f +[h]
−−→ V [h] ' V (h) ,

f −(h) : U
f −[h]
−−→ V [h] ' V (h) .
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Homotopy theoretic wrapping up and relaxation

We now use the homotopy theoretic twist glueing of Chapter 19 to develop
the homotopy theoretic analogues of the geometric wrapping up and relax-
ation techniques of Chapters 17, 18. We prove that every CW ribbon (X, d)
is infinite simple proper homotopy equivalent to the infinite cyclic cover
(W, c) of a relaxed CW π1-band (W, c), so that (X, d) is both forward and
reverse tame.

Definition 20.1 The wrapping up of a CW ribbon (X, d) is the relaxed
1-twist glueing CW π1-band given by 19.12

(X̂, d̂) = (X[1], d[1]) .

Remark 20.2 If (X, d) is a CW ribbon such that the chain homotopy dom-
inations (C(Ũ), i±, j ±, j ±i± ' 1

C(X̃±)
) of 19.6 are realized by dominations

(U, i±, j ±, j ±i± ' 1X±) (as in 19.7 (ii)) with a homotopy

i+p+ ' i−p− : X −→ U = X+ ∩X−

then the homotopy commutative square

X wp+

u
p−

X +

u
i+

X − wi− U

is a homotopy pushout such that the homotopy equivalence

V (1) = M(p+, p−)
'−→ U

is simple, with

i+j+ : U
f+(1)
−−→ V (1) −→ U ,

i−j− : U
f−(1)
−−→ V (1) −→ U .

244
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The wrapping up (X̂, d̂) is a relaxed CW π1-band, which can be taken to be
the mapping coequalizer (13.7) of the homotopy idempotents i±j ± : U−→U
of the finite CW complex U

(X[1], d[1]) = W(i+j +, i−j −) .

Proposition 20.3 The wrapping up of a CW ribbon (X, d) is a relaxed
CW π1-band

(W, c) = (X̂, d̂)

such that :

(i) the covering translation of the infinite cyclic cover W = d̂∗(R) of W
is homotopic to the identity,

ζW ' 1 : W −→ W ,

(ii) there is defined an infinite simple homotopy equivalence of CW rib-
bons

F : (X, d)
'−→ (W, c)

with
X+ ∩X− = W

+ ∩W
−

and the restrictions F | : X±−→W
± are proper homotopy equiva-

lences rel X+ ∩X−,
(iii) there is defined an infinite simple homotopy equivalence of CW rib-

bons

G : (X × S1, d(pr1))
'−→ (W × R, pr2) .

Proof (i) This is the special case h = 1 of the homotopy ζX[h] ' h given by
19.9 (i).

(ii) Let F = F [1], with F [1] as defined in 19.12 (ii), such that τ lf (F ) = 0
by 19.13 (ii).

(iii) Use the homotopy equivalence

T (F ) : T (1X) = X × S1 '−→ T (ζW )

and the homotopy equivalence defined by the projection

p : T (ζW )
'−→ W/ζW = W ; (x, t) −→ x

to define a proper map

G : X × S1 −→ W × R ; (x, s) −→ (p T (F )(x, s), d(x))

which is a homotopy equivalence. Moreover, G induces isomorphisms of
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fundamental groups at ∞ and the locally π-finite homology groups of the
universal covers (with π = π1(X) × Z), so that G is a proper homotopy
equivalence by 5.7. The isomorphism

Whlf (X × S1) ∼= K̃0(Z[π1(X)× Z])

sends τ lf (G) ∈ Whlf (X × S1) to

[X+ × S1]− [W × [0,∞)] = 0 ∈ K̃0(Z[π1(X)× Z]) ,

so that G is infinite simple.

Theorem 20.4 (i) If (X, d) is a CW ribbon then d : X−→R is proper ho-
motopic to a proper bounded fibration, and X is forward and reverse tame.

(ii) If (X, d) is a manifold ribbon with X an open manifold of dimension
≥ 5 or a Hilbert cube manifold then d : X−→R is proper homotopic to a
manifold approximate fibration. The homotopy theoretic wrapping up (X̂, d̂)
of 20.1 is realized (within its simple homotopy type) by the geometric wrap-
ping up of 17.1, with the infinite simple homotopy equivalence G of 20.3
realized by the homeomorphism X × S1 ∼= X̂ × R of 17.1.
Proof (i) Immediate from 17.16 (i) and 19.12 (ii).

(ii) It is immediate from (i) and 16.10 that d is proper homotopic to a
manifold approximate fibration d′ : X−→R. By 18.6 the geometric wrap-
ping up of 17.1 is homeomorphic to any Siebenmann 1-twist glueing of
(X, d). Thus it suffices to show that there is a Siebenmann 1-twist glueing
W1(f−, f+) of X with a natural homotopy equivalence X̂−→W1(f−, f+).
As in 18.6 if U− = (d′)−1(−∞,−1) and U+ = (d′)−1(1,∞) then there are
homeomorphisms f± : U±−→X which are isotopic to the identity through
open embeddings. The maps

[p±] : X
(f±)−1

−−−→ U± ⊂ X±

realize p± : X ' e(X±)−→X± up to homotopy. It is then clear that the
Siebenmann twist glueing W1(f−, f+) is homotopy equivalent to the 1-twist
glueing W(f+(1), f−(1)) with [p±] replacing p± in 19.8 (cf. 19.15).

Remark 20.5 Let (X, d) be an n-dimensional manifold ribbon with π1(X) =
π.

(i) X is a finitely dominated (n−1)-dimensional geometric Poincaré com-
plex with finiteness obstruction

[X] = [X+] + [X−] = [X+] + (−)n−1[X+]∗ ∈ K̃0(Z[π]) .

The inverse image of 0 ∈ R is a compact (n− 1)-dimensional manifold

U = d−1(0) ⊂ X

such that the inclusion defines a degree 1 normal map (f, b) : U−→X. For
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n ≥ 6 the finiteness obstruction [X+] ∈ K̃0(Z[π]) is the codimension 1 split-
ting obstruction to making (f, b) normal bordant to a homotopy equivalence
by codimension 1 surgeries on U inside X. For any n the projective surgery
obstruction (Pedersen and Ranicki [109]) of (f, b) is

σp
∗(f, b) = 0 ∈ Lp

n−1(Z[π]) ,

since (f, b) extends to a finitely dominated normal bordism

(g, c) : (X+; U, e(X+)) −→ X × (I; {0}, {1})
such that (g, c)| : e(X+)−→X is a homotopy equivalence. If X is homotopy
finite then (f, b) has finite surgery obstruction

σh
∗ (f, b) = [X+] ∈ im(Ĥn(Z2 ; K̃0(Z[π]))−→Lh

n−1(Z[π]))

= ker(Lh
n−1(Z[π]) −→ Lp

n−1(Z[π])) ,

in accordance with the Rothenberg-type exact sequence of Ranicki [118]

. . . −→ Lp
n(Z[π]) −→ Ĥn(Z2 ; K̃0(Z[π]))

−→ Lh
n−1(Z[π]) −→ Lp

n−1(Z[π]) −→ . . . .

(ii) The construction of the normal map (f, b) : U−→X in (i) goes back to
the special case considered by Browder [12], with X an open n-dimensional
PL manifold homeomorphic to M × R for a compact (n − 1)-dimensional
PL manifold M . For n ≥ 6 the finiteness obstruction (= codimension 1
splitting obstruction) [X+] ∈ K̃0(Z[π]) is such that [X+] = 0 if and only if
X is PL homeomorphic to N × R for a compact (n − 1)-dimensional PL
manifold N (Novikov [104], Golo [64], Bryant and Pacheco [17]). In the
case considered in [12] π1(X) = π1(M) = {1}, so the obstruction takes
its value in K̃0(Z) = 0 – it was proved in [12] that such X is indeed PL
homeomorphic to N × R.

(iii) The finitely dominated n-dimensional geometric Poincaré cobordism
(X+; U, e(X+)) of (i) gives the identity of projective symmetric signatures

σ∗p(X) = σ∗(U) ∈ Ln−1
p (Z[π]) .

This is a generalization of the identity

signature(X) = signature(U) ∈ L4k(Z) = Z

obtained by Novikov [103] in the case n = 4k + 1, for any open (4k + 1)-
dimensional manifold X with a proper map d : X−→R transverse regular at
0 ∈ R. The identity was used in [103] to prove the homotopy invariance of
the codimension 1 component Lk(M4k+1) ∈ H4k(M ;Q) of the L-genus of a
(4k +1)-dimensional manifold M4k+1. Novikov [104] proved the topological
invariance of the L-genus L∗(M) ∈ H4∗(M ;Q) and the rational Pontrjagin
classes p∗(M) ∈ H4∗(M ;Q) for all manifolds M , using the tori T i and the
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signature properties of open manifolds with a proper map to Ri, general-
izing the method of Browder [12]. This proof was interpreted in Ranicki
[125,Appendix C] in terms of the lower L-theory of Ranicki [124]. Gromov
[65] used a signature identity of the above type in the case n ≡ 0 (mod2)
with coefficients in a flat bundle, replacing the tori in [104] by surfaces of
higher genus. See Ranicki [127, 4.2] for the relationship of the proofs to each
other.

Remark 20.6 (i) In 26.7 it will be proved that the wrapping up (X̂, d̂) of
a CW ribbon (X, d) has fibring obstructions

Φ+(X̂, d̂) = −B
′([X −]) , Φ−(X̂, d̂) = B

′([X +]) ∈ Wh(π1(X)× Z)

with

B
′ : K̃0(Z[π1(X)]) −→ Wh(π1(X)× Z) ;

[P ] −→ τ(−z : P [z, z−1]−→P [z, z−1])

the geometrically significant split injection of Ranicki [122]. Thus X̂ is not
in general in the canonical (finite) simple homotopy type of X × S1 (cf.
17.2).

(ii) In 27.4 below it will be shown that a CW band (W, c) is simple
homotopy equivalent to the wrapping up (X̂, d̂) of a CW ribbon (X, d) if
and only if (W, c) is relaxed and there exists a homotopy ζ ' 1 : W−→W .

Definition 20.7 The relaxation of a CW π1-band (W, c) is the ζ-twist
glueing of the infinite cyclic cover CW ribbon (W, c) given by 19.12, the
relaxed CW π1-band

(W ′, c′) = (W [ζ], c[ζ]) .

The relaxation (W ′, c′) is related to (W, c) by a homotopy equivalence

(W, c) ' (W ′, c′)

(which is not simple in general) with

ζ
W
′ ' ζ : W

′ ' W −→ W
′ ' W .

Proposition 20.8 Given a CW π1-band (W, c) let

(X, d) = (W, c)

be the CW ribbon defined by the infinite cyclic cover, and write the wrapping
up as

(X̂, d̂) = (Ŵ , ĉ) .
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The mapping torus of the simple self homotopy equivalence of the wrapping
up

ζ̂ : Ŵ
'−→ W × S1

ζ×1−→ W × S1 '−→ Ŵ

is such that there is defined a simple homotopy equivalence

T (ζ̂)
'−→ W × S1 .

Proof The homotopy equivalence X×S1 ' X̂ is a restriction of the proper
homotopy equivalence G : X × S1 ' X̂ × R of 20.3 (iii). The simple
homotopy equivalence T (ζ̂) 's W × S1 is the composite of the evident
simple homotopy equivalence T (ζ̂) 's T (ζ)× S1 and the simple homotopy
equivalence proj.× 1 : T (ζ)× S1 's W × S1.

Remark 20.9 It will be proved in Chapter 26 that the relaxation W ′ has
fibring obstructions

Φ±(W ′) = Φ±(W )′ ∈ Wh(π1(W ))

with Φ±(W )′ obtained from Φ±(W ) by setting the Ñil-components to 0,
and

τ(W ' W ′) = Φ±(W ′)− Φ±(W ) ∈ Wh(π1(W ))

the sum of the Ñil-components.

Example 20.10 The geometric relaxation (W ′, c′) (18.2) of a manifold band
(W, c) with dim(W ) ≥ 6 is a relaxed manifold band in the simple homo-
topy type of the homotopy theoretic relaxation (W ′, c′) of 20.7. The simple
homotopy equivalence ζ̂ : Ŵ−→Ŵ of 20.8 is realized by a homeomorphism
and the simple homotopy equivalence W×S1 's T (ζ̂) is realized by a home-
omorphism W × S1 ∼= T (ζ̂) with a lift to a Z-equivariant homeomorphism

W × S1 ∼= T (ζ̂) = Ŵ × R .

The composite

W × S1
proj.−−→ W

c−→ S1

is homotopic to the projection of a fibre bundle over S1 with fibre Ŵ and
monodromy ζ̂ : Ŵ−→Ŵ .
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Wrapping up and relaxation are related by :

Proposition 20.11 Let (W, c) be a CW π1-band. A fundamental domain
(V, U,U, f+, f−) for the infinite cyclic cover W = c∗R of W and correspond-
ing fundamental domains

(V̂ , U, U, f̂+, f̂−) = (V [1], U, U, f [ζ]+, f [ζ]−) ,

(V ′, U, U, f ′+, f ′−) = (V [ζ], U, U, f [ζ]+, f [ζ]−)

for the wrapping up and relaxation

(Ŵ , ĉ) = (W [1], c[1]) , (W ′, c′) = (W [ζ], c[ζ])

are related by simple rel ∂ homotopy equivalences

(V, U, U, f+, f−) ∪ (V̂ , U, U, f̂+, f̂−) ' (V ′, U, U, f ′+, f ′−) ,

(V̂ , U, U, f̂+, f̂−) ∪ (V,U, U, f+, f−) ' (V ′, U, U, f ′+, f ′−) .

Proof The homotopy pushout property of the square

W wp+

u
p−

W
+

u
k̂+

W
− wk̂− V̂

and the homotopy commutative diagram

W wp+

u
p−

W
+

u
k′+ζ+

W
− wk′− V ′

give a map

` : V̂ −→ V ′

such that

`k̂+ ' k′+ζ+ : W
+ −→ V ′ ,

`k̂− ' k′− : W
− −→ V ′ .
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The homotopy commutative diagram

U[[[[[[̂
f−

'
'
'
'')
g+f+

Whhhhhk
p+

4
4
4
446

p−

V4
4
4
446

g+

W
+

hhhhhk
ζ+

4
4
4
446

k̂+

W
−

�
�
�

���

k̂−

W
+

'
'
'
'')

k′+

V̂hhhhhk
`

V ′

is such that each parallelogram is a homotopy pushout, and

f ′+ : U
f+

−→ V
g+

−→ W
+ k′+−→ V ′ ,

f ′− : U
f−−→ V

g−−→ W
− k̂−−→ V̂

`−→ V ′ .

It follows that there is defined a homotopy pushout square

U wf̂+

u
f−

V̂

u
`

V wk′+ V ′

with
f̂+ = k̂+g+f+ : W

+ −→ V̂ .

The corresponding map

V ∪ V̂ = M(f̂+, f−) −→ V ′

defines a simple rel ∂ homotopy equivalence

(V, U, U, f+, f−) ∪ (V̂ , U, U, f̂+, f̂−) ' (V ′, U, U, f ′+, f ′−) .

Similarly for the simple rel ∂ homotopy equivalence

(V̂ , U, U, f̂+, f̂−) ∪ (V,U, U, f+, f−) ' (V ′, U, U, f ′+, f ′−) .

A CW π1-band (W, c) and its relaxation (W ′, c′) are related by the follow-
ing ‘CW h-cobordism’ (Z; W,W ′). For manifold W it is possible to realize
(Z; W,W ′) by a manifold h-cobordism.
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Definition 20.12 A CW π1-band (W, c) is related to the relaxation (W ′, c′)
by the relaxation CW h-cobordism ((Z, d); (W, c), (W ′, c′)), with (Z, d) a
CW band containing (W, c) and (W ′, c′) as deformation retracts, constructed
as follows. Given a π1-fundamental domain (V, U, U, f+, f−) for the infinite
cyclic cover W = c∗R let

h : V ∪ V̂ −→ V̂ ∪ V ′

be the simple homotopy equivalence defined by composing the simple ho-
motopy equivalences V ∪ V̂ ' V ′, V ′ ' V̂ ∪ V ′ given by applying 20.11 to
(W, c) and (W ′, c′), and let

X = M(h : V ∪ V̂ −→ V̂ ∪ V ′) .

The mapping coequalizer of the two inclusions e+, e− : V̂−→X is a CW
band

Z = W(e+, e−)

such that (Z; W,W ′) is a CW triad, with the inclusions

W = W(f+, f−) −→ Z , W ′ = W(f ′+, f ′−) −→ Z

homotopy equivalences. The infinite cyclic cover Z of Z has a π1-fundamental
domain (X, V̂ , V̂ , e+, e−) which restricts to the π1-fundamental domains
(V, U,U, f+, f−), (V ′, U, U, f ′+, f ′−) of the infinite cyclic covers W = c∗R,
W
′ = c′∗R of W , W ′.
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Remark 20.13 (i) The CW structure of the relaxation h-cobordism (W ; M,
M ′) (18.3) of a manifold band (M, c) is the relaxation CW h-cobordism of
20.12, up to simple homotopy equivalence – see 26.14 below for a more de-
tailed discussion.

(ii) In Chapter 26 we shall identify the torsions of the relaxation CW h-
cobordism τ(W−→Z), τ(W ′−→Z) ∈ Wh(π1(W )) with the nilpotent com-
ponents of the fibring obstructions Φ±(W ) ∈ Wh(π1(W )), so that

Φ+(W )− Φ+(W ′) = Φ−(W )− Φ−(W ′)

= τ(W−→W ′)

= τ(t+)− τ(t−) ∈ Wh(π1(W ))

and Φ±(W ′) is obtained from Φ±(W ) by setting the nilpotent components
to zero.

Example 20.14 Let (W, c) be an n-dimensional manifold band, with n ≥ 6.
(i) The following conditions are equivalent :

(a) the reduced projective class

[W +] = (−)n−1[W −]∗ ∈ K̃0(Z[π1(W )])

is such that [W +] = 0,
(b) there are defined homeomorphisms

W ∼= M × R , Ŵ ∼= M × S1

for a closed (n− 1)-dimensional manifold M ,
(c) the homotopy equivalence given by 20.3

h = G−1| : Ŵ
'−→ W × S1

splits along W ×{∗} ⊂ W ×S1, i.e. the codimension 1 submanifold

M = h−1(W × {∗}) ⊂ Ŵ

is such that the restriction h| : M−→W is a homotopy equivalence.

(See Browder [12] for the first application of surgery to prove that W ∼=
M × R in the unobstructed case π1(W ) = {1}.)

(ii) The manifold ζ-twist glueing (W ′, c′) = (W [ζ], c[ζ]) is the relaxation
of (W, c) in the sense of Siebenmann [145]. The infinite cyclic cover W

′

of W ′ is homeomorphic to the infinite cyclic cover W of W , and W
′ has

a fundamental domain (V ′; U, ζ ′U) such that V ′ dominates W
′+ rel U and

V ′ dominates ζ ′W ′− rel ζ ′U . The relaxation W ′ is h-cobordant to W , and
(equivalently) W × S1 is homeomorphic to W ′ × S1. Such an h-cobordism
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(Z; W,W ′) was obtained by Farrell [46] and Wall [165, 12.9] using a winding
trick, and also by Cappell [19, II.1,VI] using the closely related nilpotent
normal cobordism construction.



Part Three: The algebraic theory

21

Polynomial extensions

The cellular chain complex of an infinite cyclic cover of a CW complex is
a chain complex over a polynomial extension ring. In Chapter 21 we recall
from Ranicki [122, 123, 124] the chain complex treatments of the mapping
torus and of the splitting theorems of Bass, Heller and Swan [5] and Bass
[4],

Wh(A[z]) = Wh(A)⊕ Ñil0(A) ,

Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) ,

including the algebraic analogue for finite based f.g. free A[z, z−1]-module
chain complexes of the geometric transversality construction of fundamental
domains for infinite cyclic covers of finite CW complexes.

Definition 21.1 (i) The polynomial extension of a ring A is the ring

A[z] = {
∞∑

j=0

ajz
j | aj ∈ A, {j ≥ 0 | aj 6= 0} finite} .

Similarly for A[z−1], which is isomorphic to A[z].
(ii) The Laurent polynomial extension of A is the ring

A[z, z−1] = {
∞∑

j=−∞
ajz

j | aj ∈ A, {j ∈ Z | aj 6= 0} finite}

obtained from A[z] by inverting z.

Remark 21.2 (i) Given a ring A and an automorphism α : A−→A let z be
an indeterminate over A such that

az = zα(a) (a ∈ A) .

Given an A-module P let α!P be the A-module with elements α!x (x ∈ P )

255
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and

α!x + α!y = α!(x + y) , a(α!x) = α!(α−1(a)x) ∈ α!P .

The α-twisted polynomial extensions Aα[z], Aα[z, z−1] are defined by anal-
ogy with A[z], A[z, z−1]. There are natural direct sum decompositions

Wh(Aα[z]) = Wh(A)⊕ Ñil0(A,α) ,

Wh(Aα[z, z−1]) = Wh(A,α)⊕ Ñil0(A,α)⊕ Ñil0(A,α−1) .

Here, Wh(A,α) is the Grothendieck group of equivalence classes of pairs
(P, f) with P a f.g. projective A-module and f : P−→α!P an isomorphism,
and Ñil0(A,α) is the reduced nilpotent class group of equivalence classes of
pairs (P, ν) with P a f.g. projective A-module and ν : P−→α!P a nilpotent
morphism (Farrell and Hsiang [48], Siebenmann [145]). The algebraic results
of Chapters 21, 22 apply equally well in the α-twisted case, but for the sake
of simplicity we shall only consider the special case

α = 1 : A −→ A , Aα[z] = A[z] , Aα[z, z−1] = A[z, z−1]

with α!P = P .
(ii) If W is a connected infinite cyclic cover of a connected space W and

the generating covering translation ζ : W−→W induces the automorphism
α = ζ∗ : π1(W )−→π1(W ) then

π1(W ) = π1(W )×α Z , Z[π1(W )] = Z[π1(W )]α[z, z−1] .

In dealing with infinite cyclic covers we again make the simplifying assump-
tion α = 1, so that

π1(W ) = π1(W )× Z , Z[π1(W )] = Z[π1(W )][z, z−1] .

Convention 21.3 In dealing with A[z]- and A[z, z−1]-modules M we shall
always denote the action of z on M by ζ, that is

ζ : M −→ M ; x −→ zx .

Thus if X is a connected CW complex with π1(X) = π×Z and ζ : X̃−→X̃

is the action of z = 1 ∈ Z ⊂ π×Z on the universal cover X̃ then the induced
Z[π]-module chain map ζ : C(X̃)−→C(X̃) is the action of z ∈ Z[π × Z] =
Z[π][z, z−1] on C(X̃).

Definition 21.4 A CW band (W, c) is untwisted if (on each component)
the induced surjection of fundamental groups

c∗ : π1(W ) −→ π1(S1) = Z
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splits, so that

π1(W ) = π1(W )× Z , Z[π1(W )] = Z[π1(W )][z, z−1] .

We shall be mainly concerned with untwisted CW bands from now on, in
order to only have to consider untwisted polynomial extensions.

Definition 21.5 The algebraic mapping coequalizer of A-module chain maps
f+, f− : D−→E is the A[z, z−1]-module chain complex

W(f+, f−) = C(f+ − z−1f− : D[z, z−1]−→E[z, z−1]) .

Example 21.6 Let f+, f− : U−→V be maps of connected CW complexes
such that

f+
∗ = f−∗ : π = π1(U) −→ π1(V )

is an isomorphism, and let f̃+, f̃− : C(Ũ)−→C(Ṽ ) be the induced Z[π]-
module chain maps of the cellular chain complexes of the universal covers
Ũ , Ṽ of U, V . The mapping coequalizer (13.7)

W(f+, f−) = U × I ∪f+∪f− V

has fundamental group

π1(W(f+, f−)) = π × Z
and the cellular Z[π × Z]-module chain complex of the universal cover
W̃(f+, f−) of W(f+, f−) is given by the algebraic mapping coequalizer

C(W̃(f+, f−)) = W(f̃+, f̃−)

= C(f̃+ − z−1f̃− : C(Ũ)[z, z−1]−→C(Ṽ )[z, z−1])

(assuming that f+, f− are the inclusions of disjoint subcomplexes).

By analogy with the geometric mapping torus :

Definition 21.7 Let h : C−→C be an A-module chain map.
(i) The algebraic mapping torus of h is the A[z, z−1]-module chain complex

T (h) = W(1, h) = C(1− z−1h : C[z, z−1]−→C[z, z−1]) .

(ii) The modified algebraic mapping torus of h is the A[z, z−1]-module
chain complex

T ′(h) = C(1− zh : C[z, z−1]−→C[z, z−1]) .
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Example 21.8 (i) The canonical infinite cyclic cover T (h) of a mapping
torus T (h : X−→X) = W(1, h) is such that there is defined a pushout
square

X w

u
'

T
+
(h)

u
'

T
−

(h) w T (h)

as in 14.6 (vii). If X is a CW complex and h : X−→X is a cellular map
the cellular Z[z, z−1]-module chain complexes are such that

C(T (h)) = C(1− z−1h : C(X)[z, z−1]−→C(X)[z, z−1])

' C(T +(h)) = C(1− z−1h : zC(X)[z]−→C(X)[z]) ,

C(T −(h)) = C(1− z−1h : z−1C(X)[z−1]−→z−1C(X)[z−1]) ' C(X) .

(ii) If X is a connected finite CW complex with universal cover X̃ and
h : X−→X is a cellular map such that h∗ = 1 : π1(X)−→π1(X) then

π1(T (h)) = π1(X)× Z , Z[π1(T (h))] = Z[π1(X)][z, z−1]

and the cellular Z[π1(T (h))]-module chain complex of the universal cover
T̃ (h) of T (h) is the algebraic mapping torus of the induced Z[π1(X)]-module
chain map h̃ : C(X̃)−→C(X̃)

C(T̃ (h)) = T (h̃ : C(X̃)−→C(X̃))

= C(1− z−1h̃ : C(X̃)[z, z−1]−→C(X̃)[z, z−1]) .

Proposition 21.9 (Ranicki [123, 124]) (i) An A-module chain homotopy
e : h ' h′ : C−→C induces an A[z, z−1]-module chain equivalence

T (h) −→ T (h′) ; (x, y) −→ (x + e(y), y) .

(ii) For any A-module chain maps f : C−→D, g : D−→C there is defined
an A[z, z−1]-module chain equivalence

T (gf) −→ T (fg) ; (x, y) −→ (f(x), f(y)) .

(iii) If C is a finitely dominated A-module chain complex and h : C−→C
is any chain map the algebraic mapping torus T (h : C−→C) has a canonical
simple chain homotopy type (as in 6.3). If

(D, f : C−→D, g : D−→C, gf ' 1 : C−→C)

is a finite domination of C then for any choice of basis for D the algebraic
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mapping torus T (fhg : D−→D) is a finite based f.g. free A[z, z−1]-module
chain complex in the canonical simple chain homotopy type.

Definition 21.10 The Whitehead group of A[z, z−1] is

Wh(A[z, z−1]) =





Wh(π × Z)
coker(K1(Z[z, z−1])−→K1(A[z, z−1]))

= K1(A[z, z−1])/{± z}
{

if A = Z[π] is a group ring ,

otherwise .

The splitting theorem for Wh(A[z, z−1]) involves the following K-group
of nilpotent endomorphisms.

Definition 21.11 (i) The nilpotent class group Nil0(A) is the abelian group
generated by pairs (P, ν) with P a f.g. projective A-module and ν : P−→P
a nilpotent endomorphism, with one relation

(P, ν) = (P ′, ν ′) + (P ′′, ν ′′) ∈ Nil0(A)

for each exact sequence

0 −→ P ′ f−→ P
f ′−→ P ′′ −→ 0

with
νf = fν ′ : P ′ −→ P , ν ′′f ′ = f ′ν : P −→ P ′′ .

(ii) The reduced nilpotent class group is

Ñil0(A) = coker(K0(A)−→Nil0(A))

with
K0(A) −→ Nil0(A) ; [P ] −→ [P, 0] .

The direct sum decomposition

Nil0(A) = K0(A)⊕ Ñil0(A)

is such that the projective class [P ] ∈ K0(A) a component of the nilpotent
class [P, ν] ∈ Nil0(A).

See Ranicki [124, Chapter 9] for the chain complex treatment of the nilpo-
tent class group Nil0(A) of a ring A, including the definition of the nilpotent
class [P, ν] ∈ Nil0(A) of a finitely dominated A-module chain complex P
with a chain homotopy nilpotent self chain map ν : P−→P .

Let i+ : A−→A[z], i : A−→A[z, z−1] be the inclusions.
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Proposition 21.12 (Bass [4]) (i) The torsion group of A[z] is such that

K1(A[z]) = K1(A)⊕ Ñil0(A) ,

with an isomorphism

K1(A)⊕ Ñil0(A) −→ K1(A[z]) ;

(τ, [P, ν]) −→ i+! τ + τ(1− zν : P [z]−→P [z]) .

(ii) The torsion group of A[z, z−1] is such that

K1(A[z, z−1]) = K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A) ,

with an isomorphism

K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A) −→ K1(A[z, z−1]) ;

(τ, [P ], [P+, ν+], [P−, ν−]) −→ i!τ + τ(−z : P [z, z−1]−→P [z, z−1])

+ τ(1− zν+ : P+[z, z−1]−→P+[z, z−1])

+ τ(1− z−1ν− : P−[z, z−1]−→P−[z, z−1]) .

(iii) The Whitehead group of A[z, z−1] is such that

Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) .

Definition 21.13 A Mayer–Vietoris presentation (C +, C −) of a finite
based f.g. free A[z, z−1]-module chain complex C is a based f.g. free A[z]-
module subcomplex C + ⊂ C together with a based f.g. free A[z−1]-module
subcomplex C − ⊂ C such that C +∩C − ⊂ C is a based f.g. free A-module
subcomplex, with

C = A[z, z−1]⊗A[z] C + = A[z, z−1]⊗A[z−1] C − ,

and such that the basis elements of C+, C−, C+ ∩ C− are each of the type
zNb for some basis element b ∈ C and N ∈ Z.

Proposition 21.14 (Ranicki [124]) (i) Every finite based f.g. free A[z, z−1]-
module chain complex C admits a Mayer–Vietoris presentation (C +, C −).

(ii) Given a finite based f.g. free A[z, z−1]-module chain complex C and
a Mayer–Vietoris presentation (C +, C −) define the finite based f.g. free
A-module chain complexes

D = C+ ∩ C− , E = C+ ∩ ζC− .

The injections

f+ : D −→ E ; x −→ x , f− : D −→ E ; y −→ ζy
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are such that there is defined a short exact sequence of finite based f.g. free
A[z, z−1]-module chain complexes

0 −→ D[z, z−1]
f+ − z−1f−
−−−−−−−−→ E[z, z−1] −→ C −→ 0

with torsion τ = 0 ∈ Wh(A[z, z−1]). In particular, C is simple chain
equivalent to W(f+, f−).

ζj−1E ζjE ζj+1E

ζj−1D ζjD ζj+1D ζj+2D

Example 21.15 Let W be a connected finite CW complex with funda-
mental group π1(W ) = π × Z. Let W̃ be the universal cover of W , so that
W = W̃/π is an infinite cyclic cover of W with π1(W ) = π, and a generating
covering translation ζ : W−→W induces ζ∗ = 1 : π−→π. Assume that W
has a CW π1-fundamental domain (V ; U, ζU), so that π1(U) = π1(V ) = π
and W = W(f+, f−) with

f+ : U −→ V ; x −→ x , f− : U −→ V ; x −→ ζx .

Let

W
+ =

∞⋃

j=0

ζjV , W
− =

−1⋃

j=−∞
ζjV ⊂ W =

∞⋃

j=−∞
ζjV ,

and let W̃ +, W̃ − ⊂ W̃ be the lifts of W
+
, W

− ⊂ W . The cellular chain
complex

C(W̃ ) = W(f̃+, f̃−) = C(f̃+ − z−1f̃− : C(Ũ)[z, z−1]−→C(Ṽ )[z, z−1])

is a finite complex of based f.g. free Z[π][z, z−1]-modules with a Mayer–
Vietoris presentation (C(W̃ +), C(W̃ −)) such that

C(W̃ +) = coker(f̃+ − z−1f̃− : zC(Ũ)[z]−→C(Ṽ )[z]) ,

C(W̃ −) = coker(f̃+ − z−1f̃− : z−1C(Ũ)[z−1]−→z−1C(Ṽ )[z−1]) ,

C(W̃ +) ∩ C(W̃ −) = C(Ũ) , C(W̃ +) ∩ ζC(W̃ −) = C(Ṽ ) .
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C(ζj−1Ṽ +) C(ζj Ṽ +) C(ζj+1Ṽ +)

C(ζj−1Ũ +) C(ζjŨ +) C(ζj+1Ũ +) C(ζj+2Ũ +)

By analogy with 13.18 :

Proposition 21.16 Given A-module chain maps i+ : C−→E, i− : C−→F ,
j+ : D−→F , j− : D−→E let

E ∪C F = C(
(

i+

i−

)
: C−→E⊕F ) , E ∪D F = C(

(
j+

j−

)
: D−→E⊕F ) .

The algebraic mapping coequalizers of the chain maps

f(i, j)+ : C
i+−→ E −→ E ∪D F , f(i, j)− : C

i−−→ F −→ E ∪D F ,

g(i, j)+ : D
j+

−→ F −→ F ∪C E , g(i, j)− : D
j−−→ E −→ F ∪C E

are related by a canonical A[z, z−1]-module chain equivalence

W(f(i, j)+, f(i, j)−) ' W(g(i, j)+, g(i, j)−) ,

which is simple if C, D, E, F are finite and based f.g. free.
Proof The A[z, z−1]-module chain complex

B = C(
(

i+ j+

z−1i− j−

)
: (C ⊕D)[z, z−1]−→(E ⊕ F )[z, z−1])

can be cut open along either C or D, so that both W(f(i, j)+, f(i, j)−) and
W(g(i, j)+, g(i, j)−) are chain equivalent to B.
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Algebraic bands

An ‘algebraic band’ is the chain complex analogue of a CW band. We
shall now recall from Ranicki [124, Chapter 20] the algebraic band version
of the Whitehead torsion obstruction of Farrell [47] and Siebenmann [145]
for fibring a manifold band over S1. In Chapters 23–25 we shall develop the
chain complex analogues of forward and reverse tameness, relaxation, and
ribbons, which will then be applied in Chapter 26 to obtain an algebraic
version of the homotopy theoretic twist glueing of Chapter 19.

Definition 22.1 A chain complex band is a finite based f.g. free A[z, z−1]-
module chain complex C which is A-finitely dominated, so that the projec-
tive class [C] ∈ K0(A) is defined.

Proposition 22.2 (i) If C is a finite based f.g. free A-module chain complex
and h : C−→C is a chain equivalence the algebraic mapping torus T (h) is
an A[z, z−1]-module chain complex band.

(ii) If C is a finitely dominated A-module chain complex and h : C−→C is
a chain equivalence then any finite based f.g. free A-module chain complex
E chain equivalent to T (h) is an A[z, z−1]-module chain complex band. If
(D, f : C−→D, g : D−→C, gf ' 1 : C−→C) is a finite domination of C
then E = T (fhg : D−→D) is such a chain complex band in the canonical
simple chain homotopy type of T (h).

For any f.g. free A[z, z−1]-module chain complex C there are defined exact
sequences of A[z, z−1]-module chain complexes

0 −→ C[z, z−1]
1− zζ−1

−−−−−→ C[z, z−1] −→ C −→ 0 ,

0 −→ C[z, z−1]
1− z−1ζ
−−−−−→ C[z, z−1] −→ C −→ 0

263
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with
ζ : C −→ C ; x −→ zx ,

C[z, z−1] −→ C ;
∞∑

j=−∞
xjz

j −→
∞∑

j=−∞
ζj(xj) .

If C is a band the induced A[z, z−1]-module chain maps

T ′(ζ−1) = C(1− zζ−1 : C[z, z−1]−→C[z, z−1]) −→ C ,

T (ζ) = C(1− z−1ζ : C[z, z−1]−→C[z, z−1]) −→ C

are A[z, z−1]-module chain equivalences.

Definition 22.3 The fibring obstructions of an A[z, z−1]-module chain com-
plex band C are

Φ+(C) = τ(T ′(ζ−1)−→C) ,

Φ−(C) = τ(T (ζ)−→C) ∈ Wh(A[z, z−1]) .

Proposition 22.4 Let W be a connected finite CW complex with funda-
mental group π1(W ) = π × Z and universal cover W̃ , so that W = W̃/π is
an infinite cyclic cover of W with π1(W ) = π, and

Z[π1(W )] = Z[π × Z] = Z[π][z, z−1] .

Let c : W−→S1 be a map inducing

c∗ = projection : π1(W ) = π × Z −→ π1(S1) = Z .

Then (W, c) is an (untwisted) CW band if and only if the cellular Z[π][z, z−1]-
module chain complex C(W̃ ) is a chain complex band, in which case the
fibring obstructions of (W, c) are the fibring obstructions of C(W̃ ) :

Φ±(W, c) = Φ±(C(W̃ )) ∈ Wh(π1(W )× Z) .

For any finite based f.g. free A[z, z−1]-module chain complex C and any
Mayer–Vietoris presentation (C+, C−) let

f+ : D = C+ ∩ C− −→ E = C+ ∩ ζC− ; x −→ x ,

f− : D = C+ ∩ C− −→ E = C+ ∩ ζC− ; y −→ ζy ,

so that as in 21.14 there is defined an exact sequence

0 −→ D[z, z−1]
f+ − z−1f−
−−−−−−−−→ E[z, z−1] −→ C −→ 0
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with τ = 0 ∈ Wh(A[z, z−1]). The A-module chain maps

g+ : E −→ C+ ; x −→ x , g− : E −→ C− ; x −→ ζ−1x ,

ζ+ : C+ −→ C+ ; x −→ ζx , ζ− : C− −→ C− ; x −→ ζ−1x

are such that there are defined commutative squares

D wf−

u
g+f+

E

u
g+

C+ wζ+

C+

D wf+

u
g−f−

E

u
g−

C− wζ−
C−

giving rise to exact sequences

0 −→ D

(
f+

g−f−
)

−−−−−−→ E ⊕ C− (−g− ζ−)
−−−−−−→ C− −→ 0 ,

0 −→ D

(
f−

g+f+

)

−−−−−−→ E ⊕ C+
(−g+ ζ+)
−−−−−−→ C+ −→ 0

and chain equivalences

(g−f−, g−) : C(f+ : D−→E)
'−→ C(ζ− : C−−→C−) ,

(g+f+, g+) : C(f− : D−→E)
'−→ C(ζ+ : C+−→C+) .

Proposition 22.5 (Ranicki [124, Chapter 20 ; 126]) (i) The fibring obstruc-
tions of an A[z, z−1]-module chain complex band C are simple chain ho-
motopy invariants, such that Φ+(C) = Φ−(C) = 0 ∈ Wh(A[z, z−1]) if and
only if C is simple chain equivalent to the algebraic mapping torus T (h) of a
simple self chain equivalence h : F−→F of a finite based f.g. free A-module
chain complex F .

(ii) A finite based f.g. free A[z, z−1]-module chain complex C is a band
if and only if for any Mayer–Vietoris presentation (C+, C−) the A-module
chain complexes C+, C− are finitely dominated. If C is a band then C/C+,
C/C− are also finitely dominated, and the fibring obstructions of C are
given by

Φ+(C) = (φ+,−[C−], [C/C+, ζ], [C/C−, ζ−1]) ,

Φ−(C) = (φ−, [C+], [C/C+, ζ], [C/C−, ζ−1])

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

with [C/C+, ζ], [C/C−, ζ−1] the classes of the chain homotopy nilpotent
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A-module chain maps

ζ : C/C+ −→ C/C+ ; x −→ zx ,

ζ−1 : C/C− −→ C/C− ; x −→ z−1x .

The torsions

φ+ = −τ((g−f−, g−) : C(f+ : D−→E)−→C(ζ− : C−−→C−)) ,

φ− = −τ((g+f+, g+) : C(f− : D−→E)−→C(ζ+ : C+−→C+)) ∈ Wh(A)

are defined using the canonical simple chain homotopy types on C(ζ+ :
C+−→C+) and C(ζ− : C−−→C−) given by 6.3, and are such that

φ+ − φ− = τ(ζ : C−→C) ∈ Wh(A) .

(iii) The fibring obstructions are simple chain homotopy invariants of an
A[z, z−1]-module chain complex band C. The difference

Φ+(C)− Φ−(C) = (φ+ − φ−,−[C+]− [C−], 0, 0)

= (τ(ζ : C−→C),−[C], 0, 0)

= τ(−z−1ζ : C[z, z−1]−→C[z, z−1])

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

is a chain homotopy invariant of C.
(iv) For any chain equivalence h : C ′−→C of A[z, z−1]-module chain com-

plex bands

τ(h) = Φ+(C)− Φ+(C ′)

= Φ−(C)− Φ−(C ′) ∈ Wh(A[z, z−1]) .

Example 22.6 Given finite based f.g. free A-module chain complexes D,E
and chain equivalences f+, f− : D−→E define an A[z, z−1]-module chain
complex band

C = C(f+ − z−1f− : D[z, z−1]−→E[z, z−1]) .

The fibring obstructions of C are given by

Φ+(C) = (τ(f−), 0, 0, 0) ,

Φ−(C) = (τ(f+), 0, 0, 0)

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) .
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Example 22.7 If C is a finitely dominated A-module chain complex and
h : C−→C is a chain equivalence the algebraic mapping torus T (h) has the
canonical simple chain homotopy type of a chain complex band (22.2 (ii)),
with respect to which

Φ+(T (h)) = (τ(h),−[C], 0, 0) ,

Φ−(T (h)) = (0, 0, 0, 0)

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) .



23

Algebraic tameness

We shall now develop algebraic analogues of tameness for A[z]- and A[z, z−1]-
module chain complexes for any ring A, corresponding to the geometric
tameness properties of the ends of infinite cyclic covers of finite CW com-
plexes. The algebraic theory of tameness will be applied in 23.22 to prove
that an end W

+ of an infinite cyclic cover W of a finite CW complex W
with π1(W ) = π1(W )× Z is forward (resp. reverse) tame if and only if the
cellular Z[π1(W )]-module chain complex C(W̃ +) is forward (resp. reverse)
tame.

Definition 23.1 (i) The formal power series extension of A is the ring

A[[z]] = {
∞∑

j=0

ajz
j | aj ∈ A} ,

without any finiteness conditions on the coefficients aj . Similarly for A[[z−1]],
which is isomorphic to A[[z]].

(ii) The Novikov polynomial extension of A is the ring

A((z)) = A[[z]][z−1] = {
∞∑

j=−∞
ajz

j | aj ∈ A, {j ≤ 0 | aj 6= 0} finite}

obtained from A[[z]] by inverting z. Similarly for A((z−1)), which is iso-
morphic to A((z)).

(iii) The formal Laurent polynomial extension A[[z, z−1]] is the A[z, z−1]-
bimodule consisting of all the formal power series

A[[z, z−1]] = {
∞∑

j=−∞
ajz

j | aj ∈ A} .

268
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Note that

A[[z]] ⊂ A((z)) ⊂ A[[z, z−1]] ,

A[[z−1]] ⊂ A((z−1)) ⊂ A[[z, z−1]] ,

A[[z]] ∩A[[z−1]] = A , A((z)) ∩A((z−1)) = A[z, z−1] .

Remark 23.2 A compact manifold M fibres over S1 if and only if it admits
a Morse function c : M−→S1 without critical points. Novikov [106] applied
the rings A((z)), A((z−1)) to the Morse theory of S1-valued functions on
compact manifolds M with π1(M) = Z, A = Z. Farber [44, 45] proved that
in this case there exists a Morse function c : M−→S1 with the minimum
number of critical points given by Z((z))-coefficient homology, recovering
the fibring theorem of Browder and Levine [13]. Pazhitnov [108] applied
the Novikov rings with A = Z[π] to the Morse theory of S1-valued functions
on compact manifolds M with π1(M) = π × Z for any π, recovering the
fibring obstruction of Farrell [46, 47] and Siebenmann [145] as an A((z))-
coefficient Reidemeister torsion. The main result of [108] gives a direct proof
that a manifold band (M, c) with dim(M) ≥ 6 fibres over S1 if and only if
the A((z))-coefficient Reidemeister torsion is 0. See also Ranicki [126, 128].

Definition 23.3 Let C+ be a finite f.g. free A[z]-module chain complex.
(i) The locally finite chain complex of C+ is the induced A[[z]]-module

chain complex

C+,lf = A[[z]]⊗A[z] C+ .

(ii) The end complex of C+ is the A[z]-module chain complex

e(C+) = C(i : C+−→C+,lf )∗+1 ,

with i : C+−→C+,lf the inclusion.
(iii) C+ is reverse tame if it is A-finitely dominated, in which case the

projective class [C+] ∈ K0(A) is defined.
(iv) C+ is reverse collared if it is chain homotopy A-finite, i.e. A-module

chain equivalent to a finite f.g. free A-module chain complex.

Similarly for an A[z−1]-module chain complex C−, with

C−,lf = A[[z−1]]⊗A[z−1] C− , e(C−) = C(i : C−−→C−,lf )∗+1 .
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Example 23.4 As in 21.15 let W be a connected finite CW complex
with π1(W ) = π × Z, such that the infinite cyclic cover W has a CW
π1-fundamental domain. The corresponding Mayer–Vietoris presentation
(C(W̃ +), C(W̃ −)) of C(W̃ ) is such that

C(W̃ ) = Z[π][z, z−1]⊗Z[π][z] C(W̃ +) = Z[π][z, z−1]⊗Z[π][z−1] C(W̃ −) ,

C lf,π(W̃ +) = Z[π][[z]]⊗Z[π][z] C(W̃ +) ,

C lf,π(W̃ −) = Z[π][[z−1]]⊗Z[π][z−1] C(W̃ −) .

It is clear that if W
+ is reverse tame (resp. collared) then the Z[π][z]-

module chain complex C(W̃ )+ is reverse tame (resp. collared) – see 23.22
below for the converse.

Proposition 23.5 A finite f.g. free A[z]-module chain complex C+ is re-
verse collared if and only if C+ is reverse tame and [C+] = 0 ∈ K̃0(A).
Proof The reduced projective class [D] ∈ K̃0(A) of any finitely dominated
A-module chain complex D is such that [D] = 0 if and only if D is chain
homotopy A-finite.

Definition 23.6 A commutative square of rings and morphisms

A wf

u
f ′

B

u
g

B′ wg′
A′

is cartesian if the sequence of additive groups

0 −→ A

(
f
f ′

)

−−−−→ B ⊕B′ (g − g′)
−−−−−−−−−−→ A′ −→ 0

is exact.

Proposition 23.7 (Ranicki [124, 126]) (i) The various polynomial exten-
sions of a ring A fit into cartesian squares of rings

A[z] w

u

A[z, z−1]

u
A[[z]] w A((z))

A[z−1] w

u

A[z, z−1]

u
A[[z−1]] w A((z−1))
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(ii) A Mayer–Vietoris presentation (C+, C−) of a finite based f.g. free
A[z, z−1]-module chain complex C determines exact sequences

0 −→ C+ −→ C+,lf ⊕ C −→ A((z))⊗A[z] C+ −→ 0 ,

0 −→ C+ ∩ C− −→ C+,lf ⊕ C− −→ A((z))⊗A[z] C+ −→ 0 ,

0 −→ C+ ∩ C− −→ C+ ⊕ C−,lf −→ A((z−1))⊗A[z] C+ −→ 0 ,

with

A((z))⊗A[z] C+ = A((z))⊗A[z−1] C− = A((z))⊗A[z,z−1] C ,

A((z−1))⊗A[z] C+ = A((z−1))⊗A[z−1] C− = A((z−1))⊗A[z,z−1] C .

(iii) A finite f.g. free A[z]-module chain complex C+ is reverse tame if
and only if H∗(A((z−1))⊗A[z] C+) = 0 .

(iii)′ A finite f.g. free A[z−1]-module chain complex C− is reverse tame if
and only if H∗(A((z))⊗A[z−1] C−) = 0 .

(iv) A finite f.g. free A[z, z−1]-module chain complex C is A-finitely dom-
inated if and only if

H∗(A((z))⊗A[z,z−1] C) = H∗(A((z−1))⊗A[z,z−1] C) = 0 .

(v) A finite based f.g. free A[z, z−1]-module chain complex C is a band
if and only if for any Mayer–Vietoris presentation (C+, C−) of C the A-
module chain maps

C+ −→ C+,lf ⊕ C ; x −→ (x, x) ,

C− −→ C−,lf ⊕ C ; x −→ (x, x)

are homology equivalences, in which case they are chain equivalences.

Since A[[z, z−1]] is not a ring, the notion of ‘A[[z, z−1]]-module’ does not
quite make sense. We shall only use it in the following context : if M is an
A[z, z−1]-module the ‘induced A[[z, z−1]]-module’ is the induced A[z, z−1]-
module

M lf = A[[z, z−1]]⊗A[z,z−1] M ,

constructed using the A[z, z−1]-bimodule structure of A[[z, z−1]].

Definition 23.8 Let C be a finite f.g. free A[z, z−1]-module chain complex.
The locally finite chain complex of C is the induced A[[z, z−1]]-module chain
complex

C lf = A[[z, z−1]]⊗A[z,z−1] C .
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Proposition 23.9 Let C be a finite f.g. free A[z, z−1]-module chain com-
plex.

(i) The homology of the locally finite chain complex C lf fits into a long
exact sequence of A[z, z−1]-modules

. . . −→ Hr+1(C lf )
∂−→ Hr(C)

−→ Hr(A((z))⊗A[z,z−1] C)⊕Hr(A((z−1))⊗A[z,z−1] C)

−→ Hr(C lf ) −→ . . . .

(ii) C is A-finitely dominated if and only if the connecting morphisms in
(i) are isomorphisms ∂ : H∗+1(C lf ) ∼= H∗(C).
Proof (i) This is the homology exact sequence induced by the short exact
sequence of A-modules

0 −→ C −→ (A((z))⊗A[z,z−1] C)⊕ (A((z−1))⊗A[z,z−1] C) −→ C lf −→ 0 .

(ii) Immediate from (i) and 23.7 (iv).

Example 23.10 Let W be a connected finite CW complex with a map
c : W−→S1 such that

c∗ = projection : π1(W ) = π × Z −→ π1(S1) = Z ,

and let W̃ be the universal cover of W . The infinite cyclic cover W = c∗R =
W̃/π of W is finitely dominated (i.e. (W, c) is a band) if and only if the finite
f.g. free Z[π][z, z−1]-module chain complex C(W̃ ) is Z[π]-finitely dominated
(6.8 (i)). Thus by 23.9 (W, c) is a band if and only if the Z[π][z, z−1]-module
morphisms

∂ : H lf,π
∗+1(W̃ ) = H∗+1(C(W̃ )lf ) −→ H∗(W̃ ) = H∗(C(W̃ ))

are isomorphisms. In particular, this gives an algebraic proof of the isomor-
phism H lf,π

∗+1(W̃ ) ∼= H∗(W̃ ) for a band (W, c) obtained geometrically in 15.7
(i).

Let C be an A[z, z−1]-module chain complex band with a Mayer–Vietoris
presentation (C+, C−), and let

D = C+ ∩ C− , E = C+ ∩ ζC− .

Write the inclusions as

f+ : D −→ E ; x −→ x , f− : D −→ E ; y −→ ζy ,
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so that there are defined exact sequences

0 −→ D[z, z−1]
f+ − z−1f−
−−−−−−−−→ E[z, z−1] −→ C −→ 0 ,

0 −→ zD[z]
f+ − z−1f−
−−−−−−−−→ E[z] −→ C+ −→ 0 ,

0 −→ z−1D[z−1]
f+ − z−1f−
−−−−−−−−→ z−1E[z−1] −→ C− −→ 0 .

Proposition 23.11 (i) The A-module chain maps

u : D −→ C ⊕ C +,lf ⊕ C −,lf ; x −→ (x, x, x) ,

v : E −→ C ⊕ C +,lf ⊕ C −,lf ; y −→ (y, y, ζ−1y)

are chain equivalences, such that there are defined commutative squares

D wf+

u

u '

E

u

' v

C ⊕ C +,lf ⊕ C −,lf w1⊕ 1⊕ ζ −,lf

C ⊕ C +,lf ⊕ C −,lf

D wf−

u

u '

E

u

' v

C ⊕ C +,lf ⊕ C −,lf wζ ⊕ ζ +,lf ⊕ 1
C ⊕ C +,lf ⊕ C −,lf

(ii) The fibring obstructions of C are such that

Φ+(C) = (φ+,−[C−],−[C +,lf , ζ +,lf ],−[C −,lf , ζ −,lf ]) ,

Φ−(C) = (φ−, [C+],−[C +,lf , ζ +,lf ],−[C −,lf , ζ −,lf ])

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

with

φ+ = τ(v−1(ζ ⊕ 1⊕ 1)u : D−→E) , φ− = τ(v−1u : D−→E) ∈ Wh(A)

such that φ+ − φ− = τ(ζ : C−→C).
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Proof (i) The A-module chain maps u, v are chain equivalences since the
natural A-module chain maps C+−→C+,lf ⊕C, C−−→C−,lf ⊕C are chain
equivalences (by 23.7 (v)) and there are defined chain homotopy squares

D w

u

C+

u
j+

C− wj−
C

E w

u

C+

u
j+

C− wζj−
C

with j+ : C+−→C, j− : C−−→C the inclusions.
(ii) There are defined chain equivalences

(C/C+, ζ) ' S(C +,lf , ζ +,lf ) , (C/C−, ζ−1) ' S(C −,lf , ζ −,lf ) ,

so that

[C/C+, ζ] = −[C +,lf , ζ +,lf ] , [C/C−, ζ−1] = −[C −,lf , ζ −,lf ] ∈ Ñil0(A) .

Combining this with (i) and 22.5 gives the expressions for the fibring ob-
structions Φ+(C), Φ−(C) ∈ Wh(A[z, z−1]).

Definition 23.12 Let C+ be a finite f.g. free A[z]-module chain complex.
(i) C+ is forward tame if the A-module chain map

ζ +,lf : C+,lf −→ C+,lf ; x −→ zx

is chain homotopy nilpotent, that is (ζ +,lf )k ' 0 for some k ≥ 0.
(ii) C+ is forward collared if it is forward tame and C+,lf is chain homo-

topy A-finite, i.e. A-module chain equivalent to a finite f.g. free A-module
chain complex.

Similarly for an A[z−1]-module chain complex C−, with

ζ−,lf : C−,lf −→ C−,lf ; x −→ z−1x .

Proposition 23.13 (Ranicki [130]) (i) A finite f.g. free A[z]-module chain
complex C+ is such that

H∗(A[z, z−1]⊗A[z] C+) = 0

if and only if C+ is A-finitely dominated and the A-module chain map ζ+ :
C+−→C+; x−→zx is chain homotopy nilpotent.

(ii) A finite f.g. free A[[z]]-module chain complex B is such that

H∗(A((z))⊗A[[z]] B) = 0

if and only if B is A-finitely dominated and the A-module chain map ζ :
B−→B; x−→zx is chain homotopy nilpotent.
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Definition 23.14 Let C+ be a finite f.g. free A[z]-module chain complex.
A cofinite neighbourhood (of infinity) D ⊆ C+ is a f.g. free A-module sub-
complex such that zkC+ ⊆ D for some k ≥ 0.

Proposition 23.15 Let C+ be a finite f.g. free A[z]-module chain complex.
(i) The following conditions are equivalent :

(a) C+ is forward tame,
(b) H∗(A((z))⊗A[z] C+) = 0 ,
(c) the inclusion j : D−→C+ of a cofinite neighbourhood D ⊆ C+ is such

that jlf ' 0 : Dlf−→C+,lf ,
(d) the inclusions

i+ : C+ −→ C+,lf = A[[z]]⊗A[z] C+ ; x −→ 1⊗ x ,

q+ : C+ −→ C = A[z, z−1]⊗A[z] C+ ; x −→ 1⊗ x

are the components of a homology equivalence
(

i+

q+

)
: C+ '−→ C+,lf ⊕ C ,

(e) the composite A-module chain map

e(C+) = C(i+ : C+−→C+,lf )∗+1 −→ C+
q+

−→ C

is a homology equivalence.

(ii) If C+ is forward tame then C+,lf is A-finitely dominated, and the
nilpotent class of (C+,lf , ζ +,lf ) is such that

[C+,lf , ζ +,lf ] = −[C/C+, ζ] = −[C−/(C+ ∩ C−), ζ] ∈ Nil0(A) .

(iii) C+ is forward collared if and only if H∗(A((z))⊗A[z] C+) = 0 and

[C+,lf ] = 0 ∈ K̃0(A) .

(iv) If there exists a cofinite neighbourhood D ⊆ C+ such that Dlf ' 0
then C+ is forward collared.
Proof (i) (a) =⇒ (b) For any k ≥ 0 there is defined an exact sequence of
A-module chain complexes

0 −→ C+,lf
(ζ+,lf )k

−−−−→ C+,lf −→ C+/zkC+ −→ 0

which is split in each degree, so that there is defined an A-module chain
equivalence

C+/zkC+ ' C((ζ +,lf )k : C+,lf−→C+,lf ) .
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Moreover, C+/zkC+ is a finite f.g. free A-module chain complex. If k ≥ 0
is so large that (ζ +,lf )k ' 0 : C+,lf−→C+,lf there is defined an A-module
chain equivalence

C+/zkC+ ' C+,lf ⊕ SC+,lf .

Thus C+,lf is A-finitely dominated, and by 23.13 (ii)

H∗(A((z))⊗A[z] C+) = H∗(A((z))⊗A[[z]] C+,lf ) = 0 .

(b) =⇒ (a) Immediate from 23.13 (ii).
(a) =⇒ (c) If (ζ +,lf )k ' 0 : C+,lf−→C+,lf the inclusion j : D−→C+

of the cofinite neighbourhood D = zkC+ ⊆ C+ is such that jlf ' 0 :
Dlf−→C+,lf .

(c) =⇒ (a) For any cofinite neighbourhood D ⊆ C+ let k ≥ 0 be so large
that zkC+ ⊆ D, in which case there are factorizations

(ζ+)k : C+ −→ D
j−→ C+ ,

(ζ +,lf )k : C+,lf −→ Dlf
jlf

−→ C+,lf .

If jlf ' 0 then (ζ +,lf )k ' 0 : C+,lf−→C+,lf .
(b) ⇐⇒ (d) Immediate from 23.7 (ii).
(d) ⇐⇒ (e) Trivial.
(ii) From (i) and 23.13 (ii) with B = C+,lf , noting that the proof of 23.11

(ii) and excision give A-module chain equivalences

S(C+,lf , ζ +,lf ) ' (C/C+, ζ) ' (C−/(C+ ∩ C−), ζ) .

(iii) Immediate from (i).
(iv) Apply (i) and (iii), noting that jlf ' 0 : Dlf ' 0−→C+,lf and

[C+,lf ] = [Dlf ] = 0 ∈ K̃0(A) .

Similarly for an A[z−1]-module chain complex :

Proposition 23.15′ Let C− be a finite f.g. free A[z−1]-module chain com-
plex.

(i) The following conditions are equivalent :

(a) C− is forward tame,
(b) H∗(A((z−1))⊗A[z−1] C−) = 0 ,
(c) the inclusion j : D−→C− of a cofinite neighbourhood D ⊆ C− is such

that jlf ' 0 : Dlf−→C−,lf ,
(d) the inclusions

i− : C− −→ C−,lf = A[[z−1]]⊗A[z−1] C− ; x −→ 1⊗ x ,

q− : C− −→ C = A[z, z−1]⊗A[z−1] C− ; x −→ 1⊗ x
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are the components of a homology equivalence
(

i−

q−

)
: C− '−→ C−,lf ⊕ C ,

(e) the composite A-module chain map

e(C−) = C(i− : C−−→C−,lf )∗+1 −→ C− q−−→ C

is a homology equivalence.

(ii) If C− is forward tame then C−,lf is A-finitely dominated, and the
nilpotent class of (C−,lf , ζ −,lf ) is such that

[C−,lf , ζ −,lf ] = −[C/C−, ζ−1] = −[C+/(C+ ∩ C−), ζ−1] ∈ Nil0(A) .

(iii) C− is forward collared if and only if H∗(A((z−1)⊗A[z−1] C
−) = 0 and

[C−,lf ] = 0 ∈ K̃0(A) .

(iv) If there exists a cofinite neighbourhood D ⊆ C− such that Dlf ' 0
then C− is forward collared.

In the following three propositions it is assumed that C is a finite based
f.g. free A[z, z−1]-module chain complex with a Mayer–Vietoris presentation
(C+, C−) .

Proposition 23.16 The following conditions are equivalent :

(i) C+ is forward tame,
(ii) C− is reverse tame,
(iii) H∗(A((z))⊗A[z,z−1] C) = 0 ,
(iv) the natural A-module chain map e(C+)−→C is a homology equiva-

lence,
(v) the A-module chain map

C+ −→ C ⊕ C+,lf ; x −→ (x, x)

is a homology equivalence.

If these conditions are satisfied

[C+,lf ] = [C+]− [C] = [C+ ∩ C−]− [C−] ∈ K0(A) ,

[C+,lf , ζ +,lf ] = −[C/C+, ζ] = −[C−/(C+ ∩ C−), ζ] ∈ Nil0(A) .

Proof Combine 23.7 and 23.15.
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Reversing the role of C+ and C− gives :

Proposition 23.16′ The following conditions are equivalent :

(i) C− is forward tame,
(ii) C+ is reverse tame,
(iii) H∗(A((z−1))⊗A[z,z−1] C) = 0 ,
(iv) the natural A-module chain map e(C−)−→C is a homology equiva-

lence,
(v) the A-module chain map

C− −→ C ⊕ C−,lf ; x −→ (x, x)

is a homology equivalence.

If these conditions are satisfied

[C−,lf ] = [C+]− [C] = [C+ ∩ C−]− [C−] ∈ K0(A) ,

[C−,lf , ζ −,lf ] = −[C/C−, ζ−1] = −[C+/(C+ ∩ C−), ζ−1] ∈ Nil0(A) .

Together, 23.16 and 23.16′ give :

Proposition 23.17 The following conditions are equivalent :

(i) C is a chain complex band,
(ii) C+ is forward and reverse tame,
(iii) H∗(A((z))⊗A[z] C+) = H∗(A((z−1))⊗A[z] C+) = 0 ,
(iv) the natural A-module chain maps e(C+)−→C, e(C−)−→C are both

homology equivalences.

If these conditions are satisfied

[C] = [C+] + [C−]− [C+ ∩ C−]

= [C+]− [C+,lf ] = [C−]− [C−,lf ] ∈ K0(A)

and

[C+,lf , ζ +,lf ] = −[C/C+, ζ] = −[C−/(C+ ∩ C−), ζ] ,

[C−,lf , ζ −,lf ] = −[C/C−, ζ−1] = −[C+/(C+ ∩ C−), ζ−1] ∈ Nil0(A) .

Example 23.18 Let

C = T (h) = C(1− zh : D[z, z−1]−→D[z, z−1])
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be the algebraic mapping torus of a chain map h : D−→D for a finite based
f.g. free A-module chain complex D. The finite f.g. free A[z]-module chain
complex

C+ = C(1− zh : D[z]−→D[z])

is forward collared, and (equivalently) the finite f.g. free A[z−1]-module
chain complex

C− = C(1− zh : z−1D[z−1]−→D[z−1])

is reverse collared, with A-module chain equivalences

C+,lf ' 0 , C− ' D .

In general, C+ is not reverse tame and (equivalently) C− is not forward
tame. See 23.25 for an explicit example of such non-tameness. If h : D−→D
is a chain equivalence then C is a chain complex band, with C+ reverse
collared, C− forward collared and C ' D A-module chain homotopy finite.

Example 23.19 Let A be an integral domain, and let

p(z) =
n∑

j=m

ajz
j ∈ A[z] (aj ∈ A)

be a polynomial over A, with am, an 6= 0 ∈ A.
(i) The polynomial p(z) is a unit in A((z)) (resp. A((z−1))) if and only if

am (resp. an) is a unit in A.
(ii) The 1-dimensional f.g. free A[z]-module chain complex

C+ = C(p(z) : A[z]−→A[z])

is forward (resp. reverse) tame if and only if am (resp. an) is a unit in A.
(iii) The 1-dimensional based f.g. free A[z, z−1]-module chain complex

C = C(p(z) : A[z, z−1]−→A[z, z−1])

is a band if and only if am, an are both units in A.

Example 23.20 For any ring A and central non-zero divisor s ∈ A the
localization of A inverting s and the s-adic completion of A (2.28) are such
that

A[1/s] = A[z]/(1− zs) ,

Âs = lim←−
k

(A/skA) = A[[z]]/(z − s) .

In fact, A[1/s] = A[z]/(1− zs) is just a restatement of the identification of
2.28 (i)

A[1/s] = lim−→(A
s−→ A

s−→ A
s−→ A −→ . . .) .
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The localization of the completion Âs[1/s] fits into the cartesian square of
rings

A w

u

A[1/s]

u
Âs w Âs[1/s]

(See Ranicki [119] for the algebraic K- and L-theory of such squares). The
1-dimensional chain complexes

C+ = C(1− zs : A[z]−→A[z]) ,

C− = C(1− zs : z−1A[z−1]−→A[z−1])

' C(z−1 − s : A[z−1]−→A[z−1]) ,

C = C(1− zs : A[z, z−1]−→A[z, z−1])

= A[z, z−1]⊗A[z] C+ = A[z, z−1]⊗A[z−1] C−

define a Mayer–Vietoris presentation (C+, C−) of C such that

H0(C+) = H0(C) = A[1/s] ,

H0(C+,lf ) = H0(A[[z]]⊗A[z] C+) = 0 ,

H0(C−) = A ,

H0(C−,lf ) = H0(A[[z−1]]⊗A[z−1] C−) = Âs ,

H0(A((z))⊗A[z] C+) = H0(A((z))⊗A[z−1] C−) = 0 ,

H0(A((z−1))⊗A[z] C+) = H0(A((z−1))⊗A[z−1] C−) = Âs[1/s] .

Thus C+ is forward tame and C− is reverse tame. The following conditions
are equivalent :

(i) C+ is reverse tame,
(ii) C− is forward tame,
(iii) C is a band,
(iv) s ∈ A is a unit,
(v) Âs = 0 .
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Remark 23.21 Note that for s = z ∈ A = B[z] the localization–completion
square in 23.20 is just the localization–completion square in 23.7 (i)

B[z] w

u

B[z, z−1]

u
B[[z]] w B((z))

Given a connected CW complex W and a Z[π1(W )]-module Λ the Λ-
coefficient homology of W is defined as usual by

H∗(W ; Λ) = H∗(Λ⊗Z[π1(W )] C(W̃ )) ,

with C(W̃ ) the cellular Z[π1(W )]-module chain complex of the universal
cover W̃ .

Proposition 23.22 Let W be a connected finite CW complex with π1(W ) =
π × Z, so that W = W̃/π is an infinite cyclic cover of W with ζ∗ = 1 :
π1(W ) = π−→π. Given a fundamental domain (V ; U, ζU) for W let

W
+ =

∞⋃

j=0

ζjV , W
− =

−1⋃

j=−∞
ζjV ⊆ W .

(i) The following conditions are equivalent :

(a) the CW complex W
+ is forward tame,

(b) the CW complex W
− is reverse tame,

(c) the natural map e(W +)−→W is a homotopy equivalence,
(d) the finite f.g. free Z[π][z]-module chain complex C(W̃ +) is forward

tame,
(e) the finite f.g. free Z[π][z−1]-module chain complex C(W̃ −) is reverse

tame,
(f) H∗(W ;Z[π]((z))) = 0 .

If these conditions are satisfied

[W +]lf = −[W −] ∈ K̃0(Z[π1(W )]) .

Similarly with the role of W
+
, W

− reversed.
(ii) The following conditions are equivalent :

(a) W is infinite simple homotopy equivalent to an infinite cyclic cover X

of a finite CW complex X with X
+ forward collared,
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(b) W is infinite simple homotopy equivalent to an infinite cyclic cover X

of a finite CW complex X with X
− reverse collared,

(c) the finite f.g. free Z[π][z]-module chain complex C(W̃ +) is forward
collared,

(d) the finite f.g. free Z[π][z−1]-module chain complex C(W̃ −) is reverse
collared,

(e) H∗(W ;Z[π]((z))) = 0 and [W +]lf = 0 ∈ K̃0(Z[π1(W )]) ,
(f) H∗(W ;Z[π]((z))) = 0 and [W −] = 0 ∈ K̃0(Z[π1(W )]) .

Similarly with the role of W
+
, W

− reversed.
(iii) The following conditions are equivalent :

(a) the CW complex W is finitely dominated,
(b) C(W̃ ) is a chain complex band,
(c) W

+ is both forward and reverse tame,
(d) W

− is both forward and reverse tame,
(e) H∗(W ;Z[π]((z))) = H∗(W ;Z[π]((z−1))) = 0 .

Proof Combine 13.15 and 23.15, 23.16, 23.17.

Example 23.23 Let W = T (h) be the mapping torus of a self map h :
K−→K of a connected finite CW complex K. Let W = T (h) be the
canonical infinite cyclic cover of W , with classifying map c : W−→S1, and
define W

+ = T
+(h), W

− = T
−(h) as in 14.6 (vii). Then W

+ is forward
collared and W

− is reverse collared, but in general W
+ is not reverse tame

and W
− is not forward tame (cf. 23.25 below). If h : K−→K is a homotopy

equivalence then (W, c) is a CW band, with W
+ reverse collared, W

−

forward collared and W ' K homotopy finite.

In general, W
+ and W

− need be neither forward nor reverse tame, and
W need not be finitely dominated :

Example 23.24 Let W = S1 ∨ S1, the figure 8 space :

..........................
...........
.........
.........
........
........
........
.........
...........

..................
..............................................................................................................................................................................................................................................................................................

...........
.........
.........
........
........
........
.........
...........

.................
...........W
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and let W = c∗R be the infinite cyclic cover of W classified by a projection
c : W−→S1 collapsing one of the circles to the base point :

..........................
...........
.........
........
........
........
........
.........
...........

.................
...................................................................................................................................................................

...........
.........
........
........
........
........
.........
...........

.................
......................................................................................................................................... ..........................

...........
.........
........
........
........
........
.........
...........

.................
...................................................................................................................................................................

...........
.........
........
........
........
........
.........
...........

.................
......................................................................................................................................... ..........................

...........
.........
........
........
........
........
.........
...........

.................
.........................................................................................................................................

W

The cellular Z[z, z−1]-module chain complex of W is given by

C(W ) : . . . −→ 0 −→ Z[z, z−1]⊕ Z[z, z−1]
(1− z 0)
−−−−−−→ Z[z, z−1] .

The homology groups

H1(W ;Z((z))) = Z((z)) , H1(W ;Z((z−1))) = Z((z−1))

are non-zero, so that W
+, W

− are neither forward nor reverse tame, and
W is not finitely dominated. Actually, for the non-reverse-tameness and
non-finite-domination in this case it is enough to note that the homology
groups

H1(W
+) = Z[z] , H1(W

−) = Z[z−1] , H1(W ) = Z[z, z−1]

are not finitely generated (cf. 8.6).

Example 23.25 Fix an integer s ≥ 2. The mapping torus T (s : S1−→S1)
has fundamental group

π1(T (s)) = Z ∗s Z = {x, z | zxz−1 = xs}
= Z[1/s]×s Z ,

an extension of Z[1/s] by Z. The canonical infinite cyclic cover T (s) is
classified by the projection

π1(T (s)) −→ Z ; x −→ 0 , z −→ 1 ,

with

π1(T (s)) = 〈x〉 = ker(π1(T (s))−→Z)

such that there is defined an isomorphism

Z[1/s]
'−→ π1(T (s)) ;

∞∑

k=0

(nk/sk) −→
∞∏

k=0

z−kxnkzk .

Note that π1(T (s)) = Z[1/s] is not finitely generated. The cellular Z[z, z−1]-
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module chain complex of the infinite cyclic cover T (s) is

C(T (s)) : 0 −→ Z[z, z−1]

(
1− sz

0

)

−−−−−−→ Z[z, z−1]⊕ Z[z, z−1]

( 0 1− z )
−−−−−−−→ Z[z, z−1] ,

and

H1(T (s)) = Zs−1 ⊕ Z , H1(T (s)) = Z[1/s] ,

H1(T (s);Z((z))) = 0 , H1(T (s);Z((z−1))) = Ẑs[1/s] = Q̂s ,

H lf
1 (T (s)) = Ẑs ⊕ Z .

The space T (s) is not finitely dominated, and is neither forward nor reverse
tame. The positive half

T
+(s) = Tel(s) ' hocolim−−−−−→ (S1

s−→ S1
s−→ S1 −→ . . .)

is forward collared but not finitely dominated (and hence not reverse tame),
with

T
+(s) ' T (s) , H1(T

+(s)) = Z[1/s] ,

H lf
1 (T +(s)) = 0 , e(T +(s)) ' T (s) .

The negative half T
−(s) is the mapping cotelescope W(s) (2.16) – it is

homotopy equivalent (but not proper homotopy equivalent) to S1, and it is
reverse collared but not forward tame, with

T
−(s) ' S1 , H1(T

−(s)) = Z , H lf
1 (T −(s)) = Ẑs ,

e(T −(s)) ' holim←−−− (S1
s←− S1

s←− S1 ←− . . .)

' lim←− (S1
s←− S1

s←− S1 ←− . . .)

= the s-adic solenoid Ŝ1
s (2.18) .

See 23.28 for the homology of the s-adic solenoid.

Example 23.26 For any finite f.g. free A[z]-module chain complex C+ the
subcomplexes zjC+ ⊆ C+ (j ≥ 0) define an inverse system of A[z]-module
chain complexes

C+ ⊃ zC+ ⊃ z2C+ ⊃ . . . ⊃ zjC+ ⊃ zj+1C+ ⊃ . . .
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with

lim←−
j

zjC+ =
∞⋂

j=0

zjC+ = 0 , lim←−
j

1(C+/zjC+) = 0 ,

lim←−
j

(C+/zjC+) = A[[z]]⊗A[z] C+ = C+,lf ,

lim←−
j

1 zjC+ = (A[[z]]/A[z])⊗A[z] C+ = C+,lf/C+ ' e(C+)∗−1 .

By 2.19 there are defined short exact sequences

0−→ lim←−
j

1 Hr+1(C+/zjC+)−→Hr(C+,lf )−→ lim←−
j

Hr(C+/zjC+)−→ 0 ,

0−→ lim←−
j

1 Hr+1(zjC+)−→Hr(e(C+))−→ lim←−
j

Hr(zjC+)−→ 0 .

The A-modules

Mr = ker( 1− z−1ζ+ : Hr(C+)((z))−→Hr(C+)((z)))

= im(Hr+1(A((z))⊗A[z] C+)−→Hr(C+)((z))) ,

Nr = coker( 1− z−1ζ+ : Hr(C+)((z))−→Hr(C+)((z)))

= im(Hr(C+)((z))−→Hr(A((z))⊗A[z] C+))

are such that there are defined exact sequences of A-modules

0 −→ Nr −→ Hr(A((z))⊗A[z] C+) −→ Mr−1 −→ 0 ,

0−→Mr −→ lim←−
j

Hr(zjC+) −→ Hr(C) −→ Nr −→ lim←−
j

1 Hr(zjC+)−→ 0

with

C = A[z, z−1]⊗A[z] C+ = coker( 1− z−1ζ+ : C+[z−1]−→C+[z−1]) ,

lim←−
j

Hr(zjC+) = ker(1− z−1ζ+ : Hr(C+)[[z]]−→Hr(C+)[[z]]) ,

lim←−
j

1 Hr(zjC+) = coker(1− z−1ζ+ : Hr(C+)[[z]]−→Hr(C+)[[z]]) .

By 23.15 the following conditions are equivalent :

(i) C+ is forward tame,
(ii) H∗(A((z))⊗A[z] C+) = 0 ,
(iii) H∗(e(C+)) = H∗(C) ,
(iv) M∗ = N∗ = 0 ,
(v) H∗(C) = lim←−

j

H∗(zjC+) , lim←−
j

1 H∗(zjC+) = 0 .
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Condition (v) corresponds to

H∗(e(W )) = lim←−
j

H∗(Wj) , lim←−
j

1 H∗(Wj) = 0

for a forward tame space W with a sequence of closed cocompact subspaces
W ⊇ W0 ⊇ W1 ⊇ . . . such that

⋂
j

Wj = ∅ (7.10 (ii)).

Example 23.27 As in 23.20 let A be a ring with a central non-zero divisor
s ∈ A. For the reverse collared 1-dimensional f.g. free A[z]-module chain
complex C+ defined by

d = z − s : C+
1 = A[z] −→ C+

0 = A[z]

the A-modules in 23.26 are
H0(C+) = A , H0(C) = A[1/s] ,

H0(C+,lf ) = lim←−
j

H0(C+/zjC+) = lim←−
j

(A/sjA) = Âs ,

M∗ = 0 , N0 = Âs[1/s] , Nr = 0 (r 6= 0) ,

H0(e(C+)) = lim←−
j

H0(zjC+) = lim←−
j

sjA =
∞⋂

j=0

sjA ,

H−1(e(C+)) = lim←−
j

1 H0(zjC+) = lim←−
j

1 sjA = Âs/A ,

so that C+ is forward tame if and only if s ∈ A is a unit.

Example 23.28 For any integer s ≥ 2 let W = T
−(s) = W(s : S1−→S1)

be the mapping cotelescope of 23.25. Let p : W−→[0,∞) be the canonical
proper map, so that the cofinite subcomplexes

Wj = p−1[j,∞) ⊂ W (j ≥ 0)

define an inverse system

W = W0 ⊃ W1 ⊃ . . . ⊃
⋂

j

Wj = ∅ .

Each Wj is a copy of W , and the inclusions Wj−→Wj−1 are given up to
homotopy by

Wj ' S1
s−→ Wj−1 ' S1 .

The cellular chain complex of W is given by

C(W ) : Z[z]

(
z − s

0

)

−−−−−→ Z[z]⊕ Z[z]
( 0 z − 1)
−−−−−−−→ Z[z]



23. Algebraic tameness 287

with
C(Wj) = zjC(W ) ⊆ C(W ) (j ≥ 0) .

The end space e(W ) is homotopy equivalent to the s-adic solenoid Ŝ1
s =

lim←−(s : S1−→S1) (2.18). The exact sequences of 4.16

0 −→ lim←−
j

1 πr+1(Wj) −→ πr(e(W )) −→ lim←−
j

πr(Wj) −→ 0 ,

0 −→ lim←−
j

1 Hr+1(Wj) −→ H∞
r (W ) −→ lim←−

j

Hr(Wj) −→ 0

combined with 23.27 (with A = Z) give the singular homology of the s-adic
solenoid Ŝ1

s to be

Hr(Ŝ1
s ) = Hr(e(W )) = H∞

r (W ) =
{
Z⊕ (Ẑs/Z) if r = 0 ,
0 otherwise .

(Ŝ1
s is connected, but not path-connected.) Regard Ŝ1

s as the intersection

Ŝ1
s =

∞⋂

j=0

Tj ⊂ R3

of solid tori

R3 ⊃ T0 ⊃ T1 ⊃ . . . ⊃ Tj−1 ⊃ Tj ⊃ . . . ⊃ Ŝ1
s ,

such that each inclusion Tj ⊂ Tj−1 induces s : π1(Tj) = Z−→π1(Tj−1) = Z.
Now Ŝ1

s is a compact metric space, so that the Steenrod homology groups
Hst∗ (Ŝ1

s ) are defined – some of the properties of Hst∗ were recalled at the end
of Chapter 4. The short exact sequences of Milnor [95]

0 −→ lim←−
j

1 Hst
∗+1(Tj) −→ Hst

∗ (Ŝ1
s ) −→ lim←−

j

Hst
∗ (Tj) −→ 0

in the non-trivial dimensions ∗ = 0, 1 involve the inverse and direct systems
of the inverse systems of abelian groups

1 : Hst
0 (Tj) = H0(Tj) = Z −→ Hst

0 (Tj−1) = H0(Tj−1) = Z ,

s : Hst
1 (Tj) = H1(Tj) = Z −→ Hst

1 (Tj−1) = H1(Tj−1) = Z

so that the Steenrod homology of Ŝ1
s is the same as the singular homology

Hst
∗ (Ŝ1

s ) = H∗(Ŝ1
s ) .
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Relaxation techniques

‘Relaxation’ is the name given by Siebenmann [145] to the idempotent map

Wh(Aα[z, z−1]) = Wh(A, α)⊕ Ñil0(A,α)⊕ Ñil0(A,α−1)

−→ Wh(Aα[z, z−1]) ;

w = (x, y+, y−) −→ w′ = (x, 0, 0) ,

which is defined for any ring A and automorphism α : A−→A. The geomet-
ric twist glueing construction of [145] associated to a manifold band (W, c)
an h-cobordant ‘relaxed’ manifold band (W ′, c′) with fibring obstruction

Φ+(W ′, c′) = Φ+(W, c)′ ∈ Wh(π1(W )) ,

such that ((W ′)′, (c′)′) is homeomorphic to (W ′, c′). We have already de-
veloped homotopy theoretic twist glueing in Chapter 19, defining the relax-
ation of a CW π1-band (W, c) as the 1-twist glueing (W ′, c′) = (W [1], c[1]).
In Chapters 24–26 we shall develop the chain complex analogues of twist
glueing and relaxation in the special case α = 1 : A−→A, with

Wh(A, 1) = Wh(A)⊕ K̃0(A) , Ñil0(A, 1) = Ñil0(A) .

Definition 24.1 A finite f.g. free A[z]-module chain complex C+ is relaxed
if it is forward tame and

[C+,lf , ζ +,lf ] = 0 ∈ Ñil0(A) .

Proposition 24.2 Let C+ be a finite f.g. free A[z]-module chain complex.
(i) If

ζ +,lf ' 0 : C+,lf −→ C+,lf

then C+ is relaxed.

288
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(ii) If C+ is forward tame the inclusion q+ : C+−→C = A[z, z−1]⊗A[z]C
+

is a chain homotopy surjection, and if

ζ+ ' p+ζq+ : C+ −→ C+

for a chain homotopy injection p+ : C−→C+ splitting q+ then C+ is relaxed.
Proof (i) It is clear that if ζ +,lf ' 0 : C+,lf−→C+,lf then C+ is forward
tame. Also

[C +,lf , ζ +,lf ] = [C +,lf , 0] = 0 ∈ Ñil0(A) ,

so that C+ is relaxed.
(ii) As C+ is forward tame the inclusions

i+ : C+ −→ C+,lf = A[[z]]⊗A[z] C+ ,

q+ : C+ −→ C = A[z, z−1]⊗A[z] C+

are the components of an A-module chain equivalence
(

i+

q+

)
: C+ '−→ C+,lf ⊕ C ,

by 23.15 (i). Let

j+ : C+,lf −→ C+ , p+ : C −→ C+

be the A-module chain maps which are the components of a chain homotopy
inverse

(
i+

q+

)−1

= (j+ p+) : C+,lf ⊕ C
'−→ C+ ,

so that there is defined a map of A-module chain homotopy direct sum
systems

C wp+

u
q+

u
ζ

C+ wi+

u
j+

u
ζ+

C+,lf

u
ζ+,lf

C wp+

u
q+

C+ wi+

u
j+

C+,lf

If there exists an A-module chain homotopy ζ+ ' p+ζq+ : C+−→C+ then
ζ +,lf ' 0 : C+,lf−→C+,lf , and C+ is relaxed by (i).

For any integer q ≥ 1 define a ring morphism

q : A[z] −→ A[z] ;
∞∑

j=0

ajz
j −→

∞∑

j=0

ajz
jq .
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Definition 24.3 The q-fold transfer

q ! : {A[z]-modules} −→ {A[z]-modules} ; M −→ q !M

is the induced functor : for any A[z]-module M the induced A[z]-module
q !M has the same A-module structure as M but z acts by zq.

Example 24.4 If C+ is a forward tame finite f.g. free A[z]-module chain
complex and q ≥ 1 is so large that (ζ +,lf )q ' 0 : C +,lf−→C +,lf then
q !C+ is a finite f.g. free A[z]-module chain complex such that ζ +,lf ' 0 :
q !C +,lf−→q !C +,lf , so that q !C+ is relaxed by 24.2 (i).

Definition 24.5 The algebraic mapping telescope of an A-module chain
map f : B−→B is the A[z]-module chain complex

Tel(f) = C(1− zf : B[z]−→B[z]) .

Proposition 24.6 If B is a finite f.g. free A-module chain complex and
f : B−→B is a chain map, the algebraic mapping telescope Tel(f) is a
relaxed finite f.g. free A[z]-module chain complex.
Proof Immediate from

Tel(f)lf = C(1− zf : B[[z]]−→B[[z]]) ' 0 .

Example 24.7 Let X be a connected finite CW complex with universal
cover X̃, and let h : X−→X be a cellular map such that h∗ = 1 : π1(X) =
π−→π. The mapping telescope of h

Tel(h) =
( ∞∐

j=0

X × I × {j}
)/

(x, 1, j) = (h(x), 0, j + 1)

is an infinite CW complex with π1(Tel(h)) = π, such that the cellular chain
complex of the universal cover T̃el(h) is the algebraic mapping telescope

C(T̃el(h)) = C(1− zh̃ : C(X̃)[z]−→C(X̃)[z]) ,

which is a relaxed finite f.g. free Z[π][z]-module chain complex.

Definition 24.1′ A finite f.g. free A[z−1]-module chain complex C− is
relaxed if it is forward tame and

[C−,lf , ζ−,lf ] = 0 ∈ Ñil0(A) .
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For any finite f.g. free A[z]-module chain complex C+ there exists a finite
f.g. free A-module subcomplex E ⊂ C+ such that

∞∑

j=0

ζj(E) = C+

and
D = E ∩ ζ−1(E) ⊂ C+ ⊂ C = A[z, z−1]⊗A[z] C+

is a finite f.g. free A-module subcomplex, with the A-module chain maps

f+ : D −→ E ; x −→ x ,

f− : D −→ E ; y −→ ζy

such that there are defined exact sequences

0 −→ zD[z]
f+ − z−1f−
−−−−−−−−→ E[z] −→ C+ −→ 0 ,

0 −→ D[z, z−1]
f+ − z−1f−
−−−−−−−−→ E[z, z−1] −→ C −→ 0 .

The A[z−1]-module subcomplex

C− =
−1∑

j=∞
ζjE ⊂ C

is such that (C+, C−) is a Mayer–Vietoris presentation of C.

Proposition 24.8 (i) If C+ is such that for some choice of E ⊂ C+ the
A-module chain map

E/D −→ C+/D

is a chain homotopy split surjection then C+ is relaxed.
(ii) If C+ is such that for some choice of E ⊂ C+ the A-module chain

map
ζ−1E/D −→ C−/D

is a chain homotopy split surjection then C− is relaxed.
Proof (i) We have that the inclusion

ζ−1C+/C+ = ζ−1E/D −→ C/C+ = C−/D

is a chain homotopy split surjection, so that C− is reverse tame. By 23.16
C+ is forward tame, and

[C +,lf , ζ +,lf ] = −[C/C+, ζ] ∈ Ñil0(A) .

It follows from the exact sequence

0 −→ ζ−1C+/C+ −→ C/C+ −→ C/ζ−1C+ −→ 0
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that

ζ ' 0 : C/C+ −→ C/ζ−1C+
ζ−→ C/C+ ,

so that
[C/C+, ζ] = 0 ∈ Ñil0(A)

and C+ is relaxed.
(ii) As for (i), using

[C −,lf , ζ −,lf ] = −[C/C+, ζ] ∈ Ñil0(A) .

Example 24.9 Let W be a connected finite CW complex with a map
c : W−→S1 such that

c∗ = projection : π1(W ) = π × Z −→ Z .

Let (V ; U, ζU) be a fundamental domain for the infinite cyclic cover W =
c∗R of W , and let W̃ be the universal cover of W .

(i) If V dominates W
+ =

⋃∞
j=0 ζjV rel U then C(W̃ +) is a relaxed finite

f.g. free Z[π][z]-module chain complex, by 24.8 (i). Thus if (W, c) is a
positively relaxed CW band (15.14 (i)) then C(W̃ +) is relaxed.

(ii) If ζ−1V dominates W
− =

⋃−1
j=−∞ ζjV rel U then C(W̃ −) is a relaxed

finite f.g. free Z[π][z−1]-module chain complex, by 24.8 (i)′. Thus if (W, c)
is a negatively relaxed CW band (15.14 (ii)) then C(W̃ −) is relaxed.

Example 24.10 (i) The engulfing technique of Siebenmann [145] and Sieben-
mann, Guillou and Hähl [149] shows that for an n-dimensional manifold
band (W, c) with n ≥ 6 and π1(W ) = π × Z the Z[π][z]-module chain com-
plex C(W̃ +) is relaxed if and only if there exists an isotopy

h+
t : W −→ W (0 ≤ t ≤ 1)

such that :

(a) h+
t (x) = x for x ∈ W

−,
(b) h+

t (y) ∈ W
+ for y ∈ W

+,
(c) h+

0 = identity : W−→W ,
(d) h+

1 (W ) ⊆ ζW
−.

If there exists such an isotopy {h+
t } the inclusion

g+ : V = W
+ ∩ ζW

− −→ W
+

and the map

h+
1 |W + : W

+ −→ V
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are such that there is defined a homotopy

h+
t |W + : identity ' g+(h+

1 |W +) : W
+ −→ W

+

rel U = W
+ ∩W

−, so that V dominates W
+ rel U and C(W̃ +) is relaxed

by 24.8 (i).
(i)′ As for (i), but reversing the role of the ends W

+
, W

−.

Proposition 24.11 The following conditions on an A[z, z−1]-module chain
complex band C are equivalent :

(i) for any Mayer–Vietoris presentation (C+, C−) of C the A[z]-module
chain complex C+ and the A[z−1]-module chain complex C− are re-
laxed,

(ii) the Ñil-components of the fibring obstructions Φ+(C), Φ−(C) ∈
Wh(A[z, z−1]) are 0, that is

[C/C+, ζ] = [C/C−, ζ−1] = 0 ∈ Ñil0(A) .

Definition 24.12 An A[z, z−1]-module chain complex band C is relaxed if
it satisfies the conditions of 24.11.

Example 24.13 (i) If f+, f− : D−→E are chain equivalences of finite based
f.g. free A-module chain complexes then

C = C(f+ − z−1f− : D[z, z−1]−→E[z, z−1])

is a relaxed A[z, z−1]-module chain complex band, with fibring obstructions

Φ+(C) = (τ(f−), 0, 0, 0) , Φ−(C) = (τ(f+), 0, 0, 0)

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

as in 22.7.
(ii) If C is a finitely dominated A-module chain complex and h : C−→C

is a chain equivalence, then any based finite f.g. free A[z, z−1]-module chain
complex T in the canonical simple chain homotopy type of the algebraic
mapping torus T (h) is a relaxed A[z, z−1]-module chain complex band with
fibring obstructions

Φ+(T ) = (τ(h),−[C], 0, 0) , Φ−(T ) = (0, 0, 0, 0)

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

as in 22.8. In particular, if (D, f : C−→D, g : D−→C, gf ' 1 : C−→C) is
a finite domination of C then T = T (fhg : D−→D) is a relaxed A[z, z−1]-
module chain complex band in the canonical simple chain homotopy type
of T (h).
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Remark 24.14 The property of being relaxed is a chain homotopy invariant
of a finite f.g. free A[z]-module chain complex C+, and likewise for a finite
f.g. free A[z−1]-module chain complex C−. The property of being relaxed
is a simple chain homotopy invariant of an A[z, z−1]-module chain complex
band C, but it is not in general a chain homotopy invariant property. See
Chapter 26 below for the construction of the ‘relaxation’ of an A[z, z−1]-
module chain complex band C, which is a relaxed A[z, z−1]-module chain
complex band C ′ in the chain homotopy type of C.

Example 24.15 (i) The following conditions on an untwisted CW band
(W, c) with π1(W ) = π × Z are equivalent :

(a) W is simple homotopy equivalent to a CW π1-band (also denoted by
(W, c)) with a π1-fundamental domain (V ; U, ζU) for W such that
the inclusions

f+ : U −→ V ; x −→ x ,

f− : U −→ V ; y −→ ζy

are homotopy equivalences,
(b) Φ+(W ) , Φ−(W ) ∈ im(Wh(π)−→Wh(π × Z)) ,

(c) W is relaxed and W
+
, W

− are homotopy finite.

If W satisfies these conditions the fibring obstructions are given by 24.13
(i) to be

Φ+(W ) = (τ(f−), 0, 0, 0) , Φ−(W ) = (τ(f+), 0, 0, 0)

∈ Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π]) .

(ii) A manifold band (W, c) pseudo-fibres over S1 if W admits a (manifold)
fundamental domain (V ; U, ζU) which is an h-cobordism. For n ≥ 6 a
manifold band (W, c) with π1(W ) = π × Z pseudo-fibres if and only if the
conditions in (i) are satisfied (cf. 24.16 below).

(iii) If h : W−→W is a homotopy equivalence such that h∗ = 1 : π−→π
then the fundamental domain V (h) of the h-twist glueing W (h) (19.8) is
homotopy finite. Any choice of simple homotopy type on V (h) determines
a simple homotopy type on W (h), with respect to which (W (h), c(h)) is a
relaxed CW band with fibring obstructions of the type

Φ+(W (h)) = (φ+(h),−[W −], 0, 0) , Φ−(W (h)) = (φ−(h), [W +], 0, 0)

∈ Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π])

for some φ+(h), φ−(h) ∈ Wh(π) with φ+(h) − φ−(h) = τ(h). See Chapter
26 below for a more detailed account.
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(iv) Let h : X−→X be a self homotopy equivalence of a finitely dominated
CW complex X, such that h∗ = 1 : π1(X) = π−→π. Any finite CW
complex W in the canonical simple homotopy type of the mapping torus
T (h) determines a relaxed CW band (W, c) with

c∗ = projection : π1(W ) = π1(T (h)) = π × Z −→ Z .

The fibring obstructions of such W are given by 24.13 (ii) to be

Φ+(W ) = (τ(h),−[X], 0, 0) , Φ−(W ) = (0, 0, 0, 0)

∈ Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π]) .

If δ = (Y, f : X−→Y, g : Y−→X, gf ' 1 : X−→X) is a finite domination of
X then (W = T (fhg : Y−→Y ), c) is such a relaxed CW band. In particular,
this applies to h = 1 : X−→X, showing that for any finitely dominated CW
complex X every finite CW complex W in the canonical simple homotopy
type of X × S1 (e.g. W = T (fg : Y−→Y ) for any finite domination δ of
X) determines a relaxed CW band (W, c) with the infinite cyclic cover W
homotopy equivalent to X.

(v) If (W, c) is a CW band with a fundamental domain (V ; U, ζU) such
that the inclusion

V −→ W
+ =

∞⋃

j=0

ζjV

is a homotopy surjection rel U , and the inclusion

V −→ ζW
− =

0⋃

j=−∞
ζjV

is a homotopy surjection rel ζU , then (W, c) is a relaxed CW band, by 24.13.
(vi) Let (W, c) be an untwisted n-dimensional manifold band with n ≥ 6

and π1(W ) = π × Z, and let C = C(W̃ ) be the corresponding Z[π][z, z−1]-
module chain complex band. The geometric relaxation technique of Sieben-
mann [145] associates to (W, c) a relaxed manifold band (W ′, c′) (= the
ζ-twist glueing (W [ζ], c[ζ]) in the terminology of Chapter 19) such that
W = W

′, with a fundamental domain (V ′; U ′, ζ ′U ′) such that V ′ dominates
W
′+ rel U ′ and V ′ dominates ζ ′W ′ − rel ζ ′U ′ via isotopies {h′+t }, {h′−t } of

W as in 24.10. The manifold band (W, c) is a relaxed CW band if and only
W is homeomorphic to the relaxation W ′. The following conditions on an
untwisted n-dimensional manifold band (W1, c1) are equivalent :
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(a) there exists an h-cobordism (M ;W,W1) with torsion one of the nilpo-
tent class components of Φ±(W, c) = Φ±(C),

τ(M−→W ) = (0, 0, [C/C+, ζ], 0)

∈ Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π]) ,

(b) (W1, c1) is homeomorphic to the relaxation (W ′, c′),
(c) (W1, c1) is h-cobordant to (W, c), and is a relaxed CW band.

Example 24.16 Let f : W−→X×S1 be a homotopy equivalence, with W a
closed n-dimensional manifold and X a finite (n−1)-dimensional geometric
Poincaré complex. Then (W, c) is an untwisted manifold band with

c : W
f−→ X × S1

p−→ S1 (p = proj.) ,

and (X×S1, p) is a geometric Poincaré band. Moreover, f induces a simple
homotopy equivalence

T (ζ : W−→W ) ' X × S1 ,

giving T (ζ) the canonical simple homotopy type. The fibring obstructions
of W determine each other by Poincaré duality :

Φ+(W ) = (−)n−1Φ−(W )∗ ∈ Wh(π × Z) .

Let π1(X) = π, so that

π1(W ) = π1(X × S1) = π × Z
and let W̃ be the universal cover of W . The torsion of f agrees up to sign
with one of the fibring obstructions of W :

τ(f) = −τ(T (ζ)−→W )

= −Φ+(W ) = −Φ+(C) ∈ Wh(π × Z) ,

where C = C(W̃ ) is the Z[π][z, z−1]-module chain complex band. The image
[τ(f)] ∈ coker(Wh(π)−→Wh(π × Z)) is given by

[τ(f)] = −[Φ+(W )] = −[Φ+(C)]

= ([C −],−[C/C+, ζ],−[C/C−, ζ−1])

∈ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π]) ,

and the Ñil0-components are ±-dual to each other by Poincaré duality :

[C/C+, ζ] = (−)n[C/C−, ζ−1]∗ ∈ Ñil0(Z[π]) .

(i) Make f transverse at X × {pt.} ⊂ X × S1, so that the restriction

g = f | : U = f−1(X × {pt.}) −→ X
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is a degree 1 normal map. By definition, the homotopy equivalence f is split
if it is homotopic to a map (also denoted by f) such that g : U−→X is a
homotopy equivalence.

The splitting theorem of Farrell and Hsiang [49] shows that for n ≥ 6 the
following conditions are equivalent :

(a) f is split,
(b) (W, c) pseudo-fibres,
(c) [τ(f)] = 0 ,
(d) [C−] = 0 ∈ K̃0(Z[π]) and [C/C+, ζ] = 0 ∈ Ñil0(Z[π]) ,
(e) the fibring obstruction is such that

Φ+(W ) = Φ+(C) ∈ im(Wh(π)−→Wh(π × Z)) .

(See Ranicki [124, 10.9] for the analogous chain complex splitting results.)

(ii) The homotopy equivalence f : W−→X × S1 is split by a homotopy
open strip if it is homotopic to a map (also denoted by f) such that

U = f−1(X × {pt.}) ⊂ W

has an open neighbourhood Z ⊂ W with

f(Z) ⊆ X × (−1, 1) ⊂ X × S1 ,

and such that the restriction f | : Z−→X×(−1, 1) is a homotopy equivalence,
in which case

ζ ' 0 : C/C+ −→ C/C+ , ζ−1 ' 0 : C/C− −→ C/C−

and C is a relaxed chain complex band. For n ≥ 6 the following conditions
are equivalent :

(a) f is split by a homotopy open strip,
(b) [C/C+, ζ] = 0 ∈ Ñil0(Z[π]) ,
(c) C+ is relaxed,
(d) C is relaxed,
(e) W is homeomorphic to the relaxation W ′ ,
(f) the map c : W ' X×S1−→S1 is homotopic to a manifold approximate

fibration,
(g) the fibring obstruction is relaxed, that is

Φ+(W ) = Φ+(C) ∈ im(Wh(π)⊕ K̃0(Z[π])−→Wh(π × Z)) .

The equivalence of (a) and (b) is due to Farrell and Hsiang [49, p. 835].
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Remark 24.17 Let (W, c) be an ANR band, with universal cover W̃ and
infinite cyclic cover W . For the usual sake of simplicity assume that (W, c)
is untwisted, so that

ζ∗ = 1 : π1(W ) = π −→ π , π1(W ) = π × Z .

The fibring obstructions Φ+(W, c), Φ−(W, c) (15.11) differ by

Φ−(W, c)− Φ+(W, c) = τ(r) ∈ Wh(π × Z) ,

the torsion of the homeomorphism

r : T (ζ−1) −→ T (ζ) ; (x, t) −→ (x, 1− t)

with respect to the canonical simple homotopy types (14.3). The torsion
τ(r) is relaxed, with components (up to sign) the torsion of ζ : W−→W
and the finiteness obstruction of W

τ(r) = τ(−zζ̃−1 : C(W̃ )[z, z−1]−→C(W̃ )[z, z−1])

= (−τ(ζ), [W ], 0, 0)

∈ Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π])

(Ranicki [124, p. 159]). As already noted in 15.12, if (W, c) is an n-dimension-
al manifold band the fibring obstructions are Poincaré dual to each other,

Φ+(W, c) = (−)n−1Φ−(W, c)∗ ∈ Wh(π × Z) ,

and for n ≥ 6 Φ+(W, c) = Φ−(W, c) = 0 if and only if c : W−→S1 is
homotopic to the projection of a fibre bundle. Chapman and Ferry [27, 28]
investigated the fibring properties of an ANR band (W, c), assuming W
to be a locally compact separable metric space and c : W−→S1 to be a
(Hurewicz) fibration – in this generality, Φ+(W, c) and Φ−(W, c) need not
be Poincaré dual. Their results have the following reformulation in terms
of Φ+(W, c) and Φ−(W, c) :

(i) [27, Thm. 3; 28, Thm. 4] c is fibre homotopy equivalent to a PL fibra-
tion (= PL map of compact polyhedra which is a fibration) if and
only if c is fibre homotopy equivalent to the projection of a compact
Hilbert cube manifold fibre bundle, if and only if

τ(r) = 0 ∈ Wh(π × Z) .

(ii) [28, Thm. 6] If W is a compact Hilbert cube manifold then c is ho-
motopic to the projection of a fibre bundle if and only if

Φ+(W, c) = Φ−(W, c) = 0 ∈ Wh(π × Z) .

The two conditions in (ii) are equivalent to τ(r) = 0 (the first obstruction
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of [28]) and Φ+(W, c) = 0 (the second obstruction of [28]). In both [27] and
[28] it was assumed that W is homotopy finite. If (K, φ : W ' K) is a finite
structure on W then K is a finite CW complex with a self homotopy equiv-
alence h = φζφ−1 : K−→K, and there is defined a homotopy equivalence
T (h)−→W , such that

τ(r) = i∗τ(h) , Φ+(W, c) = τ(T (h)−→W ) ∈ Wh(π × Z)

with i∗ : Wh(π)−→Wh(π × Z) the inclusion. However, it is not necessary
to assume that W is homotopy finite in the reformulation.
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Algebraic ribbons

‘Algebraic ribbons’ are the chain complex analogues of the geometric ribbons
of Chapter 15. We shall now develop the algebraic theory of ribbons, in the
context of the bounded algebra of Pedersen and Weibel [110] and Ranicki
[124]. A chain complex ribbon is a finite chain complex C in the category
CR(A) of R-bounded A-modules (for some ring A) with the end properties
of a chain complex band. In Chapter 26 we shall use algebraic ribbons to
develop the algebraic theory of twist glueing. An A[z, z−1]-module chain
complex band is an example of a chain complex ribbon; in 26.6 it will be
shown that every chain complex ribbon C is simple chain equivalent to a
chain complex band Ĉ, the ‘wrapping up’ of C. In Chapter 27 we shall
describe the effects of wrapping up in algebraic K- and L-theory.

We refer to Ferry and Pedersen [58] and Ranicki [124] for accounts of
bounded topology and algebra, only repeating the most essential definitions
here.

Definition 25.1 Let A be a ring, and let B be a metric space. The B-
bounded A-module category CB(A) is the additive category with objects
B-graded A-modules

M =
∑

x∈B

M(x)

such that each M(x) is based f.g. free, with {y ∈ B | d(x, y) < r,M(y) 6= 0}
finite for each x ∈ B, r > 0. A morphism f : M−→N in CB(A) is an
A-module morphism such that there exists a number b ≥ 0 for which the
composite

f(y, x) : M(x)
incl.−→ M

f−→ N
proj.−→ N(y)

is 0 whenever d(x, y) > b.

300



25. Algebraic ribbons 301

Definition 25.2 The B-bounded Whitehead group of a ring A is

WhB(A) = coker(K1(CB(Z))−→K1(CB(A))) .

A B-bounded CW complex (X, d) is a CW complex X with a proper
cellular map d : X−→B such that the diameters of the images in B of the
cells e ⊂ X are uniformly bounded, that is there exists a bound b ≥ 0 with
diameter(d(e)) < b for all e ⊂ X. If X̃ is a regular cover of X with group
of covering translations π the cellular Z[π]-module chain complex C(X̃) is
defined in CB(Z[π]). A B-bounded map f : (X, d)−→(Y, e) of B-bounded
CW complexes is a proper cellular map f : X−→Y such that there exists
a bound b ≥ 0 with

dB(e(f(x)), d(x)) ≤ b (x ∈ X) .

A B-bounded map f induces a chain map f̃ : C(X̃)−→C(Ỹ ) in CB(Z[π])
for any regular cover Ỹ of Y with group of covering translations π, with
X̃ = f∗Ỹ the pullback cover of X. A B-bounded homotopy equivalence
f : (X, d)−→(Y, e) of B-bounded CW complexes has a B-bounded torsion

τB(f) = τB(f̃ : C(X̃)−→C(Ỹ )) ∈ WhB(Z[π1(X)]) .

A B-bounded h-cobordism has B-bounded torsion in WhB(Z[π1]), and
there are bounded versions of the h- and s-cobordism theorems; in the
bounded version of the Wall surgery theory a B-bounded normal map has
a surgery obstruction in L∗(CB(Z[π1])) (Ferry and Pedersen [58]). For
bounded surgery theory A is a ring with involution (e.g. a group ring),
and CB(A) is an additive category with involution, so that the L-groups
L∗(CB(A)) are defined as in Ranicki [124].

Definition 25.3 Let A be a ring.
(i) Let M(A) be the additive category of A-modules. Define the sum and

product functors
∑

: CB(A) −→ M(A) ; M −→ M =
∑

x∈B

M(x) ,

∏
: CB(A) −→ M(A) ; M −→ M lf =

∏

x∈B

M(x) .

The inclusion i : M−→M lf defines a natural transformation from
∑

to
∏

.
(ii) The end complex of a chain complex C in CB(A) is the A-module

chain complex

e(C) = C(i : C−→C lf )∗+1 .
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Example 25.4 Let (X, d) be a connected B-bounded CW complex, so that
the cellular chain complex C(X̃) of the universal cover X̃ of X is a finite
chain complex in CB(Z[π]) with π = π1(X). The locally π-finite cellular
chain complex of X̃ (5.5 (i)) is

C lf,π(X̃) = C(X̃)lf .

Let ˜e(X) = p∗X̃ be the cover of the end complex e(X) obtained from X̃
by pullback along the projection p : e(X)−→X; ω−→ω(0). If X is forward
tame the Z[π]-module chain complex at ∞ C∞,π(X̃) is homology equivalent
to the end complex e(C(X̃)) of C(X̃).

Definition 25.5 A subobject M ′ ⊆ M of an object M in CB(A) is the object

M ′ = M(B′) =
∑

y∈B′
M(y)

determined by a subset B′ ⊆ B, with M(B′)(x) = 0 for x ∈ B\B′.

We shall be mainly concerned with the R-bounded category CR(A) here.

Definition 25.6 A covering translation of an object M in CR(A) is an
isomorphism ζ : M−→M such that ζ(x+1, x) : M(x)−→M(x+1) is a basis-
preserving isomorphism for each x ∈ R, and ζ(y, x) = 0 : M(x)−→M(y) for
y 6= x + 1.

Proposition 25.7 The additive category of based f.g. free A[z, z−1]-modules
is equivalent to the category CR(A)Z of pairs (M, ζ) with M an object in
CR(A) and ζ : M−→M a covering translation, with morphisms f : (M, ζ)−→
(M ′, ζ ′) defined by morphisms f : M−→M ′ in CR(A) such that ζ ′f = fζ.
Proof If L is a based f.g. free A-module the induced based f.g. free
A[z, z−1]-module

M = L[z, z−1] =
∞∑

j=−∞
zjL

is an object in CR(A) with

M(x) =

{
zjL if x = j ∈ Z ,
0 if x ∈ R\Z

and with a covering translation ζ : M−→M , defining an equivalence

{based f.g. free A[z, z−1]-modules} −→ CR(A)Z ; L[z, z−1] −→ (M, ζ) .



25. Algebraic ribbons 303

Similarly for the additive category of based f.g. free A[z]-modules. A
finite based f.g. free A[z]-module chain complex C+ can be regarded as a
chain complex in C[0,∞)(A) together with an isomorphism ζ+ : C+−→C+

such that ζ+(y, x) = 0 for y 6= x + 1, and the end complex e(C+) defined in
25.3 is just the end complex as defined in 23.3.

Definition 25.8 A Mayer–Vietoris presentation (C+, C−) of a finite chain
complex C in CR(A) is the exact sequence

0 −→ C+ ∩ C−

(
j+

−j−

)

−−−−−→ C+ ⊕ C− (q+ q− )
−−−−−−→ C −→ 0

determined by subcomplexes C+, C− ⊆ C such that

C+
r = Cr[−N+

r ,∞) , C−
r = Cr(−∞, N−

r ]

for some real numbers N+
r , N−

r ≥ 0, with

j+ : C+ ∩ C− −→ C+ , j− : C+ ∩ C− −→ C− ,

q+ : C+ −→ C , q− : C− −→ C

the inclusions.

C − C +

C

Remark 25.9 (i) Note that C+ ∩ C− is defined in C[−N,N ](A) for some
bound N (e.g. max{N+

r , N−
r }), so that it is a finite chain complex of based

f.g. free A-modules.
(ii) A Mayer–Vietoris presentation (C+, C−) of a based f.g. free A[z, z−1]-

module chain complex C (21.13) is a Mayer–Vietoris presentation of C re-
garded as a chain complex in CR(A) such that ζ(C+) ⊂ C+, ζ−1(C−) ⊂ C−.

Proposition 25.10 (Ranicki [124, Chapters 6,7,8]) (i) Every finite chain
complex C in CR(A) admits Mayer–Vietoris presentations (C+, C−). If h :
C−→C is a covering translation there exist Mayer–Vietoris presentations
(C+, C−) such that h(C+) ⊂ C+, h−1(C−) ⊂ C−.

(ii) The R-bounded Whitehead group of A is isomorphic to the reduced
projective class group of A :

Wh(CR(A)) ∼= K̃0(A) .
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(iii) Every contractible finite chain complex C in CR(A) has a torsion
τR(C) ∈ WhR(A) with image [C+] = −[C−] ∈ K̃0(A), for any Mayer–
Vietoris presentation (C+, C−) of C.

Remark 25.11 The R-bounded Whitehead torsion of an R-bounded homo-
topy equivalence f : (X, d)−→(Y, e) of R-bounded CW complexes is

τR(f) = [C(f̃+ : C(X̃+)−→C(Ỹ +))] ∈ Wh(CR(Z[π])) = K̃0(Z[π])

with π = π1(X) = π1(Y ). This is also the infinite torsion (11.1) :

τ lf (f) ∈ Whlf (X) = K̃0(Z[π]) .

Definition 25.12 A chain complex ribbon is a finite chain complex C in
CR(A) such that for some Mayer–Vietoris presentation (C+, C−) the A-
module chain maps

C+ −→ C ⊕ C+,lf ; x+ −→ (x+, x+) ,

C− −→ C ⊕ C−,lf ; x− −→ (x−, x−)

are chain equivalences, or equivalently such that the composites

e(C+) −→ C+
q+

−→ C , e(C−) −→ C− q−−→ C

are chain equivalences.

Example 25.13 If (X, d : X−→R) is a CW ribbon with π1(X) = π then
the cellular chain complex C(X̃) of the universal cover X̃ of X is a chain
complex ribbon in CR(Z[π]).

Proposition 25.14 (i) If C is a chain complex ribbon in CR(A) with a
Mayer–Vietoris presentation (C+, C−) the natural A-module chain maps

C+ −→ C ⊕ C+,lf , C− −→ C ⊕ C−,lf

are chain equivalences. Moreover, the A-module chain map

u : C+ ∩ C− −→ C ⊕ C+,lf ⊕ C−,lf ; x −→ (x, x, x)

is a chain equivalence, so that each of C,C+, C−, C lf , C+,lf , C−,lf is A-
finitely dominated.

(ii) A finite chain complex C in CR(A) is a chain complex ribbon if and
only if C lf is chain equivalent to a free A-module chain complex and the
connecting maps in the Mayer–Vietoris exact sequence

. . . −→ Hr+1(C lf )
∂−→ Hr(C) −→ Hr(e(C+)−→C)⊕Hr(e(C−)−→C)

−→ Hr(C lf ) −→ . . .
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are isomorphisms ∂ : H∗+1(C lf ) ∼= H∗(C), for any Mayer–Vietoris presen-
tation (C+, C−).

(iii) A finite based f.g. free A[z, z−1]-module chain complex C is a chain
complex band (i.e. C is A-finitely dominated) if and only if C is a chain
complex ribbon in CR(A).
Proof (i) For any Mayer–Vietoris presentations (C+, C−), (C ′+, C ′−) of C
there exists a Mayer–Vietoris presentation (C ′′+, C ′′−) such that C+ ⊆ C ′′+,
C ′+ ⊆ C ′′+, with C ′′/C, C ′′/C ′ finite f.g. free, so that

C+,lf/C+ = C ′+,lf/C ′+ = C ′′+,lf/C ′′+ .

The chain equivalence C+ ∩C− ' C+,lf ⊕C−,lf ⊕C follows from the chain
equivalences C+ ' C⊕C+,lf , C− ' C⊕C−,lf and the short exact sequence

0 −→ C+ ∩ C− −→ C+ ⊕ C− −→ C −→ 0 .

(ii) The natural A-module chain map defines a chain equivalence

e(C+)⊕ e(C−) ' e(C) .

The Mayer–Vietoris exact sequence of the statement is induced by the short
exact sequence of A-module chain complexes

0 −→ C −→ C(e(C+)−→C)⊕ C(e(C−)−→C) −→ D −→ 0

with D = C(e(C+) ⊕ e(C−)−→C) ' C lf . If C lf is chain equivalent to
a free A-module chain complex then so are C+,lf , C−,lf , and the chain
maps e(C+)−→C, e(C−)−→C are chain equivalences if and only if they are
homology equivalences. The connecting maps ∂ are isomorphisms if and
only if H∗(e(C+)−→C) = H∗(e(C−)−→C) = 0 (as in 23.9).

(iii) Immediate from 23.17.

We shall use the following result in Chapter 26 :

Proposition 25.15 If (C+, C−) is a Mayer–Vietoris presentation of a finite
chain complex C in CR(A) the commutative square of inclusions

D wj+

u
j−

C+

u
q+

C− wq−
C

is chain homotopy cartesian, with D = C+ ∩ C−.
Proof Let P = C((q+ q−) : C+⊕C−−→C)∗+1, with Pr = C+

r ⊕C−
r ⊕Cr+1.

The A-module chain map D−→P ; x−→(j+(x),−j−(x), 0) is a homology
equivalence of free A-module chain complexes, so that it is a chain equiva-
lence.
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Algebraic twist glueing

We shall now develop the algebraic theory of twist glueing for chain complex
ribbons, constructing relaxed chain complex bands by a direct translation
of the homotopy theoretic twist glueing of Chapter 19. Algebraic wrapping
up and relaxation are the special cases of algebraic twist glueing by the
identity and a covering translation.

Given a chain complex ribbon C in CR(A) and a Mayer–Vietoris presen-
tation (C+, C−) write

p+ : C ' e(C+) −→ C+ ,

p− : C ' e(C−) −→ C− .

Use 25.15 to define the A-module chain maps

i+ = (1, q−p+) : C+ −→ D ,

i− = (q+p−, 1) : C− −→ D ,

and to define chain homotopies

j+i+ ' 1 : C+ −→ C+ , j−i− ' 1 : C− −→ C− ,

q+p+ ' 1 : C −→ C , q−p− ' 1 : C −→ C ,

with j± : D = C+ ∩ C−−→C±, q± : C±−→C the inclusions. Exactly as in
Chapter 19 there are defined chain homotopy commutative diagrams

C wp+

u
p−

C+

u
i+

C− wi− D

306
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C + hhhhhhhhhhhhhj
1

'
'
'
'
'')

i+

'
'
'
'
'
'
'
'
'')

p−q+ D wj+

u

j−

C +

u

q+

C − wq−
C

C −hhhhhhhhhhhhhj
p+q−

'
'
'
'
'')

i−
'
'
'
'
'
'
'
'
'')

1 D wj+

u

j−

C +

u

q+

C − wq−
C

For an A-module chain equivalence h : C−→C the A-module chain complex
defined by

E(h) = C(
(

p+h

p−

)
: C−→C+ ⊕ C−)

is such that there is defined a chain homotopy cartesian square

C wp+h

u
p−

C+

u
k+(h)

C− wk−(h)
E(h)

with
k+(h) : C+ −→ E(h) ; x+ −→ (x+, 0, 0) ,

k−(h) : C− −→ E(h) ; x− −→ (0, x−, 0) .

Define also the A-module chain maps

f+(h) = k+(h)j+ , f−(h) = k−(h)j− : D = C+ ∩ C− −→ E(h) .

Definition 26.1 Given a chain complex ribbon C in CR(A), a Mayer–
Vietoris presentation (C+, C−) and an A-module chain equivalence h :
C−→C define the algebraic h-twist glueing to be the A[z, z−1]-module chain
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complex

C(h) = W(f+(h), f−(h))

= C(f+(h)− z−1f−(h) : D[z, z−1]−→E(h)[z, z−1]) .

The A-module chain complex E(h) is finitely dominated, with projective
class

[E(h)] = [C+] + [C−]− [C] = [D] ∈ im(K0(Z)−→K0(A)) .

Thus [E(h)] = 0 ∈ K̃0(A), and E(h) is chain homotopy finite, but in general
E(h) does not have a preferred finite structure.

Proposition 26.2 The algebraic h-twist glueing C(h) is chain equivalent
to the algebraic mapping torus

T (h) = C(1− z−1h : C[z, z−1]−→C[z, z−1]) .

Proof Since q+p+ ' 1 ' q−p− : C−→C it is possible to choose a chain
homotopy

e : q+p+ ' q−p− : C −→ C .

The A-module chain map g(h) : E(h)−→C defined by

g(h) = ( q+ hq− he ) : E(h)r = C+
r ⊕ C−

r ⊕ Cr−1 −→ Cr

is such that there is defined a commutative diagram

D wf+(h)

u
q+j+

E(h)

u
g(h)

u
f−(h)

D

u
q+j+

C w1 C u h C

The induced A[z, z−1]-module chain map
(

g(h) 0
0 q+j+

)
: C(h) −→ T (h)

is a chain equivalence by 21.16, since (as in the geometric case in 19.9) the
chain maps

j+ : D −→ C + , j− : D −→ C − ,

p+h : C −→ C+ , p− : C −→ C −
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are such that up to chain homotopy

f+(h) : D
j+

−→ C+ −→ W(p+h, p−) = E(h) ,

f−(h) : D
j−−→ C− −→ W(p+h, p−) = E(h) ,

h : C
p+h−→ C+

q+

−→ W(j+, j−) ' C ,

1 : C
p−−→ C− q−−→ W(j+, j−) ' C .

Proposition 26.3 Let C be a chain complex ribbon in CR(A) and let
h : C−→C be an isomorphism which is either a covering translation or
the identity, so that there exists a Mayer–Vietoris presentation (C+, C−)
with h(C+) ⊆ C+, h−1(C−) ⊆ C−. The algebraic h-twist glueing C(h)
is A[z, z−1]-module chain equivalent to a relaxed chain complex band C[h]
which is simple chain equivalent to C (in CR(A)). The algebraic fibring
obstructions are of the type

Φ+(C[h]) = (φ[h]+,−[C−], 0, 0) , Φ−(C[h]) = (φ[h]−, [C+], 0, 0)

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) ,

with

φ[h]+ − φ[h]− = τ(h) ∈ Wh(A) .

Proof The subcomplex

E[h] = C+ ∩ h(C−) ⊂ C

is a finite based f.g. free A-module chain complex. The A-module chain
maps given by

f+
h : D −→ E[h] ; x −→ x ,

f−h : D −→ E[h] ; x −→ h(x) ,

g+
h : E[h] −→ C+ ; y −→ y ,

g−h : E[h] −→ C− ; y −→ h−1(y) ,

k+[h] = f+
h i+ : C+ −→ D −→ E[h] ,

k−[h] = f−h i− : C− −→ D −→ E[h]

are such that there are defined chain homotopy cartesian squares
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E[h] wg+
h

u
g−h

C+

u
q+

C− whq−
C

C wp+h

u
p−

C+

u
k+[h]

C− wk−[h]
E[h]

Define the finite based f.g. free A[z, z−1]-module chain complex

C[h] = W(f+[h], f−[h])

with
f+[h] = k+[h]j+ = f+

h i+j+ : D −→ E[h] ,

f−[h] = k−[h]j− = f−h i−j− : D −→ E[h] .

The A-module chain map

w[h] : E[h] −→ E(h) ; x −→ (x, x, 0)

is a chain equivalence such that up to chain homotopy

f+[h] : D
f+(h)
−−→ E(h)

w[h]−1

−−−→ E[h] ,

f−[h] : D
f−(h)
−−→ E(h)

w[h]−1

−−−→ E[h] .

The induced A[z, z−1]-module chain map

(1, w[h]) : C[h] −→ C(h)

is a chain equivalence, so that C[h] is A-module chain equivalent to C and
C[h] is a chain complex band. The inclusions C+−→E[h], C−−→z−1E[h]
determine A-module chain equivalences

C+ −→ C[h]+ = C(f+[h]− z−1f−[h] :
∞∑

k=1

zkD−→
∞∑

k=0

zkE[h]) ,

C− −→ C[h]− = C(f+[h]− z−1f−[h] :
−1∑

k=−∞
zkD−→

−1∑

k=−∞
zkE[h])

which in turn determine chain equivalences

(C/C+, 0) ' (C[h]/C[h]+, 0) ' S−1(C[h]+,lf , ζ +,lf ) ,

(C/C−, 0) ' (C[h]/C[h]−, 0) ' S−1(C[h]−,lf , ζ −,lf ) .

Thus C[h] is a relaxed chain complex band, with

(C[h]+,lf , ζ +,lf ) = (C[h]−,lf , ζ −,lf ) = 0 ∈ Ñil0(A) .
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The composite of (1, w[h]) and the A-module chain equivalence

C(h) −→ C ;
∞∑

j=−∞
zj(xj , yj) −→

∞∑

j=−∞
hjxj

is an A-module chain equivalence which is chain homotopic to a chain equiv-
alence F [h] : C[h]−→C in CR(A) (the algebraic analogue of the proper
homotopy equivalence F [h] : X[h]−→X in 19.12 (ii)), with torsion

τR(F [h]) = [C+]− [C[h]+] = 0 ∈ Wh(CR(A)) = K̃0(A) .

In order to compute the fibring obstructions Φ+(C[h]), Φ−(C[h]) consider
the A-module chain equivalences given by 23.11

u[h] : D −→ C[h]⊕ C[h]+,lf ⊕ C[h]−,lf ; x −→ (x, x, x) ,

v[h] : E[h] −→ C[h]⊕ C[h]+,lf ⊕ C[h]−,lf ; y −→ (y, y, h−1y) ,

so that

Φ+(C[h]) = (φ[h]+,−[C[h]−], 0, 0) , Φ−(C[h]) = (φ[h]−, [C[h]+], 0, 0)

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

with
φ[h]+ = τ(v[h]−1(h⊕ 1⊕ 1)u[h] : D−→E[h]) ,

φ[h]− = τ(v[h]−1u[h] : D−→E[h]) ∈ Wh(A)

such that φ[h]+ − φ[h]− = τ(h).

The algebraic twist glueing of 26.1 is the algebraic analogue of the CW
twist glueing of Chapter 19 :

Proposition 26.4 Let (X, d) be a CW ribbon, and let h : X−→X be a ho-
motopy equivalence, so that the CW h-twist glueing (X(h), d(h)) is defined
as in 19.8. Assume h∗ = 1 : π1(X) = π−→π, so that π1(X(h)) = π × Z.

(i) The cellular Z[π][z, z−1]-module chain complex of the universal cover
X̃(h) of X(h) is given up to chain equivalence by the algebraic h̃-twist glue-
ing of the chain complex ribbon C(X̃) in CR(Z[π])

C(X̃(h)) = C[h̃ : C(X̃)−→C(X̃)] .

(ii) If h is either a covering translation or the identity (as in 19.12) then
the cellular Z[π][z, z−1]-module chain complex of the universal cover X̃[h] of
the CW band (X[h], d[h]) is given up to simple chain equivalence by

C(X̃[h]) = C[h̃ : C(X̃)−→C(X̃)] ,
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with the fibring obstructions given by 26.3 :

Φ±(X[h], d[h]) = Φ±(C[h̃])) = (φ±[h̃],∓[X ±], 0, 0)

∈ Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π]) .

In particular, the homotopy equivalence T (h) ' X[h] has torsion

τ(T (h) ' X[h]) = Φ−(X[h], d[h]) ∈ Wh(π × Z) .

Proof Immediate from 26.3.

Definition 26.5 The wrapping up of a chain complex ribbon C in CR(A) is
the relaxed A[z, z−1]-module chain complex band

Ĉ = C[1] .

Proposition 26.6 (i) The wrapping up of a chain complex ribbon C in
CR(A) is an A[z, z−1]-module chain complex band

Ĉ = C[1] = C(i+j+ − z−1i−j− : D[z, z−1]−→D[z, z−1])

which is simple chain equivalent to C, with

Φ+(Ĉ) = (0,−[C−], 0, 0) , Φ−(Ĉ) = (0, [C+], 0, 0)

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) .

(ii) Let C be an A[z, z−1]-module chain complex, let C ! denote C regarded
as a finitely dominated A-module chain complex, and let ζ ! : C !−→C ! de-
note the covering translation ζ : C−→C regarded as an A-module isomor-
phism. Let z′ denote an invertible indeterminate which commutes with z,
and let

Σ = C(1− z : Z[z, z−1]−→Z[z, z−1]) ,

Σ′ = C(1− z′ : Z[z′, z′−1]−→Z[z′, z′−1]) .

The fibring obstructions of the A[z, z−1, z′, z′−1]-module chain complex band
C ⊗ Σ′ vanish,

Φ+(C ⊗ Σ′) = Φ−(C ⊗ Σ′) = 0 ∈ Wh(A[z, z−1, z′, z′−1]) ,

and there is defined a simple A[z, z−1, z′, z′−1]-module chain equivalence

C ⊗ Σ′ ' T (ζ̂ ′ : Ĉ ′−→Ĉ ′)

with Ĉ ′ a copy of Ĉ defined over A[z′, z′−1] and

ζ̂ ′ ' ζ ! ⊗ 1 : Ĉ ′ ' C ! ⊗ Σ′ −→ Ĉ ′ ' C ! ⊗ Σ′
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a simple A[z′, z′−1]-module chain equivalence.
Proof (i) Immediate from 26.3, noting that for h = 1 : C−→C

f+
1 = f−1 = 1 : D −→ E[1] = D ,

u[1] = v[1] : D −→ C[1]⊕ C[1]+,lf ⊕ C[1]−,lf .

(ii) This is the algebraic analogue of 20.8.

Example 26.7 The wrapping up of a CW ribbon (X, d) is a relaxed CW
π1-band

(W, c) = (X̂, d̂)

such that the relaxed Z[π][z, z−1]-module chain complex band C(W̃ ) = Ĉ is
the algebraic wrapping up of the chain complex ribbon C = C(X̃), by the
special case h = 1 : X−→X of 26.4, with π = π1(X). The application of
26.6 (i) gives the fibring obstructions of X̂ to be

Φ+(W, c) = −[X −] , Φ−(W, c) = [X +] ∈ K̃0(Z[π]) ⊆ Wh(π × Z) .

Moreover, 26.6 (ii) shows that the infinite simple homotopy equivalence
G : X × S1 ' W × R of 20.3 (iii) is not (in general) simple as a homotopy
equivalence with respect to the canonical simple homotopy types, since it
has torsion

τ(G) = Φ−(W, c) = [X+] ∈ K̃0(Z[π]) ⊆ Wh(π × Z) .

Definition 26.8 The relaxation of an A[z, z−1]-module chain complex band
C is the ζ-twist glueing

C ′ = C[ζ : C−→C] .

Proposition 26.9 Let C be an A[z, z−1]-module chain complex band. Given
a Mayer–Vietoris presentation (C+, C−) let

f+ : D = C+ ∩ C− −→ E = C+ ∩ ζC− ; x −→ x ,

f− : D = C+ ∩ C− −→ E = C+ ∩ ζC− ; y −→ ζy

so that there is defined an exact sequence

0 −→ D[z, z−1]
f+ − z−1f−
−−−−−−−−→ E[z, z−1] −→ C −→ 0 .

The relaxation of C is given up to simple chain equivalence by

C ′ = C(f ′+ − z−1f ′ − : D[z, z−1]−→E[z, z−1])

with
f ′+ = f+[ζ] , f ′ − = f−[ζ] : D −→ E
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such that there are defined chain homotopy commutative squares

D wf ′+

u

u '

E

u

' v

C ⊕ C +,lf ⊕ C −,lf w1⊕ 1⊕ 0
C ⊕ C +,lf ⊕ C −,lf

D wf ′ −

u

u '

E

u

' v

C ⊕ C +,lf ⊕ C −,lf wζ ⊕ 0⊕ 1
C ⊕ C +,lf ⊕ C −,lf

with u, v as in 23.11.

As in Chapter 24 define the Whitehead group relaxation map

Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

−→ Wh(A[z, z−1]) ;

x = (a, b, c, d) −→ x′ = (a, b, 0, 0) .

Proposition 26.10 Let C be an A[z, z−1]-module chain complex band.
(i) The relaxation C ′ is a relaxed chain complex band with fibring obstruc-

tions the relaxations of the fibring obstructions of C :

Φ±(C ′) = Φ±(C)′ ∈ Wh(A[z, z−1]) .

In the notation of 23.11

Φ+(C ′) = (φ+,−[C−], 0, 0) , Φ−(C ′) = (φ−, [C+], 0, 0)

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

with

Φ+(C) = (φ+,−[C−],−[C +,lf , ζ +,lf ],−[C −,lf , ζ −,lf ]) ,

Φ−(C) = (φ−, [C+],−[C +,lf , ζ +,lf ],−[C −,lf , ζ −,lf ])

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) .
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(ii) The relaxation C ′ is chain equivalent to C, with torsion

τ(C ' C ′) = Φ+(C ′)− Φ+(C) = Φ−(C ′)− Φ−(C)

= (0, 0, [C +,lf , ζ +,lf ], [C −,lf , ζ −,lf ])

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A)

the Ñil-components of the fibring obstructions Φ±(C) ∈ Wh(A[z, z−1]).
(iii) C is relaxed if and only if τ(C ' C ′) = 0 ∈ Wh(A[z, z−1]).
(iv) τ(C ′ ' (C ′)′) = 0 ∈ Wh(A[z, z−1]).

Proof Apply 26.3 with h = ζ : C−→C.

Example 26.11 If (W, c) is an untwisted CW π1-band with relaxation
(W ′, c′) (20.7) and π1(W ) = π × Z then C(W̃ ) is a Z[π][z, z−1]-module
chain complex band with relaxation

C(W̃ )′ = C(W̃ ′)

(up to simple chain equivalence) and

Φ±(W, c) = Φ±(C(W̃ ))

= (φ±,∓[W ±],−[C lf,π(W̃+), ζ +,lf ],−[C lf,π(W̃−), ζ −,lf ]) ,

Φ±(W ′, c′) = Φ±(C(W̃ )′) = Φ±(C(W̃ ))′ = (φ±,∓[W ±], 0, 0)

∈ Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π]) .

Proposition 26.12 An untwisted CW π1-band (W, c) with π1(W ) = π× Z
is simple homotopy equivalent to a relaxed CW π1-band if and only if the
Z[π][z, z−1]-module chain complex band C(W̃ ) is relaxed.
Proof If (W, c) is an untwisted CW π1-band which is simple homotopy
equivalent to a relaxed CW π1-band then C(W̃ ) is a relaxed chain complex
band over Z[π][z, z−1], by 24.9 and the simple chain homotopy invariance of
the nilpotent classes of a chain complex band C

[C+,lf , ζ +,lf ] , [C−,lf , ζ −,lf ] ∈ Ñil0(A) .

Conversely, if (W, c) is an untwisted CW π1-band such that C(W̃ ) is a
relaxed chain complex band then (W, c) is simple homotopy equivalent to
the relaxation (W ′, c′), which is a relaxed CW π1-band.
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By analogy with 20.12 :

Proposition 26.13 An A[z, z−1]-module chain complex band C and its
relaxation C ′ are related by the relaxation algebraic h-cobordism (B; C,C ′)
with B an A[z, z−1]-module chain complex band and C−→B, C ′−→B chain
equivalences such that

Φ+(B) = (φ+,−[C−],−[C +,lf , ζ +,lf ], 0) ,

Φ−(B) = (φ−, [C+], 0,−[C −,lf , ζ −,lf ]) ,

τ(C−→B) = (0, 0, 0, [C −,lf , ζ −,lf ]) ,

τ(C ′−→B) = (0, 0, [C +,lf , ζ +,lf ], 0)

∈ Wh(A[z, z−1]) = Wh(A)⊕ K̃0(A)⊕ Ñil0(A)⊕ Ñil0(A) .

Proof Any finite based f.g. free A[z, z−1]-module chain complex B with
a chain equivalence C−→B such that τ(C−→B) = (0, 0, 0, [C −,lf , ζ −,lf ])
will satisfy the other conditions. The wrapping up Ĉ can be used to give an
explicit construction of B, by analogy with the construction of the relaxation
CW h-cobordism (Z; W,W ′) in 20.12. Define

B = C(g+ − z−1g− : E[z, z−1]−→F [z, z−1])

with F the algebraic mapping cylinder of a simple A-module chain equiva-
lence

C(

(
f̂ −

f ′+

)
: D−→E ⊕E)

'−→ C(
(

f −

f̂ +

)
: D−→E ⊕ E)

and g+, g− : E−→F the chain maps appearing in the commutative diagram

D wf̂ +

u
f+

E

u
g+

Du f̂ −

u
f ,+

E w F Eu

D wf̂ +

u
f−

E

u
g−

Du f̂ −

u
f ,−

which is chain equivalent (via u, v) to the commutative diagram
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C ⊕ C +,lf ⊕ C −,lf w1⊕ 1⊕ 0

u
1⊕ 1⊕ ζ −,lf

C ⊕ C +,lf ⊕ C −,lf

u
1⊕ 1⊕ 0

C ⊕ C +,lf ⊕ C −,lfu 1⊕ 0⊕ 1

u
1⊕ 1⊕ 0

C ⊕ C +,lf ⊕ C −,lf w1⊕ 1⊕ 0
C ⊕ C +,lf ⊕ C −,lf C ⊕ C +,lf ⊕ C −,lfu 1⊕ 0⊕ 1

C ⊕ C +,lf ⊕ C −,lf w1⊕ 1⊕ 0

u
ζ ⊕ ζ +,lf ⊕ 1

C ⊕ C +,lf ⊕ C −,lf

u
ζ ⊕ ζ +,lf ⊕ 1

C ⊕ C +,lf ⊕ C −,lfu 1⊕ 0⊕ 1

u
ζ ⊕ 0⊕ 1

Remark 26.14 Let (W,∂W ) be an open n-dimensional manifold with com-
pact boundary and one end. In Chapter 17 we used geometric wrapping up
to show that if n ≥ 5 and W is both forward and reverse tame then the
end has an open neighbourhood V ⊂ W which is the infinite cyclic cover
(V, d) = (U, c) of a relaxed manifold band (U, c). Moreover, it was shown
that (U, c) = (V̂ , d̂) is the wrapping up of the ribbon (V, d), with a ho-
motopy equivalence e(W ) ' U and a homeomorphism U × S1 ∼= U × R.
If (W,∂W ) = (M +

, M
+ ∩ M

−) is an end of the infinite cyclic cover
M = c∗R of a manifold band (M, c) then U, V are such that V = U ∼= M ,
M × S1 ∼= T (ζ̂) for a homeomorphism ζ̂ : U−→U in the homotopy class of
ζ × 1 : U ' M × S1−→M × S1 ' U (17.10). The underlying (simple) ho-
motopy types were obtained in Chapter 19 using homotopy theoretic twist
glueing. In the terminology of Chapter 19 the wrapping up Ŵ = M [1] is a
manifold in the canonical simple homotopy type of the 1-twist glueing M(1)
of M . By 26.4

C(Ũ) = C(M̃(1)) = C[1 : C(M̃)−→C(M̃)] = ̂
C(M̃) .

The relaxation CW h-cobordism (Z; W,W ′) of 20.12 between an untwisted
CW π1-band (W, c) and the relaxation (W ′, c′) induces the chain complex
h-cobordism (B;C, C ′) of 26.13, with

B = C(Z̃) , C = C(W̃ ) , C ′ = C(W̃ ′) .

The relaxation of an untwisted manifold band (W, c) is an untwisted man-
ifold band (W ′, c′), and there exists a manifold h-cobordism (Z; W,W ′)
realizing the chain complex h-cobordism (B; C, C ′), verifying the correspon-
dence of the manifold and CW relaxation h-cobordisms (20.13 (i)).
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Wrapping up in algebraic K- and L-theory

The geometric wrapping up construction of Chapter 17 and the algebraic
wrapping up construction of Chapter 26 are now related to the splitting the-
orems for the algebraic K- and L-groups of a Laurent polynomial extension
A[z, z−1] (with involution on A and z = z−1 in L-theory)

K1(A[z, z−1]) = K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A) ,

Ln
h(A[z, z−1]) = Ln

h(A)⊕ Ln−1
p (A) ,

Lh
n(A[z, z−1]) = Lh

n(A)⊕ Lp
n−1(A)

and the corresponding results for the R-bounded category CR(A)

K1(CR(A)) = K1(A[z, z−1])INV = K0(A) ,

Ln(CR(A)) = Ln
h(A[z, z−1])INV = Ln−1

p (A) ,

Ln(CR(A)) = Lh
n(A[z, z−1])INV = Lp

n−1(A)

with INV denoting the subgroup of the elements invariant under the trans-
fers induced from all the finite covers q : S1−→S1 (q ≥ 1) of S1. We refer to
Ranicki [124] for the chain complex treatment of these splitting theorems.

Regard S1 as the unit circle {z ∈ C | |z| = 1} in the complex plane. For
each integer q ≥ 1 complex multiplication defines a q-fold covering of S1 by
itself

q : S1 −→ S1 ; z −→ zq ,

corresponding to injections of the rings A[z], A[z, z−1] into themselves by

q : A[z] −→ A[z] ; z −→ zq ,

q : A[z, z−1] −→ A[z, z−1] ; z −→ zq .

In Chapter 24 we considered the q-fold transfer

q ! : {A[z]-modules} −→ {A[z]-modules} ; M −→ M ! .

318
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Definition 27.1 The q-fold transfer functor

q ! : {A[z, z−1]-modules} −→ {A[z, z−1]-modules} ; M −→ M !

sends an A[z, z−1]-module M to the A[z, z−1]-module M ! with the same
additive group and

A[z, z−1]×M ! −→ M ! ; (z, x) −→ zqx .

Proposition 27.2 (Ranicki [124, Chapters 12,18]) (i) The q-fold transfer
map induced in algebraic K-theory is such that

q ! = q ⊕ 1⊕ q ! ⊕ q ! :

K1(A[z, z−1]) = K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A)

−→ K1(A[z, z−1]) = K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A)

with

q ! : Ñil0(A) −→ Ñil0(A) ; (P, ν) −→ (P, νq) .

The transfer invariant subgroup of K1(A[z, z−1])

K1(A[z, z−1])INV = {x ∈ K1(A[z, z−1]) | q !(x) = x for q ≥ 2}
is such that there is defined an isomorphism

K0(A)
'−→ K1(A[z, z−1])INV ; [P ] −→ τ(−z : P [z, z−1]−→P [z, z−1]) .

(ii) The q-fold transfer maps induced in symmetric L-theory are such that

q ! = q ⊕ 1 : Ln
h(A[z, z−1]) = Ln

h(A)⊕ Ln−1
p (A)

−→ Ln
h(A[z, z−1]) = Ln

h(A)⊕ Ln−1
p (A) .

The transfer invariant subgroup of Ln
h(A[z, z−1])

Ln
h(A[z, z−1])INV = {x ∈ Ln

h(A[z, z−1]) | q !(x) = x for q ≥ 2}
is such that there is defined an isomorphism

Ln−1
p (A)

'−→ Ln
h(A[z, z−1])INV ; (C, φ) −→ (C, φ)⊗ σ∗(S1)

with (C, φ) any finitely dominated (n− 1)-dimensional symmetric Poincaré
complex over A, and σ∗(S1) the 1-dimensional symmetric Poincaré complex
over Z[z, z−1] of S1. Similarly for quadratic L-theory L∗.

(iii) The forgetful functor

{based f.g. free A[z, z−1]-modules} −→ CR(A)
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induces isomorphisms

K1(A[z, z−1])INV ∼= K1(CR(A)) ,

Ln
h(A[z, z−1])INV ∼= Ln(CR(A)) .

Similarly for the Whitehead group Wh and quadratic L-theory L∗.

Let W be a space with a map c : W−→S1. The pullback along c of the
q-fold cover q : S1−→S1 of S1 is the q-fold cover (W !, c !) of (W, c) given by

W ! = {(x, y) ∈ W × S1 | c(x) = yq} , c !(x, y) = y ∈ S1

with

ζ ! = ζq : W
! = W −→ W

! = W , W ! = W
!
/ζ ! = W/ζq .

W ! wc !

u

S1

u
q

W wc S1

If (V ; U, ζU) is a fundamental domain for the infinite cyclic cover W of W
then

q−1⋃

j=0

(ζjV ; ζjU, ζj+1U) = (
q−1⋃

j=0

ζjV ; U, ζqU)

is a fundamental domain for the infinite cyclic cover W
! of W !, with iden-

tifications
W = V/(U = ζU) ,

W ! = (
q−1⋃

j=0

ζjV )/(U = ζqU) ,

W
! = W =

∞⋃

j=−∞
ζjV .

If W is connected then so is W !, and the morphism of fundamental groups
induced by the covering projection W !−→W fits into an exact sequence

{1} −→ π1(W !) −→ π1(W ) −→ Zq −→ {1} .

Proposition 27.3 Let (W, c) be an untwisted CW band, so that ζ∗ = 1 :
π1(W ) = π−→π and

π1(W ) = π × Z , Z[π1(W )] = Z[π][z, z−1] .
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(i) The q-fold cover (W !, c !) of (W, c) induced from the q-fold cover q :
S1−→S1 is an untwisted CW band with fibring obstructions

Φ±(W !, c !) = q !Φ±(W, c) ∈ Wh(π × Z) .

(ii) If (W, c) is an n-dimensional geometric Poincaré band then so is
(W !, c !), with symmetric signature

σ∗(W !) = q !σ∗(W ) ∈ Ln
h(Z[π][z, z−1]) .

Proof If W is a CW complex with a map c : W−→S1 inducing

c∗ = projection : π1(W ) = π × Z −→ π1(S1) = Z

then the covering projection W !−→W of the induced q-fold cover W ! of W
induces the injection of fundamental groups

π1(W !) = π × Z −→ π1(W ) = π × Z ; (g, z) −→ (g, zq) .

The universal cover W̃ ! of W ! is the universal cover W̃ of W with the q-fold
π × Z-action, so that as a Z[π][z, z−1]-module chain complex

C(W̃ !) = q !C(W̃ ) .

Similarly for the finiteness obstruction, Whitehead torsion, the fibring ob-
structions and the symmetric signature.

The algebraic K-theory effect of wrapping up is given by :

Proposition 27.4 (i) The wrapping up of a CW ribbon (X, d) is a re-
laxed CW band (X̂, d̂) which is transfer invariant : for every finite cover
q : S1−→S1 of S1 the pullback q-fold cover (X̂ !, d̂ !) is simple homotopy
equivalent to (X̂, d̂). The fibring obstructions of (X̂, d̂) are given by

Φ+(X̂, d̂) = −[X−] , Φ−(X̂, d̂) = [X+]

∈ Wh(π × Z)INV = K̃0(Z[π]) .

(ii) A CW band (W, c) is simple homotopy equivalent to the wrapping up
(X̂, d̂) of a CW ribbon (X, d) if and only if it is relaxed and there exists a
homotopy ζ ' 1 : W−→W .

(iii) Let f : (X, d)−→(Y, e) be an R-bounded homotopy equivalence of CW
ribbons, with π1(X) = π1(Y ) = π. The isomorphisms

Wh(CR(Z[π])) ∼= Wh(π × Z)INV ∼= K̃0(Z[π])

send the torsion τR(f) ∈ Wh(CR(Z[π])) to the transfer invariant torsion
τ(f̂) ∈ Wh(π×Z)INV of the induced homotopy equivalence of the wrapping
up relaxed CW bands

f̂ : X̂ ' X × S1
f×1−→ Y × S1 ' Ŷ ,
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and to [Y +]− [X+] ∈ K̃0(Z[π]).
Proof (i) The fundamental domain (V ;U, ζU) for W given by 19.12 is such
that the inclusions are idempotents

f+ = i+j+ , f− = i−j− : U −→ V = U .

There exists a rel ∂ simple homotopy equivalence

(V ; U, ζU) ∪ (ζV ; ζU, ζ2U) ' (V ;U, ζU) ,

so that for any q ≥ 2 there exists a rel ∂ simple homotopy equivalence

q−1⋃

j=0

(ζjV ; ζjU, ζj+1U) ' (V ; U, ζU)

between the fundamental domains of W
! and W . The fibring obstructions

have already been computed in 26.6 for the corresponding algebraic wrap-
ping up.

(ii) If (W, c) is simple homotopy equivalent to a wrapping up then it is
relaxed and ζ ' 1 : W−→W by 19.9. Conversely, if (W, c) is relaxed and
ζ ' 1 then

Φ+(W, c) = −[W −] , Φ−(W, c) = [W +]

∈ Wh(π × Z)INV = K̃0(Z[π]) ,

so that (W, c) is simple homotopy equivalent to the wrapping up (X̂, d̂) of
the CW ribbon (X, d) = (W, c)

(iii) Immediate from 27.3 and (i).

The algebraic L-theory effect of wrapping up is given by :

Proposition 27.5 An n-dimensional geometric Poincaré ribbon (X, d) is
a finitely dominated (n− 1)-dimensional geometric Poincaré complex. The
wrapping up of (X, d) is a transfer invariant relaxed n-dimensional geomet-
ric Poincaré band (X̂, d̂) with infinite cyclic cover infinite simple homo-
topy equivalent to (X, d). If X is connected with universal cover X̃ and
π1(X) = π the isomorphisms

Wh(CR(Z[π])) ∼= Wh(π × Z)INV ∼= K̃0(Z[π])

send the R-bounded torsion

τR(X) = τ([X] ∩ − : C(X̃)n−∗−→C(X̃)) ∈ Wh(CR(Z[π]))

to the transfer invariant torsion τ(X̂) ∈ Wh(π × Z)INV and to

[X+] + (−)n−1[X−]∗ ∈ K̃0(Z[π]) .
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The isomorphisms

Ln(CR(Z[π])) ∼= Ln
h(Z[π][z, z−1])INV ∼= Ln−1

p (Z[π])

send the R-bounded symmetric signature σ∗(X) ∈ Ln(CR(Z[π])) to the trans-
fer invariant symmetric signature σ∗(X̂) ∈ Ln

h(Z[π][z, z−1])INV and to the
projective symmetric signature σ∗(X) ∈ Ln−1

p (Z[π]). Similarly for quadratic
L-theory and the surgery obstructions of normal maps.

Remark 27.6 The theory of chain complex ribbons developed in Chapter
25 has an evident generalization to algebraic Poincaré ribbons, i.e. chain
complex ribbons with abstract Poincaré duality. The algebraic K- and
L-theory interpretations of wrapping up (27.4, 27.5) apply also to chain
complex ribbons and their algebraic Poincaré analogues.



324 Ends of complexes



Part Four: Appendices

Appendix A. Locally finite homology with local
coefficients

A.1. Regular covers and singular homology and locally finite sin-
gular homology with local coefficients

In this section W denotes a path-connected space.

Let p : W̃−→W be a regular cover with group of translations π. It is
well-known that the ordinary singular chain complex S(W̃ ) is a chain com-
plex of Z[π]-modules and has an interpretation in terms of local coefficients.
Namely, S(W̃ ) is isomorphic to S∗(W ; Γ) where Γ is a local system (de-
scribed below) with Γx

∼= Z[π] for each x ∈ W and S∗(W ; Γ) is the singular
chain complex of W with coefficients in the local system Γ (see Whitehead
[169, p. 278] and Spanier [150, p. 179]).

The goal here is to generalize this to the locally finite case. However, when
S∗(W ; Γ) is replaced by the locally finite Slf

∗ (W ; Γ) we get a chain complex
isomorphic to Slf,π(W̃ ), the locally π-finite singular chain complex, rather
than Slf (W̃ ). This should help convince the reader that Slf,π(W̃ ) is a more
natural object than Slf (W̃ ).

We begin by setting up the notation needed to describe the local Z[π]
coefficient system on W .

Assume that W and W̃ are path-connected. For each x ∈ W fix x̃ ∈
p−1(x) and let

πx = π1(W,x)/p∗π1(W̃ , x̃) .

Of course, πx
∼= π for each x ∈ W , but we need to have an explicit isomor-

phism γx on hand. To this end, for each x ∈ W define a bijection

αx : π
'−→ p−1(x) ; g −→ g(x̃)

325
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and also a bijection

βx : p−1(x)
'−→ πx ; y −→ [pω]

where ω is a path in W̃ from x̃ to y. Let

γx = βx ◦ αx : π −→ πx .

Then γx is a group isomorphism.

Given a path ω : I−→W define an isomorphism

πω : πω(0)

'−→ πω(1) ; [λ] −→ [ω−1 ∗ λ ∗ ω] .

Let Γx = Z[πx] for x ∈ W . The isomorphism γx : π
'−→πx induces a ring

isomorphism, also denoted by γx,

γx : Z[π]
'−→ Γx ,

which thereby gives Γx the structure of a Z[π]-module.

For each path ω : I−→W πω extends to an isomorphism

Γω : Γω(0)

'−→ Γω(1) ,

so that there is defined a local system Γ of Z[π]-modules on W [150, p. 179].

Using the local system Γ we can construct the usual singular chain com-
plex of W with coefficients in Γ as well as the locally finite singular chain
complex of W with coefficients in Γ.

Let S∗(W ; Γ) = {Sq(W ; Γ), ∂} be the singular chain complex of W with
local Z[π]-coefficients as defined in [150, p. 179]. For σ ∈ W∆q

, Γ(σ) is the
Z[π]-module of Γ sections of σ. An element of Γ(σ) is a function

s : ∆q −→
∐

y∈∆q

Γσ(y)

such that s(y) ∈ Γσ(y) for each y ∈ ∆q and for every path ω : I−→∆q

Γσ◦ω(s(ω(0))) = s(ω(1)) .

Then

Sq(W ; Γ) = {functions c : W∆q −→
∐

σ∈W∆q

Γ(σ) |

c is finitely non-zero and c(σ) ∈ Γ(σ) for each σ ∈ W∆q} .

The boundary operator ∂ is defined by restriction [150, p. 179].
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The locally finite singular chain complex Slf
∗ (W ; Γ) = {Slf

q (W ; Γ), ∂} with
coefficients in Γ is defined as follows.

Slf
q (W ; Γ) = {functions c : W∆q −→

∐

σ∈W∆q

Γ(σ) |

c(σ) ∈ Γ(σ) for each σ ∈ W∆q
and {σ(∆q) | c(σ) 6= 0}

is a locally finite family in W} .

The boundary operator ∂ is induced from the one above [150, p. 182].

On the other hand, the singular chain complex S∗(W̃ ), the locally finite
singular chain complex Slf (W̃ ) and the locally π-finite singular chain com-
plex Slf,π(W̃ ) are also chain complexes of Z[π]-modules.

Let 0 denote the zeroth vertex of ∆q. Then Sq(W̃ ) is a free Z[π]-module
with basis consisting of those singular q-simplexes σ : ∆q −→ W̃ such that
σ(0) = x̃ for some x ∈ W . Thus

Sq(W̃ ) ∼=
⊕

Z[π]

where the direct sum is over the set of singular q-simplexes in W . On the
other hand, Slf,π

q (W̃ ) is not a free Z[π]-module, and it is not even clear when
it is a non-trivial direct product.

Proposition A.1 There are isomorphisms of Z[π]-module chain complexes

A : S∗(W̃ )
'−→ S∗(W ; Γ) , Alf,π : Slf,π

∗ (W̃ )
'−→ Slf

∗ (W ; Γ) .

Proof For a basis element σ ∈ Sq(W̃ ) define A(σ) ∈ Sq(W ; Γ) by

A(σ)(τ) =
{

0 if τ 6= p ◦ σ ,
1 if τ = p ◦ σ .

Since A(σ)(τ) ∈ Γ(τ), we have

A(σ)(τ) : ∆q −→
∐

y∈∆q

Γτ(y) .

To say that A(σ)(τ) = 1 when τ = p ◦ σ, we mean that

A(σ)(τ)(y) = 1 ∈ Γτ(y) = Z[πτ(y)] for each y ∈ ∆q .

To investigate the effect of A on an arbitrary element of Sq(W̃ ) we proceed
as follows.

For each σ ∈ W∆q
, let φ0 : Γ(σ) −→ Γσ(0) be the isomorphism of
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[150, p. 179], φ0(s) = s(σ(0)). Then let δσ : Z[π]−→Γ(σ) be the isomor-
phism which is the composition

δσ : Z[π]
γσ(0)−→ Γσ(0)

φ−1
0−→ Γ(σ) .

An arbitrary element of Sq(W̃ ) can be uniquely written as
∑

τ∈W∆q

rτ τ̃

where rτ ∈ Z[π], the set {rτ | rτ 6= 0} is finite, and τ̃ : ∆q−→W̃ is the unique
lift of τ with τ̃(0) = τ̃(0). Then

A(
∑

τ∈W∆q

rτ τ̃)(σ) = δσ(rσ) ∈ Γ(σ) .

Clearly, σ −→ δσ(rσ) is finitely non-zero.

We now describe the inverse B for A. Let

c : W∆q −→
∐

σ∈W∆q

Γ(σ)

be a finitely non-zero function such that c(σ) ∈ Γ(σ) for each σ ∈ W∆q
.

Then

Bc =
∑

τ∈W∆q

δ−1
τ (cτ)τ̃

where as above τ̃ is the unique lift of τ with τ̃(0) = τ̃(0).

These formulas generalize easily to the locally π-finite case as follows. An
element of Slf,π

q (W̃ ) can be uniquely written as
∏

τ∈W∆q

rτ τ̃

where rτ ∈ Z[π], the set {τ(∆q) | rτ 6= 0} is locally finite, and τ̃ is the unique
lift of τ with τ̃(0) = τ̃(0). Then define

Alf,π : Slf,π
q (W̃ ) −→ Slf

q (W ; Γ)

by

Alf,π(
∏

τ∈W∆q

rτ τ̃)(σ) = δσ(rσ) ∈ Γ(σ) .

Clearly, the function σ−→δσ(rσ) has the correct local finiteness property
and an inverse Blf,π for Alf,π can be defined similarly to B.
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Remarks A.2 (i) It might be worthwhile to note how the local system Γx

depends on the choice of the basepoints x̃ ∈ p−1(x). First note that the
group πx is independent of x̃, but γx is not. For if x′ ∈ p−1(x) is another
choice inducing the isomorphism γ′x : π−→πx, let λx be a path in W̃ from
x̃ to x′. If λ̂x : πx−→πx is the inner automorphism given by

λ̂x(a) = [pλx] ∗ a ∗ [pλx]−1 for each a ∈ πx,

then γx = λ̂x ◦ γ′x. Since the isomorphism γx : Z[π]−→Γx depends on the
choice of x̃, so does the Z[π]-module structure on Γx. In fact a different
choice of basepoints, say x′ ∈ p−1(x), induces a different local system Γ′
which need not be isomorphic to Γ (in the sense of Steenrod [157]). However,
the inner automorphisms λ̂x : πx−→πx induce isomorphisms λ̂x : Γx−→Γ′x
which in turn induce isomorphisms of chain complexes λ̂x : S∗(W ; Γ) ∼=
S∗(W ; Γ′).

(ii) In order to introduce another local system Λ on W consider the Z[π]-
module Z[[π]]. It has elements written as formal products

∏
g∈π ngg with

ng ∈ Z. Addition is defined termwise and Z[π] acts on Z[[π]] via
∑

h∈π

mhh ·
∏
g∈π

ngg =
∏

k∈π

lkk where lk =
∑

hg = k

mhng .

Likewise the Z[π]-module structure on Z[πx] induces a Z[π]-module structure
on

Λx = Z[[πx]] for x ∈ W

and the morphism Γω : Γω(0) −→ Γω(1) induced by a path ω : I−→W
induces a Z[π]-module morphism Λω : Λω(0)−→Λω(1). Thus, we have a local
system Λ of Z[π]-modules on W . It follows that we can consider the Z[π]-
module chain complexes S∗(W ; Λ) and Slf

∗ (W ; Λ). It may be conjectured
that Slf

∗ (W̃ ) and Slf
∗ (W ; Λ) have isomorphic homology groups if W is locally

contractible and paracompact.

A.2. Cellular homology with local coefficients

Let W be a CW complex, let R be a commutative ring, and let Γ be an
arbitrary local system of R-modules on W , where we use the notation and
terminology of [150].

Define the nth cellular chain module of W with local coefficients Γ by

Cn(W ; Γ) = Hn(Wn,Wn−1; Γ) = Hn(S∗(Wn,Wn−1; Γ))

with

Sp(Wn,Wn−1; Γ) =
Sp(Wn; Γ)

Sp(Wn−1; Γ)
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(as in [150, p. 181]). The cellular chain complex C∗(W ; Γ) = {Cn(W ; Γ), ∂}
of W with local coefficients has boundary operator

∂ : Cn(W ; Γ) = Hn(Wn,Wn−1; Γ)

−→ Cn−1(W ; Γ) = Hn−1(Wn−1, Wn−2; Γ)

given by the connecting morphism for the triple (Wn,Wn−1,Wn−2).

This is spelled out in Whitehead [169, p. 283], where it is asserted that

Hn(C∗(W ; Γ)) ∼= Hn(W ; Γ)

generalizing the classical case of global coefficients. We shall also outline a
proof in section A.4 below.

Another straightforward generalization of the classical case is also given in
Whitehead [169, p. 282], namely the direct sum representation of Cn(W ; Γ)
described as follows. Let In be an indexing set for the set of n-cells of W and
let hα : ∆n−→W (α ∈ In) be a characteristic map for the αth n-cell of W .
If Γ(hα) denotes the R-module of Γ sections, there is a natural morphism
Γ(hα)−→Sn(W ; Γ) [150, p. 180] which represents Sn(W ; Γ) as a direct sum

Cn(W ; Γ) ∼=
∑

α∈In

Γ(hα) .

A.3. Locally finite cellular homology with local coefficients

Locally finite cellular homology with global coefficients is defined by Ge-
oghegan [63] where it is called infinite cellular homology. We need to gen-
eralize [63] to the case of local coefficients.

Let W and Γ be as in section A.2 above, but now assume that W is locally
finite.

Define the nth locally finite cellular chain module of W with local coeffi-
cients Γ by

C lf
n (W ; Γ) =

∏

α∈In

Γ(hα)

where hα is the characteristic map given above.

The locally finite cellular chain complex of W with local coefficients Γ

C lf
∗ (W ; Γ) = {C lf

n (W ; Γ), ∂}
has boundary operator induced by the boundary operator for C∗(W ; Γ) (this
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requires that W be locally finite) which in turn is the connecting morphism
for the triple (Wn,Wn−1,Wn−2).

In Proposition A.6 below we shall prove that

Hn(C lf
∗ (W ; Γ)) ∼= H lf

n (W ; Γ)

when W is a strongly locally finite CW complex (the module on the right
is the locally finite singular homology module of W with local coefficients
Γ, namely Hn(Slf

∗ (W ; Γ))).

A.4. Local Z[π]-coefficients and cellular homology

Let Γ be the local system of Z[π] coefficients on the connected locally
finite CW complex W as described in section A.1 above.

Note that there is a commutative diagram

S∗(W̃n−1) wA

u

S∗(Wn−1; Γ)

u
S∗(W̃n) wA S∗(Wn; Γ)

where the horizontal maps are the isomorphisms of Z[π]-module chain com-
plexes given by Proposition A.1 above. We therefore have an induced iso-
morphism S∗(W̃n, W̃n−1) ∼= S∗(Wn, Wn−1; Γ).

Proposition A.3 (i) The cellular chain complex C∗(W̃ ) of W̃ is isomorphic
as a chain complex of Z[π]-modules to the cellular chain complex C∗(W ; Γ)
of W with local coefficients Γ

C∗(W̃ ) = C∗(W ; Γ) .

(ii) The locally π-finite cellular chain complex C lf,π
∗ (W̃ ) of W̃ is isomor-

phic as a chain complex of Z[π]-modules to the locally finite cellular chain
complex C lf

∗ (W ; Γ) of W with local coefficients Γ

C lf,π
∗ (W̃ ) = C lf

∗ (W ; Γ) .

Proof (i) Identify

Cn(W̃ ) = Hn(S∗(W̃n, W̃n−1))
∼= Hn(S∗(Wn,Wn−1; Γ)) = Cn(W ; Γ) .

Of course, one needs to check that the isomorphisms induced by A commute
with the boundary operators.
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(ii) These complexes are each obtained from the ordinary ones in (i) by
replacing direct sums of copies of Z[π] by direct products of the same copies
of Z[π]. The isomorphism of the direct sums is such that it induces an
isomorphism of direct products.

A.5. The local coefficient version of Wall’s intermediate chain
complex

Let W be a CW complex and Γ a local system of R-modules on W . The
filtration of W by its p-skeleta W p induces a filtration of S∗(W ; Γ) by letting
F pS∗(W ; Γ) be the image of S∗(W p; Γ) −→ S∗(W ; Γ) under the inclusion
induced chain map. Following Wall [164, p. 130] define

Dp(W ; Γ) = ker(∂ : F pSp(W ; Γ)−→F pSp−1(W ; Γ)/F p−1Sp−1(W ; Γ)) .

Then D∗(W ; Γ) is a subcomplex of S∗(W ; Γ) and C∗(W ; Γ) is a quotient
complex of D∗(W ; Γ). The following proposition follows from the argument
of Lemma 1 of [164].

Proposition A.4 The natural chain maps

S∗(W ; Γ) ←↩ D∗(W ; Γ) −→ C∗(W ; Γ)

are chain equivalences of R-module chain complexes. In particular, S∗(W ; Γ)
and C∗(W ; Γ) are chain equivalent.

A.6. The weak equivalence of locally finite singular and cellular
homology

Let W be a countable, strongly locally finite CW complex and let Γ
be a local system of R-modules on W . There exist a sequence of cofinite
subcomplexes W1 ⊇ W2 ⊇ · · · such that

⋂
i

Wi = ∅.

Proposition A.5 There exist isomorphisms of R-module chain complexes

(i) Slf
∗ (W ; Γ) ∼= lim←−

i

S∗(W,Wi; Γ) ,

(ii) C lf
∗ (W ; Γ) ∼= lim←−

i

C∗(W,Wi; Γ) .

Proof (i) is just the local coefficient version of 3.16. It is also derived by
Spanier [150, Theorem 9.12].

(ii) is clear from the direct sum and direct product descriptions above. In
the constant coefficient case it was also observed by Geoghegan [63].
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Observe that for each integer n the bonding maps in each of the following
inverse sequences are epimorphisms :

Sn(W,W1; Γ) ←−− Sn(W,W2; Γ) ←−− Sn(W,W3; Γ) ←−− · · · ,

Dn(W,W1; Γ) ←−− Dn(W,W2; Γ) ←−− Dn(W,W3; Γ) ←−− · · · ,

Cn(W,W1; Γ) ←−− Cn(W,W2; Γ) ←−− Cn(W,W3; Γ) ←−− · · · .

It follows that

lim←−
1Sn(W,Wi; Γ) = lim←−

1Dn(W,Wi; Γ) = lim←−
1Cn(W,Wi; Γ) = 0 ,

and there is a commutative diagram with exact rows

0 w lim←−1Hn+1(S∗(W,Wi; Γ)) w Hn(lim←−S∗(W,Wi; Γ)) w lim←−Hn(S∗(W,Wi; Γ)) w 0

0 w lim←−1Hn+1(D∗(W,Wi; Γ)) w

u

u

Hn(lim←−D∗(W,Wi; Γ)) w

u

u

lim←−Hn(D∗(W,Wi; Γ)) w

u

u

0

0 w lim←−1Hn+1(C∗(W,Wi; Γ)) w Hn(lim←−C∗(W,Wi; Γ)) w lim←−Hn(C∗(W,Wi; Γ)) w 0

(cf. Massey [89, Appendix], Geoghegan [63], Spanier [150, p. 186]). The
vertical maps on the sides are isomorphisms by Proposition A.4 above. The
5-lemma implies that the vertical maps in the middle are also isomorphisms.
Define a subcomplex Dlf

∗ (W ; Γ) of the singular chain complex Slf
∗ (W ; Γ) by

Dlf
p (W ; Γ) = ker( ∂ : F pSlf

p (W ; Γ)−→F pSlf
p−1(W ; Γ)/F p−1Slf

p−1(W ; Γ)) ,

such that C lf
∗ (W ; Γ) is a quotient complex of Dlf

∗ (W ; Γ). Applying Propo-
sition A.5, we have the following analogue of 4.7 :

Proposition A.6 If W is a countable, strongly locally finite CW complex
and Γ is any local system on W , then the natural chain maps

Slf
∗ (W ; Γ) ←↩ Dlf

∗ (W ; Γ) −→ C lf
∗ (W ; Γ)

are homology equivalences of Z-module chain complexes. In particular,
Slf
∗ (W ; Γ) and C lf

∗ (W ; Γ) are homology equivalent and

H lf
∗ (W ; Γ) = H∗(Slf

∗ (W ; Γ)) = H∗(C lf
∗ (W ; Γ)) .

Question Are Slf
∗ (W ; Γ) and C lf

∗ (W ; Γ) chain equivalent?

Note that this is the case if the Z-module chain complexes Slf
∗ (W ; Γ),
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C lf
∗ (W ; Γ) are chain equivalent to free Z-module chain complexes, e.g. if

they are finitely dominated.

Define a subcomplex Dlf,π
∗ (W̃ ) of the singular chain complex Slf,π

∗ (W̃ ) by

Dlf,π
p (W̃ ) = ker( ∂ : F pSlf,π

p (W̃ )−→F pSlf,π
p−1(W̃ )/F p−1Slf,π

p−1(W̃ )) ,

such that C lf,π
∗ (W̃ ) is a quotient complex of Dlf,π

∗ (W̃ ).

Proposition A.7 If W is a countable, strongly locally finite CW complex
and W̃ is a regular cover of W with group of covering translations π, then
the natural chain maps

Slf,π
∗ (W̃ ) ←↩ Dlf,π

∗ (W̃ ) −→ C lf,π
∗ (W̃ )

are homology equivalences of Z[π]-module chain complexes. In particular,
Slf,π
∗ (W̃ ) and C lf,π

∗ (W̃ ) are homology equivalent and

H lf,π
∗ (W̃ ) = H∗(Slf,π

∗ (W̃ )) = H∗(C lf,π
∗ (W̃ )) .

Proof This is a special case of Proposition A.6, using Propositions A.1, A.3
to identify Slf,π

∗ (W̃ ) = Slf
∗ (W ; Γ) etc.



Appendix B. A brief history of end spaces

Path spaces are widely used in topology, notably in homotopy theory and
Morse theory. They have also been long used to describe the local topo-
logical behaviour of spaces. In 1955 John Nash [102] used path spaces to
give a homotopy theoretic model of the tangent space of a smooth manifold.
Given a smooth manifold M and x ∈ M , Nash considered the path spaces

T (M, x) = {ω : I−→M |ω(0) = x , ω(t) 6= x for all t > 0} ,

T (M) =
⋃

x∈M

T (M,x) ⊆ M I .

If dim(M) = m then each T (M, x) is homotopy equivalent to Sm−1, and
the map

T (M) −→ M ; ω −→ ω(0)

is a fibration with fibre Sm−1. Nash observed that this fibration is fibre
homotopy equivalent to the tangent sphere bundle of M . Consequently, the
fibre homotopy type of the tangent sphere bundle of a smooth manifold
depends only on the underlying topological type of the manifold. This
observation constituted Nash’s proof of Thom’s theorem on the topological
invariance of the Stiefel–Whitney classes.

Hu [69] studied the path space T (X, x) where X is an arbitrary space. He
used the algebraic topology of T (X, x) to define the local algebraic topology
of X at x. Later, Hu [70, 71] considered a related construction to model the
normal, as opposed to the tangential, direction. Given a subspace Y ⊆ X
and a point y ∈ Y , let

N(X, Y, y) = {ω : I−→X |ω(0) = y, ω(t) /∈ Y for all t > 0} ,

N(X, Y ) =
⋃

y∈Y

N(X, Y, y) ⊆ XI .

In certain very special cases Hu showed that evaluation at 0 defines a fibra-
tion N(X, Y )−→Y .

335
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Fadell [43] used Hu’s generalization to give a homotopy theoretic model
of the normal bundle of a submanifold P ⊂ M without assuming a smooth
structure on M . In [43] it is proved that for a p-dimensional locally flat
topological submanifold P of an m-dimensional topological manifold M ,
the evaluation at 0 defines a fibration N(M, P )−→P with fibre Sm−p−1. If
M is a smooth manifold and P is a smooth submanifold, then N(M, P )−→P
is fibre homotopy equivalent to the normal sphere bundle of P in M . Con-
sequently, the fibre homotopy type of the normal sphere bundle depends
only on the underlying topological type. In fact, every finite CW complex
P can be embedded in M = Sm (m large) with a regular neighbourhood
(W,∂W ). If m− p ≥ 3 then P is a p-dimensional Poincaré complex if and
only if the homotopy fibre of the inclusion ∂W−→W is Sm−p−1, in which
case

Sm−p−1 −→ N(Sm, P ) ' ∂W −→ P ' W

is the normal fibration of Spivak [152], which depends only on the homotopy
type of P .

The path space constructions of Nash, Hu, and Fadell gave homotopy the-
oretic models for tangent and normal sphere bundles for topological mani-
folds, even when those manifolds have no smooth structure. Later, Milnor
[98] invented microbundles as a better substitute for the tangent bundle of
a topological manifold. Then Kister [85] and Mazur used that theory to
construct a well-defined tangent bundle (rather than just a microbundle)
of a topological manifold. On the other hand, for a locally flat topological
submanifold P of a topological manifold M , Rourke and Sanderson [138]
showed that P need not have a normal bundle neighbourhood in M . Thus,
Fadell’s construction has stood as the best model for a normal bundle in
the general topological setting. For more recent results in this direction, see
Hughes, Taylor and Williams [78].

Quinn [116] used path space models in his work on stratified spaces. In
order for a pair (X, Y ) to be a homotopically stratified set in the sense of
[116], it is necessary that the evaluation map N(X, Y )−→Y be a fibration,
although in this generality the fibre need not be a sphere. N(X, Y ) is called
the homotopy link of Y in X in [116] (see 12.11 for the definition).

The homotopy model for the behaviour at infinity of a space W is the Nash
(spherical) tangent space T (W∞,∞) of the one-point compactification W∞
at ∞. Of course, T (W∞,∞) is the same space as the Hu–Fadell normal
space N(W∞, {∞}). Quinn would consider W∞ to be a stratified set with
two strata, W and {∞}. Then T (W∞,∞) is the homotopy link of {∞}
in W∞. All of these points of view yield the same object, namely the end
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space e(W ). Freedman and Quinn [60, p. 214] call e(W ) a homotopy collar
of W .

A different point of view which often arises in studying the end theory of
W is to focus attention on the inverse system of complements of compact
subsets of W . When W can be written as an ascending union

K1 ⊆ K2 ⊆ K3 ⊆ . . . ⊆
∞⋃

i=1

Ki = W

of compact subspaces, one considers the inverse sequence of inclusions

W\K1 ←−− W\K2 ←−− W\K3 ←−− . . . .

(This is the point of view of Porter [111], for example.) The homotopy
inverse limit of this sequence is homotopy equivalent to the end space e(W ).
This model for e(W ) has been exploited by Edwards and Geoghegan [39],
and by Edwards and Hastings [40] for problems related to proper homotopy
theory, shape theory, and end theory.



Appendix C. A brief history of wrapping up

In this appendix we use wrapping up to denote the geometric compactifi-
cation procedure which passes from a non-compact space X with a proper
map X−→Rn to a compact space X̂ with a map X̂−→Tn. The wrapping up
of Chapter 17 is the special case n = 1. Wrapping up sometimes goes under
the name ‘belt buckle trick’, ‘furling’ and it is a special case of the ‘torus
trick’. In this appendix we shall give a brief history of the development and
applications of wrapping up. In the applications, it is also frequently useful
to consider the passage in the reverse direction.

In 1964 M. Brown (unpublished) proved that if X, Y are compact Haus-
dorff spaces which are related by a homeomorphism f : X×R−→Y ×R then
X×S1, Y ×S1 are related by a homeomorphism f̂ : X×S1−→Y ×S1. Three
proofs are available in the literature : Siebenmann [142, 145] and Edwards
and Kirby [41]. For manifold X, Y the result was obtained by h-cobordism
theory (17.3).

‘Novikov first exploited a torus furling idea in 1965 to prove the topological
invariance of rational Pontrjagin classes. And this led to Sullivan’s partial
proof of the Hauptvermutung. Kirby’s unfurling of the torus was a fresh
idea that proved revolutionary.’ (Siebenmann [146, footnote p. 135]).

Edwards and Kirby [41] used wrapping up to prove the local contractibil-
ity of the homeomorphism group of a compact manifold. Siebenmann [145]
developed a general twist glueing construction, with wrapping up as a spe-
cial case, and used it to analyse the the obstruction to fibring manifolds
over S1 (cf. Chapter 17). Chapman [25, 26] used this form of wrapping up
to obtain approximation results for manifolds, such as the sucking principle
(16.13). Hughes [72] developed a parametrized wrapping up, which led to
the classification of manifold approximate fibrations by Hughes, Taylor and
Williams [77].

338
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Various forms and applications of geometric wrapping up have also ap-
peared in the works of Anderson and Hsiang [2], Bryant and Pacheco [17],
Burghelea, Lashof and Rothenberg [18], Ferry [53], Freedman and Quinn
[60], Madsen and Rothenberg [88], Prassidis [112], Rosenberg and Wein-
berger [137], Steinberger and West [158], Weinberger [166], Weiss and Will-
iams [167], . . . .
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over U , 188

ε-homotopy equivalence
at ∞, 101
over B, 187

π-cohomology, H∗
π(W̃ ), 57

π1-band, 178
π1-fundamental domain, 153
σ-compact, 6

algebraic
h-twist glueing, C(h), 308

algebraic mapping
coequalizer, W(f+, f−), 257
cone, C(f), 31
pullback, P(h, k), 223
pushout, M(f, g), 223
telescope, Tel(f), 290
torus, T (h), 257
torus, modified, T ′(h), 257

approximate fibration, 190
at least k ends, 8

band, xv, 175
ANR, 175
chain complex, 263
CW , 175
geometric Poincaré, 175
manifold, 175
untwisted, 256

bounded category, CB(A), 300
bounded fibration, 188
bounded homotopy equivalence, 187

at ∞, 101
bounded Whitehead group, WhB(A), 301

canonical simple homotopy type, 168
cartesian square of rings, 270
chain complex

cellular, C(W ), 43
singular, S(W ), 30

chain complex at ∞
Z[π]-module singular, S∞,π(W̃ ), 56

cellular, C∞,π(W̃ ), 58
cellular, C∞(W ), 46

singular, S∞(W ), 33
chain equivalence, 31
chain homotopy

cartesian, 223
finite, 65

closed map, 30
cochain complex

singular, S(W )∗, 42
cocompact, 5
cofinite

neighbourhood (of infinity), 275
subcomplex, 5

cohomology
singular, H∗(W ), 42

cohomology of W at ∞, H∗∞(W ), 42
collared, xii, 3

completion, Âs, 27
covering translation, 302
CW cobordism, 225

derived limit, lim←−
1, 17

direct limit, lim−→, 13

domination
of chain complex, 65
of space, 69

double mapping cylinder, M(f, f ′), 138
dyadic tree, 8

end complex
A[z]-module, e(C+), 269
in CR(A), e(C), 301

end obstruction, [ε], xiii
end space, e(W ), xiv, 1
end, ε, x, 7
exactly k ends, 8

fibring obstructions
algebraic, Φ+(C), Φ−(C), 264
geometric, Φ+(W, c), Φ−(W, c), 180
manifold, Φ(M, c), xvi

finite structure
chain complex, 66
space, 68

finitely dominated
chain complex, 65
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space, xii, 69
finiteness obstruction, [X], xiii, 70
formal Laurent polynomial module,

A[[z, z−1]], 268
formal power series ring, A[[z]], 268
formal power series ring, Z[[z]], 28
forward collared

chain complex, 274
space, 75

forward tame
chain complex, 274
space, 75

Fredholm matrix, 183
Freudenthal compactification, W ∗, 12
functor

product, Π, 301
sum, Σ, 301

fundamental domain, 149
ANR, 150
CW , 150

fundamental group
at ∞, π∞1 (W ), 24
of end, π1(ε), x

geometric Poincaré band, 175
geometric Poincaré cobordism, 61
geometric Poincaré complex, 61
geometric Poincaré pair, 61
geometric Poincaré ribbon, 174
geometric Poincaré transverse, 61

h-cobordism, 69
homology

Λ-coefficient, H∗(W ; Λ), 281
at ∞, H∞∗ (W ), 33
equivalence, 31

locally finite, Hlf
∗ (W ), 30

singular, H∗(W ), 30
homotopy

cobordism, 224
direct limit, hocolim−−−−−→

j

Xj , 14

equivalence, 185
finite, 68
inverse limit, holim←−−−

j

Xj , 16

link, holink(W∞, {∞}), 1
link, holink(X, Y ), 145
pushout, 138

infinite cellular homology, 330
infinite simple homotopy equivalence, 123
infinite torsion, τ lf (f), 123
infinite Whitehead group, Whlf (W ), 123
inverse limit, lim←−, 16

invertible cobordism, 199

Jacob’s ladder, 25

Laurent polynomial extension, A[z, z−1], 255
Laurent polynomial extension, Z[z, z−1], 28
localization, A[1/s], 27

locally π-finite cellular homology

Z[π]-modules, Hlf,π
∗ (W̃ ), 58

locally π-finite homology Z[π]-modules,

Hlf,π
∗ (W̃ ), 56

locally π-finite homology at ∞, H∞,π
∗ (W̃ ), 56

locally finite Z[π]-module, 60
locally finite cellular chain complex

Clf (W ) , 44

with local coefficients, Clf
∗ (W ; Γ), 330

locally finite chain complex
A[[z, z−1]]-module, Clf , 271
A[[z]]-module, (C+)lf , 269

locally finite cohomology, H∗
lf (W ), 42

locally finite dual Z[π]-module,

Homlf
Z[π]

(M, Z[π]), 60

locally finite homology, Hlf
∗ (W ), 30

locally finite projective class
[W ]lf , 73

at ∞, [W ]lf∞, 115
forward tame CW complex, [W ]lf , 112

locally finite singular
chain complex, Slf (W ), 30
cochain complex, Slf (W )∗, 42
r-chain, 30
r-cochain, 42

manifold approximate fibration, 190
mapping

coequalizer, W(f+, f −), 151
cotelescope, W(fj), 19
cylinder, M(f), 138
telescope, Tel(fj), 14
torus, T (h), 168

Mayer–Vietoris presentation
A[z, z−1]-module, (C +, C −), 260
in CR(A), (C+, C−), 303

Mittag–Leffler condition, 22
movable at the end, 81

neighbourhood of end, x, 7
nilpotent class group

Nil0(A), 259

reduced, Ñil0(A), 259
Novikov ring, A((z)), 268
number of ends, 8

one-point compactification, W∞, 1
open n-dimensional geometric Poincaré pair,

61

path-connected at ∞, 24
Poincaré transverse, 61
polynomial extension, A[z], 255
projective class

at ∞, [W ]∞, 110
chain complex, [C], 66
CW complex, [X], 69

proper homotopy equivalence, 2, 185
at ∞, 97

proper map, 2
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pseudo-fibred manifold band, 294

q-fold transfer
A[z]-module, q!, 290
A[z, z−1]-module, q!, 319

relative Whitehead group, Wh(f), 125
relaxation

algebraic h-cobordism, 316
chain complex, 313
CW band, 248
CW h-cobordism, 252
h-cobordism, 215
manifold band, 215

relaxed band, 183
negatively, 183
positively, 182

relaxed chain complex
A[z]-module, 288
A[z−1]-module, 290
A[z, z−1]-module, 293

reverse π1-tame, 96
reverse collared

chain complex, 269
space, 92

reverse tame
chain complex, 269
space, 92

ribbon
ANR, 174
chain complex, 304
CW , 174
geometric Poincaré, 174
manifold, 174
topological, 173

s-adic completion, Âs, 27

s-adic solenoid, Ŝ1
s , 20

s-cobordism, 69
theorem, 69

semistable at ∞, 24
set of ends, EW , 10
Siebenmann twist glueing, 185
simple chain equivalence, 67
simple chain homotopy type, 67
simple geometric Poincaré complex, 181
simple homotopy equivalence, 68
simple homotopy type, 68
simple infinite homotopy equivalence, 123
singular

chain complex, S(W ), 30
cochain complex, S(W )∗, 42
cohomology, H∗(W ), 42
homology, H∗(W ), 30
r-chain, 30
r-cochain, 42

solenoid, Ŝ1
s , 20

split by a homotopy open strip, 297
split homotopy equivalence, 297
stable π1 at ∞, 24
stable inverse system, 22
Steenrod homology, Hst∗ (X), 54

strongly locally finite CW complex, 45
subobject, in CB(A), 302

tame, xiii
teardrop double mapping cylinder, cyl(f, f ′),

139
teardrop mapping cylinder, cyl(f), 139
torsion

chain equivalence, τ(f), 67
contractible chain complex, τ(C), 66
geometric Poincaré complex, τ(W ), 181
h-cobordism, τ(W ; M, M ′), 69
homotopy equivalence, τ(f), 68
infinite, τ lf (f), 123

total projective surgery obstruction groups,
Sp∗(K), 211

total projective surgery obstruction, sp(K),
211

twist glueing
algebraic, C(h), 308
homotopy theoretic, X(h), 230
Siebenmann, 185

unbounded subspace, 8
union, 225
untwisted, 256

Wall finiteness obstruction, [X], xiii, 70
weak homotopy equivalence, 18
Whitehead group

Wh(A), 67
Wh(A[z, z−1]), 259
Wh(f), 125
WhB(A), 301
Whlf (W ), 123

wrapping up

chain complex ribbon, Ĉ, 312

CW ribbon, X̂, 244

manifold, X̂, xvii, 204
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